UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS INSTITUTO DE BIOLOGÍA BIOLOGÍA EVOLUTIVA Y SISTEMÁTICA PATRONES BIOGEOGRÁFICOS Y COFILOGENÉTICOS DE MARGOTREMA SPP. (DIGENEA: ALLOCREADIIDAE), PARÁSITOS DE PECES DULCEACUÍCOLAS DE LA SUBFAMILIA GOODEINAE (CYPRINODONTIFORMES: GOODEIDAE) EN EL CENTRO DE MÉXICO TESIS QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS PRESENTA: ANDRÉS MARTÍNEZ AQUINO TUTOR PRINCIPAL: DR. GERARDO PÉREZ PONCE DE LEÓN (INSTITUTO DE BIOLOGÍA) COMITÉ TUTOR: DR. LUIS ENRIQUE EGUIARTE FRUNS (INSTITUTO DE ECOLOGÍA) DRA. ELLA GLORIA VÁZQUEZ DOMÍNGUEZ (INSTITUTO DE ECOLOGÍA) MÉXICO, D.F. JUNIO, 2013. UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS BIOLÓGICAS INSTITUTO DE BIOLOGÍA BIOLOGÍA EVOLUTIVA Y SISTEMÁTICA PATRONES BIOGEOGRÁFICOS Y COFILOGENÉTICOS DE MARGOTREMA SPP. (DIGENEA: ALLOCREADIIDAE), PARÁSITOS DE PECES DULCEACUÍCOLAS DE LA SUBFAMILIA GOODEINAE (CYPRINODONTIFORMES: GOODEIDAE) EN EL CENTRO DE MÉXICO TESIS QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS PRESENTA: ANDRÉS MARTÍNEZ AQUINO TUTOR PRINCIPAL: DR. GERARDO PÉREZ PONCE DE LEÓN (INSTITUTO DE BIOLOGÍA) COMITÉ TUTOR: DR. LUIS ENRIQUE EGUIARTE FRUNS (INSTITUTO DE ECOLOGÍA) DRA. ELLA GLORIA VÁZQUEZ DOMÍNGUEZ (INSTITUTO DE ECOLOGÍA) MÉXICO, D.F. JUNIO, 2013. UN M POSG} DO Ci,"oi .. 1;0161;<0' • Dr_I. .... _ _ _ • __ bcGIor . U~"" "f ...... COORDINACiÓN "-_ ........... __ .... _...- ... CarnoIOM ,_ ... .....,_ ..,c-..-... .. _, ,,ulJ,,",...,..oo ;¡O¡ IJ . .. _ .. _ ........ .... .. • , ""'"" .... _ . ... ___ "" __ A'l NI •• Ulft _""" .. ll,O,U, -.. lL [..ru" co "' .... _ .. D F . .... _ .. l."J DIlO. .... RIA O ... COItO ... "ltIItNt> ......... G ... COOfUIINAOORA OI!L ""do ·c_,jd .......... C"_' "~s [oI;_8., ... _c..- ... ,....· CIlU ... _ ()oIop< ... c..,....c. 001,' 101",,_0 r ,el ~l1Q01'" pdIooI¡ • __ .. , • AGRADECIMIENTOS INSTITUCIONALES > Al Posgrado en Ciencias Biológicas (PCB) de la Universidad Nacional Autónoma de México (UNAM) por el apoyo logístico brindado para la realización de este proyecto. > Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por la beca otorgada (202632) para realizar estudios de Doctorado (Febrero 2009-2013). > A los Proyectos de Investigación a cargo del Dr. Gerardo Pérez Ponce de León que financiaron mi estudio doctoral: a) CONACyT 83043 (enero 2009-diciembre 2011) “Diversidad y riqueza de helmintos parásitos de peces dulceacuícolas mexicanos: un enfoque sistemático y biogeográfico desde las moléculas hasta los ecosistemas; b) PAPIIT IN202111 (enero 2009-diciembre 2011) “Evolución y biogeografía histórica de helmintos parásitos de peces dulceacuícolas de la Zona de Transición Mexicana”. > Al Programa de Apoyo de Estudios de Posgrado (PAEP) de la UNAM por las siguientes becas otorgadas: - Beca PAEP-2012, para Estancia Internacional; Universitat de Barcelona, Barcelona, España. Marzo-Julio, 2012. - Beca PAEP-2011, para Congreso Internacional; XIII International Symposium of Fish Parasites, Viña del Mar, Chile. Septiembre, 2011. - Beca PAEP-2010, para Estancia Nacional; Instituto de Ecología, A.C., Xalapa, Veracruz, México. Septiembre, 2010. > A la Swiss Systematics Society (SSS) por la Beca de condenación de pago de inscripción para el curso de especialización “Model-based methods in biogeography”, y por la Beca de condenación de pago de inscripción para la participación dentro del “5. Scientific meeting of the Swiss Systematics Society”, Porrentruy, Suiza. Noviembre, 2012. > A la Universitat de Barcelona por la Beca de condenación de pago de inscripción para curso de especialización; Filogenias y Genealogías de DNA: Reconstrucción y Aplicaciones, celebrado en la Universitat de Barcelona, Barcelona, España. Julio, 2012. > Al CONACyT por la beca otorgada de Recursos Humanos de Alto Nivel de CONACyT (CONACyT- MIXTA), para Estancia Internacional; Universitat de Barcelona, Barcelona, España. Marzo-Julio, 2012. > Al PCB por la beca otorgada de Condenación de pago de inscripción para curso de especialización; WHS Twelfth International Workshop in Phylogenetics Methods, celebrado en el Instituto de Ecología A.C., Xalapa, México. Mayo 2011. > Al Dr. Gerardo Pérez Ponce de León por fungir como mi tutor principal de tesis doctoral. > A la Dra. Ella Gloria Vázquez y al Dr. Luis Enrique Eguiarte Fruns por fungir como mi Comité Tutorial del proyecto doctoral. AGRADECIMIENTOS PERSONALES > Al Dr. Gerardo Pérez Ponce de León por dirigir de manera directa mi proyecto doctoral. > A la Dra. Ella Vázquez por evaluar el desarrollo de mi proyecto doctoral, mi examen de candidatura de grado a doctor, así como de mi desempeño dentro de su curso de Filogeografía, impartido dentro del Programa del PCB. > Al Dr. Luis E. Eguiarte por evaluar el desarrollo de mi proyecto doctoral y mi desempeño dentro de su curso de Evolución Molecular, impartido dentro del Programa del PCB. > Al Dr. Daniel Piñero por evaluar mi tesis doctoral, mi examen de candidatura de grado a doctor, así como mi desempeño dentro del Taller Latinoamericano de Evolución Molecular (TLEM-2010), impartido dentro del Programa del PCB. > Al Dr. Juan José Morrone por evaluar mi tesis doctoral y mi examen de candidatura de grado a doctor, así como por proporcionarme información biogeográfica y académica de manera incondicional. > Al Dr. Rogelio Aguilar por evaluar mi tesis doctoral, así como por proporcionarme ayuda de campo y colaborar en distintos proyectos de manera incondicional. > Al Dr. Omar Domínguez por evaluar mi tesis doctoral y mi examen de candidatura de grado a doctor, así como proporcionarme información especializada referente a la historia natural de los goodeinos. > Al la Dra. Sara Ceccarelli por la ayuda incondicional en el laboratorio de biología molecular, análisis de datos y para la estancia de investigación en el Instituto de Biogeografía, Basel, Suiza. > Al Dr. Julio Rozas, por permitirme realizar una estancia de investigación en su laboratorio de Genómica Evolutiva; Universitat de Barcelona, Barcelona, España así como por permitirme el libre acceso de uso de la supercumpotadora HERCULES. > Al Dr. Alejandro Sánchez-Gracia, por guiarme en mis estudios de filogenias intraespecíficas durante mi estancia en el laboratorio de Genómica Evolutiva. > Al PhD student Pablo Librado, por guiarme en mis estudios de su softwere DnaSP V5.10.1 durante mi estancia en el laboratorio de Genómica Evolutiva y por la ayuda incondicional con Linux para el manejo de HERCULES. > A la Dra. Martha Barluenga, por financiar mi visita al Museo Nacional de Ciencias Naturales de Madrid, España. > Al Dr. Efraín de Luna, por permitirme realizar una estancia de investigación en su laboratorio de Morfometría Geométrica y Filogenia, Instituto de Ecología, A.C., Xalapa, Veracruz, México. > A la Dra. Blanca Hernández por evaluar mi examen de candidatura de grado a doctor. > A los colegas del laboratorio de Genómica Evolutiva, Barça; Cristina, Pablo, Roser, Juanma y Alex, por la excelente camaradería catalana! > A la Dra. Eva Puerna y a su esposo Tonys, por acogerme en su casa con una ejemplar fraternidad catalana ¡Viva el FCB! > A los colaboradores del laboratorio de Sistemática Molecular III; Sara Ceccarelli, EcoLiliana y Javo Alcantár, por los miles de ensayo y error directamente publicados en PhDComics! > A los colegas de las bastas expediciones de campo; Rodo Pérez, David Pandilla, Javo Alcantá y Roger Aguilar. > A los M. en C. Berenit Mendoza y Luis García por toda su ayuda incondicional durante mi estancia en el laboratorio de la Colección Nacional de Helmintos (CNHE), del Instituto de Biología, UNAM. > A los compañeros del laboratorio de la Colección Nacional de Helmintos (CNHE), a los del Instituto de Biología, a los de la Facultad de Ciencias y de otras corporaciones educativas en el mundo; Rodo Pérez, Noemí Matías, Javo Alcantár, Aldo Merlo, Tania Merlo, Vladimir de Jesús Bonilla, George Kimba, Ana Cecilia, Rogelio Rosas, Lorena Garrido, Lupita Velarde, Ángeles de Charlie, Jorge López, Paty Rosas, Nadhieli, Lya Aguilar, Luiza Camargo, Tom, Sean Rovito, Juanjo Martínez, Carlitos Pedraza, Paty Ornelas, Isabel Santos, Christoph Liedtke, Simon Loader y Carlitos Mendoza. > A mis amigos Fernando Camacho, Ulises Muty, Esteban Benítez y Karlita Butterfly Nájera. > La base para consolidar este trabajo se encuentra en mis padres y mis hermanos. Phylogeny as a cloud of gene histories. Phylogeny is more like a statistical distribution than a simple tree of discrete thin branches. It has a central tendency, but it also has a variance because of the diversity of gene trees. Gene trees that disagree with the central tendency are not wrong; rather, they are part of the diffuse pattern that is the genetic history. W.P. Maddison. 1997. Gene Tree in Species Tree. ÍNDICE RESUMEN ……………….…………………………………………………………….………….………………………...………….……………. 1 ABSTRACT …………………………………………………………………………………………….…………………………...……………….. 3 INTRODUCCIÓN GENERAL ………………..……………………..……..…………………….…………………………………………….... 5 CAPÍTULO I. REGISTROS DE MARGOTREMA SPP. PARA PECES DULCEACUÍCOLAS DE MÉXICO: TAXONOMÍA E INVENTARIOS …………………………………………………………………………….……………….……………… 12 1) HELMINTH PARASITES OF XEONOTAENIA RESOLANAE (OSTEICHTHYES: CYPRINODONTIFORMES: GOODEIDAE) FROM THE CUZALAPA HYDROLOGICAL SYSTEM, JALISCO, MEXICO ……....……….. 15 2) HELMINTH FAUNA OF TWO CYPRINID FISH (CAMPOSTOMA ORNATUM AND CODOMA ORNATA) FROM THE UPPER PIAXTLA RIVER, NORTHWESTERN MEXICO .….…………………………………….....… 19 3) ENDOHELMINTH PARASITES OF THE FRESHWATER FISH ZOOGONETICUS PURHEPECHUS (CYPRINODONTIFORMES: GOODEIDAE) FROM TWO SPRINGS IN THE LOWER LERMA RIVER, MEXICO ……………………………………………………………………………………………………………………….……..… 26 4) ENDOHELMINTH PARASITES OF SEVEN GOODEIN SPECIES (CYPRINODONTIFORMES: GOODEIDAE) FROM LAKE ZACAPU, MICHOACÁN, CENTRAL MEXICO PLATEAU …………..…...… 33 5) A NEW SPECIES OF MARGOTREMA (DIGENEA, ALLOCREADIIDAE) FROM THE LEOPARD SPLITFIN XENOTAENIA RESOLANAE (CYPRINODONTIFORMES, GOODEIDAE) FROM WEST-CENTRAL MEXICO ……………………………………………………………………………………………………………………………...… 39 6) COMPOSICIÓN TAXONÓMICA DE HELMINTOS PARÁSITOS DE GOODEINAE (OSTEICHTHYES: CYPRINODONTIFORMES: GOODEIDAE) EN MÉXICO ……………………………………………….…………...… 43 CAPÍTULO II. MOLECULAR PHYLOGENY OF THE GENUS MARGOTREMA (DIGENEA: ALLOCREADIIDAE), PARASITIC FLATWORMS OF GOODEID FRESHWATER FISHES ACROSS CENTRAL MEXICO: SPECIES BOUNDARIES, HOST-SPECIFICITY, AND GEOGRAPHICAL CONGRUENCE …............................................………... 110 CAPÍTULO III. DOES THE HISTORICAL BIOGEOGRAPHY AND COPHYLOGENY OF THE DIGENEAN MARGOTREMA SPP. ACROSS CENTRAL MEXICO MIRRORS THAT OF THEIR FRESHWATER FISH HOSTS (GOODEINAE)? …..………………………………………………………………………………………………………………………….... 152 DISCUSIÓN GENERAL ………………………………………………………….................................................................................... 206 CONCLUSIONES GENERALES …………………………..…………...………………………………..………………………………... 213 LITERATURA CITADA …………………………………………………………………………...…………………….……………..…..... 215 APÉNDICE. HELMINTH PARASITES OF FRESHWATER FISHES FROM CUATRO CIÉNEGAS, COAHUILA, IN THE CHIHUAHUA DESERT OF MEXICO: INVENTORY AND BIOGEOGRAPHICAL IMPLICATIONS …….… 224 RESUMEN El género Margotrema, contiene digéneos parásitos que forman parte de la helmintofauna principal (core helminth fauna) de Goodeinae, un grupo monofilético de peces dulceacuícolas endémico del centro de México, debido a que comparten patrones de distribución geográfica y los digéneos exhiben altos niveles de especificidad. Los procesos de diversificación de Goodeinae son el resultado de los cambios hidrogeomorfológicos que modificaron la configuración de la superficie del centro de México. Margotrema representa un modelo excelente para realizar análisis filogenéticos, biogeográficos y cofilogenéticos en el sentido de dilucidar, en primera instancia, la historia evolutiva de las dos especies putativas de Margotrema: M. bravoae y M. guillerminae. Los objetivos de esta tesis fueron los siguientes: a) Realizar la reconstrucción filogenética intraespecífica de las dos especies del género Margotrema: M. bravoae y M. guillerminae. b) Establecer la validez taxonómica de las dos especies del género Margotrema (M. bravoae y M. guillerminae), a través de análisis filogenéticos, basados en coalescencia, para datos moleculares. c) Detectar si la estructura filogenética de Margotrema spp. coincide con el patrón de distribución geográfico de las cuatro tribus de Goodeinae. d) Poner a prueba la hipótesis de “La diversificación de los goodeinos, resultado de los eventos de vicarianza-dispersión del centro de México, influye de igual modo en la evolución de las poblaciones de Margotrema spp.”. Para ello, se realizaron análisis biogeográficos para detectar el patrón de distribución de Margotrema spp., en función del tiempo y del espacio, y contrastarlo con la estructura filogenética de Goodeinae y con la historia geológica del centro de México. Entre agosto de 2008 y julio de 2010 se muestreo en 57 localidades, a lo largo de siete sistemas hidrológicos del centro de México. Se obtuvieron secuencias de dos marcadores moleculares: mitocondrial (COI; 118 secuencias) y nuclear (ITS1; 98 secuencias). Se realizaron análisis filogenéticos con inferencia bayesiana para bases de datos de genes independientes y combinados. Los árboles con probabilidad posterior más alta fueron utilizados para análisis de delimitación de especies usando modelos de coalescencia (v. gr. General Mixed Yule Coalescent; Species Tree by multispecies coalescent). La reconstrucción biogeográfica y los procesos cofilogeneticos fueron detectados a través de análisis biogeográficos paramétricos (v.gr. Dispersal-Extinction-Cladogenesis). 2 Con base en el numero de linajes detectado a través de la combinación de los análisis filogenéticos, usando los marcadores COI (cuatro linajes) e ITS1 (dos linajes), se puede evidenciar la distinta tasa de evolución molecular que existe entre ambos marcadores. El Linaje I, apoyado por la resolución filogenética de ambos marcadores más caracteres morfológicos taxonómicamente delimitados, representa una nueva especie para Margotrema: M. resolanae. Las poblaciones restantes de Margotrema pertenecen a M. bravoae, y muestran una estructura genealógica que incluye tres linajes con evolución independiente que se refleja en sus patrones de distribución geográfica y especificidad. Con base en la integración de los resultados de los análisis biogeográficos y cofilogenéticos se detecta que la relación Goodeinae-Margotrema representa tres niveles de asociaciones históricas distintas que reflejan que los procesos de divergencia de Margotrema, en primera instancia, se deben a eventos vicariantes seguidos de los procesos de diversificación de los grupos monófileticos de goodeinos a los que están asociados. Los tres niveles son: a) Especie- Especie. Representado por la asociación histórica Xenotaenia resolanae-Margotrema resolanae, exclusivo del Río Cuzalapa. b) Especie-Linaje (Codivergencia Tipo I). Representado por la asociación histórica Characodon audax-Margotrema bravoae Linaje III, exclusivo del Río Mezquital Medio-Alto. c) Tribu-Linaje (Codivergencia Tipo II). Representado, a su vez, por dos tipos de asociaciones históricas distintas: 1) Ilyodontini-Margotrema bravoae Linaje I, distribuido sobre los sistemas hidrológicos de los Ríos Ayuquila y Balsas y 2) Girardinichthyini / Chapalichthyini-Margotrema bravoae Linaje II, distribuido sobre el Río Lerma. Por tanto, la historia evolutiva de los parásitos Margotrema spp. es congruente con la historia filogenética y biogeográfica de sus huéspedes goodeinos. 3 ABSTRACT Margotrema is a genus of helminth parasites that form part of the core parasite helmithfauna of goodeines, a group of freshwater cyprinodontiform fish endemic to central Mexico. The diversification of these fish is the result of complex hydrogeomorphological changes that took place in central Mexico. This raises the question of the evolutionary history and biogeography of their parasites, in the case of this study, two putative species of Margotrema: M. bravoae and M. guillerminae. The objectives of the present thesis were: a) To describe the molecular intraspecific phylogenetic history of M. bravoae and M. guillerminae. b) To establish species boundaries based on novel phylogenetic species delimitation analyses. c) To test the hypothesis that each subgroup of goodeines (tribes) possesses their own species of Margotrema as a result of a similar history of vicariance and dispersal. d) To use recently published phylogenies of Goodeinae and those of their digenena parasite (Margotrema spp.) to uncover biogeographical and cophylogenetic patterns and to describe the processes that determined them over 6.5 million years ago. The key question addressed in this study is: Was the evolution of Margotrema spp. influenced by the complex geographical scenario of central Mexico, through the close association with their goodeinae hosts, or both? Between August 2008 and July 2010, samplings were made in 57 localities distributed along seven hydrological systems of Central Mexico. Sequences of two molecular markers –COI and ITS1– were obtained, and a phylogenetic tree per marker was reconstructed by Bayesian Inference, subjecting them to species delimitation analyses using the General Mixed Yule Coalescent algorithm. Subsequently, a Species Tree analysis was performed. A dispersal- extinction-cladogenesis model was used to describe the historical biogeography of digeneans and their cophylogenetical process with goodein hosts. The difference in numbers of lineages obtained from phylogenetic trees using COI and ITS1 can be explained by the relative evolutionary rates of these molecular markers (fast and slow, respectively). Lineage I, delimited using both markers plus morphological characters, represents a new species of Margotrema: M. resolanae. The remaining populations of 4 Margotrema are postulated to belong to one species (M. bravoae), whose populations however display a certain degree of geographic restriction and host specificity. The biogoegraphical and cophylogenetical results in this study show a response in a geographical context followed by host specificity at three distinct levels of historical association: a) Species- Species; historical association represented by Xenotaenia resolanae-Margotrema resolanae and exclusive to the Cuzalapa River. b) Species-Lineage (Codivergence Type I); historical association represented by Characodon audax-Margotrema bravoae Linaje III, exclusive of the Mezquital Medium-Hight River Basin. c) Tribe-Lineage (Codivergence Type II); represented, in turn, by two different types of historical associations: 1) Ilyodontini-Margotrema bravoae Lineage I, distributed on hydrological systems of the Ayuquila River and Balsas River. 2) Girardinichthyini / Chapalichthyini-Margotrema bravoae Lineage II, distributed on the Lerma River. Therefore, the parasite Margotrema evolutionary history is congruent with the phylogenetical and biogeographical history and of their goodein hosts. 5 INTRODUCCIÓN GENERAL La biología evolutiva de los organismos parásitos puede ser explorada sobre tres tipos de asociaciones históricas distintas; i.e. a) Organismo-Gen, b) Área-Organismo y c) Huésped- Parásito (Page & Charleston, 1998) (Figura 1). En este contexto, es válido interpretar de manera equitativa la evolución de estas tres asociaciones históricas realizando analogías entre los distintos fenómenos, mecanismos y procesos evolutivos que teóricamente ocurrieron entre ellas; i.e. codivergencia, duplicación, transferencia horizontal y sorteo de linajes (Page, 1994a; Page & Charleston, 1998; Cuadro 1). De este modo, es plausible comparar dos árboles filogenéticos de taxones distintos pero que representan una asociación intrínseca (v. gr., parasitismo), para inferir su historia evolutiva sobre un mismo escenario espacio-temporal capaz de detectar eventos evolutivos que se reflejen en patrones biogeográficos y concordancias filogenéticas (cofilogenéticas) (Page & Holmes, 1998; Charleston, 2011). Estos patrones pueden analizarse sobre las aristas de la teoría coevolutiva (Darwin, 1859; Ehrlich & Raven, 1964; Page, 2003) y, específicamente, reflejarse sobre un mosaico geográfico en el que las poblaciones de los asociados (parásitos) difieren de sus características y especializaciones en función a las especies con las que se asocian (huéspedes) (ver Thompson, 1994, 2005). 6 Cuadro 1. Fenómenos, mecanismos y procesos equivalentes entre diferentes asociaciones históricas. Tomado y modificado de Page & Charleston, 1998. Asociación histórica Codivergencia Duplicación Transferencia horizontal Eventos de sorteo Organismo-Gen Coalescencia interespecífica Duplicación de genes, sorteo incompleto de linajes Transferencia de genes Pérdida de genes, sorteo de linajes Huésped-Parásito Coespeciación Especiación dentro de un mismo huésped Duplicación de huésped (host- switch) Extinción de parásitos –missing the boat– Áreas-Organismos Vicarianza Simpatría Dispersión Extinción Glosario Asociado. Un linaje que sigue a otro linaje, o un conjunto de entidades históricamente relacionadas. Codivergencia. Divergencia conjunta tanto del huésped como del asociado. Duplicación. Divergencia independiente del asociado, con ambos descendientes remanentes asociados con el huésped. Eventos de sorteo. La ausencia total o aparente de un asociado en los descendientes de un huésped que previamente habían tenido esa asociación. Transferencia horizontal. La transferencia de un linaje asociado de un huésped ("origen") a otro huésped ("colonizado"), que no es en sí mismo un descendiente inmediato del huésped de origen. Teoría de la coalescencia. Enfoque matemático que modela la profundidad de árboles de genes de una o varias poblaciones cercanamente relacionadas. Coalescencia interespecífica. Concordancia topológica para múltiples linajes. Tiempo de coalescencia. Tiempo para que dos genes homólogos o un conjunto de genes pueda llegar a un ancestro común más reciente (MRCA, por sus siglas en inglés Most Recent Common Ancestor). Sorteo de linajes. Perdida de linajes específicos por cambios debidos a la deriva génica a través del tiempo. Sorteo incompleto de linajes. Es el fracaso de linajes de haplotipos entre individuos de una misma población para coalescer, permitiendo que al menos uno de los linajes coalezca primero con un linaje de una población menos estrechamente relacionada. Genealogía de genes. El patrón de similitudes entre secuencias de ADN que contiene información en común acerca de su historia evolutiva. Transferencia de genes. Proceso en el que un organismo transfiere material genético a otra célula que no es descendiente. Host switching. Proceso donde el parásito diverge por el cambio o duplicación para colonizar y establecerse en otro linaje de huéspedes. Missing the boat. Proceso en donde si un asociado se distribuye solo en una parte de la distribución del huésped (por ejemplo, un parásito con distribución irregular), la divergencia dentro de los linajes de huéspedes puede producir descendientes que carezcan de esta asociación. Por tanto, la asociación nunca se extinguió en esos huéspedes sino que nunca estuvo presente. 7 Los avances en la obtención y métodos de análisis de datos moleculares (secuencias de ADN) han permitido interpretar e integrar la historia evolutiva de los organismos parásitos, misma que es influenciada por las complejas asociaciones que establecen con sus huéspedes (Huelsenbeck et al., 2001; Rosenberg & Nordborg, 2002; Morrison, 2006). Por ejemplo, en algunas especies de helmintos parásitos que presentan especificidad se ha registrado variación genealógica codiferenciada por la historia biogeográfica y filogenética de sus huéspedes (Zietara & Lumme, 2002; Plaisance et al., 2007; Nieberding et al., 2008). Además, recientemente se han propuesto medios de análisis para la reconstrucción biogeográfica usando inferencia filogenética capaz de incorporar de manera directa a la base de datos de análisis la variable tiempo a través del uso de árboles de genes, reloj molecular y la relativización de las longitudes de las ramas entre dos árboles filogenéticos de especies (Ree et al., 2005; Edwards, 2009; Ronquist & Sanmartin, 2011). En este contexto, es posible poner a prueba hipótesis evolutivas entre asociaciones históricas de tipo huésped-parásito, sobre un espacio geográfico particular a través del tiempo (Sanmartin et al., 2008; Crisp et al., 2011; Sanmartin, 2012). En México, un espacio geográfico complejo es la Zona de Transición Mexicana (ZTM) debido a que es una zona de contacto entre dos regiones biogeográficas: Neártica y Neotropical (Luna-Vega et al., 2005; Morrone, 2010; Luna-Vega & Contreras-Medina, 2012). La ZTM se ubica en el centro de México, se extiende de costa a costa desde el Océano Pacífico hasta el Golfo de México, entre los paralelos 18º 30-24º 30´ N y los meridianos 98º 30´-105º 00´ W, cubriendo un área de 267 000 km2 con altitudes que oscilan desde 100-200 m.s.n.m. hasta los 5000 m.s.n.m. (Challenger, 1998; Ferrusquía-Villafranca, 1998; Figura 2). La ZTM es considerada como un área de endemismo para múltiples taxones dulceacuícolas debido a su historia hidrogeomorfologíca compleja. A la fecha se han registrado más de 100 taxones de agua dulce exclusivos de esta área (Miller & Smith, 1986; Huidobro et al., 2006; Martínez-Aquino et al., 2007a). Un modelo biológico de asociación histórica para poner a prueba hipótesis de codivergencia en función al escenario geográfico (como por ejemplo la ZTM) y a la historia evolutiva de los huéspedes, puede ser estudiado a través de la denominada fauna principal (core species) de helmintos parásitos de peces dulceacuícolas de México (ver Pérez-Ponce de León & Choudhury, 2005), debido a que presenten alta especificidad sobre áreas geográficas restringidas 8 (sistemas hidrológicos epicontinentales), en las que naturalmente no se dispersan por el agua y, por tanto, no tienen flujo génico entre las especies de huéspedes a las que están asociadas o bien, entre los sistemas hidrológicos en los que se distribuyen (Martínez-Aquino et al., 2013). Particularmente, la asociación entre Goodeinae-Margotrema, grupos biológicos que presumiblemente presentan una estrecha relación evolutiva sobre el centro de México (ver detalles más delante; Pérez-Ponce de León & Choudhury, 2005), es un modelo para poner a prueba hipótesis de codivergencia sobre un escenario geográfico particular. La subfamilia Goodeinae (Osteichthyes: Cyprinodontiformes: Goodeidae) es un grupo monofilético de peces dulceacuícolas endémico del centro de México (Doadrio & Domínguez- Domínguez, 2004). La subfamilia contiene 41 especies incluídas en cuatro tribus: Girardinichthyini, Chapalichthyini, Ilyodontini y Characodontini; todas presentan un patrón de distribución claramente asociado al escenario geográfico del centro de México (Domínguez- Domínguez et al., 2010). Dicho escenario resultado de los cambios hidrogeomorfológicos que modificaron la configuración del área y provocaron procesos de vicarianza, y en algunos casos vicarianza-dispersión, en los distintos linajes de peces (Gesundheit & Macías-García, 2005; Domínguez-Domínguez et al., 2006; 2010). 9 Estudios sobre la helmintofauna de algunas especies de goodeinos (v. gr. Pérez-Ponce de León et al., 2000; Martínez-Aquino et al., 2004, 2007b, 2009, 2011, 2012; Mejía-Madrid et al., 2005), han detectado especies de helmintos parásitos que alcanzan la madurez sexual en los peces y que, al parecer, presentan una estrecha relación evolutiva con sus huéspedes (Pérez-Ponce de León & Choudhury, 2005). Entre otros helmintos, los digéneos del género Margotrema Lamothe- Argumedo, 1972 (Digenea: Allocreadiidae) evidencian esta relación. El género Margotrema fue descrito originalmente para incluir a M. bravoae Lamothe- Argumedo, 1972 como parásito de Girardinichthys multiradiatus en La Lagunilla, Estado de México (Lamothe-Argumedo, 1972). Previo a este trabajo, dos especies de este género fueron descritas: M. bravoae y M. guillerminae Pérez-Ponce de León, 2001 como parásito de los peces Notropis calientis (Cyprinidae) y Alloophorus robustus (Goodeinae) en el Lago de Zacapu, Michoacán (Pérez-Ponce de León, 2001). Los caracteres morfológicos diagnósticos que diferenciaron a estas especies fueron la extensión de los ciegos intestinales a lo largo del cuerpo, la distribución de las glándulas vitelógenas y la posición del receptáculo seminal (Pérez-Ponce de León, 2001). Algunos autores cuestionaron la validez taxonómica de M. guillerminae sugiriendo que existe una alta variación morfológica en Margotrema (Pineda-López et al., 2005); sin embargo, no presentaron datos que corroboren tal cuestionamiento, ni plantearon una alternativa metodológica para demostrarlo. Por otra parte, el género Margotrema se ha registrado asociado a las cuatro tribus de goodeinos, en 21 especies de peces, y es considerado como restringido para el centro-occidente de México en las cuencas de los ríos Lerma, Santiago, Balsas, Ayuquila y algunos cuerpos de agua del norte de México (Martínez-Aquino et al., 2007b, 2011, 2012; Pérez- Ponce de León et al., 2007a; 2009, 2013; Aguilar-Aguilar et al., 2010). Algunos autores han inferido que Margotrema presenta una estrecha relación evolutiva con la de sus huéspedes (Goodeinae), constituyendo parte de su fauna principal (Pérez-Ponce de León & Choudhury, 2005), debido al área de distribución y a la especificidad registrada para peces de esta subfamilia (Mejía-Madrid et al., 2005; Pérez-Ponce de León & Choudhury, 2005; Martínez-Aquino et al., 2007a, 2007b). Se ha sugerido también que Margotrema es un género de afinidad Neártica con base en su posición filogenética y a la historia evolutiva de sus huéspedes (Pérez-Ponce de León et al., 2007b; Curran et al., 2011). En este sentido, debido a su distribución geográfica fragmentada es posible que exista variación fenotípica interespecífica en Margotrema resultado del polimorfismo genético causado por aislamiento geográfico y a la supresión del flujo génico 10 entre sus poblaciones. Además, dicho polimorfismo podría estar relacionado a una asociación específica con los grupos monofiléticos de huéspedes (Tribus) a los que parasitan. De este modo, las poblaciones de Margotrema pudieran mostrar un patrón de codistribución y codiferenciación filogenética asociada a la historia evolutiva de las cuatro tribus de goodeinos, reflejado en la historia hidrogeomorfológica del centro de México. En este contexto, analizar la asociación Goodeinae-Margotrema, con evidencia de marcadores moleculares, permitirá proponer hipótesis biogeográficas y contrastarlas con hipótesis cofilogenéticas para detectar si existe congruencia o no entre ellas. Así, Margotrema es un excelente modelo para analizar la biología evolutiva de parásitos de México sobre tres niveles distintos de asociaciones históricas como se refirió anteriormente: a) Organismo-Gen, genealogía intra e interspecífica de Margotrema, b) Área- Organismo, biogeográfica comparada tanto con el escenario geográfico del centro de México como con sus huéspedes y c) Huésped-Parásito, a través del contraste cofilogenético de Goodeinae y Margotrema (Page & Charleston, 1998). Por tanto, para realizar estos análisis, en el presente estudio se plantearon las siguientes hipótesis y objetivos (general y particulares): Hipótesis 1. Margotrema bravoae y M. guillerminae representan dos especies válidas cuya distinción morfológica está sustentada en su estructura filogenética con base en árboles de genes. 2. La estructura filogenética de Margotrema spp. coincide con el patrón de la distribución geográfica de las cuatro tribus de Goodeinae. 3. La diversificación de los goodeinos, resultado de los eventos de vicarianza-dispersión del centro de México, influye de igual modo en la evolución de las poblaciones de Margotrema spp. Objetivo general Detectar los patrones biogeográficos y cofilogenéticos que influyeron en la asociación histórica de Goodeinae-Margotrema en sistemas hidrológicos del centro de México. 11 Objetivos particulares 1. Establecer la validez taxonómica de las dos especies del género Margotrema (M. bravoae y M. guillerminae), a través de análisis filogenéticos con base en coalescencia, utilizando un marcador molecular mitocondrial (COX1) y uno nuclear (ITS1). 2. Determinar la estructura genética intra e interpoblacional de Margotrema spp. 3. Estimar los tiempos de divergencia filogenética de Margotrema spp. 4. Contrastar los tiempos de divergencia filogenética de Margotrema spp. con aquellos de los cuatro linajes (tribus) de Goodeinae. 5. Detectar los eventos y procesos biogeográficos espacio-temporales de las poblaciones de Margotrema spp. en su área de distribución. 6. Proponer una hipótesis biogeográfico-cofilogenética que explique el patrón de distribución de Margotrema spp., en función tanto de los patrones filogenéticos de Goodeinae como de la historia hidrogeomorfológica del centro de México. Con base en este planteamiento del problema y el modo de abordarlo, se presenta este estudio en tres capítulos. El primero incluye una recopilación de todos los registros helmintológicos para Goodeinae publicados a la fecha, además de algunos que se generaron en este trabajo, con el objetivo de tener un listado lo mas completo posible de todas las localidades donde se han registrado ejemplares de Margotrema lo que, en sumatoria, representa su área de distribución actualizada. Los registros efectuados durante el transcurso de este estudio doctoral se presenta en cinco artículos publicados como parte de los primeros resultados derivados de esta investigación. El capítulo dos muestra los resultados filogenéticos de Margotrema, el cual representa la primera asociación histórica de tipo Organismo-Gen. El capítulo tres, se muestra en formato de manuscrito para ser sometido para su publicación y, finalmente, este trabajo incorpora una discusión general y conclusiones. Además, con base en el apoyo recibido por el Posgrado en Ciencias Biológicas, UNAM y con la colaboración con distintos grupos de trabajo, se presentan un manuscrito más aceptado para su publicación que se coloca a modo de Apéndice en la parte final del presente trabajo y que se realizó de manera paralela durante este estudio doctoral. 12 CAPÍTULO I REGISTROS DE MARGOTREMA SPP. PARA PECES DULCEACUÍCOLAS DE MÉXICO: TAXONOMÍA E INVENTARIOS 13 Para realizar este proyecto el primer objetivo particular fue generar un listado lo mas completo posible de todas las localidades donde se registro Margotrema spp., lo que en sumatoria, representa su área de distribución actualizada. Los registros taxonómicos de Margotrema spp. aportados durante el transcurso de este proyecto doctoral se presentan en cinco artículos publicados formalmente, como parte de los primeros resultados derivados de esta investigación. Para ello, realizamos muestreos propios que permitieron visitar 30 localidades en donde fueron registrados individuos de Margotrema como parásitos asociados a 22 especies de Goodeinae, y en cuatro y una especie más de peces dulceacuícolas de las familias Cyprinidae y Cyprinodontidae, respectivamente. Además, se visitaron 27 localidades nuevas para explorar la posibilidad de recolectar y determinar el área de distribución actual de Margotrema. Por último, como resultado de esta exploración de campo se presenta un manuscrito (pág. 43) que será sometido para su publicación en una revista indizada referente al inventario helmintológico más actualizado para Goodeinae – incluyendo el área de distribución de Margotrema – el cual representa el grupo de vertebrados mejor estudiado para México en términos de su helmintofauna. A continuación se presenta una versión de cada documento en orden según la secuencia cronológica en la que cada artículo fué publicado y, por último, un manuscrito en formato de articulo en extenso el cuál será sometido para su publicación en una revista arbitrada e indizada (ISI / SCI). 1) Helminth parasites of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa hydrological system, Jalisco, Mexico (Martínez- Aquino et al., 2009). 2) Helminth fauna of two cyprinid fish (Campostoma ornatum and Codoma ornata) from the upper Piaxtla River, Northwestern Mexico (Aguilar-Aguilar et al., 2010). 3) Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico (Martínez-Aquino et al., 2011). 4) Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau (Martínez-Aquino et al., 2012). 14 5) A new species of Margotrema (Digenea, Allocreadiidae) from the leopard splitfin Xenotaenia resolanae (Cyprinodontiformes, Goodeidae) from west-central Mexico (Pérez-Ponce de León et al., 2013). 6) Composición taxonómica de helmintos parásitos de Goodeinae (Osteichthys: Cyprinodontiformes: Goodeidae) en México. 15 1) HELMINTH PARASITES OF XEONOTAENIA RESOLANAE (OSTEICHTHYES: CYPRINODONTIFORMES: GOODEIDAE) FROM THE CUZALAPA HYDROLOGICAL SYSTEM, JALISCO, MEXICO J. Parasitol., 95(5), 2009, pp. 1221-1223 O American Society of Parasitologists 2009 Helminth Parasites of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) From the Cuzalapa Hydrological System, Jalisco, Mexico Andrés Martínez-Aquino, Rogelio Aguilar-Aguilar, Rodolfo Pérez-Rodríguez, and Gerardo Pérez-Ponce de León*, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, C.P. 04510, Apartado Postal 70-153, México, D.F., Mexico; *To whom correspondence should be addressed. e-mail: ppdleonBibiología. unam.mx ABSTRACT: Six helminth species were recorded during the helmintholo- gical examination of 35 specimens of the goodeid Xenotaenia resolanae from Arroyo Durazno, Jalisco, Mexico, a tributary of the Cuzalapa River. Helminth species identified included: 4 species of digeneans, ¡e., Posthodiplostomum minimum (metacercariae), Clinostomum companatum (metacercariae), Dendrorchis sp. (adult), and Margotrema guillerminae (adult); and 2 species of nematodes, i.e., Spiroxys sp. (larvas) and Rhabdochona ahuehuellensis (adult). A very low number of individual larvae were found. The observed species richness, individual parasite abundance, and diversity were low at both component community and infracommunity levels. The values of similarity between infracommunities were relatively high because of the predominance of the digenean M. guillerminae, the species that reached the higher values of both prevalence and abundance. High water flow of the collecting site is suggested as the main factor determining the depauperate helminth assemblage in this fish species. Xenotaenia resolanae Turner 1946, (Cyprinodontiformes: Goodeidae) ranges in small rivers in Central Mexico's Pacific Slope (Domínguez- Domínguez et al., 2005). It is not recorded as an endangered species (Froese and Pauly, 2008), even though some authors have suggested that this fish species is very susceptible to environmental degradation (Lyons and Navarro-Pérez, 1990) and should be regarded as vulnerable (Domínguez-Domínguez et al., 2005). The helminth fauna of this freshwater fish is poorly known. The only published record for X. resolanae includes the intestinal nematode Rhabdochona ahuehuellensis (Mejía-Madrid et al., 2005). However, this record was established for the Rio Tecolote, Jalisco, a locality different from the one examined in the present study. The aim of this research note is to present the helminthological record of X. resolanae from Arroyo Durazno, a tributary of the Cuzalapa River which drains into the Marabasco River Basin in the state of Jalisco, Mexico; to describe the helminth infracommunity structure; and to briefly discuss the possible causes that determine that structure. On August 2008, 35 specimens of X. resolanae were collected by electrofishing from Arroyo Durazno (19"30'32.1"N, 104*17'45.6"W), which is a small affluent of the Cuzalapa River, a tributary of the Marabasco River Basin in Jalisco State, southwestern Mexico. Hosts were taken alive to the laboratory, pithed, and examined individually for intestinal helminths. Other organs (gills, liver, gall, swim and urinary bladders, and spleen) were examined using a stereomicroscope in separate Petri dishes with 0.65% saline. Worms were fixed with 4% hot (steaming) formalin. Platyhelminths were stained with Mayer's paracarmine. Nematodes were cleared with glycerin for light microscopy and stored in 70% ethanol. Voucher specimens of all taxa were deposited in the Colección Nacional de Helmintos (CNHE), Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City. Use of prevalence (% infected), mean intensity (mean number of parasites per infected fish), and abundance (mean number of parasites of a single species per analyzed host) follows Bush et al. (1997). Helminth species were classified from an ecological point of view as dominant (high prevalence and abundance) and rare (low prevalence and abundance) after an Olmstead-Tukey corner test of association (Steel and Torrie, 1981). Infracommunities were described by the mean number of parasite species, the mean number of individual helminths, and the mean value of the Brillouin diversity index that is commonly used in parasitological studies for fully censured communities. To demonstrate numerical dominance, the Berger-Parker index was used (the closer the value to 1.00, the greater the dominance). Similarity among infracommunities was estimated by using 2 indices: the Jaccard index and the Morisita-Horn index, for qualitative and quantitative similarity, respectively, as calculated in Magurran (1988). DOL: 10.1645/GE-1925,1 A total of 154 individual helminths was collected. Six helminth species were recovered, 4 digeneans and 2 nematodes (Table I). Three species were recovered as larval stages: Clinostomum complanatum, Posthodiplostomum minimum, and Spiroxys sp.; the remaining 3 helminth species were adults. The digenean Margotrema guillerminae was the most abundant species, accounting for about 85% of the collected worms, followed by R ahuehuellensis, which accounted for 10.4%. The digenean Dendrorchis sp. was the least numerous, with a prevalence of 5.7% and a mean intensity of 1.5 worms per infected host. "This digenean was not identified to species level because it appears to represent an undescribed species. Additional samples are necessary to present a proper description. Infection site, number of infected fish, prevalence, abundance, and mean intensity of each helminth species are shown in Table 1. Thirty of the 35 individual hosts were infected with at least 1 species of helminth. Eight of these harbored 2 or more helminth species. The total number of individual helminths of all species per host varied from 1 to 24, with a mean number of 4.4 + 5.4 individuals per host. The Olmstead- Tukey test showed that only the intestinal digenean M. guillerminae was frequent (prevalence >80%) and abundant (abundance >3.7 worms per analyzed host). The other intestinal species, ¡.e., R. ahuhuellensis, exhibited a relatively high prevalence, but it was not abundant, while the Dendrorchis sp. was actually a rare species. The remaining species exhibited low prevalence and abundance values (Table D) and were also considered as rare. The helminth infracommunities were species-poor. Most infracommu- nities were composed of a single species, 7 of them had 2 helminth species, and only 1 had the maximum of 4 species. The mean number of species per host was 1.1 + 0.8. Five of the 7 infracommunities with 2 or more species were composed of the intestinal adult worms M. guillerminae and R. ahuehuellensis. The Brillouin index for all infracommunities varied from 0 to 0.915, with a mean diversity value of 0.113 + 0.218, while the Berger- Parker dominance index values varied from 0.444 to 1, with a mean of 0.918 + 0.16. For comparative purposes, we calculated the Brillouin index for the 8 infracommunities with at least 2 species, which varied from 0.23 to 0.915 with a mean diversity value of 0.425 + 0.215; the Berger-Parker dominance index values varied from 0.444 to 0.900 with a mean of 0.693 + 0.167. Most of these assemblages were dominated by the digenean M. guillerminae. The helminth infracommunities showed a relatively high level of similarity. The corresponding Jaccard index varied from 0 to 1 (mean of 0.654 + 0.353), and the Morisita-Horn index varied from 0 to 1 (mean of 0.765 + 0.342). Three of the 6 helminth species parasitizing X. resolanae were larval stages. However, even though they have been previously reported parasitizing other goodeids in Central and Northern Mexico (Peresbar- bosa-Rojas et al., 1994; Martínez-Aquino et al., 2004; Mejía-Madrid et al., 2005; Martínez-Aquino et al., 2007), their prevalence and abundance were very low. The remaining 3 taxa have also been reported for other goodeid species and are members of the core endohelminth fauna of this fish family (Mejía-Madrid et al., 2005), particularly M. guillerminae and R. ahuehuellensis, while congeneric species of Dendrorchis have been recorded as parasites of characids in the Neotropical region (Volonterio and Ponce de León, 2005). The record of 3 adult endohelminth species in X. resolanae, along with the finding of Salsuginus (monogeneans) on the gills (Martínez-Aquino, 2005), conform a particular parasite assemblage where adult native species are predominant. The helminth parasite species composition herein reported for X. resolanae is similar to that found in other goodeid fishes in central and northern Mexico (Peresbarbosa-Rojas et al., 1994; Pérez-Ponce de León et al., 2000; Martínez-Aquino et al., 2004; Sánchez-Nava et al., 2004; Mejia-Madrid et al., 2005; Salgado- Maldonado, 2006; Martínez-Aquino et al., 2007; Romero-Tejeda et al., 2008). However, the prevalence and abundance of individual larval forms is very low. This can be explained as a result of the physical conditions of the locality where fishes were collected, particularly water flow. The brook where we conducted our sampling belongs to a small, exoreic river basin 1221 16 1222 THE JOURNAL OF PARASITOLOGY, VOL. 95, NO. 5, OCTOBER 2009 TaBLE I. Helminth parasites of Xenotaenia resolanae (n = 35) in Arroyo Durazno, Jalisco, Mexico. Number of Prevalence Mean intensity CNHE Helminth Infection site(s)* infected hosts (%) Abundance + SD catalog no. Adult Digenea Margotrema guillerminae I 28 80 3.74 4.68 + 5.6 6880 Dendrorchis sp. U 2 5.711 0.09 1.5 + 0.71 6881 Larval Digenea Clinostomum complanatum Bc 1 2.86 0.03 1 6882 Posthodiplostomum minimum M 1 2.86 0.03 1 6883 Adult Nematoda Rhabdochona ahuehuellensis I 7 20 0.46 2.29 + 1.49 6884 Larval Nematoda Spiroxys sp. M 1 2.86 0.06 2 6885 * L, intestine; U, urinary bladder; Bc, body cavity; M, mesentery. where water flows very rapidly and, apparently, there are no piscivorous birds nesting in the area because no aquatic vegetation can be established under this permanent water flow and, as a result, the presence of these birds (definitive hosts for several larvae) is not common. This condition is different than that found in endorreic springs, and even in lakes, where most of the goodeid species occur and where a larger number of allogenic parasite species, usually exhibiting high abundance levels, are dispersed by fish-eating reptiles and birds that feed upon goodeids (see Pérez-Ponce de León et al., 2000; Martínez-Aquino et al., 2004, 2007; Martinez-Aquino and Aguilar-A guilar, 2008; Romero-Tejada et al., 2008). The data we present here suggest that the helminth parasite species composition and the helminth infracommunity structure in X. resolanae are slightly different than those found in freshwater fishes occurring in other water bodies of central and northern Mexico. Our data may indicate that physical conditions in the locality, particularly rapid water flow, could be responsible for determining the helminth community structure. Likewise, the helminth assemblage is consistent with the pattern that shows a depauperate parasite fauna in freshwater fishes inhabiting epicontinental waters in the Nearctic part of Mexico (Espinosa-Huerta et al., 1996; Rojas et al., 1997; Choudhury and Dick, 2000; Pérez-Ponce de León et al., 2000; Martínez-Aquino et al., 2004; Sánchez-Nava et al., 2004; Martínez-Aquino et al., 2007; Martínez-Aquino and Aguilar-Aguilar, 2008; Romero-Tejeda et al., 2008). Another characteristic shared among the helminth community of X. resolanae and helminth communities of other freshwater fishes occurring in central and northern Mexico is the numerical dominance exacted by a single species of parasite; in this case, the digenean M. guillerminae is the dominant species. Furthermore, the helminth community of X. resolanae exhibits low species richness values at both the component community and infracommunity levels; this has been reported for other goodeid fishes in the Nearctic part of Mexico such as Alloophorus robustus, Goodea atripinnis, Allotoca diazi, Chapalichthys encaustus, Characodon audax, Skiffia lermae, Girardinychthys multi- radiatus, Xenotoca variata, and Zoogoneticus quitzeoensis (Astudillo- Ramos and Soto-Galera, 1997; Rojas et al., 1997; Pérez-Ponce de León et al., 2000; Sánchez-Nava et al., 2004; Martínez-Aquino et al., 2004, 2007; Romero-Tejeda et al., 2008). This work is a result of a prospective study of the doctoral dissertation of A.M.A. The authors wish to thank Rogelio Rosas Valdez for his comments on an earlier draft of this manuscript. This project was partially funded by grants from the program PAPITT-UNAM IN209608 and CONACyT No. 83043 to G.P.P.L. Most of this paper was written during the sabbatical leave of G.P.P.L. to the Department of Nematology, University of California, Davis. Thanks are due to Steve Nadler for his support and also to the program UCMEXUS-CONACyT (University of California Institute for Mexico and the United States-Consejo Nacional de Ciencia y Tecnología) for the fellowship awarded. LITERATURE CITED ASTUDILLO-RAMOS, L., AND E. Soro-GALERA. 1997. Estudio helmintoló- gico de Chirostoma humboldiianum y Girardinichthys multiradiatus capturados en el Lerma. Zoología Informa 35: 53-59. Bush, A. O., K. D. LarrerTY, J. M. Lorz, AND A. W. ShHosTAKk. 1997, Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 65: 667-669. CHOUDHURY, A., AND T, Dick. 2000. Richness and diversity of helminth communities in tropical freshwater fishes: Empirical evidence. Journal of Biogeography 27: 935-956. DominGuEz-DomiNGUEZ, O., N. MERCADO-SILVA, J. LyoNs, AND H. J. GRIER. 2005. The viviparous goodeid fishes. In Viviparous fishes, M. C. Uribe and H. J. Grier (eds.). New Life Publications, Homestead, Florida, p. 525-569, EsPINosA-HUÉERTA, E., L. GARCcÍA-PRIETO, AND G. PÉREZ-PONCE DE LEÓN. 1996. Helminth community structure of Chirostoma attenuatum (Osteichthyes: Atherinidae) in two Mexican lakes. Southwestern Naturalist 41: 288-292, FROESE, R., AND D. PAuLy. 2008. FishBase. World Wide Web electronic publication. www.fishbase.org, version (07/2008). Lyons, J., AND S. NAVARRO-PÉREZ. 1990. Fishes of the Sierra de Manantlán, West-Central Mexico. Southwestern Naturalist 35: 3246. MAGURRAN, A. 1988. Ecological diversity and its measurement, Croom Helm, London, U.K., 179 p. MARTÍNEZ-ÁQUINO, A. 2005. Biogeografía de helmintos parásitos de peces de la familia Goodeidae (Pisces: Cyprinododntiformes) del centro de México. B.S. Thesis. Facultad de Ciencias, UNAM, México D.F., 129p. , AND R. AGUILAR-AGUILAR. 2008. Helminth parasites of the pupfish Cyprinodon meeki (Pisces: Cyprinodontiformes), an endemic freshwater fish from North-Central Mexico. Helminthologia 45: 48-51. , G. SALGADO-MALDONADO, R. AGUILAR-ÁGUILAR, G. CABAÑAS- CARRANZA, AND C. MENDOZA-PALMERO. 2007. Helminth parasite communities of Characodon audax aud C. lateralis (Pisces: Good- eidae), endemic freshwater fishes from Durango, Mexico. Southwest- ern Naturalist 52: 125-130, ——=, ——=, —=, , AND M. P. ORTEGA-OLIVARES. 2004. Helminth parasites of Chapalichthys encaustus (Pisces: Goodeidae), an endemic freshwater fish from Lake Chapala, Jalisco, Mexico. Journal of Parasitology 90: 889-890. Mería-MabproD, H. H., O. DominGuEz-DOMÍNGUEZ, AND G. PÉREZ-PONCE DE LEóN. 2005. Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from Mexico with biogeographical considerations. Comparative Parasitology 72: 200211. PERESBARBOSA-ROJAS, E., G. PÉREZ-PONCE DE LEÓN, AND L. GARCÍA-PRIETO. 1994. Helmintos parásitos de tres especies de peces (Goodeidae) del Lago de Pátzcuaro, Michoacán. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 65: 201-204. PÉREZ-PONCE DE LEóN, G., L. GARcÍA-PRIETO, V. LEÓN-REGAGNON, AND A. CHoubHurY. 2000. Helminth communities of native and introduced fishes in Lake Pátzcuaro, Michoacán, México. Journal of Fish Biology 57: 303-325, Rojas, E., G. PÉREZ-PONCE DE LEÓN, AND L. GARcía-PRIETO. 1997. Helminth community structure of some freshwater fishes from Patzcuaro, Michoacan, Mexico. Tropical Ecology 38: 129-131. 17 Romero-TeJeDA, M. L., L. GARcÍA-PRIETO, L. GARRIDO-OLVERA, AND G. PÉREZ-PONCE DE LEóN. 2008. Estimation of the endohelminth parasite species richness in freshwater fishes from La Mintzita Reservoir, Michoacán, Mexico. Journal of Parasitology 94: 288- 292. SALGADO-MALDONADO, G. 2006. Checklist of helminth parasites of freshwater fishes from Mexico. Zootaxa 1324: 1-357. SANCHEzZ-NAVa, P., G. SALGADO-MALDONADO, E. SoTo-GALERA, AND B. JAmes-CRUZ. 2004. Helminth parasites of Girardinichthys multi- RESEARCH NOTES — 1223 radiatus (Pisces: Goodeidae) in the upper Lerma River sub-basin, Mexico. Parasitology Research 93: 396-402. STEEL, R. G. D., AND J. H. TorrIE. 1981. Principles and procedures of statistics: A biometrical approach, 2nd ed. McGraw-Hill Interna- tional Book Company, London, U.K., 633 p. 'VOLONTERIO, O., AND R. PoNcE DE León. 2005. Description of Dendrorchis retrobiloba n. sp. (Digenea; Gorgoderidae) from Astyanax fasciatus (Teleostei; Characidae) from southern Uruguay, with an emended diag- nosis of the genus Dendrorchis. Journal of Parasitology 91: 1204-1207. 