UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS BIOQUÍMICAS CONTROL DE LA GLUCÓLISIS EN CÉLULAS TUMORALES DE RÁPIDO CRECIMIENTO T E S I S QUE PARA OBTENER EL GRADO DE: DOCTOR EN CIENCIAS (BIOQUÍMICAS) P R E S E N T A: M. EN C. ALVARO MARÍN HERNÁNDEZ Tutor: DR. RAFAEL MORENO SÁNCHEZ MÉXICO, D. F. Febrero 2011 UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. CONTROL DE LA GLUCÓLISIS EN CÉLULAS TUMORALES DE RÁPIDO CRECIMIENTO RECONOCIMIENTOS Esta tesis doctoral se realizó bajo la dirección del Dr. Rafael Moreno Sánchez en el Departamento de Bioquímica del Instituto Nacional de Cardiología “Ignacio Chávez”. El Comité Tutoral que asesoró el desarrollo de esta tesis estuvo formado por: Dra. Irma Ofelia Bernal Lugo Facultad de Química, UNAM Dr. Jesús Adolfo García Sáinz Instituto de Fisiología Celular, UNAM Dr. Rafael Moreno Sánchez Instituto Nacional de Cardiología Se reconoce la colaboración de la Dra. Emma Cecilia Saavedra Lira, del departamento de Bioquímica del Instituto Nacional de Cardiología, en el desarrollo de los modelos cinéticos. Se reconoce la colaboración de la Dra. Marina Macías Silva, del Instituto de Fisiología Celular, quien nos proporcionó hepatocitos de rata. Se reconoce la colaboración del Dr. Alejandro Zentella Dehesa, del Instituto de Investigaciones Biomédicas, quien nos proporcionó células endoteliales de cordón umbilical. El proyecto fue apoyado parcialmente por CONACYT (43811-Q, 80534, 123636). Durante los estudios de doctorado gocé de una beca otorgada por CONACYT para la realización de la presente tesis. El Jurado de Examen Doctoral estuvo constituido por: Presidente Dr. Armando Gómez Puyou Instituto de Fisiología Celular, UNAM Vocal Dr. Jesús Adolfo García Sáinz Instituto de Fisiología Celular, UNAM Secretario Dr. Alejandro Zentella Dehesa Instituto de Inv. Biomédicas, UNAM Suplente Dr. Juan Pablo Pardo Vázquez Facultad de Medicina, UNAM Suplente Dr. Marco Antonio Cerbón Cervantes Facultad de Química, UNAM DEDICATORIAS A mi esposa, una mujer incansable que me apoya incondicionalmente y de la cual estoy profundamente enamorado. A mis hijos, esas personitas a las que amo. A mis padres, por darme la vida y por inculcarme el sentido de la responsabilidad y de la honradez. A mi hermano por su apoyo. A las familias: Marín y Robles A todos mis amigos por su amistad. AGRADECIMIENTOS Quiero expresar mi agradecimiento: A mi tutor el Dr. Rafael Moreno Sánchez por apoyar mi formación, por su confianza y por haberme permitido ser parte de su grupo. A cada una de las personas que forman parte del Departamento de Bioquímica. A mis alumnas, por la confianza que depositaron en mí. Al Instituto Nacional de Cardiología “ Ignacio Chávez”. Al CONACYT por el financiamiento del proyecto y por la beca que me otorgo. “La alegría de ver y entender es el más perfecto don de la naturaleza”. “La mayoría de las ideas fundamentales de la ciencia son esencialmente sencillas y, por regla general pueden ser expresadas en un lenguaje comprensible para todos”. Albert Einstein “El principio de la investigación necesita más cabezas que medios”. Severo Ochoa INDICE página Capítulo 1 La glucólisis en el cáncer 1.1 Introducción 1 1.2 La glucólisis 3 1.3 La glucólisis tumoral 3 1.4 ¿Qué ventajas ofrece a las células tumorales el incremento de la glucólisis? 6 Capítulo 2 Mecanismos que inducen el incremento de la glucólisis 2.1 El factor inducido por la hipoxia (HIF-1α) (Manuscrito No. 1: Mini Rev. Med. Chem. 2009, 9:1084-1101). 8 2.1.1 Comentarios sobre el manuscrito No. 1 31 2.2 Genes supresores de tumores y oncogenes 32 2.2.1 PTEN 32 2.2.2 p53 33 2.2.3 c-Myc 33 2.3 Cambios en los mecanismos de regulación de la hexocinasa y de la fosfofructocinasa tipo I. 34 2.3.1 Hexocinasa (HK) 34 2.3.2 Fosfofructocinasa tipo 1 (PFK-1) 35 Capítulo 3 La glucólisis como un blanco terapéutico 3.1 La glucólisis como un blanco terapéutico en el tratamiento del cáncer 38 3.2 Análisis de control metabólico 39 3.2.1 Análisis de elasticidades 40 3.2.2 Modelos matemáticos de vías metabólicas (In silico biology) 43 Capítulo 4 4.1 Planteamiento del problema 45 4.2 Hipótesis 45 4.3 Objetivo General 46 4.4 Objetivos particulares 46 Capítulo 5 Resultados 5.1 Distribución de control en la glucólisis de las células AS-30D (Manuscrito No. 2: FEBS J. 2006, 273:1975-1988). 47 5.1.1 Datos no mostrados 66 5.1.2 Comentarios sobre el manuscrito No 2 68 5.2 Construcción de los modelos cinéticos de la glucólisis tumoral (Manuscrito No. 3: BBA-Bioenergetics, 2010). 71 5.2.1 Comentarios manuscrito No. 3 99 5.3 Inhibición de la hexocinasa (Manuscrito No. 4) 100 5.3.1 Comentarios manuscrito No. 4 126 Capítulo 6 6.1 Discusión general 127 6.2 Conclusiones generales 132 6.3 Perspectivas 133 6.4 Referencias 137 6.5 Apéndice 143 “CONTROL DE LA GLUCÓLISIS EN CÉLULAS TUMORALES DE RÁPIDO CRECIMIENTO” RESUMEN Un incremento significativo en la velocidad de la glucólisis se observa en la mayoría de las células tumorales con respecto a sus tejidos de origen. Dada la constante duplicación de las células tumorales, se considera que la glucólisis es una vía metabólica de gran importancia, ya que proporciona los esqueletos de carbono necesarios para la síntesis de proteínas, DNA y triglicéridos. Además puede contribuir en la síntesis de ATP cuando las células se ven sometidas a bajas concentraciones de oxígeno o cuando la mitocondria es disfuncional. Este incremento en la glucólisis se atribuye a un aumento en la expresión de todas las enzimas y transportadores de esta vía, promovido por algunos oncogenes (C-MYC) o por el factor inducido por hipoxia (HIF-1α). Además, la hexocinasa (HK) y la fosfofructocinasa tipo 1 (PFK-1) presentan cambios en sus mecanismos de regulación. Estos antecedentes nos llevaron a proponer que la distribución de control en la glucólisis de las células tumorales era diferente a lo que se observa en las células normales. Para evaluar nuestra propuesta inicialmente se caracterizó la glucólisis en células normales (hepatocitos de rata) y en células tumorales (AS-30D). En ambos modelos se midió el flujo, la concentración de algunos metabolitos y la actividad de cada una de las enzimas de la glucólisis. Los resultados indicaron que en las células tumorales (en comparación a las células normales) había un incremento en la actividad de la mayoría de las enzimas de la glucólisis de 1 a 4 veces, aunque el cambio más significativo que se observó fue el incremento en la actividad de la HK y de la PFK-1 de 306 y 56 veces, respectivamente. En consecuencia, también hubo un aumento en las concentraciones intracelulares de sus productos: la glucosa 6-fosfato (G6P) y la fructosa 1,6-bifosfato (FBP) entre 5 y 250 veces; y un incremento en el flujo glucolítico de 9 veces. Posteriormente, para determinar la distribución de control se empleo el análisis de elasticidades y el modelado cinético, y se encontró que el control de la glucólisis en las células AS-30D, recae en el transportador de glucosa (GLUT) (CJ Ei= 0.2), en la HK (CJ Ei= 0.44) y en la hexosa fosfato isomerasa (HPI) (CJ Ei= 0.4). Asimismo, el modelado cinético de la glucólisis en las células tumorales humanas HeLa determinó que los principales sitios de control son el GLUT (CJ Ei= 0.4) y la degradación de glucógeno (CJ Ei= 0.57). Estas diferencias en la distribución de control entre ambos tipos de células tumorales se atribuyeron a la expresión de diferentes isoformas del GLUT y al mayor contenido de glucógeno en las células HeLa. Esta distribución de control apoyó parcialmente nuestra propuesta, pues la PFK-1 no ejerció un control significativo en las células tumorales mientras que en células normales esta enzima es uno de los sitios principales de control. La razón mecanística residió en la presencia de una alta concentración de los principales activadores de la enzima en el citosol de las células tumorales como son la fructosa 2-6 bisfosfato, el AMP y el fosfato (Pi), los cuales, por un lado, llevan a la enzima a su máxima actividad y, por otro, bloquean la inhibición que ejercen el ATP y el citrato. Por otra parte, la HK mantiene un control significativo de la glucólisis tumoral debido a que independiente de su localización (citosol o membrana externa mitocondrial) continua siendo fuertemente inhibida por la G6P. Una vez que determinamos que la HK era uno de los principales sitios de control de la glucólisis en AS-30D, se planteó disminuir el flujo de esta vía al inhibir a esta enzima. Sin embargo, no se observó una baja en el flujo glucolítico, por lo que concluimos que era necesario inhibir a más de una enzima para poder observar una disminución significativa en la glucólisis. ABSTRACT A significant increase in the rate of glycolysis is observed in most tumor cells with respect to their tissue of origin. Due to the continuous duplication of tumor cells, it is thought that glycolysis is an essential metabolic pathway, providing the carbon skeletons necessary for the synthesis of macromolecules (proteins, DNA and triglycerides). Additionally, it can help in the synthesis of ATP when cells are subjected to low concentrations of oxygen or when the mitochondrion is dysfunctional. This increase in glycolysis is attributed to an increase in the expression of all enzymes and transporters of this pathway, promoted by some oncogenes (C-MYC) or the hypoxia-induced factor (HIF-1α). In addition, hexokinase (HK) and phosphofructokinase type 1 (PFK-I) undergo changes in their regulatory mechanisms. Our proposal was that the distribution of control in glycolysis of tumor cells was different from that observed in normal cells. To evaluate our proposal we began characterizing glycolysis in both non-tumor cells (rat hepatocytes) and tumor cells (AS-30D). In both models the fluxes, concentration of some metabolites and activity of each of the enzymes of glycolysis were determined. The results indicated that in tumor cells (with respect to normal cells) all glycolytic enzymes increase their activity by 1 to 4 times, although the most significant change was observed in HK and PFK-1 activities with increases of 306 and 56 times, respectively. As a consequence, the intracellular concentrations of glucose 6-phosphate (G6P) and fructose 1,6-bisphosphate (F1,6BP), which are products of HK and PFK-1, respectively, increased by 5- and 250-fold as well as the glycolytic flux (9 fold). To determine the distribution of control two approaches were used: elasticity analysis and kinetic modeling. Thus, it was established that the main control of the glycolytic flux in AS-30D cells resided in the glucose transporter (GLUT) (CJ Ei= 0.2), HK (CJ Ei= 0.44) and hexose phosphate isomerase (HPI) (CJ Ei= 0.4) whereas in HeLa cells were the glycogen degradation pathway (CJ Ei= 0.57) and GLUT (CJ Ei= 0.4). The differences in the distribution of control between tumor cells were attributed to the expression of different GLUT isoforms, the over-expression levels of HK, and the glycogen content. This distribution of control partially supported our original proposal because the PFK-1 did not exert significant control in tumor cells, in marked contrast to non-tumor cells in which this enzyme is one of the main controlling steps. The mechanistic reason was that the high cytosolic concentration of the PFK-1 activators in tumors cells fructose 2-6, bisphosphate, AMP and Pi brought about both an increased PFK-1 activity and protection against ATP and citrate inhibition. Moreover, HK maintained significant control because regardless of their location (cytosol or mitochondrial outer membrane), it was strongly inhibited by G6P. Finally, considering that HK was one of the main controlling steps of glycolysis in AS-30D, it was examined the possibility of inhibiting tumor HK with the anti-cancer drug casiopeina II-gly to thus blocking the glycolytic flux. However, the glycolytic flux was not significantly diminished leading to the conclusion that it is necessary to inhibit more than one enzyme to observe a significant decrease in tumor glycolysis. CONTENIDO Esta tesis está dividida en 6 capítulos. En el capítulo 1 se describen generalidades sobre la glucólisis tumoral. El capítulo 2 comprende los mecanismos que inducen el incremento de la glucólisis en las células tumorales y aquí se incluye un artículo de revisión sobre el factor inducido por la hipoxia (HIF-1α) publicado en la revista Mini Reviews in Medicinal Chemistry (Manuscrito No. 1). En el capítulo 3 se relatan las generalidades de la teoría de control metabólico, mientras que el plantemiento del problema, la hipótesis y los objetivos se incluyen en el capítulo 4. El capítulo 5 comprende los resultados que se dividen en tres partes. En la primera y en la segunda parte se establecen las enzimas que controlan el flujo de la glucólisis tumoral, mediante dos herramientas experimentales del análisis de control métabolico: el análisis de elasticidades (Manuscrito No. 2: FEBS J. 2006, 273:1975-1988) y el modelado cinético (Manuscrito No. 3: BBA-Bioenergetics, 2010). La tercera parte trata de la inhibición de la hexocinasa para reducir la glucólisis; este trabajo se encuentra en preparación y se muestra la primera versión del artículo (Manuscrito No. 4). Finalmente, el capítulo 6 incluye la discusión general, las conclusiones, las perspectivas, las referencias y un apéndice. ABREVIATURAS 1,3BPG: 1,3 bisfosfoglicerato 2PG: 2-fosfoglicerato 3PG: 3-fosfoglicerato ALD: Aldolasa AMPK: AMP cinasa DHAP: Dihidroxiacetona fosfato ENO: Enolasa F1,6BP: Fructosa 1,6 bisfosfato F2,6BP: Fructosa 2,6 bisfosfato F6P: Fructosa 6-fosfato G3P: Gliceraldehído 3-fosfato G6P: Glucosa 6-fosfato GAPDH: Gliceraldehído 3-fosfato deshidrogenasa GLUT: Transportador de glucosa HIF-1α: El factor inducido por la hipoxia HK: Hexocinasa HPI: Hexosa fosfato isomerasa LDH: Lactato deshidrogenasa MTC: Transportador de monocarboxilatos PEP: Fosfoenolpiruvato PFK-1: Fosfofructocinasa tipo 1 PFKFB3: Fosfofructocinasa tipo 2 PGAM: Fosfoglicerato mutasa PGK: Fosfoglicerato cinasa Pi: Fosfato PYK: Piruvato cinasa TPI: Triosa fosfato isomerasa 1 Capítulo 1. La glucólisis en el cáncer 1.1 Introducción El cáncer es una enfermedad que surge de una serie de alteraciones genéticas (mutaciones, amplificaciones y pérdidas de genes) producidas por defectos genéticos o agentes ambientales (radiación, carcinógenos y virus oncogénicos), que dejan sin regulación la proliferación y la diferenciación celular, propiciando que una célula pueda llegar a generar un tumor (Vogelstein y Kinzler, 2004; Tysnes y Bjerkvig, 2007). Este proceso involucra la activación de oncogenes (HER2, Src, H-Ras, c-Myc) y la inactivación de genes supresores de tumores (PTEN, p53, pRb) los cuales intervienen en la regulación del ciclo celular y la proliferación (Vogelstein y Kinzler, 2004; Gillies et al., 2008). Durante el 2007, en México, el cáncer ocupó el tercer lugar como causa de muerte con 514, 420 defunciones. Entre las tres principales causas de muerte por tumores en hombres se encuentran el cáncer de próstata, el de pulmón y el de estómago. En las mujeres, las muertes correspondieron principalmente a el cáncer de mama, al de cuello del útero (cérvico-uterino) y al de hígado (INEGI, 2009). El tratamiento del cáncer se basa en la mayor susceptibilidad que tienen las células tumorales (con respecto a las células normales) al daño inducido por la radiación y la quimioterapia, que dejan severos efectos secundarios y en muchos casos los tumores son refractarios. Esto hace indispensable la búsqueda de nuevas estrategias terapéuticas que sean más selectivas y eficientes contra el cáncer (Hornberg et al., 2007). Por ello, encontrar diferencias a nivel molecular entre las células no tumorales y las células tumorales es esencial (Pelicano et al., 2006). 2 A este respecto, una de las alteraciones que se mantiene en la mayoría de las células tumorales, es un alto consumo de glucosa en comparación a las células normales, que las lleva a excretar una gran cantidad de lactato, fenómeno conocido como efecto “Warburg”, el cual resulta del aumento en la expresión de todas las enzimas y transportadores de la glucólisis inducido por algunos oncogenes y por el factor inducible por hipoxia-1 (HIF-1) (Walenta y Mueller-Klieser, 2004; Moreno- Sánchez et al., 2007). El incremento en la velocidad de la glucólisis tumoral puede favorecer la síntesis de macromoléculas (DNA, trigliceridos, proteínas) necesarias para una constante duplicación. Además puede contribuir en la generación de ATP cuando la mitocondria tumoral se encuentra dañada (Carew y Huang, 2002) o cuando las células tumorales se encuentran bajo hipoxia (Xu et al., 2005). Por lo anterior, diversos grupos de investigación consideran que inhibir a la glucólisis tumoral podría ser una adecuada estrategia en el tratamiento del cáncer (Pedersen et al., 2002; Pelicano et al., 2006; Bartrons y Caro, 2007; Clem et al., 2008; Evans et al., 2008; Kumagai et al., 2008). Sin embargo, para que dicha inhibición sea más efectiva se debe considerar inhibir solo a las enzimas que la controlan. El análisis de control metabólico permite identificar a este tipo de enzimas aplicando diferentes estrategias experimentales (Moreno-Sánchez et al., 2008). Mediante el empleo del análisis de control metabólico, en este trabajo de tesis se determinaron los principales sitios de control de la glucólisis en las células tumorales. 3 1.2 La glucólisis La vía de Embden-Meyorhof-Parnas, mejor conocida como glucólisis, fue descubierta por Eduard Buchner en 1897, aunque fue hasta 1930 cuando se describió la vía completa gracias a los estudios de Otto Warburg, Hans von Euler-Chelpin, Gustav Embden, Otto Meyerhof y Jacob Parnas (Nelson y Cox, 2005). Esta vía metabólica genera, a partir de una molécula de glucosa, dos moléculas de piruvato, y la energía liberada en esta conversión se conserva en forma de ATP y NADH. En aerobiosis, el piruvato formado es oxidado casi por completo por la mitocondria a CO2 y H2O. En cambio, cuando no hay suficiente oxígeno para soportar la oxidación del piruvato y del NADH, el piruvato se reduce a lactato, aceptando electrones del NADH y formándose el NAD+ necesario para mantener a la glucólisis funcionando (Figura 1.1). Es interesante señalar que aunque en los libros de texto, en general, no se consideran como parte de la glucólisis a los transportadores de glucosa y de monocarboxilatos, ambos transportadores son esenciales, ya que de ellos depende la entrada de la glucosa y la salida del lactato (que bajo anaerobiosis es el producto final) (Figura 1.1). 1.3 La glucólisis tumoral Las células tumorales presentan como característica común un incremento significativo en la velocidad de glucólisis con respecto a sus tejidos de origen, que se ve reflejado en un aumento en el consumo de glucosa y en la producción de una gran cantidad de lactato (aún en presencia de oxígeno). Este fenómeno fue descrito por Warburg de ahí que sea conocido como efecto “Warburg” (Pedersen, 1979; Eigenbrodt, et al., 1985; Walenta y Mueller-Klieser, 2004; Moreno-Sánchez et al., 2007). 4 G6P F6P F1,6BP G3PDHAP 3PG 2PG PEP PIR 1,3BPG + G3P F2,6BP GLU LAC HK PFK-1 ALD GAPDH PGK ENO PYK LDH PFK-2 TPI HPI LAC LAC H+ H+ PGAM GLU ATP ADP NAD+ + Pi NADH ADP ATP NAD+NADH ATP ADP ATPADP GLUT MCT Pentosas fosfato Ribosa + NADPH Triglicéridos Serina Cisteína Glicina Alanina ATP ADP PIR PIR Mitocondria Síntesis-Degradación de glucógeno Figura 1.1 La glucólisis y su contribución en la síntesis de algunos intermediarios. GLUT, transportador de glucosa; GLU, glucosa; HK, hexocinasa; G6P, glucosa 6P; HPI, hexosa fosfato isomerasa; F6P, fructosa 6P; PFK-1, fosfofructocinasa tipo 1; F1,6BP, fructosa 1,6 bifosfato; PFK-2, fosfofructocinasa tipo 2; F2,6BP, fructosa 2,6 bifosfato; ALD, aldolasa; DHAP, dihidroxiacetona fosfato;G3P, gliceraldehído 3P; TPI, triosa fosfato isomerasa; GAPDH, gliceraldehído 3P deshidrogenasa; 1,3BPG, 1,3 bifosfoglicerato, PGK, fosfoglicerato cinasa; 3PG, 3-fosfoglicerato; PGAM, fosfoglicerato mutasa; 2PG, 2-fosfoglicerato; ENO, enolasa; PEP, fosfoenolpiruvato; PYK, piruvato cinasa; PIR, piruvato; LDH, lactato deshidrogenasa; LAC, lactato; MTC, transportador de monocarboxilatos. Modificado de Mini. Rev. Med. Chem. 2009, 9:1084-1101. 5 En células tumorales de rata (Novikoff, H-91, Jensen, Rous y Erlich) la producción de lactato llega a ser de 5 a 28 veces mayor que en los tejidos normales (riñón, hígado, músculo, cerebro y placenta) (Pedersen, 1979). En diversos tipos de carcinomas humanos (cervico-uterino, cabeza y cuello, colon-rectal) la concentración de lactato alcanzan los 40 μmol por gramo de tejido (peso húmedo), la cual es muy elevada considerando que los tejidos sanos mantienen una concentración de lactato de alrededor de 2.5 μmol/g de tejido (peso húmedo) (Walenta y Mueller-Klieser, 2004). En el suero de pacientes el lactato alcanza una concentración de hasta 9 mM, concentración 4 veces mayor a la concentración que se encuentra en individuos sanos (Nishijima, et al., 1997; Fisher, et al., 2007). El incremento de la glucólisis se ha relacionado con el grado de malignidad de los tumores. En hepatomas de rata (tumores experimentales) se ha encontrado que en aquellos con una baja malignidad (reducida velocidad de crecimiento) mantienen una producción de láctico similar al tejido de origen (hígado) (0.16 nmol/min * mg de peso húmedo), mientras que en tumores malignos (elevada velocidad de crecimiento) mantienen una producción de láctico entre 7 a 27 veces mayor (1.6-4.3 nmol/min*mg de peso húmedo) con respecto al tejido normal (Pedersen et al., 1978; Stubbs et al., 2003). En tumores humanos de cerebro, mama, pulmón, hígado, cérvix, cabeza y cuello niveles altos de lactato tienen pobre prognosis (Gillies et al., 2008), además de que este incremento se asocia con una alta incidencia de metástasis (Walenta et al., 2004). Asimismo, la expresión de la LDH-A está relacionada con la agresividad, metástasis y pobre prognosis en los tumores de colon, pulmón, endometrio y estómago (Giatromanolaki et al., 2006). 6 Por último, es importante señalar que el incremento en la glucólisis no es exclusivo de las células tumorales ni ocurre en todos los tipos de cáncer (próstata; Liu et al., 2010). Este aumento en la glucólisis también se observa en células proliferativas normales (linfocitos y otras células hematopoyéticas) (DeBerardinis et al., 2008). 1.4 ¿Qué ventajas ofrece a las células tumorales el incremento de la glucólisis? La mayor parte de las macromoléculas requeridas para la proliferación se generan a partir de intermediarios de la glucólisis (Bauer et al. 2005). Por ejemplo, la glucosa 6-P (G6P) es el precursor de la ribosa 5P (R5P), metabolito necesario para la síntesis de ácidos nucleicos; en paralelo se genera NADPH, útil en la destoxificación de radicales libres, en la síntesis de lípidos y de la desoxirribosa; también hay síntesis de UDP-glucoronato usado en la producción de proteo-glicanos, glicoproteínas y en la detoxificación de xenobióticos. La síntesis de triglicéridos y fosfolípidos comienza con la dihidroxiacetona fosfato (DHAP). A partir del 3-fosfoglicerato (3PG) y del piruvato (PIR) se sintetizan varios aminoácidos (serina, cisteína, glicina y alanina) para la generación de proteínas (Figura 1.1). Por otra parte, la glucólisis puede ser una fuente muy valiosa de ATP cuando las células se ven sometidas a bajas tensiones de oxígeno como ocurre cuando el tumor aumenta de tamaño y el crecimiento desorganizado de los nuevos vasos (angiogénesis) deja grandes zonas hipóxicas (Gatenby y Filies, 2004) o cuando la mitocondria deja de ser funcional debido a la alta velocidad de mutaciones que se presentan en el ADN- mitocondrial (Carew and Huang, 2002). Las grandes cantidades de láctico (producto de la glucólisis) expulsado por las células tumorales acidifica los alrededores del tumor, lo que induce la muerte de las 7 poblaciones vecinas de células normales que son incapaces de adaptarse a la acidosis, esto permite que las células tumorales invadan otros tejidos y además incrementa la radio-quimio resistencia y las metástasis (Gatenby y Gillies, 2004). Asimismo, se ha descrito que el láctico afecta el funcionamiento del sistema inmune, lo cual protege a las células tumorales. La acidificación puede inhibir la actividad de las células NK y la migración de los polimorfonucleares (Lardner, 2001) permitiendo que las células tumorales no sean eliminadas. El lactato también reduce la proliferación, la producción de citocinas y la citotoxicidad en los linfocitos T (Fisher et al., 2007). Al mismo tiempo, el lactato puede permitir la estabilización del HIF-1α, factor muy importante en el desarrollo tumoral. 8 Capítulo 2. Mecanismos que inducen el incremento de la glucólisis 2.1 El factor inducido por la hipoxia (HIF-1α) HIF-1α tiene una función muy importante en el incremento de la glucólisis ya que induce la transcripción de la mayoría de los genes de las enzimas y transportadores de la glucólisis. Además como se indicará posteriormente, los genes supresores de tumores y los oncogenes puede indirectamente incrementar la glucólisis, al permitir la estabilización de este factor de transcripción (aun bajo condiciones no hipóxicas). En la siguiente revisión, se discute la importancia de este factor en el metabolismo energético de las células tumorales. Mini Reviews in Medicinal Chemistry 2009, 9: 1084-1101 9 Factor de impacto 2009: 2.97 Citas: 15 lllN4 HiF-la Moduiates Energy Metabolism in Cancer CeUs by inducing Over-Expression of Specific Glycolytic lsoforms Ah",irad: To tle'rdop ncw antl more efficicnl antl-canccr ii wiii he importanl lo characteriLc the üf [Ta"""'I""'" fac1m ~scntiall{.r One such fae!nr i" factor-1ft (HfF-l.u), a tran- low oxygen cOJiditlons útld fouud ill high levels m rnúl!gnanl so lid flJntOts, hUí not ¡Ji nonnal ti5sues or slow-growiug tumors" [n fast·growitlg tUti101'S, HJF-Ja 16 iuvolved ln {he adlvutiün ofullmeroos cel1ular proc- esses Jnduding resistance agaiU5t apoptosis:. over,expr,;:ssiol1 01' drug eftlu'X membniue pumps. 'VascUlar remooe1i1'ig al1d áJiglogenésis as wd] as Ine:mswis, In táliéer te11$" HIF· lÚlnduées úver"expressiml and increase:d activiry of several cniytic pmtein isnfhrms lhaí ulffcr from ihnse fmmtÍ in non-malignaní -cclb, incluuing inmspuncTh {(¡LLT I GLCT3) antÍ <'-41Lym<.-"S (HKL HKIL PFK~L ALD-A, ALD-C. PGK 1, El\'O-o., PYK-Ml, LDH-A, PFKFB-3" The enhaneed iumor gly- Hux by HIF-l ú alw imolves changes in tbe killt'tt;.' púnems úf l!;úÍ(:¡nns ú1' key glytotyuc en- ZylUéS. 1"1Ie HIF-1 (J iudul'c..i iwfonns pfovide C¡mCét rells wHIt reduoed sensltÍvJty to physJúlogkal jnhihitors, lower atTin- it)' für pmthzcts ami high>:% catal:vtic c3padty (Vmaxf) in fOT\\"uru reactions becausc 01' marked oVeT*Cxpress.ion compareJ tú rnúsc iwfúl1l1S ir} núnYlaJ tiS3t\éS. Some of the HIFi (J-indúeed búfúrms ruw particlpaté irt SUf\ 1vál pathway~, mdudlug tr3ns.:npl]onal aCiivatitm of H2B ni~ttme lby LDI-j-AJ. inhihillon nI' armrrto~is (hy f-jKIi) ano pmmo- !itm uf ec1! migmlinn (by El\'O-at fHF-la ~{ciiHU m~{y ahm modulate milHchunJrial functi(m and oxyg:en ctm:.umptiun by "lacte, lIlHlg tbt· pynl\ are iri Sorne tllmor tYPC$, or e úxidtlh'! subullí! 4 expte$$Jon fO incfease oxJdativé phosphot)ltatioH in otllef CfU¡,¡;cr cell lines. In ll1Js rev íevv, the foles of HlF· 1 ü and H1F t (f- induca.! glycolytlc enL)'méh are examina.! JUlil it is conchJJed tÍlJl targeting the HIF ln-indueed glucose tranhpOl1ér anJ hcxúkitltl..&é, impol1tl1it tú tlux eúntmL providt" bcttcr targds for ttlrnúr ana progre~,,¡ml than targeting HIfItLltseU: Ke~ \" ords: G Iw.::o~c lf,¡:nlSporb,:;FS. ÍI":;_\OK ¡¡¡aSés. ] I j [" ~ I fL ~h,éll'¡V1;", tnitocl!(flltlfia. """ ,,,vme illli ibitOf:',. lni{oc!¡ündrt;:¡ I ¡nh ihi- ton;. I'iTRODlICllOl\: 1111'-1 Th~ oC [wooue ;0 suHd tumors ls a n:curn:nt f~atun: \vhích 1::: linkeu lo the pnJC'"'''' uf lhUlt lnl.rl:.Il:)ffllatiorl. !i1dOstll:-'1S ond ti¡) d)CnlU-, immurlo- ~Ind ¡. 2]. Thc fhelor "~;~=~:,:,~thut a e "l' nree[cil1S In cr:iU1[roPulcVClS, ,(.:;;;Uu lar nneJlll él'a- and :::arvtvaL v:t3,;,'ular v:I:tümtHor ecmlroL tHéhlbolk ¡\Jmv"It'" "c't eral I:'OfUr1H:' of U] F ex ij<¡f f Uf/- L -2 and -3 i see hcltm ror ¡nore d.:taH), the fucus of re\, ll:\V wil] be on IHf~l tx:cau3,e ü:s failCtlOil::: aré the mo"t weH ue- fhiétl In fdlllk:HI tu IIKldllylng T11e lHoh:culllf hi\)- IH,.:;,,·hnniS1!l:', ~"CU!uy ílíF-l dé[:,- a~ él u¡¡ns"ríp[iemI111 activatiüo factor re¡:Cllallog ~wdkd4 sirle..: 0.\10""¡,00 ha\\! bl.-'t'Y1 Gxli::n- pUI"[''''IIO'' ,,1' S":-!i1":;ll/;:¡ el aud r;;v ícw,,>d prCircm cC'vicw Ilx:us:.'s on Ol!.jS~ {ha1 TU!':S in tl1t: eh;,",!'" in nux inshJé CJmC":;f cdl~ arl,J WltOSé 1,,0- f;'lnns ar..: iHI'-i imd IIlF-l 4. D'\IA tmil fáétor ¡:; M ti Mthunils. \"hich hotb >comain (lnc bt:1~1 i 1,,1h.- ) ,md }IVO (P[R-ARNT sub- lit.: tlw 250 O;:: diss(J!\;cd irl w~it..:r ami :nÚc). it:, haH',.Iif\; oC 5 min, j IIF-la (:<)i!h:H1 i~ 10 1-II F _ l a .. e l h ·., ·r ....... r .. .... pr ........ n. 1· ~3 1··,· .. .: ,..., _ .,-rL· II ~ H 2 .. " " I - H .. , S e P V II L ::'> " • hltllt • '''ASI 111 1"_ 1 0 1 .... .., 1 1 ... .., Fi g. ( 1). Rrg ulat ion of HII '~ - Ia sta llility and ar thrity. Milli-Rt.'lliell'.'· i" M f!lliám¡/ (1U' lIIi.wry. 2U09. V"I. 9. NIi. 9 108 5 0. (-) C O . , ~ .. c FU .H ' ·· y r s .. ..,.., o. (-) C O . Under nonnoxia, prolyl hydroxylase (p1·ID) hydroxy lates prolin e (p ro) res id ues (402 and 564) of HrF-la in a region call ed the oxygen- dependent degrada tion (O-DD) dorna in, which faci litates its interaction with the von Hippel-Lindau protein (PVHL) and hence with an ubiq- uitin-pro tein ligase complex that marks HfF-la for destruc lion by Ihe proteasome. Asparaginyl-aspartyl hydroxy lases (A Hs) by hydroxy lat- ing an Asn residue (803) in the carboxy-tenninal transcr iptiona l activation dornain (C-TAD) of HTF-Ia, inhibits the binding of cofactors, such as p300 and CBP that are requ ired fo r the transcription oftargel genes. HrF-la is a heterodirner thal binds to hypox ic responsive ele- ments (HRE) contained in Ihe promoler region of the glycolytic genes. Abbreviations: 2-oxo, 2-oxoglul.:1rale; Succ, succinate; N-TAD, amine-tenninal transcriptional activarion domain; Lac, lactate; Fum, fumarme; Pyr, pyru vate; Asc, ascorbate, (-), in hibition. thal mim ics hypox ic conditions, thc hal r- lifc bccomes in- ereased 10 3 O 111 in [8). In particular, enhanced I IlF-l express ion has bcen de- tected in the l1lajori ly 01' brain, pancreas, l1lal1lmary gland, colon, ovary, lung and prostate pril1l3ry tumors, and in thei r l1le l3Slasis, b ut not in the l1lajority 01' bclli gll !ul1l ors or nor- mal ti ssues [9-15]. lI igher expression 01' I II F-Ia correlates with poor surviva l in breas!, head and neck, esophagus, stomach and IUllg cancers, although ror cervical cancer this assoc iation is no! so c lear [ 15]. Both the biological complex- ity 01" the I [l F systcm and methodological difficu lties such as the criteria used 10 ident iry 111 F positi ve ce ll s, immunohisto- chemical protocols al1(l source or tumor tissue for its experi- mental eval uation most probably account for any conflic ling data [15]. Regulalo ry M echanis l11s Co ntrollin g Hl f- I Activity The von lI ippel-Lindau prolein (pVl IL), a component o r the ubiqui tin ligase E3 complex, reg ulates IUF-Ia degrada- tion (Fig. 1). For pVIlL-IlI F interactioll , IIl F-la l11 uSI fi rs t be hydroxy lated al prol ines 402 and 564 in the oxygen- dependenl deb'fadalion (O-DO) dOl11 ain by prolyl-4-hydroxy- lases (P il Os). III F-I a transcriptional aClivi ty can also bc directly inhibi ted by I\.sn 803 hydroxy lat ion ca lalyzed by asparaginyl-aspartyl hyelroxylases (1\. I Is; also known as fac - tors inhibiti ng IITF- I, FllI s). lIydroxyla tion prevcllls re - crui l1l1enl 01' p300/CB P co-act iva to rs that would otherwisc combine together with ¡ IIF-Ia, rorming the ac tivc transc rip - lional eompl ex [7]lhal binds largel genes (Fig. 1). PilO and 1\. 11 enzymalic activi ties both requi re Fe2 +, 2- oxoglutarate, ascorbate and oxygcn (Fig. 1). Il encc, one way to reduce I!l F hydroxylation would be by decreasing the oxygcll level below to Ihm req uired fo r Pil Os. In Ihis l11an - ner, it was proposed that these enzymes sense intracellu lar oxygen lcve ls [ 16, 17] ane! that under hypoxic cond itions, PI ro s and A l is are inactivatcd wilh the result that In F-I a. becolllcs s ta bilized alld activa ted [ 16]. The ro le of PI¡ Os as 90 ¡1M) [ 18, 19 ] than the actual O2 concelllration thal ex ists in the cytosol (12.5-25 ~ M) and in lhe eapi llaries and anerioles (20-50 11 1086 M ;I/i-Hel';ell'$ il/ J /e{li('jm¡/ 0 /1'111;.\"11')' , 20 09, V{II. 9, NIJ. 9 ¡1 M) [ 17, 20-22]. Conseq uent ly, III F- Ia should nOI be inae- tivated by hydroxylat ion at an [02] 01' 10 Jl M. Under such condi tions, hydroxylase aC livilY, wi th a Km valuc or 100 ~lM should only be 9% ol"maximal vcloci ty (Vm), which is mOSI likely nOI suffi eienl lo inaeliva le III F- Ia. Inlh is regard, I IIF- la slabili1 ..a lion has becn rcpo rted 10 occur in inlac l cells al [O,] below 50 ¡1M [17]. Severa I possibili lies have bcen suggeslcd to explain Ihe apparent discrepancy betwccn the high Km va lues or Pll Ds dctcnnin ed ror O2 and Ihe raet that IIIF-la hydroxyla lion and associa led degradat ion oceurs under nonnox ia. For in- stancc, kinelic sludi cs havc not takcn inlo account thc contri- bu tion o r Ihe Icng th 01" the pcptide subs tra tes used in assay- ing PIID activi ty nor the role that III F-lo subs trate binding plays in rac ilitating oxygen bind ing, which may lower the ac tual Km (02) 10 morc physiologically relevan l va lues (re- viewed in [23]). In adcl ition, Ihe expression leve ls 01' PIID2 and PIID 3 are thcl11 selves íncreased under hypoxic condí- lions by 111 F -1 a [24, 25]. Therefo re, inereased PII D ex pres- sion wou ld be expccwd 10 also help reduce II IF- lo levcls. ln this regard , Pl ID2 was shown to be the most prominently ex pressed iso lom1 in a large range 01' cancer cell lines wi lh po ten t ac tivity tow~ l r d s III F- I a [24]. M itochondria ll nvolvemen t in the Regula tion of I·II F-I o A n additional lllechanisl11 explaining how 1 UF- lo levels are increased du ring hypox ia is thal Ihe decrease in [02] causes an increase in the generat ion or radical oxygen spe- cies (ROS) in mitochond ria by respiralOry complexes 1 and 111 p6, 27]. The increased ROS induces oxidation of Fe2 + to Fe3 , which would function 10 dilllinish lhe hydroxylase ac- tiv ity or PIID and A l! ( Fig. 1). In agreement wi th th is hy- pothesis, 111 F-l o is not stabilized in anti-oxidant treated cells (hepatoma, smooth muscle, cardiomyocy tes, gastr ic cpi the- lium , renal tubulc epitheliulll, macrophages) undcr hypox ia. In contrast, where ROS product ioll is low, such as in cell s laeking (a) mi lochondria l DNA (rho zero, pO ee li s), (b) eylo- chrome e, or (e) complex 11 1 Rieske iron-sulfur prOlcin , and (d) in cells trcated w ilh stigmatellin , an inhibi tor 01' complex 11 1 [2 8], IIIF- Ia hydroxylation proeeeds emeiently under hypox ia [22 , 29, 30]. Regarding the role 0 1" lhe rcspiratory ehain , it has becn proposed that Ihc reducl ion in [02 ] during hypoxia leads 10 a dccrease in cy tochrol11e e oxidase (COX ; complex IV) act iv- ity [31 ], resu lt ing in thc accumu lalion and ovcrloading of the reduced intermediates, ubiquinol and semiquinone, particu- larly the laller, which then promote superoxide gcncra tion (see Fig. 3 fo r chemical structll res). Specific inhibi tion ofthe respira lory complexes, by either cyanide (COX), ant imycin (complex 111 ; cylochro l11e b-c] complex ), Ihcnoyltrinuoro- accIOne (TTFA ) or o-tocophery l succinate (comp lcx 11 ; suc- cinatc dchydrogenase) or ro lenone (eomplcx 1) (Fig. 3), can also promote Ihe generation of ROS under normoxia, be- cause these respirato ry inhibito rs alTecl lhe electron transport by respira tory chain complex es to induce increased levcJs or sCllliquinone (and other free radica l Illolccul es) [32 -34]. In contrast, block ing entry or encrgy substrates to inhibi t thc respiralory chain at the eleelTOn cntranec level, by using malonate to inhibi t cOlllplex 11 , phenylsucci nate or n-butyl- Illalonatc to block transpon of succinate and other diear- Mari,,-IIC/'míllll e: el al. boxylate Krebs cycle intermedia tes, or a-cyano-hydroxy- cinnama tes to prevent pyruvate uptake into mitochondria (Figs. 2 and 3), is not expcctcd to induee gencrat ion or ROS, as thc.'.:;e inh ibitors do not dircct ly modiry the respirato ry chain al the levcl or clcetron fl ow. Changes in the Krebs cycle are also likely to contribute to the regulation o r IIIF-I o act ivity. The enzylll e2 o r lhc 2- oxoglutara te dchydrogcnase cO l11plcx (2-0GD II) can be tar- gctcd for ubiquit ination-dependcnt dcgrada lion by Siah2, thc RING fingcr ubiquitin-prolcin isopcpt ide ligase [35]. As Siah2 is induccd by hypoxia, d isrup tion 0 1" Illi tochondrial mctabolislll by affccting 2-0G DII would lead to loss 01' mi tochondrial stability and cell death. J-I ow is I·II F- Ia Maintain ed S t:lb lc and Act ivc in C:l ncc r Cclls'! It is lhought tha l III F-Ia in tumor cc ll s is s tabil izcd duc 10 the hypoxic environment developcd in ccrtain reg ions, part icularly in solid tUlllors 1 mm diameter or larger [36, 37]. Although tumors may have an aetive angiogenesis, unorgan- ized, Ihin and frag ile ne\V vesse ls are formed that afrect the normal dynamies 01' the blood flux. Conscqucntly, some tu- mor scctions \ViII become excluded, leading to hypoxie rc- gions [ 15, 38]. IIIF-I o stabili za tion is also promotcd by ac ti- va lion 0 1' cert ain oncogenes such as v-sre, IIER 2""" and J I- RAS, 01" by inactivation of some tumor suppressors such as p53 ami PTEN [3, 6]. 1I 0\Vever, the molecular mechanisms operat ing in thesc processes have not been elucida tcd. A high incidence o r pV11 L mutatiolls is associated wi th kidncy and central llcrvous sys tem tUl11ors. TIlese pVIIL mU lations 1110dify or dele te ei ther lhe a-dol11ain in thc C-terminal rc- gion which binds to elongin-C in Ihe pro teaso l11e, or the p- dOl11ain that in teracL<; with the II IF- Ia O-DD dOl11ain and is required for lluclearlcy tosolic trafficking, prevent ing 111 F- I ex. degradation (Fig. 1) [3, 39]. Under nonlloxia, III F- lo can be stabilized by Ihe high laclate and pyruvate levels generated by active tumor glyco- Iys is. It has been shown that these monocarboxyla les, and oxaloaccta tc, inhibit PIID ac tivity by cOlllpcling with 2- oxogllltara tc for binding [29, 40]. Sillli larly, mll talions or down-rcgulation of suceina tc dchydrogcnase (SD II) and fu- Illa ratc hydrata sc (F II ) induce a statc 0 1' pscudo-hypox ia that Illakes caneer eclls behave as if they were hypoxic, which leads 10 111 F -1 a stabi li zat ion and enhancel11cn t [41-43]. T hese Illutations inhibi t SDII alld FII ac ti vities,leading to succillalc and fuma rate accumulat ion, \Vit hout associated ROS prodllc- tion, and 10 prodllct-inhibition of hydroxylases [41-43] (Fig. 1). Moreover, SDII a11(1 FI I mUl'ations, o r their down- regulalion, are associatcd \Vith devclopmcl1t 01' phaeochro- mocylomas, paragangliomas, leiomyomas, leiomyosarcomas, renal cell, gastric and colon carcinomas, and papillary lhy- roid eancer [22, 29, 41 -43]. Add itiona ll·II F Isofo rms Three isofo nlls of IIIF-a ha ve been deseribed (111 F- la, II IF-2aIEPAS I and IIIF-3u11 PAS) and Ihree IIIF-Ip iso forms (III F- I O/¡\RNTI, IIIF-20/A RNT2, and 111 F-30/ ARNTI), although their exact rc lationships in fonning hel- erodimcrs are not known. HIF-I a and IUF-2atEPAS 1 share similar struc ture, hypoxic stabili zation and excl usi ve dimeri- 12 TI/II/or Glyco!p 'i\', 1-11 F-Ia tl11tlllypox;" M i"i-Rt'I';l'II'S ;" Ml'llidtwl Chemi.\'l ry . 2009, Vol. 9, NII. 9 1087 GtU+A', " ATI' + GLU O 11 1(1 r'K' A P ADI' .... ~ ~, (2) GLU.o" / 'lt GLUTJ ADP+ G6I' ~ T ilofhondrla O Monomer 6 0hner m Tt' .... mtr o I 'sororms C)losol , , e l. in G6 P +ADI' IIKI , ' , ' \(.) H) _--__. ',~ _ G61' _ .... ----+- G I )'fO¡;~ n ~ G61' P('nloses p. th" -.,, .... .. _ .... ---...... ~ ¿ 11 1'1 .. r..¡ rnU' Il-J ~ (-) ."61' 7<; Fl.6BP AT P~ \ ......... l'rK-L ' ...... !'DP ft':. ATI' AOI' : ALIl~:ffi ~~ AU;¿'" ~ .!,/ TCs .< ffi ATP + GLU GlP A D ' ~ CA I'n l! ~~ !1 F1.61l1> II I'V· 16 E7 A DI 1.J1l1'G ADP -y'¡ PGK! ATP ~ ~ 3PG éPGA M - S 21'C t:NO-G é PU' - g.g 1\la l . r ,\teJ' .. "$;jI! N Ir I..AC r--...J-- ti . PYR I.AC I..AC LD II-A .~ . AI)P ATP " YR "YR f ig. (2). C lyco lyl ic isofo rm s up rrgulatcd by Hl f- I in (':III('('r cclls. GLUT, glucose transporte r; HK, hexokinase; HPI , hexosephosphate isomerase; PFK 1, phosphofructokinase type 1; ALD, aldolase; PFKFB3, phosphofructokinase type 11; TPI, triosephosphate iso merase; GAPD H, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGAM , phosphoglycerate mutase; ENO, enolase; PYK, pyruvare kinase; LDH , lactate dehydrogenase; MCT, monocarboxylare transporter; PDH, pyruvare dehydrogenase compl ex; PDK, pyruvate dehydrogenase kinase; GLU, gl ucose; G6P, glucose 6-phosphate, F6P, [ructose 6-phosphate; F2,6BP, fructose-2 ,6-bisphosphare; Fl ,6SP, [ructose 1,6 bisphosphate; DHAP, dih ydroxyacetone phosphate; G3P, glyceraldehyde-3-phosphate; 1,3 BPG, 1,3 bisphosphoglycerate; 3PG, 3-phosphoglycerate; 2PG, 2-phosphoglycerate; PEP, phosphoenolpy- ruvate; PVR, pyru vate; LAC, lactate; TGs, oiacy lglycetides; Ser, setine; Cys, cysteine; Gly, glycine; Ala, alanine; (+) ac tiva(ion; (-) inhibi- tion. zation with IIIF-lp [44]. IIIF-Ip may also dimerize with aryl hydrocarbon receptors, allowing cross-talk wi th xenobiolic metabolism. I lowever, complexcs eontaining IIIF-2a act i- vate a distinet s llbsct of genes, comparcd to III F- I a , that are nOI in vol ved in regulating glycolytie genes [45]. 1I1F-2a fi s- sue express ion occurs in a limited number of non-parenchy- mal cells (in kidney, pancreas and brain) and parcnchymal cc lls (in ¡i vc r, intcstinc and hcart ) [45]. 1I0wcvcr, IIIF-2o. is also in vol ved in tumor progrcssion and incrcascd cx prcssion has bccn obscrvcd in divcrsc solid lumors, including bladdcr, brain , breasl, colon, ovar y, prostatc and renal carcinomas [13, 45]. The role 0 1' 111 F-3o. is not clear. Three splice variants can be produccd from the IIIF-3o. gcnc. Isororm-2, also ca llcd IPAS (inh ibitory PAS domain, a natura l lllF-1 a anlagonis t), lacks an Asn-containing transactiva tion domain (C-TAD), such that it aCls in a dom inant negat ive manner f'onn ing tran- scriptiona lI y inacti vc hetcro-dimers \Vi th I I I F- I ~ , thereby prevcnting I II F- Ia dimerizing with IIIF- lp [44]. In the cor- neal epitheli llm , where the IPAS conccntration is high, cor- ncal neo- vascularization is inhibi lcd [46]. On Ihc olhcr hand, II IF- l p is constitll lively cxpresscd undcr nonnoxic condi- tions and is slightly increased by Ihe same effcctors 111at up- regulatc I II F-In cx pression (hypoxia, EGF, CoCI,) [47]. GLYCO LYS IS AN D I'II F-MEDIATED REGU LATlON MOS l cancer cells show cnhanccd g lycolytic capacity compared to Iheir tissucs of origin [48,49]. This occurs bc- cause many 01' the glycoly tic enzymes can be cxpressed as severa I difTcren t isofonns (Ta ble 1) and Ihe isofonns ex- prcssed in cancercells are di fTcrcn 1. Th is process is regulatcd by II IF-la which ac ts as a transcriptional fac tor for most 0 (' the glyco lytic enzymes and transportcrs (Figs. 1 and 2) 13 1088 M il/i-Rel'it'll'l' il/ !l1nliá l/lI / Che/l/i,wfJ' , 2009, 11,,/. 9, N". 9 ll/uríl/-lIl'rl/(Ím/e:. el ti l. GLyeOL YTle INHIB ITORS 1·10 HO Gossypol Koningic ac id y; O HO B'YOH OH OH O 2-dcoxyg lucosc 3-bromopyruvate MITOCHONDRIAL INHIBITORS ~ o O- HO O O : 1 o /'O~~ Phenylsuccinatc n-buthylmalonatc Malonatc 0- -O H O~ 1 '" Ne ó ó o O O H o- a-cyan,,4-hydroxyc ilmamalc Dicloroacclalc Rotcnonc O 1ñcnoyltrifluoroacctonc o OH }---{ 1) O Oxalatc o NH, } --{ - -O O lodoacctatc Oxamatc '" .& N"'\ lj ~ h OH :? el '" Clotrimazolc Stigmatcllin oeH'X;=0 0 R 11 ~ e..... o Q: ~ OCOCH,c¡-I(CH, ), ",..-::. o eH) OH NJ-iCJ-iO R= Hcxyl : Antimycin A l R- Butyl: Ant imycin Al a-tocophcryl succinalc Hypoxia HIF-10 INHIBITORS %, ag HO, O OCH;, O : Manassantin B ol 0H O N(CH;)¿*HC1 HO. o HO HO OH Vitexin Mini-Reviews in Medicinal Chemistry, 2009, Vol. 9, No. 9 1089 (Fig. 3. Contd....) A 0H o ÓN OCH, V-ATPase INHIBITORS OCHz CH¿3 | CH; OH OCH, CHz CH, H,C CH; CH¡ CHz OCH; CH; CHj3 CHz3 OCH; CHz Bafilomycin A, Concanamycin A OTHER COMPOUDS o ps o* 2 H,CO (CH3-CH=C-CHa)10-H o H,CO (CH,-CH=CÉCH))yo-H ox H,¿CO CH HO CEs Methylglyoxal > 3 Oo OH Sa ical Ubiquinol-10 Semiquinone-10 radica! Fig. (3). Chemical structures of some anticancer drugs that block energy metabolism, [4, 44, 50-54]. Interestingly, HIF-1a activation only in- creases the transcription of one particular isoform for each of the HIF-1a regulated glycolytic proteins. The following sec- tion discusses the specific HIF-1a mediated regulation of glycolysis and why some of the glycolytic isoforms may prove to be suitable drug targets for cancer therapy. Glucose Transporters (GLUTs) The glucose transporter family consists of three different classes. Class 1 contains four members, GLUTI-GLUT4 (Table 1) whose preferential substrate is glucose. Class 2 and 3 transporters are selective for other carbohydrates [55]. GLUTI and GLUT3 expression is up-regulated by HIF-1a (Fig. 2). GLUTI is expressed in all tissue types, whercas GLUT3 is preferentially expressed in the brain. Apparently, GLUT! can form dimers and tetramers [56]. It has been ar- gued that the HIF-1a-mediated GLUT1 and GLUT3 over- expression in cancer cells is related to their high glucose affíinity (low Km) [57]. However, it is somewhat surprising that the kinetic parameters of glucose transporters have been determined only for glucose analogues such as 2-deoxy- glucose(2-DOG) or 3-O-methyl glucose, but not for glucose itself: hence, substantial differences in the kinetic parameters have been reported: GLUT1, Km = 6.9-50 mM, Vm = 6.5- 14 Tumor (il)'colp:is. N I F-Ia ((mi /- ~rfJoxit l i/li ('1'it!ll'S ll eflid/Ud /lemislry , 09, 1101. , o. H9 (Fi~ . J. Onld ...) o I - Ia I I RS O H O anass lm B :::::-... OCH J B ~ O H 1 / H,C O itcxin OCH, Di lJlxin OH - TPasc N I I RS CH] H, , OH O "'- "'- H H}C H,C }C :::,... '<:: H3 e 3 O H3 e 3 ilom ycin Al n in A HER POUDS O CH3 H ' CO ~ (C ' . ' '-C H ~ ¿ CH ')IO -H O D ~ O· H ' CD~ (C H ' - C H H,C VCH, Mcthy glyoxal ,CDY CH, Ubiquinol- IO Scmiqu inonc- l O radical ig. ). he mi cal rures f e t cer r gs at l ck ergy etabo lism. , 4, - 54]. t r s li g ly, I IF-Ia e li li n nly - ses I e Ira ri ti n f e arti ular nn r ch f I e I IF-Ia ulated l eo lytie r leins. he lo ing c- li n i u ses I e c ific I IF-Ia I11 cdialcd ulali n f l co lys is d hy Oll1e f I e l colytic so nns ay r ve 10 e il ble r g l ets r nccr rapy. lucose ran sport ers LUTs) he l cose lra sporter i ly nsis l'S f rce i T renl J ses. la s I ntains ur embcrs, UT I- LUT4 able ) hose r ferential bs lrale l cosc. la s d ra orters re cl cti e r t e!' r hydrates 51. LUTI d LUD pre sion -r ul aled y II IF- la ig. ). LUTI re scd l i e I es, hereas Un re ferenlia ll y pre scd I e rain. parenlly, LUT I n rl11 l11ers d l lr J11 erS 6]. t as ecn r- ued I al I e II IF- la-l11ed ialed UTI d LUT3 er- pre sion cer l s l t d eir i h l cose ff ity I ) 7]. Ilowcvcr, t cwhat r risi g at e i clic r rnetcrs 01' lleose I porters ave ecn Clcnnill cd l ly r r l cosc l lles ch s eoxy- l 2- G) r 0- ethyl l cose, ut OI r l cose lC; clf; nce, bstall lial i c ccs I e i etic ara clcrs ave een oned : LUTI , ili ~ . - 0 111M, III ~ . - 15 1090 J f il1;-R(!'Ilü!lI's ill J'l e(liál/(/1 Chemi,wfJ', 2009, Vt}l. 9, No. 9 MtlrI;/-lIermí lUle:. el l/l. T:tblc l. Isoform sof Glyco lytic I'rotcins Tnl nSllO rCl.' r or Enzyllll.' Cl.'nl.'s l soforms Oligolll l.' ric Sla ll.' AnlicllllCl.' r J)rugs GLUT 4 GLUTI , GLUT2, GLUT3 . GLUT4 M?, O, T HK 4 HKI, HKII , HKIII , HKJ V M.T 3-BrPyr, clolrÍlnazolc HPI I No iso forms O 2-DOG PFK-I 3 PFK -L, PFK-M. PFK-P T c1olrimazolc A LD 3 ALD-A, ALD-B, ALD-C T clOlrimazolc Tri I No iso fonns o GA PDH 2 GAPD I. GAPD2 T Arscnilc,Goss, IAA, 3-BrPyr, Koningic acid PGK 2 PGK I. PGK2 M 3-BrPyr PGAM 2 PGAM-A, PCiAM- B o Oxamalc, Oxalalc ENO 3 ENO.a., ENO-~ , ENO-., o PYK 2 PYK-R, PYK -L, PYK-M 1, PY K-M2 T Oxamalc, Oxatalc LDH 3 LDH-A, LDH-B, LDH -C T Goss, Oxamalc, Oxa lalc PFK-2 4 PFKFBI, PFKFB2, PFKFB3, PFKFB4 o MCf 4 MCT I, Men, MCT3 , MCf4 M? M. monomer: D, dlmer: T. tetramer. ¡AA, IOMacetaIC: 2-00G, 2-deoxyglucose: 3-BrPyr, 3-bmmopyruvale: Goss, gossypoL Data takcn from (55,56,63,65,73,77.78,81,100, 107,109, 11 1,116. 121,124. 128,130, 1321· 700 pmo Vmin/ooeyle; GLUT2 . Km ~ 17-42 mM. Vm ~ 3. 