UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS MATEMÁTICAS Y DE LA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA COLORFUL THEOREMS IN DISCRETE AND CONVEX GEOMETRY TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIAS PRESENTA: CUAUHTEMOC GOMEZ NAVARRO DIRECTOR DR. EDGARDO ROLDÁN PENSADO CENTRO DE CIENCIAS MATEMÁTICAS, UNAM CIUDAD DE MÉXICO, JUNIO DEL 2022. UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. 2 Agradecimientos El éxito en la vida no consiste en ganar todas tus batallas, sino en nunca rendirse en las que valen la pena. Quiero agradecer a las personas que han aportado a mi formación personal y académica. A mi mamá, mi papá y mis dos hermanos por todos los momentos que hemos pasado juntos. Un especial agradecimiento a mi mamá, por su apoyo incondicional en todo momento. A mi director de tesis, Edgardo Roldán, por sus observaciones, comentarios y sugerencias. Le agradezco por escucharme cada vez que creo haber demostrado un nuevo resultado matemático, por la confianza que me ha tenido, y por el tiempo que le ha dedicado a los problemas y conjeturas que le he contado. Por todo lo que he aprendido trabajando a su lado. A mi tutora de maestŕıa, Isabel Hubard, por todos sus consejos, por todo lo que he aprendido de ella y por la revisión de esta tesis. A Leonardo Mart́ınez, porque ha léıdo con mucho cuidado mis dos tesis (de licenciatura y de maestŕıa). Le agradezco todas las observaciones, correcciones y sugerencias que ayudaron a mejorar este trabajo. También le quiero agradecer por invitarme a ser su ayudante de maestŕıa, a escribir un art́ıculo en Espacio Matemático y a dar una plática en el Encuentro Nacional de Computación. A Pablo Soberón, por la lectura cuidadosa de esta tesis. Por las correcciones, comentarios y observaciones que me ayudaron a aprender más. A Luis Montejano, por la revisión de este trabajo, por ser un gran profesor y un ejemplo a seguir. Gracias por invitarme a dar una plática en el Seminario Preguntón. A todos los profesores de los que he aprendido matemáticas. En particular, quiero agradecer a Edgardo Roldán, Isabel Hubard, Leonardo Mart́ınez, Luis Montejano, Pablo Soberón, Juan José Montellano, Vinicio Gómez, Javier Bracho, Ricardo Strausz, Amanda Montejano, Adriana Hansberg, Alejandro Illanes, Francisco Marmolejo, Javier Páez, Alejandro Daŕıo y Ernesto Arellano. A todos los entrenadores que tuve en la Olimpiada de Matemáticas de la Ciudad de México, porque fue ah́ı donde gané el gusto por resolver problemas. En especial, quiero agradecer a Jorge Garza, Diego Calzadilla (Gogo), Ian Gleason, Luis Fernando Pardo, Gerardo Franco, Sergio Zamora, Julio Dı́az, César Rodŕıguez y Luis Eduardo Garćıa. Gracias por todo el tiempo que le dedicaron a los entrenamientos y elaboración de problemas. También a todos los alumnos, amigos y compañeros que tuve en la olimpiada, porque también he aprendido mucho de ellos. Al Instituto de Matemáticas y al Posgrado de la UNAM, por ser su alumno durante la maestŕıa. A Conacyt por la beca de posgrado. 3 4 Contents Introduction 7 Introducción 11 1. Convex geometry 15 1.1. Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2. Carathéodory, Radon and Helly . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3. Transversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2. Colorful theorems 23 2.1. Colorful Carathéodory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2. Colorful Helly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3. Colorful Radon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3. Very colorful theorems 29 3.1. Colorful Carathéodory-type theorems . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2. Colorful Helly-type theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4. Colorful theorems for line transversals 39 4.1. KKM theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2. A colorful Helly-type theorem in R 2 . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3. A colorful Helly-type problem in R 3 . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4. Colorful Eckhoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5. Conclusions 61 Bibliography 65 5 6 CONTENTS Introduction Convex sets are geometrical objects with very interesting properties and have been studied in several branches of mathematics. In particular, discrete and convex geometry is a branch of discrete mathematics with the goal of studying the combinatorial properties of convex sets. The classical theorems in discrete and convex geometry are the theorems of Carathéodory [8] (in 1907), Radon [34] (in 1921) and Helly [18] (in 1923). In order to start seeing the geometrical and combinatorial ideas we state Carathéodory’s theorem [8] and Helly’s theorem [18]. Carathédory’s theorem states that if a point a ∈ R d is in the convex hull of some set A ⊂ R d, then there exist at most d+ 1 points in A such that their convex hull contains the point a. In other words, in order to know if a point is in the convex hull of some set A we only need to know if the point is in the convex hull of a finite subset (of size at most d+ 1) of A. Helly’s theorem states that if a finite family of convex sets in R d satisfies that every d+1 or fewer of them have non-empty intersection, then the whole family has non-empty intersection. In fact, the result is also true for infinite families of compact convex sets. In other words, Helly’s theorem states that we only need information concerning the intersection of finite subfamilies (of size d+ 1) in order to know if the whole family has non-empty intersection. On the other hand, there are several theorems in discrete mathematics which have colorful versions. For example, Lovász proved the Colorful Helly theorem in 1973 (see [4]). In addition, in 1982 Bárány [4] proved the Colorful Carathéodory theorem. The Colorful Helly theorem states that if we have d+1 finite families F1, . . . ,Fd+1 of convex sets in R d such that for every choice of sets C1 ∈ F1, . . . , Cd+1 ∈ Fd+1, the intersection ⋂d+1 i=1 Ci is non-empty, then there exists i ∈ {1, . . . , d + 1} such that the family Fi has non-empty intersection. The Colorful Carathéodory theorem states that if we have d + 1 finite sets A1, . . . , Ad+1 of points in R d such that the origin is contained in the convex hull of every set Ai, for i = 1, . . . , d + 1, then there exist d + 1 points a1 ∈ A1, . . . , ad+1 ∈ Ad+1 such that the origin is contained in the convex hull of {a1, . . . , ad+1}. Note that we recover Helly’s theorem from the Colorful Helly theorem when all the families are equal. Therefore, the Colorful Helly theorem is a generalization of Helly’s theorem. By a similar argument, the Colorful Carathéodory theorem is a generalization of Carathéodory’s theorem. In general, Colorful theorems are usually generalizations of their uncolored versions. The name colorful comes from thinking that every family is colored (and every family has a different color). Then colorful theorems follow some of the following two ideas. • In the hypothesis of colorful theorems we have information concerning rainbow subfamilies 7 8 INTRODUCTION and the conclusion is concerning subfamilies of the same color. • In the hypothesis of colorful theorems we have information concerning subfamilies of the same color and the conclusion is concerning rainbow subfamilies. For example, in the Colorful Helly theorem we have information concerning the intersection of rainbow subfamilies and the conclusion is concerning the intersection of a subfamily of the same color. On the other hand, in the Colorful Carathéodory theorem we have information concerning sets of the same color and the conclusion is concerning a rainbow set. This work has two purposes. On the one hand, we present a collection of several colorful theorems in discrete and convex geometry by introducing the ideas of proofs intuitively in low dimensions. On the other hand, we also present new results concerning colorful theorems and improve bounds of colorful theorems. In Chapter 1 we see an introduction to convex geometry and present the definitions and notation that we use in this work. We present the classical theorems of convex geometry: Carathéodory [8], Helly [18] and Radon [34]. We also see Eckhoff’s theorems concerning transversals. In