18 19 2) HELMINTH FAUNA OF TWO CYPRINID FISH (CAMPOSTOMA ORNATUM AND CODOMA ORNATA) FROM THE UPPER PIAXTLA RIVER, NORTHWESTERN MEXICO 20 ©2010 Parasitological Institute of SAS, Košice DOI 10.2478/s11687-010-0039-2 251 Summary The helminth parasite fauna of 2 species of freshwater fishes from the upper Piaxtla River in northwestern Mexi- co was studied. A total of 41 cyprinids, corresponding to 20 Campostoma ornatum and 21 Codoma ornata were analyzed. Six species of platyhelminths were recorded, including 2 species of monogeneans (Gyrodactylus sp. and Dactylogyrus sp.), 3 species of digeneans (Posthodip- lostomum minimum, Clinostomum complanatum, and Margotrema sp.), and 1 species of tapeworm (Bothrio- cephalus acheilognathi). Helminth parasite infracommuni- ties were depauperate, showed low richness and diversity values, and were dominated by 1 or 2 helminth species. This pattern is consistent with that observed for the helminth parasite communities in other freshwater fishes in central and northern Mexico. Keywords: Platyhelminthes; Digenea; Monogenea; Cesto- da; parasite communities; Cyprinidae; Mexico Introduction The freshwater fish species Campostoma ornatum Girard, 1856 and Codoma ornata Girard 1856 (Cypriniformes: Cyprinidae) have a widespread distribution in northern Mexico (Espinosa-Pérez et al., 1993; Miller et al., 2005; Froese & Pauly, 2009). Both species are relatively com- mon among the freshwater fish fauna of the upper Piaxtla River, which flows from the highlands of the Sierra Madre Occidental to the Pacific Ocean in northwestern Mexico. The helminth fauna of these cyprinids along its distribu- tional range is poorly known. The only available records were recently published by Pérez-Ponce de León et al. (2009, 2010) from the upper-Mezquital and the Nazas river basins, respectively. The main objectives of this work are .... to record the helminth parasite fauna of both species of cyprinids in the upper Piaxtla River by presenting the list of species, and to describe the helminth parasite commu- nity structure of each host species through the species richness and diversity atributtes. We briefly compare our findings with data reported by Pérez-Ponce de León et al. (2009, 2010) for the same fish species in the Nazas and upper-Mezquital river basins. Materials and methods In December, 2008, 20 specimens of Campostoma or- natum and 21 of Codoma ornata were collected by elec- trofishing in the upper Piaxtla River (24º 21' 59'' N, 105º 31' 7.8'' W, altitude 2391 m), located at Municipio San Dimas, Durango State, Northern Mexico. Hosts were taken alive to the laboratory. Once there, hosts were pithed, and examined individually for helminths. Gills and fins were separated in Petri dishes with tap water, and then examined under a stereomicroscope. Other organs (intestine, liver, gall, swim and urinary bladders, and spleen) were exa- mined in separate Petri dishes with 0.65% saline. Platy- helminths were fixed with 4% hot (steaming) formalin, stained with Mayer's paracarmine and mounted as perma- nent slides in Canada balsam. Several individual monoge- neans were fixed in glycerin ammonium-picrate (GAP), to study their sclerotized structures. Voucher specimens of all taxa were deposited in the Colección Nacional de Helmintos (CNHE), Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City (see Table 1). Prevalence (% of infected hosts in a sample), and abun- dance (mean number of parasites of a single species in the sample) follows definitions by Bush et al. (1997). To de- termine if sample size was sufficient to produce an accu- HELMINTHOLOGIA, 47, 4: 251 – 256, 2010 Helminth fauna of two cyprinid fish (Campostoma ornatum and Codoma ornata) from the upper Piaxtla River, Northwestern Mexico R. AGUILAR-AGUILAR1*, R. ROSAS-VALDEZ2, A. MARTÍNEZ-AQUINO3,4, R. PÉREZ-RODRÍGUEZ3,4, O. DOMÍNGUEZ-DOMÍNGUEZ5, G. PÉREZ-PONCE DE LEÓN2 1*Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, C. P. 04510, México D.F., Mexico, E-mail: raguilar@ibiologia.unam.mx; 2Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-399, C. P. 04510, México D.F., Mexico; 3Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México. Apartado Postal 70-153. C. P. 04510, México D.F., Mexico; 4Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México; 5Laboratorio de Biología Acuática, Universidad Michoacana de San Nicolás de Hidalgo, Edificio R planta Baja, Ciudad Universitaria, Morelia, Michoacán, Mexico rate estimate of the pool of parasites using both host spe- cies in the sampled locality, an accumulation species curve and the species richness estimators Chao 1 and Chao 2 were used for each component community. Helminth spe- cies were classified from an ecological point of view as dominant (high prevalence and abundance) and rare (low prevalence and abundance) after an Olmstead-Tukey cor- ner test of association (Steel and Torrie, 1981). Infracom- munities include all the helminth species in an individual host, and were described by using the mean number of parasite species per host, the mean number of individual helminths, and the mean value of the Brillouin diversity index. Infracommunities were compared qualitatively within the locality using the Jaccard similarity index, and quantitatively using the Morisita-Horn index, as calculated in Magurran (1988). Results A total of 148 individual helminths belonging to four spe- cies were collected from Campostoma ornatum. Helminth species recovered include a fins monogenean Gyrodactylus sp., the metacercariae of the digeneans Posthodiplostomum minimum from the mesentery and Clinostomum com- planatum from the body cavity, and the adults of an intro- duced cestode Bothriocephalus acheilognathi from the intestine. The Olmstead-Tukey test for this fish species showed that the monogenean Gyrodactylus sp and the metacercariae of P. minimum were most frequent (preva- lence 95 and 85 %, respectively) and abundant (abundance from 3.1 to 3.25 helminths per analyzed host), while C. complanatum and B. acheilognathi reached low values for these parameters. Infection site, number of infected fish, prevalence, and abundance for each helminth species are shown in Table 1. In contrast, a total of 3292 individual helminths belonging to five species were collected from Codoma ornata. Helminth species recovered include a gills monogenean of the genus Dactylogyrus sp., the adult digenean Margot- rema sp. from the intestine, the metacercariae of Post- hodiplostomum minimum and Clinostomum complanatum, and the cestode Bothriocephalus acheilognathi. “The Olmstead-Tukey test showed that only the metacercariae of P. minimum was most frequent (prevalence 100 %) and abundant (143.29 worms per analyzed host). The monoge- nean Dactylogyrus sp. and the metacercariae of C. com- planatum exhibited a high prevalence (100 % and 81%, respectively), but they were not abundant, while Margot- rema sp. and B. acheilognathi showed low prevalence and abundance values (Table 1), and were considered as rare. Infection site, number of infected fish, prevalence, and abundance for each helminth species are shown in Table 1. In Campostoma ornatum, most of the parasite infracom- munities (85 %) harbored 2 or more helminth species. In terms of abundance, the total number of individual helminths of all species per analyzed host varied from 1 to 15, with a mean number of 7 + 3.47. Similarly, parasite infracommunities in Codoma ornata harbored 2 or more 252 helminth species, however, the presence of gill monogene- ans in 5 hosts was not determined because fish died several hours before examination. For this reason, values of prevalence and abundance for those particular helminth taxa were calculated only for 16 individual hosts (Table 1). The number of helminths of all species per analyzed host was much higher, and varied from 3 to 365, with a mean number of 157 + 92,39, Even though, individual hosts of both fish species were infected at least with 1 helminth species, the helminth parasite infracommunities in both host species were rela- tively species-poor. Most of the infracommunities found in Campostoma ornatum (55 %), were composed by three species, and only 2 of them reached a maximum of four species. In terms of species richness, the mean number of species per host was 3 + 0.88. The Brillouin index for the infracommunities varied from O to 0.976, with a mean diversity value of 0.537 + 0.261, while the Berger-Parker dominance index values varied from 0.333 to 1, with a mean of 0.624 + 0.194, The helminth infracommunities in C. ornatum showed a relatively high level of similarity; the corresponding Jaccard index varied from O to 1 (mean of 0,59 + 0,235) while the Morisita-Horn index varied from O to 1 (mean of 0.729 + 0.215). In the case of Codoma ornata, 42.85% of the infracommu- nities were also composed by 3 species, and only 2 had a maximum of 5 species. The mean number of species per host was 3.09 + 0,94, The Brillouin index for the infra- communities varied from 0.043 to 0.571, with a mean diversity value of 0.299 + 0.163, while the Berger-Parker dominance index values varied from 0.667 to 0.991, with a mean of 0.902 + 0.078. The helminth infracommunities showed a comparatively higher level of similarity; the corresponding Jaccard index varied from 0.2 to 1 (mean of 0.629 + 0.224) and the Morisita-Horn index varied from 0.43 to 1 (mean of 0.943 = 0.15). Discussion Helminth taxa The helminth parasite fauna of the cyprinids Campostoma ornatum and Codoma ornata in the upper Piaxtla River includes 6 helminth species, 2 monogeneans, 3 digeneans and 1 cestode. The taxonomic composition of the helminth parasite fauna of Campostoma ornatum comprises 3 gener- alist species, which are widely distributed among fresh- water fishes in several localities in Mexico (Pérez-Ponce de León et al., 2007; Rojas-Sánchez $ Garcia-Prieto, 2008). Species of the monogenean Gyrodactylus sp., col- lected from the fins of their hosts, have been recently re- corded from diverse freshwater fishes in central and north- ern Mexico, where apparently a high species richness of this parasite group is found (Mendoza-Palmero, 2007; Mendoza-Palmero et al., 2009; Pérez-Ponce de León el al., 2010); further studies will allow us to establish the taxo- nomic identity and potential host specificity of Gyrodac- tylus species occurring in Mexican freshwater fishes. The specimens we collected might be conspecific with an un- 21 2 2 253 Table 1. Helminth parasites of Campostoma ornatum and Codoma ornata in the upper Piaxtla River, Durango, Mexico Campostoma ornatum (n = 20) Codoma ornata (n = 21) Helminth taxa Infection site Infected Hosts (n) Prevalence (%) Abundance ± SD CNHE No. Infected Hosts (n) Prevalence (%) Abundance ± SD CNHE No. Monogenea Gyrodactylus sp. Fins 19 95 3.1 ± 1.85 7465 - - - - Dactylogyrus sp. * Gills - - - - 16 100 11.2 ± 9.69 7466 Digenea Margotrema sp. Intestine - - - - 6 28.57 0.33 ± 0.58 7473 Posthodiplostomum minimum Mesentery 17 85 3.25 ± 2.47 7467 21 100 143.29 ± 85.8 7468 Clinostomum complanatum Body cavity 8 40 0.45 ± 0.6 7469 17 80.95 4.33 ± 4.49 7470 Cestoda Bothriocephalus acheilognathi Intestine 8 40 0.5 ± 0.76 7471 5 23.81 0.29 ± 0.58 7472 * Values based on16 host 253 23 254 described species, Gyrodactylus sp. 4, reported by Pérez- Ponce de León et al. (2010) as a parasite of the fins of Campostoma ornatum in the Nazas River Basin, however, this species has not yet been described. Furthermore, the helminth parasite fauna of Codoma or- nata includes 3 species that were also found in Cam- postoma ornatum; in addition, the adult digenean Margot- rema sp. and the monogenean Dactylogyrus sp. were also found. Currently, 2 species of Margotrema spp., an alleg- edly parasite of goodeid fishes, have been described in freshwater fishes from central Mexico (Pérez-Ponce de León et al., 2007). The distinctive morphological character that distinguishes these species is the extent of the ceca. Unfortunately, the specimens we collected from cyprinids in the Piaxtla River had the uteri full of eggs, impeding the observation of the extent of the ceca. Monogeneans of the genus Dactylogyrus have also been found parasitizing freshwater fishes in central and northern Mexico (Men- doza-Palmero, 2007; Pérez-Ponce de León et al., 2010). In particular, in cyprinids from a nearby river basin (the Nazas River), 6 species of Dactylogyrus have been re- ported (Pérez-Ponce de León et al., 2010), 3 of them com- mon parasites of introduced species of cyprinids, and 1 typically found in cichlids. Other 2 species from cyprinids were considered to represent a new species for which no description has been made. As in the case of the fin mono- genean, Gyrodactylus sp., we may claim conspecificity to some of these undescribed species, however, we preferred to take a conservative position pending proper description of the undescribed species. Interestingly, the taxonomic composition of the helminth parasite fauna herein reported for both cyprinid species included only platyhelminthes. No nematodes or acantho- cephalans were found in present study. This might be due to a relatively small sample size, even though 20 individual hosts are considered a sufficient sample size to detect para- site species richness in a particular locality, and, in addi- tion to that, there are no missing species according with the information provided by the accumulation species curves and the non-parametric species richness estimators Chao 1 and Chao 2. The absence of such parasite groups contrasts with findings we recently made describing the helminth parasite fauna in of freshwater fishes from the Nazas and the upper-Mezquital river basins, including Campostoma ornatum (Pérez-Ponce de León et al., 2009, 2010). These river basins are located at relatively short distance from the upper Piaxtla River, even though the former runs west- wards from high elevation areas of Durango State, through Nayarit State, to the Pacific coast, while the Nazas River represents an endhorreic basin that runs from the Sierra Madre Occidental eastward, through the states of Durango and Coahuila, into the now-dry Laguna del Mayran (Castañeda-Gaytán et al., 2005; Návar et al., 2006). In the upper-Mezquital River only 4 individuals of Campostoma ornatum were sampled, and 2 helminth species were re- corded, the cestode Bothriocephalus acheilognathi, and the nematode Rhabdochona canadensis. We also sampled 23 individuals of Codoma ornata and only the tapeworm B. acheilognathi was found (see Pérez-Ponce de León et al., 2009). In contrast, in the Nazas River a much larger sample size was analyzed for both cyprinid species (Pérez-Ponce de León et al., 2010). Eighty individuals of Campostoma ornatum were studied, and the helminth species recorded were: the digeneans P. minimum and Uvulifer sp., the cestode B. acheilognathi, the nematodes Spiroxys sp., and Rhabdochona canadensis and two species of monogeneans, an undescribed species of Gyrodactylus (recorded as Gyrodactylus sp. 4) and Urocleidoides strombicircus. In 101 analyzed specimens of Codoma ornata only 3 helminth species were recorded, the dige- nean P. minimum, the cestode B. acheilognathi, and the nematode R. canadensis (Pérez-Ponce de León et al., 2010). The absence of R. canadensis in cyprinids from the Piaxtla River is noteworthy, since this is a common para- site of cyprinids in North America (see Hoffman, 1999). Likewise, the larval digeneans P. minimum and C. com- planatum are commonly found parasitizing freshwater fishes in México (Pérez-Ponce de León et al., 2007), while the species of the genus Margotrema are allegedly to be members of the helminth parasite core fauna of goodeid fishes in central Mexico (Pérez-Ponce de León & Choud- hury, 2005; Mejía-Madrid et al., 2005). The adult cestode B. acheilognathi is an autogenic and generalist species whose life cycle is completed in the aquatic ecosystem (Hoffman, 1999). This species was introduced into Mexico along with its hosts, grass carps, from Asia. It possesses a large dispersal capability and as a result, it is now found not only in introduced hosts but also in the native fresh- water fish fauna (Rojas-Sánchez and García-Prieto, 2008). No carps (Cyprinus carpio, Ctenopharyngodon idella), which are commonly used for aquaculture purposes and are disseminated to natural environments on regular basis, were found during our samplings in the Piaxtla River. It could be possible that the endemic cyprinids we studied became infected with the Asian tapeworm through an ecological host extension from other host species, such as poeciliids, but still this needs to be determined with further samplings in the locality. Helminth communities Parasite communities of both species of cyprinids are de- pauperate and are dominated by one helminth species; this, and the fact that a low species richness values at both, the component community and infracommunity levels, were detected, is consistent with the parasite community struc- ture in a diverse array of freshwater fishes inhabiting in epicontinental waters in central and northern Mexico, cor- responding with the Nearctic region (Peresbarbosa-Rojas et al., 1994; Espinosa-Huerta et al., 1996; Rojas et al., 1997; Pérez-Ponce de León et al., 2000; Martínez-Aquino et al., 2004, 2007; Martínez-Aquino & Aguilar-Aguilar, 2008; Romero-Tejeda et al., 2008). Helminth parasite communities in the 2 cyprinids we studied herein also show a numerical dominance by a single or a few helminth species. In the case of Codoma ornata, dominance is 24 255 mainly exerted by the metacercariae of Posthodiplostomum minimum, which shows a high abundance. In Campostoma ornatum, two helminth species were dominant, the dige- nean P. minimum and the monogenean Gyrodactylus sp. Based on the results of the species accumulation curves and the species richness estimators, we are confident about the accuracy of species richness and community structure patterns herein described. Both methods were used as indi- cators of species richness as a function of sample size, even though it is well-known that addressing sample size is a common problem when dealing with prevalence data (see Jovani & Tella, 2006); likewise, our analysis corroborated that the number of analyzed hosts represents a sufficient sample size to recover most members of the parasite com- munity. Since the number of hosts we analyzed in this study fall within the category of “medium sample size” as proposed by Jovani and Tella (2006), it is possible that the prevalence of infection for each parasite species might have been affected, but not the species richness. We are certain that, by gathering a larger dataset on different helminth parasite communities in freshwater fishes, we will be able to establish a correlation between the sample size and the parasite fauna. As a comparison, the 80 specimens of Campostoma ornatum and 101 of Codoma ornata that were studied in the Nazas River basin by Pérez-Ponce de León et al. (2010), contained 7 (i.e., Uvu- lifer sp., Posthodiplostomum minimum,, Gyrodactylus sp. 4, Urocleidoides strombicircus, Bothriocephalus acheilog- nathi, Rhabdochona canadensis, and Spiroxys sp.) and 3 helminth species (i.e., P. minimum, B. acheilognathi and R. canadensis, respectively. The data we provide in the pre- sent paper represents an additional piece of information on the parasite species composition, and patterns of commu- nity structure of the helminth parasites of freshwater fishes in Mexico, particularly from lotic environments of the northwestern region. Still, more data needs to be gathered on these species of cyprinids along its distributional range, as well as on other freshwater fish species, in order to describe general patterns of host-parasite associations, and to fully understand the processes that shaped the historical biogeography and community structure of the freshwater fish parasite fauna in Mexico. Acknowledgements We thank to Carlos Mendoza Palmero for technical assis- tence. This project was partially funded by grants from the Comisión Nacional para el Conocimiento y Uso de la Bio- diversidad (CONABIO FM001), Consejo Nacional de Ciencia y Tecnología (CONACyT 83043), and Programa de Apoyo a Proyectos de Investigación e Innovación Tec- nológica (PAPIIT-UNAM IN 209608) to G.P.P.L. AMA and RPR thank CONACYT for the scholarship provided to complete their PhD programs at the Posgrado en Ciencias Biológicas, UNAM. This paper was partially written dur- ing the sabbatical leave of G.P.P.L. at the University of California-Davis under the support of a fellowship granted by the program UC MEXUS-CONACyT. Thanks are also due to Steve Nadler for facilities provided in his laboratory during sabbatical. References BUSH, A. O., LAFFERTY, K. D., LOTZ, J. M., SHOSTAK, A. W. (1997): Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol., 65: 667 – 669 CASTAÑEDA-GAYTÁN, G., GARCÍA-DE LA PEÑA, C., LAZCANO, D., SALAS-WESTPHAL, A. (2005): Notes on Herpetofauna 7: Herpetological Diversity of the Low Basin of the Nazas River, Durango, México. Bull. Chicago Herpetol. Soc., 40: 34 – 37 ESPINOSA-PEREZ, H., GASPAR-DILLANES, M. T., FUENTES- MATA, P. (1993): Listados faunísticos de México III. Los Peces Dulceacuícolas Mexicanos. México, D. F., Mexico: Instituto de Biologia, Universidad Nacional Autónoma de México, 98 pp. ESPINOSA-HUERTA, E., GARCÍA-PRIETO, L., PÉREZ-PONCE DE LEÓN, G. (1996): Helminth community structure of Chirostoma attenuatum (Osteichthyes: Atherinidae) in two Mexican lakes. Southwest. Nat., 41: 288 – 292 FROESE, R., PAULY, D. (2009): Campostoma ornatum and Codoma ornata. In: FishBase. Retrieved June 26, 2009 from http://www.fishbase.org. HOFFMAN, G. L. (1999): Parasites of North American freshwater fishes. 2nd Edition, Ithaca, New York, Cornell University Press, 539 pp. JOVANI, R., TELLA, J. L. (2006): Parasite prevalence and sample size: Misconceptions and solutions. Trends in Parasitology, 22: 214 – 218. DOI: 10.1016/j.pt.2006.02.011 MAGURRAN, A. (1988): Ecological diversity and its meas- urement. London, UK, Croom Helm, 179 pp. MARTÍNEZ-AQUINO, A., AGUILAR-AGUILAR, R. (2008): Helminth parasites of the pupfish Cyprinodon meeki (Pi- sces: Cyprinodontiformes), an endemic freshwater fish from North-Central Mexico. Helminthologia, 45: 48 – 51. DOI: 10.2478/s11687-008-0008-1 MARTÍNEZ-AQUINO, A., SALGADO-MALDONADO, G., AGUILAR-AGUILAR, R., CABAÑAS-CARRANZA, G., MEN- DOZA-PALMERO, C. A. (2007): Helminth parasite com- munities of Characodon audax and C. lateralis (Pisces: Goodeidae), endemic freshwater fishes from Durango, Mexico. Southwest. Nat., 52: 125 – 130. DOI: 10.1894/ 0038-4909(2007)52[125:HPCOCA]2.0.CO;2 MARTÍNEZ-AQUINO, A., SALGADO-MALDONADO, G., AGUILAR-AGUILAR, R., CABAÑAS-CARRANZA, G., ORTEGA-OLIVARES, M. P. (2004): Helminth parasites of Chapalichthys encaustus (Pisces: Goodeidae), an endemic freshwater fish from Lake Chapala, Jalisco, Mexico. J. Parasitol., 90: 889 – 890. DOI: 10.1645/GE-255R MEJÍA-MADRID, H. H., DOMÍNGUEZ-DOMÍNGUEZ, O., PÉREZ-PONCE DE LEÓN, G. (2005): Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from Mexico with biogeographical considerations. Comp. Parasitol., 72: 200 – 211. DOI: 10.1654/4169. MENDOZA-PALMERO, C. A. (2007). Monogéneos parásitos de peces de la subfamilia Goodeinae (Pisces: Cyprinodon- 25 256 tiformes) con un análisis de su distribución geográfica. MSc thesis, Mexico, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico. MENDOZA-PALMERO, C. A., SERENO-URIBE, A. L., SALGA- DO-MALDONADO, G. (2009): Two new species of Gyro- dactylus Von Nordmann, 1832 (Monogenea: Gyrodac- tylidae) parasitizing Girardinichthys multiradiatus (Cypri- nodontiformes: Goodeidae), an endemic freshwater fish from central Mexico. J. Parasitol., 95: 315 – 318. DOI: 10.1645/GE-1761.1. MILLER, R.R., MINCKLEY, M. L., NORRIS, S. M. (2005): Freshwater fishes of Mexico. Chicago, The University of Chicago Press, 490 pp. NÁVAR, J., HERNÁNDEZ, H., RÍOS, J. (2006): Temporal tendencies of river discharge of five watersheds of north- ern Mexico. In: AGUIRRE -BRAVO, C., PELLICANE, J. P., BURNS, D. P., DRAGGAN, S. (Eds) Monitoring Science and Technology Symposium: Unifying Knowledge for Sustain- ability in the Western Hemisphere. Forth Collins, U.S.: Department of Agriculture, Forest Service, Rocky Moun- tain Research Station, pp. 710 – 714 PERESBARBOSA-ROJAS, E., PÉREZ-PONCE DE LEÓN, G., GARCÍA-PRIETO, L. (1994): Helmintos parásitos de tres especies de peces (Goodeidae) del Lago de Pátzcuaro, Michoacán. An. Inst. Biol. Univ. Nac. Auton. Mex., Ser. Zool., 65: 201 – 204 PÉREZ-PONCE DE LEON, G., CHOUDUHRY, A. (2005): Bio- geography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. J. Biogeogr., 32: 645 – 659. DOI: 10.1111/j.13652699.2005.01218.x PÉREZ-PONCE DE LEÓN, G., GARCÍA-PRIETO, L., LEÓN- RÈGAGNON, V., CHOUDHURY, A. (2000): Helminth com- munities of native and introduced fishes in Lake Pátzcuaro, Michoacán, México. J. Fish Biol., 57: 303-325. DOI: 10.1111/j.1095-8649.2000.tb02174.x PÉREZ-PONCE DE LEÓN, G., GARCIA-PRIETO, L., .................. RECEIVED AUGUST 27, 2009 MENDOZA-GARFIAS, B. (2007): Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zo- otaxa, 1534: 1 – 247 PÉREZ-PONCE DE LEÓN, G. , ROSAS-VALDEZ, R., AGUI- LAR-AGUILAR, R., MENDOZA-GARFIAS, B., MENDOZA- PALMERO, C., GARCÍA-PRIETO, L., ROJAS-SÁNCHEZ, A., BRIOSIO, R., PÉREZ-RODRÍGUEZ, R., AND DOMÍNGUEZ- DOMÍNGUEZ, O. (2010): Helminth parasites of freshwater fishes of the Nazas River Basin, Northern Mexico. Check List, 6: 26 – 35 PÉREZ-PONCE DE LEÓN, G., ROSAS-VALDEZ, R., MENDOZA-GARFIAS, B., AGUILAR-AGUILAR, R., FALCÓN- ORDAZ, J., GARRIDO-OLVERA, L., PÉREZ-RODRÍGUEZ, R. (2009): Survey of the endohelminth parasites of freshwater fishes in the upper Mezquital River Basin, Durango State, Mexico. Zootaxa, 2164: 1 – 20 ROJAS, E., PÉREZ-PONCE DE LEÓN, G., GARCÍA-PRIETO, L. (1997): Helminth community structure of some freshwater fishes from Patzcuaro, Michoacan, Mexico. Trop. Ecol., 38: 129 – 131 ROJAS-SÁNCHEZ, A., GARCÍA-PRIETO, L. (2008): Dis- tribución actual del Céstodo Bothriocephalus acheilog- nathi en México. In Memorias XXV Simposio sobre Fauna Silvestre. Mexico, D. F.: Universidad Nacional Autónoma de México, Mexico, 2008, pp. 89 – 93 ROMERO-TEJEDA, M. L., GARCÍA-PRIETO, L., GARRIDO- OLVERA, L., PÉREZ-PONCE DE LEÓN, G. (2008): Estima- tion of the endohelminth parasite species richness in freshwater fishes from La Mintzita Reservoir, Michoacán, Mexico. J. Parasitol., 94: 288 – 292. DOI: 10.1645/GE- 1157.1 STEEL, R. G. D., TORRIE, J. H. (1981): Principles and pro- cedures of statistics: a biometrical approach. 2nd Edition. London, UK, McGraw-Hill International Book Company, 633 pp. ACCEPTED MARCH 26, 2010 26 3) ENDOHELMINTH PARASITES OF THE FRESHWATER FISH ZOOGONETICUS PURHEPECHUS (CYPRINODONTIFORMES: GOODEIDAE) FROM TWO SPRINGS IN THE LOWER LERMA RIVER, MEXICO Revista Mexicana de Biodiversidad 82: 1132-1137, 2011 Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico Endohelmintos parásitos del pez dulceacuícola Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) en dos manantiales de la cuenca del río Lerma bajo, México Andrés Martínez-Aquino!”, David Iván Hernández-Mena!”, Rodolfo Pérez-Rodríguez!”, Rogelio Aguilar- Aguilar? and Gerardo Pérez-Ponce de León! Y “Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-153, 04510 México, D.F, Mexico. “Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado postal 70-399, 04510 México, D.F, Mexico. ¿Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. 9 ppdleonQibiologia.unam.mx Abstract. In order to establish the helminthological record of the viviparous fish species Zoogoneticus purhepechus, 72 individuals were collected from 2 localities, La Luz spring (n= 45) and Los Negritos spring (n= 27), both in the lower Lerma River, in Michoacán state, Mexico. Twelve helminth taxa were recovered, 5 adults (the digeneans Margotrema bravoae and Phyllodistomum sp., the cestode Bothriocephalus acheilognathi, the nematode Rhabdochona lichtenfelsi and the acanthocephalan Pomphorhynchus cf. bulbocolli), and 7 larvae (the metacercarias of Clinostomum complanatum, the cysticercoid of Cyclophyllidea, the nematodes Rhabdochona sp., Eustrongylides sp., Contracaecum sp. and Spiroxys sp., and the cysthacanth of Polymorphus brevis). Of these, R. lichtenfelsi was the most prevalent and abundant species at La Luz spring with 15.6% and 0.33 individuals per analyzed host. The remaining species were relatively more rare and infrequent. The helminth parasite community of Z. purhepechus at Los Negritos spring was remarkably poor and abundance was very low. The omnivorous feeding habits, the position of the host species in the food web, and the environmental characteristics of each locality are suggested as the main factors determining the helminth parasite communities in this freshwater fish. Key words: Goodeidas, Zoogoneticus purhepechus, helminth parasites, community structure, Mexico. Resumen. Se examinaron 72 individuos del pez vivíparo Zoogoneticus purhepechus para establecer el registro helmintológico de la especie. Los huéspedes se recolectaron de los manantiales La Luz (n= 45) y Los Negritos (n= 27), ubicados en la porción baja del río Lerma, en el estado de Michoacán, México. El registro helmintológico consta de 12 especies, incluyendo como adultos los digéneos Margotrema bravoae y Phyllodistomum sp., el céstodo Bothriocephalus acheilognathi, el nemátodo Rhabdochona lichtenfelsi, y el acantocéfalo Pomphorhynchus cf. bulbocolli. Además, como estadios larvarios, se encontraron las metacercarias de Clinostomum complanatum, el cisticercoide de Cyclophyllidea, los nemátodos Rhabdochona sp., Contracaecum sp., Eustrongylides sp. y Spiroxys sp., y el cistacanto de Polymorphus brevis. De éstas, R. lichtenfelsi fue la especie más frecuente y abundante en el manantial La Luz, en tanto que las restantes fueron relativamente más raras. La comunidad de helmintos de Z. purhepechus en el manantial Los Negritos fue pobre y poco abundante. Se sugiere que los principales factores que determinan la estructura de la comunidad de helmintos son los hábitos alimentarios omnívoros de los huéspedes, la posición que éstos ocupan en la red trófica y las características ambientales de cada localidad. Palabras clave: Goodeidae, Zoogoneticus purhepechus, helmintos parásitos, estructura de la comunidad, México. Introduction fishes, Z. quitzeoensis Bean, Z. tequila Webb and Miller, and the recently described Z. purhepechus Domínguez- The genus Zoogoneticus Meek (Cyprinodontiformes: Domínguez, Pérez-Rodríguez and Doadrio. These fish Goodeidae) includes 3 species of livebearing freshwater species are restricted to particular river drainages in central Mexico (Domínguez-Domínguez et al., 2008) and are considered as endangered or critically endangered Recibido: 18 agosto 2010; aceptado: 31 mayo 2011 (De la Vega-Salazar et al., 2003; Dominguez-Domínguez 27 Revista Mexicana de Biodiversidad 82: 1132-1137, 2011 et al., 2005, 2008). The helminth fauna of livebearing freshwater fishes of the family Goodeidae has been well documented and the depauperate nature of helminth parasite communities in these fishes has been suggested (Astudillo-Ramos and Soto-Galera, 1997; Rojas et al., 1997; Pérez-Ponce de León et al., 2000; Martínez- Aquino et al., 2004, 2007, 2009; Sánchez-Nava et al., 2004; Martínez-Aquino, 2005; Mejía-Madrid et al., 2005; Romero-Tejeda et al., 2008). However, the only species of Zoogoneticus that has been studied to a certain extent is Z. quitzevensis and no records of the helminth parasite fauna of the other 2 congeneric species had been established. The main objective of this work is to record the helminth parasite fauna of Z. purhepechus collected in 2 sites (Los Negritos and La Luz springs) located in the lower Lerma River Basin, and to describe the helminth community structure and the processes that determine such structure. Materials and methods On July 2009, 72 adult specimens of Z. purhepechus were collected using nets in 2 localities, La Luz spring (n= 45) (19% 56” 10,4” N, 102? 17” 57,8” W; 1 616 m) and Los 1133 Negritos spring (n= 27) (20? 03” 23,1” N, 102? 36” 38.3” W; 1 539 m), in Michoacán state, central Mexico. Hosts were taken alive to the laboratory, pithed and examined individually for intestinal helminths. Other organs (eyes, gall bladder, liver, spleen, swim and urinary bladders) as well as body cavity and musculature, were examined under a stereomicroscope in separate Petri dishes with 0.65% saline, Digeneans, nematodes and cestodes were fixed with 4% (steaming) formalin. Acanthocephalans were maintained at 4%C for 24 hrs. in distilled water, and then fixed in 100% ethanol. Platyhelminths and acanthocephalans were stained with Meyer”s paracarmine. Nematodes were cleared with glycerin for light microscopy and stored in 70% ethanol. Voucher specimens were deposited in the Colección Nacional de Helmintos (CNHE), Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City (Table 1); when accession number is not provided, specimens were collected for DNA work or scanning electron microscopy. Use of prevalence (% infected) and abundance (mean number of parasites of a single species in the sample) follows Bush et al. (1997). The non-parametric species richmess estimators Chao 1 and Chao 2, were calculated following Colwell and Coddington (1995) and Escalante (2003), and were Table 1. Endohelminth parasites of Zoogoneticus purhepechus in 2 springs of the Lower Lerma River, Mexico. CNHE= Accession number; HI= Number of infected hosts; %= Prevalence; Ab= Abundance; SD= Standard deviation; MI= Mean intensity Helminth (Infection site* / CNHE) La Luz spring (n= 45) HI/%/Ab+SD/MI+SD Los Negritos spring (n= 27) HI/%/Ab+SD/MI+SD Adult Digenea Margotrema bravoae (1) Phyllodistomum sp. (Ub / 7791) Larval Digenea Clinostomum complanatum (Bc, M / 7792) Adult Cestoda Bothriocephalus acheilognathi (1, 77793) Larval Cestoda Cyclophyllidea gen. sp. (Gb) Adult Nematoda Rhabdochona lichtenfelsi (1, 7794) Larval Nematoda Rhabdochona sp. (1, 7108) Contracaecum sp. (L, 7105) Eustrongylides sp. (L, 7106) Spiroxys sp. (M) Adult Acanthocephala Pomphorhynchus cf. bulbocolli (1, 7795) Larval Acanthocephala Polymorphus brevis (M, 7796) 4/8.9/0.13%20.5/15+1 1/2.2/0.02+0.15/1 1/2.2/0.02+0.15/1 5/11.1/0.13204/1.2%0.45 2/7.4/0.07+0.27/1 1/3.7/0.04+0.19/1 7/15.6/0,33 + 0.98 / 2,14 + 1.57 1/3.7/0.04+0.19/1 1/3.7/0.07 + 0.38 / 2 1/3.7/0.04%0.19/1 1/3.7/0.11%0.58 /3 6/13.3/0.13+0.34/1 1/3.7/0.04+0.19/1 *Infection site: Bc= Body cavity; Gb= Gall bladder; Ub= Urinary bladder; I= Intestine; L= Liver; M= Mesentery 28 1134 used to estimate the number of missing species for each component community. Infracommunities include all the helminth species in an individual host, and were described by using the mean number of parasite species per host, the mean number of individual helminths, and the mean value of the Brillouin diversity index. The numerical dominance at the infracommunity level was determined using the Berger-Parker dominance index (Southwood, 1978). Infracommunities were compared qualitatively within the locality using Jaccard similarity index and quantitatively using the Morisita-Horn index, as calculated in Magurran (1988). Results Twelve helminth taxa were recovered from the 2 sampled localities. The helminthological record comprises 3 digenean species: Margotrema bravoae Lamothe-Argumedo, 1970, Phyllodistomum sp., and the metacercariae of Clinostomum complanatum (Rudolphi, 1819); 2 cestodes: the cysticercoid of Cyclophyllidea gen. sp., and Bothriocephalus acheilognathi Yamaguti, 1934; 2 acanthocephalans: the cystacanth of Polymorphus brevis (Van Cleave, 1916) and Pomphorhynchus cf. bulbocolli Van Cleave, 1919; the adult nematode Rhabdochona lichtenfelsi Sánchez-Álvarez, García-Prieto and Pérez- Ponce de León, 1998, and larval forms of Contracaecum sp., Spiroxys sp., Eustrongylides sp., and Rhabdochona sp. La Luz spring. Thirty-four individual helminths were collected from 45 hosts from La Luz spring. These helminths represent 6 species: M. bravoae, Phyllodistomum sp. (adult), C. complanatum (metacercariae), R. lichtenfelsi (adult), Spiroxys sp. (larvae), and P. cf. bulbocolli (adult). Infection site, number of infected fish, prevalence, abundance, and mean intensity for each helminth taxa are shown in Table 1. The adult nematode R. lichtenfelsi was the most abundant helminth species, accounting for about 42.8% of the worms collected in this locality; this nematode reached a prevalence value of 15.6% and abundance of 0.33 worms per analyzed host. The remaining species were rare, infrequent, and reached very low abundance values (Table 1). Of the 45 analyzed individual hosts, 19 were infected with at least 1 species of helminth in La Luz spring. Only 5 of the 45 hosts harbored 2 or more helminth species. The total number of individuals of all species per host varied from 1 to 7, with a mean intensity of 0.82 + 1.41. The non-parametric species richness estimators (Chaol and Chao 2) reached a value of 6. The helminth infracommunities were species-poor. Mean number of species per host was 0.6 + 0.8. The Brillouin index for all infracommunities varied from 0 Martínez-Aquino et al.- Helminth parasites of Zoogoneticus purhepechus to 0.599, with a mean diversity value of 0.099 + 0.21, while the Berger-Parker dominance index values varied from 0.33 to 1, with a mean of 0.91 + 0.2. The helminth infracommunities displayed a low level of similarity. The corresponding Jaccard index varied from 0 to 1 (mean of 0.18 + 0,4) and the Morisita-Horn index varied from 0 to 1 (mean of 0.2 + 0.37). Los Negritos spring. Only 11 individual helminths were collected from Los Negritos spring. The 7 species recovered were B. acheilognathi (adult), 1 specimen of Cyclophyllidea (cysticercoid), the larval nematodes Rhabdochona sp., Contracaecum sp., Eustrongylides sp., and Spiroxys sp., and Polymorphus brevis (cystacanth). Infection site, number of infected fish, prevalence, abundance, mean intensity for each helminth species are shown in Table 1. Only B. acheilognathi was found in 2 hosts, while the remaining species were even more rare and infrequent (Table 1). The total number of individual helminths of all species per host varied from 1 to 7, with a mean number of 0.4 + 1.4 individuals per host. The value obtained from the non- parametric species richness estimators (Chao 1= 11 and Chao 2= 25), shows that apparently several missing species remaining to be found at the component of community level. The helminth infracommunities were also species- poor; 2 infracommunities had just 1 species and 1 had a maximum of 4. Mean number of species per host was 0.29 + 0.87, The Brillouin index for all infracommunities varied from 0 to 0,86, with a mean diversity value of 0,3 + 0,41, while the Berger-Parker dominance index values varied from 0,43 to 1, with a mean of 0.73 + 0,31. The helminth infracommunities show a low level of similarity. The corresponding Jaccard index varied from 0 to 0.5 (mean of 0.08 + 0.2) and the Morisita-Horn index varied from 0 to 0.67 (mean of 0.11 + 0.27). The comparison between the helminth parasite fauna of both study sites, exhibits a very low similarity. Table 1 shows that only 1 taxon (Spiroxys sp.) is shared between component communities, resulting in a Jaccard value of 0.17, and a Morisita-Horn value of 0.23. However, it is possible that the larval stage of Rhabdochona found in Los Negritos might be conspecific with R. lichtenfelsi; although, we were unable to identify this larval satge up to species. Discussion Most of the helminth species found in this study have been previously recorded in diverse freshwater fish species in central and northern Mexico (Mejía-Madrid et al., 2005; Pérez-Ponce de León et al., 2007, 2009, 2010; Martínez- Aquino and Aguilar-A guilar, 2008; Romero-Tejeda et al., 2008). Two of these species, the digenean M. bravoae and the nematode R. lichtenfelsi, are commonly found 29 Revista Mexicana de Biodiversidad 82: 1132-1137, 2011 in goodeid fishes, and have been considered as a part of the core parasite fauna for this fish family (Mejía-Madrid et al., 2005; Pérez-Ponce de León and Choudhury, 2005; Martínez-Aquino et al., 2009). Other helminth species recorded herein as adults were Phyllodistomum sp., P. cf. bulbocolli, and B. acheilognathi. The finding of Phyllodistomum sp. in this study represents a new host record for fishes of the family Goodeidae, To date, 6 species of Phyllodistomum have been recorded as a parasite of marine and freshwater fishes in Mexico (Pérez-Ponce de León et al., 2007). In this work, we collected 1 single specimen of this digenean, which hinders the accurate taxonomic determination. Considering the host associations of species of Phyllodistomum in freshwater fishes of North America (Hoffman, 1999), we may speculate that this represents an undescribed species. Further analysis of this worm and those collected from other goodeids in central Mexico (Martínez-Aquino, unpublished data) will allow the proper taxonomic identification of this digenean by using both, morphological and molecular data. The acanthocephalan P. cf. bulbocolli is a parasite of freshwater fishes frequently recorded in North America (Hoffmann, 1999), and it was recently found in Mexico as a parasite of the catostomid Catostomus nebuliferus Garman and the cyprinid Gila conspersa Garman (Pérez- Ponce de León et al., 2009, 2010). The presence of this acanthocephalan in Z. purhepechus from La Luz spring represents the third published record for this species in Mexico, and the first record in freshwater fishes of the family Goodeidae. The cestode B. acheilognathi is an introduced species, which currently is widely distributed in freshwater fishes of Mexico (Rojas-Sánchez and García-Prieto, 2008), including several species of goodeids (Peresbarbosa-Rojas et al., 1994; Pérez-Ponce de León et al., 2000; Sánchez-Nava et al., 2004; Romero- Tejeda et al., 2008; Pérez-Ponce de León et al., 2009). The remaining 7 helminth species found in Z. purhepechus inboth localities were larval stages frequently recorded in the freshwater fish helminth fauna of Mexico and North America. These species were C. complanatum, the cysticercoid of Cyclophyllidea, Contracaecum sp., Eustrongylides sp. and P. brevis, all of them maturing in piscivorous birds, and the nematode Spiroxys sp., which reaches the maturity mainly in freshwater turtles. One single immature specimen of Rhabdochona sp. was found in Los Negritos spring. This nematode most likely belongs to the species R. lichtenfelsi, however, absence of reproductive structures prevent its accurate taxonomic determination. The data we present here suggest that the helminth parasite species composition, and the helminth 1135 infracommunity structure in Z. purhepechus is consistent with the pattern that shows a depauperate parasite fauna in goodeid fishes inhabiting freshwaters in the Nearctic part of Mexico such as Alloophorus robustus Bean, Goodea atripinnis Jordan, Állotoca diazi Meek, Chapalichthys encaustus Jordan and Snyder, Characodon audax Smith and Miller, Skiffia lermae Meek, Girardinychthys multiradiatus Meek, Xenotoca variata Bean, Xenotaenia resolanae Turner, and Z. quitzeoensis Bean (Astudillo- Ramos and Soto-Galera, 1997; Rojas et al., 1997; Pérez-Ponce de León et al., 2000; Martínez-Aquino et al., 2004, 2007, 2009; Sánchez-Nava et al., 2004; Martínez- Aquino, 2005; Romero-Tejeda et al., 2008). The factors that determine the helminth community structure herein described are concordant with those described in the aforementioned studies (the feeding habits, omnivorous in this case, and the position in the food web of this species of host), i.e., 11 of the 12 helminth species infect their host when it feeds upon some species of crustacean or insect. Likewise, 7 of the 12 helminth species are larval forms that complete their life cycle when the fish is consumed by a definitive host, either a fish-eating bird or a reptile. On the basis of the values obtained through the species richness estimators used in this study (Chao 1 and Chao 2), 1t seems that we sampled all the helminth fauna in La Luz spring, since the observed and estimated richness value was very similar; however, values obtained for the same richness estimators in Los Negritos spring indicate that various helminth species apparently remain to be found. This result was surprising, since following the idea of Pérez-Ponce de León and Choudhury (2010) that the inventory of the freshwater fish helminth fauna in Mexico is nearing completion, and not many additional species are expected to be found, and particularly in goodeids, since this is a group of hosts that has been extensively studied for helminths in the last years. Thus, this apparently high number of species remaining to be found at Los Negritos spring, could be the result of an artifact derived from very low abundance and mean intensity values for each helminth taxa, Both nonparametric estimators Chao 1 and Chao2 are sensitive to the presence of rare species (Escalante, 2003), and that is probably the reason of the apparently high number of missing species in that particular locality. The comparison between the 2 study sites showed that both helminth assemblages had very low numbers of individuals and consequently, remarkable low prevalence and abundance values. However, the helminth community of Z. purhepechus at La Luz spring included at least 2 of the species considered specialists for the fish family Goodeidae, the digenean M. bravoae and the nematode R. 30 1136 lichtenfelsi (Pérez-Ponce de León and Choudhury 2005). Likewise, the helminth assemblage of Los Negritos spring is comparatively species-poor, specialist species are lacking, and is conformed only by larval stages and the introduced tapeworm B. acheilognathi. This pattern results in very low levels of similarity between the component communities. It is noteworthy the absence of digeneans in Los Negritos spring in conjunction with extremely low abundance values for the helminth species found in that locality. On the other hand, in La Luz, helminth species composition includes at least 3 species of digeneans, even though no tapeworms were found, and abundance values of the helminth parasite fauna are slightly higher than in Los Negritos. We may speculate that this is the result of different environmental conditions of the sampling sites, e.g., primary productivity and associated physicochemical parameters (personal observation), and it is possible that the absence of digeneans in Los Negritos could be the result of the lack of molluscs that are the first intermediate host in their life cycle, however this needs to be determined with the proper sampling in the locality. Of the 3 recognized species of Zoogoneticus, the helminth parasite fauna has been studied for 2 of them, Z. quitzeoensis, and now, Z. purhepechus. We compared the helminth parasite fauna of Z. purhepechus and its putative sister species, Z. quitzeoensis (see Dominguez- Domínguez et al., 2008), and some differences were found. The endohelminth fauna of both Zoogoneticus species comprises 16 taxa, including 7 digeneans (4 adults and 3 metacercarias), 2 cestodes (1 adult and 1 cysticercoid), 5 nematodes (1 adult and 4 larvae), and 2 acanthocephalans (1 adult and 1 larvae) (see Martínez- Aquino, 2005; Mejía-Madrid et al., 2005; Romero-Tejeda et al., 2008). Only 3 of the 16 taxa (M. bravoae, B. acheilognathi, and R. lichtenfelsi) are shared between both species. Considering that they are sister species, and even though they do not occur in sympatry, the differences in helminth parasite fauna are a sampling artifact due to the fact that these species have not been studied along their entire distributional range, in the Lower and Middle Lerma River, respectively. We predict that the result of a detailed survey work in other localities along the distribution range for both species, will allow us to find the species that have not yet been documented, increasing as a result the levels of similarity among the parasite fauna, Acknowledgments We thank Lorena Garrido-Olvera for corroborating the identification of the nematodes. AMA and RPR were Martínez-Aquino et al.- Helminth parasites of Zoogoneticus purhepechus supported by a Research Doctoral Fellowships from the Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico. D.I.H.M. thanks CONACyT for scholarship to accomplish his MSc degree. The study was funded by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT, No. 83043), and the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPITT-UNAM IN 202111) to G.P.P.L. Literature cited Astudillo-Ramos, L. and E. Soto-Galera. 1997. Estudio helmintológico de Chirostoma humboldtianum y Girardinichthys multiradiatus capturados en el Lerma. Zoología Informa 35:53-59, Bush, A. O., K. D. Lafferty, J. M. Lotz and A. W. Shostak. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 65:667-669. Colwell, R. K. and J. A. Coddington. 1995, Estimating terrestrial biodiversity through extrapolation. ln Biodiversity: measurement and estimation, D. L. Hawksworth, (ed.). Chapman and Hall, London. p. 101-118. De la Vega-Salazar, M. Y., E. Ávila-Luna and C. Macías-García. 2003. Ecological evaluation of local extinction: the case of two genera of endemic Mexican fish, Zoogoneticus and Skiffia. Biodiversity and Conservation 12:2043-2056. Domínguez-Domínguez, O., N. Mercado-Silva, J. Lyons and H. J. Grier. 2005. The viviparous goodeid fishes. [n Viviparous fishes, M. C. Uribe and H. J. Grier (eds.). New Life Publications, Homestead, Florida. p. 525-569. Domínguez-Domínguez, O., R. Pérez-Rodríguez and Ll. Doadrio. 2008. Morphological and genetic comparative analyses of populations of Zoogoneticus quitzeoensis (Cyprinodontiformes: Goodeidae) from Central Mexico, with description of a new species. Revista Mexicana de Biodiversidad 79:373-383. Escalante, T. 2003. ¿Cuántas especies hay?: los estimadores no paramétricos de Chao. Elementos 52:53-56. Hoffman, G. L. 1999. Parasites of North American freshwater fishes. 2"* edition. Cornell University Press, California. 539 p. Magurran, A. 1988. Ecological diversity and its measurement. Croom Helm, London. 179 p. Martínez-Aquino, A. 2005. Biogeografía de helmintos parásitos de peces de la familia Goodeidae (Pisces: Cyprinodontiformes) del centro de México. Tesis, Facultad de Ciencias, Universidad Nacional Autónoma de México, México, D.F. 129 p. Martínez-Aquino, A. and R. Aguilar-Aguilar. 2008. Helminth parasites of the pupfish Cyprinodon meeki (Pisces: Cyprinodontiformes), an endemic freshwater fish from North-Central Mexico. Helminthologia 45:48-51. 31 Revista Mexicana de Biodiversidad 82: 1132-1137, 2011 Martínez-Aquino, A., R. Aguilar-Aguilar, R. Pérez-Rodríguez and G. Pérez-Ponce de León. 2009. Helminth parasites of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa hydrological system, Jalisco, Mexico. Journal of Parasitology 95:1221-1223. Martínez-Aquino, A., G. Salgado-Maldonado, R. Aguilar- Aguilar, G. Cabañas-Carranza and C. Mendoza-Palmero. 2007. Helminth parasite communities of Characodon audax and C. lateralis (Pisces: Goodeidae), endemic freshwater fishes from Durango, Mexico. The Southwestern Naturalist 52:125-130. Martínez-Aquino, A., G. Salgado-Maldonado, R. Aguilar- Aguilar, G. Cabañas-Carranza and M. P. Ortega-Olivares. 2004. Helminth parasites of Chapalichthys encaustus (Pisces: Goodeidae), an endemic freshwater fish from Lake Chapala, Jalisco, Mexico. Journal of Parasitology 90:889-890, Mejía-Madrid, H., O. Dominguez-Domínguez and G. Pérez- Ponce de León. 2005. Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from Mexico with biogeographical considerations. Comparative Parasitology 72:200-211. Peresbarbosa-Rojas, E., G. Pérez-Ponce de León and L. García- Prieto. 1994, Helmintos parásitos de tres especies de peces (Goodeidae) del Lago de Pátzcuaro, Michoacán. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 65:201-204. Pérez-Ponce de León, G. and A. Choudhury. 2005. Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. Journal of Biogeography 32:645-659. Pérez-Ponce de León, G. and A. Choudhury. 2010. Parasite inventories and DNA-based taxonomy: Lessons from helminths of freshwater fishes in a megadiverse country. Journal of Parasitology 96:236-244. Pérez-Ponce de León, G., L. García-Prieto, V. León-Regagnon and A. Choudhury. 2000. Helminth communities of native 1137 and introduced fishes in Lake Pátzcuaro, Michoacán, Mexico. Journal of Fish Biology 57:303-325. Pérez-Ponce de León, G., L. García-Prieto and B. Mendoza- Garfias. 2007. Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa 1534:1-247, Pérez-Ponce de León, G., R. Rosas-Valdez, R. Aguilar-A guilar, B. Mendoza-Garfias, C. Mendoza-Palmero, L. García-Prieto, A. Rojas-Sánchez, R. Briosio-Aguilar, R. Pérez-Rodríguez and O. Domínguez-Domínguez. 2010. Helminth parasites of freshwater fishes, Nazas River basin, northern Mexico. CheckList 6:26-35, Pérez-Ponce de León, G., R. Rosas-Valdez, B. Mendoza-Garfias, R. Aguilar-A guilar, J. Falcón-Ordaz, L. Garrido-Olvera and R. Pérez-Rodríguez. 2009. Survey of endohelminth parasites of freshwater fishes in the upper Mezquital River basin, Durango state, Mexico. Zootaxa 2164:1-20, Rojas, E., G. Pérez-Ponce de León and L. García-Prieto. 1997. Helminth community structure of some freshwater fishes from Patzcuaro, Michoacan, Mexico. Tropical Ecology 38:129-131. Rojas-Sánchez, A. and L. García-Prieto. 2008. Distribución actual del céstodo Bothriocephalus acheilognathi en México. Memorias XXV Simposio sobre Fauna Silvestre, Facultad de Medicina y Zootecnia, Universidad Nacional Autónoma de México, Mexico. p. 89-93, Romero-Tejeda, M. L., L. García-Prieto, L. Garrido-Olvera and G. Pérez-Ponce de León. 2008. Estimation of the endohelminth parasite species richness in freshwater fishes from La Mintzita reservoir, Michoacán, Mexico. Journal of Parasitology 94:288-292. Sánchez-Nava, P., G. Salgado-Maldonado, E. Soto-Galera and B. Jaimes-Cruz. 2004. Helminth parasites of Girardinichthys multiradiatus (Pisces: Goodeidae) in the upper Lerma River sub-basin, Mexico. Parasitology Research 93:396-402. Southwood, T. R. 1978. Ecological methods, 2nd ed. Chapman $ Hall, London. 524 p. 32 33 4) ENDOHELMINTH PARASITES OF SEVEN GOODEIN SPECIES (CYPRINODONTIFORMES: GOODEIDAE) FROM LAKE ZACAPU, MICHOACÁN, CENTRAL MEXICO PLATEAU Hidrobiológica 2012, 22 (1): 89-93 NOTAS Abril 2012 Endohelminth parasites of seven goodein species (Cyprmodontiformes: Goodeidae) from Lake Zacapu , Michoacán, Central Mexico Plateau Endohelmintos parásitos de siete especies de godeinos (Cyprinodontiformes: Goodeidae) del lago de Zacapu, Michoacán, en la Mesa Central de México Andrés Martínez-Aquino,'? Rodolfo Pérez-Rodríguez,!? David |. Hernández-Mena,!? Lorena Garrido-Olvera?4 Rogelio Aguilar- Aguilar* and Gerardo Pérez-Ponce de León! 1 Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-153, México, D.F. 04510. México 2 Posgrado en Ciencias Biológicas, UNAM. México, D.F. México 3 Instituto de Ecología, UNAM, México, D.F. México 4 Departamento de Biología Comparada, Facultad de Ciencias, UNAM, México D.F. México e- mail: ppdleonGibiologia.unam.mx Martínez-Aquino A., R. Pérez-Rodríguez, D. |. Hernández-Mena, Lorena Garrido-Olvera, R. Aguilar-Aguilar and G. Pérez-Ponce de León. 2012. Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau. Hidrobiológica 22(1): 89-93. ABSTRACT A total of 11 parasitic endohelminth taxa were found in 7 fresh- water fish species of the subfamily Goodeinae in Zacapu Lake, Michoacan, Mexico. Six were adults (Margotrema cf. bravoae, Phyllodistomum sp., Saccocoelioides sogandaresi, Rhabdochona lichtenfelsi, Bothriocephalus acheilognathi and Caryophillidae gen. sp.), while the remaining 5 taxa (Clinostomum complanatum, Posthodiplostomum minimum, Tylodelphis sp., Eustrongylides sp. and Polymorphus brevis) were larvae. The taxa S. sogandaresi, Tylodelphis sp., and R. lichtenfelsi reached the highest levels of prevalence and mean abundance among all hosts, while the ces- todes B. acheilognathi and Caryophillidae gen. sp. showed the lowest values. This study contributes with the inventory of the freshwater fish helminth fauna in Central Mexico Plateau, and particularly with the previous work that has been done with Goo- deinae, a subfamily of freshwater fishes endemic to that part of the country. Key words: Central Mexico Plateau, Goodeinae, helminth para- sites. RESUMEN En este trabajo se registran 11 taxa de helmintos endoparásitos de 7 especies de peces de la subfamilia Goodeinae del lago de Zacapu, Michoacán, en la mesa central de México. Seis taxa se registraron en estado adulto (Margotrema cf. bravoae, Phyllodis- tomum sp., Saccocoelioides sogandaresi, Rhabdochona lichten- felsi, Bothriocephalus acheilognathi y Caryophillidae gen. sp.), en tanto que los 5 restantes correspondieron a larvas (Clinostomum complanatum, Posthodiplostomum minimum, Tylodelphys sp. y Eustrongylides sp. y Polymorphus brevis). Los taxa S. sogan- daresi, Tylodelphis sp. y R. lichtenfelsí presentaron los valores más altos de prevalencia y abundancia en los peces estudiados, mientras que los céstodos B. acheilognathi y Caryophillidae gen. sp. presentaron los valores más bajos. Este estudio contribuye al inventario de la fauna helmintológica de peces de agua dulce de la mesa central de México y en particular al que ha sido realizado con Goodeinae, una subfamilia de peces dulceacuícolas endémi- ca de esa parte del territorio nacional. Palabras clave: Mesa central de México, Goodeinae, helmintos parásitos. Goodeinae (Cyprinodontiformes: Goodeidae) represents a sub- family of viviparous freshwater fishes, which comprises 20 genera and 43 species, entirely endemic to river drainages and basins of central Mexico (Domínguez-Domínguez et al., 2012). The helminth fauna parasitizing these freshwater fishes has been intensively documented during the lasttwo decades. Some papers have ad- dressed the helminth assemblage in one single species of host 34 (i.e., Martínez-Aquino et al, 2004, 2007b, 2009; Sánchez-Nava et al, 2004), while some others described the helminth fauna of three or more goodein species within the same locality (e.g., Peresbar- bosa-Rojas et al, 1994; Pérez-Ponce de León et al, 2000; Mejía- Madrid et al, 2005; Romero-Tejeda et al., 2008). Zacapu Lake, located in Central Mexico Plateau, in the state of Michoacán, is a medium-size water body fed by sever- al springs, which shows a relatively low level of environmental degradation, and serves as habitat for diverse freshwater taxa. Because of this, it has been argued that this area is important from a conservational point of view (Medina-Nava et al, 2005; Domínguez-Domínguez et al., 2006; Martínez-Aquino et al, 2007a). The freshwater fish fauna of the lake includes 7 goodein species of which 6 have been partially studied for helminth parasites (Gali- cia-Guerrero, 2001; Pérez-Ponce de León, 2001; Mejía-Madrid et al, 2005). The aim of this work is to record the endohelminth para- site fauna of all the species of goodeins inhabiting Zacapu Lake, and provide the ecological infection parameters, such as preva- lence and abundance. On July 2009, a total of 161 adult specimens of goodeins belonging to the species Alloophorus robustus (Bean, 1892) (n = 17), Allotoca zacapuensis Meyer, Radda € Domínguez-Domín- guez, 2001 (n = 32), Goodea atripinnis Jordan, 1880 (n = 20), Hubb- sina turneri de Buen, 1940 (n = 20), Skiffia lermae Meek, 1902 (n = 19), Xenotoca variata (Bean, 1887) (n = 21), and Zoogoneticus quitzeoensis (Bean, 1898) (n = 32), were collected in Zacapu Lake (19%4935" N; 1014710” W), using seine nets and electrofishing. Fishes were taken alive to the laboratory, sacrificed by pithing, and individually examined for endohelminth parasites. After dis- section, gastrointestinal tract was removed and placed in a Petri dish with 0.65% saline. Other organs (eyes, liver, spleen, gall, swim and urinary bladders), and body cavity, were examined under a stereomicroscope in separate Petri dishes with saline 0.65%. Di- geneans, nematodes and cestodes were fixed with 4% (steaming) formalin. Acanthocephalans were placed during 24 hrs in distilled water at 4”C, and preserved in absolute ethanol. Plathyhelminths and acanthocephalans were stained with Mayers paracarmine. Nematodes were cleared with glycerin for light microscopy study. Voucher specimens of all taxa were deposited in the Colección Nacional de Helmintos (CNHE), Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City. The use of preva- lence (% infected), and abundance (mean number of parasites of a single species in the sample) follows Bush et al. (1997). In total, 11 endohelminth parasite taxa were collected from the 7 analyzed host species. The endohelminth fauna includes 6 taxa of digeneans (3 adults and 3 larval stages), 2 adult cestodes, 2 nematodes (1 adult and 1 larvae), and 1 acanthocephalan (cys- tacanth). Rhabdochona lichtenfelsiSánchez-Álvarez, García-Prie- to € Pérez-Ponce de León, 1998, Tylodelphys sp., and Polymor- phus brevis (Van Cleave, 1916), were the most widely distributed Notas taxa among the host species. The adult nematode A. lichtenfelsi reached the highest levels of prevalence and mean abundance. Allotoca zacapuensis harbored 7 endohelminth taxa, whereas the remaining fish hosts were parasitized by 4-5 endohelminth taxa. Endohelminth parasite taxa, prevalence and abundance, as well as the new host and locality records herein established are shoven in Table 1. Four endohelminth taxa are reported in Zacapu Lake for the first time, and in addition to that, 21 new host records are estab- lished in this paper. The endohelminth fauna of Skiffia lermae ¡is reported for the first time, meanwhile for the goodeins Allotoca zacapuensis, Hubssina turneri, and Zoogoneticus quitezeoensis, the known endohelminth parasite fauna was duplicated with respect to previous records. Our study brings the total number of helminth parasites of goodeins in Zacapu Lake to 18 (Galicia- Guerrero, 2001; Pérez-Ponce de León, 2001; Mejía-Madrid et al, 2005). Additionally, with 64.3% of the fish fauna studied thus far for helminth parasites, our data increase the knowledge about the freshwater fish parasite fauna of this locality in 30%. The endohelminth fauna of goodeins in Zacapu Lake include at least 2 species which have been considered as specialists to Goodeinae, ¡.e., Margotrema cf. bravoae Lamothe-Argumedo, 1970, and Rhabdochona lichtenfelsi (Pérez-Ponce de León ef al., 2000; Mejía-Madrid et al, 2005, 2007; Pérez-Ponce de León 4 Choudhury, 2005). The adult digenean Phyllodistomum sp., could represent a third specialist species; however, this need to be de- termined once the taxonomic identity ofthe species is established. Morphologically similar specimens were recently recorded in the goodein fish Zoogoneticus purhepechus Domínguez-Domínguez, Pérez-Rodríguez et Doadrio, 2008 from a relatively close locality in the lower Lerma River (Martínez-Aquino et al., 2011). These specimens, along with those reported as Dendrorchis sp. by Mar- tínez-Aquino et al. (2009) have been only recorded in goodeins in central Mexico and may be conspecific. Moreover, they could represent a new species; although until additional taxonomic work based on morphology and molecular markers is carried out, their identities remain uncertain. In contrast, 8 generalist helminth taxa were recorded in the analyzed hosts both as adult or larval stages: Saccocoelioides sogandaresí Lumsden, 1963, Clinosto- mum complanatum (Rudolphi, 1819), Posthodiplostomum mini- mum (MacCallum, 1921), Tylodelphys sp., Bothriocephalus achei- lognathi Yamaguti, 1934, Caryophyllidae gen. sp., Eustrongylides sp., and PF. brevis. For this survey, specimens were collected only in one period during the year, preventing us from establishing a robust com- parison of the parasite fauna among analyzed species of hosts, or even between the records we establish in this work, and those previously made for other authors. However, our data correspond with the general pattern described for most species of freshwater fishes occurring in different river basins in central Mexico, ¡.e., a Hidrobiológica 35 3 6 Y species-poor helminth fauna, highly dominated by one species of helminth (Pérez-Ponce de León et al, 2000). In particular, ecologi- cal parameters of the parasitic infections herein reported coin- cide with those previously reported for other species of goodeins, ¡.e., the nematode Ahabdochona lichtenfelsís, as well as larval digeneans reach the highest prevalence and abundance values (Martínez-Aquino et a/., 2004, 2007b; Romero- Tejeda et al., 2008), The results we provide in this paper contribute to our un- derstanding of the helminth parasite fauna of goodeins in Central Mexico Plateau, but also further contribute with the inventory of the Mexican freshwater fish parasite fauna. ACKNOWLEDGEMENTS We thank the local people of Zacapu for providing access to Zacapu Lake, particularly we are gratefull with those in charge of "Balneario La Angostura” for access to the type locality of Allotoca zacapuensis. We appreciate the valuable comments of reviewers. A.M.A., R.P.R., L.G.0., and D.I.H.M. thank to CONACyT for the scholarship received to complete their graduate programs within the Posgrado en Ciencias Biológicas, UNAM. This work was partially supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT 83043), and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT- UNAM IN 209608 and IN202111) to G.P.P.L. REFERENCES Bush, A. 0., K. D. LarrERTY, L. L. Lorz 8 A. W. SHosTAKk. 1997. Parasitology meets ecology on its own terms: Margolis et al., revisited. Journal of Parasitology 83 (4): 575-583. Domíncuez-Domínuez, O., E. MARTÍNEZ-Mever, L. ZAMBRANO 8 G. PÉREZ- Ponce DE León. 2006. Using ecological-niche modeling as a conser- vation tool for freshwater species: live-bearing fishes in Central Mexico. Conservation Biology 20 (6): 1730-1739. Domincuez-DomínGuEz, O., C, PEDRAZA-LARA, N. GURROLA-SÁNCHEZ, R. PÉREZ- Robrícuez, |. ISRADE-ALCÁNTARA, V. H. GARDUÑO-Monroy, l. Doabrlo, G. PérEz-Ponce DE LEÓN él D. R. Brooks, 2012. Historical biogeography of the Goodeinae (Cyprinodontiforms). /n: Uribe-Aranzabal, M. C. 8 H. Grier (Eds.). Viviparous Fishes Vol II. New Life Publications, Home- stead, pp. 13-30. GALICIA-GUERRERO, S. 2001. Helmintos parásitos de algunas especies de peces en el Lago de Zacapu, Michoacán. Tesis de Maestría, Facul- tad de Ciencias, UNAM, México. 127 p. MARTÍNEZ-ÁQUINO, Á., G. SALGADO-MALDONADO, R. AGUILAR-ÁGUILAR, G. CABA- Ñas-CARRANZA QM. P. ORTEGA-OLIVARES. 2004. Helminth parasites of Chapalichthys encaustus (Pisces: Goodeidae), an endemic freshwa- ter fish from Lake Chapala, Jalisco, Mexico. Journal of Parasitology 90 (4): 889-890. MAaRTÍNEZ-ÁQUINO, Á., R. AGUILAR-ÁGUILAR, H. O. SANTA ÁNNA DEL CONDE- JUÁREZ € R. CONTRERAS-MEDINA. 2007a. Empleo de herramientas pan- Notas biogeográficas para detectar áreas para conservar: un ejemplo con taxones dulceacuícolas. lr Luna, l., J. J. Morrone 8 D. Espinosa (Eds.). Biodiversidad de la Faja Volcánica Transmexicana. Facultad de Ciencias, Universidad Nacional Autónoma de México. México, D. F., pp. 449-460. MARTÍNEZ-ÁQUINO, Á., G. SALGADO-MALDONADO, R. AGUILAR-ÁGUILAR, G. CABA- Ñas-CARRANZA él C. A. MenDOZA-PALMERO. 2007b. Helminth parasite communities of Characodon audax and C. lateralis (Pisces: Goodei- dae), endemic freshwater fishes from Durango, Mexico. The South- western Naturalist52 (1): 125-130. MARrTÍNEZ-ÁQUINO, A., R. AGUILAR-AGUILAR, R. PérEz-RooríGuEz 8 G. PÉREZ- Ponce DE León. 2009. Helminth parasites of Xenotaenía resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa Hydrological System, Jalisco, Mexico. Journal of Parasitology 95 (5): 1221-1223. MARTÍNEZ-ÁQUINO, A., D. |. HerNÁNDEZ-MENA, R. PÉREz-RoDRÍGUEZ, R. ÁGUILAR- AGuILAR 8 G. Pérez-Ponce DE León. 2011. Endohelminth parasites ofthe freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the lower Lerma River, Mexico. Re- vista Mexicana de Biodiversidad 82 (4): 1132-1137. Menina-Nava, M., J. Lyons, T. ZuBiera-RoJas, E. SOLORIO-ORNELAS, y. P. Ramírez-HeRREJÓN 8 R. GaLván-MoraLes, 2005. Conservation of two sites in Central Mexico with a high diversity of livebearing fishes. /n: Uribe, M. C. 8 H. Grier (Eds.). Viviparous Fishes, New Life Publica- tions. Homestead, pp. 499-504, MeJía-MabriD, H., O. DomíncuEZ-DOMÍNGUEZ él G. PÉREZ-PONCE DE León. 2005, Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from Mexico with biogeographical considerations. Com- parative Parasitology 72 (2): 200-211. MeJía-Mabrio, H., E. Váquez-DomínGuEz €: G. Pérez Ponce DE Léon. 2007. Phylogeography and freshwater basins in central Mexico: recent history as revealed by the fish parasite Rhabdochona lichtenfelsi (Nematoda). Journal of Biogeography 34: 787-801. PERESBARBOSA-ROJAS, E., G. PÉREZ-PONCE DE LEÓN $, L. GARCÍA-PRIETO. 1994, Helmintos parásitos de tres especies de peces (Goodeidae) del lago de Pátzcuaro, Michoacán. Anales del Instituto de Biología, Universi- dad Nacional Autónoma de México, Serie Zoología 65 (1): 201-204, PEREZ-PONCE DE LEÓN, G. 2001. Margotrema guillerminae n. sp. (Trematoda: Macroderoididea) from two species of freshwater fishes in Lake Zacapu. Michoacan state, Mexico, and new records of Margotrema bravoae Lamothe, 1970. Journal of Parasitology 87 (5): 1112-1114, Pérez-PoNcE DE LEÓN, G., L. GARcÍA-PrIiETO, V. LEÓN-REGAGNON € A. CHOUD- HURY. 2000. Helminth communities of native and introduced fishes in Lake Pátzcuaro, Michoacán, Mexico. Journal of Fish Biology 51 (2): 303-352. PérEz-PoNCcE DE LEÓN, G. 8: A. CHouDHURY. 2005. Biogeography of helminth parasites of freshwater fishes in Mexico: the search for patterns and processes. Journal of Biogeography 32: 645-659. Hidrobiológica 37 Notas ROMERO-TEJEDA, M. L., L. GARCÍA-PRIETO, L. GARRIDO-OLVERA 8 G. PÉREZ-PONCE DE LEÓN. 2008. Estimation of the endohelminth parasite species rich- ness in freshwater fishes from La Mintzita reservoir, Michoacán, Mexico. Journal of Parasitology 94 (1): 288-292. SáncHEz-Nava, P., G. SALGADO-MALDONADO, E. SOTO-GALERA 4 B. JAIMES- Cruz. 2004. Helminth parasites of Girardinichthys multiradiatus (Pi- Vol. 22 No. 1 + 2012 Y sces: Goodeidae) in the upper Lerma River sub-basin, Mexico. Para- sitology Research 93 (5): 396-402. Recibido: 15 de abril de 2011. Aceptado: 19 de septiembre de 2011. 