1- 900 pmo l/min/oocyle; GLUD, Km ~ 1.8- 10 mM. Vm ~ 2.2 - 850 pmoVmin/oocytc; G LUT4, Km = 4.6- 100 mM, Vm = ISO pmol/m in/oocyle) [5 8-60]. Based on Ihe kineIic para me- lCrs dClCrmined for 2-DOG, and thc assumption that Ihe Km valucs fo r 2-DOG arc close 10 those for glucose, it can be conc1uded that G LUT3 is the transporter with the highcst afTini ty and ca laly tic efficiency (Vm/Km ; G LUD>G LUTI > GLUT2>GLUT4), while GLUT2 ovcr-expression would bc physio logically irrcJevan t at nonnal blood g lucose levels of arollnd 5 mM. GLU Tl is the transporler mOSI widcJy ovcr-expressed in canccr cclls (T able 2), part icu larly in highly proliferative and malignant tllmors [55, 61 ]. GLUT3 is a lso over-expresscd in lung, co lon, ovary, larynx and mal11l11ary gland IUl110rS (Ta- ble 2); high levels of G LUTI or GLUD have been lIsed as indicators o f bad prognosis [55]. Inleresling ly, G LUT I and GLUTI are one of Ih e l11 ain con tro lling steps of glyco lysis in sOl11e fas t-growth lumor ce ll s [62; Rodriguez-Enriquez S., Marín- I lernández A, Gallardo-Pérez J.c. , Moreno· Sánchez R. , unpublis hed dala] , and henee il providc...:; a sui lable Ihera- pcutic targc l ror glycolytic and hypoxic tllmors . I lowever, in hibilors o r G LUT Ihal specifically targel cancer cells ha ve 11 0t ye l been developed. l'lexokinase (1'1 K) Monomeric I IK has fo ur isoforms (Table 1) with molecu- lar mas ses of lOO KDa for IIKI, IIKII alld IIKIII or 50 KDa ror I IKI V, or glucokinasc (G K). Their Km va lues ror glucose rangc fr0111 0.003 10 8 mM in Ihe o rder of re lati vc aninity ( l/Km ): II KIII> IIK I> IIKII> IIK IV. The aC livi ly o f isoforms 1-111 is slrongly inh ibilCd by the prod ucl, G6P, whereas GK is fully inscnsiti ve to Ihis l11etabolile [63 ]. IIKI and IIK II gcnes are 111 F-I a !arget.:; (Fig. 2) [44]. 11 KII over-expression occllrs in th e l11ajority of tumors, although in brain, tes ti s, and hcad and neck lumors II KI is prcfcrclltially over- ex prcsscd (Table 2) [64] and may fonn lelramers [65]. These IwO iso forms can bind 10 Ihe exlernal milochondrial mel11- branc by mcalls or a 15 hydrophobic amino ac id segmcnl , MIAS II LLAYFFTELN . in Ihe amino- Ienninal region [66]. In somc tumor cclls, Ihc mi tochondria-bound I IK accou nls for 50-70% oftotal ce llular IIK [62] . Ilowever, in Ihe major- ily of kinclic sludies in cancer cell s, Ihe ana lysis 0 1' IIK ac- livity has bccn derived from Ihc free or cy toso lic iso fonll, whilc the contr ibu lion of l11embranc-bollnd IIK has oftcn nOI been eva lualcd , Ihereby underestimating Ihe tota l I IK aCliv- ily. Apparently, IrK prefcrcntially interac ts wi lh the I11CI11- branc pcnneabi lity lrans ilion (MPT) pore through thc volt- agc-depcndent an ion chan ncl (VDAC), which leads to Ihe blocking of cytochromc c release induced by lhc pro-apop- 10lic proteins Bax alld Bid and proleclion or cancer cell s from apoptosis [66, 67]. In turn , inactivat ion 01' cyclophilin D, a mal rix componcnl o f Ihc MPT pore, induces Ihe release of 1I KII from milocho ndria and cnhances Bax-media led apo ptosis in cancer ce lls [68]. Mitochondrial IIKI and IIKII have prcfercn lial acccss to ATP produccd by oxidalive phosphorylation bccause of thci r 16 TI/lll llr GlyC(l lp 'L\', NI F·l a IIml Nyp(lxitl Mitli -Hl'I'il'II'S il1 M {'(lil'Ílla l Chelll i.wrJ', 200 9. VIII. 9, No. 9 109 1 Tllbk 2. Isoforms ofGl ucosr T rllll spor l(' rs lln d G lyco ly1k Enzy lll (,s Ex p r('ssrd in Huma n T umo rs Isofor m s Typ('S o ftulllor ~ ro >. = o " o 3 .::! ::; " " " ~ = .: ~ " = ¡; d ·2 = " E t .. = o " t t· 1': z el> o ..l :;: > ;. .,; ; :i -= . ~ ~ . -:;: ~ o; .. " o == ..l ¡; ~ Z '" 'E " :J ~ ..l '" U .;¡ > u .:.¡ .... :::': .:;, .::: " ¡:: l:. '" o ¡;; ~ U GLUT I X X X X X X X X X X X X GLUn x x x x X HKI X X X HK II X X X X X X X X X X X X HPI X X X X X X X X X X X X X X PFK-L X X X X X X X X A L D-A X X X X X X X X X X X X X X X TPI X X X X X X X X X X X X X X GA PDH X X X X X X X X X X X X X X X X X X X X PG KI X X X X X X X X X X X X X X PGAM-B X X X X ENO-a X X X X X X X X X X X X X X X PYK·M2 X X X X X X X X X X X X X X X X X X X X LDH A X X X X X X X X X X X X X PFKFBP3 X X X X X Mfe. thcre are not rcpons . . .. Data taken fmm (55, 6 1, 11 3. 114. 165, 166] , Mg. Manmlary gllUld; EOOo, enoomClmulI , l llN . head aOO neck, LN, Iymphauc ood uJes, NS, nervous systCm; RL, retlcular lymphOllla , BM, bone marrow, proxima l locat ion to mi lochondria (Fig. 2) [64] and, as a result , are rcpo rted ly less sens ilive to inhib ilion by G6P [69] . I lowever, rcsults from our laboratory have revealed strong G6P in hibition of bOlh mitochondria l and cytosolic I JK [62] when enzyme aClivily was assayed under near-physiological condil ions (37°C, 1'" 7 and concenlTations of glucose and G6 P ~ 1 mM). The G6 P concenlralion has been reported al 0 .6-5 mM in lumors [621 and Ihe inhib ilion conslant (Ki) or le,. va llles fo r I I K vary bel\Veen 20 and 2 10 !!M [63, 70]. Consequently, Ihe II K activity would be predicled 10 be strongly G6 P-inhibited under sucll concl itions (Fig. 2). Fur- therlllore, G6P ( 1 111 M) induces the re lease o f mi tochondri - ally bou nd IIK in both malignant and non-ma lignant cells [7 1, 72], lIence, IIK wOll ld be predominantly free in the cy- tosol in cancer cell s with high [G6P] such as AS-30D hepa- tocarcinoma (G6P ~ 5 mM), whereas in 11Imors with lo w G6P slleh as lIe La ce lls (G6P=Q.6 111 M), IIK l11ay be pre- dominantly boulld 10 mitochondria l extemal membrane. It should also be po inlcd OUI Ihat, in sOllle slud ics, Ihe relative Icvels o f II KI and II KII activity in cy toso lic frac- tions have very Iikely been under-estilll atc 2n 2 + > Mn2+ > Fc2+> Cd 2+> Co-+> i2+> Sm3+> Tb3+ [ 116]. III F-Ia up-regula les E O-a expressioll [4, 44] 10 signiri- cant leve ls in several tumor types (Table 1). ENO-a acts as a receptor for plasminogen which favors tumor growth and metas tasis [ 116]. COIl sidered logclher wilh Ihe role of PG K !1Iarlí,- l/ermím(e:. ('/ al. discusscd aboye as a fac ilitator ofplasminogen ac tivat ion by all toproteo lysis to plasmin, which is involved in catalyz ing Ihe degradation o f fi brin aggregates, the cvidence sugges ls Ihat Ihe combin ation or lhese IwO g lyco ly tic enzymes is like ly to fac ili ta te cancer mctas las is. Again, however, Ihese enzymes are nOl high ly rclevant lO lhe pll rpose 01' Ihis re- v¡cw. Pyruv .. tc Kinnsc ( PYK) PYK is a homo-tclramcr with four iso fol111S (Table 1). PYK- L is localized mainly in liver and kidney (g lll- coneogenic tissues) and PYK-R is expressed in eryth rocytes. These IwO isoforms are encoded by Ih e same gcne (which has 12 exons), bul are expressed rrom altemalive promoters such thal specifi c promoters ror L and R isororms are in exon l and 2, respeclivcly. The two OI her isofo l111S are PYK- MI , loca lized in brain , heafl and skelelal mllscle, lion assay. Biochem. J.. 2007 , 401, 227-34. Tsa i, A.G.; Johnson , P.c.; Intaglieta, M. ls the distribution ortissuc p0(2) homogenoous? Amioxid Redo:c SignaJ., lUU 7, 9, 979-84. Cabra lcs, P.; Tsa~ AG.; Frangos, JA ; Intaglicta, M. Role ofendo· thelial ni trie oxide in microvaseular oxygen dcl ivcry and eonsump· lioo. Free Radie. Biol. Med , 2005,39, 1229-37. [2 21 [231 [24J [251 126[ 1271 [28 1 [29 1 [301 [311 1321 [33J [34[ [35 1 1361 1371 [381 [391 1401 141 1 1421 Marí,,·J/ermi mle:. el al. Lec, K.; Roth, R.A.; LaPrcs, JJ . Hypoxia, drug therapy and toxic- ity. Plwm/Oco/. nJer., 20tH , J 13, 22946. Faodrey, J.; GOIT, T.A.; Gassmann , M . Rcgul31ing cellular oxygeo sensing by hydroxylalion. Cardiwasc. Res., 2006, 71,642-51. Appc\hoIT, R.J. ; Tian, Y.M.; Raval, R.R.; Turley, H.; HaITis, A.L.; Pugh, C.W.; RatcJirre, PJ .; Gleadle, J .M. Di fferem iaJ runction or lhe prolyl hydroxy lases PH 0 1, PH D2, and PHD3 in thc regulat ion o r hypoxia-indueible ractor. J. Bio/. Chem. , 200~ , 179, 38458-65. Sl i ch~ O.P.; Wirlhncr, R.; KOditz, J .; Spie hnann , P.; Camcnisch, G. ; Wenger, R.H. lncrcascd prolyl 4-hydroxy lase domain proleins eompcnsalC ror dccrcased oxygen lcvcls. Evidcncc ror an aU loregu · Ialory oxygen·scnsing systelll. J. Bio/. Chem., 2006 , 181 , 23482-9 1. Klimova, T.; Chande l, N.S . Milochondria l complex [J] regulalCs hypoxic aelivation or H1 F. Cell De(Jfh Difler., 20UM, 1.5, 6.60-6. Taylor, C.T. Mitochondria and ccllu lar oxygcn scnsmg m the HI F pathway. Bioche", J. , 2ooH, 409, 19-26. Cov iao, R.; Pardo, J.P.; Moreno-Sánchcz, R. Tight binding or in· hibitors to bov ine be l oomplex is indepcndenl or the Rkskc prolcin redox state . Conscqucnccs for scmiquinone stabilizat ion in the qui · nol oxidation site . J. Bio/. Chem., 2002,277, 48449-55 . Pouysségur, 1 ; Mcchta-Grigoriou, F. Rcdox regulation of lhe hy- poxia·inducib lc ractor. Biol. Chem., 2006, 187, 1337-46. Bcl~ EL ; Klimova, T.A.; Eiscnbart, J .; Moracs, C.T.; Murphy, M. P.; Budinger, G.R.S.; Chandcl, .S. Thc Qo site of thc mito- chondrial complcx IU is rcquircd ror the transduction or hypoxie s lgnahng \ '10 rcacllve oxygcn spccics prodUctloo J Cell BJO/ 2007, 177, 1029-36. Horvat, S.; Bcyer, C.; Amold, S. Errect orhypox ia on the transcrip- lion panem o r subunit isoronns and lhe kinetics of eylOChrome e ox idase in cortical astrocytcs and ccrebcllar ncuron. .. . J. Nellro- chem., 2U06, 99, 937-5 J. euzi l, J.; Dyason, J.C.; Frccman, R.; Dong. L. F.; Prochazka, L.; Wang, X. F.; Sche 01 cr, l.; Ralph. SJ. Mitoeans as anti-caneer agcnlS targcling mitoehondrin : lessons rrom sludies wilh vitamin E aoalogucs, inh ibitors of complcx 11 .1. Bioenerg. Biomembr., 2007, 39,65-72. Pitkanen, S.; Robinson, n .H. Mitochondrial eomplcx 1 dcfieicney Icoos to increascd production orsuperoxidc mdicals and induction of superoxide dismutasc. 1. Clin. h n>e5I .• 1996, 98,345-5 1. Dong, L.F .; FreClnan, R.; Liu, J .; Zobalova, R.; Marín.Hcm.ándcz, A.; Stantic, M.; Roh lena, J.; Rodrlgue'L.Enriquez, S.; Vahs, K.; Butchcr, 8.; Goodwio, J.; Brunk, U.T.; Witting, P.K.; Moreno- Sánehez, R..; Schemcr, I. E.; Ralph, SJ.; Ncuzil, J. Suppre~sioo or tumor growth in vim by the mitocan alpha-Iooophcryl SUCCUlalC re- quircs respiratory com plex 11 . Clú,. Caneer. Res., 2U09, 15, 1593- 600. Habclhah, H.; Lainc, A.; Erdjumcnt·Bromage, H.; Temps!, P.; Gershwio, M.E.; Bowtc l ~ 0 .0 .; Ronai , Z. Regulatioo of 2- OXoglular3lC (alpha-kelOg lutarale) dehydrogcnasc Slabil ily by me RI G finger ubiqu itin ligase Siah. J. Bio/. Cltem., 2004, 179, 53782-8. Li, X.F.; Cari in, S.; Urano, M.; Russcll, J.; Ling, C.C.; O'Donoghuc, J.A . Visualizat iOll or hypoxia in m;croscop ic Iwnors by immunofluorcsccnt microscopy. Calleer Res., 2007, 67, 7646- 53. Leo, C.; Horn , L.c.; Eincnke l, J .; HcnlSchel, 9.; HOc kel, M. Twnor hypoxia and exprcss ion or c- met in cervical cancer. Gynecol. On· ca!., 2007, 104, 18 1-5 . . . . Li ao, D.; Johnson, R.S. Hypox ia: a key regulatororanglogenesls 10 cancer. COllcer Me/rulasis Rev .. 2007, 16, 28 1-90. Bonicalz~ M.E.; Groulx, l. ; Paulsen , N.; Lee, S. Role of exon 2· cncodcd beta ·domain orthe von Hippel·Liodau lwnor suppressor protcin . J. Biol. Chem., 200J , 276, 1407-16. . Lu, H.; Dalgard, CL; Mohyeklio, A.; rvk Fatc, T .; Talt, A.S.; Varma, A. Reversible inactivation or HI F- l prolyl hydroxylascs al- lows ecll mClabo lism to control basal HI F-1. J. Biol. Cltem., 2005, 280, 4 1928-39. Sclak, M.A.; Annour S.M.; Mac Kenzie, E.D.; Boulahbel, H.: Wal· son, D.G.; Mansncld, K.O.; Pan, Y.; Simon, M.C.; Thompson , C. B.; Gottlicb, E. Suecinate links TCA eyele dysfunctioo 10 onco- gcncsis by inhibiting H1F-a lpha prolyl hydroxylasc. Cancer Cell, 2005 , 7,77-85 . Pollard, PJ .; Bricre, JJ.; Alam, N.A.; Barwell , 1 ; Bare lay, E.; Wonham, N.C. ; Hunt, T.; Milchell , M.; Olpio, S.; Moa!, S.1.; Har- grcaves, I.P.; Hca lcs, SJ .; Chung, Y.L.; Griffi ths, J. R.; Dalgleish, 24 Tlllllor (ilJwly.,·is, 11/ F- I a (lf/(I IIJpoxüt (43 ) (44) (45) (46) (47) (48) (49) [50) (5 1) [52 J [53 ) [54) [55 ) [56) [57) [58) [59J (60) [6 1] (62 ) [63 J A.; McGrath, J.A.; Glccson , M.l ; Hodgson, S.V.; Poulsom, R.; Ruslin, P.; Tomlinson , LP. Accumulal ion of Krebs cycle inlerme- diales and ovcr-exprcssion of H IFlalpha in nunours which resuh from gcrml ine FH and SDH mUlalions. IIlIm, Mol. Gener" 2005 , /4 , 223 1-9. Lec , S.; Nakamura, E. ; Yang, H.; Wei, W.; Linggi, M.S. ; Sajan, M.P.; Farese, R.V.; Frecman , R.S. ; Carler, B.O.: Kacl in , W.G. Jr.; Sehlisio, S. Neuronal apoptosis linked lo EgIN3 prol y[ hydroxylase and familial pheochromocytoma genes: developmenla[ cull ing and cancer. Callcer Cell, 1005 , 8, [55-67. Rankin , E. B.; Giaccia, AJ . The rolc ofhypox ia-inducib le fac lors in lumorigenesis. Cell Vea/h Differ. , 2008, /5, 678-85. Palel, S.A .; Simon, M.C. Bio1ogy of hypoxia-inducib le factor-2alpha in dcvelopment and discase. Cell Deal/¡ Dilfer. , 2008, 15, 628-34. Jang, M.s. ; Park, J .E.: Lec, J.A.; Park, S.G.: Myung, P.K. ; Lec, O.H. ; Park, B.C. ; Cho, S. Bind ing and regulalÍon of hypox ia- inducible factor-I by lhe inhibilol)' PAS proleins . Biochem . Bio- phys. Res. Comm/lll., 2005, 337, 209-15 . Zhong, H.; Hanrahan, c.; van der Poel, H.; Simona, J.W. Hypoxia- ind ucib le factor l alpha and Ibeta proleins share common signaling pathways in hwn an prostale canccr cells. Biochem, Biophys, Res. CommuII .. 200 1, 284, 352-6. Pedersen , P.L. Mitochondrial evenlS in the Jife and dcath of animal cells: a brief overview. 1. Bioellerg. Biomembr., 1999, 31 , 291-304. Moreno-Sánchez, R.; Rodríguez-Enríquez, S.; Marín-Hemández, A .; Saavedra, E. Energy mctabotism in lumorcclls. FEBSJ., 2007, 274, 13934 18. Takahashi, Y.; Takahashi, S.; Yoshimi , T.; Miura, T. Hypoxia- induccd expression of phosphoglyccrale mu tase B in fibroblaslS. Eur.J Biochem., t 998, 254 , 497-504. Gess, B.; Hofbau cr, K.H.; DcUlzman n, R.; Kurtz, A. Hypoxia up- regulales trioscphosphate isomerase expression I lk¡ a HIF- dependen l palhway. PJIlIger. .. Arc"-, 2004, 448, 175-80. UlIah , M.S. ; Oavies, AJ .; Haleslmp, A. P. TIle plasma mcmbrane lactale tmnsporter MCf4, but not MCf I, is up-regulated by hy- poxia through a H[F-I alpha-dcpendent meehanism. J Biol, Chem. 20 06,281,9030-7. Obach, M.; avarro-Sabate, A. ; Caro, 1 ; Kong, X.; Duran, J .; Gómez, M.; Perales, J .c.; Ventura, F.; Rosa, J .L. ; Sanrons, R. 6- Phosphofruclo-2 -kinasc (Pfldb3) gene promoler contains hypoxia- inducible factor- I binding siles neceSS31)' for Imnsactivation in re- sponsc to hypoxia . J. Biol. Chem., 200 4, 279, 53562-70. Fun asaka, T.; Yanagawa, T.; Hagall, V.; Raz, A. Regu lation of phosphoglucosc isomerase/auloerine motility factor cxpression by hypoxia. FASEBJ., 2005, /9, 1422-30. Macheda, M.L.; Rogers, S.; Best, J.O. Molecular and cellular rcgu· lalÍon of g lucosc transporter (GLUT) proteins in cancer. 1. Cel/. Phy .\·iol. , 2005, 202, 654-62. Pessino, A .; Hebcrt, D.N.; Woon, C. W.; Harrison, S.A.; Clallcy, S.M.; Suxton, J.M.; Carruthers, A.; Czech, M. P. Evidence thal fUl1C lionaJ crythrocyte-rype glucose tran sporters are oligomers. J. Biol. Chem., 199 1, 166, 2021 3-7. Zhao, F.Q.; Kealing, A.F. Functional propcrt ies and genonlics of g lucose transponers. ClIrr. Genomics, 2007, 8, 11 3-28. Suranl, C.F.; Sell, G .1. Mammalian faci li tat ive glucose transport- ers: evK1el1Ce for similar substrale reeogn ition sites in fu nctionally monomcric proleins. Biochemistry, 1992, 31 , 10414-20. Gould, G.W.; TIlomas, H.M.; Jess, T J. ; Bell , G .I. Expression of human glueose transporters in XellOpll.f oocytes: kinetic charactcri- zation and substrate specific itics ofthe crythrocyte, liver, and bra in isoforms . Biochemiflry , 199 1, 30,5 [394 5. Liu, Q .; Vera, J.C. ; Peng, H. ; Golde, H. TIlc prcdicled ATP-binding domains in the hcxose transporter GLUTI e rilicall y affeet trans- porter aCl ivily. Biochemil'lry, 200 1, 40, 7874 -8 1. Alterberg, S.; Greu lich, K.O. Genes of glycolysis are ubiquitously ovcrcx presscd in 24 cancer c1asscs. Genomics, 2004, 84, 1014-20. Marín-Hemándcz, A.; Rodrlguez-Enríqucz, S.; Vital-González, P.A.; Flores-Rodríguez, F.L.; Mac ias-Si lva, M.; Sosa-Garrocho, M.; Moreno-Sánchcz, R. Dctenn ining aOO uOOerstanding the con· trol o f glyco[)'sis in faSl-growth rumor ce ll s. Flux control by an over-cxpresscd but strong ly product.inhibited hexokinase. FEBS 1. 20 06, 273, 1975-88. Wilson, lE. Isozymes ofmammalian hexokinase: struclure, subccJ- luJar JocaJization and metabohc function. J. Exp. Biol., 2003 , 206 , 2049-57. [64J [65) [66) [67) (68) [691 [70) [7 1 ) (72) [73 ) [74) [75J [76) [7 7) (78) [79J (80) [8 1) (82) [83) M illi-Rt!I'it'l I?>' i" M t!(l icim¡/ Oll'lII islrJ'. 200 9, V"I. 9. No. 9 ) 099 Pedersen, P.L.; Malhupala, S.; Rempel, A.; Geschwind, J.F.; Ko, Y. H. MilochoOOrial bound type JI hexokinasc: a key player in the growth and survival of many canccrs and an ideal prospect for therapeulic intervention. Biochim. Biophy.f. Acta , 20 02, 1555, 14- 20. Xie, G.; Wilson, J.E. Tetrameric strucrure of mitochondrially bound rat brain hexok ina se: a c rosslink ing srudy. Arch. Biochem. Biophys., 1990 ,276,285-93 . Pastorino, J.G .; Shulga, N.; Hoek, J .B. MitochondriaJ binding of hexokinase JI inhib its Bax-induccd cylochrome c rcJease and apop- tosi s.J Biol. Chem. , 2002, 277, 7610-8. Majewski , N. ; ogueira, V.; Robcy, R. B.; Hay, N. Akt inhibits apoptos is downSlrcam of BID c lcavage vio a glucosc·dcpendent mcchanism involving mÍlochoOOrial hexokinascs. Mol. Cel/. Biol., 200-t, 24, 730-4O. Mach ida , K.; Oh la, Y.; Osada, H. SuppressKlO of apoplosis by cycJophilin O \ 'k¡ stabilizalion ofhcxokinase 11 mitochondrial b ind- ing in cancercells.J Biol. Chem., 2006, 281, 14314-20. Nakashima, R.; Paggi, M.; Seon, LJ .; Pederscn, P.L. Purificalion and eharacterization of a bindablc fonn of mitochondrial bound hexokinase from the highly gl)'co ly tic AS-300 ral hepatoma cell line. Concer Re .~., 191'18, 48, 9 t 3-9. Ardehali , H.; Prin tz, R.L. ; Koch, S.; WhitescJI, R.R.; May, J.M .; Granner, O.K. FWlcl ional inleraction bctwecn Ihe N.o and C- term inal halvesof human hexokinasc 11. 1. Biol. Chem., 1999, 274, 15986-9. White, T.K .; Wilson , J .E. Rat brain hexokinase: location of the allosteric regu latory s ile in a struclural domain at the N-tcrminus of the enzyme. Arch. Biochem. Bi op hy .~ .. 1987, 259, 402 -[ l . Radojkovic , J .; Ureta, T Hexokinase isocnzymcs from !he No- vikoff hcpatOflla. Purificalion, kinetic and structurnl characteriza- tion, with emphasis on hexokinase C. Biochem. 1. , 1987, 242, 895 - 903. Ko, Y.H.; Pedcrsetl , P.L.; Geschwind, l F. Glucosc catabolism in the rabbit VX2 tumor model for liver canccr: characteri zmion and ta rget ing hexokinasc . Callcer Lell" 200 1, 173,83-91. Ko, Y. H.; Smith, B.L.; Wang, Y.; Pomper, M.G.; Rin i, O.A.; Tor- benson, M.s.; Hullihen, 1 ; Pcdersen, P.L Advanccd cancers: eradicalÍon in all cases us ing 3-brom opyruvale Iherapy to deplete AT P. Biochem. Bioph)'!I. R e~ · . CDrll/mm., 2004, 324, 269-75. Xu , R.; Pelicano, H.; Zhou, Y. ; Carew, J .S.; Feng, L.; Shalla, K.N.; Keating, MJ.; Huang, P. Inh ibition of glycolysis in canccr cells: a novel stratcgy lO overcOfne drug res istancc assoc ialcd with mito- chondrial respiratory defect and hypoxia. Concer Res., 2005, 65, 613-2 1 Jones, A.R. ; GilIan , L.; M ilmlow, O. TIle ant i-glycolYlic aCliviry of 3-bromopyruvate on marure boar spennatoz03 ill vilro. COll tracep- lion, 1995, 52, 3[7-20. Pe reim da Sil va, A.P.; El-Sacha, T.; Kyaw, N.; dos Santos, R.S .; da-Silva, W.S.; Almeida, F.C.; Da Poian A.T.; Galina, A. Inhibi- tion of energy-produc ing pathways of HepG2 ce ll s by 3- bromopyru vate. Biochem. J., 2009, 4/ 7, 7 17-2 6. Penso, J .; Bd tner, R. Dctachment of glycolytic cnzymcs from cy- toskcleton of Lewis [Wlg carc inoma and co lon adenocarc inoma cells induccd by c1otrimazole and ilS corrclatK:lO lo ccll viability and morphology. Mol. Geller. Melab., 2001, 76, 18 1-8. Meira, 0 .0.; Marinho-Carvalho, M.M. ; Teixe ira, C.A. ; Veiga, V.F.; Da Poian , A.T.; Holandino, C.; de Freitas, M.S.; Sola-PeMa, M. Clotrimazo le dccrcascs human breast cancer cc[[s viabiliry through alterations in cytoskeleton-associated g lycolyt ic cnzymes. Mol. Gene/, Me/ab., 2005, 84, 354-62. Khalid, M.H.; Tokunaga, Y.; Capu ry, A. J.; Walters, E. Inhib il ion of rumor growth and pro longcd surviva[ of ralS with inlracranial glklmas following administration of clolrimazo le. 1. Neuroswg. , 21)05,103, 79-86. van Wijk, R.; van Solinge, W.W. Thc energy-lcss red blood cell is losl: cl)'throcyte enzyme abnonnalities of glycol)'sis. Blood, 2005, 106, 403442. Kim, J.W.; Oan g, C.V. Multifacetcd roles of glycolytic cnzymes. Trends Biochem. Sci. , 2005, 30, 142-50. Chirgwin, J.M.; Parsons, T F.; Nolunann, E.A. Mechanislic imp li- cations of Ihe pH indcpcndence of inhibit ion o f phosphoglucose isomerase by neutral suga r phosphales. 1. Biol. Chem., 1975, 250, 7277-9. 25 1100 Jlilli-R('l· iell'.\' ill M ellidllltl Chelllislr'}'. 2009, VIII. 9. NI}. 9 [84 J Reitzer. L J.; Wiee, B.M.; Kennell, O. The pentose cyele. Control and essential fune tion in HeLa eell nllClcie acid synthcs is. 1. Bio/. Chem. , 1980 , 255. 56 16-26. [85] Horlon , R.W.; Mcldrum, B.S.; Bachc lard, H.S. Enzymic and cerc- bral metabolic effccts of 2-dcoxy-0 -glucosc. J . Nellrochem .. 1973. 21 , 507-20. [86J Manuel y Kccnoy , B.; Zlihner, O.; Malaissc, W.J. Dissociated ef- fccts of 2-dcoxy-D-glueosc and D-[2-1HJglucosc ami D{5- lHJglueosc convcrsion inlo lHOH in ral crythrocytcs. Biochem.J 1992, 188. 433-38. [87] Liu, H.; Hu. Y.P.; Savaraj. N.; Pricbe, W.; Lampidis, T,J. Hypcr- sensitization of twnor cells to glycolytic inhibitors. Biochemistry. 2001. 40, 5542-7. [88] Maschek. O.; Savaraj, N. ; Pruebe. W.; Braunschweigcr. P.; Hamil - ton. K.; Tudmarsh, O.F. ; De Young. L R.; Lampidis. T,J. 2-dcoxy- O-g lucose increases the efficacy of adriamycin and paclilaxel in human osteosareoma and non-smalJ cell lung cancers in "ivo. Can- cer Re:.· .• 2004, 64, 31-4 . [89] Dwarakanalh, S .s.; Khailan. D.; Ravindra nath. T 2-dcoxy-D- glucose cnhanccs the eytOloxicily of lopoisomerase inhibi lors in human lumor eclllincs. Callcer Bio/. Ther .. 2004 , 3, 864-70. [90J Oupta, S.; Mathur, R.; Dwarakanath , B.S. Thc glycolyt ic inhibitor 2-deoxy-0 -glucose enhances the efficaey of etoposide in Ehrl ich ascites rumor-bcaring mice . Callc er Bio/. Ther ., 2005, 4, 87-94. [9 1] Kang, H.T.; Hwang, E.S. 2-Deoxyglucosc: an anticancer and ami- viral therapcutic, bUI nol any more a low glucose mimctic. LiJe Sci.. 2006, 78, \392-9. [92J Lynch, R.M.; Fogarty, K.E.; Fay, F.s. Modulation of hexokinasc association wilh miloehondria ana lyzed wilh quanlilalive three- dimensional eonfoca l microscopy.J Cel/Biol., 199 1. 112,385-95. [93J Dunaway. O.A.; Kaslcn, TP.; Sebo, T ; Trapo, R. Ana lysis of the phosphofructokinasc subunits and isocnzymes in hwnan lissucs. Biochem. 1. , 1988 , 251 , 677 -83. [94] Rodriguez-Enriquez, S.; Juárez, O.; RodríguC"/.-Zavala, lS .; Mo- reno-Sánchcz. R. Multisite con trol of the Crabtree effce l in aseites hcpatoma ceUs. Ellr. 1. Biochem .• 2001 , 268, 25 12-9. [95] Oonzá lcz-Malcos, F.; 06mcz, M.E.; Gueía-Salguero, L.; Sánchcz, V.; Arng6n, lJ. Inhibilion of glycolysis by amino adds in ascitcs tumor ceUs. Spccificity and mcchanism 1. Biol. Chem .• 1993, 168, 7809-17. [96] Denis , c.; Paris, H.; Mural, J .c. Hormonal control of fructose 2,6- bisphosphate concentration in the HT29 human colon adcnocarci- noma cell line. Alpha 2-adrenergic agonl2 1 Correspondence ft Morerv-S¿rchez !rsTituto Caro'OiogLa. Departar:len!C ce B;oquÍlTl;ca, Juan Badiano ¡" Col, SeCC'Ófl Méxicc '14080, 'vieluco FAX 52 55 55730920 52 55732911 oxe 1422,1298 &n8E' r;¡f,lol.mo'ono@ca"jiolo;¡:a.o;rg.rnx, 11 1742·4658,2OCHi05214 (4) 3.3 PGAM 11 ± 2131 20 ± 5l> (4) 2.3 Enolase 0.11 ± 0.03 131 0.51 ± 0. 13' 131 4.3 PYK 0.8 ± 0.36 131 6.6 ± 1.5" 141 8. 1 3 ± 1.3 t 141 1.7 ± 0.6 131 0.22 ± 0.08tt 151 0.42 ± 0.13141 ND LDH 4.4 ± 1.9131 6.4 ± 3.7 141 1.5 G6PDH 0.03 ± 0.003131 0.05 ± 0.02 131 1.4 PGM e 0.37121 0.2 1 ± 0.06 151 0.6 Cl-GPDH d 0.11 121 0.002 ± 0.001 131 0.05 l> P < 0.05 versus hepatocytes, H P < 0.005 versus hepatocytes, t P < 0.05 versus As..30D, t t P < 0.005 versus AS-30D . Student's Hest fO( nonpaired samples. 11 Activity in the reverse reaction . b Activity determined in the presence of 16-20 mM NH4 +. e The PGM activity was determined in the absence of glucose-l ,6- bisphosphate. d The reaction was started by adding OHAP. pa tte rn lha l also agrees \Vith that repo rted fo r the Slllne cells [7] and fo r o lher tumo r cell types [25]. The AS-30Dlhepatocyte activity ratio revealed lhm hexo- kinase and , to a lesser extenl, PFK-I were lhe enzymes that were most over-expressed in tumor cell s; all o ther glycolylic enzymes, including glucose-6- phosphate dehydrogenase (G6PDH), were also over-expressed in AS-30D tumo r cells (Table 1). In H eLa cells, all glycolytic enzymes, except phospho- glycerate mutase, also exhibited a higher activity than that shown by hepatocytes . However, in these hum an tumor ce lls neither hexokinase nor PFK- I were highly over-expressed as lhey \Vere in rodenl AS-30D cells. In H eLa cells, hexosephosphate isomerase, PFK-I , tr iosephosphate isomerase and pyruvate kinase, Logether with G6PDH, showed greater over-expression eompa red \Vith hepaloeytes (Ta ble 1). Vma> fo r phos- phoglycerale mutase in HeLa eells \Vas 14 and 8 times lo\Ver than lha t found in AS-30D ce lls a nd hepaloeytes , respectively; such low phosphoglycerate mutase activi ty has al so been observed by olher a utho rs [25]. egligible ex-glyeerophosphate dehydrogenase aetivity \Vas fo und in both tumor ce ll types. A similar observation has been deseribed fo r lhe Mo rris hepalomas 3924A, 5123 D, 7793 a nd 44 [26], \Vhieh are fasl or moderate-gro\Vth tumo r lines [27]. Glycolytic flux and intermediary concentrations As ex pected from lhe general increase in glycolyt ic enzymes, steady-state generalion of lac ta te in lhe pres- enee o f 5 mM glucose \Vas marked ly higher in AS-30 D and He La cells (9- 13 times) than in hepal oeyles (T able 2) . In Lhe absenee of added gJ ucose, lhe glyeo- Iytic flux diminished drastically in both tumor cell types, be ing negligible in AS-30D cells. T he differenee between the rates o f lactate formation with and with- Table 2. Glycolysis in hepatocytes and tumO( cetls . AS-30D and HeLa ce lis (15 mg protein'mL - 1) and hepatocytes (30 mg pre>- tein'mL - 1) were incubated in Krebs- Ainger medium as described in Experimental procedures. Under these conditions, the rate of lac- tate formation in AS-30D cells was constant after 2 min and up to 10 min from glucose addition (i.e. steady-state gtycolysis) . The intraceltular concentratian of Fru( 1,6)P2 was also invariant between the 2- and 10-min points, alter the addition 01 glucose (data not shown). Gtycotytic fluxes are expressed in nmot·min- 1·(mg cett pro- tein)- l. The values shown represent the mean ± SO with the num- ber of different preparations assayed in parentheses. The negative flux value indicates lactate consumption. Condition + Glucose - Glucose Hepatocytes 2.4 ± 1.7161 -0.4±1161 A5-30D 21 ± 9 1401 - 2.2 ± 2.6 1171' HeLa 32± 10181 7 ± 9161 FEBS Journal 273 (2006) 1975-1988 CI 2006 The Authors Journal compilation CI 2006 FEBS 1977 51 Control of glycolysis in tumor cells out added glucose indicates that neL glycolylic flux depends on external glucose, which was 8-9 times higher in AS-30D a nd HeLa eells than in hepa toeytes. The elevated glyeolytie flu x in HeLa eells in the absenee of added glueose \Vas probably sustained by endogenous sources, i.e. glycogen degradaLion. The content o f glycogen was appa ren lly not depleted in HeLa cells by the 10 min preineubation at 37 oC. In eontrast, the total dependenee of the glyeolytie flux on ex ternal glueose in AS-30D eells suggests depletion of glycogen induced by the 10 min preincubation al 37 oc. The glyeolytie flux values reported in this \Vork are in the same range as reported for other tumor cell types [2]. The steady-state concenLraLions o f all glycolylic metabolites in AS-30D tumor eells also signifiea ntly increased , except for phosphoenolpyruvate and pyru- vate (Table 3). In particular, Fru( I,6)P, inereased 250 times and dihydroxyaeetone phosphate (DHAP) 16.6 times. The cytosolic pyridine nucleotide redox slate (NAD H/NAD +), es timated from the laetate!pyruva te ratio. was more reduced in AS-30D cells, a situation that fa vors Hux through biosynthetie path\Vays. The eoncentration of A TP \Vas a lso higher in AS-30D cells than in hepatocytes; however, the ATP/ AD P ratio was similar (2.3 and 2.4). The lalter values are similar lo those previously reported [28] for normal organs su eh as ra t hea rt (5.7) and Ii ver (4.9), as \Vell as mouse Erhl- ieh ascites cells (2.3) and 3924A hepatoma cells ( 1. 2). Table 3. Steady-state concentrations (mM) of glycolytic intermedi- ates in nO(mal rat hepatocytes and hepatoma cells. See legend to Table 2 and Experimental procedures fO( experimental details. Val- ues shown are the mean ± SO. The number of experiments is shown in parentheses. NO. not detected; NM. not measured; OHAP. dihydroxyacetone phosphate; G3P. glyceraldehyde 3-phos- phate; PEPo phosphoenolpyruvate; Lac. lactate; Pyr. pyruvate . Metabolite Hepatocytes AS-300 HeLa Glucose NM 6.2. 1 (31 NM Glc6P 0 .96.0.16 (31 5.3.2.6" (231 0.6 • 0.16tt(41 Fru6P 0.4 • 0.03 (31 1.5 ± 0.7"· (22) 0.22 • 0.09tt (41 Fru(1.6)P2 0.1 • 0.05 (31 25. 7.6" (191 0.29 • 0.06tt (41 DHAP 0.6.0.1 (31 10.2.3"(141 0.93 • 0.07tt (31 G3P 0 .09.0.01 (31 0.9 ± 0.4*(7) ND PEP 0 .1 (21 0.1 .0.02 (31 0.32 (21 Pyr 1.6.0.7 (31 2.1 • 1 (71 8.5 • 3.6tt (51 Lac • 9.6. 1.3 (31 27. 11' (31 33 (21 ATP 3.6 • 0.24 (31 5.6. 12' (91 9.2 • 1.9t (41 ADP 1.6.0.6 (41 2.4 • 0 .7 (71 2.7.1 .3 (31 Lac/ Pyr ratio 6 .3 12.9 3 .9 11 L-Lactate was intracellularly Iocated . • P < 0.05 versus Hepato- cytes . .. P < 0.005 versus Hepatocytes. tP < 0 .05 versus AS-300. ttP < 0.005 versus AS-300 . A. Marin-l-l ernandez er al. In contrast with AS-30D cell s, the steady-state con- centrations of G\c6P, Fru6P, Fru( I,6)P2 and DH AP in HeLa cells were similar to those observed in hepato- cytes, whereas the A TP and pyruvate concentrations \Vere 1.6 and 4 times higher than in AS-30D cells (Table 3). Determination of flux control coefficients for glycolysis in hepatoma cells Me La bolic conLrol ana lysis establishes how to deter- mine quantitali vely the degree of cont rol (named flux control coefficient. CEi) that each enzyme Ei exerts over the metabo lic flux J [24]. In the oxidative phos- phorylation paLhway, c'Ei va lues can be determ ined by titrating the flux \Vi th specifie inhi bit ors [24,29,30]. However, there are no specifi c, permeable inhibitors fo r eaeh glyeolytie enzyme. An alternative approach called elasticity analysis [3 1-34] consists of experimental determination of the sensitivity o f enzyme blocks Lowa rds a common inter- mediate metabolite m. By applying the surnma tion and connectivity theorems of metabolic control analysis (see Eqns I and 2 in Experimenta l procedures), the CJ Ei values can be caJculated. Varia tions in the steady- state activi ty o f the enzyme blocks ca n be attained by adding difIerent concentrations o f the initial subst rate or inhibitors o f either block, which do not have to be specific fo r only one enzyme but they do have to inhi- bit only one block. The block of enzymes that gener- ates the comlTIon intermedia te is named the prod ucer block, \Vhereas the block of enzymes eonsuming that metabo lite is named the consumer block . For glycolys is, and olher pathways, any metabo lite may be used as the common intermediate that con- nects prod ucer and consumer branches. However. to reach consistent results. it is more convenient to use, as common intermedia tes, metaboli tes that are present at relatively high concenlrations and that are only con- nected to the specifie pathway, sueh as F rll (I,6)P, . Altho llgh o ther metabolites sueh as Glc6P, Fru6P a nd DH AP may be present at high concentrations. they are eonnected \Vith other path\Vays (glyeogen synthesis and degradation, pentose phosphate cycJe , glycerol and lri- acyglycerol synthesis). Ho wever, lhis last gro up o f metabo lites may still be used in e lasticity-based analy- sis as long as the flu x througll the o ther pathways is low (or it is assumed to be negligible) [33,35,36] o r by actually determining the e lTect of the branching path- ways on the main flux and on the concentralion o f the eonneeting metabolite [23]. To determine the elastic ity coefficients of the con- sumer block for the common metabolite (EEim ) , we 1978 FEBS Journal 273 (2006) 1975-1988 e 2006 The Authors Journal compilation e 2006 FEBS 52 A. Marín-Hernández er al. incubated hepatoma cells with different glucose con- centrat ions (4-6 mM) or with the hexosephosphate isomerase inhibitor 2-deoxyglucose (0.5-10 mM), which induced variat ions in flux and in the sleady-state con- centrat ions of the melaboli te. The elasl icity of the pro- ducer block was de term ined by tit ra ting flux with the LDH inhibi tor, oxa late (0.5-2 mM), or lhe glycera lde- hyde-3-phosphate dehydrogenase inhibi tor, arsenile (5- 100 ~ M ) . Thus, the glycolytic flu x (measured as the ra te of lacla te formation) a nd lhe co ncenlration of severa l intermed iates [G lc6P, Fru6P, Fru( I,6) P, and DHAP] were detennined under bot h conditions. The ta ngenl s to the curves, o r the slra ight Hnes, taken at lhe reference, conlrol points (100 %) in lhe norma lized plots of flux versus [metabolite] obtai ned with glucose and oxalate, or 2-deoxyglucose a nd a rsenite, represent the elasticities towa rds lhe inLermedia Le metaboli te of the consumer and producer blocks, respecLi vely. We a re awa re tha t lhe experimental points in lhe flux vers us [metaboli te] plot should be fi tted to a hyperbolic curve rather than lo a straight line, as most of lhe glycolylic enzymes and tra nsporters fo lJow a Michaelis-Menlen kinetic pa Ltern; a nea r-linea r rela- tion between rate and substrate concentration might be atta ined when the product concentral ion va ries con- comita ntly. However, lhe lack of suffici enl experimen- ta l point s nea r lhe reference, una ltered stale may generate high, un rea listic slope values ( ~ 2) fo r the es timation of elasticity coefficients (F ig. 1) either by fi t- ting to hyperbolic or linear equal ions. The definiti ons of the elaslici ty a nd flux cont rol coefficients as well as the lheorems of metabo lic control a nalysis a re based on d ilTerentia ls. However, it was not easy to proo uce small changes (and much less infinitesimal cha nges) of flux a nd meta boHLe concenlration by using lhe experi- menta l protocols described . In consequence, slope values were calculated with both a pproximations, non- linea r hyperbolic fit ting a nd linea r regression. In gen- eral, similar elasticity coefficients resulted from eilher approximation, a lLhough less dispersion was a ttained with the linear regression (see legend lo Table 4 for values). Titration of the glycolytic fl ux with exogenous gl u- cose and oxalate (Fig. lA), or with 2-deoxyglucose a nd arseni te (Fig. lB), induced changes in flu x a nd the Fru( I,6) P2 concenlration. Analysis of both segments showed tha t the Fru( I,6) P, consumer block (formed by enzymes from aldolase to LDH) showed a higher elasticity than lhe producer block (comprising GluT to PFK- I). In lhe fi rst case (with glucose or 2-deoxy- glucose), the slope had a positive va lue beca use Fru(l ,6) P, is a subst ra te fo r the consumer block. On lhe other hand, with oxalate or arsenite t itra tion, the A 160 120 VJ .¡¡; >- (5 80 u ~ l? -:.R. o 40 O B 60 Control of glycolysis in tumor cetts + Glucose o , . , ... o '. J o m = 3.56 m = -1.7 ... +O xa ~l a~l~e __ ......... 80 100 120 140 % F-1 ,6-BP + 2DOG +Arsenile o 50 , , m = -O. 17 , m = 1.14 ... 100 150 200 250 300 % F-1 ,6-BP 350 Fig. 1. Experimental determination of elasticity coefficients for glyc- oIyt ic intermediates in tumor cells . AS-30D hepatoma cetts (15 mg protein·mL - 1) were incubated in Krebs-Ringer medium at 37 oc. After 10 min, different concentrations of glucose (O, 4-6 mM) and oxalate 1.0\, 0.5- 2 mM) in (A), or 2-deoxyglucose (O, 0.5-1 0 mM) and arsenite (0\ , 5- 100 ~ M) in (B), were added to the cell suspens- ion. When a glycolytic inhibitor was added, glucose was kept constant at 5 mM. The hexokinase and PFK-1 activities, which are part of the Fru(1.6)Prproducing block, were not affected by 10 mM oxalate or 1 mM arsenite (data not shown), Thus, the effect of these two inhibitors on flux was due to their interaction with enzymes of the Frull ,6)P2-consuming block, most likely LDH [661 (data not shown) and glyceraldehyde-3-phosphate dehydrogenase 1671. The va lues of the straight lines, or the tangents to the curves, at 100% Fru( l ,6)P2 (m), which are the elasticity coefficients in these normatized plots, are shown on the traces. slope had a nega tive va lue beca use Fru( I,6) P2 is a prod uct of the producer block, i.e. Fru( I,6)P, accumu- lation inhibits lhe producer activily. FEBS Journal 273 (2006) 197&-1988 e 2006 The Authors Joumal compilat ioo e 2006 FEBS 1979 53 Cont ro l o f g lyco lys is in tumor cell s A. Marín-Hernández er al. Table 4. Control (q and elast icity (&) coefficients values of AS-30D hepatoma cells. Control coefficients were calculated from elasticity co- efficients, derived Irom data such as those shown in Fig. 1, and applying summation and connectivity theOfems (Eqns 1 and 2; see Experi- mental procedures) . ¿'m, elasticity 01 producer block; cC m. elast icity of consumer block; cJP' control coefficient 01 producer block; cJc, control coeHicient of consumer block. A11 the elasticity coefficients shown in the table were calculated by using slope vaJues derived Irom linear regression, although similar values were attained by nonlinear regression . For ins tance, the nonlinear regression for the titrations with 2-de- oxyglucose and arsenile gave CCFBP and &PFBP of 1.99 ± 0.79 and - 1.5 ± 1.6, which yielded the Ce and Cp 01 0.39 ± 0.24 and 0.61 ± 0 .24. respectively. The number of experiments is shown in parentheses, and values are mean ± SO. OHAP, Oihydroxyacetone phosphate . Metabol ite ,cm c'c p e m c'p + Glucose + Oxalate Glc6P 2 1 ± 17 161 0.29 ± 0.17 131 - 0.86 ± 0.41 131 0.71 ± 0.17131 Fru6P 1.2 ± 0.45 141 0.31 ± 0.14131 - 0.67 ± 0.43 131 0.69 ± 0.14131 Fru(1,6lP2 2.2 ± 0.95 151 0.44 ± 0.08 151 - 1.35 ± 0.66 161 0.62 ± 0.08 151 DHAP 1.27 ± 0.47 151 0.49 ± 0.18151 - 1.5 ± 1 151 0.51 ± 0.18151 + 2-0eoxyglucose + Arsenite Fru(1,6lP2 0.93 ± 0.2 131 0.24 ± 0.06 131 - 0.25 ± 0.1131 0.75 ± 0.05 131 + Glucose + Arsenite DHAP 1.18 ± 0.2 131 0 .37 ± 0 .15 131 - 0.5 ± 0 .1 131 0.63 ± 0.14131 h is worth emphasizi ng lhat, owing to the multitude of variables involved in deLermining flu x and in temle- diary concenlra lions, which have lo be kepl consla nl during lhe experimenla l determinal ion of elastici ties towa rds one m e t ~ l bo l ite , lhe d ispersion of lhe experi- menul l points ca n be considerable in some cell prepa- ralions. This can be a pprecialed in Fig. l and in lhe values shown in Table 4. Nonelheless, it is possible to reach relevant concl usions a bout which steps exert sig- nifica nL flux control of glycolysis a nd which steps have low or negligible control (Ta ble 5). The elasticily coefficients, estim ated from experi- ments such as lhose shown in Fig. 1, are summarized in Table 4. The flux cont ro l coefficients derived from the elast ic ity coefficients a re also shown. These data cJearly estab lished that the ma in cont rol of the glyco- lylic flux in AS-30D cells resides in the upstream parl of the pa thway. The experiments with glucose a nd oxa- la te show a high value fo r the flu x control coeffici ent of lhe GJc6 P producer block [CJelGk6PJ]' which ind i- cales lha l GluT, hexokinase a nd perha ps lhe degrada- Tab le 5. Oistribution 01 control 01 glycolysis in AS-300 cells. GluT, Glucose transporter; HK, hexokinase; HPI, hexosephosphate isCF- merase; TPI, triosephosphate isomerase; GAPOH, glyceraldehyde- 3-phosphate dehydrogenase; PGAM, phosphoglycerate mutase; PYK, pyruvate kinase; LOH, lactate dehydrogenase. Enzymes or branches QlEi GluT + HK 0.71 Pentose phosphate cycle + HPI + glycogen synthesis -0.02 PFK-1 0.06 Aldolase, TP1, GAPDH, PGAM, enolase, PYK, LOH, 0.25 Pyr branches, ATP demand 1.00 lion of glycogen, steps that lead to the fo rma tion of G Ic6P, were the sites thm exerted most of the flux con- trol. In turn, lhe experiments wit h 2-deoxyglucose and a rseni le revealed lhat lhe producer block of Fru(J ,6) P, exerted most of the cont ro l, which indicales that flux cont ro l was mai nly located in GluT, hexokinase a nd glucogenolysis together wilh hexosephosphate ¡so- merase and PFK-1. The same concl usion may be drawn from the high CJ P(Fru6 P) value (Table 4). Howeve r, the glycolylic flu x was negligible in the absence of added gl ucose (Table 2), indicatíng lhal G lc6P a nd Fru6P forma- lion fr om glycogen degradation was no t significant in AS-30D cells. Hence, from lhe d ifference belween lhe values of C p(Glc6P) and C P(Fru6P), which were determined under lhe same experimental conditi ons with glucose and oxalate, it was possible lO calculate a specific flu x conl ro l va lue of -0.02 fo r lhe GJc6P branches, pentose phosphale cycle a nd glycogen syn- lhesis (Table 4). Secause of lhe less lha n perfecl malch of e e a nd C e values es timaLed fro m lhree d ifTerent experimental pro- locols (Table 4), il \Vas difficult lo oblai n a reliable flu x cont ro l coefficient fo r lhe DHAP consumer bra nch. Wilh 2·deoxyglucose and arseni te, the C p (Fr u( 1.6) p2) value of 0.75 suggesls thal lhe res t of lhe pa lhway (from a ldolase lo LDH) exerls a flu x conl ro l of O.25 (Ta ble 5). However, the C C(OHAP) values with g)ucose and oxalate o r with glucose and arsenite were 0.49 a nd 0.37, respect- ively, which revealed some discrepancy with Lhe 2- deoxyglucose and arseni te protocol. If lhe tota l summalion of e Ei values was higher than 1.0, lhen bra nching in t.he middle and lower segments of glycol- ysis might be significa nt, bringing about negative flu x cont ro l coefficienls. 1980 FEBS Journal 273 (2006) 1975-1988 e 2006 The Authors Journal compilation CI 2006 FEBS 54 A. Marin-fl ernandez et al. The flux contro l coefficient of PFK-I (Table 5) was estimated from lhe CP(Fru(1.6) P2) va lue attai ned with 2-deoxyglucose and a rsenile minus lhe c'P(Glc6P) value altained with external glucose and oxalate (Table 4). Only posit ive d ifTerences between Cp va lues are to be ta ken into account fo r elucidating flux control fo r spe- cHic enzymes. With negative d ifTerences [for insta nce, wi th C P(F ru( 1,6)P2) minus c'P(Fru6P) both a tta ined with glucose and oxa la te], the explanation is tha L there is a pathway bra nch at the measured metabolite concentra- tion, o r that the experi mental dispersion masks small d ifTerences, o r that indeed there is no difTerence between the enzyme block s ana lyzed . Kinetic analysis 01 tumoral hexokinase and PFK-' To understand why hexokinase retained a significa nt degree of contro l on glycolytic flux, despite its high over-expression, and why PFK- I cont ro l became negli - gible, the kinetic properties of the two enzymes were ana lyzed in cell extracts . T he affi nity of hexokinase fo r glucose a nd A TP in both the cytosolic and mitochond- ria l fractions (Table 6) was in the sa me range as reported by Wilson [37] for hexokinase from nontu- morigenic mamm alia n tissues. Hexokinase was equally Control of glycolysis in tumor cell s distributed bet ween the cyt osol a nd mitochond ria in AS- 30D hepatoma cells. 8 0 th hexokinase isoenzymes, cytosolic a nd mitochondrial, were 81-93% inhibi ted by I mM Glc6 P (Fig. 2A). The P FK-l in the cytosolic-enriched fraction from AS- 30D cells exhibited Km a nd Ka.5 va lues for ATP and Fru6P (Table 6) similar to those reported fo r PFK- I from other tumor cell lines [13,15]. In the absence of added eITectors, the PF K-I kineLic pat lern was sigmoidal with respect to Fru6P [a ltho ugh ", 8-12 mM (NH.¡),S04 coming from the coupling enzymes was present] , and hyperbolic with respect to low concentrat ions of AT P (0.0 1- 1 mM). At high con- centrations ( > I mM), A TP was inhibito ry fo r PFK- I ac tivity. Ci lrale \Vas also inhibitory al relatively low « 1 mM) Fru6P concentrations. However, when 1. 5 mM Fru6P (physiological concentration) o r higher concentrations were used, citra te was innocuous, even at concentral ions as high as 10 mM (dala not shown), in the presence of 8- 10 mM (N H4),S04. Fru(2 ,6) P, was lhe most potent acLi vator of tumoral PFK- l , fo l- lowed by AM P and H4 + (Table 6). The mea n ± SD intracellula r concentrations of AM P and citrate de termined under glycolyt ic steady- sta te conditions in AS-30D cells were 3.3 ± 1.4 Table 6. Tumora l hexokinase and PFK-l kinetic parameters. The activities of hexokinase and PFK-1 were determined at 37 oC as described in Experimental procedures . For hexokinase, the Km value fer ATP was determined in the presence of 5 mM glucose, whereas that fer gluc- ose was determined with 10 mM ATP. For PFK-l, the Km value fer ATP was determined in the presence of 10 mM Fru6P. whereas the Ka.s value fer Fru6P was determ ined with 0.25 mM ATP. The ammonium concentration in the assay mixture, proceed ing from the coupling enzymes, was 16-20 mM. The Ka.s values for NH4 +, AMP and Fru(2,6)P2 were determined in the presence of 2 mM Fru 6P and 0 .8 mM ATP, and with Iyophilized coupl ing enzymes (I.e . in the absence of contaminating ammonium). The number of independent experiments is shown in parentheses . Units of Km and Ko_5 are ¡..lM; Vmax, U·(mg protein)- l. Hexokinase M itochondrial Cytosolic Type 111 Type 11 11 Type 11 1 a PFK-l a Values taken from 1371. AlP Km 696 ± 180 (3) 990 ± 50 (3) 500 700 1000 AlP Km 14 ± 2 (3) NH4 + Ka. 1400 ± 800 (3) Fru(2,6)P2 Ka .• 0.96 ± 0.3 (3) 1.96 ± 0.4 (3) 0.52 ± 0.1 (3) 0.2 ± 0.09 (3) V~, 0. 51 ± 0.2 (3) V~, 0.52 ± 0.16 (3) FEBS Journal 273 (2006) 1975-1988 e 2006 The Authors Journal compilatlon te 2006 FEBS Glucose 146 ± 12 (3) 180 ± 40 (3) 30 300 3 Fru6P Ka.5 200 (2) AMP Ka .• 100 ± 50 (4) 1.65 ± 0.18 (3) 0.44 ± 0.1 (3) 0.2 (2) V~, 0.58 ± 0.1 4(4) 1981 55 Contro l of glycolysis in tumor eells A e : ~ tí <{ ,g o B 100 80 60 40 20 o 0.0 0.2 0.4 0.6 0.8 1.0 G6P (mM) ¡-----1-----11) e) }----------' 100 / ' ?-- / --" d) e) I ~ b) ~ a) 80 . / 1/" ,¡;- l ' .