UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO  EN  CIENCIAS  BIOLÓGICAS   INSTITUTO  DE  BIOLOGÍA   ECOLOGÍA     CARGA  PARASITARIA  Y  DIVERSIDAD  ALIMENTARIA  EN  MURCIÉLAGOS  DE  UN   AMBIENTE  ALTAMENTE  ESTACIONAL   TESIS   QUE  PARA  OPTAR  POR  EL  GRADO  DE:   DOCTORA EN CIENCIAS   PRESENTA:   VALERIA  BERENICE  SALINAS  RAMOS     TUTOR  PRINCIPAL  DE  TESIS:  DR.  LUIS  GERARDO  HERRERA  MONTALVO                                                                                                                               INSTITUTO  DE  BIOLOGÍA,  UNAM   COMITÉ  TUTOR:  DRA.  VIRGINIA  LEÓN  RÈGAGNON                                                                                                        INSTITUTO  DE  BIOLOGÍA,  UNAM   COMITÉ  TUTOR:  DR.  JUAN  BIBIANO  MORALES  MALACARA               FACULTAD  DE  CIENCIAS,  UNAM             MÉXICO, Cd. Mx. SEPTIEMBRE, 2016     UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.                                                                 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO  EN  CIENCIAS  BIOLÓGICAS   INSTITUTO  DE  BIOLOGÍA   ECOLOGÍA     CARGA  PARASITARIA  Y  DIVERSIDAD  ALIMENTARIA  EN  MURCIÉLAGOS  DE  UN   AMBIENTE  ALTAMENTE  ESTACIONAL   TESIS   QUE  PARA  OPTAR  POR  EL  GRADO  DE:   DOCTORA EN CIENCIAS   PRESENTA:   VALERIA  BERENICE  SALINAS  RAMOS     TUTOR  PRINCIPAL  DE  TESIS:  DR.  LUIS  GERARDO  HERRERA  MONTALVO                                                                                                                               INSTITUTO  DE  BIOLOGÍA,  UNAM   COMITÉ  TUTOR:  DRA.  VIRGINIA  LEÓN  RÈGAGNON                                                                                                        INSTITUTO  DE  BIOLOGÍA,  UNAM   COMITÉ  TUTOR:  DR.  JUAN  BIBIANO  MORALES  MALACARA               FACULTAD  DE  CIENCIAS,  UNAM             MÉXICO, Cd. Mx. SEPTIEMBRE, 2016   COORDINACIÓN UN/Mi: POSGRADO! Ciencias Biológicas Dr. Isidro Ávila Martínez Director General de Administración Escolar, UNAM Presente Me permito informar a usted que en la reunión del Subcomité por Campo de Conocimiento de Ecología y Manejo Integral de Ecosistemas del Posgrado en Ciencias Biológicas, celebrada el día 9 de mayo de 2016, se aprobó el siguiente jurado para el examen de grado de DOCTORA EN CIENCIAS de la alumna SALINAS RAMOS VALERIA BERENICE con número de cuenta 97257150 con la tesis titulada: “Carga parasitaria y diversidad alimentaria en murciélagos de un ambiente altamente estacional.”, realizada bajo la dirección del DR. LUIS GERARDO HERRERA MONTALVO: Presidente: DR. RODRIGO ANTONIO MEDELLÍN LEGORRETA Vocal: DRA. LIVIA SOCORRO LEÓN PANIAGUA Secretario: DR. JUAN BIBIANO MORALES MALACARA Suplente: DR. JOAQUÍN ARROYO CABRALES Suplente DR. ROMEO ALBERTO SALDAÑA VÁZQUEZ Sin otro particular, me es grato enviarle un cordial saludo. ATENTAMENTE “POR MI RAZA HABLARA EL ESPIRITU” Cd. Universitaria, Cd. Mx, a 9 de agosto de 2016. DRA. MARÍA DEL CORO ARIZMENDI ARRIAGA COORDINADORA DEL PROGRAMA c.c.p. Expediente del (la) interesado (a). Unidad de Posgrado - Coordinación del Posgrado en Ciencias Biológicas Edificio D, ler. Piso, Circuito de Posgrados Cd. Universitaria Delegación Coyoacán C.P. 04510 México, D.F. Tel. 5623 7002 http://pcbiol.posgrado.unam.mx u ~ SGRyo ¡ ien cias i l gicas r. i ro vi la arti ez ir ctor eneral e dmin istración scolar, AM r sente RDINACIÓN e r ilo n o ar l d e i n el ubcomilé r a po e onocimiento e cología anejo gral e si t as el sgrado n i ncias i l gicas. l r da l í e ayo e 16. r bó l i í nte o ra l en e r do e TORA I CIAS e l na LI AS OS LERIA ENICE n ero e enta 57150 n sis tu a: " arga rasitaria i r i ad l entaria urciél gos n biente lta ente t cional.", l a aj i ci n el R. IS ARDO RERA NTALVO: Presidente: Vocal: Secretario: Suplente: Suplente R DRIGO T NIO EDE LlN RRETA A. l I RRO N I UA R. N I RALES L CARA R OUIN YO RALES R EO RTO AÑA AzOUEZ i tr artícular, e s r to viarle rdial l do. T ENTE " R I ZA BLARA L PI ITU" d. niversitaria. d . x. osto e 16. ;A . vtJC-o~· RA. ARíA EL RO I ENDI RI GA RDI ADORA EL RAMA . .p. xpediente el ) nte e do ). COORDINACiÓN nidad e sgrado . oordinación el sgrado n ienc ias i l gicas dificio , 1 ro iso, ircuito e osgrados d. niversitaria elegación oyoacán .P. 510 éxico, .F. el. 23 02 p:/ pcbiol.posgrado.unam.m AGRADECIMIENTOS • Al Posgrado en Ciencias Biológicas de la Universidad Nacional Autónoma de México. • Al Consejo Nacional de Ciencia y Tecnología (CONACYT), por la beca otorgada (CVU 294178). • A mi director de tesis el Dr. Luis Gerardo Herrera Montalvo por quien siento una profunda admiración y respecto, agradezco su asesoría, confianza y paciencia durante el desarrollo de esta tesis. • A los miembros de mi comité tutoral la Dra. Virginia León Régagnon y el Dr. Juan Bibiano Morales Malacara por sus invaluables aportaciones y apoyo constante aun en momentos difíciles. • A CONACYT (proyecto Red Temática del Código de Barras de la Vida 2013-2015 a cargo de Virginia León Régagnon y Alejandro Zaldívar Riverón) y a la Dirección General de Asuntos del Personal Académico (proyecto IN2020113 a cargo de L. Gerardo Herrera M).   AGRADECIMIENTOS A TÍTULO PERSONAL A los miembros de mi jurado: El Dr. Rodrigo Medellín por su amistad, consejos y palabras de aliento en momentos difíciles. La Dra. Livia León por su disposición y confianza durante todo mi proceso profesional. Al Dr. Joaquín Arroyo y Dr. Romeo Saldaña por su paciencia y valiosas aportaciones en la revisión de la tesis. A la Dra. María de Coro Arizmendi, Lilia Espinosa, Armando Rodríguez, Lilia Jiménez y Rocio González por su eficiencia, disponibilidad y apoyo en la realización de tramites durante el desarrollo de este proyecto. Al Laboratorio de Helmintología del Instituto de Biología de la UNAM, especialmente a David Osorio por su amistad, cariño, confianza y por siempre recibirme con una sonrisa. Agradezco tu paciencia y todo lo que me enseñaste. Al personal de la Universidad de Guelph y el Instituto de Biología por todas las facilidades prestadas y a la Estación de Biología Chamela por su apoyo durante el trabajo de campo realizado para este estudio. A mi familia hermosa (mami, tía, hermanos y la Pipis), gracias por todo su amor, por su ayuda cada vez que salía al campo o de viaje, por calmarme en los momentos difíciles y apoyarme siempre. Por aguantar mis momentos de lágrima veloz y de hormiga león, por ser mi fuerza, sé que sin ustedes no hubiera llegado hasta aquí. Eternamente agradecida con ustedes, los amo profundamente. A Alejandro Zaldívar por siempre motivarme a dar mas de mí, por ser un ejemplo a seguir y contagiarme tu pasión hacia esta profesión, por todo el apoyo profesional y personal que me brindaste y por todo el cariño que me diste. Gracias Sabi Zaldívar permitirme ser parte de tu familia, por tu amor incondicional y tus sonrisas. I am very grateful to Clare´s family for their kindness during my visit to Cambridge, Canada. Dr. Elizabeth Clare for your invaluable support, patience, advice and because you always trusted me and showed there are no limits. Por su apoyo en campo, cariño, paciencia y amistad a Carlos González, gracias por tu comprensión, ayuda en momentos difíciles y por ser un apoyo continuo e incondicional durante todos estos años, siempre en deuda contigo. A Andrea Rebollo por ser mi amiga, por lo aprendido juntas, por todo el tiempo invertido y por siempre estar dispuesta a escucharme y darme palabras de aliento. Aitor Arrizabalaga por su increíble paciencia, ayuda en la parte bioinformática y amistad. A Daniel Díaz por su amistad, paciencia y valiosa ayuda en la candidatura y a David Hernández por la risas compartidas, por su ayuda en el laboratorio y en la identificación de los trematodos. A la familia Cárdenas Becerra por la linda amistad que tenemos ahora y por toda la ayuda que me dieron durante mis visitas a isla Don Panchito. A mis amigos Joel Carrion, José de León, José Juan Flores, Angélica Rodríguez, Erick Jardon, Zyanya Mora, Alejandro Sosa y Luis de Villafranca por su invaluable afecto, apoyo y paciencia al escucharme hablar de esto en todas las conversaciones, son parte de esto.   DEDICATORIA Porque todo lo que soy te lo debo a ti, gracias mamá.   ÍNDICE RESUMEN 1 ABSTRACT 4 INTRODUCCIÓN 6 CAPÍTULO I 22 Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. CAPÍTULO II 35 Seasonal variation of gastro-intestinal helminths of five bat species in the dry forest of Occidental Mexico. CAPÍTULO III 69 Seasonal variation by bat-flies (Diptera: Streblidae) on four bats species from a tropical dry forest. DISCUSIÓN Y CONCLUSIONES 109 BIBLIOGRAFÍA 116     1   RESUMEN Entender los mecanismos que mantienen la diversidad y la estructura de las comunidades es un tema crucial en ecología. La competencia, la depredación y el parasitismo son interacciones ecológicas relevantes por sus efectos sobre la estructura de las comunidades y redes alimentarias. El conocer cómo las especies utilizan sus recursos es importante en los estudios sobre la coexistencia de las especies en las comunidades y las redes alimentarias. En algunos casos, los recursos varían estacionalmente impactando directamente en las interacciones ecológicas, tales como la interacción huésped-parásito. Los quirópteros son uno de los grupos de mamíferos más diversos, presentando una variedad de adaptaciones morfológicas y de comportamiento que les permiten explotar una gran gama de nichos. Varias especies de murciélagos mantienen poblaciones relativamente grandes cuyos miembros coexisten en refugios permanentes. Todos estos factores los hacen susceptibles a ser parasitados por una variedad de organismos, siendo así un sistema ideal para el estudio de la interacción huésped-parásito. En el presente trabajo, investigué la variación estacional de la dieta y la carga parasitaria de tres especies de murciélagos insectívoros (Pteronotus davyi, P. parnellii y P. personatus) y una nectarívora (Leptonycteris yerbabuenae) en la región de Chamela, Jalisco. En el primer capítulo utilicé secuenciación de nueva generación para caracterizar la diversidad, sobrelapamiento y variación estacional de la dieta de las tres especies de murciélagos insectívoros. Lepidóptera y Díptera son los ordenes de insectos mas consumidos por estos murciélagos. Las dietas exhibieron un sobrelapamiento moderado, registrando el valor mas alto entre P. parnellii y P. personatus durante la época de lluvias. Se encontró un solapamiento mayor de la dieta entre las especies en las mismas épocas que   2   dentro de las especies a través de las épocas. Estos resultados sugieren que la dieta de estas especies están dirigidas por la disponibilidad de presas más que por cualquier característica particular del depredador y apoyan la presencia de flexibilidad en la dieta de los murciélagos generalistas y el sobrelapamiento dietético entre grupos de especies estrechamente relacionadas en ecosistemas altamente estacionales. En el segundo capítulo se caracterizó la carga de helmintos gastro-intestinales en las especies de murciélagos para probar la existencia de cambios estacionales en la carga endoparasitaria en respuesta a las fluctuaciones ambientales y de sus presas. Comparé los resultados obtenidos de la especie nectarívora y las insectívoras para probar si la dieta tiene un impacto directo sobre la carga de endoparásitos. No se encontró variación estacional en la mayoría de los parámetros evaluados. Sin embargo, la prevalencia de cuatro especies de endoparásitos fue significativamente mayor durante una de las épocas. La mayor riqueza de especies se registró en P. parnellii durante la época de lluvias y el número efectivo de especies fue mayor durante la época de secas en las especies de Pteronotus. En general, la especie nectarívora mostró una menor carga parasitaria que las especies insectívoras. La dieta parece dirigir la estructura de las infracomunidades de helmintos, aunque se encontraron patrones heterogéneos en la relación entre la diversidad y la carga de helmintos y los patrones estacionales de la dieta de los murciélagos y la abundancia de los posibles huéspedes intermediarios. En el tercer capítulo se caracterizó la carga parasitaria de estréblidos en las cuatro especies de murciélagos para evaluar la existencia de estacionalidad en respuesta a los cambios estacionales tanto del huésped como de la disponibilidad de los recursos durante las épocas de secas y lluvias. La mayoría de los parámetros analizados de la carga parasitaria, incluyendo las comparaciones entre condiciones reproductivas y sexos de los   3   huéspedes, fueron similares para ambas épocas del año. Las seis especies de estréblidos se encontraron en todas las especies de murciélagos excepto en P. personatus, la cual presentó cinco especies. Esta especie de murciélago y L. yerbabuenae tuvieron cuatro y cinco especies de estréblidos en la época de lluvias y secas, respectivamente. Nuestros resultados sugieren que la densidad poblacional del huésped podría incrementar la posibilidad de transmisión de parásitos debido a un mayor contacto con el huésped. Las variaciones en la densidad podrían también favorecer la abundancia promedio e intensidad de algunas especies de estréblidos durante la época de lluvias.   4   ABSTRACT Understanding the mechanisms that maintain the biodiversity and the structure of communities is crucial in ecology. Competition, predation and parasitism are relevant ecological interactions due to their effect on the structure of communities and food webs. In some instances, resources vary seasonally having direct impact on ecological interactions, such as host-parasite interactions. Chiropterans are one of the most diverse and widespread of mammal orders, possessing a variety of morphological and behavioral adaptations that allow them to exploit a wide array of niches. Many bat species are found in relatively large numbers sharing permanent roost, which makes them susceptible to be parasitized by a variety of organisms representing an ideal study system for questions related to host- parasite interactions. Here I investigated seasonal variation in the diet and parasite load of three insectivorous (Pteronotus davyi, P. parnellii and P. personatus) and one nectarivorous (Leptonycteris yerababuenae) bat species in the region of Chamela, Jalisco. In first chapter I used next-generation sequencing to characterize the diversity, overlap and seasonal variation in the diet of the insectivorous bats species. Lepidoptera and Diptera represented the insect orders most frequently consumed by bats. Diets exhibited a moderate level of overlap, with the highest value between P. parnellii and P. personatus in the wet season. There was a higher dietary overlap between species during the same seasons than within any single species across seasons. These results suggest that diets of these bat species are driven more by prey availability than by any particular predator- specific characteristic and support the existence of dietary flexibility in generalist bats and dietary niche overlapping among groups of closely related species in highly seasonal ecosystems.   5   In second chapter I determined the gastro-intestinal helminths load in the bats species to test the existence of seasonal changes in the endoparasite load in response to seasonal ambient and prey fluctuations. I compared the results obtained between the nectarivorous and insectivorous species to test whether diet has a direct impact on endoparasite load. I did not find seasonal variation in most of the evaluated parameters. However, the prevalence of four endoparasite species was significantly higher during one of the seasons. The highest endoparasite richness was registered in P. parnellii during the wet season, and the effective number of species was higher for the three Pteronotus species during the dry season. In general, nectarivorous bats showed a lower parasite load than insectivorous species. Diet seems to be an important driver of the helminth infracommunities structure, though we found heterogeneous patterns of the relationship between diversity and load of helminths and seasonal patterns of bat’s diets and abundance of potential intermediate hosts. In third chapter I characterized the bat-fly load in the four bat species to test the existence of seasonality in response to changes in seasonal host condition and available resources during the wet and dry seasons. Most of the ectoparasite load parameters examined, including comparisons among reproductive conditions and sex of the host, were similar in both seasons. The six bat-fly species were found in all bat species except P. personatus, which had five species. The latter species and L. yerbabuenae had four and five bat-fly species in the wet and dry seasons, respectively. Our results suggest that host population density could increase the possibility of parasite transmission due to contact with its host. Variation in the density might also favor the mean abundance and intensity of some bat-fly species during the wet season.   6   INTRODUCCIÓN Entender los mecanismos que mantienen la biodiversidad y la estructura de las comunidades es un tema crucial en ecología (Mouritsen & Poulin, 2005; Poulin, 2010). Las interacciones ecológicas, como la competencia, la depredación y el parasitismo, son de gran relevancia por sus efectos en la estructura de las comunidades y sus redes tróficas (Dobson & Hudson, 1986; Minchella &Scoot, 1991; Poulin & Morand, 2000; Doi & Yurlova, 2011). Si bien las condiciones ambientales pueden afectar drásticamente la abundancia y distribución de las especies (Parmesan et al., 1999; Saether et al., 2000; Sillett et al., 2000) y sus interacciones (Moller & Erritzoe, 2003), en general, se cuenta con información limitada sobre la relación que existe entre las interacciones interespecificas y las variaciones ambientales estacionales (Moller & Erritzoe, 2003) En las zonas trópicales de México se presentan dos estaciónes (secas y lluvias) durante el año. Los cambios estacionales entre estas épocas son menos drásticos que en las zonas templadas (Whitaker & Morales-Malacara, 2005). En general, los organismos que se encuentran en los trópicos se adaptan a estos cambios y la productividad es más estable que en los sitos con climas templados. Es por esto que la diversidad biológica y la presencia de especies por unidad de área es mayor en los trópicos (Whitaker & Morales-Malacara, 2005). La limitación de los recursos y/o el alimento es uno de los factores que influyen sobre los ensambles de los animales (Hardin, 1960). Estas limitaciones pueden generar especializaciones morfológicas y/o conductuales, permitiendo que las especies coexistan al ocupar diferentes nichos o dividiendo el uso del recurso. Cuando los recursos son ilimitados, las fluctuaciones en su disponibilidad generan cambios en su uso (Hardin,   7   1960). Varios estudios han documentado el sobrelapamiento en la dieta entre especies (Viera & Paise, 2011; Laverty & Dobson, 2013; Steinmetz et al., 2013; Brown et al., 2014; Oelze et al., 2014), particularmente con comunidades de murciélagos (Krüger et al., 2012; Munin et al., 2012; Rolfe & Kurta 2012) durante los periodos en los que los recursos son abundantes (Razgour et al., 2011; Emrich et al., 2014). Por su parte, durante las épocas en que los recursos son limitados la dieta tiende a ser menos especializada (Clare et al., 2014). Los parásitos representan una parte sustancial de la biodiversidad y ejercen una presión selectiva en la evolución de sus huéspedes afectando la dinámica de sus poblaciones y (Mouritsen & Poulin, 2005; Poulin, 2010). El conocer los factores que determinan la riqueza de ensambles de parásitos es un tema relevante en el estudio de las redes tróficas por sus implicaciones en la conservación de la biodiversidad (Poulin, 2010). Algunos estudios han documentado cambios estacionales en la riqueza, prevalencia e intensidad de infestación de macroparásitos (Nelson et al., 2002; Šimková et al., 2005; Weil et al., 2006; Carvahlo & Luque, 2011). La estacionalidad puede presentarse por cambios en las condiciones ambientales y en la biología del huésped, como en su respuesta inmunológica, su conducta reproductiva, su dieta y fisiología, y su abundancia (Weil et al., 2006). Las fluctuaciones estacionales del clima dirigen la dinámica de los parásitos y la composición de sus comunidades (Weil et al., 2006), especialmente en los momentos de dispersión y/o colonización de huéspedes (Marshall, 1981; Merino & Potti, 1996). Es por esto que los cambios en las condiciones ambientales durante el año pueden ser un factor decisivo en el éxito reproductivo de los parásitos. La presencia de parásitos que infestan a través de vectores o huéspedes intermediarios es altamente estacional (Merino & Potti, 1996). Las zonas tropicales presentan estaciones de secas y de lluvias, presentándose una   8   mayor productividad en términos de nutrientes para el huésped y el parásito en época de lluvias, por lo que se ha sugerido que la carga parasitaria es mayor durante esta época del año (Whitaker & Morales-Malacara, 2005). Los quirópteros son el segundo orden más abundante de mamíferos representando una cuarta parte de su diversidad total. Los quirópteros se caracterizan por presentar amplias distribuciones geográficas y una gran variedad de hábitos alimentarios (Medellín et al., 2000; Clarke, 2008). Se han reportado variaciones en la dieta asociadas a la estacionalidad en varias especies de murciélagos (Heithaus et al., 1975; Soriano et al., 1991; Coelho & Maricho-Filho, 2002; Zoartéa, 2003; Tschapka, 2004; Barros et al., 2013). Por sus hábitos nocturnos y su forrajeo aéreo, resulta complicado conocer las relaciones tróficas de los murciélagos, por lo que el conocimiento sobre la selección de sus presas es limitado (Dodd et al., 2012). Cuando el alimento es escaso, algunas especies de murciélagos consumen cualquier tipo de insecto que esté disponible, por lo que los cambios en su dieta podrían estar relacionados con las estrategias de forrajeo y con la abundancia de las presas (Fenton, 1982; Findley & Black, 1983; Aldridge & Rautenbach, 1987; Patterson et al., 2003; Rakotoarivelo et al., 2007). En las zonas tropicales, la cantidad de lluvia influye en la diversidad, abundancia y composición de las especies de insectos (Janzen & Schoener, 1968; Rolfe, 2011) impactando de manera directa en la dieta de las especies insectívoras. Es por esto que la dieta de las especies insectívoras podría variar con las estaciones del año (Murray & Kurta, 2002; Rolfe, 2011; Dodd et al., 2012). El interes por los murciélagos como huéspedes de enfermedades emergentes se ha incrementado recientemente (Kuzmin et al., 2011; Dietrich et al., 2015). Se ha propuesto que algunas de sus características (densidad poblacional, hábitos gregarios, migración   9   estacional, longevidad, uso de refugios, hábitos alimentarios, torpor, hibernación, habilidad de volar e historia evolutiva) los hacen suceptibles a su uso como huéspedes por una gran diversidad de organismos patógenos (Wilkinson & South 2002; Calisher et al., 2006; Epstein et al., 2009; Streicker et al., 2010; Peel et al., 2013; Melaun et al., 2014; Shneeberger & Voigt, 2016). Ademas, los murciélagos son huéspedes intermediarios o definitivos de varios macroparásitos (Weil et al., 2006). Este grupo de mamíferos representa un hábitat idóneo para algunas especies de parásitos (Fain, 1976; Martínez, 2006). Varias especies de murciélagos se refugian en sitios cerrados y permanentes, como cuevas o túneles, teniendo una mayor probabilidad de ser infestados y portar un número mayor de especies de parásitos (Guerrero & Morales-Malacara, 1996; Patterson et al., 2007). Muchas especies de murciélagos forman grandes grupos por lo que se ha reportado que existe una correlación positiva entre la densidad poblacional de huésped y la prevalencia e intensidad del parásito (Hudson et al., 2001; Antoniazzi et al., 2010). Por lo anterior, los murciélagos representan un buen modelo para el estudio de los efectos de la estacionalidad sobre la interacción huésped-parásito. El presente estudio exploró la influencia de la variación estacional sobre la dieta y la carga parasitaria de tres especies simpátricas del género Pteronotus (Mormoopidae). Estas especies se refugian en una cueva localizada en Isla San Panchito, Chamela, Jalisco. La región de Chamela se caracteriza por su alta estacionalidad, con el 80% de la precipitación concentrada en los meses de julio a noviembre y un periodo de secas de diciembre a junio siendo un sitio apropiado para explorar los efectos de la variacion estacional sobre las comunidades de murciélagos (Figura 1).   10   Figura 1. Estacionalidad en Chamela. Datos de la temperatura media mensual (A) y precipitación acumulada mensual (B) de la región de Chamela. Puntos rojos: registros históricos (2000-2010), triángulos verdes y azules: registros durante los años 2012 y 2013, respectivamente. Estos datos se obtuvieron a partir de los registros colectados por la estación meteorologíca de la Estación de Biología Chamela, Jalisco. 2 0 2 2 2 4 2 6 2 8 3 0 3 2 E n e F e b M a r A b r M a y J u n Ju l A g o S e p O ct N ov D ic T e m p e r a tu r a m e d ia m e n s u a l ° C 2 00 0 -2 0 10 2012 2013 A 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 E n e F e b M a r A b r M a y J u n Ju l A g o S e p O ct N ov D ic M e s e s P r e c ip it a c ió n a c u m u la d a m e n s u a l (m m ) B   11   El presente trabajo esta dividido en tres capítulos. En el primer capítulo se utilizó secuenciación de nueva generación para caracterizar la diversidad, sobrelapamiento y variación estacional en la dieta de tres especies de murciélagos insectívoros (P. davyi, P. parnellii y P. personatus) con el propósito de evaluar si estas especies coexisten dividiendo los recursos de acuerdo a la hipótesis del nicho, o si el uso de los recursos se sobrelapa respondiendo a las fluctuaciones de los mismos. La predicción que se sometió a prueba fue que las dietas de estas tres especies se sobrelaparían y variarían estacionalmente por los cambios estacionales de las presas (Andresen, 2005; Güizado- Rodríguez & Casas-Andreu, 2011; Razo-González et al., 2014). En el segundo capítulo se caracterizó la carga de endoparásitos de las tres especies de murciélagos insectívoros y de la especie nectarívora (Leptonycteris yerbabuenae) con el propósito de evaluar la variación estacional en su carga de endoparásitos. Además, se comparó la carga parasitaria de las especies del genero Pteronotus con la de la especie nectarívora. Las predicciones que se sometieron a prueba fueron que la carga parasitaria de endoparásitos de las especies insectívoras cambiaría estacionalmente, presentando una mayor riqueza de especies en la época de secas, cuando su dieta es mas diversa. La prevalencia, abundancia e intensidad promedio de los helmintos sería mayor durante la época de lluvias, siguiendo el patrón reportado en otras especies de murciélagos insectívoros (Nickel & Hansen, 1967; Blankespoor & Ulmer, 1970; Coggins et al., 1982; Lord et al., 2012). En cuanto a la carga parasitaria de L. yerbabuenae, la predicción fue que la riqueza, prevalencia y abundancia de los helmintos serían menores que los valores reportados para las especies insectívoras. La dieta de L. yerbabuenae está basada en néctar   12   lo que la hace menos susceptible a ser infectada en comparación con las especies insectívoras (Ubelaker, 1970; Coggins, 1988; García-Vargas et al., 1996; Lord et al., 2012). Finalmente, en el tercer capítulo se caracterizó la carga de dípteros ectoparásitos (Streblidae) asociados a las cuatro especies de murciélagos con el fin de evaluar la variación estacional de carga de dichos parásitos. La predicción que se sometió a prueba fue que la riqueza,  prevalencia, abundancia e intensidad de los ectoparásitos variaría a lo largo del año, incrementándose durante la época de lluvias, siguiendo el patrón estacional de abundancia de otras especies de artrópodos que les sirven como huéspedes (Güizado & Casas-Andreu, 2001).   