38 39 5) A NEW SPECIES OF MARGOTREMA (DIGENEA, ALLOCREADIIDAE) FROM THE LEOPARD SPLITFIN XENOTAENIA RESOLANAE (CYPRINODONTIFORMES, GOODEIDAE) FROM WEST-CENTRAL MEXICO 40 94 Accepted by Norman Dronen: 17 May 2013; published: 11 Jun. 2013 ZOOTAXA ISSN 1175-5326 (print edition) ISSN 1175-5334 (online edition)Copyright © 2013 Magnolia Press Zootaxa 3670 (1): 094–096 www.mapress.com/zootaxa/ Correspondence http://dx.doi.org/10.11646/zootaxa.3670.1.10 http://zoobank.org/urn:lsid:zoobank.org:pub:7C2432D5-2C54-4426-B181-C52D9FA78C05 A new species of Margotrema (Digenea, Allocreadiidae) from the leopard splitfin Xenotaenia resolanae (Cyprinodontiformes, Goodeidae) from west-central Mexico GERARDO PÉREZ-PONCE DE LEÓN1, ANDRÉS MARTÍNEZ-AQUINO1, 2 & BERENIT MENDOZA-GARFIAS1 1Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ap. Postal 70-153 C.P. 04510, México D.F., México 2Posgrado en Ciencias Biológicas, UNAM, C.P. 04360, México. D.F. E-mail: ppdleon@ibiologia.unam.mx A new species of Margotrema is herein described from the intestine of the freshwater fish Xenotaenia resolanae from the Cuzalapa River, Jalisco State, on the Pacific slope of west-central Mexico. The new species was first recognized after a molecular phylogenetic analysis which explored the genetic variation at the intraspecific level of Margotrema spp across central Mexico. Sequences of mitochondrial (COI) and nuclear (ITS1) genes were obtained for 125 individuals, and a general mixed Yule-coalescent analysis (GMYC) for species delimitation of both genes allowed the recognition of an independent evolutionary lineage, representing an undescribed species of Margotrema. Detailed morphological observations allowed the species description. The new species is easily distinguished from the other valid species of the genus, M. bravoae, by having vitelline follicles restricted to the region between the pharynx and the ventral sucker a wider and more prominent ventral sucker, larger eggs, and symmetrical testes. The genus Margotrema included two species, M. bravoae Lamothe-Argumedo, 1970, from the goodeid Girardinichthys multiradiatus Meek from La Lagunilla, Estado de México (Lamothe-Argumedo 1970), and M. guillerminae Pérez-Ponce de León, 2001 from the cyprinid Notropis calientis Jordan and Snyder, and the goodeid Alloophorus robustus (Bean) from Lake Zacapu, Michoacán (Pérez-Ponce de León 2001). These species were distinguished mainly on the basis of relative length of cecae. While exploring the genetic diversity of Margotrema spp. in their goodeid hosts across central Mexico (in 15 localities representing seven hydrological systems), Martínez-Aquino et al. (2013) found evidence to synonymize M. guillerminae with the type-species, M. bravoae, and to recognize an independent genetic lineage (Lineage I), parasitizing the endemic goodeid Xenotaenia resolanae in the Cuzalapa river, a tributary of the Marabasco River Basin. The helminth fauna of X. resolanae had been studied by Martínez-Aquino et al. (2009); the species of Margotrema was erroneously determined as M. guillerminae based on the extension of the ceca along body, a character that results from intraspecific morphological variability and is not reliable, in these digeneans, as a taxonomically important trait to distinguish species. After the molecular analyses, a closer look at the morphology of specimens (museum and freshly collected material) was then undertaken for specimens allocated to Lineage I, concluding it represented a new species. We describe the new species in this paper. Specimens were stained with Mayer´s paracarmine and Gomori´s thrichorome, mounted as permanent slides using Canada balsam and deposited at the CNHE (Colección Nacional de Helmintos). For SEM study, specimens were post fixed in 1 % OsO4 for 1 hr, dehydrated through a graded series of ethyl alcohol and then critical point dryied with CO2. Specimens were mounted on metal stubs, coated with gold, and examined in a Hitachi Stereoscan Model S-2469N at 15 kV. Measurements are presented in micrometers, as range followed by the average and standard deviation in parentheses. Margotrema resolanae n. sp. (Fig. 1A–C) Host. Xenotaenia resolanae Meek. Locality. Cuzalapa River, Jalisco State, west-central Mexico. 19°30’32.1” N, 104°17’45.6” W. Specimens deposition. CNHE, Holotype 6868, paratypes 6869; CNHE 6880. Etymology. This species in named after the host species (Xenotaenia resolanae) to which the digenean exhibits a strong host-specificity. 41 Zootaxa 3670 (1) © 2013 Magnolia Press · 95MARGOTREMA RESOLANAE N. SP. FROM MEXICO FIGURE 1. Margotrema resolanae n. sp., A. Line drawing of Holotype, ventral view. Scale Bar 200µm. B. Scanning Electron Microscopy micrograph of body. Scale Bar 50 µm, and C. Detail of the oral sucker showing the distribution of 11 dome-like papillae. Scale Bar 50 µm. Description. Based on measurements of 14 specimens. Body elongate, unspined, with scattered eyespot remnants 384–925 (595±135) long, maximum width attained at level of ventral sucker 167–481 (277±71). Oral sucker subterminal 95–143 (114±15) long by 100–133 (115±10) wide. Scanning Electron Microscopy (SEM) micrograph of the oral sucker shows a pattern of 11 dome-like papillae, 4 anterior, 4 lateral (2 on each side), and 3 posterior (Fig. 1C). Mouth 36–77 (56±12) long, 50–88 (66±12) wide. Prepharynx absent. Pharynx 32-59 (43 ± 8) long, 31-59 (44±7) wide. Esophagus relatively short, 46-101 (63 ± 16, n = 6) long. Cecal bifurcation at 156-308 (215±45) from anterior end. Short ceca extending posteriorly to surpass the posterior end of ventral sucker; in some specimens ceca extend into the anterior testis. Ventral sucker wide, very well-developed, located in equatorial area or slightly in posterior third of body 110–230 (156±34) long, 146–296 (216±37) wide, with a pattern of 6 dome-like papillae, 4 lateral (2 on each side), 1 anterior, 1 42 PÉREZ-PONCE DE LEÓN ET AL.96 · Zootaxa 3670 (1) © 2013 Magnolia Press posterior (Fig. 1B); average oral sucker/ventral sucker ratio 1:1.37 (length), 1: 1.88 (width). Testes relatively small, symmetrical (oblique in few specimens), subspherical. Anterior testis 34–99 (63±17) long, 35–85 (59±13) wide. Posterior testis 27–108 (62±21) long, 40–77 (64±12) wide. Cirrus sac straight, dorsal to ventral sucker 107–216 (151±42) long, containing bipartite seminal vesicle and short cirrus. Genital atrium poorly developed. Genital pore anterior to cecal bifurcation, at esophagus level 143–261 (200±39) from anterior end of body. Ovary pretesticular, relativelly small, subspherical, dextral 24–60 (39±11) long, 49–91 (67±12) wide. Seminal receptacle immediately postovarian. Vitelline reservoir, Laurer´s canal, and Mehlis’ gland not observed because the large number of eggs in uterine loops. Vitellarium follicular; vitelline follicles in two lateral fields in anterior end of body, extending mostly between pharynx and anterior margin of ventral sucker or slightly surpassing in some specimens. Uterus highly coiled, occupying most of posterior half of body, ascending sinuously between testes, forming a short metraterm to reach genital atrium dorsally to ventral sucker. Eggs large, embryonated 50–79 (67±7, n = 10) long, 25–47 (35±5, n = 10) wide. Excretory vesicle tubular reaching testes level. Remarks. The new species closely resembles M. bravoae in general morphology of the body however, M. resolanae n. sp. may be easily distinguished from the type species by possesing vitelline follicles restricted to the region between the pharynx and the anterior end of ventral sucker. In contrast, M. bravoae has vitelline follicles extending from the pharynx level posteriorly to ovary, surpassing ventral sucker. Additionally, the new species posseses a wider and more prominent ventral sucker, larger eggs (measuring 67 by 35 compared with 48 by 33) and symmetrical testes. The new species exhibits a close phylogenetic and biogeographical association with the host species, and can be regarded as a member of the helminth parasite core fauna of Xenotaenia resolanae (sensu Pérez-Ponce de León & Choudhury 2005). The description we present herein corroborates that a DNA-based taxonomic approach is necessary to uncover previously unrecognized biodiversity, greatly enhancing our chances to complete the inventory of the freshwater fish parasite fauna in Mexico (Pérez-Ponce de León & Choudhury 2010). The record of Martinez-Aquino et al (2009) of M. guillerminae as a parasite of X. resolanae should then be referred as the new species we described in this paper. The generic diagnosis should be amended to include the following traits: Vitelline follicles restricted, extending between ovary and pharynx; postovarian testes, oblique or symmetrical; intestinal ceca short (extending to the ventral sucker region), or long (extending to surpass the testes). We thank Rogelio Aguilar and Rodolfo Pérez for their help during field-work. AMA thanks the Consejo Nacional de Ciencia y Tecnología (CONACyT) for the scholarship granted for his PhD program. This work was supported by a grant from the Program PAPIIT-UNAM No. IN-202111. References Lamothe-Argumedo, R. (1970) Tremátodos de peces VI. Margotrema bravoae gen. nov. sp. nov. (Trematoda: Allocreadiidae), parásito de Lermichthys multiradiatus Meek. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México, Serie Zoología, 41, 87–92. Martínez-Aquino, A., Aguilar-Aguilar, R., Pérez-Rodríguez, R. & Pérez-Ponce de León, G. (2009) Helminth parasites of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa hydrological system, Jalisco, Mexico. Journal of Parasitology, 95, 1221–1223. http://dx.doi.org/10.1645/ge-1925.1 Martínez-Aquino, A., Ceccarelli, F.S. & Pérez-Ponce de León, G. (2013) Molecular phylogeny of the genus Margotrema (Digenea: Allocreadiidae), parasitic flatworms of goodeid freshwater fishes across central Mexico: species boundaries, host-specificity, and geographical congruence. Zoological Journal of the Linnean Society, 168,1–16. http://dx.doi.org/10.1111/zoj.12027 Pérez-Ponce de León, G. (2001) Margotrema guillerminae n. sp. (Trematoda: Macroderoididae) from two species of freshwaters fishes in Lake Zacapu, Michoacan state, Mexico, and new records of Margotrema bravoae Lamothe, 1970. Journal of Parasitology, 87, 1112–1114. http://dx.doi.org/10.1645/0022-3395(2001)087[1112:mgnstm]2.0.co;2 Pérez-Ponce de León, G. & Choudhury, A. (2005) Biogeography of helminth parasites of freshwater fishes in Mexico: the research for patterns and processes. Journal of Biogeography, 32, 645–649. http://dx.doi.org/10.1111/j.1365-2699.2005.01218.x Pérez-Ponce de León, G. & Choudhury, A. (2010) Parasites inventories and DNA-based taxonomy: lessons from helminths of freshwater fishes in a megadiverse country. Journal of Parasitology, 96, 236–244. http://dx.doi.org/10.1645/ge-2239.1 43 6) COMPOSICIÓN TAXONÓMICA DE HELMINTOS PARÁSITOS DE GOODEINAE (OSTEICHTHYES: CYPRINODONTIFORMES: GOODEIDAE) EN MÉXICO 44 Manuscrito para ser sometido para su publicación en una revista arbitrada e indizada (ISI / SCI). Articulo en extenso Martínez-Aquino et al.- Helmintos parásitos de Goodeinae Composición taxonómica de helmintos parásitos de Goodeinae (Osteichthys: Cyprinodontiformes: Goodeidae) en México ANDRÉS MARTÍNEZ-AQUINO1,2*, CARLOS A. MENDOZA-PALMERO3, ROGELIO AGUILAR-AGUILAR4 and GERARDO PÉREZ-PONCE DE LEÓN1 1Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, Ciudad Universitaria, México, D.F., México. 2Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04360, Coyoacán, Distrito Federal, México. 3Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Bude˘ějovice, Czech Republic. 4Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apdo. Postal 70-374, C. P. 04510 México D.F., Mexico. Correspondencia. E-m maandres@ibiologia.unam.mx. Teléfono. +52 55 56 22 82 22 Ext. 47 86 9. Fax. +52 55 55 50 01 64. 45 Resumen. Este estudio es un inventario helmintológico actualizado que representa la composición taxonómica de helmintos parásitos para Goodeinae en el centro de México. El registro helmintológico incluye 19 taxones de digéneos (11 adultos y ocho metacercarias), siete de monogéneos, 12 de céstodos (tres adultos y nueve metacéstodos), 15 de nemátodos (ocho adultos y siete larvas) y dos de acantocéfalos (un adulto y un cistacanto). Se observa un predominio de digéneos, nemátodos y céstodos, respectivamente, así como una escasez de acantocéfalos y un numero relativamente bajo de monógenos. El número de taxones encontrados en estadios adultos (29 taxones, 55%) es ligeramente mayor que el de larvas (25 taxones, 45%). Existe un mayor número de taxones autogénicos (35 taxones, 64%) que alogénicos (20 taxones, 36%). Margotrema bravoae, M. resolanae, Phyllodistomum sp., Saccocoeloides sp., Gyrodactylus lamothei, G. mexicanus, Gyrodactylus sp. 1, Gyrodactylus sp. 2, Rhabdochona ahuehuellensis y R. lichtenfelsi son taxones endémicos del centro de México y especialistas de la subfamilia Goodeinae. El dígeneo Centrocestus formosanus, el monogéneo G. cf. elegans, el nemátodo Pseudocapillaria tomentosa y el céstodo Bothriocephalus acheilognathi son especies introducidas a la región. Se reconocen dos características de la helmintofauna de goodeinos: 1) un predominio de digéneos, nemátodos y céstodos; 2) un mayor número de especies autogénicas. La segunda característica refleja una estrecha relación evolutiva durante el proceso de diversificación de los helmintos asociados a la ictiofauna dulceacuícola mexicana (i.e. faunas principales), asociada a Goodeinae. En total, como resultado del trabajo de muestreo realizado en los últimos 5 años se presentan 112 nuevos registros de helmintos, e incluyen 23 taxones de helmintos parásitos asociados a 28 especies de goodeinos, de las cuales seis son nuevos para este grupo de peces. Este inventario representa al grupo de vertebrados – Goodeinane – mejor estudiado en términos helmintoparasitofaunísticos para México, lo que permitirá a especialistas de distintas áreas integrar y expandir interpretaciones acerca de la biodiversidad parasitaria de México. Introducción La subfamilia Goodeinae (Osteichthyes: Cyprinodontiformes: Goodeidae), sin duda, es el grupo de vertebrados en México con el mayor número de trabajos donde se describe la fauna helmintológica que los parasita. Los estudios de la última década reconocen que de las 42 especies que se incluyen actualmente en este grupo de peces dulceacuícolas, 33 de ellas cuentan 46 con registros helmintológicos. Esto representa al 80% de esta subfamilia, por lo que Goodeinae, junto con Cichlidae e Ictaluridae, forma parte de los tres grupos de peces dulceacuícolas mejor estudiados en México en términos helmintológicos (Pérez-Ponce de León & Choudhury, 2010). Los trabajos publicados sobre la helmintofauna de goodeinos consisten en cinco categorías: 1) Registros esporádicos o aislados para la descripción de la helmintofauna (v. gr. Lamothe- Argumedo & Cruz-Reyes, 1972; García-Prieto & Osorio-Sarabia, 1991; Guzmán-Cornejo & García-Prieto, 1999; Scholz & Salgado-Maldonado, 2000, 2001; Salgado-Maldonado & Pineda- López, 2003; Alcántar-Escalera et al., 2013). 2) Registros derivados de inventarios helminofaunísticos para sistemas hidrológicos particulares (v. gr., Salgado-Maldonado et al., 2001a; 2001b; 2004a; 2004b; Salgado-Maldonado, 2006; Pérez-Ponce de León et al., 2009). 3) Registros sistematizados en los que se estudia la ecología de comunidades en especies particulares de goodeinos (v. gr. Peresbarbosa-Rojas et al., 1994; Pérez-Ponce de León et al., 2000; Sánchez-Nava et al., 2004; Mejía-Madrid et al., 2005; Mendoza-Palmero et al., 2007; Romero-Tejeda et al., 2008; Martínez-Aquino et al., 2004, 2007b, 2009a, 2011, 2012). 4) Descripciones taxonómicas (v. gr. Lamothe-Argumedo, 1970; Sánchez-Alvárez et al., 1998; Pérez-Ponce de León, 2001; Mejía-Madrid & Pérez-Ponce de León, 2003; Mendoza Palmero et al., 2009; Pérez-Ponce de León et al., 2013). 5) Interpretaciones evolutivas entre asociaciones Goodeinae-faunas principales (v. gr., Mejía-Madrid et al., 2007b; Martínez-Aquino et al., 2013). En sumatoria, de las 204 especies de peces dulceacuícolas de México que cuentan con registros para taxones de helmintos parásitos (Pérez-Ponce de León & Choudhury, 2010), las cinco categorías anteriormente mencionadas representan el 16% del conocimiento de la helmintofauna mexicana generada hasta el momento. Sin embargo, solo existen dos inventarios de taxones de helmintos parásitos para goodeinos: 1) Mejía-Madrid et al. (2005), donde presentan un listado de los helmintos en estadio adulto en él categorizan su composición taxonómica y realizan comentarios empírico-biogeográficos para infierir posibles procesos evolutivos entre Goodeinae y sus faunas principales (sensu Pérez-Ponce de León & Choudhury, 2005). 2) Pineda-López et al., (2005: 462), intentaron usar los registros de helmintos tanto en estadios larvarios como de adultos para inferir historias evolutivas de tipo Goodeinae-faunas principales. Desafortunadamente, esos autores tuvieron una gran confusión al apoyar sus inferencias usando la historia evolutiva de peces no goodeinos, sino mas bien con aquellos del género Chirostoma (Atheriniformes), lo que vuelve aún más débiles sus especulaciones. En otro 47 contexto, Mejía-Madrid et al. (2007b) y Martínez-Aquino et al. (2013), han logrado integrar la historia evolutiva de los goodeinos con la de sus helmintos parásitos e interpretarla sobre la historia hidrogeomorfológica del centro de México con base en evidencia morfológica, molecular, biogeográfica, genealógica y filogenética. Estos autores resaltan la importancia de generar una basta cantidad de información referente al área de distribución de los taxones de helmintos a usar como modelo de estudio para postular inferencias evolutivas entre asociaciones de tipo huésped-parásito. El área de distribución de una especie se define como el área que ocupa (Rapoport, 1975). Se determina a partir de las localidades donde se ha registrado, entendiendo por localidad de registro tanto su descripción de localización y coordenadas geográficas, como sus atributos de hábitat. En este contexto, contar con toda la información generada, publicada, actualizada, organizada de manera sistematizada y colocarla en documentos de acceso libre para la comunidad científica permite integrar e interpretar los procesos y patrones que ocurren en la biodiversidad de parásitos. Por tanto, el objetivo de este trabajo es recabar toda la información bibliográfica especializada y publicada para helmintos parásitos de peces de la subfamilia Goodeinae, así como aportar datos originales de nuestros propios muestreos, para elaborar un inventario actualizado que permita describir su composición taxonómica a modo de describir patrones de diversidad de la fauna parasitaria en el centro de México. Materiales y métodos Recolecta de huéspedes y de helmintos parásitos Entre agosto de 2008 y julio de 2010 se realizaron siete muestreos en 57 localidades ubicadas en siete sistemas hidrológicos del centro de México; Río San Pedro Mezquital, Río Ameca, Río Ayuquila, Río Coahuayana, Río Lerma, Río Cuzalapa y Río Balsas. En total se examinaron 1632 peces de 28 especies de goodeinos (Apéndice 1). Los peces fueron recolectados con un chinchorro de 3 m de longitud y ½ pulgada de luz de malla, con equipo de electropesca de corriente directa y con trampas tipo nazas; se transportaron vivos al laboratorio para su examen helmintológico, el cuál se realizó dentro de las 24 horas posteriores a su captura. La determinación taxonómica de cada uno de los huéspedes fue apoyada con base en claves taxonómicas directamente en el campo (Miller et al., 2005), y verificada posteriormente por especialistas con base en datos moleculares (v.gr. Pérez-Rodríguez et al., sometido). 48 La obtención de helmintos se realizó mediante un examen general de los peces con microscopio estereoscópico. El examen externo incluyó la superficie general del cuerpo, ojos, orificios del cuerpo (boca y ano) y aletas (anal, caudal, dorsal, pectorales y pélvicas). Los peces se sacrificaron, inmediatamente se extrajeron los arcos branquiales y aletas y se colocaron en cajas de Petri con agua del medio, estos órganos se revisaron en busca de helmintos bajo microscopio esteroscópico con ayuda de pinceles finos y agujas de disección. El examen interno se realizó haciendo un corte longitudinal en el pez desde el ano hasta la altura de las aletas pectorales, prolongándose hasta la boca y separando los diferentes órganos de la cavidad del cuerpo, que después fueron colocados por separado en cajas de Petri con solución salina al 0.75%. Todos los helmintos fueron contados y separados in situ con ayuda de pinceles; gran parte del material recolectado fue fijado en alcohol absoluto y guardado en criotubos para su posterior análisis molecular. Los digéneos, monogéneos y céstodos se fijaron en formol al 4% caliente, posteriormente se conservaron en viales con formol al 4% limpio. Además, con los monogéneos y metacéstodos se realizaron preparaciones semipermanentes fijadas de acuerdo al método descrito por Mendoza- Palmero et al. (2009), lo que permitió el estudio de las estructuras esclerotizadas. Los ejemplares se colocaron entre porta y cubre objetos aplanando ligeramente y sellando las esquinas de los cubreobjetos con barniz, aplicando picrato-amonio por las orillas del cubreobjetos dejando que penetrara por capilaridad (Mendoza-Palmero et al., 2009). Los nemátodos se fijaron en formol salino al 4% caliente, después se colocaron en viales y se conservaron en este mismo fijador hasta su estudio. Después de ser identificados taxonómicamente se conservaron en alcohol al 70%. Los acantocéfalos se colocaron en agua destilada y se refrigeraron entre 12 a 24 hrs. para que evertieran la proboscis, después se fijaron en alcohol absoluto. Para su posterior procesamiento se lavaron en alcohol al 96%. Con excepción de los nemátodos, todos los helmintos recolectados se tiñeron con Paracarmín de Meyer, y con ellos se realizaron preparaciones permanentes para su estudio morfológico y determinación taxonómica según las técnicas de tinción descritas por Pérez-Ponce de León et al. (2009). Una vez teñidos los ejemplares, se deshidrataron en una serie de alcoholes graduales hasta alcohol etílico absoluto, se 49 aclararon en salicilato de metilo y se montaron en bálsamo de Canadá para hacer preparaciones permanentes con las cuales se llevó a cabo el estudio morfológico. Los nemátodos se estudiaron mediante aclaramiento en preparaciones semipermanentes. Se aclararon en una serie progresiva de solución glicerina / agua destilada (1:20, 1:15, 1:10, 1:5, 1:2) calentando en una platina de temperatura regulada a 44ºC hasta su evaporación, con dos cambios de glicerina en cada paso (Moravec, 1998). Los parámetros de infección parasitaria fueron descritos con base en los términos de prevalencia (porcentaje de huéspedes parasitados con una especie dada de parásito) e intensidad promedio (promedio aritmético del total de parásitos de una especie recolectados en una muestra entre el total de huéspedes parasitados) según el criterio de Margolis et al. (1982). De acuerdo con Esch et al. (1988) se distinguieron especies autogénicas (las que completan su ciclo de vida dentro del cuerpo de agua, en huéspedes acuáticos) y alogénicas (que completan su ciclo de vida fuera del cuerpo de agua, principalmente en aves). Clasificación del inventario faunístico Con base en los registros helmintológicos publicados para peces de la subfamilia Goodeinae y datos originales aportados en este trabajo, se preparó un listado organizado según el orden filogenético de cada grupo (Digenea, Monogenea, Cestoda, Nematoda y Acanthocephala). Las especies de huéspedes se ordenaron filogenéticamente siguiendo la propuesta de Domínguez- Domínguez et al. (2010). La lista de especies de cada grupo de helminto se presenta de manera sistematizada por familia, en orden alfabético, antecediendo los representantes en estadio adulto y en segundo los de fase larvaria. Para cada taxones de parásito se indica el autor y el año de su publicación y, a su vez, se refiere a la (s) especie (s) de huésped (es) – en orden alfabético – a la (s) que esta (n) asociado (s) seguido del acrónimo de la (s) localidad (es) en donde se distribuye (n). Los registros se presentan en orden de tipo parásito-huésped-acrónimo de la localidad y corresponden a modo de filas y columnas. En el listado, cuando no se refiere el nombre de la especie huésped o al acrónimo de una localidad en la columna que le precede, se entiende que el registro corresponde a la misma especie de huésped o localidad, según sea el caso. Por último, se muestran los 50 parámetros de infección para cada especie, incluyendo los registros previamente publicados y aquellos aportados por nuestros propios muestreos. Resultados Se registró un total de 55 taxones de helmintos parásitos para 36 de las 42 especies descritas a la fecha para Goodeinae (Cuadro 1, 2). En total, 57 cuerpos de agua (localidades) fueron muestreados y corresponden tanto a sistemas loticos (v.gr., ríos y arroyos) como lénticos (v.gr., manantiales, presas y lagos) (Cuadro 3). El registro helmintológico incluye 19 taxones de digéneos (11 adultos y ocho metacercarias), siete de monogéneos, 12 de céstodos (tres adultos y 9 metacéstodos), 15 de nemátodos (ocho adultos y siete larvas) y dos de acantocéfalos (un adulto y un cistacanto). Se observa un predominio de digéneos, nemátodos y céstodos (en ese orden), así como una escasez de acantocéfalos y un relativo incremento en el numero de taxones de monogéneos en comparación con registros publicados previamente. De los 55 taxones de helmintos registrados, 20 (36%) fueron formas larvarias alogénicas cuyos adultos maduran principalmente en aves, en tanto que los 35 (64%) restantes son autogénicos adultos que en su mayoría maduran en peces. El número de estadios adultos (30 taxones o 55%), es mayor que el de las fases larvarias (25 taxones o 45%). Las prevalencias más altas se registraron en tres taxones autogénicos y dos alogénicos, respectivamente: Margotrema bravoae, Salsuginus angularis y Rhabdochona lichtenfelsi y Posthodisplostomum minimum y Tylodelphys sp. El dígeneo M. bravoae y el nemátodo R. lichtenfelsi, fueron los parásitos en estadio adulto con mayor numero de registros asociados a goodeinos, presentándose en 22 y 19 especies de huéspedes, respectivamente (Cuadro 1). Se reconocen once taxones endémicos de México y especialistas para la subfamilia Goodeinae: M. bravoae, M. resolanae, Phyllodistomum sp., Saccocoeloides sp., Gyrodactylus lamothei, G. mexicanus, Gyrodactylus sp. 1, Gyrodactylus sp. 2, R. ahuehuellensis y R. lichtenfelsi. Se presenta al goodeino Allotoca goslinei como un nuevo huésped con registro helmintológico. En total, 112 registros son aportados por nuestros muestreos e incluyen 23 taxones de helmintos parásitos asociados a 28 especies de goodeinos, de los cuales seis son nuevos para Goodeinae. Asimismo, cinco taxones potenciales requieren ser descritos como especies nuevas para la ciencia (ver Notas en Cuadro 1). Se proporciona el registro helmintológico para nueve nuevas localidades (Cuadro 3). La metacercaria Centrocestus formosanus, el céstodo B. 51 acheilognathi y el nemátodo Pseudocapillaria tomentosa son especies introducidas por causas antropogénicas. Discusión El inventario helmintológico incluye registros para 36 de las 42 especies de goodeinos. Las seis especies de goodeinos que no forman parte de este inventario se encuentra en categoría de en peligro de extinción, estrictamente extirpadas o en cautiverio; v.gr., Allodontichthys polylepis Rauchenberger, 1988; Chapalichthys peraticus Álvarez del Villar, 1963, Characodon garmani Jordan & Evermann, 1898, Ilyodon lennoni Meyer & Foerster, 1983, Skiffia francesae Kingston, 1978 y Zoogoneticus tequila Webb & Miller, 1998 (Domínguez-Domínguez et al., 2005, 2008; de la Vega-Salazar, 2006). Con base en los registros helmintológicos publicados para Goodeinae y los aportados en este trabajo, es posible mencionar que la helmintofauna presente en estos peces ha sido documentada casi en tu totalidad. En este contexto, Goodeinae es prácticamente el primer grupo de vertebrados en México al que se le describe su helmintofauna en todas las especies de huéspedes potenciales actuales. De este modo, a continuación se describe brevemente los patrones descriptivos de la biodiversidad de helmintos parásitos de Goodeinae. Todas las especies de peces muestreadas presentaron por lo menos un taxón de helminto parásito. La riqueza más alta de helmintos registrada en goodeinos se encuentra en Goodea atripinnis con 28 taxones de helmintos, seguida de Xenotoca variata con 18, en tanto que Alloophorus robustus y Girardinichthys multiradiatus presentan 17 taxones. El 35% de los taxones de helmintos registrados en este inventario son digéneos; los monogéneos constituyen el 13%, los céstodos el 22%, en tanto que los nemátodos y acantocéfalos el 27% y 4%, respectivamente. La riqueza de especies de digéneos, nemátodos y céstodos y el bajo número de especies de acantocéfalos coincide con los patrones descritos en peces dulceacuícolas para regiones neotropicales del país y para distintas cuencas hidrológicas de México (i.e., Aguilar- Aguilar et al., 2008; Garrido-Olvera et al., 2012; Pérez-Ponce de Léon et al., 2012). Los digéneos son el grupo taxonómico más numerosos de helmintos para goodeinos. Los digéneos adultos y las metacercarias, Saccocoelioides cf. sogandaresi, Magnivitellinum simplex y Posthodiplostomum minimum, son especies de amplia distribución geográfica. 52 A la fecha, siete taxones de monogéneos han sido registrados para Goodeinae. Se ha sugerido que esta aparente pobreza se debe a una deficiencia taxonómica de muestreo más que a una característica biológica de las comunidades de helmintos en peces dulceacuícolas de México, por lo que, los monogéneos pueden ser más comunes en México de lo que se ha registrado y su inventario esta aún lejos de completarse (Mendoza-Franco et al., 2003; Pérez-Ponce de León & Choudhury, 2010). Es evidente que, con base en los esfuerzos recientes de trabajos de inventarios sistematizados, la composición taxonómica en monogéneos en México ha incrementado notoriamente en los últimos 10 años, por lo que se espera en estudios próximos se contraste este aparente patrón de escasa riqueza específica. La mayor proporción de céstodos esta constituida por estadios larvarios; nueve de 12 taxones registrados. En particular, los metacéstodos de la familia Dilepididae son parásitos relativamente frecuentes en peces dulceacuícolas del centro y sureste de México y se tienen registrados cinco en ocho especies de goodeinos (Cuadro 1). La composición taxonómica de los nemátodos presenta cierto grado de riqueza alta y equitativa en estadios adultos y larvarios, con una distribución geográfica relativamente extensa. Esto se debe a su amplia capacidad de infección, baja especificidad y a la amplia distribución de sus huéspedes intermediarios y definitivos. Dos especies de acantocéfalos fueron registrados: Pomphorhynchus cf. bulbocolli y Polymorphus brevis. La escasa presencia de acantocéfalos en Goodeinae constituye un patrón previamente registrado para otras regiones del país (ver García-Prieto et al., 2010; Pérez-Ponce de León & Chodhury, 2010; Pérez-Ponce de León et al., 2012). Los taxones autogénicos representan una mayor proporción (64%) que las alogénicas (36%). El alto porcentaje de taxones autogénicos registrados en este trabajo refleja implícitamente la relevancia ecológica y evolutiva que representan los helmintos parásitos de Goodeinae por tener aparentemente estrechas asociaciones históricas, en el que a su vez reflejan un amplio acervo genético presumiblemente especializado tanto para condiciones bióticas como para recursos abióticos, incluyendo ciclos de vida complejos, cierta calidad ambiental y supervivencia en ambientes acuáticos determinados tanto de huéspedes intermediarios invertebrados como de sus huéspedes definitivos vertebrados. 53 Los taxones alogénicos registrados para goodeinos son generalistas y con una distribución geográfica relativamente amplia. El proceso de dispersión de los taxones alogénicos es debida a los hábitos alimentarios de sus huéspedes definitivos (aves ictiófagas) y, como efecto secundario, a su capacidad de vagilidad intrínseca. En este sentido, los taxones alogénicos registrados para Goodeinae son evidencia de que los peces goodeinos forman parte de la cadena trófica de las aves; esto puede reflejar a lo largo de la posición geográfica de cada uno de los registros de especies alogénicas, posibles rutas de migración de distintos grupos de aves, en particular Anatidae y Ardeidae. Algunos otros taxones de helmintos se pueden encontrar como adultos en anfibios, como el caso del dígeneo Apharyngostrigea sp. que se desarrolla en ranas (Locke et al., 2011). Otros taxones se han registrado en estadios adultos en reptiles, como la larva de digéneo Ochetosoma bravicaecum, el cuál madura en serpientes acuáticas del género Thamnophis (Jiménez-Ruiz et al., 2002); o bien, las larvas de nemátodos Falcaustra sp., Serpinema trispinosum, Spiroxys sp., que maduran en tortugas (Garrido-Olvera et al., 2006; Pérez-Ponce de León et al., 2007). Cuatro de las especies de helmintos registradas fueron introducidas antropogénicamente a cuerpos epicontinentales de México: C. formosanus, B. acheilognathi y P. tomentosa. En este contexto, se denota que las comunidades de helmintos parásitos de goodeinos están sujetas a invasión por especies exóticas. La metacercaria de C. formosanus fue introducida a través del caracol Thiara tuberculata (Aguilar-Aguilar et al., 2009). Actualmente ésta especie presenta una capacidad de infección parasitaria amplia en los peces dulceacuícolas de México registrada en 67 especies de 13 familias de peces dulceacuícolas (Aguilar-Aguilar et al., 2009; 2013; Pérez-Ponce de León et al., 2010). La presencia de B. acheilognathi en peces nativos de México está relacionada con la introducción de la carpa herbívora Ctenopharyngodon idella en 1965 (López-Jiménez, 1981). A partir de entonces, se ha extendido su distribución a múltiples localidades infectando a un gran número de huéspedes, tanto de especies nativas como introducidas en México, debido a su gran capacidad de infección, baja especificidad y a la potencialidad de distribución de sus huéspedes intermediarios (ver Rojas-Sanchéz & García-Prieto, 2008). Sin embargo, a pesar de registrar este hecho en la literatura especializada a la fecha no se ha realizado una propuesta seria que promueva una estrategia política para tratamiento de parásitos silvestres introducidos para peces 54 dulceacuícolas (Martínez-Aquino & Aguilar-Aguilar, 2008; Martínez-Aquino et al., 2011; Aguilar-Aguilar et al., 2013). Por tanto, es importante resaltar que los 52 registros de este céstodo exótico en 39 localidades para 14 especies de goodeinos, representan una amenaza biológica para los distintos programas de conservación de fauna silvestre (Domínguez-Domínguez et al., 2010). Evidentemente, un trabajo sistematizado e integrativo, con datos moleculares y con valores de los parámetros de infección para B. acheilognathi, permitirá hacer de manera más explícita la necesidad de promover estrategias de manejo de recursos naturales en aguas interiores mexicanas. El nemátodo P. tomentosa también fue introducido a México con un ciprínido, en este caso la carpa común Cyprinus carpio (Moravec et al., 2001). Pseudocapillaria tomentosa actualmente se encuentra registrada en México en 12 especies de huéspedes de tres familias (Garrido-Olvera et al., 2006). Salgado-Maldonado et al. (2001) y Sánchez-Nava et al. (2004) registraron a “Gyrodactylus cf. elegans” (Monogenea: Gyrodactylidae) en G. multiradiatus en el centro de México; sin embargo, no fue posible corroborar la validez taxonómica de este registro debido a que estos autores no depositaron ejemplares de referencia en ninguna colección científica nacional o internacional. Adicionalmente, en nuestros muestreos ningún monogéneo recolectado mostró similitud morfológica con esta especie de girodactílido, el cuál es específico para Abramis brama (Cypriniformes: Cyprinidae) que se distribuyen en Eurasia (Harris et al., 2004). Por esta razón, en este trabajo no consideramos el registro de “Gyrodactylus cf. elegans” como válido. El género Salsuginus Beverly-Burton, 1984 incluye 12 especies registradas en peces de cuatro familias pertenecientes al orden Cyprinodontiformes: Fundulidae, Cyprinodontidae, Poeciliidae y Goodeidae (Mendoza-Franco & Vidal-Martínez, 2001; Martínez-Aquino et al., 2004, 2007b). El presente trabajo contiene 14 nuevos registros del género Salsuginus en 12 especies de goodeinos: A. diazi, A. dugesi, A. splendens, G. atripinnis, I. furcidens, I. whitei, S. multipunctata, X. resolanae, X. melanosoma, X. variata y Z. quitzeoensis. Estos registros concuerdan con la especificidad propuesta para especies de Salsuginus para peces del orden Cyprinodontiformes y representan una afinidad biogeográfica Neártica. Se distinguen 13 taxones de helmintos como endémicos para sistemas hidrológicos del centro de México: los digéneos A. mexicanum, Allocreadim sp., M. bravoae, M. resolanae, 55 Phyllodistomum sp. y Saccocoeloides sp.; los monogéneos G. lamothei, G. mexicanus, Gyrodactylus sp. 1 y Gyrodactylus sp. 2 y los nemátodos R. ahuehuellensis, R. lichtenfelsi y R. xiphophori. Estos taxones – a excepción de A. mexicanum, Gyrodactylus sp. y R. xiphophori – se consideran como parásitos especialistas para Goodeinae y reflejan una estrecha relación con la historia evolutiva de estos peces. En este contexto, dichos taxones representan una parte de las faunas principales de helmintos en un sentido biogeográfico sensu Pérez-Ponce de León & Choudhury (2005). El nemátodo R. lichtenfelsi originalmente fue descrito en peces de la subfamilia Goodeinae (Sánchez-Álvarez et al., 1998) y su especificidad en peces de esta subfamilia ha sido bien documentada (Pérez-Ponce de León & Choudhury, 2005; Garrido-Olvera et al., 2006; Mejía-Madrid et al., 2005, 2007b). Los 16 registros aportados en este trabajo en 10 especies de goodeinos, más los 28 publicados previamente en 19 especies de goodeinos, se suman a la propuesta de especificidad de este nemátodo para Goodeinae. El nemátodo R. ahuehuellensis fue descrita como asociada a I. furcidens en un afluente del río Balsas (Mejía-Madrid y Pérez-Ponce de León, 2003). Los tres registros documentados en este estudio en tres especies de goodeinos, más los 10 publicados previamente en seis especies de goodeinos, apoyan la especificidad propuesta para este nemátodo asociado a Goodeinae (Mejía-Madrid et al., 2005, 2007b). El género Margotrema fue descrito originalmente para incluir a M. bravoae Lamothe- Argumedo, 1970 como parásito de Girardinichthys multiradiatus en La Lagunilla, Estado de México (Lamothe-Argumedo, 1972). Treinta años después, se describió una segunda especie para este género, M. guillerminae Pérez-Ponce de León, 2001 como parásito de los peces Notropis calientis (Cyprinidae) y Alloophorus robustus (Goodeinae) en el Lago de Zacapu, Michoacán (Pérez-Ponce de León, 2001). Martínez-Aquino et al. (2013) delimitaron ambas especies putativas con base en análisis filogenéticos moleculares a lo largo de su área de distribución, y propusieron la sinonimia de M. guillerminae con M. bravoae. Posteriormente, con base en un detallado estudio taxonómico, se describió a M. resolanae como parásito del goodeino Xenotaenia resolanae (Pérez-Ponce de León et al., en prensa). Con base en los avances de los registros helmintológicos publicados para Goodeinae, distintos autores han descrito patrones biogeográficos entre goodeinos y sus helmintofaunas principales, los cuales representan la integración de dicha acumulación de información (ver 56 Pérez-Ponce de León & Choudhury, 2005; Martínez-Aquino et al., 2007; Garrido-Olvera et al., 2012). Por otra parte, Mejía-Madrid et al. (2007a, b) y Martínez-Aquino et al. (2013) han usado de manera explícita los registros de helmintos parásitos específicos para Goodeinae para poner a prueba hipótesis evolutivas acerca de los eventos históricas que ocurrieron entre Goodeinae y sus faunas principales de parásitos, esto es M. bravoae, M. resolanae, R. ahuehuellensis y R. lichtenfelsi. En este contexto, se resalta la utilidad, tanto de los registros aislados como de los organizados de manera sistematizada, para la descripción de la helmintofauna de peces dulceacuícolas en México. Aún cuando algunos autores han sugerido que la diversidad de helmintos para peces dulceacuícolas en México presumiblemente esta próxima a ser completada (Pérez-Ponce de León & Choudhury, 2010), los eventos evolutivos que se involucran en los procesos de diversificación de los parásitos quedan aún por descubrir. Por ejemplo, de las 11 especies que se infiere en este trabajo como helmintofaunas principales para Goodeinae, solo tres han sido analizadas detalladamente y se ha detectado diferencias genealógicas asociadas al escenario geográfico y a la historia evolutiva de sus huéspedes (Mejía-Madrid et al., 2007b, Martínez-Aquino et al., 2013). Los otros ocho taxones de helmintos son modelos biológicos potenciales para expandir el conocimiento referente a las asociaciones históricas exclusivas para goodeinos de México; v. gr A. mexicanum, Allocreadim sp., Phyllodistomum sp., Saccocoeloides sp., G. lamothei, G. mexicanus, Gyrodactylus sp. 1 y Gyrodactylus sp. 2. Futuros estudios en estos taxones ayudaran a comprender los patrones de diversificación parasitaria en peces dulceacuícolas que habitan en el territorio nacional. Agradecimientos Agradecemos a R. Pérez, D.I. Hernández., F.J. Alcántar y L. Escalera por la asistencia en el campo. A B. Mendoza y L. Garrido por su colaboración en el trabajo de gabinete. A H. Mejía por proporcionar información de sitios de recolecta. A Omar Domínguez por sus comentarios en una primera versión de este manuscrito. A Luis García, técnico administrador de la Colección Nacional de Helmintos (CNHE), por proporcionar parte de la literatura especializada. A.M-A agradece al Consejo Nacional de Ciencia y Tecnología (CONACyT), por el apoyo proporcionado mediante una beca para realizar estudios de doctorado dentro del Programa de Posgrado en Ciencias Biológicas, de la Universidad Nacional Autónoma de México. Este estudio contó con el apoyo financiero otorgado a G.P-PdL. a través de los proyectos 83043 del Consejo Nacional de 57 Ciencia y Tecnología (CONACyT), e IN 202111 del Programa de Apoyo a Proyectos de Investigación e Innovación Tecnología (PAPIIT-UNAM). Literatura citada Aguilar-Aguilar R., G. Salgado-Maldonado R. Contreras-Medina & A. Martínez-Aquino (2008). Richness and endemism of helminth parasites of freshwater fishes in Mexico. Biological Journal of the Linnean Society, 94, 435–444. Aguilar-Aguilar, R., Martínez-Aquino, A., Pérez-Ponce de León G. y R. Pérez-Rodríguez. (2009) Digenea, Heterophyidae, Centrocestus formosanus metacercariae: Distribution extension for Mexico, new state record, and geographic distribution map. Check List 5, 357-359. Aguilar-Aguilar R., Rosas-Valdez R., Martínez-Aquino A., R. Pérez-Rodríguez, Domínguez- Domínguez O. & G. Pérez-Ponce de León. (2010) Helminth fauna of two cyprinid fish (Campostoma ornatum and Codoma ornata) from the upper Piaxtla River, Northwestern Mexico. Helminthologia, 47: 251–256. Aguilar-Aguilar R., Martínez-Aquino A. H. Espinoza-Pérez & Pérez-Ponce de León. (en prensa) Helminth parasites of freshwater fishes from Cuatro Ciénegas, Coahuila, in the Chihuahuan desert of Mexico: Inventory and biogeographical implications. Integrative Zoology. Alcántar-Escalera F.J., M. García-Varela, E. Vázquez-Domínguez & G. Pérez-Ponce de León. (2013) Using DNA barcoding to link cystacanths and adults of the acanthocephalan Polymorphus brevis in central Mexico. Molecular Ecology Resources. Astudillo-Ramos L. & E. Soto-Galera. 1997. Estudio helmintológico de Chirostoma humboldtianum y Girardinichthys multirradiatus capturados en el Lerma. Zoología Informa 35: 53-59. De la Vega-Salazar M.Y. (2006) Estado de conservación de los peces de la familia Goodeinae (Cyprinodontiformes) en la mesa central de México. Revista de Biología Tropical, 54: 163-177. 58 Domínguez O. 2010. Conservación de goodeidos, familia en alto riesgo. En: J. Carabias, J. Sarukhán , J. de la Maza, & C. Gallindo. Patrimonio Natural de México: cien casos de éxito. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad pp. 48-49. Domínguez-Domínguez O., N. Mercado-Silva, J. Lyons y H.0 Grier. 2005. The viviparous goodeid fishes. En: Uribe M.C. y H. Grier (eds.). Viviparous Fishes. New Life Publications. Homestead, Florida. pp. 525-569. Domínguez-Domínguez O., C. Pedraza-Lara, N. Gurrola-Sánchez, R. Pérez-Rodríguez, I. Israde- Alcántara, V. H. Garduño-Monroy, I. Doadrio, G. Pérez-Ponce de León & D.R. Brooks. (2010) Historical biogeography of the Goodeinae (Cyprinodontiforms). En: Uribe- Aranzabal M. C. and H. Grier. (Eds.). Viviparous Fishes II, New Life Publications, Homestead, Florida, 33-74. Esch, G. W., C. R. Kennedy, A. O. Bush & J. M. Aho. (1988) Patterns in helminth communities in freshwater fish in Great Britain: Alternative strategies for colonization. Parasitology 96: 519-532. García-Prieto, L. & D. Osorio-Sarabia. (1991) Distribución actual de Bothriocephalus acheilognathi en México. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, 62, 523–526. García-Prieto L, García-Varela M, Mendoza-Garfias B, Pérez-Ponce de León G (2010) Checklist of the Acanthocephala in wildlife vertebrates of Mexico. Zootaxa, 2419, 1–50. Garrido-Olvera L, L. García-Prieto & G. Pérez-Ponce de León. 2006. Checklist of the adult nematode parasites of fishes in freshwater localities from Mexico. Zootaxa 1201: 1–45. Garrido-Olvera L, H. T. Arita & G. Pérez-Ponce de León. (2012). The influence of host ecology and biogeography on the helminth species richness of freshwater fishes in Mexico. The influence of host ecology and biogeography on the helminth species richness of freshwater fishes in Mexico. Parasitology 139, 1652–1665. Guzmán-Cornejo, M.C. & García-Prieto, L. (1999) Trematodiasis en algunos peces del lago de Cuítzeo, Michoacán, México. Revista de Biología Tropical, 47, 593–596. 59 Jiménez-Ruiz, F.A., García-Prieto, L. & G. Pérez-Ponce de León. (2002) Helminth infracommunity structure of the sympatric garter snakes Thamnophis eques and Thamnophis melanogaster from the Mesa Central of Mexico. Journal of Parasitology, 88, 454–460. Lamothe-Argumedo R. 1972. Tremátodos de peces VI. Margotrema bravoae gen. nov.sp. nov. (Trematoda: Allocreadiidae) parásito de Lermichthys multiradiatus Meek. Anales del Instituto de Biología, UNAM, Serie Zoología 41: 87-92. Lamothe-Argumedo, R. & Cruz-Reyes, A. (1972) Hallazgo de Ligula intestinalis (Goeze, 1782) Gmelin, 1790 en Lermichthys multiradiatus (Meek) (Pisces: Goodeidae). Revista de la Sociedad Mexicana de Historia Natural, 33, 99–106. Littlewood D.T.J. & R.A. Bray. (2001) Interrelationships of the Platyhelminthes. Taylor and Francis Group, Londres y Nueva York. 356 p. López-Jiménez, S. (1981) Céstodos de peces I. Bothriocephalus (Clestobothrium ) acheilognathi (Cestoda: Bothriocephalidae). Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, 51, 69–84. Locke S.A., J.D. McLaughlin, A.R. Lapierre, P. T. J. Johnson, & D.J. Marcogliese. 2011. Linking Larvae and Adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) Using Molecular Data. Journal of Parasitology, 97(5):846-851. 2011. Margolis L., G. W. Esch, J. C. Holmes, A. M. Kuris & G. A. Schad. (1982) The use ecological terms in Parasitology (Report of and hoc committee of the American Society of Parasitologists). Journal of Parasitology 68:131-133. Martínez-Aquino A. & R. Aguilar-Aguilar. (2008) Helminth parasites of the pupfish Cyprinodon meeki (Pisces: Cyprinodontiformes), an endemic freshwater fish from North-Central Mexico. Helminthologia 45, 48-51. Martínez-Aquino A., G. Salgado-Maldonado, R. Aguilar-Aguilar, G. Cabañas-Carranza & M.P. Ortega-Olivares. (2004) Helminth parasites of Chapalichthys encaustus (Pisces: 60 Goodeidae), an endemic freshwater fish from Lake Chapala, Jalisco, México. Journal of Parasitolology, 90: 889-890. Martínez-Aquino A., Aguilar-Aguilar R., Santa Anna del Conde Juárez H.O. & R. Contreras- Medina. (2007a) Empleo de herramientas panbiogeográficas para detectar áreas para conservar: un ejemplo con taxones dulceacuícolas. En: Luna I., J.J. Morrone y D. Espinosa (Eds). Biodiversidad de la Faja Volcánica Transmexicana. Las Prensas de Ciencias, Universidad Nacional Autónoma de México. Pp. 449-460. Martínez-Aquino, A., G. Salgado-Maldonado, R. Aguilar-Aguilar, G. Cabañas-Carranza & C.A. Mendoza-Palmero. (2007b) Helminth parasite communities of Characodon audax and C. lateralis (Pisces: Goodeidae), endemic freshwater fishes from Durango, Mexico. The Southwestern Naturalist 52: 125-130. Martínez-Aquino A., Aguilar-Aguilar R., Pérez-Rodríguez R. & G. Pérez-Ponce de León. (2009) Helminth parasite of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa hydrological system, Jalisco, México. Journal of Parasitology 95: 1221-1223. Martínez-Aquino A., D. Hernández-Mena, R. Pérez-Rodríguez, R. Aguilar-Aguilar & G. Pérez- Ponce de León. (2011) Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico. Revista Mexicana de Biodiversidad 82: 1132-1137. Martínez-Aquino A., R. Pérez-Rodríguez, D.I. Hernández-Mena, L. Garrido-Olvera, R. Aguilar- Aguilar & G. Pérez-Ponce de León. (2012) Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau. Hidrobiológica. 22: 88-91. Martínez-Aquino A., F.S. Ceccarelli & G. Pérez-Ponce de León. (2013) Molecular phylogeny of the genus Margotrema (Digenea: Allocreadiidae), parasitic flatworms of goodeid freshwater fishes across central Mexico: species boundaries, host-specificity and geographical congruence. Zoological Journal of the Linnean Society, 168: 1-66. 61 Mejía-Madrid, H. & Pérez-Ponce de León, G. (2003) Rhabdochona ahuehuellensis n. sp. (Nematoda: Rhabdochonidae) from the balsas goodeid, Ilyodon whitei (Osteichthyes: Gooedeidae), in Mexico. Journal of Parasitology, 89, 356–361. Mejía-Madrid H., Domínguez- Domínguez O. & G. Pérez-Ponce de León. (2005). Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from México with biogeographical considerations. Comparative Parasitology, 72, 200–211. Mejía-Madrid H., A. Choudhury & G. Pérez-Ponce de León. (2007a) Phylogeny and biogeography of Rhabdochona Railliet, 1916 (Nematoda: Rhabdochonidae) species from the Americas Systematic Parasitology, 67:1–18. Mejía-Madrid H., E. Vázquez-Domínguez & G. Pérez-Ponce de León (2007b) Phylogeography and freshwater basins in central Mexico: recent history as revealed by the fish parasite Rhabdochona lichtenfelsi (Nematoda). Journal of Biogeography, 34, 787–801. Mendoza-Franco, E. F. &V. Vidal-Martínez (2001) Salsuginus neotropicalis n. sp. (Monogenea: Ancyrocephalinae) from the pike killifish Belonesox belizanus (Atheriniformes: Poeciliidae) from Southeastern Mexico. Systematic Parasitology 48:41-45. Mendoza-Franco, E. F., T. Scholz y G. Cabañas-Carranza. 2003. Guavinella tropica n. gen., n. sp. (Monogenea: Dactylogyridae) from the Gills of the Bigmouth Sleeper, Gobiomorus dormitor (Perciformes: Eleotridae), from Mexico. Comparative Parasitology 70: 26-31. Mendoza-Palmero, C. A., H. Espinosa-Pérez, & G. Salgado-Maldonado. (2007). Helmintos parásitos de peces dulceacuícolas. En Guía Ilustrada de La Cantera Oriente: caracterización ambiental e inventario biológico. Lot A. (Ed.). Coordinación de la Investigación Científica, Secretaría Ejecutiva de la Reserva Ecológica del Pedregal de San Ángel de Ciudad Universitaria, UNAM, Ciudad de México, D.F., p. 179–191. Mendoza-Palmero C.A., A.L. Sereno-Uribe & G. Salgado-Maldonado. (2009). Two new species of Gyrodactylus von nordmann, 1832 (Monogenea: Gyrodactylidae) parasitizing Girardinichthys multiradiatus (Cyprinodontiformes: Goodeinae), an endemic freshwater fish from central Mexico. Journal of Parasitology, 95: 315–318. 62 Miller R.R., W.L. Minckley & S.M. Norris. (2005) Freshwater fishes of México. The University of Chicago Press. Chicago. 490 pp. Moravec, F. (1998) Nematodes of freshwater fishes of the Neotropical Region . Academia Praha, 464 pp. Moravec, F., R. Aguilar-Aguilar y G. Salgado-Maldonado. (2001) Systematic status of Capillaria patzcuarensis Osorio-Sarabia, Pérez-Ponce de León et Salgado-Maldonado, 1986 (Nematoda: Capillariidae) from freshwater fishes in Mexico. Acta Parasitologica 46:8- 11. Peresbarbosa-Rojas, E., Pérez, G. & García-Prieto, L. (1994) Helmintos parásitos de tres especies de peces (Goodeinae) del Lago de Pátzcuaro, Michoacán. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, 65, 201–204. Pérez-Ponce de León G. 2001. Margotrema guillerminae n. sp. (Trematoda: Macroderoididae) from two species of freshwaters fishes in Lake Zacapu, Michoacan state, Mexico, and new records of Margotrema bravoae Lamothe, 1970. Journal of Parasitology 87: 1112- 1114. Pérez-Ponce de León G. & A. Choudhury. (2005) Biogeography of helminth parasites of freshwater fishes in Mexico: the research for patterns and processes. Journal of Biogeography 32: 645-649. Pérez-Ponce de León, G. & A. Choudhury. 2010. Parasite inventories and DNA-based taxonomy: Lessons from helminths of freshwater fishes in a megadiverse country. Journal of Parasitology 96: 236-244. Pérez-Ponce de León G., García-Prieto L., León-Régagnon V. & A. Choudhury. (2000). Helminth communities of native and introduced fishes in Lake Pátzcuaro, Michoacan, Mexico. Journal of Fish Biology 57: 303-325. Pérez-Ponce de León G., García-Prieto L. & B. Mendoza-Garfias. (2007) Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa 1534: 1-247. 63 Pérez-Ponce de León G., R. Rosas-Valdez, B. Mendoza-Garfias, R. Aguilar-Aguilar, J. Falcón- Ordaz, L. Garrido-Olvera & R. Pérez-Rodríguez. (2009). Survey of the endohelminth parasites of freshwater fishes in the upper Mezquital River Basin, Durango State, Mexico. Zootaxa 2164: 1–20. Pérez-Ponce de León G., Rosas-Valdez R., Aguilar-Aguilar R., Mendoza-Garfias B., Mendoza- Palmero C., García-Prieto L., Rojas A., Briosio-Aguilar R., R. Pérez-Rodríguez & O. Domínguez-Domínguez. (2010). Helminth parasites of freshwater fishes, Nazas River basin, northern Mexico. Check List 6, 26-35. Pérez-Ponce de León G., L. García-Prieto & B. Mendoza-Garfias (2012) Describing Parasite Biodiversity: The Case of the Helminth Fauna of Wildlife Vertebrates in Mexico, Changing Diversity in Changing Environment, PhD. Oscar Grillo (Ed.), ISBN: 978-953- 307-796-3, InTech, Available from: http://www.intechopen.com/books/changing- diversity-in-changing-environment/describing-parasitebiodiversity-the-case-of-the- helminth-fauna-of-wildlife-vertebrates-in-mexico Pérez-Ponce de León G., Mendoza-Garfias B., Rosas-Valdez R. & A. Choudhury. (Sometido) New host and locality records of freshwater fish helminth parasites in river basins north of the Transmexican Volcanic Belt in northern Mexico: Another look at biogeographical patterns. Revista Mexicana de Biodiversidad. Pérez-Ponce de León G., A. Martínez-Aquino & B. Mendoza-Garfias. (Sometido) A new species of Margotrema (Digenea, Allocreadiidae) from the Leopard splitfin Xenotaenia resolanae (Cyprinodontiformes, Goodeidae) from west-central Mexico. Zootaxa Pineda-López R., Salgado-Maldonado G., Soto-Galera E., Hernández-Camacho N., Orozco- Zamorano A., Contreras-Robledo S., Cabañas-Carranza G. & R. Aguilar-Aguilar. (2005). Helminth parasites of viviparous fishes in Mexico. En: H. Grier & M.C. Uribe (Eds.). Viviparous Fishes: Genetics, Ecology, and Conservation. New Life Publications Homestrad, Florida. pp. 437-456. Rapoport, E. (1975) Areografía. Estrategias geográficas de las especies. Fondo de Cultura Económica, México, D. F. 214 p. 64 Rojas-Sánchez A. & L. García-Prieto. (2008). Distribución actual del cestodo Bothriocephalus acheilognathi en México. Memorias XXV Simposio sobre Fauna Silvestre. Universidad Nacional Autónoma de México, México. 89-93 pp. Romero-Tejeda, M.L., L. García-Prieto, L. Garrido-Olvera & G. Pérez-Ponce de León. (2008). Estimation of the endohelminth parasite species richness in freshwater fishes from La Mintzita reservoir, Michoacán, Mexico. Journal of parasitology 94, 288–292. Rosas-Valdez, R., A. Choudhury, & G. Pérez-Ponce de León, G. 2011. Molecular prospecting for cryptic species in Phyllodistomum lacustri (Platyhelminthes, Gorgoderidae). Zoologica Scripta 40: 296-305. Salgado-Maldonado, G. (2006). Checklist of helminth parasites of freshwater fishes from Mexico. Zootaxa 1324: 1–357. Salgado-Maldonado, G. & Pineda-López, R.F. (2003). The Asian fish tapeworm Bothriocephalus acheilognathi: a potential threat to native freshwater fish species in Mexico. Biological Invasions, 5, 261–268. Salgado-Maldonado, G., Cabañas-Carranza, G., Caspeta-Mandujano, J.M., Soto-Galera, E., Mayén-Peña, E., Brailovsky, D. & Báez-Valé, R. (2001a) Helminth parasites of freshwater fishes of the Balsas River drainage basin southwestern Mexico. Comparative Parasitology, 68, 196–203. Salgado-Maldonado, G., Cabañas-Carranza, G., Soto-Galera, E., Caspeta-Mandujano, J.M., Moreno-Navarrete, R.G., Sánchez-Nava, P. & Aguilar-Aguilar, R. (2001b) A checklist of helminth parasites of freshwater fishes from the Lerma-Santiago river basin, Mexico. Comparative Parasitology, 68, 204–218. Salgado-Maldonado, G., Cabañas-Carranza, G., Soto-Galera, E., Pineda-López, R.F., Caspeta- Mandujano, J.M., Aguilar-Castellanos, E. & Mercado-Silva, N. (2004a) Helminth parasites of freshwater fishes of the Pánuco river basin, east central Mexico. Comparative Parasitology, 71, 190–202. 