UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO PROGRAMA DE POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOLOGÍA Ciencias ambientales Desarrollo de la cubierta edáfica en los geosistemas kársticos tropicales montañosos del sur de México y su relevancia para el desarrollo de las sociedades prehispánicas TESIS QUE PARA OPTAR POR EL GRADO DE: DOCTORA EN CIENCIAS DE LA TIERRA PRESENTA: PAMELA AIDE GARCÍA RAMÍREZ JURADO EXAMINADOR Tutor. Dr. Sergey Sedov Dr. Charles William Golden Dr. Lorenzo Vazquez Selem Ciudad Universitaria, CD. MX. Enero, 2025 UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. “Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, las obras de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales”. Pamela Aide García Ramírez Agradecimientos A la UNAM, al Posgrado en Ciencias de la Tierra, al Instituto de Geología, y a todo el personal académico y administrativo que forman parte del programa y que día a día se encargan de que todo marche adecuadamente. Al CONAHCyT, el PAEP y los proyectos PAPIIT por el apoyo económico para la realización de esta investigación, así como estancias académicas y asistencia a congresos. A los diferentes laboratorios del Instituto de Geología, Geofísica y del LANGEM donde se realizó la analítica de la tesis, así como a los encargados que ayudaron para lograr exitosamente los análisis: Taller de laminación a cargo del M. en C. Jaime Díaz Ortega, Laboratorio de Física de Suelos a cargo del Biol. Jorge René Alcalá Martínez, Laboratorio de Fluorescencia de Rayos X a cargo del Quím. Rufino Lozano Santa Cruz, Laboratorio de Difracción de Rayos X a cargo de la Dra. Teresa Pi Puig, y Laboratorio de Paleomagnetismo a cargo de la Dra. Beatriz Ortega Guerrero. Al grupo de Paleosuelos, antiguos y nuevos miembros, alumnos e investigadores por igual, por su apoyo y comentarios durante la elaboración de esta investigación. Siempre hay algo interesante que aprender ya sea en campo o en el salón de clases, y se agradecen las experiencias compartidas durante ya más de seis años. Un especial agradecimiento a la Dra. Solleiro y al Dr. Sedov por apoyar mi inclusión en este grupo y abrirle su corazón a la geoarqueología. A los integrantes de mi comité: a mi tutor Sergey Sedov por su paciencia y constante apoyo, a mis asesores Lorenzo Vázquez Selem y Charles Golden por sus comentarios y asesorías que enriquecieron este trabajo y mi formación académica. Así como a los revisores de la tesis: Dra. Teresa Pi Puig, Dr. Héctor Estrada Medina y Dr. Rafael López Martínez por sus comentarios para el mejoramiento del escrito. A todos los coautores, revisores y editores de los artículos que integran esta tesis, sin su apoyo y colaboración estos no habrían visto la luz. Al proyecto arqueológico PABC y todos sus integrantes por permitirme formar parte de este, incluirme en las labores de investigación en campo y actividades a distancia durante la pandemia. Un especial agradecimiento a Shanti Morell-Hart por las oportunidades que me ha brindado para colaborar en el proyecto y para mi desarrollo personal. Y por último a todos mis amiguitos de vida y de posgrado que me han acompañado durante este proceso, me han aguantado y me han apoyado para lograr sobrevivir la vida de tesista: Sol, Joha, Gina, Axel, Karla, Brunis y Ofelia. Un reconocimiento especial a la niña Thania y al Dr. Emérito por muchos años de amistad y buenos momentos compartidos, que no se repitan. INDICE Resumen Abstract 1 INTRODUCCIÓN ........................................................................................................................ 1 1.1 Suelos en Karst.................................................................................................................... 1 1.2 Erosión del suelo ................................................................................................................. 3 1.2.1 Erosión antropogénica .................................................................................................. 4 1.3 Problemática del estudio ...................................................................................................... 5 1.4 Hipótesis .............................................................................................................................. 5 1.5 Objetivos .............................................................................................................................. 6 1.5.1 General ......................................................................................................................... 6 1.5.2 Particulares ................................................................................................................... 6 1.6 Estructura de la tesis ............................................................................................................ 6 2 ÁREAS DE ESTUDIO Y METODOLOGÍA ................................................................................... 8 3 RESULTADOS ........................................................................................................................... 11 3.1 Soil development and ancient Maya land use in the tropical karst landscape: Case of Busiljá, Chiapas, México ....................................................................................................................... 11 3.2 Soil toposequences, soil erosion, and ancient Maya land use adaptations to pedodiversity in the tropical karstic landscapes of southern Mexico .................................................................... 33 3.3 Interaction of geomorphic processes and long-term human impact in the soil evolution: A study case in the tropical area at Veracruz, Mexico ............................................................................ 57 4 DISCUSIÓN ............................................................................................................................... 71 4.1 Edafodiversidad en los geosistemas kársticos de montaña ................................................. 71 4.2 Material Parental ................................................................................................................. 72 4.3 Erosión-sedimentación ........................................................................................................ 73 4.4 Impacto antrópico ............................................................................................................... 75 4.5 Pedogénesis y modelo de desarrollo de la cubierta edáfica ................................................. 76 4.6 Trabajo a futuro................................................................................................................... 82 5 CONCLUSIONES ...................................................................................................................... 83 Anexo 1 Articulo Sierra de Zongolica ............................................................................................. 84 Anexo 2 Perfiles complementarios. No publicados pero estudiados ............................................. 115 Referencias ................................................................................................................................ 118 Resumen Los suelos desarrollados en los geosistemas kársticos tropicales montañosos han sido poco estudiados en contraparte con aquellos desarrollados en el karst de plataforma. La presente investigación se desarrolla en el área cercana al Valle de Busiljá, en Chiapas y en la Sierra Zongolica y el área de Amatlán de los Reyes, en Veracruz, México, con la finalidad de comprender la importancia del relieve, la erosión lateral y vertical o soil piping, el aporte de material silicatado y el impacto antrópico en la pedogénesis en estos geosistemas. Se emplearon análisis físico-químicos, mineralógicos y micromorfológicos, así como SIG. El área del Valle de Busiljá, y zonas aledañas, presenta vestigios arqueológicos del periodo Clásico Maya (350 a 900 D.C.), en la actualidad se emplean con fines agrícolas, ganaderos y forestales. Los suelos estudiados incluyen perfiles sobre estructuras arqueológicas, en laderas de lomeríos con y sin evidencias de terrazas e impacto antrópico evidente, en zonas bajas pantanosas y al interior de cuevas y bolsas kársticas. El análisis de los perfiles en la geoforma mostró una alta erosión causada por la actividad antrópica en las partes altas del relieve, resultando en la generación de pedosedimentos, algunos de los cuales fueron atrapados en depresiones de las laderas y bolsas kársticas, y otros llegaron a las zonas bajas pantanosas donde aceleraron la pedogénesis de estos suelos y fueron profundamente transformados por procesos redoximórficos. La zona de Zongolica presenta un relieve kárstico bien desarrollado con presencia de cuevas y dolinas. La catena estudiada abarca suelos en una dolina adyacente a una cueva, suelos en depresiones superficiales del karst y depósitos al interior de la cueva Atl. La pedogénesis de estos suelos va de la mano a su posición geomorfológica, los que se encuentran en las depresiones con mayor estabilidad geomorfológica muestran una pedogénesis más larga y se asemejan a los suelos tipo Terra Rossa característicos de las morfologías kársticas de plataforma; mientras que los que se encuentran en la dolina adyacente a la entrada de la cueva presentan características coluviales, indicando una baja pedogénesis por el movimiento constante del material. Los sedimentos tipo diamicton al interior de la cueva se asemejan a los suelos superficiales a la entrada de ésta, indicando un movimiento lateral del exterior al interior de la cueva y menor importancia de “soil piping”. La zona de Amatlán se caracteriza por procesos de sedimentación volcanoclástica e impacto antrópico prehispánico y actual. Los suelos estudiados se dividen en oscuros y rojos, se distribuyen en distintas terrazas e incluyen suelos bajo cultivo actual y pasado, con y sin evidencia de impacto antrópico (material cultural). El desarrollo de los suelos en esta área es resultado de aportes de lahares del Pico de Orizaba, compuestos de minerales frescos, alteritas y pedosedimentos arcillosos, su evolución a suelos oscuros o rojos es dependiente de la geoforma en que se desarrollan, los rojos situándose en superficies más antiguas. Sobre las laderas de montañas calcáreas que delimitan los valles con suelos rojos laháricos se forman Rendzinas que tienen contribución de los materiales piroclásticos. El impacto humano se evidencia en una continua incorporación de materiales orgánicos que pudieron ser responsables de la pigmentación oscura resultando en suelos semejantes a las Terras Pretas y Terra Mulata del Amazonia. El estudio de las diferentes catenas demostró la importancia del relieve como determinante de estabilidad y por lo tanto de continuidad pedogenética, también fue clara la importancia del impacto antrópico como factor acelerante de la erosión y como modificador de las propiedades de los suelos. Abstract The soils developed in tropical mountain karst geosystems have been less studied in contrast to those developed in platform karst. The present research is carried out in the area near the Busiljá Valley, in Chiapas and in the Sierra Zongolica and the Amatlán de los Reyes area, in Veracruz, Mexico, with the purpose of understanding the importance of relief, lateral and vertical erosion or soil piping, the contribution of silicate material and the anthropic impact on pedogenesis in these geosystems. Physicochemical, mineralogical and micromorphological analyses were used, as well as Geographic Information Systems. The Busiljá Valley and surrounding areas, presents archaeological remains from the Classic Maya period (350 to 900 AD), currently used for agricultural, livestock and forestry purposes. The soils studied include profiles on archaeological structures, on hillsides with and without evidence of terraces and obvious anthropic impact, in low marshy areas and inside caves and karst pockets. The analysis of the profiles in the geoform showed high erosion caused by anthropic activity in the upper parts of the relief, resulting in the generation of pedosediments, some of which were trapped in depressions on the slopes and karst pockets, and others reached the low marshy areas where they accelerated the pedogenesis of these soils and were deeply transformed by redoximorphic processes. The Zongolica area presents a well-developed karst relief with the presence of caves and sinkholes. The catena studied includes soils in a sinkhole adjacent to a cave, soils in superficial depressions of the karst and deposits inside the Atl cave. The pedogenesis of these soils goes hand in hand with their geomorphological position; those found in the depressions with greater geomorphological stability show a longer pedogenesis and resemble the Terra Rossa type soils characteristic of platform karst morphologies; while those found in the sinkhole adjacent to the entrance of the cave present colluvial characteristics, indicating a low pedogenesis due to the constant movement of the material. The diamicton type sediments inside the cave resemble the superficial soils at the entrance of the cave, indicating a lateral movement from the outside to the inside of the cave and less importance of “soil piping”. The Amatlán area is characterized by processes of volcaniclastic sedimentation and pre-Hispanic and current anthropic impact. The soils studied are divided into a dark and red group, are distributed in different terraces and include soils under current and past cultivation, with and without evidence of anthropic impact (cultural material). The development of the soil in this area is the result of contributions from lahars from Pico de Orizaba, composed of fresh minerals, alterites and clayey pedosediments. Their evolution to dark or red soils depends on the geoform in which they develop, the red ones being located on older surfaces than the dark ones. On the slopes of calcareous mountains that delimit the valleys with red laharic soils, Rendzinas are formed that have a contribution from pyroclastic materials. The human impact is evident in a continuous incorporation of organic materials that could be responsible for the dark pigmentation resulting in soils similar to the Terras Pretas and Terra Mulata of the Amazon. The study of the different catenas demonstrated the importance of relief as a determinant of stability and therefore of pedogenic continuity. The importance of anthropic impact as an accelerating factor of erosion and as a modifier of soil properties was also clear. 1 1 INTRODUCCIÓN Los suelos de geosistemas Kársticos tropicales en ambientes montañosos han sido poco estudiados en contraparte con los presentes en el Karst de plataforma, siendo el estudio clásico el caso mediterráneo. Para México se han generado diversos modelos del desarrollo edáfico para el karst de plataforma en la península de Yucatán (Bautista et al., 2011; Sedov et al., 2007, 2008; Cabadas et al., 2010), sin embargo, para el karst de montaña aún es necesaria mayor investigación. Las principales problemáticas de estudio de los suelos desarrollados sobre karst están relacionadas al material parental y a la erosión. El material parental de estos suelos es la roca carbonatada, compuesta principalmente de calcita y dolomita, los cuales presentan una solubilidad de 60 y 50 PCO2 = 10-3 bar respectivamente (Ford y Williams, 2007), lo que hace a la roca medianamente soluble, permitiendo que se lave de la superficie fácilmente a través de sus fisuras hacia el subsuelo. El residuo insoluble que queda en superficie para la formación de los suelos se ha reportado compone entre el 1 y el 10% del volumen de la roca, por lo que 1m3 de caliza formaría un máximo de 10cm3 de suelo; este residuo insoluble se compone principalmente de minerales arcillosos, óxidos de Fe y arenas cuarcíferas (Cabadas et al, 2010; Priori et al, 2008; Yaalon, 1997). La tasa de disolución del material carbonatado depende de la cantidad de agua presente, de la temperatura, de la cantidad de CO2 disponible para diluirse en agua y del pH, aspectos que se engloban en la formación del ácido carbónico; así como otras características dependientes directamente del sustrato roca como lo es la porosidad, las impurezas y la textura (Ford y Williams, 2007). Dado que el mismo desarrollo del karst propicia la pérdida de material hacia el subsuelo por las fisuras de las rocas y a que se trata de un material relativamente suelto sobre un estrato duro, los suelos desarrollados en estos geosistemas suelen ser moderadamente erosionables (Priori et al, 2008). 1.1 SUELOS EN KARST Los dos principales tipos de suelos de estos geosistemas son las Rendzinas y las Terra Rossa. Estos suelos presentan características que son compatibles e incompatibles con su desarrollo en estos ambientes. Las Rendzinas (Leptosoles Rendzicos en la clasificación actual de la WRB), son suelos someros con alto contenido de MO en un horizonte móllico, pH cercano al neutro, alta saturación de bases, y suelen presentar un perfil Ah-(B)-C (IUSS Working Group WRB, 2015); mientras que las Terra Rossa (corresponden a suelos bien desarrollados como Luvisoles y Nitisoles dentro de la clasificación WRB), son suelos de 2 color rojizo, bien estructurados, de textura arcillosa, con pH neutro a ligeramente alcalino, con alto contenido de óxidos de Fe asociado a arcillas, y sin presencia de carbonatos en la matriz (Yaalon, 1997). Propuestos como suelos incipientes con poco desarrollo edáfico por su limitada profundidad y alto contenido en bases, las Rendzinas serían los tipos de suelos esperados en estos ambientes, dado el bajo aporte de material parental, sin embargo mineralógicamente estos suelos presentan minerales arcillosos y óxidos de hierro que indican un grado alto de intemperismo y/o pedogénesis sin presentar un horizonte B de acumulación bien desarrollado, esto conlleva a plantearse la pregunta de si estos suelos son suelos realmente incipientes, o si se trata de suelos bien desarrollados pero con una alta erosión o suelos desarrollados a partir de remanentes de suelos con mayor pedogénesis como lo podrían ser los suelos rojos tipo Terra Rossa (Sedov et al., 2008). Las Terra Rossas serían el caso contrario, con un mayor desarrollo pedogenético, en donde no se explica su alto contenido de óxidos de Fe, minerales arcillosos y material silicatado, en cuanto a mineralogía y volumen de material, en comparación al residuo insoluble del material parental. Para explicar la problemática de las Terra Rossas se han propuesto diversas teorías: 1) La teoría residual o de suelos litomórficos propone que estos suelos se desarrollan a partir de rocas compuestas de lodos calcáreos con componentes previamente intemperizados (Bronger y Sedov, 2003; Bautista, et al., 2011); 2) La teoría climática o de clima mediterráneo propone que el desarrollo de estos suelos está ligado al llamado clima mediterráneo el cual se compone de lluvias en invierno, veranos calientes y secos y una vegetación xérica (Engel et al., 1997; Yaalon, 1997); 3) La teoría de aporte de material alóctono propone un aporte externo de material para la formación de estos suelos, no solo para explicar el volumen de material pero su composición (Cabadas et al., 2010; Durn et al., 1999; Priori et al., 2008); y 4) La teoría de metasomatismo propone que el contenido de arcilla se forma en un frente de reacción del suelo con la roca, donde los componentes necesarios para la formación de arcilla son traslocados desde superficie, con un origen eólico (Merino and Banerjee, 2008). Estas teorías han probado ser válidas en diferentes casos por lo que no existe un modelo único para la formación de estos suelos. En diferentes estudios desde la península de Yucatán hasta el Mediterráneo (Atalay, 1997; Bautista et al., 2011; Flores-Delgadillo et al., 2011; Sedov et al., 2008), se ha visto que la distribución de los diferentes tipos de suelo está fuertemente influenciada por el relieve y el material parental. Las Rendzinas suelen asociarse a zonas altas del relieve mientras que las Terra Rossa a depresiones kársticas en distintas partes del relieve. En las zonas bajas 3 del relieve se encuentra otro conjunto de suelos con una problemática pedogénetica interesante para su estudio, dentro de estos se han reportado Gleysoles, Calcisoles y otros suelos cuya pedogénesis es necesario estudiar con más detalle (Sedov et al., 2008; Solleiro et al., 2011; Guillén-Domínguez et al., 2022). Ante este panorama, es visible que los suelos encontrados en estos geosístemas kársticos tropicales divergen de lo esperado para los suelos zonales de ambientes tropicales, los cuales suelen ser suelos muy intemperizados con un alto nivel de pedogénesis, un ejemplo de estos serían los Oxisoles, Ultisoles, Lateritas y/o Bauxitas (IUSS Working Group WRB, 2015). 1.2 EROSIÓN DEL SUELO Como se mencionó anteriormente, la pedogénesis en estos geosistemas está fuertemente influenciada por la erosión. Se entiende por erosión de suelo a la “remoción del material no consolidado de la superficie terrestre, por acción del agua o el viento, a un ritmo mucho mayor que el de la formación del suelo” (Lugo Hubp, 2011, p.148). Si bien la erosión del suelo afecta la totalidad de este, existen otros procesos que pueden afectar a componentes específicos del mismo; un ejemplo de esto es la lixiviación de ciertos elementos hacia zonas bajas del perfil o del relieve. Estos procesos afectan la evolución de la fase sólida del suelo, al concentrar o lavar elementos importantes para los procesos pedogenéticos del suelo (ej. arcillas o bases). En ambientes kársticos de plataforma, tanto la lixiviación como la erosión suele presentarse de manera vertical por las fisuras de las rocas carbonatadas hacia las cavidades subsuperficiales o subterráneas del endokarst, como lo son las bolsas kársticas o las cuevas, en el caso de erosión del suelo se le conoce como soil piping o sufusión, y está relacionado con las dolinas de subsidencia (Beck, 2012; White, 1988). Este fenómeno, aunque se encuentra presente en el relieve montañoso, no está muy estudiado. En los geosistemas montañosos, dada la relevancia del relieve, la erosión superficial lateral del suelo que se da de manera laminar o lineal, es la predominante y la que se debe de contemplar a mayor detalle para comprender la pedogénesis en estos geosistemas. La erosión laminar se refiere al movimiento de la parte más superficial del suelo, mientras que la lineal se da de forma más intensa y conlleva a la formación de cárcavas y barrancos; la erosión lateral genera pedosedimentos que son depositados en las partes bajas del terreno o en depresiones superficiales que funcionan como trampas para estos sedimentos (Lugo Hubp, 2011). 4 Se entiende por pedosedimento a los suelos erosionados y redepositados (Beach, 1994). Dependiendo de las condiciones de su erosión, medio de transporte y distancia, será la transformación de sus características originales, sin embargo, algunas de estas se conservan y pueden ser observadas o inferidas. Estos pedosedimentos al redepositarse pueden mezclarse con otro suelo o sedimento y su pedogénesis previa funciona como un “acelerante” del desarrollo pedológico de esta nueva mezcla de material. Dadas las características del relieve kárstico (disolución de las rocas y creación de fisuras), las áreas erosivas pueden encontrarse en cualquier parte del relieve, sea una cima, una pendiente o partes bajas de las geoformas, pero dependiendo de su ubicación serán más propicias a un cierto tipo de erosión. De igual manera, las principales áreas de sedimentación se verán afectadas mayoritariamente por un tipo de erosión, en superficies bajas se tendrán los pedosedimentos por erosión laminar, así como flujos subsuperficiales de soluciones lixiviadas, en los elementos subsuperficiales como las bolsas kársticas serán afectadas por la erosión vertical, y en el subsuelo, la sedimentación en cuevas se puede dar tanto por erosión vertical como laminar. Dependiendo de si se estudian los suelos de la zona erosionada o de la zona de sedimentación, estos presentan diferentes propiedades. De manera general las zonas erosionadas sufrirán una interrupción o aceleramiento en su pedogénesis por la pérdida de material y/o componentes solubles, mientras que las zonas de deposición se verán enriquecidas, pudiendo modificar su composición y/o “acelerar” su desarrollo por el aporte de materiales previamente intemperizados y con un grado de pedogénesis (Beach, 1994; Durn, 2003; Priori et al., 2008). 1.2.1 EROSIÓN ANTROPOGÉNICA Un importante acelerador/motor de la erosión de los suelos es la presencia humana, tal que el término erosión antrópica o antropogénica se ha acuñado para referirse a la degradación de los suelos relacionado a las actividades humanas (FAO, 1993). La erosión antropogénica ha sido ampliamente estudiada alrededor del mundo, y se ha notado su conexión con el cambio de uso de suelo, en especial hacia y posterior a la agricultura (Anselmetti, et al., 2007; Beach, et al., 2006; Borejsza, 2008; Dunning et al., 2002). La erosión del suelo ha llevado a un manejo antrópico que busca atenuar su afectación mediante diversos métodos como el uso de terrazas o formas y tipos de cultivos, por lo que la erosión del suelo también ha sido estudiada en cuanto a sus repercusiones sociales (Dotterweich, 2013; Montgomery, 2007; Lowdermilk, 1935, 1953). 5 En el caso particular de Mesoamérica, estudios han reportado un incremento en la erosión durante los primeros momentos de ocupación, durante el preclásico tardío (400 a.C. a 200 d.C.), y asociado a los “eventos” de limpieza de la tierra para su cultivo, posteriormente la erosión se mantiene en niveles bajos sin relación al incremento de población durante el Clásico (200 d.C. a 900 d.C.) (Anselmetti et al., 2007; Borejsza et al., 2008; Beach et al., 2006; Dunning et al., 2002; Fischer et al., 2003; O’Hara et al., 1993). En el caso de la zona Maya este aumento de actividad erosiva se ha identificado, en diversos lugares del territorio maya, mediante un sedimento coloquialmente llamado “Maya Clay”, el cual más que ser una facie homogénea y de características definidas se trata de un conjunto de sedimentos detríticos cuya composición de MO, arcilla y carbonatos contrasta con los sedimentos que la subyacen y sobreyacen, y los cuales se relacionan a una erosión natural (Carozza et al., 2007; Mueller et al., 2009; Deevey et al., 1979; Beach et al., 2006; Dunning et al., 2002). 1.3 PROBLEMÁTICA DEL ESTUDIO Con este panorama, el presente trabajo tiene como pregunta de investigación comprender cuál es la interacción entre el aporte de material parental, la transformación pedogenética, y la erosión (vertical y laminar), para el desarrollo de la cubierta edáfica en el karst tropical de montaña, así como discernir cuál es la relevancia del hombre y sus actividades en el desarrollo del suelo. El modelo de desarrollo edáfico en los paisajes kársticos montañosos permitirá explicar el origen de los componentes principales de la cubierta edáfica, su interacción con los procesos geomorfológicos, su respuesta a los cambios ambientales y su vulnerabilidad o resiliencia ante el impacto humano. 1.4 HIPÓTESIS En el paisaje kárstico tropical de montaña, la interacción entre aporte de material parental, su transformación pedogenética y los procesos de erosión (vertical y laminar), llega a un balance dinámico que controla la formación y evolución de los perfiles edáficos. Suelos con mayor desarrollo estarán relacionados a zonas geomorfológicas estables que permitan un mayor tiempo de desarrollo sin perturbaciones, y/o suelos con aporte de pedosedimentos que aceleren el proceso de pedogénesis, mientras que las zonas más dinámicas resultarán en suelos menos desarrollados y tal vez degradados con pérdidas de material. Esta interacción está afectada por cambios ambientales naturales y antrópicos, que pueden resultar en la destrucción o transformación parcial o completa de los suelos anteriormente formados. 6 1.5 OBJETIVOS 1.5.1 GENERAL Generar un modelo del desarrollo de la cubierta edáfica en el karst tropical de montaña, a partir del estudio del aporte de material parental, aporte de material silicatado, la pedogénesis, y la erosión-sedimentación. 1.5.2 PARTICULARES - Caracterizar los suelos y pedosedimentos presentes en las zonas de estudio. - Identificar el material parental y su relevancia para la formación de los suelos. - Determinar la importancia de la erosión vertical y laminar en el desarrollo de los suelos. - Conocer el papel de la actividad antrópica sobre el desarrollo de estos suelos. - Proponer un modelo de la pedogénesis de la cubierta edáfica en el karst tropical de montaña. 1.6 ESTRUCTURA DE LA TESIS Para resolver la problemática es necesario “descifrar” los registros paleopedológicos de los suelos estudiados, es decir, establecer las características de los suelos y pedosedimentos kársticos que contienen información sobre los procesos pedogenéticos del pasado, dados tanto por actividad antrópica como de manera natural. Los resultados de la investigación se presentarán como tres artículos científicos publicados (Capítulo 3) y un artículo sometido (Anexo 1). Los artículos se enfocan en presentar estudios de caso en donde diferentes factores como la actividad antrópica, el aporte de material exógeno y la generación de pedosedimentos tienen relevancia para el desarrollo de la cubierta edáfica del área. Los primeros dos artículos se enfocan a la zona Sur de México, en el estado de Chiapas y Yucatán; y los dos siguientes se centran en Veracruz, en la zona de Amatlán de los Reyes y la Sierra Zongolica: - El artículo titulado Soil development and ancient Maya land use in the tropical karst landscape: Case of Busiljá, Chiapas, México (Capitulo 3.1), presenta una catena en una zona con evidencias de actividad antrópica desde época prehispánica y se muestra como el impacto antrópico afecto el desarrollo de los suelos acelerando la erosión de las zonas altas del relieve, donde se concentra dicha actividad, generando pedosedimentos que se depositaron en bolsas kársticas y fondos de valle en donde sufrieron transformaciones de acuerdo a la pedogénesis predominante en cada ambiente de sedimentación. 7 - En el artículo Soil toposequences, soil erosion, and ancient Maya land use adaptations to pedodiversity in the tropical karstic landscapes of southern Mexico (Capitulo 3.2), se presentan tres catenas dos en Chiapas y una en Yucatán, en las que es posible comparar el impacto antrópico, uso de suelo y erosión predominante entre un ambiente kárstico montañoso y uno de plataforma. - El artículo Interaction of geomorphic processes and long-term human impact in the soil evolution: A study case in the tropical area at Veracruz, Mexico (Capitulo 3.3), aborda el aporte de lahares del Pico de Orizaba como material parental para el desarrollo de los suelos de la zona, así como la relevancia de la geoforma y la actividad antrópica para el desarrollo de los grupos de suelo identificado. - En el artículo titulado Formation of clastic sediments in the Atl cave of the Sierra Zongolica, Veracruz Mexico, and their relationship to the soil cover (Anexo 1), se presenta un estudio comparativo de los sedimentos clásticos dentro de la cueva Atl y la cubierta edáfica al exterior de la cueva, los suelos estudiados presentan características contrastantes resultado del tiempo de pedogénesis dado por la estabilidad de los suelos en la geoforma. 8 2 ÁREAS DE ESTUDIO Y METODOLOGÍA En México el karst abarca aproximadamente el 20% de la superficie del país, se encuentra distribuido en la península de Yucatán, la Sierra Madre del sur, la Sierra Madre Oriental y la Sierra de Chiapas (Bautista, 2023; Espinasa-Pereña, 2007; Medina et al., 2019). El karst tropical de montaña estudiado se encuentra en la Sierra de Chiapas y la Sierra Madre Oriental. En el presente trabajo se estudian catenas en la Cuenca alta del Usumacinta, en el Valle de Busiljá y zonas aledañas, en el estado de Chiapas, y en la Sierra de Zongolica y área de Amatlán de los Reyes, en Veracruz (Figura 1a y b). Ambas zonas presentan un clima tropical cálido húmedo y aunque se clasifican como karst de montaña tienen diferencias en su relieve particular. El área de estudio en el estado de Chiapas se localiza en la frontera con Guatemala, se ha clasificado como Karst tropical en montañas plegadas y falladas, con presencia de Karst de conos y torres (Figura 1b); las montañas se extienden en bandas orientadas noreste- sureste (Espinasa-Pereña, 1990). Siguiendo a INEGI (1984) la geología del lugar se caracteriza por la presencia de rocas calizas del Cretácico Superior (Ks cz), calizas y calizas-lutitas del Paleoceno Terciario Inferior (Tpal cz y cz-lu), lutitas y areniscas del Eoceno Terciario Inferior (Te lu-ar), y aluviones del Cuaternario (Q al) (Figura 1f). En cuanto a los suelos los principales reportados por INEGI son Luvisoles (LV), Leptosoles (LP), Gleysoles (GL), Regosoles (RG), Phaeozems (PH) y Nitisoles (NT) (INEGI, 2007a) (Figura 1d). En el área se tiene la presencia de vestigios arqueológicos de la Cultura Maya, pertenecientes al Periodo Clásico Mesoamericano (350 a 900 D.C.), estos han sido estudiados por el Proyecto Arqueológico Busiljá-Chocoljá (PABC); en la actualidad los terrenos estudiados se emplean con fines agrícolas, ganaderos y forestales. En el estado de Veracruz, se estudiaron dos áreas cercanas pero diferentes, una se localiza en la Sierra de Zongolica, cercano a la ciudad de Orizaba, y la otra se encuentra en las afueras del poblado de Amatlán de los Reyes. Ambas zonas se encuentran sobre rocas carbonatadas de la Sierra Madre Oriental, en una zona de Karst Tropical de montañas plegadas y falladas (Espinasa-Pereña, 2007), y cercanas al volcán Pico de Orizaba, por lo que se deduce un aporte importante de material alóctono silicatado. De acuerdo con INEGI (1983), la geología del lugar presenta lutitas y areniscas del Jurásico Superior (Js lu-ar), calizas del Cretácico inferior (Ki cz), calizas y lutitas del Cretácico Superior (Ks cz, Ks cz- lu), brecha volcánica intermedia, conglomerado y toba intermedia del Terciario Superior (Ts Bvi, Ts cg, Ts Ti), y aluviones y conglomerados del Cuaternario (Q al, Q cg) (Figura 1e). Por su parte la edafología del área presenta Acrisoles (AC), Andosoles (AN), Cambisoles (CM), 9 Luvisoles (LV), Fluvisoles (FL), Litosoles (LT), y Rendzinas (RN) como los principales tipos de suelos (INEGI, 2007b) (Figura 1c). La zona de Zongolica no presenta evidencia clara de actividad antrópica, pero en la zona de Amatlán si se tiene actividad antrópica prehispánica y moderna. El estudio de estas diferentes áreas presenta un panorama de Karst con y sin afectación antrópica, así como con y sin aporte esperado de material silicatado, en diferentes geografías montañosas. Esto ayudará a comprender mejor las principales problemáticas del estudio del suelo desarrollado sobre karst (Ahmad y Jones, 1969; Bautista et al., 2011; Borg y Banner, 1996; Bruce, 1983; Ortega Sastriques, 1984; Scholten and Andriesse, 1986; Singer, 1988). La metodología de estudio tuvo variaciones en cada caso particular; sin embargo, se basa en la descripción de los perfiles en campo siguiendo la IUSS Working Group WRB (2015), la toma de muestras y su posterior análisis en laboratorio. Los análisis empleados incluyen análisis físicos y químicos como Textura, Colorimetría, pH, CE y Fluorescencia de Rayos X; mineralógicos como Difracción de Rayos X y Micromorfológicos. Figura 1. a) Relieve de zona de estudio de Zongolica; b) Relieve zona de Valle de Busiljá; c) Mapa edafológico Veracruz (Carta Orizaba E14.6); d) Mapa edafológico Chiapas (Carta Tenosique E15-9); e) Mapa geológico Veracruz (Carta Orizaba E14.6); y, f) Mapa geológico Chiapas (Carta Tenosique E15-9). Mapas a partir de cartas 1:250 000 INEGI. f --- Dolina ls S $ Sad === Dolina — Fractura R 0 ; + Falla EX Js(lu-ar) E - sae, IM Ki(cz) ia NS Ú p mm zo 52) , 7 l EM Ks(cz) E Ks(cz-lu) | 7 Om SS Ks(lu) R Cl EM Te(lu-ar) En Q(l) ? A EA Tpal(cz) E Qlcg) ó ; EM Tpal(cz-lu) ES/It Ea Ts(Bvi) En Ts(cg) Ea Ts(Ti) 10 11 3 RESULTADOS 3.1 SOIL DEVELOPMENT AND ANCIENT MAYA LAND USE IN THE TROPICAL KARST LANDSCAPE: CASE OF BUSILJÁ, CHIAPAS, MÉXICO E Soil Science Society of America Journal 1 | INTRODUCTION From Southern Mexico's Isthmus of Tehuantepec eastward to northern Central America, Classic Maya society (c. AD 250— 900) gave rise to an ancient agricultural economy with high efficiency and productivity developed in the humid tropics (e.g., Dunning et al., 2002; Fedick, 1996; Krause et al., 2021; Luzzadder-Beach et al., 2020; Morell Hart et al., 2023). A large part of this region is occupied by karstic geosystems formed in the sedimentary sequences dominated by cal- careous rocks: limestones and dolomites (Espinasa-Pereña, 1990). Ancient agrosystems were developed within the karstic landscapes and adjusted to the specific characteristics of its soil mantle. Pedogenesis on calcareous rocks affected by the karstifica- tion processes differs significantly from the “central image” of soil development in the humid tropics. Frequently, the soils are represented by shallow Rendzina type profiles (Ren- dolls), whereas deep strongly weathered soils—Oxisols and Ultisols—are usually formed on the silicate materials under humid tropical climate; on the other hand, much more devel- oped soils enriched in silicate clay and iron oxides are also found on the limestones that often neighbor Rendzinas. These soils are frequently referred to as Terra Rossa and they are mostly red Alfisols. The origin of their parent material as well as their pedogenesis are still under debate (Durn, 2003; Durn etal., 1999; Priori et al., 2008; Yaalon, 1997). High pedodiver- sity of karstic soils provides both advantages and challenges for agricultural use. Extensive research concerning the development, utiliza- tion, and transformation of the soil mantle in the platform karst landscapes of the Maya Lowlands in the Yucatan Penin- Sula has been carried out over the last several decades. The primary soil types have been characterized and their rela- tionship with the geoforms and calcareous rock types has been established (Bautista et al., 2011; Bautista-Zuñiga et al., 2004). The detailed study of composition and structure of mineral soil matrix has been performed both in Rendzi- nas (Sedov et al., 2008) and Terra Rossa types of soils (Cabadas-Báez et al., 2010a), which has aided attempts to trace their origin and pedogenic transformation. Soil con- straints for ancient Maya cultivation have been identified (Beach, 1998b) and evidence of soil degradation has been revealed (Beach et al., 2006). Short-distance variability of soil cover has been investigated in relation to the design of traditional Maya agrosystems (Fedick et al., 2008; Flores- Delgadillo et al., 2011). Hidden karstic erosion, soil piping, has been proposed as the main mechanism of soil loss in the Maya lowlands (Sedov et al., 2008), and pedosediments of the karstic pockets have been investigated as possible indica- tors of soil redeposition (Cabadas-Báez et al., 2010a; Solleiro GARCÍA-RAMÍREZ ET AL. Core Ideas » Ancient Maya land use was adjusted to pedodiver- sity and impacted soil development. » Shallow upland Rendolls developed due to erosion of pre-existing red clayey soils. » Depressions soils contain redeposited material from the uplands (clay mineralogy). + Neoformed gypsum is uncommon in humid tropics as a result of redoximorphic processes. et al., 2015). In addition to well-drained upland soils, the profiles of extensive flooded depressions have been investi- gated and a scenario of their use by ancient Maya people has been proposed (Leonard et al., 2019; Solleiro et al., 2015). Much less is known about the soil mantle of the hilly Karstic landscapes which comprise the northwestern part of the Maya region. Soilscapes of calcareous ridges which out- line the upper Usumacinta River Valley, the location of many famous Maya sites, like Palenque, Piedras Negras, Yaxchilán, and Bonampak among others, are still poorly documented. Previous paleopedological and soil-archaeological research focused on the soil-sedimentary sequences of the alluvial terraces of the Usumacinta, to obtain paleoenvironmental records (Solís-Castillo et al., 2013, 2015) and show their possible relevance for ancient Maya population patterns (Liendo et al., 2014). Upland soils are less well documented. In the area of Piedras Negras, Guatemala, some data about soil resources for ancient Maya agriculture are available including estimated rates of pedogenesis and limited studies of cultivation indicators like phytoliths and stable carbon isotope composition of organic matter (Fernandez et al., 2005; Johnson et al., 2007). Only fragmentary information exists about a scant handful of profiles of the hilly karstic landscapes surrounding Mayan urban centers in Chiapas (Chávez-Herrerías, 2023). To address these research gaps, we performed an interdis- ciplinary study of the soil mantle of the area surrounding the ancient Maya site of Budsilhá, Chiapas, to interpret the pedo- genesis of its main constituents, understand how the ancient land use was tailored to soil diversity, and detect soil trans- formation due to human impact. We applied the catenary approach which has proven to be suitable for the pedoarchaeo- logical investigations in Maya region (Beach, 1998a). During this research, some unexpected soil types and intriguing soil features were encountered, which required novel interpreta- tion of their origin, (paleo)environmental significance, and role in the Maya cultural landscape. OL AO PA mO ) Éo] ya Áru iqp anm puo s eDs o0/ s d mo y Pa pt oy u0 G 0 “19 9OS Ebt :2L0 ; -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € SO I] SO I. ) SA NI DA ) >|q uaN ddo ap Xq por sda o8 are s ar ao O “36 m O S OJA 0 ] Árt I"T I MU O ÁOI EAA O ( SUI OEN EPI OO- PuS -ST ID) 0 : Áop pa na M amn UO, ¿S ig S I P ) pr s a ar 395 Tp 12 GARCÍA-RAMÍREZ ET AL. FIGURE 1 11 | Geographical setting Located in the Mexican state of Chiapas, near the bor- der with Guatemala (Figure 1), our study area has been classified as tropical karst in faulted or folded mountains (Espinasa-Pereña, 1990). The geology of this region is composed of limestones and shale-sandstone rocks folded in a NW-SE direction (INEGI, 1984a, 1984b). According to Servicio Geológico Mexicano (SGM, 20064, 2006b), two formations are present in the arca: the Tenejepa-Lacandon formation of limestone and the Lomut formation of limestone-sandstone, both dated from the Paleogene (SGM, 2006a, 2006b). The climate of the area is warm humid with an average annual rainfall of 3413 mm, evapotranspiration of 1220 mm, and an average annual temperature of 24'C (CONAGUA, 2020). Studies of land use and vegetation (INEGI, 2016) show a predominance of cultivated pasture in the valley area, where most of the study profiles are located, some patches of sec- ondary shrub vegetation of high perennial forest to the south, and secondary arboreal vegetation of high perennial forest to the east, north, and southwest. According to INEGI (2007a, 2007b), which follows the World Reference Base classification (TUSS Working Group WRB, 2015), the soils present in the area are primarily Luvisols, Leptosols, and Phaeozems, with chromic, humic, rendzic, and lithic qualifiers. In the valley zone, with thick EIA AA AL A el 3 ¡Chacchobén] SN [nic Poni] so noO ana) noo [Calakmul] Location of study area with some of the primary archaeological Maya sites. fine-textured sediments, deep well-developed Luvisols pre- dominate. The area of mountains and hills is covered with Leptosols and Phaeozems. 1.2 | Cultural history The cultural history of the area around the site of Budsilhá is intertwined with the development of the kingdoms of Palenque, Piedras Negras, Tonina, and La Mar from the Early Classic, 350-600 AD, to the Terminal Classic, 810-900 AD. The archaeological site of Budsilhá is located just north- east of the town of Nueva Esperanza Progresista, close to the Busiljá River, located 450 m to the south, is a signif- icant tributary of the Usumacinta River that is the source of the site name. The first description of the site was pub- lished by Maler (1903), based on his explorations of the region a few years prior. Andrew Scherer and Charles Golden began research at Budsilhá more than a century later with the Proyecto Arqueológico Busiljá-Chocoljá (PABC) (Scherer € Golden, 2012), undertaking a more detailed description, map- ping, and excavations efforts during 2012, 2013, and 2018, including excavations centered on the identification of prob- able agricultural areas associated with the site and residential groups (e.g., Dine, 2018b; Scherer et al., 2012). From the work by the PABC (Scherer $ Golden, 2012), it is known that the site dates to at least 600 AD, historical texts inscribed on stone monuments provide evidence of the OL AO PA mO ) Éo] ya Áru iqp anm puo s eDs o0/ s d mo y Pa pt oy u0 G 0 “19 9OS Ebt :2L0 ; -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € SO I] SO I. ) SA NI DA ) >|q uaN ddo ap Xq por sda o8 are s ar ao O “36 m O S OJA 0 ] Árt I"T I MU O ÁOI EAA O ( SUI OEN EPI OO- PuS -ST ID) 0 : Áop pa na M amn UO, ¿S ig S I P ) pr s a ar 395 Tp 13 1672500 Soil profiles + Pedological » PABC NCALM 4 platform 4 structure — terraces — Budsilhá m.a.s.l. , 190.58 102.95 FIGURE 2 GARCÍA-RAMÍREZ ET AL. 1673000 673000 Distribution of the pedological and archacological studied profiles in the valley of Busiljá. Pedological profiles: IH, Inceptic Haprendolls; TH, Typic Haprendolls; LH, Lithic Haprendolls; GE 1, Gypsic Endoaquepts 1; GE 2, Gypsic Endoaquepts 2; TE 1, Typic Endoaquepts 1; TE 2, Typic Endoaquepts 2. The map also shows the ancient land use. Distribution of anthropic features (platforms, structures, and terraces) in the landscape. The polyIntensity raster insert shows the canals in the swampy area near the site of Budsilhá. NCALM, National Center for Airborne Laser Mapping; PABC, Proyecto Arqueológico Busiljá-Chocoljá. relationship between the powerful royal dynasty of Piedras Negras, and smaller royal courts in the area, including that of La Mar, located just 3.5 km southwest of Budsilhá (Hous- ton £ Inomata, 2009; Martin, 2020; Martin € Grube, 2000). Budsilhá was an important site of stone tool production during the Late Classic period (AD 600-800), and an obsidian work- shop has been identified in the plaza at a habitational complex, with a density of 1723 artifacts/m3 or 320 £ of obsidian/m? from El Chayal, Guatemala (Golden et al., 2020; Roche Reci- nos, 2021). Given the proximity to the Busiljá River, and one of its tributaries, the principal architectural group tends to become an island with seasonal inundations of the swampy lowlands surrounding the site. This phenomenon helps to explain the settlement pattern of the area, that includes struc- tures located on hilltops with artificial terraces on some hillslopes. 2 | MATERIALS AND METHODS 2.1 | Key soil profiles Seven soil profiles were studied for the pedological part of the present work, along with two profiles in operations from the archaeological research (Figure 2), The profiles were selected to compare the soils in two adjacent geomorphological posi- tions, forming a catena from the hillslopes to the lowland area. Three profiles are located on the slope of the limestone hills, and four profiles are in a swampy depression adjacent to the hills. The archaeological profiles correspond to two operations from the 2018 field season: operation 1 located atop the central platform at Budsilhá and operation 5B in the marshy area outside the site core, north-west of proba- ble canals identified via Google Earth Imagery (Scherer $ Golden, 2018). The soil profiles were first described in the field following the IUSS Working Group WRB (2015), and samples were taken for physicochemical, micromorphological, and min- eralogical analysis at Universidad Nacional Autonoma de Mexico (UNAM). Only from archaeological excavations were samples taken for archaeobotanical investigations—phytolith and macroremains analysis—carried out at McMaster University. 2.2 | Soil chemical and physical properties The samples recovered from the pedogenetic horizons of the key profiles were dried at 60"C for 2 days and then sifted with a 2-mm opening sieve. The analyses were completed at different laboratories at UNAM. 1. Particle size analysis: Mt is completed at the Laboratory of Paleosoils of the Instituto de Geología, UNAM, fol- lowing Flores and Alcala (2010). From the sieved sample, 10 g were used, with a pretreatment of hydrogen peroxide 05: 200 1 OL AO PA MO É SE ÁT LI QH aU O' SE DS 00 )- Sd i1 y] M O] PO Pr oY un oG 0 “19 9OS EHT cLo Tal 07/ 60/ 01] 1 0 Ar as ] MI O ÁSI LA “O 0M O IA am O) 4 € SO I] SO I. ) SA NI DA ) >|q uaN ddo a p Xq por sda o8 are s ar ao O “36 m O S OJA 0 ] Árt I"T I MU O ÁOI EAA O ( SU IO EN EP IO O- Pu S- ST ID ) 0: Á opp a na M amn UO, ¿ Si g S I P ) pr s a ar 395 Tp 14 GARCÍA-RAMÍREZ ET AL. (H20)) and sodium dithionite (Na,S204) to remove the cementing agents: organic matter and iron oxides, respec- tively. Afterward, 10 mL of sodium hexametaphosphate was added to each sample as a dispersion agent, with 25 mL of distilled water, and then the samples were agi- tated for 12 h. The sand fraction was separated with a sieve, and the silt and clay fractions were separated using the pipette method. 2. pH, electrical conductivity (EC): It is completed at the Laboratory of Biochemistry and Soil Organic Matter of the Instituto de Geología, UNAM, following Flores and Alcalá (2010). The sieved sample was prepared in a 1:2.5 ratio with distilled water and agitated for 24 h. A Thermo Scientific pH-meter was used. 3. Characteristics of soil solution: ionic composition by ion chromatography: 1t is completed in the Laboratory of Environmental Geochemistry of the Laboratorio Nacional de Geoquímica y Mineralogía, UNAM. The samples were filtered in a nitrocellulose membrane with pore size 0.45 um. The alkalinity was determined with a 30 mL aliquot and titrated with 0.017 N HCL. An ion chromatog- rapher Metrohm 833 Basic IC Plus with a detector of conductivity was used for the cations (Na*, K*, Ca?*, and Mg?*); a column packed with a stationary phase of sil- ica gel model Metrosep C4 250/4.0 with a mobile phase composed of oxalic acid dihydrated with HNO; was used; and for the anions (F7, CIT, NO?-, Br”, NO*-, PO3*, and SO,?”), polyvinyl alcohol column with quaternary ammo- nium groups model Metrosep A Supp 4 250/4.0 was used with a mobile phase of NAHCO3/Na,C0O, with chemical suppression. This analysis was made only on groundwater samples from the soils in the lower unit (Typic Endoaque- pts 1, Typic Endoaquepts 2, and Gypsic Endoaquepts 2), the samples were collected in 100-mL tubes at the time of the soil description and storage in a cooler until returning to the lab. 2.3 | Micromorphology Thin sections were prepared from soil blocks with undisturbed structure from the key genetic horizons and impregnated at room temperature with the resin Cristal MC-40. After solid- ification of the resin, the blocks were cut, polished, and mounted on glass slides to obtain thin sections of 30 um. Observations were made under a petrographic microscope Olympus model BX51 equipped with a digital camera; images were captured and processed with the help of the Image- Pro Plus 7.0 software. Micromorphological descriptions were completed following the terminology of Stoops (2020). We focused particularly on the microscopic indicators of the pedogenetic processes as well as the anthropogenic materials or microartifacts. Soil Science Society of America Journal MER 2.4 | Clay mineral composition by X-ray diffraction (XRD) Granulometric clay fraction (<2 um) was separated from bulk samples by sedimentation in distilled water according to Stoke's law, the same pretreatments for particle-size anal- ysis were used in the samples prior to the separation. From these fractions, air-dried oriented specimens were obtained by depositing a few drops of the suspensions onto a glass slide, which was then dried at 30”C for a few hours (Moore $ Reynolds, 1997). Clay samples were examined by XRD in the air-dried form, saturated with ethylene glycol (EG), and after heating (550"C). EG solvation was accomplished by exposing the slides to EG vapor at 70”C for 24 h. Measurements were made using an EMPYREAN XRD diffractometer operating with an accelerating voltage of 45 kV and a filament current of 40 mA using CuKa radiation, nickel filter, and PIXcel 3D detector. All samples were mea- sured with a step size of 0.04” (28) and 40 s scan step time. Qualitative identification of the most abundant clay minerals was based on the positions of basal diagnostic peaks. Clay species were estimated in semiquantitative form from oriented preparations using simple peak weighting factors. For area estimation, we used Fityk (Wojdyr, 2010), a program for data processing and nonlinear curve fitting, simple background subtraction, and easy placement of peaks and changing of peak parameters. 2.5 | Phytoliths and macroremains In addition to pedological investigations, archaeobotani- cal analyses were performed on samples recovered from archaeological excavations, closely related to the key soil profiles. Sample processing at the McMaster Paleoethnob- otanical Research Facility (MPERF) was conducted following the phytolith-processing protocol designed by Morell-Hart (2018). Following this protocol, phytolith samples underwent deflocculation, sieving, clay removal, chemical digestion with pressurized microwaving, and heavy liquid flotation (Morell-Hart, 2018). Concentrated botanical residues were analyzed in the field laboratory, at Brown University in James Russell's laboratory in the Department of Earth, Environ- mental and Planetary Sciences, at Boston University in John Marston's Environmental Archacology Laboratory, and at the MPERF. 