• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - Q038í UNIVERSIDAD NACIONAL AUTONOMA DEMEXICO FACULTAD DE CIENCIAS DIVISION DE ESTUDIOS DE POSGRADO IMPLICACIONES PARA LA CONSERVACION Y EL MANEJO DE PUMAS (Puma concolor) UTILIZANDO COMO MODELO UNA POBLACION SUJETA A CACERIA DEPORTIVA T E s I s QUE PARA OBTENER EL GRADO ACADEMICO DE DOCTOR EN CIENCIAS (BIOLOGIA) PRESENTA: CARLOS ALBERTO LOPEZ GONZALEZ MEXICO, D. F. 1999 -1 (i ( 1 /1 1 ,..,- r; ,_ • ,,-f l 1 e,, . . ' UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • UNIVERSIDAD NACIONAL AUTONOMA DEMEXICO FACULTAD DE CIENCIAS DIVISION DE ESTUDIOS DE POSGRADO IMPLICACIONES PARA LA CONSERV ACION Y EL MANEJO DE PUMAS (Puma concolor) UTILIZANDO COMO . MODELO UNA POBLACION SUJETA A CACERIA DEPORTIVA T E s I s QUE PARA OBTENER EL GRADO ACADEMICO DE DOCTOR EN CIENCIAS (BIOLOGIA) PRESENTA: MEXICO, D. F. TESIS CON FALLA DE OR'.GEN CARLOS ALBERTO LOPEZ GONZALEZ TESIS DIRIGIDA POR: DR.BRIANJAMESMILLER 1999 /3 2v: J • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - A Alicia, porque todo lo que hecho es para estar contigo . A mi mamá, a mi papá, y a mi hermano Ernesto A la pequeña Monica Fernanda • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • AGRADECIMIENTOS Quisiera expresar mi más sincero agradecimiento a Ken Jafek y a Kevin Allred por su conocimiento y apoyo incondicional en el captura y rijstreo de los pumas, el proyecto nunca hubiera sido posible sin su presencia. También quisiera a gradecer a sus esposas y familias por permitirles jugar en el campo durante fines de semana y en dias festivos que deberían ser dedicadas a sus familias. Adicionalmente quisiera agradecer a sus sabuesos, especialmente a Buddy, Chie[, Happy, Jake, Lady, Lou, Patty, Pepper, Snap, Speck, Splitz, Sunny, Tex, Tucson, and Whitie, sin ellos nunca hubiera sido posible, ni tan ¡Jivertido . Agradezco al Dr. John W. Laundré.por la oportunidad de trabajar en este proyecto y de abrirme los ojos a muchas cosas, fundamentalmente sobre percepciones equivocas sobre amistad y profesionalismo, gracias por permitirme salir. Agradezco también a todos los miembros de mi comite tutorial: Dr. Mauricio Cotera, Dr. Miguel Equihua, Dr. Exequiel Ezcurra, Dra. Sonia Gallina, Dr. Rurik List, Dr.Brian Miller, y Dr . Alejandro Velázquez por sus valiosas críticas y comentarios al trabajo final y por su desinteresada ayuda y más amplia cooperación para la realización de los trámites . De manera muy especial quiero agradecer al Dr. '3rian Miller por haberme tomado como estudiante bajo circunstancias un tanto peculiares, a él quiero agraceder su desinteresada ayuda, enseñanzas y apoyo incondicional en momentos difíciles no solo durante mi doctorado, sino en Chamela y en mi vida personal; Brian, lo que pueda decir nunca sera suficiente para demostrarte mi gratitud - Gracias-. Al Dr. Alberto González Romero, por que eres la única persona en un mundo lleno de envidias y pesares, cuyo optimismo te mantiene en alto, gracias por estar a mi lado y compartir tu conocimiento y experiencia conmigo, y asimismo tu amistad. A la Dra. Sonia Gallina por tenerme paciencia en la vida de nómada que tengo, gracias por todo. Mi aprecio al Dr. Miguel Equihua por su siempre bien recibido sentido del humor, del mismo modo al Dr. Exequiel Ezcurra por su apoyo a lo largo de toda mi formación, gracias por todos los años de conocerte. Quisiera agradecer al Dr. Victor Sánchez Cordero por las largas conversaciones en su cubículo, siempre fueron palabras de apoyo. Particularmente, agradezco los consejos, apoyo moral y ayuda durante el trabajo de campo y después de este, gracias a Kelly Atendorf Quiero extender mi agradecimiento a Angus Singleton, Jenn MacDonald, Brooke Kempf por todo el apoyo que me brindaron en largas horas de trabajo de campo. A la familia Santiago González, porque de una manera u otra siempre me han ayudado a perseguir mis sueños, en especial a la Sra. Carolina porque ha sido una amiga de verdad. Agradezco a cada uno de los voluntarios de Earthwatch, en las temporadas que incluyen el verano de 1991 hasta el invierno de 1996, por días de trabajo y gratas horas de esparcimiento, en particular aquellos con los cuales he mantenido una amistad durante tantos años. A mis amigos, Mircea Hidalgo, Lisette Cantu y Enrique Martínez por todo lo que hemos compartido. A otro grupo de amigos, por su apoyo en momentos dificiles y discusiones sobre partes de la tesis, gracias a Jesus Castillo, Gerardo Sánchez, e Irene Goyenechea. A Socorro Lara por siempre estar conmigo. A Sarah Long y Cassondra Williams por su amistad y apoyo. A evelyn Delgado por su apoyo incondicional. Otras personas que quiero agradecer por sus consejos durante mi desarrollo profesional son: 11 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • El Dr. John Beecham, por sus palabras de apoyo y motivación para perseguir una carrera en conservación de depredadores. Al Dr. Joel S. Brown porque me mostró lo limitado de mis conocimientos. Al Dr.Fred. Lindzey por sus comentarios y apoyo en literatura científica . A Matt Peirce por su ayuda en la búsqueda de literatura. A todos los biólogos dedicados a los carnívoros que me ayudaron de una u otra forma para poder concluir este trabajo de tesis . A todas las personas que me han ayudado y que he olvidado mencionar gracias . El presente estudio es parte del proyecto ""Behavior, Ecology, and Conservation of Mountain lions in Fragmented Habita!" el cual fue posible gracias al apoyo de diversas agencias, organizaciones e individuos. Apoyo economico fue proporcionado por ldaho State University, Boone and Crockett Club, Bureau of Land Management, the Eppley Foundation for Research, Earthwatch lnstitute, SEACON of the Chicago Zoological Society, the Merril G. & Emita E . Hastings Foundation, The William H. and Mattie Wattis Harris Foundation, the National Rifle Association, the Mazamas, y Patagonia, Inc. Durante el año de 1994 se me proporciono una beca de CONACyT dentro del Proyecto # . De esta manera quisiera reconocer que los resultados presentados a lo largo de este trabajo son el fruto de un trabajo de equipo . Parte del apoyo logístico fue proporcionado por el Departamento de Caza y Pesca del Estado de ldaho y la División de Recursos Faunisticos del Estado deUtah, asimismo el Instituto de Ecología, A C. La Cooperativa para la Conservacion de las Rocallosas del Norte (NRCC) llevó a cabo la administración del proyecto y contribuyó con equipo de radiotelemetría. Gracias a Jerry Meyers por volar "gratis" para el proyecto . 111 RESUMEN GENERAL La tesis se encuentra dividida en cuatro capítulos. El primero es una revisión bibliográfica sobre el conocimiento ecológico que se tiene hasta este momento en el puma, se hace una síntesis sobre parámetros poblacionales, densidad, uso de habita!, habitos de alimentación y metodología para llevar a cabo censos poblacionales. En el segundo capítulo describo la dinámica poblacional del puma en un área naturalmente fragmentada. De 1987 a 1995 se llevo a cabo la estimación del número de animales presentes. Cada animal se clasificó socialmente como residente, transeunte o cría. Se encontró que la proporción de sexos en la población es de 2 hembras por cada macho. Se calculó la supervivencia de adultos y crías. En el primer caso, la supervivencia anual, se calculo mediante el numero de días que se tuvieron animales con radio transmisor. En las crías la supervivencia se estimó por medio del número de animales en cada mes hasta la época de dispersion transformándolo a proporciones. La supervivencia promedio de los adultos fue del 70.1 %, en el caso de las crías fue del 41.5%. La primera reproducción en una hembra se llevó a cabo alos 17 meses, el tamaño de camada fue de 2.5 crías/hembra. El tiempo entre camadas fue de 15 meses, del mismo modo la dispersión de las crías tomo un tiempo semejante. La proporción de sexos en crías que llegaron a la etapa de dispersión fue de 5 machos por hembra. La taza de reemplazo en la poblaciones baja y relativamente constante, esta dada por el número de crías hembra que permanece dentro del área de estudio y una proporción de transeuntes hasta del 23%. En el tercer capítulo se utilizan los datos de los pumas que se han dispersado exitosamente para proponer la creación de reservas utilizando esa información. Se calculó el área de influencia de los dispersores por medio de tres estimadores de áreas de actividad: el método de polígono IV • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -- • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • convexo (MPC), la media harmónica (MH)) y el kernel adaptativo (AK), en los últimos dos se calcula probabilidad que un animal llegue a dicho punto en el espacio. Del mismo modo se calculó el tamaño del población del vecindario por medio de una relación de distancias. Se encontró que los pumas se dispersaron un promedio de I 92. I km al azar. Las distancias extremas fueron de 409 y 420 km. El área afectada por los dispersores por medio del MPC fue de I 00,500 km2 , área relativamente semejante a la calculada por el tamaño del vecindario(! 12,500 km2). Se discute el uso y tamaño de corredores, así como el área nucleo mínima de reserva (3,700 km2) y como deben conectarse con el resto de otras áreas protegidas . En el cuarto capítulo se propone el uso de un modelo para calcular los requerimientos energéticos del puma y como consecuencia describir la tasa de depredación en el área de estudio . Se utiliza un modelo que incorpora el metabolismo basal, asi como el costo energético para mantenerse parado y el tiempo que ocupa en esta actividad, el costo y duración de la alimentación y otras actividades localizadas, y se incorpora el gasto energético al caminar "n" número de km durante 24 h. Se compara el modelo utilizando valores observados en laboratorio y los que predice la teoría. A los resultados obtenidos en calorías, se les calcula su aprovechamiento y se estima la biomasa por día que deben consumir, para obtener dichos requerimientos energéticos. Así mismo se obtiene el número de días que deben transcurrir entre la captura de dos animales. Los resultados obtenidos muestran un gasto energético predictivo menor al observado en laboratorio en multiplos de 1.3. Se obtuvieron necesidades de consumo de carne de 3 kg para hembras y 5 kg para machos . Por lo que que estos animales deberían cazar una presa de tamaño grande cada I I a 14, y 8 a I I dias respectivamente. Esto refleja un consumo mínimo de I 200 venados por año dentro del área de estudio que es alrededor del 20% presente en potencia . V GENERAL ABSTRACT This dissertation is divided in four chapters. The first one, is a recently published literature review about the curren! ecological knowledge of the puma, including population parameters, density, habita! use, food habits, and census methodology. In the second chapter, the population dynamics on a naturally fragmented is described. From I 987-1995 the number of pumas present was deterrnined. Each animal was classified as resident, transient and kitten. The sex proportion was 2 females per I male. Adult and kitten survival was estimated. Annual adult survival was estimated trough radiotelemetry. Kitten survival was estimated as the number of animals ali ve per month up to dispersa! age, as proportion. Adult average survival was 70.1 %, where kitten survival was4 l .5%. First female reproductive event was at 17 months of age. Litter size was 2.5 kittens/female. Tiem between litters was 15 months, similarly dispersa! age. Kitten sex proportion that reached dispersa! age was 5 to 1. Tumover rate is low and relatively constant and, is the result ofthe number offemales that remain within the study area and a transient proportion up to 23%. The third chapter uses the data of pumas that have successfully dispersed as a too! to crea te protected areas. The dispersa! influence area was estimated by three home range estimators: mínimum convex polygon (MCP), harrnonic mean (HM) and adaptive kernel (AK), where the Iast two methods estímate the probability of an animal reaching a given point in space. Neighborhood size was estimated through a distance relationship estimator. lt was found that pumas dispersed on average 192.1 km on a random direction. Extreme distances were 409 and 420 km. The area influenced by dispersers with the MCP was 100,500 km2 , area similar in size to the negihborhood estímate (112,500 km2 ). A discussion about corridors use and size, and mínima! core areas for VI • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • protection (3,700 km') and how connectivity should be maintained . In the fourth chapter a model of energetic requirements by the puma is proposed. By using this model predation rates were estimated. Toe model uses basal metabolic rate, and the energetic cost of daily activities (i.e. standing or walking), the number of km traveled during 24 h is incorporated. Caloric utilization and daily biomass consumed was calculated, also the time between prey capture. The results obtained show a lower energetic expense than that observed in the laboratory. Daily consumption needs were 3 kg and 5 kg for females and males, respectively . As a consequence this animals should kili a large prey each 11-14 days and 8-11 days, for females and males, respectively. This predation rate reflects a mínima! consumption of 1200 deer per year in the study area, approximately 20% ofthe estimated population size . VJI CONTENIDO Agradecimientos ............................................................ Resumen General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1v General Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v1 Contenido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Indice de Tablas, Figuras y Apendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Introducción General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Capitulo I Una síntesis de literatura y conocimiento actual sobre la ecología del puma (Puma concolor Linnaeus) ..................................................... 5 Abstrae! ............................................................. 6 Resumen ............................................................. 6 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Methods ............................................................. 7 Results .............................................................. 7 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Fossil records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Reproductive biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Habita! association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Feeding ecology ................................................. 9 Kili rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Population characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Social organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Home range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Parasites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Interspecific predator relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Puma as a keystone species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Survey and census methods ....................................... 18 Protection status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Literature cited ....................................................... 20 Apendice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Vlll • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Capitulo II Dinamica poblacional del puma en los limites fragmentados de Utah - ldaho .. 27 Abstrae! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8 Resumen ............................................................ 28 Introduction ......................................................... 29 Study area ........................................................... 30 Methods ............................................................ 33 Results ............................................................. 36 Population size and structure ...................................... 36 Natality and kitten survival ....................................... 39 Dispersa! ..................................................... 42 Adult survival and mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Population morphometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Discussion .......................................................... 45 Management Implications .............................................. 54 Acknowledgements ................................................... 55 Literature cited ............................................... -. . . . . . . . 56 Capitulo III La dispersión en el puma (Puma concolor) y sus implicaciones en el diseño, tamaño y forma de reservas en la región del desierto "Great Basin", Estados Unidos. . .... 65 Abstrae! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Resumen ............................................................ 66 lntroduction ......................................................... 67 Methods ............................................................ 68 Results ............................................................. 71 Dispersers characteristics ......................................... 71 Dispersa! area .................................................. 75 Corridor use by dispersa! pumas ................................... 78 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Management lmplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Literature cited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Apendice ........................................................... 95 Capitulo IV Gasto Energético del puma (Puma concolor) determinado por medio de los patrones de actividad en un ambiente fragmentado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 ~~ ............................................................ 97 Resumen. . ..................................................... 97 Introduction ......................................................... 98 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Model I ...................................................... 102 Model II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Predation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J05 Results ............................................................ 107 IX • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • INDICE DE TABLAS, FIGURAS Y APENDICES Tabla 1 Area affected as calculated by different home range methods ............................. 94 Tabla 2 Average time devoted to the different activity categories of adult resident pumas .................................................................................................................. 121 Figura 1 Comparison of mean vertebrate prey weight (MVPW) used by pumas through tropical America ................................................................................................. 11 Figura 2 Map of the United States of America showing the States of ldaho and Utah with a schematic view of the study area ...................................................................... .31 Figura 3 Number of pumas per year on different social categories from 1987-1995 ........ 38 Figura 4 Age structure of pumas (Puma concolor) in South central Jdaho and NW Utah ....................................................................................................................... 40 Figura 5 Month ofbirth and independence for pumas in the Idaho Utah study area ........ 4 I Figura 6 Kitten survival in the Jdaho-Utah study area, 1987-1995 .................................. .42 Figura 7 Linnear regression ofthe Iog total Iength ofthe body against Iog body weight for pumas in Idaho-Utah ............................................................................................ 46 Figura 8 Age at dispersa! time for 24 pumas in the study area .......................................... 72 Figura 9 Known dispersa! distances for pumas from natal centers of activity .................. 74 Figura 1 O Area of influence of dispersa! pumas via 3 home range estimates ..................... 76 Figura I 1 Map of the States and Ecoregions showing ending points for dispersa! pumas ... 77 Figura 12 View of the study area showing the Iocation of corridors identified from 1987 to 1995 ...................................................................................................................... 79 Apendice 1 Notas complementarias al Capítulo I.. ................................................................. 26 Apendice 2 Protected areas within reach of dispersa! pumas from S. central Idaho and NW . Utah ..................................................................................................................... 95 . XI • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Introducción general INTRODUCCION GENERAL A la fecha se reconocen 236 especies de carnívoros (Wosencraft 1989), donde la gran mayoría de éstas carecen de estudios, siendo algunas especies solamente conocidas por escasos datos históricos de colecta (i.e. Felis iriomotensis). Algunos carnívoros han sido el centro de estudios a largo plazo, como es el caso del lobo gris (Canis lupus) de Isla Royale, Estados Unidos (Allen 1993), o el león africano (Panthera leo, Packer and Pusey I 993). Los grandes carnívoros terrestres pueden agruparse como las especies cuyo peso promedio excede los 18 kg y están representados por las siguientes especies: lobo gris (Canis lupus), lobo de las pampas (Chrysocyon brachyurus), dholes (Cuan alpinus), perros salvajes del Africa (Lycaon pictus, Canidae), oso malayo (Helarctos malayanus), oso perezoso (Melursus ursinus), oso de anteojos (Tremarctus omatus), oso negro (Ursus americanus), oso pardo y grizzly (U. arctos), oso polar (U. maritimus), oso negro asiatico (U. thibetanus, Ursidae ); oso panda (Auliropoda melanoleuca, Auliropodidae ); hiena manchada (Crocutta crocutta), hiena cafe (Hyaena brunnea), hiena rayada (H. hyaena, Hyenidae),jaguar (Panthera anca), león africano (P. leo), leopardo (P. pardus), tigre (P. tigris), pantera de las nieves (P. uncia), pantera nebulosa (Neofelis nebulosa), guepardo (Acinonyx Jubatus), puma (Puma concolor, Felidae) . Este número tan reducido de especies las hace herramientas perfectas para la conservación, ya sea como especies clave (keystone ), paraguas ( umbrella ), bandera ( flagship) o indicadoras (indicator). Miller et al (1999) en resumen definen dichas categorías por su contexto funcional o la manera en que contribuyen a la planificación de una reserva. Donde una especie clave está definida por su valor ecológico, por ejemplo el caso delos grandes felinos. Una especie paraguas es la base para la toma de decisiones, en particular sobre tamaño, forma y la distribución espacial 1- Carlos A. López González Introducción general de áreas protegidas, el caso de los grandes felinos o los osos grizzly . Una especie bandera es carismática y puede utilizarse en relaciones públicas o para obtener fondos, como es el caso de los lobos y tigres. Finalmente, una especie indicadora es útil en determinar y monitorear la calidad del habita!, en este caso se puede citar a los grizzlys o los tigres; como se puede observar una especie puede ser utilizada dentro de varias categorías. En la actualidad no podemos hablar de áreas sin influencia humana, a pesar de que existan sitios tan remotos como el llamado Serengeti de América (Alaska y el Noroeste de Canada), las estepas de Mongolia o la cuenca del Amazonas. Estas áreas relativamente primitivas, en un futuro no lejano se verán directamente afectadas por las actividades humanas. El ser humano desafortunadamente es el instrumento más importante, tanto de destrucción como de conservación de dichos lugares. Esta categoría, única dentro del reino animal, lo que nos indica es que somos parte del sistema y como tal debemos tratar de mitigar o limitar de manera sistemática y científica nuestra influencia en los ecosistemas, es por ello que los grandes carnívoros son piezas determinantes para mantener o definir la integridad de un sistema, así como crear una conectividad de caracter funcional entre parches existentes de habitat. Algunas especies de grandes carnívoros terrestres estan asociadas a ecosistemas con amplia cobertura vegetal y/o en condiciones políticas inestables, factores que han propiciado un retraso en su estudio, por lo que muchas veces tenemos que basar nuestros manejo en modelos desarrollados con especies más comunes o que son relativamente más fáciles de estudiar, sin perder de vista que dichas sugerencias tienen limitantes y que deben eventualmente ser avaladas con estudios regionales (Quigley y Crawshaw 1992). 