UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS DE LA PRODUCCIÓN Y DE LA SALUD ANIMAL FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN EVALUACIÓN DE BIOADSORBENTES EN LA PROTECCIÓN DE LA AFLATOXICOSIS MEDIANTE UN MODELO GASTROINTESTINAL IN VITRO DINÁMICO Y UN MODELO IN VIVO EN PAVOS (Meleagridis gallopavo) TESIS PARA OPTAR POR EL GRADO DE: DOCTORA EN CIENCIAS DE LA PRODUCCIÓN Y DE LA SALUD ANIMAL PRESENTA: MARÍA DE JESÚS NAVA RAMÍREZ TUTOR: DR. ABRAHAM MÉNDEZ ALBORES FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN COMITÉ TUTORAL: DR. CARLOS LÓPEZ COELLO UNAM-FACULTAD DE MEDICINA VETERINARIA Y ZOOTECNIA DR. GUILLERMO TÉLLEZ ISAÍAS UNIVERSIDAD DE ARKANSAS CUAUTITLÁN IZCALLI, ESTADO DE MÉXICO, 2024 UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Agradecimientos A la Universidad Nacional Autónoma de México y a la Facultad de Estudios Superiores Cuautitlán por permitirme ser parte de esta gran institución, donde he podido estudiar, aprender y enseñar, y que ha sido mi segundo hogar durante 16 años. A mi tutor, el Dr. Abraham por apoyarme, impulsarme y guiarme en un momento clave en mi vida. Gracias por enseñarme todo lo que soy profesionalmente durante estos últimos 7 años. Gracias por abrir las puertas del laboratorio 14 para que pudiéramos realizar todos los logros que hemos tenido hasta ahora. Al Dr. Carlos López por ser una persona que me apoyó y creyó en mí en los momentos que más lo necesité. Por sus sabios consejos que valoro y atesoro mucho. Al Dr. Guillermo por su apoyo incondicional que me bridó en todo momento, gracias por tanta generosidad y paciencia. A todos los doctores y doctoras que se involucraron el la supervisión y evaluación de este proyecto: Dra. Irma Candanosa, Dra. Patricia Ramírez, Dr. Ernesto Ávila, Dr. Sergio Gómez, Dr. Ignacio Soto y al Dr. Tórtora. Al programa de becas del Conahcyt por el apoyo otorgado a lo largo de mis estudios de posgrado. Investigación realizada con apoyo del Programa UNAM-PAPIIT IA101523. Dedicatorias A mi mamá, mis hermanas, mi sobrina y mi sobrino, que me han mostrado todo su cariño y apoyo de diversas maneras. Gracias por escucharme o leerme cuando lo más lo necesité. Todas ustedes son mi razón de ser. A mi esposa por ser mi gran apoyo de vida, por escucharme por horas y horas y por darme ese impulso para no tirar la toalla en los momentos más difíciles. Gracias por intentar aligerar y alegrar mis días con tanta atención y tanto amor. A todos mis gatitos que, sin saberlo, me han dado mucha alegría y amor. A Lis porque sin saberlo, ha sido mi mayor apoyo en todo este proceso. Gracias por ser esa amiga que tanto busqué. A Karla, Belén y Mari por las horas que me han dedicado en escuchar todas mis anécdotas y por darme los mejores consejos. Por mejorar mis días con las reuniones que solemos hacer. Por ser mis amigas desde que entramos a la UNAM…y lo que nos falta. A Sam, por ser esa persona con la que comparto situaciones y momentos parecidos. Por ser empática, sincera divertida y la persona más transparente que conozco. A Cecilia por ser mi amiga y compañera de posgrado. Por acompañarme y entenderme en todo este camino de maestría y doctorado. Por más etapas juntas. I Resumen La presente investigación se llevó a cabo en tres etapas: la primera consistió en un experimento in vitro, la segunda en un experimento in vivo y la tercera en un estudio de la microbiota intestinal de las aves. El experimento in vitro incluyó la producción y caracterización de cuatro adsorbentes a base de plantas ricas en clorofilas: espinaca (Spinacia oleracea), acelga (Beta vulgaris var. Cicla), perejil (Petroselinum crispum) y alfalfa (Medicago sativa). La caracterización incluyó a la microscopía electrónica de barrido, la espectroscopía de fluorescencia de rayos X, la difracción de rayos X, el potencial Z, el punto de carga cero, la espectroscopía de infrarrojo con transformada de Fourier y reflexión total atenuada, la espectroscopía UV-Vis y la espectroscopía de fluorescencia. El adsorbente de alfalfa obtuvo las mejores características para adsorber AFB1. Se evaluó su capacidad de adsorción utilizando dos modelos in vitro: uno pH-dependiente y otro que emuló el tracto gastrointestinal (TGI) de las aves, (250 ng AFB1/mL y 0.5% de adsorbente). El modelo pH-dependiente mostró una alta eficacia de adsorción (98.2% a pH 2, 99.9% a pH 5 y 98.2% a pH 7) en comparación con el modelo que emuló el TGI (88.8%). En el segundo experimento, el experimento in vivo, se utilizaron 350 pavitos Nicholas-700: (1) Control (libre de AFB1); (2) AF (250 ng AFB1/g); (3) Alfalfa (libre de AFB1+0.5% (p/p) de adsorbente); (4) AF+alfalfa (250 ng AFB1/g+0.5% (p/p) de adsorbente) y (5) AF+PCL (250 ng AFB1/g+0.5% (p/p) pared celular de levadura (PCL). En el grupo AF+alfalfa se observó el aumento del peso corporal y la ganancia de peso y la