2.6 | Study of ancient land use Documentation of the structures related to the ancient land use of the area has been carried out through a combination of data collected by airborne light detection and ranging (LiDAR) OL AO PA mO A sp Ár un no mu o se s3 0) sd hy m oy Po pt of un og “0 “19 9OS EbT :2L0 ; -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € SO T] SU OI O. ) DA NI ) >Iq uad do ap Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] ÁrB I"T I MY UO Á OIE AA O (SU IOE NEP IOO -Pu S-S TD) 0 9: Á opp a na M omn qUO , ¿s g ST OP ) pr s a ap 395 Tp 15 EN Soil Science Society of America Journal 120 118 116 114 112 110 H 108 GE 1 FIGURE 3 GARCÍA-RAMÍREZ ET AL. 500m TE1 Scheme of the Busiljá soil catena and profile photos. The upland unit is comprised of the profiles Typic Haprendolls (TH), Lithic Haprendolls (LH) and Inceptic Haprendolls (1H); the lowland unit is comprised of the profiles Gypsic Endoaquepts 1 (GE 1), Gypsic Endoaquepts 2 (GE 2), Typic Endoaquepts 1 (TE 1), and Typic Endoaquepts 2 (TE 2). and over a decade of pedestrian survey by the PABC. For the airborne LiDAR, a working group of the PABC team iden- tified archaeological features in the National Center for Airborne Laser Mapping (NCALM) LiDAR (Golden et al., 2021), using the Relief Visualization Toolbox (Kokalj $ Somrak, 2019), to create a Red Relief Image Map, a visu- alization for archacological topography, and other useful visualizations. The features identified were then categorized by type of construction, like residential structures, platforms, or terraces. A PolyIntensity raster was also created from the NCALM lidar points by Whittaker Schroder, following the methodology of Beach et al. (2019) to help with the identi- fication of features not visible in the digital elevation model and satellite imagery. 3 | RESULTS 3.1 | Morphological description of key sections Three profiles such as: Typic Haprendolls, Lithic Hapren- dolls, and Inceptic Haprendolls characterize the soils devel- oped on the limestone hills. These profiles conform to the upland unit of the studied toposequence (Figure 3, Table 1). All of them have similar profile architecture: dark loose gran- ular A horizons of different thicknesses are underlain by the coarse calcareous regolith. These A horizons fit into def- inition of Mollic epipedon. Thus, all these profiles were attributed to the Rendoll suborder of soil taxonomy (Soil Survey Staff, 2022). The Inceptic Haprendolls Profile is located close to the top of a minor hill near the Budsilhá site and exposed in a small quarry for limestone extraction. The A horizon con- tinuously covers the hill surface; however, the middle and lower horizons are developed inside a thin and deep (down to 2 m) karstic pocket filled with pedosediment; that is why this profile is the deepest in the Rendoll group. It consists of a A1-A2-B-BC sequence of horizons. The loose, granular, dark gray A horizon extends down to 80 cm, followed by a reddish- brown B horizon with presence of anthropogenic materials (ceramic sherds, bones, shell, and charcoal). The rest of the profile is a BC horizon with abundant fragments of limestone. The Typic Haprendolls profile is located at the lower slope of the limestone hill, upon which the ancient Maya settlement of Budsilhá was constructed. It is a thin soil of only 25-cm deep with a sequence of horizons typical of an incipient soil: A-AB-BC. Differences between the horizons consist mostly of an abundance of stones which increases with depth and reaches approximately 80% in the BC horizon. The fine soil material is dark colored with granular structure most devel- oped in the A horizon. It contains archaeological materials: several ceramic sherds and charcoal. The Lithic Haprendolls profile is located on top of lime- stone hill above an archacological structure in the site of Budsilhá; it represents the soil formation after the abandon- ment of the site at the end of the Classic Period (900 AD). It is very shallow and consists of only one dark-colored granular OL AO PA mO A sp Ár un no mu o se s3 0) sd hy m oy Po pt of un og “0 “19 9OS EbT OZ/ 60/ 01] 1 0 Árt agr T JI UO ÁST LAN “O N AME NPO )) ÁN ET LO TT dd e xp Áq pa ra o] are s opr Io O :9s1 JO S OJn 1 10] ÁII QFT 3 MT UO ÁS AO (SU ONI PII OO« PUE =SI ES LO ÁS L A ÁTM IQH SMJ UO) spy ) sO Ip nO -) pur s ua] , a 295 4: A ; E j ¡ 16 GARCÍA-RAMÍREZ tr al TABLE 1 Soil properties of the studied profiles. Horizon Depth (cm) Color (dry) Structure Texture Inceptic Haprendolls 15N 672634.46"E 1893394.33"N Al 030 7.SYR 2.5/2 GR Clay loam A2 30-80 7.5YR 2.5/2 GR Silty clay B 80-130 7.SYR S/6 SB Clay = 130-140 ND ND ND BC 140-200 7.5YR 5/8 MA Silty clay 'Typic Haprendolls 15N 672584.44”E 1893792.33"N A 0-12 7.5SYR 2.5/3 GR Clay AB 12-25 75YR 3/4 SB Silty clay BC >25 7.5YR 3/3 SB - Lithic Haprendolls 15N 672602.17"E 1893792.48"N A 0-10 GR Silt loam Typic Endoaquepts 1 15N 672560.46"E 1893832.09'N Ag 0-15 10YR 3/1 GR Clay Cg 15-30 1OYR 5/4 SB Clay Gypsic Endoaquepts 1 15N 672580.26'E 1893584.48'N AB 0-15 10YR 3/3 SB Clay By 15-25 1OYR 4/4 SB Clay Cgyl 25-52 1OYR 4/3 AB Clay Cey2 52-80 1OYR 4/3 AB Clay Gypsic Endoaquetps 2 15N 672532.26'E 1893668.93"N A 0-15 10YR 2/1 GR Clay Ceiy 15-40 1OYR 3/2 AB Silt clay Cey 40-70 1OYR 3/2 SB Clay Typic Endoaquepts 2 15N 672649.2"E 1893470.08'N Agl 0-15 10YR 2/1 GR Clay Ag2 5-15 1OYR 2/1 GR Clay Cg 15-25 1OYR 4/2 SB Clay 2Ag 25-35 10YR 3/2 SB Clay Note: Consistence = 0: Loose, 1: Soft, 2: Soil Science Society of America Journal MI Consistence (dry) HCI reaction Observations 1 E Presence of roots 1 ++ Presence of roots 2, ++ Anthropogenic materials (ceramics, bones, charcoal) ND ND Limestone rock slabs Anthropogenic materials 0 ND Calcareous parent material 1 NR Presence of roots 2 + High pedregosity (40%) Anthropogenic materials 3 ++ High pedregosity (60%) 1 NR 2 NR Gleyic properties 3 NR Gleyic properties 2 NR 4 NR Coarse sand size gypsum crystals 3 NR Gleyic properties and gypsum crystals 3 E Increase the presence of large gypsum crystals 2 NR Presence of roots 3 NR Slickensides, and neoformed gypsum 3 a Presence of neoformed gypsum NR Abundance of fresh roots NR Gleyic properties ++ Gleyic properties, limestone and snail fragments 2 NR Presence of decomposed roots lightly hard, 3: Hard, 4: Very hard; HCI reaction =+: low, ++: medium, +++: strong. Abbreviations: AB, angular blocky; GR, granular structure; MA, massive; ND, not determined; NR, no reaction; SB, subangular blocky structure. The codes of color are presented following the Munsell Color Chart. A horizon directly underlain by a large limestone slab—part of ancient Maya construction. The second group consists of four profiles located in the flat depression between the limestone hills, which repre- sent the lowland domain of the Busiljá catena. These are deep loamy-clayey soils; major part of their profile is per- manently saturated with groundwater, and during the period of intensive rains, they are flooded. They do not have high accumulation of organic matter in the form of peat, sapric materials, or dark humus; however, all their horizons show strong redoximorphic features; we concluded that these pro- files belong to Endoaquepts Great Group. The profiles could be grouped into two units, related to their position within the depression. Soils of the lowest part of the depression are represented by the Typic Endoaquepts 1 and 2 profiles. Groundwater was so near to the surface that description and sampling were done in the soil blocks cut and uplifted with the spade—this limited the depth of the studied section to 30 cm. In Typic Endoaque- pts 1, only two horizons were identified: Ag-Cg, both with j z z i ¿ “O 21x 9]N A URI NDO ) ÁQ €: 3 3 Ar vr qu ou uo )y :s dy ) suo nÉp uo; p ue s ua] , aq 295 Tb 2a pe2 1o olq uat jdd o up Áq po La ao 3 aru s app rue Y O “38 1 J O SOJ A! 07 Áte Ig4 7 au E 17 NI Soil Science Society of America Journal strong gleyic properties such as pale greenish color and fer- ruginous mottles. Typic Endoaquepts 2 profile, located close to the foot of the limestone hill where Typic Endoaquepts 1 was described, has an additional pale brown 2Agb horizon below Cg. Slightly elevated part of the depression, adjacent to the hill where Budsilhá site is located, is represented by the pro- files Gypsic Endoaquepts 1 and 2. The groundwater level here is lower that allowed us to study sections down to 80 cm. Grayish-brown humus Ag horizon is underlain, from 15 cm downward, with a set of ABgy-Cgy1-Cgy2 horizons of reduced greenish color with gleyic and —unexpectedly— gypsic properties. The presence of neoformed gypsum crys- tals is evident in the field; they are observed as white powdery mottles directly below the A horizon, while deeper large clearly visible gypsum crystals of several millimeters in length were also found. We propose to define these complex profiles as Gypsic Endoaquepts, although such a subgroup is not specified in the Keys to Soil Taxonomy (1998). 3.2 | Soil physical and chemical properties According to the results of the particle size analysis, the stud- ied soils have relatively high clay content. Already in the upland profile, Inceptic Haprendolls clay content reaches 40% in the A horizons, increasing to more than 50% in the B horizon. In the hydromorphic soils of the depression area, clay content is even higher, reaching 60%-80% in the Typic Endoaquepts 2, Gypsic Endoaquepts 1 and 2 sections. Within the coarser material, silt fractions are more abundant. Only in the upper A horizon of Inceptic Haprendolls is a strong increase of sand (more than 30%) observed (Figure 4). pH values in all profiles vary in the range from 6 to 8; simi- lar pH ranges were observed both in the upland profiles and in the depression. In the profiles Inceptic Haprendolls and Gyp- sic Endoaquepts 2, we observed decrease in the pH values in the upper horizons, an expected tendency explained by the enrichment of topsoil with carbon dioxide and organic acids due to decomposition of the plant residues. The opposite trend was documented in the profile Typic Haprendolls—probably generated by the downslope redeposition of carbonate mate- rials. The behavior of the EC is much more variable. The upland profiles have moderate values: in the range 200-500 HS/cm in the profile Inceptic Haprendolls and 600-800 in Typic Haprendolls. Much higher conductivity is encountered in the hydromorphic profiles within the depression: 1000— 2000 uS/cm in Typic Endoaquepts 2 and even more than 2400 HS/cm in the profiles Gypsic Endoaquepts 1 and 2 (Figure 4). Water from the swamp in the Typic Endoaquepts 1 had a pH of 6.4 and an EC of 176045 at 33"C, and in the Typic Endoaquepts 2, a pH of 7.49 and an EC of 600 uS at 327C were observed. GARCÍA-RAMÍREZ ET AL. Results from the analysis of the ionic composition of soil solutions obtained directly from the hydromorphic profiles show that in the profiles without morphological evidence of gypsum neoformation—Typic Endoaquepts 1 and 2— the dominant anion was hydrogen carbonate ion (HCO”-), whercas among the cations Ca?* and Mg?* were present in similar quantities. On the contrary, in the gypsiferous pro- file Gypsic Endoaquepts 2, the anion pool was dominated by sulfate (SO¿?7), and among cations Ca?* prevails (Figure 5). 3.3 | Micromorphological observations In the profile Inceptic Haprendolls, the A horizon is charac- terized by very high porosity, strong development of structure conformed by granules and small rounded blocks, pigmen- tation of the groundmass with dark humus and frequent plant residues showing different degrees of decomposition (Figure 6a). The B and BC horizons of this profile show a quite different arrangement: they are compact, and pores are few, being presented mostly by tortuous fissures which delimit larger subangular blocks (Figure 6b). The ground- mass has reddish-brown color due to ferruginous pigment. This groundmass contains abundant carbonates—both coarse particles of irregular shape and micrite incorporated into the fine material. However, we observed some aggregates free of carbonate particles; they consist only of clay and iron oxides and have much stronger red pigmentation than the host mate- rial (Figure 6c). Clay component of these aggregates does not show any birefringence. Various human-introduced com- ponents were observed throughout the profile, especially in the B horizon: fragmented mollusk shells (Figure 6d), bone (Figure 6€e), and charcoal particles (Figure 6b). The groundmass in the A and AB horizons of the Typic Haprendolls profile is also enriched with dark humus and contains carbonates—coarse particles and micrite. Human- introduced components are few, although some small charcoal particles were encountered (Figure 6£). As in the case of the Inceptic Haprendolls profile, here we also observed aggre- gates of red clayey-ferruginous material free of carbonates, also with undifferentiated b-fabric (Figure 6g,h). Micromorphological observations in the Gypsic Endoaque- pts 1 profile revealed a quite specific set of pedogenetic features. The matrix of its Ag horizon is moderately pig- mented with humus; however, it is rather compact and has blocky structure. Clusters of zoogenic aggregates— excrements of mesofauna—are few and encountered only within the fragments of plant tissues. In the lower C horizons, the material becomes even more compact, and the ground- mass is comprised mostly of clayey fine material. Contrary to the upland profiles, the clay component here shows rather strong interference colors, producing speckled and striated b- fabric. Few rounded iron-manganese nodules are immersed in OL AO PA mO A sp Ár un no mu o se s3 0) sd hy m oy Po pt of un og “0 “19 9OS EbT :2L0 ; -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € SO T] SU OI O. ) DA NI ) >Iq uad do ap Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] ÁrB I"T I MY UO Á OIE AA O (SU IOE NEP IOO -Pu S-S TD) 0 9: Á opp a na M omn qUO , ¿s g ST OP ) pr s a ap 395 Tp 18 GARCÍA-RAMÍREZ ET AL. Texture % so 100 Ñ ia % 50 100 ES SS BC Texture % so 100 FIGURE 4 Physical and chemical properties of soil profiles analyzed: texture, pH, al Inceptic Haprendolls pH 75 $ 85 Typic ie PT EIzaA tí Lithic Haprendolls pH 65 7 75 Arcilla Limo Arena Anions so/?- MGE2 MTE2 MTE1 FIGURE 5 - lonic composition of soil solutions from the hydromorphic profiles: TE 1, Typic Endoaquepts 1; TE 2, Typic Endoaquepts 2; and GE 2, Gypsic Endoaquepts 2. EC yS/cm 200 300 400 500 EC ps/cm 670 680 690 700 LH EC ys/cm 1,229 1,230 1,231 Hco*- Ag sup Ag inf | Cg | Cgiy Cgy AB By Cgy1 Cgy2 Texture % 0 so 100 Texture % o so 100 Texture % 0 50 100 Texture % o 50 100 TI T 11 14 41 Leb tbt a e Society of America Typic ES 1 5.5 EC S/cm e 6.5 160018002000 2200 E E Typic AS 2 7 7 yA EC yS/cm z a 76 1000 1500 A Gypsic Endoaquepts 2 pH EC yS/cm 665775 2440 2480 2520 e Gypsic Endoaquepts 1 EC yS/cm 2273374 15002000 2500 3000 A and electrical conductivity (EC). Cations Na* K+ , Mg?* MGE2 MTE2 mTE1 MEN |? (05 200 1 01 :0 9/ mo 0 Ao ] au ag np om uo s ea n) csdi ny mo y po pr of oc “0 “19 90S Ebt -2e 0 07/ 60/ 01] 1 0 Ar as ] MI O ÁSI LA “O 0M O IA am O) 4 € SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] Ár BI "T I MY UO Á OIE AA O (S UI OE NE PI OO -P uS -S TD ) 09: Áo ppa n a Mom nqU O, ¿s g ST OP ) pr s a ap 395 Tp 19 10 Soil Science Society of America Journal GARCÍA-RAMÍREZ ET AL. FIGURE 6 Micromorphology of the upland soils. (a)-(e) Inceptic Haprendolls profile: (a) Coprogenic structure, high porosity, fragments of partly decomposed plant tissues; A horizon, PPL. (b) Compact arrangement, few fissures, black charcoal particles; B horizon, PPL. (c) Aggregate enriched in clay and ferruginous pigment, free of carbonates; BC horizon, PPL. (d) Fragment of mollusk shell; B horizon, N+. (e) Porous bone fragment: B horizon, PPL. (£)-(h) Typic Haprendolls profile: (f) Charcoal particles incorporated into compact groundmass; AB horizon, PPL. (g) Aggregate enriched in clay and ferruginous pigment, AB horizon, PPL. (h) Same as (g), N+, note abundant micritic and sand-size carbonate particles with strong interference colors in the groundmass, whereas in the clayey aggregate such particles are absent. PPL, plain polarized light; N+, crossed polarizers. (05: 20 01 'O LA OP /M OS Á S ] LA: r tr qu po mn o seo so0 y/: sdh 1y mo y Pa pt of Zn oG “0 “19 90S EPL OZ/ GOJ O1] H o Á reI g!T 2 IML O ÁSI EAN “O DI N ARE NPD OD 4 70 % SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36m O S OJA 0 ] ÁrB I"T I MY UO Á OIE AA O (SU IOE NEP IOO -Pu S-S TD) 09: Áo ppa na M omn qUO , ¿ sg ST OP ) pr s a ap 395 Tp 20 GARCÍA-RAMÍREZ ET AL. Soil Science Society of A ca Journal 1 FIGURE 7 Micromorphology of the lowland gypsiferous soil, all photos under crossed polarizers. (a)-(c) Gypsic Endoaquepts 1 profile: (a) Compact microcrystalline gypsum infilling in a large pore, A horizon. (b) Large isometric tabular crystal of gypsum, C horizon. (c) Zonal tabular gypsum crystal, C horizon. (d)f) Gypsic Endoaquepts 2 profile: (d) Large elongated twinned crystal of gypsum, Cr horizon. (e) Heterogeneous gypsum infilling: clusters of microcrystalline particles are surrounded by larger sand-size grains. Ag horizon. (f) same as (e) under crossed polarizers. the clayey groundmass. The most peculiar observation in this profile is the abundance of neoformed gypsum pedofeatures. In the A horizon, these features are presented by compact microcrystalline infillings in the pores (Figure 7a). Below, in the C horizons, large isometric tabular crystals appear (Figure 7b), and some of them are zonal (Figure 7c). No signs of dissolution or degradation of gypsum, like etching pits, sub- stitution by carbonates, or penetration of clayey material, were observed. The Gypsic Endoaquepts 2 profile has rather sim- ilar micromorphological characteristics. However, it shows some additional features of neoformed gypsum. In the Cr hori- zon, we encountered elongated gypsum crystals (Figure 7d). We observed variability of crystal sizes within a single ped- ofeature: within the infillings in the Ag horizon, clusters of microcrystalline particles are surrounded by larger sand-size grains (Figure 7e,f). Tn the lowermost Typic Endoaquepts 2 profile, some areas with zoogenic granular structure are observed (Figure 8a) only in the uppermost part of the A horizon, while other parts of the profile are compact and blocky. Groundmass is clayey, pigmented with humus. Numerous plant tissue frag- ments show different stages of decomposition but no signs of mesofauna activity (Figure 8b). Human-introduced com- ponents (microartifacts) were practically invisible with the exception of very few quite small charcoal particles in the Ag horizons (Figure 8c). Below, in the Cr horizon, clayey fine material shows rather strong interference colors, groundmass incorporates rounded Fe-Mn nodules, better developed in the profile Typic Endoaquepts 1 (Figure 8d). These features are quite similar to the lower parts of the Gypsic Endoaquepts profiles. However, in the Typic Endoaquepts profiles, no neo- formed gypsum was encountered. Also, no carbonates (coarse 500 )Sd i!y m oy Pa Py Of Ao G 0 “19 9OS EPL prue s ima ], op 295 [9z 07/ 60/ 01] 00 ÁtR xg! ] M O ÁSLA “02 1O] N aIn Emp O; y- St mn /m o Aa a Áre rqu pam uo, E á 5 a a s o 21 2 Soil Science Society of America Journal GARCÍA-RAMÍREZ ET AL. FIGURE 8 Micromorphology of the lowland swampy soils without gypsum, all photos under plain polarized light. (a)-(c) Profile Inceptic Haprendolls, Ag horizon: (a) Area with zoogenic granular structure in the upper part of the viewfield, neighboring blocky structure in the lower part, Ag horizon; (b) large fragments of plant tissues, strongly decomposed; and (c) small charcoal fragment. (d) Typic Endoaquepts | profile, Cr horizon: ferruginous nodule within the clayey groundmass. or micritic) were observed in groundmass of any lowland soils. Human-introduced components (microartifacts) were practically invisible with the exception of very few quite small charcoal particles in the Ag horizons (Figure 8d). 3.4 | Clay mineral assemblages Clay mineral assemblages were studied in the samples from selected horizons of the profiles (B horizon of the Inceptic Haprendolls profile, AB horizon in the Typic Haprendolls profile, Cgy1 horizon of the Gypsic Endoaquepts 1 profile, Cg horizon in the Typic Endoaquepts 1 profile, and C in the Inceptic Haprendolls profile), to use as an indicator of the weathering status and a tracer of the provenance of soil mineral mass. Despite contrasting differences of the mor- phological and physicochemical properties, all soils of the studied chronosequence showed a similar composition of the clay mineral assemblages. Below, we list the main identi- fied clay components and briefly describe their diagnostics by XRD, according to the position of diagnostic peaks and their reaction to the applied pre-treatments. In all studied samples, we observed major abundance of a group of 2:1 clay minerals that produced prominent 1.4 nm basal spacing in the air-dry sample. Within this group, the following individual components were discriminated: (1) Ver- miculite: 1.4 maximum remains unchanged after glycolation but shifts to 1.0 nm after heating. (2) hydroxy-interlayered vermiculite (HIV) is differentiated from normal vermiculite by an incomplete shift of the 1.4 nm maximum after heat- ing: it is expressed in asymmetry of the 1.0 nm peak that had a clear “shoulder” toward smaller angles. This asymme- try is interpreted as evidence of the incomplete collapse of the vermiculite structure after heating caused by the presence of a fragmentary additional octahedral layer, characteristic for HIV (Barnhisel € Bertsch, 1989), also called “soil chlorite.” (3) Smectite is characterized by a shift of 1.4 nm maximum to smaller angles after glycolation, producing a spacing of 1.5 1.6 nm. Smectitic component is also recorded by the behavior of the 0.7 nm maximum which is displaced after glycolation to approximately 0.76 nm. The second most abundant component is kaolinite that pro- duces well-defined 0.7 nm basal spacing in the air-dry sample that stays unchanged after glycolation but disappears in the samples heated to 550"C. Finally, illite is detected by the 1.0 nm basal peak, that is not modified by the pre-treatments; this component is present in minor amounts since it only appears as a small shoulder of the 1.4 nm peak. The proportions of the components within the clay min- eral assemblages differed significantly in the upland Rendolls and lowland Endoaquepts. In all the samples of the upland unit, we found only two defined components, the strongest 20 01 '0 1: 09 /m 0' A spa " Ár er qu po no s sos o0) sdh ry mo y po pe of um og 0 “19 90S EPt -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € z : ¡ E 5 E ¡ am Áq par uia ao8 a re s2p EAI O YO ' 961 JO S OL 0 ) ÁMM IQE T 3U UO ÁSI IAA M O ( SU EN OS - pr ee sr y mo : 3 ¿ i E $ h 22 GARCÍA-RAMÍREZ ET AL. a) 1. 40 (A WH M= 19 0.7 27 (P AK M 0. 7) 29 (CukKa) 10 15 Position ("29] (Copper (Cul) b) — > 14 m (r on no z, 16 m 0.7 6 n en ( P W H M > 1 ) > q 4 6 8 10 12 14 146 18 20 2 24 5 20 (CukKa) Position [26] (Copper (Cul) FIGURE 9 - Difractograms: (a) Upland Unit: TH, Typic Haprendolls and (b) Lowland Unit: GE 1, Gypsic Endoaquepts 1. FWHM, full width at half maximum. one of 1.4 nm and the other of 0.7 nm of basal spacing. The 1.4 nm peak in the air-dried sample has full width at half maximum (FWHM) values close to 1 (intermediate crys- tallinity). The 1.4 nm component splits in two when the sample is glycolated; one remains at 1.4 nm, and the other partially expands to 1.5 nm. The non-expansive component predominated and shifted to approximately 1.0 nm after heat- ing at 550"C. The expansive component is not very relevant. In all diffractograms of the heated specimens, we observed clear asymmetry of the 1.0 nm peak of the collapsed vermi- culite: it had a clear “shoulder” toward smaller angles. We interpret this observation as evidence of the incomplete col- lapse of the vermiculite structure after heating caused by the presence of a fragmentary additional octahedral layer. This component could be interpreted as HIV (Barnhisel $ Bertsch, 1989), also called “soil chlorite.” The 0.7 nm components not modified in glycolation, but disappears when heated, thus, it is interpreted as kaolinite that has high crystallinity (FWHM < 0.7). The 1.0 nm illitic component is only observed in one sample in a very small proportion, <5% (Figure 9a, Table 1). In all the samples of the lowland unit, we found three components, one of 1.4 nm, a second of 1 nm (minority), and another of 0.7 nm of basal spacing. The 1.4 nm peak in the untreated sample has higher FWHM values (lower crystallinity) than the upper samples. The 1.4 nm compo- nent does not split upon glycolation and expands to about 1.6 nm. The expansion is clearer than for the samples of the upper unit; for this reason, it is interpreted that the smec- titic component is the predominant one. Such modification by expansion can also be observed in the 0.7 nm peak. The HIV or smectite component is minor, but still is observed in the heated samples, as indicated by incomplete collapse of the vermiculite structure after heating. The component of 0.7 nm is modified in the glycolation; it has low crys- tallinity (FWHM > 1) and is interpreted mainly as smectitic type, but also with the contribution of kaolinite (in some samples, the presence of the two differentiated peaks can be observed). The peak located at 1.0 nm corresponds to illite of low crystallinity and is found only in the samples of this lower unit and is always a minority phase since it only OLA OPp mos Á p Ár et o sSo 0/- sdi y moy P opt ofu nog 0 “19 905 €Pt :2L0 ; -OZ /G0 /01 ] 10 K Tax g MI O ASI A “O0 MO] Y SE RI O 4 € SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] Ár BI "T I MY UO Á OIE AA O (S UI OE NE PI OO -P uS -S TD ) 09: Áo ppa n a Mom nqU O, ¿s g ST OP ) pr s a ap 395 Tp 23 14 Soil Science Society of America Journal GARCÍA-RAMÍREZ ET AL. TABLE 2 Semiquantitative values obtained using Fityk (Wojdyr, 2010) software. Sample Typic Haprendolls Inceptic Haprendolls Upland Unit Smectitic component XX XX Vermiculite and hydroxy-interlayered vermiculite (HIV) XXXX XXXX illite o) A) Kaolinite x x Sample Typic Endoaquepts 1 Gypsic Endoaquepts 1 Typic Endoaquepts 2 Lowland Unit Smectitic component XXX XXXX XXXX Vermiculite and HIV XX xXx XX lite x Xx Xx Kaolinite XxX XxX x Note: (X) = <5%; X = 5%-15%; XX appears as a small shoulder of the 1.4 nm peak (Figure 9b, Table 2). 3.5 | Phytoliths and macroremains The excavations at Op. 1, in the Central platform at Budsilhá, revealed a number of charred remains from wild and/or man- aged plants. The BU-01-B-05-04 excavation unit yielded a domesticated tomatillo (cf. Physalis ixocarpa Brot. ex Hornem) seed at an upper anthropogenic level, and a cf. chile pepper (Capsicum annuum L.) seed, maize (Zea mays L.) cupule, and cactus fruit (Melocactus sp.) seed in a lower, earlier level (BU-01-B-05-06; Figure 10). An even earlier anthropogenic deposit in the BU-01-B-05-07 unit yielded a nance (Byrsonima crassifolia L.) fruit seed. All these charred botanical remains come from primary or secondary deposits identified as construction fills, and do not represent plants grown in situ atop the constructed platform. The excavations at Op 5B, in the swampy area, lots 2 and 3 of unit BU-05-B-01, yielded no preserved or identifiable remains from domesticated plants, though they did reveal sev- eral charred remains and phytoliths from wild and/or managed plants of the Onagraceae, Asteraceae, Solanaceae, Verbe- naceae, Vitaceae, Polygonaceae, Poaceae, and Chenopodi- aceae families. Decorated spherical phytoliths likely from the palm family were also recovered in this unit. Unit BU-05-B- 02 yielded no botanical remains that could be identified even to family, and no artifacts. 3.6 | Ancient land use Analysis of LIDAR and pedestrian archaeological surveys in the study region have helped to clarify ancient settlement patterns. Archaeological features, including residential struc- tures, platforms, terraces, and canals, are distributed through the geoforms (Figure 2). = 15%-30%; XXX = 30%-50%; XXXX =>50%. A ú ú “ e FIGURE 10 of Caribbean grape (Vitis tiliifolia Humb £ Bonpl. ex Schult.) (BU-1-B-05-02-LF), (b) cupules of Zea mays (BU-1-B-05-04-HF), (c) fragment of a seed of Melocactus sp. (BU-1-B-05-06-LF), and (d) perforated opaque phytolith corresponding with the sunflower family (Asteraceae). Examples of phytoliths and macroremains. (a) Seed Constructed platforms and structures are located on the upper parts of the terrain, atop mountains or hills, as is the case for some architecture at Budsilhá and the site on top of the hill in Rancho Maria, the hill where the Inceptic Haprendolls profile is at. Constructed terraces are present in the upper and lower parts of the terrain, although they are more visible in the upper zones. They are present in slopes close to the valley bottom or near the top of the mountains, close to the platforms and structures. In higher zones, where slope could have been an issue for settlement construction, terraces were probably more fre- quently used for habitation purposes and potentially home 052 001 O LAO PAM OS ÁSI pw Tar qur mpu o sos a, -sd y moy P opr oyu nog “0 “19 90S EPt cLo Tal 07/ 60/ 01] 1 0 Ar as ] MI O ÁSI LA “O 0M O IA am O) 4 € SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] ÁrB I"T I MY UO Á OIE AA O (S UI OE NE PI OO -P uS -S TD ) 09: Áo ppa n a Mom nqU O, ¿s g ST OP ) pr s a ap 395 Tp 24 GARCÍA-RAMÍREZ ET AL. gardens, while terraces in lower zones of the terrain could have been more frequently used for agricultural purposes, as far as their soils are deeper and more fertile due to collu- vial pedosediment accumulation. The more frequent use of lower zones for agricultural production is additionally sup- ported by the presence of rectilinear canals, identified through the PolyIntensity raster (Figure 2). 4 | DISCUSSION 4.1 | Upland soils: Human-induced erosion and development of shallow upland Rendolls Soil profiles developed on the limestone hills (which host the ruins of ancient buildings and rich cultural layers with artifacts) are composed predominantly of thin dark humus horizons underlain by continuous limestone, coarse lime- stone colluvium or debris from collapsed constructions—also calcareous. Indeed, profiles Typic Haprendolls and Lithic Haprendolls are of this kind, whercas in the Inceptic Hapren- dolls profile under humus horizons, we observed a deeper solum (Bw and BC horizons)—but only locally, in a thin karst pocket. The morphology of these profiles might suggest that they be interpreted as quite primitive soils, a product of incipient pedogenesis. However, from our viewpoint, this is a deceiving impression: the properties of soil mass disagree and point to an alternative explanation. The granulometric analysis points to relatively high content of clay fraction. Micromorphological observations show that although some carbonates (mostly primary) are present in the groundmass, its larger part consists of silicate clay. Further mineralogi- cal investigation by XRD revealed the composition of clay: itis dominated by vermiculite (including HIV) and kaolinite (Table 1). These components indicate the intermediate to high weathering status of these soils that require an advanced stage of pedogenesis under leaching and acidification conditions (Dixon, 1989; Douglas et al., 1989). We strongly doubt that abundant neoformation of these clay components could take place within the soil environment of a thin calcareous alkaline soil because in such medium, acidic products of organic mat- ter decomposition—that are the main agents of weathering and clay mineral formation—should be quickly neutralized by calcium carbonate. Thus, we suppose that they are inher- ited from a different soil system, now absent in the studied geoforms. Micromorphology provides hints to infer characteristics of this pre-existing soil on the limestone hills. In the pro- file Inceptic Haprendolls and profile Typic Haprendolls, we observed fragments of red clayey soil material free of calcite, immersed in the humic or in the carbonate host ground- mass. We speculate that these fragments are inherited from a thick ferruginous clay-rich soil originally developed on the Soil Science Society of America Journal 15 limestone hills of Busiljá. Such soils are common for pedoge- nesis on karstified carbonate rocks, especially in subtropical and tropical regions, and have been referred to as Terra Rossa (e.g., Mediterranean basin, Southern China, Caribbean, among others), and their genesis remains a subject of discus- sion (e.g., Cabadas-Baez et al., 2010b; Merino d Banerjee, 2008). These soils were found in the mountainous landscapes of Chiapas (Solís-Castillo et al., 2014) and were observed in some exposures close to the study area in similar geo- morphic positions but without evidence of anthropogenic activity (see Arriva Cueva profile in Sedov et al., 2023). We suppose that Terra Rossa soils once covered the lime- stone hills of Busiljá but have been destroyed by erosion. The residues of these soils are presented by the still recogniz- able red clayey microfragments incorporated into the slope colluvial soils (Typic Haprendoll profile) or into the fills of Karstic hollows (as in Inceptic Haprendoll), and also by the fine kaolinitic-vermiculitic material, mixed with humus and lithogenic carbonates in the groundmass of the upper dark horizons of the Rendoll soils. The latter are strongly affected by soil fauna activity that is evidenced by their well-developed granular structure of coprogenic origin. This activity results in pedoturbation and translocation of fine soil material toward the surface and could be responsible for development of dark soils over archaeological monuments. This is a well- known phenomenon described already by Darwin (1881) who attributed soil development on ancient Roman ruins to the continuous earthworm activity. Soil erosion in the upland areas, to a large extent, could have been provoked by ancient Maya land use. Construction and settlement activities are documented by the PABC archaco- logical excavations and LiDAR data, mostly on the calcareous hills. Such activities would be accompanied by the destruc- tion of natural vegetation and soil disturbance, precursors to erosion processes. The presence of macro- and microscopic artifacts associated with redeposited red soil fragments in the Rendolls supports the supposition of mostly human-induced colluviation process. Large-scale human-induced erosion of soils in the upland areas and deposition of pedosediments in the lowlands, which started in the preclassic and culminated during the Classic period, have been documented in various Mayaregions (Beach et al., 2006, 2018). In the Yucatan penin- sula, erosion of Terra Rossa soils and their substitution by dark shallow Rendolls was accompanied by deposition of large amounts of red pedosediments in the underground karstic hol- lows: sinkholes and cave floors (Cabadas-Báez et al., 2010a; Sedov et al., 2023). We further speculate that in the study arca, erosion provoked by humans took place rather early. Excava- tions at Budsilhá and other neighboring sites have not revealed red soils below the constructions and cultural layers of the Classic period. This means that already before the develop- ment of these settlements, deep red soils were largely eroded due to earlier Preclassic landuse, thus the timing of earliest 20 01 '0 1: 09 /m 0' A spa " Ár er qu po no s sos o0) sdh ry mo y po pe of um og 0 “19 90S EPt -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € HS uO ) sa i) s uo mp no pue s ay , ay 2 95 am Áq par uia ao8 a re s2p EAI O YO ' 961 JO S OL 0 ) ÁMM IQE T 3U UO ÁSI IAA M O ( SU EN OS - pr ee sr y mo : ¿ : E $ h 25 16 Soil Science Society of America Journal land degradation processes in the region is set before 1.7-2 kyr BP, in agreement with paleopedological results from the other Maya regions of Southern Mexico (Sedov et al., 2023). In terms of environmental and agronomic quality, the major problem with the upland Rendolls is their shallow and uneven thickness. On the other hand, high humus content and well- developed structure are beneficial properties for agriculture. At present, these soils are not targeted for cultivation, how- ever, they support abundant natural selva vegetation that has developed on the abandoned Classic Maya settlements. These soils could also have been used by ancient inhabi- tants for planting homegardens within the settlement areas, thought to be an important part of Maya agricultural land- scapes (Morell-Hart et al., 2023). To cope with the small and variable thickness of Rendolls, high-precision “container gar- dening” technology could have been applied (Fedick et al., 2008; Flores-Delgadillo et al., 2011). 4.2 | Lowland soils: Possible impact of redeposition, the origin of gypsum, potential for ancient agriculture The hypothesis of strong erosion as a key factor of soil evo- lution on the calcareous hills should have some implications also for the lowland areas, which should receive at least part of the eroded material, leaving identifiable footprints. At first glance, we do not find these eroded materials in the studied profiles, apart from small charcoal fragments that could be in situ. No features that could be attributed to the pedosedi- mentary material were observed at the macro- or microscale. However, we speculate that the clay minerals could provide a hint for detecting redeposition. Clay mineral assemblages show astriking similarity in the upland and lowland profiles— despite their contrasting morphological differences (Table 1). Tn both cases, the clay mineral assemblage is constituted by two major components: 1.4 nm—vermiculite and smectite, with different grades of chloritization and 0.7 nm— kaolinite. This similarity is uncommon by far in tropical soil topose- quences. Usually, the mineralogy of elevated positions and depressions differs significantly because of contrasting weath- ering intensities, controlled by drainage (Duchaufour, 1982). For example, in classic “black and red” toposequences, the clay of well-drained slope soils consists mostly of kaolin- ite, whereas smectites dominate in depressions (Kantor $ Schwertmann, 1974). This similarity could be explained by the common origin of these mineral associations: A large part of the fine clay mate- rial in the depressions could arrive from the eroded soils of the limestone hills. Some minor differences in the proportions of clay components between the upland and lowland soils could be explained by some further transformation of minerals in the water-saturated environments of the latter. In particular, GARCÍA-RAMÍREZ ET AL. we attribute the higher proportion of the smectitic compo- nent within the 1.4 nm phase to the degradation of vermiculite (Novikoff et al., 1972). There are other reports of tropical soil catenas with contrasting morphological characteristics but quite uniform clay mineral composition, for example, in coastal Brazil (Pacheco et al., 2018). Pacheco and col- leagues explained this phenomenon with erosion/redeposition of pre-weathered material along the hillslope gradient. If our hypothesis is correct and the depression soils received large amounts of redeposited soil materials, why are these materials not detected morphologically? In partic- ular, why have the fragments of red clayey soil, observed in the thin sections of upland Rendolls, not been found in the lowland Gleysols? We think that the hydromorphic pedogenetic processes within the swampy depression could sweep away morphological features of pedosedimentary materials. Microbial reduction under anaerobic conditions causes translocation of iron from the reduced depletion areas toward oxidation sites where Fe-Mn pedofeatures are formed (Vepraskas et al., 2018). We suppose that, in our case, it results in the decomposition of red ferruginous pigment of pedosed- iments and concentration of Fe and Mn hydroxides in the nodules observed in the thin sections. This redistribution of iron could also affect the orientation pattern of clay particles. Undifferentiated b-fabric, which we observed in the red soil fragments in the upland profiles, is due to the presence of tiny ferruginous grains which prevent the orientation of platy clay mineral particles. When this ferruginous component is removed due to reduction in the hydromorphic soils of the depression, clay particles could orient and produce striated b-fabric. The main factor of clay particle orientation in the soils is the shear stress related to swelling pressure (Stoops $: Mees, 2018). Parallel-oriented clay particles occupy less space than randomly oriented; thus, they are aligned along the planes of sharing, producing striae. We suppose that presence of smectites with high swelling capacity should increase shear stress effects in the studied hydromorphic soils and support development of striated b-fabric. As a result, the set of mor- phological features of soil mass is deeply transformed, being affected by redoximorphic processes, whereas composition of silicate clay minerals suffers only minor changes and permits us to trace the pedosedimentary origin of the material. The most intriguing pedogenetic phenomenon in the depression is the presence of abundant neoformed gypsum crystals in some profiles. Gypsum is a moderately soluble component. Thus, gypsiferous soils are common predom- inantly in the (semi)arid regions where evapotranspiration exceeds precipitation, leaching processes are restricted, or upward transport of dissolved sulfates in the soil profile takes place (Casby-Horton et al., 2015; IUSS Working Group WRB, 2015; Sposito et al., 2008). There are previous find- ings of neoformed gypsum in the soils of the Maya lowlands, particularly in the pedosedimentary sequences of the coastal 20 01 '0 1: 09 /m 0' A spa " Ár er qu po no s sos o0) sdh ry mo y po pe of um og 0 “19 90S EPt -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € HS uO ) sa i) s uo mp no pue s ay , ay 2 95 am Áq par uia ao8 a re s2p EAI O YO ' 961 JO S OL 0 ) ÁMM IQE T 3U UO ÁSI IAA M O ( SU EN OS - pr ee sr y mo : ¿ : E $ h 26 GARCÍA-RAMÍREZ ET AL. lowlands in Belize (Beach et al., 2006; Krause et al., 2019; Luzzadder-Beach et al., 2012; Pohl et al., 1996). These authors all explain abundant precipitation of sulfates together with carbonates by the same mechanism: evaporation of highly mineralized groundwater that ascended in the Late Holocene due to the sea level rise. The soils surrounding the site of Budsilhá are formed under a perhumid tropical climate, thus neoformed gypsum is in apparent discordance with the environmental setting. The pre- cipitation here is two to three times higher than further north in the Yucatan peninsula, and thus should produce strong dis- solution effect in the surface soil horizons. For this reason, the evaporation mechanism is improbable even in the lowland profiles saturated with groundwater. Our first idea was that gypsum is a relict feature related to more arid phases in the past. Dry periods occurring through- out the late Holocene in the Maya region are inferred from different proxies: lacustrine (Hodell et al., 2005; Leyden et al., 1996; Torrescano-Valle £ Islebe, 2015), speleologi- cal (Medina-Elizade et al., 2010; Webster et al., 2007), and marine (Haug et al., 2003). The hypothesis of a drought (or series of droughts) as the main cause of the decline of south- ern Classic Maya communities has become dominant during the last decades. Thus, we were tempted to interpret the gyp- sum accumulations as a legacy of ancient droughts, especially taking into account that in the regional lacustrine records, gypsum presence in lake sediment cores is presented as a reliable indicator of aridity (Brenner et al., 2003). Never- theless, micromorphological observations cast doubt on this hypothesis. If gypsum crystals were inherited from a past environment, in disequilibrium with present-day soil condi- tions, we would expect some signs of their decomposition: surface dissolution features like etching pits, phantom voids, and so forth (Poch et al., 2018). However, such features were never observed in the gypsum of the wetland soils sur- rounding Budsilhá. On the contrary, the crystals look fresh and complete even in the A horizon, indicating their recent development. In the framework of the relict feature version, we should also consider the possibility of the ancient anthropogenic origin of gypsum. Gypsiferous soils have been reported in archaeological contexts where gypsum was derived from ancient construction materials (Golyeva et al., 2018). The archaeological and pedological observations in the wetlands of Busiljá do not support this version. Ancient anthropic activ- ities there are restricted to digging of the drainage canals, no traces of construction or settlement development are found there, and very few artifacts are clearly redeposited. Macro- and micromorphological studies revealed only neoformed gypsum crystals, and no traces of gypseous construction materials were found. We argue that redoximorphic processes could be respon- sible for the Ca sulfate precipitation in the hydromorphic EEES RE 17 soils of the depression. The initial source of sulfur could be dissolved groundwater sulfate; however, in the reduc- tion conditions of wetland soil, it could be transformed into sulfide. Iron from the ferruginous pigment of the red soil pedosediments is also reduced (as discussed above), and thus conditions for iron sulfide precipitation (so-called acid- volatile sulfides and more stable pyrite) appear (Chesworth et al., 2008). Precipitation of sulfides limits sulfur mobility and detains its further migration with groundwater discharge. When groundwater level lowers temporally in slightly ele- vated parts of wetland, oxidizing conditions make sulfate formation possible again as the result of sulfide oxidation. In the absence of carbonates, acid sulfate soils develop as a result of sulfide oxidation process (Chesworth et al., 2008). However, in our case, sulfate further reacts with the abundant calcium bicarbonate dissolved in the groundwater (provided by the limestone karstification in the surrounding hills). This interaction produces gypsum and neutralizes acidity (Fanning etal., 2002). This scenario may explain the unexpected variations in the ionic composition of the groundwater within the Busiljá swampy lowland. Indeed, we found substantial difference between the soil water from the slightly elevated part (Gyp- sic Endoaquepts profiles), where the most abundant anion is sulfate, and that from the lower center of depression (profile Typic Endoaquepts 1), dominated by bicarbonate—despite the fact that both belong to the same continuous groundwa- ter body. We suppose that, only in the periodically aerated elevated part, sulfide oxidation and sulfate formation take place. The latter further reacts with the dissolved bicarbonate, consuming it and generating calcium sulfate; after reach- ing saturation, it precipitates as gypsum. In the permanently water-saturated central part of the depression, reduced con- ditions are permanent, sulfate does not form, and hydrogen carbonate remains dominant anion. The process of gypsum synthesis at the expense of sulfide oxidation in presence of calcium (bi)carbonate is the second most important pathway of formation of this mineral in the soils and continental sediments apart from evaporative pre- cipitation. It is interesting that the shape of gypsum crystals depends on their origin: sulfide oxidation produces predom- inantly elongated and tabular morphology (as in the studied case!), whereas very common lenticular shapes are gener- ated by the evaporation in arid environments (Mees « Stoops, 2018). The oxidative synthesis of gypsum process is well stud- ied in coastal wetlands (Poch et al., 2009) but is also known in the inland hydromorphic geosystems (Lamontagne et al., 2006); it is frequently also found in the artificial soils on sul- fidic mine waste ameliorated with carbonates (Fanning et al., 2002). Concerning the Maya region, Beach et al. (2008, p. 327) considered the possibility of neoformation of gypsum due to pyrite oxidation unlikely in the lowlands of Belize, but 20 01 '0 1: 09 /m 0' A spa " Ár er qu po no s sos o0) sdh ry mo y po pe of um og 0 “19 90S EPt -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € z : ¡ E 5 E ¡ am Áq par uia ao8 a re s2p EAI O YO ' 961 JO S OL 0 ) ÁMM IQE T 3U UO ÁSI IAA M O ( SU EN OS - pr ee sr y mo : 3 ¿ i E $ h 27 18 Soil Science Society of America Journal without discussing this possibility in detail. On the other hand, Leonard et al. (2019) found pyrite—possible precur- sor for gypsum—in the carbonateous wetland soil-sediment sequences in the north of Yucatán Peninsula. We hypothe- size that neoformation of gypsum due to the sulfide oxidation in presence of calcium (bi)carbonate could be a widespread process in the wetland and possibly also in the lacustrine land- scapes of the Maya lowlands, where karstified limestone is the most common geological subsoil material. Tf our hypothesis is valid, it will have important implica- tions for paleoecological interpretations of gypsum when it is found in the soils and sediments of the region. In lacus- trine sequences, abundance of gypsum (frequently estimated by measuring the sulfur content) is usually judged as an indi- cator of higher evaporation rates in relation to precipitation and thus seen as a reliable indicator for aridization (Bren- ner et al., 2003), This interpretation supposes the evaporative origin of gypsum and does not consider the possibility of its formation due to sulfide oxidation. However, if the lat- ter is true, the paleoclimatic interpretation of this component is quite ambiguous because oxidative synthesis of gypsum could also take place under humid climate, as shown above. Anyway, at present, our version of gypsum neoformation is far from being strictly proven; further research is needed to check this hypothesis. In particular, a thorough search for sulfides—the supposed precursor of gypsum—should be undertaken in the deeper horizons of the wetland soils of Busiljá. Apparently, the presence of neoformed gypsum does not limit biological productivity of the wetland soils. Being a neutral salt with relatively low solubility, it does not affect chemical soil quality. Gypseous horizons could have a neg- ative effect on soil physical properties in case of their cementation (Sposito et al., 2008), although this is not the case in the studied wetland soils. At present, this area has abundant grass vegetation and is used as a pasture. The soils could be cultivated after drainage, and the presence of arti- ficial canals in the area indicates that these soils could form the main agricultural domain of the Classic Maya soilscape. Cultivable plants in these contexts could include a variety of annuals, such as the milpa triumvirate (maize, beans, and squash) or root crops such as manioc (Manihot esculenta) and edible cocoyams (Xanthosoma spp.); commodity and tithe crops such as cotton (Gossypium spp.); leafy plants such as chaya (Cnidoscolus chayamayansa McVaugh); and shrubby fruit plants such as more shallow-rooted nance or annatto (Horseman, 2022). Itis likely that taller trees with deeper root systems, such as copal (Protium copal Schltdl. £ Cham.) or breadnut (Brosimum alicastrum Swartz) trees, would suffer in periods of higher groundwater levels, even where artificial drainage was employed. Even with taphonomic conditions that hindered preser- vation and limited sampling capacity, we see the local GARCÍA-RAMÍREZ ET AL. consumption of expected domesticates by residents at the ancient site of Budsilhá. However, the samples taken from the units in the likely agricultural area (Op. 5B) yielded no agricultural products, instead presenting a wide suite of wild and/or non-domesticated plants. These plants may represent the fallowing period of an agricultural cycle. The presence of expected domesticates such as maize, chile peppers, and nance fruits in trash deposits and construction fills demon- strate that Budsilhá residents were making use of some other portion of the landscape to grow these plant foods or were gaining food products in trade. These cultivation arcas are likely located in the artificially drained flat lowlands under- going continuous managed successional cropping, yielding a variety of economic plants dependent on the succession phase of the zone (Morell-Hart et al., 2023). The importance of the lowland agricultural domain should have especially increased during the Classic period when the population (especially urban) grew, whereas upland soil resources had already been largely destroyed by human-induced erosion, as discussed above. 5 | CONCLUSIONS The studied catenas in the mountainous karstic landscape of Busiljá, Chiapas, show a particular pedogenesis that differs from what is expected of the soil cover in both the tropics and in the karstic geosystems. This phenomenon is in part related to the semicontinuous anthropic occupation of the area. Four primary conclusions are drawn from this study: 1. The rendzic-type soils (of shallow profile and high humus content) are not incipient soils but instead are highly eroded. This erosion has occurred primarily through the anthropic activities in the upper part of the terrain that have been taking place in the area for the past 2000 years. 2. The soils in the lower parts of the terrain present abun- dant pedosediments that have been affected and modified by gleyic processes. The relationship between the upper and lower soils is not easily recognizable in the profiles but the clay mineralogy and the micromorphology shed some light on the matter. 