Chapter 2 we prove the classical colorful theorems in convex geometry: Colorful Helly (done by Lovász in 1973, see [4]), Colorful Carathéodory (done by Bárány [4] in 1982) and Colorful Radon (done by Lovász in 1989, see [2]). In Chapter 3 we see the following two generalizations of the classical colorful theorems. • Pach, Holmsen and Tverberg [21] (in 2008) and independently Arocha, Bárány, Bracho, Fabila and Montejano [1] (in 2009) proved that we can weaken the hypothesis of the Colorful Carathéodory theorem and obtain the same conclusion. They proved that if we have d + 1 finite sets A1, . . . , Ad+1 of points in R d such that the origin is contained in the convex hull of Ai ∪ Aj, for every 1 ≤ i < j ≤ d + 1, then there exist d + 1 points a1 ∈ A1, . . . , ad+1 ∈ Ad+1 such that the origin is contained in the convex hull of {a1, . . . , ad+1}. In addition, we prove that this result cannot be generalized in two different senses. • In 2020, Mart́ınez-Sandoval, Roldán-Pensado and Rubin [28] wondered if there are further consequences with the hypothesis of the Colorful Helly theorem. They proved that for each dimension d ≥ 2 there exist numbers f(d) and g(d) with the following property. If F1, . . . ,Fd are finite families of convex sets in R d such that for every choice of sets C1 ∈ F1, . . . , Cd ∈ Fd the intersection ⋂d i=1 Ci is non-empty, then either there is a family Fj that can be pierced by f(d) points, or the family ⋃d i=1 Fi can be crossed by g(d) lines. In particular, they proved that their result in the plane (d = 2) holds with f(2) = 1 and g(2) = 4. In Chapter 4 we present our results. First, we see the topological preliminaries that we use to prove our results. Then we do the following: • We improve the 2-dimensional case of the theorem by Mart́ınez-Sandoval, Roldán-Pensado and Rubin [28]; we prove that the 2-dimensional case of their theorem also holds with INTRODUCTION 9 f(2) = 1 and g(2) = 2. We prove that if F1, . . . ,Fn are finite families of convex sets in R 2 (with n ≥ 2), such that A∩B 6= ∅ for every A ∈ Fi and B ∈ Fj (with i 6= j), then either there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 1 point, or the family ⋃n i=1 Fi can be crossed by 2 lines. Furthermore, we also prove that if K is a compact convex set in the plane and F1, . . . ,Fn are finite families of translates of K (with n ≥ 2), such that A ∩ B 6= ∅ for every A ∈ Fi and B ∈ Fj (with i 6= j), then either there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 3 points, or the family ⋃n i=1 Fi can be crossed by 1 line. We also prove similar results for families of homothets, circles and rectangles. • We state an open problem proposed by Mart́ınez-Sandoval, Roldán-Pensado and Rubin [28]. The problem is if there exists n ∈ Z + such that for any two families A, B of convex sets in R 3 so that A ∩ B 6= ∅ holds for all A ∈ A and B ∈ B, one of the families A or B can be crossed by n lines. We show a particular case of this problem (for small families) solved by Montejano and Karasev ([32], [33]) and give an elementary proof (for small families) by Strausz [41]. In addition, we propose a geometrical idea to reduce the open problem to a topological problem. • We prove colorful versions of Eckhoff’s theorems. We prove that if F1, . . . ,F4 are finite families of connected sets in R 2 such that every four sets A1 ∈ F1, A2 ∈ F2, . . . , A4 ∈ F4 have a line transversal, then there is a family Fi that can be crossed by 2 lines. We also prove that if F1, . . . ,F6 are finite families of connected sets in R 2 such that every three sets A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3 , for 1 ≤ i1 < i2 < i3 ≤ 6, have a line transversal, then there is a family Fi that can be crossed by 3 lines. In addition, we prove the following theorem. Let K be a compact convex set in R 2. If F1,F2,F3 are finite families of translates of K such that every three sets A1 ∈ F1, A2 ∈ F2, A3 ∈ F3 have a line transversal, then there is a family Fi that can be crossed by 4 lines. Finally, we present new problems and conjectures related to these colorful versions of Eckhoff’s theorems. 10 INTRODUCTION Introducción Los conjuntos convexos son objetos geométricos con propiedades muy interesantes y han sido estudiados en varias áreas de las matemáticas. En particular, geometŕıa discreta y convexa es una rama de las matemáticas discretas que tiene el propósito de estudiar las propiedades combinatorias de conjuntos convexos. Los teoremas clásicos en geometŕıa discreta y convexa son los teoremas de Carathéodory [8] (en 1907), Radon [34] (en 1921) y Helly [18] (en 1923). Para empezar a ver las ideas geométricas y combinatorias enunciamos el teorema de Carathéodory [8] y el teorema de Helly [18]. El teorema de Carathédory nos dice que si un punto a ∈ R d está en la envolvente convexa de un conjunto A ⊂ R d, entonces existen a lo más d + 1 puntos en A tal que su envolvente convexa contiene el punto a. En otras palabras, para saber si un punto está en la envolvente convexa de un conjunto A solo necesitamos saber si el punto está en la envolvente convexa de un subconjunto finito (de tamaño a lo más d+ 1) de A. El teorema de Helly nos dice que si una familia finita de conjuntos convexos en R d cumple que cada d+1 o menos de ellos tienen intersección no vaćıa, entonces toda la familia tiene intersección no vaćıa. De hecho, el resultado también es cierto para familias infinitas de conjuntos convexos y compactos. En otras palabras, el teorema de Helly nos dice que solo necesitamos información sobre la intersección de subfamilias finitas (de tamaño d+1) para saber si toda la familia tiene intersección no vaćıa. Por otro lado, hay muchos teoremas en matemáticas discretas que tiene versiones coloreadas. Por ejemplo, Lovász probó el teorema de Helly coloreado en 1973 (ver [4]). Además, en 1982 Bárány [4] probó el teorema de Carathéodory coloreado. El teorema de Helly coloreado nos dice que si tenemos d+1 familias finitas F1, . . . ,Fd+1 de conjuntos convexos en R d tal que para cada elección de conjuntos C1 ∈ F1, . . . , Cd+1 ∈ Fd+1, la intersección ⋂d+1 i=1 Ci es no vaćıa, entonces existe i ∈ {1, . . . d+ 1} tal que la familia Fi tiene intersección no vaćıa. El teorema de Carathéodory coloreado nos dice que si tenemos d + 1 conjuntos finitos A1, . . . , Ad+1 de puntos en R d tal que el origen está contenido en la envolvente convexa de cada conjunto Ai, para i = 1, . . . , d + 1, entonces existen d + 1 puntos a1 ∈ A1, . . . , ad+1 ∈ Ad+1 tal que el origen está contenido en la envolvente convexa de {a1, . . . , ad+1}. Note que el caso particular del teorema de Helly coloreado donde todas las familias son la misma familia, es el teorema de Helly. Por lo tanto, el teorema de Helly coloreado es una generalización del teorema de Helly. Por un argumento similar, el teorema de Carathéodory co- loreado es una generalización del teorema de Carathéodory. En general, los teoremas coloreados 11 12 INTRODUCCIÓN la mayoŕıa de las veces son generalizaciones de sus versiones no coloreadas. El nombre coloreado es porque podemos pensar que cada familia está coloreada (y cada familia tiene un color diferente). Entonces los teoremas coloreados siguen alguna de las siguientes dos ideas. • En las hipótesis de los teoremas coloreados tenemos información sobre subfamilias arcóıris y la conclusión es sobre subfamilias del mismo color. • En las hipótesis de los teoremas coloreados tenemos información sobre subfamilias del mismo color y la conclusión es sobre subfamilias arcóıris. Por ejemplo, en el teorema de Helly coloreado tenemos información sobre la intersección de subfamilias arcóıris y la conclusión es sobre la intersección de una subfamilia del mismo color. Por otro lado, en el teorema de Carathéodory coloreado tenemos información sobre conjuntos del mismo color y la conclusión es sobre un conjunto arcóıris. Este trabajo tiene dos propósitos. Por un lado, presentamos una colección de varios teoremas coloreados en geometŕıa discreta y convexa, introduciendo las ideas de las pruebas intuitivamen- te en dimensiones bajas. Por otro lado, también presentamos nuevos resultados sobre teoremas coloreados y mejoramos cotas de teoremas coloreados. En el Caṕıtulo 1 vemos una introducción a geometŕıa convexa y presentamos