reducción del consumo de alimento. No obstante, el grupo Alfalfa mostró los mejores resultados en cuanto a los parámetros productivos y mejoró algunos niveles de la bioquímica sanguínea. Las lesiones histopatológicas en el hígado del grupo AF, mejoraron significativamente con la adición del adsorbente. En el tercer experimento, en el grupo Alfalfa se observó un aumento de bacterias benéficas (Faecalibacterium y Coprococcus catus) en el intestino, a diferencia del grupo AF, donde las bacterias oportunistas aumentaron (Streptococcus lutetiensis), provocando una disbacteriosis. En el grupo AF, la altura de las vellosidades intestinales disminuyó y la permeabilidad intestinal se vio afectada. Sin embargo, estos efectos se revirtieron con la adición del adsorbente de alfalfa. Los resultados indicaron que el adsorbente derivado de hojas de alfalfa utiliza mecanismos de adsorción electrostáticos, no electrostáticos y la formación de complejos clorofila-AFB1 para eliminar AFB1 en ambos modelos in vitro. En un modelo in vivo, la inclusión baja del adsorbente en el alimento contaminado con AFB1 contrarrestó los efectos adversos de la toxina, y mejoró la microbiota del intestino. Estos hallazgos sugieren que las hojas de alfalfa podrían ser una alternativa adecuada como adsorbente de AFB1. Palabras clave: aflatoxina B1, alfalfa, adsorción, pavos, microbiota. II Abstract The present research was carried out in three stages: the first consisted of an in vitro experiment, the second in an in vivo experiment and the third in a study of the intestinal microbiota of birds. The in vitro experiment included the production and characterization of four adsorbents based on chlorophyll-rich plants: spinach (Spinacia oleracea), chard (Beta vulgaris var. Cicla), parsley (Petroselinum crispum) and alfalfa (Medicago sativa). The characterization included scanning electron microscopy, X-ray fluorescence spectroscopy, X-ray diffraction, zeta potential, point of zero charge, attenuated total reflectance-Fourier transform infrared spectroscopy, UV-Vis spectroscopy and fluorescence spectroscopy. The alfalfa adsorbent obtained the best characteristics to adsorb AFB1. Its adsorption capacity was evaluated using two in vitro models: one pH-dependent and another that emulated the gastrointestinal tract (GIT) of birds, (250 ng AFB1/mL and 0.5% adsorbent). The pH-dependent model showed a high adsorption efficiency (98.2% at pH 2, 99.9% at pH 5 and 98.2% at pH 7) compared to the model that emulated the GIT (88.8%). In the second experiment, the in vivo experiment, 350 Nicholas-700 poults were used: (1) Control (free of AFB1); (2) AF (250 ng AFB1/g); (3) Alfalfa (free of AFB1+0.5% (w/w) adsorbent); (4) AF+alfalfa (250 ng AFB1/g+0.5% (w/w) adsorbent) and (5) AF+YCW (250 ng AFB1/g+0.5% (w/w) yeast cell wall (YCW). In the AF+alfalfa group, an increase in body weight and weight gain and a reduction in feed consumption were observed. However, the Alfalfa group showed the best results in terms of production parameters and improved some levels of serum biochemistry. The histopathological lesions in the liver of the AF group improved significantly with the addition of the adsorbent. In the third experiment, an increase in beneficial bacteria (Faecalibacterium and Coprococcus catus) was observed in the intestine, unlike the group. AF group, where opportunistic bacteria increased (Streptococcus lutetiensis), causing dysbacteriosis. In the AF group, the height of the intestinal villi decreased and intestinal permeability was affected. However, these effects were reversed with the addition of the alfalfa adsorbent. The results indicated that the adsorbent derived from alfalfa leaves uses electrostatic, non-electrostatic adsorption mechanisms and the formation of chlorophyll-AFB1 complexes to remove AFB1 in both in vitro models. In an in vivo model, low inclusion of the adsorbent in AFB1-contaminated feed counteracted the adverse effects of the toxin, and improved the gut microbiota. These findings suggest that alfalfa leaves could be a suitable alternative as an adsorbent for AFB1. Keywords: aflatoxin B1, alfalfa, adsorption, turkeys, microbiota. III Índice Resumen ............................................................................................................................................. I Abstract ............................................................................................................................................. II Índice ................................................................................................................................................ III Listado de figuras ………………………………………………………………………..……………………………..………………..IV Introducción ...................................................................................................................................... 