2 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A López González Introducción general Ninguna de las especies de grandes carnívoros se encuentra en inminente peligro de extinción, pero aún las especies que aparentemente se encuentran en buen estado pueden verse afectadas subitamente por factores que no eran percibidos como una amenaza, como es el caso de catástrofes ambientales o alguna zoonosis (Schaller 1996). En la mayor parte de las especies carecemos de información básica, y como consecuencia desconocemos la mayoría de las enfermedades potenciales que pueden existir o las consecuencias de fenómenos naturales como huracanes o erupciones volcánicas . Los capítulos que a continuación presento tienen la finalidad de ampliar el conocimiento que se tiene sobre el puma, particularmente sobre los efectos que la fragmentación tienen en procesos como son la dinámica poblacional, con la finalidad de mantener la productivad de la especie para llevar a cabo una explotación racional y sostenida. Así mismo el contribuir a entender un poco más sobre el proceso de la dispersión y las posibiles implicaciones que tiene para el mantenimiento de metapoblaciones y su posible uso como herramienta en la conservación de la biodiversidad en una región ampliamente fragmentada por actividades humanas de los Estados Unidos. De la misma manera comprendiendo cuales son los requerimientos energéticos del puma, se puede llegar a contemplar el número mínimo de presas que se necesita para mantener una población saludable y en un momento dado poder aplicar dichos conocimientos al manejo y conservación del puma en otras regiones donde este habite, cuya situacion particular dificulten su estudio, como es el caso de algunos sitios de México, Centro y Sudamérica . La tesis sigue un formato relativamente nuevo dentro de la Facultad de Ciencias por lo cual esta organizada como posibles publicaciones, siguiendo las normas editoriales de las distintas 3 Carlos A. López González Introducción general revistas científicas a las cuales se enviará el trabajo. Como requisito para la titulacion, la Facultad de Ciencias requiere por lo menos un capitulo de la tesis publicado. Fuera de esto, no existe una guia o formato a seguir para la presentacion del trabajo de tesis. Literatura Citada Ali en, D. 1993. Wolves ofMinong: Isle Royale's wild community. UniversityofMichigan Press. Ann Arbor, Michigan. 499 pp. Miller, B., R. Reading, J. Striiholt, C. Carroll, R. Noss, M. Soulé, O. Sánchez, J. Terborgh, D. Brightsmith, T. Cheeseman, and D. Foreman. 1999. Focal species in the design ofreserve netwoks. Wild Earth 9:81-92: Packer, C. y A E. Pusey. 1993. Dispersa(, kinship and inbreeding in African Iions. Pp. 375-391. In: N. W. Thornhill (ed.). The natural history ofinbreeding and outbreeding. University of Chicago Press. Chicago, Illinois. 575 pp. Quigley, H. B. y P. G. Crawshaw. 1992. A conservation plan for the jaguar Panthera onca in the Pantanal region ofBrazil. Biological Conservation 61: 149-157. Schaller, G. B. 1996. Introduction: Camivores and conservation biology. Pp.1-1 O. In: J. L. Gittleman (ed.). Camivore behavior, ecology, and evolution Vol II. Comell University Press. Ithaca, New York. 644 pp. Wosencraft, W. 1989. Appendix: Classification ofthe recent Camivora. Pp. 569-593. In: J. L. Gittleman (ed.). Camivore behavior, ecology, and evolution. Comell University Press. Ithaca, New York. 620 pp. 4 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • CAPITULO 1 UNA SÍNTESIS DE LITERA TURA Y CONOCIMIENTO ACTUAL SOBRE LA ECOLOGÍA DEL PUMA (PUMA CONCOLOR LINNAEUS) • $"" • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - Carlos A. López González Literature surnrnarv Acta Zoo/. Mex. (n.s.J 75: 171-190 (1998) A SYNTHESIS OF CURRENT LITERATURE AND KNOWLEDGE ABOUT THE ECOLOGY OF THE PUMA (PUMA GONCOLOR LINNAEUS) Carlos A. L0PEZ-G0NZÁLEZ and Alberto G0NZALEZ-R0MER0 Instituto de Ecología, A. C., km 2.5 Antigua Carretera a Coatepec, Apdo. Postal 63, 91000, Xalapa, Veracruz, MEXICO RESUMEN Se llevó a cabo una revisión bibliográfica en varias universidades y bases de datos de los Estados Unidos y México, del mismo modo se estableció contacto con investigadores de carnívoros para tratar de resumir en forma comprensiva el conocimiento actual sobre la ecología del puma (Puma conco/or). El objetivo principal fue el actualizar nuestro conocimiento ecológico desde las últimas revisiones bibliográficas publicadas en 1987. Se hacen comentarios sobre los tamaños de muestra, asi como de las diferentes metodologias y como éstas dificultan la comparasión entre áreas y estudios, del mismo modo se sugieren direcciones que deben tomar las investigaciones en el fu~uro con base en los huecos encontrados de la revisión bibliográfica. Palabras clave: Puma concolor, revisión bibliográfica, ecología, demografía, densidad, estado de conservación . ABSTRACT A literature survey was carried out in severa! universities and databases from the United States and Mexico, and discussions were held with many carnivore biologists to summarize the current and most relevant knowledge on the ecology of the puma (Puma concoJor). The main objective was to update our ecological knowledge from the last literature reviews published in 1987. Comments are made on sample sizes, different methodologies, and how these make comparisons hard to achieve between areas or studies, and suggest where research should be directed in the future based upan gaps found in this lrterature survey. . Key Words: Puma concolor, ecology, literature review, demography, density, conservation status . INTRODUCTION Large mammalian carnivores may be facing their last chance to survive on the planet, and severa! factors are influencing the durability of these species, among them are their scarcity, habita! and food specialization, and large areas required to live (Eisenberg 1989, Schonewald-Cox et al. 1991 ). A review of large carnivore ( > 20 kg) research shows that many of those species lack information on any basic conservation biology needs to preserve them (Fuller 1994). On the other 171 6 Carlos A. López Gonzalez Litcrature summar, López•González & González-Romero: Líterature and knowledge about the Puma concolor hand there is sufficient information on sorne species to use them as model organisms with which humans can experiment, in order to preserve the more vulnerable species of carnivores. The puma has been the subject of one of the most extensive databases of the carnivore world (Fuller 1994), with well designed experiments in temperate North America (U.S. and Canada), but yet there are many questions to be answered in this ·common" animal that can help sorne of the less abundant cats of the world. The main objective of this article is to give an overview of the actual state of knowledge on pumas. The chapter is organized in descriptive and basic biology, the ecology of the species including habita! association, feeding ecology, home range, density and behavior. Finally the global conservation status of the species is reviewed. METHODS Literature surveys have been carried .out through reviewing current summaries of literature (i.e Anderson 1983, Currier 1983, Dixon 1981, Lindzey 1987) and surveying Wildlife Review (CD-ROM 1993) and recent literature found at the Instituto de Ecología, UNAM, Chamela Biological Station, IBUNAM, ldaho State University, Scripps Oceanographic lnstitution- University of California San Diego, University of California Davis, and personal communication with many puma researchers from 1992 to 1996. RESULTS Nomenclature The puma's latin name Fe/is concolor was first assigned by Linnaeus in 1771, and it was placed later as genus Puma (Jardine 1834). The current name as recognized by Wozencraft ( 1993) is Puma concolor. This name comes from a vernacular indian name of South America anda latin root word. Puma was given by the Quichua tribe, and also acknowledged by the Incas (Young and Goldman 1946). The word concolor, meaning one plain color, describes the pelage of the cat (Nowell and Jackson 1996). Common names for the puma include cougar, mountain lion, catamount, panther, painter (USA); leon, onza (Mexico); puma (Peru), and onca vermelha (Brazil)(Emmons 1990, Young and Goldman 1946). Taxonomic classification historically produced up to 30 different subspecies of pumas (Currier 1983), but Stephen O'Brien's group proposed a new revision of the subspecific contents of the genus. leaving only 18 races as valid (Nowell and Jackson 1996). 172 7 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - Carlos A. López González Literaturc surnmary Acta Zoo/. Mex. (n.s.J 75 (1998} Fossil Records Puma fossils date from the lrvingtonian and middle Rancholabrean period ( = 300,000 years B. P.) within the Pleistocene (Kurten and Anderson 1980, Webb 1985), although non published fossil evidence from South America exists (). lt has been suggested that pumas and cheetahs (Acinonyx/ have a common origin with an extinct species of cheetah exhibiting a number of puma-like characters (Adams cited in Kurten and Anderson 1980). South American invasion by the puma probably happened when tropical rain forest was !he dominan! environment through the Americas (Hershkowitz 1972) . Distribution The puma was one of the most widespread species of the Americas (Currier 1983, Hall 1981 ). The species ra~ged on a longitudinal basis from British Columbia, Canada to southern Chile and Argentina and, on a latitudinal one from across the widest part of the United States (Young and Goldman 1946). Hunting pressure and habita! loss/transformations caused the extirpation of the puma from eastern North America, although isolated populations may exist in New Brunswick (Cumberland and Dempsey 1994). The curren! distribution of pumas in Mexico, Central America and parts of South America is mostly unknown (Nowell and Jackson 1996) . Reproductive Biology The puma is a polygamous species that can be reproductiva at any time of the year. The estrous cycle of the female is 23 days with a gestation period of 82 to 96 days (Eaton and Velander 1977, Rabb 1959). The litter size ranges from one to six with an average litter size of three. The inciso, teeth appear at age 8 to 20 days (Toweill 1986) and permanent dentition start replacing the primary teeth at about 5 ½ mo. Canines appear at 8 mo., and for a short time both permanent and primary canines are present (Currier 1983) . A puma kitten stays with its mother until age 9 to 24 months. Young animals ( < 12 mo. old) usually disperse because they became orphans, but dispersa! at later stages has not been related to either carrying capacity, food avail ability or social organization (Hornocker 1970, Ross and Jalkotzy 1992, Seidensticker et al . 1973, Sweanor 1990). Age at first reproduction ranges from 17 to 36 months of age with males reaching sexual maturity closer to 36 mo. (Currier 1983, Lindzey et al. 1994, Maehr et al. 1989) • 173 8 Carlos A López González Literature summarv López-González & González-Romero: Literature and knowledge about the Puma canco/ar Habita! association Currier ( 1983) states that puma distribution in the western hemisphere is probably limited by human interference, lack of prey, and/or lack of stalking cover. The species has been reported from sea level to 5,800 masl and from deserts to tropical rain forests (Currier 1983, Redford and Eisenberg 1992). lt is probably the most successfully adapted feline of the New World. Habita! that can be considered typical in Western North America is oak, pinyon pine, and mountain mahogany forests (Lindzey 1987). In the Florida península pumas are associated with hardwood forests (Maehr et al. 1991 ). Microhabitat preferences in !hose habitats are cliffs, and rock ledges, dense vegetation thickets, areas that provide sorne cover (Dixon 1981 ). In Mexico, they have been associated with ali habita! types except lower Sonoran desert (Mclvor et al. 1995). Bisbal (1989) found an association of pumas with tropical dry forest and tropical humid forests in Venezuela. A characteristic of pumas is the avoidance of agricultura! and clear-cut areas (Van Dyke et al. 1986, Lopez-Gonzalez 1994, Maehr et al. 1991). Fragmented patches of rain forest are used by pumas but detrimental effects have been recorded on nearby farms with varying degrees of predation affecting the survival of the population (Mazzolli 1993). Feeding Ecology The puma is considered an opportunistic predator, and since they can catch so many difieren! kinds of animals, they should not be limited by lack of any given prey species (Currier 1983). That is probably the reason why the known food habits of pumas cannot be generalized throughout its distributional range. In western North America pumas leed mainly on deer ()riarte et al. 1990 and references therein). In Florida they leed on wild boar (Sus scrofa), white-tailed deer (Odocoileus virginianus) and raccoon (Procyon /otar) (Maehr et al. 1990). In southwestern Arizona, pumas depend on mule deer (Odocoileus hemionus), peccary (Tayassu tajacu), and bighorn sheep (Ovis canadensisl (Cashman et al. 1992). A recent study has shown that individual pumas may produce a "en extinction" effect on small populations of prey specifically bighorn sheep, where this process seems to be individual and learned puma behavior (Ross et al. 1997). In contrast, a bighorn sheep population in the deserts of New Mexico remained relatively stable and was found inconsequential to puma predation and density (Logan et al. 1996). The food habits of the puma in central and South America are not well known, and lriarte et al. ( 1990) summarized the studies. Prey items used by pumas in the southern hemisphere, especially in tropical regions, are mainly medium to large 174 9 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Litcraturc summarv Acta Zoo/. Mex. (n.s.J 75 (1998/ animals (1 to 15 kg.) with sorne small size ( < 1 kg} animals. Olmos (1993} pointed out the importance of armadillo (Dasypus novemcinctus/ in the diet of pumas in the tropical dry forest of Brazil. Another one from the alpine meadows of Peru (Romo 1995} showed the importance of mountain paca (Agouti taczanowski,) . Enders (1935) stated that the diet of the puma for Barro Colorado lsland, Panama, included collared peccaries (Tayassu tajacu}, brocket deer (Mazama sp.), white tailed-deer, pacas (Agouti paca/, agoutis (Dasiprocta sp.}, spiny tailed-rats (Proechimys sp.}, iguanas and snakes. The puma in the northern Yucatan Península, Mexico; consumed peccaries, pacas, agouti, coatís (Nasua narica} and sometimes howler (Alouatta pa/liata} and spider (A teles geoffroy,] monkeys (Gaumer 1917} . A synthesis of published mean vertebrate prey weight (MVPW} used by puma in tropical America is shown in Figure 1. From North to South America, there is not a clear pattern on how MVWP use changes. Sample size for the different · Latin American studies listed here is very small (range 3-9 scats) compared to North American studies (see Anderson 1983) . Prey diversity is higher and more variable in tropical areas than in temperate North America. North American studies usually present ungulates as the main prey, but seasonal use of alternative prey have been recorded for the cold desert at the foothills of the Sierra Nevada (Nevada, United States}; the use of foals (Equus caballus} is importan! during summer months when mule deer are absent from the area (Turner et al. 1992} . In the tropics large rodents and armadillo seems to be the average prey size used by pumas (lriarte et al. 1990, Emmons 1990}, with the exception of Brazil where the main prey is cattle (Crawshaw and Ouigley unpubl. data), but this study used kills and the rest of the studies relied on scat analysis . The plains Vizcacha (Lagostomus maximus) was selected by pumas in Argentina beca use it was a clumped and predictable resource (Branch et al. 1996). In this study, niche breadth was the lowest of the published ones both for North and South America. Deer was the main prey item of the puma's diet in the "undisturbed" Biosphere Reserve of Calakmul (Aranda and Sanchez-Cordero 1996}, but again the number of scats utilized was very small (N = 15) and deer preference is probably an artilact of the methodology used because the authors were ncit able to differentiate hair remains of brocket (Mazama americana} and white-tailed (Odocoileus virginianus) deer. We calculated the standarized niche breadth (Bs = B-1 /N-1. Colwell and Futuyma 1971} for this area (0.35} with comparable results to Florida (0.37}, Brazil (0.36) and Chile (0.34} . 175 10 Carlos A. López González López•González & González-Romero: Licerature and knowledge about the Puma concolor _q g ..J Paraguay Brasil (J9"S) 7 Peru (11.5'S) Brasil (8.5'S) ' g Peru (7.5'S) -D JJ - Belice (16"N) Mexico (19"N) Mexico (27"N) _J 1 1 ! 1 1 ¡ 1 1 1 ! 1 1 1 ; i i 1 1 1 ' ' 1 : ' ' ' 1 ' ' ¡ ; ' '. ; f.----------------' Florida (26"N) ~ o 5 10 15 20 MVPW (kg) Figure 1 25 ' 1 i i ' 1 ; ' ' ' 30 35 7 Litcrature summary Comparison ot mean vertebrate prey weight (MVPW) used by pumas through tropical America (Data from lriarte et al. 1990, Lopez-Gonzalez et al. 1996, Olmos 1993, Romo 1995) In the tropical rainforest of Costa Rica (Chinchilla 1994), pumas were feeding mainly on mammals, including tropical porcupine (Sphiggurus [Coendu] mexicanus) and spiny tailed-rats (Echymidae), primates (Alouatta palliata, Ate/es geoffroyi and Cebus capucinus), brocket deer and iguanas. Sample size again was small (n = 111, and data were not available to perform any further analysis. According to Crawshaw ( 1995) pumas at lguazu National Park, Brazil, are using prey of an average of 10.8 kg where deer (Mazama spp) and peccaries (Tayassu spp) constitute the majority of the diet. Pumas in the Paraguayan Chaco (Taber et al. 1997) are feeding on at least 16 prey items, where three species: Mazama gouazoubira, and peccaries accounted for 43% of the biomass consumad, but only 21 % of the relativa frequency of prey items. Pumas seem to use a diverse array of prey in this area. This is the only 176 11 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Litcraturc surnmary Acta Zoo/. Mex. tn.s.J 75 (1998} tropical study with a large sample size (N = 95). and standardized niche breadth was 0.68 (the most diverse faund so far). MVPW far this study was 1 .48 kg, not different from most tropical studies. A correlation analysis between 14 studies of faod habits showed that MVPW is related to the number of scats per study (r' = 0.69, df = 13, p<0.05). When more representativa samples from tropical areas exist, a more definite conclusion will be drawn on how pumas are using their trophic resources and will help explain if jaguars have an influence on the diet of pumas . Kili rates Severa! authors have attempted to estímate kili rate of prey species by puma (See Anderson 19831. Anderson ( 1983) points out problems in assessing the numbers of Jarge prey killed in North America, these numbers varied from 12 to 91 individualslpuma on a year basis. Daily faod intake range from 1.6 to 5.5 kg of meat (Hornocker 1970, Robinette et al. 1959, Shaw 1977, Ackerman et al. 1986). Ackerman et al. ( 1986) predict that a kili should occur between 8- 1 7 days far a resident adult, and each 3.3 days far a female with 3 large kittens. Harrison ( 1989) intensively fallowed a couple of females and determined a predation rate of 1 ungulate every 3.3 to 1 O days. A factor not really stressed in most predation rate studies is the impact of scavenging. Harrison (19891 demonstrated that areas subject to coyotes (Canis latrans/ control reduced predation rates almost by hall, this effect is probably more evident where complete carnivore assemblage are still present such as Glacier National Park (Montana, United States) or Yellowstone National Park (Wyoming, United States), or Man u National Park (Peru) . Population characteristics As with many other species of carnivores, especially the felid family, population parameters are characterized by low numbers ranging over large areas (Schonewald-Cox et al. 1991 ). A typical puma population consists of male and female adult residen! animals, juveniles, and transients. Within this classification the adult cohort can be divided into residen! animals with area attachment and offspring production, and resident animals attached to an area without reproductive events. Adult residen! sex ratios recorded for the cold desert of Utah (1 :2, Lindzey et al. 1994), the mountains of Wyoming (1 :3, Logan et al . . 1986) or the mountains of ldaho (1 :2 Seidensticker et al. 1973, Lopez-Gonzalez in review), are fairly similar . 177 12 Carlos A. López Gonzlilez López•González & González-Romero: Literature and knowledge about the Puma conco/or ., Literature summarv ·¡ Although breeding season may occur throughout the year, there seems to be reproductive peaks. Most Florida parturition events are reported between March and July (Maehr et al. 1991 ). For Utah and Nevada most events are recorded from June to October (Lindzey et al. 1994, Robinette et al. 1961). In Al berta (Canada) most births were associated with summer months (Ross and Jalkotzy 1 992). Human related mortality occurs also in non-hunted populations (Beier and Garrett 1993, Maehr et al. 1991) where highway collision was the most commonly documented cause for both studies. In Florida this cause of mortality averaged 17.2% of the total population. The natural causes of mortality range from congenital defects, rabies (Roelke 1990), injuries during prey capture (Ross et al. 1995). and parasitism (Maehr et al. 1991 a, Sweanor 1990). lntraspecific aggression was the most importan! cause of mortality in a non-hunted population of New Mexico (Logan et al. 1996). Population turnover in the puma has been characterized as low, and recently a 13-year cycle, dependen! upon mule deer and climatic characteristics has been proposed (Smallwood 1994). Social Organization Puma social organization is similar to most solitary felid species of the world (see Sandell 1989 and references therein). One male home range overlaps up to tour females, variations from one to tour have been described throughout its range. Female home range can be exclusive (Neil et al. 1987) or overlapping (Anderson et al. 1992). Pumas under extensive harvest are not able to recover normal population levels if adult residen! extraction is larger than natural mortality, and it will take longer to recove, if > 25% of the population is removed on two or three consecutive years (Lindzey et al. 1992, Logan et al. 1996). Home range Home range size in pumas is quite variable, ranging from 32 to 1148 km' (Nowell and Jackson 1996, Maehr et al. 1992), the largest home ranges are for deserts (Hemker et al. 1984, McBride 1976, Sweanor 1990) and fragmented environments of Florida (Maehr et al. 1991 a, 1992). The smallest home ranges are for the boreal forests in Ganada (Spreadbury et al. 1996), Mediterranean California (Padley 1990) and the tropical rain forests of Belize (Rabinowitz and Nottingham 1986). Factors affecting the size of the area are related to sex and prey abundance (Dixon 1981 , Currier 1983, Sandell 1989). This is especially importan! when assessing curren! rates of habita! transformation and loss. Maehr et al. (1991 a) atribules the large 178 13 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Litcrature summary 1 Acta Zoo/. Mex. (n.s.J 75 11998) home range of a resident male ( 1182 km') to habita! loss and fragmentation in southern Florida. Padley's study (1990) took place in a fragmented area of California, and results from this study ditfer with those of Maehr et al. (1992) by a 1 O fold. Lopez-Gonzalez ( 1994) presents results for a hunted population in a fragmented environment from ldaho (Mean = 62 km') where patchiness and prey abundance seems to be responsible for the small size of the home ranges but behavior in this area is different from the other two studies on fragmented ecosystems. Rabinowitz and Nottingham ( 1986). using puma pugmarks, calculated a home range of 1 O km' . Densities The number of pumas per area unit (usually # adult ind ./ 100 km') varíes with latitude and productivity of the system. Lower densities have been recorded for the cold deserts of Utah in North America (0.3-0.5/100 km', Hemker et al. 1984). The highest densities are recorded for a protected area of Patagonia with 7 animals/ 100 km' (Johnson et al. in press). and for the Sierra Nevada with 7 .8 ind/ 100 km' (Steger 1988). A long term study in New Mexico, United States showed that under full protection the adult density was 2 ind/100 km' (Logan et al. 19961. An ongoing study in a tropical dry forest of the Pacific coast of Mexico has found a density of 3-4 animals /100 km' (Nuñez and Miller 1997). Crawshaw and Quigley (unpubl. data) calculated 4.4 animals per 100 km' on the Brazilian Pantanal. Eisenberg et al. ( 1981) calculated a density of 2 animals per 100 km' for the Venezuelan Llanos. Lower densities have been atributed to low numbers of prey (Hemker et al . 