13   BIBLIOGRAFÍA - Aldridge HDJN y Rautenbach IL. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology. 56: 763–778. - Andresen E. 2005. Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest. Biotropica. 37: 291–300. - Antoniazzi LRD, Manzoli E, Rohrmann D, Silvestri MJ y Beldomenico PM. 2010. Climate variability affects the impact of parasitic flies on Argentinean forest birds. Journal of Zoology. 283:126-134. - Barros MAS, Rui AM y Fabian ME. 2013. Seasonal variation in the diet of the bat Anoura caudifer (Phyllostomidae: Glossophaginae) at the southern limit of its geographic range. Acta Chiropterologica. 15:77-84. - Blankespoor HD y Ulmer MJ. 1970. Helminths from six species of Iowa bats. Proceedings of the Iowa Academy of Sciences. 77: 200-206. - Brown DS, Burger R, Cole N, Vencatasamy D, Clare EL, Montazam A y Symondson WO. 2014. Dietary competition between the alien Asian Musk Shrew (Suncus murinus) and a reintroduced population of Telfair’s Skink (Leiolopisma telfairii). Molecular Ecology. 23, 3695–3705. - Calisher H, Childs JE, Fiel HE, Holmes KV y Schountz T. 2006 Bats: Important Reservoir Hosts of Emerging Viruses. Clinical Microbiology Reviews. 19: 531-545. - Carvalho AR y Luque JL. 2011. Seasonal variation in metazoan parasites of Trichiurus lepturus (Perciformes: Trichiuridae) of Rio de Janeiro, Brazil. Brazilian Journal of Biology. 71: 771-782.   14   - Clarke E. 2008. Descripción de la helmintofauna asociada a tres especies de murciélagos (Chiroptera: Mormoopidae) en el municipio de Apazapan, Veracruz. Tesis de Maestría, Instituto de Ecología. A. C. Xalapa, Veracruz, México. - Clare EL, Goerlitz HR, Drapeau VA, Holderied MW, Adams AM, Nagel J, Dumont ER, Hebert PDN y Fenton MB. 2014.Trophic niche flexibility in Glossophaga soricina: how a nectar seeker sneaks an insect snack. Functional Ecology. 28: 632–641. - Coelho DC y Marinho-Filho J. 2002. Diet and activity of Lonchophylla dekeyseri (Chiroptera, Phyllostomidae) in the Federal District, Brazil. Mammalia. 66: 319–330. - Coggins JR. 1988. Methods for the ecological study of bat endoparasites. En: Ecological and behavioral methods for the study of bats. T.H. Kunz (ed.). Smithsonian Instiute, Washington, D.C. 475-489. - Coggins J R, Tedesco JL y Rupprecht CE. 1982. Seasonal changes and overwintering of parasites in the bat, Myotis lucifugus (Le Conte), in Wisconsin Hibernaculum. The American Midland Naturalist. 107: 305-315. - Dietrich M, Muehldorfer K, Tortosa P y Markotter W. 2015. Leptospira and Bats: Story of an Emerging friendship. PloS Pathogens. 11:1-6. - Dobson AP y Hudson PJ. 1986. Parasites, disease and the structure of Ecological Communities. Trends in Ecology and Evolution. 1: 11-14. - Dodd LE, Chapman EG, Harwood JD, Lacki MJ y Rieske LK. 2012. Identification of prey of Myotis septentrionalis using DNA-based techniques. Journal of Mammalogy. 93: 1119- 1128. - Doi H. y Yurlova NI. 2011. Host-parasite interactions and global climate oscillations. Parasitology. 1022-1028.   15   - Emrich MA, Clare EL, Symondson WOC, Koenig SE, y Fenton MB. 2014. Resource partitioning by insectivorous bats in Jamaica. Molecular Ecology. 23: 3648–3656. - Epstein JH, Olival KJ, Pulliam JRC, Smith C, Westrum J, Hughes T, Dobson AP, Zubaid A, Rahman SA, Basir MM, Field HE y Daszak P. 2009. Pteropus vampyrus, a hunted migratory species with a multinational home-range and a need for regional management. Journal of Applied Ecology. 46: 991–1002. - Fain A. 1976. Les acariens parasites des Chauves-soutris, Biologie, Rôle pathogène, spécificité. Evolución parallèle parasites-hotes, Annañes de Spéléologie. 31:3-25. - Fenton MB. 1982. Echolocation Calls and Patterns of hunting and Habitat Use of Bats (Microchiroptera) from Chillagoe, North Queensland. Australian Journal of Zoology. 30:417-425. - Findley JS y Black H. Morphological and Dietary Structuring of a Zambian Insectivorous bat community. Ecology. 64: 625-630. - García-Vargas F, Osorio SD y Pérez-Ponce de León G. 1996. Helminths parasites of bats (Mormooopidae y Phyllostomidae) from the Estación de Biología Chamela, Jalisco State, Mexico. Bat Reasearch News. 37:7-8. - Guerrero R y Morales-Malacara JB. 1996. Streblidae (Diptera: Calyptratae) parásitos de murciélagos (Mammalia: Chiroptera) cavernícolas del centro y sur de México, con descripción de una especie nueva del género Trichobius. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie zoología. 67:357–373. - Güizado RMA y Casas-Andreu G. 2011. Facultative Specialization in the Diet of the Twelve-lined Whiptail, Aspidoscelis lineatissima. Journal of Herpetology. 3: 287-290. - Hardin G. 1960. The competitive exclusion principle. Science. 131: 1292–1297.   16   - Heithaus ER, TH Fleming y PA Opler. 1975. Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology. 56: 841–854. - Hudson PJ, Rizzoli A, Grenfell BT, Heesterbeek H, Dobson AP. 2001. The ecology of wildlife diseases. Oxford Univ Press, Oxford - Janzen DH, Schoener TW. 1968. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology. 49: 96–110. - Kuzmin IV, Turmelle AS, Agwanda B, Markoteer W, Niezgoda M, Breiman RF, y Rupprecht CE. 2011. Commerson´s leaf-nosed (Hipposideros commersoni) in the Likely Reservoir of Shimoni Bat Virus. Vector- Borne and Zoonotic Diseases. 11:1465-1470. - Krüger F, Harms I, Fichtner A, Wolz I, y Sommer RS. 2012. High trophic similarity in the sympatric North European trawling bat species Myotis daubentonii and Myotis dasycneme. Acta Chiropterologica.14: 347–356. - Laverty TM y Dobson AP. 2013. Dietary overlap between caimans and spectacled caimans in the Peruvian Amazon. Herpetologica. 69: 91–101. - Lord JS, Parker S, Parker F y. Brooks DR. 2012. Gastrointestinal helminths of pipistrelle bats (Pipistrellus pipistrellus/ Pipistrellus pygmaeus) (Chiroptera: Vespertilionidae) of England. Parasitology. 139: 366-374. - Marshall AG. 1981. Ecology of ectoparasitic insects on bats. En: Ecology of bats, T. H. Kunz (Ed.). Plenum Press. Nueva York. 201-242. - Martínez HAS. 2006. Artrópodofauna ectoparásita de tres especies de murciélagos (Chiroptera) de la zona árida central del Estado de Puebla. Tesis de Licenciatura. Facultad de Ciencias, UNAM. - Medellín RA, Equihua M y Amin MA. 2000. Bat diversity and abundance as indicators of disturbance in Neotropical Rainforests. Conservation Biology, Boston. 14: 1666-1675.   17   - Melaun C, Krüger A, Werblow A y Klimpel S. 2014. New record of the suspected leishmaniasis Vector Phlebotomus (Transphlebotomus) mascittii Grassi, 1908 (Diptera: Psychodidae: Phlebotominae) – the northnmost phlebotomine sandfly occurrence in the Palearctic region. Parasitology Research. 113:2295-2301. - Merino S. y Potti J. 1996. Weather dependent effects of nest ectoparasites on their bird hosts. Ecography. 19:107-113. - Minchella DJ y Scott ME. 1991. Parasitism: A crytic Determinant of Animal Community Structure. Trends in Ecology and Evolution. 2: 250-255. - Mouritsen KN y Poulin R. 2005. Parasites boost diversity and change animal community structure by trait-mediated indirect effects. Oikos. 108:344-350. - Moller AP y Erritzoe J. 2003. Climate, body condition and spleen size in birds. Oecologia. 137: 621-626. - Munin RL, Fischer E, Gonçalves F. 2012. Food habits and dietary overlap in phyllostomid bat assemblage in the Pantanal of Brazil. Acta Chiropterologica. 14: 195– 204. - Murray SW y Kurta A. 2002. Spatial and temporal variation in diet. En: The Indiana bat: biology and management of an endangered species. A. Kurta y J. Kennedy (eds.). Bat Conservation International, Austin, Texas, USA. 182–192. - Nelson RJ, Demas GE, Klein SL, Kriegsfeld L. 2002. Seasonal patterns of stress, immune function and disease. Cambridge University Press, New York. - Nickel PA y Hansen MF. 1967. Helminths of bats collected in Kansas, Nebraska and Oklahoma. The American Midland Naturalist. 78: 481-486.   18   - Oelze VM, Head JS, Robbins MM, Richards M y Boesch C. 2014. Niche differentiation and dietary seasonality among sympatric gorillas and chimpanzees in Loango National Park (Gabon) revealed by stable isotope analysis. Journal of Human Evolution. 66: 95– 106. - Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg j, Tammaru T, Tennent WJ, Thomas JA y Warren M. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Letters to Nature. 399: 579-583. - Patterson BD, Wiling MR y Stevens RD. 2003.Trophic strategies, niche partitioning, and patterns of ecological organization. En: Bat Ecology. Kunz TH y Fenton MB (eds.) University Chicago Press. 536-579. - Patterson BD, Dick CW y Dittmar K. 2007. Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). Journal of Tropical Ecology. 23: 177-189. - Peel AJ, Sargan DR, Baker KS, Hayman DTS, Barr JA, Crameri G, Suu-Ire R, Broder CC, Lembo T, Wang L-F Fooks AR, Rossiter SJ, Wood JLN, y Cunningham AA. 2013. Continent-wide panmixia of an African Fruit bat facilitates transmission of potentially zoonotic viruses. Nature Communications. 4 - Poulin R y Morand S. 2000. The Diversity of Parasites. The Quarterly Review of Biology. 75:277-293. - Poulin R. 2010. Network analysis-shining light on parasite ecology and diversity. Trends in Parásitology. 26:492-498. - Rakotoarivelo AA, Ranaivoson N, Ramilijaona OR, Kofoky AF, Racey PA y Jenkins RKB. 2007. Seasonal food habits of five sympatric forest Microchiropterans in Western Madagascar. Journal of Mammalogy. 88: 959-966.   19   - Razgour O, Clare EL, Zeale MRK, Hanmer J, Schnell IB, Rasmussen M, Gilbert TP y Jones G. 2011. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecology and Evolution. 1: 556–570. - Razo-González M, Castaño-Meneses G, Callejas-Chavero A, Pérez-Velázquez D y Palacios-Vargas JG. 2014. Temporal variations of soil arthropods community structure in El Pedregal de San Angel Ecological Reserve, Mexico City, Mexico. Applied Soil Ecology. 83: 88–94. - Rolfe AK. 2011. Diet of three mormoopid bats (Mormoops blainvillei, Pteronotus quadridens, and Pteronotus portoricensis) on Puerto Rico. Tesis de Maestría. Eastern Michigan University. Estados Unidos de América. - Rolfe AK y Kurta A. 2012. Diet of mormoopid bats on the Caribbean island of Puerto Rico. Acta Chiropterologica. 14: 369–377. - Sæther BE, Engen S, Lande R, Arcese P. y Smith JNM. 2000. Estimating the time to extinction in an island population of song sparrows. Proceedings of the Royal Society of London, Series B. 267:621–626. - Schneeberger K y Voigt.CC. 2016. Zoonotic viruses and conservation of bats. En: Bats in the antropocene: Conservation of bats in a changing world. Voigt CC y T Kingston (eds.) Springer International Publishing. 263-292. - Sillett TS, Holmes RT y Sherry TW. 2000 Impacts of a global climate change on the population dynamics of a migratory songbird. Science. 288: 2040-2042. - Šimková A, Jarkovsky J, Koubková B, Barus V y Prokes M. 2005. Associations between fish reproductive cycle and the dynamics of metazoan parasite infections. Parasitology Research. 95: 65-72.   20   - Soriano PJ, Sosa M y Rossell O. 1991. Hábitos alimentarios de Glossophaga longirostris (Chiroptera: Phyllostomidae) en una zona árida de los Andes venezolanos. Revista de Biología Tropical. 39: 263–268. - Steicker DG, Turnelle AS, Vonhof MJ, Kusmin IV, McCracken GF y Rupprecht CE. 2010. Host phylogeny constrains cross-species emergence and establishment of rabies virus in bats. Science. 329: 676-679. - Steinmetz R, Garshelis DL, Chutipong W y Seuaturien N. 2013. Foraging ecology and coexistence of Asiatic black bear and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy. 94: 1–18. - Tschapka M. 2004. Energy density patterns of nectar resources permit coexistence within a guild of Neotropical flower-visiting bats. Journal of Zoology. 263: 7–21. - Ubelaker J E. 1970. Some observations on ecto- and endoparasites of Chiroptera. In About bats. Slaughter, B.H. and D.W. Walton (eds.). Southern Methodist University, Dallas, Texas 247-261. - Viera EM y Paise G. 2011. Temporal niche overlap among insectivorous small mammals. Integrative Zoology. 6: 375–386. - Weil ZM, Martin IILB y Nelson RJ. 2006. Interactions among immune, endocrine, and behavioral response to infection. En: Micrommamls and Macroparasites: From Evolutionary Ecology to Management. Morand S, BR Krasnov y R Poulin (eds.) Springer. 443-473. - Whitaker JO y Morales-Malacara JB. 2005. Ectoparasites and other associates (Ectodytes) of mammals of Mexico. En: Contribuciones mastozoológicas en homenaje a Bernardo Villa, V. Sánchez-Cordero y R. Medellín (eds.). Instituto de Biología, Universidad Nacional Autónoma de México, Conabio. 535-666.   21   - Wilkinson GS y South JM. 2002 Life history, ecology and longevity in bats. Aging Cell.1:124-131. - Zortéa M. 2003. Reproductive patterns and feeding habits of three nectarivorous bats (Phyllostomidae: Glossophaginae) from the brazilian cerrado. Brazilian Journal of Biology. 63:159–168.   22   CAPITULO I DIETARY OVERLAP AND SEASONALITY IN THREE SPECIES OF MORMOOPID BATS FROM A TROPICAL DRY FOREST   Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest VALERIA B. SALINAS-RAMOS,* L . GERARDO HERRERA MONTALVO,† VIRGINIA LE ON-REGAGNON,† AITOR ARRIZABALAGA-ESCUDERO‡ and ELIZABETH L. CLARE§ *Posgrado en Ciencias Biologicas, Instituto de Biologı́a, Universidad Nacional Autónoma de México, México D. f. 04510, México, †Estación de Biologı́a Chamela, Instituto de Biologı́a, Universidad Nacional Autónoma de México, A.P. 21, San Patricio, Jalisco 48980, México, ‡Faculty of Science and Technology, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa E-48940, Spain, §School of Biological and Chemical Sciences, Queen Mary University of London, Mile end Road, London E1 4NS, UK Abstract Competing hypotheses explaining species’ use of resources have been advanced. Resource limitations in habitat and/or food are factors that affect assemblages of spe- cies. These limitations could drive the evolution of morphological and/or behavioural specialization, permitting the coexistence of closely related species through resource partitioning and niche differentiation. Alternatively, when resources are unlimited, fluctuations in resources availability will cause concomitant shifts in resource use regardless of species identity. Here, we used next-generation sequencing to test these hypotheses and characterize the diversity, overlap and seasonal variation in the diet of three species of insectivorous bats of the genus Pteronotus. We identified 465 prey (MOTUs) in the guano of 192 individuals. Lepidoptera and Diptera represented the most consumed insect orders. Diet of bats exhibited a moderate level of overlap, with the highest value between Pteronotus parnellii and Pteronotus personatus in the wet season. We found higher dietary overlap between species during the same seasons than within any single species across seasons. This suggests that diets of the three spe- cies are driven more by prey availability than by any particular predator-specific char- acteristic. P. davyi and P. personatus increased their dietary breadth during the dry season, whereas P. parnellii diet was broader and had the highest effective number of prey species in all seasons. This supports the existence of dietary flexibility in general- ist bats and dietary niche overlapping among groups of closely related species in highly seasonal ecosystems. Moreover, the abundance and availability of insect prey may drive the diet of insectivores. Keywords: bat, molecular diet analysis, Pteronotus, species’ interactions Received 31 May 2015; revision received 27 August 2015; accepted 10 September 2015 Introduction Studies of species coexistence within communities and food webs depend on knowing how species use varying resources (Goodyear & Pianka 2011). Dietary studies have contributed to our understanding of predator–prey interactions and offer integral knowledge about food webs and trophic interactions which influence ecologi- cal processes such as resource use, flexibility and niche partitioning (Amarasekare 2008; Pompanon et al. 2012; Burgar et al. 2014). Resource limitation in habitat and/ or food can be factors that affect the assemblages of ani- mals. Several hypotheses have been widely used to explain the mechanisms governing resource use. Under the classic niche differentiation hypothesis, closely related species may differ in their resource use, parti- Correspondence: Valeria B. Salinas-Ramos, Fax: +52 (55) 55500164; E-mail: airelav2@hotmail.com © 2015 John Wiley & Sons Ltd Molecular Ecology (2015) 24, 5296–5307 doi: 10.1111/mec.13386 23 tioning at least one axis of the multidimensional niche. This is normally equated to direct competition or as a secondary effect of other adaptations for limited resources and is often stated as a requirement to avoid competitive exclusion (see Hardin 1960). This is thought to drive the evolution of morphological and/or beha- vioural specialization, potentially through competitive interactions, allowing the coexistence of species through resource partitioning and/or niche differentiation. While both resource partitioning and overlap may be evidence for competition, niche theory, in the strictest sense, does not permit species to occupy the same niche and seeks to determine an axis of partitioning (or ‘ax- iom of inequality’) which permits stable coexistence (Hardin 1960). In an evolutionary sense, speciation would then require niche partitioning and thus closely related species living in sympatry should occupy differ- ent niches. Alternatives to this model have been pro- posed (e.g. neutral theories; see a review by Adler et al. 2007) which do not require niche differentiation and argue that species may coexist with no axis of partition- ing. In this case, niches may be more similar between closely related species as a result of shared ancestry – a mechanism described as niche conservatism or phyloge- netic niche conservatism (see Wiens et al. 2010). While resources drive species dynamics in all cases, the response of consumers may differ. If niche differentia- tion drives the coexistence of closely related species, there will be minimal resource sharing of that axis par- ticularly when resources are limited or the species may not stably coexist. If resource availability drives the sys- tem in the absence of differentiation, closely related spe- cies will share resources, essentially occupying the same ecological niche as an ancestral character. One obvious resource which may be shared, com- peted for and fluctuate is food. Many studies have demonstrated significant dietary resource overlap between species (Viera & Paise 2011; Laverty & Dobson 2013; Steinmetz et al. 2013; Brown et al. 2014; Oelze et al. 2014), and this has been particularly well documented in recent investigations of bat communities (Kr€uger et al. 2012; Munin et al. 2012; Rolfe & Kurta 2012), at least during periods of resource abundance (Razgour et al. 2011; Emrich et al. 2014). These findings suggest that diet may not be a strong driver of coexistence among bats with highly flexible diets. In some cases, however, diet has appeared to broaden when resources are reduced which suggests it can be a limiting factor (Clare et al. 2014b) and there is some indication that diet differentiates between closely related species when those resources become limited (Razgour et al. 2011) which suggest some dynamic related to niche theory. One test of niche conservatism is to consider the pat- tern of resource use between closely related species occupying the same relatively isolated environment in periods of high and low resource availability. If highly related species have diverged (in sympatry or allopatry) via specialization for dietary niche, we expect to see a low degree of overlap in resource use particularly when those resources are reduced as they partition that axis. Alternatively, if dietary resources are not limited or lim- iting, closely related species should show similar pat- terns of resources use and similar responses to changing resource availability. Bats possess a variety of morphological and beha- vioural adaptations that are thought to allow them to exploit alternative niches and trophic levels, for exam- ple wing shape (Norberg & Rayner 1987). Among these, echolocation call design (Schnitzler & Kalko (2001), hair and tongues (Howell & Hodgkin 1976) are frequently cited as drivers of resource use in any feeding guild although most species eat insects (Kunz et al. 2011). Insectivorous bats are considered dietary generalists, with flexible foraging behaviours leading them to con- sume prey in relation to its abundance (Swift et al. 1985; Kunz et al. 2011). However, selective feeding and the ability to discriminate prey have been reported in vari- ous insectivorous species (Koselj et al. 2011; Kr€uger et al. 2014a,b; Lino et al. 2014). Because of their significant potential adaptations to foraging, diet is a likely axis to consider for resources partitioning. Some dietary studies have found that different insectivorous bat species foraging in the same area tend to consume the same species of prey (e.g. Findley 1993; Sedlock et al. 2014). However, other studies have shown that sympatric species may partition resources in ways that impact diet (e.g. Bohmann et al. 2011; Mancina et al. 2012). For example, in Jamaica, bats appear to hunt at taxon-specific times of night (Em- rich et al. 2014). This may partition resources tempo- rally (e.g. to avoid acoustic jamming) and may lead to secondary resource partitioning of prey. It has also been suggested that the geographic location of sym- patric bat species is a better predictor of which prey are consumed than the predator’s taxonomic affinities or perceptual abilities (Sedlock et al. 2014) suggesting a resource-driven system. In recent years, molecular techniques have provided much more detailed analyses of the way in which gener- alist consumers interact with their food resources than traditional morphological and behavioural studies by providing species-level resolution on diet. Despite the limitations of these techniques (lack of biomass quantifi- cation), much of the dietary work related to bats in the last five years has employed these methods. However, with only a few exceptions (e.g. Emrich et al. 2014; Sed- lock et al. 2014), these studies have concentrated on one or two species of predators rather than considering mul- © 2015 John Wiley & Sons Ltd DIETARY OVERLAP AND SEASONALITY IN MORMOOPIDS 5297 24 tiple species sharing the same habitat and potential resources. To gain a better understanding of the ecologi- cal principles of resource flexibility and niche partition- ing, a community perspective is essential, particularly when focused on groups of closely related species. Mormoopidae (Saussure 1860) is a small family of bats containing only two genera, but the species are wide- spread and found in relatively large numbers (Medellın et al. 2008). Mexico has five species of mormoopid bats (Mormoops megalophylla, Pteronotus dayvi, Pteronotus par- nellii, Pteronotus personatus and Pteronotus gymnonotus) (Medellın et al. 2008). These species use a variety of hunt- ing techniques and have differing morphologies and echolocation systems (O’Farrell & Miller 1997), which make them an ideal study system for questions related to the drivers of dietary resource use in related species. Four of these species have been reported along the coast of Jalisco, Mexico (Ceballos & Miranda 2000). Here, we focus the study on three sympatric mormoopid species in Chamela, Jalisco: P. davyi, P. parnellii and P. personatus. Pteronotus davyi has been reported to consume dipterans, lepidopterans and dermapterans, particularly species from the family Forficulidae (Sanchez & Romero 1995; Ceballos & Miranda 2000). The most common prey of P. parnellii are reportedly lepidopterans and coleopterans (Sanchez & Romero 1995; Ceballos & Miranda 2000), while P. personatus consumes dipterans and lepidopter- ans (Adams 1989; Rezsutek & Cameron 1993). Although previous studies in Mexico have mentioned some general features about their diet (Sanchez & Romero 1995; Cebal- los & Miranda 2000), it is unknown to what degree the diet of these species overlaps and if they can respond to seasonal resource fluctuations. Chamela is composed of seasonal tropical dry forest, with most rainfall occurring from June to November (Bullock 1995; Pringle et al. 2012; Mendez-Alonzo et al. 2013). Tropical dry forests frequently show extreme changes in the available resources during the wet and dry season, therefore altering the composition and diversity of fauna (Razo-Gonzalez et al. 2014). Further- more, the abundance of arthropods in particular shows considerable fluctuations in tropical dry forests, reach- ing its lowest levels in the dry season and its highest levels in the wet season (Levings & Windsor 1984), a pattern reported for Chamela (Pescador-Rubio et al. 2002). These fluctuations in food resources generate a highly seasonal ecosystem that may impact the diet of insectivorous species (Lister & Garcıa 1992; G€uizado- Rodrı́guez & Casas-Andreu 2011). In this work, we characterize the dietary diversity of P. davyi (Gray 1838), P. parnellii (Gray 1843) and P. per- sonatus (Wagner 1843) using next-generation sequencing (NGS) to test whether these species coexist according to the niche hypothesis by partitioning resources or strongly overlap in resource use responding similarly to resource fluctuations. We measure the degree of dietary overlap and the breadth and seasonality of the diet among these predators. We predict that contrary to niche hypotheses, diet in these species is not predator specific, and thus overlap among species is significantly higher than expected in random models. We also pre- dict that diet in all three species exhibits seasonal changes over the year reflecting changes in arthropod diversity (Andresen 2005; G€uizado-Rodrı́guez & Casas- Andreu 2011; Razo-Gonzalez et al. 2014). Methods Study area The study was conducted in Don Panchito Island, which is located on the Pacific coast of Chamela, Jalisco, Mexico (19.5350 N, 105.08832 W). This island is approx- imately 10 ha in size and is located approximately 1 km from the mainland. The region is mainly composed of tropical dry forest, with 85% of the ~750 mm of yearly rain occurring from July to November, and a mean annual temperature of 24.9 °C (14.8–32 °C) (Bullock 1995; Pringle et al. 2012; Mendez-Alonzo et al. 2013). Vegetation in the island consists of tropical deciduous and tropical semi-deciduous forest (Rzedowski 1981). Don Panchito Island has a cave that serves as a daytime roost for Pteronotus davyi, Pteronotus parnellii and Pteronotus personatus. An additional insectivore bat spe- cies, M. megallophylla, and the nectarivore, Leptonycteris yerbabuenae, also roost in there, although the former species was rarely encountered during the study. Sample collection, DNA extraction, PCR amplification and sequencing A total of six collecting trips were carried out during three dry (June 2012, April 2013 and May 2014) and three wet seasons (November 2012, July and November 2013). We captured individuals with mist nets at sunset and with sweep nets inside the cave during the morn- ing. Species, sex, weight, reproductive status and fore- arm length were recorded for each individual. We held each bat separately in cotton bags to collect faecal sam- ples which were stored in 96% ethanol and then frozen. Bats were released within 60 min of capture or during sunset on the day of capture. Faecal samples were divided according to the season of collection. We analysed faecal samples from 53 and 29 P. davyi, 33 and 51 P. parnellii, and 18 and 8 P. per- sonatus specimens (dry and wet seasons, respectively). Extraction, amplification and sequencing of all samples were conducted at the Biodiversity Institute of Ontario, © 2015 John Wiley & Sons Ltd 5298 V. B . SALINAS- RAMOS ET AL. 25 University of Guelph. Primers based on COI primers ZBJ-ArtF1c and ZBJ-ArtR2c were used to amplify prey DNA (following the protocols for bat dietary analysis established by Zeale et al. 2011). These primers were modified using adaptors for the Ion Torrent (see Fig. 1 Clare et al. 2014b). PCR protocols were modelled on Bohmann et al. (2011). Each 20 lL reaction contained 10 lL of Qiagen multiplex PCR (Qiagen, CA) master mix, 6 lL of water, 1 lL of each 10 lM primer and 2 lL of DNA. PCRs were carried out as follows: 95 °C, 15 min; 50 cycles of 95 °C, 30 s; 52 °C, 30 s; 72 °C, 30 s (or 1 min for 307- and 407-bp regions); and 72 °C, 10 min. Amplicons were visualized on a 2% agarose 96- well precast E-gel (Invitrogen, Life Technologies), and size selection was performed using a PCRClean DX kit (Aline Biosciences). The product was eluted in water, and the concentration was measured on the Qubit 2.0 spectrophotometer using a Qubit dsDNA HS Assay Kit (Invitrogen, Life Technologies). The products were nor- malized to 1 ng/lL prior to final library dilution. Sequencing was performed on the Ion Torrent (Life Technologies) sequencing platform as per Clare et al. (2014b) using a 316 chip and following the manufactur- ers’ guidelines but with a 29 dilution. Data analysis Sequences were analysed using the Galaxy platform (http://main.g2.bx.psu.edu/root, Giardine et al. 2005; Blankenberg et al. 2010; Goecks et al. 2010). Reads were separated by forward and reverse MIDs (a maximum of two mismatches were allowed), and we clipped primer and adapter sequences. We filtered out all sequences shorter than 147 bp or longer than 167 bp (target ampli- con length was 157 bp), collapsed them into unique hap- lotypes and then excluded singleton sequences from further analyses. We clustered sequences in molecular operational taxonomic units (MOTUs) and picked a con- sensus sequence from each MOTU for analysis with the QIIME pick_otu and uclust methods (http://qiime.