• 60 I T Ji ~ :~~ 00.00 0.05 5 10 1'5 20 (mM) 0.0 0.2 0.4 0.6 0.8 Aetivi ty (U/mg protein) Fig. 2. Effect of modulators on tumoral hexokinase and PFK-l. (A) Inhibition of mitoehondrial bound (O) and eytosotie hexokinase CA) by GIc6P. Values shown represent the mean ± SD from three dif- ferent preparations assayed, exeept for the experiments with cyto- solie hexokinase at O and 1 mM Gle6P, in whieh nine different preparations were analyzed. (B) Effect of modulators of PFK-1. PFK-l act ivity was determined in the presence of 1.5 mM Fru6P and (a) 0.8 mM ATP; (b) 3.9 mM ATP; (e) 3.9 mM ATP +1.7 mM eit- rate; (d) 3.9 mM ATP + 1.7 mM citrate + 3.2 mM AMP; (e) 3.9 mM ATP + 1.7 mM citrate + 3.2 mM AMP + 51-1M Fru(2,6)P2 ; and (f) 3.9 mM ATP + 1.7 mM citrate + 3.2 mM AMP + 50 ~I M Fru(2,6IP2 . Values shown represent the mean ± SD from three different prepar- ations assayed. Inset : Activation 01 PFK-l by different eoneentrat- ions of Fru(2,SIP2 (e l. AM P (. ) and NH 4+ (A l, in the presenee of 2 mM Fru6P and 0.8 mM ATP. (11 = lO) and 1.7 ± 0.7 mM (11 = 6) , respectively. Thereafter, Lhe PFK-I activiL y was determjned in lhe presence of the intracellular concentmli ons of its sub- slra les (A TP, Fru6P), inhibilors (ATP, cilrale) and aClivalors [AM P, Fru(2,6)P,]. PFK- I aClivily was fully inh ibited in lhe presence of AT P and citrate; this activ- ily was only partially reslored by AM P (Fig. 28). The A. Marin-Hernández er al. potent ATP + citrale inhibilion was tolally overcome, or even surpassed, by Fru(2,6)P2 at concenlrations found in lumor cells (1 8-2 1]. Discussion Distributio n of glycolytic fl ux control Metabolic control analysis has been applied lo deter- mine the cont rol structure of glycolysis in several nor- mal mammalian systems, such as human erythrocytes, rat heart and mouse skeleLal muscle extracts [22,23,38]. Wi lh this quantitati ve fram ework, hexokinase and PFK- I have been idenlified as lhe main co nlrolling steps. Fast-growth tumor cells develop a nontypical melabolism [39,40], which ineludes an acceleraled gly- colylic nux. As glycolysis in different tumor lines has been considered to be an extremely faSl pa thway [39], lhe idenlification of which enzyme(s) conl rols glycolyl- ic nux becomes c1inically relevanl. The lO enzymes of lhe AS-30D hepaloma glycolytic palhway showed higher ac tivity Lhan in norma l mt hepa tocytes. Despite showing lhe greatest over-expres- sion, hexokinase and PFK- I, together with aldolase, had lhe lowesl V"'a> values (Table 1). Olher groups ha ve described a sioti lar pallern for AS-30D [7] and o ther tumor cell lypes [25]. However, in all previous papers [7,15,25,41,42] il was difficull lo eslablish a strict activity sequence arder, as not all glycolytic activilies were determined; moreover, the activity assays were performed aL nonphysiologica l pH ( > 7) a nd temperalure « 37 OC) . Indeed, detennining Vmax under near-physiologica l conditions establishes the true content of active enzyme, which is not possible when mRNA , or protein, is measured. The tumoral hexokinase and PFK- I, enzyl11es that in normal tissues control the nux (100% in hum an erylhrocy1es, 59% in isolaled ral hean, and 100% in ral skelelal musele reconsl iluled palhway) [22,23,38], exhibiled lhe hi ghesl activily enhancemenl (306-fold a nd 22-56-fold increase versus hepalocyles; Table 1). In add ilion, lhe cylosolic concenlralions of Glc6P and Fru( I,6) P2, which a re products of hexokinase and PFK-I , respeclively, increased by fivefold and 250-fold (Table 3). The upper limils of ac tivity incremenl \Vere eSlablished by laking inlo accounl bolh lhe cylosolic a nd mitochondrial hexokinase activi ties (Table 6), and the PFK-I maxi mal aCLi vity attained in the presence of Lhe activalor Fru(2,6) P, (Fig. 28 insel). The nux control coefficients caJculated from elaslici- ties are, to a great extent , determined by the definition of producing and consuming blocks [24,43,44]. Elasli - city-based analysis requ ires that (a) lhe metabolic 1982 FEBS Journal 273 (2006) 1975-1988 CI 2006 The Authors Joornal compilation CI 2006 FEBS 56 A. Marín-Hernández et al. pathway reaches a quasi-sLeady-sLate (see legend to Table 2 fo r experimenlal de lails on how lhe glyeolylie sleady-slale flux was eSlablished), a nd (b) lhe inlenne- diales lhal link lhe bloeks are no l signifiea ntly affecled by olher palhways. However, sorne of lhe glyeolytie intermedia tes used in this work for the estimation o f elasl ieity eoeffieienls sueh as GIc6P, Fru6P and DH AP are indeed connected to other pathways, and hence changes in the flux of glycogen synthesis and degrada- tion, pentose phosphale cycle, and glycerol and triacyl- glycero l synlhesis might aITect the concentrations o f lhese melaboliles . Another impo rtanl ass umption (c) in th is e lasticity- based analysis is lha l producing a nd consuming blocks affeel eaeh o lher only lhrough lhe eommon melabo lile. However, the glycolytic segments analyzed in this wo rk may also interacL through the mo iety-conserved pools of ATP- ADP- AM P and NAD(P)H- NA D(P) + . The discrepancy in the calculated flu x co ntrol coeffic ients for producing and consuming blocks o f DHAP and Fru( I,6) P2, by using diITerent ex perimental pro locols (T able 4), mighl pa rtly be due lo va rialion in Lhe nieo- tinamide nucleotide redox state and adenine nucleotide energy state, respective ly. Furthermore, the elasl icity-based analys is might be fla wed, and the contro l distri bution repo rted mighL be erroneous, if the concentrations of adenine nucleot ides also varied in lhe tilration experiments. It is worlh mentioning that several other sludies involving elasti- city-based anal ys is have nol la ken in lO account the potential interactions between prodllcing and consu- ming bloeks mediated by the pool of adenine nueJeo- lides [23,33-36,45]. Therefo re, the varialion in lhe co ncentrations o f ATP, AD P and AM P was deter- mined under the conditions o f lhe experiments shown in Fig. l . The results indica te that none o f the adenine nueJeotides ehanged signifieantly (11 = 4) on varying either glueose (from 4.5 lo 5.5 mM) o r oxalate (fr om O to l mM); with 2 nHvl oxa late, a 10-30% increase in ATP, ADP and AM P was observed . T hus, these find- ings support the control distribution o f glycolysis (T able 5) der ived from the elas tieity-based ana lysis shown in Table 4 . DH AP is certa inly connecled wilh nonglycolytic reactions that involve N AD + such as cx-glycerophos- phate dehydrogenase, which was however, negligible in AS-30D ceJls (Table 1). Li kewise, Fru( I,6) P2 format ion may affeel lhe ATP/ ADP ratio, which in l uro establi- shes communication with glycolytic downstream reac- tions (phosphoglycerate ki nase, pyruvate kinase) and wilh o ther energy-dependent reacLions (adenylate kinase, A TPases, biosynthetic pathways). Moreover, PFK- l is activa ted by AM P (Table 6 and Fig. 28), Control of glycolysis in tumor cel ls which connects with lhe adenylate kinase reaction. Therefore, the connectivity theorem lIsed here for lhe ca lculation of lhe flux cont rol coefficients from elast ici- Ues towards some intermediates [Eqn 2 in Experimen- ta l procedures] was apparently incomplete and too sim plistic lo describe all interactions, and iL may be necessary to consider more complicated relationships [24,43,44]. NotwithsLanding the aboye argumenLs, lhe elastic ily- based analysis, as used here, revealed tha t the Glc6P- produeing block (GluT and hexokinase) exerled lhe main control o f flux. The finding that the intracellu la r concentration o f free glucose was high and saturati ng fo r hexokinase (Table 3) suggests that most o f lhe con- lrol exerted by the Glc6P-producing block might reside in hexokinase. Moreover, high over-express ion o f GluT has been docllmented for HeLa cells and other human tumor cell types [46,47]. However, before we ca n conclude that hexokinase is the main controlling step, we should further examine lhe contenl and activ- ity of the GluT under phys iological conditions, as product inhibi tion of Lhe GluT aC li viLy has no t been explo red [48]. In He La ceJls, aJl glycolyt ic enzymes exce pt LDH were also over-expressed compared with hepatocytes. However, it should be nOLed tha t lo achieve a more rigorous compari son, a normal pro liferating endot hel- ia l ceJl line should be used instead of hepatocytes. The over-expression in He La cells was much less lhan that in AS-30D ceJls (Table 1); however, the glyeolytic ra tes were similar (Table 2). This was probably d ue lo a high ra te o f degradation of glycogen (high lactate fo r- malion in lhe absence of added glucose; Table 2) a nd am ino acids (e levated concentration of pyruvate; Table 3) , the prod ucls o f which bypass hexokinase, lhe presumed main co nt rolling step, lo enter the glycolytic pathway. In HeLa ceJls, the conlrol o f glycolylic flux may a lso reside in hexokinase, as in no rmal hepal ocyles and AS- 30D cells, as weJl as in PFK- I, because lhe two enzymes have the lowesl V m a.'( values, and they are no t highly over-expressed . The eighLfo ld lower concenlra- lion of GJc6P in HeLa ceJl s, compa red with AS- 30D ceUs, is expected lo exert a low or negligible inhibition of hexokinase. The low Glc6P concentration in HeLa cells may be relaled to a higher activily of lhe Glc6P bran- ches, glycogen synLhesis a nd penlose phosphale cyeJe. Indeed, G 6PDH ac ti vily was 4-7 times higher in HeLa cells lhan in hepalocytes a nd AS-30D ceJls (Table 1). A higher A TP concenlration in HeLa cells than in AS- 30D ceJls suggesls a lower ae tivit y of ATPases a nd o ther ATP-dependent cell processes or, alternatively, lhat A TP production by oxidat ive phosphoryla tion FEBS Journal 273 12006) 1975-1988 C 2006 The Authors Journal compilation e 2006 FEBS 1983 57 Contro l of glycolysis in tumor cells was faster. Indeed, lhe ra te of o ligomycin-sensitive respiration, which reflects the rate of oxidat ive phosphorylation [40,49], in lhe presence of 5 mM glucose + 0.6 mM gl utamine was 43 ± 4 ng-aloms oxygen·min- I. IO- 7 cells (11 = 4) in AS-30D cells and 92 ± 16 ng-aloms oxygen·min- I. IO- 7 cells ( 11 = 6) in HeLa cells. As the enzymalic assay of ADP delermines lolal bul nol free ADP, lhe A TPI ADP ratio was nol highly reliable as an indicalor of the cellular energy sta lus. There are lwo Cl-glycerophosphale dehydrogenase isoenzymes in mammalian cells, one bound to the mit- ochondria l inner membrane and another in the cytosol, which regllla te lhe cytosolic ADH/NAO + ratio and are involved in lhe synthesis of lri acylglycerols [50] . The activi ty of the cytosolic isoenzyme decreases or becomes negligible in fasl-growlh hepalomas [26,27] and AS-30D and HeLa cells (Table 1), which may induce DH A P aCCllmulalion (Table 3). An alternalive roule for tr iacyl- glycerol synthesis has been described that does not require ll-glycerophosphate. This palhway slarl s with the acylation of OHAP, in a reaction catalyzed by OH AP acyltransferase, which is present in rat ti ver, kid- ney, spleen and ad ipose lissue; al the subce llu lar level, this enzyme is localized in lhe mitochondrial and micro- soma! fractions [51]. Such a roule mighl be operati ng in t umor cells. Biochemical mechanisms underlying the evaluated distribution 01 Ilux control 1 t should be emphasized that lhe ana lysis of Vmax v~ li ­ lIes only (i.e. cellula r contenl of active enzyme) lo reach conclusions on lhe melabolic pat hway control is certa inly incomplete, as the enzyma tic activities are determined in the absence of their physiological activa- tors and inhibito rs, at sat urati ng substrate co ncentra- tions, and in lhe absence of products; these factors discard the role of lhe reversibi lity of react ions under physiological conditions on conlrol of flu x [52]. Accllmlllation of prodllcts may decrease the forwa rd reaction. In th is rega rd, it is well documented that Glc6P is a polenl inhibilor of hexokinase-I, hexo- kinase- II and hexokinase-II I [37]. In consequence, lhe increased hexokinase activit y might be cOllnLer- balanced by stronger Glc6P inh ibition. One way lo circumvenl this blockade is to over-ex press hexokinase- 111, an isoenzyme wi lh a higher K; for Glc6P (O. I mM). Alternat.ively, hexoki nase binding to mitochondria may prolecl il aga insl Glc6 P inhibilion [7,53]. However, the Glc6P inhibition was strong and similar for bOlh mitochondria l alld cytosolic hexokinase isoenzymes (Figure 2A) , when lhe activi ly was assayed under A. Marin-Hernández et al. Ilea r-physiologica l conditi ons of pH (7.0) a nd lempera- lure (37 oC) and high concenlrations of glucose ( > I mM) and Glc6P (;;' I mM). On the o ther ha nd, Nakashima el al. [7] and Buslamanle el al. [53] deler- mined Glc6P inhibition of mitochondrial hexokinase at 22-30 oC, pH 7.9, and in a hypotonic medium wÍlh nonphysiological co ncenlralions of glucose « I mM) and Glc6P « I mM). The presence of lhis Glc6P regu- latory mechanism in tumoral hexokinase sllpport s an essential role for this enzyme in lhe control of flux. Fou r hexokinase isoenzymes have been identified in mammalia n cells: Type-l , 11, 111 a nd IV (glucokinase), from which lhe fi rsl lhree are Glc6P-sensitive [37]. Hexokinase-I and hexokinase-II may bind lo lhe o ll ter mitochondrial membra ne, as they have a specific hydrophobic N- lermina l segmenl [54]. Hexokinase- l is predominantly located in brain, kidney, retina and breast, whereas hexokinase- II is abundanl in skelelal musc le and adipose tissue [8]. In tumor cells, hexokin- ase-II is apparently Lhe main over-expressed isoe nzyme [7,8,37], excepl fo r brain lumors, in whieh hexoki nase-l is over-expressed [8]. Analysis of lhe hexokinase kinelic properlies and subcellula r redistr ibution lowards mitochondria sug- gesled lhal lhe isoenzyme over-expressed in AS-30D ceJls was type JI , as previously suggested using a sim- ilar analysis [7]. The amount of mitochondrial hexo- kinase in AS-30D (50%) and HeLa cells (70%; dala not shown) was also similar to that observed for Novikoff and AS-30D aseiles tumor cells of 50-80% [55,56]. This observation explains, al leasl in par!, lhe enha nced glycolylic flux (Table 2, [8]) and lhe resisl- ance to apoptosis [11] in these tumor cells. The kinetic a nalysis of PFK- I revealed lhal the iso- enzyme present in AS-300 cells was completely insen- sitive to lhe usual allosteric inhibitors, ATP and cit rate, in the presence of a low, physiological concen- trat ion of F ru(2,6) P2, and that il was highly sensilive lo lhe aelivalors NH4 + , AM P a nd Fru(2,6) P,. The high, physiologieal concenlration of AMP in AS-30D did not suffice lo potenlly aClivate PFK-I in lhe pres- ence of ATP a nd citrate . The expression of a PFK- 2 isoenzyme with a low fructose-2,6-bisphosphatase activity in several human tumor lines has been des- cribed [57,58], which ensures a high concentration of Fru(2,6) P,. I ndeed, Fru(2,6) P, was lhe mosl pO lenl aeLivalor of PF K- I and blocked lhe inhibition by ATP and cilrale (Fig. 2B and Table 6, and also [12]). Therefore, il s kinelic properlies prediel lhal PFK- I activity ca nnot impose a flu x limitation on glycolysis in AS-30D cells. Under nea r-physiologica l cond il ions, lhe esLimaled elasLieily coeffieienl of PFK- I fo r Fru6P was high (~tFK-1 Fru6P = 1.2), which pro vides the bio- 1984 FEBS Journal 273 (2006) 1975-1988 CI 2006 The Authors Journal compllat ion e 2006 FEBS 58 A. Marin-Hernández el al. chemica l mechanism fo r its low fl ux control coefficient (Table 5). The PFK- I elastieity a nd kinelie properties also provide a biochem ical basis for understanding lhe diminished Pasteur elTeet observed in AS-30D [49] a nd other tumor cell types [39]. Experimental procedures Chemicals Hexoki nasc, G6PDH, hexoscphosphate isomerasc, aldolasc, a.-glycerophospha te dehydrogenase , l ri oscphosphale isom- erJse, glycc raldehyde-3-phosphale dehydrogenase, pyruvate kinase and LDH were purchascd from Roche Co. (Mann- he im, Gennany). Recombin ant enzymes enolase, pyruva te phosphate dikinase and phosphoglyccratc kinasc from Emamoeba hisrolyrica were kindly providcd by E Saavcdra , Instituto acional de Cardiología, México. Glucosc, G \c6P, Fru(1 ,6) P" glyceraldehyde 3-phosphate, 2-phosphoglyccrate, phosphocnolpyruva te, Fm(2,6) P2' pyruva te, citrate, A TP, AMP, ADP, GTP, dithiothre itol, cystei ne, NA DH, NA D+, NA DP and oxala tc wcrc from Sigma Chcmical (St Louis, MO, USA). Fm6P and 3-phosphoglyccra lc wcrc from Roche (Indianapolis, IN, USA). Methoxy[' H]inulin was from Per- kio- Elmcr Lifc Sci (Boston, MA, USA). AIl ot her reagents were of analytical grade from commercial sources. Isolation 01 tumor and liver ce lis AS-30D hepatoma cc lls [(2-4) x lO' ccl ls·mL-' ) were propa- gatcd in female Wistar ra ts (200 g) by iotrapcritoncal trans- plantalion. Hcpatoma ce ll s werc isolated as describcd c1sewherc [59]. HeLa ce lls (1.5 x 104 cell s' mL- 1 ) were grown in Dul - bccco's minimal csscntial mcdium (Gibco Lifc Tcchnol- ogies, Rock viJle, M D, USA), supplemented with 10% fetal bovine sc rum (G ibco), lO 000 U'm L - 1 slrep tomycin/ penicil- li o, a nd fu ngizone (ampholericin B; Gibco) in 175-cm2 fla sks (Coming, ew York, NY, USA) at 37 oC in 5% COy-95%Ol. I-Iepatocytes were isolated by perfusion of isola ted liver with collagenasc IV (Worthington, La kewood, NJ, USA) from fed Wistar rals [60]. The ccll ular viabilily assayed by lrypan blue exc! usion was 80-85%. Experimen- tal manipulation of human and rodent cclls and animal spc- cimens were carried out following the Institu to aciona l de Card io logía de Mexico gll idcli nes in accordance with the DecJaralíon of I-Ielsinki and Ihe US JH guidelines for ca re and use of experi mental animals. Determination 01 steady-state concentrations 01 metabolites Cells (15 mg protein'm L- 1 ) werc incubared in K.rebs- Ringer medium with orbital sha king (1 50 r.p .m.) at 37 oC in a Control of glyco lysis in tu mor cel ls plaslic fl ask. Afte r lO min, 5 mM glucosc was addcd to thc cc ll sll spension. The reac tion was stoppcd 3 min la ter with icc-cold perchlo ric ac id (3%, v/ v, fi nal concent ration). For the detennination of Ihe intracellular L-Iactale, an aliq llo t (1 mL) of thc ccll suspension was rapidly wilhdrawn and ccntri fugcd a L 20800 g fo r 10-15 s al room temperalure. The supernatan t was discarded, and the pellet rinscd with fresh K rc bs- Ringer medium a nd rhen resuspended in 3% perchloric acid. The samples \Vere neutralizcd with 3 M KOI-l / O.I M Tris. The concentrations of GIc6P , F m6P, Fru(I, 6)P" DHAP, glyccraldehyde 3-phosphate, phospho- enol pyruvale, pyruvale, ATP, ADP, AMP, citrate and L-lactate were determincd by standa rd enzYlllutic assays [61J. Protein was dctermined by lhe biurct method using BSA as standard [62]. Determination 01 intracellular glucose AS-30D cc lls (15 mg'm L- 1 ) \Vere preincubatcd for 10 min in the absence of exogenous substratcs at 37 oc. Exogenous glu- cose was added after lO min, and the cclls were incllbatcd for 3 min morc. After\Va rds, an aliq uot (0.5 mL) was carcfully pOllrcd inlo microcenl rifuge t ll beS containing, from boltom to top, 30% (v/ v) pcrchloric ae id (0.3 mL), I-bromodode- cane (0.3 m L) and fresh K rebs- Ringer medium (0.3 mL). The salllp le \Vas centrifuged for 2- 3 min in a refrigcrated Microfuge (Eppcndorf centrifuge 5804 R, Eppendorf, Hamburg, Germany) a t 20 800 g. The botlom ¡ayer was col- lecled and ncutra lized with 10% NaO H. Glucosc was dcter- mined by enzymatic ana lysis [61J. To correcl fo r lhe presence of exogenolls glucose from lhe incubation mcdium in Ihe ccllu la r pe llel, the content of ex ter- nal wa ter \Vas cval uatcd by lIsing mcthoxye H]in ulin. An aliquot of cells (5- 30 mg protein'IllL - J) was incubated in 0.5 mL K.rebs- Ringer medi llm with e H]inulin (0.15 mg·m L- J, specific rad ioac ti vity 5200 c.p.m: j.lg-J) for 15 s. Thcrcaftcr, thc ccU suspcnsion \Vas carcfully laycrcd into microcentrifuge lubes prcpared as described above. The mdioactivily of the bottom layc r \Vas mcasurcd in a ¡iq uid sc intillation analyzer (Packard l nstrumenls/ Canberra, Meriden, er, USA). The concenlrarion of glucose carried from the exLrace ll ular mil ieu was 1.28 111M . This va lue was subtraclcd from thc original intraccll ular conccntralion. Determination 01 glycolytic Ilux in liver and tumor ce lis Cells (15 mg protein'mL - 1) wcrc incll ba tcd in 3 mL Krebs- Ringer mediulll \V ith o rbital stirring (150 r.p. m.) al 37 oC in a plastic nask. Aftcr 10 min, 5 mM glucose was added to thc cells; lhe rcaction \Vas stoppcd with cold 3% perchlor ic acid O and 3 min later. The samples were neulralized with 3 M KO H/ O.I M Tris. L- Lactate generJ tcd was detennined by enzymatic analysis [61]. FEBS Journa l 273 (2006) 1975-1988 ~ 2006 The Authors Journal compilation ~ 2006 FEBS 1985 59 Contro l o f g ly co lysis in tumo r cel ls Cell extraets of tumor and liver eells CeUs (65 mg protein 'mL - 1) were resuspcndcd in 25 mM T ri sIH CI bulTer, pH 7.6, wilh I mM EDTA, 5 mM dilhio- threitol a nd 1 mM phenylmethancsulfonyl nllo ride. The ceU suspcnsion was frozen in liquid nilrogen and th awed in a wa ter ba lh a l 37 oC; this procedure was repeatcd lhree times. Cell Iysa tes were centrifuged at 39000 g fo r 20 min and 4 oc. Afterwards, the supcrnata nl was coUccted for delenn ination of enzyme aClivily. Activities of hexokinase, hexosephosphate isomerase, PFK-I, triosephospha le iso- merase, aldolase, glycc raldehyde-3-phosphale dehydroge- nase, phosphoglycerate kinase, phosphoglycera te mutase, enoJase, pym va te kinase, LDH , o:-glyccrophosphate dehy- drogenase, phosphoglucomulase and G6PDH were deter- mined spcclropholOmelríca ll y by standard assays [63,64]. The ¡ncubalion buffer was 50 mM Mops, p H 7, at 37 oc. Phosphoglyce rale kinase aClivíty was delcrmí ncd in 50 mM pOlassium phosphate, pH 7, al 37 oc. To assay milochond- ría l hexo kinase, isola ted mitochondria were preparcd as desc ri bcd elsewhere [59]. The assays for bOlh cyloso lic and milochondriaJ hexokinase isoenzymcs were carried oul a l 37 oC in I mL KME burrer ( 100 mM KCI, 50 mM Mops, 0. 5 mM EGTA , pH 7.0) plus 2 U G6PDH, I mM NADP +, 5 mM MgCI" glueosc (rrom 0.05 10 10 mM) and I ~I M oJigomyci n. The reaction was sta rted by lhe addition of ATP (0.05- 5 mM) arter 2 min ineubation. Assay for hexokinase inhibition by G lc6 P was carried out in 3 mL of KME buffer a l 37 oC, in lhe presence of 3 mM ATP, 5 mM MgCh, I ~l M o ligomycin and 0.2- 1 mM G Ic6 P. Owing 10 the hi gh unspccific oxidalion of added NAD H by lhe cytoso lic-enriched and milochondr ia l frac- lions (despite lhe addition of rotenone), the ac tivity was calcula led from lhe ADP genera ted, which was delermined by a sta nda rd assay [61). The hexokinase acti vity was cor- rected for lhe A DP formcd in lhe absenee of addcd glucose. BOllnd and free isoenzymes were prcincllbaled for 2 min, and then lhe hexokinase reaclíon was slarted by add ing 3 mM glucose. Afler 30 s, lhe reaction was slOppcd wit h ice-cold pcrchlo ric acid (3 %, v/ v, fi nal concentration). The sam ples were neutra li zcd wit h 3 M KOH/ O.I M Tris. The conlro l activities for both hexokinase isoenzymes were com- para ble 10 those determined by the G6P DI-I coupli ng assay. For PFK-I ac ti vi ly, freshly prepared exlraclS were incu- bated al 37 oC in 50 mM Mops, pH 7. The reaction assay conlained 0. 15 mM NADH , 5 mM MgCh, 1 mM EDTA, Fru6P (from 0.0 1 to lO mM) and amm onium sulfa te suspcn- sions of lhe following coupl ing enzyrnes: 0.36 U aldolase, 9 U triosephosph ate isomerase, and 3.1 U (l- glyceralde- hyde·3-phosphate dehydrogenase. The reaclion was started by lhe addi tion of exogenous A TP (from 0.01 lO 2 mM). For lhe deterrn inalion of Ko.s for NH 4 +, AMP and Fru(2,6) P2, as well as fo r lhe effecl of activalOrs a nd inhibilors, Iyophi- lized (ammonium-free) coupling enzyrnes we rc used in KM E buffer. A Marín-Hernández et al. Determination of flux control eoeffieients The nux cont rol coefficients (CJEi) were detenn ined by using lhe elas ticity-based analysis [31,34,45,65,). This approach quantifies the sensitivity of a given enzyrne or block of enzymes 10 va ri ations in its subslra le or product when lhe sleady-s tate flux is modified. Glycolysis was stí- mulated by exogenous glucose (4-6 mM) o r ínhibited by oxalale (0.5- 2 mM), 2-deoxyglueosc (0.5- 10 mM) or arsenile (5- 100 ~I M). Under lhese conditions, the va rialÍon in lhe glycolytic fl ux and in several in lermediales was detennined. Flux control coeff¡cien ts were eSlima lcd using lhe connec- livily (Eqn 1) and summalion lheorems (Eq n 2) [24J, (1 ) cb +q , = 1 (2) in which J is Ihe glycolytic fl ux (mte of lactate formalion), El is lhe enzyme block lhal produces lhe inlermediate (m) and E2 is lhe enzyme block lhat consumes m. Acknowledgements This \Vo rk \Vas partia lly suppo rted by gra nl no. 438 11 -Q from CONACyT -México. References Warburg O (1 956) On rcspiratory impairment in cancer eells. Sciellce 124, 269- 270. 2 Zu XL & Guppy M (2004) Caneer melabo lism: raelS, fa n tasy, a nd fiction. 8ioc/¡em Biop/¡ys Res CommllJl 313, 459-465. 3 Dang C & Semenza GL (1999) Oncogenic altera lions of metabolismo Trends 8ioc/¡em Sci 24, 68- 72. 4 Lu H, Forbes RA & Verma A (2002) Hypoxia-indueible facto r 1 ac tiva tion by aerobic glycolysis implica tes lhe Warburg effecl in carcinogenesis. J Biol C/¡em 277, 23 111 - 23 11 5. 5 OSlhus RC, Shim H, Kim S, Li Q, Reddy R, Mukhctjee M, Xu Y, Wonsey D, Lec LA & Dang C (2000) Dercg- ulalÍon of glucose lra nspon er I and glycolytic gene expression by e-Mye. J Bio! C/¡em 275, 2 1797- 2 1800. 6 G ill ies RJ , Martinez-Zaguillan R, Martinez GM, Serr- ano R & Perona R (1990) Tum ori genie 3T3 ee ll s main- ta in an alka line intracc llular pH under phys iological eondilions. Proe Nat! Acad Sci USA 87, 741 741 8. 7 akashima R, Paggi M, Seoll U & Pedersen PL (1988) Purifica ti on and characleriza tion of a binda ble form of mitochond riaJ bound hexoki nase from the highly glyco- Iylic AS-30 D ra l hepaloma ce ll line. CaJlcer Res 48, 91 3- 919. 8 Pedersen PL, Malhupala S, Rcm pel A, G csehwind J F & Hee Ko Y (2002) Milochondrial bo und lypc [J 1986 FEBS Joornal 273 (2006) 1975-1988 e 2006 The Authors Journal compllatlon e 2006 FEBS 60 A. Marín-Hernandez et al. hexokinase: a key playe r in the growth and survival of many ca nccrs and a n ideal prospect for thcmpeutic intervent ion. Biocltim Biopltys A cta 1555, 14-20. 9 Goel A, Ma thupala SP & Pedersen PL (2003) Glucose mctabolism in cancer. Evidencc that dcmethylation events playa role in activa ting type 11 hexokinase gene exprcssion. J Bio/ Chem 278, 15333- 15340. lO Ma thupala SP, Hcese C & Pedersen PL ( 1997) Glucose ca tabolism in cancer ce ll s. Thc type n hcxokinase prom 0 - ter contains fllnctionall y active response cJements for the tumor suppressor p53. J Bio/ Chem 272, 22776- 22780. II Pas tor ino JG, Shulga N & Hoek JB (2002) Mit ochon- dria l binding of hcxokinase n in hibits Bax-induced cytochrome e rclease a nd apoptosis. J Biol Cltem 277, 76 !()- 7618. 12 Depré C, Rider MH & Hue L ( 1998) Mechanisms or control of heart glycolysis. Eur J Biocltem 258, 277- 290. 13 Staa l GEJ , Kalrr A, Hecsbeen EC, Van Veelen CWM & Rijksen G (1987) Subunit composilio n, rcgulatory prop- ert ies, and phosphorylation of phosphofrllctokinase, from human gliomas. Cancer Res 47, 5047- 505 1. 14 Mcldolesi MF, Macx:h ia V & Lacx:eti P (1976) Dirrer- ences in phosphofruclOkinase rcgula tion in normal and tumor ra t thyroid cells. J Biol Cltem 251, 6244-6251. 15 Oskam R, Rij ksen G, Staal GEJ & Vora S (1985) Isozy- mic composition and regulatory properties of phospho- fructokinasc from we lJ -dirTcrcntiated and anaplas tic medullary thyroid carcinomas of Ihe mI. Callcer Res 45, 135- 142. 16 Vora S, Halpcr IP & Knowles DM (1985) Alterations in the activity and isozymic profilc of human phospho- fructokinase during malignant transformatio n in ViltO and in vitro: transformation-and progrcss ion-linkcd dis- criminants of malignancy. Cancer Res 45, 2993- 3001. 17 Sánchcz- Martínez C & Aragón 11 ( 1997) Analysis or phosphofruclOkinasc subunÍls and isozymcs in asciles tumor ce ll s and its original ti ssue, murine mammary gland. FEBS Leu 409, 8 90. 18 Denís C, París H & Murat JC (1986) Hormonal contro l of fructose-2,6-bisphosphate concentration in the HT29 human colon adcnocarcinoma ccll line. Biochem J 239, 53 1- 536. 19 Mojeda M, Bosca L & Hue L (1985) Errect or gl uta- mi ne on fmclOsc-2,6-biphosphatc and on glucosc Illeta- bolism in HeLa cells and in chick-embryo fibroblasts. Biochem J 232, 521 - 527. 20 Loisca u AM, RoussC'du GG & Hue L (1985) Fructose- 2,6-bisphosphate and the contro l of glycolysis by gluco- cort icoid s and by othcr agcnts in ra t hepalOma cell s. C(llIcer Res 45, 4263-4269. 21 Nissler K, Petermann H, Wenz I & Brox D (1995) Fruc- lOsc-2,6-bisphosphate mctabolisl11 in Ehrl ich asci tes tumour cell s. J Callcer Res Clill Ollcol 121 , 739- 745. 22 Rapoport T, Heinr ich R, Jacobasch G & Rapoport S (1974) A li near steady-state trcatment of enzymatic Control of glycolysis in tumor cells chains. A malhematica1 modcl of glycolysis of human erytrocytes. EI/r J Biochem 42, 107- 120. 23 Kashiwaya Y, Sato K, Tsuchiya , Thomas S, Fe ll DA, Vecch RL & Passonncau JV (1994) Control or glu- cose utiliza tion in working perfused rat hearl. J Biol Chem 269, 25502- 255 14. 24 Fell D (1997) Umlerswl1dil/g rhe COllfrol o/ M etabolism. Plenum Press, London. 25 Wu R (1959) Regulatory mechanisms in carbohyd ratc metabolism. V. Limiting factors of glycolysis in HeLa cc ll s. J Bio/ Chem 234, 2806- 28 10. 26 Hardíng JW, Pye rit z EA, Monis HP & Whíte HB (1975) Proportional ac tivities of glycerol ki nase and glycerol 3-phosphate dehydrogcnase in ral hepatomas. Biochem J 148, 545- 550. 27 Pcderscn PL (1978) Tumor mitocho ndria and the bioener- ge tics of cancer cells. Prog Exp Tumor Res 22, 190- 274. 28 Traut TW (1994) Physiological concentrations of punnes and pyrimidines. M ol Cell Biochem 140, 1- 22. 29 Moreno-Sánchez R & Torres-Márquez ME (199 1) Con- tro l of oxidative phosphoryla tion in mi tochondria , cell s a nd tissues. 1m J Biochem 23, 11 63-1174. 30 Groen AK , Wa nders RJ , Westerhofr )-1 V, van der Meer R & Tager J M (1982) Quan tifica tion of the contribu tion of vanous stcps 10 Ihe control of mitochond ria l respira- tion. J Biol Chem 257, 2754-2757. 31 Kacser H (1983) The control of enzymc sys tcms iJl vivo: elasticity analysis of lhe slcady sta te. 8 iochem Soc Trans 11, 35-40. 32 Moreno-Sánchez R, Bravo C & Westerhorr HV (1999) Determining and understa nding the control of nux. An ill ustration in submitochondrial pa rticles of how lo va li- date schemes or metabolic con trol. EI/r J 8iochem 264 , 427-433. 33 G rocn AK , van Rocrm und CW, Vervoom Re & Tager JM (1986) Control of glllconeogencsis in rat liver ccl ls. F lux control coefficients of the enzymes in the gluconco- gcnic palhway in the abscnce and prescnce of glucagon. Biochem J 237, 379- 389. 34 Harncr RP, BrolVn GC & Brand MD (1990) Analysis or lhe control of respira tion ra te, phosphoryla tion ra te, pro ton leak rate and pro tonm otive force in isola ted mi tochond ria lI sing the ' top-down' approach of meta- bolic contro l theory. E/lr J Biochem 188, 313- 319. 35 Thomas S, Mooney PJ, Burrell MM & Fell DA (1997) Metabolic contr ol analysis of glycolysis in luber lissue of pota to (S olal1/1111 fIIberosl/m): explana tion fo r the 10\V control cocfficien t of phosphofructokinase over respira- to ry flu x. Biochem J 322, 119- 127. 36 Aínscow EK & Brand M D (1999) Top-dolVn control ana- Iysis of ATP tu rnover, glycolysis and oxidative phospho- ry lation in ra t hepatocytes. E/lr J Biochem 263, 671 - 685. 37 Wilson JE (2003) Isozymcs of mammalian hexokinasc: struclure, subcellular localiza tion and mcta bol ic func- tion. J Exp Bio/ 206, 2049- 2057. FEBS Journal 273 (2006) 1975-1988 e 2006 lhe Authors Journal compilatioo CI 2006 FE BS 1987 61 Control of glycolysis in tumor cel ls 38 Jannaschk K D, Burgos M, Centerlles JJ , Ovadi J & Cascante M (1999) Applica tio n o f metabolic contro l ana lysis 10 the sludy of toxic e ffects of coppcr in muscle glycolys is. FEBS Lett 445, 144-148. 39 Eigenbrodl E, Fisle r P & Reinaeher M (1985) ew per- spcctives in carbo hydratc metabolism in tumor cclls. Jn. Regulaúoll o/ Carboll)'drwe Metahoh<;m (Reitner, R, ed.), vo l. 2, pp 141 - 179. C RC Press, Boca Ralon, FL. 40 Rodríguez-Enriq uez S & Mo reno-Sánchez R ( 1998) Intermediary metabo lism of fa st-growth tumor cell s. Arch Med Res 29, 1- 12. 41 Mazurel S, Eigenbrodl E, Failing K & Sleinberg P ( 1999) A ltcrat io ns in the glycolytic and glutamino lytic pathways aner mal ignant transformat ion of ra l li ver oval ee ll s. J Cell Physiol 18 1, 136-146. 42 Mazurel S, Miehel A & Eigenbrod E (1997) Elfeel of eX lracc ll ular AM P o n cell prolifera tio n and mctabolism o f breast cancer ce ll lines with high and low glycolytic rales. J Biol Chem 272, 4941-4952. 43 Shusler S, Kahn D & Westerholf HV (1993) Modular ana lysis of control of complex mctabolic pathways. Biophys Chem 48, 1- 17. 44 Ainseow EK & Brand MD (1998) Control analysis of systcms wi lh rcact ion block s that 'cross-talk'. Biocllim Biophys Acta 1366, 284-290. 45 Brown GC, Lakin-Tomas L & Brand MD (1990) Con- trol of respiralion and ox idati ve phosphorylation in iso lated nll liver cclls. Ellr J Biocllem 192, 355-362. 46 Kitagawa T, Tsurllhara Y, Hayashi M, Endo T & Stanbridge EJ ( 1995) A tumor-associated glycosylatio n change in the glllcosc lransporter G LUTI cont rolled by tumor supprcssor funct io n in human ce ll hybrids. J Cel! Sci 108, 3735- 3743. 47 Maeheda M L, Rogers S & Besl JD (2005) Molecula r and ccllular regulation o f glucosc transpo rter (G LUT) proteins in cancer. J Cel! PII)'sioI 202, 654-662. 48 Colville C, Seauer MJ , Jess TJ, Gould GW & Thomus HM ( 1993) Kinetie analysis of lhe live r-lype (G LUT2) and brain-Iype (G LUT3) glucosc Iransporters in X enoplls oocyles: sllbslrale spccifici lies and c fTec ls of transport inhibitors. Biocltem J 290, 70 1- 706. 49 Rodrígucz-Enriq ucz S, Jm1rez O, Rodrigucz-Zava la JS & Moreno-Sánehez R (2001) Mult isile control of lhe Crablrcc efTccl in ascites hcpatoma ccl ls. Eur J Biocltem 268,2512- 2519. 50 HoUSlek J, Cannon B & Lindberg O (1975) Glyeerol-3- phosphatc shuule and its funlion in inlcmledi ary mcta- bolism of hamslcr brow-adiposc tissue. El/r J Biocltem 54, 11 - 18. 51 Hajra AK (1997) Di hydroxyaeelone phosphale aeyl- transferasc. Biochim Biopltys Acta 1348, 27- 34. 52 Mendoza-Cozall DG & Moreno-Sanehez R (2006) Con- trol of glutat hione and phylochelatin synthesis llnder cadmi um stress. Pathway modeling for plants. J Tlteor Biol 238, 919- 936. A. Marín-Hernández et al. 53 Bustamanle E & Pedersen PL (1977) High ae robie gly- colysis of ral hepatoma ce ll s in cult ure: role o f mito- chondrial hexo kinase. Proc Natl Aca(/ Sci USA 74, 3735-3739. 54 Smith TAD (2000) Mammal ian hexokinases and Ihe ir abnormal cxpression in canceL Br J Biomell Sci 57, 17()-178 . 55 Arora KK & Pedersen PL (1988) Funeli onal signifi- cance o f mitochondri al bo und hexokinasc in tumo r ce ll melabolism. J Biol Chem 263, 17422- 17428. 56 Parry DM & Pedersen PL (1983) Intraeellu lar localiza- tion and propcnies of particulate hexokinase in the oviko fT asci les tumor. J Biol Chem 258, 10904-1091 2. 57 Alsumi T, Chesney J, MelZ C, Lcng L, Donnell y S, Makila Z, Milehell R & Bueala R (2002) High exprcssion of indllc ible 6-phospho fmcto-2-k inase/ fruc- losc-2,6-bisphosphalase (iPFK-2; PFKFB3) in human cancers. Callcer Res 62, 588 1- 5887. 58 Chesney J, Milehell R, Benigni F, Baeher M, Spiegel L, AI-Abed Y, Han JH , Melz C & Bueala R (1999) An ind ucible gene producl for 6-phosphofruclo-2-kinasc wi lh an AU-rich instabili ly element: role in tumor cell glyco lysis and the Warbllrg effccl. Proc Nall Acml Sci USA 96, 3047- 3052. 59 Lópcz-G ómez F & To rrcs-Márqllez & Morcno-Sánchez R (1993) Cont rol of ox idative phosphorylation in AS-30 D hepaloma mitochondria. /111 J Biochem 25, 373- 377. 60 Bcrry M & Friend DS (1969) High-yic\d prcparalion of iso laled ral liver parcnchymal cells. A biochemical and fine slruelu",1 sludy. J Cell Bio143, 506- 520. 6 1 Bergmcyer HU (ed .) ( 1974) Mef//Od<; o/ Enz)'matic AlIa- I)'sis. Verlag Chemie, Weinheim. 62 Gorna ll AG, Bardwill CJ & David MM (1949) Delermi- natio n o f scmm pro leins by mcans o f biurct reaclion. J Biol Chem 177, 751 - 766. 63 Bergmeyer HU (ed .) (1983) Methods oJ EI/z)'matic AI/a- I)'sis . Verlag Chemie, Weinheim. 64 Saavedra E, Encalada R, Pineda E, Jasso-Chávcz R & Morcno-Sánchcz R (2005) Gl ycolysis in Entamoeba '1/:<;- 1Olytica. Biochemica l characlcrizat ion of recombinant glyco lytic cnzymes and flux contro l analysis. FEBS J 272, 1767- 1783. 65 Tager JM , Wandcrs JA, Grocn AK, Kunz W, Bohnen- saek R, Küsler U, Lclko G, B6hme G, Duszynski J & Wojlczak L (1983) Control of mi lochondri al rcspirat ion. FEBS Lett 151, 1- 9. 66 Simpson RJ, Brindle KM, Brown FF, Campbell ID & Foxall DL ( 1982) SI lid ies of lae la te dehydrogenasc in lhe purified slate and in inlact ery lhrocyles. Biochem J 202,58 1- 587. 67 Meunier JC & Dalziel K (1978) Kinelies sludies of gly- ceraldehyde-3-phosphate dchydrogenasc from rabbit muscle. El/r J Biochem 82 , 483-492. 1988 FEBS Journal 273 (2006) 1975-1988 e 2006 The Authors Journal comptlation e 2006 FEBS 62 FEBS Journal 27 Jan 06 Reference no.: FJ-05-1056.R1 Title: Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over- expressed but strongly product-inhibited hexokinase. Authors: 1) Rafael Moreno-Sánchez 2) Alvaro Marín- Hernández 3) Sara Rodríguez-Enríquez 4) Paola Vital-González 5) Fanny Flores-Rodríguez 6) Marina Macías-Silva 7) Marcela Sosa-Garrocho. Editor: Hans Westerhoff Dear Dr. Moreno-Sánchez Thank you for submitting your paper for publication in FEBS Journal. I am pleased to inform you that your paper has received favourable comments from the referees and is likely to be acceptable for publication in the Journal after incorporation of their comments, copies of which are appended below. Please note in particular the comments from the Editor. Editor's comments: I think the following objection by one of the reviewers: "I am concerned upon the likely possibility that the consuming and producing blocks interact via metabolites other than those measured. The existence of such interactions would invalidate the approach used in this manuscript. Particularly the concentrations of ATP, ADP and AMP are likely to change during the titration experiments and are likely to affect the rate of enzymes on both, consuming and producing blocks. "is fully justified. I can also see that it may be hard to deal with this. However, you should clearly mention this as a limitation to your approach and come with suggested future work. You should also remove some of the speculations. Please note that no guarantee of acceptance of the revised version can be given in advance. If accepted, the dates of receipt of both the original and revised papers will be printed. We look forward to receiving the revised version of your manuscript. Yours sincerely Dr Vanessa Wilkinson FEBS Journal 98 Regent St Cambridge CB2 1DP, UK Email: febsj@camfebs.co.uk REFEREES' COMMENTS Referee 1 Comments: None Referee 2 Comments: General comments: This manuscript describes a series of experiments aimed at describing the flux control distribution in healthy and tumoral hepatocytes. This is achieved through elasticity-based analysis, in which the control of producing and consuming blocks may be calculated from the (measurable) elasticities of consuming and producing blocks to their common intermediate. Although the manuscript has clearly improved, there are a number of speculations for which the authors offer no explanation and that hinder the comprehension of the manuscript. Examples of such speculations are noted in the "particular comments". An issue which concerns this reviewer is the likely possibility that the consuming and producing blocks interact via 63 metabolites other than those measured. Particularly: ATP, ADP and AMP. If the concentrations of these metabolites change during the titration experiments, the elasticity based analysis will be flawed and the control distribution reported, erroneous. Particular comments: Page 8: The authors wrote: ". F1,6-BP increased 250 times and DHAP 16.6 times, which suggested a strong activation of PFK-1 and an attenuated utilization of DHAP for glycerol and tracylglyceride synthesis." The rationale behind this expectation is not explained. DHAP concentration depends also upon the glycolytic pathway downstream of glyceraldehydes-3-phosphate. Page 10: The authors wrote: "However, this last type of metabolites may be still used in elasticity-based analysis as long as the flux through other pathways is low or negligible". The question that follows immediately is whether these pathways indeed have a negligible effect on those metabolites. References of experiments should be given to support applicability of the elasticity-based analysis. Page 10: The authors, rightly, point out that the rate dependence upon a substrate (or product) is likely to be hyperbolic for most glycolytic enzymes. However, in these experiments both substrate(s) and product(s) may change simultaneously and the rate relation of the flux and, say, the substrate needs not to be hyperbolic if the concentration of the product is also varying during the titration. Page 10: The authors wrote: ". only one point determines the value of the tangent.", when referring hyperbolic fits to the data. This is not true. The tangent's slope at a given operational point will depend upon the derivative of the function evaluated in that point, and would therefore depend upon the points on which the fit was based (i.e. all). This reviewer doubts that tangent slopes are an appropriate method for elasticity calculations when so few data points are available. Page 15, second paragraph: The authors wrote that increased concentrations of G6P and F1-6BP suggest that HK and PFK-1 may exert a lower flux control in AS-30D cells than in hepatocytes. The rationale for this suggestion is not explained. 64 20 February, 2006 Subject: Manuscript FJ-05-1056.R1 Dr. Vanessa Wilkinson FEBS Journal (European Journal of Biochemistry) Dear Dr. Wilkinson: Thank you for your kind letter of January 27, 2006 concerning our manuscript entitled “Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase”. We were informed that the manuscript may become acceptable for publication after incorporation of the comments of the editor and referees. Therefore, the text was modified accordingly, in regard to the potential drawback in the elasticity analysis and to some speculations made in the original manuscript. New experimental data were also included in the revised manuscript. Corrections in the manuscript were highlighted in bold type, as requested. The changes made to the manuscript are described below. We hope that the manuscript may be now found acceptable in its present form for its publication in FEBS Journal (European Journal of Biochemistry). Sincerely, Rafael Moreno-Sánchez, Ph. D. Response to Referee No. 1 Referee 1 did not indicate any comment. Response to Referee No. 2 We thank this reviewer for the many helpful and constructive criticisms of our manuscript. General comments Certainly the glycolytic consuming and producing blocks interact via metabolites other than those measured, particularly the adenine nucleotides. So, we fully agree with the reviewer that our elasticity analysis may be flawed if the concentrations of ATP, ADP and AMP also vary in the titration experiments. Therefore, to avoid further speculation in justifying our results, it was decided to determine the variation in the concentrations of the adenine nucleotides under the same conditions used in the titration experiments. This new experimentation was described, and the text modified, on p. 16, last paragraph, in which the reviewer’s argument was incorporated. The concentrations of the adenine nucleotides (Table 3 for ATP and ADP; p. 14, line 8 for AMP) now include the values of the new results. A figure with the new results is enclosed in this letter. Particular comments The statements regarding the original speculations on p. 8 (“…which suggested a strong activation of PFK-1 and an attenuated utilization of DHAP for glycerol and tracylglyceride synthesis”) and p. 15 (“These results suggested that HK and PFK-1 may exert a lower flux control in AS-30D cells than in hepatocytes”) were removed, as recommended. The statement on p. 9, last two lines, p. 10, first two lines (“…this last type of metabolites may be still used in elasticity-based analysis as long as the flux through…”) was slightly modified and some references added. 65 The argument about the hyperbolic rate dependence upon substrate or product (p. 10, lines 17-19) was modified to include the observation made by the reviewer. The statement “…only one point determines the value of the tangent” was erased and the text modified accordingly on p. 10, lines 19-22. The statement on p. 8, lines 16-17 was modified because ATP/ADP rate change with the news values of ATP. 0 25 50 75 100 % A T P 0 25 50 75 100 125 % A D P 0 25 50 75 100 % A M P Glucosa (mM) 4. 5 5.0 5.5 5.0 5.0 Oxalato (mM) _ _ _ 1.0 2.0 Figure 1. Concentrations of the adenine nucleotides under the same conditions used in the titration experiments. ATP 100 % was 7 ± 1 mM, n= 4; ADP 100 % was 2.1 ± 0.7 mM, n= 4; AMP 100 % was 3.3 ± 1.4 mM, n= 4. 66 5.1.1 Datos no mostrados Para poder aplicar el análisis de elasticidades fue necesario establecer la condición de estado estacionario, la cual se define como aquella en la que el flujo de la vía y las concentraciones de intermediarios se mantienen constantes con respecto al tiempo. En la figura 5.2.1, se observa que el flujo (medido como la cantidad de lactato producido/ min) y la concentración de F1,6BP fueron constantes entre 2 a 10 minutos, después de haber agregado la glucosa. A partir de este resultado consideramos realizar nuestros experimentos incubando con glucosa por 3 minutos. Figura 5.2.1. Establecimiento de la condición de estado estacionario en la glucólisis de las células AS-30D. Flujo (nmoles de lactato/min x mg proteína) y F1,6BP (nmoles/mg proteína). (n=2) El siguiente paso fue determinar que los inhibidores empleados para reducir el flujo glucolítico (oxalato y arsenito) al inhibir enzimas de la parte baja de la glucólisis (GAPDH y LDH) no afectaran la actividad de alguna de las enzimas de la parte alta (HK y PFK-1). Se analizaron sobre la actividad de la HK y de la PFK-1 concentraciones de oxalato y de arsenito de 10 mM y 1 mM (5 veces las concentraciones empleadas en las 0 2 4 6 8 10 0 5 10 15 20 F lu jo ( n m o l/ m in * m g ) Tiempo (min) 0 2 4 6 8 10 0 5 10 15 20 F 1 ,6 B P ( n m o l/ m g ) 67 titulaciones 2 y 0.2 mM, respectivamente), las cuales no modificaron significativamente su actividad. En cambio, la LDH disminuyó su actividad en el intervalo de concentraciones de oxalato empleadas en los experimentos (0.5-2 mM) (Figura 5.2.2). El efecto del arsenito sobre la actividad de la GAPDH no se determinó. Figura 5.2.2. Efecto del arsenito y del oxalato sobre la actividad de la HK, PFK-1. (n=1) Finalmente, debido a que la HK ejercía un control importante sobre la glucólisis tumoral, se consideró caracterizar a la enzima. Para ello se determinó su distribución entre el citosol y la mitocondria en células AS-30D (Tabla 5.2.1). Los resultados mostraron que el 50% de la HK estaba en el citosol y el resto estaba unido a la mitocondria, de manera similar a lo observado en otras líneas tumorales (Parry y Pedersen, 1983; Arora and Pedersen, 1988). En HeLa la HK se encontró en mayor proporción en la mitocondria (70%). Debido a que fue difícil obtener mitocondrias de estas células, se estimó primero la cantidad total de enzima en las células completas y luego en extractos celulares se determinó nuevamente la actividad en las fracciones HK PFK-I LDH 0 20 40 60 80 100 O x a la to 2 m M O x a la to 0 .5 m M O x a la to 1 0 m M O x a la to 1 0 m M A rs e n it o 1 m M % d e A c ti v id a d A rs e n it o 1 m M 68 citosólica (citosol en la tabla 5.2.1) y mitocondrial (mitocondria en la tabla 5.2.1). Pero nos faltó medir la actividad de una enzima marcadora de la fracción mitocondrial como lo habíamos hecho para AS-30D. Tabla 5.2.1 Distribución de la HK en las células AS-30D y HeLa. % de actividad Enzima Citosol Mitocondria AS-30D HK 52 ± 9 (3) 48 ± 9 (3) HPI 88 (2) 12 (2) Citocromo C oxidasa 15.5 (2) 84.5 (2) HeLa HK 31.7 (2) 67.8 (2) HPI 92.8 (2) 7.3 (3) Con base en nuestros resultados sobre el análisis de elasticidades se diseñó un problema que fue publicado en la Revista de Educación Bioquímica en la sección Problema Bioquímico (ver apéndice). 5.1.2 Comentarios sobre el manuscrito No. 2 En este manuscrito, por medio del análisis de elasticidades, logramos establecer que el bloque productor de G6P (GLUT + HK) es el que mantenía la mayor parte del control sobre la glucólisis. Además, también determinamos que la PFK-1 no ejercía un control significativo. Lo anterior nos llevó a caracterizar cinéticamente a la HK y a la PFK-1 para encontrar una explicación mecanística de estos resultados. La 69 caracterización reveló que la HK mantenía un control importante porque independientemente de su localización (citosol y membrana externa mitocondrial) no se modificaba la afinidad por sus sustratos (glucosa y ATP) ni tampoco su sensibilidad al efecto inhibitorio de la G6P: aunque había una sobre-expresión de la HK en células tumorales, su actividad incrementada producía más producto y por tanto más inhibición. Por otra parte, se demostró que la PFK-1 no controlaba porque la presencia de la F2,6BP y el AMP impedían que la enzima fuera inhibida por el citrato y el ATP. Estos resultados nos permitieron concluir que el GLUT y la HK son los principales puntos de control de la glucólisis tumoral y que al no ejercer un control significativo la PFK-1 se explicaba la ausencia del efecto Pasteur en las células tumorales. Cabe señalar que no realizamos una caracterización cinética del GLUT en este estudio, sin embargo posteriormente en nuestro laboratorio se logró determinar que la isoforma que predomina en las células AS-30D del transportador de glucosa es el GLUT3 que tiene una alta afinidad por glucosa (Km = 0.5 mM) (Rodríguez-Enríquez et al., 2009), pero que con respecto al resto de las enzimas, es el transportador el que tiene la menor velocidad. Este resultado apoyaba nuestra propuesta de que el transportador ejercía un control significativo sobre la glucólisis. A partir de la fecha de la publicación de nuestros resultados hasta estos momentos no se encuentran documentados estudios sobre el control de la glucólisis en células tumorales o estudios similares al nuestro aplicando el análisis de elasticidades u otra estrategia experimental derivada del análisis de control metabólico en otra vía metabólica. Esto puede deberse a lo complejo que puede resultar el aplicar el análisis de elasticidades, dado que los metabolitos que deben emplear son aquellos que se pueden considerar como metabolitos “esclavos”, es decir aquellos que únicamente son 70 producidos o consumidos en la vía de estudio o que su consumo por otras vías es limitado. Con ello se facilita el agrupar a las enzimas que forman la vía en dos bloques, el bloque productor y el bloque consumidor del metabolito de interés. Por ende, metabolitos como los adenin-nucleótidos (ATP, ADP y AMP) que son productos o sustratos de diversas vías metabólicas (metabolitos promiscuos) no pueden emplearse para este tipo de estudios. Por otra parte, aunque podría considerarse ventajoso el empleo de inhibidores poco específicos para modular la actividad de los bloques, debe considerarse que únicamente deben observarse cambios en las concentraciones de los metabolitos esclavos, sin afectarse drásticamente las concentraciones de los metabolitos promiscuos. 