1984), and high densities when carrying capacity is reached (4/100 km', Shaw 1989). No evident pattern is present either on latitude or longitude, or from protected areas or fragmented ones; the ditferences obtained between or within studies may be due to effective population sampling and the techniques used for this purpose (Nowell and Jackson 1996) . Parasites Pumas are almost free of ectoparasites, problably due to solitary nature, low densities, and mobile habits (Currier 1983). Young and Goldman ( 1946) found !leas (Arctopsylla serosa), ticks (Dermacentor variabilis, lxodes ricinus, and /. cookei and from South America, Amblyomma cajennense, Boophilus microp/us, and Dermacentor cyaniventris). and !ice (Trichodectes fe/is). Interna! parasites are tapeworms (Taenia omissa), flukes (Heterophyes heterophyes) and nematodes (Trichinella spiralis) (Currier 1983). In Central Anmerica (Belize and Costa Rica), 179 14 Carlos A. López González López-González & González-Romero: Litcrature and knowledge about che Puma concolor ., Literature summarv coprological parasites of pumas are trematods (Paragonimus sp.), nematods {Stringylida, Toxocara cati, and Capillaria sp.), protozoa /Hammondia parda/is, Giardia cati), and amebas (Entamoeba sp. and Retortamonas sp.; Patton et al. 1986, Saenz-Jimenez 1996). Diseases known to affect pumas are anthrax, arthritis, feline panleukopenia, mange, piroplasmosis, and rabies (Currier 1983). Behavior Pumas can be active at any time of the day (Redford and Eisenberg 1992). but with a strong crepuscular activity present through its distributional range (Beier et al. 1995, Van Dyke et al. 1986, lopez-Gonzalez 1994, lopez-Gonzalez et al. 1996), the color of the pelage has been associated to diurna! activity and the trend of nocturnal activity is considered a result of human related interactions. Travel bouts are more frequent during the night (Beier et al. 1995, Lopez-Gonzalez 1994, Nuñez and Miller 1997). Traveling distances during 24 h range from 1 to 55 km, differences between sites are attributed to low cover and high heat incidence (i.e. deserts, Sweanor 1990), natural and agricultura! patchiness (Beier et al. 1995, López-González 1994). hunting behavior (Beier et al. 1995, Maehr et al. 1989a). and levels of human habituation (Ruth 1990). Distances traveled per sex are larger formales than for females (8eier et al. 1995, López-González 1994, unpubl. data, Seidensticker et al. 1973). Female Florida panther activity alter parturition showed a reduction in home range size use, and activity pattern was highest between 1600 and 2400 h; absence from the den increased as kittens aged (Maehr et al. 1989). Den characteristics play an important role in protecting young defenseless kittens from thermal maxima (Shaw 1989). and they effectively moderare ambient temperatures (Bleich et al. 1996). Dens are usually associated with thickets and canyon bottoms to potentially avoid predator detection (Beier et al. 1995, Bleich et al. 1996). Marking behavior has been related to home range maintenance, between and within sexes. Scrapes and scats are used to designate boundaries or overlap areas (Seidensticker et al. 1973, Sweanor 1990). The puma hunting behavior is similar to that of many cat species, and severa! steps are recognized. Prey is detected through hearing and sight, then the puma approaches its prey by crouched walking at very reduced speed. Finally a short chase ends, if successful, with a bite on the nape for small prey and neck breaking for larger prey (Branch 1995, Robinette et al. 1 959, Wilson 1984). Pumas have been observed killing black-tailed deer (Odocoileus hemionus columbianus, Wade 1929), goats (Capra hircus, Young and Goldman 1946), and collared peccaries (Tayassu tajacu, Van Pelt 1977). The puma hunting behavior on vizcachas (Lagostomus maximus) was observed in Argentina (Branch 1995) with an adult 180 15 • , . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ., Carlos A. López González Literature summarv Acta Zoo/. Mex. (n.s.J 75 (19981 puma hiding behind a creosote bush (Larrea divaricata) then waiting until the vizcacha was closer and separated from the group before springing from a distance of 1 O m. The puma held it with its forepaws until killing it with a nape bite . Hunting attemps observed in this study ended with a 10% success ratio . Pumas have been recorded vocalizing while pursuing and killing black-tailed deer in California (Smallwood 1993). Pursuit lasting between 20-30 min with intermiten! vocalizations at intervals of :5 5 min. Smallwood related vocalizations as a rare behavior associated with providing extra time to successfully accomplish prey capture by freezing sorne animals andlor confusi:,g them cued by one or a combination of specific circumstances the predator encounters at the initiation of a pursuit. Kills are usually dragged and stashed under trees, dense thickets or ledges (Beier et al. 1995). large prey items are usually buried under leaves and dirt to keep them from scavengers (Hornocker 1970, Shaw 1979). Smaller prey are known to have been dragged into a repeatedly used cache site (Branch 1995). Larder hoarding behavior was observed in Montana, USA where a puma killed a bighorn sheep (Ovis canadensis), and two mule deer (Odocoileus oemionus, a doe and a buck); the puma bed was located 4 and 3.5 m away from the carcasses (Holt 1994) . Recorded instances of injuries sustained by pumas during predation of elk (Cervus elaphus)and mule deer are reported by severa! researchers (Brown et al . 1988, Hornocker 1970, lindzey 1987). Ross et al. ( 1995) described deaths of tour radio-collared pumas that were related to prey capture, and concluded that it can be a significan! source of mortality for a population (27%). Injuries are more prevalen! in young inexperienced or old and not socially established pumas . lnterspecific predator relations The puma, throughout its range is sympatric with a variety of larger and smaller carnivores. In North America (Canada and the United States) the species is sympatric with two or three larger predators, namely wolves (Canis lupus/, grizzly Wrsus arctos horribilis) and black (Ursus americanus) bears. lnteractions between these and other predator species have just recently begun to be acknowledged and therefore little quantified information exists . Puma and grizzly bear interaction in Montana (Ruth and Hornocker 1 996) have yield information regarding the dominance of grizzly bears over the puma. This is partially explained by the larger size and non hibernating habits of male bears, that resulted in den finding and killing of puma kittens reducing population recruitment. In the same area, wolves and grizzly bears are known to chase pumas away from their kills and tree them, although the study is not finished and the results are 181 16 Carlos A. López González López-González & González-Romero: Lirerature and knowledge about the Puma concolor , Litcrature surnmarv preliminary, this could potentially become a factor influencing the physical condition and survival of females with kittens, due to a reduced food intake limited both by bears and wolves. In Mesoamerica and tropical South America the puma is sympatric with the jaguar (Panthera onca). And severa! authors have stated the dominance of the latter over the puma. In such instances jaguars are considerably larger in size than pumas, with sorne size overlap between female jaguars and both sexes of the puma (Crawshaw and Ouigley 1991, Emmons 1987, Schaller and Crawshaw 1980). Crawshaw and Ouigley (1991) recorded jaguars encountering and killing pumas. Nevertheless where the jaguar reaches its distributional limits, pumas can be larger than jaguars (Allen 1906, B. Miller and C.A. Lopez-Gonzalez pers. obser.) as a result, competition could be more apparent in these areas. Mean dietary niche breadth for both species is fairly similar but mean vertebrate prey weight is twice as large for the jaguar (Oliveira 1994). An allometric study on Neotropical cats (Kiltie 1984), using body mass, body length, relative maximum bite force and relative maximum gape, suggests that competitive character displacement is a possible explanation for the constan! ratios in maximum gape differentiating and therefore allowing coexistence between jaguars, pumas, ocelots (leopardus parda/is), and the functionally identical margay (leopardus weidi,)and jaguarundi (Herpailurus yaguaround,). The puma is usually dominant over smaller carnivores, preying upon them and in sorne instances they can become importan! food items of its diet, for example the raccoon (Procyon /otar, Maehr et al. 1990), bobcat (lynx rufus, Lopez-González 1994, Koehler and Hornocker 1991 ), and the ocelo! (C.A. Lopez-Gonzalez unpublished data). Jorgenson and Redford (19931 in a comparative study of food habits between pumas, jaguars, and subsistence hunters, found considerable overlap among majar mammalian taxa used by the three species. Humans do not partition resources with the other predator species in arder to coexist, therefore where pumas and jaguars are sympatric with human hunters, the big cat populations may decline as a result of interference competition occurying in the Neotropics and perhaps other rural areas of Latin America. Puma as a keystone species The role of large carnivore in the ecosystem is still unclear, as two main tendencies exist. One supports the classical keystone species concept, where the species play an essential role within the system and whose activities are critica! to the maintenance of entire communities and/or as a majar depressor of prey species (Paine 1966, 19691. As a consequence of such depressing action they have a directional effect on the plant community, namely regeneration and/or 182 17 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López Gonzalez Literature summarv Acta Zoo/. Mex. (n.s.J 75 (1998/ reforestation (Terborgh 1990). On the other hand we have the trend where the presence or absence of top predators within the system would not alter the outcome of such system (Wright et al. 1994) . Wright et al. (1994) studying the possible effects of lack of predators at Barro Colorado lsland tested for differences of prey densities with and without large felids and failed to support the hypothesis that felids control prey abundance, but they still recognize the lack of sufficient information . However on temperate ecosystems there. is sorne evidence supporting the keystone hypothesis. Specifically in the great basin desert, Berger and Wehausen ( 1991) described the effects of human disruption in the "natural" community. They u sed historical, and anthropological data to reconstruct the expansion of mule deer (Odocoileus hemionus) and the consequent follow up by the puma. lncorporation of these two species to the system was determined by the transformation of extensive areas of grass into a forb and shrub dominated environment more su ita ble for deer, pumas, and reciprocally other species. This experience could explain and partially reflect the great distribution of pumas in areas where they otherwise would not be suited to exist. A clear example is Joshua Tree National Park (California, United States) where isolation and lack of proper food and cover for deer prevents the existence of the former and also seems to limit pumas . Survey and Census Methods As we have seen through this manuscript, differences in methodology (and sample size) are possibly accountable for the variability observad in food habits, densities, or home range size. Capture recapture methodology yields the best results to estímate population numbers, but is expensive and time consuming (Logan et al. 1996). Track surveys have been tested to detect population trends, and have proven not to perform accurately (Beier and Cunningham 1996). ldentification of individual pumas using a multivariate analysis of paw measurements yielded positive results, yet the population studied was unknown, therefore the results are of limited use until tested with a control set of animals (Fitzhugh and Smallwood 1995). No method is free of limitation but a standard uniformity protocol should be assessed by puma researchers to make comparisons, between and within sites, through time and space . PROTECTION STATUS The puma has difieren! classifications under severa! international agencies. The lnternational Union for Conservation of Nature (IUCN) considers the species as common and less vulnerable, with the lowest conservation priority on a global 183 18 -, Carlos A. López González Litcrature summarv López-González & González-Romero: Literature and knowledge about the Puma concolor scale (Nowell and Jackson 1 996). Nevertheless the regional or local situation has particular situations. The species is listed under Appendix II of the Convention of lnternational Trade on Endangered Species (CITES), Puma concolor coryi, P. c.costaricensis and P. c. cougar are listed under Appendix l. The Florida panther (Puma concolor cory1) is !he only subspecies with an extant population in the eastern United States (Currier 1983, Maehr 1991). The eastern cougar (Puma concolor cougar/ is also protected by !he United States Endangered Species Act ( 1 9731. The status of this subspecies is currently under debate, and the increasing number of reports in the Maritime Provinces, New 8runswick, Ontario, and Vermont (Cumberland and Dempsey 1994, Stocek 1995, Neil Peck Ontario Ministry of Natural Rsources, Pers. Com.) could be related to a remnant population in eastern Canada and/or the spread and subsequent migration of western cougars vía Canada's less populated territories, but not enough samples of animals or reliable spoor are present to determine which may be the leading hypothesis. Hunting of pumas is prohibited troughout South America with the exception of Peru. In Central America the species is protected except in El Salvador, and this country currently states the species to be almost extinct. Regulated hunting exists in Canada, Mexico, United States, and Peru. No legal protection is present at Ecuador, El Salvador and Guyana (Nowell and Jackson 1996 and references therein). Hunting regulation for Canada and the western United States is given by particular needs of State or Territory. Mexico hunting regulation is given on a permit basis per State, but no scientific studies or surveys accompany it. CONCLUSIONS The puma, although one of the better studied feline species of the world, still presents many research, management and conservation challenges, especially for central American and South American countries, where hardly anything is known about the species. Research emphasis should be aimed tci develop survey and census techniques that are cost effective and easily replicated through time and space. ACKNOWLEDGMENTS This work forms part of Carlos A. Lopez•González Doctoral dissertation and was supported jointly by the Instituto de Ecología, A. C., and Earthwatch, lnc. We are grateful to Hector Arita, Brian Miller and Francisco Ornelas for their criticar revision that greatly improved the manuscript. The senior author would like to thank Or. Brian Miller for his teaching and knowledge both in the field of conservation biology and ethics. 184 19 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López Gonz31ez Literature summarv Acta Zoo/. Mex. (n.s.J 75 /19981 LITERATURE CITED Ackerman, B.8., F.G. Lindzey & T.P. Hemker. 1984. Cougar food habits in southern Utah . J. Wildlife Manage. 48(1 ): 147-155. ______ . 1 986.Predictive energetics model for cougars. pp.333-352. /n: Miller S.D . & D.D. Everett (edsJ. Cats of the World: Biology, Conservation, and Management. Proc. Second lnternational Symposium, Kingsville, TX. 1982 . Allen, J.H. 1906. Mammals from the State of Sinaloa and Jalisco, Mexico, coll. by J.H . Batty during 1904 & 1905. Bu!/. Amer. Mus. Nat. Eco!. Hist. XXII. Article XII: 191-262. Anderson, A.E. 1983. A critica! review of literature on puma (Fe/is concolorJ. Colorado Division of Wi/dlife Special Report No. 54. 91 pp. Anderson, A.E., D.C. Bowden & D.M. Kattner. 1992. The Puma on Uncompahgre plateau, Colorado. Technical Publication No. 40. 116 pp . Aranda, M. & V. Sanchez-Cordero. 1996. Prey spectra of jaguar (Panthera anca) and puma (Puma concolorJ in Tropical Forests of Mexico. Studies in Neotropical Fauna and Environment 31 : 61-64. Beier. P., O. Choate & R.H. Barrett. 1995. Movement patterns of mountain lions d·uring different behaviors. J. Mammal. 76(41: 1056-1070 Beier, P. & S.C. Cunningham. 1996. Power of track surveys to monitor population trend. Proceedings of the Fifth Mountain /ion workshop. San Diego California. pp. 3 . Berger, J. & J.D. Wehausen. 1991. Consequences of a mammalian Predator-Prey Disequilibrium in the Great Basin Oesert. Conservation Biology 5(2): 244-248. Bisbal, F. 1989. Distribution and habitat association of the carnivores in Venezuela, Pp . 339-362. /n: Eisenberg J. (ed). Advances in Neotropical Mamma/ogy. The Sandhill Crane Pr8ss lnc . Bleich, V.C., B.M. Pierce, J.L. Davis & V.L. Oavis. 1996. Thermal characteristics of mountain lion dens. Great Basin Nat. 56 (3): 276-278. Branch, l.C. 1995. Observations of predation by pumas and Geoffroy's cats on the plains vizcacha in semi-arid scrub of central Argentina. Mammalia 59(11: 152-156. Branch, l.C., M. Pessino & D. Villareal. 1996. Response of pumas to a population decline of the plains vizcacha. J. Mammal. 77(41: 1132-1140 . Brown, E.M., A.F. King & D.B. Houston. 1988. Natural mortality of a cougar. The Murrelet 69: 38 . Cashman, J.l., M. Pierce & P.R. Krausman. 1992. Diets of mountain lions in Southwestern Arizona. Sourhwest. Natur. 37(3): 324-326. Chinchilla-Romero, F.A. 1994. la dieta del jaguar (Panthera onca), el puma (Fe/is concolor), el manigordo (Fe/is parda/is) (Carnívora, Felidae) y dos metodos de evaluacion de su abundancia relativa en el Parque Nacional Corcovado, Costa Rica. Ms. Thesis. Universidad Nacional Heredia, Costa Rica. 49 pp . Crawshaw, P.G. 1995. Comparativa ecology of ocelot (Fe/is parda/is) and jaguar (Panthera anca) in a protected subtropical forest in Brazil and Argentina. PhO Dissertation: University of Florida. Gainesville, Florida, USA. 189 pp. Crawshaw, P.G. & H.B. Quigley. 1991. Jaguar spacing, activity and habitat use in a seasonally flooded environment in Brazil. J. Zoo!. london 223: 357-370 . 185 20 Carlos A. López González López-González & GonzA/ez-Romero: Literature and lcnowledge about the Puma concolor 7 Literature summarv Cumberland, R.E. & J.A. Dempsey. 1994. Recent confirmation of a cougar, Fe/is concolor, in New Brunswick. Can. Field-Natur. 108(21: 224-226. Currier, M.J.P. 1983. Fe/is concolor. Mammalian Species No. 200. Pp. 1-7 Dixon, K.R. 1981. Mountain lion Fe/is concolor. pp. 711-727 /n: Chapman, J.A. and G.A. Feldhamer (edsl. Mammals of Nonh America. John Hopkins University Press. Eaton, R.L. & K.A. Velander. 1977. Reproduction in the puma: biology, behavior and ontogeny. pp. 45-70 In: Eaton, R.L. (ed). The World's cats, Vol. 3, No. 3. Carnivore Research lnstitute. Nurke Museum, Univ. Washington, Seattle. Eísenberg, J.F. 1989. An introduction to the Carnivora. pp 1-9 In: Gittleman, J.L., ed. Carnivore behavior, ecology and evolution. Cornell UniVersity Press, 620 pp. Eisenberg, J.F .. M.A. D'Connell & P.V. August. 1979. Density, Productivity, and Distribution of Mammals in two Venezuelan Habitats. pp. 187•207 /n: Eisenberg J.F. {ed.), Vertebrete Eco/oy in the Nonhern Neotropics. Smithsonian lnst. Press, Washington, o.e. Emmons, L.H. 1987. Comparative feeding ecology of felids in a neotropical rainforest. Behav. Eco/. Sociobiol. 20: 271-283. ____ . 1990. Neotropical rainforest mammals: a field guide. University of Chicago Press, Chicago. 390 pp. Enders, R.K. 1935. Mammalian life histories from Barro Colorado lsland, Panama. Bu//. Mus. Campar. Zoo/. /Harvard/ 7814): 385-502. fuller. T .K. 1994. An international review of large carnivore conservation status. Proc. lntern. Wildlife Manag. Congr. 410-412. Gaumer, G.F. 1917. Mamíferos de Yucatán. Oepto. Talleres Graficos, Secretaria de Fomento. México, 331 pp. Gay, S.W. & T.L. Best. 1995.Geographic variation in sexual dimorphism of the puma {Puma concolorl in North and South America. Southwest. Natur. 4012): 148-159. Hall, E.R. 1981. The Mammals of North America. John Wiley and Sons, New York. Vol. 1: xv + 1-600 + 90 and 2: vi+ 601-1181 + 90. Harrison, S. 1989. Predation rates of cougar within the junction Wildlife Management Area. Proceedings of the Third Mountain Lion Workshop. Oec 6-8, 1988. Prescott, Arizona. Arizona Chapter, The Wildlife Society-Arizona Game and Fish Department. pp. 48. Hast, M.H. 1989. The larynx of roaring and no-roaring cats. J. Anat. 163: 1 17-121. Hemker, T .P .. F.G. Lindzey, & B.B. Ackerman. 1984. Population characteristics and movement patterns of cougars in southern Utah. J. Wildlife Manag. 48: 1275-1284. Hershkowitz, P. 1 97 2. The re cent mammals of the Neotropical region: A zoogeographic and ecological review. pp 311-421 /n: Keast, A., F.C. Erk, and B. Glass leds.), Evolution, Mammals, and Southern Continents. State University of New York Press. Holt, D.W. 1994. Larder hoarding in the cougar, Fe/is conco/or. Can. Field-Natur. 108(2): 240-241. Hornocker, M. 1970. An analysis of mountain !ion predation upon mule deer and elk in the ldaho primitivo area. Wildlife Monographs No. 21. 39 pp. lriarte, J.A., W.L. Franklin, W.E. Johnson & K.H. Redford. 1990. Biographic variation of food habits and body size of the America puma. Oecologia 85: 185-190. Jardine, W. 1834. Naturalist's Library. Vol. 2., Mammals, Felidae: 266 pp. 186 21 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • .. Carlos A López González Literature summarv Acta Zoo/. Mex. (n.s.J 75 (1998/ Johnson, W .E., W.l. Franklin, & A. lriarte. Sympatric felid and canid predators of Torres del Paine National Park, Chile. In: Franklin W.l. (ed). Patagonia Gem: the eco/ogy and natural history of Torres del Paine National Park, Chile. (In press) Jorgenson, J.P. & K.H. Redford. 1993. Humans and big cats as predators in the Neotropics pp. 367-390 In: N. Dunstone and M.L. Gorman, (eds.l Mammals as predators. Sympopsium of the Zoological Society of london No. 65. Oxford Science Publications. Kiltie, R.A. 1984. Size ratios among sympatric neotropical cats. Oecologia 61: 411-416. Koehler, G.M. & M.G. Hornocker. 1991. Seasonal resourse use among Mountain lions, bobcats and coyotes. J. Mamma/. 72(21: 391-396. Kurtén, B. & E. Anderson. 1980. Pleistocene mammals of Nonh America. Columbia University Press. New York. 443 pp. Lindzey, F.G. 1987. Mountain !ion. pp. 657-668/n: Novak, M., J.A. 8aker, M.E. 0bbard, and B. Malloch, (eds.) Wi/d furbearer management and conservation in North America. Ontario Trappers Association, North Bay. Lindzey. F.G •• W.D. Van Sickle, S.P. Liang & C.S. Mecham. 