las definiciones y la notación que usamos en este trabajo. Presentamos los teoremas clásicos de geometŕıa convexa: Carathéodory [8], Helly [18] y Radon [34]. También vemos los teoremas de Eckhoff sobre transversales. En el Caṕıtulo 2 probamos los teoremas clásicos coloreados en geometŕıa convexa: Helly coloreado (por Lovász en 1973, ver [4]), Carathéodory coloreado (por Bárány [4] en 1982) y Radon coloreado (por Lovász en 1989, ver [2]). En el Caṕıtulo 3 vemos las siguientes dos generalizaciones de los teoremas coloreados clásicos. • Pach, Holmsen y Tverberg [21] (en 2008) e independientemente Arocha, Bárány, Bracho, Fabila y Montejano [1] (en 2009) probaron que podemos debilitar las hipótesis del teorema de Carathéodory coloreado y obtener la misma conclusión. Ellos probaron que si tenemos d+1 conjuntos finitos A1, . . . , Ad+1 de puntos en R d tal que el origen está contenido en la envolvente convexa de Ai∪Aj para cada 1 ≤ i < j ≤ d+1, entonces existen d+1 puntos a1 ∈ A1, . . . , ad+1 ∈ Ad+1 tal que el origen está contenido en la envolvente convexa de {a1, . . . , ad+1}. Además, nosotros probamos que este resultado no puede ser generalizado en dos sentidos diferentes. • En el 2020, Mart́ınez-Sandoval, Roldán-Pensado y Rubin [28] se preguntaron si hay más consecuencias usando las mismas hipótesis del teorema de Helly coloreado. Ellos probaron que para cada dimensión d ≥ 2 existen números f(d) y g(d) con la siguiente propiedad. Si F1, . . . ,Fd son familias finitas de conjuntos convexos en R d tal que para cada elección de conjuntos C1 ∈ F1, . . . , Cd ∈ Fd la intersección ⋂d i=1 Ci es no vaćıa, entonces hay una familia Fj que puede ser pinchada por f(d) puntos, o la familia ⋃d i=1 Fi puede ser atravezada por g(d) ĺıneas. En particular, ellos probaron que su resultado en el plano (d = 2) se cumple con f(2) = 1 y g(2) = 4. INTRODUCCIÓN 13 En el Caṕıtulo 4 presentamos nuestros resultados. Primero vemos los preliminares topológi- cos que usamos para probar nuestros resultados. Después, vemos los siguientes resultados y problemas: • Nosotros mejoramos el caso 2-dimensional del teorema de Mart́ınez-Sandoval, Roldán- Pensado y Rubin [28]; nosotros probamos que el caso 2-dimensional de su teorema también se cumple con f(2) = 1 y g(2) = 2. Probamos que si F1, . . . ,Fn son familias finitas de conjuntos convexos en R 2 (con n ≥ 2), tal que A∩B 6= ∅ para cada A ∈ Fi y B ∈ Fj (con i 6= j), entonces existe j ∈ {1, 2, . . . , n} tal que ⋃ i 6=j Fi puede ser pinchado por 1 punto, o la familia ⋃n i=1 Fi puede ser atravezada por 2 ĺıneas. Además, también probamos que si K es un conjunto convexo y compacto en el plano y F1, . . . ,Fn son familias finitas de trasladados de K (con n ≥ 2), tal que A∩B 6= ∅ para cada A ∈ Fi y B ∈ Fj (con i 6= j), entonces existe j ∈ {1, 2, . . . , n} tal que ⋃ i 6=j Fi puede ser pinchado por 3 puntos, o la familia ⋃n i=1 Fi puede ser atravezada por 1 ĺınea. También probamos resultados similares para familias de homotéticos, ćırculos y rectángulos. • Vemos un problema abierto propuesto por Mart́ınez-Sandoval, Roldán-Pensado y Rubin [28]. El problema es si existe n ∈ Z + tal que para todas dos familias A, B de conjuntos convexos en R 3 tal que A∩B 6= ∅ se cumple para cada A ∈ A y B ∈ B, una de las familias A o B puede ser cruzado por n ĺıneas. Vemos un caso particular de este problema (para familias pequeñas) resuelto por Montejano y Karasev ([32], [33]) y vemos una prueba elemental (para familias pequeñas) por Strausz [41]. Además, nosotros proponemos una idea geométrica para reducir el problema abierto a un problema topológico. • Nosotros probamos versiones coloreadas de los teoremas de Eckhoff. Probamos que si F1, . . . ,F4 son familias finitas de conjuntos conexos en R 2 tal que cada cuatro conjuntos A1 ∈ F1, A2 ∈ F2, . . . , A4 ∈ F4 tienen una ĺınea transversal, entonces hay una familia Fi que puede ser cruzada por 2 ĺıneas. Probamos que si F1, . . . ,F6 son familias finitas de conjuntos conexos en R 2 tal que cada tres conjuntos A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3 , para 1 ≤ i1 < i2 < i3 ≤ 6, tienen una ĺınea transversal, entonces hay una familia Fi que puede ser cruzada por 3 ĺıneas. Además, nosotros también probamos el siguiente teorema. Sea K un conjunto compacto y convexo en R 2. Si F1,F2,F3 son familias finitas de trasladados de K tal que cada tres conjuntos A1 ∈ F1, A2 ∈ F2, A3 ∈ F3 tienen una ĺınea transversal, entonces hay una familia Fi que puede ser cruzada por 4 ĺıneas. Finalmente, presentamos nuevos problemas y conjeturas relacionados con estas versiones coloreadas de los teoremas de Eckhoff. 14 INTRODUCCIÓN Chapter 1 Convex geometry In this chapter we give an introduction to convex geometry. In Section 1.1 we see the definitions and the notation that we use in this thesis. In Sections 1.2 and 1.3 we see some of the classical theorems in convex geometry. 1.1. Convexity Most of the results in this work are concerning convex sets. Intuitively, a convex set is a set without holes. To formally define a convex set, we have to recall the definition of a segment. For any two points a, b ∈ R d, we define the segment [a, b] as the set [a, b] = {αa+ βb : α, β ≥ 0, α + β = 1}. Definition 1.1. A set C ⊂ R d is convex if for every two points a, b ∈ C, the segment [a, b] is contained in C. To give the first example of a convex set, let us recall that a hyperplane H in R d is a set H = {x ∈ R d : u · x = a}, for some u ∈ R d \ {0} and a ∈ R. The hyperplane H = {x ∈ R d : u · x = a} define two half spaces denoted as H+ = {x ∈ R d : u · x ≥ a} and H− = {x ∈ R d : u · x ≤ a}. An immediate observation is that the hyperplane H and the half spaces H+ and H− are convex sets. For the second example of a convex set, we need the following definition. Definition 1.2. Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R d be two different points. Let j = min{i : xi 6= yi}. If xj < yj we say that x is less than y with the lexicographical order and denote it as x yj, then x >lex y). For every two points x, y ∈ R d, we denote x ≤lex y if x is less than y with the lexicographic order or x = y. Note that for any point q ∈ R d, the set C = {x ∈ R d : x x. Therefore, x ∈ (b1, b2) and the blue intervals have non-empty intersection. As in the last section, we have a similar result in arbitrary dimensions and it is known as the Colorful Helly theorem made by Lovász (see [4] and [5, page 49]). Let F1, . . . ,Fn be families of convex sets in R d. We say that F ⊂ ⋃n i=1 Fi is a rainbow subfamily if |F ∩ Fi| ≤ 1 for each 1 ≤ i ≤ n. The Colorful Helly theorem states that if every rainbow subfamily of size d+ 1 has non-empty intersection, then there is some family Fi with non-empty intersection. The proof is very similar to the second proof that we saw of the 1-dimensional case, in particular, we use the extremal principle. Theorem 2.4. (Colorful Helly). Let F1, . . . ,Fd+1 be finite families of convex sets in R d such that for every choice of sets C1 ∈ F1, . . . , Cd+1 ∈ Fd+1, the intersection ⋂d+1 i=1 Ci is non-empty. Then there exists i ∈ {1, . . . , d+ 1} such that ⋂ Fi 6= ∅. Proof. We can assume, without loss of generality, that the sets in the families Fi are compact (see Section 1.2). Then for every rainbow subfamily of size d, we consider the lexicographically 2.3. COLORFUL RADON 27 minimum of its intersection. We take a rainbow subfamily of size d such that the lexicograph- ically minimum of its intersection is maximum among all the lexicographically minimum of intersections of rainbow subfamilies. Without loss of generality, we assume that {C1, C2, . . . , Cd} is a rainbow subfamily, with Ci ∈ Fi for each 1 ≤ i ≤ d, and such that the lexicographically minimum p of ⋂d i=1 Ci is maximum. We claim that p ∈ ⋂ Fd+1. Let Cd+1 ∈ Fd+1 be any convex set in the family Fd+1. By hypothesis, ⋂d+1 i=1 Ci 6= ∅, then let q be the lexicographically minimum of ⋂d+1 i=1 Ci (note that in particular q ∈ Cd+1). We will prove that p = q. C C1 C2 C3 Figure 2.5: Illustration for the proof of Theorem 2.4 (in the plane). Since ⋂d+1 i=1 Ci ⊂ ⋂d i=1 Ci, then p ≤lex q. In order to prove that q ≤lex p, we define the convex set C = {x ∈ R d : x 2 we place the horizontal edge of Ai sufficiently close to the horizontal edge of A so that Ai does not intersect