65 Salgado-Maldonado, G., Mercado-Silva, N., Cabañas-Carranza, G., Caspeta-Mandujano, J.M., Aguilar-Aguilar, R. & Iñiguez-Dávalos, L.I. (2004b) Helminth parasites of freshwater fishes of the Ayuquila river, Sierra de Manantlán Biosphere Reserve, west-central Mexico. Comparative Parasitology, 71, 67–72. Sánchez-Álvarez, A., García-Prieto, L. & Pérez, G. (1998) A new species of Rhabdochona Railliet,1916 (Nematoda: Rhabdochonidae) from endemic goodeids (Cyprinodontiformes) from two Mexican lakes. Journal of Parasitology, 84, 840–845. Sánchez-Nava, P., Salgado-Maldonado, G., Soto-Galera, E. & Jaimes-Cruz, B. (2004) Helminthparasites of Girardinichthys multiradiatus (Pisces: Goodeidae) in the Upper Lerma River subbasin, Mexico. Parasitology Research, 93, 396–402. Scholz, T. & Salgado-Maldonado, G. (2000) The introduction and dispersal of Centrocestus formosanus (Nishigori, 1924) (Digenea: Heterophyidae) in Mexico: a review. American Midland Naturalist, 143, 185–200. Scholz, T. & Salgado-Maldonado, G. (2001) Metacestodes of the family Dilepididae (Cestoda: Cyclophyllidea) parasitising fishes in Mexico. Systematic Parasitology 49, 23–40. Vidal-Martínez, V.M., Aguirre-Macedo, M.L., Scholz, T., González-Solís, D. & Mendoza- Franco, E.F. (2001a) Atlas of the helminth parasites of cichlid fish of Mexico . Academia, Praha pp. 165. Cuadro 1. Helmintos parásitos de Goodeinae. Los acrónimos y características de las localidades se refieren en el Cuadro 3. A = Acrónimo de cada localidad; N = Número de huéspedes examinados; P (%) = Prevalencia expresada en porcentaje; IP + de = Intensidad promedio + desviación estandar; ND = No hay datos disponibles; Au = Autogénica; Al= Alogénica; Gn = Generalista; Es = Especialista. Sitios de infección: A = Aletas; Aa = Aleta anal; B = Branquias; Cb = Cavidad branquial; Cc = Cavidad del cuerpo; Co = Corazón; G= Grasa; H = Hígado; 1 = Intestino; M= Mesenterio; Mu = Musculo; O = Ojos; P = Piel; Pi = Pared intestinal; Vb = Vesícula biliar; Vu = Vejiga urinaria; * = Cyprinidae; ** Cyprinodontidae. Taxa (Helminto) Huésped / Sitio de infección A N P(%) IP=de Referencia Digenea Fam. Allocreadiidae Looss 1902 Allocreadium lobatum "o" Állotoca zacapuensis / 1 Zaca 17 5.8 0.1 =0.5 Mejía-Madrid et al., 2005 Wallin, 1909 Zoogoneticus quitzeoensis / 1 Zaca 15 13,3 0.4 =1.3 Mejía-Madrid et al., 2005 Allocreadium mexicanum" Characodon audax /1 Tobo 10 20 0.8+1.7 Mejía-Madrid et al., 2005 Osorio-Sarabia, Characodon lateralis / 1 Amad 15 46.7 0.8+1.3 Mejía-Madrid et al., 2005 Pérez-Ponce de León y Salgado-Maldonado, 1986 . Au/? Allocreadium sp. Characodon audax / 1 Tobo 42 4.7 ND Pérez-Ponce de León et al., 2009 Nota 1 27No 9 44 ND Pérez-Ponce de León et al., 2009 Characodon lateralis / 1 Amad 9 27 ND Pérez-Ponce de León et al., 2009 Fam. Macroderoididae McMullem, 1937 Margotrema bravoae "ES Allodontichthys zonistius / 1 Siem 6 6 3 Salgado-Maldonado et al., 2004b Lamothe-Argumedo, 1970 Ahua 10 70 3+2.8 Mejia-Madrid et al., 2005 Nota 2 11 100 7.18+5.9 Martínez-Aquino ef al., 2013 Allodontichthys hubbsi / 1 Tule 6 33.3 0.5 0.8 Mejía-Madrid et al., 2005 66 Allodontichthys tamazulae / 1 ÁAlloophorus robustus / 1 Allotoca diazi / 1 Állotoca dugesti / 1 Allotoca maculata / 1 Allotoca meeki / 1 Állotoca zacapuensis / 1 Chapalichthys pardalis / 1 Characodon audax / 1 Cyprinella lutrensis* /1 Cyprinodon nazas ** / 1 Girardinichthys multiradiatus / I Goodea atripinnis / 1 Ilyodon cortesae / 1 Ilyodon furcidens / 1 Ilyodon white / 1 Tama Mcha Mcha Luz Mint Zaca Mcha Mcha Marc Opop Zaca Zaca Tocu Tobo Tobo Abra Pin1 Guad Buen Sofi Lagu Vict Porv Verd Cutz Tama Ahua Tocu Ahue 67 34 27 14 ND 40 34 21 22 15 19 17 32 11 38 10 12 34 14 38 27 64 36 25 30 11 11 37 180 42.9 ND 14.7 7.4 7.14 ND ND 14.7 23.81 33.33 100 ND 66.8 79 75 35.3 25 18.2 10.53 10 25 47 14.2 ND 3.7 ND 40 5.6 12 6.7 9.1 100 2.70 72.2 1+1.4 ND 0.3+0.7 1.6 ND 1=0.27 ND ND 0.3+0.7 6.2 + 3.47 7+5.59 37+1.7 ND 2.1+2.8 59.1 15>+11.18 0.6+1 ND 0.4+0.9 10.31 1.84 + 1.21 0.3+0.9 ND ND ND ND ND ND 22.5 + 6.4 1 0.2+0,5 0.25+0.5 0.1+0,3 4,55 +4,59 3 +0.49 2.754.6 Mejía-Madrid et al., 2005 Pérez-Ponce de León, 2001 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Romero-Tejada ef al., 2008 Martínez-Aquino ef al., 2013 Pérez-Ponce de León, 2001 Pérez-Ponce de León, 2001 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2013 Presente trabajo Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2013 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2013 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2012 Mejía-Madrid et al., 2005 Martínez-Aquino ef al., 2013 Martínez-Aquino et al., 2007b Mejía-Madrid et al., 2005 Pérez-Ponce de León et al., 2001 Pérez-Ponce de León et al., 2001 Pérez-Ponce de León et al., 2001 Pérez-Ponce de León et al., sometido Pérez-Ponce de León et al., 2009 Lamothe-Argumedo, 1970 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2013 Martínez-Aquino et al., 2013 Mejía-Madrid et al., 2005 67 Margotrema resolanae Pérez-Ponce de Léon, Martínez-Aquino y Mendoza-Garfías, sometido Au/Es? Margotrema sp. : Fam. Gorgoderiade (Loss, 1899) Loss, 1901 9 Dendrorchis sp es Neoophorus regalis / 1 Notropis calientis * / 1 Xenotoca variata / 1 Zoogoneticus purhepechus / 1 Zoogoneticus quitzeoensis / 1 Xenotaenia resolanae / 1 Codoma ornata * / 1 Characodon audax / 1 Goodea atripinnis / 1 Xenotaenia resolanae / 1 Notropis sp. / 1 Ilyodon furcidens / 1 Xenotaenia resolanae | Vu Potg Marc Reye Rico Zaca Mint Luz Mint Zaca Cuza Piax Tobo Pinl Igna Cuza Tamo Sand Siem Cuza 35 10 28 ND 31 45 30 ND 30 22 32 35 21 42 34 ND 36 57 35 34,29 25 20 54.5 14.3 35.71 ND 2.2 ND 6.7 13.64 46.88 80 28.57 23.8 28.5 ND 33 5.71 5.75+4.06 0.25+0.5 432.2 18+2.6 0.1+0.4 2.8 + 1.96 ND 1 1 3.5+0.71 ND ND 1.67 + 0.69 ND 4.68 +5.6 ND 5.67 + 5.76 1 1.5+0.71 Martínez-Aquino et al., 2013 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2013 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2013 Pérez-Ponce de León, 2001 Salgado-Maldonado, 2006 Martínez-Aquino ef al., 2011 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada ef al., 2008 Martínez-Aquino ef al., 2013 Martínez-Aquino et al., 2012 Martínez-Aquino et al., 2009a Aguilar-A guilar et al., 2010 Pérez-Ponce de León et al., 2001 Pérez-Ponce de León et al., 2001 Salgado-Maldonado et al., 2006 Martínez-Aquino, 2005 (datos de tesis) Pérez-Ponce de León (com. pers.) Pérez-Ponce de León (com. pers.) Salgado-Maldonado et al., 2004b Martínez-Aquino el al., 2009b 68 Phyllodistomum pe Allodontichthys zonistius / 1 Tama 32 9.38 1.33 + 0,42 Presente trabajo Nota 3 Allotoca zacapuensis / 1, Vu Zaca 32 9.38 ND Martínez-Aquino et al., 2012 Hubbsina turneri | Vu Zaca 20 10 ND Martínez-Aquino et al., 2012 Ilyodon furcidens / 1 Tama 56 7.14 1.25 +0.35 Presente trabajo Zoogoneticus purhepechus / Vu Luz 45 2.2 0.02 +0.15 Martínez-Aquino et al., 2011 Zoogoneticus quitzeoensis / Vu Zaca 32 15.63 ND Martínez-Aquino et al., 2012 Fam. Haploporidae Nicoll, 1914 Saccocoeliodes cf. Gn . sogandaresi Allodontichthys zonistius / 1 Siem 16 56 69 + 68 Salgado-Maldonado et al., 2004b Lumsden, 1961 Goodea atripinnis / 1 Zaca 20 75 ND Martínez-Aquino et al., 2012 Ilyodon furcidens / 1 Siem 51 10 10+1 Salgado-Maldonado et al., 2004b Ilyodon whitei / 1 Chis 22 5 ND Salgado-Maldonado ef al., 2001a . Au/Es? , . : Saccocoeliodes sp. Ameca splendens / 1 Teuc 35 28 3.2+3 Martínez-Aquino, 2005 (datos de tesis) Nota 4 33 54.55 3.61 + 2.32 Presente trabajo Fam. Macroderoididae McMullem, 1937 ass Au/Gn Magnivitellinum simplex Ilyodon furcidens / 1 Siem 51 2 1 Salgado-Maldonado et al., 2004b Kloss, 1966 Metacercarias Fam. Clinostomidae Liihe, 1901 Clinostomun cf. A . complanatum vGn Allodontichthys zonistius / Cc Siem 5 20 1 Salgado-Maldonado et al., 2004b (Ruddolphi, 1814) Tama 32 9.38 1.67 + 0.57 Presente trabajo Alloophorus robustus / N. R. Cuit 30 90 ND Guzmán-Cornejo y García-Prieto, 1999 /H,M Pátz 41 ND ND Peresbarbosa-Rojas ef al., 1994 69 / Cc Allotoca diazi / H, M Chapalichthys encaustus | Cc Characodon audax / H / Cc, H, M /H Goodea atripinnis / N. R. /H /H /M /N.R. /N.R. Ilyodon furcidens / Cc Skiffia lermae | Ce Xenotoca variata | N. R. / N.R. /M /N.R. / Cc N.R. N.R. N.R. / Cc Xenotaenia resolanae | Cc Zoogoneticus purhepechus Pátz Mint Zaca Pátz Luz Tobo Pinl Pin2 27No Berr Cuit Igna Pátz Mint Atot Reme Potg Siem Siem Tama Mint Cuit Laja Mint Reme Ign Atot Zaca Cuza Luz 67 17 40 30 34 21 30 22 178 27 ND ND 10 10 51 51 S6 61 ND 30 41 ND 31 ND ND ND ND 21 35 45 27 43 11.76 ND 10 12.5 6.7 28.3 28.3 22.2 21.7 13 0.6 30 ND ND 20 10 3.57 ND 3.33 26.8 ND ND 14.29 ND ND ND 4.76 2.86 11.1 ND 4.7+4.7 ND ND ND 4.7:7.07 1 ND 9+ND 4 ND 2+1.41 ND ND 1 10.32 1 1 10,19 2 ND ND ND ND 1 ND ND ND ND ND ND 1 0.13 +0,4 Pérez-Ponce de León et al., 2000 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino et al., 2012 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Presente trabajo Martínez-Aquino et al., 2007b Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Guzmán-Cornejo y García-Prieto, 1999 Salgado-Maldonado et al., 2001b Salgado-Maldonado y Osorio-Sarabia, 1987 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino, 2005 (datos de tesis) Presente trabajo Salgado-Maldonado et al., 2004b Salgado-Maldonado et al., 2004b Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada ef al., 2008 Guzmán-Cornejo y Garcia-Prieto, 1999 Salgado-Maldonado, 2006 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada ef al., 2008 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Martínez-Aquino et al., 2009a Martínez-Aquino et al., 2011 70 Fam. Diplostomidae Poirier, 1886 . Al/Gn Apharyngostrigea sp. Tylodelphys sp. 1/Gn / Cc, M Zoogoneticus quitzeoensis / Cc /N.RR / Ce Goodea atripinnis /N. R. Allodontichthys zonistius / Cc Állotoca zacapuensis / Cc Girardinichthys multiradiatus /Cc,M, O Goodea atripinnis / Cc /N.R. /N.R. Hubbsina turneri / Cb Mint Laja Tama Zaca Almo Sant Atla Chic Huap Ignr Juan Lagu Mina Sala Sant Trin Vent Vict Zemp Bizn Igna Trin Mint Laja Cuit Zaca Zaca 30 ND 30 ND 32 32 20 49 15 94 92 75 53 58 50 21 12 11 31 40 20 18 20 29 27 ND 30 20 20 ND 6.6 ND 3.13 6.25 70 71.4 45 45.7 100 15 70 3.4 20 19 67 73 7.5 20 40 61 30 15 ND 6.6 10 15 ND ND 1 +0.13 ND 5.1 +4.5 8.9 +16 6.4 + ND 6.2 +9.,2 312.4 45+5.2 4+4.2 2.6 +31 2.6+31 42+3.6 6+3.9 44+2.4 2.4 +ND 97+ND 7+6.98 ND ND ND ND Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada et al., 2008 Salgado-Maldonado, 2006 Presente trabajo Martínez-Aquino ef al, 2012 Sánchez-Nava ef al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Salgado-Maldonado ef al., 2001b Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava ef al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Salgado-Maldonado et al., 2001b Salgado-Maldonado et al., 2001b Salgado-Maldonado et al., 2001b Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Guzmán-Cornejo y García-Prieto, 1999 Martínez-Aquino ef al., 2012 Martínez-Aquino et al., 2012 71 Posthodiplostomum minimum (MacCallum, 1921) Dubois, 1936 Skiffia lermae / Cb, Cc, H, M /N.R. /Cc Xenotoca variata / Cb, Cc /N.R. /0 / Cc Zoogoneticus quitzeoensis / Cc /N.R, 1 Cc Allodontichthys zonistius / M / Cc ÁAlloophorus robustus | H, M, Mu, O / H, M, Mu, /N.R. /N.R, /1G / Cc Állotoca diazi / H, M, Mu, O Állotoca goslinei / Cc Allotoca zacapuensis / Cc, H, M Chapalichthys encaustus / HA, M, O, Cc Characodon audax / Cb, Cc, H, M Mint Zaca Mint Zaca Mint Zaca Siem Tama Pátz Cuit Mint Pasj Ucas Pátz Mcha Potg Zaca Lcha Tobo 27No Guad Tobo 61 ND 19 ND 21 30 ND 32 16 32 41 67 30 30 11 31 40 32 50 14 42 24 ND 68.42 13 ND 14.29 4.76 13 ND 6.25 13 3.13 ND 81 93.3 93 28 60 54.55 N.D 70 88.89 100 28.13 88 100 22.2 42.8 80.9 2.6 +3.8 ND ND 1.5+0.58 ND ND ND 1 ND ND 40.71 ND ND ND 57.1 + ND 1.5+0.71 5 + 4.64 44.83 + 77.47 N.D N.D 57.1+ 56.90 1 ND 77.18 + 130.3 53.63 + 41.2 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada et al., 2008 Martínez-Aquino et al., 2012 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Salgado-Maldonado et al., 2004b Presente trabajo Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Guzmán-Cornejo y García-Prieto, 1999 Salgado-Maldonado et al., 2001b Martínez-Aquino, 2005 (datos de tesis) Presente trabajo Presente trabajo Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Presente trabajo Presente trabajo Martínez-Aquino ef al., 2012 Martínez-Aquino et al., 2004 Martínez-Aquino el al., 2007b Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 72 Girardinichthys multiradiatus /H, M Girardinichthys viviparus / H, M Goodea atripinnis / M / A, Mu /H, M, Mu, O / A, M, Mu /H, M /M / Cc, H, M, Mu, O /N.R. /H / Cc, H, M /H, M /N.R. /H, M /N.R. Chic Ignr Juan Porv Sala Sant Sier Vent Tica Ties Tipr Chap Bizn Pátz Igna Trin Juam Cuit Chap Lcha Mint Laja Coin 118 52 13 14 53 58 50 36 32 11 11 30 40 12 31 25 178 35 59 30 22 30 20 27 ND ND 22 1 1.9 8 S0 1.27 +0.89 8 3 28.57 9 + 4,83 ND ND 5.7 1.3+0.6 5.2 1 2 1 2.8 3 93.75 29.67 + 44.38 9.1 1 9 1 6.7 1 2.5 1 91.67 10.29 33.33 64 50 10=+7.07 13 1.75 +0.96 60 10.8 + ND 62 13.3 +ND ND ND 83 ND 76.67 36.87 + 36.19 55 5.7 + ND 25 7+ND 100 ND 86.6 ND 15 1 62 61.4+76.5 22 1.67 + 1.03 ND ND 75 36.67 + 30.93 ND ND Salgado-Maldonado ef al., 2001b Sanchéz-Nava et al., 2004 Presente trabajo Salgado-Maldonado et al., 2001b Presente trabajo León-Régagnon, 1992 Sánchez-Nava ef al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Presente trabajo Sánchez-Nava et al., 2004 Sánchez-Nava ef al., 2004 Sánchez-Nava ef al., 2004 Sánchez-Nava elf al., 2004 Presente trabajo Presente trabajo Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado ef al., 2001b Salgado-Maldonado y Osorio-Sarabia, 1987 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Presente trabajo Salgado-Maldonado et al., 2001b Salgado-Maldonado et al., 2001b Salgado-Maldonado et al., 2001a Guzmán-Cornejo y García-Prieto, 1999 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado 2006 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 73 /N.R. /N.R. /N.R. /N.R. /N.R. /N.R. /N.R. / Cc, H, M / Ce / Ce Ilyodon furcidens / M /H, M /G / Ce Skiffia lermae / C, Cc, M /N.R. /C, Ce /C, Cc, M / Cc Xenotaenia resolanae / M Ilyodon whitei / Cc Xenotoca variata | N. R. /N.R. /H, M /H, M / N.R. / C, Co, M / N.R. Z L L Z Z D A Rinc Marí Cien Sori Laad Atot Ferr Zaca Teuc Chic Siem Potg Puen Tama Mint Zaca Chap Cuza Tlap Cuit Igna Mint Laja Cien Rinc Atot Marí Igna ND ND ND ND ND ND ND 20 38 29 51 10 10 S6 D V U U U U U ND ND ND ND ND ND ND 25 100 33 70 30 1.79 39 ND 30 21 100 2.86 97.14 80.4 80 57 6,45 14.29 N.D 2 2 2 2 2 V U U U U ND ND ND ND ND ND ND ND 140 + 134 2+2 8.29 + 10.23 12.33 + 6.07 2 10.13 421:+3.,5 ND N.D N.D 50.13 + 34.05 1.67+1 1 5.74+9.25 ND 80 + 26.1 13.8+ ND 3.5+2.12 N. V U U U U U U O U N N N. N. N N N Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Presente trabajo Presente trabajo Salgado-Maldonado et al., 2004b Martínez-Aquino, 2005 (datos de tesis) Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada et al., 2008 Martínez-Aquino et al., 2012 Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino et al., 2009a Presente trabajo Guzmán-Cornejo y García-Prieto, 1999 Salgado-Maldonado et al., 2001b Salgado-Maldonado ef al., 2001b Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada ef al., 2008 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 74 Uvulifer sp. Avena Fam. Heterophyidae Odhner, 1914 Ascocotyle (Ascocotyle) tenuicollis Price, 1935 AVGn Centrocestus formosanus (Nishigori, 1924) Fam. Plagiorchiidae Lúhe, 1901 Ochetosoma brevicaecum (Caballero y Caballero, 1941) Monogenea Zoogoneticus quitzeoensis / Cc, H, M / N.R. Goodea atripinnis / N. R. Xenotoca variata / N.R. Allodontichthys zonistius / Co Ameca splendens | Ab Goodea atripinnis / Ab /N.R. /N.R. /N.R. Ilyodon whitei / Ab Ilyodon furcidens / Ab Girardinichthys multiradiatus /M Allotoca diazi / 1 Goodea atripinnis / 1 Mint Laja Cien Siem Teuc Igna Cien Atot Laja Amac Chis Siem Puen Chic Pedr Juan Porv Sant Pátz Pátz 30 N.D ND ND 16 35 11 ND ND ND 520 22 51 52 25 58 36 49 31 59 17 N.D ND ND 27 ND ND ND 50 49 81.81 14 100 17 1.7 2.8 ND ND 2.4+2 N.D ND ND 2.3+2.3 5+ND ND ND ND ND 5+ND ND 157 26 + 15.62 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado et al., 2004b Martínez-Aquino, 2005 (datos de tesis) Scholz y Salgado-Maldonado, 2000 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado ef al., 2001a Scholz y Salgado-Maldonado, 2000 Salgado-Maldonado el al., 2001a Salgado-Maldonado et al., 2004b Martínez-Aquino, 2005 (datos de tesis) Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava ef al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 75 Fam. Girodactylidae Van Beneden y Hesse, 1863 Gyrodactylus lamothei es Mendoza-Palmero, Sereno-Uribe y Salgado-Maldonado, 2009 Nota 5 Gyrodactylus mexican e Mendoza-Palmero, Sereno-Uribe y Salgado-Maldonado, 2009 Nota 6 Gyrodactylus sp. 1 Au/Es? Nota 7 Allotoca diazi / Ab Állotoca dugesii / Ab Goodea atripinnis / A Girardinichthys multiradiatus / A, Ab, P /A Állotoca dugesii / Ab Girardinichthys multiradiatus / A, Ab, P Goodea atripinnis / A Shaffia lermae / Ab Xenotoca variata / Ab Állotoca diazi / A, Ab Allotoca dugesii / A, Ab Characodon audax | A Characodon lateralis / A Girardinichthys multiradiatus / A Goodea atripinnis / A Mcha Mcha Zúñi Chic Cano Mcha Chic Rinc Laja Atot Chap Chap Igna Mcha Mcha Tobo Berr Chic Trin 21 22 258 22 258 ND 32 ND 24 10 13 32 30 21 22 42 23 44 29 10 14 14 24 20 10 14 ND 12 ND 13 10 S0 5.26 20 19 2.66 7+ND 3+ND 1.6+ND db > . o . po 2+1.41 15+ND 0.7 + ND 1:ND Presente trabajo Presente trabajo Presente trabajo Mendoza-Palmero et al., 2009 Mendoza-Palmero et al., 2007 Presente trabajo Mendoza-Palmero et al., 2009 Salgado-Maldonado, 2006 Presente trabajo Salgado-Maldonado, 2006 Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo 76 Gyrodactylus sp. 2 Au/Es? Nota 8 Gyrodactylus sp. Al Nota 9 Fam. Dactylogyridae Bychowsky, 1933 . . Au/Es? Salsuginus angularis (Mueller, 1934) Beverly-Burton, 1984 Nota 10 / Ab Skiffia lermae / A, Ab Xenotoca melanosoma / Ab Zoogoneticus quitzeoensis | A Állotoca duguesii / Ab Skiffia lermae / Ab Goodea atripinnis / A Állotoca diazi / Ab Allotoca dugesii / Ab Ámeca splendens / Ab Chapalichthys encaustus / Ab Characodon audax / Ab Goodea atripinnis / Ab Ilyodon furcidens / Ab Ilyodon whitei / Ab Skiffia lermae / Ab Skiffia multipunctata / Ab Xenotaenia resolanae / Ab Xenotoca melanosoma / Ab Xenotoca variata | Ab Mcha Mcha Nori Mint Mcha Mcha Sori Mcha Mcha Teuc Lcha Tobo Mint Rinc Sori Puen Ahue Mint Duer Cuza Cuis Nori Mint 13 32 38 22 22 19 ND 35 20 31 ND 40 50 47 11 13 10 26 ND 41 41 5.71 16 43.3 ND 4.54 ND ND 33.33 ND 33.33 12 69.44 20 S0 19 ND 7.69 1+ND 1.66 + ND 2 1.6+ND 1+ND 1,2 + ND ND 2.4+ 0.82 2.4+ 1.77 10 3.13 +1.55 1.85 + 0.99 2 ND 6 ND ND 4 ND 2.5: 0.75 1 1.46 + 1.3 0.2 1.78 + 0.62 1.33 + 0.82 ND 1 Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Salgado-Maldonado, 2006 Presente trabajo Presente trabajo Presente trabajo Martínez-Aquino et al., 2004 Martínez-Aquino et al., 2007b Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Presente trabajo Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Presente trabajo 77 Rinc ND ND ND Salgado-Maldonado, 2006 Cien ND ND ND Salgado-Maldonado, 2006 27 5 1 Presente trabajo Zoogoneticus quitzeoensis / Ab Mint 30 13 3.25+2.6 Martínez-Aquino, 2005 (datos de tesis) ND ND ND Salgado-Maldonado, 2006 22 100 2.8 Presente trabajo Cestoda Fam. Bothriocephalidae Blanchard, 1849 Bothriocephalus acheilognathi? o” Álloophorus robustus / 1 Pátz 41 ND ND Peresbarbosa-Rojas et al., 1994 Y amaguti, 1934 67 1.5 ND Pérez-Ponce de León et al., 2000 Mint 27 7.4 ND Romero-Tejada ef al., 2008 Állotoca diazi / 1 Pátz 31 ND ND Peresbarbosa-Rojas ef al., 1994 40 8 ND Pérez-Ponce de León et al., 2000 Allotoca zacapuensis / 1 Zaca 17 11.8 0.3+0.1 Mejía-Madrid et al., 2005 32 3.13 ND Martínez-Aquino et al., 2012 Characodon audax / 1 Berr 13 1.71 0.3+1.1 Mejía-Madrid et al., 2005 Pinl 34 8.8 Pérez-Ponce de León et al., 2009 Pin2 21 14.2 Pérez-Ponce de León et al., 2009 27No 9 22.2 Pérez-Ponce de León et al., 2009 Guad 14 22.2 Pérez-Ponce de León et al., 2009 Characodon lateralis / 1 Juas 11 7.1 Pérez-Ponce de León et al., 2009 Girardinichthys multiradiatus / 1 Cler ND ND ND García-Prieto y Osorio-Sarabia, 1991 Lerm 9 ND ND León-Régagnon, 1992 Chic 63 3 1 Salgado-Maldonado et al., 2001b 92 2.2 1 Sánchez-Nava et al., 2004 52 1.9 1 Sánchez-Nava et al., 2004 Lagu 50 26 2.5+1.8 Sánchez-Nava et al., 2004 Atla 15 13,3 1 Sánchez-Nava et al., 2004 Cimm 7 42.9 1.7+0.6 Sánchez-Nava et al., 2004 78 Goodea atripinnis / 1 Ilyodon cortesae / 1 Ilyodon whitei / 1 Neotoca lermae / 1 Xenotoca variata / 1 Skiffia bilineata / 1 Zoogoneticus purhepechus / 1 Zoogoneticus quitzeoensis / 1 Ignr Juan Pedr Sala Sier Vent Trin Mara Cano Tica Lcha Bata Lcha Galv Xote Laad Cutz Ahue Mint Cons Igna Galv Xote Mint Cien Laad Atot Rinc Quer Negr Mint 75 53 58 S0 25 12 30 40 ND 14 12 ND 41 ND ND ND ND 30 51 61 ND 36 10 ND ND 31 ND ND ND ND ND 15 27 30 2.7 24.5 6.9 8.3 10 12.5 ND 50 60 91.67 ND 12 ND ND ND ND 6.7 1.96 ND ND ND 19 ND ND ND ND ND 6.6 7.4 3 2ND 1=+0.29 ND 4ND ND ND ND ND 0.2+0.9 10.14 1 =2.83 ND 3.2 + ND ND ND 2+2,45 ND ND ND ND N.D 0.1+0.,3 0.07 + 0.27 1 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava ef al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava ef al., 2004 Salgado-Maldonado y Pienda-López, 2C Mejía-Madrid et al., 2005 Astudillo-Ramos y Soto-Galera, 1997 Mendoza-Palmero et al., 2007 Presente trabajo García-Prieto y Osorio-Sarabia, 1991 Pineda-López y González-Enríquez, 19 Garcia-Prieto y Osorio-Sarabia, 1991 Salgado-Maldonado y Pineda-López, 2€ Salgado-Maldonado y Pineda-López, 2( Pineda-López y González-Enríquez, 19 Salgado-Madonado, 2006 Mejía-Madrid et al., 2005 Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Salgado-Madonado, 2006 Pineda-López y González-Enríquez 199 Salgado-Maldonado et al., 2001b Salgado-Maldonado y Pineda-López, 2C Salgado-Maldonado y Pineda-López, 2( Martínez-Aquino, 2005 (datos de tesis) Salgado-Madonado, 2006 Salgado-Madonado, 2006 Salgado-Madonado, 2006 Salgado-Madonado, 2006 Salgado-Madonado, 2006 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2011 Martínez-Aquino, 2005 (datos de tesis) 79 Proteocephalus longicollis (Zeder, 1800) Nota 11 Fam. Caryophyllacidae Leuckart, 1878 Caryophyllidea gen. sp. Av 6n? Metacéstodos Fam. Dilepididae Railliet y Henry, 1909 Dilepididae gen. gp On Cyclustera cf. raven (Underwood y Dronnen, 1986) Bona, 1994 Alloophorus robustus / 1 Goodea atripinnis / 1 Skiffia lermae / 1 Állotoca zacapuensis / M Characodon audax | M Allodontichthys zonistius / M Ilyodon furcidens / M Alloophorus robustus / M Álloophorus robustus / M Girardinichthys multiradiatus /M Mint Pátz Pátz Mint Zaca Tobo Siem Siem Mint Pátz Chic Juan Mina Porv Sier Vent Ties ND 27 ND 178 25 32 30 16 51 25 211 92 52 44 50 21 36 30 40 ND 16.67 ND 34 24 3.13 20 10 5.4 5.8 2.27 28 4.8 36.1 3.3 16.67 ND ND ND 1.5 0.4=1 ND 1.7+0.8 Salgado-Madonado, 2006 Romero-Tejada et al., 2008 Mejía-Madrid et al., 2005 Salgado-Maldonado y Osorio-Sarabia, 1987 Mejía-Madrid et al., 2005 Martínez-Aquino ef al., 2012 Martínez-Aquino et al., 2007b Salgado-Maldonado et al., 2004b Salgado-Maldonado et al., 2004b Martínez-Aquino, 2005 (datos de tesis) Scholz y Salgado-Maldonado, 2001 Scholz y Salgado-Maldonado, 2001 Sánchez-Nava et al., 2004 Sánchez-Nava ef al., 2004 Presente trabajo Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava el al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Presente trabajo 80 Ignr 14 14.29 10.36 Presente trabajo Chapalichthys encaustus / M Lcha 50 2 1 Martínez-Aquino el al., 2004 Xenotoca variata / M Igna 24 8 1 Scholz y Salgado-Maldonado, 2001 .. AVGn o , . . Glossocercus auritus Goodea atripinnis / H Lcha 8 12 1 Martínez-Aquino, 2005 (datos de tesis) (Rudolphi, 1819) Valipora . AlVGn . o. . . campylancristrota Girardinichthys multiradiatus (Wedl, 1855) / Vb Lagu 50 1 1 Scholz y Salgado-Maldonado, 2001 Baer y Bona, 1960 Chic 92 3.1 1.7+0.6 Sánchez-Nava et al., 2004 52 1.9 1 Sánchez-Nava et al., 2004 Almo 20 5 1 Sánchez-Nava et al., 2004 Ignr 75 9.3 19+1 Sánchez-Nava ef al., 2004 Juan 53 20.8 18+1 Sánchez-Nava et al., 2004 58 12.1 1.1+0,4 Sánchez-Nava et al., 2004 50 6 1.7+0.6 Sánchez-Nava et al., 2004 Sier 30 3 2 Sánchez-Nava et al., 2004 Sant 49 6.1 1 Sánchez-Nava et al., 2004 11 9.1 1 Sánchez-Nava et al., 2004 Mina 21 9.5 1.5%0.7 Sánchez-Nava et al., 2004 Vent 40 12.5 1 Sánchez-Nava et al., 2004 Tica 12 91.67 1=+0.29 Presente trabajo Girardinichthys viviparus / Vb Chap 31 19 1.33 + 0.96 Martínez-Aquino, 2005 (datos de tesis) Xenotoca variata | Vb Atot ND ND ND Salgado-Maldonado, 2006 .,. AVGn Valipora mutabilis Xenotoca variata | Vb Igna ND ND ND Salgado-Maldonado, 2006 Linton , 1927 Fam. Proteocephalidea La Rue, 1911 Cyclophyllidae gen. sp. VOR Állotoca diazi | Vb Pátz 40 2 ND Pérez-Ponce de León ef al., 2000 Zoogoneticus purhepechus / Vb Negr 27 31 0.04 +0.10 Martínez-Aquino et al., 2011 Gn . Au/ . Proteocephalidae gen. sp. Alloophorus robustus / H,L M Pátz 41 ND ND Peresbarbosa-Rojas et al., 1994 81 Proteocephalus ambloplitis e? (Leidy, 1758) Fam. Diphyllobothriidae Líhe, 1910 . . .. y. Au/Gn Ligula intestinalis (Linneo, 1758) Bloch, 1782 Nematoda Fam. Capillariidae Neveau-Lemaire, 1936 /T Állotoca diazi / H, L, M /T Goodea atripinnis / Cb /1 Alloophorus robustus / M Skiffia lermae / 1 Xenotoca variata | Cb Goodea atripinnis / N. R. Xenotoca variata /N. R Goodea atripinnis / Cc Girardinichthys multiradiatus / Cc Pátz Pátz Mint Mint Mint Laja Atot Cien Pátz Lagu Trin Tgnr Juan Lagu Zemp Sala 67 31 40 35 59 61 31 ND ND ND ND 59 S0 50 223 563 75 53 S0 20 32 58 ND ND 30 14 ND ND ND ND 9.2 16 80 1.3 1.9 55 25 ND ND ND ND ND 15+1 ND ND ND ND ND 3+ND 1.5+0.7 ND 1.6+ND 1.7 1 1 1.5+0.7 2.7+1.7 1.38 +0.79 Pérez-Ponce de León et al., 2000 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 García-Prieto ef al., 1998 Pérez-Ponce de León et al., 2000 Salgado-Maldonado et al., 2001b Sánchez-Nava ef al., 2004 Lamothe-Argumedo y Cruz-Reyes, 197: Astudillo-Ramos y Soto-Galera, 1997 Salgado-Maldonado et al., 2001b Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Sánchez-Nava et al., 2004 Presente trabajo 82 Capillaria eyprinodonticola o Huffiman y Bullock, 1973 Capillaridae gen. sp. On . . AvG Pseudocapillaria tomentosa » (Dujardin, 1843) Fam. Rhabdochonidae Travassos, Artigas y Pereira, 1928 Rhabdochona ahuehuellensis Es Mejía-Madrid y Pérez-Ponce de León, 2003 Ilyodon furcidens / 1 Goodea atripinnis / 1 Alloophorus robustus / 1 Goodea atripinnis / 1 Goodea gracilis / 1 Skiffia lermae / 1 Xenotoca variata / 1 Allodontichthys hubbsi / 1 Allodontichthys tamazulae / 1 Allodontichthys zonistius / 1 Ataeniobius toweri / 1 Ilyodon furcidens / 1 Ilyodon whitei / 1 Siem Ignr Bizn Pátz Igna Pátz Bizn Mara Igna Jesú Mcha Laja Pihu Tama Ahue Luna Guac Pihu Tama Ahue 21 20 25 20 ND 178 18 25 20 14 51 ND 32 19 12 11 56 40 180 51 un ND 10 11.1 20 7.1 5.8 ND 60 42.9 9.38 84.2 8.3 62.5 36.4 10.71 58.3 63.9 68.63 3 + ND ND 2.7 + ND 0.11 +0,3 1+ND 0.2+0.4 2+ND 0.1+0.3 0.2+0,8 ND 11.1 0.6 + 0.8 1.67 + 0.57 4.8+3.6 0.08 + 0.3 0.08 + 0.3 0.5+0.7 1.67 + 0.64 ND 1.14+2.4 3.23 +2,54 Salgado-Maldonado et al., 2004b Salgado-Maldonado et al., 2001b Salgado-Maldonado et al., 2001b Moravec et al., 2001 Salgado-Maldonado, 2006 Salgado-Maldonado y Osorio-Sarabia, 1987 Mejía-Madrid et al., 2005 Salgado-Maldonado ef al., 2001b Mejía-Madrid et al., 2005 Salgado-Maldonado et al., 2001b Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Salgado-Maldonado, 2006 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Presente trabajo Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Presente trabajo Mejía-Madrid y Pérez-Ponce de León, 2003 Mejía-Madrid et al., 2005 Presente trabajo 83 Xenotaenia resolanae / 1 Rhabdochona kidderi en Ilyodon whitei / 1 Pearse, 1936 Rhabdochona lichtenfelsi2 ES Álloophorus robustus / 1 Sánchez-Álvarez, Garcia-Prieto y Pérez-Ponce de León, 1998 Állotoca diazi / 1 Allotoca dugesii / 1 Állotoca zacapuensis / 1 Ámeca splendens / 1 Chapalichthys encaustus / 1 Teco Cuza Cuit Pátz Luz Mint Oran Lcha Zaca Came Pasj Ucas Pátz Mcha Mcha Zaca Teuc Lcha Luz 14 35 36 ND 360 41 67 19 10 27 14 13 ND 17 11 31 40 10 22 17 32 35 17 33 50 17 28.6 20 14 ND 40 ND 15 63.2 80 50 14 3.7 7.14 1.1 S0 ND 35.29 100 40 45.45 ND 40 44,44 ND 76.5 65.63 80 23.5 27.27 28 58.8 0.4+0.6 2.29 + 1.49 1.2+0.4 ND 18 + ND ND ND 54+8 193+1.2 15+2.4 ND 10.27 0.1 =+0.3 6 ND ND 4.5+3.54 5.5+3.9 4.80 + 3.82 ND ND 6.1 +12.2 8.5 +5.67 ND 913.8 ND 4.835 0.2+0.4 2.11+1.17 3.93 + 2.92 1+1.2 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2009a Martínez-Aquino, 2005 (datos de tesis) Mejía-Madrid y Pérez-Ponce de León, 2003 Sánchez-Álvarez et al., 1998 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Salgado-Maldonado 2006 Romero-Tejada ef al., 2008 Presente trabajo Mejía-Madrid et al., 2005 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Presente trabajo Presente trabajo Presente trabajo Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Mejía-Madrid et al., 2005 Presente trabajo Presente trabajo Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2012 Martínez-Aquino, 2005 (datos de tesis) Mejía-Madrid et al., 2005 Presente trabajo Martínez-Aquino et al., 2004 Mejía-Madrid et al., 2005 84 Chapalichthys pardalis / 1 Characodon audax / 1 Goodea atripinnis / 1 Tocu Berr Cuit Pátz Juam Esto Luz Mint Oran Tapi Merc Quer Cris Tocu Coro Verd Teuc Chig Lcha Rinc Igna Laja Cien Sori Laad Atot Zaca Idel 11 38 13 178 35 59 30 18 19 27 17 15 15 15 15 15 25 u a ND ND ND ND ND ND ND ND 20 36.4 2.63 38.5 ND 33 43.33 94.4 83.33 78.9 80 19 11.8 93.3 53.3 6.7 93.3 66.7 80 60 100 50 100 S0 ND ND ND ND ND ND ND ND 25 100 0.9+2.1 1+0.16 0.7+1.4 18 +ND 7.8 +ND ND ND 19 + 13.62 9:77 ND 4 12 + 15.17 13 +12 15.85 + 13.76 0.8+2.7 24.3 +21.7 2,4+3.5 0.1+0.2 5.7+3.1 7.218.4 2.3+2.1 3816 9.63 6.2 2.5+0.71 62 8.75 + 11.03 ND ND ND ND ND ND ND ND ND ND Mejía-Madrid et al., 2005 Presente trabajo Mejía-Madrid et al., 2005 Sánchez-Álvarez et al., 1998 Salgado-Maldonado y Osorio-Sarabia, 1987 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Presente trabajo Mejía-Madrid et al., 2005 Salgado-Maldonado ef al., 2001a Salgado-Maldonado et al., 2004a Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Salgado-Maldonado, 2006 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Presente trabajo 85 Goodea gracilis / 1 Hubbsina turneri / 1 Ilyodon furcidens / 1 Ilyodon whitei / 1 Neoophorus regalis / 1 Skaffía bilineata / 1 Skiffia lermae / 1 Skiffia multipunctata / 1 Xenotoca variata / 1 Zoogoneticus purhepechus / 1 Zoogoneticus quitzeoensis / 1 Opop Quem Zaca Siem Tocu Rico Quer Mint Zaca Duer Luz Cupa Mint Igna Oran Tapi Cris Cien Rinc Zaca Luz Mint Zaca Came Cupa Eh 24 14 20 52 37 28 15 25 61 30 19 22 13 31 ND 29 ND 26 12 21 ND ND 21 45 30 ND 30 15 32 11 16 44.44 25 92 92.9 15.7 13.51 46.43 6.7 88 85 96.67 100 12 86.4 100 13 ND 21 ND 34.6 66.75 42.9 ND ND 71.43 15.6 87 ND 6.67 46.7 15.63 9.09 31.25 7.5+ 6.65 10.5 43.4 13.9+12.4 ND 1 2.40 + 0.97 6.62 + 6.23 0.1+0.3 9.6+8.4 5.123+6.76 ND ND 1 5.3 +6.1 2 +3.06 3.25+2.22 ND 1.33 + 0.52 ND 12+2.1 3 +3.4 15+2.6 ND ND ND 2.14 + 1.57 8.54 + 4.9 ND ND 1.5+3.1 ND 10.30 2.40 + 1.77 Presente trabajo Presente trabajo Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Martínez-Aquino et al., 2012 Salgado-Maldonado et al., 2004b Presente trabajo Presente trabajo Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Salgado-Maldonado 2006 Romero-Tejada ef al., 2008 Martínez-Aquino el al., 2012 Martínez-Aquino, 2005 (datos de tesis) Mejía-Madrid et al., 2005 Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Mejía-Madrid et al., 2005 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Martínez-Aquino et al., 2011 Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Romero-Tejada et al., 2008 Mejía-Madrid et al., 2005 Martínez-Aquino ef al., 2012 Presente trabajo Presente trabajo 86 Rhabdochona xiphophori“** Allotoca catarinae / 1 Calt 16 188 28+64 Mejía-Madrid et al., 2005 Caspeta-Mandujano, Moravec Xenotoca eiseni / 1 Ener 14 35.7 0.6 +1.2 Mejía-Madrid et al., 2005 y Salgado-Maldonado, 2001 Au/? . . Rhabdochona sp. Ilyodon furcidens / 1 Oro 15 13.33 10.35 Presente trabajo Skiffia multipunctata / 1 Adju 2 100 1 Presente trabajo Chil 10 100 3.8 + 2,49 Presente trabajo Zoogoneticus purhepechus / 1 Negr 27 3.7 2 Martínez-Aquino et al., 2011 Larvas de Nematoda Fam. Acuariodidea Railliet, Henry y Sisoff, 1912 Streptocara sp. AVn Characodon lateralis / 1 Juas 11 9.1 ND Pérez-Ponce de León et al., 2009 Fam. Anisakidae Railliet y Henry, 1912 Contracaecum sp. On Alloophorus robustus / M Pátz 67 1 ND Pérez-Ponce de León et al., 2000 Chapalichthys encaustus / Mu, M, G, CC Lcha 50 40 4.05+4.9 Martínez-Aquino et al., 2004 Characodon audax / CC, M Pin1 34 2.9 ND Pérez-Ponce de León et al., 2009 Guad 14 7.1 ND Pérez-Ponce de León et al., 2009 27No 9 33.3 ND Pérez-Ponce de León et al., 2009 Tobo 42 2.3 ND Pérez-Ponce de León et al., 2009 Girardinichthys multiradiatus /M Almo 20 5 1 Sánchez-Nava et al., 2004 Atla 25 1 Sánchez-Nava et al., 2004 Chic 52 1.9 1 Sánchez-Nava ef al., 2004 Ignr 75 1.3 1 Sánchez-Nava et al., 2004 Juan 58 2 2 Sánchez-Nava et al., 2004 50 4 1 Sánchez-Nava et al., 2004 Pedr 25 8 1 Sánchez-Nava et al., 2004 Sier 30 10 1 Sánchez-Nava et al., 2004 Vent 40 5 2.5+2.1 Sánchez-Nava et al., 2004 87 Fam. Camallanidae Raillet y Henry, 191 5 Serpinema trispinosum (Leidy, 1852) Fam. Dioctophymatidae Railliet, 1915 Eustrongylides sp Gn Goodea atripinnis / Cc, 1 Xenotoca variata | M Zoogoneticus purhepechus / H Alloophorus robustus / M Characodon audax / Cc, M Goodea atripinnis / M Ilyodon furcidens / Cc Alloophorus robustus / 1 Characodon audax / 1 Álloophorus robustus / Cc, M /M Állotoca diazi / M Characodon audax 1 Cc, M Goodea atripinnis / Mu Vict Igna Laja Marí Cien Rinc Igna Laja Rinc Marí Negr Mint Tobo Lcha Puen Mint Tobo Pátz Igna Zaca Ucas Pátz Tobo Pátz Bizn Atot 22 ND ND ND ND 35 ND ND ND 27 30 27 30 41 67 ND ND 17 11 40 42 178 30 10 ND 20 ND ND ND ND 31 ND ND ND 3.7 14 6.7 12 33 3.3 3.3 ND 15 ND ND 5.88 9.09 11.9 6.67 10 ND ND ND ND ND 1.4+ND ND ND ND ND ND ND 1=0.3 ND 1.3+ND 10.25 ND Sánchez-Nava et al., 2004 Salgado-Maldonado ef al., 2001b Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado et al., 2001b Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino ef al., 2011 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino et al., 2007b Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Romero-Tejada et al., 2008 Martínez-Aquino el al., 2007b Peresbarbosa-Rojas ef al., 1994 Pérez-Ponce de León et al., 2000 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Presente trabajo Pérez-Ponce de León et al., 2000 Pérez-Ponce de León et al., 2009 Salgado-Maldonado y Osorio-Sarabia, 1987 Presente trabajo Salgado-Maldonado et al., 2001b Salgado-Maldonado, 2006 88 Fam. Gnathostomatidae Railliet, 1895 u/Gn A Gnathostoma sp. . Au/Gn Spiroxys sp. Girardinichthys multiradiatus /Ce Girardinichthys viviparus / Cc Goodea atripinnis / Mu Shaffia lermae / Cc Zoogoneticus purhep echus / H Alloophorus robustus / H Allodontichthys zonistius / Cc Alloophorus robustus / M, 1 Állotoca diazi / M, 1 Characodon audax ! / /M / Cc, M, I M M, Pi Characodon lateralis / H, M Goodea atripinnis / 1 / M, Pi /M,I /1 Almo Chap Chap Mint Negr Pátz Ahua Pátz Mint Mint Pátz Tobo Pinl Abra 27No Pin2 Abra Juas 27No Bizn Pátz ND 31 20 61 ND 27 20 11 41 67 27 31 40 30 34 12 21 27 11 18 35 178 59 ND 35 ND ND 3.7 9.09 ND 26 86 3.7 ND 50 2.9 16.6 33.3 9.5 29.6 11.1 3.5 ND 27 ND 2.36 + 1.27 ND 1 ND 1 1=0.3 ND ND 2.33 + 1.03 ND ND 1.87+1.51 1.38 + 1.06 ND ND Sánchez-Nava et al., 2004 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Martínez-Aquino et al., 2011 Salgado-Maldonado et al., 2001b Presente trabajo Peresbarbosa-Rojas ef al., 1994 Pérez-Ponce de León et al., 2000 Martínez-Aquino, 2005 (datos de tesis) Romero-Tejada ef al., 2008 Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Martínez-Aquino et al., 2007b Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Martínez-Aquino et al., 2007b Pérez-Ponce de León et al., 2009 Pérez-Ponce de León et al., 2009 Salgado-Maldonado et al., 2001b Peresbarbosa-Rojas et al., 1994 Salgado-Maldonado y Osorio-Sarabia, 1987 Pérez-Ponce de León et al., 2000 89 Fam. Kathlaniidae Lane, 1914 Au/G Falcaustra sp. . Acanthocephala Fam. Pomphorhynchidae Y amaguti, 1939 Pomphorhynchus cf. bulbocol 1257 / / / Z Z Z A A A / N.R. Girardinichthys multiradiatus /1 /M Ilyodon furcidens / M Xenoophorus captivus | Cc, M Xenotaenia resolanae / M Xenotoca variata / 1 /M Zoogoneticus purhepechus / M Zoogoneticus quitzeoensis / M Girardinichthys multiradiatus /1, M ÁAlloophorus robustus / 1 Zoogoneticus purhepechus / 1 Trin Mint Mint Laja Igna Atot Ignr Porv Potg Moct Cuza Igna Mint Rinc Luz Cupa Mint Came Lagu Tepe Luz Luz Adju 29 27 ND ND ND ND 13 36 10 30 2.86 21 31 ND ND 45 27 16 30 30 11 34 45 ND ND ND ND 15 2.8 20 10 0.06 ND ND 8.9 3.7 18.75 3.3 9.09 12 100 5.88 13.3 100 1:ND ND 1.5+1 3 1.33 + 0.58 1 ND 3=0.9 10 + 13.8 4 7+1.67 Salgado-Maldonado et al., 2001b Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Salgado-Maldonado et al., 2001b Sánchez-Nava et al., 2004 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino et al., 2009b Salgado-Maldonado et al., 2001b Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Salgado-Maldonado, 2006 Martínez-Aquino et al., 2011 Martínez-Aquino ef al., 2011 Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Romero-Tejada ef al., 2008 Presente trabajo Sánchez-Nava et al., 2004 Sánchez-Nava ef al., 2004 Presente trabajo Martínez-Aquino et al., 2011 Presente trabajo 90 Cistacantos Fam. Polymorphidae Meyer, 1931 Polymorphus brevis* Van Clave, 1916 Alloophorus robustus / M, Mu /M / Cc, M /M / Cc, M Allotoca catarinae / Cc. M Allotoca diazi / M, Mu /M Állotoca zacapuensis / Cc, M Ámeca splendenss | Cc Chapalichthys encaustus / M / Cc, M Characodon lateralis / M Girardinichthys multiradiatus /M Goodea atripinnis / HA, M /H, M /Cc, M /M /Cc Hubbsina turneri / Cc, M Pátz Mint Zaca Ucas Calt Pátz Zaca Teuc Lcha Luz Juas Sala Sant Ignr Pátz Lcha Ucas Zaca 41 67 11 17 11 31 40 32 35 S0 00 12 32 11 ND 178 59 30 20 ND 16 ND 100 14 5.88 54.44 ND 12.5 27.2 8.3 ND 3.13 18.2 ND ND 27 ND 10 12 100 15 ND ND ND 7>+1.41 3 ND 4.33 + 3.35 ND ND ND ND 1 1 ND 10.71 ND 1 ND 1+0.18 ND ND ND ND 3 =+1.02 ND Peresbarbosa-Rojas et al., 1994 Pérez-Ponce de León et al., 2000 Alcántar-Escalera et al., 2013 Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino el al., 2012 Presente trabajo Alcántar-Escalera ef al., 2013 Peresbarbosa-Rojas ef al., 1994 Pérez-Ponce de León et al., 2000 Martínez-Aquino et al., 2012 Martínez-Aquino, 2005 (datos de tesis) Martínez-Aquino ef al., 2004 Alcántar-Escalera et al., 2013 Presente trabajo Pérez-Ponce de León et al., 2009 Sánchez-Nava et al., 2004 Alcántar-Escalera et al., 2013 Presente trabajo Sánchez-Nava et al., 2004 Alcántar-Escalera ef al., 2013 Salgado-Maldonado, 2006 Salgado-Maldonado y Osorio-Sarabia, 1987 Pérez-Ponce de León et al., 2000 Alcántar-Escalera et al., 2013 Presente trabajo Martínez-Aquino, 2005 (datos de tesis) Presente trabajo Martínez-Aquino et al., 2012 91 Skiffia lermae | Cc, M Skiffia multipunctata | Cc, M Xenotoca variata | H /M /H /H Zoogoneticus purhepechus / M / Cc, M Zoogoneticus quitzeoensis / Cc, M Zaca Cupa Igna Mint Zaca Negr Adju Came Cupa Magd Zaca 19 13 35 31 ND 21 27 11 13 16 32 5.26 ND 15.38 ND 19.05 3.7 ND 100 ND 27.27 ND 43.75 14.29 6.25 ND ND 10.38 1 1 ND ND 1 ND 1 ND 3.67 + 2.68 ND 2.86 + 2.52 3 +1.13 ND Martínez-Aquino et al., 2012 Alcántar-Escalera et al., 2013 Presente trabajo Salgado-Maldonado et al., 2001b Martínez-Aquino, 2005 (datos de tesis) Salgado-Maldonado, 2006 Martínez-Aquino et al., 2012 Martínez-Aquino et al., 2011 Alcántar-Escalera et al., 2013 Presente trabajo Alcántar-Escalera et al., 2013 Presente trabajo Alcántar-Escalera ef al., 2013 Presente trabajo Presente trabajo Martínez-Aquino et al., 2012 92 93 Nota 1. Este taxón corresponde a una nueva especie, la cual será descrita posteriormente (Choudhury A., com. pers.). Nota 2. De acuerdo con Martínez-Aquino et al., 2013, M. guillerminae es sinónimo de M. bravoae, por lo cual los registros aqui presentados consideran la distribución de la especie actualmente válida únicamente. Nota 3. Este taxón corresponde a una nueva especie, la cual será descrita posteriormente (Pérez-Ponce de León, com. pers.). Nota 4. Este taxón corresponde a una nueva especie, la cual será descrita posteriormente (Pérez-Ponce de León, com. pers.). Nota 5. Mendoza-Palmero et al. (2007) registaron Gyrordactylus sp. en la Cantera Oriente (Cano), Ciudad Universitaria, UNAM, Ciudad de México, D.F; sin embargo, con base en un datos morfológicas más detallados, Mendoza-Palmero (en este trabajo) detectó que la clasificación taxonómica correcta es G. lamothei. Nota 6. Salgado-Maldonado (2006) registro Gyrodactylus sp. de las localidades de Rinc y Laja (ver cuadro TAL para más información); sin embargo, Martínez-Aquino et al. (en este trabajo), detectaron con base en distintas medidas morfológicas que la clasificación taxonómica correcta de este taxón es Gyrodactylus mexicanus. Nota 7. Este taxón corresponde a una nueva especie, la cual será descrita posteriormente (Mendoza-Palmero, com. pers.). Nota 8. Este taxón corresponde a una nueva especie, la cual será descrita posteriormente (Mendoza-Palmero, com. pers.). Nota 9. Salgado-Maldonado et al., (2001) y Sánchez-Nava et al., (2004) registraron Gyrodactylus elegans en Atla, Cimm, Chic, Juan, Pedr, Sala, Sant y Sier (ver Cuadro 3 para más información referente a las localidades). Mendoza-Palmero et al., (2009) mencionan que estos autores no depositaron ejemplares de referencia en ninguna colección científica que valide dichos registros. Harris et al., (2004) han sugerido que G. elegans es específico de Abramis brahama (Linnaeus, 1758) (Cyprinidae). Mendoza-Palmero et al., (2009) sugirieron que la determinación realizada por Salgado-Maldonado et al., (2001) y Sánchez-Nava et al., (2004) es dudosa. Por tanto, debido a la no existencia de vouchers depositados en ninguna colección científica, en este trabajo nosotros tomamos la postura conservadora de (según el Código Internacional de Nomenclatura Zoológica; Ride, 1985) y no consideramos validos los registros de Salgado-Maldonado et al. (2001) y Sánchez-Nava et al. (2004) ya que carecen de rigor científico. Nota 10. Martínez-Aquino et al (2004; 2007b) registraron este taxón como posible nueva especie; sin embargo, Mendoza-Palmero (en este trabajo), detectó, con base distintas observaciones morfológicas más detalladas, que la determinación y clasificación taxonómica corresponde con Salsuginus angularis. 94 Nota 11. Proteocephalus longicollis es considerada un sinónimo de P. pusillus (sin. P. exiguus) La Rue, 1911 (Scholz y Hanzelová, 1998) que parasita exclusivamente peces de la familia Salmonidae de distribución holártica por lo que la presencia de esta especie en peces de la familia Goodeidae de México requiere una revisión más detallada. Cuadro 2. Listado huésped-helminto parásito de Goodeinae (con base en el Cuadro 1). DA = Digéneo Adulto; LD = Larva de Digéneo; M = Monogéneo; CA = Céstodo Adulto; LC = Larva de Céstodo; NA = Nemátodo Adulto; LN = Larva de Nemátodo; AA = Acantocéfalo; LA = Larva de Acantocéfalo. Especie de huésped Helmintos Allodontichthys hubbsi Miller y Uyeno, 1980 Margotrema bravoae DA Rhabdochona ahuehuellensis NA Allodontichthys tamazulae Turner, 1946 Margotrema bravoae DA Rhabdochona ahuehuellensis NA Allodontichthys zonistius Hubbs, 1932 Ascocotyle (Ascocotyle) tenuicollis LD Clinostomun complanatum LD Dilepididae gen. sp.LC Margotrema bravoae DA Phyllodistomum sp.DA Posthodiplostomum minimum LD Rhabdochona ahuehuellensis NA Saccocoeliodes cf. sogandaresi DA Spiroxys sp.LN Tylodelphys sp.LD Alloophorus robustus Bean, 1892 Bothriocephalus acheilognathi CA Clinostomun complanatum LD Contracaecum sp.LN Cyclustera cf. ralli LC Dilepididae gen. sp.LC Eustrongylides sp.LN Gnathostoma sp.LN Margotrema bravoae DA Polymorphus brevis LA Pomphorhynhcus cf. bulbocolli AA Posthodiplostomum minimum LD Proteocephalidae gen. sp.LC Proteocephalus longicollis CA Pseudocapillaria tomentosa NA Rhabdochona lichtenfelsi NA Serpinema trispinosum LN 96 Spiroxys sp.LN Allotoca catarinae de Buen, 1942 Polymorphus brevis LA Rhabdochona xiphophori NA Allotoca diazi Meek, 1902 Bothriocephalus acheilognathi CA Clinostomun complanatum LD Cyclophyllidae gen. sp.LC Eustrongylides sp.LN Margotrema bravoae DA Ochetosoma brevicaecum LD Polymorphus brevis LA Posthodiplostomum minimum LD Proteocephalidae gen. sp.LC Rhabdochona lichtenfelsi NA Spiroxys sp.LN Allotoca dugesii Bean,1887 Gyrodactylus lamothei M Gyrodactylus mexicanus M Gyrodactylus sp. 1 M Margotrema bravoae DA Rhabdochona lichtenfelsi NA Salsuginus angularis M Allotoca goslinei Smith y Miller, 1987 Posthodiplostomum minimum LD Allotoca maculata Smith y Miller, 1980 Margotrema bravoae DA Allotoca meeki Álvarez del Villar, 1959 Margotrema bravoae DA Allotoca zacapuensis Meyer, Radda y Domínguez, 2001 Allocreadium lobatum DA Bothriocephalus acheilognathi CA Caryophyllidea gen. sp.LC Margotrema bravoae DA Phyllodistomum sp.DA Polymorphus brevis LA Posthodiplostomum minimum LD Rhabdochona lichtenfelsi NA Tylodelphys sp.LD Ameca splendens Miller y Fitzsimons, 1971 Ascocotyle (Ascocotyle) tenuicollis LD Polymorphus brevis LA Rhabdochona lichtenfelsi NA 97 Saccocoeliodes spDA Salsuginus angularis M Ataeniobius toweri Meek, 1904 Rhabdochona ahuehuellensis NA Chapalichthys encaustus Jordan y Snyder, 1899 Clinostomun complanatum LD Contracaecum sp.LN Cyclustera cf. ralli LC Polymorphus brevis LA Posthodiplostomum minimum LD Rhabdochona lichtenfelsi NA Salsuginus angularis M Chapalichthys pardalis Álvarez del Villar, 1963 Margotrema bravoae DA Rhabdochona lichtenfelsi NA Characodon audax Smith y Miller, 1986 Allocreadium mexicanum DA Allocreadium sp.DA Bothriocephalus acheilognathi CA Caryophyllidea gen. sp. LC Clinostomun complanatum LD Contracaecum sp.LN Gyrodactylus sp. 1M Eustrongylides sp.LN Margotrema bravoae DA Margotrema sp.DA Posthodiplostomum minimum LD Rhabdochona lichtenfelsi NA Salsuginus angularis M Serpinema trispinosum LN Spiroxys sp.LN Characodon lateralis Gunther, 1866 Allocreadium mexicanum DA Allocreadium sp.DA Bothriocephalus acheilognathi CA Gyrodactylus sp. 1 M Polymorphus brevis LA Spiroxys sp.LN Streptocara sp.LN Girardinichthys multiradiatus Meek, 1904 Bothriocephalus acheilognathi CA Contracaecum sp.LN Cyclustera cf. ralli LC 98 Eustrongylides sp.LN Falcaustra sp.LN Gyrodactylus cf. elegans M Gyrodactylus lamothei M Gyrodactylus mexicanus M Gyrodactylus sp. 1M Ligula intestinalis LC Margotrema bravoae DA Ochetosoma brevicaecum LD Polymorphus brevis LA Posthodiplostomum minimum LD Spiroxys sp.LN Tylodelphys sp.LD Valipora campylancristrota LC Girardinichthys viviparus Bustamante, 1837 Eustrongylides sp.LN Posthodiplostomum minimum LD Valipora campylancristrota LC Goodea atripinnis Jordan, 1880 Apharyngostrigea sp.LD Bothriocephalus acheilognathi CA Capillaria gen. sp.NA Centrocestus formosanus LD Clinostomun complanatum LD Contracaecum sp.LC Eustrongylides sp.LN Glossocercus auritus LC Gyrodactylus lamothei M Gyrodactylus mexicanus M Gyrodactylus sp.M Gyrodactylus sp. 1 M Ligula intestinalis LC Margotrema bravoae DA Margotrema sp.DA Ochetosoma brevicaecum LD Polymorphus brevis LA Posthodiplostomum minimum LD Proteocephalidae gen. sp.LC Proteocephalus ambloplitis LC Proteocephalus longicollis CA Pseudocapillaria tomentosa NA Rhabdochona lichtenfelsi NA Saccocoeliodes cf. sogandaresi sp.DA 99 Salsuginus angularis M Spiroxys sp.LN Tylodelphys sp.LD Uvulifer sp.LD Goodea gracilis Hubbs y Turner, 1939 Pseudocapillaria tomentosa NA Rhabdochona lichtenfelsi NA Hubbsina turneri de Buen, 1941 Phyllodistomum sp.DA Polymorphus brevis LA Rhabdochona lichtenfelsi NA Tylodelphys sp.LD Ilyodon cortesae Paulo-Maya y Trujillo-Jiménez, 2000 Bothriocephalus acheilognathi CA Margotrema bravoae DA Ilyodon furcidens Jordan y Gilbert, 1882 Centrocestus formosanus LD Capillaria cyprinodonticola NA Clinostomun complanatum LD Contracaecum sp.LN Dendrorchis sp.DA Dilepididae gen. sp.LC Magnivitellinum simplex DA Margotrema bravoae DA Phyllodistomum sp.DA Posthodiplostomum minimum LD Rhabdochona ahuehuellensis NA Rhabdochona lichtenfelsi NA Rhabdochona sp.NA Saccocoeliodes cf. sogandaresi sp.LD Salsuginus angularis M Spiroxys sp.LN Ilyodon whitei Meek, 1904 Bothriocephalus acheilognathi CA Centrocestus formosanus LD Eustrongylides sp.LN Margotrema bravoae DA Posthodiplostomum minimum LD Rhabdochona ahuehuellensis NA Rhabdochona kidderi NA Saccocoeliodes cf. sogandaresi DA Salsuginus angularis M Neoophorus regalis Álvarez del Villar, 1959 100 Gyrodactylus sp. 1 M Margotrema bravoae DA Rhabdochona lichtenfelsi NA Salsuginus angularis M Neotoca bilineata Bean, 1887 Bothriocephalus acheilognathi CA Rhabdochona lichtenfelsi NA Skiffia lermae Meek, 1902 Bothriocephalus acheilognathi CA Clinostomun complanatum LD Eustrongylides sp.LD Gyrodactylus mexicanus M Gyrodactylus sp. 1M Gyrodactylus sp. 2M Polymorphus brevis LA Posthodiplostomum minimum LD Proteocephalidae gen. sp.LC Proteocephalus longicollis CA Pseudocapillaria tomentosa NA Rhabdochona lichtenfelsi NA Salsuginus angularis M Tylodelphys sp.LD Skiffia multipunctata Pellegrin, 1901 Polymorphus brevis LA Rhabdochona lichtenfelsi NA Rhabdochona sp.NA Salsuginus angularis M Xenoophorus captivus Hubbs, 1924 Spiroxys sp.LN Xenotaenia resolanae Turner, 1946 Clinostomun complanatum LN Dendrorchis sp.DA Margotrema resolanae DA Margotrema sp.DA Posthodiplostomum minimum LD Rhabdochona ahuehuellensis NA Salsuginus angularis M Spiroxys sp.LN Xenotoca eiseni Rutter, 1896 Rhabdochona xiphophori NA Xenotoca melanosoma Fitzsimons, 1972 Gyrodactylus sp. 1M Margotrema bravoae DA 101 Salsuginus angularis M Xenotoca variata Bean, 1887 Bothriocephalus acheilognathi CA Clinostomun complanatum LD Contracaecum sp.LN Cyclustera cf. ralli LC Gyrodactylus mexicanus M Margotrema bravoae DA Polymorphus brevis LA Posthodiplostomum minimum LD Proteocephalidae gen. sp.LC Proteocephalus ambloplitis LC Pseudocapillaria tomentosa NA Rhabdochona lichtenfelsi NA Salsuginus angularis M Spiroxys sp.LN Tylodelphys sp.LD Uvulifer sp.LD Valipora campylancristrota LC Valipora mutabilis LC Zoogoneticus purhepechus Bothriocephalus acheilognathi CA Domínguez-Domínguez, Clinostomun complanatum LD Pérez-Rodríguez y Contracaecum sp.LN Doadrio, 2008 Cyclophyllidae gen. sp.LC Eustrongylides sp.LN Margotrema bravoae DA Phyllodistomum sp.DA Polymorphus brevis LA Pomphorhynhcus cf. bulbocolli AA Rhabdochona lichtenfelsi NA Rhabdochona sp.NA Spiroxys sp.LN Zoogoneticus quitzeoensis Bean, 1898 Allocreadium lobatum DA Bothriocephalus acheilognathi CA Clinostomun complanatum LD Gyrodactylus lamothei M Gyrodactylus sp. 1 M Gyrodactylus sp. 2 M Margotrema bravoae DA Phyllodistomum sp.DA Polymorphus brevis LA 102 Posthodiplostomum minimum LD Rhabdochona lichtenfelsi NA Salsuginus angularis M Spiroxys sp.LN Tylodelphys sp.LD 103 Cuadro 3. Localidades de registros de helmintos parásitos de Goodeinae. Los asteriscos (*) hacen referencia las localidades nuevas aportadas por nuestros propios muestreos y aportadas al presente estudio. Acrónimo Nombre de la localidad y estado Tipo de hábitat Georreferencias Abra Abraham González, Durango Canal 24° 12' 50.7'' N; 104° 36' 25.5'' W Adju Las Adjuntas, Michoacán Río 19° 54′ 39.3″ N, 102° 12′ 20.0″ W Ahua Ahuacapán, Jalisco Arroyo 19º 39' 44.7'' N; 104º 19' 13.7'' W Ahue Ahuehuello, Puebla Río 18° 45' 19.0'' N; 98° 34' 20.4'' W Almo Almoloya, Almoloya del Río, Estado de México Canal 19° 11' 20'' N; 99° 29' 30'' W Amac Amacuzac, Morelos Río 18° 38' 47'' N; 99° 27' 02'' W Amad Amado Nervo, Durango Manantial 23º 50' 32.0'' N; 104º 11' 13.7'' W Atla Atlacomulco, Estado de México Bordo/Lago 19° 47' N; 99° 51' W Atot Río La Laja en Atotonilco, Guanajuato Río 21º 00' 07'' N; 100º 47' 42'' W Bata El Batán, Querétaro Presa 20° 13' 13'' N; 100° 24' 39'' W Berr Los Berros, Durango Manantial 23º 56'' 18.2'' N, 104º 16' 26.4'' W Bizn Biznaga, Guanajuato Presa 21° 25' 30'' N; 100° 52' 52.7'' W Buen Buenaventura, Chihuahua ? 29° 50' 16.94'' N; 107° 28' 24.86'' W Calt Presa Caltzonzin, Michoacán Presa 19º 25' 14.8'' N; 102º 07' 05.8'' W Came Lago de Camécuaro, Michoacán Lago 19° 54′ 2.3″ N, 102° 12′ 24.4″ W Cano Cantera Oriente, Ciudad Universitaria, UNAM, Ciudad de México, D.F. Cantera 19º 19' 3'' N; 99º 10' 22.2'' W Chap Parque Chapultepec, Ciudad de México, D.F., Lago artificial 19° 25' 21.1'' N; 99° 11' 02.7'' W Chic Lago de Chicnahuapan, ("Almoloya del Río"), Estado de México Lago 19° 11' 20''N; 99° 29' 30'' W Chil Chilchota, Michoacán* ? Chiq Chiquimitio, Michoacán Arroyo 19° 47' 56.4'' N; 101° 14' 45.9'' W Chis El Chisco, Morelos Río 18° 33' 00'' N; 99° 13' 00'' W Cien Río La Laja en La Cieneguita, Guanajuato Río 20° 57' 08'' N; 100° 47' 42'' W Cimm "El CIMMYT" Metepec, Estado de México Bordo 19° 13' 55'' N; 99° 33' 05 '' W Cler Cienega del Lerma Cienega N. R. Coin Cointzio, Michoacán Presa 19° 37' 7''N; 101° 16' 31'' W Cons Constitución de 1917, Querétaro Presa 20° 25' 00'' N; 100° 05' 00'' W Coro La Coronilla, Jalisco Manantial 20º 28' 9.4'' N; 104º 04' 10.6'' W Cris San Cristóbal, Michoacán Manantial 19º 57' 41.6'' N; 101º 18' 57.3''W 104 Cuis Pueblo de Cuisillos, Rancho de Don Ramón Simón, Jalisco* Manantial 20º 35'' 44' N; 103º 46' 33'' W Cuit Cuitzeo, Guanajuato-Michoacán Lago 20° 04' 34''-19° 53' 25'' N; 101° 19' 34''-100° 50' 20'' W Cupa Cupatziro, Michoacán Manantial 19° 52′ 51.3″ N, 102° 12′ 34.7″ W Cutz Cutzaróndiro, Durango Manantial 19º 10'' 59.0' N; 101º 30' 13.0'' W Cuza Arroyo El Durazno, Jalisco Arroyo 19° 30.550' N; 104° 17.665' W Duer Río Duero, Michoacán Río 19° 53' 03.6'' N; 102° 08' 53.1'' W Ener Colonia 6 de enero, Nayarit Lago 21º 31' 31.7'' N; 104º 48' 14.8'' W Estó Río Estórax, Querétaro Río 21° 02' 11'' N; 99° 50' 45'' W Ferr Río La Laja en Ferrocarrileros, Guanajuato Río 21º 48' 45'' N; 100º 49' 07'' W Galv Los Galvanes, Guanajuato Río 21° 03' N; 100° 48' W Guac Guachinango, Michoacán N.D. 20º 32' 0.5'' N; 104º 24' 8.7'' W Guad Manantial en la UMA de caza, poblado de Guadalupe Aguilera, Durango Manantial 24º 25' 59.5'' N; 104º 38' 29'' W Idel Tributario de Río San Idelfonso, Querétaro* Tributario Igna Ignacio Allende, Guanajuato Presa 20° 55' N; 100° 50' W Ignr Ignacio Ramírez, Estado de México Presa 19° 26' 54'' N; 99° 54' 39'' W Jesú Jesús María, San Luis Potosí ? 21º 55' 31.0''N; 100º 54' 38.3'' W Juam San Juanico, Michoacán Presa 19° 50' 36'' N; 102° 40' 41'' W Juan San Juanico, Estado de México Presa 19° 55' N; 99° 46' W Juas Ojo de agua de San Juan, Durango Manantial 23° 57' 11.6'' N; 104° 16' 15'' W Laad Río La Laja en Las Adjuntas, Guanajuato Río 21° 07' 29'' N; 100° 52' 12'' W Lagu La Lagunilla , Estado de México Bordo 19° 08' 30'' N; 99° 30' 12'' W Laja Río La Laja, Guanajuato Río 21° 20' 26'' N; 100° 55' 20'' W Lcha Chapala, Jalisco Lago 20° 14' N; 103° 10' W Lerm Ciénega del Lerma, Estado de México Humedal 19° 22' 41'' N; 99° 59' 39'' W Luna Lago de la Media Luna, San Luis Potosí Lago 21º 51' 18.6'' N; 100º 01' 22.3'' W Luz La Luz, Michoacán Manantial 19º 56' 08.1'' N; 102º 18' 0.2'' W Magd Canal La Magdalena, Jalisco* Canal Mara Maravatío, Michoacán Lago? 19º 52' 56.1'' N; 100º 26' 51.9'' W Marc Río San Marcos, Jalisco Río 20º 46' 35.7'' N; 104º 09' 52.6'' W Marí Río La Laja en Presa Jesús María, Guanajuato Presa 21º 21' 16'' N; 101º 12' 49'' W Mcha Pueblo de Chapultepec, Manantial de Chapultepec, Michoacán Manatial 19º 34' 20'' N; 101º 31' 18.7'' W Merc Presa Aristeo Mercado, Michoacán Presa 19º 55' 34.6'' N; 101º 39' 38'' W Mina Mina, Toluca, Estado de México Bordo N. D. Mint La Mintzita, Michoacán Manantial 19° 38' 40.3''-19° 38' 52.3'' N; 101° 16' 28.20''-101° 16' 13.0'' W Moct Moctezuma, San Luis Potosí Arroyo 22° 44.673' N; 101° 05.802' W 105 Negr Los Negritos, Michoacán Manantial 20º 03' 23.1'' N; 102º 36'38.3'' W Nori La Noria, Jalisco* Manantial 20º 35' 45'' N; 103º 46' 54'' W Opop Opopeo, Michoacán Lago 19º 24' 16.7'' N; 101º 36' 09.1'' W Oran Orandino, Michoacán Lago 19º 57' 21.8'' N; 102º 19' 29.7'' W Pásj San Jerónimo en Lago de Pátzcuaro, Michoacán* Pátz Lago de Pátzcuaro, Michocacán Lago 19° 41' - 19° 32' N; 101° 27' - 101° 53' W Pedr San Pedro del Rosal, Atlacomulco, Estado de México Bordo N. D. Piax Río Piaxtla, Municipio de San Dimas, Durango Río 24º 21' 59'' N; 105º 31' 7.8'' W Pihu Pihuamo, Jalisco Río 19º 15' 23.5'' N; 103º 22' 37.3'' W Pin1 Puente en el poblado de Pino Suárez, carretera Durango-Mezquital, Durango ? 23º 52' 43.5'' N; 104º 31' 54.7'' W Pin2 Arroyo Pino Suárez 2, Durango ? 23º 52' 12.4'' N; 104º 29' 39.3'' W Porv Canal el Porvenir, Michoacán Canal 19° 40' 29'' N; 100° 38' 25'' W Potg Potrero Grande, Jalisco Río 20° 31' 17.2'' N; 104° 07' 29.2'' W Puen Puente la Rosa, Jalisco Río 19° 27.766' N; 104° 19.134' W Quem Tierra Quemada, San Luis Potosí Manantial 21º 42' 39.1'' N; 100º 41' 32.6'' W Quer Puente Río Queréndaro, Michoacán Río 19º 53' 09.6'' N; 100º 57' 06.9'' W Reye Los Reyes, Michoacán Lago 19º 33' 43.5'' N; 102º 27' 39'' W Rico Manantial Rico, Michoacán Manantial 19°49'51.85''N; 102°30‟7.98‟‟W Rinc Río La Laja en el Rincón de los Remedios, Guanajuato Río 20º 47' 20'' N; 100º 48' 25'' W Sala Salazar, Estado de México Lago 19° 18' 34'' N; 99° 23' 45'' W Sand Rio Santa Isabel en Sandoval, Chihuahua Río 28° 33' 28.36'' N; 106° 31' 38.4'' W Sant Santiago Tiacaque, Ixtlahuaca, Estado de México Presa 19° 40' 22'' N; 99° 42' 28'' W Siem Sierra de Manantlán, Jalisco Río 19° 39' N; 104° 14' 24'' W Sier Parque Sierra Morelos, Estado de México Bordo 19° 18' 31'' N; 99° 41' 18'' W Sofi Río Guatimape en el poblado de Sofía, Durango Río 24° 54' 41.1'' N; 104° 32' 7.4'' W Sori Río La Laja en Soria La Huerta, Guanajuato Río 20° 48' 45'' N; 100° 49' 07'' W Tama Río Tamazula, Jalisco Río 19º 43' 22.7'' N; 103º 12' 08.5'' W Tamo Rio Tamochi, Chihuahua Río 28° 21' 6.8'' N; 107° 51' 10.44'' W Tapia Naranja de Tapia, Michoacán Lago 19º 16' 58.2'' N; 101º 45' 50.3'' W Teco Río Tecolote, Jalisco Río 19º 27' 40.1'' N; 104º 19' 12.3'' W Tepe Tepetitlan, Estado de México Presa 19° 37' 50'' N; 99° 58' 27'' W Teuc Balneario "El Rincón", Teuchintlán, Jalisco Manantial 20° 41.537' N; 103º 50.685' W 106 Tica Canal Santiago Tiacaque, Estado de México Canal Ties Estanque de río en Canal Santiago Tiacaque, Estado de México* Estanque Tipr Presa en Canal Santiago Tiacaque, Estado de México Presa Tlap Pueblo Tlapetlahuaya, Puebla “Manantial” 18° 45' 20.4'' N; 98° 34‟ 28.8‟‟ W Tobo El Toboso, Durango Manantial 24° 16' 30.7'' N; 104° 34' 52.8'' W Tocu Tocumbo, Michoacán Manantial 19º 42' 70'' N; 102º 30' 58.4'' W Trin Trinidad Fabela, Estado de México Presa 19° 49' 27'' N; 99° 47' 12'' W Tule El Tule, Jalisco Lago 19º 19'' 34.2'' ; 103º 22' 15.0'' W Ucas Ucasanastacua, Michoacán* ¿? ¿? Vent Rancho la Venta, Acambay, Estado de México Bordo N. D. Verd Río Verde, Jalisco Río 21º 49'' 12.0'' N; 101º 46' 21.3'' W Vict Villa Victoria, Estado de México Presa 19° 27' 30'' N; 99° 59' 39'' W Xote Río Xote, Querétaro Río N. D. Zaca Zacapu, Michoacán Lago 19° 49' N; 101° 47' W Zemp Zempoala, Estado de México-Morelos Lago 19° 03' 00'' N; 99° 18' 42'' W Zúñi Río Las Zúñigas, Querétaro* Río 20°16‟N, 100°48‟45‟‟W 27No Manantial en el pubelo 27 de Noviembre, Durango Manantial 24° 12' 16.5'' N; 104° 29' 38'' W 107 Apéndice 1. Cuadro de localidades de nuestros muestreos para helmintos parásitos de Goodeinae en México. Las georreferencias de cada localidad se detallan en el cuadro 3. N = tamaño de muestra de cada especie de huésped por localidad. Localidad Especie de huésped N 1. Manantial en Ahuacapán, Jalisco Allodontichthys zonistius 11 Ilyodon furcidens 11 2. Manantial en Canal La Magdalena, Michoacán Chapalichthys pardalis 3 3. Canal la Magdalena, Michoacán Ilyodon furcidens 2 Zoogoneticus purhepechus 7 4. Canal de Santiago Tiacaque, Estado de México Girardinichthys multiradiatus 12 5. Manantial Chapultepec, Michoacán Allotoca diazi 21 Allotoca diazi 9 Allotoca dugesii 22 Goodea atripinnis 13 Skiffia lermae 32 6. Manantial Chilchota, Michoacán Skiffia multipunctata 10 7. Manantial Cupatziro, Michoacán Skiffia multipunctata 13 Zoogoneticus purhepechus 16 8. Arroyo El Durazno en el Río Cuzalapa, Jalisco Xenotaenia resolanae 35 9. El Tule (Río), Jalisco Allodontichthys tamazulae 19 10. Estanque en el Río del Canal Santiago Tiacaque, Estado de México Girardinichthys multiradiatus 6 11. La Angostura, lago Zacapu (balneario), Michoacán Skiffia lermae 11 Allotoca zacapuensis 32 Goodea atripinnis 20 Hubbsina turneri 16 Skiffia lermae 19 Zoogoneticus quitzeoensis 30 12. Manantial La Luz, en Jacona de Plancarte, Michoacán Zoogoneticus purhepechus 32 Zoogoneticus purhepechus 12 Chapalichthys encaustus 8 Skiffia multipunctata 4 Alloophorus robustus 35 13. Manantial La Mintzita, Michoacán, Michoacán Zoogoneticus quitzeoensis 22 Alloophorus robustus 14 Goodea atripinnis 5 108 Skiffia lermae 6 Xenotoca variata 40 14. Lago de Camecuaro, Michoacán Alloophorus robustus 2 Zoogoneticus purhepechus 11 15. Lago de Opopeo, Michoacán Goodea atripinnis 4 Allotoca meeki 4 16. Las Adjuntas (Río), Michoacán Skiffia multipunctata 2 Zoogoneticus purhepechus 5 17. Manantial Los Negritos, Michoacán Chapalichthys encaustus 2 Zoogoneticus purhepechus 19 Zoogoneticus purhepechus 9 Zoogoneticus purhepechus 8 18. Manantial Cutzaróndiro, Michoacán Ilyodon cortesae 31 19. Manantial La Estancia, Michoacán Zoogoneticus purhepechus 21 20. Parque Ecológico Chicnahuapan (Lago), Estado de México Girardinichthys multiradiatus 44 Girardinichthys multiradiatus 29 21. Lago de Pátzcuaro, Michoacán Goodea atripinnis 31 Alloophorus robustus 2 22. Predio Porfirio, La Angustura, Lago de Zacapu, Michoacán Allotoca zacapuensis 3 Xenotoca variata 1 Alloophorus robustus 2 23. Bordo en el Canal de Santiago, Tiacaque, Estado de México Girardinichthys multiradiatus 2 24. Bordo en Ignacio Ramírez, Estado de México Girardinichthys multiradiatus 14 25. Bordo en Salazar, Estado de México Girardinichthys multiradiatus 35 26. Manantial Rico, Michoacán Neophorus regalis 39 26. Río Ahuehuello en Santo Domingo, Puebla Ilyodon whitei 51 28. Río Ángulo cerca del lago de Zacapu, Michoacán Alloophorus robustus 9 Xenotoca variata 20 Zoogoneticus quitzeoensis 11 Allotoca sp. 2 29. Río Tamazula, Jalisco Allodontichthys zonistius 32 Ilydon furcidens 56 30. Tributario del Río San Idelfonso, Querétaro Goodea atripinnis 10 31. San Jerónimo, Lago Pátzcuaro, Michoacán Alloophorus robustus 5 32. Santa María del Oro (Río), Jalisco Ilydon furcidens 15 109 33. Bordo en Tlapetlahuaya, Puebla Ilyodon whitei 34 34. Manantial en el parque de Tocumbo, Michoacán Chapalichthys pardalis 38 Goodea atripinnis 16 Ilydon whitei 18 35. Ucasanastacua, Pátzcuaro, Michoacán Alloophorus robustus 11 Goodea atripinnis 36. Puente en el poblado de Pino Suárez, carretera Durango-Mezquital, Durango Characodon audax 21 37. Manantial en Abraham González, Durango Characodon audax 12 38. Manantial en la Unidad de Manejo Ambiental de caza, Guadalupe Aguilera, Durango Characodon audax 14 39. Manantial el Toboso, Durango Characodon audax 42 40. Manantial en el poblado Amado Nervo, Durango Characodon lateralis 9 41. Ojo de Agua de San Juan, Durango Characodon lateralis 11 42. Ojo de Agua del poblado de los Berros, Durango Characodon lateralis 23 43. Río Potrero Grande, Jalisco Ilydon furcidens 10 Allotoca goslinei 2 44. Río Piaxtla, Municipio San Dimas, Durango Codoma ornata 21 45. Manantial en Teuchitlán (balneario), Jalisco Ameca splendens 33 46. Manantial Veneros, Jalisco Ameca splendens 6 47. Río Zúñigas, Queretaro Goodea atripinnis 7 48. Río La Laja en el Rincón de los Remedios, Guanajuato Goodea atripinnis 32 49. Río La Laja, Guanajuato Goodea atripinnis 24 50. Río La Laja en Atotonilco, Guanajuato Goodea atripinnis 10 51. Ignacio Allende, Guanajuato Xenotoca variata 30 52. Trinidad Fabela, Estado de México Goodea atripinnis 29 53. Puente La Rosa, Jalisco Ilydon furcidens 3 54. Río Duero, Michoacán Skiffia multipunctata 8 55. Pueblo de Cuisillos, Rancho de Don Ramón Simón, Jalisco Xenotoca melanosoma 20 56. La Noria, Jalisco Xenotoca melanosoma 38 57. Río La Laja en La Cieneguita, Guanajuato Xenotoca variata 31 110 CAPÍTULO II MOLECULAR PHYLOGENY OF THE GENUS MARGOTREMA (DIGENEA: ALLOCREADIIDAE), PARASITIC FLATWORMS OF GOODEID FRESHWATER FISHES ACROSS CENTRAL MEXICO: SPECIES BOUNDARIES, HOST-SPECIFICITY, AND GEOGRAPHICAL CONGRUENCE 111 En este proyecto se planteo como segundo objetivo particular reconstruir las relaciones filogenéticas intraespecíficas del género Margotrema para esclarecer la validez taxonómica de sus dos especies putativas (M. bravoae y M. guillerminae), con base en marcadores moleculares. Para ello, se reconstruyeron las relaciones genealógicas de 125 ejemplares de Margotrema, asociados a 14 especies de goodeinos (incluídas en las cuatro tribus de la subfamilia), además de una especie huésped de la familia Cyprinidae (Codoma ornata). Estos ejemplares estaban distribuidos en 15 localidades de siete sistemas hidrológicos del centro de México (Martínez- Aquino et al., 2013). La reconstrucción filogenética se realizó usando una base de datos de secuencias de ADN, obtenidos de dos marcadores moleculares: COX-1, mitocondrial e ITS1, nuclear. Las bases de datos fueron analizadas, tanto de manera independiente como combinada, a través de análisis probabilísticos para la reconstrucción filogenética de secuencias de ADN, es decir, de probabilidad posterior (Huelsenbeck & Ronquist, 2001), teoría de la coalescencia (GMYC, por sus siglas en ingles General Mixed Yule Coalescent (Pons et al., 2006; Fontaneto et al., 2007) y árboles de genes y árboles de especies (Species Tree multispecies coalescent; Maddison, 1997; Edwards, 2009). Con base en las relaciones filogenéticas de Margotrema, se propusieron las primeras hipótesis biogeográficas y cofilogenéticas observadas para la asociación Goodeinae-Margotrema. A continuación se presenta una versión del documento publicado referente a las relaciones filogenéticas intraespecificas de Margotrema spp., intitulado: Molecular phylogeny of the genus Margotrema (Digenea: Allocreadiidae), parasitic flatworms of goodeid freshwater fishes across central Mexico: species boundaries, host-specificity and geographical congruence (Martínez-Aquino et al., 2013). Citas $54 ZOOLOGICAL Ve Journal ft suis Zoological Journal of the Linnean Society, 2013, 168, 1-16. With 5 figures Molecular phylogeny of the genus Margotrema (Digenea: Allocreadiidae), parasitic flatworms of goodeid freshwater fishes across central Mexico: species boundaries, host-specificity, and geographical congruence ANDRÉS MARTÍNEZ-AQUINO*”*, FADIA SARA CECCARELLI* and GERARDO PÉREZ-PONCE DE LEÓN! Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, Ciudad Universitaria, México, D.F., México ?Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04360, Coyoacán, Distrito Federal, México “Colección Nacional de Insectos, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, Ciudad Universitaria, México, D.F., México Received 8 November 2012; revised 30 January 2013; accepted for publication 1 February 2013 We explored the genetic variation at the intraspecific level of two putative species of Margotrema, M. bravoae and M. guillerminae, to establish the species boundaries. Sequences of a mitochondrial (COD and nuclear (1TS 1) gene were obtained for 125 specimens distributed in 15 localities from seven hydrological systems. An alignment of 750 and 831 bp including gaps of COI and ITS1, respectively, was assembled. We analysed the gene fragments separately as well as together by using Bayesian inference for phylogenetic reconstruction. Based on the phylogenetic analyses, an ultrametric tree was built for each gene, and a general mixed Yule-coalescent model for species delimitation was carried out. A multispecies coalescent analysis was performed in *BEAST using both molecular markers. The results show four independent evolutionary lineages that we interpret as two valid species of Margotrema; the first is represented by an independent lineage, and the second is composed of three lineages. Because the species M. bravoae and M. guillerminae nested together within these three lineages, the validity of M. guillerminae as an independent species is questioned, and it is proposed to represent a junior synonym of M. bravoae. Each lineage shows a congruent geographical pattern with respect to the hydrological system where they occur. Additionally, each lineage shows congruence with respect to the hosts they parasitize, either at the species or at higher taxonomical levels (tribe). The parasite evolutionary history is congruent with the evolutionary and biogeographical history of their hosts. O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16. doi: 10.1111/z03.12027 ADDITIONAL KEYWORDS: COI -— GMYC -— goodeinae — ITS1 — species tree. INTRODUCTION they establish with their hosts, has greatly improved with the use of molecular tools and a range of ana- lytical methods that are available for analysing these data sets. Advancements in methodological tools has resulted in establishing more robust species *Corresponding author. E-mail: delimitation criteria for parasitic organisms and maandresCibiologia.unam.mx understanding the influence of host specificity and Our understanding of the evolution of parasitic organ- isms, as well as the complex and intricate association O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 1 112 2 A. MARTÍNEZ-AQUINO ET AL. geography on speciation mechanisms in parasites (see Poulin, Krasnov 8; Mouillot 2011a; Poulin et al., 2011b). Species limits based on molecular results are sometimes not congruent with limits established by using traditional characters such as morphology. This discrepancy is because each gene has a phylogenetic history that is intimately connected with, but not necessarily identical to, the history of the organism in which the genes exist (¡.e. Maddison, 1997; Page € Charleston, 1997). Molecular phenomena such as gene duplication, incomplete lineage sorting, and horizontal gene transfer can produce complex gene trees that differ from species trees (i.e. Funk € Omland, 2003; Maddison € Knowles, 2006). The apparent incongruence between gene trees and our conception of what a parasite species is (based only on morphological criteria) is still poorly understood. Likewise, host-parasite associations might be the result of a long evolutionary history that may be reflected in similarities in their evolutionary trees (Page, 2003, and references therein). Few studies have been conducted to address the evolutionary history of freshwater fish helminth parasites. For example, Choudhury € Dick (2001) analysed the historical biogeography of a geologically old group of fishes, sturgeons, and their parasite assemblage. Apparently, this host—parasite association was his- torically structured by colonization and subsequent coevolution, and these authors concluded that vicari- ance and the dispersal of acipenserids resulted in small but widespread and highly distinct mono- phyletic parasite lineages. In this paper, we have made use of relatively novel methodological approaches, and we have chosen a host—parasite system that involves a genus of digeneans that are allegedly host-specific to goodein freshwater fishes, i.e. that form part of the biogeographical helminth parasite core fauna (sensu Pérez-Ponce de León € Choudhury, 2005). Goodeines are an endemic monophyletic group of freshwater cyprinodontiforms that are restricted to central Mexico (Domínguez-Domínguez etal., 2010). The subfamily Goodeinae is represented by 42 species included in four monophyletic groups: Girardinich- thyini, Chapalichthyini, Ilyodontini, and Characodon- tini (each recognized taxonomically as a tribe); the phylogenetic relationships and historical biogeogra- phy of this group has been studied to a certain extent (see Domínguez-Domínguez etal., 2010, and refer- ences therein). The diversification of this fish group is the result of complex geological events that have been taking place since the Miocene in central Mexico, as a result of hydro-geomorphological changes that influ- enced the orography of this area. Goodeinae repre- sents one of the freshwater fish groups that have been studied intensively from the parasitological point of view (Peresbarbosa-Rojas, Pérez-Ponce de Léon éz García-Prieto, 1994; Pérez-Ponce de León et al., 2000; Martínez-Aquino etal., 2004, 2007, 2009a, 2011, 2012; Sánchez-Nava etal., 2004; Mejía-Madrid, Domínguez-Domínguez € Pérez-Ponce de León, 2005). Their helminth parasite faunas consist of 40 species (Pérez-Ponce de León é€ Choudhury, 2010; Martínez-Aquino etal., 2011, 2012). Among the helminth species that infect goodeines in central Mexico, two putative species of Margotrema, M. bra- voae Lamothe-Argumedo, 1972 and M. guillerminae Pérez-Ponce de León, 2001, are apparently specific to goodein hosts. Subtle morphological differences, i.e. extension of the intestinal ceca, being shorter and extending posteriad to reach the region of the anterior testis in M. guillerminae, vitelline follicles primarily lateral to the ceca, and the seminal receptacle located immediately posterior to the ovary, are used to dis- tinguish Margotrema species, and some authors have discussed the need for a study of the intraspecific morphological variability (Pineda-López et al., 2005). Species of Margotrema have been recorded along 13 independent hydrological systems in central Mexico, parasitizing 22 species of goodeines included in the four recognized tribes, although scattered records are available for two species of cyprinids, Codoma ornata and Notropis calientis, and one species of cyprinodon- tid, Cyprinodon nazas. In this paper, we study this host—parasite system in order to: (1) describe the molecular phylogenetic history of populations of the two species of parasites; (2) delimit species boundaries based on phylogene- tic reconstructions and novel algorithms that use maximum likelihood as a means of providing more objective outcomes; and (3) test the hypothesis that each subgroup of goodeines (tribes) possesses their own species of Margotrema as a result of a similar history of vicariance and dispersal. This paper is based on three main premises: (1) full characteriza- tion of parasite biodiversity requires finding all species, including those that have formed relatively recently and may therefore have minimal levels of genetic and morphological divergence; (2) two differ- ent species may show no morphological divergence because the speciation event is very recent (and struc- tural changes have not yet evolved) or, conversely, due to morphological stasis over long periods of evolution- ary time (Nadler € Pérez-Ponce de León, 2011); and (3) the evolutionary history of the parasite reflects that of their hosts due to establishing a host-specific association and congruent geographical and host distribution patterns, at the species or population levels. While addressing species delimitation and the discovery of independent evolutionary lineages at the intraspecific level as the main question, this study further intends to decipher the relative role of O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 113 MOLECULAR PHYLOGENY OF MARGOTREMA 3 geographical distribution and host-specificity in current patterns of parasite genetic variability. MATERIAL AND METHODS COLLECTION OF HOSTS AND PARASITES Between August 2008 and July 2010, a total of 1213 individual hosts representing 24 goodein species (included in the four tribes of Goodeinae) were col- lected. Samples were collected from 44 localities dis- tributed along seven hydrological systems in central Mexico: the San Pedro Mezquital River, Ameca River, Ayuquila River, Coahuayana River, Lerma River, Cuzalapa River, and Balsas River. Specimens of Mar- gotrema spp. were found in 15 of the 44 localities and in 15 of the 24 goodein species (see Supporting Infor- mation Appendix S1; Fig. 1). We also sampled a few specimens of Margotrema spp. in the upper Piaxtla River in north-western Mexico (Aguilar-Aguilar et al., 2010) (Appendix S1). Additionally, in January 2010, we collected specimens of two species of digeneans in tributaries of the Chagres River in Panama: Wal- linia chavarriae Choudhury, Hartvigsen-Daverin «€: Brooks, 2002 (Digenea: Allocreadiidae) as a parasite of Gephyrocharax sp. (Characidae) at the locality of the Frijolito River (09*”08'58.1”N, 79"43'53.8”W), and specimens of Prosthenhystera sp. (Digenea: Cal- lodistomidae) as a parasite of another species of characid at the locality of Quebrada Juan Grande (09*08'50.5"N, 79*43'21.1"W); these worms were used as outgroups for the phylogenetic analysis in this study. Fishes were sampled using minnow traps, seine nets, and electrofishing, taken alive to the labo- ratory, killed, and individually examined for para- sites. Internal organs were removed, placed in a Petri dish with 0.65% saline, and examined for helminths under a stereomicroscope. Digeneans were removed from the intestine of their hosts and placed in 0.65% saline. For molecular analysis, some specimens of Margotrema spp. (from 14 localities) were cleaned with saline and preserved in 100% ethanol. Of all the specimens preserved in ethanol and used for molecu- lar analysis, digital vouchers (i.e. microphotography and videotape) were obtained for 23.3%, Another set of specimens were collected and fixed in hot (steam- ing) 4% formalin for morphological identification. Unflattened specimens were stained with Mayer's paracarmine and mounted as permanent slides using T Conchos River Basin eZ t-- Ayuquila Cuzalapa River 100 0 100 Kilometers -25 -20 San Pedro Mezquital River Basin Lerma River Basin -20 -15 7 Balsas River Basin Figure 1. Hydrological systems and collection sites for Margotrema spp. in Mexico. Numbers correspond to each locality where specimens of Margotrema spp. were collected (for more information see Supporting Information Appendix $2). O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 114 4 A. MARTÍNEZ-AQUINO ET AL. Canada balsam. Digeneans were identified by conven- tional morphological criteria following Caira €: Bogéa (2005) and Cribb (2005) and the original species descriptions (Lamothe-Argumedo, 1972; Pérez-Ponce de León, 2001). All specimens collected for morpho- logical analysis were deposited as voucher specimens of Margotrema spp. in the Colección Nacional de Helmintos (CNHE), Instituto de Biología, Universi- dad Nacional Autónoma de México (UNAM) [National Helminth Collection, Biology Institute, National Autonomous University of Mexico], Mexico City (Appendix S2). DNA EXTRACTION, PCR AMPLIFICATION, AND SEQUENCING Sequences from two markers were obtained: 750 bp of the COI gene and a range of 666-810 bp from the ITS1 gene. These markers have proven to be useful for establishing species delimitation among digeneans (Blair, 2006; Miura etal., 2006; Razo-Mendivil, Rosas-Valdez €; Pérez-Ponce de León, 2008). To obtain a range of the Margotrema species” genetic variability (while avoiding sequencing individuals from the same host), DNA was extracted from one individual of Mar- gotrema spp. for each host, per locality. In addition, specimens of W. chavarriae, Prosthenhystera sp., and Allocreadium lobatum Wallin, 1909 (from Semotilus atromaculatus from Tobacco Creek, Manitoba, Canada) were used for DNA extraction. DNA was obtained by using the DNAeasy blood and tissue extraction kit (Q)iagen, Valencia, CA, USA) following the manufacturer's instructions. Amplifications of the selected DNA fragments were carried out in a total volume of 25 uL, with 2.5 uL of 10 x PCR buffer, 1.25 uL of MgCl,, 1uL of dNTPs (0.25 mm), 1uL of each primer, 0.4u4L of Tag polymerase (OMEGA; 0.625 U), 1-5uL of DNA template and 13.85 or 17.85 uL of ddHz20. PCRs were carried out using primers JB3 fwd (5-TITTTIGGGCATC CTGAGGTTTAT-35) (Morgan € Blair, 1998) and CO1-R trema rev (5'-CAACAAATCATGATGCAAA AGG-3) (Miura et al., 2005) for the COI fragment, and Glyp1 fwd (5-GCTGAGAAGACGACCAAACTT GAT-35 (Razo-Mendivil etal., 2010) and BD2 rev (5'-TATGCTTAAATTCAGCGGGT-3) (Luton, Walker $ Blair, 1992) for 1781. To obtain DNA sequences of ITS1, we used the following internal primers: 5.88 rev (5”-AATGTGCGTTCAAGATGTCGAT-3” and Relnt BD1 (5'-ATGTTCATAAGACAACCCAGCTC-353, specifically designed for this study. PCR cycling con- ditions were as follows: for COI, an initial denaturing step of 5 min at 94 *C, followed by 35 cycles of 92 *C for 30 s, 47 *C for 45/50 s, and 72*C for 90 s, and a final extension step at 72 *C for 10 min; for 1TS1, an initial denaturing step of 2 min at 94 *C, followed by 30 cycles of 94 *C for 1 min, 50 *C for 15 s, and 60 *C for 4 min, and a final extension step at 60 ”C for 5 min. PCR products were either purified using Millipore columns (Millipore, Bedford, MA, USA) and then sequenced on an ABI Prism 3100 Genetic Analyser, or sent directly to the High-Throughput Genomics Unit at the University of Washington (http://www.htseq.org/index.html). MOLECULAR DATA SETS All sequences were edited using the platform Geneiuos Pro v5.1.7 (Drummond et al., 2010). COI and /TS1 alignments were assembled using an inter- face available with MAFFT v6.717b (Katoh € Toh, 2008) within Geneiuos Pro, with a final edition by eye in the same platform. For the COI sequences, we checked the nucleotide alignment and for the pres- ence of pseudogenes in Geneiuos Pro, using the trans- lated amino acid sequences based on the flatworm mitochondrial genetic code. In the I/TS1 marker sequences, we detected two 5'-3” regions with differ- ent short tandem repeats (STRs). The first region was detected after 88 bp in all sequences of Margotrema spp., and the second region of 345 bp was only found in sequences of individuals from Cuzalapa River, Jalisco. As the first region of STRs possesses a total of 97 variants and second region posseses two variants, where homology cannot be established based on model substitution (Li ef al., 2002; Ellegren, 2004; Guy-Franck, Kerrest € Dujon, 2008), we did no use this molecular information in the phylogenetic analysis. PHYLOGENETIC RECONSTRUCTION AND SPECIES DELIMITATION ANALYSES The most appropriate DNA sequence evolution model was selected by using j¡ModelTest 0.1.1. (Posada, 2008) and applying the Bayesian Information Crite- rion (BIC) (Schwarz, 1978) for each data set sepa- rately (COI and ITSI). The COI data set was partitioned into first-, second- and third-codon posi- tions with the appropriate nucleotide substitution model implemented for each codon position [HKY+G for the first (Hasegawa, Kishino € Yano, 1985); TPM2uf+G for the second (Kimura, 1981); and HKY+I-G for the third codon position (Hasegawa et al., 1985)]. The nucleotide substitution model that fit the ITS1 best was HKY+G. Sequences from two additional species, A. lobatum and W. chavarriae, were used to root the trees because they belong to the same family as Margotrema (Allocreadiidae). An additional taxon, Prosthenhystera sp. (Callodistomi- dae), was used as an outgroup because it is a sister group of the family Allocreadiidae (Curran, Tkach, € O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 115 MOLECULAR PHYLOGENY OF MARGOTREMA 5 Ovestreet, 2006, 2011). We inferred the phylogenetic relationships using Bayesian inference (BD through MrBayes v. 3.1.2. (Huelsenbeck € Ronquist, 2001). The phylogenetic trees were reconstructed for both genes separately using two parallel analyses of Metropolis-coupled Markov chain Monte Carlo (MCMO) for 20 x 10% generations each to estimate the posterior probability (PP) distribution. Topologies were sampled every 1000 generations. Once the average standard deviation of split frequencies was less than 0.01, as suggested by MrBayes 3.1.2., the convergence between runs was checked. The robust- ness of the clades was assessed using Bayesian PP for the BI analysis, where PP>0.95 was considered strongly supported. A majority consensus tree with branch lengths was reconstructed for each run after discarding the first 15 000 sampled trees. All phylo- genetic analyses in this study were carried out using the supercomputer HERCULES (http://www.ub.edu/ molevol/) at the Universitat de Barcelona, Spain. We used general mixed Yule-coalescent (GMYC) modelling for estimating species boundaries directly based on the phylogenetic tree topology (Pons et al., 2006; Fontaneto et al., 2007). The GMYC algorithm detects differences in the rate of lineage branching at the species and population levels, recognizable as a sudden increase in the apparent diversification rate when the ultrametric node height (distances to tips) is plotted against the log number of nodes in a lineage- through-time plot (Nee, Mooers € Harvey, 1992). Analyses were conducted with each data set sepa- rately (COI and ITS1). The consensus trees from the BI analyses were passed through the program Tree Edit v1.0a10 (Rambaut €: Charleston, 2002) to obtain an ultrametric tree with branch lengths using non- parametric rate smoothing (NPSR), with the model welght rate differences across the root (Sanderson, 1997). A single threshold value for the input tree was used (Monaghan et al., 2009), a method that has already been applied successfully to certain groups of organisms (i.e. Ahrens, Monaghan € Vogler, 2007; Monaghan et al., 2009). The ultrametric phylogenies recovered with the MrBayes/Tree Edit were subjected to the GMYC analyses script (freely available as part of the splits package from http//r-forge.r-project.org/ projects/splits/) with the platform R 2.12.0 (R Devel- opment Core Team, 2009). A list of delimited GMYC species (described in the file's output as maximum- likelihood entities) was compiled from the graphical output of the GMYC analysis in R. We performed a Species Tree (multispecies coales- cent) analysis using a multiple marker approach applied to the combined data set of COHITS1 to infer a species tree from separate genes trees (ie. Maddison, 1997; Edwards, 2009). We used the Baye- sian MCMC method implemented in *BEAST (star BEAST) software (version 1.7.2, Drummond € Rambaut, 2007; Heled € Drummond, 2010) to infer the genealogical relationship between the lineages of Margotrema spp. We performed that analysis on a data set that combined both COI and IT'S] data sets, implementing the gene-specific substitution models of GTR available in the BEAST package (BEAUti v.1.7.0; Drummond € Rambaut, 2007). Specifically, we used *BEAST to infer the Species Tree of combined data sets assuming a Yule speciation process tree prior and ran two independent tree searches of 20 x 10% generations each, retaining one in every 1000 samples from the posterior distribution of the model parameter log files and tree files. Branch support for the different tree topologies was evaluated by the PP of the inferred relationships, where PP>0.95 was considered to provide strong nodal support. The trees with the highest lineage PP were chosen from the *BEAST output files using the program TreeAnnotator v. 1.7.2 (Drummond € Rambaut, 2007). The Species Tree analysis was run in the aforementioned programs in the Bioportal of the University of Oslo (http:// www.bioportal.uio.no/). Furthermore, the proportion (p) of absolute nucleotide sites (p-distance) (Nei éz Kumar, 2000) was obtained to compare the genetic distance among and between lineages, with and without outgroups. We generated two data sets for COT and ITS1 as follows: (1) a data set including all Margotrema individuals together with sequences of species of the same family Allocreadiidae, and (2) a data set that included only all individuals of Margot- rema. The p-value matrices were obtained for each data set gene using MEGA version 5 (Tamura el al., 2011), with variance estimation with the bootstrap method (100 replicates) and with a nucleotide substi- tution (transitions + transversions) uniform rate. RESULTS We obtained DNA sequences from a total of 134 individuals assigned to Margotrema spp. (127 speci- mens, ingroup), Allocreadium lobatum (one specimen, outgroup), Prosthenhystera sp. (three specimens, out- group), and Walliniae chavarriae (three specimens, outgroup). In total, for the ingroup, we obtained sequences of COT and 1TS1 from 14 localities that were associated with 15 goodein and one cyprinid species, respectively (Appendix 2; Fig. 1). In the next section, we show the results obtained for each molecu- lar marker. Col We sequenced 125 specimens corresponding to 118 individuals of Margotrema, one of A. lobatum, three of Prostenhystera sp., and three of W. chavarriae. This O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 116 6 A. MARTÍNEZ-AQUINO ET AL. data set consisted of 750 bp, except for two individu- als that had 698 bp (one from Chapalichthys pardalis and one from llyodon furcidens in Tocumbo), and one individual with 621 bp (from Alloophorus robustus). For the outgroups, COT sequences of W. chavarriae also had 750 bp, Prostenhystera sp. had 445 bp, and those of A. lobatum had 687 bp. The level of variation in the single nucleotide polymorphisms (SNPs) for each partition (first, second, and third codon posi- tions) was 97/116/49 conserved, 153/134/201 variable, 140/131/171 parsimony-informative, and 13/3/30 singleton sites, respectively. In the partition of the protein-coding gene, the third codon position was the most variable, followed by the first and then the second position. We inferred the Bayesian phylogenetic relation- ships for 118 individuals of Margotrema to assess species limits using GMYC analyses. The results of these analyses are presented in Table 1. The number of species — independent evolutionary lineages — detected by the GMYC analyses with the COI data set was 4 (Fig. 2). The genetic distance values among the four lineages of Margotrema with COI ranged from 2.87 to 9.39% (Table 2), and when the ingroup was compared with the outgroups, from 13.65 to 14.57% with W. chavarriae, from 20.09 to 21.25% with A. lobatum, and from 72.47 to 73.07% with Prosthenhystera sp. Table 1. Number of GMYC species recovered and outputs obtained from the single-threshold GMYC analyses per- formed for the two data sets examined Dataset T NC NS CI LO LGMYC LR COI 0.32 5 9 415 590.8 596.8 12.0* ITS1 -1.40 4 5 4-14 310.1 320.9 8.3* Ultrametric tree reconstruction with the following param- eters: T, threshold genetic distance from the branch tips where the coalescent-speciation transition occurred; NC, number of clusters (GMYC species with more than one individual); NS, number of GMYC species discriminated; CI, confidence intervals of GMYC species; LO, likelihood of null model; LGMYC, likelihood of GMYC model; LR, like- lihood ratio with significance indicated by an asterisk (FP < 0.01), ITS1I We successfully obtained a range of 799-810 bp for 98 individuals of Margotrema, except for one individual from Alloophorus robustus from La Mintzita spring and one from Characodon audax from the Abraham González spring, for which 365 and 722 bp, respec- tively, were obtained. The variation in SNPs of the ingroup was from 365 to 810 bp, with 715 conserved sites, 99 variable sites, 45 parsimony-informative sites, and 54 singleton sites. Meanwhile, for out- groups, the size of ITS1 was shorter, with 487, 630, and 606 bp for one specimen of A. lobatum, two speci- mens of Prosthenhystera sp., and two specimens of W. chavarriae, respectively. The number of species — independent evolutionary lineages — detected by GMYC using the topology of the Bayesian inference of 98 individuals of Margot- rema of I1TS1 was 2 (Fig. 3). The results of the GMYC analysis are presented in Table 1. The genetic dis- tance value between the two lineages of Margotrema with I1TS1 was 3.48%. Lineage I and Lineage ll varied by 46.11 and 47.02% with respect to W. chavarriae, 43.93 and 44.86% with A. lobatum, and 52.3 and 54.44% with Prosthenhystera sp., respectively. Lineage l, delimited using GMYC based on the ITS1 ultrametric tree, corresponds to Lineage 1 from the COI-based GMYC analysis as far as individuals, hosts, and geographical locations are concerned. On the other hand, 17S1-based Lineage II contains indi- viduals that were grouped into Lineages II, III and IV based on the ultrametric tree obtained with COI. COMBINED DATA SET (COL+HITSTD) The complete alignment using both COÍ and ITS1 gene fragments consisted of 93 sequences, of which 88 corresponded to individuals of Margotrema, two of Prosthenhystera sp., one of A. lobatum, and two of W. chavarriae, with 1711 bp including gaps. The com- bined data set was used to perform a multispecies coalescent analysis as implemented in *BEAST, resulting in a Species Tree (ST) (Fig. 4). The ST analysis represents the most clear-cut summary of the data. A brief description of the host— parasite association and geographical distribution of each of the four lineages recovered by analysis of the combined data set of COÍ and ITS]1 gene trees is presented next: Lineage 1 is composed of one single » Figure 2. Bayesian ultrametric tree inferred from the COI data set and subjected to GMYC analysis. Names of terminal taxa include a code referring to the locality (four upper-case letters), the host species (three letters), and numbers indicating the isolate (for more information see Supporting information Appendix S2). The scale bar represents the number of nucleotide substitutions per site. Filled circles above/below branches represent Bayesian posterior probability = 0.95. O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 117 MOLECULAR PHYLOGENY OF MARGOTREMA 17 mi sp. Wall hi Wailinia hi Allocreadium lobatum ZA X ZN Es TLAP Iwh11 TLAP [wh10 LA! 6 + o AHUA Ifu6 AHUA Ifu5 AHUA Azo10 AHUA Azo8 AHUA Az AHUA Azo11 AHUA Azo9 AHUA Ifu3 AHUA Azo4 OPOP Amet MINT Zquá MINT Zqu3 MINT Zquí7 MINT Zqu6 MINT Zque MINT Zquí MINT Aro o o La hs o e . OPOP Ame3 MINT Zqu5 MINT Zquá CHAP Adi8 CHAP Aduá4 CHAP Adi6 CHAP Adig CHAP Adi OPOP Am4 OPOP Am2 CHAP Adu6 CHAP Adu5 CHAP Adu8 SHAB Adi HAP Adu CHAP Adi10 ZACA Aza CHAP Adi2 CHAP Adi13 CHAP Adi12 O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 LINEAGE | LINEAGE ll LINEAGE lll LINEAGE IV 118 8 A. MARTÍNEZ-AQUINO ET AL. Table 2. Distance matrix of uncorrected p-distances of among and within lineages derived from COI analysis by general mixed Yule-coalescence model I TI TIT Intralineage Lineage 1 0 Lineage II 8.78 1.15 Lineage TI 9.39 6.62 1.13 Lineage IV 9.08 6.04 2.87 0.08 population distributed in Arroyo Durazno in the Cuzalapa River, Jalisco State. This lineage is also restricted to a single species of goodein, Xenotaenia resolanae, a member of the Tribe Ilyodontini (Figs 1, 2). The intralineage genetic distance (for COD is null. Lineage Il was found in four localities, two of them corresponding to the Balsas River Basin (Tlapetla- huaya spring, Puebla State, and Tocumbo spring, Michoacan State) parasitizing Allodontichthys zonis- tius, Ilyodon whitei, I. furcidens (Tribe: Ilyodontini), and Chapalichthys pardalis (Tribe: Chapalichthyini), one in the Armeria River (stream in Ahuacapán, Jalisco State), and the last locality was further north in a tributary of the Conchos River Basin (Bocoyna, Chihuahua State) parasitizing Codoma ornata (Cyprinidae) (Figs 1, 2). Interestingly, no species of goodeines are currently distributed in that river basin. The intralineage genetic distance in Lineage II (for COD is 1.15%. Lineage III is the most widespread within Margotrema and contains six localities along four hydrological systems included in the Lerma River Basin: Opopeo Lake, La Mintzita spring, Chapultepec spring, La Luz spring, La Angos- tura at Zacapu Lake, and Rico spring, all in Micho- acán State (Figs 1, 2). The hosts where Lineage III was found correspond to members of the Tribe Chapalichthyini (i.e. A. robustus, Zoogoneticus pur- hepechus, and Z. quitzeoensis), as well as members of the Tribe Girardinichthyini (i.e. Allotoca diazi, A. duguest, A. meekti, A. zacapuensis, and Neoophorus regalis). The intralineage genetic distance in Lineage TIT (for COD is also very low, 1.13%. Finally, Lineage IV is found in four localities whose distribution is restricted to the Mezquital River Basin (Figs 1, 2), and the specimens are found parasitizing Characodon audax, a member of the basal tribe of Characodontini goodeines. The intralineage genetic distance in Lineage IV (for COD is also very low, 0.08%. The distinction of the two putative species of Margotrema (M. bravoae and M. guillerminae) is not supported by the molecular data. As previously men- tioned, these two species are separated by having intestinal ceca that extend to different levels of the body's length. Our molecular analysis clearly shows that the two morphs representing such conditions, i.e. the long and short ceca, are nested together in what is recognized as Lineages II, III and IV (see Figs 2, 3). DISCUSSION GENERAL PATTERNS OF SPECIES DIVERSIFICATION The results of the methodological approach we con- ducted in this paper to test species boundaries and as a subsequent result to uncover the number of genetic lineages of Margotrema based on separate or com- bined data sets (¡.e. GMYC analyses) show that only Lineage l is consistently recovered by all three analy- ses (Figs 2, 3). An important difference between the COI and ITS1 species delimitation analyses using the GMYC model is the number of lineages recov- ered, as COI recovers four lineages (Fig. 2), while ITS1 actually recovers only two (Fig. 3). Apparently, ITS1 possesses a weaker phylogenetic signal, result- ing in two species based on coalescent resolution. This finding might be explained by the relatively slower rate of evolution (i.e. nucleotide substitution) of this gene. In contrast, COI exhibits a higher reso- lution because, as a mitochondrial gene, it is consid- ered to be a rapidly evolving gene (Avise, 2008; Hickerson et al., 2010). Reciprocal monophyly was found only in Lineage 1 when the data sets were analysed separately. This result strongly supports the idea that Lineage 1 represents an undescribed species of Margotrema. The GMYC model represents an approach designed for the identification of independently evolved line- ages (species) as the most likely point of transition from coalescence to speciation branching patterns on an ultrametric phylogenetic tree with branch lengths scaled to time (Pons et al., 2006; Fontaneto et al., 2007). This approach recovers highly diverse biologi- cal groups whose boundaries are determined by using molecular markers; it has been used in taxonomically neglected taxa such as weevils and wasps (see Astrin et al., 2012; Ceccarelli, Sharkey € Zaldívar-Riverón, 2012). Likewise, recent studies have used this approach to determine species boundaries at the intraspecific level, i.e. using subpopulations that seem to represent only one morphologically valid species (Marshall et al., 2011). In this study, we used GMYC for establishing species boundaries in populations of two putative species of Margotrema and for providing data to support the idea that species can be delimited by using shifts in the phylogenetic branching rate that are found by a single-threshold mixed Yule- coalescent model (Marshall ef a/., 2011; Powell, 2012). In our study, we found contrasting results between the two molecular markers in the number of lineages delimited because the rates of molecular evolution O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 119 MOLECULAR PHYLOGENY OF MARGOTREMA 9 fobatum sp. “LINEAGE | [o P P D T I T I O E E C C O ! S P P E5z 09 o —_ TOGU Ifu2 TOCU Ifu1 BOGO Cor AHUA Azo10 TLAP Iwh2 AHUA Azo13 AHUA Ifu8 e AHUA Ifu6 0.4 subst./site LINEAGE ll O el Or 0 S O 0 3 D N' ' O Z O Z 3 I O 1 0 1 0 S O S O R O % 0 2 0 % » 3 D E Ea DA TA DA DA DA D 2 7 3 4 3 2 4 3 O D O D Z Z A D Z N D U I D S D S z z 10 00 90 0 0 2 0 2 NL" 2 2 7 Ru V E 58 a O S D a ¡as GUAG Cha2 GUAG Cha1 ——— Wallinia chavarriao ——— Wallinia chavarriao Figure 3. Bayesian ultrametric tree inferred from the 71781 data set and subjected to GMYC analysis. Names of terminal taxa include a code referring to the locality (four upper-case letters), the host species (three letters), and numbers indicating the isolate (for more information see Supporting information Appendix $2). The scale bar represents the number of nucleotide substitutions per site. Filled circles above/below branches represent Bayesian posterior probabil- ity > 0.95. differ between the two markers. We chose to follow a conservative approach by considering Lineages II, III, and IV as a single species with three independently evolving lineages with a strong phylogenetic struc- ture, suggesting a case of incipient speciation that results from the potential lack of gene flow among lineages due to geographical separation. The branch- ing pattern of the I1TS1 phylogenetic tree, i.e. short branches for all terminals, is a strong indicator of insufficient time to accumulate polymorphisms and to complete the speciation process, even with geographi- cal separation of their populations (Figs S1 and S2). For instance, Bueno-Silva, Boeger € Pie (2011) found similar results while studying a monogenean parasite species with freshwater and brackish fish hosts using the same molecular markers. O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 120 10 A. MARTÍNEZ-AQUINO ET AL. [ Prosthenhystera sp. [ turn lobatum Wallinía ch l 1 n= LINEAGE | 1 LINEAGE ll 0.99 LINEAGE lll 0.9 0.003 subst./site LINEAGE IV Figure 4. Coalescent-based phylogenetic tree obtained from the Species Tree analysis of the combined data set (COH+ITS1). The scale bar represents the number of nucle- otide substitutions per site. Bayesian posterior probabili- ties > 0.95 are shown above the node. We took a second step in our analysis and tested the genealogical relationships for the combined data set of COT and I1T'S1 by using an ST approach with a consensus method that allowed us to eliminate the effect of the weight of a particular gene (Edwards, Liu $: Pear, 2007; Liu et al., 2008). This analysis has the ability to jointly infer a summary tree from different gene trees (i.e. genealogies) sampled from multiple individuals. In this context, a *BEAST analysis works by embedding separate genealogies inside a summary tree through coalescence backwards in time, starting from the tips of the tree (Rannala € Yang, 2003). The model assumes that there is no gene flow among the focal groups (in our case, the terminal ingroup taxa representing independent evolutionary lineages), regardless of whether the lineages are taxonomically or geographically related, and therefore any incongru- ence between the genealogies and the summary tree can be explained by the retention of ancestral poly- morphisms. This assumption is particularly appropri- ate for autogenic digenean parasites with some level of host specificity that are distributed in a restricted geographical area (i.e. water bodies) that do not natu- rally disperse over water and that therefore have no gene exchange among host species or hydrological systems. For this reason, the *BEAST approach has been used recently to analyse all information in the mtDNA and nuclear DNA data sets in a single analy- sis, given the ability of *FBEAST to account for differ- ences in the time to coalesce between haploid (mitochondrial) and diploid (nuclear) markers (Heled $ Drummond, 2010). This approach can improve the accuracy of tree reconstruction compared with the more traditional approaches that do not account for the coalescent process, assuming that the condition of no gene flow among lineages is met (Heled é Drummond, 2010). The *BEAST approach is espe- cially useful in cases involving recent divergence events, where retention of ancestral polymorphisms among lineages is more likely to mislead phylogenetic reconstruction. This observation may explain the results of our analysis as a case of either incipient speciation for Lineages II, TI, and IV or the lack of gene flow among them. For this reason, we followed a conservative position and consider them as a single species. The phylogenetic relationships detected with the ST approach and the high values of PP support these relationships (PP > 98) (Fig. 4), provid- ing unambiguous genetic evidence of the discovery of four independent evolutionary lineages among Mar- gotrema that represent two monophyletic species, irrespective of the outgroups analysed. Additionally, our results reinforce the idea that species limits can be established by using not just the results of a phylogenetic inference but also the shifts in the phy- logenetic branching rate revealed by the single- threshold mixed Yule-coalescent model; furthermore, the ST approach was used for combining information of two molecular markers as suggested by Marshall et al. (2011) and Satler et al. (2011), obtaining a more reliable phylogenetic tree of species” relationships. TAXONOMIC IMPLICATIONS Two species of Margotrema have been described thus far, M. bravoae as a parasite of Girardynych- thys multiradiatus from the Ciénega de Lerma (Lamothe-Argumedo, 1972), and M. guillerminae as a parasite of Notropis (=Hybopsis) calientis and Alloophorus robustus from Zacapu Lake (Pérez-Ponce de León, 2001), both in the Lerma River Basin in central Mexico. These species were distinguished solely on morphological grounds, and the major dif- ference was the extension of the intestinal ceca along the body, with M. guillerminae representing a mor- photype with short ceca, while M. bravoae exhibited long ceca extending posteriorly to half the distance between the testes and the posterior end of the body (Pérez-Ponce de León, 2001: 1113). Additional records of these two species were established in several pub- lished accounts after they were originally described, even though observation of the distinguishing char- acter was particularly difficult in gravid specimens because the uterus is normally full with large-sized embryonated eggs. Margotrema bravoae had been recorded in at least 14 species of goodeines in 14 localities, while M. guillerminae had been found in 13 goodeines in 15 localities. Actually, in some localities, O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 121 MOLECULAR PHYLOGENY OF MARGOTREMA 11 both species had been recorded in independent publications. For instance, in Zacapu Lake, the type locality for M. guillerminae, other authors have reported the presence of M. bravoae. Mejía-Madrid et al. (2005) studied 35 species of goodeines. Of the species examined, 18 were infected with Margotrema spp., ten were infected with M. bravoae, and eight were infected with M. guillerminae; only M. bravoae was found in Zacapu Lake. More recently, Martínez-Aquino et al. (2012) conducted a study of the helminth parasite fauna of goodeines from Zacapu Lake, and they only reported the presence of M. cf. bravoae. In all of those cases, identification was based solely on morphology. Some authors have argued about the validity of M. guillerminae; however, they provided no empirical evidence and no reliable argu- ments to demonstrate that this species was not valid (Pineda-López et al., 2005). The results we provide in this study are based on molecular evidence and demonstrate that, irrespective of the tree topologies obtained from either mitochondrial or nuclear genes, M. guillerminae should be synonymized with M. bra- voae. In all analyses, it can be seen that M. guiller- minae, i.e. morphotypes with short ceca, do not comprise a monophyletic assemblage. This finding means that in Lineages II, III, and IV, representative specimens with long ceca are nested together with those exhibiting short ceca. Therefore, M. guillermi- nae is synonymized with M. bravoae, and it is con- cluded that the ceca extension in this group of digeneans should not be used as a taxonomic charac- ter to establish species distinction. We are currently preparing a strictly taxonomic paper in which the synonymy will be formally presented by emending the diagnosis of M. bravoae and by describing, in a formal way, the new species uncovered by the molecular data. Furthermore, this synonymy can explain the fact that both species have been recorded as occurring in sympatry, i.e. in the same localities and host species. For instance, both species were recorded as parasites of Characodon audax in the Toboso spring, Durango (Mejía-Madrid et al., 2005; Martínez-Aquino et al., 2007). As previously stated, our results provide unambigu- ous evidence that Margotrema currently consists of two putative species, M. bravoae (represented by three well-defined lineages) and an undescribed species found exclusively in X. resolanae in the Cuza- lapa River, represented in all of our analyses consist- ently as Lineage I. Martínez-Aquino et al. (2009a) previously recorded M. guillerminae as a parasite of X. resolanae; however, this identification was based solely on morphological grounds. In the present study, we demonstrate that these specimens are an inde- pendent evolutionary entity, which was described as Lineage l in all analyses, either through GMYC (for both molecular markers analysed separately) or through ST with the combined data set. This species represents an undescribed species, which requires further taxonomic work to establish the proper species description. Because traditional morphologi- cal traits would not be useful, other sources of infor- mation need to be explored. HOST ASSOCIATION AND BIOGEOGRAPHY In the literature, phylogenetic analyses of several parasite taxa have been used to uncover patterns of close association between both the host species/ parasitic taxa and the geographical distribution of both associates, resulting, in some cases, in incongru- ent patterns due to instances of speciation via host- switching or ecological host extensions (Nieberding etal., 2008, and references therein). In the case of Margotrema spp. and their goodein hosts, it seems plausible to postulate, based on the phylogenetic information obtained herein, that each lineage shows some level of congruence with the hosts they infect and the river basin these hosts inhabit. Lineage 1 shows a restricted distributional range in the Cuza- lapa River, in Jalisco State, on the Pacific slope of Mexico, and it is only found, as previously mentioned, in X. resolanae. Likewise, even though M. bravoae sensu lato contains three well-supported genetic lin- eages, lt appears that each one of these lineages also shows some level of congruence with the hosts and geographical region (hydrological system) in which they live, as shown in Fig. 5A, which represents a summary of the results obtained in this study. The geographical range of Lineage Il is wide and consists of three independent hydrological systems, and it is primarily found in members of the tribe Ilyodontini, even though some isolates were found in a member of the tribe Chapalichthyini, and one was even found infecting a member of the family Cyprinidae. Lineage III is apparently restricted to water bodies of the Lerma River Basin and is only associated with members of the tribes Girardinichthyini and Chapali- chthyini. Finally, Lineage IV also shows a restricted geographical distribution, in four localities along the San Pedro Mezquital River Basin in north-western Mexico. This lineage is only associated with Chara- codon audax, a member of the tribe Characodontini, allegedly representing the basal members in the phy- logenetic history of goodeines (Domínguez-Domínguez et al., 2010) (Fig. 5B, C). In this context, and based on the diversification and biogeographical patterns of Goodeinae in central Mexico, we argue that the evo- lutionary history and the historical biogeography of the four genetic lineages of Margotrema are closely linked to that of their hosts, reflecting the three types of historical associations as described by Page € O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 122 12 A. MARTÍNEZ-AQUINO ET AL. (A) SPECIES A SPECIES B Lineage | Lineage Il Lineage lll Lineage IV (B) Cuzalapa Ayuquila, Balsas and Lerma Mezquital Conchos (C) Ilyodontini Ilyodontini 7 Chapalichthyini Xenotaenia resolanae Allodontichthiys zonistius llyodon whitei [. furcidens Chapalichthys pardalis Codoma omata* Girardinichthyini / Chapalichthyini Characodontini Allotoca diazi Characodon audax A. duguesii A. meeki A. zacapuensis Neoophorus reagalís Alloophorus robustus Zoogoneticus purhepechus Z. quitzecensis Figure 5. Schematic representation depicting the types of historical associations among genes, areas, and hosts of Margotrema. A, phylogenetic inferences (organisms and gene) (diffuse grey, I1TS1; black lines, COD. Each colour represents independent evolutionary lineages. B, hydrological systems representing the distribution area of each lineage (area and organism). C, host association for each lineage of Margotrema at tribe or species level (host and parasite). Colours in the scientific names are used to correlate the name of the tribe with the species contained in each tribe. An asterisk (*) indicates a species of host belonging to the family Cyprinidae (for more information see Supporting Information Appendix S2). Charleston (1998: 356): (1) organism and gene, (2) area and organisms, and (3) host and parasites (Fig. 5A-C). Interestingly, each of the Margotrema lineages show some host-specificity with a particular tribe of goodein, and in the particular case of Line- ages 1 and IV, this host-specificity is even narrower because these lineages are found at the fish species level (Fig. 5C). This host-specificity pattern might be explained as a result of a parasite speciation via host-switching of the most recent common ancestor or host—parasite co-divergence events of each Margot- rema lineage. It has been argued that several factors have shaped the evolutionary and biogeographical history of goodeines in central Mexico (Parenti, 1981; Miller € Smith, 1986; Domínguez-Domínguez et al., 2010). If tecto-volcanic activity as well as river capture promoted the diversification of goodeinae in central Mexico, then we hypothesize that the distribution patterns as well as host associations of each lineage of Margotrema will be concordant with the hydro-geomorphological events that occurred in central Mexico and that the vicariant and dispersal events that caused the goodein diversification pro- moted at the same time the diversification of each Margotrema lineage. Other molecular phylogenetic studies of parasite taxa of freshwater fish, including extensive sampling of populations along their distributional range, have shown similar patterns of diversification, in that inde- pendent evolutionary lineages are detected even in the absence of morphological data supporting those patterns. For instance, Martínez-Aquino et al. (2009b) and Rosas-Valdez, Choudhury €: Pérez-Ponce de Léon (2011) uncovered a diversification process in species belonging to the acanthocephalan genus Neoechinor- hynchus and the digenean genus Phyllodistomum, respectively, where the evolutionary history of the parasite lineages is also closely tied to that of their hosts, showing clear instances of speciation via host-switching. O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 123 MOLECULAR PHYLOGENY OF MARGOTREMA — 13 ACKNOWLEDGEMENTS We thank R. Aguilar, R. Pérez, D. I. Hernández, and F. J. Alcántar for their help during fieldwork in Mexico; A. Choudhury and Ch. Brosseau for their help during fieldwork in Panama; A. Choudhury for finan- cial support; and staff of the Smithsonian Tropical Research Institute (STRD, Tupper Center, for facili- ties to conduct fieldwork in Panama. Donation of specimens for sequencing by A. Choudhury and R. Rosas is appreciated. We are grateful to L. Cervantes for her technical assistance in the molecular lab, U. Razo for his help designing primers, L. Marquez for sequencing specimens, B. Mendoza for processing some of the specimens, and L. García for providing specimens from the CNHE. We also thank P. Librado for his help in performing a script for using HERCULES, and A. Sánchez and J. Rozas for earlier discussions of this manuscript. We thank the American Journal Experts for editing the English text. A.M.A. was supported by a scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACyT). This paper fulfils the requirements of A.M.A. to obtain his PhD degree within Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. This study was supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT 83043), and Programa de Apoyo a Proyec- tos de Investigación e Inmovación Tecnologíca (PAPIT-UNAM IN 202111) to G.P.P.L. REFERENCES Aguilar-Aguilar R, Rosas-Valdez R, Martínez-Aquino A, Pérez-Rodríguez R, Domínguez-Domínguez O, Pérez- Ponce de León G. 2010. Helminth fauna of two cyprinid fish (Campostoma ornatum and Codoma ornata) from the upper Piaxtla River, Northwestern Mexico. Helminthologia 47: 251-256. Ahrens D, Monaghan MT, Vogler AP. 2007. DNA-based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleptera: Scarabaeidae). Molecular Phylogenetic and Evolution 44: 436-449. Astrin JJ, Stiben PE, Misof B, Wágele JW, Gimnich F, Raupach MJ, Ahrens D. 2012. Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-, char- acter and tree based species delineation. Molecular Phylo- genetics and Evolution 63: 1-14. Avise JC. 2008. Phylogeography: retrospect and prospect. Journal of Biogeography 36: 3-15. Blair D. 2006. Ribosomal DNA variation in parasitic flat- worms. In: Maule AG, Marks NJ, eds. Parasitic flatworms: molecular biology, biochemistry, immunology and control. Wallingford, UK: CABI, 96-123. Bueno-Silva M, Boeger WA, Pie MR, 2011. Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae). International Journal of Parasitology 41: 657667. Caira JN, Bogéa T. 2005. Family Allocreadiidae Looss, 1902. In: Jones A, Bray RA, Gibson DI, eds. Keys to the Trema- toda. Vol. 11. London: CAB International and The Natural History Museum, 417436. Ceccarelli FS, Sharkey MJ, Zaldívar-Riverón A. 2012. Species identification in the taxonomically neglected, highly diverse, neotropical parasitoid wasp genus Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and morphological approach. Molecular Phylogenetics and Evolution 62: 485495. Choudhury A, Dick TA. 2001. Sturgeons (Chondrostei: Aci- penseridae) and their metazoan parasites: patterns and process in historical biogeography. Journal of Biogeography 28: 1411-1439. Cribb TH. 2005. Superfamily Allocreadioidea Looss, 1902. In: Jones A, Bray RA, Gibson DI, eds. Keys to the Trematoda. Vol. II. London: CAB International and The Natural History Museum, 413416. Curran SS, Tkach VV, Overstreet RM. 2006. A review of Polylekithum Arnold, 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica 51: 238-248. Curran SS, Tkach VV, Overstreet RM. 2011. Phylogene- tic affinities of Auriculostoma (Digenea: Allocreadiidae), with descriptions of two new species from Peru. Journal of Parasitology 97: 661-670. Domínguez-Domínguez O, Pedraza-Lara C, Gurrola- Sánchez N, Perea S, Pérez-Rodríguez R, Israde- Alcántara 1, Garduño-Monroy VH, Doadrio 1, Pérez-Ponce de León G, Brooks DR. 2010. Historical biogeography of the Goodeinae (Cyprinodontiforms). In: Uribe-Aranzabal MC, Grier H, eds. Viviparous fishes II. Homestead, FL: New Life Publications, 33-74. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A, 2010. Geneious v5.0.4 Available at: http://www. geneious.com/ Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evo- lutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. Edwards SV. 2009. Is a new and general theory of molecular systematics emerging? Evolution 63: 1-19. Edwards SV, Liu L, Pear DK. 2007. High-resolution species trees without concatenation. Proceedings of the National Academy of Sciences of the United States of America 104: 5936-5941. Ellegren H. 2004. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 5: 435445. Fontaneto D, Herniou EA, Boschetti C, Caprioli M, Melone G, Ricci C, Barraclough TG. 2007. Independ- ently evolving species in asexual bdelloid rotifers. Public Library of Science Biology Biology 5: e87. Funk DJ, Omland KE. 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 124 14 A. MARTÍNEZ-AQUINO ET AL. insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics 34: 397-423. Guy-Franck R, Kerrest A, Dujon B. 2008. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiology and Molecular Biology Reviews "12: 686-727. Hasegawa M, Kishino H, Yano TA. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160-174. Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570-580. Hickerson MJ, Carstens BC, Cavender-Bares J, Cran- dall KA, Graham CH, Johnson JB, Rissler L, Victori- ano PF, Yoder AD. 2010. Phylogeography's past, present, and future: 10 years after Avise, 2000. Molecular Phyloge- netics and Evolution 54: 291-301. Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioin- formatics 9: 286-298. Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 78: 454-458. Lamothe-Argumedo R. 1972. Tremátodos de peces VI. Mar- gotrema bravoae gen. nov. sp. nov. (Trematoda: Allocreadi- idae) parásito de Lermichthys multiradiatus Meek. Anales del Instituto de Biología, UNAM, Serie Zoología 41: 87-92. Li YC, Korol AB, Fahima T, Beiles A, Nevo E. 2002. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Molecular Ecology 11: 2453-2465. Liu L, Pearl DK, Brumfield RT, Edwards SV. 2008. Esti- mating species trees using multiple-allele DNA sequence data. Evolution 62: 2080-2091. Luton K, Walker D, Blair D. 1992. Comparisons of ribos- omal internal transcribed spacers from two congeneric species of flukes (Platyhelminthes: Trematoda: Digenea). Molecular and Biochemical Parasitology 56: 323-328. Maddison WP. 1997. Gene trees in species trees. Systematic Biology 46: 523-536. Maddison WP, Knowles LL. 2006. Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55: 21-30. Marshall DC, Hill KBR, Cooley JR, Simon C. 2011. Hybridization, mitochondrial DNA phylogeography, and pre- diction of the early stages of reproduction isolation: lesson from New Zealand cicadas (genus Kikihia). Systematic Biology 60: 482-502. Martínez-Aquino A, Aguilar-Aguilar R, Pérez-Rodríguez R, Pérez-Ponce de León G. 2009a. Helminth parasites of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa hydrological system, Jalisco, Mexico. Journal of Parasitology 95: 1221-1223. Martínez-Aquino A, Hernández-Mena DI, Pérez- Rodríguez R, Aguilar-Aguilar R, Pérez-Ponce de León G. 2011. Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico. Revista Mexicana de Biodiversidad 82: 1132-1137. Martínez-Aquino A, Pérez-Rodríguez R, Hernández- Mena DI, Garrido-Olvera L, Aguilar-Aguilar R, Pérez- Ponce de León R. 2012. Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau. Hidrobiológica 22: 88-91. Martínez-Aquino A, Reyna-Fabián ME, Rosas-Valdez R, Razo-Mendivil U, Pérez-Ponce de León G, García- Varela M. 2009b. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. Journal of Parasitology 95: 1040-1047. Martínez-Aquino A, Salgado-Maldonado G, Aguilar- Aguilar R, Cabañas-Carranza G, Mendoza-Palmero CA. 2007. Helminth parasite communities of Characodon audax and C. lateralis (Pisces: Goodeidae), endemic fresh- water fishes from Durango, Mexico. Southwestern Natural- ist 52: 125-130. Martínez-Aquino A, Salgado-Maldonado G, Aguilar- Aguilar R, Cabañas-Carranza G, Ortega-Olivares MP. 2004. Helminth parasites of Chapalichthys encaustus (Pisces: Goodeidae), an endemic freshwater fish from Lake Chapala, Jalisco, Mexico. Journal of Parasitology 90: 889— 890. Mejía-Madrid H, Domínguez-Domínguez O, Pérez- Ponce de León G. 2005. Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from México with biogeographical considerations. Journal of Parasitol- ogy 72: 200-211. Miller RR, Smith ML. 1986. Origin and geography of the fishes of Central Mexico. In: Hocutt CH, Wiley EO, eds. The zoogeography of North American freswater fishes. New York: John Wiley and Sons, Inc., 487-517. Miura O, Kuris AM, Torchin ME, Hechinger RF, Dunham EJ, Chiba S. 2005. Molecular-genetic analyses reveal cryptic species of trematodes in the interdial gastro- pod, Batillaria cumingi (Crosse). International Journal for Parasitology 35: 793-801. Miura O, Torchin ME, Kuris AM, Hechinger RF, Chiba S. 2006. Introduced cryptic species of parasites exhibit different invasion pathways. Proceedings of the National Academy of Sciences of the United States of America 103: 19818-19823. Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, Lees DC, Ranaivosolo R, Eggleton P, Barraclough TG, Vogler AP. 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298-311. Morgan JAT, Blair D. 1998. Relative merits of nuclear ribosomal internal transcribed spacers and mitochondrial CO1 and ND1 genes for distinguishing among Echinostoma species (Trematoda). Parasitology 116: 289-297. Nadler SA, Pérez-Ponce de León G. 2011. Integrating molecular and morphological approaches for characterizing O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 125 MOLECULAR PHYLOGENY OF MARGOTREMA 15 parasite cryptic species: implications for parasitology. Para- sitology 13: 1688-1709. Nee S, Mooers AO, Harvey PH. 1992. Tempo and mode of evolution revealed from molecular phylogenies. Proceedings of the National Academy of Sciences of the United States of America 89: 8322-8326. Nei M, Kumar S. 2000. Molecular evolution and phylogenet- ics. Oxford: Oxford University Press. Nieberding CM, Durette-Desset M-C, Vanderpoorten A, Casanova JC, Ribas A, Deffontaine V, Feliu C, Morand S, Libois R, Michaux JR. 2008. Geographic and host biogeography matter for understanding the phylogeography of a parasite. Molecular Phylogenetics and Evolution 47: 538-554. Page RDM. 2003. Tangled trees: phylogeny, cospeciation, and coevolution. Chicago: University of Chicago Press. Page RDM, Charleston MA. 1997. From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Molecular Phylogenetic and Evolution 7: 231— 240. Page RDM, Charleston MA. 1998, Trees within trees: phy- logeny and historical associations. Trends in Ecology and Evolution 13: 356-359. Parenti LR. 1981. A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei: Atherinomorpha). Bul- letin of the American Museum of Natural History 168: 340-557. Peresbarbosa-Rojas E, Pérez-Ponce de León G, García- Prieto L. 1994. Helmintos parásitos de tres especies de peces (Goodeidae) del Lago de Pátzcuaro, Michoacán. Anales del Instituto de Biología, UNAM, Serie Zoología 65: 201— 204. Pérez-Ponce de León G. 2001. Margotrema guillerminae n. sp. (Trematoda: Macroderoididae) from two species of fresh- waters fishes in Lake Zacapu, Michoacan state, Mexico, and new records of Margotrema bravoae Lamothe, 1970. Journal of Parasitology 87: 1112-1114. Pérez-Ponce de León G, Choudhury A. 2005. Biogeogra- phy of helminth parasites of freshwater fishes in Mexico: the research for patterns and processes. Journal of Bioge- ography 32: 645-649. Pérez-Ponce de León G, Choudhury A. 2010. Parasites inventories and DNA-based taxonomy: lessons from helminths of freshwater fishes in a megadiverse country. Journal of Parasitology 96: 236-244. Pérez-Ponce de León G, García-Prieto L, León- Régagnon V, Choudhury A. 2000. Helminth communities of native and introduced fishes in Lake Pátzcuaro, Micho- acán, México. Journal of Fish Biology 57: 303-325. Pineda-López R, Salgado-Maldonado G, Soto-Galera E, Hernández-Camacho N, Orozco-Zamorano A, Contreras-Robledo S, Cabañas-Carranza G, Aguilar- Aguilar R. 2005. Helminth parasites of viviparous fishes in Mexico. In: Uribe MC, Grier H, eds. Viviparous fishes: genetics, ecology, and conservation. Homestrad, FL: New Life Publications, 437-456. Pons J, Barraclough TG, Gomez-Zurita J, Cardoso A, Duran DP, Hazell S, Kamoun S, Sumlin WD, Vogler AP. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematics Biology 55: 595-609. Posada D. 2008. ¡ModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256. Poulin R, Krasnov BR, Mouillot D. 2011a. Host specificity in phylogenetic and geographic space. Trends in Parasitol- ogy 27: 355-361. Poulin R, Krasnov BR, Mouillot D, Thieltges DW. 2011b. The comparative ecology and biogeography of parasites. Philosophical Transactions of the Royal Society B 366: 2379-2390. Powell JR. 2012. Accounting for uncertainty in species delineation during the analysis of environmental DNA sequence data. Methods in Ecology and Evolution 3: 1-11. Rambaut A, Charleston M. 2002. TreeEdit: phylogenetic tree editor v1.0 alpha 10. Available at: http://tree.bio. ed.ac.uk/software/treeedit/ Rannala B, Yang Z. 2003. Bayes estimation of species diver- gence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164: 1645-1656. Razo-Mendivil U, Rosas-Valdez R, Pérez-Ponce de León G. 2008. A new cryptogonimid (Digenea) from the Mayan cichlid, Cichlasoma urophthalmus (Osteichthyes: Cichli- dae), in several localities of the Yucatán peninsula, Mexico. Journal of Parasitology 94: 1371-1378. Razo-Mendivil U, Vázquez-Domínguez E, Rosas-Valdez R, Pérez-Ponce de León G, Nadler SA. 2010. Phyloge- netic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. International Journal of Parasitology 40: 471-486. Rosas-Valdez R, Choudhury A, Pérez-Ponce de Léon G. 2011. Molecular prospecting for cryptic species in Phyllo- distomum lacustri (Platyhelminthes, Gorgoderidae). Zoo- logica Scripta 40: 296-305. Sánchez-Nava P, Salgado-Maldonado G, Soto-Galera E, Jaime-Cruz B. 2004. Helminth parasites of Girardinich- thys multiradiatus (Pisces: Goodeidae) in the upper Lerma River sub-basin, Mexico. Parasitology Research 93: 396-402. Sanderson MJ. 1997. A nonparametric approach to estimat- ing divergence times in the absence of rate constancy. Molecular Biology and Evolution 14: 1218-1231. Satler JD, Starrett J, Hayashi CHY, Heidin M. 2011, Inferring species tree from gene trees in a radiation of California trapdoor spiders (Araneae, Antrodiaetidae, Ali- atypus). Public Library of Science Biology One 6: e25355. Schwarz G. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461464. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739. O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 126 16 A. MARTÍNEZ-AQUINO ET AL. SUPPORTING INFORMATION Additional Supporting Information may be found in the online version of this article at the publisher's web-site: Figure S1. Phylogenetic tree obtained with MrBayes for COI. Figure S2. Phylogenetic trees obtained with MrBayes for IT'S1. Appendix S1. Localities sampled for freshwater fishes (Goodeinae), host species of Margotrema from México. Appendix S2. Margotrema and hosts species, localities analysed, with codes referring to each terminal taxa in the phylogenetic analyses, voucher reference, and accession numbers for each specimen and sequence. O 2013 The Linnean Society of London, Zoological Journal of the Linnean Society, 2013, 168, 1-16 127 128 SUPPORTING INFORMATION TLAP Iwh2 AHUA Azo1 Wallinia chavarriae MINT Zqu8 CUZA Xre3 MINT Zqu7 CUZA Xre9 AHUA Azo2 CHAP Adi6 TOBO Cha5 Allocreadium lobatum Wallinia chavarriae AHUA Azo11 TOCU Ifu2 AHUA Azo8 AHUA I fu4 CHAP Adi12 CHAP Adi4 CHAP Adu5 CUZA Xre5 CUZA Xre1 RICO Are8 PINO Cha5 PINO Cha6 TLAP Iwh10 TOBO Cha6 PINO Cha7 RICO Are7 TOCU Chp AHUA Ifu2 TOBO Cha1 MINT Zqu6 PINO Cha2 TLAP Iwh12 AHUA Azo10 CHAP Adu4 GUAG Cha2 RICO Are5 CHAP Adi7 CUZA Xre6 TLAP Iwh8 AHUA Azo5 TLAP Iwh9 OPOP Ame2 TLAP Iwh5 TLAP Iwh4 CHAP Adu5 AHUA Azo9 TLAP Iwh11 TOBO Cha7 RICO Are3 OPOP Ame8 Prosthenhystera sp. CHAP Adi3 CUZA Xre10 OPOP Ame10 AHUA I fu6 AHUA I fu5 MINT Zqu4 CHAP Adi1 OPOP Ame7 RICO Are2 CHAP Adi6 AHUA I fu3 ZACA Zqu10 TLAP Iwh1 MINT Zqu5 CHAP Adu2 AHUA Azo3 RICO Are4 CHAP Adu3 ZACA Aza AHUA Azo7 AGON Cha CHAP Adi8 OPOP Ame9 MINT Aro CHAP Adi2 OPOP Ame6 RICO Are6 TLAP Iwh6 CHAP Adu1 RICO Are9 CUZA Xre4 GUAG Cha3 TOCU I fu1 Wallinia chavarriae PINO Cha1 RICO Are10 ZACA Zqu1 CUZA Xre2 AHUA Ifu8 CHAP Adi10 OPOP Ame1 PINO Cha4 Prosthenhystera sp. AHUA Ifu7 TLAP Iwh13 MINT Zqu2 CHAP Adi13 OPOP Ame3 TLAP Iwh7 GUAG Cha1 Prosthenhystera sp. CHAP Adu8 AHUA Azo4 MINT Zqu1 CUZA Xre8 CHAP Adu7 TOBO Cha4 TOBO Cha3 RICO Are1 OPOP Ame4 LLUZ Zpu TLAP Iwh3 MINT Zqu3 AHUA Azo6 TOBO Cha2 CHAP Adi9 CUZA Xre7 BOCO Cor AHUA I fu9 PINO Cha3 AHUA Ifu1 OPOP Ame5 2.0 subst./site Supporting Figure S1 COI 129 Pros thenhys tera sp. Pros thenhys tera sp. Allocreadium lobatum Wallinia chavarr iae Wallinia chavarr iae CUZA Xre5 CUZA Xre6 C UZA Xre1 C UZA Xre3 C UZA Xre4 CUZA Xre2 AHUA Az o11 AHUA Azo12 AHUA Azo5 T OC U Ifu2 T OC U Ifu1 BOC O Cor AHUA Az o10 AHUA Az o2 AHUA Ifu9 AHUA Az o7 AHUA Az o3 T LAP Iwh2 AHUA Azo6 AHUA Azo9 AHUA Azo13 AHUA Azo4 AHUA Ifu6 AHUA Ifu7 AHUA Ifu8 T OCU C hp AHUA Ifu10 AHUA Ifu1 AHUA Ifu4 AHUA Ifu2 AHUA Ifu3 T LAP Iwh3 T LAP Iwh1 AHUA Azo1 AHUA Ifu5 AHUA Azo8 CHAP Adi3 CHAP Adi6 C HAP Adi6 OPOP Ame2 C HAP Adi8 OPOP Ame4 MINT Aro2 OPOP Ame1 ZAC A Aza5 ZAC A Zqu6 MINT Zqu3 MINT Zqu6 MINT Zqu4 RIC O Are4 RIC O Are2 ZAC A Zqu2 OPOP Ame3 ZAC A Zqu3 MINT Zqu9 ZAC A Zqu4 MINT Zqu8 MINT Zqu5 MINT Zqu7 MINT Zqu1 RIC O Are5 R IC O Are9 RIC O Are6 RIC O Are1 RIC O Are3 LLUZ Zpu ZACA Zqu2 RIC O Are10 R IC O Are8 RIC O Are7 CHAP Adi2 C HAP Adi5 C HAP Adu1 CHAP Adi9 CHAP Adi1 MINT Aro1 MINT Zqu2 ZAC A Zqu7 C HAP Adu4 C HAP Adu2 C HAP Adu5 C HAP Adu3 CHAP Adi7 PINO Cha4 T OBO Cha3 GUAG Cha1 T OBO Cha2 AGON Cha T OBO Cha6 GUAG Cha3 PINO Cha3 PINO Cha2 T OBO Cha4 T OBO Cha1 PINO Cha5 PINO Cha1 T OBO Cha5 GUAG Cha2 0.7 subst./site Supporting Figure S2 ITS1 130 Appendix S1. Localities sampled for freshwater fishes (Goodeinae), host species of Margotrema from México. NH = sample size of hosts collected; NM = sampled size of individuals of Margotrema collected by locality; M = total number of individuals of Margotrema used for morphological analyses; DNA = total number of individuals of Margotrema used for molecular analyses; DV = total number of digital vouchers of individuals of Margotrema obtained by locality. The asterisks (*1, *2) refer to previously published data by Pérez-Ponce de León et al. (2009) and Aguilar-Aguilar et al. (2010), respectively, in studies of helminth parasites of freshwater fishes from Mexico, but correspond to the same samplings. The host from locality 44 corresponds to a species of the family Cypriinidae. Locality Host species NH NM M DNA VD 1. Stream in Ahuacapán, Jalisco Allodontichthys zonistius 11 80 37 43 0 Ilyodon furcidens 11 50 17 33 0 2. Spring in Canal Magdalena, Michoacán Chapalichthys pardalis 3 0 − − − 3. Channel Magdalena, Michoacán Ilyodon furcidens 2 0 − − − Zoogoneticus purhepechus 7 0 − − − 4. Channel Santiago Tiacaque, Estado de México Girardinichthys multiradiatus 12 0 − − − 5. Spring Chapultepec, Michoacán Allotoca diazi 21 31 9 22 1 Allotoca duguesi 22 6 1 5 1 6. Spring Chilchota, Michoacán Skiffia multipunctata 10 0 − − − 7. Spring Cupatziro, Michoacán Skiffia multipunctata 13 0 − − − Zoogoneticus purhepechus 16 0 − − − 8. Arroyo Durazno in Cuzalapa River, Jalisco Xenotaenia resolanae 35 131 68 63 0 9. El Tule (River), Jalisco Allodontichthys tamazulae 19 0 − − − 10. Estanque en Río del Canal Santiago Tiacaque, Girardinichthys multiradiatus 6 0 − − − Estado de México 11. La Angostura, Zacapu Lake (balneario), Michoacán Skiffia lermae 11 0 − − − Allotoca zacapuensis 32 1 0 1 1 Goodea atripinnis 20 0 − − − Hubbsina turneri 16 0 − − − Skiffia lermae 19 0 − − − Zoogoneticus quitzeoensis 30 18 4 14 8 12. La Luz spring, Jacona de Plancarte, Michoacán Zoogoneticus purhepechus 32 1 0 1 1 Zoogoneticus purhepechus 12 0 − − − Chapalichthys encaustus 8 0 − − − Skiffia multipunctata 4 0 − − − Alloophorus robustus 35 0 − − − 13. La Mintzita spring, Michoacán, Michoacán Zoogoneticus quitzeoensis 22 5 1 4 3 Alloophorus robustus 14 3 0 3 − 14. Camecuaro Lake, Michoacán Alloophorus robustus 2 0 − − − 131 Zoogoneticus purhepechus 11 0 − − − 15. Opopeo Lake, Michoacán Goodea atripinnis 4 0 − − − Allotoca meeki 4 45 29 16 4 16. Las Adjuntas (River), Michoacán Skiffia multipunctata 2 0 − − − Zoogoneticus purhepechus 5 0 − − − 17. Los Negritos spring, Michoacán Chapalichthys encaustus 2 0 − − − Zoogoneticus purhepechus 19 0 − − − Zoogoneticus purhepechus 9 0 − − − Zoogoneticus purhepechus 8 0 − − − 18. Cutzaróndiro spring, Michoacán Ilyodon whitei 31 0 − − − 19. La Estancia spring, Michoacán Zoogoneticus purhepechus 21 0 − − − 20. Parque Ecológico Chicnahuapan (Lake), Girardinichthys multiradiatus 44 0 − − − Estado de México Girardinichthys multiradiatus 29 0 − − − 21. Pátzcuaro Lake, Michoacán Goodea atripinnis 31 0 − − − Alloophorus robustus 2 0 − − − 22. Predio Porfirio, La Angustura, Zacapu Lake, Michoacán Allotoca zacapuensis 3 2 − − − Xenotoca variata 1 0 − − − Alloophorus robustus 2 0 − − − 23. Dam in Santiago Chanel, Tiacaque, Estado de México Girardinichthys multiradiatus 2 0 − − − 24. Dam Ignacio Ramírez, Estado de México Girardinichthys multiradiatus 14 0 − − − 25. Dam Salazar, Estado de México Girardinichthys multiradiatus 35 0 − − − 26. Rico spring, Michoacán Allotoca regalis 39 61 30 31 − 26. Ahuehuello River in Santo Domingo, Puebla Ilyodon whitei 51 0 − − − 28. Ángulo River close to Zacapu Lake, Michoacán Alloophorus robustus 9 0 − − − Xenotoca variata 20 0 − − − Zoogoneticus quitzeoensis 11 0 − − − Allotoca goslinei 2 0 − − − 29. Tamazula River, Jalisco Allodontichthys zonistius 32 0 − − − Ilydon furcidens 56 0 − − − 30. Tributary of San Idelfonso River, Querétaro Goodea atripinnis 10 0 − − − 31. San Jerónimo, Pátzcuaro Lake, Michoacán Alloophorus robustus 5 0 − − − 32. Santa Maria del Oro (River), Jalisco Ilydon furcidens 15 0 − − − 33. Bordo or man-made pond in Tlapetlahuaya, Puebla Ilyodon whitei 34 62 29 33 7 34. Spring in park of Tocumbo, Michoacán Chapalichthys pardalis 38 4 2 2 1 Goodea atripinnis 16 0 − − − Ilydon furcidens 18 3 1 2 2 35. Ucasanastaua, Pátzcuaro, Michoacán Alloophorus robustus 11 0 − − − 36. Puente en el poblado de Pino Suárez, Characodon audax* 1 21 45 30 15 − carretera Durango-Mezquital, Durango 37. Spring in Abraham González, Durango Characodon audax* 1 12 16 11 5 0 38. Spring in the Unidad de Manejo Ambiental Characodon audax* 1 14 8 5 3 0 de caza, Guadalupe Aguilera, Durango 39. Spring el Toboso, Durango Characodon audax* 1 42 28 15 13 0 132 40. Manantial en el poblado Amado Nervo, Durango Characodon lateralis* 1 9 0 − − − 41. Ojo de Agua de San Juan, Durango Characodon lateralis* 1 11 0 − − − 42. Ojo de Agua del poblado de los Berros, Durango Characodon lateralis* 1 23 0 − − − 43. Río Potrero Grande, Jalisco Ilydon furcidens 10 1 0 1 − Allotoca goslinei 2 0 − − − 44. Upper Piaxtla River, Municipio San Dimas, Durango Codoma ornata* 2 21 6 − − − 133 Appendix 2. Margotrema and host species. Tribe of each host species. Code for each individual of Margotrema sequenced, as shown in the terminal taxa names of figures 2, 3, S1 and S2 (4 capitals for locality, 3 letters for species host and number, respectivelity). Country, state / región, name of locality, type of habitat, altitude (m) of sampled locality, GPS location, date collected, collection method for fishes, names of collectors of fishes, names of collector of digeneans, additional info (digital vouchers of sequencing individuals), vouchers deposited numbers at Colección Nacional de Helmintos (CNHE) [National Helminth Collection]. The asterisks (*, **, ***) after the voucher numbers refer to previously published data by Martínez-Aquino et al. (2009a, 2012) and Pérez-Ponce de León et al. (2009), respectively, in studies of helminth parasites of freshwater fishes from Mexico, but correspond to the same samplings. Number of sequences (in ascending order) and GenBank accession for COI and ITS1 for Margotrema spp. Part A Species Host species Tribe of Host Taxa Terminal Code Country State/Region Margotrema bravoae sensu lato Characodon audax1 Characodontini AGON Cha México Durango Margotrema bravoae sensu lato Allodontichthys zonistius1 Ilyodontini AHUA Azo1 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius2 Ilyodontini AHUA Azo2 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius3 Ilyodontini AHUA Azo3 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius4 Ilyodontini AHUA Azo4 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius5 Ilyodontini AHUA Azo5 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius6 Ilyodontini AHUA Azo6 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius7 Ilyodontini AHUA Azo7 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius8 Ilyodontini AHUA Azo8 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius9 Ilyodontini AHUA Azo9 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius10 Ilyodontini AHUA Azo10 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius11 Ilyodontini AHUA Azo11 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius12 Ilyodontini AHUA Azo12 México Jalisco Margotrema bravoae sensu lato Allodontichthys zonistius13 Ilyodontini AHUA Azo13 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens1 Ilyodontini AHUA Ifu1 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens2 Ilyodontini AHUA Ifu2 México Jalisco 134 Margotrema bravoae sensu lato Ilyodon furcidens3 Ilyodontini AHUA Ifu3 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens4 Ilyodontini AHUA Ifu4 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens5 Ilyodontini AHUA Ifu5 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens6 Ilyodontini AHUA Ifu6 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens7 Ilyodontini AHUA Ifu7 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens8 Ilyodontini AHUA Ifu8 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens9 Ilyodontini AHUA Ifu9 México Jalisco Margotrema bravoae sensu lato Ilyodon furcidens10 Ilyodontini AHUA Ifu10 México Jalisco Margotrema bravoae sensu lato Allotoca diazi1 Girardinichthyini CHAP Adi1 México Michoacán Margotrema bravoae sensu lato Allotoca diazi2 Girardinichthyini CHAP Adi2 México Michoacán Margotrema bravoae sensu lato Allotoca diazi3 Girardinichthyini CHAP Adi3 México Michoacán Margotrema bravoae sensu lato Allotoca diazi4 Girardinichthyini CHAP Adi4 México Michoacán Margotrema bravoae sensu lato Allotoca diazi5 Girardinichthyini CHAP Adi5 México Michoacán Margotrema bravoae sensu lato Allotoca diazi6 Girardinichthyini CHAP Adi6 México Michoacán Margotrema bravoae sensu lato Allotoca diazi7 Girardinichthyini CHAP Adi7 México Michoacán Margotrema bravoae sensu lato Allotoca diazi8 Girardinichthyini CHAP Adi8 México Michoacán Margotrema bravoae sensu lato Allotoca diazi9 Girardinichthyini CHAP Adi9 México Michoacán Margotrema bravoae sensu lato Allotoca diazi10 Girardinichthyini CHAP Adi10 México Michoacán Margotrema bravoae sensu lato Allotoca diazi11 Girardinichthyini CHAP Adi11 México Michoacán Margotrema bravoae sensu lato Allotoca diazi12 Girardinichthyini CHAP Adi12 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi1 Girardinichthyini CHAP Adu1 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi2 Girardinichthyini CHAP Adu2 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi3 Girardinichthyini CHAP Adu3 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi4 Girardinichthyini CHAP Adu4 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi5 Girardinichthyini CHAP Adu5 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi6 Girardinichthyini CHAP Adu6 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi7 Girardinichthyini CHAP Adu7 México Michoacán Margotrema bravoae sensu lato Allotoca duguesi8 Girardinichthyini CHAP Adu8 México Michoacán Margotrema resolanae Xenotaenia resolanae1 Ilyodontini CUZA Xre1 México Jalisco Margotrema resolanae Xenotaenia resolanae2 Ilyodontini CUZA Xre2 México Jalisco Margotrema resolanae Xenotaenia resolanae3 Ilyodontini CUZA Xre3 México Jalisco 135 Margotrema resolanae Xenotaenia resolanae4 Ilyodontini CUZA Xre4 México Jalisco Margotrema resolanae Xenotaenia resolanae5 Ilyodontini CUZA Xre5 México Jalisco Margotrema resolanae Xenotaenia resolanae6 Ilyodontini CUZA Xre6 México Jalisco Margotrema resolanae Xenotaenia resolanae7 Ilyodontini CUZA Xre7 México Jalisco Margotrema resolanae Xenotaenia resolanae8 Ilyodontini CUZA Xre8 México Jalisco Margotrema resolanae Xenotaenia resolanae9 Ilyodontini CUZA Xre9 México Jalisco Margotrema resolanae Xenotaenia resolanae10 Ilyodontini CUZA Xre10 México Jalisco Margotrema bravoae sensu lato Characodon audax1 Characodontini GUAG Cha1 México Durango Margotrema bravoae sensu lato Characodon audax2 Characodontini GUAG Cha2 México Durango Margotrema bravoae sensu lato Characodon audax3 Characodontini GUAG Cha3 México Durango Margotrema bravoae sensu lato Zoogoneticus purhepechus1 Chapalichthyini LLUZ Zpu México Michoacán Margotrema bravoae sensu lato Alloophorus robustus1 Chapalichthyini MINT Aro1 México Michoacán Margotrema bravoae sensu lato Alloophorus robustus2 Chapalichthyini MINT Aro2 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis1 Chapalichthyini MINT Zqu1 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis2 Chapalichthyini MINT Zqu2 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis3 Chapalichthyini MINT Zqu3 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis4 Chapalichthyini MINT Zqu4 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis5 Chapalichthyini MINT Zqu5 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis6 Chapalichthyini MINT Zqu6 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis7 Chapalichthyini MINT Zqu7 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis8 Chapalichthyini MINT Zqu8 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis9 Chapalichthyini MINT Zqu9 México Michoacán Margotrema bravoae sensu lato Allotoca meeki1 Girardinichthyini OPOP Ame1 México Michoacán Margotrema bravoae sensu lato Allotoca meeki2 Girardinichthyini OPOP Ame2 México Michoacán Margotrema bravoae sensu lato Allotoca meeki3 Girardinichthyini OPOP Ame3 México Michoacán Margotrema bravoae sensu lato Allotoca meeki4 Girardinichthyini OPOP Ame4 México Michoacán Margotrema bravoae sensu lato Allotoca meeki5 Girardinichthyini OPOP Ame5 México Michoacán Margotrema bravoae sensu lato Allotoca meeki6 Girardinichthyini OPOP Ame6 México Michoacán Margotrema bravoae sensu lato Allotoca meeki7 Girardinichthyini OPOP Ame7 México Michoacán Margotrema bravoae sensu lato Allotoca meeki8 Girardinichthyini OPOP Ame8 México Michoacán Margotrema bravoae sensu lato Allotoca meeki9 Girardinichthyini OPOP Ame9 México Michoacán 136 Margotrema bravoae sensu lato Allotoca meeki10 Girardinichthyini OPOP Ame10 México Michoacán Margotrema bravoae sensu lato Characodon audax1 Characodontini PINO Cha1 México Durango Margotrema bravoae sensu lato Characodon audax2 Characodontini PINO Cha2 México Durango Margotrema bravoae sensu lato Characodon audax3 Characodontini PINO Cha3 México Durango Margotrema bravoae sensu lato Characodon audax4 Characodontini PINO Cha4 México Durango Margotrema bravoae sensu lato Characodon audax5 Characodontini PINO Cha5 México Durango Margotrema bravoae sensu lato Characodon audax6 Characodontini PINO Cha6 México Durango Margotrema bravoae sensu lato Characodon audax7 Characodontini PINO Cha7 México Durango Margotrema bravoae sensu lato Neoophorus regalis1 Girardinichthyini RICO Nre1 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis2 Girardinichthyini RICO Nre2 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis3 Girardinichthyini RICO Nre3 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis4 Girardinichthyini RICO Nre4 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis5 Girardinichthyini RICO Nre5 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis6 Girardinichthyini RICO Nre6 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis7 Girardinichthyini RICO Nre7 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis8 Girardinichthyini RICO Nre8 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis9 Girardinichthyini RICO Nre9 México Michoacán Margotrema bravoae sensu lato Neoophorus regalis10 Girardinichthyini RICO Nre10 México Michoacán Margotrema bravoae sensu lato Ilyodon whitei1 Ilyodontini TLAP Iwh1 México Puebla Margotrema bravoae sensu lato Ilyodon whitei2 Ilyodontini TLAP Iwh2 México Puebla Margotrema bravoae sensu lato Ilyodon whitei3 Ilyodontini TLAP Iwh3 México Puebla Margotrema bravoae sensu lato Ilyodon whitei4 Ilyodontini TLAP Iwh4 México Puebla Margotrema bravoae sensu lato Ilyodon whitei5 Ilyodontini TLAP Iwh5 México Puebla Margotrema bravoae sensu lato Ilyodon whitei6 Ilyodontini TLAP Iwh6 México Puebla Margotrema bravoae sensu lato Ilyodon whitei7 Ilyodontini TLAP Iwh7 México Puebla Margotrema bravoae sensu lato Ilyodon whitei8 Ilyodontini TLAP Iwh8 México Puebla Margotrema bravoae sensu lato Ilyodon whitei9 Ilyodontini TLAP Iwh9 México Puebla Margotrema bravoae sensu lato Ilyodon whitei10 Ilyodontini TLAP Iwh10 México Puebla Margotrema bravoae sensu lato Ilyodon whitei11 Ilyodontini TLAP Iwh11 México Puebla Margotrema bravoae sensu lato Ilyodon whitei12 Ilyodontini TLAP Iwh12 México Puebla Margotrema bravoae sensu lato Ilyodon whitei13 Ilyodontini TLAP Iwh13 México Puebla 137 Margotrema bravoae sensu lato Characodon audax1 Characodontini TOBO Cha1 México Durango Margotrema bravoae sensu lato Characodon audax2 Characodontini TOBO Cha2 México Durango Margotrema bravoae sensu lato Characodon audax3 Characodontini TOBO Cha3 México Durango Margotrema bravoae sensu lato Characodon audax4 Characodontini TOBO Cha4 México Durango Margotrema bravoae sensu lato Characodon audax5 Characodontini TOBO Cha5 México Durango Margotrema bravoae sensu lato Characodon audax6 Characodontini TOBO Cha6 México Durango Margotrema bravoae sensu lato Characodon audax7 Characodontini TOBO Cha7 México Durango Margotrema bravoae sensu lato Chapalichthys pardalis1 Chapalichthyini TOCU Chp1 México Michoacán Margotrema bravoae sensu lato Ilyodon furcidens1 Ilyodontini TOCU Ifu1 México Michoacán Margotrema bravoae sensu lato Ilyodon furcidens2 Ilyodontini TOCU Ifu2 México Michoacán Margotrema bravoae sensu lato Allotoca zacapuensis1 Girardinichthyini ZACA Aza México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis1 Chapalichthyini ZACA Zqu1 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis2 Chapalichthyini ZACA Zqu2 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis3 Chapalichthyini ZACA Zqu3 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis4 Chapalichthyini ZACA Zqu4 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis5 Chapalichthyini ZACA Zqu5 México Michoacán Margotrema bravoae sensu lato Zoogoneticus quitzeoensis6 Chapalichthyini ZACA Zqu6 México Michoacán Margotrema bravoae sensu lato Codoma ornata1 BOCO Cor México Chihuahua Allocreadium lobatum Semotilus atromaculatus Canada Prostenhystera sp. Gephyrocharax sp. Panama Gamboa Prostenhystera sp. Gephyrocharax sp. Panama Gamboa Prostenhystera sp. Gephyrocharax sp. Panama Gamboa Wallinia chavarriae Gephyrocharax sp. Panama Gamboa Wallinia chavarriae Gephyrocharax sp. Panama Gamboa Wallinia chavarriae Gephyrocharax sp. Panama Gamboa Part B Locality Habitat Altitude (m) GPS Location Spring in Abraham González Spring 1865 24º12´45´´N; 104º31´48´´W 138 Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Stream in Ahuacapán Stream 842 19º39´52´´N; 104º19´19.1´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W 139 Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Spring Chapultepec Spring 2072 19º34´20´´N; 101º31´18.7´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Arroyo Durazno in Cuzalapa River Stream 825 19º30´32.1´´N; 104º17´45.6´´W Spring in the Unidad de Manejo Ambiental de caza, Guadalupe Aguilera Spring 1941 24º25´59.5´´N; 104º38´29´´W Spring in the Unidad de Manejo Ambiental de caza, Guadalupe Aguilera Spring 1941 24º25´59.5´´N; 104º38´29´´W Spring in the Unidad de Manejo Ambiental de caza, Guadalupe Aguilera Spring 1941 24º25´59.5´´N; 104º38´29´´W La Luz spring, Jacona de Plancarte Spring 1616 19º56´10.4´´N; 102º17´57.8´´W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W 140 La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W La Mintzita spring Spring 1895 19°38'40.3''-19°38'52.3''N; 101°16‟28.20‟‟-101°16‟13.0‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Opopeo Lake Lake 2268 19°24'20.2''N; 101°36‟08.2‟‟W Puente en el poblado de Pino Suárez, carretera Durango-Mezquital Spring 1911 23°52'43.5''N; 104°31‟54.7‟‟W Puente en el poblado de Pino Suárez, carretera Durango-Mezquital Spring 1911 23°52'43.5''N; 104°31‟54.7‟‟W Puente en el poblado de Pino Suárez, carretera Durango-Mezquital Spring 1911 23°52'43.5''N; 104°31‟54.7‟‟W Puente en el poblado de Pino Suárez, carretera Durango-Mezquital Spring 1911 23°52'43.5''N; 104°31‟54.7‟‟W Puente en el poblado de Pino Suárez, carretera Durango-Mezquital Spring 1911 23°52'43.5''N; 104°31‟54.7‟‟W Puente en el poblado de Pino Suárez, carretera Durango-Mezquital Spring 1911 23°52'43.5''N; 104°31‟54.7‟‟W Puente en el poblado de Pino Suárez, carretera Durango-Mezquital Spring 1911 23°52'43.5''N; 104°31‟54.7‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W 141 Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring Rico Spring 1842 19°49'51.85''N; 102°30‟7.98‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring in Tlapetlahuaya Spring 1681 18°45'20.40''N; 98°34‟28.8‟‟W Spring El Toboso Spring 1890 24° 16' 30.7'' N; 104° 34' 52.8'' W Spring El Toboso Spring 1890 24° 16' 30.7'' N; 104° 34' 52.8'' W Spring El Toboso Spring 1890 24° 16' 30.7'' N; 104° 34' 52.8'' W Spring El Toboso Spring 1890 24° 16' 30.7'' N; 104° 34' 52.8'' W Spring El Toboso Spring 1890 24° 16' 30.7'' N; 104° 34' 52.8'' W Spring El Toboso Spring 1890 24° 16' 30.7'' N; 104° 34' 52.8'' W Spring El Toboso Spring 1890 24° 16' 30.7'' N; 104° 34' 52.8'' W Spring in park of Tocumbo Spring 1010 19°42'8.9''N; 102°30‟55.6‟‟W Spring in park of Tocumbo Spring 1010 19°42'8.9''N; 102°30‟55.6‟‟W Spring in park of Tocumbo Spring 1010 19°42'8.9''N; 102°30‟55.6‟‟W La Angostura, Zacapu Lake (balneario) Lake with spring 1990 19°49'35''N; 101°47‟10‟‟W La Angostura, Zacapu Lake (balneario) Lake with spring 1990 19°49'35''N; 101°47‟10‟‟W La Angostura, Zacapu Lake (balneario) Lake with spring 1990 19°49'35''N; 101°47‟10‟‟W La Angostura, Zacapu Lake (balneario) Lake with spring 1990 19°49'35''N; 101°47‟10‟‟W La Angostura, Zacapu Lake (balneario) Lake with spring 1990 19°49'35''N; 101°47‟10‟‟W La Angostura, Zacapu Lake (balneario) Lake with spring 1990 19°49'35''N; 101°47‟10‟‟W 142 La Angostura, Zacapu Lake (balneario) Lake with spring 1990 19°49'35''N; 101°47‟10‟‟W Tributary of Conchos River, Bocoyna River 2261 27°51'30.32''N; 107°36‟3.01‟‟W Tobacco Creek, Manitoba River Quebrada Juan Grande Stream 9°8'50.5''N; 79°43‟21.1‟‟W Quebrada Juan Grande Stream 9°8'50.5''N; 79°43‟21.1‟‟W Quebrada Juan Grande Stream 9°8'50.5''N; 79°43‟21.1‟‟W Frijolito River Stream 9°8'58.1''N; 79°43‟53.8‟‟W Frijolito River Stream 9°8'58.1''N; 79°43‟53.8‟‟W Frijolito River Stream 9°8'58.1''N; 79°43‟53.8‟‟W Part C Date collected Collection method of fishes Collector of fishes 1-7.12.2008 Seine nets A. Martínez-Aquino & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 143 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 15.07.2009 Minnow traps and seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 144 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 18-24.08.2008 Electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 23.07.2009 Seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 30.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 16.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 145 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets and electrofishing A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 25.07.2009 Seine nets and electrofishing D.I.Hernández-Mena & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 02.07.2010 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, F.J. Alcantar & R. Pérez-Rodríguez 1-7.12.2008 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 146 1-7.12.2008 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 1-7.12.2008 Seine nets A. Martínez-Aquino, R. Aguilar-Aguilar, R. Rosas-Valdez & R. Pérez-Rodríguez 22.07.2009 Seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 22.07.2009 Seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 22.07.2009 Seine nets A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 17-24.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 17-24.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 17-24.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 17-24.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 17-24.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 17-24.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez 17-24.07.2009 Seine nets and electrofishing A. Martínez-Aquino, D.I.Hernández-Mena & R. Pérez-Rodríguez - - R. Rosas-Valdez 15-17.01.2010 Seine nets A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León 15-17.01.2010 Seine nets A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León 15-17.01.2010 Seine nets A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León 15-17.01.2010 Seine nets A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León 15-17.01.2010 Seine nets A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León 15-17.01.2010 Seine nets A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León Part D Genebank Genebank Collector of digeneans Additional info Vouchers number ITS1 COI A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 6493*** KC900074 KC899971 147 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899983 KC899864 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899984 KC899865 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899985 KC899866 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899986 KC899867 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899987 KC899868 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899988 KC899869 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899989 KC899870 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899990 KC899871 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899991 KC899872 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899992 KC899873 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899993 KC899874 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899994 - A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8320 KC899995 - A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC899996 KC899875 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC899997 KC899876 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC899998 KC899877 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC899999 KC899878 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC900000 KC899879 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC900001 KC899880 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC900002 KC899881 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC900003 KC899882 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC900004 KC899883 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 8321 KC900005 - A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_223 Akin CNHE 8323 KC900010 KC899898 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900011 KC899899 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900012 KC899900 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900013 KC899901 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900014 KC899902 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900015 KC899903 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900016 KC899904 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900017 KC899905 148 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 KC900018 KC899906 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 - KC899907 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 - KC899908 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8323 - KC899909 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_261 Akin CNHE 8324 KC900019 KC899910 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8324 KC900020 KC899911 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8324 KC900021 KC899912 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8324 KC900022 KC899913 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8324 KC900023 KC899914 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8324 - KC899915 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8324 - KC899916 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8324 - KC899917 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* KC899977 KC899854 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* KC899978 KC899855 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* KC899979 KC899856 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* KC899980 KC899857 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* KC899981 KC899858 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* KC899982 KC899859 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* - KC899860 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* - KC899861 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* - KC899862 A. Martínez-Aquino & R. Aguilar-Aguilar - Akin CNHE 6880* - KC899863 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 6498*** KC900071 KC899968 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 6498*** KC900072 KC899969 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 6498*** KC900073 KC899970 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_480 - KC900024 KC899918 A. Martínez-Aquino & D.I.Hernández-Mena - - KC900025 KC899919 A. Martínez-Aquino & D.I.Hernández-Mena - - KC900026 - A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_208 Akin CNHE 8325 KC900027 KC899920 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_214 Akin CNHE 8325 KC900028 KC899921 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_222 Akin CNHE 8325 KC900029 KC899922 149 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8325 KC900030 KC899923 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8325 KC900031 KC899924 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8325 KC900032 KC899925 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8325 KC900033 KC899926 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8325 KC900034 KC899927 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8325 KC900035 - A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_246_a Akin CNHE 8326 KC900036 KC899928 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_246_b Akin CNHE 8326 KC900037 KC899929 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_247 Akin CNHE 8326 KC900038 KC899930 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_249 Akin CNHE 8326 KC900039 KC899931 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8326 - KC899932 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8326 - KC899933 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8326 - KC899934 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8326 - KC899935 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8326 - KC899936 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8326 - KC899937 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8327 KC900066 KC899961 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8327 KC900067 KC899962 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8327 KC900068 KC899963 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8327 KC900069 KC899964 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8327 KC900070 KC899965 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8327 - KC899966 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8327 - KC899967 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900040 KC899938 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900041 KC899939 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900042 KC899940 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900043 KC899941 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900044 KC899942 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900045 KC899943 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900046 KC899944 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900047 KC899945 150 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900048 KC899946 A. Martínez-Aquino & D.I.Hernández-Mena - Akin CNHE 8328 KC900049 KC899947 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar Digital Voucher_1269_21- 25 Akin CNHE 8322 KC900006 KC899884 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar Digital Voucher_1269_26- 29 Akin CNHE 8322 KC900007 KC899885 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar Digital Voucher_1269_11- 20 Akin CNHE 8322 KC900008 KC899886 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar Digital Voucher_1277_30- 31 Akin CNHE 8322 - KC899887 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar Digital Voucher_1277_34- 35 Akin CNHE 8322 - KC899888 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar Digital Voucher_1280 Akin CNHE 8322 - KC899889 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar - Akin CNHE 8322 - KC899890 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar - Akin CNHE 8322 - KC899891 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar - Akin CNHE 8322 - KC899892 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar - Akin CNHE 8322 - KC899893 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar - Akin CNHE 8322 - KC899894 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar - Akin CNHE 8322 - KC899895 A. Martínez-Aquino, R. Aguilar-Aguilar & F.J. Alcantar - Akin CNHE 8322 - KC899896 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8329 KC900060 KC899954 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8329 KC900061 KC899955 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8329 KC900062 KC899956 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8329 KC900063 KC899957 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8329 KC900064 KC899958 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8329 KC900065 KC899959 A. Martínez-Aquino, R. Aguilar-Aguilar & R. Rosas-Valdez - Akin CNHE 8329 - KC899960 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_532 - KC900050 KC899948 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_541_a Akin CNHE 8330 KC900051 KC899949 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_541_b Akin CNHE 8330 KC900052 KC899950 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_181 Akin CNHE 7811** KC900053 KC899951 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_118 Akin CNHE 7812** KC900054 KC899952 151 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_121 Akin CNHE 7812** KC900055 KC899953 A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_124 Akin CNHE 7812** KC900056 - A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_131.1 Akin CNHE 7812** KC900057 - A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_135 Akin CNHE 7812** KC900058 - A. Martínez-Aquino & D.I.Hernández-Mena Digital Voucher_139 Akin CNHE 7812** KC900059 - R. Rosas-Valdez - Akin CNHE 8331 KC900009 KC899897 A. Choudhury KC899972 KC899847 A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León KC899973 KC899848 A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León KC899974 KC899849 A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León - KC899850 A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León KC899975 KC899851 A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León KC899976 KC899852 A. Choudhury, A. Martínez-Aquino, & G. Pérez-Ponce de León - KC899853 152 CAPÍTULO III DOES THE HISTORICAL BIOGEOGRAPHY AND COPHYLOGENY OF THE DIGENEAN MARGOTREMA SPP. ACROSS CENTRAL MEXICO MIRRORS THAT OF THEIR FRESHWATER FISH HOSTS (GOODEINAE)? 153 Para concretar este proyecto, se planteo como objetivo integrar la historia evolutiva de Margotrema spp., influenciada por la evolución de Goodeinae y la geología del centro de México, a través de la identificación de patrones biogeográficos y cofilogenéticos. Para ello, se pusieron a prueba las hipótesis biogeográficas y cofilogenéticas detectadas con base en la reconstrucción genealógica de Margotrema propuestas por Martínez-Aquino et al. (2013), a través de análisis biogeográficos paramétricos (Ree & Sanmartín, 2009; Sanmartín, 2010; Ronquist & Sanmartín, 2011). Para evaluar hipótesis biogeográficas y cofilogenéticas considerando variables espacio-temporales, se realizó un análisis de Species Tree multispecies coalescent con el objetivo de estimar las edades de divergencia de los linajes de Margotrema, usando métodos de reloj molecular bayesianos (Drummond et al., 2006) calibrado a partir de eventos geológicos sobre la región occidental de la Faja Volcánica Transmexicana (FVT) (Ferrari et al., 1999; Mateos et al., 2002; Ferrari, 2004). Los patrones de distribución geográfica de Margotrema fueron estudiados a través de análisis de DEC (por sus siglas en inglés Dispersal-Extinction-Cladogenesis; Ree et al., 2005; Ree & Smith, 2008), usando como unidades de estudio los sistemas hidrológicos previamente considerados para análisis biogeográficos de Goodeinae por Domínguez-Domínguez et al. (2010). Como primer paso, evaluamos la similitud de las áreas a utilizar a partir de los datos filogenéticos de Margotrema (Martínez-Aquino et al., 2013), usando métodos binarios bayesianos a través de la reconstrucción de estados ancestrales en filogenias (RASP, por sus siglas en inglés Reconstruct Ancestral State in Phylogenies; Nylander et al., 2008; Yu et al., 2010, 2011). Este análisis fue realizado para describir la concordancia biogeográfica entre las unidades de análisis hidrológicas tanto para peces como para sus digéneos parásitos. Propiamente, la reconstrucción de la biogeografía histórica de Margotrema se realizó con base en medios biogeográficos paramétricos tomando en cuenta tres variables: a) distancia geográfica; b) eventos geológicos; c) patrones y fechas de diversificación del ancestro común más reciente (MRCA, por sus siglas en inglés Most Recent Common Ancestor), para cada especie de huésped con respecto a cada una de las tribus de Goodeinae, es decir, Chapalichthyini, Characodontini, Girardinichthyini e Ilyodontini. Como es posible realizar analogías entre los procesos biogeográficos y cofilogenéticos (Page, 1994a; Page & Charleston, 1998; Matzke, 2010), seleccionamos como unidades de 154 análisis a las especies de goodeinos en los que están asociados los digéneos Margotrema, implementando un modelo de DEC. Para este análisis también consideramos a) la probabilidad de dispersión de las individuos de Margotrema, en función a la vagilidad y dispersión registrada para las especies explícitas de goodeinos a los que están actualmente asociados en cada una de las localidades muestreadas, y tomando en cuenta la distancia geográfica entre las áreas analizadas (sistemas hidrológicos); b) las edades de divergencia de cada especie / género de huésped, así como las relaciones genealógicas entre Margotrema y sus áreas de distribución. Se realizó una prueba estadística (“p”) implementada en el programa TreeMap 3b (Charleston, 2013), para proveer de una medida de confianza (intervalo de confianza = 95%) a aquellos grupos pertenecientes a Goodeinae y Margotrema que reflejaban cierto grado de congruencia filogenética (correspondencia topológica entre dos o más arboles filogenéticos). Con base en los patrones biogeográficos y cofilogenéticos observados para Margotrema, se interpretó la historia evolutiva de este taxón para comprender como es el origen de los procesos de diversificación de los organismos parásitos en peces dulceacuícolas endémicos de México. A continuación se presenta un manuscrito en formato de articulo en extenso intitulado “Does the historical biogeography and evolutionary history of the digenean Margotrema spp. across central Mexico mirrors that of their freshwater fish hosts (Goodeinae)?”, el cuál será sometido para su publicación en una revista arbitrada e indizada (ISI / SCI), referente a los patrones biogeográficos y cofilogenéticos de Margotrema. 155 Manuscrito para ser sometido para su publicación en la revista Journal of Biogeography Original Article Running header: Margotrema biogeography: cophylogeny and history Does the historical biogeography and evolutionary history of the digenean Margotrema spp. across central Mexico mirrors that of their freshwater fish hosts (Goodeinae)? Andrés Martínez-Aquino1,2*, Fadia Sara Ceccarelli3, Luis E. Eguiarte4, Ella Vázquez-Domínguez5 and Gerardo Pérez-Ponce de León1 1Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, C.P. 04510, México, D.F., México. 2 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04360, Coyoacán, Distrito Federal, México. 3 Institut für Biogeographie, Klingelbergstrasse 27 CH-4056 Basel, Switzerland. 4 Laboratorio de Evolución Molecular y Experimental, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México. Apartado Postal 70-275, C.P. 04510 México, D.F., Mexico. 5Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Apartado Postal 70-275, C.P. 04510 México D.F., 04510, México. Correspondence: Andrés Martínez-Aquino, 1Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, C.P. 04510, México, D.F., 156 México; 2 Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04360, Coyoacán, Distrito Federal, México. E-mail: maandres@ibiologia.unam.mx ABSTRACT Aim To use recently published phylogenies of Goodeinae and those of their digenena parasite (Margotrema spp.) to uncover biogeographical and cophylogenetic patterns and to describe the processes that determined them over 6.5 Ma. The key questions addressed in this study is: Was the evolution of Margotrema spp. influenced by the complex geographical scenario of central Mexico, by the close association with their goodeinae hosts, or both? Location Hydrological systems of central Mexico. Methods A species tree for Margotrema spp. was obtained using DNA sequence data from two molecular markers, and a molecular dating looking for divergence events within the genus was performed. A dispersal-extinction-cladogenesis (DEC) model was used to describe the historical biogeography of digeneans. Meanwhile, DEC was used to uncover cophylogenetic events between Margotrema and their goodeines hosts. Results This study shows a response of the parasite taxa in a geographical context, followed by establishing host specificity at three distinct levels of the historical association with their hosts: a) Species-Species, i.e., a historical association represented by Xenotaenia resolanae-M. resolanae exclusively at the Cuzalapa River Basin; b) Species-Lineage, i.e., a historical association represented by Characodon audax-M. bravoae Linaje III, exclusively distributed along the Upper and Middle Mezquital River Basin and c) Tribe-Lineage, i.e., two instances of historical associations among parasites and hosts at taxonomical level of Tribe, one represented by Ilyodontini-M. bravoae Lineage I, which are mainly distributed across the Ayuquila and Balsas River Basins, and the second represented by Girardinichthyini / Chapalichthyini-M. bravoae Lineage II, only distributed in the Lerma River Basin. Main conclusions The parasite evolutionary history is congruent with the phylogenetic and biogeographical history and of their hosts, showing instances of coespeciation and several 157 colonization events via host-switching and vicariant plus dispersal events at different times during the diversification history of both associates, related with tecto-volcanic events that occurred in the area. Keywords Codivergence, cospeciation, DEC model, divergence times, host switch, host-parasite evolution, lineage loss, Parametric biogeography, vicariance, dispersal. INTRODUCTION The evolutionary biology of host-parasite associations can be analogized to biogeographical processes in terms of events such as codivergence, duplication, horizontal transfer and lineage sorting (Page, 1994a; Page & Charleston, 1998; Matzke, 2010). The study of a host-parasite association focuses in the effects of geographical distribution in combination with the phylogenetic relationships of the hosts, on the evolution of the parasitic organisms. These two elements can be analysed by event-based biogeography methods (Ronquist & Sanmartín, 2011), as well as through evolutionary tangled trees of hosts and parasites (Page, 2003). Parametric biogeography methods (Ree et al., 2005; Ree & Smith, 2008, Sanmartín et al., 2008), coupled with dated species-tree estimation (Maddison, 1997; Edwards, 2009; Heled & Drummond, 2009), and contrasting the phylogenetic relationships between two groups (Charleston, 2011) with a narrow biological association in a particular geographical area, allow for hypotheses of evolutionary history and biogeography to be tested explicitly in time and space (see Sanmartin et al., 2008; Cowman & Bellwood, 2013; Ceccarelli & Zaldivar-Riverón, 2013). Biogeographical reconstruction with parametric methods is implemented through models such as dispersal-extinction-cladogenesis (DEC) (Ree et al., 2005; Ree & Smith, 2008), a method that permit uncovering dispersal and extinction events along branches of a phylogeny, while estimating the ranges of the most recent common ancestor (MRCA) and descendent species at each node. DEC can be used to test hypotheses of origin of areas as well as geographical species within lineage formation scenarios, and dispersal (expansion routes), by incorporating 158 both, historical and contemporary information for a particular region and the organisms associated to that region. Previous studies have shown that geographical features may be influential in shaping genealogical relationships by causing a codifferentiation of parasitic organisms in relation to the evolutionary history of their hosts (Nieberding et al., 2008, Mizukoshi et al., 2012). However, it is difficult to find a biological model of parasitism capable to explain the process of diversification between hosts and parasites. The biogeographical “core” parasite fauna, i.e. species widely distributed and characteristically associated with and restricted to a monophyletic group of hosts species, in freshwater fishes across central Mexico (see Pérez-Ponce de León & Choudhury, 2005) offers a unique opportunity to test diversification processes between parasites and hosts, because they show high levels of host-specificity, are distributed in a restricted geographical area, and do not disperse naturally across water; therefore, there is no gene flow among individuals parasitising host species other than goodeines, or among goodeines occurring in different hydrological systems (Martínez-Aquino et al., 2013). Additionally, central Mexico, and particularly the so-called Trans Mexican Volcanic Belt (TMVB), has been considered as a model of biodiversification, as it is a transitional area between the Neotropical and Nearctic biogeographical regions (Luna-Vega et al., 2005; Morrone, 2010; Luna-Vega & Contreras-Medina, 2012). The TMVB is considered an area of endemism for several taxa, as a result of a complex hydro-geomorphological history; particularly, this is a remarkable area of endemism for the freshwater fish fauna (Miller et al., 2005). Among the endemic elements of the central Mexico freshwater fish fauna are the goodeines, a monophyletic group of cyprinodontiforms that experienced a diversification in the area (Domínguez-Domínguez et al., 2010 and references therein). On the other hand, the genus Margotrema represents the model of this study since their species are relatively common as parasites of goodeines across Mexico (Martínez-Aquino et al., 2013). Since the evolutionary and biogeographical history of goodeines in central Mexico was influenced by the tecto-volcanic activity and events such as river piracy (Parenti, 1981; Miller Smith, 1986, Domínguez- Domínguez et al., 2010), Martínez-Aquino et al. (2013) recently demonstrated that the genealogical structure of Margotrema (i.e., M. resolanae and three independent genetic lineages of M. bravoae) shows a particular geographical distribution pattern across hydrological systems 159 in central Mexico, and also that each lineage of Margotrema apparently shows some specific association with their hosts, at the goodeine tribe level, as monophyletic group. These results shed light on the hypothesis that the distribution patterns, as well as host associations of each lineage of Margotrema, would be concordant with the hydrogeomorphological events that occurred in central Mexico, and that the vicariant and dispersal events that caused the goodein diversification promoted at the same time the diversification of each Margotrema lineage. In this context, two general patterns in the evolution of Margotrema were uncovered: 1) Restricted geographical distribution in hydrological systems, i.e., M. resolanae is exclusively found in the Cuzalapa River Basin, meanwhile M. bravoae Lineage I is only found in the Ayuquila, Balsas and Conchos rivers, M. bravoae Lineage II is only found in the Lerma River, and M. bravoae Lineage III is exclusive to the Mezquital River. And the second pattern: 2) Host specificity at host-species and host-tribe level, e.g., M. resolanae is associated only to Xenotaenia resolanae (Tribe: Ilyodontini) while M. bravoae Lineage I is found in hosts belonging to Ilyodontini; M. bravoae Lineage II is associated to hosts of Girardinichthyini and Chapalichthyini, and finally, M. bravoae Lineage III is exclusive to Characodon audax (Tribe: Characodontini). In the present study, biogeographical and phylogenetic analyses of goodeines, as well as the phylogenetic relationships of Margotrema spp. were explicitly used to explore the evolutionary process that may have driven the diversification of the host-parasite association, and to determine the potential role that geographical distribution had on the evolutionary history of both, goodeines and their digenean parasites. To accomplish that goal, phylogenetic reconstructions of both fish and parasites, along with novel probabilistic algorithms as a means of providing more objective outcomes, were used. This study was then designed to answer the following four questions: 1. What is the divergence time for each lineage of Margotrema? 2. Is there a biogeographical congruence between the genealogical history of Margotrema and the hydro-geomorphological history of central Mexico which is supported by the historical biogeography of their goodein hosts? 3. Is there a congruence (i.e., cophylogeny) between the evolutionary histories of the tribes of Goodeinae and those of Margotrema?, and finally, 4. Is there a congruence between the divergence time among the main clades of Goodeinae and each species (or Lineage) of Margotrema? 160 MATERIALS AND METHODS Taxa, molecular dataset and phylogenetic analyses The taxa used for phylogenetic analyses comprised samples of Margotrema spp. used already in a previously study; two molecular markers were sequenced, fragments of COI (mitochondrial DNA) and ITS1 (nuclear DNA). Analyses included two outgroups (i.e. Allocreadium lobatum and Walliniae chavarriae). The software RASP version 2.1 (Nylander et al., 2008; Yu et al., 2010, 2011) was used for biogeographic analyses of the first phylogeny (see below). We used the same combined dataset (COI + ITS1) to perform a multispecies coalescent analysis as implemented in *BEAST (version 1.7.2, Drummond Rambaut, 2007; Heled Drummond, 2010), resulting in a Species Tree (ST) to infer the genealogical relationship between M. resolanae and the three lineages of M. bravoae (see Martínez-Aquino et al., 2013). Divergence Dating To propose an accurate time frame for phylogenetic divergence processes between the areas (localities) for each lineage of Margotrema spp. (see Appendix 1 in Supporting Information), we estimated mean node ages and their 95% highest posterior densities (HPDs) using a Bayesian relaxed molecular clock method (Drummond et al., 2006) as implemented in *BEAST v. 1.7.4 (Drummond et al., 2012). In this method, test of evolutionary hypotheses are not conditioned to a single tree topology, which allows for simultaneous evaluation of topology and divergence times while incorporating uncertainty in both. A uniform Yule tree prior was specified, as appropriate for hierarchical rather than reticulate relationships, and a sub-sampling of one representative specimen for every lineage was included to avoid over-representation of certain individual lineages. We applied the same optimal model as obtained by Martínez-Aquino et al., (2013), of data partitioning and DNA substitution, identified by BIC for using jModelTest 0.1.1. (Posada, 2008), for each gene COI with HKY+I+G and ITS1 with HKY+G invariant sites in *BEAST package (BEAUti v 1.7.4; Drummond et al., 2012). An uncorrelated relaxed log normal molecular clock was applied to model rate variation across branches. Were introduced uniform prior distributions because of the lack of evidence to justify a specific distribution of rates in our data. Based on geographical distribution (localities where with published records) of Margoterma (Pérez-Ponce de León et al., 2007, 2009, 2013; Martínez-Aquino et al., 2007, 2009, 2011, 2012, 161 2013; Aguilar-Aguilar et al., 2010), a geological calibration was applied, based on the uplifting of the western part of the TMVB, which began around 11 million years ago (Ma) (Ferrari et al., 1999; Ferrari, 2004). This age was set, as a maximum for the MRCA of Margotrema spp. Monophyly was not enforced for any of the other nodes. Analyses were run for 50 million generations with a sampling frequency of one in every 1000 generations. Branch support for the different tree topologies was evaluated by Posterior Probability (PP) of the inferred relationships, where PP > 0.95 was considered to provide strong nodal support. The trees with the highest lineage PP were chosen from *BEAST output files using the program TreeAnnotator v.1.7.4 (Drummond et al., 2012). The phylogenetic divergence processes were run in the aforementioned programs in the Bioportal of the University of Oslo (http://www.bioportal.uio.no/). Historical biogeography To test the naturalness of 12 hydrological systems as a single biogeographical unit we explored – as a first step – the PP values of the ancestral areas of the main clades recovered within the lineages of Margotrema spp. using a Bayesian method for biogeographical and ancestral state reconstructions implemented in the program RASP version 2.1. Bayesian binary MCMC analyses performed on the last 10, 000 trees obtained from both MrBayes runs, were set to 10, 000, 000 cycles, coding the geographic distribution of the terminal taxa into 12 different areas following Domínguez-Domínguez et al. (2006, 2010), delimited based on the Mexican hydrological basins and sub-basins map produced by the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO 1998; www.conabio.gob.mx). Furthermore, for this first analysis we used two plus areas correspond to distribution area of outgroups (see Appendix 1). To uncover the events that influenced the historical biogeography and diversification processes (i.e. Ronquist Sanmartín, 2011; Sanmartín, 2012) of M. resolanae and M. bravoae (the three lineages), we performed Dispersal-Extinction-Cladogenesis (DEC) analyses using the program Lagrange v. 20120508 (Ree Smith, 2008) on the dated ultrametric tree of areas obtained from *BEAST (see below). Once we obtained the probability values from the Bayesian binary MCMC analyses (not show results), we selected a new set of hydrological systems and built a second matrix of eight areas (basins and sub-basin rivers), without outgroups, to tested a DEC model (see Appendix S2A-C). The input file for the analysis was constructed using the web-based Lagrange configurator (http://www.reelab.net/lagrange/configurator/index). The 162 maximum range size for ancestral areas was set to two. Dispersal probabilities were constrained based on the following three factors. I) Geographical distance. II) Geological events, i.e. uplifting of the western part of the TMVB (6 – 10 Ma) (Ferrari et al., 1999; Ferrari, 2004), Tamazula failure (5 – 4.2 Ma) (Rosas-Elguera et al., 1996; Ferrari Rosas-Elguera, 1999), connection / disconnection of Cuitzeo-Aztlán paleolakes (5.8 Ma) (Israde-Alcántara and Garduño-Monroy, 1999; Silva-Romo et al., 2002), main course of the ancient El Naranjo-Verde River (De Cserna Álvarez, 1995), El Salto waterfall failure (1.5 Ma) (Albitron, 1958). III) Patterns and dates of diversification of the most recent common ancestor (MRCA) of particular taxa of each tribe of goodein hosts; i.e. Xenotaenia resolanae (5.1 Ma) and the genus Allodontichthys (5.6 Ma), both of the tribe Ilyodontini (6.9 Ma); Neoophorus regalis (6.9 Ma), of the tribe Girardinichthyni (8 – 7 Ma) and to Characodon audax (1.8 Ma) of the tribe Characodontini (15.5 Ma) (for more details see Domínguez-Domínguez et al., 2006, 2010). A second DEC was carried out to detect the biogeographical events in several localities of M. bravoae Lineage III (Martínez-Aquino et al., 2013), in the area and particular timing of the plio-pleistocenic lakes from central Mexico (< 1 Ma). For this analysis, we built a third matrix of six areas (i.e. sub-basin) (Appendix S3A-B). The maximum range size for ancestral areas was set to two. Also, dispersal probabilities were constrained based on the three factors mentioned above; i.e. geographical distances, dates of connection / disconnection of Zacapu-Villa Morelos-Cuitzeo paleolakes (Plio-Pleistocene < 1 Ma) (Israde-Alcántara, 1999), patterns and dates of diversification of the MRCA of the tribes Girardinichthyini and Chapalichthyini, respectively (for more details see Domínguez-Domínguez et al., 2010). Cophylogeny To test the evolutionary associations, i.e., codivergence between goodein fishes and their digenean parasites, a DEC model using the software Lagrange was implemented. Trees involving the association of two taxa are used to infer their common evolutionary history, both in a geographic (area and organism trees) and in a cophylogenetic scenario (host and parasite) (Matzke, 2010). Since the biogeographical interpretations can be analogized to cophylogenetic ones, the following analogies, as study units, were used in accordance with Matzke (2010): area / host; organism / parasite, dispersal / host switch; vicariance / cospeciation; sympatric speciation / parasite speciation on one host; extinction / parasite extinction (lineage loss). Also, in this study 163 the following terms were used following Charleston (2011): Codivergence, which also referred as cospeciation, implies an event where a parasite lineage (e.g., species) infecting a host lineage diverges into two new lineages at the same moment that its host does. Duplication is the event where the parasite lineage diverges into two new lineages, independently of its host, and both new lineages remain on that host lineage. Host switching is defined as the event where the parasite diverges by switching to establishing on another host lineage (Charleston, 2011); following Choudhury (2002), parasite speciation may either be concomitant with and resulting from host speciation (cospeciation) or follow the colonization of a „„new‟‟ host from an existing one (host-switching). In this context, to test when cophylogenetic events in a particular time and space occurred between association Goodeinae-Margotrema spp., we performed a DEC using the species‟ hosts as areas and the parasites as organisms distributed in the areas. For this analysis, we built a third matrix of 15 areas as a single biogeographical unit (host species) (Appendix S4A-B). The maximum range size for ancestral areas was set to two. The dispersal probabilities were constrained considering geographical distances, similar events as the ones for the geographical DEC analyses, plus divergence timing of genus / species of hosts (Appendix S4B) and the genealogical relationships between Margotrema spp. and their geographical areas. Additionally, to determine whether there is a significant match between host and parasite trees, the phylogenies of the subfamily Goodeinae and Margotrema were compared using a statistic test of p values with a 95% of confidence intervals through TreeMap 3b (Charleston, 2011). We employed the tree topologies obtained from the cytochrome b gene sequence from the hosts and COI+ITS1 sequences from four lineages of Margotrema spp. The consensus trees from the Bayesian Inference analyses (dated with Maximum Likelihood approach) of Goodeinae (see Domínguez-Domínguez et al., 2010), were edited through the program Mesquite Modular System for Evolutionary Analysis (MESQUITE) version 2.72 (Maddison Madisson, 2011) to select the terminal taxa that can be found in a host-parasite association with Margotrema, and to remove the remaining terminal taxa from the tree. Similarly, the dated molecular phylogeny of Margotrema spp. was also edited in MESQUITE, in that samples of each locality were trimmed to a single terminal taxon. This was done because TreeMap 3b only reconciles strictly dichotomous trees. 