1992. Cougar population response manipulation in Southern Utah. W1/dlife Soc. Bu//. 20: 224-227. Lindzey, F.G., W.D. Van Sickle, B.B. Ackerman, D. Banhurst, T.P. Hemker & S.P. Laing. 1994. Cougar population dynamics in Southern Utah. J. Wildlife Manage. 58(4): 619-624. Logan, K.A., L.L. lrwin & R. Skinner. 1986. Characteristics of a hunted mountain lion population in Wyoming. J. Wildlife Manage. 50(4): 648-654. Logan, K.A., L.L. Sweanor & M. Hornocker. 1996. Cougars population dynamics, Chapter 3. pp. 22-113. /n: Logan, K.A., L.L. Sweanor, T.K. Ruth and M.G. Hornocker. Cougar of the San Andres mountains, New Mexico. Federal Aid in Wildlife Restoration Project W- 128-R for New Mexico Departament of Game and Fish, Santa Fe, New Mexico. ------,-,--,· 1996. Cougars and desert bighorn sheep, Chapter 6. Pp. 230-249. In: Logan, K.A., L.l. Sweanor, T.K. Ruth & M.G. Hornocker. Cougar of the San Andres . mountains, New Mexico. Federal Aid in Wildlife Restoration Project W-128-R for New Mexico Oepartament of Game and Fish, Santa Fe, New Mexico. López-González, C.A. 1994. Ecología y comportamiento del puma (Puma concolor) en un habitat fragmentado. Master in Science thesis. Facultad de Ciencias, UNAM. 64 pp. López-González, C.A., E. Martínez-Meyer, J.W. Laundre, B. Miller, & A. Gonzalez-Romero. 1996. Contribution to the natural history of pumas (Puma concolor) in the tropical dry forests of western Mexico. Proceedings of the Fifth Mountain /ion workshop. San Diego California. pp. 14. Maehr, D.S., J.C. Roof, E.D. Land & J.W. McCown. 1989. First reproduction of a panther (Fe/is concolor cory1) in southwestern Florida, U.S.A. Mammalia 53(1 ): 129-131. Maehr, D.S., E. Darrell-Land. J.C. Roof & J.W. McCown. 1989. Early maternal behavior in the Florida panther (Fe/is concolor cory,). Amer. Midland Natur. 122(1 ): 34-43. Maehr, D.S., R.C. Belden, E. Darrell-land & L. Wilkins. 1990. Food habits of panthers in souhwest Florida. J. Wildlife Manage. 54(3): 420-423. Maehr, D.S .. E. Darrell-Land & J.C. Roo!. 1991.Social Ecology of Florida Panthers. National Geographic Research and Exploration 7(4): 414-431 . 187 22 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •· • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -- Carlos A López González López-González & González-Romero: Literature and knowledge about the Puma canco/ar 7 Literature summarv Maehr, D.S., E. Darrell-Land & M.E. Roelke. 1991. Mortality patterns of panthers in Southwest Florida. Proceedings of the Annual Conference of Southeastern Fish and Wifdlife Agencies 45: 201-207 • Maehr, D.S., J.C. Roo!, E.O. Land, J.W. McCown, & R.T. McBride. 1992. Home range characteristics of a panther in south central Florida. Florida Field Natur. 20(41: 97-103 . Mazzolli, M. 1993. Ocorréncia de Puma concolor (Linnaeusl (Felidae. Carnivora) em áreas de vegeta<;ao remanescente de Santa Catarina, Brasil. Rev. Brasil. Zoo/. 10(41: 581-587. McBride, R.T. 1976. The status and ecology of the mountain lion Fe/is concolor stanleyana of the Texas-Mexico border. M.S. thesis. Sul Ross $tate University, Alpine, Texas. 160 pp. Nowell, K. & P. Jackson. 1996. Wild Cats: Status, survey and conservation action plan . IUCN/SSC Cat Specialist Group. 382 pp. Nuñez, R. & B.J. Miller. 1997. Ecología de jaguares y pumas en el Oeste de México . Reporte Final CONABIO. México, 25 pp. Olmos, F. 1993. Notes on the Food habits of Brazilian ·caatinga· Carnivores. Mammalia 57(1): 126-130 . Oliveira, T.G. 1994. Neotropical cats: Ecology and conservation. EOUFMA (Univ. Fed. do Maranho) San Luis, Brazil. 245 pp . Padley, W.O. 1990. Home ranges and social interactions of mountain lions in the Santa Ana Mountains, California. M.S. thesis. California State Polytechnic University, Pomona. 65 pp . Paine, R.T. 1966. Food web comlexity and species diversity. Amer. Natur. 100: 65-75. ____ . 1969.A note on trophic complex;ty and community stability. AmerNatur. 103: 91-93. Patton, S., A. Rabinowitz, S. Randolph, & S. Strawbridge-Johnson. 1 986. A survey of paratises in wild felines. J. Parasit. 72141: 517-520 Rabb, G.B. 1959. Reproductive and vocal behavior in captive pumas. J. Mammal. 40:616- 617 . Rabinowitz, A. & B.G. Nottingham, Jr. 1986. Ecology and behavior of the Jaguar (Panthera anca) in Belize, Central America. J. Zoo/. Lond. 210: 149-159 Redford, K.H. & J.F. Eisenberg. Mammals of the Neotropics, Vol. 2: the southern cene . Chicago University Press. 430 pp. Robinette, W.L., J.S. Gashwiler, & O.W. Morris. 1959. Food habits of the cougar in Utah and Nevada. J. Wildlife Manage. 23(2): 261-273 • ------• 1961. Notes on cougar productivity and lile history. J. Mammal. 42(21: 204-217 . Roelke, M.E. 1990.Florida panther biomedical investigation: health and reproduction. Final Peri. Rep. Fla. Game and Fresh Water Fish Comm. Tallahassee. 176 pp . Romo, M.C. 1995. Food habits of the Andean fox (Pseudalopex cu/paeus) and notes on the mountain cat (Fe/is coloco/o) and puma (Fe/is concolot1 in the Rio Abiseo National, Peru. Mammalia 59(3): 335-343 . Ross, P.I. & M.G. Jalkotzy. 1992. Characteristics of a hunted population of cougars in Southwestern Alberta. J. Wildlife Manage. 56(31: 417-426 . 188 23 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Literature summarv Ac:a Zoo!. Mex. (n.s.J 75 (1998) Ross. P.I .. M.G. Jalkotzy. & P. Daoust. 1995. Fatal tra\XTla sustained by Cougars. Fe/is concolor, while attacking prey in Southem Alberta. Can. Field-Natur. 109(21: 261-263 . Ross, P .l., M.G. Jalkotzy & M. Festa-Blanchet. 1997. Cougar predation on bighorn sheep in southewestern Alberta during winter. Can. J. Zoo/. 73131: 771-775 . Ruth. T .K. 1990. Mountaln /ion-human interaction in Big Send National Park, Texas. Texas A & M University, Kingsville TX 215 pp . Ruth, T.K. & M. Hornocker. 1996. lnteracions between cougars and wolves {and a bear or two) in the North Fork of the Flathead River, Montana. Proceedings of the Fifth Mountain /ion workshop. San Diego California. pp. 22 . Saenz-Jimenez, Y. 1996. Estudio coprologico de parasitos en feJinos salvajes de cautiverio en Costa Rica. Tesis de Licenciatura. Universidad Nacional de Heredia. 48 pp. Sandell, M. 1989. The mating tactics and spacing pattems of solitary carnivores, 164-182 pp. In: Gittleman, J.L. (ed). Camivore behavior. ecalogy and evolution. Cornell University Press. 620 pp . Schaller, G. & P.G. Crawshaw. 1980.Movement ¡:attems of jaguar. Biotropica 12:16 i-168 . Schonewald-Cox, C., R. Azari, & S. Blume. 1991. Se.ale. variable density. and conservation planning for mammalian carnivores. ConservatCn Biology 5(4): 491-495 • Seidensticker, J.C., M.G. Hornocker, W.V. Wiles, & J.P. Messick. 1973. Mountain lion social organization in the ldaho Primitive Area. ~'lílé:ife Monogr. 35: 1-60 . Shaw, H.G. 1977. lmpact of mountain lion or. mt..:le dei!r and cattle in Northwestern Arizona. pp. 1 7-32 In: Phillips R.C. and C. Jonkei !e,"°-Si. Proceedt"ngs of the 19 75 Predator Sympost"um, Montana Forest and ConservaaQr: &;;,eninental Statt"on, Unt"v. Montana, Missou/a. 2 68 pp. ____ . 1989. Soul among lions. Johnson bcck.s. Boo!der, Colorado. 144 pp . Smallwood, K.S. 1993.Mountain lion voca!izations and huntü,g behavior. Southwest. Natur . 38(1 ): 65-67 -=-=-· 1994. Trends in california mCK.r1tain licn pcpulations. Southwest. Natur. 39(1 ): 67-72. Steger, G.N. 1988. Movement and survival of 14month old orphaned Mountain lion kittens, pp. 73 /n: Smith R.H. (ed). Proceedí'ngs of the Third Mounrain Uon Workshop. Prescott, Arizona. Stocek. R.F. 1995. The cougar, Fe/is concolor, in ":le r.--.aritime provinces. Can. Field-Natur . 109(1): 19-22 . Sweanor, L.L. 1990.Mountain lion social organiza-:.cn r1 a desert environment. M.S. thesis, University of ldaho, Moscow, 164 pp . Taber, A.B., A.J. Novare, N. Neris, & F.H. Colman. 1997. The food habits of sympatric jaguar and puma in the Paraguayan Chaco. Bic:-cpica 29121: 204-213 . Terborgh, J. 1990. The role of felid predaton in Ueotropical forests. Vida Silvestre Neotropical 2(2): 3-5. Toweill, O.E. 1986. Notes on the development o!• ccugar kit:en. The Murrelet 67: 20-23 . Turner, J.W., M.L. Wolfe, & J.F. Kirkpatrid. 1 s=2. ~asonal mountain lion pÍedation on a feral horse population. Can. J. Zoo!. 70: 929-33.: . 189 24 Carlos A. López González Literature summary López-González & Gonzlflez-Romero: Litera!ure and knowledge about the Puma concolor Van Dyke, F.G., R.H. Brocke, H.G. Shaw, B.B. Ackerman, T.P. Hemker & F.G. Lindzey. 1986. Reactions of mountain lions to logging and human activity. J. Wildlife Manage. 50(1): 95-102. Van Pelt, A.F. 1977. A mountain lion kili in southwest Texas. Southwest. Natur. 22: 271. Wade, J.G. 1929. Mountain lion seen killing a doe. California Fish and Game 15: 7a-75. Wozencraft, W.C. 1993. Order Carnívora, pp. 286-346. /n: Wilson, O. and D.M. Reeder (eds). Mammsl Species of the world a taxonomic and geographic reference, 2nd ed. Smithsonian lnstitution Press and The American Society of Mammalogists. Wright, S.J., M.E. Gomper & B. Deleon. 1994. Are large predators keystone species in Neotropical Forests? The evidence from Barro Colorado lsland. Oikos 71: 279-294. Young, S.P. & E.A. Goldman. 1946. The puma, mysterious American cat. The American Wildlife lnstitute, Washington o.e. 358 pp. Recibido: 2 de octubre 1997 Aceptado: 12 de junio 1998 190 25 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Literature summarv Appendix l.- Notas complementarias al Capítulo l. A sugerencia de un revisor se anexan un par de parrafos explicando algunos resultados que se citan en el capitulo l. Las diferencias entre los estimadores para calcular los ámbitos hogareños podrían explicar las diferencias en el tamaño y uso referidos en la página 9 del capitulo I, sin embargo todos los estudios utilizan el polígono mínimo convexo para efectuar comparasiones con otros estudios . Esto apoya lo antes ya mencionado . Smallwood ( 1997) realiza un análisis de las densidades poblacionales del puma y su relación con la denominada "área de estudio" encontrando que las densidades más altas están sesgadas a lugares donde se sabe de antemano existen "muchos" pumas. Dicho autor concluye que no es posible extrapolar estas densidades a áreas más extensas a menos que el tamaño del área estudiada sea mayor a 1700 km2 • Existen citas que no contribuyen de manera significativa al conocimiento ecologico del puma. Citas que reportan registros de puma en areas donde se sabe existen o existieron, por ejemplo . Literatura Citada Smallwood, K. S. 1997. Interpreting puma (Puma concolor) population densities for theory and management. Environmental Conservation 24 (3): 283-289 . 26 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • CAPITULO 11 DINAMICA POBLACIONAL DEL PUMA EN LOS LIMITES FRAGMENTADOS DE UTAH - IDAHO • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics PUMA POPULATION DYNAMICS IN THE FRAGMENTED IDAHO-UTAH BORDER. ABSTRACT A hunted puma population was studied from 1987 to 1995 on a 2500 km2 study area of South central Idaho and Northwestern Utah, United States to monitor its size and age and sex composition. Capture-recapture and radiotelemetry techniques were used to determine survival, mortality, natality and dispersal dynamics. A total of9 I pumas were monitored through the period study. Average adult density was 0.96 pumas/100 km2 • The residen! cohort ofthe population was comprised of young adults ( <5 years old). Adult residen! females could breed as young as 17 mo . and produced litters that averaged 2.5 kittens at 17 months intervals. Kittens hada 52. 9% chance of surviving. Adult survival was 70.2 ± 23.5%. Most mortality was human related. Dispersal occurred after independence but female philopatry was present until an apparent reach of carrying capacity . RESUMEN De 1987 a 1995 se estudió una población de pumas en una área de aproximadamante 2500 km2 , localizada en la porción central Sur del Estado de Idaho y el Noroeste del Estado de Utah, en los Estados Unidos de América (41 °40' y 42°30' Latitud N, y 113° y 114°42' Longitud W). Para monitorear el tamaño y composición de la población se utilizaron técnicas de marcaje-recaptura y radio telemetría . Como parte del estudio se calcularon la densidad, supervivencia, mortalidad, natalidad y dispersión de la población. Un total de 91 pumas fueron monitoreados a lo largo del 28 Carlos A. López González Puma population dynamics periodo de estudio. La densidad promedio de los adultos fue de 0.96 pumas por 100 km'. La edad de la cohorte residente se considera joven {<5 anos). La edad de la primera reproducción de las hembras fue de 17 meses, con un tamaño de camada promedio de 2.5 crías y un intervalo entre camadas de 17 meses en promedio. La probabilidad de supervivencia de las criases del 52.9% y la de los adultos de 70.2 ± 23.5%. La mayoría de las muertes registradas en la población estuvo relacionada a actividades humanas. La mayoría de los pumas se dispersaron al alcanzar su independencia, sin embargo las hembras fueron filopátricas hasta que la población aparentemente alcanzó su capacidad de carga. INTRODUCTION In order to understand the factors that are regulating animal populations, studies should foccus on several basic parameters. Such elements include how the population numbers change through time and why, natality and mortality factors and, how humans fit in the "natural" system (Caughley 1994). Population characteristcs of pumas have been examined throughout the western United States, Florida, Alberta and British Columbia; Canada, and Chile (e.g. Anderson 1983, Iriarte et al. 1990, Lindzey et al. 1994, Maehret al. 1991a, Ross and Jalkotzy 1992, Spreadbury et al. 1996). Most studies have either determined densities, home ranges, population fluctuations or other factors affecting population size (Ross and Jalkotzy 1992). Hunting has been identified as a factor limiting and/or reducing populations {Lindzey et al. 1992, Shaw 1980, Ross and Jalkotzy 1992). Social interactions and prey densities are factors that help control population numbers (Hemker 29 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics et al. 1984, Lindzey et al. 1994, Seidensticker et al. 1973, Sweanor 1990). Recently, mortality during prey capture have been suggested asan importan! aspee! influencing population size (Ross et al. 1995). In sorne isolated populations habita! fragmentation (as a consequence of human activity) can possibly explain the demography ofsuch areas (Beier 1993, Maehr et al. 1991a) . What can be expected? From reviews on spacing patterns (Sandell 1989), life-history traits (Gittleman 1989), and body size (Eisenberg 1989). We predicted: 1) The puma population in the study area should have similar demographic characteristics to others. 2) If human hunting and fragmentation have any effect in the population it will probably be reflected in higher replacement rates, lower survival, and mortality patterns. 3) As a result ofhunting, natural mortality should be considerably reduced, since replacement is taking place at a more constan! and predictable rate than natural causes . In this study we wanted to describe and monitor the size, composition, natality, and mortality to understand the population characteristics ofhunted pumas in the Idaho-Utah border in order to help make management decisions in areas of similar habitat and vegetation characteristics . STUDY AREA The study area was located in the Northwestern United States and forms part of South- central Idaho and North-western Utah (Figure 1 ). The study area is "2,500 km2 within the polygon located at 41°40' and 42°30' N, and, 113° and 114°42' W . 30 Carlos A. López González ] o i 4710 1 47001 1 4680, :::, 4670 1 4660 4650 4640 270 280 Puma population dynamics 1-86 Albion -84 u.s. 30 290 300 310 320 330 UTM (10 km intervals) Figure 2.- Map ofthe United States of America showing the States ofldaho and Utah with a schematic view of the study area. Contour lines are 300 m apart, starting at 1800 mas!. 31 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - Carlos A. López González Puma population dynamics Elevations range from 1585 to 3151 mas] (U. S. Geological Survey 1990). The valleys range from 1585 to 1829 mas!, and the mountains from 1830 to 3151 mas l. Precipitation (approximately 300 mm) was usually present in the fonn of snow, from late October early November into late February, occasional showers and thunderstonns were present in spring and summer . The habitat is classified as great basin desert (Shelford 1978) with a landscape dominated by a sagebrush (Artemisia)- shadscale (Atriple.x) association but also including small forested portions of juniper (Juniperus), pine (Pinus), douglas-fir (Pseudotsuga), and mahogany (Cercocarpus). ldaho's forests have not been studied in ful] detail (Caicco et al. 1995), and the study area was not well classified except for the City ofRocks National Preserve, therefore, partial classification ofthe vegetation communities were given through personal observations . Throughout the area, valleys and open areas on the mountains were dominated by Artemisia tridentata. Forested associations are sparsely located through different altitudes and across the study area. The most dominan! communities are Pine-Juniper (Pinus edulis-Juniperus osteosperma), Aspen-Pine (Populus lremuloides-Pinus edulis), Mountain mahogany-Douglas fir ( Cercocarpus ledifolius-Pseudotsuga men=iesii), Juniper (Juniperus osteosperma) and Mountain mahogany (Cercocarpus ledifolius). Alpine meadows are also present at higher elevations and mesas. A large proportion ofthe valleys was transfonned by human activities. Crops present in the area are alfalfa, barley, and potatoes (Ken Jafek, Simplot Fanns, pers. com.). Localized logging and mining operations are present, but the main activity is livestock management in the mountains. The land tenure system is prívate property, National Forests, and Bureau of Land 32 Carlos A. López González Puma population dynarnics Management lands; the National Park Service is present with the small City of Rocks, National Preserve. Mule 6 mo. old), fitted with a radiocollar 33 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics containing a motion sensitive transmitter (Wildlife Materials, !ne.®) . The social condition of pumas was deterrnined by age, reproduction, and residency status . Resident adults were independent pumas ~ 17 mo of age with established home ranges, and were the breeding members ofthe population (Laing and Lindzey 1993, Seidensticker et al. 1973) . Numbers ofknown resident animals per year were assessed during winter when new individuals could be determined by track sets . We calculated the population size with a mark resight survey using the modified Lincoln- Petersen population estimate for the years when data were more complete (90-95). The Emigration/lmmigration estimator of the computer program NOREMARK was used to compensate forthe violation of geographic closure (Hein andAndelt 1995, White 1996). Then the observed population was compared to the calculated one . Kittens were discovered and parturition dates fixed by monitoring female behavior and home area in particular home area use was reduced, Maehr et al. 1989a). Older litters were discovered by walking on females or by coming across tracks in the snow. Most kittens were aged within days ofbirth and in sorne instances with a month difference . Time of independence was determined by following pumas until we saw no associations mother. Mortality data was pooled from different sources, and kitten survival was estimated by pooling data for the total length ofthe study in order to have larger sample size . We calculated daily adult survival rate by the formula (White and Garrott 1990): s;= (X;- Y;)lx;. Where X; is the total number oftransmitter days in the interval and Y; is the total number of deaths, respectively, in interval i. The probability ofsurvival for interval i is then the product of 34 Carlos A. López González Puma population dynamics the daily survival rates: S; = sL_ Where L is the Iength in days of interval i. Hunting permits on the Idaho side are determined by a female quota, where n number of males can be harvested until the female quota is reached. Female quota from 1987 to 1991 was three females, and from 1992 to 1994 it was one female. Due to local ( deer and puma) hunters pressure, a three female quota was reestablished in 1995. In the Utah side 10 permits are issued per hunting season, regardless of sex and age. Budget restrictions prevented us from performing mule deer (main prey, López González 1994) or altemative prey surveys. Nonetheless we obtained the number of deer hunted from the ldaho Fish and Game, the number of permits issued, and the numbers of days hunted on a given year. These parameters were combined into an effort-success hunt index developed with the proportion of deer/permit success divided by the proportion of deer/days. This way comparable unitless numbers could be used in deer population trend to be correlated with the number of pumas present on the study area. In addition, regular driving of roads, walking on trails, and interviews with local wildlife managers yielded sorne qualitative observations on how the species population varied from year to year. Ali data was tested for normality (Kolmorogov-Smimov) and equal variance (Leven median). Ali data is reported as mean and standard deviation. Simple linear correlation analysis tested for differences in size between sexes. Ali tests hada probability value of0.05. Ali statistic tests were performed with Sigmastat for Windows 1.0 (Jandel Corporation®) and following Zar (1974). 35 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics RESULTS Population size and structure Ninety-one pumas in the study area were monitored for a mean 1.7 years (SD=l .09, range 1-5), representing a total of 56,465 animal-telemetry-days . The mean numberofpumas presentperyearwas 25.88 (SD=13.05, range 7-43). Usingthis figure as a density estimator we have 1.03 pumas per 100 km2. Another estimator of density was calculated with the total number of residen! pumas in the year of study with the most animals . Twenty-four residen! pumas were present during 1994 for a density of0.96 puma per 100 km2 • Both calculations are close to 1/100 km2 • The largest number of pumas present ,vithin the population at the peak observed during 1993 was 43 animals. We do not believe however, that incorporating transient and kitten cohort in calculations presents a reliable estímate of density . Average sex ratio was of 1.0 male to 1.95 female, and variation between years was 1.0 M:0.8 F (1990) to a higher 1.0 M:3.0 F (1987, 1988,and 1991). There was no significan! deviation from a lM:IF (z= 0.83, p > 0.05) . We wanted to compare the number of pumas per year, so we calculated a heterogeneity chi-square to test for independence with the acceptance of a null hypothesis of data being part of the same population and with no independence between years (X2=12.76, df= 56, p>0.99) . We wanted to know ifthere was any dependence between the number ofresident males and transients so we correlated them under the assumption that the number oftransients ,vill be reduced by an increase in the number of resident males. Linear regression yielded a light positive 36 Carlos A. López González Puma population dynamics correlation (r2= 0.34, df= 8, p>0.05) with an increase in the number oftransients as the number ofmales increased. Similarly,juveniles should be related to numberofresident females with the number of kittens increasing positively with the number of females. This linear regression was positive (r=0.439, df= 8, p>0.05). Both ofthe regressions did not explain most ofthe variance present on the samples, 58.9 and 66.3 respectively formales and females. An apparent trend is observed when considering the raw data from 1990 to 1995. There was an increment in resident animals until 1994 and then a reduction in 1995. The number of resident pumas by sex forthe study area is4.55 (SD= 2.67) males and 8.88 females (SD=5.13) per year. Mean number oftransient pumas was 3.88 (SD=l.66) and kittens were 8.66 (SD=5.57). The number of resident females was correlated with the number of males present per year in the study area (r2=0.83 I, df= 8, p<0.005). During the first three years, the study was restricted to the Idaho portion resulting in low capture success and consequently low numbers. In 1990 capture efforts started on the Utah side, yielding better results and increasing sample size. Number of resident animals was relatively constan! during the first three years ofthe study, showing the same results and relatively lower densities. When including the rest ofthe study area a change in numbers is evident (Figure 2). A trend seemed to be present with increasing numbers from 1990 to 1993 almost tripling the number of animals. During the peak year of residen! animals ( 1994) poor recruitment on the transient and kitten cohorts of the population is observed. 