1 Antecedentes ..................................................................................................................................… 3 Micotoxinas ........................................................................................................................................3 Aflatoxinas ..........................................................................................................................................4 La meleagricultura en México .............................................................................................................5 Efecto de las aflatoxinas en los pavos.................................................................................................6 Agentes adsorbentes...........................................................................................................................7 Artículo 1 ..........................................................................................................................................10 Artículo 2 ......................................................................................................................................... 28 Artículo 3 ......................................................................................................................................... 37 Discusión .......................................................................................................................................... 51 Conclusiones .................................................................................................................................... 67 Perspectivas…………………………………………………………………………………………………………………………………68 Referencias .......................................................................................................................................69 IV Listado de figuras Figura 1. Formación de enlaces de hidrógeno entre la molécula de AFB1 y los principales grupos funcionales existentes en el adsorbente de alfalfa en las tres secciones simuladas del tracto gastrointestinal de las aves (pH 2, 5 y 7)…………………………………………54 Figura 2. Interacción electrostática de acuerdo con el pHpzc entre la superficie del adsorbente de hojas de alfalfa y los átomos de oxígeno de la molécula de AFB1 ………………………………………………………………………………………………………………………….56 Figura 3. Interacción en la interfase del potencia ζ y el punto isoeléctrico (pI) entre el adsorbente de hojas de alfalfa y los átomos de oxígeno de la molécula de AFB1.…………………………………………………………………………………..………………………………...58 Figura 4. Interacción entre la clorofila del adsorbente de las hojas de alfalfa y la molécula de la AFB1………………………………………………………………………………………………………………………59 Figura 5. Efecto del adsorbente de alfalfa y la AFB1 sobre la microbiota intestinal, la permeabilidad intestinal, y la altura de las vellosidades intestinales de los pavos…………………..…..66 1 Introducción Las micotoxinas son compuestos químicos producidos por ciertos hongos filamentosos. Se han identificado alrededor de 400 micotoxinas potencialmente tóxicas; sin embargo, las toxinas que se consideran las más perjudiciales para la agricultura, la ganadería y la salud pública son los tricotecenos, las ocratoxinas, las aflatoxinas, la zearalenona, las fumonisinas, la patulina y la citrinina. A nivel mundial, las aflatoxinas (AF) son ampliamente reconocidas como las micotoxinas más relevantes en los alimentos tanto para humanos como para animales, debido a su toxigenicidad y su carácter ubicuo. Las AF de mayor a menor toxicidad son: la aflatoxina B1 (AFB1), la aflatoxina M1 (AFM1), la aflatoxina G1 (AFG1), la aflatoxina M2 (AFM2), la aflatoxina B2 (AFB2), y la aflatoxina G2 (AFG2). La AFB1 es conocida por su potencial hepatotóxico y carcinogénico, la cual puede contaminar una amplia variedad de semillas y cereales destinados al consumo de humanos y de animales, por lo que, puede causar importantes pérdidas económicas y problemas de seguridad alimentaria y de salud pública. La AFB1 conlleva una amplia variedad de efectos adversos en los animales, especialmente cuando se consume en dietas contaminadas, lo que puede desencadenar el desarrollo de aflatoxicosis, tanto en forma aguda como crónica. Algunos de los efectos más comunes en los animales incluyen: inmunosupresión, hepatotoxicidad, hepatocarcinogenicidad, mutagenicidad, anorexia, alteración de los parámetros productivos y de los valores bioquímicos y aumento de la morbilidad y la mortalidad. Las aves de producción, los cerdos y los bovinos son las especies domésticas que generan mayor preocupación económica en términos de aflatoxicosis. Sin embargo, las aves de producción son de las especies más susceptibles a las AF, especialmente los pavos debido a una eficiente bioactivación hepática mediada por el citocromo P450 y a una desintoxicación deficiente a través del glutatión S-transferasa (GST). Para reducir los efectos tóxicos que provoca la AFB1 en los pavos y mejorar la calidad, seguridad y disponibilidad de los alimentos en un contexto de crecimiento poblacional y cambios climáticos, se pueden implementar diversas estrategias basadas en métodos físicos, químicos y biológicos. En este contexto, la estrategia más utilizada en la industria avícola para el control y/o prevención de las AF es el método físico, principalmente la adición de materiales adsorbentes en el alimento. Los adsorbentes se clasifican en inorgánicos y orgánicos. 