UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE QUIMICA Ana 1 ¡ si -r - de la demanda de equipo y maquinaria para la Industria Química en México nar.q 1 -q77 - j982' E- - . - . - . . Ivonne Dudet Lions Ingeniero Químico 1978 d UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. JURADO ASIGNADO ORIGINALMENTE. PRESIDENTE: VOCAL : SECRETARIO: ler. SUPLENTE: 2' SUPLENTE Ing. EDUARDO ROJO DE REGIL Ing. JOSE LUIS PADILLA DE ALBA Ing, JOSE GIRAL BARNES Ing, EMILIO BARRAGAN HERNANDEZ Ing. JOSE FRANCISCO GUERRA RECASENS SITIO DONDE SE DESARROLLO EL TEMA: DIVISION DE ESTUDIOS SUPERIORES FACULTAD DE QUIMICA SUSTENTANTE: I.VONNE DUDET LIONS ASESOR DEL TEMA: ING. JOSE GIRAL BARNES. Esta es la segunda de una serie de monografías cuyo propósito es ilustrar los estudios metodo lógicos y su aplicación práctica que ha venido desarrollando el Grupo de Desarrollo de Tecno- logfa. División de Estudios Superiores, Facul- tad de Química de la Universidad Nacional Autó noma de México, con el soporte técnico Y eco- nómico de Du- Pont, S. A. de C. V., el Consejo Na- cional de Ciencia y Tecnología y la Organiza- ción de Estados Ainericanos. Como se indica más adelante, el presente traba jo es la aplicación de una metodología para - planear de una forma racionalizada la fabrica- ción de equipo y maquinaria necesaria para la industria química durante 1977 a 1982. CILIDAD UNIVERSITARIA, SEPTIEMBRE DE 1978. Quiero agradecer de manera muy especial al Ing. José Giral y al Lic. Antonio Bolívar su colaboración en la realización de este trabajo. Así como también a todas las personas que con su apoyo físico y moral ayudaron a que se realizara este trabajo. Una lista de estas personas seria intermi- nable, a cada una de ellas, muchas gracias. I N D I C E SINOPSIS, OBJETIVOS Y CONCLUSIONES. Primera Parte. Marco general. 1. Planteamiento y consideraciones generales. Antecedentes. Importancia de los bienes de capital en México. Importaciones previstas de maquinaria y equipo. Aspectos tecnológicos. Algunos obstáculos en la fabricación de bienes de capital. Requisitos para la producción de equipo y maquinaria. 2. Clasificación y caracterización de bienes de capital. 3. Situación actual de la industria de bienes de capital en México. 4. Situación actual de la industria quimica en México. 5. Análisis de fabricación de equipo y maquinaria. Estandarización de equipo y maquinaria. Métodos de fabricación de equipo. Materiales para fabricación de equipo. Segunda Parte. Análisis de bienes de capital para la industria quimica en México para 1977 - 1982. 6. Objetivos. 7. Metodologia. 8. Resultados, conclusiones y recomendaciones. Coeficientes tecnológicos de la inversión. Desglose de la inversión esperada. Análisis de insumos de la inversión esperada. Análisis de los equipos y maquinarias de proceso más comunes en los proyectos considerados. Recomendaciones generales. Apéndices. I - SINOPSIS, OBJETIVOS Y CONCLUSIONES Este trabajo tiene como objetivo, estudiar el problema de bienes de capital en lo que se refiere a la industria química, aplicando una me todología, propuesta por el Grupo de Desarrollo de Tecnología de la UNAM la cual se detalla más adelante. El trabajo se ha dividido en dos partes: En la primera parte, marco general, se habla de un panorama gene ral en la industria de bienes de capital en México, importaciones, deman da y producción nacional; se detallan las diferentes clasificaciones que existen en las publicadas en la literatura para equipo y maquinaria y se propone una clasificación que de acuerdo a los propósitos de este tra bajo es la más adecuada. De acuerdo a la clasificación propuesta se des- cribe brevemente cada uno de sus apartados, poniendo en un capitulo apar te a la industria química. Se hace una breve descripción de los equipos considerados en este trabajo y de acuerdo a los apartados de la clasifi- cación se habla de estandarización de equipo, métodos de fabricación y materiales para fabricación de equipo. La segunda parte, análisis de la demanda de bienes de capital pa ra la industria química en México en 1977 - 1982, contiene los objeti— vos, una amplia explicación de la metodología y las conclusiones y reco- mendaciones del trabajo. Por último se incluyen tablas y apendices y una serie de diagra- mas de flujo, que sirvieron de base para este estudio y que son los pro yectos que se esperan para 1977 - 1982 en la industria química en México. En las tablas se incluye el desglose de lainversión esperada para la in- dustria, tipo de tecnología y por tipo de insumos de acuerdo a los in— cluidos en el desarrollo de un proyecto. Las principales conclusiones y recomendaciones de este trabajo son las derivadas de las tablas como los coeficientes tecnológicos de la 2 - inversión, desglose de la inversión esperada, análisis de los equipos y maquinarias de proceso más comunes en los proyectos considerados. Se recomienda a instituciones especificas relacionadas con el t.e ma que lleven a cabo un estudio basado en esta metodologia ya que ellos cuentan con mayores recursos tanto humanos como económicos para poderlo efectuar y obtener datos más exactos. P R I M E R A P A R T E MARCO GENERAL 4 - 1. PLANTEAMIENTO Y CONSIDERACIONES GENERALES Antecedentes. En varios paises actualmente en desarrollo,* el proceso de indus- trialización se inició después de la segunda guerra mundial, con la fa— bricación de bienes de consumo inmediato tales como alimento, vestido y calzado. A medida que se fué integrando esta etapa se avanzó también en la sustitución de importaciones de bienes de consumo duradero, bienes in termedios y materias primas, para lo cual se otorgaron subsidios y faci- lidades para la importación de equipos para industrias. Se llegó a con— tar as! con una industria que permite satisfacer la demanda interna de la mayor parte de bienes de consumo e intermedios, pero se desalentó la fabricación de maquinaria y equipo. Con lo anterior se puede considerar que las dos primeras etapas del proceso de industrialización quedaron prácticamente cubiertas. La tercera etapa de desarrollo industrial, relativa a la fabricación de bie nes de capital, es la que concierne a este trabajo; dicha tercera etapa se inició parcialmente en los años sesenta con la fabricación de los pri meros biEnes de capital producidos en forma sistemática, entre los cuales se puede mencionar maquinaria agrícola, maquinaria para la industria de la construcción, montacargas, taladros eléctricos de mano, compresoras de aire y gas, herramientas neumáticas de corte y equipo de transporte, que se puede considerar como el subsector de bienes de capital más desa- rrollado en México. Importancia de los bienes de capital en México. La demanda de equipo y maquinaria está directamente relacionada con la instalación y expansión de plantas industriales, as! como con la compra de equipo en otros sectores de la economía. En este sentido Méxi- co ha experimentado una demanda elevada y constante debido a su alta ta- sa de inversión interna, de] orden del 20% mayor que la de Estados Unidos S - y Reino Unido así como respecto a la de varios paises en vías de desarro lo, aunque otros países como Japón, Francia y España la han superado. La participación de la industria, excluyendola minería, en el PIB, aumento de 32. 4'.,, en 1970 a 33. 7% en 1974. El crecimiento real que estas cifras implican es de] 7% anual, superior al de la economía en su conjunto, que fué de¡ 6%. Lo anterior significa que el sector industrial es uno de los más, dinámicos de la economía, y a consecuencia de esto es que la demanda de bienes de capital ha crecido ininterrumpidamente. ( 4). La demanda interna total de estos bienes, que en 1974 fué de 121, 115 mil".ones de pesos y en 1970 de 77, 126 millones de pesos a pre— cios de 1974, con una tasa de crecimiento promedio de 12%, lo cual inclu ye a todo el sector metalmecánico que comprende: el grupo de productos metálicos, principalmenente productos de paileria, calderas, quemadores, intercambiadores de calor y otros productos intermedios. El grupo de ma- quinaria no eléctrica incluye principalmente maquinaria y equipo para la industria petrolera, de construcción y mineria, maquinaria para trabajos metales, maquinas - herramientas, maquinaria para la industria de alimen- tos y bebidas, rodamientos, filtros, algunas bombas y válvulas. El grupo de maquinaria eléctrica, donde los más importantes son motores, generado res, transformadores y ciertos equipos industriales. Y por último el gru po de equipo de transporte. Al rápido crecimiento de la industria debe sumarse el aumento de precios. Por el año de 1985 se ha calculado una demanda de eculpo de 423, 923 milliones de pesos ( también a precios de 1974) y se estima que el país deberá realizar un gasto al exterior de 247, 000 millones de pesos, o sea casi la mitad del total. Frente a la demanda señalada, la producci0n interna de equipo y 6 - maquinaria, a pesar de su rápido incremento en la primera mitad de esta década, es aún reducida; el valor agregado alcanzó los 10, 715 millones de pesos en 1974 y experimentó un crecimiento real de] 10. 1% anual en el periodo de 1970- 1974. Sin embargo, para 1974 apenas constitula el 1. 6% del PIB y el 4. 8% del producto industrial. Comparando con otros paises de nivel de desarrollo similar, el contraste es marcado. Brasil en 1959, superaba ampliamente la proporción que México logra quince años después y que actualmente es inferior a la de Chile y Argentina. En términos de valor bruto de la producción, la fabricación nacional representó 96, 740 millones de pesos en 1974 y llegará a 195, 625 inillones de pesos en 1980. Esta situación nos indica que de mantenerse la actual estructura, cada año la fabricación de maquinaria y equipo tenderá a cubrir una menor pro porción de la demanda total, con grave perjuicio para la balanza comer— cial y para nuestra independencia económica y politica. ( 6) Importaciones previstas de maquinaria y equipo. Al analizar las importaciones de equipo y maquinaria se observa una tendencia acelerada hacia el alza. Las compras crecieron a una tasa promedio anual de 14. 5% durante 1970 a 1974, de los 16, 865 millones de pesos a 28, 077 millones de pesos. Esto se debe a un aumento tanto en pre cios como en volúmen, sin embargo se considera que en términos reales la tasa de incremento ha sido alrededor del 12% anual. Las importaciones de equipo y maquinaria, representaron el 65, 10 del total de las importacio— nes. Las proyecciones de producción interna en el sector metalmecáni- co para el año de 1985 ( a precios de 1974), dan una cifra de 350, 361 m - i llones de pesos. El desglose de importaciones para 1985 a precios de 1974 será: millones de pesos Sector metalmecánico 96, 997 Grupo productos metálicos 4, 863 7 - Grupo maquinaria no eléctrica Grupo maquinaria eléctrica Grupo material y equipo de trans- porte millones de pesos 46, 759 15, 045 30, 330 Todo lo anterior nos demue, ra que a pesar de los esfuerzos rea- lizados, los resultados que se han logrado son insuficientes y dada la magnitud de las cifras de importación señaladas, as! como la dificultad de que el país genere divisas que se requieren para satisfacer estas ne- cesidades de importación de los bienes que no se producen o se producen en forma insuficiente para cubrir la demanda, es de gran importancia el impulsar la fabricación de bienes de capital. ( 6) Este sector es de gran importancia porque provee la maquinaria que servirá de base a los demás sectores de la industria, así como a la agricultura y los servicios. As! mismo su configuración económica ten— drá gran repercusión sobre el resto de la economía, además de que su de- manda de insumos require de una mezcla de tecnología avanzada con alto contenido de ingeniería de diseño, de mano de obra calificada y de capi- tal, que combinados logran una mayor eficiencia en la producción. Aspectos tecnológicos. La tecnología incorporada a los bienes de capital importados, as! como la que se adquire por medio de la inversión extranjera directa y en acuerdos de transferencia, constituyen la base tecnológica sobre la cual opera la industria nacional, dado que es insignificante su gene ración en el país. Lo anterior aunado a la importación directa de equipo crea una fuerte dependencia tecnológica. La industria se puede clasificar en cuatro categorías tecnológi gicas: 8 - 1. Industrias de conversión física. Básicamente tecnología de equipo; 2. Industria de producto. Básicamente tecnología de proceso; 3. Industrias de proceso. Básicamente tecnología de operación. 4. Industrias de operación. Básicamente tecnología de opera— ción. En dos de ellas ( la basada en tecnología de equipo y la basada en tecnología de operación) la tecnología se adquiere generalmente en pa quetes que incluyen el equipo. En las otras dos categorias ( la basada en tecnología de proceso y en tecnologia de producto) las bases del diseño están tan relacionadas a la adquisición de la tecnología que no es extra ño que el 60% de] equipo se tenga que adquirir en el país licenciador de la tecnología. ( 7) Alqunos obstáculos a la fabricación local de bienes de capital. Todo lo que se ha dicho anteriormente refuerza el porqué de la situación que prevalece en México y otros paises en desarrollo en torno a los bienes de capital. Sin embargo, hay que analizar los problIemas que se presentan a la fabricación local de estos bienes, unos están relacio- nados con las características peculiares de laproducción de equipo y ma- quinaria y otros son relativos a los sectores usuarios. A) Las empresas oferentes de tecnoloda, que normalmente son em presas productivas situadas en los paises industrializados, no están interesadas en participar en proyectos en paises en desarrollo, o bien aprovechan su situación de ventaja de di- ferentes maneras: cobrando regalías muy altas, vendiendo el equipo caro ylo innecesario, controlando la distribución, o bien, debido al mejor conocimiento del proceso de fabrica— ción, tratando de retener partes componentes de] equipo o 9 . algunos puntos estratégicos de la tecnologia. B) Los empresarios nacionales han mostrado falta de interés por participar en empresas que produzcan equipo y maquinaria. De hecho, la mayor parte de las empresas que operan en el pais tienen una alta participación extranjera, cumpliendo inu chas de ellas una función principalmente de ventas de equipo importado. Esta falta de interes se puede explicar por la ba ja rentabilidad que ofrecen estos proyectos, la cual va aso - t ciada con algunos factores como son: largas curvas de apren- 1 dizaje que hacen los proyectos sean de lenta maduracion, po- ca protección con respecto a otras actividades económicas, altos riesgos, elevados costos de la tecnologia y la insegu- ridad de la demanda, la que muchas veces es generada por una o dos empresas solamente. Esta última situación origina que se presenten grandes variaciones de la demanda con el tiem- po, con la consiguiente necesidad de un financiamiento espe- cial para inventarios, el que debe ser en condiciones muy fa vorables. C) Los consumidores nacionales, constituidos en su mayor parte por grandes empresas, presentan muchas veces resistencias a la instrumentación de politicas de sustitución de importa— ciones de equipo y maquinaria. Las razones parecen obvias, ya que estas empresas, por lo menos al inicio de la fabricación nacional, tendrian que com prar los equipos más caros y posiblemente con inferior cali- dad, además de perder parcialmente la libertad de elección en cuanto a proveedor, fechas de entrega y otros aspectos de la adquisición. Este problema se presentará también a las em presas de] sector público que están encargadas de realizar un programa de inversiones, en un tiempo determinado y con un presupuesto fijo. 10 - D) Existen además otros factores de indole institucional, como son: el grado reducido de prortecci6n que se les otorga a los proveedores de equipo y maquinaria; las reglas de finan- ciamiento que fijan algunos organismos internacionales, los que permiten a las grandes empresas productoras de equipo de los paises desarrollados competir por abajo de sus costos me dios; las prácticas de financiamiento atado que son comunes para otorgar créditos a los paises en desarrollo. eg. ilitos para la producci6.n de equipo y maquinaria. Para un país como México, la fabricación de bienes de capital tiene ventajas importantes siempre y cuando se realicen en forma apro- piada. Las dos condiciones esenciales para esto son: la concentración de algunos bienes de producción y el logro deunaproducción eficiente, para poder vendera unprecio cercano al internacional. Lo primero es fundamental, en cuanto a que el pais no debe pre- tender ser autosuficiente en todos los equipos que importa. En algunos casos es muy costoso pr-,ducir -al equipo en el pais, porque el mercado es reducido, porque los insumos materiales de] proceso de producción son ca ros, o porque se requiere de recursos con los que no se cuenta en el pais. En otros casos, la fabricación interna puede ser viable y los equipos pueden producirse a costos razonables. El bajo costo de la mano de obra, el aprovechamiento de la infraestructura o bien de instalacio-- nes existentes, pueden contribuir a disminuir el costo de fabricación de nuevos equipos. En paises en desarrollo como México, es dificil lograr el adies— tramiento de la mano de obra y la capacitación tecnológica separados de una necesidad directa para su utilización, sobre todo cuando se trata de capacitar a técnicos de nivel medio indispensables en la producción de artículos de alta precisión. Se puede enfocar esta capacitación como un servicio que se genera conjuntamente con la producción de equipo y maqui naria. El país se vería obligado de esta manera a canalizar más recursos para la calificación de mano de obra. En cuanto al segundo punto, un precio elevado de la maquinaria producida en el país puede provocar una baja en la inversión industrial general, pues se aumenta el costo de los bienes de capital en relación al flujo de ingreso futuro que generan. Es cierto que el precio interna cional de algunos bienes de este tipo se encuentra subsidiado por los propios gobiernos de los paises exportadores y a un fabricante nacional tal vez no le sea posible sostener esos precios, pero esos bienes hay que distinguirlos de los demás. Las ventajas de producir algunos bienes de capital en el país, incluyen el logro de una mayor independencia económica, además de cultu ral y política. Aunque el déficit de la balanza comercial, provocado en gran parte por la importación de bienes de capital, se ha podido finan- ciar hasta la fecha, la producción interna de maquinaria y equipo libera a la formación de capital de restricciones de balanza de pagos. Además, dado que los insumos para la industria son nacionales en su mayor parte, la inversión tendrá un multiplicador interno mayor. Uno de los objetivos de este trabajo, es el de tratar de ayudar a la solución de] problema demostrando la aplicación de una metodología para la planeación de la fabricación racionalizada de equipo y maquina- ria para México y paises en desarrollo. 12 - 2. CLASIFICACION Y CARACTERIZACION DE LOS BIENES DE CAPITAL Existen muchas formas de definir y clasificar los bienes de cap¡ tal. Una definición adecuada para nuestros propósitos, podría ser la si- guiente: Bienes de Capital son equipos para la producción en la indus— tria metalúrgica, mecánica, eléctrica y de equipo de transporte. Las clasificaciones de equipo más usadas son las siguientes: La Clasificación Uniforme de Comercio Internacional ( CUCI) de las Naciones Unidas, en la sección 7 dedicada a maquinaria y material de transporte abarca los siguientes capítulos: CAPITULO 7. 1 Maquinaria, excepto la eléctrica. CAPITULO 7. 2 Maquinaria, aparatos y utensilios eléctricos. CAPITULO 7. 3 Material de transporte. En la sección 6, que corresponde a artículos manufacturados, clasificados principalmente según el material, se incluyen mu— chos artículos que encajan, por sus funciones, dentro de los productos a considerar en el sector bienes de capital. Nomenclatura Arancelaria de Bruselas ( NAB).- Su finalidad es esencialmente arancelaria y no contempla, como la anterior, fi nes estadísticos, agrupa los productos en orden progresivo, es to es: desde materias primeras hasta el producto elaborado; en diferentes secciones y capítulos. Por ejemplo, en la sección XV se incluye metales comunes y manufacturas de estos metales en la sección XVI incluye máquinas, aparatos y material eléc— trico; en la sección XVII materiales de transporte y en la Sec ción XVIII, instrumentos, equipo científico, etc. Clasificación Internacional Industrial Uniforme ( CHU). Su principal objetivo es agrupar e identificar las actividades in 13 - dustriales, tampoco clasifica especialmente los bienes de cap¡ tal, sino que se encuentran ubicados en los capitulos 35: manu Facutras de productos de metal, excepto maquinaria y equipo de transporte; 36: Manufactura de maquinarias; excepto eléctrica; 37: maquinaria eléctrica, aparatos y partes; 38: manufactura de equipo de transporte y 39: otras manufacturas diversas. Clasificación en Grandes Categorias Económicas ( CGCE). Esta clasificación ha sido preparada por la Oficina de Estadistica de las Naciones Unidas, en base a las secciones de la CUCI, que integran 19 Categorias destinadas a proporcionar elemen- tos en la clasificación CGCE que permitiesen a los usuarios obtener agregados m¿ s comparables, dentro de lo posible, a los de las tres clases fundamentales de] sistema de Cuentas Nacio- nales: Bienes de Capital, Intermedios y de Consumo. En ésta clasificación los bienes de capital se agrupan en lo esencial dentro de la categoria 4 que incluye Maquinaria, otros bienes de capital excepto equipo de transporte y accesorios. Permite sin embargo, con facilidad agrupar los bienes de capital, apar te de] material de transporte industrial. Clasificación según uso o Destino Económico ( CUODE). Esta es otra clasificación preparada por las Naciones Unidas, también con fines estadisticos, que agrupa los bienes de capital de acuerdo con la actividad económica a que se destinan: a agri- cultura, industria y transporte. Estas clasificaciones son las que se tienen a nivel internacio-- nal. A continuación se indican clasificaciones de bienes de capital que se han elaborado en México. En México la Mejor Inversión ( EMMI). No se ha tratado en par- ticular la importación de bienes de capital sino que se ha con siderado dentro de los diferentes sectores industriales. El 14 - criterio que usaron para esta clasificación está fundamentado en la tarifa del impuesto general de importación; analizando básicamente los capitulos 82 y 84, se llegó a clasificar 19 sub -sectores o familias y que presentan en detalle las importa ciones realizadas en el sector maquinaria y equipo, excepto lo eléctrico, indicando además si se produce o no en México, y si ésta producción es o no suficiente para cubrir la demanda na- cional . Estos son: 1. Herramientas. 2. Calderas y turbinas. 3. Equipo de bombeo y compresión. 4. Equipo para el tratamiento térmico, S. Filtros y centrifugas. 6. Equipo para el manejo de materiales, 7. Maquinarias de construcción. 8. Maquinaria e implementos agricolas. 9. Maquinaria para la industria alimentaria. 10. Maquinaria para las industrias del papel y las artes gráfi cas. 11. Maquinaria textil. 12. Maquinaria para la industria metalúrgica. 13. Maquinarias - herramienta. 14. Maquinaria para el trabajo de winerales. 15. Maquinaria para la industria del plástico. 16. Cajas de fundición y moldes. 17. Rodamientos. 18. Maquinaria para empacar. 19. Válvulas. Clasificación de] Grupo ONUDI- NAFINSA. La Gerencia de Proyec- tos y programación de Nacional Financiera, con la colaboración de expertos de la Organización de las Naciones Unidas para el Desarrollo Industrial, ha emprendido un estudio extenso, enca- is - minado a programar y promover proyectos de inversion para el desarrollo de] sector productor de bienes de capital. Este grupo ha tomado como base para la clasificación de bienes de Capital, la definición que aparece al comienzo de] capitulo y la definición de CUCI llegando a lo siguiente: equipo eléc- trico, mecanico y otro equipo no eléctrico y sus principales partes y componentes utilizados para la producción en ramas selectas de la economia; se excluyen equipos utilizados para otras ramas, como equipo para la industria de transporte, bie- nes que no se utilizan directamente para la producción, como maquinas de oficina y equipo auxiliar como tuberia, alambre y accesorios. Esta definición tiene como ventaja la de concen- trar la atención en la maquinaria y equipo que requiere promo- verse en el pais. Para identificar las lagunas en la producción de] sector de bienes de capital, tomaron como base los datos de las proyec- ciones que llevaron a cabo parael perfodo de 1976 - 1980 con base en macroproyecciones de demanda e ¡ m ' portaciones, para bie nes de capital especificos, modificados a la luz de varios pro puestos de expansión y nuevos proyectos que se estan actualmen te considerando o implementando. Estas proyecciones se lleva- ron a cabo para 26 grupos de bienes de capital, lo cual pro- porciona una identificación razonable de aquellas ranias de bie nes de capital en las que habrá mayor demanda y como consecuen cia importaciones sutanciales. Por lo tanto se puede conside- rar que es una clasificación adecuada de bienes de capital, es pecificamente para México, ya que se está haciendo énfasis en los que realmente son necesarios y además hay posibilidades de que sean producidos. Dichos bienes se han clasificado en 26 grupos, bajo tres enca- bezados principales: 16 - a) Equipo no eléctrico usado en varios sectores de producción: 1, Equipo no eléctrico para generación de energía. 2. Maquinas - herramienta. 3. Maquinarias para trabajos sobre metal. 4. Maquinaria para empaque, básculas y rociadoras. S. Equipo para calefacción y enfriamiento. 6. Bombas, compresoras y centrifugas. 7. Equipos para carga, transporte y elevación. 8. Otras máquinas. 9. Partes de maquinaria y accesorios b) Equipo no eléctrico usado en sectores especificos de produc ción: 10. Equipo para la manufactura de hierro, acero y metales no ferrosos. 11. Equipo para mineria, construcción y producción de cemen tos. L2, Equipo para producción de pulpa y papel 13. Equipo para azúcar y alimentos. 14. Equipo para productos quimicos y fertilizantes. 15. Eqpipo para textiles. 16. Equipo para la agricultura. 17. Maquinaria partes y accesorios. c) Equipo eléctrico: 18. Maquinaria para generación de energia eléctrica. 19. Transformadores, interruptores, motores y aisladores. 20. Aisladores de porcelana, chumaceras, para alto voltaje. 21. Equipos para telecomunicaciones. 22. Medidores eléctricos e instrumentos de control. 23. Equipo eléctrico, y otras herramientas. 17 - 24. Hornos eléctrico, aparatos eléctricos para soldar y cor tar. 25. Otros equipos eléctricos. 26. Bienes de capital no identificados especificamente. El Grupo de Desarrollo de Tecnologfa ha venido haciendo investi- gaciones en los diferentes aspectos de la industria, entre los cuales en tra el presente trabajo sobre bienes de capital y debido a la cantidad de información que se necesita, se ha tenido que recurrir a elaborar una clasificación para cumplir sus propósitos. Se hizo esta clasificación de acuerdo a las necesidades de éste trabajo, ya que las clasificaciones que existen están hechas siguiendo el enfoque de actividad comercial, co mo puede ser la importación y exportación. La clasificación que se propo ne está enfocada a la planeación de un programa para la fabricación ra- cionalizada de bienes de capital y que sirva de referencia para: Organizar la información estadistica de usos, costo y vida pro medio, para cada tipo de equipo. Identificar y analizar las diferntes alternativas de equipo pa ra un mimo uso. Evaluar diferentes técnicas para la manufactura de cada pieza principal de equipo. Analizar las posibilidades de estandarizacion, importación, mercado, usos y fabricación de las principales piezas de equi- po. Como bienes de capital se consideran todos aquellos equipos y ma quinarias, que producen entradas de dinero al pais. Para los fines de éste trabajo la clasificación es la siquiente: is - A . Usos En este primer punto se consideran los equipos de acuerdo al ti- po de industria a que son destinados, basándonos en la clasificación de industrias por sus características tecnológicas, la cual se menciona en la introducción. Agricultura. En este punto se cuentan los siguientes: 1. Maquinaria y aparatos para preparar, trabajar y cultivar la tierra. 2. Maquinaria y aparatos para recolección, trilla y clasifica ción d eproductos agrícolas. 3. Tractores, excepto aquellos para la combinación tractor -re mol que. 4. Maquinaria y artefactos mecánicos para Iaagricultura. 5. Prensas usadas en vinicultura, etc. 6. Otras máquinas para la agricultura Transportación. En este renglón se consideran los siguientes componentes: 1. Construcción y reparación de embarcaciones. 2. Construcción y reparación de equipo ferroviario. 3. Vehículos automotrices, tractocamiones para trailers, acce sorios y refacciones. 4. Motocicletas, vehículos de tracción animal y propulsión a mano y refacciones. 5. Aviones y sus partes. Mineria, petrólero y construcción. 1. Apisonadoras mecánicas. 2. Excavadoras, aplanadoras, perforadoras, etc. 3. Trituradoras, clasificadoras, moldeadoras, etc. 4. Maquinaria para trabajar vidrio. 19 - Industria de transformación. a) Industria del papel y artes gráficas. 1. Maquinaria para la fabricaic6n y acabado de pasta celu lósica de] papel y de] cartón. 2. Guillotinas para papel y otras maquinarias para fabri- cación de articulos de pasta de papel y cart6n. 3. Maquinaria para encuadernar. 4. Maquinaria para fundir y componer tipos. 5. Otras máquinas de imprenta. b) Industria quimica. Se consideran como industria quimica, los presentados en la clasificación por caracteristicas tecnológicas, y se trata por separado. c) Industria de trabajo sobre metal. 1. Máquinas y herramientas para trabajo sobre metal. 2. Máquinas para trabajar metal que no sean máquinas - he rramientas. 3. Convertidores, calderas de colados, lingoteros y máqui nas de colar. 4. Trenes de laminar y sus cilindros. 5. Máquinas y aparatos de gas para soldar, colar, etc. d) Industria de] cuero. 1. Máquinas para separar o rebajar. 2. Máquinas para igualar, cortar o dividir. 3. Máquinas para achaflanar, adelgazar o rebajar. 4. Máquinas para reforzar, acanalar o ranurar, o moldear. 5. Máquinas para restirar, montar o engrapar. 6. Máquinas que ejecuten dos o mas operaciones. 7. Máquinas para la preparación y trabajo de los cueros. 8. Máquinas para fabricación de calzado. 20 - e) Industria eléctrica. 1. Maquinaria para generación de energía eléctrica. 2. Transformadores, interruptores. 3. Aisladores de porcelana, bushings, etc, para alto vol- taje. 4. Equipos para telecomunicaciones. 5. Medidores eléctricos e instrumentos de control. 6. Equipos eléctricos y otras herramientas. 7. Hornos eléctricos, aparatos eléctricos para soldar y cortar. 8. Otros equipos eléctricos. f ) Of icina. 1. Máquinas de escribir, y máquinas para autentificar che ques. 2. Máquinas calculadoras, para contabilidad y máquinas análogas con mecanismos calculadores, incluso computa- doras electrónicas. 3. Máquinas de estadística que calculan a base de tarje- tas perforadoras o cintas. 4. Copiadoras, impresoras de sobreescritos, etc. B. Grado de Estandarización Estándar, producción en Masa. Semi - estándar, línea de producción. Fabricación individual. C. Método de Fabricación Fundición. Maquinado. Metalisteria. Otros. 21 - D. Materiales de Construcción Acero. Acero noxidable. Aleaciones especiales. Mddera. Mamposteria. Plástico. En el primer punto de la clasificación, relativo a usos, se enu- meran las industrias que abarca cada sector. Los siguientes puntos de la clasificación, que son estandarización, métodos de fabricación y materia les de construcción, se describen en el capitulo de análisis de fabrica- ción de equipo y maquinaria. 22- - 3. SITUACION ACTUAL DE LAINDUSTRIA DE BIENES DE CAPITAL EN MEXICO En este capitulo se describe brevemente la industria en general indicando algunos datos sobre demanda, prducción e importaciones de bie- nes de capital. En esta parte no se incluye ala industria química, ya que se le dedica un capitulo por separado. Se consideró de interés incluir esta parte, porque nos da un pa- norama mas amplio para poder situar a la industria química y ver cual es su situación con respecto a las demás industrias. Agricultura. Maquinaria e implementos agrícolas: Tomando en cuenta la producción actual, las importaciones en este sector durante 1974 fueron de 2, 495 millones de pesos, distribuidos en máquinas e implementos para el cultivo y pre- paración de suelos y en máquinas cosechadoras y trilladoras, a pesar de que ya los implementos, maquinarias y equipos son fa- bricados en México con alto grado de integración. Existen ocho compañías, la mayoría de las cuales reciben asis- tencia técnica de firmas extranjeras. Estas empresas producen tractores, arados rastras, cosechadoras y otros, y están cu- briendo casi toda la demanda, excepto la de máquinas de mayor tamaño, como se mencionó antes. ( 6) Material y equipo de transportación. De acuerdo a las importaciones, la demanda, de este sector en 1974 fué de 41, 300 millones de pesos, teniendo mayor partici- pación el renglón automotriz y tractocamiones para trailers, con 23, 157 millones de pesos, siguiendo en importancia el ren- glón de construcción y reparación de equipo ferroviario, con 2, 961 millones de pesos, construcción y reparación de embarca- 23 - ciones con 2, 031 millones de pesos, aviones y sus partes 690 millones de pesos, el resto ( 113, 061 millones de pesos) está comprendido por carrocerías, motores, accesorios Y refaccio- nes, motocicletas y similares vehículos de atracción animal y propulsión a mano. Se aprecia que, conforme a las proyecciones para 1980 la deman da en este sector será de 83, 557 millones de pesos y la produc ción de 71, 900 millones de pesos con lo que no se podrá cubrir la demanda y se prevee que las importaciones serán de 16, 575 millones de pesos. ( 6) Mineria, Petróleo y Construcción. Equipo para minería: La importación en 1974 de este sector representó un monto de más de 700 millones de pesos, siendo los principales rubros, máquinas trituradoras, clasificadoras, cribadoras y lavadoras. Existe producción nacional de algunos equipos, sin embargo, ésta no alcanza a satisfacer la demanda presentada principal- mente por las industrias minera, cementera y siderúrgica. Equipo para la construcción. La maquinaria para la construcción de todos tipos se construye en México por compañías que emplean tecnología extranjera. Sin embargo, las importaciones en 1974 alcanzaron la cifra de más de 600 millones de pesos, principalmente en máquinas escarcia- doras de concreto, raspadoras y explanadoras entre otras, es obvio que este mercado tiene un gran atractivo y se puede empe zar su conquista por medio de ensamble inicialmente y una inte gración programada. Se debe alentar a las companlas exitentes y a nuevos inversionistas, para facilitar el incremento de la producción y cubrir rápidamente el crecimiento de la demanda y exportación, para la que se considera que hay buenas posibili- dades. La normalización de tipos y medidas contribuirá al mejo 24 - ramiento de la producción. ( 3) Equipo para producción de cementos. Mientras ciertos componentes simples del equipo para fabricar cemento se producen en México, la mayor parte del equipo de alimentación, como quebradoras primarias, molinos de bolas, hornos rotatorios ( excepto para pequeñas y medianas plantas), filtros y enfriadores de clinker no se producen. Durante los años 1976 - 1980 se requerirá de 2 a 3 molinos con una capa- cidad de 1, 500 a 2, 500 Ton. por día. El valor de la maquina- ria a producir se estima a razón de 150 millones de pesos por año, lo que justificará la inversión estimada de alrededor de 150 millones de pesos para la primera etapa de 1976 - 1980 y posibles expansiones para después de 1980. Esto corresponde a una tasa de crecimiento anual de 7% de la producción de cemen- to. ( 7) Industria de transformación a) Equipo para papel y artes gráficas. Se espera que la demanda de pulpa y papel crezca rápidamen- te; y a menos que se establezcan nuevas fábricas, la impor- tación tendrá un aumento muy importante. De acuerdo con los requerimentos máximos, se estima que durante 1976 - 1980 , será necesaria la instalación de 3 plantas con capacidad ca da una de 300 Ton. por dia. Este aumento de la capacidad co rresponde a una fábrica de papel periódico y dos de papel kraft, semi - kraft, de imprenta y de escribir. La maquinaria para un programa de esta magnitud, se valúa a razón de 250 millones de pesos por año, para lo que probablemente se re- querirá tecnología extranjera. Las importaciones de estos equipos representaron en 1974 fu ga de divisas de] orden de casi 800 rfl1lones de pesos, co- 25 rrespondiendo principalmente a equipos para producir papel o cartón, pulpa, máquinas para la manufactura de artículos de papel y cartón, maquinaria para la composición, impre- sión y encuadernación; se estima que el mercado mas accesi- ble es de aproximadamente 250 millones de pesos. ( 7) b) Industria Química. Se tratará por separado. c) Trabajos sobre metal. La industria de ma uinas- herramienta está dando sus prime- ros pasos, aunque existen en México alrededor de 25 empre- sas fabricantes, estas no son suficientes para atender la demanda que crece a un ritmo muy acelerado; así se sabe que para 1974 se importaron equipos por valor de 2, 070 millones de pesos. Este grupo se analiza bajo dos aspectos: 1) Máquinas -herra- mienta con arranque de viruta y 2) Máquinas - herramienta sin arranque de viruta. Se estima una demanda no satisfecha con demanda interna de 680 millones por año, que se conside ra persista durante el periodo 1976 - 1980. Sobre una base de cubrir el 50% de este déficit, el valor de la producción seria de 344 millones de pesos por año, lo que requeriría una inversión de cerca de 413 millones de pesos entre 1976- 1980. Para el segundo grupo, o sea sin arranque de viruta, tal co mo prensas hidráulicas, guillotinas y dobladoras, se estima una demanda de 229 millones de pesos por año durante 1976-, 1980. Cerca de] 85% de las máquinas son grandes y muy espe- cializadas, por lo que no es factible fabricarlas económica mente en México por lo menos en algún tiempo. Para el 15% restante, o sea 30 millones de pesos anuales se requiere 26 - una inversión de 42 millones de pesos. Herramientas, partes de máquinas y accesorios. Una gran parte de la herramienta, tanto manual como de cor- te es producida en México. En el primer caso, la producción nacional cubre aproximada- mente el 60% de la demanda interna e incluso algunos tipos se importan, en el segundo caso, aunque la producción naci.o nal se ha incrementado en los últimos años, se sigue recu- rriendo a la importación, principalmente de dados y troque- les, que sumados a otros rubros representaron en 1974 impor taciones por valor casi de 400 millones de pesos, de los cuales se considera que existen productos promivibles apro- ximadamente por 140 millones de pesos, siendo principalmen- te peines para roscar, escariadores, fresas para herramien- tas de mano, brocas de carburo de tungsteno, matrices y tro queles entre otros. ( 5) Se considera queel desarrollo de la industria de bienes de capital dependerá en mucho de ciertas actividades como: la fundición de acero gris para piezas hasta de 15 Ton. con una producción anual de 595 millones de pesos y una inversión de 655 millones de pesos; fabricación de engranes, incluyen do reductores, multiplicadores y forjas de precision con .. una producción de 275 millones e inversión de 385 millones de pesos; utensilios de desgaste como herramientas, dados, guías, accesorios, escantillones, etc., cuya producción se- ria de 50 millones y la inversión de 65 millones de pesos; herramientas de medición como escuadras, reglas, calibrado- res de todos tipos, etc., con producción de 30 millones e inversión de 42 millones de pesos, lo cual sumado daría una producción total de 950 millones de pesos y una inversión de 1147 millones de pesos. Como se dijo al principio, la 27 - producción de todos estos artículos es escasa,, por lo que debe tomarse en consideración su fabricación. Se estima que ninguno de los fabricantes existentes en es- tas líneas estará en posibilidades de cubrir la demanda y que la tecnología extranjera podría requerirse para algunos de estos renglones. ( 7) Cajas de fundición y moldes; estos se consideran dentro de las partes y accesorios para máquinas y como es sabido, tie nen una importancia determinante en la calidad y precio de los productos termiandos. Aunque se ha presentado un consi- derable aumento en la manufactura de estas partes en México, las importaciones de estas en 1974, alcanzan la cifra de 115 millones de pesos, contribuyendo con esta cifra las par tes hechas para los moldes de acero para máquinas de inyec- ción entre otras. Rodamientos. Los rodamientos, ya sea de bola o de rodillos cónicos, cilíndricos, etc., son partes esenciales en muchas maquinarinas, siendo de muchos tipos y tamaños los que se utilizan en la fabricación de maquinaria y equipo para di- versas industrias. Aunque existe fabricación de estas par- tes en el país, no se cubre satisfactoriamente la demanda, por lo que en 1974 se importaron 300 millones de pesos de las mismas, este mercado tiene un índice de crecimiento muy elevado. ( 5) Válvulas. Este es uno de los rubros que quizás satisfaga con más amplitud la demanda de] país, en virtud de que el consumo de estos componentes es de manufactura nacional en un 85%, además de que permite exportar a varios mercados, principalmente latinoamericanos. Ahora bien, se siguen importando grandes cantidades de vál- 28 - vulas, debido al gran desarrollo de la industria petrolera del país, lo que motivó en 1974 a importar alrededor de 350 millones de pesos. ( 6) Industria Eléctrica La fabricación de equipo eléctrico considerado como bienes de capital es distinta a la fabricación de bienes de consu- mo y comprende: Sistemas de generación, transmisión y dis- tribución de energía eléctrica; fabricación de motores; aco plamientos, equipos de control, transformadores, rectifica- dores e interruptores. La generación de energía eléctrica ha crecido y se estima que seguirá creciendo a una tasa de 12% anual. Debido a es- te aumento, se demandarán cantidades importantes de equipo pesado y especializado. Se estima que la CFE importará cer ca de 10000 millones de pesos en equipo para el periodo de 1976- 80. En el país se produce equipo solo para distribu- ción de energía, por lo que la capacidad manufacturera de] equipo para generación y transmisión de energía muestra un déficit de cerca de] 80% expresado en valor. Ciertos tipos de transformadores, motores e interruptores de mediana mag- nitud se producen en cantidades limitadas y todo el equipo pesado se importa. Se considera como resultado del estudio, que ciertos artículos pueden fabricarse en el país. Maquinaria para la generación de energía eléctrica. Las ne- cesidades futuras de equipo de México en cuanto a generación de energía eléctrica, comprenderán sobre todo plantas térm.i cas y adicionalmente plantas nucleares, pues los recursos hidroeléctricos estarán completamente aprovechados en 1980. Por lo tanto, será necesario establecer instalaciones para fabricar calderas grandes de alta presión, turbinas de vapor 29 - turbogeneradores y equipo auxiliar para una capacidad de 300 - 500 megavatios, lo que va de acuerdo con los planes de la CFE. Se considera que la producción de calderas de alta presión se justifica desde todos los puntos de vista. Instalaciones con una inversión de 350 millones de pesos darlan una producción anual de 300 millones de pesos en 1980. Se estima que para años venideros la fabricación de componentes simples para generación nuclear como intercam- biadores de calor también será posible. La producción de grandes turbinas de vapor para generado- res de energía no se considera deseable en el presente, en vista de la alta especialización que implica su producción y la necesidad de importar más de] 80% de los componentes tales como moldes, forjas, hojas, etc.) por largo tiempo. La producción de reactores y otro equipo para las plantas atómicas no es justificable en esta fase. Las empresas existentes en el sector de industrias metálicas podrían ins talar sus propias plantas generadoras. ( 7) Transformadores, interruptores, motores y aisladores. A pesar de que la producción interna de transformadores pe queños de distribución satisface plenamente la demanda, la producción nacional cubre solo una pequeña parte de la de- manda de transformadores medianos y grandes, elaborada por una sola compañía. Tomando en cuenta la demanda futura de transformadores de 230 KV y 400 KV, se justificarla el esta- blecimiento de nuevas industrias productivas para la manu- factura de transformadores para cubrir una demanda adicio- nal de 4, 000 MVA anuales para 1980. Esto implicaría una in- versión de unos 150 millones de pesos, generando un valor de producción anual de 160 millones de pesos en 1980. Como no existen instalaciones productivas para la elabora- 30 - ción de interruptores de alto voltaje, ni de muy alto volta je, el establecimiento de nuevas instalaciones para esta 1. 1 nea de producción se justificarla necesitándose una inver- sión en capital de unos 150 millones de pesos, para lograr una producción anual con valor de 150 millones en 1980. La industria de motores eléctricos, incluyendo generadores medianos y pequeños, están en una etapa de desarrollo ini- cial. Solamente se producen partes y pequenos motores utili zabl es en bienes de consumo duraderos. Dos o tres firmas es tán elaborando algunos tipos de motores sencillos de tamaño mediano hasta de 2, 000 caballos de potencia. Existe un dé- ficit muy importante en este campo, el cual será mayor a medida que los planes para las industrias de bienes de cap¡ tal tomen forma, pues esto implicará una mayor demanda de estos productos. La creación de nuevas instalaciones con una inversión de 150 millones de pesos parece necesaria. Con esta inversión seria posible ontener una producción anual equivalente a unos 170 millones de pesos para 1980. Mientras se planean estas instalaciones, será necesario no perder de vista la posibilidad de iniciar la manufactura de grandes turbogeneradores a partir de 1980. La producción de generadores y motores para locomotoras di.e sel y de motores para el sistema de transporte colectivo en México parece tener posibilidades atractivas. Las nuevas instalaciones para este propósito podrían ser combinadas con las de otras fabricas o establecerse por separado. Se estima que se requerirá una inversión de 100 millones de p l sos para una producción de equipo de tracción eléctrica con un valor de 100 millones de pesos anuales para 1980. Aisladores de porcelana, chumaceras, para alto voltaje. El sistema de distribución de energía necesita para sus 31 - neas de distribución, grandes cantidades de aisladores y fo rros de porcelana para alto voltaje, además de otras partes para transformadores, interruptores y otros aparatos eléc- tricos. Solamente existen dos productores que elaboran ais- ladores de porcelana para los sistemas de bajo voltaje. De aqui que haya una justificación para establecer nuevas ins- talaciones para la manufactura de productos de porcelana pa ra alto voltaje, lo que implicarla una inversión de capital de aproximadamente unos 100 millones de pesos, para una pro ducción anual de 150 millones de pesos. ( 7) Equipo eléctrico restante. Un número de conceptos de equipo diverso como: clabe, alam- bre, rectificadores, capacitores, herramientas eléctricas e instrumentos medidores de control se producen parcialmente o totalmente por fabricantes nacionales. Algunos de los pro ductos son bienes de consumo duraderos y algunos son partes o componentes marginales de bienes de capital muy complejos y pesados. Se espera que la demanda futura para estos bie- nes sea satisfecha a través de la expansión normal de las compañias existentes. En el campo de las telecomunicaciones, la capacidad de pro- ducción existente parece adecuada con excepción de la dedi- cada a la producción de equipo de microondas y de equipo de] tipo de alta frecuencia ( VHF), el cual está siendo im- portado en su totalidad y se cree que la iniciación de la producción interna. puede tener alguna justificación. Se estima que la demanda de] equipo eléctrico referido se cubra dividiéndola en un 50% con nuevos fabricantes, 25% de importaciones, y 25% por expansiones de las empresas actua- les. ( 7) 32 - 4. SITUACION ACTUAL DE LA INDUSTRIA QUIMICA Debido a los intereses de este trabajo se ha querido dar mayor énfasis a la industria química y a los problemas existentes dentro de esta industria con respecto a la fabricación de equipo y maquinaria. A continuación se darán datos de estadística y datos de importaicón y de- manda de algunos equipos y ramos industriales. Industria metalúrgica Para satisfacer la demanda de la expansión de la producción de acero, el país requirió importar en 1974 equipo por valor de 280 millones de pesos, demanda que irá en aumento, debido a las am- pliaciones de las empresas csnsumidoras de estos equipos, ya que por los planes de expansión los próximos 15 años serán de gran- des inversiones. Dentro de estas importaciones destacan por su valor las que se realizan en trenes y rodillos de laminaci6n, convertidores, cu- charones y máquinas para fundición. Se estima que la demanda de equipo para la producción de hierro y acero ( fierro esponja, hierro en lingotes, acero en lingotes y productos rolados, para 1976 - 80, será aproximadamente de 1, 123 millones de pesos. Para las industrias de] aluminio y del cobre se estiman cantidades de 319 y 242 millones respectivamente. ( 7) Industria azucarera y alimentaria En la actualidad Se calcula que el 60% de las necesidades de equipo para ingenios azucareros se produce en México. Los renglo nes importantes foráneos son centrífugas, turbinas, engranes y algunos equipos de molienda de grandes dimensiones. Las importaciones en su mayoría son hechas por la industria azu- msm carera y alcanzaron un valor de 170 millones de pesos. La industria de alimentos ocupa un lugar muy importante en la economía. La maquinaria requerida para los años de 1976 - 80 se estima en cerca de 5, 575 millones de pesos que equivalen a un promedio de 1, 115 millones de pesos anuales. Se espera una pro— ducción sustancial estimada en un 76 a 86% con las instalaciones existentes. Para la diferencia que representan ciertos equipos especializados como mezcladoras, máquinas para fabricar pasta, secadores, pasteurizadores y otros renglones, se justifica el es tablecimiento de nuevas instalaciones, las que requieren de cola boración extranjera. Estas instalaciones se preven para una pro ducción anual de 150 millones de pesos, con una inversión de 150 millones de pesos. ( 7) ( 5) Aunque qran cantidad de estos equipos se produce¡: en el país, e inclusive estos equipos son ya exportados, las importaciones que se realizan bajo este rubro son de] orden de 183 millones de pe- sos, destacándose maquinarias para los procesos de la industria láctea y derivados. Productos químicos, petroquimicos y fertilizantes Estas industrias están creciendo rápidamente y los requerimentos de maquinaria en el período 1976 - 80 serán importantes. la deman da promedio anual se calcula en 1, 600 millones de pesos. Existe una docena de empresas que están fabricando varios renglones de este eqipo mediante diseños proporcionados por sus clientes o principales contratistas. Las firmas mexicanas no cuentan con di señadores de fábricas completas y emplean una cantidad importan te de partes importadas. Por esta causa se aprecia la necesidad de establecer una organización de diseño e ingeniería en México en sociedad con una o mas firmas consultoras de ingeniería ex- tranjeras. ( 7) 34 - Industria textil Este subsector tiene particular importancia, ya quela mayor par te de la maquinaria textil se importa por la necesidad de moder- nización de la industria actual, las importaciones durante 1974 alcanzaron más de 1, 600 millones de pesos, destacando las máqui- nas para la preparación de hilados, torcedoras, tejedoras, entre muchas mas considerándose un mercado de productos promovibles de mas de 1, 000 millones de pesos. ( 4) La demanda proyectada pra 1976 - 80 se calcula en cercade 1, 600 millones de pesos anuales. Se estima un crecimiento de 8 a 10% anual a partir de 1980. En el periodo de 1976 - 80 se podría cu- brir un 50% de la demanda considerando los renglones mas simples lo que equivale a una producción con valor de 685 millones de pe sos. Se calcula que la inversión para producir este equipo es de 750 millones de pesos. Como estas maquinarias son altamente especializadas se requerirá de colaboración extranjera adecuada. A partir de 1980 se preve la fabricación de máquinas mas comple- jas y por lo tanto, la exportación de éstas tendrá alcances con- siderables. ( 7) Industria de plásticos Existen varias empresas en el país que fabrican máquinas para el tratamiento de hules y plásticos, siendo básicamente inyectoras para plástico, moldeadoras de termoplásticos y extrusoras de tu- berías de plástico. Las importaciones que se realizaron bajo es- te renglón en 1974 fueron de 260 millones de pesos, destacándose por su importancia las máquinas sopladoras, granuladoras, inyec- tadoras y extrusoras. ( 5) Equipo no eléctrico para la generaci6n de energía Calderas y turbinas para propósitos industriales y máquinas de MIM combustión inerna, están siendo producidas por tres compañías con asesoría de firmas extranjeras, Las turbinas de tipo indus- trial no se fabrican en México, aún cuando es justificable su producción ya que las importaciones en 1974 alcanzaron la cifra aproximada de 550 millones de pesos de los cuales es factible sustituir importaciones por valor de casi 300 millones de pesos con una inversión que se puede considerar relativamente baja con respecto a este mercado. Una gran laguna está en maquinas diese] de 100 - 600 H. P. para la generación de energía, bombeo y usos marinos, se estima su de manda en 200 millones de pesos. En una segunda etapa, que seria a partir de 1980 sería necesario obsorber un crecimiento de la demanda que incluye exportación de 10 a 15% de la capacidad de producción. La inversión aproximada para la primera etapa se estima en 200 millones de pesos. Máquinas de empaque, básculas y rociadoras Tres compañías de magnitud media están produciendo la mayor par- te de los equipos para empaque, con excepción de equipo muy espe cifico y complejo. Los tipos simples para equipo de rociado se producen en México y se cree que las mismas compañías podrían cu brir una variedad más amplia. En relación a las básculas hay dos importantes productores que cubren la mayoría de los renglones, con excepción de tipos muy específicos, que corresponden a las que tienen indicador automá- tico e impresión con capacidad de 1, 000 kg. Sin embargo se puede ver que en 1974 se importaron equipos por valor de 270 millones de pesos, lo que significa que la producción existente no alcan- za a satisfacer mas que una parte de la demanda interna. 36 - Los principales equipos que se importaron bajo este renglón fue- ron máquinas para lavar y secar recipientes, máquinas para enva sar y empaquetar derivados de leche, máquinas cerradoras, báscu- las y máquinas etiquetadoras. ( 5) Equipo para calefacción y enfriamiento Aunque este es un rubro en el cual la producción nacional de equipo es cada vez más sofisticado se han venido sustituyendo las importaciones observando que en 1974 estas alcanzaron un va- lor de 735 millones de pesos, considerando que la plánta indus- trial nacional ha venido abasteciendo equipos de gran tamaño y capacidad, además de equipos para usos especiales, gracias al do minio de técnicas y al conocimiento profundo de su tecnologia, personal especializado, se puede pensar que una parte de la de— manda interna con valor aproximado de 285 millones de pesos se puede cubrir satisfactoriamente con las empresas que están ope- rando en el país. ( 5) Bombas compresores y centrífugas Bombas y compresores de varios tipos y capacidades son produci- das en México por más de 10 plantas manufactureras, sin embargo, en 1974 se importó más de 300 millones de pesos, siendo 100 mi- llones de pesos posibles de sustituirse con producción nacional, correspondiendo un 30% aproximadamente a empresas ya estableci- das y en operación, el 70% restante son inversiones tanto para ampliaciones como para el establecimiento de nuevas industrias, en las cuales se incluye tecnología y capital de firmas recono- cidas en el mercado internacional. ( 5) Las centrífugas industriales no se producen en México. Se cree que la fabricación de bombas y centrifigas debe considerarse en conjunto, pues requieren el mismo equipo de producción, por lo MVM que la sola expansión de la capacidad existente permitirá produ- cir las centrifugas con excepción de ciertos tipos especiales, los cuales se seguirán importando. El faltante de capacidad du- rante los años de 1976 - 80, se evalúa en 60 millones de pesos por año para bombas y centrifugas. Se estima una inversión adi— cional de 72 millones de pesos para prever expansiones futuras después de 1980. ( 7). Equipo para manejo de materiales Existe una producción nacional elevada, con alto grado de inte- graci6n en los renglones de montacargas, equipo de transporta-- ción y gatos hidraúlicos, sin embargo una gran demanda se apre- cia en los renglones de partes principales y componentes de grúas de puente, equipo para puertas y grúas torre, cuya demanda conjunta asciende a unos 200 millones de pesos anuales, durante los años de 1976 - 1980. Lo cual requerirá de una inversión de 200 millones de pesos. En el renglón de los polipastos, grúas autopropulsadas, tornos y cabrestantes se importaron en 1974 450 millones de pesos. Esto es debido a que muchos fabricantes nacionales solo fabrican las partes estructurales de acero importando los componentes tales como transmisiones, controles y sistemas hidraúlicos además de los ya mencionados. Esto puede corregirse solo si las empresas actuales intervienen también en la producción de componentes o si establecen otras em presas auxiliares que en base a una nacionalización produzcan es tos componentes en forma económica, pero sin detrimiento de su calidad. Estas empresas tendrian garantizado un mercado de apro- ximadamente 150 millones de pesos. ( 7) ( 5) 38 - S. ANALISIS DE LA FABRICACION DE EQUIPO Y MAQUINARIA En este punto se efectúa un estudio sobre los métodos de fabrica ción, y tipos de materiales con que se construyen, diferentes tipos y ta maños de equipos. Equipo de proceso. Se consideran como tales lo que se fabrican bajo pedido y son: Cambiadores de calor Los cambiadores se construyen en un sinúmero de formas y diseños, pero tres son los tipos más comunes: cambiadores de serpentines sumergidos, en el liquido, cambiadores de calor tubulares, forma dos por tupos soportados por placas, una de las cuales está suel ta con el objeto de permitir la expansión entre los tubos y la coraza, cambiadores de doble tubo, que consisten en dos tubos concéntricos, uno para cada fluido. Su diseño puede ser de tubos lisos o bien por superficies extendi das por medio de aletas en los casos en que el coeficiente de transmisión de un fluido sea muy bajo. Existen patrones para el diseño de cambiadores de calor, por ejem plo en el comercio se encuentran tuberias de 2. 40, 3. 60 y 6. 0 m. Los tamaños de las cubiertas llegan hasta 60 cm de diámetro, usándose placas roladas cuando se necesitan diámetros mayores1 el espacio mínimo entre tubos es de 5 cm. o una quinta parte de] diámetro interno de la coraza, mientras que la menor distancia en la disposición de los tubos es de 1 1/ 4 veces el diámetro ex- terno de] tubo. Por lo que hay que considerar algunas limitacio- nes al diseñar cambiadores y hay que procurar usar tamaños nor- males, lo cual repercutirá en el costo, tanto de fabricación co- mo de mantenimiento de los mismos. El material de construcción mas usado es acero en la coraza y 39 - acero dulce para los tubos. La coraza va soldada, Otros materia- les usados son acero admira], duriron, durclor, acero inoxidable niquel y aleaciones de niquel, para ácidos grasos se usan tubos de inconel y monel. Columnas y torres Una torre o columa se puede llenar de empaques, o bien esta últi ma se puede fabricar con un cierto número de platos separados por una distancia fija, para una operación de contacto escalona- do. Este tipo de columnas solas o en serie, se especifican gene- ralmente para absorsi6n de gases, destilación, extracción y humi dificación. Los platos se fabrican en los siguientes tipos: cas- quetes de burbujeo, platos perforados y platos con emparrillado romboidal. El empaque es usado en las torres, puede consistir en anillos, sillas de Berl, colchonetas de fibra de vidrio o hélices. Las to rres empacadas se usan solo para operaciones en pequeña escala, para diámetros menores de 60 cm. Las torres de enfriamiento son de dos tipos: de tiro natural y de tiro forzado. Un tipo simple de construcción son las de secciones de fierro forjado, un plato por sección. Las mejores torres de acero son las que llevan juntas soldadas. Las columas son fabricadas también de cobre, con platos y casque tes de cobre, las columnas para destilación de cerveza se fabri- can con madera y casquetes de fierro forjado o cobre. Se usan de muchos otros materiales incluso vidrio refractario, para liqui- dos corrosivos se usan torres de acero recubierto con aleaciones 40 - resistentes a la corrosión. Las torres de platos se construyen en todos tamaños desde algunas muy grandes hasta pequeñas con solo algunas pulgadas de diámetro y 10 pies de altura. El número de platos varia; por ejemplo en la industria petrole- ra, una columna con 30 a 50 platos es la comunmente usada para fraccionamiento de productos de refinación convencionales, para super fraccionamientos, las columnas pueden tener hasta 150 pla- tos o mas. Recipientes a precisión Los recipientes para resistir altas presiones son casi siempre cilindricos, en algunos casos se emplean también recipientes es- féricos, principalmentepara almacenar grandes cantidades de flui dos a presiones relativamente bajas, y que se construyen de di- versas maneras: rolado de placa con remaches; el mas usual es el soldar las juntas longitudinales y las costuras delos extremos con las cuales se unen los fondos, sobre todo para presiones mayores de 21 kg/ cm2. Los recipinetes soldados autógenamente son el tipo mas comun de recipientes de gran tamaño para presiones hasta de 2 100 kg/ cm . Para recipientes pequeños de presiones hasta de 210 kg/ cm 2 se usa soldadura o costura, estos recipientes se hacen comunmente por un procedimiento de enbutido y estirado. Para los recipientes grandes de 100 a 140 kg/ cm 2 de presión se usan recipientes forjados o de múltiples capas. Estos son los mé todos de construcción mas comunes: para los materiales de cons- trucción, además de temperatura y presión es muy importante con- siderar la resistencia a la corrosión , son usados principalmew, te, acero al carbón acero al cromo, acero cromo- niquel y otras aleaciones de acero, de espesor sencillo, suplementados por cons 41 - trucciones de paredes multicapas, El desarrollo de soldaduras, especialmente la soldadura ppor fusión, ha proporcionado métodos adicionales de fabricación; el examen por medio de rayos X de las juntas soldadas detecta cualquier defecto en ellas, las cua- les pueden ser reparadas o reemplazadas. Tanques atmosféricos Los tanques son usados no solo para almacenamiento de materias Primas sino también de algún producto intermedio, si son usados durante la fabricación del producto se les denomina tanques de proceso, por lo que según su uso hay tanques para disolución, mezclado, para tratamientos y muchas veces los tanques son par- tes principales de otros equipos, como espesadores, marmitas, clasificadores, fermentadores y algunos otros. Para construcción de tanques es muy usada la madera, debido a que no es atacada por un gran número de soluciones; se usa lámi- na de acero soldada de varios espesores. En tanques horizontales es muy usado el recubrimiento de diferentes materiales como vi- drio o esmalte vidriado, hule plomo, acero inoxidable, niquel y otros; otro material usado es el haveg, que es muy resistente a la acción de algunos ácidos y sales en solución. Los tanques cilíndricos de madera, se construyen de tablas verti cales, las cuales se unen con varillas de fierro, generalmente acero bajo en carbón, monel, acero inoxidable y otras aleaciones los tanques de acero son los más comunmente usados para almacena miento, ya que son los mas fuertes y prácticamente indestructi- bles y en tiempos normales tienen ventaja en el costo. General- mente van soldados. Los tanques se construyen en gran variedad de espesores, tamaños y capacidades, 42 Reactores Los reactores se fabrican en tipos muy variados, pudiendo ser desde un tanque atmosférico con agitación o mezclado, hasta com- plicadas unidades de alta presión, enchaquetados, con unidades de refrigeración o calentamiento. Se clasifican principalmente en dos grupos: reactores intermi- tentes o autoclaves y convertidores o reactores continuos. Los reactores intermitentes se construyen generalmente con palas tro soldado aut6genamente y tapas semiesféricas o semielipsoida- les, cierre de brida y empaquetadura de asiento. Prácticamente no hay autoclaves estándar, sclo algunas pequeñas para laborato- rio. Los reactores continuos, son generalmente largos tubos forjados para altas presiones o construidos con tubos sin soldadura o cos tura o para presiones mas bajas de palastro soldado autógenamen- te. Como los recipientes a presión se construyen en diferentes tama- ños, capacidades y materiales. Estos últimos pueden ser de acero inoxidable, niquel, aleaciones con diferentes metales, pueden ser también vidriados o esmaltados según lo amerite el caso. Condensadores Muchos condensadores se construyen siguiendo los lineamientos es pecificos para cambiadores de calor. Los tipos de condensadores mas usados son: condensadores barométricos, y de superficie. Am-, bos tipos de condensadores, se construyen generalmente de acero soldado, también se usa como material de construcción el acero dulce, everdur y acero inoxidable. 43 - Evaporadores Existen varios tipos de evaporadores: de circulación natural, ti po calandria, de canasta, de tubos horizontales y de circulación forzada. Los accesorios internos, pueden ser fundidos, soldados o atornillados a las paredes de] cuerpo de] evaporador, Los materiales mas usados para su fabricación son principalmente fierro fundido y acero, para casos especiales se usan materiales que son un poco mas costosos como: niquel monel, inconel, para la industria azucarera, se usan tubos de cobre y bronce fundido, acero niquel- clad, acero recubierto de hule, plomo ( generalmente fundido) y aluminio. Las dimensiones de los evaporadores pueden ser de 100 a 1000 ft 2 de superficie de calentamiento, para evapo radores de un solo efecto. Secadores Los principales tipos de secadores se enumeran a continuación: continuos de bandeja; continuos de materialen hoja o lámina; transportadores neumáticos; rotatorios; por pulverización; de circulación transversal; de tunel; cilindricos de tambor; con transportador de tornillo sin fin; rotatorio de tubos con vapor de bandejas vibrantes; de pailas con agitación; liofilizadores; rotatorios con vacio; de bandejas al vacio. Debido a la gran va- riedad de secadores, se fabrican de diferente forma y materiales; algunos de los cuales pueden ser de: acero galvanizado, acero inoxidable, fierro fundido o semi - acero bronce. Hornos Las retortas, estufas o los hornos de tempraturas de 540' C o me- nores, no presentan ningun problema en la construcción ni en el mantenimiento. Las dificultades se presentan en los hornos a me- 44 - dida que se eleva la temperatura y aumenta la afinidad quImica en tre el recubrimiento y la carga, El material de construcción co- munmente usado es el ladrillo refractario de silice o alúmina. Los materiales metálicos de construcción del interior tienen que adaptarse de acuerdo a la temperatura; el acero ordinario o sin aleación se oxida a temperaturas superiores a 537' C; para tempe- raturas superiores se usa la fundíción o bien aleaciones de hie- rro -cromo y niquel, a mayor temperatura debe usarse menos hierro. Los tamaños de hogares se clasifican de acuerdo a su capacidad de producir vapor y van desde 950 kg/ hora hasta 202 000 kg/ hora. Cristalizadores Existen diferentes tipos de cristalizadores, siendo los mas usa- dos el cristalizador intermitente con agitación que además está provisto de un sistema de enfriamiento, existiendo variaciones en la forma delos serpentines y la forma de agitación; cristal¡- zadores de tuberia doble usados en la separación de cera de acei te en la industria petrolera; evaporador abierto de paila larga para cloruro de sodio; con paila de vacio para la industria azu- carera, también se utilizan cristalizadores de vacio. Los cristalizadores suelen fabricarse de acero; cuando se trata de materiales corrosivos llevan hule. Maquinaria de pro -eso. Aqui se consideran aquellos equipos que se fabrican en serie como son: Fi I tros La operación de filtrado en cualquiera de sus variantes está ba- sada en el aprovechamiento de diferencia de fases, mediante la aplicación de diferencia de presiones. Existe gran variedad de filtros: rotatorios, de placas intermi— 45 - tentes o continuas y el mas adecuado debe elegirse de acuerdo a la naturaleza de las partículas, al tipo ( le operaci6n, a la can- tidad, al interés de] producio ( lluido, sólido o ambos). Cual- quier filtro puede colocarse dentro de alguna de las siguientes clasificaciones: filtros por gravedad filtros por presión filtros a vacio filtros centrífugos Los filtros se emplean en una gran variedad de circunstancias, y en los trabajos de la industria química es necesario construir- los de materiales resistentes a la corrosi6n. Cada solución o substancia manipulada presenta un problema que exige el empleo de materiales especiales de construcción. Para soluciones cáusticas y álcalis, los filtros se constryyen de fundición usando aleaciones como acero inoxidable y monel, pa ra tornillos, tuercas, accesorios y el medio filtrante. Para condiciones ácidas, las placas y marcos y los filtros de va cio se hacen de madera. Los accesorios pueden ser cubiertos con plomo o fabricados con aleaciones especiales. El plomo se usa como recubrimiento interior para los filtros de presión de] tipo de envolvente cerrada y para los tanques de los filtros de vacio, cuyos tambores pueden ser de plomo fundido. El hule es apropiado para trabajos en condiciones muy ácidas, pero sus aplicaciones están limitadas por la temperatura que pueden resistir. Se emplean también plásticos sintéticos. Para los medios filtrantes, se usa mucho la fibra de vidrio y las telas de monel, hay -casos especiales en los que se usan te- 46 - las de fibras de asbesto, de vidrio; de algodón nitrado o hule. Agitadores y mezcladores El mezclado mas que ninguna otra operíación unitaria quimica, es todavia un arte, ya que tiene muy pocas bases cientificas. Por este motivo se han desarrollado numerosos tipos de mezcladores, muchos de los cuales distan de ser satisfactorios. Se han agrupa do unos 40 tiDos de mezcladores como sigue: mezcladores de ¡ lujo, de paleta o brazos, de hélice o helicoidales, incluyendo los transportadores de tornilío, de turbina o de impulsor centrifugo, coloidales y homogeneizadores, tipos misceláneos, incluyendo los - mezcladores de Iodos, de masas, de sólidos y ¡ os de tambor. Un gran núemro de piezas especlíficas de] proceso tienen mezclado res de uno u otro tipo, generalmente para estimular una reaccion. Entre estas piezas de equipo pueden mencionarse las autoclaves, los equipos de blanqueo, cloradores, digestores, tanques de solu ción, emulsifícadores, extractores, reactores, nitradores, perco ladores, retoitas, reductores y sulfonadores. Como ya se ha indicado, la selección del mezclador puede basarse en la experiencia anterior o en experimentaciones. Prácticamente, cualquíer material de construcción puede emplear- se en un mezclador -5 el acero dúctil es el material mas usado, aunque pueden usarse casi todos los metales y aleaciones especia les, as! como los recubrimientos no metálicos. Ventiladores y sopladores Los térmínos ventilador y soplador pueden ser - Intercambiables, pero soplador no es lo mismo que aspirador. Un ventilador puede funcionar como soplador o como extractor. Como soplador introduce 47 - aire dentro de ductos o tuberfas, como extractor saca el aire a través de ductos o tuberias, y lo libera en el exterior. El mis- mo ventilador puede servir en ambas instalaciones. La gran mayo- ría de los ventiladores trabajan a bajas presiones. Los ventiladores se dividen principalmente en ventiladores cen- trífugos y ventiladores de flujo axial. Algunos de los materiales usados en la fabricación de ventilado- res es el acero al carbón, hierro fundido y el acero inoxidable. Centrifugas Las centrífugas, son máquinas cuyo propósito es el de separar so dos de líquidos por medio de una fuerza centrifuga. Hay dos t -i pos principales de centrífugas; una tiene una canasta perforada que gira rápidamente. El liquido sale por las perforaciones. El otro tipo tiene una canasta sólida donde el líquido se desborda por los bordes dela canasta, debido a la rápida rotación. La canasta perforada se construye de dos manera. s Un método con siste en una pared de material ligero, reforzada con anillos, e S ta es la forma antigua y la más adecuada ya que proporciona mas area para drenaje. Los materiales que se usan son bronce, acero inoxidable, o aleaciones especiales como acero inoxidable con cromo y niquel; todas las partes usadas en la construcción de la canasta son templadas antes de la fabricación. Después de su com pleta fabricación y maquinado es tratada con ácido, se le aplica un tratamiento térmico a 1950' F, y sumerge en agua. Las canastas sin perforación se construyen de manera muy similar a las anteriores. WIFOOM Estandarizaci6n de_ equipo y maquinaria Las ventajas y la necesidad de estandarizaic6n son ya muy conoci das, por lo tanto se hará solo una descripción breve y se analizará el problema. Lo importante en un equipo estándar no son básicamente sus dimen siones o sus características mecánicas, sino más bien su campo de aplica- ción, siendo este último el principal problema de la estandarización - Pueden existir dos casos; uno en el que se tenga un campo de aplicación pequeño y que se tenga una gran variedad de equipos estándares y otro en el cual exista un gran campo de aplicación y los equipos estándares sean pocos, lo cual puede actuar en contra de la economía. En el primer caso porque al tratar de hacer el número total de aparatos posibles se tiende a eliminar la estandarizaci6n. Y en el segun do caso porque cuando un equipo cubre un mayor campo de aplicación que para el que fue diseñado, operará a un casto muy elevado. Frente al problema de proporcionar un equipo para un servicio de terminado, se consideran básicamente dos casos: a) El equipo que se diseña eSpeciaimente, ya sea totalmente o en sus partes, esto es fabricación sobre pedido. Como ejemplos podemos citar: cambiadores de calor, torres y columnas, recipientes, reactores, condensadores, evaporadores, secadores, hornos, etc. b) La maquinaria de proceso, la cual se elige entre elementos es - tándares. Los principales equipos de esta categoría son: Filtros, agitadores y mezcladores, ventiladores y sopladores, centrífugas, extrusores, molinos, cribas vibratorias, etc. Las ventajas de usar equipos 0 partes estandarizadas, en compara- 49 - ción de los de diseño especial son los siguientes: Reducción en el costo de fabricaci6n debido a la producción en serie. Facilidad en conseguir partes de repuesto. Reducción en la inversión de capital. Reducción en el tiempo de] proyecto y a consecuencia reducción en 1 de los costos. Rapidez y facilidad en la compra y entrega de equipos y partes. Las ventajas mencionadas son obviamente reciprocas, tanto para el fabricante como para el usuario. Es importante considear que el tiempo de obsolencia de una planta es generalmente menor que la duración de un equipo, por lo que al disponer' de equipo y maquinaria estándar estos se pueden volver a usar para el nuevo proceso. Criterios de estandarización En base a lo mencionado anteriormente se analizará el grado de estandarización de algunos equipos, como son: Equipos totalmente estandarizados: bombas. Equipos parcialmente estandarizados: cambiadores de calor, co- lumnas y torres y recipientes. Bombas El prob.lema de estandarización para los diferentes tipos de bom- bas ese] mismo. Lo primero es determinar los diferentes usos y tratar de cubrirlos con una serie de bombas funcionales, sin ne— cesidad de tener todos los tipos y tamaños. La segunda parte con siste en la selección de partes como: flechas, carcaza, cojine- tes y combinarlos a manera de obtener la bomba mas adecuada con un minimo número de tipos. M164BM Cambiadores de calor Los tipos principales de cambiadores son: Cabezal fijo. Los tubos se pueden limpiar mecánicamente pero la coraza no. Tubos en U. Es posible la limpieza mecánica dela coraza, pero no de los tubos. Cabezal flotante. Tiene la ventaja de los dos anteriores pero a un costo mayor aproximadamente en un 20 - 25%. Componentes es tándar de los camb ¡ adores de cal or a) Tubos. Es sabido que conforme se reduce el diámetro de los tu bos, se reduce el costo del cambiador; contrariamente, la re- ducción de] diámetro hace dificultosa la limpieza mecánica de] interior. la combinación de los factores anteriores se usa co mo criterio de selección del mínimo diámetro adecuado. b) Coraza. Generalmente se encuentra unida a los tubos, por me- dio de placas fijas y dotados de un cuerpo flanqueado en el cabezal flotante. Para los tubos en U, el cuerpo va soldado directamente a la coraza. Normalmente los diámetros de tubos para las corazas se han unificado y varían de 6 a 60 cm. c) Mamparas y platos de soporte. Los tipos estándares son los siguientes: Mamparas transversales: segmentos, disco -anillo, disco ani- llo modificado, interno. Mamparas longitudinales. Otras partes que generalmente son estándares son: flancos principales, guarniciones y soportes. si - Columnas y torres Los tipos principales son dos: de platos y empacadas. Partes estandarizadas de columnas y torres: a) Platos. Los tipos más usados son: de campaña, de válvula y perforados, siendo los de válvulay perforados los mejores, por las siguientes razones: Los platos perforados y de válvula son mas ligeros, menos costosos y mas fáciles de instalar. Tienen una pérdida de carga inferior. Tienen una cpacidad mayor para manejar líquidos y vapores. Su mantenimiento es mas sencillo por lo que tienen un costo menor. Platos perforados. La necesidad de limitar los diferentes diáme- tros de las perforaciones, se debe a que para cada diámetro se necesita disponer de punzones y accesorios relativos. El diáme- tro de las perforaciones se selecciona esencialmente en base al servicio que la columa debe realizar. Las perforaciones grandes son mas difíciles de obturar, pero con perforaciones pequenas se obtiene un mejor funcionamitnto. El diámetro de las perforaciones tiene además una limitación de tipo mecánico, que depende de] es pesor de la lámina y de] tipo de material. Como regla general se puede decir que para perforar acero al carbón o inoxidable, el espesor de] plato debe ser aproximadamente no mayor de la mitad de] diámetro de la perforación. La separación de las perforaciones se expresa en términos de la relación entre el paso y el diámetro de] hoyo que varía de 1 a 5. En general el paso es triangular. Los diámetros de la perfora- ción usados se eligen de acuerdo a las condiciones de uso. El porciento de area perforada, en general, varía del 5 al 15%. S2 - Platos de válvulas. Se usan normalmente dos tipos, uno para co- 1 lumnas de vacio y otro para, columnas a presion. El diámetro de la perforaci6n es de unos 38 mm y los pasos son normalmente triangulares con espacios entre filas de 2. 5 in. y la distancia entre Wvulas en la misma,, fila de 3, 4. 5 y 6 pulg. Para los tres tipos de platos se han estandarizado también: Las trabes de soporte y sus soportes. Elementos de fijación de platos a las trabes. Anillos de soportes de platos. Boquillas y diagramas. Juntas antivibración. ernos. Otros accesorios int b) Fondos de columnas. Los tipos normalmente usados son los si- gu i en tes: Tipo neto sin junta ( análogo al tipo gross) Tipo neto con junta. Tipo mixto. Los factores que influyen en la selección de] fondo son de construcción y funcionales. Para el primer tipo se presentan limitaciones en la construc- ción. y Se prefiere adoptarlo para diámetros inferiores a 1, 000 mm. para diámetros mayores se prefieren los otros dos tipos. El segundo tipo es conveniente para diámetros de aproximadamen te 1, 500 mm. mientras que el tercero para diámetros superiores a 1, 500 mm. Otras partes de columnas que están estandarizdas son: Grilletes de soporte para columnas empacadas. Cojinetes antivibracionales y tros grilletes. 53 - Platos de distribución y redistribución. Otras partes como soportes, pasarelas, etc. Los diámetros internos de las columnas normal -mente aconsejados para valores menores a 600 mm. son los de tubos unidos. Mientras que de 600 mm. en adelante varían entre 100 pulg y 100 mm. Esta estandarización permite diseñar menos y en el caso de columnas de construcción estándar y de los cambiadores, es posible hacer los cálculos por computadoras. Reactores y tanques En general se ha tratado de estandarizar todo tipo de reactores y recipientes donde la única exigencia es la capacidad volumé- trica. Para la estandarizaci6n es importante tomar en cuenta las si- guientes normas de ejecución: Puertas de inspección y pasos de hombre especiales. Soportes de la coraza. Soportes en el techo. Escotilla de acceso. Descarga de fondo. Soportes para difusores de espuma. Plataformas, barandillas y rejas. Soportes para serpentines de enfriamiento. Espejos. Sellos para depósitos horizontales. Es importante tener presente además, en la selección del diámetro del recipiente que los fondos disponibles son de tres tipos: semi esféricos, policéntricos 1/ 10 y elípticos 2: 1 y están estandariza dos para diámetros entre 400 y 3, 00 mm. con variaciones entre 100 pulg y 100 mm. S4 - La altura y el diámetro elegidas para el recipiente se derivan de consideraciones de tipo económico como son: Dimensiones estándar de lámina comercial . Reducción al mínimo posible de] peso total del recipiente, para un volumen dado. Exigencias de transportación. Es bueno hacer notar que la mayor parte de las estandarizaciones que se han mencionado, han sido las adoptadas por " Montedison" y no corresponden necesariamente a las normas oficiales. Se puede decir que de un campo estrictamente dimensional se ha pasado a un campo más vasto de una verdadera normatividad. Métodos de fabricación de equipo y maquinaria Una de las ventajas de la estandarización, es una mayor eficien- cia en la fabricación, por lo que se considera importante hacer algunas observaciones en los métodos de fabricación. Considerando los principales procesos de metalisteria, es muy di ficil clasificarlos en forma rigurosa, ya que un proceso de fabricacion puede incluir una o varias operaciones de metalisteria, Sin embargo para fines de simplicidad se han clasificado de la siguiente forma: Fabricación en campo. Básicamente se consideran las operaciones de corte y soldadura, armado de estructuras y armado de tanques grandes, el rolado y el alivio de esfuerzos que esto implica se efectúan previamente en taller. Fabricación en taller. Aquí se consideran las operaciones de ro- lado y soldado que principalmente se usan en la fabricación de 55 - paileria, además de fundición, maquinado, forjado, vaciado y re- machado. A continaución se describen brevemente las principales operacio- nes de metalisteria: Corte. Existen mayor número y variedades de procesos de corte que de cualquier otra operación de metalisteria, entre los cua- les se incluyen corte con herramientas de mano como serrucho, formón y lima as! como corte con todo tipo de maquinas- herra— mientas como taladro, prensa, torno, cepillo mecánico y máqui- nas fresadoras. Rolado. El rolado se usa para formar largas piezas de sección uniforme como barras de diferentes secciones, rieles, platos, al gunas secciones estructurales como vigas en U, doble T y ángu- los. El rolado puede hacerse en caliente para una gran reducción en sección o en frio para exactitud en tamaño y control de gra- no. Soldado. Existen tres tipos principales de soldadura: soldadu- ra con estaño -plomo, soldadura con latón o bronce, soldadura autógena y eléctrica. La soldadura con latón y estaño se usa pa- ra unir dos partes de metal , usando un metal de aporte cuya tempe ratura de fusión sea menor que la de los metales que se van a unir. El latón y el bronce se usan como metales de aporte duros, que son usados para soldar y formar uniones resistentes. Esta soldadura es muy efectiva en hornos ya que forma uniones muy fuertes y puras. La soldadura autógena es usada para formar unio nes permanentes en partes construidas como sustitutos para pie- zas fundidas o forjadas, para reemplazar uniones remachadas o atornilladas y en la reparación de secciones de partes rotas o gastadas. Fundición. La fundición en arena requiere de moldes separados 56 - para cada pieza. La fundición en moldes de metal puede ser usada para metales con punto de fusión relativamente bajo; se usan mol des de metal que pueden ser usados para producir muchas piezas fundidas. La fundición con troquel se usa en producción masiva de pequeñas partes hechas de aleaciones depunto de fusión bajo. Forjado a mano en máquina. Se usan martillos de potencia para hacer partes cuya forma requiere ser trabajada con materiales en estado semiplástico, o cuando se desea controlar una estruc- tura interna en cuanto a tamaño y dirección de grano. Materiales para fabricación de equipo Los materiales para la construcción de plantas quimicas se divir den básicamente en dos grupos: metálicos y no metálicos. Los metálicos pueden ser puros o bien aleaciones. La selección de materiales de construcción para la fabricación de equipo y maquinaria en la industria quimica, se basa principalmente en la resistencia a los medios corrosivos. Entre los materiales de construcción usados para la producción de bienes de capítal en México, son de mayor importancia tanto por su contenido en peso como por su proporción en costos: las fundiciones de hierro y acero, las de aluminio y las de acero. Hierro gris. En México el 50% de la producción de hierro gris, está destinado a la industria automotriz; el 20% a la industria siderúrgica y el 30% restante es absorbido por otras industrias. Una parte muy importante de la producción procede de un reduci- do número de plantas, ya que abundan los pequeños talleres caren tes de recursos para desarrollarse. Para efectos del desarrollo de la industria de bienes de capital S7 - es conveniente señalar que solo 12 de un total de 80 fundiciones están en condiciones de producir piezas de más de una tonelada de peso y con un aceptable nivel de calidad; sin embargo, todas ellas están trabajando a su capacidad total. Hierro maleable. La necesidad de piezas fundidas con ciertas ca racteristicas o propiedades mecánicas, tales como la resistencia a la fatiga, mayor maquínabilidad y otras, abrió en un momento dado un amplio campo al uso de] hierro maleable. Cerca de] 90% de la producción nacional de hierro maleable, co- rresponde al grado SAE M- 3210 con una estructura metalográfica ferritica. La calidad de] material producido es aceptable desde el punto de vista metalográfico y de pruebas fisicas. Hierro Nodular. La producción de este material se inició en Méxi co hace una década. Hoy dia existen en el pais una docena de fun diciones que lo fabrican, sin embargo, no son más de 8 las que lo producen en volúmenes industriales y con controles de proceso adecuados. Este material ha venido ganando una enorme penetración en el sec tor del mercado que tradicionalmente estaba cubierto por el hie- rro maleable y muy especificamente por la forja. Sus propiedades mecánicas son superiores a las de] hierro malea- ble y muy similares, aunque inferiores a la forja. Sus principa- les ventajas radican en la eliminación de la necesidad de trata- mientos térmicos prolongados y costosos, si se le compara con el maleable y de] minimo costo de los herramentales, si la compara- ción se hace con las forjas. Es conveniente señalar que, por ejemplo, en la industria automo- tríz, el hierro nodular ha sustituido a la forja en aplicaciones MI.,= tan criticas como el ciqueñal, el árbol de levas, las masas de rueda y existe una marcada tendencia a fabricar también con nodu lar el brazo de la dirección y algunos otros componentes de] tren motriz. En otras áreas industriales, como la construcción de equipo para manejo de materiales, el hierro nodular ha sustituido también con éxito a maleable y a la forja. Un caso tipico son los eslabones para cadenas. El tipo de nodular de más frecuente uso es el correspondiente al grado SAE- D- 4512, cuya estructura metalográfica es ferrftica perlitica. El futuro de este material dependerá fundamentalmente de la celeridad con que se logren avances tecnológicos que permi tan una mayor absorción de] magnesio por el baño, lo cual contri buirá a abatir los costos y eliminar totalmente la necesidad de tratamientos térmicos cuando se trate de obtener estructuras to- tal o casi totalmente ferriticas. Acero. Las pocas fundiciones de acero existentes están dedica- das primordialmente a la fabricación de partes de repuesto para la maquinaria y el equipo en operación y solo en casos excepcio- nales a la producción de componentes para la manufactura de nue- vos equipos. Por otro lado, varios de los fabricantes de equipo y maquinaria que se han instalado en México, han preferido seleccionar aque- llos diseños en que predomina la técnica de la placa soldada, en lugar de los que requieren de piezas fundidas, en virtud de que para bajos volúmenes de producción, la técnica de placa sol- dada es económica, porque se evita la inversión en moldes de fun- dición, cuya amortización resultarla en detrimento de los costos de fabricación. A pesar de todo lo anterior, desde el punto de vista de peso y 59 - costo, es la materia prima más importante en la fabricación de bienes de capital, Si bien es cierto que algunas estadlsticas muestran que el acero ha perdido algún terreno por la penetración que en los primeros años de esta década registraron los plásticos y el aluminio, tam bién lo es el hecho de que en ese periodo la escasez de acero y algunos otros factores ciclicos y aleatorios, operaron en detri— mento de la posición de este material en el mercado. Por otro lado, para que la industria petrolera pueda desarrollar se al ritmo que reclaman las necesidades de] mundo actual, será necesa- rio emplear muchos millones de toneladas de acero en la fabricación de equipo de perforación, bombeo, oleoductos, gasoductos, tanques de almace namiento y refinerias. Se requieren 29. 