all previous pairwise intersections (see Figure 4.4). By construction, we need at least n+1 points to pierce the family A. Let E1, E2, E3 be the edges of A. Since every triangle Ai intersects the edges of A, we can take three segments F1, F2, F3, every segment Fi contained in the relative interior of Ei, such that every segment Fi intersects every triangle in the family A. For each segment Fi, we take n translates of Fi pairwise disjoint so that they still intersect every triangle in the family A. Let B be the set of the 3n defined segments (see Figure 4.4). By construction, we need at least 3n > n+ 1 points to pierce the family B. In order to cross A ∪ B, in particular we have to cross the interiors of the three edges E1, E2, E3, hence we need at least 2 lines to cross the family A ∪ B. Theorem 4.7 and Example 4.9 show that the best numbers f(2), g(2) satisfying the 2- dimensional case of Theorem 3.11 are f(2) = 1 and g(2) = 2. Despite that the 2-dimensional case of Theorem 3.11 does not hold with g(2) = 1, we prove that in the case where the families are translates of a compact convex set in the plane, Theorem 3.11 holds with f(2) = 3 and g(2) = 1. This result is joint work with Edgardo Roldán-Pensado. Theorem 4.10. Let K be a compact convex set in R 2. Let F1, . . . ,Fn be finite families of translates of K, with n ≥ 2. Suppose that A ∩ B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Then one of the following statements holds: 1. there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 3 points, or 2. the family ⋃n i=1 Fi can be crossed by 1 line. 4.2. A COLORFUL HELLY-TYPE THEOREM IN R 2 45 Figure 4.4: Illustration for Example 4.9 in the case where n = 2. The family A is the set of blue triangles and the family B is the set of red segments. Proof. For every direction u ∈ S 1, let lu be the line through u and the origin. For every u ∈ S 1, we project all the sets in the family ⋃n i=1 Fi to the line lu, then we obtain a finite family of intervals in the line lu. If there exists u ∈ S 1 such that every two intervals in the line lu have non-empty intersection, then by the 1-dimensional Helly theorem (Theorem 1.4), the intervals in the line lu have a common point p. Thus, if ku is the line whose the projection (to the line lu) is the point p, then ku is a line transversal to the family ⋃n i=1 Fi, and we are done (see Figure 4.5). u S1 lup ku Figure 4.5: If the intervals in the line lu have a common point p, then ku is a line transversal to the family ⋃n i=1 Fi. Otherwise, for every u ∈ S 1, there are two disjoint intervals in the line lu. Hence, for every u ∈ S 1, there are two sets Au, Bu in the family ⋃n i=1 Fi that are separated by a line mu orthogonal to lu (see Figure 4.6). Since Au ∩ Bu = ∅, then Au and Bu must be in the same family Fi, for some i ∈ {1, . . . , n}. We color the sphere S1 as follows. We color u ∈ S 1 of color i if there are two sets Au, Bu ∈ Fi that are separated by a line mu orthogonal to lu. Let Oi be the set of u ∈ S 1 such that u has 46 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS u S1 lu mu Au Bu Figure 4.6: If there are two disjoint intervals in the line lu, then there are two sets Au, Bu in the family ⋃n i=1 Fi that are separated by a line mu orthogonal to lu. color i. Since K is a compact set, then the sets Oi are open. Notice that we already proved that S1 = ⋃n i=1 Oi. We have two cases. First we suppose that at least two sets from O1, . . . , On are non-empty. Since the sets O1, . . . , On are open and S 1 = ⋃n i=1 Oi, then there exist i, j ∈ {1, . . . , n} with i 6= j and u ∈ Oi ∩Oj 6= ∅. Hence there exist two lines mu, nu orthogonal to lu and sets Au, Bu ∈ Fi and Cu, Du ∈ Fj such that Au ⊂ m+ u \mu, Bu ⊂ m− u \mu, Cu ⊂ n+ u \nu and Du ⊂ n− u \nu (see Figure 4.7). Notice that we can assume without loss of generality that (m+ u \ mu) ∩ (n− u \ nu) = ∅. Then Au ∈ Fi and Du ∈ Fj satisfy that Au ∩Du = ∅, contradicting the hypothesis. lu mu Au Bu nu Cu Du Figure 4.7: In this example, Au ∩Du = ∅. Then there exists j ∈ {1, . . . , n} such that S1 = Oj. Hence for every u ∈ S 1 there exists a line mu orthogonal to lu and sets Au, Bu ∈ Fj such that Au ⊂ m+ u \ mu and Bu ⊂ m− u \ mu. We claim that, for every u ∈ S 1, the line mu is transversal to ⋃ i 6=j Fi. Indeed, if u ∈ S 1 and C ∈ ⋃ i 6=j Fi, by hypothesis we have that Au∩C 6= ∅ and Bu∩C 6= ∅. Since Au ⊂ m+ u \mu and Bu ⊂ m− u \mu, then C must intersect the line mu (see Figure 4.8). Thus, the family ⋃ i 6=j Fi has a line transversal in every direction. Now we claim that every two sets in ⋃ i 6=j Fi intersect. If there are two sets C,D ∈ ⋃ i 6=j Fi such that C ∩D = ∅, then C and D can be separated by a line l. Hence C and D do not have line transversal in the same direction of l, a contradiction (see Figure 4.9). Therefore, every two sets in ⋃ i 6=j Fi intersect and by Theorem 1.12, the family ⋃ i 6=j Fi can be pierced by 3 points. 4.2. A COLORFUL HELLY-TYPE THEOREM IN R 2 47 lu mu Au BuC Figure 4.8: For every u ∈ S 1 and C ∈ ⋃ i 6=j Fi, the line mu intersects C. l C D Figure 4.9: If the convex sets C,D ∈ ⋃ i 6=j Fi can be separated by a line l, then ⋃ i 6=j Fi does not have line transversal in the same direction of l. Notice that we used that the families are translates of K in the last part of the proof. Actually, we used that every two sets in ⋃ i 6=j Fi intersect. Grunbaum [16], Danzer [10] and Karasev [23] [24] have studied families (in the plane) such that every two sets in the family have non-empty intersection, and for some families of this type they proved that the whole family can be pierced by few points. For example, Theorems 1.10, 1.11, 1.12 and 1.13 show some families of this type. Then we observe that with the same proof of Theorem 4.10 we have similar results for families of this type. Theorem 4.11. Let F1, . . . ,Fn be finite families of compact convex sets in R 2, with n ≥ 2 and the following property: if there exists j ∈ {1, 2, . . . , n} such that every two sets in ⋃ i 6=j Fi intersect, then ⋃ i 6=j Fi can be pierced by c points. Suppose that A ∩ B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Then one of the following statements holds: 1. there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by c points, or 2. the family ⋃n i=1 Fi can be crossed by 1 line. Proof. If the family ⋃n i=1 Fi can be crossed by 1 line, we are done. Otherwise, as in the proof of Theorem 4.10, we have that there exists j ∈ {1, . . . , n} such that every two sets in ⋃ i 6=j Fi intersect. Therefore, by hypothesis, the family ⋃ i 6=j Fi can be pierced by c points. In particular, by Theorems 1.10, 1.11 and 1.13, we have the following corollaries. 48 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS Theorem 4.12. Let K be a compact convex set in R 2. Let F1, . . . ,Fn be finite families of homothets of K, with n ≥ 2. Suppose that A∩B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Then one of the following statements holds: 1. there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by c points (where c is the number that there exists in Theorem 1.10), or 2. the family ⋃n i=1 Fi can be crossed by 1 line. Theorem 4.13. Let F1, . . . ,Fn be finite families of circles in R 2, with n ≥ 2. Suppose that A ∩ B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Then one of the following statements holds: 1. there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 4 points, or 2. the family ⋃n i=1 Fi can be crossed by 1 line. Theorem 4.14. Let F1, . . . ,Fn be finite families of rectangles with sides parallel to the coordi- nate axes in R 2, with n ≥ 2. Suppose that A ∩B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Then one of the following statements holds: 1. there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 1 point, or 2. the family ⋃n i=1 Fi can be crossed by 1 line. In summary, Theorems 4.10, 4.11, 4.12, 4.13 and 4.14 show some special families where the 2-dimensional case of Theorem 3.11 holds with g(2) = 1. In particular, Theorem 4.14 shows that for rectangles with sides parallel to the coordinate axes in R 2, the 2-dimensional case of Theorem 3.11 holds with f(2) = 1 and g(2) = 1, hence Theorem 4.14 improves the result of Theorem 4.6. On the other hand, we wonder if we can improve the numbers in Theorem 4.10. We propose the following problem. Problem 4.15. Let K be a compact convex set in R 2. Let F1, . . . ,Fn be finite families of translates of K, with n ≥ 2. Suppose that A ∩ B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Is it true that one of the following statements holds? 