2 Los adsorbentes inorgánicos más usados son las bentonitas, las montmorillonitas, las esmectitas, las caolinitas y las zeolitas. Cabe señalar que, este tipo de adsorbentes inorgánicos tiene ciertas desventajas como la adsorción simultánea de diversos micronutrientes contenidos en la dieta de las aves, así como la liberación de dioxinas y metales pesados. Es por esta razón que, en los últimos años, se ha desarrollado y estudiado la eficacia de adsorción de la AFB1 de diversos adsorbentes orgánicos como el algarrobo, los tallos de uva micronizados, las hojas + bayas de Pyracantha koidzumii, el orujo de uva, algunas ligninas de plantas aromáticas, el polvo de Aloe vera, la cáscara de plátano, entre otros, los cuales se caracterizan por ser seguros, rentables y efectivos. Algunos estudios han demostrado que la inclusión de adsorbentes orgánicos que contienen un alto contenido de clorofilas (el kale, la lechuga y las hojas de Pyracantha koidzumii), son eficaces en la adsorción de AFB1. En consecuencia, la presente investigación tiene como objetivo conocer la naturaleza de la interacción entre cuatro nuevos adsorbentes orgánicos con un alto contenido de clorofilas y la molécula AFB1 empleando diversas técnicas de caracterización, de los cuales, sólo uno será seleccionado para evaluar su potencial de adsorción de AFB1 con un nivel bajo de inclusión, utilizando dos modelos in vitro (un modelo pH-dependiente y un modelo que emuló el TGI de las aves) y un modelo in vivo en pavos (Meleagridis gallopavo). 3 Antecedentes Micotoxinas Algunas especies de hongos filamentosos, como Aspergillus, Fusarium, Penicillium, Claviceps y Alternaria, tienen la capacidad de producir metabolitos secundarios de bajo peso molecular que son altamente tóxicos, conocidos como micotoxinas (Huwig et al., 2001; Wang et al., 2020). Desde la década de 1960, se han identificado aproximadamente 400 tipos de micotoxinas, clasificadas en grupos según sus similitudes estructurales y efectos tóxicos (Wielogórska et al., 2016). Las micotoxinas son omnipresentes y se encuentran en una gran variedad de materiales, incluyendo alimentos para animales, alimentos para consumo humano, productos de origen animal y suelos (Tola y Kebede, 2016). Dado que en la mayoría de los países los cereales como el trigo, el maíz, la cebada, el centeno y la avena constituyen la principal fuente de nutrición, la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) estima que un porcentaje significativo de estos cereales está sujeto a la contaminación por micotoxinas, alcanzando aproximadamente el 25% de la producción mundial (Galvano et al., 2001; Sarrocco et al., 2019). Los hongos que generan micotoxinas en los alimentos se clasifican en dos categorías: aquellos que infectan antes de la cosecha, conocidos como hongos de campo, y los que emergen exclusivamente después de la cosecha, denominados hongos de almacenamiento (Atanda et al., 2011). Dentro de los hongos de campo, se identifican tres tipos: los fitopatógenos, como Fusarium graminearum (productor de deoxinivalenol y nivalenol); los que prosperan en plantas en etapa senescente o bajo estrés, como Fusarium moniliforme (generador de fumonisina), y ocasionalmente Aspergillus flavus (aflatoxina); y aquellos que inicialmente colonizan la planta antes de la cosecha, predisponiendo el producto a la contaminación por micotoxinas posterior a la recolección, tales como Penicillium verrucosum (ocratoxina) y A. flavus (aflatoxina) (Ayalew, 2010; Berthiller et al., 2013). 4 Aflatoxinas Producidas principalmente por los hongos del género Aspergillus, del cual, sólo 18 de sus especies pueden producir aflatoxinas: A. flavus, A. parasiticus, y A. nomius, A. aflatoxiformans, A. arachidicola, A. austwickii, A. cerealis, A. pseudotamarii, A. sergii, A. bombycis, por mencionar algunas (Bennett y Klich, 2003; Frisvad et al., 2019). Los períodos de sequía, combinados con altas temperaturas, incrementan notablemente la producción de aflatoxinas en el campo; además, las aflatoxinas se sintetizan exponencialmente durante el almacenamiento de varios meses en condiciones de calor y alta humedad (Sanders et al., 1993; Villers, 2014). La temperatura mínima requerida para la producción de aflatoxinas oscila entre 10 y 12°C, con una