6 veces más energia eléctrica para producir una tonelada de aluminio a partir de alúmina, que para producir igual peso de acero a apartir de chatarra. Algunos de los avances tecnológicos significativos ocurridos en los últimos 25 años son: el amplio uso dado al oxIgeno en los procesos de refinación de acero, que desembocó en el proceso B. O. F. y los desa- rrollos relacionados con el uso de pellets como material de carga en los altos hornos, han mejorado el volumen de producción de metal liquido por tonelada de carbón empleada. Por otra parte, los avances logrados en las técnicas de reduc- ción directa, entre los cuales, el proceso HYL es uno de los más acepta- dos, han revolucionado algunos conceptos tradicionales en la producción de] acero. El uso de fuentes de poder de mayor capacidad para la operación de hornos eléctricos; la difusión que ha alcanzado el uso de hornos de 60 - inducción; el empleo del desgasificado al vacio que ha permitido mejorar considerablemente la calidad de ciertos tipos de acero, principalmente los de alta aleación; el uso de los sistemas de colada continua. En relación con los avances de] aindustria siderúrgica menciona- dos, México cuenta con la mayoria de ellos; siendo la excepción más impor tante, la ausencia de sistemas de desgasilicado al vacío. Sin embargo, desde el punto de vista delos productos elaborados, México padece algunas deficiencias que son causa de las altas importacio nes de productos siderúrgicos que afectan su balanzadepagos y que de no resolverse a corto plazo significarlan un grave impedimento en la fabri- cación de equipo y maquinaria. Láminas de acero al silicio El acero al silicio, grano orientado se emplea en la manufactura de equipos eléctricos, tales como transformadores, motores, reac tores y una amplia variedad de equipo de control eléctrico. Se estima que el volumen de las importaciones es cercano a las 30, 000 toneladas anuales. Esta cifra no incluye el material con- tenido en motores de gran caballaje y especiales que se impor- tan. Laminados planos de acero inoxidable En 1974 el volumen de importaciones alcanzó una cifra superior a las 20, 00 ton, existe un proceso que contempla una producción inicial cercana a las 40, 000 ton, usando en la primera etapa ro- llos de acero laminado en caliente importados como materia prima. Barras sólidas de aceros especiales La producción de éstas se inició en México a fines de la década 61 - de los años 50. Desde entonces, el volumen de las importaciones ha disminuido en relación al volumen del mercado. Subsisten al- gunos problemas de suministro en lo que se refiere a rollos de diámetro inferior a 13 mm. y de barras forjadas con diámetro ma- yor de 533 mm. y en largos superiores a 6 m debido a las limita- ciones de los hornos de tratamiento térmico de que disponen los productos nacionales, Barras huecas de aceros especiales Aunque el volumen de las importaciones de este materia] es rela- tivamente bajo, su fabricación en México tiene algunos inconve- nientes debido a la baja demanda y amplía ' variedad de tipos de acero y dimensiones que se requieren, una empresa abastece la de manda, Zin embargo, la solución a fondo demorará varios años. Estas son las principales materias primas de origen siderúrgico necesarias para el desarrollo de la industria dedicada a la producción de equipo y maquinaria. Además de estos existen muchos otros materiales como pueden ser: cobre, niquel, plomo, aleaciones especiales, vidrio, plásticos, hule, madera, carbón estructural y muchos otros. Desafortu- nadamente no se contó con la información pertinente sobre estos materia- les, pero en el apéndice se proporcionan unas tablas con algunos datos generales. S E G U N D A P A R T E ANALISIS DE BIENES DE CAPITAL PARA LA INDUSTRIA QUIMICA EN MEXICO PARA 1977 - 1982 63 - 6. OBJETIVOS El trabajo que se presenta a continuación forma parte de un pro- yecto que lleva a cabo el Grupo de Desarrollo de Tecnología ( GDT) de la Facultad de Química de la UNAM. El proyecto tiene por tema general el desarrollo de una base teó rica y de una metodología de implementación, así como la evaluación cuan titativa, de sistemas de planeación tecnológica tanto a nivel nacional como a nivel de empresa. En la bibliografía se presenta una relación de las publicaciones que el GDT ha realizado sobre los avances a la fecha tanto en el campo metodológico como en la evaluación cuantitativa, Los estudios más recientes, de los que ésta tesis es una secuen- cia lógica, se han avocado a analizar los pron6sticos de desarrollo de la industria química en el periodo de 1977 a 1982, no solo a un nivel agre- gado, o macro, sino también a un nivel desagregado, proyecto por proyecto, de los 154 proyectos más probables, que representan 84% de la inversión esperada. La elaboración de este sólido banco de datos ha permitido refi nar las proyecciones de demanda de recursos financieros y de recursos hu manos en distintas especialidades as! como las necesidades de negocia— ción, transferencia y adaptación de tecnologfa en forma cuantitativa y desagregada ( 3). Como complemento a lo anterior el estudio presente analiza la demanda de equipo que tendrá la industria química de México en el perlo- do de 1977 a 1982 y sus posibilidades de fabricación. Hasta la fecha, la fabricación de bienes de capital se ha enfoca do en México solamente desde el punto de vista comercial, ya que se ha dependido principalmente de la importación. Se quiere ahora analizar las necesidades de equipo desde el punto de vista de su fabricación y las 64 - ventajas de planear una industria local para ese fin, El objetivo funcional y práctico de este trabajo es ilustrar la aplicación de una metodologla concreta, propuesta por el GDT, para de- terminar la demanda de equipo y maquinaria en la industria quimica. Esta metodología, que se detalla en el Apéndice I, consiste en pocas palabras en. I) Clasificación y caracterización de equipos; 2) Análisis de la demanda futura de los mismos; 3) Estudio de su posible fabricación lo- cal y 4) Análisis de los mecanismos para proteger y promover el diseño y fabricación locales de equipos. La evaluación cuantitativa de esta metodologla se aplicó al caso de México para el perlodo de 1977 - 1982, con el objetivo de demostrar la validez de la teoría metodológica, así como ilustrar un caso de apli- cación a una industria de la que se dispone de una base de información amplia, con números s6lidos y confiables. Ahora bien, la prudencia sugiere tomar en cuenta el riesgo de p2_ sible error en la evaluación individual de un proyecto, error que pue- de deberse a un cambio tecnológico, a un cambio en planes industriales o a un cambio de tipo financiero o económico, cambios que pueden modificar sustancialmente al proyecto bajo estudio. Esto, unido a la discreción ne cesaria al tratar la información que afecta directamente los planes con- fidenciales de muchas empresas, nos ha hecho inclinarnos por una presen- tación de los resultados a nivel agregado, con el propósito de satisfa- cer dos objetivos: la confiabilidad estadística de los datos agregados es mucho mayor, por compensación de variancias, y de esta manera se pro tege la confiabilidad de los proyectos individuales. Se considera que el método de análisis que se presenta aquí pa- ra el equipo de la industria química puede aplicarse a la demanda de equipo de otros sectores industriales y, con ello, se contribuirá a asen tar las bases para la planeaci6n de una industria local sana, en el ren- gl6n de fabricación de equipo y maquinaria, 65 - 7. METODOLOQIA La metodologla usada en este trabajo fué propuesta en el artTcu- lo " Diseño de equipo apropiado para paises en desarrollo" presentado por J. Giral en la reunión de Viena, durante Mayo de 1977 ( Ver Apéndice I); y se aplicó de acuerdo al listado de proyectos para 1977- 1982 de] articu lo " Demanda Tecnológica en la industria Química", presentado por J. Gira] y S. González Passini en la XVII Convención Anual del IMIQ en Octubre de 1977 ( Ver Apéndice II). Dicha tecnología se describe a continuación: a) Clasificación de equipo. Se estudiaron diferentes clasifica- ciones para equipo y maquinaria, como son: La Clasificación Uniforme de Comercio Internacional ( de enfoque comercial), La Nomenclatura Arancelaria de Bruselas ( de enfoque fiscal), La Clasificación Internacional Industrial Uniforme ( usada para identificar las actividades industriales), La Clasificación en grandes categorías económicas de la ONU ( de enfoque comer- cial), la Clasificación según uso o Destino Económico de la ONU ( usado para identificar las actividades económicas). Se estudiaron también las clasificaciones elaboradas en México: La hecha para " En México la mejor inversión" ( de enfoque co- mercial) y la del grupo ONUDI- NAFINSA ( basada en la C. U. C. I. de enfoque comercial); encontrándose que los enfoques de es- tas clasificaciones no son adecuados para el presente traba- jo. Requiriéndose un enfoque funciona], se optó por la clasi ficación propuesta en el Apéndice I. b) Análisis de proyectos probables. Se tomaron en cuenta proyec tos para 1977 - 1982 ( Ver Apéndice II) y la inversión requeri da para cada uno de ellos; estando clasificados de acuerdo al monto de dicha inversión ( grande, mediana o pequeña) y de acuerdo al tipo de tecnología correspondiente, ya sea Tecnolo gla de proceso, de producto, de operación o de equipo, se de- 66 - terminaron los tipos principales de equipo indi.cados para cu- brir las necesidades de los proyectos, c) Determinación de la participación del costo de] equipo en la inversión total. De acuerdo a la experiencia práctica y por medio de encuesta directa en varias firmas de ingenierla e in- dustrias quImicas que han operado en México durante los últi- mos 50 años, se hizo un análisis del desglose tIpico de la in versión en sus renglones fundamentales ( equipo, maquinaria, gastos de instalación, diseño, etc.) para proyectos grandes, medianos y pequeños y, en cada caso, con tecnologla de proceso producto, operación y equipo (*). De esta manera se obtuvie- ron doce matrices de coeficientes tecnológicos de] desglose de la inversión correspondientes a cada uno de estos doce grupos, obtenidos según se indica en ( b) más arriba. d) Análisis de diagramas de flujo. Se hizo una recopiliaci6n por medio de investigación bibliográfica y de consultas con expertos en el campo) de los diagramas de flujo de gran parte de los proyectos considerados, mismos que representan el 70% de la inversión total de la industria quTmica para el lapso indi- cado. En el apéndice III se relacionan los diagramas obteni- dos y los no obtenidos. Se analizó cada diagrama y se hizo una lista de equipo para ca da uno de ellos, indicando la cantidad de equipos para cada ti po; este análisis es un tanto subjetivo, debido a la escasa in formación contenida en los diagramas de flujo e información complementaria de la literatura. De acuerdo con la frecuencia de aparición de cada equipo se obtuvo una lista final de prio- ridades de fabricación, El análisis de los diAgramas de flujo se presenta por medio de una serie de tablas en el apéndice, 67 - 8. RESULTADOS, CONCLUSIONES Y RECOMENDACIONES 1. Coeficiente tecnológico de la inversión La tabla 1 muestra el desglose típico de la inversión en un proyecto según el tipo de tecnología. Estos coeficientes tecnológicos de inversión se basan en la experiencia de un centenar de proyectos re- presentativos de las cuatro categorlas tecnológicas, con un valor de más de 500 millones de ffilares actuales. Por considerar que la muestra no era suficientemente amplia no se calculan factores diferentes para empresas grandes, medianas y peque ñas sino que se decidió tomar promedios. Se recomienda pulir esta información, revisar posibles cambios por tendencias tecnológicas y de uso de equipo en los planes futuros de inversión, y desglosar los coeficientes por tamaño de empresa y cual quier otro parámetro relevante tanto como lo permita la conf iabi 1 ¡ dad estadfstica. Una matrIz de coeficietes de este tipo, como la que se ilustra en la tabla 1, puede constituir una valiosísima herramienta de planeación tanto a nivel nacional como a nivel empresarial, ya que permitirá desglosar las proyecciones generales de inversión en sus componentes principales y evaluar lo que, por ejemplo, un cambio de planes de in versión de Pemex, puede significar en cuanto a la demanda de equipo. Se cree que la Asociación Nacional de Firmas de Ingeniería podría re coger esta idea y desarrollarla ampliamente, poniéndola a la disposi ci6n de los grupos de planeación de] gobierno y de] sector empresa- rial . 2. Desglose de la inversión esperada La tabla 2 muestra el desglose de la inversión esperada para la indus 68 - tria química en el período 1977 - 1982 segdn el ti,po de tecnología y el tamaño de la industria ( 3). Se recomienda que la Secretaria de Patrimonio y Fomento Industrial Química, mantengan actualizada esta información. El GDT, donde se han llevado a cabo estos trabajos, podría colaborar en la obtención y preparación de estos datos. Se utilizaron como base para losestudios subsiguientes de este tra- bajo por razones de consistencia y uniformidad y por considerar que en este momento constituyen el banco de datos sobre la industria química de México en los próximos cinco años. Como puede verse en dicha tabla los ambiciosos planes de Pemex ha- cia la industría petroqufmica, que en su casi totalidad corresponde a la categoría de industria de inversión grande y tecnología de pro ceso, representan la mayor parte de la inversión pronosticada, si- guiéndoles de cerca los planes de empresas privadas en petroquimica secundaria, que cae dentro de la misma categoría. Estos planes de inversión a futuro son muy dinámicos y cambian rápi_ damente. 3. Análisis de insumos de la inversión esperada Las tablas 3, 4 y 5 muestran un desglose de la inversión esperada o programada, según se describe en la sección 2 anterior, aplicando los coeficientes tecnológicos de la inversión que se describen en la sección 1. Estos cálculos se comprobaron en forma cruzada para aquellos rengl2_ nes de los que se dispone información. Por ejemplo, todos aquellos que se refieren a mano de obra y, en especial a personal califica- do, se cotejaron con estimados del Instituto Mexicano de] Petróleo, MMM de la Asociación Nacional de Firmas de Ingeniería y de trabajos pre vios del GDT (. ver bibliografia) encontrándose un nivel aceptable de confiabilidad. Por falta de recursos y por no haber tenido información confiable no se han podido cotejar las estimaciones agregadas en los renglo- nes de equipo, maquinaria y materiales de instlación, Se recomienda que el Grupo de Estudio de Bienes de Capital que ha estado trabajando en Nacional Financiera coteje estos datos y los rectifique o ratifique. 4. Análisis de los equipos y maquinarias de proceso más comunes en los proyectos considerados. Una de las partes más laboriosas de este trabajo ha sido la que se describe en esta sección. Se localizaron en la bibliografía diagra- mas de flujo y descripciones de procesos, que representan un 70% de la inversión total esperada. Por otro lado se seleccionó de varios estudios y artículos sobre bienes de capital ( ver bibliografía) una lista de equipo y maquina- ria de proceso comunmente usados en la industria quImica. La lista final que se seleccionó, y que aparece en la primera columna de - la tabla # 6 es coherente con los estudios previos de Jorge Car - baja], José M. López Rodriquez y José de J. Sánchez. Aplicación de técnicas de deescalación a la adaptación de tecnología del GDT, lo que permitirá capitalizar la informacion presentada e -n dicho traba jo en cuanto a procedimientos de fabricación de] equipo y maquinar ¡a a su morfología y a los materiales de construcción usados, as! como a la sensibilidad de su costo de fabricación en función de la capa— cidad de] equipo, consideración sumamente importante en la industria quImica, que es de las más sensibles a la escala de operación. De] análisis de cada uno de los procesos estudiados, según las lis" 70 - tas de equipo y maquinaria descritas más arriba, se elaboraron cua- dros básicos de diseño. La tabla # 6 presenta una sinopsis de estos resultados. Confiamos en que esta información aunque sea pobre y limitada, re- presente una contribución al estudio de bienes de capital de Nacio- nal Financiera en lo que se refiere a industria quimica, ya que con sideramos que a menos que se haga un estudio con este enfoque meto- dológico y con este nivel de detalle serla muy difIcil información relativamente confiable en cuanto a qué conviene fabricar en México. Creemos que la recopilación de diagramas de flujo y descripciones de proceso que se efectuó para este trabajo es un primer paso en un camino que es muy importante caminar, ya que representa la única compilación que conocemos de la tecnologia nueva o adicional que va a usar la industria quimica en los próximos cinco años. En este sentido quisiéramos hacer las recomendaciones siguientes: 1. A INFOTEC, para que con mejores recursos que los que tenlamos a nuestro alcance, complete esta compilación y haga un número de copias para su distribución a los interesados. 2. Al Registro Nacional de Transferencia de Tecnologia para que, con base a su experiencia de los últimos cuatro años, prepare un análisis sobre las formas más recomendables de seleccionar, ne gociar y transferir esta tecnologla. 3. Al CONACYT, para que utilice esta información para normar sus criterios tanto en la formación de recursos humanos como en el apoyo a la investigación aplicada y desarrollo experimenta]. 4. Al grupo de Desarrollo de Tecnologia, para que prosiga con sus planes en esta línea de trabajo, en concreto con la idea de apl i 71 - car la Teoría de Módulos Básicos al estudio de esta recopilación de procesos. S. Recomendaciones generales La tabla 7 muestra una sinopsis del análisis de] gasto en equipo, maquinaria, bombas y compresores y equipo auxiliar por tipo de tec- nologla y tamaño de empresa. Se recomienda tener especial cuidado en la elaboración de fabrica- ción local de bienes de capital, ya que un excesivo apresuramiento o un proteccionismo indebido puede dar lugar a deficiencias cuyas repercusiones económicas pueden ser serias. Por otro lado, que un desarrollo y adaptación de un acervo tecnológi co apropiado a nuestras condiciones no se puede llevar a cabo si no se dispone de la capacidad de diseñar y fabricar bienes de capital apropiados a esas condiciones, por lo que es altamente deseable dis poner en México de esa capacidad y utilizarla en forma racional y ef iciente. Al 1 levar a cabo el presente trabajo y en el caso de otros, nos he- mos encontrado siempre con el problema de la falta de información o que la que existe se encuentra dispersa en diferentes lugares. Un ejemplo es el caso de los diagramas de flujo, se localizaron algunos en las fuentes más comunes y para buscar los faltanes se recurrió a instituciones especializadas en información suponiendo que ellos con- tarlan con una amplia colección de ellos. la carencia de los diagra- mas de flujo en el apéndice es una indicación más de la pobreza de nuestras fuentes de información en Mexico, México se encuentra en una etapa de desarrollo en la que es fundamen tal hacer una planeación basada en el análisis concienzudo de los componentes desagregados delainversift, tanto para el caso de los 72 - bienes de capital ( como la metodologla cuya aplicación se usa en es- te trabajo) como para el de los otros insumos clave: recursos huma- nos, tecnologla, financiamiento e inversión, etc. Para poder llevar a cabo estos estudios es urgente enriquecer los acervos de fuentes de información como INFOTEC, SECOBI, etc, 73 - A P E N D I C E I DISEÑO DE EQUIPO APROPIADO PARA PAISES EN DESARROLLO* ANTECEDENTES Durante los años posteriores a la Segunda Guerra Mundial los pal ses en vías de desarrollo concentraron sus recursos en la manufactura de bienes intermedios y de consumo, subsidiando, o al menos facilitando la importación de equipo ( bienes de capital). Esta política, regularmen- te generalizada en la mayoría de los paises de] tercer mundo, ha conduci do en los primeros años de la década de los 70s a una situación no desea ble porque: 1. Los bienes de capital ( equipo) son unos de los artículos de mayor cantidad importada y causan una considerable sangría en el intercam bio exterior. México solo importó dos mil millones de d6lares en 1974 y se espera que importe 3. 5 mil millones de dólares en 1980. Venezuela importó cerca de mil millones de dólares en 1975 y se es- pera que triplicará sus importaciones en 1984. 2. La importación de equipo tiende a empeorar la dependencia tecnologi- ca. Considerando las cuatro categorías tecnológicas de la industria ver anexo A) en dos de ellas ( Tecnología basada en equipo y Tecno- logía basada en operaciones) la tecnología es usualmente adquirida como un paquete incluyendo el equipo; y en una tercera categoría Tecnología basada en proceso) las bases para el diseño de equipo están tan fuertemente relacionadas a la adquisición de tecnología, que no es sorprendente que más del 60% del equipo es comprado en el país donde la tecnología es licenciada, 3. La manufactura de equipo es, o puede ser, una industria que utiliza Resumen en español de] Articulo de J. Gira]. 74 - relativamente abundante mano de obra, Un tamizado selectivo de opor tunidades de manufactura local de equipo conducirla a la creación de muchos empleos necesitados. PROPOSITO DE ESTE TRABAJO Muchos palses en desarrollo, a través de las consideraciones ex- presadas anteriormente, están tratando de adentrarse en la manufactura de equipo. Mientras que esto puede traer muchas de las ventajas deseadas ahorros en intercambio exterior, menor dependencia tecnológica, más em- pleos), puede ser a costa de una ineficiente industria manufacturera de equipo, ya sea por calidad deficiente, baja posibilidad de seleccionar una mezcla de productos o altos costos. Nosotros sentimos que al desarrollar una estrategia de diseño y fabricación de equipo debemos considerar la experiencia que hemos ad- quirido en los pasados 30 años cuando se trató de acelerar la industria- lización de bienes intermedios y de consumo, y entonces tratar de evitar las fallas de una industria sobreprotegida, eso seria mucho más dañino en el caso de la industria de fabricación de equipo por su impacto en productividad más directo. El propósito de este trabajo es presentar algunas ideas genera- les y consideraciones a ser tomadas en cuenta por un comité de expertos de las Naciones Unidas cuando recomienden el trabajo de estudio adicio- nal a realizarse para desarrolar una estrategia de industrialización pa- ra la industria de fabricación de equipo. Las ideas han sido agrupadas en cuatro áreas de recomendación. 1. Clasificación y caracterización de equipo, 2. Evaluación de la demanda de cada categorla de equipo, 3. Fabricación local de equipo. 4. 75 e Mecanismos para protección y promoción de la industria de diseño fabricación de equipo. CLASIFICACION Y CARACTERIZACION DE EQUIPO Existen varias clasificaciones para equipo, orientadas principalmen te a actividades comerciales, pero ninguna de ellas es adecuada pa - ra los propósitos de planear un programa racional para manufactura de equipo. Tal clasificación es muy necesaria para establecer un marco para: Organizar la información estadistica sobre uso y costo, y vida promedio, de cada tipo de equipo, Identificar y analizar equipos alternativos para el mismo uso. Evaluar alternativas de técnicas para manufacturar cada pieza ¡ m portante de equipo. Analizar posibilidades de estandarización de importación, merca- do, uso y fabricación de piezas de equipo importante. Se sugiere, como prioridad inmediata para un programa patrocinado por las Naciones Unidas, promover el diseño y desarrollo de un mode lo para clasificacion y caracterización de equipo, siguiendo los si quientes lineamientos: A. USO: AGRICULTURA Agua IndividualTRANSPORTACION Aire Colectiva Ti erra MINERIA Y PETROLEO INDUSTRIA MANUFACTURERA CONSTRUCCION ELECTRICIDAD 76 - OFICINA OTROS B. GRADO DE ESTANDARIZACION: ESTANDAR, PRODUCCION EN MASA SEMI - ESTANDARIZADO, PRODUCCION EN LINEA FABRICACION INDIVIDUAL PAQUETE DISEÑADO ESTANDAR HECHO SEGUN ESPECIFICACIONES C. METODO DE FABRICACION: FUNDICION MAQUINADO MAQUINADO METALISTERIA OTROS D. MATERIALES ' DE CONSTRUCCION: ACERO ACERO INOXIDABLE ALEACIONES ESPECIALES MADERA MASONERIA PLASTICOS 2. EVALUACION DE LA DEMANDA DE CADA CATEGORIA DE EQUIPO La evaluacion de la demanda puede hacerse siguiendo uno o ambos enfo ques complementarios siguientes: A) Estudio de tendencias históricas, B) Análisis de la demanda futura. Una vez que el modelo de clasificación y caracterización produzca 77 - una nomenclatura aceptable, las Naciones Unidas propondrian su adop ción internacional, y equipos de estudio coordinados pueden clasifi car la importación histórica y la fabricación de equipo en cada pa - Is. Esto desmenuzará la demanda histórica y actual en elementos de significado para la selección de una mezcla de equipo apropiado. La mayor parte de los paises en desarrollo poseen algún grado de pla neación para su industrialización. Una tarea complementaria a la descrita anteriormente seria caracterizar para cada proyecto de in- dustrialización las principales alternativas tecnológicas, en tér- minos de sus necesidades de equipo. Un enfoque similar al uso de criterios de plausibilidad para la selección de tecnologla debe ser desarrollado ( ver anexo B). Esta caracterización proveerá una buena referencia para selección de tecnologia desde el punto de vista de la mezcla de equipo más apropiada, junto con otras consideraciones, tales como el uso de ma terias primas locales, sensibilidad a la escala, etc. El uso de tec nicas que impliquen gran cantidad de mano de obra puede ser visto desde dos puntos de vista: fabricación del equipo y operación de] equipo, y para cada uno el costo relativo puede ser evaluado. Al desarrollar esta interacción entre selección de tecnologia y un campo más promisorio de oportunidades puede ser abierto: el diseño de equipo nuevo y la selección de equipo apropiado a condiciones lo cales. Para poder generarla creatividad necesaria en esta área, la primera tarea es la definición de las especificaciones m1nimas ade- cuadas. para cada tipo de equipo importante. Esto requiere una combi nación de habilidades sociológicas, económicas y técnicas, especifi camente orientadas a generar creatividad a través de la preparacion de algunos ejemplos ilustrativos en cada categorla. 3. FABRICACION DE EQUIPO Una vez quela mezcla de equipos apropiados ha sido seleccionada ylo 78 - diseñada y su yolúmen ha sido evaluado, el paso siguiente serla el diseño del mejor enfoque de fabricación, al hacer esto la siguien- tes consideraciones deben tenerse en Mente: El costo de fabricación por unidad decrece significativamente con forme el número de unidades se incrementa. Esto hace muy importan te la estandarización, puesto que ésta incrementará el número de unidades similarei al ser fabricado. La estandarizaci6n tiene que ser vista no solo en términos de] equipo final producido, sino también en términos de los métodos de fabricación, para consolidar la fabricación similar tanto como sea posible. Esto facilitará la instalación de nuevas plantas para manufactura de equipo y el entrenamiento de] personal reque-rido para operar esas plantas, La estandarización debe ser vista también en términos de los mate riales de construcción, para facilitar la fabricación de] equipo y el entrenamiento de] personal, así como para simplificar el de- sarrollo de fuentes locales de materias primas para los materia- les de construcción. Al diseñar las especificaciones mínimas ade- cuadas de cada equipo, como se indica en el número 2 anteriormen- te, es también muy importante verificar la necesidad de usar al * ea ciones sofístícadas y caras en comparación con los materiales sin téticos nuevos, de bajo costo, sencillos de trabajar que han sido desarrollados en años recientes. Idealmente, al proyectar la mezcla de equipo más apropiada, se de berla comenzar por la selección de la tecnología más apropiada, y entonces rediseñarla para hacer el mejor uso de las diferencias básicas del país. Sin embargo, debe tenerse en mente que los pa- ises que encaran la necesidad de generar una industria local de fabricación de equipo han dependido tradicionalmente en la impor- tación de tecnología y en los bienes manufacturados en palses in- 79 - dustrializados, lo que implica una estructura de Investigación y desarrollo mucho más sofisticada para reorientar esta tendencia. RECURSOS Notablemente el elemento simple más importante para asegurar un exi- toso desarrollo local de la industria de fabricación de equipo es la disponibilidad de recursos humanos entrenados, Estos pueden ser vistos en tres diferentes niveles: a) Artesanos hábiles b) Supervisores Y diseñadores de fabricación c) Diseñadores de equipo nuevo Se ha dicho lo suficiente en la literatura acerca de la necesidad de gente capaz en las categorías a) y b) para llevar a cabo nues- tro propósito. La clase de gente a que se refiere la categoría c) prácticamente no existe hoy día. Entrenarla y desarrollarla es una tarea de al menos 5 años que debla ser comenzada inmediatamente. Esta debe ser gente que enteienda el medio donde el equipo será usado, para desarrollar un diseño apropiado, y hacer el mejor uso de la mano de obra local y de ' las materias primas al fabricar y operar tales piezas de equipo. No debe haber muchos generalistas, a menos que sean especialmente dotados. Un diseñador de equipo para la industria de procesos quimi cos debe entender qué sucede dentro del proceso y cuáles grado de libertad tiene al diseñar una pieza de equipo apropiada para lograr especificaciones mínimas adecuadas. Lo mismo se aplica para cual- quier otro sector industrial. El también debe ser suficientemente conocedor de las técnicas de fabricación de equipo, para poder vi- sualizar alternativas de abatimiento de costos e interactuar con la gente descrita bajo la categoría b) anteriormente. Las Naciones Unidas deblan considerar la identificación de centros MR&I= de estudio para desarrollar una estructura de esta categorla c) de es,pecialistas, 4. MECANISMOS PARA LA PROTECCION Y PROMOCION DE LA INDUSTRIA DE DISEÑO Y FABRICACION DE EQUIPO Los últimos 30 años de industrialización de bienes de consumo y bie nes intermedios han proporcionado mucha experiencia relevante en términos de lo que sucede cuando se abusa del proteccionismo. Al me nos una lección es evidente: las ineficiencias resultantes, la baja productividad, la baja calidad y el alto costo no son compensados con la creación de empleos y actividad local. El desarrollo de una industria de fabricación de equipo ineficiente y sobre -protegida tendría un efecto mucho más dañino. A continuación se citan algunas ideas generales a considerarse en esta área: No hay incentivo para diseñar y desarrollar equipo apropiado ex- cepto la sustitución de importaciones por licenciamiento de la tecnología de fabricación por parte de un país industrializado. No obstante que no sea la mejor alternativa para el país, ( la más plausible), usualmente es la mejor alternativa para la compañía involucrada ( la más factible) y la de] menor riesgo. Para compensar por el tiempo mayor, más alto costo y riesgo más alto de diseñar y desarrollar equipo apropiado es necesario pro- porcionar mecanismos temporales tales como: Ante la presentación ( y aprobaci6n) de un programa de diseño y y desarrollo local para un tipo de equipo, el gobierno local debla considerar dar a la compañia una posición privilegiada para importar y vender equipo equivalente para ayudar a finan- ciar el programa local de diseño y desarrollo y al mismo tiempo si - adquirir experiencia más práctica en aplicaciones y valor en uso para ese equipo. Para esos diseños con un alto Indice de plausibilidad, ambos, 1 as Naciones Unidas y el Gobierno local debían considerar un en foque de fondos conjuntos para financiar el programa de diseño y desarrollo. Se debfan dar consideraciones a incentivos por medio de impues tos, tales como deducciones y reembolsos, en la forma usada ano para incentivar la exportación ( CEDIS) por el gobierno mexic con objeto de promover programas locales de desarrollo técnico. Para ayudar a incrementar el volumen de fabricación de una pieza de equipo en particular un fuerte soporte gubernamental debe ser dado a los acuerdos de trueque al usar las categorías, siguiendo el enfoque usado por México con partes de] aindustria automotríz. Puesto que la industria de fabricación de equipo es considerada un buen candidato para aumentar la creación de empleos, debían ser desarrollados mecanismos fiscales específicos para promover creación de empleos junto con la industria de fabricación de equi po misma, as5 como para subsidiar las alternativas de equipo que, en su operación, requerirán un amplio uso de mano de obra. 82 - A N E X 0 B ANALISIS DE PLAUSIBILIDAD En la planeaci6n industrial a nivel nacional normalmente se uti- lizan criterios macroecon6micos y la mayorla de las empresas utilizan criterios financieros. Esto ha llevado a crear industrias tecnológica- mente ineficientes en el pais, sólo porque en alguna ocasión representa- ron una engañosa posibilidad de ahorro de divisas, o porque las polfti- cas de] gobierno de evitar importaciones competitivas o de incentivos fiscales hicieron el proyecto financieramente atractivo para el inver- sionista. Sin embargo, si el objetivo es una selección racional de tecnolo glas de base, es obvia la necesidad en todos los niveles de planeaci6n de una combinación de criterios tecnológicos, macroeconómicos y financie ros. En vista de que los proyectos seleccionados con estos criterios se- rian de interés social para la nación ( o dignos de aplauso) se utiliza el término " criterios de plausibilidad" para definirlos, a diferencia de criterios de factibilidad" que funcionan desde un punto de vista estric tamente económico. 0 sea, los criterios de plausibilidad son usados para evaluar la contribución social de] proyecto y su congruencia con los planes nacionales de desarrollo industrial. Estos criterios se han clasi ficado como sigue: 1. Criterios de Mercado a) Substitución de importaciones. b) Demanda nueva. c) Exportación d) Elasticidad de la demanda, 2. Criterios Macroecon6micos a) Beneficios regionales ( descentralización, distribución de] ing e 83 - so, uso de materias primas dela región, etc.). b) Generación de actividad económica, c) Competencia similar o equivalente ( duplicación de inversiones). d) Integración del proyecto a los planes nacionales. e) Generación de empleos ( costo de generar cada empleo). 3. Criterios Financieros a) Inversión ( tipo, origen, composición, magnitud). b) Insumos nacionales y valor agregado, c) Rotaci6n del capital ( ventas/ inversión total). d) Liquidez ( capital de trabajo/ inversi6n fija). e) Costeo incremental. 4. Criterios Tecnológicos a) Disponibilidad de la tecnologia ( numero de licenciantes y de li cenciatarios, alternativas existentes, antiguedad de las paten- tes, etc. ) . b) Sensibilidad a la escala y relación de capacidades. c) Caracteristicas de la tecnologla ( potencia] de adptación, de asimilación, dependencia futura, grado de sofisticación). d) Elasticidad dela tecnologia ( especificaciones minimas adecuadas del producto, de] proceso y de las materias primas). e) Impacto ecológico de la tecnologla ( contaminaci(Sn, manejo de mate riales tóxicos, carcinogénicos o peligrosos, aspectos eco -socia les). Como muchos de estos criterios son de apreciación subjetiva, es conveniente fijar de antemano una escala de calificación ( 1, 2, 3; de 0 NOTA: Otra clasificación similar es usada en el IlManual para Desarrollo Transferencia y Adaptación de Tecnologia Qufmica Apropiada". J. Grial. UNAM. Facultad de Quimica, División de Estudios Superiores México, 1974. 84 - a 10; de - 2 a + 2), con objeto de que diferentes personas en la indus- tria y en el gobierno puedan ser congruentes en la calificaci6n, 85 - APENDICE II Para la evaluación de la demanda de equipo se tomó como base la información desarrollada por el QDT ( 3). A continuación se transcriben las listas de proyectos que sirvieron de base. INMON PROYECTOS DE INVERSION GRANDE mayor a 10 millones de dlsj Con Tecnologla de Proceso Urea Acido acético Dimetil formamida, metilaminas Po] ¡ es ti reno Politereftalato de etilen glicol Acido Tereftálico Furfural ( 2 proyectos) Acildo sulfúrico Proyectos de Guanomex ( 11 proyectos) Acetaldehido Acrilonitrilo Amoniaco y anhIdrido carbónico Azufre Benceno Cumeno Cloruro de vinilo, dicloroetano Dodecilbenceno, alquilarilo pesado Estireno, etil benceno Etileno Plantas criogénicas Plantas endulzadoras Metanol Oxido de etileno Percloroetileno Paraxileno Polietileno Tetrámero Tetracloruro de carbono Acido acrflico 87 - Con Tecnología de Proceso Oxido de propileno Propileno Polipropileno Butadieno Ortoxileno Tolueno Con TecnologTa de Producto Aminoácidos Carburo de silicio Pentraeritritol Formaldehído, pentaerítritol, formiato de sodio Diferilmetano diisocianato Etilen, propilen glicoles y eter glicoles Con Tecnologla de Operacil6n Parathion nitrofenol Negro de humno Pulpa de celulosa Gases de uso industr-lal Electrodos de grafito Cloro y sosa cáustica Con Tecnologia de Equipo Filamento de polipropileno TOTAL DE INVERSIONES GRANDES: $ 3, 335, 94 Millones de D61ares PROYECTOS DE INVERSION MEDIANOS Entre 1 y 10 millones de dflares) Con Tecnologia de Proceso Aminas alifáticas, sales de amonio Poliuretano Poliacrilato de nitrilo Acrilatos de metilo, etilo, butilo y 2 etil- hexilo Mono, di, tri- etilen glicol Con Tecnologia de Producto Acidos grasos Resinas Epóxicas Acrilonitrilo, estrireno butadieno Acido 2, 4 diclorofenoxiacético Anilina Paratoluidina, antraquinona, ácidos diversos y derivados Resinas poliestireno, copolimeros y terpolimeros Gliceria y ácidos grasos Con Tecnologia de Operaci6n Polimero de caprolactama Hule de guayu1e Con Tecnologfa de Equipo OxIgeno, argon, nitr6geno Productos de plástico Productos de hule Plásticos TOTAL DE PROYECTOS DE INVERSION MEDIANA: $ 71, 87 millones de dls. PROYECTOS DE INVERSION PEQUEÑA Menos a 1 millón de dólAres) Con Tecnologla de Proceso Gramoxone Parafinas cloradas Carboximetil celulosa Cloropropilatos, monocrot6foros Poliamidas Melamina y fenolformaldehido Con Tecnologia de Producto Resinas ep5xicas Cloroparafina Propilen- glicol, fenoles bloqueados, detergentes no i6nicos y pp_ lietilen glicol Diebenzoato de propilen glicol Ciclohexano, peroxido acetil sulfónico Fenatos, detergentes e inhibidores Acido monocloroacético Anhidrido ftálico Formoldehido Alfa -beta naftol Ftalato de dioctilo Acrilamida Alcohol polivinilico Ftalatos de dialquilo Alquil fenoles Plastificantes Con Tecnologlas de Operación Productos quimicos de vegetales 90 - Con Tecnologías de Operacidn Insecticidas, fertilizantes agrIcolas Pinturas industriales Con Tecnología de Equipo Poliestireno Aceites para industrias Aceites lubricantes Nylon, partes. TOTAL DE PROYECTOS PEQUEÑOS: $ 12, 50 Millones de Dólares 91 - APENDICE III La información que a contínuaci6n se presenta, está basada en los diagramas de flujo presentados en el trabajo ( apendice IV ). La interpretación de dichos diagramas, es en muchos casos subje- tiva y pueden haber errores, por lo que se creyó conveniente adjuntar un resumen de las hojas de trabajo. Tabla de contenido: Tabla 1. Desglose tIpico de la inversión de un proyecto. según el tipo de tecnología. Tabla 2. Desglose por tipo de tecnología y tamaño de la industria de la inversión esperada en 1977- 1982 en la industria química en México. Tabla 3. Desglose de la inversión programada en industrias gran- des según el tipo de tecnología y por tipo de insumo. Tabla 4. 1) esglose de la inversión programada en industrias media nas según el tipo de tecnología y por tipo de insumo. Tabla 5. Desglose de la inversión programada en industrias peque ñas según el tipo de tecnología y por tipo de insumos. Tabla 6. Sinopsis de los equipos y maquinarias de proceso más co munes en los proyectos considerados. Tabla 7. Sinopsis del análisis de gasto en equipo, maquinaria, bombas y compresores y equipo auxiliar por tipo de tec- nología y tamaño de empresa, 9? - Tabla 8. Resistencia quimica de plásticos a varios disolventes. Tabla 9. Resistencia a la corrosión de materiales de construc- ci6n. Tabla 10. Costo comparativo de distintos metales en lámina. Tabla 11. Costo de instalación de] equipo como porcentaje de su costo de compra. 0 T I P 0 D E T E C N 0 L 0 G I A 1. 1 Equipo Proceso 1. 2 Maq. Proceso PROCESO - mo m T PRODUCTO MO M T OPERACION MO M T EQUIPO MO m T T 0 T A L Mo m T 3 17 10 20 10 4 26 15 30 15 2 8 25 10 2 8 10 25 30 30 1. 3 Bombas y Compr. 5 5 5 5 IU10 10U 10 10 1. 4 Equi2o Auxiliar 2 8 10 1t 4 5 3" 1127 1515 22 8 10 1. TOTAL EQUIPO 5 40 45 5 50 55 5 55 r6o 4 56 60 2. 1 Inst. civil/ Mec 2 2 3 3 5 5 3 3 2. 2 Tub. Valv. acc. 4 10 4 3 7 2 1 3 1 1 2 2. 3 Aislam/ pjntura 1 2 1 1 2 1 1 1 1 2. 4 Intr./ control — 2 8 10 1 4 1 1 1 2 3 2. 5 Inst. eléctrica 2 3 73 21 4t3 4 7 41 4 8 2. TOTAL INSTAL. EQUIPO 11 18 29 11 9 20 11 6 17 10 1 7 17 3. EDIF. Y ESTRUC. 8 3 1 11 10 1 3 13 1 6 2 1 8 10 1 5 15 1 1 4. DISEÑO 8 8 6 6 1 7 7 4 4 5. ADMON. OBRA 7 7 6 6 8 8 4 4 7 0 T A L 1 39 61 100 1 38 62 100 37 63 100 32 68 100 Tabla 1, Desglose típico en porciento de lainversión de un proyecto según el tipo de tecnologia, Fuente: Experiencia privada - Firmas de ingenleria y empresas químicas. MO = Mano de Obra, M = Material, T = Tota 1 1 TIPO DE TECNOLOGIA INVERSION GRANDE INVERSION MEDIANA INVERSION PEQUEÑA T 0 T A L DE PROCESO 3, 573. 9 52. 0 4. 7 3, 630. 6 DE PRODUCTO 79. 9 64. 4 17. 4 162. 2 DE OPERACION 244. 8 36. 7 2. 5 284. 0 DE EQUIPO 14. 4 22. 5 5, 2 42. 1 T 0 T A L 3, 913. 0 176, 1 29. 8 4, 118. 9 Tabla 2. Desglose por tipo de tecnolDgía y tamaño de industria dela inversión esperada en 1977- 1982 en la industria quimica en México. Datos en millones de dWares de 1977. Fuente: Análisis de la demanda tecnológica de la industria Quimica en México, 1977 - 1982, José Gira] B. y Sergio González P. GDT, Octubre de 1977. INVERSION GRANDE T I P 0 D E T E C N 0 L 0 G I A Tabla 3. Desglose de la inversión programada en industrias grandes según el tipo de tecnología y por tipo de insumo - en millones de dólares de 1977, uente: Ver tablas 1 y 2. PROCESO MO m T PRODUCTO MO M T OPERACION MO M T EQUIPO MO m T T MO 0 T A L m T 1. 1 Equipo Proceso __ 107. 2 1. 2 Maq. roceso 607, 6 351. 4 714, 8 357, 4 3, 2 20, E 24, C 4. 9 19, 6 61, 2 24, 5 61, 2 0, 3 1, 2 1. 5 115. 6 649. 2 764. 8 4. 3 4. 3 434, 8 1. 3 Bombas y Compr. 178, 7 178. 7 3, c, 3. 24, 5 24, 5 1, 4 1, 4 208, 5 208. 5 1. 4 Equipo Auxiliar 71. 5 285. 9 357, 4 0. 8 3, 2 4, 0 7, 4 29. 4 36, 8 00 3T 1, 2 1, 5 80, 0 195, 6 319. 7 1612, 2 399. 7 187. 8 TOTAL EQUIPO 178, 7 1429, 6 1608. 3 4, C 39.8 43, 8 12, 2 1 134, 7146, 9 0, 6 8. 1 8. 7 2. 1 Inst. civil/ Mec 71, 5 71, 5 2. 4 2, 112, 2 12, 2 0, 4 0, 4 86, 5 86. 5 2. 2 Tub. Valv. acc. 142, 9 214, 4 357. 3 3, 2 2. 4 5, 6 4, 9 2 13_ 0, 1 0, 1 0, 2 151, 1 219. 3 370. 4 2. 3 Aislam/ Pintura 2. 4 Intr./ control 35. 7 71, 5 35. 7 285, 9 71, 4 357, 4 0, 8 0. 8 0. 8 2, 4 116 3, 2_ 2 4 2, 4 2. 4 2, 4 0. 1 0. 1 0, 3 0. 1 0. 4 39. 0 36, 5 75, 5 7r,, 4 291. 0 363, 4 2. 5 Inst. eléctrica 71. 5 107, 2 178. 7 1. 6 1, 61 3. 2 7, 3 9. 8 17, 1 0, 6 0, 6 1, 2 119, 2 200. 2 2. TOTAL INSTAL. EQUIPO 393, 1 643, 2 1036, 3 8, 8 7, 2 16. 0 26, 8 14, 6141, 4 1. 3 1. 0 2. 3 81. 0 430, 0 666. 0 096. 0 3. EDIF. Y ESTRUC. 285. 9 107, 2 393. 1 8. 0 2, 4 10, 4 14. 7 4, 9119, 6 1, 4 0, 7 2. 1 310. 0 115. 2 425. 2 4. DISEÑO 285, 9 285, 9 4, 8 1 4. 8 17, 1 17, 1 1 0. 6 0, 6 308, 4 308. 4 5. ADMON. OBRA 250, 2 1 250, 2 4, 8 1 4, 8 19. 6 19, 6 0, 6 1 0. 6 275, 2 275, 2 1 T 0 T A L 1393. 8 2180, 0 1 3573, 8 1 30, 449. 4 79. 8 90, 4 14, 2 44, 6 14, 3 1519, 2 12393, 4 3912, 6 Tabla 3. Desglose de la inversión programada en industrias grandes según el tipo de tecnología y por tipo de insumo - en millones de dólares de 1977, uente: Ver tablas 1 y 2. INVERSION MEDIANA T I P 0 C E T E C N 0 L 0 G I A Tabla 4, Desglose de la inversión programada en industrias medianas según el tipo de tecnologla y por tipo de insumo - en millones de dólares de 1977, Fuente, Ver tablas 1 y 2, PROCESO MO 1 m T PRODUCTO MO 1 M 1 T OPERACION MO 1 M T EQUIPO MO M 1 T T 0 T A L MO m T 1. 1 Equipo Proceso 1, 6 8. 8 10. 4 2. 616, 9 19, 5 0. 7 2. 9 3. 6 0, 5 1. 8 121,3 5, 4 30. 4 35. 8 1. 2 Maq. Proceso 5. 2 5. 2 9, 7 10, 3 9. 2 9, 2 6, 8 6 1 8 30. 9 30. 9 1. 3 Bombas y Compr. 2. 6 2. 6 3. 2 3, 2 3, 7 3, 7 2, 2 2q 2 11. 7 11. 7 1. 4 Equipo Auxiliar 1 0 4. 2 5. 2 . 0, 6 2. 6 3, 2 1. 1 4. 4. 5, 5 0, 511, 8 2, 3 3, 2 13. 0 16. 2 1. TOTAL EQUIPO 2, 6 20, 8 23. 4 3, 2 2. 4 35, 6 1, 8 20, 2 22, 0 1, 012. 6 13. 6 1 8. 6 86. 0 94. 6 2. 1 Inst. civil/ Mec 1, 0 1, 0 1, 9 1, 9 1. 8 1, 8 0. 7 0, 7 5. 4 5. 4 2. 2 Tub. Valv. acc. 2, 1 3.0. 1 5. 2 2, 6 1. 9 4, 5 0. 7 0. 4 1. 1 0. 2 1 0. 2 0. 4 5. 6 5. 6 11. 2 2. 3 Aislam/ pintura 0, 5 0. 5 1, 0 0. 6 0, 6 1, 2 0, 4 0, 4 0, 2 0, 2 1, 7 1, 1 2. 8 2. 4 Intr./ control j_j_ 4. 2 5. 2 Ob 1. 9 2. 5 L 0. 4 D- 2 0. 5 0. 7 1-. 8 7, 0 8. 8 2. 5 Inst. eléctrica 1, 0 1, 6 2. 6 1, 3 1. 3 2, 6 1, 1 1, 5 2, 6 0. gi; 0, 9 l, 8 1 4, 3 5. 3 9, 6 2. TOTAL INSTAL. EQUIPO 5, 6 9. 4 15. 0 7, 0 5, 7 12, 7 4. 0 2, 3 6, 3 2. 2 1, 6 3, 8 18, 8 1 19, 0 37. 8 3. EDIF. Y ESTRUC. 4, 2 1, 6 5, 8 6, 5 1, 9 8, 4 2, 210, 7 2, 9 2, 2 1 1. 1 3, 3 1 15. 1 5, 3 20, 4 4. DISEÑO 4, 2 4, 2 3, 9 3, 9 2. 6 2, 6 0, 9 0, 9 11, 6 11. 6 S. ADMON. OBRA 3 6 3. 6 3 9 3, 9 2, 9 2, 9 0, 9 0, 9 11, 3 11. 3 T 0 T A L 1 20. 2 1 31, 8 1 52, 0 24, 510, 0 1 54, 5 3, 5 23, 2136, 7 7, 2 1 5, 3 F2, 5 65, 4 110. 3 175. 7 1 Tabla 4, Desglose de la inversión programada en industrias medianas según el tipo de tecnologla y por tipo de insumo - en millones de dólares de 1977, Fuente, Ver tablas 1 y 2, INVERSION PEQUEqA T I P 0 D E T E C N 0 L 0 G I A Tabla 5. Desglose de la inversión programala en industrias pequeñas según el tipo de tecnoloni- a y por tipo de insumo Fuente; Ver tablas 1 y 2. PROCESO mo m T PRODUCTO MO M T OPERACI N MO M T EQUIPO MO M T T 0 T A 1 mo m T 1. 1 Equipo Proceso 0. 14 0. 79 0, 93 9. 69 4, 52 5. 21 0, 05 0, 20 0. 25 0. 10 0. 42 0. 52 0. 98 5, 93 6. 91 1. 2 Maq. Proceso 0. 47 0. 47 2. 61 2. 61 0. 63 0. 63 1. 56 1. 56 5. 27 5. 27 1. 3 Bombas y Compr. 0. 244 240 Z2 0. 87 0. 87 10. 25 0 25 0. 520. 52 1. 88 1. 88 1. 4 Equipo Auxiliar - 0. 09 80. 3 0. 47 0, 17 0. 69r0,' 86 0, 08 0, 30 0. 380 . 38 0, 1 0. 42. 0. 52 0. 44 1. 79 2. 23 1. TOTAL EQUIPO 0, 23 81. 8 2. 11 5 0. 36 8, 69 9. 55 0, 13 11. 38 1, 5 0. 20 2. 92 1 3, 12 1, 42 14, 87 16. 29 2. 1 Inst. civil/ Mec 0, 09 0. 09 0. 52 0. 52 0. 13 0, 13 0. 16 0. 16 0, 90 0. 90 2. 2 Tub. Va1v. acc. 0. 19 0. 28 0 . 4 7 5-. 6-9 b_. 5-2 1 0-5 n 03 0. 08 0. 05 0, 05 0, 1 0 98 2. 3 AislarnZpintura 0. 05 0. 05 0. 10 0, 17 0, 17 0, 34 0, 03 0. 03 1 0, 05 0. 05 0, 30 0, 22 0-. 57- 2. 4 Intr. 1control 0, 09 0, 38 0, 47 0, 17 0. 52 0, 69 0, 03 0. 03 O, OE 0, 1 0. 15 0. 31 1. 03 1 . 34 2. 5 Inst. eléctrica 2. TOTAL INSTAL. EQUIPO 0. 09 0, 51 0. 1 40 0. 85 HO 0 23o 23 1, 36 0- 35 1, 91 0. 35 1. 56 0. 70 3. 46 0. 08 0, 29 0. 10 0. 16 0, 18 0. 2C 0. 2d 0. 4010. 72 0. 79 1 . 5 1 0. 46 0, 51 0, 35 0, 86 3. 21 2. 92 6 . 1 36. 3. EDIF. Y ESTRUC. 0, 38 0. 14 0. 52 1. 74 0, 52 2, 26 0. 15 . 0, 05 0. 20 0. 5 0. 26 0, 78 2. 79 0. 97 3. 76 4. DISEÑO 0. 38 0. 38 1 1, 04 1. 04 0, 18 0, 18 0, 20 1 1 0, 20 1. 80 1, 80 5. ADMON. OBRA 0, 33 0. 33 1, 04 1, 04 0. 210 0, 200. 20 0, 20 1. 77 1. 77 T 0 T A L 1- 1. 83 2 * 87 4, 70 6. 59 10, 77117. 35 0, 95 1 . 591 2. 55 1, 63 3. 53 1 5. d10. 99 18. 76 29. 76 Tabla 5. Desglose de la inversión programala en industrias pequeñas según el tipo de tecnoloni- a y por tipo de insumo Fuente; Ver tablas 1 y 2. Acetaldehido Acido acético Acido acrflico Acido fosfórico Acido sulfúrico Acrilonitrilo Acido tereftálico Amoniaco Amoniaco CO2 Azufre Benceno Butadieno Cloruro de vinilo Criogénicas Cumeno Dimetilformamida Dodecilbenceno Endulzadoras Estireno Etilbenceno Etileno Furfural Hexaclorobenceno Metano] Metilaminas Nitrato de amonio - HNO3 Oxido de etileno Oxido de propileno Percloroetileno Poliestireno alto P. M. Poliestireno bajo p. m. Polietileno alta densidad Polietileno baja densidad Polipropileno Propileno Sulfato de amonio Tetrámero Tetracloruro de carbono Tol ueno XX TX' x x T x x x x PROYECTO DE INVERSION 10 x x C) x X x CD Lnw 1 S- 0 IZ1 12 0 ro 171 X x V) Ms- 0 GRANDE CD M U) 2 Z, W X x cr, url4 0n Ix 0 UJ C --) TECNOLOGIA DE PROCESO W a) 0 0 u4- CL 13 V) x U) a) S- v) G) v) w 5 X m x x X U X X x x M 4 0 V) 0 71 1) x x x fr, 4 A Z5ti) C) 0 u 1) s- l s- 0 0 tu t S-- n CDr3 fe 34-- 1- 0í) Ln 0 CD n3 x x G) m UL 0 4 u r- a) C 5.. 0 CL 0 0 u) lo c) 4.j n CL n 10 s- tib 4-) 4-) 4 3 C ---y t. c) 0 ua) n c,) 0 fo D 0 : c_) s- b- U1) C c), L, C 5 ci UJ LU C-) f_- W Cy- Li v) X XX Acetaldehido Acido acético Acido acrflico Acido fosfórico Acido sulfúrico Acrilonitrilo Acido tereftálico Amoniaco Amoniaco CO2 Azufre Benceno Butadieno Cloruro de vinilo Criogénicas Cumeno Dimetilformamida Dodecilbenceno Endulzadoras Estireno Etilbenceno Etileno Furfural Hexaclorobenceno Metano] Metilaminas Nitrato de amonio - HNO3 Oxido de etileno Oxido de propileno Percloroetileno Poliestireno alto P. M. Poliestireno bajo p. m. Polietileno alta densidad Polietileno baja densidad Polipropileno Propileno Sulfato de amonio Tetrámero Tetracloruro de carbono Tol ueno XX TX' x x T x x x x X x x x X x x x x X X x x X X X x X X Ix x X x x X x x x X X X x x x x X x x x x x X x x x x x X X x x x X x ! x X X x Ix X X x X X XX X I X x x x X X x X X X x Ix x X X x X X. Ix X i x X A X x x x x X Ix x X x X X X X X1 X ! X x X x x x X x X x X X x X X X X Ix x x x x ix L x x x x x X X x X X x x TABLA 6. Sinopsis de los equipos y maquinarias de proceso mas comunes en los procesos con$¡- derados. TABLA 6. Continuación. PROYECTO DE INVERSIUN (_ D V) GRANDE CDw TECNOLOGIA DE PROCESO r- C.) l - Urea O - Xileno P - Xileno PROYECTOS DE INVERSION GRANDE TECNOLOGIA DE PRODUCTO Aminoacidos Etilenglicol Formaldehido Glicol 6teres Pentaeritritol PROYECTOS DE INVERSION GRANDE TECNOLOGIA DE OPERACION Cloro -sosa Negro de humo PROYECTOS DE INVERSION MEDIANA TECNOLOGIA DE PROCESO Butilacrilato Etilacrilato Etilenglicol Furfural Metilmetacrilato Poliacrilonitrilo Sales de amonio X x x X x x X X x x x x x x CD V) x x x x x x x x x 0 LU x u x x x x x x u x x x C> u w x x x x x x x u) s— C1: X Ix x ix e) ca- x x x x z3 s— n 0 ra Ci- x x I x x w 4 I- J 4 0 34- n m x n x x a) x S- S- Lli i. 0 x x ni n 0 0 A ci E: cn T) a> 73 0 N 4, Ty w s— 0 m ZL 0 n lo CJ_ 4-) 25 3 4 7) 0 ri 0 4 1 1-- cr u u 0- k: 1 il-_ o E- — u 0 frs u S- C r c) ro 2) Q) 1) 0 di J_ c—) a: CIr Lu V) Ci E X x x X x x X X x x x x x x x x x x x x x x x 0 x x x x x x x x u x x x x x x x x x x x x u) s— o ( n X Ix x ix e) 0 x x x x z3 s— Ul 0 a 4— c:) x x I x x 4J I- J 4 x x x x x x 7 x x a) x LL- zr Lu x x x x x x x x U) fil5— 0 NOTA: Estas tablas están incompletas en lo referente a maquinaria de proceso, ya que los dia- gramas de flujo y las descripciones de proceso no son muy explicitos. Se incluyen solo por el valor que pudiese tener la información parcial. 0 0 Ty E- o ( n 0 c7) ( u 0 3 Ul ra 4— c:) 4J 4 r_ 7 a> LL- zr Lu x x x U) fil5— 0 NOTA: Estas tablas están incompletas en lo referente a maquinaria de proceso, ya que los dia- gramas de flujo y las descripciones de proceso no son muy explicitos. Se incluyen solo por el valor que pudiese tener la información parcial. fA TABLA 6. Continuaci6n u) w u 1-- s- 0 C> C> - o Ln V) - a tu ro 0 L -i S- 2 r2 - Z. 0 PROYECTOS DE INVERSION c, < r% ( n - 2 W C) u 0 - 0 U'> u Cj.> S- S- ri_, tli ( A rG MEDIANA G3 CD - U 0 ( n nl- c) ci - 1-, , 0 e) ( n 0 0 cn CD >, v) : 3 - E - o 73 w a) 1- 1 < o ro S- uj ro 4- 1 Ln - 0 0 cn N - 1 C) TECNOLOGIA DE PRODUCTO n c:> ( n 1~- ( 13 - u ( u .- S- - 0 W ( e$ ( n < u ( n ( 0 S- — C) ( 3 ( n C> ( o 4- 0 U) CD C) C: s- 0 ( A n: S 0~ 0 - 0 — — "> 0 J " 0 4-> f> s— M -- s- :: 3 = 0- E-: = 0 0 D E cj- Z5 U - U cj- " C5 = .( n C ( o =:) 4-> 4-> 4-) 4--> S- — m U 1- - ITJ U ( Dr — -- r- = 4- 1 z; Cy fr5 o ( C5 ( u a) 0 > ( u 0 s- 5-- ci «: Z .— m a) e) X L.0 (--> (—) F-- ci: = (-) LJ U') = W - c: I 2: Li- ‹ t >. (..) W 2: Ac. 2, 4 Diclorofenoxiacético Acidos grasos Acrilonitrilo Anilina Antraquinona Butadieno- estireno G] i ceri na Poliestireno Resinas epoxi PROYECTOS DE INVERSION MEDIANA TECNOLOGIA DE OPERACION Caprolactama Celulosa Guayule Hidrógeno PROYECTOS DE INVERSION PEQUEÑA TECNOLOGIA DE PROCESO Carboximetilcelulosa Cloro parafinas Fenol- formaldehido Melamina PROYECTOS DE INVERSION PEQUEÑA TECNOLOGIA DE PROD[JCTO Acido cloro- ac6tico Acrilamida Alcohol polivinilico Anhidrido ftAlico Beta - naftol x x x x x x x x x x x x x x xi x x x x x x x I x x x x x x x x x x x X X X X x x x IX x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x X x x x x x x x x x x x x x x I I I x x x x x x x x x x x x x x x x x x x x x TABLA 6. Continuaci6n CD 0 - 0 5.- V) - o ( 0 0 LU ( o — W, r3 t', . 2 In 7 0- 0PROYECTO DE INVERSION C.) ( u C) 0 PEQUEÑA cn u c) s- S- oo N 0- U) u) C1- S- J c) _ 4- a) 0) El >-, _ n C) 7D -) ( A ( o v) s- <.- Lli cr- - b-) , 0 ( 1) ( A 0 0 "> M >, ( 1) ZTECNOLOGIA DE PRODUCTO CL u E u, 5~ ( D - u - u ( 1) 0) n u >, G) 0 s- 115 ni s- «:: r ( A S- m LI -1 ( A 73 CD n r,,¡ 4-> 0 0 w a) > 1 CD ( 1) CC5 - 0 W .- <.- - C - n = 3 s- U nj un a) S- ( n CO 5- 0 ( Ti - r cn 0 CC5 4- ( D CD a) 0 c SI- 0 n C- 4 0 - ID 0 c) - i-, s- msQ- -: E : 3 4 e) 0 tn C: — L.) E W * zs U - 0 c,. rd C: ( A C: n3 + i - P - 4-) + 1 L- C -7 1- ms i- n3 u s- . -> re 0 ( ti ( 1) . . > 0, . z-- Sr,_, uaj < C: ry 7 z, lw- ccu: 4x LLJ (—) <- 3 F-- w cv- (-) uj u-> = (—) V-- c:- = LL- - C Z:> (—) Lli M: Ciclohexano Cloro parafinas Formaldehido Plastificantes Polietilenglicol Resinas epoxi PROYECTOS DE INVERSION PEQUEÑA TECNOLOGIA DE OPERACION Fertilizantes Pinturas industriales PROYECTOS DE INVERSION PEQUEÑA TECNOLOGIA DE EQUIPO Aceites lubricantes x x x x x x x x x x x x x x x x x x x x x x x x x X x x x x x x x x X X x x X x x x x x x x x x x x x x EQUIPO DE PROCESO TECNOLOGIA DE INVERSION PROCESO Mil]. dls PROCUCTO Mil]. dls OPERACION Mil]. dls EQUIPO Mil]. dls TOTAL Mil]. dls GRANDE 607. 6 88. 7_ 20. 8 3. 0 19. 6 2. 9 1. 2 0. 2 649. 2 94. 8 MEDIANA 8. 8 1. 3 0. 6 0. 1 2. 5 2, 9 0. 4 1. 8 0. 2 30. 4 4. 4 PEQUEÑA 0. 8 0. 1 16. 9 4. 5 0. 7 0. 2 0. 02 0. 4 0. 1 5. 9 0. 9 TOTAL 617. 2 90. 1 42. 2 6. 2 22. 7 1 3. 32 3. 4 1 0. 5 685. 5 100. 1 MAQU-- NARIA DE PROCESO TECNOLOGIA DE INVERSION PROCESO Mil]. dls PRODUCTO Mill. dls OPERACION Mil]. dls % EQUIPO Mil]. dlsi TOTAL Mil]. dls GRANDE MEDIANA 357. 4 5. 2 75. 81 1. 1 11. 9 9. 7 1) r, 2. 0 -- 9. 2 2. 0 4. 3 6. 8 0. 9 1. 4 434. 8 30. 9 92- 1 6. 6 PEQUEÑA 0. 5 363. 1 0. 1 77. 0 2. 6 0. 6 0. 6 0. 1 1. 6 0. 3 5. 3 1. 1 TOTAL 1 24. 2 5. 1 71. 0 15. 0 12. 7 2, 6 471. 0 99. 8 Tabla 7. Sinopsis de] análisis de gastos en equipo, maquinaria, bombas y compresores y equipo auxiliar por tipo de tecnologia y tamaño de empresa. BOMBAS Y COMPRESORAS EQUIPO AUXILIAR TECNOLOGIA DE INVERSION TECNOLOGIA DE PRODUCTO Mill. dls % OPERACION Mill. dls % EQUIPO Mil]. dls TOTAL Mil]. dls 1 INVERSION PROCESO Mil]. dls PRODUCTO Mil]. dls % OPERACION Mill. dls % EQUIPO Mill. dls TOTAL Mill. dls GRANDE 178. 7 80. 4 3. 9 1. 7 24. 5 11. 0 1. 4 0. 6 208. 5 93. 8 MEDIANA - 2. 6 1. 2 3. 2 1. 4 3. 7 1. 6 2. 2 1. 0 11. 7 5. 3 PEQUEÑA 0. 2 0. 1 0. 8 0. 4 0. 3 0. 1 0. 5 0. 2 1. 9 0. 8 TOTAL 181. 5 81. 7 7. 9 3. 5 28. 5 12. 7 4, 1 1. 8 222. 1 99. 9 EQUIPO AUXILIAR TECNOLOGIA DE INVERSION PROCESO Mill. dls PRODUCTO Mill. dls % OPERACION Mill. dls % EQUIPO Mil]. dls TOTAL Mil]. dls GRANDE 285. 9 85. 5 3. 2 1. 0 29. 4 8. 8 1, 2 0. 4 319. 7 95. 6 MEDIANA 4. 2 1. 3 2. 6 0. 7 4. 4 1. 3 1. 8 0. 5 13. 0 3. 9 PEQUEÑA 0. 4 0. 1 0. 7 0. 2 0. 3 0. 1 0. 4 0. 1 1. 8 0. 5 TOTAL 290. 5 86. 9 6. 5 1. 9 34. 1 10. 2 3, 4 1. 0 334. 5 100. 0 TABLA 7. Continuaci6n TABLA 8. Resistencia química de plásticos a varios disolventes Clave de lo desiqt?acitir7 pura resistencia químita 0 S= sal isfáctorio hasuj 30 C SI hd%(a WC 52 sal isfactorio por enci rnt de OOOC A adecuado 1 insal Isfactorio PI/ C 1, 011- Pofi- Meta- Pófi- Fluoro- Poli- Polí- Poli- 1- 01- P1, 11, 1 PVC plasti- efi- propi- crila- éste- curbu- C.Sis- nieros ace- formul- cartio- poli- ríqído ficado leno leflo los res Epoxis r0 5 reno ARS tales dehído no to ter Fijrano Ace¡(" Iiiiii ¡Lantes si S 5 5 5 5 52 52 A S S S si 52 S si Acetalo de elilo 1 1 1 1 1 1 A 52 1 1 1 1 5 5 A Acciona 1 1 5 S 1 1 A S2 1 1 si 1 S 5 A S Aicolmi Inel ffico S si si si S si S 52 5 si si A si S2 5 si Alcohol etíli(;o S si 9, 1 si S si S 52 S S 1 si A si S2 S si Alcobol buiffico 5 si si si 5 si 5 S2 S S Si A si S2 b si Anilin.i 1 1 5 5 S S2 5 A 1 1 Orfict-no 1 si S 2 1 S S A Diciortiro de el Heno 1 1 1 1 1 1 A 52 1 1 S 5 1 52 Eter etihuo 1 1 5 S 1 S S2 1 1 51 5 si 52 S 1 le xano S 1 A A S 5 S S2 1 A 5 S si 5 S si Keroseno S si 5 S S 5 5 52 1 A 5 S si S S 5 1 Naftaleno 1 S S 1 5 5 52 1 1 S S A 2 S si Tetratloruro de carhunn 1 1 1 1 1 si S 52 1 1 si S 1 2 S 5 1 rietamilarnina si S S S 52 1 S2 Meno 1 1 1 1 1 52 S2 1 A TABLA 9. Resistencia a la corrosión de rnateriales de constru( ( i . On Oave de la designación paru resistencia a la corrosión A aceptable, puede usarse con ¿xito C ctjidado, la resistencia varía dependiendo de las condiciones; úsese si se puede tolerar algo de corrosión X inaceptable no se dispone de información CAlver de la designación para los rnateríales de empaque a asbesto blanco ( comPr ¡mido o tejido) h albeste azul ( comprimido o tejido) c asbesto ( comprimido y aflujado) d ashesto ( tejido y ahulado) e G R - Se o hule natural f - " Tefión" Metales No metefficos Acero inox Materiales Hirerro Hierro Vidrio Carbón Resinas Cloruro no nietólicos y, vaciado 78-8 Bronce Alumi- Incirus- ( Kar- fend- Resina s de de ertipaque Producto químico aturo, ( resist -Ni) 18- 8 Mo Niquel Monel rojo nio trial bate) licaes acrílicus virrilidenor aceptables Acetona A A N A A A A A A A . e x Ac. acético anhidro c c A A A A x A A A A x c b, c, d, f AL. acéticce crudo c c c c c c c A A A A A c b, c, d, fAc. acético puro x x C A c A x A A A A A x b, q;, d, f Ac. teórico carbóriii o x e c c A A A A A c A A A A A Ac. cítrico x c C A A A c A A c c A A A A A A A A A A A A a, e, f b, c, d, e, f Ac cioracético x 1 x x e C. x c A A b, f At. clorhídrico x x x x c e x x A A A A c b, c, d, tAc. cróernú o e c c C e x e A x x x A h, f A,. A A A A A c A A A A a^ f Al. fluorhídrico c x x x c c x x x A e c b, f Ac. fórmiLo x c c c C x x A A A A b, c, e, t A<. fosfórico c C C A c c x x c A A b, c, f AL. láctico x c C A c c A e A A Ac. nítrico x c c c x x x e A C e b, f A(. oleico c c A A A A c A A A AL oxálico AL. sulfúrico ( 75- 95%) c A c c c x c x c A c c A A A Ac. sulfúrico ( 10- 7 5%) x c x x x c C c x x x A x c h, f A, . sulfúrico « l 0%) x c x c C c c x c A A 1\ A c A A b, f AL. sulturoso x C A x x c c A A A A c ALidos grasos c c A A A A c A A Ix A N a" e' f Altireribres x c 1 A C A x A A A A A A Anioniaco anit. A A C A A A x c A A c Anhidrido acético c c A A A A x A A A A x C. Arrilina A A A A A x A A c c Altifre A c c C c c C A A A Ber, cence A A A A A A A A A A A c a, f Bioxido de á¿ ufre c c C c c c c A A A A A a' f Bisulfito (te soclio x C A A A A c c A A A N Bromo x c C c c c c A c x x b, f Ci i ho na to de sod ¡o A A A A A A c c c A A x 1 a, c, d, c, f Cloro litimedo x x x x x x x x A c A x 1. ir o Seco A A C A A A A A A A b, e,( lo, oro draliiiiiinio x c x x C c A A A A Il niorio c A c c A A c A A A A A ble oro de A c c A A C C. A A A A A 1, 1 t ir o ti e *t i ti 1 e c x A A x A A h, c, d, e, f Cloruro de magnesio c c c c A A c c A A A A b, c, e, f Cloruro de scedir) A A c c A A c c A A A Llortiro férrico x x x c x x x x A c A A b, e, f Er. incel A A A A A A A A A A A a, c, e, f Etilen-gliccel A A A A A A A A A A A A i,c, c, t Fereol ( ac. carbólico) c A C A A A c A A A c A C a, t Formaldehído c C A A A A c A A A 1\ A rosfato dibásico de. unonice C A A A A c C. A A A J. c, d, c, f Foslato monobásico de amolijo x e A A c x x A A A b, c, d, e, f TABLA 9. Resistencia a la corrosián de materiales de construcci,in ( continúa) Producto químico fierro y acero Metales Acero inox. Ilierro vaciado 18-8 reski- NO 18-8 MO Níquel Aloncl Bronce rojo No metúlicos Vidrio Carbón Resinas Cloruro Alumi- indus- ( Kur- fenó- Resinas de nio trial 17at(') lícu.s acríti.,,-(Ps vinilidono Muterwles no metulicos 40 empaql1e aceprubles Vosfato tribásico de amonio A A A A A A x C A A A a, e, d, c, 1 Glicerina A A A A A A A A A e A e C, f flidrocarburos alifáticos A A A A A A A A A A A A C a, e, d. f Hidróxido de arnonio A A A A c C x C A 12 A A C a, c, d,[ Hidróxido de calcio A A A A A C a, c, d, ej Hidroxido de potasio C C A A A A x X C a, ej Hidrémido de sodio A A A A A A c x C A K A C a, c, d ' t llipociorito de calcio X C C A C C C C A A C C b, c, dj llipoclorito de sodio X C C A C C C x A C X A b, c, d, f Metanol A A A A A A A A A A A A Mirato de sodio A A A A A A C A A A A b, c. d, c, f Peróxido de hidrógeno C C c C e e A A A A A C I. C11` Sulfato de aluminio X C e A C C X A A A A A A a, c, d>e, f Sulfato de amonio C A C C A A e A A A A A A b, L. t1, ej Sullato de cine C A A A A A C e 1 b, c, d, cj Suttdto de co*are X C A A e C X X A A A X b, L, d, v, 1 Sultato de magnesto A A A A A A A A A A A h, L. C. I Sulfato de sodio A A A C A A A A A A A A j, c, d^ l Sulfaro férrito X X C A C C X C A C A A b' c' ej Suifato ferroso e A A A A A C C A A A 11 Sulfito de sodio A A A A A A C C A A A Sulluro de godio A A e A A t% X X C. A A d. C, f 1 eiracloruro de edebono C C C A A A C A A A A U S, f ri, pstjtfalo ( le Sodio A A A A C. e A A A A AILAC, 1` Tri( I,. roctileno C A C A A A C e A A A C a, f TABLA 10 . Costo comparutivo de distintos metales en lámina* TABLA 11 . Costo de inStGlUCIón del equipo como porcentaje de su costo de corripra Estas tablas se sacaron del Libro: Gira] B., J. , F. Barnés y A. RamTrez. ingeniería de Procesos, Facultad de Química, UNAM, México, 1977. cu, to por kt¡ del melal Alaterial Relación coito por kg de acero al carbón ripo (Ir Cosin de iii.stalucp,', n A Le¡ o al cjrl)¿)n, (,# 1 ¡ d,¡ d pará bridas ALero larninado cori ateio inox. 404 Sepiradores centrítugos 10- 15 A( ero larninmin con acero inox. 3 16 fi Compresores 20- 00 Aluminio (99 1 ) 6 Sueddore, 50- 150 Atc, o inoxidable 304 7 f Vipormiores 10 -Vi Cobre ( 99, 9 +) 7 Filtros 25- 15 Acero larninado con níquel 8 Canibiadorcs de calor 10- 35 Acero laminado con nionel 8 Cristalizadores mecánicos 30-50 Acero liminado con Inconel 9 Mezcladores 10- 20 Acero inoxidable 316 lo Bombas 10-50 morlel 1 ( 3 Torres 25 50 Niquel 12 Cris( altz, idores (le vacío 40 -SS Inconel 13 1 dnques de m d< lc ra 30-60 llastelloy C 10 1 anques fnetál ícos 20 -10 Estas tablas se sacaron del Libro: Gira] B., J. , F. Barnés y A. RamTrez. ingeniería de Procesos, Facultad de Química, UNAM, México, 1977. APENDICE IV La colección de diagramas de flujo que se presenta a continuación se obtuvo de la literatura disponible. De la relación de proyecto que constituyen el programa de inver- sión para la industria química en 1977 - 1982 ( apéndice II) no se in- cluyen todos los diagramas de flujo por no disponer de la información necesaria, y debido a ésto el análisis sólo se basó en los diagramas de flujo disponibles. Esta colección, se ha fotocopiado de las fuentes originales, la mayoría en inglés, por carecer de tiempo y recursos, para la traduc- ción y redibujado de los mismos y por considerarse que tendría un -- cierto valor el disponer de una recopilación de breves descripciones de la mayor parte de las tecnologías que serán usadas por la indus- tria química en México los primeros cinco años. PROYECTO DE INVERSION GRANDE TECNOLOGIA DF PROCESO Acetaidehyde—MONTECATINI Application: A proces,,; for manufacturing acetaldchyde by lilvalls ( if catalytic hydration of acetylene Charge: Acvtylvne, 98 pel-cent pill.c. Product: A( etaldehydc having a purity of 99. 8 percent. Description: Acetaldellydc is obtained by direct hydra- tion of acetylene, according to the. following equation: CIT =_ Cll + If,()— C11, - Clio This reartioyi, catalyzed by inercuric ion, takes place by inject- ing gascom a( etylo-ne into a morcuric sulphate solution. acidified by H:S(),. During the process, owjjL to secondary reactions, a progressive reduction of mercuric iong. which ire ratalitically active, takes place to metallic mercury which is. catalitically inactive. In order to prevent the reduction of mercuric salts to metallic inerrury. feriti milphate is confinuously added to the catalyst solmion: th-, ferric compound is reduced to ferrous sulphate dilrTg tilt' fit(,( ess. 1' IIAYII thr- filn, i ... isl Ile continuously replaced for re- i" ll (-( ferrolls sulphate 1,, ferric sulpha( c. To this aini the catalyst solittion is continuously withdrawn and sent to the regenerator, after removal of mercury -containing Said Muds arc periodically litit- tre. ited in order to recover niclallic lig. Regeneration ( If catalyst sollition comprises I hot - treatment with nitric acid in the presence of an air stream blown in the solution. Nitrogeri oxide, is proditced; ferrous ion is oxidized to ferricion. The wgurivrated catalyst is recych . 11 to tile acrtyli- liv hydration reactor. ' I' ll(, latter operates adiabatically and the residence time of acetaidehyde in the catalytic solution is calculated in such away' io mini iizc side- rvaciions. Acetaldelly( lp vapors, mixed with strain and unreacted arety- lelle I) Vvrflow from tile' top of the re.-wfor. The effluent mixture iq then first cooled III about 60 ' C; the colillensate consists allilost entirely of water whicl) is sent back to the reactor. The gaseous inixtitre is then admitted into a column in which acetic arid is lbsorbed 1)), the acetalflehydc solution flowing from the bottom of November 1961, Vol. 40, No. 11 the slicce- siVe acetaldvilydf- absorptioii tower. The gaseous mix. ture is further cooled. ' ifter the a(-eti(, acid absorption step, to about 30 " C' in a final cooler. 1 11" 1` till' 9" is "" it tO tile : 11is( ilption 14) wt- r ill which is recoveied as a crude a( Itif-mis sohitiml. Unrear tcd acetylene. together with iiv It gas contained in the starting gas Iced flows from top of absorplion tower and is sent back to reactor, while a striall portion ( if it is continuously pur Ked. The purged gases, still containing acetylt tic, are sent to acrty- lene recovery whi( h call be. carrica out by conventional means: in case the acetaldehyde unit is couplv( l to a methane cracking unit for the. prodijction ( if acetylene, the purgrd gases are. sent to the main raw acetylt- rie gasholdrr; thiv; 01- Y follow the concen- tration process of the pure acetylene ptc)(111, lion unit. From the. bottom of the absorption tower - in acetaldchyde aqueous soltition of 10 percent strength is obtained; this is sent first to the acetic acid absorption tower and then to mercury settling tanks. Crude aurtaldehyde solution is plimprd, through a c( oke filtpr for separation of residivil mercury and a lirr-heatcr. to file dis- tillatimi towvr. The distilled acetaidehyde. is then PlItifictl fro", acetylene by a heating slep in an acetylene stripping tower. The final prorifim i i - S ; III at 1- 1aldell)- l- I onfrilt ( if 99. 8 Uncorldflis'-d gasc% fj') WiIjg from thr toil, If III,. ;, cej;& jeby1( 1le distillation tower are nrixed with acetaldchyde valmrs and acety- lene leaving the top of the acetylene stripping tower and are recycled to the bottom of the column in which arrtaldchyde vapors are fitsi all— rhed in water. Vroin tilt- hotifim ( If the dis- tillalion towvr ; I inixitirr of water mid by- pio(jut-ts is co, 11inilouslydrained off. Operating conditions: The reactor operates at a te . mperature of about 85 ' G. and the plant is run substantially at masometric pressiire. Yields: Total irld of acetaldchyde is 95 percrtit based oil arvity- lelle consumption. Commercial installations: A large industrial plant is in operation at the. Montecatini Works in Novara, Italy. 2n7 Acetaidehyde from Ethylene ( Aidehyd GmbH)— HOECHST- UHDE CORP. Applicat i ion: A process for acetaldchyde production by Grude acetaldchyde thus obtained is separated from 1- t diltion of rthylene.. Thery are. two variations of I! yprodiicls and water by I two-stage distillation. II- 1) toccss, one using oxygen and the other using air. The clioice depends on local conditions such as oxygen Plant Cost: The iotal investment fol. a . 75, 000 ST/ year rost, utility prices, and ethylene purity. plant, with either tli(, one -stage process including the. oxy- Ivnl l4ant, () I- the two-stagc proct-ss including air coinpres- Description: flic. process employs a catalytic solution of sion, is about $ 4 million. opper chloride containing small quantities of palladium woi-idc. ' rhe reactions rriay be summarized as follows: Operating Rrquirenients Per Short Ton of Acetaldehyde 2CuCl. + 11, 0 --- 3, Cll:,GIIO + 2HGI + 2CuCl WuCl + 211C3 4- V,O,, — WuC12 + JI,,O In the roartion, palladium chloride. is reduced to elemental and HG, " nd is I -r -oxidized by cupric Chloride. I) IIIii1j" cilialysi 1- r!"clicrol 1, oil, dw (. 11prolls (. 111olidt.. is IV- Xidi/(: d. Thn. 1(. il( tilill ; Itid. lo" cllur;lli( ill s1f, ps can Ili- (. 4)[ 1- dlict" d Sr I); Ilra tel y or. togr4- ther. Sve Acetone. ( Aldehyd Gmbl 1) for two-stage ( air) lli-w-ess ( Icscriptimi. Single -Stage Oxidation With Oxygen: FAhylene. at I( I M" Pti ill'(% t, fed into a vvilical rvat- for which is filled wi I s" 1111ion. TIlV If';'( 11011 IlLtrc 1111der : 1 sli.,,IIL pi-cs" Ilre nild ; I( dw hifiling wilipf- latille of thl. a( Illcotis solution. Thc reaction is c.\ otherinic by 58 kcal per mole Icf' t, Ildf1Iyd,' plodliccd. ']' his heat is removed by water f .*­ l1­ ulfioll. and dw r if ill(- cautlysit so.111tioll is kvpt constatit If%- nicnits of ; I ( wwsponditig, w; tff, r stip- pl'. Acctaldichyde piodu('ed is c,) ndensed and scrubbed with water front unreacted gas, which is recycled. Raw Materials and Utilities one-sta!:"C', Ethylene ( 100%) 120 psig, min., 99.8 Vol..% 1, 340 lb. Oxygen ( 100%) 120 psif, Min., 99. 5 Vol.% 9,460 scf Gatalysts ( Approximatc) 0.90 TICI ( 31%) 30 lb. Cnolin.g Water, 68' F 48, 000 gal. 0,Id W; iter, 5- l' F 1, 700gal. g; l I- Ar( li I, Pmv- 1 1. 5 k %%h I,. I , " I IfA I slipl-r% i! ol ; 111( 1 1 forcill. 111 pt r ( 1: 1y. 3- 1 itirn per shift YivI( I ( KI' ad , It 10110'. 11'.) Oxygril Id" Ilt 11( ilities 1101 included Commercial Installations: ' I' livio ort. Ili pl, ints ilrmill.,11. mt thc wodd, with total annual capacity ( 4 one inillion sh() lt tolls. References: Fflrdwr ilifoiniation is availithle fit, 111 Ilocclist-Ulide Ccyrp., 550 Sylvan Avenue, Lnglewood Cliffs, N. J. 07632. HYPROCAR] ION N o\ f, lllll(,f 137 Acetic Acid— BADISCHE ANILIN-& SODA- FABRIK AG Application: A continuous high-pressure prot ess for pro- duction of acetic acid froin niethanol and carbon nion- oxide according to W. 1 eppe. Description: The reaction proceeds as follows: 11301.1 _' 1 11 IUO CH, OCH, d- HO + 2CO --) 2C11:,C, 00f1 The conversion takes place at *about 250' C and 650 abif * in liquid phase in the presence of water. The cata- lyst is dissolved cobaltous- iodide. In tile high- pressure synthesis section, tile reactor is continuously supplied with a feed containing methanol and, if desired, dimethyl ether, and with carbon mon- oxide. 530,000 kcal of reaction heat is released per toil of. acetic acid produced, which is absorbed by the cold feed and gas. A slight heat deficit is co; npensated by pre- heating - tile feed to 40-80' G. The cnide acid and the unreacted gas are withdrawn at the top of the reactor and, after cooling, expanded down to 10 atin. gage in tile mediuni- pressure section. The crucle acid is trans- ferred, to tilt: working -up sectioil. Ndlctflyl iodidc ill tilt! tilt - reacted gas is recovered by -,yashing the vent gas with the feed methanol. The methanol is combined with the other components forming the feed witbout any fujOwl. treatineilt, aud the washed gas is used for fuel. In the working -up section the acetic acid and the byproducts -having a higher boiling point than acetic acid are separated from tile crude acid and withdrawn. All other components of the crude acid. ate mixe(I witit tilt! methanol leaving the vent gas wash coluilin. ' HIC Mixture is supplied continuously to the reactor as feed. The crude acid is degassed and freed froni 1() w- 1)(,) ilillg components in a first distillation and then in tile catalyst separation freed frorn cobaltous iodide that is removed from tile colurrin in aqueous acetic solution as bottoms. The catalyst -free (.-rude acid is dehydrated and purified in tile dehydrator column by rnea ns of azeotropic distil lation. The entrainer used is a steani- volatile byproduct 11— tu re which is formed in the maction and which sepa- zatcs in tile separator as tile tippet- phase. in tile bottoll, of the dehydrator colunin acetic acid free of water and formic acid is recovered, which is processed in the follow - fig two colunins to pure acetic acid of over 99.8% pur- ity, an,d a byproduct rilixture that is free of acetic acid. Yield: Tile requirements for the production of 100 kg of acetic acid are: 61 kg of pure niethanol and Our, S. T. P.) ( X). Commercial Plants: 11, 000 ton) - car plant at BASF, at plalit in the Unitt-d States. 1. 5, 000 toll/) t Reference: Clieiiiie- ingeiiieiii,-'I' ccliiiik, 37, 383- 3M 1965), HI-drocarbon Proce.%sing, 45, 141- 144 ( Nov. 1966 November. 1969 1 IYDROCARBON PROCESSINU Acetic acid — BAYER AG Application: A 1))- o( css for producilig acetic acid from n- biltvne fractiCIIIS. Description: 71- BlItelles are first reacted with acetic acid to forni src- htityl a( etate irregardivqs of the position of the doiil)le bond. LI( Illid plia-se oxidation of sec -butyl acetate ) i(, Icls acetic acid, n- Blitclie + Acetic acid --> scc- iityl acetate + 2 0, ---)- 3 acetic acid. 011( niole of aretic acid is recycled. to' the first step, which ultimately yields 2 nioles acetic acid from 1 mole blitelle, - it stoichion-ictric ratio. - The first resortion step. ocrurs in a reactor cascade III" liflilid 1111- 1. 9v at 100- 120" C and 15- 25 atni The calnl st an icid ion exchange resin) is 11- 1 6011 Illix Ind, after rvaclion, is sepa - 2) floill 1111. liqllid 1. 1,: 10o'l- efflill-lit and returned to tile reactor cascade. Ahead of the cen- trifti.ge the. pressure of the reaction mix is reduced to that of tile Slibsequent colimin. The crude product is fed to a U, flasher ( 3) in which tinn- reacted * C, hydrocarbons are separated. The reaction product (if the first step is oxidi'zcd in the li" I' lid Pl); Ise -' It 2000 C' and .60 atin. without catalysts in tile reactor ( 4). which is an empty tower, provided with a steall, generator to dissipate the heat of reaction. Air 1)" 11" 01110 tile rc;Ict0r b%1 a compressor ( 5). The g iseous reactor ­ 11111viiL after the. ' Vador is washed with avetic 11--__....-_. ?­ acid in the scrubber ( 6), and the vent gas still containing OxYgell is cleaned by combustion in a furnace ( 7) wh6re it is simultancously heated and subscqiiently pressure -re- leased for operating tile air compressor ( 5) turbine. The crude acetic is withdrawn at the reactor and fed to the distillation section. Here, in a first azeotropic distil- lation coltimn ( 8), ser -butyl acetate not reacted is drawn ofT with N- Itet' with volatile byproducts formed during the reaction, and is returned to the oxidation re- actor. Tile reaction water is removed. The crtide acid drawn off from the bottom product is freed from small alliolints of higher boiling impurities in a flasher ( 9). Subsequently the formic acid formed is removed overhead off the distillation column ( 10), fed to the hirnace ( 7) d ill this way destroyed. Tbr acetic aci( l is redi.qtjjle( l alill boltoill prodlict of Which is i-Ourned to tile flaslici* ( 9). Tile non- reclist'illed acoir arid, i. e., Ihn holloill prodlict of file collillitl ( 10), I' ll lo" tlie " CetiC aCid serliblier ( 6) and tile IvIction of the n- butenes with acetic acid ( 1). Yield: 0. 8 mctric. tons n- butenes are convert - ed per ton of acetic acid produced. Commercial plants: None. Basic design worked out in cooperation with Lurgi 01. Reference: Hydrocarbon Processing 49 ( November 1970) 117- 120; The Proceedings of the Seventh World Petroletim Congress, 59-65. Acrylic acid & esters — NIPPON SHOKUBAI KAGAKU KOGYO CO., LTD. Application: A process for the manufacture of acrylic acid and esters from technical grade propylene, air and alcohols. Description: Acrylic acid is produced directly front pro- pylene in high yi0d by the vapor phase catalytic air oxidation process. Tile reactions take Place in two steps both in presence of steam as a diluent. Propylene is first oxidized to acrolein which is then oxidized to acrylic acid. The conversion of propylene is almost complete. A stnall airiount ) f acetic acid is byproduced. Air is combined with steam and propylene and the strearn is fed to a s(' ric; of fixed bed njulti- tubular reactors which are operated at high temperatures. ' Fhe pressure is atmospheric. The reaction' is exothermic and the licat of reaction is removed by circulating a coolant in the shell side of the reactors and it is then recovered as steam. The reactor effluent is introduced to an absorber where acrylic acid is scrubbed as an aqueous solution. Acrylic acid in the solution is then extracted with a solvent. After the solvent separation and light ends removal high purity acrylic acid is obtained at a fiDal rectifier. The product acrolein may be recovered from - the outlet gas of the first stage reactor through a series of distillation trains. Methyl and ethyl esters are produced continuously in a liquid phase in the presence of a catalyst. Froni the reactor effluent unreacted alcohol is extracted and re - cycled. The high purity esters are obtained by subsetluent distillations. Other higher esters are produt e( i ill separ. 1te Economics: 1. B/ L Capital Investment ( 197,2,. japariesie base) Acrylic acid 50,000 tons/ year), 2, 000 MM Yen Methyl acryl,;,t, ( 20. 000 tons/ year), 290 MM Yen 2. Raw Materials, and Utilities Acrylic acid ( I Kg) Propylene ( 1009'o) 0. 75 kg Catalyst & aux. chemicals 6. 0 Yen Steam 3. 0 kg Electric power 0.55 kwh Water , 50 k ge Methyl acrylate ( I kg) Acrylic acid 0. 90 kg Methanol 0. 40 kg Catalyst & aux. clicitticals 3. 0 Yen Steam 5. 5 kg Electric power 0.04 kwh Water 20 kg. Commercial Installations: 35,000 tons 1year at Nippon Shokubai' s Hirrieji plant, 1[ jilluji, Japan. The jm)cess has been licensed to Produits Chinliques UgilIC KL1111- mann, France, and Rollin and Haas Co., U.S.A., with a total capacity of sonic 500 million pounds/ year. Reference: Hydrocarbon Processing, November 1971, Vol. 50, No. 11, p. 117. Acrylic acid/acrylic esters —MITSUBISHI PETROCHEMICAL, LTD. Application: A Process for catalytic oxidation of 11" I' l- lelle tr) acrylic acid and esterification with various alcoliols. Description: 1" OPYlelle, mixed Nvitli air. and steam, is 0harg,ed to I of two oxidation reactors where pro - P) " ll' is " at;' lYticlllY oxidized to acrylic acid with high rll(' " I' lltitubillar reactors use a circulating lilvdi: 1 to I' villovv ille large ( 111, 111( ities of 1111111' c­ I' llwan ted side reactions, ille ll( ll cd alld sent to ihe recovery and plirification S,' Strjll- The purified acrylic acid is charged 1) J)" bilriatr alcohol to the esterification reactor. I' he product i% - z.c PaFatt'd froin tile unreacted acrylic acid and f1w unrcacted alc(, lj,)j which are recycled. A con- l of columns are used to further Purify the art -A - late. Economics. Typical cconomic data for the Mitsubishi DAE process for 17, 000 metric tons/ yr of acrylic acid and for 5, 000 metric -tons/ yr ethyl acrylate are: Acrylic acid Ethyl acrylate Raw materials 17,000 t/ y 5,000 t/ y Propylene, ton/ ton 0.'879 Acrylic acid, ton/ ton 0. 768 Ethyl acrylate, ton/ ton 0.495 Utilities, Yen/ ton 7, 350 5, 600 Chernicils Yen/ ton 2, 835 1, 560 Illvv.stillvilt, Nth[ yvillf 1, 7112 355 jap.1111"' u. bmis ill V) I', Commercial installations: ' I' ll(, first commercial plant ivent onsucaill ill Mitsubishi Petrochemical Co., Ltd., Yokknichi, Licensor: Mitsubishi Petrochemical Co., Ltd. PHOSPHORIC ACID ORTHOPHOSPHORIC ACID) 113PO4 From Pillospliate RoclL by Electric Furnace Sand Coke rafhon breeze i d E. Phosohate _ SinteringE Water t cand filter rocK nda sizing Water Z V" aW ter T Electric furnace a1 E 03 DilutionI - t' Air x lar -4. Slag Ferrophosphorus Lo uFp nfie, Ir Phosphoric Phosphoric Hydrogen acid( 85) acid( 50,' 75', l sulfide Reaction C:13( PO4) 2 + 3SiO2 + 5C 2P + 5CO + 3CaSiO., 21' + 5CO + 502 P,-,05 + 5CO2 P,,Or, + 3H20 2113PO4 8-1- 92% yield Material Itcquirements Basis - 1 ton phosphoric acid ( 100%) phis 4' 600 1)) fil"Ig Phosph:flv rm-k ( 70 BIT) 4. 900 11) Carboii decty-o( le S:111d ( Siliv: 1) 1, 49.5 11) ( 1.011slillilpti( m 17 11) Coke br-eeze 880 11) Air (miiiinium) 100,000 CU ft. Electricity 4. 070 kw -hr Procem In the clectric- arc- fimnace process, phosphate rock is reduced to element.,il nbo: phonl I,-,- the " Ictio" of roh- mid lie.at ir fbir. FROM PHOSPHATE ROCK BY ELECTRIC FURNACE 593 quent oxidation by air to phosphorus pentoxide followed by hydration N- ields phosphoric acid. Phosphate rock is charged into a sintering oven, where it is nodulized to facilitate escape of phosphorus vapors in the electric furnace and to prevent the entrainment. of dust or fines ( in the vapors). The raw material is sized, and the fines are returned to the sintering oven. Coke ( generally in the form of breeze) trind sand are added in carefully controlled ratios. determined by rock analysis, to the sintered rock, and the mixture is charged into the shaft of an electric furnace. In the shaft hang three carbon electrode's. which are connected to a three- phase alternating current. The charge. on reaching the level of the are, is fused at approximately 2, 400' F, resulting in the re- duction of the phosphate rock with liberation of elemental phosphorus vapors. Since phosphate rock usually contains fluorides as impurities. cal- cium fluoride and fluosilicates are also fornied. The slag imostly calcium Mcate.) froin the furnace is usually tapped periodically and subsequently crushed for use as aggregate for road construction. Ferropliosphorus ( re- sulting frorn the iron impurities) runs out. with the slag. Tile aillount of this material produced 1 -nay be increased by adding iron shigs to the furnace charge. The ferrophosphorus is separated from the slagr and marketed. The gases from the furnace, phosphorus; and carbon monoxide. are with- drawn froin the furnace by means of a fan. In the one- step system. a cur- rent of air is driwn down through the charge by the suction induced by the fan. The two- step method produces phosphorus, which i: stored for subse- quent processing ( see Phosphorus). The two currents ( reaction gases and air) mix in the flue at a temperature sufficient to burn the phosphorus to phosphorus pentoxide ( P_,A,,)) and the carbon monoxide to the diOXide. The prases pass into a tall packed tower. where the-,- are sprayed with . water 1 forin- ing a inist of phosphoric acid), and thence through a Cottrell electrostatic precipitator niade of graphite ( to re;.:ist the action of hydrofluoric acid.) to remove any remaining phosphoric acid. The crude phosphoric acid ( 85 per cent) is generally purified with respect to arsenic by the action of hydrogen sulfide. Depending oil conditions. the acid may be purified further by adding sulfuric acid to remove calcium saits. '-: 111111ciclit, ­ 111fli" iC aCid is " Sed to Precil), tate calchiiii sulfaic aiid also to leave a slight excess to inhibit the corrosive action of the phosphoric acid. This Slight exces" of R1111,11ric acid perinits the iise of Icad- h1wil e( Illipment. Residual hydrofluoric acid rnav be removed by the addition of finely pow- dered silica. These purification steps usually take place before arsenic removal. The excess silica, calcium sulfate. arsenic trisulfide, and any sus- pended material are removed by passage of the acid through a sand filter. The clarified phosphoric acid ( 85 per cent) ma- ' %- be dilifled with water to yield 75 per cent and 50 per cent acid. An over- all yield of about. 90 per cent is realized on the calcium phosphate content of the rock raw material. 