- sourceforge.net/, Caporaso et al. 2010). MOTU parame- ters for clustering were optimized by testing different similarity values (90–98%) as follows. First, we created a local reference sequence database by downloading more than 600 000 COI sequences from the NCBInr/nt refer- ence database (http://www.ncbi.nlm.nih.gov/). Then, we compared representative sequences (selected based on abundance) of each MOTU at each tested threshold (nine test sets) against this NCBI reference database using a local BLAST. BLAST analyses were interpreted using MEGAN version 5.6.3. (Huson et al. 2011). The program uses an algorithm that assigns each read to the lowest common ancestor (LCA) of the set of taxa that it hit in the comparison based on a set of match parameters (see full documentation in Huson et al. 2007). We ran the same LCA parameter settings for each test set (Min score = 150.1, Max expected = 0.001, Top per cent = 10.0, Min support = 1, LCA per cent = 100.0, Min complex- ity = 0.2). We selected a similarity threshold, which gen- erated the minimum amount of apparent underestimating and overestimating of species diversity (e.g. when two MOTU received the same sequence assignment in BLAST/MEGAN, the data set was considered ‘oversplit’). This approach generates a conservative esti- mate of MOTU counts. In our case, the best results were obtained at 92% similarity value for QIIME-based clus- tering although we also considered 96% and 94% thresh- olds for analyses (see Supporting Information). We screened reference sequences from each MOTU for chi- meric sequences using UCHIME and contaminants by looking for highly similar BLAST matches to nontarget taxa (e.g. bacteria) in MEGAN (as above and then with more relaxed LCA parameters (Min score = 100). Once the clustering parameters were optimized, we repeated the Not assigned; 106 Psocoptera; 1 Hemiptera; 9 Orthoptera; 7 Mantodea; 2 Isoptera; 1 Blattodea; 6 Neuroptera; 5 Hymenoptera; 2 Diptera; 73 Coleoptera; 13 Trichoptera; 1 Lepidoptera; 175 Collembola; 1 Diplostraca; 2 Araneae; 6 Environmental sample; 2 Fig. 1 A schematic of the consensus BLAST scores overlaid on a taxonomic hierarch from MEGAN. The molecular operational taxonomic units (MOTUs) generating BLAST scores at the dictated lowest com- mon ancestor parameters consumed by the three species of bats examined in this study are included. Missing MOTUS were unassigned in MEGAN. Identifications have been limited to consensus scores at order level. Values at node or tips repre- sent the number of MOTUs assigned to a given taxa. The size of the node is scaled to the number of assignments. © 2015 John Wiley & Sons Ltd DIETARY OVERLAP AND SEASONALITY IN MORMOOPIDS 5299 26 BLAST/MEGAN assignments limiting the analyses to more conservative ordinal level identifications. Statistical analyses The program ECOSIM 2004 (http://garyentsminger/eco- sim/) was employed to determine the dietary overlap among the three bat species examined and to assess the effects of season. We tested the hypothesis that niche overlap among species is higher within species in a season than between seasons. This program per- forms Monte Carlo randomizations to create ‘pseudo- communities’ and then statistically compares the pat- terns of these communities with the observed ones (Entsminger 2014) using Pianka’s (1973) measure of niche overlap (Ojk). We ran these analyses both includ- ing all MOTUs (all-prey analysis) and excluding prey that were only eaten by a single individual (common- prey analysis) (as per Brown et al. 2014; Clare et al. 2014b,c). We also calculated Shannon–Wiener and Simpson–Gini indices to assess dietary breadth. The values obtained from the latter analyses were trans- formed to the effective number of species (MacArthur 1965; Hill 1973) following the recommendation of Jost (2006) to unify an intuitive interpretation of diversity. We used rarefaction and extrapolation to measure niche size using the Chao2 estimator for dietary rich- ness as implemented in INEXT (Chao et al. 2005; Colwell et al. 2012; Hsieh et al. 2013) both online and in R (R Core Team 2013). Results We recovered 3 736 064 sequencing reads, which, after bioinformatic preprocessing, were reduced into 32 251 unique haplotypes. These haplotypes were clustered into 465 MOTUs belonging to 12 insect orders (Fig. 1, all-prey analysis). For the common-prey analysis, excluding MOTUs appearing in single individuals lim- ited the counts to a total of 202 MOTUs. In both cases, Lepidoptera represented the majority of MOTUs con- sumed by the three bat species followed by Diptera. We found no evidence of nontarget amplification, and only four reference sequences (<0.7%) were identified as potential chimeric sequences. Further checking indi- cated that they were flagged because of moderate simi- larity to two Lepidoptera (two cases), a Lepidoptera and a Coleoptera (one case) and two parasites (one case). Inclusion or removal of these MOTUs had extre- mely low impact (e.g. changing the third decimal place of a richness estimation). As their status as chimeras was unclear (the BLAST hits were poor) and their impact had no effect on the conclusions, we retained them as ‘unknowns’. Our results were consistent across both the all-prey analysis (all MOTUs) and the common-prey analysis. Overall, we found evidence of dietary overlap among the three bat species examined (Table 1), which was higher than expected by chance. All values between species pairs exceeded 0.6, with the highest degree of overlap between P. parnellii and P. personatus during the wet season (Ojk 0.72350, P < 0.001), and most values showing a statistically significant degree of overlap (see Table 1). In general, we observed values for overlap within seasons that were higher than those found within any single species across the seasons (Table 1). These results are consistent when OTU thresholds were altered to 96 and 94% (Supporting Information). The diversity estimates showed that P. davyi and P. personatus increased their dietary breadth during the dry season, whereas P. parnellii diet was generally broader and had the highest effective number of species regardless of season suggesting a more generalist forag- ing strategy (Table 2). Interpolation and extrapolation using the Chao2 estimation of incidence-based richness estimation suggested a similar pattern (Fig. 2) although 95% confidence intervals overlap (particularly when considering P. personatus in the wet season when sam- ple sizes were small and extrapolation difficult); thus, these outcomes are consistent but suggest caution inter- preting specific patterns of dietary richness until more extensive sampling is conducted. Discussion We determined the diet of three congeneric species of insectivorous bats to examine the existence of dietary overlap and seasonal changes in response to known seasonal prey fluctuations. Our data support a resource- driven use of dietary niche. We observed that dietary overlap was higher among species within seasons than within species across seasons. Lepidoptera was the main food resources of all species followed by Diptera, but the dietary diversity of P. davyi and P. personatus increased in the dry season when arthropod abundance fell. This suggests that these bats do not strongly parti- tion dietary resources but instead may adopt a more generalist strategy when prey is limited. Our data showed that Lepidoptera was the most important food source for the three species examined, followed by Diptera. A similar pattern was reported for P. parnellii in Jamaica (Emrich et al. 2014). Although Lepidoptera are often the most detected prey in molecular analyses of bats’ diets (Clare et al. 2009, 2014a; Razgour et al. 2011; Sedlock et al. 2014) and there may be some technical biases in the detection of this order (Clare 2014), they are not always the most abun- dant order (e.g. Eptesicus fuscus; Clare et al. 2014b), © 2015 John Wiley & Sons Ltd 5300 V. B . SALINAS- RAMOS ET AL. 27 suggesting that this effect may have a minimal impact on dietary analyses. It has been reported that bat diet responds to local insect population fluctuations (Clare et al. 2011; Sedlock et al. 2014). However, we found no evidence that diet changes in the same direction as insect abundance/diversity. We observed a more diverse diet in the dry season when arthropod abundance is actually lower in the area (Andresen 2005; G€uizado- Rodrı́guez & Casas-Andreu 2011; Razo-Gonzalez et al. 2014). In particular, P. davyi and P. personatus increased their dietary breadth in the dry season. This effect was also observed in E. fuscus in Canada, in which diet appeared to get broader before hibernation when prey abundance was thought to fall (Clare et al. 2014b). Table 1 Diet overlap between the three species of insectivorous bats (Pteronotus) examined in this study. Numbers in bold are values considering all molecular operational taxonomic units (MOTUs). The remaining numbers are values excluding MOTUs that were obtained only in one bat individual (common-prey analysis). Values of the observed mean above 0.6 are generally accepted to repre- sent biologically significant levels of resource overlap Observed mean Number of times observed index ≥ simulated indices P (Observed ≥ expected) All seasons and spp. 0.44936 1000 0.00000 0.29615 1000 0.00000 Dry season all spp. 0.58148 1000 0.00000 0.46559 1000 0.00000 Dry season P. davyi vs. P. parnellii 0.69227 628 0.37200 0.61069 476 0.52400 Dry season P. davyi vs. P. personatus 0.69586 1000 0.00000 0.62646 1000 0.00000 Dry season P. parnellii vs. P. personatus 0.69990 1000 0.00000 0.62754 1000 0.00000 Wet season all spp. 0.58235 1000 0.00000 0.53131 1000 0.00000 Wet season P. davyi vs. P. parnellii 0.67357 1000 0.00000 0.63316 1000 0.00000 Wet season P. davyi vs. P. personatus 0.69198 1000 0.00000 0.65457 1000 0.00000 Wet season P. parnellii vs. P. personatus 0.71685 1000 0.00000 0.72350 1000 0.00000 Wet vs. Dry season P. davyi 0.66957 1000 0.00000 0.61415 1000 0.00000 Wet vs. Dry season P. parnellii 0.63687 651 0.34900 0.58082 977 0.02300 Wet vs. Dry season P. personatus 0.66761 1000 0.00000 0.63885 1000 0.00000 Table 2 Diversity estimates during wet and dry seasons in three species of insectivorous bats (Pteronotus). Numbers in bold are val- ues considering all molecular operational taxonomic units (MOTUs). The remaining numbers are values excluding MOTUs that were only obtained in one individual (common-prey analysis) Richness Shannon–Wiener (S–W) S–W Effective Number of Species Simpson–Gini (S-G) S-G Effective Number of Species Wet season P. davyi 81 4.057 57.800 0.976 41.666 114 4.388 80.479 0.982 55.555 Dry season P. davyi 115 4.266 71.236 0.978 45.454 169 4.611 100.584 0.983 58.823 Wet season P. parnellii 121 4.417 82.847 0.982 55.555 198 4.870 130.320 0.987 76.923 Dry season P. parnellii 112 4.372 79.200 0.982 55.555 165 4.741 114.548 0.986 71.428 Wet season P. personatus 57 3.956 52.247 0.978 45.455 69 4.157 63.879 0.982 55.555 Dry season P. personatus 80 4.123 61.744 0.979 47.619 114 4.475 87.794 0.984 62.500 © 2015 John Wiley & Sons Ltd DIETARY OVERLAP AND SEASONALITY IN MORMOOPIDS 5301 28 Our results contrast with the report of a lower dietary diversity during the dry season in a community of insectivorous bats in Jamaica from different forests (Em- rich et al. 2014). However, our sample size was substan- tially larger and we measured prey diversity using a semi-quantitative (frequency-based) analysis, while Emrich et al. (2014) only considered the presence and absence of prey items pooling all data from each species limiting their analytical options. This makes a direct comparison difficult. In British Plecotus species, Razgour et al. (2011) reported that lepidopterans were the most common prey during summer, while dipterans were consumed in greater richness in spring and autumn, when the abundance of lepidopterans reduces, suggest- ing a similar resource-driven change in diet. When insect abundance is reduced during the dry season, P. davyi and P. personatus responded by con- suming a wider variety of the remaining prey, thus becoming more generalist in their dietary tendencies. In contrast, during the wet season, insect abundance increases (Pescador-Rubio et al. 2002) and bats may be able to be more selective in their diet (Koselj et al. 2011). Agosta et al. (2003) and Clare et al. (2014b) also suggest that diet of insectivorous bats responds to local insect population fluctuations and that dietary richness increases as prey become more limited. These data support the hypothesis that the diet of insectivorous bats is determined by the abundance and types of insects that are available, probably due to encounter fre- quency and not only by species-specific predator char- acteristics. Studies have shown that abundance of insects is highly variable in space and time (Aldridge & Rautenbach 1987; Whitaker 1994), and their abundance and composition is directly correlated with the amount of rainfall (Janzen & Schoener 1968; Rolfe 2011). In con- trast to Razgour et al. (2011), we did not see increased partitioning between species when resources were reduced. This supports the niche conservatism hypothe- sis with respect to dietary composition, although further studies of paired insect and bat sampling are required to confirm that diet is changing directly with insect abundance and diversity fluctuations and there may be some evidence for predator-specific differences. Diet in P. parnellii was considerably broader and had the highest effective number of species regardless of sea- son, suggesting a more generalist tendency. Several fac- tors could influence this difference between P. parnellii and the remaining two examined species. Mancina et al. (2012) showed that diet partitioning in a community of mormoopid bats (P. parnellii, P. macleayii and M. blainvil- lii) involved a combination of morphology, echolocation, behaviour and time of foraging. Pteronotus parnellii flies faster and is bigger (mean forearm 58 mm, own data) than P. davyi and P. personatus (mean forearm 46 mm in both species, own data). This suggests that if P. parnel- lii can perceive and capture a greater diversity of Pteronotus davyi Pteronotus davyi Pteronotus parnellii Pteronotus parnellii Pteronotus personatus Pteronotus personatus 0 100 200 300 400 0 100 200 300 400 0 50 100 150 0 50 100 150 0 50 100 150 Number of samples S p e c ie s r ic h n e s s Interpolation Extrapolation (95% CI) Actual sample size W e t s e a s o n D ry s e a s o n Chao2 = 195.9 Chao2 = 225Chao2 = 162.4 Chao2 = 144.7Chao2 = 158.5 Chao2 = 149.6 Fig. 2 Interpolation and extrapolation of dietary species richness for predators using the Chao2 estimation for incidence-based sam- ple data. Richness is extrapolated to N = 150 and bootstrapped 500 times. © 2015 John Wiley & Sons Ltd 5302 V. B . SALINAS- RAMOS ET AL. 29 resources, then it may have more flexibility and a wider potential prey niche. Echolocation in P. parnellii is unique among new world bats; their use of high duty cycle echolocation is thought to facilitate the hunting of aerial prey in dense vegetation, and this acoustic system is particularly adept at ‘flutter detection’ allowing them better access to relatively large-bodied, slow flying moths (von der Emde & Schnitzler 1990; Lazure & Fenton 2011; Sedlock et al. 2014). All this suggests that differences in morphology and echolocation may explain why P. par- nellii has a wider diet regardless of season. Further stud- ies are needed to explore whether the time of foraging is also different and whether it influences the dietary breadth of these insectivorous bat species (e.g. Emrich et al. 2014). Although our measurements of overlap were signifi- cant, the degree of overlap was moderate in most cases. While this is not particularly suggestive of dietary resource partitioning being a strong driver of commu- nity dynamics between these species, even minor differ- ences could be related to morphology and echolocation call structure as even small differences in these features may allow species to partition resources in a small way (Happold & Happold 1989; Bohmann et al. 2011; Raz- gour et al. 2011) or give them access to a larger, smaller or simply different resources. In this study, the only case where we detected a very marked dietary overlap was between P. parnellii and P. personatus during the wet season. Their flight speed and body size are differ- ent; however, both species have the ability to use Dop- pler shift compensation (DSC), which is a highly specialized vocal behaviour that allows them to dis- criminate fine acoustic details of their prey and to navi- gate through dense foliage (Smotherman & Guillen- Servent 2008). Similar echolocation strategies are thought to relate to the consumption of similar food resources. It cannot be determined whether competition exists in the dry season when prey resources drop, or whether the pattern of resource use observed here sim- ply reflects variation in their morphology and acoustic adaptations independent of any current or past compet- itive relationship. We found minimal evidence that diet is a strongly partitioned axis and instead found more evidence for resource overlap regardless of season consistent with niche conservatism. However, we sug- gest that DSC requires additional consideration as a potential factor of interest in resource use. In this analysis, we have taken a conservative approach for the estimation of OTUs (e.g. using a large cut-off value) and the subsequent analysis (e.g. remov- ing rare haplotypes and removing rare species in the ‘common-prey’ analysis). This approach is conservative as the net effect is the reduction in overall OTU estima- tion and it was adopted for several reasons. First, mean congeneric estimates at this locus for tropical Lepi- doptera range from 4.5% to 6% (Hajibabaei et al. 2006); thus, an OTU cut-off in that range is recommended for data sets of exclusively Lepidoptera to differentiate the average species. Other taxa are somewhat more diverse; thus, a larger value might be warranted. How- ever, it is also possible that in our test assignment method, two representatives are assigned to the same GenBank sequence because they are both conspecifics to the representatives rather than an oversplit OTU. Second, NGS technologies impose greater sequencing error (Quail et al. 2012) that artificially inflates sequence diversity, and OTU estimators are thought to often overestimate diversity. We have tried to reduce this effect (e.g. removing rare haplotypes), but the risk is always present in NGS. Finally, there is an argument that species (OTU)-level analyses are actually too detailed (it is unlikely the bat can make such discrimi- natory decisions) and combined with the presence–ab- sence only data, which may bias ecological models (Clare 2014), we may effectively get ‘too much’ infor- mation to draw biologically meaningful conclusions. As such, we have made several analytical choices to reduce the potential OTU estimation. The net result is that we err on the side of ‘lumping’ similar taxa rather than oversplitting or generating ‘false’ OTUs, but our choice of OTU is both repeatable and empirically derived for this specific data set. To check the validity of our conclusions, we have recalculated richness, diversity and overlap modelling for the ‘all species’ cases using both 94% and 96% cut-offs (Supporting Information). The net effect on analytical outcomes is minimal as the effect is equal in all predators and the same conclusions would be drawn, but raw estimates of dietary richness obviously change in all cases reflect- ing differing estimates of OTU composition. There are a number of additional considerations in the application of molecular technologies ranging from primer biases, sequence length vs. taxonomic recovery, questions about appropriate analytical strategies (Pom- panon et al. 2012; Clare 2014) and the commonly posed question about quantitative approaches either by qPCR or more direct quantification of sequence number and haplotype. Primer choice requires a balance between the length capacity of the sequencers (e.g. Glenn 2011), the length required for accurate taxonomic diagnosis (e.g. Hajibabaei et al. 2007), biases in taxonomic recov- ery (e.g. Clarke et al. 2014) and the choice in amplifica- tion region (see a review of primer issues in Clare 2014). Analytical strategies have also changed with almost every new publication in the field, and it is clear that no ‘universal’ approach is obvious or even anticipated (e.g. see Pi~nol et al. 2014). Quantification of biomass or abundance is highly desirable but remains © 2015 John Wiley & Sons Ltd DIETARY OVERLAP AND SEASONALITY IN MORMOOPIDS 5303 30 elusive. Various attempts have been made to use qPCR (e.g. see McCracken et al. 2012), but these have proved surprisingly complex. Early attempts based on equating sequence copy number with abundance are frequently cited, but these are now considered controversial (Pom- panon et al. 2012; Clare 2014). Perhaps, the best experi- mental investigation of this problem is provided by Deagle et al. (2013), where a systematic test of the impact of many biological and analytical steps was taken with the general conclusions that most, if not all, have an impact on sequence outcomes often with unpredictable and interacting effects. Perhaps the most surprising of these has been the influence of things as simple as filtering methods and choice of MID/barcode which appear to have impacts on sequencing outcome (Deagle et al. 2013) beyond the obvious issue of differ- ential digestion and amplification biases. While this remains commonplace in microbial analyses (e.g. see the MOTHUR pipeline), the practice appears question- able and, at the very least, inappropriate in dietary/ multicellular ecological analyses. The net result is that careful interpretation of the data is required both in terms of technological and biological issues (for a dis- cussion, see Clare 2014) as the advances provided by these technologies should be balanced against overinter- pretation of the results and caution and conservatism are probably warranted in this evolving field. The question of whether there is dietary partitioning is particularly relevant for sympatric species in tropical and subtropical areas where there are more predatory species (Findley 1993; Emrich et al. 2014) but also a far greater diversity of potential prey resources, which may remove any need for active competition. Partitioning in diet may facilitate the coexistence of bat species (Burgar et al. 2014), but it may be a by-product of other niche specializations or restricted to very specific spatio-tem- poral cases. Our results confirmed a significant dietary overlap among the three species in most cases and, sur- prisingly, more overlap between species at a given time than within one species over the entire season. Simi- larly, Sedlock et al. (2014) also found interspecific diet- ary overlap and concluded that location determined what bats consume more effectively than their taxon- omy or perceptual abilities. Here, we suggest that sea- sonal changes in food abundance have the same effect. Acknowledgements We thank the staff at the Biodiversity Institute of Ontario (Guelph, Ontario Canada) for hosting this work. This work was supported by grants given by Consejo Nacional de Ciencia y Tecnologıa (CONACyT, Red Tematica del Codigo de Barras de la Vida, 2013-2015) to VLR and A Zaldivar- Riveron, by Dirección General de Asuntos del Personal Academico (IN202113) to LGHM. VBSR also thanks Programa de Doctorado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico and CONACyT for the scholarship received. We also thank Carlos A. Gonzalez Castro, Andrea Rebollo Hernandez and Alejandro Zaldivar-Riveron for their assistance in the field and three reviewers for the excellent suggestions. References Adams JK (1989) Pteronotus davyi. Mammalian Species, 346, 1–5. Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neu- trality. Ecology Letters, 10, 95–104. Agosta SJ, Morton D, Kuhn KM (2003) Feeding ecology of the bat Eptesicus fuscus: “preferred” prey abundance as one fac- tor influencing prey selection and diet breadth. Journal of Zoology, 260, 169–177. Aldridge HDJN, Rautenbach IL (1987) Morphology, echoloca- tion and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56, 763–778. Amarasekare P (2008) Spatial dynamics of foodwebs. Annual Review of Ecology, Evolution, and Systematics, 39, 479–500. Andresen E (2005) Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest. Biotropica, 37, 291–300. Blankenberg D, Von KG, Coraor N et al. (2010) Galaxy: a web- based genome analysis tool for experimentalists. Current Pro- tocols in Molecular Biology, Chapter 19, Unit 19. 10, 1–21. Bohmann K, Monadjem A, Noer CL et al. (2011) Molecular diet analysis of two African free-tailed bats (Molossidae) using high throughput sequencing. PLoS ONE, 6, e21441. Brown DS, Burger R, Cole N et al. (2014) Dietary competition between the alien Asian Musk Shrew (Suncus murinus) and a reintroduced population of Telfair’s Skink (Leiolopisma tel- fairii). Molecular Ecology, 23, 3695–3705. Bullock SH (1995) Plant reproduction in neotropical dry forest. In: Seasonally Dry Tropical Forests (eds Bullock SH, Mooney HA, Medina E), pp. 277–303. Cambridge University Press, Cambridge, UK. Burgar JM, Murray DC, Craig MD et al. (2014) Who0s for din- ner? High-throughput sequencing reveals bat dietary differ- entiation in a biodiversity hotspot where prey taxonomy is largely undescribed. Molecular Ecology, 23, 3605–3617. Caporaso JG, Kuczynski J, Stombaugh J et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7, 335–336. Ceballos G, Miranda A (2000) Chiroptera. In: Guıa de campo de los mamıferos de la costa de Jalisco, Mexico, pp. 75–121. Fun- dacion Ecologica de Cuixmala, A. C. Universidad Nacional Autonoma de Mexico, Mexico. Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new sta- tistical approach for assessing similarity of species composi- tion with incidence and abundance data. Ecology Letters, 8, 148–159. Clare EL (2014) Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considera- tions and conservation applications. Evolutionary Applications, 7, 1144–1157. Clare EL, Fraser EE, Braid HE et al. (2009) Species on the menu of a generalist predator, the eastern red bat (Lasiurus borealis): using a molecular approach to detect arthropod prey. Molec- ular Ecology, 18, 2532–2542. © 2015 John Wiley & Sons Ltd 5304 V. B . SALINAS- RAMOS ET AL. 31 Clare EL, Barber BR, Sweeney BW et al. (2011) Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology, 20, 1772–1780. Clare EL, Goerlitz HR, Drapeau VA et al. (2014a) Trophic niche flexibility in Glossophaga soricina: how a nectar seeker sneaks an insect snack. Functional Ecology, 28, 632–641. Clare EL, Symondson WOC, Fenton MB (2014b) An inordinate fondness for beetles? Variation in seasonal dietary prefer- ences of night roosting big brown bats (Eptesicus fuscus). Molecular Ecology, 23, 3633–3647. Clare EL, Symondson WOC, Broder H et al. (2014c) The diet of Myotis lucifugus across Canada: assessing foraging quality and diet variability. Molecular Ecology, 23, 3618–3632. Clarke LJ, Soubrier J, Weyrich LS, Cooper A (2014) Environmental metabarcodes for insects: in silico PCR reveals potential for taxonomic bias. Molecular Ecology Resources, 14, 1160–1170. Colwell RK, Chao A, Gotelli NJ et al. (2012) Models and esti- mators linking individual-based and sample-based rarefac- tion, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5, 3–21. Deagle BE, Thomas AC, Shaffer AK, Trites AW, Jarman SN (2013) Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? Molecular Ecology Resources, 13, 620–633. von der Emde G, Schnitzler HU (1990) Classification of insects by echolocating greater horseshoe bats. Journal of Comparative Physiology A, 167, 423–430. Emrich MA, Clare EL, Symondson WOC et al. (2014) Resource partitioning by insectivorous bats in Jamaica. Molecular Ecol- ogy, 23, 3648–3656. Entsminger GL (2014) EcoSim Professional: Null Modeling Soft- ware for Ecologists, Version 1. Acquired Intelligence Inc., Kesey-Bear, & Pinyon Publishing, Montrose, Colorado. Findley JS (1993) Bats: A Community Perspective. Cambridge University Press, Cambridge. Giardine B, Riemer C, Hardison RC et al. (2005) Galaxy: a plat- form for interactive large-scale genome analysis. Genome Research, 15, 1451–1455. Glenn TC (2011) Field guide to next-generation DNA sequen- cers. Molecular Ecology Resources, 11, 759–769. Goecks J, Nekrutenko A, Taylor J, Galaxy Team (2010) Galaxy: a comprehensive approach for supporting accessible, repro- ducible, and transparent computational research in the life sciences. Genome Biology, 11, R86. Goodyear SE, Pianka ER (2011) Spatial and temporal variation in diets of sympatric lizards (Genus Ctenotus) in the great Victoria Desert, Western Australia. Journal of Herpetology, 45, 265–271. G€uizado-Rodrıguez MA, Casas-Andreu G (2011) Facultative specialization in the diet of the twelve-lined whiptail, Aspi- doscelis lineatissima. Journal of Herpetology, 45, 287–290. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103, 968–971. Hajibabaei M, Singer GAC, Clare EL, Hebert PDN (2007) Design and applicability of DNA arrays and DNA barcodes in biodiversity monitoring. BMC Biology, 5, 24. Happold DCD, Happold M (1989) Reproduction of Angola free-tailed bats (Tadarida condylura) and little free-tailed bats (Tadarida pumila) in Malawi (Central Africa) and else- where in Africa. Journal of Reproduction and Fertility, 85, 133–149. Hardin G (1960) The competitive exclusion principle. Science, 131, 1292–1297. Hill M (1973) Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–432. Howell DJ, Hodgkin N (1976) Feeding adaptations in the hairs and tongues of nectar-feeding bats. Journal of Morphology, 148, 329–339. Hsieh TC, Ma KH, Chao A (2013) iNEXT online: interpolation and extrapolation (Version 1.0) [Software]. Available from http://chao.stat.nthu.edu.tw/blog/software-download/. Huson DH, Auch AF, Qi J et al. (2007) MEGAN analysis of metagenomic data. Genome Research, 17, 377–386. Huson DH, Mitra S, Ruscheweyh HJ et al. (2011) Integrative analysis of environmental sequences using MEGAN 4. Gen- ome Research, 21, 1552–1560. Janzen DH, Schoener TW (1968) Differences in insect abun- dance and diversity between wetter and drier sites during a tropical dry season. Ecology, 49, 96–110. Jost L (2006) Entropy and diversity. Oikos, 113, 363–375. Koselj K, Schnitzler H-U, Siemers BM (2011) Horseshoe bats make adaptive prey-selection decisions, informed by echo cues. Proceedings of the Royal Society. B, Biological Sciences, 278, 3034–3041. Kr€uger F, Harms I, Fichtner A et al. (2012) High trophic simi- larity in the sympatric North European trawling bat species Myotis daubentonii and Myotis dasycneme. Acta Chiropterologica, 14, 347–356. Kr€uger F, Clare EL, Greit S et al. (2014a) An integrate approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Molecular Ecology, 23, 3657–3671. Kr€uger F, Clare EL, Symondson WO et al. (2014b) Diet of insec- tivorous bat Pipistrellus nathusii during autumn migration and summer residence. Molecular Ecology, 23, 3672–3683. Kunz TH, Braun de Torrez E, Bauer D et al. (2011) Ecosystem services provided by bats. Annals of the New York Academy of Sciences, 1223, 1–38. Laverty TM, Dobson AP (2013) Dietary overlap between cai- mans and spectacled caimans in the Peruvian Amazon. Her- petologica, 69, 91–101. Lazure L, Fenton MB (2011) High duty cycle echolocation and prey detection by bats. The Journal of Experimental Biology, 214, 1131–1137. Levings SC, Windsor DM (1984) Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica, 16, 125–131. Lino A, Fonseca C, Goiti U, Ramos-Pereira MJ (2014) Prey selection by Rhinolophus hipposideros (Chiroptera, Rhinolophi- dae) in a modified forest in Southwest Europe. Acta Chi- ropterologica, 16, 75–83. Lister B, Garcıa A (1992) Seasonality, predation and the behav- ior of a tropical mainland anole. Journal of Animal Ecology, 61, 717–733. MacArthur RH (1965) Patterns of species diversity. Biological Reviews, 40, 510–533. Mancina CA, Garcıa-Rivera L, Miller BW (2012) Wing morphol- ogy, echolocation, and resource partitioning in syntopic Cuban mormoopid bats. Journal of Mammalogy, 93, 1308–1317. © 2015 John Wiley & Sons Ltd DIETARY OVERLAP AND SEASONALITY IN MORMOOPIDS 5305 32 McCracken G, Westbrook J, Brown V, Eldridge M, Frederico P, Kunz TH (2012) Bats track and exploit changes in insect pest populations. PLoS ONE, 7, 1–10. Medellın RA, Arita H, Sanchez-Hernandez O (2008) Identifi- cacion de los Murcielagos de Mexico. Publicaciones Especiales 2. Asociacion Mexicana de Mastozoologıa A.C., Mexico City. Mendez-Alonzo R, Pineda-Garcıa F, Paz H et al. (2013) Leaf phenology is associated with soil water availability and xylem traits in tropical dry forest. Trees, 27, 745–754. Munin RL, Fischer E, Goncalves F (2012) Food habits and diet- ary overlap in phyllostomid bat assemblage in the Pantanal of Brazil. Acta Chiropterologica, 14, 195–204. Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philo- sophical Transactions of the Royal Society of London. Series B, Biological Sciences, 316, 335–427. Oelze VM, Head JS, Robbins MM et al. (2014) Niche differentia- tion and dietary seasonality among sympatric gorillas and chimpanzees in Loango National Park (Gabon) revealed by stable isotope analysis. Journal of Human Evolution, 66, 95–106. O’Farrell MJ, Miller BW (1997) A new examination of echoloca- tion calls of some neotropical bats (Emballonuridae and Mor- moopidae). Journal of Mammalogy, 78, 954–963. Pescador-Rubio A, Rodriguez-Palafox A, Noguera FA (2002) Diversidad y estacionalidad de Arthropoda. In: Historia Nat- ural de Chamela (eds Noguera FA, Vega RJH, Garcıa AAN, Quesada AM), pp. 183–201. Instituto de Biologıa, Universi- dad Nacional Autonoma de Mexico, Mexico. Pianka ER (1973) The structure of lizard communities. Annual Review of Ecology, Evolution, and Systematics, 4, 53–74. Pi~nol J, San Andres V, Clare EL, Mir G, Symondson WO (2014) A pragmatic approach to the analysis of diets of gen- eralist predators: the use of next-generation sequencing with no blocking probes. Molecular Ecology Resources, 14, 18–26. Pompanon F, Deagle BE, Symondson WO et al. (2012) Who is eating what: diet assessment using next generation sequenc- ing. Molecular Ecology, 21, 1931–1950. Pringle EG, Dirzo R, Gordon DM (2012) Plant defense, her- bivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies. Oecologia, 170, 677–685. Quail MA, Smith M, Coupland P et al. (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341. R Core Team (2013) R: A Language and Environment for Statisti- cal Computing. R Foundation for Statistical Computing, Vi- enna, Austria. URL http://www.R-project.org/. Razgour O, Clare EL, Zeale MRK et al. (2011) High-throughput sequencing offers insight into mechanisms of resource parti- tioning in cryptic bat species. Ecology and Evolution, 1, 556–570. Razo-Gonzalez M, Casta~no-Meneses G, Callejas-Chavero A et al. (2014) Temporal variations of soil arthropods commu- nity structure in El Pedregal de San Angel Ecological Reserve, Mexico City, Mexico. Applied Soil Ecology, 83, 88–94. Rezsutek M, Cameron GN (1993) Mormoops megalophyllaMam- malian Species, 448, 277–293. Rolfe AK (2011) Diet of three mormoopid bats (Mormoops blainvil- lei, Pteronotus quadridens, and Pteronotus portoricensis) on Puerto Rico. MSc thesis and Doctoral Dissertations, Depart- ment of Biology, Eastern Michigan University, USA. Rolfe AK, Kurta A (2012) Diet of mormoopid bats on the Car- ibbean island of Puerto Rico. Acta Chiropterologica, 14, 369– 377. Rzedowski J (1981) Vegetacion de Mexico. Editorial Limusa, Mexico City. Sanchez HC, Romero AML (1995) Murcielagos de Tabasco y Cam- peche una propuesta para su conservacion. Cuadernos 24. Insti- tuto de Biologıa de la Universidad Nacional Autonoma de Mexico, Mexico. Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. BioScience, 51, 557–569. Sedlock JL, Kr€uger F, Clare EL (2014) Island bat diets: does it matter more who you are or where you live? Molecular Ecol- ogy, 23, 3684–3694. Smotherman M, Guillen-Servent A (2008) Doppler-shift com- pensation behavior by Wagner0s mustached bat, Pteronotus personatus. The Journal of the Acoustical Society of America, 123, 4331–4339. Steinmetz R, Garshelis DL, Chutipong W et al. (2013) Foraging ecology and coexistence of Asiatic black bear and sun bears in a seasonal tropical forest in Southeast Asia. Journal of Mammalogy, 94, 1–18. Swift SM, Racey PA, Avery MI (1985) Feeding ecology of Pip- istrellus pipistrellus (Chiroptera: Vespertilionidae) during pregnancy and lactation. II. Diet. Journal of Animal Ecology, 54, 217–225. Viera EM, Paise G (2011) Temporal niche overlap among insec- tivorous small mammals. Integrative Zoology, 6, 375–386. Whitaker JO (1994) Food availability and opportunistic versus selective feeding in insectivorous bats. Bat Research News, 35, 75–77. Wiens JJ, Ackerly DD, Allen AP et al. (2010) Niche conser- vatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310–1324. Zeale MRK, Butlin RK, Barker GLA et al. (2011) Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Molec- ular Ecology Resources, 11, 236–244. The scientific question has been developed by V.B.S.R., E.L.C., L.G.H.M. and V.L.R. All samples were collected by V.B.S.R. Molecular lab work was done by V.B.S.R. and E.L.C. Statistical and bioinformatics analyses were performed by V.B.S.R., E.L.C. and A.A.E. V.B.S.R. and E.L.C. wrote the manuscript. All authors revised the manuscript. Data accessibility Morphological data, raw sequence data, representative sequences for each MOTU, MID codes and key to sample identification, matrix of MOTUs and assigned sequences are provided in Dryad doi:10.5061/dryad.6d02s. © 2015 John Wiley & Sons Ltd 5306 V. B . SALINAS- RAMOS ET AL. 33 Supporting information Additional supporting information may be found in the online ver- sion of this article. Table S1 Diet overlap between the three species of insectivo- rous bats (Pteronotus) examined in this study. Table S2 Diversity estimates during wet and dry seasons in three species of insectivorous bats (Pteronotus). Table S3 Diet overlap between the three species of insectivo- rous bats (Pteronotus) examined in this study. Table S4 Diversity estimates during wet and dry seasons in three species of insectivorous bats (Pteronotus). Fig. S1 Interpolation and extrapolation of dietary species rich- ness for predators using the Chai2 estimation for incidence based sample data. Fig. S2 Interpolation and extrapolation of dietary species rich- ness for predators using the Chai2 estimation for incidence based sample data. © 2015 John Wiley & Sons Ltd DIETARY OVERLAP AND SEASONALITY IN MORMOOPIDS 5307 34   35 CAPITULO II SEASONAL VARIATION OF GASTRO-INTESTINAL HELMINTHS OF FOUR BAT SPECIES IN THE DRY FOREST OF OCCIDENTAL MEXICO   36 Seasonal variation of gastro-intestinal helminths of four bat species in the dry 1   forest of Occidental Mexico 2   Variación estacional de helmintos gastrointestinales en cuatro especies de 3   murciélagos en el bosque tropical caducifolio del Occidente de México 4   Valeria B. Salinas-Ramos a , L. Gerardo Herrera M b , David I. Hernández-Mena a , David Osorio Sarabia c , 5   Virginia León-Règagnon b . 6   a Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, 7   Apartado Postal 70-153, 04510 México, Ciudad de México, México. 8   b Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, 9   Apartado Postal 21, San Patricio Jalisco 48980, México 10   c Departamento de Zoología, Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional 11   Autónoma de México, Apartado Postal 70-153, 04510 México, Ciudad de México, México. 12   13   14   15   16   17   18   19   20     37 Resumen. Las investigaciones sobre los helmintos de quirópteros son relativamente escasas en 21   comparación con otros vertebrados. Sin embargo, algunos estudios han explorado los efectos de 22   la variación estacional sobre la carga endoparasitaria. En este estudio, se caracterizó la carga de 23   helmintos gastrointestinales de una especie de murciélago nectarívoro y tres insectívoros para 24   probar la existencia de cambios estacionales en respuesta a las fluctuaciones ambientales y de las 25   presas de los murciélagos. Además, se comparó la carga parasitaria de la especie nectarívora con 26   la de las especies insectívoras para evaluar si la dieta tiene un impacto directo sobre la misma. Se 27   colectaron 20 endoparásitos de 141 murciélagos (43% infectados). Pteronotus personatus tuvo el 28   mayor número de helmintos. No se encontró variación estacional en la mayoría de los casos. Sin 29   embargo, la prevalencia de cuatro especies de endoparásitos fue significativamente mayor 30   durante una de las épocas del año. La mayor riqueza de especies se registró en P. parnellii 31   durante la época de lluvias. El número efectivo de especies fue mayor durante la época de secas 32   en las especies de Pteronotus. En la mayoría de los parámetros evaluados, la especie nectarívora 33   mostró una menor carga parasitaria que las especies insectívoras. La dieta parece dirigir la 34   estructura de las infracomunidades de helmintos, aunque se encontraron patrones heterogéneos 35   en la relación entre la diversidad y la carga de helmintos y los patrones estacionales de la dieta de 36   los murciélagos y la abundancia de los posibles huéspedes intermediarios. Es necesario examinar 37   la abundancia estacional de los huéspedes intermediarios consumidos por las especies de 38   murciélagos estudiados y sus tasas de infección. 39   Palabras clave: endoparásitos, murciélago, Pteronotus, estacionalidad, interacciones40     38 Abstract. Studies on helminths of chiropterans are relatively uncommon compared to those of 41   other animals. However, some studies have explored the effects of seasonal variation on their 42   endoparasite load. We characterized the gastro-intestinal helminth load of one nectarivorous and 43   three insectivorous bats species to test the existence of seasonal changes in response to known 44   seasonal ambient and bat prey fluctuations. In addition, we compared the parasite load of the 45   nectarivorous species with that of insectivores to evaluate if diet has a direct impact on parasite 46   load. We collected 20 endoparasite species from 141 bats (43% infected). Pteronotus personatus 47   had the highest number of helminths individuals. We did not found seasonal variation in most of 48   the cases. However, the prevalence of four endoparasite species was significantly higher during 49   one of the seasons. The highest richness was registered in P. parnellii during the wet season. The 50   effective number of species was higher during the dry season for Pteronotus species. In most 51   parameters evaluated, the nectarivorous species showed lower parasite load than the 52   insectivorous species. Diet seems to be an important driver of helminth infracommunities 53   structure but we found heterogenous patterns of the relationship between diversity and load of 54   helminths and seasonal patterns of bat´s diets and abundance of potential intermediate hosts. 55   Examination of seasonal abundance of intermediate hosts used as food by our focal bat species 56   and of their helminth infection rates is warranted. 57   Key words: endoparasites, bat, Pteronotus, seasonality, interactions. 58     39 Introduction 59   All organisms, including parasites, are influenced directly or indirectly by ambient 60   variations (Pilosof et al., 2012; Marcogliese, 2001). The transmission, development and 61   distribution of parasites can be regulated by abiotic factors (Brooks and Hoberg, 2007; Gotz et 62   al., 2010). In particular, dynamics of helminths are regulated by environmental conditions such as 63   ambient temperature, humidity and precipitation (Appleton and Gouws, 1996; Tinsley et al., 64   2001; Mouritsen and Poulin, 2002; Moyer et al., 2002; Hudson et al., 2006; Doi and Yurlova, 65   2011). A few studies have also suggested that seasonal variation in parasite communities is 66   influenced by biotic factors such as abundance, diet, reproductive behavior, and 67   immunocompetence of hosts (Esch and Fernandez, 1993; Felis and Esch, 2004; Šimková et al., 68   2005; Carvalho and Luque, 2011). 69   Bats are one of the most diverse and widespread of mammal orders (Altringham, 1996; 70   Wilson and Reeder, 2005). Studies of helminths in chiropteran populations are relatively 71   uncommon compared to those of other animals (Kirschbaum et al., 2009; Lord et al., 2012). 72   Chiropterans harbor a great variety of helminths, including trematodes, cestodes and nematodes 73   (Cuartas-Calle and Muñoz-Arango, 1999; Lord et al., 2012) and most studies consist of checklists 74   of species and new descriptions of host or localities (Shimalov et al., 2002; Guzmán-Cornejo et 75   al., 2003; Nogueira et al., 2004; Nahhas et al., 2005; McAllister et al., 2007; Muñoz et al., 2011). 76   Nevertheless, a few studies have explored the effect of seasonal variation in intensity and 77   prevalence of bat endoparasites (Nickel and Hansen, 1967; Blankespoor and Ulmer, 1970; 78   Coggins et al., 1982; Lord et al., 2012). For example, studies with insectivorous bats have 79   reported that prevalence and intensity of helminths is low during the spring, increasing in the 80   summer and reaching a peak in the autumn (Nickel and Hansen, 1967; Blankespoor and Ulmer, 81     40 1970). Among other factors intrinsic to host biology, seasonal changes in endoparasite abundance 82   might be related to increase abundance of arthropods that act as intermediate hosts and that are 83   then ingested by bats (Lord et al., 2012). 84   Trematodes are the most diverse group of helminths found in bats (Uberlaker, 1970; 85   Coggins, 1988). They are found mainly within the gastrointestinal tract and in other body cavities 86   (Coggins, 1988; Ricci, 1995; Shimalov et al., 2002), and their incidence and prevalence is 87   affected by the host´s feeding habits (Marshall and Miller, 1979; Coggins, 1988). For example, 88   most digeneans species (trematodes) have been collected in insectivorous bats since they are 89   more prone to ingest infected insects (intermediate hosts) than nectar or fruit feeding bats 90   (Ubelaker, 1970, Coggins, 1988, García-Vargas et al., 1996; Lord et al., 2012). Studies with other 91   vertebrates (e.g. fishes) have reported that the diet of the host determines the abundance and 92   richness of helminths (Bell and Burt 1991; Šimková et al., 2001; Poulin and Morand 2004). 93   In this study, we investigated the seasonal variation of the endoparasitic load in three 94   insectivorous [Pteronotus davyi (Gray), P. parnellii (Gray), and P. personatus (Wagner)] and one 95   nectarivorous [Leptonycteris yerbabuenae (Martinez and Villa-R)] bat species. Previous studies 96   have reported the helminthological record of these bats species in Mexico (Caballero-Caballero 97   and Zerecero, 1942; García-Vargas et al., 1996; Pérez-Ponce de León et al., 1996; Guzmán-98   Cornejo et al., 2003; Espericueta-Viera, 2012; Peralta- Rodríguez et al., 2012) but few have 99   examined seasonal variations of infection patterns. For example, Clarke (2008) found no seasonal 100   variation in endoparasite species composition of P. davyi and P. personatus and, no seasonal 101   difference in prevalence and abundance in a related species (Mormoops megalophylla) in a 102   tropical deciduous forest in southern Mexico. 103     41 The study was conducted in a highly seasonal dry forest Tropical dry forests have extreme 104   changes in the physiognomy and availability of food resources during the wet and dry seasons, 105   affecting the composition and diversity of fauna (Castaño-Meneses, 2014). For instance, the 106   abundance of arthropods in tropical dry forests experiences considerable seasonal fluctuations, 107   reaching their highest level during the wet season (Leavings and Windsor, 1984; Andresen, 2005; 108   Güizado and Casas-Andreu, 2011; Castaño-Meneses, 2014), a pattern that has been previously 109   reported for the study region (Pescador-Rubio et al., 2002). 110   A previous study using DNA barcodes showed that the diet of the Pteronotus species 111   considered in our study is more diverse during the dry season (Salinas-Ramos et al. 2015). Some 112   helminths use arthropods as intermediate hosts (Bush et al., 2001; Clarke, 2008) and 113   insectivorous bats as definite host (Chitwood, 1938; García-Vargas, 1995). Accordingly, we 114   predicted that the endoparasite load in insectivorous bats will exhibit seasonal changes, having 115   the highest richness during the dry season (spring), when their diet is more diverse (Salinas-116   Ramos et al., 2005). In contrast, we expected that the prevalence, abundance and intensity of 117   helminths would be higher in the rainy season, when the abundance of intermediate hosts peaks 118   (Lord et al., 2012). We also predict that L. yerbabuenae will have lower richness, prevalence, 119   abundance and intensity of endoparasites than insectivorous bats because its plant-based diet 120   makes them less susceptible to be infected (Ubelaker, 1970; Coggins, 1988; García-Vargas et al., 121   1996; Lord et al., 2012). 122   123   124   125     42 Material and Methods 126   Study area 127   The four focal bat species roost in a cave in San Panchito Island, off the Pacific coast, in Jalisco, 128   Mexico (19.5350 N, 105.08832 W). The adjacent continental region is composed of tropical 129   deciduous and tropical semideciduous forest (Rzedowski, 1981), with most of the rainfall 130   occurring from July to November (Bullock, 1995; Pringle et al., 2012; Méndez-Alonzo et al., 131   2013). We carried out three collecting trips during the dry season (spring: June 2012, April 2013, 132   May 2014) and four in the wet season (summer: July 2013; autumn: November 2012, November 133   2013 and September 2014). Bats were collected with mist nests at sunset and with sweep nets 134   inside the cave during the morning. All the specimens captured were adults and we held each 135   individual in a cotton bag. Bats were transported to the Estación de Biología Chamela. 136   Bats were sacrificed with chloroform and deposited as voucher specimens in the National 137   Mammal Collection of the Institute of Biology and in the Mammal Collection of the Faculty of 138   Sciences of the National Autonomous University of Mexico. The gastrointestinal tract was 139   dissected from each bat and immersed in phosphate-buffered saline in a Petri dish. The stomach 140   and intestine were examined carefully, using a stereo-microscope (Leica Microsystems, ES2, 141   Wetzlar, Germany). All the helminths were fixed by sudden immersion in hot 4% formalin and 142   preserved in 70% ethanol. Specimens were stained with Mayer´s paracarmine, dehydrated, 143   cleared in methyl salicylate and mounted in Canada balsam (Lamothe-Argumedo, 1997). We 144   took several measurements (e.g. length, width at the widest point of the body, and the size and 145   position of oral sucker, acetabulum, eggs, etc.) to identify the different helminth species. 