temperatura óptima entre 27 y 30°C, y una máxima de 40 a 42°C (Frisvad, 2012; Milani, 2013). Los hongos suelen proliferar en un rango de pH de 4 a 8 y a niveles de actividad de agua (aw) superiores a 0.73 (Vujanovic et al., 2001). La humedad también desempeña un papel crucial en el crecimiento del hongo y la subsiguiente producción de aflatoxinas en los granos durante su almacenamiento. Cuando la humedad relativa supera el 65%, Aspergillus puede desarrollarse sin dificultades (Villers, 2014). Las principales aflatoxinas se dividen en grupos B (azul) y G (verde), debido a su fluorescencia azul o verde cuando se exponen a la luz ultravioleta (λ = 365 nm). Los subíndices 1 y 2 indican la movilidad relativa de las aflatoxinas en la cromatografía de capa fina, basada en su peso molecular (Carvajal, 2013). El orden de toxicidad de las aflatoxinas, de mayor a menor, es el siguiente: AFB1, AFM1, AFG1, AFM2, AFB2 y AFG2, siendo la AFB1 la aflatoxina más prevalente en productos alimenticios, seguida por la AFG1. Las aflatoxinas B2 y G2 son biológicamente inactivas, a menos que se oxiden metabólicamente a AFB1 y AFG1 (Bbosa et al., 2013; Murugesan et al., 2015; Neeff et al., 2013). La aflatoxina M1 y la aflatoxina M2 son metabolitos hidroxilados de AFB1 y AFB2, respectivamente (Lee et al., 2014). El peso molecular de la AFB1, AFB2, AFG1 y AFG2 es de 312, 314, 328 y 330, respectivamente (Mousavi et al., 2018). La estructura de las aflatoxinas está formada por un núcleo cumarínico y otro difurano el cual ocasiona que la molécula tenga mayor rigidez. Las aflatoxinas B1 y G1 tienen un enlace insaturado en la posición 8,9 en el anillo terminal de furano (Miranda et al., 2013). La AFB1 se presenta como un sólido cristalino de color blanco pálido a amarillo, con ausencia de olor. Es soluble en varios disolventes orgánicos, tales como cloroformo, metanol, acetonitrilo y acetona (Sirhan et al., 2014). La AFB1 es muy estable a temperaturas superiores a 100 °C, se puede lograr poca o casi 5 ninguna descomposición (Campagnollo et al., 2016), aunque se pueden destruir en autoclave con amonio o hipoclorito de sodio (Carvajal, 2013). La AFB1 se encuentra en diversos cereales, semillas oleaginosas, especias y frutos secos. Se ha informado que los cereales más susceptibles a la contaminación por aflatoxinas incluyen la cebada, el maíz, el arroz, el sorgo y el trigo, así como las semillas oleaginosas como el algodón, el maní los girasoles y los cacahuetes (Bryden, 2012). El consumo de cereales contaminados con AF y productos a base de cereales como alimento destinado a consumo humano y animal, se considera un problema grave que debe controlarse mediante la implementación de estrategias de prevención y legislación (Mousavi et al., 2018). En México, existe la Norma Oficial Mexicana (NOM-188-SSA1-2010, Productos y servicios. Control de aflatoxinas en cereales para consumo humano y animal. Es de cumplimiento obligatorio en el territorio nacional y establece el límite máximo permitido de aflatoxinas en los cereales destinados al consumo animal, así como las normativas para su adecuado transporte y almacenamiento. En el Apéndice A, que establece los límites permitidos para el consumo animal, se especifica que los cereales con un contenido de aflatoxinas superior a 20 µg/kg serán destinados al consumo animal (NOM-188-SSA1-2010). La meleagricultura en México El guajolote (Meleagridis gallopavo), es una especie autóctona y de gran importancia cultural para las zonas rurales de México, la cría y producción de pavo es una actividad económica que desempeña un papel crucial en la creación de empleos directos e indirectos, así como en la preservación de las tradiciones socioculturales en el Estado de México. Sin embargo, la producción de pavos es baja y principalmente se destina al autoconsumo mediante la elaboración de platillos tradicionales. En menor medida, tanto el pavo como la carne se venden en los mercados locales para mejorar los ingresos familiares (Rodríguez-Licea et al., 2019). El pavo se posiciona como la segunda especie avícola más relevante a nivel nacional, representando el 0.2% de la producción pecuaria mexicana en la industria avícola durante el año 2021 (UNA, 2023). Esta posición se debe a su capacidad de adaptación a una amplia variedad de climas y sistemas de producción, destacándose especialmente en los sistemas de producción en pequeña escala (Cruz- Lujan et al., 2023). En el año 2021, la producción de pavo alcanzó las 8,406 toneladas, generando un valor de 1,109 millones de pesos (UNA, 2023). 