3. The appearance of neoformed gypsum, in the lower parts of the terrain, is proposed to be of recent formation and not related to the archacological occupation. This is likely the result of reductomorphic processes and is related to the presence of the water table which contains dissolved hydrocarbonates. 4, The distribution of the anthropic activities is closely related to location on the geoform. In the upper parts of the terrain, there is a higher concentration of architectural structures, along the slopes there are terraces that could serve both as agricultural and living spaces, and the lower 20 01 '0 1: 09 /m 0' A spa " Ár er qu po no s sos o0) sdh ry mo y po pe of um og 0 “19 90S EPt -OZ /GO JO1 ] Mo Ase sgr T 2I MO ÁSI EAN “O0 MIJ N REP O D) 4 € z : ¡ E 5 E ¡ am Áq par uia ao8 a re s2p EAI O YO ' 961 JO S OL 0 ) ÁMM IQE T 3U UO ÁSI IAA M O ( SU EN OS - pr ee sr y mo : 3 ¿ i E $ h 28 GARCÍA-RAMÍREZ ET AL. parts of the terrain seem to have been reserved for agri- cultural purposes with some modifications to moderate seasonal overabundance of water. The soil development and ancient Maya land use in the area were closely intertwined with the geoform and the presence of anthropic activities. Ancient inhabitants clearly designated particular areas for architecture, agriculture, and other activi- ties. However, these inhabitants were necessarily attentive to the pre-existing affordances and limitations of the same areas, such as soil fertility, relatively flat areas for construction, and location in regard to other occupants of the landscape. Over time, transformations to the landscape—transformations some of these ancient inhabitants engendered—could have led to new affordances. Given the soil history now documented in and around Budsilhá, we see new limitations brought on by the erosion of rich soils from agricultural areas, and the overall degeneration of previously reliable upland agricultural zones. AUTHOR CONTRIBUTIONS P. Garcia-Ramirez: Data curation; formal analysis; inves- tigation; visualization; writing—original draft; writing— review and editing. K. Guillén: Formal analysis; inves- tigation. S. Sedov: Formal analysis; funding acquisition; investigation; writing—original draft; writing—review and editing. C. Golden: Formal analysis; funding acquisition; investigation; visualization; writing —review and editing. S. Morell-Hart: Formal analysis; funding acquisition; inves- tigation; visualization; writing—original draft; writing— review and editing. A. Scherer: Formal analysis; funding acquisition; investigation; visualization; writing—review and editing. T. Pi: Formal analysis; investigation; visualiza- tion; writing—original draft; writing—review and editing. E. Solleiro-Rebolledo: Funding acquisition; investigation. H. Dine: Formal analysis; investigation. Y. Rivera: Formal analysis; investigation; visualization. ACKNOWLEDGMENTS Research was supported by the Alphawood Foundation of Chicago, the Hitz Foundation, the National Science Foun- dation (BCS-1917671), the Social Sciences and Humanities Research Council of Canada (435-2019-0837), Brandeis Uni- versity, Brown University, and McMaster University. We are grateful to the Consejo de Arqueología and the Instituto Nacional de Antropología e Historia for the permission to con- duct the archacological aspects of this work, and our thanks to the local communities whose permission and participation makes this field research possible. This research was partly covered by the Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT) through the project (CF682138) La infraestructura urbana como indicador de la génesis y desarrollo de la ciudad Maya Clásica: el caso de Palenque, Soil Sci e Society of America Journal mE Chiapas. We acknowledge the financial support given by the projects Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica PAPIT-DGAPA, projects IN108622 and IN105819. We thank Jaime Díaz-Ortega for his support during the field work and thin sections” preparation. CONFLICT OF INTEREST STATEMENT The authors declare no conflicts of interest. ORCID P. García-Ramirez O https://orcid.org/0009-0006-7654- 6394 C. Golden O https://orcid.org/0000-0003-0371-4247 S. Morell-Hart O https://orcid.org/0000-0003- 1866-8714 H. Dine Y https://orcid.org/0000-0002-0500-7362 REFERENCES Barnhisel, R. IL, $£ Bertsch, P. M. (1989). Chlorites and hydroxy- interlayered vermiculite and smectite. In J. B. Dixon, « S. B. Weed (Eds.), Minerals in soil environments (Vol. 1, 2nd ed., pp. 729-788). SSSA. https://doi.org/10.2136/sssabookserl.2ed.c15 'alacio-Aponte, G., Quintana, P., € Zinck, J. A. (2011). Spa- tial distribution and development of soils in tropical karst areas from L Bautista, the Peninsula of Yucatan, Mexico. Geomorphology, 135(3), 308 https://doi.org/10.1016/j.gcomorph.2011.02.014 Bautista-Zuñiga, F., Estrada-Medina, H., Jiménez-Osornio, J. J. M., € González-Iturbe, J. A. (2004). Relación entre el relieve y unidades de suelo en zonas cársticas de Yucatán. Terra Latinoamericana, 22(3), 243-254, Bcach. T. (1998a). Soil catenas, tropical deforestation. and ancient and contemporary soil erosion in the Petén, Guatemala. Physical Geography, 195), 378405. https://doi.org/10.1080/02723646.1998. 10642657 Bcach, T. (1998b). Soil constraints on northwest Yucatán, Mexico: Pedoarchacology and Maya subsistence at Chunchuemil. Geoar- chaeology, 13(8), 759-791. hups://doi.org/10.1002/(SICI)1520- 6548(199812)13:8(759::AID-GEA1)3.0.C0;2-B Bcach, T., Dunning, N.. Luzzadder-Bcach, S., Cook, D. E., £ Lohsc, J. (2006). Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. Catena, 65(2), 166-178. https://doi.org/10. 1016/j.catena.2005.11.007 Bcach, T.. Luzzadder-Bcach, S.. Cook, D., Krause, S., Doyle, C., Eshleman, S., Wells, G., Dunning, N., Brennan, M. L., Brokaw, N., Cortes-Rincon, M., Hammond, G., Terry, R., Trein, D., £« Ward, S. (2018). Stability and instability on Maya Lowlands tropical hill- slope soils. Geomorphology, 305, 185-208. htps://doi.org/10.1016/j. geomorph.2017.07.027 Beach, T., Luzzadder-Beach, S., Dunning, N., € Cook, D. (2008). Human and natural impacts on fluvial and karst depressions of the Maya Lowlands. Geomorphology, 101(1), 308-331. https://doi.org/ 10.1016/¡.geomorph.2008,05.019 Beach, T., Luzzadder-Beach, S., Krause, S., Guderjan, T., Valdez, F., Fernandez-Diaz, J. C., Eshleman, S., £ Doyle, C. (2019). Ancient Maya wetland fields revealed under tropical forest canopy from laser scanning and multiproxy evidence. Proceedings of the National Academy of Sciences, 116(43), 21469-21477. https://doi.org/10. 1073/pnas.1910553116 (05 200 1 01 :0 9/ mo 0 Ao ] au ag np om uo s ean ) csdi ny mo y po pr of oc “ 0 “19 90S Ebt cLo Tal -02 /60 .01 ] 0O Kta sgY ] JU IO ÁSI LA “O2 XOJ N 2UT ENP AO) ÁN € SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] ÁrB I"T I MY UO Á OIE AA O (S UI OE NE PI OO -P uS -S TD ) 09: Áo ppa n a Mom nqU O, ¿s g ST OP ) pr s a ap 395 Tp 29 20 EE AA AN ica Brenner, M., Hodell, D., Curtis, J., Rosenmeier, M., Anselmetti, F., €: Ariztegui, D. (2003). Paleolimnological approaches for inferring past climate change in the Maya region: Recent advances and methodolog- ical limitations. In A. Gómez-Pompa, M. Allen, S. L. Fedick, 8: J. J. Jiménez-Osornio (Eds.), The lowland Maya area: Three millennia at the human-wildland interface (pp. 45-76). Food Products Press. Cabadas-Baez, H. V., Solleiro, E., Sedov, S., Pi, T., £ Alcalá, J. R. (2010a). The complex genesis of red soils in Peninsula de Yucatan, Mexico: Mineralogical, micromorphological and geochemical prox- ios. Enrasian Soil Science, 43, 1439-1457. https://doi.org/10.1134/ S1064229310130041 Cabadas-Báez, H., Solleiro-Rebolledo, E., Sedov, S., Pi-Puig, T., € Gama-Castro, J. (2010b). Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of Late Quaternary soil develop- ment, geomorphic processes and landscape stability. Geomorphology, 122(3), 323-337. https://doi.org/10.1016/j.geomorph.2010.03.002 Casby-Horton, S., Herrero, J., 8: Rolong, N. A. (2015). Gypsum soils— Their morphology, classification, function, and landscapes. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 130, pp. 231-290). Academic Press. https://doi.org/10.1016/bs.agron.2014.10.002 Chávez-Herrerías, A. (2023). El uso de espacio doméstico externo en dos unidades habitacionales del Maya Clásico de la región de Palenque [Bachelor's thesis, ENAH]. CDMX. Chesworth, W., Spaargaren, O., Hadas, A., Groenevelt, P. H., Otero, X. L., Ferreira, T. O., Vidal, P., Macías, F., £ Chesworth, W. (2008). Thionic or sulfidic soils, In W. Chesworth (Ed.). Encyclopedia of soil science (pp. 777-781). Springer. https://doi.org/10.1007/978-1- 4020-3995-9_597 CONAGUA. (2020). Normales climatológicas por Estado. Estaciones Ixcan, Yaquintela y El Rosario. https://smn.conagua.gob.mx/es/ informacion-climatologica-por-estado?estado=chis Darwin, C. (1881). The formation of vegetable mould through the action of worms: With observations on their habits. John Murray. Dine, H. (2018b). Budsilhá: Operacion 5B: Investigaciones en la Zona Pantanosa. In A. Scherer, £ C. Golden (Eds.), Proyecto Arqueologico Buslilja-Chocolja: Informe de la Novena Temporada de Campo Presentado (pp. 47-57). INAH. Dixon. J. B. (1989). Kaolin and serpentine group minerals. In J. B. Dixon, S S. B. Weed (Eds.), Minerals in soil environments (Vol. 1, 2nd ed., pp. 467-525). SSSA. https://doi.org/10.2136/sssabookserl.2ed.c10 Douglas, L. A., Dixon, J. B., € Weed, S. B. (1989). Vermiculites. In J. B. Dixon, $: S. B. Weed (Eds.), Minerals in soil environments (Vol. 1, 2nd ed., pp. 635-674). SSSA. https:/doi.org/10.2136/sssabookser!. 2ed.c13 Duchaufour, P. (1982). Pedology: Pedogenesis and classification. Springer. https:/doi.org/10.1007/978-94-011-6003-2 Dunning, N. P., Luzzadder-Beach, S., Beach, T., Jones, J. G., Scarborough, V., €: Culbert, T. P. (2002). Arising from the evolution of a neotropical landscape and the rise of Maya civilization. Annals of the Association of American Geographers, 92(2), 267-283. https://doi.org/10.1111/1467-8306.00290 Durn, G. (2003). Terra rossa in the Mediterranean region: Parent mate- rials, composition and origin. Geologia Croatica, S6(1), 83-100. https://doi.org/10.4154/GC.2003.06 Durn, G., Ottner, F., £ Slovenec, D. (1999). Mineralogical and geo- chemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma, 91(1), 125-150. https://doi.org/10.1016/S0016- 7061(98)00130-X 1 El GARCÍA-RAMÍREZ ET AL. Espinasa-Pereña, R. (1990). Propuesta de clasificación del Karst de la República Mexicana [Bachelor's thesis, UNAM]. UNAM Repository. http://132.248.9.195/pmig2017/0143123/Index.html Fanning, D. S., Rabenhorst, M. C., Burch, S. N., Islam, K.R., £: Tangren, S. A. (2002). Sulfides and sulfates. In J. B. Dixon, $: D. G. Schulze (Eds.). Soil mineralogy with environmental applications (Vol. 7, pp. 229-260). SSSA. https://doi.org/10.2136/sssabookser7.c7 Fedick, S. L. (1996). The managed mosaic: Ancient Maya agriculture and resource use. University of Utah Press. Fedick, S. L., De Lourdes Flores Delgadillo, M., Sedov. S.. Rebolledo, E. S., £ Mayorga, S. P. (2008). Adaptation of Maya homegardens by “container gardening” in limestone bedrock cavities. Journal of Eth- nobiology, 28(2), 290-304. https://doi.org/10.2993/0278-0771-28.2. 290 Fernández, F. G., Johnson, K. D., Terry, R. E., Nelson, S., € Webster, D. (2005). Soil resources of the ancient Maya at Piedras Negras, Guatemala. Soil Science Society of America Journal, 696), 2020 2032. htrps://doi.org/10.2136/sssaj2004.0306 Flores, L., € Alcalá, R. (2010). Manual de procedimientos analíticos. Instituto de Geología, UNAM. Flores-Delgadillo, L., Fedick, S. L., Sollciro-Rebolledo, E., Palacios- Mayorga, S., Ortega-Larrocea, P., Sedov, S., £ Osuna-Ceja, E. (2011). A sustainable system of a traditional precision agriculture in a Maya homegarden: Soil quality aspects. Soil £ Tillage Research, 113(2), 112-120. https://doi.org/10.10167/j.still.2011.03.001 Golden, C., Scherer, A., Schroder, W., Vella, C., € Recinos, A. R. (2020). Decentralizing the economies of the Maya West. In C. Golden, A. Scherer, W. Schroder, C. Vella, € A. R. Recinos (Eds.), The real busi- ness of ancient Maya economies (pp. 403-417). University Press of Florida. https://doi.org/10.5744/florida/9780813066295.003.0023 Golden, C., Scherer, A. K., Schroder, W., Murtha, T., Morell-Hart, S., Fernandez Diaz, J. C., Jiménez Álvarez, S. D. P., Alcover Firpi, O., Agostini, M., Bazarsky, A., Clark, M., Kollias, G. V., Matsumoto, M., Roche Recinos, A., Schnell, J., £« Whitlock. B. (2021). Airborne lidar survey, density-based clustering, and ancient maya settlement in the Upper Usumacinta River region of Mexico and Guatemala. Remote Sensing, 13(20), 4109. https://doi.org/10.3390/r513204109 Golyeva, A., Khokhlova, O., Lebedeva, M.. Shcherbakov, N., K Shuteleva. I. (2018). Micromorphological and chemical features of soils as evidence of bronze age ancient anthropogenic impact (Late Bronzc Age Muradymovo settlement, Ural region, Russia). Geosciences, 8(9), 313. https://doi.org/10.3390/geosciencess090313 Haug, G. H., Ginther, D., Peterson, L. C., Sigman, D. M., Hughen, K. A., £ Aeschlimann, B. (2003). Climate and the collapse of Maya civilization. Science, 2995613), 1731-1735. https://doi.org/10.1126/ science.1080444 Hodell, D. A., Brenner, M., £ Curtis, J. H. (2005). Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quater- nary Science Reviews, 24(12), 1413-1427. https://doi.org/10.1016/. quascirev.2004.10.013 Horseman, G. (2022). Suitability models of Ancient Maya agriculture in the Upper Usumacinta River basin of Mexico and Guatemala [Bachelor's thesis, McMaster University]. Houston, S. D., £ Inomata, T. (2009). The classic Maya. Cambridge University Press. INEGI. (1984a). Conjunto de datos vectoriales Geológicos serie IL. Tenosique (Carta Geológica E15-9). Instituto Nacional de (05 200 1 01 :0 9/ mo 0 Ao ] au ag np om uo s ea n) csdi ny mo y po pr of oc “0 “19 90S Ebt cLo Tal 07/ 60/ 01] 1 0 Ar as ] MI O ÁSI LA “O 0M O IA am O) 4 € SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] Ár BI "T I MY UO Á OIE AA O (S UI OE NE PI OO -P uS -S TD ) 09: Áo ppa n a Mom nqU O, ¿s g ST OP ) pr s a ap 395 Tp 30 GARCÍA-RAMÍREZ ET AL. Estadística y Geografía. htps://www.inegi.org.mx/app/biblioteca/ ficha.html?upc=702825236632 INEGI. (1984b). Conjunto de datos vectoriales Geológicos serie 1. Las Margaritas (Carta Geológica El5-12). Instituto Nacional de Estadística y Geografía. htps:/www.inegi.org.mx/app/biblioteca/ ficha.htmI?upc=702825236625 INEGI. (2007a). Conjuntos de Datos Vectorial Edafológico. Escala 1:250 000 Serie 1 Continuo Nacional Tenosique (Carta Edafológica E15-9). Instituto Nacional de Estadística y Geografía. https://www. incgi.org.mx/app/biblioteca/ficha.html?upc=702825235406 INEGI. (2007b). Conjuntos de Datos Vectorial Edafológico. Escala 1:250 000 Serie 11 Continuo Nacional Las Margaritas (Carta edafológica E 15-12, D15-3). Instituto Nacional de Estadística y Geografía. —— https:/www.incgi.org.mx/app/biblioteca/ficha.html? upc=702825235321 INEGL. (2016). Conjunto de Datos Vectoriales de Uso de Suelo y Veg- etación, Escala 1:250000, serie VI (Capa Unión). Instituto Nacional de Estadística y Geografía. IUSS Working Group WRB. (2015). World Reference Base for soil resources 2014, update 2015. International soil classification sys- tem for naming soils and creating legends for soil maps (World Soil Resources Reports No. 106). FAO. Johnson, K. D., Terry, R. E., Jackson, M. W., £ Golden, C. (2007). Ancient soil resources of the Usumacinta River Region, Guatemala. Journal of Archaeological Science, 34(7), 1117-1129, https://doi.org/ 10.1016/.jas.2006.10.004 Kantor, W., £ Schwertmann, U. (1974). Mineralogy and genesis of clays in red-black soil toposequences on basic igneous rocks in Kenya. Journal of Soil Science, 25(1), 67-78. htps://doi.org/10.1111/j.1365- 2389.1974.tb01104.x Kokalj, Z., € Somrak, M. (2019). Why not a single image? Combining visualizations to facilitate fieldwork and on-screen mapping. Remote Sensing, 11(7), 747. https://doi.org/10.3390/r51 1070747 Krause, S., Beach, T., Luzzadder-Beach, S., Cook, D., Islebe, G., Palacios-Fest, M. R., Eshleman, S., Doyle, C., £ Guderjan, T. H. (2019). Wetland geomorphology and paleoecology near Akab Muclil, Rio Bravo floodplain of the Belize coastal plain. Geomorphology, 331, 146-159. https://doi.org/10.1016/j.gcomorph.2018.10.015 Krause, S., Beach, T. P.. Luzzadder-Beach, S., Cook, D., Bozarth, S. R., Valdez, F., £ Guderjan, T. H. (2021). Tropical wetland persistence through the Anthropocene: Multiproxy reconstruction of environ- mental change in a Maya agroecosystem. Anthropocene, 34, 100284. https://doi.org/10.1016/j.ancene.2021.100284 Lamontagne, S., Hicks, W. S., Fitzpatrick, R. W., Rogers, S., Lamontagne, S., Hicks, W. S., Fitzpatrick, R. W., $: Rogers, S. (2006). Sulfidic materials in dryland river wetlands. Marine £ Freshwater Research, 57(8), 775-788. https://doi.org/10.1071/MF06057 Leonard, D., Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., € Díaz, J. (2019). Ancient Mayan use of hidden soilscapes in the Yalahau wetlands, northern Quintana Roo, Mexico. Boletín de La Sociedad Geológica Mexicana, 71(1). 93-119. https://doi.org/10. 18268/BSGM2019v71n146 Leyden, B. W., Brenner, M., Whitmore, T.. Curtis, J. H., Piperno, D. R., £ Dahlin. B. H. (1996). A record of long- and short-term climatic variation from northwest Yucatan: Cenote San Jose Chulchaca. In S. L. Fedick (Ed.), The managed mosaic: Ancient Maya agriculture and resource use (pp. 30-50). University of Utah Press. Liendo, R., Solleiro-Rebolledo, E. Solis-Castillo, B., Sedov, S., € Ortiz- Pérez, A. (2014). 7 Population dynamies and its relation to ancient Soil Sci e Society of America Journal a landscapes in the northwestern Maya lowlands: Evaluating resilience and vulnerability. Archaeological Papers of the American Anthro- pological Association, 24(1), 84-100. https://doi.org/10.1111/apaa. 12031 Luzzadder-Beach, S., Beach, T. P., £ Dunning, N. P. (2012). Wetland fields as mirrors of drought and the Maya abandonment. Proceedings of the National Academy of Sciences, 109% 10), 3646-3651. https://doi. org/10.1073/pnas.1114919109 Luzzadder-Bcach, S.. Bcach, T. P., £ Dunning, N. P. (2020). Wetland farming and the carly Anthropocene: Globally upscaling from the Maya Lowlands with LiDAR and multiproxy verification. Annals of the American Association of Geographers, 111(3), 795-807. https:// doi.org/10.1080/24694452.2020.1820310 Maler, T. (1903). Researches in the central portion of the Usumatsintla Valley: Reports of explorations for the museum—Part second. Mem- oirs 2(2). Peabody Museum of American Archaeology and Ethnology, Harvard University. Martin, S. (2020). Ancient Maya politics: A political anthropology of the classic period 150-900 CE. Cambridge University Press. https://doi. org/10.1017/9781 108676694 Martin, S., $: Grube, N. (2000). Chronicle of the Maya kings and queens: Deciphering the dynasties of the ancient Maya. Thames £ Hudson. Medina-Elizalde, M., Burns, S. J., Lea, D. W., Asmerom, Y., von Gunten, L., Polyak, V., Vuille, M., £ Karmalkar, A. (2010). High resolution stalagmitc climate record from the Yucatán Peninsula spanning the Maya terminal classic period. Earth £ Planetary Sci- ence Letters, 298(1), 255-262. https://doi.org/10.1016/j.epsl.2010, 08.016 Mces, F., £ Stoops, G. (2018). Sulphidic and sulphuric materials. In G. Stoops, V. Marcelino, $: F. Mees (Eds.), Interpretation of micro- morphological features of soils and regoliths (2nd ed., pp. 347-376). Elsevier. https://doi.org/10.1016/B978-0-444-63522-8.00013-9 Merino, E., £ Banerjee, A. (2008). Terra rossa genesis, implications for Karst, and eolian dust: A geodynamic thread. The Journal of Geology, 116(1), 62-75. https://doi.org/10.1086/524675 Moore, D. M., $: Reynolds, R. C. (1997). X-ray diffraction and the iden- tification and analysis of clay minerals (2nd ed.). Oxford University Press. Morell-Hart, S. (2018). Processing and analyzing sediment samples for Phytoliths. McMaster Paleocthnobotanical Research Facility. Morell-Hart, S., Dussol, L., € Fedick, S. L. (2023). Agriculture in the ancient Maya Lowlands (part 1): Paleoethnobotanical residues and new perspectives on plant management. Journal of Archaeolog- ical Research, 31(4), 561-615. https://doi.org/10.1007/510814-022- 09180-w Novikoff, A., Tsawlassou, G., Gac, J.-Y., Bourgeat, F., £ Tardy, Y. (1972). Altération des biotites dans les arénes des pays tempérés, trop- icaux et équatoriaux. Sciences Géologiques, bulletins et mémoires, 25(4), 287-305. https://doi.org/10.3406/sgcol.1972.1421 Pacheco, A. A., Ker, J, C., Schacfer, C. E. G. R., Fontes, M. P. F., Andrade, F. V., Martins, E. D. S., €: Oliveira, F. S. D. (2018). Miner- alogy, micromorphology, and genesis of soils with varying drainage along a hillslope on granitic rocks of the Atlantic Forest Biome, Brazil. Revista Brasileira de Ciéncia Do Solo, 42, c0170291. https:// doi.org/10.1590/18069657rbcs20170291 Poch, R. M., Artieda, O., $: Lebedeva, M. (2018). Gypsic features. In G. Stoops, V. Marcelino, € F. Mces (Eds.), Interpretation of micro- morphological features of soils and regoliths (2nd ed., pp. 259-287). Elsevier. https://doi.org/10.1016/B978-0-444-63522-8.00010-3 (05 200 1 01 :0 9/ mo 0 Ao ] au ag np om uo s ea n) csdi ny mo y po pr of oc “0 “19 90S Ebt cLo Tal 07/ 60/ 01] 1 0 Ar as ] MI O ÁSI LA “O 0M O IA am O) 4 € SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] Ár BI "T I MY UO Á OIE AA O (S UI OE NE PI OO -P uS -S TD ) 09: Áo ppa n a Mom nqU O, ¿s g ST OP ) pr s a ap 395 Tp 31 2 EE AA AN ica Poch, R. M., Thomas, B. P., Fitzpatrick, R. W., £ Merry, R. H. (2009). Micromorphological evidence for mineral weathering pathways in a coastal acid sulfate soil sequence with Mediterranean-type climate, South Australia. Soil Research, 47(4), 403-422. https://doi.org/1O. 1071/SRO7015 Pohl, M. D., Pope, K. O., Jones, J. G.. Jacob, J. S., Piperno, D. R., deFrance, S. D., Lentz, D. L., Gifford, J. A., Danforth, M. E., € Josserand, J. K. (1996). Early agriculture in the Maya Lowlands. Latin American Antiquity, 7(4), 355-372. https://doi.org/10.2307/972264 Priori, S., Costantini, E. A. C., Capezzuoli, E., Protano, G., Hilgers, A., Sauer, D., £ Sandrelli, F. (2008). Pedostratigraphy of Terra Rossa and Quaternary geological evolution of a lacustrine limestone plateau in central Italy. Journal of Plant Nutrition and Soil Science, 171(4), 509-523. https://doi.org/10.1002/jpln.200700012 Roche Recinos, A. (2021). Regional production and exchange of stone tools in the Maya polity of Piedras Negras, Guatemala [Doctoral dissertation, Brown University]. Brown Digital Repository. https:// repository.library.brown.edu/studio/item/bdr:vgjaf2pw/ Scherer, A. K., €: Golden, C. W. (Eds.). (2012). Revisiting Maler's Usumacinta: Recent archaeological investigations in Chiapas, Mex- ico. Precolumbia Mesoweb Press. Scherer, A, K., 8 Golden, C. (Eds.). (2018). Informe de la novena tempo- rada de investigación presentado ante el consejo de arqueología del Instituto Nacional de Antropología e Historia. Proyecto arqueológico Busiljá-Chocoljá. Scherer, A. K., Golden, C., Guzmán-López, P., £ Davenport, B. (2012). Budsilhá: Investigaciones en el Grupo Principal. In A. K. Scherer, C. Golden, $ J. Dobereiner (Eds.), Proyecto Arqueologico Buslilja- Chocolja: Informe de la Tercera Temporada de Campo Presentado (pp.10-60). INAH. Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., Pi-Puig, T., Vallejo- Gómez, E., £ Flores-Delgadillo, M., $: de, L. (2008). Micromorphol- ogy of a soil catena in Yucatán: Pedogenesis and geomorphological processes in a tropical karst landscape. In S. Kapur, A. Mermut, € G. Stoops (Eds.), New trends in soil micromorphology (pp. 19-37). Springer. https://doi.org/10.1007/978-3-540-79134-8_3 Sedov, S., Rivera-Uria, M. Y., Ibarra-Arzave, G., García-Ramírez, P., Sollciro-Rebolledo, E.. Cabadas-Báez, H. V., Valera-Fernández, D., Díaz-Ortega, J.. Guillén-Domínguez, K. A., Moreno-Roso, S. de J., Fedick, S. L., Leonard, D., Golden, C., Morell-Hart, S., £ Liendo- Stuardo, R. R. (2023). Soil toposequences, soil erosion, and ancient Maya land use adaptations to pedodiversity in the tropical karstic landscapes of southern Mexico. Frontiers in Earth Science, 11. SGM. (20064). Carta Geológico-Minera. Tenosique E15-9. Chiapas, Tabasco y Campeche. Servicio Geológico Mexicano. SGM. (2006b). Carta Geológico-Minera. Las Margaritas E15-12 D15- 3. Chiapas. Servicio Geológico Mexicano. Soil Survey Staff. (2022). Keys to soil taxonomy (13th ed.). USDA- NRCS. Solís-Castillo, B., Golyeva, A., Sedov, S., Solleiro-Rebolledo, E., € López-Rivera, S. (2015). Phytoliths, stable carbon isotopes and micromorphology of a buried alluvial soil in Southern Mexico: A polychronous record of environmental change during Middle Holocene. Quaternary International, 365, 150-158. https://doi.org/ 10.1016/3.quaint.2014.06,043 Solís-Castillo, B., Ortiz-Pérez, M. A., £ Solleiro-Rebolledo, E. (2014). Unidades geomorfológico-ambientales de las Tierras Bajas Mayas de Tabasco-Chiapas en el río Usumacinta: Un registro de los pro- cesos aluviales y pedológicos durante el Cuaternario. Boletín de la 1 El GARCÍA-RAMÍREZ ET AL. Sociedad Geológica Mexicana, 66(2), 279-290. htrps://doi.org/10. 18268/BSGM2014v66n2a5 Solís-Castillo, B., Solleiro-Rebolledo, E., Sedov, S., Liendo, R., Ortiz- Pérez, M., £ López-Rivera, S. (2013). Paleoenvironment and human occupation in the Maya Lowlands of the Usumacinta River, Southern Mexico. Geoarchacology. 28(3), 268-288. https://doi.org/10.1002/ gea.21438 Solleiro, R. E., Terhorst, B., Cabadas, B. H., Sedov, S., Damm, B., Sponholz, B.. £ Wiesbeck, C. (2015). Influence of Mayan land use on soils and pedosediments in karsic depressions in Yucatan, Mexico. In B. Lucke, R. Báumle, € M. Schmidt (Eds.), Soils and sediments as archives of environmental change: Geoarchaeology and land- scape change in the subtropics and tropics (Vol. 42). Franconian Geogrphical Society. Sposito, G., Chesworth, W., Evans, L. J., Chesworth, W., Spaargaren, O., S Spaargaren, O. (2008). Gypsisols. In W. Chesworth (Ed.), Encyclo- pedia of soil science (pp. 301-302). Springer. https://doi.org/10.1007/ 978-1-4020-3995-9_258 Stoops, G. (2020). Guidelines for analysis and description of soil and regolith thin sections (1st ed.). Wiley. htrps://doi.org/10.1002/ 9780891189763 Stoops, G., € Mces, F. (2018). Groundmass composition and fabric. In G. Stoops, V. Marcelino, £ F. Mees (Eds.), Interpretation of micro- morphological features of soils and regoliths (2nd ed., pp. 73-125). Elsevier. https://doi.org/10.1016/B978-0-444-63522-8.00005-X Torrescano-Valle, N., £ Islebe, G. A. (2015). Holocene paleoccology, climate history and human influence in the southwestern Yucatan Peninsula. Review of Palaeobotany $ Palynology, 217, 1-8. htps:// doi.org/10.1016/j.revpalbo.2015.03.003 Vepraskas, M. J., Lindbo, D. L., £ Stolt, M. H. (2018). Redoximorphic features. In G. Stoops, V. Marcelino, £ F. Mees (Eds.), Interpreta- tion of micromorphological features of soils and regoliths (2nd ed., pp. 425-445). Elsevier. https://doi.org/10,1016/B978-0-444-63522- 8.00015-2 Webster, J. W., Brook, G. A., Railsback, L. B., Cheng, H., Edwards, R. L., Alexander, C., $: Reeder, P. P. (2007). Stalagmite evidence from Belize indicating significant droughts at the time of Preclas- sic Abandonment. the Maya Hiatus, and the Classic Maya collapse. Palaeogeography, Palaeoclimatology, Palaeoecology. 250(1). 1-17. hups://doi.org/10.1016/j.palaco.2007.02.022 Wojdyr, M. (2010). Fityk: A general-purpose peak fitting program. Jour- nal of Applied Crystallography, 43(5-1), 1126-1128. https://doi.org/ 10.1107/50021889810030499 Yaalon, D. H. (1997). Soils in the Mediterranean region: What makes them different? Catena, 28(3), 157-169. https://doi.org/10.1016/ S0341-8162(96)00035-5 How to cite this article: García-Ramírez, P., Guillén, K., Sedov, S., Golden, C., Morell-Hart, S., Scherer, A., Pi, T., Solleiro-Rebolledo, E., Dine, H., € Rivera, Y. (2024). Soil development and ancient Maya land use in the tropical karst landscape: Case of Busiljá, Chiapas, México. Soil Science Society of America Journal, 1-22. https://doi.org/10.1002/saj2.20723 (05 200 1 01 :0 9/ mo 0 Ao ] au ag np om uo s ea n) csdi ny mo y po pr of oc “0 “19 90S Ebt -2e 0 07/ 60/ 01] 1 0 Ar as ] MI O ÁSI LA “O 0M O IA am O) 4 € SO T] SU OI O. ) DA NI ) >I qu ad do a p Xq po rs da o are s ar ao Y O “36 m O S OJA 0 ] Ár BI "T I MY UO Á OIE AA O (S UI OE NE PI OO -P uS -S TD ) 09: Áo ppa n a Mom nqU O, ¿s g ST OP ) pr s a ap 395 Tp 32 33 3.2 SOIL TOPOSEQUENCES, SOIL EROSION, AND ANCIENT MAYA LAND USE ADAPTATIONS TO PEDODIVERSITY IN THE TROPICAL KARSTIC LANDSCAPES OF SOUTHERN MEXICO Sedov et al 10.3389/feart.2023.1239301 differences in the lowland soil properties led to divergent ancient Maya land use strategies; in Chinikihá and Busiljá, the major agricultural domain was developed in the lowlands, implying largescale artificial drainage. On the contrary, in Yalahau, mostly upland Rendzinas were cultivated, implying “precision agriculture” and “container gardening.” KEYWORDS pedodiversity, karst, archaeology, Mayas, land use 1 Introduction Understanding the complex interaction between past societies and the soil mantle is one of the primary goals of paleopedology. Soils were a crucial resource for ancient economies, forming the basis for agriculture and providing raw materials for various industries and crafts (buildings, ceramic production, etc.). Human activities also impacted and transformed soils, affecting their biological quality and capacity to perform ecological functions and services, and creating feedback loops that influenced environmental management sociopolitical dynamics. Investigating these topics requires detailed research into the pedodiversity and structure of the soil mantle that supported these ancient cultures and registered their impact. The tropical humid and subhumid regions of southern Mexico, together with the adjacent territories of Central America, witnessed the development of Maya civilization between circa 2,000 BC and AD 1,500. Among other hallmarks such as divine kingship, art, monumental architecture, hieroglyphic writing, and a detailed knowledge of math and astronomy, the Maya implemented various intensive agricultural strategies to support cities with populations in the tens of thousands for millennia. Maya agricultural and natural resource management, especially the decisions and utilization of soil resources, has been the subject of numerous previous investigations (Fedick, 1995; Dunning et al., 1998; Beach et al., 2006; Beach et al., 2002; Anselmetti et al., 2007; Scarborough et al., 2012; Douglas et al., 2015; Douglas et al., 2018; Walden et al., 2023). Nevertheless, our understanding of how the Maya adapted their agrosystems to specific, unique, and sometimes difficult regional soil conditions is still limited and warrants additional research to understand these processes more fully. The evolutionary trajectory of Maya civilization is complex; generally, long intervals of progress are punctuated by socially or environmentally rooted setbacks that were sometimes catastrophic in nature. The most well known of these, the Terminal Classic collapse (during which cities in the southern Maya Lowlands experienced demographic, sociocultural, and political decline and abandonment) has attracted broad scientific and public attention and has inspired numerous scholars to propose scenarios explaining its cause, Currently, the most popular scenario is based on climatic forcing. A severe drought (or set of droughts) at the end of the first millennium AD is assumed to have significantly impacted crop production and caused a shortage in food supply, although there is no consensus on its severity of impact on Maya agriculture (Hodell et al, 2001; Dunning et al, 2012; Fedick and Santiago, 2022; Islebe et al., 2022). The “Maya drought” left a signal in the marine (Haug et al., 2003), lacustrine (Hodell et al., 2005; Douglas et al, 2016; Krywy-Janzen et al. 2019), and speleological (Medina- Elizalde et al., 2010) records. Frontiers in Earth Science 02 Another version links the Terminal Classic collapse to ecological problems caused by overexploitation of resources and environmental degradation by overpopulated Maya cities. This scenario was popularized by Diamond (1994) who pointed particularly to catastrophic deforestation during the Classic Maya period. Does soil matter for both these scenarios? Are soil properties important for the response of ancient agrosystems to water deficit caused by drought? Did deforestation and anthropogenic transformation of ecosystems during the Classic period also cause soil degradation? Studying the properties of the soil mantle in the Maya area can provide answers to these questions. A major part of the Maya region in southern Mexico is characterized by karstic landscapes formed in the sedimentary sequences dominated by calcareous rocks. A large area of mountainous karst is related to the ridge systems of Chiapas, whereas an expansive area of platform karst covers the entire Yucatán (Espinasa-Pereña, — 2007). Pedogenesis occurring on karstified calcareous rocks is different from the “central image” of soil development in the humid tropics. Deep, strongly leached, and weathered ferrallitic soils that typically form in humid tropical climates on silicate materials are rare in limestone karst landscapes. Instead, limestone karst soils are frequently comprised of shallow Rendzina-type profiles with dark Ah horizons directly underlain by calcareous rock. Much more developed red soils with a high content of silicate clay and iron oxides (referred to as Terra Rossa) are also found in these Peninsula landscapes. The origin of their parent material and pedogenesis are still under debate (Yaalon, 1997; Durn et al., 1999; Priori et al., 2008). The high pedodiversity of karstic soils provides both advantages and challenges for agricultural use; in turn, their “response” to cultivation is also complex and mosaic. Over the decades of our soil-archaeological research in the Mexican part of the Maya Lowlands, we became aware that regional differences between the soil mantle structures of karstic landscapes are so great that they could have major implications for regional models of ancient land use and anthropogenic soil change. The purpose of this overview is to summarize the information about the diversity of soils and pedosediments controlled by the geomorphological setting in mountainous and platform karst regions of southern Mexico, understand its influence on the unique distribution of land use practices, and obtain a record of soil cover transformation caused by ancient human impacts. 2 Methodological approach This paper summarizes the results of paleopedological and soil-archaeological research conducted during more than frontiersin.org 34 Sedov et al, 10.3389/feart.2023.1239301 Á Busiljá Á Chinikihá A Yalahau 1 Rancho Nuevo 1 Chinikihá 1 1 Kantunilkin 2 María 2 Chinikihá 2 2 Yalahau 3 3 Pantano María 3 Boca del Cerro 3 Yalahau 5 4 Yeso 1 4 Balancán 4 Yalahau 8 5 Manos Pintadas Cave 5 Tierra Blanca 5 Quarry 3 6 Arriba Cueva 6 Quarry 4 7 Bonfil 7 Coyotes FIGURE 1 Southern Mexico with the location of three studied toposequences, relief models with location of profiles, and landscape photos. Middle Usurnacinta toposequence: (A) upper terrace of Usumacinta and (B) google maps with locations of the profiles; (C) lower terrace of Usumacinta, Sierra de Chiapas and Busijá-Chocoljá toposequence; (D) calcareous hills; (E) google maps with locations of the profiles (F) swampy karstic depression Northwestern Yucatán—Yalahau toposequence; (G) forested upland landscape with the collapse structure; (H) google maps with locations of the profiles and (1) swampy lowland 20 years in the Mexican part ofthe Maya Lowlands. This research was related to archaeological projects carried out by teams from different scientific institutions at important ancient Maya cities or regions: Chinikihá (Instituto de Antropológicas UNAM) and Busiljá (Brandeis University) in Chiapas, and the settlements of the Yalahau region (University of California Riverside) in northern Quintana Roo. These dealt with archaeological of different Investigaciones contexts projects Frontiers in Earth Science occupation periods. Although there is no uniform chronology covering the entire Maya territory, the following general periodization was adopted in this work: Middle Preclassic, from 1,000 to 350 BC; Late Preclassic, from 350 BC to AD 250; Early Classic, from AD 250 to 550; Middle Classic, from AD 550 to 830; Late Classic, from AD 830 to 950; Postclassic, from AD 950 to 1,539. Nearly all these results have been published in various articles, books, and theses and presented frontiersin.org 35 Sedov et al at national and international conferences (cited in the Results section). However, they have always been considered separately from each other and interpreted in the context of local pedological, paleoecological, and geoarchaeological research issues. In this paper, we present an integrated interpretation of our results on soil diversity from different areas, united by their belonging to the family of landscapes strongly affected by Kkarstic (sub) humid tropical bioclimatic conditions. The soil classification of these works is based on the IUSS Working Group (1IUSS Working Group WRB, 2015); this system is adopted by INEGI (Instituto Nacional de Estadítica y Geografía) for soil mapping. This approach is motivated by the idea that the integration of results from various sites united by processes under certain geological, environmental, pedological, and historical similarities, although different in various aspects, will produce a “synergistic effect” and help generate new ideas about evolution of soil formation and its complex interactions with natural and anthropogenic factors that cannot be derived from individual local investigations. Toposequences (also referred to as soil catenas, although these are not complete synonyms) are a traditional approach to representing soil diversity and geomorphological regularities of the soil mantle structure and have also been proven to be useful for pedoarchaeological research in the Maya region (Beach, 1998). In the results, we present three compound soil toposequences representing the structure of the soil mantle in two areas of Sierra de Chiapas/Middle Usumacinta Basin and one in the northeastern Yucatán Peninsula (Figure 1). The toposequences include soils and pedosediments developed in different geomorphic positions of karstic landscapes which include subsurface cavities and, in the case of Usumacinta, soils of the adjacent alluvial domain. We accompany field morphological descriptions with micromorphological characteristics of key diagnostic features of pedogenetic processes in the studied profiles. We consider micromorphology to be the most powerful tool for detecting pedogenetic processes, especially in cases of incipient soils, complex polygenetic profiles, and redeposited soil materials. Thin sections were prepared from undisturbed soil blocks after impregnation with crystal resin, the observations were made under the petrographic microscope Olympus BX50 equipped with a digital camera connected to a computer. The descriptions based on the micromorphological concepts and terminology used by Stoops (2018). We used the Image-Pro Plus 7.0 software for handling the outline of were microscopic images. We also supply the physicochemical and mineralogical results, published in full elsewhere. We use the presented results to discuss the general tendencies and regional variations of 1) development of the soil mantle resulting from the interaction of pedogenesis and geomorphic processes; 2) influence of soil diversity on the special differentiation of ancient land use practices; and 3) the impact of ancient land use on soils and possible feedback effects of human-induced soil change on economic and social processes. Part of our interpretations have preliminary or hypothetic character: they are not sufficiently proven by the available results and are which suppositions, require verification. Frontiers in Earth Science 10.3389/feart.2023.1239301 However, we think that the ideas of such kind should be presented and discussed because of their potential importance for the orientation of future research. 3 Results 3.1 Soil toposequences of karstified mountainous tropical landscapes: Usumacinta Basin 3.1.1 Geological and environmental setting The Sierra de Chiapas, where the Chinikihá and Palenque archaeological sites are located, is constituted by sedimentary rocks (shales, sandstones, and limestones) with ages ranging from the Jurassic to Paleogene (Hernández-Santana et al., 2012) These rock sequences were folded and faulted during the Miocene and are also affected by neotectonics (Burkart, 1983; Authemayou et al., 2012), which has given rise to a complex relict , but locally rejuvenated (Andreani and Gloaguen, 2016), tectonic, and karstic relief with fold-and-thrust belts, dolines, uvalas, cockpits, and rock cliffs (Figures 1A, D). In consequence, the valleys are straight and aligned orographic fault escarpments, and pressure ridges (Ortiz et al., 2005). The Sierra de Chiapas comprises the largest area of mountainous tropical karstin Mexico (Espinasa-Pereña, 2007). During the Pliocene and Pleistocene, alluvial processes formed the Usumacinta Basin that extended from northwestern Guatemala to the states of Chiapas and Tabasco, in Mexico. The main river in this basin, in Mexican and cut mountainous axes, territory, is the Usumacinta, which descends from the ridges of the Sierra de Chiapas (Figure 18) and passes into the coastal plain of the Gulf of Mexico at Boca del Cerro. The main tributaries of the Usumacinta River are the San Pedro River, Chakamax River, and Tulijá River (Figure 1E), which follow the lineaments of normal faults with the east-west orientation. The coastal plain, slightly inclined to the north, is constituted by clastic sediments (sands, silts, and clays) derived from the Sierra de Chiapas (Padilla and Sánchez, 2007). These sediments comprise a sequence of Pleistocene and Holocene terraces at different altitudes (West et al., 1969; Solís-Castillo et al., 2014); those formed during the Pleistocene are higher than 20 m, whereas the Holocene terraces are lower (Figure 1C). The climate in the region is warm and humid with an annual precipitation ranging from 1,800 mm in the alluvial plain to 4,000 mm near the headwaters (INEGL, 1986). Approximately 67% of precipitation occurs in summer. The mean annual temperature is 27C, with temperatures reaching 30"C during the hottest month (García, 1988). Vegetation is evergreen tropical rainforest (selva alta). In the floodplain areas and wetland depressions (Figure 1F), which are inundated for long periods, vegetation is dominated by grasses and aquatic species such as Bactris and Ponderia (Bueno et al., 2005; Rzedowski, 2006). 3.1.2 Cultural history and archaeological context of the region Archaeological surveys along the alluvial plain have documented over 2,300 archaeological sites (Liendo-Stuardo et al, 2014). frontiersin.org 36 Sedov et al, SR E 10.3389/feart.2023.1239301 = Polycyclic soil Archeological site E Limestone A Usumacinta river FIGURE 2 Middle Usumacinta toposequence: general scheme and profile photographs. 1. Chinikihá 1 profile (Rendzic Leptoso!); 2. Chinikihá 2 profile (Chromic Luvisol); 3. Boca del Río profile with a polycyclic soil; 4. Balancán profile in the alluvial plain; 5. Tierra Blanca profile, alluvial sediments intercalated with paleosols. Ceramic investigations have identified a sequence of occupations ranging from the Middle Preclassic (800-300 BC), to the Terminal Classic (AD 850-1,000) (Liendo-Stuardo et al., 2014). A high frequency of ancient occupation since the Middle Preclassic is reported on the Tierra Blanca and Trinidad alluvial terraces where rich natural resources are available for the inhabitants (water bodies, soils for agriculture, fauna, and flora). In contrast, settlements at the foothills of the Sierra de Chiapas document shorter periods of occupation, with sparse population during the Late Preclassic. During the Early Classic period, settlements preferred the riverine environments. By the end of the Early Classic, populations occupied the foothills of the Sierra de Chiapas and intermountain valleys (Liendo-Stuardo et al., 2014). The site of Chinikihá is located within the Northwest Lowlands region with an important presence during the Classic period, with a high population density and accumulation of political power (Liendo-Stuardo et al., 2014). The first recognitions and reports of the archaeological site of Chinikihá were found in the manuscripts of Maler (1901) and Berlin-Neubart (1955). The site consists of a central sector comprising approximately 7.5 ha, where structures of a civic-ceremonial or special function, such as the ball court, palace, double temples, and South Acropolis are located around two large plazas. The residential area surrounds the previous one and consists Frontiers in Earth Science of housing units of different types. Chinikihá displays a radial distribution pattern, with greater nucleation toward the center and a progressive dispersion in the direction of the periphery of the site (Campiani et al., 2012; Liendo-Stuardo, 2012). The Busiljá area has been occupied by the Maya communities for millennia, with identified sedentary communities dating to as early as the Middle Preclassic period and occupation continuing through historical times. The largest pre-Colonial populations are likely associated with the Classic period (Golden et al., 2021). The cultural history of this region during this period was significantly influenced by the political dynamics of the kingdoms of Palenque, Piedras Negras, Tonina, and La Mar (Martin and Grube, 2008; Houston and Inomata, 2009). Most of the Classic period settlements were abandoned after AD 950, and regional populations were sparse until the 20th century (Golden et al., 2008; Scherer and Golden, 2012). The archaeological pedestrian and airborne LiDAR surveys carried out by the Proyecto Arqueológico Busiljá-Chocoljá (PABC) for more than a decade have exposed the settlement pattern of the Preclassic and Classic periods of Maya in the valley surrounding the Busiljá River, a tributary of the Usumacinta. This pattern divides the space into two functionality differentiated areas where the residential, political, and social architecture (houses, temples, ball courts) are grouped in low rises and uplands, whereas the frontiersin.org 37 Sedov et al 10.3389/feart.2023.1239301 FIGURE 3 Photomicrographs of the Middle Usumacinta toposequence, selected horizons; PPL, plane polarized light; XPL, cross polarized light. (A) Chinikihá Rendzina profile: 1AB horizon large reddish soil aggregates (blue arrowheads) transformed into smaller coprolitic aggregates (pink arrowheads) (PPL): (B) Luvisol profile: Bt3 horizon calcite infillings in pores (blue arrowheads) (PPL); (C) Tierra Blanca profile: 3A horizon porostriated b-fabric (XPL); (D) Tierra Blanca profile: 3A horizon groundmass with weathered volcanic glass (pink arrowhead) (PPL); (E) Tierra Blanca profile: 3AB horizon continuous clay coatings over pore walls; (F) Tierra Blanca profile: 7Bkg horizon small partly deformed clay coatings (blue arrowheads) (XPL); (G) Tierra Blanca profile: silty sediments (scanned section); (H) Tierra Blanca profile: volcanic glass in the silty sediments (PPL) Frontiers in Earth Science 06 frontiersin.org 38 Sedov et al agricultural structures such as channels and some terraces are found in the seasonal wetlands and lower hillslopes (Golden et al., 2021). 3.1.3 Soils and paleosols at key geoforms of middle Usumacinta Basin For this study, we have considered various pedological sections to construct a toposequence from the calcareous hills of Sierra de Chiapas to the alluvial plain (Figure 2), previously studied by Solís- Castillo etal. (2013a), Solís-Castillo et al. (2013b), Solís-Castillo et al. (2014), Liendo-Stuardo et al. (2014), and Solleiro-Rebolledo et al. (2015). In the hilly karstic relief at the edge of the Sierra de Chiapas, in Chinikihá, we consider two profiles: Chinikihá 1 and Chinikihá 2 (Liendo-Stuardo et al., 2014). Chinikihá 1 is a thin Rendzic Leptosol found on the hillslope, at a higher elevation. The brownish-black, loose, granular AB horizon of variable thickness (max. 40 cm) has an abrupt contact with the fragmented limestone bedrock. Chinikihá 2 is a deeper Chromic Luvisol developed in the bottom of the closed Karstic depression. The reddish, compact, clayey A (upper 10 cm), and Bt horizons account for a total thickness of 150 cm and are structured in hard blocks separated by fissures. The Boca del Cerro profile represents the soil-sedimentary sequence developed at the piedmont of Sierra de Chiapas on a colluvial fan underlain by fluvial sediments (Solís-Castillo et al., 2014). The modern surface Calcaric Phaeozem has a thick (75 cm) dark humus A horizon formed on colluvium with abundant limestone fragments. Below this lies a well-developed buried paleosol with a reddish clayey Btk horizon, which has both clay coatings and white soft carbonate nodules. It is underlain by sandy colluvial and alluvial deposits. The river terrace domain is represented by two profiles: The profile representative of the soil cover of a higher alluvial plain (Solís- Castillo et al., 2014). It is a Stagnosol with an Ag-Bg-Cr horizons having sandy-clayey texture, being free of carbonates and showing strong redoximorphic features: grayish brown, reddish-yellowish, Balancán and Tierra Blanca. Balancán is and greenish mottles, dendritic Mn coatings on aggregates, and ferruginous concretions of Fe. The Tierra Blanca profile that is exposed in a cut in the riverbank documents pedogenesis at a lower Holocene alluvial terrace (Solís- Castillo et al., 2013a). It shows a sequence of modern soil and six paleosols interbedded with alluvial sediments. The lower paleosols 4, 5, 6, and 7 show strong redoximorphic features; however, they also contain carbonate concretions (Solís-Castillo et al., 2013a). This lower welded gleyic paleosol sequence, forming a pedocomplex, is buried by a sorted laminated sediment enriched with pyroclastic materials (Cabadas-Báez et al., 2010). Only the upper two paleosols, 2A-2AB-2C and 3A-3AB-3BC, contain abundant artifacts and ceramics from each of these paleosols link them to the Classic and Preclassic periods, respectively (Solís-Castillo et al., 2013a). The Preclassic paleosol is the most developed and has a angular blocky structure in the 3A horizon. The Classic paleosol and modern soil are incipient fluvisols with thin, gray, granular A horizons. 3.1.4 Micromorphological observations in selected soil horizons at middle Usumacinta Basin The micromorphology of the Chinikihá 1AB horizons (Rendzic Leptosol) shows a dark brown pigmentation of the groundmass, Frontiers in Earth Science 10.3389/feart.2023.1239301 granular structure, and high porosity (Figure 3A). Calcareous rock fragments, abundant traces of fine roots, and coprolites are identified. In addition to primary carbonates, few silicate minerals—hornblende, augite, plagioclase, and small quartz, which are strongly weathered, are identified within the coarse fraction. In the case of the Chinikihá 2 profile (Luvisol), the groundmass is reddish and clayey in all horizons and primary carbonates are absent. In the Bt horizon, a composite structure of subangular blocks and granular aggregates is observed. Some pores have infillings of secondary calcite (Figure 3B). Frequently, dark opaque grains with rounded or angular shapes are incorporated into a clayey groundmass; most of these are small nodules of iron or manganese oxides (Solleiro-Rebolledo et al., 2015). The most relevant micromorphological observations were made in selected horizons of the Tierra Blanca profile described by Solís- Castillo et al. (2015). They reveal sharp differences between the A horizons of the upper paleosols: the A and 2A horizons (from the modern soil and the Classic paleosol, respectively) are granular and porous, whereas the 3A horizon (Preclassic paleosol) has a clayey- silty groundmass and an angular blocky structure with porostriated b-fabric (Figure 3C). Weathered volcanic glass shards are also present (Figure 3D). In the 3AB horizon, few well-developed illuvial clay coatings cover the walls of fissures (Figure 3E). The lower gleyic paleosol pedocomplex is very clayey; however, it contains some quartz grains, giving rise to porphyric coarse/fine related distribution. A few strongly altered micas are also observed. Clay coatings are frequent, however, most of them are deformed. The silty sediment between the upper humic and lower gleyic paleosols is laminated (Figure 3F); the striking feature of this deposit is that the dominant material is fresh volcanic glass (Figure 3G). 3.1.5 Soils and pedosediments at key geoforms of Sierra de Chiapas and minor valleys of Usumacinta tributaries (Busiljá-Chocoljá) To construct the second toposequence, we used the results of soil research developed in the framework of the Busiljá archaeological project. The profiles of soils developed in the upland and lowland geomorphic positions and underground pedosediments in the area around the Busiljá archaeological site were complemented by the section on the alluvial terrace of the Chocoljá river, the next tributary of the Usumacinta Busiljá (Figure 2E). Major parts of the results reported here were downstream after previously presented at conferences (Sedov et al, 2021) and published in the master's thesis of Guillén (2020). In the Busiljá area, three profiles represent upland soils formed on limestone hills above 120 m a.s.l.: Rancho Nuevo, Maria, and Arriba Cueva (Figure 4). The Rancho Nuevo profile (Rendzic Leptosol) is located on a small natural terrace situated on the slope close to archaeological structures on the summit. The Maria profile (Calcaric Cambisol) is also on the slope of a minor calcareous hill, near the nuclear part of the Busiljá archaeological site. Both profiles are shallow and have Ah horizons that are dark brownish-gray due to humus pigmentation and granular structure; the underlying AC horizon contains abundant limestone fragments and rests over continuous rock. The Maria profile (Cambisol) also has reddish Bw and BC horizons, restricted however to a narrow but deep karstic pocket. In this profile, artifacts of bone and ceramic 07 frontiersin.org 39 Sedov et al 10.3389/feart.2023.1239301 leal Neoformed gypsum E] Coltuvial sediment EH cave seciment EX] Limestone E Alluvial sediemt with Fluvisols FE, Archaeological sites FIGURE 4 Sierra de Chiapas, Busiljá-Chocoljá toposequence: general scheme and profile photographs. 