37 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics "' 8 years. More than half ofthe population hadan age <2 years. Most productive females in the population were included in the interval between 2 and 5 years old. It is interesting that most ofthe males were less or egua! to four years old. The number of pumas from 1990-1995 was negatively correlated to the hunter-success index (r2= -0.8364, p<0.05). In other words, the number of 0.05). 39 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A López González Puma population dynamics "' '" i:: (1) i: (1) eo <( 8- 7-8 6-7 5-6 4-5 3-4 2-3 1-2 0-1 Mate ~ Female ~ ~ --m] . ~ 20% 15 10 5 o 5 10 15 Percent distribution of a puma population . Figure 4.- Age structure ofpumas (Puma concolor) in South central ldaho and NW Utah . 40 20% Carlos A López González Puma population dynamics 6 5 E o ~ 4 . E 'o 3 o z 2 1 a) E F M A M J J A s O N D Month E F M A M J J A s O N D Month Figure 5.- Month ofbirth (a) and independence {b) for pumas in the Sawtooth National Forest, Idaho-Utah, 1987-1995. 41 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics Only the birth intervals for three females in the study area were determined. Two had consecutive litters in a single year because they lost their first litter, one to starvation and the other one to infanticide. The third one was monitored through three consecutive litters, with intervals between litters at 18 and 16 months (mean= 17.3 mo). First reproduction was recorded as early as 17 mo. for two females. An interesting feature is that both of these "first time" mothers lost their litters, probably related to selection of inadequate den sites . Kitten survival was calculated through the numbers of cubs ali ve ata given age and pooled together for a larger sample size. Data was pooled by month and sex in known kittens and unknown sex when kittens were found by other people. We assumed that ali kittens survive the first month oftheir lives and determine their permanence within the population until reaching dispersa! age. Overall kitten male survival (58.06%) was higher than female (45.0%). Male survival was similar to female survival for the first four to five months of age, after which, male survivorship was considerably Iarger than female (Figure 5a). When comparing overall survival from known-sex kittens with that of ali cubs included (Figure 5b) , survival is higher for known kittens(52.94%). Ali cubs included is4 l .53%. Female mortality is relativelyconstant at 55% from 1 O to 13 months of age, decreasing to 45% after the 14 mo . Dispersa! Monitoring ofkittens was done in order to determine the time of dispersal. A total of24 kittens were followed from birth and/or when <6 mo of age until dispersal. 42 Carlos A. López González Puma population dynamics Q) ;,. cÜ ·.::: "' "' ..o :::, <:.) .... o ~ Q) ;,. cÜ -"' "' ..o :::, <:.) .... o ~ 100 90 80 70 60 50 40 30 20 10 o 100 90 80 70 60 50 40 30 20 10 o Dispersa! age --+-- Males -11- Females o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Age (months) Dispersa! age --.e;:,, ► --+-- Cubs of known sex -11- Ali cubs included O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Age (months) Figure 6.- Kitten survival in the Sawtooth National Forest, Idaho-Utah, 1987-1995. a) Comparative survival ofknown male and female kittens. b) Comparative survival ofpooled known and unknown sex kittens. 43 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López Gonz3lez Puma population dynamics Pumas disperse at any time of the year (Figure 4b) but a peak is present between January and March (66.66%), and November and December (20.83%). If pooled together on a biological concept, 87.49% of dispersing takes place in late fall and winter. Five females that reached dispersa! age remained on their natal grounds, but only one replace the home range ofthe paren!. Adult survival and mortality Average annual survival rates for pumas (females and males combined) was 70.2 ± 23.5% with a range from 35.4 to 100%. Average male survival was 61.7 ± 36.5% and female average survival was 77.3 ± 25.4%, there was no significant difference between sex survival (t= -1.02, df = 14, p>0.05). There is a Iow turnover in home range and therefore tenure systems Iast for severa! years (between 2 - 3 years). Average mortality could be considered Iow (1- survival) in the population regardless of the hunting regime. Mortality was produced by severa! causes. Human activity was most important. It could be direct (hunting) and indirect (killing a female which causes her kittens to starve ). Intraspecific mortality accounted for kitten deaths ( n= 3 ). Only one mortality in relation to prey capture was recorded. Capture mortality was present on the study ( n= 2) . Population morphometrics Morphometrics were obtained for 73 pumas (31 females and 42 males). Pumas were measured each capture and/or recapture. There was no significan! difference between sexes in total length (t = 289, df= 31, p=0.12). Males (57. 7 kg) were significantly heavier than females 44 Carlos A. López González Puma popufation dynamics ( 41.1 kg)(t=2. l 7, df-= 30, p<0.05). Predictive relationships were developed through correlation analysis. Raw data was transforrned into log normal. Weight in females can be predicted by the relationship log Fw is equal to (0.344 * log total length) - 27.6 (Figure 6) and male weight is predicted by log Mw equal to (0.619 * log total length)- 69.0 (Figure 6). DISCUSSION The number of pumas estimated for this area falls between that of a slightly hunted population in Central ldaho (Homocker 1970) and a non-hunted population in apparently less productive habitat (Lindzey et al. 1994 ). Population densities forthe study area were within published estimates for Nevada's Great Basin (Ashman et al. 1983) with 1.02 puma per 100 km2 , with only one wildemess area ofNevada having a density of 1.56/100 km2 • The Rockies ofCentral Idaho hada density of 2.9/100 km2 (Homocker 1970) and Central Colorado hada density of 1.1/100 km2 (Anderson et al. 1992). The canyonlands of south central Utah described by Hemker et al. (1984) do not differ too much from the geomorphological and vegetation structure of the study area, nevertheless density there was 0.3-0.5 ind/100 km2 , but averaged 0.37/100 km2 at the end of a long terrn study (Lindzey et al. 1994). For the Sierra Nevada of California a density of 3 pumas/100 km2, and no seasonal migration occured (Nea! et al. 1987). The highest densities were recorded for a protected area of Patagonia with 7 animals/ 100 km2 (Johnson et al. in press), and for the Sierra Nevada with 7.8 ind/ 100 km2 (Steger 1988), although for these last two studies we believe ali social classes were included. 45 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A López González Puma population dynamics 5.0 4.5 4.0 ~ :o :o o -::::, 3.5 .:i: :o ·¡; 3: 3.0 2.5 • o Female -- Fem y= 2.51x - 3.66 • Male o --- Mal y= 2.73x - 4.32 ¾ 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 Total length (log mm) Figure 7.- Linear regression ofthe log total length ofthe body against log body weight for pumas in the Sawtooth National Forest, Idaho-Utah . 46 Carlos A López González Puma population dynamics An ongoing study in a tropical dry forest of the pacific coast of Mexico has a density of 3-4 animals /100 km2 (R. Nuñez and B. Miller pers. com.). Crawshaw and Quigley (un pub l. data) calculated 4.4 animals per 100 km2 on the Brazilian Pantanal. Eisenberg et al. (1979) calculated a density of 2 animals per 100 km2 for the Venezuelan Llanos. For the Chihuahuan desert ofNew Mexico, an adult density of2.0I pumas /100 km2 was found, this study area is supposed to be less productive than other North American ones, yet it harbors one of the highest adult densities, apparently related to their protected status (Logan et al. 1996). Lower densities have been atributed to low numbers of prey (Hemker et al. 1984 ), lower habita! quality (Sweanor 1990) and stalking cover (Seidentsticker et al. 1973 ), or high densities when a proposed carrying capacity is reached ( 4 adults/100 km2, Shaw 1989). Lower densities are also related to habitat fragmentation such as Florida panthers (1.1/100 km2, Maehr et al. 1991a). A factor affecting density calculations for the study area is the amount ofland not used by pumas because of poor habita! quality both in cover and prey abundance (pers. obser. ), but this unused space is affecting the animals of such areas and therefore should be included in the density estimates. , probably represenling an asymplo/e in the carrying capacity far the area. No evident pattem is present either with latitude or Jongitude, or from ¡irotected areas or fragmented ones. The differences obtained between or within studies may be due to effective population sampling and the techniques used for this purpose (Nowell and Jackson 1996). Concurrent with this comment, results presented by Gros et al. (1996), when comparing different methods to calcula te the population of cheetahs (Acinonyx juba tus), found the method that best fit the observed population was an indirect one, through interviews. Both density estimates 47 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics extrapolating known numbers and radio telemetry were lower than the observed size . Density estimates for tigers (Panthera tigris) have been related to both prey biomass and vegetation charactertistics (Karanth 1991 ) . Woodroffe and Ginsberg ( 1998) indicate that the major cause of death for large camivores living in protected areas comes when they are at the boundary or cross it into the unprotected exterior. Large camivores are affected by forces outside the boundaries. Small parks present a higher risk for this. Low density would also increase home range size and movement to put more camivores at risk. Smallwood ( 1997) reveals possible confounding effects in puma research trends; he also says that most of the variation is explained by the spatial extent of study area . Coupled with this would be the intensity and Iength oftime of a given study . The numbers of animals calculated with the NOREMARK program para! lel the estima tes from track and radio telemetry sampling. It has been suggested that open mark-recapture methods often ínflate the numbers present in the population (McClure et al. 1996, Miller et al. 1997), but this does not seem to be the case here. Minimal total population known ali ve was 26 individuals, which is relatively close to the 23 resident adults of 1994, a difference of 11.53% . Adult sex ratios for this study are similar to other northem temperate puma studies, where hunting at different leve Is occur (Logan et al. 1986, Seidensticker et al. 1973 ). Two non hunted populations reported a sex ratio of 1: 1 (Anderson et al. 1992, Logan et al. 1996). An interesting area is located in southeastem Arizona where, regardless ofbeing heavily hunted, a parity sex ratio was observed (Cunningham et al. 1995). Anderson (1983) reports that most cougar populations have a parity sex ratio, when sample size is above 30 . 48 Carlos A. López González Puma population dynamics Other asocial felids have a sex ratio favoring females over males. Tigers 2.5-4: I (Schaller 1967, Sunquist 1981) and Ieopards 2:1 (Schaller 1972). For another african Ieopard study sex ratios were slightly favored to females 1.1: 1 (Bailey 1993). The population ofthis study reflects a Iarge proportion of prime young felids, attributable to the hunting effect. A non hunted population in California showed an average age of39 mo. or more in both sexes (Hopkins 1989). On the other hand a non-hunted population ofColorado had an average age of 20 and 21 mo. formales and females respectively (Anderson et al. 1992). For a desert non-hunted population of New Mexico most of the animals were adults (Logan et al. I 996). In a heavily hunted population from Arizona, most adult males were between 25 to 48 mo. old, and, most females were more than 25 mo. old (Cunningham et al. 1995). Offspring sex ratios for this population were similar to other populations of pumas. For central Utah a 1.31: 1 sex ratio was detected (Lindzey et al. 1994). For the Florida panther a sex ratio of6: I was determined(Maehret al. 1991a). Forthe desert ofNew Mexico a I: 1.27 ratio was observed (Sweanor 1990). Average Iitter size (mean= 2.5) was slightly Iower than the data published by Anderson (1983) for 407 postnatal litters (mean= 2.67). For two Canadian studies, in British Columbia a Iitter size of3.I was observed (Spreadbury et al. 1996), a 20% difference of our data. For Alberta mean Iitter size was 2.2 kittens (Ross and Jalkotzy 1992). Logan et al. (1996) calculated a mean litter size of 3.02 for the Chihuahuan desert. Overall kitten survival is similar to that calculated for Southem California (Beier and Barrett 1993 ), but Iower than Nevada (Ashman et al. 1983 ), Utah (Lindzey et al. I 988) and Alberta 49 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics (Ross and Jalkotsky 1992). Nevertheless only !hose studies have calculated kitten survival. A similar survival rate has been documented for the African !ion in the Serengeti plains (Bygott et al. 1995) where no hunting pressure is present, but long traveling distances and prey migration 'reduces energetic intake and consequently favors mortality. Mortality causes were not documented in ali cases, but indirect effects from hunting were present when a female was illegally taken, she lost a litter ofthree. Apparently sorne young reproductive females do not conceal initial den sites from predators or weather, and this case was observed twice when litters were lost. This could reflect a learned behavior, because not ali first mothers lost the litters. The successful nature of concealed den si tes from weather (Bleich et al. 1996) and predators both intra and interspecific (Beier et al. 1995) has been tested . lnfanticide was recorded in two instances on the study area. The impact of Carnivore infanticide on populations is not well understood (Packer 1983). lt is currently considered a mechanism to increase the fitness of a newly arrived male into the population. Yet new information, has demonstrated that female grizzly bears will mate with more than one male (Craighead et al 1995) as a possible explanation to avoid infanticide, and this process is allowed by delayed implantation (Mead 1989) . This has not been documented in pumas, but Beier et al. ( 1995) observed a male courting two females at the same time. Even those studies with really intensive field seasons can miss an association event such the one needed to create a dual parenthood, but we do not know ifthe physiological possibility exists from captive studies . Female reproductive events were not documented fora large sample size in the population . The listed period between successful litters ( 17 mo.) lays within published estimates (see review 50 Carlos A. López González Puma population dynamics in Anderson et al. 1992). Estrous was induced within a month oflosing a litter, regardless of what caused the loss. F irst reproduction time was similar to the one described by Maehr et al. ( 1989b) for Florida panthers and slightly younger than other nearby populations (i.e. Homocker 1970, Lindzey et al.1994 ). Litters were bom throughout the year with a peak in summer-fall. The time of the year when most litters were bom can be related to high availability of both young deer and other species, and this time is less stressful than winter season. The plasticity of pumas is reflected by the ability to produce kittens at any time of the year. This pattem has been related to the diversification of the species in tropical areas where seasons are Jess significan! (H. Shaw unpublished) but this hypothesis is yet to be tested. Seasonality oftemperature may not be as great, but seasonality of other events (i.e. rainfall) can be pronounced in sorne parts of the tropics. Another possibility is that, year-long breeding is an inherited trait because of competition with larger camivores present until Late Pleistocene (i.e. Panlhera alrox, Panlhera onca and Smilodon spp., Kurten and Anderson 1980, Jesús M. Castillo Cerón, UAEH, pers. com), a similar situation can be observed with cheetahs, competing with african lions (Panlhera leo) and spotted hyenas (Croccutta croccutta, Caro 1994, Laurenson 1995). Since there doesn't seem to be any apparent difference between sexes ofkittens produced an interesting question would be: When do pumas produce more males or more females, and can this be related to the number of resident females in the area that will in tum reflect the number ofmales migrating into newer areas or staying within their natal area. No large database exists in order to answer this question but knowing when more female progeny are produced would have 51 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -- • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynarnics strong management implications . Dispersa! takes place throughout the year in this population of pumas, but most frequently occurred during winter, a stressful time ofyear. Of9 pumas in southem California, dispersa! time was present throughout the year (Beier 1995). In Colorado (Anderson et al. 1992) dispersa! occurred mostly during spring and summer. In Alberta, Canada (Ross and Jalkotsky 1992) independence was documented in every month butjune . Philopatry was observed in this study for five dispersing females. This pattem has been reponed in different habitats and populations. Murphy ( 1983) observed one philopatric female in Yellowstone. Two studies in southem Florida observed one philopatric female each (Maehr et al. 1991a, Smith and Bass 1994). Laing and Lindzey (1993) reported the pattems ofreplacement in pumas from Utah, they recorded 5 philopatric females. This process has not been proximally related to adult animal density (Logan et al. 1986, Seidensticker et al. 1973), but it plays an importan! role for the recovery of lost residen! females with independent progeny (Laing and Lindzey 1993) that will cluster in an area forrnerly occupied by a single animal, and raise total density . Adult survival can be considered within the published estimates for the species but on the lower side. Estimators are different within studies and therefore should be considered indicative . Florida panthers have an 82% probability of survival (Maehr et al. 1991 b ), which is similar to a non-hunted population of Utah (74%, Lindzey et al. 1988) but lower than the 88% for a non- hunted population ofColorado (Anderson et al. 1992). Cunningham et al. (1995) has calculated the lowest survival probabilities for pumas (55%), and their study area was subject to a high 52 Carlos A. López González Puma population dynamics hunting pressures. A fragmented population from southem California had an annual survival estímate of75% (Beier and Barrett 1993). Differences between studies can be attributable to the relative importance of mortality causes. In our study area hunting accounts for most of the mortality. In Florida (Maehr et al. 1991b) andBritish Columbia (Spreadbury et al. 1996) the main mortality cause was related vehicle collision. In southem Utah (Lindzey et al 1988) as in New Mexico (Sweanor 1990), intraspecific mortality was a very importan! cause, which can account for differences with other areas. A cause of mortality recently discussed is prey capture, Ross et al. (1995) have pointed out that this can be as high as 27% oftotal deaths. We did ncit documented any capture prey related mortality but there could be instances where this mortality is present at a higher proportion. Prey scarcity and/or hunting cover that is not ideal are possible scenarios that may force pumas into situations that can increase the potential of such mortalities. Hunting mortality should be approximately 25% ofthe harvestable cohort population numbers to maintain stability (Lindzey et al. 1992), although recen! findings from New Mexico say that for control purposes, 28% killing in the population should be enough, these authors also state that sustainable adult male harvest should not exceed 8% (Logan et al. 1996). Pumas in the study area have similar length published in other studies ( see Anderson 1983). Mass was similar but males were slightly lighter than nearby males (i.e. Homocker 1970, Ackerrnan et al. 1986). Masses can be related to energy intake and behavioral pattems, and pumas in our study area travel longer distances than other published data (Beier et al. 1995, Maehr et al. 1990) therefore energy should be allocated in travel more than in increasing weight. 53 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - Carlos A. López González Puma population dynamics MANAGEMENT IMPLICA TIONS The life time productivity of a female puma in the study area is three litters with 2 or 3 kittens, successfully producing a total of6 to 9 in her life span. From this total, only halfwill reach dispersal age. Adulthood survival for a philopatric female is higher than male dispersa!. Approximately 30% of 6 or 9 kittens will survive to become a residen! productive adult, and less than 5% ofthe male progeny will become part ofthe original population. Female recruitment is limited by the carrying capacity, with a top of60% incorporation into the original population . Homocker and Bailey (1986) proposed that felid populations are regulated mainly by social organization, but recen! studies (i. e. Logan et al. 1996) have also included factors negligible at the time of such publication. Mortality caused by intraspecific encounters and interspecific non agonistic behaviors such as prey encounters may surpass agonistic mortality . Pattems of the importance of one or the other cannot be known this time because most studies differed on their objectives and did not publish such results. Quigley and Crawshaw (1992) point out the need to develop site-specific and local conservation and management plans for large camtvores . Severa! of the differences or similarities between studies are probably related to cyclic environmental pattems that are variable on time and space. Such cycles have been acknowledged for long time intervals for relatively simple ecosystems (i.e. Yukon, Boutin et al. 1995). These cycles are not known for areas where the puma has been studied, and for a long term monitoring . The state ofCalifomia has proposed a 13 year cycle (Smallwood 1994). This may be a scenario that ali northem and sorne tropical populations ofpumas are facing, but no long-term study exists 54 Carlos A. López González Puma population dynamics to provide such data. ACKNO\VLEDGEMENTS We are grateful to K. Jafek and K. Allred for their indispensable help as our houndsman. The Bruesch family provided a site for our summer camp. B. Miller, S. Gallina, and S. Mandujano gave invaluable comments to the manuscript. Funds provided for the study were given by Boone and Crockett Club, Bureau ofLand Management, Earthwatch, Inc., Eppley Foundation, Mazamas !ne., and Skaggs Foundation. 55 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A López González Puma population dynamics LITERA TURE CITED Ackennan, B. B., F. G. Lindzey y T. P. Hemker. 1986. Predictive energetics model for cougars . Pp.333-352. In: S. D. Miller y D. D. Everett (eds.). Cats of the World: Biology, Conservation, and Management Proc. Second International Symposium, Kingsville, TX . 1982. 