6 México ha mantenido una tradición histórica en la crianza de pavos, siendo los estados de Yucatán, Puebla y el Estado de México los principales productores, contribuyendo conjuntamente con el 59% de la producción nacional. Esta actividad guarda una estrecha relación con la producción agrícola, ya que suministra granos de cereales como trigo, avena, sorgo y maíz principalmente, los cuales son fundamentales para la alimentación de estas aves (Rodríguez-Licea et al., 2019). Efecto de las aflatoxinas en los pavos La extrema sensibilidad de aves de producción a AFB1 ha sido bien documentado, antes de identificar el agente etiológico, en Inglaterra a principios de 1960, se observaron por primera vez los efectos tóxicos de la AFB1 en más de 100,000 pavos, lo que condujo al surgimiento de la denominada “Enfermedad X de los pavos” (Quist et al., 2000). Los pavos exhibieron signos de intoxicación extrema, como opistótonos (rigidez anormal de los músculos), enteritis y una tasa de mortalidad del 100%. Los estudios post-mortem revelaron lesiones de inflamación intestinal severa, junto con hallazgos histológicos que mostraron necrosis hepática aguda, hiperplasia de los conductos biliares y lipidosis hepática. Pronto se determinó que los pavos habían sido alimentados con harina de cacahuate contaminada con A. flavus, importada desde Brasil, lo que se asoció directamente al desarrollo de esta patología (Do y Choi, 2007; Rushing y Selim, 2019). Desde entonces se ha comprobado que los pavos son más susceptibles que los pollos a los efectos tóxicos de la AFB1 en su dieta (Giambrone et al., 1985). Los pavos afectados por aflatoxinas típicamente muestran signos como inapetencia, reducción de la actividad, marcha inestable, rendimiento deficiente, disminución en el peso de los órganos, anemia, inmunosupresión, alta morbilidad y, en casos graves, la muerte (Klein et al., 2020). Durante la necropsia, se observa una condición corporal generalmente buena, pero con signos de congestión y edema generalizados. Las aflatoxinas presentes en los alimentos contaminados se absorben rápidamente en el intestino delgado, afectando principalmente al hígado y provocando trastornos metabólicos. El hígado suele presentar congestión, firmeza, hemorragia, necrosis, cambios grasos en los hepatocitos y hepatomegalia. Los cambios microscópicos del hígado incluyen la degeneración hidrópica, hiperplasia de conductos biliares, y fibrosis periportal (Magnoli et al., 2011). La degeneración grasa y la proliferación de los conductos biliares, por lo general, se manifiestan como un aumento en la actividad de las enzimas hepáticas, trastornos de la coagulación y una reducción en la producción de proteínas (Fernández et al., 1995). 7 Agentes adsorbentes Ante estos problemas globales, numerosas organizaciones, instituciones, productores e investigadores se han comprometido a desarrollar diversas estrategias y prácticas de prevención y descontaminación. El objetivo es reducir los riesgos asociados con las AF en los alimentos. Las estrategias de control y prevención de micotoxinas abarcan acciones tanto en la etapa de precosecha como en la de poscosecha (Huwig et al., 2001; Ringot et al., 2007). Sin embargo, cuando la prevención en el campo o durante la cosecha no es suficiente, es necesario recurrir a procedimientos de descontaminación de micotoxinas mediante métodos físicos, químicos o biológicos. En la actualidad, los mayores esfuerzos se han centrado en eliminar o reducir el efecto de las micotoxinas mediante el uso de diversos productos que pueden suprimir o disminuir su absorción, promover la excreción o modificar su modo de acción. Estas sustancias han sido reconocidas por la Comisión Europea (EC) como agentes desintoxicantes (Denli y Pérez, 2006; Vila- Donat et al., 2018). Dichos agentes desintoxicantes se dividen en agentes adsorbentes y agentes biotransformadores. Los agentes adsorbentes es uno de los métodos más prácticos para la descontaminación de AF dentro de la industria animal (Magnoli et al., 2011; Vijayanandraj et al., 2014). Los adsorbentes de micotoxinas son compuestos de alto peso molecular con la capacidad de unir a las micotoxinas. Su modo de acción radica en evitar la absorción de la AFB1 presente en el alimento al no disociarse en el tracto gastrointestinal (TGI) del animal después de su ingestión. Esto limita su biodisponibilidad y, por ende, reduce la exposición a la AFB1, previniendo así sus efectos hepatotóxicos (Vila-Donat et al., 2018; Rushing y Selim, 2019). Los adsorbentes se dividen en adsorbentes orgánicos y adsorbentes inorgánicos (Vila-Donat et al., 2018). Los adsorbentes inorgánicos son los más utilizados en la industria avícola, incluyendo a los aluminosilicatos (tectosilicatos y filosilicatos), a los aluminosilicatos de calcio y sodio hidratado (HSCAS), a las arcillas de esmectita, a las zeolitas y a las clinoptilolitas. Se ha reportado que las arcillas también son capaces de adsorber micronutrientes de la dieta animal y tienen efectos negativos en la disponibilidad de minerales y oligoelementos. Además, existe el riesgo de que las arcillas naturales se contaminen con dioxinas y metales pesados (Vila-Donat et al., 2018). Ante las relativas desventajas de los adsorbentes inorgánicos, en los últimos años se ha propuesto el desarrollo de adsorbentes orgánicos, ya que son seguros, rentables y efectivos (Avantaggiato et al., 2014; Ringot et al., 2007). 