1. there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 1 point, or 2. the family ⋃n i=1 Fi can be crossed by 1 line. Jerónimo-Castro, Magazinov and Soberón [22] proved that in the case where the families are circles of the same radius there is a stronger conclusion. Theorem 4.16. Let F1, . . . ,Fn be finite families of circles of the same radius in R 2, with n ≥ 2. Suppose that A ∩ B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Then there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 3 points. Theorem 4.16 is a colorful version of Theorem 1.12 in the case of circles with the same radius. Jerónimo-Castro, Magazinov and Soberón [22] also conjectured that Theorem 4.16 holds for families of translates of K, for any compact convex set K in R 2. In other words, they conjectured a colorful version of Theorem 1.12. 4.3. A COLORFUL HELLY-TYPE PROBLEM IN R 3 49 Conjecture 4.17. Let K be a compact convex set in R 2. Let F1, . . . ,Fn be finite families of translates of K, with n ≥ 2. Suppose that A ∩ B 6= ∅ for every A ∈ Fi and B ∈ Fj with i 6= j. Then there exists j ∈ {1, 2, . . . , n} such that ⋃ i 6=j Fi can be pierced by 3 points. We believe that Theorem 4.10 can be useful to prove Conjecture 4.17. 4.3. A colorful Helly-type problem in R 3 We already proved the 2-dimensional case of Theorem 3.11. Another natural question is if with 2 color classes we have a similar conclusion in R 3. Mart́ınez Sandoval, Roldán-Pensado and Rubin [28] presented the following problem. Problem 4.18. Is it true that there exists n ∈ Z + such that for any two families A, B of convex sets in R 3 so that A ∩ B 6= ∅ holds for all A ∈ A and B ∈ B, one of the families A or B can be crossed by n lines? The last problem is still open. Actually, the next weaker problem is also open. Problem 4.19. Is it true that there exists n ∈ Z + such that for any family F of convex sets in R 3 so that A ∩ B 6= ∅ holds for all A,B ∈ F , the family F can be crossed by n lines? In this section we prove a particular case of Problem 4.18 by Montejano [32] and we give an idea to solve Problem 4.19. Montejano [32] proved that Problem 4.18 holds for small families of convex sets. Imagine three red convex sets and three blue convex sets in R 3 such that every red set and every blue set have non-empty intersection. Montejano proved that either there is a line transversal to the red sets or there is a line transversal to the blue sets. If we project the two families to a line, we obtain two finite families of intervals satisfying the hypothesis of the 1-dimensional Colorful Helly theorem (Theorem 2.4), then the intervals of one of the families have a common point, without loss of generality the blue intervals have a common point b. The plane whose the projection is the point b is a plane transversal to the blue sets (see Figure 4.10). However, we only have a plane transversal to one of the families and we want a line transversal to one of the families. Montejano and Karasev ([32], [33]), following the last argument in every direction and using topology proved that there is a line transversal to one of the families. Although Montejano and Karasev proved the last particular case of Problem 4.18, Montejano wanted to see an elementary proof. Strausz [41] gave an elementary proof based on the non-planarity of the complete bipartite graph K3,3. We will see the elementary proof by Strausz [41]. Theorem 4.20. Let A,B,C be three red convex sets in R 3 and let U, V,W be three blue convex sets in R 3. Suppose that every red convex set intersect every blue convex set. Then either there is a line transversal to the red convex sets or there is a line transversal to the blue convex sets. Proof. By contradiction, suppose that there are no line transversals to the red convex sets nor to the blue convex sets. Then, by Lemma 1.18, each red convex set can be separated by a plane from the other two red convex sets. Analogously, each blue convex set can be separated by a plane from the other two blue convex sets. Let HA be a plane such that A ⊂ H+ A and B ∪ C ⊂ H− A , and let a ∈ S 2 be the unitary normal vector of the plane HA. Analogously, we 50 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS Figure 4.10: Montejano’s problem in R 2 is easy projecting the sets to a line and applying the 1-dimensional case of Colourful Helly. However, with the same argument in R 3 we only have a plane transversal to one of the families instead of a line transversal to one of the families. define the planes HB, HC , HU , HV , HW and the unitary normal vectors b, c, u, v, w ∈ S 2. We color the vectors a, b, c red and the vectors u, v, w blue. Now, we join each red vector to each blue vector with a spherical segment. Then we have K3,3 drawn in S 2, thus there must be a crossing (by Kuratowski’s theorem). Without loss of generality, the spherical segment through a ∈ S 2 and u ∈ S 2 intersects the spherical segment through c ∈ S 2 and w ∈ S 2. Since A ∩ U 6= ∅, then there exists q ∈ A ∩ U ⊂ (H+ A ∩H+ U ). Since A ⊂ H− C and U ⊂ H− W , then A ∩ U ⊂ H− C ∩ H− W . Therefore, q ∈ (H+ A ∩ H+ U ) \ (H + C ∪ H+ W ). Analogously, there exists r ∈ (H+ C ∩ H+ W ) \ (H+ A ∪ H+ U ). In order to prove that this is a contradiction, we prove the following lemma in arbitrary dimension. Lemma. Let H+ A , H + U , H + C , H + W be half spaces in R d with unitary normal vectors a, u, c, w ∈ S d−1, respectively. If (H+ A ∩H+ U ) \ (H + C ∪H+ W ) 6= ∅, and (H+ C ∩H+ W ) \ (H+ A ∪H+ U ) 6= ∅, then the spherical segment au and the spherical segment cw are disjoint. Proof. Let q ∈ (H+ A ∩ H+ U ) \ (H+ C ∪ H+ W ) and r ∈ (H+ C ∩ H+ W ) \ (H+ A ∪ H+ U ). Without loss of generality, we suppose that 0 ∈ HA ∩HU and let p ∈ HC ∩HW . In other words, HA = {x ∈ R d : a · x = 0}, HU = {x ∈ R d : u · x = 0}, HC = {x ∈ R d : c · x = c · p} = {x ∈ R d : c · (x− p) = 0}, HW = {x ∈ R d : w · x = w · p} = {x ∈ R d : w · (x− p) = 0}. 4.3. A COLORFUL HELLY-TYPE PROBLEM IN R 3 51 Then, since q ∈ (H+ A ∩H+ U )\(H + C ∪H+ W ) and r ∈ (H+ C ∩H+ W )\(H+ A ∪H+ U ), we have the following eight inequalities: a · q > 0 u · q > 0 c · (q − p) < 0 w · (q − p) < 0 c · (r − p) > 0 w · (r − p) > 0 a · r < 0 u · r < 0 To prove the lemma, we suppose, by contradiction, that z is in the intersection of the spherical segment au and the spherical segment cw. Then there exists i, j,m, n > 0 such that z = ia+ ju = mc+ nw. On the one hand, z · q = (ia+ ju) · q > 0 and z · (q − p) = (mc+ nw) · (q − p) < 0. Thus, 0 < z · q < z · p. On the other hand, z · r = (ia+ ju) · r < 0 and z · (r− p) = (mc+ nw) · (r− p) > 0. Thus, 0 > z · r > z · p, a contradiction. Since the spherical segment through a ∈ S 2 and u ∈ S 2 intersects the spherical segment through c ∈ S 2 and w ∈ S 2, by the lemma, we have a contradiction. Recently, Holmsen [20] gave a new proof of Theorem 4.20 (which is a particular case of Problem 4.18) using the Borsuk-Ulam theorem [3]. On the other hand, Bárány [6] proved a particular case of Problem 4.19. However, both Problem 4.18 and Problem 4.19 are still open. We finish this section with an idea to prove Problem 4.19. An idea to Problem 4.19. We suspect Problem 4.19 holds with n ≥ 3. The idea goes as follows. For every orthonormal base {u, v, w} in R 3 let lu, lv, lw be lines through the origin such that u ∈ lu, v ∈ lv, w ∈ lw. We project the convex sets in the family F to the line lu, then we obtain a family of intervals in the line lu satisfying the hypothesis of the 1-dimensional Helly theorem (Theorem 1.4). Since every two sets in F have a non-empty intersection, then the intervals have a common point f ∈ lu (by Theorem 1.4). Let Hu be the hyperplane where the projection is the point f ∈ lu. Note that Hu is orthogonal to u ∈ S 2 and is transversal to the family F . Analogously, there exist hyperplanes Hv, Hw such that Hv, Hw are orthogonal to v, w ∈ S 2 (respectively) and are transversal to the family F . Let ku, kv, kw be the pairwise intersections of the hyperplanes Hu, Hv, Hw. We believe that there exists an orthogonal base {u, v, w} such that the three lines ku, kv, kw and perhaps together with other lines cross the family F . A new topological result might be needed to prove our claim. 