501 pp . Anderson, A. E. 1983. A critica! reviewofliterature on puma (Fe/is concolor). Colorado Division ofWildlife Special Report No. 54. 91 pp Anderson, A. E.; D. C. Bowden; D.M. Kattner. 1992. The Puma on Uncompahgre plateau, Colorado. Technical Publication No. 40. 116 pp . Ashman, D. L., G. C. Christensen, M. L. Hess, G. K. Takamoto and M. S. Wickersham. 1983. The mountain !ion in Nevada. Nevada Fish and Game Department, P-R Proj. W-48-15 Final Report. 75 pp . Bailey, T. N. 1993. The African leopard: Ecology and behavior of a solitary felid. Biology and Resource Management in the Tropics Series, Columbia Press University, New York. 429 pp . Beier, P. 1993. Detennining mínimum habita! areas and habita! corridors for cougars . Conservation Biology 7( 1 ): 94-108 . Beier , P. 1995. Dispersa! of juvenile cougars in fragmented habitat. Journal of Wildlife Management 59(2): 228-237 . Beier, P. and R. H. Barrett. 1993. The cougar in the Santa Ana Mountain Range, California . Orange County Cooperative Mountain Lion Study. Final Rep. 102 pp . 56 Carlos A. López González Puma population dynamics Beier, P., D. Choate, and R. H. Barre!!. 1995. Movement pattems of mountain lions during different behaviors. Joumal ofMammalogy 76(4): 1056-1070. Bleich, V. C. , B. M. Pierce, J. L. Davis and V. L. Davis. 1996. Thermal characteristics of mountain !ion dens. Great Basin Naturalist 56 (3): 276-278. Boutin, S., Krebs, C. J., Boonstra, R., Dale, M. R.T., Hannon, S. J., Martin K., Sinclair, A R. E., Smith, J. N. M., Turkinton, R., Blower, M., Byrom, A, Doyle, F. l., Doyle, C., Hik, D., Hofer, L. Hubbs, A, Karels, T., Murray, D. L., Nams, V. O'Donahue, M., Roehner, C. and Schweiger, S. 1995. Population changes ofthe vertebrate community during a snowshoe hare cycle in Canada's boreal forest. Oikos 74 (1 ): 69-80. Caicco, S. L., J. M. Scott, B. Butterfield, and B. Scuti. 1995. A gap analysis ofthe management status of the vegetation of ldaho (U.S.A. ). Conservation Biology 9(3 ): 498-511. Caro, T. M. 1994. Cheetahs ofthe Serengeti Plains: Group living in an asocial species. Univ. of Chicago Press, Chicago. 478 pp. Caughley, G. 1994. Directions in Conservation Biology. Joumal of Animal Ecology 63: 215-244. Craighead, J. J., J. S. Summer,and J. A Mitchell. 1995. The grizzly bears for Yellowstone: their ecology in the Yellowstone ecosystem. 1959-1992. Island Press. Washington, D. C. 535 pp. Cunningham, S. C., L. A Haynes, C. Gustavson, D. D. Haywood. 1995. Evaluation of the interaction between mountain Iions and cattle in the Aravaipa-Klondike area of southeast Arizona. Arizona Game and Fish Department Te\:hnical Report No. 17, Phoenix. 64 pp. 57 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics Eisenberg, J. F., M. A. O'Connell, and P. V. August. 1979. Density, productivity, and distribution of rnarnrnals in two Venezuelan habitats. Pp 187-207. In: J. F. Eisenberg ( ed. ). Vertebrate ecology in the Northern Neotropics. Srnithsonian Jnstitution Press, Washington, D. C. 271 pp . Eisenberg, J. F. 1989. Marnrnals ofthe Neotropics: The Northern Neotropics Volurne l. University of Chicago Press, Chicago Illinois. 449 pp . Gittlernan, J. L. 1989. Carnivore behavior, ecology, and evolution. Cornell Press University, New York. 620 pp . Gros, P. M., M. J. Kelly, and T. M. Caro. 1996. Estirnating carnivore densities for conservation purposes: indirect rnethods cornpared to baseline dernographic data. Oikos 77(2): ??-9? Hanby, J. P., J. D. Bygott, and C. Packer. 1995. Ecology, dernography and behavior oflions in two contrasting habitats: Ngorongoro crater and the Serengeti plains. Pp 315-331. In: Serengeti JI Dynarnics, Managernent, and Conservation of an Ecosystern. A.R. E. Sinclair and P. Arcese ( eds.). The University of Chicago Press. Chicago . Hein, E. W. and W. F. Andel t. 1995. Estirnating coyote density frorn rnark-resight surveys. Journal ofWildlife Managernent 59 (1): 164-169 . Hernker, T. P., F. G. Lindzey, and B. B. Ackerrnan. 1984. Population characteristics and rnovernent patterns of cougars in southern Utah. Journal of Wildlife Managernent 48: 1275-1284 . Hopkins, R. A. 1989. Ecology ofthe puma in the Diablo Range, California. PhD. Dissertation, Univ. California, Berkeley. 262 pp . 58 Carlos A. López González Puma population dynarnics Homocker, M. 1970. An analysis of mountain !ion predation upon mule deer and elk in the Idaho primitive area. Wildlife Monographs No. 21. 39 pp. Homocker, M. and T. J. Bailey. 1986. Natural regulation in three species offelids. Pp. 211-220. In S. D. Miller y D. D. Everett (eds.). Cats ofthe World: Biology, Conservation, and Management Proc. Second lntemational Symposium, Kingsville, TX. 1982. 501 pp. Iriarte, J. A, W. L. Franklin, W. E. Johnson, and K. H. Redford. 1990. Biographic variation of food habits and body size ofthe America puma. Oecologia 85: 185-190. Johnson, W. E., W. L. Franklin, and A Iriarte. In press. Sympatric felid and canid predators of Torres del Paine National Park, Chile in Patagonia Gem: the ecology and natural history ofTorres del Paine National Park, Chile. Karanth, K. U. 1991. Ecology and management of the tiger in tropical Asia. Pp. 156-159. In: N. Marayuma (ed.). Wildlife Conservation: Present trends and perspectives for the 21st. Century. Japan Wildlife Research Centre. Yushima, Bankyo-Ku, Tol.y'O. pp. Kurtén, B. and E. Anderson. 1980. Pleistocene mammals ofNorth America. Columbia University Press. New York. 443 pp. Laing, S. P. and F. G. Lindzey. 1993. Pattems ofreplacement ofresident cougars in Southem Utah. Joumal ofMammalogy 74(4): 1056-1058. Laurenson, M. K. 1995. Cub growth and maternal care in cheetahs. Behavioral Ecology 6( 4): 405- 409. Líndzey, F. G., B. B. Ackerrnan, D. Barnhurst, and T. P. Hemker. 1988. Survíval rates ofmountain lions in southem Utah. Joumal ofWildlife Management 52: 664-667. 59 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López Gonzalez Puma population dynamics Lindzey, F. G., W. D. Van Sickle, S. P. Liang, and C. S. Mecham. 1992. Cougar population to response manipulation in Southem Utah. Wildlife Society Bulletin 20: 224-227 . Lindzey, F. G., W. D. Van Sickle, B. B. Ackerman, D. Banhurst, T. P. Hemker, and S. P. Laing . 1994. Cougar population dynamics in Southem Utah. Joumal ofWildlife Management 58(4): 619-624 . Logan, K. A., L. L. Irwin, and R. Skinner. 1986. Characteristics of a hunted mountain !ion population inWyoming. Joumal ofWildlife Management 50(4): 648-654 . Logan, K. A., L. L. Sweanor and M. Homocker. Cougars population dynamics. Pp. 22-113. In: K . A. Logan, L. L. Sweanor, T. K. Ruth and M. G. Homocker.( eds. ), Cougar of the San Andres mountains, New Mexico. 1996. Federal Aid in Wildlife Restoration Project W- 128-R for New Mexico Departament ofGame and Fish, Santa Fe, New Mexico . López-González, C. A. 1994. Eco logia y comportamiento del puma (Puma concolor) en un habita! fragmentado. M. S. thesis, Universidad Nacional Autonoma de Mexico. 64 pp . Maehr, D. S., E. Darrell. Land, J. C. Roof, and J. W. McCown. 1989a. Early maternal behavior in the Florida panther (Fe/is conco/or coryi). American Midland Naturalist 122( 1 ): 34-43 . Maehr, D. S., J. C. Roof, E. D. Land and J. W. McCown. 1989b. First reproduction of a panther (Fe/is concolor coryi) in southwestem Florida, U. S. A. Mammalia 53( 1 ): 129-131. Maehr, D. S., E. D. Land, J. C. Roof, and J. W. McCown. 1990. Day beds, Natal dens, and Activity ofFlorida Panthers. Proceedings ofthe Annual Conference ofSoutheastem Fish and Wildlife Agencies 44: 310-318 . Maehr, D. S.; E. Darrell Land, and J. C. Roof 1991a. Social Ecology ofFlorida Panthers. National Geographic Research & Exploration 7 (4): 414-431. 60 Carlos A. López González Puma population dvnamics Maehr, D. S., E. Darrell Land, and M. E. Roelke. 1991 b. Mortality pattems of panthers in Southwest Florida. Proceedings of the Annual Conference of Southeastem Fish and Wildlife Agencies 45: 201-207. McCiure, M. K., S. S. Norrnan, and S. W. William. 1996. Densities of coyotes at the interface of Saguaro National Monurnent and Tucson Arizona. Southwestem Naturalist 41 (1 ): 83-86. Mead, R. A. 1989. The physiology and evolution of delayed irnplantation in Camivores. Pp 437- 464. In: J. L. Gittlernan (ed.). Carnivore behavior, ecology, and evolution. Comell University Press. Ithaca, New York. 620 pp. Miller, S. D., G. C. White, R. A. Seller, H. V. Reynolds, J. W. Schoen, K. Titus, V.G. Bames. R. B. Srnith, R.R. Nelson, W. A. Ballard, and C. C. Schwartz. 1997. Brown and black bear density estirnation in Alaska using radiotelernetry and replicated rnark-resight techniques. Wildlife Monographs 133: 1-53. Murphy, K. M. 1983. Relationships between a rnountain !ion population and hunting pressure in western Montana. M. S. Thesis, Univ. Montana. Missoula. 48 pp. Nea!, D. L., G. N. Steger, and R. C. Bertrarn. 1987. Mountain lions: Prelirninary findings on Horne-Range use and density in the Central Sierra Nevada. Research Note PSW-392. Berkeley, Ca. Pacific Southwest Forest and Range Experiment Station, Forest Service, U. S. Department of Agriculture. 6 pp. Nowell, K. and P. Jackson. I 996. Wild Cats: Status, survey and conservation action plan. IUCN/SSC Cat Specialist Group. 382 pp. Packer, C. I 983. Adaptations of female lions to infanticide by incorning males. American Naturalist 121: 716-728. 61 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma population dynamics Quigley, H. B. and P. G. Crawshaw. 1992. A conservation plan for the jaguar !'anthera onca in the Pantanal region of Brazil. Biological Conservation 61: 149-157 . Ross, P. J. and M. G. Jalkotzy. 1992. Characteristics of a hunted population of cougars in Southwestem Alberta. Joumal ofWildlife Management 56(3): 417-426 . Ross, P. J., M. G. Jalkotzy, and P. Daoust. 1995. Fatal trauma sustained by Cougars, Fe/is co11color, while attacking prey in Southem Albert¡¡. Canadian Field Naturalist 109(2): 261- 263 . Sandell, M. 1989. The mating tactics and spacing pattems of solitary camivores. Pp 164-182. /11: J. L.Gittleman (ed). Camivore behavior, ecology, and evolution. Comell University Press . Ithaca, New York. 620 pp . Schaller, G. B. 1967. The deer and the tiger. Chicago, University of Chicago Press. Chicago, Illinois. 370 pp . Schaller, G. B. 1972. The Serengeti lion. Chicago, University ofChicago Press. Chicago, Illinois . 480 pp . Seidensticker, J. C., M. G. Homocker, W. V. Wiles, and J. P. Messick. 1973. Mountain lion social organization in the Idaho Primitive Area. Wildlife Monographs 35:1-60 . Shaw, H. G. 1979. A moutain lion field guide. Arizona Game and Fish Department, Special Report No. 9. 27 pp . Shaw, H. G. 1980. Ecology ofthe mountain lion in Arizona. Pittman-Robertson Project W-78-R, Final Report. Arizona Game and Fish Department. 14 pp . Shaw, H. G. 1989. Soul among lions: the cougar as peaceful adversary. Johnson books. Boulder, Colorado. 140 pp . 62 Carlos A. López González Puma population dynamics Shelford, V. E. 1978. TheEcologyofNorthAmerica. UniversityofillinoisPress. Urbana, Illinois. 610 pp. Smallwood, K. S. 1994. Trends in California mountain )ion populations. Southwestem Naturalist 39(1): 67-72. Smallwood, K. S. 1997. Interpreting puma (Puma concolor) population estimates for theory and management. Environmental Conservation 24 (3): 283-289. Smith, T. R. and O. L. Bass, Jr. 1994. Landscape, white-tailed deer, and the distribution ofFlorida panthers in the Everglades. Pp 693-708. In: S. M. Davis and J. C. Ogden ( eds. ). Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach, Florida. 826 pp. Spreadbury, B. R., K. Musí!, J. Musí!, C. Kaisner, and J. Kovak. 1996. Cougar population characteristics in southeastem British Columbia. Joumal ofWildlife Management 60(4): 962-969. Steger, G. N. 1988. Movement and survival of 14 month old orphaned Mountain !ion kittens. Pp. 73. In: R. H. Smith (ed.). Proceedings ofthe Third Mountain Lion Workshop, Prescott, Arizona. 88 pp. Sunquist, M. E. 1981. The social organization of Tigers (Panthera tigris) in Royal Chitwan National Park, Nepal. Smithsonian Contributions in Zoology 336: 1-98. Sweanor, L. L. 1990. Mountain !ion social organization in a desert environment. M. S. thesis, University ofldaho, Moscow, 164 pp. U. S. Geological Survey. 1990. Scale 1: 250,000. U. S. Geological Survey. 63 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - Carlos A. López González Puma population dynamics White, G. C. 1996. NOREMARK: Population estimation from mark-resighting surveys. Wildlife Society Bulletin 24 (!): 50-52 . White, G. C. and R. A. Garrott. 1990. Analysis ofRadio-Tracking Data. Academic Press, lnc. 383 pp . Woodroffe, R. and J. R. Ginsberg. 1998. Edge effects and the extinction ofpopulations inside protected areas. Science 280: 2126-2128 . Zar, J. H. 1974. Biostatistical Analysis. Prentice-Hall, !ne., Englewood, New Jersey, 620 pp . 64 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ,. 1 • • • • • - CAPITULO 111 LA DISPERSIÓN EN EL PUMA (PUMA CONCOLOR) Y SUS IMPLICACIONES EN EL DISEÑO, TAMAÑO Y FORMA DE RESERVAS EN LA REGIÓN DEL DESIERTO "GREAT BASIN", ESTADOS UNIDOS • • • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa) and reserves PUMA (Puma concolor) DISPERSAL AND ITS ThfPLICA TIONS ON RESERVE SHAPE, SIZE AND DESIGN IN THE GREA T BASIN AREA, USA . ABSTRACT Little information exists on dispersa! of pumas (Puma conco/or) and there has been little discussion as to how this information can help determine reserve areas. Age, sex ratios, direction, and length of movements were studied for the Great Basin desert of Idaho and Utah, USA. Average age at dispersa! was 15.3 ± 2. 7 mo., sex ratios favored males ( 16 M: 8 F). Pumas exhibited random dispersa! movements. Mean distance was 192.1 ± 130. 8 km. Dispersers ended within three subspecies' range supporting the hypothesis of less val id races. Dispersa! data was used to calculate an affected area of 100,000 km2 (95% Mínimum Convex Polygon) and determine a mínimum reserve core area of3880 km2 (50%MCP). No large (> 1000 km2) protected areas exist within the study area in Southcentral Idaho or Northwestem Utah. Three corridors were identified through the study. One was as muchas 20 m wide in sorne places, and more than 10 km long . RESUMEN Existe poca información sobre la dispersión en los pumas (Puma concolor) y no se ha descrito como puede utilizarse esta información para determinar el tamaño de las áreas de reserva . En el desierto denominado "Great Basin" de los Estados de ldaho y Utah, Estados Unidos se estudiaron la edad, proporción de sexos, así como la dirección y longitud de los movimientos de los pumas dispersores. La edad promedio al tiempo de dispersión fue de 15.3 ± 2.7 meses, la proporción de sexos favoreció a los machos (16 M: 8 H). Los pumas exhibieron movimientos de 66 Carlos A. López Gonzalez Puma dispersa! and reserves dispersión al azar. La distancia media fue de 192.1 ± 130.8 km. Los dispersores acabaron en el área de influencia de tres diferentes subespecies apoyando la hipótesis de que deben existir menos razas. Los datos de dispersión se utilizaron para calcular un área de influencia de 100,000 km2 (95%MCP) y se detenninó un tamaño mínimo de reserva de 3880 km2 (50%MCP). Dentro del área de estudio no existen áreas protegidas de gran tamaño (> 1000 km2 ), ni en los alrededores de la región Sur central de Idaho y Noroeste de Utah. Se identificaron tres corredores a lo largo del área de estudio, uno de ellos se caracterizó por tener un ancho de 20 m y un largo mayor a los I O km. INTRODUCTION Most young animals leave the home range in which they were reared and wander to new breeding locations; this phenomenon is known as dispersa! (Robinson and Bolen 1989, Shields 1987, Wolff 1994). This action has been related to severa) events such as inbreeding avoidance, maintaining genetic variability within species, competition for mates or other resources, repopulation ofhabitats where local extintion has occurred, and colonization ofnew areas where suitable habitat becomes available (Bekoff 1989, Robinson and Bofen 1989, Wolff 1994). Dispersa] is considered one ofthe most important, but amongthe least understood factors ofpuma population biology (Anderson et al. 1992). This is also true for most camivore species, and literature reviews usually lack infonnation on this topic (i.e. Johnson and Gaines 1990). In a polygynous system, it has been proposed that male biased dispersion is a consequence of severa! factors. First wandering fathers and/or male-male competition, and short tenure of 67 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • , . • • • • • • • • Carlos A López González Puma dispersa) and reserves dominance ( or in residence ), can produce female philopatry and can result in mal e inbreeding avoidance (Wolff 1994). Male movement further away from home than females suggests selection against settling too clase to the natal area orto a sibling (Wolff 1994) . As pointed out by Beier (1995) dispersa) reports on cougars have been limited to documentation of age and net distance traveled (see references in Beier 1995). Beier (1995) described behavior of pumas in habitat limited by human activities, specifically cities, where pumas used traveling corridors and the authors speculated on necessary characteristics of such corridors in a Mediterranean environment with human impacts . Pumas and other large carnivores have been used in conservation flags, as umbrella species to conserve different ecosystems (Harris 1984). Large carnivores can be used to determinecorridor areas, and these areas have the potential to make a majar contribution to regional conservation strategies by ameliorating the detrimental effects that habitat fragmentation and isolation have on wildlife populations (Bennett 1990) . Objectives ofthis study were (1) to understand dispersal parameters such as age, sex ratios, mortality, and directional movements of a population of pumas from South Central Jdaho and Northwestern Utah; and (2) to determine the area needed by dispersal individuals, and with such information construct a hypothetical protected area suitable for the Great Basin and/or Western North America . METHODS We studied the puma population from 1985 to 1995, forthis part ofthe study data included 68 Carlos A. López González Puma dispersa} and reserves was gathered from 1991 to 1996. Age ofpumas was determined by denning behavior (Maehr et al. 1989) and physical characteristics (Shaw 1979). If we suspected a birth, homing on animals allowed confirmation of parturition. Second, age was assessed through physical characteristics (Shaw 1979), use ofthis procedure has proved to be accurate within a couple ofmonths. Records from hunter-killed, radio-collared (Wildlife Materials®) pumas were used to estimate survival and dispersa! distances. Dispersa! distances were calculated as the straight line distance between arithmetic center of natal home ranges to central point of permanent home ranges or harvest. Because sorne harvested animals may have still been in the process of dispersing, the calculations for reserve size are conservative. We tested the distribution of dispersa! distances against the expected distribution that would result from the competition hypothesis (Waser 1985). The competition hypothesis states that animals will occupy the first vacant territory encountered in dispersa! because continued travel could risk loss ofreproduction or increased mortality by travel in unfamiliar regions (Waser 1985). We followed Knick's ( 1990) methodology. We calculated an average home range diameter of 17.84 km, with a home range tumover of29.8% (López González 1994, López González et al. in prep). We calculated neighborhood population size, a measure of effective population size (Wright 1943), using the approach ofSmith (1993) with the modified formula ofCavalli-Sforza & Bodmer (1971). Neighborhood population size (Ne) was defined by Wright (1943) as the number of animals living within an area defined by a circle with a radius of2 standard deviations - of the distribution of dispersa! distances. This formula takes into account the unequal distribution 69 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves of dispersa! in two dimensions: Ne=¡¡ (2ox2ay)o where x and y are the standard deviations of dispersa! distances in two dimensions and o is the density, 1 individual per 100 km2 as has been calculated for this study (Chapter II). After obtaining the population size we extracted the effect of density to estímate the dimensions ofthe protected area from the information generated with the formula. Once this procedure was completed, we calculated the area affected by dispersers, assuming ali pumas had the same opportunity to reach the outer limits of the metapopulation . We also calculated population area through three home range estimators: Mínimum Convex Polygon (Mohr 1947, MCP joins the outer points ofthe polygon); the Harmonic Mean Method (HMM, Dixon and Chapman 1980), and the Adaptive Kernel Method (AKM, Worton 1989). These last two methods rely on probability to construct the use of an area utilized by an animal, in this case the population. The three methods were compared at the 50, 75, 95, 100% contour intervals to determine how different the results were with each method, and to determine which may better fit the requirements for our objective regarding preserve size and shape . Calculations were performed using the computer program CALHOME (Kie et al. 1994 ) . The USDA (Bailey 1995) classifies the study area as part ofthe Intermountain Semidesert Province, an ecoregion mainly dominated by sagebrush steppe (West 1996). To know if the dispersing pumas were moving along the same or severa] ecoregions, we used the classification proposed by Bailey ( 1995). We overlayed the final points of dispersa! into a manually digitized 1 :7,500,000 map ofthe ecoregions ofthe United States . 70 Carlos A López González Puma dispersa! and reserves Ali data were tested for nonnality (Kolmorogov-Smirnov) and equal variance (Leven median) and reported as mean and circular standard deviation (White and Garrott 1990). We used Rayleigh's z (Zar 1974) to test fordirection of dispersa! with significance set at rejection leve! of 0.05. Ali statistic tests were perfonned with Sigmastat for Windows 2.0 (Jandel Corporation®), and Systat for Windows 2.0, following Zar (1974). RESULTS Dispersers characteristics Twenty four kittens (8 females and 16 males) reached dispersa! age. Age of independence for females averaged 14.5 months (S0=3.25, range 9-17), and formales 16.31 months (SO=3.25, 13-24 ). The age of ali subadult dispersal/independent pumas was between 9 and 24 mo. (Mean=! 5.34 mo, SO= 2.72, Figure 1). The sex ratio for kittens reaching dispersa! age was of2M : lF (z=2.14, P<0.05). Actual dispersers sex ratio was 5 M: lF (z=l.07, P<0.05). Philopatry was detected in five females, they did not change residency and remained within their natal home areas. The final destination often ofthe 19 dispersing pumas is known, one female and nine males (z= 1.23, P<0.05). One male dispersed within the study area to a distance of 1.44 home ranges. Fifteen animals dispersed in a westerly direction, 2 dispersed to the east, one to the N and another to the NE, with no records for the Sor SE. For the 1 O dispersa! pumas that either settled or died, dispersa! bearing from natal home range was 286.9º ± 85.9 (angular deviation), we tested the data for random or directional movements, finding no mean direction (z= 3.23, P<0.05). 71 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves 6 - 5 - >, 4 u - e: .) - ~ " '.o o 2 - 1 - o -,,, ,} '· , .. ; ~ ,·,,if ~ ~'- CJ Male - '/'' V/, CJ Female /' , , '!·/, • Mean - - ,, / ,/ ,, '/, '- .~, ' - - - - - - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Age (months) Figure 8.- Age at dispersa) time for 24 pumas on the study area . 