8 Diversos adsorbentes orgánicos, como fibras de plantas, residuos agrícolas, extractos de paredes celulares de levadura y bacterias, han demostrado ser prometedores en su capacidad de adsorción de AFB1, tanto en modelos in vitro como en modelos in vivo. Sin embargo, pocos de estos han sido investigados en modelos in vivo (Bueno et al., 2001). Los materiales como la paja, las cáscaras de nueces y almendras, así como las semillas, la pulpa de frutas, los materiales vegetales, las plantas, los cereales y forrajes, están compuestos principalmente de celulosa, lignina, hemicelulosa, pectina y lípidos, entre otros compuestos. Además, los principales componentes de las plantas son los fenólicos, flavonoides, cumarinas, clorofila y clorofilina, los cuales poseen propiedades quimioprotectoras contra compuestos cancerígenos como la AFB1 (Boudergue et al., 2009). Los diversos compuestos de los adsorbentes orgánicos contienen diferentes grupos funcionales, los cuales son los responsables de la unión con la AFB1 (Bočarov-Stančić et al., 2018; Vila-Donat et al., 2018). Algunos estudios reportan porcentajes altos de adsorción de aflatoxinas con el uso de adsorbentes orgánicos como: el orujo de uva (82%), la cáscara de almendra (87%), los tallos y las hojas de la alcachofa (55%), el algarrobo (100%), el orujo de oliva (74%), los tallos de uva micronizados (96%), las hojas+bayas de Pyracantha koidzumii (82%), la piel de durian (99%), el kale (94%), la lechuga (95%), la cola de caballo (71%) y algunas ligninas de plantas aromáticas (80%) (Avantaggiato et al., 2014; Greco et al., 2019; Fernandes et al., 2019; Karmanov et al., 2020; Ramales-Valderrama et al., 2016). En consecuencia, debido a que los adsorbentes orgánicos han sido considerados como una alternativa importante para la reducción o remoción de las aflatoxinas, la presente investigación tiene como objetivo principal estudiar la eficacia de cuatro nuevos adsorbentes orgánicos, con un alto contenido en clorofilas contra la remoción de AFB1 en dos modelos in vitro y un modelo in vivo. 9 Artículos científicos Artículo 1. Removal of Aflatoxin B1 Using Alfalfa Leaves as an Adsorbent Material: A Comparison between Two In Vitro Experimental Models. Artículo 2. Efficacy of powdered alfalfa leaves to ameliorate the toxic effects of aflatoxin B1 in turkey poults. Artículo 3. Exploring the effects of an alfalfa leaf-derived adsorbent on microbial community, ileal morphology, barrier function, and immunity in turkey poults during chronic aflatoxin B1 exposure. Citation: Nava-Ramírez, M.d.J.; Vázquez-Durán, A.; Figueroa-Cárdenas, J.d.D.; Hernández-Patlán, D.; Solís-Cruz, B.; Téllez-Isaías, G.; López-Coello, C.; Méndez-Albores, A. Removal of Aflatoxin B1 Using Alfalfa Leaves as an Adsorbent Material: A Comparison between Two In Vitro Experimental Models. Toxins 2023, 15, 604. https://doi.org/10.3390/ toxins15100604 Received: 8 September 2023 Revised: 1 October 2023 Accepted: 3 October 2023 Published: 8 October 2023 Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). toxins Article Removal of Aflatoxin B1 Using Alfalfa Leaves as an Adsorbent Material: A Comparison between Two In Vitro Experimental Models María de Jesús Nava-Ramírez 1 , Alma Vázquez-Durán 1, Juan de Dios Figueroa-Cárdenas 2, Daniel Hernández-Patlán 3 , Bruno Solís-Cruz 3 , Guillermo Téllez-Isaías 4 , Carlos López-Coello 5 and Abraham Méndez-Albores 1,* 1 Unidad de Investigación Multidisciplinaria (UIM) L14 (Alimentos, Micotoxinas y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán (FES-C), Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico; mari_551293@comunidad.unam.mx (M.d.J.N.-R.); almavazquez@comunidad.unam.mx (A.V.-D.) 2 Cinvestav-IPN Unidad de Querétaro, Libramiento Norponiente No. 2000, Fraccionamiento Real de Juriquilla, Queretaro 76230, Mexico; jfigueroa@cinvestav.mx 3 UIM L5, FES-C, UNAM, Mexico City 54714, Mexico; danielpatlan@comunidad.unam.mx (D.H.-P.); bruno_sc@comunidad.unam.mx (B.S.