52 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS 4.4. Colorful Eckhoff In 2021, McGinnis and Zerbib [31] proved Theorem 1.15 using the KKM theorem (Theorem 4.1). We observed that following the same ideas of McGinnis and Zerbib and using the Colorful KKM theorem (Theorem 4.4) we can obtain colorful versions of Theorems 1.14 and 1.15. Af- terwards, McGinnis and Zerbib also noticed the colorful versions and uploaded a second version of their paper. In this section we prove colorful versions of Theorems 1.14 and 1.15. We begin with the colorful version of Theorem 1.14. Let F1, . . . ,F4 be finite families of connected sets in R 2. Suppose that every four sets A1 ∈ F1, A2 ∈ F2, A3 ∈ F3, A4 ∈ F4 have a line transversal. We prove that there exists i ∈ {1, . . . , 4} such that the family Fi can be crossed by 2 lines. This result is joint work with Edgardo Roldán-Pensado. The geometrical idea of our proof goes as follows. If there are two lines crossing one of the families, we are done. Otherwise, we suppose, by contradiction, that for each family Fi and for each two lines in the plane with non-empty intersection there is a set in the family Fi contained in the interior of one of the 4 regions bounded by the two lines. Then using the colorful KKM theorem (Theorem 4.4) we prove that there are two lines l1, l2 (with non-empty intersection) and four sets Ci ∈ Fi, for i = 1, . . . , 4, so that every set Ci is contained in the interior of one of the 4 regions bounded by the lines l1, l2, each set Ci in a different region (see Figure 4.11). Then the sets C1, C2, C3, C4 do not have a line transversal, a contradiction. C1 C2 C3 C4 Figure 4.11: If there are no two lines crossing one of the families Fi, then there are four sets Ci ∈ Fi, for i = 1, . . . , 4, such that the sets C1, C2, C3, C4 do not have a line transversal. Theorem 4.21. Let F1, . . . ,F4 be finite families of connected sets in R 2. If every four sets A1 ∈ F1, A2 ∈ F2, . . . , A4 ∈ F4 have a line transversal, then there exists i ∈ {1, . . . , 4} such that the family Fi can be crossed by 2 lines. Proof. We can assume, without loss of generality, that the sets in the four finite families are compact (see section 1.3). Hence, we may scale the plane such that every set in Fj is contained in the unit disk, for each j ∈ {1, . . . , 4}. For each point x = (x1, . . . , x4) ∈ ∆3 and every i = 1, . . . , 4 we define fi(x), li(x) and Ri x as in the Proof of Theorem 4.7 (see Figure 4.12). For i, j = 1, . . . , 4, let Oj i be the set of points x ∈ ∆3 such that Ri x contains a set F ∈ Fj. Since the sets F ∈ Fj are compact, Oj i is open for all i, j. If there is some x ∈ ∆3 and j ∈ {1, . . . , 4} for which x /∈ ⋃4 i=1 O j i , then since the sets in Fj are connected, every set in Fj must intersect ⋃2 i=1 li(x), and we are done. Otherwise, we assume for contradiction that 4.4. COLORFUL ECKHOFF 53 f1(x) f2(x) f3(x) f4(x) = (1, 0) R1 x R2 x R3 x R4 x Figure 4.12: Illustration for the proof of Theorem 4.21. ∆3 = ⋃4 i=1 O j i for all j. Observe that if x ∈ conv{ei : i ∈ I} for some I ⊂ {1, . . . , 4}, then Rk x = ∅ for k /∈ I, and therefore x ∈ ⋃ i∈I O j i for all j. The last paragraph shows that, for all j, {Oj 1, . . . , O j 4} is an open cover that satisfies the hypothesis of the Colorful KKM theorem (Theorem 4.4), then there exists some permutation π ∈ S4 and a point y = (y1, . . . , y4) ∈ ⋂4 i=1 O π(i) i . In other words, each of the open regions Ri y contains a set Ci ∈ Fπ(i) (in particular Ri y 6= ∅ and yi 6= 0 for all i ∈ {1, . . . , 4}). Then the sets C1, C2, C3, C4 do not have a line transversal, a contradiction. Note that Theorem 4.21 implies Theorem 1.14. Indeed, if F is a family satisfying the hypothesis of Theorem 1.14, then Fi = F for i = 1, . . . , 4 satisfy the hypothesis of Theorem 4.21 and thus the family F can be crossed by 2 lines. Further, if we use Theorem 4.5 (instead of Theorem 4.4) we have the following stronger result. Theorem 4.22. Let F1, . . . ,Fn be finite families of connected sets in R 2, with n ≥ 4. Suppose that every four sets A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3 , A4 ∈ Fi4, for 1 ≤ i1 < i2 < i3 < i4 ≤ n, have a line transversal. Then there exists I ⊂ {1, . . . , n}, with |I| = n− 3, such that the family ⋃ i∈I Fi can be crossed by 2 lines. Proof. We assume for contradiction that for every I ⊂ {1, . . . , n}, with |I| = n− 3, the family ⋃ i∈I Fi cannot be crossed by 2 lines. Then, following the same arguments of the proof of Theorem 4.21 and using the same notation, we have that for every I ∈ ( [n] n−4+1 ) , the family { ⋃ j∈I Oj 1, . . . , ⋃ j∈I Oj 4 } is an open cover of ∆3 that satisfies the hypothesis of Theorem 4.1. Then, by Theorem 4.5, there is an injective function π : [4] −→ [n] and a point y ∈ ⋂4 i=1 O π(i) i 6= ∅. In other words, each of the open regions Ri y contains a set Ci ∈ Fπ(i). Then the sets C1, . . . , C4 do not have a line transversal, a contradiction. Now we prove a colorful version of Theorem 1.15. Let F1, . . . ,F6 be finite families of connected sets in R 2. Suppose that every three sets A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3 , for 1 ≤ i1 < 54 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS i2 < i3 ≤ 6, have a line transversal. We prove that there exists i ∈ {1, . . . , 6} such that the family Fi can be crossed by 3 lines. This result is joint work with Edgardo Roldán-Pensado. The proof is very similar to the proof of Theorem 4.21. The idea goes as follows. If there are three lines crossing one of the families, we are done. Otherwise, we suppose, by contradiction, that for each family Fi and for every three lines in the plane there is a set in the family Fi not crossing the three lines. Then using the Colorful KKM theorem (Theorem 4.4) we prove that there are three lines l1, l2, l3 separating three sets C1, C2, C3 from three different families (see Figure 4.13). By Lemma 1.16, the sets C1, C2, C3 do not have a line transversal, a contradiction. C1 C2 C3 Figure 4.13: If there are no three lines crossing one of the families Fi, then there are three sets C1, C2, C3 from three different families such that the sets C1, C2, C3 do not have a line transversal. Theorem 4.23. Let F1, . . . ,F6 be finite families of connected sets in R 2. If every three sets A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3, for 1 ≤ i1 < i2 < i3 ≤ 6, have a line transversal, then there exists i ∈ {1, . . . , 6} such that the family Fi can be crossed by 3 lines. Proof. We can assume, without loss of generality, that the sets in the six finite families are compact (see section 1.3). Hence, we may scale the plane such that every set in Fj is contained in the unit disk, for each j ∈ {1, . . . , 6}. Let f(t) be a parametrization of the unit circle defined by f(t) = (cos(2πt), sin(2πt)). To each point x = (x1, . . . , x6) ∈ ∆5 we associate 6 points on the unit circle given by fi(x) = f ( i ∑ j=1 xj ) , for 1 ≤ i ≤ 6. Let l1(x) = l4(x) = [f1(x), f4(x)], l2(x) = l5(x) = [f2(x), f5(x)] and l3(x) = l6(x) = [f3(x), f6(x)]. For i = 1, . . . , 6 let Ri x be the interior of the region bounded by li−1(x), li(x) and the arc on the unit circle connecting fi−1(x) and fi(x), where i − 1 is taken modulo 6 (see Figure 4.14). Notice that f6(x) = (1, 0) for each x ∈ ∆5. Also, the points x1, x2, . . . , x6 are always in counter-clockwise order. For i, j = 1, . . . , 6, let Oj i be the set of points x ∈ ∆5 such that Ri x contains a set F ∈ Fj. Since the sets F ∈ Fj are compact, Oj i is open for all i, j. If there is some x ∈ ∆5 and j ∈ {1, . . . , 6} for which x /∈ ⋃6 i=1 O j i , then since the sets in Fj are connected, every set in 4.4. COLORFUL ECKHOFF 55 f1(x)f2(x) f3(x) f4(x) f5(x) f6(x) = (1, 0) R1 x R2 x R3 x R4 x R5 x R6 x Figure 4.14: Illustration for the proof of Theorem 4.23. Fj must intersect ⋃3 i=1 li(x), and we are done. Otherwise, we assume for contradiction that ∆5 = ⋃6 i=1 O j i for all j. Observe that if x ∈ conv{ei : i ∈ I} for some I ⊂ {1, . . . , 6}, then Rk x = ∅ for k /∈ I, and therefore x ∈ ⋃ i∈I O j i for all j. The last paragraph shows