146   Morphological data were cross-referenced with the available literature on species known to be 147     43 present in bats (Moravec, 1982; Vaucher and Durette-Desset, 1986; Justine, 1989; Vaucher, 148   1992; García-Vargas, 1995; Guerrero et al., 2003) 149   150   Statistic Analysis 151   In order to characterize the seasonal variation in endoparasite load, we calculated the following 152   descriptors of parasite populations: prevalence, abundance and intensity in the dry and wet 153   seasons. We performed chi-squared test with the prevalence data and boostrap test with the mean 154   abundance and intensity values of each endoparasite species to evaluate significant differences 155   between the seasons. We also calculated for each bat species the proportion of hosts infected 156   considering the total endoparasite records, the average number of total endoparasites per host 157   individual examined, and the average number of total endoparasites per infected host individual. 158   These values were compared between the nectarivorous species and the insectivorous species 159   during the wet and dry season to confirm if the differences between their parasitic loads were 160   significant using chi-squared and boostrap tests. Statistical analyses were conducted in 161   Quantitative Parasitology (Version, 3.0, Reiczigel and Rózsa, 2005), and the significance level 162   was set at P≤0.05. 163   Richness, Shannon–Wiener and Simpson-Gini Indexes were calculated to assess the 164   diversity of endoparasite species during both seasons for each bat species. We transformed index 165   values to the effective number of species (MacArthur, 1965; Hill, 1973) in order to unify an 166   intuitive interpretation of diversity (Jost, 2006). Because L. yerbabuenae registered low parasitic 167   load these indexes were not calculated for this bat species. Descriptive analyses and graphics 168     44 were conducted in GraphPad Prism (Version 6.0 for Windows, GraphPad Software, La Jolla, 169   California, USA). 170   171   Results 172   One hundred and forty one bats were collected during seven fieldtrips, 43% of which had 173   at least one helminth species. We found twelve species of parasites, totaling 958 individual 174   helminthes, of which 94.9% belonged to 4 trematode species, followed by 7 nematode species 175   and 1 cestode species (4.4% and 0.7% of individuals, respectively). Only six of these species 176   were collected in both seasons. Leptonycteris yerbabuenae was the bat species with the lowest 177   number of helminth individuals while P. personatus had the highest number of helminth 178   individuals from the total of helminths. One individual and two individual helminthes collected in 179   L. yerbabuenae and P. davyi, respectively, were in poor conditions to be identified to species and 180   were not included to measure richness and diversity (Table 1). Limatulum gastroides was the 181   only species recorded in the three insectivorous bat species and it was particularly abundant in P. 182   personatus (Table 1). 183   The descriptors of parasite populations were not calculated for the two species of 184   helminths reported in L. yerbabuenae because their frequencies were low (n=1). Prevalence was 185   similar for both seasons in most endoparasite species except for Capillaria sp. and Websternema 186   parnellii which had a higher prevalence in the wet season in P. davyi, and Anoplostrongylinae 187   gen. sp. and L. gastroides in which prevalence was higher in the dry season in P. parnellii and P. 188   personatus, respectively (Table 2). Mean abundance and intensity did not differ significantly 189   between seasons for any endoparasite species (Table 2). 190     45 Percent of bats infected, average number of endoparasites per examined individual host 191   and average number of endoparasites per infected individual host did not differ between seasons 192   in most cases (Table 3). The only exception to this pattern was P. personatus in which there was 193   a higher proportion of infected bats in the dry season (Table 3). L. yerbabuenae had a lower 194   percentage of infected individuals than P. personatus but showed no difference with the other 195   two insectivores in the dry season (Table 4). In the wet season the three insectivore species had a 196   higher percentage of infected individuals than L. yerbabuenae (Table 4). There were no 197   differences in average number of parasite individuals per examined host in L. yerbabuenae and 198   the insectivorous species, except for P. personatus, in which average number per examined hosts 199   was higher in the wet season (Table 4). The average number of parasites per infected host was 200   not compared because the values of L. yerbabuenae were low. 201   The highest helminths species richness was recorded in P. parnellii in both seasons (Table 1). In 202   terms of diversity, effective number of species calculated from Shannon-Wiener and Simpson-203   Gini Indexes were higher for all Pteronotus species during the dry season (Figure 1). 204   205   Discussion 206   We characterized the endoparasite load of one nectarivorous and three insectivorous bat 207   species to examine the existence of seasonal changes in response to known seasonal ambient and 208   prey fluctuations. We also contrasted the endoparasite load of the nectarivorous species with that 209   of insectivorous bats to evaluate if its diet makes it less susceptible to be infected. In the 210   following lines, we discuss how our findings fitted to our predictions. 211     46 Seasonality of endoparasite load.- Our hypothesis of seasonal changes in parasite load was 212   rejected in most cases either when comparing helminths species or the total endoparasite species. 213   Mean abundance and intensity did not differ significantly between seasons for any endoparasite 214   species. Our prediction of higher parasite load in the wet season was supported by the finding of 215   higher prevalence in this season in Capillaria sp. and Websternema parnellii in P. davyi, but in 216   contrast prevalence in Anoplostrongylinae gen. sp. and L. gastroides was higher in the dry season 217   in P. parnellii and P. personatus, respectively. Percent of bats infected, average number of 218   endoparasites per examined host individual and average number of endoparasites per infected 219   host individual did not differ between seasons in most cases. The only exception to this pattern 220   was P. personatus in which there were a higher proportion of infected bats in the dry season in 221   contrast to our prediction. 222   Epidemiological models predict a positive relationship between host population density 223   and abundance macroparasite populations (Anderson & May 1978, 1991; May & Anderson 1978; 224   Altizer et al., 2003). When the host density is higher the transmission stages (e.g. a egg/larvae) of 225   the parasite increased their probability of finding a permanent host (Anderson & May 1978; May 226   & Anderson 1978; Lafferty, 1997; Arneberg et al., 1998) or intermediate host. The lack of a 227   uniform pattern in the cases when seasonal changes of parasite load were detected indicates that 228   the rate of infection depends on the abundance of arthropod species that serve as intermediate 229   hosts. We based our prediction of a higher infestation rate in the wet season on the large increase 230   in arthropod abundance during this season in the study region (Güizado and Casas-Andreu, 2011; 231   Andresen, 2005). The variation in diet of Pteronotus species in Chamela is driven by the 232   abundance and availability of insect prey (Salinas-Ramos et al., 2015), which are highly variable 233   in time and space (Aldridge and Rautenbach, 1987; Whitaker, 1994). More than 1,877 species of 234     47 arthropods have been recorded in Chamela, of which 570 species are found throughout the year 235   while 622 and 231 species are found just during the wet or dry season, respectively (Pescador-236   Rubio et al., 2002). Seasonal changes in the abundance of some species of helminths detected in 237   our study might reflect changes in the abundance of some arthropod species. For example, 238   Trichoptera collected in rivers are more abundant in the dry season (Pescador-Rubio et al., 2002). 239   Further studies focused on the examination of seasonal abundance of arthropod species and their 240   endoparasites are warrant to understanding seasonal dynamics of infestation rate in Pteronotus 241   species. 242   Our findings partly diverge from other studies with North American insectivorous bats 243   (Nickel and Hansen, 1967; Blankespoor and Ulmer, 1970) in which helminth abundance 244   increases when abundance of intermediate hosts is presumably higher (Lord et al., 2012). Our 245   study partly coincides with the lack of seasonal patterns in the load of helminth species reported 246   for the same Pteronotus species in a dry forest in Southern Mexico (Clarke, 2008). 247   Another factor that might influence the absence of a pattern is the “dilution effect” 248   (Hamilton 1971). The increase in the number of individuals of intermediate hosts leads to a 249   decrease in an individual’s probability to be parasitized (Ostfeld and Keesing, 2000; Krasnov et 250   al. 2007). In other words, bat probability to be infected by helminths decreases when the 251   abundance of the intermediate host increases. 252   Seasonality of endoparasite diversity.- Our hypothesis of seasonal changes in endoparasite 253   diversity was partly supported. Species richness was slightly higher in P. parnellii in the wet 254   season but it remained the same in P. davyi and P. personatus. However, following our 255   prediction, the effective number of species was higher during the dry season for the three 256     48 Pteronotus species. Dietary diversity of P. davyi and P. personatus increases in the dry season 257   (Salinas-Ramos et al., 2015), when arthropod abundance is lower in the area (Güizado and Casas-258   Andreu, 2001; Andresen, 2005). It has been suggested that these bat species adopt a more 259   generalist strategy when prey are limited and they become more selective when the insect 260   abundance increases during the wet season (Salinas-Ramos et al., 2015). In the case of P. 261   parnelli, it had the highest endoparasite richness and effective number of species of all 262   insectivorous bats which matches the more diverse diet reported in Chamela for P. parnelli 263   compared to the diets of P. davyi and P. personatus all year long (Salinas-Ramos et al., 2015). 264   Endoparasite infection and bat dietary habits.- Our data partly confirmed the hypothesis that the 265   nectarivorous L. yerbabuenae had lower endoparasite richness and load than the insectivorous 266   species. Endoparasite richness in L. yerbabuenae (2 species) was much lower than in P. parnellii 267   (9 species) but not too different than in P. davyi (4 species) and P. personatus (3 species). A 268   stronger pattern appears when percentage of infected hosts was compared: L. yerbabuenae had a 269   lower value than P. personatus in the dry season, and that the three insectivore species in the wet 270   season. However, although in general the fraction of infected hosts in the nectarivorous bats is 271   lower, the average number of parasite individuals per examined host was significantly lower only 272   when compared with P. personatus. All things considered, there appears to be a general trend 273   towards a lower infection rate in L. yerbabuenae although it depends on the species with which it 274   is compared and the time of the year in which the comparison is made. It is known that several 275   helminth spcecies, especially trematodes, require insects as intermediate hosts [e.g. Capillaridae 276   spp. (Nematoda) or V. elongatus (Cestoda)], which may then be ingested by the bat (Adams, 277   1989; Rezsutek and Cameron, 1993; Cuartas-Calles and Muñoz-Arango, 1999; Bush et al., 2001; 278   Lord et al., 2012). Some frugivorous and nectarivorous bats supplement their diet with protein 279     49 from insects (Gardner, 1977; Thomas, 1984) which might explain its infection by helminths 280   (Cuartas-Calles and Muñoz-Arango, 1999; Nogueira et al., 2004). Leptonycteris yerbabuenae 281   feeds on nectar, pollen, and fruit (Gardner, 1977; Cole and Wilson, 2006) but insects remains 282   have been observed in stomachs contents (Howell, 1979) and its presence in feces, increases 283   when the abundance of chiropterophilic flowers is low (Stoner et al., 2003). Therefore, low levels 284   of endoparasite infection in L. yerbabuenae might be related to a secondary role of insects in its 285   diet. 286   Another factor that might influence the presence of some parasite species is the 287   phylogenic signal (i.e. be contingent on host phylogeny; Poulin et al., 2013; Presley et al., 2015). 288   In this study, the insectivorous species are sympatric hosts that may provide habitats and 289   resources that are similar for the parasites, thus increasing the possibility of sharing related 290   heminth species. Leptonycteris yerbabuenae is not closely related to Pteronotus species, which 291   could make it more suitable for other kind of helminths species. 292   Concluding remarks.- Host-parasite interactions could impact food webs and community 293   structures (Mouritsen and Poulin, 2002; Sukhdeo, 2010) and the studies of the factors regulating 294   helminth communities are complex (Lord et al., 2012). Our study examined the relationship 295   between diversity and load of helminthes and seasonal patterns of bat´s diets and abundance of 296   potential intermediate hosts previously measured. We found heterogeneous patterns of this 297   relationship that warrant further examination of seasonal abundance of intermediate hosts used as 298   food by our focal bat species and of their helminth infection rates. This kind of studies might be 299   facilitated by the recent development of DNA libraries of arthropods and helminths in the study 300   region (Fernández-Flores et al., 2013; Prosser et al., 2013). 301     50 Acknowledgements 302   This work was supported by grants given by Consejo Nacional de Ciencia y Tecnología 303   (CONACyT, Red Temática del Código de Barras de la Vida, 2013-2015) to VLR, by Dirección 304   General de Asuntos del Personal Académico (IN202113) to LGHM. VBSR thanks Programa de 305   Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México and CONACyT 306   for the scholarship received. We also thank Carlos A. González-Castro, Andrea Rebollo-307   Hernández and Alejandro Zaldivar-Riverón for their assistance in the field and the staff at the 308   Estación de Biología Chamela, UNAM for hosting this work.  309   310   References 311   - Adams, J. 1989. Pteronotus davyi. Mammalian species 346: 1 - 5. 312   - Aldridge H.D.J.N. and I. L. Rautenbach. 1987. Morphology, echolocation and resource 313   partitioning in insectivorous bats. Journal of Animal Ecology 56: 763-778. 314   - Altizer S, Harvell D, Friedle E. 2003.Rapid evolutionary dynamics and disease threats to 315   biodiversity. Trends in Ecology and Evolution.18:589–596. 316   - Altringham, J. D. 1996. Bats Biology and Behavior. Oxford University Press, United 317   Kingdom. 851p. 318   - Andresen, E. 2005. Effects of season and vegetation type on community organization of 319   dung beetles in a tropical dry forest. Biotropica 37: 291 – 300. 320   - Appleton, C. C. and E. Gouws. 1996. The distribution of common intestinal nematodes 321   along an altitudinal transect in KwaZulu-Natal, South Africa. Annals of Tropical 322   Medicine Parasitology 90: 181–188. 323     51 - Bell, G. and A. Burt. 1991. The comparative biology of parasite species diversity: 324   Intestinal helminths of freshwater fishes. Journal of Animal Ecology. 60:1046–1063 325   - Blankespoor, H. D. and M. J. Ulmer. 1970. Helminths from six species of Iowa bats. 326   Proceedings of the Iowa Academy of Sciences 77: 200-206. 327   - Brooks, D. R. and E. P. Hoberg. 2007. How will global climate change affect parasite-328   host assemblages? Trends in Parasitology 23: 571-574. 329   - Bullock, S. H. 1995. Plant reproduction in neotropical dry forest. In Seasonally Dry 330   tropical Forests. Bullock, S.H., H.A. Mooney, and E. Medina (eds.). Cambridge 331   University Press. Cambridge, UK. 277-303p. 332   - Bush A. O., J. C. Fernández, G. W. Esch, and J. R. Seed. 2001. Parasitism. The diversity 333   and ecology of animal parasites. Cambridge University Press. United Kingdom. 556pp. 334   - Caballero-Caballero, E. and C. Zerecero. 1942. Trematodos de los murciélagos de México 335   II. Redescripción y posición sistemática de Distommum tubiporum Braun, 1900. Anales 336   del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 13: 337   97-104. 338   - Carvalho, A. R. and J. L. Luque. 2011. Seasonal variation in metazoan parasites of 339   Trichiurus lepturus (Perciformes: Trichiuridae) of Rio de Janeiro, Brazil. Brazilian 340   Journal of Biology 71(3) 771-782. 341   - Castaño-Meneses, G. 2014. Trophic guild structure of a canopy ants community in a 342   Mexican tropical deciduous forest. Sociobiology 61: 35–42. 343   - Chitwood, B. G. 1938. Some nematodes from the caves of Yucatan. Carnegie Institution 344   of Washington. Publication 491:51-66 345     52 - Clarke, E. 2008. Descripción de la helmintofauna asociada a tres especies de murciélagos 346   (Chiroptera: Mormoopidae) en el municipio de Apazapan, Veracruz. Tesis de Maestría, 347   Instituto de Ecología. A. C. México. Xalapa, Veracruz. 98 pp. 348   - Coggins, J.R. 1988. Methods for the ecological study of bat endoparasites. In T.H. Kunz 349   (ed.). Ecological and behavioral methods for the study of bats. Smithsonian Instiute, 350   Washington, D.C. 475-489. 351   - Coggins, J. R., J. L. Tedesco, and C. E. Rupprecht. 1982. Seasonal changes and 352   overwintering of àrasites in the bat, Myotis lucifugus (Le Conte), in Wisconsin 353   Hibernaculum. The American Midland Naturalist 107: 305-315. 354   - Cole, F. R and D. E. Wilson. 2006. Leptonucteris yerbabuenae. Mammalian speices 797: 355   1-7. 356   - Cuartas-Calles, C. and J. Muñoz-Arango. 1999. Nemátodos en la cavidad abdominal y el 357   tracto digestivo de algunos murciélagos Colombianos. Caldasia 21:10-25. 358   - Doi, H. and N. I. Yurlova. 2011. Host-parasite interactions and global climate 359   oscillations. Parasitology 1022-1028. 360   - Esch, G. W. and J. C. Fernández. 1993. A functional biology of parasitism: Ecological 361   and evolutionary implications. Cambridge, Chapman & Hall. 337pp. 362   - Espericueta-Viera, J. C. 2012. Diversidad de murciélagos y sus nematodos parásitos en el 363   area de proteccion de flora y fauna Meseta de Cacaxtla Sinaloa, México. Tesis, Centro 364   Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto 365   Politécnico Nacional. Unidad Sinaloa. 84pp. 366   - Fernández- Flores, S. J. L. Fernández-Triana, J. J. Martínez and A. Zaldívar-Riverón. 367   2013. DNA barcoding species inventory of Micrograstrinae wasps (Hymenoptera, 368     53 Braconidae) from a Mexican tropical dry forest. Molecular Ecology Resources. 13: 1146-369   1150. 370   - Felis, K. J. and G.W. Esch. 2004. Community structure and seasonal dynamics of the 371   helminth parasites in Lepomis cyanellus e L. macrochirus from Charles , pond, North 372   Carolina: host size and species as determinants of community structure. Journal of 373   Parasitology 90: 41-49. 374   - Gardner, A.L. 1977. Feeding habits. In Biology of bats of the New World Family 375   Phyllostomatidae, Baker, R. J. J.K. Jones Jr. and D.C. Carter (eds.). Part II. Special 376   Publications the Museum Texas Tech University 13: 293 – 350. 377   - García-Vargas, F. 1995. Helmintos parásitos de murciélagos en la Estación de Biología 378   Chamela, Jalisco. Tesis, Facultad de Ciencias, Universidad Nacional Autónoma de 379   México. México, D.F. 66 pp. 380   - García-Vargas, F., D. Osorio S., and G. Pérez-Ponce de León. 1996. Helminths parasites 381   of bats (Mormooopidae y Phyllostomidae) from the Estación de Biología Chamela, 382   Jalisco State, Mexico. Bat Reasearch News 37:7-8. 383   - Gotz, F., R. Harf, S. Sommer, and S. Matthee. 2010. Effects of precipitation on parasite 384   burden along a natural climatic gradient in southern Africa-implications for possible shifts 385   in infestation patterns due to global changes. Oikos 119: 1029 -039. 386   - Güizado, R. M. A., and G. Casas-Andreu. 2011. Facultative Specialization in the Diet of 387   the Twelve-lined Whiptail, Aspidoscelis lineatissima. Journal of Herpetology 3: 287-290. 388   - Guzmán-Cornejo, C., L. García-Prieto, G. Pérez-Ponce de León, and J. B. Morales-389   Malacara. 2003. Parasites of Tadarida brasiliensis mexicana (Chiroptera: Molossidae) 390   from arid regions of México. Comparative Parasitology 70(1): 11-25. 391     54 - Guerrero, R., C. Martin, and O. Brain. 2003. Litosoides yutajensis n. Sp., first record of 392   this filarial genus in a mormoopod bat. Prasite 10: 219-225. 393   - Jost, L. 2006. Entropy and diversity. Oikos 113: 363-375. 394   - Hamilton WD. 1971. Geometry for the selfish herd. Journal of Theoretical Biology. 395   31:295-311. 396   - Hill, M. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 397   54: 427–432. 398   - Howell, D. J. 1979. Flock foraging in nectar-feeding bats: advantages to the bats and to 399   the host plants. The American Naturalist 114: 23-49. 400   - Hudson, P. J., I. M. Cattadori, B. Boag, and A. P. Dobson. 2006. Climate disruption and 401   parasite-host dynamics: patterns and processes associated with warming and the 402   frequency of extreme climatic events. Journal of Helminthology 80:175-182. 403   - Justine. J-L. 1989. Quatre nouvelles espèces de Capillaria (Nematoda, Capillariinae) 404   parasites de Chiroptères du Gabon. Bulletin du Muséum national d'Histoire naturelle, 405   Paris, 4° Série, 11 (A), 535-561. 406   - Krasnov, B.R., M. Stanko, and S. Morand. 2007. Host community structure and 407   infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. 408   Oecologia. 154: 185-194. 409   - Kirschbaum, K., S. Perkins, and M. R. Gannon. 2009. Host-Parasite Interactions of 410   Tropical Bats in Puerto Rico. Acta Chiropterologica. 11: 157-162. 411   - Lafferty, K.D. 1997. Environmental parasitology: What can parasites tell us about human 412   impacts on the environment. Parasitol Today. 13:7, 251-255 413   - Lamothe - Argumedo, R. 1997. Manual de técnicas para preparar y estudiar los parásitos 414   de animales silvestres. México, D.F. A.G.T. Editor. 43pp. 415     55 - Leavings S.C. and D. M. Windsor. 1984. Litter moisture content as a determinant of litter 416   arthropod distribution and abundance during the dry season on Barro Colorado Island, 417   Panama. Biotropica 16: 125-131. 418   - Lord, J. S., S. Parker, F. Parker, and D. R. Brooks. 2012. Gastrointestinal helminths of 419   pipistrelle bats (Pipistrellus pipistrellus/ Pipistrellus pygmaeus) (Chiroptera: 420   Vespertilionidae) of England. Parasitology139: 366-374. 421   - MacArthur, R. H. 1965. Patterns of species diversity. Biological Reviews 40: 510–533. 422   - Marshall, M.E. and G. C. Miller. 1979. Some digenetic trematodes from Ecuadorian bats 423   including five new species and one new genus. Journal of Parasitololgy 65:909–917. 424   - McAllister, C. T., C. R. Bursey, and R. C. Dowler. 2007. Acanthatrium alicatai 425   (Trematoda: Lecithodendriidae) from two species of bats (Chiroptera: Vespertilionidae) in 426   southwestern Texas. Southwestern Association of Naturalists 52: 597-600. 427   - Méndez-Alonzo, R., F. Pineda-García, and H. Paz, J. A. Rosell, and M. E. Olson. 2013. 428   Leaf phenology is associated with soil water availability and xylem traits in tropical dry 429   forest. Trees 27: 745-754. 430   - Moravec, F. 1982. Proposal of a new systematic arrangement of nematodes of the family 431   Capillariidae. Folia Parasitologica 28:119-132. 432   - Mouritsen, K. N. and R. Poulin. 2002. Parasitism, community structure and biodiversity 433   in intertidal ecosystems. Parasitology 124: 101-117. 434   - Moyer, B. R., D. M. Drown, and D. H. Clayton. 2002. Low humidity reduces ectoparasite 435   pressure: implications for host life history evolution. Oikos 97: 223-228. 436     56 - Muñoz, P., F. Fredes, E. Raffo, D.González-Acuña, L. Muñoz, and C. Cid. 2011. New 437   report of parasite-fauna of the free-tailed bat (Tadarida brasiliensis, Geoffroy, 1824) in 438   Chile. Veterinary Research Communications 35: 61-66. 439   - Nahhas, F, M., R. Yang, and S. Uch. 2005. Digenetic trematodes of Tadarida brasiliensis 440   mexicana (Chiroptera: Molossidae) and Myotis californicus (Chiroptera:Vespertilionidae) 441   from Northern California, U.S.A. Comparative Parasitology 72:196-199. 442   - Nickel, P. A. and M. F. Hansen. 1967. Helminths of bats collected in Kansas, Nebraska 443   and Oklahoma. The American Midland Naturalist 78: 481-486. 444   - Nogueira, M. R., S. P. de Fabio, and A. L. Peracchi. 2004. Gastrointertinal helminth 445   parasitism in fruit-eating bats (Chiroptera: Stenodermatinae) from western Amazonian 446   Brazil. Revista de Biología Tropical 52(2): 1-5. 447   - Ostfeld, R. S and F. Keesing. 2000. Biodiversity and disease risk: the case of Lyme 448   disease. Conservation Biology. 14(3): 722-728. 449   - Peralta- Rodríguez, J. L., J. M. Caspeta-Mandujano, and J. A. Guerrero. 2012. A New 450   Spirurid (Nematoda) Parasite from Mormooopid Bats in Mexico. Journal of Parasitology 451   98:1006-1009. 452   - Pérez-Ponce de León, G., V. León-Régagnon, and F. García-Vargas. 1996. Helminth 453   Parasites of Bats from Neotropical Regions of Mexico. Bat Research News 37: 3-6. 454   - Pescador-Rubio, A., A. Rodriguez-Palafox, F. A. Noguera. 2002. Diversidad y 455   estacionalidad de Arthropoda. In Historia Natural de Chamela. Noguera, F.A., R.J.H. 456   Vega, A. A. N. García, and A.M. Quesada(eds.). Instituto de Biología, Universidad 457   Nacional Autónoma de México, Mexico. 183-201p. 458     57 - Poulin, R. and S. Morand. 2004. Parasite biodiversity. Smithsonian Inst Press, 459   Washington. 460   - Poulin, R., B. R. Krasnov, S. Pilosof, and D.W. Thieltges. 2013. Phylogeny determines 461   the role of helminths parasites in intertidal food webs. Journal of Animal Ecology. 82: 462   1265-1275. 463   - Presley, S. J, T. Dallas, B. T. Klingbeil, and M. R. Willig. 2015. Phylogenetic signals in 464   host-parasite associations for Neotropical bats and Nearctic desert rodents. Biological 465   Journal of the Linnean Society. 116:312-327. 466   - Pringle, E. G., R. Dirzo, and D.M. Gordon. 2012. Plant defence, herbivory, and the 467   growth of Cordia alliodora trees and their symbiotic Azteca ant colonies. Oecologia 170: 468   677-685. 469   - Prosser, S. J. M. G. Velarde-Aguilar, V. León-Règagnon and P. D. N. Hebert. 2013. 470   Advancing nematodes barcoding: A primer cocktail for the cytochrome c oxidase subunit 471   I gene from vertebrate parasitic nematodes. Molecular Ecology Resources. 13: 1108-472   1115. 473   - Rózsa, L., J. Reiczigel, G. Majoros. 2000. Quantifying parasites in samples of hosts. 474   Journal of Parasitology. 86: 228-232. 475   - Rezsutek, M. and G. N. Cameron. 1993. Mormoops megalophylla. Mammalian species 476   448: 1-5. 477   - Ricci, M. 1995. Trematode parasites of Italian bats. Parassitologia 37:199-214. 478   - Rzedowski, J. 1981. Vegetación de México. Editorial Limusa, Mexico City. 434pp. 479   - Salinas-Ramos, V. B., L. G. H. Montalvo, V. León-Regagnon, A. Arrizabalaga-Escudero, 480   and E. L. Clare. 