594 PHOSPHORIC ACID From Phosphate Rock by Blast Furnace Reaction Ca3( PO4) 2 + 3S102 + 5C - 4 2P + 5CO + 3CaSiO3 2P + 5CO + 502 --* P205 + * 5CO2 P205 + 3H20 -- 2H3PO4 85- 9070 yield Material Requirements Basis - 1 ton phosphoric acid ( 100% H3PO4) equivalent to 72% P205) Pbosphate rock Coke 7, 000 lb 27% P205) 5, 050 lb Briquette binder 500 lb Sand ( silica) 1, 500 lb Air 4, 50, 000 eu ft Process The raw materials and reactions in the blast - furnace process are essen- tially the same as those of the electric- f urn ace process. The shaft, furnace used is similar in appearance to the blast furnaces used by the steel industry. Phosphate rock is pulverized and inixed ivith ground coke, which serves as the reducing agent. A binder is added, and the mixture is compressed at about 5, 000 psi into briquettes, which are dried ( to a moi. sture content, of less than I per cent) in a continuous dryer. Tile briquettes, sand ( as flux), and additional colic are. charged into flic top of tile shaft of the blast furnace. Preheated air ( from the liot. blast stoves) is blown in at the bosh ( tile lower part of the furnace). The blast develops a temperature of 2, 400 to 2, 500' F, which furnishes the necessary reaction heat. Slag ( consisting chiefly of cal- ciuiii silicate) is tapped from the furnace hearth once an hour, and the heavier ferrophosphorus ( formed from the iron impurities in the rock and coke) is tapped every 12 lir. The gas, containing phosphorus, carbon monoxide, and nitrogen, passes f,-,-- fb- inn of th, 4I1ro­ w-- 1, -' relone dii- f rn!! rvfo-- nr,' fi,. Til r, Carbon dioxide Binder To phosphorus and other gases CokeCoke plant Sand Du, t vapor collector 3sphat" e Briquet Water V 2 rock press Steam 0 W Blast Hot bla t Compressed Steam rolleb i r fumace stov air . t Hot air Phosphoric Phosphorus pentoxide gases scid (go%) Slaig Oerrophosphorus Reaction Ca3( PO4) 2 + 3S102 + 5C - 4 2P + 5CO + 3CaSiO3 2P + 5CO + 502 --* P205 + * 5CO2 P205 + 3H20 -- 2H3PO4 85- 9070 yield Material Requirements Basis - 1 ton phosphoric acid ( 100% H3PO4) equivalent to 72% P205) Pbosphate rock Coke 7, 000 lb 27% P205) 5, 050 lb Briquette binder 500 lb Sand ( silica) 1, 500 lb Air 4, 50, 000 eu ft Process The raw materials and reactions in the blast - furnace process are essen- tially the same as those of the electric- f urn ace process. The shaft, furnace used is similar in appearance to the blast furnaces used by the steel industry. Phosphate rock is pulverized and inixed ivith ground coke, which serves as the reducing agent. A binder is added, and the mixture is compressed at about 5, 000 psi into briquettes, which are dried ( to a moi. sture content, of less than I per cent) in a continuous dryer. Tile briquettes, sand ( as flux), and additional colic are. charged into flic top of tile shaft of the blast furnace. Preheated air ( from the liot. blast stoves) is blown in at the bosh ( tile lower part of the furnace). The blast develops a temperature of 2, 400 to 2, 500' F, which furnishes the necessary reaction heat. Slag ( consisting chiefly of cal- ciuiii silicate) is tapped from the furnace hearth once an hour, and the heavier ferrophosphorus ( formed from the iron impurities in the rock and coke) is tapped every 12 lir. The gas, containing phosphorus, carbon monoxide, and nitrogen, passes f,-, - fb- inn of th, 4I1ro­ w-- 1, -' relone dii- f rn!! rvfo-- nr,' fi,. Til r, FROM PHOSPHORUS BY OXIDATION AND HYDRATION 595 collectors. The clean gas may be split into two or three portions. One portion may be passed through phosphorus condensers to produce the ele- mental product and anhydrous phosphorus pentoxide. See Phosphorus for details. A second portion may be passed into special boilers for stearn gen- eration. The phosphorus pentoxide formed in the steam boiler is added to the main gas stream. The third portion ( generally the largest) is passed into hot bla:Zt regenera- tive stoves. where it i.s oxidized to phosphorus pentoxide. The stoves furnish the preheated air for the furnace blast. The gaseous product: from tile stoves and steam boilers are led into hydrating towers for hydration and cooling and thence through Cottrell precipitators for entrained phosphoric acid removal. The condensed- acid ( S5 to 95 per cent,_13PO4) may be puri- fied ( arsenic removed) by treatinent. with hydrogen suffide and subsequent filtration. About 95 per cent of the phosphorus in the. rock raw material is volatilized. giving a yield of about 90 per cent based on the phosphorus pent- oxide content of the raw material and product. From Phosphorus by Oxidation and Hydratimi Reaction Phosphoric acid 85?o') 2P + 2/3 02 -- P205 P2015 + 3H20 —* 2143PO4 9-1- 971; 0 yield Material Requirements Basis - 1 ton phosphoric acid ( 100% H3PO4) Phosphorus 66511) Air 46,000 eu ft (STP) Steam and water Variable 596 PHOSPHORIC ACID Process Elemental phosphorus is often converted to phosphoric acid at locations other than the original point of production. The conversion involves oxida- tion of molten phosphorus to phosphorus pentoxide and subsequent hydra- tion of the oxide to phosphoric acid. Molten phosphorus is sprayed into a combustion chamber along with air and steam. Flame temperature approaches 3, 600' F. Chamber design varies from one plant to another, but construction materials are usually limited to acid -proof brick, structural carbon, and stainless steel. Both ' vertical and horizontal chambers are used. In either case some glassy metaphos- phoric acid is formed and drops to the bottom of the chamber. The effluent gases leaving the chamber ( P,,05, steam, nitrogen, and some oxygen) are mixed with a spray of dilute phosphoric acid in the hydration tower. If the tower is externally cooled, it too may be built of stainless steel. By proper adjustment of reacting streams, various strengths of phosphoric acid ( as high as 116 per cent— equivalent. to 84`(, P- Otj) may be produced. The usual product is in the range of 75 to 85 H3PO4- Some acid mi t leaves the hydrator and must. be recovered by appropriate means, slich as packed tower or electrost,afic precipitators. In the process shown in the flow diagram a combination cyclone scrubber and glass -wool filter is used. From Phospl-ilate Rock by Dorr Strong -Acid Process Reaction te phosphoric Sulfuric Gases acid Mixer Water 0Z t Fluosilicic acid 0 to recover Eg,:taEt. 00 Li L- PhcsphoricCling air Agitator acid Digester a 1̀ 3 5 (.1 P -, 00 Slurry recirculation A , a, o r Filter Wash water Wash R pulper Filter bypsum 3 Ca3( PO4) 2 + 3H2SO4 + 61-120 -- 2H31) 04 + ( K iSO4- 21120) 92- 9317r, yield Material Requirements' Basis - 1 ton phosphoric acid ( 100%) Phosphate rock ( 70 BPL) 4,880 lb 0. FROM PHOSPHATE ROCK BY DORR STRONG -ACID PROCESS 597 Process The sulfuric acid or wet process produces 010sphoric acid by the action of sulfuric acid on phosphate rock accompanied by the precipitation of cal- cium sulfate. Phosphate rock is charjed into a special ball mill, where it -is ground in a dilute solution of Phosphoric acid obtained as a filtrate from r an ensuing operation. The slurry passes through a series of Dorr agitators, where reaction with sulfuric acid takes place. Separation of the resulting acid from the calcium sulfate precipitate, as well as -washing of the precipitate, is carried out in a continuous -countercurrent, decantation svQteiii. sts essentially of five agitators in series. Con - The reaction system consis centrated sulfuric acid ( 94 per cent), diluted with " eak Phosphoric acid, is introduced between the third and fourth agitators. Tile reaction. takes place chiefly in the fourth agitator ( the digester). Then heat of reaction is con- iiierable and is removed by blowing cooling air through the solution. As a result an appreciable amount of x%-ater is evaporated. The ail', Nvatcr vapor and gaseous impurities are carried off into -an absorber where fluosilicie acid H EUO is recovered by spraN ing the gases with water. A considerable portion of the reaction mixture is recycled from tile fourth agitator ( digester) back to the first agitator. The rate of recycle is adju ted to maintain correct sulfuric acid concentration and reti-etion time. Tile proper reaction time promotes formation of large cry! tals of calcium sulfate ( p-psull ' I a d facili- s I - 11 tates subsequent filtration and washing operation,-;. The* temperature in tile diaester is maintained low enough to insure Precipitaiion of -gypsum. e- WaSO, - 2H.,O) rather than- anhydrite ( CaSO4), which would subsequently hydrate and cause 1) ij)e plugging. , The slurry from tile digester passes througli tile fifth agitator to a con- tinuous rotary filter. The filtrate is finished Phosphoric acid ( about. 45 per cent), which may be further doncentrated by evaporation. Wash liquor from the filter is a dilute solution of Phosphoric acid, which is used to dilute the sulfuric , acid and to charge the ball mill. The filter cake, after washing, is charged into a tank where it is repulped with wash liquor from a second filter in which the repulped slurry is filtered. Filtrate from this filter serves as the wash liquor jor the first one. The second filter cake is washed wit , li fresh ] lot water. The filter calie, 9-N- PsUll', is discharged to waste. The filtrate from tile first filter ( pl10s1)h01' i(' aeid) i!z chnrgvd into lel(j_ Jilled evajwrator: contaillilig lead stean) coik. ' The acid i: geiierally concen- trated to 35' B6, atwhich graj*jtN. it contains about 35 per cent P 0,r, ( ap- A proximately 50 per cent 11.jP0,). ' t ' nav I) c c" licelitrated to - 0 per cent, acid or to a specific gravity of 50' B6 ( 50' per cent RAO. The' evaporator must be operated below 150' C, because above this temperature orthophos- 1) horic acid ( 11,1PO4) is SloWly coiiverted into pyropho;;J) horic acid RIX,' 13- means of the rrr)e(, sz n-, 598 PHOSPHORIC ACID. pentoxide content of the rock is dissolved, and, of this, 97 to 98 per cent is recovered as product. Other Wet Proce8ses Several modifications of the wet process described have -recently been of interest. In the Prayon process, ground phosphate rock isAreated with sul- furic acid under conditions of temperature and concentration that yield Cal- cium sulfate crystals of predetermined size ( 150 microns). The calcium sulfate is separated from the acid and washed thoroughly in a continuous horizontal rotan, vacuuni filter of special design. The phosphoric acid fil- trate ( 32(1'o P,,05) may befurther concentrated or used as is. In the clinker process, ground, dried phosphate rock is mixed NA- ith only a slight excess of 98 per cent sulfuric acid to yield a pUtty- like solid. Tll*e pasty mass is heated to 200 to 240' C for 20 to 60 minutes to give a hard porous clinker. The clinker may be count ercu rrent ly extracted wifli hot. water to give phosphoric acid of 491yo- 507c P_,05 concentration. Yield is said to be 92 to 95 per cent. Other Phosphorus -Containing Acids. Phosphoric acid ( H3PO4') may be converted into pyrophosph'oric acid ( 114P" 07) and inetaphosphoric acid HP03) by heating. Pyrophosphoric acid is formed at. 250 to 260' C. On heating either the ortho- or pyro- to a red heat, metaphosphoric acid is formed. The latter may also be prepared by treatirIgphospligrus pentoxide with the calculated amount of cold water. Raw Material Phosphate rock, also known as rock phosphate, phosphorite, and raw phos- phate, is the primary source of practically all phosphatic chemicals. Tile rock is obtained chiefly from deposits in Florida, Tennessee, and the Western States. These deposits are classified roughly as residual, replacement, and sedimentary. Residual phosphate ( for example Tennessee brown rock) is derived froin phosphatic limestone. Replacement phosphate ( for example Florida soft rock) is phosphatized limestone fornied by the reaction of finie- stone and phosphoric acid of organic origin. The se( iinientary phosphates, believed derived. froin marine orgaiiisms, are the principal deposits of which Florida land pebble, Florida hard rock ( boulder phosphate) and river pebble are the chief varieties. ' I' lic sedinientarY delmsits occur in irregular pockets of inany sizes embedded in clay or -'and- 1) hosphates, utuully found 11 fissure ve' ns 1)( twcell N%' alls Of 1111)( 1,1tone and clay or shale, are mined by underground methods. The Florida and Tennessee phosphates are found usually in surface deposits and are worked by ol) cn- cut inining methods. Virtually all cominercial deposits of phosphate rock , ire amorphous, im- pure varieties of the mineral, fluorapatite ( Ca]('( PO4)'; F2). The workable deposits contain from 18 to 90 per cent available tricalcium phosphate, Ca3 " (PO4) 2, known to . the trader as BPL ( bone phosphate of lime), and tare I " 7 1 . ' T' , '. '! , : . . . . . . , . . I ? . . . . I . . . . . " I . '. I FROM PHOSPHATE ROCK BY DORR STRONG -ACID PROCESS 599 BPL, and approxiniately three fourths of the phosphate rock niarl eted con- tains between 70 and 76 per cent BPL. Inferior rock is processed by benefi- elation procedures to raise the jiPL content of the rock. The chief iinpurities in doinestie phosphate rock are iron, aluininum, and 611con oxides. a Nvc1l as calcite, niagnesitc, dolomite, saDd,,,clay, and organic inatter. - Most. of the undesirable impurities are renioved in the washing and Isintering operations prior to phosphoric acid manufacture. 3, 500 3,000 - D CO 2, 500 j,k CD . 2.000 u_) u1C: 2 1, 500 1, 000 500 1935 1937 1939 1941 19443 1945 1947 1949 1951 1953 1955 Production—Phosphoric Acid Use Patteria 1955 ( est.), per cent Fertilizer 52 Soaps and detergents 28 Animal feed' 5 1. ood alld beverages 4 Water conditioning 2 Aletal ele:) Tlill, 2 and expurt, 7 100 600 0. 10 en #me 08F." U U07 O 06 0, 05 — 004 — 0. 10- 11 1936 PHOSPHORIC ACID 1 7597, ( food grade) basis 50,97j, basis 1938 1940 1942 1944 1946 1948 1950 1952 1954 195E Price—Phospbone Acid Miscellaneous Properties. Colorless, crystalline solid. Mol. wt. 98. 00 M.P. 42. 35' CI Sp. gr. 1. 834 ( 18. 2* Q B. P. Loses 3,jH20 at 213" C Soluble in water ( 2, 340 g per 100 ml at '-)G' C) , and alcohol. Commercial phosphoric acid is a clear, colorless, sparkling, mobile liquid which reaches sirtipy consistency at higher concentrations ( 85 per cent). At 88 per cent concentration, a crystalline hydrate, HsPO4 * '/.,H..O, separates at room temperature. Grades. Technical ( 50, 75, and 85 per cent), food ( 50 and 75 per cent), USP ( 10 and 85 per cent), 90 per cent acid, 100 per cent acid ( 75 per cent P:.,05)., an( l commercial ( 47 and 54 per cent P,,Or)). Containers and Regulations. Rubber -lined tank cars,. tank trucks, 1rums, barrels, glass carboys, c,,asks, and bottles. White ICC shipping label required. Eemiontic Aspectm The technolo y of phosphor' c9. 1 acid manufacture has undergone several distinct Yet overhippin- changes in the past 35 years. These are: ( 1) the hift fl-o; ll wet-process" i net 11 o(7s to the clectric- ftirnace, proccs.,, beginning in 1920 with purer, cheaper acid a! ii residt; ( 2) a shift it) plailt sites oc- casioned by development of phosphate rock &- posits ill tile, Rocky TUountain area; ( 3) a concurrent shift of sonic manufacturing facilities aWay from locations near the raw material to locations closer to the market ( by ship- li-innf. nf (4en-ionfiril nh(, Fnhori' 5z fr) the point. of iise) , . 9nd ( 4) a renaisQqnce of Phosphoric Acid The name phosphoric acid com- monly refers to orthophosphoric acid, " 11)( 4 Anhydrous orthophosphoric acid is a whitc. crys- tallinc solid, wbich mclis at 42. 35" C. It forms a hetnihydrate, 211-111"," 12", which nielts at 29. 32" G. Although it is possible to produce al- most any desired concentration,. it is common praciicc to supply tbe matcrial as -a solution con- faillin Onelling pointg From 7TY, 11: 111' 01 17. 5" C) !() 85',"( ( inching point = 21. 1'(,). When phosphoric ac1d is hcated (() wniperatures abovc aboul 2() 0'(,, Nvalcr of cmistittition is lost. A Nerics () I' acids is I"(wrywd by Ow dehydialion, 1: 111 gilIg to nielapho%phoric acid, Salts of the de- hydraled acids are med I'Or the preparation of cerfam lyprs of li( lidd fertilizcrs and are present in many doergents in percentages Lip to 40"'.. The Ichydrated acids can form watcr-soluble com- p1rxes with many metals, such as calcium. One, two, or dircc of' the hydrogcns in phos- plmvic acid may hc m- 1111-alim.d. When olle 11'( Ilo- gril is replaced will) so( IIIIIII, the prodtict is slighily ; 1( Id, while wplaccillf-111 () f* ; III 1111cc Ily- diolqcns prodmfo-s a hit_Iily alkaline prodo( I. The fill(-(- compounds arv: of/ R/ P , S,111111, tv 11111( m)( IiIIIII 1111w;J11law. Nall. N), A." Dimodium plul" plialt., Na.,1. 114) 1 TlkOdillfll 1111o" phair-, Na:11101 12. 0 Not holly cerlaiii. Offici plioq)horotis wids of little commercial sigiiificance arr hy pophosphort ms acid, ll:,1? 02; oi I I if i I ) I i( r, I ) I it woo IN act d. 11: 11)( ).,; at I( I pyi f 1phos- Pilot (111% 11 Silue phosphol-Ils it, for plant and '1111- maf lif'(.. Lilge flimwities ; if(- it,, -d, ciiher diwcfl- or indlicull..", for food pff)( 11wfifol. Bolles It- fillf" 1111 high pul (-I' ll I alof- S ( of IlI(.;11(. Illlvl phosphatc. UNPi., ' Ifilal plo( Im II( Ill of If.,N), ill Ow I : 11it(.( l Sialf-s afflollills to about . 5 million ( on- of Coll- iained whilr world piodw-tion is esfillialud to hc close 111 10 million lolls. Largo. ( Ifialifilif.% of pho,, pIm6( fertilizers arr mmiti( aulim-d ftoln' pbo,,phatv flock by diw(-f nw;ms;. v. g.. nortiml Sopci-phosphaw. flills avoldilloz, fill' prodliclioll of js . 1 selmiaw material. Sevalso Fertilizers. Abollf 80" of 1111ifft' d Sulles Illodliclioll is vvo- prm (­ s arld, most of which is subse( Ilwill I) con- cIf,- d itill) colcillill of. milillonillill phospliaics for Fri-oliz(-r. Anollier major its(- is Oic liff)(Im-lioll ( of sodium and polassillill phosplulfus, olfllo or dellydraled, lor its(- ill delcigents and ( Ivollilill and boiler (.milp, will)( 1K. Vllo' pllori(- acid it, ; is such For Illefal.."Ill-fa( v treallnent and ill , oh thinks. Oilict- iis,-, iticht, le the prelm- ratioll () I cal( illin phospliawN f'(, i Plot,(] .". 11ppic- mems, phosphatrs for me it) hakiniz, and ammo- immi pimsphoteo; for fiirproofing. I' lmsphates afv ako ill oillf-I 111, 11clials. CAy_ Illse-Clicid("s. Jill),,( IjiIIg_()iI addijivrs, ioo( hpa- ic ; in(] Awl- 1)() IlslllllQ ( ollipoill)(1%, and ( vlfaill lopes ( of' glass. wv Aj" Irritlb filld Afam!file-lurr: ' I hc major sfmjvc, of I I IN), me inhicral ( If- pt),; its of I) ho,;- 141. 11f. I"( k-. klilliII!, itm,, ale 4- Nl( Ilsiv(. ill Illv 1, 111111- d Sfalc-, Ow NIvIlliclimil' oll aot I. ; IIIII RIIN SM, \% fill " 111. 11lul fillit' l 4. 111111- Knm%n (. fit llwill% For Illany I It(, itmior ronstiowni ( d vimst phn,,pliMc imks is 11114) 1 111, 11ife. Ilivivial mck-, comaill 30 38". Phis ; I V; lFivfy of im- pillilics. Willesc, ifon, almilifilini, 1111glicsillill, Nillca, I- mboll dif) Xidt., soditlill, pol; Issillill, and slillaws Illay bc pi-f- scill Ill opplc( iable ( Illailillics. I , WO IlMyll, filethods ; it.(. llfilizcd For Ille plodfw- Phosphoric Acid ( cont.) 869 tion 61' phosplimicacid front phosphaw rmk. ' I' ll( - Iva poresi involves the react ion of' phosphate rock ith still'imi,t- auid to 1- roducr phwphoric m -id and ilp,oltible falcillill NI' lliv of Off- impurities pivscia ill file phosphatr rof-k arr also %oltibilized mid iviained in file acid so prodtw(-d. \ Vhilc they arr of lit) seriolls Clisadvalitage whell ill(- Icid is if, he used for Fertilizer man i ifact tire, flivir purs- ent-r inakes ill(, prodtict unsuitable ror the manit- f'riciiii-or orpimsfitiatic (+(-micals. fit the other method, file * furnolco, I)rwri.t. phos- p1mir too k is t() mbinvd volth coke and siliva and irdm-rd at high tempeiature in an ftir- tim c, followed by confirmation ofelcirnental phos- I) II( wils. I ' llosphorif ; wid is Ill 4)( 11wrd hy bill fling Ow f -If -1114. 111, 11 pimsfilloriv, with air and absol-bilig ill,- 1'.,( )" ill 1 Ill. ; I( id ed by I Ilis IIII- Illod Ill ( if high aild silliablot. ll)? all IIS( -S fill little of- im 1wallflellL Iff./ Therf. ow a 1111tilbet of' propricolly pl( we-o' cs For Ow 111. 11111facl Ill-(. of pimsplimir arid. Fil" Illf. P- 13 is it flow " llert I'M. a Illodvi-T) plant, o\ lii(-Ii (-;, if bed(­ ignord Gwcalm-ities nriij) to 1, 000 of' 11. , ():, ( Ijoo tons of per day in a sillgle unit. The hasic rem -tion ill this Process is 1011 So, + 20111-P 1OCaSO ' 211..() ; 011F, 1101 + 211F Nimiet-ow; side rvacli" n% also ou( mr. I' liosphaw io( k mid milfiiri( wid, fogc( lirr with ul(- d %\( ak Ii( piors, aw It- areftilly incirred to a Imow. st Irred reactor, pio\ Iding, 4- 8 hor relorntion. Colldill(' 11S ill Ow 1- corlor air c.aleflilly cmill" lled to, maininin presvIectc( I condif ions. Typi(-al mn- if-of levels are as F( Illows: I ( 1111pural Ill c. ­(: . . . . . . . 77 83 id collco-1111-atiml. 2() * t 2 PL( vi ' I' n, tf7yfry 34 to 0 1, 41111111 1 Ow 1. 1111111dIt ( I h\ It' llifivinto fill- t, xl.(. Ss III ; If ( if, I-vacil" ll %6111 . 1 \ ; 14, 1111111 (- flolcr of- Ily hillwillf, all flic plift,sphillif. acill 01111Y. The dtirry, wlmh (- omains preciplawd gyp - IN - g( m- nt to ; I filter, commonly ; I Im % hori- zollial ritiary- pan- o.,I) c iinii. The first filtrale is ww io fm( livi iivamwnt or tise. ' I' ll(, gyps'lln, is I S , ll(,( l witil if, several comitcrorurvent steps, and wuak lifitior is wim-iied ill file le.1clifill stage. Fool. ITI( osl lim- s' III(. ' wid r(-flililes Illrillel jr, itioll. ( Joll(- in vactitim v\ aporawrs, 870 Phosphoric Acid ( cont.) V, t-' F R TC P_ 4N' T FuMF SJ'- FURI(- ACID COOLING AIR PHOSPHATE ROCK RECYCLF ACID A n TRONG Fl:_-, Rtli Fig. P- 13. Phosphoric acid production and concentration by the wet process. ( I I Di grest e i . ( 2) fi I t er feed I a nk, ( 3) fil ter. ( 4 1 Iflirair- (. 7) 1 filirate tank, ( 6) condensei. 171 concentraicir. operaiiiw at 2- 5 In. Hg abs. M ercha n i - grade acid fol Shippillu is generally concentrated to about I Sf ' Naporation. 54' ( 75,', 1' ' 31) 04)' - c alsf) I Thc highly corrosive nature of' flic ingredients requires corrosion -resistant materials. Rubber- 11ned steel is frequently used for vessels arid large pipim". Reactors are sometimes constructed of concrew. %%ith a rubber or mastic corrosion bar- rici. Carbon brick I-, often used to protect linirms. Puinp,,. aultatoi-. ; it)(] othcr metal parts are stain- lvs, % tccl. Various types of plastic may be used Jor pipin.e. small vessels. arid othel specialized cquipillcill. Fillucill, and gy' lllll disposal posc problvills. 1` 111411- 111c V, itt \; Irlolls stvp, III the and m I 111dwt" alf. rcquil-f-d 14) rudilt c to thf- ainiosplicre it) acceptabic levels. In the United Sum-, this I,; usually abimi 220 lb dav 101 larvc plalw'. (; vpSlIlTl is fir(picilliv plicd if) diked aiciv, or cluniped into abandoncd inines. In a fe%\ ca%cN. it inay be disposed of ill rivers oi in ill(- occan, N\ aslc watcr Irom dic plant is licavil-y contami- nated with fluorine. phosphates, sulfatcs. and other compounds. It is commoniv impounded in large ponds, \%-her(- a portion of the contaminants may precipitate or be lost b,.,- othcr processes. Tbc cooled effluent from the ponds is recycled to the producti.)n unit. Any exces water must be treated \,%-]ill lline before it can be allowed to enter streams. Recent developments include plants designed to precipitate ilic calcium sulfate in the fOrm of the lien6hydrate instead of p-psurn. Ill special cases. livicirochloric acid is used instead of sulfuric for rock digestion, the phosphoric acid being reco\- cred ill quite pure form by solvent extraction. Solvent -extraction inethods have also been devel- oped fOr ill(- purification of' rnrrchant- c radv acid. which normally ( mlialli" 1111puritit", . 11110tiliting Io 12-- 18',' of the phosphoric acid cmitcw. Processes for it-cm-f- lilli! p' lli of Illc fillorilic ill Hic I' llosplialt. rock arc In commercial use. NLitcrial and other requirement, for the pio- dilt-lioij ( if I toll of V.S), Ill ill(- 16rm of acid containing 75' 4 1 l,, I'() 4 are shown ill Table P- 26. Elect rz'c- Furnat ( Process. This process is more ex- petiske than thr wet proces,, but has the advan- ta,Q(- ( d produciiat acid of' Inizli puiiiy. A sineic electric furnace may have a Lapaclt- of up to 300 tons' day of P.,O. installations consistbut many of several furnaces. VACUJM VACU,: Y 6 7 CT. C. AC --- r r t CONDENSATE 1'-,-) 0. Matfwdv awl Encrgi Riqw'?cnienh. fil? J" n,diii-liwi (,/' I 7w, of V,O.. bi ll' fl Pmcrs- I' llosphale lot K. II) IIS . . . . . . . . 3. 0- 3. 5 Sulluric acid. tons . . . . . . . . . . 2. 6- 3. 0 I' lectric pmvcv. OVIj . . . . . . . . . . 100- 140 val . . . . . . . . . . . . 2O. W0 ' 10. 000 Steam. 11, . . . . . . . . . 4. 500- 5. 00f I Waste vvImlill. (:. I"( ), 21 -IJ). I( Ill, 4. 0 . 5. 2 F' Wurc P- 14 is a simplified flow sheet of all clectric- l'urnact- plant. A inixture of coke. silica. 111( 1 pimsplimc 1( 1( k V, foymcd Mw tioduleN h heating In ; t noduijzIn,-, kihi. and the r(-, ulting is iianswri-t- d to thc electiic I' tir- nmc. it I,, licalt-d \ Ilh all ( tillcill introduted h\- int -avis of vraphitc electrodes. ' I' ll(, enjilc J, milled. and elemental phosphoriv, is volatill7ed. Tht. sla,-, i,, tapped ofl intei- rnitwhtl. \\ hllc flic phosphorus vapor is con- dcnsed. The liquid phosphorti, is then scrii to thc acid plant and burned with air to form The acid anhydride is absorbed in water to form phosphoric acid. Phosphoric Acid ( cont.) 871 The reactions involved are basicall-v Ca:j( PO4j*., + 6SiOi, + 10C ----* P4 + IOCO - 4- 6CaSiO:j ( 2) 11'. 1 + . 5().-. — ap-'o., P.,O.- I + — 2H:jPOj Typical requirernent% lor the production of I ton of 1., 0.-, in the forin of phosphoric acid are i - -() duct slag ishown ll Table P- 27. Thv b\ - pi lisabic for livi-it- wel6i building agEyregate. road construction. and wher minor uses. Slorat!( and Handlim,: 11: 1" 01 is a sirom! acid. 1' 11( i colita( t 1)()( I\ ol tisslies ma\ result in P- 27. Ma leptah ( 1114 1-- wiq) Pmdnova, w ! Tai i.,i Dr( IIII- 1- lonno Pr"(' S N Phosphatv rock. tonN . . . . . . . . . . . . 11 - 4. 2 Cokc. Ion . . . . . . . . . . . . . . . . . . O. o- U. 7 S, i, j it - i, ton . . . . . . . . . . . . . . . . Carbc) n c1cctrodes. 11) . . . . . . . - - 211 311 Water. gal . . . . . . . . . . . . . . . . . . 20-HOO Electric power, k\\* h . . . . . . . . . . . . I 872 Phosphoric Anhydride LIQUIO_PHOSPHORUS COMBUSTION AIR COOLING WATER 4 S UPERPH OSPH P4010 VAPOR COOLER TER UTE ID Fig. P- 14. Phosphoric acid production by the elecIric- furnace process. 11imim lion Of* Uff" I' VII1, 11 I) IMsphollis is not shown sre Fil. P- 15). ( 1) (: oIlIhllNfi,) Ti chamber, ( 2) hydr.alov. ( 3) vC" I' lli st"" IbIWl', ( 1) - separator lower, ( 5) mrsh dernister. sevelf. I) III-Ils. Precautions similar to Ihosf. Itscd I'm handling sidFuric a6d should he employed. Phos- phoric acid exhibits no pecidtar or sy- wntic tox- i6ly' and ally dalliage is atnibim'd to its corlosive nattlic. Phwiphoric a, id 1,; commonly shipjwd and sl( wed III rlibber-lined equipment, irwhiding lank Iriwk%, layik (- nrs. ;, nd sp-cially designed , hips, Slaink-ss- s( cel and p, t1) v1hy1(- rw coniamer's mc 11so 11sed. acid, whi(Ii contaills fluo- line, may I) c (-.ortosive to glass or coatings contain- ir)g It F ' FE.R ' S I' vifili/ vi INImmal, I/,%' Pid). ( j7. 11 111, 1910. I' llo"ph. 11 if 1"' 11 ilizer %: I' l " I wi I it-, ; I tiel III I I, vsv-%, Sulphm m/. ltfk Bull 11, ) d cd . Illoo. 1, 11I) Spi)( 111IN: f' I III(. I" IcIlIcIll and S" Iliv ( 111' 11% CI fill [)I III 11( k, 1' I'/ I ( 31' m / mg. /?,-/ P 8, 19') 0. R.: ' 1111')' I) Ilorllsalld iem e -Wiley. N, -x% York, 1961. VVilliaill A. imf.'. ('*(0# 1.% F1lt1nP A'I tml'"' A)%. avid Fmico 11c- litfi, c & xIIIS1,11/ 1" Kr. Terephthalic Add— BERGBAU- FORSCHUNG Application: A procm for producing builiene carboxylic acids using toluene for terephthalic acid and xylene for pyroinellitic acid. Charge: Toluene, Xylene, formaldehyde, HCI and nitrit acid. Products: Tereplithalic -acid, pyromellitic acid, phthalic acid and other carboxylic acids, depending on charge rna- terials and extent of processing. Description: For the Manufacture of tereplithalic acid ttie process proceeds as follows: Fir , st Stage: Toluene at 70' C is reacted with concen- trated 11CI and stoichionietrit: quantities of paraforynal- dehyde to obtain chloromethylation of about 98 percent of the toluene in tw.o hours., Concentrated HCI ( more than 33 percent) with an excess of C'll,,.0 is circulated and the chloromethyl toluene ( 57 percent p--, 43 per cent o—) is separated from the aqueous HCL The HCl is reconcentrated by adding hydrogen chloride recovered by -the oxidation and recycled. Second Stage: The chlorotnethyl toluene is mixed with 40 percent HNO3 and heated for one hour to 900 C resulting in a ml'Xtu,rc of Jdorine free toluic acid and HNO:,. Effluent gases are washed with H, S0, nitrogen oxide going to nitrosesulfuric acid which is recovered as HNO:, and recycled. HCI goes overhead froin the HSO, washer and is also recycled. Third Stage: After the second reaction stage . the con- centration. of the 11NO., is reduced for oxidation tinder pressure in the third stage. At a pressure of about 20 atins. and 1600 C and with the addition of air, the reaction results in nitrogen oxide going to HNO:, and an -effluc,11L of o- plitlialic acid in solution with HNO:, and insoluble tereplithalic acid. The tercphthalic acid is centrifuged and washed with water. Tbis acid is practically free front N, Cl and o- plithalic acid. The o- plithalic acid may be re- covered by recrystallization from the mother liquor. Art alterwitivu route inay lj(! used which contacts- the t hlo- rorncthyl toluene with 5 percent Hine inilk at 120- 1300 C in an iron pressure reactor to convert it to -niethyl 1)(- jjzyl al( o- hol. 110 is- lost as CaC],. The saponification prodiict is iin- inediately oxidized tinder the sanic conditions as the Third Stage. This alternative route of the Second Stage restilts in about 20 percent savings in total plant costs shue ( lie special equipment for separation -of 11CI and NO, are elitninated. Esterfication: This step can be carried out in a newly developcd fluidized bed process. Gaseous methanol, with a suiiable cata- lyst, acts as lluidizing ageia and reaclijig gas. The - rca( tion inixtuie. is separated III a stripping tower giving dina-djyl terepht ba late. Operating Conditions: As described above. Pilot Plant. lkrgl)au- Fors(:Iiung operates a 200- kg pilot plant for diniethyl terephthalatc. Consumpticiii of inaterials for one ton of diinethyl tereplithalate are: 1. 0 ' run Toluene 0. 5 Ton 11C1 ( loss by saponi- 0.365 Ton Forinaldt.-hyde fication) 0.47 Ton HNO, 0.4 Ton Ca( 011), 0. 375 Ton Methanol credit can be taken for 0. 7 tons of u- plithalic acid which is also produced. ' Referencess U.S. Patent 2, 966,514, Cerinan Patent DAS 1, 082,- 893; 1, 088,474; 1, 102, 128. Cheinical Engineering june 13, 1960, p 71 and July 11, 1960, p 76. 296 HYDROCARBON PROCESSING & NTROLY.uNt REFINER rerephthalic Add— HENKEL & CIE pplication: Prorcs dfor in.1hing teiepiltir;, litj lcid. harge% Bf rlzoic 1(.,( , and 01her lienzenecarl) oxylic cids, I,; nikali- niet; ii q; ilts, esp. potlsiull, s,- Ilts. roduct: ' I*v.l.(-pIlthaIi(, ,,( id of high purity, especially suitable for iokinq imlyester fibers. I escription: The ilkali-metal S.-ilts of benzenecarboxylic acids are All, l)- ed lo tercphtfialito-s nporl hc;jtjrj7 to tenipciratilres .1hove10" .(: as follows. 2 ` COOK KOOC—<- COOK+ u1__ - — COOK COOK Or rl-- ZI— COOK IZ— COOK KOOC--*- — COOK Dried Pol' Ssilltll ;;' Its of berizoic acid or of ortho- or iso- ltll llil' " cid - to'(' I - M- 1 in anhydrong form to 400- 4-300 C,' it, tht! sence of a cot; wlyst under ; m atmosphere of inert gas ( GO:). le r` 1"' on P"' ll"( 1 is dissolved in wMer, the catilyst filtered mid file ten -pi 11 ll; lli,' ; icid prrcipi(.nlrd from the soliltioo, for lIllph. with dilo, So I I f I I I it ; I, ill. A minilivi oI I .... .. ( 11, v,, loped for recoverin , LZ tlj( It: 11sikill, it, a form ill i% Iii, I, it 1, he I- iised directly. I' m ex: 11111d", tile. tvi rph I li' llic, ill cin, be jwvcipit: . )lcd front polossinto P- 1, 1, 11111: 11 , , 1, - 1, 11 io 11 ) y ...... o'; or fill. llills ust- d ; t,, -; 1. 1fling olmeli; Ils, in WIllth tosr. c Precipitation is preferably lie rfo rined- in two steps. In the re.. t step, the less, dil precipitated. Y Soluble inonopr,(; is.qiunj to- rephth.ilme In the serond step, if ' ( 70-- l- ted into free IrlithAir, nrid. Allerrintively, tel rpht 11; 11; lt(- ky first hr P"' ' Pil," t" I will, co, )( in dioxide linder pirrssure, d llich rearted with the starting cmboxylir ; irid in a ilp- ent: The reaction 11- Y be rarried mi ; Is ; k lmtoh or con- oil.- process , w;iniz kiln, vortrx- brd, I " Ill ino- m- b- It or ollwr liar operation. alysb The most finvorable catalytic 1ctivit3- is provided by Irninin. The most ad%,nnt. i.gcojl.5 fornis , it(, file., brilzo lte, I) IIII1, 1z vendwr 196 1, Vol. 10, No. I I 1 l` " ' " I)"" Ot" Thv — il—ponding zinc. componnds have miilar but ­( AYtic ti, tion. The rno-liniun, is recoveredI" .... thl filt" I"' I " illue by ro;,-, tiyig and appropriate. bencficia- tion or by di.sg(, kjw_ lit with Chemicals Used: If the potassilim. catalyst ; md protective gas are recovered, the process requires no chemicals other thin the st,,irtiniz iwitrri;d, Operating Conditions: The be5t yields of t(.-i- f-phthalic acid are with i1ir pota5siolyj salt.,. sodi, " I " Its gi.Ve poorcir yields. However, Art ippreciable portion of theynti" iurn may be re- 111. 1ced by sodium without seriously imp,-6rc (I yield. To obtain i high degrf- of conveIrsion, uflicirojly high tm- permiji-f! is csseriti; d. AltimovIi rco, tion brgins at 350" C tein- peraturcs above 400' C are required for commercial rates: opti- mumirange being 410- 430.' C. Higher tempf-ratures cause injuri- ous s dc reactions. Although good yields are obt.jimible it atmospheric pressit C, r thc inaximuin yields are achieved with CO2 under pressure. W ith G ;I ( I I ninm* catillysts, 3 to 8 ntm. is criough for the phthalate tnki:spoNntion; 1() to 1. 5 atin. for the bf',nzo; lte reaction. Zinc 1)' sts 1-- loirr aboot Iwicr the pri-ssin-r. Other inert gnses, such 6%.f. lowrr yi,-Ifls. 11111 ( olopollods %Vilh Molils 11111st he I. X, 111di- il ffonl Ilic rem tioll. Ilk the piupoliiliml ( of ( he saits, there - 01c, Ca" v "' list be taken to see that rqni, dcnt qu.1ritities of st; irling twitt-rials : im lint in. off, (!rwisj. will Ile ( Ii, I lit, lit jo 11 fllyi,' ldIihy Sl) r,;, y dryi ... it , lost silif; iljl(- for v Yfli. 1 lig fill- S. klts. Yields: Undvir prop(!r conditions, practically jqantititiv . v conver- sion is obt. iinvd. with teiephthAic acid yields of 95- 98 percent. I' ll" "', lion Prodnct is fr(.c from or tho- ; ind isoplit'h;, lic ncid. Tlw fercphilialic ; Ivid does not cool; lin ; lldvllyd;, or ollivi hy- pr" ducls. Commercial installations. The process is in production in plants of K; iw,,is; iki Kisri Chemic; ils Ltd., Tokyo (. J; ij);in), mid TrikokuR; iyon (, o. I, td.. Tokyo ( 1, ilnin). A svirni- como, i;:!,, I) ilot ph-loriti s owne( I I ) y tit Midisclif! Anilin- & wigsbafell- 10 fly) - The engincering know-how of tile prcrc(*ss is at the dispos d of tll,, I urgi Gc9clischaft Mir Minernl0rchnik Fr.inkfiii-t- nni- Maill ( Gerniany). 29 7 Terephthalic Acid —MITSUBISHI CHEMICAL INDUSTRIES LTD. Application: A pioccss for prodUCHIg pure tereplithalic mi , tsubishi Chemical Industries has developed a new technique to produce high -purity tereplithalic acid which Icid from henzoic acid and pota%si, 111, by(] roxjdv.. is used' for direct I polymerization with ctlivl#,rie sz1vcol. escription: k COOil COOK Koff C()( ' K COOK ó,', + 14--- 80. --> ureaction coolí COOK COOK C0011 ó ', + 14--- 80. --> ó + K-.,SO4 coolí Fhis process features stable operation N% ith continuous flow. - rhe I) atcnt of flenkel 11 reactioll k licensed by Nlemrs. Iferik , 0 & Giv. Mitsubisbi Chemical Indu%trivs also has a process to 1) roduce henzoic . acid by air oxida tion of toluene. Fibers made by dirvc.t 1) olyjllej.iz; lti(),, 1) 1* Nf'itsj, l) isl, i, s I* PA ary 4- qm%-;dv,, j ii, ( 111. 11ity fibers madv vla dilm-1110 14- 14- 1111111aLlic ; 111d mv casivi h) d) v 111; 111 11hol'., 11mil TPA 111; 1( 11' 1))' 01114- 1 j) J( WVNSCS. Commercial Installation: MCI is the. citily 111arilifa(, tilrer of -pure ' YPA using the Ifenkel 11 process having a capacity of 25, 200 tons animally. . Terephthalic Add— TEIJIN LTD. Application: A process for producing high -purity tere- plithalic acid ( HP -TPA) by liquid' phase oxidation of paraxylene with air, catalyst and acetic acid. Description: The pi ocess consists of following three main sections: Oxidation: Paraxylene, air, catalyst and acetic acid as solvent are charged to the liquid -phase oxidation reactor which is operated at a moderate temperature and pres- Sure. The oxidation reaction can be carried out con- tinuously in the presence of a considerable quantity of the cobalt compound catalyst. Crude TPA is separated from the mother liquor, which is composed of the catalyst, intermediate oxidates, water and solvent. A portion of acetic acid and water are stripped from the mother liquor arid acetic acid is purified by distillation and then recycled to the purification section. Most of the bottom products which contains acetic acid, the catalyst and the intermediate oxidates is circul- lated directly to the oxidation section and only a sniall portion of the bottom products is subjected to an effective catalyst purification for recirculation to the oxidation pro- cess. The catalyst, solvent and interinediate oxidates are recovered at a very high yield. Consumption of Materials: Pet- 100 kg of IIP -TPA: para -xylene ... ........................ 65 kg acetic acid ............ ................. 10 kg catalyst ........ ...................... 0. 1 kg Purification- The- crude TPA is- slurried with more acetic acid and red to a proprietary preliminary 1) Urifica. Pilot Plant: Teijin operates a 100 kg/ d I plant foi- tere- tion tep. The pre-purificd TPA is dissolved in acetic plitlialic acid. acid, crystallized, separated and dried to give the final, fiber -grade product. References: European Chemical News, Nov. 1, 32 1968.); C& EN; Oct. 14, 23 ( 1968); Japan Chemical Recovery: The mother liquors from the oxidation and Quarterly, V- 1 29 ( 1969) ; Chemical Engineering, May 5, purifi ation section are fed to this section.. 78 ( 1969). 240 November 1969 HYDROCARBON Terephthalic Add— TOYO RAYON CO., LTD Application: A proccss f0i tilt, inamifacture of tercph- thalic a( id by 011f- Stcl) li( ltlid-'phas-c air oxidation of p -xylene. ' I' lie product is snit-,jille. for the mant1facture. of polyf-stcr fibcr n)( I fill,,. Description: 1- ChIrgvc] ( oritinuously to tll(, oxidation reactor, corn - pressed air in frotIl tilt' bottolin. 71' ereplithalic I" i( i is r" ll" I' d exothermally in a( cordance with tilt, I.(. - action: I fiv cmilvill. is (. 0111illuton- Sly Iral" Jerl- rd' to t1w separation iection where tereplithalic acid is separated. The . vct ake is thel! washed with acrtic acid and dried to give INI) ROCARIACIN PROCEISSIN14 Novvinbri 196!) the prodtict a plirity greater tban 99. The sc- paratf- cl solvent-, containing water, catalyst and a sinall anlotint of intermediate, is passed to the strippinrg towf- t- for de- llydration purpose. ' I' ll(- effliient cornins, ow, froll, tll' e bottoin. is Triade tip all(] recycled tol the reacf,- r. Yield: ' I' lic tereplithalic acid yield is as high as 1. 5 kg per I kg of P- xylenc. In addition, this prnt ess has, as in- dicat- I in the flow chart, a hyproldnct whi. 4, is salable Nvith profit. Equipment Materials: Besides tll( l( jN%. t( Ijj_ 1)( 11ahlic I. I.( 111irf- d fol tll(- It" Ictif) II, tio ct' rl" ji" 4. hal( Igryl promoters are to be employed. Nonnal stainless steel can conse( litently he itsed in place of expensive material surl) as Illetallic titanium. Commercial Installation: ' I' ll(, first plant. wili(. 11 will have all annual capacity of 80 million pounds, is no%%, mider construction. 9- 11 G I I.. C00 11 P- XY] rne 71' ertphthalk Arid I fiv cmilvill. is (. 0111illuton- Sly Iral" Jerl- rd' to t1w separation iection where tereplithalic acid is separated. The . vct ake is thel! washed with acrtic acid and dried to give INI) ROCARIACIN PROCEISSIN14 Novvinbri 196!) the prodtict a plirity greater tban 99. The sc- paratf- cl solvent-, containing water, catalyst and a sinall anlotint of intermediate, is passed to the strippinrg towf- t- for de- llydration purpose. ' I' ll(- effliient cornins, ow, froll, tll' e bottoin. is Triade tip all(] recycled tol the reacf,- r. Yield: ' I' lic tereplithalic acid yield is as high as 1. 5 kg per I kg of P- xylenc. In addition, this prnt ess has, as in- dicat- I in the flow chart, a hyproldnct whi. 4, is salable Nvith profit. Equipment Materials: Besides tll( l( jN%. t( Ijj_ 1)( 11ahlic I. I.( 111irf- d fol tll(- It" Ictif) II, tio ct' rl" ji" 4. hal( Igryl promoters are to be employed. Nonnal stainless steel can conse( litently he itsed in place of expensive material surl) as Illetallic titanium. Commercial Installation: ' I' ll(, first plant. wili(. 11 will have all annual capacity of 80 million pounds, is no %, mider construction. 9- 11 Terephthalic acid— THE LUMMUS CO. Application: A proci, ss . for the production of high purity trrrphthalic acid, ( TPA) frorn p-xylrn.c. Description: ' I' ll(- process is carried out ill two sections. In. the first. p- xylme- ind recycle p- tolunitrile ( TN) react withaininonia in afluidizc.d bed to form tereplithalo- iiii I iln ( TPN). A novcl metal -oxide catalyst is used which provides thc () Nygren for the ycaction i4i addition to cata- lyzillgr tho Iv; lrtion. Svlvclivily' to TPN and TN is over 90 111olv ; Ifid ! Io aldvllyde coillpounds ate. produced. Ili Ili(- svmfid seclim), pirifil-d TI' N is hydrolyzrd ; ind s1c. 1111 .-[ I I I ) I)(-( I to I ( will 11wilil 11- 1. 1- phill.& III, NIAT). ' I his is : I,, t N" lid ; IIId Illf-Ilwilly Ill. - composed to form tercphthalic acid ( TPA j Motlicr liquor and a'nmionia are recycled. Rrsidii; il 1vi(.-phth; d; unic acid ( TA) fornwd iii fliv. initial liydrol- sis is further hydrolyzed and recycled linpuritif-s in the waste x%ater strr--aiii are concentrated in a cooling tow-er and then collected and used as boiler hirl. This cooling to% ver pi-ovidvs a major part of the total plant cooling load. Aside from the small stream of CID,, no waste streams leave the plant. The TPA produced Tnects all fiber grade specifications. Other plithalic acids can be produced by the same process.. Typical plant requirements: Capacity of plant 150,000 mt/ yr. IS13L investment 17 million l6w noti-rials pri 11). of' ITA X IvIlr Wio..--) 11). Cakfl sl ; 111( 1 chvillicals cost 0. 29 cvIlls 116116--i 1wi 11). 111 TPA Steam, 1, 000 psig 1. 7 lbs. 650 Psig 7. 0 lbs. oolilij, %valf' r ( illchidill!" specialcoolingtower) 33 U.S. gallons Deinnized water 0.5 U.S. gallons Hlectric power 0.055 kWh Fuel 600 Btu' s Nitro -vii 2. 5 scf Terephthalic acid & DMT— TORAY INDUSTRIES, INC. Application: A process for production of dimethyl tereph- thalate ( DMT) from p -xylene via terephthalic acid TPA.) Description: DMT is obtained from feedstock p -xylene applying the following chemical reactions: 11, C —< — CH, + 3 0,, --> HOOC COOH + 2 H20 HOOC — COOH + 2 GH,30H H,COO.0 COOCH3+ 21120 p -Xylene in the solvent acetic acid is converted to tere- 1) hathalic acid by liquid phase air oxidation in the pres- ence of out- unique reaction pronjotcr and catalyst. The reaction promoter, synthesized from acetaldehyde, changes to acetic acid in tile course of the oxidation. Granular tereplithalic acid obtained in the oxidizer is washed with pu.re acetic acid, dried and forwarded to the esterifier. Acetic acid co-produced in the oxidizer is purified and marketed. Dried terephthalic acid is fed to the esterifier with methanol to be converted to dimethyl ester. Toray de- veloped a catalyst for the esterification. Crude ester re - moved from the esterifier is continuously purified to final product by special techniques. Raw materials and utilities consumption ( per Kg of DMT produced): Consumption p -Xylene, kg ............................. 0. 57 Acetaldehydc, kg ......................... 0. 21 Methanol, kg ............................ 0. 36 Steam, kg ............................... 10 Electricity, kWh .......................... 1. 1 Fuel, Kcal ............................... 1800 GO- producti( Ill Acetic acid, kg ........................... 0. 21 Commercial installation: Toray operates a TPA plant having the capacity of 25, 000 metric t/ y which will be expanded to the total capacity of 100, 000 metric t/ y at Nagoya in 1973, and DMT plant of 100,000 metric t/ y at Mishima. TPA -DMT plant by this process is planned at People' s Republic of China. References: Ind. Eng. Chem. Prod. Res. Develop. 12 2) p 150 ( 1973). HYDROCARBON PROCE.SSING November V173 10r Terephthalic acid— EASTMAN KODAK CO., TENNESSEE EASTMAN CO. DIVISION Application: A process for the manufacture of tere- phthalic acid ( TA) from para -xylene. Description: TA is produced by an oxidation of para - xylene at low to moderate temperatures and pressures in acetic acid solvent using a cobalt catalyst and acetalde- hyde as an activator. The TA produced is separated by filtration and is subsequently dried as an esterification - Raw material consumption: p -xylene - 0. 65 kg/ kg. Investment: Battery limits capital investment for a 100,000 -metric -ton -per -year plant built in the United States in 1973 is approximately $ 13 million. Utilities: Approximate heat required per kg of product— grade product suitable for conversion to DMT or to 6,600 Btu. - polymer -grade TA. The co -product acetic acid can be Approximate power required per kg of product - 0. 1 refined to first quality glacial acetic acid for use or sale. kWh. The amount of acetic acid co- produced can be varied from about 0. 55 to 1. 1 pounds per pound of TA. The Eastman TA process offers economic advantages over other processes if the producer has an available sup- ply of acetaldehyde and a use for the co- produced acetic acid. Conventional materials of construction are used since corrosion is of minimum concern. Commercial installation: The process is used by East- man in its plant at Kingsport, Tenn., where hundreds of millions of pounds of esterification -grade TA. are pro- duced. Inquiries may be directed to Foster Wheeler Corp., Livingston, N.J., or Tennessee Eastman Co., Kingsport, Tenn. Acrylonitrile (Sohio Process)— THE BADGER CO., INC. Application: A process for the manufacture of acryloni- trile from propylene, anhydrous fertilizer grade ammo- nia and air. 99+, Yo purity 11CN and acetonitrile may be recovered as salable byproducts if desired. Description: The above feeds are introduced into a fluid bed catalytic reactor operating at 5- 30 psig and 7500- 9500 F. The reactor effluent is scrubbed in a coun- tercurrent absorber, and the organic materials are recovered from the absorber water by distillation. Hydro- gen cyanide, water, light ends, and high boiling impurities are removed from the crude acrylonitrile by fractionation to produce specification acrylonitrile' product. A feature of the process is the high conversion obtained on a once -through basis in the fluid bed reactor. Trouble- some separation and recyclitig of unreacted raw materials is unnecessary. Catalyst: Two catalysts are available commercially for this fluid -bed process. The original catalyst is based prin- 146 cipally on molybdenum and bismuth. A new catalyst produces relatively more acrylonitrile and less byproduct acetonitrile. Operating Conditions: The reactor operating condi- tions are defined in the above text. Most of the frac- tionation is accomplished at atmospheric pressure. Yields: Yields in excess of 0. 80 pounds of acrylonitrile per pound of propylene feed are achieved. About. 0. 15- 0.20 pounds of byproduct 11CN can be recovered per pound of acrylonitrile. Commercial Installations: The Badger Co., Inc., li- censes the process and offers engineering design and con- struction services for plants using this process. Licenses un- der the process have been Kranted in North America, Japan and Furope. References: 11PIPR, Vol. 42, No. 11, Nov. 1963, p. 1391; Chemical Engineering Progress, October 1960, p. 65; IIPIPR Vol. 41, No. 11, Nov. 1962, p. 187: PR, Vol 38, No. 7, July 1959, p. 264. November 1969 11YDROCARBON PROO' SSIM; Acrylonitrile —MONTECATINI EDISON SPA Application: A process for the production id bigh purity acrylonitrile, by J) rnj)ylvnv aninionoxidation from propyl - 114", all, nionia atid air. Byprodticts include: TICN, ace- trinifrile ; ind minioniurn riff;1w. Description: hopylvnc, aninionia. and air arc fed to a fluld hcd - ilalytic reactor operating at 420- 460') C and at aboiit 2 ahq. Tbe reartor tliermic control is by )-; It V-,XC1,,, llgvr% ininlrused in the catalytic bed. I'lle icartion Erases are u-astird in an aninionia removal tower by circulating arnmonium sulfate solution maintained at arid 141 by crintinuoiis, addition of sulftific arid.. Tlius I' ll" vacled inniionia, is rerovererl as a 361,, aininonkirn sillfatv s,) 1ution. U Ilir rviclion prodiiels, am watt-r-absorhed and un- I-f- actcd plopy1clu., oxygen, roiiction 1) yprodiicts (!() and M., and nitro,wri arr discharged, The organic coin - l - d bY distilloti" n, wbile Ilin. TIGN, avt(,nitii1v, and I(— aild Iii(rh-boiling products0 arc rrin- ed from the arrylonitrile by fractionation. Fiher i' svilt to Ilw firlislipd product qtor(, Catalyst: Tli(- is hased or, t1j(! jlsv. of a speci, 11 Catalyst dvveloprd fly Montecatilij J." dison. ' I' llis catalvst is made by adding tellurium, cerium and niolybdenum high oxygenated compounds to a support, e.g. silica, in the 20- 30/ 80- 70 ratio respectively. Patents covirring this it; ll) sl ll; lvp hevil filf-d ill lually rolintries inchidinc, 0le Unitcd Sf; lt(' S, the United Kingdorn and Gennany. Yields: requirements and recoveries ' starting with 92- 93',",,') propylene per 1, 000 kg of acrylonitrile arc: Requirements Propylenc ( as 100,',;) .................... 1, 300 kg Arnmonia ............................... 550 kg Recoveries Aninionimn sulfiw (;,-, 10011% whit(,-) . - .-. 100 kg I Iydiocyanic acid ... . ................. 60 kg Ace.tonitrile ......... .................. 25 kg Commercial installations: k 60.000 nictric tons/ year pl mt was brought onstream at Priolo, Sicily, lt; dy, in 1, 40. References: La (: hiniica f, l."Indtistria, Vol. 49, No. 8, Aliwist 1967. I' ll(). Nnvvinhrr 1969 1 11 Acrylonitrile (Knapsack) HOECHST- UHDE CORPORATION Application: A for i1w inamifacturc of acryloni- trill- from accuildehyde all([ hydrocyanic acid. Description: of 97- 98 peivent pill-ity is fron) a- 1aldehydc am I hyrit-ocyanic a( - id at a pI I of 7. 0- 7. 5 and a tc," perature of 50'- 650 F, according to the follov.-ing reaction: I I J: 110 1 - I I CN -- C I Y:,(: I 1 ( 011) CN + - 30. 4. BTU 11C is I' lixed vilh 80- 85 percent aqueous phos- PhoTiC ; lcid it, a mol(-ciilar ratio of 3: 1 and is sprayed ill ill : 1 "''(' liof) flitINUT %vll("(' the rnixtijrf is hrat(-d 1 fl; 1(' 1iotl of a m- coml to 11 W-1290 F by contact Itb IligIl- tr 1̀11P( T;ltll1'V (' 0111f)( Istion wis. ' I. 'he 1101 gas, at 1800 '- 2700" F, is obtained by (-.ojvjbtj'stiolj of fliel gas witIl theoreflual air ve( Iiiii-ement. The 1' vac- 11ml g; iws mv ( Illenclicd ; if fhe flirtulcl. oullul by a 141- I if-4. 11LI11111" of :,I0 pl-wellf a( im-otis 141ospholl( ; wid. Approximah-ly 75 per( vill ( 11 jjl( 1; 1, Jojj1( l- iI(. is tI' lls C" I" d ill ;)(',) lonill ' It, and wal(-r. NIoNl of ill(- n-maind(. 1 pilk 11) 1'( 11111 ; 14vf; lIdt-Il01- mid hyd)( wyallif mid, ; 111( 1 abirmit 2-:) pvj,cvnt s; il)oliifi(.s to fill I) Ilosl) ll. lt . 11 1a Im- tic acid. 1111. . 10 lwrc( 111 ; Iqllvolls ;)(. ill flom fill- Illent-hill", ( q)(. 1otioll is 1e( l, 1l(- vjjfl; ltj-(I 10 80- 11"') polveill and is lecych-d 10 the 1 -cm -lion Ilinlace. The reaction gasys aw ( Illeclvd to a S4. 111h1wr wilf-re tilt, 1- 1, 11mitling phospholic ; lcid mist is 1(' 111mcd. a6fl 01)( 11 M- 4- toddelwde rolitailird in the rr- tion L; lsys ai, converted Io lactonittile in a iecombinine tower I' ll Ow lactonitrile is ptimped to flit, reaction furnm',e. The Novem1wr- 1961, Vol. 40, No. 11 l( TY10nitrile Content 4 the reaction gases is removed by absorp- tion in water at 68 t. Rrcovery of crude acrylonitrile from the 2- 3 percent a( Itivol' S s( Ililtion is accomplished in a ,; tripper by direct heatinq with stv;nn. Fhe crudv acrylonitrife is finally dil-rcto'd to a distillation svc- tiOn (")" W' isi 119 twO ( 01111111' s ill a scries. The water content is removed in ther first coltimn,. as well ; Is small quantities of Im- tonitrilf-, m etalrb-hydr. ; I n, l liydrocyanic :, 4 ill. Mirc a( rylonitrile is fit(, overlivad produc t ftoln' the sccond coltunn. A . 1- f- sidur of hi" ll- h0ilin", llitrile-S, - 116 - 11 - it to 25- 3 1wro-ei'it of the acryloni- trilv prochiction, is ( 0,( ained froll, fill. lintfoln of ill(,. seconol column. The pr,61vin of phosphoric avid ( orrosion at the high tern- peratures involvrd has brell illet thrOU1,111 lisp. of suitablv mate- rials. Tliv anntionimn phosphate prodw,- d by the 2- 3 po- rcent 4 111( inifi- 11i" ll of IMAI- nillile is ( oncenti, 11cd ill thr r-cy( Ir : lcid and crvstallizvs at a concentration ( if 15-?() perrent in the la, - tonitrile - ixturr. It is removed by filtration. The anivionim i phosphate prodtiction is , i pproxi ina tely 7- 8 pniinds per 100 polinds ' if acrylonilrilf, pl-mimcd. This ImIfelial is al Ivasl ; is I,. fill' I" llik' 114. 111 plw pllolil wiff Th,- mi,violli( vill, Immiml,d fly fill, Kii; i1mick Process is 1'. 11- icill. irly , llif: lblv flit. fill, 111. 11111farl ury if hit!h ( 111; llity polyllivis.. A piliii p1mit , f 10 imri/ imaith li. js ken opf-rated in ill(- plant of Knapsack- Griesheim AG, neat Cologne, Cermany- Yields: Thr ivl, k , I ,, 1.; im-d ml ill,. 4 Jild ), Illit m ill if -m -fi -d me 90 .[ fill 92 pvr- rent respeulk-cly. ind jwiy be impitivi-d ; 1,,, Ille ( le\ vI( q) ITIVIlt of file prorvss is a d%-;1ll(­ d. References. Setim-wald. K.. Stf- il, K. If.. Te( h- ink No-. 7 110- 116 ( 058); Si- tint-wald, K., " A,(- tAdvhydv ; 15 Raw NLitcrial for Acryinnifrile." Paper I) r( sented at Fiffli Wc) rld I) vtr(+- mn Conqrcs5, Niw )'( nk. 1959. . 215 Acrylonitrile— AMERICAN CYANAMID COMPANY Application: A pr(jkess for inario-factkiring acryloniLrile front acetylene and hydrogen cyallide. Charge: Acetylene gah ( 99 per( ent purity) ; hydrogen cyanide -,,as ( 99+ percent purity). Product: Acrylonitrile liquid of 99. 5 percent purity. Description: Acrylonitrile inay. be produced either by the dehydration of ethylene cyanohydrin or by the direct combination of amtylene and hydrogen cyanide. The lat- ter ineth(A is known as the " nattiral gas process." It is the. itiore iii1pol,tant jr1j: thod today, commercially, and ac- cordingly will be described here. Acetylene and hydrogen cyanide in a ratio of 6: 1 form the reactor cliargc. Theoreactor is a rLibber-lined cylindri- cal vessel containing liquid catalyst to a depth of several feet. The reactants arc injected separately under the liquid surface. About 15 percent of the acetylene is con- verted, and this consumes practically all of the hydrogen yanidc. Tlw a( ltjeotis catalyst Consist.% Of CUPrOUS chloride, hy- drogen chloride, and alkali chlorides in 36 weight percent water. All salts arc in solution at 175' F which is also the reaction winpera it, i.e. Yiews of' 1. 5 polinds of acrylonitrile per Ilour_fo, t3 Of Solution are obtained. The catalyst must be regenerated to prevent deactivation.. The reaction pressure is 2- 5 Po" nds above atmospheric. The reaction products pass to an absorber, the lean gas from which contains acetylene and divinylacetylene. The latter constituent is removed in a separate scrubbing oper- ation. The residiial acetylene is recycled through a' l) low4--r to the reactor charge. The absorber is operated at a water rate such that a three percent acryloni( rile- solkition is withdrawn is hot- toll' s- ' I' lliS Sl ­1 -(', k111 is St' llt to the stripper, front which a crude acrylonitrile -water axuotropc is recycled to the stripper feed. The oil layer, or " crude acrylonitrile," is sent to a distillation train for separation and purification. I , lie comerillation of acryloi6trile in the crude solution is about 75 weight percent; that of the inaicrials Other than water is alsout 15 -weight percent. The first tower in the distilhition train ( lit, jit ends column) enables the overhead removal Of IlliLterials boiling bt- low acrylon- itrile. Acetylene and monovinylaceylerie pass till' is g; js(. s. Product acxylonit,rile, having it purity of about 99. 5 percent on a dry basis, is removed as overheall from the second colunin. The operating head prC.SSUre i.S about 140 null lIg abs. The bottoms stream contains heavy ends plus a significant aniount of acrylonitrile. The third tower in the train, the heavy ends colunin, serves to recover acrylonitrile from the product column bottoms. The heavy ends column Operates at it head pressure of 120- 150 rian lIg ails. The recovered acrylonjoile i% not Specifi( ation- gi-ade and must be re( ycled to the Jight ends colujon. The product acrylonitrile has a builing range of 169'- 173' F Operating Conditions: The important Operating conditions are tlj()s(- ill the reactor. They , it-(! d4ni-d ill the above text Yields: Typical over-all process yields are. Acrylonitrile from IICN, H5 percent. Acrylonitrile froin C. 1h, 75 percent. Commercial Installations: 111;. jits titilizing tilt: t., are: Monsanto Chemical GuilliMaY, Texas City, Texas; Alnerican Cyanamid Company, Fortier, La.: The B. F. Goodrich Company, Calvert City, Ky. References: " The rvIallufacture of Acrylonitrile From Naimal Gas," J. T. Thurston, E. L. and J.'. 1, ( if American Cyanamid Co., Fourth NV(, ild Petroleum Rome. Italy. 214 I1YDR0iCARj1,o-, & 111. 11( 01. 1, VM RI-A- INEIR Ammonia—MONTECATINI Application: Synthesis of anunonia by tile Fauser- Mon- tecatini processing technique. Charge: It is' essential to have a pure N2 + 3H synthe- sis gas mixture, compressed at about 5000 psig- Hydrogen contained in said mixture (- ail be obtained by several methods and should be chosen according to the most favorable local conditions. Product: Pure anizzionia, partially available in the liquid forin mid partially in gascous forri-I. ifigil-pres." I., stealli is also obtained. Description: Fresh synthesis gas mixture, before entering tile c( nivvi-ter, acts as a mechanical compelling inediuln for recycling the unreacted gases in a special highly ef- ficient injector. The converter, designed accor ing to the up- to-date Fauser-Montecatini patented type, operates at a p- ssure of 4, 260 f)sig and is utinipped witht a highly effeclive system for recovc-ring tile reactio'n heat. Tile temperature of dw different catalyst sections can be carefully controlled so as to obtain from tile cata- lyst itself the best perfory.nance, thus increasing conversion efficiency and pieventing dangerous super -heating * The catalyst temperature control is achieved bỳ circu- lating- distilled water in a set of various heat exchangers placed at different levels in the catalytic mass. The waste heat recovery produces stearn having. the remarkable pres- sure of 250 psig. As a result Of such caieful temperature control, gases leaving tile converter have ail avelilge al1ll1lonit content of 20 percent. This is exceptionally higgh considering fill- raffier low syntliesis pressure. Ammonia is condensed down at approx. - _ 50 1,' thl'(­ st,­ Ics: first in a vvatci cooIer, then in a cold 222 exchanger ancl filially in jjfl'. tlllljloIll 1 cooll The conduits(-(] folil till. (. Y( and expanded in a let doxii Lank. A fraction of t arninonia collected it) this tank f(.(.(Is tll(. (:(,(, I where it vaporizes al abollt : 10 P'ig giving IlIc rv, plilt ainotint. Of refrigeration. After removal of tile Condensed armnonia the unreact( cold gas— es flow throllgh tile (. X(-, Il; lllg(!I. arld are Own I. cycled to tile C01IM-Ler by " It' all-s of tile injector. Several inain advantages are offered by this improve process and can be summarized as follows: The synthesis pressure chosen for this process per ... its sai and efficient operation of the unit together with low inaintcnam and operative costs. The temperature control in thc catalyst layers permits hig conversion, long catalyst life and ni., kes possible the r(,(-ov(, ry , 0.85 ton of stcam per ton of ammozii; a produced. This is an impol talit ecollonlic factor. The high efficiency of the injector adopted offeys, in corn parison with a mechanical circulator, several advantages including low cost, I,() Ill' lnt(' nanUC ' it) oil efiLrainrywrits I this me -an be st operating conditions for ' thf: catalyst), power constupptiol comparable to that of mechanical circulators. Operating Conditions: The ' flail' operative conditions are giver in the above dt-sLription. The tempvrature in the converter it kept at about 900* F. Yields: For the productior, of 1, 000 kg of arnmonia, 2, 750 N cu. meters of M+ 31L synthesis gas 11, ixtute, compressed at 5, 000 psig are required. For the s amolint of ploduced ammollia, 850 kg of high- pressure steani are rucuvered. Commercial installations: 63 all" llouia plants have bven .,,,. ted In 20 (' 01.1 ntries thrm, gbout ill,. w"" Id, litili, it, it thl- Fallser- Molittl( atilil J fol' " Joll- than 2, 700,000 Illetric toils per year of airlinollia capacity. HYDROCARBON PROCE'.S.,, IN(, & PWJ' RGIJ-X,-8i REFINER Ammonia— THE M. W. KELLOGG COMPANY Application: A lilgli pr(.­;sur(t stcaiyi niethane reforming pi- ess for- alplacinla pro(luction. Charge: Natural gas, refinery gas, coke oven gas or light liydrocarhons and air. Product:- High purity aminonia. Description: The stejill, me( bane reforming proc( tss pro - 11—' s airnnoilia by swani reforyning, natural or refincry g.-i, iindo-r pres ure, followed by carbon monoxide sbift. pjj i. fication of raw synthesis gas, and arnmonia synthesis. In ill(, prowess, saturatc( l and unsaturated bydrocarbons 1,111, d" COMPose'd by st-caln accor(ling, to tbe basic. equation: 101-1, + FI, O --> CO + 3H,, F1. 4 - d File prilliar). Irforilivi tomi-Ils abow 70 perrew of ;, ilatill 11 g. 1% fl -1- 411 into law syllill-- i4 t x., ill dw jljvi;, It((- ( If ' Iff-aill lisil- a iiickcl catal) st. In the secondary reformer, air is introdUced to supply the nitrogen required for ammonia. I'lic heat of comhustion Of tile ji.irtially I-( formed czas lilt, viivrgy to reforto the dt- r of Iliv o. is afIvr rracling Willi Illv oxygrli in the air. High prcssine reformin.g conserves . 10- 1- 0 percent in compres- sor horwpower over usiml pnictices giving low presstire synthesis gages. Next, the inixture is quenched and wnt to the shift converter. I Iere CO is converted to CO2 and 142. N% lien heat is still available after sati%f)-ing,. thr water requirement for the shift reaction, a wastr- lwai boiler may be inst;dIrd. Noveniber 1961, Vol. 40, No. I I Shift rew-tor efritient, aft( tr heat rf-( ov,.ry. is ; 11, fl , ) Izl- pressed, ilici, goo -,s to Iliv g; is purificatiori (: 02 is rV- moved from the synthesis gas in -a regcnerativ( MEA ( moiio- ethanolamine) or other standard ircrovery system. After CO3 removal, (:() Ira( cs left in Ilw grs stream are re- 111( wed hy scrubbing Willi a regvricialkv cuprous aminortium I' tate soluti011. FlowQwf- f ij hig metharwtion rather than cop- per solution for final purification arc also available. Fhe resiflting pure sytithesis gas jmsscs to the oil w1wi-mm, is Illixed Willi : I w( y( It. sfrrallf, ( of) lrd will) alniviollia reftip.cl. 1- tion, and goes to the s,- condary separator where anhydrous nln- monia. ( contained in the recycle stream) drops ow. Synthesis gas is then passed through beat exchange and char.qed to the c; italytiv moilionia. convf-ro. r. Prochict s frotriga Ilir converter is cooled ; m( I t, x( h; ingv(J agailist converter fecd t,;, Anhydrous liquid animonia then separates out in the primat/ sf-paiator and, after furthrr coolingy, irov; to the anhydrous am- 111( mia prodlirl flash Operating Conditions: Ilic Iev(I I,, fit,. is ill ille . rdcl ( 0, 30f) psil. ' I' lle howl.%er, is II(' t 111( 1 Imly bv it, pr,)%idu f- plillmill ' 11. 4i" ll [ fit . 1111- tirw Ildili" 11% lolw% Ill I' lim, 11% ' Ild sr— ild.. ly It -1111111 - Is 1- 1 100- 1, 800" F., while shift ica, lion temperatilres ary 700- 850' F. Ammonia synthesis is nt- roially at 1. 700 psiv. ' I' ll(- fypi", " 1111111ollia was d­ vrIcqwd hy K,-11m,,g. fill -v is : it, litately alld 11'. xibly ( I' lltmllud illsidi. tit,. calillyst Illass to ' allow a catalyst basIxt tcniperattire ,,,, ldient viving a maxi- mum yield of ; iinmoni;, per pass, regardless of prodtictioll ratc, Commercial Installations: ' Fhis prouvss is ill prodii, timi ; it vight plants with three niorc in constniction. ' 1' otal aillmolli., pro( I' Ir- tion is ratvd at Over 2. 1" 0 torig per dilv, Addition. il iiistallatirul of easificnition and purification scrtiom' arr rated it morr timul 160 MM S(; I-'[) of hydrogen and syntitesi, gas. 221 Ammonia— FOSTER WHEELER CORPORATION Application: A process for man ti factu ring ammonia Charge: Hydrocarbon oil and/ or gas, water and air. Product: Lj(luid Anhydrous Ammonia. r Description : 17he processing sequence for the synthesis of aminonia comprises six steps: air fractionation, partial oxidation, shift conversion, carbon dioxide removal, liquid nitrogen wash and ammonia synthesis. An afternate processing sequence would involve cata- lytic reactioti of steam with hydrocaibon gascs ( the steam - methane reaction) in place of partial oxidation. Air, filtered and caustic scrubbed, is compressed to approximately 600 psig, liquefied and separated into ni- trogen and oxygen in the air separation plant. The nitro- gen is compressed and the bulk of it is' used for.blending into the purified synthesis gas. A slip stream of this nitrogen re-enters the air plant and is licluelied for use in the liquid nitrogen wash tower. Liquid oxygen is pumped thru a preheater to the Texaco generator. Preheated hydrocarbon oil/ water mixture ( or hydro- carbon gas) also enters the generator, mixes with the oxygen and the highly exothermic reaction takes place. The products, mainly carbon monoxide and hydrogerl, are quenched with water and enter the shift converter where in the presence of a catalyst, carbon monoxide reacts with steam to form addition , at hydrogen and carbon dioxide. The effluent from the shift converter passes through a heat exchanger for recovery of process heat, is cooled, flows through a liquid knockout drum and then to the carbon dioxide removal system. 220 Carbon dioxide is removed by absorption in a suitable medluin such as nionoethanolaminc which- is then reacti- vated by heat'. releasing the carbon dioxide to battery limits. The hydrogen stream then enters the liquid nitrogen wash tower where residtial carbon monoxide, methane nd argon are removed. The puri.fied hydrogen is blended in specified proportions with nitrogen, produced at the air separation plant, and enters the Casale synthesis sys- tem. The gaseous mixture of hydrogen- and nitrogen is compressed to approximately 9, 000 psig and enters the reactor, via the jet ejector system which serves to return the uncoverted recycle gases to the reactor. The ammonia synthesis is completed in the presence of a special catalyst. The effluent gases are cooled, the anhydrous ammonia is condensed and separated from the unconverted gases which are returned to the reactor via the ejector system. The liquid anhydrous ammonia flows to storage. The ejector system eliminates the necessity for a recir- culating compressor for the unconverted gases. Operating Conditions: Important operating conditions are mentioned in the above description. Commercial Installations: Over 2000 tons per day of installed capacity. References: PETROLEUm REFINER, Sept.' 53, pl78; CnEm- ICAL ENGINEERING, May'54,p332. HYDROCARBON PROCESSING & PEIROLFAIM RFHN1-,R Ammonia (Claude Pirocess) THE FLUOR CORPORATION, LIMITED Application: A process for the manufacture of anhydrous ammonia. Charge: Feed to the ammonia synthesis unit is gas con- taining 75 percent hydrogen and 25 percent nitrogen. Such. synthesis gas may be produced from catalytic rc- former off -gas, butadiene off -gas, coke oven gas, electro- lytic cell hydrogen, or other sources by nitrogen scrubbing. It may also be produced by steam methane reforming or partial oxidation of natural gas or other hydrocarbons. Product: Uquid anhydrous ammonia of - 99. 9 percent purity. Description: Synthesis gas containing 75 percent hydro- gen and 25 percent nitrogen flows to the synthesis gasI compressors for compression to about 400-600 atmos- PlIc" C's, Cooled, passed through a lube oil removal unit, blended with recycle. gas, and fed into. the. Claude Con- verwr. ' I' ll(, gaseq enwr ( he Clailde Converter at ahoiit 100' Fand internal licat exchange increases this tenipera- ture to a suitable level for rapid conversion to ammonia. The exothermic reaction raises the temperature - level within Ille convvrter to about 1100" F, btit this hea I Is transferred to the inc, omingr feed gas so that the gases leaVe the converter at about 4801-510' F. The effilient gases pass through the tubes of a water-cooled condenser which condenses rnost of the amnionia produced, allowing a very small fraction to iecycle with the unconverted. gases. The anhydrous ammonia produced is passed to storage through November 196 1, Vol. 40, No. I I an automatic let -down valve. Unconverted gases are re - compressed and passed through a filter for lube oil removal before passing back to the converter inlet. Synthesis gases purified in a liquid nitrogen scrubbing unit are so pure that no vapor purgc from the loop is necetsary. An equilibrium i8 established wherein the small quantity of inerts introduced with the syn gas passes from the high pressure separator dissolved in the liquid ammonia as long as inerts in fresh synthesis gas are less than 250 ppm. Operating Conditions: The synthesis converter starts producing at about 400 atmospheres, and most of the ammonia production is made near that level. The co i - verter is designed to pen -nit operation as high as 600 atmospheres, which will occur after the catalyst has aged. Yield: About 97 percent based on nitrogen and hydrogen. Commercial Installations; The cLiti( le conver( er is ill use at Mississippi River Chemical Company, Selina, Mis- souri; Hercules Powder Company, Pinole, California; Mississippi Chemical Corporation, Yazoo City, Mississippi; San Jacinto Chemical Company, Houston, Texas; Ketona Chemical Company, Ketona, Alabama; and Calumet Nitrogen Products Company at Whiting, Indiana. A plant incorporating the Claude Converter is under construction for Petroleos Mexicanos at Minatitldn, Mexico. ' Reference: Chem. Enq. Progress, 48, 468 ( 1952). 219 Ammonia—CHEMICAL CONSTRUCTION CORPORATION Application: ' flijs I,, it ior tli( i plOdUCLioll ) I aln- ilionia. Charge: ' I' ll(! feed to ( it(! process Inay I) v ally llli.xtlll,,, of I ower niolectilar W(' 1,111) L gaseous Itydrocarbons consisting pi-Iniarily of saturates, acetylene off ­ as, or, a rnixture of liydrocarbons all(] off -gas. Description: The feed gases are reformed by reaction Ith steam at any pressure up to 300 psig. Optinuarl pres- sure is selected for- the particular- gas to be prOCessed. Process steani requirements are generated in waste heat boilers. Most of tile hydrocarbons are reformed to hydrogen, carbon monqxide and carbon dioxide in tit(! primary I'e- former. I[ vaL for- dic reaction is silppli(ql by liqjjid or. gaseous I' llcls. The i:eactions are completed in tile secondary reformer where tit(! correct aitiount. of introgcti to fortri a 3: 1 fly- drogen- nitrogen ratio enters with tit(.- air. Necessary licat is suppl ied by reaction of conil) ustible. prodticb, with oxygen lit air-. 0 Ifeat in gases exit the secondary reformer and is re- covered as steam, for use in tile process. Most of the car, - bon monoxide fonned by reforming is converted to carbon lioxide III tit(. C0 colivertor by 1- vactioll with stealli to forni bydrogen arid carbon dloxlde. I' ll(, gas strt,-ajij is cooled ill a n-boilvi., stipplyllig lwal. for CO.. removal solution regeneration. I'll(- biilk of CO.. is removed hoin tire syntlicsis gas streani by regenerative liquid absoi-ptiori, using. citlier u combination of hot potassil.1111 carbonate arid monoctliati- olarnine ( MEA) in successive stiwus or two slagvs of MEA. Final cIcanup is accomplislied by inethairation, reducing oxides to 10 pprii. oi. less. l After ptizification the gas is coinpi-cssed it) 5, 200 psig arid symhusizi-d to ainnionja as ill list i-jited ill tll(. ill)%%. diagrain. Production of stuain in tit(! syntlic sis loop is Optional &- pendill'. Orl C( Oliollilc coll"'Idelatiolis fol a 1); ii- ticlilar plant. Products: Anhydrous liquid ainnionia with a ininiintim purity of 99. 9 percent. The carbon dioxide' l) rod it IS Of Still' iCiVilt ptll'iLy to be " CuSed for tile production of dry icu or- Inca especially where K,CO, scrubbing is used. Commercial Installations: There are. seventy- six clivin- ico designed ainnionia synthesis plants ranging in size III) to 450 T/ 1) in operation all over tit(- world. 218 HYDROCARBON PROCESSING & PETROLEUM REFINEAt Ammonia Application: A process for the manufacture of ammonia from various hydrocarbons, i.e., natural gas, naphtha, refinery gas, residual oil by high-pressure steam hydro- carbon reforming. Description- Synthetic ammonia inanufacturing processes can be divided into four steps— synthesis gas production reforming), carbon monoxide shifting, carbon dioxide removal ( clean- up), and compression and conversion. Reforming: The hydrocarbon feedstock is first desul- furized and vaporized if required. It is then mixed with steam, further preheated, and fed to the primary reformer w1jere the hydrocarbon and steam react over a nickel catalyst to forrn hydrogen and carbon oxides. Primary reforming normally takes place between 350- 550 psig and between 1, 350' F to 1, 5001 F. Normal conversion in the primary reformer of hydrocarbon to synthesis gas is about 7091o. Reforming is completed in the secondary reformer where the hot synthesis gas is reacted with preheated secondary air up to temperatures of 1, 850' F to achieve a very low residual methane content. Here the desired proportion ( if nitrogen which is ultimately required for ammonia synthesis is accomplished. .1-leat for the secon- dary refornking is supplied by combustion of some of the hydrogen formed in the primary reformer with oxygen in the added air to the secondary reformer. Carbon Monoxide Shift: The secondary reformer ef- fluent gas is cooled for heat recovery and passed to the CO shift converter. Normally shift conversion is con- ductcd with two catalyst charges: ( 1) conventional high temperature catalyst in the first shift stage, and ( 2) low temperature shift catalyst in the second stage. Gas inixed with steam enters the first shift converter at 650- 750' F and the bulk of the carbon monoxide is converted to carbon dioxide. Some of the steam reacts to form more hydrogen. Effluent from the first stage shift conversion is cooled to 400- 475' F and passed over the second shift conversion catalyst which further reduces the carbon monoxide content to below 0.5%. Excess heat in the combined shift gas is used to regenerate the carbon di- oxide removal system. - Carbon Dioxide Removal: Various solvents are used for removal of the carbon dioxide from the synthe- sis gas. Potassium carbonate— with and without activators aqueOus monoinethanol arnine, or other organic sol- vents. With each solvent, the heat in the shift gas effluerit is used to regimerate the rich solvent to conserve heat. Essentially all the carbon dioxide is removed by these systems but residual carbon dioxide and carbon monoxide which was not converted in the upstream shift reaction are eliminated by catalytic reaction to form rnet ane in the methanator. Since the methanator usually operates at about 600' F, the purified synthesis gas must be cooled and dried ( particularly if cryogenic purification is to be used) before being sent to compression. Compression and Conversion: The synthesis gas has been compressed to synthesis pressure before reaching the conversion section of the plant. This pressure ranges hoill as low as 2, 000 psig for very large capacity ammonia 150 November 1969 INDROCARBON l'3R1WFr.Q1%! f1 plants rising cfmtrifugal cornprf!ssors to as high as 9, 000 psig for smaller capacity plants using reciprocating com- pressors. Also, sonic processes, i.e., the Casale process as used by Foster Wheeler requires high initial pressure to opelate. the Jet powered synthesis gas recycle system. The resulting piirc synthesis gas is mixed with a recycle stream, cooled with arnrnonia refrigeration,' and goes to the secon- dary separator where anhydrous ammonia ( contained in the recycle stream) drops out. The c(x)led synthesis. gas froin the secondary r former is next exchanged with convertor effluent and feed to the llninonia converter. The converter product goes to the primary separator where anhydi-qus ammonia separates and then to the product flash drum. Primary separator overliml is recycled back to the catalytic convertor by the circulator compressor. Temperature control in the ammonia catalytic con- verfor is controlled by. introducing unreacted feed at valions in the catalyst hed of the convertor. Various companies offering ammonia synthesis processes specify on- Hor conditions to rnevt tl;e needs of the ammonia plant operator. With the advent of the 1, 500- t/ d ammonia plant, and more recently, interest in the 2, 000- t/ d plant, con- ideration is being given again to the proper selection of Y'. 1thesis pressure. Factors 'such as converter design limita- tiolls and proven commercial centrifugal compressors, dictale discharge pressure selection four years ago, do n( 0, apply ( oday. C'oinpressors are available for 1, 500- It- all" llollia plants, to cornpress synthesis gas to much 11i"' Illf-l' pr­; surcs. Similarly, venclors 'of high pressure ves- SVIs havc demonstrated ability for fabricating heavier, d* mitieler, hill clostin: converlers capable of hal Iling - water catalyst volu-nii-s ; it higher pressure levels. Therufore, selection of synthesis pressure for a new 1, 500- t/ d plant must involve other factors such as power for flfhvsis gas, recycle gas, and refrigeration compression; simft horsepower, efficiency, and rotative speed for tire sylithes-is ., as compressor; and the. ustral process considcr- allolls liwolvin'- reaction kinetics, canvers-ion efficicii(tv 111d vil,- of product condepsation. I' ll) -ce S llthesis. lool) dirsigns will. be considered: ( 1) sill"'.1v I) rod' , ict condensation fvaturing chilling the mixture if 11- 11 ht -d ,,,, as and converter effluent at the iis( 11 thc il-cycle compi-f- ssor using several levels of alinnonia i(- frigeration. Aninionia is withdrawn at a single location at low temperature. Aft(,.r separation of liquid 111- 111cf. \.; lpor is recycled to the ammonia converter, a 11W11111 1 pc \ cssrl threc. or more beds of catalyst. I`" fI0\ til1g ( ol- Visioll to altlillonia, the (Ouent. frout th(t om-cricr flo\%s, after licat removal, to the recycle com- Pl' r' ssor for- combination with makeup synthesis gas. A Imt-ge streiiiii is x6thdi-ami froin the- circuit to rid the msh, m ( if e-m-css inert nimhatic and argon. A chiller and mv gf- 111. 1; Illy pro\ l( Ird ill ( he purm. 61-vilit. to 1111f, 11111, (. 1 ' 1111111ofiki Ill 111t. plilt!'r wimi-ly hi -low If-( ych. coollm-ssl( in 1,; 1111. A., I' mV. 111 111; 11 ( olit, 4- 111. 1 I. lfl1l(. 11( Is looll-d It' l. ploduct. it, cmury before recycle compression. The con- crter effilicift Joins inakeup gas at a slightly lo%ver pres- sun, -, 011ch dv, olixhire is chilled for prodoct wrov- ci-. \; If)())- Illen flows to ( lie recych, poltioll if tll(- colillm- sot. It is then fed to the annnonia coil - 3) Two- sla,!,­ I) roduct condviisation is gencrally ap- Plied to s n1lic,;is loops designs hased on syndlesis at liluch pii,, suies. R( -( over)', of aminonia product is made It t—) loCcitiour a conihination of water cooling and whii,cra( i( m. Ill - 11\.. Ille se( piciice consists of chilling con- 111 1111111- 111"." , "... \ . . . . 1 . 1 ( - f) verter effluent to an intermediate level for condensation of the bulk of the ammonia contained in the effloent. Condensed ammonia is recovered in a priniary separator. Disengaged gas from this separation step flows to the re- cycle compressor where it is combined with make- up gas and further compressed. The combined gas is then water- cooled and chille ' d for recovery of the remaning product in a secondary separator. The two product streams are joined and delivered to a mish drum for rir-moval of dis- solved gases. The stream is then run down through the plant refrigeration system. This system is used for loop design operating at 4,000- 5,000 psia. Feedgas to the con- verter with -this process sequence is always in a high state of purity because of the. purifying function of the secon- clary product condensation stage. In order to compare various synthesis loop, systems, cer- tain assumption must be made. Using these simplyfyinq r: assumptions, best synthesis loop arrangement ( I pends upon compressor efficiency for best 1001) pressure. An ex- ample to show major equipment costs when comparing 2, 100 psla and 2,800 psia synthesis loop pressures for a 1, 500 t/ d plant delivering product at --- 28' F with a single product condensation system shows, tlic following: It should be noted however, that synthesis pressure levels, equipment and fold costs, and brake horsepo% ver figures are a function ) f the specific dirtsign and equipment cnil loyed ill thr analysys. The supplicis. of aniniollia I lants listed below are best able to answer specific ques- tions for prospective purchasers. Economics: ' I' ll(- cronoinics of amnionia productioii ilre highly spcclallz( od and the comparlics listvd 1)( d( m'. ill( - 1 cll known in this The reader is advised to coiisidt wall any of tll(- S(- C01111KIlliVs dircctly for specific ( Ictitils coiicvrniiii_ the procc-, offered. Commercial Installations: The foliowing companies of- fer design, engineering and/ or construction s(, rvic" for amnionia plants- G F Braun & Co., Alliambra, G' alifornia 91802- Cheinical Construction Corp., 320 Park Avenue, Nmv ' ork, New York 10022; Th( i Fhior Corporation, LkL, 2500 Smith AtLintic Blvd.. Los All ! cics, F( i! jvi . ( :;) i p.. 666 \ vcniiv, N(,% N- Nci% )'(, if, 1001": IftimphicNN Lid., 22 Callide H; Ici.. l". 11d" ll S. W 1, F111". 1mill: ' Ille M. W Kod If it... ( : o.. '/ I I A fill ( I A k ci iiivi Y, ii Ii. N4 -% v Y, it I., 10017, an([ Montecatini Edison S. I). A., 20100 Milano, I ta I y. References: 11- 1, droc( itbo? l Pror, %, mg, Vol. 16, No. 1. April ( 1907) 1). 197- 2202, Strclzoff, S., " A I ) escription of' S(, nw ( if the Recent Advanccs in Pctroulicinical Tvch- iiolol, y Ili lit(., United SLaes", 60th National Mucting AlChl',, Nvw York Nov. 1967: Allen, I. R.. " Ammonia Nlanufa( ture," Chriniced & Proce Engbire' ing ptSe . 1965. Nitto-_- cn, 8Pp(.,,() ct. 1968, " Best PwNstirr for N. H., Plonls.`. Hydiocn? bon Pto, t, mw. Nov. 1968, 1). 1. 53- 161. Major Equipment Costs 2, 100 psia 2,800 psia Synthesis Synthesis Startup heaters, exchangers, cotm-rier, drunis 1, 833, 000 1, 661, 000 Refrigerant systems exclialigcrs, druins, etc. 137, 000 130, 000 Compressors, interstage equipment and as%ociated iteins 1, 363, 000 1, 405, 000 Total 3, 333, wo 3, 196, 000 Catalyst Gost ( Diff.) 85,000 Total 3, 418, 000 3, 196, 000 Net Differmce 222,000 ( favor 2, 800 psia) It should be noted however, that synthesis pressure levels, equipment and fold costs, and brake horsepo% ver figures are a function ) f the specific dirtsign and equipment cnil loyed ill thr analysys. The supplicis. of aniniollia I lants listed below are best able to answer specific ques- tions for prospective purchasers. Economics: ' I' ll(- cronoinics of amnionia productioii ilre highly spcclallz( od and the comparlics listvd 1)( d( m'. ill( - 1 cll known in this The reader is advised to coiisidt wall any of tll(- S(- C01111KIlliVs dircctly for specific ( Ictitils coiicvrniiii_ the procc-, offered. Commercial Installations: The foliowing companies of- fer design, engineering and/ or construction s(, rvic" for amnionia plants- G F Braun & Co., Alliambra, G' alifornia 91802- Cheinical Construction Corp., 320 Park Avenue, Nmv ' ork, New York 10022; Th( i Fhior Corporation, LkL, 2500 Smith AtLintic Blvd.. Los All ! cics, F( i! jvi . ( :;) i p.. 666 \ vcniiv, N(,% N- Nci% )'(, if, 1001": IftimphicNN Lid., 22 Callide H; Ici.. l". 11d" ll S. W 1, F111". 1mill: ' Ille M. W Kod If it... ( : o.. '/ I I A fill ( I A k ci iiivi Y, ii Ii. N4 -% v Y, it I., 10017, an([ Montecatini Edison S. I). A., 20100 Milano, I ta I y. References: 11- 1, droc( itbo? l Pror, %, mg, Vol. 16, No. 1. April ( 1907) 1). 197- 2202, Strclzoff, S., " A I ) escription of' S(, nw ( if the Recent Advanccs in Pctroulicinical Tvch- iiolol, y Ili lit(., United SLaes", 60th National Mucting AlChl',, Nvw York Nov. 1967: Allen, I. R.. " Ammonia Nlanufa( ture," Chriniced & Proce Engbire' ing ptSe . 1965. Nitto-_- cn, 8Pp(.,,() ct. 1968, " Best PwNstirr for N. H., Plonls.`. Hydiocn? bon Pto, t, mw. Nov. 1968, 1). 1. 53- 161. Sulfur Recovery ( Haines Process) I— I, KRELL AND ASSOCIATES, INCORPORATED Application: A process for the doodfuri/; inoti ol- gar. Charge: Sour natural gas. Product: Sulfur of 99. 9 perccrit puriLv. Description of Process: 1Tydro-(. l,' stIlfId(- is I.rI _ 111,oved h( mi III(,, raw gas " Irvaill fly . 1( 1,; otl) ti(-)tl oil synthetic Crys- fallille - olifics. The adsorbent, which also functions as a I'laus catalyst, is flivii regenerated with hot sulfur -burner gases for pro(hiciiiin of olenictital sulfur: S S" Ifur-bill-nor go,;vs, in tuin, are gencrawd by cornbusting a pni-lion of the conclemed sulfur output. Normally, the PrMess is carricd out continuously in a fonr-tower systeril. l6w -,,-,Is is fed doNvIlward thrmigh tile adsolptioll towur; sweet gas leaving this towcr will contain consider- ably less than, A grain of hydrogen sulfide per 100 stand- ar(f ciihir. feet. At the conclusion of the adsorption period ill'- flow of raw gas is aillolliatica fly swilcllrd to a second conlailling sylillIvI.Ic cl,yslal hill, zvolilvs, wilich, li;u, pleviolisly been cooled by scrie'.11 flow ( if III(, " woet !" a., (' I hy I lost -d -(.V(. I(. Vapolizalioll of' a liql1id hyflimalboll. During the adsorption period, the third towei . in the y -stern is being re- Crierated upflow witli' hot sulfur -burner 9,15- S - it es's- ritially afino, phvric. prvssiirv , Suffill- Vapor leaving tilt- tower is condenscd fly a water- roolcd or air- coolvd condenser; a portion of the liquid make is recycled to tit(-. sulfur burner for production of thr, sulfur di*oxidf-. cont, iining wgriwiation ra s. Vito). to I' vg(.1wiation, ill(' follith % depres.."116y.r.d. Dunip" gas front this tower may be fed to the plant stack' for incineration of imconverted hydro(Mn sulfide in 11 the tail gas, or to die air intake of tit(! sulfur burncr for production of additional sulfur dioxide. After regencra- ticin and. prior to cooting, the second tower is purged. and repressurized with a bleedstrearn of raw gas. When low pressurr ga-ses are to be purified, the fourth tower rn; ly be omittod frorn the system. In sitiotions where the raw gas contains very low conc6ritrations of hydrogen sulfide, such that the daily sulfur production does not justify operation of a sulfur burnrr, tile systrm may be regenerated with air: ILS + 3/ 2 02 = I L;0 + So, I' lliq type of- desiffitrization plant dors not tirinufact tire cle- nwrital sulfur and stilfur dioxide Tnust be vented to the atmos- phere. Operating Conditions: When gases containing high concentrat ions of hydiogen sulfide are processed the beat of adsorption tnay rallsv a timilwrattire rise. of 100' F across the adsorption tower. lfrnce, a cooler is provided for lowering the temperature of the sweet gas flowing to the rooling tower. Sulfur -burner gases enter the regeneration tower above the sulhir clew point ( 500 to 550* F) and the product gases le -ave IlhMantially the saint, tPrnpri-atore. Ufloid snifnir is condrnsed front 0 - se gast-s at 28. 1 1,) 3 ( M, 1". 0clu-1111ill , I, [][")] I illict hydrogell slillidn coll4villialiolls, tile adsm pli" Il livriod lilay vary flon, about 110 illitillivs to IV,, lionrs. I Indi. l. fqw I Ili Iw , cool [it ioil.4, vch" iti4. 9 of p; IqI. x fl" willu 1111 - mull ill,- Ill will fall ill file rally'. fif 800 141 11, 000. Imunds iwt hotir per stinare foot. Yields: Sulfur yields of 85 to 88 percent may be obtained in a single -, tage unit, based on hydrogen sulfide frd to the adsorption towvr. Whrre higher recoveries are rr(inited ( ill) to 95 perrPrit) L ( MlVVIllionell ( 1atis calm, lyst ( hain1wr may I.,- placed off'sile in S - i- will, tile tail gas leaving the sulfur ; if cininilator. Commercial installations: Bench -scale tests have been concluded ind a sf-mi- works pilot plant is nrider construction in Alberta, arl' Ida. References: 1" 11- 1 V.— Rl;.',' Nlw.lt, Vol. 40, No. 4, April 1961 lip. 123, ' Ihe 0il and Gas Journal, May 22, 1961, lip. 78. Licensor: United States— Sulfur Recovery, Inc.; Canada— West- ern Sulfur Recovery Ltd.; Forcign— Krell & Associates, Inc. Novt-nihvr 1961, Vol. 40. No. 11 291 Sulfur Recovery (Stretford Process)— THE CLAYTON ANILINE COMPANY, LTD. Application: A votitinuous liquid oxidation, plgjcrs, for the removal of hydrogen sulfide frorn gaseous miixtures and liquid hydrocarbons. Principle: The gaseous mixture is washed with n a( lucous alkaline solution of anthraquinone. diSLIlfonic acids which react with the SH- ion, giving an inter- mediate ' compound which, in the presence of oxygen, liberates sulfur and is itself oxidised back to its original state. The process can be accelerated by the addition of vanadates. End -product: Gaseous mixtures with a hydrogen sulfide content of less than I p. p.m. and sulfur of saleable, quality. Description: Gaseous mixtures containing hydrogen sulfide a -re scrubbed continuously in counter -current flow in packed towers, the gas being fed through the towers in serics flow while the washing inedium passes down the towers in parallel flow. The number and size of towers required depends on the volume of gas to be treated, concentration of hydrogen 3111fide in the gas, and the degree of removal required. The washing solution from the scrubbing towers is passed through a reaction tank where the S11 ion in solution reacts with the anthraquinone disulfonic acid and dissolved oxygen, resulting in the precipitation of sulfur. The washing solution, which is then substanti; illy free of S11 ion, is passed to an oxidiser, preferably in co -current flow with a stream of airI whereby the reduced form of anthraquinone disul, fonic acid is oxidised to its original state and the washing solution is reoxygenated. The whole or a portion of the washing solution is. passed through a filtration system for sulfur removal. The sulfur so obtained can be directly dried to a product of 95 percent purity, or if suitably treated to yield sulfur of 99.9 percent purity. The washing solution is then returned after filtration to the scrubbing towers. The washing solution is generally buffered in the required p1-1 raiigi. of 8. 5 tu 9. 5 with suditim (-arbonate/ bicarbonate aiid when the gas being scrubbed contains carbon. dioxide, some form of decarbonification is necessary to prevent reduction of the pH value below optimum range. This is achieved by by-passing a portion of the washing liquor, after oxidation, through a heating chamber where carbon dioxide is expelled. The addition of vanadates to the anthraquinone disulfonic acid solution has the fallowing advantages: L Increase in speed of reaction, resulting in the use of sirriller aniounts of washing -liquor and therefore L decrease in capital ouil-ay for the plant. 2. The lower pH, 8. 0 to 8. 5, at which the Vanadate/ anthra- quirione disulfonic acid process operates, obviates the necessity for decarbonification thus reducing operational costs. 3. Side reactions, e. g. formation of thiostilfate, are. reduced. The process can be carried out at, or above, atmospheric pres- sure and requires very little supervision. Ftirther advantages over known liquid purification processes are: a) The stabRity of the reactants to conditions other than process requirements. b) The ability to limit. side reactions, e. g. thiosulfate formation, to 2- 3 percent of the sulfur input thus ensuring long life of the initial charge. C) Sulfur can be recovered in a high state of purity. d) Low power costs for operation. Commercial installations: The North Western Gas Board havc surcessfully operated a sniall scale plant, purifying coal gas, at Whitchurch, Shropshire for two years and a large scale plant at Litiacre Gas Works, Liverpool, for 10 months. The South West- ern Gas Board have al. o operated a large scale plant at Bristol for eight months. Orders for further installations, both in Great Britain and on the Continent, have been received and these are now under construction. rhe licencees of the ljrocvss are: W. C. Ilolnies & Co. Ltd., Newton Chambers & Co. Ltd., R. & J. Dempster Ltd., Shnon-. Carves Ltd., Humphreys & Glasgow Ltd., and Woodall-Duckhain Construction Co. Ltd. 292 HYDROCARBON PROCFSSING & PE-ritoi,iojm REFINER Sulfur Recovery ( Direct Oxidation Process)—` AMERICAN PETROLEUM CORP. Application: This process is used to recover sulfur from acid gas streams which are too low in H2S content to support noncatalytic combustion. It is also used to recover sulfur directly from sour natural gas streams, from which it is sometimes uneconomical to produce sulfur by the two-step process of sweetening and Claus conversion, Gas streanis containing about 2- 15 inole %, 11- swilicl, may also contain carbon dioxide, light hydrocarbons, ni- trogen, etc., may be used. Description: The preheated feed stream, with air, is sent to the direct oxidation reactor in which oxygen reacts with H,.,S over a bauxite catalyst. Products of the direct oxidation reaction are sulftir and SO,. Since the reaction is exothermic, the temperature rise is sometimes moderated by using two or more direct oxidation reactors, cooling the gas between reactors and then feeding it to the next direct oxidation reactor along with additional air. The 236 effluent gas from the final direct oxidation reactor i cooled to condense sulfur. The cool effluent niav be dis charged from a stack or may be fed to a Claus- typi reactor to obtain additional reaction of 11- i with So.. t( increase the sulfur yield. Yield. Percent stilftir recovery depends principally on the IL,$ concentratioil in the inlet gas. Usually this process can be used to* obtain 70- 85% sulfur ivc(,- er) fr(,111*. 