71 5.2 Construcción de modelos cinéticos de la glucólisis tumoral Debido a que por medio del análisis de elasticidades no era posible determinar el control que ejercía individualmente la HK y el GLUT en AS-30D por las dificultades técnicas para medir la glucosa libre intracelular y sobre todo porque para extender nuestro estudio a células tumorales humanas era necesario disponer de una gran cantidad de material biológico, se decidió construir en el programa “Gepasi” un modelo cinético de la glucólisis de las células AS-30D, considerando las ecuaciones cinéticas correspondientes para cada enzima. Para la validación experimental del modelo cinético, se determinaron en paralelo las concentraciones de los metabolitos y los flujos de la vía, además de comparar los valores de la distribución de control que el modelo predecía con aquellos obtenidos previamente por medio del análisis de elasticidades (Manuscrito No. 2 de esta tesis). Para construir el modelo fue necesario determinar los parámetros cinéticos (velocidades máximas “forward”, Vmf; velocidades máximas “reverse”, Vmr; afinidad por sustratos, Kms; afinidad por productos, Kmp; constantes de activación, Ka; constantes de inhibición Ki) de cada una de las enzimas, la velocidad de la glucólisis, los flujos de algunas ramificaciones (síntesis-degradación de glucógeno y la vía de las pentosas fosfato) y las concentraciones en estado estacionario de todos los metabolitos de la vía . Una vez validado este modelo, se uso como base para la construcción de un modelo de la glucólisis en células tumorales humanas (HeLa, cáncer cervico-uterino). El manuscrito con estos resultados fue aceptado para su publicación en la Revista Biochimica et Biophysica Acta-Bioenergetics. 72 Factor de impacto 2009: 3.68 !JI cancer 1~ 1. Introduction \2010; AB TRAer !V1ost cancer ceEs exhibit an acce}erated glymlysis rati' compared fhxmal celbL This met2bolic change 1:; 2~ assod¿ted wíth the uvcH:xpycsaio!1 of al! the and transporte::-s (as mdw.l:d by Hit· la and :~~r;b~~~~~~~~~~:D;~:, ;¡~sl underJymg contro~ mecndnisms, kinetlc Heta (eH" were c011strudéd with experimental lleré for e¿ch path'Ndy step :éJlZyItle kiBeth: Sü:adjl; p",di<:lc,d flUXC5 2nd living cancer ce!]::; Ph'fSl01ogicaJ and I ~'fc~I~::;;:~::C()ndit¡OIH pre':\lmng du!",ng \lImos progression, A degradation:: GLUT> HK in He~2 wcre the rn¡¡in fllJ.x~ and A11' coticentr:ttiOCl:~m:Jtro1 steps, ModclJng 31so rcv51!ed th2t, i:J diminis.'1: the glyc 01 yuc flux ot thé ,lI¡Th"óOCl:c;1t (¿rlon by SU>;, i{ W J$ féqulíed {ú déaédSc G!lJ1 ú r HK or H 1'1 by 7b~t ~ AS, 3IJD ~, and dcgrildaüon by 37"Sg:;; (HeLa;. decrNsing mélltionéd SlC¡:tS by 4;7%, TIlus, procein<; ¿fe propoS0d tú be fOff'mtlst therapeutk: targeu the1r :;¡mu]taneOtH Inhl0¡Holl wili llave antdgO¡)l$l!C effecl$ {JO tumor eúe-rgy mr::t;¡boh$J11 than inh¡b¡tion oí .lit othe-:' gl¡'coll}'llc, Don,cc>n!lRJillnll' ern:y:m::L This: article js part oi a Spccia! lssue cnYitied Biflcner¡;c'lrs nf ,'n',rrr :¿(nO LJsevler JlV, ------------------------------------------------------------'* tú :normal noo-prolirerating ce[ls. However, lreir severe side effet1:S in [ ""l"enl I.c k o~:,~~~O\~~'':~:; I;(~d'~' E~,t::O: ;i,n here fl t () r té$istance) make neces,sary ihe ór novel therapeutic strategies tú fight mis Hence, tf1é ldéntifi- catiOIl of the main differences at the molecular 2Ild f'unctioIl21 leve!s ,¡ between normal and lumor ('e115 15 essentia! in th:e search túr ¡¡~V ,"efa peu!''' Ia;gets, tile mÓ$t fflétaholk álleratión iIl tné majo;,ity tumor ('el!s, 1s a gh¡cosc consumptiol1 (with a lTI thi" c~':o~n~':'¡O~~O~1\;¡:lraJn;t~J:~~r:~l;;a~C'I~.~I~e~i:;~~~f~:~~~ir;~~'r7:it'r to norm:tl cells ~; in 'Thé t;¡e ",7 'Y'llh'eslS n<;"cessary tu tne ,;H:tlve po,liley¡,¡km MOf{'OVér, glyeóly51$ tan thé elíérgy~générat¡ng palt"Yfay llTlder (of1(:htlons where mitoc;,ondrial functton absent {)[ dimlIllshed sucl1 as in {he inltia! non-vascular stages Qr tumor prugresslolt whére hypoxk t:úndilions pre\taB. Toe cenlltar mecnamsms inVO¡VVle~d~=iol:;~tfc:e~~':l; tne simultarteous increased tr g~~~~n:~~~~~~¡ and ttansporters In prucesses h t;'1(,1,fJf In (HIFla) ano other OI1"og""'" rile higher toupled w lranslátimi aré respo:nsllole fUf the jncreased (ontent, and actw:ities 73 ARTICLE IN PRE55 2 A Marin-Hernánckz {1 al ¡ Biochimica el Biophysica Acta 10(}( (2010) XJCJC-IOO( 70 enzyrnes and transporters which result in an increased pathway flux. 71 HIF-lo: induces theexpression ofsperific glycolytic protein isofol111s (Le .• 72 GWT1. GWTI. HKI and 11. PfK-l. ALOO-A and C. PGK1. ENners, metabolite concentrations and pathway fluxes) into a 122 functional, cross-talking network that anempts to simulate whatoccurs 123 in the intracellular milieu (reviewed in 8,11 ). Thus, the aim of kinetic 124 modeling is to construct a model able to predict the fluxes and 125 concentrations found in a cell under different specific metabo lic steady- 12(i states. Validated mcxlels allow for the identification ofthe mechanisms 127 by which a metabolic pathway is controlled and also provide the 128 individual di and C~ foreach pathway step. Byextending this approach 129 to normal (host, nOlTIlal cells ) and pathologic systems ( tumor cells, 130 parasites ) the enzymes and transporters with the highest control in the 131 latter and low control in the former can be identified and hence 132 proposed as the best and most adequate therapeutic targets [8,12). 133 In the present work, we report on the kinetic mcxleling of 13-1 glycolysis in rat AS-30D hepatoma and in human HeLa tumor cells 135 under normoxic and physiological glucose concentration condirions cha racterí stics of in vitro culture experimentatíon and under hypoxic 136 and glucose deprivation conditions prevailing during tumor forma- 137 tion. The res ults indicated that in the evaluated conditions, the flux 138 control was shared mainly among HK ~ HP I > GurrinAS-30Dcells and 139 glycogen degradation ;;::; GLLIT> HK in HeLa cells. Funher modeling 140 analysis showed that s imultaneous inhibition of these controlling 141 steps has greater negative effects on tumor glyco lysis than inhibirion 142 of non-controlling reactions. 143 2. Experimental procedures 1 ... 2. 1. Enzymes and chemicals 145 HK. G6PDH. HPI. ALOO. GAPDH. aGPDH. aGPDH(fPI. PYK/LDH. 146 LDH, G1 !lt G6P and F6P were purchased from Roche (Manheim, 147 Germany ). Recombinant enzymes ENO, PPi-PFK and PGK from 148 Entamoeba hiswlytica were those prevíously described (13). Glucose 149 (Glu ). 6PG. FBP. G3P. 2PG. 3PG. PEPo Pyr. Rib5P. Ery4P. Xy5P. A11'. ADP. 150 GTP. DlT. cysteine. NADH, NAD+, NADP+, 6PGDH. amyloglucosidase, 151 11<, TA. MgCh and Iyophilized ALDO, aGPDH andTPI were from Sigma 152 (St Louís, MO. USA). DHAPwas from Fluka (Buchs, Switzerland). Mops 153 and Hepes were from Research Organics (Cleveland, Ohio, USA ). 15-1 Potato PPi-PFK was purified as previously described [14). 155 2.2. Enzyme activities 156 Oarified cytosolicextracts from AS-30D and HeLa cells were prepared 157 as previously described [lO). Glycolytic enzyme activities and affinity 158 constants were determined for the forward (glycolytic) and reverse 159 (gluconeogenic) reactions in 50 mM Mops buffer pH 7.0 (assay buffer) at 160 37 oC by following the NAD(P)+ reduction or NAD(P)H oxídatían at 16l 340 nm in a spectrophotometer (Agilent; Santa Clara, CA. USA). Standard 162 kinetic assays were initia lly used [15,16). but the substrate concentra- 163 tions were always adjusted to l nsure they were saturating for the tumor 164 cell enzymes. The activities were detelTIlined under initial-rate condi- 165 rions: the reactions were started by adding the specific subsrrates and the 166 absorbance baseline in the absence of one substrate was always 167 subtracted. PGM, AlaTA and 3PCDH activities were detelTIlined by 168 standard assays [15,16). TI< and TAwere measured according to (17). 169 The Ery4P, FBP and 6PG ínhibitíon on HPI in the forward direction 1 iO was determined in assay buffer containing 5 mM MgCI2 , 1 mM pp¡, 171 0.15 mM NAOH. 1 U E. h~tolytica PPi-PfK. 0.36 U ALOO. 9 U 11'1. 3.1 U 172 aGPDH and 0.OO3~0.014 mg of cyrosolic extract plus 13.8~28 ¡1M Ery4P. 173 30-60 J.IM 6PG or 3-1 O mM FBP. The reaction was started by addingG6P 174 (0.1-7 mM ). HPI inhibition was also evaluated ín the reverse reaction in 175 assay buffercontaining 1 mM NADP+, 2 U G6PDH, and 13-55 J.IM Ery4P, 1 i(i 40-90 ¡1M 6PG or 3~ 10 mM FllP. and 0.001-0.01 mg of extracto The 177 reaction was started with the addition of 0.05-1 O mM F6P. 178 PFK- l activity was determined according to [10) with Iyop hilized 179 (ammonium-free ) couplíng enzymes. 180 2.3. 5teady-state metabolite concentrations 181 AS-30D hepatoma cells were collected from rat ascites fluid. HeLa 182 cells were cultured under normoxic (95% air-5% CO2 ) conditions in 183 Dulbecco-MEM medium at 37 oC as previously d escribed 1181. For 184 hypoxic conditíons. HeLa cells were inirially grown under normoxia: 185 then at 75-90% confluency, cells were subjected for 24 h to 0.1-0.2% 186 oxygen in a humidified hypoxia incubator chamber ( BiIlups-Rothen- 187 berg, California, USA) as described before [19). 188 The experimental protocol to atrain glyco lytic flux under steady- 189 state conditíans was described elsewhere [10). Briefly, the cells were 190 harvested, washed and re-suspended in Krebs-Ringer medium 191 ( 125 mM NaCl, 5 mM KCI. 1 mM MgCI2• 1,4 mM CaCl2, 1 mM KH2P04 , 192 and 25 mM Hepes. pH 7,4). The cells were incubated at 37 oC under 193 orbital shaking: after 10 min, 5 mMglucose (or 1 mM for AS-30Dunder 19-1 P1ease cite this article as: A Marín-Hernández, et al., Mcxleling caocer glycolysis, Biochim Bíophys. Acta (2010), doi:1O.1016jj. bbabio.2010.11.006 74 ARTICLE IN PRESS A. Marín-Heroondez el al. I Biochimi:a et Biophysica Acta xxx (1010) XXX-IUC( J 195 low glucose concentrarian ) wasadded and incubated for another 3 min 196 and the reaetían was tenninated by perchloric acid (3% vlv. final 197 concentration) extrartion. 198 Glycolytic metabolite concentrations were detennined as previ- 199 ously described (l O]. The concentrations ofNAO+, G1P, alanine and 200 6PG were determined in neutralized extracts as described befare by "'" using LDH; PGM plus G6PDH; AlaTA plus LDH and 6PGDH. 202 respectively [20) . The Ery4P concentratian was determined in ""3 50 mM Hepes. 1 mM EGTA. pH 7.4. plus 0.7 mM Xy5P. 5 mM MgCI,. ""4 0.5 mM NADP+. 0.04 mM thiamine pyrophosphate (TPP). 1 U/mi of "'" eaeh HPI and G6PDH. and 0.5 U/mi ofTl(. 206 For F2.6BP determinatíon, after the 3 min incubatíon with glucose. 207 the cells were quickly spun down; the pellet was re-suspended in 208 25 mM Tris-HCI pH 7.6 and the cells were disrupted by freezing in 209 liqu id N2 and thawing at 37 oC three times. The homogenate was 210 centrifuged at 20,800 x g for 3 min at 4 oc. The supernatant was 211 alkalinized with NaOH to a final concentration ofO.1 mM and heated 212 at 80 °C for 5 min. The sample was centrifuged and the supernatant 213 was neutralized with acetic acid. F2,6BP was determined by using 214 potato PPi-PFK as described elsewhere (14] . 215 For determination of the total intracellular Pi, cel ls were incubated 216 for 3 min with glucose, and then a sample of 1 mi was withdrawn and 217 centrifuged at 800 xg for 30 S. The cell pellet was washed three times 218 with saline (0.9% NaCl) and re-suspended in 1 mlofthe same so lution. 219 The cellular suspension was divided l nto two: the first sample was 220 centrifuged at 20,S00.fg for 1 min and the supernatant was recovered 221 whereas the second sample was extracted with perchloric acid (3% v/ 222 v final volume), centtifuged for 5 min as aboye and the supernatant 223 was recovered. Pi was determined in the supernatants as described 224 elsewhere (21]. The intraceJlular total Pi content was calculated from 225 the difference between the Pi present in the first supernatant 226 (extracellular Pi ) from that in the second su pematant (extracellular 227 plus intraceJlular Pi). The concentration of cytosolic free Pi was 228 calculated assuming that only 53% of the total content was in its free 229 form, as previously determined in hepatocytes (221. 230 2.4. Metabolic fluxes 231 For the determination of the glycogen synthesis and degradation 232 fluxes, AS-30D cells (15 mg protein/ml ) were pre-inrubated at 37 oC for 233 10 min in Krebs-Ringer medium. Then, an aliquot was withdrawn 234 (t = O) and 5 mM glucose wasadded to the ceHular suspension and kept 235 under the same conditions. Aliquots were taken at 10 and 30 min, 236 immediately centrifuged, and the cellular peHet was frozen in liquid N2 237 and kept at - 70 oC until use. The pellet was further re-suspended in 238 0.3 mi of 30% KOH and heated for 30 min at 90 oC; afterwards, the 239 sample was mixed with 0.1 m16% Na2504 and 09 mi 1 00% ethanol and 2-10 centrifuged at 20,SOOg for 5 mino The pelletwas washed once with 1 mi 241 of80% ethanot and let dI)' at room temperature. Then, the pellet was re- 242 suspended in 0.5 mi d:2 M acetate buffer pH 4.8 plus 5 U amylogluco- 24.3 sidase and inrubated for 1 h at 37 oc. Glucose units derived from 244 glycogen breakdown were determined by enzymatic analysis by using 215 HK and G6PDH (20] ancl reported as nmol of glucose equivalents. After 246 the addition of glucose, the glycoge'it degradation rate was calculated 247 from the difference of glucose equivalents in glycogen from the 10 min 2-18 minus O min inrubation, whereas the glycogen synthesis rate was 249 calcuJated fro m the difference of glucose equivalen ts in glycogen from 250 the 30 min minus 10 min incubation. For HeLa cells, glycogen synthesis 251 and degradation rates were detennined in cells (5-7 mg protein ) 252 inrubated with and without glucose, respectively. The samples were 253 taken at O ancl 3 min and treated as described aboye. 254 For the pentose phosphate pathway (PPP) flux, AS-30D cells were 255 incubated as described aboye for glycogen metabolism analysis. After 256 glucose addition, samples were withdrawn at 2, 4 and 6 min and 257 immediately precipitated with perchloric acid, centrifuged and the 258 supe rnatant neutralized. The 6PG content was determined in the neutralized extracts by using a 6PGDH assay (20] . The rate was 259 calculated from the differences in 6PG concentrations at2 ifferenttime 260 points. 261 The pyruvate consumption rate by mitochondria (mitochondrial 262 pyruvate metabolism; MPM) was estimated from the total cellular 263 oxygen consumption rate minus that in the presence of 5 J..1M 264 oligomycin, and assuming that the main substrate consumed by 265 mitochondria was the endogenous pool of pyruvate generated by the 266 cell s (equivalent to 4 mg cellular protein ) incubated with 5 mM 267 glucose for 5 min. For the calculations it was assumed that ~ mol ofÚ2 268 (12 atoms oxygen) are consumed per mol of completely oxid ized 269 glucose. lt is noted that the MPM flux is the resu lt ofthe coordinated 270 activities of the pyruvate transporte r, pyruvate dehydrogenase 271 cornplex. Krebs cycle enzyrnes, respiratory chain complexes, adenine 272 nucleotide translocator, Pi carrier and ATP synthase. 273 For the majority of the parameters described aboye (enzyrne 274 activities, metabolite concentrations and fluxes) at least two diffe rent 275 batches of cells were assayed. The high dispersion in the experimental 276 data is very common when using non-chemostat cultures and when 277 using different batches of cellular cultures. On the other hand. lower 278 dispersions can be certainly obtained by measuring triplicates of one 279 homogeneous ceH culture. but such results only represent one 280 independent sarnpling. 281 2.5. Consrruroon 01 the kinetic models ,.2 The models were constructed by using the software Gepasi v 3.3 283 (23] available at the web site http://wW\Y.gepasi.org/. Fig. 1 dia- 284 grarnmed the pathway reactions considered in both models. The 285 reactions were wrinen in the program as described in Table 51 and a 286 surnrnary of all the used kinetic parameters is provided in Tables 52, 287 53, and 54 of supplemental)' material. 288 AH glycolytic reactions (including those ofHK PFK-l and PYK) were 289 considered reversible. For most of them, their Vm values were 290 determined in cytosolic extracts in the forward and reverse ..reactions 291 (Table 1 ) thus avoiding the use of Keq values taken from the literature in 292 the rate equations (see below ). 5ince these Vm values actually 293 corresponded to those of the enriched cyrosolic fractions. these were 294 also experimentally determined in whole cells which were solubil ized 295 with 0.02% Triton X-lOO to obtain the corresponding Vm in total cellular 296 protein units (Table 53 ); t Ji. Ianer Vm values were used in the mooels. 297 The kinetic parameters Vmf, Vmr and Km for substrates. products 298 and modulators were all determined under the same conditions of pH 299 (7.0 ) and temperature (37 oC) (Table 1). whereas those ofthe glucose 300 transporte rs were previously determined by our research group [24]. 301 The oxidative and non-oxidative PPP sections. the glycogen 302 synthesis and degradation pathways and the MPM braoches were 303 simplified and considered as non-reversible reactions with the constant 304 flux values shown in Table 2. The glycogen metabolism reactio ns only 305 induded the initial substrates and the final products without consid- 306 ering the intermediate reactions catalyzed by PCM. The oxidative PPP 307 section did not indude the NADPH production whereas the non- 308 oxidative seaion only induded the reaction catalyzed by TI<. 309 The celluJar ATP consuming processes (ATPases ) were represented 310 as a mass-action irrevers ible reaction with an adjusted k value orO.0042. 311 To maintain the pyridine and adenine nucleotide balances. the DHases 312 and adenylate kinase (AK ) reactions were used, respectively. with mass- 313 action reversible kinetics whose values were adjusted at k, = 250 and 314 k2 = 1 and k, = 1 and k2 = 2.26, respectively. Conserved moieties were 315 IATPI + IADPI + IAMP] = 113 mM and INADH]+ INAD+]=1.35 mM. 316 In the pathway mooeling, metabolite concentrations were initial - 317 ized at the values found in the cells (Tables 3 and 4 ). Fixed rnetabolite 318 concentrations were used for lactate. glycogen, 6PG, Ery4P. F2,6BP. Pi, 319 citrate and Xy5P at the values shown in Tables 2~4 (summarized in 320 Table 54 of supplementary material ) except for Pi, for which only 53% 321 of the tota l Pi content was assumed to be free Pi (22J . 322 Please cite this article as: A Marín-Hernández. e t al.. Mooeling cancer glycolysis. Biochim. Biophys. Acta (2010). doi: 1O.1016/j. bbabio.2010.1 1.006 323 329 330 331 r . ¿sica Pi in : Glycogen degradation A “6-6 ¿55— G6P,,. G6P Glycogen Glycogen synthesis 7 / FBP (4) 4 / BPE permea > | HPI Los Ear FOP 1 Y ATP ADP +2Pi 2 ENAP PFK-1 1 FBP s “ DXysP ALD G3P + DHAP TPI G3P NAD+*+ Pi NADH <——> NAD+ DHases ne] GALAH ATP + AMP >? ADP 1,3BPG ATP ADP PGK 3PG PGAM ADP +Pi € ATP E (2 ATPases ade PYK ao - FBP r + 12.5 ADP + 12.5 Pi mem? 12.5 ATP NADH LDH NAD+ Lactate ip Lactate out Fig 1. Pathway reactions induded in the kinetic models of glycolysis in AS-30D and HeLa tumor cells. Solid arrows indicate whether reactions are considered non-reversible or reversible in Gepasi; dotted arrows indicate allosteric modulators; dashed arrows indicate PPP existing reactions not included in the model. DHases; NADH consuming enzymes; ATPases, ATP-consuming processes; PPP, pentose phosphate pathway; MPM, mitochon drial pyruvate metabolism. ATP stoichiometry was calculated by using P/Oratios of 2.5 and 1.5 for NADH and FADH,, respectively. 2.6, Rate-equations The rate-equations used for each reaction are described below. The kinetics of GLUT was introduced as a monosubstrate reversible Michaelis-Menten equation (Haldane's equation) [25]: vin (Gl - Ko (1 + GQ) + Gita Gluin yv= Keg in which Glujur and Gluin and Kauour and Kain are the extra- and intra-cellular glucose concentrations and the enzyme's affinity constants (Km values), respectively; Keq is the equilibriunt constant; and Vmfis the maximal velocitv in the forward reaction. Please bbabio.2010.11.006 The HK rate equation was described as random bi-substrate Michaelis-Menten [25]: vinf _ PIO) $ KaKb (a Keg ) SA EA, A, 0, A, A, AE Ka — Kb KaKb ' Kp Kq KpKq KaKq — KpKb in which [A] and (B] represent the substrate concentrations (Glu and ATP, respectively), whereas [P] and [Q] represent the product concentrations (G6P and ADP, respectively). Ka, Kb, Kp and Kq represent the enzymes Km values for their respective ligands. The HPI rate equation was introduced as a monoreactant reversible equation with competitive inhibition by Ery4P, 6PG and FBP: vn 82 _ yyy LES v= Kosp Keop 1 + 166? , [F6P] , TERYAP] , [6PG , [FER] 14 1687, TF6A Yap] , J6PG] , [FBP Keso — Króp — Kervao Ko Ko cite this article as: A. Marín-Hernández, et al., Modeling cancer glycolysis, Biochim. Biophys. Acta (2010), a] 332 333 333 336 337 338 339 340 75 4 ARTICLE IN PRESS A Marfn-Hernández et al ¡ Biochimica et Biophy i Aaa xxx (2010) XJUt-}()()( ________ ~ G ~ IU ~ OO ~ ;~r G ~L~U~T----------- AT P~ t · H K ~ ~ A DP ~ (_)! ~/ ycoge n deg r ada ~ ,. ... - - - .... -.... -,- - - - SPG ( ppp 6P .. ....... 6P l en ,,' " , : ~~ ··-¡. ... .. ..... ..\:1 ....... > t HPI Glycogen synthesis , . ~ " Ery4P : F6P ~ •• •• A T P ~ P OP 2Pi , , , \ , Ery4P ADP +-1- PF K- ~ ,,··· ...... \:) .... .. i"CATP ~"":>- ..... ___ FBP •••••• ~ •• Itrate - ? Xy5P TK t ALD · · · ·· · !·~! · · F2 . 6BP 3P O AP t 1 3P AD- + ¡::t NAOH -- NAO- NADH GAPDH ases P P ~ 2 OP A P + Pi ( ATPases TP ~ , 3 PG ADP PGK t AM 2P¡ G ENO PEP .. ~:) .. .. .. .. ATP A TP~ ",'" +) ADP +-1- PYK tL5 Km tu 0.52% 93" Vm, 09 250 16 HK Vmy 046 0.06* Kima3p 0.29 0.19 t17 Ka Gtu 0.18> 0.1 Kms 38m 0.02 0.022 tL.8 Km are 099 11 KmnaD+ 0.08 0.09 +19 Ki c5p 0.02 0.02- Kmnaoe 0.004 0.0 110 HPI Vmy 49+19 (3) 12402 (3) Km ps 11+1 (3) 29 Ln Vm; 34+1.1 (6) 2.8 (2) PGK Vmp 27 13 1.12 Km sp 09+02 (4) 0.4+ 0.03 (3) Vm, 43 38 t1.13 Km sp 0.07 +0.03 (6) 0.05 (2) Kmi3orc 0.035 0.079 t114 — PFK-1 Vmy 0.273 0.0784 Kmsr 0.12 0.13 t1.15 Km pop 4.6% 10% KMaop 0.67 0.04 11.16 Km ar 0.048* 0.021* Kmarr 0.15 027 LAT Kin 1.75% 20 PGAM Vmy 20 14 +1.18 Kierr 3.90 68% Vm, 13 053 t1.19 Karsar 1810 8.4x 10% KmarG 0.18 (2) 0.19 t1.20 ALDO Vmy 023 0.25 Kmarc 0.04 0.12 t1.21 Vm, 0.18 NM ENO Vmy 0,51 036> t1.22 Kmesp 0.01 0.009 Vm, 0.74 04 113 Kimcap 016 NM Kmaro 0.16 0.038 11.24 KMomar 0.08 NM Kipgp 0.04 0.06 4125 TPL Vmy 5.6 5 PYK Vny 66 > 11.26 Vm; 56 42 Kmpep 0.4 0.014 1.27 KMomar 19 16 Kmapp 03 04 128 Kimcap 0.41 051 LOH Vmy 134 114 1.29 Vm, 18 NM 11.30 KMpyr 0.13 03 +13 Kimtac 47 NM t1.32 Kmnap 0.07 NM 1.33 Km nana 0.002 NM Vm in the forward (Vmy) and reverse (Vm,) reactions in Ux (mg cytosolic protein)” *; Km in mM. Values taken from *[24]; *[10]; 766], [Moreno-Sánchez R, Marín-Hernández A, Encalada R and Saavedra E, unpublished results]. “Vm in U x (mg total cellular protein). The number of independent batches of cells assayed is shown in parentheses; the absence of t1.34 parenthesis indicates one assayed preparation. NM, not measured. 12.1 Table2 Properties of some glycolytic branches in tumor cells. AS-30D Hela Table 3 13.1 - Glycolytic flux and intermediary concentrations obtained in vivo (cells) and by in silico 124 Glycogen metabolism modeling for AS-30D cells, 125 PGMactivity' 032+0.1 (3) 075+02 (3) 132 2.6 Kméip NM 0.07 Metabolite 5 mM glucose 1 mM glucose* t3.3 2 zo a glycogen content E E de ) E Em y ) In vivo? Model In vivo? Model t3.4 G1P content? 0.08 + 0.04 (3) NM Gltin 62+1 3.4 NM 0.8 glycogen synthesis flux* 22403 (3) 24 (2) G6P 5,3426 6.5 2405 (4) 3.0 glycogen degradation flux! 1.2 (2) 1242 (3) ro 1,5 +0.7 0.03 0.7402 (4) 0.016 FP 25+7.6 5.2 0.6403 (3) 0.36 Pentose phosphate pathway DHAP 10423 14 1403 (3) 40 G6PDH activity! 0.05* 022* G3P 0.9+0.4 0.3 0.38 (2) 6PG content? 0.35 +0.13 (5) 039 1,3BPG ND 0.01 == NM PPP flux* 0.096+0.03 (3) NM 3PG ND 0.01 NM TA activity! 0.043+-0.006(3) 0.033 (2) 2PG ND 0.04 NM TK activity" 0.010 40.001 (3) 0.037 PEP 0,140.02 0.003 NM Ery4P content? 1403 (3) 0016> Pyr 2141 0.84 0.72 (2) XyI5P content NM 0.016 lactate 27411 Fixed NM F2,6BP (x 107?) 6+1(3)> Fixed NM Triglyceride synthesis citrate 1.740.7 Fixed NM ALGPDH activity* ND* ND* ATP 5.6412 7.9 6(2) ADP 2.4407 2.1 1.5 (2) Amino acid metabolism AMP 3.3414 1,3 NM 3PGDH activity" ND ND Pi 4.8+1.9 (3)* Fixed! 5 (132 AlaTA activity' 0.046+-0.022 (3) 0.012 (2) NADH NM 0.005 NM Alanine content” ND ND NAD? 1.3+05 (4)> 1.34 NM Glycolytic flux 2149 29 10.5 (2) Mitochondrial pyruvate metabolism Metabolite concentrations in mM; flux in nmol lactate min” * (mg cellular protein)”*. E a Elec? pyraralecconsumed by mituciondia"! ESTA nu Values taken from *[10]. This study. In the model, when this condition was simulated, TU (mg eytosolic protein)” *; ?nmol glucose equivalents (mg total cellular protein)*; Gltzur concentration and glycogen synthesis flux were fixed at values of 1 mM and “in mM; *nmol min” * (mg total cellular protein)” *. Values were taken from *[10] and 1nmol min”? (mg of cellular protein)”*, respectively. “53% of the total Pi *[39]. “The glycogen concentration was calculated by assuming that 1,8 mg total concentration shown was assumed to be free Pi [22] which was used for pathway cellular protein has a volume of 2.28 tl [38]. The values are mean + SD and the number modeling. Figures in parentheses indicate number of independent cellular extracts of independent batches of cells astayed is shown in parentheses: the absence of assayed. NM, not meastired; ND, not detected. Fixed values in the model were at those 12.32 parenthesis indicates one preparation assayed. NM, not measured; ND, not detected, experimentally determined in cells, 13.26 16/). bbabio.2010.11.006 76 ARTICLE IN PRESS A. Marin ~ HtTrtdrr:1ez l't l. I i chi iro rt i hysica cta 100( 10) x- x l.1 ablt 1 inetic r eters r 5- OD !'ld eLa l colytic l es .lOO lr .9 .6 Km ~ .3 .4 rTI(;lP U 1 .51 H ¡ I A A Vrn, .8 m". . 3 U3 ",,< .7 _o . 7 NNJH 0.002 l e ard ¡) d r ,. ) cti ns x g tosolic r tei ) 1: M. alues l en · [ 4); 1 0); "1 6), d[Moreno-Sáochez . Marín~ H emánde z , ncalada J.nd vedra , pu blished r e s ults~ ~Vm g tal Uular rotein).1 e ber fin endent lches f Us .ayed n rentheses; l e sence f pa thesls l i ates e f al l Biochimica ti: Biophysica Acta xxx. (2010) 100(-100( T.1ble 4 Glyoolytic nux and intermediary concentrations obtained in vivo «(e lls) and by in si/ro modeling for HeLa cells. Metabolite Nonnoxia Hypoxiac In \.1VOo Model 'n vivd' Model GIUin NM O.61 ~ NM l.. C6' l.3 ± OA (5)b 0.66 - l.4 ± OA (5 ) 1.0 ffi' O.5±02 (5 )1> 0.01 05± 02 (5) 002 FB' 0.38(2)" 0.14 0.23 (2) 052 OHA' O.93± OJIl 2.0 0.54 16 G3P NO 0.08 NM 01. 1.3BPG NO 0.0009 NM 0001 3PG NO 0.006 NM 0000 2PG NO 0.003 NM 0004 PE, 0.32 0.0002 NM 00003 "Y' 8.5 ± 3.6 2.5 42 (2) ,. lactare 33 Fixed NM ",," F2,6BP (x 10- 3 ) 42±O.8 (3)" Fixed NM ",ed a lrate NM Fixed NM ",ed ATP 8.7 ± 3 (5)" 8.' 7.9 ± 4 (5) 7.7 ADP 2.7 ± 1.3 22 1.8 (2) " AM P 0.4 (2)" 13 NM 1.2 p; 75 (2)" Fixed 7.8 (2)" Fixed NAOH NM 0.005 NM 0005 NAO+ NM U. NM U. Glycolytic nux 16± 12 ( 5)" 20 21 ± 9 (5)b 29 Melabolile roncentrations in mM; nux in nmol lactate min 1 (mg cellular prOlein ) Values taken frorn ~ 1101 . bPresenL study. cFor lhis condition. HK and HPI activities were determineffi 1 + _[FB_P] + _[DH_A_PJ + _[G_3'_1 + "i ILD",H,-,APJ'-4i'[G",3P-,-] KFBP Kow,p Kc3I' KDHAPKc3P 364 366 The GAPDH kinetics was described by a simplified ord ered Ter-Bi 367 reversible Michaelis-Menten equation: 368 VmJ INADIIG3PIIPI] Vm, ~NADH] ~ _ KHAD lKpKq Kp Kq 370 PVK kinetics was represented by the concerted transition model of 376 Monod, Wyman and Changeux rate equation for exclusive Iigand 3n binding includ ing PE P as well as FBP activation and ATP inhibition, 378 with simple Michaelis-Menten terms for AOP and reverse reaction. 379 :![\+;: ] =- ( ~;i::~ ) ( [A11'1) - ¡AIPI + [PY1I1 + IA"W'YRj + I 1 1 +¡¡:¡;; [1 ""'J' ~ -;r,;;:; ~ ( FBP)' + + ¡¡- I + - ](Q ~- .. 380 The ATPases rate defined as the ATP-consuming cellu la r processes 382 was depicted as mass-action irreversible reaction, in which k was the 383 rate constant and Si was the substrate concentration. 384 386 The DHases and AK were included as reversible mass -action 387 reactians, in which k, and k2 are the rate constant s, Si is the 388 concentration of substrate and Pi is the concentration of producto 389 390 The rest of glycolytic branches were adjusted to irreve rsible 392 constant flux. 393 3. Resul ts and d iscussion 39-1 3. 1. Glycolytic enzyme activities, intermediary concentrotions and fluxes 395 in tumor cells 396 A recurrent di fficu lty encountered in building kinetic models of 397 metabolic pathways is the lack of all the required kinetic data of the 398 pathway under study, evaluated in the same cellular mooe l, and 399 determined under the same experimental conditions. Oespite these 400 inconveniences, sorne models have been reported for glycolyt s in 401 erythrocytes [26,27J, yeast [28) and the human-infecting parasites 402 Trypanosoma brucei [29) and Entamoeba histolyóca (16). 403 Although there is sufficient kinetic infarmation on glycoly tic 4().t enzymes from a wide variety of tumor cells, most stud ies are not 405 Please cite this article as: A Marín-Hernández, et al., MooeJing cancer glyco lysis, Biochim Biophys. Acta (2010), doi: 10.1016jj. bbabio.2010.11.006 78 ARTICLE IN PRESS A. Marin-H!'T'nández ef al. I Biochimira et Biophysica Acta 100{ (2010) 1001.- 1CXX 7 406 usually accompanied by thorough cellular merabalic characterizations 407 reporting metabolite concentrations and metabolic f1uxes. This is 408 partirularly evident in studies based only on determinations of 409 transcriptional changes. from which hypotheses and explanations are 410 formulared about changes in metabolic fluxes and cellu lar function 411 (reviewed and disrussed in 9].Hence. in arder tohave a complete kinetic 412 characterization ofthe glycolytic pathway and its branches in the tumor 413 cells studied heTeo the maximal velocities in the farward (Vm¡) and 414 reverse ( Vmr) reactions and Km values for subs trates (Kms ), products 415 (Kmp ) and effectors for each glycolytic enzyrne were determined in 416 cytosolic extracts from AS-30D and HeLa cells at 37 oC and pH 7.0 417 (Table 1). A pH value of 7.0 was chosen because the intracellular pH 418 varies from 7.2 to 6.8 when ce lis are actively consuming glucose (30] . 419 Due to thermcxlynamic constraints, HK. PA<-l and PYK activities were 420 only deteITIlined for the forward reartion. 421 In general. most of the enzyme activity (i.e., Vm ) va lues (Table 1) 422 were in agreement with those previo usly reported for the same tumor 423 celllines (31 ,32). In tumor ceUs, approximately 50-70% of HK activity is 424 bound to mitochondria [10,33,34) : thus, to have an acrurate determi- 425 nation ofthe total HKartivity, detergent-peITIleabilized cells were used 426 (Table 53). Remarkably, HK. PA<-l and PGAM activities found in 427 cytosolic extracts we re 7.6, 3.5 and 14 times higher in AS-30D than in 428 He La cells: which contrasted with the similar values obtained for the 429 rest of the pathway enzymes in both cell s (Table 1 ). HK and PFK-l are 430 153 and 27 times lower in rat normal hepatocytes (3 and 10 mU/mg 431 protein, respective ly) than in the AS-30D hepatocarcinoma (1 O~ On the 432 other hand, HKactivity in human muscle celis is 10 times lower whereas 433 PA<- l artivity in human brain is 3 times higher than in HeLa cells (6 and 43·1 258 mU/ mg protein. respectively ) (35,36) ; however. for a more rigorous 435 compari son w ith HeLa cells, normal proliferating cervix epithelial ce ll s 436 from which these tumor cells derived, should be used. 437 The Km values were simi lar in the two cell types (Table 1) and 438 were within the same interval found in the BRENDA database ( http: // 439 www.brenda-enzymes.infol) determined for normal and tumor cell s. 4.10 The previously reported value for the glycolytic flux in AS-300 ce lis 4.11 under normoxia and S mM glucose was 21 nmol min- 1 (rng ceUuJar 4·12 protein ) - l [lO) which was used as reference in the present 443 study (Table 3 ). On the other hand, in HeLa cells a value of 16 ± 4·14 12 nmol min- 1 ( mg cellular protein )- l ( n = 5 ) under normoxic con- 4.15 ditions was obtained in the present study (Table 4), which was lower 446 than the previously reported value of32 ± 1 O nmol min - I (mg celluJar 447 protei n)-l 110), indicating variability within the same ceU line from 4.18 culture passage to culture passage. For comparison, nOITIlal rat 449 hepatocytes and normal Chinese hamster ovary celis (CHO-Kl ) show 450 glycolytic flux values of 2.4 and 8 nmol min- 1 ( mg cell protein )- l, 451 respectively 110,37). Thus, the tumor cells used here indeed exhibit 452 increased glyco lysis rates campa red to normal ceUs. Glycolytic 453 metabolite concentrations were also previously reported for AS-300 454 cells inrubated with S mM glucose (lO) and used as reference (Table 3), 455 whereas for HeLa celis under nOITIloxia. values for sorne metabolites 456 were re-determined (Table 4 ), finding no stati sticaJ difference with 457 those previously reported [lO). 458 The enzyme artivities, fluxes and inteITIlediary concentrations ofthe 459 main glycolytic branclleS we re aiso evaluated (Table 2): glycogen 460 synthesis and degradation, ppp, triglyce ride and serine synthesis, and 461 MPM. 462 Regarding g lycogen. HeLa cells showed 5.2 fold highe r content than 463 A5-30D cells and 2.3 rold increased PGM activity (Table 2 ). The glucose- 46.1 l -phos phate (Gl P) intracellula r concentration (0.08 mM; Table 2 ) was 465 Iower than its glycolytic precursor G6P in AS-300 celis (5.3 mM: 466 Table 3 ). Under the steady-state conditions used, in which extracelluJar 467 glucose concentration is S mM (see Experimental procedures seaion ), 468 the glycogen syn th esis and deg radan on rates were 10-18 times lower 469 (Table 2 ) than the glycolytic nuxes (Tables 3 and 4 ) in both twnor cells; 470 with the exception ofthe glycogen degradation flux in HeLa cells which 471 was 75% the glycolytic flux. The most l robable reason for the higher activity in the glycoge n degradation branch in HeLa cells was that these 472 are cu lrured in Dulbecco-MEM medium containing 25 mM glucose, 473 whereas the gl ucose concentration found in AS-300 ascites fluid is 474 0.026 mM (38~ Cultivation of HeLa ce lis under high (25 mM ) glucose 475 induces the ex pression ofthe 18 .. gltlt:8se am A i ~ LUT1, whereas AS- 476 300 hepatoma developed intra-peritoneally in rats predominantly 477 express the l'igh gll:lE8se affiRity GLUf3 (24) . In consequence, the 478 inrubation of HeLa cell s in fluxes assay medium containing lower 479 glucose (compared to culture medium) mostprobably promoted strong 480 activation of glycogen degradation to compensa te for the diminished 481 glucose uptake: this compensatory mechanism was apparently not 482 required in AS-300 hepatoma. 483 In the oxidative section of PPP (Table 2 ), higher G6POH activity 48.1 was found in HeLa than in AS-30D ceUs, but similar 6PC concentra- 485 tions. On the other hand. the activities of the PPP non-oxidat ive 486 section enzymes TA and TI( were similar to reported values for t he 487 same and other tumor cells (0.019-0.208 and 0.022-0.108 U 488 (mg prote in)-I, respectively) (17,39). A lowe r Ery4P concentration 489 in comparison to that of glyco lytic intermediaries (G6P, FBP, and 490 OHAP) was determined, which was slightly higher than the previously 491 reported value for Krebs ascites hepatoma cells (O.s nmol/mg ceUular 492 prot ei n ) 140). The lower PPP flux and enzyme activities (Table 2) 493 compared to glycolytic flux (see text aboye for values ) and enzyme 494 activities (Table 1 ) suggested low nuc1eotide synthesis and hence 495 negligib le cellular proli fera tio n, as expected from incubations made in 496 a saline buffer for sho rt times (3-10 min). For A549 lung carcinoma 497 and C6 rat glioma, PPP fluxes of 1 and 6 nmol/min':'mg protein, 498 respectively, were determined by using radio-Iabelled glucose and 499 lengthy incubations of 4-6 h in culture medium with glucose and fetal 500 bovine se rum, conditions under which cellular growth is favored 501 (41,42) . Then , it seems possible that the PPP fluxes, determined here 502 from 6PG changes (Tab le 2 ), were underestimated as the variation in 503 the cellular 6PG content was small and clase to the lower detection 50.1 limit ofthe methcxl used. Further evaluation ofthe PPP flux in AS-300 505 and HeLa cells either with radio-Iabelled glucose or under ce ll growth 506 conditions for longer times should l esolve this apparent discrepancy. 507 Low or negligible nGPOH activ it ies, which are in volved in 508 triglyce ride synthesi s, have been reported for several tumor cells 509 (43) ; accordingly, nGPOH activity was not detected in AS-30D and 510 HeLa cell s (10). Triglyceride synthesis can al so be initiated by OHAP 511 acylation in a reaction catalyzed by OHAP-acyltransferase 144) : 512 however, thi s enzy me was not determined in the present study and 513 this branch was not included in the model . 514 A previous report indicated that serine metabolism is acce lerated 515 in tumor cells (45) : however, the activity o f 3-phosphoglycerate 516 dehyd rogenase was not detected when measured in the 3PG 517 oxidation direction (Table 2 ) and thus, this branch was not inc1uded 518 in the mode!. Alanine transaminase activity (AlaTA) measured in the 519 pyruvate synthesis direction was low in both AS-300 and HeLa cells 520 (Table 2 ). These low activities correJated with undetectable alanine 521 levels in cellular extracts. 522 The MPM rate was 11.7 fold lowe r than the lacta te production rate, 523 suggesting that anaerobic glycolysis was favored. It might be possible 524 that the mitochondrial pyruvate transporter expressed in AS-300 cells 525 also has low affinity and low rate as described for Morri s 44 and 3924A 526 hepatomas ( Vm = 5-12 mU/ mg mitochondrial protein and 527 KmPyr= 0.74-1.1 mM) (46~ The ex pression of a low artivityflow affinity 528 pyruvate transporter would favor a higher pyruvate flux towards lactate 529 because of LDH higher activity and affinity (Vm = 2.0 U/ mg celluJar 530 protein, Table 53; KmPyr= O.13 mM, Table 1 ). Contributing to the 531 unusually high endoge nous pyruvate pool (Tables 3 and 4 ) may be the 532 active oxidation of alternative substrates such as glutamine, glutamate 533 and proline, which generate maJate and hence pyruvate by the aaion of 534 over-expressed malic enzyme in cancer cell s 138,47). In addition, the 535 onsel o f the Crabtree effect (OxPhos inhibition by external glucose) 536 should also promote an elevation in the intrace llular pyruvate poo l 130). 537 Please cite thi s artic1e as: A Ma rín-Hernández, et al., Mcxleling cancer glycolysis, Biochim. Biophys. Acta (2010), doi: 1O.1016/j. bbabio.2010.11.006 8 Marín-Hernández et al / Biochimica et Biophysica Acta xxx (2010) xxx-xxx 3.2. -uilding and refinement of the kinetic model of AS-30D glycolysis The kinetic model of glycolysis in AS-30D cells was constructed by using the Gepasi software. The kinetic parameters Vm, Km for substrates, products and modulators for the pathway enzymes and glucose transporter from external glucose to lactate production as well as the enzyme activities and fluxes of the pathway branches experimentally determined were used to fulfill the parameters of the rate-equations describing each reaction as detailed in the Experimental procedures section. The metabolite concentrations and the pathway fluxes of glycolysis determined in vivo under steady-state conditions (Table 3) and the control distribution obtained by elasticity analysis previously reported by our research group [10] (Table 5) were used as reference parameters for model validation. In consequence, for model building and validation, a refinement process was recurrently necessary, which in turn prompted an experimental re-evaluation of the kinetic properties of some enzymes as well as the determination of neglected metabolite concentrations and the inclusion of some branches to ¡mprove model reproduction ofin vivo pathway behavior. Thus, this dynamic interplay between modeling and experimentation led to several model and rate equation modifications, from which the three most important are described below. 3.2.1. Kinetics of PFK-1 The first draft of the model included the reactions from external glucose to lactate production and the branch of glycogen metabolism (Fig. 1), in which a simplified version of the PFK-1 rate-equation (hyperbolic kinetics) was used. However, G6P level was too high whereas those of DHAP and G3P were too low. Thus, an improvement of the PFK-1 reaction was necessary. There is a lack of detailed kinetic analyses of PFK-1 in normal and tumor cells, in which a simple Hill equation for only one modulator is used, Hence, a kinetic characterization of PFK-1 was carried outin AS- 30D and HeLa cells (see Experimental procedures section), resultingin a rate-equation that followed the concerted transition model of Monod, Wyman and Changeux together with non-essential activation by F2,6BP (or any other allosteric activator) (Moreno-Sánchez R,, Marín-Hernán- dez A., Encalada R. ¿nd Saavedra E., unpublished results). The intracellular concentrations of F2,6BP, AMP, ATP and citrate were also determined (Tables 3 and 4). As theactivating effect of F2,6BP overcame the inhibitory effect of citrate and ATP, at the tumor physiological concentrations of these modulators (see a simulation in Fig S1 in supplementary material), the PFK-1 ratein the presence of physiological F2,6BP was 2 fold higher with the concomitant increased in FBP and DHAP to near-physiological levels. However, a marked decrease in the Glin, G6P and F6P concentrations was attained. 3.2.2. Kinetics of HPI Through modeling it was noted that a decrease in the HP activity resulted in a better prediction of the G6P concentration and the glycolytic flux. Hence, the effect of a wide variety of metabolites (ATP, AMP, Pi, PPi, citrate, Ery4P, DHAP, G1P, lactate, 6PG, FBP and F2,6BP) on HPI activity was examined. Most of them showed no effect (Table S5 in supplementary material); in contrast low Ki values for Ery4P (0.8-2.5 HM), 6PG (6.8-18 hM) and FBP (60-170 uM) were deter- mined (Table $6). Thus, multiple competitive-type inhibition by Ery4P (Fig. S2), 6PG and FBP was incorporated in the HPI rate-equation. The potent HPI inhibition by these metabolites was not particular of the tumor enzyme, since it was previously reported for the normal rat brain, and rabbit liver and muscle HPls [48-50] and they also modulated the enzymes from rat hepatocytes, yeast and E. histolytica (Table S6). Therefore, the intracellular concentrations of 6PG and Ery4P were also determined in the tumor cells, and in consequence the oxidative section of PPP and TK reaction with their corresponding fluxes (Table 2) and metabolite interactions with HPI were also included in the model (Fig. 1). bbabio.2010.11.006 3.2.3. Kinetics of the FBP consuming block of enzymes and GAPDH 601 By including the two modifications described above, the modeled 602 FBP concentration was still several times lower than the physiological 603 concentration, indicating an unrealistic high rate by the gonsumption 604 block of this metabolite. Thus, the effects of G6P, F6P, Pi, ATP, AMP, 605 Ery4P, F2,6BP and PPi on the enzymes of the ALDO-ENO segment 606 were tested (see Table S5). 607 ALDO activity was not modulated by any of these metabolites. 608 Although GAPDH was inhibited by ATP (with non-competitive 609 inhibition, Ki=4.3 mM) and ENO was inhibited by DHAP and ATP 610 (non-competitive inhibition, Ki=31 mM, and uncompetitive inhibi- 611 tion, Ki=14 mM, respectively), these Ki values were far from the 612 physiological concentrations, and their effects were not included in 613 the rate-equations. 614 GAPDH from AS-30D cells showed low affinity for Pi (Table 1; 615 Fig. S3) which suggested that Pi availability might regulate the 616 enzyme activity. High Kmp values for GAPDH from bovine liver, 617 human muscle and sarcoma [51,52] have also been documented. 618 Thus, contrary to other glycolysis kinetic models in which Pi is 619 considered saturating and hence it is not included as pathway 620 metabolite, in the present model Pi was included in the GAPDH 621 rate-equation. On the other hand, from the total intracellular Pi 622 concentration determined (Table 3) only 53% [22] was assumed to be 623 free (ie., 2.5 mM); this free Pi concentration was used for modeling 624 and was in agreement with values previously determined by nuclear 625 magnetic resonance in rat liver and heart (1.3-2.8 mM) [53,54]. 626 3.2.4. Properties of the kinetic model of glycolysis in AS-30D hepatoma 627 cells 628 By incorporating (i) the PFK-1 complex rate equation, (ii) the 629 inhibition of FBP, 6PG and Ery4P on HPI, and (iii) Piin the GAPDH rate- 630 equation, the kinetic model was able to predict with high accuracy the 631 concentration of most of the pathway metabolites and flux rate 632 determined in living cells (Table 3). The most significant exceptions 633 were the predicted FBP (4.8 times lower) and F6P (50 times lower) 634 concentrations. It was found that the FBP steady state concentration 635 directly depended on the Pi concentration within the reported 636 physiological range (Table $7). On the other hand, only by decreasing 637 to 20% the PFK-1 activity, the F6P reached the physiological level; 635 however, this decrease was not experimentally supported because of 639 the strong activation by F2,6BP, AMP and/or Pi. Moreover, under this 640 last condition of20% activity, PFK-1 became the main flux control step, 641 which was in disagreement with the results obtained by elasticity 642 analysis [10]. Hence, still another unknown kinetic mechanism seems 643 to also modulate the in vivo PFK-1 rate. 644 3.2.5. Control distribution of glycolysis in AS-30D 645 The analysis performed by Gepasi provided the dh of all the 646 pathway steps (Table 5). Modeling indicated that the first three 647 reactions of glycolysis exerted most of the flux-control with 648 HK>HPI>GLUT (2C;, =1.04; Table 5). This control distribution was 649 in agreement with the C/, obtained by elasticity analysis, which 650 indicated that the G6P producer block (GLUT and HK) exerted the 651 main flux-control (XC!, =0.65-0.71) [10], whereas the Cp value was 652 not possible to be discerned in the previous study, because the high 653 experimental dispersion masked flux-control differences among the 654 different blocks of enzymes analyzed. 655 HK and HPI showed high flux-control because they were strongly 656 inhibited by glycolytic and PPP intermediaries. lt was previously 657 demonstrated [10] that HK exerted significant control on flux in 658 cancer cells because it was strongly inhibited by its product G6P, 659 despite its higher levels of expression compared to normal cells. In 660 particular, AS-30D cells over-expressed the HK-II isoform [24] which 661 partitioned between the cytosol and mitochondria, the latter showing 662 the same affinity constants for glucose, ATP and G6P than the former, 663 cytosolic HK II [10]. Thus, although a hallmark of tumor cells is the 664 Please cite this articie as: A. Marin-Hernandez, et al, Modeling cancer glycolysis, Biochim. Biophys. Acta (2U1U), d01:10.1016/j. 79 53 539 010 011 542 013 ' 14 015 016 &17 018 01. 550 55 1 552 553 554 555 556 557 558 55. 560 561 562 563 564 565 566 567 56 13 569 570 571 572 573 574 575 576 577 578 57. 