2015. Dietary overlap and seasonality in three species of mormoopid bats 481   from a tropical dry forest. Molecular Ecology 24:5296-5307. 482     58 - Shimalov, V. V., M. G. Demyanchik, and V.T. Demyanchik. 2002. A study of the 483   helminh fauna of the bats (Mammalia, Chiroptera: Vespertillionidae) in Belarus. 484   Parasitology Research 88:1011. 485   - Šimková, A., J. Jarkovsky, B. Koubková, V. Barus, and M. Prokes. 2005. Associations 486   between fish reproductive cycle and the dynamics of metazoan parasite infections. 487   Parasitology Research 95(1) 65-72. 488   - Stoner, K. E., K. A. O. Salazar, R. C. R. Fernández and M. Quesada. 2003. Population 489   dynamics, reproduction, and diet of the lesser long- nosed bat (Leptonycteris curasoae) in 490   Jalisco, Mexico: implications for conservation. Biodiversity and Conservation 12: 357-491   373. 492   - Sukhdeo, M. V. K. 2010. Food Webs for Parasitologists: A Review. Journal of 493   Parasitology. 96:273-284. 494   - Thomas, D.W. 1984. Fruit intake and energy budgets of frugivorous bats. Physiological 495   Zoology 57: 457-467. 496   - Tinsley, R. C., J. E. York, A. L. E. Everard, L. C. Stott, S. J. Chapple, and M. C. Tinsley. 497   2011. Environmental constraints influencing survival of an African parasite in a north 498   temperate habitat: effects of temperature on egg development. Parasitology 138:1029-499   1038. 500   - Ubelaker, J. E. 1970. Some observations on ecto- and endoparasites of Chiroptera. In 501   About bats. Slaughter, B.H. and D.W. Walton (eds.). Southern Methodist University, 502   Dallas, Texas 247-261. 503   - Vaucher, C. 1992. Revision of the genus Vampirolepis Spasskij, 1954 (Cestoda: 504   Hymenolepididae). Memórias do Instituto Oswaldo Cruz 87, Supplement I: 299-304. 505     59 - Vaucher, C. and M. C. et Durette-Desset.1986. Trichostrongyloidea (Nematoda) parasites 506   de chiroptères néotropicaux. I. Websternema parnellii (Webster, 1971) n. Gen. N. Comb. 507   Et Linustrongylus pteronoti n. Gen. N. Sp., parasites de Pteronotus au Nicaragua. Revue 508   Suisse de Zoologie (93) 1: 237-246. 509   - Whitaker, J. O. 1994. Food availability and opportunistic versus selective feeding in 510   insectivorous bats. Bat Research News 35: 75-77. 511   - Wilson, D. E. And Reeder, Dam M. 2005. Mammal species of the World. A Taxonomic 512   and Geographic Reference (3rd ed), Johns Hopkins University Press, 142pp. 513   514     60 Table 1. Frequencies of helminths in four species of bats during the dry and wet seasons. 515   Host L. yerbabuenae P. davyi P. parnellii P. personatus Season Dry Wet Dry Wet Dry Wet Dry Wet Bats captured/ N of infested 4/1 19/1 24/4 24/8 20/5 27/12 11/11 17/9 CESTODA Vampirolepis elongatus 1 5 NEMATODA Anoplostrongylinae gen. sp. Capillarida sp. Filaridae gen. sp. Linustrongylus pteronoti Litomosoides sp. 1 1 14 1 2 4 2 2   61 516   Physalopteridae gen. sp. Websternema parnellii Unidentified specimen 1 6 3 4 2 TREMATODA Anenterotrema sp. Lecithodendriidae gen. sp. Limatulum gastroides Urotrema sp. Unidentified specimen 3 2 2 2 127 40 1 96 384 252 Total 2 1 7 20 13 183 480 252   62 Table 2. Prevalence, mean abundance and intensity registered in helminths parasites of Pteronotus species during the dry and wet 517   seasons. P =values of chi-squared test with prevalence data and bootstrap test with the mean abundance and intensity data. Confidence 518   intervals (CI) were set in 95% of probability. 519   Prevalence (%; 95% CI) Mean Abundance (95% CI) Mean Intensity (95% CI) Dry Wet P Dry Wet P Dry Wet P P .davyi Urotrema sp. 4 (0.10 to 21.1) 0 0.31 0.08 (0.00 to 0.25) 0.00 0.42 2.00 (0.00) 0.00 1.00 L. gastroides 8 (1.00 to 27.00) 0 0.14 0.12 (0. 00 to 0.37) 0.00 0.28 1.50 (1.00 to 2.00) 0.00 1.00 Capillaria sp. 0 25 (9.80 to 46.7) 0.00 0.00 0.58 (0.20 to 1.46) 0.13 0.00 2.33 (1.17 to 4.33) 1.00 W. parnellii 0 17 (4.70 to 37.4) 0.03 0.00 0.25 (0.04 to 0.54) 0.08 0.00 1.50 (1.00 to 1.75) 1.00 P. parnellii Capillaria sp. 10 (1.20 to 31.70) 4 (0.10 to 19.00) 0.38 0.13 (0.00 to 0.20) 0.07 (0.00 to 0.22) 0.63 1.00 (0.00) 2.00 (0.00) 1.00 L. pteronoti 15 (3.20 to 37.90) 7 (0.90 to 24.30) 0.38 0.25 (0.05 to 0.45) 0.07 (0.00 to 0.18) 0.27 1.33 (1.00 to 1.67) 1.00 (0.00) 0.33 W. parnellii 10 (1.2 0to 31.70) 4 (0.10 to 19.00) 0.38 0.15 (0.00 to 0.45) 0.07 (0.00 to 0.22) 0.48 1.50 (1.00 to 1.50) 2.00 (0.00) 1.00 Anoplostrongylinae gen. sp. 5 (0.10 to 24.90) 0 0.00 0.05 (0.00 to 0.15) 0.00 0.43 1.00 (0.00) 0.00 1.00   63 L. gastroides 10 (1.20 to 31.70) 11 (2. 40 to 29.20) 0.27 0.12 (0 .00 to 0.25) 1.48 (0.03 to 7.11) 0.10 1.00 (0.00) 13.30 (1.00 to 25.70) 0.05 V. elongatus 5 (0.10 to 24.90) 4 (0.10 to 19.00) 0.82 0.05 (0.00 to 0.15) 0.18 (0.00 to 0.55) 0.59 1.00 (0.00) 5.00 (0.00) 1.00 Anenterotrema sp. 0 7 (0.90 to 24.30) 0.21 0.00 4.70 (0.00 to 18.70) 0.43 0.00 63.5 (2.00 to 63.5) 1.00 Urotrema sp. 0 4 (0.10 to 19.00) 0.38 0.00 0.03 (0.00 to 0.11) 0.45 0.00 1.00 (0.00) 1.00 Physalopteridae gen sp. 0 4 (0.10 to 19.00) 0.38 0.00 0.14 (0.00 to 0.44) 0.43 0.00 4.00 (0.00) 1.00 P. personatus Lecithodendriidae gen. sp. 9 (0.20 to 41.30) 0 0.20 8.73 (0.00 to 26.20) 0.00 0.42 96.00 (0.00) 0.00 1.00 L. gastroides 91 (58.70 to 99.8) 53 (27.80 to 77.00) 0.03 34.90 (20.00 to 61.40) 14.82 (6.89 to 28.10) 0.13 38.40 (23.9 to 69.50) 28.00 (16.90 to 43.4) 0.43 520   521     64 Table 3. Comparative of endoparasite load between the dry and wet season in four species of bats. N= number of bats collected; PHI= 522   proportion of hosts infected considering the total endoparasite records; THE= average number of total endoparasites per host 523   individual examined; THI= average number of total endoparasites per infected host individuals. P= values of chi-squared test with PHI 524   data and bootstrap test with THE and THI data. Confidence intervals (CI) were set in 95% of probability. 525   526   Specie N Infected PHI (%) P THE P THI P L. yerbabuenae Dry season 4 1 25 (0.25-0.00) 0.20 0.5 (0.00-1.00) 0.44 2.00 (0.00) 1.00 Wet season 19 1 5.3 (0.00-0.26) 0.05 (0.00-0.15) 1.00 (0.0) P. davyi Dry season 24 4 16.7(0.04-0.37) 0.18 0.29 (0.08-0.58) 0.13 1.75(1.00-2.00) 0.28 Wet season 24 8 33.3 (0.15-0.55) 0.83 (0.37-1.58) 2.50 (1.62-3.88) P. parnellii Dry season 20 5 25 (0.0-0.49) 0.55 0.65 (0.20-1.30) 0.24 2.60 (2.00-3.20) 0.26 Wet season 37 12 32.4 (0.18-0.49) 6.7 (2.49-22.90) 20.83 (8.75-55.5) P. personatus   65 Dry season 11 11 100 (0.71-1.00) 0.00 43.6 (26.50-69.30) 0.05 43.64 (27.20-71.10) 0.25 Wet season 17 9 52.9 (0.27-0.77) 14.8 (7.30-28.50) 28.00 (16.90-42.70) 527     66 Table 4. Comparative of endoparasite load between L. yerbabuenae and Pteronotus species during the wet and dry seasons. N= 528   number of bats collected; PHI= proportion of hosts infected considering the total endoparasite records; THE= the average number of 529   total endoparasites per host individual examined. P =values of chi-squared test with PHI data and bootstrap test with THE and THI 530   data. Confidence intervals (CI) were set in 95% of probability. 531   532   Specie N Infected PHI (%) P THE P D R Y S E A S O N L. yerbabuenae 4 1 25 (0.25-0.00) 0.5 (0-1) P. davyi 24 4 16.7 (0.04-0.37) 0.68 0.29 (0.08-0.58) 0.62 P. parnellii 20 5 25 (0.0-0.49) 1.00 0.65 (0.2-1.3) 0.80 P. personatus 11 11 100 (0.71-1.00) 0.00 0.83 (0.37-1.58) 0.30 W E T S E A S O N L. yerbabuenae 19 1 5.3 (0.00-0.26) 0.05 (0-0.15)   67 P. davyi 24 8 33.3 (0.15-0.55) 0.02 0.83 (0.37-1.58) 0.05 P. parnellii 37 12 32.4 (0.18-0.49) 0.02 6.7 (2.49-22.9) 0.23 P.personatus 17 9 52.9(0.27-0.77) 0.01 14.8 (7.3-28.5) 0.03    533   Figure 1. Effective number of species calculated from Shannon-Wiener and Simpson-Gini Indexes (a and b, respectively) during the 534   dry (black) and wet seasons (grey) in three species of insectivorous bats (Pteronotus).535     69   CAPITULO III SEASONAL VARIATION OF BAT-FLIES (DIPTERA: STREBLIDAE) IN FOUR BAT SPECIES FROM A TROPICAL DRY FOREST   70   SEASONAL VARIATION OF BAT-FLIES (DIPTERA: STREBLIDAE) IN FOUR BAT SPECIES FROM A TROPICAL DRY FOREST Valeria B. Salinas-Ramos 1 , Alejandro Zaldívar-Riverón 2 , Andrea Rebollo-Hernández 3 , L. Gerardo Herrera M. 4 1 Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, A. 1   P. 70-153, Ciudad de México, C. P. 04510, México; 2 Instituto de Biología, Universidad Nacional 2   Autónoma de México, Ciudad de México, C. P. 04510, México; 3 Laboratorio de Acarología, Facultad de 3   Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Ciudad de 4   México, C. P. 04510, México; 4 Estación de Biología Chamela, Instituto de Biología, Universidad 5   Nacional Autónoma de México, A.P. 21, San Patricio, C. P. 48980, Jalisco, México. 6   7   Corresponding author: VBSR (airelav2@hotmail.com). 8   9     71   RESUMEN 1   La variación estacional promueve diferencias en la abundancia y composición de parásitos, 2   afectando las interacciones huésped–parásito. Varios estudios han reportado variación estacional 3   en los estréblidos, los cuales son ectoparásitos obligatorios de murciélagos. En este trabajo se 4   caracterizó la carga parasitaria de estréblidos (Diptera: Streblidae) en tres especies de 5   mormoópidos (Pteronotus davyi, P. parnellii y P. personatus) insectívoros y una especies de 6   filostómido nectarívoro (Leptonycteris yerbabuenae) en un bosque tropical seco para evaluar la 7   existencia de estacionalidad en respuesta a los cambios estacionales tanto del huésped como de 8   la disponibilidad de los recursos durante las épocas de secas y lluvias. Se colectaron 3, 710 9   moscas pertenecientes a seis especies y dos géneros a partir de 497 murciélagos. La mayoría de 10   los parámetros analizados de la carga parasitaria (porcentaje de murciélagos infestados, numero 11   promedio de moscas por huésped examinado e infestado, la riqueza y el número efectivo de 12   especies), incluyendo las comparaciones entre condición reproductiva y sexo del huésped, fueron 13   similares para ambas épocas del año. Las seis especies de estréblidos se encontraron en todas las 14   especies de murciélagos excepto en P. personatus, la cual presentó cinco especies. Además, esta 15   especies de murciélago y L. yerbabuenae tuvieron cuatro y cinco especies de estréblidos en la 16   época de lluvias y secas, respectivamente. Nuestros resultados sugieren que la densidad 17   poblacional del huésped podría incrementar la posibilidad de transmisión de parásitos debido a 18   un mayor contacto con el huésped. Las variaciones en la densidad podrían también favorecer la 19   abundancia promedio e intensidad de algunas especies de estréblidos durante la época de lluvias. 20   Este estudio provee información importante sobre la ecología de los ectoparásitos en relación con 21   la estacionalidad, y contribuye en el entendimiento de las relaciones huésped-parásito en bosques 22   tropicales secos. 23     72   Palabras clave: Chiroptera, ectoparásitos, Mormoopidae, Phyllostomidae, estacionalidad, 1   Streblidae.2     73   ABSTRACT 1   Seasonal variation promotes differences in abundance and species composition of parasites, 2   affecting host-parasite interactions. Several studies have reported seasonal variation in bat flies, 3   which are obligate bat ectoparasites. Here we characterized the bat-fly (Diptera: Streblidae) load 4   of three mormoopid insectivores (Pteronotus davyi, P. parnellii and P. personatus) and one 5   phyllostomid nectarivorous (Leptonycteris yerbabuenae) in a tropical dry forest to test the 6   existence of seasonality in response to changes in seasonal host condition and available resources 7   during the wet and dry seasons. We collected 3,710 bat-fly specimens belonging to six species 8   and two genera from 497 bats. Most of the ectoparasite load parameters examined (percentage of 9   bats infested, average number of bat flies per host examined and infested, richness, effective 10   number of species), including comparisons among reproductive conditions and sex of the host, 11   were similar in both seasons. The six bat-fly species were found in all bat species except P. 12   personatus, which had five species. Moreover, the latter species and L. yerbabuenae had four and 13   five bat-fly species in the wet and dry seasons, respectively. Our results suggest that host 14   population density could increase the possibility of parasite transmission due to contact with its 15   host. Variation in the density might also favor the mean abundance and intensity of some bat-fly 16   species during the wet season. This study provides significant information about the ectoparasites 17   ecology in relation to seasonality, and contributes with the understanding of host-parasite 18   relationships in tropical dry forests. 19   Key words: Chiroptera, ectoparasites, Mormoopidae, Phyllostomidae, seasonality, Streblidae.20     74   Parasites communities are direct or indirectly influenced both by ambient variation (Marcogliese 1   2001, Pilosof et al. 2012, Tinsley et al. 2011) and by changes in host population attributes (e.g. 2   density; Arneberg et al. 1998, Beldomenico & Begon 2010). Abiotic factors play an important 3   role in parasite species richness, transmission, intensity of infestation (Moyer et al. 2002, Mas-4   Coma et al. 2008, Gotz 2010), developmental success, abundance (Hudson et al. 2006, Gotz et 5   al. 2010), prevalence, activity and growth of parasites (Merino & Potti 1996, Klukowski 2004, 6   Dietsch 2005, Antoniazzi et al. 2010). This is especially the case of species that do not live 7   permanently on their hosts, where their abundance, intensity and prevalence can be influenced by 8   external factors such as temperature, humidity and precipitation, among others (Marshall 1981, 9   Merino & Potti 1996, Hawlena et al. 2006, Gray et al. 2009, Postawa & Furman 2014). 10   Bats have a variety of ectoparasites, including mites and ticks (Arachnida: Acari), fleas 11   (Siphonaptera), bat-bugs (Hemiptera, Cimicidae) and bat-flies (Díptera, Nycteribiidae and 12   Streblidae) (Reisen, et al. 1976, Lorenço & Palmeirim 2008, Barrientos 2012). Several studies 13   have reported seasonal variation in ectoparasite load on bats (Reisen et al. 1976, Villegas-14   Guzman et al. 2005, Lorenço & Palmeirim 2008). These studies have found that reproductive 15   activity of bat ectoparasites fluctuates seasonally, reproducing more intensively during bat’s 16   pregnancy and nursing seasons, and reducing their reproductive activity during winter (Lorenço 17   & Palmeirim 2008). 18   Dipterans ectoparasites are exposed to environmental variations during part of their life 19   cycle (Goulson et al. 2005). In particular, bat-flies are obligate ectoparasites of bats and have an 20   indirect transmission cycle. During this cycle, the female deposits its larvae in the bat’s roost, 21   then the larvae immediately pupate and undergo metamorphosis and subsequently the eclosed 22   flies locate an appropriate host (Dick & Patterson 2007). Because bat-flies are exposed to the 23   environment during part of their life cycle, fly abundance might be particularly affected by 24     75   climate conditions in comparison to other ectoparasites (Merino & Potti 1996, Gray et al. 2009, 1   Pilosof et al. 2012). Some authors have observed effects of climate on bat-fly abundance through 2   the host (Villegas-Guzman et al. 2005, Pilosof et al. 2012). In some species, warmer ambient 3   temperatures appear to favor bat fly abundance and development (Pilosof et al. 2012), whereas in 4   others their frequency of occurrence is higher during winter (Villegas-Guzman et al. 2005). 5   Few studies have described the effect of environmental conditions on hosts-parasites 6   populations and communities. These works have been mostly based on endoparasites and/or 7   aquatic environments (e.g. Valtonen et al. 2003, King et al. 2007), whereas ambient patterns 8   affecting the dynamic of ectoparasites communities are scarce (e.g. Patterson et al. 2007). 9   Knowledge of the effects of environmental conditions on ectoparasites is relevant since they have 10   an important selective pressure on the evolution, fitness and population dynamics of their hosts 11   (Lehmann 1993, Stanko et al. 2006), and consequently on community structure (Mouritsen & 12   Poulin 2002). Moreover, the magnitude of parasite’s impact on ecosystems may not be fully 13   understood unless weather mediated host-parasite interactions are considered (Mouritsen & 14   Poulin 2002). 15   In this work, we investigate the existence of seasonality of parasite load of bat-flies 16   populations and communities (Diptera: Streblidae) on three mormoopid insectivore [Pteronotus 17   davyi (Gray), P. parnellii (Gray) and P. personatus (Wagner)] and one phyllostomid 18   nectarivorous [Leptonycteris yerbabuenae (Martinez & Villa-R)] bat species. These four species 19   roost within a cave in a small island (Don Panchito Island) located near the Mexican Pacific coast 20   in the Chamela region (Stoner et al. 2003). This region is mainly composed of seasonal tropical 21   dry forest, with most of the rainfall occurring from June to November (Bullock 1995, Pringle et 22   al. 2012, Méndez-Alonzo et al. 2013). 23     76   Tropical dry forests have extreme changes in the physiognomy and available resources 1   during wet and dry seasons, thus altering the composition and diversity of fauna (Palacios-Vargas 2   et al. 2007). In particular, the abundance of arthropods in tropical locations reaches its highest 3   level during the wet season (Levings & Windsor 1982), a pattern that has been previously 4   reported for Chamela (Pescador-Rubio et al. 2002). The cave in Don Panchito Island has a higher 5   bat density during the wet season (Ceballos et al. 1997, Stoner et al. 2003), when food resources 6   are more abundant in the region (Ceballos et al. 1997, Pescador- Rubio et al. 2002, Stoner et al. 7   2003). Accordingly, we predict that bat-flies load will exhibit seasonal changes in abundance, 8   with the highest values during the wet season, when the density of the host is higher (Ceballos et 9   al. 1997, Pescador- Rubio et al. 2002, Stoner et al. 2003, Andresen 2005, Güizado-Rodríguez & 10   Casas-Andreu 2011, Palacios-Vargas et al. 2007). 11   12   METHODS 13   Study Area 14   Don Panchito Island is located off the Mexican Pacific coast of Chamela, Jalisco (19.5350 N, 15   105.08832 W). The region is mainly composed of tropical dry forest, with a mean annual 16   temperature of 24.9°C (Rzendowski 1981, Bullock 1995) and 85% of the ~750 mm of yearly rain 17   from July to November (Bullock 1995, Pringle et al. 2012, Méndez-Alonzo et al. 2013). 18   Vegetation in the island mainly consists of tropical deciduous and tropical semi-deciduous forests 19   (Rzendowski 1981). This island has a cave that serves as daytime roost for L. yerbabuenae, P. 20   davyi, P. parnellii, P. personatus and Mormoops megallophylla, though the last species was 21   rarely encountered and therefore was not considered for this study. 22   We collected bat ectoparasites during three dry (June 2012, April 2013, May 2014) and 23   two wet (November 2012, July 2013, November 2013 and September 2014) seasons. Bats were 24     77   trapped with sweep nets inside the cave during the morning (before 9 am), and then were placed 1   in individual cotton bags and transported to the Chamela Biological Station owned by the 2   Institute of Biology, National Autonomous University of Mexico (IB UNAM). The body (back, 3   tail, wings, ears, uropatagium, etc.) of all bats and the bag where they were kept were 4   subsequently examined for streblids, which were sorted out and preserved in 95% ethanol. 5   6   Ectoparasites identification 7   All bat-fly specimens were examined with a Leica ® ES2 (Wetzlar, Germany) stereomicroscope 8   and identified to species level using the relevant taxonomic keys (Wenzel et al. 1966, Jiron-9   Porras & Fallas-Barrantes 1974, Wenzel 1976, Guerrero 1993). Misidentification of species can 10   have profound consequences in ecological studies, which could derive in an error cascade effect 11   (Bortolus 2008, Vink 2012). At this respect, the combination of morphology-based taxonomy and 12   DNA sequence improves identification accuracy and delimitation of species (Dexter et al. 2010). 13   We therefore molecularly confirmed the species boundaries among the bat-fly species identified 14   examining a fragment of the DNA barcoding locus [cytochrome oxidase I (COI) mitochondrial 15   DNA gene; Hebert et al. 2003a, b]. 16   Genomic DNA was extracted from two to five specimens assigned to each identified bat-17   flies species, placing each individual in 50 µl of 5% (w/v) Chelex (Bio-Rad) with 12 mg/ml of 18   proteinase K, followed by digestion at 55 °C for 2 h. Proteinase K was subsequently heat-19   inactivated at 96 °C for 15 min. Samples were vortexed for 10-15 s and the Chelex was pelleted 20   by centrifugation at 13,000g for 30 s. The COI fragment was amplified using the 21   LCO1460/HCO2198 primers (Folmer et al. 1994) and the conditions described in Ceccarelli et 22   al. (2012). 23     78   Unpurified PCR products were sent for sequencing to the IB UNAM. Sequences were 1   edited with the program four peaks version 1.8 (http://nucleobytes.com/4peaks/) and aligned 2   manually based on their translated amino acids. Corrected COI divergences were obtained using 3   K2P distance model (Kimura 1980) and visualized building a Neighbor-Joining (NJ) tree with the 4   program PAUP version 4.0a147 (Swofford 2002). We followed the Barcode Index Number 5   (BIN) system (2% genetic divergence criterion) to delimit “barcoding species”, which represents 6   a practical, generally reliable approach to delimit animal species, including insects (Hebert et al. 7   2003ab, Ratnasingham & Hebert 2013). We followed a congruence criterion and regarded as 8   distinct species those taxa that were supported both by the morphological and the molecular 9   evidence. 10   11   Statistical Analyses 12   We first characterize the seasonal variation in ectoparasite load with the following descriptors of 13   parasite populations: prevalence, mean abundance and intensity during the dry and wet seasons. 14   A chi-squared test with the prevalence data and a bootstrap test with the mean abundance and 15   intensity values of each bat fly species were performed to evaluate for significant differences 16   between seasons. 17   The proportion of infested hosts, the average number of total bat flies per host individual 18   examined, and the average number of total bat fly species per infested host individual were also 19   calculated for the three insectivorous bat species considering the total bat fly species records. We 20   do not consider L. yerbabuenae data because most of the individuals collected were males. 21     79   Values were also compared between the following pair combination of host reproductive 1   conditions and sexes during wet and dry seasons with the chi-squared and bootstrap tests to 2   assess for statistical differences in ectoparasite loads: 1) lactating, pregnant and inactive females, 3   and 2) inactive females and males. We did not capture any reproductive male during both 4   seasons. The above analyses were conducted with the program Quantitative Parasitology version, 5   3.0 (Reiczigel & Rózsa, 2005), using a significance level of P ≤ 0.05. 6   Richness, Shannon–Wiener and Simpson-Gini indexes were calculated to assess the 7   diversity of ectoparasite species during both seasons for each bat species. We transformed 8   indexes values to the effective number of species (MacArthur 1965, Hill 1973) to unify an 9   intuitive interpretation of diversity (Jost 2006). Graphics and descriptive analyses were conducted 10   with the program GraphPad prism version 6.0 (GraphPad Software, Inc., La Jolla, CA). 11   12   RESULTS 13   Bat-flies species identification 14   We collected 497 bats and 3,710 bat-flies specimens that were morphologically assigned to six 15   streblid species belonging to the genera Trichobius and Nycterophilia (Table 1). A NJ phenogram 16   showing the corrected COI distances among the sequenced specimens is showed in Fig. 1. The 17   DNA sequence-based species delimitation was congruent with five of the six species identified 18   by morphology. The intra and interspecific corrected genetic distances among the aforementioned 19   five species varied from 0 to 0.95% and from 2.85 to 17.56%, respectively. Sequences of three 20   individuals were generated for N. parnelli, of which the two obtained from P. parnelli had 21   considerably high pairwise distances with the specimen collected from L. yerbabuenae (3.02 and 22     80   3.5%). We could not find any consistent morphological difference among these specimens and 1   thus regarded them as a single putative species. 2   Except for P. personatus, in which T. yunkeri was absent, the six bat-flies species were 3   shared by all bat species (Table 1). Fly species were found during both seasons in most bat 4   species except in two cases. Trichobius yunkeri and T. sphaeronotus were found in L. 5   yerbabuenae and P. personatus only during the wet and dry seasons, respectively. The 6   percentage of infected individuals of L. yerbabuenae, P. davyi and P. personatus were higher 7   during the dry season, whereas for P. parnellii this percentage was the same in both seasons 8   (80%; Table 1). 9   The prevalence, mean abundance and intensity of each bat-fly species are shown in 10   Table 2. Most parameter values were similar in the wet and dry seasons except in the following 11   cases: 1) the prevalence of N. coxata, T. sphaeronotus as well as the mean abundance and 12   intensity of N. fairchildi and T. sphaeronotus were significantly higher during the dry season in 13   L. yerbabuenae; 2) the prevalence and abundance of T. sphaeronotus and T. johnsonae and the 14   intensity of T. sphaeronotus were significantly higher in the dry season in P. davyi; 3) the 15   prevalence, mean abundance and intensity of N. fairchildi and the mean abundance and intensity 16   of N. parnelli, T. johnsonae and T. yunkeri were significantly higher in the wet season in P. 17   parnellii; and 4) the prevalence of N. coxata, T. sphaeronotus and T. johnsonae was significantly 18   higher during the dry season in P. personatus. 19   In most cases, the percentage of infested bats and the average number of bat flies per 20   examined and infested host individual did not differ between seasons and between reproductive 21   conditions and sexes (Table 3). However, in P. davyi the average number of parasites per 22   examined and infested host in inactive females were significantly higher during the dry than in 23   the wet season. The average number of parasites per infested host was also significantly higher in 24     81   inactive males than in inactive females in the wet season in P. davyi, whereas the average number 1   of parasites per examined and infested host was significantly higher in lactating than pregnant 2   females, as well as in lactating than inactive females in the wet season in P. parnellii. In addition, 3   the average number of parasites per infested host was significantly higher in inactive males than 4   inactive females in during the wet season in P. personatus (Table 3). 5   Ectoparasite richness was identical in both seasons in P. davyi and P. parnellii (n= 6). 