164 RESULTS Divergence times The divergence time estimates, based on the tree reconstructed using *BEAST, for the MRCA of M. resolanae + M. bravoae clade was 6.53 Ma. The divergence time between the ancestor of Lineage I and the ancestor of lineages II and III was dated 3.20 Ma, and finally, lineages II and III diverged 1.03 Ma. (Appendix S5). Historical Biogeography The results of the reconstruction of ancestral areas through the Bayesian MCMC algorithm in RASP, considering the same dataset for the main lineages of Margotrema spp. uncovered eigth of the 18 river sub-basins across central Mexico (not show results), as defined by Domínguez- Domínguez et al. (2006, 2010). The same areas were used for carrying out the DEC analysis. We used two distinct matrices of areas to test the biogeographical events of the Lineages of Margotrema spp. in each locality. The most clear-cut summary of the data of the geographical distribution of each Margotrema lineage (Fig. 1), was recovered by analysis of the combined dataset matrix of DEC to 0 – 6.5 Ma (i.e. Appendix S2C) and DEC to 0 – 1 Ma (i.e. Appendix S3C) and is presented next. The analysis in Lagrange show that the MRCAs of M. resolanae and M. bravoae were distributed in a geographical range which apparently spanned the North-Western Central in Cuzalapa River, Upper and Middle Mezquital River and Armería-Ayuquila Rivers (areas I, B and H, respectively). The first diversification event occurred when this MRCA was isolated by a vicariant event in the Cuzalapa River, from the ancestor of M. bravoae (B, H) producing an allopatric speciation for M. resolanae in this river (Fig. 1a). Once in areas B and H, the MRCA of the three lineages of M. bravoae underwent dispersion to the Cotija area [J] and the Lower Balsas River [K], and apparently it was lost in the Armería-Ayuquila River [H]. This MRCA, through a vicariant event, experienced cladogenesis separating the MRCA of Lineage I (in Area K) from the MRCA of Lineages II and III in areas B and J (Fig. 1a). Margotrema bravoae Lineage I 165 The MCRA of Lineage I (distributed in the Lower Balsas River, K) exhibited two dispersal events, in one, the ancestor dispersed back into the Armería and Ayuquila Rivers (H), and in the second, to a tributary of Conchos River (A). A vicariant event then separated areas H and A from K and finally, the areas H and A, and K and L (Upper Balsas River) were separated by vicariant events, respectively (Fig. 1b). Margotrema bravoae Lineage II & III Once in areas B and J, the MRCA of Lineages II and III dispersed into Lower Lerma River (C). Later, a vicariant event separated the Upper and Middle Mezquital River (B) from the Lower Lerma River (C) + Cotija (J) (Fig. 1a). Lineage III of M. bravoae is exclusively found in the Mezquital River (B). Margotrema bravoae Lineage II The MRCA of M. bravoae Lineage II distributed in C and J (Fig. 1a) deserved further consideration, since it experienced several vicariant and dispersal events. This ancestor dispersed to Cuitzeo Lake (E) and Zirahuén Lake (G) (Fig. 1c). A vicariant event separated Cotija (J) from the other areas of the Lerme River (C, E, and G). A posterior vicariant event isolated Zirahuén Lake (G) from Cuitzeo Lake and Lower Lerma River which were subsequently separated by another vicariant event. A population from Zirahuén Lake (G) dispersed into Zacapu Lake (D) and Pátzcuaro Lake (F) and later, these areas were geographically separated. Cophylogenetic patterns A DEC analysis was performed using all host species – areas – of Margotrema in all recorded localities in our phylogenetic study (Fig. 2). These analyses show that the MRCA of M. resolanae and M. bravoae was associated to Allodontichthys zonistius (g) and Codoma ornata (h), giving rise to a lineage duplication in one host (i.e. into “g”) (akin to a allopatric speciation event) and a posterior cospeciation in Xenotaenia resolanae (m), plus lineage loss in A. zonistius because to extinction of this host (Fig. 2a). The MRCA of the three lineages of M. bravoae sensu lato (Martínez-Aquino et al., 2013) was associated to A. zonistius and C. ornata since 6.53 – 3.20 Ma (Fig. 2a). In total, in the three lineages of M. bravoae was found five events of duplication 166 following of host-switching + lineage loss, and only one more without lineage loss; plus six of codivergence events (Fig. 2). Margotrema bravoae Lineage I Particularly, the MRCA of the M. bravoae Lineage I was associated to A. zonistius (g) + C. ornata (h) (Fig. 1a), and posteriorly, colonised several host species belonging to the Ilyodontini (Fig. 2b). For example the parasite associated with A. zonistius experienced a host switching event into Ilyodon furcidens (k) (in Armería Ayuquila Rivers [H]) (Fig. 1, 2), followed by dispersal into I. whitei (l) (hypothetically, in a same area as Lower and Upper Balsas Rivers [K] and [L]). After, a codivergence event separated the populations associated to I. furcidens (k) (in the Lower Balsas River [K]) and I. whitei (l) (in the Upper Balsas River [K]). Finally, M. bravoae Lineage I occurring in the Lower Balsas River (K) (Fig. 1b) experienced a host switching event into Chapalichthys pardalis (j) with both hosts occurring in sympatry (Fig. 2b). Margotrema bravoae Lineages II & III The possible differentiation of the MRCA of Lineages II and III of M. bravoae was due to a host switching event that separated Lineage II from III. Previously, DEC uncovers a dispersal event of the ancestor into Characodon audax, and a concomitant vicariant event separated the populations of C. audax in the Mezquital River from the other ancestor that colonised Chapalychthyini and Girardinychthyini in the Lerma River (Fig. 2a, 2c). Margotrema bravoae Lineage II Particularly, in Lineage II, the ancestor experienced colonisation via host switching into Neoophorus regalis (d) and Zoogoneticus quitzeoensis (n) in the Lerma River Basin (Fig. 2c). Posteriorly, other host switching events occurred once the ancestor was in that particular geographical area. For instance a host switching event allowed the colonisation of Alloophorus robustus (e), while another five host switching events allowed the colonisation of Allotoca meeki (c), A. duguesi (b), A. diazi (a), and A. zacapuensis (f) (Fig. 1c). Finally, cophylogenetic results show three general patterns bewteen the two associated taxa, through a reconciliation phylogenetic analysis using TreeMap 3b. These patterns are shown in the form of a Tanglegram, were the topology of the phylogenetic trees of both groups can be 167 compared (Fig. 3). The resulting three shows all three levels of host-parasite association between Goodeinae and Margotrema: Level 1 is Species-Species, interpreted as cospeciation; Level 2 is Species-Lineage, interpreted as Codivergence Type I, when the host experience a speciation process and a parasite lineage colonised posteriorly reaching some level of intraspecific genetic divergence; and Level 3 is Tribe-Lineage, interpreted as Codivergence Type II, when divergence occurs at deeper level of the phylogenetic history of the hosts (tribes) and parasites colonised these hosts acquiring some level of intraspecific genetic divergence (Fig. 3). DISCUSSION Most Recent Common Ancestor of the genus Margotrema The divergence date of the most recent common ancestor (MRCA) of the genus Margotrema was estimated in 6.53 Ma, and apparently it was distributed in northern Mexico in the Upper and Middle Mezquital and in the Cuzalapa and Armería-Ayuquila Rivers (Fig. 4a). This MRCA was associated with A. zonistius (Goodeinae) and C. ornata (Cyprinidae) (Fig. 2a). Recent reports on the presence of Margotrema spp. in hydrological systems of Northern Mexico parasitising freshwater fish species belonging to the Cyprinodontidae and Cyprinidae are strong evidence of the possibility that these parasites colonised goodeids from other freshwater fish groups, either from the Nearctic cyprinids or the Neotropical cyprinodontids. For instance, records of Margotrema spp, albeit with low relative prevalence and abundance values, have been established for Cyprinodon nazas (Cyprinodontidae) in the Nazas River Basin, and more frequently, in the following cyprinids: C. ornata in the Piaxtla River Basin and Cyprinella lutrensis in the Santa María River Basin (Pérez-Ponce de León et al., 2009, 2013; Aguilar-Aguilar et al., 2010) (Fig. 4a, Appendix 6). Based on the recovered ancestral area through the analyses conducted in this study, some support is provided for the Nearctic affinity of this digenean, as previously suggested by Pérez- Ponce de León et al. (2007) and Curran et al. (2011), even though these authors found a close sister group relationship between Margotrema and Crepidostomum, both members of the Allocreadiidae, with the latter being a common parasite of centrarchids. The divergence date, ancestral associations and distribution of Margotrema, in addition to the biogeographical and cophylogenetic patterns uncovered by the DEC-model, allows us to propose that the ancestral 168 area of the MRCA extended across hydrological systems currently occupied by the Sierra Madre Occidental (SMOc), and western regions of the Altiplano Mexicano (AM) (biogeographical provinces sensu lato, Morrone, 2005) (Fig. 4a). In terms of host-association, two competing historical scenarios could have occurred: a) Goodeidae-Margotrema. This scenario is explained by an ancestral relationship between Margotrema and goodeines ocurring in northern Mexico. The ancestral area of Margotrema, as shown in this study, is similar to that of the MRCA´s for Goodeinae (divergence dated as 15.5 to 8 Ma, see Domínguez-Domínguez et al., 2010). A goodeid fossil (Empetrichthys erdisi) was found in the Yaqui River, Sonora, in Northwestern Mexico, a locality close to the area where goodeids are currently distributed (Uyeno & Miller, 1962; Parenti, 1981; Minckley et al., 1986). The sister group of Goodeinae is Empetrichthyinae, and the diversification event that gave rise to both subfamilies is recognized to have occurred in the Great Basin in southwestern USA (Parenti, 1981). The result of the overlap on the distribution range of both ancestors was the establishment of a close evolutionary relationship with strong host-specificity, and it was latter dispersed into 2003), even though goodeines experienced a diversification in river basins of northern Mexico, and more intensively in central Mexico. An important question that remain unresolved is where the goodeids inherited the ancestral Margotrema from, since no records of the helminth fauna are available for empethrychthyines, and no record of an allocreadiid like Margotrema has been established for other cyprinodontiforms. b) Cyprinidae-Margotrema. The ancestral association of Margotrema with the cyprinid C. ornata, as shown in this study, could have been established in hydrological systems of northern Mexico at 6.5 Ma (Figs. 1a, 2a). The implication of this scenario is that goodeines began the association with the ancestor of Margotrema in northern areas of Mexico, previous to the diversification, as a result of a host sharing (ecological host extension) event from other freshwater fish groups, such as cyprinids, with a subsequent specialization in goodeines, where the digenean developed a strong host specificity. We recently collected a few specimens of Margotrema in a species of cyprinid in three river basins of northern Mexico (Santa María River, Conchos River and Pagigóchic River, unpublished data) and clearly this may reflect the shadow of the ancestral distribution of extinct goodeids in northern hydrological systems, where cyprinids are common 169 and very abundant (Fig. 4a). The same results of low prevalence and abundance values of Margotrema in cyprinids from Chihuahua (and even in Cyprinodon from Durango) may indicate the transfer of the ancestor between cyprinids and goodeids. Considering that phylogenetic hypothesis of allocreadiids place Margotrema as the sister taxa of Crepidostomum (a genera predominantly parasitic in centrarchids, but also found in other freshwater fish groups such as cyprinids, see Hoffman, 1999), it is likely that the origin of Margotrema is the result of a host sharing event from centrarchids to cyprinids, and from there to goodeines, or from centrarchids to goodeines. Once in goodeines, Margotrema experienced events such as cospeciation and several instances of host switching. Clearly, the diversification rate of the parasite was slower that that of their host, an idea originally proposed by Manter (1966). It is noteworthy that distinct aquatic taxa currently distributed in central Mexico possessing a Nearctic biogeographical affinity, show an ancestral distribution pattern similar to that proposed in this study for the MRCA of Margotrema, including Cyprinidae (Chernoff & Miller 1986: Schönhuth et al., 2008: Pérez-Rodríguez et al., 2009); and crayfish of the subfamily Cambarellinae (Pedraza-Lara et al., 2012). Clearly, future collections of specimens of Margotrema in other host species across northern Mexico, and also survey work for helminths in Empetrychthynae in Southwestern USA will be instrumental in providing further support for one of the competing scenarios. Xenotaenia resolanae-Margotrema resolanae: an allopatric cospeciation model According to our results, the first cladogenetic event during the evolutionary history of Margotrema was the separation of M. resolanae from the ancestor of M. bravoae an event dated 6.53 Ma. The restricted distribution range of both species seem to be the result of an allopatric speciation by peripheral isolates, where populations of both, hosts and parasites, were isolated at the edge of the distributional range of the MRCA, in the Cuzalapa River Basin, resulting in a strong host-specificity pattern of association illustrating a classical model of cospeciation reflecting reciprocal selection, i.e., coevolution. This hypothesis is supported by the divergence date of the MRCA of A. zonistius (6.9 Ma) and the posterior diversification process of X. resolanae, exclusive to the Purificación-Mascota River basin (between 5.6 to 5.1 Ma) (see Domínguez-Domínguez et al., 2010). Unfortunately, geological information of this region is 170 scarce and only the volcanic activity of the Talpa-Mascota graben dated ca. 4.6 Ma has been documented (Carmichael et al., 1996; Bandy et al., 2001). Patterns of regional codivergence of Goodeinae-Margotrema bravoae across central Mexico Most Recent Common Ancestor of Margotrema bravoae The MRCA of M. bravoae, after the split from M. resolanae underwent phylogenetic codivergence through a dispersal process in areas such as Upper and Middle Mezquital River, Cotija and the Lower Balsas River (Fig. 4b) and subsequently, this ancestor experienced a secondary lineage loss in goodeines of the the Armería and Ayuquila Rivers. Interestingly, the pattern of regional codivergence seems to be closely tied to the evolutionary history of Goodeinae regarding the formation of what currently represents each tribe of the subfamily, i.e., Chapalichthyini, Characodontini, Girardinichthyni and Ilyodontini (Domínguez-Domínguez et al., 2010). The historical biogeography of the Goodeinae, as described by Domínguez-Domínguez et al., (2006, 2010), was instrumental to explain the diversification process of the parasite fauna in this complex area. For instance, the erosion of the river tributaries from the Pacific and Atlantic slopes (i.e., Balsas, Ameca, and Pánuco River Basins) promoted the capture of water bodies of the Central Altiplano, with the subsequent dispersal of species that were characteristic of that region. Apparently, the Tamazula fault and the Sayula graben (dated 5 – 4.2 Ma), are two of the main causes that promoted the diversification of the MRCA´s of the each Tribe of goodeines by a series of vicariance and dispersal events represented by isolation processess, and connection- disconnection of river basins with ancestral paleolakes such as Cuitzeo-Aztlán (dated 6 – 3.2 Ma) (Smith et al., 1975; Rosas-Elguera et al., 1996; Ferrari & Rosas-Elguera, 1999; Domínguez- Domínguez et al., 2006, 2010). In this context, the differentiation process of each of the three lineages of M. bravoae resulted from geological events that changed the geographical configuration of the area and, apparently, with a posterior diversification of their hosts. Next, we describe the hypothetical scenarios that explain the evolutionary history of the three M. bravoae lineages. Ilyodontini-Margotrema bravoae Lineage I 171 The differentiation process of the MRCA of M. bravoae Lineage I was dated 3.2 Ma. A geographical barrier caused the split the ancestral area of the MRCA of M. bravoae (Upper and Middle Mezquital River, Cotija and Lower Balsas River), and what currently represents Lineage I was isolated in the Lower Balsas River. The origin of M. bravoae Lineage I is apparently associated with the isolation and posterior diversification of the MRCA of Allodontichthys (dated 3.6 to 2.9 Ma) in the Ameca, Ayuquila-Armería, and Coahuayana-Tamazula River Basins (see Domínguez-Domínguez et al., 2010). The entire tribe Ilyodontini diversified in these river basins, and Lineage I of M. bravoae codiversified through a horizontal transmission pattern (see Rannala & Michalakis, 2003) into other illiodontins, in addition to a member of the Chapalichthyini inhabitant of the same river drainages. According with Domínguez-Domínguez et al. (2010) the MRCA of Allodontichthys and Ilyodon (dated 5.6 Ma), dispersed from the Ayuquila-Armería river into several hydrological systems in central Mexico such as Ameca, Balsas, Coahuayana- Tamazula, Armería-Ayuquila and Purification-Mascota river basins. Previous published records of Margotrema (see Mejía-Madrid et al., 2005) in ilyodontins in the Coahuayana River Basin (in Allodonthichthys hubbsi in El Tule, Jalisco, and A. tamazulae in Río Tamazula, Jalisco, are congruent with the hypotheses of area expansion of M. bravoae Lineage I related with the diversification process of the Tribe Ilyodontini. Similarly, these records also support the ancestral connection between the Armería-Ayuquila and Coahuayana hydrological systems where the MRCA of the Ilyodontini was distributed (Webb, 2002; Domínguez-Domínguez et al., 2010). The evolutionary history and divergence date of M. bravoae Lineage I (3.2 Ma), is congruent with the hypothesis of the origin of the diversification of the genus Allodontichthys (3.6 – 2.9 Ma) influenced by vicariance and dispersal events (Domínguez-Domínguez et al., 2010) associated with geological events that shaped the biogeographical history of several freshwater fish taxa, i.e., the uprising of the Sierras de Manantlán and Cacoma, the volcanic activity of the Talpa-Mascota graben (dated 3.6 Ma), and the reactivation of the Colima and Tamazula graben in the Pliocene (Allan, 1986; Carmichael et al., 1996; Garduño-Monroy et al., 1998; Mateos et al., 2002; Pérez-Rodríguez et al., 2009; Domínguez-Domínguez et al., 2010). Girardinichthyini / Chapalichthyini-Margotrema bravoae Lineage II: a pleistocenic model? The genealogical differentiation of the MRCA of M. bravoae Lineages II and III that occurred between 3.2 and 1.03 Ma presumably in the Transmexican Volcanic Belt, particularly in the 172 Lower Lerma River and Cotija (Fig. 4c), is related with the patterns of dispersal and isolation of the MRCAs of the goodeids Zoogoneticus quitzeoensis and Allotoca zacapuensis in Cuitzeo and Zacapu Lakes dated at 3.3 – 2.8 Ma, and the divergence date and expansion process of Z. purhepechus into the river basins of the Lower Lerma and the Ameca Rivers as well as Chapala Lake (2.8 Ma and 2 – 1.9 Ma, respectively) (Domínguez-Domínguez et al., 2006, 2007c, 2008, 2010). The evolutionary history of Lineage II occurred between 1 and 0.0167 Ma (Appendix S5), which corresponds with events that took place during the Pleistocene, and because of that, a DEC model was specifically conducted to describe the separation events for this lineage. (Appendix S3). The results of the DEC model, support the idea of the dispersion of M. bravoae Lineage II during Pleistocene across hydrological systems of the Lower Lerma River, the Cuitzeo Lake and the Zirahuén Lake, and apparently the dispersion and vicariant events occurred in concordance with the diversification processes of their hosts. Two area relationships are recovered from this model, the first one between the Zacapu, Pátzcuaro and Zirahuén Lakes which further support the idea of ancestral connections between these water bodies (see Domínguez-Domínguez et al., 2006, 2010) (Fig. 4e), and that of Cuitzeo Lake and the Lower Lerma River which explains the ancestral connection of this river basin. These area relationships are also supported by the current distribution patterns of several freshwater fish taxa, an idea originally proposed by Alvarez del Villar (1972) and more recently by particular phylogenetic and biogeographical analyses (Domínguez-Domínguez et al., 2007a; 2010; Pérez-Rodríguez et al., 2009). Characodon audax-Margotrema bravoae Lineage III Our results indicate that the MCRA of M. bravoae Lineages II and III was associated with the ancestor of the Characodontini in the Upper and Middle Mezquital Rivers, Cotija and Lower Lerma River, an event dated between 3.2 and 1.03 Ma. The posterior isolation caused the codiversification of Lineage III with Ch. audax. The presence the ancestor of the Characodontini in Cotija and the Lower Lerma River is incongruent with the distribution patterns established for the genus Characodon, which occupies a basal position in the phylogeny of the Goodeinae (Domínguez-Domínguez et al., 2010). Even tough, the phylogenetic history of goodeines shows that the vicariant event that caused the allopatric speciation of Ch. audax and Ch. lateralis dated 1.8 Ma was the formation of the Salto waterfall (Domínguez-Domínguez et al., 2006, 2010) (Fig. 173 4d), however, no records of Margotrema spp. have been established for C. lateralis, even though several surveys have been conducted in the area (Mejía-Madrid et al., 2005; Martínez-Aquino et al., 2007; Pérez-Ponce de León et al., 2009). Apparently, the codiverence process detected in this study, related with the association of Ch. audax and M. bravoae Lineage III (exclusive to the Upper and Middle Mezquital River) can be explained by an extinction event of non-viable ancestral populations of the Lineage III in the Lower Mezquital River, following the event of cladogenesis in the host caused by the Salto waterfall. The results of this study show that the diversification process of the genus Margotrema is the result of a combination of geography and host specificity at three distinct levels: a) Species- Species (cospeciation), b) Species-Lineage (Codivergence Type I); c) Tribe-Lineage (Codivergence Type II) (Fig. 3). In this context, the allopatric cospeciation process proposed between X. resolanae-M. resolanae is a classic model of cospeciation of type one by one (Ehrlich and Raven, 1969). On the other hand, the cophylogenetic process we uncovered between Goodeinae and Margotrema bravoae (Lineages I, II and III), support Manter´s parasitological rule in that "the parasites evolve more slowly than their hosts" (Brooks, 1979). As a result, a general pattern we discovered is that parasites are relatively younger than their hosts, i.e., divergence times do not coincide for parasites and their hosts. For example, divergence date of C. audax is dated 1.5 Ma, meanwhile for M. bravoae Lineage III it was estimated in 1.03 Ma. Nevertheless, the coevolutionary scenary follows a geographical mosaic in which the populations differ in their characteristics and specializations with respect to the species with which they interact (see Thompson, 2005). Therefore, the patterns of codivergence uncovered for the Goodeinae-M. bravoae association occur at three aforementioned levels, and are thus congruent with the geographical mosaic theory. CONCLUSION This study provides empirical evidence that demonstrates that the historical biogeography and evolutionary history of the digenean Margotrema spp. across central Mexico mirrors that of their goodein freshwater fish hosts. Evidence of coespeciation and a series of vicariant and dispersal events were found as the main causes that explain the codivergence patterns, first between Margotrema resolanae and Xenotaenia resolanae, second between Margotrema bravoae Lineages I, II (codivergence type I at goodein tribe level), and finally, Lineage III (codivergence 174 type II at goodein species level). These results clearly show a cophylogenetic pattern for this host-parasite association, even though these taxa show independent evolutionary histories. Divergence times for each host and parasite lineage are relatively congruent and demonstrate the concordance of the evolutionary and biogeographical history between the two taxa, both in time and space. In this context, the geographical scenario molded by the complex geological and climatic history of the region, is the most important determinant that drives the evolution of the digenean, followed by the cophylogenetic association that this parasite established with their goodein hosts. AKNOWLEDGEMENTS We thank C. Pedraza-Lara for facility the information of phylogenetic analysis and molecular evolution of Goodeinae; J. Rozas, A. Sánchez-Gracia and R. Pérez-Rodríguez for earlier discussions of this manuscript. B. Mendoza for processing some of the specimens, and L. García for providing specific scientific literature. A.M.A. and F.S.C. special thanks to Swiss Systematics Society to permit take the course Model-based methods in Biogeography given by Dr. Isabel Sanmartin, celebrity during the 5. Scientific meeting of the Swiss Systematics Society. A.M.A. was supported by a scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACyT). This paper fulfills the requirements of A.M.A. to obtain his Ph.D. degree within Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. This study was supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACyT 83043), and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnologíca (PAPIIT-UNAM IN 202111) to G.P.P.L. REFERENCES Aguilar-Aguilar, R., Rosas-Valdez, R., Martínez-Aquino, A., Pérez-Rodríguez, R., Domínguez- Domínguez, O. & Pérez-Ponce de León, G. (2010) Helminth fauna of two cyprinid fish (Campostoma ornatum and Codoma ornata) from the upper Piaxtla River, Northwestern Mexico. Helminthologia, 47, 251–256. Albitron, C.C. (1958) Quaternary stratigraphy of the Guadiana valley, Durango, Mexico. Geological Society of America Bulletin, 69, 197–216. 175 Aldous, D.J. (2001) Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Statistatistical Science, 16, 23–34. Allan, J.F. (1986) Geology of the northern Colima and Zacoalco grabens, southwest Mexico: Late Cenozoic rifting in the Mexican volcanic belt. Geologicall Society American Bulletin, 97, 473–485. Bandy, W.L., Urrutia-Fucugauchi, J., McDowell, F.W. & Morton-Bermea, O. (2001) K-Ar ages of four mafic lavas from the Central Jalisco Volcanic Lineament: supporting evidence for a NW migration of volcanism within the Jalisco block, western Mexico. Geofisica Internacional, 40, 259–269. Blair, D. (2006) Ribosomal DNA variation in parasitic flatworms. In (A. Maule, Ed.) Parasitic Flatworms: Molecular Biology, Biochemistry, Immunology and Control CABI. pages 96- 123. Brooks, D.R. (1979) Testing the context and extent of host-parasite coevolution. Systematic Zoology, 28, 299–307. Canning, E.U. & Madhavi, R. (1977) Studies on two new species of Microsporida hyperparasitic in adult Allocreadium fasciatusi (Trematoda, Allocreadiidae). Parasitology, 75, 293–300. Carmichael, I.S.E., Lange, R.A., & Luhr, J.F. (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contribution to Mineralogy and Petrology, 124, 302–333. Ceccarelli, F.S. & Zaldívar-Riverón, A. (2013) Broad polyphyly and historical biogeography of the Neotropical wasp genus Notiospathius (Braconidae, Doryctinae). Molecular Phylogenetics and Evolution. Charleston M.A. (1998) Jungles: a new solution to the host/parasite phylogeny reconciliation problema. Mathematical Biosciences, 149, 191–223. Charleston, M.A. (2011) TreeMap 3b. URL http://sites.google.com/site/cophylogeny 176 Chernoff, B. & Miller, R.R. (1986) Fishes of the Notropis calientis complex, whit a key to the southern shiners of Mexico. COPEIA, 1, 170–183. Conow, C., Fielder, D., Ovadia, Y. & Libeskind-Hadas, R. (2010) Jane: a new tool for the cophylogeny reconstruction problem. Algorithms for Molecular Biology 5, 16. Cowman, P.F. & Bellwood, D.R. (2013) The historical biogeography of coral reef fishes: global patterns of origination and dispersal. Journal of Biogeography, 40, 209–224. Criscione, Ch.D. & Blouin, M.S. (2004) Life cycles shape parasite evolution: comparative population genetic of salmon trematodes. Evolution, 58, 198-202. Curran S.S., Tkach, V.V., & Overstreet, R.M. (2011) Phylogenetic affinities of Auriculostoma (Digenea: Allocreadiidae), with descriptions of two new species from Peru. Journal of Parasitology, 97, 661-670. De Alba, E. & Reyes, M.E. (1998) El contexto físico. La diversidad biológica de México: Estudio de país, 1998. (Ed. by CONABIO), pp. 4–22. Comisión Nacional para el Conocimiento y uso de la Biodiversidad, México. De Cserna, Z., & Álvarez, R. (1995) Quaternary drainage development in Central Mexico and the threat of and environmental disaster: A geological appraisal. Environmental & Engineering Geosciences, 1, 29–34. Domínguez-Domínguez, O., Doadrio, I., & Pérez-Ponce de León, G. (2006) Historical biogeography of some river basins in central Mexico evidenced by their goodeine freshwater fishes: apreliminary hypothesis using secondary Brooks parsimony analysis. Journal of Biogeography, 33, 1437–1447. Domínguez-Domínguez, O., Pompa-Domínguez, A. & Doadrio, I. (2007a) A new species of the genus Yuriria Jordan & Evermann, 1896 (Actinopterygii, Cyprinidae) from the Ameca basin of the Central Mexican Plateau. Graellsia, 63, 259–271. Domínguez-Domínguez, O., Boto, L., Alda, F., Pérez-Ponce de León., G. & Doadrio, I. (2007c) Human impacts on drainages of the Mesa Central of Mexico, and its genetic effects on an endangered fish, Zoogoneticus quitzeoensis. Conservation Biology, 21, 168–180. 177 Domínguez-Domínguez, O., Alda, F., Pérez-Ponce de León, G., García-Garitagoitia, J.L. & Doadrio, I. (2008) Evolutionary history of the endangered fish Zoogoneticus quitzeoensis (Bean, 1898) (Cyprinodontiformes: Goodeidae) using a sequential approach to phylogeography based on mitochondrial and nuclear DNA data. BMC Evolutionary Biology, 8, 161. Domínguez-Domínguez, O., Pedraza-Lara, C., Gurrola-Sánchez, N., Pérez-Rodríguez, R., Israde- Alcántara, I., Garduño-Monroy, V.H., Doadrio, I., Pérez-Ponce de León, G., & Brooks, D.R. (2010) Historical biogeography of the Goodeinae (Cyprinodontiforms). In: Uribe- Aranzabal, M.C. & Grier, H. (Eds). Viviparous Fishes II, New Life Publications, Homestead, Florida, 33-74. Drummond, A.J., Ho, S.Y.W., Phillips, M.J. & Rambaut, A. (2006) Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, 699–710. Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T. & Wilson, A. (2010) Geneious v5.0.4 Available from http://www.geneious.com/ Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7. Edwards, S.V. (2009) Is a new and general theory of molecular systematics emerging? Evolution, 63–1, 1–19. Ehrlich, P.R. & Raven, P.H. (1964) Butterflies and Plants: a study in Coevolution. Evolution, 18, 586–608. Esch, G.W., Kennedy, C.R., Bush, A.O., & Aho, J.M. (1988) Patterns in helminth communities in freshwater fish in Great Britain: alternative strategies for colonization. Parasitology, 96, 519–532. 178 Ferrari, L. (2004) Slab detachment control on volcanic pulse and mantle heterogeneity in Central Mexico. Geology, 32, 77–80. Ferrari, L. & Rosas-Eleguera, J. (1999) Late Miocene to Quaternary extension at the northern boundary of the Jalisco block, western Mexico: the Tepic-Zacoalco rift revised. Geological Society of America, Special Paper 334, 1–23. Ferrari, L., Lopez-Martinez, M., Aguirre-Diaz, G. & Carrasco-Nunez, G. (1999) Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology, 27, 303–306. Ferrari, L., López-Martínez, M. & Rosas-Elguera, J. (2002) Ignimbrite flareup and deformation in the southern Sierra Madre Occidental, western Mexico–implications for the late subduction history of the Farallon Plate. Tectonics, 21, 10.1029/2001TC001302. Garduño-Monroy, A., Saucedo-Girón, R., Jiménez, Z., Gavilanes-Ruiz, J.C., Cortés-Cortés, A. & Uribe-Cifuentes, R.M. (1998) La falla Tamazula, límite suroriental del bloque de Jalisco y sus relaciones con el complejo volcánico de Colima. Revista Mexicana de Ciencias Geológicas, 15, 132–144. Gesundheit P., Macias-García C. 2003. Biogeografía cladísta de la familia Goodeidae (Cyprinodontiformes). En: Morrone, J. y J. Llorente (eds). Una perspectiva latinoamericana de la biogeografía. CONABIO, México D.F. 319–337. Heled, J. & Drummond, A.J. (2010) Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570–80. Huidobro, L, Morrone J.J., Villalobos J.L. & Álvarez, F. (2006) Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. Journal of Biogeography, 33, 731–741. Israde-Alcántara, I. & Garduño-Monroy, V.H. (1999) Lacustrine record in a volcanic intra-arc setting: the evolution of late Neogene Cuitzeo basin system (central-western Mexico, Michoacan). Palaeogeography, Palaeoclimatology, Palaeoecology, 151, 209–227. 179 Luna-Vega, I. & Contreras-Medina, R. (2012) Contributions of Cladistic Biogeography to the Mexican Transition Zone. In: L. Stevens (Ed): Global Advances in Biogeography. ISBN: 978-953-51-0454-4, InTech, Available from: http://www.intechopen.com/books/global- advances-in-biogeography/contributions-ofcladistic-biogeography-to-the-mexican- transition-zone Luna-Vega, I., Morrone, J.J. & Espinosa, D. (Eds) (2005) Biodiversidad de la Faja Volcánica Transmexicana. Las Prensas de Ciencias, Universidad Nacional Autónoma de México. pp. 514. Libeskind-Hadas, R. & Charleston, M.A. (2009) On the computational complexity of the reticulate cophylogeny reconstruction problema. Journal of Computational Biology, 16, 105–117. Maddison, W.P. (1997) Gene trees in species trees. Systematic Biology, 46, 523–536. Madhavi, R. (1978) Life history of Allocreadium fasciatusi Kakaji, 1969 (Trematoda: Allocreadiidae) from the freshwater fish Aplocheilus melastigma McClelland. Journal of Helminthology, 52, 51–59. Manter, H.W. (1963) The zoogeographical affinities of trematodes of South American freshwater fishes. Systematic Zoology, 12, 45–70. Martínez-Aquino, A., Aguilar-Aguilar, R., Santa Anna del Conde Juárez, H.O. & Contreras- Medina, R. (2007a) Empleo de herramientas panbiogeográficas para detectar áreas para conservar: un ejemplo con taxones dulceacuícolas. In: Luna I., Morrone, J.J., & Espinosa., D. (Eds). Biodiversidad de la Faja Volcánica Transmexicana. Las Prensas de Ciencias, Universidad Nacional Autónoma de México. Pp. 449–460. Martínez-Aquino, A., Salgado-Maldonado, G., Aguilar-Aguilar, R., Cabañas-Carranza, G., & Mendoza-Palmero, C.A. (2007b) Helminth parasite communities of Characodon audax and C. lateralis (Pisces: Goodeidae), endemic freshwater fishes from Durango, Mexico. The Southwestern Naturalist, 52, 125–130. 180 Martínez-Aquino, A., Aguilar-Aguilar, R., Pérez-Rodríguez, R. & Pérez-Ponce de León, G. (2009) Helminth parasite of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa hydrological system, Jalisco, México. Journal of Parasitology, 95, 1221–1223. Martínez-Aquino, A., Hernández-Mena, D., Pérez-Rodríguez, R., Aguilar-Aguilar, R. & Pérez- Ponce de León, G. (2011) Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico. Revista Mexicana de Biodiversidad, 82, 1132–1137. Martínez-Aquino, A., Pérez-Rodríguez, R., Hernández-Mena, D.I., Garrido-Olvera, L., Aguilar- Aguilar, R. & Pérez-Ponce de León, G. (2012) Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau. Hidrobiológica, 22, 88–91. Martínez-Aquino, A., Ceccarelli, F.S., & Pérez-Ponce de León, G. (2013) Molecular phylogeny of the genus Margotrema (Digenea: Allocreadiidae), parasitic flatworms of goodeid freshwater fishes across central Mexico: species boundaries, host-specificity and geographical congruence. Zoological Journal of the Linnean Society, 168, 1–16. Mateos, M., Sanjur, O.I. & Vrijenhoek, R.C. (2002) Historical biogeography of the livebearing fish genus Poeciliopsis (Poeciliidae: Cyprinodontiformes). Evolution, 56, 972–984. Mejía-Madrid, H., Domínguez- Domínguez, O. & Pérez-Ponce de León, G. (2005) Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from México with biogeographical considerations. Journal of Parasitology 89, 356–361. Mejía-Madrid, H., Vázquez-Domínguez, E., & Pérez-Ponce de León, G. (2007) Phylogeography and freshwater basins in central Mexico: recent history as revealedby the fish parasite Rhabdochona lichtenfelsi (Nematoda). Journal of Biogeography, 34, 787–801. Miller, R.R. & Smith, M.L. (1986) Origin and geography of the fishes of Central Mexico. In: Hocutt, C.H. & E.O. Wiley (Eds). The Zoogeography of North American Freshwater Fishes. John Wiley and Sons, Inc. New York. pp. 487–517. 181 Minckley, W.L.D., Hendrickson, D.A. & Bond, C.E. (1986) Goegraphy of western North American Freshwater fishes: Description and relationships to intracontinental tectonism. In: Hocutt C.H. & E.O. Wiley (Eds). The Zoogoegraphy of North Amercian Freshawater Fishes. John Wiley y Sons, New York, 516–613 pp. Mizukoshi, A., Johnson, K.P. & Yoshizawa, K. (2012) Co-phylogeography and morphological evolution of sika deer lice (Damalinia sika) with their hosts (Cervus nippon). Parasitology, 139, 1614–1629. Morales-Hojas, R., Reis, M., Vieira, C.P. & Vieira, J. (2011) Resolving the phylogenetic relationships and evolutionary history of the Drosophila virilis group using multilocus data. Molecular Phylogenetics and Evolution, 60, 249–258. Morrone, J.J. (2010) Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecography, 33, 355–361. Morrone, J.J. (2005) Hacia una síntesis biogeográfica de México. Revista Mexicana de Biodiversidad, 76, 207–252. Murty, A.S. (1975) Studies on Indian cercarie II. Allocreadioid cercarie. Journal of Parasitology, 61, 418–420. Nieberding, C.M., Durette-Desset, M.-C, Vanderpoorten, A., Casanova, J.C., Ribas, A., Deffontaine, V., Feliu, C., Morand, S., Libois, R. & Michaux, J.R. (2008) Geography and host biogeography matter for understanding the phylogeography of a parasite. Molecular Phylogenetics and Evolution, 47, 538–554. Nylander, J.A.A., Olsson, U., Alström, P., & Sanmartín, I. (2008) Accounting for Phylogenetic Uncertainty in Biogeography: A Bayesian Approach to Dispersal-Vicariance Analysis of the Thrushes (Aves: Turdus). Systematic Biology, 57, 257–268. Page, R.D.M. (1994a) Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology, 43, 58–77. Page, R.D.M. (2003) Tangled Trees: Phylogeny, Cospeciation, and Coevolution. Chicago: University of Chicago, Press. 378 p. 182 Page, R.D.M. & Charleston, M.A. (1998) Trees within trees: phylogeny and historical associations. TREE, 13, 356–359. Parenti, L.R. (1981) A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei: Atherinomorpha). Bulletin of the American Museum of Natural History, 168, 340–557. Pedraza-Lara, C., Doadrio, I., Breinholt, J.W., & Crandall K.A. (2012) Phylogeny and evolutionary patterns in the dwarf crayfish subfamily (Decapoda: Cambarellinae). PLoS ONE, 7, (11): e48233. doi:10.1371/journal.pone.0048233 Pérez-Ponce de León, G. & Choudhury, A. (2005) Biogeography of helminth parasites of freshwater fishes in Mexico: the research for patterns and processes. Journal of Biogeography, 32, 645–649. Pérez-Ponce de León, G., Mendoza-Garfias, B., Rosas-Valdez, R. & Choudhury, A. (2013) New host and locality records of freshwater fish helminth parasites in river basins north of the Transmexican Volcanic Belt: another look at biogeographical patterns. Revista Mexicana de Biodiversidad. Pérez-Ponce de León, G., García-Prieto, L. & Mendoza-Garfias, B. (2011) Describing parasite biodiversity: the case of the helminth fauna of wildlife vertebrates in Mexico. In: O. Grillo (Ed.), Changing Diversity in Changing Environment, ISBN: 978-953-307-796-3, InTech, Available from: http://www.intechopen.com/books/changing-diversity-in- changing-environment/describing-parasitebiodiversity-the-case-of-the-helminth-fauna-of- wildlife-vertebrates-in-mexico Pérez-Ponce de León, G., García-Prieto, L. & Mendoza-Garfias, B. (2007a) Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa, 1534, 1–247. Pérez-Ponce de León, G., Choudhury, A., Rosas-Valdez, R. & Mejía-Madrid, H. (2007b) Systematic position of Wallinia spp. and Margotrema spp. parasites of Middle-American and Neotropical freshwater fishes based on 28S ribosomal RNA gene. Systematic Parasitology, 68, 49–55. 183 Pérez-Ponce de León, G., Rosas-Valdez, R., Mendoza-Garfias, B., Aguilar-Aguilar, R., Falcón- Ordaz, J., Garrido-Olvera, L. & Pérez-Rodríguez, R. (2009) Survey of the endohelminth parasites of freshwater fishes in the upper Mezquital River Basin, Durango State, Mexico. Zootaxa, 2164, 1–20. Pérez-Rodríguez., R., Domínguez-Domínguez, O., Pérez-Ponce de León, G., & Doadrio, I. (2009) Phylogenetic relationships and biogeography of the genus Algansea Girard (Cypriniformes: Cyprinidae) of central Mexico inferred from molecular data. BMC Evolutionary Biology, 9, 223. Posada, D. (2008) jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256. Poulin, R. (2007) Evolutionary ecology of parasites (2nd ed.). Princeton University Press, 342 p. Poulin, R., Blanar, Ch.A., Thieltges, D.W., & Marcogliese, D.J. (2012) Scaling up from epidemiology to biogeography: local infection patterns predict geographical distribution in fish parasites. Journal of Biogeography, 39, 1157–1166. Ramanjaneyulu, J.V. & Madhavi, R. (1984) Cytological investigations on two species of allocreadiid trematodes with special reference to the occurrence of triploidy and parthenogenesis in Allocreadium fasciatusi. International Journal of Parasitology, 14, 309–316. Rannala, B. & Michalakis, Y. (2003) Populations genetics and cospeciation: from process to pattern. In: Page R.D.M. 2003. Tangled Trees: Phylogeny, Cospeciation, and Coevolution. The University of Chicago Press: Chicago y London, U.S.A. 120-143 pp. Ree, R.H. & Smith, S.A. (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14 Ree, R.H., Moore, B.R., Webb, C.O. & Donoghue, M.J. (2005) A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59, 2299– 2311. 184 Ronquist, F. & Sanmartín, I. (2011) Phylogenetic methods in biogeography. Annual Review of Ecology, Evolution, and Systematics, 42, 441–464. Rosas-Elguera, J., Ferrari, L., Garduño-Monroy, V.H. & Urrutia-Fucugauchi, J. (1996) Continental boundaries of the Jalisco block and their influence in the Pliocene-Quaternary kinematics of western Mexico. Geology, 24, 921–924. Sanmartín, I. (2012) Historical Biogeography: Evolution in Time and Space. Evolution: Educationa and Outreach, 5, 555–568. Sanmartín, I., Van derMark, P. & Ronquist, F. (2008) Inferring dispersal: a Bayesian approach to phylogeny based island biogeography, with special reference to the Canary Islands. Journal of Biogeography, 35, 428–449. Schönhuth, S., Doadrio, I., Domínguez-Domínguez, O., Hillis, D.M., & Mayden, R.L. (2008) Molecular evolution of southern North American Cyprinidae (Actinopterygii), with the description of the new genus Tampichthys from central Mexico. Molecular Phylogenetics and Evolution, 47, 729–756. Silva-Romo, G., Martiny, B., Mendoza-Rosales, C., Nieto-Samaniego, A. & Alaniz-Álvarez, S. (2002) La Paleocuenca de Aztlán, Antecesora de la Cuenca de México. GEOS-Boletin Informativo de la Unión Geofísica Mexicana, 22, 75–76. Smith, M.L., Cavender, T.M. & Miller, R.R. (1975) Climatic and biogeographyc significance of fish fauna from the Late Pliocene-Early Pleistocene of the Lake Chapala Basin, Jalisco, Mexico. In: Smith G.R. & Friedland (Eds). Studies on Cenozoic paleontology and stratigraphy in honor of Claude W. Hibbard,Vol. 12. Pp 29-38. Thompson, J.N. (2005) The Geographic Mosaic of Coevolution. University of Chicago Press, Chicago. p. 443. Uyeno, T. & Miller, R.R. (1962) Summary of Late Cenozoic freshwater fish records for North America. Occasional papers of the Museum of Zoology University of Michigan. 36 p. Webb, S.A. (2002) Molecular systematics of the genus Allodontichthys (Cyprinodontiformes: Goodeidae). Reviews in Fish Biology and Fisheries, 12, 193–205. 185 Willis, M.S. (2001) Population biology of Allocreadium lobatum Wallin, 1909 (Digenea: Allocreadiidae) in the Creek Chub, Semotilus atromaculatus, Mitchill (Osteichthyes: Cyprinadae), in a Nebraska Creek, USA. Memórias do Instuto Oswaldo Cruz, 96, 331- 338. Yu, Y., Harris, A.J. & He, X. (2010a) S-DIVA (Statistical Dispersal- Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution, 56, 848– 850. Yu, Y., Harris, A.J. & He, X. (2010b) S-DIVA (Statistical Dispersal-Vicariance Analysis), version 1.9 beta. Available at: http://mnh.scu.edu.cn/S-diva/ FIGURE LEGENDS Figure 1 Biogeographical events of the evolution of Margotrema spp. from Central Mexico associated to Goodeinae; (a) shows a general pattern of the evolution of M. resolanae and of each of the Lineages of M. bravoae; (b) shows the specific events that influenced the evolution of M. bravoae Lineage I; (c) shows the specific events that influenced the evolution of M. bravoae Lineage II. Figure 2 Host-parasite events of the evolution of Margotrema spp. from Central Mexico associated to Goodeinae; (a) shows a general pattern of the evolution of M. resolanae and of each of the Lineages of M. bravoae; (b) shows the specific events that influenced the evolution of M. bravoae Lineage I; (c) shows the specific events that influenced the evolution of M. bravoae Lineage II. Figure 3 Tanglegram show the levels three of parasitic associations between Goodeinae- Margotrema. Level 1 (L1-L1, green = Species-Species; represent with the association Xenotaenia resolanae-M. resolanae). Level 2 (L2-L2, red = Species-Lineage; represent with the association Characodon audax-M. bravoae Lineage III), Level 3 (L3-L3, blue = Tribe-Lineage; represent with the associations between Ilyodontini-M. bravoae Lineage I and Girardinichthyini / Chapalichthyini-M. bravoae Lineage II). Colours patterns in the curvigram of Goodeinae correspond to each tribe; i.e. blue = Girardinichthyini; green = Chapalichthyini; yellow = Ilyodontini; red = Characodontini. Colours patterns in the curvigram of Margotrema correspond 186 to each independent evolutionary lineage; i.e. yellow = M. bravoae Lineage I; blue = M. bravoae Lineage II; red = M. bravoae Lineage III. The gray polygons under the curvigrams correspond to specific lineage of Goodeinae and M. bravoae, respectively. The capital letters correspond to the each locality where specimens of Margotrema were collected, for details see Appendix S1. Figure 4 Schematic description of the areas and dispersal routes of generating alternative biogeographic / cophylogenetic hypotheses using dispersal-extinction-model (DEC) analysis of Margotrema spp., in function an evolutionary time and hydrogeomorphology historical from Central Mexico and Goodeinae. (a) Ancestral area, green shadow, of Margotrema genus detected based on ours results. The red shadow represents an ancestral hypothetical area potential associate to north records from Mexico of Margotrema and the distribution area of fossil records of species of Goodeidae. (b) Fragmentation of the ancestral area of most recent common ancestral (MRCA) of Margotrema spp. represent by two green shadow. Diversification process of the MRCA of the tribe Ilyodontini and Margotrema, respectively, influence for events of vicariance- dispersal on Cuzalapa River (I) and Armería Ayuquila River (H). (c) Geographic scenery of the diversification of M. bravoae Lineage I [L1] and M. bravoae Lineage II [L2] associate to Goodeinae tribes, based on hypothetical expansion routes. Yellow arrows due reference to dispersal of L1 influence by the dispersal of the Ilyodontini [I]; blue arrows due reference to dispersal of L2 influence by the dispersal of the Chapalichthyini [Ch] and Girardinichthyini [G]. (d) Geographic scenery of the diversification of M. bravoae Lineage III associate to a vicariant event (El Salto waterfall) that caused the diversification of Characodon audax. Red shadow covers the hypothetical area of the pleistocenic paleolakes. (e) Hypothetical area of the pleistocenic paleolakes when is distributed M. bravoae Lineage II; the orange, blue and green shadows correspond to phylogenetic relationships of areas. Polygons in intensity different of gray correspond to biogeographic provinces (sensu lato Morrone, 2005): SMOc = Sierra Madre Occidental; AM = Altiplano Mexicano; MTVB = Mexican Transvolcanic Belt; BRB = Balsas River Basin; hydrological systems in green and yellow correspond to the records of Margotrema collected and no collected in this study, respectively; filled circles green with a capital letter correspond to localities analysed in this study; filled circles red together with the number, indicate Margotrema records not collected in this study, for details see Appendix S1 and S6. 187 SUPPORTING INFORMATION Additional Supporting Information may be found in the online version of this article: Appendix S1 Table with the areas and area codes, localities and locality codes and parasite species and terminal codes used in the RASP analyses (MCMC), Dispersal-Extinction- Cladogenesis (DEC) analyses and divergence date of Margotrema spp. Also show each area, locality and terminal lineage associate to host species. Appendix S2 Supplementary tables and figures of DEC analyses, Modelo I, general geographic areas. Appendix S3 Supplementary tables and figures of DEC analyses, Modelo II: pleistocenic events. Appendix S4 Dispersal matrix used for Lagrange, Modelo III: cophylogenetical events. Appendix S5 Divergence date of Margotrema spp. Appendix S6. Additional Margotrema records in freshwater fish species from Mexico. BIOSKETCH Andrés Martínez-Aquino is interested in parasite evolutionary biology using molecular and distributional data analysis, with a particular focus on helminth parasite taxa of wildlife. Author contributions: All authors conceived and discussed the ideas. A.M-A. and F.S.C. performed the analyses. L.E.E., E.V-D. and F.S.C. contributed to data interpretation. A.M-A. and G.P-PL led the writing. All authors contributed to led the writing. 188 Figure 1 (a) 7.0 6.0 5.0 4.0 Biogeographic events • Vicariance 4 Dispersal ........ Dispersal ~ + lineage 1055 Areas (Sub-basins) A " Lower Conchos River B " Upper and Middle Mezquital River e " Lower Lerma River (e) Legend o " Zacapu lake E " Cuitzeo lake F " Pátzcuaro lake G " lirahuén Lake H " Annerla-Ayuquila Rivers I "Cuzalapa River J "Colija K " l ower Balsas River 3.0 2.0 1.0 (b) 1.0 0.5 M. resolanae Lineage I ~ ~ .Q lineage 11 E lineage 111 0.0 Millions of years ago e (; e> :;: 0.0 Millions of years ago ~Ir---------'--------------------'--------------------, 900 200 100 0.0 Thousands of years a90 189 Figure 2 (a) KD -: . ~ M. resolanae K2» m ---c ~ ~ ~ Lineage I I_ h" ..!' L (b) • • o ~ ~ > ~ " ~ " .. r lineage 11 • E L .1: -'hX . .. o ~ e> ~ ..;;. ;;.: ~ ~~ -- " (e) .. .. Lineage 111 7.0 6.0 5.0 4.0 3.0 2 .0 1.0 0.0 Mill ions of years a90 Legend (b) Host-Parasite events Hosts ~ -~ Lineage codivergence Ityodontini ~ - ~~ (Xenofaenia resoJanae) ~ - ." ~ Lineage duplica/ion Ilyodontin; ~ h In one hos! (Le. Allodontichythys zonistius) ~~ X l ineage 1055 in hosl -Chapalichthyini ... ~ - Hasl switch (i.e. Zoogonelicus purhepechus) ~ ... ~ ., Characodontini .. Hasl switch (Le Characodon audax) + lineage 1055 -- I ~ Cospeciation Girard inichthyini ,1 . " ~ ..... vía hos! switch (Le AI/otoca diaZl) ...,-< ~ L.....- ~ + lineage 1055 -Cyprinidae j j j (Codoma oma/a) 1.0 0.5 0.0 Millions of years a90 (e) ... ... ~ ... . 11 ... - ...... ~ - ~ ... ~ ... ~ ~ ... ... ... " ti) .1 .... " ... -- ..... ... ~ ... ... ... --- ~ .... ... ... ,---11 j j j 900 200 100 0.0 Thousands of years ago 190 Figure 3 191 Figure 4 > 6.6 m.y.a. 4 - 2 m.y.a. 1- O m.y.a. G=' "'"O" :::::r= ~ G " Margolremo M. resolanae Fragmentatlon 01 ""ceslral a'ea 01 M RCA 01 Marg o l rema genus 6.6 - 4 m.y.a. Diversiflcatkm 01 MRCII 01 M. bruvoue U ne"ge 111 (L3) assoclale lo a vlca,j .. " , speclaUon even l 0 1 Characodon Re neos (Le. Ch. Gudox ) Goode in a" M argo/remo El Salto water/a ll 6.9 Oi"e"ific<~t;;on 01 M RCA 0 1 lIyodontinni Ion 0 1 Ch. n udox , G " '"m,'e" .. " ~ ---.:= ~ ~ plesiloo:cn k paleolak.,. 2 - O m.y.a. T Victoria oe OGG>o 192 Appendix S1 Codes employed for the RASP analyses (MCMC) (not show results), Dispersal- Extinction-Cladogenesis (DEC) analyses (akin Fig. 1), following Domínguez-Domínguez et al. (2006, 2010) hydrological systems (areas). Areas delimited based on the Mexican hydrological basins and sub-basins map produced by the Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO, 1998; www.conabio.gob.mx). Also show species and lineages of Margotrema included found in each area, locality (and code) and host taxa following Martínez- Aquino et al., 2013. The localities was used to test the divergence date of each lineage of Margotrema spp., at locality level (akin Appendix S5). Locality Locality code Tributary of Conchos River, Bocoyna, Chihuahua, México BOCO Spring in Abraham González, Durango, México AGON Spring in the Unidad de Manejo Ambiental de caza, Guadalupe Aguilera, Durango, México GUAG Puente en el poblado de Pino Suárez, carretera Durango-Mezquital, Durango, México PINO Spring El Toboso, Durango, México TOBO La Luz spring, Jacona de Plancarte, Michoacán, México LLUZ La Angostura, Zacapu Lake (balneario), Michoacán, México ZACA La Mintzita spring, Michoacán, México MINT Spring Chapultepec, Michoacán, México CHAP Opopeo Lake, Michoacán, México OPOP Stream in Ahuacapán, Jalisco, México AHUA Arroyo Durazno in Cuzalapa River, Jalisco, México CUZA Spring Rico, Michoacán, México RICO Spring in park of Tocumbo, Michoacán, México TOCU Spring in Tlapetlahuaya, Puebla, México TLAP 193 River Chagres at the Frijolito River, Panama Tobaco creek, Canada Continued appendix 1. Area (sub-basin) Area code Lower Conchos River A Mezquital River Upper and Medium B (1) Mezquital River Upper and Medium B (2) Mezquital River Upper and Medium B (3) Mezquital River Upper and Medium B (4) Lower Lerma River C Zacapu Lake D Cuitzeo Lake E Pátzcuaro Lake F Zirahuén Lake G Armería-Ayuquila Rivers H Cuzalapa River I Cotija J Lower Balsas River K Upper Balsas River L River Chagres Tobaco creek 194 Continued appendix 1. Parasite species Terminal Hosts taxa code Margotrema bravoae Lineage I IA Codoma ornata Margotrema bravoae Lineage III IIIB Characodon audax Margotrema bravoae Lineage III IIIB Characodon audax Margotrema bravoae Lineage III IIIB Characodon audax Margotrema bravoae Lineage III IIIB Characodon audax Margotrema bravoae Lineage II IIC Zoogoneticus purhepechus Margotrema bravoae Lineage II IID Allotoca zacapuensis, Zoogoneticus quitzeoensis Margotrema bravoae Lineage II IIE Alloophorus robustus, Zoogoneticus quitzeoensis Margotrema bravoae Lineage II IIF Allotoca diazi, Allotoca duguesi Margotrema bravoae Lineage II IIG Allotoca meeki Margotrema bravoae Lineage I IH Allodontichthys zonistius, Ilyodon furcidens Margotrema resolanae M. resolanae Xenotaenia resolanae Margotrema bravoae Lineage II IIJ Neoophorus regalis Margotrema bravoae Lineage I IK Chapalichthys pardalis, Ilyodon furcidens Margotrema bravoae Lineage I IL Ilyodon whitei Walliniae chavarriae Gephyrocharax sp. Allocreadium lobatum Semotilus atromaculatus 195 Appendix S2A Table with codes employed for the Dispersal-Extinction-Cladogenesis (DEC; Model I: 0-6.5 Ma), analyses following Domínguez-Domínguez et al. (2006, 2010) hydrological systems (areas). Areas delimited based on the Mexican hydrological basins and sub-basins map produced by the Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO, 1998; www.conabio.gob.mx). Each lineage of Margotrema included found in each area, locality and host species. Area (sub-basin) Code area Lineage Margotrema spp. by area Locality by area Host species by area Lower Conchos River A Margotrema bravoae Lineage I Tributary of Conchos River, Bocoyna, Chihuahua, México Codoma ornata Mezquital River Upper and Medium B Margotrema bravoae Lineage III Spring in Abraham González, Durango, México Characodon audax Mezquital River Upper and Medium B Margotrema bravoae Lineage III Spring in the Unidad de Manejo Ambiental de caza, Guadalupe Aguilera, Durango, México Characodon audax Mezquital River Upper and Medium B Margotrema bravoae Lineage III Puente en el poblado de Pino Suárez, carretera Durango-Mezquital, Durango, México Characodon audax Mezquital River Upper and Medium B Margotrema bravoae Lineage III Spring El Toboso, Durango, México Characodon audax Lower and Medium Lerma and Central Lakes C Margotrema bravoae Lineage II La Luz spring, Jacona de Plancarte, Michoacán, México Zoogoneticus purhepechus Lower and Medium Lerma and Central Lakes C Margotrema bravoae Lineage II La Angostura, Zacapu Lake (balneario), Michoacán, México Allotoca zacapuensis, Zoogoneticus quitzeoensis Lower and Medium Lerma and Central Lakes C Margotrema bravoae Lineage II La Mintzita spring, Michoacán, México Alloophorus robustus, Zoogoneticus quitzeoensis Lower and Medium Lerma and Central Lakes C Margotrema bravoae Lineage II Spring Chapultepec, Michoacán, México Allotoca diazi, Allotoca duguesi Lower and Medium Lerma and Central Lakes C Margotrema bravoae Lineage II Opopeo Lake, Michoacán, México Allotoca meeki Armería Ayuquila River D Margotrema bravoae Lineage I Stream in Ahuacapán, Jalisco, México Allodontichthys zonistius, Ilyodon furcidens Cuzalapa River E Margotrema resolanae Arroyo Durazno in Cuzalapa River, Jalisco, México Xenotaenia resolanae Cotija F Margotrema bravoae Lineage II Spring Rico, Michoacán, México Neoophorus regalis Lower Balsas River G Margotrema bravoae Lineage I Spring in park of Tocumbo, Michoacán, México Chapalichthys pardalis, Ilyodon furcidens Upper Balsas River H Margotrema bravoae Lineage I Spring in Tlapetlahuaya, Michoacán, México Ilyodon whitei 196 Appendix 2SB Figure of the hydrological systems (areas) and collection sites for Margotrema spp. in Mexico. The capital letters correspond to each hydrological system for each locality (black point) where specimens of Margotrema spp. were collected from (for details see Table of Appendix S2A). -115 -105-110 -110 -95 -90 -30 -20 -15 -115 -105 -100 -95 -90 -30 -25 -20 -15 -25 -110 100 0 100Kilometers D E H C B A G F C C C C N 2 M 197 Appendix S2C Matrix used for Lagrange dispersal constrains for different time slices (Model I: 0-6.5 Ma). Time: 0 – 2 Ma. A B C D E F G H A - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 B 1 10-6 - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 C 1 10-6 1 10-6 - 1 10-6 0.5 1 10-6 1 10-6 1 10-6 D 1 10-6 1 10-6 1 10-6 - 1 10-6 1 10-6 1 10-6 1 10-6 E 1 10-6 1 10-6 1 10-6 1 10-6 - 1 10-6 1 10-6 1 10-6 F 1 10-6 1 10-6 0.5 1 10-6 1 10-6 - 0.95 0.5 G 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 0.95 - 1 H 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 0.5 1 - Time: 2 – 4 Ma. A B C D E F G H A - 0.1 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 B 1 10-6 - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 C 0.1 1 10-6 -0. 