1. Rancho Nuevo profile with Rendzic Leptosol; 2. Maria profile with Calcaric Cambisol; 3. Pantano Maria profile with Histic, Stagnic gl profile in the cave Manos Pintadas; 6. Arriba Cueva profile with Calcaric Chromic sherds are frequent even in the lowermost BC horizon. The Arriba Cueva profile (Calcaric Chromic Cambisol) is located directly above the Manos Pintadas Cave on top of another limestone hill. lts environmental setting is different: the soil is developed under a mature tropical forest and has no evidence of past or modern anthropic disturbance. This profile is deeper, with its upper part leached of carbonates, and below the dark brown humic topsoil lies a continuous brownish red, clayey Bw horizon. Two profiles—Yeso 1 and Pantano Maria—document lowland soils within the Busiljá area at the bottom of broad karstic depression beside the limestone hills. These depressions are already deep enough to be affected by the regional groundwater table and have accumulated enough clayey pedosedimentary material to reduce — the drainage. of probable archaeological agricultural canals have been detected within this internal — soil Traces swampy area. Yeso 1 is located at a slightly elevated part of the depression, whereas Pantano Maria is in the lowest position; the groundwater table was encountered at depths of 70 cm and 30 cm respectively. Both soils are gleysols showing a set of gleyic horizons Frontiers in Earth Science ol; 4. Yeso 1 profile with Gypsic, Reductic gleysol; 5. Pedosediment ambisol; 7. Bonfil profile with Calcaric fluvisols. that are pale greenish and indicate a poorly drained soil environment. The striking feature of the Yeso 1 profile is the presence of neoformed gypsum throughout the profile, which is completely absent in the Pantano Maria profile, despite their proximity and similar geomorphic conditions. The Bonfil profile is exposed in the bank of the Chocoljá River, cutting the alluvial terrace that is approximately 5m high. It is classified as a Fluvisol having the surface and buried humus horizons interlayered with laminated calcareous sandy sediments. Both Ah horizons are sandy with moderate gray humus pigmentation and weak structure. In the buried 2Ah horizon a few ceramic fragments were found. The surface profiles are accompanied by one underground pedosediment section inside the Manos Pintadas Cave, also close to the Busiljá site. A thin pedosediment (17 cm deep) was excavated at the cave floor underneath a bed of stones produced by ceiling collapse, behind a speleothem formation. It consisted oftwo slightly compacted, loamy, pale reddish gray, strongly calcareous layers, the upper one having an incipient granular aggregation. frontiersin.org 40 Sedov et al 10.3389/feart.2023.1239301 FIGURE 5 Photomicrographs of the Bu: posequence; PPL, plane polarized light; XPL, cross polarized light. (A) Rancho Nuevo profile red soil fragment in the Ah horizon (PPL); (B) Maria profile, a fragment of bone (blue arrowhead) in the Bkw horizon (PPL); (C) Maria profile, charcoal (pink arrowhead) in the Bkw horizon (PPL); (D) Arriba Cueva profile, angular blocky structure of Bw horizon (PPL); (E) Pantano Maria profile, clay intercalations (blue arrowheads) and plant tissue fragments (pink arrowheads) in 2A horizon (PPL); (F) Yeso 1 profile, gypsum (pink arrowheads) and photomicrograph) in By horizon (XPL); (G) Bonfil profile, abundant calcareous sand particles, dark humus fine material coats, and bridges sand grains in the 2A horizon (PL); (H) Manos Pintadas cave pedosediment, dark soil fragment (blue arrowhead) in a carbonate groundmass, contair rock fragment (PPL) n nodule (at the right top of the Frontiers in Earth Science 09 frontiersin.org 41 Sedov et al Although no artifacts were found in the cave, red hands painted on the walls outside and inside the cave are visible. 3.1.6 Micromorphological observations in selected soil horizons at minor valleys of Usumacinta tributaries (Busiljá-Chocoljá) The micromorphological observations of the A-horizons of the upland Rancho Nuevo and Maria profiles show a dark dlay-humus fine material together with calcaric sand particles and some fragments of red clayey soil, free of carbonates (Figure 5A). Both profiles also contain anthropic materials: ceramic sherds, bones (Figure 58), and charcoal fragments (Figure 5C). The Arriba Cueva profile is different from the previous profiles: groundmass is of uniform reddish clayey composition and is free of primary carbonates (Figure 5D). The hydromorphic profiles in the lower zone present some specific characteristics. The upper horizon of the Pantano Maria profile contains partly decomposed organic detritus and abundant lay with striated b-fabric (Figure 5£). The conspicuous property of the Yeso 1 profile is neoformed gypsum in the form of pore infillings in the surface horizon and clusters of large tabular crystals in the By horizons redoximorphic ferruginous nodules and mottles (Figure 5F). All horizons of the Bonfil profile are made up mostly of coarse calcareous sandy material. Surface and buried A horizons present fine humus, partly coating the sand grains and partly distributed in the packing voids in small aggregates (Figure 5G). The Manos Pintadas Cave sediment consists mostly of calcaric sand particles: oolites and limestone clasts with very limited presence of redeposited red soil fragments (Figure 5H), which include some small clusters of pure clay (papules). its combined with some features as 3.1.7 Outline of physical and chemical characteristics of studied profiles The properties of the shallow dark Leptosols and Cambisols on the slopes of calcareous hills in both regions of the Usumacinta Basin (Chinikihá 1 and Rancho Nuevo; Maria and Arriba Cueva) are neutral or slightly alkaline. Despite thinness and apparent incipient development, they are quite clayey (clay content is up 50%). By contrast, the Luvisol at the minor upland karstic depression (Chinikihá 2) is more acidic (pH is 5.3) and clayey (91% clay) (Solleiro-Rebolledo et al., 2015). The gleysols of the broad swampy depression of the Busiljá area, Yeso 1 and Pantano Maria, are also quite clayey, but they are neutral or slightly alkaline. The Yeso 1 profile shows high values of electric conductivity reaching 2,500 1S/cm. In the colluvial profile at Boca del Cerro, the modern soil is silty (50%-63%), whereas the buried paleosol is clayey (approximately 52%-41% clay). All the horizons show an alKaline reaction. Soils, paleosols, and sediments of the alluvial terrace sequences are in general sandier than the upland and colluvial profiles. At Balancán, developed on the higher ancient terrace, soil horizons are acidic and have a high amount of sand (39%-62%). At Tierra Blanca, on the lower Holocene terrace of the Usumacinta, the lowest pedocomplex is clayey (up to 80% clay fraction) with a slightly acidic reaction (6.8-5.5). The sediment in between the lower and upper paleosols is silty (approximately 62% silt) with a clay content close to 36% and a neutral pH. The upper paleosols have a loamy. Frontiers in Earth Science 10 10.3389/feart.2023.1239301 texture and slightly alkaline pH values; the clay content varies between 24% and 45%, and the sand comprises 8%-39%. The Bonfil profile at the Chocoljá River has a sandy texture. In several profiles of the Busiljá area, clay mineral assemblages were studied with XRD analysis. The Maria profile presents vermiculite as a major component, followed by kaolinite. In the hydromorphic soils of the swampy depression (Yeso 1 and Pantano Maria), the smectitic component is dominant, followed by some vermiculite and kaolinite with traces of illite. 3.2 Soil toposequences of karstified calcareous platform: northeastern region of Yucatán Peninsula 3.2.1 Geological and environmental setting The Yucatán Peninsula is a slightly uplifted carbonate platform composed mainly of Paleogene and Neogene limestones, dolomites, and evaporites underlain by igneous and metamorphic basement rocks (Weidie et al., 1985; Bauer-Gottwein et al., 2011). The peninsula gradually emerged, resulting in a general decrease in age of surface sedimentary rocks moving from the south center of the peninsula toward its coastal margins (Isophording, 1975; Bauer-Gottwein et al., 2011). Consequently, the Pleistocene and Holocene sediments are restricted to a narrow strip along the coast, in accordance with small long-term fluctuations in the sea level (Ward, 1985). The entire Yucatán platform covers approximately 300,000 km? (Bauer-Gottwein et al, 2011), half of which remains underwater. Tectonic processes have a certain impact on regional geomorphology and hydrology. The main geologic features influencing groundwater movement on the Yucatán Peninsula are the Ring of Cenotes, Ticul Fault, Rio Hondo Block Fault Zone, and Holbox Fracture Zone (Bauer-Gottwein et al., 2011). The Holbox Fracture Zone is located near the eastern edge of the Yucatán Peninsula, runs for approximately 100 km from the coast in the north to the Coba lakes in the south, and has a width of 30-40 km. The surface expression of this feature includes elongated north-south trending seasonally flooded swales dominated by wetland vegetation. The geomorphology of the Yucatán Peninsula is controlled by Karstic processes which produce an undulating relief composed of structural plains and hills, with depressions and cave systems. The Karstification of soluble rocks can promote subsidence and form closed depressions that, depending on the thickness of the rock, can collapse. Karst lakes (cenotes) are also abundant in the area (as they are in much of the northern peninsula in general). Extensive, stacked cave systems are also common. In uplands, due to the porous nature of limestone bedrock/karst topography, there are no surface rivers, and water percolates quickly downward. According to Aguilar et al. (2016), 6,717 sinkhole-type depressions were identified; 2,021 are of the uvala type and 76 classified as poljes. The Yucatán Peninsula has three flanks that are surrounded by the sea, with precipitation gradients: drier with intermittent rains and maximum temperatures in summer (BS) to the north and warm subhumid with summer rains (Aw) to the south. This climatic variation influences biodiversity. The drier regions have a low thorny forest, while in the more humid environments to the south, a medium and low deciduous forest dominates. There are also plant frontiersin.org 42 Sedov et al covers associated with water bodies on the coastal areas of the peninsula, such as mangroves and specific tall grass associations in the swampy, temporally flooded depressions (Durán and Mendez, 2010). 3.2.2 Northeastern Yucatán cultural and archaeological setting overview with emphasis on Yalahau region The northeastern Yucatán Peninsula, specifically northern Quintana Roo, has been home to the Maya people for at least 3,000 years. Two of the most well-known Maya sites in the area are Coba and Tulum. Coba, the largest site in northern Quintana Roo, was a major urban center with regional dominance during the Classic Period. Coba is notable for several major architectural groups, the tallest surviving structure in the northern lowlands (the Ixmoja temple at 42 m), dozens of sculpted monuments, and a network of more than 35 roads or sacbeob radiating out (Folan etal., 1983; Robles-Castellanos, 1990; Leyden et al., 1998; Folan etal., 2009). Tulum is one of the best-preserved Maya sites and was a key coastal trading port during the Late Postclassic period. Tulum's cosmopolitan nature and long-distance cultural connections are evidenced by trade goods and exquisite murals, painted in the Mixteca-Puebla or international style (Perez de Heredia et al, 2021; Davis, 2022). This review focuses on the Yalahau region of northern Quintana Roo, a freshwater wetland zone situated north of Coba, which includes an area of approximately 60 km (north-south) by 40 km (east-west) and contains over 170 wetlands of varying extent, and where a major part of the Yucatán soil toposequence was studied. The Yalahau region is a distinct physiographic zone with unique implications for agricultural development and a fairly uniform trajectory of settlement history, architectural style, and ceramic traditions (Fedick and Taube, 1995; Amador, 2005; Fedick and Mathews, 2005), more than 100 sites have been documented (Glover, 2012). Ceramics and radiocarbon dates from Yalahau settlements and cave sites indicate the region was initially occupied in the Middle Preclassic period, ca. 700-200 BC, however evidence for this earliest occupation is scant (Rissolo et al., 2005; Glover and Stanton, 2010). During the transition from the Middle to Late Preclassic/Early Classic, the Yalahau region, like most areas of the Maya Lowlands, experienced a dramatic population increase evidenced by a proliferation of settlements, ceramic groups, and monumental and domestic architecture. Many sites, such as the Naranjal, were where constructed in the megalithic style, a widespread northern lowlands architectural tradition (Mathews and Maldonado-Cardenas, 2006). Recent reevaluation of ceramic collections and the availability of radiocarbon dates place the peak of population in the Yalahau region at the Terminal Preclassic period from approximately 75 BC to AD 400, as defined by Glover and Stanton (2010). Tn the subsequent Late Classic period, the Yalahau region did not continue on a trajectory of demographic, political, and economic expansion like most other areas did (e.g., Coba and the southern lowlands). Instead, there is very little evidence of occupation in the Yalahau region during this time, except at the north coast port site of Vista Alegre, thus the interior region appears to have been mostly abandoned. During the Postclassic period, Maya people returned to the Yalahau region, albeit in smaller numbers, reoccupying many of the earlier Terminal Preclassic sites. Frontiers in Earth Science 1 10.3389/feart.2023.1239301 Within the Yalahau region, settlements are situated in well- drained upland areas, generally between 5 and 15ma.sl. and outside of the wetlands subject to seasonal flooding, and are frequently associated with cenotes, important sources of water and loci of ritual activity, and caves (Bell, 1998; Fedick et al, 2012). Ethnographic research in the Yalahau and other regions has identified a variety of upland agricultural strategies that likely have roots in the distant past. Homegardens, common in the Yalahau region today, were undoubtedly a significant component of ancient Maya subsistence as well (Morell-Hart et al, 2022). Organic muck and algae/periphyton from Yalahau wetlands is transported for use as fertilizer in modern homegardens (Yedick and Hovey, 1995), a practice apparently extending back into ancient times (Morrison and Cozatl-Manzano, 2003). In outfield areas, the Maya of the Yalahau region most likely practiced a managed succession cultivation system that starts with selective clearing and coppicing of a forest patch and planting crops of the milpa, primarily maize, beans, and squash. Regrowth is then carefully managed to promote rapid restoration of a secondary forest garden that contains an increased representation of economically useful tree species (Ford and Nigh, 2016; Morell-Hart et al., 2022). This cycle is repeated after approximately 20 years, creating a managed mosaic of productive homegardens, milpas, forest gardens, and landesque improvements of various types (Fedick et al, 2023). 3.2.3 Soils and paleosols in northeastern Yucatán Peninsula A major part of the results on surface soils in different geomorphic contexts were obtained at El Edén Ecological Reserve during collaborative pedoarchacological research in the framework ofthe Yalahau Regional Human Ecology Project of the University of California, Riverside, led by S. Fedick and J. Mathews. Red soil and pedosediments in the karstic underground cavities were studied later as part of CONACYT and PAPIIT projects focused on soil mantle development and erosion in the karstic landscapes. The results were presented in a series of publications (Sedov et al., 2007; Fedick et al., 2008; Sedov et al., 2008; Cabadas-Báez et al., 2010; Cabadas-Báez et al., 2010; Flores-Delgadillo et al., 2011; Solleiro-Rebolledo et al., 2011; Leonard et al., 2019). These studies confirmed that the soil cover of the upland areas in general is thin and patchy; “Rendzinas”—Rendzic Leptosols—are the dominant soils alternating with extensive areas of exposed bedrock (Figure 2G). This soil type is represented by the Yalahau 3 profile studied at El Edén Ecological Reserve in an upland location under forest (Figures 2H,I). It is very thin (14 cm), consisting of a dark Ah horizon with a well-developed stable granular structure, loose consistence, and high root density. Despite its thinness and proximity to calcareous material, the horizon is clayey and shows no reaction with HCl. The humus horizon is directly underlain by limestone bedrock (Sedov et al., 2008). There are few upland areas with “Terra Rossa” thick red clayey soils—Chromic Luvisols—exemplified by the Kantunilkin profile (Figure 6). This soil has a set of well-developed Ab, Bt, and BCtg horizons with a total thickness of 135 cm. The Ah horizon has moderate pigmentation with humus, however it is less dark and aggregated, and much more compact, than the topsoil horizons of the Rendzic Leptosols. The Bt horizons are most enriched in clay frontiersin.org 43 Sedov et al, E Wetland E Phreati water Karstic bag EX] Limestone JArcheological alignment of rocks 4 Archaeological sites FIGURE 6 10.3389/feart.2023.1239301 Northeast of the Yucatán Peninsula, Yalahau toposequence: general scheme and profile photographs. 1. Kantunilkin profile with Chromic Luvisol. Profiles in El Edén reserve; 2. Yalahau 3 profile (Rendzic Leptosol); 3. Yalahau 5 profile (polygenetic soil); 4. Yalahau 8 profile (Epileptic Calcisol); 5. Quarry 3 profile (red karstic pocket); 6. Quarry 4 profile (black karstic pocket); and 7. Coyotes section (pedosediment in the cave) and have a structure of hard subangular blocks with shiny surfaces. In the lower BCtg horizon, frequent Fe-Mn concretions were observed, and it is underlain by limestone along an abrupt and irregular contact (Cabadas-Báez et al., 2010). The swampy, seasonally flooded lowlands are covered with specific hydromorphic Calcisols represented by the Yalahau 8 profile in the lowest part of the wetlands of the El Edén Ecological Reserve. Despite its lowland position, this soil is rather shallow (35 cm thick) and consists of O, Ah, and Bk horizons underlain by limestone. The O horizon includes fragments of plant residues, roots and leaves, but the surface is covered by periphyton (an algal crust). Both the Ah and Bk horizons have pale color and loamy texture, react intensively with HCl, and consist predominantly of fine-grained carbonates. Their structures are weak and unstable, and they have muddy consistency due to being saturation with water. A conspicuous polygenetic soil was encountered in the transitional geomorphic position between the upland and lowland areas (Figure 6). Tt was studied in the Yalahau 5 profile at the peripheral part of the El Edén wetland close to the boundary of Frontiers in Earth Science 12 the upland forest. This soil presents two pedogenetic phases, with the Bk horizon followed by 2Ah and 2Bw. The Bk horizon consists of pale, fine-grained, loose carbonate material similar to that of the lowland Calcisol. The underlying 2Ah horizon is dark gray-brown and has a granular structure resembling that of the upland Leptosols; however, unlike the Leptosols, it reacts locally with HCl (Sedov et al., 2008). The results of the surface soils were complemented by the study of three underground pedosediments in the quarries along the Cancún-Tulum highway. Two of these pedosediments—the Quarry 3 and Quarry 4 sections—are inside karstic pockets of different sizes. The pocket of Quarry 3 is larger (with a depth of more than 2 m) and contains mainly reddish clayey redeposited soil material. The Quarry 4 pedosediment is inside a smaller pocket with a pear-like shape. In this case, the pedosediment is dark brown and humic, and has abundant rock fragments of differing sizes, charcoal, and mollusk shells (Cabadas-Báez et al., 2010). The third pedosediment in the Coyotes section is found on the cave floor exposed in the wall of a quarry; it is overlain by large limestone fragments produced by the collapse of the cave roof. In frontiersin.org 44 Sedov et al, 10.3389/feart.2023.1239301 FIGURE 7 Photomicrographs of the Yalahau section; PPL, plane polarized light; XPL, cross polarized light. (A) Yalahau 3 profile Ah horizon (Rendzic Leptosol) groundmass composed of clay and iron oxides, pigmented by dark humus coprogenic fine granular structure (PPL); (B) Kantunilkin Bt2 horizon: clay compacted matrix with red iron nodules (blue arrowhead) and illuvial clay coatings (pink arrowhead) (XPL); (C) Kantunilkin BC horizon: illuvial clay coatings in limestone pores (blue arrowheads) (PL); (D) Yalahau 8 profile (Epileptic Calcisol): groundmass dominated by neoformed micrite and freshwater mollusk shells (pink arrowheads) (PPL); (E) Yalahau 5 profile: soil material, typical for Rendzina, partly cemented with hydrogenic calcite crystals (blue arrowheads) (PPL); (F) Quarry 3 profile (Red Pocket): subangular blocky structure with a charcoal fragment (blue arrowhead) (PPL); (G) Quarry 4 profile (Black Pocket): charred aggregates (blue arrowhead) and charcoal fragments (pink arrowhead) (PPL); (H) Coyotes cave pedosediment: clayey-micritic reworked material, ferruginous nodule (blue arrowhead), and limestone fragment (pink arrowhead) (PPL) Frontiers in Earth Science 13 frontiersin.org 45 Sedov et al this section, a sequence of layers with different colors and consistencies is exposed. The upper layer is a red pedosediment, 10 cm thick, consisting of a mixture of reddish fine material and carbonate sand. It has a gradual contact with the underlying loose dark brown pedosediment. The lowermost layer is also dark brown but more compact and contains frequent broken terrestrial mollusk shells, charcoal particles, and abundant charred rocks. The results from this section have not been previously published. 3.2.4 Micromorphological observations in soils of northeastern Yucatán toposequence At the microscale, the Yalahau 3 profile shows a dark groundmass enriched in organic and ferruginous pigment with zoogenic granular structure and high porosity (Figure 7A); plant-tissue fragments of different decomposition grades are common. Despite the very dose location of the calcareous C horizon, no carbonates (primary or neoformed) were found, The major parts of the fine mineral material were composed of clay with undifferentiated b-fabric. The groundmass of the Kantunilkin soil is dominated by fine lay and pigmented by brown humus and red iron oxides for the Ah and Bt horizons, respectively. Very few discontinuous clay coatings of variable thicknesses are observed over ped surfaces (Figure 78). Small brown anorthic ferruginous nodules are found, which are fragmented, showing broken angular edges. Another important feature of this soil appears in the contact with limestone, where red birefringent illuvial clay coatings develop on the surfaces of the calcitic blocks (Figure 7C). The main feature identified by the micromorphological analysis of the Yalahau 8 profile is the dominance of micritic secondary carbonates in the groundmass. Sometimes, the micrite forms ooidal aggregates or microlaminated structures generated by algae. A few freshwater mollusk shells are incorporated into the micritic groundmass (Figure 7D). The micromorphology of the buried horizons of the Yalahau 5 profile exhibits small areas cemented by large crystals of calcite that fill pores and surround the soil aggregates; these crystalline infillings resemble the “sparry cement” known to be of phreatic (groundwater) origin (Durand et al, 2010). The latter are similar to those observed in the Yalahau 3 profile (Figure 7E). The micromorphological pattern of the 2Bk horizon resembles that of Calcisol observed in Yalahau 8. In the reddish Quarry 3 pedosediment, the red clayey groundmass and subangular blocky structure are like that of the Kantunilkin profile, although biopores with coprolite infillings were observed even at depth. Charcoal fragments are frequent in all fills (Figure 7F). Secondary micritic carbonates appear in some pores in the lowermost part of the pocket. Micromorphological observations of the black Quarry 4 pedosediment reveal the presence of a few volcanic minerals in the iron-clay groundmass, pigmented with humus. These sand-size minerals correspond to plagioclase, pyroxene, and amphibole crystals. Again, charcoal particles were found incorporated into the groundmass (Figure 7G). In the thin sections from the cave floor sediment of the Coyotes section, we observed the mixture of micritic carbonates with rounded red clay aggregates (Figure 7H) and limestone fragments and shells, which were frequently charred. 3.2.5 Analytical characteristics of studied profiles The Kantunilkin soil has a high amount of clay (60%) and shows an acidic reaction (Cabadas-Báez et al., 2010). The Yalahau soils at El Edén Frontiers in Earth Science 10.3389/feart.2023.1239301 show contrasting properties. While the Yalahau 3 profile is clayey (70%), the Yalahau 8 profile in the wetland has a high proportion of sand (82%-97%) in the surface horizon and an elevated proportion of silt (72.7%) in the Bw horizon. The polycyclic Yalahau 5 profile shows contrasting grain size distribution: sandy in the top Bk horizon and silty-clayey in the 2Bw horizon. The Quarry 3 and Quarry 4 pedosediments, regardless of the type (red or black), have similar proportions of day (54%-77%). The pedosediments inside the cave have less clay (48.2%-57.6%) and different percentages of silt (26.8%- 29.6%) and sand (12.8%-24.9%). The results of the XRD analysis of the clay material in Kantunilkin (Luvisol) and Yalahau 3 (Leptosol) have shown very similar clay mineral associations dominated by two major components: vermiculite and kaolinite in similar proportions. 3.3 Instrumental dating of paleosols and pedosediments Several instrumental age estimations were obtained for some of the studied profiles using different techniques and dating materials: radiocarbon dates of humus, charcoal, pedogenic carbonates, and optically stimulated luminescence (OSL) was performed on silicate sedimentary material. The results are summarized in Table 1 together with the references to the paper where they were first published; we present and discuss calendar (calibrated) ages. They show that in the Usumacinta Valley, the age of secondary carbonates in the well-developed paleosol buried under colluvium in Boca del Cerro is approximately 13 ka BP—this supposes that its pedogenesis occurred in the Terminal Pleistocene, whereas colluviation most probably took place in the Holocene. In the Tierra Blanca profile, the silty alluvial sediment/reworked tephra below the upper set of paleosols was dated back to 9 ka BP. The overlying 3A horizon is dated from humus (corresponding to the minimal age of the soil) to approximately 2.7 ka BP, which is in good agreement with the encountered archaeological materials of the Preclassic period. The pedogenic carbonate concretion in the lower gleyic pedocomplex is dated back to 5.4 ka BP. This result shows apparent inversion with the OSL age of the silty sediment mentioned previously. We assume that the carbonates migrated and precipitated during the drier episode of the middle Holocene, producing incorporated into much older paleosol. Tn the northeastern Yucatán Peninsula, the radiocarbon date concretions from charcoal encountered in the black pedosediment Quarry 4 is approximately 1 ka BP, only a bit younger than the Terminal Classic collapse. The charcoal in the Coyote cave bottom sediment is much older, more than 4 ka BP, and corresponds to the beginning of land cultivation in the Yucatán Peninsula. 4 Discussion 4.1 Soil diversity in tropical karst landscapes as product of interplay of pedogenetic and geomorphic processes The studied toposequences show striking similarities and contrasting differences between the main soil types, which 14 frontiersin.org 46 Sedov et al, 10.3389/feart.2023.1239301 TABLE 1 Results of'*C and OSL dating of selected soil, pedosediment, and sediment samples. O EE! (Ei PE NA Reference Usumacinta Valley, Chiapas Boca del Cerro/2Btk CaCO, 13,470-13,300 BETA-300440 Solis-Castillo et al. (2014) Tierra Blanca/3A Organic matter 2,780-2,740 BETA-300446 | Solís-Castillo et al. (2013a) Tierra Blanca/silty sediment 90+2 2,463 Solís-Castillo et al. (2013b) Tierra Blanca/9Bkg CaCO, 5,450-5,380 BETA-277572 | Solís-Castillo et al. (2013a) North-eastern region of Yucatán Peninsula Quarry 4 profile/black pedosediment Charcoal 1,085-925 BETA-250976 | Cabada-Baez et al. (2010b) Coyotes/pedosediment Charcoal 4,420-4,230 ICA 5880 This work develop in various conjunctive geomorphic positions. These Since the beginning of soil research, the enigmatic red clayey differences are controlled by the interplay of pedogenesis and carbonate-free soils over limestone attracted the attention of erosion/deposition processes, the latter being responsible for the scholars. Two main scenarios were developed for the origin of soil loss in certain areas, accompanied by pedosediment the ferruginous and silicate material of these soils. The first accumulation in the other. Finally, this interplay controls the attributed it to the lime-free residue of the underlying calcareous spatial distribution of soil characteristics vital for ancient Maya rocks accumulated on the surface after carbonate dissolution (de subsistence: physical and chemical soil quality, fertility, mechanical — Lapparent, 1930; Thornbury, 1954). The second attaches major stability, etc., which largely define the mode and differentiation of importance to the allochthonous sources, i.e., eolian material land use. In turn, ancient land use practices modified this interplay, — (Yaalon, 1997). To solve this problem for the case of Terra Rossa hampering certain processes and accelerating others, which of southern Mexico, we performed a detailed mineralogical and profoundly modified soil mantle and had feedback effects on the — geochemical analysis of the Luvisol profile in Kantunilkin. The ancient economy and social dynamics (Beach et al., 2006; Carozza results pointed to multiple possible sources. Among them were et al., 2007; Turner and Sabloff, 2012; Beach et al., 2015; Dunning the contribution of the insoluble residue of limestone, far-distance et al., 2020; Doyle et al., 2023). windblown silt (probably transported by the trade winds from As expected, soil formation proceeds differently in the two key Sahara), and especially important and well-documented input of domains of the studied landscapes: 1) elevated upland areas, which pyroclastic material that could originate from the volcanoes of provide a well-drained soil environment and are commonly affected southern Mexico, Guatemala, or Caribbean islands (Cabadas-Báez by erosive processes and 2) lowlands, major karstic depressions, — etal., 2010). We assume that the volcanic material was also involved valley bottoms, and terraces, which predominantly receive (pedo) in the development of red soils on the limestones in Chiapas; sediments and are frequently affected by excessive moisture that — however, further research is required for confirmation. gives rise to hydromorphic pedogenesis. We consider soil Whatever the original parent material for south Mexican Terra development in these two domains of the studied toposequences Rossa was, it should be transformed to produce a decply weathered in the following sections. clayey matrix enriched in ferruginous pigment, as observed in the Luvisol profiles of Kantunilkin in Yucatán and Chinikijá in Chiapas, 4.1.1 Upland domain: origin of Rendzina/Terra and Cambisol of the Arriba Cueva profile in Busiljá. To explain the Rossa combination formation of this soil material, Merino and Banerjee (2008) The calcareous upland areas show similarity in the main soil developed a metasomatic hypothesis that implies primary silicate types formed on them in all three studied toposequences. This isa dissolution in the upper horizons; downward migration of Si, Al, combination is well known in various tropical and subtropical — and other elements in their dissolved forms to the leaching front; calcareous landscapes throughout the world: shallow dark and synthesis of secondary clay minerals directly on the surface of humus-rich soils are found neighboring more profound red the corroded calcareous rock simultaneous with its dissolution clayey profiles (Shapiro, 2006; Sandler et al., 2015; Vr3caj et al, (Merino and Banerjee, 2008). We offered a somewhat different 2017; D'Amico et al., 2023; Durn et al., 2023). The former is known scenario in which clay synthesis occurs in the upper and middle by the traditional term Rendzina (in the WRB classification, Rendzic— horizons of Terra Rossa simultaneously with primary mineral Leptosols, and sometimes, Calcaric Phaeozems), while the latter is weathering (Cabadas-Báez et al., 2010). Furthermore, downward known by the term Terra Rossa (most of them are Chromic migration of substances occurs not in solutions but in suspensions, Cambisols and Luvisols). In all studied cases, Rendzinas are — resulting in the deposition of typical illuvial clay coatings at the dominant, whereas the Terra Rossa occupies minor areas and is carbonate leaching front on the limestone surfaces, as observed in patchy. The patches of red soils are mostly related to the flat areas the thin sections of BCk horizon in Kantunilkin. With the progress and closed karstic depressions within the uplands (as in Chinikihá); of limestone dissolution, these coatings lose the carbonate surface however, their position in the relief is often practically the same as that supported them and become incorporated into the clayey that of the neighboring Rendzinas (as in Kantunilkin). groundmass (as described by Bronger et al, 1998). Because clay Frontiers in Earth Science 15 frontiersin.org 47 Sedov et al illuviation and especially silicate weathering are slow pedogenetic processes with a characteristic time nx10'-10* yr (Targulian and Krasilnikov, 2007), we conclude that development of Terra Rossa should cover time intervals that are much longer than the Holocene extending into Late Pleistocene. Rendzinas (Rendzic Leptosols), despite their shallowness and apparent primitive macromorphological organization, possess a contradictory and enigmatic set of properties, which require re- interpretation. They are usually considered to be poorly developed soils that are predominantly made up of fragments of calcareous rocks and organic materials in different stages of transformation. to microscale strong from macro- observations, that disagreement with this statement. As described previously, many Rendzinas of the Yucatán Peninsula have groundmass that is free of day of However, when we pass we encounter features are in carbonates and strongly enriched with silicate vermiculite-kaolinite composition and ferruginous (Figure 7A), pigmented with dark humus. When primary calcite from calcareous rocks is present, as in Busiljá and Chinikihá Leptosols, it is mixed up with clay and ferruginous components (Figure 3A; Figure 4A). The latter point to the rather advanced weathering status of the Rendzina groundmass was further material confirmed by the data on clay mineral assemblages showing predominance of vermiculite and kaolinite (Sedov et al., 2008). We further speculate that such weathering status could not be achieved in the Rendzina soil environment: proximity of the underlying calcareous rocks should have hampered silicate alteration due to quick neutralization of soil acidity. hus, clay and iron oxides should have been inherited from a pre-existing soil body with different properties. Comparing Rendzinas with the neighboring Terra Rossa, we detect a striking similarity in their fine material, only masked by the strong humus pigmentation of the former. The composition of clay mineral assemblages is also similar. This led us to the hypothesis that many Rendzinas are not formed during pedogenesis directly on the limestone surfaces but are derived from the residues of Terra Rossa, left above the limestone after a major part of the red soil material had been eroded. The frequent presence of the micro-fragments of red clayey soils incorporated in the Rendzina groundmass (as observed in Busiljá) further supports this scenario. If our hypothesis of the erosional origin of the Rendzina material is right, then the question arises: where has the eroded Terra Rossa material gone? Somewhere in the landscape, we should find abundant pedosediments. In search of them, we should consider the lowland domain of the studied toposequences and surface and underground karstic depressions, described in the following sections. 4.1.2 Soil diversity in lowlands and variety of hydromorphic pedogenetic processes Contrary to the upland areas, the lowland sectors of the studied toposequences surprised us with the striking diversity of their soil profiles. This diversity is clearly controlled by a variety of hydromorphic pedogenetic processes that occur in these areas. In the large karstic depressions between calcareous hills in the Busiljá area and in the upper alluvial terraces of the Usumacinta (Balancan profile), we observe the dominance of redoximorphic processes and formation of gleysols. In Busiljá, a conspicuous feature of some Frontiers in Earth Science 16 10.3389/feart.2023.1239301 wetland soils is the presence of neoformed gypsum (Figure 5F), which was completely unexpected in the highly humid tropical environment. We first assumed that gypsum could be a relict feature, a legacy of earlier drier climate, or even originate from ancient However, the fresh morphology of gypsum crystals lacking any signs of dissolution (expected in case of their relict nature) points to their recent origin. Earlier gypsum neoformation was documented in the wetlands saturated with sulfate-rich waters in southern Maya Lowlands (Pohl et al., 1996; Beach et al., 2006; Luzzadder-Beach et al, 2012; Krause et al., 2019); these authors assumed its evaporitic origin. We developed a different scenario of gypsum synthesis related to redoximorphic processes (Guillén, 2020). At the lower terraces of the Usumacinta and its tributaries, human-induced materials. unaltered continuous alluvial sedimentation throughout the Holocene and better drainage permitted the development of fluvisols without strong redoximorphic features in the upper part of the soil- sedimentary sequences (Figure 2). The main process is humus accumulation, which gives rise to a set of surface and buried dark Ah horizons. These horizons are better developed on the terrace of the main river (Usumacinta-Tierra Blanca profile) than in the Chocoljá minor tributary. We attribute it to the differences of the parent material. In the case of Chocoljá, it consists mostly of primary carbonates derived from local limestones. In the Usumacinta terrace, it is made up of silicates from far-distance transport, such as pyroclastic material (Figure 3G) redeposited from the tephras of volcanoes in the vicinities of the upper reaches of the Usumacinta (Cabadas-Báez et al, 2017). In the lowland wetlands, in the platform of the northeastern Yucatán Peninsula (Figures 1, 6), pedogenesis takes a completely different direction. There, the soil groundmass is dominated by fine micritic carbonate material (Figure 7D). However, it does not contain primary carbonates derived from the underlying limestone. The micritic groundmass consists of secondary calcite deposited due to metabolism of algae which form a continuous matt (periphyton) during the floods. This interpretation justifies the taxonomic denomination of these soils as hydromorphic Calcisols (Solleiro-Rebolledo et al., 2011). In the central parts of the Yalahau wetlands, this biogenic acquires considerable thickness due to constant aggradation (Leonard etal, 2019). At the wetland periphery, peculiar profiles combining Rendzina (below) and Calcisol (on top) horizons were observed (Figure 6). carbonate accumulation These profiles are clearly polygenetic and reflect the shift from the earlier stage of forest pedogenesis typical for uplands to hydromorphic wetland soil development (Sedov et al., 2008). The Rendzina horizon shows signs of recent re-carbonatization which confirms its relict nature. We interpret this profile as a record of the environmental change, which included a considerable extension of the flooded area. 4.1.3 In search of eroded upland soil material: distribution and post-depositional transformation of pedosediments In the mountainous karstic landscapes of the Sierra de Chiapas and Usumacinta Basin (Figure 1), with contrasting relief and extensive steep slopes of limestone hills, the lateral redistribution of soil and regolith material toward piedmonts and depressions is frontiersin.org 48 Sedov et al the main erosion process. In some cases, as in the Boca del Cerro profile (Figure 2), both the piedmont location and heterogeneous composition (stones mixed with redeposited soil) of exposed strata point to their colluvial origin. However, in the case of the swampy karstic depressions of Busiljá (Figure 4), the origin of the clayey groundmass of the gleysols is not so obvious; its morphological Characteristics on the macro- and microscale are quite different from those of the Leptosols and Chromic Cambisols of the neighboring calcareous hills. In this case, the clear similarity of the clay mineral assemblages of the upland and lowland soils suggests that the former contributed to the latter's material due to colluviation. We propose that the upland red clayey soils were eroded to a large degree (as stated previously) and their derivates were deposited at the valley bottom, contributing to the parent material of Gleysols there. redoximorphic processes obliterated the original morphology of the pedosediments: red ferruginous pigment was dissolved, iron oxides concentrated in the nodules, and b-fabric Posterior changed due to reorientation. However, the clay particles composition suffered only minor changes (vermiculite was partly transformed to smectite) and could serve as a witness to the genetic relationship between upland and lowland soil substrates. Much more complex is the detection of soil erosion mechanisms in the platform karstic landscapes of the northeast Yucatán Peninsula (Figure 6). At first glance, the geomorphological of this support the lateral redeposition of surface materials: the relief is quite flat and the conditions area should not slopes are very gentle. Indeed, in the wetland soils, we could not detect any significant quantities of pedosediments derived from the upland Terra Rossa and/or Rendzina soils: fine micritic groundmass of the hydromorphic Calcisols does not include any redeposited silicate and ferruginous materials. This confirms that the “normal” lateral soil erosion and redeposition along the slope gradient are strongly hampered in the northeastern Yucatán Peninsula. However, this does not mean that soil erosion does not occur at all in these landscapes. We encountered large volumes of pedosediments in the subsurface karstic cavities: in pockets and bags and on the cave floor. In the karstic pockets, the pedosediments are easily recognizable soil materials derived from Rendzinas (black pedosediments) and Terra Rossa (red pedosediments mostly in the larger pockets). Only minor transformation of these materials took place in the form of precipitation of secondary carbonates due to groundwater migrating through the karstic pockets. At the cave bottom, the soil-derived material is diluted by the primary and secondary speleogenetic carbonates; however, still recognizable at microscale are clusters of red clayey soil material (Figure 7F). Incorporation of charcoal particles and terrestrial mollusk shells confirm the pedosedimentary nature of these pocket and cave fills. These observations have led us to conclude that a specific “hidden” karstic erosion took place in the platform karstic landscapes of the northeastern Yucatán Peninsula. Instead of lateral downslope transport, the soil is removed from the surface vertically through the interconnected karstic cavities. Relocated soil material fills karstic pockets, arriving finally at the bottom of caves where it is mixed with speleogenic carbonates. This process is known as “soil piping” and is well documented in various karstic geosystems on the global scale (Waltham, 2008; Zhang et al., 2011; Sauro, 2019; Zhao and Shen, 2022). It should be stressed that red clayey pedosediments are frequently found within the northeastern Frontiers in Earth Science 17 10.3389/feart.2023.1239301 Yucatán Peninsula, in areas where no red soils are currently present on the surface. This supports our conclusion that the composition of the soil mantle could be deeply transformed by erosion. 4.2 Interaction between soil mantle and ancient societies 4.2.1 Ancient land use in Usumacinta Basin All human activities in the karstic landscapes were clearly adjusted to the type of geomorphic position and properties of soils. In the hilly regions surrounding the middle Usumacinta Basin, there is clearly a tendency for the development of important hills and ridges. Chinikihá, Busiljá, and Palenque follow this tendency. The “attractors” for these ancient settlements were better defensive settlements on the calcareous positions, visual control over the surrounding territory, and abundance of stone for construction (Liendo-Stuardo et al., 2014; French et al., 2020). However, we assume that these geoforms had minor importance for agricultural production. The agronomic quality of Rendzinas which dominate the calcareous hills is strongly reduced by their distribution, while high humus content, stable granular structure, and high porosity are beneficial properties. We speculate that these soils were used by ancient inhabitants for planting home gardens and cultivating orchards or forest gardens dominated by useful trees (that could also protect the soil from further erosion). These gardens surrounded the settlement areas, and are thought to be an important part of Maya agricultural landscapes (Ford and Nigh, 2016; Morell- Hart et al, 2022; Fedick et al., 2023). Flat lowland areas, broad karstic depressions, and river terraces with deep soils are assumed to constitute the main agricultural domain in the middle Usumacinta Basin (Dunning et al., 1998; Solleiro-Rebolledo et al, 2015; Schroder et al, 2021). Humic fluvisols on the well-drained young alluvial terraces are suitable thinness and discontinuous for cultivation without any limitations, except possible floods. However, development of thick Ah horizons without alluvial lamination point to long periods of surface stability with minimal floods, which permitted continuous pedogenesis. Interestingly, these terraces were also used for minor rural settlements inhabited by farmers. Despite the more modest size and type of constructions, these settlements appeared to be more sustainable than the major urban centers in the uplands (Macrae and lannone, 2016; Turner, 2019; Schroder et al., 2021). They persisted throughout the Classic period and then survived during the Terminal Classic collapse, when the cities in the sierras were abandoned (Liendo-Stuardo et al., 2014). We attribute this sustainability to the proximity and closer link to the most valuable soil resources, which become vital in periods of environmental or social stress. Thick clayey hydromorphic soils of swampy flat karstic depressions at Busiljá also have quite good agricultural potential. The presence of a moderate amount of neoformed gypsum—a neutral salt with relatively low solubility—does not significantly influence their agronomic quality. Major limitations presented by these soils consist of excess moisture due to their saturation with the high-standing groundwater and reduced conditions, even in the upper soil horizons. However, these soils could be successfully frontiersin.org 49 Sedov et al cultivated after drainage, being especially suitable for milpa (maize, beans, and squash) (Morell-Hart et al., 2022; Fedick et al., 2023). Artificial drainage, through the construction of channels and raised fields, were common techniques of wetland management by the ancient Maya, well documented in various parts of the Maya region (Kunen, 2001; Dunham et al., 2009; Beach et al., 2019; Krause et al., 2019; Miksicek, 2019; Dunning et al., 2020). In addition to agricultural significance, the soils of the Usumacinta riverine domain could also serve as an extensive and easily accessible source of raw material for ceramic production. The upper alluvial plain, with deeply weathered gleyic and stagnic clayey soils, could provide clay, whereas lower terraces with coarse deposits could contribute to sand temper. It was shown that enigmatic volcanic glass shards frequently found as temper in Classic Maya ceramic could have originated from the silty alluvium, comprised of redeposited tephra exposed in the Tierra Blanca section (Coffey et al., 2014; Cabadas-Báez et al., 2017). 