6   Leptonycteris yerbabuenae had one less bat-fly species (n= 5) in the dry season, whereas P. 7   personatus had the lowest number of bat-fly species during the wet season (n= 4) (Fig. 2). In 8   terms of diversity, the effective number of species was higher in L. yerbabuenae, P. davyi and P. 9   parnellii during the wet season, whereas in P. personatus it was higher in the dry season (Fig. 3). 10   11   DISCUSSION 12   Seasonal variation in bat-flies load 13   We characterized the ectoparasite load of four bat species to explore the presence of seasonal 14   changes in the descriptors of parasite populations and diversity in response to ambient 15   fluctuations. Our hypothesis of seasonality in ectoparasite load was rejected in most of the 16   examined hosts-parasites parameters. Our prediction of higher ectoparasite load during the wet 17   season was only supported in P. parnellii by the presence of a higher mean abundance and 18   intensity of four bat-fly species, as well as by a higher prevalence in one fly species. However, 19   we also found a higher prevalence, mean abundance and intensity of some bat-fly species during 20   the dry season for the remaining three bat species examined. 21   Our results support that some of the bat-fly species associated with P. parnellii are 22   favored by the environmental conditions that occur during the wet season. Consistent variations 23     82   in population abundance are found among communities of parasites (Arneberg et al. 1998). The 1   epidemiological theory indicates that several characters of host species may affect densities of 2   ectoparasite populations (Anderson & May 1978, 1991, May & Anderson 1978, Arneberg et al. 3   1998). For directly transmitted parasites, host population density could increase the probability of 4   parasite transmission due to contact with its host (Arneberg et al. 1998; Stanko et al. 2006). In 5   Don Panchito Island, the density of P. parnellii is higher from the end of dry (end of June) to the 6   beginning of the wet season (August) (Stoner et al. 2003). Moreover Stoner et al.´s also 7   mentioned that in July and August the majority of bats in the cave were individuals of P. 8   parnellii. This variation in the density might explain the higher abundance and intensity of T. 9   johnsonae, T. yunkeri, N. parnelli and N. fairchildi in P. parnellii (during the wet season). 10   The higher values obtained for some of the ectoparasite load parameters during the dry 11   season in the remaining bat species agrees with a previous study that found that ectoparasite 12   species of small mammals had higher prevalence and mean intensity of infestation in the dry 13   season, when the food resources are lower (Sponchiado et al. 2015). Similar to Stoner et al.’s 14   (2003), we noticed that Don Panchito’s cave has a higher bat density during the wet season, when 15   food resources are more abundant in the region (Ceballos et al. 1997, Pescador- Rubio et al. 16   2002). The majority of bats in the cave during this period are P. parnellii (Stoner et al. 2003). If 17   bat density increases during the wet season, host availability for ectoparasites is also higher and 18   they might have the possibility to select the most suitable hosts (Blanco et al. 1997, Dawson & 19   Bortolotti 1997). On the other hand, in the dry season, when density of bats is lower, host 20   availability for ectoparasites is limited and they might try to parasite any host individual that is 21   available. This might explain why some of the bat fly species reported higher prevalence, mean 22   abundance and intensity during the dry season in L. yerbabuenae, P. davyi and P. personatus. 23   Relation between sex, female reproductive condition and bat-flies load 24     83   The percentage of infested bats considering all the ectoparasites per bat species did not 1   differ significantly in any pair combination of host reproductive conditions and sexes between 2   seasons. In general, the average number of bat flies per examined and infested host did not differ 3   between seasons with some exceptions. These two parameters were significantly higher in 4   lactating than in pregnant and inactive females in P. parnelli, whereas in the remaining 5   Pteronotus species we did not find differences in these parameters. Thus, lactating condition 6   could influence ectoparasite load during the wet season in P. parnelli. Some parasites 7   synchronize their reproduction and/or activity with that of their host (Prince 1980, Marshall 1981, 8   Blanco & Frías 2001, Lourenco & Palmeirim 2008), evolving the ability to detect variations in 9   their host populations to increase their reproductive rates (Sponchiado et al. 2015). Moreover, a 10   high density of bats in nursing colonies increases the opportunities for their parasites to infest 11   horizontally after reproducing (Christe et al. 2000). 12   We found a higher average number of parasites per examined and infested host in 13   inactive females during the dry than the wet season in P. davyi. This could be also related to the 14   low density of bats during the dry seasons, as mentioned above, rather than to the reproductive 15   condition of the host. The ectoparasites thus could parasite any host individual that is available in 16   the dry season, whereas in the wet season they could select the most suitable host when the 17   resources are more available. 18   We did not find a pattern in the ectoparasite load between inactive females and males 19   for the examined bat species. However, the average number of parasites per infested and 20   examined host were higher in inactive males than in females during the wet season in P. davyi 21   and P. personatus, respectively. The intensity and number of parasites are usually higher in 22   juveniles and females than in subadults and males (Chilton et al. 2000, Zahn & Rupp 2004, 23   Lučan 2006, Lorenço & Palmeirim 2008), though authors report that sex is not related to parasite 24     84   load (Moura et al. 2003, Miller 2014). Some studies have also shown that males harbor more 1   ectoparasites than female bats (Hart & Pryor 1992, Komeno & Linhares 1999, Zhang et al. 2   2010). Further studies should investigate which other variables influence the average number of 3   parasites per infested and examined host in inactive males of P. davyi and P. personatus, 4   respectively during the wet season. 5   6   Richness and diversity 7   Our hypothesis of seasonal changes in ectoparasite load is partially supported. Species richness 8   was almost the same in both seasons for the four bat species. We did not find a pattern in the 9   effective number of bat fly species. This value was higher in the wet season in L. yerbabuenae, P. 10   davyi and P. parnellii, whereas it was higher during the dry season in P. personatus. This 11   contrasts with a recent study carried out in the Chamela region that reported lower bat flies 12   richness in L. yerbabuenae and P. parnellii (Zarazúa-Carbajal et al. 2016). These authors also 13   found that bat fly species composition was affected by seasonality as a consequence of changes 14   in the abundance of their host. 15   This study provides significant information of ectoparasites ecology in relation to 16   seasonality, contributes to the understanding of host-parasites relationship in tropical dry forests, 17   and remarks the relevance of the abiotic and biotic factors that could impact host-parasite 18   interactions. Although closely related species of hosts are similarly susceptible to infestations of 19   parasites, even small differences in their morphology, feeding behavior or population history 20   could affect parasitic infestation (Freeland 1983). We found that sympatric species share most of 21   the bat fly species, but they also share those with a species of bat that is not related. However, the 22   prevalence, mean abundance and intensity were different during the dry and wet season. Other 23   life history traits or strategies of hosts and parasites (e.g. micro-clime, self-grooming, bat age, 24     85   body condition, bat hormones, immune system, etc.) could also influence the intensity and 1   prevalence of these (Luguterah & Lawer 2015) and other macroparasites (McLean & Speakman 2   1997, Christe et al. 2000, Lourenco & Palmeirim 2008, Tlapaya-Romero et al. 2015). We also 3   found that host density is an important factor that might drive the parasitic infestation. Further 4   studies should explore additional factors that could influence parasite-host interactions. 5   6   Acknowledgments 7   We thank A. Cuxim-Koyoc for his help with bat-fly identification, S. Sánchez Montes for his 8   suggestions with the statistical analyses, and E. Samacá Sáez for his help in the laboratory. 9   Financial support was provided by grants given by Consejo Nacional de Ciencia y Tecnología 10   (CONACyT, Red Temática del Código de Barras de la Vida, 2013-2015) to V. León-Règagnon 11   and AZR, by CONACyT (proyecto Ciencia Básica 2014 No. 220454) to AZR, and by the 12   Dirección General de Asuntos del Personal Académico (DGAPA-UNAM; no. IN202113) to 13   LGHM. VBSR was supported by a scholarship given by CONACyT as part of the Programa de 14   Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México. We thank the 15   Programa de Posgrado en Ciencias Biológicas, Instituto de Biología (IB-UNAM) and Estación de 16   Biología Chamela, UNAM, for logistical support during the study.17     86   Literature cited 1   - Anderson, R. M. and R. M. May. 1978. Regulation and stability of host-parasite 2   population interactions I. Regulatory processes. Journal of Animal Ecology. 47: 219-247. 3   - Anderson, R. M. and R. M. May. 1991. Infectious diseases of humans: Dynamics and 4   control. Oxford University Press. 757. 5   - Andresen, E. 2005. Effects of season and vegetation type on community organization of 6   dung beetles in a tropical dry forest. Biotropica 37: 291 – 300. 7   - Antoniazzi, L. R. D., E. Manzoli, D. Rohrmann, M. J. Silvestri and P. M. Beldomenico. 8   2010. Climate variability affects the impact of parasitic flies on Argentinean forest birds. 9   Journal of Zoology. 283:126-134. 10   - Arneberg P, Skorping A, Grenfell B, Read AF. 1998. Host densities as determinants of 11   abundance in parasite communities. Proc. R. Soc. London Ser. B 265:1283–9. 12   - Barrientos, M. A. 2012. Prevalencia y derminación de ectoparásitos en murciélagos 13   (Chiroptera) y Roedres (Rodentia) en dos localidades de la mixteca poblana: Santo 14   Domingo Tonahuixtla y Teotlalco Puebla, México. Master Thesis. 141. 15   - Blanco, G., J. L. Tella, J. Potti. 1997. Feather mites on group-living Red-billed Choughs: 16   a non-parasitic interaction? Journal of Avian Biology. 28: 197-206. 17   - Blanco, G. and O. Frías. 2001. Symbiotic feather mites synchronize dispersal and 18   population growth with host sociality and migratory disposition. Ecography 24:113–120. 19   - Bullock, S. H. 1995. Plant reproduction in neotropical dry forest. In Seasonally dry 20   tropical Forests. Bullock, S.H., H.A. Mooney, and E. Medina (eds.). Cambridge 21   University Press. Cambridge, UK. 277-303p. 22     87   - Ceballos, G., T. H. Fleming, C. Chávez and J. Nassar. 1997. Population dynamics of 1   Leptonycteris curasoae (Chiroptera: Phyllostonidae) in Jalisco, Mexico. Journal of 2   Mammalogy. 78(4): 1220-1230. 3   - Ceccarelli, F. S., M. J. Sharkey and A. Zaldívar-Riverón. 2012. Species identification in 4   the taxonomically neglected, highly diverse, Neotropical parasitoid wasp genus 5   Notiospathius (Braconidae: Doryctinae) based on an integrative molecular and 6   morphological approach. Molecular Phylogenetics and Evolution 62:485-495. 7   - Chilton, G., M. J. Vonhofter, B. V. Peterson and N. Wilson. 2000. Ectoparasitic insects of 8   bats in British Columbia, Canada. Journal of Parasitology 86:191–192. 9   - Christe, P., R. Arlettaz and P. Vogel. 2000. Variation in intensity of a parasitic mite 10   (Spinturnix myotis) in relation to the reproductive cycle and immunocompetence of its bat 11   host (Myotis myotis). Ecology Letters. 3: 207-212. 12   - Colwell, R.K. 2011. Estimates: Statistical Estimation of Species Richness and Shared 13   Species from Samples. Version 9. User’s Guide and application published at 14   http://purl.oclc.org/estimates. 15   - Comber, C. 2001. Parasitism: The Ecology and Evolution of Intimate Interactions. 16   University of Chicago Press, USA.728p. 17   - Dawson, R.D. and G.R. Bortolotti. 1997. Ecology of parasitism of nestling American 18   Kestrels by Carnus hemapterus (Diptera: Carnidae). Canadian Journal of Zoology 75: 19   2021-2026. 20   - Dick, C. W. and B. D. Patterson. 2007. Against all odds: Explaining high host specificity 21   in dispersal-prone parasites. Australian Society for Parasitology. 37:871-876. 22     88   - Dietsch, T. V. 2005. Seasonal variation of infestation by ectoparasitic chigger mite larvae 1   (Acarina: Trombiculidae) on resident and migratory birds in coffee agroecosystems of 2   Chiapas, Mexico. Journal of Parasitology. 91 (6): 1294-1303. 3   - Freeland, W. J. 1983. Parasites and the Coexistence of Animal Host Species. The 4   American Naturalist. 121: 223-236. 5   - Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for 6   amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan 7   invertebrates. Molecular Marine Biology and Biotechnology. 3: 294–299. 8   - Gotz, F., R. Harf, S. Sommer, and S. Matthee. 2010. Effects of precipitation on parasite 9   burden along a natural climatic gradient in southern Africa-implications for possible shifts 10   in infestation patterns due to global changes. Oikos. 119: 1029 1039. 11   - Goulson, D., L. C. Derwent, M. E. Hanley, D. W. Dunn, and S. R. Abolins. 2005. 12   Predicting calyptrate fly populations from the weather and probable consequences of 13   climate change. Journal of Applied Ecology. 42: 795-804. 14   - Gray, J. S., H. Dautel, A. Estrada-Peña, O. Kahl, and E. Lindgren. 2009. Effects of 15   Climate Change in Ticks and Tick-Borne Diseases in Europe. Interdisciplinary 16   Perspectives on Infectious Diseases.1-12. 17   - Guerrero, R. 1993. Catalogo de los Streblidae (Diptera: Pupipara) parásitos de 18   murciélagos (Mammalia: Chiroptera) del Nuevo Mundo. I. Clave para los generos y 19   Nycterophilinae. Acta Biologica Venezuelica. 14: 61–75. 20   - Güizado-Rodríguez, M. A, G. Casas-Andreu. 2011. Facultative specialization In the diet 21   of the Twelve-lined Whiptail, Aspidoscelis lineatissima. Journal of Herpetology, 45(3): 22   287-290. 23     89   - Hart, B. L. and P. A. Pryor. 1992. Developmental and hair-coat determinants of grooming 1   behavior in goats and sheep. Animal Behaviour 67:11–19. 2   - Hawlena, H., B. R. Krasnov, Z. Abramsky, I. S. Khokhlova, D. Saltz, M. Kam, A. Tamir, 3   and A. A. Degen. 2006. Flea infestation and energy requirements of rodent hosts: are 4   there general rules? Functional Ecology, 20: 1028–1036. 5   - Hebert, P.D.N., Cywinska, A., Ball, S.L., DeWaard, J.R., 2003a. Biological 6   identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B-Biol. Sci. 270, 313-7   321. 8   - Hebert, P.D.N., Ratnasingham, S., deWaard, J.R., 2003b. Barcoding animal life: 9   cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. 10   Lond. Ser. B-Biol. 11   - Hill, M. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 12   54: 427–432. 13   - Hudson, P. J., I. M. Cattadori, B. Boag, and A. P. Dobson. 2006. Climate disruption and 14   parasite-host dynamics: patterns and processes associated with warming and the 15   frequency of extreme climatic events. Journal of Helminthology. 80:175-182. 16   - Jirón-Porras, L. F. and F. Fallas-Barrantes. 1974. Presence of a new representer of the 17   genus Nycterophilia Ferris, 1916 (Dipera: Streblidae) in Costa Rica. 22 (1): 67-70. 18   - Jost, L. 2006. Entropy and diversity. Oikos 113: 363-375. 19   - Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions 20   through comparative studies of nucleotide sequences. Journal of Molecular 21   Evolution. 16 (2): 111–120. 22   - King, K. C., J. D. McLaughlin, A. D. Gendron, B. D. Pauli, I. Giroux, B. Rondeau, M. 23   Boily, P. Juneau and D. J. Marcogliese. 2007. Impacts of agriculture on the parasite 24     90   communities of northern leopard frogs (Rana pipiens) in southern Quebec, Canada. 1   Parasitology. 134: 2063-2080. 2   - Klukowski, M. 2004. Seasonal changes in abundance of host-seeking chiggers (Acari: 3   Trombiculidae) and infestation on fence lizards, Sceloporus undulates. Journal of 4   Herpetology 38: 141–144. 5   - Komeno, C. and A. X. Linhares. 1999. Batflies parasitic on some phyllostomid bats in 6   southeastern Brazil: parasitism rates and host–parasite relationships. Memórias do 7   Instituto Oswaldo Cruz, Rio de Janeiro. 94:151–156. 8   - Krasnov, B. R., G. I. Shenbrot, I. S. Khokhlova, R. Poulin. 2006. Is abundance a species 9   attribute? An example with haematophagous ectoparasites. Oecologia. 150: 132- 140. 10   - Lafferty, K.D. 1997. Environmental parasitology: What can parasites tell us about human 11   impacts on the environment. Parasitology Today. 13: (7) 251-255 12   - Lehmann, T. 1993. Ectoparasites: Direct impact on host fitness. Parasitology Today. 9: 8-13   13. 14   - Levings SC, Windsor DM. 1982. Seasonal and annual variation in litter arthropod 15   populations. In: Leigh EG, editor; Rand AS, Windsor DM, editors. The ecology of a 16   tropical forest. Smithsonian Institution Press. 355–387. 17   - Lourenço, S.I. and Palmeirim, J.M. 2008. Which factors regulate the reproduction of 18   ectoparasites of temperate-zone cave-dwelling bats? Parasitology Research 104: 127-134. 19   - Lucan, R. K. 2006. Relationships between the parasitic mite Spinturnix andegavinus 20   (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera:Vespertilionidae): 21   seasonal, sex and age-related variation in infestation and possible impact of the parasite 22   on the host condition and roosting behavior. Folia Parasitologica 53:147–152. 23     91   - Luguterah, A., and E. A. Lawer. 2015. Effect of dietary guild (frugivory and insectivory) 1   and other host characteristics on ectoparasites abundance (mite and nycteribiid) of 2   chiropterans. Folia Parasitologica. 62:1 -21. 3   - MacArthur, R. H. 1965. Patterns of species diversity. Biological Reviews 40: 510–533. 4   - Marcogliese, D. J. 2001. Implications of climate change for parasitism of animals in the 5   aquatic environment. Canadian Journal of Zoology. 79: 1331-1352. 6   - Marshall, A. G. 1981. The ecology of ectoparasitic insects. Academic Press London. 7   459pp. 8   - Mas-Coma, S. Valero, M. A. and M. D. Bargues. 2008. Effects of climate change on 9   animal and zoonotic helminthiases. In: de la Rocque S. Hendrickx G, and Morand S. 10   (eds.) Climate Change: Impact on the Epidemiology and control of animal diseases. 11   Revue Scientifique et Technique de l`Office Internationale des Epizooties. 27(2) 443-457. 12   - May, R. M. and Anderson, R. M. 1978. Regulation and stability of host-parasite 13   population interactions II. Destabilizing processes. Journal of Animal Ecology. 47: 249-14   267. 15   - Méndez-Alonzo, R., F. Pineda-García, and H. Paz, J. A. Rosell, and M. E. Olson. 2013. 16   Leaf phenology is associated with soil water availability and xylem traits in tropical dry 17   forest. Trees 27: 745-754. 18   - Merino, S. and J. Potti. 1996. Weather dependent effects of nest ectoparasites on their 19   bird hosts. Ecography. 19:107-113. 20   - Miller, C. 2014. Host speficity and ectoparasite load of bat flies in Utila, Honduras. 21   Senior Honors Theses. University of New Orleans. 63p. 22     92   - Moura, M. O., M. O. Bordignon, and G. Graciolli. 2003. Host characteristics do not affect 1   community structure of ectoparasites on the fishing bat Noctilio leporinus (L., 1758) 2   (Mammalia: Chiroptera). Memorias do Instituto Oswaldo Cruz, Rio de Janeiro 98:811–3   815. 4   - Mouritsen, K. N. and R. Poulin. 2002. Parasitism, community structure and biodiversity 5   in intertidal ecosystems. Parasitology 124: 101-117. 6   - Moyer, B. R., D. M. Drown, and D. H. Clayton. 2002. Low humidity reduces ectoparasite 7   pressure: implications for host life history evolution. Oikos 97: 223-228. 8   - Ostfeld, R. S and F. Keesing. 2000. Biodiversity and disease risk: the case of Lyme 9   disease. Conservation Biology. 14(3): 722-728. 10   - Palacios-Vargas, J. G., G. Castaño-Meneses, J. a. Gómez-Anaya, A. Martínez-Yrizar, B. 11   E. Mejía-Recamier, J. Martínez-Sánchez. 2007. Litter and soil arthropods diversity and 12   density in a tropical dry forest ecosystem in Western Mexico. Biodiversity and 13   Conservation. 16(13): 3703-3717. 14   - Patterson, B. D., C. W. Dick and K. Dittmar. 2007. Roosting habits of bats affect their 15   parasitism by bat flies (Diptera: Streblidae). Journal of Tropical Ecology. 23: 177-189. 16   - Pescador-Rubio, A., A. Rodriguez-Palafox, F. A. Noguera. 2002. Diversidad y 17   estacionalidad de Arthropoda. In Historia Natural de Chamela. Noguera, F.A., R.J.H. 18   Vega, A. A. N. García, and A.M. Quesada(eds.). Instituto de Biología, Universidad 19   Nacional Autónoma de México, Mexico. 183-201p. 20   - Pilosof, S., C. W. Dick, C. Korine, B. D. Patterson, B. R. Krasnov. 2012. Effects of 21   anthropogenic disturbance and climate patterns of bat fly parasitism. PLoSONE. 7(7): 1-22   7. 23   - Price, P .1980. Evolutionary biology of parasites. Princeton University Press, Princeton. 24     93   - Pringle, E. G., R. Dirzo, and D.M. Gordon. 2012. Plant defense, herbivory, and the 1   growth of Cordia alliodora trees and their symbiotic Azteca ant colonies. Oecologia 170: 2   677-685. 3   - Postawa, T. and A. Furman. 2014. Abundance patterns of ectoparasites infesting different 4   populations of Miniopterus species in their contact zone in Asia Minor. Acta 5   Chiropterologica. 16 (2): 387-395. 6   - Ratnasingham, S. and Hebert, P. D. N. 2013. A DNA-based registry for all animal 7   species: the bracode index number (BIN) system. PLoS ONE 8, e66213. 8   - Reiczigel, J. and L. Rózsa. 2005. Quantitative Parasitology 3.0. Budapest. Distributed by 9   the authors. 10   - Reisen, W.K., Kennedy, M.L., Reisen, N.T. 1976. Winter ecology of ectoparasites 11   collected from hibernating Myotis velifer (Allen) in southwestern Oklahoma (Chiroptera: 12   Vespertilionidae). Journal of Parasitology 62(4):628–635. 13   - Rzedowski, J. 1981. Vegetación de México. Editorial Limusa, Mexico City. 434pp. 14   - Sponchiado, J. G. L. Melo, G. A. Landulfo, F. C. Jacinavicius, D. M. Barros-Battesti, N. 15   C. Cáceres. 2015. Interaction of ectoparasites (Mesostigmata, Phthiraptera and 16   Siphonaptera) with small mammals in cerrado fragments, western Brazil. Experimental 17   and Applied Acarology. 66(3): 369-381. 18   - Stanko, M., B. R. Krasnov and S. Morand. 2006. Relationship between host abundance 19   and parasite distribution: inferring regulating mechanisms from census data. Journal of 20   Animal Ecology. 75: 575- 583. 21   - Stoner, K. E., K. A. O. -Salazar, R. C. R. –Fernández and M. Quesada. 2003. Population 22   dynamics, reproduction, and diet of the lesser long- nosed bat (Leptonycteris curasoae) in 23     94   Jalisco, Mexico: implications for conservation. Biodiversity and Conservation 12: 357-1   373. 2   - Swofford, D. L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other 3   Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. 4   - Tinsley, R. C., J. E. York, A. L. E. Everard, L. C. Stott, S. J. Chapple and M. C. Tinsley. 5   2011. Environmental constraints influencing survival of an African parasite in a north 6   temperate habitat: effects of temperature on egg development. 7   - Valtonen, E. T., J. C. J. Holmes, J. Aronen and I. Rautelehti. 2003. Parasite communities 8   as indicators of recovery from pollution: parasites of roach (Rutilus rutilus) and perch 9   (Perca fluviatilis) in Central Finland. Parasitology. 126: S43-S54. 10   - Villegas-Guzman, G. A., López-González, C., Vargas, M. 2005. Ectoparasites associated 11   to two species of Corynorhinus (Chiroptera: Vespertilionidae) from the Guanaceví 12   Mining Region, Durango, Mexico. Journal of Medical Entomology. 43(2): 125-127. 13   - Wenzel, R. L., V. J. Tipton and A. Kiewlicz. 1966.The streblid batflies of Panama 14   (Diptera: Calypterae: Streblidae), p. 405-675. In: R.L. Wenzel & V.J. 15   Tipton (eds.). Ectoparasites of Panama. Chicago, Field Museum of Natural History. 16   861p. 17   - Wenzel, R. L. 1976. The streblid batflies of Venezuela (Diptera: Streblidae). Brigham 18   Young University. Science Bulletin. Biological Series. 2(4): 1-177. 19   - Zahn, A., and D. Rupp. 2004. Ectoparasite load in European vespertilionid bats. Journal 20   of Zoology. 262:383–391. 21   - Zarazúa-Carbajal, M. Saldaña-Vázquez, R. A. Sandoval, R. C. A. Stoner, K. E. Benitez-22   Malvido, J. 2016. The specificity of host-bat fly interaction networks across vegetation 23   and seasonal variation. Parasitology Research. 24     95   - Zhang, L., S. Parsons, P. Daszak, L. Wei, G. Zhu and S. Zhang. 2010. Variation in the 1   abundance of ectoparasites mites of flat-headed bats. Journal of Mammalogy. 91:136-143. 