1 (,. Is which could not be ),. O(.(. ss(.( l ; Irly other method. Commercial Installations: Six installations hit%"(! been completed. Licensees: A list of licensees can be obtained from Pan Arne.rican Petroleum Corp., Tulsa, Okla. References: Gas Conditioning Conference, University (, f Oklahoma, April 4-5, 1967. November 1969 HYDROCARBON Benzene ( Hydrodealkylation) Application: A process for f1w. hydrod(!;ilkylation of toluene or other alkyl arot i ia tics, inixtimes of alkyl aro- matics. and non-aromatios to produce benvxne. and/ or naphthalene. The process (, an he catalytic' or thermal and uses hydrogen or hydrogarit, rich gas. Benzene is normally I) JOICILIced from toluene or toliicne/ x lvne mixtures. Naph- thalene can be produced from alkyl -naphthalenes. ' I' ll(, 1)( 11- tw I) roduct is high pinrity A TM nitration gy,a(l(-. 9l' F­ Y; lIfv fro") 99-95 to 99. 99 weight percent. NaplithtC- It.-ne product has a inelting point higher than 79.6' C. Description: The process involves tit(' hydrodealkylation of alkyl aronwtics to smildc aromatics aild gas lising toluene or niethyl naphthalcne as feedstocks, the. principal reactions are: UIf 1 11- 1. ,_) I cI 1, cI I:: If. CO , ?, The flow sheet shown above is for the production ( if hen - 71 - 11v front 11 is . Iv; Il1y llllpllflvd ; III() llmkvs It() distinction bit -w -cull a ( ilkilytic prmcm and a thelinal plocess of hydrodvalkylation. Fresh and recych, hydiogvn, arwr' beifI!, (-ojjjpye e( I it t( I opuratiligy is mixed %Vith fr(.Sll ; 111( 1 l(. cVcIv alkyll)(mzcne ( toluctiv). This t,oll, I) illed rf.(,( l 11liNt I isIllf. exch-ingved with tit(, rvac( or piodtict and- then govs to a Ined IICMvr for bVil- in- iij) to ivaction torriperatlin TIVY' ROC411MIN P[ 10171- 4 SING No.-cmhp, 1r)AI) re' lution SV', t(' Irl.', 14- irplitc ( 111clich illicction Io colillol Ow exothelini;- hcat of leaction wIlf- 11 lit-c(. ssaly. Thr effluent is exchanged with combined fccd mixtum, fill-- flivir cooled by heat exchange and sent to a scparator druin. In the separator drurn, unreacted hydrogen is taken off and sonic mises vented to the fuel systern of the plant. Svparatcd product is sent, to a stabilizer tower whefe fiirther g.wws arc vvided and tit(- ptodnct Imepated for further purification. Where high purity benzene is the desired product, addition dis-tillation is used and in some cases (' Jay 0eatment is used. Bottoms from the final dis- tillatioll collillin all. If-cych-d to thc rvaction systvill to be combined with fresh fced. Bottarris consist primarily of toluene in the case being described and also diphertyls. In sonic czziscs thery is i tar r(jeetion step in on(, ( if the fillisllllll di' dill: 1111111 ((' 11111111s. Ilvdr­,­ n may Ili- ohtained front off -gas front Tvfornl- IlUr I trills or Ill; I I) v Illarillf;Ict lirvd III a sf, lm ra Ic hydro- n I ) LInt . 8( mic I I it I I I I; l I I I ( I 1()( 11,; 11 I ) I o tit in I ( I( I ..". m. s utilize the hot reactor villuet-a to generate stearn for pro- ress its(, in the unit or for tit(, plant system. Sfillic dirrillal Illoff-ssi' s 11mc dic abililN if) trvat ft' i ( kl,,, ks ( tm( ainitigr III) 111 30 \\ viglit per- celit of noll- al-onlatH S directly -which enables the nalioll fir conkcillioll; 1I . 11( jillaii( s (. Xfl;](, IioIl s1f. p. () tIIvr proccs%cs fcallm, dir llm- of i- rduccd requircim-nis ( if make- up hydrogf-ii ; Ili(] Ili(- its(. of Io\\ piljit. Long continuous openillot) \ I tholit sh-Iltd(mil for catak- t regvIlvi al loll or ( 1('( () ki , I,, ( 1knill" llish fliellmil ploCCSSCIS. BENZENE ( HYDRODEALKYLAHON) . . . 36 35 34 33 32 31 X 30 crSP_ 0 U, 29 0 W 28 C', I'_ zz W 27 I'_ x 26 25 L, J UJGr Co 24 2 Uzi 0, 2CL 23 zW > 22 1ZX zUJ 0M 21 20 19 la 17 161 1 --- I I I I I I I J 11 12 13 14 15 16 17 I' ll 19 20 TOLUENE PRICE, CENTS/ GALLON Both catalytic and thermal processcs make claims to. case of *o1wration and low mahitvn; inc(,,'ct) st. III catalytic hydrodealkylation piocesses, the cata I lyst is Usually in tile forin of cylindrical pellets and is rugged and poison resistant. Occasional regeneration is easily ac- oinplished in SitIL by burijing off the cokc with preheated I' l- t gas containnig controlled ( Itiantities of air. Catalyst fifc in commercial operation has liCen over four years with original catalyst charge, During these long periods (if coin- inercial operation, catalyst activity and selectivity has been maintained with infrequent regenerations. Operation Conditions: Usual o1wrating conditious range froll, LI 10 to 1, 100' F and pressuics froin 500 to 1, 0oo psig. Yields: Commercial operations li; ivc rcach(!(I ))% of theoretical yield of lwnzenc from t() hicnv. Yields of Iiaph_ thalelle froin inethyl naphthalene have reached 95% of flivoretiVal. Where feed streams have not been pure ma- terials these yields have held based oil the precursors in the charge stocks. The benzene pl-0( 111(. t ll As. all acid wash color of I - , bromine index of < 1, freeze point of at least 5. 4' C, and thiophene and sulfur of.< 0. 1 ppin. Economics: When hydrodcalkylating tolucile to produce li,enzene, the economics can be approached in the usual manner of -starting with a raw material cost and adding conversion costs and prolit. Sales values required to ineet various financial objec- tives for a 15 million gallon per -year benzene plant lo- Itcd (' 11 the Gulf Cowil arv: 111VVSII1W11t ( BAWrY JA1114S) $ 1. 5 111illioll trsil(-. hivestment ( V3 of 0. 5 1* owl Capital $ 2. 0 million Direct Operating Costs allon2. 3 c( tnts/ g. Return on Investment @) 20 pervent before tax Sales and Administration Overhead ( q.) I cent/ gallon The effect of toluene value on required benzene sales prices (,:an be seen from the following talAllati011: The above figures assunic hydrogi- ii is valued at about 2V2 times fuel value. Although some. refiners have hydro- gen at fuel value now, the large aniounts of hydrogcn to be rc( Iiiii- ccl in the ftit( ire iii r(- firicries for hydrocrack- ing will IcstIIL it] llydlo! vll vallws higi I" thall flIVI V 111. 10. Ify- dro,, en taken at fuel value wouic0 . 1 decrease required bcik- zinc price by 0. 8 cents per gallon. The sales value ( grand total) in III(- abovt- tabulation repiesent the value requijed to justify a new plant; the out- of- pocket costs represent the salus value required to keep from shutting down an existing plant. Also, notice thf, large eirect toiuci, vaiii, has or, the required s. dvs price. Commercial Installations: The following collipallies offer design, en. guivering and/ or construction svrvi((- s for bydrodealkylation plants: Thermal Hydrodeaikylation Processes: Hydrocarbon k -- arch, 111(,., 11: 5) I; joadway, N( - w Y() rk, N( -.. Iv York 10006; G" If R- Cit" Cl, & Duvvlopilwnt Co., 1). 0. I) rawer 2038, Pitt% burgh, Pa. 15230; Mitsubishi Petrochemical COrlip4ny, Ltd., Mitsubishi Maii, Iiiii1ding, No. 4, 2- choine, lUartilIOLIChi, Chiyoda- Ku, Tokyo, Japan. Catalytic Hydroclealkylatibn Processes: Universal 0 1 Products Co., 30 Al , gonquin Road, Des Plaines, Illinois 60016, flotidry Process & (;( j., I) ivisioll of Ail a" d Cbc', licals, Inc., P. 0. Box 538, Allell- to%% u, Pa. 18105. References: Ilydrocarbon Process I iiq, Fcb. 1967 1). 155; ll d­­; tlhon Processing May 11106 1). 140- 1- 4. 1; cIll( tilli- al I -m,; gincering Progress, April 1962 1?. 47- 52; Chemical F, ngiiieering, July 22, 1963. p. 112- 114, Petrolcum Re finer, 1tine, 1961 1). 228. 15. 1 November 1969 II! 1DRI) CARIMN Vww r. ss, IN(,. All Figures in Cents/ Gallon l'oluene value 14 15 16 17 18 Raw material cost of benzene 17. 5 18. 8 2 0 21. 2 22. 5 Direct operating costs 2. 3 2. 3 2. 3 2. 3 2. 3 Subtotal- C) ut of pocket costs 19. 8 21. 1 22. 3 23. 5 24.8 Depreciation at 10% of B. I.. plant 1. 0 1. 0 1. 0 1. 0 1. 0 Subtotal - Breakeven costs 20. 8 22. 1 23. 3 24. 5 25. 8 Return oil investment at 20% 2. 7 2. 7 2. 7 2. 7 2. 7 Subtotal Without sales % adinin. 23. 5 24. 8 26.0 27. 2 28. 5 Salvs & admin. overhead 1. 0 1. 0 1. 0 1. 0 1. 0 Grand Total 4. 5 25. 8 217. 0 12) 8. 2 29. 5 The above figures assunic hydrogi- ii is valued at about 2V2 times fuel value. Although some. refiners have hydro- gen at fuel value now, the large aniounts of hydrogcn to be rc( Iiiii- ccl in the ftit( ire iii r(- firicries for hydrocrack- ing will IcstIIL it] llydlo! vll vallws higi I" thall flIVI V 111. 10. Ify- dro,, en taken at fuel value wouic0 . 1 decrease required bcik- zinc price by 0. 8 cents per gallon. The sales value ( grand total) in III(- abovt- tabulation repiesent the value requijed to justify a new plant; the out- of- pocket costs represent the salus value required to keep from shutting down an existing plant. Also, notice thf, large eirect toiuci, vaiii, has or, the required s. dvs price. Commercial Installations: The following collipallies offer design, en. guivering and/ or construction svrvi((- s for bydrodealkylation plants: Thermal Hydrodeaikylation Processes: Hydrocarbon k -- arch, 111(,., 11: 5) I; joadway, N( - w Y() rk, N( -.. Iv York 10006; G" If R- Cit" Cl, & Duvvlopilwnt Co., 1). 0. I) rawer 2038, Pitt% burgh, Pa. 15230; Mitsubishi Petrochemical COrlip4ny, Ltd., Mitsubishi Maii, Iiiii1ding, No. 4, 2- choine, lUartilIOLIChi, Chiyoda- Ku, Tokyo, Japan. Catalytic Hydroclealkylatibn Processes: Universal 0 1 Products Co., 30 Al , gonquin Road, Des Plaines, Illinois 60016, flotidry Process & (;( j., I) ivisioll of Ail a" d Cbc', licals, Inc., P. 0. Box 538, Allell- to % u, Pa. 18105. References: Ilydrocarbon Process I iiq, Fcb. 1967 1). 155; ll d­­; tlhon Processing May 11106 1). 140- 1- 4. 1; cIll( tilli- al I - m,; gincering Progress, April 1962 1?. 47- 52; Chemical F, ngiiieering, July 22, 1963. p. 112- 114, Petrolcum Re finer, 1tine, 1961 1). 228. 15. 1 November 1969 II! 1DRI) CARIMN Vww r. ss, IN(,. BENZENE FROM HEXANE AND IODINE Reaction: C61-112 + 312 C61-16 + 6HI 6HI + 3/ 202 3H20 + 31 2 C61-112 + 3/ 202 C 6 H 6 + 3H20 I ODINE SPECiES HEXANE ETHYLENE HI CONVERTERY I HEXANE- SENZENE Feed Materials: Catalyst: None Benzene Phase: Vapor Iodine Reactor type: Fired Heater Coil Ethylene Solvent used: None Temperature, OC: 400- 600 Pressure psi: 15- 150 Reaction time: 0. 1 to 10. 0 seconds Coproducts: Heat Required: Yes Hydrogen Iodide Heat evolved: Water Product yield: Product purity: Materials of Construction: Major Product Uses: As solvent and as raw material for u wide variety of industrial organic chemicals (aniline, phenol, etc.). Reforence: U. S. Patent 2, 880, 249 by J. H. Raley et al ( to Shell Development Co.) ( March 31, 1959) 96 BENZENE FROM HEXANE Reaction: C H3 (C H2) 4C H3 I> - + 4H20-1 117 STAGE FLUE GAS PR OCUC T I CONDENSER Feed Materials: Catalyst: IsT STAGE Hexone Phosc. Vapor Hydrogen Recycle REGENERATION SEPARATOR Solvent used: None Temperature, " C: TO BENZENE Pressure psi: Alrrio-, phcric RECOVERY REACTOR Coproducts: 2* o STAG HIO Heat evolved: FLUE GAS Product yield: 40% Product purity: 2ow STAGE Materials of Construction: Steel REGENERATION BURNING CHAMBER SUPPLEMENTARY H,- RIC FUEL GAS AIR— EXCESS H, IST STAGE 2 . 0 ST, . o AGE 71-R IN _L ET AIR INLET F_ FURNACE HEXANE FEED Feed Materials: Catalyst: Chromic on Alumina Hexone Phosc. Vapor Hydrogen Recycle Reactor type: Fluidized -Bed Solvent used: None Temperature, " C: 500- 600 Pressure psi: Alrrio-, phcric Reaction time: Ll1SV 0. 3 to 0. 7 Coproducts: Heat Required: Yes Heat evolved: Product yield: 40% Product purity: Materials of Construction: Steel Major Product Uscs: As !, ulveril and as raw moterial for a wide variety of industrial organic chemicals ( aniline, phenol, etc.). Reforcrice: U. S. Patent 3, 033, 906 by R. G. Hay et al ( to Gulf Research & Dev. Co.) ( May 8, 1962) 95 BENZENE FROM COAL BY HYDROGENATION Reaction: 3( C3H4) n + 3nH2 nC6H6 -+ 3nCH4 SCkud WATLR PULVERIZED I'WF55UFE EQUALIZIN(T vlci ONE COAL I IM I rrmlli I r WA r PEACTOR, COAL Vf',!, EL AIO rol I. J, 1711/ 1 (, AS A5H PRE 11CA r& k t_j ' ILRU8 L MrDAVOCN AND GA, C5 II tkA JW, VAI ve 0XIN(Y WAII-h. r I d I 11" ArOF 10 1 rUKI* X F 1 yj I WA WA 51 HYOR04f.-N HFAVY J11 FUEL A AIR L r KE UIX JAKr VAI V1 mi-rou WHkFIL Fced Mater:ols: Catalyst. None Coal Phase: Mixed Hydrogen Reactor type- Tubular Solvent used: None Temperature, IC: 475- 525 Pressure psi: 500- 3000 Reaction time: 1- 2 minutes Coproducts: Heat Required: Methane Heat evolved: Product yield.- 30% Mixed Liquid Prcl Product purity: Materials of Construction: Steel Major Product Uses: As solvent and as raw material for a variety of industrial organic chemicals ( ani! ine, phenol, etc.). Refcrence; U. S. Patent 3, 030, 297 by W. C. Schroeder ( to I- ossil Fuels, Inc.) ( April 17, 1962) 91 Reaction: Feed Materials: Toluene Hydrogen Coproducts: Methane BENZENE FROM TOLUENE C ffl H + CH42 _`— U, Catalyst: None ( Optical) Phase: Vapor Reactor type: Multi -Tubular Solvent used: None Temperature, IC: 650- 750 Pressure psi: 500- 600 Reaction time: 100 seconds Heat Required. Heat evolved: Yes Product yield: Over 90% Product purity: Materials of Construction: Ceramic - Lined Steel Reactor Major Product Uses: As solvent and as raw material for a wide variety of industrial organic chemicals ( aniline, phenol, etc.). Reference: U. S. Patent 3, 223, 745 by J. W. Davison ( to Phillips Petroleum Co.) ( Dec. 14, 1965) 98 BENZENE FROM METHYLCYCLOPENTANE Reaction: / C H_) CH2 2 ( 0+ I 3H2 CH2 H— CH3 b Feed Materials: Methylcyclopentane Hydrogen Recycle Coproducts: I lydingen Ifigh 0clune Motoi Fuel Benzene Catalyst-. Platinum on Alumina Phase: Vapor Reactor type: Fixed - Bed Solvent used: None Temperature, " C: 485- 525 Pressure psi: 50- 150 Reaction time: 3- 4 seconds Heat Required: Yes Heat evolved: Product yield: Product purity: Materials of Construction: Aluminized Steel or Refractory - Lined Reaclors Major Product Uses: As solvent and as raw material for a wide variety of industrial organic chemicals ( aniline, phenol, etc.). Reference: U. S. Patent 2, 861, 944 by J. R. Coley ef ol ( to Standard Oil Co., Indiana) ( Nov. 25, 1, 958) 97 Benzene & Xylenes— TOYO RAYON CO., LTD. APPIlcation: A process for tile transalkylation, of alkyl - I on - tics-- typically toluene and/ or Q aromatics par- ticularly trimethylbenzenes-- to produ c benzene and Fypical re"Ictions arc: C I I., u 1" 2 l'oluenc B( m7,(,De Xylenes c 11:, c 11:, WI 1::).. (,- It xylew' s Durrnrs Descriptio n:' I* Iii, fjo. v f, j jI; ItIsIIkyItL* 11" IVM- tot contains a ti fi. I, I l c w, I I I.(, of catalyst. 1his calalyst system perillits IjigIj con- clsioll per pass, ]) as stable activity, is totally rcgencrable and is vXpecird to Im"'( 1 1 tolal if(. of ovuv ' 18 mollill. s. JVitIj 111 oplilllizctl 01) rrlll" Ill 0% CI_; I If sviccliN ity Of III t1woretical k (; Isily ; ItIamcd I tit I V, consurniqioll o than 4 Kg/ 1000 Kg ( 230 s feed. tandard c. u. ft./ 1) 1) 1. of fl.(. sll Ih* I' I, 11(:\ PM) N PI?( 1cT-- 4, I' N( j Novenillpl, 10("') Process features arc: ( 1) The pioduct mole ratio of xylene to benzene is adjustable from 0. 7 to over 10 by varying feedstock composition, ( 2) Operating conditions am much., ndider than in conventional hydrodealkylat ion and utilities require" if, nts are mod - crate, ( 3) Clonsumpbon of hydrogen is very low, ( 4) The Prodlict'; are. e svntialfy ft - cc. of non - aromatics. Commercial lnsta" Oti0n: ' J" Ile filst commercial plant is ul" I" holl for ' h) yo Rayon, jVpan, with design allf) MIJ cofmcity of 70. 0m Inctric feed. tolls of fr( Al tolueile Reference: S, otan S. 1\, Iatsitok¿ t and NI. Sato, japan Quarterly, t, No. 4, 16 ( 1968). Economics: 100, 000 NI] '/ t.. $' 2 and roY4111yfce- s. X/ 11 1. 0 with (,', re(, ycic : p' cr 1. 00() Kg. tolurne ferd. Fved c 11:, C11, 2- 9 C If,),, 01- " I Fohwm- xylclw% c 11:, c 11:, WI 1::).. (,- It xylew' s Durrnrs Descriptio n:' I* Iii, fjo. v f, j jI; ItIsIIkyItL* 11" IVM- tot contains a ti fi. I, I l c w, I I I.(, of catalyst. 1his calalyst system perillits IjigIj con- clsioll per pass, ]) as stable activity, is totally rcgencrable and is vXpecird to Im"'( 1 1 tolal if(. of ovuv ' 18 mollill. s. JVitIj 111 oplilllizctl 01) rrlll" Ill 0% CI_; I If sviccliN ity Of III t1woretical k (; Isily ; ItIamcd I tit I V, consurniqioll o than 4 Kg/ 1000 Kg ( 230 s feed. tandard c. u. ft./ 1) 1) 1. of fl.(. sll Ih* I' I, 11(:\ PM) N PI?( 1cT-- 4, I' N( j Novenillpl, 10("') Process features arc: ( 1) The pioduct mole ratio of xylene to benzene is adjustable from 0. 7 to over 10 by varying feedstock composition, ( 2) Operating conditions am much., ndider than in conventional hydrodealkylat ion and utilities require" if, nts are mod - crate, ( 3) Clonsumpbon of hydrogen is very low, ( 4) The Prodlict'; are. e svntialfy ft - cc. of non - aromatics. Commercial lnsta" Oti0n: ' J" Ile filst commercial plant is ul" I" holl for ' h) yo Rayon, jVpan, with design allf) MIJ cofmcity of 70. 0m Inctric feed. tolls of fr( Al tolueile Reference: S, otan S. 1\, Iatsitok¿ t and NI. Sato, japan Quarterly, t, No. 4, 16 ( 1968). Economics: 100, 000 NI] '/ t . $' 2 and roY4111yfce- s. X/ 11 1. 0 with (,', re(, ycic : p' cr 1. 00() Kg. tolurne ferd. Fved P -litem- Make - 1, H2 1, 000 kz 4 q X, 1'.:*,,"* I I kv 56 1 k " f W -vas 1 0 kg 19 kq Utilifies/ melric tons 4 feed 1` 11 -Mir pn%, r st'-:11" 7: 1 k, 1, A 1 1." 1 .... 2. 6 ' 1 ,,, w-1 0. 7 ` N' kral Labor I ninn/ shift 1hI) 1t Cos( s: Vinyl Chloride— STAUFFER CHEMICAL CO. Application: A process to produce vinyl chloride niono- Iner from ethylene,, chlorine and air. Description: Ethylene. dich](),-l( le ( EI) C) is prodlice(I ill 1.)( Ah addition ( direct) chlotination and oxychlorination units. Ill the Adition chlorination unit ethylene and chlorine irc coml ined to produce 1? 1) G in a liquid phase reactor pet equation - C' 11, 1 04 —+ CjT.j(: 1., ( rmc) In the oxyclilorination unit ethylene, air and bypmduct IWA from the 1`11)( 1 crackilig, 11-11it are reacted to prodtl(-e F,I W 1wr equation : IT, 1 211( 3 1 1/ 20..-- CIi,Cl,, j ILP An efficient rat;ilyst ill the vapor phase oxychlorination l.(.; 1c(( w is Used to promote high yields. High pressilic st( iin generated in the oxy reactor renio\;es reaction licit and is used as heat ineditini in other points in the pro- c( ISS. I -AX, is sep lnitvd from venl gas by col)( 11- 11% atioll ill two lecovery units. '.Hlere lre no illoving par(s in Ille 11611' ONY proMss. except in the air compressor and re- fri-­eration lillits. 0-ticle Fl)(,' from the additioii -wid the qxycliloriwition its is (' 01rihined with FmYcic EDC froin the. cracking imit and purified by ren oval of small quantities or light ind li(-a,, y nuitcrials. BOth li," llt. and heilv), ends may be 1* DIMCARIKN PROCK.S.' 41NO. Nm-(inlwr Oil() trumed for further use as feed to other chlorination. pro- CVSS(, S. Vinyl chloride trionoiner ( VGM) is produced by cratck- ing purificd EI) C in a pyrolysis furnace per equation: After quenching, the furnace products are separated into 110, which is recycled to the oxy unit, and high purity VGM. Unr(!,a.cted' EJX, is recycled through t , he FA) C ptirification systern. I' lic' over-all process is balanced so that only VGM is produced without byproduct 11Cl. I) esign is easily ld, I IIPted to produce I Wl for other itses, to use I (,' ' frolt) other %mirces, or to mAe I",I)(: is a separate pro(hict. I' liv i) r()(-eqs is iiigjoy ror miwe, faii- s;, fe Operation at lligh yields Over : 1 wid(! turn -down rallge. Starttip is easy and rapid. Units conihille. sill, p i ity of OP"' I' Mioll With low (-, xpital, ' operatin . g and maintenance costs. Commercial Installations: Stwiffel, ( jivil I,(.;, I (,(). li(Til-scs for plant% based oil the Balanced Process shown. The three units of the process are available separately or in any (() rribination. There . ire 17 major units in op- eration, construction or design phase. (: ornbined capaci . ty of these plants is 3. 7 billion pounds per year of VGNT and 6. 3 billion pounds per year of EDC by oxy or addi- tion chlorination. Vinyl Chloride (MonsantoCO.) — SCIENTIFIC DESIGN CO., INC. Application: hoccsscs foy tjl(. of %,i1jyj o-1l1o'*id(' 111011011' e" fr0lll ethylene, chlorint-,, air of, oxyg(-n. Ex(crnally pi-olIm .(.(I hydrogell (. 111ol- idc 111. 1 Y also bc f( -(I. Description: ' I' lle ll()W-,Ii(-(-t presented repi-cst-nts a " bal- anced" vinyl chloride plant, wlic-i-vii, all hydrogell ( qIIo,-i( j(- produced as a CO- Iji-oduct of thu cracki * fig of eth)-jellu. didiloride to nioil" viiiyl ( 1, 10ridc is to tll(: ()Xy - chlorination reacto'r. Thc lattcr may also n'.cviv'(, vx- ternally produced hydrog(.11 a,., a f(,V( j. Reactions: I., + ( 1-21 I' GL ( I) il.(!(.t (' 111ol-illatioll) 2C211., + 41 ICI -f 0., --, 2(!- A 1,( A - 1 . 211:..0 oxydilorillatioll) Cl 1( 1 - 1 I- JUI (', iacking) The OxYC'11101-i' 14tioli process is a vapor-phaw reactiol, carric-od out ill a carbon stevi reactor () p, j-, ti, lg at 1110( 1- erate pressures. In direct chlorination, ethylene and 248 11; w-wd to a Ica( lor SYSIvIll liquid ]", I)(: as ivaction nw( 1111111 alld, coolalit. Tllv 1, 11)(; Pl-oduccd ill tll(. Ivactioll systv.111 is 111(' 11 ti'valud I . 01. 1. 1.- nioval of chloriiw aml I Ic']: Tllv urtldv FAX: i, purifled by distillatioll alid fed to 111- ccil- 11" t' d 1, 1411 - c - s % dwic it is. clackwd ( 0 yivid kill) l 111ol- lde and IWL Thi, aldly(hous hydrogcll (. 111ollde Ill lecyc1cd to thc ox)-chlolillatioll wactor. Villyl chlolid'. is to plioduct Illcl-1111", 111v hiidwsl ijidostrial pv( jfiu,- Commercial installations: Morisanto co., ' r, xw, citN TcXas; 1,114- cuodwillical Illdlistlies ( l.' rutal'0111) Ltd., I lalfa, Isravl; Mitsubishi ( Awillical 11 )( 111SIl' ieS, LL(L, Xlizii- i-billia, japan. Undvr joll: 1)(- tl ojt os 1\ 4(. xi(-,ijjos. Pajarilos, Vera f—ruz, 1\ 1(' Xi(.(): Ujilwsu Pe'll" Ictilli (: q)]])" Kaolisititi,g, I" 01-1110sq. Noveniber 1969 . HYDROGA:RBON ! Vinyl chloride monomer ( Transcat)—THE LUMMUS Co. Application: A process to produce vinyl chloride mono- mer from ethane and chlorine. When desirable, feedstocks can be partially or completely replaced by ethylene and hydrogen chloride, or by chlorohydrocarbon wastes and byproducts. The process can also be used to produce chlorinated hydrocarbons, e.g., tri- and perchloroethylene and chloromethanes. Description: Fresh ethane and chlorine ( in the simplest case) are fed to the chlorination/ oxychlorination/ dehydro- chlorination reactor. In the presence of a molten salt containing copper oxychloride they form vinyl chloride. Impure vinyl chloride reactor effluent flows to a process - mg section where reaction water and waste carbon dioxide are removed and the small amount of hydrogen chloride present is recovered and recycled. The main stream goes to -the distillation where viny chloride monomer is purified. Ethane, ethylene, ethyl chloride and dichloroethane are recycled to the main reactor, while other unwanted chlorohydrocarbon byproducts are burned in the byprod- uct pyrolysis reactor to form CO,, HC1, Cl, and 1-1,, 0. During the reaction in the chlor/ oxy/ dehydro reactor, the copper oxychloride is converted to cuprous and cupric chloride. The molten salt flows to the oxidation reactor, where it is oxidized with air to reform copper oxychloride. At the same time, HCI and Cl,, in the combustion effluent from the byproduct pyrolysis reactor combine with the molten salt stream to form CuCl,. The gas from the oxidation reactor goes to the oxida- tion effluent processing section. Part of the gas is recycled as liftgas and the remainder is treated so it can be vented to the atmosphere, free of objectionable pollutants. Typical plant requirements: For 500-million-potind/ year vinyl chloride production— Yields: About 80% based on ethane and 99% based on chlorine. 15.7 MM ISBL investment Per pound of VCM Ethane, 100%, lbs. 0.603 Chlorine, I 00 -yo, lbs. 0.574 Steam, 600 psig/ 7501 F, lbs. 3. 72 Condensate return, 3001 F, lbs. 3. 54 Cooling water, AT = 231 F, gal. 45. 4. Electric power, kwh 0. 149 Fuel, Btu 36 . Catalyst and chemicals, cents 0.02 Yields: About 80% based on ethane and 99% based on chlorine. Vinyl chloride — B. F. GOODRICH CHEMICAL CO. Application: A process to produce vinyl chloride mon- orner and ethylene dichloride ( EDC) from ethylene, chlorine and air. Description: Vinyl chloride monomer is produced by thermal cracking of FDC according to the following equation: A C2HIC12 ( EDC) —), HC1 + C2H, C1 The feed EDC for this operation is supplied from two sources. In the first source, ethylene and chlorine are reacted in essentially stoichiometric proportions to produce EDC by direct addition thusly: Cl" + C41, --> C. II'Cl. If, the second sottrec. ethylene. is rearted with the HCI produced from the therinal cracking operation to pro- duce. EDC by oxyhydrochlorination as follows: CM4+ 2 HC1 + 1/ 20, --> C,HCl, + H.0 The oxyhydrochlorination reaction takes place . in a fluid bed of copper chloride impregnated catalyst. Special reactor design and process conditions allow use of an all -carbon -steel reactor without risk of corrosion. The re- action products are efficiently recovered by condensation in the primary recovery uitit and absorption in the sec - ITYDROCARRnN PVnr.rqvwr_ NT-- - T-, 1 W71 ondary recovery unit. Unreacted HCl is discharged with the water of reaction as a dilute ( less than 1%) hydro- chloric acid stream which is easily neutralized and dis- posed of. The heat of reaction is removed by the genera- tion of steam. In the direct chlorination unit, the heat of reaction is removed with cooling water. The resultant crude EDC is combined with the crude EDC from the 0HCl unit and recycle EDC from the cracking unit. The mixed stream is then fractionated to remove the small quan- tities of low boiling and high boiling contaminants. The purified EDC is cracked in a furnace at elevated temperature and pressure. The hot effluent gases are rap- idly quenched and distilled to remove first HCl and then VC1. Unconverted EDC is returned to the EDC purifica- tion train to remove small quantities of contaminants which would otherwise Imild tip in the system. Commercial Installations: The Badger Co., Inc.., offers engineering (](- sign and consirtiction services for plants using this combined process scheme. B.F. Goodrich Chemi- cal Co. processes are in operation or construction at 26 locations throughout the world. Aggregate capacity of the plants exceeds 9 billion pounds per year of total EDC by oxyhydrochlorination and direct chlorination, and 6. 5 billion pounds per year of vinyl chloride monomer. Reference: U.S. patent 2, 724,006 F. Hoechst; U.S. Pat- ent 3,488,398 B. F. Goodrich; Chemical Week, Aug. 29, 1964, pp. 101- 108; U.S. and foreign patents applied for. Cumene—UNIVERSAL OIL PRODUCTS CO. Application: For the production of alkyl aromatics via the alkylation of olefins*with benzene or other aromatics. Specifically used for the produ(Aion of liigll purity culnerle isolwoj)- Ibvllze,lle) froin propylene and benzene, utilizing solid phosphoric acid catalyst. Products also include sec - and tert-butylberizene. and other alkyl. aroniatics. Descriptiom The olefin- and arnmatic-containing feed S111- 0111 is IWOUght in contact Nvith the catalyst at 350 to 435' F and 400-600 psig. An excess of aromatic is main- tained to suppress dialkylation, oligomerization and other side -reactions. The catalyst is solid phosp1wric acid, a pellctized and calcined mixture of phosphoric acid Nvith kiesel.guhr. ( 1iarnber- type reactors are used. T11V Pr()C(!.%s flow is that for cumene. As illustrated in dw diagram, tile reactants after j) 4L%sijjg till-ollgli title. at- alyst chamber are flashed with the va ors being chargedp M 11) a depropanizer w1wic tile lict propalle, illchldcd wilh the olefin charge, is re'nioved. The colunin bottoms prod- uct containing benzene is returned to tile. reactor. The liquid prcAuct from tile flash drum is sent to tile , C.cycl, colunin where the residtial benzene is removed from the cliniene product and returncd to the reactor. Tile recycle colunin bottoins, containing predominately cuinene Prod - I IYDROCARBON PROCESSING November 1969 uct, is , then sent to the rerun column where heavy aro- matic byproducts are removed as a bottorns product. The overhead product cumcne is, of bigh purity, gcnci-ally having less, than 1000 ppin of t6tal impurities and a bromine index of less than 100. Yields: Yields from a modern. curnene unit are approxi- Inately 96,''c of stoichionictry based on -benzene., and 90r on prOpylene. The propane product is virtually free of attenclent propyleiie and call be easily processed to make 1, 1,(; specs. 1) 1\)( ) PERTIES OF PIZODUCT GUNIENE RVII, psi 0. 2 Gravity, AN 31. 8 Acid Wash 04or 2 ( max) Total 1111I) II1, 111CS, 1000 ( lilax) Comn-iercial Operations: The majority ol the Free World' s supply of cuniene is inade \ ia this process in over 18 units in operation. Several others are in design or consti uction stages. 167 DIMETHYL FORMAMIDE Reaction: ( CH 3 )2 NH + HCOOCH 3 ---------- — HCON( CH 3) 2 + CH 3 OH Feed Materials: Dimethyl Amine Mc-thyl Formate Coproducts: Methanol Catalyst: None Phase: Liquid Reactor type: Shell and Tube Heat Exchanger Solvent used: None Temperature, IC: 110- 120 Pressure psi: 50 Reaction time: Heat Required: Heat evolved: Yes Product yield: Product purity: Materials of Construction: Major Product Uses: Solvent with high solvent power for y; de variety of difficultly soluble materials. Reference: U. S. Patent 3, 072, 725 by R . C. Surman ( to Du Pont) ( Jan . 8, 1963) 262 Resid hydroprocessing Applications: J) csulfurization of high sulfur resids or to improve catalytic cracking unit feed. Charge: Typical feedstocks consist of atmospheric and vacuum resids from Khafji, Gach Saran, Cyrus, jobo, Darius, El Morgan, Kuwait, West Texas and Mid -Conti- nent crudes. Products: Low sulfur fuels' ranging upward from about 0. 3 wtVo sulfur depending upon feedstock and refiners needs. The fuels are stable and low in viscosity and metal contaminant content. Significant conversion of resid to a low sulfur gas oil is an alternate operation. Description: A fixed -bed process for direct desulfuriza- tion or partial conversion of atmospheric or vacuum resids. The catalyst utilized in the process is unique and highly effective. It has high activity so that desulfurization of resid can - be carried out at attractive hydrogen partial pressures and catalyst loadings. The catalyst is hilily tol- erant to metal contaminants and is specifically designed to overcome pressure drop problems. The process includes several design features which insure a low cost operation, including a catalyst replacement technique which has been highly developed for rapid change out of catalyst. The process flow is as follows: Makeup and recycle H. - gas streams are combined with resid and desulfurized in a multibed reactor. A vapor -liquid separation is made at reactor effluent. Vapor flows through heat exchange to a low temperature separator where recycle gas is separated from liquid. The recycle gas is scrubbed for H2S removal. Hydrocarbon liquid from the two separators is fraction- ated into a desulfurized resid and lighter products. The desulfurized resid can be blended to fuel or be further pro- cessed, for example, to recover gas oil. Off gases are scrubbed for ILS removal. The rich solvent is regenerated for further use. Sour water is stripped for H S and NH., removal. Yields: Charge ( Atm. Itesids) Kuwait Sour W. Texas Khafji ach Saran A PI .................. Sulfur. wt. % .......... Investment, ( Basis: desulfurizing 20, 000 to 40, 000 bpsd 15. 1 4. 02 15. 4 3. 65 12. 3 4. 47 14. 6 2. 55 Ni + V. plan .......... Typical requirement, uslit Fier 1, 1, 1 feed 69 41 111 258 Viscosity, co at 122* F. . 400 300 3, 000 650 Pour Point, * F ......... 4. 2 55 84) 70 75 Vol. % 650* F . ....... 49, No. 11, 0 13. 3 U 0 Yields ( average) H2 consuniption, SUB. Boo 660 7QO 780 400 cl -C4, wt. % .......... C6- 360* F. vol. % ...... 46 1. 4 87 1. 9 1. 4 3. 0 702. 2 80 2. 4 360-650* F Vol % 8.7 11. 7 26. 8 10. 9 11. 8650* F,+. 4. 1. k.`. Gas Oil, Vol. % ...... 91. 0 88. 0 72. 1 57. 1 89. 5 88. 0 Residuum, Vol. % .... 15 Product Quality, 650* IF.* Ga. Oil DeS. ReAd Sulfur, wt. %. ........ 1. 0 0. 5 0. 23 0. 7 A111 .................. N! pin .......... 19. 9 16 21. 1 9 2.1. 8 9. 8 J. 1 31 65 20. 5 57 40 20.5 67Viocut;, 1' es at 122* F. . 270 140 72 80* 270 260 Pour Point, * F ......... 25 25 100 155-- 60 65 Ratuscarbon, wt. % .... 1. 0 16 At 250* F, Softenisig Imint. Economics: * * * Investment, ( Basis: desulfurizing 20, 000 to 40, 000 bpsd of Kmvail to 1 . 1 1 " tl/, sillftir in 650, 1, 1- I'", (",- IF C­­ Ij, $ p... bI alm' ily 1,60- 620 Typical requirement, uslit Fier 1, 1, 1 feed Electricity, kwh 4. 4 Steam, 11) 6 Fuel, ? 61 Btu 16 W ater, cooling, gal. 160 Iva ter, process gal. 4. 2 CA 5 etal t $ 0. 08 AV rahe hydrog n consumption scf 560 Include -s amme recovery and ri-genviati' m Reference: Hydrocarbon Processing, Vol. , . , Nov. 1970, pp. 187- 191. Licensor: Standard Oil Co. ( Indiana). I 5f; Q-. ­__ L__ If% -7A TV- Hydrofining Application: Hydrofining improves the quality of a wide variety of petroleum feedstocks and products by catalytic treatment with hydrogen. This process is extremely versa- tile and with the proper choice of catalyst and conditions hm ' been successfully used to remove impurities such as sulfur and nitrogen as well as to improve the odor, color, stabilit ' y, and burning characteristics of virgin and cracked materials ranging from light ends to heavy distillate gas oil and lube stocks. Hydrofining will reduce the sulfur content of naphthas to the low ppm levels required in bimetallic reforming catalysts or the active SNG catalysts. It may also be used to upgrade highly unsaturated materials such as cat cracker or coker naphthas. These feeds can be partially treated to form stable desulfurized fuels or completely hydrofined to remove essentially all sulfur, nitrogen and Ole " finic impurities. Tlic lattex operation will yield feed- stock suitable for catalytic reforming or for petrochemical grade naphtha. Hydrofining is tised to sweeten and improve the color, stability andimming qualities ( if kerosine arid jet NvIs. High quality diesel fuels can be made from sour crudes. When a ied to cracked heating oils, Hydrofining up- grades c color and stability to make these stocks com- patible with virgin heating oils. Light coker gas oils can similarly be treated to produce a desulfurized fuel oil coin - parable in quality to a straight run gasoline. Hydrofining also improves the color, odor, stability, demulsibility and other properties of lubricating oils and waxes. High activity catalysts are available which can be ap- plied in a number of situations to reduce overall catalyst requirements and improve cycle lengths. These catalysts can also be applied for debottlenecking of existing hydro - treaters to permit increased desulfurization capabilities. Description: The oil feed is preheated to a temperature usually between 400 and 7000 F. It then passes to a fixed bed reactor vessel together with 'hydrogen-4ich gas. In the reactor, the feed is treated in die presence of the hydrogen and a regenerable metal oxide catalyst at pressures usually between 200 and 500 psi. After leaving the reactor, the product stream is cooled before entering a separator where hydrogen -rich gas is separated for use in -other operations. After separation, the product is stripped for removal of any residual hydrogen sulfide. Economics: Investment ( Basis: direct material and labor, 2nd quarter 1973, U.S. Gulf Coast), per bpsd capacity ........................... 50-200* Typical requirement, unit per bbl. feed Electricity, kwh 0. 3- 0.5 Steam ( 125 psig), 5- 12 Fuel, M Btu ................................ 0- 25 Wa( vr, cooling ( 25" rise), gal ................... 0- 50 Maintenance, per yr. as % of investment ........... 3 As an approximation, the mid 1974 total erected cost can be obtained by multiplying the direct material and labor cost by a factor of 1. 5. Wide rangetof investments due to variety of applications; large virgin feed units ten o be at lower cost range while small cracked stock fi -ed unit.% are covered by tipper cost rangc. Commercial Installations: Approximately 200 units are in operation or being designed with a total capacity of about 3 million bpsd. Reference: Petroleum Refiner, Val. 36, No. 9, Sept. 1957, pp. 233- 235. Licensor: Exxon Research and Engineering Co. Hydrof ining Application: To remove the sulfur from a wide range of distillate feedstocks by catalytic hydrogenation. The desulfurized products are also improved in odor, color and stability and in addition meet the feedstock require- ments of other processes. Charge: Distillates ranging from light gasolines to vacuum gas oils of up to 1020' F end point, including catalytic cracker cycle oil or coker gas oil components. Description: Feedstock is mixed with hydrogen rich gas, heated to treatment temperature and passed through a reactor containing a fixed bed of desulfurization catalyst. The hot reactor effluent exchanges heat with the incom- ing feed mixture, is cooled and separated into gaseous and liquid streams at high pressure. The separated gas stream is then recycled to the process to minimize make-up gas hydrogen requirements. The liquid product stream is passed to a low pressure separator which allows the removal of dissolved gases before the next stage, a stripper column, where the prod- uct is freed from -hydrogen sulfide and any light ends. Part of the reactor effluent stream may be used to supply heat to the product stripper reboiler or alternatively steam can be used if available. 148 The catalyst used in the process is robust and easily regenerable. Economics: Type of feedstock Naphtha Kerosine Gas oil Vacuum gas oil Plant capacity, bpsd 6, 000 20, 000 20, 000 20, 000 Investment, $ per bpsd* 145 140 160 170 Utilities, per bbl feed Electricity, kwh 0. 54 1. 2 2. 0 2. 4 Steam, reboiling 450 psig), lb. 50 7 Steam, atomizing 175 psig), lb. Steam, stripping 25 psig), lb. a - Cooling wate 30' F rise), USG 144 168 7*** 7*** Fuel, M Btu 42 65 71 74 Catalyst replacement cost, cents** 0. 2 0. 3 0. 3 0. 7 Estimated erected cost— materials and direct labor—mid 1973, U. K. location, excluding initial catalyst charge. Based on minimum life of 3 years. Maximum air cooling. Commercial installations: 48 units are in operation, or under construction, with a total capacity of 720,000 bpsd. Reference: Petroleum Engineer, Vol. 28, No: 3, March 1956, pp. C37 -C44. Licensor: BP Trading Ltd. September 1974 HYDROCARBON PROCESSING eHydrode.s.mlfurization, luranpoir phn_1% I V - Application: To improve the quality of light petroleum to a work-up section for the removal -of all the H,S and fractions by the removal of sulfur and nitrogen com- dissolved gases. pounds Charge: A naphtha fraction ( tip to 400' F) or a naphtha - plus -kerosine fraction ( up to 4800 F), either stabilized or non -stabilized, which may include a certain proportion of cracked material. Products: A sweet product, yielding a stabilized naphtha with a sulfur content below 5 ppm, suitable for use as catalytic reforiner feedstock, and, if applicable, a kerosine fraction with a sulfur content below 100 ppm wt. Description: The fr( dstock is c, iinhined with lly( lrog(!' j_ rich make- up gas and passed through feed/ effluent ex- changers and a furnace, where it is heated to a maximum temperature of 715' F. The combined reactor charge passes through the reactor essentially in the vapor phase, exchanges beat with reactor charge, is couled down to 100- 120' F and flashed in a high-pressure separator. The liquid product leaving the high-pressure separator is sent The gas from the high- pressure separator may be re- cycled or applied as hydrogen -rich make- up gas for other desulfurization units. Operating conditions: Temperature, 0 F 600- 715 Total pressure, psig 300- 600 Space velocity, vol/ hr/ vol 5- 8 Gas rate, scf/ bb] 400- 800 F( W will, hiidl nifrow-li conleril.." solucwhat more severe conditions may have to be applied. Commercial installations: The total number of units operating at the end of 1973 is 62 with a total capacity of 1, 250, 000 bl)sd. % Reference: Petroleum Refiner, Vol. 34, No. 6, June 1955, pp. 118- 122. Contributor: Shell Internationale Research Maatschappij N.V. or Shell Development Co. Hydrodesulfurization, trickle flow Application: Improves the quality of petroleum fractions ranging from kerosine to heavy gas oil ( straight -run and cracked material) as well as vacuum flashed distillate by the removal of sulfur and by the hydrogenation of unsatu- rated components. Description: Feedstock, combined with hydrogen -rich make- up and recycle gas, is passed through feed/ effluent exchangers and a furnace, where the temperature is raised to operating temperature. The , combined reactor charge then passes through the reactor in trickle flow, ex- changes heat with the reactor charge, is further cooled and then is flashed in a high-pressure separator at a tem- perature of 100- 120' F or for extra heavy gas oils at 300- 350' F. The liquid product is routed to a work-up section where 11 S and dissolved gases are removed. The gas leav- ing the high-pressure separator is used as a recycle gas. If a " hot" high- pressure separator is used, the gas is further cooled to 100- 120' F and washed with a solvent. Operating conditions: Temperature, ' F 630- 750 Pressure, psig 600- 1200 Space velocity, vol/ hr/ vol 1- 3. 5 Gas rate, scf /bbl. 750- 1500 Yields: Typical results from hydrodesulfurization of ther- mal cracker gas oil ( 380- 650' F fraction) are as follows: Fuel, M Btu Feedstock Product Specific gravity 20*/ 4* C 0.8469 0.8326 Sulfur content, % wt. 1. 33 0. 16 Bromine number, g/ 100 g 23 I Maleic anhydride value, mg/ g 5. 2 Pour point, * C 13 16 Cloud point, *C 9 9 Desulfurization, % 88. 0 Chemical H. consumption, scf/ bbl 315 Economics: Typical requirement, unit per bbl. middle distillate Electricity, kwh 1. 2 Steam ( 200 psig), lb 9. 6 Fuel, M Btu 52. 8 Water, cooling ( 30' F rise), gal 260 Catalyst consumption, lb. 0. 01 Commercial installations: 82 units operating at vial of 1973 witli a total capacity of 1, 050, 000 bps( l. Reference: Petroleum Refiner, Vol. 34, No. 9, September 1955, pp. 152- lb4. Contributor: Shell Internationale Research Maatschappij N.V. or Shell Development Co. 146 September 1974 HYDROCARBON PROCF.ISINil. Gulf ining Application: Hydrodesulfurization of heavy distillate gas oils. Charge: Distillate gas oils including vacuum distillate. Products: Low sulfur fuel oil or catalytic cracking unit charge stock. Description: The gas oil including heavy vacuum gas oil is mixed with fresh and recirculating hydrogen, and heated before being passed into the Gulfining reactor. Sulfur compounds are converted to hydrogen sulfide. Reactor effluent is cooled, and sent to a flash drum from which the liquid oil is withdrawn from the bottom. Iligh pressure flash drum liquid goes to the low presstire flash drum where hydrogen sulfide and additional fuel gas is flashed off. Liquid from the low pressure separator is fed to -the stripper tower where the desulfurized gas oil product is stabilized. Yields: For Gulfining processing Middle East vacuum gas oil at 907o desulfurizdtion: Typical yield Product ( heavier than gasoline), vol. Olo change ...... 99. 3 Chemical hydrogen consumption, scf/ bbl. change ..... 350 Inspections Charge Product Gravity, *API 24.0 29.0 ASTM distillation, * F IBP 410 10% 622 50010 870 90% 1020 EP 1090 Sulfur, wt. % 2. 20 0. 2 Carbon residue, wt. Olo 0. 7 0. 2 Nickel + vanadium, pprn 2 Viscosity, cs at 122* F 20 16 Economics: Investment: Varies with feedstock, but on the basis of a 35, 000, bpsd plant with a feed and desulfurization level similar to that shown above, $ per bpsd .................................... 275 Ty' ical iutility requirements, units per bbl.. feed tflectrcity kwh .. . 1. 7 P, Irl, M jjju ..... 5.5 I ............ 6 Water, cooling, gal . ............................................ 160 Note: Above include 112S scriabbing from gas; exclude fresh 11.2 compression. Commercial installations: Six plants are currently in operation with feed capacities ranging between 7, 000 to 18, 000 bpsd. Additional facilities are under study. Reference: Hydrocarbon Processing, Vol. 52, No. 9, September 1973, pp. 131- 133. Licensor: Gulf Research and Development Co. and Houdry Div. of Air Products and Chemicals, Inc. HYDROCARBON PROCESSING September 1974 141 GO -fining and RESIDfining Application: GO -fining usuaUy serves as an initial desul- furization step in the production of low sulfur fuel oils to reduce the sulfur content of the total fuel oil pool by about 50%. High boiling distillate products such as virgin vacuum gas oils, visbroken gas oils, thermal and cat cycle oils, along with coker gas oils can be more -than 90% desulfurized via GO -fining. From 60 to 90% reductions in the sulfur contentof the fuel oil pool can be achieved via RESIDfining. RESIDfining offers the refiner the opportunity to achieve up to 90% desulfurization on re- siduum feedstocks. Description: GO -fining and RESIDfining have essentially the same basic flow plan. RESIDfining, however, incorpo- rates a reactor plugging protection system to compensate for the fouling and coking tendency of the more difficult feeds. In both processes, the feed and hydrogen rich treat gas are mixed and preheated prior to entering the fixed bed reactor. The treat gas comes from recycle of un- reacted gas and the hydrogen makeup stream. The reactor effluent is cooled and the desulfurized. prod- uct is separated from the unreacted hydrogen and light ends. This hydrogen rich stream from the separator is scrubbed to remove H.S and NH3, then combined with makeup hydrogen to provide the required treat gas for the process. The bottom stream from the separator is subse- quently stripped or fractionated to remove gases and a small quantity of naphtha from the desulfurized product. The fixed bed reactor utilizes a proprietary low cost catalyst with high activity and activity maintenance. The catalyst enablesboth processes to operate at reduced pres- sures. The moderate pressure requirements results in sig- nificant economic advantages in both investment ( reduced pressure ratings for major equipment) and operating costs lower hydrogen consumptions). Yields: Feed properties RESIDfmingSource Arabo- fiTtfabsca Gach Arab Heavy Tar Sands Saran HeavyCut Range, * F 700d 1 50 380- 650+ 650+ Gravity * API 1 1 14. 5 15. 0 12. 3Sulfur, Wt.% 2. 96 3. 97 2. 50 4. 19 V + Ni, w - - 220 120 ConradsonTnrbon, wt.% - - 9.5 13. 3 Average Yields U7,bt Ends, wt.% on FF 0. 38 0. 75 0. 83 1. 46 Co 400* F, LV o on FF 0.9 8. 0 3. 4 6. 0 400* F+, X70 on IFF 100. 6 . 95. 0 98. 1 96. 4 Gravity * API 27. 5 22. 8 19. 6 20. 7 Sulfur, Wt.% 0. 10 0. 11 0. 3 0. 3 Chemical H2 Cons., scf/ bbl 410 975 625 915 Economks: Investment ( Battery limit onsite, direct materials and labor, second quarter 1973, U.S. Gulf GO -fining RESIDfiningCoast), $ per bpsd capacity" ................... 80- 150 300-750 T Acal requirements, units per blil feed. Vuel fired, M Btu .............................. 10- 50 50- 100 Power, kwh .......... 0. 7- 1. 0 2- 4 Water, cooling, gal ... :.::*.*.*..,.'.­­­**­ 30-50 150- 300 As Ian approximation, the mid 1974 total erected cost can be obtained by mu tip ying direct materials and labor cost by a factor of 1. 5. Commercial installations: Fourteen GO -finer units with feed capacities ranging between 18,000 and 95, 000 bpsd are currently in operation. There are about 615, 000 bpsd of GO -fining capacity onstrearn with an additional 470,000 bpsd expected onstream by 1977. Six RESID- fining units totaling 330 M bpsd of capacity are under construction or in the design stages. Reference: Rionda et al, " Recent advances in residua processing," National Petroleum Refiners Association, Miami, Florida, April 2, 1974. Licensors: Exxon Research and Engineering Co. and Union Oil Co. of California. Styrene—COSDEN PETROLEUM CORPORATION Application: Proccss for inanufactming styrene no) no- iner by recovery of eLhylbenzene in licLi-oleum sto( ks. Charge: Mixed xylenes from aroinatic purification unit. Product: Plastic or rubber -grade Styrene inonoiner. Color 10 Max. ( APHA) Assay 99. 6910 Min. Polymer Nil Sulfur 0.003% Max. Aldehydes 0.02% Max. Pei -oxides 0. 0 1 % Max. Description: The feed stock to the super fractionating column is mixed xylene isomers containing essentially no non -aromatic hydrocarbons boiling in the xylene range. In this colijinn, ethylbenzene wbich boils at 3. 9' F lower than its nearesL xylene isomer, . (paraxylene), is separated in stifficient. purity to make at least 99.6 percent styrene monomer. To affect this separation, three 200 -foot col- umns are used in series and operated at high reflux r4tes. The ethylbenzene product from the recovery section has to be maintained essentially free from any other hydro- carbons boiling in the range of ethylberizene and styrene monomer as purity produced here will govern the. maxi- mum purity of finished styrene monomer. Fresh ethylberizene is combined with recycle and charged to the dehydrogenation reactor after mixing with super heated steam. The dehydrog nation takes place at low pressure and a high mole ratio of steam to ethyl - benzene is maintained. The reactor effluent is condensed and collected in a separator where the steam condensate is withdrawn, Iteactor piessure and teiriperatt * In" if'(! major control points for maintaining conversion iii the optimum range of 35 to 40 percent per pass. Ethylben- zene conversion to styrene monomer will approximate 90 weiglit percent. In the styrene monomer finishing section, the sinall amount of benzene and toluene produced by cracking in the reactor is first removed by fractionation in a sinall vacuum colunin. In the next column, ethyllienzene, for recycle back to the reactor, is separated from the styrene. This separation is accomplished in one Column operating at an extremely low pressure. This effects substantial savings in investment and operating cost over the con- ventional two -column systein.. Inhibitors areadded and high temperatures avoided in order to minimize polymer formation. Anoth6r small column is required to separate the finished styrene monomer froin sinall ainounts of tar and polyirwr formed during the operation. The tars and polymers are collected in a batch pot and periodically the remaining monomer in this material. is recovered. Very high recovery of ethylberizvne is realized by this process. It avoids the corrosion and purification probleiris associated with aluminum chloride alkylation of benzene and ethylene. Furthermore, no impurities of the type normally found in synthetic ethylberizene are present which produce unstable monomers that complicate sty- rene monomer recovery and finishing operations. The entire unit is essentially free of corrosion and fouling problems and can be operated for long periods without0 downtime. Reference: Industrial.& Engineering Chemistry, Vol. 52, July 1960 p 550. 290 HYDROCARBON PROCEISSING & PEIKOLEIJAI lU',I-'1NER Styrene ( Union Carbide- Cosden- Badger)—, THE BADGER CO., INC. Application: Ill o( ess fol. jj atjtjfj(-Ltll-illg slyl,(.1le b) tIW ; 4'..%LL6011 01' ; llj( I Illy1clic. to ctIlYWx-11- zene axid SUbst-q-tient. dehydrogenjitioll of tile to StN, relle. Desceiption: lienzene is (- oljtj(j(-(l glis - III Life pruselict,- of ZLIL1111i * M1111 chloride and rucycle polyethyl- belizene. Tbe I' Vactor effluvilt. is decantcd ill a sctiler, all( I div licavy cutalyst colliplux layer is J: v(- Y(* d to dw 1- vactor. C"rilde edlylbelizutle froill tile scitler is treatcWto rv- 4 cliloridvs and cliargcd to tilt., distijl ttiolj SYSLell" I-C(. YCI(' I)(' 1IVClW is IhSt. SCI) al-att-d I' l-oill ( Ile crude ethyibenzene, and the, prodil("t etilyll)("Izene is S(- I)- arated floill dw Iwavy collipol , it -fits, ' Flic. ht-avy (. oljll)o- nerits are finally distilled to sel')arate polyethylbenzene for recycle to the -reactor. I-Ithylbelizi- ile purity is C011siStent. With tile 1IM111,11'aCtlill.- of. polynier grade styrene. In the sty I' M(! S( Ttioll, fresil ethylbenzene is combined with rccvcle uthylbeim-nc and cliargred to t1w dellydro- genation reaction section ill admixtuie with superhcatt d swaill. Reaction pressilre wid willperattire are major (,oil- trol variables for maintaillitig a hi-E," ll conversion per pass. 23 1 I' lir st) 1- cla, 111ollollicl. lcuovcq sc( IM11 ( ( llsists of 1111-ev 011111111s. ' I' llv SIIJAI ' 1111mint of jild I() I( 1vll(- I' l.,- Iliced by cracking if, t1w o -enation jr utioil 1, rvilloved ill the Ilrs collillill and to ( Ili- rtll lbulj- Zc1lv systvill. I"Allyllwilzu1ir for rccych- is sep' llated Imill tlic sty1clic 1110 liollit' l ill I, le sucoiid colunin, ' I' ll(. s(,,)- aration is accol I Ip] sill .(I it, ; L sill' de Iligh efliciency0 whicli les( lits In S" Avill"' s In invvAlliclit llld opuriltilig, c oSIN is collipared with Ihv coliv(.11tic),11A Ifillibitols are addcd to filiflijilize polyiner folillmi" ll ' I' llc styleliv 11101101111, 11. is sep: 11awd ill Ilic Illif:d vollillill 1* 1.() Ill sinall amomils of till, 01)(. 1; ltioll. Commercial Installations: -Ethyll)(inz, jil, I t(, t: il of' I I licclisces havc I:) ullits ill service, ulldvr colistrilt.- tion or ill tile. engirlet. j.' 1119 PlIa.s('; CaIM64 ex-- eds . 5. 2 hilli(?" I) OL" Ids per year. Styrene Units: A toud of I I ficensces have 16 units ill service, (, ojjstrtj(:tIoI1- o1, ill dw eliginecrill- phase; (-; Ipilcity vXl- l- f- ds I billioll 1- unds per year. Novviiibcr 19011 11VIlRoCARMIN V10)( 1-SSING Styrene (MonsantoCo.) — THE LUMMUS CO. Application: A process for the production of styrene by Akyhition of vthylcne and benzene and the dehydrogena- din of ctilylix-lizene. Description: The joiniary rcactions of the process are: BunZ1, 11c FIIIA Ictw ) Ethy1hvnzene. Catalyst &. 4c; lt GJ1, GJ11 + it., 1" thylbrim-ne Styrene Hydrogen I"IthylbcIi/ ene JAI) is produced by alkylating benzcne with ethylene ill the presence of all anhydrous organic IIIIIIJI111111 ( Id.orlde cntalyst cornplex ( CC). The renclor 0111(' 111 is coolvd . 111d tll(, Il pIII.-v scp' ll-ate( l, villi div ; ill- Litod liqtior ( AL) beitig fed forwnrd to washing, and Eli ( listillaticiii.. vdiile the CC is recycled to 11w Akylation reactors. EB ( frcsh hoin Eli distillation an( I recycle froin styrene distilLition) i vaporized, mixc( l with priniary Stearn and is sill- l- Ilvaled it, the' convection section of the stvarn sit- perlieMcr. Thr F113- priniary stenin inixture is combined with supcilivatvd seconclary steani and is ( lehydroaCriated ill tile c; ltalytic rcactor. ' I' lic hot reactor effluent is cooled in a waste heat boiler and condensed. The non -condensi- ble gasesare compressed to the fuel gas system. The liqui(I is separated into an aqueous con( lensate. layer and tile or- ganic dehYdrogenated miXture ( DM). Pr) duct styrene inonorner ( SM) is separate(I front DM by fractionation. The DM ( styrene, unreacte( l Ell, ben- zene, tf) luene and highcr hoilers) Is first clistilled in the 1- 11i/ SN4 splittrr ( oPke Eli an( I lighter coinponents over - I lead. Sulfur is cliss*olv(,.d ill ] lot Ell and injecte(I into tile top of the EB/ SM splitter as a polymerization inhibitor. I' ll(, EB/ SM splittcr overhead is separated into benzene byproduct, toluene and Ell. The benzene is fed to the ben- vne ( 11- ying colunin, while the FAI hottoins are. fed to the. dellydro" Clult loll re; Ictor tom' divi. witli flesh FIB. A niajor a( h.-anta- c of the process is its low consult fiot) of sff.; Iftl which ; If- lli(.Vf. cl till-oligh a IIIIIIJI) f. l. or engineering improvements in the reaction and ( listillation syst(*tl)s. Commercial Installations: Monsanto' s Texas City, Texas, facility has an installe( I capacity of 800 iiiillion potinds a year of styrene nionoiner. Other comnierci;ll in- stallations are -at: Forth Cli!niiicals Mratqmnouth ati( l Baglan Bayj U. K.) with a new plant under construction, Australian Petrochemicals, and Montecatini- Edison. - IYDROGARIVIN PROCF.S.NING November 1969 1? 11 ", Ethylene —STONE & WE13STER ENGINEERING CORPORATION Application: ...... dI l ­ 1) I-- from V Il iolls distillmr or light hydrocarbon fef- d Sto, 1,,;. Charge: I) csigns ary avail; iblc for chirging hydrocm-borl 1 " to( ks io gils oil, ilichiding rv- Products: Thv primavy prodmis im hi ­h purity cthyl tit, Ind Prim, I Iml 1) ; 11,(! rcsidue gm,, s, th- St; I . T16: 111y llydrogctl : 111d InctImlic, mid a ("' S phis Stif,mil I' MY bv 1- mri-f- d butyletivs and bwadiene, 11- 01mitics. Description: ' Fliv tit(. 1-- essing sclicnie IIlP1"%` d With 1- 01" Cry 9;' s fvvd- Thv fecd tras - is cont- I) ITIrd it 11 1 hr i,,;is from fit(, ri;wkin,, fill rim-cs, coillpicswd 5fill ( bivd. Ali ; u( mritic if( I, cmidells;Ift. k " cpalmed ill tIlc collipl-cssion sysivill . 111d 44, 1111willi- d %%fill Ilw firproll;I111" ri Tllv dilvd Illix- III'(- III I ­ cd -,-;is ; md ci; wkvd g. is is coolvd ; jjKl izcd , it 47.5 V i," litilizi"!,' ('141cliv refrigwrant. at - - 150-1 F. llid Illedmilf. mc t. 11wn ( wvOlvad. ' 111v bottoms, CSSI- lili;llly Irvv of im-111: 11w, JmSN to A ' wilcif. Ind ( Acii mcrhewl. Propylviic mid licavivi. mv disull.11. 1" t- d ; 1, : 1 hollollis eliv: 1111 wilich is, if? a ( 11(' l SIm%%II1. Tllc villylvilv is 11, CtIl\ L - l - ed anv splittrr. openiting. at 225 psig. 11 Fol' I- IN- 010ene ­ rmlv ohylene it is neccssim Nmcm1wr 1961, Vol. 10. No. 11 to providv additimml rectifying tr;lys in the- splitter, and to hichi( It. f;,(.illti(,s. ,,,, is is , c_ complislif-d by cmllyllc 11)( 11- o" climiml m.cl highly S( - I('( -- I ti\,'(' CWl llf'Sls. vill-.wr in tlw cr,ickr(l g,,,; sl()" M' M the ( 11- rdimim-r ()vctIir;id. I ' it f W So- Im T atv( I i n I I I V f I I ( I i I, I M t i () it scc I it) l i. and if 11 ' s ; 1 " n, wcycicd ( r) tuhulm- crick - ill" fill" IM- S ­ hvry thicy arc cl -w -k -rd fit witli ( 11111- li' m ste"Ifil. If tll(. fccd stock is cilmric, prolmne (, I. P) 11'/( d ( C(' d is 1- 1- 1, 11w' d '( filectly to ( If(- ctacking hirmice. Miplillia ; md otll(.,- fi, cd ztocks , ire in sifilil, 11- f - Ilion, but t1w snbstiintiA ; Ifflount off ; 1101"'; ltic ( listilkiff- MA ffWl () if if, tit(- coil efflucrit rv- quires additional facilflics for. scimniting and stahilivifl,, dwsr sircmil' t. Rchl" rm.lioll Is by . 111 wJ( hic -; is ; tit, kvpt JW sIlPI) I­ 1­ Ilt; Il coolim, willi ; in v\ p-Ill%ion Yields: Yiclds of' (. iI,\ IcIlv from cmckinl, olmne ano prolmilf, ; If.(. appromill; l1cly 130 and 18 I" Illylen'. 61. I Ws fr(mil twphilla fmin 20 to 28 \ v(- i,, Iit peiccia d" l- fidill"r n thc Iccd stock char - I Orrfst It' s. COVIIIIII— cial Installations: I him p1: 111i " %% ilh ; I po)( 111(. 601i () I HJ 111111imi I pwillds 1wr ( Lly. Reference: PE,TR0LF.I1rj RMNER, Pily ' 511, 1) 135. 2-13 Acetylene and Ethylene— FARBWERKE HOECHST AG Application: The Hocchst. high temperature pyrolysis process for manufacturing acetylene and ethylene fr rn hydrocarbons. Charge' Feed stocks ranging from methane through mid- fle ( listillates. Products: Acetylene of 99.8 percent purity and ethylene of 99. 9 percent purity. Description: Farbwerke HoCchsL AG, Frankftirt/ Main- Hocclist, Germany, has developed aprocess which pro- dtices a high yield of acetylene and ethylene from hydro- carbon. i'ved stocks. The larav ailiount o - attiref hil.h- tcnipvi IW; lt rc( Illired for Ow cracking of hydrot-mimils into ,(.(.Iy- Iene alld villylene is obtaim: I by c( lillhil" I loll of g; lscolls or liquid fuels with oxygen in a newly developed burner. CollIbUstioll with oxygen minimims tile -, as volume ancl lierillits, the 11sv of" tail jgas as iWil-fler fill. l. The hill-fler heat 1114 fit" M111% Its high capacity aild all- nicial constructioll 11iiiiiiiii,, s i,, nd " C.". Ilt f t, eo I blinter. The absellcr of verainic parts perinits rapid start - P ""' I " .. t-' 1" wll- '" IC is water vooled ; lit(] has a very low heat loss. The feed st(x-k is injected into the hot combustion gas. The mixture enters a re."ction 7one the heat neces- sary to forn, ;,( etylelle arld ( Ilylen, is t I, by direct ontact, with a reaction time of about 0.001 second. An motimnical and reliable quench method prevents coke fol" liation. ' I' ll(! reactor-vflitient gas is cooled in stearti- gelivratin,., e( Iiiipment. on-densed hydrocarbons are separated and the raw gas is compressed to moderate pressure. Its carbon dioxide and hydrogen sulfide conte.nts are removed by contact November 1961, Vol. 40, No. 11 with a newly developed absorption agent which is chem- ically stable, easily regenerated with low-temperature heat, and is noncorrosive. The gas is then cooled and dried, and the C, and heavier hydrocarbons a:re separated. Higher acetylenes, which tend to polymerize, are removed completely and recycled to the reactor. In tile next step, a solvent is used to a.bsorb the acety- lene, which is recovered as ' a product of 99. 8 pvr(*(,llt purity, and higher. A solvent of higil selectivily ind al, sorpt,ve power is utilized. TIli% solverit is inexpensive, readily available, and non -corrosive. Regvneration is simph- and econoinic.,i], and solvent losse-, ary lo,. lligh-purily cilly1clic is sepanitc( I froill 1he 1- villaillilig 9; ls by - 1 lo- Armperature I) ro('(! ss. ' I' liv lesidiial gas is ridi in hydrogen and may be used as burner fuel. However, if burner fuel is available froin' other sourcVs, tile. tail gas may he uscd for iliilll()lll;t or syl)( 11, sis. Yields: Yields ) f 5)o 1,) wt. of l,(. tyI(,lle ) Ills 11"' obt-lilled froll, li!y lit virgin naphlba. A - 10 wt. perccrit, yield of ;, co y lell(.. is b1; klllj, I fl -,111 lollam.. TllV.SV 0('111s il"' 110 llld ' ifier Process losscs- ratio of acetylene to ethylene obtained from the burner may be varied from 80: 20 to lower than 30: 70 by changing op - crating conditions. Commercial installation: A plant designed to produce 100,000,000 lb/ yr of acetylene plus etli'ylcnc went into operation in 1960 at tile flocclist. plant of Farinverke Hoechst AG' in Germany. References: Further information is availabl(. fl*,()Ill Hoechst-Uhdc Corporation, Empire State Building, Siiite 8204, New York 1, N.Y. 209 Acetylene and Ethylene( EASTMAN PROCESS)— STONE & WEBSTER ENGINEERING CORP. Application: A Plo( vss hir fit(,- simultaneous prodtictioll of acetylene and ethylene. Charge: Efhine, propane, hii( ane, light naplitha. Products: Arcjylvlj(, ,; ylltll(.- is g js. Description: The hydrocarbon feed is converted into ac i etylene, eff.ly1crie and byproduct gas by short time pyrol- y-els in a strearn of hot ( ;nribustion pi oducts in a reactor of special design. The reactor consists of five elements in series: a fuel hurner, a combustion chamber, a feed in- jectinn zone, a reaction zone and a quenching section. Fuel. gas and air, or oxygom, are burned in Ihe corn- bustion chamber, and the. hot gases enter the mixing duct at high velocity. The hydrocarbon to be pyrolyzed is in- j('Ct('( l into tllo tilrbilletil combtistion gas stream where rapid in(] uniform mixing is attained. The reaction see - tion Plovid("; file additional - friall residcrice, tilll(, required for r( lillplviing-Aw ( o 111axiII111111 yiel(k of m-Ov- lrll(. "' d ; 111(' r Which 111C g; l8* lll1N( 1llT is rapi( l , ly Illellellrd by water splays to relatively 10'.N' felliperatilres. s1colil is 11111( ldlued X6111. 111c f1l(. 1 and oxygell, to Will - P"' fh( t(I' ll- latilre and to serve as a livat carrier. Stearn is also admitted with the feed stock as a diltient, prooltici ǹg a partiil prossure favorable to th, desire(] pyrolysis r'eartion, Tlw propoltion or to e( hyle.ne is governed Inincipally fly fl)(! reaction tempera- t" re' le" Cl. which May be vlried easily by chatigilip, the rl:, Janlit , of cornbilstioll r,,;is used., or the ( 1irintify of feed 11 - (-* tt,( r Acetylene. to ethylenn r.,11jos of o., have been demonstrated. . 1/ 1 1) in 1/ 1 A water quench spray is located at the outlet of the maction zone, and the. effluent passes into a. tar knockout NOVV1111- 1- 1961, Vol. 40. *No. 11 d, ' it" whele most of the sinall aniourit of tar 1n; l( j, ( LttleS out and is drawn off. The gases then pass into a water scrubbin,g lower where they are cooled to ihomit 100" F, and thf- stearn in f1w g; isr, is condviise.d. fit fit(- oil scrub - her which follows., .1, ciiciilAcd strearn of oil mmoves fine particles of far and heavy oils from the gas. Clcinup of the circulating oil is effected by stemn in a stripping column. I' ll(! residtic farry oil from this stripper is inixed with the tar from the quench drum, so that a freely flowing mate- rial results. The scrubbed gas is compressed and sent . to a pretreat- ing section, wlwrl oil ah I sorption removes material heavier than acetylenc and ethylene. Conventional carbon dioxide removal and dehydration treatment are the final steps in preparing file gas for entry into the recovery systvin. The recovery sysf(. Tll employ'; 71 c - I I bi I'.-' ( ioll of absorp- tion , in(] exiniciion sieps wiill hy( ljo(..jrb(, j ; 111( 1 Sf) lvt, llfs ( o rV( OVIT and villylvile froill the gas. Siiitablv pin-ifiraiion sfvps are ilicluded to pioduce a(,(, Iy- It(. ; 11141 (. 1hyletir ; 11 llil! ll pillifics. Operating Conditions: Thc I cactor operairs substan- tially at atmospheric pressure and -it a flame temperature of abow 2, 0000 G. Yields: A roinhii, cd yield of nd of ovvr 50 weight p( mvia oil the chaig is oblililld. Commercial Installations: Rearfor in cominerrial op Nk*­ I r 116k, (- etillany, denion- 1101111- 1 tory 111*v of more than two veai'S. Reference: Chrm. En.iZr. Progress, Vol.54, No. l,' 58,p4l- 48. 213 Ethylene and Propylene— THE LUMMUS COMPANY Application: A process for tile prodiicLiork, recovery and purilication of ethylene and propylene. Charge Stock: Refinery gases, ethane or propane. Products: Ethylene and/ or propylene at tile desired pur- ity up to 99. 9- inole p7rcerit. . . Description: The flow diagrain illtistrates a plant to produce t- thylene and piopylene froin ethane and pro- pane, and to recover these olefins. Etbane arid propane entering as fresh feed phis uncon- verted ethane. and propane are recovered to provide tile feed to tile cracking heaters. Separate furnaces are - itsed for cracking ethane and propane in order that each be cracked at the optimurn conditions for niaxiniurn yield and on-strearn tinie. The effluents froin the furnaces pass through transfer line ex- changers and are cornbined and- further cooled in water scrubbing tower' before introduction to the conipression systern. Polyrner and aroinatic distillate are collected in the quench water surge drurn and decanted there. When the ethylene niust be acetylene -free, the acetylene is selectively hydrogenated by. passing the cracking heater effluent over a catalyst, generally after tile second coin - pression stage. The combined heater effluent arid fresh feed is compressed to approximately 500 psig, chilled, and dried over soild desiccants such as activated alumina. or bauxite. The dryers consist of inulti- ple desiccant chambers which are regenerated on a pretictennined cycle. The dried feed gas is further chilled and introduced into the deethanizer operating at 450 psig. Hydrogen, methane, thane and ethylene are taken overhead and proplene, Propane, and C. and heavier *bottorns are charged to the depropanizer. Thr deethanizer overhead is then chilled by exchange and ethylene refrigeration to — 130* F. The remaining vapor is further chilled tO al)(JUt F. The condvnsed liquids arc charged to the dernethanizer. The residual vapor is expanded in a veiarifugal expander to the fuel gas system pressure. ' I' ll(- low tcinpurature produced in the expander is used tu produce tht. final cooling of the feed gas to — 195' F. The dvinethanizer ovi,rhead goes to fucl and the bottoms rec(ivered ethane and ethylenc), is chafged to ( he ethylene frac- ionator operating at about 60* psig. The cthylene fractionator is integrated with the ethylene refrigeration system for reflux and reboil heat. The ethylene product is taken overhead and the ethane bottoins are recycled to thc etharw heater. The ( 11- propanizer takes propy1cne-propane overhead and C, and heavier as bottorns. The propylene -propane is charged to theyropylenc fractionator operating at about 20 psig. Propylene pro Lucts is taken overhead and propane bottoms are recycled to the cracking heater or withdrawn as LPG. Refrigeration for the unit is supplied by centrifugal coinpres-- sorsI operating in a cascade system. Yield: One million SCF of, refinery feed gas gives yields as fol- lows: Product Refinery Gas Volume Percent _ 11bunds Hydrogen plus inert 7. 4 Methane 28. 5 – I'thylene 9. 9 32, 200 Eliane 33.9 Propylene 3. 3 7, 800 Propane 13. 4 G. anti heavier 3. 6 8,900 Fuel Gas 855,000 SCF A modification of the fractionation system shown above permits the manufacture of ethylene and propylene from naphtfla charge stocks. Ethylene of purities to 99. 9+ volume percent may be produced with this system. Commercial Installations: The Lummus Company has designed atid ( onstructvd 24 omits piti(hicing i- thy1cric ajid/ or pri)pylt-111 fruni various feed stucks. Reference: PETROLEtIm REFINER, Vol. 33, No. 7, July 1954, 1) 13.5. 242 PROCESSING & PE.-iuoj.j; um RhFINER Ethylene Application; A process for tile production of ethylene. Propylene and butadiene is also produced depending on the charge stock. The process call also produce bviizeiie and pyrolysis gasoline. I-, thylelle. prodilet litil-ity is greater than 99.9 percent by volume. Description: The schematic flow diagram shown is typi- cal only, and is frequently varied to accommodate the requirements of specific instailitiolls ; is well ; Is feedstocks and product specifications. Pyrolysis Section. Feedstocks are cracked in tile pres- clice of steam iii Wbular pyrolysis furijaces. The feedsiock is preheated, diluted with steani and tile inixturc heated to 1, 550- 1, 6500 F. The effluent from the furnace is quenched rapidly by direct means or in exchangers which are used to raise steam for process use. The selection of cracking conditions and the rapid quenching achieve high yields of Valijable prodlicis Willi . 1 ( olicillivilt It-thictiolf in the make of undesirable co -products such as methane. Iligh thernial efficiency is achieved by generating steam at 400- 2,000 psi gage, by heat recovery from the furnace flue. gas, cracking coil effluent and qUe!IILII Uil ( if used). Depending oil economic factors and coordination with offplot facilities, the heat recovered is used as an energy source. It permits steam balancing, or enters into selection 176 of tile optiniuni combination of stcaili turbitics, 1,. Is tur- bines, and electric motors for- drivirig equipment. Wll('I'(' tile' (- rICk(-d gases arr ( 11wtiched willi a circillating oil, tile removal of he-av - acy oil ft tions is ac- complislied here and these call be recovered for fucl. I, inal COOH111"* is usually done in a direct water querich tower0 at low pressure. Since gasolinc- rangc inaterials are coii- densed in this water ( 1verich step, this is followed by a fractiollatioll or stabilizer lower before goilig to raw oas collipressioll. Compression, Treating and PurificationtRaw gas fioni tile ( IM-1- hing Section and ptiniary fractionator is (. Ojij- pressed in a inultistage centrifugal compressor to about 500 psi ga,,e. Hydrocarboiis condensed ( hiring the variow; stages of compression are SCI) al'aLed wid Suilt to tile frac- tionation system. Also, during and after tile compression stages , the raw gas is treated to remove acid gases, itsually by calislic Washing. Th(- Ind collipl-1- ssed g; us * Is then dried and cooled before being sent to tilt, 1(.)% v teill- purature fractionation system. The gas then passes to a deniethaijizer where re.sidtial hydrogen is taken overlivad along with tile inethalle. III some plants a hydrogen-niethane separation system is used to further treat tile demethanizer ovedicad gzises to po- vide hydrogen for acetylene removal. Deiijetbanizer bot - November 1969 HYDROCARBON PV (-: L-SFlNG torns flow to thedeethanizer with the bottoms going to the depropanizer column. Overhead from the dccthanizer is catalytically treated with hydrogen to remove acety- lenes. C,' s taken overhead from the deethanizer are fed to the ethylene column, or C splitter. Overhead product is pure ethylene and the ethane bottoms are returned as recycle to the pyrolysis furnace. Bottoms from the de- ethanizer go to the depropanizer with the C,,,'s going over - lead and the heavier bottoms going to the debutanizer column. C:,'s are hydrogen treated before going to the propylene column. Overhead from the propylene column is high purity propylene and propane bottoms are recycled to the cracking furnace. Debutanizer overheads form the Gl product stearn and bottoms are feed for the dcl)en- tanizer. A C, product ( qtn be taken from theAcpientanizer. The final column is usually called an aromatic distillation colunin and produces an aromatic distillate overhead and a C, bottdms product. The low temperature refrigeration system ( methane, ethylene, propylene) is not shown on the flow sheet*. These syqems are usually a cascade arrangernen . t Using ' 1111.11ti- stage centifugal compressors with steam or gas turbine drives. Steam demand and stearn balance requirements detennine the choice of drivers for compressors used in any ethylene plant, Yields: ' I' ypical yields from various- feed stocks, including recycle ethane - propane cracking have been reported in. the literature as follows: Overall ethylene yields vary with the feedstock used an(] the severity' of cracking. Naplitha pyrolysis yields are characterized by a high dcgree of flexibility. Also, by- product yields can be varied over a range for a given ferdstock by varying design parameters and operating conditions. Econoinics.- There are substantial differences in capital and operating costs of ethylene plants depending upon the type of feedstock used. Thcse differences are due to dif- ferent unit costs of various feedstocks and also to - different yic0s- The yields affect the costs since a raw material such is ( Almric, with 81. 6 percent weight yield of ethylene, re- quires snialler equipment because of the smaller volunics Of 111" 11clials fl);. It all. proceswd cornpared. with propwic or naplidia. Also, the ( liumfity mid v. 1jue of tile co- prod- ticts vary depending on the feedstock. Thcse prices were. wed in the calculation of etliylcnc manufacturing costs 9hown in tile tabl , e: Fuel gas 20 cents/ million Btu, Propylene 2. 5 cents/ pound ( part poly - mer grade; part chemical grade), C., stream 4. 5 cents/ pomid for huradiene content, G, and heavier 1. 34 cents/ pound. It call be -, evil from the table that the cost of the raw material is the most important single cost fac- tor regardless of the type of feedstock-; this cost varies If-,, r) ROCARBON PROCESSING' November 1969 from a low of 65 percent of total direct costs when using 3 cents/ gallon ethane to a high of 80 percent of direct costs when using 7. 5 cents/ gallon naphtha. Utilities are the only other significant direct cost; they account for a low of 15 percent of total direct costs when using 7. 5 cents/ gallon naphtha to a high of 25 percent when using 3 cents/ gaIlon ethane. Another important variable is cap- ital -- depreciation, general overhead, taxes and insur- ance - along with required return. on investment account for the following percentages of required selling price, even with a one billion pound/ year plant: Ethane feed,. 30 percent; propane feed, 37 percent; 7. 5 cents naphtha feed, 33 percent; 5. 0 cents naphtha feed, 57 percent. Ethylene Manufacturing Costs, One Billion lb./ yr. Plant Million, unless otherwise noted) Feedstock Fillane Propane Naphtha Naphtha* Full 23. 700 T- 3. 700 28. 000 28. 000 Nornial Light Range Gas Feed Stock Ethane Propane Butane Naphtha Naphtha Oil Ethylene, Wt. % 81. 6 46.9 44. 5 2. 3 34. 1 i9.4 Pron!%e: Wt. 2.0 18. 7 17. 2 15. 9 16.0 11. 9 nil t mllew. t 3. 0 2.9 4. 4 4. 7 4. 10 4. 9 Arot: ialtics, Wt.% 1. 0 4. 0 4. 5 8. 3 11. 4 10.6 1, "' 1 V , to Indirect Costs Depreciation ( 10% inv.).. . it 2. 570 2. 800 General overhead Mod,., atc Cracking 0.63 0.71 1 0. 59 0.59 0.53 Overall ethylene yields vary with the feedstock used an(] the severity' of cracking. Naplitha pyrolysis yields are characterized by a high dcgree of flexibility. Also, by- product yields can be varied over a range for a given ferdstock by varying design parameters and operating conditions. Econoinics.- There are substantial differences in capital and operating costs of ethylene plants depending upon the type of feedstock used. Thcse differences are due to dif- ferent unit costs of various feedstocks and also to - different yic0s- The yields affect the costs since a raw material such is ( Almric, with 81. 6 percent weight yield of ethylene, re- quires snialler equipment because of the smaller volunics Of 111" 11clials fl);. It all. proceswd cornpared. with propwic or naplidia. Also, the ( liumfity mid v. 1jue of tile co- prod- ticts vary depending on the feedstock. Thcse prices were. wed in the calculation of etliylcnc manufacturing costs 9hown in tile tabl , e: Fuel gas 20 cents/ million Btu, Propylene 2. 5 cents/ pound ( part poly - mer grade; part chemical grade), C., stream 4. 5 cents/ pomid for huradiene content, G, and heavier 1. 34 cents/ pound. It call be -, evil from the table that the cost of the raw material is the most important single cost fac- tor regardless of the type of feedstock-; this cost varies If-,, r) ROCARBON PROCESSING' November 1969 from a low of 65 percent of total direct costs when using 3 cents/ gallon ethane to a high of 80 percent of direct costs when using 7. 5 cents/ gallon naphtha. Utilities are the only other significant direct cost; they account for a low of 15 percent of total direct costs when using 7. 5 cents/ gallon naphtha to a high of 25 percent when using 3 cents/ gaIlon ethane. Another important variable is cap- ital -- depreciation, general overhead, taxes and insur- ance - along with required return. on investment account for the following percentages of required selling price, even with a one billion pound/ year plant: Ethane feed,. 30 percent; propane feed, 37 percent; 7. 5 cents naphtha feed, 33 percent; 5. 0 cents naphtha feed, 57 percent. Ethylene Manufacturing Costs, One Billion lb./ yr. Plant Million, unless otherwise noted) Feedstock Fillane Propane Naphtha Naphtha* Capital investment ......... 23. 700 T-3. 700 28. 000 28. 000 Feedstock, unit cost ......... 3.0 0/ gal. 4.0 0/ gal. 7. 5i/ gal. 5. 00/ gal. Direct Costs Fcedstock... 12AX) 21. 995 38.096 25.400 Utilities ( inc. iuel' gas)'.­.­. 4. 500 5.850 6985 Catalyst & chemicals. ... 063 82000: 629 0:978 no change Labor & supervision. ... 0: 5721 0 . 660 Maintenance ( 3W% inv.).. 0.770 0. 835 0.910 iz4_73 30. 120 47.029 34.033 Indirect Costs Depreciation ( 10% inv.).. . 2. 370 2. 570 2. 800 General overhead 2% inv.) ....... I ..... 0.474 0.514 0. 560 no change Taxes & In- uraricn.: ...... 0,237 0. 257 0. 280 3. 081 3.341 3. 640 Total costs .............. 21. 554 33.470 51, 269 38. 573 Credits Residlic gas... I ......... 1. 1- 10 2. 990 2. 1 Propylene ............... 0. 625 8. 11,10 12.7-150 B -B .................... 0. 585 4.025 9. 530 no change C5 ......... ........... 0. 389 3. 110 6. 500 Total credits ........... 2. 739 18. 175 30. 990 Net cost .................. 18.815 15. 295 20. 279 7. 5&3 Net cost, 0/ lb. ethylene ... 1. 88 1. 53 2. 03 0. 76 Rettirn oil investment at 20% before taxes, in 0/ lb. ethylene* ...... 0.47 0.51 0. 56 0. 56 Allowance for sales & arlinin. expense pills Rol on working capital 0/ 1b. ethylene* ......... 0. 2+ 0.2+ 0. 2+ 0.2+ Minimum required sales Price, 0/ lb. ethylene* ... 2. 6 2. 3 2.8 1. 6 These data froni Strjbaugh remaining data from Eber J-1. Peters. Commercial Installations: Ethylene plants number into the hundreds throughout the world. Major suppliers of ethylene plants include the following: The M. W; Kellogg Co., 711 Third Avenue, New York, Ne v York 10017; The Ltininitis. Company, 1515 Broad Street, Bloomfield, New Jersey 0700.3; Linde A.G., 8021 Ifollriegelskreuth, Germany; C F Bratin & Co., Alhambra, California 91802; NSlow Wvbster Engineering Corp., 225 Franklin St., Boston, Alass. 02107; Lurgi Geselischaften, Postfach 9181, 6000 Frankfurt ( Main) 1, German),, Selas Corporation of America, Dresher, Pa. 19025; Foster Wheelcr Coirp_ 666 Fifth Avenue, New York, New York 10019; Chemical Construction Corp.; The Badger Co., Inc., 363 3rd Street, Cambridge, Mass. 02142; Azote & Produits Chimiques s. a., 31 -Toulouse 03, 1rance; Badkiche Aniliti-& Soda- Fabrik AG. 6700 Ludwigshafen, Germany; and Hoechst- Uhde Corp., 550 SylVan Avenue, Englewood Cliffs, New Jersey 07632. 177 Ethylene— C F BRAUN & CO Application: The schematic flow diagrain sliown is tylji- cal for naphilm feedstock and for ecotiomic criteria of low ettergy cwst ; in( f sliort payout. periods. The fractioriation se( Inence can be varied to accommodate different feeds or different cconomic criteria. For exat-nple, for naphthas, higli ener- y ( r)%t ; ind ) ong payout periods would favor a frow end dvmvth; miz, r. Description: The schematic flow diagram shown is typi- cal for a napbtha feedstock and is varied to accommodate the type of fced and requirements of speci*fic plants. Feedstocks ire cracked in the presence of stearn in tubular pyrolysis furnaces. The severity level is deter- mined 1)), cronornic stoclics which establish the optinlurn relatiori of hyprodticts to ethylene. The furnace effluent is cooled in ' transfer line ex- changers by geneninnu steam at, pressures up to 1800 psi. Ili -at If-cf)". vicd fl" 111 11w. 01,111clit g; ls 111d 1111c gas 1% t1sed as ; III encl!" y Swirce. It pelmils slemn 1) alallci I Ig ;":(, enters into sele.chorl of Ihe ol) lillllllll collibillation or slea t1libille';, ga% Ilflbilw, ; 111( 1 111i' lots. I he ( o, lled gasrs me ( Illenched willi cil( ndming, 4) il and washed to remove fuel oil fractions. The last low- pressure que , nching is by direct contact water cooling. Gasoline range malcrials ire condensed in this step, along with the diiiition steam - froin pyrolysis. The condensed water is vaporized and recycled is dilution' stearn to the cracking furnaces. Unf-.on& nscd gases are conipressed and treated to re- move icid gw cs. Systcylis basrd on amine or other regen- erative solutions have been used followed by caustic Vashihg. The treated gas is dried with alumina or molecu- lar sieves. Acetylene is removed by' catalytic. hydrogenation in the C, and lighter stream frorn the depropanizer. I) emethanizer feed is chilled in , sticcessive stages to condense methane and heavier, leaving hydrogen as a gas&otis product. Methane is separated from C, s and heavier in tile demethanizer. The hydrogen and methane il gas streanis may be further treated to meet high - ta I purity specifications. The deethanizer separates C2S from C, s and the C strearn is fractionated in aC2 -splitter to produce 99.94 - percent ethylene. Ethane is normally recycled to pyrolysis. s may be catalytically hydrogenated to meet chemi- c al grade propylene specifications, ox they may be frac - ionated in a C, splitter to produce polymer grade propylerie of 99. 5+ percent purity. The debutanizer produces a C, overhead stream which may he processed 1c) vxfravl Initodiene and o1her C, pro() - 11( Is. The C" loaleliA 11my lw hydrolicMed Io plodlice stahle gasoline or it Illay he flixt1wr processed to recover 11olliall C, rracli;)n rowaillifil, isoprene. s or . 1 is '. 111111lic( l hy ; I f- Illyll-11f.- plo- pylene systern which inay be integrated with the C, and C:, fractionation facilities to reduce equipment cost. Yields: Over-all ethylene, yields from the various feed- stocks vitry frorn about 110 weight percent for commercial ctliaiies, through 35 weigliL percent for light paraffinic naphthas, to below 20 weight percent for heavy gas oils. Pilot plant runs are made to verify product yields and set design parameters for tbe commercial pyrolysis coil. Commercial installation: Twenty-two plants have been designed or constructed with an annual capacity exceed- ing 7.5 billion pomids of ethylene. PRDCI30 iYDSÁ OLOCiON DE. yAATEp/ m pRW _»° DIGFSTION w mAT^ mrNI" nV, vFS/ w'. ^ v^ nw l m'' ' n'AL'// O0N-- F\ L ----\ N J--- T---[—— N y^°.. EV O R A QV I A NQ UE SOLUCION ATNRy`DA AGUA, rALIENTE CONDENSACION TAMUF LDF S I I LA Ul 0--1 TANQUE DE SOLUC)«] N AZEO- T ROP| C4 | VAnmImvRAI)n COLUMNA DE DESPOJO PARA DE' -i, I' lLACION VA 110 H 4 01 11 OCESO . 1 a s It I L E' W VAP6P, T­; ' m A P, 10 R FF C . IAC' - 1" N DE HIDP,OL; S; lz L A 1; i 11. F 1:1! 1 D I ^, 1. A PO% FS c 0 C 01 N-1 1 DIIL*k_ T o RESID , J.*1 11)[' H D RAT F.— A;"4 TAC 1% ON CijNP,EN',>AGION m E -, e -, u noFURAL 11) FS7 '_ AC_10.tJ 1 VAPOR SECUNDARK) REFii\ ACION R Ps I uo URFUR A L CJINDENSACION LIQUI10 BAJO 1 PMO - DE EBU L! CtON 1 DE-ES)TILACIONi CETONIA META OL CD C.) t4 vi cn C) kmcr) CMCL. - 0crvi 0- 4 fl; IJQ I-. + ullw , 4 , o f o IA BENZENE HEXACHLORIDE BHC) C6H6CI(; From Benzene* and Chlorine Reaction Actinic CJ - 16+ 30 ') _> light C6146C16 95 ' Ic yield Material Requirements Basis—. I ton behzene hexachloride ( 24% - y isonier) Plus I tori waste isoiners Jimmie 1, 050 11) Chlorhie 2, 95011) Mill Benzene hexachloride 24 — I - isomer) Procem Benzene hexachloride, commonly called BHC, is made by reacting chlorine and benzene in the presence of actinic light. Only one of the several isomers formed, the gamma isomer, is highly toxie to insects. p rocesses vary ' the Pecvc I e Recvcle benzene Benzene Berizerie- stea- ri mix t recovery ene t benzene Reslurry Benzene boi er tan Waste Chlorine 0 Q. isomers a Crystallizer Filter Of Castning Pans Reaction Actinic CJ - 16+ 30 ') _> light C6146C16 95 ' Ic yield Material Requirements Basis—. I ton behzene hexachloride ( 24% - y isonier) Plus I tori waste isoiners Jimmie 1, 050 11) Chlorhie 2, 95011) Mill Benzene hexachloride 24 — I - isomer) Procem Benzene hexachloride, commonly called BHC, is made by reacting chlorine and benzene in the presence of actinic light. Only one of the several isomers formed, the gamma isomer, is highly toxie to insects. p rocesses vary ' the 148 BENZENE HEXACHLORIDE In a typical process chlorine is contacted with benzene continuously in a vessel fitted with a mercury- vapor lamp. The reactor is operated at or slightly above atmospheric pressure and a temperature of 20 to 60' C. The BHC concentration in the reactor is controlled at 12 to 15 per cent to pre- vent precipitation of the less soluble isomers. The reactor, product is then 140 120 100 C3 so — 0 E 60 - 40 20 0 1935 BHC 1937 1939 1941 1943 1945 1947 1949 1951 1953 1955 Production—Benzene Hexachloride concentrated by e-,,aporating the benzene for recycle. Liquefied BHC ( 10- 151,(. - y i- omer) is then pumped to a crystallizer where, at 35 to 40' C, some of the a and P i, nmers crystallize. After filtration the filtrate is steam - distilled, aiid the molten bottoins are cast in metal pans, cooled, and ground to desin-d size. The product ( aboift 24(7( -y Isomer) is gonerally packed in flibc]. for Shipillclit w :oi insecticid(, mixiiig plant, Fiirt1wr fractional crvst' lllizat loll I' lelds 1111dane ( 99('' - Y isomer) . Use Pattern hisecticide 100 per cent u C) m- 2 a) Cl - 0) Q. I CjU 01 1936 ECONOMIC ASPECTS 149 1938 1940 1942 1944 1946 1948 1950 1952 1954 1956 Price—b(nizene Ilexachlori(k t Pnor lo 1950, B11C Nva not sold on - j-unit basis) Aliscellmicous Properties. C010r1eSS to _ ellk' NV crystahs or flakes. The crude IM-OdUCI htis a musty odor. 1\ 101. wt. 2f 1U. S5 AIT. isomer) 112. 5" C Density B. 1". ( lecomposes Soluble in alcohol ( 6. 4 g I) er 100 g). hsoluble in water. Can be toxic to, humans. Grades. Technical BHC i. old on basi: of -/ isomer content as 14- 161. 23- 24 , 36- 40(/(,, ct c. i iii ])ow( jer or luml) form. Lindane ( 99` isomer i in the form of colorless Coritairters artd Regulaiions. Paper bags and fiber drums of variou: sizes. No JCC shij) j) ii1g(Y_ 1, tbel required. - Mamd'acturing Cliemisu Associa- tion requires Nvarning label. Eemiomic Aspects Ben.zene hexachloride., sometimes called ganimexane and 666, and coril- monly called BHC. is , in in!zecticide and claz zificd gonerally as an tagricul- tural (' 11cmic" Ll. This ( 1' 1!:- ificatioll ilicludc- varimis fulniumits, fun(' icidt'...' growth regvtilator:. hvrhiclde z' Insecticide:.. jv! ticidv:' rodeliticides, soil Coil- 1111( men-. ch.. Befm-c Wo" Id W: 11' 11 1110:4 ( 11' dw:-u in-iteriil:, wero inorgaim, conjImunds or naturally occurring organic coinl)ounds. During the ' war it Ava.q found that. 111, 111y sYlithetio organic. chcinivals containing elliorille in tjj(. molecule had ins' vticldal Tlji- ill- tir,"Ited a carcli for tile Most effect' Ve colm-munds and set in m0iion vast research resouces which delved into all 1) hase., of t1w a ' L'I" Clilt UNd Chemical field. _- Nlany new compounik were synthesized and found more effective for specific uses than ariv current materials. Accordingly, )) roduction of agricultural chemicals skv . roe' eted. One ren5m fni, ihi!z wvz T- 1-().!', 2 1--- . '. 