4.2.2 Ancient land use in northeastern Yucatán Peninsula—Yalahau region The spatial differentiation of soil agronomic quality in the platform karst landscapes of the northeastern Yucatán Peninsula differs drastically from that in the mountainous karst landscapes of the Sierra de Chiapas/Usumacinta Basin. As discussed previously, in Chiapas, soils of the lowland domain are suitable for cultivation although often require artificial drainage. In the northeastern Yucatán Peninsula, the dominant wetland soils, hydromorphic Calcisols, are poorly suited for agriculture, These Calcisols consist predominantly of carbonate mud, a structureless micritic material, dispersed in its usual water-saturated state, but with a tendency of strong compaction on drying (Solleiro-Rebolledo et al., 2011). The humus content is low and organic matter is mostly confined to plant debris, which is easily degradable and not contributing to aggregate formation. Thus, we suggest that the main agricultural domain in the Yalahau region was the calcareous uplands and associated Rendzina-type soils. The Rendzinas, Rendzic Leptosols, and Leptic Phaeozems, in many aspects, show high biological and agronomic quality. They are neutral and rich in dark colloidal humus, with perfectly stable granular structure and high porosity, providing both good aeration and sufficient water-holding capacity. It is important that these beneficial properties are stable and do not degrade even after long-term cultivation in traditional Maya homegardens (solares) as shown by Flores-Delgadillo et al. (2011). The main limitation of these soils is found in their thickness, which is generally thin, though highly variable; limestone outcrops alternate with hollows with more profound Ah horizons. This variability is in fact prohibitive for modern agricultural technology with the extensive use of machinery. However, traditional manual cultivation could provide highly productive agrosystems when every small plot with specific soil depth is used for planting a suitable, cultivable species (Ardren and Miller, 2020; Dedrick et al, 2020). This practice of matching crop preferences to the localized variations in soil depth and properties at an extremely fine scale is defined as “ancient precision agriculture” (Flores-Delgadillo et al, 2011). A specific variant of this technological approach is developed within home gardens, where small, natural, soil-filled Frontiers in Earth Science 18 10.3389/feart.2023.1239301 cavities in the bedrock are used in a manner analogous to “container gardening” (Fedick et al., 2008). Terra Rossa, red clayey soils, also present in the upland areas, are in fact less fertile than Rendzinas despite their greater thickness. Their A horizons have lower humus content, have coarser structure, and show a strong tendency of compaction. However, the mineral B-horizons of these soils could be mined as a raw material for ceramic production, representing a practically unique source of clay material these landscapes. petrographic observations (eg. clay illuvial and ferruginous pedofeatures incorporated into ceramic matrix) confirm this hypothesis (Cabadas-Báez et al., 2017). Despite strong soil limitations for agricultural use today, the wetlands were clearly involved in the ancient Maya economy. Surveys of the Yalahau wetlands have documented hundreds of rock alignments that are of definite human construction within dozens of wetlands (Fedick et al., 2000). The use of the Yalahau wetlands may have changed dramatically over time in response to changing water levels, as well as to resulting changes in soil formation within the wetlands, especially at their periphery. Early investigations have suggested that the water levels in the Yalahau wetlands have risen approximately 1 m since the Preclassic period (Fedick et al., 2000; Wollwage et al., 2012; see also Beddows et al., 2016; Glover et al., 2022; McKillop, 2023). This conclusion has been strongly supported by pedological research: the polygenetic profiles near the wetland margins have shown a clear shift from the Rendzina soil development typical for upland forest ecosystems to the wetland Calcisol formation—as discussed previously. These lower unit soils would have been of greater agricultural potential when the marginal parts of wetlands were only subjected to short- term flooding (cf Dunning et al, 2019). Thus, the upland agricultural domain in the Yalahau region was much larger in the past. The recorded rock alignments may have served to slow downslope water flow, protect crops, and retain soils (Fedick et al., 2000). The gradual rise in the water table (McKillop, 2023) related to a high stand of sea level at approximately AD 400 (Beddows et al, carbonate-free in Some 2016; Glover et al., 2022) would have subjected increasing areas of the depressions to flooding and the burying of organic Rendzina soils with Calcisols, rendering the areas unfit for cultivation. We further hypothesize that specific population dynamics in the Yalahau region—maximum occupation in Preclassic and unusual abandonment during the Classic period—are related to these soil and environmental changes. The rock alignments may also represent the management of adapted aquatic resources, such as cattail (Typha domingensis and T. latifolia), duck potato (Sagittaria lancifolia), and apple snails (Pomacea flagellata), all of which grow in abundance today in the Yalahau wetlands. Some alignments, constructed in zig-zag patterns, are like features used elsewhere as fish weirs (Erickson, 2000; Kelly, 2014; Blatrix et al., 2018; Palka, 2023). Periphyton, the algal crust that contributes to the formation of Calcisols, was probably collected and used as fertilizer in ancient times, as it still is today (as discussed previously). We also suggest that the fine carbonate matrix of Calcisols could have been used as construction material, serving as a substitute for burnt lime; of course, although its quality as mortar or plaster might be lower, it may be much “cheaper” in terms of labor, time, and resource investment. frontiersin.org 50 Sedov et al 4.2.3 Ancient Maya agriculture and soil erosion: forcing and feedback As discussed previously, the influence of advanced erosion in the karst landscapes of southern Mexico is clearly imprinted in the properties of the shallow upland Rendzinas as well as in the pedosediments accumulated in the depressions or underground karstic cavities. The question arises: whether this erosion was a natural process, or induced or accelerated by ancient Maya land use? We believe that large-scale cultivation introduced by Maya people since several millennia ago was responsible for the dramatic acceleration of soil erosion, both lateral in mountainous landscapes of Chiapas and vertical “soil piping” in the Yucatán platform. This link has already been confirmed by the data from the lacustrine records in the Petén region where a distinctive layer of Maya clay, which is redeposited soil material, was encountered in the lake cores within the interval corresponding to Maya occupation (Rosenmeier et al., 2002; Fleury et al., 2014; Birkett et al., 2023). Indicators of accelerated human-induced erosion were also found in the coastal lowlands of Belize (Beach et al., 2006; Beach et al., 2018). Our results also demonstrate some direct and indirect evidence for this interpretation. Frequent charcoal particles observed in the pedosediments, especially in the pockets and caves of the northeastern Yucatán Peninsula, point to the burning of vegetation, associated with the erosion/redeposition processes. We suggest that these pyrogenic materials originate from slash- and-burn agriculture, widely practiced in the Maya region (Schiipbacha et al, 2015; Anderson and Wahl, 2016; Douglas et al, 2022). Instrumental dating from karstic pedosediments is still scarce; however, that in the karstic pocket is close to the end of the Classic period. Similar dating within the Classic period was obtained from another karstic pocket in a traditional Maya home garden (Flores-Delgadillo et al., 2011). Interestingly, the charcoal in the cave pedosediment is much older, corresponding to the transition between Archaic and Preclassic periods. This agrees with the recent results from palynological records pointing to the very early beginning of large-scale land cultivation in the Maya region (Brenner et al., 2002; Brenner et al., 2003). We conclude that continuous soil loss from the upland areas due to anthropogenic erosion occurred since the beginning of the Early Preclassic period and continued through the Classic period, recognizing that archaeological evidence does indicate that erosion-management practices, such as terracing, were in place at least by the Late Classic period in many areas of the uplands (Dunning et al., 2009; Fedick et al., 2023). What changes within the upland soil mantle did this cause? It could be assumed that at the onset of large-scale agriculture and population growth, deep red soils of Terra Rossa type were much more common in the uplands of the Karstic landscapes of southern Mexico. However, by the beginning of the Classic period, shallow Rendzinas, which developed from the residues of eroded Terra Rossa soil, were already widely spread. At the archaeological sites of this period, we mostly find only a few small remnants of red soil in some karstic hollows, such as the Maria profile at Busiljá. This soil mantle change should have a feedback effect in the development of ancient agriculture. We propose that in the mountainous areas of Chiapas, soil loss on the hills and a growing population forced ancient farmers to expand cultivation of wetland soils, shifting a significant proportion of agricultural Frontiers in Earth Science 19 10.3389/feart.2023.1239301 production to the lowlands, necessitating laborious technologies (artificial channels, raised fields, etc.) to bring these lands into productive cultivation. In the platform landscapes of the northeastern Yucatán Peninsula, the main agricultural domain persisted in the flat uplands and required development of special technologies for Rendzina cultivation: “precision agriculture,” “container gardening,” and the use of periphyton fertilizer as described previously. These technologies could still provide high productivity of agrosystems under stable humid conditions. Continuous soil loss and extension of shallow soils could have major importance for the response of the agrosystems to climatic fluctuation. In the case of droughts, this response will strongly depend upon the capacity of the soil to store moisture and provide it to crops during periods of water deficit. As discussed previously, the upland Rendzina soils have quite adequate structure and porosity to store moisture; however, their thinness strongly reduces their integral water-holding capacity. During drought (particularly the severe droughts of the Terminal Classic) (Haug etal., 2003; Aimers and Hodell, 2011; Evans et al., 2018; Hodell et al., 2001) these soils, otherwise fertile, could dry rather quickly, causing strong decrease in yields, particularly among vulnerable annual crops. In response, land use patterns could have shifted in some areas to deeper, moisture-retaining soils of the valleys and depressions (cf. Luzzadder-Beach et al., 2012), and crop selection could have shifted to more drought-resistant food plants available to the ancient Maya (Fedick and Santiago, 2022). In this way, human transformation of the soil mantle, coupled with the impact of climatic change, adaptation of subsistence systems while provoking further economic and social changes. resulted in transformative 4.3 Final remarks: types and localization of paleosol records in tropical karst landscapes of southern Mexico Overall, until now, paleopedological research has made a minor contribution to the reconstruction of environmental changes, both natural and human induced, related to the cultural development in the Maya region. The bulk of the results used for this reconstruction is provided by the study of lake sediment cores (Hodell et al., 2005; Douglas et al., 2016; Krywy-Janzen et al, 2019), speleothems (Medina-Elizalde et al, 2010), and even marine sediments quite distant from the study region (Haug et al., 2003). Indeed, in comparison with these data sets, paleopedological investigations are few and localized. An example of successful investigation of this kind is the work by 'T. Beach and his co-workers who encountered and documented well-developed buried paleosols in the sedimentary sequences of the coastal plain in Belize (Beach et al., 2015; Beach et al., 2019; Krause et al., 2019). However, identification of buried paleosols or relict soil properties associated with ancient Maya contexts The key for future advances paleopedological research depends on identifying regularities in the geomorphological position of “prime” agricultural settings, and understanding how changes, both human-induced and climatic, have altered soilscapes through time. In general, the spatial distribution of “soil memory,” understood as the set of pedogenetic properties and features bearing information is scarce, in frontiersin.org 51 Sedov et al about past environmental factors and conditions (Targulian and Goryachkin, 2004), is heterogeneous. In the tropical karst landscapes of southern Mexico, this heterogeneity is extremely high due to contrasting diversity of the soil mantle. We could conclude that the dominant upland soils, Rendzina and Terra Rossa, both in mountainous and platform karst geosystems, show little “soil memory.” In Rendzinas, shallowness and primitive profile development leave little space for relict features, and we have to apply careful microscopic mineralogical investigations to understand their erosive origin. In and Terra Rossa, advanced weathering and accumulation of secondary minerals has obliterated the features of previous stages of pedogenesis. These Maya archaeological sites; by being difficult to interpret from the paleoecological standpoint, they have received little attention as a potential object for geoarchaeological investigation. Within the studied toposequences, the lowland domain definitely has a major potential to provide paleopedological records. In the Sierra de Chiapas/Middle Usumacinta Basin region (Figure 1), lower Holocene aluvial terraces display detailed paleosol-sedimentary sequences with multiple buried soil horizons. These sequences have good prospects for developing chronological scales, with radiocarbon dating of humus and pedogenic carbonates, OSL dating of sedimentary strata, and archaeological dating of incorporated artifacts being the main contributors. Frequent soil burial at these settings also has its “negative” side; the buried profiles are relatively primitive with a rather poor set of pedogenetic properties. In such cases, rapidly formed biotic components and features like phytolith assemblages or stable carbon isotope composition of humus could be the most promising paleoecological proxies (Solís-Castillo et al, 2015). Colluvial sequences in the piedmont areas also sometimes host well-developed paleosols (as in the Boca del Cerro section, Figure 2, profile 3); in general, these records are less detailed when compared to alluvial sequences. Poorly drained karstic depressions at Busiljá have also received colluvial deposits and soils are most common at could potentially generate paleosol records; however it seems that very intensive recent redoximorphic processes have obliterated major parts of ancient pedogenetic features. In the platform landscapes of the northeastern Yucatán Peninsula, paleopedologists face a much more challenging situation. Relict features in the upland soils are poorly preserved, as discussed previously. Recently encountered and investigated pedogenic (calcretes) contain valuable paleoecological information (Valera-Fernández al, 2020; Valera-Fernandez et al, 2022); however, they were developed carbonate — horizons et mostly during the Pleistocene and their chronological resolution is low, so they do not “remember” relatively recent environmental events of Maya occupation. Even lowland areas have quite limited “soil memory” potential. Their soils are shaped predominantly by the process of biogenic carbonate accumulation, which generates rather uniform and primitive hydromorphic Calcisols. However, coring prospection in the central parts of Yalahau wetlands has revealed buried peat and humus horizons in the most profound Calcisol profiles, which could be potential paleoecological archives (Leonard et al., 2019). The wetland periphery areas of the Yalahau region have proven to be quite promising settings for paleopedological research. Here, considered as Frontiers in Earth Science 10.3389/feart.2023.1239301 polygenetic Cambisol/Calcisol profiles develop in response to the changes of intensity and extension of floods, which in turn could depend upon climatic and sea level factors. These paleopedological data can be integrated with the archaeological findings in the nearby ancient settlements. We think that an important source of paleopedological information is pedosediments accumulated in the underground karstic cavities. Our observation in the limestone quarries in the northeastern Yucatán Peninsula have shown that these pedosediment deposits have diverse properties, derived from various sources, and could cover a large chronological interval extending beyond the limits of the Quaternary. These fills are affected by post-depositional diagenetic changes, especially carbonatization; the older ones are even lithified (Valera-Fernandez et al., 2022). However, various elements of “soil memory” such as mineralogical and geochemical composition, and micromorphological features could be successfully investigated; also, materials suitable for radiocarbon dating are frequently encountered. Karstic pedosediments together with speleological characteristics and underground archaeological and paleontological materials form part of the “Maya underworld” that is now one of the hotspots of interdisciplinary research in the Yucatán Peninsula. Author contributions Substantial contribution to the conception of the work, acquisition and interpretation of the data, and the approval of the current version were done by all authors, who also participated in the field research and discussions. SS designed the scheme of the paper and wrote major parts of the Introduction and Discussion sections; MY R-U, GI-A, PG-R, DV-F, KG-D, and SM-R wrote various blocks of the Results section, which were compiled and ordered by ES-R, while HC-B and JD-O designed the schemes of toposequences; DL, SF, CG, SM-H, and RL-S provided information about archaeological contexts and ancient land use. All authors contributed to the article and approved the submitted version. Funding This research was partly covered by the Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCYT) through the project (CF682138) La infraestructura urbana como indicador de la génesis y desarrollo de la ciudad Maya Clásica: el caso de Palenque, Chiapas. UNAM PAPIIT, Project IN108622 “Rendzic Leptosols of the karstic geosystems in southern Mexico: genesis and evolution in relation to the natural and anthropic landscape change”. Soil- archaeological work at Budsiljá was partially supported by the Alphawood Foundation of Chicago, the Social Sciences and Humanities Research Council of Canada, and the National Science Foundation of the United States of America (SBE-BCS 1917671). Acknowledgments MYR-U acknowledges CONAHCYT for the post- doctoral fellowship. Important contributions to the study of the karstic 20 frontiersin.org 52 Sedov et al, toposequences in southern Mexico were made by the earlier participants, — collaborators, and students of the UNAM Paleopedology group: among them, Jorge Gama, Emestina Vallejo, Lourdes Flores, and Berenice Solis. The authors are grateful to their German colleagues who, on various occasions, took part in field trips to southern Mexico and contributed to fruitful discussions of their joint observations: Dr Birgit Terhorst (Universitát Wiirzburg), Dr Bodo Damm (Universitát Vechta), and Dr Bernhard Lucke (Universitát Erlangen-Núrmberg), and the students of their research groups. The authors deeply appreciate the friendly collaboration of Sergio Palacios who initiated their soil- archaeological research in Yucatán. Conflict of interest Author DL is employed by HDR, Inc. The company HDR, Inc. has no involvement or connection to this research. The remaining authors declare that the research was conducted in the absence of any commercial or financial References Aguilar, Y., Bautista, F, Mendoza, M. E., Frausto, O., and Ihl, T. (2016). Density of Karst depressions in Yucatán state, Mexico. Cave Karst Stud. 78 (2), 51-60. doi:10.4311/ 2015ES0124 Aimers, J., and Hodell, D. (2011). Drought and the Maya. Nature 479 (7371), 44-45. doi:10.1038/479044a Amador, F. E. B. (2005). Ancient pottery in the Yalahau region: A study of ceramics and chronology in northern Quintana Roo, Mexico. New York, Buffalo: Unpublished Ph.D. dissertation, Department of Anthropology, University of. Anderson, L,, and Wahl, D. (2016). Two Holocene paleofire records from peten, Guatemala: implications for natural fire regime and prehispanic Maya land use. Glob. Planet. Chang. 138, 82-92. doi:10.1016/j.gloplacha.2015.09.012 Andreani, L., and Gloaguen, R. (2016). Geomorphic analysis of transient landscapes in the sierra madre de Chiapas and Maya mountains (northern Central America) implications for the north American-Caribbean. Dynam. 4, 71-102. doi:10.5194Jesurf-4-71-2016 Zocos plate boundary. Earth Surf. Anselmetti, F. S,, Hodell, D. A., Ariztegui, D., Brenner, M., and Rosenmeier, M. F. (2007). Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35 (10), 915-918. doi:10.1130/g23834a.1 Ardren, T., and Miller, S. (2020). Household garden plant agency in the creation of Classic Maya social identities. Jour. Anthropol. Archaeol. 60, 101212. doi:10.1016/jjaa. 2020.101212 Authemayou, C., Brocard, G., Teyssier, C., Suski, B., Cosenza, B., Morán-Ical, S., et al. (2012). Quaternary seismo-tectonic activity of the Polochic Fault, Guatemala. J. Geophys. Res. 117, B07403. doi:10.1029/2012JB009444 Bauer-Gottwein, P., Gondwe, B. R. N., Charvet, G., Marín, L. E., Rebolledo-Vieyra, M., and Merediz-Alonso, G. (2011). Review: the Yucatán peninsula karst aquifer, Mexico. Hydrogeol. Jour. 19 (3), 507-524, doi:10.1007/s10040-010-0699-5 Beach, T., Dunning, N., Luzzadder-Beach, S., Cook, D. E., and Lohse, J. (2006). Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. Catena 65 (2), 166-178. doi:10.1016/j.catena.2005.11.007 Beach, T., Luzzadder-Beach, S., Cook, D., Dunning, N., Kennett, D. J., Krause, S., etal. (2015). Ancient Maya impacts on the eartl's surface: an early anthropocene analog? Quat. Sci. Rev. 124, 1-30. doi:10.1016/).quascirev.2015.05.028 Beach, T., Luzzadder-Beach, S., Cook, D., Krause, S., Doyle, C., Eshleman, S., et al. (2018). Stability and instability on Maya Lowlands tropical hillslope soils. Geomorphology 305, 185-208. doi:10.1016/j.geomorph.2017.07.027 Beach, T., Luzzadder-Beach, S. Krause, S, Guderjan, T., Valdez, E., Jr, Fernandez Diaz, J. C., et al. (2019). Ancient Maya wetland fields revealed under tropical forest laser scanning and multiproxy evidence. Proc. Natl. Acad. Sci. 116 (43), doi:10.1073/pnas.1910553116 Beach, T., Luzzadder-beach, S, Dunning, N, Hageman, ]., and Lohse, J. (2002). Upland agriculture in the Maya lowlands: ancient Maya soil conservation northwestern Belize. Geogr. Rev. 92 (3), 372-397. doi:10.1111/j.1931-0846.2002, 1b00149.x Frontiers in Earth Science 10.3389/feart.2023.1239301 relationships that could be construed as a potential conflict of interest. Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Supplementary material The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/feart.2023.1239301/ full*supplementary-material Beach, T. (1998). Soil catenas, tropical deforestation, and ancient and contemporary soil erosion in the PETéN, Guatemala, Phys. Geogra. 19, 378-405. doi:10.1080/ 02723646.1998.10642657 Beddows, P. A., Mandié, M., Ford, D. C., and Schwarez, H. P. (2016). Oxygen and hydrogen isotopic variations between adjacent drips in three caves at increasing elevation in a temperate coastal rainforest, Vancouver Island, Camada. Geoch Cosmochi. Acta 172, 370-386. doi:10.1016/j.gca.2015.08.017 Bell, J. A. (1998). A developing model for determining cenote and associated site settlement patterns in the Yalahau region, Quintana Roo, Mexico, Master's thesis. Riverside: Department of Anthropology, University of California. Berlin-Neubart, H. (1955). News from the Maya world. Ethnos 20 (4), 201-209. doi:10.1080/00141844.1955.9980799 Birkett, B. A., Obrist-Farner, J., Rice, P. M., Parker, W. G., Douglas, P. M., Berke, M. A., et al. (2023). Preclassic environmental degradation oflake Petén itzá, Guatemala, by the carly Maya of nixtun-ch'ich. Comm. Earth Environ. 4 (1), 59. doi:10.1038/543247-023-00726-4 Blatrix, R., Roux, B., Béarez, P., Prestes-Carneiro, G., Amaya, M., Aramayo, J.L, et al. (2018). The unique functioning of a pre-Columbian Amazonian loodplain fishery. Sci Rep. 8 (1), 5998-6016. doi:10.1038/541598-018-24454-4 Brenner, M, Hodell, D. A,, Curtis,]. H, Rosenmeier, M. E, Anselmetti, E. S, and Ariztegui, D. (2003). Paleolimnological approaches for inferring past climate change in the Maya region. Recent advances and methodological limitations. New York, New York, USA: The Lowland Maya arca three millennia at the human-wildland interface Food Products, 45-75, Brenner, M., Rosenmeier, M. E, Hodell, D, A. and Curtis, J. H. (2002) Paleolimnology of the Maya lowlands: long-term perspectives on interactions among climate, environment, and humans. Anc. Mesoamer 13 (1), 141-157. doi:10. 1017/50956536102131063 Bronger, A., Winter, R, and Sedov, 5. (1998). Weathering and clay mineral formation in wo Holocene sois and in buried paleosols in tadjkistan: towards a quaternary paleoclimatic record in central asia. Catena 34 (1-2), 19-34. doi:10.1016/50341-8162(98)00079-4 Bueno, J., Alvarez, E, and Santiago, S. (2005). Biodiversidad del Estado de Tabasco. México: Instituto de Biología, UNAM, 333pp. Burkart, B. (1983). Neogene North American-caribbean plate boundary across northern Central America: offset along the polochic fault. Tectomophysics 99, 251-270. doi:10.1016/0040-1951(83)90107-5 Cabadas-Báez, H., Solleiro-Rebolledo, E., Sedow, S., Pi, T., and Gama-Castro, J. (2010a). Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of late quaternary soil development, geomorphic processes and landscape stability. Geomorphology 122, 323-337. doi:10.1016)j-geomorph.2010.03.002 Cabadas-Báez, H. V., Solleiro-Rebolledo, E., Sedoy, S. Pi, T. and Alcalá, J.R. (20100). The complex genesis of red soils in peninsula de Yucatan, Mexico: mineralogical, micromorphological and geochemical proxies. Eurasian Soil Sci. 43, 1439-1457. doi:10. 1134/S1064229310130041 Cabadas-Báez, H. V., Solís-Castillo, B., Solleiro-Rebolledo, E., Sedov, S., L onard, D., 'Teranishi-Castillo, K, et al. (2017). Reworked volcaniclastic deposits from the 21 frontiersin.org 53 Sedov et al, Usumacinta River, Mexico: A serendipitous source of volcanic glass in Maya ceramics. Geoarchacology 32 (3), 382-399. doi:10.1002/gea.21610 Campiani, A., Flores, E. A., and López, M. J. (2012). “Topografía y espacio: el caso de Chinikihá, méxico,” in XXV Simposio de Investigaciones Arqueológicas en Guatemala, 2011 (pp722-753) (Guatemala: Ministerio de Cultura y Deportes. Instituto de Antropología y Asociación Tikal). Avaliable At: htps://iris.uniromal.it/handle/ 11573/1528449 (Accessed June 10, 2023). Carozza, J. M., Galop, D., Metailie, J. P., Vannitre, B., Bossuet, G, Monna, F., et al. (2007). Landuse and soil degradation in the southern Maya lowlands, from pre-classic to post-classic times: the case of La joyanca (Petén, Guatemala). Geodin. Acta 20 (4), 195-207. doi:10.3166/ga.20.195-207 Coffey, K. 'I., Schmitt, A. K,, Ford, A., Spera, E. J, Christensen, C., and Garrison, J. (2014). Volcanic ash provenance from zircon dust with an application to Maya pottery. Geology 42 (7), 595-598. doi:10.1130/G35376.1 D'Amico, M. E,, Casati, E, El Khair, D. A,, Cavallo, A., Barcella, M, and Previtali,F. (2023). Acolian inputs and dolostone dissolution involved in soll formation in Alpine karst landscapes (Corna Bianca, Italian Alps). Catena 230, 107254. dot:10.1016/¡catena.2023.107254 Davis, C. R. (2022). Monumentalizing metaphors: diphrasis in the murals of Tulum. Manuscript and text cultures. TRANSPOSITION Monum. PRE-MODERN Epigr. Manuscr. TRADITIONS 1, 55-82. doi:10.56004/v1d55 De Lapparent,J. (1930). Les bauxites de la France méridionale: Mémoires du Service de la Carte géologique detaillée de la France. Paris: Imprimerie Nationale, 187. Dedrick, M., Webb, E. A., McAnany, P. A., Kumul, J. M. K., Jones, J. G., Alpuche, A. L. B., et al. (2020). Influential landscapes: temporal trends in the agricultural use of rejolladas at tahcabo, Yucatán, Mexico. Jour. Anthropol. Archaeol. 59, 101175. doi:10. 1016/)jaa.2020.101175 iamond, J. (1994). Ecological collapses of past civilizations. Proceed. Amer. Philos. Soc. 138 (3), 363-370. Avaliable At: https-//wwwjstor.org/stable/986741 Douglas, P. M., Demarest, A. A., Brenner, M., and Canuto, M. A. (2016). Impacts of climate change on the collapse of lowland Maya civilization. Armu, Rev. Farth Planet. Sci. 44, 613-645. doi:10.1146/annurev-earth-060115-012512 Douglas, P. M., Keenan, B., Parker, W. G. Breckenridge, A. J., Johnston, K, Obrist- Famer, J., et al. (2022). “Earth, fre, water, waste: using multiple lipid biomarkers to unravel complex environmental histories in the Maya lowlands," in AGU fall meeting abstracts (San Francisco: AGU). Douglas, P. M., Pagani, M., Canuto, M. A., Brenner, M., Hodell, D. A., Eglinton, T. L,, etal. (2015). Drought, agricultural adaptation, and sociopolitical collapse in the Maya Lowlands. Proceed. Nat. Acad. Sci. 112 (18), 5607-5612. doi:10.1073/pnas.1419133112 Douglas, P. M., Pagani, M., Eglinton, T. 1, Brenner, M., Curtis, J. H., Breckenridge, A., et al. (2018). A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nat, Geosci. 11 (9), 645-649. doi:10.1038/541561-018-0192-7 Doyle, C., Luzzadder-Beach, S., and Beach, T. (2023). Advances in remote sensing of the early anthropocene in tropical wetlands: from biplanes to lidar and machine learning, Prog. Phys. Geograp. Earth Environm 47 (2), 293-312. doi:10.1177/03091333221134185 Dunham, P. S., Abramiuk, M. A, Cummings, L. S., Yost, C., and Pesek, T. J. (2009). Ancient Maya cultivation in the southern Maya mountains of Belize: complex and sustainable strategies uncovered. Antiquity 83 (319), 1-3. Avaliable At: http://www. antiquity-acuuk/ projgall/pesek319/. Dunning, N., Beach, T., Farrell, P., and Luzzadder-Beach, 5. (1998). Prehispanic agrosystems and adaptive regions in the Maya lowlands, Cult. Agricul 20 (2-3), 87-101. doi:10.1525/cag.1998.20.2-3.87 Dunning, N., Beach, T., and Luzzadder-Beach, S. (2020). “Ancient Maya agriculture,” in The Maya world (New York, NY: Routledge), 501-518. Dunning, N., Beach, T., Luzzadder-Beach, S., and Jones, . J. (2009). “Creating a stable landscape: soil conservation and adaptation among the ancient Maya,” in The archacology of environmental change: Socionatural legacies of degradation and resilience. Editors C. T. Fisher, J. B. Hill, and G. M. Feinman (Tucson: University of Arizona Press), 85-105. Dunning, N. P., Anaya Hernández, A., Beach, T., Carr, C,, Griffin, R, Jones, J. G., eta. (2019). Margin for error: anthropogenic geomorphology of bajo edges in the Maya lowlands, Geomorphol 331, 127-143, doi:10.1016/) geomorph.2018.09.002 Dunning, N. P., Beach, T. P., and Luzzadder-Beach, S. (2012). Kax and kol: collapse and resilience in lowland Maya civilization. Proceed. Nat. Acad. Sci. 109 (10), 3652-3657. doi:10.1073/pnas.1114838109 Durán, R, and Méndez, M. (2010). Biodiversidad y desarrollo humano en Yucatán. CICY, PPD-FMAM. Mexico City: CONABIO, SEDÚMA, 496. Durand, N., Monger, H. C., and Canti, M. G. (2010). “Calcium carbonate features,” in Interpretation of micromorphological features of sotls and regoliths. Editors G. Stoops, V. Marcelino, and F. Mees (Amsterdam: Elsevier), 149-194. doi:10.1016/C2009-0-18081-9 Durn, G., Ottner, F,, and Slovenec, D. (1999). Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma 91 (1-2), 125-150. doi:10.1016/S0016-7061(98)00130-X Durn, G., Perkovié, L, Razum, L, Ottner, E., Skapin, S. D., Faivre, S., et al. (2023). A tropical soil (Lixisol) identified in the northernmost part of the Frontiers in Earth Science 10.3389/feart.2023.1239301 Mediterranean (Istria, Croatia). Catena 228, 107144. doi:10.1016/j.catena.2023. 107144 Erickson, C. L. (2000). An artificial landscape-scale fishery in the Bolivian Amazon. Nature 408 (6809), 190-193. doi:10.1038/35041555 Espinasa-Pereña, R. (2007). “El karst de México”, mapa NA TIT 37 in Nuevo atlas nacional de México. Editors A. Coll-Hurtado, and S. Coord (México: Instituto de Geografía, Universidad Nacional Autónoma de México). Avaliable At: http://librosoa unam.mx/handle/123456789/2371 (Accessed June 10, 2023) Evans, N. P., Bauska, T. K, Gázquez-Sánchez, F., Brenner, M., Curtis, J. H, and Hodell, D. A. (2018). Quantification of drought during the collapse of the classic Maya civilization. Science 361 (6401), 498-501. doi:10.1126/science.aas9871 Fedick, S. L., Flores Delgadillo, M., Sedov, S., Solleiro-Rebolledo, E., and Mayorga, S. P. (2008). Adaptation of Maya homegardens by “container gardening” in limestone bedrock cavities. J. Ethnobiol. 28 (2), 290-304. dok:10. 2993/0278-0771-28.2.290 Fedick, S. L., and Hovey, K. (1995). “Ancient Maya settlement and use of wetlands at naranjal and the surrounding Yalahau region,” in The view from Yalahau: 1993 archaeological investigations in northern Quintana Roo, Mexico Editors S. L. Fedick, and K. A. Taube (Riverside: University of California), 101-114. Fedick, S.L (1995). Land evaluation and ancient Maya land use in the upper Belize River area, Belize, Central America. Lat. Am, Antig. 6, 16-34. doi:10.2307/971598 Fedick,S. L. Mathews,]. P., and Sorensen, K. (2012). Cenotes as conceptual boundary markers at the ancient Maya site of Tisil, Quintana Roo, Mexico. Mexicon 34 (5), 118-123. Avaliable At: https://digitalcommons.trinity.edu/socanthro_faculty/41/. Fedick, S. L, and Mathews, J. P. (2005). “The yaluhau regional human ecology project: an introduction and summary of recent research” in Quintana Roo archaeology. Editors J. M. Shaw, and J. P. Mathews (Tucson: University of Arizona Press), 33-50. Fedick, 5. L., Morell-Hart, S., and Dussol, L. (2023). Agriculture in the ancient Maya lowlands (Part 2): landesque capital and long-term resource management strategies. J. Archaeol. Res. doi:10.1007/510814-023-09185-z Fedick, S. L., Morrison, B. A., Andersen, B. J., Boucher, S,, Acosta, J. C., and Mathews, J. P. (2000). Wetland manipulation in the Yalahau region of the northern Maya lowlands. J. Field Archaeol. 27 (2), 131-152. doi:10.1179/jfa.2000.27.2.131 Fedick, S. L, and Santiago, L. S. (2022). Large variation in availability of Maya food plant sources during ancient droughts. Proc. Natl. Acad. Sci. 119 (1), e2115657118. doi:10.1073/pnas2115657118 Fedick, S. L., and Taube, K. A. (1995). The view from Yalahau: 1993 archaeological investigations in northern Quintana Roo, Mexico: Riverside. U:S.A: University of California, 151. Fleury, S., Malaizé, B., Giraudeau, J., Galop, D., Bout-Roumazeilles, V., Martinez, P., et al, (2014). Impacts of Mayan land use on Laguna Tuspan watershed (Petén, Guatemala) as seen through clay and ostracode analysis. Jowr. Archacol. Sci. 49, 372-382. doi:10.1016/jjas.2014.05.032 Flores-Delgadillo, L., Fedick, S.L. Solleiro-Rebolledo, E. Palacios-Mayorga, S., Ortega-Larrocea, P., Sedov, S., et al. (2011). A sustainable system of a traditional precision agriculture in a Maya homegarden: soil quality aspects. Soil Tillage Res, 113 (2), 112-120. doi:10.1016/still.2011.03.001 Folan, W. J, Anaya-Hemandez, A., Kintz, E. R., Fletcher, L. A., Gonzalez-Heredia, R., May-Hau,]., et al. (2009). Coba, Quintana Roo, Mexico: A recent analysis of the social, economic and political organization of a major Maya urban center. Anc. Mesoam. 20 (01), 59-70. doi:10.1017/50956536109000054 Folan, W. J, Kintz, E. R, and Fletcher, L. A. (1983). “Coba, A classic Maya metropolis,” in Studies in archaeology (New York: Academic Press). Ford, A., and Nigh, R. (2016). The Maya forest garden: Eight millennia of sustainable cultivation of the tropical woodlands. New York, NY: Routledge. French, K. D., Straight, K. D., and Hermitt, E. J. (2020). Building the environment at Palenque: the sacred pools of the picota group. Anc. Mesoamer. 31 (3), 409-430. doi:10. 1017/50956536119000130 García, E. (1988). Modificaciones al Sistema de Clasificación climática de Koppen. México: Offset Larios Press. Glover, J. B, Rissolo, D., Beddows, P. A, Jaijel, R, Smith, D, and Goodman- Tchernov, B. (2022). The Proyecto costa escondida: historical ecology and the study of past coastal landscapes in the Maya area. Jour. Isl. Coast. Archacol. 2022, 1-20. doi:10. 1080/15564894.2022.2061652 Glover, ]. B., and Stanton, T. W. (2010). Assessing the role of preclassic traditions in the formation of early classic yucatec cultures, méxico. Field Archaeol. 35 (1), 58-77. doi:10.1179/009346910x12707320296711 Glover, J. B. (2012). The Yalahau region: A study of ancient Maya socio-political organization. Anc. Mesoamer. 23 (2), 271-295. doi:10.1017/5095653611200020x Golden, C., Scherer, A. K,, René-Muñoz, A., and Vasquez, R. (2008). Piedras Negras and yaxchilan: divergent political trajectories in adjacent Maya polities. Lat. Amer. Antiq. 19 (3), 249-274. doi:10.1017/s104566350000794x frontiersin.org 54 Sedov et al, Golden, C., Scherer, A. K., Schroder, W., Murtha, 'T., Morell-Hart, S., Fernandez Diaz, . C. et al. (2021). Airborne liar survey, density-based clustering, and ancient Maya settlement in the upper Usumacinta River region of Mexico and Guatemala. Remote Sens. 13 (20), 4109. doi:10.3390/r513204109 Guillén, D. K. A. (2020). Evolución de la cubierta edáfica en el Valle Budsilhá, Chiapas: influencia de los factores formadores y las actividades humanas pre-hispánicas. [dissertation/masther's tesis]. Posgrado de Ciencias de la Tierra: Universidad Nacional Autónoma de México. Haug, G. H,, Gunther, D., Peterson, L. C., Sigman, D. M., Hughen, K. A,, and Aeschlimann, B. (2003). Climate and the collapse of Maya civilization. Science 299 (5613), 1731-1735. doi:10.1126/science.1080444 Hernández-Santana, J. R, Méndez-Linares, A. P., and Bollo-Manet, M. (2012) Análisis morfoestructural del relieve noroccidental del Estado de Chiapas, México, Rev. Geográfica Venez. 53, 57-75. Avaliable At: http://www.redalyc.org/articulo.oatid= 347730388004, Hodell, D. A., Brenner, M., Curtis, J. H., and Guilderson, T. (2001). Solar forcing of drought frequency in the Maya Lowlands. Science 292, 1367-1370. doi:10.1 126/science. 1057759 Hodell, D. A., Brenner, M., and Curtis, J. H. (2005). Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat. Sci. Rev. 24 (12-13), 1413-1427. doi:10.1016/j.quascirev.2004.10.013 Houston, S. D., and Inomata, T. (2009). The classic Maya. New York: Cambridge University Press. INEGI (1986). Síntesis geográfica y anexo cartográfico del Estado de Tabasco. México: INEGL. Islebe, G. A., Torrescano-Valle, N., Valdez-Hernández, M., Carrillo-Bastos, A., and Aragón-Moreno, A. A. (2022). Maize and ancient Maya droughts. Sci. Rep. 12 (1), 22272. doi:10.1038/s41598-022-26761-3 Isphording, W. C. (1975). The physical geology of Yucatan. Trans. Gulf Coast Assoc. Geol. Soc. 25, 231-262. Avaliable At: htrps//archives.datapages.com/data/gcags/data/ 025/025001/0231.htm. 1USS Working Group WRB (2015). World reference base for soil. resources 2014, update 2015, international soil classification systems for naming soils and creating legends for soil maps. World soil resources resports, Rome: FAO, 192. Kelly, D. (2014). Archaeology of aboriginal fish traps in the murray-darling basin. Australia. Sydney: Charles Sturt University Press. Krause, S., Beach, 'I'., Luzzader-Beach, S., Cook, D., Islebe, G., Palacios-Fest, M. R., et al. (2019). Wetland geomorphology and paleoecology near Akab Mucil, Rio Bravo Moodplain of the Belize coastal plain. Geomorph 331, 146-159. doi:10.1016/j.geomorph. 2018.10.015 Krywy-Janzen, A,, Reinhardt, E, McNeillJewer, C., Coutino, A, Waltham, B. Stastna, M, et al. (2019). Water-level change recorded in Lake Pac Chen Quintana Roo, Mexico infers connection with the aquifer and response to Holocene sea-level rise and Classic Maya droughts. J. Paleolimnol. 62, 373-388. doi:10.1007/10933-019 00094-0 Kunen, J. L. (2001). Ancient Maya agricultural installations and the development of intensive agriculture in NW Belize. Jour. Field Archaeol 28 (3-4), 325-346. doi:10.1179/ jfa.2001.28.3-4.325 Leonard, D., Sedow, S., Solleiro-Rebolledo, E., Fedick, S. L., and Diaz, J. (2019), Ancient Mayan use of hidden soilscapes in the Yalahau wetlands, northern Quintana Roo, Mexico. Bol. Soc. Geol. Mex. 71 (1), 93-119. doi:10.18268/bsgm2019v71n1a6 Leyden, B. W., Brenner, M., and Dahlin, B. H. (1998). Cultural and climatic history of Cobá, a lowland Maya city in Quintana Roo, Mexico. Quat, Res. 49 (1), 111-122. doi:10. 1006/qres.1997.1941 Liendo-Stuardo, R,, Solleiro-Rebolledo, E., Solis-Castillo, B., Sedov, S., and Ortíz- Pérez, A. (2014). 7 population dynamics and its relation to ancient landscapes in the northwestern Maya lowlands: evaluating resilience and vulnerability. Archeol. Pap. Am. Anthropol. Assoc. 24, 84-100. doi:10.1111/apaa.12031 Liendo-Stuardo, R. (2012). Vecinos cercanos. Palenque y el reino olvidado de Chinikihá. Palenque, nuevos Estud. nuevos hallazgos creación mítica, las Ciudad. Vecin. sepulturas, vida urbana, Reina Roja, los Gob. Arqueol. Mex. 19 (113), 44-48. Avaliable At: https://arqueologíamexicana.mx/mexico-antiguo/vecinos-cercanos- palenque-y-el-reino-olvidado-de-chinikiha. Luzzadder-Beach, S., Beach, T. P., and Dunning, N. P. (2012). Wetland fields as mirrors of drought and the Maya abandonment. Proc, Natl. Acad. Sci. U. S. A. 109, 3646-3651. doi:10.1073/pnas.1114919109 Macrae, S., and Iannone, G. (2016). Understanding ancient Maya agricultural terrace systems through Lidar and hydrological mapping. Adv. Archacol. Pract. 4 (3), 371-392. doi:10.7183/2326-3768.4.3.371 Maler, T. (1901). Researches in the central portion of the usumatsintla valley. Memories of the peabody museum of American archacology and ethnology. Harw. Univ. 2, 2. Avaliable At: https) /curiosity.lib.harvard.edu/expeditions-and-discoveries/ catalog/38-990011850510203941. Martin, S., and Grube, N. (2008). Chronicle of the Maya kings and queens: Deciphering the dynasties of the ancient Maya. 2nd ed. New York: Thames and Hudson. Frontiers in Earth Science 23 10.3389/feart.2023.1239301 Mathews,J. P., and Maldonado-Cárdenas, R. (2006). “Late formative and early classic interaction spheres reflected in the megalithic style,” in Lifeways in the northern Maya lowlands. Editors ]. P. Mathews and B. Á. Morrison (Tucson: The University of Arizona Press), 95-118, McKillop, H. 1. (2023). Hlooded mangrove landscapes hide ancient Maya coastal sites in Belize. Jour. Isl. Coast. Archaeol. 2023, 1-21. doi:10.1080/15564894.2022.2163323 Medina-Flizalde, M., Burns, S. J., Lea, D. W., Asmerom, Y., von Gunten, L., Polyak, v, etal. (2010). High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period. Earth Planet. Sci. Lett. 298 (1-2), 255-262. doi:10.1016/j.epsl.2010.08.016 Merino, E., and Banerjec, A. (2008). Terra rossa genesis, implications for karst, and eolian dust: A geodynamic thread. Jour. Geol. 116 (1), 62-75. doi:10.1086/524675 Miksicek, C. H. (2019). “Early wetland agriculture in the Maya lowlands: clues from preserved plant remains,” in Ancient Maya wetland agriculture 295-312 (New York, NY: Routledge). Morell-Hart, S., Dussol, L., and Fedick, S. L. (2022). Agriculture in the ancient Maya lowelands (Part 1): paleoethnobotanical residues and new perspectives on plant management. J. Archaeol. Res. 2022, 1-55, doi:10.1007/510814-022-09180-w Morrison, B. A., and Cozatl-Manzano, R. (2003). “Initial evidence for use of periphyton as an agricultural fertlizer by the ancient Maya associated with the el Edén wetland, northern Quintana Roo, Mexico,” in The lowland Maya area: Three millenia at the human-wildland interface. Editors A, Gómez-Pompa, M. F. Allen, and S. L. Fedick (Binghamton, NY: Haworth Press), 401-414. Ortiz, M. A, Siebe, C., and Cram, S. (2005). “Diferenciación ecogeográfica de “Tabasco,” in Biodiversidad del Estado de Tabasco: Instituto de Biología. Editors J. en Bueno, F. Álvarez, and $. Santiago (México: UNAM-CONABIO), 305-322. Padilla, R. J., and Sánchez, R. J. (2007). Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México. Bol. Soc. Geol. Mex. 59, 19-42. doi:10.18268/bsgm2007v59n1a3 Palka, J. W. (2023). Ancestral Maya domesticated waterscapes, ecological aquaculture, and integrated —subsistence. Anc. Mesoamer 2023, 1-29. doi10.1017/ $0956536122000402 Pérez de Heredia, E., Biró, P., and Boucher, S. (2021). Maíz y balché, Una revisión de la iconografía de los murales de Tulum. Estud. Cult. maya 57, 117-149. doi:10.19130/4f. ecm.57.2021.18655 Pohl, M. D., Pope, K. O., Jones, J. G., Jacob, J. S., Piperno, D., DeFrance, S., et al. (1996). Early agriculture in the Maya lowlands. Lat. Amer. Antig. 7 (4), 355-372. doi:10. 2307/972264 Priori, S,, Costantini, E. A., Capezzuoli, E., Protano, G., Hilgers, A., Sauer, D., et al. (2008). Pedostratigraphy of Terra Rossa and Quatemnary geological evolution of a lacustrine limestone plateau in central Italy. J. Plant Nutr. Soil Sci. 171 (4), 509-523. doi:10.1002/jpln.200700012 Rissolo, D., Ochoa-Rodriguez, J. M., and Ball, J. W. (2005). “A reassessment of the middle preclassic in northern Quintana Roo,” in Quintana Roo archacology. Editors J. M. Shaw, and J. P. Mathews (Tucson: University of Arizona Press), 66-76. Robles-Castellanos, F. (1990). La secuencia cerámica de la Region de Cobá, Quintana Roo. Serie arqueología 184. Mexico City: Instituto Nacional de Antropología e Historia. Rosenmeier, M. F., Hodell, D. A., Brenner, M., Curtis, J. H., and Guilderson, T. P. (2002). A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Petén, Guatemala. Quater. Res. 57 (2), 183-190. doi:10.1006/qres. 2001.2305 Rzedowski, J. (2006). Vegetación de México. 1era. Edición digital. México. Mexico: Comisión Nacional para el Conocimiento y el Uso de la Biodiversidad Press. Sandler, A., Meunier, A., and Velde, B. (2015). Mineralogical and chemical variability of mountain red/brown Mediterranean soils. Geoderma 239, 156-167. doi:10.1016)j. geoderma.2014.10.008 Sauro, U, (2019). “Closed depressions in karst areas” in Encyclopedia of caves (Academic Press). doi:10.1016/B978-0-12-814124-3.00032-7. Scarborough, V. L., Dunning, N. P., Tankersley, K. B., Carr, C, Weaver, E, Grazioso, L, et al. (2012). Water and sustainable land use at the ancient tropical city of Tikal, Guatemala. Proc. Natl. Acad. Sci. 109 (31), 12408-12413. doi:10.1073/ pnas.1202881109 Scherer, A. K., and Golden, C. (2012). Revisiting Maler's Usumacinta: Recent archacological investigations in Chiapas, Mexico. Mexico: Precolumbia Mesoweb Press. Schroder, W., Murtha, T., Broadbent, E. N., and Almeyda Zambrano, A. M. (2021). A confluence of communities: households and land use at the junction of the upper Usumacinta and lacantún rivers, Chiapas, Mexico. World Archaeol. 53 (4), 688-715. doi:10.1080/00438243.2021.1930135 Schúpbacha, S., Kirchgeorga, T., Colombarolic, D., Beffac, G., Radacllif, M., Kehrwalda, N,, et al. (2015). 2 study II: combining charcoal sediment and molecular markers to infer a Holocene fire history in the Maya lowlands of Petén, Guatemala. Specif. Mol. Markers Lake Sediment Cores Biomass Burn. Reconstr. Dur. Holocene 115, 123-131. doix10.1016/j.quascirev.2015.03.004 frontiersin.org 55 Sedov et al, Sedov, S., Guillén, D. K, Solleiro,- Rebolledo, R. E,, Rivera, U. Y., and Díaz, O. J. (2021). Gipsisoles en la cubierta edáfica de los paisajes kársticos tropicales de Chiapas. Geos 40 (1), 1-184, Sedov, S., Solleiro-Rebolledo, E., Fedick, $. L., Gama-Castro, J., Palacios-Mayorga, S., and Vallejo Gomez, E. (2007). Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Attí della Soc. Toscana Nat. Pisa, Ser. A 112, 115-126. Avaliable At: http://www.stsn.it/serA112/ 14920Sedow.pdlf. Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., Pi-Puig, T., Vallejo-Gómez, E., and Flores-Delgadillo, M. D. L. (2008). Micromorphology of a soil catena in Yucatán: pedogenesis and geomorphological processes in a tropical karst landscape, New trends soil Micromorphol. 2008, 19-37. doi:10.1007/978-3-540-79134-8_3 Shapiro, M. B. (2006). Soils of Israel. Eurasian Soil Sci. 39, 1170-1175. doi:10.1134/ $1064229306110032 Solís-Castillo, B., Christine, T., Cabadas-Baez, H., Solleiro-Rebolledo, E., Sedow, S., 'Terhorst, B, et al. (2013b). Holocene sequences in the Mayan Lowlands - a provenance study using heavy mineral distributions. Quat. Sci. J. 62, 2. doi:10.3285/e8.62.2.01 Solís-Castillo, B., Golyeva, A., Sedov, S., Solleiro-Rebolledo, E., and López-Rivera, S. (2015). Phytoliths, stable carbon isotopes and micromorphology of a buried alluvial soil in southern Mexico: A polychronous record of environmental change during middle Holocene. Quat, Int, 365, 150-158. doi:10.1016/j.quaint.2014.06.043 Solís-Castilo, B., Ortíz-Pérez, M. A., and Solleiro-Rebolledo, E. (2014). Unidades geomorfologico-ambientales de las tierras bajas Mayas de Tabasco-Chiapas en el río Usumacinta: un registro de los procesos aluviales y pedológicos durante el Cuaternario. Bol. Soc. Geol. Mex. 66 (2), 279-290. doi:10.18268/bsgm2014v66n2a5 ís-Castillo, B., Solleiro-Rebolledo, E., Sedov, S., Liendo, R., López-Rivera, S., and Ortiz-Pérez, M. A. (20133). Paleoenvironment and human occupation in the Maya lowlands of the Usumacinta River, southern Mexico. Geoarchaeology 28, 268-288. doi:10.1002/gea.21438 Solleiro-Rebolledo, E., Cabadas-Báez, H. V., Pi, P. T., González, A., Fedick, S. L., Chmilar, J. A., et al. (2011). Genesis of hydromorphic Calcisols in wetlands of the northeast yucatan peninsula, Mexico. Geomorphology 135 (3-4), 322-331. doi:10.1016)) geomorph.2011.02.009 Solleiro-Rebolledo, E., Terhorst, B., Cabadas-Báez, H, Sedov, S., Damm, B., Sponholz, B,, et al. (2015). Influence of Mayan land use on soils and pedosediments in karstic depressions in Yucatan, México. Erlanger Geogr. Arb. Band. 42, 233-266. Avaliable At: https://www.geographie.uni-wuerzburg.de/bodenkunde/publikationen?. Stoops, G. (2018). “Micromorphology as a tool in soil and regolith studies,” in Interpretation of micromorphological features of soils and regoliths. Editors G. Stoops, V. de Melo Marcelino, and F. Mees (Amsterdam, Netherlands: Elsevier), 1-19. Targulian, V. O., and Goryachkin, S. V. (2004). Soil memory: types of record, carriers, hierarchy and diversity. Rev. Mex. Cienc. Geol. 21 (1), 1-8. Avaliable At: http://rmcg. geociencias.unam.mx/index.php/rmcg/article/view/897. Targulian, V. O., and Krasilnikoy, P. V. (2007). Soil system and pedogenic processes: self organization, time scales, and environmental significance. Catena 71, 373-381. doi:10.1016/j.catena.2007.03.007 Frontiers in Earth Science 24 10.3389/feart.2023.1239301 Thornbury, W. D. (1954). Principles of geomorphology. LWW, 157pp. Tumer, B. L., and Sablofí, J..A. (2012). Classic Period collapse of the central Maya lowlands: insights about human-environment relationships for sustainability. Proc. Natl. Acad. Sci. 109 (35), 13908-13914. doi:10.1073/pnas.1210106109 Turner, B. T., II (2019). Once beneath the forest: Prehistoric terracing in the Rio bec region of the Maya lowlands. New York: Routledge Press. Valera-Fernández, D., Cabadas-Báez, H., Solleiro-Rebolledo, E. Landa Arreguín, F. J., and Sedov, S. (2020). Pedogenic carbonate crusts (calcretes) in Karstic landscapes as archives for paleoenvironmental reconstructions-A case study from Yucatan Peninsula, Mexico. Catena 194, 104635. doi:10.1016/j. catena.2020.104635 Valera-Fernández, D., Solleiro-Rebolledo, E., López-Martínez, R, Sedow, S., Griset, and Cabadas-Báez, H. (2022). Quatemnary paleoenvironments based on pedogenic, sedimentary and karstic processes in the coastal geosystems of Cozumel Island, Mexico. Geoderma Reg. 31, ed0587. doi:10.1016/j.geodrs.2022.e00587 Vrsaj, B., Repe, B., Simondi?, P., and Repe, B. (2017). Regions and landscapes. Soils Slovenia 2017, 9-17. doi:10.1007/978-94-017-8585-3_2 Walden, J. P., Hoggarth, J. A., Ebert, C. E., Fedick, S. L.. Biggie, M., Meyer, B., et al. (2023). Classic Maya settlement systems reveal differential land use patterns in the upper Belize river valley. Land 12 (2), 483. doi:10.3390/land12020483 Waltham, T. (2008). Sinkhole hazard case histories in karst terrains. Q. J. Eng. Geol. Hydrogeol 41 (3), 291-300. doi:10.1144/1470-9236/07-211 Ward, W. C. (1985). “Quaternary geology of northeastern yucatan peninsula,” in Geology and hydrogcology of the yucatan and quaternary geology of northeastern yucatan peninsula. Editors W. C. Ward, A. E. Weidie, and W. Black (New Orleans Geol. Soc), 23-95. Weidie, A. E., Ward, W. C., and Marshall, R. H. (1985). “Geology of yucatan platform,” in Geology and hydrogeology of the yucatan and quaternary geology of northeastern yucatan peninsula. Editors W. C. Ward, A. E. Weidie, and W. Black (New Orleans Geological Society), 3-29. West, R. C, Psuty, N. P, and Thom, B. G. (1969). The Tabasco lowlands of southeastern Mexico. Mexico: Louisiana State University Press. Wollwage, L., Fedick, S., Sedow, S., and Solleiro-Rebolledo, E. (2012). The deposition and chronology of cenote Tisil: A multiproxy study of human/environment interaction in the northern M aya lowlands of soutlcast Mexico. Geoarchacol 27 (5), 441-456. doi:10.1002/gea.21418 Yaalon, D. H. (1997). Soils in the mediterranean region: what makes them different? Catena 28 (3-4), 157-169, doi:10.1016/50341-8162(96)00035-5 Zhang, X. B,, Bai, X. Y., and He, X. B. (2011). Soil creeping in the weathering crust of carbonate rocks and underground soil losses in the karst mountain areas of southwest China. Carbon. Evap. 26, 149-153. doi:10.1007/s13146-011-0043-8 Zhao, Z., and Shen, Y. (2022). Rain-induced weathering dissolution of limestone and implications for the soil sinking-rock outcrops emergence mechanism at the karst surface: A case study in southwestern China. Carbon. Evapor. 37 (4), 69. doi:10.1007/ 513146-022-00813-1 frontiersin.org 56 57 3.3 INTERACTION OF GEOMORPHIC PROCESSES AND LONG-TERM HUMAN IMPACT IN THE SOIL EVOLUTION: A STUDY CASE IN THE TROPICAL AREA AT VERACRUZ, MEXICO E, Solleiro-Rebolledo et al. contributor to the genesis of terra rossa is volcanic ash (Comer, 1974; Muhs and Budahn, 2009) which contains silicate minerals. In addition, the weathering of such minerals produces Fe oxides and clay, two main components of the soils (Muhs et al., 2012). Consequently, interactions between the limestone necessary to produce the karstic landscape, and the volcanic materials that originate the secondary minerals of the terra rossa, are crucial for understanding the character and distribution of the soil cover. On the other hand, volcanic materials contribute to the formation of a sequence of minerals from short range minerals (allophane and imo- golite), ferrihydrite and Al-humus complexes (Wada 1989; Dahlgren etal. 2004) due to the rapid dissolution of volcanie glass (Fieldes, 1955), to their transformation to clay minerals as halloysite and kaolinite (Shoji etal, 1993; Zehetner et al., 2003). However, this transformation takes a long-time span, from centennial to millennial scales (Wada, 1989; Miehlich, 1991; Chadwick and Chorover, 2001; Sedov et al., 2003; Rasmussen et al., 2007; Solleiro-Rebolledo et al., 2015). Earlier studies of the possible role of pyroclastic materials in the soil development on limestones considered only ashfalls. However, in some cases, karstic geosystems could receive other types of volcaniclastic sediments, which could concede some special characteristics to the soil parent materials concerning both their composition and spatial distri- bution. In particular, lahar deposits contain a mixture of volcanoclastic materials moved down valley where they incorporate various types of materials such as soils, vegetation, sediments, etc., with heterogenous granulometry and compositions. Furthermore, this heterogeneity can transform primary minerals faster, as previously weathered materials (eroded soils) are incorporated (Sasaki, et al., 2003; Rasmussen et al., 2007; Díaz-Ortega et al., 2011). In the central-eastern sector of Mexico, two physiographic provinces coincide: the Transmexican Volcanic Belt (TMVB) and the Sierra Madre Oriental (SMO), mainly constituted by limestone, where tropical karst is developed (Espinasa-Perena, 2007). Under these conditions, we study the case of the interaction between volcanic materials from the TMVB and the limestones from the SMO responsible for the soil development. Earlier, we documented the impact of ashfalls from Pico de Orizaba volcano on the soil development in a karstic valley (dolina) also located in the limestone mountains of SMO in Veracruz and associated with archaeological findings of the Archaic period (Ferrand et al. 2014). In the present study, the volcanic materials are not in situ pyroclastic rocks but the product of transportation through lahars, debris avalanches and debris flows (Hubbard et al., 2007; Carrasco-Nuñez et al., 2006), further partly relocated by rivers. The soil cover in the area includes well developed soils such as Acrisols, Fluvisols and Lixisols (Bautista-Zuñiga etal., 1998). These soils have been intensively cultivated with sugarcane (Crespo and Vega-Villanueva, 1988; Bautista-Zúniga et al., 1998) and coffee (Rodríguez-Centeno, 1993; Escamilla-Prado et al., 2014) for de- cades and even centuries. In addition, there is evidence of pre-hispanic settlements since the pre-Classic to the post-classic periods (800 BCE to AC 1521) of the Mesoamerican chronology with monticules and plat- forms made up earth and stone (Miranda-Flores et al., 1994), which unfortunately have been destroyed by the sugarcane cultivation (Beltrán-Malagón,2017). The anthropic activities through time have also affected pedogenesis. We hypothesize that soil diversity and evolution in the Amatlan area are due to the interactions of different parent materials deposited in different geomorphic positions: lahar deposits, limestone, and pyro- clastic sediments, as well as because of the impact of long-term human activities. Consequently, the main goals of this work are to evaluate the influence of the parent materials in the pedogenetic trends and the impact of pre-hispanic and modern landuse. 