0.1 1 10-6 1 0.1 0.1 D 1 10-6 1 10-6 0.5 - 0.5 0.95 1 0.95 E 1 10-6 1 10-6 0.4 0.5 - 0.4 0.5 0.4 F 1 10-6 1 10-6 1 0.5 0.5 - 0.6 0.6 G 1 10-6 1 10-6 0.5 0.5 1 10-6 0.6 - 0.95 H 1 10-6 1 10-6 0.1 0.3 1 10-6 0.5 0.95 - Time: 6.5 – 4 Ma. A B C D E F G H A - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 B 1 10-6 - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 C 1 10-6 1 10-6 - 1 10-6 1 10-6 1 1 10-6 1 10-6 D 1 10-6 1 10-6 0.9 - 1 0.9 0.95 0.9 E 1 10-6 1 10-6 1 10-6 0.5 - 1 10-6 1 10-6 1 10-6 F 1 10-6 1 10-6 1 1 10-6 1 10-6 - 1 10-6 1 10-6 G 1 10-6 1 10-6 1 10-6 0.3 1 10-6 1 10-6 - 1 H 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 - 198 Appendix S3A Table with codes employed for the Dispersal-Extinction-Cladogenesis (DEC; Model I: 0-1 Ma), analyses following Domínguez-Domínguez et al. (2006, 2010) hydrological systems (areas). Areas delimited based on the Mexican hydrological basins and sub-basins map produced by the Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO, 1998; www.conabio.gob.mx). Appendix also shows locality and host taxa associated to each area where Margotrema bravoae Lineage III is distributed. Area (subasin) Code area Locality Hosts Lower Lerma C La Luz spring, Jacona de Plancarte, Michoacán, México Zoogoneticus purhepechus Zacapu Lake D La Angostura, Zacapu Lake (balneario), Michoacán, México Allotoca zacapuensis, Zoogoneticus quitzeoensis Cuitzeo Lake E La Mintzita spring, Michoacán, México Alloophorus robustus, Zoogoneticus quitzeoensis Pátzcuaro Lake F Spring Chapultepec, Michoacán, México Allotoca diazi, Allotoca duguesi Zirahuén Lake G Opopeo Lake, Michoacán, México Allotoca meeki Cotija J Cotija, Michoacán, México Neoophorus regalis 199 Appendix S3B Figure of the hydrological systems (areas) for Margotrema bravoae Lineage III from Central Mexico. The capital letters correspond to each water body of the locality where specimens of Margotrema spp. were collected from (for more details Appendix S3A). J C D G E F C N 200 Appendix S3C Matrix used in Lagrange dispersal constrains for different time slices (mirrow matrix) (Model II: 0-1 Ma). Time: Plio-Pleistocen (> 1 Ma) C D E F G J C - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 D - 0.85 0.85 0.85 1 10-6 E - 0.85 0.85 1 10-6 F - 0.9 1 10-6 G - 1 10-6 J - Time: 0 m.y.a C D E F G J C - 1 1 1 1 1 D - 1 1 1 1 E - 1 1 1 F - 1 1 G - 1 J - 201 Appendix S4A Table with codes employed for the Dispersal-Extinction-Cladogenesis (DEC) using the host species as areas and divergences timing, in million years ago (Ma) based on Domínguez- Domínguez et al., 2010, used in the dispersal matrix for cophylogenetical analysis Lagrange, of the most recent common ancestral (MRCA) of genus / species of hosts of Margotrema spp. Host species (Areas) Code areas Age of MRCA of genus / species Allotoca diazi A 7.5 / < 1 Allotoca duguesi B 7.5 / 3.9 Allotoca meeki C 7.5 / < 1 Neoophorus regalis D 6.9 / < 1 Alloophorus robustus E 4 / 2.8 Allotoca zacapuensis F 7.5 / 3.9 Allodontichthys zonistius G 6.9 / 3.6 Codoma ornata H ? Characodon audax I 15.5 / 1.8 Chapalichthys pardalis J 4 / ? Ilyodon furcidens K 5.1 / ? Ilyodon whitei L 5.1 / ? Xenotaenia resolanae M 6.9 / 5.6 Zoogoneticus quitzeoensis N 6.9 / 3.9 Zoogoneticus purhepechus O 6.8 / 2.8 202 Appendix S4B Matrix used for Lagrange dispersal constrains for different time slices (mirrow matrix) (cophylogenetic model). Time: 0 – 2 Ma. a B c d e F g h i j k l m n 0 a - 1 1 1 1 1 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 1 b - 1 1 1 1 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 1 c - 1 1 1 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 1 d - 1 1 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 1 e - 1 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 1 f - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 1 g - 1 10-6 1 10-6 1 1 1 1 10-6 1 10-6 1 10-6 h - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 i - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 j - 1 1 1 10-6 1 10-6 1 10-6 k - 1 1 10-6 1 10-6 1 10-6 l - 1 10-6 1 10-6 1 10-6 m - 1 10-6 1 10-6 n - 1 o - Time: 2 – 4 Ma. a b c d e F g h i j k l m n O a - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 b - 1 10-6 0.5 1 1 1 1 10-6 1 10-6 0.5 1 10-6 1 10-6 1 10-6 1 1 c - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 d - 0.5 0.5 0.5 1 10-6 1 10-6 0.25 1 10-6 1 10-6 1 10-6 0.5 0.5 e - 1 1 1 10-6 1 10-6 0.5 1 10-6 1 10-6 1 10-6 1 1 f - 1 1 10-6 1 10-6 0.5 1 10-6 1 10-6 1 10-6 1 1 g - 1 10-6 1 10-6 0.5 1 1 0.1 1 1 h - 0.1 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 i - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 j - 1 10-6 1 10-6 1 10-6 0.5 0.5 k - 1 1 10-6 1 10-6 1 10-6 l - 1 10-6 1 10-6 1 10-6 m - 1 10-6 1 10-6 n - 1 o - 203 Time: 6.6 – 4 Ma. a B c d e F g h i j k l m n O a - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 b - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 c - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 d - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 e - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 f - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 g - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 1 10-6 1 10-6 h - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 i - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 j - 1 10-6 1 10-6 1 10-6 1 10-6 1 10-6 k - 1 10-6 1 10-6 1 10-6 1 10-6 l - 1 10-6 1 10-6 1 10-6 m - 1 10-6 1 10-6 n - 1 10-6 o - 204 Appendix S5 Ultrametric tree resulting from the dating analysis of Margotrema spp. Mean ages are indicated in each node, the terminal codes are (localities) as in Appendix 1. IIIB IIF 0.0167 IID 0.0503 IIG 0.1324 IIE 0.07150.1789 IIC IIJ 1.0355 0.1881 IL IK 0.9015 IA 0.3892 IH Margotrema resolanae 3.2032 6.5353 0.7 0.01.02.03.04.05.06.07.0 Lineage III Lineage II Lineage I M a rg o tr e m a b ra v o a e 205 Appendix S6 Additional records of Margotrema in freshwater fish species from Mexico. The locality number (LN) corresponds in the Figure 4. For more details see text in the manuscript. * = Unpublished data. LN Host species Locality Georreferences 1 Cyprinella lutrensis Buenaventura, Chihuahua 29° 50' 16.94'' N; 107° 28' 24.86'' W 2* Cyprinidae Conchos River, Chihuahua Unpublished data 3* Cyprinidae Pagigochic River, Chihuahua Unpublished data 4 Cyprinodon nazas Río Guatimape in the Sofía town, Durango 24° 54‟ 41.1‟‟N; 104° 32‟ 7.4‟‟W 5 Codoma ornata Río Piaxtla, Municipio de San Dimas, Durango 24°21'59'' N; 105°31‟7.8‟‟ W 6 Allodontichthys hubbsi El Tule, Jalisco 19° 19' 34.2'' N; 103° 22' 15'' W 7 Allodontichthys tamazulae Río Tamazula, Jalisco 19° 43' 22.7'' N; 103° 12' 08.5'' W 8 Goodea atripinnis Verde River, Jalisco 21º 49'' 12.0'' N; 101º 46' 21.3'' W 9 Allotoca maculata Río San Marcos, Jalisco 20° 46' 35.7'' N; 104° 09' 52.6'' W 10 Ilyodon furcidens Río Potrero Grande, Jalisco 19° 43' 22.7'' N; 103° 12' 08.5'' W 11 Neoophorus regalis Los Reyes, Michoacán 19° 33' 43.5'' N; 102° 27' 39'' W 12 Goodea atripinnis Ignacio Allende, Guanajuato 20° 55' N; 100° 50' W 13 Ilyodon cortesae Manantial Cutzaróndiro, Michoacán 19° 10' 59'' N; 101° 30' 13'' W 14 Girardinichthys multiradiatus Canal el Porvenir, Michoacán 19° 40' 29'' N; 100° 38' 25'' W 15 Girardinichthys multiradiatus Villa Victoria, Estado de México 19° 27' 30'' N; 99° 59' 39'' W 16 Girardinichthys multiradiatus Ciénega La Lagunilla, Estado de México 19° 08' 30'' N; 99° 30' 12'' W 206 DISCUSIÓN GENERAL La asociación Goodeinae-Margotrema, representa un modelo biológico potencial para poner a prueba hipótesis acerca de la evolución de los helmintos parasitarios de peces dulceacuícolas de México, debido a que se distribuye sobre áreas geográficas restringidas y no puede dispersarse por fenómenos naturales a través de sistemas hidrológicos epicontinentales del centro de México, lo que impide el flujo génico entre huéspedes o sistemas hidrológicos (Martínez-Aquino et al., 2013). Por tanto, es posible recuperar una estructura genealógica de los organismos parásitos capaz de reflejarse tanto sobre el escenario geográfico en el que se distribuyen como con la historia evolutiva de sus huéspedes. En este contexto, el presente estudio tuvo como objetivo general detectar los patrones biogeográficos y cofilogenéticos que configuraron la asociación Goodeinae-Margotrema, grupos endémicos y con historia evolutiva estrechamente relacionada y ocurrida en sistemas hidrológicos del centro de México. Implicaciones taxonómicas y patrones filogenéticos Con base en los distintos análisis filogenéticos se detectó que la especie Margotrema guillerminae es sinónima de M. bravoae (Martínez-Aquino et al., 2013). Por tanto, M. bravoae representa una especie polimórfica en términos de ciertos rasgos morfológicos, tales como la distribución de los ciegos intestinales en relación a la posición de los testículos. A su vez, M. bravoae incluye tres linajes con evolución independiente, aparentemente asociados a sistemas hidrológicos y grupos particulares de huéspedes: a) Margotrema bravoae Linaje I, distribuido en los sistemas hidrológicos de los ríos Ayuquila, Balsas y Conchos, y asociado primordialmente a huéspedes de las tribus Ilyodontini. b) Margotrema bravoae Linaje II, distribuído en sistemas hidrológicos del río Lerma y asociado a huéspedes de las tribus Girardinichthyini y Chapalichthyini. c) Margotrema bravoae Linaje III, distribuido en sistemas hidrológicos del río Mezquital y asociado a un único huésped de la tribu Characodontini. Con base en caracteres morfológicos y moleculares, y como parte de los análisis de la reconstrucción filogenética de Margotrema, se determinó y describió una especie nueva para la ciencia, Margotrema resolanae Pérez-Ponce de León, Martínez-Aquino & Mendoza-Garfías, 2013, asociada exclusivamente para Xenotaenia resolanae y microendémica para el río Cuzalapa, Jalisco (Pérez-Ponce de León et al., en prensa). Este reordenamiento taxonómico sin implicar un 207 incremento en el numero de especies descritas para el género Margotrema, apoya la hipótesis de que la helmintofauna de peces dulceacuícolas de México esta cerca de ser completada (Pérez- Ponce de León Choudhury, 2010). Sin embargo, es importante resaltar que la delimitación de los linajes intraespecíficos de M. bravoae nos acerca a entender cómo ocurren los procesos de diversificación parasitaria en helmintos parásitos de peces dulceacuícolas de México. Patrones biogeográficos La siguiente hipótesis biogeográfica se puso a prueba: “si existe congruencia biogeográfica entre la historia genealógica de Margotrema y la historia hidrogeomorfológica del centro de México, entonces se puede reflejar con la historia biogeográfica de sus huéspedes”. De manera general, se observó que los patrones de distribución geográfica de Margotrema están asociados con las barreras biogeográficas que fragmentaron los sistemas hidrológicos del centro de México y que, a su vez, influenciaron también en el patrón de distribución de sus huéspedes a través de eventos de vicarianza. Por otra parte, el proceso de dispersión causado por sus huéspedes goodeinos juega un papel relevante en la estructura biogeográfica de Margotrema, debido a la vagilidad que presentaron históricamente los MRCA de cada una de las tribus de Goodeinae, mismos que expandieron el área de distribución de Margotrema sobre los sistemas hidrológicos del centro de México. Con base en los resultados del análisis de DEC, se observó que el área ancestral de Margotrema estuvo ubicada en sistemas hidrológicos del Norte de México y que presentó una conexión relativamente ancestral (6.6 millones de años -ma-) con los sistemas hidrológicos del centro de México. Este resultado es apoyado con base en el patrón de distribución ancestral inferido para otros peces dulceacuícolas (Barbour, 1973; Chernoff & Miller, 1986; Domínguez- Domínguez et al., 2010). Al parecer, la expansión del área de distribución del MRCA de Margotrema, ocurrió debido a un evento de transmisión vertical (Rannala Michalakis, 2003), de tipo Goodeinae-Margotrema. Esto indica que esta asociación ancestral ocurrió entre un huésped basal de la tribu Ilydontini, y su posterior expansión geográfica causada por eventos de vicarianza-dispersión, seguida de asociaciones cofilogenéticas sobre el centro de México. En este contexto, los patrones de diversificación de M. resolanae y cada uno de los tres linajes de M. bravoae pueden reflejarse en primera instancia en los procesos de fragmentación de los sistemas 208 hidrológicos del Centro de México y, como resultado de ello, pueden reflejarse en los patrones de distribución y diversificación de sus huéspedes Goodeinos. Los patrones de distribución geográfica de M. bravoae Linaje II, datados en < 1 ma, muestran una relación espacio-temporal con los grandes paleolagos que existieron en el centro de México durante el pleistoceno. Futuros estudios con análisis de tipo Isolation with migration model (Nielsen & Wakeley, 2001; Hey & Nielsen, 2007; Hey, 2010), usando distintas localidades de distribución de M. bravoae Linaje II, podrán poner a prueba posibles rutas de expansión poblacional contrastadas con los de otros taxa dulceacuícolas en la región en donde ocurrieron. En este escenario, podrá detectarse como los taxa dulceacuícolas respondieron ante los eventos pleistocénicos ocurridos en el centro de México. Patrones cofilogenéticos Las siguientes hipótesis cofilogenéticas se pusieron a prueba: a) Hay congruencia filogenética entre Goodeinae (a nivel de especies y tribus) reflejada en la historia genealógica de Margotrema (a nivel de linajes y especies). b) Los tiempos de divergencia entre los principales clados de Goodeinae (Tribus) corresponden con los de cada especie / linaje de Margotrema. Con base en la congruencia biogeográfica detectada con las asociaciones especificas de huéspedes de Goodeinae y apoyada con los resultados de los análisis cofilogenéticos y con los tiempos de divergencia de los principales linajes para Margotrema, se identificaron tres niveles de asociaciones históricas distintas donde se apoyan dichas hipótesis cofilogenéticas. A continuación se menciona de manera general cada uno de estos tres niveles de asociación histórica. a) Especie-Especie. Esta asociación representa un proceso de coespeciación (≈ coevolución), ocurrido entre Xenotaenia resolanae-Margotrema resolanae. El MRCA de Margotrema asociado a este evento fue datado hace 6.5 ma y es apoyado estadísticamente por los análisis cofilogenéticos de TreeMap. Por otra parte, esta hipótesis se sustenta por la edad de divergencia del MRCA del goodeino A. zonistius (6.9 ma), y el posterior evento de diversificación de X. resolanae, exclusivo para la región hidrológica del Río Purificación- Mascota (Domínguez-Domínguez et al., 2010), lo que corresponde con la edad de divergencia del MRCA de Margotrema. 209 b) Especie-Linaje. Esta asociación implica un proceso de especiación de huésped y una codiferenciación de linajes parasitarios que corresponde tanto con un evento de separación y aislamiento (Falla del Salto sobre el Río Mezquital, Durango, datado hace 1.8 ma), como para el tiempo de divergencia de M. bravoae Linaje III (1.0355 ma). Este evento causó la especiación alopátrica vicariante de los caracodontinos; Ch. audax y Ch. lateralis (Domínguez- Domínguez et al., 2006, 2010). Characodon audax actualmente está registrado como huésped exclusivo de M. bravoae Linaje III. Con base en esta evidencia biogeográfica y cofilogenética, se infiere que ocurrieron procesos de codiferenciación mediados por la vicarianza del Río Mezquital (entre el Río Mezquital Alto-Medio y el Río Mezquital Bajo), lo que promovió la codiferenciación entre el MRCA de Ch. audax y el MRCA de sus parásitos (M. bravoae Linaje III). Por otra parte, es posible que la asociación ancestral Characodon-M. bravoae Linaje III se perdiera en Ch. lateralis quizá por extinción natural de las poblaciones de M. bravoae Linaje III sobre el Río Mezquital Bajo; o bien, debida a una diferenciación ecológica mediada por los hábitos alimentarios herbívoros que presenta actualmente Ch. lateralis, lo que pudo causar la pérdida de la asociación con M. bravoae Linaje III. Futuros estudios podrán esclarecer ambos procesos de diversificación. c) Tribu-Linaje. Esta asociación histórica representa patrones de codivergencia a nivel de tribu, históricamente asociados con una codiferenciación de parásitos a nivel de linajes. Este patrón fue observado empíricamente por Martínez-Aquino et al., (2013), donde se infirió que las asociaciones entre las tribus de Goodeiane y los tres linajes de M. bravoae están estrechamente relacionados tanto por la historia hidrogeomorfológica del centro de México como por los procesos de diversificación filogenética de Goodeinae. En el Capítulo III, se puso a prueba esta hipótesis y se descubrió que M. bravoae Linaje I esta estrechamente relacionado con la historia de los sistemas hidrológicos de los ríos Ayuquila y Balsas que a su vez moldearon la diversificación de la tribu Ilyodontini. Del mismo modo se detectó una estrecha relación entre la la diversificación de M. bravoae Linaje II y el Rio Lerma, en donde también existió una diversificación de Girardinichthyini y Chapalichthyini. Con base en estos resultados se infiere que la divergencia de los linajes de Margotrema, en primera instancia, se debe a eventos vicariantes seguidos de los procesos de diversificación de los sus huéspedes goodeinos (i.e. Tribus). En este contexto, nuestros resultados se suman a otros trabajos donde se propone que el escenario geográfico rige, en primer orden, los procesos de 210 diversificación de los organismos parásitos y, en segundo, las asociaciones con sus huéspedes (Nieberding et al., 2008, Mizukoshi et al., 2012). Los resultados de los análisis cofilogenéticos obtenidos en el presente trabajo nos permiten detectar que los procesos de codivergencia pueden actuar en tres niveles distintos, representado claramente que la evolución de los helmintos parásitos puede ocurrir de manera independiente, aún cuando están estrechamente relacionados filogenéticamente. En este contexto, es posible postular que la historia evolutiva del género Margotrema ocurrió sobre un mosaico geográfico, en el cual las poblaciones de parásitos difieren en sus características y especializaciones con respecto a las especies de huéspedes con las que están asociadas (Thompson, 2005). El área de distribución observada para M. bravoae y M. resolanae, así como la datación de la divergencia molecular, sus relaciones filogenéticas, patrones biogeográficos y cofilogenéticos, en contraste con la datación de los eventos hidrogeomorfológicos sobre el centro de México, apoyan las hipótesis que se generaron en este trabajo. Estos resultados sugieren que al aplicar distintos medios de análisis filogenéticos, biogeográficos y cofilogenéticos, con información detallada tanto del área de distribución de los taxa a estudiar, como de las edades geológicas del escenario geográfico en cuestión, permiten definir con mayor objetividad la historia evolutiva de los helmintos parásitos de peces dulceacuícolas de México. Implicaciones evolutivas La historia evolutiva de Margotrema propuesta en este estudio es congruente con la regla de Manter, la cual infiere que los parásitos evolucionan más lentamente que sus huéspedes (Brooks & McLennan, 1993). La tasa de diversificación observada para Goodeinae refleja una radiación biológica relativamente alta ya que cuenta con 42 taxa taxonómicamente válidos (Domínguez- Domínguez et al., 2010). Actualmente se han registrado 55 taxa de helmintos parásitos para peces goodeinos (Capítulo I), sin embargo, solo 10 de estos pueden definirse como especialistas de Goodeinae: Margotrema bravoae, M. resolanae, Phyllodistomum sp., Saccocoeloides sp., Gyrodactylus lamothei, G. mexicanus, Gyrodactylus sp. 1, Gyrodactylus sp. 2, Rhabdochona ahuehuellensis y R. lichtenfelsi. La baja riqueza de especies del género Margotrema en goodeinos sugiere una tasa de especiación baja. Algo similar ha sido registrado en las especies de monogéneos de cíclidos de México, donde se ha sugerido que las tasas de diversificación de sus huéspedes han sido más rápidas que las de sus parásitos, por lo que el patrón de distribución 211 huésped / parásito es desigual, es decir, pocas especies de monogéneos en muchas especies de huéspedes (Vidal-Martínez et al., 2001). El área de distribución ancestral de Margotrema coincide con la hipótesis de que Goodeinae divergió en sistemas hidrológicos del norte de México (Parenti, 1981). Con base en ello, en este trabajo se infiere la hipótesis de un área ancestral de Margotrema más amplia sobre sistemas hidrológicos del norte del país, lo que puede ser coherente con los patrones de distribución de los fósiles de Empetrichthyinae, grupo hermano de la subfamilia Goodeinae (Parenti, 1981; Minckley et al., 1986). Futuros estudios, con base en análisis filogenéticos moleculares de Margotrema distribuidos en sistemas hidrológicos del norte del país, podrán apoyar o contrastar esta posible asociación histórica entre Margotrema y peces empetríctinos. Los patrones biogegráficos y cofilogeneticos descubiertos en este trabajo para Margotrema dan pauta para generar nuevas preguntas. Por ejemplo, si mapeamos como caracteres los hábitos alimentarios de los peces goodeinos sobre su filogenia, se puede observar que aquellos peces que presentan carnivoría presentan están parasitados por Margotrema. Con base en esta observación, tiene sentido formular cuestionamientos como: ¿existe un efecto ecológico-evolutivo en el hecho de presentar un hábito alimentario de tipo carnívoro, capaz de reflejarse en un patrón de transmisión parasitaria horizontal o vertical? ¿la transmisión parasitaria es regida por el tipo de hábito alimentario del huésped definitivo y esta asociado a sus relaciones filogenéticas? Los patrones cofilogenéticos detectados entre Goodeinae-Margotrema fueron interpretados sobre el marco teórico del mosaíco geográfico (Thompson, 2004). Sin embargo, es posible apoyar nuestras hipótesis con evidencia coadaptativa si exploramos estudios metagenómicos respondiendo preguntas como: ¿el complejo mayor de histocompatibilidad (MHC, por sus siglas en ingles major histocompatibility complex) de Goodeinae y el de Margotrema, puede reflejar una asociación coadaptativa en parte de su genoma? En este proyecto se cuantificó la variación genética de Margotrema sobre los huéspedes definitivos. Algunos autores han descubierto que el origen de la variación genética en digéneos de la familia Allocreadiidae ocurre en los huéspedes definitivos debido a que es ahí donde ocurren las fases meióticas de los digéneos adultos (Murty, 1975; Canning & Madhavi, 1977; Madhavi, 1978; Ramanjaneyulu & Madhavi, 1984; Willis, 2001). Para este estudio en Margotrema, resulta interesante preguntarnos ¿que porcentaje de la variación observada en los sitios nulceotídicos 212 polimórficos, tanto a nivel inter e intrapoblacionales, se originó en cada uno de los huéspedes involucrados en su ciclo de vida? Modelar estudios de selección natural dependiente de la frecuencia para organismos parásitos (Poulin, 2007), permitirá observar este tipo de información por descubrir. El comportamiento identificado para las asociaciones históricas intrínsecas (gen- organismo, huésped-parásito y área-organismo) del modelo biológico Goodeinae-Margotrema permitió comprender los procesos de diversificación de los organismos parásitos de México. Este trabajo representa la arquitectura central a considerar para otros modelos biológicos (v. gr. helmintofaunas principales de México), en el sentido de expandir nuevas pautas de conocimiento sobre la vida parasitaria. 213 CONCLUSIONES GENERALES < La subfamilia Goodeinae (Osteichthys: Cyprinodontiformes: Goodeidae), incluye un total de 55 taxones de helmintos parásitos para 36 especies de goodeinos de las 42 que existen, de los cuales 10 son categorizados como especies especialistas (principales, desde el punto de vista biogeográfico) a esta subfamilia. < El género Margotrema representa un grupo monofilético, en el cual se incluyen dos especies: M. bravoae Lamothe-Argumeto, 1970 y M. resolanae Pérez-Ponce de León, Martínez- Aquino & Mendoza-Garfías, 2013. < Margotrema bravoae presenta una estructura genealógica que comprende tres linajes con evolución independiente asociados estrechamente a sistemas hidrológicos y a grupos particulares de huéspedes: a) Margotrema bravoae Linaje I, distribuido sobre los sistemas hidrológicos de los ríos Ayuquila, Balsas y Conchos y estando asociados a huéspedes de las tribus Ilyodontini, Chapalichthyini y a una especie de ciprínido (Codoma ornata). b) Margotrema bravoae Linaje II, distribuído sobre sistemas hidrológicos del río Lerma y asociado a huéspedes de la tribu Girardinichthyini y Chapalichthyini. c) Margotrema bravoae Linaje III, distribuído sobre sistemas hidrológicos del río Mezquital y asociado a un único huésped de la tribu Characodontini (Characodon audax). < Los patrones de distribución geográfica de Margotrema están asociados con los eventos que fragmentaron a los sistemas hidrológicos del centro de México y que, a su vez, influenciaron también el patrón de distribución de sus huéspedes goodeinos. Por tanto, existe congruencia biogeográfica entre la historia genealógica de las poblaciones de Margotrema y la historia hidrogeomorfológica del centro de México, así como con la historia biogeográfica de Goodeinae. < El proceso de dispersión causado por los huéspedes goodeinos jugó un papel relevante en el patrón de distribución actual de Margotrema, debido a la vagilidad que presentó históricamente el ancestro común más reciente de cada una de las tribus de Goodeinae, mismos que expandieron el área de distribución de Margotrema sobre los sistemas hidrológicos del centro de México. 214 < Existe congruencia entra las relaciones filogenéticas de Goodeinae (a nivel de especies y tribus) y la historia genealógica de Margotrema (a nivel de linajes y especies). A su vez, este patrón cofilogenético se observa en los tiempos de divergencia estimados para Goodeinae (a nivel de especies y tribus), y para especies y linajes de Margotrema. < La relación Goodeinae-Margotrema representa tres niveles de asociaciones históricas distintas que reflejan que los procesos de codivergencia de los taxones de Margotrema, en primera instancia, son debidos a eventos vicariantes seguidos de los procesos de diversificación de los grupos monofiléticos de goodeinos: a) Especie-Especie. Representada por la asociación histórica Xenotaenia resolanae-Margotrema resolanae, exclusivo del Río Cuzalapa. b) Especie- Linaje. (Codivergencia Tipo I). Representada por la asociación histórica Characodon audax- Margotrema bravoae Linaje III, exclusivo del Río Mezquital Medio-Alto. c) Tribu-Linaje. (Codivergencia Tipo II). Representado, a su vez, por dos tipos de asociaciones históricas distintas: 1) Ilyodontini-Margotrema bravoae Linaje I, distribuido en los sistemas hidrológicos de los Ríos Ayuquila y Balsas. 2) Girardinichthyini / Chapalichthyini -Margotrema bravoae Linaje III, distribuido en el Río Lerma. 215 LITERATURA CITADA Aguilar-Aguilar R., Rosas-Valdez R., Martínez-Aquino A., R. Pérez-Rodríguez, Domínguez- Domínguez O. y G. Pérez-Ponce de León. 2010. Helminth fauna of two cyprinid fish (Campostoma ornatum and Codoma ornata) from the upper Piaxtla River, Northwestern Mexico. Helminthologia 47: 251–256. Barbour C. D. 1973. A biogeographical history of Chirostoma (Pisces: Atherinidae): A species flock from the Mexican Plateau. Copeia 3:533-556. Brooks D. R. 1979. Testing the context and extent of host-parasite coevolution. Systematic Zoology 28:299-307. Brooks, D. R. y D. A. McLenann. 1993. Parascript. Parasites and the Language of Evolution. Smithsonian Institution Press, Washington y Londres. 429 p. Canning E.U. y R. Madhavi. 1977. Studies on two new species of Microsporida hyperparasitic in adult Allocreadium fasciatusi (Trematoda, Allocreadiidae). Parasitology 75: 293-300 Charleston M.A. 2011. TreeMap 3b. URL http://sites.google.com/site/cophylogeny Chernoff B. y R.R. Miller. 1986. Fishes of the Notropis calientis complex, whit a key to the southern shiners of Mexico. COPEIA 1:170-183. Conow C., Fielder, D., Ovadia, Y. y R. Libeskind-Hadas. 2010. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms for Molecular Biology 5: 16. Curran S.S., V.V. Tkach V.V. y R.M. Overstreet. 2011. Phylogenetic affinities of Auriculostoma (Digenea: Allocreadiidae), with descriptions of two new species from Peru. Journal of Parasitology 97: 661–670. Darwin Ch. 1859. On the origin of the species. The ilustrated edition 2008, Sterling Publishing, Co., Inc, China 544 p. Domínguez-Domínguez O., I. Doadrio y G. Pérez-Ponce de León. 2006. Historical biogeography of some river basins in central Mexico evidenced by their goodeine freshwater fishes: 216 apreliminary hypothesis using secondary Brooks parsimony analysis. Journal of Biogeography. 33: 1437-1447. Domínguez-Domínguez O., C. Pedraza-Lara, N. Gurrola-Sánchez, R. Pérez-Rodríguez, I. Israde- Alcántara, V. H. Garduño-Monroy, I. Doadrio, G. Pérez-Ponce de León y D.R. Brooks. 2010. Historical biogeography of the Goodeinae (Cyprinodontiforms). En: Uribe- Aranzabal M. C. and H. Grier. (Eds.). Viviparous Fishes II, New Life Publications, Homestead, Florida, 33-74. Drummond A.J., Ho S.Y.W., Phillips M.J. y A. Rambaut. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: 699–710. Edwards S.V. 2009. Is a new and general theory of molecular systematics emerging? Evolution. 63-1: 1–19. Ehrlich P.R. y P.H. Raven. 1964. Butterflies and Plants: a study in Coevolution. Evolution 18: 586-608. Ferrari L. 2004. Slab detachment control on volcanic pulse and mantle heterogeneity in Central Mexico. Geology 32:77-80. Ferrari L., Lopez-Martinez M., Aguirre-Diaz G. y G. Carrasco-Nunez. 1999. Space-time patterns of Cenozoic arc volcanism in central Mexico: From the Sierra Madre Occidental to the Mexican Volcanic Belt. Geology 27: 303–306. Fontaneto D., Herniou E.A., Boschetti C., Caprioli M., Melone G., Ricci C., y T.G. Barraclough. 2007. Independently evolving species in asexual bdelloid rotifers. PLoS Biology. 5, 914- 921. Gesundheit P. y Macias-García C. 2005. Biogeografía cladísta de la familia Goodeidae (Cyprinodontiformes). En: Morrone, J. y J. Llorente (eds). Una perspectiva latinoamericana de la biogeografía. CONABIO, México D.F. 319-337. Hey J. 2010. Isolation with Migration Models for More Than Two Populations. Molecular Biology and Evolution 27: 905–920. 217 Hey J. y R. Nielsen. 2007. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. PNAS 104: 2785-2790. Huelsenbeck J.P. y F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic tres. Bioinformatics 8: 754-755. Huelsenbeck J.P., F. Ronquist, R. Nielsen y J.P. Bollback. 2001. Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology. Science. 294: 2310-2314. Huidobro L., Morrone J.J., Villalobos J.L. y F. Álvarez. 2006. Distributional patterns of freshwater taxa (fishes, crustaceans and plants) from the Mexican Transition Zone. Journal of Biogeography 33: 731–741. Lamothe-Argumedo R. 1972. Tremátodos de peces VI. Margotrema bravoae gen. nov.sp. nov. (Trematoda: Allocreadiidae) parásito de Lermichthys multiradiatus Meek. Anales del Instituto de Biología, UNAM, Serie Zoología 41: 87-92. Libeskind-Hadas R. y M. A. Charleston. 2009. On the computational complexity of the reticulate cophylogeny reconstruction problema. Journal of Computational Biology 16: 105-117. Luna-Vega I. y R. Contreras-Medina. 2012. Contributions of Cladistic Biogeography to the Mexican Transition Zone. En: L. Stevens (Ed.): Global Advances in Biogeography. ISBN: 978-953-51-0454-4, InTech, Available from: http://www.intechopen.com/books/global-advances-in-biogeography/contributions- ofcladistic-biogeography-to-the-mexican-transition-zone Luna-Vega I., J.J. Morrone y D. Espinosa (Eds). 2005. Biodiversidad de la Faja Volcánica Transmexicana. Las Prensas de Ciencias, Universidad Nacional Autónoma de México. 514 p. López-Ramos E. 1982. Geología de México. Tomos II y III. México, D.F. 454 p. Maddison W.P. 1997. Gene trees in species trees. Systematic Biology 46: 523–536. 218 Madhavi R. 1978. Life history of Allocreadium fasciatusi Kakaji, 1969 (Trematoda: Allocreadiidae) from the freshwater fish Aplocheilus melastigma McClelland. Journal of Helminthology 52: 51-59. Martínez-Aquino A., G. Salgado-Maldonado, R. Aguilar-Aguilar, G. Cabañas-Carranza y M.P. Ortega-Olivares. 2004. Helminth parasites of Chapalichthys encaustus (Pisces: Goodeidae), an endemic freshwater fish from Lake Chapala, Jalisco, México. Journal of Parasitolology. 90: 889-890. Martínez-Aquino A., Aguilar-Aguilar R., Santa Anna del Conde Juárez H.O. y R. Contreras- Medina. 2007a. Empleo de herramientas panbiogeográficas para detectar áreas para conservar: un ejemplo con taxones dulceacuícolas. En: Luna I., J.J. Morrone y D. Espinosa (Eds). Biodiversidad de la Faja Volcánica Transmexicana. Las Prensas de Ciencias, Universidad Nacional Autónoma de México. Pp. 449-460. Martínez-Aquino A., G. Salgado-Maldonado, R. Aguilar-Aguilar, G. Cabañas-Carranza y C.A. Mendoza-Palmero. 2007b. Helminth parasite communities of Characodon audax and C. lateralis (Pisces: Goodeidae), endemic freshwater fishes from Durango, Mexico. The Southwestern Naturalist 52: 125-130. Martínez-Aquino A., Aguilar-Aguilar R., Pérez-Rodríguez R. y G. Pérez-Ponce de León. 2009. Helminth parasite of Xenotaenia resolanae (Osteichthyes: Cyprinodontiformes: Goodeidae) from the Cuzalapa hydrological system, Jalisco, Mexico. Journal of Parasitology 95: 1221-1223. Martínez-Aquino A., D. Hernández-Mena, R. Pérez-Rodríguez, R. Aguilar-Aguilar y G. Pérez- Ponce de León. 2011. Endohelminth parasites of the freshwater fish Zoogoneticus purhepechus (Cyprinodontiformes: Goodeidae) from two springs in the Lower Lerma River, Mexico. Revista Mexicana de Biodiversidad 82: 1132-1137. Martínez-Aquino A., R. Pérez-Rodríguez, D.I. Hernández-Mena, L. Garrido-Olvera, R. Aguilar- Aguilar and G. Pérez-Ponce de León. 2012. Endohelminth parasites of seven goodein species (Cyprinodontiformes: Goodeidae) from Lake Zacapu, Michoacán, Central Mexico Plateau. Hidrobiológica. 22: 88-91. 219 Martínez-Aquino A., F.S. Ceccarelli and G. Pérez-Ponce de León. 2013. Molecular phylogeny of the genus Margotrema (Digenea: Allocreadiidae), parasitic flatworms of goodeid freshwater fishes across central Mexico: species boundaries, host-specificity and geographical congruence. Zoological Journal of the Linnean Society. 168: 1-66. Manter H.W. 1963. The zoogeographical affinities of trematodes of South American freshwater fishes. Systematic Zoology 12: 45-70. Mateos M., O. I. Sanjur y R. C. Vrijenhoek. 2002. Historical biogeography of the livebearing fish genus Poeciliopsis (Poeciliidae: Cyprinodontiformes). Evolution 56: 972–984. Mejía-Madrid H., Domínguez- Domínguez O. y G. Pérez-Ponce de León. 2005. Adult endohelminth parasites of Goodeinae (Cyprinodontiformes: Goodeidae) from México Mizukoshi A., Johnson K.P. y K. Yoshizawa. 2012. Co-phylogeography and morphological evolution of sika deer lice (Damalinia sika) with their hosts (Cervus nippon). Parasitology 139: 1614-1629. Minckley W.L.D., D.A. Hendrickson y C.E. Bond. 1986. Goegraphy of western North American Freshwater fishes: Description and relationships to intracontinental tectonism. En: Hocutt C.H. y E.O. Wiley (Eds). The Zoogoegraphy of North Amercian Freshawater Fishes. John Wiley y Sons, Nueva York 516-613 pp. Morrone J.J. 2010. Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecography 33: 355-361. Morrison D.A. 2006. Phylogenetic Analyses of Parasites in the New Millennium. Advances in Parasitology. Vol 63. 124 p. Murty A.S. 1975. Studies on Indian cercarie II. Allocreadioid cercarie. Journal of Parasitology 61: 418-420. Nieberding C.M., Durette-Desset M.-C, Vanderpoorten A., Casanova J.C., Ribas A., Deffontaine V., Feliu C., Morand S., R. Libois & J.R. Michaux. 2008. Geography and host biogeography matter for understanding the phylogeography of a parasite. Molecular Phylogenetics and Evolution 47: 538–554. 220 Nielsen R. y J. Wakeley. 2001. Distinguishing Migration From Isolation: A Markov Chain Monte Carlo Approach. Genetics 158: 885–896. Nylander J.A.A., Olsson U., Alström P., e I. Sanmartín. 2008. Accounting for Phylogenetic Uncertainty in Biogeography: A Bayesian Approach to Dispersal-Vicariance Analysis of the Thrushes (Aves: Turdus). Systematic Biology 57: 257–268. Page R. D. M. 1994a. Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43: 58-77. Page R.D.M. 2003. Tangled Trees: Phylogeny, Cospeciation, and Coevolution. The University of Chicago Press: Chicago y Londres, E.U.A. 378 p. Page R.D.M. y M.A. Charleston. 1998. Trees within trees: phylogeny and historical associations. TREE. 13: 356–359. Page R.D.M. y E.D. Holmes. 1998. Molecular Evolution: A phylogenetic approach. Blackwell Science Ltd, Inglaterra 346 p. Parenti L. R. 1981. A phylogenetic and biogeographic analysis of cyprinodontiform fishes (Teleostei: Atherinomorpha). Bulletin of the American Museum of Natural History 168:340-557. Pérez-Ponce de León G. 2001. Margotrema guillerminae n. sp. (Trematoda: Macroderoididae) from two species of freshwaters fishes in Lake Zacapu, Michoacan state, Mexico, and new records of Margotrema bravoae Lamothe, 1970. Journal of Parasitology 87: 1112- 1114. Pérez-Ponce de León G. y A. Choudhury. 2005. Biogeography of helminth parasites of freshwater fishes in Mexico: the research for patterns and processes. Journal of Biogeography 32: 645-649. Pérez-Ponce de León G. y A. Choudhury. 2010. Parasite inventories and DNA-based taxonomy: Lessons from helminths of freshwater fishes in a megadiverse country. Journal of Parasitology 96: 236-244. 221 Pérez-Ponce de León G., García-Prieto L., León-Régagnon V. y A. Choudhury. 2000. Helminth communities of native and introduced fishes in Lake Pátzcuaro, Michoacan, Mexico. Journal of Fish Biology 57: 303-325. Pérez-Ponce de León G., García-Prieto L. y B. Mendoza-Garfias. 2007a. Trematode parasites (Platyhelminthes) of wildlife vertebrates in Mexico. Zootaxa 1534: 1-247. Pérez-Ponce de León G., Choudhury A., Rosas-Valdez R. y H. Mejía-Madrid. 2007b. Systematic position of Wallinia spp. and Margotrema spp. parasites of Middle-American and Neotropical freshwater fishes based on 28S ribosomal RNA gene. Systematic Parasitology 68: 49-55. Pérez-Ponce de León G., R. Rosas-Valdez, B. Mendoza-Garfias, R. Aguilar-Aguilar, J. Falcón- Ordaz, L. Garrido-Olvera y R. Pérez-Rodríguez. 2009. Survey of the endohelminth parasites of freshwater fishes in the upper Mezquital River Basin, Durango State, Mexico. Zootaxa 2164: 1–20. Pérez-Ponce de León G., Mendoza-Garfias B., Rosas-Valdez R. y A. Choudhury. 2013. New host and locality records of freshwater fish helminth parasites in river basins north of the Transmexican Volcanic Belt in northern Mexico: Another look at biogeographical patterns. Revista Mexicana de Biodiversidad. 84. Pérez-Ponce de León G., A. Martínez-Aquino & B. Mendoza-Garfias. 2013. A new species of Margotrema (Digenea, Allocreadiidae) from the leopard splitfin Xenotaenia resolanae (Cyprinodontiformes, Goodeidae) from west-central Mexico. Zootaxa. 3670: 94-96. Pineda-López R., Salgado-Maldonado G., Soto-Galera E., Hernández-Camacho N., Orozco- Zamorano A., Contreras-Robledo S., Cabañas-Carranza G. y R. Aguilar-Aguilar. 2005. Helminth parasites of viviparous fishes in Mexico. En: H. Grier y M.C. Uribe (Eds.). Viviparous Fishes: Genetics, Ecology, and Conservation. New Life Publications Homestrad, Florida. pp. 437-456. Plaisance L., Rousset V., S. Morand y D.T.J. Littlewood. 2008. Colonization of Pacific islands by parasites of low dispersal ability: phylogeography of two monogenean species 222 parasitizing butterflyfishes in the South Pacific Ocean. Journal of Biogeography. 35: 76- 87. Pons J., Barraclough T.G., Gomez-Zurita J., Cardoso A., Duran D.P., Hazell S., Kamoun S., Sumlin W.D. y Vogler A.P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609. Poulin R. 2007. Evolutionary ecology of parasites (2nd ed.). Princeton University Press, 342 p. Ramanjaneyulu J.V. y R. Madhavi. 1984. Cytological investigations on two species of allocreadiid trematodes with special reference to the occurrence of triploidy and parthenogenesis in Allocreadium fasciatusi. International Journal of Parasitology 14: 309-316. Rannala, B. & Michalakis, Y. (2003) Populations genetics and cospeciation: from process to pattern. In: Page R.D.M. 2003. Tangled Trees: Phylogeny, Cospeciation, and Coevolution. The University of Chicago Press: Chicago y London, U.S.A. 120-143 pp. Ree R.H. y S.A. Smith. 2008. Maximum Likelihood Inference of Geographic Range Evolution by Dispersal, Local Extinction, and Cladogenesis. Systematic Biology 57: 4–14. Ree R.H., Moore, B.R., C.O. Webb y Donoghue, M.J. 2005. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 59: 2299– 2311. Ree R.H., e I. Sanmartín. 2009. Prospects and challenges for parametric models in historical biogeographical inference. Journal of Biogeography 36: 1211–1220 Ronquist F. e I. Sanmartín. 2011. Phylogenetic methods in biogeography. Annual Review of Ecology, Evolution, and Systematics. 42: 441-464. Rosenberg N.A. y M. Nordborg. 2002.Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature. 3: 380-390. 223 Sanmartín I. 2010. Breaking the chain of parsimony: parametric approachesin historical biogeography. En: Cox C.B. y P.D. Moore (Eds) Biogeography,an ecological and evolutionary approach. 8th ed. Hoboken Nueva Jersay: Wiley, pp. 213–4. Sanmartín I. 2012. Historical Biogeography: Evolution in Time and Space. Evolution: Educationa and Outreach. 5: 555-568. Thompson J.N. 1994. The coevolutionary process. University of Chicago Press, Chicago. 376 p. Thompson J.N. 2005. Coevolution: the geographic mosaic of coevolutionary arms races. Current Biology 15: 992-994. Thompson J.N. 2013. Relentless Evolution. University of Chicago Press, Chicago (upcoming, spring 2013). approx. 496 pp. Uyeno T. y R.R. Miller. 1962. Summary of Late Cenozoic freshwater fish records for North America. Occasional papers of the Museum of Zoology University of Michigan. 36 p. Vidal-Martínez, V. M., T. Scholz y L. Aguirre-Macedo. 2001. Dactylogyridae of cichlid fishes from Nicaragua, Central America, with descriptions of Gussevia herotilapiae sp. n. and three new species of Sciadicleithrum (Monogena: Ancyrocephalydae). Comparative Parasitology 68: 76-86. Willis M.S. 2001. Population biology of Allocreadium lobatum Wallin, 1909 (Digenea: Allocreadiidae) in the Creek Chub, Semotilus atromaculatus, Mitchill (Osteichthyes: Cyprinadae), in a Nebraska Creek, USA. Memórias do Instuto Oswaldo Cruz 96: 331-338. Yu Y., Harris, A.J. y He, X. 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution 56: 848–850. Zietara M.S. y J. Lumme. 2002. Speciation by host switch and adaptive radiation in a fish parasite genus Gyrodactylus (Monogenea, Gyrodactylidae). Evolution 56: 2445-2458. 224 APÉNDICE HELMINTH PARASITES OF FRESHWATER FISHES FROM CUATRO CIÉNEGAS, COAHUILA, IN THE CHIHUAHUA DESERT OF MEXICO: INVENTORY AND BIOGEOGRAPHICAL IMPLICATIONS 225 Durante el transcurso del presente proyecto doctoral (financiado por el Consejo Nacional de Ciencia y Tecnología a través de una beca para estudios de doctorado dentro del Programa de Posgrado en Ciencias Biológicas, de la Universidad Nacional Autónoma de México), de manera paralela, se genero un artículo en extenso referente a la biodiversidad de helmintos parásitos de peces dulceacuícolas del norte de México el cuál se muestra a modo de apéndice en este trabajo. A continuación se presenta la galera de este articulo en extenso aceptado para su publicación, intitulado: Helminth parasites of freshwater fishes from Cuatro Ciénegas, Coahuila, in the Chihuahua, desert of Mexico: Inventory and biogeographical implications (Aguilar- Aguilar et al., 2013). 226 1<11 , 1I "aoi. , ~1 .1 fl .~" . , C . .... C"" I<'" 1I, '_i.,. po ..... " . , I ..... ~ . '" fl .... 1.-. .. C .... . C"' .... ~ C_ • • ilL io ,.< R,,¡d .. AGU'LAK_AGUlLAR'. ,,",M, M,\RTiNEZ-AQUINo" ' , 11 ~ .., , Ilm«l "'''''=- Ap< e ....o ;¡"'.p' ,,; "" .. • .t..;1o , ••. rtOom ,,;"o. ".-.. """'" .fho.o~ ".,>tly .. ""',.,.,...,,,, .. ~ · '"ITt;" f=j,,,,,,, d«l . Ioul .fl)24 .... ,"'j"l """"'" ~= r lo«« wml 'o;' ~. ",,«>o. ,.,,,,o. . f ~hKO ~ ..., ,V"' .. ~ 1 ""''''''''., .... 1 , .. .00., 1 ..... ho <¡'hol ..... '" .."..,ü< Oolrful ..- "'" ....... "-" ¡ .r"" oo.i".,, ;ty od Im>o","¡ "V"rrby.r ¡¡,;, oo'-f"''' ' ' ' 1""". ,¡"'< .. tOo ""'" C Oin<~ ",p .. .,,, .... <.,-c'K [,.,.n-.-.<" ,,. ........, ' '' s ",;¡¡' N..~ . I o d md",,~ p< d;¡<"' .... &o.o<~el¡" ;"I>.¡ ... (Lomoth<_A-Pa,hh. '''''1 ;" P"",_l'ooc<'" lMti'" ~ K<'. ;" ,h< '0""'" ur . """" "" ...... '""""v, "'-xl ~., ""., """,""t,_ ..... off ... """" """,,,..¡, a.o,""";'¡ .. , Cm"' ........ '1'-10 _ l~ 230 C,n<=chod.,,, i.".-u _I;"""u IR, f",,"I"" 1~2úl (. - 7, """''''''"'' .. iM<>i0I0;,,'' ".1" ... ,,,,- """""'"' ro,," ",th GAP ... ", ......,.,,,od ¡" C."..... o.l>am r.uo..· .. E~," , 11%9) """'" '<'"""""'" ~ .... , f" od "' ¡"" ' .. ' .... n ~ ¡""",h ... 4<4 . ... ;....¡ wi.h , ...,..,.; •• "" ~. "' '' ond """' .. ..t in C."..¡, b.t..m '" >tudy .Iu ¡ ........ I ........ ~~ ... "'= " '""..! .. ... ond """,,,,j , •• l'« ri ,jo.;, ~ ' ;,h O . M ~ . .. ,'" pn..- ro ....... PIot)k ..... '" wm ¡"od ~ i th loo< I .. ~.,') 4··' fonn.olin.. A .... """'""~ ~= ""' .......... ~ 'C fe, 11 h .. d", dW " ....... .".. t ~. fi • .J .. ,.Id 10'4 .......... N""" ....... .....-. fu..! _ "'" ( . t< ..ru "~i 4 \. fonrulin ... 00' (",,,,:~ 10"4 "banal AII l>dm;"u" ""'" P""'''''" f.II" ,,· ~ ound..-.l p "",«Iw-<.I Lo mo"" _ ~do 231 I mi. kI,"" r. ... "'" ~'" """!' l< eolo<,OIn N","-I "' 1I, 1m ¡ .... (CNIlE). 1 ... """,, "' B .. Io~ U.i"",doO N .. ,,-" A utónomo < eol=OIn N",,,-I < ""'" 'r>«;" .. ' "f",,«I fi'¡') ,..t obund""" (......o.r ofp ..... " ord" ,,,,,,, "",0<, 1'" , ...... ..,¡ r,.¡,) foJlo~·, Bu"'''.1. (''1'>7). IlESULTS l. tho> ""''''y, 110 no ;,·"",,, ro,¡, !mm Cwtro e"",g.» N." , nd "" rh""'~ ..-. ... ,.....,.,.,ndin¡ '" 11 'm """ ...... ,,<1. ..."h • ...."Iin, ~'" 1'" ""''''' ,.")i~ i-om 1 ., 119 m ;" ....... F;,t, from 16 10 .. 1;, ,,, ~-.., ""'1',," , , 00,,,,,, , """" ""~ ....... IIod;d , """ .. '1''''''' &nd ".nd.o, bu, , 1>0 ,~ = and ............. ,~, (T""" l. r ~ IJ. lb< ho., '!""'" ~·"h ti>< w¡,~ _ pi< ,,"',.-....... 100, .. _"ó;, "'h",b . ''' .... 10 b< ti>< ""'" ""'"""'" mU mu_ fuh 'P"'" ,n ~ . _ 1Iodi<, of,Oo e .. ..., C""'I" " ' '''" 1'" ,,,,,,n«! """,'" of,.,." ("''1'''' ' Ca"',"'""" 'f' . .",j C]p,¡oo.Io. bijoHU,OH. ~bh ... .", ",pO,., ro.- Oo lm"" b pa=¡'''1 -..t.oml brt-." I mU 10 b<1m, .. , opa';'" ,.·.h ti>< ",t .... , ;ori>w;' G . ... ""'b<"", , b< "". '1''''''' n.m..- ~ ,00 1 .. , ,,, "",,"', or l>t< ",lo .. ,f~ "'''''' .,., """'''y 232 .. ~,......ed. 10 110 .... by .... &bb<,,"'.,. indk" ml t h< hab'''(' 1 ... """ '"' "lml",b , .. ,," ..... fuu ...... ·.b,. '"' ro",. N,,,. ,'" ho" ..... '" "' .. ""h '"' "'''"""b .... ¡¡'W> ~ """ ...... .......... "'. ,00 "" .. , .. ..m'y ofml«1 ..... W .... mo« ,hon o", _ 'f'<';" bOomi ,'" """" ho«l .... do.., ",m. ... ·i .. '"' ~"'P'" mm"" .. ~­ DISCliSSION n..:, " ''''''')' 1""""" h= .. «f"<""''' '"' ""o;."" ... of.,.. ,fIO,,, ro d=nb< .... ¡"ooi"", ityof"'lm""h 1'"',.;,., •• 1 11-< ........ .,. f .... " In M,';",. ;" tOd ...., 10110,,,",, VOC ,~,~ · .I """" ~proo« of h<1m".o '1""" "' Cwtro C\i.."" fro ....... t ~ '" ~"~, ¡' J i ~;:: O'!l~J"~Z W ~"'·2" " .. " ~~-~i;~~i~"'~~~,i~~f.= ' ¡.w.~~t if,qli! ' t~,!,!tHl ! í ' ¡ i" - < '< ~.:r ~' l' L~ ¡ i . ; i' ii' E"'-~":"'1" '~2 .. ,: 3 :Z:~;; ' :::-~ ~ - i ! ' : : ' ; r .~ ~ [ t ~ ~. g ~ ~ j ~ r :. t ~ 1 l l -~ l ~ ~ ~ ~ ~ r( 8 ';;'l2- ~, " . " ;' ~;¡. __ ; . '! ' ¡ ', " if .9 , I , - · '1 l " " " ! _, o . ~!Jlf" ~ a~! ' '='¡;:'''-E t- S- ¡¡~~-; '>~if"~"" ¡;;:: . ~ .~~ , t . ~~,..~.:,,~ - - ~ r [ ~ ~ l ~ [ ~,~ ~ r ~ ~ ! :: ~- f ~ ~ E .~ ~ t= ~ 8 0 - " [ ~l_~'~!'-!C' • • .¡,¡a.fi-~; .. =r~ ~ .. ~~~" ~""'~~[·h. " ~ ~,. ;r 8 t ! ~ ~ ~ g JO" 1 ;' !. -~ i 1 f'· ~ ~ ; ! ,¡: ~ ¡r .. :s -; .. , l" _ a~ "~!'¡ o.,.--~, .~ :< . .. r " l" " o - " l O - tlt~.~;¡~~;;¡(~~il i."i~a.:f~ '< " !. • • > ~ il !!.. 'i1 1 I .!l "- a. f l ~ 41 1. ' • • § .,.. r l"'fi-¡~~¡¡~~ = ~~i -~.8-2{.!~"~[ -'" 2 C '5~ ~. '- " ' ~ a ; 1 , '¡ ,1 -, - "~-"-,,,~,,,,- " 1 -' , , " a ":<~oj(;¡::: , " " _ ~ h il. '" 1it·~-~~a."~ ... 8 ~~ .. f~"- f ~ ~ 11 ! 1 i 1 t 1 l~ ·f t 1 r ¡ ! 1 ! i ~ ~ 1 ~.;¡ ¡¡-~!;r¡¡l~ .. ~ ~ ""·!f~S ' • • , [ ; r r""~ , , velas one pecios of Homalometror were recognized based on a combiation ol molecular and morphological data. Inti espect, molecular date wee instrumental “and necessary to establish more robust species delimitan criteria for these helmint pecis. Inte case oftbe digencans Crassicuis pp. we recognized lineage | from Razo-Mendivil era. Q010) (an undeseribed cry species) ss paras 08% canagatats, adC. cichlasomae (sensu lao) sa paras OE múncllsi. ln omalometron,scquences of te FTS and 265 nucicarrbNA were used o recognize tt our specimens actual correspond vis 4 pallidum, species oigially described from fndadid in severa parts o North America (Hoffman. 1999), The record of 1 pallidum in endemic fish species in Cutro Ciénegas (Gambusio marshi) poses an interesting question tar deserve fur investigation to actually demonstas they are «omspecifis, or hey may represent epic species, but other molecular murkcrs such as COL ae needed to have conclasive dat On sl reuals that some tspical Neotropical helminth species vic are part ft biogcographial core fuma o characins and cichlids were found, eg. he digencans Crasscutscchlasomae and Crassictis.(inege Y) and Rhabdochona Adri as paras es of cichlids while Creptotrematinanguirrepequenol, Characihecium avstaricensis, aná Procamellans neocaballerai in characns, Likcwvise, some typical Nearctichelminh species were found, Heli species wit Ncareis afitis recorded here a he monogencass of th gens Salinas, th Aigencans 4. palm and Microphallx e. opacur and he acamtboccplalans Leplorhynchaidesthecatus and Pomphorkonchus hulbocolli Monogencans of gens Salseginus have been recorded i he Nearctic portion of Mexico in guodcids and pupfishes (Maninez-Aquino et af. 2004, 2007: Mendoza-Palmero 2007; Martnez- 234 ",~ 1I .. "'"' 'f'O<"" of ''''_t-""", .,,'" "",&",,«1 "-<1 ... , ,,,,,,,,,,,0>," f rook"' ... 'OO """""""",,,1 ol __ l. h ' <>f'<'< """""1 ...... , "' .... """""""",1 ... """"""Y ' ........... """" ...... ,....,,,. d."' .... "'" ,n""" r .. ..,'" ),.I ".h '1'<";'" 1".., " •• , ur,),. i""""", ="",,, 'PI' .. ~ . , ,,,..,,,,i=l ,,,.,, 1 l u · ",j,"¡1 ".1. {20IOH" .... <",ril> .r"" I S .00 18S ... <1...- ,DS «' >«i<> ... , .. lIy "",iI>. '19). k ",..,..j Df 1. ,.,lIiJ.", , " ...a. k ~,¡, ,....,,,. e ....... C;m.~ I o,,_~. "",,,~.11""" "" int<",~ ¡ ~" , ,,>t.," ,bot O<> bo<, t'" oI« ..."".r ,.....,¡", . ,.l< k li'" = d. '.J .. "" i" ", .., r..,i.-.,;'- ,H,"",,,,,,," "'" """""";"p. (1""." 1) ...d N¡"'¡"¡"¡"'"" /.¡JJen· .. .........f mhbd ~ ~-I"k ü'P''''''_''' ~g.;""_, .. ". /oo"",i1¡'_ .. ,,,,,,,,,,,.ru. .00 roc_II",,,, ."""¡,,,JI_ .. , Iw-.. in>. l ... ·...,. ""'" ')'1',,,, 1 N,.,.,,", o. .",. ,_'" <<< r.-I. IHm",h op«"" ",ito N"'IT'~ ,ff "";", "" .. .Jod ..., "'" to. "", ... "", ... r,),. 11"""" a".p"" ti>< oi" ....... 1I <. .... ;,.,' _ A ~ " i"" ....1. 0... 07; mdo,.·P. 1m," f rook"' ... 'OO """""""",,,1 ol __ l. h ' <>f'<'< """""1 ...... , "' .... """""""",1 ... """"""Y ' ........... """" ...... ,....,,,. d."' .... "'" ,n""" r .. ..,'" ),.I ".h '1'<";'" 1".., " •• , ur,),. i""""", ="",,, 'PI' .. ~ . , ,,,..,,,,i=l ,,,.,, 1 l u · ",j,"¡1 ".1. {20IOH" .... <",ril> .r"" I S .00 18S ... <1...- ,DS «' >«i<> ... , .. lIy "",iI>. '19). k ",..,..j Df 1. ,.,lIiJ.", , " ...a. k ~,¡, ,....,,,. e ....... C;m.~ I o,,_~. "",,,~.11""" "" int<",~ ¡ ~" , ,,>t.," ,bot O<> bo<, t'" oI« ..."".r ,.....,¡", . ,.l< k li'" = d. '.J .. "" i" ", .., r..,i.-.,;'- ,H,"",,,,,,," "'" """""";"p. (1""." 1) ...d N¡"'¡"¡"¡"'"" /.¡JJen· .. .........f mhbd ~ ~-I"k ü'P''''''_''' ~g.;""_, .. ". /oo"",i1¡'_ .. ,,,,,,,,,,,.ru. .00 roc_II",,,, ."""¡,,,JI_ .. , Iw-.. in>. l ... ·...,. ""'" ')'1',,,, 1 N,.,.,,", o. .",. ,_'" <<< r.-I. IHm",h op«"" ",ito N"'IT'~ ,ff "";", "" .. .Jod ..., "'" to. "", ... "", ... r,),. 11"""" a".p"" ti>< oi" ....... 1I <. .... ;,.,' _ A ~ " i"" ....1. 0... 07; mdo,.·P. 1m. 1 '1\>9 , Pm-L_ Pon<, «i ..... f.,.,..,j ¡" .. "'" "f>'<;" off ... bw_, firt..., """ obon-,''''' >till ti-.< I"'"'-booly obor<. "' .... booly ""¡"". ,..¡ 'n< .. F"""'" .110 .... '" 10 """' ¡" '" tb. ¡o""h'y Ioo¡';'~ f., """"" ".... 'p"''''' ..:"', .... ,,",'''''' .rtl-.< "," oo.. '"" ron"",,'" .. oh ,h< di.""" .. of ti-.< ~" .. ~ l..kt .. , , lo .. ",",,;f""r. h'w"·Niu. ,,""" . " .. ¡ly fo .. ·.0 f .... '"p m,,,k by L,,,,,,,,,,,,, uod V.oCla" (1'149) . .,·tu .......... """ oIItuo.¡¡h 1. too"" , .... 01 .. ",,,,.,,, _,,'h< "'W~'""' o¡ """'" ac,hon .. 'tu ¡",, ~ 1'<0.0'" • do., . _, ...... 01 'O" ",,,,,,iM>lu.w-. ...... "",¡"-",, iS" .... '" ,,01. 1001). Th< "ron~" ,..., orho.< """,f,city ~ ,,¡,;o.«I by ti-.< .. _"","Ion Am_ ... "''''' d"","¡, .. ""i~ " 'h"h ,.... t..m «,otIy .. I'"~(.h< •• (Ib. V"'" C'pn ...... (G""ia_I'ntu", of N "';"'" ......... ,ft." ,Ita! O I .... K Ii>. Ito.o~ Up ., dot, ... mokm" '1""" ofholnuntb ha," h«n =onk'Y 20101_ Lilt,~, .. , lWttw.- ... 1)"< • • ,,, "'1"." ¡" uro.. tu ,,,"oli" "" ' "",,,,,m~ itknutyof"" "'''''1'''''''' klm"ft«l .. ,,"')fl'< .......... ; , n. '1' !mm lI..ricltlit" .. ;'.,.'I,,·¡ ond 11. ? ~""l,)~"""" (du.h proNbl,· holon¡ ,. '" ...d=.-ibod ;<"". ",";'"_hbo",, ~'" ""mnL~ . noI ,ho ....... od< _ ... 11,,_ '" fmm .... _" ... uf le,""'""""",, l><>r it< .... &." th.o, .... C .. tro C ;m.~ " "'f"'. ¡, .. . " ... , 01 rnd", ..... "'" di",,,, "'''. no """,,1 ho'-" ... ,,"" ,okc" " S m,,J,,,_ ro .. ~ . "" f""'¡ .. 'OH _le ""!Ocb "'rnXoon." .... ~",n maok b y r .... , _po"', ... l<Ón'noI Chootdlu-y 1201 O) ",1», ¡,...o "" .... " ,,,. uf"" .. ,-....,.yor .... m,oJn._ fi'" 'dm_d .. , 01 M .. ~" V"""«I.n '''_ ""R·. r ... ,,,",, ...J ),¡k> fu_, d .... on "" h<_h f ..... of f«¡>«"" of l,,,bw .. ,, , ... '0 h)'lrolop,.l .Y'" ......... o,,,.,,,,d u-.q.." .. l, .. M""o. n.o eu..ro O"", .. b";n en "", .. """1"'00.00 P«'" 01 f.n. ... ~-dl .. d,m" "'1""" .. " ........ " "'" bl (C""""u_A"",""" I m, Mm' '" M","":>O(1). n .. inIrodudioo "'" ¡.,,,,,,.!hm< ", .r ... "" ""',, hdrnen'" '1"';"" .. th< d.f<"<". C ....... "'"'-"'-'''' ....... ,'" ,<>too. B"'.ri<>«pJu>J.. ""*''',,,,_,., wlx' .. , ""~ . W ..... 1" .... · .. " r" .... ufCwtro CK'''''p' .... "' ;.-, ...... "1""'''''"11 'ro"", .. I".. fo< th< "' ..... k "''''''' ..... n . 1 ... " r~ h 'f'<"n Both o., lrrUntb .... "' .... ,,,,,oduo« lo h)do-olo ~ ". 1 'Y" ..... of M,noo ~·.tIu " tI>< ~ t.. .... and """'" , 1><;'- ..... bost .,...,r",.y and ¡t<"" , ... "'il.y .. a ~ .. difk" ..... ,;.-.-.-.. .. 01 00,,";""'" u... allo-o' ,h< d.,. , I»! ~ . , "«>< ""'< ........ "" "I' .... .,..¡ '" .".;, .. " ,h>. "'fu ..... '." ;. ''''y =1101 lo f"""", , .... nt.uo< ,, ;!h "" Iud A"". 1911 N .... =..--d. ro.- ......... 01 p,,'¡'ko. M"KO, and , ,,,,,,. r"h bo ... O .... w, •. 431-4l8 ~,¡,, _ ~,Io< R. M ........ Aqu ... A. P"" ... P""", ""o,iclo<. C ......... ,,"',""""" .... , ""',.",,,,.,,,,,, D,,'-;bu_ ,,''''','''' for M",,". ,."" ..... ,<=ni .. ~ ""JO,!,h" ~ ... _ .... ""'1'. O",t U" S,3l 7_1l9. ~,¡,, _ ~,Io< R. Ro ... _V.1dri",,, R, ¡""""'II'",_Domi"p" O. P¡",_I'c",,, oc l.o. G (lO lúb). H,¡." .. h " , "" Df .... 'lI'"",d r»h le ... !"",,,.., 0,"0"""'" C",",- O"""') fmm .... ~ p",u.. ""'. Nooh ...... "" M, .. ,o.IM";.'''Iog'' n . 1l l_llb ~,¡,, _ ~,Io< R. Solp>o.-.\.dd" ....... G, C_ ..... ·MNliN R .\ .. "intai A W ~ ''I9n P" .. ' olu.,. m"," ""<>l)' '''' "" o"'~ '''''''' ' 1>1",01 .. " .1. ", .. rt.d . .k"",,,,1 O¡Po""''''1ov . , . ""7 __ Cuprta-M ..... ¡..., lM ~20IOI . N_Iod, p"'""i", o[fr" ''''''" fi ,. i • . ' ''xiro K,,· 10 '1""'''' M"'i!,,"''''''¡ J ulrir.. .... AGT '.,h.". S. A.. M .. "". D. F C,,,,1rau S ~100-1). r~,", ;"" ..... y"""''''' "". ".,. •. lo, I< of ,to. A< .. "",,<¡,Ioo" .. ,, ¡ Id , ;r~ """0"'" of M",,,, WoI",o 2.", 1_ Gwja.-do-M.rt;""z " ~ ''Ill<1 "'d,m ¡" " y '''''''Y of p.,..;t<> or C .. tro Cói"'i'" C".¡.,¡¡ ~ M,,~o . .I"",..,lofl'" Ari,.,.. ·N,,"¡" Ac",ü .. vo[Sri",,, " , II-.8J ("""~ITo .. ... B"~",.w'lap",l'; V"""",,,," 1 ~) 4 IC,~"""'" Botlnx<¡,hoI>lx) '" F""" «'<' ooh..,uioolao ... C~.~ Mi .. ,. l. IJ-lri,../W" lviJI..J.Ji .. ~ " 'f'- "" . (1', ..... _, Ik ... ;..-.... ' po .......... dd";'" mdlid""'" ,\'a .. ",liJt 11 41 1_ . )1. M.m. IJ. Morti..,z M (<_ 1 M T "..('0""",,,.(;[C1 _ AridA""""'_ Tho N .. "", C"""""'",')'. M"i,,, M...h pe, ''184)_ O .... ufCuono C;¡""P'- Coahu;a,. M,,~u.- PmK<. ,k,¡""u of"'" ~ ri""",_ S",.d" A""'",,!, o[ Se .. "", " . 1_1_ M"""""_"",,",,, " , A ...... _ ~..., ~ (lOO!!} lid ..... "...~ ... of'" """r~ h 0-";0"""" .. m¡ (P,m., C)T'ri ....... ,furnr'). ... nokm" ¡...te ... " .. fi.h ¡rum Noob_C. .... 1 M,mo. '''I .. '"~a .! . .(lI _jl. M"""""_"q'"", ". SoIpIo_M.ldonoh",,,,,," r,.¡, OTo m ~ Chopal .. )'1",. M"", •. ;....n..1 ufP""" i~-", ,89-l<00. Mdf, GK ( Ins). lif, loo . .. ., p ........ o, G."¡"". _,,., Il'o<óli"",1 from Cuotro ~ Mm",,_ Coprio "'5. i'lt-90S Mml .. O. Ssl¡odo-M.1do0 ~ i ll •• , .... 9"""-' '1'1'_ (0...«001 .. ) f,om P ....... .,.¡ . oorod .... r ,,,,j , ""'1"'...,) lo. Ch."',.; ...... ; . .. "- ""- .1.,,,,,,,1 .¡ P"''''''"'''J;)' os. -1M s. Moo,i. lútt>lr""¡ v"' ... , ............. , 2OCJ.I (M""",,,,,,,, o.,;,'Y!OIY".1o'l rn.-n • f",ho.-"", f"¡' .. M " ~ ,,. P",.,i"¡"g;}' R",.,," IOJ, 11J5- 1B6. Mili", RR, .\I¡""~ Wl. No" 6 S.\I 1 1 00S~ F,..m.-_ r61d " f .~",ioro. 0 " -",,, u."-""¡'y P"" ... Oun", M""kky WL (1'Ill4~ C"'tu C""'l" r,,¡,., R,""uch "'-",,-...,j • ..,al ,,,,.f do"".)-,-""', bWo ... "". Jo.."",1 _/ IIog Ari"",._SnwJ. Ac"'¡'..,' o¡ Se;"'" " , \l_JI 243 • • • • • • • 4 , ~ , 1 , , i • , , 1 , t • ,. • r , , ~ , , l , , • ¡ , , j • , ~ ! , , , , , , , , , , j " , • • " ! ¡ • , • , • ! ! , ! • • ! " , .' r , , 1 " , .~ f • r • • , , , , t , , i , ¡ • , , , • , , F , , ¡ ¡ , • .' • • ¡ • • ! ¡ • • , • • o , o .o ¡ ¡ • " , , I • " ~ • ¡ , ; 1 ." • • , • • o f , , .o , .o ¡ , , .o , , , 1 • ; ¡ ¡ ¡ , • J ! ¡ • J: ¡ " J ¡ J " , ~ , ~ , , • r , , • • ! ¡ ! .o • , ¡ " , t ! , ¡ I ! • , , ~ ~ ¡ , • , ! ; ~ • j ! • • , o • ¡ , • , , 1 1 , , • , • , • , • • r • I , • • , • • ! • ¡ • , • ! , • • , 1 , , , I • ¡ • i • , , 1 o r i l t t ~ O > , , f ~ , - , , , ¡ , • • • • • • • , " 1 ¡ 1 , , • • r , t • • , • ¡ ¡ ! } • • ¡ l !1 • • • , , ! • , ¡ ! • ~ , ~ ~ ! ! ; • , , • • • 1 , , , , • • , ; " ¡ ¡ r , • ¡ , ~ , ! • , • , , ¡ , ¡ • ! ¡ , , ; ~, • , • l , • l • 1 ! ; • • ! • ¡ o , • 1 ¡ , , '0 , , ¡ , • ¡ , ¡ .o , , l .o , • , , 1 , z , ¡ • ¡ • • , • .~ , ¡ r • t , , • , , • 1 ¡ l ¡. • , • i: , • , t • , 1 , , , [ .o , • , • • , • • 244 """f'h Dr ")pi;' ""'><> ,n Cn=¡,,"," ~ .. ;I=_.(D,&""", """'",,.d, .... ) . • pan>>t< Df MMId"_Am .. ~." ,"",I" ~ 1.,,,.,,,,,,,,,1 J .. "",lfo- f""'''''''''I!J, .w. ~1 1 _ ~ i" . k D .... _SOno .... A. Gu"l.-I'ri< .. l (2003) 0; ,,, .. ,,,01 . .. , ... 1.., 1 ",,_ Bupa'", A 1""_ .. 1 ,tu-< .. ID "";" ( ... h., .... fi ... 'f'O";" ;n M",oo_ B"'¡"g"~II"m"'"' S. 261 _261_ s..,t.olz l , .s.lpdo _ ~ I . _ G (20001_ n., "" ...... " .. '" ,.-.l d;,p..-...l DI C ... """",,,,-, ¡on.....""' (N"'~n.. I~ l .) (0;S""''' U .. «Of>Io>ido<) ¡" M"ioo A """'W_ A"mc. • .lIiJl""¡ ,1'.",,,,liJl la 1 ,QOO s .......... Ml . N;' .. I D, oro G (2007). c,YI"'" .,..., ... "",.ro 1"n""" ofrlx-noll1'~ ,-";"'"n of. ho~ly "" ....... ", .. to«pIu.l ... p ...... _ M,*,.'" Eruu't.>' 1 •. ..-...,_ 4109_ S, .... HA, Ku'.." LS_ Ad.m> JS (.o,) (lOOO). P",iooa II,,;'~I;' . - 10, SI,toa",- BioJ;,~"u, ' '" ¡J" ~"';".¡ ,'ól,I<._ 0, ...... lJn" .... "y ...... , O.fuod VOiol_"","', I'M . Ap;',...Mocroo ML. Sol>ol<. l . C .. n.ála_s" " D. Mmoo,"_ r.""o H (2001 j . Al"" of'"' 1w1 .. ;.,io",,'.';1< ofridoliJfuJ. ofu .. _ Aca41 W " Lo_ I .. «lia 20.B4¡j N. 101 .1434 W " .... "'1" s.." ...... 20.%94 N. IOl . l2{)S W " El Mo¡.,.1 10.9110 N. 101 . I177W " ""'"'jo 10.%94 N. IOl . I2l~W " C""¡"" h,d. Lo T",1o 10.7\0)(1 N. 101 .0000 W W _T,d. 1~ . 7'JOa N. 101.9\1)2 \\' " L, f,d .. !&.1:N2 N. 101 ._'1.' 11 1'0", Lo B«,,,. lUliO N. 101 . I300W " Po,," TOo cónO'" 20.1704 N. 101 .07114 W " Cam"., ..... Pl.o" ... 2'.9'.0 N. IOlW% \\' " Po,. Lo., .. "" 10 .• 8' 1 N. 101 .""80 W _2. H _ ~.J 1'.9,011'. )0, .1104 W 247 1>1 ... .. AU .. .... di .. " ... ",. 111 G.""",,," ... "¡i ............ I .. p. (IWoll) G • ..a.,,, ... "¡i Lu. lluni-w. (1) C-I""", Lo \'0l" yol Vonodc '" I..& T« I;" OI c..nóno hao .. l. Tod. (6) s ..... Tod.(JI e"""""""f~_" IS;'¡';",ri. 1 ~14IIG) A,(>~"". _ ..... n.' C-I mI>< Lo V" . Y rI Vonodc '" R;" «l'" (S', G.""",,," ... "¡i Pumo s..n lo>i p'¡ '1' Rio .. CrI ........ (JI e "" ";'M';' ",1<1 ... _, M_.".o 19J6 (1) I/,ric"'" ", ,, ,~; a...."" Pri«l'" (J, Rio "',,""" .. W 1 Po,," 1..& B«"". (O> e .... ,,"",;, "'. (1 .... ,< 11 (1) I/(4 11) G ... Io.,., .... ,,'" lo< 1I",,,hw. (1) a....". 1'.""0' ( ~ I Po," T....."ru ""°io PU)'"'' 11) Mm)" (2)) 10 / 17_6 1 811 100 11 11 1B lI 44!lS4 100 1 1iO I W 100 1 14 / 14 "';_61 1!hl / l\4_l ,J.JJI 1HJ I 2U )3_JJ I II .67 I Jj 41_'" 1 L Cln~"", _' .... n.' c....1 mI>< Lo y" . Y d Vonodc s.hM~¡ • • , 'p. (G) <),..;,."""" ~"""" 0,..;""""" Q""",, X Infi=i ... , Cn' .... '" ,,_ s.." Ju" I') Pozo u B",,,..,.14) Pozo PIo¡i' ''I41 ' M~ , ,,,l .... IOC) G ... t.. ...... n.I, IIme",.p ",""I.¡; L"",,, .. , "O 110 249 a...",pn....(6) R" M",,,,,,,{, l I Po," Lo B..",nI9) S~ ..... 'n.,.;"" .... IL,o'''''' -tlalo", Riu M"".,¡.,. {II Mk"'P""" ",I"",¡,j,,, S".;",,,., 'p. (II Microp'''''' ",1"'-, S,,""')', "'_ (MI ..... Q~ .. ,_x ..... ., 1Ji-i. q>""_ G._';Q ... "Ii MiCrop""," ",1_Ok. N~tropU '1'. "".'~"p"''' M ........ I "" cta.,;"." (. ¡ Clo_"" 1";"" (() R;G (3) '''.61 10.11 1 1 41.l!6 l l l Hl IU1 103J1l 100 1 1 1 1 ll l 0.'1 11 100 / J I l 100 / 10110 41.11 1 1.6if4 10 10.1 1 1 11 / H I I~ 100 1 IUJ / tI .ll 1.31 10 .06 1 1 "".61 10.67 1 1 0.8210.071 1 JO.TI 10 .<6 1 U l I O.O! 11 Jl.JJ IO.JJ/1 7 . M" ,¡,,,.,.>l.'"'''' I~~I (1) C}!";_ Q'""", Po .. PIo¡it u 14< ' G."""";Q _nli Pon P;'¡it .. (1J1 a...."'f";., ... H) Poza ,....-,1 1>0< .. pla)it .. (7) a...."" 1";"'" (6) 4,HI I0.M 1 U" JO.TI 10 .TI / B JI .89 10-" 1 1 U1 "';.61 10 .61 / 1 12.11 1 1.11 1 1.,3 10 1 14 11.J5 15.91 10 .18 / 1.1. 7.69 10 .0> / 1 11 10.21 1 1 ".l'l 10 .111 4 IUl l J I H 250 1"""",,, hqo<> Lepo •• " "'l"k>" 100 / lH IS SO I ~ . 5 1 1 75 1 ~_1S I I 100 16 16 ll.13 10.61/1 251 c •• ,,,,,,OóaJl_IAduk. N) .Ifo''''X¡''r_ (u",''''' N) Ck .J;da< JI, .. ;,-OlO .. ;' /,;-..10"" .Ifo''''''!"' -'f'. (u",''''' N) 11_111.)" C"'''''8.''O"" An<)TOCK>I¡" n.-U._. (A .... lt. DI • ( .. C . • "'..- b, (""",j.do-.\_brt~"'"' 19S-I1 R""bdoc¡""o . ;'¡'¡m IAdule ~1 IImchllop .... d I.¡; An<¡roc'pI..J"'" ,<"- 'l'_IAduIl. M) C"'nlCO"'" .. "'. Il "" .... ~) 252 c.w,ü"tu- ,;.~I,u" •• " IAdule D) E .. t"",~Hd" 'r- (~-... N) L'I"""') ~rlto"''' ¡J,,,,o". (AduI ' . A) R¡'"bdod"",o ¡w.¡m (Adule t-.) .I¡o''''')''f'- (l-U> .... N) C,·pri"id .. ('-,pri", ,/Q .,,"' .. ~ c ....... " ... fo_ ..... ¡M"'o<"" ....... D) ' (A,¡u'.-A",¡I.-" 01_ 20091 P_"''''')"do., ¡"iI;>.>roIIi (Adult". Al C )1";",11. """~;..,. 8","';""","",," oc.ri!op>thi (A .... NI w.-Jo "'''''_ Sp'",.!, 'r_ (l-U> .... NI So""!';' '1'_ e .. tr.x<, IU, fo __ oa •. ~' .... N) C'·p'i ...... ,w< C)pri_ ."""'" A""",,,,.,,,,, ••• .t..nu,go""'" (Aduk. Al G)=do,~'''' '1'- (Adu ~. M ) L 'I''''''')~rlto''''' ¡J,,,,o". (A"'I,. A) Mi· ... N) C)pri_ o"""'. x Info"'.'" A"""''')''''""''' .t..""'g>'''' '" ("-