150 BENZENE 11EXAC11LORIDE to , orts of pesticides, crop Ioss agrimiltural pe,,;ts were 4 billion dollars by inserts, 4 billion dollars by filligi, snitl ' 5 billion dollars by Nvecirls. 7 , ( if - N%- cre discovered in England and Francerhe insect widal properties in 1he efirly 1940' s. Of the sixteen possible isomers, five have been isolated— a, [ 3) y; 81 and c forins. Only Mic -y isomer is toxic. It destroys insects by ext,ernal contact, ingestion into the stomaeli, and absorpfion through the rc,,,piratory tract.. Betwecri 65 and 85 per cent of production is 11sed on the cof.ton crol), primarily to conf,rol the boll wecvil. It is not suited for use on food crops because of t -he musty odor it impart,s to the plant. To overcome the odor problem, findane ( at least 997n -y isoiner) was developed. Lindane is a coined maine -,elected In, agreement between USDA authorities and t,he insecticide industry t,o disfinguish highly refined BHC from lower grades. It is used primarily ( in food crops when DDT is not effective. For most uses, 1311C, and lindane must compete with other chlorinated inzecticides as well as DDT. These include chlordan ( excellent for killing flies), toxaphenc, dieldrin and aldrin, among others. The last three are esIx,cially effective against grasshoppers and cot,ton insects. BIR11 like ot,her igriculhiral chemicals, is a seasonal product, Accord- ingly, large inventorics must be built ul-) in anficipation of the growing season. if t,he inventory for a given year is largir and demand slackens, a drop in price usmally results, with conseirltictit lower profits. Accordingly, the successfiil veribire in agricidt,iii-al chemicals doinamls accurate forecast- ipg, a sound financial posit,ion, ,and aggressive salesmanship. Considerable work is tinder way on the development of process conditions t,11,11t, " ill 11", M] to ft 1. 0' ger frac6on of -y isomer in the crude chlorinated A plant, maimi'achimig 5 I, mv4 ( if 251/,, -/- 1111C, per 24 -hr day is tristimated In (! it, 1. $ 125, 000 f-,:(- liidmg building and sit.e. and Plant Sites Al¡¡(,<] Cliviniral &-, D.N- e Corp. Clirmical Div.), Marexis llook, Pa. Cheinival Corp., Natrilini, W. Vi. Sois-(,iil.q Corp., Terre llatite, Ind. Diamond Alkali Co. Producis Dís-J, llotistori, Texas; Nesvirk, N. . 1. 1,',. 1. 1111 Poni dr Numimi-s I. Co., Ttiv., La Porte, Tt—.\-ns EJ115. 1 ( ' m p- P1: 1fon La. Vonil N1: 11. 11111vi- y mud Cliviiiii-ni Corp. Clilor-Alkali So. Clitirles- Co, kS' it- lil f., t, Kmw;. Crigy Clirmiral Corli., Cravisfon, R. T.; Mm. llooker Cirt., Niazara Falls, N. Y. Nlonfrose Cliemiral Co., N. . 1. Cliciniral Corp., Niagani Falls. N. Y. Corp., N,,ttroii,,i, Pa.; Gilvert City, Ky. Colo, : ind Co., I> iftliiir(,Ii, P: i. Co., NNes-. í>,. O( itit. tq , in( 1 Corp., N:isliN ílle, Tem). Wy,)nflnt,(.P. Clirmir.fl Corp., SVy. iii( lof,t.e., Nfich. Methanol—MONTECATINI Application: A pio( v i for Oil- mantafaclort. Of 1. 1- ctifivd illt-ticol" I bast -d , it (. It' dytiv front ; t gawolls Illixtoll. of oxide., mid hydrogeit. Charge. Any mixturt! of' L,,. 4m- oias hydio- idotais, (, I g. L.!,; ElXygt' ll 913 I) CA- Cf- ot Product: MVILIKILILOI, 99. 9 I) C-rCLIlt Description: The gaiumis ( harge is filt tompi, ss.- d ; It 1) 0 pmi.. preheated md paitially oxidized into a furiuice opurating. al about 2300 ' F. ill order to obtain I low contt-jit in re.sidiuil inethane. For oxidizalioit purposes highly pure oxygvn ( not It -is 111011 98 il U, Vd, to linjil. file VOJILVIII ill lit(- fillal syntilf-Sis gas Of ilivit ­ 1111, 01jejilLs. The gas lv iving div flimacc flows thLough a wastu livat bc)ilei ill Wilitil S; itlIr!ItLXI StC- lli it 550 psig is produced ill art aniount m cvding vincrits of the whole I) ro,-(-%s. dW t0td r(TILlil Till. flow g; I.% is csivillially Imo,, d loy ; I Illimill v If valboll Illoill' Xidt. alld hydiogt-11, ( uJI1. 1illilw" millol ; Iljii) tlllt:. of* " ll 011 dioxidc, I lit-ILIEHIC, nitrogen illid WAtt' l. hydrogt-ri Io C; jrborl oxid,-s ratio in theoxidized v ' as is sliglitly lower than tit,- stoichio- Ilwni( %allw which tall liv folf-si- ell floill 1114. Ivactioll .- titi' lliolls:. Go, J- 31L, ---;, Cil 011 + 1I.,0 It is ' hel" fore Ill: CUsl; Iry to It 111M t* A Sll); Lll ; IHJOHIIt Of C;& rbQIj oxides to obtain a slight excvss (, I- Iq, IioL(-lj whi( It fosters fill. kinetic Of tile above tilentiam-d iv i, tions. rhis is U( ComPlished ; is follows: I snizi,11 fraction of oxidized gas -( 20 to 25 percent wheri starting from natuial gas) is sent to a shift converter in whith carbon monoxide is converted to arbon dioxide, yielding hydrogen front SLealli. The converted gas, mixed with the unconvert. d a rL' g s f action flowing front the boiler, yields heat whit It can bt. ti lsd fit I instance, for stripping the uarbon dioxide absorbing solution'; I,,. L itS IFNIXILtre is then sunt to ; I washilig tower in wbich the carboo dioxide Content is 1 -- red dowir to 1- 2 percent. The wasiled gas is llow A oillpfc.N.wd to aboul - 1 . 100 Imi", ill , kl with the re( y( It: g, i aod liwilly ciacts Ili(, i omt I wi. ' I I,,- Lilt, I is identical ill design I(, if)(. well koomi N1" ot,- c. itiiJ- F; m, vi allimolli"t collvelter. I' ll ii Ill, thod yi , , A 1 1, t I Allt I. 1 (' 1111 Of " Ild thils Alows a good ( onvi- l-sioll . 111d : 1 fligil drt lvv of jimily ill fill- obtaim-A product. Water, ( it-, ill; Ilrd ill fill- t7ttoling 1- h- 111clits plat ed ill, idc the ( ouxerter, is ( ooIed it, a w; t, t,. llt,. lt I) oiI(. I yividilig tt,. 1111 A 100 lisig. I Ill. effilit-lit g; ks I' llao ill(. coriv(.1- tel is cooll-d it, . 1 A hure crudi: trieth;mol i, it-, a liquit.-I IJIlase alld Lbc timeacted gZIS is rt' C VIL' tl b)' ; L (' 0111IM- SM) r. Grode methancil is puisipt-d fjoin if,(. s, pazato, %(-,,( A Ili a Ict down tank, opentLing ; it 1110111 _) O0 Il, ig ill Whitt] tit-- dism, ki-d gases, ill u given off. Fi oin tile Ict dOwn t, ink Ili(- ( rijdc prudm I is led to the purification unit. PutifiLation is carried otat in dirce steps. first a diluted poutssitim pul ilia rl.garlate Soltitioll is added to fill, cruth methanol to oxidi/ v tit(- aId0iydt-s, ketoncs ;, nd otilul, llklj) lll lllv- cont; tilled Ili( 1, ill ill solail aillooll(.4. se( olidly, the alcohol is pre- lic- tted and fi -d it) a distillation tolinim ill which light cnds ( C S( Illi,illy diol0tilyh- tilt-I-) al -C lit it thild tt' j) OW b0t[ 0111' ( 11 IilSi tollillili ;[ It' fi' d to I SN' olld 1, mcl will.). poll prodo, cd : i tOp vilim-ni, 1j., tij w., t. I %, hi, 1. i" Imiloill 01111, 111 hiOlvl Att' llok ill. ImIlL Operating conditions: ' I' ll(- wot kit. g pressm ci in tit(- %;it ious uj, l of the cych- have been alicady intiicated in the above ( 1(-,, 1 ipi m]. r., iperattircs are, appioximat(.1y, is follows: ill paili;, I bustion furnace: 2300 ' F.; iii bhift conversion of 11, 011 - oxide and steam tO ( A) mal If.: 750 F. in im- thanol n-mtor: 740 ' F - Yields: For tit(- pi (,(fill tion of IOU ki; if -(. A lifit-ti lill-til. lool 9_'0 N CLlI) iC InCit- IS of 100 pcicujil mediane mktl 620 N ( kibit Ili. (,: I, if 100 percent uxygen are rutloh,. d. Commercial installations: MOIi(('( Ailli 11, LS I klilt . 1 101A Of 10 plat I is for methanol produ4tion ill five diffeivia One unit. having a [. ij); LC.ity Of 150 jitctri twi pvi ( 1,, N f- 111 acetylene off -gas is tinder construction at Brindisi- It.,J).. , 266 1 IkIlk"' ARIMN P1tIlI: FS.S1.',(; & u -m RFAINER Methanol (Uhde)—ARTHUR G. McKEE AND COMPANY Application: A process for manufacturing synthetic incthanol. Charge: Natural gas, ethane, LPG, any light hydro- carbon. Product: Pure anhydrous methanol. Description: Methanol is produced by the reaction of caibon monoxide or carbon dioxide with hydrogen. The Process is catalytic and carried out at elevated tempera- ture and pressures. Any suitable source of H and CO or CO2 may be used to produce the synthesis gas. Under U.S. econonlic conditions tile most favorable source is lii.Oi-pressurc reforming of natural gas with steam. Stearn- niethane reforming produces a gas in which the ratio F1,_/ C0 is higher than desirable for the methanol fem, tion. This ratio is theoretically 2. 0, but a ratio of 2. 25 is nornial practice. To achieve the desire(] balance, caihon dioxide f" In ' fly availal) lv outside source may lie 1 ill tll(' I 1 - IC -0- ratio of 3. 25 to react with excess If,. III .91vaill- lilt- thane reforming he natimil gas at approximately150" F is pi-rhuated to or,(), I and mixed with Alcani likewise prelicatcd to 95ol- 1000, 11. Carbon dioxide required to achievethe desired ITWCO+ CO ratio is added, and the mixture flas s to a bank of catalyst tubes in the radiant section of airi ì' ar. Ifigh temperatures favor the reforming reaction. Excesss 1, .; I I " is ..... d "' c"" Plet" utilization of tile owthane. I. cavill-9 tile catalyst tubes the mixture is quenched with water to bring its temperature below reaction temperature as quickly as Possible. It then exchanges heat with boiler feed water and is ronled with water before. going to tile high pressure comprrs- 911r. This compressor rakes tilt! pressure of the mixture to that of the reactor system, 4, 600 psig. The Uhde methanol reactor consists of catalyst beds mounted in a high-pressure container. The ma. n body of reacting gas Novi,mber 1961, Vol. 40, No. 11 enters at the top of the vessel and passes down along the shell through an annular space. ' rhis preheats the gas and keeps the pressure shell cool. The pressure shell is therefore constructed of hcat- treated steel. A stainless steel or copper lining is used because of corrosion possible from the high partial pressure of CO. At the bottom the gas passes through the shell -side of a shell -and- tube- type exchanger built within tile pressure shell. - Here it is heated by the reaction products leaving the convertor. Leaving the heat exchanger the feed gases pass through a cen- tral tube to the top of the reactor and then down through the first bed of catalyst. The reaction of 11, and CO is strongly exothermic. To rcg- ulate the temperature over the catalyst sonic of the feed gas by-passes the preheater. It enters directly into the space between the catalyst beds cooling the gases leaving the catalyst bed above. The gases leaving the bottom catalyst bed pass through the tube side of the internal heat exchanger before leaving the re- actor. They are then cooled with water and pass to the methanol separator where the condensed methanol is withdrawn. The un- reacted gases arc retiirnrd to the reartor by the rrcyrle Colo. presgor. int- iliallol is depres%ured to an rxpanion in vilich 0- dissolved gases are flaslird and it is ( licn stabilized to rcinove li [ it ends ( ethers, by,bor;lrb()n. condensildf-s) g s and non- A sinall al"1101111t Of C. Ausfic sollitioll iq added Willi tilt! Klabili/ el. ferd to w-1111-alizt- tilt- arids' i'mill'-d a's by-ploducts. The stabilized methanol is charged to the methanol fraction- ator for purification. A recycled sidestream withdrawn from the fractionator is treated with I percent potassitim prrmanganatf. solotion to remove aldehydes, cl(.., fly oxidation. Tlw overill-ad l.irodtict of this fractionator is rettirned I0 the stabili/ cr where it joins the light ends stream. . rhe purified methanol is with- drawn as a sidestream. Higher alcohols are withdrawn farther down file fractionator. The salh, Mno, nrld watvr are with.. dF. 1wil to wa, lv al fill* botloill of Aw tt. m. r. Operating Conditions: The methanol synthesis is carried out at 4,600 psig. In the catalyst beds the reacting gases enter at ap- proximately 615* F. 265 Methanol (CPI- Vulcan)—VULCAN- CINCINNATI, INC Application: A process for the nianufaCtUl-C of methanol from natural gas, refinery gas, naplitha, or light hydro- carbons, stearnand carbon dioxide. Description: Gaseous hydrocarbon feedstock is initially processed by ca , talytic or adsorptive means to remove sul- fur impurities. The cleansed feedstock, aloiig with stcain and carbon dioxide, are brought to reformer pressure and catalytically reacted at elevated temperature to produce synthesis gas containing hydrogen and varying proportions of cadion oxides. Carbon -hydrogen ratios are adjusted to optimum levels prior to reforining. Fuel gas and process purge gas are used for reformer thermal requirements. Thermal energy in the resulting flue gas is effectively re- covered in a series of excliangens for the production of high pressure Superheated steam and boiler -feedwater heating. Cooled flue gas is discharged to atmosphere. Syn- thesis gas is likewise used in boiler feedwater heating and the production pf' stearn. Plant turbine drive requirements for synthesis gas compression use high pressure steam. Pro- cess heating and miscellaneous utility deiriands are bqst met with rnediLlln and low pressure steam. Centrifugal compression of the synthesis make-up and recycle gases boosts gas pressure to loop design levels prior to entering dIC 11JUlti- staged methanol converter. A unique converter control concept permits optimum thermal sensing and temperature controls over narrow spans of individual cata- lytic beds, that effectively proynote reaction, resulting ill high methanol yields and minimum byproduct formation. I) evelopnient of a high -activity inethanol catalyst pri [,Ilits operation at significantly lower pressures than ordinaril, encountcred in comparable units. CharacterisLics of this catalyst are high svIectivity, low sensiti, ity to stlifill., I) road operating temperature range, low initiation temperatLiFe and the added feature of pre- reduction which permits safe storage for long periods of time. Gas leaving the converter gives tip its exothermic licat of reaction to preheating the incoming synthesis gas. Addi- tional cooling promotes condensation, and non- condetisi- bles - in([ crudP mothanol enter separators at looli pics- sure, where the unreacted gas is stripped off and returned to compression. Crude methanol is then let down ill pres- sure prior to entering the purification sectioti. Crude m , ethanol is refined by distillation. "] leads" fractionator and rectifying colunin are cmplo) ed ill I) jo- ducing high -purity nwiliartol product. Light (-nds stripped off in the process ari rcturpW to the reformer furnace for fuel. Methanol product flows through a cooler exchanger and is then' sent to storage. In tills process, refonner pressure, steam pressure and synthesis loop pressure ate design variables used to de - Vel , op all over-all plant design which will produce ineth- anol at lowest cost. Commercial Installations: Five plants onstrearn, sev- 1- al others in the design or constructioll phases. ( 41pacilies range froin' 30 to 2, 000 tons of methanol per day. HYDROCARBON PROCESSING November 1969 203 Methanol (UKW Process)— LURGI CORP. Application: A process for the manufacture of inctlianol froin mixtures of CO, 00- arid H., obtained from tire gasification of solid fuels, liquid fuels, Stich as bunker -C- oil and naplitha or front the reformin(g, of natural gas, refinery gas or other off -gases. Description: Carbon monoxide, Co. and if., are ( oil - verted to inetlianol at about 320- 370' ( 1 and 300 atnto- spheres gauge in tire presence of chrome oxide/ zine oxide ca( alyst according to the following c( III' lliolls: 2 H2 + CO,--> CH,OH 3 H., + CóQ, --> C11, 011 + TLO Tire synthesis gas, after compression and removal of iron pentane carbonyl by adsorption oil activated carbon, is charged together with recycle gas to the reactor ac- commodating several beds of catalyst. Quench gas is introduced between the catalyst beds to optimize tile reaction temperature profile. The inethanol- bearing gas leaving the reactor is cooled by heat exchange with re- cycle gas and finally with air or water. The condensed crtide methanol is separated from unreacted gas whi( j, is recycled by tire recycle compressor to the reactor. Inerts are removed by continuous purge of a portion of the recycle stream upstream of the recycle (-.or lip ressor. The flashed and gas -free crude methanol from tire 202 separator is purified to the purity desil-(-d by ( listillt *1011. Diniethyl ether, me-thyI formiate and other' low boilitig components ate remox-cd in the low boilers water and higher alcohols at-(- l-cljlo%qql ill ill(! Ilijll- boilers column. Technkal Data: Operating reqUirci i jell ts for gjs pl-Odu(­ tion ( RECATRO, Process), " lethalloi synthesis and dis- tillation per ton of pitre nwthallol llsil)g kil ting Inaterial: Naphtha 504 kg Hearing fuel 3. 85' juillion kcal Electi-ic power 5-1 kWh I -Teat to be renioved by cooling 2. 3 inillion kcal Feed water 1. 6 toil Methanol Specification: Sp. gravity 200/ 200 0. 793 kq/ 1 Water content 0.0351A wt. Boiling interval 0. 5' C' Perinanganate number 60 min. Commercial Installations: The in.italled capacity of plants operating by the UKW- Lurgi process is presently 600,0000 t/ y of pure methanol. So fat-, LUI-gi has Imilt plants in Rumania, Czechoslovakia, YtrgosLtvia, 1 cjmhlju of Korea and Spain. Methanol ( ICI Low Pressure Process) CHEMICAL CONSTRUCTION CORP. Application: A piocess for the manufactuic of 99. 5- 99.99(') pure methanol from natural gas, steam, arid car- h" n dioxide. Description: Natural gas is first treated for stilfur rc- moval by passing it over a bed of activated catbon. I' lle next step consists of " reforming" natural gas with sIvani to inake a synthesis gas containing CO, C0, 3 F1, and Gll,. ( O is addvd before or after the reformer fur- iiace to make up the carbon deficiency of synthesis gas nornialk made froni witural gas and steam alone. As far as i nethanol productiori is concerned such syntlivsis s rich in hydrogen. and whenever GO., is readily availabic, it is lised as describcd above to supply the ance of c—arl)(m. I lowever, methanol can also be* produced flot" . 1 1101-- n rich synthesis gas, by ptirging excess llydlf)! vll ill [ ill, Illakellp gas. I )( 1)(' 11dilig M' tllV VC( MMI lics of raw niateiials available. the pressure arid thetemperattire of reforming operations Cilll- hr s(+- ctvd to optimive Ill(.- -process. " I' lie genrral Afl he (­ 11sider- 1 at 150- 300 psig . ind 1, 450"- 1. 600" F. I' lle livat ill tile synthesis gas leaving the reformer is l(-(()\(. 1rd hy lllahill.g stf-aill, hcating 111) boiler Fred water, and siipplying part of the licat rcquirellj( ljts of otller S( Ttions nf tile plant. The gas is then cooled and com- pl-f- ssed. Compression -Synthesis: ' I' lle gas is collipress'.( I to 680 p -sig in a ccritrifugal compressor and then mixed ith reMcIr v as and further compressed to 750 psig in another centriftigal compressor. A major portion of tile ronihined stican) is heated tip in the converter heat ex- changer and sent to thr converter 0wie it flows over a cofiti nuous bed of catalyst. The portion of gas that - is not heated in the convi!rter exchanger is injected into the catalyst bed at appropriate depths through distrib- utors nf patented IGI design which provide very good mixing and. still allow free passage of catalyst for charg- ing and discharging. Flie gas leaving the catalyst bed passes through the converter heat exchanger to heat tip the unreacted gas TOg ing to the ' converter-, and then flows through tile. methanol condenser wherc the methanol is conjensed. Flie condensed inethanol is ' separated from the non- condelised gas in a separator. ' I' lin li( litid methanol is let down ill pi-cssine and sent to distillation scajoll Is crude methanol, and tile noncondensed gas is recycled to thr comvi-tvi, ofter N-ing conipresscd. Most ( if the inerts dri' ved fitmi Ilie Iced stock me pm-ged hoin dic 1()( 11) and used - is fuel. ' Flie balance of tile inerts dissolved in the cnide methanol stream are flashed in the let down tank. ' I' his flashed strearn containing, m(. tjjlllol is sent to the distillation section. ' Flic nornial range of catalyst bed tviii1wrature is 482'- 518' F. Distillation: low preNs, ire process inethatiol with a considerable lower impurity tball tile crude from the high pressure process. Installed Capacity: 1000 T/ D ill single plant. Reference: Strelzoff` S.: " Methanol— Its Technolo,,N- and E , conomirs." Paper No. 12 B, presented at tile 6l'th National Met -ting of A. 1. 0).E., Nf w Orleans, La., March 16- 20, 1969. Methylamines— THE LEONARD PROCESS COMPANY Appliccition: .\ (,(.) it, III, j() 11 -(,, of III( Illo, di'; ITId 11,) , N. ( C: I T Charge: ' I Ill, I s% it Products: Aidlyfllo, ls o, oIIIfio, I,. of 111, 11o, ( Ii. Md DescriPtion: Anhydrow, s- Iltl , letic me( hallol. alld lcc( Iv 11( plid ; If.(. fvd I oIIfjJ) JIoJJJy, at confrollf-d ratc' to :, i'" " Il"' " MVI" is thf, I " I' lld ill a I I ich I I Ic I I fhms I I cccs i% c I y d I rot I ! It a Ileat ext hall_ vl aull r and joto ; I fcf. p: wlirfl % 111) an amilmlion I a I I lysl Illf. ; 111( 1 Illediallol 10 fol'Ill the amilles. I'lic rvaction 1, (­ otlI(,rIlIjc 111( 1 F'" ( IF ""' "` Il of is reco, -vicd 1)), passinf, tit(' f. * ; Iws Iff' ol Olv collvvllcf 1111orl'. 11 Ilw I' s Io Ill-Af [ it) fill floyll fill- Itc: 11 vv. lmw vr illio : 1 cow IvIlm. l. Idlil-11 lifitillif." I I to- , I I r. I Ill . 1 Ill I 111- tillik , I of; wv ( If. dw I. I I , If. 1` 10111 fliv clode prod" I' t " tOW- C, if)(! mixture of N11.,, I' llics and xv-1ter art. frd to fool. ( 11, 1111. 16oll ( olllllllv In vlivs. ' I Ill. filst f se - p - CM and pal I ot the Ilillivillyl- 111 -' Ve0trolle ­ ilh aminonia as art is recycled. The hottolng are fvd to the sc,lorld colo.11111 into which water is fud twar the top to pf- l- forill ITT exhactive distillation which perillit" pur IIIIIIvfII- IaIlIiIIv to bc 1611)( Ilawn ovi' l- Ilvad : 111d takell Novi-ndwr Vol. If). N, 1. 11 to product sloralle, or rruy( le is desilcd. The t)ot( olJJs arf! fell to ilw Illird collITTITI where pure IIIoIIoIIIvIII I; IIIIiIIv is t; lheyl ofl, as . 1 101) prodlict stream NvIlich call N, piped to of Ircycled v ( 11- silcd. Tllv bottoms : it,(! fed to NvIl" rf. Pilre dillwthylamitw is taken PrOdmiA. whilf, ( it(- wat.vir is draim-d to \ V; I,; If,, front file collmill bottinif. r( -;I( 6011 sYste' ll is a perf—t equililit-itim sy,;- tem, ITIN* allioulit of t1w tri, I mono, or dimethyLinmic cln be ( aken off as prodwt from ill(- system, and any aniount not walifed as plodlict call be recyclvd, and the recycled matcli: d suppreZ- vs ( Ill, f( flillmlon (if ml c( Illivalf- III. . 1111olint of Ill; lf limterial. This pl- rillits " t -val flc\ Ibilily ill the operli Iti(-)" (If 1111V Philit and lzives the ability of meeting peak d - 0 -Md' for sale of vailous prr)(hirfs. All flirer products mv Ilf- Iff. f. Illml ' 19 Ili 1( 1. 111 poll . I hv , fill,, " JI' l., li" ll I-, , wlilllww . 111d opul' It" I p, I Nllifl wntwk file phill. 11 prill ,, "' Illipt) I vIll mill pipill, is 11- 1 whi' ll, 611.- Ihv . 11'. ill L.' I. md'. 11161, 1y. Yiolds, 0 -- Al virld - f both ammonin and methnnol is Amvc 95 pri-cent. Commercial Insftillationv ' 11w Ixcm; ild 137 N. %i! N , d, h-, 1%%,. I. I. mr, Ill 1 . 1 - I., h, . 11 it III, 131111f 1. i. 11 '- k , w 0.11'. .[ fill h Chr'Illiq. 11% alld it IIc%V III: 1if' l plant lln( l( I- ( 1- 4,", Ill,' F cml­ bia Chrin- 11 01TIM- tion ill div I if E; vgt, "\: itto av ( Awryli( al ; ill It, I ' r6" ll ( 114114111'. F,111 1. 11111, 11111'. It' d ( AI' mu. 11 1. 111fif- I Refeirence- Pf lum- i rm Ri I i,, mR. Vvf . 17 No. 9 267 Combination Amines— THE LEONARD PROCESS CO., INC. Application: A continuous process for the manufacture of ctity], isopropyl, or cyclohexylarnines in the same pro- cess plant front anhydrous anutionia and ethanol, isopro- panol or cyclohexanol. Products include: anhydrous mono, di and triethylarnine, or mono and diisopropylamine, or niono and dicyclohexylamine. Description: Anhydrous ammonia,* ethyl, isopropyl or cy- clohexyl alcohol, and recycle liquid along with recycle and fresh hydrogen gas are fed continuously at controlled rates to a vaporizer which converts the liquids to gas which then flows through a heat exchanger and superheater to bring the gas stream up to reaction temperature before it enters the catalytic converter where a hydrogenation catalyst promotes the reaction forming the amines. The reaction is exothermic and part of this heat of reaction is recovered by passing the hot reaction gases through the heat exchanger to heat up the forward gas flow. The product gas stream then flows ' through a condenser, and then into it gas separator where the excess hydrogen sep- ai it ws and is largely recycled along with the fresh makeup hydrogen, to the converter. From the gas separator, the liquefied mixture of arn- monia, arnines and water feeds continuously to four col- umns in series. The first column separates out the excess anunonia and returns it to the r ' eaction system. The see- ond column separates out the mono product which may be taken off to storage, or returned to recycle if it is not desired as a product. The third column takes off di prod- uct to storage or recycle while the bottoms pass into a decanter to separate the excess water before the stream passes into, the fourth column which takes off excess watel overhead and returns it to the dec:anter while pure tri product is taken off the bottom to storage or returned. to recycle if not wanted as product. This simplified four col- umn- distillation system has been made possible by a new catalyst which converts all alcohol fed to the converter to amincs, so that the need for an azeotrope breaking and alcohol recovery column, as used in existing plants, are eliminated. This simplification reduces capital costs by 301yo and reduces operating costs by 25% due to lower utility consumptions and better raw material yields. The -foregoing description is based on ethylainincs and the isopropyl and cyclohexylamines are processed in a similar manner. The entire operation is continuous and instrumented so that one operator per shift controls the plant. All process equipment and piping is fabricated of car - Ibon steel which lasts indefinitely as the amines are excel- lent corrosion inhibitors. Yields: Over-all yield of both ammonia and the alcohol used is above 91% as compared to the 7547o yield ob- tained on existing plants. Commercial Installations: Virginia Chemicals, W(-st Norfolk, Va.; Union Carbide Corp., Taft, La.; Industrial - import, Bucharest, Rumania. ( under construction). 166 November 1969 ' HYDROCARBON PROCESSING Ammonium Nitrate and Nitric Acid THE CHEMICAL & INDUSTRIAL CORP. Application: A proccss f" I 1) 1; 1 ) 1 11; 1(. t Ill,ilig 1111, 1c. 1t)( 1 f- Jilizer glradc- arninoniurn nitiate. Charge: Anhydrous liquid ammonia. Product: 55 to 60 percent nitric acid and prillcd am- inonium nitrate. with ininiinuin nitrogen content of 33. 5 v"right pvr( ent. Description: First, aninionia is oxi( laz(!d with air to pro- 111ce oxi( les of nitrogen which are. then absorbed in water to form ni( ric acici. The reactions may be written as follows: 4, Nif, + 5 0, -- 4 No - 1 6 11 2(-) 2 No -[- ()._, : 2 No., I No., I 11j) 2 IINo: t I No Anioniuit'i nitrate is tlICII formed by the reaction of nitric acid with aninionia ; Is follow.%-. Nit:, + IINo:, NI1, N0, I' ll(! necvssary ; Iil- is , typplied by a.,, jejjjl tIlrbille ( _ivIt cil collipressor faking svicoon IIIrollgil : 11, air filler. Ali cxpander op(.,ratill(, on healf-d tail gas is tls;cd to recover the po(ential vnerg"y in tile w.isic g.ls froll, I b( 1) 1'" Ctlsl. (: oI?IpI-v" m- d : 61 Is delivi- Il.( I 14) Illf. lit bv; If4- r : 1 liff licated to till. pIopvI- IvIllpt- latille for Coillbustion of' alll- monia. Anhydrous liquid aninionia is vapori7ed and ' su- perheated and fed into the mixel. -,vith the air stivam froill I])(,, air beater. The mixftirc- (If licate(i air ati( f aryinjonia enlers fit(,, converter and burns on the platinum -rhodium catalyst. I' lle oxidation Tnixtiwo, fraves throii.gh exch, 111gel-s for beat rvcovvry anti Ille Prod" cli(... of %W; mi. A gl; t,,-% wool iii1cr in th( co, nbus tion g, 115 StIVlTII collects ( he fitiely-divided platinum from tile. catalyst. Gooled gases are recoverecl in thc! absorption t01A' Vr as nitric acid. Once started, fit(, ni- Noveniber 1961, Vol. 10, No. 11 IliC ; Ici( l plan( is sf- If-sustaining, requiring, Ito oills-ide I) ov%(,.r or stc mi. Annnonia, vaporized by steam from the ncutr*alizer, is sparged into ( he ne'utralizer along with nitric acid. The beat of neturalization evaporates part of the water and gives a solution of 83 pvrccrit aninionium nitrate. Final avaporation to above .99 percent is done, in a fall- ing filrn evaporator located at the top of a low prilling tower. The restiltant inelt flows through spray nozzle -9 and downward through fit(, tower. Air is ( Irawn upward by f," Is at fit(' top of the tower. The Inelt is conled enough to soli( lify, forming round pellels or prills of the desired rangv. of sizes. TIW Prilk are rernoved froin the bottom of the tower all( l fCd 10 a rotary cooler. Fill(..s froril tll( cool'! j. lected in a wet cyclolle. The Solution is evcntiially re- tilryied to the neutrali7vr. Affvr cooliog, IIIv pl-illg ; II -e to s1z,. It,(, file OVVII- Mid illulvi- sizv sellf to : 1 sullip ; 111( 1 returned ( o file U' a lizer. iliferine(li; i( f, or proflucl size prills ary dusted Wilh ; I (' O; Ijinj of v;) rfh an( I to bagging. Yields: ' I liv ovet- all y I el' i of ...... i;, t o ; ......... iu,,) ni - ti ate. is about 93 percent. This aniounts to about 2. 25 tons fertilizer per ton aninionia feed. Commercial Installations: Kelona (- T., del Nitiogen, S. A., XILanza, ( hiba, and Fvrtilizantes dcl Istino, S. A., Minali- Ilan, ] Vlexico. References: Indi, sili; ij ;, rj( j Vo.. 23) 1) 860 ( 193 1 ; I -Am clolwdia . 1 of C:bvin. Tcclj., Vol. 9, 3:33- 5 ( 1952) ; Industi-i; i-I & Enginvezing Gliemistry Vol. 45, No. 3, 1) 1.96 ki, Icll ( 1953). 223 Ammonium Nitrate—C& I/ GIRDLER INC. Application: A process for nianuf4cturing fertilizer grade aninionium nitrate from anhydrous ammonia or urea off -gas and 55 to 60% nitric acid. Description: Ainnioniu, n, "' ( late is forined by the reac- tion of nitric acid with ammonia as follows: NH, + HNO, = NH, NO, ' Ammonia, vaporized by steam from the neutralizer, is sparged into the neutralizer along with nitric acid. The beat of neutralization evaporates part of the water and gives a solution of 831yo ammonium nitrate. Final evaporation to above 99% is done in a falling film evaporator. A CM/ Girdler additive is mixed with the inelt to stabilize the crystal forination and the resul- tant melt flows through special prilling devices downward through the tower. Air is drawn upward by fans at the top of the tower. The melt is cooled enough to solidify, forming round pellets or prills of the desired range of size. The prills are removed from the bottom of the tower arid fed to a rotary cooler. Exhaust air containing firies from the cooler is scrubbed and tll(! solution is eventually returned to thc neutralizer. After cooling, the prills are screened to size and the over and under -size sent to a sump and returned to the neutralizer. lilterllediate or product size prills 1, eilt to storage or shipping without coating. Yield: The over-all yield of ammonia and nitric acid to aninionium nitrate is about 98% on a nitrogen basis. Commercial Installations: There are more than 24 Plants Operating usilqg this piocess with production capac- ity exceeding 8,000 tons per day of ammonium nitrate. 152 Nitric Acid (Hoko Process) —PINTSCH BAMAG AG Application: A, process for simult;; ncous pl-odliction of illg ll ­ o rctigth nitric. 'acid ( 98- 99r, .,) of high purity and c; ik acid' ( up' to 65)r/"r) fl'()tlr air"'I tinonia and rixygmi/ air. Description: Hlii prvssury process for the prodilf-ti of higll-strf,ligth nibic acid an(] weak acid requires no de- h)( In-iting agel.1ts, sn(. 11 a.,; - 1cid Or Illagllr.sllllll for 111v I I is-, I I - s I ry I I gl I I pa It () f plodlif lion, and is thl' s More cuolloillical and ncVdS lVs1; plant maintenance. ACC" Ydillg I" thc 1M.'al COrlditiolls, e. g. stvalin, clectricit l ...... on ia d Pl llinlllll PriCVS, it 11; 1% to be d( idvd̀ hvtlwr. a niedinin pressure ( approximately 50. psig) or a high 1m;%stire plant ( approximately 110 psig) is rnol.,. All . Ihv leacfioll %kalcr imaililbic from the process is workrd ill) to wr;ik ; 1cid Ill( f 11i,til-sl r(,n( qh Th' -why 0w lop limit of the Holm poltioll it) be ploduced is fi - d. It is abo'nt 601/.' Of the total acid amount. Ali- liliCation Of' walf-r- f- liminating incalis en an r cl, hil-livi. portion of' 11ok.0 to bv madv., f1cl( m this lillill all desil-cd poption ( if If( )ko (-,in be prodliced. 1ir are COIlvertcd under piessure oil it 1 ' it " l" 11" di" In clt;lIY%t% in* a conilmstion cleinent to foiln tlit:HC oxidc. Upon cooling -down of the hot gases ill a I' llinher Of heat exchangi-rs and a waste -heat boiler lost Of thC Colliblistion - atcr is condensed as -weak acid. This acid is nsed for making weak acid by chernical absorption in an absorption tower. T'he main part of the acid product is degassed with air. The nitric oxides re- inaining in oil-. gas are rc-oxidizcd in(] t1wri separated by PhYsical absorption with floko. The , remaining tail gas contains approximately 200 ppin NO + NO_ The high- strength arid with dissolve I clillitrogen tetrox- idt. is ff-d to div blem-hing, cohmin whem nitrogen dioxi( le is separated. Nitrogen dioxide is condensed in liquefiers. The pure high- strength acid is drawn off from the bottom, a Part. Of - hich is recycled to the absorption coltimn. art of the weak nitric acid coming from the chemical absorption column and dinitrogen tetroxide from. lique- fiers ; Ill. fcd to atilo( Lixf. at ; I Iligh lil!"mirc Illvsr lvacl %%idl ille red to form nifric nuid. Since this acid contains cXress It' ll -oxide, this too is fed to tile blvarllilw cohlilln. Thr fin' ll prodlict is a pmv : 111d ( Af-ar m id of 98- 99 /,(, C(. Jfj( entlation. Pintsch B-imag also Offer various processes fnr separate J)" od, 1( 1 lon ( if I lok-o and wrak acid. Yields: Over-all yield, annnonia to nitric acid 941,('". Commercial Installations: Since 1916 more than 100 cak nitric acid plants and since. *1925 inore than 50 high- strength nitric acid plants have been supplied by Pintsch Barnag to different countries. IN 11,141 If: NR I I( ) N, R( WESSINC. Novi,mber 1%. 9 96ci Nitric Acid —C& I/ GIRDLER, INC. Application: A process for manufacturing 55 to 677o nitric acid from anhydrous liquid or gaseous ammonia or urea off -gas. Description: Ammonia is oxidized with air to produce oxides of nitrogen which are then absorbed in water to form nitric acid. The reactions may be written as follows: 4 NH, I+ 5 0, = 4 NO + 6 H,0 2 NO + 0,'= 2NO2 3 N% + FLO = 2 FINO + NO The necessary air is supplied by a steam turbine or motor driven centrifugal compressor taking suction through an air filter. An expander operating on heated tail gas is used to recover the energy in the waste gas from the process. Anhydrous liquid ammonia is vapor- izCd and superheated and fed into the mixer with the air stream from the compressor. , The mixture of air and aninionia enters the' convcrter and is catalytically oxidized. The oxidation mixture leaves through exchangers for heat recovery and the Pro- duction. of steam. Cooled gases are recovered in the ab- sorption tower as nitric acid. Plants can be designed for self-sustaining operation, requiring no outside power or steam. The tail gas from the plant normally contains 0. 1 to 0.2 volume percent NO2. This can be reduced by appro- priate furne abatement equipment in which a fuel ( coni- monly natural gas) is catalytically burned in the tail gas. The energy from this reaction is recovered it) the ex- pander or as additional steam. The process uses the regular platinu i m -rhodium gauze or a new non-nob.le pelleted oxide catalyst system. Utiliz- ing the newer catalyst system simplifies the process eqUil). ment and provides an extended operating period before catalyst replacement is required. This results in greater total production and lower over-all production and main- tenance costs. Yield: The over-all yield, using either catalyst system, is ibout 3. 5 tons of nitric acid per ton of ammonia feed. Commercial Installation: Eighty commercial installa- tions exist with a total daily capacity in excess of 15, 000 tons on a 100 percent HNO, basis. 208 November 1969 HYDROCARBON' PROCESSINU Nitric acid ( SABAR Process) — DAVY POWERGAS GmbH Application: A process for producing nitric acid ( 80- 99% IINO:,) from ammonia and air. It does riot require oxy- gen, refrigeration energy, dehydrating agents ( sulfuric acid or magnesium nitrate). Nitric oxides in the tail gas can be reduced below 200 ppin by absorption. Weak acid at any rate and concentration can be produced simulta- neously. Description: Gaseous ammonia is mixed with air and converted to nitric oxides in the reactor on platinum- rhodiuni catalysts. Ammonia conversion is at atmospheric Pressure so that the reaction water—most of which must be passed out of the process— can be condensed with- out absorption (if nitric oxides. The atllosplicric pressure. conversion gives low platinum loss and a high yield. The reaction heat is used to produce steam and to preheat tile tailgas prior to expansion. The reaction gases are finally cooled in the gas cooler condenser where the main portion of the reaction witter is separated as 2% nitric acid condensate. After addition. of. secondary air which contain.% recycled nitrogen dioxide the nitrous gas is com- pressed to between 6- 13 atm. abs. The compressed gas enters the chemical absorption section where superazeotropic acid is formed. The nitrogen dioxide remaining in tile gas after the cheinical gas ab- sorption is physically absorbed in th . e physical absorption column in the nitric acid. The nitric acid loaded with nitrogen dioxide frorn the physical absorption section en- ters a desorbcr where nitrogen dioxide is stripped by secondary air which is recycled to the main gas stream ahead of the compressor. T ' he tail gas froin tile physical absorption is freed from nitric acid vapors, prelieated and expanded in the tail gas turbine. The superazeuLropic acid is freed from nitrogen dioxide by secondary air and sent to rectification where it is sep- amted into high concentrated and azcotropic acid. The, latter is recycled to the chemical absorption section.. Economics: Investment costs are substantially lower tha4 the " IJOKO" process ( which requires oxygen and re- frigeratiop units) and operating costs are lower unless oxygen and refrigeration are available at extremely low prices. Commercial Installations: The first 120- metric- ton/ day SABAR Process plant is Linder construction for startup in late 1973. 152 in n Ethylene Oxide—SCIENTIFIC DESIGN CO., INC. Application: A process for manufacture of ethylene oxide frorn ethylene using either air or Oxygen as the oxidizing agent. Description: The flowsheet shown is only one of the many possible process schemes. Compressed air or oxygen, ethylene and recycle gas are mixed and fed to a multi- tubular catalytic reactor. -The temperature of oxidation is controlled by an organic cooling medium shown. From the reactor the effluent gases, which contain ethylene oxide, arc cooled and further compressed. The cooling is accomplished by recuperative exchange with the re- cycle gases. The gases then pass to a scrubber where ethylene oxide is absorbed in a dilute aqueous solution. Most of the unabsorbed gases are returned to the reactor via the previously mentioned recuperative exchanger, . thus completing a closed circuit. When air is used as the oxi- dant, a portion of these gases is diverted to the secondary reactor, to purge- accumulated inert gases. The secondary reactor scavenges the remaining ethylene. From the sec- ondary reactor the effluent gases are cooled as before. The ethylene oxide is absorbed in a scrubber, and the residual gases are discharged from the system. When oxygen is used, the secondary system is unnecessary; instead a por- tion of the recycle gas is diverted through a Co, -removal system before being returned to the reaction system. Ethyl- cne oxide is stripped from the combined dilute aqueous scrubber streams and recovered in a fractionation train. 178 Also possible and already being done by soine companies is. the conversion of an existing air -based plant to an oxygen -based plant. Since the systenis are flexible and similar, this can be accomplished in minimuni downtime. The catalyst contains silver and its long life and high productivity hav * e been commercially proven, resulting in significant savings in capital and operating costs. Yields: The weight yield, expressed as pounds of ethylene oxide produced I) cr pound of ethylene consurned, is well over 100.% - in. plants of normal design. Oxygen or Air: By its long experience in ethylene oxide plant design, SI.) can determine through complete process optimization for each new plant or expansion, whether air or oxygen would be the most economical Oxidant. SD' s oxygen and air bascd processes are fully corrunercial- ized. Three plants using oxygen are operating and two are under construction. Commercial. Installations: Forty ethylene oxide plants in 12 countries have been completed or are being designed for 21 companies. This represents total design capacity of over 2. 6 billion pounds of ethylene oxide per year, A-hich represents over one- third of the world' s total. References: HP/ PR, Vol. 32, No. 9 September 1.953, November 1969 IIYDROCAR13ON PROCESSING Perchlorethylene— DIAMOND SHAMROCK CORP. Application: A process for making perchlorethylene from ethylene dichloride, or other Q, feedstock, and chlorme, Description: In the simultaneous chlorination and de- hydr0chlorination of ethylene dichloride ( EDC), liquid EDC and dry C12 are fed to a fluidized catalyst reactor. Organics from product distillation section are recycled to the leactor. Gaseous reaction products are quenched and most gallics c"" d(" W' d. ill the condenscd crLl( l(., is Dell- tralized with dilute caustic. The crude perchlorethylene is decanted from the aqueous phase, and after drying, distilled. Light end organics ( e.g., trichlorethylene and carbon tetrachloride) are condensed and recycled to the reactor. Bottoms ( perchlorethylene and higher boiling impurities) are separated arid the perchlorethylene distillate neutral- ized, dried and inhibited. With different reactor operating conditions and addi- tional distillation equipment, trichlorethylene can be pro- duced along wth perch . lorethylene. 156 Anhydrous HCI: The perchlor quench tower vapor is chilled to remove most of the organics. Tire condensed fraction returns to the quench tower and the rernainin, gas ( mostly HCI) is compressed t - o 90- 95 psig, scrubbed arid chilled again and available for other process use or, sale at 85 psig. ' o Yield: Efficiencies are based on 96- 97To Gi., and 99+ c,"c EDC. Approximate coiivvrsi(-m efficiencie.j of C, a,,( I 11. in the raw materials to perchlorethylenc. arid HC1 are: 96. 5%, 93% and 95%. Over-all yield is about 96. 35. With EDC feed, about 0.9 ton I-ICl/ tun of perchluieth- ylene is produced. Typical perchlor purity is 99. 85b. Fot special applications, an additional purfficatiun procedure provides 99-995% perchlorethylene. Commercial Installation: Diamond Shamrock Corp. produces perch. lorethylene, trich tore tl i ylenc anO I ICI -at Deer Park, Texas. The process has been licensed to others in the United States arid abroad. Perchlor and trichlor (per/tri)— PPG INDUSTRIES Application: A single stage oxychlorination process for porchloroctb lenc and trichloroethylene from ethylene and/ or chlorinated C2 organics. Adjustment of feeds V, 11- iCS pl-odllCt ratios from all perchlor to neaxly all tri- 1dor %,.,hiln niaintaining, high utilizations. The process can be tailored to feed any *02 chlorocarbon mixture with hydroigen chloride -(Hdl) and/ or chlorine ( C12). The proccss can accept chlorocarbons normally considered wastes from pioresscs such as vinyl chloride. Description: An inexpensive fluid bed catalyst is used in the highl, (,.\ oth(:rrnic inulti.step reaction. 2 QJT, C], + 5 C12 __'' C2H2CII + C2HCI,'; + 5 HC1 ( chlorination) C. I I -( 1; 4- MT" I - 4 C2HCll + C201 2 1 IGI ( cracking) 7 11 CI + 1. 75 0,1 ---:, 3. 5 1120 + 3. 5 C12 ( Deacon) 2 C4 IST, 1 1. 5 Cl... + 1. 75 0, ---* G-AIGI, + G"( 14 - 1 3. 1120 Use of o.\ ygen ( lo%v- cnst) greafly simplifies product re- covery by climinating noncondensablcs. The, procf,ss shmvii is for ethylene dichloride ( EDC), clilmine ond on-grn feeds. Condensed crude and weak acid ire phose separated and the crude drind by azeo- tropic distillation. to produce a noncorrosive still line feed. The first column ( per/ tri) splits the crude into tri - chlor -rich and perclilor-iich streams. The trichlor-rich stream is fed to the trichlor -prodtict column ( tri) where low hoilers nre rcinoved overhead. The trichlor product is removed at the bottom. It is treated with NH,, washed and dried. The perchlor-rich stream contains both mid -boilers and heavies. It is fed to the heavies column first. The high boilers are renimed aL the bottom and flashed to remove any tars and carbon. Tars and carbon can be incinerated and byproduct muriatic acid produced. Perchlox from the product still bottom is treated the same as trichlor. The mid -boilers are removed overhead; the lights, heavies and mids consisting of saturated and unsaturated C,, chlorocarbons are recycled. The still line arrangement was designed for minimum cost and is unique. Both products are removed. at a still bottom and are color -free. Product quality: Both ' products are 99.9 + wt.910 and rnect ( juality standards of thr metal degreasing and dry cleaning industries when appropriatcly stabiliz(,d. Energy requirements: Steim is generated by the re- actor. Thc low -inert reactor off -gas is easily condensed wilh wat(.,r cooling. Refrigeral.ion loads for- second;lry T(-- covery are very low since large volumes of I-IC1 and N are not handled. An optimum purification arrangement also leads to low utilities. Commercial Installations& The procfss is, used in the U.S., Europe and Japan. Total cOmbined capacity of plants in operation or under construction is one billion pounds/ year. PPG also produces EDC by oxycHorination. References: Chemical Engineering, Dec. 1, 1969, pp. 90- 91 ; Hydrocarbon Processing. Nov. 1972, pp. 109- 110; Cherni- Ing.-Techn. 43, Annual 1971, pp. 184- 187. Reaction: nC6H5CH - CH2 : b - Solvent I POLYSTYRENE CH— CH2-- I n where n- 500- 1, 000) Feed Materials: Catalyst: Sodium Styrene Phase: Liquid Reactor type: Stirred, Jacketed Kettle Solvent used. None Temperature, IC: 72 Pressure psi: 1. 5 psio Reaction time: 1. 5 hours Coproducts: Heat Required: Heat evolved: Yes Product yield: 98% Product purity: Materials of Construction: Stainless Steel Major Product Uses: One of three major thermoplastic motefials for fabrication of plastic products. Reference: U. S. Patent 2, 980, 661 hy W. W. Twaddle et al ( to Standard Oil Co., Indiana) ( April 18, 1961) 562 POLYSTYRENE ( LOW M. W.) Reaction: n C6H5CH= CH 2 31. -- CH— CH2-- 1 L6 H5 _ n ( where n= 20) Feed Materials: Styrene Coproducts: A - Styrene Feed Tank B - Catalyst Hopper C - Vibrator Feeder D - Circulating Pump E - Reactor F - Cooler G -Filter H - Product Catalyst: Activatec' Clay Phase: Liquid Reactor type. Tubular Solvent used. None Temperature, oc: 50- 110 Pressure psi: 50 Reaction time: 8 minute, Heat Required: Heat evolyed: Yes Product y; eld. 3 0'/ o Product purity: Materials of Construction: Major Product Uses: High molecular weight styrene with good mold flow properties. Reference: U. S. Patent 3, 052, 664 by W. J. Cleland et al ( to Shell Oil Co.) ( Sept. 4, 1962) 563 Polyethylene— SNAM PROGETTI Application: A po( css for ill(. pro( III( or 1, drilsitv fl-oll, (, tjl\ l(, jIe us itig ' a 1\\ o- r( 1tIIpoTlvflt coll"'Istillg of: ( 1) . 1 titll . I- illm ( 2) 1 b; Isc( l off a (. 1j", of 1111116rillill ll( Ifi( lc ( ofilpo] 111( is: Description: II,, tjj lilt, 1), ( Ioj R- \\ 111. 1v k ; lko'' 4- 111 . 1 toll- 111111" lls IIo\ v of Illollollivr. Both tempvrattire ind pre%sme Ili. ( :11f. f.1111N. colillofic( l i' ll (' 16. 1 to If-laill pol- Illvr ( Ilrifily. ric Iv )1\- I I If. l. sit I I IN. disch . al!" v( j floll) tll(- yejetor, is oTIN(' Nv( I if) a ( Lish ( V') %%'lIvIv the I- cm-lioll I': 11111cm- If d Illotloflivi. ;III( l illetts mv Scp; IT-; Itv( l' 111( 1 fiflalk. \%;lShc( I ill V. %\.I( ll ; Ili ; l'_ rcI) f. \% hich k rcc clv( l frolli illv ( listillatloll 1* 11lit, ill older th I-cillove I' lW P" 151" N', Scl­ late(l fl-om the solvew and dlic(l, is setit to I conve?itimial bletiditig mid exti-tision s(- rtioii. SOIVeT) t ; 111( 1 f- t- cf- 11 from th( sf- paiation and lifilts are roliveved to tll(, plmf. %vilere Waxes al'V ITITIovecl ( V,) : fillall' Ill the C"' . UIC sok-ent is obtained as bottoill, ar)( 1 the xtj-,.Ietioll 11 -vi -it as overhead. Raw Material and Utility Consumption f [',- I metric toil of pciletlyed poIYvtII), IvIIc) : Commercial Installation: I`, ngiiivcihw k ( If M, i"( 11" trial plant of 10POO Nlt/ N- capl* city vn-, i_ a! rc( l to operate af Gela ( Ifaly). 13 I . 01110 Sokcitt. K,, lllfl ( livilli, ;lk' $ 1-8 Low pl-cs-Sill-'e stc' lllf K_- 1000 I-AecIric poA-f- r, K\ vh 500 0 I' lld, Mkcal 700 Commercial Installation: I`, ngiiivcihw k ( If M, i"( 11" trial plant of 10POO Nlt/ N- capl* city vn-, i a! rc( l to operate af Gela ( Ifaly). 13 Polyethylene—MITSUI TOATSU CHEMICALS, INC. Application: A process for producing polyethylene from f- dryiene at elevated pressures and temperatures by use of singy,. autoclave reactor with large capacity. Description: The ' radicat polymerization of ethylene mider high pressures arid at elevated temperatures can be represented by the following equations. 0%-cr-all Reaction: nC11, = CI -12 ( CH2 — C112-) All = 2 2. 15 kcal/ mole C2114 ( 500* K) Elementary Reactions: Initiation: ROOR 2 RO - RO - + CH2 = C11, RO — CH,.— CH, Propagation: if-' — C11" C11 C112 CH'_ C11" CH" CH2 hain Transfer alld Repropagation: 6 Gil" * 4- R — Gil., — R'--* _ CH"_ CH3+ R- 6H— R' R — 6H — R'+ C11, CH2 R — CH CH2 — CH2. R' Termination: I, — Gil... + — C.11., — Gil, + —.Cll'= CH, + — C' l,-,Cl' 2C'_'2CH2 — Fligh-pressurc ethylene and peroxide solution ( catalyst) are fed into a strongly agitated autoclave, in which the polymerization proceeds at a controlled temperature. The reaction is extremely exothermic and the heat generatec is cooled with cold feed ethylene in such a way as to keep the reaction temperature constant. A failure in tempera- ture control stops the polymerization, or causes an explo- sion because of the dccornpositio of ethylene into carbon and methane, which is also exothermic (— AH- = 30.44 kcal/ mole CJ14).. The ethylene conversion to polyethyl- ene is usually kept under 207o. Several grades of polyethylene can be produced by changing reaction conditions: pressure, temperature, and types and amount of telogens. The important process conditions are listed as follows: Ternperature .................... 160- 250' C Pressure ........................ 1500- 2500 kg/ CM2 Types and arnount of telogens ...... Likht I lydrocarbons, several percent . Types of peroxides ................ Di-tert-butyl peroxide Tert-butyl perberizoite Der-anoyl peroxide The process is ' suited not -only for extrusion coating grade, but also for film grade with excellent optical prop- V rties stiperior to ones prodiwed by any bibidar rearlors. Injection and blow molding grades, and ethylene -vinyl acetate copolymer arc also available. Commercial Installation: The process will be in toin- mercialized use by Mitsui Toatsu Chemicals. References: Chent. & E?zgr. News, May 15, 1967 1). 38- 40. Polyethylene —PHILLIPS PETROLEUM CO. Application: A. relatively. low-pressure process for the C- 11111110us production of polyethylene from ethylene gas of 991/(, purity.. Description: This is a process in which solid catalyst and a solvent are present in the reactor as a slurry, and the polymer is maintained in solution until after the cata- lyst is removed from the reAction mixture. The ethylene charge gas, free of sulfur compounds, is treated for removal of catalyst poisons such as water, oxygen and carbon dioxide. The treated ethylene and cyclollexane solvent are charged to the reactor at rates to give the equivalent of around 5 weight percent ethylene. A suitable catalyst, such as chrornibm oxide * (CrO) on a silica -alumina support, is maintained at a concentration of 0.5 percent or less ( based on weight of solvent). The solvent serves several functions, in addition to its role as a solvent for ethylene and polyethylene. It protects the growing polymer chain from chain -breakers, controls the viscosity of the solution, controls the rate of ethylene consumption to promote good polymer growth, and it serves as a me- dium for dissipating the heat of reaction. The reactor 226 is maintained at a temperature of 2000 to 300 - F and a pressure in the range of 100 to 500 psig. The reactor effluent is sent to a flash drum for re- moval of some of the excess solvent and ethylene. The polymer solution is then centrifuged and filtered to re- cover an essentially ash free polymer solution. The pol . y - mer is precipitated from the solution in a stripper to form a slurry. The polymer is separated from tile Slurry, dried and finished as polyethylene pellets. Yields: The conversion of ethylene to polymer is virtually 100 percent, and recovery of solid polymer is in exce . ss of 98 percent. Commercial Installations: The following -plants utilize the process described here: Celanese Corp. of America, Pasadena., Texas; Allied Chemical Corp;, Baton Rouge, La.; National Petro Chemicals Corp. Deer Park, Texas; Phillips Petroleum do., Pasadena, exas; Union Car— bide Chemicals Co., Seadrift, Texas, and Chemplex Co., Clin ' ton, Iowa. Licensees also are in England, France, Spain, Germany, Belgium, Italy, -..Brazil and Japan. November 1969 HYDROCARBON PROCESSING Polyethylene (AGFO)—SCIENTIFIC DESIGN COMPANY, INC. Application: A process, for tile manufacture of high pres- S tire polyethylene. Charge: Ili,,'h- P1lrit.v ethylene; 99.9 percent preferred. Product: P01%letilylene, density approximately 0-91- 0. 93. Desc * ription: F,thYl(' n(' feed is 111i.\ ed with catalyst and with a recycle strearn fron, III(, polynier separators, th ell 111P1' ess('( l to VC1-Y high im' s-silic with intermediate and i' fed Cont i" lloudy to a 0ibular carefill willpi' lallin. control is maintained by circulating high presstire Nvater in the jacket. The mix- ture of ethylene and molten polymer is passed through a sepirator wile re Ihe unconvc. rted ga, s is remov. d for re- cycling. To remove. froyll tile systern- the inerts pr(-svrit in t1l" a snlall bh- d stream is taken' from tile ?'(Ty, j, This is returned to the ethylene purification unit which SUPplies tile feed ethylene. November 1961, Vol. 40, No. I I Molten polymer from the low pressure separator is fed firectly to ' an extruder which lends uniformity to the product. ' File extruder has a granulating head which re- duces the polymer to pellets. . The capacity of a production line is fixed by the. char- acteristies of the process. High capacities are achieved by installing pai-allel production lines. The finishing section is very flexible in design and its nature -.%,ill dep( jl( l on the desired product distributi,,n. In it will incind(. refining V.Xntldcl, 16, 11de is, 011d storage hills. Tllv polyethylene pellets are tran" Iml-led floill one 11" it to b) 111cans of all air tianspol,t %ystt ljl operated by remote control. Coloring facilities may also be included as part of the over-all installation. ' I' ll(- pro(j- uct is bagged or shipped directly in special ( ank cars. Commercial Installations: Foster Grant Co., Inc., Beau - 111 - 111 I , \ 1, 1111d.(. 1. conskilclion) 285 Polyethylene (High Pressure -ICI) Application. A process fur the continuous manufacture of poly- ethylene. Charge: Ethylene gas of 90- 95 percent purity. Product: Solid polyethylene. Description. Polyethylene manufacture requires high purity ethyl- ene and the first step is to purify the ethylene plant product. The first purification column is the derriethanizer in which the overhead, consisting of methane -ethylene, is taken back to the ethylene plant and the bottoms to the second tower where 99. 8- 99. 9 percent ethylene is taken overhead with the bottoms going back to the ethylene plant. In the mass polymerization process, an operating pressure of about 1500 atmospheres arid a temperature of about 375* F is used. A free radical yielding catalyst, such as oxygen, is added to the feed and the compressed mixture is fed to the reactor. Once initiated the reaction proceeds quite rapidly with about 25 per- eent of the ethylene being converted to high molecular weight polymer. Special ineans are provided to maintain essential iso- thermal conditions of 375* F. The effluent from the reactor passes to a separator vessel in which unconverted ethylene is removcd and recycled to an in- termediate stage of the charge gas compressor. This ethylene contains no oxygen which, though serving as catalyst or initiator, is consumed in the reaction. The liquid from the separator is water -white polyethylene with a very high viscosity. It is extruded in a form which can be quickly chilled and solidified, such as a continuous ribbon. Final steps. in the process are, chopping, bin storag,, sacking and hipping. In the water -solvent polymerization process, an operating pres- sure of about 1, 000 atmoNpheres is used. An aromatic hydrocarbon is added as a solvent to improve polymer solubility in the reaction zone and thus permit easier and quicker; removal of the formed pc lyrner before it is attacked by growing polymer chains. A mixture of fresh and recycle ethylene, plus about 20 ppm oxygen catalyst, is dissolved in a benzene -water mixture at 375* F The major constituents in the charge have a weight ratio of about L0: 1. 0: 1. 5 ethylene: benzene: water. The water contains 100 ppin of oxygen. The charge is fed to a stainless- steel tubular reactor and during the course of reaction additional water is injected to main- tain a more constant catalyst concentration throughout the re- actor. About 17 percent of the ethylene is converted to polymer. Isothermal conditions of. 375* F are maintained. The effluent from the reactor passes to a separator where the unconverted ethylene is removed and recycled as in the mass process. The liquid, consisting of polymer, benzene, arid water is sent to a dis- tillation. unit where benzene and water are ultimately separated from the heavier polymer. In the water -solvent process, water carrying additional initiator is injected at multiple points along the reaction tube in order to attain a higher conversion of the ethylene per pass through the reactor. The " half-life" of these initiators normally used is low and consequently it is necessary to continually add initiator to maintain the rate of polymer forination. The separated polymer is handled as described above for mass - polymerized ethylene. The product polyrner has a molecular weight of 18, 000- 30, 000. The typical processes described above are subject to Variations imposed by the particular properties of polymer desired and the research findings.' Of individual producers. Operating pressures range from 1, 000 to 2, 000 amospheres. Atitoclave reactors may be used. Free radial generating catalysts which may be used, in addition to oxygen, would include organic peroxides such as benzoyl peroxides and di -tertiary butyl peroxide. Azo, compounds and aictal alkyls are also effective. Operating Conditions. Typical values are given above. Yields: Over-all yield from ethylene is about 95 percent. Commercial Installations: Union Carbide Chemicals Company, Charleston, W. Va.; Texas City, Texas; Seadrift, Texas; Tor- rance, Calif., Whiting, Ind. E. 1. du Pont de Nemours & Company, Orange, Texas. Canadian Industries, Ltd., Edmonton, Canada. Spencer Chemical Company, Orange, Texas. The Dow Chemical Company, Freeport, Texas. Texas Eastman Company, Longview, Texas. Monsanto Chemical Company, Texas City, Texas. U. S. Industrial Chemicals Co., Tuscola, Ill., Pasadena, Texas, and Koppers Co., Inc., Port Arthur, Texas. References: " Polyolefin Resin Process," Marshall Sittig, Gulf Publishing Co. 286 HYDROCARBON PROCESSING & PETROLrixm REFINER Polyethylene (Low Pressure- Slurry. Solution Process) . Application: A relatively low- pressure process for the cmitinuous J)" oduction of polyethylene. Charge: Ethylene gas of 99 percent purity. Product: Solid polyethylene. Description: This is a process in which solid catalyst and ; L N1dVVIlt aM pt-esent ill the reactor as a slurry, and thV 1­ 1' tllvr is maintained in solui-ion until after the cataly, l k rvinoved from the reaction mixture. T] thylvne charge, gas, free of sulfur compounds, isIC f. treated f()?' lelllo%'al of c-Italyst poisons such as water, oxygen - 111d CM -1)( M dioXidV. COTIVC11tion-al treating may he el" PlOYCd, such I,, hot metallic copper for 0 yg . en, an- hydrous cticit' Irl StIlfate or alumina for waterxand sup- ported caustic for carbon dioxide. I'll,. llvalvd villylenr and ; I"` I1il; IblV hydrocni-hon solvcw It(- t(' dw It'. 11A( IT ; if I. Itr' i lo give Ow vililiv. 11cill ImIlIld 5 %%vi!. ht pi' lculd sllit: lhle cat lk slich ns hvX; I\-; IlI, IIl chlon "11111 ""'(' ((' 1' 201) 011 a SlIppol I, iq 111: 1111laill'- d ; if a colleenfraliml 4,0.5 livicoll( or Icss ( based oil Wvight of solvent). The solvent may he a C., to C, fl',n, ; I IM Ili I thvile () I- an aromatic such as t I " I '(": el "' l" MIlics have higher 1\ . 11cy \ V; Polyollylvilf. thall ( he wher solvellis, I(' solvent s"' x- es s(\' Clal functions in addition to it's role as a solvent for ethylene and polyethylene. It protects tile growing polymet chain from cham- hreakers, controls the ise' llitY of thc Sollition, controls t1w rate of ethyl(-ne con- sumption to promote good polymer rowth, ana it ' as a medium for dis q 9 Serves sipating the heat of reaction. The November 1961, Vol. 40, No. 11 reactor is maintained at a temperature of 2000 to 300' F and a piessure, ill the ratio,, of 100 to 500 psig. The reactor product is sent to a gas separator' and then to a solution chum where additional hot solvent. from tile deresilling oper-ation. is added to insure that all of tile PolYiner is Ill solution. The tnixjj.Ij,e is then fillcred to rc- move tile catalyst whicil is sent to a deresining chamber here residual polyethylene is recovered front dic catalyst. Thr, spent catalyst is regenerated and returned. to the reactor. The hot filtrate is sent to a finsh drum for removal of some of the solvent and then to a chiller where. the temperature is reduced to 75' to 150' F.. The increased Polymer concentration and temperature reduction causes tile high molecular weight polymer to Precipitate and form a slurry. Anti -solvents, such as propane, alcohols or water are usuallY employed at this stepto facilitate separation of the polymer frorn tile solvent. Tile9111"" Y is fillerrd to recover an -. 1rilliAly ash- frry pOlyinrl wl' ich k dlird . 111d finish' -d ns pOly,* 1110- 11. ' 111V 1011. 11f I 11. 1, 111- d yd% vill 1411c. 11, 14 : ill. ' " 1111) i1li' d Alld NI' 1' 1( III It to M, almig willl the sep. 11, 11m. gas, fol. sidvi-Ill re( ovel). alid ptirge of I"' And low pillyOwt-q. Th` i -s C- 111hill- I with iwike.. mul twill to tile- Irm lm, - Operating C.onditions: Tile ran atinggvs of ll ie principal oper, ditions an- gi, rn in tile fore lescriptiOn. They are influencedby going ( tile propeinis ( If file S,) I,,.,, i j, jjjPlOy(.fl. Ylelds. Tht- i Of eIhyl,.O,. 11, 1­ 1)) ner is vittmilly 100 percent, and recovery of solid polymer is in excess of 98 percent. Lommerciall Insiallations: The following plants utilize variations Of tile Process principles descrilo-d here: Cf' l; lrl(!Sr Corp. of America, Pasadena, Texas; W. R. Grace and Co., Baton Rouge, La., Phillips Chemical Co., Pasadena, Texas, and Union Carbide Chemicals Co., Seadrift, Texas. 287 Polyethylene ( LD)— ATO CHIME Application: A process for high pressure polymerization Of Ctllyi(31C I[ Sillg gaSCOUS () Nyg(! Il a% CtUll)'St. Description: Ethylene feed combined With reCyC . le, cata- lyst and c1taiii transfer a,,-vltt is comprcswd in a nuilti- StRg(-' C0JIll) lSSUf to abOLlt 280 b. irs. It is t1wi, mixed with the inedium press re recycle and compressed in die, sec- ondary compressor to more diati 1, 800 bars. It t1jen t- riturs the jacketed tubular reactor passing through three zones: preheating, reactimi and cooling. The reactor effluent passes through a special -valve to the primary separator where the stream is split into incelium and low pressure segments. The Xnediurn pressure stream ( containing mostly unreacted ethylene at 300 atin). is cooled and taken to other separators foi wax separatiQi i bvfore being recycled to the hyper compressor. The low pressure streani goes to the low pressure separator ai?d to the extrusion line. Residual gas is cooled and waxes separated, and has catalyst and chain transfix agents added before going back to the booster tonipTessor. Economics: Requirements for one ton of polletizcd poly- etily1mic: ire: Ethylene, kg ................. 1. 03o JwIllicals, FF -y . .............. 8 Additives, FF* ( averaue) ...... T50 Electric power, kWh .......... 1, 000 to 1, 200 Couling water, nj* ( AT z:- 10', C) 100- 180 Stearn, tons .................. 0. 65 Fr, nch f, n, s Commercial installations: ATO li, i, eight plants. with total capacity of 250, 000 t/ y. The niosL reccia plant start- up was in' February 1972 aL Gonfreville.. France. Three additional trains will start in 1973- 7 60,000 1/ y at ATO in Gonfreville and two of 35,000 t/ y in Tariagone, Spain. Three other plants are under license with a total capacity of 105,000 t/ y. Yields: Conversion rates higher than 21%, are obtained. Licensor: ATO CHIMIE. Polvethylene ( HD)— FRIEDRICH U" DE GMBH Application: A process to produce high density poly- ethylr-ne at Iniv pr(-ssiiry starting from etliylcnc. Description: Ethylene in addition with small quantities Of Will"' 01HIHS, ', Uch as buty1cne or propylene, and hydro- gell is rolltilillously ff'd with calah-st and dillicilt into I.caction, takes jflanr. iti 111d dw jlo] 1111- 1- is obtmiled ill dir fmirl of pm%& -n ' I' lle polynicrizatinti nomnally runs at pressql-cs belojv 10 bar. it tvillpfli' lilirrs b(-[ wvv11 80) and 9o' c". The rmalvst lisud ill flic 1.(.. l . clioll Shows a Very Iii" ll activity. Therefol( I ill I' llge. molv 111( illsil.i. 11 lise till. calahst. is ndd" d ill slich s111: 111 jIllmifilics. 111: 11 : 111y 11, 1111w: 11 0' vmalyst coll I) v avoklcd. Dite to aiiii( im roillplute I-vactioll of the t1iiS 1) 1'() f css di) vs nr, I ner( I .)[ I\. (- Ill\ Irlir 1- 1- 1- vc1ill- or 111ollil- 10'4t ( if tll(' dift- 111 is jo- inoved front the p" Iy1livi. hy uclillifit.-ii) g, ; 1jld* v; 11l he w- lowd ill thv I)]-()- witlioi! t plirificaflon. Thr rvml 1, 417. 111 ) IT', prodtict Fit i, v I I y is t I catrd I . k ol-del 14) lrllvv f . , 1111. Ilm rs ( if fr(ml 11 It, I wf - Mur. Dr%Illg, is aciiie\ cd ' in a cono- liriv, it air dtivr like a flill(R-ed hvd. drivr. T16,; su -I) rlov, not le' ll' il" 1111rog( j) If) 1) 1, 0: ARFION PRO r: r. 107,1 blanketing. Therefore, tile FIDPE powder can be used for further procrssing w * ithout nitrogen protection directly or it can be first granulated to natural or colored granules ac- cording to a large number of product- typcs and fornitilap available. The non -caking TIDPE powder itself with nor- imil bulk weights between 430 and 510 kl)/ jiil is stored it, Po - der biw;, where additional handling like suitable stabilization or homogenizing can take place. Raw materials and utilities: ( 1)(,, 1, 000 k,, lll_)pE j) 0xv& I-) Sicani ( 12 bax), kg, 1. 300 Inolin g %, ttcj, m 130 1- 11rct I ic I )mv.r., tAvIl 200 Nitrogen, Mill 35 Ethylcine, including mniononters, kg 1, 035 1 Iyd rogen, kg I Diltivitt, ka 25 I0 Commercial installations: Plants with a total capacity 011sti'Vaill. - cr 600,000 metric tons/ year at viid of 197' 3. Polyethylene (HD) — MITSUBISHI CHEMICAL INDUSTRIES LTD. Application: A process for producing a wide range of high density polyethylene. Description: After removing such catalyst poisoning com- ponehts as water, oxygen, sulfur, etc., feed gas is supplied to the reactor system. n -Hexane, passed through the same kind of purification process as the feed kas, is used as a vehicle. New n -hexane, f(* makeup of losses arid a vehicle generated in the process, is distilled to remove low and high -boiling mate- rials formed in the process, . and given chemical and physical treatments, before behig scrit to the icactor system. By varying the catalyst systems, a wide range of resins for a 11 kinds of applications can bit obtained in a sing -le production line. Catalyst starting materials are all gen- erally available. The catalyst produced is supplied to the rcacLor system in the form of a hexane Slurry. The reactor is equipped with a specially designed agi- tator and a cooling device for removal of polymerization heat. Temperature is kcpt within 30- 90' Q for good shirry polymerization. The polymerization. slurry is reduced to ri arly normal pressiii-e in a degassing vvssel, releasing unreacted & as, which is recompressed and recycled. Total volume of recycled gas is small due to the high. conversion per pass. After degassification, catalyst activity is stopped, and the polyethylene slurry is separated by ii centriftige into cake and mother liquor. The separated vehicle is returned to the vehicle purification section and the polynii.-r cake sent to the drying section. Drying is 1)( rforirrud in a flUidizrd bed to remove the. siriall amount of hexanc in the polymer cake. After adding the necessary stabilizers, the dried powder is extruded into pellets and bagged, Sonic co-polyrners can also be produced by this process. Economics: ( per metric ton ( if product) Ethylene, kg 1, 060 n -Hexane, kg. . . ; .................... 1 35, Catalyst arid clivriticals ( including stabilizer), Yen .................... 2, 000 Electricity, k%Vh ...................... 8 75 Steani, ton ......................... 1. 4 Cooling water, ton ................... 410 Commercial installation: A p1wit ( if 60)000 inetzic tons per ycar is in operailoi, in Japan. Reference: Hydrocarbon Processing, November 1972, Vol. 5 1, No. 11, p. 97- 98. 166 November 1973 HYDROCAkBON PROCESSIM Polyethylene (HD) — MONTEDISON S. p.A. Application: A process to produce high density poly- eth5lcrw from ethylene. Description: The catalyst, a -mixture o'f supported, solid, titanium compound and an aluminum trialkyl, is fed to the reactor , long with polymer , ization grade ethylene, a diluent ( hoxane is pre.fvtred), and MW regular ( hy- drogen). When copolyiners. are to be produced, a second olefin ( propylCne, butvne- 1, etc.) is fed to the reactor. - Polymerization conditions an, milcl: temperature between 50' and 100" G; pressure lower than 15 atm. Ill, polyrnrrizatinn slurry is fransferred to the steam - stripping. ITexane is separated as I gas, condensed, dC- callif-d Froln j') I11T. ir1vd by distillatioll ' Illd rccyclvd to j1o1) lIIrI' iZ; IIion. ' Hm- sospvIlsioll is vew I - i rl 1g, rd, 111c wo lwlymer is Ilwn dried. 11( ilyllirl, 11" wflf- I Vi s(; Ibi1i/'- 41 and 1) 1' 11( t i7Wd ill ; L 0' Iv -.1 tiona I gratiolation section. A 1); Il ticol' Irly (. 111, 11" IcIvristic, of the ralalvtir syslclll is Ilra it dois II() t pl- hicl, t1w very low i-nolvvidor wvight. fraction '( ways), whi(.11 impair the mechanical l) ropvrIi(!s- of the polyiner an( I the livat-excliange through lie real tor Nyalls. Raw materials and utility consumption: ( per 1, 000 of pellfti7ed injection grade polymer. Slightly differ- ent values in the case of copolymers and of bottle -grade polymers) : J." thylene, kg 1, 050 Solvent, kg .............................. 30 Hydrogen, kg ............................ 1. 5 CaLalysl, $ ............................... 6 Chemicals, $ ...... ; ...................... 3 Steam, kg ................................ 2, 700 Cooling water, nrl ................... 400 Electric power, kWh ......... 600 Nitrogen, Nm3 ........................... 100 Product properties: I' ll(, off( -j -s Ille psij)ijify if indopendvill control of ( Irlisity, AlIV, : 111d MW distri- Imliom A foll rang(! of ho , 1110 . and co- poly" If- I- q III: IY he p1l)( hicud: DvIlsity: fl() Il) 0.96, 5 to aboot 0.9,10 g/(: Ill.,; MW: rroin lownr than 0. 1 to more than 40 g/ 101; MWD: fl - 11 ­ iy norrow to very Lirgv. Commercial installations: One plant, 120,000 t/ y nom- if', fl C; IPM-0, oll two Iiiirs, was started III) at the begin- ning of 1972 in the Brindisi factory of the company. TECNIMON' r S. p.A. ( Piazza TUIrr 3, Milano) is the eng.in . cering company of the Montedison Group and is recommended contractor for this process. Polyethylene ( HD) — SOLVAY & CIE. Application: A process for producing inedium and high iner fluff is achieved in an air fluidized bed dryer. 3 1 L I ens ty po yet y ene fro ethywne. Description: III) polyethylene is produced using a sup- ported catalyst system which has a very high activity and selectivity. The process can produce a range of homo and copolymers with characteristics which can be uniquely tailored for a witle ariety of applications. Dry feedstock ethylene, hydrogen and comonomer in hexane diluent combine in an isothermal closed- loop tubu- lar reactor to produce a Slurry of polymer " fluff" in hexat ic. Catalyst and additives are fed to the reactor and mostly remain in the polymer. produced. Reaction condi- tioiis are in the region 120- 1950 F and 4.25 psig. The reactor products are depressurized to slightly above atmospheric pressure in a steam -stripper where hexane, unreacted ethylene, comonomer and hydrogen are sep- arated from the polymer/ water slurry. I-lexane vapors arc condensed and collected iii a wet hexane decanter. Unreacted ethylene and part of the comononicr are re - compressed, dried, roughly purified ( separation of light gages) and returned tothe reactor. The polyincr/ water slurry from the stripper is separated in a pusher- pe centrifuge and final drying of the polyY - Hexane recovered froin the wet hexaiie decanter is recycled to the reactor via a purification unit in which light gases and heavy components are rernoved. . Raw materials and utilities consumption fier 1, 000 pounds of PE comprising 501yo hoino and 50% copoly- iners: Ethylene consumption, lbs. 1-, 030 Com.onomer, lbs. 20 Hydrogen, lbs. 1- 2 Hexanc, lbs. 25 Low and inedium pressure steam, lbs. 2, 000 Cooling water, U.S. gals. 30,000 Electric Power, kWh 100 Inert gas, scf 500 Catalysts and chemicals, $ U.S. 2. 25 Commercial Installations: Solvay, SaiTalbe, Friince; Solvay, Rosignano, Italy; Eletroteno, Brazil; National Petrochemicals Go., U.S. A.; Chubu Clienii.cal, japaii. Power -Gas Ltd. is an approved criginecring contractor for this process. Polyethylene (HD)— STAMICARBON BV_ Application: A soltition polymerization process for pro- 11- fion of hirzh- and inedium- density polyethylene. Description: Polymerization grade ethylene is absorbed in naphtha. By refrigeration of the feed, adiabatic operation of the reactor is achieved. Catalyst is fed to the reactor directly froin the. storage. ' Thc ethylene conversation is per pass. The reactor product is concentrated in a first flash slep. Flash gas passes throtigh a condenser, from wbic.h liquid solvent and unconverted monomer are re- cycled direct. The polymer flow is mixed with additives, oficr livalim, freed from solvent- in a subsequent flash sicl), 1m)( 111c,1111, ; t P1111, polyincr Which is extrilded and 1)( 1111- Ii/ f. d. Tho 1)( Ilets are dricd - ill a special unit of rh, solvent from the second flash step is recovered and pill-ffied hy extrarlim.i and distillalion, to be recycled to ille 1*(.. I( ti" 11 %((.- Jion. By met.cring a suiLable. cornnnoiner to the monomer flow, thr required copolymers can be produced. Prociucts: Different grades of polyethylene for injection - Moulding a% wc! l as for blow- inou Wing may be produced. If, 11. 111. -­­­ "_ The melt- inclex can be varied from 0. 2 to 30, or even higher if desired. J' h-e density can be varied from 0.93 to 0.97, i. e. including the medium density range. MWD can be varied ovcra broad range, including very narrow distributions. Consumption: ( per metric ton of final product)* Ethylene, kg. 1025 kg solvela, hg. 36 hg Sle.jm, kg* 1150 kg Power, k%V11 670 kWh Chemicals, Dutch Guilders 18. 60 ITot oil he;*iting, kral. 400,000 Avorage for injection antl 50%) blow moulding inix.) Commercial installations: The. first commercial plant with a design -capacity of 30,000 mtpa was. built for DSM and commissioned in March 1971. The " compact -process" was licensed to Sinclair -Koppers, USA. Polyethylene (HD) — UNION CARBIDE CORP. Application: A gas phase process for the manufacture of high density polyethylene ( HDPE) from ethylene. Description: High density polyethylene is produced in a fluidized bed using a new series of supported chromium - containing catalysts which permit production of a full commercial range of HDPE polymers. The few pieces of major equipment required for this process lead to operat- ing simplicity and, consequently, ' improved product con- sistency. Design cap city ofa single polymerization line is flexible. A single reactor with an annual capacity rating of 160 MM pound/ year is scheduled for 1974 startup by Union Carbide Corp. This gas phase process differs from conventional pro- cesses in that no solvent or diluent is required in the polymerization step. Gaseous ethylene and catalyst in the form of a dry powder are fed continuously -to a fluidized bed reactor. Reaction is nominally 300 psi and controlled between 85 and 100" C, depending on the product desired. Circulating gas fluidizes the bea of growing polymer, sup- plies monomer for reaction, and provides a medium for heat removal. After passing through the reaction zone, the velocity of circulating gas is reduced in an expanded sec- tion of the reactor to permit disengagement of fine par- ticles. Heat of reaction is removed from the stream in an air cooler. Motive force for circulation is provided by a single stage cen.trifugal compressor of standard design. Granular polymer -product is intennitteWly removed from the reactor through a gas -lock chamber equipped with sequenced valves. Most of the approximately 5 wt. fyo monomer accompanying the discharged material may be recovered during depressurization, and can either be recompressed and fed to -the reactor or used for other purposes. Product is purged of residual nonome . r prior to air conveying to conventional extrusion equipment. Polymer density is controlled by incorporation of comonomer, while melt index and molecular weight dis- tribution are controlled by catalyst selection and/ or modifi- cation, and by. varying operating conditions. High catalyst effici - encies ( approximately 600,000 pounds of polymer/ pound of metallic chromium) eliminate the need for catalyst removal or downstream purification. Raw materials and utilities consumption: ( per lb. polymer unless otherwise noted) Ethylene, lb ................ ............ 1. 017* Comonomer........................... 0. 02 Catalyst materials, $ .................... 0. 001- 0-002t Steam ................................. Negligible Electricity, kwh ......................... 0.20 Cooling water ......................... Negligible Nitrogen, scf ..................... : .... 0. 12 Inert gas, low purity, scf .................. 1. 3 Assumes recompression of recovered monomer and excludes any solids han- dling losses downstream of polymerization. fCatalyst material costs depend on specific catalyst species. Commercial installation: The first plant, operated by Union Carbide, began production at Seadrift, Texas, in 1968. Two others are now in operation' in Sweden and Australia, and ground has been broken for a third in Czechoslovakia. Licensors: Union Carbide Corp. is using the services of Fluor Corp. and CJB Projects, Ltd.,. to facilitate licensing the technology used in this process. Reference: Rasmussen, D. M., " High Density Poly- ethylene Polymerized in Gas Phase," Chemical Engineer- ing, Sept, 18, 1972. Polyethylene (LD) — SUMITOMO CHEMICAL CO., LTD. Application: A process for the production of low density Pol)' etliylene ( LDPE) from ethylene. Description: Peed ethylene is combined with compressed recycle gas from the extruder and, compressed further. This strean is joined by recycle gas from the -separator and compressed to reaction pressure. Reactor product flows to the separators, and unconverted ethylene is re- coverod for recycle to the compressors. From the extruder I'( 115*011Ylene is dried and screened before going to the hopper scale, blender and to storage silos. Operating conditions of th'c reactor are controlled by a COT11pliter system to prevent off -grade product. Reactor: Sumitomo operates two* types of reactors— vessel reactors an d tubular reactors. Single train capaci- 1' rYDROCARBON PROCESSING November 1971 ties using the vessel reactor are 60,000 metric tons/ year and with tubular reactors, 30,000 metric tons/ year. A 60,000 -metric ton/ year tubular reactor is under construc- tion scheduled for operation mid -1974. Conversion rate: Conversion rates for vessel reactors is 21- 24 percent compared to conventional processes having 15- 16 percent. Tubular reactors are over 20 percent con- version, the highest value being more than 26 percent. The process is cas ily started up and completely free from anydanger of explosion. Product quality: Both reactor systems produce a broad range. of product. Products from the zoned reactor are excellent general. purpose grades. Also, various kh)dt of copolymers can be produced. Diversified additives recipes can also improve product quality easily and at low cost. Polyethylene and Polypropylene ( Low Pressure. Ziegler) Application: A low pressure process for the continuous production of polyethylene ( or polypropylene) Charge: Ethylene gas of 99 percent purity for polyethyl- eii(. ( Propylene of similar purity for polypropylene.) Product: Solid polyethylene ( or polypropylene) Description: The accompanying flowsheet describes the priticiples of the low pressure polyethylene process that employs Ziegler catalysts. Many details of the process are still confidential, especially those related to catalyst preparation and to catalyst and ash removal after the polymer is formed. Numerous catalyst combinations are possible; however, the popular combination consists of aluminum triethyl, which promotes the polymerization, and titanium tetrachloride, which in combination with aluminum triethyl forms a finely divided precipitate which catalyzes the anionic polymerization. The catalyst constituents are extremely reactive to water arid oxygen; therefore, since -only a trace of catalyst is required, it is carried in a carefully dried diluent under conditions that make it safe to handle. The ethylene charge gas is treated for removal of sulfur compounds, oxygen, water and carbon dioxide, and is then charged to the reactor. The diluent may be a Q, to C, paraffin or naphthene or one of the lower aromatics. The catalyst is charged as a very dilute stream. The re- actor is maintained at a pressure in the range of one at- mosphere to 100 psig and a temperature of 140' to 1700 F. The reactor product is sent to a series of flash drun,4 to remove the diluent. These drums are maintained at conditions in the range of 3 to 5 psig and the appropriate temperature to flash the diluent. Water is added to -the flash drums to destroy the catalyst and slurry the polymer. The diluent is sent to a drier to remove entrained water and then charged to a fractionator where light ends and water are removed as an azetrope. The bottoms is sent to a second fractionator for removal of heavy ends, and the diluent is recovered for recycle. ' The water -polyethylene slurry is filtered, and the aque- ous filtrate is treated and recycled to the flash druiris. Alcohol may be used in place of water to destroy the catalyst and wash it from the polymer. Additional filtra- tion steps and special tivating agents may be employed to help remove the catalyst. The solid polyethylene is dried, extruded. and finished to form polyethylene pellets. Higher boiling diluents may be used. In this case a differ- ent diluent recovery system would be required. - Operating Conditions: The operating conditions given above are influenced by the physical properties of the diluent. Yields: The over-all yield of polymer is around .95- 98 percent of the ethylene consumed. Polypropylene- This polymer is made from propylene in essen- tially the same process and under nearly the same conditions except that titanium trichloride is used ia place of titanium tetrachloride. This increases the yield of polymer to over 90 per- cent based on the olefin charged. Commercial installations: Ziegler Polyethylene: Dow Chemical Co., Bay City, Mich.; Hercules Powder Co., Parlin, N. J.; Kop- pers Chemical Co., Port Reading, N. J.; and Union Carbide Chemicals Co., Institute, W. Va. Polypropylene: Hercules Powder Co., Parlin, N. J.. 288 1 IN' DROCARBON PROCESSING*& PE.TROLEI] m REFINER Polypropylene—MONTECATINI Application: A continuous process for manufacturing Vlkiutic Polypropylene, by low pressure stereospecific polymerization of propylene. Charge: Propylenc " polymeri7ation grade" 99 percent plire. Solvents. Catalysts. Product: Solid iscitactic polypropylene in pellets. Description: Polypropylene is, produced by means of catalytic p6lyinerization in the presence of catalysts. Ob- tained hy- reaction of metallorganic compounds, par- tirularly ; fluinininn-alkyls, with titanium halides. The propylene Inonomer used is highly concentrated and processed so , is to reduce to allowable values the content of impurities which can negatively influence the catalyst activity. The ratalyst compotients krr rc; jC.j, jl in I hydrocarbon Int' dillill and III(!, resullill.9 Complex is fed to the reactOr. I' ar-' ffilli(, hydrocarbons, such as C,,-,, C,' are generally II.M d is Ivacfimi Iiluclll substatives. 11w lcaclor vvmks ; it a prrssimi ( if I to If) atm. and it is theimo-statized in order to maintain the tempera- ture in the range from 50 to 1000 All reagents are fed continuou%ly to thv reactor and the rear - tion product is Aso- continno), I-slY t- tisf- r- d : ls a suspension to I scihilizvir where unconverted u- no- cr is flashed and recycled to the reartor after a suitable inirge in order to keep the amount of inert ga'ses within in acceptable aiu,. The stabilized rrai, tion sus ) rnsinit is rviarifinzed and washed with a ln-ol, r.r unix( nry of orgainic solcnts with the purpose of re- moving the greatest part of the reaction diluent and of dear- tivating and consequently eliminating the residual catalyst. - The diluent used in the reaction and depration steps -are then November 1961, Vol. 40, No. I I recycled, after having been suitably purified by means of distilla- tion. The polymer coming fron, a second centrifugation step is dricil, stabilized, extruded and finally hot granulated in lens -shape. operating Conditions: The above mentioned operating conditions have only a pure indicative value. They may be ( anggcd depend- teristics; want(:d in the final product. ing on the charar Product Characteristics: Average characteristics of a polymer ob- tained by the outlined process are as follows: isotactic index ................... 90— 98 tensile strength .................. 3, 250— 4, 800 psi ultimate elongation ............... 300— 600 % g , sflexin stifjne ( flexural elastic Modulus) ..................... 14, 000 — 10,000 psi Vicat softening point ( I kg) ...... 302 F - distortion temperature ASTM -66 psi) ............... 212— 266 F* Rockwell hardness ............... 60— 65 L scale' ashrs .......................... < 05 dwl'-ciric constant ( 111 MHz) ...... 2 di- ii); 1timi factor ( 18 Mllz) ...... 0. 0003-- 0. 0010 divIrctriv stiffness ( rigidity) sholt tinie W51 ................. 3 2 KV/ nun Commercial Installationi: Polypiopylew. is ....... 1, by Iw- above mentioned continuous process, at Montecatini Factory in Ferrara ( Italy) and at Danubia Factory in Schwechat ( Vienna). A Montecatini plant using the same process is going to operate at Neal ( Wf-qt Virginia U.S. A.) under the name of Novamont Corli. Other- Montecatini plants for polypropylene production are under construction in the new petrochemical factory it Brindisi Italy). Thr process has been licensed to) hill - ii -11 Owinifal 1whistrivs and Shell Co. in Great Britain; to Rotterdainse Polycilefinvii Maatshappij in Neth e Hand; to Esso Svenska Co. in Scandinavian Countries and to Mitsui, Mitsubishi and Sumitomo in Japan for polypropylene production. 289 Polypropylene —MONTECATINI EDISON SPA Application: \ pioct-ss fol. 111; 11 jj, f;l(, tjj l, jilg ullit, purifictl ; Illd ]. vc).dvd to tll(- pol)-illvd/.mloll till prol")WI( I"! 