2. Geographical and geological setting Amatlan is in the eastern side of Mexico, in the Veracruz state (Fig. 1). This area belongs to the Sierra Madre Oriental, where Mesozoic Catena 227 (2023) 107072 limestones are the dominant rocks (González-Alvarado, 1976). Itis part of the zone of Tropical Karst of Fold and Fault-Block Mountains, ac- cording to the map of karst of Mexico (Espinasa-Pereña, 2007). How- ever, it also has the influence of the volcanic rocks from the Transmexican Volcanic Belt (TMVB), where the Citlaltépetl-Cofre de Perote volcanic range (CCVR) is located, at elevations of more than 1000 m asl (above sea level), which includes stratovolcanoes and vol- canic complexes, cinder cones, and silicic lava domes, formed mainly during the Quaternary (Carrasco-Núnez et al., 2010). The eruptive his- tory of the Citláltepetl volcano (Pico de Orizaba), the highest mountain in Mexico (5685 m asl), is constrained to the Quaternary, with eruptions occurring during the Holocene (Siebe et al., 1993; Carrasco-Núñez and Rose, 1995; Rossotti and Carrasco-Núñez et al., 2004), which also in- volves some dacitic lava flows emplaced during historical times (Car- rasco-Núnez, 1997). The area belongs to the Jamapa River Basin that crosses the volcanic ridge to the east and further to the south and southeast (Fig. 1), where it is locally known as Seco River (Pereyra-Díaz and Pérez-Sesma, 2006). Therefore, the Seco River transports the volcanic sediments in its way to the Gulf of Mexico through an elevation difference of around 3000 m. The region's climate is warm and humid, with an annual precipita- tion of 1,807 mm and a mean annual temperature of 18 *C (SEFIPLAN, 2017). The natural vegetation is composed of tropical and subtropical evergreen broad-leaved forest; however, it remains as residuals in few refugia, limited to the mountainous areas, where limestones outcrop. The lower positions are occupied by agriculture, mainly dedicated to the sugar cane and coffee plantations. Sugar cane cultivation started in the area since colonial times, intensifying the production at the beginning of the XX c. (Crespo and Vega-Villanueva, 1988; Thiébaut, 2016). The dominant soils are Vertisols, Fluvisols, Lixisols and Acrisols (INEGI, 1984; Bautista-Zúniga et al., 1998). 3. Materials and methods 3.1. Field survey A relief map was created using LIDAR Digital Elevation Model (DEM) with 5 m of resolution available from INEGI (2012); the maps used were the E14B57E1 and E14B57D2 that correspond to Veracruz Ignacio de la Llave (INEGI, 2012). From this DEM, contour lines were obtained in QGIS and then interpolated with the multidirectional interpolation method (Parrot, 1993). The resulting map considers the sum of the DEM, a hill shade raster (45”), and the slope raster. In addition, the location of the soil profiles was incorporated into the map using a field Garmin eTrex GPS. From the DEM, a geomorphon map was created using the module r. geomorphon, from the library of GRASS GIS inside QGIS, based on Jasiewicz and Stepenski (2013). Soil survey was conducted throughout the region, looking for the places where the influence of soil forming factors and land use could explain the soil diversity. Therefore, different geomorphic positions were visited, where a total of 7 profiles were excavated. Four of them are in parcels cultivated with sugarcane (Saccharum officinarum L.). One profile in a rural road in the same sugarcane parcel, one in a coffee plantation, and one at the limestone foothill, where the forest is still preserved. The profile description was done according to the guidelines of the IUSS Working Group WRB (2015). Bulk samples and undisturbed sam- ples from every genetic horizon were taken for laboratory analyses and micromorphological studies, respectively. We applied HC1 (10%) to every soil horizon to observe the presence of primary (derived from limestones) or pedogenic carbonates. 3.2. Micromorphology Micromorphology provides valuable indicators of pedogenetic 58 E. Solleiro-Rebolledo et al. Catena 227 (2023) 107072 'SMO Sierra Madre Oriental (limestone hills) 9 Town of Amatian de los Reyes, Veracruz UU] Study area e Soil profiles 1 Yunier profile 2 Jaime profile 3 Juacho profile 4. Camino 5 Café profile 6 Cueva profile 8 Rojo profile O flat MM summit MM ridge MEX shoulder EX spur ES slope [E hollow [EA footslope MN valley MM depresion masl 956.42 517.81 Fig. 1. Location of the studied arca: a. castern sector of the Transmexican Volcanic Belt and southern of Sierra Madre Oriental (SMO); b. gcomorphic units identified in the studied arca; e. altimetric map showing the profiles location; e. profiles inside the sugarcane and coffce parcels. processes and could help to discriminate between in situ and redeposited alteration products. Consequently, thin sections were produced from samples with undisturbed structure, which were air-dried and impreg- nated with a polyester resin. Solid blocks were cut and polish to obtain thin sections of 30 jm. They were observed using a petrographic mi- croscope Olympus BX50 equipped with digital camera connected to a computer. We used the Image-Pro Plus 7.0 software for handling the microscopic images. The description was made following the terminol- ogy by Bullock et al. (1985) and Stoops (2003). 3.3. Physical and chemical analyses The samples were dried at 30 ”C for 72 h and separated the < 2 mm fraction through a sieve for the laboratory analyses. The particle size distribution was determined by sieving and pipette methods, after a pre-treatment of H30, at 30% to eliminate organic material, sodium acetate 1 M, pH5, to eliminate the carbonates and dispersion with sodium hexametaphosphate. The sand fraction was separated by sieving. The silt and clay fractions were determined by the pipette method (Flores-Delgadillo and Alcalá-Martínez, 2010). Volumetric magnetic susceptibility was measured in a Bartington MS2B susceptibilimeter to high (xh£) and low frequencies (xlf), 465 kHz and 4.65 kHz, respectively, in acrylic cubes of 8 emi; then the mass magnetic susceptibility (7) was determined dividing the xlf by the sample density. The magnetic susceptibility dependent of the frequency was obtained with the formula: [(xhf-10)/«hf]. The pH and electrical conductivity (EC) values were obtained at a1:5 ratio in water after agitating for 2 hrs. For the pH, we used a potenti- ometer Denver Instrument Ultrabasic, with a glass electrode; and for the EC, a meter Oakton 700. The total carbon was quantified in an elemental analyzer CHNS/O Flash 2000 Thermo Scientific, with a previous elim- ination of the inorganic forms of C with HCl 2 N. This analysis was only done in the organic horizons of the studied profiles. 3.4. Clay mineralogy Clay minerals are the main products of volcanic rocks alteration; their composition is sensitive to the duration and environmental con- ditions of weathering (Wada, 1989). Clay mineral assemblages were studied in six samples from selected horizons of four profiles: 2Bt hori- zon of Rojo, Bt horizon of Cueva, 3Bt and Ap horizons of Yunier and Ah and 2Bt horizons of Café. For clay separation, samples were gently dis- aggregated to avoid artificial grain-size reduction of rock components, then broken into small chips (+1 mm) using a porcelain crusher and dispersed in deionized water. Clay size fraction (<2 hm) was separated in distilled water according to Stoke's law using the most unaggressive method (Moore and Reynolds, 1997). Oriented clay preparations were examined by XRD in the air-dried form (AD), saturated with ethylene glycol (EG) and after heating (550 *C). Measurements were made using an EMPYREAN XRD diffractometer operating with an accelerating voltage of 45 kV and a filament current of 40 mA, using CuKa radiation, nickel filter and PIXcel 3D detector. All samples were measured with a step size of 0.04” (2theta) and 40 s of scan step time over a 20 angle range of 2-80". 4. Results 4.1. Geomorphic units and soil morphology The study area comprises the Jamapa river valley flowing to the southeast (to the Gulf of Mexico) from the Pico de Orizaba volcano with tributaries descending from the surrounding limestone ridges (Fig. 1a, 1b). In this way, they produced a karstic landscape where ridges, spurs and hollows are arranged in the direction of the main river flow, as shown at geomorphon created from the LIDAR DEMs (INEGI, 2012) (Fig. 1b). The altitude ranges from 517 m asl to 956 m asl. Limestone ridges, NW-SE oriented, are located at south of the study area. These landforms have the highest elevations (Fig. 1c, 1d). The rest of the re- gion corresponds to the river valley, where the town of Amatlan has 59 E, Solleiro-Rebolledo et al. Catena 227 (2023) 107072 Table 1 Location of the studied soil profiles and general morphological characteristics. Horizon Depth(cm) Color (dry) Structure Consistence (dry) HCl reaction Roots Observations “DARK” PROFILES Yunier profile, Sugar cane, 18" 511.1" 96"5358.7", 724 m asl, slope 4.9" Ap 0-30 1OYR 4/2 Sab,gr,sm Hard No reaction Abundant — Bigrock fragments. Presence of charcoal 24h 30-55 10YR 4/2 Sab,s Hard No reaction Rare Charcoal and rock fragments 3Ah 55-70 1OYR 5/3 Sab,mb Moderated firm No reaction Present Charcoal, ceramic and rock fragments 3Bt 70-80 1OYR 5/3 Sab,pr,m Firm No reaction Rare Weathered volcanic rock fragments Jaime profile, Sugar cane, 18"5058.9" 96"5359.2", 715 m asl, slope 9.7" Ap 0-15/20 10YR 4/3 Grsab,ysm Hard No reaction Abundant — Charcoal and rock fragments Ah 15/20-60 10YR 4/3 Grsabymb Hard No reaction Present Charcoal and rock fragments 2AB 45-90 1OYR 5/3 Sab,sm Moderately firm No reaction Rare 'coal and rock fragments 281 90-100 1OYR 5/3 — Sabab,pr,m Firm No reaction Rare Rock fragments Juacho profile, Sugar cane, 18'5058.9" 96"5357.6", 702 m asl, slope 7.4” Ap 0-15/20 1OYR 5/2 Grsab,sm Hard No reaction Abundant — Charcoal and rock fragments Ah 15/20-45 10YR 4/3 Grsab,sm Hard No reaction Present Charcoal and rock fragments 24 45-60 10YR 4/3 Grsab,s Firm No reaction Rare Charcoal and rock fragments. Laminations are observable 280 60-80 10YR 4/3 Abprjm Firm No reaction Rare Laminated sediments with rock fragments oriented downslope. RED PROFILES Camino profile, Sugar cane, 18"512.5" 96"540.5", 727 m asl, slope 3.7" Ap 0-50 10YR 4/2 Grs Firma No reaction Abundant — Volcanic rock fragments AB 50-70 10YR5/3 — Sab-g,mb Firm No reaction Abundant — Small volcanic rock fragments 2Bt 70-130 10YR 6/3 Sab,m Firm No reaction Abundant — Abundant rock fragments 2BCt 130-160 10YR 6/3 Sab,m Firm-fragile No reaction Present Rock fragments 28018 160-200 10YR 6/4 Sabm Fragile No reaction None Motiling, abundant very weathered rock fragments Rojo profile, previously cultivated with sugar cane, 18"5040.7" 96"5327.3", 735 m asl, slope 3.7" AB 0-40 7.5YR 4/4 Sabgr,s Fragile Slight reaction — Present Vertical fractures, charcoal fragments 280 40-60 7.5YR4/6 — Sab,sm Firma No reaction Rare Vertical fractures, motiles 2Bt2 60-110 7.SYR5/6 — Sab-pr,meb Hard No reaction None Vertical fractures, mottles 2813 110-160 7.5YR5/6 — Prsab,bm Firm-fragile No reaction None Mottles 2BC >160 7.5YR 6/6 — Sab,m Firm-fragile No reaction None Café profile, cultivated with coffee, 18" 5059.6" 96"5350", 715 m asl, slope 8.4” Ah 0-25 7.5YR5/2 Grs Friable No reaction Abundant — Rock fragments are absent AB 25-50 1OYR 4/6 Gr,sm Friable No reaction Abundant — Rock fragments are absent 280 50-110 1OYR 5/8 Sab-gr,m Fragile No reaction Present Clay coatings, no rocks 2Bt2 110-130 1OYR 5/6 Prsab,m Firm No reaction Present Clay coatings, no rocks 2B13 130-160 1OYR 5/6 Prsab,m Firm No reaction None Small, weathered rock fragments NATURAL PROFILE Cueva profile, natural rain forest, 18" 5044.3" 96"5313", 722 m asl, slope 11.7" Ah 5Y4/2 Gr, s Friable No reaction Abundant — Small volcanic rock fragments AB 5Y4/2 Gr, s Friable No reaction Abundant — Limestone and volcanic rock fragments Bg 30-60 2.5Y5/4 Sab, sm Friable No reaction Abundant — Rock fragments, Fe-Mn conretions. Gr- granular; sab - subangular blocky structure; ab-angular blocky structure; pr- prismatic; s- small size; m — medium size; b — big size. developed. The agriculture fields are distributed between the limestone ridges in the lower elevation areas. We grouped the profiles into two types according to their morpho- logical characteristics (Table 1). “Dark” profiles under sugarcane culti- vation (Fig. 2a): Yunier (P1) and Jaime (P2), located in a low river terrace (Fig. 2b, 2c); and Juacho (P3) at the lowest riverbank (Fig. 2d). “Red” profiles, under different land use: Rojo profile (P8), situated at a higher river terrace (Fig. 1c, 2e, 2f), was cultivated with sugar cane, but nowadays it is not any longer under agriculture; Camino profile (P4), dug in a rural road at the edge of the sugarcane parcel, where we reached the C horizon; Café profile (P5, Fig. 2g)), at a coffee plantation, in a similar geomorphic position than Rojo profile (Fig. 1d). We also selected a profile in a less perturbated condition on the limestone ridges, the Cueva profile (P6, Fig. 1c, 2h, 21), where we tried to identify the direct effect of the calcareous rock in the soil formation. The general morphological characteristics and location are shown in Table 1, although here, we focus the description on: Yunier, Rojo, Café and Cueva, which have distinct attributes. The dark profiles have a similar depth (80 to 100 cm) with several eycles of soil formation, identified by the presence of buried Ah-Bt ho- rizons (Fig. 2b, 2c, 2d). Their colors are similar, as well as their structure and consistency (Table 1). None of their horizons reacts to HCl, and all contain a high amount of charcoal and rock fragments. Most of the rocks are volcanic, despite the nearness to the limestone ridges (Fig. 1a). One of the most notorious differences between the profiles is the presence of artifacts at a depth of 55 cm in the Yunier profile, which is located at a higher elevation where accumulation of big, rounded rocks is found (Fig. 2a). In this area, farmers report the abundance of archaeological Pieces discovered during the tillage. During our field survey, we also found ceramic and obsidian flakes. In the Juacho profile, the contribu- tion of fluvial sediments is clear and lamination of gravels and sand is observed (Fig. 2d). The Rojo profile shows quite different morphology (Fig. 2e, 2f, Table 1): it is much thicker (>2 m) and reddish, with no rock fragments in the whole profile. It is located at a high river terrace. It has AB-2Bt1- 2Bt2-2Bt3-2BC horizons with a subangular blocky structure. Fractures cross the profile from the surface to a depth of 130 cm (Fig. 2a). Charcoal fragments are detected in the upper AB horizon, as well as a slight re- action to HCl. The Café profile is found in a river terrace (Fig. 1d). It is also thick, around 170 cm (Fig. 2g). It has A-AB-2Bt1-2Bt2-2Bt3 horizons. The A and AB horizons are dark brown and very porous, with a high root density. The three Bt horizons are more yellowish and clayey, with a prismatic structure, showing clay coatings at the aggregate surfaces. Small-weathered rock fragments are found in the lowermost part of the profile. The Cueva profile (considered as the natural profile) is at the foot ofa limestone hill, although a high amount of volcanic rocks is observed in the surrounding. The profile is only 60 cm thick and is constituted by Ah- AB-Bg horizons (Fig. 2h, 2i). The upper Ah and AB horizons are dark greyish brown, very porous, and clayey with a high density of roots. The lower Bg horizon is more yellowish. Redoximorphic features are present in the form of Fe-Mn concretions and some mottles. 60 E. Solleiro-Rebolledo et al. Catena 227 (2023) 107072 Fig. 2. Photographies of the studied profiles: Sugar cane parcel; b. Yunier profile (P1)) e. Jaime profile (P2); d. Juacho profile (P3); e. overview of the area where Rojo profile is located; f. Rojo profile (P8); g. Coffee profile (P5); h. rain forest where Cueva profile was studied; i. Cueva profile (P6). 4.2. Soil micromorphology Observations in the thin sections showed certain variety of micro- morphological features in the studied profiles, which can be grouped into two patterns. The first type of pattern corresponds to the sugarcane profiles (“Dark” profiles) as well as the upper Ah horizon of the Café profile. The pattern is characterized by a quite heterogeneous compo- sition: frequent coarse particles, mostly sand and fine gravel, are a immersed in the fine material giving rise to the close porphyric coarse/ fine related distribution. Despite the proximity of the limestone outcrops in the nearby mountain ranges, calcareous fragments are absent in the coarse material. It is completely made up of volcanogenic components: plagioclases, pyroxenes, and amphiboles are dominant in the sand fraction, whereas gravel is made up mostly of andesite fragments. The latter show signs of moderate weathering, mostly in the peripheral parts where plagioclase phenocrysts are partly substituted by pale yellow 61 E, Solleiro-Rebolledo et al. limpid clay (Fig. 3a). We also observed signs of hydrothermal alteration in some rock fragments: ferromagnesian minerals are completely substituted by “bowlingite” (aggregates of clay phyllosilicates, pre- sumably smectite, with high birefringence) and opaque iron minerals (Fig. 3b). The fine material in the B horizons consists of clay with very weak interference colors and predominantly undifferentiated b-fabric type, pigmented with reddish iron oxides. In the 3Bt horizon of Yunier profile, few ferruginous nodules are observed within the groundmass (Fig. 3c), as well as thin clay coatings and infillings in the channels. In the upper Ah and AB horizons, the fine components have a dark color due to the presence of organic pigment-colloidal humus material. Few partly decomposed fragments of plant tissues are located mostly in the pores. However, these horizons are mostly compact, with subangular blocky structure and pore space constituted predominantly of fractures Catena 227 (2023) 107072 Fig. 3. Micromorphological pattern of the first type (lower weathering status); PPL — plain polarized light, N+ - crossed polarizers. a) Large fragment of andesite with evidence of phenocrysts weathering: partial substitution of plagioclases (PI) by clay, etching of pyroxenes (Pi), note also yellow clay precipitation at the contact with soil groundmass. Profile Yunier, 3Ah horizon, PPL. b) Substitution of a ferromagnesian mineral with bowlingite — aggregate of clay minerals with strong interference colors (probably smectite). Profile Yunier, 2Ah horizon, N +. e) Ferruginous nodule of irregular shape. Profile Yunier, 3Bt horizon, PPL. d) Dark humus pigmentation, structure of compact blocks separated by fractures. Profile Jaime, 2AB horizon, PPL. e) Loose infilling of the excre- mental aggregates. Profile Café, A horizon, PPL. f) Cluster of wood charcoal fragments. Profile Yunier, 3Ah horizon, PPL. g) Laminated clay coating with alternating limpid and impure microlayers; note charcoal fragment in the groundmass. Profile Yunier, 3Ah horizon, PPL. h) Aggregate of clayey material with strong ferruginous pigmentation. Profile Yunier 2Ah horizon, PPL, (Fig. 3d). Very few areas with granular coprogenic aggregates and higher porosity are visible. Signs of biological activity and accumulation of organic materials increase in the Ah horizon of the Café profile (Fig. 3e). One of the most remarkable features of these profiles is the presence of wood charcoal fragments not only in the surface Ap horizon but also in the lower 2Ah and 3Ah horizons; most of the charcoal are single particles incorporated into the groundmass, however, sometimes they form clusters (Fig. 3£); many of the charcoals show signs of fragmenta- tion. Already in the 3Ah horizon, some clay coatings appear in the pores, sometimes covering the surfaces of aggregates which incorporate char- coal (Fig. 3g). Additionally, aggregates of clayey material (probably redeposited fragments of a clay-rich soil) with intensive ferruginous pigmentation and having sharp boundaries are incorporated into the 62 E, Solleiro-Rebolledo et al. Catena 227 (2023) 107072 Fig. 4. Micromorphology of the Cueva profile. PPL — plain polarized light, N+ - crossed polarizers. a) Fragments of basalt with dark groundmass and par- allel oriented plagioclase erystals. A horizon, PPL. b) Strong dark humus pigmentation, structure of small blocks of rounded or irregular shape. A horizon, PPL. e) Rounded ferruginous nodules immersed in the clayey groundmass. Bg horizon, PPL. d) Same as 0), N+, note high birefringence of clay and its circular orientation pattern round the nodules. Fig. 5. Micromorphological pattern of the second type (higher weathering status); PPL — plain polarized light, N+ - crossed polarizers. a) Booklet-like aggre- gate of platy crystals of kaolinite. Profile Café, 2Bt3 horizon, PPL. b) Same as a), N +. c) Strongly weath- ered andesite fragment: plagioclases are completely substituted by clay pseudomorphs, boxwork aggre- gates of iron oxides are replacing ferromagnesian minerals, rock groundmass is converted into ferrugi- nous fine material. Profile Rojo, 2Bt1 horizon, PPL. d) Fragmented illuvial coatings of limpid clay incorpo- rated into groundmass. Profile Rojo, 2Bt1 horizon, PPL. e) In situ illuvial clay coating with ferruginous pigmentation. Profile Rojo, 2Bt1 horizon, PPL. f) Same as e), N+, note interference colors of the clay coating. 63 E, Solleiro-Rebolledo et al. groundmass of all horizons of this group (Fig. 3h). Thin sections from the Cueva profile can be considered to belong to the same first micromorphological pattern; nevertheless, it demon- strates some specific features. The coarse material in the upper Ah ho- rizon is better sorted: it consists predominately of medium sand, whereas the coarser gravel particles are absent. Most sand particles are Plagioclases, but there are also rock fragments. These rock fragments are dark basalts with small, elongated plagioclase crystals, parallel oriented (Fig. 4a); this rock type is quite different from the lighter colored andesite encountered in the profiles described above. The Ah horizon of the Cueva profile has the strongest dark humus pigmentation and spe- cific structure of small, rounded blocks (Fig. 4b). Only in the lower Bg horizon of this profile we found the fragments of calcareous rock immersed in the fine clayey material. This horizon is compact and contains frequent rounded ferruginous nodules (Fig. 4c); contrary to other soils, here we observed strong interference colors of the fine clayey material with striated b-fabric; thick areas of oriented clay are also observed around nodules (Fig. 4d). The second type of micromorphological pattern is observed in the “Red” profiles (the Rojo profile and in the lower horizons of the Camino and Café profiles), which are characterized by the overwhelming dominance of the fine clayey material colored to varying degrees with reddish ferruginous pigment that gives rise to the open porphyric coarse/fine related distribution. Coarse particles are very few and pre- sented predominantly by weathering resistant minerals: quartz grains with undulatory extinction and booklet-like kaolinite aggregates (Fig. 5a, 5b). Fragments of volcanic rocks are very few and show signs of advanced weathering: plagioclases are completely substituted by clay forming pseudomorphs, boxwork aggregates of iron oxides are replacing ferromagnesian minerals, the rock groundmass is substituted by dark- brown ferruginous fine material (Fig. 5c). Clay illuvial pedofeatures are abundant and presented by at least two generations. The first consist of pale-yellow limpid clay bodies with weak interference colors. Most of them lost their relation to the pore space and are incorporated into the groundmass, fragmented, and deformed (Fig. 5d). The second genera- tion are darker brown-yellow coatings and infillings are encountered in the voids and fissures (Fig. 5e). Their interference colors are usually stronger (Fig. 5f). Frequent ferruginous nodules and mottles are observed in the groundmass. These horizons are also compact, blocky, with very few areas affected by biogenic aggregation. 4.3. Physical and chemical properties The profiles have similar grain size distribution, with high percent- ages of clay, ranging from 50 to 94% (Table 2), except for the Camino profile, which has a higher amount of sand and silt. The amount of sand and silt is quite homogeneous in the “Dark” profiles (20-33%), with a slight increment in the surficial horizons. Regarding the silt fraction, it shows a heterogenous behavior in the Rojo profile, while in the Cueva profile, the percentage decreases with depth. The highest values of magnetic susceptibility correspond to the sugarcane profiles > 4.0 um*kg*, while the Café and Rojo and the lower horizons of the Camino profiles show lower y. In the case of the yfd%, percentages are close to 2% practically in all soils (Table 2). The organic carbon contents of the A and AB horizons vary between 4.3% (Ap of Café profile) to 0.8% in the AB horizon of the Rojo profile. The soils cultivated with sugar cane have similar values in the Ap ho- rizon (around 3%), decreasing to 2 and 1% in the buried A horizons (Table 2). In the Cueva profile, the surficial horizon has 4%. Concerning the pH, the sugarcane profiles are acid. In the Rojo and Café profiles, only the uppermost horizons are alkaline. The reaction in the Rojo lower horizons is acid, but in the Café, they are neutral. The Cueva profile is acid in its surface, becoming alkaline in the Bg horizon and with higher values of EC. This property also shows high values in the Ap horizons of all horizons. Catena 227 (2023) 107072 and chemical properties of the studied profiles. Horizon Sand Silt Clay x Xi TOC pH EG % e % % % uS/cm Yunier Ap 27 23 50 5.7 32 55 150 24h 24 16 60 6.0 22 60 75 3Ah 23 15 62 5.2 13 60 50 3Bt 20 6 74 54 Nd 65 75 Jaime Ap 26 22 52 5.6 3.1 70 Ah 22 20 58 5.4 2.7 50 2AB 23 20 57 6.0 1.2 50 28 27 17 56 48 22 Nd 65 40 Juacho Ap 27 20 50 4.0 16 31 60 100 Ah 25 16 53 4.4 17 29 61 60 24 24 13 60 49 20 17 60 50 280 20 ”n 62 53 19 Nd 60 50 Camino Ap 33 34 33 5.0 19 20 65 180 AB 27 41. 32 3.6 22 13 64 60 Bt 26 33 41 5.2 28 Nd 62 50 BCt 27 39 33 2.4 24 Nd 62 60 BCtg 24 28 48 2.5 24 Nd 60 80 Rojo AB 3 32 65 23 0.8 200 280 5 4 91 2.4 Nd 20 2812 1 16 83 29 Nd 30 283 1 94 3.8 Nd 20 Café Ah 9 30 61 3.5 23 43 280 AB 3 26 74 43 17 25 210 280 2 14 84 3.2 27 Nd 90 2812 2 15 83 28 16 Nd 100 2813 2 20 78 3.4 24 Nd 110 Cueva Ah 7 19 74 Nd Nd 40 65 350 AB 10 773 Nd Nd 10 61 100 Bg 12 9 79 Nd Nd—— Nd 78 350 Nd — not determined. 4.4. Clay mineralogy The clay mineralogical composition is quite simple since basically two pure components -without mixed layers- were identified. The first component identified in all the samples is a 1:1 type mineral from the kaolinite group characterized by basal space of 0.7 nm in air-dried samples, intermediate crystallinity (FWHM < 1? of 2Theta), no modi- fied by glycolation, and that disappear when heated. For a more precise identification of this component, we also used the non-basal 0.44 nm peak: itis known to be high for dehydrated halloysite and very weak for true kaolinite (Dixon, 1989). In all studied samples the 0.44 nm maximum was quite prominent that points to the presence of halloysite within the 1:1 type clay mineral. The second is the smectitic component, whose presence in four samples was confirmed by a very clear (001) reflection at about 6” 20 in the air-dried condition that shifted to about 5.2” 20 in the ethylenglycol treated sample and collapsed to 1 nm by heating. However only in the Cueva Bt sample, the intensity of this maximum is strong and comparable to that of the kaolinitic whereas in the other 3 samples (Yunier Bt, Yunier Ap, Café 2Bt), it is quite weak indicating minor quantities of the smectitic component. The ¡llitic component (1.0 nm) is only observed in the Café Ah sample as accessory (<5%). Based on the presence of the two principal minerals, two groups of samples have been discriminated. In the first group (basically repre- sented by the Cueva Bt sample), the smectitic and kaolinitic minerals are equally abundant (Fig. 6b). The second group of samples is character- ized by the predominance of kaolinitic component and with a minor presence (Yunier Bt, Yunier Ap, Café Ah, Café 2Bt samples) or total absence (Rojo 2Bt sample) of the 2:1 component (Fig. 6a). 64 E, Solleiro-Rebolledo et al. Catena 227 (2023) 107072 Café 2Bt (550"C) Café 28t (EG) ——- Café 28t (AD) 17 nm 10 nm 0.7 n m Fort" Get) E E b AT SE Cueva Bt (500*C) E Cueva Bt (EG) ESE ——- Cueva Bt(AD) ES A) AAA AAA 6 8 10.12 141618 20.22 24 26 28 30 92 34 36 38 40 42 44 46 48 50 2 Theta K,Cu AAA AAA 6 8 10.12 14 16 1820.22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 2 Theta K,Cu Fig. 6. XRD patterns of clay fraction of two representative samples: a. 2Bt horizon of the Café profile; b. Bt horizon of the Cueva profile, AD = air dried samples; EG = glycolated samples and 550 “C = heated (550 *C) samples. 5. Discussion 5.1. Natural pedogenesis: The influence of limestone and/or volcanic rocks as parent materials The typical image of soils developed on limestones corresponds to thick, red, and clayed soils known in the literature as terra rossa (Yaalon, 1997; Durn et al., 1999) and to thin, black, and clayey soils, classified as rendzic Leptosols (Singer, 1988; IUSS Working Gropu WRB, 2015). In the study area, although the nearness to the limestone hills, the profiles have apparently no signs of the influence of calcareous materials, except for that located directly in the foothills (Cueva), which is thinner and have a direct contact with the limestone (Fig. 21). Consequently, the pH and the electric conductivity values in the lowermost horizon increase (Table 2). Also, in the Ah horizon, an incomplete leaching, due to the proximity of the limestone, promotes the accumulation of dark humus and strong aggregation, observed in thin sections (Fig. 4b. Table 1). However, we observe the influence of volcanic materials in this profile, particularly in the uppermost horizons, where plagioclases and small basalt fragments are present (Fig. 4a). Interestingly, the y values are quite high and similar to those determined in the other profiles, because volcanic minerals increase the magnetic susceptibility values over the contribution of limestone or calcite (Begét et al., 1990; Orgeira et al,, 1998; Rivas et al., 2006; 2012). The rock fragments and minerals look very fresh (Fig. 4a, b). In this case, we suppose the rocks can be related to slope processes that redistributed the ashfalls* material. Carrasco and co-authors (2021) documented several eruptions of basaltic composition from the neighboring volcanoes, but it is more difficult to associate to a specific event. Quite similar characteristics were reported earlier in the soils formed under humid tropical conditions in a karstic geosystem of SMO containing volcanic ash of Pico de Orizaba eruptions of rather similar age (Ferrand et al., 2014). In contrast to these basalt fragments, in the rest of the studied soils, light-colored andesitic rocks are found. This indicates that in the soil parent materials at different geomorphic positions, there are different sources of volcanic materials. The volcanic inputs heterogeneities into the soils can contribute to the differentiation of the profiles. We consider that the parent material of the “Dark” profiles and the upper horizon of the Café profile correspond to one type of volcanic material. Although they contain a high amount of clay, they also have an elevated per- centage of sand (Table 2) conformed by volcanogenic minerals and rock fragments, visible at different depths in the profile and under the mi- croscope (Fig. 3a, 3b, 3c). Furthermore, we attribute higher magnetic susceptibility values in these soils to the presence of still unweathered coarse, primary, volcanogenic, magnetic minerals. These values could hardly be explained by pedogenetic enhancement because the frequency dependence yfd% is below 3%; that means that the contribution of fine grained neoformed magnetic components to the susceptibility values is rather small. The possible type of parent material can be associated to lahar deposits. Lahars are masses of rocks, pyroclastic materials, soils, etc. moved downslope by the water action and gravity. As two of the components of this type of sediment are clay and soils, the new soil formation occurs faster than on an unweathered material as observed by Sasaki et al. (2003) in Mt. Pinatubo, Indonesia and by Díaz-Ortega et al. (2011) in central Mexico. In the study area, the geological surveys have documented the occurrence of avalanches and lahars associated with the unstable volcanic ranges such as Pico de Orizaba and Cofre de Perote volcanoes (Carrasco-Núñez et al., 2006, 2021; Vázquez-Ríos-Franco- Ramos, 2022). According to Carrasco-Núñez et al. (2021), the Amatlan region is covered by a volcaniclastic material from the Tetelzingo lahar, which has a “mixture of pebbles-to-boulders supported by a yellow- brown clayey matrix” which corresponds to an avalanche induced lahar, with hydrothermal rocks. The description fits well with our ob- servations: besides volcanic rock clasts, including Hhydrothermally altered ones (Fig. 3a, 3b), fragments of redeposited clayey soils are observed that still are recognizable within the soil matrix (Fig. 3h). Consequently, we can assume that one of the sources of the observed volcanic materials is the Tetelzingo lahar. The age of this eventis 16.5 ka (Carrasco-Núnez et al, 2021) which provides the estimate for the duration of soil development. Micromorphological observations help to detect the specific pedo- genetic processes that could occur in these profiles over this time span. Besides relatively fast aggregation and humus accumulation (Fig. 3d and e), transformation and redistribution of mineral components already took place, although their rates are slow (Targulian and Krasilnikov, 2007). Moderate weathering alters peripheral rocks, partly converting the primary minerals into secondary products: clay and iron oxides (Fig. 36). Clay illuviation is clearly indicated by undisturbed clay illuvial pedofeatures (Fig. 3g), observed throughout the profile but more developed in the Bt horizons. This downward migration of fine material could be responsible for clay enrichment observed in the lower part of the profiles. Redoximorphic (Stagnic) processes resulted in the intra- horizontal redistribution of iron and the formation of ferruginous nodules. We conclude that the fine mineral material of the soils of this group, consisting predominantly of clay minerals and iron oxides, has multiple sources: 1) Inheritance from the parent lahar sediment, where in turn could 65 E, Solleiro-Rebolledo et al. be originated from: - Pre-existing clayey soils, destroyed and re deposited by lahars. - Hydrothermally altered volcanic rocks transported by lahar and incorporated into the sediment. 2) In situ soil weathering. Relative contribution of each source is still contradictory. On one hand, micromorphological observations have led to the preliminary conclusion that inputs could be of a similar scale and that the advance of the in-situ weathering differs within each group of profiles. In the case of the most developed “Red” profiles, Rojo, Camino, and Café, where nearly no rock fragments are observed, and when present, they are very altered (Fig. 5c), we consider that they represent a more ancient surface, The profiles have the highest percentages of clay, >80% (Table 2), an intense rusty color (Fig. 2e, 2f), presence of kaolinite (Fig. 5a, b, Fig. 6a), with even more than one generation of clay illuvi- ation (Fig. 5e, f). The lower values of magnetic susceptibility in the “Red” group could be explained with the loss of primary volcanogenic magnetic minerals due to long term of soil development under tropical environments (Table 2). On the other hand, the clay mineralogy gives somewhat a different impression about the variability of weathering degree between the studied profiles. All profiles developed on lahar parent material have a clay mineral assemblage dominated by kaolinitic component with moderate crystallinity and a high proportion of halloysite. This is a quite typical product of volcanic materials weathering under humid and sub- humid climate (Wada, 1989), during sufficient time intervals (usually > 10 ky) to bypass the initial allophanic stage of alteration (Miehlich, 1991; Zamotaev and Targulian, 1994). It was unexpected for us, how- ever, to find no differences between two groups of profiles (“Dark” and “Red") which differ regarding the development of the micromorpho- logical weathering features. Two scenarios could be suggested to explain this uniformity: 1) In both groups, large part of clay minerals is inherited from the lahar parent material where pre-existing soils and alterites are incorporated. 2) It is possible that the more advanced alteration of volcanogenic minerals in the “Red” group was not yet accompanied by the synthesis of more mature secondary products than those of the less altered “Dark” profiles. Thus, the differences between these two groups are rather quantitative (the amount of decomposed primary minerals) than quali- tative (type of neoformed components). We consider that a scenario integrating both possibilities could be the most probable. Notorious difference of the clay mineral assemblages is observed between the terrace soils on lahars and slope profile (Cueva) on rede- posited ash. In the latter large amount of smectitic component was detected. Usually, smectite is formed in environments with elevated pH and high concentration of basic cations due to restricted leaching (Borchardt 1989). Therefore, it is more abundant in the semiarid regions (climatic limitation of leaching). Smectites could also accumulate in poorly drained low landforms and depressions (geomorphic limitation of leaching) (Kantor and Schwertmann, 1974). In our case weathering occurs under tropical humid climate in a well-drained elevated position. We conclude that in this case, leaching limitation is imposed by the proximity to the underlying calcareous rocks which is easily soluble and produces abundant cations in the soil solution, neutralizing acidity and reducing the alteration potential (Table 2). It is interesting that similar bicomponent clay mineral assemblages: kaolinate together with 1.4 nm mineral of 2:1 type (vermiculite or smectite) were encountered also in other karstic soils of tropical Mexico, in the Yucatan peninsula (Sedov etal., 2008). We also should not exclude hydrothermal origin of at least part of smectites and other 2:1 clay minerals in our profiles as proposed by Mizota and Faure (1998). The obtained results show quite unusual geomorphological distri- bution of the clay mineral compositions. In the typical tropical catenas, eg. “Red — Black” sequences, the soils of the upland positions are kaolinitic, whereas smectite accumulates at the lowlands (Kantor and Catena 227 (2023) 107072 Schwertmann, 1974); similar pattern was observed also in the volcanic soil toposequence in the central part of Transmexican Volcanic Belt (Díaz-Ortega et al., 2011). However, in the studied case the tendency is inverse, that could be influenced by the composition of parent materials as described above. The source of the lahar-type parent material and timing of its deposition is more difficult to establish, and we suppose that our pedogenetic research could contribute solving to this problem. Carrasco- Núnez et al. (2021) mapped a volcaniclastic sequence (Coastal Plain volcaniclastic sequence) with ages>65 ka, described as distal facies of “diluted debris avalanches, lahars, and fluvial events”. We suppose this type could be the parent material of the soils of the more weathered group, and their specific features should be attributed to a much longer time of pedogenesis. In this case, a major part of the fine mineral soil components is neoformed in situ and to lesser extent, inherited from the parent sediments. The specific cases when less weathered materials overly deeply weathered substrates (as in Café profile) we explain with the polycyclic soil development: younger thin lahar was deposited on top of the older soil profile and then also transformed by pedogenesis. As a result, a pedocomplex (Smoltikováa, 1967) or welded soil (Ruhe and Olson, 1980) is developed. Thus, our pedological results could have important applications for developing regional scenarios of geological and geomorphiological evolution. Volcaniclastic deposits form a significant part of sedimentary sequences and geoforms of the river Jamapa valley. The grade of soil development and especially their weathering status could be used to discriminate between different generations of lahars and avalanches, providing an indicator for relative age estimation. 5.2. The effect of long-term human activitics in the pedogenetic trends Both present day agricultural activity and residential areas and all archaeological and pedological indicators of ancient human activity are concentrated in the river valley on the “terraces” (that in fact are the landforms formed predominantly by volcaniclastic deposits) and thus closely related to the thick red soils. Steep slopes of the limestone hills are currently occupied by the tropical forest, where human impact is limited to the extraction of timber and some wild plants. Rendzinas developed in these positions do not show signs of anthropogenic transformation. The clearest evidence of the human impact is encountered in the sugarcane profiles, where signs of the recent intensive cultivation are overprinted on the features generated by the impact of ancient pre- hispanic population, which inhabited the site at least since 800 BCE (Miranda-Flores et al. 1994). This impact is evident by the presence of artificial monticules made of earth and stones, documented by Miranda- Flores et al. (1994). The monticules have been destroyed by cultivation (Beltrán-Malagón, 2017); the rest of big stones is still visible, although the farmers moved them to the field plot boundaries. Besides these materials, we observed fragments of ceramic sherds and obsidian flakes. The presence of charcoal in the lower 3Ah and 2Ah of Yunier and Jaime profiles, respectively (Fig. 3£, 38), is another sign of human activities. The amount of charcoal fragments in those horizons is more abundant than in the uppermost horizons, where there are just few remains of charred materials despite every year burning as a common practice for sugarcane harvest. We interpret the rather deep occurrence of charcoal in the sugarcane profiles by: anthropogenic mixing in the uppermost profile Yunier and human-induced colluviation in the Jaime profile located on the lower slope position. We further speculate that long-term incorporation of the organic-rich anthropogenic materials (especially household wastes) at the ancient settlement could be responsible for this deep dark pigmen- tation. In this respect, the higher profiles of the sugarcane group resemble Amazonian Dark Earths (Terra Preta and Terra Mulata), soils with deep dark-colored horizons formed at the ancient settlements under humid tropical climate within the Amazon River basin 66 E. Solleiro-Rebolledo et al. (Sombroek, 1966). The similarity includes the geomorphological and pedological background conditions. As in case of Terra Preta/Terra Mulata, the studied profiles in this work: 1) are formed in a river valley landscape, close to a riverbed, however already at a non-flooded land- surface, and 2) anthropogenic transformation has affected profoundly weathered natural soils (Lima et al., 2002; Arroyo-Kalin, 2017). Avail- able micromorphological results from Amazonian Dark Earth (Lima etal., 2002, Arroyo-Kalin, 2017; Macedo et al., 2017) demonstrate quite similar features: abundance of charcoal particles and quite compact arrangement and blocky structure of the sub-surface pretic horizons. Macedo et al. (2017) report small-scale clay illuviation in the Brasilian Terra Preta, a very similar feature observed in the Yunier profile (Fig. 3g). Irregular shape with tortuous boundaries of the ferruginous nodules (Fig. 3a) also resembles the observations of Macedo et al. (2017) in the Brasilian Terra Preta, who explain this feature with partial dissolution of original nodules due to water stagnation and higher bio- logical activity in these soils. In general, quite similar model, which combines long-term incorporation of the household wastes with mixing and short distance redeposition of soil material was proposed for Amazonian Black Earth development (Erickson 2003). Important dif- ference, however, consists in the weathering status of the original nat- ural soils: the Amazonian Black Earths are derived from much more altered ferralitic soils of Oxisol or Acrisol type. Present day human impact in the studied profiles (except Café and Cueva) consists in intensive cultivation, fertilization and regular burning before harvesting. We think that this drastic impact results in a con- tradictory character of the upper plough horizon: it is quite rich in organic materials (both colloidal humus and organic residues) but has very few signs of biogenic aggregation. Instead, their structure in formed predominantly by blocks separated by fractures, and the material in general, is quite compact. Burning and fertilization can also result in higher pH and EC values of these horizons, due to liberation (in the case of buming) or addition (fertilization) of alkaline cations (Scharenbroch etal. 2012; Ulery et al., 1993). By the other side, in the Café profile, the human impact has a lower impact in the soil, as practically, most of the profile looks natural. The most remarkable observation is the well ag- gregation of the Ah horizon with abundant biogenic activity (Fig. 38), which contrasts with the compact subangular to angular blocky strue- ture of the sugarcane profiles, where the complete ped groundmass is impregnated with dark organic matter, with less bioturbation (Fig. 3d). This different land use has a high impact in the preservation of the soil structure as documented by Pagliai et al. (2004) and Deeb et al. (2021). Different investigations have shown a decrease in soil quality after long periods of sugarcane cultivation (e.g. Hartemink, 1998; Deeb et al., 2021). We consider that the input of volcanic materials to these Anthrosols has been positive as a source of fresh silicate minerals that can be incorporated later by fluvial activity, with different flows coming from the volcanic area (Fig. 1b). Commonly, soils formed from limestone substrates are thin, as in the case of rendzic Leptosols or less fertile as the terra rossas (Alberti et al., 2018), but even rendzic Leptosols with high contents of organic matter under agriculture management, can lose their C stocks easily (Tejedor et al., 2017). 6. Conclusions The genesis of the studied soils demonstrates a complex interaction between volcaniclastic sedimentation and karstified calcareous bedrock, controlled by geomorphic processes. Lahar deposits flowing down from. the Pico de Orizaba volcano have contributed with fresh volcanic min- erals, alterites and reworked clayey soils, forming two kinds of soils: “Dark” and “Red”, with distinct micromorphological patterns. “Dark” profiles show a heterogeneous composition with coarse particles immersed in fine material, where hydrothermal alteration is visible. Their fine mineral material has been both inherited from lahar sedi- ments and formed in situ by weathering. Relative contribution of each source is still contradictory. “Red” profiles are characterized by the Catena 227 (2023) 107072 overwhelming dominance of fine clayey material, developed for longer periods on a more ancient geomorphic surface with the contribution of lahar sediments deposited around 65 ka. Regarding the human impact, we suggest that long-term incorpora- tion of organic-rich anthropogenic materials (especially household wastes) could be responsible for the dark humus pigmentation combined with the deeply weathered mineral matrix, producing soils like Amazonian Dark Earths (Terra Preta and Terra Mulata). Such combi- nation is quite rare in the Mexican tropics. Declaration of Competing Interest The authors declare the following financial interests/personal re- lationships which may be considered as potential competing interests: [Elizabeth Solleiro-Rebolledo reports financial support was provided by National Autonomous University of Mexico. Sergey Sedov reports financial support was provided by National Autonomous University of Mexico. Elizabeth Solleiro-Rebolledo reports a relationship with Na- tional Autonomous University of Mexico that includes: employment and funding grants.]. Data availability Data will be made available on request. Acknowledgments We acknowledge the financial support given by the projects PAPIIT- DGAPA IN105819 ($. Sedov) and IN107920 (E. Solleiro-Rebolledo). We thank Jaime Díaz-Ortega for his support during the field work and thin sections” preparation. We also recognize René Alcalá-Martínez for his important contribution to the soil analyses. Ofelia Beltrán-Paz helped with the total organic carbon determinations. The corrections and sug- gestions made by the reviewers contributed to increase the quality of the paper. Finally, we highly appreciate the support given by Angel Reyes and Joaquín Martínez during the different field work seasons. References Alberti, G., Grima, R., Vella, N.C., 2018. The use of geographic information system and 1860s cadastral data to model agricultural suitability before heavy mechanization. A case study from Malta. PLoS ONE 13 (2), e0192039. https://doi.org/10.1371/ journal. pone.0192039. Arroyo-Kalin, M., 2017. Las tierras antrópicas amazónicas: algo más que un puñado de tierra. En: Las Siete Maravillas de la Amazonía precolombina. In: Rostain S., Jaimes- Betancourt, C. (eds). La Paz, 4-EJAA/BAS/Plural Publicaciones, 99-11 pp. Bardossy, G., 1982. Karst bauxites. Elsevier, Amsterdam, p. 441, Bautista-Zúñiga, F., Rivas-Solórzano, H., Durán de Bazúa, C., Palacio, G., 1998. Caracterización y clasificación de suelos con fines productivos en Córdoba, Veracruz, México. Investigaciones Geográficas Boletín 36, 21-33. Begét, J.E., Stone, D.B., Hawkins, D.B., 1990. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late quaternary. Geology 18, 40-43, Beltrán Malagón, M.B., 2017. El impacto del cultivo de la caña de azúcar en la conservación de los sitios prehispánicos de la región de Córdoba, Veracruz. Ulúa 29, 229-246. Borchardt, G., 1989. Smectites, In: Dixon, J.B., Weed, S.B, (Eds.), 1989. Minerals in Soil Environments, second ed. Soil Science Society of America Book series. Madison, Wisconsin, USA, pp. 675-727. Bronger, A., Sedov, S., 2003. Vetusols and paleosols: natural versus man-induced environmental change in the Atlantic coastal region of Morocco. Quat. Int. 106-107, 33-60. Cabadas Báez, H., Solleiro- Rebolledo, E., Sedov, S., Pi, vama-Castro, J., 2010a. Pedosediments of karstic sinkholes in the colianites of NE Yucatán: a record of Late Quaternary soil development, geomorphic processes and landscape stability. Geomorphology 122, 323-337. Cabadas-Báez, H., Solleiro-Rebolledo, E., Sedo, S., Pi, T., Alcalá, J.R., 2010b, The complex genesis of red soils in Peninsula de Yucatan, Mexico: mineralogical, micromorphological and geochemical proxies. Eurasian Soil Sci. 43, 1-19. Carrasco-Núñez, G., 1997. Lava flow growth inferred from morphometric parameters: a tudy of Citlaltépetl volcano, Mexico. Geol. Mag. 134 (2), 151-162 Carrasco-Núñez, G., Hernández, J., Cavazos-Álvarez, J., Norini, G., Orozco-Esquivel, T., López-Quiroz, P., Jáquez, A., De León-Barragán, L., 2021. Volcanic geology of the case 67 E. Solleiro Rebolledo et al. easternmost sector of the Trans Mexican Volcanic Belt, Mexico. J. Maps 17 (2), 486-496. https: //doi.org/10.1080/17445647.2021.197003. Carrasco-Núñez, G., Rose, W.I., 1995. Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), Mexico, 8.5-9.0 ka. J. Volcanol. Geothermal Res. 69, 197-215. Carrasco-Núñez, G., Díaz Castellón, R., Siebert, L., Hubbard, B., Sheridan, M.E., Rodríguez, S.R., 2006. Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: the role of sloping substrate and implications for hazard assessment. J. Volcanol. Geothermal Res, 158 (1-2), 151-176. https://doi.org/10.1016/j. jvolgeores.2006.04.025, Carrasco-Núñez, G., Siebert, L., Díaz-Castellón, R., Vázquez-Selem, L., Capra, L., 2010. Evolution and hazards of a long quiescent compound shield like volcano: Cofre de Perote, Eastern Trans Mexican Volcanic Belt. J. Volcanol. Geothermal Res. 197, 209-224. https://doi.org/10.1016/jjvolgeores.2009.08.010. Chadwick, O.A., Chorover, J.C., 2001. The chemistry of pedogenic thresholds. Geoderma 100, 321-353 Comer, J.B., 1974. Genesis of Jamaican bauxite, Econ. Geol. 69, 1251-1264 Crespo, H., Vega- Villanueva, E., 1988. Estadísticas históricas del azúcar en México. México, D.F., Azúcar S.A. Dablgren, R.A., Saigusa, M., Ugolini, F., 2004. The nature, properties and management of volcanic soils. Adv. Agron. 82, 113-182. Deeb, M., Grimaldi, M., Aroui, H., Mthimkbhulu, S., Van Antwerpen, R., Podwojewski, P., 2021. Long-term effect of sugarcane residue management and chemical fertilization on soil physical properties in South Africa. Soil Sci. Soc. Am. J. 85 (6), 1913-1930. Díaz-Ortega, J., Solleiro-Rebolledo, E., Sedov, S., 2011. Spatial arrangement of soil mantle in Glacis de Buenavista, Mexico as a product and record of landscape evolution. Geomorphology 135, 248-261. Dixon, J.B., 1989. Kaolin and Serpentine Group Minerals. In: Dixon, J.B., Weed, S.B. (Eds.), 1989. Minerals in Soil Environments, second ed. Soil Science Society of America Book series. Madison, Wisconsin, USA. pp. 467-525. Durn, G., 2003. Terra rossa in the Mediterranean region: parent materials, composition and origin, Geol. Croat. 56, 83-100. Durn, G., Ottner, F., Slovenec, D., 1999. Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia, Geoderma 91, 125-150. Erickson, C., 2003. Historical ecology and future explorations. In: In Lehmann, J., Kern, D., Glaser, B., Woods, W.I. (Eds.), Amazonian Dark Earths: Origins, Properties and Management. Springer, Dordrecht, pp. 455-500. https://doi.org/10.1007/1 4020 2597 1. Escamilla-Prado, E., Castillo-Ponce, G., Díaz-Cárdenas, S., 2014. Aspectos agroecológicos del café en Veracruz. In Palacios- Rangel, M.L, Ocampo-Ledesma, J., Lozano- Toledano, A. (coord.), Veracruz: agricultura e historia. Universidad Autónoma de Chapingo, Centro de Investigaciones Económicas, Sociales y Tecnológicas, de la Agroindustria y la Agricultura Mundial. Texcoco, México, pp. 63-88. Espinasa-Pereña, R., 2007, El Karst de México, Mapa NA III 3. In Coll- Hurtado, A. (coord.), Nuevo Atlas Nacional de México: Instituto de Geografía, Universidad Nacional Autónoma de México. Ferrand, P.A., Solleiro-Rebolledo, E., Acosta, G., Sedov, S., Morales, P., 2014. Archaic settlement in El Tebernal, Veracruz: First insights into paleoenvironmental conditions and resource exploitation. Quat. Int. 342, 45-56. Fieldes, M., 1955. Clay mineralogy of New Zealand soils. Part 2. Allophane and related mineral colloids. N.Z. J. Sci. Technol. B37, 326-350. Ford, D.C., Williams, P.W., 2007. Karst Hydrology and Geomorphology. Wiley, Chichester, UK, González-Alvarado, J., 1976. Resultados obtenidos en la exploración de la Plataforma de Córdoba y principales campos productores. Boletín de la Sociedad Geológica Mexicana XXXVII 53-59. https://doi.org/10.18268/B8GM1976437n2a1. Hartemink, A.E., 1998. Changes in soil fertility and leaf nutrient concentration at a sugar cane plantation in Papua New Guinea. Communications in Soil Science and Plant Analysis 29 (7-8), 1045-1060. Irt1ps://doi org.pbidimam.n1x:2443/10.108 0/00103629809370006. Hubbard, B.E., Sheridan, M.F., Carrasco Núñez, G., Díaz Castellón, R., Rodríguez, S.R., 2007. Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. J. Volcanol. Geothermal Res. 160, 99-124, https://doi.org/10,1016/j.jvolgeores.2006.09.005, INEGI, 2012. Modelos Digitales de ión de Alta Resolución LIDAR, con resolución de 5m. Terreno, Veracruz Ignacio de la Llave. INEGI, 1984. Carta Edafológica, Veracruz E14-3. Escala 1:250,000. Instituto Nacional de adística, Geografía e Informática. 'S Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International Soil Cla ¡ion System for Naming Soils and Creating Legends for Soil Maps, 106. World Soil Resources Reports No, Rome. Jasiewicz, J., Stepinski, T.F., 2013. Geomorphons. A pattern recognition approach to classification and mapping of landforms. Geomorphology 182, 147-156. Kantor, W., Schwertmann, U., 1974. Mineralogy and genesis of clay in red-black soil toposequences on basic igneous rocks in Kenya. J, Soil Sci. 25, 67-78. Lan, X., Ding, G., Dai, Q., Yan, Y., 2022. Assessing the degree of soil erosion in karst mountainous areas by extenics. Catena 209 (Part 1), 105800. https: //doi.o1g/ 10.1016/j.catena.2021.105800. Lima, H.N., Schaefer, C.E.R., Mello, J.W.V., Gilkes, R.J., Ker, J.C., 2002. Pedogenesis and pre Colombian land use of “Terra Preta Anthrosols” (“Indian black eartly”) of Western Amazonia. Geoderma 110, 1-17. Macedo, R.S., Teixeira, W.G., Corréa, M.M., Martins, G.C., Vidal Torrado, P., 2017. Pedogenetic processes in Anthrosols with pretic horizon (Amazonian Dark Earth) in Central Amazon, Brazil. PLoS ONE 12 (5), 0178038. https://doi.o18/10.1371/ journal.pone.0178038. Catena 227 (2023) 107072 Merino, E., Banerjee, A., 2008. Terra Rossa Genesis, Implications for Karst, and Eolian Dust: A Geodynamic Thread. J. Geol. 116, 62-75. Miehlich, G., 1991. Chronosequences of volcanic asha soils: Hamburg, Chronosequences of Volcanic Ash Soils. Hamburger Bodenkundliche Arbeiten 15, 207 p. Miranda-Flores, F., Rodríguez, M., Becerril, L, 1994. Proyecto de rescate arqueológico de la autopista Córdoba-Veracruz, tramo 1 Córdoba-Cotaxtla. Informe final. Volumen 1, Archivo Técnico del Instituto Nacional de Antropología e Historia, México. Mizota, C., Faure, K., 1998, Hydrothermal origin of smectite in volcanic ash. Clays Clay Minerals 46, 178-182, Moore, D., Reynolds Jr., R.C., 1997. X Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. Oxford University. Moresi, M., Mongelli, G., 1988. The relation between the terra ros free residue of he inderlying limestones and dolostones of Apul 23, 439-446. Muhs, D.R,, Budahn, J.R., 2009. Geochemical evidence for African dust and volcanic ash inputs to terra rossa soils on carbonate reef terraces, northern Jamaica, West Indies. Quat. Int, 196, 13-35, https://doi.org/10.1016/j.quaint.2007,10.026, Muhs, D.R., Budahn, J., Prospero, J.M., Carey, S.N., 2007. Geochemical evidence for African dust inputs to soils of western Atlantic islands: Barbados, the Bahamas and Florida. J. Geophys. Res. 112, FO2009, https://doi.org/10.1029/2005JF000445. Muhs, D.R., Budahn, J.R., Prospero, J.M., Skipp, G., Herwitz, S.R., 2012. Soil genesis on the island of Bermuda in the Quatermnary: the importance of African dust transport and deposition. J. Geophys. Res. 117, FO3025. https: //doi.org/10.1029/ 2012JF002366, 2012. Orgeira, M.J., Walther, A.M., Vásquez, C.A., Di Tommaso, 1., Alonso, S., Sherwood, G., Yuguan, H., Vilas, J.F.A., 1998. Mineral magnetic record of paleoclimate variation in loess and paleosol from the BuenosAires formation (Buenos Aires, Argentina). J. South Am. Earth Sci. 11, 561-570, Pagliai, M., Vignozzi, N., Pellegrini, S., 2004. Soil structure and the effect of management practices, Soil Tillage Res. 79, 131-143. https://doi.01g/10.1016/). still.2004.07.002. Parrot, J.-F,, 1993. Algoritmo Miel (módulo ejecutable MS-DOS). En: J.-F. Parrot, (2016) Generación de MDE a partir de datos vectoriales. Paquete de Módulos Ejecutables desarrollados en C++. INDA: 03-2016 103110072200 01. Pereyra Díaz, D., Pérez Sesma, A., 2006. Hidrología de superficie y precipitaciones intensas 2005 en el Estado de veracruz. In: Tejeda-Martínez, A. (coord.), Inundaciones 2005 en el estado de Veracruz. Universidad Veracruzana, Xalapa, Mexico, pp. 81-99. Rasmussen, C., Matsuyama, N., Dahlgren, R.A., Southard, R.J., Brauer, N., 2007. Soil genesis and mineral transformation across an environmental gradient on andesitic lahar. Soil Sci. Soc. Am. J. 71 (1), 225-237. https: //doi.o13/10.2136/ sssaj2006.0100. Rivas-Ortiz, J., Ortega-Guerrero, B., Solleiro-Rebolledo, E., Sedov, S., Sánchez-Pérez, S., 2012. Rivas-Ortiz, J., Ortega-Guerrero, B., Sedov, S., Solleiro-Rebolledo, F., Sycheva, S., 2006. Rock magnetism and pedogenetic processes in Luvisol profiles: Examples from central Russia and central Mexico. Quat. Int. 156 (157), 212-223, Rodríguez-Centeno, M.M., 1993, La produccion cafetalera mexicana. El caso de Córdoba, Veracruz. Historia Mexicana 43 (1), 81-115. https: //historiamexicana.colmex.ax/in dex.php/RHM/article/view/2273, Rossotti, A., Carrasco-Núñez, G., 2004. Stratigraphy of the 8.5 — 9.0 ka B.P. Citlaltépetl pumice fallout sequence. Revista Mexicana de Ciencias Geológicas 21, 3, 353-370. Ruhe, R.V., Cady, J.G., Gomez, R.S. 1961. Paleosols of Bermuda. Geologic Society of America Bull, 72, 1121-1142.Pearsall D.M. 1978. Phytolith analysis of archeological soils: Evidence for maize cultivation in Formative Ecuador. Science. 199(4325), pp. 1771781. Ruhe, R.V., Olson, C.G., 1980. Soil welding. Soil Sci. 130, 132-139. Sasaki, R., Yoshida, M., Ohtsu, Y., Miyaliira, M., Olta, H., Watanabe, H,, Suzuki, S,, 2003. Soil Formation of New Lahar Materials Derived from Mt. Pinatubo 1. Physical and Chemical Properties of New Lahar Materials and Soils Formed by Old Lahar Materials. Soil Sci. Plant Nutr. 49 (4), 575-582. Scharenbroch, B.C., Nix, B., Jacobs, K.A., Bowles, M.L., 2012, Two decades of low- severity prescribed fire increases soil nutrient availability in Midwestern, USA oak (Quercus) forest. Geoderma 183-184, 89-91. Sedov, S., Solleiro- Rebolledo, E., Gama-Castro, J., 2003. Andosol to Luvisol evolution in central Mexico: timing, mechanisms and environmental setting, Catena 54, 495-513. Sedov, S., Solleiro-Rebolledo, E., Fedick, S.L, Pi-Puig, T., Vallejo-Góme Delgadillo, M.L., 2008. Micromorphology of a Soil Catena in Yucatán: Pedogenesis and Geomorphological Processes in a Tropical Karst Landscape. ln: Kapur, S., Mermut, A., Stoops, G. (Eds.), New Trends in Soil Micromorphology. Springer- Verlag, Berlin Heidelberg, pp. 19-37. Sefiplan, 2017. Cuadernillos municipales 2017 Amatlán de los Reyes. Gobierno de Veracruz, Secretaría de Finanzas y Planeación http://ceieg. veracruz.gob.mx/wp- content/uploads/sites/21/2017/05/Amatlán-de-los-Reyes.pdf. Shoji, S., Nanzyo, M., Dahlgren R.A., 1993. Volcanic ash soils: Genesis, properties and utilization. Dev. Soil Sci. 21. Elsevier, Amsterdam. Siebe, C., Abrams, M., Sheridan, M.F., 1993. Major Holocene block and ash fan at the western slope of ice-capped Pico de Orizaba volcano, Mexico: Implications for future hazards. Journal of Volcanology and Geothermal Research 59, 1-33. Singer, A., 1988. Properties and genesis of some soils of Guanxi Province, China. Geoderma 43, 117-130, https: //doi.org/10.1016/0016-7061(88)90038-9. Smolíková, L., 1967. Polygenese der fossilen Lóssbóden der Tschechoslowakei im Lichte mikromorphologischer Untersuchungen. Geoderma 1 (3-4), 315-324, Solleiro-Rebolledo, E., Sedov, S., Cabadas, H., 2015. Use of soils and paleosols on volcanic materials to establish rates of soil formation at different chronological scales. Qual. Int. 376, 5-18. and the carbonate , Italy. Clay Miner. 68 E. Solleiro-Rebolledo et al. Sombrock, W.G., 1966. Amazon Soils: a Reconnaissance of the Soils of the Brazilian Amazon region. Centre for Agricultural Publications and Documentation, Wageningen. Sustersic, F., 1996, The Pure Karst Model. Cave Karst Sci. 23, 25-32, Sustersic, F., Rejóek, K., Misiz, M., Eichler, F., 2009. The role of loamy sediment (terra rossa) in the context of steady state karst surface lowering. Geomorphology 160, 33-45. https://doi.o1g/10.1016/j.geomorph.2008.09.024. Targulian, V.O., Krasilnikow, P.V., 2007, Soil system and pedogenic processes: self- organization, time scales, and environmental significance, Catena 71, 373-381. https://doi.org/10.1016/j.catena.2007.03.007. Tejedor, J., Saiz, G., Rennenberg, H., Dannenmann, M., 2017. Thinning of Beech Forests Stocking on Shallow Calcareons Soil Maintains Soil C and N Stocks in the Long Run. Forest 8, 167. https: //doi.org/10.3390/18050167. Thiébaut, V., 2016. Paisajes cañeros de Veracruz en las décadas de 1930 y 1940. El desmantelamiento del complejo agroindustrial azucarero San Francisco, Lerdo de Tejada. Relaciones Estudios de Historia y Sociedad 148, 169-203. Catena 227 (2023) 107072 Ulery, A.L., Graham, R.C., Amrhein, C., 1993. Wood-ash composition and soil pH following intense burning. Soil Sci. 156, 358-364. Vázquez-Ríos, M., Franco-Ramos, O., 2022. Reconstrucción dendrogeomorfológica de procesos de remoción en masa y lahares en las Barrancas Seca y Ojo Salado, Pico de Orizaba. México. Investigaciones Geográficas 107, e60470. Wada, K., 1989. Allophane and imogolite. In Dixon J.B., Weed S.B. (ed.) Minerals in soils environments. 2nd ed, SSA Book Ser. 1. S5SA, Madison, WI, pp. 1051-1087. Yaalon, D.H., 1997. Soils in the Mediterranean region: what makes them different? Catena 28, 157-169, Zamotaev, 1.V., Targulian, V.O., 1994. Geography of soil formation and weathering on volcanic islands of the Southwest Pacific Ocean. Eurasian Soil Sci. 26, 12-22. Zehetner, F., Miller, W.P., West, L.T., 2003. Pedogenesis of volcanic ash soils in Andean Ecuador. Soil Sci. Soc. Am. J. 67, 1797-1809. 13 69 70 71 4 DISCUSIÓN 4.1 EDAFODIVERSIDAD EN LOS GEOSISTEMAS KÁRSTICOS DE MONTAÑA Para el presente trabajo, se estudiaron 4 catenas, con un total de 27 perfiles, 13 en el estado de Veracruz y 14 en Chiapas (Tabla 1). Los perfiles se distribuyen en diferentes partes de la geoforma, tanto en partes altas y bajas de la superficie, así como en la zona subsuperficial (epikarst) en bolsas kársticas y dentro de cuevas. Siguiendo la clasificación de suelos de la WRB (IUSS Working Group WRB, 2015), los perfiles estudiados corresponden a los grupos: Leptosoles, Stagnosoles, Luvisoles, Cambisoles, Fluvisoles y Gleysoles, y Calcisoles. Entre los perfiles estudiados se pudieron identificar los principales tipos de suelos asociados a nivel global a las zonas kársticas: las Terra Rosas y las Rendzinas. Estos suelos están presentes en ambas zonas de estudio, su desarrollo y características particulares difieren entre sí, no conformando un grupo de suelos con pedogénesis homogénea; sin embargo, se localizan mayoritariamente en las partes altas del relieve y en depresiones en las laderas. Las zonas bajas del relieve presentan una mayor variabilidad de grupos de suelos, estos incluyen: Stagnosoles, Gleysoles, Fluvisoles y Calcisoles, la presencia de estos se da conforme a lo esperado considerando las geoformas estudiadas. Además de los suelos, se tiene la presencia de diferentes sedimentos en las áreas inestables del relieve. La ubicación de Terra Rossas y Rendzinas en las zonas altas y laderas, y el desarrollo de otros tipos de suelos en las zonas bajas del terreno es un fenómeno que también está presente en el karst de plataforma de la península de Yucatán, aun cuando el relieve de esta área es menos accidentado (Solleiro et al., 2011; Sedov et al., 2008). Ante este panorama nos preguntamos cuáles son los factores de los que depende la diversidad del suelo en los geosistemas kársticos. Las zonas de estudio presentan una constante ambiental, se desarrollan en un relieve montañoso (Sierra Zongolica y Sierra de Chiapas), que presenta un clima tropical cálido húmedo, con una temperatura media anual de ~20°C. A partir de los diferentes casos de estudio presentados anteriormente, es visible que el desarrollo de la cubierta edáfica responde a las particularidades de su contexto, analizando y comparando los rasgos morfológicos, pedogenéticos y composicionales de los suelos, proponemos como los principales factores de formación al material parental, la erosión-sedimentación, y el impacto antrópico. Estos factores se encuentran interconectados, a menudo siendo uno un motor para el desarrollo o la aparición de otro, y en medio de esta interrelación es que se desarrolla la pedogénesis, resultando en los distintos perfiles y grupos de suelos que componen la cubierta edáfica de cada zona. 72 Para mejor comprender la importancia de estos factores (el material parental, la erosión- sedimentación, y el impacto antrópico), a continuación, se explicará el impacto de cada uno de estos en el desarrollo de la cubierta edáfica en los geosistemas kársticos de montaña, y cómo estos llegan a un balance dinámico que controla la formación y evolución de los perfiles edáficos en las zonas estudiadas. Posteriormente se presenta una propuesta de modelo del desarrollo de la cubierta edáfica para estos geosistemas. 4.2 MATERIAL PARENTAL La roca madre de los suelos desarrollados en los geosistemas kársticos son rocas carbonatadas cuyo residuo insoluble se compone de las impurezas que lo conforman, las cuales son principalmente minerales arcillosos, óxidos de Fe y arenas cuarcíferas (Cabadas et al., 2010; Priori et al., 2008; Yaalon, 1997). La composición del residuo insoluble otorgará los componentes base para el desarrollo de los suelos y dependerá de las formaciones geológicas presentes en el área. Estudios en Italia central sobre la disolución de rocas carbonatadas muestran a la arcilla como el tamaño de partícula predominante (83%), seguida del limo (16.5%) y una presencia mínima de arena (0.5%) en los residuos insolubles resultantes (Priori et al., 2008), otros estudios muestran una composición textural similar para América y Europa (Cabadas 2011; Durn et al, 1999). Otra fuente importante de material parental para estos suelos son los materiales alóctonos entre los que se han mencionado diversos tipos de sedimentos tanto terrígenos como eólicos, estos sedimentos son principalmente materiales silicatados como ceniza volcánica, polvo de Sahara y Loess (Cabadas et al., 2010; Durn et al., 1999; Priori et al., 2008; Yaalon, 1997). Teniendo presente ambos posibles materiales parentales tenemos que: En la zona de Zongolica (ver Anexo 1) se identificaron dos principales materiales parentales, para los perfiles Cancha 1 y 2 se trata de sedimentos terrígenos de origen coluvial, identificados por la alta concentración de rocas en el perfil (~40%), y un aporte de material volcánico eólico visible en forma de piroxenos y vidrio volcánico en la micromorfología. Para los perfiles Tonalixco y Magdalena se tiene el residuo insoluble más el aporte eólico de ceniza volcánica; un aporte de pedosedimentos es visible mediante la micromorfología en la parte alta del perfil, sin embargo, no se tiene una evidencia clara de este en los horizontes más profundos, aunque cabe la posibilidad de que estas evidencias se hayan borrado por el tiempo de desarrollo de los perfiles. 73 En la zona de Amatlán se tiene un importante aporte de materiales volcánicos de diferente naturaleza; los lahares son el material parental predominante, salvo el caso del perfil Cueva que se desarrolla en contacto con la roca carbonatada y que cuenta con un aporte de ceniza volcánica. Se identificaron dos eventos de lahares cuya deposición y tiempos de desarrollo resultan en características morfológicas diferentes para los grupos de suelos Negro y Rojo, el primero presenta una composición heterogénea de partículas gruesas inmersas en un material fino, mientras que en el segundo predomina el material fino arcilloso. Los lahares se componen principalmente de materiales volcanoclásticos, suelo removido (pedosedimentos) y vegetación (Solleiro-Rebolledo et al., 2023). En el caso de Chiapas el residuo insoluble y los pedosedimentos son los materiales parentales predominantes, y en muchos de los perfiles se encuentran de manera conjunta. Los pedosedimentos son resultado de la actividad antrópica en la zona, erosionando suelos de las partes altas que además arrastran materiales culturales que son sumados a los suelos. Evidencias de materiales alóctonos fueron encontrados sólo en el perfil Arriba Cueva, donde se identificó mediante la micromorfología la presencia de ceniza volcánica (García‐Ramírez et al., 2024; Sedov et al., 2023). Los materiales parentales identificados en las zonas de estudio fueron el residuo insoluble de las rocas carbonatadas, material silicatado y pedosedimentos. Dada la cercanía de ambas zonas a áreas volcánicas, se tiene el aporte de material silicatado en forma de ceniza y de sedimentos terrígenos coluviales que también componen lahares. En diferentes perfiles se tiene una combinación de los distintos tipos de material parental identificado, en diferentes proporciones y afectando a distintas profundidades, lo cual indica un desarrollo poligénetico en estos suelos. Los suelos desarrollados en las partes bajas tienen una predominancia de pedosedimentos como material parental, lo cual indica la importancia de procesos erosivos y de sedimentación en los geosistemas kársticos montañosos. 4.3 EROSIÓN-SEDIMENTACIÓN Como se ha comentado antes, la erosión en estos geosistemas se puede dar de forma vertical o superficial lateral (laminar o lateral), su presencia o ausencia afecta el tiempo de pedogénesis de los suelos. Aunado a la degradación de los suelos resultado de su erosión, es importante pensar en la deposición de los materiales removidos pues estos modifican las características y el desarrollo de los suelos que reciben el material. En Zongolica la erosión predominante es la laminar o lateral, está dada principalmente por procesos coluviales e influye de diferentes maneras en la pedogénesis. Para los perfiles 74 Magdalena y Tonalixco se tienen evidencias de aporte de pedosedimentos moderado en la parte alta del perfil, proceso que se asume ha estado presente durante su desarrollo por la localización de los perfiles en depresiones de la superficie, pero que no se logró identificar en la parte baja. Para los perfiles Canchas y Atl la erosión lateral es su principal modificador, tanto para el aporte de material que formará los sedimentos (perfiles Atl) y suelos (perfiles Cancha), así como para interrumpir la pedogénesis de los mismos. La erosión vertical se esperaría encontrarla hacia el interior de la cueva Atl sin embargo los depósitos analizados no muestran un aporte importante de material por “soil piping” (Anexo 1). Para Amatlán la erosión lateral es de suma importancia, este proceso es el generador de los depósitos laháricos sobre los que se desarrollan los suelos estudiados en los grupos de suelos Rojo y Negro, posterior a su deposición no es visible una erosión importante que interrumpa la pedogénesis de estos suelos. En el caso del perfil Natural no se identificó una erosión vertical ni lateral, aunque es probable que la laminar se encuentre presente pues este perfil se localiza en una pendiente (Solleiro-Rebolledo et al., 2023). En Chiapas la erosión predominante es la lateral, los perfiles estudiados muestran la degradación de los suelos por pérdida de material, así como la deposición de los pedosedimentos generados. Los procesos erosivos en la zona están fuertemente interconectados con la actividad antrópica, tanto actual como pasada, en los pedosedimentos generados es posible encontrar material antrópico, así como terrazas como una posible forma de contención a la erosión generada. Dentro del estudio de la zona fue posible encontrar evidencias de erosión vertical hacia bolsas kársticas (Perfil Bolsa Jerusalén y Cueva María), estos perfiles no fueron presentados en los artículos, pero se encuentran descritos en el Anexo 2, es interesante señalar que los depósitos de estas bolsas kársticas corresponden a suelos rojos tipo Terra Rossa (García‐Ramírez et al., 2024; Sedov et al., 2023). Considerando las diferentes catenas estudiadas, la erosión lateral es la más relevante en estos geosistemas kársticos de montaña en comparación con el caso del karst de plataforma donde la erosión vertical es la predominante (Sedov et al., 2023). La erosión funciona como generador del material parental, y en segundo plano como agente degradador de los suelos existentes. En general se tiene que la erosión se ve acelerada por ciertas actividades antrópicas; sin embargo, en los casos de estudio esto aplica para ciertas geoformas. En Veracruz se tienen terrazas en donde la erosión no es tan agresiva como en el caso de Chiapas en donde se tienen lomeríos con pendientes más pronunciadas 75 y donde se han identificado la construcción de terrazas como una forma de contrarrestar la erosión. 4.4 IMPACTO ANTRÓPICO Actividades como la deforestación, la ganadería y la agricultura tienen un impacto directo en la conservación de la cubierta edáfica generando erosión (Dotterweich, 2013; Montgomery; 2007), este impacto es tan relevante que la FAO ha creado el término de erosión antrópica (FAO, 1993). Además de la erosión hay otras modificaciones de las propiedades del suelo por actividad antrópica entre las que se puede mencionar su contaminación, compactación, y la agregación de materia orgánica entre otras, estas modificaciones dan pie a la formación de los suelos Antrosoles (IUSS Working Group WRB, 2015). En Zongolica no se identificó actividad antrópica asociada a la zona y por consiguiente no hay un impacto antrópico claro en el desarrollo de los suelos estudiados, los cuales se propone tienen un desarrollo natural (Anexo 1). Para Amatlán en cambio, la mayoría de los perfiles se encuentran en parcelas de cultivo actual y hay evidencias de ocupación prehispánica en la zona, por lo que algunos materiales culturales llegan a estar presentes en los perfiles. En el caso de los perfiles del grupo Negro se propone que la ocupación continua ha modificado las propiedades de los suelos, con la incorporación de materiales ricos en materia orgánica, este aporte de material es visible en tanto en los horizontes superficiales como en horizontes más profundos. Los perfiles del grupo Rojo se encuentran en plantaciones de caña, pero no muestran la misma modificación que el grupo Negro; por su parte, el perfil Natural no presenta afectación antrópica clara (Solleiro-Rebolledo et al., 2023). La catena de Chiapas es la que tiene la afectación antrópica más clara y relevante, en la zona se cuenta con presencia de actividad prehispánica desde el periodo Clásico de la cronología Mesoamericana (350 D.C.) hasta la actualidad. Algunos de los perfiles se encuentran asociados a sitios arqueológicos, sobre estructuras o en las laderas de los mismos. El impacto antrópico en estos suelos es visible en forma de material cultural presente en el perfil y como el principal motor de la erosión en la zona. En los perfiles Arriba Cueva y Cueva, no hay impacto antrópico y/o su impacto no es claro en el perfil (García‐ Ramírez et al., 2024; Sedov et al., 2023). El impacto antrópico registrado en las catenas estudiadas está asociado a actividad antrópica tanto prehispánica como actual. Se presenta en los perfiles como agregación de 76 material cultural tal como cerámica, carbón, hueso y obsidiana, así como modificando las propiedades del suelo como el incremento de materia orgánica antrópica que afecta la coloración de los suelos. La agricultura es la actividad antrópica por excelencia, en los casos estudiados de Chiapas y Amatlán se desarrolla en las zonas bajas del relieve. Como se vio anteriormente, en estas áreas se tiene un aporte de pedosedimentos importante que confiere cierta fertilidad a los suelos, siendo su mayor limitante su cercanía al manto freático por lo que en época prehispánica se ha modificado su drenaje mediante campos y canales para el uso agrícola de la zona. En el caso del Karst de plataforma de la península de Yucatán, los suelos de las zonas bajas no fueron usados de esta manera pues la erosión lateral es mínima y no se tiene este aporte de pedosedimentos, la agricultura de esta zona suele desarrollarse como agricultura de precisión en macetas naturales como homegardens (Flores-Delgadillo et al., 2011; Fedick et al., 2008). 4.5 PEDOGÉNESIS Y MODELO DE DESARROLLO DE LA CUBIERTA EDÁFICA Como se pudo ver en las secciones anteriores la pedogénesis en las zonas estudiadas está altamente influenciada por el material parental, la erosión-sedimentación y el impacto antrópico. Estos factores se desarrollan de manera interconectada, en algunos casos es visible la predominancia de uno de estos factores y en otros casos es claro el orden de influencia de uno sobre otro. La pedogénesis puede también alterar las evidencias de estos factores generando un conjunto de nuevos rasgos. En la Tabla 1, se presentan de manera sintética los diferentes factores que influyen a la pedogénesis de estos suelos, se marca con color el factor predominante propuesto en cada perfil y se explica la pedogénesis de estos. Para la escala temporal de desarrollo pedogenético se toma como referencia el trabajo de Targulian & Krasilnikov (2007). En el caso de Zongolica la pedogénesis divide a los perfiles por grado y/o tiempo, por un lado, está Tonalixco y Magdalena y por otro las Canchas, los primeros son de tipo Terra Rossa y sus características morfológicas y de composición indican una pedogénesis continua, con miles de años, permitiendo el desarrollo de suelos maduros con componentes de alto grado de intemperización; mientras que los perfiles Canchas presentan una pedogénesis in situ de menor duración, asociada a la inestabilidad otorgada por su posición geomorfológica, resultando en suelos con características de pedosedimentos en transición. Ambos grupos de suelos presentan aportes de material alóctono que enriquecen su composición, y no presentan una pedogénesis influenciada por el impacto antrópico (Anexo 1). 77 En la zona de Amatlán, los suelos se pueden diferenciar entre una pedogénesis continua de miles de años en el grupo de suelos Rojo, donde se encuentran los tipos Terra Rossa, y una pedogénesis de menor duración y marcada por el impacto antrópico en el grupo de suelos Negro, que corresponden al tipo Terra Petra; la Rendzina del perfil Cueva cuenta con una pedogénesis que se inclina hacia lo “natural” esperada para suelos tipo Rendzicos. Ambos grupos de suelos se desarrollan sobre lahares de diferente composición y edad (Solleiro-Rebolledo et al., 2023). En el caso de Chiapas la pedogénesis se encuentra altamente influenciada por la actividad antrópica que genera erosión, y está a su vez genera pedosedimentos que dependiendo de su lugar de deposición se desarrollan de distintas maneras. En las partes bajas del relieve se tienen diferentes procesos hidromórficos: gleysoles y calcisoles hidromórficos (ver Perfil Perifiton, Anexo 2). Algunos perfiles cuentan con una pedogénesis “natural” (Bonfil y Cueva Manos Pintadas), mientras que otros tienen una marcada influencia antrópica como el caso de Busiljá Cima (Lithic Haprendolls en articulo) y Rancho Nuevo, cuyo desarrollo se da a partir del abandono del sitio y de la construcción de la terraza en la que se encuentra (García‐Ramírez et al., 2024; Sedov et al., 2023). Considerando los perfiles estudiados, el modelo de desarrollo de la cubierta edáfica en estos geosistemas considera que el material parental es importante para las características de los suelos, en cercanía a volcanes se tiene aporte de material alóctono. Aunque hay evidencias de erosión vertical parece estar menos presente, siendo la erosión lateral la predominante, y en presencia de actividad antrópica la erosión se verá acelerada en ciertas partes de la geoforma. La actividad antrópica también influye en las propiedades in situ de los suelos con la agregación de material cultural al perfil. Los principales tipos de suelos para estos geosistemas, las Terra Rosas y Rendzinas, están presentes y se pueden hacer algunas propuestas de desarrollo a partir de los casos observados: Las Terra Rosas se desarrollarán en zonas estables del relieve, con poca o nula actividad antrópica, y/o donde la actividad antrópica no provoca una erosión in situ. Estas zonas estables pueden ser planicies o terrazas y/o depresiones del karst. Estos suelos cuentan con un tiempo de pedogénesis grande, de miles de años, que permiten la madurez de estos suelos. Las Rendzinas se desarrollarán en zonas con alto impacto antrópico generando erosión lateral, o posterior a la actividad humana, lo cual conlleva a una pedogénesis no continua y 78 de corta duración (ej. menos de mil años para Cima Busiljá). Se desarrollarán también en zonas donde la erosión natural es la predominante, ubicadas en las zonas altas o en las laderas de la geoforma. Pueden ser entonces suelos poco desarrollados y/o suelos erosionados, también pueden desarrollarse sobre restos de suelos preexistentes, tal vez Terra rosas, lo cual les hereda ciertas características en su composición. Considerando la geoforma se tienen los procesos esperados, las zonas altas del relieve son propensas a la erosión lateral, tanto de manera natural como antrópica, siendo la primera de menor impacto, salvo en eventos de gran energía como lahares o coluviones. Mientras que las zonas bajas del relieve serán zonas de sedimentación que una vez depositados se van a sumar a la pedogénesis predominante; en presencia de actividad antrópica se tendrá un aporte importante de pedosedimentos. 79 Tipo suelo Catena- Perfil Material Parental Erosión Impacto antrópico Pedogénesis TR – Luvisol VZ – Tonalixco in situ y aporte eólico volcánico No aparente No visible pedogénesis ininterrumpida (poligenética) que permite su desarrollo TR – Luvisol VZ – Magdalena in situ y aporte eólico volcánico No aparente No visible O – Stagnosol VZ – Cancha 1 pedosedimento con sedimentos terrígenos y aporte eólico volcánico Formación por erosión lateral No visible pedogénesis in situ baja por constante erosión lateral, suelo caracterizado por pedosedimento como material parental O – Stagnosol VZ – Cancha 2 pedosedimento con sedimentos terrígenos y aporte eólico volcánico erosión lateral para formación No visible S – Diamicton VZ – Atl 1 Pedosedimento Área de sedimentación, posible erosión lateral No visible No hay pedogénesis, sedimento formado por erosión lateral S – Diamicton VZ – Atl 1 pedosedimento Área de sedimentación, posible erosión lateral No visible TR - Luvisol VA – Camino Lahar con pedosedimentos área de sedimentación Plantación caña Pedogénesis continua posterior al depósito de lahar, permite una larga pedogénesis por ausencia de erosión TR – Luvisol VA – Rojo Lahar con pedosedimentos área de sedimentación Antes plantación caña TR - Luvisol VA – Café Lahar con pedosedimentos área de sedimentación Plantación café R - Leptosol VA – Cueva Formación roca carbonatada Posible lateral natural, no visible perfil No visible Pedogénesis "Natural" O - Leptosol VA – Yunier Lahar con pedosedimentos área de sedimentación Plantación actual de caña, evidencias de actividad antrópica pasada Modificación de propiedades por actividad antrópica, menor tiempo de desarrollo, que no permite formación de terra rossa 80 O - Cambisol VA – Jaime Lahar con pedosedimentos área de sedimentación Plantación caña actual, evidencias de actividad antrópica en partes bajas del perfil O - Cambisol VA – Juancho Lahar con pedosedimentos área de sedimentación No visible R – Leptosol CHB – Cima Busilja Roca de estructura arqueológica no aparente Sobre estructura arqueológica Pedogénesis corta, posterior abandono de sitio R – Leptosol CHB – Ladera Busiljá in situ y pedosedimento en transito zona de erosión lateral adyacente a sitio arqueológico, material antrópico incorporado Pedogénesis corta, constante erosión hasta abandono del sitio O – Gleysol CHB – Yeso 1 in situ y pedosedimento área de sedimentación probable pero no clara, área de canales modificación propiedades redox O – Gleysol CHB – Yeso 2 in situ y pedosedimento área de sedimentación probable pero no clara, área de canales modificación propiedades redox O – Gleysol CHB – Pantano Busiljá in situ y pedosedimento área de sedimentación probable pero no clara, área de canales modificación propiedades redox O – Gleysol CHB – Pantano María in situ y pedosedimento área de sedimentación probable pero no clara, área de canales modificación propiedades redox TR – Cambisol CHB – María in situ y pedosedimento área de sedimentación, depresión kárstica adyacente sitio, material antrópico Acumulación de material, sin erosión y con pedogénesis continua R – Leptosol CHB – Rancho Nuevo in situ y pedosedimento Erosión lateral previo a la construcción de la terraza sobre terraza Erosión lateral por impacto antrópico, hasta creación de terraza y pedogénesis continua desde ese momento 81 S - Sedimento CHB – Cueva Manos pintadas in situ y posible pedosedimento área de sedimentación Pintura rupestre pero no otras evidencias claras Pedogénesis natural, mínima por encontrarse en cueva TR – Cambisol CHB – Arriba Cueva in situ, roca carbonatada No visible, no relevante No visible Pedogénesis natural larga. No impacto humano ni erosión clara O – Fluvisol CHB – Bonfil sedimentos fluviales Natural, más área de sedimentación Natural, pero con presencia de actividad antrópica Pedogénesis natural S - Sedimento CHB – Jerusalén 1, Bolsa 1 Pedosedimento Área de sedimentación por erosión vertical No visible No pedogénesis in situ S - Sedimento CHB – Cueva María Pedosedimento Área de sedimentación por erosión vertical No visible No pedogénesis in situ O – Calcisol CHB – Perifiton In situ y pedosedimento Área de sedimentación por erosión lateral probable pero no clara, área de canales Poligenética, precipitación de carbonatos hidromórficos Tabla 1. Perfiles estudiados y principales factores de desarrollo que son motor a la pedogénesis de los perfiles de suelo. Se marca con sombreado cual es el factor determinante para la pedogénesis. Tipo suelo: TR = Terra Rossa, R = Rendzina, S = Sedimento, O = Otro. Catena-Perfil: VA = Veracruz Amatlán, VZ = Veracruz Zongolica, CHB = Chiapas Busiljá. 82 4.6 TRABAJO A FUTURO Para una mejor comprensión de los geosistemas kársticos tropicales de montaña es necesario continuar con la investigación de estos en algunos ejes importantes: - Disolución de rocas carbonatadas. Caracterizar las rocas de las distintas zonas de estudio y definir el aporte del residuo insoluble a los perfiles y como este se transforma con la pedogénesis. También se pueden proponer tasas de disolución y tiempo de formación del suelo. - Estudio de materiales subsuperficiales. Caracterización de sedimentos en bolsas kársticas y diferentes materiales sedimentarios en cuevas para conocer el proceso de erosión vertical en estos geosistemas montañosos. - Material alóctono. Estudiar las posibles fuentes de aportes volcánicos, terrígenos y eólicos, para determinar el aporte de material alóctono a los suelos y determinar su influencia en la pedogénesis de la cubierta edáfica. - Afinación del modelo. Por último, es necesario evaluar el modelo propuesto, mediante observaciones en campo en zonas no muestreadas, pero donde se espere el mismo comportamiento; así como mediante su formalización, de manera que se permita cuantificar cada factor del modelo, cual es el proceso y cual el efecto (por ejemplo, la tasa de erosión de la actividad antrópica, la tasa de generación del residuo insoluble, el tiempo de pedogénesis de las Terra Rossas en la zona, etc.). 83 5 CONCLUSIONES - El desarrollo de la cubierta edáfica está dada por un balance entre el aporte de material parental, la erosión y el impacto antrópico, estos se encuentran interconectados, y en medio de estos se da la pedogénesis resultando en la edafodiversidad mostrada en los geosistemas kársticos. - Los aportes de material parental alóctono de diversos orígenes son importantes en el desarrollo de la cubierta edáfica en los geosistemas kársticos de montaña estudiados; en especial los materiales de origen volcánico son significativos en los geosistemas kársticos de México por su cercanía a zonas volcánicas. - Dado el relieve, la erosión laminar es la predominante en los geosistemas kársticos de montaña. La erosión vertical no es tan relevante como para el caso del karst de plataforma que se encuentra en la península de Yucatán. La erosión va de la mano a la actividad antrópica, siendo un acelerador de la erosión generando pedosedimentos y además modifica diversas propiedades in situ del suelo. - Los suelos tipo Rendzina y Terra Rosa se desarrollan primariamente en zonas altas del relieve, en zonas geomorfológicas con distinta estabilidad. Las Rendzinas se presentan en zonas de poca estabilidad, como suelos muy erosionados o incipientes, a veces asociados a actividad antrópica, a veces desarrollados sobre remanentes de suelos rojos erosionados. Los suelos tipo Terra Rosa se presentan en zonas con mayor estabilidad, que permiten una pedogénesis más prolongada, en algunos casos estas refieren a depresiones que funcionan como trampas en el relieve, y en otras solo a superficies estables. - Los suelos de las zonas bajas del relieve presentan una mayor diversidad, presentan un importante aporte de pedosedimentos y sus características se dan por procesos pedogéneticos locales, entre los cuales los procesos hidromórficos son importantes (ej. Gleyzación, y neoformación de carbonatos y yeso). 84 ANEXO 1 ARTICULO SIERRA DE ZONGOLICA Formation of clastic sediments in the Atl cave of the Sierra Zongolica, Veracruz Mexico, and their relationship to the soil cover Pamela García-Ramírez*1, Rafael López-Martínez2, Sergey Sedov3, Hugo Salgado- Garrido4, Teresa Pi Puig5, Héctor Cabadas-Báez6 1 Posgrado en Ciencias de la Tierra, Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), CDMX, México. arqueopams42@outlook.com 2 Departamento de Dinámica Terrestre Superficial, Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), CDMX, México. rafaelopez83@hotmail.com 3 Departamento de Ciencias Ambientales y del Suelo, Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), CDMX, México. serg_sedov@yahoo.com 4 Instituto de Investigación Científica y Estudios Avanzados Chicxulub (IICEAC), Yucatán, México. hugoe1617@gmail.com 5 Departamento Procesos Litosféricos, Instituto de Geología, Universidad Nacional Autónoma de México (UNAM), CDMX, México. tpuig@geologia.unam.mx 6 Facultad de Geografía, Universidad Autónoma del Estado de México (UAEM), Estado de México, México. hvcabadasb@uaemex.mx Abstract Allochtonous cave sediments contain important paleontological and archaeological records as well as indicators of the recent ecological processes. Correct interpretation of these records requires knowledge about the sediment sources and deposition processes, in particular the interrelation of vertical and lateral sediment transport. This knowledge is quite limited in the tropical mountainous karstic geosystems in comparison with platform karst. To trace the origin and transportation pathways of sediments we investigated the Atl Cave in the Sierra Zongolica Mountain range, Veracruz, Mexico. Field exploration and mapping have shown that the cave presents two horizontal stages representing phreatic conduits and ancient stability stages, is an epigenetic cave with a point recharge zone at the entrance, which is fed by a water stream. A comparative study of the surface soil profiles and the diamicton facies of the cave floor deposits included field morphological description, micromorphological observations, grainsize analysis, colorimetry, bulk chemical composition via XRF and clay mineral identification by XRD. The results demonstrated that the cave deposits have more similarities with the young alluvial and colluvial soils near the 85 entrance than with mature Terra Rossa developed over the limestone formation that hosts the cave. This proves the predominant role of the lateral alluvial transport by high energy events in the formation of the cave diamicton with very restricted contribution of the vertical erosion of Terra Rossa. The main source rock for alluvial and colluvial materials transported to the cave are siliciclastic sediments of the Necoxtla formation, whereas Terra Rossa soils were formed from tephra of Orizaba volcano. High CIA values, high clay content with predominance of kaolinite point to higher weathering status of Terra Rossa in comparison with other studied surface and underground materials. Keywords Mountainous karst, Atl cave, Cave sediments, Sediment formation, Soil cover, Lateral erosion. 1. Introduction Cave sediments have been studied under many different approaches among them: 1) as a sink of contaminants useful for tracing their movement from surface to underground and to the aquifer (Lynch, et al., 2007; Loop, 2012; Mahler, et al., 2007; Vesper, 2012), 2) as a source of paleoclimate and paleoenvironmental records such as isotopes, pollen and macro- rest (Burger, 2007; Harmon et al., 2007; Knaap, et al., 2007; White, 2007a y b; Dreybrodt, 2012; Zupan, et al., 2020), and 3) as records of anthropic activities and occupations through time, from early Paleolithic to "sacred places" of historical cultures (Ardelean, et al., 2020; Beres, et al., 2021). Cave sediments will have different processes of formation, origin, and type (Ford and Williams, 2007; Springer, 2012). Two major groups of components could be discriminated: sediments from outside of the cave called allogeneic and formed within the cave known as autogenic. Understanding of the origin and mechanisms of transportation of the allogeneic material has major importance for most problems of the cave sediment research. Allogeneic materials can enter the cave system by vertical or lateral erosion. Sedimentary structures, particle size and sorting results of the sedimentation mechanism and pathway of the sediments. Vertical erosion occurs through the system of cavities generated by dissolution in the epikarst zone. It consists in the redeposition of the materials from the surface soil mantle, involving predominantly smaller particles: silt and clay; this process is also known as “soil piping” (suffusion) (White, 1988; Beck, 2012). Lateral fluvial erosion can move large amounts of material of all sizes and of different origins, from soils to fluvial and 86 aeolian sediments (Bosch and White, 2007, 2018; Springer, 2012). Both types of erosion impact the surface soil cover of the karstic geosystems. In fact, soil development on karst surface is a product of balance between generation of soil by pedogenesis and its loss due to “hidden” vertical erosion (Sedov et al., 2023). In some cases, this balance could shift towards nearly complete degradation of the soil mantle (Atalay 1997). Spatial variability of erosion processes results in complex composition of the soil cover on calcareous rocks which combines thin poorly developed profiles of Rendzina type and deep red soils known as Terra Rossa. The latter are enriched in silicate clay and iron oxides (hematite and goethite) and leached of carbonates (Yaalon, 1997; Durn, 2003; Priori, et al., 2008). The genesis of Terra Rossa is a matter of intensive debate for decades that was especially focused on the origin of the silicate components. The lithomorphic theory stated their accumulation from the lime-free residue of the underlying calcareous rocks (e.g. Bronger and Sedov, 2003; Bautista, et al., 2011) whereas the alternative version pointed to the allochthonous, mostly windblown material (Yaalon, 1997; Durn, et al., 1999; Priori, et al., 2008; Cabadas, et al., 2010). Terra Rossa are also being affected by karstic erosion and there is evidence of red soils redeposited in the interior of caves (Osborn, 1992, 2001; Lynch, et al., 2007; Musgrave and Webb, 2007). Thus, underground pedosediments could provide important information about the history of soil development and soil erosion on the land surface of karstic landscapes. Calcareous rocks affected by strong karstification occupy vast areas within the tropical zone of Southern Mexico. Large parts of these areas were subjected to long-term human occupation and hosted highly developed Prehispanic civilizations, particularly ancient Maya culture. Soil mantle of the south Mexican karstic landscape comprised a vital resource for Mayan agrosystems and was severely transformed by human-induced erosion and degradation (Dunning et al., 2002; Beach et al., 2006) reflected in the properties of the underground pedosediments (Sedov et al. 2023). The soil erosion and redeposition processes are better documented in the platform karst landscapes of Yucatan peninsula (Sedov et al., 2008, Cabadas et al., 2010, Sedov et al., 2023). There the vertical redeposition by suffusion was proven to be a principal process of pedosediments accumulation in the karst pockets and cave floors whereas lateral fluvial transport has minimal contribution. Much less is known about the processes of the underground sedimentation in the high- relieve karst landscapes of the fold and thrust belt calcareous rocks of Chiapas and Veracruz territories. 87 In this research, we focused on the origin of allogeneic sediments found inside the cave Atl (Sierra Zongolica Mountain range, Veracruz state, eastern Mexico); these sediments comprise a mix of carbonate and siliceous materials in a diamicton facie at the cave bottom. Our research team, which includes soil scientists and karstologists, investigates the relationship between the soil and sediment cover on the surface around the cave and the cave floor sediments, as a way of understanding the sources of deposited materials and the pathways of their transport. We also characterized the pedogenesis of different soils formed in the karstic landscape of Sierra de Zongolica to better understand the interaction between the surface and underground processes. 2. Materials and Methods 2.1 Study region The study region is in the Sierra Zongolica, Veracruz, Mexico (Figure 1). The Sierra is part of the Maya Terrain (Ortuño et al.,1992) and is considered a prolongation of the Sierra Madre Oriental with similar tectonic behavior. The geological evolution of this zone is related to the opening of the Gulf of Mexico with complex tectonic settings and the formation of some sedimentary basins and its evolution from the late Jurassic to the late Cretaceous. During this period, a thick package of carbonate and carbonate-siliciclastic was deposited, allowing several caves to form during its exposition. 88 Figure 1: Study region: A) Location of Sierra Zongolica in Mexico, B) General area of study, close to Orizaba City and the volcano Pico de Orizaba, and C) Study area showing the distribution of the studied profiles (T: Tonalixco, C1: Cancha 1, C2: Cancha 2, M: Magdalena). Three geological formations are involved in the development of the Atl Cave: Orizaba Formation: Viniegra (1965) describes it as gray limestone divided into two main facies: Rudist boundstone and grainstone-packstone of bioclast deposited on a shallow water platform during Albian-Cenomanian. This unit is reported to be up to 2000m thick (Martínez-Amador et al., 2002). Maltrata Formation: Böse (1899) described a thin stratified limestone with intercalations of slate and shale. This formation is concordant with Orizaba Formation, and it is deposited in a basin environment during the Late Cenomanian-Conacian (Arámburo- Pérez et al., 1987). B) C) A) 89 Necoxtla formation is still an informal unit, first described by Böse (1899) and lately by Viniegra (1965) as a sequence of slate, shale, sandstone, and limestones with pyrite and some concretions. The age is estimated as Aptian-Albian and deposited in a basin environment with estimated thickness up to 300m. In this zone, Eguiluz et al., (2000) recognizes three deformation phases: laramide with shortness ENE-WSW, an extensional phase with NE-SE orientation, and the last with shortness in NW-SE direction. This deformation triggers multiple folds and fractures, favoring karst development in the area. The Cenozoic is associated to the Transmexican-Volcanic Belt (TMVB) and represented by the Sierra Negra volcano (4585masl) and Pico de Orizaba volcano (5670masl), these can be found next to each other, sharing the same basament. The first one is an inactive stratovolcano of andesitic composition, and the second one is an active stratovolcano of andesitic-dacitic magma which latest activities consist of fumarole, prior to that, has had effusive and explosive activities (Carrasco-Nuñez and Rose, 1995; Carrasco-Nuñez, 1999). The area presents vegetation corresponding to a High Evergreen Forest and a Mesophyll Forest of Mountain. The climate is characterized by an average annual temperature of 17.6°C; and mean annual precipitation of 2,770mm, distributed over 196.2 days a year, and a total evaporation of 1,014.8mm (CONAGUA, 2020). 2.2 Speleological research The Atl Cave takes its name from the nahuatl term Atl, which means water. The cave was first explored by Benjamín Guerrero, Rodolfo Hernández, Octavio Luno and Nadia Mota González, and then by the Montañismo UNAM and Laboratorio de Carbonatos y Procesos Kársticos of UNAM; the cave was mapped following the standard mapping methods of Haüselmann (2011), with a laser distance meter and Brunton compass. The cave is still under exploration. 2.3 Pedological and Sedimentological investigation 2.3.1 Studied profiles The selection of profiles was made to compare the sediments inside the Atl cave, with the soil cover outside the cave. Six profiles were studied, four outside and two inside. The profiles on the surface include two in a dolina adjacent to the cave, and two in small depressions of the limestones of Orizaba formation. These positions were selected because they cover the possible origins of the sediments in the cave, one by lateral and one by 90 vertical erosion. The two profiles inside the cave were in subhorizontal passages close to the 1400 masl. The profiles were described in the field following the IUSS Working Group WRB (2015), and sampled for physicochemical, micromorphological and mineralogical standard analysis. 2.3.2 Micromorphology From blocks of undisturbed soil samples, thin sections were made. Impregnated with resin Crystal MC-40 inside a vacuum chamber. When the resin was solidified the block was cut, polished and mounted on glass slides to further thin the sample until a 30 microns thin section was obtained. An Olympus model BX51 petrographic microscope was used for the study. The analysis and description were made following the terminology of Stoops (2003). 