that, for all j, {Oj 1, . . . , O j 6} is an open cover that satisfies the hypothesis of the colorful KKM theorem (Theorem 4.4), then there exists some permutation π ∈ S6 and a point y = (y1, . . . , y6) ∈ ⋂6 i=1 O π(i) i . In other words, each of the open regions Ri y contains a set Ci ∈ Fπ(i) (in particular Ri y 6= ∅ and yi 6= 0 for all i ∈ {1, . . . , 6}). Observe that the regions R1 y, R 3 y, R 5 y are pairwise disjoint or the regions R2 y, R 4 y, R 6 y are pair- wise disjoint. Without loss of generality, we assume R1 y, R 3 y, R 5 y are pairwise disjoint. Then by Lemma 1.16, the sets C1, C3, C5 do not have a line transversal, a contradiction. Note that Theorem 4.23 implies Theorem 1.15. Indeed, if F is a family satisfying the hypothesis of Theorem 1.15, then Fi = F for i = 1, . . . , 6 satisfy the hypothesis of Theorem 4.23 and thus the family F can be crossed by 3 lines. Further, if we use Theorem 4.5 (instead of Theorem 4.4) we have the following stronger result. Theorem 4.24. Let F1, . . . ,Fn be finite families of connected sets in R 2, with n ≥ 6. Suppose that every three sets A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3, for 1 ≤ i1 < i2 < i3 ≤ n, have a line transversal. Then there exists I ⊂ {1, . . . , n}, with |I| = n − 5, such that the family ⋃ i∈I Fi can be crossed by 3 lines. Proof. We assume for contradiction that for every I ⊂ {1, . . . , n}, with |I| = n− 5, the family ⋃ i∈I Fi cannot be crossed by 3 lines. Then, following the same arguments of the proof of Theorem 4.23 and using the same notation, we have that for every I ∈ ( [n] n−6+1 ) , the family { ⋃ j∈I Oj 1, . . . , ⋃ j∈I Oj 6 } is an open cover of ∆5 that satisfies the hypothesis of Theorem 4.1. Then, by Theorem 4.5, there is an injective function π : [6] −→ [n] and a point y ∈ ⋂6 i=1 O π(i) i 6= ∅. In other words, each of the open regions Ri y contains a set Ci ∈ Fπ(i). 56 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS Observe that the regions R1 y, R 3 y, R 5 y are pairwise disjoint or the regions R2 y, R 4 y, R 6 y are pair- wise disjoint. Without loss of generality, we assume R1 y, R 3 y, R 5 y are pairwise disjoint. Then by Lemma 1.16, the sets C1, C3, C5 do not have a line transversal, a contradiction. The colorful version of Theorem 1.15 that we wanted to prove uses 3 colors instead of 6 colors. Although we have not been able to prove a colorful version of Theorem 1.15 using only 3 colors, we prove the following theorem concerning finite families of translates of a compact convex set using only 3 colors. Theorem 4.25. Let K be a compact convex set in R 2. Let F1,F2,F3 be finite families of translates of K in R 2. If every three sets A1 ∈ F1, A2 ∈ F2, A3 ∈ F3 have a line transversal, then there exists i ∈ {1, 2, 3} such that the family Fi can be crossed by 4 lines. Proof. Let C be the set of all the rainbow pairs (Ci, Cj) such that Ci and Cj are disjoint. In other words, C = {(Ci, Cj) | Ci ∈ Fi, Cj ∈ Fj, i 6= j, Ci ∩ Cj = ∅}. If C is empty, then we project the sets of the three families in some fixed line and so we obtain three families of segments satisfying the hypothesis of the 1-dimensional case of the Colorful Helly theorem (Theorem 2.4). Thus, by the Colorful Helly theorem (Theorem 2.4) on the line, there is i ∈ {1, 2, 3} such that Fi has a line transversal, and we are done. Otherwise, choose a pair (Ci, Cj) ∈ C for which the angle between the inner common tangents of (Ci, Cj) is minimal among all pairs in C. Without loss of generality, we assume that (C1, C2) ∈ C, with C1 ∈ F1, C2 ∈ F2, is one of the pairs for which the angle between the inner common tangents is minimal. We claim that the 4 common tangents of (C1, C2) cross the family F3. Let l1, l2 be the inner common tangents of C1 and C2. Let l3, l4 be the outer common tangents of C1 and C2. We denote by l+1 , l + 2 , l + 3 , l + 4 the half-planes bounded by l1, l2, l3, l4, respectively, such that C1 ⊂ ⋂4 i=1 l + i . We define the regions R1, . . . , R6 as follows. Let R1 be the interior of l+1 ∩ l+2 , let R2 the interior of l−1 ∩ l−2 , let R3 be the interior of l+1 ∩ l−2 ∩ l−3 , let R4 be the interior of l−1 ∩ l+2 ∩ l−4 , let R5 be the interior of l+1 ∩ l−2 ∩ l+3 and let R6 be the interior of l−1 ∩ l+2 ∩ l+4 . See Figure 4.15. C1 C2 l1l2 l3 l4 R1 R2 R3 R4 R5 R6 Figure 4.15: Illustration for the proof of Theorem 4.25. 4.4. COLORFUL ECKHOFF 57 If there is a set C3 ∈ F3 contained in the region R1, then the angle between the inner common tangents of (C2, C3) ∈ C is less than the angle between the inner common tangents of (C1, C2), contradicting the choice of the pair (C1, C2), see Figure 4.16. Analogously, if there is a set C3 ∈ F3 contained in the region R2, then the angle between the inner common tangents of (C1, C3) ∈ C is less than the angle between the inner common tangents of (C1, C2), contradicting the choice of the pair (C1, C2). Thus, there are no sets in the family F3 contained in the regions R1 or R2. C1 C2 l1l2 αβ ω γ C3 Figure 4.16: Notice that α = β + ω + γ, then α > β. If there is a set C3 ∈ F3 contained in the region R3, then by Lemma 1.16, the sets C1 ∈ F1, C2 ∈ F2, C3 ∈ F3 do not have a line transversal, a contradiction. Analogously, if there is a set C3 ∈ F3 contained in the region R4, then by Lemma 1.16, the sets C1 ∈ F1, C2 ∈ F2, C3 ∈ F3 do not have a line transversal, a contradiction. Thus, there are no sets in the family F3 contained in the regions R3 or R4. Since the sets in the three families are translates of K, then every set in the family F3 has the same width of C1 and C2 in the direction orthogonal to the lines l3, l4. Thus, there are no sets in the family F3 contained in the regions R5 or R6. Therefore, every set in the family F3 must intersects some of the lines l1, l2, l3, l4. Note that using the same proof, we have that Theorem 4.25 is also true for finite families of congruent copies of a compact convex set of constant width. Theorem 4.26. Let K be a compact convex set of constant width in R 2. Let F1,F2,F3 be finite families of congruent copies of K in R 2. If every three sets A1 ∈ F1, A2 ∈ F2, A3 ∈ F3 have a line transversal, then there exists i ∈ {1, 2, 3} such that the family Fi can be crossed by 4 lines. In particular, Theorems 4.25 and 4.26 hold for translates of circles of the same radius. Theorem 4.27. Let F1,F2,F3 be finite families of circles of the same radius in R 2. If every three circles A1 ∈ F1, A2 ∈ F2, A3 ∈ F3 have a line transversal, then there exists i ∈ {1, 2, 3} such that the family Fi can be crossed by 4 lines. An interesting question is if we can improve the number of lines in the conclusion of Theo- rems 4.25, 4.26 and 4.27. 58 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS Problem 4.28. Let K be a compact convex set in R 2. Let F1,F2,F3 be finite families of translates of K in R 2 such that every three sets A1 ∈ F1, A2 ∈ F2, A3 ∈ F3 have a line transversal. Is there exists i ∈ {1, 2, 3} such that the family Fi can be crossed by 3 (or 2) lines? On the other hand, we still wonder if there is a colorful version of Theorem 1.15 using 3 colors. Problem 4.29. Is there exists n ∈ Z + with the following property? Let F1,F2,F3 be finite families of connected sets in R 2. If every three sets A1 ∈ F1, A2 ∈ F2, A3 ∈ F3 have a line transversal, then there exists i ∈ {1, 2, 3} such that the family Fi can be crossed by n lines. In addition, we conjecture the following colorful version of Theorem 1.15 that uses 4 colors. Conjecture 4.30. There exists n ∈ Z + with the following property. Let F1,F2,F3,F4 be finite families of connected sets in R 2. If every three sets A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3, for 1 ≤ i1 < i2 < i3 ≤ 4, have a line transversal, then there exists i ∈ {1, . . . , 4} such that the family Fi can be crossed by n lines. We tried to prove that Conjecture 4.30 holds with n = 3, however we did not succeed. The idea was the following: for each i ∈ {1, ..., 4} we applied the KKM theorem (Theorem 4.1) to the family Fi, then following the same ideas of the proof of Theorem 4.23, we have that there are three sets Ai 1, A i 2, A i 3 in the family Fi such that the sets Ai 1, A i 2, A i 3 do not have a line transversal. Using the 12 convex sets Ai j, for i = 1, 2, 3, 4 and j = 1, 2, 3, we wanted to prove that there are 3 sets in different families without line transversal, which would be a contradiction. It gave rise to the following conjecture. Conjecture 4.31. Let F1,F2,F3,F4 be families of connected sets in R 2, each family with 3 sets. If every three sets A1 ∈ Fi1 , A2 ∈ Fi2 , A3 ∈ Fi3, for 1 ≤ i1 < i2 < i3 ≤ 4, have a line transversal, then there exists i ∈ {1, 2, 3, 4} such that Fi has a line transversal. However, Conjecture 4.31 is false. The counterexample is given in Example 4.32 and Figure 4.17. Example 4.32. Let F1 = {[(−20, 6), (−2, 6)], [(2, 6), (20, 6)], [(−8, 12), (8, 12)]}, F2 = {[(−8, 2), (8, 2)], [(−8, 6), (−8, 24)], [(8, 6), (8, 24)]}, F3 = {[(−8, 8), (8, 8)], [(−17, 10), (−1, 10)], [(1, 10), (17, 10)]}, F4 = {[(−8, 4), (8, 4)], [(−10, 6), (−10, 24)], [(10, 6), (10, 24)]} be families of segments in the plane. The families F1,F2,F3,F4 satisfy the hypothesis of Con- jecture 4.31. However, none of the four families has a line transversal (see Figure 4.17). Even though Conjecture 4.31 is false, it does not imply that Conjecture 4.30 is false. Moti- vated by Theorem 4.25, we still believe Conjecture 4.30 is true, although maybe n will be very large. 