72 Carlos A. López González Puma dispersa! and reserves The mean distance dispersed was 192.1 km (S0=130.8, range 25.8 to 420.2 km, Figure 2). The average dispersa) distance of males ( 197.6 km) was greater than that for the female ( 142.2 km). We tested this data with a one sample test, and did not find significant differences (t = ??, df =8, P<0.05). Most (n = 8) of the dispersal distances were :s;220 km. Eight of 10 dispersers whose history was known achieved the social status of residen! adult and two remained non- residents. The female was still alive at the end ofthis study(Nevada Dept. ofWildlife, pers. com.) and one mate is currently monitored by another puma study within the surrounding area of Pocatello, ID (Carl Anderson Idaho Fish & Game, pers. com.). Dispersa) distances, including philopatric females, differed from the distribution expected from the competition hypothesis (Kolmorogov-Smimov 2-sample test= O. 708, P< 0.05). Average age at time ofdeath (or end ofthe study) for dispersa) animals is 37.3 months (S0=12.85, range 19 to 60). To determine if age hadan effect on the distance traveled, we compared distance traveled by residen! animals (>4 years old) and non residen! animals ( < 4 years old), and found that there was nota significant difference between the two groups (t= 1.25, df= 8, P>0.0982). For the 10 animals with ending points, two mate siblings (WIL and LER) dispersed in opposite directions with a difference of 185° and dispersa! distances differed by 25 km. Three males (ZEK, PAN, and JAS) of different litters, but progeny of the same female, went to different directions and distances. 73 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves 450 400 - 350 - 300 - ~ E 250 -"" - ~ " u e: s 200 .,., i5 - 150 - 100 - 50 - o -- Mean(l92.l km) - - - - - - - -- n 1 1 1 1 1 1 1 1 1 1 zek gus bud ler wil cly ber tin pan Jas Animal ID Figure 9- Puma dispersa! distances from natal centers of activity . 74 Carlos A. López González Puma dispersa! and reserves Dispersa! Area The population size (Ne) calculated, totaled 1125.7 (1126) residen! pumas, which when multiplied by 100 km2 per puma, translated into an elliptical neighborhood size of 1 12,570 km 2. Using the known percentage of residen! males (17.5%) females (35.0%), kittens (33.3%) and transients (14.2%) in this population (unpublished data), anda IM: 2F sex ratio. We calculated 376 adult male residents and 750 female adult residents, 319 transients and 713 kittens for a total of2133 pumas. The area calculated through the neighborhood size formula with the three home range estimators is shown in Table 1, and Figure 3. The AKM area was 6.6 larger than HMM and 7.9 larger than the MCP at the 50% leve!. At the 100% leve! AKM was still larger than the other two by 4.67 and 2.88 times respectively. From the three comparisons, MCP gives the closest estímate to the Ne formula with a difference of 12,000 km2, and probably reflects a better and more realistic shape ofthe metapopulation. The HMM always seemed to underestimate the size affected by dispersa! animals and the AKM seemed to overestimate it. When the final dispersa! points of the 10 animals were overlaid on the Ecoregion map (Figure 4), six ofthe dispersers ended within the original ecoregion. One ended in the ecoregion called Southem Rocky Mountain steppe-open woodland-coniferous forest-alpine meadow province. Two dispersers finalized their travel at the Nevada-Utah Province semi-desert- coniferous forest-alpine meadowprovince. Finally one ended in the Intermountain Semidesert and Desert Province. 75 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 2 1- :::, Carlos A Ló 5000000 4800000 4600000 4400000 400000 / / / / / 600000 / / / / / / / 300000 UTM {m) 1l // 500000 700000 Figure I 0.- Area of influence of dispersa( Puma conco/or via 3 home range (estimates at 50,75,95%) contour intervals:--Adaptive kernel ···········Harmonic mean---- Mínimum convex polygon . 76 Carlos A. López González Puma dispersal and reserves C A ? 5 = pl - , 0 ha 4 1 270 280 290 300 310 UTM (10 km intervals) 320 330 Figure 12.- View of the study area showing the location of corridors identified from 1987 to 1995. Contour lines lay 300 m apart and start at 1800 masl!. (Corridors are shown with arrows ). 79 ESTA TESHK HO DEBE SALIR Li La BIBLIOTECA Carlos A. López González Puma dispersa) and reser s ~ "' -¡;; > .... B ::: E .:.< o ~ ¿ ¡-. :J 20 -------------------....,.....---~ - 6 urley 10 00 90 80 70 / 60 - 50 r l!JJ~~;-~ N~ 40 0 0 0 0 0 0 0 0 t r als) i ure .- i ft e y a ing e ati n fc ors ntifi d 87 95. ontour f s 0 art d t rt t 00 asl. o ridors re n ith s . 9 m• m~ "' nm WJi t A itili!IIECA • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma di spersal and reserves In this study as in many others, the straight line of dispersa! does not reflect the actual distance the animal traveled to its final destination. These long distance movements have been related in other studies to pressure from dominan! resident male competitors and lack offree space to settle down (Sweanor 1990) . An ecologically similar area to our study area exists in North-eastem Nevada (Ashman et al. 1983). In Nevada, the longest dispersa! movement did not exceed 100 km, nevertheless severa! of our pumas dispersed to this area. The short dispersa! behavior in Ashman et al. 's study could be explained by heavy exploitation ofthe population at the time which in tum may have produced severa! vacan! areas. The Nevada study (Ashman et al. 1983) and the Aravaipa-Klondike region of Arizona (Cunningham et al. 1995), have one ofthe highest published removal rates ofpumas . Another importan! difference between the Nevada study area and our study area is road density. The site in Nevada has a large roadless wildemess area (364.66 km'), and therefore human presence is less constan!. This less accessible area could serve as a feeding subpopulation that would favor short distance dispersa! into vacan! areas . Longer movements could be the result ofless available space in natal areas where carrying capacity is almost reaching an asymptote. Another possible factor influencing dispersa! in large strict camivores is prey biomass availability. More productive environments will result in shorter dispersa! distances (i. e. Panthera onca, Quigley and Crawshaw 1992, Panthera tigris, Smith 1993, Panthera pardus, Sunquist 1983, Bailey 1993) but also reduced habita! availability (Leopardus pardalis, Laack 1991, pers. obser). In wild dogs (Lycaon pictus) dispersa! has been atributed to a higher pup survival (Burrows 1995) . 80 , .. • . Carlos A. López González Puma dispersa! and reserves Dispersa! patterns can be grouped into directional and nomadic movements (Mech 1987). Both of these patterns have been recorded for pumas, with a smaller incidence of nomadic movement. We are relating this to the less vagile capacity by the cougar compared to more cursorial species, such as wolves (Canis lupus, Mech 1987) or coyotes (Canis latrans, Harrison 1992). lt has been speculated that finding a mate or a vacant area would be easier by making circular excentric movements away from their natal area (Mech 1987). Nonetheless these kind of pattern is not really present in nature. Large predators are Iikely cued on geomorphological features to disperse, Iooking for areas similar to where they were raised. Mountain lions usually live in forested and/or covered habitats (Koehler and Hornocker 1991, Laing and Lindzey 1991, Lopez Gonzalez 1994,Van Dyke et al. 1986) and they probably try to remain with these features when dispersing, although sorne juveniles may be pushed into lower quality habita! (Mclvor et al. 1995, Van Dyke et al. 1986). Most dispersa! in our study area occurred in late ,vinter, thus it is possible for animals to cue on forested patches of mountainous islands when these places are covered \vith snow. Nevertheless in places where snow is not present other habita! characteristics such as color, sun intrusion, cover; should favor patch recognition. In smaller mammals, interpatch movements increases the chance of mortality from predation or environmental stochastic events (Dippendorfer et al. 1995). Large predators usually do not have to be concerned about predation, instead the pressure is higher due to intraspecific competition, males killing subadult males or females (Anderson et al. 1992, Sweanor 1990). That situation however may change in areas where wolves and grizzly bears are present (i.e. Montana, 81 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves Ruth and Hornocker 1996) or in tropical areas, where jaguar (Panthera anca) may prey upon pumas (Quigley 1987). Off added importance is human related mortality, where 74% of large camivore around protected areas was caused human caused (Woodreffe and Ginsberg 1998 . The area affected by dispersa) animals encompasses the States ofldaho,Montana, Nevada, and Utah; likely, Wyoming should also be included because the movements ofthe animal killed in Montana probably took him through the Rockies in western Wyoming. The study area lays between the limits of two puma subspecies, P. c. hippolestes and P. c. kaibabensis (Young and Goldman 1946). Dispersing animals have influence on those geographic races and also P. c . missoulensis. One finding from this study is that the area of influence encompasses the geographical distribution ranges oftwo other subspecies ofpumas. This finding tends to support a recen! proposal to reduce in the nurnber ofpuma subspecies from 31 to 18 (Nowell and Jackson 1996). A point of support of this comment is-that spatial heterogeneity in population genetic structure is probably not relevan! for large carnivores that range widely (Miller et al. 1999) . Mínimum areas for the conservation of pumas have been estimated by computer simulation for southem Califomia's Mediterranean environrnent (Beier 1993). The result was a mínimum area of2200 krn2 to avoid extinction of the population. The core area that we calculated is 3880 km2 , 76% increase in the computer calculated number. It is ofnote that 50% ofthe final locations encompassed an area less than double in size ofthe original study area, but an increment to 75% gives a 7 fold increase over the area calculated at the 50% leve], and finally incorporating the las! quarter gives almost a 26 fold increase over the 50% level. The configuration of an area proposed to preserve a metapopulation of pumas can be drawn from the Figure 3. In this figure 82 Carlos A. López González Puma dispersa! and reserves we can see that the general shape of the preserve would follow a NE to SW direction on a generally elliptical shape. Using the 50% contour line we can define acore area or nucleus of such a preserve. An obvious difference between Beier (1993) and our study is that our study is using actual field data. Another difference is the more productive nature of the southern California habita t. Beier ( 1993) suggests that an immigration of I to 4 pumas within a decade, increases the probability of persistence of a population. Placing our study area within this scenario, successful dispersa] (n=IO) occurred within three years. Using this criteria we can state that our population is not yet isolated and constan! gene movement is occurring. Ali the biotic provinces, where our dispersed pumas either settled or killed, are relatively similar. Lower altitudes hold sagebrush and higher altitudes hold conifers and Alpine meadows, and ali provinces belong to the dry domains of the western United States. The study area has potential to be designated acore area for a biosphere reserve. It contains one ofthe few protected lands within south central Idaho, City of Rocks National Preserve where pinyon-juniper lands represen! almost half ofthe area ( =50 km2 ). It also has land considered "protected", namely Forest Service and Bureau ofLand Management Land (Caicco et al. 1995). Other protected areas located within the area influenced by dispersa] animals are listed in appendix l. From the total, JO are Wilderness areas and two are Biosphere Reserves with a size of;, 500 km2• Only Yellowstone National Park is >8,000 km2 • Using the calculated density for this study (1/IO0 km2) a mínimum of 5 residen! adu1ts would be present in those wilderness areas and potentially 80 in Y ellowstone. Suitable protected areas to maintain a population of pumas within the sagebrush steppe are limited and not legally interconnected with each other. Almost 29,900 km2 are protected 83 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves within the area, and that could possibly be affected by dispersa! pumas out of our study population (IUCN 1993, see Appendix 1). Most ofthe protected areas rest within the State ofWyoming, specifically the Greater Yellowstone Ecosystem (GYE, 67.93%). They are well connected, but not ali of the habita! is available for pumas, and only the northem portion of the GYE has a stable population (Homocker et al. 1989). The protected areas of Jdaho Iisted in Appendix 1, only represen! 12.49% ofthe total. Five ofthe seven protected siles contemplated here (Appendix 1), have a size smaller than 100 km2 , including the City of Rocks National Preserve. Only the INEL has a considerable area but habitat is xeric and flat which lacks quality both for good numbers of ungulates and puma . At a larger scale we can provide insight to explain the shape of the area that can be proposed as a reserve. The study area is surrounded by natural and artificial barriers. To the North and Northeast, the Snake River plain offers little cover. With the exception of a small window, this area is almos! an agricultura! landscape with human activity present most ofthe time. During winter time the landscape is Iarge, open and bare, and that probably makes travel impossible for pumas. To the South it extends to the Salt Lake plains that are similar in character to the Northem barrier. This area exhibits little or no cover, a very reduced available prey base, and free water is scarce. Another barrier encountered to the Southeast is a major interstate highway (1-96) where many animals are killed (i.e. mule 400 m wide, 1 to 7 km length) by Beier (1995). More dwellings increases the need for secrecy. CONSERVA TION/MANAGEMENT IMPLICA TIONS . ./ ',_/ \/ ,_/ The Rockies of central Idaho are connected to the Greater Yellowstone Ecosystem. As pointed out by Noss et al. (1996), grizzly bear ( Ursus arctos horribi/is) recovery areas in Idaho revea! lower potential to protect species of reptiles and invertebrates. The use of pumas as an umbrella species within the sagebrush steppe can actually provide the data necessary to designate a matrix ofprotected areas that could benefit the conservation ofthe Great Basin biodiversity. A crucial point evident from GAP analysis data (Kiester et al. 1996) and large camivore management plans is that southcentral ldaho has the potential to act as a natural bridge not only for pumas but for other animals that still are in good numbers in the Great Basin area. We are not proposing to either reduce or prohibit puma exploitation on the study area, but a conservation strategy should include feeding populations that can supply other managedlharvested areas. 85 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa) and reserves Sociological and economic factors should be eval uated before any conservation action may be developed within this area ofthe western United States. People still believe that predators are good if they are dead, therefore the use of pumas as conservation flags may be taken in a wrong sense. Another política! issue of importance is how to incorporate a system of protected areas that will not place undue burden on the traditional livestock husbandry and unduly limit personal freedom . As recently pointed out by an Eastern Idaho rancher, the issue of preserving biodiversity is not really a question of species protection as muchas it is about who will have the final say over the land and our actions upon it (Thomas 1996). Quoting Thomas: "The folks who want to regulate the ranchers into environmental protection and put western land users and other legitimate business into jeopardy with ali the regulatory red tape of environmental fixes, are going at it the wrong way and will ultimately destroy the very thing they are trying to preserve" . Acknowledgements We thank the following funding organizations: Boone and Crockett Club, Earthwatch, !ne., Idaho State University, The Eppley Foundation. We would like to thank the Earthwatch volunteers and the NRCC for logistic support. Carlos A. López González would like to specially thank Dr . Brian J. Miller for his constan! and uninterested guidance and ethical thinking. We thank Miguel Equihua, Sonia Gallina, Fred Lindzey, Salvador Mandujano, and Brian Millerforreviewing earlier versions of this manuscript. 86 Carlos A. López González Puma dispersa! and reserves LITERA TURE CITED Anderson, A E. 1983. A critica! reviewofliterature on puma (Felis concofor). Colorado Division ofWildlife Special Report No. 54. 91 pp. Anderson, A E.; D. C. Bowden; D. M. Kattner. 1992. The Puma on Uncompahgre plateau, Colorado. Technical Publication No. 40. 116 pp. Ashman, D. L., G. C. Christensen, M. L. Hess, G. K. Takamoto and M.S. Wickersham. 1983. The mountain !ion in Nevada. Nevada Fish and Game Department, P-R Proj. W-48-15 Final Report. 75 pp. Bailey, T. N. 1993. The african leopard: Ecology and behavior of a solitary felid. Biology and Resource Management in the Tropics Series, Columbia Press University, New York. 429 pp. Bailey, R. G. 1995. Description ofthe ecoregions ofthe United States. 2d. ed. rev. and expanded. Mise. Pub!. No. 1391(rev.), Washington, DC: USDA Forest Service. I 08 pp. with separate map at 1: 7,500,000. Beier, P. 1993. Determining Mínimum Habita! Areas and Habitat Corridors for Cougars. Conservation Biology 7( I ): 94-108. Beier, P. 1995. Dispersa! of juvenile cougars in fragmented habitat. Journal of Wildlife Management 59(2): 228-237. Bekoff, M. 1989. Behavioral development of terrestrial camivores. Pp. 89-124. In: J. L. Gittleman (ed .. ). Camivore behavior, ecology, and evolution. Comell University Press. Ithaca, New York. 620 pp. 87 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves Bennett, A. W. 1990. Habita! corridors: Their role in Wildlife Management and Conservation . Dept. ofConservation and Environment. Melbourne, Australia. 37 pp . Burrows, R. 1995. Demographic changes and Social Consequences inWild Dogs, 1964-1992. Pp 400-421. In: A.R. E. Sinclair and P. Arcese ( eds. ). Serengeti II Dynamics, Management, and Conservation oían Ecosystem. The University ofChicago Press. Chicago, Illinois. 665 pp . Caicco, S. L.,J. M. Scott, B. Butterfield, and B. Scuti. 1995. A gap analysis ofthe management status ofthe vegetation ofldaho (U.S.A.). Conservation Biology 9(3): 498-511. Cavalli-Sforza, L. L. and W. F. Bodmer. 1971. The genetics of human populations. W. H . Freeman. San Francisco, California. 965 pp . Cunningham, S. C., L. A. Haynes, C. Gustavson and D. D. Haywood. 1995. Evaluation ofthe Interaction between mountain lions and cattle in the Aravaipa-Klondike area of Southeast Arizona. Arizona Game and Fish Department Technical Report No. 17, Phoenix. 64 pp . Diffendorfer, J. E., M.S. Gaines, and R. D. Holt. 1995. Habita! fragmentation and movements of three small mammals (Sigmodon, Microtus, and Peromyscus). Ecology 76(3): 827-839 . Dixon, K. R. and J. A. Chapman. 1980. Harmonic mean measure of animal activity areas. Ecology 61(4): 1040-1044 . Harris, L. D. 1984. The fragmented forest: Island biogeography theory and the preservation of biotic diversity. University of Chicago Press. Chicago, Illinois. 211 pp . Harrison, D. J. 1992. Dispersa! characteristics ofjuvenile coyotes in Maine. Journal ofWildlife Management 56(1): 128-138 . 88 Carlos A. López González Puma dispersa! and reserves Homocker, M. G., K. M. Murphy, and J. W. Tischendorf 1989. The ecology ofthe mountain !ion (Fe/is concolor missoulensis) in the North Yellowstone Ecosystem. Pp 57. Proceedings ofthe Third Mountain Lion Workshop. Dec 6-8, 1988. Prescott, AZ. Arizona Chapter, The Wildlife Society-Arizona Game and Fish Departrnent. 88 pp. IUCN. 1993. Protected Areas ofthe World. A review ofNational Systems Vol. 4: Neartic and Neotropical. Compiled bythe World Conservation and Monitoring Centre in collaboration with IUCN Comission on National Parks and Protected Areas. IUCN-The World Conservation and Monitoring Centre. 475 pp. Johnson, M. L. and M. S. Gaines. 1990. Evolution of dispersa!: Theoretical Models and Empírica! Tests using Birds and Mammals. Annual Review ofEcology and Systematics 21: 449-480. Kie, J. G., J. A. Baldwin, and C. J. Evans. 1994. Calhome-home range analysis program. U. S. Forest Service, Pacific Southwest Research Station. Fresno CA. 26 pp. Kiester, A. R., J. M. Scott, B. Csuti, R. F. Noss, B. Butterfield, K. Sahr, and D. White. 1996. Conservation Prioritization Using GAP Data. Conservation Biology 10(5): 1332-1342. Knick, S. 1990. Ecology of bobcats relative to exploitation and a prey decline in southeastem Idaho. Wildlife Monographs No. 108. 42 pp. Koehler, G. M. and M. G. Homocker. 1991. Seasonal resourse use among mountain Iions, bobcats and coyotes. Joumal ofMammalogy 72(2): 391-396 pp. Laack, L. L. 1991. Ecology ofthe ocelot (Fe/is parda/is) in South Texas. M. Se. dissertation T &M University. 112 pp. 89 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves Laing, S. P. and F. G. Lindzey. 1991. Cougar habita! selection in South-central Utah. Pp. 27-37 . C. E. Brown ( ed. ). Mountain lion-human lnteraction: Symposium and Workshop April 24- 26, 1991. Colorado Division ofWildlife-Wildlife Restoration. Denver Colorado 114 pp . Laing, S. P. and F. G. Lindzey. 1993. Patterns of replacement of residen! cougars in Southem Utah. Joumal ofMammalogy 74(4): 1056-158 . Lindzey, F. G. 1987. Mountain !ion. Pp. 657-668. Jn: M. Novak, J. A. Baker, M. E. Obbard, and B. Malloch (eds.). Wild furbearer management and conservation in North America . Ontario Trappers Association, North Bay. 1150 pp . Logan, K. A., L. L. Sweanor and M. Homocker. 1996. Cougars population dynamics. Pp.22-113 . In: K. A. Logan, L. L. Sweanor, T. K. Ruth and M. G. Homocker ( eds. ). Cougar of the San Andres Mountains, New Mexico. Federal Aid in Wildlife Restoration Project W-128-R for New Mexico Departament ofGame and Fish, Santa Fe, New Mexico. 280 pp . López-Gonz.ález, C. A. 1994. Eco logia y comportamiento del puma (Puma concolor) en un habita! fragmentado. M. Se. Dissertation. Facultad de Ciencias, UNAM. 64 pp . Lopez-Gonzalez, C. A., J. W. Laundré, and K. B. Altendorf. In preparation. Puma population dynamics in the fragmented ldaho-Utah border. Maehr, D. S., E. Darrell. Land, J. C. Roof, and J. W. McCown. 1989. Early maternal behavior in the Florida panther (Fe/is concolor co,yi). American Midland Naturalist I 22( 1 ): 34-43 . Mclvor, D. E., J. A. Bisonette and G. S. Drew. 1995. Taxonomic and conservation status ofthe Yuma mountain lion. Conservation Biology 9(5): 1033-1040 . 90 Carlos A. López González Puma dispersal and reserves Mech, L. D. 1987. Age, Season, Distance, Direction and Social Aspects of Wolf dispersa! from a Minnesota pack. Pp. 55-74. In: B. Diane Chepko-Sade and Z. Tang Halpin (eds.). Mammalian dispesal pattems: The effects of social structure on populations genetics. The University of Chicago Press, Chicago, Illinois. 342 pp. Miller, B., K. Ralls, R. P. Reading, J. M. Scott, and J. Estes. 1999. Biological and technical considerations of camivore translocation: A review. Animal Conservation 2: Mohr, C. O. 1947. Table of equivalent populations ofNorth American small mammals. American Midland Naturalist 37: 223-249. Noss, R. F., H. B. Quigley, M. G. Homocker, T. Merrill, and P. C. Paquet. 1996. Conservation biology and camivore conservation in the Rock-y Mountains. Conservation Biology I O ( 4 ): 949-963. Nowell, K. and P. Jackson. 1996. Wild Cats: Status, survey and conservation action plan. IUCN/SSC Cat Specialist Group. 382 pp. Quigley, H. B. 1987. Ecology and conservation of the jaguar in the Pantanal region. Mato Grosso do Sul, Brazil. Ph. D. dissertation. University ofidaho, Moscow, Idaho. pp. Quigley, H. B. and P. G. Crawshaw. 1992. A conservation plan for the jaguar Panthera anca in the Pantanal region ofBrazil. Biological Conservation 61: 149-157. Robinson, W. L. and E. G. Bolen. 1989. Wildlife Ecology and Management. 2nd Ed. MacMillan Publishing Co. 574 pp. 91 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves Ruth, T. K. and M. Hornocker. 