2.3.3 Physicochemical: Color and Texture Selected physicochemical analyses were done at the Laboratory of Paleosoils of the Instituto de Geología of UNAM, at the LANGEM-IGL of UNAM and at the Laboratorio de Paleomagnetismo at the Instituto de Geofísica of UNAM. Color. The color was determined using a Colorimeter ColorLite sph870, registering the CIEL Lab color (L*a*b*), which indicates the Lightness (L*), the Red/Geen value (a*) and Blue/Yellow (b*). Particle size. The analysis was made following Flores and Alcalá (2010) using the pipette method. For this analysis the samples were pretreated with hydrogen peroxide (H2O2) to dissolve the organic matter functioning as cementing agent, then the sample was put to agitate for 12 hours with 10ml of sodium hexametaphosphate and 25ml of distilled water before proceeding with the determination of the particles percentages. 2.3.4 Mineralogical investigations by X-ray diffractometry (XRD) XRD whole-rock and clay-oriented analyses of selected horizons of the soil profiles were made in the Laboratorio de Difracción de Rayos X, of the LANGEM-IGL, UNAM. The measurements were made with an EMPYREAN XRD diffractometer using CuKα radiation, nickel filter, and PIXcel 3D detector. The measurements were made with a step size of 0.003° (2theta) and a 40s of integration time. For the analysis of the diffractograms, the software HIGHScore v4.5 was used with the ICDD (International Center for Diffraction DATA) and ICSD (Inorganic Crystal Structure Database) database. 91 Whole-rock samples. The samples were pulverized using an agatha mortar, sieved to less than 45 microns and mounted in a back-side aluminum holder. The semi-quantification was obtained using the RIR (Reference Intensity Ratio) method (Hubbard and Snyder, 1988), implemented in the HIGHScore v4.5 software. Oriented samples. According to Stokes' law, the clay size fraction (<2 μm) was separated by centrifugation in distilled water. Air-dried oriented preparations were obtained from the <2 μm fractions by pipetting some drops of the suspension onto a glass slide and then drying at 30 °C for a few hours (Moore and Reynolds 1997). Three aliquots were measured in air- dried form (AD), ethylene glycol saturated (EG), and heated (550°C). Clay species were estimated in semiquantitative form from oriented preparations using simple basal peak weighting factors. 2.3.5 Bulk chemical composition by XRF The analysis was made at the Laboratorio de Fluorescencia de Rayos X, at LANGEM of the Instituto de Geologia. Major elements were measured in molten samples, using a Rigaka Primus II equipment, in selected horizons of the studied soil profiles. Chemical Index of Alteration (CIA) was applied to explore the weathering trends in the profiles (Nesbitt and Young, 1982); it was also used to evaluate the extent of the transformation of the feldspars group to kaolinitic clay minerals (Nesbitt and Young, 1982, 215 1989; Fedo et al., 1995; Maynard et al., 1995; Price and Velbel, 2003). 3. Results 3.1 Cave description of the Atl Cave The Atl Cave (14Q 0704804E 2079891N) is in a blind valley fed by three main water streams (Figure 2), the cave is the foremost drain system for this slight close depression. Its morphology presents narrow passages, scarce speleothems, and abundant allogeneic sediments. The cave exhibits a near vertical development with two horizontal stages representing phreatic conduits and ancient stability stages at 1400 and 1300masl, being 1248 masl the current base level of the near zone (Atlaco Ravine) (Figure 3 A). So far, the cave has been mapped to 256 m of horizontal development and -120 m of depth development (Hernández-Vergara, 2017). It shows two principal galleries (Figure 3 B, C): one of them ends in a seasonal small lake towards the north, the other goes south to Atlaco Ravine. This gallery is at the bottom of the cave; however, the gallery continues in a small and quite narrow passage. 92 Figure 2: Atl cave context. Located at the bottom of a close depression fed by three main water currents. This cave represents the main drainage of the small basin of 0.15 km2 with a high precipitation regime. 93 Figure 3: Section of Tecolayo Mountain and Atl cave map. A) Profile of Tecolayo Mountain and surrounding basin; B) Plan view of Atl Cave; and C) Profile view of Atl Cave (Modified from Hernández-Vergara, 2017). It is possible to see how the cave collects the water of the basin and transports it into an underground drain system to the Atlaco Ravine. 3.2 Pedology 3.2.1 Studied profiles The profiles studied can be divided into three groups: Terra Rossa Type. Located in small depressions in the surface landscape. Both present reddish colors and clayey texture (Figure 4 and Table 1). - Tonalixco profile is in the same rock formation as the cave Atl (14Q 0704572E 2080131N). Is an Abruptic Luvisol (Cutanic, Profondic), it has a depth of 300cm and a Ah-AB-Bw-Bt1-Bt2-BCt sequence of horizons; the topsoil shows grey-brown 94 humus pigmentation whereas the B horizons have red-brown color. Evidence of clay illuviation cutans on the aggregate surfaces start at 110cm (Bt1 horizon) and through the rest of the profile. - Magdalena profile is ~5km south from the area, (14Q 0705935E 2075564N). Is a Stagnic Luvisol (Clayic, Cutanic, Profondic), it has a depth of 300cm and a Ah-Bw1- Bw2-Bg-2Bt1-2Bt2 sequence of horizons. This profile presents abrupt and strongly ondulating contact with the underlying karstified limestone. In the left part of the profile where calcareous rock is closer to the surface, the specific 3Btg horizon was observed in direct contact to the limestone. Clay cutans are observable at 150cm (2Bt1 horizon) and some redoximorphic (Stagnic) properties at the Bg and 3Btg horizon, both starting at 130cm, but in the latter they are combined with clay cutans. Figure 4: Terra Rossa Type profiles. a) Magdalena profile; b) area of Tonalixco; and c) Tonalixco profile. Adjacent to Entrance Cave. Located at opposite ends of a dolina that forms a somewhat flat terrain in the Sierra landscape; both profiles present colluvial materials (Figure 5 and Table 1). - Cancha 1 profile is located at the cave entrance (14Q 0704805E 207989N), and is exposed on the bank of the stream entering the cave; the profile shows evidence of colluvial and alluvial materials. Is a Gleyic Stagnosol (Clayic, Colluvic, Skeletic), formed by a Ah-Bw1-Bw2-BCg-Cg sequence of horizons, up to 250cm depth. High content (~50%) of weathered siliciclastic rock fragments such as siltstone and shale is observed throughout the profile starting at the Ah horizon, and redoximorphic properties are present in the BCg and Cg horizons, at 132cm and 250cm. - Cancha 2 profile is located to the opposite extreme of the doline (14Q 0704877E 2079846N), at the lower part of the slope delimiting the depression presenting 95 colluvial influence. Is a Gleyic Stagnosol (Endoskeletic), it is shallower than Cancha 1, with a depth of 100cm and an Ah-Bg-Bw-BC sequence of horizons. It has weathered rock fragments (~40%) starting at the Bg horizon, 20cm, and some redoximorphic properties in the same horizon with the presence of Mn and Fe mottles. Figure 5: Adjacent to Cave profiles. a) Cancha 1 profile; 2) Entrance to Atl Cave by Cancha 1 profile; and 3) Cancha 2 profile. Inside Cave. Located in passages of the cave, both profiles are classified as diamicton facies, and are close to 1400 masl, at -30m depth from the cave entrance with a different horizontal distance (Figure 3B, 6 and Table 1) - Atl 1 profile is located 30 m horizontally from the cave entrance at the end of “Ballons passage.” Its thickness is 20 cm. The profile is composed of a brown, massive, matrix supported poorly consolidated deposit. - Atl 2 profile is located 70 m horizontally from the cave entrance at “The crossroad” passage. Its thickness is 2m. This profile exhibits a brown, massive and matrix supported poorly consolidated deposit, but shows a wider range of unsorted particles sizes. The profile was sampled at 0 cm, 70 cm, and 200 cm in depth. 96 Figure 6: Inside Cave profiles. a) Diamicton deposit inside the cave; and b) Close up to the diamicton deposit (see hand for scale). Table 1: General profile properties. Horizon Depth (cm) Color (dry) Structure Texture HCL Others Tonalixco Ah 0-30 7.5 YR 3/4 GR Silt Loam - Organic detritus, gradual limit. AB 30-60 7.5 YR 3/4 SB to GR Loam - Low density, gradual limit. Bw 60-110 7.5 YR 4/6 SB Clay - Compact, biogenetic pores, gradual limit. Bt1 110- 170 7.5 YR 4/6 SB Clay - Compact, wavy limit. Bt2 170- 210 7.5 YR 5/6 SB Clay - Similar to the previous but less red. BCt 210- 300 7.5 YR 4/6 SB Clay - Interior of soil aggregates of yellow color. Compact. Magdalena Ah 0-40 7.5 YR 3/3 GR to SB Silty Clay Loam - Clear limit 97 Bw1 40-100 10 YR 6/6 SB Clay - Fine porosity. Thin Cutans and gradual limit Bw2 100- 130 10 YR 5/6 SB Clay Loam - Gradual limit Bg 130- 150 10 YR 6/6 SB Clay - Incline clear limit 2Bt1 150- 210 7.5 YR 5/6 SB Clay - Low fine porosity, compact, cutans. 2Bt2 210- 300 7.5 YR 5/6 SB Clay - Similar to the previous but less red, more compact and with cutans. 3Btg Bg a 2Bt2 7.5 YR 4/6 SB to PR Clay - Located at the left side of the profile, in contact with the limestone outcrop. Fe-Mn concretions, rounded of 2mm. Cancha 1 Ah 0-25 10 YR 6/4 GR Silty Clay - Angular fragments of weathered stone without clear orientation. Bw1 25-75 10 YR 6/4 SB Silty Clay - Rock fragments with green and pinkish mottling. 50% presence of gravels and stones. Bw2 75-132 10 YR 7/4 SB Silty Clay Loam - Similar to the previous one. Clear limit. BCg 132- 190 10 YR 7/6 - Silty Clay - Mottling color (brown, green-gray, pink and yellow). Manganese presence. 60% pedegrosity. Cg 190- 250 10 YR 7/4 - Silty Clay X 70% pedegrosity. mottling and coatings of Mn. Gray-green siltstone rock. Cancha 2 Ah 0-20 10 YR 6/3 GR to SB Silty Clay - wavy clear limit. Bg 20-40 10 YR 7/4 SB Silt Loam - Mottling of Mn and Fe, gravel and weathered rock fragments as inclusions (30%). Gradual limit. 98 Bw 40-70 10 YR 7/4 SB Silty Clay Loam - Reddish mottled given by lithics (40%). Gradual limit. BC 70-110 10 YR 7/6 SB Silty Clay - Weathered siltstone rock of gray color in more than 50% of the horizon. Atl 1 Level 1 0-20 10 YR 7/6 MA Silty Clay XXX Composed of unsorted sub-angular to cobble small clast (~5-10 cm). Atl 2 Level 1 0- 7.5 YR 7/6 MA Clay Loam XXX The sediment size was between 5- 10 cm Level 2 70- 7.5 YR 6/6 MA Clay Loam XXX Size clasts of ~10-15 cm Level 3 200- 7.5 YR 7/4 MA Clay Loam XXX Composed of sub angular clast of at least 20 cm Structure: SB: Subangular blocky, AB: Angular blocky, GR: Granular, MA: Massive, PR: Prismatic. HCL reaction: weak (X) to strong (XXX). 3.2.2 Micromorphology The Terra Rossa Type profiles present complex structure in the upper humus horizons: small granular aggregates are clustered in the larger porous rounded blocks (Figure 7a). These horizons present fine clayey groundmass with organic pigment incorporates inclusions of charcoal fragments, clay papules and reddish soil fragments (Figure 7.b), as well as some volcanic minerals. Below in the B horizons these soils present a homogeneous fine clay matrix with reddish ferruginous pigment (Figure 7.c), with subangular blocky structure. In some horizons we observed small illuvial clay coatings, ferruginous rounded nodules (Figure 7.d) and few charcoal fragments. 99 Figure 7: Micromorphology from the Terra Rossa type profiles: a) Magdalena-Ah. Matrix with granular aggregates PPL; b) Tonalixco-AB. Charcoal fragment, granular structure and clay papules PPL; c) Tonalixco-Bt1. Matrix with clay accumulation PPL; and d) Magdalena-3Bt. Clay and iron nodules NX. PPL: plain polarized light, NX crossed polarizers. In contrast, the Adjacent to Cave Entrance profiles don’t present a well-developed microaggregation in the A horizons. In general, pedogenetic features are less developed and sedimentary structures still visible, in particular microlamination and fluidal structure of fluvial origin in the profile Cancha 1 (Figure 8.a). Pedofeatures are represented by Fe-Mn nodules indicative of redoximorphic process (Figure 8.b). These soils contain abundant inclusions of rock fragments (~50%) represented by shales (Figure 8.d) and siltstone. Soil groundmass shows areas of sandy texture due to the presence of volcanic minerals (Figure 8.c) alternate with the areas of finer texture with materials derived from the disintegrated shales. 100 Figure 8: Micromorphology of the Adjacent to Cave Entrance group. a) Cancha 1-BCg rock fragment and fluvial structure with clay cutans NX; b) Cancha 2-Bg. Clay illuviation and Fe precipitations NX; c) Cancha 1-Bw1. Sandy matrix with presence of volcanic minerals PPL; and d) Cancha 1-BCg. Rock fragment PPL. PPL: plain polarized light, NX crossed polarizers. The Inside Cave profiles are somewhat like the previous profile group, they present high proportions of big rock fragments (30-50%) in a fine brown matrix, with some groundmass of lighter color and texture (Figure 9.a), and in some areas the matrix show evidence of fluvial deposition with fluidal structures (Figure 9.b). 101 Figure 9: Micromorphology of the inside cave profiles. a) Atl 1-Level 1. Rock fragments in a brown matrix with other materials fragments PPL; and b) Atl 2-Level 2. Matrix with fluidal structure PPL. PPL: plain polarized light, NX crossed polarizers. 3.2.3 Physicochemical: Color, Texture, and Magnetic susceptibility Color. Colorimetric analysis shows two groups in the Luminosity values (L*), the dark colors (~60 to 40) and the light colors (~60 to 70), the first ones correspond to The Terra Rosa Type profiles and the second ones to the Adjacent to Cave and Inside Cave profiles. The a* values present slightly higher values in the Terra Rosa Type and Inside Cave groups; while the b* values are higher for the Adjacent to Cave and Inside Cave profiles, than to the Terra Rosa Type group where they are closer to the a* values (Figure 10). Texture. In general, the texture shows a predominance of silt and clay particles, only in the Atl 2 profile and some horizons of the Tonalixco profile shows higher values of sand content but not as the predominant component. The Terra Rosa Type profiles present predominantly clayey textures. The Magdalena profile presents higher percentages of clay in the lower horizons and the silt percentage is bigger in the upper horizons. The Tonalixco profile presents three clear sections, in the first the silt predomines, the second show the maximum values of clays and the last one still presents high values of clay but with higher values of sand and silt, the texture type is loam in the surface and clay below. The Adjacent to Cave profiles presents silty clay and silty clay loam textures. Both present a homogeneous distribution of percentages through the profile, the difference being a higher amount of sand in the Cancha 1 profile while in the Cancha 2 profile silt predominates. 102 The Inside Cave profiles present a silty clay texture in the Atl 1 profile and a clay-loam texture in the Atl 2 profile. They also show a uniform distribution of size particles, being the silt, the predominant one followed by clay and a higher percentage of sand than in the other groups of profiles. To na li xc o Ma gd al en a C a n c h a 1 C a n c h a 2 At l 1 At l 2 —— 40 50 Ah NS Bwl Dl Bwz Bwg3 2881 2812 38tg A 40 45 Ah AB Bw Bt 4 Ba SN BCt Á 58 63 Cg Bg Ew BC 63 64 65 Level1 |. Level 1 Level 2 Level 3 Bwl Bw2 BCg LS g 2 3 3 66 a o y mMSAND -SILT =CLAY o s 10 15 20 0% 20% 40% 50%. 80% 100% | i | | | | | P 2 17 0% 20% 40% 60% 80% 100% 25 0% 20% 40% 50% 80% 100% 25 0% 20% 40% 50% 30% 100% 103 104 Figure 10: Physicochemical properties of studied profiles. Colorimetry Lab color (L*a*b*), and Texture. 3.2.4 Mineralogical investigations by X-ray diffractometry (XRD) Whole-rock samples. One horizon of each profile was analyzed to present the general mineralogical composition. The most abundant primary minerals identified were Quartz, Plagioclase of intermediate composition, and Magnetite-type Iron Oxides. Gibbsite-type Al- hydroxides, Calcite, and different proportions of 2:1 phyllosilicate (Smectite, Illite) and 1:1 phyllosilicates of the Kaolinite group were identified as secondary minerals. As seen in Figure 12a, the Inside Cave profiles are quite similar to the Adjacent to Cave, especially regarding the presence of primary minerals and the predominance of 2:1 phyllosilicates. Consequently, they are quite different from the Terra Rossa Type in which secondary minerals, especially Kaolinitic clays and Gibbsite-type hydroxides, predominate (Figure 11a). The Atl profiles are the only ones where calcite was found, while the Plagioclase was only found in the Adjacent to Cave profiles. Gibbsite was only found in the Magdalena profile, and it should be remembered that this is a residual mineral that commonly forms in Ferralitic tropical soils. Oriented Samples. For the oriented samples, 14 samples were analyzed considering the clay content and distribution through the profile. In the 2:1 phyllosilicates Vermiculite, Chlorite and Illite were identified, and in the 1:1 phyllosilicates kaolinite. The primary clay components identified are a 2:1 clay at 14Å, that is primarily Vermiculite but there is also some Chlorite content, Ilite at 10 Å, and two Kaolinite components at 7 Å, one with better crystallinity than the other as seen through its FWHM values (Figure 12). The surface soils present different proportions of these components, the predominant phase in the Terra Rossa Type profiles is the Kaolinite, followed by Illite and minor content of Vermiculite, in the Magdalena profile there is also presence of Gibbsite. On the other hand, the Adjacent to Cave profiles present similar proportions of the different components, the 2:1 clay is present in higher quantities like the Illite and Kaolinite, the latter component presents two phases, one with low crystallinity (FWHM values of 1.4) and one with higher crystallinity (FWHM values of 0.3). The Inside Cave, are like the soils of the Adjacent to Cave group, with higher content of Illite, two Kaolinite components and the presence of a 2:1 clay that is Chlorite. 105 Figure 11: Ternary diagram of Total Rock and Oriented samples. a) Total Rock diagram from the RIR Mineralogical semiquantitative percentages. Primary minerals= Quartz, Plagioclase and Magnetite; 2:1= Smectite and Illite phyllosilicates; and 1:1= Gibbsite and Kaolinite phyllosilicates; and b) Principal clay components from the semi quantitative analysis of the oriented sample. 106 Figure 12: Comparative oriented sample diffractograms and semiquantitative analysis. T = 550°C, Gl = ethylene glycol saturated, and AD = air-dried form. 3.2.5 Bulk chemical composition by X-Ray Fluorescence (XRF) For 15 samples analyzed we calculated the Chemical Index of Alteration (CIA) and built a ternary plot of molecular proportions Al2O3-(CaO* + Na2O)-K2O, for establishing interrelations between different soil and sediment materials (Figure 13). In this plot is visible 107 the grouping of the Terra Rossa Type profiles in the superior triangle corner, where an extreme accumulation of secondary minerals, such as Kaolinite and Gibbsite, was encountered; the same profiles show the highest values of CIA in contrast the Inside Cave and the Adjacent to Cave that are associated with an intermediate weathering; the latter group is associated with a trend of Illite accumulation. Figure 13: Chemical Index of Alteration (CIA) ternary plot of molecular proportions Al2O3- (CaO* + Na2O)-K2O showing the weathering trend of the studied materials after Nesbitt and Young (1982) and Fedo et al. (1995). 4. Discussion 4.1 Karstic setting The Atl cave is develop in the Sierra Zongolica, its surface geomorphology exhibits many mountains and hills alternating with closed karst depressions such as poljes and dolines, additionally karstic pockets and criptodolines are widely distributed (Hernández-Vergara, 2017), all of this resulted from the deformation of Mesozoic rocks by different events of uplifted, shortened and transported northeastward forming a fold and thrust belt during the Laramide orogeny (Eguiluz et al., 2000; Ortuño-Arzate et al., 2003). The Atl cave is a high relief multilevel structure considered as an epigenetic cave with a point recharge zone at the entrance fed by a water stream, which is part of the drainage system in the basin of Tecolayo Mountain. Sediments are mainly represented by a thick 108 diamicton facies that have filled the conduits in the past, however these sediments are currently eroded by water stream. The evolution of the Atl Cave can be divided into the following stages: Conduits development. The cave started to form in the first stage of karstification, following the model of Dreybrodt and Gabrovsek (2003) suggesting that these morphologies are initiated in areas with intense rainfall, when the discharge within the karst system exceeds the capacity of its conduits. Favoring the dissolution-erosive process and conduit development in the upper part of valleys, while depositional processes prevail in the lower part of valleys linked to water table (Dreybrodt and Gabrovšek, 2003; Audra and Palmer, 2015). This denotes that development of conduits in Atl cave is linked to ancient tectonic events such as stability (phreatic conduits) and uplift (vadose conduits) which were developed previously to the arrival of diamicton facies. Cave filling. As discussed in the next section, the diamicton facies inside the cave correlate with the facies in the Adjacent to Cave soil profiles filling the doline partially and almost entirely the Atl cave. In the Atl cave it is corroborated by the observation of some vadose conduits completely filling and in some sections a residue of diamicton in the conduit ceilings has remained. This type of facies is related to extreme floods, frequently associated with catastrophic floods and glacial melt events (Bosch and White, 2007; 2018). In Atl cave the sediments could be associated with debris flows originated in landslides and other catastrophic events during high precipitation seasons. 4.2 Formation of the deposits inside the cave The Inside Cave profiles correspond to diamicton facies composed between 30 and 50% of poorly consolidated unsorted rock fragments without clear sedimentary structures. Its texture is clay loam and silty clay, and presents the highest percentage of sand particles compared to the surface profiles. The clay mineralogy shows the presence of Illite and kaolinite as principal components with some minimal Vermiculite and Chlorite, same as the Adjacent to Cave, these profiles present two Kaolinite components differentiated by its crystallinity. The mineralogy of these profiles shows the presence of primary minerals as well as Calcite that is interpreted as an input from the cave. These profiles present an intermediate and weak weathering following the Chemical Index of Alteration. Micromorphologically the same fluidal structures as in the Adjacent to Cave profiles can be seen. 109 The similarities with the Adjacent to Cave profiles, as well as the location of these at the entrance of the cave, indicate the origin of these diamicton facies by the transport of materials from the doline. Nonetheless, the absence of sedimentary structures like gradation among others suggests transportation into the cave in a debris flow. This finding is interesting because even when a water stream is present in the cave, the studied sediments do not display a clear channel, or fluvial facies expected in this type of cave. Instead, the sediment transport to the cave seems to be related to ground mass or high energy events generating hyper-concentrate fluxes. Similar sediments sequences were reported in a pseudo karstic caves Karmidas (Aliaga-Campuzano et al., 2017) and contrast with the previous reported by Sedov et al. (2023) in Yucatan Peninsula in which the suffusion is the primary mechanism of transport. 4.3 Pedogenesis of the studied profiles In the soil cover outside the cave, two groups were identified: Terra Rosa Type and Adjacent to Cave. These present different pedogenesis in terms of parent material and time, which results in different physico-chemical characteristics that are also present within each group. The Terra Rosa Type profiles correspond to deep reddish Luvisols. The predominant texture is clay and tends to be present in the lower horizons. The principal clay component is Kaolinite, with some Vermiculite. The upper horizons present a higher percentage of sand and silt, which could indicate the contribution of volcanic ash fall material, that could explain the presence of Plagioclase. The presence of Kaolinite and Gibbsite, as well as the general characteristics of the profiles, indicates a longer period of weathering and pedogenesis, as shown in the Chemical Index of Alteration. Only the Magdalena profile presents Gibbsite maybe indicating a longer period of pedogenesis. The Adjacent to Cave profiles correspond to deep Stagnosols, with around 45% of weathered rocks and redox properties. The predominant texture is silty clay. The clay components present are Vermiculite, Illite and Kaolinite in close semiquantitative percentages; this group presents two types of Kaolinite, one more crystalline than the other. The presence of the different clay components talks about the diverse contribution of parent material, probably the apport of eolian volcanic material, and terrigenous sediments from the Necoxtla formation that is present in the upper part of the basin. The mineralogy shows the presence of primary minerals, which considering the CIA values, locates them in an intermediate weathering and pedogenesis. Micromorphologically Cancha 1 profile presents 110 fluidal structures that are not present in Cancha 2, referring to fluvial processes in its formation. The development of different soil types seems to be related to their geomorphic position. The Terra Rossa Type are in depression of the relief where accumulation and no clear erosion is possible, while the Adjacent to Cave are in an area of high hydrology flux that drains into the cave, being highly susceptible to lateral erosion. It is evident the relevance of allochthonous material for the formation of the soils, the apport of volcanic material in the area has been presented in the form of lahars, pumice and volcanic ash fall in other research (Ferrand et al., 2014; Solleiro et al., 2023). 5. Conclusion - The formation of the diamicton deposits inside the cave responds to high energy events generating hyper-concentrate fluxes from the surface, and not to suffusion of the soils on top of the cave. This fluxes transport of materials trapped in the doline outside the cave. - There is an important apport of silicate material for the pedogenesis of the soils, in the form of volcanic ash fall probably from the Pico de Orizaba and terrigenous sediments from the Necoxtla formation. - The pedodiversity of the area is highly related to the relief in which the soils develop. The Terra Rossa Type profiles are on stable depressions that allows for continuous pedogenesis, while the Adjacent to Cave profiles are in a more dynamic position that cuts the pedogenesis and gives colluvial properties to these soils. References - Aliaga-Campuzano, M. D. P., López-Martínez, R., Universidad Nacional Autónoma de México, Dávila-Harris, P., Instituto Potosino de Investigación Científica y Tecnológica, Espinasa-Pereña, R., Centro Nacional de Prevención de Desastres, Espino Del Castillo, A., Universidad Autónoma Metropolitana, Bernal, J. P., & Universidad Nacional Autónona de México. (2017). Timing of speleogenesis of Las Karmidas Cave (Mexico): First description of pseudokarst developed in ignimbrite. International Journal of Speleology, 46(3), 331–343. https://doi.org/10.5038/1827-806X.46.3.2097 - Ardelean, C. F., Becerra-Valdivia, L., Pedersen, M. W., Schwenninger, J.-L., Oviatt, C. G., Macías-Quintero, J. I., Arroyo-Cabrales, J., Sikora, M., Ocampo-Díaz, Y. Z. E., Rubio- Cisneros, I. I., Watling, J. G., De Medeiros, V. B., De Oliveira, P. E., Barba-Pingarón, L., Ortiz-Butrón, A., Blancas-Vázquez, J., Rivera-González, I., Solís-Rosales, C., Rodríguez- 111 Ceja, M., … Willerslev, E. (2020). Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature, 584(7819), 87–92. https://doi.org/10.1038/s41586-020-2509-0 - Atalay, I. (1997). Red Mediterranean soils in some karstic regions of taurus mountains, Turkey. CATENA, 28(3), 247–260. https://doi.org/10.1016/S0341-8162(96)00041-0 - Audra, P., & Palmer, A. N. (2015). Research frontiers in speleogenesis. Dominant processes, hydrogeological conditions and resulting cave patterns. Acta Carsologica, 44(3). https://doi.org/10.3986/ac.v44i3.1960 - Bautista, F., Palacio-Aponte, G., Quintana, P., & Zinck, J. A. (2011). Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology, 135(3), 308–321. https://doi.org/10.1016/j.geomorph.2011.02.014 - Beach, T., Dunning, N., Luzzadder-Beach, S., Cook, D. E., & Lohse, J. (2006). Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. CATENA, 65(2), 166–178. https://doi.org/10.1016/j.catena.2005.11.007 - Beck, B. (2012). Soil Piping and Sinkhole Failures. In Encyclopedia of Caves (pp. 718– 723). Elsevier. https://doi.org/10.1016/B978-0-12-383832-2.00106-7 - Béres, S., Cserpák, F., Moskal-del Hoyo, M., Repiszky, T., Sázelová, S., Wilczyński, J., & Lengyel, G. (2021). Zöld Cave and the Late Epigravettian in Eastern Central Europe. Quaternary International, 587–588, 158–171. https://doi.org/10.1016/j.quaint.2020.09.050 - Bosch, R. F., & White, W. B. (2007). Lithofacies And Transport Of Clastic Sediments In Karstic Aquifers. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 1– 22). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5766-3_1 - Bosch, R. F., & White, W. B. (2018). Lithofacies and Transport for Clastic Sediments in Karst Conduits. In W. B. White, J. S. Herman, E. K. Herman, & M. Rutigliano (Eds.), Karst Groundwater Contamination and Public Health (pp. 277–281). Springer International Publishing. https://doi.org/10.1007/978-3-319-51070-5_32 - Bronger, A., & Sedov, S. N. (2003). Vetusols and paleosols: Natural versus man-induced environmental change in the Atlantic coastal region of Morocco. Quaternary International, 106–107, 33–60. https://doi.org/10.1016/S1040-6182(02)00160-X - Burger, P. A. (2004). Glacially-Influenced Sediment Cycles in the Lime Creek Karst, Eagle County, Colorado. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 107–122). Springer US. https://doi.org/10.1007/978-1-4419-9118-8_7 - Cabadas-Báez, H., Solleiro-Rebolledo, E., Sedov, S., Pi-Puig, T., & Gama-Castro, J. (2010). Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of Late 112 Quaternary soil development, geomorphic processes and landscape stability. Geomorphology, 122(3), 323–337. https://doi.org/10.1016/j.geomorph.2010.03.002 - Carrasco-Núñez, G. (1999). Holocene block-and-ash flows from summit dome activity of Citlaltépetl volcano, Eastern Mexico. Journal of Volcanology and Geothermal Research, 88(1–2), 47–66. https://doi.org/10.1016/S0377-0273(98)00110-3 - Carrasco-Núñez, G., & Rose, W. I. (1995). Eruption of a major Holocene pyroclastic flow at Citlaltépetl volcano (Pico de Orizaba), México, 8.5–9.0 ka. Journal of Volcanology and Geothermal Research, 69(3–4), 197–215. https://doi.org/10.1016/0377-0273(95)00023-2 - Dreybrodt, W. (2019). Speleothem deposition. In Encyclopedia of Caves (pp. 996–1005). Elsevier. https://doi.org/10.1016/B978-0-12-814124-3.00116-3 - Dreybrodt, W., & Gabrovšek, F. (2003). Basic Processes and Mechanisms Governing the Evolution of Karst. Speleogenesis and Evolution of Karst Aquifers. - Dunning, N. P., Luzzadder-Beach, S., Beach, T., Jones, J. G., Scarborough, V., & Culbert, T. P. (2002). Arising from the Bajos: The Evolution of a Neotropical Landscape and the Rise of Maya Civilization. Annals of the Association of American Geographers, 92(2), 267–283. https://doi.org/10.1111/1467-8306.00290 - Durn, G. (2003). Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin. Geologia Croatica, 56(1), 83–100. https://doi.org/10.4154/GC.2003.06 - Durn, G., Ottner, F., & Slovenec, D. (1999). Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma, 91(1), 125–150. https://doi.org/10.1016/S0016-7061(98)00130-X - Eguiluz De Antuñano, S., Aranda García, M., & Marrett, R. (2000). Tectónica de la Sierra Madre Oriental, México. Boletín de La Sociedad Geológica Mexicana, 53(1), 1–26. https://doi.org/10.18268/BSGM2000v53n1a1 - Engel, R. J., Witty, J. E., & Eswaran, H. (1997). The classification, distribution, and extent of soils with a xeric moisture regime in the United States. CATENA, 28(3), 203–209. https://doi.org/10.1016/S0341-8162(96)00038-0 - Fedo, C. M., Wayne Nesbitt, H., & Young, G. M. (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23(10), 921. https://doi.org/10.1130/0091- 7613(1995)023<0921:UTEOPM>2.3.CO;2 - Ferrand, P. A., Solleiro-Rebolledo, E., Acosta, G., Sedov, S., & Morales, P. (2014). Archaic settlement in El Tebernal, Veracruz: First insights into paleoenvironmental conditions and 113 resource exploitation. Quaternary International, 342, 45–56. https://doi.org/10.1016/j.quaint.2013.12.038 - Ford, D., & Williams, P. (2007). Karst Hydrogeology and Geomorphology (1st ed.). Wiley. https://doi.org/10.1002/9781118684986 - Harmon, R. S., Schwarcz, H. P., Gascoyne, M., Hess, J. W., & Ford, D. C. (2007). Paleoclimate Information From Speleothems: The Present As A Guide To The Past. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 199–226). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5766-3_11 - Häuselmann, Ph. (2011). UIS Mapping Grades. International Journal of Speleology, 40(2). https://digitalcommons.usf.edu/ijs/vol40/iss2/15 - Hubbard, C. R., & Snyder, R. L. (1988). RIR - Measurement and Use in Quantitative XRD. Powder Diffraction, 3(2), 74–77. https://doi.org/10.1017/S0885715600013257 - Knapp, E. P., Terry, D. O., Harbor, D. J., & Thren, R. C. (2007). Reading Virginia’s Paleoclimate From The Geochemistry And Sedimentology Of Clastic Cave Sediments. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 95–106). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5766-3_6 - Loop, C. M. (2019). Contamination of cave waters by nonaqueous-phase liquids. In Encyclopedia of Caves (pp. 326–332). Elsevier. https://doi.org/10.1016/B978-0-12-814124- 3.00036-4 - Lynch, F. L., Mahler, B. J., & Hauwert, N. N. (2007). Provenance Of Suspended Sediment Discharged From A Karst Aquifer Determined By Clay Mineralogy. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 83–93). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5766-3_5 - Mahler, B. J., Personne, J.-C., Lynch, F. L., & Van Metre, P. C. (2007). Sediment And Sediment-Associated Contaminant Transport Through Karst. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 23–46). Springer Netherlands. https://doi.org/10.1007/978-1-4020-5766-3_2 - Maynard, J. B. (1992). Chemistry of Modern Soils as a Guide to Interpreting Precambrian Paleosols. The Journal of Geology, 100(3), 279–289. https://doi.org/10.1086/629632 Moore, D. M., & Reynolds, R. C. (1997). X-ray diffraction and the identification and analysis of clay minerals (2. ed). Oxford University Press. - Musgrave, R. J., & Webb, J. A. (2004). Palaeomagnetic Analysis of Sediments in The Buchan Caves, Southeastern Australia, Provides a Prelate Pleistocene Date for Landscape 114 and Climate Evolution. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 47–69). Springer US. https://doi.org/10.1007/978-1-4419-9118-8_3 - Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0 - Nesbitt, H. W., & Young, G. M. (1989). Formation and Diagenesis of Weathering Profiles. The Journal of Geology, 97(2), 129–147. https://doi.org/10.1086/629290 - Ortuño-Arzate, S., Ferket, H., Cacas, M.-C., Swennen, R., & Roure, F. (2003). Late Cretaceous Carbonate Reservoirs in the Cordoba Platform and Veracruz Basin, Eastern Mexico. In C. Bartolini, R. T. Buffler, & J. F. Blickwede, The Circum-Gulf of Mexico and the CaribbeanHydrocarbon Habitats, Basin Formation and Plate Tectonics. American Association of Petroleum Geologists. https://doi.org/10.1306/M79877C22 - Osborne, R. (1991). Red Earth and Bones: The History of Cave Sediment Studies in New South Wales, Australia. Earth Sciences History, 10(1), 13–28. https://doi.org/10.17704/eshi.10.1.e132047518j87216 - Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3–4), 397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001 - Priori, S., Costantini, E. A. C., Capezzuoli, E., Protano, G., Hilgers, A., Sauer, D., & Sandrelli, F. (2008). Pedostratigraphy of Terra Rossa and Quaternary geological evolution of a lacustrine limestone plateau in central Italy. Journal of Plant Nutrition and Soil Science, 171(4), 509–523. https://doi.org/10.1002/jpln.200700012 - Sedov, S., Rivera-Uria, M. Y., Ibarra-Arzave, G., García-Ramírez, P., Solleiro-Rebolledo, E., Cabadas-Báez, H. V., Valera-Fernández, D., Díaz-Ortega, J., Guillén-Domínguez, K. A., Moreno-Roso, S. de J., Fedick, S. L., Leonard, D., Golden, C., Morell-Hart, S., & Liendo- Stuardo, R. R. (2023). Soil toposequences, soil erosion, and ancient Maya land use adaptations to pedodiversity in the tropical karstic landscapes of southern Mexico. Frontiers in Earth Science, 11. https://www.frontiersin.org/articles/10.3389/feart.2023.1239301 - Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., Pi-Puig, T., Vallejo-Gómez, E., & Flores- Delgadillo, M. de L. (2008). Micromorphology of a Soil Catena in Yucatán: Pedogenesis and Geomorphological Processes in a Tropical Karst Landscape. In S. Kapur, A. Mermut, & G. Stoops (Eds.), New Trends in Soil Micromorphology (pp. 19–37). Springer. https://doi.org/10.1007/978-3-540-79134-8_3 115 - Solleiro-Rebolledo, E., García-Ramírez, P., Sedov, S., Cabadas-Báez, H., Rivera-Uria, Y., Ibarra-Arzave, G., & Pi-Puig, T. (2023). Interaction of geomorphic processes and long-term human impact in the soil evolution: A study case in the tropical area at Veracruz, Mexico. CATENA, 227, 107072. https://doi.org/10.1016/j.catena.2023.107072 - Springer, G. S. (2019). Clastic sediments in caves. In Encyclopedia of Caves (pp. 277– 284). Elsevier. https://doi.org/10.1016/B978-0-12-814124-3.00031-5 - Stoops, G. (2020). Guidelines for Analysis and Description of Soil and Regolith Thin Sections (1st ed.). Wiley. https://doi.org/10.1002/9780891189763 - Vesper, D. J. (2019). Contamination of cave waters by heavy metals. In Encyclopedia of Caves (pp. 320–325). Elsevier. https://doi.org/10.1016/B978-0-12-814124-3.00035-2 - White, W. B. (1988). Geomorphology and hydrology of karst terrains. Oxford university press. - White, W. B. (2004). Paleoclimate Records from Speleothems in Limestone Caves. In I. D. Sasowsky & J. Mylroie (Eds.), Studies of Cave Sediments (pp. 135–175). Springer US. https://doi.org/10.1007/978-1-4419-9118-8_9 - Yaalon, D. H. (1997). Soils in the Mediterranean region: What makes them different? CATENA, 28(3), 157–169. https://doi.org/10.1016/S0341-8162(96)00035-5 - Zupan Hajna, N., Bosák, P., Pruner, P., Mihevc, A., Hercman, H., & Horáček, I. (2020). Karst sediments in Slovenia: Plio-Quaternary multi-proxy records. Quaternary International, 546, 4–19. https://doi.org/10.1016/j.quaint.2019.11.010 ANEXO 2 PERFILES COMPLEMENTARIOS. NO PUBLICADOS PERO ESTUDIADOS 116 Arroyo Jerusalén - Bolsa 1 15Q 684751.95 1889467.2 Arriba Pardo-amarillento, limo arenoso. Estructura bloques sub- angulares, pequeños y frágiles que rompen a granular. Algunas gravas finas y gruesas. Fuerte reacción al HCL. Abajo Pardo-ocre, arcilloso con alto contenido de grava tamaño 0.5cm y abundancia de arena gruesa y grava fina. Fuerte reacción de HCL. Estructura de bloques sub-angulares. Pequeños relictos de arcilla en los agregados. Relleno blanco En la pared derecha, fragmentos de roca de diferentes tamaños. "Cueva" Rancho Maria 15Q 672597.796 1893270.69 Cavidad de alrededor de 60 cm de alto por 120 cm de ancho. Sedimento rojizo algunas partes coloración anaranjada, textura arcillosa, con gravas (1 a 2 cm) en menos de 5% y bloques grandes (~10 cm) en un 50%, el sedimento está entre estos bloques grandes. reacción fuerte al ácido HCL. Estructura bloques angulares que rompen a granular. Parece un solo momento de relleno de la cueva porque no hay cambios claros en el sedimento, en la parte alta de la cueva hay el crecimiento de una pequeña estalagmita y espacio para más sedimento, esto puede hablar de un relleno más paulatino. tampoco queda claro donde puede haber sido la entrada del material, posible en la parte posterior. 117 NC-3A-01 - Perifiton 15Q 662756 1899054 0-12 cm Ah. Humus moderno, de color oscuro, con alta presencia de raíces, estructura granular friable. 12-20 cm AB. suelo grisáceo con estructura en bloques subangulares friables, con presencia de raíces y sin fragmentos rocosos. 20-50 cm Ck. De color blanco, primeramente denominado como sascab. Material de textura limosa sin estructura (masivo), que presenta aún algunas raíces vivas en la parte más superficial. En la parte baja presenta algunos poros con coloración oscura y algunos con raíces encapsuladas en el material blanco. 50-80 cm Ck2. Similar al anterior, pero con presencia de pigmentaciones oscuras de manera horizontal. 80-90 cm 2Ab. horizonte con una secuencia de material blanco (posiblemente carbonatos) con pigmentaciones de MO, la capa superior e inferior presentan mayor coloración. No tiene estructura y presenta un olor a MO en descomposición. 118 REFERENCIAS Ahmad, N., & Jones, R. L. (1969). Genesis, Chemical Properties and Mineralogy of Limestone-derived Soils, Barbados, West Indies. Tropical Agriculture, 46, 1–15. Anselmetti, F. S., Hodell, D. A., Ariztegui, D., Brenner, M., & Rosenmeier, M. F. (2007). Quantification of soil erosion rates related to ancient Maya deforestation. Geology, 35(10), 915. https://doi.org/10.1130/G23834A.1 Atalay, I. (1997). Red Mediterranean soils in some karstic regions of taurus mountains, Turkey. CATENA, 28(3), 247–260. https://doi.org/10.1016/S0341-8162(96)00041-0 Bautista, F. (Ed.). (2023). El karst de México. Asociación Mexicana de Estudios sobre el Karst. Bautista, F., Palacio-Aponte, G., Quintana, P., & Zinck, J. A. (2011). Spatial distribution and development of soils in tropical karst areas from the Peninsula of Yucatan, Mexico. Geomorphology, 135(3), 308–321. https://doi.org/10.1016/j.geomorph.2011.02.014 Beach, T. (1994). The Fate of Eroded Soil: Sediment Sinks and Sediment Budgets of Agrarian Landscapes in Southern Minnesota, 1851–1988. Annals of the Association of American Geographers, 84(1), 5–28. https://doi.org/10.1111/j.1467-8306.1994.tb01726.x Beach, T., Dunning, N., Luzzadder-Beach, S., Cook, D. E., & Lohse, J. (2006). Impacts of the ancient Maya on soils and soil erosion in the central Maya Lowlands. CATENA, 65(2), 166–178. https://doi.org/10.1016/j.catena.2005.11.007 Beck, B. (2012). Soil Piping and Sinkhole Failures. En Encyclopedia of Caves (pp. 718– 723). Elsevier. https://doi.org/10.1016/B978-0-12-383832-2.00106-7 Borejsza, A., Rodríguez López, I., Frederick, C. D., & Bateman, M. D. (2008). Agricultural slope management and soil erosion at La Laguna, Tlaxcala, Mexico. Journal of Archaeological Science, 35(7), 1854–1866. https://doi.org/10.1016/j.jas.2007.11.024 Borg, L. E., & Banner, J. L. (1996). Neodymium and strontium isotopic constraints on soil sources in Barbados, West Indies. Geochimica et Cosmochimica Acta, 60(21), 4193–4206. https://doi.org/10.1016/S0016-7037(96)00252-9 Bronger, A., & Sedov, S. N. (2003). Vetusols and paleosols: Natural versus man-induced environmental change in the Atlantic coastal region of Morocco. Quaternary International, 106–107, 33–60. https://doi.org/10.1016/S1040-6182(02)00160-X Bruce, J. G. (1983). Patterns and classification by soil taxonomy of the soils of the southern cook islands. Geoderma, 31(4), 301–323. https://doi.org/10.1016/0016-7061(83)90043-5 Cabadas Báez, H. V., Solleiro Rebolledo, E., Sedov, S., Hernández Santana, J. R., & Universidad, N. A. de M. (2011). Pedogénesis y dinámica ambiental en el paisaje kárstico de la región noreste de Quintana Roo, México durante el Cuaternario Tardío. 119 Cabadas-Báez, H., Solleiro-Rebolledo, E., Sedov, S., Pi-Puig, T., & Gama-Castro, J. (2010). Pedosediments of karstic sinkholes in the eolianites of NE Yucatán: A record of Late Quaternary soil development, geomorphic processes and landscape stability. Geomorphology, 122(3), 323–337. https://doi.org/10.1016/j.geomorph.2010.03.002 Carozza, J.-M., Galop, D., Metailie, J.-P., Vanniere, B., Bossuet, G., Monna, F., Lopez-Saez, J. A., Arnauld, M.-C., Breuil, V., Forne, M., & Lemonnier, E. (2007). Landuse and soil degradation in the southern Maya lowlands, from Pre-Classic to Post-Classic times: The case of La Joyanca (Petén, Guatemala). Geodinamica Acta, 20(4), 195–207. https://doi.org/10.3166/ga.20.195-207 Deevey, E. S., Rice, D. S., Rice, P. M., Vaughan, H. H., Brenner, M., & Flannery, M. S. (1979). Mayan Urbanism: Impact on a Tropical Karst Environment. Science, 206(4416), 298–306. https://doi.org/10.1126/science.206.4416.298 Dotterweich, M. (2013). The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis. Geomorphology, 201, 1–34. https://doi.org/10.1016/j.geomorph.2013.07.021 Dunning, N. P., Luzzadder-Beach, S., Beach, T., Jones, J. G., Scarborough, V., & Culbert, T. P. (2002). Arising from the Bajos: The Evolution of a Neotropical Landscape and the Rise of Maya Civilization. Annals of the Association of American Geographers, 92(2), 267–283. https://doi.org/10.1111/1467-8306.00290 Durn, G. (2003). Terra Rossa in the Mediterranean Region: Parent Materials, Composition and Origin. Geologia Croatica, 56(1), 83–100. https://doi.org/10.4154/GC.2003.06 Durn, G., Ottner, F., & Slovenec, D. (1999). Mineralogical and geochemical indicators of the polygenetic nature of terra rossa in Istria, Croatia. Geoderma, 91(1), 125–150. https://doi.org/10.1016/S0016-7061(98)00130-X Engel, R. J., Witty, J. E., & Eswaran, H. (1997). The classification, distribution, and extent of soils with a xeric moisture regime in the United States. CATENA, 28(3), 203–209. https://doi.org/10.1016/S0341-8162(96)00038-0 Espinasa Pereña, Ramón. (1990). "Propuesta de clasificación de Karst de la República Mexicana". (Tesis de Licenciatura). Universidad Nacional Autónoma de México, México. Recuperado de https://repositorio.unam.mx/contenidos/315312 Espinasa-Pereña, Ramon (2007) Carso. En García A. (cord.) Atlas Nacional de México. Instituto de Geografía, UNAM, México, IV.3.4. Recuperado de https://geodigital.geografia.unam.mx/atlas_nacional/index.html/grals/Tomo_II/IV.Naturalez a/IV.3.Relieve/IV.3.4.jpg Fedick, S. L., De Lourdes Flores Delgadillo, M., Sedov, S., Rebolledo, E. S., & Mayorga, S. P. (2008). Adaptation Of Maya Homegardens By “Container Gardening” In Limestone 120 Bedrock Cavities. Journal of Ethnobiology, 28(2), 290–304. https://doi.org/10.2993/0278- 0771-28.2.290 FAO (1993) Erosión de suelos en América Latina. Recuperado de: https://www.fao.org/4/T2351S/T2351S00.htm Fisher, C. T., Pollard, H. P., Israde-Alcántara, I., Garduño-Monroy, V. H., & Banerjee, S. K. (2003). A reexamination of human-induced environmental change within the Lake Pátzcuaro Basin, Michoacán, Mexico. Proceedings of the National Academy of Sciences, 100(8), 4957–4962. https://doi.org/10.1073/pnas.0630493100 Flores-Delgadillo, L., Fedick, S. L., Solleiro-Rebolledo, E., Palacios-Mayorga, S., Ortega- Larrocea, P., Sedov, S., & Osuna-Ceja, E. (2011). A sustainable system of a traditional precision agriculture in a Maya homegarden: Soil quality aspects. Soil and Tillage Research, 113(2), 112–120. https://doi.org/10.1016/j.still.2011.03.001 Ford, D., & Williams, P. W. (2007). Karst hydrogeology and geomorphology (Rev. ed.). John Wiley & Sons. García‐Ramírez, P., Guillén, K., Sedov, S., Golden, C., Morell‐Hart, S., Scherer, A., Pi, T., Solleiro‐Rebolledo, E., Dine, H., & Rivera, Y. (2024). Soil development and ancient Maya land use in the tropical karst landscape: Case of Busiljá, Chiapas, México. Soil Science Society of America Journal, 88(5), 1561–1582. https://doi.org/10.1002/saj2.20723 Guillen Dominguez, K., Solleiro Rebolledo, E., Sedov, S., Golden, C., Scherer, A., & Cerón González, A. (2022). Soil toposequence in the Busiljá Valley and its relationship with Prehispanic anthropic activities (Chiapas, Mexico). En M. Świtoniak & P. Charzyński (Eds.), Soil Sequence Atlas V: Vol. V (pp. 45–54). Nicolaus Copernicus University. Hubp, J. L. (2011). Diccionario geomorfológico. En Instituto de Geografía. Instituto de Geografía. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/book/32 Lowdermilk, W. C. (1935). Civilization and Soil Erosion. Journal of Forestry, 33(6), 554–560. https://doi.org/10.1093/jof/33.6.554 (1953) “Conquest of the land through seven thousand years”. Agriculture information bulletin 99:1-30. INEGI (1983) Conjunto de datos vectoriales Geológicos serie I. Orizaba E14-6. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825674632 INEGI (1984) Conjunto de datos vectoriales Geológicos serie I. Tenosique E15-9. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825236632 INEGI (2007a) Conjunto de Datos Vectorial Edafológico. Escala 1:250 000 Serie II Continuo Nacional Tenosique E15-9. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235406 121 INEGI (2007b) Conjunto de Datos Vectorial Edafológico. Escala 1:250 000 Serie II Continuo Nacional Orizaba E14-6. https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825235260 INEGI (2017). Conjunto de Datos de Perfiles de Suelos, Escala 1:250 000 Serie II (Continuo Nacional). Instituto Nacional de Estadística y Geografía. Recuperado de https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825266707 IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. Lugo Hubp, José (2011) Diccionario geomorfológico. UNAM: México. Merino, E., & Banerjee, A. (2008). Terra Rossa Genesis, Implications for Karst, and Eolian Dust: A Geodynamic Thread. The Journal of Geology, 116(1), 62–75. https://doi.org/10.1086/524675 Medina, H. E., Osornio, J. J. J., Álvarez-Rivera, O., & Medina, R. C. B. (2019). El karst de Yucatán: Su origen, morfología y biología. Acta Universitaria, 29, 1–18. https://doi.org/10.15174/au.2019.2292 Merino, E., & Banerjee, A. (2008). Terra Rossa Genesis, Implications for Karst, and Eolian Dust: A Geodynamic Thread. The Journal of Geology, 116(1), 62–75. https://doi.org/10.1086/524675 Montgomery, D. R. (2007). Is agriculture eroding civilization’s foundation? GSA Today, 17(10), 4. https://doi.org/10.1130/GSAT01710A.1 Mueller, A. D., Islebe, G. A., Hillesheim, M. B., Grzesik, D. A., Anselmetti, F. S., Ariztegui, D., Brenner, M., Curtis, J. H., Hodell, D. A., & Venz, K. A. (2009). Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene. Quaternary Research, 71(2), 133–141. https://doi.org/10.1016/j.yqres.2008.10.002 O’Hara, S. L., Street-Perrott, F. A., & Burt, T. P. (1993). Accelerated soil erosion around a Mexican highland lake caused by prehispanic agriculture. Nature, 362(6415), 48–51. https://doi.org/10.1038/362048a0 Ortega Sastriques, F. (1984) El humus de los suelos de Cuba. II. Suelos automórficos sobra calizas duras. Ciencias de la Agricultura, 21, 91-103. Priori, S., Costantini, E. A. C., Capezzuoli, E., Protano, G., Hilgers, A., Sauer, D., & Sandrelli, F. (2008). Pedostratigraphy of Terra Rossa and Quaternary geological evolution of a lacustrine limestone plateau in central Italy. Journal of Plant Nutrition and Soil Science, 171(4), 509–523. https://doi.org/10.1002/jpln.200700012 122 Scholten, J. J., & Andriesse, W. (1986). Morphology, genesis and classification of three soils over limestone, Jamaica. Geoderma, 39(1), 1–40. https://doi.org/10.1016/0016- 7061(86)90060-1 Sedov, S., E. Solleiro, L. Fedick, J. Gama, S. Palacios, y E. Vallejo (2007) Soil genesis in relation to landscape evolution and ancient sustainable land use in the northeastern Yucatan Peninsula, Mexico. Atti Soc. Tosc. Sci. Nat. Nem. 115-126. Sedov, S., Solleiro-Rebolledo, E., Fedick, S. L., Pi-Puig, T., Vallejo-Gómez, E., & Flores- Delgadillo, M. de L. (2008). Micromorphology of a Soil Catena in Yucatán: Pedogenesis and Geomorphological Processes in a Tropical Karst Landscape. En S. Kapur, A. Mermut, & G. Stoops (Eds.), New Trends in Soil Micromorphology (pp. 19–37). Springer. https://doi.org/10.1007/978-3-540-79134-8_3 Sedov, S., Rivera-Uria, M. Y., Ibarra-Arzave, G., García-Ramírez, P., Solleiro-Rebolledo, E., Cabadas-Báez, H. V., Valera-Fernández, D., Díaz-Ortega, J., Guillén-Domínguez, K. A., Moreno-Roso, S. de J., Fedick, S. L., Leonard, D., Golden, C., Morell-Hart, S., & Liendo- Stuardo, R. R. (2023). Soil toposequences, soil erosion, and ancient Maya land use adaptations to pedodiversity in the tropical karstic landscapes of southern Mexico. Frontiers in Earth Science, 11. https://www.frontiersin.org/articles/10.3389/feart.2023.1239301 Singer, A. (1988). Properties and genesis of some soils of Guanxi Province, China. Geoderma, 43(2), 117–130. https://doi.org/10.1016/0016-7061(88)90038-9 Solleiro-Rebolledo, E., Cabadas-Báez, H. V., Pi, P. T., González, A., Fedick, S. L., Chmilar, J. A., & Leonard, D. (2011). Genesis of hydromorphic Calcisols in wetlands of the northeast Yucatan Peninsula, Mexico. Geomorphology, 135(3–4), 322–331. https://doi.org/10.1016/j.geomorph.2011.02.009 Solleiro-Rebolledo, E., García-Ramírez, P., Sedov, S., Cabadas-Báez, H., Rivera-Uria, Y., Ibarra-Arzave, G., & Pi-Puig, T. (2023). Interaction of geomorphic processes and long-term human impact in the soil evolution: A study case in the tropical area at Veracruz, Mexico. CATENA, 227, 107072. https://doi.org/10.1016/j.catena.2023.107072 Targulian, V. O., & Krasilnikov, P. V. (2007). Soil system and pedogenic processes: Self- organization, time scales, and environmental significance. CATENA, 71(3), 373–381. https://doi.org/10.1016/j.catena.2007.03.007 White, W. B. (1988). Geomorphology and hydrology of karst terrains. Oxford University Press. Yaalon, D. H. (1997). Soils in the Mediterranean region: What makes them different? CATENA, 28(3), 157–169. https://doi.org/10.1016/S0341-8162(96)00035-5