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 ARTICLE IN PRESS 8 A. M(Jrfn-H~nándt l t l l i i ica t i hysico cto x OJO) KXJ(-XJO( . . Buil i g d n ent 01 me i etic odel 01 S-300 i olysis he i etic odel fg lysis S- ls as nstrurted y i g epasi l't are. he i etic r eters . r bstrates, nxiucts d odulators r e t ay rnes d l cose sporter r terna l l ose e t re r duction s ell s e rne ti ities d es f e t ay r ches eri entally t ined ere sed lfi l e r eters f e uations scri i g ch cti n s etailed e eri ental cedu5,..es ti n. he etabolite centrations d e t ay es f l colysis t ined i o der y-state nditions able ) d e ntrol i t ti n tai ed y l sti ity alysis r i usly oned y ur arch r up lO) able ) ere sed s r ce r eters r odel l i ation. sequence, r odel il i g d li ation, ent r ce s as u rently ce sary, hich rn r pted eri enta l al ati n f e i etic r perties f rne es s e ll s e t ination f glected etabolite centrations d e rw:lusion f e r ches l prove odel r duction fin i t ay ehavior. hus, is a ic lay t en odeling d eri entation eral odel d te uation odifications, hich e ree ost portant re scri ed l . . . J. i eti s / K- J he st raft f e odel l ed e cti ns ternal l cose tate r duction d e r nch f gen etabo lis ig. ), hich plified ersion f e · l uation perbolic i etics) as sed. owever. 6P el as o i h hereas se f O AP d 3P ere o . hus. pr vement f e f1(·l cti n as ece sary. here f eta iled i etic alyses f f1(·l r al d or ls, hich ple iII uation r ly e odulator sed ence. i etic aracterization f f1(·l as rri d t in S- 0 d eLa e ls e peri ental r cedures cti n ). lt in uation at o ed e ncerted slti n odel f onod, yman d hangeux ether ith n-e sential ri ati n y , 8P r y t er l steric ti ator) orencrSánchez .. a rín· ernán· ez ., nca lada . and avedra .. published sults ). he e lular ncentrat ons f 2, P. P, TP d it te ere l o t ined bies d ). s t eacti ati geffect F . P er e e i it ry ff ct f it te d TP. t e or ysiological centrations f se odulators e ulation i . 5 l entary aterial ), e f1(-l t in e r sence f siological , 8P as l i her ith e comitant r ased P d O AP ar- hysiologicalle els. owever, arked crease e IUin, 6P d P centrations as t i ed. . .2. i eti s / PI hrough odeling t as ted at ecrease e I cti ity lt d e ter r diction f e 6P centration d e l colytic . ence, e ffect f ide ariety f etabolites TP, P. i. P¡. it te. r 4P. HAP. l P. I etate. . 8P d . 8P) n PI ti ity as ined. ost f ed o ffect able S pl entary aterial ) : ntrast i lues r r 4P . -2.5 ¡1 ). . - 8 ¡1 ) d P 170 ¡1 ) ere eter- ined able 56). hus, ultiple petiti e-type i iti n y r 4P ig. 52), d P as rporated e PI t · uation. he tent PI i iti n y se etabolites as ot arti ular f e or e. ce t as r iously orted r e r al t rain, d bit er d uscle Pls -50] d y l o odulated e es t patocytes, east d . i t l ti ble 56), herefore. e eJlular ncentrations f d r 4P ere lso t ined e or ls, d sequence e idative cti n f P d I< cti n ith eir r nding es able ) d etabolite cti ns ith PI ere l o el ed e odel ig. ). . . i eti s al m P ing l k al es d DH 1 y l ding e o odifications scri ed oye. e odeled 2 P ncentration as ti l eral es er n e ysiological 3 centration, i ati g realistic i h te y e.1:9ASl:lffif)h9R .:1 l ck f is etabolite. hus, e cts f 6P, 6P. i, TP, P. 5 r 4P, , P d Pi n e es f e l - O ent 0 ere t d e able S ). 7 l O ti ity as ot odulated y y f ese etabolites. 8 lt ugh PDH as ibited y TP ith n -compe itive 9 ibition, i 43 M) d O as ibited y AP d TP 0 n· ompe itive ibition, i 31 M, d compe itive hibi· 1 n, i 14 M, ectively ), se i l es ere r e 2 ysiologica l ncentrations, d eir f cts ere ot l ed 3 e t · uations. 4 PDH - 0D ee ls ed J ffi ity r i ab le ; 5 ig. 5 ) hich gested at i ailabi li ty ight ulate e 6 e ti ity. igh fi l es r P H vine er, 7 an uscle d a , 2) ave l o en cumented. 8 hus, e ntrary e t er l colysis i etic odels hich i 9 si ered t rati g d nce t ot l ed s t ay 0 etabolite. e r sent ode l i as l ed e P H 1 uation. n e t er nd, e tal t e lular i 2 centration t ined able ) ly 1 2J as ed e 3 e i e.. . M ); is e i ncentration as sed r odeling 4 d as r ent ith l es r i usly t ined y clear 5 agnetic ance t er d eart 3 .8 ) ,54). 6 . .4. r perti s f i etic odel DI l colysis · t a 7 cells 8 y r r orating i) e -l r plex te uation, ii ) e 9 ibiti n fF P. d ry4P n Pl. d ii ) i in e PDH te· 0 uation, e i etic odel as le redict ith i h racy e 1 ncentration f ost f e t ay etabolites d te 2 t r ined i g ls able ). he ost ificant ceptions 3 ere e r dicted 8P .8 es er) d 6P 0 es er) 4 ncentrations. t as d at e P y te ncentration 5 ir ctly ended n e i ncentration ithin e orted 6 ysiologica l ge able 57). n e t er nd. nly y creasing 7 0% e f1(·1 tiv ity, e P hed e ysiological el; $ ever, is crease as ot peri entally ported ecause f 9 e g ti ati n y , P. P d/or i. oreove r, der is 0 st ndition f 0% ti ity, K-l e e e ain ntrol t p, ·U hich as ent ith e sults t i ed y l sticity ,12 alysis 1 0). ence, ti l other o n i etie echanis s 3 lso odulate e i f1(- l te. 4 . . ( IToI i t ti / glyroly s ~ - 5 Ite alys is r nned y epasi r i ed e CJI f 1l e ,16 t ay s able ). odeling i ated at e t ree 7 cti ns f glycollsis erted ost f e · ntrol ith -18 HK ~ HP I > GLlJf ( ~C f¡= 1.04; able ). his ntrol i t ti n as ·19 r ent ith e ci¡ t i ed y l sticity alysis. hich 0 i ated at e 6P r ducer l ck lJf d ) erted e 1 ain · ntrol "iCf¡ 0.65-0.71 ) lO] . hereas e C ~pt alue as 2 ot sible e i r ed e r vious y, cause e i h 3 eri ental i ersi n asked · ontro l i ces ong e 4 i rent l cks f es alyzed. 55 K d PI ed i h · ntrol ecause ey ere gly 6 i ited y l colytic d P ediaries. It as r iously 7 onstrated ] at e rted ifi ant ntrol n 58 cer ls cause t as gly i ited y t r duct 6P, 9 espite i her els f ression e pared r al e Us. 0 articular. S-300 ls er· pre sed e K-II ) hich 1 arti ed t en e t sol d itochondria. e tt r ing 2 e e ffi ity nstants r l eose, TP d 6P n e r er, 3 t solic 11 lO). hus, gh l a rk f or ls e 4 l ase ite is rtiele s: a rín· ernández, t l., odeling ncer l colysis, i chim i phys. cta 010), oi: 10.1016/j. abi . 10.11.006 80 ARTICLE IN PRESS A. Marín--Hernáooez el al. I Biochimiro rf Biophysica Acta}(}{}( (2010) xxx-xxx • "'. 1 Tabie S Aux contro l coefficients obtained in vivo (cells) 50% to flux-control. This difference in 713 GLUT flux control between tumor cell s and heart indicates that this 714 step might not be an adequate target for cancer treatment. beca use its 715 inhibition would preferentially affect normal cell s over tumo r cells. 716 The rest of the flux-control (0.08) was found in the AlDO-LDH 717 segment (Table 5 ), which was also in agreement with that obtained by 718 elasticity analysis (I Ctl = 0.24 ) [10]. Within this segment, most ofthe 719 control was accounted by GAPDH (C& PDH = O.OS ). due to its Pi low 720 affinity and hence its dependence on the variation of the Pi 721 concentratíon in AS-300 cells (Table 57). The ATP demand (ATPases) 722 showed a low flux control but ofthe negat ive sign. indicating that this 723 reaction competes with the glycolytic ATP-consuming s teps for ATP 724 thus inhibiting the glycolytic flux. 725 3.2.6. VVhy a step contToIs flux? 726 The HK elasticity coefficient (Table 58 ) and the catalytic effidency 71.7 for ATP (Vm jKm) were l mong the lowest in both AS-30D and HeLa 728 glycolysis, indicating near-satu ratio n with concomitant activity 729 insensitivity to varíations in ATP. relatively lower transfonnation 730 efficiency and hence flux limitation at this leve!. In turno the reasons 731 for the HPI high flux control coefficient resided in its step-wise 732 increasing elasticities (sensitivities ) towards the potent inhibitors 733 FBP, 6PG and Ery4P. and low elasticity for its product F6P, ind icating 734 satu ration, and hence strong inh ibit ion and prevalence of the reverse 735 over the forward reaction. Simila rly. GLlff catalytic efficiency was the 736 Jowest among the pathway steps, ind icating strong flux restriction; in 737 addition, in HeLa cell s, GLlff eJasticity for its producto GIUin, was one of 738 the lowest. ind icating near-saturation and perhaps product-inhibition 739 and significant reaction reversibility and correlating with a h igher 740 GLUT flu x control in these cells. On the other hand, the low flux- 741 control exerted by PFK- l is explained by the low elas ticity towards 742 activators, indicating saturation and hence full activation. If PFK-l 743 were not fully activated, it would very like ly the main controlling step 74.1 as its elasticity towards F6P is the lowest. On the other hand, the PFK-l 745 elasticities for citrate, and for their products FBP and ADP. were 746 extremely low because these metabolites were not sensed due to the 747 high Ki and Km. and low intrace llular levels. 748 3.2.7. Control of metabolite concentrations 749 The control ofthe concentration of G6P. PEP and ATP depended on 750 Gurr, HK. HPI and ATPase activities in AS-30D glycolysis and on GLUT, 751 glycogen deg radarían and ATPase in HeLa glycolysis (Table 59). For 752 the F6P concentration. PFK-l in both AS-30D and HeLa glycolysis was 753 the predominant controlling step, as expected. 75·1 3.2.8. Model robustness 755 The modeled pathway behavior ( ~ ., flux-control and concentra- 756 tion control distribution, flux rates and metabolite concentrations) 757 was not signifi cantly altered by changing (decreasing by half o r 758 increasing by 2 times) the ki netic parameters of most steps and PPP 759 flux (data not shown ). Exceptions were (I) control d istribution andjor 760 metaboJite concentrations, which varied by more than 50% when 761 changing the main controll ing steps GLlff, HK. HPI, PFK- l and GAPDH 762 Vm values (AS-30D model ) or GLlJf. glycogen degradarían. PFK-l and 763 GAPDH Vm values (HeLa mode l, see below); (ii ) FBP concentration, 764 which varied by 21-100% when changing ALDO Vm and Km vaJ ues in 765 both models; and ( iii ) DHAP concentration , which varied by 9--100% 766 when changingTPI. GAPDH. PGK. PGAM. ENO and ?YKKm va lues (AS- 767 300) or only TPI Km values (HeLa ). 80th models were also highly 768 sensitive to changes in the ATPase kinetics. revealing that this step is 769 the weakest component in conferring stability to the pathway. 770 Please cite this artide as: A Marín-Hernández. et al., Modeling cancer glycolysis, Biochim. Biophys. Acta (2010), doi: 1O.1 016jj. bbabio.2010.1 1.006 81 ARTICLE IN PRESS 10 A Marin-Hernández t>f al l Biochimica l1 Biophysica Acta KXX (2010) 1W(.-1OOf. 77 1 Notwithstanding the enlisted exceptions. the predicted pathway 772 behavior showed satisfactory robustness. further vaJ idating the 773 models constructed for both cancer celllines. 774 3.3. Kinetic model 01 glycolysis in HeLa tumor ce l/s 775 The kinetic madel for HeLa cell s glycolysis was constructed based 776 .liso on the experimental parameters determined in these cell s 777 regarding enzyrne activities (Table 1). metabolite concentrations 778 and fluxes of the glycolytic pathway (Table 4 ) and ¡ts branches 779 (Table 2), and the Tate equations used in the AS-30D model. 780 The majority ofthe metabolite concentrations and fluxes predicted 781 by the mode l correlated we ll with the in vivo concentrations except 782 for F6P and PEP, which were 50- and 1600-times lower, respectively 783 (Table 4). These discrepancies indicated that some kinetic experi- 784 mentation-based refinement was still needed, most probably at the 785 level of PFK- l and ALOO, and PVK. 786 According to the modeL the main flux controlling steps in HeLa 787 ce lis, grown under normoxic and high glucose (25 mM ) conditions, 788 and assayed in the presence of phys iological glucose (5 mM), were 789 the glycogen degradation pathway and GLlIT ( C ~ymg~ n dq-radaion + 790 C ~ wr = 0.96), whereas the control exerted by the block of HK + HPI + 791 PFK-l was 0.16 (Table 5). The higher control attained by GLlIT in HeLa 792 cells compared to AS-30D was caused by the over-expression of the 793 GLUTl isoform, which displays low rate in these cells (0.017 nmol! 79-1 min ~ mg cellular protein) and low affinity for glucose (9 mM), resulting 795 in a lower ratalytic efficiency than that ofGLurJ in AS-30D cells (24). At 796 physiological glucose concentration (5 mM ), the rate equation for GLUTl 797 predicts an activity of 25% of its maximal acrivity (4 nmol min- I mg 798 cellular protein- I ), which cannot completely account for the obselVed 799 glycolytic flux (16±12nmol lactate min- I mg cellular protein-I).ln 800 consequence, the glycogen degradation pathway activates to provide the 801 bulk of glucose equivalents to l each the observed high glycolytic flux. 802 The high flux through the glycogen degradation pathway and the 803 higher PGM acrivity determined in HeLa cells, compared toAS-300 cells, 804 supported a relevant role fo r this pathway in delivering glucose 805 equivalents for glycolytic flux (Table 2).l n fact, HeLa ce ll s incubated in 806 the absence of glucose were able to produce lacrate (7 nmol · min- I ·mg 807 cellular protein- 1), which corresponded to 22% of the lacrate produced 80 in its presence. In contrast, lactate production in AS-300 cells was 809 completely dependent on available external glucose (10). On the other 810 hand at 25 mM glucose, the pred icted GLUTl rate in HeLa ce lls 811 (11.7 nmol min- I mg cellular protein- I ) can easily cope with the 812 required glucose supply for theglycolytic pathway. which brings about a 813 decreased flux control exerted by both glycogen degradation and GLUT 814 (data not shown). Moreover, it is well documented that glycogen 815 phosphorylase is inhibited by high glucose and G6P levels. with the 816 consequent decrease in glycogenolytic flux (58] . It might be possible 817 that when HeLa ceJls are incubated with 5 mM glucose, the intraceJlular 818 concentrations of these metabolites concomitantly a1 so diminish as a 819 consequence of the low GLlIT activity, thus favoring glycogen 820 phosphorylase acrivation, increasing glycogenolysis and hence acquir- 821 ing higher flux-control 822 Thus, the diffe rent control distribution between AS-30D and HeLa 823 cells was probably related to the environmental prevailing conditions 824 in which ceJls we re grow n. The low glucose concentration encoun- 825 tered by AS-30D cells in the rat intraperitoneal cavity (0.026 mM) 826 favored the expression of a high affinity GLlIT and led to a relatively 827 low glycogen contento whereas the HeLa ceU high-glucose containing 828 culture medium (25 mM) favored the expTession of a low affinity 829 GLlIT and led to high glycogen content. 830 3.4. Kinetic modeling under different steady-states 831 It is worth emphasizing that the control distribution as obtained by 832 modeling can only be applied to the specific steady-state cond ition analyzed, which depended on a particular set of enzyme activities 833 expressed in the ceJl s. Therefore. ir was interesting to test the validity 834 of the model predictions in cells subjected to other environmental 835 conditions. 836 During tumor growth, ceJls localized far from blood vessels are 837 exposed to hypoxia and nutrient starvation. It is well known that 838 under hypoxia the transcription facto r HI F-lcx induces an increase in 839 the transcription of most glycolytic genes resulting in .In over- 840 express ion of the enzymes and transporters of this pathway 841 (reviewed in S]. On the other hand, under low glucose concentration, 842 an increase transcription of HK-ll, PFKB3, GLlITl and GLlIT3 induced 843 by AMP kinase has been observed (59,60] . 844 With the valida ted kinetic models, low availability of external 845 gl ucose (for AS-300) and hypoxia (for HeLa) conditions were 846 examined. To this end, it seemed that only a small se t of data was 847 needed to be experimentally re-evaluated by focusing on the steps 848 with the highest control Although a generali zed increased activity 849 under hypox ia in the glycolytic enzymes has been documented for 850 most tumor cell s (reviewed in 11, a higher increase activity in non- 851 controlling steps does not affect pathway flux rate and flux-control 852 distribution (Section 3.2.8 ..... above). 853 3.4.1. Modeling AS-30D glycolysis under low g/ucase concentrorion 854 Steady-state intermediary concentrations and glycolytic flux 855 determined in AS-30D cells incubated with 1 mM glucose were 856 -50% lower for G6P, F6P, G3P and Pyr, and flux rate, and one order of 857 magnitude lower for FBP and OHAP (Table 3). The AS-300 kinetic 858 model predicted well the values for flux and G6P, FBP, G3P and Pyr 859 concentrations found in the cell s, but for OHAP and G3P the values 800 were 4 times higher and 42 times lower, respectively (Table 3). 861 Essentially the same flux-control distribution was anained under low 862 glucose ( HK ~ HPI>GLlIT), with the glycogen degradation branch 863 gained more control, as expected (Table 5). 864 3.42. Modeling HeLa glycolysis under hypoxic condirions 865 HeLa cell s exposed to hypoxia did not show signifi cant changes in 866 G6P, F6P and ATP steady-state concentrations, whereas a 31% 867 increased glycolytic flux was indeed found compared to cells grown 868 under normoxia (Table 4). Increased enzyme activities under hypoxia 869 for HK and HPI were also determined (37% and 30%, respectively ) 870 whereas a 252% increased protein content for GLlIT was determined 871 by Western-blot analysis (Fig. 2) and then a corresponding increase in 872 transport activity was assumed fo r mode ling. By introducing these 873 new parameters. the kinetic mode l satisfactorily predicted the flux 874 rate and the metabolite concentrations (Table 4 ). In addition, hypoxia 875 did not bring about a change in the control distribution (glycogen 876 degradation >GLlIT> HK), although the difference in the control 877 exerted by glycogen degradation and GLlIT compared to normoxia 878 (31%) was mainly transferred to HK, PFK-1 and the final pathway 879 segment (Table S). 880 The experiment of subjecting HeLa cells to hypoxia and nutrient 881 stalVation and determining fluxes, activities and metabolite concentra- 882 tions is difficult to achieve because oflow cell numberyields. Therefore. 883 the HeLa model was used to predict the pathway behavior under both 884 conditions (hypoxia and 1 mM glucose: data not shown). The results 885 showed a simila r control distribution to that obtained under normoxia 886 and 5 mM glucose (co lumn 5 ofTable 5) although with decreases in flux 887 and metabolite concentrations by 36-86%. compared to hYJX)xia alone 888 (calumn 6 of Table 5). These accurate predictions under a variety of 889 physiological steady-state conditions revealed aga in high robustness of 890 the kinetic models adding further validation. 891 3.5. Enzyme ritrarion Ior the identification 01 the best drug torgets 892 The ki netic mode ls allow the relationship between glycolytic flux 893 and a given enzyme aa ivity to be analyzed (Fig. 3). As long as the 89-1 Please cite this artide as: A Marín-Hernández, et al., Modeling cancer glyco lysis, Biochim Biophys. Acta (2010), doi: 10.1016jj. bbabio.201 0.11.006 nica ó (kDa) _N_H_ 5,00 | Ss E E 150 . o a-tubulin 55 — A 2 100 GLUT-1 Fig. 2. Glucose transporter protein content after hypoxia treatment in HeLa cells. Bar data represent the mean + SD of at least three different preparations. N, normoxia; H, hypoxia. Western-blot analysis was carried out according to reference [19]. models may reproduce the in vivo pathway behavior, they are a valid tool for identifying the drug targets with the highest therapeutic potential in a metabolic pathway. Thus, GLUT, HK, HPI, PFK-1, TPI and PYK activities were varied in the AS-30D hepatoma glycolysis model, or GLUT, HK, HPI, TPI and the glycogen degradation branch inthe HeLa model, to establish how much these potential drug targets should be inhibited for attaining significant decrement in the glycolytic flux and ATP concentration. To decrease the pathway flux (or the ATP concentration; data not shown) by 50%, it was required to inhibit, individually, the main controlling steps HK, HPI or GLUT by 76-78% in AS-30D glycolysis (Fig. 3A), whereas those of HeLa glycolysis GLUT, HK, HP or glycogen degradation required 87-99% inhibition (Fig. 3B). In contrast, to achieve a similar flux diminution, the non-controlling steps PFK-1, PYK or TPI in AS-30D glycolysis needed to be inhibited by 71%, 99,2% and 99.5%, respectively (Fig. 3A). Interestingly, 50% 0 20 40 60 80 100 Fl ux % 0 20 40 60 80 Enzyme activity % 100 Fig. 3. Dependence of tumor glycolytic flux on enzyme activity. The reference 100% enzyme activity values were those corresponding to the respective Vm values for the forward reaction (Tables 1 and $3) whereas 100% fluxes were those predicted by each model (A for AS-30D; B for HeLa cells), which were the fluxes through LDH (29 and 20 nmol min” ' (mg cell protein)”, respectively; Tables 3 and 4). In A, enzymes, transporters and braches were (a) GLUT + HK + HPI; (b) GLUT + HK; (c) HK or HPI; (d)GLUT, (e) PFK-1; (£) PYK and (g)TPL. In B, (a) GLUT+ glycogen degradation; (b) glycogen degradation; (c) GLUT; (d) HK; (e) HPI and (f) TPI. When two or more steps were titrated, identical variation in activity was applied. A decrease of the Vmy value was accompanied by a proportional decrease in the Vm, value. [E cite this article as: A. Marín-Hernández, et al. Modeling cancer glycolysis, Biochim. Biophys. Acta (2010), doi:10.1016/j. bbabio.2010.11.006 inhibition of flux (or ATP concentration) was attained, in AS-30D glycolysis, when GLUT+-HK or GLUT+HK+HPI were decreased 911 simultaneously by the same magnitude, 63% and 47% inhibition, 912 respectively, whereas in HeLa glycolysis, when GLUT+glycogen 91: 910 degradation were decreased simultaneously by 48% (Fig. 3B). 914 4. Concluding remarks 915 The kinetic models for both tumor cells predicted reasonably well 916 fluxes and metabolite concentrations found in living cells, To achieve high robustness, the models were built up with the kinetic properties : of each individual enzyme determined experimentally including (a) the most common ligands (substrates, products and modulators), 92 and (b) the interactions of several other pathway intermediaries with 9 the enzymes (Fig. 1). Also, the great majority of the changes made to 922 improve and refine the models were based on “wet” experimentation. $ This allowed us to identify some mechanisms by which a traditionally considered non-controlling enzyme such as HP! may exert significant control on tumor glycolysis. However, further rounds of model refinement are still necessary to reach more prediction accuracy, especially for F6P and PEP concentrations. Nevertheless, the present models may serve to predict the pathway behavior under other physiological conditions and in other cancer cell lines as long as the most controlling steps are experimentally evaluated, Thus, kinetic modeling is a helpful theoretical-experimental approach to identifying the most promising therapeutic targets. It 93: has been proposed that inhibition of glycolysis in tumor cells can be o: an alternative therapeutic strategy [6,61] and several therapeutic 935 targets have been proposed (GLUT1, HKII, PFKFB3, GAPDH, LDH, and 936 MCT) [37, reviewed in 62-65]. It then results of clinical relevance to 937 experimentally evaluate whether such targets are indeed flux control 938 steps of the tumor cells' pathway. Moreover, it would be desirable that such targets have high flux control in tumor cells, but low control in host, normal cells. In normal cells, HK and PFK-1, together with GLUT, exert the main control on the glycolytic flux [reviewed in 8]. However, due to the different enzyme activity levels, different control distribution was expected, and demonstrated here, between HeLa (glycogen degrada- 945 tion>GLUT>HK) and AS-30D (HK> HPI>GLUT) cells; and between 946 these and normal cells: PFK-1 played a minor role on flux- and 947 metabolite-control in cancer cells, except for the hypoxia condition. 948 The main flux-controlling steps are the targets with the higher 949 potential to diminish the glycolytic flux in the two cancer cells 950 examined. Although the glycogen degradation pathway was a high 951 controlling step in HeLa glycolysis, it could not be an appropriate drug 9: target because glycogen degradation cannot be sustained by pro- 953 longed periods of time. 954 In summary, drug-design studies targeting the most controlling 955 enzymes or transporters in tumor glycolysis might have more 956 promissory results than targeting non-controlling enzymes which 957 usually require more potent and specific inhibitors to accomplish the 958 required full inhibition to achieving effect on function. Another 959 940 941 2 93 944 82 895 896 897 898 89. 900 901 902 903 90' 905 906 907 908 OO. ARTICLE IN PRESS A. Marin.-Ht"f'oondI'Z el aI. I Biochimi a l'I Biophysica Acta 100( (2010) 100(- 100( 11 300 MW ~ N H > K a) o 250 0= -¡¡ '¡;C GLUT-1 55 - ~ O e E 200 C. " • o ~ o 'O 0 -t bu lin 5 - '" 0 LUT-l ig. . lucose sporter r tein ntent fter poxia l ent eLa ls. ar ala resent l e ean ± oral sl r e if rent r paration s. , r oxia; , poxia. eslem-blol a[ysis as rri d ut r rding lO ce 9). odels ay uce e i t ay ehavior, ey re ali l r tif i g e r g ets ith e i hest r eutic tential etabolic t ay. hus. WT, K, PI, K-1. PI d VK ti ities ere ri - t a l co lysis odel, ar Llff, K. PI. PI d e gen gradation r ch t e ...:l odel, t blish uch se otential r g ets uld e i ited r n i g ifi ant cr ent e l colytic d 1l' ncentration. o crease e t ay r e TP centration; ata ot n ) y 0%. t as uired ibit, i i ually, e ain ntro li g s K, PI r llIT y - 8% S- l colysis ig. ), hereas se f eLa l colysis LUT, K, I r l gen radation uired - 9% ibiti n ig. B). ntrast, r ieve ilar i inution, e n-contro li g ps K-l, K r PI S-30 l colysis eded e i ited . . d . %. ectively ig. ). t r stingly. A 100 80 '" 60 • ~ ¡¡: 40 20 O B 100 80 "' 60 • 2 u. 40 20 g~ . ,. (1) ,." O , ,1e . - . - . - . ::: ~ -:;; ;.. .. . ~ . 0 0 0 0 0 , - - . - . ::....-~-.-.-.. .. (d) ~ . ~ · ::--(bl ~ ' ~&I - - (.) .-. .. nzy e ti it f"1g. 1 epeooen HK) d - 0D " I GLlIT) lls; d t een 6 se d r al ls: K-l l ed inor le n l - d -17 etabolite-control cer l s, cept r e poxia ndition, -18 he ain - ntro li g s re e ets ith e i her !)..I9 tential i inish e l colytic e o ce r ls 0 ined lt ugh e gen radation t ay as i h 1 ntrolli g p ela l colysis, t uld ot e propriate r g 52 et ca use en radation not e t i ed y ro- 3 ed ri ds f e. 4 mary , g-design ies ti g e ost ntro li g 5 es r orters or l colysis ight ave ore 6 i sory sults n eti g n-controlling es hich 7 aUy uire ore tent d ecific i itors plísh e 8 uired l i it n i i g ct n cti n. nother 9 Please it is rti le s: arí - ernández, t l., odeling cer l colysis, i chi . iophys. cta 10), i: 1O.1016/j. abi . 10. 1.006 83 960 961 962 963 964 965 966 967 968 960 970 971 972 973 974 Q 4 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 990 1000 1001 1002 1003 10(>l 1005 1000 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 102.1 1025 1026 1027 1028 1029 ARTICLE IN PRESS 12 A Marfn-Hernóndez et al ! Biochimica et Biophysica Acta xxx ( 2010) xxx-xxx strategy would be tha t of a multi- targeted therapy against the mast can trolling steps as previously suggested lef. Fig. 3 ; see also 9 ). From a therapeutic point ofview, the kinetic models are useful for predicting how pathway fluxes and ATP concent ration mayvary when one or more steps are inhibited. The results o f the simu lations ind icated that only the simultaneous inhibition of the controlling steps may have signi fican t impact on glycolyt ic flux and ATP concentrat ion. Qther interve ntio ns such as inhibition of solely one controlli ng step, or wo~e, of non-con trolli ng steps will bring about negligible effects on pathway behavior. For the latte r, their negligible flux-con trol coefficien ts demand the design of highly potent and very specific inhibitors for the tumor steps or their full gene tra nscription or t ranslation blockade. Supplementary mate rials related to this article can be found on line at doi: 1O.1016/j.bbabio.2010.11.006. 5. Uncited reference ~ Acknowledgements This research was supported by CONACyT-México grants No. 80534 and 123636 to RMS and 83084 to ES. and Ins tituto de Ciencia y Tecnologia del Distrito Federal grant No. PICS08-S. AMH was supported by a CONACyT feIlowshi p (No. 59991). References 111 R. Moreno·S.íncllez, S. Rodríguez-Enríquez, A M,;¡ñn -Hernández. E. S,),}vedr,;¡. Energy met.lbolism in tumor cells, FEBSJ. 274 (2007) 1393-1418. 121 R. Moreno-Sáncllez. S. Rodñguez-Enñquez. E. Sa.';¡VedlOl. A M,;¡ñn-Hernández.J.C. Gall,;¡rdo-l'érez. TIle bioenergetics of cancer: is glycolysis the m,;¡in ATP supplierin all tumor cells7 Biofactors 35 (2009) 209-225. 131 e.V. [)ang. j.W. Kim. P. Gdo, j. Yustein. The interpl,;¡y between MYC,;¡nd HJF in cancer. NaL Rev. C,;¡ncer 8 (2008) 51-56. 14J S.J. Yeung.J. Pan, M.H. Lee, Roles of p53. Myc and HJF-l in regulating glycolysis- tlle seventh hólJtm,;¡rk of Cdl'lcer. CelL Mol. üfe Sci. 65 (2008 ) 3981- 3999. 15] A. Mañn- Hernández, j .e. Gallardo-Pérez. SJ. Ralph, S. Rodríguez-Enriquez, R. Moreno-Sáncllez. HIF-lo. modul,;¡tes energy metabolism in c,;¡ncer cells by induong over-expression of spe6flc glycolytic isoforms, Mini Rev. Med. Chem. 9 (2009) 1084-1 10 1. 161 S. Rodriguez-Enríquez. A. M,;¡rfn-Hernández. l e. G,;¡IJardo-Pérez. L C,;¡rrei\o- Fuentes. R. Moreno-Sánchez, Targeting of cancer energy metaboJism, Mol. Nutr. Food Res. 53 (2009) 29-48. P] D. Fell, Underst.lnding the Control ofMetabolism. Portl,;¡nd Press. lOndon, 1997. 18] R. Moreno-Sáncllez. E. $,a,;¡vedra. S. Rodríguez-Enríquez. V. OIín-Sa.ndov,;¡l. Met.lbolic control ,;¡na.lysis: ,;¡ tool for designing str,;¡tegies to m,;¡nipul,;¡U' pathways, J. Biomed. Biotech. 2008 (2008) 597913. 191 R. Mort'no-Sáochez. E. Sa.,;¡vedr,;¡, S. Rodñguez-Enñquez. j.e. Gdll,;¡rdo-Pérez. H. Quez,;¡d,;¡. H.V. Westerholf. Met,;¡bolic control ,;¡n,;¡Jysis indic,;¡tes ,;¡ ch,;¡nge of StlOltegy in the treatment ofcancer. Mitochondrion ~ . 1101 A. M,;¡ñn -Hernández. S. Rodríguez-Enríquez. PA Vit,;¡l-Conzález. F.L Flores- Rodñguez, M. Macias-Silva. M. SOSd-Garrocho, R. Moreno-Sáochez. Detennining ,;¡nd underst,;¡nding tlle cootrol of glycolysis in f,;¡st-growth tumor rells. Flux control by,;¡n over-expressed but strongly product-inhibited Ilexokina.se. FEBSJ. 273 (2006) 1975- 1988. 111 ] j.L Snoep, The silicon cell initi,;¡tive: working tow,;¡rds ,;¡ det,;¡iled kinetic description,;¡ t the cellul,;¡r 1evel. Curro Opin. BiotechnoL 16 (2005 ) 336-343. 1121 jJ. Hornberg. F.j. Bruggema.n, BM. B.akker. H.Y. WesU'rholf. Melilbolic control ';¡rldlysis to identify optima.l drug t,;¡rgets, Prog. Drug Res. 64 (2007) 173-189. 113J E. Sa.avedlOl, R. Encalada. E. Pineda. R.jasso-Chávez. R. Moreno-Sánchez. Glycolysis in Entamoeba hiSlolylica. Biocllemic,;¡1 chólracteriz.ation of rerombirldnt glyrolytic enzymes and Oux control arldlysis, FEBS J. 272 (2005) 1767-1783. 1141 E. v,;¡n Schaftingen. B. Lederer. R. &lItrons, H.G. Hers. A kinetic sludy of pyrophosphate: rructose-6-phosphólte phosphotransferase from pot.lto tubers. Eur. J. Biochem. 129 ( 1982) 191-195. 1151 H.U. Bergmeyer. Methods of Enzym,;¡tic Ana.lysis. Verlag Chemie. Winlleim, 1983. 116] E. Saavedra A. Marín-Hemández, R. Encal,;¡d,;¡. A. OJivos. G. Mendoz,;¡-Hemández. R. Moreno-Sánchez. Kinetic modeling can describe in vivoglycolysis in Enmmoeba his ro/yrica. FEBS J. 274 (2007 ) 4922-4940. 117] P.e. Heinrich. H.P. Morris, G. Weber, Behavior oftransaldolase and tlOlnsketolase ,;¡ctivities in norma.l. neoplastic. dilferenti,;¡ting ,;¡nd regenerdting liver. C,;¡ncer Res. 36 ( 1976) 3189-3197. 118J S. Rodñguez-Enñquez. P. Vit.ll-Gónzalez. F.L Flores-Rodñguez. A Mañn-Hernán- del, L Ruiz~R,;¡mírez. R. Moreno-S.ínchez. Control of cellul,;¡r prolifer,;¡ tion by modulation of oxid,;¡tive phosphoryl,;¡tion in huma.n ,;¡nd rodent f,;¡st-growing 1030 tumor ceUs. Toxico!. Appl. F'h,;¡nn,;¡col. 215 (2006 ) 2(11-217. 1031 119] S. Rodriguez-Enriquez. L C.vreño-Fuentes.1.e. G,;¡II,;¡rdo-l'érez, E. $,a,;¡vedr,;¡. H. 1032 Quez.ada, A. Vega, A Marín-Hemández, V. OIín-Sa.ndoval, M.E. Torres-Márquez, R. 1033 Moreno-Sánchez. Oxid,;¡tive phosphoryl,;¡tion is impaired by prolonged hypoxi,;¡ in 1Q3.t breast but not incervix carcinoma.. lnt.J. Biochem.Cell Biol. 42 (2010) 1744-1751. 1005 120J H.U. Bergmeyer, Methods ofEnzymaticAnalysis. Weinheim, VerlagChemie, 1974. 1036 121] ES. Ból.ginski. P.P. Fol, B. Zólk, Microdetermin,;¡tion of inorg,;¡nic phosph,;¡te. 1037 phospholipids, ,;¡nd total phosphate in biologic ma.teri,;¡!s. Clin. Chem 12 (1967) 1008 326-332. 1039 122] T.P.M. Akerboom, H. Bookelma.n. P.F. Zuurendonk. R. Meer. J.M. T,;¡ger, Intr,;¡ffiÍ- 1().t(1 tochondrial and extlOlmitochondrial concentrations of adenine nucleotides and 1041 inorg,;¡nic phosph,;¡U' in isal,;¡U'd Ilepatocytes from fasted ralS. Eur.j. Biocllem. 84 1M2 (1978) 4 13-420. 1043 123J P. Mendes. CEPAS I: ,;¡ softw,;¡re package for modeling tlle dyna.mics, ste,;¡dy states 1()4.t ,;¡nd control of biochemical ,;¡nd other systems, CompuL Appl. Biosci. 9 (1993) 1().l5 563-57 1. 1046 124] S. Rodñguez-Enríquez. A Marín-Hemández. j.e G,;¡II,;¡rdo~pfrez. R. Moreno- l().t7 Sánchez, Kinetics of tlOlnsport and phosphorylation of glucose in cancer cells, 1().t8 j. Cell. F'hysiol. 221 (2009) 552-559. 1049 125] I.H. Segel, Emyme Kinetics. Wiley, New York. 1975. 1050 126J T. Rapoport. R. Heinrich. G. Jacobasch. S. Rapoport, A mathema.tical model of 1051 glyrolysis ofhuma.n erythrocytes, Eur. j . Biocllem. 42 (1974) 107- 120. 1052 127] F.B. du Preez. R. Con radie, G.P. Penkler, K. Holm, F.Lj. v,;¡n Dooren, J.L Snoep, A 1053 compar,;¡tive ,;¡n,;¡lysis of kinetic models of erythrocyte glycolysis. j . Theor. Biol. 252 1054 (20m) 488-496. 1055 128J B. Teusink. J. Passarge, CA Reijenga, E. Esgalhóldo, e.e. van der Weijden, M. 1056 Schepper, M.e. W,;¡lsh. B.M B.akker. K. v,;¡n [)amo H.V. Westerhoff. j.L Snoep. can 1057 yedst glycolysis be understood in terms of in vitro kinetics of the constituent 1058 enzymes7 Testing biochemistry. Eur.J. Biochem 267 (2000) 5313-5329. 1059 129] B.M. Ból.kker. M.e. W,;¡lsh. B.H. Ter Kuile. He. Mensonides. PAM Michels. F.R. 1060 Opperdoes, H.V. Westerhoff, Contribution of glucose tlOlnsport to the control of 1061 the glyrolytic nux in Trypanosoma bruce~ Proc. N,;¡tl Acad. sa. USA 96 ( 1999) 1062 10098-10103. 1063 130J S. Rodríguez-Enñquez, O. Juárez. JS. Rodríguez-Zólvala, R. Moreno-Sánchez, 1064 MuJtisite control of the Cr,;¡btree effect in asOtes Ilep,;¡tom,;¡ rells. Eur. j. Biocllem. 1005 268 (2001) 2512-2519. l()(i(i 131] R. Wu, Regul,;¡tory mecha.nisms in carbohydr,;¡te metabolism V. Limiting f,;¡ctorsof 1067 glycolysis in Heló!. cells.J. Biol. Chem. 234 (1959) 2806-2810. 1068 132J R. Nakashima., M. p,;¡ggl Lj. Scott, P.L Pedersen, PurifKdtion ,;¡nd crnracteriz,;¡tion 1069 of,;¡ bind,;¡ble ronn ofmitochondri,;¡l bound hexokina.se from tlle highly glycolytic 1070 A$-30D IOlt hepatoma ceO line, Cancer Res. 48 ( 1988) 913-919. 1071 133] O.M P,;¡rry. P.L Pedersen, Intracellul,;¡r localizdtion ,;¡nd properties of particul,;¡te 1072 hexokin,;¡se in the Novikoff,;¡scites tumor.J. BioL Chem. 258 (1983) 10904-10912. 1073 134J K.K. Arora. P.L Pedersen. Functiooal significance of mitochondrial bound 1074 Ilexokinase in tumor cell met,;¡bolism,J, Biol. Chem. 263 ( 1988 ) 17422- 17428. 1075 135] G.E.j. St.l,;¡I, A. Kallf, E.e. Hessbeen, e.W.M. van Veelen, G. Rijksen, Subunit 1076 composition. regul,;¡tory properties ,;¡nd phosphoryl,;¡tion of phosphofructokina.se 1017 from hum,;¡n gliom,;¡s. C,;¡ncer Res. 47 (1987) 5047-5051. 1078 136J Lj. Mandarino, R.L Printz. KA Cusi, P. Kinchington, R.M. O'Ooherty, H. Osawa, e. 1079 Sewell, A. Consall O.K. Cranner, RA Oefronzo. Regul,;¡tion of Ilexokinase lI,;¡nd lOSO glycogen synthase mRNA, protein, ,;¡nd ,;¡ctivity in huma.n muscle, Am. J. Physiol. 1¡J31 2m (1995) E701-E708. 1082 137] S. Kuma.g.ai. R. Nar,;¡saki. K. Hasumi, Glucose~dependent ,;¡ctive AlP depletion by 1083 koningic aod kills high-glycolytic cells, Biochem Biophys. Res. Commun. 365 1084 (20m) 362-368. 1085 138] S. Rodñguez-Enñquez. M.E. Torres-Márquez, R. Mort'no-Sánchez, Substrate 1086 oxidation and AlP supply in AS-300 Ilepatoma. cells, Arch. Biocllem Biophys. 1¡J37 375 (2000) 21-30. 1()38 139J Lj. Reitzer, B.M. Wice, O. Kennell, TIle pentose cycle.j. Biol. Chem. 255 (1980) 1089 5616- 5626. 1090 140] KA Cuma.,;¡, P. McLe,;¡n. The pentose phosph,;¡te pdthw,;¡y ofglucose met,;¡boIism, 1091 Biochem.j. 115 (19m) 1009-1029. 1092 141] j.e Port,;¡is. R. Schuster, M. Merle. P. C,;¡nioni. Met,;¡bolic nux determina.tion in C6 1093 glioma. cells using carbon-13 distribution upon 11-Be] glucose inrubation, Eur. j. 1 ()9.t Biochem. 217 ( 1993) 457-468. 1095 142] e.M. Met.lllo.J.L Walter. G. Steph,;¡nopoulos. Ev,;¡lu,;¡tion of IlC isotopic tr,;¡cers rOl' 1096 met.lbolíc nux analysis in mammalian cells, j. Biotechnol. 144 (2009) 167- 174. 1097 143] j.W. H,;¡ rding. EA PyerilZ. H.P. Morris, H.B. White, Proportiorldl ,;¡ctivities of 1098 glycerol kina.se and glycerol 3-phosphólte dehydrogenase in IOlt hepatomas, 1099 Biochem.j. 148 ( 1975) 545-550. 1100 144] B.W. Agr,;¡norf. AK. H,;¡jr,;¡. The ,;¡cyl dihydroacetone phospha.te pathw,;¡y for 1101 glycerolipid biosynthesis in mouse liver and Ehrlich ascites tumorceJls. Proc. Natl 1102 Acad. So. USA 68 (1971 ) 411 -415. 1103 145] K. Snell. G. Weber. Enzymic imbal,;¡nce in serine met.lbolism in r,;¡t hepatom,;¡s, 1l(J.t Biochem.j. 233 (1986) 617-620. 1105 146] G. P,;¡r,;¡dies, F. C,;¡pu,;¡no. C. P,;¡lombini, T. G,;¡leotti. S. P,;¡pa. Tr,;¡nsport or pyruv,;¡te in 1106 mitochond ria from different tumor cells, Cancer Res. 43 ( 1983) 5068-5071. 1107 147] SJ Ralph, S. Rodriguez-Enriquez. 1. Neuzil. R. Moreno-S.íochez. Bioenergetic IIOB pathways in rumor mitochondrla as targets for cancer thelOlPy and the importance 1109 of thl- ROS-induced ,;¡poptDtic trigger, Mol. Aspects Med. 31 (2010) 29-59. 1110 148] j. ZólJitis, I.T. Oliver. Inhibition of glucose phosphólte isamer,;¡se by met,;¡bolic Illl intermediates of fructose, Biochem. j. 102 ( 1967) 753-759. 1112 149] j.M. Chirgwin, T.F. Pusons. AN. Ernst. Mechólnistic implic.ations of tlle pH 1113 independence of inhibition of phosphoglucose isamer,;¡se by neutral sug,;¡r 1114 phosprntes.j . Biol. Chem. 250 ( 1975) 7277-7279. 1115 Please cite this artide as: A Marín-Hernández. et al., Modeling cance r glyco lysis, Biochim Biophys. Acta (2010), doi: 1O.1016fj. bbabio.2010.11.006 84 1116 111 7 BIS 1119 11 20 11 21 11 22 11 23 Il :u. 11 25 11 26 11 27 11 28 11 29 11 30 11 31 11 32 1133 11 34 11 35 11 36 11 37 113$ 11 39 11 ·10 1141 1168 ARTICLE IN PRESS A. Marin-Hernámez el al. I Biochimica et Biophysica Arra}()Oi (2010) UX-XX)i 13 1501 M.K. Gaitonde, E. Murray, V.J. (unningham, ECreet of 6-phosphogluconate on 1591 H. Yun, M. l ee, S.-S. Kim. J. Ha, Glucose deprivalion ¡ncreases mRNA stability of phosphoglurose isomerase in rat brain in vitro and in vivo, J. Neurochem. 52 vascular endothelial groWlh factor through activation of AMP-activated protein ( 1989) 1348-1352. kinase in OU14S prostate carcinoma,J. BioL Chem. 280 (2005) 9963-9972. 151( F. Heinz, K.O. Kulbe, Glyceraldehyde phosphate dehydrogenase from liver: l. 1"'1 M Natsuizaka, M. Ozasa, S. Dannanin, M. Miyamoto. S. Kondo, S. )(amada, M. Isolation and characterization of lhe bovine liver enzyme, Hoppe Sey[ers. 1.. Shindoh, F. Higashino. W. Suhara, H. Koide, K. Aita, K. Nakagawa. T. Kondo, M. Physiol. Chem 351 (1970) 249-261. Asaka, F. Okada, M. Kobayashi, Synergistic up-regulation of hexokinase-2, glucose 1521 S. Palra. S. Ghosh. S. Bera. A RUj, S. Ray, M. Rdy. Molecular characterization of transporters aOO angiogenic factors in pancreatic caneer cells by glucose tumor associated glyceraldehyde-3-phosphate dehydrogenase, Biochemistry deprivation 0100 hypoxia, Exp. Cell Res. 313 (2007) 3337-3348. (Mose) 74 (2009) 717-727. 161( H. Pelicano, 0.5. Martin, R.H. Xu, P. Huang. Glycolysis inhibition for anticancer 1531 A. Tanaka, B. Chanee, B. QJistorff, A possible role of inorganic phosphate as a treatment, Oncogene 25 (2000) 4633-4646. regulator of oxidative phosphorylation in combined urea synthesis and 1621 P.L Pedersen , S. Mathupala, A Rempel, J.F. Geschwind, Y.H. Ko, MitochoOOrial gluconeogenesis in perfused rat liver, J. Biol. Chem. 264 ( 1989) 10034-10040. bound type 11 hexokinase; a key playerin the growth 0100 survival of many caneers 1541 L Nascimben, J.5. lngwall, B.H. Lorell, 1. Pinz, V. Schultz, K Tomheim, R. Tían, a~ ideal prospect for therapeutic intelVention, Biochim. Biophys. Acta 1555 Mechanism for increased glycolysis in the hypertrophied rat heart, Hypertension (2 ) 14-20. 44 (2004) 662-667. 1631 ML Macheda, S. Rogen, j.0. Best, Molecular and cellular regulation of glucose 1551 B. Teusink, M.e. Walsh, K. van Dam, H.V. Westerhotr, The danger of metabolic transporter (GnIT) proteins in cancer,J. Cell. PhysioL 202 (2005) 654-662. pathways with turbo design, TreOOs Biochem. Sci. 23 ( 1998) 162-169. 1641 S.P. Mathupala, CB. Colen, P. Parajuli, A.E. Sloan, Lactate and malignant tumon: a 1561 Y.K. Kashiwaya. K. Sdlo, N. Tsuchiya, S. Tllomas, DA Fell, R.L Veech, j.V. therapeutic target at the stage of glycolysis, J. Bioenerg. Biomembr. 39 (2007 ) Passonneau, Control of g1ucose utilization in working perfused rat heart, J. Biol. 73-77. Chem 269 (1994) 25502-25514. 1651 A Yalcin. S. Telang, B. dem, j. Chesney. Regulation of glucose metabolism by 6- 1571 R. Moreno-Sánchez. R. Encalada, A. Marin-HernáOOez, E. Saavedra, Experimental phosphofructo-2-kinase/fructose-2, 6-bisphosphatases, Exp. Mol. Pathol. 86 validation of metabolic pathway modeling. An iIIustration with glycolytic (2009) 174-179. segments from fnramoroa histolyrica, FEBS J. 275 (2008 ) 3454-3469. [661 J.E. Wilson, Isozymes of mammalian hexokinase: structure, subcellular localiza- (58J S. Aiston, B. Andersen, L Agius, Glucose 6-phosphate regulates hepatic Hon and metabolic function, j. Exp. Biol. 206 (2003) 2049-2057. glycogenolysi s through inactivation of phosphorylase. Diabetes 52 (2003 ) 1671 " ImamuFa. +. +aRaloa, JI!, Al lale hiRase i s eeR ~ ymes ff:em FOIl. UelRBds ~ MymB I. 1333- 1339. 99 (1 98:11 ) 1§9 lb§. Please cite this artide as: A. Marín-Hernández. et al., Modeling cancer glycolysis, Biochim. Biophys. Acta (2010), doi:10.1016/j. bbabio.201O.11.006 11 42 11 43 11 44 11 45 11 ,1(; 11 47 11 48 1149 11 50 11 51 11 52 11 53 11 5-1 11 55 11 50 11 57 11 58 11 59 11 60 11 61 11 62 11 63 11 64 11 65 ""'" 11 67 85 Supplementary Material Table S1. Model reactions as written in Gepasi Enzyme or branch Reaction GLUT Glu out = Glu in HK Glu in + ATP = G6P + ADP HPI G6P = F6P PFK-1 F6P + ATP = FBP + ADP ALDO FBP = DHAP + G3P TPI DHAP = G3P GAPDH NAD + G3P + Pi = 13BPG + NADH PGK 1,3BPG + ADP = 3PG + ATP PGAM 3PG = 2PG ENO 2PG = PEP PYK PEP + ADP = Pyr + ATP LDH NADH + Pyr = Lac + NAD Glycogen synthesis G6P + ATP -> glycogen + ADP + Pi + Pi Glycogen degradation Glycogen + Pi -> G6P ATPases ATP -> ADP + Pi AK ATP + AMP = ADP + ADP DHases NADH = NAD PPP G6P -> 6PG TK Xy5P + Ery4P -> G3P + F6P MPM Pyr + 13ADP + 13Pi -> 13ATP PPP, pentose phosphate pathway; MPM, mitochondrial pyruvate metabolism; TK, transketolase. The computer program GEPASI used for building the pathway model only accepts entire figures and therefore the oxidative phosphorylation stoichiometry for ATP synthesis from pyruvate oxidation was included as 13 instead of 12.5. Table S2. Summary of the kinetic parameter values used in Gepasi for kinetic models of glycolysis in AS-30D and HeLa tumor cells* Enzyme AS-30D HeLa Enzyme AS-30D HeLa GLUT Km GLU Keq Kmp 0.52 a 1 b 10 b 9.3 a 1 b 10 b PGK Km1,3BPG Km 3PG Km ADP Km ATP α β 0.035 e 0.12 e 0.67 e 0.15 e 1 b 1 b 0.079 e 0.13 e 0.04 e 0.27 e 1 b 1 b HK Km GLU Km ATP Ki G6P KADP Keq 0.18 c 0.99 c 0.02 d 3.5 b 651 f 0.1 e 1.1 e 0.02 d 3.5 b 651 f PGAM Km 3PG Km 2PG 0.18 e 0.04 e 0.19 e 0.12 e HPI Km G6P Km F6P KiEry4P KiFBP Ki6PG 0.9 e 0.07 e 0.0017 g 0.17 g 0.0094 g 0.4 e 0.05 e 0.001 g 0.06 g 0.015 g ENO Km 2PG Km PEP 0.16 e 0.04 e 0.038 e 0.06 e PYK Km PEP Km ADP Km Pyr Km ATP Keq KaF16BP KiATP 0.4 e 0.3 e 10 j 0.86 j 195172 k 4 x 10 -4 s 2.5 s 0.014 e 0.4 e 10 j 0.86 j 195172 k 4 x 10 -4 s 2.5 s PFK-I Km F6P Km ATP Ki ATP Ki CIT 4.6 h 0.048 h 1.75 h 3.9 h 1.0 h 0.021 h 20 h 6.8 h 86 *The Vm values were those from Table S3. Km, Ka and Ki in mM. a taken from [24]. b arbitrary value c taken from [10] d taken from [66] e Present study f recalculated from the ΔGº´ = - 16.7 KJ mol -1 . g adjusted in the interval described in Table 2. h Moreno-Sánchez, Marín-Hernández, Encalada & Saavedra, unpublished results. i recalculated from the ΔGº´ = - 14.2 KJ mol -1 . j taken from [15] k recalculated from the ΔGº´ = - 31.4 KJ mol -1 . m adjusted in the interval described in Table 2. n adjusted p values reported for AS-30D in Table 1. q value used for 1 mM glucose condition r values used for hypoxia condition s taken from K. Imamura, T. Tanaka, Pyruvate kinase isoenzymes from rat, Methods Enzymol. 90 (1982) 150–165. Table S3. Enzyme activity re-calculation per mg of total cellular protein Ka F26BP β α L Keq KADP KF16BP 1.8 x10 -4 h 2.35 h 4.47 h 13 h 247 i 5 b 5 b 8.4 x10 -4 h 0.98 h 0.32 h 4.1 h 247 i 5 b 5 b L 1 b 1 b LDH Km Pyr Km Lac Km NADH Km NAD α β 0.13 e 4.7 e 0.002 e 0.07 e 1 b 1 b 0.3 e 4.7 p 0.002 p 0.07 e, p 1 b 1 b Glycogen degradation v= 1.2x10 -3 m 6x10 -3 m Glycogen synthesis v= 2.2x10 -3 m 1 x 10 -3 q 1.1x10 -3 m ATPases k= 4.2x10 -3 n 0.003 n 0.0045 r ALDO Km F16BP Km G3P Km DHAP 0.01 e 0.16 e 0.08 e 0.009 e 0.16 p 0.08 p AK k1= k2= 1 n 2.26 n 1 n 2.26 n DHases k1= k2= 250 n 1 n 250 n 1 n TPI Km DHAP Km G3P 1.9 e 0.41 e 1.6 e 0.51 e GAPDH Km G3P Km 1,3BPG Km NAD+ Km NADH Km Pi 0.29 e 0.02 e 0.08 e 0.004 e 11 e 0.19 e 0.022 e 0.09 e 0.01 e 29 e PPP v= 9.5x10 -5 m 9.5 x 10 -5 m MPM v= 5 x 10 -4 m 1 x 10 -4 m TK v= 9.5x10 -5 n 9.5x 10 -5 n 87 Values from a [10]; b Present study (Table 1); c activity in the absence of activators at pH 7.5 (Moreno- Sánchez, Marín-Hernández, Encalada & Saavedra, unpublished results) and d [24]. e By determining the Vm value in the indicated direction in the total cellular extract (fourth column), the Vm value in the other Enzyme activity U (mg cytosolic protein) -1 U (mg total cellular protein) -1 Vm value used in the model AS-30D HK Vmf 0.46 a 0.35 ± 0.17 (3) 0.35 HPI Vmf Vmr 4.9 b 3.4 b NM 0. 98 ± 0. 46 (3) 1.42 e 0.98 PFK-1 Vmf 0.273 c NM 0.066 f ALDO Vmf Vmr 0.23 a 0.18 b 0.056 (1) NM 0.056 0.044 e TPI Vmf Vmr 5.6 b 56 a NM 13.9 (1) 1.39 e 13.9 GAPDH Vmf Vmr 1 a 0.9 a NM 0.34 (1) 0.38 e 0.34 PGK Vmf Vmr 27 a 4.3 b NM NM 10.8 g 1.72 g PGAM Vmf Vmr 20 a 1.3 b NM NM 8 g 0.52 g ENO Vmf Vmr 0.51 a 0.74 b 0.29 (1) NM 0.29 0.42 e PYK Vmf 6.6 a 4.2 (2) 4.2 LDH Vmf Vmr 13.4 b 1.8 b 2.0 (2) NM 2.0 0.27 e HeLa HK Vmf 0.06 d 0.04 ± 0.01 (3) 0.04 HPI Vmf Vmr 1.2 b 2.8 b NM 0.9 ± 0.1 (3) 0.4 e 0.9 PFK-1 Vmf 0.078 c NM 0.031 f ALDO Vmf Vmr 0.2 a NM 0.08 ± 0.02 (3) NM 0.08 0.063 i TPI Vmf Vmr 5 b 42 a NM NM 3.4 h 28 h GAPDH Vmf Vmr 2 a 2.5 a 0.58 NM 0.58 0.72 e PGK Vmf Vmr 13 a 3.8 b NM NM 8.7 h 2.5 h PGAM Vmf Vmr 1.4 a 0.53 b NM NM 0.94 h 0.36 h ENO Vmf Vmr 0.36 a 0.4 b 0.34 ± 0.07 (3) NM 0.34 0.38 e PYK Vmf 3 a 1.9 ± 0.4 (3) 1.9 LDH Vmf Vmr 11.4 b NM 3.4 ± 0.5 (3) NM 3.4 0.54 i 88 direction (fifth column) was calculated from the Vmf/Vmr ratio determined in the cytosolic protein (first column). f The PFK-1 Vm was estimated from the ratio Vm cytosolic protein/Vm in total protein of the Vmf of ALDO. g The activities were estimated from the average ratio Vm cytosolic/ Vm total protein of the GAPDH and ENO in AS-30D cells and h ALDO and ENO for HeLa cells. i . These activities were based on the ratio Vmf/Vmr of ALDO and LDH in the cytosolic fraction of AS-30D. For the pathway modeling under hypoxia the Vm values used for GLUT, HK and HPI were 0.043, 0.055 and 0.52/1.17 U* mg of cellular protein, respectively. Table S4. Fixed metabolite concentrations used in Gepasi for glycolysis kinetic models Values (in mM) were taken from a [10], b Table 2 , c Tables 3 and 4, d For modeling, free Pi was used instead of total Pi: 53% of the total Pi concentration determined in AS-30D (Table 3) and HeLa cells (Table 4) was considered as free Pi; e [39] and f adjusted. Figure S1. Simulation of PFK-1 activity in the presence and absence of modulators The values for simulation were taken from Table 3, Table S2 and Table S3. Simulation of the PFK-1 equation (see section 2.6 rate equations) was performed in the OriginPro 7.5 software with the following concentration values: 5.6 mM ATP + 1.7 mM citrate (+ inhibitors); 6 µM F26BP (+ activator). Metabolites AS-30D HeLa Gluout 5 5 Lac 27 a 33 a Glycogen 26 b 135 b 6PG 0.35 b 0.39 b Citrate 1.7 a 1.7 a F26BP 0.006 c 0.0043 c Pi 2.5 d 4 d Ery4P 1 b 0.016 e Xy5P 0.54 f 0.016 e 0 20 40 60 80 100 0.00 0.03 0.06 0.09 0.12 V F6P (mM) + activator (+ modulators) No modulators + Inhibitors 89 Table S5. Effect of some metabolites on the activity of HPI, ALDO, ENO and GAPDH Metabolite Concentration (mM) HPI a ALDO b ENO c GAPDH d Remaining activity (%) AMP 5 100 90 * * ATP 5 + MgCl2 5mM 101 103 87 53 PPi 5 + MgCl2 5mM 87 73 * * Pi 5 + MgCl2 5mM 98 96 * * G6P 5 * 98 * * F6P 5 * 103 * * FBP 5 35 * * * F26BP 0.006 e 86 96 * * 6PG 0.093 56 * * * Ery4P 0.055 16 84 * * Citrate 2 101 * * * DHAP 2.2 93 * * * 3 * * 85 * G1P 1 f 74 * * * L-lactate 25 95 * * * Inhibitions were assayed in 50 mM Mops pH 7 at 37 o C. a F6P concentration was 1.5 mM. b FBP concentration was 0.2 mM. c 2PG concentration was 1 mM. d G3P and NAD + concentrations were 1.5 mM and 1 mM, respectively. e physiological concentration. f 12 times the physiological concentration. * not measured. Table S6. Inhibition of HPI from different biological sources Cell type Ki (μM) FBP 6PG Ery4P Forward reaction AS-30D NM 12 (2) 2.5 ± 0.8 (3) HeLa NM 17.6 1± 0.07 (3) hepatocytes NM NM 0.9 Reverse reaction AS-30D 170 ± 110 (3) 6.8 ± 1.5 (3) 0.86 ± 0.3 (3) HeLa 60 15.5 ± 4 (3) 0.79 hepatocytes 210 ± 190 (3) 8 1.2 yeast * NM 47 6.7 Entamoeba histolytica** NM 15 5.9 The values represent the mean ± SD with the number of different preparations assayed in parentheses; the absence of parenthesis indicates one preparation assayed. NM, not measured. * commercial enzyme; ** recombinant purified enzyme [13]. Ki values were determined by nonlinear regression analysis of the experimental data, according to the competitive inhibition equation, by using the computer program Microcal Origin 5.0. 