4.4. COLORFUL ECKHOFF 59 Figure 4.17: Illustration for Example 4.32. 60 CHAPTER 4. COLORFUL THEOREMS FOR LINE TRANSVERSALS Chapter 5 Conclusions As we mentioned in the Introduction, this work is a survey of colorful theorems in discrete and convex geometry. Chapters 1 and 2 were introductory. In Chapter 3 we saw Theorems 3.2 ([1], [21]) and 3.11 ([28]) which are generalizations of the Colorful Carathéodory theorem and the Colorful Helly theorem, respectively. The original contributions of this Thesis are the following theorems and observations. • In Example 3.4 we showed that we can not continue to weaken the hypothesis of Theorem 3.2. In Example 3.6 we showed that in Theorem 3.2 we can only ensure the existence of 1 rainbow simplex. • In Theorem 4.7 we gave and proved the best numbers satisfying the 2-dimensional case of Theorem 3.11 (f(2) = 1 and g(2) = 2). Furthermore, we proved Theorem 4.8 which is stronger than Theorem 4.7. In addition, in Theorem 4.6 we proved a particular case of Theorem 4.7 with an elementary proof. We also proved Theorems 4.10, 4.11, 4.12, 4.13 and 4.14 concerning some special families where the 2-dimensional case of Theorem 3.11 holds with g(2) = 1. Finally, we proposed Problem 4.15 and we believe that Theorem 4.10 can be useful to prove Conjecture 4.17. • We proved Theorems 4.21 and 4.23 (colorful versions of Eckhoff’s theorems), although McGinnis and Zerbib [31] after wrote a paper with these results. Additionally, we proved Theorems 4.25 and 4.26 (and Theorem 4.27 which is a particular case of Theorems 4.25 and 4.26) concerning families of translates of a compact convex set or families of congruent copies of a compact convex set of constant width. An interesting question is if in Theorem 4.25 we can improve the 4 lines (in the conclusion) by 3 or 2 lines (Problem 4.28). Finally, in Problem 4.29 and Conjecture 4.30 we wonder if we can improve the number of families (or colors) in Theorem 4.23. 61 62 CHAPTER 5. CONCLUSIONS Bibliography [1] J. L. Arocha, I. Bárány, J. Bracho, R. Fabila, and L. Montejano. Very Colorful Theorems. Discrete Comput. Geom., 42(2):142–154, 2009. [2] I. Bárány and D. G. Larman. A colored version of Tverberg’s theorem. Journal of the London Mathematical Society, 2(2):314–320, 1992. [3] K. Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundamenta Mathe- maticae, 20:177–190, 1933. [4] I. Bárány. A generalization of Carathéodory theorem. Discrete Math., 40:141–152, 1982. [5] I. Bárány. Combinatorial Convexity, volume 77. American Mathematical Society, Provi- dence, Rhode Island, 2021. [6] I. Bárány. Pairwise intersecting convex sets and cylinders in R 3. arXiv preprint arXiv:2104.02148, 2021. [7] L. E. J. Brouwer. Über Abbildung von Mannigfaltigkeiten. Mathematische Annalen, 71(1):97–115, 1911. [8] C. Carathéodory. Uber den Variabilitatsbereich der Koeffizienten von Potenzreihen. Math. Annalen, 64:95–115, 1907. [9] L. Danzer. Über ein Problem aus der kombinatorischen Geometrie. Archiv der Mathematik, 8(5):347–351, 1957. [10] L. Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben in der euklidischen Ebene. Studia Sci. Math. Hungar., 21:111–134, 1986. [11] J. Eckhoff. Transversalenprobleme vom Gallaischen Typ. PhD thesis, Dissertation, Uni- versität Göttingen, 1969. [12] J. Eckhoff. Transversalenprobleme in der Ebene. Archiv der Mathematik, 24(1):195–202, 1973. [13] J. Eckhoff. A Gallai-type transversal problem in the plane. Discrete Comput. Geom., 9(2):203–214, 1993. [14] D. Gale. Equilibrium in a discrete exchange economy with money. International Journal of Game Theory, 13(1):61–64, 1984. 63 64 BIBLIOGRAPHY [15] J. E. Goodman, R. Pollack, and R. Wenger. Bounding the number of geometric permuta- tions induced by k-transversals. Journal of Combinatorial Theory, Series A, 75(2):187–197, 1996. [16] B. Grünbaum. On intersections of similar sets. Portugal Math., 18:155–164, 1959. [17] H. Hadwiger and H. Debrunner. Combinatorial Geometry in the plane. Dover Publications, 1966. [18] E. Helly. Uber Mengen konvexer Korper mit gemeinschaftlichen Punkten. Jahres-berichte der Deutschen Math.-Verein., 32:175–176, 1923. [19] A. F. Holmsen. The intersection of a matroid and an oriented matroid. Advances in Mathematics, 290:1–14, 2016. [20] A. F. Holmsen. On a transversal theorem of Montejano and Karasev. arXiv preprint arXiv:2112.07907, 2021. [21] A. F. Holmsen, J. Pach, and H. Tverberg. Points sorrounding the origin. Combinatorica, 28(6):633–644, 2008. [22] J. Jerónimo-Castro, A. Magazinov, and P. Soberón. On a problem by Dol’nikov. Discrete Mathematics, 338(9):1577–1585, 2015. [23] R. N. Karasev. Transversals for families of translates of a two-dimensional convex compact set. Discrete Comput. Geom., 24(2):345–354, 2000. [24] R. N. Karasev. Piercing Families of Convex Sets with the d-Intersection Property in R d. Discrete Comput. Geom., 39(4):766–777, 2008. [25] B. Knaster, C. Kuratowski, and S. Mazurkiewicz. Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fundamenta Mathematicae, 14(1):132–137, 1929. [26] D. Kramer. Transversalenprobleme vom Hellyschen und Gallaischen Typ. PhD thesis, Dissertation, Universität Dortmund, 1974. [27] S. Krasa and N. C. Yannelis. An elementary proof of the Knaster-Kuratowski- Mazurkiewicz-Shapley theorem. Economic Theory, 4(3):467–471, 1994. [28] L. Mart́ınez-Sandoval, E. Roldán-Pensado, and N. Rubin. Further Consequences of the Colorful Helly Hypothesis. Discrete Comput. Geom., 63(4):848–866, 2020. [29] J. Matoušek. Lectures on discrete geometry, volume 212. Springer-Verlag, New York, 2002. [30] J. Matoušek. Using the Borsuk-Ulam theorem: lectures on topological methods in combi- natorics and geometry. Springer, 2003. [31] D. McGinnis and S. Zerbib. Line transversals in families of connected sets the plane. arXiv preprint arXiv:2103.05565, 2021. [32] L. Montejano. Transversals, Topology and Colorful Geometric Results. Bolyai Society Mathematica Studies, 24:1–14, 2010. BIBLIOGRAPHY 65 [33] L. Montejano and R. N. Karasev. Topological transversals to a family of convex sets. Discrete Comput. Geom., 46(2):283–300, 2011. [34] J. Radon. Mengen konvexer Korper, die einen gemeinsamen Punkt enthalten. Math. Ann., 83:113–115, 1921. [35] L. Santaló. Un teorema sobre conjuntos de paralelepipedos de aristas paralelas. Publ. Inst. Mat. Univ. Nac. Litoral, 2(4):49–60, 1940. [36] P. Sarrabezolles. The colourful simplicial depth conjecture. Journal of Combinatorial Theory, Series A, 130:119–128, 2015. [37] P. Soberón. Equal coefficients and tolerance in coloured Tverberg partitions. Combinator- ica, 35(2):235–252, 2015. [38] P. Soberón. Robust Tverberg and colourful Carathéodory results via random choice. Com- binatorics, Probability and Computing, 27(3):427–440, 2018. [39] P. Soberón. Fair distributions for more participants than allocations. arXiv preprint arXiv:2110.03600, 2021. [40] E. Sperner. Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. In Abh. Math. Sem. Univ. Hamburg, volume 6, pages 265–272. Springer, 1928. [41] R. Strausz. How do 9 Points Look Like in E 3 ? Annals of Combinatorics, pages 1–5, 2022.