1996. Interactions between cougars and wolves (and a bear ortwo) in the North fork ofthe Flathead River, Montana. Proceedings ofthe Fifth mountain lion workshop, San Diego California. 28 pp . Shaw, H. G. 1979. A mountain lion field guide. Arizona Game and Fish Department, Special Report No. 9. 27 pp . Shields, W. M. 1987. Dispersal and Mating Systems: lnvestigasting their causal connections, Pp . 3-26 In: Mammalian dispesal pattems: The effects of social structure on populations genetics. B. Diane Chepko-Sade and Z. Tang Halpin ( eds. ). The University of Chicago Press. 342 pp . Smith, J. L. D. 1993. The role of dispersal in structuring the Chitwan Tiger population. Behaviour 124 (3-4): 165-195 . Sunquist, M. E. 1983. Dispersal ofthree radiotagged leopards. Joumal ofMammalo!,'Y 64 (2): 337-341. Sweanor, L. L. 1990. Mountain lion social organization in a desert environment. M. S. thesis, University ofldaho. Moscow, Idaho. 164 pp . Thomas, H. S. 1996. Why sorne westemers fear "protection" ofbiodiversity. Rangelands 18(5): 179-181. Van Dyke, F. G., R. H. Brocke, H. G. Shaw, B. B. Ackerman, T. P. Hemkery F. G. Lindzey. 1986 . Reactions of mountain lions to logging and human activity. Joumal of Wildlife Management 50(1): 95-102 . Waser, P. M. 1985. Does competition drive dispersal? Ecology 66: 1170-1175 . 92 Carlos A. López González Puma dispersa! and reserves West, N. E. 1996. Strategies for maintenance and repair of biotic community diversity on rangelands. Pp. 326-346 In: R. C. Szaro and D. W. Johnston (eds.). Biodiversity in managed landscapes: theory and practice. Oxford University Press. New York, New York. 778 pp. White, G. C. and R. A Garrott. 1990. Analysis ofRadio-Tracking Data. Academic Press, Inc. 383 pp Wolff, J. O. 1994. More onjuvenile dispersa! in mammals. Oikos 71(2): 349-352. Woodroffe,R. and J. R. Ginsberg. 1998. Edge effects and the extinction of populations inside protected areas. Science 280: 2126-2128. Worton, B. J. 1989. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1): 164-168. Wright, S. 1943. Isolation by distance. Genetics 20: 114-138. Young, S. P. and E. A Goldman. 1946. The puma mysterious American cat. Dover Publications, Inc. New York, New York. 358 pp. Zar, J. H. 1974. Biostatistical analysis. Prentice-Hall, Inc., Englewood, New Jersey, 620 pp. 93 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Puma dispersa! and reserves Table 1.-Areaaffected as calculated by different home range methods. Mínimum Convex Polygon (MCP), Harmonic Mean Method (HMM), Adaptive Kernel Method (AKM). Measurements in km' . Metbod 50% 75% 95% MCP 3,880 27,410 100,500 - HMM 4,670 13,350 62,380 AKM 30,930 80,330 289,900 94 Carlos A López González Puma dispersal and reserves Appendix 2.- Protected areas within reach of dispersa! pumas from South Central ldaho & NW Utah. The numbers express the size ofthe area in square km. Abbreviations are: Biosphere Reserve (br), National Monument (nm), National Park (np), National Wildlife Refuge (nwr), and Wildemess Area (wa),. Data is taken from IUCN (1993). ldaho Utah Bear Lake (nwr) 42.84 Mount Naomi (wa) 179.48 Camas(nwr) 72.69 Wellsville Mountain (wa) 96.52 Minidoka (nwr) 83.86 Bear River (nwr) 263.37 Craters ofthe Moon (wa) 216.69 Mount Olympus (wa) 64.75 Sawtooth Ntn'l Forest (wa) 878.53 Statetotal rotu Deer flat (wa) 45.62 INEL 2,315.00 Wyoming City ofRocks Ntn'l Preserve 74.74 Jedediah Smith (wa) 499.59 State total 3,729.97 Y ellowstone ( np) 8,991.39 North Absaroka (wa) 1,418.38 Montana Teton (wa) 2,368.38 Lee Metcalf(wa) 1,007.44 Washakie (wa) 2,850.11 Absaroka-Beartooth (wa) 3,724.45 Grand Teton (np) 1,241.40 Lee Metcalf(wa) 24.28 National Elk Refuge (nwr) 99.89 Red Rock Lakes (nwr) 140.50 Gros Ventre (wa) 1,161.45 State total 4,896.67 Winegar Hole (wa) 43.36 Fossil Butte (nm) 32.80 Nevada State total 18,706.75 Santa Rosa Paradise Pk (wa) 125.45 Jarbridge (wa) 457.97 East Humboldt (wa) 149.33 Grand Total 29,855.46 km 2 Ruby Mountains (wa) 364.22 Ruby Lake (nwr) 152.30 Mount Moriah (wa) 26.04 Mount Moriah (wa) 331.84 Great Basin ( np) 310.80 State total 1,917.95 95 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • CAPITULO IV GASTO ENERGÉTICO DEL PUMA (PUMA CONCOLOR) DETERMINADO POR MEDIO DE LOS PATRONES DE ACTIVIDAD EN UN AMBIENTE FRAGMENTADO • 96 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • - Carlos A. López González Energy expenditure of the puma ENERGY EXPENDITURE OF THE PUMA (Puma concolor) AS DETERMINED BY ACTMTY PATTERNS IN A FRAGMENTED ENVIRONMENT . ABSTRACT The energetic requirements of the puma were described with the use of two models . Predation rates were calculated for the non-winter time ofthe year and for two diets: ungulate and mixed (deer-porcupine-lagomorphs). These models merged basal metabolic rate and specific activities (time spent hunting, traveling and localized activities). Results from the two models had a 52% difference. Daily caloric expenditure was 2559 for females and 3588 formales in model l. For model II calories spent were 5326 and 7381 for females and males respectively. Model I predicted female and mal e pumas would kili 32 and 44 deer per year respectively. In model II the number of deer changed to 39 and 54. Average number of deer removed per year were 151 O and 1852 for model I and II respectively. Biomass removed with model I was 21.1 kg/km2 and for model 11 25.9 kg/km 2 • These figures are both within or above calculated ener¡,,y expenses or kili rates. Model I seems to perform a better calculation . RESUMEN Los requerimientos energéticos del puma son descritos por medio de dos modelos, del mismo modo la tasa de depredación se calculó para la época no invernal del año, para dos dietas diferentes: ungulados y mixta ( venado-puercoespines-lagomorfos ). Estos modelos juntan las tasas metabolicas y actividades específicas (tiempo utilizado para la cacería y el desplazamiento así como actividades localizadas). Los resultados de los dos modelos tienen una diferencia del 52% . 97 Carlos A. López González Energy expenditure of the puma El gasto energético diario fue de 2,559 y 3,588 calorías para hembras y machos respectivamente para el modelo l. En el modelo II el gasto fue de 5,326 y 7,381 en hembras y machos. El número de venados cazados utilizando el modelo I fue de 32 para las hembras y 44 para los machos. Para el caso del modelo II fueron 39 y 54 para hembras y machos respectivemente. El número promedio de venados anuales que son removidos por la población de pumas es de 1,51 O y 1,852 para el modelo I y II respectivamente. La biomasa que es removida por los pumas es de 21.1 kg/km' y por el modelo II es de 25.9 kg/km'. Los datos obtenidos reflejan valores similares o superiores a los calculados anteriormente y/o por diferentes métodos. El modelo I al parecer refleja mejor las condiciones reales. INTRODUCTION The metabolic requirements of a predator spec1es should be considered for any conservation/management plan. Energetic requirements can be transformed into mínimum numbers of prey items necessary to maintain a population of predators within a management area. Basal metabolic rate (BMR) is defined as the rate of energy metabolism of a nongrowing organism at rest under postabsorbative conditions in a thennoneutral environment (Ricklefs et al. 1996). BMR for many mammals have been detennined in laboratory conditions and have been extrapolated to the field. When possible, isotopes, specifically doubled labelled water, are used to calculate the daily energy expenditure or field metabolic rate (FMR, Koteja 1991, Nagy 1987), but for most large mammals, especially camivores, this process can be considerably harder to accomplish. BMR is usually lower than FMR (Koteja 1991). Nevertheless a very robust 98 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •-• • • • • • • • • • • • • • • • • • • Carlos A. López González Enerh'Y expenditure ofthe puma correlation between basal metabolic rate and field metabolic rate has been found for mammals (Ricklefs et al. 1996) . The puma energetic requirements were modeled 10 years ago (Ackerrnan et al. 1986) . These authors addressed the metabolic needs ofthe species on their study area through activity patterns based on the number of pulse changes during one minute intervals. These authors classified the activities into three categories. Point out that with their sampling technique, they were probably underestimating activities such as movement, traveling, play and feeding, and overestimating sleep and resting time. Ackerrnan et al. ( 1986) calculated the number oflarge prey, namely mule deer ( Odocoileus lzemionus), needed by sex and social status of a population of pumas during a year. Recen! puma studies have pointed out more specific activity patterns. Beier et al. ( 1995) discussed puma behavior on a suburban interface of southern California, describing travel while hunting during periods of up to 6 h. Typical travel speed was O. 7 km/h. A sharp crepuscular- nocturnal pattern was displayed by pumas in this study. Nevertheless, a predator's nocturnal activity pattern has been related to the time when their main prey is active, but they are also known to react to human related activities/intrusion (Beieret al. 1995, Van Dyke et al 1986). The one color coat ofthe puma has been related to adiurnal hunting pattern (Ewer 1973). In our study area, pumas can be active any time ofthe day (López-González 1994). Activity for the purpose ofthis study will be classified into four categories: non-active (resting), Iocally active (feeding, grooming, playing), traveling and hunting . Predation rates for pumas have been described for severa! different studies (Anderson 99 Carlos A. López González Energy expenditure of the puma 1983), with estimates várying from 4 to 13 days between kills. In California, Grinell et al. (1937) estimated 36 to 52 deer/year. Robinette et al. ( 1959) estimated 36 to 91 deer/year. In the primitive area ofCentral Idaho these are estimates of26 to 36 deer and 5 to 7 elk/year (Hornocker 1970). Conolly ( 1949) estimated 52 porcupines and 36 deer/year. In Southern California, a single puma killed 48 large mammals and 58 small mammals per year (Beier et al. 1995). In a tropical deciduous forest of western Mexico, N uñez ( 1999) calculated (from scat analysis) that pumas may kili 80 white-tailed deer(Odocoileus virginianus), 11 collared peccaries (Tayassu tajacu), and 13 armadillo (Dasypus novemcinctus). In southeastern Arizona (Cunningham et al. 1995), it was theorized that pumas killed between 35 - 40 deer, 17 - 19 calves, 21-24 collared peccary, and 7-9 rabbits. We wanted to know what are the potential energetic requirements ofthe puma population in our study area, in light of new information obtained on activities and activity patterns; we are expecting predation rates to be higher than published estimates, we will compare these results with others and explain the possible differences. Our objectives were: (1) to describe a model of daily energy expenditure using activity patterns of adult mal e and female pumas, and (2) to determine the rate of predation for pumas and the potential impact on prey populations for South Central Idaho and Northwestern Utah. METHODS Pumas were captured as described elsewhere (Chapter II, Lopez Gonzalez 1994) and were fitted with a radio-transmitter equipped with an activity switch (Wildlife Materials Inc.®), the 100 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López GonzOlez Energy expenditure of the puma pumas were located and monitored for 24 h diel sessions from semi-permanent and mobile stations using a null-peak antenna system (A VM Instruments®). Location error was assessed by Lopez Gonzalez(l994) as 0.09 ± 0.12 km' (x ± o). During a 24 h session, animals were relocated each 30 minutes, data produced was: location (from fixed or mobile telemetry stations, by one or more observers ), distan ce traveled and number of pulse e han ges variable rate from mercury switch radio transmitters. Activity pattems were drawn from 88 die] (24 h) radio-tracking sessions, 29 for males and 59 for females . Pooled data for each sex averaged by each animal were used to build a graphic relationship between distance traveled and number of pulses per unit. These data were transformed into a dummy variable and centered against the mean. Results were segregated into four categories (Table 1) using the following criteria: I Sleeping (no/small movements and no/few pulse changes, this activity includes error area in telemetry locations) . II Localized activites such as feeding, grooming, playing (involved a high number ofpulse changes but little orno movement) . III Travel (distance traveled with no/few pulse changes) . IV Hunting ( distance travel with a high number of pulse changes ) . Why did we relate distance travel with pulse change? It has been shown by López González (1994) that there is a weak positive relationship between these two variables (r=0.489, df=47, p<0.001 ), and field observations have confirmed that when animals are just traveling the number 101 Carlos A. López González Energy expenditure of the puma of pulse changes is low or null. A high number of pulse change reflects an intense "head movement" and consequently has been related to hunting. Once these results were obtained the number of30 minute blocks were added to obtain the total time of the day devoted to each activity section of the pattem. This procedure was carried out for both sexes. Five basic processes were calculated (Moen 1973, Schaller et al. 1985): basal metabolic rate (BMR), standing (S), walking (C, includes leve! and downhill), walking in a slope >30° (CI), and feeding (F). Basal metabolic rate is present at ali times and corresponds to activities I-IV of the upper classification. Both, standing and walking are related to activities III and IV. Feeding takes place during activity II. Model l In this model, basal metabolic rate (BMR) was calculated following Kleiber's ( 1961) formula: BMR= 70(W' 75)/24 where W is the average weight (kg) ofthe puma, and 70 is a factor which increases BMR (Moen 1973). The number 24 is the number ofhours within a day. The amount of energy expended standing (S) is about 9% of the BMR (Moen 1973), therefore the formula to calculate the cost of standing was: S = (1. IBMR/24)*T where T is the number of hours spend traveling and hunting. 102 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Energy expenditure of the puma The cost ofwalking (C) was calculated following the formula proposed by Moen (1973): C =0.59W(D) where 0.59 is a constan! reflecting the number ofkcal spend when traveling a km. And D is the number ofkm traveled on leve] ground or downhill . The cost of walking up a slope > 30° (Cl has been calculated "1 O fold over walking on leve] ground (Moen 1973 and references listed there ). We used the following formula to calculate energy spent by pumas traveling on steep terrain: CI = 6.45 W(D) Finally, foraging can be related to the number ofkilograms the animal weights: F=0.54 W Constants associated with the formulas were taken from Moen's review (Moen 1973) and as with many models they are approximations . Daily energy expenditure (DEE1 ) for females can be calculated by adding the following: DEE = BMR + s1 •• +e+ c1 + F,.s • and for males: DEE = BMR + S 11 .s• + C + Cl + F, • DEEa = 50% leve] walking/50 up slope, DEEb = 75% level/25 up slope, and DEEc = 90% leve]/ 10% up slope . 1 Although other acti\ities are not really considered here, like playing or running or courtship, we are asswning thnl thcy are included one way or anothcr into the modcl, either oonsidering them during asccnding slopes oras feeding time . 103 Carlos A. López González Energy expenditure ofthe puma Model II For this model, basal metabolic rate (BMR) was calculated following Kleiber 's fonnula (1961) but we will incorporate the multiples found by Corts and Lindzey (1984) for the different sexes: BMR,. =[ l. 1 (70 W' 75)]/24 BMR, =[ 1.2(70 W' 75 ) ]/24 where W is the average weight (kg) ofthe puma, and 70 is a factor which increases BMR (Moen 1973 ), "m" stands for mal e and "f' for female. The amount of energy expended standing (S) is about 9% of the BMR (Moen 1973), therefore the fonnula to calculate the cost of standing was: S = (l. lBMR/24) * T The cost ofwalking (C) was based on the work ofCorts and Lindzey ( 1984 ). These authors found that male and female pumas traveling 1 km/h spend 4.7 kcal and 4.81 kcal respectively. In order to calculate the daily energy expended during one hour: Cm= 4.7 W(distance travel in km per 24 h) C,= 4.81 W(distance travel in km per 24 h) Finally, foraging can be related to the number ofkilograms the animal weighs: F=0.54 W Constants associated to the fonnulas are taken from Moen's review (Moen 1973) and are approximations. Daily energy expenditure (DEE') for females can be calculated by adding the following: DEE = BMR + s10. + e+ F•.sb 104 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Energy expenditure of the puma and for males: DEE = BMR + sll.Sh +e+ Fsh Predation rate Assuming the sample of die! cycles represents the observed distribution of activity for pumas in the study area, we transfonned the data into proportions and extrapolated them to a 275 day interval (average non winter days on a gíven year). We wanted to do this to obtain the overall energy expenditure for this interval and then obtain a daily that may reflect the variability that a living organism has in a landscape where food is on the move and therefore resource patch predictability is low. We did not want to include wínter days in the model for severa! reasons . First, it has been shown that activity pattems may change during wínter, wíth animals being more active at daytime and distances traveled (based on snow-tracking) during a die! cycle are probably smaller, since large prey are more concentrated in wínter yards (Trout 1963, Homocker 1970) . We basically follow the procedure proposed by Ackennan et al. ( 1986) to estímate daily biomass consumed (DBC): DBLC = DEE/(0.87*ca/*0.86) DBcC = DEE/[0. 75(0.87* l 890ca/*0.86)+0.2(0.87* 1530 cal*0.86)+ 0.05(0.87* 1530cal*0.86)] where 0.87 is equivalen! to the fraction of energy derived from meat. The tenn cal stands for a value _of 1,890 kcal/kg wet weight of 0.05). However, if70% of them had sorne content, it seems that starvation is more the exception than the rule. Irregular eating pattems of predators are deterrnined by chance of encountering a prey item and that, increases the probability of finding an empty stomach . RESULTS Modell The BMR value calculated was compared to the puma BMR calculated by McNab ( 1989) with a resulting difference of0.07% and 7.97% for females and males respectively, which when calculating DBC and NPD was not sufficiently different than the values obtained with Moen's formula . Using this model, female DEE varied from 2,559.03 to 4,304.24 kcal. Male DEE varied from 3,588.59 to 5,961.23 kcal. Most of the pumas followed presented a pattem of movement closer to the fifty/fifty ratio used for the DEEa. Therefore comparisons from now on will be made between this result and model II . Biomass consumed per day as calculated with the model was 3.04 kg for the females and 4.21 kg formales. The number of deer killed per day was 0.116 for females and 0.16 formales . This in tum reflects a time between kills of8.62 days for females and 6.25 formales. Thus a total number of deer killed by females is 32 and formales is 44 . Incorporating a va¡ying number of kittens ( 1-4) into the model, and energy expenditure of the female increasing ata rate 0.6 per kitten will result in 19.2 more deer needed per kitten. Days 107 Carlos A. López González Energy expenditure ofthe puma between kills ofa female with kittens are 5.38 (lk), 3.91 (2k), 3.07 (3k), and 2.53 (4k). Therefore the number of deer per year will be 51 ( 1 kitten), 70 (2 kittens), 89 (3 kittens), and 108 ( 4 kittens). The population of pumas on the study area (Lopez-Gonzalez et al. In preparation) can reach a maximum of9 male residents, 15 female residents and potentially up to 6 transients with an average offour. The number ofkittens can be potentially 30 in a given year, but to incorporate a more realistic number only 15 will be considered for the model. Females usually have a mean of2.5 kittens but most ofthe Iitters are oftwo. Therefore a 15 kitten population each year sounds realistic considering a reproductive rate every 17 mo. or every other year. A total of 1,510 deer need to be killed to fulfill the needs ofthe population, considering 396 for males, 480 for females, 64 for transients, and 570 for kitten maintenance. The total number of deer can be translated into biomass per area (2,500 km2) consumed by the pumas, this number is 2 I. I kg/km2 . Jfwe consider the mixed diet numbers ofprey this resulted in 26.58 deer, 30.22 porcupine and 15.48 rabbits for the females. For the male the number was 36.81 deer, 41 .85 porcupine and 21.45 rabbits. Female kill rate is 1 deer/7.75 days, 1 porcupine/1.81 days and 1 rabbit/0.88 days. In the case ofthe male, kili rate was I deer/5.49 days, 1 porcupine/1 .31 days and I rabbit/0.64 days. Using these values the population ofpumas will consume 1,268 deer, 1,434 porcupine and 735 rabbits, for a biomass density use of23.32 kg/km2 • Model 11 Calculations using Model 11, yield female pumas with an average DEE of 5,326.21 kcal 108 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Carlos A. López González Energy expenditure ofthe puma and male energy expenditure is 7,381.40. These results are different from model I by 20, 40, and 52 % in both sexes . Daily biomass consumed was 3.76 kg for females and 5.21 kg formales. The number of large prey killed per day was 0.143 for females and 0.198 for males. This translates into an interval between kills of 6.99 days for females and 5.05 formales. The number of deer killed for females is 39 and formales 54 . Incorporating kittens into the modelas I did before, translates into 64, 88, 112, and 137 deer with an increase in litter size from I to four. The number of days between kills is 4.25, 3.09, 2.43, and 2 . Incorporating the number of pumas in the study area will reflecta total of 1,852 deer killed by the pumas. A total of 486 for males, 585 for females, 76 for transients and 704 for kitten maintainance. The biomass per area for this model is 25.9 kg/km2 • Ifwe consider the mixed diet numbers ofprey this resulted in 33.60 deer, 38.20 porcupine and 19.58 rabbits for the females. For the male the number was 45.58 deer, 51.83 porcupine and 26.56 rabbits. Female kili rate is 1 deer/6.01 days, 1 porcupine/1.44 days and I rabbit/0.70 days . In the case of the male, kili rate was I deer/4.44 days, I porcupine/1.06 days and I rabbit/0.51 days. Using these values the population ofpumas will consume 1,586 deer, 1,803 porcupine and 934 rabbits, for a biomass density use of29.21 kg/km2 • DISCUSSION Estimates of daily biomass consumed forthis study were different from other studies. The 109 Carlos A. López González Energy expenditure of the puma range ofDBC estimated by Robinette et al. (1959) included my calculations (2.3-5.5 kg/day). Homocker (I 970) estimated a range of 1.8-2. 7 kg/day or about half ofthe estimated biomass for the models used in our study. Ackerman et al. (1986) calculated a range of2.2-2.7 kg/day for single adult female and 3 .4 to 4 .3 kg/day on males. The val ue for females lay below the calculated ones of this study by 12-18%. Mal e DBC values are included within the interval predicted, with a tendency to be on the higher side. Bailey (1993) estimated amale adult leopard (52.8 kg) consuming 3.5 kg/day and adult females (37.5) consuming 2.8 kg. The predicted interval of days between kills for the study area rests within published studies for both sexes. Most studies do not make differences between sexes when displaying the days between kills. Young and Goldman (1946) proposed kili rate for a single adult as I deer/7days; and I deer/3 days for a female with cubs. Conolly ( 1949) says pumas are killing a deer every 9.7 days and one porcupine each 7.2 days. Homocker (1970) propose I