2   3   Table 1. Frequencies of bats-flies species captured from four bat species during dry and wet seasons. L. yerbabuenae P. davyi P. parnellii P. personatus Dry Wet Dry Wet Dry Wet Dry Wet Captured / % of infested 18/100 139/68 60/81 53/71 42/88 117/88 18/89 43/67 Total of ectoparasites 212 401 434 112 269 2097 67 118 Streblid species Nycterophilia coxata N. fairchildi N. parnelli Trichobius sphaeronotus T. johnsonae T. yunkeri 78/37 8/4 4/2 116/55 6/3 0/0 157/39 22/5 13/3 90/22 88/22 31/7 31/7 83/19 6/1 149/34 160/37 5/1 16/14 63/56 8/7 13/12 21/19 1/0 39/14 4/1 26/10 69/26 95/35 36/13 75/3 57/3 150/7 144/7 1116/53 555/26 16/24 40/60 4/6 2/3 5/7 0 5/4 105/89 4/3 0 4/3 0   97   Table 2. Prevalence, mean abundance and intensity of bat-flies species found in the four bat species examined during dry and wet seasons. P =values of chi-squared test with prevalence data and boostrap test with the mean abundance and intensity data. Confidence intervals (CI) were set in 95% of probability. Prevalence (%; 95% CI) Mean abundance (95% CI) Mean intensity (95% CI) L. yerbabuenae Dry Wet P Dry Wet P Dry Wet P Nycterophilia coxata 94 (72.70-99.90) 52 (43.20-60.30) 0.00 4.33 (2.98-6.00) 1.12 (0.85-1.48) 0.08 4.58 (3.22-6.29) 2.18 (1.75-2.81) 1.00 N. fairchildi 17 (3.60-41.4) 11 (6.20-17.20) 0.46 0.44 (0.00-1.22) 0.15 (0.08-0.26) 0.00 2.66 (1.00-3.67) 1.46 (1.13-1.80) 0.00 N. parnelli 6 (0.10-27.30) 7 (3.50-12.80) 0.79 0.22 (0.00-0.66) 0.09 (0.03-0.17) 0.60 4.00 (0.00) 1.30 (1.00-1.80) 1.00 T. sphaeronotus 83 (58.60-96.40 31 (23.40-39.30) 0.00 6.44 (3.33-11.11) 0.64 (0.45-0.94) 0.02 7.73 (4.28-12.50) 2.09 (1.60-2.75) 0.03 17 16 0.33 0.63 2.00 4.00   98   T. johnsonae (3.60-41.40) (10.20-23.00) 0.92 (0.00-0.66) (0.28-1.89) 0.43 (0.00) (2.09-11.50) 0.41 T. yunkeri 0 6 (3.00-11.90) 0.00 0.00 0.22 (0.08-0.48) 0.09 0.00 3.44 (1.89-5.78) 1.00 P.davyi N. coxata 18 (9.50-30.40) 19 89.40-32.0 0.94 0.51 (0.21-1.27) 0.30 (0.13-0.63) 0.43 2.81 (1.64-5.82) 1.60 (1.00-2.60) 0.34 N. fairchildi 48 (35.20-61.60) 53 (38.6-66.7) 0.63 1.38 (0.86-2.34) 1.18 (0.75-2.17) 0.68 2.86 (2.00-4.52) 2.25 (1.54-3.65) 0.45 N. parnelli 7 (1.80-16.20) 9 (3.10-20.70) 0.58 0.10 (0.01-0.23) 0.15 (0.03-0.34) 0.56 1.50 (1.00-1.75) 1.60 (1.00-2.20) 0.81 Trichobius sphaeronotus 40 (27.60-53.50) 13 (5.50-25.30) 0.00 2.48 (1.43-4.32) 0.24 (0.09-0.52) 0.02 6.20 (3.88-10.10) 1.85 (1.14-2.86) 0.03 T. johnsonae 65 (51.6-76.9) 19 (9.40-32.00) 0.00 2.66 (1.80-4.12) 0.39 (0.13-1.18) 0.00 4.10 (2.95-6.15) 2.10 (1.00-5.10) 0.14   99   T. yunkeri 7 (1.8-16.20) 2 (0.00-0.10) 0.21 0.08 (0.01-0.18) 0.01 (0.00-0.05) 0.18 1.25 (1.00-1.50) 1.00 (0.00) 1.00 P.parnellii Nycterophilia coxata 31 (17.60-47.10) 32 (23.30-40.9) 0.93 0.92 (0.44-1.76) 0.64 (0.44-0.92) 0.27 3.00 (1.85-5.08) 2.02 (1.57-2.62) 0.53 N. fairchildi 9 (2.70-22.60) 25 (17.30-33.60) 0.03 0.09 (0.02-0.19) 0.48 (0.30-0.75) 0.00 1.00 (0.00) 1.96 (1.48-2.69) 0.02 N. parnelli 36 (21.60-52.00) 46 (36.90-55.60) 0.24 0.61 (0.35-1.02) 1.28 (0.93-1.85) 0.01 1.73 (1.27-2.40) 2.77 (2.13-3.70) 0.03 Trichobius sphaeronotus 24 (12.10-39.50) 39 (30.40-48.80) 0.07 1.64 (0.59-3.86) 1.23 (0.87-1.76) 0.59 6.90 (3.50-14.50) 3.13 (2.48-4.30) 0.22 T. johnsonae 59 (43.30-74.40) 74 (65.50-82.00) 0.07 2.26 (1.24-4.94) 9.54 (7.14-12.7) 0.00 3.80 (2.28-9.38) 12.82 (9.93-16.7) 0.00 T. yunkeri 45 (29.80-61.30) 45 (36.10-54.80) 0.99 0.85 (0.5-1.38) 4.74 (3.03-8.05) 0.02 1.89 (1.37-2.74) 10.88 (7.02-17-40) 0.02   100   P. personatus Nycterophilia coxata 33 (13.30-59.00) 5 (0.60-15.80) 0.00 0.88 (0.27-2.56) 0.11 (0.00-0.34) 0.31 2.66 (1.17-5.50) 2.50 (2.00-2.50) 0.88 N. fairchildi 61 (35.7-82.70) 56 (39.90-70.90) 0.63 2.22 (1.17-3.89) 2.44 (1.44-4.37) 0.82 3.63 (2.18-5.73) 4.38 (2.96-7.47) 0.60 N. parnelli 17 (3.60-41.40) 7 (1.50-19.10) 0.26 0.22 (0.00-0.50) 0.09 (0.00-0.23) 0.37 1.33 (1.00-1.67) 1.33 (1.00-1.67) 1.00 Trichobius sphaeronotus 11 (1.40-34.70) 0 0.02 0.11 (0.00-0.22) 0.00 0.14 1.00 (0.00) 0.00 1.00 T. johnsonae 28 (9.70-53.50) 7 (1.50-19.10) 0.02 0.27 (0.05-0.44) 0.09 (0.00-0.23) 0.14 1.00 (0.00) 1.33 (1.00-1.67) 0.55 T. yunkeri 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00   101   Table 3. Comparative of bat flies load in bat individuals of different reproductive conditions in the dry and wet season in four species of bats. N = number of bats collected; Inf= Infected; PHI = proportion of hosts infected considering the total bat flies records; THE = average number of total bat flies per host individual examined; THI = average number of total bat flies per infected host individuals; DIF = Dry season Inactive Females; WIF = Wet season Inactive Females; DIM = Dry season Inactive Males; WIM = Wet season Inactive Males; WLF = Wet season Lactating Females; DPF = Dry season Pregnant Females. P= values of chi-squared test with PHI data and bootstrap test with THE and THI data. Confidence intervals (CI) were set in 95% of probability. Specie N Inf PHI (%) P THE P THI P P. davyi DIF vs WIF 18/22 15/19 83.3 (0.58-0.96)/ 86.4 (0.65-0.97) 1.00 7.8 (4.89-13.5)/ 1.5(1.14-1.86) 0.03 9.4 (6.0-15.6)/1.7 (1.42-2.05) 0.03 DIF vs. DPF 18/14 15/12 83.3 (0.58-0.96)/ 85.7 ( 0.57-0.98) 1.00 7.8 (4.89-13.5)/ 3.7(2.4-5.1) 0.10 9.4 (6.0-15.6 )/ 4.4 ( 3.0-5.5) 0.09 DIF vs. DIM 18/28 15/22 83.3 (0.58-0.96)/ 78.6 (0.59-0.91) 1.00 7.8(4.89-13.5)/ 8.5(5.43-13.5) 0.81 9.4 (6.0-15.6)/ 10.8 (7.27-16.4) 0.66 64.5 (0.45-0.80 )/ 2.8(1.68-4.59)/ 4.40 ( 3-6.58)/   102   WIM vs. WIF 31/22 20/19 86.4 (0.65-0.97) 0.11 1.5(1.14-1.86) 0.10 1.7 (1.42-2.05) 0.03 P. parnellii WLF vs. DPF 57/14 54/13 94.7 (0.85-0.98)/ 92.9 (0.66-0.99) 1.00 27.4(19.6-38.9)/ 4.0(2.3-7.2) 0.00 28.8 (21.1-41.7)/ 4.3 (2.6-7.9) 0.00 DIM vs. WIM 17/17 16/11 94.1 (0.71-0.99 )/ 64.7 ( 0.38-0.85) 0.08 7.4 (4.41-12.2)/ 5.0(2.17-9.88) 0.38 7.9 ( 4.81-13.4) / 7.7 (3.5-13.7 ) 0.95 DIF vs. WIF 11/42 8/37 72.7 (0.39-0.94)/ 88.1 (0.74-0.96) 0.34 7.73 (2.6-20.4)/ 10.6(6.62-18.3) 0.57 10.6 ( 4.0-26.1)/ 12.1 (7.52-20.2 ) 0.81 WLF vs. WIF 57/42 54/37 94.7 (0.85-0.98 )/ 88.1 (0.74-0.96) 0.27 27.4(19.6-38.9)/ 10.6(6.62-18.3) 0.00 28.8 (21.1-41.7)/ 12.1 (7.52-20.2) 0.00 DIF vs. DPF 11/14 8/13 72.7 (0.39-0.94)/ 92.9 (0.66-0.99) 0.28 7.7 (2.6-20.4)/ 4.0(2.3-7.2) 0.45 0.6 (4.0-26.1)/ 4.3(2.6-7.9) 0.37 72.7 (0.39-0.94)/ 7.7(2.6-20.4)/ 10.6 (4.0-26.1)/   103   DIF vs. DIM 11/17 8/16 94.1 (0.71-0.99) 0.26 7.4(4.41-12.2) 0.95 7.9(4.81-13.4) 0.66 WIF vs. WIM 42/17 37/11 88.1 (0.74-0.96)/ 64.7 (0.38-0.85) 0.06 10.6(6.62-18.3)/ 5.0(2.17-9.88) 0.10 12.1(7.52-20.2)/ 7.73(3.5-13.7 ) 0.27 P. personatus WLF vs. DPF 6/4 5/4 88.3(0.35-0.99)/ 100(0.39-1.00) 1.00 7.6(2.8-17.0)/ 6.5(3.0-8.25) 0.79 9.2 (3.8-18.6)/ 6.50 (3.0-8.25) 0.58 WLF vs. WIF 6/13 5/7 88.3 (0.35-0.99)/ 53.8 (0.25-0.80) 0.33 7.6(2.8-17.0)/ 1.6(0.69-3.69) 0.27 9.2 (3.8-18.6)/ 3.1 (1.57-6.14) 0.32 WIF vs. DPF 13/4 7/4 53.8(0.25-0.80)/ 100(0.39-1.00) 0.23 1.6(0.69-3.69)/ 6.5(3.0-8.25) 0.12 3.1 (1.57-6.14)/ 6.5 (3.0-8.25) 0.19 WIM vs. DIM 24/13 17/11 70.8(0.48-0.87)/8 4.6(0.54-0.98) 0.44 2.0(1.25-3.29)/ 2.5(1.46-4.23) 0.60 2.9(1.95-4.35)/ 3.0(1.82-4.82) 0.95   104   WIF vs. WIM 13/24 7/17 53.8(0.25-0.80)/ 70.8(0.48-0.87) 0.47 1.6(0.69-3.69)/ 2.0(1.25-3.29) 0.00 3.1(1.57-6.14)/ 2.9(1.95-4.35) 0.87   105   Figure Legends Figure 1. Neighbor-Joining tree showing the corrected COI distances among specimens of the bat-fly species identified in this study. Names in parentheses indicate bat host species. Figure 2. Richness of bat-flies species registered in four bat species during the dry and wet season. Figure 3. Effective number of bat-flies species from Shannon-Wiener Index in four species of bats during the dry and wet season.   106   ~ '----- " OO)//lla (P 00l1)li) VBS _11 3 " " " " " " OO)I/lla (L-yerbabuenae) VBS_24 coxala (P.persooatus) VBS_ 411 coxala (P . ~) VBS _200 coxala(LyerlJabuenae) VBS_65 COJfala (L yerlJabuenae) VBS_296 coxala (P.daV)ll) VBS_ 431 " " coxala (P.pameJi) vas _1428 pameIi (P,pameJi) VBS_226 "po N pameli (Ppameli) VBS_233 me. tL yerbabuenae)VBS_341 vy¡)VBS_l02 - N fraK:htk1sl (Pe/a N. fraK:hlldii (P per sonaflls) VBS_514 N. frwchIJc/ii (P pame &)VBS_Ol N pameJlli (P per SOtlatus) VBS_ 451 - N fratchildii (P pa meJlii)VBS_1 42b r1:""~ T ¡cho ae(P pame.)E5_VS2 SOtl8e (L.yerl:labuenae) E5_ VS5 Be (P pameli) ES _ VS 1 (Lyerllabuenae) E5_VS6 ken (P davyr) E5_VS3 T ¡cho~ T¡cho~ 1r yun T yunker (P davyI) E5_VS4 T sphaeronoIus (Mmegalophyfa) E4_VS5 T sphaeronoIus (LyerlJabuenae) E4_VS3 T sphaeronoIus (Mmegalophyfa) E4_VS6 T sphaeronotus (P.daV)'l) E4_VS8   107   0   2   4   6   8   10   L.yerbabuenae P.davyi P.personatus P.parnellii N u m b er o f S p ec ie s Bat species Dry   Wet     108   1,10 3,85 3,05 0,21 4,49 3,92 1,63 0,27 0   0,5   1   1,5   2   2,5   3   3,5   4   4,5   5   L.yerbabuenae P.davyi P.personatus P.parnellii E ff ec ti v e n u m b er o f sp ec ie s (S h an n o n - W ie n er I n d ex ) Bat species Dry   Wet     109   DISCUSIÓN Y CONCLUSIONES En el presente trabajo se investigó la variación estacional en la dieta y en la carga parasitaria de tres especies de murciélagos insectívoras y una nectarívora en la región de Chamela, Jalisco. Se caracterizó la dieta de las tres especies insectívoras para examinar la posible existencia de sobrelapamiento en la dieta y su variación estacional en respuesta a las fluctuaciones estacionales de las presas. Lepidópteros y dípteros fueron las presas mas consumidas por las tres especies de murciélagos. Se ha propuesto que la dieta de los murciélagos responde a las fluctuaciones locales de las poblaciones de insectos (Clare et al., 2011; Sedlock et al., 2014). Sin embargo, la dieta de Pteronotus davyi y P. personatus fue más diversa durante la época de secas, mostrando una tendencia mas generalista. En contraste, durante la época de lluvias, la abundancia de insectos se incrementa (Pescador- Rubio et al., 2002) permitiendo que estas especies sean mas selectivas en su dieta (Koselj et al., 2011). Pteronotus parnellii presentó una dieta mas diversa que las otras especies de insectívoros en las dos épocas del año, sugiriendo una tendencia mas generalista a lo largo del año. El sobrelapamiento en la dieta fue significativo pero moderado en la mayoría de los casos. La única excepción se presentó entre P. parnellii y P. personatus durante la época de lluvias. El tamaño y la velocidad al vuelo de estas especies son distintas pero comparten un sistema ecolocalización mas especializado (Doppler shift compensation: DSC) que otras especies de murciélagos, incluido P. davyi. Este tipo de ecolocalización les permite discriminar detalles de sus presas y volar a través de sitios con follaje denso (Smotherman & Guillén- Servent, 2008). Este factor podría influir en el sobrelapamiento de sus recursos.   110   En cuanto a la carga parasitaria de helmintos gastrointestinales, se caracterizó la carga de endoparásitos de una especie de murciélago nectarívora y tres insectívoras para examinar la existencia de cambios estacionales en respuesta a las fluctuaciones ambientales y de sus presa. Además, se comparó la carga de endoparásitos de la especie nectarívora con la de los murciélagos insectívoros para evaluar si la dieta influye en la susceptibilidad a ser infectado. La abundancia e intensidad promedio no difirieron significativamente entre temporadas para ninguna de las especies de endoparásitos. La prevalencia de especies de helmintos fue mayor durante la época de lluvias en P. davyi , mientras que otras dos especies de helmintos reportaron una mayor prevalencia en la época de seca en P. parnellii y P. personatus. Pteronotus personatus presentó una mayor proporción de individuos infectados en secas. Los modelos epidemiológicos predicen una relación positiva entre la densidad de población del huésped y la abundancia de macroparásitos (Anderson & May, 1978; May & Anderson, 1978; Altizer et al., 2003). Cuando la densidad del huésped es mayor se incrementa la probabilidad de contacto parásito-huésped definitivo o intermediario (Anderson & May, 1978; May & Anderson, 1978; Lafferty, 1997; Arneberg et al., 1998). La falta de un patrón uniforme en nuestros resultados podría indicar que la tasa de infección depende de la abundancia de especies de artrópodos que sirven como huéspedes intermediarios. La variación en la dieta de las especies de Pteronotus en Chamela está dirigida por la abundancia y disponibilidad de insectos presa, los cuales varían en tiempo y espacio (Salinas-Ramos et al., 2015). Más de 1,877 especies de artrópodos han sido registrados en Chamela, de las cuales 570 especies se encuentran a lo largo del año, 622 y 231 especies se encuentran sólo durante la época de lluvias o secas,   111   respectivamente (Pescador-Rubio et al., 2002). Otro factor que puede influir es el "efecto de dilución" (Hamilton, 1971). El aumento en el número de huéspedes intermediarios o permanentes genera que la probabilidad de ser infectado sea menor (Ostfeld & Keesing, 2000; Krasnov et al., 2007). En cuanto a la riqueza, esta fue ligeramente mayor en P. parnellii en la época de lluvias, mientras que en P. davyi y P. personatus fue la misma en las dos épocas del año. El número efectivo de especies fue mayor durante la época de secas para las tres especies de Pteronotus. Se ha reportado que la diversidad de la dieta de P. davyi y P. personatus aumenta en época secas, cuando la abundancia de artrópodos es menor (Salinas-Ramos et al., 2015; Andresen, 2005; Güizado & Casas-Andreu, 2001). Estas especies de murciélagos adoptan una estrategia más generalista cuando las presas son limitadas y son mas selectivos cuando la abundancia de insectos aumenta en lluvias (Salinas-Ramos et al., 2015). Pteronotus parnelli, presentó una mayor riqueza y número efectivo de especies de helmintos lo cual coincide con una dieta más diversa en comparación con P. davyi y P. personatus (Salinas-Ramos et al., 2015). En general, se encontró que L. yerbabuenae presenta una menor carga endoparasitaria que las especies de murciélagos insectívoros. Se sabe que varios helmintos requieren insectos como huéspedes intermediarios los cuales son posteriormente ingeridos por los murciélagos (Adams, 1989; Rezsutek & Cameron, 1993; Cuartas-Calles & Muñoz- Arango, 1999; Bush et al., 2001;. Lord et al., 2012). Algunos murciélagos frugívoros y nectarívoros complementan su dieta con insectos como fuente de proteínas (Gardner, 1977; Thomas, 1984) lo que podría explicar su infección por helmintos (Cuartas-Calles & Muñoz-Arango, 1999; Nogueira et al., 2004). Leptonycteris yerbabuenae se alimenta de   112   néctar, polen, y la fruta (Gardner, 1977; Cole & Wilson, 2006), pero restos de insectos se han observado en sus contenidos estomacales (Howell, 1979) y en las heces, aumentando cuando la abundancia de flores es baja (Stoner et al., 2003). Por lo tanto, los bajos niveles de infección por endoparásitos en L. yerbabuenae podrían estar relacionados con un papel secundario de los insectos en su dieta. Otro factor que puedo influir en la presencia o ausencia de algunas especies de parásitos es la señal filogenética (Poulin et al., 2013; Presley et al., 2015). En el presente estudio, las especies insectívoras son simpátricas y podrían representar un hábitat y/o recurso similar para los parásitos por lo que la posibilidad de compartir algunas especies de helmintos es mayor. Leptonycteris yerbabuenae no está estrechamente relacionado con las especies de Pteronotus por lo que es parasitado por otro tipo de helmintos. También se caracterizó la carga de ectoparásito de las cuatro especies de murciélagos para explorar la presencia de los cambios estacionales en los descriptores poblacionales de los parásitos y su diversidad en respuesta a las fluctuaciones ambientales. La prevalencia, abundancia e intensidad promedio fueron similares en las dos épocas del año para la mayoría de los casos. Nuestra predicción sobre una mayor carga parasitaria en lluvias fue solo apoyada en P. parnellii por la presencia de una mayor abundancia e intensidad promedio en cuatro de las especies de dípteros, así como una mayor prevalencia de una de ellas. Sin embargo, se registró una mayor prevalencia, abundancia e intensidad promedio en algunas especies dípteros ectoparásitos durante la época de secas en las tres especies de murciélagos restantes.   113   Nuestros resultados sugieren que algunas de las especies de dípteros asociados a P. parnellii se ven favorecidas por las condiciones ambientales presentes durante la época de lluvias, cuando las condiciones ambientales son favorables (Arneberg et al., 1998). Se sabe que varias caracteristicas del huésped pueden influir en la densidad poblacional de sus ectoparásitos (Anderson & May 1978; May & Anderson 1978; Arneberg et al., 1998). La densidad poblaciónal del huésped podría influir en la probabilidad de infestación del parásito (Arneberg et al., 1998;. Stanko et al., 2006). En isla Don Panchito se ha observado que la densidad de P. parnellii es más alta al final de la época de secas hasta iniciando la época de lluvia (Stoner et al., 2003). Por lo tanto, esta variación en la densidad podría favorecer la abundancia e intensidad promedio de cuatro de las seis especies dipteros encontradas en P. parnellii en lluvias. Algunos de los parámetros de la carga parasitaria de las tres especies de murciélagos restantes fueron mayores durante la época de secas, coincidiendo con un estudio previo en el cual se encontró que los ectoparásitos de mamíferos pequeños tiene una mayor prevalencia e intensidad promedio en la época de secas, cuando los recursos alimentarios son menores (Sponchiado et al., 2015). Igual que Stoner et al. (2003), se observó que la cueva en Don Panchito tiene una mayor densidad de murciélagos durante la época de lluvias, cuando los recursos alimentarios son mas abundantes en la región (Ceballos et al., 1997; Pescador- Rubio et al., 2002). Si la densidad de murciélagos se incrementa durante dicha época, la disponibilidad de huéspedes para los ectoparásitos también es mayor y por lo tanto pueden seleccionar el huésped más apropiado para ser parasitado (Blanco et al., 1997; Dawson & Bortolotti, 1997). Por otro lado, en la estación seca, cuando la densidad de los murciélagos es más baja, la disponibilidad de huéspedes es limitada y los ectoparásitos   114   podrían parasitar cualquier individuo que se encuentre disponible. Lo anterior podría explicar el por qué estas especies de ectoparásitos reportaron una mayor prevalencia, abundancia e intensidad promedio durante la época de secas en L. yerbabuenae, P. davyi y P. personatus. El porcentaje de murciélagos infestados considerando todos los ectoparásitos por especie de murciélago no fue significativamente diferente en ninguna de las comparaciones entre las distintas condiciones reproductivas y los sexos. En general, el número promedio de estréblidos por huésped examinado e infectado no fue significativamente diferente entre las épocas con algunas excepciones. Estos dos parámetros fueron significativamente mayores en las hembras lactantes que en las preñadas e inactivas en P. parnellii, mientras que en las otras especies de Pteronotus no se encontraron diferencias en estos parametros. Lo anterior sugiere que el periodo de lactancia es un factor que influye en la carga de ectoparásitos en las hembras de P. parnellii durante la época de lluvias. Algunos parásitos sincronizan su actividad reproductiva con la de su huésped (Prince, 1980; Marshall, 1981; Blanco & Frías, 2001; Lourenço & Palmeirim, 2008; Sponchiado et al., 2015). Además, el aumento en la densidad poblacional con la presencia de las crías y la formacion de colonias de maternidad podrían aumentar la probabilidad de infestación (Christe et al., 2000). Se encontró un mayor promedio de parásitos por huésped infestado y examinado en hembras inactivas durante la época de secas en P. davyi. Lo anterior podría estar relacionada también con la baja densidad de murciélagos durante la época de secas. Por lo tanto los ectoparásitos podrían parasitar cualquier huésped que este disponible en la época de secas, mientras que en la época de lluvias seleccionarían al huésped más adecuado. No se encontró un patrón en la carga de ectoparásitos entre hembras y machos inactivos para   115   las especies de murciélagos examinados. Sin embargo, el promedio de parásitos por huésped infestado y examinado fue mayor en los machos inactivos que las hembras inactivas durante la época de lluvias en P. davyi y P. personatus, respectivamente. La intensidad y el número de parásitos son generalmente mayores en juveniles y hembras que en subadultos y machos (Chilton et al., 2000; Zahn & Rupp, 2004; Lučan, 2006; Lorenço & Palmeirim, 2008), aunque algunos autores han encontrado que el sexo de huésped no está relacionado con la carga parasitaria (Moura et al., 2003; Miller, 2014). Sin embargo, también se ha reportado que los machos albergaban más ectoparásitos que las hembras (Komeno & Linhares 1999; Zhang et al., 2010). Estudios posteriores podrían investigar qué otras variables influyen en el promedio de parásitos por huésped infestado y examinado en los machos inactivos de P. davyi y P. personatus durante la época de lluvias. La riqueza de especies fue casi la misma en ambas épocas para las cuatro especies de murciélagos. No se encontró un patrón en el número efectivo de especies de estréblidos. Este valor fue mayor en la época de lluvias en L. yerbabuenae, P. davyi y P. parnellii y en secas para P. personatus. Estos resultados contrastan con un estudio reciente realizado en la región de Chamela el cual reporta una menor riqueza de estréblidos en L. yerbabuenae y P. parnellii (Zarazúa-Carbajal et al., 2016). Estos autores también encontraron que la composición de especies de estréblidos se vio afectada por la estacionalidad, como consecuencia de los cambios en la abundancia de sus huéspedes   116   BIBLIOGRAFÍA - Adams J. 1989. Pteronotus davyi. Mammalian species. 346: 1 - 5. - Altizer S, Harvell D y Friedle E. 2003.Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology and Evolution.18:589–596. - Anderson RM y May RM. 1978. Regulation and stability of host-parasite population interactions I. Regulatory processes. Journal of Animal Ecology. 47: 219-247. - Andresen E. 2005. Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest. Biotropica. 37: 291–300. - Arneberg P, Skorping A, Grenfell B, Read AF. 1998. Host densities as determinants of abundance in parasite communities. Proc. R. Soc. London Ser. B 265:1283–9. - Blanco G, Tella JL, Potti J. 1997. Feather mites on group-living Red-billed Choughs: a non-parasitic interaction? Journal of Avian Biology. 28: 197-206. - Blanco, G. and O. Frías. 2001. Symbiotic feather mites synchronize dispersal and population growth with host sociality and migratory disposition. Ecography 24:113–120. - Bush AO, Fernández JC, Esch GW, y Seed JR. 2001. Parasitism. The diversity and ecology of animal parasites. Cambridge University Press. United Kingdom. 556pp. - Ceballos G, Fleming TH, Chávez C y Nassar J. 1997. Population dynamics of Leptonycteris curasoae (Chiroptera: Phyllostonidae) in Jalisco, Mexico. Journal of Mammalogy. 78(4): 1220-1230. - Chilton, G., M. J. Vonhofter, B. V. Peterson and N. Wilson. 2000. Ectoparasitic insects of bats in British Columbia, Canada. Journal of Parasitology 86:191–192.   117   - Christe P, Arlettaz R, y Vogel P. 2000. Variation in intensity of a parasitic mite (Spinturnix myotis) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters. 3: 207-212. - Clare EL, Barber BR, Sweeney BW, Hebert PDN y Fenton MB. 2011. Eating local: influences of habitat on the diet of little brown bats (Myotis lucifugus). Molecular Ecology. 20: 1772–1780. - Cole FR y Wilson DE. 2006. Leptonucteris yerbabuenae. Mammalian speices 797: 1-7. - Cuartas-Calles C y Muñoz-Arango J. 1999. Nemátodos en la cavidad abdominal y el tracto digestivo de algunos murciélagos Colombianos. Caldasia 21:10-25. - Dawson, R.D. and G.R. Bortolotti. 1997. Ecology of parasitism of nestling American Kestrels by Carnus hemapterus (Diptera: Carnidae). Canadian Journal of Zoology 75: 2021-2026. - Gardner AL. 1977. Feeding habits. In Biology of bats of the New World Family Phyllostomatidae, Baker, R. J. J.K. Jones Jr. and D.C. Carter (eds.). Part II. Special Publications the Museum Texas Tech University 13: 293 – 350. - Güizado RMA y Casas-Andreu G. 2011. Facultative Specialization in the Diet of the Twelve-lined Whiptail, Aspidoscelis lineatissima. Journal of Herpetology. 3: 287-290. - Hamilton WD. 1971. Geometry for the selfish herd. Journal of Theoretical Biology. 31:295-311. - Howell DJ. 1979. Flock foraging in nectar-feeding bats: advantages to the bats and to the host plants. The American Naturalist 114: 23-49.   118   - Komeno C y Linhares AX. 1999. Batflies parasitic on some phyllostomid bats in southeastern Brazil: parasitism rates and host–parasite relationships. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro 94:151–156. - Koselj K, Schnitzler H-U, Siemers BM. 2011. Horseshoe bats make adaptive prey- selection decisions, informed by echo cues. Proceedings of the Royal Society. B, Biological Sciences. 278: 3034–3041. - Krasnov BR, Stanko M, y Morand S. 2007. Host community structure and infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. Oecologia. 154: 185-194. - Lafferty KD. 1997. Environmental parasitology: What can parasites tell us about human impacts on the environment. Parasitology Today. 13: (7) 251-255. - Lord JS, Parker S, Parker F, y Brooks DR. 2012. Gastrointestinal helminths of pipistrelle bats (Pipistrellus pipistrellus/ Pipistrellus pygmaeus) (Chiroptera: Vespertilionidae) of England. Parasitology139: 366-374. - Lourenço, S.I. and Palmeirim, J.M. 2008. Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats? Parasitology Research 104: 127-134. - Lucan RK. 2006. Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behavior. Folia Parasitologica 53:147–152. - Marshall AG. 1981. The ecology of ectoparasitic insects. Academic Press London. 459pp.   119   - May RM y Anderson RM. 1978. Regulation and stability of host-parasite population interactions II. Destabilizing processes. Journal of Animal Ecology. 47: 249-267. - Miller, C. 2014. Host speficity and ectoparasite load of bat flies in Utila, Honduras. Senior Honors Theses. University of New Orleans. 63p. - Moura MO, Bordignon MO, y Graciolli G. 2003. Host characteristics do not affect community structure of ectoparasites on the fishing bat Noctilio leporinus (L., 1758) (Mammalia: Chiroptera). Memorias do Instituto Oswaldo Cruz, Rio de Janeiro 98:811–815. - Nogueira, M. R., S. P. de Fabio, and A. L. Peracchi. 2004. Gastrointertinal helminth parasitism in fruit-eating bats (Chiroptera: Stenodermatinae) from western Amazonian Brazil. Revista de Biología Tropical 52(2): 1-5. - Ostfeld RS y Keesing F. 2000. Biodiversity and disease risk: the case of Lyme disease. Conservation Biology. 14(3): 722-728. - Pescador-Rubio A, Rodriguez-Palafox A, Noguera FA. 2002. Diversidad y estacionalidad de Arthropoda. En Historia Natural de Chamela. Noguera FA, Vega RJH, García AAN y Quesada AM (eds.). Instituto de Biología, Universidad Nacional Autónoma de México, Mexico. 183-201p. - Poulin R, Krasnov BR, Pilosof S, y Thieltges DW. 2013. Phylogeny determines the role of helminths parasites in intertidal food webs. Journal of Animal Ecology. 82: 1265-1275. - Presley SJ, Dallas T, Klingbeil BT, y Willig MR. 2015. Phylogenetic signals in host-parasite associations for Neotropical bats and Nearctic desert rodents. Biological Journal of the Linnean Society. 116:312-327.   120   - Price P .1980. Evolutionary biology of parasites. Princeton University Press, Princeton.Rezsutek, M. and G. N. Cameron. 1993. Mormoops megalophylla. Mammalian species 448: 1-5. - Salinas-Ramos VB, Montalvo LGH, León-Regagnon V, Arrizabalaga-Escudero A, y Clare EL. 2015. Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Molecular Ecology. 24:5296-5307. - Sedlock JL, Krüger F, Clare EL. 2014. Island bat diets: does it matter more who you are or where you live? Molecular Ecology, 23, 3684–3694. - Smotherman M y Guillén-Servent A. 2008. Doppler-shift compensation behavior by Wagners mustached bat, Pteronotus personatus. The Journal of the Acoustical Society of America. 123: 4331–4339. - Sponchiado J GL, Melo GA, Landulfo FC, Jacinavicius DM, Barros-Battesti N, Cáceres C. 2015. Interaction of ectoparasites (Mesostigmata, Phthiraptera and Siphonaptera) with small mammals in cerrado fragments, western Brazil. Experimental and Applied Acarology. 66(3): 369-381. - Stanko M, Krasnov BR y Morand S. 2006. Relationship between host abundance and parasite distribution: inferring regulating mechanisms from census data. Journal of Animal Ecology. 75: 575- 583. - Stoner KE, Salazar KAO, Fernández RCR y Quesada M. 2003. Population dynamics, reproduction, and diet of the lesser long- nosed bat (Leptonycteris curasoae) in Jalisco, Mexico: implications for conservation. Biodiversity and Conservation 12: 357-373.   121   - Thomas, D.W. 1984. Fruit intake and energy budgets of frugivorous bats. Physiological Zoology 57: 457-467. - Zahn, A., and D. Rupp. 2004. Ectoparasite load in European vespertilionid bats. Journal of Zoology. 262:383–391. - Zarazúa-Carbajal, M. Saldaña-Vázquez, R. A. Sandoval, R. C. A. Stoner, K. E. Benitez-Malvido, J. 2016. The specificity of host-bat fly interaction networks across vegetation and seasonal variation. Parasitology Research. - Zhang, L., S. Parsons, P. Daszak, L. Wei, G. Zhu and S. Zhang. 2010. Variation in the abundance of ectoparasites mites of flat-headed bats. Journal of Mammalogy. 91:136-143.