1, Y I- V J)" Cssury stercospecific pi-opylene poly- The washed polymer is ag;,.ill Inerizatli,-,i in a paiaffinic Jq( lim-al-boll to the tjolylllvl ( h)- ing systi- ill. stabilizvd. it is. tht- 11 c diltielit. Mf-tallorgalm: Collil)( MlICIS ( aluminum alkyls with tl-lalcd alld fillally hot g" allulfled ill Icils- sh; l1w. titaniLmi - didvs.) are used as catalysts. ' I .1c pol ypropylvi it- 1.) l -odliced Lis ili dl and a bigli isotj(-ti( it ill(](.x Description. is 1 ) olylllj- l-iZ(-( l ill Ll', ilk tll(' tullil-It' lAtil-c 11111.1,le 50" U to 100' C' at a . pressure ill till. retn'-'e. I to 10 kg/ cm" abs. Polymerization is carried out 1)), fv- tlillg, ('011tilitiously all tile rea- ents to Ill(- 1( qj(mtot-. I' ll(" rea( liolk ploo-Itict is also contilillously trallsfC1.1- ed as it MISIA-11, ioll' fl-olil tile, to I ' a stabilizer wilere the I' COMI" Wd " Jollolliv r is llasbcd and recycled to tbe iv - actor afti-i- a suitable purge. to keep illerts withiii all acceptable value. Tile st6bilized reaction suspelisioll is centrifuged and %vashed with IMOPel' IllIXtLll'C of organic Soh"efits \ dliclk willovv. lilost ( if kill. reaction dillients alld deactivate- and eliminate the residual catalyst. The diluviits used in tilt, reaction are transferred tor the Solvent recovt-ry 230 1011SIM11)( iollS 000 kg 1) i- ll(-t' z(.( l ljolypi-opyl,-1 produced are: Polyllierizat [oil gl; ttl(. pl-opylvile oil 100(.4 basis) ....................... 1, 150 1 Clivillicals ( 111clildilig, catalyst, sOlvelits and oillcl. dwillivals.) 25 1 '- S, Commercial Installations: Polypropylene is tile N1010CCutilli Edisoll factories ( if Ferrara and Tcr] Italy, Wiill : 1 t01: 11 Cill); I( ity of Illol(- tjl ljj 100j)0() lil(.Jl tolis/ year. Tile process has bet -11 liccliscd to illon, thall ., collipallies till-olighout till' wol,ld. Novt-mber 1909 11YORI) CARISON PROCEsSir' Polypropylene ( FWH Process)— FRIEDRICH UHDE GMBH Application: A proc.css to produce polypropylcnc homo and co- polyrneri-sates froni prop- Iene using it catalyst vhich con%ists of titanium 111 - halide and - in almninum- orgaiiic compound as co- catiflyst. Description: The catalyst prepared in R, is reacted in R:! oJth I) jol)ylcnc and other ol.efins in an aliphatic hydro- carbon. After subsequent decomposition and extraction If IIIv caLilyst, Ilic p( m( Irly III( OlIcl is separ"II( A hy filt- floo fl-oll, Ihe 11 - in 1- 1 ti-, of Ille dilnent, and purli- S11- 111 dist' lle, 11- 1 11111n 111v wsillli; d dilvivni. Afivi further filtration, Ihv inoist prwhict is dried Nvith' air-, s[ ored in it p( m,der silo, and Pri-ar, 111: 11ed. The flillient selmiMcd diving the procr_rs is ptirified in a solvent, distillation: - low- molecular polymer portions and low-boilcrs ate removed. Raw material and utility consumption: per one metric ton of pelletized polypropylene) steam ( 16 bar), kg 1. 400 steam ( 3 bar), kg 1, 600 cooling water, ml 230 electric power, kWh 200 dernineralized water or conde nsate, ml 2. 5 nitrogen, NmI 50 propyleno including coinorionwr!;, kq 1, 060 hydroqen, N rn; 2 G6taly3ts arid polymerization auxiliaries, DIVI 43 diluent, kg - 55 alcohol, kg 5 Commercial installations: 11anis w Ili a tOI; Il eap" eity onsirvain: 300,000 nietric tons/ yr. ( end of 1971) ; 100, 0w metric Ions/ yr. mider constrtiction. lo71 I 71 Polypropylene' HERCULES INC. Application: A slurry process in hydrocarbon dilUent for the manufacture of polypropylene frorn propylene using a catalyst prej)ared froin ti.tanjuin tetrachlo6de and an aluminum alkyl. Description: The catalyst system and hydrocarbon di- luent are added continuously to the polymerization re- actor. Propylene of high purity is fed I to the reactor at a controlled rate. Typical polyrnerazation conditions are temperatures in thc range of 50 to 1001 G and pi-cssures of 5 to 30 atmospheres. Tbe crystalline polymer forme(l, under these conditions is insoluble and precipitates as a finely divided granular solid enveloping the catalyst par- ticlus. Molecular weight control is achieved. by addition of hydrogen, a chain- transler agent, to the monoiner systel ' 11. The catalyst. is deactivated and solubilizdd catalyst components. are removed from the polynier-hydrocarbon phase in an extraictor. The polymer granules are sepa- rated from the bulk of diluent and dried. The Polymer is then stabilized and extrtided into molding pellets, In the production of 1000' pounds of polymer, de- pending on type, generally somewhat more than. 1050 pounds of monomer is consumed. Commercial installations: Plants at Lake Charles, La.; Bayport, Texas ( 1974), and Montreal, Que. ( 1975) with over one billion pounds capacity. References: Kirk-Othmer Encyclopedia of Chemical Technology, VoL 14, Second Ed., pages 282- 309, 1967. Polypropylene — MONTEDISON S. p. A. Application: A process to produce propylene homo- polymers , and plastic. copolymers wiIth ethylene from propylen,, using titanium trichloride and an aluminum alkyl compound as catalyst, Description: Polyincri7ation gradc propylene, hydrocar- bon solvent and catalyst suspension in the -same solvent are continuously fr(I to the rvactor. Hic polymerization is carried undcr mild conditions pressure under 12 atrn.; temperature between 50 and 80' C), in presence of hydrogen as molecular weight regulator. I'lie polymerization sInrry is fed, to a " diges-tor," where tinreacwd propylcne js separated and - then recycled to rv.,-ictor. Ill tJi(- diivs(or, rotal . yst is decornpos I ed and s,[ 111111111/ f. 11 ill 111i. by addilioll of ul pol) owl- is separated frolu thr. hydrocarbon -() I- W- 1 by ­ Ilh ifov,:Oion. Alaclic pol) propy*lvrj(.. i..". by v%.;ip,, jation of ill(, is , y, led. The polyiner is steam- sttippcd in order to separate the SO 1 - nil: the wet polyincr is dried. Fhr dry pf)%V( I(- l- is prI11. 11i./ ed in . 1 rol 1- cll I iol 1, 11 grallo- hitioll seclion. By ' Ise of a s0itable catalyst, whose process is avail'able' to Montvdison, a polyiner in powd;,r form, narrow j)ar- ticle distribution, may be prodored, which may be used instead of the granulate.. rhe process is somewhat modified in thc case of pror doction of plastic copolymers. Raw materials and utility consumption: ( per 1, 000 k -g', of pelictizo(I polynicr) : Propylene, hg ................ ...... 1. 125 Solvent, kg ............................. 25 Alcohol, kg ................................ 4 Fi QI:, kg ................................ 1. 2 Al compounds, kg ....................... 2.4 Chemicals, U.S. $ .............. ........ 1. 3 Steam, L.(r ........... 3. 200 ooling Water, rn3 ........................ 400 Electric power, Kwh .... 500 Nitrogen, Nm-" .......................... 70 Credit: Atactic polypropylene, kg .......... 85 Sorrinwhat diffrrent values in the case of production of Plastic copolyiners.) Product properties: A %vide imij, e of 110111' 1 . 111( l co 1)" IY1111" s 1- ly he jmulmcd. N11, 11 illdvx illav he valivd fron, low values ( 0, 1- 03 g/ J0'), as requiredfor the ex - 91 -;1( 1(' s ' to fl- M- lillill values, f2- 8 g/ 10'). re- Illited fly 0w I 11JI- f- fioll illoj( IJ711" glwjv, fillo gradcs, etc., to the high valucs jcquired by the fibre grades ( 20 g/ 10'). Medium and high impact block copolymers may be produced, as well aq random copolymers. Ashes rontent is V(. I.y low; is( llaclic cm111, 411 very high ( 95% m. illore.). Commercial installations: Montedison has four poly- propylene plants in Italy, with capacity 200,000 t/ y; has licensr-d its processes and know-how to threv Japanese, companies, one U.S., one Austria, I Spain, I India and I U.S. S. R. ' FECNIMONT S. p.A. ( Piazza Tilrr 3, Mi- lano) is the engineering company of the Montedison Group is recommended contractor for the process. , Polypropylene —PHILLIPS PETROLEUM CO. Application: A process to produce polypropylene lionio- polyiner and copolymers continuously frorn propylene. Descripiton: Fresh an , d. recycle' nionorner is - introduced into the reactor with the catalyst. , Polymerization occurs at relatively low temperatures. The product, whether hoinopolyiner or copolymer, is witlidrawn coiairitiotisly for separation from the hydrocarbon. Separatiun of ivsi- dues and soluble polymer is performed in, a very umque system incorporated in the process. Soluble polyrner in the product can be varied to inect market requircinents. The product in powder form is stabilized and pelleted. The process is ultimate in simplicity and, therefore, service factors are high. Impact grade copolyiners !) f product, as well as t1je hornopolymers, fill the known market applications. Commercial installations: Diamond Shamrock Corp., Deer Park, Texas; Phillips Petroleum Co., Pasadena, Texas; and Pertainina, Pladju, Sumatra. Isobutylene & Propylene (Coastal States Petroleum Co.) _ FOSTER WHEELER CORP. Application: A process for the production of isobutylefie and propylene from isobutane feed. Description: Isobutane feed is cracked under carefully controlled conditions. Reaction section effluent is passed through a heat recovery section to a gas recovery area where fuel gas and small amounts of heavy components are separated from the C, -C, stream. The C,- , C, product stre can be sent directly to an alkylation unit or to purifiXtion systems to produce high purity isobutylene and propylene. The mixed propylene -C, stream can be fractionated several ways depending up-cii the products required. For example, the isobutylene- fich mixtuie can be fractionated to produce a relatively rich ( about 951/() isobiltylene and an isobutane -rich stream. The isobutylene- ricli mixtuye can be sent to extraction or extractive distillation to produce high purity isoibutyl- ene ( 99+%) - and an isobutane -rich stream. The entire (" VC, stivaill c. III I)(: sent to an alkylatioll upit or to a cat poly unit wid the unreacted isobutane recycled to extinction. Yields: V'ypical yields I are expressed by the following tabulation, based on a plant to produce high purity propylene and a 27% isobutylene and uncoverted iso- butane. The latter stream call be treated further if dc - sired. SLr— ni Feed Ca Product (;, Pruduct Offgas lip, d 5, 0(X) 760 3, 520 ( 3. 35 NIMscfd) h5 Component analysis, cyj propytene 92 a -butane 5 Isobutane 95 67 u- bu1e te 2 Isobuty1cne 27 Mole Wt 13. 7 Allí 43. 9 The taiiii ( if propylene to isobutylene produced can be varied within linlits by unodifi— tit, of operating conditions. Utilities: The utilities listed below are typical for the battery limits plant. Fuel gas requirements may he offset by UIV OffgB fl -0111 1. 11V 1) 1, tllt. Cooling water 5, 860 gpill Ele( tric Powel, 190 kwli/ lir. . Fuel gas 9P MM Btu/ hr. Boiler feed water 93 gpm ste"till 2, 500 lbs./ hr. Commercial Installations: Coastal States Petrochem- iciti Co. is operating the process at Corpus Christi, Texas. The Coastal States Isobutane cracking process is licensed exclusively through Foster Wheeler Corp. Further infor- mation may be obtained from Foster Wheeler Corp., Livingston, N. J. 190 November 1969 HYDROCARBON PROCESSING V. k, VLIU- propano Propano Polímero C01815 de] Tetrímero ligero tetramero Mc. 25. 14. Prweso para la obtenci0n del tetramero de propeno. ( Pet. Ref., 36, núm. 11, 278, 1957; copyright Gulf Pub. Co.) Carbon Tetrachloride (Hoechst Process) HOECHST- UHDE CORPORATION Application. A fol' ( MIAMI WtUIVIllol-RIO 1) 1() Lltl( tioll fly the therilial chlolillatioll of Incthaile. Description: Tht chlorit)jItioll of int -thane to form cai- bon tetrachloii( IL, takes place a( coiding to the foll.mving reaction: GIf, 1 4 C.3, — MI., 1- 4 1 W1 + 89 KcA This exotla-l-lilic reaction is (,- ai-ried out coiltilmotisly ill reactors of special design. The effluent gas coll.."ists of (- ajl)t, ii ti- trachloridt, aik( I byill-og(-ti (. 111olide. The IK"I is ab" 0164-d ill Watt. r. ' 1111. ra v (:(: I, is con- dt- lised aild pt1l' lIl('d fly ( fisfillati( fil. ' I' lle lo%%.(,I. (. 11101-illatt-d im-thalles are obtaint-d aS, oV(, jl1(-: 1tI and 11lay be 1-(. Cy(-I(,( l to tht. lt%ictioll soctioll. With a variation ill tile design of tile l-ecoN,eq systt-ill, bYTHKI- A W3 I' lay be obtaijivd , is a gas, containing a striall aniount of GCL,. and the ineris introduced witli the incthanv and clilorine feed str(%jills. Raw Materials: The inethall(- f, -d to the reactors jimst be thy all(] SUbstalltially frec of higher hydrocarhmis which lvdticc the yield and catisc ( orrosion ill distilL,- 232 oll ' HW ColIC( Alt I t t toll 0I ilW1 L" if CO.,) Sholild be as J0% V as 1)(). Ssib 1c. ' I' lle clilmilh, Hit be dry and substantially inert fi -et., I' ll(! f(Illowillg. quantities of nictliane and chlorhir a coii.-,Lllli(-([ per toil of ( X" l, prodliced: CI .. ................................ . 800. 11). 3 1 . ............................... 223 Ib- Tlk-' 4911les correspond to yields of 97 1xivvia of tile retical ba.scd oil chlorillt. alid 9: 1 j)-vioi- ent. b; 1S(- d Illetlialle. Products: The carboll, tvtj,.j(- Jjloljdt- 1) 1() tlllct Is, i IiG1, ( 1., and oi-gijll(: linpuritie's. The JI(; I is obtaim as 30 percent hydrochloric acid und animints to 1900 1 If( -,I pur ton of' U -J, product.d. Commercial Development: The process %,as in a 10 T/ D Scilli- W01-k-S killit itt tile 1-h'A- Vilst, I) Ltlit Farb%verke I-locclist AG ill Gcrinaiiy. A 60 T/ D cial unit is ill olieralion at I-locclist. HYDROCARISON PH0(; 1,,- 5SJNG & 11KIROLE11M TOLUENE JOLUOL) C113 0 Front Coal Gas and Tar Light Oil t7) Sulfuric acid Sodium hydrox.ide Crude benzene bo Crude tclijenn C: TolueneT. 1 E lo -Solvent naphtha C, t5 2 Residue Heavy -,olvent Sludge ILI to naphtha T naphthalene 0— id" s Yield I ton of coal yields about 0. 5 gal toluene Process Tolijene or toluol ( the crude product) is obtained from light oil by frac- tional distillation. The light oil, formed by coal carbonization ( see Coke), is recovered by coolit)g and scrubbing the by- product coke -oven gas. The light oil, wliich condenses with the tars ( about 5 per cent of the tar), is recovered by rectification. ( See Naphthalene for coal -tar distillation and Bei7min for fight-oll dishilation.) Tlie light, oils ( containing 12 to 20 per celit, toluelle), s(. 1- 11bbed from Coke- ovctl jlra.-4 " Ind distilled from hr, ,ire combillwill awl fnavflowally di- 611(' fl in coritinuous or seinicontinuous units. Between 0. 1 and 0.2 gal of toluene is obfilined per gal of combined light oil distilled. Generally, four fractions are Uaken in the crude distillation. The second cift, from about 95 to 125,)C, consists of crude toluene which is sent to an a eid -resistant agitator for wash - 761 I .. k' . — , Id , I, , , -- I L . . . , 1. k I I A &. I I I - - IIA - . '- . , , , I i I . " Y , , U L' s . "- 11 3 and 0. 7 lb of sulfuric acid is used in 4 to 6 portions per gal of oil. The toluene is treated with a sufficient quantity of 10 per cent sodium hydroxide solution to remove the free acid. The washed toluene is fractionally distilled in batch vacuum columns to yield refined toluene. Froin Petroleuni by Hydroformin,- To p r i m a ry - 4- 11 column Toluene Reaction ( Typical) Cr) 1111CH3 --+ C6H5CH3+ 3H2 Nlethyl eyelohexane Toluene Material Reqtiirernents 80- 90'-, 0 conversion Basis— I ton toluene Naphtha feed stock Widely variable, Sulfuric acid dependin,, on Caustic soda M feed stock Niethyl ethyl ketone I See Benzene for typical yields using Platfortniii,, process. Process Toluene is produced from specially selected fractions of petroleum, rich in napilthenes, by catalytic reforming ( also known as hydro forming). This involves catalytic dehydrogenation in the presence of hydrogen ( which re- duces coke formation) to yield a mixture of aromatic hydrocarbons, ehiefl" toluene. For the synthesis of toluene, the hydroformer raw material should be rich in dimethyleyelopentane, methylcyclohexane, and ethylcyclopentane ( the Uel gas Benzene ME K — water Perycle butanes) I MEK and I M E Hydroformate 1 5.) L C nonaromatics recovery 0 CU 0 plant ZI 75 '; 3- — N U Nonaromatics T Gasoline Xylene 0- r Caustic Sulfuric soda, acid water Feed stock Furnace0--E Hp 0 naphtha) L) Mixer an t C: E Icc: 6 waShe, E; : 3 a) 0a) 0u To p r i m a ry - 4- column Toluene Reaction ( Typical) Cr) 1111CH3 --+ C6H5CH3+ 3H2 Nlethyl eyelohexane Toluene Material Reqtiirernents 80- 90'-, 0 conversion Basis— I ton toluene Naphtha feed stock Widely variable, Sulfuric acid dependin,, on Caustic soda M feed stock Niethyl ethyl ketone I See Benzene for typical yields using Platfortniii,, process. Process Toluene is produced from specially selected fractions of petroleum, rich in napilthenes, by catalytic reforming ( also known as hydro forming). This involves catalytic dehydrogenation in the presence of hydrogen ( which re- duces coke formation) to yield a mixture of aromatic hydrocarbons, ehiefl" toluene. For the synthesis of toluene, the hydroformer raw material should be rich in dimethyleyelopentane, methylcyclohexane, and ethylcyclopentane ( the WiLL buiii-ene ailLI tively. The feed stock also contains paraffin hydrocarbons, of ' N- hich normal heptaile and dimethylhexane are typical. These compounds pass through the hydroformer essentially unchanged and consequently contaminate the toluene hydroformatc. Crude petroleum and natural gasoline are processed by distillation to yield the hydroformer feed stock.. For example, a Califorriij crude oil containino'. 0 about 1. 45 per cent syntliezis hydrocarbons and 0.56 per cent natural toluene, is fractionally distilled, and a so- called heart Cut is taken between 190 and 240' F. Natural and straight -run gasoline may also be processed by heart cutting to yield the maximum volume of feed stock obtainable. Tile feed stock ( a selected naphtha fraction) is preheated in heat ex- changers and is then totally vaporized at 1, 050' F in a furnace. Here it is joined with hydrogen -rich ( 70 per cent) recycle gas at 1, 070' F, and the ii-uNx- ture is passed through a reactor with a contact time of about 15 see. The reactor contains a dehydrogenation catalyst consisting of 10 per cent molyb- denum dioxide on alumina. The reaction takes place at a temperature of 1, 000 to L070' F, a pressure of 150 to 300 psi, and space velocity of O. C) volume of feed per hour divided by tile volume of catalyst in the reactor). The ratio of reevele gas f70 per cent hydrogen) is about' 6, 000 eu ft per bbi oi reactor charge ( a luarrel equais 42 gai in the petroleiiiii induAry). The reaction gases Pa,,, -s through heat exchangers ( prelicatino, the feedIZM In tock , I to a gas—liquid condenser and separator. Here a large portion 'of the eparated wet gas is compressed ( 75 to 200 psi) and is recirculated to the furnace and reactor to increase the hydrogen concentration. Tile liydrogen tends i t * o reduce coke deposition and thus maintain catalyst activity. The remaining gas and liquid pas,!; to conventional absorption and- stabilizing enlumns ( fractionators), which produce fuel gas ( butanes, etc.) , gasoline, and hydroformate. Tile latter contains about 21 per cent, toluene and may be recirculated thrmigh tile reactor for maxinimil conversion to obtain a two- pas:i hydroformate containing 38 per cent toluene. Two or more reactors are necessary for continuous weration because of t.lie inactivating coke formation on the catalyst. One reactor is used for the dehydrogenation operation, %-Iiile the second' is being regenerated by b'urning with air or oxygen- containin, 11ile , ae, 0 r l I I s. (-, crlerally, air is bled intf) ',in inert en and carbon dioxide) s Most IN' iiitrw, q) tilat tile 11lix contains about 1. 5 1wr eelit oxygen. ' 1711v latter combines witli the vi) kv, forinim,, carbon dioxide and water, while the inert gas removes tile heat of combiustion. In passing through the catalyst bed the temperature is raised from 700' ( inlet) to 1. 100' F. -' File liot gases pass to waste Ifeat boilers. The regenerated catalyst is reheated by hot flue gases, and then the inert gases. as well as water are removed by purgingP with wet gas from the gas separators at atmospheric pressure. The two -pass hydroforniate ( 38 per cent toluene) is fed to tile toluene- I . . . . . . - - .. _. . . .- - *. .- I.- I - - ., I - e, 11, Li 4. t nc, pectively. The heart cut, containing about 65 per cent toluene, is fed into an azeotropic distillation tower. If one -pass hydroformate ( 21 per cent toluene) is used, the heart cut contains about 39 per cent toluene. A mixture of methyl ethyl ketone ( 90 per cent) and water ( 10 per cent) is added to the azeotrope tower. This azeotrope loosely associates with *the paraffins and naphthenes and carries them out t e top of tile tower to the ketone - recovery plant. The toluene, because of its higher -boiling point, moves down tile tower and is removed from the bottom as crude toluene. The crude material is run to a colunin ( flash tower), where the remainin'g methyl ethyl ketone plus some toluene is removed as the head Cut. This fractio'n is re-' turned to the azeotrope tower. The ketone -free toluene is then charged into a mixer. where it is washed with 9S per cent sulfuric acid ( about 5 lb per bbl), settled,. water -washed, and caustic -washed to remove small amounts of olefins. The washed tohiene is run to a: refining column, where it is redistilled to produce nitration' grade toluene. The methyl ethyl ketone recovery plant separates the ketone and non - aromatic hydrocarbons by countercurrent extraction with water. The ketone extract is separated from the water by di-stillation and is returned to the azeotrope tower. Tile nonaroinatic raffinate from the water extraction is distilled to eliminate the water and ketone, leaving ketone -free nonarolliatic hydrocarbons. Alternate Catalytic Reforming Processes Several catalytic reforming processes have been developed by varions organizations. The processes differ in cle'sign details, operating conditions and type of catalyst used. Some of these procc scs are listed below. Tile Fluid Hydroforining process ( licensed by the 'S"tandard Oil Develop- ment Co.) uses a fluidized solids technique in the reactor and continuous xecrencration of the niolybdenum- on- aluniina catalyst in a separate vessel. In a typical run a 214 to 291' F virgin naphtha was reformed at 934' F ald 250 psig. A total aromatics yield of 39. 6 per cent by volurne was effected. By-product hydrogen amounted to 740 cu ft per bbl of naphtha processed. The yield of individual aroniatic hydrocarbons ( by volunie) was: benzene - 1. 67o; toluene- 153/-,o; Cj a roina tics— I 5.. j o; Q) al aties- 6. 87o. Over- all liquid vield was S3 per cent, of which butanes were 6. 9 per cent by volmne an( l pentanes 7. 2 per cent. The retruthiiii, depentaiiiz(A liquid ( 68. 9 per cent volume yielch could be processed for aronlatics or used as aviation gasoline blen( lin(, stock. n Platfornzing is a fixed -bed process using several reactors in series with intermediate reheating. This process, licensed by Universal Oil Products Co., uses a p1atinuni- 6n- alum1na catalyst. It is described in detail in the chapter on Benzene. tO 1UU Per MIL, 111( lu6Lrial grade - 195 LO go per Cent. Lower gracles ire known as crudes, or by special names, e. g., aviation gasoline blending stock. Containers and Regulations. Tank cars, ( trunis, palls, cans, and bottles. Red ICC bipping label required. Economic Aspects Toluene has two large (! ii( rD I uses, explosives YNT) and aviation gasoline. Because both of those are highly essential in -wartinie toluene prodUetio n5 1 historically has been high in wartime and low in peacetime. Du ring, World War I.. the coke and gas industries . vere able to recover sufficient. toluene for T * NT manufacture, but, during World War If. that effort would liave been picayune. The Army Ordnance Department, therefore, turned to the petro- leum. industry and had built ten hydroforming and six recovery plants. with - 000,000 ( rala total capacity of approximately 20 g toluene per nionth. Since the raw -material feed for recovery plants must contain toluene, the number of stich plants is limited. The limit for hydroforining- (more properly " cata - IN -tie. reforniina") plants, on the other liand was not nearly reached. It was fortunate, however, that these plants could be converted readily to the iiianti- fa * P.Wre of a , viation gasoline. because demand for toluene fell',51iarplv. But with the expansion of air transportation and the increased demand for high- octane inotor fuel, hydroformer capacity was soon exceeded by the demand for the "' reformate," so inany more facilities were built. Then when the so- called " Korean emen-,ency" caine alona, demands increased1 - n for benzene. toluene, and xylene as well -is for aviation gasoline. The coke -oven industry could not expand, and qo almin more petroleum facilities were built. AC'- eordln,gly. as demand has increased for aromatics, larger and larger per- centages have come from petroleum. With toluene, this percentage ha:5 in- f-ea: ed froni 59 per cent in 1949 to 77 per cent in 1954. Unlike benzene and xylene, however. toluene i -s not used to a very great extent in chemical synthesis ( except for TN -T). Development of proces-nes ba.,ed on toluene is precarious unless the product en( I- lises are as essential In wartime v, ii%,iation gasohno and hidi explosives. As late as 1953,' 90 -per rent. of pet ro I ell ni -de rived toltione and 70 per cent of that froll, coal tarwent. 14) D111- im, Wm-ld War H I' lek of toluctle for sol%.ellt Ilse led many users to develop alternate solvents that continue([ to displace toluene after the war. Catalytic reforming plant,,; recovering toluene as such vary in capacit iroin 2, 000 to 21, 000 B/ SD ( barrels per streani ( J., iv) of feed stock. Toluene production depends, of cour,,:e, on the nature of the feed. Catalytic reformer investment costs are $ 125 to $ 300 per daily bbl capacity, depending on size and specific design. Although only about 20 refornier are in toluene services I licen- eu uy Atlantic Refining Co. Other fixed -bed catalytic reforming proc- esses using a platinum catalyst are Houdriforming ( licensed by Houdry Process Co.), Ultrafortning ( licensed by Stan(lard Oil Co. ( Indiana), and Powerforining ( licensed by Esso Research and Engineering Co.). I- Separation Processes The aromatic hydTocarbon values of reformates cannot be separated easily from nonaromatics of similar or close boiling points. Accordingly the proc- esses most widely used are extractive distillation, azeotropic distillation, solvent extraction, and selective adsorption. Azeotropip distillation makes use of aqueous methyl ethyl ketone ( described previously), nitromethane, methanol, or dioxane. In extractive distillation the usual solvents are phenol, cresols, furfural, aniline, and alkyl plithalates. Selective adsorption proc.- esses include the Sun Oil Co.' s Arosorb process using activated alurnina tas the ad.,orbent -and California Research Corporation' s process in which silica gel is used. Two of the most widely used processes are liquid–liquid extraction proc- esses. One uses liquid sulfur dioxide and the other ( the Udex process) makes US(% of aqueous diethylene glycol ( see Benzene). A typical separation by the Udex proc6ss is as follows: Feed: 51. 3 per cent aromatics ( 7. 6 per cent benzene, 21. 5 per cent toluene, 21. 0 per cent xylene, and 1. 2 per cent C[) aromatics). Recovery: benzene - 99.5 per cent; toluene - 98 per cent; xylones- 95 per cent; and Cj) aromatics - 80 per cent. Diethylene glycol loss was 0.05 lb per bbl aromatic products. With clay treatment used prior to final distillation 0. 24 lb per bbl product), the benzene and toluene recovered were of nitration g le. The xylenes tliis particular plant were of industrial grade only. rai 1 113 200 160 120 80 40 0 1935 1937 1939 1941 1943 1945 1947 1949 1951 1953 1955 Production—Toluene ( Crude and refined—not including ordnance plants) 0.45 0. 40 0. 35 0.30 CL 0 n 0.25 0. 20 0. 11 0. 1 F- 1955 ( est.), per cent Aviation gasoline 47 Solvent 22 Explosives 13 Other i's 100 1936 1938 1940 1942 1944 1946 1948 1950 1952 1954 19 o Price Toluene Nliscellatieous Properties. Colorless, refractory, flaininable liquid with a benzenelike odor. Mol. wt. 92. 13 -, IN 1. P. — 95. 1 lu Sp-. gr. 0.866 20' C/ 4 B. P. 110. 80C Weight per gallon 7. 21 lb ( 20' Q IS'oluble in ah-ziilute alcohol. ether, acetone, and berizene. Insoluble in water 0. 19 per cent at 20' C). Flash point ( closed cup) 1001. 1 h4nition terriperahire 1, 0267 Vapor density ( air = 1) 3. 1. 1 Explosive limits ( 07o by volume in air) Lower 1." 17 Upper 7. 0 Maxiinuin allowable concentration I) pni by volunie) 200 768 TOLUENE now, anothcr 100 enfalytic reformers c( m]( I he made available for toluene pr()duction Nvith only comparatively slight modifications. Manufacturers and Plant Sites Catal?llic Reformbig Installations Recovering Toluenc: American 011 Co., Texas Clf.y, Texas Ashl,mid Oil and Rr-fining Co., Buffalo, N. Y. Continental Oil Co., 1,. qke Charles, Ln.; Ponca City, Okla. Co&drti 1" Orolviini Corp., Big- Spring, Texas Dellii-Ta)-lor Oil Corp., Corpus Christi, Texas Irvat, Soutlivrn Chemical Corp., Corpus Christi, Texas I Imulde Oil and Rcrinin-, Co., Baytown, Texas Pim, Oil (, o., Toledo, Ohio Roosevelt Oil and Refining Co., Mt- Pleasarif, Midi. Shp]) Oil Co., Wilminglon, Calif.; Wood River, Ill.; Houston, Texas m Sinclair RHining Co., Alni-cus Hook, Pa. Standnrd Oil Co. of California, Ijl Seg'.1111do, Calif.; Riellinoild, Callf. Stnnd,,ird Oil Co. ( Indi:ma), Whiting, Tnd. Sim Oil Co., Wircus Hook, Pa. Smitide Pefining Co., Corpus Christi, Texis B , ií- I>rn. lií(-t Toffiene ( No?icoke 07,en): Don, (` licinical Co., Midian( 1, Micli.; Frecport, Texas NIonsanto Cliemical Co., Texas City, Texas Trilinil Carhidr Clirmirnis (* 0. 1 Institute, W. va. Velsicol Corp., Minshall, 111. For coke -oven producers, see Benzene. RA F!%, ZTE' Lv TIF I EXTRACT WASH WATEr R-' F; 7; NA-- VACUUM 4 I D. MAKE- UP WATER AT. CS RFr_ jX 5 r\- RAIC PARAFFIN SOL E%' 7 MAKE- UP 6 7 IT PARAFF! N SCLVEIN- AROMATICS DMSO RECYCLE S. RAFF! NATE Fig. T- 3. Arernatic-extraction provess using DMSC) as a saj ent for proclucing toluene, benzene, and xylenes. ( 1) - Xromaticsexiractor. 2) DT%1SO extractor. ( 31 raffinate wash. ( 4) extract wash. ( 5, 1 D\ 1SO distillation column, ( 6i raffinate distillation column, ( 7) aromatics distillation column. or Urea —CHEMICAL CONSTRUCTION CORPORATION Application: A pio( css lot- till- inantiLictmu of ijrc; t Charge: Ammonia and carbon dioxide. Description: Urea is producv(f by reacting an-linonia and carbon dioxidi. ; I[ ( Act. alcil tvillpi-latores arld Incssill-es to folill alfirilf-l- lliliol' t;, lkilli' lle ; is .. If illiclillf-diale ( olill)(1111! d. Tit" 1: 11kalm. tc is sillillitalwously di' llydiatud to prodtl( v Inca. The lcai tiolls life as follows: 2 -NJ L, + CO., = NI I., C00NI I., NJ I- I,: - NJ I - (:() NI h I- I L-0 Although ill(, first reaction to carbainate is complete at reaction conditions. the second reaction to forriL urea is incomplete under all practical conditions. In this proccss, usinga. ratio of arninonia to (:() Of about 3. 5: 1, a 01) pert-clit ( olivelsioll of a.111111ollotin carbainate to is aCIliCVCd. CO gas at about 2.-psig is compressed to 3200 psi in a 4 stage, water cooled, motor dl; VULl, lVCipfOCaLijlg tyl) U ( ojljJjjUb ur. Tile COL gas undergot-s multistage compression with inter in(] after stagv 4 ooliliv , and scpantlion of wati' l. and Oil. I , I . ( ofol , ri-swil liqui-fird Nil, flOOL tit(! liquid NIL fet7d pullip, and r(,( Y(: I(!( l aillillunitun carbaniati: solution front tile car- baniate recycle punip are fed to tile urea. atiloclave where they rea 1, 1 to folin urra, aninlonillill c;, lll;1lll. ltr and wall.r. 111c alfloclave cfI'luent is redoo-d ill pressure to about ' 300 psig and passed inLo the tube sid(- of tile stvain- heated fii.st Stage decompo4cr where unconverted anurionia. and CO2, in tile fol:111 of ammonium carbaniate, are partially decomposed and separated front tile urea solution along with inust of till: cxc(-ss annuonia. I' ll(- urea solution, ( ontaining dissolved ananorlia and is reduced to 15 psig and passed through the tubes of till: second stage decomposer where most of the residual animonia, and CO2 are driven off. Cases separated in the first stage decomposer are partially absorbed in dilute ammoniurn carbamate front tile 2nd absorber in the shell of the 2nd stage decomposer providing the. heat for decomposition. The urea- solutiun is - further degassed by Mating with steam. , Ammonium carbamate solution and unabsorbed gas front the shell of the 2nd stage decomposer are passed to the first absorber, operating at a pressure of approximately 250 psig. The gases are 302 palLi; dly tondviisi-d ill the lower paciwd sv( 6011 by ( olli; l( Aing diefil Witil it circulating Carbaniate solcitioll. ' I' lle heilt of rilac- tion is . removed in an exchang(-r by cooling water opt, rating under careful automatic contiol. ' I' ll(, upper pa( ked section (, per - ates at a b NNer I- iiq­ r; i1ory in oi-(I,- r to ( ondf-iise tit(- ri-sidnal 3 ).. as a. pff-olls (" I hmoatv. I i's * ill . 111 hy cooling watcr. Pute NII,f g; ts h%tving tilt: top of ill(! filst absorber is condensed and dclivert7d to ill(- Nll slorago tank. Gas separated front tile urea solution in. tile sc( ond stage de- composer, cont: tinint Nil:,, (10, Old water vapor, t- jitf! rs till, sce- orid absm bcr. ' I' ll(- (:( )-. is ( ondt-nFi- d ill tit(! p; ick4-d scutioll () f tile to-wer ; tit(] tile resulting (.; iibaniate solution is ptinipf-d to tile shell of the 2nd stage de( owposer. A small amount of pro( -(,si water is added to maiotain Over- all walcr baLince. Pill,(- Nil. i as lf!; J% ing the top of till- se( on( l al).%otbur is ( onjim- m-d, ( onricuy- d aitd rctuin d to the NIL. storagc tank. Urea solution froin the second stage decomposer is puniped to the evaporator where it is concentratcd to 99. 7 1wrcunt under vactitun. The concentrated urea solution is punipcd through tile spray heads in' the prilling tower. ' I' ll(- strv; iois lot lilt-(] brv;1k lip ill( o dlopivis which ( oligcal to fill ill solid plj, ri( . 11 e 1. 111111c'. Process Advantages: ( 1) MaXilnuill COIUSVrVatioll Of StCank and co6ling water through linique inethod ( if heat cxclialige llsipg condcrising off g: tses to ducomposr coibamajv: 21) No water from vxWimil somit-s is it -quin -d for olivi; i1ion of tile absorption system. The only Walff rC( JL1iFCd is it sinall quantity for maintainhig the over-all water balance. Utilities: Tile follow; iw consumption figures art- per simit ton t) f prillvil urea ill a collilih:11. levych: plant. Electricity .......................... 165 KN\ I I Steam ( 150 psig saturated) ............ 4, 000# Cooling water ( 20' F rise) ............ 20,000 gallons Product: Urea solutions, prills for fertilizer and cattle fced still- plement and crystals of high purity for plastics manufacture. Commercial Installations: Sumitoms Chemical Nihon Gas Co., Japan; Monsanto Chemical Co., Aik; m,,, (:. ...... inid of Canada, Ontario; Co-op. Farm Chein. As,­ imimt. K,, llsas; Kobe Steel Co., Pakistan; Fertilizer Corp. of hidia, Ltd., India. HYDR017,ARISON PROCEISSING & PE " I' ROLEXIVI REFINFIR Urea ( DSM)— DUTCH STATE MINES Application- A pool vss for the ni; iimf; i( not. ( if olt,;,. Charge: Liql3id anirnonia and g: t, rcttis c. ilboll dioxi( le., Products: Urra is produrcd ; 11, aqueolis solutions, as prills for fertilizei or catIlf-fr(ld- soppif nwnt, or aq crystak with excep- li,,',.11ly lc w bhurt ( mornt for pl; i lif " r ffiliar application. De5cription: Tiricc jilojr. ( jj(. jjjj,% ;I,-(. ;,%.; Iil; il) ie to convert raw ol;, t(, li; 11, to i) Yo( llltts %vio, coov(-, ion efriciericies of 45 percent to ; Ibollt WO pt- i- tvilt. Onrc- thiough design gives the lower M (' 11do-, 11miltial recycle gives intermediate conversions, and fi) t; ll revy( lv 11lives the hifzher conversions. Choice from among 1111"" thn- s( licnics enables the most ecoilonlir ' utilization of 11111mmi; i for production of urea or coproduction of urva and allin ionic in salts stich as nitrate or sulfaln. The main difrerriwe in three schemes is in the recovery scrtion J III(- plant. Thr designs of tht! reaction sr-rtion and the finishing s- clion are the saine for all s( herrics. Sper i ficat ions for raw nialerials and products are the & line for all scheines. Reactions: Carbon dioxide reacts r , apidly and completely with ammonia in the liquid phase to form ammonium carbamatc. At reactor operating conditions of about 2, 800 psig and 3-50' F V: Irf ; IIIIIII( Illillo, carballiate deconiposes into orea ; I nd exicill of dvcooljm ilioll cl, pends In. lilily 1110'. 11 Ibc allmoill. of alliolollia that is Im" 111 in flic Illixitlic. High ; IIn- Irvnli: ilions fo%or de( oinposi( ion 111) to abotit 70 per - o, ceni. At thi, st,, ichionivtric vaiio of ; j I, Illicit, i; l to r; jIj)j, II d"loxi( le ill Ow if.: I( Iol Illixitirr, almot ' 15 p-l( clit of fill- call):1111: 11v de- cmillmsrs to Illf-a and wat,. I. Recovery: III the total rec5cle proiess, rxrPss ammonia is flashed front the rvactor- cffluent, condensrd arid recycled to tile reactor. 111 sidoal : iminonii and ( otholl ; It(, ( jf solbj fl froin Oil. rrm,for poodott and rvabsoibed if' water in two recirculating stai.ws. At atitiospheric, piessurc. t1w last trarcs of aninjonia ar(. allsorbi-d in %v.it(,r and concentrated by dr -sorbing under prossurn, Ind Own rrahsorbing in the wrmid rccirculiition st: iQv. Tht. calballwin st' llitig;?i is d f loill I hr S" cl .11d 1 - f - I it-, llloli, on Stag- to the fir%f, : in(] finally ri-tiiiii, d to III(,- loot I" r. Tlw bottonis product from the immonia stiipprr consk1hig of re.si- doal arnmoniurn rit-barnite, urva, and watur, is finshed to ne: ir atinosillicric. pi-cssin-v in f' ll(' In allow forthcr strip- Pill.9 ( if al- 11, 11lia and cmhoin diaxide. ' I' ll(! if-imiining liquid consists of approximately 80 percent urea and 20 percent water. Finishing: The nuain separation in the finishing section is between watrr and ur,-,). Water is evaporated in t-wo stages und(-.r pro- grf ssivrly hi0wr v; icourn. '[' It(! inoitcro ijr(:.i produr t from the. second cv; ipmator ( oolaiiis less than 0. 3 1wr( r.rit inciitilre, and the rvsoltant prills contain about 0. 6 percent biurct. No further d ry Iit) Ig of product is necesviry. Molten urea is prilled, cooled, and bagged or conveyed to bulk storage. In bulk storage, in a closed shed without air conditioninq, the unconted prilled pr ( o( t dors not cike. A modification in the design of thn..evapo- ration scction gives a prilled prodtict containing less than 0. 3 perc,-nt himet. Yields- ]-'( or a total recycle process,, 100 tons a day of urea corn - potted oil 46 percent nitrogen requires aboitt 58 tons of III,- monia . in(] 76 tons of carbon dioxide. ' I' h(- s(! quantities allow for nominal losses. For a partial recycle or a ciricc- through plant, the required raw materials are proportional to the conversion cf- ficiency. At 70 percent conversion of ammonia, 100 tons of urea require. abont 83 tons of makeup ammonia. At 45 percent con- version, Tll; lk(' Ilp amo1011il is Ibcjjt 1.! 9 tons. For a 100 -ton uren plant, , Ili. Is allilliollia to alilloonionj salt production J- 0 for 101; 11 11 -- 1, , ­) Im- for 71) jwr­ ht cooversimi, aod 71 tons for 11 - 71 - ilui, unt ( on%vi-simi. Materials- Motf-rials for the reac( ors,' drroniposrr, evaporalors, aod ollwr rtloiliownt in high scrvi( v air sfainless steels of the 300 Scrivs. Linings of Irad, siivt: r, or other precious metals are not used. The use of oxygen under U.S. Patent 2, 727, 069 controls corrosion at a negligible rate. Commercial installations: Svvf ntven plants are prvs(-ntly in op- cratifin or onder construction in eVven diffeictit countries. TOIA Olpacily is about 5, 000 tons per day, or equivalent to 1. 7 million tons a yvar. Plant sizes range front 70 tons a day to ; I1 l"", 500 tons - I ( Liv. ' I' ll(, bulk of the production is by the It,., 1, 1'. ArIlillit. G. M( KI. C. & 0). 11; 1% de%ii' llf-d ; 11111 is f011stillf ( ilw a plant foi. 'Solar Nittogco ( 1if-micAs III(-. ' I' ll(- fitst co I iinien ial plant producing prills with less than 0. 3 percent biuret, is beim, vrigincei-rd and designed by C F Braun & Com- 11: 1115-, ;, it(] will Mort prochiclion in 1962 1961, Vol. 10., No. 11 303 Urea— FOSTER WHEELER CORPORATION Application: A process for Llie ularmlactille of uica. Charge: Ammonia and. carbon -dioxide. Products: Prilled solid " rea, t.Ccliflical grade Cr'ySLLt1s, solutions. Description: Urea synthesis, in the Pechiney -Grace proc- ess, esseillially is acilieved by the 11011 - catalytic reaction of ammonia and carbon dioxide at a pressure of 3000 psig. The outstanding feature of the process is the use of a neutral oil in which unconverted F(,(*(] gasus it, ow for,n of art aininonitim carbamate sluiry is recycled to tire re- actor. The products of the reaction are highly corrosive and the neutral oil *circulating medium minimizes attack. of metal parts and also moderates temperature variations in the reactor. Carbon dioxide compressed to reaction pressure, treated. to remove any residual sulfur and oxygen, is preheated and charged to tire reactor. Liquid anhydrous aininonia is preheated and also enters tlie reactor. The recycle stream containing 35- 40 percent ammonium carbarnate solid in a highly dispersed slit rry- in- oil also enters the reactor. The primary reaction is to form ainnionium car- bamate from ammonia and carbon dioxide. This is a highly exothermic reaction and supplies the licat for the secondary reaction, the dehydration of car- barnate to urea and water, which is endothermic. The oil carrier thus serves as a thermal fly wheel storing the heat liberated by the first reaction and releasing it for the second reaction. 304 111C Cill( Will. floill tbe reactor, viz., inca, mireacted carbarnate, water and carrier oil flows through a pres- sure reducing valve from the aOOO psig reactor pres- sure to ap1mixii-nately 60 1) sig and into die decomposcr where licat is applied to decompose carbaniatc into ain- monia. and. carbon dioxide. . The aqueous urca solution and oil flows itbrotigh atinos- plit-ric arid sid)- almosplicri c flash systems to die decanter where the carrier oil settles as a top layer arid is pumped ' to the oil surge and storage tank. The aqueous urca solu- tion witlidrawn. fjoin the hottoin of dic decanter is P1.11111MI to tile Urea finishing sections. Uncoverted ammonia and carbon dioxide gases, from tile decomp9ser, flow to the salt oil reactor WIler(` they combine to form solid aninionitim carbainate firwly dis- persed in the circulating oil. This recycle stream of ain- inonium carbainate and oil is pumped back to tile syn- thesis autoclave. Amirionia. aiid carbon dioxide gases released in various. parts of the unit flow to an absorption -recovery section and are recycled to tire decomposer. Operating Conditions: Essential operating conditions are given in tile above description. Commercial Installations: Grand River Chemica] Divi- sion of Deere and Company, Pyor, Okla., Grace Chem- ical Co., Division of W. It. Grace & Co., Memphis, Tena. and 330 Ton/ day installation by Government of Indonesia. HYDROCARBON PROCESSING & PETROLhum REFINE,R Urea ( Lummus. Lonza) —THE LUMMUS COMPANY Application: A lyro­ v; for Ilir, Inodiwiii-in of me i. Charge: coikwn dioxidf, ; Ili(] lirlilid Production: ' I he prodll( tiojj of it, vnrinus forniq ls It' Ilk (.-I ysfell, IIIoltcll' ll); i­; ; Ili(] solutions of Description: The. Ilow di;, I, Ijjtjsjt-;It(, s Ill(, Lununtis- I jt.(,;l Proc" S fol. flic pro( hicholl of III-rn KI' vd Oil Ivc\( II. of 1111( t) TIvel-14- d ; IIntII#)IIi: I ond 111, illofcs.s IlmN ; 11- 1 I' v lltiflz(,tl lot ( m( c- IIII( Illfill j-; IItI,1f rvc cjc vlwi; ktioll. Liquid inimoni;i ond N C in ; I St. - 11 -1) IT, ( lio ill 1(.( (.; It hmw) Ic If(! 111tro- Im . d illf, I, [ hr lr l( t" I. ' I Ill- limpt I " 1( ( liml () I I`vcd 1; 11101 111d It.;IcIol f( Illprimilles ; 111( 1 peliflit fill- Syn- IlIrsis rr" Ictilin ( o occm m. opliIIIIIIII ( onditions of sion. (' n( l( T Ill - v svIrctivi, conditions 70 p' ll-vill tf* div ( 11( i\ ffic i ; III( I ; I milliIIIIIIII of, (: 1111, 1111mc w,(] hc w(\( Ic( I ' I' lic Irm-tioll ; IIIII) IofIi; I mid c: lrkm d1oxide fAvs 1) , It r hrl%% I ' cli 160. to 220" ( : ; md 201) 1,) ; 70 ; i1mosphric. ' I I w 1 ". 10 It' ll I , vv)f Ill.-? 111. 11 . 11)( 1 , li' m it hN lilt- f" Iffm ilv, 2 NIT, I- U( I. N IT, r: 0., -\,I I! Ill (:(),. NII f N I 1 ): 1 C( I I_() Itil lint Fivi' d I I i 1 1) 1 r k 11 I. f. N ossvi. If : oll t 1- 110 lot) ( Ir 1 Ili' is willi : I ( ollillif. l.( ilily Illo 1111cl 11111vilt floill Illr vc; lf lilt lilt un cm Nlywitc ' 11)( I is I (. ill I( (.( I to I If illlcl Im I lilt, prinmry Ill-( rmilm, svi . Aminonm mid ; it - Nove,m1wr 1961, Vol. 110, No. 1- 1 boll ( lioxido ; Ili. flo" Ilvd. sf...Imlate 101 1- 101111 tile residiml lit-Illid In(] fjqms lo dir pilnmiry ibsorbcIr. ' I' lie liqidd flmvs to a sv( on( I I I—' drco I I I poset opprwing norm ; i( mospheric. In rs- still. Adwic it is to complciv Ilir ( Ircomposilloll. of IIh: IfII; Ifr AllifflollUt olid carboll ( I Ifi, Jdc fl(, Itl this de- millo- ific-11 ;) I-(- nbsorbvd in the secondiry, nbsorbri.. Ill (I I I If ;.I y) I I I I io If ( I., if I 1 1 Iv - St.( of I( L) IV decon I pos'( -T flows fit ; I qllp.c klill. f" ho 1111111ped 10 dw lilIVAIIIIII scr( ioll l" I lprlt; il . i( w ond solidificotion into d(' simble prodlict Form. S flom flip fir;f. ( IPvqmpo,, t arr rvcov(-rt­ 4 I in lilt- pri- m -m- ;d), m1wr in ; Ili mlw­ w, vdiltioll. ' III,- lowri, i..,i 11'. 61 11rd to coll, vIll 1. 11'. olo .1 of II[ I. olool" 11i; l %\,) I;, 11 ov( I hr; ill aliff omI,-1m, tion is combin,,( I with fics], ammotlil fce I. ' Fliv t- Ik' s Phice at I we'sSilre i%hich pf-rinits thc tise wolf -1 for ilw If ; 1olmollia mid limi- I,,, lo I I 1 4 1 - it, - I for if-fri­- i Oiim It#. I, olojioll 1,.;,% f N of Ow low'. 1 : md i I d b." I vl. l". floill Ow -,.( 4, 11( 1: 11 y SI -I owl. 11 y 1h.". 1 I" I ., ., it % ollitioll fill [wd h, Ilw III mnm 41, , aop- a I I' ll(- it;- of - I watri- R0111tion in The recovery of ammonirl an( I oll,on ; I rv( y' Ir Sir,: 1111 frve fit lily rorif'"llol . wilillf, 111: 0, li; d 11" I pl'- Iollsly f,*( l lo Ow Calboll dioxi' l.. Illv%sill, ' oIs or Ic( III( vil -. 1" the 1. 11holl flio" id'- is ; is i lifliji( I instc;irl of ; is ; I mis. ' I' lle mcovcty mul reryirlc- s" I, I , t" I ill ­ I il," d III', mils 99 pull - ill , , it% - rsior I of holll dw olo- Illool. 1 . 111, 1 ( ; Ilhotl ( . Commercial Installat; cns. I" cifilizi-Ill..., 11, 1 11, 1ji". S, 1, 1,,( t, t M, vi( o I mi( Iry conot it( firm ) . Urea —MONSANTO CHEMICAL COMPANY Application: A new synthesis of urea under mild condi- tions of pres.sure and temperature. Charge: Gaseous ammonia, sulfur, carbon monoxide, spl- verit nictlianol and hydrogen sulfide. Products: Crystalline urea of 99. 6 percent purity and gasecitis hydrogvn stillide. Description: Tile Lion Oil Company, a division of Mon- santo Chemical Company has developed a pilot plant process for the production of urea frorn amnionia,, sulfur and carbon monoxide. In' contrast to the cotiventional urea, processes, the pressures are low, ranging from 200- 300 psig, while the temperature is usually held at 212' F. I' he stoichiornetric equation is CO + 2 NH3 + S --), N112CONI 1, + 11., S Tile sulfur is recovered from the liydro,,Cn sulfide by one of tile conventional ploccssus and recycled. I'lie reaction is carried out in tile presence of a siolvent such. as inethano'l. It has been found convenient to make up a feed solution by dissolving the Sulfur in ammoniacal methanol and adding some hydrogen sullidc so its to get a more concentrated sulfur solution. ' I' lie hydrogen sulfide does hot take part in the reaction. ' I'lie sulfur may be best handled in the inelted state. - The reaction is condUCted in a spccially designed sieve - Plate reactor made of stainless steel. It is op rated in a counter -current manner. Feed: Carbon Monoxide: Alilkotigli a J' Ved gas coillaill- ing lower concentrations of carbon trionoxide may be 306 used, gases havin­ 8,5) to 95 percent are prefern-d. Sinafl ainotints of inerts stich a% nitrogen do not interfc1c. Iron carbonyl and carbon dioxide are undesirable. Sulfur and Arnfndn.ia: A f(, -cd solution having the fol- lowing composition gives satisfactory 1'(' SLiit%: Nil;, 25 percent, If.,.% 4 jwrcerit, S 20 pvr cent, arid inethanol 51 1) crount. I' his is, fed at a temliciattire of 1360 F to the reactor by a pump uiadt! of nicke I- niolybdcn u j i i alloy, while tile carbon monoxide- is injected near the bottoin at a pres- sure of 250 psig. ' I' lic temperature is lield at 212' F in the reaction, section. ' I'he urea product containing exccss amnionia and some hydrogen sulfide passes to the evapo- rator -crystallizer where tile methanol, ammonia and hy- drogen sulfide are removed overliead. ' I'he distillation collillill' svparates Ijurc luediallol Wilich recircillatcs to . 1 recovery section in the reactor preventing losscs of aull0 monia from tile reactor. ' I' lie urea crystals- from the clys- talli.zer are centrifuged and dried to recover methanol. The product contains more thari 99 percent urca. Yields: Conversions per pass of sulfur to urea approach 100 percent, for arnmonia usually 85- 95 percent and for carkon nionoxidt, 60- 75 percent. Ultimate yields - bascd on animonia and sulfur arc better til.an 99 percent urider good operating conditions. The carbon ihonoxide is usu- ally not recycled due to the presence of other impurities. References: U. S. I' atcats 2, 857, 431; 2, 1157, 430; Biitisli Patent 818, 864. HYDROCARBON PROrF.SSING & REFINE,R Urea—MONTECATINI Application: A process for the manufacture of synthetic urea. Charge: Liquid ammonia in(] gaseous ctthou ( li,)x itle free from sulfur compounds and having, at least, a 97 percent purity. Product: Fertiii7er grade urea in spherical granules or technical grade urea in crystals. Description: Ammonia and carbon dioxide are pressur- ized into the reactor where, at a pressurc' cif 2700 psig and at a ternperature of 360' F. they react forming ain- moniurn carbarnate, which in turn is converted into urea plus water. It is necemary to maintain in the reactor, because of its favorable influence upon Ihe convt rsion of carhaniate into urva, an excess of aininonia I,, ( ir fliv foichio- Inviric vallic.. III filcl, fliv I- NAent of uwa f1winalion is t(' Il I) Y u( I'llihbrinly, co-11.11itlelations. so that in the re- actor efTluclit there are., in addition to urva and NN- ater, MIIIIC C; 11" balliale and fice atillooill;), The List ( Wo cmn- Pon- 09 itimt lie separated frotia the urca solution. lie reactor effluent is first expanded to 300 psig. Dur- ing this operation a gascous ruixture of NIT, and Co is freed and affer conclensafion is rf-cycled to the Teac;(, 2 By means of this liquid recycle it is possible to return to the reactor a large portion of unreacted ammonia and carbon dioxide as an a( li' vous soltition. Tlic frmainingNIL, an(] CO2 are vaporizvol hoin tfit'! ureI soliltion by means of a second expansion step to about atmospheric pressure. Noveinber 1961, Vol. 40, No. 11 The gaseous mixture which is thus made available is condensed and sent back to the cycle by introducing it into the rarbainate condenser. This nir-thod of re( ycling Nil, and CO2 fil an WIlle( HIS 40111 - tion represents a s, tl) stantial improvement over other methods which recover the same components in the gaseous state and recycle them to the reactor after compression. In this way, re- markable sa%,ings can be achieved in electric power consumption and greater sir plicity. in the construction d" ign of the plant. The urea solution, f ree from. NI 1. and CO2 is further concen- rated in a vacuum concentrator and is then pumped to sprayers in a prilling tower. JIM the solution is subdivided in the form of small droplets which, falling vertically inan air stream flow- aring upw. ( is, are solidified, forming prills. Prillcd urea is particularly suitable for agricultural uses. The crystalline product having a higher purity is preferred for tech- nical iisrs and is obtained from the concentrated urea solution by InVanS of cr,Ystalli7ation and centrifugation. Operating Conditions: As alreidy mentioned, the reactor pressure 19 fror! i 2500 tn 2000 psig and a icinperatitre of 350' to 360" 14. is 111. 11111. 1im-d Yields: " f ; 1111"' Onia aild carbo'n dioxide into urea is total. Raw material requirements per ton of urea ( 46 percent N2) nre 0. 60n ton of NIT. nrid 0. 770 ton ( if CO3. Corrosion Problems: Mil( I c.,tre.flilly ccj, I( jj)IIj.( I jj.;jcti,, j ditions, ; ire I used in this new process to eliminate corrosion, a major problem in urea plants. By careful selection of composi- tion and temperittire ; n the. rei tcir, it is Possible to use with excellent ri-sults coin me rci;tll y ivailable slairrips, steel for reartor initig and for*() I tier stirfaces exposed to corrosion. Commercial Installations: 35 commercial plants- are presently in operation or under construction all over the world, with a total ITI- 11 - P-- ity of I million nif-fric toins of urel. U. S. Plants In Operation: Sbell Venoira, Calif.; SI)encer Che- iral Co., Vicksburg, Miss.; Spencer Chem. Co., llcndf rsoin, Kv.; Sun0lin Ghem. Corp.; North Claymont, Del. Under constniction: Artirmir & Go., Chrrokre, Ala. 307 Urea ( Mitsui Toatsu Process)— THE M. W. KELLOGG CO. Application: A pif)( css lol ille jll j 1. 11, ( if IlIre;, I' mill li( juld . 1111111olli; l aild -' ascow, (.; Ill)otl dioxide. Description: I' mir ' l); isi(- proccsscs. ( Iesi,,. Ijv( I to IIIep, I wide ( 4I LIVI' A PI- It- tioll riveds, - it,(, offered. Earli arrall!-1- nent I,; bascd ( 1- 11 tile reactiori of excess aiumorlia Nill) di— idc it about 3. 500 I) sj.,(r at 36TIF to foIlll a IllixIIIII. of, ; 111( 1 (.; Ilbalflalc mid Illplll ;! Illlllollil. Tlw high callmn dio\ 1de- to- Ill-ca IcI; i((r,(I redlu-cs IIIv ; I111ollilt of ; IIIIIIII-Illivill) 1'' ) ( le( 4) IIII10sf. d. . I Once -Through Process. ' I' ll(. ivictiotl products are fed lirsl ifito a hi,_'ll alld then to : I low prc, lljv dvColl 1 pose r NIIj ; Ili(] CO.. ; itv sr I);, ;, I ( q]. ( if is ; II - 111 73' r' and ( luil ( J Nll:t akma 321,,. Aiiiinoi6a Ili illc r) fF-.t.,;Is ( in he sent to . 1 fertilizer bypi-mitict plant. Partial Ammonia Recycle: 0\ rr-all cmi\. vis I ( Ili ( if NI I, is 11111,- Isvd I,, v, 11111411 ts 56" mill 1114. I( Iflilifill I' l III Nil: sclwnit(, j. p, Ilit. 1); Isi,. III t1lis 111114- 111 ( Im%s, IvI- do\%II v; Ilvv P-."- ­ I[ v- 11 - sl 4 I*Iil- -, ccs -s Nil:, 'I,, It,- Itld I- II( I' Litt' d kid, U, ( Ili- s%ndicsis reactoi. Partial Solution Recycle. Nil, . 111ol CO.. front a. high Im'ssiliv N) gvIlIvi xilb tit(, Nil:: gas fr" ti) illc \ If supa lafor, are svill to ; I Ilifrl pressim- abs" iber I a( Itivolls ailiflioniiiiii arbaniate sIrld ill(* ITS" Itill, olution Is Ivcir( Illatrd bark to the sviillivsis rv irtor. Overhead is putv NlIj .!.;I,; whicli is ;, Is() Y" ll- sis ill Ill( , - paiilial Nil:: iecycle Onvcv,',­" 4 fcvd- k hirreased to 80f;", for col iiid 70'' for' Nil YDROCARMIN PRoCI*-S-', IN(; . Noveinher 1969 Total Solution Recycle: I- covercd carbainate so- llllioll : md liquid Nil.: ;it-(- first reacted and theii sent to a. Iligh presslil.f. decolliposcr. ' I' ll(, untreited (*,jrI)aIjjat(! I . decoirii)oIsed. and dic urva solution leaving the tower contains a iiiininium ( if unseparated NH, art(] CO... Tbe sollitioti is further iri the low pressurv. deconiposer 111( 1 gas sf- 1-- lor tile sitiall rernaiiiing ( Iiiantities of Nil:, and CO.-, at(' perfectly separated froin tit(- tirea solution. Nil NU, feed and C6.-, are converted into urva III dlis py" cess. Commercial Installation: (),'),00, 000 nit y with 53 plaias ill 20 miititrivs; ill(' total capacity. of thme. urea plants tisill" Nilitsili Toatsll III -va proc-ess is reaching oile- third of 111v wolld IIrv; I pr(durlifirl. Ikaw Material and Utilities Requirelin*ents Units Per Short Ton () f Uncoafed Prilled JTrea I"'. a On". Ifilongh An, - m is ll". 5, 6 Nrlinl SnInfino ItrovIt. IMAL RIAMA. F. li" al ... I li" Ji", 11, jflj, d fluid Ammonia urra and lomv. ( nna . 0. 570 1). 572 0. 571 0.575 0.580 0.575 In 11 nfT irms'- s. ton.4. 1. 216 0. 571 0. 1 X7 I lwi% I. VY; 1. 1 Vi 11. 7111 11. 575 0.5ho 0.5; 5 Gam.us Carhon Dioxide In nrea and inp"W.q. tolls. . 11. 7111 0. 749 0.760 1- 76R 0.773 0. 76A Ili off vawq. foll.. 0.270 0.270 0.01116 Lfill) 1. 019 . 1) )""; 17414 0. 773 711H Elmlri,- Vow t. kwh. . . , , 142 142 10 1 Ill 155 1 Ili S( eain, llw ..... 2. 7( M 2. 100 2. 900 2, 9011 21.3 Urea —SNAM PROGETiri Application: A prorcss for tile ( if ul.(-;t I' l- ool fiquid aijimozila and cajbon dioxidc. I . Description: Aninionia and carbon dioxide react at 150 kg/ sq. (- fit ' to yie'lq urva and aminomum carbaniate. The carbainate. conteilt of tit(- reacton- c1littent is (.() llil)l(! t(, Iy deconiposed and sepaiated ii'i a single -stage high in-essure carbitinate recycle operating at 1- CaCtOr I) l_eSSLlVV, (; ravity is tit(. Illotive power to rf- turo tilt! high pressure carbainate solutioll to tile reactor ill thc sylithf-sis loop avoidilig tile. Ilse of a purnp. fit -ad is added to gravity by nicans of all ejector ( fcc( l aninionia is the driving ineditito) to obtaii, ; tvady op - crating conditions vvell witil tit(' carballiatv cowivosel. illstall" d at 91,01111d ICvVI- ' I' llis layollL is esselitial for large plants. Part of tile feed aninionia is sent to carbaniate dcc0nj- poser ( stripper) as stripping nleditill, to obtain coinjilete disassociation of (.-arbajoate. ' I' ll(. ovvi-head vapors pass to the high pressure carbaniate condtt-riser, ill which tit( - condensation permits the production of steaill. Operating at 185' G and Nil:,/CO, feed mole ratio of 3. 5: 1 in the reactor 4nd at 200-0 C in the carbamate decomposer the (,' 0, total convvi-sion in tit(. tosy" Ll is loop exceeds 951/; NH] Recovery: The M'Va ' Ailutioll leaving tit(- carbonate decomposer is expanded and licated in two stages at suc- cessively low pressure where residtial aniniopia and tilt - 0, traces are flashed oil' I' ll(! bulk of Nil,, is sent to a rt-covery colunin aild recycled as anhydrous Nll:, to the reactor; the sinall alliollot of (:( Y, is rccp Icd it-, a111111( milifil ( it) 1)( mall. s( ilti- tioll to calbaloatt! c( illdcliser. Finishing: Production of 0, 6r/j, bitiret prilj. ( Jtablc 1*" l loosL I' vitilizer applications, ilivol,,,(,s %, it( jillill tion of Life, 751/o, tirea. soltition ( oillilig tit(- Nil.. rccovery section and. prilling. Mod of 10 prl Ils ( 0. 25(/) involves: vacuun, crysudil/ atioll, st- paj; j_ tioll of 11lother liquor and clysulls in a ( efill I foge, crys- tals dryitig, melling aid prilling. Part of tit(! tilotliv, liquor, rich i.n biuret, is fo-d into tit(- strippei witt-rc flit. high uninorna concentration transfoinis it Corrosion Problems; The syndicsis lo,),) ; It 111" derate tvillpelatules alld pressuics, with a 111"" ll (-. X- cess of Nil,,. So corrosion probivills ;, Iv nated. Yields: Ovvi- all convcrsion of Nil:, and CO3 imo mca is 99, 5. Ir. Utilities IT(juired per inettic toll of prille.(I urea: - Via ( 1011( t -ii- % iii cryst. 11- MAtion I iz;14 iol I Steam ( 5 kg/ sq. cin g) m(: tri(: tulls 0. 9 1. 0 Electric jmwer, kwh L20 130 C— lijig wattir ( 25' C) cit. nit-tvirs 65 65 Commercial Installations: () if(. coinnici.( ial plant 1, 1. s beell ill operatioo sioce 1966, fivv plaots with capacity rallging frolli 300 fill/ d to 900 filt/ d mc rimv 1111der (.() I]- stroction. The process has been liccnscd to ( M (; iltjjcr 11ticir, Pintsch Baniag, atif] Woodall- DiAliam. 244 Noveinber 1969 HYDROCARM) N Urea ( DSM) —STAMICARBON N. V. lipplication: A l) io( vss for ill(! ni;, iji, lactitr(s of' N%. itli 1111111ollia efficielicies or floill 15 to ahoull 100(' r it -0111 escription: Ili Ow rcactor, oI) cl-;,tillg It 1: 1) 0_ 1) O , 11til. g. I- ill1wrattlivs ( if 170- 19W'(! and at oxcr-all Nll:/ 0. vahos of 2- 8- 2. 9. a part of Iliv inconiing Nil:: and A), is wacted into anlillollillill (. Ilballlate, whicli, to- oller witil. 111coilling allilliollillill cal-balliate already olilit' d 1 6 Ill(- 11 1 g1l I) lessiliv ( II. P.) ( olldvi-I.Ser, is pattly 11- C, 011111- Wd into tilva ill(] Rcactor vITItient is Oriplwd willi (:(). ' 11 syntlicsis Im."Sill-v in a q) ccialIv I' A" lol- d It' ij) pvr witli (" Oeinal licat sitpply. . Ili dit- sttippOr div Inilk- * of Oil- n6ii- c-oinerted car- s dcuoillposed and also t1w hillk of Ole (. X(.(, S,; 1111111011i; l is V. 11) 067(11. T11C resulting gaws, Nlf:- and W... lir ivc( Ivd h) Ow II. P. coildvilsvi., Ille 111; 1ill q, I S( - s Is : I I 1 - 1 .; I ( I v If.; 1cled into, atillilollillill OFbaillaw. TIlis col-killiale and illv noll- colldclised gas, it(-, ( ogrO , iry %-till frrsli liquid NIIj, Jvd to Ilic ic;icIoi III -If. Illf! iv; lcliolls I; ik-f- I) Llrv. tecovery: Stripl)vd iii -va sol, ition, , 11 ntill nli l11; 1l1I1Iif­, of oillinolli; l ; 111( 1 (.; Ill)ofl dioxide, is vxpalldcd Md I - ah -d at ii. I) tc,,,,ttw of between 2 and 5 attil.g. Re- illIfilig t,:asv,; ary rvnimcd and condensed in o low pres- MW (; 1111, 111latv colldrilser. . . Finishing: I' or a final pritled prodtict containing 0. 7- hitiret, % awr is evaporat-cd in Wo stages under1 l' o," l-cssively Iliuller vactillill. I" or a final plilled prodlict ll%l1R4)(: AI1l1() N PROCESS'IM; ' Novvillix. l. 1969 corit; iitiing 0. 2- 0.25 1 " bittict, Ole i.irva. is crystallized un- der va-cuuni. The restilting crystals are dried and inolten. In bod) cases Ow residdlig nioltell urva, Containing abolit 2'/, nioishirv, is in-illvd. No hirflicr product drying i s i i ecessa ry. Materials: NIatvrials l*or reactor, sttil)per, condensers, dc( olill)OSers, evapol-atols alld ollirl v( plipluent ill Iligil Willperatilru are stcels of tile 300 series. Commercial Installations: 60 platas and 10' eAtensions aiv iii o1wration or iindri construction in 29 countries, artiong thern two 1. 100- itietric- ton- per-day plants. Total capacav aniounts to abotit 25, 900 tons per day. Typical Consumptions: Vor a total rvcyc1v urvo plant Irippi'tig, 1) 1.()(. I. ss) lilodlicilig [ ortili./cl. gradv prills, fypi- cal collsillill)( ions are: References: Glivni. Eng. Sc: Client. Reaction Engineer- inp, j, symposinin, Brussels, Sept. 11, 1968 ( to I) v published). 24. 5 I Ool ent 7- 0.8 0. 2- 0. 25 k; x s C; 1 755 1 755 kgs Nil:; 570 570 kwh I) ow(-r 125 1. 35 kg stcain ( 25 atnijg. I I 000 1050 in" cooling water ( At = I I ' C) 55 55 In-oduction of 3 alm. g. Satunited Mean) 150- 200 350- 400 References: Glivni. Eng. Sc: Client. Reaction Engineer- inp, j, symposinin, Brussels, Sept. 11, 1968 ( to I) v published). 24. 5 Urea ( CPI -Allied Chemical) —VULCAN -CINCINNATI, INC. Appilicafion: A lijocess foj flic iiiiiiiiii oj llica fíom ajillijoilla and carboil dioxide. Description:' Uji-ea synthesis is based oil dw exotliel-1111(: iraction of Nll:, and CO, to form ainnionitim carhaiiiate which shwiltaneously undergoe.s a partial dehydration to urea. CO.., iiiakx- iip Nil, and rccycli, NII:j (- zit(- i thc zirco- iiiiiiii-fined reactor, which is operated above 100" 1-' and 5, 000 psi. The Nfl:, to CO.. ratio is kept betvveen 4: 1 effid 5: 1. The (' 02 convcrsion to ti-rcil, is about w5r/.. ' I' ll(! Ilrea nielt and uncom-crtcd carbainatc pass into the pri- niary decomposer, a (-) utirteijt livat exchanger lih-sigilvd for high -velocity flow. I) evoniposition prodticts ( NIT:, awl CO. -,) and watcr vapor are flaslied off and pass as ovcHivad froin the sep- arator." I'lie urea solution passes into, a sinall, steani- heated , falling-Ithii cumitui- cuti-ent stripper, where Nil, still present in the- solution is further reinoved and flows back into the separator. At the operating conditions of the primary deconiposer, about 901yo of the carbainate disassociates into CO, and NH,, so that the final Co, content as carl'xiinate) in the urea stream going to the secondary deconiposer is quite low—',about 1. 5/ r of the original CO.. fed to the reactor. Since the decomposition of carbainate takes it) the prest- lict. of tll(- cxcvs% allijilollia in the I-vartor 011*-gas, jtll(. tendency for biuret forinatioll Is 111iniinal. For nonnal biuret content urea product, the ayteous mca now passes into the secondary decouiposer, wherc disassociation of aijy reinainhig carbaniate occurs at a[-W) tlt atinosphcric pressure. Then, %,hill- the overhead streanis 1" 10111 till, 1) 1* 111111xy , and si- coll(Lity dc( ollilm"cls "( I III III(. absoytioll linit, III(. Ill -ca sollitioll is S(. rlt to lot'. This evaporator is a s*11-: 1111- jark-wd, (.(; Ijtl lfll- ill, thill- I I I' ll tillit v(plipp- 1 with rouitmg discs and killic.s. A stril)pitig stivain of zill. 111v down%vard flow of tti:ca solution. Ochydiation k cairicd Out ral) idly ( coillact dille is a few sccorldsl alld : it a low Ivilljo-rat Illv to illillill)ivv billict follilatioll. ' I' llc plodoct' s hiMIA content is listially helt) w 0. 71, c hN mill about 0.201 e, WaL(T. ' Hie, tilva iii(Ilt efffilvill fi-oill III(, cval)orator is theii icady fly,, prillillir. For low hiuret conient mea Inodtict, tl,,. III(.;, , Icit froin div prillialy dt-colliposer passcs into a low pl-cssille IM -01111 - ser and eval) orator systviii. A strilying -stivain o) f Nl V, vapor iiistcad of air iljo,,(,s to Ihv downward Ilow of urva I I to. I t. Filial th-collyositioll of carbaniate and dc -hydration are carried otit Ljj,( Jj r !,]. I NH;, atnio.sl4wiv, rapidly and at it low temp!-ratinc to prevent any bitiret forniation ill this step. no(III, I' s bito-vt colitclit is usually bvjow 0. 35'/ f b %\) Ili about 0. 201.; N\; iWr. ' I' ll(- urea. nivIt f- Turtit fiom this systern is thell ivady for prillill" zll I Thc products of disassociation ( Nil:; and ( J).) front the priniary azid secondary deconilmser, oi low pressure deconiposer and e'valmrator systeiii, ary tri-awd with Illolloctliallolaillint. solvvilt which st- lecti%(.1) absorbs all of th , v GO,, li- aving Imic Nll:; that is ictmiwd I() tliv Lnva reactor. Commercial Installations: Twenty- tljj-(.v' l& ij&; : I,(. yeration eml)(Klyiiig design feattircs of 111,; (. j"I Chernical tirc4 process. 246 Noveniber 1969 1 ¡ YDW ICAMBO\ PW 1( PSM NG p -Xylene ( Isofining and Isoforming Processes) —ESSO RESEARCH AND ENGINEERING CO. Applications: Is0fillifig is a' sitag(' d COUIlter current. crystallization pro- ces's for tire separation and purification of paraxylene from a mixture -of its isomers. Isoforming is a fixed. bed catalytic hydroisomerization pro( vss to ison-wrize an isojoer d(TICted xylelle stivain ba-ck to it I it-ar-equ, lil) I-il III Illix- ture. Process Description: Isofining— Xylenes feed is dried, prechilled, and sent to the crystallization scction for growing crude paraxylene crystal,, iindur controll(!d condi- tions via indirect refrigeration. There is no containitia- tion by direct refrigerants or additives. Tile crude. -para - xylene crystals are separated froin the mother liquor by centrifugation. No further ref iigeration i.s re( lidred after - this point. lic-fore leaving dic crystallization imit,' filtrate from this centrifugation is -used to pre -Cool tile feed. The relatively julptire paraxylene separated in the first centrifugation is 01611 purified to the desired lc vl ill one or inore stages of partial r6melting arid recrystalliza- tion, and centrifugation, by contacting it with higher pu- rity recycle filtrate from succeeding stage( s). This coull- tercurrent systeill, WhiCh- operates sifitilar to a fractionator with reflux, gives the desired flexibility in product purity, feed composition changes, and cipacity while minimizing the refrigeration load.. Isoforming— A C. aromatics feedstock, which has been depleted of one or more of, the xylene isomers, is mixed with a hydrogen rich stream and heated by exchange and a furnace to reaction temperati4re. The Illixture is charged to a. fixed bed reactor containing the unique Isoforming catalyst, which proinotes tile desired isoineri- 250 zation back to a near-c( li6libritun olixtill-t% ' j -h(, I-Irklellt is coolvd and the iwar-equilibrijull xylvile" stlVaIll is separated froin thu bydrogen- rich gas. After taking I sinall J) Urge, tile separated gas is recycled to the reactor' long with a sin -all arnount of mak-f- tip hydrogen. TlW (' 001MI li( Itlid 0111clit is dien cljargcd to fI. A( tion- ators where heart -cut isoincrize( l xylenvs ary separatt-d fl 0̀111 tile siliall aluokt ts of C7 arid lighter and tile G,, arid heavier arornatics. bypl-O( ILUAS produ(tled in the lsofol' Illillt, reaction. I' ll(,. heart -(.11L is I.c(: y(. I(.( l to tll(.. xyl(.11r, Isoillf, l, removal process( es). Isoforining operating conditions range front 600-8501 F, 200-500 psig, liquid hotn4ly space velocity of 0. 5 to 3. 0, hydrogen to oil ratio of 3/ 1 to 8/ 1, all(] hydrogvn purity 50 to 85 1 1,4 ). Stich fl(.Xil) ility giv(.s inlPoltallt c( olloillic advantages in tailoring tile process to sitoations. Economics: Prime contract ollsit(- I,,,,. st ...... t, fo,- Isolill ilig nonnally vary from 20 to 3. 5 per lb/ Y of ( it -sign capacity for 99.5% u p -xylene, depending oil plant capac- ity, location, arid feed composition. lsoforming prinic contra( -t ollsit(- inv(, tn (!nts iij( Itiding associated fractionation facilities ustially vary- froin $ 1. 1) to $ 200 per B( J) of design feed rate. Operating cost for catalyst call be expected to average around 0. 5e/ barrel of feed or less. Commercial Installations: There are four Asofining plants and three Isoforming plants in counnercial opera- tion. References: Clien * iical Englilleering, 10/ 7/ 68. Oil & Gas Journal, 7/ 15/ 68, 1). 102. Novei0ber 1969 11YOW) CAMBON PIC- 1,' AsMl p -Xylene Separation (Parex) —UNIVERSAL OIL PRODUCTS CO. Application: A process for separating p- xylenc from ini."­ turcs Nvith. other xylene isomers, ethylbenzene and non - aromatic hydrocarbons. The p -xylene is recov red at a I; tirity in excess of 99. 5%, and extraction efficiency can be above. 95%. The process can be operated to. extract p -xylene in a once- throtigh operation from either a G, -aromatic mix - titre derived from 'extraction or frorn a G, -cut of refor- rnme. Alternatively, it can be operated in conji.inction xylene isomerization process to yivid any rr(Inired proportion of tli(,. ( 1, rarWnatic products as p-xylenc. Process Description: Parn- xylene is recovered by adsorp- tion froill the liqtiid phase in a fixed bed of solid adsorb- ent. The adsorbed p xylenc is then recovered from the adsorbent by -washing it N% Ith a desorbent liquid having a boiling point' different from that of any of the (,, arornatics. ' I' liv prodticts ary scimrated froin tit(- (Icsorbent by fractionation. Th -c process arrangement sininlates con- thil , ious contercurrviA flow of' adsorhent and liqtiid, with- 6tit ; wfiinl moveim,rit of the solid. A singli- hed of wlsorb- I- III is llscd, wid the flow of feed and prodticts to ; 111( 1 front the bed is continilous. Operating Conditions: Temperatnies nre in the range of 250- 300" F and presstires are. moder.ite. ( Iarbon stcel is use(] throLtgbotit the plant. No refrigeration or conveyance if solids is required. Commercial Operations: Two Parex nnits lmv(t be( -n licensed and ; it-(-. in the ( 1( sign suige. Both will opetitte in conjunction with xylene isomerization and fractionation facilities, to yield both o- xylcn e and p-xylenc as net pro- dlicts. HYDROCAR130N PROCE-SSIN11, November 1969 251 '- p -Xylene —MARUZEN OIL CO. Application: A process for crystallizing and isomerizing mixed xylene streams to high purity p -xylene from re - formate feedstock. The heavy and light aromatics may e used as gasoline blending stocks. Description: The reformate feedstock ( RON 97 to 98 range is used) is first split into light ends and heavy ends with the heart -cut xylene rich stream being taken for this process. Recycle styrene are also run through this frac- tionator along with fresh feed. This heart -cut is inter- changed with first stage P -xylene crystalizer lean recycle stream and mixed with second stage p -xylene crystallizer wash and chilled by ethylene refrigeration. First stage p-xylenc crystallizer cfllticnt is centrifugLA and partially reineltV.d and fed to the second stage tentrifuge where pilre ( 99. 5 F perccl] L) /)- xyl(-ii(- is prodiiced. Tbe p -xylene lean stream is pre -heated and isomerized over a fixed bed silica -:alumina catalyst tinder atmospheric pressure with steani to an eqt6librittin xylene mixture. The catalyst has excellent selectivity and maintains full recovery of aro- matics without the use of hydrogen. The isomcrized stream is mixed with fresh feed and the cycle continued. Feed: Reformate of RON 97- 98 range is used. Liquid recovery of 96% with no loss of aromatic rings is expected. Utilities: For each metric ton of p -xylene produced: Steam, kg 160 Electricity, kwh 463 Cooling water, tons 98 Fuel oil, Kcal 3. 7 X 10' Catalyst and Chemical 3. 3 Labor, men/ shift 3 Catalyst life, years 2 Economics: For a I 00, 000 -metric -ton / year p -xylene plant, 11. 5 million ( U.S.) in Japan excluding engineering fee and royalty. Commercial installations: 10, 000-metric-t/ y Matsuyama refinery ( 1950), 20,000 metric t/ y ( 1951), expanded to 60,000 metric t/ y ( 1971). Kuray Yuka, 23,000 metric t/ y 1967). Isomerization section only licensed to Bulgari 1968). All units use extracted chemical grade xylenes as feedstock. Maruzen' s next expansion will be based on straight reformate without solvent extraction step. p -Xylene (Aromax and lsolene)— TORAY INDUSTRIES, INC. Application: A process for manufacture of p -xylene from mixed xylenes. Description: The process consists of p -xylene recovery Aromax) and isomerization of xyIene ( Isolene). Aromax: The adsorbent column consists of a series of independent chambers. Mixed xylene is introduced to the adsorber and raffinate, which containes small amount of remaining p -xylene, is withdrawn at a point several cham- bers downstream of the feed chamber, while p -xylene is selectively adsorbed. This takes place in the so- called re- covery zone. Reflux, primarily p -xylene, is introduced to the adsorber several chambers upstream of the feed point and it increases purity of the p -xylene adsorbed. This takes place in the enrichment zone. Above the reflux chamber, the adsorbed p -xylene is desorbed by a desorbent, purge material, introduced to the top of the desorption zone, and it is withdrawn from the adsorber as extract. The desorbent is recycled to the adsorber after distillation in the extract and raffinate columns. The adsorption flow is similar to a rectification operation except that the de- sorption operation is incorporated in adsorption process. In the adsorption column, the adsorbent bed contacts the xylene stream countercurrently. Since it is economica ly impractical to have a moving adsorbent in commercial operation, the countercurrent flow of adsorbent and xylene can be accomplished by switching the inlet and outlet position of xylene streams periodically by using a sequence of automatic on- off valves. Isolene: Mother liquor from the Aromax is mixed with hydrogen, heated to reaction temperature, and then enters a single adiabatic fixed -bed reactor. The isomerized re- actor effluent is cooled and separated into liquid and gaseous phase. Hydrogen -rich gas from the separator, after a small amount for fuel being withdrawn to main- tain hydrogen purity, is mixed with make up hydrogen and recycled back to the reactor. Liquid drawn from the separator is fractionated and C,- and C,,+ components are recovered. Product xylene recycles to the Aromax. Raw materials and utilities consumption: ( 100, 000 metric tons/ year p -xylene) : Feed mixed xylenes, tons/ yr ................... 116, 000 Catalyst & chemicals consumption, Yen/ yr ....... 69 x 10' Utilities: Steam, tons/ hr . ......................... 13 Heat duty ( absorbed) kcal/ h ............. 55 x 106 Electric power, kW ........................ 3, 900 Cooling water, tons/ h ....................... 150 Plant construction cost: 2, 280 x 1011 Yen. Initial catalysts and chemicals cost: 730 x 10' Yen. Commercial Installation: Isolene plant of 120,000 t/ yr and Aromax plant of 110,000 t/ yr as p -xylene are in operation at Kawasaki, Japan. Aromax- Isolene. technolo- gies were licensed to People' s Republic of China. References: Chemical Economy & Engg. Review, 3 ( 6), p 56 ( 1971) ; Oil & Gas Journal, Sept. 4, p 116 ( 1972) Chemical Engg., Sept. 17, p 106 ( 1973). 196 hT__ - - I . - - PROYECTOS DE INVERSION GRANDE TECNOLOGIA DE PRODUCTO IddVd lo the d(welops colot. the ab", wharicc if ­ 11ii' ll 11, E,iwh ainino arid k idemi- lird 11, 14, 111 111(. rewillitill N- 4411fliv. and IIIc ' Ill; ITIIIIv 11" W'' llillcd hill" III(- peak awa. Sev al-., (: Iirf)- Industrial Production. There arr three p6licipal If) li- tilifactiive ( oninicicialiv , nitiable anutio iwids fit stibstantial ( Itiantities: ( I I by rx- traclion frimi naliji-al protrins, ( 2) by lerinen- fill ion, and ( 3) hV f1willical %N Ilthesis. EXtrat 6on Afilhodv: A I I I loll igh most 1) i 1-, 11 - Mllno ; I( ids. stich as monosoditim ONIS(;). It()%%, are ploid1we( I 1)% fill Illmls.". 111cle aw ff) lll. allill)() ;Wids' its described llf.\ I. which - till are prodliced by tile extim-tioll fill-thod becallse to baclerial sfrains have hern 11.,( If) lit 1)( ItIce I Ili -IT) III Iligh yields by If"' I"( 1111; Itioll. or bccallse it(, appieciable market h;' s 1)(* rtl Found 1() % limulate consideration of the clicimcol synilicsis romr. I Lclwille. rosily cxtra( I' lldc III ( Illantily I'voill aw, killd of vc, ctablc prowin hydrol,,,zatrs. may 111111111v to he prodlued by Illi' Ilictliod. I.- W" I(' I; Illv is extracted Front fit(- Immail- llydlol- Zafv. I.- Ilistidille is available front ol' brasis fit qii; intitics, but it may be pro- 1)' Ii' ll" clitatifin III the ricar hittirc, since 11IIiI; lb1v 111111mils 4 bactcria have I I I v' I ( I bf-ell discovered. ' I' liv s0c swific ( 11, 1 - lIydf-()XypI') IIIw is ll()%%- f' clalill. Imosl all 111(- 22 kinds of amino it(- i( ls I\ I' sIf-d and lilchid('d III F.'ible A- 11 ;) 1-(- niami- Im till -l -d c( imillf-rcialk-J ThIce natural aillilm Icld". \\ Im It llstmll- are flot prolcirls hill vdlich atc clicctive III rnedicilic'. ;list) are listed in Tahlv A- 11. itridline, mriiihinc, and F0 111( 71/ fl/ on Alrlhodi: Thi -te arc. niany kinds of folio molgollisill" whi( It ale ; fill(, if, % ylitho-size al" ll- ; wids nv( f- ssary lot support their life from a sillipli. carhm) siliffic and . 111 Illorganic Ililro" en VIIII( C. NtICII ; I, 1111mQvil g'; IN. If(, I cmai kabit, prot!rf-ss 4- ailled ( 1111 I-cuemly ill IIIv field of and fim robiolf, Q\ 1 a hvlw aill( IIIIII 0*1111-1111millim 01) thc paillways of' atillilf) acids III Illew fill( I' migallisms alld also of] tll(- contiolling mcchanisnis voiking in dicsir pathlvays has becii Sollif, "\ Is(; 11111( lilt ( ioll by extraction may remain in Milleclioll willi IlliIi/ illf" f"Illfaillifir co-fillaillrd ill sligar. lwcls' i AS. I(," VXal" Ide. 1)- Aiinotmilil ( 4), Inc., Kawmsaki, japoll. Amino Acids ( cont.) 99 ac(-timulaied. The prodtic( ioll of ainino acids through microbiological processes has been ' ac- in Ill islied by mak-ing practical use of this it(, . (,I,- intilated infoirinmwit. 111 1056, japatiev- microbiologisis if, developing the first industrial prodiwiion of 1, 9111tarnic acid through a microbiological proccss. Since rhen, the development. and irn- proveinent of microbiological processes have con - I Inue.d. Currewly, almost all cotninon antino avids (,, in be produccd by amlin, arid fernwnt ti n17 0 at ,, low cost oil all indust'rial scale. For example, ni0imsodium gintaniate was pro(hicrd by file Icr- nictifation rotm, at a rate of 180.000 illetric tolls in 11169, accounting for ()0'-7(. of world production. Sce Fig. A- 38. I' llc ailliflo acid fo.- I' llivill"Itiot) proccss is rela- lively simple. A pllysiologlcall- active isomer of amino acid, i. -amino acid. ciin I) c OI) t; lill(-(l excill- INOCULUM CULTURE MEDIUM SUGARS OR ACETATE ORGANIC NUTRIENTS INORGANIC SALTS SFED CUI- TORE STERILIZATION FERMENTATION( 30*- 37" C, pH= 7- 8) IF BROTH TFILTRATION CONCENT RA r ION HC1 AC IDIF ICAT ION ( pH = 3. 2) CRYSTALLIZATION CRUIDE CRYSTAL MOTHER LIQUOR NoOH -* NFUTRALIZATION CRYSTALLIZATION MONOSODIUM L -GI UIAMATF Fig. A- 38. Preparation of monosodium L- glufamole by fermen- tation. 100 Amino Acids ( cont.) This V, ; Ili mivantago, over other Illel hods ol* ;kllllllf) ; I( Id 111, 11111racl ore. id p(,cesses it-(- ( las- sificd as Follows: 4. Methods Invok Ing qIIIIpIN thr cliltivillion of I microbial strai 11 1. Js,, J; jl(,(J (' iorll a ilamral swircc, or it ), vild stlain, m 2. IrIlprov(.d by sorne g(, n(- 1 ic met hods, or ill P. Nlclhod inv(dvills" Ow ( Onv(. 1- sioll of acculain p I'v( 'I I rsf 11, 1 ( I . I I I v co ur( -,,I v) t I( I it I jg a In i 11 ( I a w ith In Icrobiolf)glca I clizY11irs 1f, thwl wilh a Wild MI( lohl, 11 Str(IM: ThrolItt'll it scriv% of In icr(lbioIoqic; I 1 stodic.", It II; I.% bcell f'011ild that " ollic InI( rohI; II stlaills ls() I; lt(.(l flolll 11, 11111- A sotirces possf,sl- cxceilvilt jjbiliiivs I() exco-cle and accl lilt Illal v ;% Lll L v aill!) IIIII of a part icillar aloillo Icid In the cullill-al broth 1111der specifically (-()It- umiditiclo". I' llv ptodlictiori ol' glotamic. acid pTcvi() IjSIY mentioncd is a typical (' a,,(,. - Whell ; l ( TrUlin Ili'('- terial sl,,,, ill is , viobically for about 21 - 1,( i h, III ; j &- hilcd owdluin coritaitling carboll s( mices, SlIch as or acetale, and Ili- Sollives. Such ' I" airlowilillill sall. Illore ( 11, 111 50 1 , oI, Ill(. cal-holl swirccs is coliverled to glut; I111, 11c. S. Kino%hiiii and his coworkers fisf-twelcd 111, 11 sll(. Il it IlIgh Vivid oF.gliltallultv C; M bc all' Illicd only wilcil Ov- glo-will of the ll, cd bacu-1- 111111 is (. 011trollcd 1() a by Ille it viiaviiiii required b" Ow Imcicl-IIIIII. Arl (':( css Mil" llot , I I, i,, Iltl it, Illr Im dillill Call br collindicd I)\. Ill(- ild( lilion () I* ccrtain ; jTi( iJ) io( ics or dvIcr- go , .111s. This plicnotilellon has Twerl explailled ill f- ( I,(, ( of' ( - Ilidar p-t- nicabilily oV I I I I a Ilia I(-. The IiIIIII(A slipply of hiolill or Illc' wIdIlloll of* ;IIIIIhifilic or ( 14, 11. 1gcIll increascs. ille cellilkil. pvIIII(-;IIYIIiI) 0, gill Imilatc. ' I' ll(- qIIIl; I- Twile 11111, illside lilt- (.01s Is cXcrcIcd (.;Isli\. Ilic ( vII Illcolhuml, : Ind it I lilt- ( IIIIIII; I1 bl" Ill III(. 1 ' 111111m acids prodill., d hv Illis IlIcIllod oll i. 11 j ;, It. ;,,(. Ilsit d Ili Table A- 12. 1, fli ... / with in lildilial 1110, 111V SI - 11 110' r ill#' g1litalli' llc plodlicill.f. ww isolated alld the uwIt-clo of' ; oIlino acid f'Crillcillatioll first Iola- if-INIIi/ cd, way% to illiplovc the ; 11) ilil\ ( d, 111ii- lool-i"' Illisills to accilillillaw Illlillf) ")(.I( Is by Ow Its(' of, gendle- frehm,plr, From hil)(11clim al () bs(. Iv; IIioIIs. it is L-11mvil 111; 11 Ow it( ( of amitio acids I; ik(-s plact- ( I ) 11' a Ill" Ijbillit. flo%% ol* acids ill Ibe vells is blocked at a ccrtairl s1cp by a genctic method 1 ( 2) if' sollic controlled Illechanisivis istich as I"cedback inhibiiion arid re- pI.(.s., jojl, regidatin.g Ili(-. biosynth" is of amino I(. i( ls it, tit(. cclls) are modified or ch-stroyed. Ill fact, soulle vxf-ellent strain% have brcn found atriong mixotrophic and/ or drug- rcsistant mutants obtained so that the above conditions are fulfilled in Illesc 11111( aills. Some amino acids prodiwed in this way also ill-(- listed ill ' I' lible A- 42. Cnno-1511, pl (. 4, el PpIvIltop / a Anlinn '. 11CId: Srvct-al j,, rlit,o acids ilre inillitif-licturctl from their direct plecur%ors fly tit(- usc of' inicrobially pro(hiced ClIZV11)( 7s. l_; j%pjjrIatv fl-carboxylasr is Ilsf, ol I -or IIIv pimitiction of' i.- alaninc f'rorri I.- asparlic acid. Bacicrial aspartase responsible for Ilic nillinalioll of, holialic acid is employed to prodiwe i- asparlic acid. Tyrosine is prodticed thrmigh I proccss in which tile COM4, 11"' llioll Of phenol and scrinc is calalyzed fly bactcrial 1yrosinase. Some arilino acids are produced by mean,, of a slighil modified method of this tYPc. The conversioti of' ; I ccrtain precursor to the aimed amino acid likes ; I Iongcr and rather complicated path%vay than ( he iction of' a single enzyn-ir. Ili or the k-tincti( ative pro(hiction of' isolell- cino-, ii- aminobutyric acid is added to the culture. Sill, ; 111111,; Itlilic acid is usad for the produc- tion of tryplophan. The ainination of o- kc.to acids to forin their cort-csponding ainino acids with transairlinase or d(- JI\. dr,,L, IIsv \, ill be wilized ill the futurc. As prvvioti%ly outlillcd, all prolein-constittiting ill still-tir-containing amino acidsamino acids ex I,(. pro(III(-cd by ( he amino acid Fermentation proccss. ' I' ll(- microbiolo.0cal process for the pro- of- , to I f -j tai ning arnino acids is now 11ildvi ilivcstigalwil. qf, linint) Aodsjmm the P , ermentation B?olh.- Amino ; I( id i- vill" 111, 1Wd ill tit(, fermen- f; llif) ll bIq) III shwild hr i" I' lalf-d as ptlic crystals 1,. i flit- mmkvi ' I* li,- tf-, llt'',,-- f- 1; 111) 11",'(:,)(' Il" llli(';II methods ; I\; IiI; II1Iv [ 01- this plipm.. blit onl) ; I Iv%% ivc ust-d Im Ihv ill( Ill" llial pi-odlictioll oI' " Imillo acids. I bovk"v bfl?,or I?rvl??: The scparatioll of . 111 ' 1111illo acid ll) lxllll(. II%IIlg ioll- cm-hallgc rcsins is () It(- () I Illc fll()S( COVIIIII( Itl I) III-i- fication methods. Usual I-curnentation broths con- iii.jtlilt amino acids as well as 11s, IsoJill,() o or Ili(- ri-16,, aw amino avid fi-oull ollicl coullpollculls is casily doliv by 102 Amino Acids ( cont.) llox%ilu the broth thront"ll ' 111 ion -ex, hall!"r resin colunin. This nwillod alm) is Il%vd rol Ille It-covely of ; in amino, acid froll, ill(, mother liquor of th, anlitlo ;wid cryNIll. 2. Pri-ciptialmn- (: oIniviond', W11, 11 11 it,- solobif. sjils 1vill, ;, o,, no jwids ; I,(. sviccif-d for ih(- s - ifi eparation an(] plIT Ication of atnino acid% II; js br(-n uscd for ill(- purili( ;olion of pro- lill(% %\ Ili(.It is diffic-ith to porify becatisc of its high solubility. 3. Ali , olin() ,(, i( j is least solubl whell I I, v p1l of ill(, solution is adjo%I(' d to thr is( lelccllic point. If the solubili( v is slifficirlilly Io\ v al Illis point ( as ill thr (-asv - Icid), ad.111slinvill of, IIIv I) II of' fellnellultion blollis to %up; jj; jIv ;j pore atnino mid in crystalline form. The polynimphisin and poly( k- pis' ll Of OW often I,(. observrd. ' I' ll(- %vay of control- ling sopersmural ion (. 1gitition, irryipci-more, ex - of, nlinlite allionlits of, illipill-ifirs. scrd ry,00ls. hystvr(­,is of thr olulion. and Whe' It(* - lots) is ilylportint in ohi: iininv thc vc( loitcd I) lili(.y of Ow v,paraled crystals. III the (:; Isv of g1lit' ITIM a6d, ill(, I - forin crystal is unstable, and 111",, 11 is Ilecr%sary to ( lbserve Ilgolollsly Ille sllhlle opli- 111, 11 (- onclitions liceded lot. Ille production of good plive clystals. (" olwentrali" ll and (-(I() Iltlg arc IIS( -(l I I I os I h . r(plelilly in Ow final sI; Igr of ploduction I* ) Ill(, (. 1- vsl; lls. Sre also Crysialli-,a- tion. Iovll(- physiologi(-al lesling is done for fill- pro - 111( tion of' nwrli( ;I] picimrations. A,; If -,;I allillull,- Its ; o -v chom- 11 P, I ( dv- pressiml and labblis for IIIv pyrog(.11 Iv-..t,*I. Chemical Synthesis. ' I] lv,-(. ;It(, uniny laboratoi-, methods for arnino auid sylillicsis, btlt 0111Y ; I I'VIA' Io ill( IllStl-i; ll ' 1' 11C SY111114- 1- i(., Illy I) ro( IjI(-e( I 11, 11no li%wd in Table A- 12 are Illade Illostly I' voln aldellydrs. (; Iy(.ili(. ; Ind 11. t. prodoc(-d by ill( - starting floln fOrIllakh-hydc and acculldehydc, thr ra\\ Inalclial for 141111aloic ; 1( id. i, pl-f)( Illurd by llydlo- P11 nl\ I' ll ion of a( lOollillile. I his aldchyd(- ( fill aills ISOIIICIIC ( 1-(*%,; Ill( il) lt) l) lf) ll 11( 1(- Il.( I(,. bill the I 1; 11io I) l it to J? is S111: 1114. 1 Illall 1 111). Following 111 C plodw lioll ( iflot tilt- svilillf-liq alnillo ; wids Front ald(Ilvd(,%, TIw li%danloin ImNan advnwai,,(- over ill(, Streckersyntliv- Nis ill qi\ iIIt4 Ilight' l vif-lds genclally. Ill Ille casc of gintanliv af- id, I he Conk Vision of glillaIII4. acid On sollillow kwll fl-, by Illc hydailloin prot.(' s" is ll(.;Illy ( III; IIIIiI; I( iVf*. SIrecArr Aldehydes will, IlYdro- gen (- yanide an(] em-ess ammonia to give ainino- niniles, which in Itirn are converted into n- arnino acids. on hydroiysis. llCN Nil., N M11 —CN Nto 11 i RCH— 01: 00Na 2 NH., Hydantom Process: Aldehydes rea( -t with socliurn anidv and anitnorlimn t-arbona( e to vive hydan- joln,. 11 , ill give ( 1- illnino ic.ids on hydrolysis with alkali. 110 NA -A. (N11, 0:0., I R( ' 11—( : 0 NaOl NH NEI W :11 ( X X )Na I— ( N I I ) I RX ):I N I I ., ex(v.sses of (-arbon clioicic and am- Illollia are easily reoloved froln thr reaction mix - lo," by II.(.,Ilillg %%itll ; I little jinjount of alkali tind(!r high icniperawre and p. t:ssIlI'c. Formaldehyde—MONTECATINI Application: A process for the nianufa(-turc of formaldehyde solution, based on vapor phase catalytic oxidation of methanol by air. Charge: Rectified methanol ( 99 percent pure) and atmospheric, non -purified air. Product: Forivaldellydc aqueous solution from 37 to 42 percent by weight, at-( ording to ( it -sired requirements, containing less than 1 percent by weight of methanol and less than 0. 010 percent by weight of formic acid as impurities. Description. Air, compressed at about 3 psig, is preheated in . 