90 Figure S2. Hexose phosphate isomerase (HPI) inhibition by Ery4P The concentration of Ery4P were 0 (■), 13.8 (●) and 28 (▲) μM. The inset shows a re-plot of the slopes obtained from a Dixon plot ([inhibitor] against 1/v at different substrate concentrations). The linear fitting, which intersects the origin, indicates that Ery4P is an HPI competitive inhibitor [25]. Figure S3. GAPDH affinity by Pi GAPDH activity in AS-30D cytosolic extracts was determined in 50 mM Mops pH 7 at 37 o C and in the presence of 1 mM NAD + , 2.9 mM G3P and 5 mM cysteine. The experimental points were fitted to a Michaelis-Menten equation by using the software Microcal Origin v 5. 0 2 4 6 8 10 0 1000 2000 3000 H P I a ct iv it y (n m o l/m in *m g ) F6P (mM) 0 5 10 15 20 0.0 0.2 0.4 0.6 sl o p e 1/[F6P] H P I a ct iv it y (n m o l/m in *m g ) sl o p e 0 20 40 60 80 100 0 500 1000 1500 Vm 1800 ± 105 Km 10 ± 2G A P D H a ct iv it y (n m o l/m in *m g ) Pi (mM) 91 Table S7. Robustness for Pi concentration values in the AS-30D glycolysis kinetic model Pi (mM) Metabolite (mM) 2.5* 1.3 2 2.8 Glu in 3.4 3.5 3.4 3.3 G6P 6.5 7.3 6.6 6.4 F6P 0.03 0.02 0.02 0.02 FBP 5.2 35 9.7 3.8 DHAP 14 39 19.4 11.8 G3P 0.3 0.8 0.41 0.25 1,3BPG 0.01 0.008 0.01 0.01 Pyr 0.84 0.82 0.83 0.84 ATP 7.9 7.2 7.8 8 ADP 2.1 2.4 2.2 2.1 AMP 1.3 1.7 1.4 1.3 NADH 0.005 0.005 0.005 0.005 NAD + 1.34 1.34 1.34 1.34 glycolytic flux 29 26 29 29 Flux control coefficients GLUT 0.2 0.11 0.18 0.2 HK 0.44 0.27 0.4 0.45 HPI 0.4 0.25 0.37 0.41 PFK-1 0.02 0.01 0.02 0.02 GAPDH 0.05 0.33 0.1 0.04 *Pi concentration used in the main model. 92 Table S8. Elasticity coefficients for substrates (S), products (P) and modulators (M) εEi S εEi P εEi M AS-30D HeLa AS-30D HeLa AS-30D HeLa GLUT Glu out 2.2 0.8 Glu in -2.1 -0.18 HK Glu in ATP 0.95 0.17 0.85 0.18 G6P ADP -0.94 -0.06 -0.82 -0.07 HPI G6P 1.0 1.4 F6P -0.04 -0.42 FBP 6PG Ery4P -0.05 -0.06 -0.89 -0.05 -0.55 -0.34 PFK-1 F6P ATP 0.65 0.71 0.66 0.04 FBP ADP -0.004 -0.003 -4 x 10 -5 -3 x 10 -5 F26BP CIT 0.001 -1 x 10 -5 0.003 -1.8 x 10 -8 ALDO FBP 1.4 2.1 DHAP G3P -1.4 -1.2 -2.1 -1.6 TPI DHAP 75 177 G3P -75 -177 GAPDH G3P NAD + Pi 0.70 0.29 1.1 0.74 0.1 0.99 13BPG NADH -0.23 -0.26 -0.03 -0.06 PGK 13BPG ADP 5.7 5.7 3.0 2.3 3PG ATP -4.8 -5.6 -2.0 -2.3 PGAM 3PG 8.9 1.3 2PG -8.4 -0.38 ENO 2PG 1.5 1.0 PEP -0.75 -0.06 PYK PEP ADP 0.99 0.16 0.98 0.16 Pyr ATP -8 x 10 -5 -9 x 10 -5 -4 x 10 -5 -9 x 10 -5 FBP 2 x 10 -12 LDH Pyr NADH 7.1 7.1 19.6 19.6 Lac NAD + -7.0 -7.0 -19.5 -19.5 ATPases ATP 1 1 DHases NADH 2690 13447 NAD + -2689 -13446 93 Table S9. Concentration control coefficients Model AS-30D HeLa G6P F6P PEP ATP NADH G6P F6P PEP ATP NADH GLUT 0.25 0.12 0.24 0.18 * 0.5 0.57 0.47 0.3 * HK 0.54 0.26 0.52 0.39 * 0.11 0.12 0.1 0.06 * HPI -0.48 0.24 0.48 0.36 * -0.66 0.07 0.06 0.04 * PFK-1 -0.03 -1.5 0.03 0.02 * -0.42 -1.4 0.04 0.02 * ALDO -0.02 * 0.02 0.01 * -0.02 * * * * GAPDH -0.06 -0.01 0.06 0.04 * -0.08 0.01 0.01 * * ENO * * 0.01 * * * * * * * PYK * * -1 * * * * -1 * * Glycogen degradation 0.07 -0.01 0.07 0.08 * 0.7 0.82 0.74 0.69 * ATPases -0.15 1.0 -0.35 -1.1 * 0.02 0.03 -0.26 -1.0 * PPP * * -0.01 * * -0.01 -0.01 -0.01 -0.01 * Glycogen synthesis -0.13 0.08 -0.15 -0.22 * -0.13 -0.15 -0.15 -0.17 * MPM 0.03 -0.2 0.07 0.21 * * * 0.01 0.05 * TK * * 0.01 0.01 * * 0.01 0.02 0.02 * * The values were lower than 0.01. The respective TPI, PGK, PGAM, LDH, AK and DHases elasticity coefficients were lower than 0.01 and hence they were not included in the table. 94 ----- Original Message ----- From: "BBA - Bioenergetics (ELS)" To: ; Sent: Tuesday, September 21, 2010 5:20 PM Subject: BBABIO-10-99: Decision Manuscript No.: BBABIO-10-99 Title: Modeling cancer glycolysis Article Type: Special Issue: Bioenergetics of Cancer BBA Section: BBA - BBA - Bioenergetics Corresponding Author: Dr. Rafael Moreno-Sanchez All Authors: Alvaro Marín-Hernández, Ph. D.; Juan C Gallardo-Pérez, Ph. D.; Sara Rodríguez-Enríquez, Ph. D.; Rusely Encalada, B.S.; Rafael Moreno-Sanchez; Emma Saavedra, Ph. D. Submit Date: Jun 04, 2010 Dear Dr. Moreno-Sanchez: On behalf of the Executive Editors of Biochimica et Biophysica Acta, I would like to thank you for submitting the above-named article to BBA - Bioenergetics. I am pleased to inform you that your paper may become acceptable for publication. The reviewers, whose comments are enclosed below, indicate that the manuscript is a valuable contribution to the field and recommend publication after modifications. However, before returning your revised paper, you should answer the points raised by the reviewers. We look forward to receiving your prompt response. Thank you, and we look forward to receiving your revised manuscript. Yours sincerely, Rodrigue Rossignol, PHD (Guest Editor) BBA - Bioenergetics Please see below Reviewer(s') comments: Reviewer #1: Cancer glycolysis is a subject of interest as a better knowledge of altered cancer metabolism could help to identify new drug targets. The work presented in this paper is a continuation of the previous work and propose possible therapeutic targets to inhibit tumour energy metabolism. The paper is suitable for publication in BBA provided that the authors take into account the following points: - The HeLa cells are cultured at 25 mM and experiments are performed at 5 mM glucose. The authors discuss that the high flux of glycogen degradation observed in these cells can be influenced by this fact. The authors not discuss if the high control coefficients observed for glycogen degradation in HeLa cells could be influenced also by this change in glucose concentration. A discussion on how the change of glucose concentration can result in the high control coefficients observed for glycogen need to be included. - The authors use an equation "random bi-substrate Michaelis-Menten" to describe the kientics of pyruvate kinase (PK). It has been well described that PK is an allosteric enzyme and that in tumors an specific isoform is overexpressed. The regulation of this enzyme by dimer-tetramer formation has also been reported in several papers (see: Robust metabolic adaptation underlying tumor progression. Vizán P., Mazurek S., Cascante M. Metabolomics (2008) 4:1-12. and also Mazurek S. Ernst Schering Found Symp Proc. 2007;(4):99-124.). Inclusion of this regulatory mechanism in the kinetic equation or a justification of why this mechanism of regulation has not been taken into account is necessary. - Page 15: the authors comment that: "The low PPP flux and intermediary concentrations compared to 95 glycolytic flux and metabolites suggested low activity of the PPP indicating that tumor cells were not in proliferative stage". The authors compute the PPP from changes in 6PG which can result in an underestimation of the flux. It should be discussed the error associated with this method as well as why tracers as 14C or 13C labelled glucose has not been used to verify that this flux is so low. - Page 18: The authors say that: "ALDO activity was not modulated by any of these metabolites. Although GAPDH was inhibited by ATP (with non-competitive inhibition, Ki = 4.3 mM) and ENO was inhibited by DHAP and ATP (non-competitive inhibition, Ki = 31 mM, and uncompetitive inhibition, Ki = 14 mM, respectively), these Ki values were far from the physiological concentrations, and their effects were not included in the rate-equations. However, GAPDH from AS-30D cells has low affinity for Pi (Km =10 mM) (Fig. S3) and the Pi concentration in the cells is 0.6 mM [23], suggesting low GAPDH activity. By decreasing the GAPDH activity to 15% of the Vmf and Vmr values showed in Table S3, because Pi was not included in the rate equation, accumulation of FBP was promoted reaching a near-physiological value of 11.4 mM (Table 3)". It should be justified why Pi is not included in the rate equation of GAPDH if the concentrations are available. Page 24: The authors say that : "Increased enzyme activities under hypoxia for HK and HPI were also determined (37% and 30%, respectively) whereas a 225% increased protein content for GLUT was determined by western-blot analysis and then a corresponding increase in transport activity was assumed for modeling (data not shown)". Western-blot must be included in the paper instead of mention as data not shown. - Figure 1: The positive and negative metabolite regulatory loops considered in the kinetic equations must be included in the figure. - Pyruvate dehidrogenase reaction has not been included in the model. A justification for this fact need to be provided. - HPI is a reversible enzyme described in general as in rapid equilibrium and Vmf and Vmf and Vmr arround 200 times higher than Vmf of HK have been described in muscle (Puigjaner J, et al. M. FEBS Lett. 1997 Nov 24;418(1-2):47-52.). Vmf and Vmr are difficult to determine due to the reversibility of enzyme and the high rates in both directions of this reaction. It is sourprising that here Vmr are the same order of magnitude for both enzymes in AS-30D. In HeLa the differences are more notorious. It will be interesting to verify in the model how much dependent is the control coefficient of HPI on the magnitudes of Vmf and Vmr for HPI (i.e. increase in an order of magnitude both Vmf and Vmi for HPI and see how much this fact affect the control coefficient). Reviewer #2: Review BBABIO-10-99 The authors submitted an important paper dealing with the application of metabolic control theory on glycolysis of tumor cells. They measured in two tumor cells enzyme kinetics and steady state concentrations as well as fluxes of all relevant glycolytic enzymes put these data into a computer model calculated flux control and concentration control steps. This is a large and interesting work. Authors were able to detect the most limiting steps which could be used as targets for cancer therapy, also the approach to detect the extent of single enzyme inhibition which could the reduce glycolytic ATP formation by 50 %. They compared these new data with data from non tumor cells obtained from others using not such an elegant but laborious approach. I agree with the paper. However, I have a little problems with the concept of the paper. It would be more interesting to compare tumor data with data obtained with the same method from non tumor cells. Moreover we know, that in tumors also the interaction between mitochondria and glycolysis is impaired. The tumor metabolism is also characterized by impaired mitochondria. Limitation on the glycolysis only, is therefore a limitation of possibilities. I know that is a large bigger task but the problem is known since more than 40 years ago. (The reviewer was to that time involved in the task to bring together the glycolytic and mitochondrial pathway of reticulocytes). Therefore I think it should at least discussed in the present paper, why the authors concentrated on the glycolysis only and only on two tumor cell lines. 96 Rodrigue Rossignol, Ph. D. November 1, 2010 BBA-Bioenergetics Guest Editor Dear Dr. Rossignol, Thank you for your letter of September 21, 2010 regarding the submission of the manuscript (No. BBABIO-10-99) entitled “Modeling cancer glycolysis”. We were encouraged to resubmit a revised paper, in which the observations made by the two reviewers should be answered. Therefore, several modifications were made throughout the manuscript most of which required further experimentation and in silico modeling. We would like to also thank the reviewers, particularly reviewer 1, for their insightful observations and suggestions, which have enabled us to strengthen the paper on several points (enzyme kinetics, pathway modeling, and paper focus). The new experimental data, included in the revised manuscript, added further support to our findings and conclusions. The changes made to the manuscript were indicated in bold letter. A point-by-point response to the observations raised by the reviewers is shown below. Trusting that the manuscript will now be acceptable for publication in BBA-Bioenergetics special issue on Bioenergetics of Cancer, we remain. Sincerely yours, Emma Saavedra, Ph.D. Rafael Moreno-Sánchez, Ph. D. Corresponding authors Response to Reviewer 1 1. Discussion on how the change in glucose concentration may affect the contribution of glycogen degradation to the control of glycolysis was included, as suggested, on p. 25 2 nd paragraph. 2. Full PYK kinetic description. The PYK rate equation was changed to that of a cooperative enzyme regarding [PEP], [F1,6BP] and [ATP] (the Monod et al. equation for exclusive binding; p. 14). However, as expected from saturation with allosteric activator (KA(F1,6BP) presence of a relatively high concentration of an allosteric inhibitor (Ki(ATP) = 2.5 mM in Table S2; [ATP] = 7.9 mM in Table 3), no changes on PYK flux control, and on flux control distribution and metabolite concentrations were attained. Under maximal activation (e.g., all enzyme molecules are in the active tetrameric conformation), an enzyme with sigmoidal kinetics shifts to hyperbolic behavior and therefore a simplified Michaelis-Menten equation can be used. However, for the sake of accuracy, the more complex Monod equation for PYK (instead of the previous Michaelis-Menten equation) was included in the pathway models, as suggested by the reviewer. 3. Pentose Phosphate Pathway flux. In agreement with the reviewer’s observation, we have re-written the section describing and discussing the results of the PPP flux (p. 17, 1 st paragraph). In there, we have (i) recognized the possibility of underestimating the PPP flux when evaluated from changes in the 6PG concentration and (ii) discussed an improvement in the PPP flux determination by using radio-labelled glucose, as suggested. Moreover, the robustness of the pathway models was tested for variation in the PPP flux to 10-20 times the original value (and assuming that our values were underestimated). However, no significant changes on fluxes or control coefficients were attained, and only a 20-40% decrease in FBP and DHAP concentrations was observed. These observations were concisely summarized on p. 24, 2 nd paragraph. Thus, it seems that under the conditions used in the present study, the PPP flux is indeed low. 4. Inclusion of Pi in the GAPDH rate equation. The GAPDH rate-equation was modified to a rapid equilibrium ordered Ter-Bi reversible Michaelis-Menten equation (p. 13) now including Pi. The inclusion of this metabolite prompted an experimental re- evaluation of the GAPDH affinity for Pi (KmPi) and the determination of the total Pi intracellular content under the conditions of the present study; the description of the method used for determination of Pi was now added on p. 8. These new data confirmed the high GAPDH KmPi (Table 1), described in the previous version of the manuscript, and showed a high total Pi level, even in the presence of glucose in both cancer cell lines (p. 20, 3 th paragraph; Tables 3 and 4). For pathway modeling, free Pi was used which 97 was stated in the same paragraph and in the legends of Tables 3 and 4. The effect of varying the Pi concentration on the GAPDH control coefficient and FBP concentration was modeled and the results were included in Table S7 in supplementary material and discussed on section 4.4 of the main text. 5. GLUT content under hypoxia. As suggested, the Western-blot analysis for the glucose transporter under normoxic and hypoxic HeLa cells was included in the revised paper as Figure 2 and mentioned on p. 27, 1 st paragraph. 6. Figure 1 was modified, as suggested, including the positive and negative metabolite regulatory loops and new substrates in the modified rate-equations. 7. PDH was not included in the model. The rate-reaction for this step was not specifically defined in the model. However, this enzyme was implicitly included as part of mitochondrial pyruvate oxidation, which was experimentally evaluated as the steady-state rate of O2 consumption. A statement in this regard was added on p. 9, last four lines. 8. HPI Vmf and Vmr values. HPI certainly catalyzes a near-equilibrium reaction under physiological conditions but its kinetic parameters are not difficult to determine using the appropriate conditions. In our assays we made sure to be under initial velocity conditions by using an excess of the coupling system (i.e., G6PDH for the reverse reaction; recombinant PFK from Entamoeba histolytica forward reaction) and making rate-limiting the HPI activity by adjusting the amount of cellular extract. Regarding the magnitude of the HPI Vmf and Vmr, and HK Vm, values in AS-30D cells: In muscle cells and in general in non-tumor cells, indeed very high HPI Vmf (or Vmr)/HK Vm ratios are commonly found. This activity ratio is still high in tumor cells, but lower than that found in non-tumor cells, as a consequence of the enhanced over-expression of all glycolytic enzymes, particularly HK, in tumor cells [see 10, 32, 40]. On the other hand, similar HPI Vmf and Vmr values (Table 1, AS-30D) have been also documented in other biological systems (see 40, 50, Blood Cells Mol. Dis. 1998, 24: 54-61). To address the reviewer concern regarding HPI Vm values, the AS-30D model was subjected to variations in this enzyme activity. Increasing HPI activity from 0.5 to 10 times (i.e., simultaneously increasing both Vmf and Vmr) brought about a proportional decrease in the HPI flux control coefficient and increase in flux and the FBP and DHAP levels (see the Table S10 included in this letter but not in the paper). These data indicated that the model was not so robust when varying HPI, suggesting that HPI high activity has to be tightly modulated. However, this observation had already been noted in the previous version of the manuscript (section 4.8). Table S10. Model Robustness regarding HPI Vm values. Variation Fold 1X 0.5X 2X 10X Vmf 1.42 0.71 2.84 14.2 Vmr 0.98 0.49 1.96 9.8 Metabolite Glu in 3.4 3.8 3 2.7 G6P 6.5 9 4.9 4 F6P 0.03 0.02 0.03 0.03 FBP 5.2 1.3 26 374 DHAP 14 7.3 30 109 G3P 0.3 0.16 0.6 2.3 1,3BPG 0.01 0.005 0.03 0.15 Pyr 0.84 0.86 0.86 0.89 ATP 7.9 6 9.7 10.8 ADP 2.1 2.6 1.3 4.2 AMP 1.3 2.6 3.8 0.04 glycolytic flux 29 21.5 36.7 41.7 Flux control coefficients 98 GLUT 0.2 0.16 0.15 0.02 HK 0.44 0.51 0.25 0.03 HPI 0.4 0.49 0.22 0.02 Glycogen degradation 0.05 0.07 0.02 -0.02 PFK-1 0.02 0.02 0.02 0.003 ATPases -0.1 -0.15 -0.18 0.88 Response to Reviewer 2 - “It would be more interesting to compare tumor data with data obtained with the same method from non- tumor cells”. We have now extended the comparison of the present results (cf. Table 5) with data from glycolysis in non-tumor cells, in which MCA was applied (p. 21, last 3 lines of 2 nd paragraph; p. 14, 2 nd paragraph from bottom; p. 22, lines 6-9; p. 22, last 4 lines of 2 nd paragraph; p. 28, 3 th paragraph). The main conclusion drawn from this analysis was that HPI was a more specific target for AS-30D cancer cells than GLUT or HK. - “…in tumors the interaction between mitochondria and glycolysis is impaired. The tumor metabolism is also characterized by impaired mitochondria”. The second part of the Warburg hypothesis, that mitochondria in cancer cells are impaired (Science 1956, 123: 309-314), is by no means an established and universal fact, and is still a matter of controversy. Undoubtedly, the mitochondrial function is damaged or diminished in many tumors, whereas in some others it is well-documented that the mitochondrial function is not impaired and actually may surpass the activity found in non-tumor cells (see references 1, 2, 47 for reviews). Therefore, impaired mitochondria do not represent a generalized finding within the different cancers. Indeed, in recent studies with different cancer cell models, oxidative phosphorylation is active and may predominate for ATP supply (Toxicol Appl Pharmacol 2006, 215:208; Amino Acids 2008, 35:681; J Cell Physiol 2008, 216:189; BBA-Bioenergetics 2009, 1787: 1433-1443; Int J Biochem Cell Biol 2010, 42:1744; J Bioenerg Biomembr 2010 42:55 ). Regarding the impaired interaction between mitochondria and glycolysis, the reviewer is probably referring to the lower pyruvate dehydrogenase complex (PDH) activity found in some tumor cells and to its inactivation by a hypoxia-upregulated pyruvate dehydrogenase kinase (PDK) (see reference 5 for review). However, the proposal that PDH inactivation by PDK is the mechanism by which mitochondria become impaired in cancer cells incorrectly assumes that pyruvate is the main oxidizable substrate in cancer cells and that PDH is the rate-limiting step of the Krebs cycle and oxidative phosphorylation. Moreover, full PDH inactivation has not been observed. On the other hand, the aspartate/malate shuttle, which is also involved in the interaction between mitochondria and glycolysis, is similar in some cancer cells (Ehrlich hepatoma) with respect to normal cells (hepatocytes) (Biochem J 1995, 310: 665-671); decreased activity of this shuttle in cancer cells has not been described. - “why the authors concentrated on the glycolysis only”. One of the most prominent metabolic alterations in cancer cells, in comparison with normal cells, is the enhanced glycolytic capacity (see references 1 and 2 for reviews). In fact, glycolysis in many cancer cells is the main ATP supplier, surpassing and/or replacing oxidative phosphorylation. Therefore, it is highly relevant, from the mechanistic and clinical standpoints, to fully understand how this pathway is controlled in cancer cells to thus facilitating the identification of the most controlling enzymes (and transporters) which, as pointed out by the reviewer, could be used as targets for cancer therapy. This was originally stated on p. 3, lines 1-6; p. 4, 2 nd and 4 th paragraphs; p. 6, 1 st paragraph; p. 28, 2 nd paragraph. Extension of the glycolytic model to include Krebs cycle and oxidative phosphorylation in an oxidative-type tumor cell can be a natural next step in modeling energy tumor metabolism. - “why the authors concentrated…only on two tumor cell lines” We decided to initiate the MCA of cancer glycolysis with the experimental AS30D hepatoma and the human cervix HeLa carcinoma because these cancer cell lines provide relatively high biomass yields for experimentation. It could have been any other cancer cell line with fast growth characteristics. One further development of the present study is that the validated cancer glycolysis kinetics models may now serve as platforms on which glycolysis from other cancer cells can be analyzed and predictions be made, as far as sufficient data from the respective tumors (i.e., relative enzyme contents; fluxes; metabolite concentrations) can be provided and poured into the models. Statements on this last regard were included in the main text on p. 26 3 rd paragraph; p. 28 2 nd paragraph. 99 5.2.1 Comentarios manuscrito No. 3 En este trabajo se construyeron los modelos cinéticos de la glucólisis de las líneas tumorales AS-30D y HeLa, a partir de los parámetros cinéticos de cada enzima y transportador en el programa Gepasi. Ambos modelos se validaron al lograr predecir el flujo glucolítico y las concentraciones de metabolitos en diferentes condiciones, que se determinaron experimentalmente. De esta manera, se identificaron a los principales sitios de control en la glucólisis de AS-30D (la HK, la HPI y el GLUT) y HeLa (degradación de glucógeno, el GLUT y la HK). En consecuencia, todos estos sitos de control deben inhibirse simultáneamente para reducir drásticamente el flujo glucolítico y la concentración de ATP en células cancerosas. Los modelos desarrollados en este trabajo lograron también predecir con gran precisión tanto los flujos y las concentraciones de metabolitos bajo hipoxia e hipoglucemia y nos permitieron comprender la importancia que pueden tener tanto la HPI en el control del flujo glucolítico, como la GAPDH en el control de la concentración de la F1,6BP. A partir de estos resultados concluimos que nuestros modelos son robustos pues predijeron con precisión los flujos y las concentraciones de metabolitos en diversas condiciones experimentales y que el GLUT, la HK y la HPI pueden ser considerados como posibles blancos terapéuticos para inhibir la glucólisis tumoral. 100 5.3 Inhibición de la hexocinasa Una vez que habíamos establecido cuales eran los principales sitios de control en la glucólisis tumoral (manuscritos 2 y 3), el siguiente paso fue determinar si la inhibición de alguno de estos sitios reducía significativamente el flujo glucolítico en células tumorales. En el siguiente trabajo (Manuscrito No. 4), se determinó el efecto que tiene la inhibición de la HK sobre el flujo de la glucólisis. Para inhibirla se empleo un nuevo fármaco antineoplásico la Casiopeína II-gly (CasII-gly) que pertenece a una familia de compuestos de coordinación con cobre. A continuación se muestra la primera versión del manuscrito en preparación con estos resultados. 101 Casiopeina II-gly and BromoPyruvate inhibition of tumor hexokinase Alvaro Marín-Hernández1, Juan Carlos Gallardo-Pérez1, Sayra Yoselin López-Ramírez1, Jorge Donato García-García1, Lena Ruiz-Ramírez2, Isabel Gracia-Mora2, Alejandro Zentella-Dehesa3, Rafael Moreno-Sánchez1 and Sara Rodríguez-Enríquez1*. 1 Departamento de Bioquímica, Instituto Nacional de Cardiología, MEXICO. 2 Departamento de Química Inorgánica y Nuclear, Facultad de Química, UNAM. 3Departamento de Bioquímica INNSZ y Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM. Running Title: Casiopeina II-gly inhibits tumor hexokinase *Author for correspondence: Sara Rodriguez-Enríquez, PhD Instituto Nacional de Cardiología Departamento de Bioquímica Juan Badiano No. 1, Col. Sección XVI Tlalpan, México D.F. 14080 MEXICO Phone: 5552-55732911 ext. 1422 Fax: 5552-55730926 E-mail: saren960104@hotmail.com Abbreviations: ALDO, Aldolase; 3BrPyr, 3-bromopyruvate; CasII-gly, Casiopeina II-gly; F6P, fructose-6-phosphate; F1,6BP, fructose-1,6-bisphosphate; F2,6BP, fructose-2,6- bisphosphate; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GK, glucokinase; G6P, glucose-6-phosphate; -GPDH, -glycerophosphate dehydrogenase; HK, hexokinase; HPI, hexosephosphate isomerase; OxPhos, oxidative phosphorylation; PFK-1, phosphofructokinase type 1; PGK, phosphoglycerate cinase ; PYK, pyruvate kinase; TPI, triosephosphate isomerase; TriP, trioses phosphate. Key Words: Cisplatin; fast-growing tumor cells; glycolysis; hexokinase; 3- bromopyruvate. 102 Abstract The copper-based drug Casiopeina II-gly (CasII-gly) shows potent anti-neoplastic effect on several human and rodent fast-growth tumors. At the metabolic level, CasII-gly affects the cellular ATP level and energy mitochondrial metabolism. In order to elucidate whether CasII-gly also affects tumor glycolysis, the effect of CasII-gly was assayed on flux through the complete glycolytic pathway and through the initial glycolytic segment as well as on the activities of glycolytic enzymes of AS-30D hepatocarcinoma cells. CasII-gly was 13-91 times more potent than 3-BromoPyruvate (3BrPyr), HK inhibitor, decreasing tumor cells proliferation, whereas no tumor cells were insensitive to CasII-gly. In tumor cells incubated with 100 µM CasII-gly for 30-60 min, lactate production was stimulated by 2- (glucose medium) and 14- (glucose-free medium) fold. However, glycogen breakdown also increased by 2.8 (glucose medium) and 2-fold (glucose-free medium), suggesting that CasII-gly induced increase in lactate production derived from glycogenolysis. Moreover, in CasII-gly treated cells soluble HK activity and the flux through the first segment of glycolysis (HK-TPI) were significantly inhibited (58- and 41-60 %, respectively), whereas PFK-1, GAPDH, PGK, PYK activities and the flux through the HPI-TPI segment were not affected. In extracts from non-treated cells, 10 M CasII-gly inhibited both soluble and mitochondrial-bound HK activity, and flux though the HK-TPI segment by 50 %; whereas flux through the HPI-TPI segment was not affected. Furthermore, CasII-gly was a 1.3-21 times more potent inhibitor of tumor HK than 3BrPyr, whereas, cisplatin did not affect HK maximal rate. These data suggested that CasII-gly is a HK inhibitor and may be considered as an alternative chemotherapeutic drug for glycolytic tumors. 103 Introduction For ATP supply, fast-growing tumor cells depend on glycolysis (human oligodendroglioma, meningioma and medulloblastoma; rat Novikoff hepatoma), OxPhos (human colon sarcoma, breast cancer melanoma, breast, lung, ovarian, cervix and uterus carcinomas; rat hepatomas (Reuber H-35, Morris, AS-30D) or both pathways (human glioblastoma multiforme; rat astrocytoma C6; rat hepatomas (Ehrlich lettré, Walker-256, Morris 3683 and Dunings LC18; mouse (ascites, sarcoma 27) (reviewed in Moreno-Sanchez et al., 2007; 2009). In human carcinomas and lymphomas with severe mitochondrial defects (i.e., decreased content and activity in respiratory chain complexes), and in tumors subjected to prolonged hypoxia, high resistance to chemo- and radiotherapy is usually encountered (Carew and Huang, 2002; Simonnet et al., 2002; Xu et al., 2005; Pelicano et al., 2006). In these tumors, the glycolysis rate is exacerbated, suggesting that tumor resistance might be associated with the accelerated glycolysis, a metabolic characteristic related to the development of invasive, metastatic and aggressive phenotypes (Brizel et al., 2001; Simonnet et al., 2002; Robey et al., 2005). Thus, inhibition of glycolysis has been suggested as an alternative target to diminish tumor progression in circumstances where traditional therapy is not effective (Pedersen et al., 2002; Pelicano et al., 2006; Gatenby and Gillies, 2007). Pedersen et al.,(2002) proposed HK as target for cancer treatment by considering that this enzyme regulates the G6P levels that feed synthesis of ribose 5-phosphate and glycogen synthesis and inhibits apoptosis in malignant cells. Accordingly, several groups have tried to manipulate tumor growth by using anti-neoplastic drugs that presumably inhibits HK. For example, lonidamine (5-75 μM) inhibits the HK activity by 17-85 % in rat Ehrlich ascites (Floridi et al., 1981), although doses 6-30 times higher are required to diminish human and rodent fibrosarcomas growth (IC50 = 155-467 μM) (reviewed in Rodríguez-Enríquez et al., 2009), thus suggesting that inhibition of HK activity is not relevant for the sarcoma development. The strong inhibition of HK by the alkylating agent 3-bromopyruvate (3BrPyr, 5 mM), also reduced the growth and viability in AS-30D hepatocarcinoma through ATP cellular depletion (Ko et al., 2001). 104 Moreover, both lonidamine and 3BrPyr are non-specific as they also affect the activity of other enzymes (PGK, GAPDH, pyruvate decarboxylase, isocitrate lyase and vacuolar H+-ATPase) and metabolic pathways (acetylcholine synthesis) (Arendt et al., 1990; Dell’ Antone, 2006; Pereira da Silva et al., 2009); and their toxicity profiles have not been evaluated in non-tumorigenic cells. In the case of the lonidamine has been reported numerous side effects in humans (Robustelli della Cuna and Pedrazzoli, 1991). Although the use of these drugs has shown inconveniences, the basic idea of considering HK as the principal target in anticancer therapy is supported by the observation that this enzyme is one of the steps controlling tumor glycolysis in human and rodent models (Marín-Hernández et al., 2006; 2010). In the search for new anti-neoplastic drugs with high selectivity for specific enzymes in tumor cells but with null effect in the host cells, the copper-based drugs Casiopeinas® have shown strong anti-tumor activity in several human carcinoma lines (HeLa, SiHa, CaSki, C33-A, CH1, ovarian) and rodent tumors (leukaemia L1210, glioma C6) (De Vizcaya-Ruiz et al., 2000; Marín-Hernández et al., 2003; Trejo-Solís et al., 2005; Rodríguez-Enríquez et al., 2006) and, encouragingly, a moderate toxic effect on lymphocytes (Rodríguez-Enríquez et al., 2006) and heart (Hernandez-Esquivel et al., 2006). Similarly to cisplatin, carmustine, mitomycin c, melphalan, cyclophosphamide and dacarbazine (reviewed in Lawley and Phillips, 1996), casiopeinas interfere with DNA replication through the formation of DNA-adducts. However, at the doses used to block DNA replication (0.4 nM- 30 μM), casiopeina II-gly (CasII-gly) also severely affects tumor OxPhos (< 10 μM) through inhibition of mitochondrial 2 oxoglutarate-, pyruvate- and succinate-dependent dehydrogenases (Marín-Hernández et al., 2003; Hernández- Esquivel et al., 2006). In isolated human and rodent carcinomas and perfused-heart (Rodríguez-Enríquez et al., 2006; Hernández-Esquivel et al., 2006) CasII-gly also diminished the glycolytic flux. Therefore, the aim of this work was to determine the effect of CasII-gly on tumor glycolysis and HK activity. The results indicated that CasII- gly may indeed be considered as a promising multi-site metabolic drug that also targets the bioenergetics of glycolytic-dependent tumors. Materials and methods 105 Chemicals HK, G6P dehydrogenase, HPI, ALDO, GPDH, TPI, lactate dehydrogenase, G6P, F6P and F1,6BP were purchased from Roche Co. (Mannheim, Germany). Glucose, G3P, MgCl2, ATP, NADH, NAD+, NADP, 3BrPyr and amyloglucosidase were from Sigma Chemical (St Louis, MO, USA). Recombinant HK from Entamoeba histolytica was kindly provided by Dr. E. Saavedra, Instituto Nacional de Cardiología, México. Casiopeina II- gly (aqua (4-7 dimethyl-1, 10-phenanthroline) (glycine) copper (II) nitrate) was synthesized as previously described (Kachadourian et al., 2010) and dissolved in distilled water. Isolation of tumor and no tumor cells Human tumor cells (HeLa, PC-3, MDA-MB-231, TD47, HTC15, SK-LU, U87MG, glioma C6 and MCF-7) were grown in Dulbecco-MEM medium supplemented with 5% fetal serum and 10,000 U/ ml streptomycin/ penicillin at 37°C in 95% air/ 5% CO2. After 90% confluence, cells were removed from each culture flask by adding 0.25% trypsin/ 1mM EDTA and washed once by centrifugation with Krebs Ringer buffer (125 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1.4 mM CaCl2, 1 mM KH2PO4, 25 mM HEPES, pH 7.4). AS-30D hepatocarcinoma cells (4 X 108 cells/ml) were propagated in female 200-250 g Wistar rats by intraperitoneal inoculation. AS-30D cells were isolated by centrifugation as previously described (López-Gómez et al., 1993). Human platelets were isolated from healthy donor blood. The platelet rich-plasma was separated by differential centrifugation at 200 g for 20 min. Platelets were washed twice with Krebs-Ringer medium and centrifuged at 1800 g for 10 min. Afterwards, cellular pellet was re-suspended in Krebs Ringer medium at a final concentration of 15-20 mg/ml (Vasta et al., 1987). Lymphocytes were isolated from donor volunteers as described elsewhere (Rodríguez-Enríquez et al., 2006). Primary human endothelial cells (HUVECs) were isolated from umbilical cords according to Jaffe et al (1973). Cellular protein was determined by biuret assay using bovine serum albumin (BSA) as standard (Gornall, et al., 1949). Viability assessed by the trypan blue 106 exclusion assay. revealed less than 10-15% cellular death under all experimental conditions for tumor cells and normal cells . Cell growth in cells exposed to CasII-gly and 3BrPyr Cell growth inhibition was determined by the crystal violet method (Gallardo- Pérez et al., 2009).Briefly, cells (tumor and normal cells) were seeded at 2 x 105 cells/well in 96 and 24-well plates (for 24 and 72 hrs respectively), left for 24 h prior to the treatment with drugs. After, cells were exposed for 24 and 72 hrs to different concentrations (0.1-100 µM) of CasII-gly and 3BrPyr. Isolation of rat hepatocarcinoma mitochondria AS-30D mitochondria were isolated by differential centrifugation with digitonin (15 μg/ mg cellular protein; ICN, Ohio, USA) as previously described by López-Gómez et al (1993). Determination of glycolytic fluxes and metabolite concentrations Tumor cells (15 mg protein/ml) were incubated in Krebs-Ringer buffer under orbital shaking (150 rpm) at 37°C with or without 100 μM CasioII-gly. After 1 min pre- incubation, 5 mM glucose (+GLU) was added. One ml of cellular sample was taken immediately (time 0), and the rest was further incubated for 10, 20, 30 and 60 min. Each sample was mixed with perchloric acid (3%, v/v final concentration) and centrifuged at 1800 g by 1 min. The supernatant was neutralized with 3 M KOH/ 0.1 M Tris and centrifuged once to eliminate potassium salts. Supernatants were kept on ice for determination of G6P, F6P, F1,6BP, Trioses phosphate (TriP), ATP and L-lactate concentrations by using standard enzymatic methods (Bergmeyer, 1974). In parallel, cellular samples (1 ml) were taken after 30 and 60 min incubation, and frozen in liquid nitrogen and kept at -70 °C for determination of HK and PFK-1 activities, and fluxes from HK to TPI (first section of glycolytic pathway). For glycogen determination, the cellular samples withdrawn after 30 and 60 min incubation were centrifuged at 20800 g for 20 s. The pellet was frozen in liquid nitrogen and kept at -70 °C until its use. The thawed cellular pellet was re-suspended in 30% KOH and heated for 30 min at 90°C. Afterwards, the sample was mixed with 6% 107 Na2SO4 and 100% ethanol and centrifuged at 20800 g for 5 min. Pellet was washed once with 1 ml of 80% ethanol and incubated at room temperature. Finally, the dried sample was re-suspended in 0.2 M acetate buffer, pH 4.8, plus 5 U amyloglucosidase and incubated for 1 h at 37°C (Hue et al., 1975). Glucose units derived from glycogen breakdown were determined by enzymatic analysis (Bergmeyer, 1974). Enzyme activities and initial glycolytic segment fluxes For determination of HK and PFK-1 activities, and fluxes from HK to TPI (first section of glycolytic pathway), aliquots of 1 ml (15 mg protein) were taken from cells incubated with CasII-gly at 30 and 60 min and centrifuged at 20800 g for 20 s. Cellular extracts were obtained from pellets re-suspended in 0.3 ml 25 mM Tris/HCl buffer plus 1 mM EDTA, 5 mM DTT and 1 mM PMSF (Marín-Hernández et al., 2006) and frozen in liquid nitrogen. Afterwards, three cycles of freezing/thawing at 37°C were carried out to obtain cellular lysates, which were centrifuged at 39000 g for 20 min at 4°C. Collected supernatants were stored in 10% (v/v) glycerol at -20°C until determination of enzyme activities and fluxes in KME buffer (100 mM KCl, 50 mM Mops and 1 mM EGTA) pH 7.0, at 37°C (Marín-Hernández et al., 2006). For HK activity determinations in liver, brain and heart rat tissues, the organs were homogenized in 2 mL of SHE buffer (250 mM sucrose, 10 mM Hepes, 1 mM EGTA, pH 7.3) plus 1 mM EDTA, 0.5 mM DTT and 1 mM PMSF. Homogenates were centrifuged at 39 000 g for 20 min and 4 °C. Afterwards, the supernatant was collected for determination of enzyme activity. The assays for both cytosolic and mitochondrial HK were carried out in 1 mL of KME (120 mM KCl, 20 mM Mops, EGTA 0.5 mM, pH 7) or KM (100 mM KCl, 50 mM Mops, pH 7) buffer plus 10 mM ATP, 15 mM MgCl2, 1 mM NADP, 1 U/ml G6PDH and cellular extract (0.03 - 0.1mg). The reaction was started by adding 3 mM glucose. PFK- 1 activity was determined in KME buffer plus 2 mM ATP, 5 mM MgCl2, 5 µM F2,6BP, 0.15 mM NADH, 0.36 U aldolase/ml, 9 U triosephosphate isomerase/ml, 3 U α-GPDH/ml and cellular extract (0.03 – 0.1 mg protein). The reaction was started with 2 mM F6P. GAPDH, PGK and PYK activities were determined according to Saavedra et al. (2004). 108 The flux through the first section of the glycolytic-pathway, i.e., from HK to TPI was determined by the method described by Torres et al.,(1988), modified as follows: The cellular extract (0.016- 0.5 mg protein) was pre-incubated for 5 min in KME buffer plus 10 mM ATP, 15 mM MgCl2, 5 µM F2,6BP, 0.15 mM NADH and 6 U α- GPDH /ml; the reaction started by adding 3 mM glucose. To determine flux through the HPI-TPI segment, the reaction started by adding 10 mM G6P; for flux through the PFK-1-TPI segment, the reaction started by adding 5 mM F6P; and for flux through the ALDO-TPI segment, the reaction was started with 1 mM F1,6BP. In all assays, control experiments were undertaken to assess linearity of fluxes with respect to protein used. When the specific substrate was omitted, the flux rate was negligible. Also, coupling enzymes were insensitive to CasII-gly at the range of concentration used. Statistical analysis Student´s t-test for non-paired samples was used considering P < 0.05 as criterion of significance. Results Effects of CasII-gly and 3BrPir on the proliferation of normal and cancer cells Due to that in preliminary essays were observed that CasII-gly inhibited HK activity in extracts of tumor cells, we decided to compare the effects of CasII-gly with 3- Bromo pyruvate (3BrPyr, aparently HK inhibitor) on the proliferation of several no-tumor and tumor cells lines. Both drugs decrease cells proliferation, in spite of presenting distinct effectiveness (Table1). It can be observed that CasII-gly was 13-91 times more potent than 3BrPyr decreasing tumor cells proliferation in 24 and 72 hrs. In contrast, normal cells (lymphocytes and endothelial cells) tested were relatively resistant to CasII- gly and 3BrPyr in comparison with tumor cells (Table1). Similar IC50 values of both drugs have been reported in other tumor and normal cells (Xu et al., 2005; Rodriguez- Enríquez, et al., 2006; Cao et al., 2008). These results are relevant because CasII-gly showed specificity by tumor cells over normal cells. Effect of CasII-gly on tumor glycolytic flux and high energy-metabolites content 109 Treatment of tumor cells with CasII-gly and 3BrPyr induced a dramatic decrease in intracellular levels of gluthation (GSH) in function of protein concentration (data no shown). In consequence, we decided to determine optimal cellular protein concentration in which it was not observed modifications in the levels of GSH and this concentration was 15 mg /mL. Titration of tumor glycolytic flux with CasII-gly (range 1-100 M) (data not shown) revealed that 100 M was an adequate concentration to induce changes in the glycolytic flux and glycolytic enzyme activities, without cellular viability alterations. Therefore, the effect of 100 M CasII-gly on the glycolytic flux was assayed in AS-30D carcinoma cells incubated in glucose-free medium (-GLU) or glucose-medium (+GLU) for 10-60 min (Fig. 1A). The incubation for 60 min without exogenous glucose did not change the lactate (Fig. 1A) and glycogen contents (Table 2), indicating depressed glycolysis and glycogenolysis rates. In the presence of CasII-gly for 60 min, the endogenous lactate increased 3.6-fold (Fig. 1A), suggesting drug activation of tumor glycolysis. In the presence of glucose, an increase of 13.7-times in lactate production was observed, in agreement with a previous report (Marín-Hernández et al., 2006), and the addition of CasII-gly did not modify significantly the production of lactate (Fig. 1A). Thereby, a significant increase in the glycolytic flux (12.2- and 1.9-fold) was attained in both –GLU and +GLU media between 30 and 60 min (Fig. 1B), indicating an active glycogen breakdown induced by the anti-neoplastic drug. To add support to the last hypothesis, the content of glycogen was determined. As expected, the drug significantly decreased (2-2.8times) the glycogen content (Table 2; Fig. 1C), which correlated well with the enhanced production of lactate (Fig. 1B) in cells stimulated by exogenous glucose, i.e., when glycolysis is active; this correlation was less clear in cells incubated with no glucose. Casiopeina II-gly did not modify the steady-state concentration of some glycolytic intermediates such as G6P, F6P, F1,6BP and TriP in glucose-incubated cells (Table 2), except for ATP, that was severely reduced by 60 % after 60 min incubation. In the absence of added glucose, the concentration of the glycolytic intermediates was below the limit of detection. However, although glycolysis was operating at a low rate, a high ATP level was still detected, which most likely derived from OxPhos; under these 110 conditions, CasII-gly also induced a significant diminution in the ATP content (78 %), indicating an inhibition of OxPhos as previously described (Marín-Hernández et al., 2003) (Table 2). Effect of CasII-gly on the HK and PFK-1 activities and HK-TPI flux in drug-pretreated carcinoma cells The observation that G6P levels were not modified by Cas-IIgly suggested (i) that the G6P pool was maintained by an activated glycogen breakdown (Table 2; Fig. 1C) or (ii) that HK was not a target for CasII-gly. Therefore, the activity of the soluble HK fraction (cytosolic enzyme) was determined in extracts of AS-30D tumor cells exposed for 60 min to 100 M CasII-gly. Independently of the presence of glucose, CasII-gly drastically reduced the HK activity by 40-60%; in contrast, the PFK-1 activity (as control enzyme) was not affected by the drug (Fig. 2A). To further examine whether CasII-gly affects other enzymes of tumor glycolysis, the effect of the drug was assayed in both upper- and lower pathway segments (Fig. 2B). The flux of the first segment was assayed by feeding HK, HPI, PFK-1 or ALDO with its specific substrate (Fig. 2B) and measuring the -GP produced under each experimental condition. CasII-gly inhibited the HK-TPI flux by 58%. On the contrary, the drug was ineffective on (i) the HPI-TPI (by adding G6P), PFK1-TPI (with F6P), and ALDO-TPI (with F1,6BP) fluxes, and (ii) the GAPDH, PGK and PYK activities (data no shown) . These observations clearly indicated that HK was the principal and exclusive CasII-gly target of tumor glycolysis. Effect of CasII-gly on the HK activity and HK-TPI flux in non-drug treated tumor cells To assess whether CasII-gly directly interacts with HK, mitochondrial and soluble HK fractions were prepared from non-drug treated AS-30D hepatoma. . To evaluate the effect of CasII-gly on the HK activity, the kinetics assays were performed in free- EGTA medium (Table 2). HK derived from different tumor sources was highly sensitive to CasII-gly or 3BrPyr, as well as HK derived from non-neoplastic tissues (Table 2). In the presence of EGTA, CasII-gly also promoted a significant inhibition of both soluble- and mitochondrial-HK AS-30D fractions at slightly higher concentrations (IC50 = 8 ± 3 111 M; n=3; and 10 ± 2 M; n=4; respectively) after 5 min incubation; in turn, 3BrPyr IC50 values for soluble-HK activity was similar in absent or in presence of EGTA (28 ± 8 (4) and 28 ± 10 (4) M respectively). Flux through the HK-TPI segment in non previously-treated cells was 48% inhibited by CasII-gly (10 μM), whereas flux through the HPI-TPI was unaffected (Fig. 3B), indicating that HK is a specific and direct CasII-gly target. In order to evaluate whether other metal-based anti-neoplastic drugs, or the ion copper, have similar effect on HK activity as CasII-gly, cellular extracts were incubated for 5 min with 100 M cisplatin (Fig. 3C,a) or 10-20 M CuCl2 (Fig 3C,b,c). Non- significant diminution in HK activity was attained with cisplatin, at same doses used to inhibit rabbit muscle Aldo (85%) and GAPDH (45%) (Aull, et al., 1979). Copper is the metal involved in the coordination of the dimethyl-phenantroline rings in CasII-gly. In human erythrocytes, copper (15-100 M) reacts with thiol-groups of several glycolytic enzymes promoting activity inhibition (Boulard et al., 1972). However, only at 20 µM Cu2+ HK activity was partially inhibited (Fig. 3C,c). The activities of HK and other glycolytic enzymes (PFK, GAPDH, PGK and PYK) were also evaluated in extracs of cells incubated 60 min in the presence of 100 M 3BrPyr or CuCl2. However, none of the drugs, or ion, tested significantly modified the activity of these enzymes and lactate production (data not shown).Only 3BrPyr reduced GAPDH activity 25% (data not shown). Discussion Metabolic drugs have recently emerged as a suitable alternative therapeutic approach against malignant chemo- and radiotherapy-resistant tumors (Rodriguez- Enriquez et al., 2009). The action mechanism of the copper-based drug Casiopeina II- gly is to disturb DNA stabilization in HeLa, SiHa, Caski and C33-A tumors (Mejía and Ruiz, 2008; reviewed in Rodríguez-Enríquez et al., 2009) and to promote apoptosis in a process mediated by reactive oxygen species (Trejo-Solís et al., 2005; Mejía and Ruiz, 2008;). Moreover, CasII-gly affects mitochondrial ATP synthesis in rat AS-30D hepatocarcinoma, a highly OxPhos-dependent tumor (Rodríguez-Enríquez et al., 2006) 112 by interacting with the reactive thiol groups of Krebs cycle (pyruvate, 2-OG, succinate) dehydrogenases (Marín-Hernández et al., 2003; Hernández-Esquivel et al., 2006). Glycogen breakdown-induced by CasII-gly is responsible of the increment in tumor glycolysis After prolonged incubation with CasII-gly, lactate production significantly increased suggesting glycolysis activation. A similar pattern was observed in normal (mouse fibroblast 3T3-L1 adipocytes, L6 rat skeletal myoblasts) and HepG2 tumor cells after treatment with the anti-hyperglycemic drugs biguanides (buformin, phenformin), nefazodone (antidepressant) or the alkaloid berberine (Dykens et al., 2008a, 2008b; Yin et al., 2008). It was suggested that biguanides-, nefazodone- and berberine-glycolysis activation was the result of mitochondrial dysfunction (Dykens et al., 2008a, 2008b; Yin et al., 2008). However, glycogen degradation increased significantly in the presence of CasII-gly (cf., Fig 1C), thus indicating that the increase in lactate production (cf., Fig 1B) was the result of the drug-activated glycogen-breakdown. Although, the mechanism involved in the CasII-gly-activated glycogenolysis was not analyzed here, in rat isolated hepatocytes was demonstrated that non-steroidal anti-inflammatory drugs (Ibuprofen, indomethacin, meclofenamate) may promote glycogen degradation by interfering with the intracellular Ca2+ homeostasis (Brass and Garrity, 1985) and probably increasing glycogen phosphorylase A activity. The glycogen breakdown after 60 min incubation with CasII-gly was 16 (-GLU) and 72 (+GLU) nmol/mg protein (cf. Table 1), which should theoretically generate 32 and 144 nmol lactate/mg protein, respectively. These predicted values matched the lactate production (cf. Fig. 1A, B) of 61 (-GLU) and 86 (+GLU) nmol/mg protein. Mitochondrial and soluble-hexokinase are targets of CasII-gly The majority of fast-growth tumor cells over-express HK-II, which is 30-50% located in the cytosol (Ko et al., 2001; Marín-Hernández et al., 2006) and the rest bound to the external mitochondrial membrane (Pastorino and Hoek, 2003) in a close vicinity to the adenine nucleotide translocator and VDAC (Pastorino and Hoek, 2003). Its 113 mitochondrial location is considered as a metabolic strategy of cancer cells to channel mitochondrial ATP for glycolysis (Pastorino and Hoek, 2003) and to inhibit apoptosis by blocking cytochrome c release (Pedersen et al., 2002; Pastorino and Hoek, 2003). Furthermore, HK is one of the main controlling steps of tumor glycolysis (Marín- Hernández et al., 2006; 2010). These characteristics make this enzyme an attractive target for anti-neoplastic therapy. 