1 first shvIl- and tube heat exchanger, in which heat from tile reacted gases is recovered, and is then rojiveyvd to a methanol evaporator. Feed of methanol is carefully controlled to ensure that the con( entration does riot ext -ved it i), rcent in the air- Inctlianol mixture. The mixture leaves the evaporator at about 105 ' T. and enters a second shell and tube exchanger, which is also heated by a hot reactor gas strearn. Ifere the mixture is heated to the desired reactor -feed tein- perature befoic entering the converter. Employment of two beat exchangers, oil(- before and one after tile vaporizilig step, increas- s recovery of heat from reactor products and requires less exchange surface than a single unit as formerly used. The air-inethanol gast ous mixture flows into the reactor where, in the presencv of a spccial oxidation catalyst composed of me- allic oxides, the following basic reaction takes place: 2CII:,OH + 02 2CII.,O + 2H.,O + 38.06 Kcal/ gmol, The reaction temperature is controlled to strict lintits by a thermostatir oil circulation system. Oil absorbs heat from the reactor and is then cooled in a boiler where the reaction heat i's recovered in the form of high pressure stearn ( 280 psig) ; after coolifig, Oil is " t- CYClud ill closed circuit to reactor. The reacted gases, containing formaldehyde vapors, nitrogen and steam flow through the two heat exchangers and then reach a multistage absorption tower. This is fed from the top with water. The absorption heat is removed by nicarks of forroaldehyde aque(),is solutions circulated in it closed circuit, jr, tile first two stages Of the tower. Said solutions are coolcd in heat exchangers located outside the tower. The formaldehyde solution produced is directly conveyed to storage tanks and does not need final distillation of excess methanol nor reduction in formic acid content sincu the process is adjusted to give a high quality product. Operating conditions: (. ompletv safety it , gainst explosion dangvrs in the gaseous air-niethanol mixture is obtained by ' it suitable choice of mixture components ratio. Up-to-date control equipmcrit is widely used, so that only onc man per shift is needed in running the plant. A wide range of. space velocities (!; lit be used, providcd tlj(- temperature of catalyst and inethanol coricentiations art- kupt constant, without impairing formaldehyde yields. At reduced space velocity, methanol reacts completely, btit some GO and COa art! fornied as byproducts, At higher space veloi-ities the arnount of byproducts decicases but some methanol remains unreacted. In plant operation, the most suitable conditions are selected in such a way is to ensure that niethanol content in the final product is usually kept between zero and I percent by weight. Yields: Over- all yield based on inethatiol fed is higher than 90 percent on a stoichiometric basis. Heat ie( o\ vi-ing yields hiol pressure stearn ( 280 psig), reaching 0. 35 metric, toil per ton of 37 percent product solution. High selectivity of the catalyst, prepared by a special process, riot only ensures a high purity in the final product, but also allows a long useful life of the catalyst itself ( more than 18 months). A specific production of more than 9 metric tons of 37 percent formaldehyde solution for each lb. of catalyst used is standard practice in Montecatini' s plants. - Commercial instal lotions: A large industrial plant, composed by four units and having it total capacity of 270 million lbs./ year of 37 percent solution is in operation at Moriu-catini' s Works at Castellanza, near Milan, Italy. Four additional plants of this kind, having a capacity of 55 million lbs./ year each are in operation or in advanced construc- tion stage in Belgium, Rurnaiiia, The NutlicrJands and Brazil. Reference: Chem. & Eng. News, May 26, 1958, Ghenjival Engineering, Feb. 6th, 1961, p44. 248 HYDROCARBON PROCESSING & PETROLEUm REFINER Formaldehyde— THE LUMMUS CO. Application: A procrss for the production of commercial grade foim ildchyde from liquid inetbanol. Description: ' I' ll(- process itivolve,, tile vilpol.. pI s( e_ I' l ! I action of luctlianol and air in a fixed bcd catalytic reac- tor. 1, i( Illid nu-111, 111ol is vaporized using III(- reaclor ent as heating ineditim, is mixed with air and the total stream is heated by- the initial reactor effluent. 44le feed tll(,Il enters a fixed bcd sll(. Il alid tilk! (.;It; i- ytic reactor in which nietbanol and oxygeii ( fion, all-) act to forni forizialdOiycle, some carbon nionoxide and Nvatvr vapor. ' I' ll(, catalyst. contains oxides of lijolyl)(1, 111111, all([ iron. Formaklehyde is recovered by absorption with dviiiiii- craliAl water, Heat is rujiloved froll, tile abs-oiber by cir- culating bottolin and mid-colunin liquid streanis throu ' gli coolers. The absorber bottoins product consists of 37- 5.0 wt. %, formalin ( foimald(:hydv-watvr). Thi! mobatiol content in the final product is below 1. 0 %vt. The scrubbed overhead off -gas is vented. The forinalin bottoms product, which contains 0,0t wt. %. max. acidity as formic acid, can be passed to I,, ion exchanger where the acidity. caii be reduced to inect any product specifications. I) owthurni A circulates by therjnos plion action throligh the reactor shelf. The heat absoibcd is used to gelic) II( e stvain at a pressitre ( if lip to 1, 50 psi. r, , Tb s , tvaiji may be used to stipply palt. of III(- vilrigy to dii,,c. the air compressor. Typical Plant Requirements: ( I' vr pound of IM1,; formaldehyde) ( Lquivalent to. 2. 7 ljounds of 37 solu.tion or 2.0 pounds of 50 Nvvi,lbt solutioti., Raw Materials Methanol ( 1001;C,,) Ills. 1. 17 Catalyst and Chemicals Cost, U.S. Dollars) 0.00 1 Utilitie5 450- psig Steam ( Generated) 1. 5 lbi. o(,)Iillg Water ( 8.5, F) 7. 5 , A. Boiler Feed Water 1. 58 lbs. Electric Piower 0. 10 K%\ 11 Demineralized Water: Total us,,,, v fol. li,, tlj i(. 1, vX__ cliall e9 and absorptioll: ( 1) Wflcll ploduciii". 37' \ VL. I Iii-oduct 0.273 galluns; ( 2) Whun produchig 50 wt. ;; product - 0. 190 gallons. Commercial Installations: Onc rv\ ain . 1) fol 18. 2100 NI' l A, ollc for 4--5, 500. zm( i on(, for 28. 800 NITA no\\ Illider construction ill Japan. Formaldehyde— BADISCHE ANILIN-& SODA- FABRIK AG Application: A process for the production of formal- dchvdv froin inethanol. Description: The process combines dehydrogenation and oxidation of methanol in contact Nvitha silver catalyst. The over-all rcaction is exothermic and proceeds' adiabati- cally as follows: C-11, 011 —(- G11, 0 + H2 - 20 kcalhnole 11, + V2 0" Ifj) + 5.13 kcal/ niole A mixture of methanol and water is vaporized while. stipplying compressed reaction air. The vaporizer has alsn t rectifYilig cfl'cct. To prevent impurity build- up in the vaporizer bottoms, a constant slipstrearn is withdrawn. xture, whose Composition is above the. The reaction 111i PI - 1- 1911ition limit, llows throtigh a thin layer ( if silver crystals where the reiction. occurs at slight red heat. To achicvv a w)od yi(, I( l r; italyst Iemperawre is kept wiihin 1) - 11 [ WIMItIC COM101 Of air inl)Llt. The hot I -e - action gas is cooled rapidly in a waste -heat boiler to pre- vent undesirable formation of carbon monoxide due to theritial decomposition of formaldehyde. Steam generated is s,, irici,,, t to vaporize the mediahol/ Nvater mixture. The cooled reaction gas is scrubbed countercurrently with SI - M' Col Ide, it, a multi -stage absorber; more than 90r,,'b of the formaldehyde is absorbed in the first stage. The absorption and condensation heat liberated is re- HYDROCARBON PR6CF-SSING November 1969 moved by means of heat exchangers in a product' circula- tion system. Product' concentration is adjusted by control- ling the amount of water supplied to the last stage of the absorber. Efficiency: The yield is 87. 5910 of theory based on meth- ariol used and 91% based on methanol converted. Electricity and river water are the only utilities required. The econornics of the process may be ftirther improved by 11si-119 crude rne-thatiol freed from dis'turbing contarni- nants instead of pure methanol. Catalyst: Electrolytically purified silver crystals having a specific particle size ; 1re used as catalyst. The life of the catalyst is several months and depends on starting mate- rials 1) 111- i( y. The oWpia is 12 to 15 metric tons of form- aldchyde ( calc. 1001,,) per potind of catalyst. Since the catalyst is very selective, one pass is stifficient to achieve dinosl cOmplefe convvi-sion. Recovety of 11111vacwd 111oll- 1. 1101 by prodijct distillation is ur - ssary. The absenceC' U, of a distillation unit ensures low formic acid content, so ion exchange deacidification is also unnecessary. Commercial Installations: There are several units at BASF' s Ludwigshafe n works with a total annual capacity of 250.000 metric. tons of formaldehyde ( calc. 100%). Reference: Hydrocarbon Proeessi?ig, June 1967, pages 169- 172. 183 Formaldehyde— MONSANTO CO. - Application: A process for manufacture of fni-maldehycle from methanol and air. Description: Formalin is prodticed by dehydrogenation of nwilianol over a silver cat-alyst at elevated temperatures ind esq(-,nti;illy atmospheric pressure. A controlled -mixture Of I-MrifiCd methanol vapor, steam and air is passed over a granular silver catalyst bod. Most of the incti),111, 1 is dehyd.rogenattA as it contacts the high- temperature cata- lyst bvd. producing one niole of formaldehyde and one mole of hydrogen. I'he rcadtion is enclothermic, and sys- tem heat balance is maintained by burning a portion of the hydrogen released with the air provided'. Product,; of reartion are q6ickly cooled in the waste III' at hoilet, st- clioll ( if t1w comertur lor:11ed jilst Nflow the Itakst bril. Heat ( if n%ictioll is rvirox-vi-ed ill this waste hral hoilri., :11111 a polljoil fir dw stvaill- prodlicit' d is Ivwd Is prorrss sivaiii in the combined feed gas charged to the converter. om-vr(cr enlitent passes directly to . 11, . 11, soj-ption train 1111"" th" 1` 01" ­" Idel lvdv and o1her con( Ictisables are IT - co -' red by counter-rurrent direct contact condensation dild ab" mI ' I tion in recirc, I,, I ing font ii I ill streams. I [(-; it of is renicived by beat exchangers ill these recircu- lating intermediate reflux streams. Non-cond nsablc gases p;lss otit of the 'absorption train. Included in the absorp- IfYDROCAIMON PROCF.S-SING lNox-ri-vilior 1Q7q tion train is. capability for meeting U.S. E.P.A. air emis- sion standards. Raw fortnalin is collected in the absorber stinip and then passed to a distillation column where it is purified by stripping out the unconverted methanol. Methanol is recovered and recycled to the process. Purified product formalin is collected and sent to storage tanks. Forinalin assay- may be adjusied by regulating amounts of water added to the absorber column or by subsequently diluting 0% formalin to lower assays in storage tanks. Appropriate temperature control in the total system and in storage tanks maintains paraform formation at a inininium and reduces the formic acid content of the forinalin. A patented Monsanto inhibitor is added to re - 1: 11d 1111. follwitioll (if Ilomfol-Ill ill storag". I' v;' 1111- cs di,',tingiiishing tit(, Nfansanto silvvr process front " Illf-l" procesv-s illchide. 11" e. of .1 sifil" If. rolivri Ivr : 111d catalyst bed to mantifacture at rates tip to 300 million pounds per year, on a 37% solution basis, minimum num- ber and size of other equipment components, and long caullyst bed lirv. 11"' colloillics of the Monsaillo process' favol. pl.ints of greater than 50 million pounds annual capacity. Commercial experience: Thery ary presently seven Monsanto -designed plants ill the United States operated by Monsanto or by others having a total annual capacity of nearly one billiori pomids. SOCIETE CHIMIQUEFormaldehyde (CdF Chimie- IFP Process)- DES CHARBONNAGES Application: A process for the manufacture of formaldc- hydc hoin methanol and air., D scription: A large excess of air is mixed with part Of ill(- ineflianol, exchanged Nvith reactor effluent, arid the ictrmitiiiiq im- thatiol ad'ded before goingr to the reactor. I III,, al I- methanol mixture is hcated to reaction tempera- tttry ill the upper part of the reactor by boiling fleat transfvr liquid. Excess heat in the. transfer flUid is Used t" gerlefatc S( valll. Reactor effluent is exchanged, cooled and sent to a three section absorption tower. Makeup water is added to the upper part to control tower bottom formaldehyde concentration. Tllv new tvpe iron- molybdenuin oxide catalyst has a lirf. of fll()t.(. thall one Year. Catalyst: Thi! HT-CcIF Chiniie catalyst is 3 film x 3. 8 fill, , \ 1111( lvis. Rilphire Nlren.1-1h of ahotit 70 kg/ cm"-, sl)- Ih( - il- o ( If 10/ 2in" grain, spccilic giavity of 1. 8 -:L 0. 1 q/ cm . and a bulk density packed in the f6- imn ID rc- actor 011- s of 1. 05 : L 0.5 Investment: A 25, 000- 1 ' 1( tric7toll / year PUIT fornialcle- hyde plant has the following approximate economics: Inveslinunt, 10" French francs B.."Atery litnits investments 6. 90 Off -sites ( 30flo) 2. 07 Total process, utilities,. storage and general services investments 8. 97 Engineering ( 12%) 1. 08 Process data book 0. 30 Fixed Capital 10. 35 Initial catalyst load 0. 44. Inten,st. on constru ption loan ( 71/o) 0. 72 Startup costs ( one month direct costs) 0. 76 Depreciabic capital 12. 27 Working capital ( 2 months direct costs) 1. 52 Operating costs, French francs. per ton of pure formaldehyde Quantity per Unit Cost C os! jur ton produced French francs ton pr ced Methanol 1. 15 286 322. 0 Catalyst 17. 6 utilitif" Steall, woduted ( 20 hars) 1. 58 12 19. 0 Illectricity, Wh 2. 56 0. 06 15. 6 Cooling water, ill' 75 0. 03 2. 3 lsoill- I fl-edwalvi., 111' 3 - 0.08 0. 2 Labor, 2 operators/ shift + supervision 24.0 Total direct costs 362. 7 Deprvciatioii, 12. 5%, of capital; Interests Y/a capital, 9% working capital; imAintenance and overheads, No process, utilities; storage, and genqral services investments 126. 3 Total operating cosis 489.0 Paid III) royalties are not included Reference: Chauvel, A. R., et a], Hydrocarbon Process - I . ,, Sept. 1973, p. 179- 184. 1" - Ethylene Oxide & Glycol— SHELL DEVELOPMENT CO. Application: Processes for ill(, production of ethylene oxide by direct oxidation of ethylene with oxygen and fol' dw InoducLion of moijo, III, juld/ ol- tIj_(tljyl(-rj(: gjy(.()js by reaction of ethylene oxide with water. Pescription: Ethylene and oxygen feed are conibined with recycle gas and fed to a large tubular isothermal catalytic reactor, ' I' ll(! reaction is hi.gilly exotberinic and temperature control is maintained through -the use of a specially designed boiling coolant, system which permits extivillely close control and stable operatioli of till' wactor. The supported silver catalyst of special composition is highly selective and long- liv(!d. Commercial pLaits are in their 12th year of continuous olx. r;jtioIj With t1J(' iY Orlgitlal catalyst charges and have as yet experienced no measur- al) l(- changc in pressure drop, ; wtivity, Ili- st+: ctivity. The reactor efriucia gas containing the ethylene oxide product is first cooled by exchange and then passed into the ethylene oxide absodwr in which tilt! etilyielle oxide is recovered by absorption in water. Except for a small v(!nt, the residual guses are compressed alld jecycled. A side stream of flic recycle*gas is scrubbed with a suitable solvent for removal of excess CO., which is sidisequently stripped and vented, or recovered if desired. F , tljylt-ij(- oxid(- is striplicd fron, ill(! fill ahsorhelit. ; ijj( i distilled for removal of light ends. The lean absorlicilt water) is cooled in , I procvss cooliiig tower subsequvlit to its recycle to the absoi ber. A part or dt of the etilyiene oxide may be dehydrated to a finished high -purity product7 sttitabh: 1*01' tlW IIJUI1l1'; W1 IIW of higiv-st, (piality deri%;j6%/vs. If glycols are to be produced, the ethylene oxide is transferred directly to ibe glycol jea(-tol. - N%- jjej.e, ill ; 111 excess of \\ atcr' ill(! Hilyh-11v oxide is hydrated to gl) col. It is possible to control the propoition of niono, di alld Lrictily1cm: ' dycols by a prolwr choice of I-ractor tiolls. The process design for each new plant is C01111AILCr- opt I lIJizVd to gikl: tlW l0VV(.'St l) jodII( L cost consish- lit willi specific plant conditions. Commercial Status: ' I licre are '-)o pl.ults u.- ijl this JIM- ceSs and five plants underconstruction. ' I' ll(. design capar- itY of OW ! Ib0V(- j) J- jIItS JJIUS OLIWIS still to k! tjjiioiirj( (-d ig ill excess of two billion pounds per year. Novenib(-4- 1. 909 HYDR( WARISON Ethylene Oxide & Glycols— NIPPON SHOKUBAI KAGAKU KOGYO CO., LTD. Application: A prucuss fur the maijufacture of ethylune oxide in([ glycols froin ethylenc, air and water. Description: Ethylene oxide is produced by the vapor phase oxidation of ethylene with air in the presence of a silver based catalyst fixed in tLibcs of a shell- and- tubc type reactor. The principal side reaction is a complete combustion of ethylene which is much more exothermic than the main reaction and prevails at higher tempera- tt"' es. The control of the reaction temperature is a key factor for the successful operation ' of this process. The licat of reac( ion is removed by circul;, ting ; It, organic cool- ant in the shell side of the reactor, and this licat is then recovered. as stcani. The reaction is carried out in two stages, In tile first - stage reactor the. conversion of ethylene is maintained relatively low in order to obtain a high selectivity of ethyl- ene to ethylene oxide. Purging of the gas from the recycle system is needed to avoid accumulation of inert gas st1ch as Nj, and CO, Ethylene in the purge stream is oxidized in the secorid- stage reactor at a higher conversion. Recy- cling is made also in the second stage for getting the max- imurn utilization of ethylene. Ethylene oxiae in the product gas is absorbed by water under pressure. The aqueous ethylene oxide solution from HYDROCARBON PROCFSSING November 1969 die boUom of the absodwr is fed to a fractionator whele UtllylullC oxide is Stripped out and enriched. The distillate froin the fractionator is charged tu the top 6f the light ends stipper where light gases such as GO,.. and N:,, are stripped to get the final product of ethylene oxide. The catalyst is long lived and the utility cost can be maintained vcry low by efficiciltly utilizing licat and pres- sure energy of the reaction gas. 0 FAliylcije glycol is inade contimiotisly by i . lydiation of ethylene oxide. I) i- and ti -i -ethylene glycols are produced SiMUltancously. The distribiition of the products can be varicd by cliaoging the jcartioii coriditioos, The restifting aqueous solution is dehydiated and distilled under rc- duced prCSSUrc to yield respective glycols. Yield: The yield of ethylene oxide hom ethylene is well Over 100 wt%- In glyculs production, hydration of ethyl- ene oxide is almost coinpict.c. Commercial Installations: 120.0(Y) tons/ year ( as cthyl- cne oxide) -, it Nippon Shokuhai' s Kawasaki plant, Ka%va- saki, Japan and 6 1 0,000 tons/ year at Kazan, U. S. S. R. References: Hydrocarbon Processb14, No cinbvr 1967, Vol. 46, No. 11, p. 175. 179 Ethylene oxide andglyCOIS — SNAM PROGETTI Application: A process for the rnanUfaCtUrU Of ethylene oxide and glycols froin edlylene Using either air or oxygen as the oxidizing agent. Description: Ethylene in the vapor phase is converted into ethylene oxide. in presence of a silver based catalyst in the tubes of sliell- and- tube type reactors. The zeacti" n is highly exothermic and the jeaction heat is reinov(A by shell -side circulation in the reactor of a suitable cool - wit to insure a tborotigh control on the reaction. The ruaction heat is tlj(-ti ust-d to prodtice inediuni prcssitre stearn. The reactor' efflitent is conveyed hito an absorber where ethylene oxide is separated from the effluent gases by water. Most of the unabsorbed gases are recycled back directly to the reactor and a side stream is diverted through a CO., removal systein if oxygen is used, or fed to the secondary reaction system if air is used. The ethylene oxide rich water streani out of the ab- sorber is fed to a stripper %%,here ethylene oxide is recov- ered. The water out of Lhe stripper is cooled and recycled back to flw absorber. The stripper overhead effluent is fed to a light ends fractionator followed by a refiner to obtain ethylelie Oxide of the desired purity. If glycols. are to be produced the ethylene oxide is (- oil- veyed directly to the glycol reactor with tfl(- requijed aniount of water. The reactor vffluent is tht-ii fcd to it separating and putifying system to yield niono-, dl- aii( I triethylene glycols iii the desired disuibution. The -process design for each new plam ' is comptiter optimized to give. the lowest product cost cmisktcrit will) specific plant conditi011s. Commercial status: SNAM PROGEI FTIAKIS bUilt tW0 plants tising the air pro( ess. A nuniber of phiia, iising the oxygen process are curiently in the design stage. Economics: The fqllo%N, iiig data apply to I ton HO based oil (). process. I'Allylelle, toil .......................... 0.91 Oxygen, ton ........................... 1. 2 Electricity, kwh ........................ 170 Boiler feed water, m7; .................... 5 Cooling water, n0 ...................... 2.10 Recovered XIP stuaiii, ton 2. 3 PROYECTOS DE INVERSION GRANDE TECNOLOGIA DE OPERACION Salmuera bruta 1 Purificado 1 Salmuera Célula electrolítica Tanque dí Concon 50 7,e de alta Purificación trador pu~ Tanque de disolución calina diluida Tanque de disolución del 50 170 Gas cloro himedo Evapo. raidor Sedim entador a ode 1 al 1 lo H, So, Refrigerante Torret de desecaci,ift Condensador". Tanque Tanque de Deshidratador 1 M 73 ' r Recipie 1 nte calidad Concen de la si 1 Tanque de A lec cilindros y de pure` de fusión normal trador eiOrw líquid* a las lanq~ la dc . elevada de] 73 % 1 A envesado A los A los A envasado carniones de sólido* carniontra camiones y a 108 cisterna o de cisterna ciaterna camiones eÍCAMIIII FiG. 6. 17. Diagrama completo para la fabricación de sosa cáustica y cloro. ( CcTtesía de Columbia -Southern Chemical Corp.) I-, z C: Carbon Black (Oil Black)—CONTINENTAL CARBON COMPANY Application: A.'process for inantifacturing highly re- in- foi,,cj' r) g hirriace blacks from heavy residual oils, Charge: Heavy residual oil, natural gas, air. Products: IIAF, ISAF, and SAF carbon blacks, pellet- i7ed, ImIk density 2Q to 24 pounds per cubic foot. Description: Oil is preheated in a dircct-fired or molten salt type heater and atomized into a reactor in which gas and air are burned to provide the licat necessary to crack the oil. The furnace used may be one of several vziriations. An example is the Phillips type ( Krejci, J. C. to Phillips PetroIC111TI (' oinpariy, U.S. 2, 526, 700, August 21, 1951) now heing used under a licensing agreement. Air for the reactor is furnished by centrifugal blowers. The tempenattire in the oil reactor is maintained in the range of from 2, 500' to 2, 6000, F, by controlling the oil 11(- W lmv.. Tllv oil is claclif-d 14) ralhi' ll : 111d 1111, ualboll dioxide, tl; il,l)(, Il Illmloxidi., and waff. r. Tracv alliollilt- of acc( y1vile 111( 1 IIII- Illane ; 11- 1. ; Iko p1l)( 111cf- d In the quench section of the reactor, direct water sprays cool the carbon laden gases to about 1000' F. The 111i, dure is furilipr air cooled in a lontr abovit, Itict to 5-50" F, before entvi-ing ; lection, system. ., . 1 beilder leading to the col - The. cooled reaction niixtiirc passes from the header info a series ( if fotir cyclotics wbich remove 70 to 80 perceitL of the black Ilien into the final cleaning step in which silicone coated glass fabric bags remove essen- ti-Illy 100 pelccnt of the J& ack. Allernatively, an- cl(,rtro- static precipitator, cyclone, wet—scnibber ((, inbinalioll may be used with the resultant slurry re -cycled to the quench for recovery. Carbon black is continually discharged from the col- lection equipment by rotary valves and picked up by a pneumatic conveyor. The black is collected in a smaller diameter collecting cyclone and discharged through a high speed hammer mill to break tip and disperse thc very. small quantitics of hard agglomerates that inay he present. The pulverized catbon black is then conveyed by screw conveyor to the pclloizing system. Two mr.thod.s of )(. I- letizing are used, dry procrs% and wet. process. ' I' ll, ( Iry process consists of a continuous feed of loose black into a rotating dirtim and a continuous discharge of pellcts. III Ihv wel process, Ille JAIrk is, Tilixt' d willi an c( Illal wt- il" 111 () f %V; 11(. I*, IIIv 1111' XIIII4. d ; III( I III(, Ic'mIlmll pellcis dlivd. Velli- lizt-d black N % hiplwd iii Imll hopper r: ii4 or mitoijuili( ally 1! a( ked in Y) pound till" c Illy krall papel valve type bags. Operating Conditions: Renctor do -sign and flow rntes are cx- trrincly critiral in dricriiiiiiing the ciiiality ;%no[ type f) f bbrk. Yields- Tht- prmess ywld.-, III, ip ( jo if thq. f.; l1boll ( on - tent of the oil feed depending on , the charge stock and the grade of black desired as the finished product. Commercial Installations: All prodii, rr,.q wm vari; itions of the woc,,ss. EIxanilki,, s are (.*, m( inr-nt; tI (:- trimn Cornimny ; if Poll'' t City, Oklahoma; and Westlake, Lotiisiana; Phillips uliernical Company, Borger, Texas. References: PrTROVA-UM Rr.FTNFR, Nov. ' 57, p227; Induvirial Engirarpripip Chrmistrv, April ' 52, 1) 685- 694. M Carbon Black (Oil Black)— ASHLAND CHEMICAL CO. Application: A ploce" for iiiinufacturing treml and cm- c;) S9 f-o-adcs of fimiiice bli- L- fi-oin iroumfic oils. Prod- inchide: NIIO( SAF), N220( PSAF), N215, N330- 11AF), N358( Sfl,*) N.5500TIF), N66f)( C; PF), and N761( SRF) c,'1Ybol1- bIm- ks, pvIIr1i;,rd, hiilk density 19- 30 Ihs./ cil. ft. Description: 0if is in a direct -fired or hcat cxchmige heater mid atomized into a reactor in which fnc] gw; of- oif are hiii-ned it, lir to provicle the hem neces- sary to cv,,)ck the ajoinatic oil. The. furmices used may he of several varintions. Ali- foi thr reaut(IT-S is USIMIly fl.lr'- nished by cent.riftiiml bloweis. The tenil)(1, 11ttArV In t'lle. 01 1 reactot: is nmintnined it, thc nirt.ge of 2,,.100 to 2. 900' F hv (' Ont" o] It ng thr flo- ritrs. The oil is cnicked to carboll hyd log vn %%ilh sido prodlicing- cm -bon di- Xid", v: 111)" ll illf, l)( INVIt., : md %%olul, Tim.f. ; 1111ollilk ft[ l( c0cm. ; 111( 1 lilt 111. mv mv ; Ilso plodliced. In Ille 1111vilch twctloll of tll(' re' lCtorAirect wnter sprms ov- 1 1111. . ' lubt, 11 gxws to lbotll 1, 000" F. ' I hv lllv it Ill, i'; Im Illut ( ( I' llf-d h\ Ill -:11 cx( Il; 1n11v %% ilb tll(- ill()( vss M' 1 - fore enterimr ' illecti(m system. the r( HTc cooled l-v; l(. lf, 1 f41111cl)( into ; I to ; I h; 1" 111wr il Mlich ti-caled " fass fobric Im"', rellimu es'" It1: 111V 100 lWY- lit of thv black. ' I' ll(- gisvfm cfThi TitS e I,, villicr vrillvd In the zitillosplicre ( IT- llsc l it's it low MIT fit(,]. ilrholl bl' ick. 1,; confillilzilk. dischill- ed f1mil the collt(­ tint' c( luilmle-lit by. rot,-iry valves into a pneumatic coli- vvyor ; 111( 1 silbse( loc" Illy colli,cted in a smallvi- dimneter 1TNT1P( 1f'\ TUWN PlZtlt. f ZNTNfl. ' V- - d "". I CUM 011f(' ting (,( 1011, From the, ( ollecting cyclono the black is fed throm,,li it hi, ­Ii specd hanimer mill to bi-mik ill) and 11" pel-se III(- " I' mil quatilitirs of Ii.ml agglonivniles that may be pff-sclit. I) iif\,-(-riz(-(i hLick is flicti vonvcyed to the pciloizingr system wlivre it is Inim' d 601 lbollt In c( lifill -weight of I I v I* thr mix( mv is ; vjt;llrd ill pill 111i" ers to fol -1- 11 S"' 011 in"" d pullf- 1,; : iiv tlivn fed to a wt; lry The I - duct is shipped it bulk. hopper cars and trucks or autom; iticilly packed in 50 -pound, threc-ply kraft Iml- r. \­ Ive- t pv for shipment by boxcar or Operating Conditions: J eactor design, flow rates, and close control of all operatitqg, conditions are extremely crit- ic; i) itt dvlcrminin,,,, and tile t\ pvs 111( 1 f1wililly of Yields: Thv procvss yields up to 60 prl­(-(,7jt of tile clt-- I] colilvilt ol. fit(. oil fl-vd, dvjwmllfw on fit(- J­ I ; old I I it js, i ; k ( It, (, I I, l: i( k t I, ; is d if t ft jii-il it -d I) i od uct. Commercial Instollation: (:; 1rhon I., hrk & Sytillictic wl. 11hild (: 11coli, ; if 0). 10. 1lifs ; if Amil- s; ls Pass, Tvx;is, Eimice, N. M., Ivalillm, LI.: Nlojave'. ilif.: Belpre. Ohio: ; ind Simintock, Temi.s. Inwi-imllonal instollatiolls ill: 1` 1: 111ce, India, Spilin 111d References: I IYDROCARBON PROCEISSING. Vol. 36, 111, Nov. 19.57, 1). 227 I&EC, April- 1952, pp. 685- 69.1; oil 6v" Ga harrnational, D'vc. 1964, fill. 62- 64. PROYECTOS DE INVERSION MEDIANA TECNOLOGIA DE PROCESO Acrylates (Reppe)— BADISCHE ANILIN-& SODA- FABRIK AG Application: A process for the synthesis of acrylic acid. from acetylene, carbon monoxide, and water plus alcohol for production ( if acrylic esters. Description: The synthesis proceeds on. the basis of the following equation: C112 = CHCOOIT + 52. 5 KcalCH _= CH + CO - - ;_ 11' 0 The reaction takes place irr a liquid phase at 225' C and 100 atm. in the presence of contact salts. The solvent used is tetrahydrofuran. The heat insulated cylindrical reaction furnace has a small gas buffer at the top and contains a vertical, concentrically arranged tube by which an internal liquid circidation is effected. The components are fed to the contact furnace in iwo fornis: in a gaseous form at the bottom and in soliition at tlw top. Tim ncety- lene is, for reasons of sarcty, yipplivd to tbe reactor it) lbf_ form of a gas. solution in the tetraltydrofurane, which is produced. in a saturator un(Jer pressnre. The acetylene wilich i % not conveilrd in the %yntlivsis, is rvrovewfi after ; wawr wash inixud widi fri sji c.,irbon nionox ide, again supplied to the syntliesis in gaseous form. The cata- lyzer. chters the furnace in solntc form. The inerts are cast off hy r.oritiiitlr)usly. witil( ii-.I ilig sonic gas from owirlicad of tire fiirnace, which is freed from nontransformed acetylene by means of a pressure wash in a separate high pressin;e vessel. The. remainder of the gas is flared. In this synthesis, an' Myo solution of Acrylic acid in tetrahydrofurane is produced.. Vie furnace product is continuously drawn off the overflow Pipe overhead and passed into a degasser column. The resulting degassed product is separated by distillation in tetrahydrofurane and acrylic acid. The acrylic icid flows off at the sump, of the column over a tube evaporator. Since the raw acrylic, acid re- ecived in this process' still contains some dim , ers, it is distilled. This acrylic acid received as a distillate flows directly to esterification, and the diacrylic acid that is r& covered in the bottom is split thermally to acrylic acid. A small quantity of acetaldehyde develops in the syn- thesis, which is concentrated in the return gas stream, where it is washed out witli water, togctl)er with tetra- hydrofurane. Tetrahydrofurane and acetaldchyde are separated in a small column. Hic arryfic. ester is produced in a uonlinnom. instalia. tion by incans of est-erification of acrylic acid with the respective alcohol. In the case of ethyl acrylate and Invillyl acrylate an ; Ilcohol surpIng of abont 1001yn i's applied. For tilis lv;[ ofl, n. S(! pm. ltioll of vstel and III] - reacted alcohol is required,- which takes place in a water wash column. In the case of butyl acrylate, only a slight excess of butanol is necessary. The alcohol/ water mix- tures that arc formed in the wash column are separated by. distillation. For stabilization of the acrylic acid and the a& ylic ester during the synthesis an(] storage, stabi- lizers in solittv form are added at varions points. Operating Conditions- Major operating conditions are described above. HYDROCARBON PROCr.,r,*'; TNr, Noveiiiber 1969 143 Acrylic Esters—TOYO SODA MANUFACTURING CO., LTD. Application: A I) i,,((, ss foi 11w - nianufiicturc of aci\ lic acid ; ind/ or acrylic csters froill propylene, air and steam phis idcohol for esters. Description: s%-j, tIjvsi.s procvcds oil the basis of the following equations: 1 0., ROIF 11.2 Cll — Cll, -- C'II C11, 110 C0OH : OOR PropOelle, sterim and prcheate(I air are f(d to the first rvactor filled vvith the. first oxidation * catalyst. ' I' ll(, rracfion f­ lvilwr itiirc is kept m 3500 G in the catalyst 1"' d fly ( "'( 111: 11ion of coofin!,, illedium. ' I' ll(- oxidation PrOd" C( s . 11c fed dircctly to thu sccond reactor filled with II- s­' ond 4- id-itioll (. 11; llysf- rrwtion temperitim, is ki-pl. :11 "' 00" C it) III(. ,; jjJjvj The oxidation product in -which carbon monoxide, car- holl di" Xide, 1(-(, Iic ncid, arf-tolle, etc. besides acrylic "Icid 11)( 1 11-(- rmif iinvd. is coolv( l. in( I t1w h- prodllcts are reinoved from the main Inoduct. acrylic acid solution is onriched and then distilled to provide acrylic ncid al recovery collillin. The ilcrylic. ;lcid, - 11cohol and conc. sulfilric Icid 11re fed to Ulu esterificatinn reactor. esterification is car- ried olit ; it 80" (% The 1.(. action product is sent to settler and then distillcd to provide high -purity acrylate at acryl- ate recovery column. Operating Conditions: The essenti,-fl operating condi- tions ; lrc wt forth in the above description. Economics: The yi(,Id of acrylic acid and ethyl acrylate froni piopylenc. is about 67f,r i1lid 601/r, rcspvctiv(!I\. Ullit consuniptions , of the process per pound of acrylic acid ; 1nd ethyl . 1cryInte are about as follows: ' Our estimate shows thit the investment cost of the Iflant at a ciparity of 25, 000, 000 lbs/ yr of (- thyl_ acrylate is abollL tJ, S. $ f, 500, 000. Commercial Installation: Pilot plant work has been coll- 11, 11- tud c- lillierri; il pl.- iriL is pkiiined for 1972 it III(. Sill?) Daik( m; l Iwilodwillif- A (-() lllp1l- X, Reference: HYDROCARBON PROCE. SSIN0, N4; iy 1969 p. 152- 151.. HYDROMIRMIN PlZ( 1(: l'. S.' TN(; Nmenl1wr 1969 145 * Acrylic Acid FIthyl Acrylate Propylene 0.88 lbs 0. 70 lbs Catalyst & Ch*vmicals O.fio. so 1"( 11allull 0.5211) s Steal)) 11. Ills Water 501hs 60 Ibs Power 0.5 k % 1 0. 62 L-wh Our estimate shows thit the investment cost of the Iflant at a ciparity of 25, 000, 000 lbs/ yr of (- thyl_ acrylate is abollL tJ, S. $ f, 500, 000. Commercial Installation: Pilot plant work has been coll- 11, 11- tud c- lillierri; il pl.- iriL is pkiiined for 1972 it III(. Sill?) Daik( m; l Iwilodwillif- A -() lllp1l- X, Reference: HYDROCARBON PROCE. SSIN0, N4; iy 1969 p. 152- 151.. HYDROMIRMIN PlZ( 1(: l'. S.' TN(; Nmenl1wr 1969 145 * Methyl Methacrylate Monomer— ROHM & HAAS COMPANY Application: TIJ,, V, t lmnc.ss I' m- Ili(. m; iiml,-i( tmc tit Charge: The i: m mmetiAs for this mw.ist of mmllydlill 81111, 141 - it ; At id itlitl Products: ' I' ll(- pmdmi is mctIjyJ mrihwj-yl: iw mor.oliji-i Description: ' I' ll(, piocess rvpic,;ciits tit(! mt-dio( l tisc( l for die maimLicture of mi- rhyl mokicryLitc. with 1crtow. (. 5itimily( Ilill by IIIc lc l( li( m () 1 11)( 11"- Cli Cyanide aild acetolit.). Tlw 1( ctolw 1111( l 99 lwa-vill stillillic iwid It,- to ImIll 1 muillylit- Tykiiiii( lu stilrate illb-Tille( limc. ' I' llis Is llot isolmcd bilt is rvwtv(I vvith ( lilkitu lilt-Ilimml -() lilt ioll to 1) 1. 0( ill(.(. tit(.. lll(:Illyl ilictilacly1me illollollicl. ill . 1 coillillil- mis twimicr. ; welono cyallolly(IIIII ; 111( 1 (*( Ill( ('110 l Wd still' tiji(i zicid it-(- pumpt-d lilt() .1 CO( AlUd ir wiion kettic Is) f(win ( lie intci,jjwA,Ii; i( v. The bLivain Ieaviii,, this iviu-tioll kettle is ( it-hyth-itivil by bemiti.g it it, vx(.IlaIjgvIs to : Ij Auviltud tvillIA-ratull.. ' I he strcalli is tilt' ll cooled at ( I passed into a sciics of t` AClIliCZL1i0Il ktAtICS. Ill till! (*St(, I, I- fication kettles diltitv medmil0l is 11111 till- llieLllyl Ifiethacry late is fol-Ilied. Ill Order to polyllieriv.:1- tioll, inhibitots are a( ld(XI ! It Valious I) Oints ill Ilic procc.'­. I' lic, cSterilwd stre mj is then pumped to the a6(1 strippint, , colunin where nit-thyl nietbacqlate, inethatiol anLi- solliv 272 w; llci aic 1, 11" it oll, itild dw of* ext vss stillul w iwl(], : 1111111ollil till hisillfilic mid is selit to dir-millilmilmll 1) 1; illt. Tilt. stiv llll Ilic . 1cid silillpill, -, 4) 11111111 vjlil. l. ille )'(-( 6114. 1. c( 111111111 Vlww tilt! ljl(!Illyl Ilicillm I) LIte mal mmw Ilivillillml ; w: ri- mo% ed - it Ilic top. This mitlt rial js ct, ndcii,-wd ; 111( 1 (- Ilt to tilt- colillilli v.dit- le illv jilcdl l lilvtII. 1( j) l. kIv h vjm A awd I roill the lilt-th, 11MI, A ' I it - tiva U - r , of A it I( ) i r Is, it A A Hit.,, bottom of' thr (." Illljjli P, It- ttillwd to thc I' t-clifier 111d ( lit- k4tollis il.(Aill till, c( Atillili, C( Q)- 1111 1_ 1. ly of ' illd llwlli illol, aw will to, Ilw Illeth. tilol recovvi). Ilictil.111ol is re- cyclu( l to the f." It- lific;kIlim 1,(- Itl(- . 111( i till. w ltvl k s" Ili to wilstc.. ' I' lle.* (.1mle im-11INI fit-tt of Ilit-111- illml. comrs 1` 10111 illv top () f the NN lsh (. Ajilllllll. Tlw 1114. 01 1 Is 1, 111- dit.l. pill-Ifird by ( 11"' 1111. 111oll Ill ; I millmll systelli sillilLir to III; lt k1scd lol- lilt- ladlffll 01' ( Ili' Ill,' tllyl MIA[ p. 20'); . Operating Conditions: Thr pinwipal opri-miii... twil" Ituvi. bvvii Ilwiltiolle(I In tit(. ( 1c."clipti" ll ilbov(.. Commercial Installations: Tht. lWiti, &, pally lul.., (011stim-wd t%NO tillits it 11ollsiml, - Tcvo, " lir MAIL lit Blist(il,- Pa., un( l () lit- Iiiiii : At I. ojIis%-ijl(-, jf(. jltjjdq employing this piocess. Reference: Ind. E'itq. Cliem., 51, 1232, L 28 19.59 HYDROGAIMON PROCESSING Reaction: Feed Materials - Acrylic Acid Ethanol Coproducts: ETHYL ACRYLATE FROM ACRYLIC ACID CH 2 CHCOOH 4 C 2 H 5 0 H --- a- C H 2-- CHCOOC 2 H 5 1 H 20 I - Reactor 2 - Ethanol Feed 3 - Acrylic Acid Feed 4 - Distillation Column 5 - Extraction Column 6, 6A- Topping Columns 7 - Ethyl Acetate Recycle 8 - Diethyl Ether and Ethyl Formate 9 - Product Column 10 - Heavy Recycle 11 - Evaporator 12 - Heavy Ends 13 - Light Recycle to Reactor Catalyst: Sulfuric Acid Phase: Liquid Reactor type: Still Column Solvent used: Ethyl Acetate Temperature, 1c: 80- 90 Pressure psi: Atmospheric Reaction time: Heat Required. Heat evolved: Product yield: Product purity: Materials of Construction: Major Product Uses: In acrylic points and acrylate polymer manufacture. Reference: U. S. Patent 3, 354, 199 by S. K. Lachowicz et al ( to Distil lers Co. , Ltd.) ( November 21, 1967) 300 Reaction: AL COHOL STOMAGf QUATERNARY AMMONIUM COMPOUNDS RNH2 + 3CH3':' + 2NaOH !,- R( CH3) 3 NCI + 2NaCl + 2HZO Feed Materials: Long -Chain Alkyl Amine ( RNH2) Methyl Chloride Sodium Hydroxide Coproducts: Sodium Chloride Water AMINE 5 r0RA(If TEMPMATURE 11y RICOROER / VA 0"V S rq. F11 rER] LRATIO D11 V TION ROL -------- ICONTI TANX 40, MENL CHIORIDI 510RA6E QU41FUNARY 5 r0RAOf o - Catalyst: None Phase: Liquid Reactor type: Stirred, Jacketed Kettle Solvent used: Isopropyl Alcohol Temperature, IC: 95- 105 Pressure psi: 30- 60 Reaction time: 2- 6 hours Heat Required: Heat evolved: Yes Product yield: Product purity: Materials of Construction: Major Product Uses: Cationic surface- active agents with high antibacterial effectiveness. Reference: U. S. Patent 2, 950, 318 b S. H. Shapiro ( to Armour & Co.) ( August 23, 1960) 5 90 2, 4- DICHLOItOPHENOXYACETIG ACID 2, 4- 1)) C12C6H3- 0—CH2COOH Froni Dichlorophelliol and Alonochloroacetic Acid Caustic -soda solution Dilute hydrochloric acid Dichlorophenol — r Chloroa'cP,: c acid Reactor _*_ Acidifier Crystallizer Waste Crude 2,4-Dichlorophenoxyacetic acid to recrystallization) Reaction C12C61130H + CICI-12CO01-1 + N1aOH --* C12C6H3—()— C112COOH + NaCl + H20 80 -85c/ -o yield Material Requirements Basis - 1 ton 2,4- dichlorophenoxytieetic acid 2. 4-dichlorcipbenol , 1, 830 lb Sodiuin hydroxide 99011) Monochloroacetic acid 970 lb Hvdrochloric acid ( 18' W) 1, 750 11) Process Equinioleciflar quaiitities of 2, 4- dichlorophenol and nionochloroacetic acid ire cliarged to a stcain- licated closed k( ttle n1mig Nvitli 2. 2 inolit- of sodiuni hydroxide as a 15 per cent water solution. Reaction is carried on for sev- eral bours under reflux conditions, after which tirne Ilie reaction niass is a6dified ( to 1. 0 pH) with dilute hydrochloric acid. The acidified liquor is sent to a crystallizer and thence to a centrifuge. The crude crystals must flion Iw rverrstalli7ed froni q siiit.,ihl(, colvent. f,.,, exnonnIr- lif,mene. , mrl FROM DICHLOROPHENOL AND MONOCHLOROACETIC ACID 327 washed and dried. The reaction must be carried out under optimum con- ditions of time, temperature, and rate of addition of reactants to prevent liydrolysis of unconverted chloroacetic acid to glycolic acid. In one process variation, unreacted dichlorophenol is removed by distillation prior to acidification. Better yields ( 90- 927c.) are claimed for carrying out the reaction in the presence of anhydrous monoclilorobenzene. The reaction is carried out at the boiling point of the solvent; water is removed azeotropically. The in- soluble product is separated from the solvent, by filtration. A 2 - ton -per -day plant M;ts S1,S0, 000 exclusive of building and site. 35 30 25 Lr. E 20 C C_- 0 15 10 5 0 1935 1937 1939 1941 1943 1945 1947 1949 1951 Production- 2. 4- Dieliloropheno3,N, acetic Acid Use Patterri Per cent Weed hiller 95 Otheragi-icultin-al uses 5 100 1953- 1955 328 1. 10 1 00 0.90 0 iffen. 41 Z. kn 2 0. 7 0 BE 0. 50 0401 1936 2,4 -DI CI ILO ROPHENO XYA CETI C ACID ( 2, 4- D) 1938 1940 1942 1944 1946 1948 1950 1952 19.) 4 195G Price - 2. 4 -Die] j lo mphenoxyn ceti (-. Acid M iac4- flaiieous Properties. Colorless, odorless crystals. Alol. x% -t. 221. 05 M.P. 138" C Very slightly soluble in water ( 0.4 per 100 g at 25C). ISSoluble in 50 per cent ethanol ( 10.3 g per. 100 g at 25' C) Grades. Technical ( 99 per cent). Containers aitd Regulations. Fiber drunis ( 100 lb). No JCC shIpping label required. Ecoiioinic Aspects The rapid increase in production and consumption of 2..4- dichlorophe- noxvacetic acid ( 2, 4- D) and its salts, and esters since War TT is another example of the strides made by the agricultural chex.r. A,. -,. Js industry in the postwar period ( see DIM. The manufacture of org.­.-Jr. herbicides is (. 111' rently a 60,000,000 -lb -per -year husiness, and appears to in- crcwze subst.rinfially for inany ye.ars. It is estimated that ani. -..,;l crop losses due to wcods 11111olint. to $-5' 00().()0()' 0()(). s I effectively2+ D is still the most important of the herbicides and i in the control of broad- leaved annual weeds in grain fields ar.,,:' .'" herbaceous weeds in pasture lands. It is also used as a general herbicic,. in maintain- ing various rights- of-way, such as along highways. Next. in importance to 2, 4- D is 2, 4, 5- T ( 2, 4..5- trieliloropheriti-*-acetic acid) which is used against brush and woody plants, particularly It is also useful against weeds that have developed resistance to 2.4- D. Arnon z the other orgtinic herbicides that sboki- pronii!ze a- fichInropro- MANUFACTURERS AND PLANT SI17ES 329 pionic acid and trichloroacetic acid; chemicals for the pre -emergence treat- ment. of soils ( prevent germination of weed seeds), such as 2, 4- dichloro- sulfate, and dinitro- o- sec- but.ylphenol; soil sterilants, e. g., plienox-, 3-( g-cliloi-ol) lieii3-1)- 1, 1- diiiietliylurea ( CAMU) ; and the herbicides developed to control grassy -weeds, e. g., isopropyl v- ( 3- cliloi-oplienylc,,,ii-ball)ate ( CIPC). The most important' derivatives of 2, 4- D at present are the ainine salts and alkyl esters. In fact, several formulators buy the basic acid from manufacturers and make the derivative they prefer in their own plants. Most of the acid is used in these forms. Like most other agricultural chemicals, however, weed -killer manufac- turei-6 are plagued froni time to time with overproduction and price cutting. As in any other new field. the competition of newly developed herbicides presents a threat to established products. On the other hand, with increas- ina demands on the worldl's food supply, cheinical weed control has become a i3ecessity and the sale of herbicides should increase for many years. The characteristics of 2 '.4- D are such that it will certainly -supply a goodly por- tion of this demand. Larger quantities will also be used as a plant hor- mone, as further applications are developed. Of course for some uses, 2+ D may be partially replaced with related compoulids, such as itS butyric acid lioniolog or by mixtures of herbicides. Manufacturing plant requirements are coinparati%-ely simple. but produc- tion will probably be limited to those companies, Nvith a good raw material position and experience. in agricultural chemical sales. Manufacturers and Plant Sites Ciliprnin Cliemical Co., Portland., Ore. Diamond Alkah Chlorinated Products Div., Houston, Texas; ' I's-' ewark, 1N. J.; Des Aloincs, Iowa Dow Chemical Co., Midland, Mich. Monsanto Chemical Co., '\ Ionsanto, Ill. Pittsbur0i Plate Glass Co., ' New "_\Iartins-61le, AV. Va. Pennsylvania Coke and Chemical Co., Neville Island, Pa. 11ohm and 1has Co., Bristol, Pn. FAT -Ty ACIDS FROM OLEFINS Reaction: RC H - C!!,) CO - H 20 - RCH 2C" 2COOH 11F Co 01 PEAUCQ Fe' d Dilsobutylene Phase: Liquid Carbon Monoxide Reactor type: Stirred, Jac eted Kettle Water Solyent used: Water Temperature, - C: 0- 95 Pressure psi: 130- 500 Reaction time. I minute to I hour Coproducts: Heat Required: Heat eyolved. Yes Product yield: 90% Product purity. Materials of Construction: Major Product Uses: In the manufacture of point driers and if) the Formulation of alkyd resins. Reference: U. S. Potent 3, 005, 846 bX B. S. Friedman et al ( to Sinclair Refining Co.) ( Oct. 24, 1961) 332 Aniline— AMERICAN CYANAMID COMPANY Application. A vapor-pha - se fluid -bed catal tic process f(ir rc( luction of nitrobenzenc to aniline. Charge: Nitroberizene containing less than 10 ppm nitro- 11tiophene and hydrogen. iiiiiiiinumProduct: Aniline—Freezing point -- 6. 20 ( 1 Description: Mononitroberizenc prepared from benzene by st: 111dard nitration processes, is fed to a lower tray of a bul) ble- tray tower. Heat supplit-d by a reboiler vaporizes lie nitroberizene into a streath of hydrogen which is fed lip tile tower. The mixture of nitrobenzene and hydrogen containing approximately three times the theoretic.al ailloillit- of bydrogen required for the reduction is passed t1liollgh a porolls disilibillor phile into a reduction ch; IIn- 1)(. l ( f)[ 11illillill- a 111lidized I , Wd 01' COppCr C; ltill)'St. FA( lloal ( if rv:iction is reni, wrd by circolation (if a fur lifliull 111roll"d) Illbi.. blindivs slispendf-d ill filf. l; l1; 11y. 1 1) , vd. The tipper J) oltioll of the icactor, essentially emply, acts as a discn- iqiriff 7one and permits a major portionI 11 Of Ille c; Wd),; t p: iinch,s rntrained in the gas sov;lln if) fall back ill(Willf, cal; llyst hvd. Thc exit gas(-.,-, are fillcli-d free of catalyst on porous stainless steel filters. The filteted gases arc cooled in il. condenser to sepa . Ill.(! allilille and frolo Ilw, v.Xccss hydiogwil %vilich is rr- cvc1cd except lot- a sinall purge. ' I' ll(. aniline is sep.1lated fioni water in a decanter. The crude anilinc- containing lr s than 0. 5 percent lint-cactcd nitrobelm,11V . 1111d No\ vinhcr 196 1, Vol. -K No. 11 5 percent water is distilled to remove high boilers. The water and aniline which pass overhead are condensed and redistilled in a finishing tower. The catalyst is prepared. by the. adsorption of cuprain- irioniurn nitiate on silica hvdrogC1 followed by spray dry- ing to yield a fluidizable powder with a article diameterp of 20 to 150 microns. The catalyst is activated in place in the enriverter hy reduction with hydrogen at a tem- peralure of about 250' G. Careful control of the quality Of flit"OhCrIzellf! - ill give long active life catalyst ( 1, 500 its Of " Hilille Per " fill Of catalyst) hcfore rcge-licration is required. Regeneration inay be acconiplislied in place by Stopping the nitroberizeric feed, flushing th e system with inert gas and passing air through the catalyst at 2500 C 3500 C to burn offorganic deposits. I' lle r(.;lc1i() 1l isas follO%Vs* If I,, N0, + 3f L - (!,, I l, N1 I - + 21 li( ) Operating Conditions: The is (,,, I ,., I ill ; H 270' C and 20 psigg. 7 Yield- ' I' ll(, yield of nilille froll, JJiJr(, b,-, JZcn, 1,; illately 98 pelceill of' dir" ly. Commercial Installation: American ( 1yanamid Com- 1), Illy, Willow Island, W. Va. References: 0. G. Kark-alits, Jr., (_'.. At. \', lo( l( 1lwa;1rt I' d F iH. Mcgson ( to Anwrican ( lyl-inairild coinp;ltly) 225 Aniline — SCIENTIFIC DESIGN CO., INC. Application: A process for the mallUfacture of aniline from pure or impure phenol. Description: Reactor feed is prepared by combining phenol and ainmonia. The preheated vapor feed mixture enters a fixed bed catalytic reactor, and aniline and water are produced by the amm onolysis reaction. Reactor efflu- ent is partially condensed and unconverted ammonia is compressc-d and ri-cycle(J. Water of reaction is removed f"0111 the cmde -miline strt-ain by distillation. High purity milinr piodu, t is recovvred by disfillation froin heavies. The key feaPirc of the process is the unique Halcon- develop( d catalyst which attains neirly. quantitative yields fin phenol and ammonia to that the purification trail, 15 simple and the.anihne product is of unusually high purity. Because of the long life of the catalyst no regeneration Economic factors: Capital costs are a small fraction of those of equivalent capacity via nitrobenzene reduction technology: a 100 XIM lb. /yr. plant would cost $ 3. 5 \ 1.\ 1. Production of aniline from phenol is raw materials in- tensive, because the process itself is extremely simple. Where large quanLities of low cost phenol are available, extremely high purity aniline is required, or ininimuni capital expenditure is desired, this process is favored. The process presents advantages over the classical tech - I iology by avoiding the hazardous nitration step and clinii- iiating acidic purge streams. Waste disposal problems are Commercial installations: A 20, 000 ineLric ton/ year plant has been in satisfactory operation since August 1970 for Mitsid Petroclwmical Indti-stries, Ltd., Japan. facilities are required. . Reference: Chemical Engineering, April 2, 1973. Reaction 4,v-rA,,eA Feed Materials: AnthracenE Nitric Acid Coproducts: Wuter Nitric Oxide ANTHRAQUINONE FROM ANTHRACENE AND NITRIC ACID 0 3NO2 3NO - 1 12o C1, 0 I - - - PW0,0I/ C 7' D - Centrifuge E - Vocuum Drier F - Diluent Tank G - Nitric Recovery Tower Catalyst: Non Phase: Liqui Reactor type: Stirr Solvent used: Tricl Temperature, " C: 105 - Pressure psi: Atmo Reaction tirne: Heat Required: Heat evolved: Yes Product yield; 95% Product purity - Materials of Construction: e d ed, Jacketed Kettle ilorobenzene 110 spheric Stainleb,s Steel Major Product Uses: Used in the manufacture of anthroclui: vat dyes. Rcferencc: U. S. Patent 2, 821, 534, by W. N. Alexander ( tct , eneral Aniline & Film Corp.) ( Jan. 28, 1958) 86 ANTHRAQUINONE FROM NAPHTHOQUINONE AND BLITADIENE 0 C 112 0 0 CH 01) Iction: CH ( 2) C 2 1- 12 C) 0 CH2 0 0 THAO) AIR NAPTHALENE EGO: V ERTER VA P 0 R I :ZE:Rj$ AIR F SOLVENT1 ABSORBER PHTHALIO EXTRACTOR NO SOLVENT EXTRACTOR I" CRYSTA 1- 1? Rj CONDENSATION — BUTADIENE T REACTOR PHTHALIC RECOVERY d Materials: 1, 4- Naphthoqui none Butacliene Air oroducts: Witel r BUTADIENE R'ECOVERY NaOH i THAO STILL EXTRACTOR OX) DIZER__ t*------ 4lFt FILTER AQ Catalyst: None Phase- Liquid Reactor type: Pipeline Solvent used; Alpha' Chloro Naphthalene Temperature, C: 100 ( 1); 140- 150 ( 2) Pressure psi: 60 ( 1); 70 ( 2) Reaction tirne.- 5 Ills. ( 1) Heat Required: Hcnt cvolved: Product yield: Ov"'roll Product purity: Materials of Construction: or Product Uses: Used in the manufacture of anthraquinone vat dyes. 2rencc: U. S. Patent 2, 938, 913 by R. G. Weyker et al ( to American Cyanamid, Co.) (' A -i/ 31, 1960) 117 Reaction ANTHRAQUINONE FROM PHTHALIC ANHYDRIDE Co \ Co 0+ 0 - J, + H 0L_ ",_ C C" ( caC'O) a 2 41R RtC,,-)V_-R,4r10JV FrIAPOR- CE AyrNRAQVINONE Feed Materials: Phthalic Anhydride Benzene Coproducts: Wofel Z.. . F -_ 1 CON" wri OR0, IL L Col. 0" M FP"r. ' / C 41111,11DE IW4 r, -R Catalyst: Silica Alumina Phase: Vapor Reactor type: Fixed -Bed Solvent used: None Temperature, IC: 370- 470 Pressure psi: Atmospheric Reaction time: 0. 25- 0. 5 seconds Heat Required: Heat evolved: Product yield: 80% Product purity: Materials of Construction: Stec) H, 0 of rR'F.5H BENZENE Major Product Uses: Used in the manufacture of anthrarlt, iw)ne vat dyes. Reference: U. S. Pate nt 2, 401, 225 by P. D. Caesor et a I ( to Socony- Vocuum Oi I Co.) ( May 28, 1946) 811 ANTHRAQUINONE FROk,I ANTHRACENE AND AIR Reaction: + 3/ 20 9, ' j + H 0JCr, D-10. 2 ___ - — r, I C_J_ 2 0 I - Anthracene Feed Tank 2 - Pump 3 - Feed Nozzle 4 -Air Compressor 5 - Air Heater 6 -Mixing Chamber 7 - Air Blower 8 - Air Heater 9- Catolyst 10 - Reactor I I - Product Separator 9 Feed Moteriah: Catalyst. Vanadium Pentoxide Anthrnc,,,-.e Phase: Vapor Air Reactor type: Horizontal Drum Solyent used: None Temperature, C: 300- 400 Pressure psi: Atmospheric Reaction time: 0. 4- 4. 0 seconds Heat Required: fleat evolvcd.- Ye, Product yield: 901yo Product purity: Materials of Construction: Steel Major Product Uses: Used in the manufacture of anthroquinone vat dyes. Reference: U. S. Parent 3, 062, 842 by G. Gross ( to Cibo Ltd.) ( Nov. 6, 1962) N BUTADIENE -STYRENE RUBBER H IReaction: 3xCH2= CHCH= CH2 + FCH= CH2- -- --( CH 2CH= CHCH C CH2 x where x= 1000 Reactor C REACTOR Feed Materials: Bufadiene Styrene Coproducts PRECOOLER To Vacuum P Um1p STYRENE STRIPPING COLUMN foomer Shortstop Solution - - - - - - - - - X LOWDOWN 2 TANK ToVocuum 13 Catalyst: Pump Phase. Liquid ( Emulsion) Reactor type: Jacketed, Stirr ed Kettle LATEX Water Temperature, IC: 5 Pressure psi- aLATEX PRAESSUREVACUUM Reaction time: 14 hours Steam FLASH TAN. LAS TANK 98- 99% ( 70% Conversion) Product purity: D Materials of Construction: Glass - Lined Steel Steam T_ I: i P 0 .. Finishing Catalyst: Cumene Hydroperoxide Phase. Liquid ( Emulsion) Reactor type: Jacketed, Stirr ed Kettle Solvent used: Water Temperature, IC: 5 Pressure psi- Atmospheric Reaction time: 14 hours Heat Required. Heat evolved: Yes Product yield: 98- 99% ( 70% Conversion) Product purity: Materials of Construction: Glass - Lined Steel Aujur Product Uses: As general purpose elostomers for automotive tires and industrial uses. teference- U. S. Patent 3, 052, 645 by W. P. Denson ( to Copolymer Rubber & Chemical Corp.) ( Sept. 4, 1962) 123 Glycerol (Acrolein and Hydrogen Peroxide) Application- T] i is a process for the manufacture of glycerol wit larl' s ge amounts of acetone as a coproduct. Charge: Propylenc, Oxygen. Description: I ' rol)Y ]cne is first hydrated to isopropanol using a standard process. ( See Page 264). The isopropanol is oxidized ill the liquid phase by bubbling pure oxyge, n through a liquid rnixturc of i-sopropatiol and 1120 at a P" essure of about 2. 5 atmospheres and at temperaturcs between 90' and 140' C. The reaction mixture is diluted with water, stabifized, and fractionated to yield hydrogen Peroxide solution, acetone and unreacted isopropanol, which (- all be recycled. A mixture of propylene with slightly more than an equal ninount of steam is reacted with 25 percent oxygen based on thv weight of the propylene. The reaction is Calried () Il( ovel. a fixed bed of cat' llys 1),, c( l on cup, Is s"[ W- 1- 1 011 SiU ­' some odwr bigh thermal Coll- slipport. GIose control of reaction temperature is nu( cssary. ' I' ll c rvaclion picSS1111. illay he frfml I la 10 ; 1(- Illosplicl-cs ; 110 111(- willpf-fillillf. hrim-4- 11 IiHO' and 400') Ile 1- c'"' oll Illixtul-e is Cooled and- fractionated to gi%'(- acrolein. unrearted proplyene. and. tariy by- products. Tllc ViVId tif aclolvin is near 86 pvrccnt of illc plopyl, lif, consi; Illvd. Tbe purificd acrolvin is mixed with pure igo . propanol froin the I) ropylene hydration step nci thc IT ixtin. I r ' 11301, i - d ' I' lle lni.\ vd vapors conlaining 2- 3 moIcs ( 4 alcoil(, I I"' ""' 1" ( 11' al'" llcill are passvd through a catalyst bed containing both uncalcined magnesium oxide ai d zinc Oxide, with till-. magnesia predominating. The reaction Noveinbcr . 196 1, Vol. 40, No. 11 takes l) la(­ ; It about 10W C and iclds about 77 percent allyl alcohol ( based on acrolein charged) and an addi- tional quantity of acetone which is added to that formed in ill(- i%oprol.;anot oxidation step. Purified ally alcohol is agiiitcd with a watvr solution of hydrogen peroxide containinq a small amount of tung- sten trioxide in Solution. The 'effiective catalyst is a 0. 2 percent pertungstic acid solution in 2 molar aqueous hy- drog( i -n peroxide. The reaction. tell ipci-at, ire is 600- 700 ( 1, reaction t - irric is about two hours, producing glycerol in water solution. The reaction mixture is ( Jumped to receivers and dis- tilled to yield high- puriLy glycerol. ' I' ll(! recovered catalyst Solution is recycled. The yield of the final step 80-90 per- cent based on the allyl alcohol charged. Operating Conditions: The control of both the propyl- ene oxidation step and the hydroxylation. sicp InlIq Ile excepilonally 9()O( l fOl' W(' cPUlbIV YiVIIII. ' I' lle conditions quoted are. approximate, and the practical operating limits are doubtless inuch less broad. Yields: The over-all yicll of useful pro(l,, t, ( glycerol and acetone) is not known. The over-all glycerol yield on propylene charged to the' oxidation is in the rangre of 50- 60 percent. Commercial Installations: This process is now in lame -scale com- rnercial use by Shell Chemical C1,o. It Norco, La. References: Glycerol ll;iy(,ff in Prcwylviie Parl. iy, rhemi,, l 111, A. M;ty7,' 55,p72- 77; S. A. liallard, If. dcV. I -'inch and F,. A. Peterson to N. V. B4taafsche Petroleum Maatschappij), British Patent 619,014, Mar -2,' 4:9; M. Mugdan and D. P. Young, 1. Chm. Soc., 49,2988- 3000,CA- 43- 5269h. 249 Glycerine— FMC CORP. ApPlIkation: A process for making gINcer-in.E. frourl ,(, e- taldvhyde and propylcim oxide. Description: Syrithetic glycerille is III;, de by a new per, a( Hic acid-glycid-01 route ind is tilf. first Sm . 11 prof-css to produce glycidol and acetic acid from allvI alrollol arid peracetic aid. ThC FNIG PYOCess is also vitiployed to make ally] al- coliol and acetic. acid. Basic steps ill the process are as follows: 1. Propylelle -,oxidc is converted to allyl alcohol with the [;. S(. of a cal; lksi. 2. ¡ S oxidivi-d n., acHUN% llirli i. II-auli.d %A,¡ ti¡ alivi ah -1, 11( A p, lt, mi (' V5( ¡ ti()] atid acid. The pviacetic acid math, iii the procvss van be usud for otlicl. Commercial Installations: FNW Corp. opvrat(.-S the 11" t Ill," It di", Bayljort, Texas. hViCkSS-ING * Nm-1- 1111wr 10051 EPDXY RESINS FROM EPICHLOROHYDRIN CH, j Reaction: NaOH + 2CH — CH— CH 2 Cl + HOO— C— OOH 0 NaOH H3 1 CH — 01—Cli U(,)— L— OOCH Clí~~CH - Cl i NaCl 1 1- 11 \ 2 / 2 21 2 2 0' H3 OH Feed Materials: Bisphenol A Epichlorohydrin Sodium Hydroxide Coproducts: Sodium Chloride Water Catalyst: None Phase: L iqu id Reactor type: Pipe Coil Solvent used: Acetone Temperature, IC: 100- 180 Pressure psi: 100 Reaction time: 5- 20 minutes Heat Required: Yes Heat evolved: - Product yield: 99% Product purity: Materials of Construction: Stainless Steel Major Product Uses: In the formulation of surface coatings and as casting resins. Reference: U. S. Patent 2, 986, 552 by A. J. Landua et al ( to Shell Oil Co.) ( May 30, 1961) 292 TO RESIN STABILIZER UNIT PROYECTOS DE INVFRSION MEDIANA TECNOLOGIA DE OPERACION CaprolactaM — TOYO RAYON CO., LTD. Application: A phoLucheittical process for the rnanufac ture of calfrolactaill front Cyclollexalic -, ainnionia, oleurn aild hydro" vii (. 111orldo. ' I' lle 1winhicts arc jiber-.grade cal)- 1( d' wI; 1I11 ; ij1d fri-Illiz(fg1adc allinim1111111 S( Ilfall. ctystal. Description: ' 11is is ( alled PN( ! jjv0cvss which has ( oiiiv from " Photo- Nitrosaijon of (, yc10-hvxaiw." Nitrosyl Chloride. Accoiding to followhig e( Iti; ttiolls, tkrosyl chloride is JAMILIC(' d fr0IJ1 aininoina, 2N11 . 1 ' 311- 0 211, S0, N.,O:, — 211NOSO., + 11, 0 11NOSO, + 11C1 — NOCA [ Jf.,So, Cyclohexanone Oxime Hydrochloride—Special coiru- bion- resistaht waterials are eiriploye-d fol Lbe hydrogen chloride and nitrosyl chloride gas ciicidation systein in- cluding t -he photoveaction vessels. A large. ritunber of 11101( til'), 1; 1111j) S llaVill"' 00 LNV of caj) acity arc iiijillers" d in ( It(! reactioti inixture of photoreactioii vessels. The cicctlic povver 1- cquirt' d for the. photo waction has beull irdiwvd to less thaii 1A k%%Ii per pound of the oxinic yd(' 111-\; 1ji01jv oxillic hydit)(111olith. 1' 1) t; 1ijwd by Ill(' j) l10I()( 1w1jjWA 1r; wLioli 11, 0111 cydolivXal-w is S(. I)- 11-[ Wd as it ull at 1. 11C bottoill of OW' 1- caction %'('S- scl. ' I' livii it is diicctl) stipplied to Lit(- Bvckiiwiin rear- N0H - 2 HC1 OH + NOCI + HCI - hv -- v- I CYCLOHEXANE CYCLOHEXANONE OXIME HYDROCHLORIDE NOH - 2 HCI OLEUM H 0 CH2) 5 I + 2HCI L— NH CYCLOHEXANONE OXIME CAPROLACTAM HYDROCHLORIDE I' lle C1 11( il' hWtaill S(' 111tit' ll i I I s it I I it r i C W id al' U' 1 ti w- reallall" Cillela is colitilitioll" 1\ 1 fi: d 4o lictitiali/ cr %dwil. t11C A( JLIVOUS solul.joii con( aiiiiii.!.; (alirolactam and aiji- 1110iiiiiin sulfate is oi) t: tjil(., l Jjy jijjjjjojjij I, vilti-alization. I' llrOLI1, 11 WVC1, 11 1) 111ilw ttioll Stt' j) S ilWILIdilig acuurn dis- Lillation, libre- giadt, jairificd caprol, jet; 1111 j." pro(kit-c( l. Less dian 0.92 potind of cy,(-1olwx: iiw is t jjisunwd I)(., - pound of t-aprolactaiii produced. 0it dw other band., fi -i- t zer- grade aiiinioiiiuin sidfatv ( y\ st jj i -i floili. Ow. ; 1111111olliIIIII stillaw S;' h1IJ() 11. lXSs tb' Lll 2.") pounds of alifilloill-tilli S111fille is licrpoillid (' f caprolactaill prodlicvd. Commercial Installation. A, (, I jid) 1909, om: is (, it- sti-vaill (: 111111i' d k' yuclit 00 111111ioll pouilds) alid ( III(- lilldcr coitstruclimi ( 110 million powids). References: I, ' 'itiolwati Uhvtni( al Vva,, (,' eqjtWa( triii, May 2, 1969, 1). 32. 1'. ' Funicr, (. 14viiiial pio( cs%ili", . 1alitiary 19w), 1). 1; 1'. 11till1w and 1'. L. 1' urncl, Ghrliti( al 6;' ho( t,% Fw,41ociiiig. No ciiibci 1967 1). 90: 1 1VOW) CARIWN I' MRA ISING, NO\ 1). 157. C(Sprolactam ( DSM)— STAMICARBON N. V. Applica i :- A process for the production of high -purity caprolacta from benzene and hydrogen or cyclohexane, ammonia, leum and sulfur dioxide. Chemical reactions: NH, OH H2SO4 I I I 0 I LL 02 0 rPNH 1, ILI NH4) 2 04 ( NH4) 2SO4 Description: In a one-step vapor -phase h drogenation benzene is hydrogenated' to cyclohexane. The cyclohexane is oxidized with -air-oxygen in the liquid phase at 150- 1600 C and 8- 9 atmospheres pressure in the- presefice of a cobalt catalyst. Reaction products obtained: cyclo- hexanol, cycloliexanone, acids, esters , and carbon oxide gases. Due to chosen reaction conditions the fficiency ' to cyclolie-,anol and ryclolic%:mwie is in the 76% rmige. A calislic soda wash nPijtrali,/" all arids and saponifies Innst of the esters. Tlie unreacted cycloliexane is distilled off and recycled pure cyclohexanone is -produced from the crude oxidation oil. The remainder, mainly ryclohexanol, is fed through a vapor phase dehydrogenation, thus pro- ducing cyclolivxanone. The reaction rnixtuic. is recycled into the distillation section. N Hydroxylamine sulfate is produced from am . monium nitrite and sulfur dioxide. The cyclohexanone is reacted with hydroxylamipe-sul fate to cyclohexanone-oxime and ainnionium-sulfate byproduct. The oxime is rearranged in olcurn to caprolactam according to Beckmann' s reaction. IT. __ - - . __ __ . - - __ Both the oximation and rearrangement, steps proceed at efficiencies close to 1, 00%. The aqueous crude lactarn solution is neutralized and , ammonium sulfate separated. Both ammonium sulfate streams arc processed to fertilizer - grade crystals. Several extensive purification steps including extractions and final vacuum distillation are used to purify the crude lactam thus producing extremely pure caprolactam at a constant quality level. In the purification section only minor mechanical losses occur." Special Features: Process is extremely simple to oper- ate and r\quires 2 shift foiernen apa :; shift operaters foi the complete plant.. Use of regular chemical equipment ensures low capital investment and guarantees low main- tenance cost. The process is continuous and in one stream up to high capacities. , Consumption figu es per ton of caprolactan? Benzene kg 1, 0113 I I ydrogel I kg 115 Sulfur dioxide kg 1, 350 Ammonia kg 1, 510 Oleum kg 1, 310 Steam kg 14,200 Electric power kWh 465 Export sulfate kg 4,450 Commercial installations. In 0 -leen, Holland, DSX-t operates a 100,000 metric ton -per -year plant. Two 20,000 metric ton -per -year plants are operated in Augusta, G a., and I' lix.borough, ' U.K. Two 50,000 -ton -per -year plants are under construction in Russia. QlPirOICECt~— SNIA VISCOSA Application: A process to manufacture caprolactam from nitration -grade toluene, hydrogen, ammonia and oleum. Fiber -grade flaked or njolten caprolactani and white airinionium Sulfate crystals are produced. Description: Toluene and air are fed to thv reactor in N". 1lich tile Oxidation 0- C113 + 1 * 5 02 _'i' 0- COOH + H20 is ca , rried out at 160" C and 10 atm. The reaction prod- uct is a 30%, soliltion of benzoic acid III tolitelic phis a small quantity of reaction intermediates and byproducts. Fractionation gives tinconverted toluene and reaction in- teimediates for recycle, pute lienzoic and a bottoin flac- tion of heavy byproducts. Benzoic is hydrogenated under. pressure in presence of palladium catalyst in a series of continuous tank reactors at 1709 C and 10 atin. o— COOH + 3 H2 _-i› ( D_ COOH The conveision is complete in it single pass. (: yclohex- anc-( arboxylic acid is bleaded with oleum and fed to a intliti * stage reactor where it is converted to caprolactain by reaction with nitrosylsulfuric- acid. This acid is produced III it conventional airimonia oxi- diction plant, where the nitrogen oxides are absorbed in oleuill. N, O, + 11y.SO, + S03- 1' 2 NO11S04 The basic process reaction is the following: co GOOH+ NO11.) U4___)k ((; H2) 5 + CO., + H.,SO4I NIf TbiS IeaCtiOn is CONLUILIOUS ill a IMIlListage reactot'. The reaction temperature is controlled by evaporation of cyclo- hexane. The reactor effluerit is diluted with water. Un- converted cyclohexanecarboxylic acid passes front the aCidiC to the top cyclolivXane phase and is n -cycled to the process. The acid sollition flows to the crystallization plant where it is liciltialized with amilionia; ainnioniiiiii sulfate crystallizvs at bottom, wbile the top organic laycr of'. cap- rolactain is recovered and purificil throtigh it two -solvent toluene and water) extraction and a ContilItIOLIS frac- tionation procedure. Fiber grade caprolactani of 10,000 sec. inin. permanganate number is obtairied. 1. 06 Kg of toluene, 1. 3 Kg of aninjoiiia, 3 Kg of olcuix), , 0.8 ju III of hydrogen are consumed and 1. 2 Kg of anini( initim siffate are recovered per Kv of (:, iiji( Jactarn. Commercial Installation: Iii Torvi%cosa, fLaly, SNIA operates a 16,000 metric toiis per year plant. References. Snia Viscusa, Italim, Pateias 604. 795, 013- 606, 608. 873, 666.827, 653. 845, 653. 8-18, 659. 858, 661. 5' 12; lhpnati, 1; Sioli, G,; Taverna, M. La Chirni, a c I' Itidui- Itia, Vol. 50, n. 9 ( September 1968) , 997 Tavenia, N.I. La Rivista dei Conibustibili, Vol. XXII, 11. 4. ( April 1968), 203. 162 - 1 . - . r No\'1cinber 1969 - P¡m(.¡ Caprolactam —INVENTA AG Application: A process for the production of caprolactarn starting from cyclohexane ( or, alternatively, benezene or phenol). Description: Cyclohexane is oxidized in liquid phase under elevated pressure and , temperatu , re. The oxidation product—a mixture of cyclohexanone, cyclohexanol, some byproducts and unreacted cyclohexane—undergoes a saponification process. The neutralized byproducts are re- moved for combustion or further processing to synthetic oiis, while the remaining mixture is split off. Unreacted cyclohexane is recycled to the oxidation and cyclohexanol is dehydrogenated to cyclohexanone which is purified. For the hydroxylamine sulfate production a new tech- nology ( NO -reduction) is used which reduces the ammo- nium sulfate byproduct considerably. Ammonia is oxidized to nitrogen oxide which reacts with hydrogen and sulfuric acid in the presence of a catalyst to hydroxylamine sulfate. In the caprolactam synthesis, pure cyclohexanone with hydroxylarnine sulfate forms cyclohexanone oxime. By Beckniann rearrangement the cyclohexanone oximc is transformed into caprolactarn in presence of oletun. The product is then neutralized, passed through several purifi- cation steps, the, last of which is crystallization. * Byproduct ammonium sulfate is crystallized fiont the aqueous solution by, multiple cvaporation. Economics: The total erected costs of a 50,000- t/ yr. caprolactarn battery' limit plant is approximately 110 million Swiss francs. Unit consumption ( per ton of caprolactani) Cyclohexane, tons .......................... 1. 01 Oleurn ( SO, 100%), tons .................... 1. 1 NH3, tons .................................. 0.96 H2SO,, tons ................................. 0. 7 H2Nm3 .................................... . 170 0.2 Nms ............. ...................... . 380 Catalyst, Swiss francs ........................ . Q Utilities, Swiss francs ........................ 200 Commercial iristallations: Plants using t ie Inventa (*alj- rolactam process are in operation or under construct , ion in Japan, India, Poland, Spain, Switzerland and TLIFLWY. Inventa' s total licensed production capacity for caprolac- tam exceeds 320,000 tons per year. CELLULOSE FROM WOOD Reaction: Wood Chips + Na0H Cellulose + Sodium Salts of Lignin WOOD CHIPS WH LIC. ecd Materials: Wood Chips Caustic Soda oproducts: Catalyst- None Phase: Liquid Reactor type: Vertical Digester Solvent used: Water Temperature, IC: 170- 180 Pressure psi: 15 Reaction time: 20- V5 minulv,. Heat Required: Yes Heat evolved: Product yield: Product purity: Materials of Construction: Aujui Prudutt Uses: Pup( -,r cirid wyon monufacture. Acrence: U. S. Patcnt 3, 303, 088 by A. W. Gessnor ( to The Lummus Co.) ( February 7, 1967) 155 Nuevo proceso para la industrial izací0n de¡ Guayu1e Ing. Sergio Autrey Maza Ing. Carlos Michan Sidauy IM10 40 INTRODUCCION El presente reporte resultó de una investigación exhaustiva sobre los procesos anteriormente reporta- dos para industrializar el Guayule. En base a estos procesos, se propusieron unos nuevos y utilizando el método de Síntesis de Procesos propuesto por Rudd y coautores( 1) se determinó cuál de los procesos examinados era el mós conveniente para lograr la industrialización de este recurso. El proceso resultó ser uno de los propuestos, y el hule obtenido por este método se probó a escala laboratorio resultando ser de una calidad comparable al de Heveo, ANTECEDENTES El estímulo a la producción de hule natural en México comenzó en 1971 cuando el gobierno actual creó la Comisión Nacional de las Zonas Aridas CONAZA), y esta realizó los estudios referentes a los recursos de¡ desierto del norte de México, encontrán- dose entre ellos el Guayu1e. El Guayu1e había sido industrializado por medio de compañías norteamericanas con el objeto de suminis- trar hule natural a los Estados Unidos en tiempos de la Segunda Guerra Mundial. El hule obtenido en esta época era de una calidad muy pobre debido al alto contenido de resinas ( 22%) y de materiales deletéros como el cobre y el manganeso que le ocasionaban un rápido envejecimiento. Después de lo Segunda Guerra Mundial se dejó de explotar el Guayu1e debido a que el suministro de hule natural por parte de los países de¡ sureste de Asia se reinstaló. E¡ proyecto de industrialización del Guayu1e obe- dece a un programa de desarrollo nacional e integra- ción de las zonas desérticas en la actividad productiva del país, creando empleos y distribución de riquezas entre los campesinos que habitan en estas zonas. Además, el abastecimiento de hule natural obtenido a partir de¡ Guayu1e sustituirá las cuantiosas importa- ciones que en la actualidad ascienden a más de 250 millones de pesos al año. El Guayu1e es un arbusto M género " Parthenium Argentatum Gray"; su altura oscila alrededor de 60 centímetros y abunda en las regiones desérticas de¡ norte de México. El Guayu1e contiene un hule de tipo poli- isoprénico distribuido a través de la raíz, el tallo y las ramas. El contenido de hule varía de 10 a 14% dependiendo de la región, humedad de la planta, elevación, etc. Además el Guayule contiene una elevoda cantidad de resinas que afectan la calidad M hule. la Subsecretaría Forestal y de la Fauna, dependien- te de la Secretaría de Agricultura y Ganadería realizó estudios sobre la abundancia actual de¡ Guayu1e y se llegó a la conclusión de que existen 3 millones de toneladas de arbusto que son suficientes para abastecer la demanda nacional de hule natural que en la actualidad es de 30, 000 toneladas anuales. Ante la perspectiva de obtener hule natural de buena calidad — comparable al de Hevea—, se realizaron investigaciones( 2) con el propósito de reducir el contenido de resinas y deletéreos en el Guayu1e. Estas investigaciones muestran satisfacto- riamente que es posible sustituir al hule de Hevea por hule de Guayu1e en todos los usos. El Dr. Enrique Campos y colaboradores de la UNAM reportaron que el hidrocarburo de¡ hule de Hevea y el hidrocarburo de¡ hule del Guayu1e son químicamente iguales, ya que ambos corresponden al polímero cis 1- 4 de isopreno. Esta estructura la determinaron por los espectros de infrarrojo y resonancia magnética nuclear, predominando la configuración siguiente: 2 CII 2 C11 11 N 3 J Pollmero cis 1- 4 de isopreno tecnología El comportamiento fisicoquímico de¡ hule de Gua- yu1e es idéntico al de Hevea excepto en el contenido de¡ Gel como se muestra en la tabla i reportada por los mismos investigadores. PRINCIPALES PROCESOS REPORTADOS la Comisión Nacional de Ciencia y Tecnología CONACyT) ha elaborado dos procesos para obtener hule desresinado a partir de Guayu1e. El primero de ellos consiste en desfoliar la planta, molerla y efectuar la extracción de hule por medio de hexono sin previa flotación. la solución que contiene al hule se filtra y se lleva al coagulador donde se pasa un coaquiante a contracorriente para conglomerar las moléculas del hule. El hule coagulado se prensa y se le agrega antioxídante. El antioxidante se puede agregar en el coaquiador si se juzga conveniente. La etapa final consiste en pasar al hule por un secador contínuo a vacío. Este proceso tiene una gran recuperación de los solventes empleados. El segundo proceso consiste en desfoliar el arbusto, molerlo y efectuar una flotación para separar el material celulósico. Posteriormente el flotado se trata con acetona para eliminar las resinas. El hule desresinado se extroe con hexano para eliminar los finos y el corcho de tal forma que se obtiene un hule puro. En vista de que el desarrollo de los procesos se encuentra en su etapa de ingeniería básica, hemos propuesto algunas innovaciones y nuevos procesos que analizarnos conjuntamente con los procesos desarrollados por la CONACyT. El método de análisis se basó en el procedimiento descrito por Rud( 1, D. y coautores( 1) paro ; íntesis de procesos, que se basa en los propiedades de las sustancias involucrados en la cual se Utili7an algunas reglos limprísticas prira la evaluación ( lo lw procosos apriori a las investigaciones en el laboratorio. El proceso que obtuvo el mejor resultado por medio de este análisis fue una innovación propuesta sobre el primer proceso de la CONACyT, el cual se describe. a continuación. 41 IMIQ TABLA 1 COMPORTAMIENTO FISICOQUIMICO DEL HULE DE HEVEA Y El HULE DE GUAYULE PROPIEDAD HULE HEVEA HULE GUAYULE METODO DE DETERMINACiON Futructura Quimica POI¡- isopretlo cis 1- 4 98 % Pobisopreno cis 1- 4 98%. Infrariojo y Resonamio Magriética Nuclear. Peso -Molecular 1. 0 - 1. 5XIO6 1. 0 - 1. 5XI06 OsrnOmetría Y Cronlotografia en Gol, Tempercitura de Transición vítreo 750C 740C Colorimetrio Diferenciol de Barrido. Co, lluttitlo de Gel Vol lable No tiene Solubilidad Fuente: " El Hule de¡ Guayule", Propiedad es Fisicoquírnicas y Mecánicas. E. Campos López, M.A. Ponce, H. Flores y J. L. Angula. Facultad de Química, UNAM. México, D. F. PROCESO PROPUESTO Una vez desfoliada y molida la planta, se efectúa una flotación para separar el bagazo; posteriormente, el hule flotado se extrae con un solvente selectivo y la solución se coagulo en un solvente de las resinas que tengo un punto de ebullición mayor que el de¡ solvente de¡ hule. Este proceso realiza la coagulación evaporando el solvente del hule; en cambio, en el proceso de la CONACyT el coagulado se efectúa en un equipo a contracorriente sin utilizar color. la figura 1 muestra el diagrama del proceso propuesto. PRUEBAS A ESCALA LABORATORIO Posteriormente se realizó un estudio a nivel laboratorio del proceso propuesto. Para este análisis propusimos tres sistemas de solvente de hule -solven- te de resinas que cumplen con la condición menciona- da. los sistemas fueron: Hexono — Ac. Acético Hexono — Metil etil cetono-Agua Benceno — Ac. Acético 51 X >< 7GUAYULE wN — — 1'T" — Ag.. ] — ' 6 MEC % p- t, H ­ n. ecup* J Aqa y v", — l l . 1 M CC A,,, Ag- A 11 . 10 í - - Z'-' 15 14 B. J., o 12 y Ag.» 9 6 Ar Ag- V. P., 17 "> C. 1. h. V,, F- 1 -- Dw P, ón d« l N.,.. NOVÁICONACYT 1 L- Al 11 M. r.... J., dá. 2 ' S­. hd. 12 - FW, ­ ó,. 1. 13. E - t1-~ d. H.¡. 4.- Pf" u H, d, áuiiu 14. ULE Al_— i.. to y —. ls'. C- 9~~ Tp M.'-- U 16- 7 c, [, N -- U C— NI1:,- 1 6MI:,+ 3M., N 1 IL \ N // . Hot gaseous aillillollia is used as carrier gas ali'd selves simultaneously as fluidizing agent. The reactor effluent is rapidly quenched with aqueous mother liquor in specially designed equipment operating at pressures essentially equal to the reactor pressure. This operation yields a lean melamine -crystal slurry saturated with ammonia and CO2 and an off -gas consisting of am- nionia, CO., and water vapor. Tlic lean slurry is sent to a hydrocione battery to obtain a concentrated crystal - slurry. The inother liquor overflow is ictuined to the quenching system. The concentrated slurry is redissolved in the mother li(Itior of die - crystallization system, and III(! dissolved allilliollia is stripix-d ofF simultaneously. The oir-gas leaving the quench system is treated at all 200 elevated pressure in all absorber front which the bulk of the ammonia is withdrawn as a dry overhead gas stream, free of CO.... T16s anurionia is recycled to tile reactor viit a collj_ pressor and a heater. Liquid au-iiijonia is tised as reflux it the top of the absorber. The net amount of CO.. formed in tlic reactor is removed as bottom product fi -0111 the absorber in the forni of a weak anintonium car- baniate solution, which is concentrated in a desorber- washing column system. Tlie bottom -product of this wash- itlg c0l" Int), being a collcentlated amnjoriitun carbanlate. solution, is reprocessed in it UICU I) Iallt. ' I' lle top pure ammonia, is liquefied and used as reflux, as men- tioned above, togetlier with liquid make- up ammonia. Tile desorber bottoin product, practically pure wilter, is Used it, tile ( Itiencli systein in addifion to tlic recycled inotber liquor. In order to upgrade tile inclainine to, a bigli . quality level, if,(-- solution, obtained after pictl6clit-ning and strip- ping, is treated with activated carbon, passed over a clarifying filter and fed to a two-stage vacuum crystal- lization system. Recovery of tile pure inclaniiije product from the sits - pension is brought about in a continuous centrifuge. Stainless steel is used as construction material for nearly all parts of the equipment coining in contact 'with product streams. Commercial installations: A commercial 10,000 t/ y 1) lant for DSM was put onstrean-i in tlie- first quarter of 1967. Under construction a 30,000 t/ y platit for I) SM, it 9,000 t/ y plant for Premier Petrocliciiii(-ill it, ' j'(-_xls and for Milchern Inc., a 32,000 t/ y plant in Louisiana. November 1969 HYDROCARBON PROCESSING Reaction: Feed Materials Urea Coproducts: Carbon Dioxide Ammonia MELAMINE FROM UREA NH2 N 6NH 2CONH 2 11 H 2 N -(- : C - NH 2 3CO2 + 6NH 3 U - Urca Feed A- Reactor. S - Separator N -Ammonia M -Melamine Product Q -Carbon Dioxide Catalyst: None Phase: Liquid Melt Reactor type: Tubular Autoclave Solvent used: None Temperature, IC: 340- 400 Pressure psi: 600- 2250 Reaction time: 5 to 60 minutes Heat Required: Heat evolved: Product yield: 99% Product. purity: 99% Materials of Construction: Silver -Lined Steel Major Product Uses: For the manufacture of melamine- formuldehyde resins. Reference: U. S. Patent 3, 116, 294 by G. Marullo et al ( to Montecatini) ( Dec. 31, 1963) RIZ PROYECTOS DE INVEPSION PEqUEÑA TECNOLOGIA DE PRODUCTO CHLOROACEI IC ACID eaction: C12CHCOOH + CH3COOH lo 2CICH2COOH ced Materials: Dichloroacetic Acid Acetic Acid oproducts Product Catalyst: Platinum Phase: Vapor Reactor type: Packed Tower Solvert used: None Temperaturn, C.- I io Pressure psi: Atmospheric Reaction time: Heat Required: Heat evolved: Product yield: 9 7',X. Product purity: Materials of Construction: Hydrogen iojor Product Uses: For corbnxymethyl cellulose, 2, 4- dichlorophenoxy acetic acid hvibiu; du; and synilictic indigo. eference: U. S. Patent 3, 071, 615 by W. Opitz ef al ( to Knapsack- Grieshelm A. G.) ( Jan. 1, 1963) 165 Acrylamide—MITSUBISHI CHEMICAL INDUSTRIES LTD. Application; A process for the hydrolysis of acryloni- trile to pioduce high quality acrylainide froul. acrylold- trile, aninionia and sulfuric acid. Product: Aci), Ianjidu of the following quality ( typical allalysis) is available. Purity 99.7, Water 0. 5% fron trace Arninoilitan sulfate 0. 5 "/O olor ( at 107o aqueous) AP11A 5- 10 Byproduct: Aninionitun suffate of the following quality 1)( 11 ' Ity g!)%, Vatcr 0. 7 % Description: The proccss contains the. following sec- fiol)S: 11( 1101)' SiS, 11CULralization, aninioniurn sulfate sepa- ration, crystallization, acrylanxide separation and product drying. Mitsubishi has developed a continuous and effi- cient process. Special features of the process are: 1. Production of high -purity product for versiatile use at high yield. 2. Shupier and smoother operation. Commercial Installation: A 3, 600 tons/ year plant is no%%, being operated and two new plants are tinder con- struction, i.e., a 15 MM Ibs./ year plant ill the United Slates and one- plant lol Mitsubishi ill japall. Reference: japan Chentical Quarterly, July 1968, Vol. I - No. 3, pp 54- 56. 144 November 1969 HYDROCARBON PROCESSING action: CH2— CH I n Feed Materials: Polyvinyl Acetate Methanol Coproduch: Molhyl 1 cvlrilt, POLYVINYL ALCOHOL nCH30H -- CH2— CH—t OH in a , h_ ff nCH3CC)0CH3 T_ Catalyst: Sodium Metboxide Phase: Liquid Reactor type: Stirred Tank then Conveyor Belt Solvent used: Methanol Temperature, IC: 65- 85 Pressure psi: Atmospheric Reactinn time; 10- 30 rnintdu Heat Required: Heat evolved: P101111C. 1 yield: 851.1, Product purity: Materials of Construction: Stainless Steel Mnior Product Uses: Bin ler and thick.r.ner roi Luulitiy,, custyiet' ns, etc; water- soluble films; polyvinyl lor-nnl fiber. Reference: U . S . Patent 2, 779, 752 by W. H. Vining ( to Du Poni ) ( Jan. 29, 1957) 567 Phthalic Anhydride (BASFJ — FOSTER WHEELER CORP. Application: A process for the manufacture of plithalic i i i I i y( I i I ( I (- f rot n orth,- xylene and air. Description: ] lot air and ottho-xylefie are mixed bc- fore. entcring the fixed- 1:Ied tubular reactor where the ortlio- xylvne is partially oxidiyed to phthalic anhydride; imilvic anhydiidv, benzoic. acid, GO and CO, bcing fornif(I as b) products. I* Iic heat of the exothennic reaction is removed front flie rvactor by a recirculated salt - bath, which is cooled in tit cxternal c( x) lvr with water, ditis generating Iiigh- pressurr. sif-: 1111. ' 1111. waclol, 1) ' I( XIIIVl g; 1SVS : 111' IQSSCd 01MIlgh two wasti, 11cm hoilers gvllcr;ltill!' Ili" Il llld low- pressille stc.al I I' llf. p; lIll;%Ily ( 41olf- d gas is [ III -I) sf. li( 111loill" 11 switcli comictisers where the. plithalic anhydride is con- Ivnsvd to tlie solid slate. g tit(! condensers is scrubbed with water or incinerated before, being discharged to the atmosphere. Hic cnidt, plillialic anliydrido is collected from t1w. switch condensers by melting ajid then thermally pre- treated and purified in a t-,%,o- stagc distillation unit in coritilillolls operation. Yields: Yield is in the order of 1W pounds plithalic anhydride for 100 pounds of ortlio-xylene ( 95 percent purity due to the usc of a now, highly active vanadium- pentoxidc catalyst. () it'(, reactor of standard sizr (. ipproxi- mately 10,000 tubes) has a capacity of 14,400 metric tons per year of pure plithalic anhydride. General: Fostcr Wheeler Corp. is one of the engineering companics atitliorized by BASF to provide crigipeering and construction services for plants using the BASF plillialic atili)-dride . process. Addilional' itiforinalion may be obtailic( I flolli Foster WIIV(1(' r 0)rp.. 110 SolitIl A%r., N. J. 011icr ci, inpanivs aiilllor- i/ 4' ( I to Ims6di. I' ligilin- l- ing and colistitl( tioll selvices Im. plants using the, BASF plitlialic anhydride process in - 111 ' dt.: flodgf- l- (: o.. Calriblidge, ' Mass..' ITvinliell Koppers (; niblf, Essen, Germany; Linde AG, 11ollric- gwiski:vittli. Gerniany, and The Luinnius' Co., Bloomfield, N.J. As of Oct. 1, 1969, thirteen license ag cenients with in- Irpen(lent or alfiliitr,(l corni:mnies- have been ma.dr. HYDROCARBON PIMCF.14SINC. Novvinlvw 1 ( W) 91() Phthalic Anhydride UNITED COKE & CHEMICALS LTD. FOSTER WHEELER CORP. Application: A lijocess for the manufactme of pilthalic anhydride from naphthalene and air. Description: Crude phthalic anhydride is produced by the partial oxidation of naphthalene. The main reaction, in tile. presence of a catalyst, is: C, j 18 + 4.50, = C,,HO,. + 2120, + 2H140 he crude plithalic anhydride thus produced is then ill tile distillation Unit. Air arid naphthalene are fed to the fluidized reactor. Compr ssed air enters tile reactor under the distri- bution plate. Naphthalene is pumped from the storag- e tank to spray nozzles in the side of* the reactor above the perforated distribution plate. In the fluidized bed process, tire fluidized catalyst p'arti- cles in the reactor render the vapor mixture in the reactor unexplosive. ' The oxidation reaction takes place in the bed of fluid- ized catalyst. The reaction heat is removed in a cooler consisting of clemerits imrhersed in the catalyst. Boiler feedwater is fed to the tubes and is converted to high p es- sure superheated steam. The reaction temperature is con- trolled by metering the boiler feedwater. For startup an in- line air prelicater brings the coin- bustion prodticts to a controllcd temperature arid tire catalyst in the reactor is brought to reaction temperature within a few hours. When normal operation is under way, the fuel to tire Air preficater is shut off. A. catalyst storage vessel and edkictor for loading and unloading the catalyst permit the catalyst to be loaded without shutting down the unit. One complete reactor 218 ch ti,, e call be stored in the catalyst stora,,e vessel. The mixed vapors leaving the reactor pass to a group of filter vessels. By a time -cycle piechanisin, one vessel at a tinic may be blown back by a sticarn of air, firving tile filter surfacc of catalyst. Tile fincs are blown back to tile dense phase catalyst bed inside the reactor. Crude plithalic anhydride leaves the filter vessels as vapor which includes nitrogen, oxygen, carbon dioNide, watcr vapor arid byproducts. This strearn flows to a con- denser where a large portion of the plithalic anhydride is recovered in liquid form. Final recovery of crude product as a solid is in parallel condensers run oil a condensin nielting cycle. Spent gas containing traces of9 6 I'D I odoriferous organics is treated with either scrubbing or combustion apparatus for pollution. abatement. Molten crude phthalic is thermally treated prior to vacuum batch distillation. D4rin- the first few hours of distillation a forecut is taken to remove light ends. This forecut returms by gravity to the synthesis unit. After removal of the light ends tire distillation con- tinues. During this time the product is withdrawn froin the reflux divider and passed to the purc anhydride re- ceiver where it may be withdrawn as a liquid or it may be flaked. The residual material left in tile main still is treated in a tails still from which an overhead cut is recyclpd. and pitch discharged to waste. Installed Capacity: Three plants using this process have been built. November 1969 HYDROCARBON PRO01, 8SING Phthalic Anhydride (Sherwin- Williams/Badger) _ THE BADGER COMPANY INC. pplication: A - fillid bed process for the producLion of 6,01 purity plith.1fic anhydride from naphthalene. Description: Liquid naplithaletic is introduced directly into the reactor at the bottom of the catalyst bed. It is inniediatcly vaporized and dispersed throughout the bed ijpon contact with hot catalyst and the reaction air which is illfroducccl' below the reactor distribution grid. ITerc in the presence of maction air and a fluidized vanadium- xido catalyst, the vaporization and oxidation of naph- tball-ne to plithalic anhydride takes place. Because of ti I e 16gh degree of agitation and mixing within the fluid bed, III - ill temperawre is maintained throughout the re- action zone. " I' lic bed temperature is controlled witbin narrow limits in the range of 6500 F to 7250 F. Heat from the highly exothermic reaction is- removed 1)' coolit' ' r Itibes Incafv( l ill Illr C..It.ily.-,t 1)(( j 111( 1 Iligil Ples,oln, sle. 1111 is gellel; 1wd without ( Ill! lived of a tl; ii%- heat tralisfer avvilt. 