3BrPyr has shown potent inhibitory effect on the cellular proliferation of leukemia HL-60 cancer and AS-30D hepatocarcinoma (IC50≈ 10- 50 μM) and Hep 3B and SNU449 hepatocarcinomas (50-200 M) (Ko et al., 2004; Xu et al., 2005; Kim et. al., 2008). In VX-2 epidermoid rabbit and rat AS-30D tumors, 3BrPyr bolus of 1-25 ml of 0.5-2 mM significantly reduced the tumor progression in vivo (Geschwind et al., 2002; Ko et al., 2004). Although it has been claimed that 3BrPyr effect on tumor proliferation (including tumor progression, tumor toxicity) was the result of HK inhibition, it seems that other sites are involved as HK inhibition is attained at very high 3BrPyr concentration (2- 10 mM) (Ko et al., 2001). In addition, several groups have described non-specific effects of 3BrPyr. For example, in HepG2 cells, 150 μM 3BrPyr does not affect HK activity but severely decreases (90 and 70 %) GAPDH and PGK activities (Pereira da Silva et al., 2009). Similar specific inhibition on GAPDH activity is reported in other human (Hep3B and SK-Hep1) and rabbit (Vx-2) hepatocellular carcinoma cell lines exposed to concentrations of 10 to 200 µM (Ganapathy-Kanniappan et al., 2009). In our study with 100 µM 3BrPyr only was observed 25% in the reduction of GAPDH activity (data no shown). These differences in results can be attributed to time of exposition (0.5-2 hr) and DTT concentration used in each case (0.5-5 mM). At 3BrPyr doses assayed to arrest tumor progression, pyruvate decarboxylase, isocitrate lyase, H+ vacuolar ATPase, and acetylcholine synthesis are also affected (Arendt et al., 1990; Dell’ Antone, 2006). Several highly malignant tumors such as human melanoma, lymphoma, head and neck, breast, liver and colorectal cancers are apparently dependent on the glycolysis pathway to survive (Okada, et al, 1992; ;Lapela, et al, 1995; Abdel-Nabi, et al, 1998; Schwimmer, et al, 2000; Czernin and Phelps, 2002). In this context, the search for a potent, specific and permeable anti-glycolytic drug appears as a novel and promising 114 task. Encouragingly, CasII-gly inhibited both soluble (AS-30D, HeLa, MCF-7, MDA-MB- 231, SK-LU, PC-3) and mitochondrial (AS-30D) HK isoforms (cf. Fig. 2A, 3A; Table 2). However, CasII-gly potency was reduced 2 times in presence of EGTA, probably because the copper is sequestrated by this agent. Therefore, tricarboxylic acid cycle intermediates as citrate and malate (physiological chelators) may reduce potency of CasII-gly in vivo. The HK inhibition by Cas-IIgly was highly specific as other glycolytic enzymes were not affected. However, HKI, HKII and GK of normal rat tissues and human platelets were also inhibited (Table 2). But when normal and tumor cells were exposed to CasII-gly, this drug was more potent in reduced cellular proliferation on tumor cells than normal cells (see Table 1) This selective effect is not achieved by lonidamine, clotrimazol or 3BrPyr (Floridi et al., 1981; Penso et al., 2002; Pereira da Silva et al., 2009). The apparent higher selectively of CasII-gly towards tumor cells over normal cells seems related to its physico-chemical nature of lipophilic cation, which facilitates its entrance to tumor cells and mitochondria that maintain higher transmembrane electrical gradients (negative inside) across the plasma and inner mitochondrial membranes, in comparison with normal cells and mitochondria (Moreno-Sánchez et al., 2007; 2009; Rodríguez-Enríquez et al., 2009). CasII-gly inhibits HK at lower doses than 3BrPyr and cisplatin CasII-gly (IC50= 4-10 M) resulted to be a more potent HK inhibitor than 3BrPyr (IC50=28 M), cisplatin (cf, Fig 3B) and others anticancer drugs (clotrimazol or lonidamine) strongly suggesting that CasII-gly may be considered as a potent metabolic anti-cancer drug affecting energy metabolism. It is reported that 3BrPyr have the ability to interact with sulfhydryl groups (Ganapathy-Kanniappan et al., 2009). These groups apparently are critical for structural stability and catalytic activity of hexokinase isoforms (Hutny and Wilson, 1990; Tiedge et al., 2000) as consequence are higher susceptibility to several alquilant agents such as 3BrPyr (Connolly and Trayer, 1978; Fiorani et al., 2000; Tiedge et al., 2000). However in this study was not analyzed the mechanism of CasII-gly inhibition of HK, this inhibition can be atribute to cysteine interaction how has been establish for inhibition of mitochondrial 2 oxoglutarate-, pyruvate- and succinate- 115 dependent dehydrogenases (Marín-Hernández et al., 2003; Hernández-Esquivel et al., 2006). However, we demonstrated that CasII-gly inhibits HK activity, it was observed a negligible effect on glycolysis. The results suggest that CasII-gly enhances glucose metabolism by stimulation of glycogen degradation, which is related to a mechanism to compensate the HK inhibition and lower ATP. The level of glycogen is function of the both its production and its breakdown, which are mediated by the enzymes glycogen synthase (GS) and glycogen phosphorylase (GP), respectively. The activity of these enzymes is regulated by phosphorylation and several effectors. GP catalizes the first step in intracellular degradation of glycogen, which may activated by AMP and is inhibited by ATP and other metabolites so that the enzyme is response to the levels of metabolites in the cell (Stalmans et al., 1974; Ercan et al, 1996). As the effect of ATP is counteracted by AMP concentration, we can propose that the glycogenolysis is activated because CasII-gly lead to ATP depletion (possibly as result of mitochondrial impairment), increasing availability of AMP. These changes in ATP and AMP concentrations could support the activation of the GP.Finally, the results suggested that CasII-gly may be considered as a potent and specific metabolic drug that affect energy metabolism and also indicated that the inhibition of solely one controlling step brought about negligible effects on glycolysis. Only the simultaneous inhibition of the other controlling steps (GLUT and HPI) may have significant impact on glycolytic flux (Marín- Hernández et al., 2010). Acknowledgements This work was partially supported by a CONACyT-Mexico grant (No 80534 ). AMH was supported by a CONACyT fellowship (No. 59991). References Abdel-Nabi, H., Doerr, R.J., Lamonica, D.M., Cronin, V.R., Galantowicz, P.J., Carbone, G.M., Spaulding, M.B., 1998. Staging of primary colorectal carcinomas with fluorine-18 fluorodeoxyglucose whole-body PET: correlation with histopathologic and CT findings. Radiology. 206, 755-60. Aull, J.L., Allen, R.L., Bapat, A.R., Daron, H.H., Friedman, M.E., Wilson, J.F., 1979. The effects of platinum complexes on seven enzymes. Biochem. Biophys. Acta 571, 352-358. 116 Arendt, T., Schugens, M.M., Marchbanks, R.M., 1990. Reversible inhibition of acetylcholine synthesis and behavioural effetcs caused by 3-bromopyruvate. J. Neurochem. 55, 1474-1479. Bergmeyer, H.U. (Ed.), 1974. Methods of Enzymatic Analysis, second English Ed. Verlag Chemie- Academic Press, New York. Boulard, M., Blume, K.G., Beutler, E., 1972. The effect of copper on red cell enzyme activities. J. Clin. Inves. 51, 459-461. Brass, E.P., Garrity, M.J., 1985. Effect of nonsteroidal anti-inflammatory drugs on glycogenolysis in isolated hepatocytes. Br. J. Pharmacol. 86, 491-496 Brizel, D.M., Schroeder, T., Scher, R.L., Walenta, S., Clough, R.W., Dewhirst, M.W., Mueller-Klieser, W., 2001. Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and- neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 51, 349-53. Cao, X., Bloomston, M., Zhang, T., Frankel, W.L., Jia, G., Wang, B., Hall, N.C., Koch, R.M., Cheng, H., Knopp, M.V., Sun, D., 2008. Synergistic antipancreatic tumor effect by simultaneously targeting hypoxic cancer cells with HSP90 inhibitor and glycolysis inhibitor. Clin. Cancer Res. 14, 2008. Carew, J.S., Huang, P., 2002. Mitochondrial defects in cancer. Mol. Cancer 1:9.Connolly, B.A., Trayer, I.P., 1979. Affinity labelling of rat-muscle hexokinase type II by a glucose-derived alkylating agent. Eur J Biochem. 93, 375-83. Czernin, J., Phelps, M.E., 2002, Positron emission tomography scanning: current and future applications. Annu. Rev. Med. 53, 89-112. Dell’ Antone, P., 2006. Inactivation of H+ - vacuolar ATPase by the energy blocker 3-bromopyruvate, a new antitumor agent. Life Sci. 79, 2049-2055. De Vizcaya-Ruiz, A., Rivero-Mueller, A., Ruiz-Ramírez, L., Kass, G.E., Kelland, L.R., Orr, R.M., 2000. Induction of apoptosis by a novel cupper-based anticancer compound, casiopeina II, in L1210 murine leukaemia and CH1 human ovarian carcinoma cells. Toxicol. In Vitro 14,1-5. Dykens, J.A., Jamieson, J.D., Marroquin, L., Nadanciva, S., Xu, J.J., Dunn, M.C., Smith, A.R., Will, Y., 2008a. In vitro assessment of mitochondrial dysfunction and cytotoxicity of nefazodone, trazodone, and buspirone. Toxicol. Sci. 103, 335-345. Dykens, J.A., Jamieson, J., Marroquin, L., Nadanciva, S., Billis, P.A., Will, Y., 2008b. Biguanide-induced mitochondrial dysfuntion yields incresed lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocites in vitro. Toxicol. Appl. Pharmacol. 233, 203-210. Ercan, N., Gannon, M.C., Nuttall, F.Q.,1996. Arch Biochem Biophys. 328, 255-64.Fiorani, M., De Sanctis, R., Scarlatti, F., Vallorani, L., De Bellis, R., Serafini, G., Bianchi, M., Stocchi, V., 2000. Mol Cell Biochem. 209, 145-53. Floridi, A., Paggi, M.G., D’ Atri, S., Martino, C.D., Marcante, M.L., Silvestrini, B., Caputo, A., 1981. Effect of lonidamie on the energy metabolism of Erlich ascites tumor cells. Cancer Res. 41, 4661-4666. Gallardo-Pérez, J.C., Espinoza, M., Ceballos-Cancino, G., Daniel, A., Rodríguez-Enríquez, S., Aviles, A., Moreno-Sánchez, R., Melendez-Zajgla, J., Maldonado, V., 2009. NF-kappa B is required for the development of tumor spheroids. J. Cell. Biochem. 108, 169-180. Ganapathy-Kanniappan, S., Geschwind, J.F., Kunjithapatham, R., Buijs, M., Vossen, J.A., Tchernyshyov, I., Cole, R.N., Syed, L.H., Rao, P.P., Ota, S., Vali, M., 2009. Anticancer Res. 29, 4909-18. Gatenby, R.A., Gillies, R.J., 2007. Glycolysis in cancer: a potential target for therapy. Int. J. Biochem. Cell Biol. 39, 1358-66. Geschwind, J.F.H., Ko, Y.H., Torbenson, M.S., Magee, C., Pedersen, P.L., 2002.Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res. 62, 3909-3913. Gornall, A.G., Bardwill, C.J., David, M.M., 1949. Determination of serum proteins by means of biuret reaction. J. Biol. Chem. 177, 751-766. Hernández-Esquivel, L., Marín-Hernández, A., Pavon, N., Carbajal, K., Moreno-Sánchez, R., 2006. Cardiotoxicity of copper based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism. Toxicol. Appl. Pharmacol. 212, 79-88. 117 Hue, L., Bontemps, F., Hers, H., 1975. The effects of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem. J. 152, 105-14. Hutny, J., Wilson, J.E., 1990.Effect of ligand-induced conformational changes on the reactivity of specific sulfhydryl residues in rat brain hexokinase. Arch Biochem Biophys. 283, 173-83. Jaffe, E., Nachmen, R.L., Becker, G.C., Minick, C.R., 1973. Culture of human endothelial cells from umbilical veins. J. Clin. Invest. 52, 2745-2756. Kachadourian, R., Brechbuhl, H. M., Ruiz-Azuara, L., Gracia-Mora, I., Day, B.J., 2010. Casiopeína IIgly- induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology, 268, 176-183. Kim, J.S., Ahn, K.J., Kim, J.A., Kim, H.M., Lee, J.D., Lee, J.M., Kim, S.J., Park, J.H., 2008. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells. J. Bionerg. Biomembr. 40, 607-618. Ko, Y.H., Pedersen, P.L., Geschwind, J.F., 2001. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: characterization and targeting hexokinase. Cancer Lett. 173, 83-91. Ko, Y.H., Smith, B.L., Wang, Y., Pomper, M.G., Rini, D.A., Torbenson, M.S., Hullihen, J., Pedersen, P.L., 2004. Advenced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem. Biophys. Res. Commun. 324, 269-275. Lapela, M., Grénman, R., Kurki, T., Joensuu, H., Leskinen, S., Lindholm, P., Haaparanta, M., Ruotsalainen, U., Minn, H., 1995. Head and neck cancer: detection of recurrence with PET and 2-[F- 18]fluoro-2-deoxy-D-glucose. Radiology. 197, 205-11. Lawley, P.D., Phillips, D.H., 1996. DNA adducts from chemotherapeutics agents. Mut. Res. 355, 13-40. López-Gómez, F., Torres-Márquez, M.E., Moreno-Sánchez, R., 1993. Control of oxidative phosphorylation in AS-30D hepatoma mitochondria. Int. J. Biochem. 25, 373-377. Marín-Hernández, A., Gracia-Mora, I., Ruiz-Ramírez, L., Moreno-Sánchez, R., 2003. Toxic effects of cupper-based antineoplastic drugs (Casiopeinas) on mitochondrial fuctions. Biochem. Pharmacol. 65, 1979-1989. Marin-Hernandez, A., Rodriguez-Enriquez, S., Vital-Gonzalez, P.A., Flores-Rodriguez, F.L., Macias-Silva, M., Sosa-Garrocho, M., Moreno-Sanchez, R., 2006. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an overexpressed but strongly product-inhibited hexokinase. FEBS J. 273, 1975–1988. Marín-Hernández, A., Gallardo-Pérez, J.C., Rodríguez-Enríquez, S., Encalada, R., Moreno-Sánchez, R., Saavedra E., 2010. Modeling cancer glycolysis. Biochim Biophys Acta. 2010 “In Press”. Mejia, C., Ruiz-Azuara, L., 2008. Casiopeinas IIgly and IIIia induce apoptosis in medulloblastoma cells. Pathol. Oncol. Res. 14, 467-472. Moreno-Sánchez, R., Rodríguez-Enríquez, S., Marín-Hernández, A., Saavedra, E., 2007. Energy metabolism in tumor cells. FEBS J. 274, 1393-1418. Moreno-Sánchez, R., Rodríguez-Enríquez, S., Saavedra, E., Marín-Hernández, A., Gallardo-Pérez, J.C., 2009. The bioenergetics of cancer: Is glycolysis the main ATP supplier in all tumor cells. Biofactors 35, 209-225. Okada, J., Yoshikawa, K., Itami, M., Imaseki, K., Uno, K., Itami, J., Kuyama, J., Mikata, A., Arimizu, N., 1992. Positron emission tomography using fluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison with proliferative activity. J Nucl Med. 33, 325-9. Pastorino, J.G., Hoek, J.B., 2003. Hexokinase II: The integration of energy metabolism and control of apoptosis. Curr. Med. Chem. 10, 1535-1551. Pedersen, P.L., Mathupala, S., Rempel, A., Geschwind, J.F., Ko, Y.H., 2002. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta 1555, 14-20. Pelicano, H., Martin, D.S., Xu, R.H., Huang, P., 2006. Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646. 118 Penso, J., Beitner, R., 2002.Detachment of glycolytic enzyme from cytoskeleton of Lewis lung carcinoma and colon adenocarcinoma cells induced by clotrimazole and its correlation to cell viability and morphology. Mol. Genet. Metab. 76, 181-188. Pereira da Silva, A.P., El-Bacha, T., Kyaw, N., dos Santos, R.S., da Silva, W.S., Almeida, F.C., Da Poian, A.T., Galina, A., 2009. Inhibition of energy –producing patways of HepG2 cells by 3-bromopyruvate. Biochem. J. 417, 717-726. Robey, I.F., Lien, A.D., Welsh, S.J., Baggett, B.K., Gillies, R.J., 2005. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia. 7, 324-30. Rodríguez-Enríquez, S., Vital-González, P.A., Flores-Rodríguez, F.L., Marín-Hernández, A., Ruiz-Azuara, L., Moreno-Sánchez, R., 2006. Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol. Appl. Pharmacol. 215, 208- 217. Rodríguez-Enríquez, S., Marín-Hernández, A., Gallardo-Pérez, J.C., Carreño-Fuentes, L., Moreno- Sánchez, R., 2009. Targeting of cancer energy metabolism. Mol. Nutr. Food Res. 53, 29-48. Robustelli della Cuna, G., Pedrazzoli, P., 1991. Toxicity and clinical tolerance of lonidamine. Semin. Oncol. 18, 18-22. Saavedra, E., Encalada, R., Pineda, E., Jasso-Chávez, R., Moreno-Sánchez, R., 2004. Glycolysis in Entamoeba histolytica.Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J. 272, 1767-1783. Schwimmer, J., Essner, R., Patel, A., Jahan, S.A., Shepherd, J.E., Park, K., Phelps, M.E., Czernin, J., Gambhir, S.S., 2000. A review of the literature for whole-body FDG PET in the management of patients with melanoma. Q. J. Nucl. Med. 44, 153-67. Simonnet, H., Alazard, N., Pfeiffer, K., Gallou, C., Beroud, C., Demont, J., Bouvier, R., Schagger, H., Godinot, C., 2002. Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23, 759-768. Stalmans, W., Laloux, M., Hers, H.G., 1974. The interaction of liver phosphorylase a with glucose and AMP. Eur J Biochem. 49, 15-27.Tiedge, M., Richter, T., Lenzen, S., 2000. Importance of cysteine residues for the stability and catalytic activity of human pancreatic beta cell glucokinase. Arch Biochem Biophys. 375, 251-60. Torres, N.V., Mateo, F., Sicilia, J., Meléndez-Hevia, E., 1988. Distribution of the flux control in convergent metabolic pathways: theory and application to experimental and simulated systems. Int. J. Biochem. 234, 169-174. Trejo-Solís, C., Palencia, G., Zuñiga, S., Rodríguez-Ropon, A., Osorio-Rico, L., Sánchez-Torres, L., Gracia-Mora, I., Marquez-Rosado, L., Sánchez, A., Moreno-García, M.E., Cruz, A., Bravo-Gómez, M.E., Ruiz-Ramírez, L., Rodríguez-Enríquez, S., Sotelo, J., 2005. Cas II gly induces apoptosis in glioma C6 cells in vitro and in vivo through caspase-dependent and caspase-independent mechanisms. Neoplasia 7, 563-574. Vasta, V., Bruni, P., Farnararo, M., 1987. Mechanism of thrombin-induced rise in platelet fructose 2,6- bisphosphate content. Biochem. J. 244, 547-551. Xu, R., Pelicano, H., Zhou, Y., Carew, J.S., Feng, L., Bhalla, K.N., Keating, M.J., Huang, P., 2005. Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65, 613-621. Yin, J., Gao, Z., Liu, D., Liu, Z., Ye, J., 2008. Berberine improves glucose metabolism througth induction of glycolysis. Am. J. Physiol. Endocrinol. Metab. 295, E148-156. 119 Figure legends Figure 1. Effect of CasII-gly on glycolysis in AS-30D hepatocarcinoma cells (A) AS-30D carcinoma cells (15 mg protein/ ml) were incubated in the presence (●, ■) or in the absence (○, □) of 100 µM CasII-gly in Krebs-Ringer buffer containing 5 mM glucose (+ GLU) or without glucose (- GLU). After 10, 20, 30, and 60 min, lactate (Lac) content was enzymatically determined. (B) Net lactate (Lac) production and (C) net variation in glycogen (Glyc) content were determined by subtracting values attained in the absence (Lac, Glyc) from values in the presence of 100 µM CasII-gly (LacCasII-gly; Glyc CasII- gly) in AS-30D cells incubated for 30 and 60 min. Lactate is expressed in nmol/mg cellular protein and glycogen is expressed in nmol of glucose equivalents/mg cellular protein. Data show the mean ± SD of three different cellular preparations. * P< 0.05, **P<0.01,***P< 0.005 vs. LacCasII-gly-Lac or GlycCasII-gly- Glyc values is cero. Figure 2. Effect of CasII-gly on HK and PFK-1 activities and on flux through the initial glycolytic segment AS-30D tumor cells were incubated for 60 min in the presence or in the absence of 100 M CasII-gly in Ringer-Krebs buffer with (+Glu) or without (-Glu) 5 mM glucose. Afterwards, cellular extracts were obtained as described in the Material and Methods section. (A) 100 % activities of hexokinase (HK) and phosphofructokinase-1 (PFK-1) corresponds to 515 ± 140 and 152 ± 16 nmol/min/mg protein in the condition + GLU; 429 ± 96 and 140 ± 33 nmol/min/mg protein in condition - GLU, respectively. (B) Metabolic fluxes from HK to TPI in AS-30D cells (+GLU) treated with or without 100 µM CasII-gly. For the HK-TPI flux, 2 mM glucose was added; for the HPI-TPI, PFK-1-TPI and ALDO-TPI fluxes, the reaction was started with 10 mM G6P, 5 mM F6P, and 1 mM F1,6BP, respectively. 100 % control corresponds to 35 ± 25 (HK-TPI, GLU), 72 ± 57 (HPI-TPI, G6P), 153 ± 106 (PFK-TPI, F6P) and 438 ± 86 (ALD-TPI, F1,6BP) nmol/min/mg protein, respectively. Data show the mean ± SD of three different preparations.*P< 0.005 vs. no CasII-gly addition. Figure 3. Activities of mitochondrial and soluble HK and fluxes of the first glycolytic segment at low CasII- gly concentration and 3BrPyr A) Effect of CasII-gly and 3BrPyr on mitochondrial bound (●) and cytosolic HK activity (□, ■).B) Inhibition of flux from HK to TPI and from HPI to TPI by 10 μM CasII-gly (black bars) C) Effect of 100 μM cisplatin (a); 10 μM CuCl2 (b) ; 20 μM CuCl2 (c); 10 μM CasII-gly (d) on cytosolic tumor HK activity.*P<0.005 vs A) CasII-gly condition, B) 100% flux; **P<0.05 vs 100% HK activity. The extracts were pre-incubated for 5 min with the indicated drug concentration. Afterwards, mitochondrial and cytosolic HK activities and segment fluxes were determined by adding 5 mM glucose (HK-TPI) or 5 mM G6P (HPI-TPI). In the absence of drug, the rates of mitochondrial bound- and cytosolic HKs were 1150 ± 996 and 648 ± 242 nmol NAD(P)H/min/mg protein; and the fluxes from HK to TPI and HPI to TPI were 55 ± 39 and 201 ± 103 nmol NAD(P)H/min/mg protein. Data show the mean ± SD of at least three different preparations. 120 Table 1.- Potency of Cas-IIgly and 3BrPyr on tumor and normal cells. IC50 (µM) Time 24 hr 72 hr CasII-gly 3BrPyr CasII-gly 3BrPyr Rodent Tumor cells Glioma C6 0.75 (1) >100 (1) ND ND Human HeLa 5 ± 2 (4) > 100 (2) 0.66 (2) 48 (2) MCF-7 5.7 ± 1 (3) 78 ± 15 (3) 0.76 ± 0.09 (3) 69 ± 27 (3) PC3 6.7 (2) >100 (2) 0.52 (2) >100 (2) SKLU 3.6 (2) 79 (2) 0.86 (2) 45 (2) U87MG 5.7 (2) 74 (2) 1.9 (2) 79 (2) HTC15 5.1 (1) 68 (1) 0.74 (1) 58 (1) Human Normal Cells Lymphocytes >100 (3) >100 (2) >10 (3) >10 (3) Endothelial cells from umbilical cords >100 (2) >100 (3) 27 (1) >100 (2) 121 Table 2 Effect of CasII-gly on the content of glycogen, glycolytic intermediates and ATP in AS-30D hepatocarcinoma Values are expressed in nmol/mg protein and represent the mean ± SD; number of different preparations assayed is shown in parentheses. N.D., not detected *P < 0.01 or **P< 0.005 vs. no CasII-gly at 30 or 60 min. . + GLU - GLU 30 min 60 min 30 min 60 min + Cas-IIgly + Cas-IIgly + Cas-IIgly + Cas-IIgly Glycogen 133 ± 8 (4) 105 ± 6* (4) 152 ± 14 (4) 81 ± 18* (4) 73 ± 7 (3) 65 ± 6 (3) 69 ± 2 (3) 53 ± 5 * (3) G6P 0.4 ± 0.2 (3) 0.5 ± 0.3 (3) 0.5 ± 0.4 (6) 0.9 ± 0.6 (6) N.D. N.D. N.D. N.D. F6P 0.4 ± 0.3 (5) 0.7 ±0.5(5) 0.2 ± 0.1 (6) 0.4 ± 0.2 (6) N.D. N.D. N.D. N.D. F1,6BP 1 ± 0.8 (5) 2 ± 1.1(3) 0.4 ± 0.1(4) 0.6 ± 0.3 (3) N.D. N.D. N.D. N.D. TriP 2 ± 1.1 (4) 1 ± 0.4(3) 0.6 ± 0.3 (3) 0.7 ± 0. 2(4) N.D. N.D. N.D. N.D. ATP 9 ± 2.2 (3) 7 ± 1.1(3) 10 ± 1.5 (4) 4 ± 1.3**(4) 11 ± 0.7 (3) 7 ± 0.8**(3) 9± 2.6 (4) 2 ± 0.3 **(3) 122 Table 3. Potency of anti-neoplastic drugs on tumor and non-tumor cytosolic HK IC50 (μM) CasII-gly 3BrPyr Neoplasia Rodent AS-30D 4 ± 1 (4) 28 ± 8 (4)* Glioma C6 17 ± 2 (3) 41 ± 8 (3)** Human HeLa 16 (2) 34 (2) PC-3 13 (2) 49 (2) MDA-MB-231 19 (2) >100 (3) MCF-7 14 (2) 24 (2) SK-LU 6 (2) 7.5 (2) TD47 20 (1) 50 (1) No tumorigenic tissues Rat brain (HKI) 6 ± 0.6 (3) 47 ± 13 (3)** Rat heart (HKII) 9 ± 0.6 (3) 36 ± 13 (3)*** Rat liver (HKIV) 2 ± 0.8 (3) 43 ± 20 (3)*** Human platelets 4 ± 2 (3) 25 ± 8 (3)** The values represent the mean ± SD; number of different preparations assayed is shown in parentheses. *P< 0.005, **P< 0.01 and ***P< 0.05 vs. CasII-gly. 123 10 20 30 40 50 60 0 100 200 300 400 * - GLU + GLU Time (min) L a c A B Figure 1 -80 -60 -40 -20 0 ** Time (min) *** *** 3060 6030 G ly c C as II- g ly -G ly c C 0 25 50 75 100 *** + GLU- GLU **** L ac C as II- g ly -L ac :::::::::::::::::-; 124 0 50 100 * * GLU - - + + - - + + CasII-gly - + - + - + - + PFKHK A ct iv it y (% ) A B 0 25 50 75 100 * + CasII-gly F1,6BPF6PG6PGLU F lu x (% ) Figure 2 .. 125 Figure 3 0 25 50 75 100 CasII-glyCu 2+ ** * a b c d H K a ct iv it y (% ) Cisplatin A B C 0 25 50 75 100 * HK-TPI F lu x ( % ) HPI-TPI 0 3 5 8 10 40 60 80 100 + CasII-gly + BrPyr * H K a ct iv it y (% ) Drug (M) H K a ct iv it y (% ) F lu x ( % ) H K a ct iv it y (% ) -~ ---i I 1 --, - .L ~ .. 126 5.3.1 Comentarios manuscrito No. 4 Nuestro objetivo principal del manuscrito No. 4 era el determinar que la inhibición de la HK se traducía en una reducción en el flujo glucolítico y el de proponer a la CasII- gly como un fármaco antineoplásico que pueda específicamente reducir la proliferación celular en las células tumorales debido a que afecta su metabolismo energético. Sobre todo porque fue mas potente que el 3-bromopiruvato (inhibidor de la HK) entre 1-21 veces al inhibir la actividad de la HK y entre 13 -91 veces al inhibir la proliferación celular. Sin embargo, a pesar de haber demostrado que el fármaco inhibía específica y significativamente la actividad de la enzima, no se observó una reducción en la producción de láctico, debido a que se inducía una activa degradación de glucógeno. Estos resultados nos condujeron a concluir que con solo inhibir a esta enzima no se iba a lograr reducir el flujo glucolítico debido a que la vía metabólica, y la célula, tienen alternativas que disminuyen los estragos que pueda producir su inhibición. Por consiguiente, se tendrán mejores resultados si se inhiben al mismo tiempo al resto de las enzimas que controlan la glucólisis (GLUT y HPI). 127 Capítulo 6 6.1 Discusión general En esta tesis, nuestra propuesta inicial consideraba que el control de la glucólisis tumoral no debería recaer en la HK y la PFK-1, a diferencia de lo que ocurre en las células normales en donde son los principales sitios de control, debido a los cambios en sus mecanismos de regulación y a sus niveles de sobre-expresión en células tumorales. Sin embargo, nuestros resultados (obtenidos en AS-30D y HeLa; Manuscrito No. 2) apoyaron parcialmente nuestra propuesta original, ya que únicamente en el caso de la PFK-1 se observó una reducción en su control, lo que atribuímos a que se encuentran concentraciones intracelulares saturantes de la F2,6BP (4-6 µM, Ka= 0.2-0.8 µM), el AMP y el Pi, activadores de la enzima que, además, bloquean la inhibición que ejercen el citrato y el ATP, y moderadamente el H+ (datos no mostrados). Lo anterior concuerda con observaciones previas que sugerían que la enzima se encuentra muy activa en las células tumorales (Loiseau et al., 1985; Staal et al., 1987; Marín-Hernández et al., 2006), motivo por el cual se observa una pérdida en el efecto Pasteur (Eigenbrodt et al., 1985; Rodríguez-Enríquez et al., 2001). Por otra parte, la HK mantiene un control significativo sobre la glucólisis tumoral debido a que, independientemente de su sobre-expresión (hasta en 300 veces en AS- 30D) o su localización (membrana externa mitocondrial), su producto la G6P la inhibe fuertemente (Marín-Hernández et al., 2006; Manuscrito No. 2); el aumento en la actividad de la HK en células cancerosas trae como consecuencia un aumento concomitante en su producto, la G6P. Aparentemente, el que esta enzima se mantenga regulada de esta manera evita la disminución en los niveles de ATP intracelular. 128 Además, en esta tesis logramos establecer que en el control de la glucólisis pueden participan otros sitios como el GLUT, la HPI y la degradación de glucógeno, los cuales fueron visualizados por medio del modelado de la glucólisis, una vez que fueron construidos los modelos cinéticos de esta vía (ver sección 5.2; Manuscrito No. 3). Los modelos lograron predecir los flujos y las concentraciones de metabolitos encontradas en las células intactas. Sin embargo, su principal debilidad fue la predicción de la concentración de F6P, la cual fue 50 veces menor con respecto a lo detectado experimentalmente. Esto lo atribuimos a que en los modelos se simula a una PFK-1 muy rápida que reduce la concentración de F6P. Entonces consideramos que puede existir un freno cinético que aún no se ha identificado. Por ejemplo, en la PFK de músculo de conejo se ha reportado que el PEP, el 3PG y la creatina fosfato pueden incrementar el efecto inhibitorio del ATP (Colombo et al., 1975). Esto último sugiere la necesidad de caracterizar el efecto de éstos y otros metabolitos sobre la enzima tumoral. Por un trabajo previo de nuestro grupo de trabajo se determinó que en las células tumorales AS-30D predomina el GLUT3 mientras que en HeLa predomina el GLUT1 (Rodríguez-Enríquez et al., 2009). En ambos tipos de células el GLUT ejerce un control significativo debido a su baja actividad con respecto al resto de los componentes de la vía, pero además, a ésto se suma la expresión de una isoforma del GLUT con una baja afinidad por la glucosa (Km = 9 mM) en el caso de las células HeLa. Otra aportación importante de nuestro trabajo de tesis (Manuscrito No. 3) fue el de proponer a la HPI (una de las enzimas más rápidas de la glucólisis) como un sitio que controla el flujo glucolítico, debido a la fuerte y múltiple inhibición competitiva que ejercen sobre ella la F1,6 BP (intermediario de la glucólisis), la eritrosa-4P y el 6- 129 fosfogluconato (ambos intermediarios de la vía de las pentosas). Aunque cabe señalar que el efecto inhibitorio de estos metabolitos ya se había descrito previamente (Zalitis and Oliver, 1967; Chirgwin et al., 1975; Gaitonde et al., 1989), no se había evaluado la importancia que puede tener la inhibición de esta enzima en el control de la glucólisis. Al mismo tiempo, sugerimos que la distribución de control puede verse influenciada por las condiciones en las que crecen las células tumorales, que pueden influir en la expresión de las enzimas y los transportadores de la glucólisis (Yun et al., 2005; Natsuizaka et al., 2007). Así, la degradación de glucógeno y el GLUT mantienen un alto coeficiente de control en las células HeLa, debido a que al cultivarse en 25 mM de glucosa, las células mantienen un alto contenido de glucógeno y además expresan una isoforma del GLUT con baja afinidad por glucosa (GLUT1, Km= 9 mM). En cambio, las células AS-30D que crecen en el espacio intraperitoneal de la rata, en donde se ven sometidas a una baja concentración (0.026 mM) de glucosa (Rodríguez-Enríquez et al., 2000) expresan un GLUT con alta afinidad (GLUT3, Km= 0.5 mM) y mantienen una baja concentración de glucógeno, que propicia que la glucólisis dependa únicamente de la glucosa exógena y por lo tanto el GLUT, la HK y la HPI controlen. Otro aspecto interesante que debe señalarse es que aunque el control que ejerce la GAPDH sobre el flujo glucolítico no es significativo, éste depende de la concentración de fosfato libre presente en la célula, ya que puede limitar su actividad debido a la baja afinidad que tiene la enzima por éste (Heinz and Kulbe, 1970; Patra et al., 2009), lo cual no se ha considerado al analizar la glucólisis en otros organismos (levadura y tripanosoma) (Bakker et al., 1999; Teusink et al., 2000), en los que se supone que el fosfato no tiene ninguna relevancia en la actividad de esta enzima porque no limita su actividad. 130 Una vez que se han analizado los resultados obtenidos en esta tesis, la pregunta obvia es ¿Cuál es la enzima que se necesita inhibir para bloquear la glucólisis en las células tumorales? Como parte de la respuesta tenemos que el GLUT, la HK y la HPI pueden ser considerados como sitios adecuados para inhibir la glucólisis. En este caso no se propone inhibir la degradación de glucógeno porque el glucógeno se agotara eventualmente. Sin embargo, como único blanco específico para la glucólisis tumoral, la HK y el GLUT quedarían descartadas, ya que estas proteínas participan controlando la glucólisis en las células normales junto con la fosfofructocinasa tipo I (PFK-I), lo que deja como única opción de un posible blanco terapéutico a la HPI. Aunque al inhibir sólo a esta enzima la reducción en el flujo glucolítico no sería tan potente como lo sería inhibir al mismo tiempo a esta enzima junto con el GLUT y la HK, pero sí mayor con respecto a inhibir a enzimas que no controlan como la PFK-1, como lo predicen nuestros modelos. A esto se suma que experimentalmente demostramos que sólo inhibiendo a una enzima como la HK no basta para reducir la glucólisis (Manuscrito No. 4), porque la célula utiliza rutas alternativas para disminuir los estragos que pudo ocasionar la inhibición de esta enzima, lo cual se hubiera evitado al inhibir al mismo tiempo al GLUT y/o a la HPI. Por lo tanto debe considerarse la necesidad de buscar en otras vías (metabólicas o de señalización) blancos terapéuticos potenciales que permitan una terapia multisitio, es decir buscar aquellos sitios (enzimas o transportadores) que contribuyan importantemente en el control de sus vías pero que en las células normales su control no sea significativo (Moreno-Sánchez et al., 2010). En el campo de la biología del cáncer son pocos los estudios en los cuales se aplica el análisis de control metabólico para identificar blancos terapéuticos. Esto es 131 debido a que en general para el diseño de fármacos los grupos de investigación se enfocan en la búsqueda de un paso limitante, olvidando que este concepto no es aplicable en la mayoría de las vías metabólicas en las cuales más de una enzima puede controlar el flujo de la vía (Fell, 1997; Moreno-Sánchez et al., 2008; 2010). A esto se suma que en algunos casos la elección del blanco terapéutico se basa en la suposición de que es esencial en el crecimiento tumoral. Por lo tanto, se eligen sitios que no ejercen control, los cuales tienen que ver disminuida su actividad al menos un 80% para lograr observar cambios en el flujo de la vía que se desea inhibir. Esto provoca el empleo de concentraciones masivas de inhibidores que pueden conducir a afectos no deseados. Por este motivo el uso de inhibidores glucolíticos no ha tenido éxito en el tratamiento del cáncer. Esto se evitaría al inhibir sitios que controlan y que tienen la ventaja de que no es necesario abatir por completo su actividad para causar estragos en el flujo de una vía, con lo cual se emplearían concentraciones bajas de los inhibidores reduciendo los efectos adversos (Moreno Sánchez et al., 2010). Por todas estas razones, nuestro trabajo de tesis resulta relevante. Finalmente, podemos indicar que el estudio de la glucólisis tumoral nos ha permitido determinar y entender los mecanismos bioquímicos involucrados en el control de esta vía, lo que nos permitirá extender nuestro estudio a otros tipos de cáncer para poder ayudar en la selección de nuevos blancos terapéuticos, y con ello el diseño de inhibidores más potentes y específicos. 132 6.2 Conclusiones generales 1. La HK ejerce un control significativo en la glucólisis tumoral debido a que sigue siendo inhibida fuertemente por su producto la G6P. 2. La PFK-1 no controla a causa de que la concentración intracelular de F2,6BP es suficiente para bloquear el efecto inhibitorio del citrato y el ATP. 3. El GLUT, la HPI y la degradación de glucógeno pueden participar en el control de la glucólisis. 4. La distribución de control depende del grado de expresión de las enzimas que controlan y de sus mecanismos de regulación así como del flujo de síntesis- degradación de glucógeno. 5. El análisis de control metabólico (mediante el empleo del análisis de elasticidades y el modelado cinético) nos permitió identificar a las enzimas que controlan la glucólisis así como entender los mecanismos bioquímicos involucrados. Entre estos últimos se destaca la inhibición de la HPI por metabolitos de la glucólisis y de la vía de las pentosas. 6. La inhibición de la HK no conduce a una reducción en el flujo de la glucólisis debido a que la célula usa el glucógeno para evitar los estragos que ocasiona la inhibición, a que la HK controla sólo parcialmente, y a que las otras enzimas controladoras compensan la disminución en la actividad de la HK y ajustan el flujo. 133 6.3 Perspectivas En nuestro estudio establecimos que la distribución del control puede verse modificada como consecuencia de las condiciones en las que crecen las células y aunque con nuestros modelos cinéticos hicimos algunas aproximaciones al estudiar el efecto de la hipoxia y la hipoglucemia, una perspectiva de nuestro trabajo de tesis es el de explorar detalladamente los efectos que tiene sobre las células tumorales la exposición prolongada a la hipoxia y a la hipoglucemia. Esto es relevante si recordamos que en los tumores sólidos las células se ven sometidas a bajas concentraciones de oxígeno y de nutrientes (glucosa) por largos periodos de tiempo. Experimentalmente se han simulado estas condiciones en el laboratorio y otros grupos de investigación han observado un incremento en la expresión (RNAm) de los genes de algunas de las enzimas que hemos demostrado controlan la glucólisis como el GLUT y la HK, como consecuencia de la activación del HIF-1α y de la AMPK (Yun et al., 2005; Natsuizaka et al., 2007). Pero lamentablemente en estos estudios no se consideró evaluar los cambios en la actividad de las enzimas y el flujo de la glucólisis, por lo cual la pregunta que nos hacemos es: ¿Cómo se modifica el control de la glucólisis en hipoxia e hipoglucemia prolongada? ¿O no se modifica? Para contestar la pregunta sería necesario someter a células HeLa en monocapa a periodos prolongados de hipoxia e hipoglucemia. En estas células habría que determinar las actividades del GLUT, HK y HPI, así como las concentraciones de sus moduladores y la concentración de glucógeno. Estos valores se vaciarían en los modelos de la glucólisis que hemos construido para establecer cuál es la distribución de control. Dado que los reportes indican que bajo estas condiciones el GLUT3 (transportador con alta afinidad por glucosa) llega a incrementar su expresión junto con 134 la HKII y si el contenido de glucógeno es bajo, se esperaría que las enzimas que controlen el flujo bajo estas condiciones sean, otra vez, el GLUT, la HK y la HPI como lo determinamos en las células AS-30D que están sometidas a bajas concentraciones de glucosa durante su crecimiento. Estos posibles resultados demostrarían que el control de una vía metabólica es robusto o, en otras palabras, el control es constante bajo diversas condiciones experimentales. Esta conclusión es relevante para el diseño de terapias anti-cancer, pues permitiría establecer con certeza los mejores sitios para inhibición específica. Otro punto interesante es determinar cómo influyen en la glucólisis y en la distribución de control la activación de oncogenes y la falta de genes supresores de tumores, considerando que cada tipo de cáncer es una enfermedad diferente debido a que se han desarrollado por haberse apagado algunos genes supresores de tumores y al mismo tiempo se han encendido algunos oncogenes que sabemos pueden modificar la expresión de los componentes de la glucólisis. Por ello una perspectiva interesante es determinar si en cada tipo de cáncer existe una diferencia en la distribución del control y si esta diferencia es atribuida a la expresión de factores oncogénicos específicos. Con este tipo de estudios parecería difícil conseguir resultados claros en líneas de células tumorales establecidas, pues varios oncogenes pueden encontrase activos al mismo tiempo y varios genes supresores de tumores inactivos. Entonces, la estrategia experimental sería emplear una línea celular no tumoral en la cual, por medio del empleo de siRNAs, apagar genes supresores de tumores o en su caso activar oncogenes (como se ha hecho para c-Myc o H-Ras en fibroblastos de rata) y evaluar los efectos sobre la glucólisis y la distribución de control. Se puede esperar que 135 aquellos factores que modifiquen la expresión de la HK y el GLUT puedan modificar la distribución de control. Por otra parte, como nuestros resultados (Manuscritos No. 3 y 4) sugieren que para reducir el flujo glucolítico drásticamente es necesario inhibir al mismo tiempo a las enzimas que controlan (GLUT, HK y HPI), y como hasta el momento no se conocen inhibidores específicos de estas enzimas, se plantea el diseño de oligonucleótidos antisentido (que son secuencias específicas de un gen de interés que se unen al RNA mensajero de este gen, de tal forma que es inhibida la traducción y no hay proteína) para inhibir específicamente al GLUT3, a la HKII y a la HPI. Nuestro modelo para implementar estos experimentos serían las células AS-30D en las cuales esperaríamos una reducción drástica en el flujo glucolítico. Al mismo tiempo podríamos emplear estos oligonucleótidos antisentido en un modelo de célula no tumoral (hepatocitos) en el que se esperaría que debido a que el control sobre el flujo glucolítico no lo ejercen las mismas proteínas (GLUT, HPI y HK) no se vería disminuida la glucólisis. Consideramos además que debe caracterizarse la glucólisis en modelos como las células rho y las células troncales. Esto debido a que las células rho son predominantemente glucolíticas ya que su mitocondria es disfuncional al carecer de DNA mitocondrial y podrían simular aquellas células tumorales que mantienen una reducción en la actividad de la mitocondria por el elevado número de mutaciones que presentan en su DNA mitocondrial (Carew y Huang, 2002 ). Mientras que el estudio de la glucólisis en las células troncales es relevante porque estas células son consideradas las precursoras de algunos tipos de cáncer (leucemias y cáncer de mama). Por lo cual, la caracterización de esta vía en ambos modelos con la aplicación del análisis de control metabólico podría permitir la identificación de blancos terapéuticos. 136 Finalmente, considerando que la muerte de la célula tumoral puede lograrse al disminuir los niveles de ATP y ésto sólo puede ocurrir al inhibir a la glucólisis y la fosforilación oxidativa, y aunque podría pensarse que en los tumores sólidos la inhibición de la fosforilación oxidativa no sería tan importante, hay reportes que indican que en los tumores sólidos pueden encontrarse poblaciones de células en las que predomina el metabolismo glucolítico por encontrarse lejos de los vasos o en zonas hipóxicas y otras en las que predomina el metabolismo mitocondrial por localizarse cerca de los vasos sanguíneos (Sonveaux et al., 2008). Por lo tanto nuestro modelo cinético se puede extender e incluir al ciclo de Krebs y a la fosforilación oxidativa para poder determinar los sitios que controlan el flujo de cada una de estas vías metabólicas y proponerlos para una terapia multisitio. El modelo experimental idóneo para poder encontrar estas dos poblaciones de células al mismo tiempo es el esferoide, que simula a un tumor en sus primeras etapas de desarrollo. En este modelo se pueden separar ambas poblaciones, lo que nos puede permitir hacer la caracterización de cada una de las vías metabólicas y obtener los datos suficientes para construir los modelos. En este modelo se ha reportado un incremento en la expresión de la HK y el GLUT en la población glucolítica con respecto a la población oxidativa (Rodríguez-Enríquez et al., 2008), por lo cual en las células oxidativas podría esperarse que el control de la glucólisis lo ejercieran el GLUT y la degradación de glucógeno (como ocurre en las células HeLa) mientras en la población glucolítica se podría esperar que fueran el GLUT, la HK y la HPI (como ocurre en AS-30D). Por otra parte aunque se ha estudiado el control de la fosforilación oxidativa en tumores es difícil establecer qué enzimas podrían ejercer el control sobre la fosforilación oxidativa dado que existen pocos datos sobre los flujos y actividades de las enzimas que participan en esta vía. 137 6.4 Referencias  Arora KK, Pedersen PL (1988) Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. J. Biol. Chem. 263, 17422-17428.  Bakker BM, Walsh MC, Ter Kuile BH, Mensonides FIC, Michels PAM, Opperdoes FR, Westerhoff HV (1999) Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei, Proc. Natl. Acad. Sci. USA 96, 10098–10103.  Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warbur´s effect. J. Bioenerg. Biomembr. 39, 223-229.  Bauer DE, Hatzivassiliou G, Zhao F, Andreadis C, Thompson CB (2005) ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322.  Brown GC, Lakin-Tomas L, Bran MD (1990) Control of respiration and oxidative phosphorylation in isolated rat liver cells. Eur. J. Biochem. 192, 355-362.  Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc. Natl. Acad. Sci. USA 74, 3735-3739.  Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol. Cancer 1, 1-9.  Chirgwin JM, Parsons TF, Ernst AN (1975) Mechanistic implications of the pH independence of inhibition of phosphoglucose isomerase by neutral sugar phosphates, J. Biol. Chem. 250, 7277-7279.  Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, Lane A, Trent JO, Chesney J (2008) Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther. 7, 110-1120.  Colombo G, Tate PW, Girotti AW, Kemp RG (1975) Interaction of inhibitors with muscle phosphofructokinase. J. Biol. Chem. 250, 9404-12.  Colomer D, Vives-Corrons JL, Pujades A, Bartrons R (1987) Control of phosphofructokinase by fructose 2,6 bisphosphate in B-lymphocytes and B-chronic lymphocytic leukemia cells. Cancer Res. 47, 1859-1862.  Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. TIBS. 24, 68- 72.  DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20.  Dunaway GA, Kasten TP, Sebo T, Trapp R (1988) Analysis of the phosphofructokinase subunits and isoenzymes in human tissues. Biochem. J. 251, 677-683.  Eigenbrodt E, Fister P, Reinacher M (1985) New perspectives in carbohydrate metabolism in tumor cells. In. Regulation of carbohydrate metabolism (Reitner, R, ed.), vol. 2, pp 141-179. CRC Press, Boca Raton, FL. 138  El-Bacha T, Sampaio de Freitas M, Sola-Penna M (2003) Cellular distribution of phosphofructokinase activity and implications to metabolic regulation in human breast cancer. Mol. Gen. Metab. 79, 294-299.  Evans A, Bates V, Troy H, Hewitt S, Holbeck S, Chung YL, Phillips R, Stubbs M, Griffiths J, Airley R (2008) GLUT1 as a therapeutic target: increased chemoresistance and HIF-1-independent link with cell turnover is revealed through compare analysis and metabolomic studies. Cancer Chemother. Pharmacol. 61, 377-393.  