111, 11irlifled cm: llysl is I. C. 111ovf- el from Ille rr;lclioll l"; lNes ill sjwl jAly. 44) II.S11111 led cf- r; illlic 111ter elellic -Ills, and the recovered catal,,.st is blown back to the reactor. Several filters are 1; rovided and one filter vessO at a lime is blown hack by a sti-cain of air whirb frers thr filler sill-filce ( if catalyst. I' lillialic al-Ilky( fride product is condensed both as a liquid and a solid from the ef- fluent gases. I' lic requir.ed air to fvcd ratio in a fluid be(] rcart( is significantly lower than conventional fixed bed units by a factor of two or three. At this low air ratio, 40 ll( 60 wt. pri-cent of tile crude. product can be condensed directly as liquid plithalic anhydride. This fact plus 11ir much lower air rate greatly jvdticcs the load on the solid product condensers with a proportional decrease in plant cost ws compared to fixed bed units. Giude phdialic anhydride is scrit to a purification system where simple batch heat treatment and vacuum - distillation produce high purity plAhalic anhydride. Facilities may be. provided to produce a flaked product; however, in rnodern practice, much is shipped in molten form. Economics: The development of large capacity fluid bed units has sul..)stantially improved the economics of pht-lialic anhydridf- production. Plants with capacities of 125- 150 MINI 11)./ yr. of product in a single train are now in operation. Yields: Yields. me. in the order of 98 lbs. plithalic an- hydride fol, 100 Ills. feed. Operating Costs: ( For ; I plant r;iwd (it) 100 NINI 1b./ yr.) 0111it- 111 Ij. S. 0111 Coast (.: osts) ... I), 1) f /11). plol 1114 1. Catalyst Makeup .................... 0. 100/ lb. product Maintenance Charges. .. .. ... 2. 5- 317o of plant investment L.-ibor Requiremrtil .. ........ 2- 1 iiwii per sbifl phis one. supci-visor ( lay shift oiil Commercial Installations: Fourteen plants li-av(, blen bmilt havin,-, in aggrvg-aln, cap.wity of about 630,000,000 pomids per year of refined plithalic anhydrid(,. Reference: (: hriiiical Bnginceruig Progrc.%s Vol. .58, No. I ; Chemical Engineering, Jan. 22, 1962; European Chrmical Nc.ws, Sept. 30, 1966. l% DRfW\ Rh0N Novvnilwr 1000 ? 17 Phthalic Anhydirlide—CALIFORNIA RESEARCH CORPORATION IF ___ - Application: This process is applied to the manufacture of phthalic anhydride. Charge: The charge is ortho-xylene. Product: The product is so -lid phthalic anhydride. Description: The liquid ortho-xylene feed is pumped at controlled rates into vaporizers. The vaporized xylenc is fed to a mixer where it is contacted with heated air. This mixture then goes to salt -cooled converter units where the following reaction occurs: 0 CtL C 3 0, —* 0\ 0 + 3 1120 O -Xylene Phthalic Anhydride This direct oxidation of the xylene to phtfialic anhydride is promoted by the catalystin the converter tubes which is based on vanadium pentoxide ( V.0.). This catalyst must be carefully prepared for.proper catalyst activity. The reaction gases leaving-thq bottom of the converters are cooled to. condense crude phthalic anhydride. The November 1961, Vol. 4:0, No. I I spent gases pass into catalytic incinerating furnaces to eliminate fume nuisance. The crude phthalic anhydride goes to melt tariks for storage. I'lie molten anhydride is distilled batchwise in two distillation stills in series. Light boilers such as benzoic acid are taken off under vacuum as a heads cut. The purified phthalic anhydride is removed as a heart cut from the second still which also operates under vacuum. The product goes from the secondary still to an aluminu , m storage tank. From this tank it is fed to a stainless- steel water- cooled surface for solidification. The final product in the form of chips is weighed and packed in paper bags. Molten anhydride also is shipped in steam -heated tank cars. Operating Conditions: The most important operating conditions arc the air/ hydrocarbon ratio, the tcrnpe'rature in the conve fcr and the contact tirtw. Typical operating ranges for these variables are given below: Air/ Ilydrocarbon Ratio 18- 20 Temperature, F. - 900- 1150 Contact Time, Seconds , 0. 1- 0. 15 Commercial Installation: Oronite Chemical Company, Richmond, Calif. Reference: PETROLEum REFINER, Oct.'53, pl.13; Chemi- cal Engineering Progress, Apr.'47,pl67. 281 Phthalic Anhydride—SCIENTIFIC DESIGN COMPANY, INC. Application: A process for the manufacture of plithalic zrnhydride. Charge: Naphthalene and/ or ortho-xylene. Product: IlIgh purity plithalic aphydi-ide. Description: Phthalic anhydride is best produced from naplithalene in a fixed- bcd catalytic vapor phase reaction. In sequence, the feedstock, comptising naphthalene, o -xylene, or mixtures thereof, is vaporized, inixed with air, preheated by exchange with effluent gases, and fed to the reactor. The reactor cooling system ( not shown) consists of molten salt circulating outside the tubes of the reactor. * Reaction effluent gases containing phthalic anhydride vapor are first cooled by a waste heat boiler generating steam, then used to preheat the feed mixture, and finally are cooled with cooling water -to a temperature a few de- grees above the dew point of plitbalic arihydride. After leaving this cooler, the gases are passed through one of a pair of highly efficient switch condensers of novel design which condense solid crystals of plithalic anhydride. The condenser effluent gases, which may contain traces of by-products, are burned or water -scrubbed before release to the atmosphere. Meantime, in the alternate switch con- denser, plithalic anhydride from the Previous Cycle is being melted out. The crude phthalic anhydride is treated0 to destroy contaminants and iS 1, 11C11 ( 11SLIlled UIACT Vw- uum. The refined product jo. ty be flaked, pelictiz(A or packaged for shipment in 11( juid- flill SLC( l ( 11- 11111S 01' tallk cars. Funtaric- acid may be i-cco%cred fioni the inalcic arihydride content of the off -gas sciobber liquor. Chemical Reactions. Main l\, 1!. 1cLio11 a) V,'_,U._,(air) --* CII,0:,+ 2CO,+ 2II.,0 b) C, H,,+ 30,( air) -- 1- C, JI, 0,+ 3I-LO Principal Side Reaction— a) C, 011, + 12 0, ( air) ­* 10 C'O;, + 4 1 LO b) C8H2O,+ 1Qy2 02 (air) ---> 8 CO., + 5 " 20 Minor Side Reaction— a) C,, 11, + 9 0. (air) -- C.,11, 0:, (NLAcic) + 6 CO.,+ 3 IT.,O Anhydride) b) C,, Iilo+ 7y2 02 ( air) __)'C4 H203 ( Maleic) + 4 CO2.+ 4 11.,0 Anhydricley Note that ithrLost all side reti-tions are inuch inore ex- othermic than the desired inain reaction. Sl)' s highly selective oxidati , on catalyst thus aids teinix.-rature con- trol and permits higher thruput rates in the reactor. Commercial Installations: Witco Chemical Co., Chi- cago, Ill.; Compagnie 1' rancaise des Maticres Colorarites, Villers -St. Paul, France; Staatsinijnen in Liniburg, (; ciccn, Holland; mid Witco Chemical Co., Perth Amboy, N. J. 282 HYDROCAlitISON PROGE.SSING & PF.T1( 0JAAJr,1 RFFINEI Phthalic anhydride — CHEMISCHE FABRIK VON HEYDEN GMBH Application: Production of phthalic anhydride. from o -xylene or naphthalene by- choice of catalyst. or a special catalyst for both feedstocks. Product: Phthalic anhydride ( PA) content 99.9%; ma- leic anhydride max. 0.054yo; benzoic acid max. 0. 05%; Color: 5- 10 Hazen' ( APHA) ; Heat Test: 10- 20 Hazen; Solidification Point: 131' G. Description: Fiftered and compressed oxidation air of 7- 10 psig is heated to 140- 160(l C and loaded with evapo- rated naphthalene or o -xylene in an air -hydrocarbon ratio below the explosive limit. The mixture of naphthalene or o -xylene enters a re- actor with vertical tubes holding the granular catalyst. A salt melt circulating around the tubes removes the heat of reaction and maintains constant temperature condi- tions. The' reaction heat is utilized for the generation of high pressure steam. The keactor effluent containing PA vapors is precooled in a waste heat boiler generating steam. By further cooling PA is then sublimated in specially designed finned tube switch condensers with optimal efficiency and safety. The crude IIA deposited on the condensing surfaces is period- ically melted and discharged into a tank. The effluent gas is discharged to atmosphere after water scrubbing or incineration. The crude PA is pretreated thermally under atmospheric or reduced pressure, froin NvIlere it is supplied to either a batchwise or a continuous vacuum distillation system. Low and high boiling impurities are removed and the pure PA is obtained as a distillate which can be stored either in the molten state or flaked and bagged. Yields: 102- 105 lbs. PA from 100 lbs. technical grade o -xylene ( min. 96%) depending on o -xylene quality. 94- 98 lbs. PA from 100 lbs. naphthalene depending on naplithalene quality. Economics: Life time of the catalyst is at least 3 years. Experienced maintenance charges are in the range of 1. 5 to 2% of plant equipment -investment. Capacity of single reactor: up to 80 million lbs./ year. Onstreani factor: 98- 99TO. Commercial installations: Up to the present time, 65 commercial plants with an installed capacity of more than 800,000 metric tons per year using thd von Heyden process have been erected or are under construction. Forty-one of these* operate on o -xylene basis. The licensees of the von Heydcn process for the world are.* DAVY POWERGAS C rxibH, 5000 K61n- Braunsfeld, Aachener $ trasse 958, W. Germany, and LURGI Gesellschaft fiir Mineral6lteclinik m.b. 1-1, 6000, Frankfurt/ Main Bockenheimer Landstrasse 8, Y. Gerniany. - BETA -NAPHTHOL 2-NAPIITIIOL) 011 From Naphthalene Reaction T C r u d (-, Wash j - N a phthol tank E3 E 0u Waste O - Naphthol 112804 CI0Ii7S0311+ H20 2C, joII-, S0: Ji + Na2CO3 2C10117S03Na + CO2 + H20 2N- ioll N: i.,- So 2CIIJ17" 11 ' 1*' N" V( I i5- 80'/' yield Caustic Sulfuric Sulfuric acid soda acid V7 F usto n Acidifie pot Sultonator Carbon dioxide Stear -- S N utralizing Dilution watef I_n ta k ftf LZ tan Iz 0 Sodium Ei Sodium carbonate 0cn 0 sulfite 0 make-up sludge Sodium sulfite- carbonat.__ sludge Reaction T C r u d (-, Wash j - N a phthol tank E E 0u Waste O - Naphthol 112804 CI0Ii7S0311+ H20 2C, joII-, S0: Ji + Na2CO3 2C10117S03Na + CO2 + H20 2N- ioll N: i.,- So 2CIIJ17" 11 ' 1*' N" V( I i5- 80'/' yield 158 BETA-NAPIPPHOL A third method consists of treating the dihite naphtlialene-,B- sulfonic acid I - di 1) -, vingsolution -,vith the alkah fusion mass from flic prece ng batch T e follo reactions illustrate the procedure: 03 + 112() C1lj1-,SO:jNa 4 2'N., M] ( fusion) --- C10170-N"It + C101-17011 + C10117S03Na101170-N-1 + (' 101171803H A method that coirwetes favor;, I) ly \- ijjj ill(! sulfite—sulfur dioxide procedure uses sodium carbonatc. The evolved carbon dioxide may be A0 CL 0 40 30 20 1( 1935 1937 1939 1941 1943 1945 1947 194c) 1951 1953 1955 ProductioD— P- Naphthol utilized In the ensuing acidification and - , %,et () f,j(, r;-z none of the disagreeahle 111,, lities ixliihitcd hy iilfur dioxidc. The diiiii(: sulfonation product. is neutralized with sod" I' ll carbonate. Carbon (--lioxide is liberated and is piped t6 the acidificr. I' lic resiflting sodium riil)litliileiie- f3- sull'(')iiat e—SO( 1111111 sulf"lle—SO( 1111111 carboilate mixture is filtered at the boiling, temperature. mi I liv fillci- The 111N . I"' c()() I(", lllfntc I-vinnins ' III(- 11cl Nc. The to precillitatc the J)'-- 111killate w. cllalp-d 111141 1114 fiv,41( ill p( It. is chnip-d Nv Ith filsed Sodium ll- droxide ( calistic smla I : md livated to 305" U. The sodiull, is added to thc me],, 111, 611- taining the temperature between 295 and 305' C. Generally about 2. S 11) of j, jilforiatc is added per 11) of calisfic. The filsion is maintained at ahmil 300' C for 6 hr and is then discharged into water or the weak [ 3- naphtho, wash water from the previous charge. The resulting hot solution is filtered. and the washed cake is added to the dilution -tank residue ( sodium sulfate). The clear mother liquor is charged into the acidifiers. Carbon dio-dde from The neutralization tank is emplo-yed to acidify the FROM NAPHTHALENE 159 diluted, caustic fusion melt. A small amount of sulfuric acid is generally added to complete the acidification. Crude #- naphthol separates out as the top layer and is deennted. The bottom layer, consisting of a mixture of sodium sulfite, sodium sulfate, and sodium carbonate,. is cooled to recover the 10 per cent fl-naphtliol contained in it. The solution of sal ' ts may be forti- lied witli sodium carbownte and re -used in tl)e neutralization step. T]w cA-ude 8- naphtliol is passed into a tank and thoroughly washed until t1w water shows n specific gravity of 1. 0. These washings may be used to dilut.e the subsequent fusion melt. The washed product, is Charge . d into a acuuni still where the main distillation is carried out it about 28 in. of vacuum and 248' C. Refined [ 3- naplitliol is collected in zinc -lined boxes wlicre it solidifies on cooling. The product is broken up and ground to a fine powder. A yield of about 84 per cent. is realized based on sodiurn napli- tbalene fl-sulfonatc, and an over- all yield of about 74 per cent is obtained blised on the naphthalene used. Use Pattern Per cent Dyes 60 Rubber 30 Iiseellaneous 10 100 0. 35 0. 30 e. 2 CI. 20 CI Ln 6 0 15 010 005 0 1936 1938' 1940 1942 1944 1946 1948 1950 1952 1954 19% Price—p- Naphtliol 160 Miscellaneous BETA-NAP11T110L Properties. Whito, lustrous, bulky leaflets, or N, hitc powder. Mol. wt. 144. 16 Sp. gr. 1. 217 4` C 1. 11. 123" C' B. 1. 286" C Slightly solubleSoluble in alcohol, Sether benzene chloroform, and glycerine. in water ( 0. 1 per cent cold, 1. 25 per cent hot). Flash point ( closed clip) 31001" Vapor density 4. 97 Gra(Irs. rechniral, and USP ( resublimed) - Contairicrs aml Regulatiorts. Wooden biarrels, cartons, and bottles. No ICC sliil)pjng label require(]. Ecoltiomir Aspects 3- Naphtliol is one of the. chief interinediates in the coal -tar (lye industry, and accordingly its I) rodurtion is finked 6),zely to variations in ( lye manufac- ture. During World War H, howeNjq-, 1,- Irge qtiantities of P- naplithol were re( Iiiii-cd ii, the manufachire of syntliefic- rubber anti -oxidants and stabi- lizers. This inarket has eontinuc, l since that ti' lle. The manufacturing I) rocess is similar to thesifflonation process for phenol I) ro(hiction but is considerably more difficult because of the p.roduction of a- and fl-jlaph thylsi i If 011ie licids, which iiiiist be separated by chemical ineans before alkali fusion. Plants 1) robably vary in size from 1, 000,000 to 10,000YO00 11) annual cal),wity. The larger plants require an initial in- v,ztnivnt, of 10 to 12 cents per annual Imund. fl -Naphthol can also be made by boiling naplithalenc- 2- di"'lzonium chloride with diftliv " 111filrie arid or by hydrolysis of 2- naphthylarnine with dilute ae id mider pressm-e. it is doubtful if either of these. will ever replace the sulfollat-ioll pi-twess. and 11, 1111 Siles Co., () rz:ijii(, Dí%,., Boinid Brook, N. .1. Mifional Anilíne Div., Allivd ajid Dy -c Corp., Btiff.,flo, N. Y. Slierwin- NVIIIi. tjyis Co., Chie,11.Yo, 111. Cyclohexane INSTITUT FRANCAIS DU PETROLE Application: IN PIOUVY I' ll' thr Ilquid- pbasc ( atalytic It) -- of 1wrizvne to produce hi,gh- pill-ity cyclollvx- JlW 1011. Charge: Hwn/ rtiv :, n( I a, Prochict: When pro(-(-ssilj,, high truulv henzcue ( 5. 4 - solidification point ), a prodiwi containing 99. 8 - f- N% - t. pcicclill (-. clolwx'alw w 011 lcss t1lall 0. 1 wt. p -l -cent ben- zcnr and limint a . 1; a flue/ in; iilil) ttiiit ( if 6. 0') (,' is obt, in,( Lowe, purity bvirz.vriv f,,(,(] pro(hict fl.(,(,Zlllg Point. Process Description: Frvsh ancl recycle hydrogvn- 6ch as- t( I"' I' ll' Cl, - id, 1- 117cliv fl-r(l are intri-i( Illcef] into flic ll.;1clor w1wic ille is Niltll; llk (-( lllplutc. Aoilmi( Ill ( if the 1- vactill", pliaw is 1 4slllc( l by cNivi-nal ril-cill' Ifioll of illv liquid 111roll" ll a fv; llll 1wlll, l; ll( w. Rvo( -for 011uctil is ( ondf- lised alit'l , Ow liqllid separaWd in ,, flasli ( litini. Nio,;t or oi( flash - 1 gas is r . vcycic( l, . 1 sinall all]( 111111 bving Wed floill 111v Systclu to nvoi( l light IW btlild 111). Tllv 11( fill( l vallient pasgvs to Ow stabilizv?. Which rv- nifix-cs li.011 ( lis,() Ivrd !"ases ovvillra( l. Operating Conditions: Onv of ill(. fvature% (if fit( proc- Ol" li( Pli( l JAMM, With consequent Noveni1wr 1961, Vol. - 10, No. I I inikincss of oln-rating conditions rcsidting in inininiiiin aPital i [' V(" Orl- n t Ind redlicud opcialing costs. Yield: Virtuall) st( 6cl, ionw( jil yj,, j( js of f, onl hvilz-vilc aW Ohtalnv(]. Economics: The (- orrvspnTl( ls to ; 1 t/ vV " Flit un( Ior Ficlicli condilions and as- a In I I I . 1cullt. vol. ll.. arl( l a% all- g 95 1)( - able at M atin. OfTsites and storage facilitivs are not in- clilded. (: 0111ractoCs costs arc indudcd in thc inv(-stincrit. Inv-,StirlcTit% klolill')T( l ; 111( 1 VITC11'( 1 in F- ilre)-. 4200.000 poid ill) mv.dli . . . . . . . . . . 11, 0() 0 4" ls . . . . . . . . . . . ......... ill, 1. Sill). & ok 11.) ............... 21 6 1 ( 100 I' tilities ( no cl-rdif 6%en to LP ov.)Ili Ity- 111— d) ..................... 11JI00 I X. 1 . 11% . . . . . . . . . . . . . . . . . . . . . . I ill)() Ktilil'. 11, 111(( . ............................. 11. 400 Lo(; il T; ixvs & I list, t-;, n( -f- ( 2r/r ( if investment) . . 1, 220 1 Allowwiry ( 10,,' of imi-onwilt ... 21, 100 1 nte' v-st on 1wins ( W,,, ( in avg. in% rst itirnt ) . . . . 11. 4- 10 Total Opt -rating Cost .... ot 2. 34e !!. if. p-lobi-vine Commercial Installations: The fhst , nit has lliven envinf-t- ic( l an( l otheis at( i ; it fit(, ( IF. ign st. lc,(,. g 92 Cyclohexane (Arosat)— THE LUMMUS CO. Application: (, atalytic hy(.1- togeiiation prorv.ys to pn,diwe high -purity cyclohexane from benzene and hydrogen -rich gas. Description: Fresh. feed benzene ( 111P, 7.9.9' C; dry point., 80. 4() G; freezing point, 5. 44' C; thiophene content I ppill) is inixed. with recycle cyclobvxene, illake-up hydrogen ( sulfur < 1 ppni;. chlorine < I ppm; carbon monoxide < 4 pprn; carbon dit)x1de < 8 pinij) and jc_ cycle hydrogen and chargc l to the reactor systern. Essentially stoichionjetric convei-sion of benzene to cyclo- hexane is obtained with Ininialum I) MCILICti011 Of undesir- able isomerization products. substantial fraction of the heat of reaction is recov- ered as low pressure steam. ' Fhe praduct cyclohexane is stabilized to eliminate dissolved tight hydrocarbon gases int"oduce4 into tile systein wi.th the make- up hydrogen cooled and sent to storage. A purge gas is taken from the reactor systein to rugulate file build lip of inerts intro- dUced with tile make-up hydrogen. Parameters which set the unit design can be selected Vill, It broad rallec i1i () 1der t() tilki! 11i; IX111111111 adv; llltwl( of c011.ditions ill the refinery Or petroclicnilcals complex and minimize production costs cliargeable to the cyclo- llcxanc product. High purity cyclolicxane- 11W 80.6" (,; freezing poilit 634' C;. dry point, 80. 90 G; bcnzeile colit(ijit < 50 ppm is obtained. Economic Data: A 2, 42-1- bpsd cyclohexane. unit required an investment of approximately $ 430 per bpsd of product capacity. This includes hydrogen make- up compressor with hydrogen available at 905/r, purity and 300 psia. Typical requirements per bbl. of product: Steam, 50 psig lbs. ( 158) credit Cooling Water ( A - 25" F) 550 gills. Power 5 : 4 Kwh I lydrogen ( 90%) 4272 scf Fuel 1, 000 Btu ( 442) credit. Reference: U. S. Pateia # 3, 450, 784-., HYDROCARBON PROCESSING November 1969 160 Cyclohexane—MITSUBISHI CHEMICAL INDUSTRIES LTD. Application: A process for the liquid phase catalytic hydrogenation of benzene to produce high- puri.ty cy-clo- hexane. Description: By adopting a liquid phase reaction and by sclucting a suitable catalyst, uniforin stable distribtition can be successfully maintained throughout the reaction. It is- very irnportaAt with this process that operation bc- uniform and stable. Since the process is very the plant layout can be very compact and result in very low construction costs. The process has been successf Lilly operitted without any difficulty for more than two y(-; Ii*s of continuous operation. Product cyclohexane is % cry pure with almost complete conversion of benzene in the fc(A. Yields: Depending upon the purity of the raw material bemcne, yields can approach 100% based on feed. With very high purity benzene feed, almost complete conver.- sion of the benzene occurs with very little side reactions. Therefore a special purification unit is not necessary to produce finished high purity product. Commercial Installation: This process was developed by Mitsubishi Chemical Industries Ltd. in 1966 and the first commertial plant went oil stream in 1967 with a capacity of 70,000 tons/ year. 168 November 1969 HYDROCARBON PROCE.SSING Cyclohexane— ATLANTIC RICHFIELD CO. Application: A process for producing high purity cyclo- hexane by catalytic, hydrogenation of benzene using pre- cious inetal Engelliard catalyst. Description: Fresh fved benzene is combined with inakVUp hydrogen arid recycle hydrogen arid exchanged against reactor effluent arid preheated to reaction teniper- attire before entering the reactor. The vaporization of watex to produce stcain removes the heat of reaction arid assists in control of peak arid outlet temperatures. It is not ift-cessary to recycle cyclohexane for temperature control. After exchange with feed, th reactor effluent is cooled arid flashed. Part of the vapor is used as recycle hydrogen, forward vent gas is chilled by refrigeration to minimize cyclollexane losses and is available as high pressure fuel gas. There is usually no requirement for hydrogen purifi- cation of the vent gas. Separator liquids arid condensate from the vent chilling are stabilized. with light ends going overhead and high purity cyclohexane as product. Product: Composition, wt. % Charge Cyclohexane Composition, wt. 470 benzene product Charge Cyclohexane ethyl - cyclohexane ........ benzene product C,, paraffins ............... 0.0150 0.0150 Methyl-cyclobentane ........ 0.0100 0.0100 Benzene .................. 99.9500 0. 0010 Cyclohexane ............... 0.0150 99. 9640 Investment; U. S. Gulf Coast, 100 million lbs./ yr. cyclu- hexane, ISBI, including hydrogen makeup compressor— 700, 000. Initial catalyst charge about $ 75, 000. Commercial installations: Atlantic. Riclifield, I - os An- geles, 100 million lbs./ yr. since 1964. A 43- million- pound/ year plant is in constructioij ii, Argentina for PGM. Reference: Hydrocarbon Processing, May 1967, p. 169- 17 . Composition, wt. % Charge Cyclohexane benzene product ii- lieptaric ................. 0.0020 0-0020 ethyl - cyclohexane ........ 0.0030 0. 0080 Toluene ................... 0.0050 0.0000 Solidification point, ` C ...... 5. 50 6. 16 Process requirements: For 100 million Ibs./ yr. cyclo- hexane, 350 days/ year Utilities Electricity, kW .................... 250 Stvain, lbs./ hr. Consurned ( 600 psig) ............ 11, 000 Generated ( 170 psig) ............. 14. 000 Cooling water, gpin ( AT = 20' F) . . . 800 Catalyst life ........................ 5 )-cars phis Operating labor, men/ shift .......... I Investment; U. S. Gulf Coast, 100 million lbs./ yr. cyclu- hexane, ISBI, including hydrogen makeup compressor— 700, 000. Initial catalyst charge about $ 75, 000. Commercial installations: Atlantic. Riclifield, I - os An- geles, 100 million lbs./ yr. since 1964. A 43- million- pound/ year plant is in constructioij ii, Argentina for PGM. Reference: Hydrocarbon Processing, May 1967, p. 169- 17 . POLYETHYLENE GLYCOL Reaction: 0 HOCH 2 CH 20H + nC.H 2— 112 HO(CH 2 CH 20) nCH 2CH 20H ( wheru r, 6- 9) TE M P ERA I URF, CONTROLLER ' -, - 1 Ir UQILLH Dkukl A C T' 0 A 0 HEAT E XCIIANGER- NOZZLES FEED PRESSURE L CONTROLL ER L 1, GAS OXIDE Feed Materials: Ethylene Glycol Ethylene Oxide Coproducts WATER Catalyst: Sodium Hydroxide Phase: Liquid Reactor type: Kettle and Heat Exchanger Solvent used: None Temperature, 11 C: 125- 200 Prussure psi: 15- 100 Reaction time - Heat Required: Heat evolved: Yes Product yield: Product purity: Materials of Construction: Steel Major Product Uses: In the manufacture of stearate ernulsifiers for the food, drug and cosmetic industries. Reference: U. S. Potent3, 297, 412 by C. Phillips, Jr. etal ( to EssoResearch & Eng. Co.) ( Jan. 10, . 1967) 550 PROYECTOS DE INVERSION PEqUEÑA TECNOLOGIA DE OPERACION Fertilizers I` ctIihzf,rs ; if( natural of- imintifacturcd Illawlials containing plant 111111- icill'; it) availahle At If-ast 16 ch-ments* aw eRsmitial to plaiii 111'e. Carbon. hydiogen, oxygen, nifrogvn, pl.iosphoriv, and potassium are frivedcd fit macio mnmml,. Calcmiji. magm-mum, and sulhir at-(- I- f- ClIllicd it) m- 111111lacro qlfalllifics and ( he Iv- filaill( Ict. ir( III, filangatlesc, si licon, cohall, coplirl, and Illolyl)(1cmill) in trace atnomits.:"" ( : arhon, Ilvdiogen. and oxv.grfl ; If.(. obt; lillcd 111, 111 ambicill ai I- and walcr. while it f*(,%%- plaill-4. such as, 1(. glllll( S. in tisr toot bactf-ria to fix atmospheric nitroge , n. Othcr cl( mcnts are mostly assimilated from Ilic soil via complex physicocheinical root tnecha- fli- Ins. Fm cxample, ill(- Tmiricrils i­( Iiiii-ed fit prit(hire l.') O hwAivis III ( ) Ili, ill pomids per ; if I,- it -quit, d ; if(- N. 310; 1'. 120 as phosphatc. , 52%w; phosphorus: (;, 1, 58, cquiva- lcm it, 17,011) ) 1 agrivillimal limc-stmic; Mg. 50, vqiiiva- Irm if) 275 11) tif r1mim salt. () 1 550 11) ) 1' sulfatr of- 1)( 11: 101- flim"llesia: S. : 13; Fr, 3. f- flilivalf-11( it) 17) 11) Ili ir" ll slillmr: Kill, 0. 15: It. 0. 10, ZT1. (: If, and klo if) Iracc ammmis; (). 10. 200, C., 7, 1100: mid ILS), 3. 22r, 1. 175 14- 11%. f. flIIi,.;Ilq III it) ?') 36 ill, ( 11 tmil A I . Ir clic( t ill Illf)" I If- l-fili/ C. 1 addiliml i, asyllillintic hit Ille iclfl Ili* c( II it fill ; m ill ig; llrd 11- m fillill ',It(,\\ " Ilull mclra, Illq illc flillm-f- 11 ; IlIlsfi( ' I 1)(. l ' It ic IIIIIII If) lit 114) lit illf com virld hv 30 lm hvls: iiicrvasim4 N to 12011) furiliet Ili( rc; isrs the ) icld by 20 hiislick. incivasivig N it) 160 lh I'milicr incrcav­, Ili(- Odd by F-) hoishrIN: ; I hitilwi ill- ricam, t) f N it) 2M 11) i; if-wases Ilic yicld by titily miollirr 10 blishels. To enstire repeated licalthy crops, farmem rimst maintain adequale soil- mitrient levels by appro- priatr fert ili, vr additions. - Traditional low - analysis inairtials, such as mamire and other ani- mal or vcgoahle \ vasics, are usually in limited mipply on larec modcun farins and have to be supplemcnied Ili- u-placcd 1)), high- anal) sis chemi- cal 1"Crtilizers formulated to specific soil and ceop iierds. While %omc pcople cxprrss a preference ror naltirally" fertilized crops, no alternative to chemical fertilizers as a way o( meeting current world food needs of' 3. 5 billion people ( estimated to rcm If 7 billion by the year 2000) is known. Nitrogen Fertilizers. Stuffirs by nineteenth centtiry scientists vsliblished nilrogcn is a primary plant wilrictit and one ( if the kcy cleATirnt% in organic f'Cr1i1izrr%.I- I The fiy,, f chemical nitrogen fertilizers errChiI(-an s; ilipeter. Nallo: j, %vhich today finds a lifllilcd ti" c as. a lobacco tol)( 11- essing, and aill- motimm mill'ate proditced is it coal -gas by- prodiwi. Ammonium siffale ,( ill is applied in cow;idvI; IbI(- ( 111; lrltifif-% oill" ide Ille Unitc( I States. E,arly twentirth- cermiry attempts at fixing nitro- gen via clecnic arc 1( 4 to file production of cal- citim cyanamidc, CaCN2. ill ( he Lln lcd States, and calcium nin-atc. via IINO: j in Norway. The last CaCN,, plant in Ilic Western world closed in June 1971, bit( largr tonnages of (: a( N( ).02 still are madc in Fmrop,. Today, virtually all nitrogen fvr( ilim-rs ; if-(, hased oil Nil,, synthesized froin almospheric. nitrogen phis hydrogen ( It -rived froin mititral gas, oil, coal, lignite, or electrolysis of watcr ( in decreasing order of itse). See also Am- mollia. Ammonhim ( NI102SO.1 contains ap- proximalcly 21' , ", N. Initially it , vas produced by scrtibbing coat gas with ' 12SO,, followed by evap- oration, crystallization, wparation. and drying. This melhod is still its(-(] to ; I limited extent, as is maciint, ILM ), will) anh drotis Nil:,. A major ctiurcM sotir(:(- is caprolactam manufacttire, which givrs wvcral tons of by- product sulfatc per ton of ipiolactain. Otilsidc the Unitcd several piodiwcrs list- Ilic NIf- i-schurg rraction, by Ili( If natural or by- product gypsimi is reacted with ainnionitim carbonate to yi(Ad ammonitim sill(ale: CaM ) 1, 2112( ) + ( N I I ): j -, I- ( N I I 1).. S( ) I i I I. S) ­ 3. 9 kcal When propci-ly prepared, Ow product is in the f0fln of h-vc- flowing, stable cryslak Cal( Mm Niliale: CWNO; t),, contains approxi- mawly IT4. N. This material was made initially b%. dircolv reacting liniestonc and IIN03, ; I method still in limited use. Ca( N0:,),, ( urrewly i- 4 procitircd in large ( Itiantilics a-, a b- prodtict froln ni I ropl io% plia I r n mn It fact I I re ( dc- cribed latcr). ' I livro- ; ire several cominri-cial processes for 1jr- prilic( l. oil- prilled, and crystalline products. a( NO:,),. is vciy liv scopic, making suitablegros storage all(] shipping pro-catitions imperalive, Ammow'um. Arilrate: NI­I,,NO3 contains ; ipproxi- inatcly 35' 7, N. As shown in 1-, ig. F- 1, ammonium nitrate is produced by directly reacting NIT:, ;%it(] IIN0,. Various commercial processes operating tioder vacimin and at atmospheric pi-f- ssure or Jlywc ; Irc available: N I I j + IINO I —'# NIIIN0: j - 26k -cal. NII.,N0, also is Inade in large quantities hy ro-acling caicitm, nitrale by- product from nhiophosplimc, plants , vith Nil:, and CO.,: Ca( NO: 02 + 2NII:,.+ CO., + 1120 __4 2NI I IN6:t + (, a(():,, It usually is -produced as pillis, grantiles, or %olulinn, cithrr alone oi- in l - onjunction with o( hrr nitrogt-n- containing liq- ulds, e. g., tirca and aqua N14.,.,. Solid and molten forms of NH 4 NO:, can be hazardous under certain condilions. c. g,.. when d(-Ionatcd and/ or when organic matter is present. A poptilar explosive, ANF'O, for example, is a mixture of NI I No:, slid fticl oil. Accordingly, suitable precautions are MAGNE Si 1 E NI43GAS HNO3 Fertilizers ( cont.) 471 nccessary in production, storage, and handling. One way of minimizing danger is to prodiice nit ro chalk, a mixture of,NH NO3 and CaGO., with a maxiinum nitrogen content of about 26%. Pro-catitions must also be taken against sponta- nrotis , low burning as well as physical breakdown catised by volume changes induced by crystal transitions between forms I' v' and 111, when stor- age tempera( tircs arc allowed to fluctuawin the 30- 35" C rangc.' Small amounts of urca help to uppress self -burning, and certain alkali salts plus low frcc-nioistut-c improve particle stability.") As NII3NO3 is hygroscopic, clay coatings and inoisturc- proof hags arc necessary safeguards agaills.1 spoilage in storage and transportation. I will, rcfcrcII(.c to 1,' ig. F' - I, aciticous HNo,,, gasemis NII:j, and a ( ondilioncr solution ( * tnag- nesilc dissolved in IINo:,) are fed into a reactor to form NH.,NO:j solution. The pUt of ( tic final NI I, NO:, solution is ad * itisied by addition of NI IT Flom III(.- limil ricutralizcr, fit(- sohilion is purnp- I to a falling-filtn evaporator, where the water con- tent is reduced to a maximum of 0.5%, necessary fr, r iliv:,subsecluctit prilling Orp. The concentrated NII.,NO3solution is sent to a prilling tower, where it V; finely distributed throtigh spraying roses. The droplets descending in III(- tower arc cooled with Fig. F- 1. Production of ammonium nitrate. Ulorch.il-Vhdr Carlmroilion.) AMMONIUM NITOM E 472 Fertilizers ( cont.) I countercurrent stream ( if ;lit-. (lie priiis arc with- drawn through ill opening in Ill(- hotton, of IllC lower for sitbscquent classifying. The o%,rrsizc is rush(-(] and dissolved in NITj Ǹ(): j % tiliflim, if)- gcOlf. l. with the fi . lie.-; from ill(- orhist -colicc, ing equipinriii. ' I' ll(- normal- graill-size 1- f-acti011 i- SCIll to a flnidizi-d- hed cooler, v%,Ii(, rc ill(- product lt*lll- pf-riniTe is icduccd by incans of cotd air to makc ill(- product suitable for stotage. Urra: CO( NI 102 conlains 16. 65X. N. Fits( syn- thcsized by WhIfler in 11128 from ammonium cy- naI(., ju.t j has breomc ill(, dominant nitiogen fel-lilizey ill IIIc last frw years. Urra also is used i, l(. l,.; jsitjgIy ;,,, all iiiijual Fecd and a raw material for nichunine and urea- formaldchyde resins. ' I' ll(- Vroductloti of urca is ch -scribed undcr I Irca. n Alifr( grn Ferti7i'zers: In ill(, United St, jj(,s, large quantities of lit-litid nitrogen fertil- i7,rrN. stich as anhydrous Nil:,, arlim Nil:,, am- jud illanY combinations, includir g alls. are being used. so, ne (-olll; jiljilj[4 phosphate S, Since all these materials are highly water-soltible, it,(- possibility of ecological upsct caused by nilro- gen runoff Ila,; been raiscd. Fortitnately, nwily soils rapidly fix aninionium ionq, thereby checking wasle and pollution. Conlrollrd release of nilro- gen ( an hc obt; iined by rcactilig urca and folAll- aldrll- dv to ploduce lut-carorin" fertilizers. by roalinq urea will] sillfill., or by using slowly Sol - bit. compounds conlaimniz nitrogcn, sll(:Il as isobilivIldem. dilli-ra. 5. 6 ' llicst- materials It(. re Ia I i %, cly cooly and are - old ptillcipally to iionfaiin inarkris." IZ- cent . 111c," W', to lil; lkf' connollcd- r( Icasr, high-anAvsis nitrogen froil- izers io colubirlation with phosphorus shmv pt-onliS(..7 Phosphate Fertilizers. In ill(- mid- nille(ecuth ('(' it- ll, rV. I, i(. I) lg and others showed that tile iradi- i lotml feri ilizer properties of bmies arr (hic largely it, ; I pliosphair couient ; in(] thm ircalitictil ilh li.,S01 gi.f., illy inct-cases 01'ectiveness. Rap- idlN expanding P- 1- 111M. r needs (. 1- caled a bit ( I(-- wiland for slich chcIllical ill"111111cs and led lo all acille sh" l-lavc of holies. W'Ns ( WrIVOlne by of pho, pha( e miner; ds ill Florida ; 111( 1 elsewlictc, pill', .1111, 1110 &- posils Ill Peril. Today, bolle arid glialm are mostly linlited to special nollf"'11. 111 it-,('% and havc hcen virltially i-cphicrd by fertilizers prepated From phosphate rook inined ill immy countrics. 9, 9 Ali imporlmil property ( of' phosphate fe" Illizers is OPfli/ alody to plants, which is largvly a funclit-iii if pljo, sollibility in . 1 pecific Soil. Many phosphalc rocks consist of' a clay -sand Inatrix bearing an apatite mineral, Ca,,(PO,,),,R, where R is usually fluorine hill may be OH, CO3. or Cl. Washing followed by screening ; in([ betwficiation yields pebbles and sandy concent rates often hav- ing tile general composition 3Ca3( P() 4)..,- CaF2 about ' io 4()14, P.,Oj In water and alkaline arid0 licutral soils, apa( ites and tricalciurn phosphate, a:,( pO,).,,, ; 11., highly ill%olub1c, bill they are moderately soluble in acid soils. Dicalciurn phos- phatr, Cal-IP0.,, is readily soluble in acid soils arid moderately so in water and alkaline and nru- tral soils. whcreas monocalcium Phos pha te, is soluble in water and all inoist soils. Also affecting availAbility is tile prescl-Ire Of Fe and M phosphales, which are insoluble in water bill soluble in Nveak acids. in sonic countries iotal wairr solubility is dc- 111a, lided or is at a premium, which nicans that monocalcium and ammonium phosphates must be used. IT, oihcrs, slight solubility in water or ap- pl-c acids such as citriccial)](.. solubility ill weak , is dcquate, thus permitting fertilizers to include Lirge amounts of dicalcium phosphate as well as phosphates of Fe arid Al. Several nitrophosphate Fertilizcrs and steel slags are in this category. Sorne humic and acid soils are able to assimilate gromid phosphate rock witho.lit prior chemical Sl'?gle 5iiperpbovj)ha1e: Approximately 20'.Vo 51 2. 9. 111 tilis is dir oldest water-solublc phos- pIl; jtc ferillizer, arid it still is produced in large quantitics. The matcrial is made by reacting Iground phosphate rock and 70' Xi 112S() i ill a b' lCh oI. oil a contintious belt. A solid mass of inollocalcimu phosphate arid gypsum is formed, which is rurcd by storing for several weeks before grinding and shipping. Gaseous compounds of fluorine an(] silicon it-(, evolved and removed by knter scrubbing. The erripirical reaction is 13( 1)() 02 * (";' "' 11 + 7112'Sol ---)' :3Ca( 1­ 1., PO.j) 2 + 7CaSOj + 211F.4 Wfl- Process Orlhaphavl)hortc Acid: This is coin- invicially 30- 54X, RX ),,. The additi( in of 112SO4 io phosphatc rock in amounts greater than needed it, lijak., supciphosphate produces orlllo- Scveral reaction. occur. Nionocalcium phosphaic reacts with 142SO., to irld pl, osphol-i(- pal -I of which reacts with more rock it) make additional inonocalcium phos7 pliale. Qualitativcl this is Ca( P0,).,-(' al2 + ll.,.sol + 11., 0 __+ jl yol + CaSOIAL,O + 11F. l* lli% acid is a fertilizer inlerniediale and also is used to Inake ( Icterg(.111 phosphates after purifi- cation.' Commercial processes are all based on 1gil, itim, of' the rock -acid slurry, f'oll" wC( lvioirill , by removal. of ( aSol via filtration and evapora- li,,l, of 11,() 1c, ol)(ain the ( if -sired concent 1; 11 ioll, 111) to ) I,; ' Fraditiotial processes separalc III(. sillfale as impiti-c dihydrate ( gypsuill), Which lislialiv is discarded. Sonic polyniorphic 1) 2(). r, invariobly in the filter cakel and this loss can be largcly ovcrcoinc by pl-cciplIatillfl' IIIC sidfatc as the hemillydrate and recrystallizing ill dihydrale Foriii, as is dotic in som( recent prorcsses of-japanese origin.' I In this way, .1 gypsum 'Illita- We For wallboard, plaslel, and cenient manufac- title c; III be produced siniultallcolisly. 7iipIr Stiperpho.ifthate: This i% approxillialclY 46- 48', Acididatingplio, phate rock xviih piv.)sphoric acid produces conceritrated or triple pet-pilosphitte, which is essentially monocalciom olitainhig very little gypsum. The reaction + TI P0 + It 3 1 2 Cajl 1` 002'" 20 + I -IF. Gonthiuou% proccsscs arc. availahlr lot inaking powderod ( rim -of -pile) wid grant . dated products. Triple supt-rpho,,phatc is tl,.;cd to furnish P.,()-, in l. iixed fertilizers Fertilizers ( cont.) 473 and is water-sollible. It% high analysis compared with singIr supel-phospbate offers savings in stor- age and shipping. A nnow?i I uni Phosphale.s.: 41- 6 Several animonium phosphates (.-all he preparcd, but only tbc Ino" O mid the ( it compounds are made for fertilizer purposes, alone or iti combination with other salts, Niinivious commercial processes are avail- able whereby anhydroiis Nil., is reacted with and the resulting shirry is converted to solid I'Orni and dried. NI 1:,/ I 1:, P0., ratios lietween I wid 2 can be selected to produce various product grades. Por example, For dianinionium phosphate 2NI 1: 1 + 11: 1110., - 4 ( Nil 02111"' V W -1 - process acid is cornmotily used, but minor quantitics are made from acid of clectric- furnace origin. Since impurities in wet -process acid make Y, - - V - I Illizatiolj difficult, III(. cort sponding prod ticts arr grantilated. Mono- and diammonimn pimsphates I) a,,(-( l oil ftirnace acid call he crystal- lizcd casily. The gericral process for making gran- til;, i ammomuni phosphate f(-rtilizrr is shown in Fic F- 2. Typical analyses are tabulated below: Morloammonimn Diallinioniurn Phosphate Phosphate Aci<1 Used N, % t - pri K' v ss . . . . PHOSPHORIC ACID WATER VAPOR AMMONIA---*----- FIRI` NFUTRALI/ f F, AMMONlArOR GRANULATOR POTASSIUM CHLORIDE For NPK Grades) Fig. F- 2. Granular ammonium phosphate fertilizer process. P,(),, ' 71 N, %, P2() 5I r1r 48 46 61 21 5: 1 b. WATER VAPOR SCRUBBER CRUSHER IT SCREEN I FXHAUST COOLER OR DRYER FINES RECYCLE 6PANIA AR DIAMMONIUM PHOSPHATE i, IcljI igitation of the rock -acid slurry, foll— c-c! by removal " f ( aSol via liliration and (-v; il)( . )I"- lioll of 11,() to obtain the desircd concelit 111) to Traditional processes scl- ralc the sillfille as imptir( dihydrate ( gv psum), which uslially is di%carded. Sonic polyntorphic 1) 2() 5 i n va r I: I ibly is irapped in the filter cake'l and this, loss can be largely overcome by prrcipitatill,, the sidfatc is the hernihydrate and recrystallizing ill dihydrale form, as is done in goni( recent prorrsses of] apincsr (irigin. 1 1 In this way, a gypsum Stlit,1- ble for wallboard, plasict, all(] cenient manufac- t,,,. 0 be pro( lucrd similltallcollsly. T?il)le Siiperl5hasphate: This is approximately 46 tw',, Acidiflating phot I) ha4,c. rock with phosphoric icid producc% concentrated or iriple which is csscittially monocalcitim pho.,l) j, jjc (-olijaining very little gypsum. The reaction i,; Caff" 41) 2*(" 11" 2 + + 112() — 4 Ca( I 12 P002' Y' 20 + '*" (; otjtinuou% proccSsCs are available for making powden-d ( rim -of -pile) and granulated prochicts. Triple. superpho"pliate is u,; rd most]-,- to furnish Ij), in i, iixed fertilizers Fertilizers ( cont.) 473 and is waier-sohible. Its high analysis compared with sinqlc superphosphate offers savings in stor- age and shipping. Aninionnim Phosl5hates: 4- 6 Several ammonium phosphates can be prepared, but only the mono and the ( 11 compounds are made for fertilizer piirl)os(,%, alone or in combination with other salts. Numvious commercial processes arc avail- able whereby anhydroiis N1111,, is reacted with and the resulting shirry is converted to solid form and dried. NI ratios ljct%%-ecn I and 2 can be selected to produce various product grades. For example, For dianinionitim phosphate 2 N 1- 1: 1 + 11, 1110.1 ---, ( N I 11) 211 P0,1 - Wet -process icid is cornmonly used, but minor quantities are made from acid of electric -furnace origin. Since impurities in wet -process acid make y, uillization ( lifficull, the corresponding prod- ticts are granulated. Mono- and diammonium phosphaws based oil ftirnace acid call be crystal- li;,cd rasily. The general process for making gran- tilm aninionimn phosphate fertilizer is shown in Fig. F- 2. Typical analyses are tabulated below: Nionoamnionillin INamnionitirn Phosphate Ilhosl)hite Acid LJscd N, % P2( ). 51 N, % P051 % NVel- procvss - - - - - I I I-Arctriv- Fit rnace 12 48 18 46 61 1 21 1 53 PHOSPHORIC oWATER VAPOR ACID CRUSHER WATER VAPOR SCRUBBER AMMONIA -- o. __ L CREEN PR[ NF UTRAL171. 11, FXHAUST GRANIJI AR AMMONIA1­01? DIAMMONIUM GRANUL PHOSPHATE COOLER OR DRYER P0TA53IUM CHLORIDE For NPIK Grades) FINES RECYCLE Fig. F- 2. Granular ammonium phosphate fertilizer process. NPK Fertifixer (Norsk Hydro)— HUMPHREYS & GL . ASGOW LTD. ej Application: A process for the manufacture of NP and NPK fertilizers from phosphate rock, potassium salt, nitric acid, ammonia and carbon dioxide. Products in- clude NP or NPK fertilizers as prills ( or granules) ; cal- cium nitrate solution or prills; or ammonium nitrate solution or prills plus calcium carbonate slurry, cake or dried solid. Description: Phosphate rock is digested with excess 58- 607o nitric acid to give phosphoric acid and calcium nitrate, represented by the reactions: CaF, - 3Ca, ( PO4) 2 + ( 20 + x) HNO., = 6H, PO, + 10 Ca( NO3) 2 + 2HF + xHNO3 CaCO3+ 2HNO3= Ca( NO3) 2 + CO2 + H20 The acid liquor at 60 to 80' C is passed to a series of batch crystallizers ( operated in parallel for continuous pro- dLICtion) where calcium nitrate is removed. The desired level of water soluble P, O, in the product determines the temperature to which th solution inust be cooled: — 50 C is required for 85% water solubility. By careful control of the crystallization conditions, crystals in the range 0.5 to 1. 0 mm are produced which filter readily and permit easy drainage of the filtrate and hence recovery of acid solution. The filter is a continuous rotary vacuum design employing a st4inless steel cloth with 0. 5 -mm incsti. The filtrate is neutralized with gaseous ammonia in two stages to avoid the viscous solutions occurring at intermediate pH levels and to minimize loss of ammonia vapor. The N: P,O, ratio is adjusted if becessary to the desired value by the addition of ammonium nitrate solu- tion in a third stage. The neutralized NP solution is evaporated tinder vactiurn to about 0. 517r, water. Potas- sium salt and micro nutrients are added before prilling or granulation). The calchun nitrate filter cake is melted and either neutralized ' concentrated and prilled as calcium nitrate, or reacted with arnmonia and carbon dioxide to give about 60% ammonium nitrate * solution and. calcium carbonate. A P.05 water solubility of 857o can be achieved with an over-all yield of 98- 99% based on raw materials. Raw Material and Utility Requirements: Based on 330, 000 t/ a of 17: 17: 17 Imils Quantity/ ton product Phosphate rock 0. 43 ton Nitric acid 0.66 ton Ammonia 0.23 ton Potash 0. 28 ton Carbon dioxide 0. 16 ton Ammonium nitrate byproduct 0.46 ton Electricity 60 Kwh Steam 0.9 toil Process water 2. 5 ton Cooling water 22. ton Commercial Installations: Three plants operated by Norsk klydro with a combined capacity of 1, 000,000 t/ a; one plant in United States under construction. 210 November 1969 HYDROCARBON PROCESSING PROYECTOS DE INVERSION PEQUEÑA TECNOLOGIA DE EQUIPO 14. PETRóLEO Y SUS PRODUCTOS 573 compuestos aromáticos, compuestos nitrogenados y oxigenados, com- puestos' de azufre y otras impurezas. El asfalto se encuentra solamente en el residuo, y por tanto unicamente éste requiere un tratamiento para separarlo. DESASFALTADO.— El residuo procedente de la destilación al vacío pasa a una torre en donde se pone en contacto con propano liquido, el cual disuelve todos sus componentes a excepción del asfalto que se re - Alímentaci¿n con crudo reducido Fic. 14. 14 Gas -oil Aceite lubricante ligero Aceite . lubricante — nied¡ o 1 Destilación Aceite al vacío lubricante 1 pesa -ido Residuo Desasfaltado con propano Ac Jul rei Aditivos Asfalto Diagrama general para la refinación de aceites lubricantes. coge en la parte inferior de la columna. Se trabaja a una presi0n de hasta 35 Kg/ CM2 aproximadamente, con objeto de mantener el propano en estado liquido a las temperaturas de trabajo. Un hecho interesante es el de ( pic la coininna trabaja a tina temperabira tinos 30* C más ele- vada en las proximidades de la parte superior que en la parte inferior 93' C en la parte superior y 60* C en la inferior). Con esto se consigue disminuir la solubilidad de los hidrocarburos más pesados y permite ademas estrechar el intervalo de ebullición de la fracci0n tratada. El propano se recupera del aceite y de] asfalto y vuelve a entrar en el cielo. Este procedimiento ha adquir2b importancia en la eliminación del carbón yen el desasfaltado de la materia prima a utilizar en el crac- king catalitico (9). El tratamiento posterior de la fracción que contiene el aceite es aná- logo al proceso a que se someten las otras fracciones procedentes de la 1 os - REFERENCIAS 1. Gira] B., J. Design of equipment appropiate of developing coun— tríes. Trabajo presentado en la ONU, Washington, octubre 28, 1976. 2. Gira] B., J. F. Barnés y A. Ramirez. Ingenieria de procesos, UNAM, México, 1977. 3. Gira] B., J. y S. González P. Demanda tecnológica dela industria quimica 1977- 1982. Trabajo presentado en la XVII Convención Nacio- nal de¡ IMIQ, México, octubre, 1977. 4. Gómez P., B. Los bienes de capital en México y el mercado mundial. El Mercado de Valores, p. 440, junio 14, 1976. 5. Lozano, T. En México la mejor Inversión como organismo proímotor de] Instituto Mexicano de Comercio Exterior para la sustitución de im- portaciones. Revista de] IMIQ, p. 42, marzo, 1976. 6. México: Una estrategia para desarrollar la industria de bienes de ca pital. Proyecto conjunto de bienes de capital NAFINSA- ONUDI, México, 1977. 7' Promoción de empresas industriales fabricantes de bienes de capital en México, NAFINSA- ONUDI, México, 1976. 106 - B I B L 1 0 G R A F I A 1. Consideraciones generales Allen, Bruce T y Lelnik, Aire. The market for electrical generating equipment. MSU Public Utilities Papers. East Lansing. Institute of Public Utilities, Division of Research. Graduate School of Business Administration. Michigan State University. 1973: 81 pp. Alpert, S. B. " Economy of scale in the metal removal industry". Journal of industrial Economics, julio 1959, 7; pp. 175- 81. Andrade, Roberto " Industria de máquinas y equipamento? Industria y Productividades Rio de Janeiro, abril 1975 ( 83); pp. 19- 23. Aspectos técnicos de la comercialización de bienes de capital y su- ministros industriales en los paises en desarrollo" Naciones Unidas Nueva York, diciembre 1975. Bane, Charles A. The electrical equipment conspiracies: The treble damage actions. Nueva York, Federal Legal Publications, 1973; 554 L pp. Barber, C. L. " The farm machinery industry: reconciling the interest of the tarmer, the industry, and the general public" American Jour- nal of Agricultural Economics, diciembre 1973, 55 ( 5); pp. 820- 28. Bazdresch, C. El financiamiento de la producción de bienes de capi- tal. El Mercado de Valores, Agosto 30, 1976, Núm. 35. Becker, G. Situación de la oferta, - emanda e importación de bienes de capital en México. El Mercado de Valores, Mayo 3, 1976, Núm. 18. Bjorck, 0. " The engineering industry and European integration" Sdandinaviska Banken, abril 1960, 41, pp. 58- 62 107 - Boon, G. K. Optimal capital intensity in metal - chipping processes. Progress Reports 1 and 2. Stanford, Calif., Institute of Enginee- ring Economic Systems, Stanford University, Octubre 1965 y Mayo 1966. Brown, W. H. " Innovation in the machine tool industry" Quarterly Journal of Economics, agssto 1957, 71; pp. 406- 25. Bueno, Gerardo y Sing, K. D. " El sector de bienes de capital en M6xico". Comercio Exterior, M6xico, D. F., enero 1973 ( 1); pp. 1- 10. Bulletin of statistics on world trade in engineering products"; Comisión Económica para Europa, Nueva York, anual. Carey, J. L. " Output per man- hour in gray iron foundries" Monthly - Labor Review; octubre 1969, 92 ( 10); pp. 51- 3. Center for Economic Planning. The planning of production and exports in the metalworking industries. Nueva York, New School of Social Re search, 1967. Chenery, H. Capital labor substitution in metalworking processes. Memorandum NOm. C- 3 of the Stanford Project for Quantitative Research in" Economic Development. Stanford, Calif., Department of Economics, Stanford University, febrero 1957, ( Mimeografiado). Cheng, Chu - Yuan. The machine -building industry in Communist China. Chicago. Aldine -Atherton, 1971; 339 pp. Cilingiroglu, Ayhan. Manufacture of heavy electrical equipment in developing countries. World Bank Staff Occasional Papers Number Nine. Baltimore. The Johns Hopkins Press, 1969; 122 pp. Cole, H. J. D. " Machinery prices between the wars" Bulletin of the - 108 - Oxford Universi y Institute of Ecgnomics and Statistics, marzo 1951 13; pp. 78- 87. Cole, H. D.; Holland, D. G. y Posner, M. V. " Factor productivity and' efficiency ( in the electric motor industry)" Bulletin of Oxford Ins- titute of Economics and Satistics, I.: agosto 1960, 22; pp. 151- 87 II: mayo 1961, 23; pp. 105- 35, 111: agosto 1961, 23 pp. 197- 270, IV: noviembre 1961, 23 pp. 305- 42. Collusi6n among electrical equipment manufacturers en: Mansfield, Edwin, ed. Monopoly power and economic performance; the problem of industrial concentration. Nueva York, W. W. Nortan & Co., 1964. Condiciones de acceso de los bienes de capital al mercado de los paises miembros de la ALALC. Estudio conjunto NAFINSA- CEPAL. El mercado de valores, septiembre 13, 1976, suplemento al Núm. 37. Conti, G. " Situation and prospects of the Italian machine tool in- dustry" Review of the Economic Conditions in Italy, marzo 1972, 26 2); pp. 122- 31. Cukor, R. " Growth of the engineering industry in the developing countries" Acta Oeconomica, 1968, 3 ( 2); pp. 181- 202. De Vries, Barend. " E] elevado costo de la industria en los paises en desarrollo: causas y remedio?. Finanzas y Desarrollo, Washington D. C. Fondo Monetario Internacional, diciembre 1969, 6( 4); pp. 50- 55. Dean, J. " Direct control of machinery prices" Harvard Business Re- view, 1942, 20; pp. 277- 89. Tesarrollo de las industrias de] metal en los paises en desarrollo" ONUDI, Nueva York, 1968. 109 - Dudley, I. " Learning and productivity change in metal products" Ame- rican Economic Review; septiembre 1972, 62 ( 4); pp. 662- 69. Eibenschutz, J. Los energéticos y la industria de bienes de capital. Revista del IMIQ, p. 30, septiembre -octubre, 1975. Engineering industry". Unido monograps on industrial development, NOM. 4, ONUDI, Nueva York, 1969. Emery, E. D. " Regulated utilities and equipment manufacturers conspi- racies in the electrical power industry" Bell Journal, primavera 1973, 4 ( 1); pp. 322- 37. Evans, E. W. " Some problems of growth in the machine tool industry" Yorkshire Bulletin of Economic and Social Research, mayo 1966, 18; pp. 34- 48. Fajnzylber, Fernando. " Difusi6n de tecnologla, estructura industrial y mercado internacional de bienes de capital" Econom1a Politica, México, D. F., IPN. Wscuela Superior de Economia, enero -junio 1974, núm. 1- 2 pp. 89- 120 Final report on a study of the scope for capital - labor substitution in the mecanical engineering sector". Korean Institute of Science and Tecnology, Seoul, Korea, 1973. Findlay, R. " Optimal investment allocation between consumer goods and capital goods" Economic Journal, marzo 1966, 76; pp. 70- 83. Frankena, M. " Marketing characteristics and prices of exports of engineering goods from India" Oxford Economic Papers, Marzo 1973, 25 ( 1); pp. 127- 32 GSbor, 0. y Gade, M. " Role of the engineering industries in the de- 1 i 0 - development of the Hungrian economy and in the transformation of the economic structure" Eastern European Economics, otoho, 1973, 12 ( 1) pp. 82- 104. Ghosh. A. y Sarkar, A. K. " Size structure of Indian engineering in- dustries, 1948- 61" Indian Economic Journal, enero-, arzo 1969, 16 ( 3) Gordon, R. A. " Differential changes in the prices of consumers and capital goods" American Economic kevlew, diclembre 1961, 51 ( 5); pp. 937- 57. Goris, A. y Koyck, L. M. " The prices of investment goods and the vo-- lume of production in the U. S." Review of Economic and Statistics, febrero 1953, 35; pp. 59- 66. Granick, D. " Economic development and productivity analysis: The ca se of Soviet metalworking" Quarterly Journal of Economics, mayo 1957 71; pp. 205- 33. Hammel, F. E. " Market potentials in the machine tool industry" Jour-, nal of Marketing, julio 1954, 19; pp. 34- 41. Hays, S. Hemming, M. F. W. y Ray G. " The office machinery industry in the United Kingdom" National Institute Economic Review, agosto 1969 49; pp. 52- 74. Hazari, B. R. " An empirical identification of dey sectors in the In- dian economy" Review of Economics and Statistics, agosto 1970, 52 3); pp. 301- 05. Holmes, J. M. Y Smith D. L. " The statistical relationship between im- ports of investment goods and gross domestic product ir developing pp. 14- 70. countries" Economic Analysis and Policy, marzo 1970 ( 1) Hufbauer, G. C. y O' Neill, J, P, " Unit values of U, S, machinery expor- ts" Journal of International Economics, agosto 1972 ( 3); pp. 265- 75, Ibarra, David. " Mecanismos adecuados para alentar la fabricaci6n de bienes de capital" El Mercado de Valores. noviembre 3 de 1975, su— plemento al núm. 44; pp. 15- 19. Iwata, G. " Engineering, production function and shor- run costo func- tion: a measuring for the machine industry" Keio Business Review, 1967, 6; pp. 65- 69. Kjeldsen Kragh, Soren. Specialization and international competition A study of the export position of the Danish machinery industry. Co- penhagen, Nyt Nondish Forlang, Arnold Busck, 1973; 357 pp. ( En dan6s) Klimenko, K. " The development of Soviet machine bulding" Problems of Economics, septiembre 1968, 5; pp. 50- 56. Koshuta,, A. " New prices in machine building ( 1966)" Problems of Eco- nomics, septiembre 1968, 5; pp. 50- 56 Kurtz, M. y Manne, A. S. " Engineering estimates of capital - labor subs- titution in metal machining" American Economic Review, septiembre 1963, 53; pp. 662- 81. Lackman, C. L. " Market potential for printing equipment in France, Germany and Italy" Revista Internazionale di Scienze Economiche e Comerciali, junio 1975, 22 ( 6); pp. 586- 607. Lave, L. CB. " Engineering production function and capital labor subs- titution in metal machining; Comment" American Economic Review, sep- tiembre 1966, 565 pp. 872- 80. Lara S., H. Tecnologfa aplicada a la rpoducci6n de bienes de capital, 112 - Revista de] IMIQ, p. 20, marzo - 1976, La fabricación de maquInaria y equipo Industriales en América Lati- na, Vol. 1. Equipos básicos en el Brasil, Nueva York, CEPAL, 1963. 63. 11. 6. 2.) La industria de maquinas -herramientas. Perspectivas de desarrollo industrial en la Segunda Década de Desarrollo de las Naciones Un¡ -- das, Nueva York, UNIDO, 1974; 81 ( 01/ 116). La industria metal -mecánica, 1970- 1976, El Mercado de Valores, Núm. 35 agosto 30, 1976. Las máquinas herramientas en América Latina. Nueva York, UNIDO, 1974; 79 pp. ( S. 73. 11. B. II). Las máquinas herramientas en la región de Asia y el PacIfico. Nueva York, diripmbre 1975-, 51 pp. ( ID/ 151). Leff, E. Subdesarrollo, dependencia tecnológica y bienes de capi— tal. Ciencia y Desarrollo, p. 15, nov/ dic. 1975. Leff, Nathaniel. The Brazilian capital good industry, 1962- 1964. Cambridge, Mass., Harvard University Press; 186 pp. Lund, P. J. y Miner, D. A. An econometric study of the machine tool industry. Government Economic Service Occasional Papers 4. Londres, Her Majesty' s Stationery Office, 1973; 90 pp. Mabro, R, " Optimal investment allocation between consumer and capi- tal goods: A Comment" Economic Journal, septiembre 1976, 77; pp. 656- 57. Manne, A. S. On the role of machinery production in the economic de- 113 - velopmentof MéxjcQ, Washington, D. C, OrgAnizacjón de los Estados Americanos, 1963. Markowitz, H. M. y Rowe, A. J. " A. machine tool substitution analysis" en: Manne, A. y Markowitz, H. eds., Studies in Process Analysis: Economy -wide production capabilities. Nueva rork, John Wiley and Sons, 1963. Mathur, P. N.; Valanade, S. P. y Kirlokar, M. V. " Optimum capacity and imbalance of capital structure: The case of machine manufactu- ring industries" en: Mathur, P. N. Y Bharadwaj, R,, eds. Economic analysis in input- output framework; with Indian empirical explora- tions. Papers and Proceedings of the First Seminar of the Input- Ou tput Research Association, Poona, India Sangam Press, 1967. Mayer, P. C. Machinery production and the size of the domestic mar- ket. Research Memorandum NOm. 50. Stanford, Calif., Stanford Uni-- versity, 1966. McCain, R. A. " induced technical progress and the price of capital goods" Economic Journal, septiembre, 1972, 82 ( 327) pp. 921- 33. Melman, S. " Aspectos de] diseño de la producción de maquinaria du- rante el desarrollo económico" Boletin de Industrialización Y Pro- ductividad. 1964, 8. Naciones Unidas, 69. 11. B. 2. Moskvin, D. y Granick, D.." Sins against the truth" Problems of Eco- nomics, mayo 1958, 1; pp. 73- 74. Nacional Financiera, S. A. ' Tromoción de empresas industrIales de bienes de capital en México" El Mercado de Valores, Núm. 19, mayo 7 de 1973; pp. 625- 40. Nacional Financiera y el desarrollo del sector de bienes de capital, 114 - El Mercado de Va1Qres, suplemento Al número 44 de 1975, Neiswanger, W. A. " Price control in the machinery industries" Ameri- can Economic Review, marzo 1943, 33 ( 1). p. + 2; pp. 287- 94. O' Carroll, Lloyd, T. " lechnology and manpower in nonelectrical ma-- chinery" Monthley Labor Review. junio 1971, 94 ( 6); pp. 56- 62. Ohta, M. " Production technolog-jes ot the U. S, boiler and turbogene- rator industries and hedonic price indexes for their products; a cost function approach" Journal of Political Economy, febrero 1975, 83 ( 1); pp. 1- 26. Organización para la Cooperación y el Desarrollo Económico. The en- gineerinq industries in OECD member countries. New basic statistics Vol. 1; 1963- 70, Pris, 1972. Organization and technology in Soviert metalworking. Some conditio ning factors" - American Economic Review mayo 1957, 47; Lp. Pack, H. y Todaro, M. " Tecnological transfer, labour absorption and economic development" Oxford Economic Papers, noviembre 1969, 21 3); pp. 395- 403. Passer, H. C. " L) evelopment of large- scale organization. electrical manufacturing around 1900" Journal of Economic History, 1952, 12; pp. 378- 95. Peerles, B. M. " Innpvation in the machine tool industry. Comment". Quarterly Journal of Economics, agosto 1963, 77; pp. 511- 13. Phillips, W. G. " The farm machinery industry" en . Moore John R, y - Walsh, Richard G., eds. Market structure of the agricultural indus- tries. Ames. The Iowa State University Press, 1966, 1 is - Planning at the microlevel, The heavy electrical equipment industry in Mexico" en: Westphal, Larry, ed, Industrial planning Under econo-- mies of scale. Por publicarse proximamente, Planificación y- programaci6n de las industrias de transformación de metales, especialmente con miras a la exportaci6n. Nueva York, ONUDI 1973, ( S. 72. 11. B. 7). Pratten, C. F. " Economies of scale for machine tool production" Jour- nal of industrial Economics, abril 1971, 19 ( 2); pp. 148- 65. Pratten, C. F. Economies of scale -in manufacturing industry. Universi- ty of Cambridge Department of Applied Economics Occasional Papers. NGm. 28, Nueva York, Cambridge University Press, 1971; 352 pp. Producción de bienes de capital como objetivo de pol1tica económica. El Mercado de Valores, suplemento al número 28 de 1976. ONUDI- NAFINSA, Grupo. ' Trograma de desarrollo de] sector de bienes de capital en México". Comercio Exterior., julio 1975. 25 ( 7); pp. 770- 74. También en: El Mercado de Valores, noviembre 3 de 1975, su- plemento al núm. 44; pp. 26- 30. Rai, K. N. " Role of the Vnachine tools sector' in economic growth: A comment on Indian and Chinese experience" en: Feinstein, C, H. ed, Socialism, capitalism and economic growth. Essays presented to Mau- rice Dobb. Londres, Cambridge, University Press, 1967. Report of the Royal Commision on Farm Machinery, 1971, Ottawa, In- formation Canadd, 1971; 636 pp. Rey R., B. Posibilidades que ofrecela integración con América Lati— na para la fabricación de MaqUifidr' id y equ1po, El Mercado de Valores - p. 939, noviembre 17, 1975. 1 16 - Rhee, Y. W, y Wesphal, L - E, " PLanning future import substitution and export expansion in Korea' s mechanical engineering industries", Paper for presentation at the Joint Korea Development Institute, De velopment Advisory Service CHarvard University) Conference. Seoul, Corea, octubre 1973, ( Mimeografiado). Rhys, D. G. " Economip-; of scale in the motor industry" Yorkshire Bu- lletin of Economic and Social Research, noviembre 1972, 24 ( 2). Richardson, G. B. " The pricing of heavy electrical equipment: compt- tition or agreement?" Bulletin of the Oxford University Institute of Economics and Statistics, mayo 1966, 28; pp. 73- 92, Robson, R. " Capital eq uipment in an underdeveloped country" Journal of Industrial Economics, noviembre 1963, 12; pp. 39- 44. Romeo, A. A. " Interindustry and interfirm differences in the rate of diffusion of an innovation ( numerically contruled machines)" Review of Economics and Statistics, agosto 1975, 57 ( 3). Role and place of engineering industries in national and world eco- nomies. Vols. I y 11, Nueva York, Comisi6n Econ6mica para Europa, 1974; 188 pp. y 133 pp. ( E. 74. 1l. E/ Mim. 7). Rosenberg, N. " Capital goods, tecnology and economic growth" Ox -- ford Economic Papers ( NS), noviembre 1963, 15 ( 3); pp. 217- 27 Rosendale, P. B. " The short -run pricing policies of some British en gineering exporters" National Institute Economic Review., agosto de 1973 ( 65); pp. 44- 51). Royal Commission on Farm Machinery. Farm tractor production costs. A study in economics of scale, Study nOm. 2. Ottawa, Queen' s Prin- ter, 1969. 1 17 - Sarma, L, V. L. N, y Hanumanta Rao, K, S, " Estimates of the cost of cap'( - tal to the Indian engineering industry, - 1962- 6511 Yorkshire Bulletin. - of Economic and Social Kesearch, noviembre 1969, 21 ( 2); pp, 132- 40, Schwenk, A. E. " Earnings differences in machinery manufacturing" Mon- thly Labor Review, julio 1974, 97 ( 7); pp. 38- 47. Simonovsky, M. " Comprehensive program. source of development of the Czechoslovak engineering industry" Czechoslovak Economic Digest, mayo 1972, ( 3) ; pp. 4- 17- 64. Singh, K. D. " Programaci6n de] desarrollo de] sector de bienes de ca- pital en México". El Mercado de Valores, noviembre 3 de 1975, suple- mento al núm. 44: pp. 19- 26. Smid, L. " International specialization in machine building" Eastern European Economics, 1963, 3; pp. 57- 64. Stever, M. D.; Ball, R. J. y Eaton, J. R. " The effect of waiting time on foreing orders for machine tools" Econ6mica ( NS), noviembre 1966 33; pp. 387- 403. Surrey, A. J. y Chesshire, J. H. World market for electric power equipment: Rationalisation and technical change, Brighton, The Science Policy Research Unit, University of Sussex, 1972, 194 pp. Technological change in the machine tool industry, 1840- 1910" Journal of Economic History, diciembre 1963, 23; pp. 414- 46. The Britisch machine tool industry" Three banks review, junio 1964. The engjn._e_e.ring indus ry a.nd industrializatio,n. Nueva York, Comi- sión Económica para Europa, 1968, ( 68. HE/ Mim. 21). 118 - Teitel, S. " Economies of scale and size of plant The evidence and the implications for the developing countries" Journal of Common Market Studies, 1975, 13 ( 1- 2); pp. 92- 115. Thoburn, J. T. " Exports and the Malaysian engineering industry: a case study of backward inkage" Bulletin of the Oxford University - Institute of Economics and Statistics, mayo 1973, 35 ( 2); pp. 91- 117. tasks of the special fund for finan-- Tremelloni, R. " Premises and t cing the Italian engineering industry". Banca Nazionale del Laboro Quarterly Review, octubre 1947, 1; pp. 169- 83, University of North Carolina. Production coefficients and technolo-- gical treds in Soviet industry: An input- output fo machinery cons truction. Soviet Planning Study N6m. 7. Chapel Hill, N, C. Institute for Research in Social Science, 1956- 1959, Vietorisz, T. " Alternative approaches to metalworking process analy- sis" en: Manne, A. S. y Markowitz, H. M. edis. Studies in process analysis: Economy -wide production capabilities. Nueva York, John Wiley and Sons, 1963. Weiss, F. y Wolter, F. " Machinery in the United States, Sweden and Germany - An assessment of changes in comparative advantage". Welt- viirtschaftliches Arichiv. 1975, 111 ( 2); pp. 282- 309. Wellitz, S. H. " The coexistence of large and small firms: a study of the Italian mechanical industries" - Quarterly Journal of Econo- mics, febrero 1957, 71; pp. 116- 31. Winston, G. C. " Consumer goods or capital goods - supply consistency ifl development planning", Pakistan Develpment Review, 1967, 7; pp. 348- 78. 119 - 2. Análisis de fabricación de equipo Badger, W. 1. y J. T, Banchero, Introducción a la ingenierla qu7- mica, Ediciones Castillo, S. A., Madrid, 1964, Brownell, L. E. y E. H. Young, Process equipment design. John Wiley- Sons, Inc., Nueva York, 1959. Carreto de la M., V. La industria mexicana manufacturera de equi- pos de proceso. Revista del IMIQ, p. 66, Mayo 1972. Carrera C,, J. Aprovechamiento de] equipo usado y su influencia en la economia, Revista IMIQ, p. 17 julio 1968. Foust, A. S., C. W. Clump, L. A, Wensel, L. Maus y L. B. Andersen. Principios de operaciones unitarias. CECSA, México 1970. Gianolo, E. Normalización de maquinaria y equipo para plantas- quimicas. Chemical e industria ( S) 9( 10): 139, otubre, 1976. Guide to trouble- free process equipment, Chemical engineering, ed. - unio 1, 1969. Guide to trouble- free plant operation. Chemical engineering, ed, junio 1972. López R., J. M. , J. Carbajal y J. J, Sánchez, Aplicación de técni cas de deescalaci6n a la adptación de tecnologia. Tesis, UNAM, 1972. Ludwing, E. - Applied process design for chemical and petroche- mical. Gulf Publications, 1974. McCabe, W. L. y J. C. Smith, Operaciones básicas de ingenierla 120 - quimica. Ed. Revert6, Barcelona, - 1968., Olmedo B., E. Selecci6n y funcionamiento de euqipo de proceso na cional. Punto de vista de la gerencia de operación, Revista de] IMIQ, p. 12, julio, 1968. Osorio, M. J. y R. Tamayo B. Análisis de la distribución de la in versión en plantas de refinaci6n y petroquímicas. Tesis UNAM, MA xico, 1973. Perry, F. H. Chemical engineering handbook. McHraw Hill book Co. Nueva York, 1974. Pocovi, H. C. Ubicación de máquinas de uso común. Industrial World en español, p. 74, noviembre, 1974. Riegel E. R., Chemical machinery on elementary treatise on equip- ment for the process industry. Reinhold publishing corp. Nueva York, 1944. Schmidt, R. G. Practical manual of chemical plant equipment. Che-- mical publishing Co, Inc. 1967, Survey of the mexican market for chemical/ petrochemical proce-- ssing equipment & instrumentation, Market research, U. S. Trade Center, M6xico, Julio 31, 1973, Transferencia de calor Hulm, J. K., Cryogenics and Superconductivity". Chemical enginee- ring p. 109, mayo 24, 1965. 121 - La Cava, A. I. y A. E. Cassano, " Coefi.ciente de pérdidas en aislados para tubos ciltndricos" Procesos - 12( 64). 32, Root, W. y R. A. Nichols, " Heat Transfer in Mechanically Ag Units, Chemical Engineering, p. 98, marzo 19, 1973. Cambiadores de calor C Y, J. R., " Fast, Convenient Approach to Sizing Heat Echan Chemi- cal Engineering p. 169, mayo 18, 1959. Cichelli, MT. y M.. Brinn, " How to Design the Optimum Exchangers" Chemical Engineering p. 197, mayo, 1956. Elonka, E., " Air Cooled Heat Exchangers" Power p. 175, novie 1964. Heat Exchanger Calculations -design". Chemical Engineering, 2a octubre 1952, marzo, abril, octubre, 1953, febrero, marzo abril, 1954, junio, diciembre 1958 y enero, abril 1959. Lamella - type Heat Exchanger to Make U. S. Debut", Chemical neerin p. 112, noviembre 22, 1965. Design of Heat Exchangers". Chemical Engineering, 2a. ed., enero, 1970 Menicatti, S., P. Braco y F. Conte, " Use a Computer for Mechanical Design of Heat Exchangers". Chemical Engineering p. 163, marzo 14, 1966. Pelosi, M., " Heat Exchangers: Performance Data, Costs, Applications Food Lngineering p. 79, febrero, 1972. 122 - Rehervidores Anaya, A. y J. landgrave, % riterios de selección y diseño de reher vidres" Revista IMIQ p. 16, enero 1974. Fair, J. R., " Vaporizer and Reboiler Design". Chemical Engineering, P. 119, julio 8, 1963, p. 101, agosto 5, 1963. Columnas Eichel, F. G., " Capacity of Packed Columns in Vacuum Destilations" Chemical Engineering p. 197, septiembre 12, 1966. Eguiarte, C. S. y A. A. de la Loma. Monogramas empleados en el dise- ño de torres de absorción y destilación. Tesis Facultad de QuImica, UNAM, México, 1971. 1` a1r, J. R., " Comparing Irays and Packing".. Chemical Lngineering Pro- gress 66( 3): 45, marzo, 1970. Johnson, M. L. y D. E. Lupfer, " Distillation Column Models" Chemical Engineering Progress 62( 6): 75( 1966). Norman W. S. Absorption, Distillation and Cooling Towers. John Wiley- Sons Inc., Nueva York, 1962. Ruxton, G. C. D., " Selección, itstalación y aplicaciones de las torres de enfriamiento" Revista argentina de] frlo, Núm. 245, p. 21, 1974. Traducido de la revista Refrigeration and Air Conditioning, Num. 909, diciembre, 1973.) Secado Brickman, M. y 1. Osorno, Selección de módulos básicos en el desar rrollo de un proceso de secado Du Pont, México. 123 - Fluid Bed Pryer Precisely CQntrols Moisture", Chemical Engineering p. 86, septiembre 26, 1966, Development in Dying Techniques Marry up to Today' s Trends", Pro- cess Engineering p. 95, septiembre, 1972. McDonald, J. O. S., " Progress in Dryin". Process Technology Interna-- tional, 18( 3): 127 ( 1973). Navikova, L. V., L. B. Gavrilyuk, y M. A. Gliakin, " Safe Forms of Pro- cess for Drying Flammable Materials". International Chemical Engi- neering 12( 3): 441, julio, 1972. Secadores: Sistema: Hagg Chemische Industrie, 197Z, Edición espe— cial . Wadsworth, J. I., A. S. Gallo y J. J. Spadaro, " How to Quickly Determi ne Drying Rates of Drum Dryers". Chemical Engineering, p. 148, sept, 1966. Weiner, A. L. , " Drying Gases and Liquids" Chemical Engineering, p. 92, septiembre 16, 1974. Ellwood, P., " Process Furnaces". Chemical Engineering, 2a. ed,, abril 11, 1966. Condensadores Amozurrutla, J. A. y Landgrave J., " Diseño de condensadores de mez- clas de hidrocarburos". Revista IMIQ p, 44, julio, 1974. Castellanos, F. e I. Grossmann. " Modelo Matemático representativo de un condensador de vapores en presencia de gases incondensables" Revista IMIQ., p. 58 julio 1974. 124 - VentiladQres Gibbons, E. J., ' lChart Select CentrIfugal Fans1l. Chernical Enginee- ring p. 144, enero 27, 1958. L6pez García A., " Clasificación de ventiladores y sus principales aplicaciones industriales" ( la. y 2a. partes), rndustria mexicana enero/ febrero, marzo/ abril, 1974. Eyectores Palencia, I. y D. H. Jackson, " Selecci6n y uso de eyectores" Revis- ta IMIQ , p. 52, julio, 1974. Evaporadores Carlile, R. E. y B. E. Gillet, " Gaussian Elimination Applied to Three Stage Evaporator". The Oil and Gas Journal p. 142, septiem- bre 9, 1968. Mutzenburg, A. B., N. Parker, Y R. Fischer, " Agitated. Thin Film Evaporators". Chemical Engineering, p. 175, septiembre 13, 1965. Parker, N. H., " How to Specify Evaporators". Chemical Engineering p. 135, julio 22, 1963. Mezclado Colli, A - J., " Continuos Mixing Process Control". Chemical Engi-- neering Progress 68 ( 11); 87, enero, 1972. Chen, S. J. y A. R. McDonald, " Motionless Mixers for Viscous Poli- mers". Chemical Engineering p. 105, marzo 9, 1973, I 2S - Mixing Equipment - for the Chemical and Process Industries". Che- mical and P cess Engineeria p, 59, marzo, 1969, Penny, W. R. , " Mixing Equipment". Chemical Engineering., 2a.. ed. , marzo 22, 1971. Separación Elder, J., " Vibrating Screens Top Maintenance Gives Top Performan- ce".. Chemical Engineering p. 262, noviembre 7, 1966. Franco, L. y A. Pardo G., Yiltración en ingenios azucareros", Revista IMIQ . 78, Gluck, S. " Vibrating Screens". Chemical Engineering p. 151, febre- ro, 15, 1965. Gluck, S., " Giratory, Circular -motion and Special -action Screens". Chemical Engineering p. 131, octubre 25, 1965. Lacey, R. E., " Membrane Separation Processes". Chemical Engineering 2a. ed. septiembre 4, 1972. McLain, L., " Are advances in Filter Media Outpacing Progress in Process Equipment?". Process Engineering p. 80, enero, 1973. Misrahi, J. y E. Barnea, " Compact Settler Gives Efficiet Separa -- tion of Liquid -liquid Dispersions". Process Engineering p. 60, ene- ro, 1973. Porter, H. F., J. E. Flood y F. W. Rennie, " Filter Selection", Chemi- cal Engineering, desk book issue p. 39, febrero 15, 1971. 126 - Reactores Chin Chu, J., " Update your Reactor Design Method",. Chemical Enginee ring, p. 150, mayo 2, 1950. Geninca, P. y M. G6mez, " Aplicación de métodos numéricos a la so- lución de] problema de estabilidad de un reactor" Revista IMn, p. 72, julio, 1974. Holland, A., " Scale up of Chemical Reactors". Chemical Engineering p. 145, abril 15, 1963. Jenett, E., " Design Considerations for Pressure -relieving Systems", Chemical Enqineering, p. 125, julio 8, 1963. Scheider, R. W., " How to Buy Pressure Vessels". Chemical Engineering p. 179, diciembre, 1956. Weerkman, V. W., " Laboratory Reactors and their Limitations". AlChe Journal 20( 5): 833( 1974). Almacenamiento Abakians, K., " Nomographs Gives Optimum Vessel Size". Hydrocarbon Processing 42( 6): 198( 1963), Aldrich, C. K., " How to Extend Storage -tank Liefe". Chemical Enginee- ring p. 148, julio 25, 1960. Aldrich, C. K., " Design Tips Reduce Tand Failures", Chemical Enginee ring p. 154, agosto 8, 1960. Ross, R. C., " How Much Tankage is Enough?". Hydrocarbon Processina. p. 75, agosto, 1973. 127 - Hoffman, H, L., " Storage Eases Seasonal Swings", ydrocargon Proce, ssing p. 71, agosto, 1973. McGrath, R. V., " Improve your API Tand Specifications'.' Hydrocarbon Processing p. 79, agosto, 1973. Temple, R. W., " Underground vs. Surface Storage". Hydrocarbon Proce- ssing. p. 85, agosto, 1973. Instrumentacift Considine, D. M., " Process Instrumentation". Chemical Engineering. 2a. ed., enero -febrero, 1968. Liptak, B. G., " Flow Instruments: Costo vs. Size". Chemical Enginee-- ring p. 196, marzo 19, 1962. Liptak, B. B. " Costo of Process Instruments". , Chemical Engineering-. 2a. ed., septiembre, octubre, noviembre, 1970. Tate, R. W.," Spray and Spraying for Process Use" ( Partes I y II). Chemical Engineering pp. 157 y 111, julio 19, 1965, agosto 12, 1965. Calef, R. H., " Diaphragm Valves". Chemical Engineering p. 125, octu- bre 26, 1964. Transporte de materiales Brookman, R. S., J. F. Philipi, y C, L. Maisch, " Small Diameter Cyclo- nes".. Chemical Engineering Progress 59( 11): 66( 1963). Gallaer, C, A., " How to Measure Dust in Stocks and Ducts". Tomado de Power, enero, 1957. 128 - Gibbons, E. J,, " Design a Venturi Feeder for Dry Bulk Materials", Chemical Engin Lejjn% p, 158, Julio jo, _1961, Materials Management". Chemical Enqineerinq p. 117a diciembre 6, 1966. Sowden, R. E., " The Art of Solid Handing Technology, Process Tech- noloqy 17 ( Jj) 882( 1972). Tuberlas Abramovitz, J. L. y R. Lordero, " How to Select insulation Thickness - for Hot Pipes". Chemical Engineerinq p. 82, Julio 21, 1975. Arnold H. T., " Process Piping Designs". Chemical Engineerinq p. 103, junio 1, 1959. Filch, G., " Pipeline Applications of Control Computers", IEEE Tran-- sactions on Industry and General Applications. IGA 2( 3): 202, 1966. Judson, R. W. et al, " Process Piping". Hydrocarbon Processina, 45( 10): 113( 1966). Marschall, P. S., " Installed COsto of Corrosion - Resistant Piping". Chemical Engineering. 2a. ed., agosto 23, 1971. Tassoneef, J. P. " Speed Trial and Error Solution for Pipe Diameter". Chemical Engineering p, 138, septiembre 8, 1958, Bombas y compresores Applagate, F - B, " The Choice, Design, Characteristics and Maintenance of Centrifugal Pumps", The Petroleum Enqtneers., 2a, ed., Julio, oc- tubre, diciembre, 1955. 1 9 Greewood, J, G., " Revolution? ltqs here in our Compressors1l. rqwer p. 79, octubre, 1964, Hartweck, W., " Improve your Compressor Design with New Calculation Methods". Chemical Enqineering p. 204, octubre, 1956. Holland, F. A, y F. S. Chapman, Centrifugal Pumps: Types, Characteris- tics, System Design". Chemical Engineering, 2a. ed., julio 4, 1966. La selecci6n de bombas". _ Industria Mexicana, p. 24, marzo -abril, 1974. Piage, P. M., " Shortcuts to Optimum - Size Compressor Piping". Chemical Engineering p. 169, marzo 13, 1967. Pollak, H. M., " How tp Select Centrifugal Pumps". Chemical Enginee- nL . 81, febrero 4, 1963. Thurlow, C., " Pumps and the Chemical Plant". Chemical Engineering, p. 213, junio 7, 1965. Troyan, J. E., " Pumps, Compressors and Agitators". Chemical Enginee- ring p. 91, mayo 1, 1961. Schiek, C. y R. C. Roahen, " Tips or Rotatory Pumps". Food Engineer - nA_p. 77, enero 1973. 3. Costos Aries, R. S. y R. D. Newton. Chemical Engineering Cost Estimation. McGraw- Hill Book Co., Nueva York, 1955, Bach, N. G., " More Accurate Plante Cost Estimating." Chemical Enginee rjna, 65( 19): 155 ( 1958). 130 - Chemical Engineering CostQ Eile CtQdQs los volOmenes), Chilton, C. H., Costo Engineering In the Process lndu McGraw- Hill Book Co., Nueva York, 1960. Construcción moderna. Ediciones Técnico -culturales ( sumplemento de mercado de materiales). Coppen J. L., " Managing Smal Design - Construction Projects" Chemical Engineering p. 85, noviembre, 1974. Guide to estimating Costs of Plants Abroad". Chemical Engineering, 70( 14): 163( julio 8, 1963). Hackney, J. W., " Capital cost estimation for process industries". Chemical Engineering 67( 5): 113( marzo 7, 1960). Hackney, J. W., " Estimating Methods for Process industry Capital Cost Chemical Engineering 67( 7): 119 abril 1960. Hackney, J. W., " Yow to Appraise Capital investments". Chemical Engi- neering 68 ( 10): 145 ( mayo 15, 1961). Hernández, L. G. " Algunas consideracines sobre la evaluación de pro:-- yectos" Revista de Ingenieria de costos, p. 24, abril, mayo, junio, 1974. Holland, F. A. y B. Hoff, " How to Scale up Cost Estimations", Chemical Engineering 70( 3): 97, febrero 4, 1973. Jackson, C., " Multiplaying Factors Give installed Costo of Process Equipment". Chemical Engineering 70( 4): 182( 1963). King, J. A., La evaluación de proyectos de desarrollo económico. Banco 1 31 - Mundial, Editorial Técnicos, Madrid, Landau, E. F. y E. S. Whitman, " La seleccl6n de proyectos en la indus- tria quimica." Research Management Vol. XIV, p. 56, septiembre, 1971. L6pez Mellado, G., " Evaluación de proyectos industriales'.' Revista Ingenieria de costos p. 20, abril, 1973. L6pez Ramos, H. y A. Contrini, Datos de costos de algunos equipos de procesos para industria química fabricados en México, III Conven ci6n Nacional IMIQ, octubre, México, 1963. Mendoza, J., G. J. Autrique y M. A, Andere, Package Plant and the Sa- le of Technical Services in Countries Undergoing Development joint Meeting ! M! Q- AICHE, abril, 1966. Meyer, R., Financial Analysis of investment Alternatives. Allyn - Bacon, Miller, S. A., " New Factors Give Quick Accurate Estimates", Chemi-- cal Engineering -71( 19): 226, septiembre 13, 1965. Hills, H. E., " Costo of Process Equipment", Chemical Engineering, 72 ( 6): 143, marzo 16, 1964. Manual sobre el cálculo de precios unitarios de trabios de cons— trucción. Secretaría de Recursos Hidráulicos, 9 volúmenes, México 1963. New Short- cuts Method for Plant Costs". Chemical Engineering 70( 6) 208, marzo 18, 1963. Ohsol, E. L., " Evaluation of Research Projects Marketing Cost Esti- mation". Chemical Engineering Progress. 67( 9). 19. 132 - Peña, R., de la, " Estudio técnico -financiero para el otorgamiento de créditos". Revista IMIQ, junio, 1974. Peter, M. S. y Timmerhaus, Plant Design and Economics for Chemical Engineers. McGraw- Hill, Nueva York, 1958. Peurifoy, R. L., Estimating Construction Costs. McGraw- Hill Book Co., Nueva York, 1958. Plazola Cisneros, A., Normas y costos de construcción. Editorial Limusa- Wiley, S. A., 1966. Popper, H., Modern Cost Engineering Techniques. McGraw- Hill Book Co., Nueva York, 1970. Pulver, H. E., Construction Estimates and Cost. McGraw- Hill Book Co., Nueva York, 1960. Reyes, H., " Evaluación financiera de un proyecto industrial". R, ---- vista IMIQ, p. 14, junio, 1974. Revera Flandes, G. R., R. Tamayo y M. Osorio, Mnálisis de la inver sión en equipo, materiales e ingenieria en la industria de] petró— leo". Revista IMIQ, junio, 1974. Schweyer, H. E., Process Engineering Economics. McGraw- Hill Book Co. Nueva York, 1955. Stoop, M. L., " Hints for Cost Estimation from Flow Schemes". Indus- trial and Engineering Chemistry 52( l); 82( 1960). Tyler C., C. H. Winter, Chemical Engineering Economics, McOraw- Hill Book, C., Nueva York, 1969. 133 - Vibrandt, F. C. y C. E. Dryden, Chemical Engineering Plant De i n. McGraw- Hill Book Co., Nueva York, 1959. Waddell, R. M., " Expansion Estimating", Chemical Engineering Progress 57( 8): 51, agosto, 1961. Winfield, MJ I y C. E. Dryden, " Charts Gives Equipment Plant Costs". Chemical Engineering 69( 26): 100, December 24, 1962. West, R. F., L. L. Yuan, J. S. Negedus y W. C. Mcintire, " Process Evalu.a tion". Chemical Engineering Progress 55( 9): 35( 1959) Andersen, S. L., " Venture Analysis, a Flexible Planning Tool". Chemi- cal Engineering Progress 57( 3), marzo, 1961. Barkow, C. W., " The Project Engineer: Industry' s Plant Builder". Che- mical Engineering. p. 218, mayo, 1956. Bechtel, L. R., " Estimate Working Capital Needs". Chemical Enginee- ring 67( 4): 127 febrero 22, 1960. Bemk, F. C., " Direct Cost Aids in Making Operating Decisions". Chemi- cal Engineering 71( 23): 234, noviembre 9, 1964. Cannon, D. R., " Depreciation There' ll be some Changes Made". Chemi- cal Engineering p. 70, julio 28, 1958. Chon, J., " Chart for Net Return on Investment after Taxes". Chemi- cal Engineering 64( l): 258, enero, 1957. Dávila, M. A., " Técnicas modernas de evaluaci6n de proyectos de in- versión". Ejeculivos en Finanzas p. 20, mayo, 1974. Deschamps, A. I., " Algunas consideraciones y experiencias en torno 134 - X la formulación y evaluación de proyecto$ industriales". IMIT, México. Disenan, S., " Selecting R. & D, Projects for Profit". Chemfcal En- gineering. E. I. Du Pont de Nemours & Co,, Inc,, Executive Committee Control Charts. A description of the Du Pont chart system for appraising operating performance, Delawre. Faust, R. F., " Project Selection in the Pharmaceutical industry". Research Management Vol. XIV, p. 46, septiembre, 1971. Financial Analysis to Guide Capital Expenditure Decision". Natio-- nal Association of Accountants. Research Report, N6m. 43, Frumerman, R., " Profitable Plantes: Design, Construction adn Opera tion". Chemical Engineering 69( 8): 133( 1962). Frumerman , R., " Evaluating the Proposal Plant". Chemical Enqinee- ring, 69( 20): 101( 1962). Gómez P. M., " Arboles de decisión: una técnica moderna de planeaci6n" Revista IMIQ, junio, 1974. Greist, W. H., " How Profitability is Affected by Errors in Forecasts" Industrial and Engineerinq Chemistry 53( l): 43 ( 1961). Hackney, J. W., Control and Management of Capital Projects. John Wi- ley & Sons In., Nueva York. Henley, E,, " Process Development". Industrial and Engineering C-he-- mistry 51( l): 107 A ( 1959), 13S - Hibers, D., " Hiperbola Correlation, Quick, Simple Method for Pro- cess Evaluation". Chemical Engineering 69(-19): 141( 1962). Jelen, F. C., " Consider inflation in comparative Cost Analyses" Chemical Engineering 63( 5): 165( 1956). Jelen F. C. " Watch your Cost Analyses". Chemical Engineering p. 247, junio, 1956. Jelen, F. C., " Consider Income Tax in Cost Analyses". Chemical Engineering p. 271, septiembre, 1957. Jelen, F. C., " Remember all Three in Cost Analyses". Chemical En- gineering p. 123, enero 27, 1958. Karam, A., " Análisis de sensibilidad y jerarquizaci6n de proyecto? Revista Ingenieria de costos p. 33, enero, febrero, marzo, 1974. Kaufman, A., " Métodos y modelos de la investigación de operaciones" Keyes, D. B., " Evaluating the Evaluators". Industrial and Enginee - ring Chemistry 51( 6): 46 A ( 1959). Kroger, H., " Use discontinued cash- flow method", Chemical Enginee- ring, p. 143, mayo 16, 1960. Lara, S. H. y F. Manzanilla, " La capacitación del ingeniero quImico en la elaboración de proyectos industriales". IMIQ, México. Larson, M. W., " Principal Factors in Project Evaluation for Latin America" . Revista IMIQ, noviembre, 1965. McEackron, W. D., " The Role of Profitability Index in Investment Evaluation". Chemical Engineering p. 239, junio 12, 1961. 136 - McGrath, H - B, " Plant Cost and Economics in the CPS", Industrial and Engineering Chemistry 51( g) septiembre, 1959, Mesa redonda, " La capacitación del ingeniero qu7mico en la elabora- ción de proyectos industriales". Revista IMIQ, 1964. Mesa redonda, " Uncovering your Compelitor' s Costs". Chemical Engi- pt In p. 109, diciembre 26, 1972. Patterson, R. M., " PLaneando la futura expansión de la fábrica", In- dustrial World en español p. 40, ocutubre, 1966. Pérez Guerrero, F., Aspectos Politicos relacionados con nuevos pro- yectos". Sesión -Cena IMIQ, febrero, 1967. Phil ips , R. F. , Factor in Project Feasibil ity Eva] uation, Segunda Reunión IMIQ- AICHE, abril 30, 1966. Rose H. F, y M. H. Barrow, Projects Engineering of Process Plants, Wiley & Sons Inc., Nueva York, 1957. Roos, J., F. V. Marsik F. R. Douglas y R, L. Wagener, " Guidelines for Estimating Profitability". Chemical Engineerina p. 145, agosto 19, 1963. Salmon, R., " New Chart Finds Rate of Return". Chemical Engineering p. 79, abril 5, 1963. Scheider, R. B., " Capital for Projects Sources and Reasons for Choo- se". Industrial and Engineering Chemistry 51( 9): 981( 1959). Schweyer, H. E., " Graphs can Reveal Projects Feasibility". Chemical Engineering p. 175, septiembre 18, 1961. 137 - Segl in, " How to Price New Products". ChemIcal Engineering. p. 181, septiembre 16, 1963. Street, H. H., " Comparing Techniques for Apprasing Projects Alterna-- tives". Chemical Engineering p. 121, mayo 27, 1963. Stuhlborg, D., " Economic, justification for Equipment". Chemical En- gineering p. 145, enero, 17, 1966. Vargas Aquilar, R., " Análisis de las tecnicas de evaluación de proyec tos". Revista IMIQ, junio, 1974. Weaver, J. B., " The Tax Bite doesn' t Cancel Out", Industria and Engi_- neering Chemistry p. 67, A, 1959. Weaver, J. B., F. S. Lyndsay, " The element of Working Capital" Indus- trial and Engineering Chemistry 67 A 1959. Weaver, J. B. y W. E. Standt, " Appreciating Depreciation". Industrial and Enqineering Chemistry 51( 2): 67 A ( 1959). Weaver, J. B. " Sunk Cost, Incremental Cost and Cash Flow". Industrial and Engineering Chemistry 51( 12): 53 A ( 1959). Waugh, T. D., " Many New Products are Generated Through Applying the Inventory". Industrial and Engineering Chemistry 57( 11): 53 ( 1965). Weingerber, A. J., " Economic Evaluation of R. S. D. Projects". Tomado de Chemical Engineering 1963- 1964. Se consultó con firmas de ingenieria y empresas privadas. 138 - 4. Materiales para fAbricaci0n de equipo Corrosion and the process plant. Chemical Engineertng Reprit, 1971, 1972. Galvele, J. R., Metales y aleaciones resistentes a la corrosi6n. Re- vista de] IMIQ p. 55, abril, 1972. Meseguer, R. Las materias rpimas para el desarrollo de la industria de bienes de capital. Revista de] IMIQ" p. 20, febrero, 1976. Vál.dez, A. Algunos plásticos usados en el control de la corrosi6n en la industria quTmica. Revista de] IMIO, p. 37, abril, 1972. 5. Métodos de fabricación de equipo Black, P. M. Machine design, second edition, McGraw- Hill Book Co., Nueva York, 1955. Análisis de la demanda de euqipo y maquinaria Considine, D. M., Chemical and Process technolgy encyclopedia. McGraw Hill Book, Co. 1968. Faith, W. L., D. B. Keyes y R. L. Clark, Industrial Chemicals. Chapman Hall, Ltd. London, 1957. Groggins, P. H. Unit process in organic synthesis. McGraw- Hill Book Co., 1958. Hydrocarbon Processing, petrochemical handbook issue. Gulf Publi-- shing Co. Hydrocarbon processing, refining handbook issue, Gulf Publishing Co. 139 - Kirk, R, E. y D. F, Ot mer, ' EnciclopedI4 de tecnologfa quimica, UTEHA,, 1961. Modern Chemical Processes. Reinhold Publishing Corp., 1963. Sauchelli, V., Quimica y tecnología de los fertilizantes, CECSA, México, 1966. Sittig, M., Polyester Fiber Manufacture. Noyes Development Corp., Nueva Jersey, 19/12. Sitting M., Pesticide Production Processes. Noyes Development Corp., Nueva Jersey, 1967. Sittig M., Inorganic Chemical and Metallurgical Proces s Encyclopedia. Noyes Develpment Corp., Nueva Jersey, 1968. Sittig, M., Chemical Process Encyclopedia. Noyes Development Corp., Nueva Jersey, 1968. Stanford Research Institute - Chemical Origins and Markets Flow Charts and Tables. California, 1967. Stanford Research Institute - Economic data Handbook California, 1974.