Fanciulli, M., Bruno, T., Giovannelli, A., Gentile, F.P., Di Padova, M., Rubiu, O. and Floridi, A (2000) Energy metabolism of human LoVo colon carcinoma cells: correlation to drug resistance and influence of Lonidamine. Clin. Cancer Res. 6, 1590-1597.  Fell D (1997) Understanding the control of metabolism. Plenum Press, London.  Fisher K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, Gottfried E, Schwarz S, Rothe G, Hoves S, Renner K, Timischl B, Mackensen A, Kunz-Schughart L, Andreesen R, Krause SW, Kreutz M (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood 109, 3812-3819.  Gaitonde MK, Murray E, Cunningham VJ (1989) Effect of 6-phosphogluconate on phosphoglucose isomerase in rat brain in vitro and in vivo. J. Neurochem. 52, 1348- 52.  Gatenby R, Gillies RJ (2004) Why do cancers have high aerobic glycolysis?. Nature Rev. Cancer 4, 891-899.  Giatromanolaki A, Sivridis E, Gatter KC, Turley H, Harris AL, Koukourakis MI (2006) Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis. Gynecol. Oncol. 103, 912-8.  Gillies RJ, Robey I, Gatenby RA (2008) Causes and consequences of increased glucose metabolism of cancer. J. Nucl. Med. 49, 24S-42S.  Groen AK, van Roermund CW, Vervoom RC, Tager JM (1986) Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem. J. 237, 379-389.  Heinz F, Kulbe KD (1970) Glyceraldehydephosphate dehydrogenase from liver. I. Isolation and characterization of the bovine liver enzyme. Hoppe Seylers Z Physiol Chem. 351, 249-62.  Horberg JJ, Bruggeman, FJ, Bakker BM, Westerhoff HV (2007) Metabolic control analysis to identify optimal drug targets. Progress in Drug Research, Vol 64.  INEGI (2009) Estadísticas a propósito del día mundial contra el cáncer. www.inegi.org.mx. 139  Jannaschk KD, Burgos M, Centerlles JJ, Ovadi J, Cascante M (1999) Application of metabolic control analysis to the study of toxic effects of copper in muscle glycolysis. FEBS Lett. 445, 144-148.  Jones RG and Thompson CB (2009) Tumor suppresors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537-548.  Kashiwaya Y, Sato K, Tsuchiya N, Thomas S, Fell DA, Veech RL, Passonneau JV (1994) Control of glucose utilization in working perfused rat heart. J. Biol. Chem. 269, 25502-25514.  Kim WJ, Dang CV (2006) Cancer´s molecular sweet tooth and the Warburg effect. Cancer Res. 66, 8927-8930.  Kosow DP, Rose I (1968) Ascites tumor mitochondrial hexokinase II. Effect of binding on kinetic properties. J. Biol. Chem. 243, 3623-3630.  Kumagai S, Narasaki R, Hasumi K (2008) Glucose-dependent active ATP depletion by koningic acid kills high-glycolytic cells. Biochem Biophys. Res. Commun. 365, 362-368.  Lardner A (2001) The effects of extracellular pH on immune function. J. Leukoc. Biol. 69, 522-530.  Lee K A, Roth RA, LaPres JJ (2007) Hypoxia, drug therapy and toxicity. Pharmacol. Ther. 113, 229-46.  Liu Y, Zuckier LS, Ghesani NV (2010) Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach. Anticancer Res. 30, 369-74.  Loiseau AM, Rousseau GG, Hue L (1985) Fructose 2,6-bisphosphate and the control of glycolysis by glucocorticoids and by other agents in rat hepatoma cells. Cancer Res. 45, 4263-9.  Marín-Hernández A, Gallardo-Pérez JC, Ralph SJ, Rodríguez-Enríquez S, Moreno- Sánchez R (2009) HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev. Med. Chem. 9, 1084-101.  Marín-Hernández A, Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Macías-Silva M, Sosa-Garrocho M, Moreno-Sánchez R (2006) Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase. FEBS J. 273, 1975-88.  Maschek G, Savaraj N, Priebe W, Braunschweiger P, Hamilton K, Tidmarsh GF, De Young LR, Lampidis TJ (2004) 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res. 64, 31-4.  Meldolesi MF, Macchia V, Laccetti P (1976) Differences in phosphofructokinase regulation in normal and tumor rat thyroid cells. J. Biol. Chem. 251, 6244-6251. 140  Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J. 274,1393-1418.  Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate pathways. J. Biomed. Biotech. 2008: 597913.  Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Gallardo-Pérez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10, 626-39.  Nakashima RA, Paggi MG, Scott LJ, Pedersen PL (1988) Purification and characterization of a bindable form of mitochondrial bound hexokinase from the highly glycolytic AS-30D rat hepatoma cell line. Cancer Res. 48, 913-919.  Natsuizaka M, Ozasa M, Darmanin S, Miyamoto M, Kondo S, Kamada S, Shindoh M, Higashino F, Suhara W, Koide H, Aita K, Nakagawa K, Kondo T, Asaka M, Okada F, Kobayashi M (2007) Synergistic up-regulation of Hexokinase-2, glucose transporters and angiogenic factors in pancreatic cancer cells by glucose deprivation and hypoxia. Exp. Cell Res. 313, 3337-48.  Nelson DL, Cox MM (2005) Lehninger Principles of Biochemistry, 4 edición, Editorial Freeman.  Nishijima T, Nishina M, Fujiwara K (1997) Measurement of Lactate Levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies. Jpn. J. Clin. Oncol. 27, 13-17.  Olovnikov IA, Kravchenko JE, Chumakov PM (2009) Homeostatic functions of the p53 tumor suppressor: Regulation of energy metabolism and antioxidant defense. Semi. Cancer Biol. 19, 32-41.  Oskam R, Rijksen G, Staal GEJ, Vora S (1985) Isozymic composition and regulatory properties of phosphofructokinase from well-differentiated and anaplastic medullary thyroid carcinomas of the rat. Cancer Res. 45, 135-142.  Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J. Biol. Chem. 275, 21797–21800.  Parry DM, Pedersen PL (1983) Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor. J. Biol. Chem. 258, 10904-10912.  Patra S, Ghosh S, Bera S, Roy A, Ray S, Ray M (2009) Molecular characterization of tumor associated glyceraldehyde-3-phosphate dehydrogenase. Biochemistry (Mosc). 74, 717-27.  Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochem. Biophys. Acta 1555, 14- 20. 141  Pedersen PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22, 190-274.  Pelicano H, Martin D S, Xu RH, Hung P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25, 4633-4646.  Plathow C and Weber WA (2008) Tumor cell metabolism imaging. J. Nucl. Med. 49, 43S-63S.  Poolman MG, Assmus HE, Fell DA (2004) Applications of metabolic modeling to plant metabolism. J. Exp. Bot. 55,1177-1186.  Rapoport T, Heinrich R, Jacobash G, Rapoport S (1974) A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur. J. Biochem. 42, 107-120.  Robey RB, Hay N (2009) Is Akt the “Warburg kinase”?-Akt-energy netabolism interactions and oncogenesis. Semin. Cancer Biol. 19, 25-31.  Rodríguez-Enríquez S, Gallardo-Pérez JC, Avilés-Salas A, Marín-Hernández A, Carreño-Fuentes L, Maldonado-Lagunas V, Moreno-Sánchez R (2008) Energy metabolism transition in multi-cellular human tumor spheroids. J. Cell Physiol. 216, 189-97.  Rodríguez-Enríquez S, Juárez O, Rodríguez-Zavala JS, Moreno-Sánchez R (2001) Multisite control of the Crabtree effect in ascites hepatoma cells. Eur. J. Biochem. 268, 2512-9.  Rodríguez-Enríquez S, Marín-Hernández A, Gallardo-Pérez JC, Moreno-Sánchez R (2009) Kinetics of transport and phosphorylation of glucose in cancer cells. J. Cell Physiol. 22, 1552-9.  Rodríguez-Enríquez S, Torres-Márquez ME, Moreno-Sánchez R (2000) Substrate oxidation and ATP supply in AS-30D hepatoma cells. Arch. Biochem. Biophys. 375, 21-30.  Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV (1997) c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. 94, 6658–6663.  Shonk CE, Arison RN, Koven BJ, Majima H, Boxer GE (1964) Enzyme patters in human tissues. III. Glycolytic enzymes in normal and malignant tissues of the colon and rectum. Cancer Res. 25, 1965.  Smith TAD (2000) Mammalian hexokinase and their abnormal expression in cancer. Br. J. Biomed. Sci. 57, 170-178.  Sonveaux P, Végran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW (2008) Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Invest. 118, 3930-42. 142  Staal GEJ, Kalff A, Hessbeen EC, van Veelen CWM, Rijksen G (1987) Subunit composition, regulatory properties and phosphorylation of phosphofructokinase from human gliomas. Cancer Res. 47, 5047-5051.  Stubbs M, Bashford CL, Griffiths JR (2003) Understanding the tumor metabolic phenotype in the genomic era. Curr. Mol. Med. 3, 49-59.  Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313-29.  Tysnes B, Bjerkvig R (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim. Biophys. Acta 1775, 283-297.  Volgelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nature Med. 10, 789-799.  Vora S, Halper JP, Knowles DM (1985) Alterations in the activity and prolife of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation and progression-linked discriminants of malignancy. Cancer Res. 45, 2993-3001.  Vora S, Oskam R, Staal EJ (1985)b isoenzymes of phosphofructokinase in the rat. Biochem. J. 229, 333-341.  Walenta S, Mueller-Klieser WF (2004) Lactate: mirror and motor of tumor malignancy. Semin. Radiat. Oncol. 14, 267-274.  Widjojoatmodjo MN, Mancuso A, Blanch HW (1990) Mitochondrial hexokinase activity in a murine hybridoma. Biotech. Lett. 12, 551-556.  Wilson JE (2003) Isozymes of mammalian hexokinase: structure subcellular localization and metabolic function. J. Expert. Biol. 206, 2049-2057.  Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res. 65, 613-21.  Yalcin A, Telang S, Clem B, Chesney J (2009) Regulation of glucosa metabolism by 6-phosphofructo-2-kinase/fructosa-2,6-bisphosphatases in cancer. Exp. Mol. Pathol. 86, 174-179.  Yeung SJ, Pan J, Lee MH (2008) Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell. Mol. Life Sci. 65, 3981-99.  Yun H, Lee M, Kim SS, Ha J (2005) Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J. Biol. Chem. 280, 9963-72.  Zalitis J, Oliver IT (1967) Inhibition of glucose phosphate isomerase by metabolic intermediates of fructose. Biochem. J. 102, 753-9. 143 6.5 Apéndice Otras publicaciones durante el doctorado 144 REB 25(4): 121. 2006 12 1 PROBLEMA BIOQuíMICO Aná l is is de con t ro l me t abó li co . Control de la glucólisis en cél ulas tu morales La glllcólisis en las células tumorales se encuentra incrementada con respecro a los tej idos 1l00ulales. Esto se debe a un aumento en la actividad de todas las enzimas que forman parte de esta vía y a cambios en los mecanis- mos de regulación de las dos enzimas consideradas como sitios de control en células l1omlales. la hexocinasa (HK) y la fosfofructocinasa tipo 1 (PFK-I). que las llacel1 me- nos sensibles a sus inhibidores fi siológicos (glucosa-6- fosfato. cin'ato y ATP) (1 ) . Para evaluar la hipótesis de que estas enzimas no controlan la glucólisis en las células AS-30D (hepatoma ascítico). se utilizó el análisis de elas- ticidades. que pennite calcular los coeficientes de control de flujo (CJ) a partir de los coeficientes de elasticidad. El coeficiente de elasticidad ( E) es la capacidad de un blo- que de enzimas de variar su velocidad al cambiar las C011- centraciol1es de su producto o sustrato (2). Experimel1- talmeme se calcula a partir de la variación de la COllcen- tI"ación de intelmediarios (susu"atos o productos de las enzimas de la vía) y del flujo de la vía en estado estac io- nario. Esto se logra mediante el empleo de inhibidores o al variar la concentración del sustra to de la 11Ita metabólica (glucosa en el caso de la glucólisis). En la Tabla 1 se muestran las velocidades de generación de lác tico (velo- cidad de glucólisis) y las concenn'aciones en estado esta- cionario de glucosa -6-fosfato (G6P) y fru ctosa-l.6- bifosfato (F- l.6BP) a diferentes concentraciones de glu- cosa y en la Tabla 2. las velocidades de glucólisis y las TABLA 1 Velocidad d p glucólisis, concentr aciones de G6P y de F -1,6BP a diferentes concentraciones de glucosa Glucosa Velocidad de G6P Velocidad de F-l ,6BP (mM) glucólisis (lwlol!mg) glucólisis (nmollmg) (runollminlmg) (nwollminlwg) 4 1.8 2.7 1.8 30 4 5 5 4 2.8 5 4 27 5 13.4 32 13.4 31 5.5 16.4 3.6 16.4 34 6 20.5 3.4 20.5 46 Alvaro Marín Hernánd ez y Rafae l Moreno Sánchez Co rreo E: marin hernnd ez@yahoo .com.mx TABLA 2 Velocidad de glucólisis, concentraciones de G6P y de F-l ,6BP a diferentes concentraciones de oxalato 0xa1alo Velocidad de G6P Velocidad d ~ F1,6BP (mM) g1ucólisis (nmollmg) glucólisis (runollmg) (runollminlmg) (wllollmiu/ mg) O 15 3 16 28 05 10.7 31 14.2 29.4 1.0 9.6 3.4 12.8 30.8 1.5 8 3.5 12.6 35.3 2.0 6.5 3.8 10.1 37.2 concentraciones de ambos intelulediarios. pero en pre- senc ia de diferentes concenu'ac iones de oxalato (+ 5 mM de glucosa) (3) . Con estos datos: l. D eterminar los coeficientes de control de flujo. 2. ¿Disminuyó el cOlmol que ejercen la HK y la PFK-I en la glucólisis de células nllllorales. considerando que en etiu'Ocito cOllU'olan 0.7 y 0.3. respectivamente (4)? 3. ¿Qué enzimas son las que ejercen mayor COlltTOl? El volumen itm-acelular el1 las células nUllorales es de 2.28 ~1 l/ 1. 8mg de proteína. REFERENCIAS 1. Moreno-Sánchez R. Rodriguez- Enriquez S. Marin- Hemández A. Saavedra E. (2007) Energy metabolism in hunor cells. FEBS J. en Prensa. 2. Fell D (1997) Understanding the control of metabolismo Plellum Press. London. 3. Malill-HemándezA. Rodriguez-Ellliquez S. Vital-González PA. Flores-Rodliguez FL. Macías-Silva M. Sosa-Gan ocho M. Nloreno-Sánc hez R. (2006) Detenn ini ng and understallding the control of glycolysis in fa se-growth tu- morcells. FEBSJ. 273: 1975-1988. 4. RapopoI1 T. Hei1ll'iclt R. Jacobasch G & RapOpOtl S (1974) A linear steady-state treatment of enzylllatic chains. A mathematical model of glycolysis of human elytrocytes. EmJBiochem42: 107-120. 145 42 REB ] 8(2): 42-51. 2009 EL FACTOR INDUCIDO POR LA HIPOXIA-l (HIF-l) y LA GLUCÓLlSIS EN LAS CÉLULAS TUMORALES* RESUMEN El fa ctor inducido por la hipoxia 1 (HIF -1) tiene un papel fundamental en la respuesta a la baja tensión del oxigeno. ya que regula la expresión de una gran variedad de genes. cuyo s produc tos part icipan en procesos co mo la angiogénesis. el metabolismo energético. la eritropoyesis y la proliferación celular. Diversos estudios indican que existe una relación estrecha entre el cáncer y el HIF- l. debido a que los mecanismos que regulan su expresión se encuentran alterados en las células tumorales. El HIF- I es uno de los factores involucrados en el incremento de la glucólisis en las células nUllora les. ya que aumenta la ac tividad de ciertas isofonnas de las enzimas glucolíticas (GLUTI. GLUT3. HKI. HKIT. PFK-L. ALD-A. ALD-C. PGK I. E O -a. PYK-M2. LDH -A. PFKFB-3) . promoviendo un aumento del flujo glucolitico (producción de lacta to. H+ ATP e intennediarios de la glucólisis). Por otra parte . a lguna s de e s tas ¡so foIma s participan activa mente en otros procesos C01110 son la inhibición de la apoptosis (HKI y HKIT). la transcripción de hi stonas (LDH-A) y la migración celular (EN O-a ). las cuales favorecen el desanollo nunora!. PALABRAS CLAVE : Hipox ia . g lucó lisis. HIF -1. isoenzimas glucolítica s. células tumorales. Alvaro Marín-Hernández ABSTRACT The hypoxia-inducible fac tor 1 (HIF -1) is an imponalll key mediator during low-oxygen cellular adap ta tion. Severa l genes i ll vo lve d 111 311giogeneSlS. erythropo iesis. energy metabolism and cell surviva l are up-regulated by HIF- l. In IUIl10ur cells. HIF- I overexpress ion 3 11d ac tiva rí on is assoc iated \V irh maligllancy. developmelll 311d angiogenesis: wherea s HIF -1 low express ion has been detennined in normal tissues and benign nUllors. Atmetabolic level. HIF- I -activation stimulates transporters (GLUTi. GLUT3) and glycolytic enzymes (HKI. HKII . PFK-L. ALD-A. ALD-C. PGK I. E O-a. PYK-M2. LDH-A. PFKFB- 3) transc ription . In conseqllellce. a signifi cant incremelll in the glycolyt ic flux (lactate .ATP. and H+) and g lyco ly tic intermediares levels are arta illed. An additional role ofsoll1e oftbese HIF-induced iso fonlls as act iva tors o f surv iva l. h istones transcript iolla l ac tivat ion (LDH-A). apopto tic inh ib it ion (HKI y HKII) and cellular migration (ENO-o) pathways is discussed . KEY WORDS: Hypoxia. glycolysis. HIF-1. glycolytic enzymes. tumonr ceUs . INTRODUCCION La baja tensión de oxigeno altera la hOll1eostasis de la célula. lo que con- duce a la activación del factor induci- do por la hipoxia 1 (HIF- I). El HIF- I tiene como función incrementar la transcripción de genes cuyos produc- tos son proteínas que participan eIl la angiogénesis. la erirropoyesis. la pro- liferación celular. la remode lación vascular y el metabolislllo energético: permitiendo a la célula adaptarse a estas condiciones tan adversas (1 ). tensión de oxígeno presente en los nl- mores y las alteraciones en los meca - nismos que regulan su expresión. Por lo anterior. el HIF- I puede conside- rarse como un marcador hUlloral y un blanco terapéutico. En la mayoria de los nUllores pri- marios de cerebro. páncreas. mama. colon. ovaIio. pulmón y próstata. y sus metástasis. se detectan altos niveles del HIF-I comparados con los tej idos nOl1nales de los cuales provienen o tumores benignos (2). Las causas que promueven la sobreexpresión del HIF- l en las células hl1110rales son la baja -Recibido: 19 de agosto de 2008 Aceptado: 14 de abril de 2009 En esta revisión se analiza el pa - pe l que juega el HIF- I en la regula- ción de la glucólisis. así como las ventajas que ofrece a las cé lula s mmorales la expresión de las enzimas Instimta acianal de Cardialagia Ignacio Chávez". Depa11amenta de Bioquimica. Juan Badiana No. l . Col. Sección :A..rvI. México DE 14080. Coneo E: marillhel1111dez@yahoo.calllllL'X 146 • : • • REV I EW A RT ICL E Energy metabolism in tumor cells Rafael Moreno-Sánchez, Sara Rodríguez-Enriquez, Alvaro M arín-Hernández and Emma Saavedra Instituto Nacional de Cardiología. Departamento de Bioquímica. Tlalpan, México, Mexico Keywords casiopeinas; chemotherapy; glycolysis; m etabolic control analysis; mitochondrial metabolism; PET; rhodamines Co rrespo nde nce R. Moreno-Sánchez. Instituto Nacional de Cardiología, Departamento de Bioquímica. Juan Badiana no. 1. Tlalpan. México DF 14080, Mexico Fax: +5255 55730926 Tel: +5255 55732911. ext. 1422. 1298 E-mail: rafael.moreno@cardiologia.org.mx or morenosanchez@hotmail.com (Received 31 Octaber 2006, revised 2 Janu- ary 2007, accepted 10 January 2007) doi:, O., 11 1/j.17424658.2007.05686.x In ea rly studies on ene rgy melabolism of t umor cells, il \Vas proposed lhat lhe enhanced glyco lysis was induced by a decreased oxidative ph osphoryla - tion . Since then it has been indi scrimina tely applied to all types of tumor cells that the A TP supply is mai nly or only provided by glycolysis, without a n appro priate experimental evalua tion . In th is review, the different genetic a nd biochemical mechanisms by which tumor cells achieve an enha nced glycolytic flux a re ana lyzed . Furthermore, lhe proposed mechanisms tha t a rgua bly lea d to a decreased oxidative phosphorylation in tumor cells are discussed . As the O2 concentratio n in hypoxic regio ns o f tumors seems not to be limit ing for the functio ning o f oxidative ph osphorylation, this pa th- way is re-evalua ted rega rding oxidizable subst rate ut iliza tion a nd its contri- b ution to AT P supply versus glycolysis. In the tumor cell lines where the oxidative metaboli sm preva ils over the glycolytic meta bolism fo r AT P sup- ply, the flu x control d istribution o f both pa thways is described. The efTect of glycolytic and mitochondrial drugs o n tumor energy metabolism a nd cel- lular prolifera tion is descri bed a nd d iscussed . Simi larly, lhe energy meta - bolic changes associated wi th inherent and acq ui red resista nce to radiothera py a nd chemolherapy of tumor cells, a nd th ose determined by positron emissio n tomography, are revised. It is proposed lha t energy metabolisrn may be an altem ati ve therapeutic targe t for both hypoxic (glyco lytic) and oxidative tumors. In bioche mical and physio logical stud ies, tumo r cells a re usually c1assifi ed accord ing to their ra te of growth : low; intermedi ate; or fast [1]. For tumo rs in experimenta l ani- mals, the growth ra le is determined by size and volume, mitotic count , degree of di fTerent ia tion and thyrnid ine incorpora tion [2]. Examples of fas t-growth tumors in mice inc1ude several experimental cancers, such as Ehrl- ich asciles tumor, fi brosa rcoma 1929 and Iymphocytic leukemia L1 210; a nd in ra ts, fas t-growth l umors inc1 ude the hepatomas of Morris (3924A, 7793, 7795, 7800, 7288C, 73 168 ,3683), Reu ber H-35, Novikoff, AH 130 and AS-30D, breast carcinosarcoma Walker 256, hepatoce ll ula r carcinoma HC-252, hepatoma induced by dimethylazo benzene and DS-carcinosarcoma [1]. In human tumors, c lassifica tion is based on their his tological characteristics a nd stage of c1inical pro- gression. By their ad vanced develo pmental stage a nd metasta tic p roperties, sorne human tumors considered to be of fas t growth are breast ca rcin oma, ovarian ca r- cinoma, melanoma, thyro id carcinoma, uterine carci- noma a nd lung carcino ma [1 ,3 ]. Human primary bra in tumors, such as gliomas, glioblas tomas and medu lo- blaslOmas, a re also considered as fast-growth tumors beca use of their high ra te o f pro li fe ration (average transfer in days or weeks) and their conversion 10 a poorly different ia ted status [4,5]. Tumor ce lls ex hi bit profound genetic, biochemica l and histological differences wi th respecl to the origi nal, Abbreviati ons ALD, ak:lolase; ANT, adenine nucleotide translocase; COX, cyclooxygenase; CT, computed l omography; F2 ,6BP. fructose-2.6-bisphosphate; FDG, 18fluoro-deoxyglucose; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GLUT, glucose transporter; G6P, glucose-&-phosphate; HIF, hypoxia inducible factor; HK, hexokinase; LDH, lactate dehydrogenase; NSAID, nonsteroidal anti-inflammatory drug; PDH, pyruvate dehydrogenase complex; PET. positron emission tomography; PFK-', phosphofructokinase type '; PFK-2. phosphofruclokinase type 2; Pyr, pyruvate FEBS Journal 274 120071 1393-141 8 e 2007 The Authors Journal ccmpilat ion e 2007 FEBS 1393 147 ORIGINAL ARTICLI: Energy Metabolism Transition in Multi-Cellular Human Tumor Spheroids SARA RODRíGUEZ-ENRíQUEZ, 1* JUAN CARLOS GALLARDO-PÉREZ,I ALEJANDRO AVILÉS-SALAS,2 ALVARO MARíN-HERNÁ N DEZ,1 LlLIANA CARREÑO-FUENTES,I VILMA MALDONADO-LAGUNAS,2 AND RAFAEL MOREN O-SÁNCHEZ I I Departamento de Bioquímica, Instituto Nadonal de Cardiolog{o, Mexico, Mex;co 2 Departamentos de Bio/agio Molecular y de Pato/agio. Instituto Nadonal de Con cero/agio, Mexico, Mex;co le is thought mar glycolysis is che predominant energy pathway in caneer, partkularly in salid and poorly vascularized tumors where hypoxic regions develop. To evaluate whether glycolysis does effectively predominate far ATP supply and to identify the underlying biochemical mechanisms. the glycolytic and oxidative phosphorylation (OxPhos) fluxes. ATP/A DP ratio, phosphorylat ion patemial, and expression and activity of relevant energy metabolism enzymes were determined in multi·cellular tumor spheroids, as a model of human sol id tumors. In HeLa and Hek293 young-spheroids, the OxPhos fluxand cytochrome e oxidase protein content and activitywere similar ro chose observed in monolayer cultured cells, whereas che glycolytic flux inc reased two- ro fourfold; the contribution of OxPhos to ATP supply was 60%. In contrast, in old-spheroids, OxPhos, ATP content, ATP/ADP ratio, and phosphorylation potential dimin ished 50-70%, as well as che activity (88%) and content (3 times) of cytochrome e oxidase. Glycolysis and hexokinase increased significandy (both, 4 times); consequently glycolys is was che predom inant pathway for ATP supply (80%). These changes were associated with an increase (3 .3 times) in che HIF-I (X content. After chronic exposure, boch oxidative and glycolytic inhibitors blocked spheroid growch, although the glycolytic inhibitors, 2-deoxyglucose and gossypol (ICso of 15-17 nM), were more potent chan the mitochondrial inhibitors. cas io peina 11 - gly, laherradurin, and rhodamine 123 (ICso > 100 nM). These results suggest that glycolysis and OxPhos might be considered as mecabolic targets to diminish cellular proliferation in poorly vascularized, hypoxic solid tumors. J. Cell. Physiol. 2 16: 189- 197,2008. 2008 Wiley-Liss, Ine. The fie ld of tumor energy metabolism seemed resolved by 1956, when Warburg proposed that an energy deficiency caused by an irreversible damage of the mitochondria l function induced increased glycolysis, which presumably supported the energy demand for tumor formation and growth. Since men, it has been thought that Warburg's hypomesis applied to all or most cancer cell cypes (Weber. 200 1; Stubbs et aL, 2003; Xu et al. . 2005). Such an asseveration may indeed be particularly valid for sol id tumors, in which the lower inner oxygen concentration activates, via the hypoxia inducible factor I (H IF- I), the uanscription and translation of glycolytic genes (G LUT-I and -3, HK, phosphofruetokinase type 1, aldolase, GAPDH, phosphoglycerate kinase, enolase, pyruvate kinase, and lactate dehydrogenase) (Dangand Semenza, 1999). which in turn, stimulates the glycolytic flux. However, oxidative phosphorylation (enzyme activities and flux) has not been ana lyzed in parallel. In this regard, recent data from numerous sources on the role of oxidative phosphorylation (OxPhos) during tumor developmenc (Lampidis et al., 1983; Guppy et al .. 2002; Zu and Guppy, 2004; Rodríguez-Enríquez et aL, 2oo6a; Moreno-Sánchez et aL, 2007) have prompted a re-evaluation of Warburg's hypothesis. For instan ce, it has been shown in human (HeLa, MCF-7, HL-60) and rodent (hepatoma AS-30D) tumors that mitochondrial ATP may indeed support me acce lerated cellular proliferation rate (Sweet and Singh, 1995; Guppy et al .. 2002; Rodriguez-Enriquez et al .. 2006a) ando in con sequen ce. anti-mitochondrial drugs are able to abolish tumor growth (Rodriguez- Enriquez et al.. 2006a). For several aggressive metastasic human carcinomas (HeLa, CRL 1420 panereas, MCF-7 breast, MB49 bladder) and osteosarcomas, OxPhos inhibitors alone. such as casiopeina II-gly and rhodamines (123, 6G). or in combination with glycolytic drugs have been effectively used tO decrease the proliferation rate (reviewed in Moreno-Sánchez et al.. 2007). C2oo8WIL!:::Y LISS.INC . It should be noted. however. that most of the above-mentioned studies have been carried out with cellular suspensions or monolayer culture cells. It is usually assumed that energy metabolism of monolayer cultures (i.e .. enzyme activity. metabolic pathway flux. and sensitivity to metabolic drugs) is simi lar to mat found in solid tumors. Solid tumors maintain a complex physiological structure derived from their three-dimensional organization (i.e .• cell-matrix interactions. variations in nutdent supply due tO glucose. lactate. pH. and oxygen gradients; as well as variations in the expression of HIF- Ia and c-Myc), which might result in gene regu lation changes and. hence. in enzyme expression with respect to monolayer cultures and cell suspensions (Sutherland. 1988; Khaitan et al., 2006). This article includes Supplementary Material available from the auttlors upon request or via the Internet at http:// www.interscience.wiley.comljpages/OO21-9S4I/suppmat. Abbreviations: ANT, adenine nucleotide translocator; casll -gly. casiopeina II-gly; COX, cytochrame c oxidase; GAPDH, glyceraldehyde 3P-dehydrogenase; GLUT -1, glucose transponer 1: HK, hexokinase; rhod 123, rhodamine 123; 2-DOG, 2-deoxyglucose. Contract grant sponsor: CONACyT-Mexico; Contract grant numbers: SaJud-2002-COI-7677. SEP-2007-60517. *Carrespondence to: Sara Rodríguez-Enriquez. Departamento de Bioquimica, Instituto Nadonal de Cardiología, Juan Badiana No. I Seccion XVI. Talpan, Mexico D.F. 14000, Mexico. E-mail: saren960104@hotmail.com Received H October 2007; Accepted II December 2007 DOI: 10. 1 002ljcp.21392 189 148 Mol. Nutr. Food Res. 2009, 53, 29-48 OOI10.10021mnfr.20070Q470 Review Targeting of cancer energy metabolism Sara Rodriguez-Enríquez, Alvaro Marín-Hernández, Juan Carlos Gal lardo-Pérez, Li liana Carreña-Fu entes and Rafae l Moreno-Sánchez Departamento de Bioquímica, Instituto acional de Cardiología, Mexico, Mexico The main purpose of thi s rcv iew is 1'0 update and analyze the effcct of several antineoplastic drugs (adriamycin, apoptodi lin , casiopeinas, cisplatin, c1 otrimazole, cyclophospharnidc, diterca linium, NSAIDs, tarnoxifen, taxol , 6-mcrcaptopurinc, and a-tocopheryl succinate) and energy mctaboli sm inhibitors (2-DOG, gossypol , dclocalizcd lipophilic cations, and uncouplcrs) on tumor dcvclopmcnt and progress ion. Thc possibility thal Ihese antineoplast ic drugs currcntly used in i" vitro cancer mod- els, in chemo- therapy, or mujer study in phase 1 to I11 c1inical trials induce tumor cellular death by altering also mctabo litc concentration (i.e. , ATP), enzymc activitics, andlor cncrgy mctabolism nuxcs is assessed. It is proposed that the use of energy metabo lic therapy, as an alternative or complemen- tary strategy, might be a promising novel approach in the trcatment of canccr. Kl'ywo rds: Anticanccr drugs I Glycolysis l Mitochondria I Oxidat i"c phosphorylation Rccc i"cd: Novcmbcr 19, 2007; rcvi scd: Junc 11 , 2008; acccpted: July 27, 2008 1 Introduction The fi eld of caneer energy mctabolism sccmed resolved by 1956 when Warourg [1] proposed that lhe prime cause of cancer was an energy defi ciency caused by an irreversible damage to the mitochondria l function mat induced an increased glycolysis. Since then, severa I researchers have thought that the Warburg hypothesis app lies to all or most cancer cell typcs (2- 14), beca use one ofLh e most notorious and well-kno\Vn alterations in tumor ce ll s is certain ly an increased glycolytic eapacity, even in lhe presence of high O, eoneentration [3, 4, 15- 18]. The observat"Íon that tumors have a higher glycolytic capacity than nomlal ec ll s has fo und application in the use o fpositron emission tomography (PET) for diagnosis, mon- itoring, and treatmcnt o f canccr [19, 20). With 'S Auo re_ deoxyglueose (FDG) as traeer, PET has established lhat lhe vast majority of metastati c tumors (>90%) are highly gly- colyr-ic; and has al so a 1I0wed for lhe accurate detec tion CO!"rl'spo lldl' II(,l': Dr. Sara Rodrigucz-Enríqucz, Departamento de Bi- oquímica, Instituto Nacional de Cardio logía, Juan Badiano No. 1, Col. Sccción 16, Tlalpan , Mcxico, Mcx ico E-mail: sara.rodrigucZ@ca rdiolog ia.org.mx liax : +5255-55- 7) -09-26 Ahhl"c\' j:l1 ioJls: AlOO. aldolase; A¡\ IE autocrinc motililY factor; C as Il gly. casiopcina 11 gly; cccr, carbonyl cyanidc-J-chlorophcnylhy- drazonc; CM L. chronic mycJogcnous leukemia; CI'. cyclophospha- mide ; OLC, dcloca lized lipophilic cation; 2-00G, 2-deox yglucose; ENO. cnolase; F t.6 U1'. fructose 1,6 bisphosphalc; f"2.6 Ur. fructose © 2009 WI LEY -VCH Verlag GmbH & Co. KGaA, Weinheim (> 90%) of solitary pulmonary nodules, mediastinal and axillary Iymph nodes, colorecta l canccrs, Iymphomas, me l- ano mas, breast eanccrs, and head and neck cancers [19] . 2 Glycolysis in tumor cells 2.1 Ge neral Fast-g rowth cancers from human (Ieukemia, 1-leLa) and rodent (AS-30D, Morris 7800, Dunings LC I8, Novikolf hepatomas) show an increased g lycolytic rate (2- to 17- times) in comparison \Vith nontllmorigenic cell s (21- 231- This metabolic featllre is the consequence of glyco lytic enzymes over-ex pression indllced by (i) oncogene c-myc (glueose transporter 1 (GLUT I), hexosephosphate isomer- ase (HPll , phosphofTueto kinase type 1 (pFK I l, glyeeralde- hyde 3-phosphate dehydrogenase (GAPDH), phosphog ly- eerate kinase (pGK), and enolase (ENO)) [5] and (ii ) HIF- la (hypoxia indueible fu etor la), GLUT I, glueose trans- 2,6 bi sphosphalc; Foc" l'fluoro-deoxyglucosc ; GA I'OI-I, glyccralde- hydc ) ·phosphate dc hydrogcnase; G LUl" l. glucose transponer 1; Gl UT J. gtucose transponer J; G6 1'. glucosc 6-phosphatc; 1-1 K 1. hcxo· kinase typc 1; HK II. hcxokinase typc 11 ; 111' 1, hcxoscphosphatc iso- merase; LO II , lactalc dchydrogcnasc; 61\11', 6-mcrcaptopurinc; J1\II'A, J .mcrcaptopicolinic acid; I\ I I'T. mitochondrial pcrmcability tran. .. ilion; NSAID. nonsteroidal anti · inflanunatory drug; I'ET. positron emission lomography; I'FK 1, phosphofructo kinase type 1; I' f·K2. phospho- fructo kinasc typc 2; r GK, phosphoglyccmte kinasc; I '- g l~ ' . glycopro- tein typc P; u-TO S, u-tocophcryl succinate ( - ~ 1 :~ .. Science' "- ,,,.,,, , , .. , ..... "" www.mnf-joumal. com -- 149 ORIGINAL ARTICLE Kinetics of Transport and Phosphorylation of Glucose Cancer Cells • In SARA RODRíGUEZ-ENRíQUEZ*, ALVARO MARíN-HERNÁNDEZ, . . JUAN CARLOS GALLARDO-PEREZ, ANO RAFAEL MORENO-SANCHEZ Departamento de Bioquimica, Instituto Nacional de Cardio/agio Ignacio Chávez, Tia/pan. México Oty, Mexico Metabolic control analysis of tumor glycolysls has indicated dlat hexokinase (HK) and glucose transporter (GLUT) exert (he majn flux control (71 %). T o understand why t hey are che main controlling steps. (he G LUT and HK kineti cs and (he contenes of GLUT 1, GLUT2. GLUT3. GLUT 4 . HKI, and HKIl were analyzed in rat hepatocarcino ma AS· 30D and HeLa human cervix cancer. An improved protocol to determine the kinetic parameters af GLUT was developed with o- [2-3H-glucose] as physiologica l substrate. Kinetic analysis revealed two components at low- and h ¡ g h - ~Iucose concentrations ln bom tumor cell s. At low glucose and 37 C. the Vmax was SS ± 20 and 17.2 ± 6 nmol (min X mg protein) • whereas the Km was 0.52 ± 0.7 and 9.3 ± 3 mM for hepatoma and HeLa cells. respectively. GLUT activity was partially inhibited by cytochalasin B (ICso = 0.44 ± 0.1; Kt = 0.3 ± 0.1 ~ M ) and phloretin (ICso = 8.7 ~M ) in AS-30D hepatocarcinoma. At physiologica l glucose. GLUTI and GLUT3 were the predominant active isoforms in HeLa cells and AS-30D cells. respectively. HK activity in He La cells was much lower (60 mU/mg protein) than that in AS-30D cells (700 mU/mg protein) . but both HKs were st ro ngly inhibited by G6P. HKII was the predominam isoform in AS-30D carcinoma and HeLa cells. The much lower GLUT Vm;¡x and catalytic efficiency fI/ mJ Km) values in comparison to those of G6P-sensitive HK suggested che transporter exerts higher control on che glycolytic flux than HK in cancer cells. Thus . GLUT seems a more adequate therapeutic target. J. Cell. Phys iol. 221: 552- 559. 2009. © 2009 Wiley-liss . Ine. The glycolytic rate of human and rodent fast-growing rumor cell s. including those cumors depending on mitochondrial metabolism. is substamiallyhigher than in non-tumorigenic cells (reviewed in Moreno-Sánchez et al.. 2(07). The activation of cereain oncogenes (c-myc. H-Ros. v-src) and transcription factors. such as H IF-I a (hypoxia-inducible factor I a). induces the over-expression and increase the activity of most glycolytic enzymes and glucose transporters (Dang et al.. 1997). Metabolic control analysis applied to non-rumorigenic mammalian cells (hepatocytes. erytrocytes. skeleta l and cardiac muscle) shows that the main controlling steps of glycolysis (8(}- IOO%) are the glueose eransport (GLlfT). hexokinase (HK). and phosphofructokinase type-I (PFK- I). whereas the remaining flux control is distributed among the other steps (Rapoport et al.. 1976; Torres et al .• 1989; Kashiwaya et al .• 1994). However. in cancer cells a re-distribution of flux control might occur because such controlling stepS are the most over-expressed glycolytic proteins (Moreno-Sanchez et al.. 2007.2008). In this regard. it was recently determined by using metabolic control analysis (Marin-Hernández et al .. 2(06) that A5-30D glyeolysis was mainly eonero ll ed by HK and GLUT (up to 71 % of flux control). The rest of the glycolytic enzymes (from HP1 eo LDH) and glyeolysis branehes (peneoses monophosphate. glycogen synthesis. pyruvate branches. and ATP-demand pathways) exerted the remaining flux control; PFK- I showed negligible flux control (6%). Most of the flux control of the G6P-producing block in tumor cells might reside in HK beca use (i) the intracellular glucose concentration is high and saturating for HK (i.e .. HK elasticity is low) and (i i) the enzyme is st rongly inhibited by G6P. HKII is the predominant isoform expressed in most cancer cell s (Pedersen et al.. 2(02); this isoform may bind to che external mitochondrial membrane to rapidly consume the mitochondrial-derived ATP and generate G6P (Arora and Pedersen. 1988). It has been widely documented that che HK-maximal rate of human and rodent tumors is higher (60-420 mU/mg protein) chan that of normal t issues (0.00 1- 170mU/mg proeein) (Oskam ee al.. 1985; Mandarino et al.. 1995; Marín-Hernandez et al .• 2006; Moreno-Sánchez e lOOQ WILEY LI5S. INe . et al.. 2007). However. in me majority of the kinetic studies in cancer cells. the H K activity has been calculated from the free or cytosolic isoform. whereas me contribution of membrane-bound HK has not always been evaluated. thus. underestimating total HK activity. HK is massively over-expressed by AS-30D hepatocarcinoma (300-times vs. hepatocytes); however. both HK isoforms. cytosolic and membrane-bound. are strongly inhibited by their product. G6P (Marín-Hernandez et al. . 2006). In con sequen ce. HK beco mes one ofthe main controlling steps of tumor glycolysis. To make well-informed statements and generalizations about the behavior of this relevant glycolytic step it is then required (i) te establish what HK isoform is expressed by each particular tumor cell line and (ii) to determine ies kinetic properties. GLUT I is the most frequently isoform over-expressed in fast-growing and metastatic rumors (Medina and Owen. 2(02). However. other GLUT isoforms (GLUT3 and GLUT5) noe usua ll y found in the original tissue may also be over-expressed (Higashi et al.. 1997). GLUT over-expression has usually been determined as an mRNA or protein in crease (Nagamaesu et al. . "'brwwlatb.: G6P. "tcOIl , p~ GlUT. atumse tranIpOrtlIr; HK. ~ HPI. NI 1111 p ........... IIom1 ..... • ddldol'll SupponIna Inforn'ldol. ma)' be bnlln che onIlne _ of tHs 1I1kIo. Contnct _t sponsor. CONACyT-MÓIdCO¡ Contrxt IJW1t nJmbJrs: 80534. 60085. · CorrespondJnce lO: Sara R odrfCU1z- En rf~Z. o.partamlNO de Bioquímica, InstiunD Nadonal de Cardiología. Juan &adiano No. l . Colonia Sección, xv~ llalJ:8n 14<80, M6xieo. E ~¡j l : sararodriguez@cardiolocia.org.mx Received I J Hay 200'J; Accepted 221"'. 2009 Published online in Wiley InterScience (www.interscience.wiley.eom.), 13 August 2009. om lo.IOO2/jcp.2 188S 552 150 Rafael Moreno-Sánchez, * Sara Rodríguez-Enríquez, Emma Saavedra, Alvaro Marín-Hernández, luan Carlos Gallardo-Pérez Instituto Nacional de Cardiología, Departamento de Bioquímica, luan Badiana 1, Tlalpan, México DF, Mexico Abstract. The molecular mechanisms by which tumor cells achieve an enhanced glycolytic flux and, presumably, a decreased oxidative phosphorylation are analyzed. As the O, concentration in hypoxic regions of tumors seems not Iimiting for oxidative phosphorylation , the role of this mitochondrial pathway in the ATP supply is re-evaluated. Drugs that inhibit glycoysis and oxidative phosphorylation © 2009 Intemationa l Union of Biochemistry and Molecular Biology, Ine. Volume 35. Number 2, March/ April 2009, Pa ges 209-22 5 • E-mall: rafael.moreno@C ardiologia.org.mx or morenosancheZ@hotmail.com l. Introduction AII tumor cell types show an altered energy metabolism in comparison to their tissue of origin (Figs. 1 and 2). The best characterized energy metabolism modification in tumor cells is an increased glycolytic capacity even in the presence of a high O, concentration a'I, reviewed in ref. 2) . Several mech- anisms for the enhanced glycolysis in tumor cells have been proposed (Table 1). However, each particu lar tumor cell line has its own combination of mechanisms to increase glycoly- sis and, therefore, generalizations should be avoided. 2. Genetic regulation of glycolysis In tumor ce 115, there is an enhanced transcription of genes of several or all glycolytic pathway enzymes and transport- ers that is accompanied by an enhanced protein synthesis Abbreviations: AlD, aldolase; k.(oA. acetyl CoA; Cit, citrate; DHAP, dihydroxyacelone phosphate; ENO, enolase; F6P, fruclOse-6·phosphate; Ft,6BP, ITuctose-l. 6· bisphosphate: F2,6BP. fructose-2, 6-bisphosphate; Fum, fumarate; GAPDH, glyceraldehyde.3-phosphate dehydrogenase; o:GPDH, a-glycerophosphate dehydrogenase; GLUT, glucos@ transport@r; G6P, glucos@-6-phosphat@; Gln, glutamin@; Glut, glutamat@; HK, hexokinas@; HPI, huos@-6-phosphalE! isom@ras@; lDH, lactat@ d@hydrog@nas@; OxPhos, oxidativ@phosphorylation; 2-oXO, 2-oxoglutaral@; PDH, pyruvalE! d@hydrog@nas@ complu; PET, positron @n@rgy transf@r; PFK-t, phosphofructokinas@ Iyp@ 1; PGK, phosphoglyc@rat@ kinas@; PGAM, phosphoglyc@ral@ mUlas@; PVK, pyruvat@ kinas@; PEp, phosphoenolpyruvat@; t ,3 BPG, t.3- bisphosphogtyc@ral@; 2PG, 2-phosphoglyc@rate; 3PG, 3 phosphoglycerate; Pyr, pyruvate;TPI, trioSf'phosphat@ isom@ras@_ *Addr@ss for correspondenc@: Rafa@l Mor@no·S~nch@z, Ph.D., Instituto Nacional d@ (ardiologfa, Departamt>nlo de Bioqulmica, Juan Badiano No. 1, (01. Seccion XVI, Tlalpan, México DF 14080, Mexico. T@I: + S2SS SS73 2911 (@Xt. 1422, 129B); E-mail: rafael.moreno@cardiologia.org.mxormorenosanchez@tlotmail.com. Received 3 December 2008; acC@Pled 18 January 2009 DOI: 10.1oo2/ biof.31 Published online 11 March 2009 in Wiley Int@r$ci@nce (www.interscienc@.wilt!Y.com) are analyzed for their specificity toward tumor ce 115 and effect on proliferation. The energy metabolism mechanisms involved in the use of positron emission tomography are revised and updated. It is proposed that energy metabolism may be an alternative therapeutic target for both hypoxic (glycolytic) and oxidative tumors. Keywords: glycolysis, oxidative phosphorylation, mitochondrial function, PET, metabolic control analysis (21. It is usually assumed that these transcriptional changes lead to increased activity and pathway flux. Unfortunately, the required biochemical (metabolic, kinetic) experimenta- tion is considered " old -fashioned" and , only in few of the molecu lar biology studies, transporter and enzyme activities and flux rate have been determined. In comparison with normal rat hepatocytes, the activity of all glycolytic enzymes are overexpressed in rat AS-30D hepatoma by 2-4 times (HPI, ALD, TPI, GAPDH, PGK, PGAM, ENO, and LDH), 8- to 10-fold for PYK, and '7-300 times for PFK-l and HK (Fig. 1) (101. For human cervix HeLa cells, all enzymes including HK and PFK-l are overexpressed by 2-7 times, with the exception of PGAM and LDH which are 2-7 times lower than in rat hepatocytes (101. However, for this last case a more rigorous comparison should be made with normal uterine cervix epithelial cells, the original source, when data become available. In rat Morris hepatomas, the activities of HK, PFK and PVK are 5- to soo-fold higher than in liver (261 whereas in human breast cancer, the activities of HK, ALD, PYK, and LDH are 3.7-7 times higher than in normal tissue (271. In several human carcinomas, overexpres- sion (Table 1) of GLUT (31, GAPDH, ENO-l , PYK, and LDH (28,291 correlates with a high glycolysis rate. In contrast, in human cartilage and bone marrow cancer, glycolysis is high but only sporadic expression of GAPDH, ENO-l, and PYK is observed (291. Unfortunately, the expression pattern of the whole set of glycolytic enzymes is not always analyzed, which frequently leads to extend these observations to all types of cancer. In cancer cells, the hypoxia inducible factor ' " (HIF-1Cl) is a transcriptional factor that upregulates the expression of specific isoforms of GLUT, HK, PFK-l, PFK-2, ALD, GAPDH, 209 151 ELSEVLER The ImernationalJournal of Biochemistry & CeH Biology 42 (2010) 1744-1751 Contents lists available at ScienceDirect The InternationaI journaI of Biochemistry & CeH Biology jou rna l ho mepage: www.e l sevier.comll ocate / b i oce 1 Oxidative phosphorylation is impaired by prolonged hypoxia in breast and possibly in cervix carcinoma Sara Rodríguez-Enríquez a,< , Lili a na Ca rreño- Fuentes a , Juan Carlos Ga llardo-Pérez a , Emma Saaved ra a , Héctor Quezad a a, Al icia Vega b, Alvaro Marín-Herná ndez a, Viridiana Olín-Sandova l a, M. Eugen ia Torres- Má rquez b , Rafael Moreno-Sánchez a i Departamento de Bioquímica. Instituto Nacional de Cardiología Ignacio Chávez. México D.F. 14080. Mexico b Departamento de Bioquímica. Facultad de Medicino. UNAM, México D.F. 04510. Mexico A R TICLE IN F O ABSTRAC T Artic/e history: Received 26 M.uch 2010 Received in revised form I SJune 2010 Accepted 12July201O Available online 21 July 2010 Keywords: Glycolysis Hypoxia Mitochondria Oxidative phosphorylarion Breas[ cancer It has been assumed that oxidative phosphorylation (OxPhos) in solid tumors is severely reduced due to cytochrome e oxidase substrate restriction. although the measured extracel lular oxygen concentration in hypoxic areas seems not limiting for this ac tivity. To iden tify alternative hypoxia-induced OxPhos depressing mechanisms. an integral ana lysis of transcription. translation. enzyme activities and paeh- way fl uxes was performed on glycolysis and OxPhos in HeLa and MCF-7 carcinomas. In both neoplasias exposed to hypox ia. an ea rly transcriptiona l response was observed after 8 h (two times increased glycolysis-re lated mRNA synthesis promoted by increased HIF- Io: levels ). However. major metabolic re modeling was observed only after 24 h hypoxia: increased glycolytic protein content (t-S-times), enzyme activities (2-times ) and fluxes (4-6-times ).lnte restingly, in MC F-7 cells, 24 h hypoxia decreased OxPhos flux (4-6-fold). and 2-oxoglutarate dehydrogenase and gl utaminase activities (3-fold). with no changes in respiratory complexes I and IV activi ties. In contrast, 24 h hypoxia did not significan tly affect HeLa OxPhos flux: neither mitochondria relaeed mRNAs, protein contents or enzyme activities, although the enhanced glyco lysis beca me the main ATP supplier. Thus, prolonged hypoxia (a) targeted sorne mito- chondrial enzymes in MCF-7 but not in HeLa ceUs, and (b) induced a transition from mitochondrial towards a glycolytic-dependent energy metabolism in both MCF-7 and HeLa carcinomas. 1. Introduction For growth, solid turnors have developed strategies to rnai n- tai n the carbon source and oxygen supplies. Thus, turnors exhibit an act ive angiogenesis w hich, however, is high ly inefficient gen- erating chaotic networks, with unorganized, frag ile , and leaky new vessels ( reviewed by Nagy et al.. 2009). In consequence. rhe dynam- ics of the blood flow is affecred, leading to hypoxic regions a t 100-200 J.lm away rrom a ru nctional blood supply (Vaupel et al., 1989; Helmlinger et al., 1997; Nagy et al.. 2009 ). It has been derermined rhat the oxygen concentratio n inside well-oxygenated a reas of several carcinomas ranges fro m 30 to Abbreviations: cOX,cytochromecoxidase: HIF- I a. hypoxia-inducible factor l a: HK, hexokinase: GA. glutaminase: OxPhos. oxidative phosphorylation: POH. pyru- vate dehydrogenase complex: POK1, pyruvate dehydrogenase kinase-l; 2-OGOH, 2-oxoglutarare dehydrogenase. • Corresponding .1urhor ar: Oeparr.1menro de Bioquímica. Instituto Nacional de C.1rdiología, Juan Bad iano No. 1, Col. Sección 16, T1al pan, México D.F. 140S0, Mexico. Tel.: +52 55 55 73 29 11. E-mail address: SClren960104@hotmaíl.com (S. Rodr íg u ez-Enríquez ~ 1357-2725{S - see front matter e 2010 Elsevier Ltd. AII ríghrs reserved. doi: 1 0.1016fj.bioceL201 0.07.010 " 2010 Elsevier Ud. AII rights reserved. 80 mm Hg w hereas in the ir hypoxic regions, it may reach a value of 2.5-10 mm Hg(equivalent to 3-13 J.lM O,. caJcu lated by Horan and Koch. 2001 )(Kallinowski et al., 1989; Vaupel et al., 199 1; Hunjan et al., 1998; Erickson et al., 2003). The developmentor hypoxic regions in solid turnors is a typ ical characteristic linked ro rnalignant pheno- rype, metastasis, chemo-, immuno- and radio-therapy resistance, high genet ic instab ility and apoptosis tole rance (Graeber et al.. 1996; Bristow and Hill, 2008 ). Sorne of these processes a re rnodu- lated by HIF-1a, a key transc riptiona l factor that regulates the gene transcriptio n of prote ins involved in angiogenes is, ce llu la r prolif- era rio n, eryrhro poietic and vascu la rization pathways (Weidemann and Johnson, 2008). allowing t issues to adjust to scarce oxygen availab ili ty. At rnetabo lic leve!, HIF- l a increases the gene t ran- sc ript ion of speci ftc isoenzyrnes of alrnost all g lyco lyt ic enzyrnes and transporte rs (reviewed in Marín· Hernández et al., 2009); in consequence. the glycolyt ic flux increases by at least 2-ti rnes in the rnajority of neoplasias (Altenberg and Greulich , 2004; Walenta e t al.. 2004) . In spite of the hypoxic-glyco lytic activation, the tumor intracel- lular ATP pool drastically diminishes (30-60%) w hereas phosphate augrnents (Muelle r-Kl ieser et al., 1990; Heerle in et al., 2005;