-C.) 4 Division of Agriculture, Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; gtellez@uark.edu 5 Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Mexico City 04510, Mexico; coelloca@unam.mx * Correspondence: albores@unam.mx Abstract: An adsorbent material derived from alfalfa leaves was prepared and further characterized, and its efficacy for removing aflatoxin B1 (AFB1) was investigated. Characterization consisted of the use of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), environmen- tal scanning electron microscopy (ESEM), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), point of zero charge (pHpzc), zeta potential (ζ-potential), UV-Vis diffuse reflectance spec- troscopy, and spectral analysis. To determine the adsorption capacity against AFB1 (250 ng AFB1/mL), pH-dependent and avian intestinal in vitro models were used. The adsorbent inclusion percentage was 0.5% (w/w). In general, the pH-dependent model gave adsorption percentages of 98.2%, 99.9%, and 98.2%, evaluated at pH values of 2, 5, and 7, respectively. However, when the avian intestinal model was used, it was observed that the adsorption percentage of AFB1 significantly decreased (88.8%). Based on the characterization results, it is proposed that electrostatic, non-electrostatic, and the formation of chlorophyll-AFB1 complexes were the main mechanisms for AFB1 adsorption. From these results, it can be concluded that the adsorbent derived from alfalfa leaves could be used as an effective material for removing AFB1 in in vitro digestion models that mimic the physiological reality. Keywords: aflatoxin B1; alfalfa leaves; adsorption; in vitro digestion models; characterization Key Contribution: An unmodified adsorbent prepared from alfalfa leaves was utilized to remove the carcinogen AFB1 in two experimental models. In the pH-dependent model, it was determined that pH did not affect AFB1 uptake, yielding AFB1 adsorption values up to 98%. However, when the avian intestinal model was used, a moderate reduction in the AFB1 adsorption (88.8%) was attained. Overall, the adsorbent material showed a significant ability to remove AFB1 in in vitro digestion models that mimic the in vivo reality. 1. Introduction Mycotoxins are toxic secondary metabolites synthesized by several species of fila- mentous fungi [1]. Until now, more than 300 types of mycotoxins have been known [2], Toxins 2023, 15, 604. https://doi.org/10.3390/toxins15100604 https://www.mdpi.com/journal/toxins Toxins 2023, 15, 604 2 of 18 including aflatoxin B1 (AFB1), which is considered one of the most toxic substances because of its highly carcinogenic potential to humans and animals [3,4]. The International Agency for Research on Cancer has classified aflatoxin as a group 1 carcinogen [5]. In general, AFB1 is considered a natural contaminant of various agricultural products intended for feed preparation, and the consumption of these contaminated products causes serious health problems; therefore, there are considerable economic losses in the poultry industry due to aflatoxin consumption [6,7]. To reduce the negative effects produced by aflatoxins, various strategies have been proposed; one of the most promising and used in the feed industry is the addition of adsorbent materials [8,9]. Adsorbents are compounds that are characterized by having a large molecular weight; consequently, AFB1 present in the contaminated feed is capable of binding to these materials without dissociating throughout the gastrointestinal tract (GIT) of the bird, limiting AFB1 absorption and promoting its elimination via the feces [8,9]. The most widely used mycotoxin adsorbents are inorganics such as zeolites, aluminosilicates, hydrated calcium and sodium aluminosilicate, and clays; however, they are mostly non- biodegradable compounds, and some of them release toxic components such as heavy metals and dioxins, in addition to indiscriminately adsorbing some nutrients from the diet [8,10]. In recent years, various plant-based adsorbents have been developed, which offer an efficient, economical, and environmentally friendly alternative to remove AFB1, in addition to maintaining the nutritional value of the diet [11]. In the scientific literature, some of the agrisorbents that have been already tested to remove AFB1 are based on grape and olive (pomaces, seeds, and stems), banana peel, Formosa firethorn (leaves and berries), lignins, micronized fibers, Aloe vera, lettuce, field horsetail, kale, durian peel, blueberry pomace, artichoke wastes, and almond hulls [12,13]. Due to the integral benefits that characterize a plant-based adsorbent, more research is required to evaluate the adsorption potential against AFB1 of other materials that are destined to be consumed with the feed. Alfalfa (Medicago sativa L.) is a forage used worldwide in animal feed due to its adaptability, high protein content, and low production cost [14]. The values of crude protein, crude fiber, crude cellulose, and metabolizable energy contained in alfalfa are 17.5%, 24.1%, 20%, and 1200 kcal/kg, respectively [14,15]. Little is known about the effects of fresh forage consumption by poultry [16]. For instance, Suwignyo et al. [17] reported that fresh alfalfa supplementation in ducks affected feed intake, body weight gain, and feed conversion ratio. However, it has been reported that alfalfa meal can be used in poultry diets due to its high nutritional and pigment content, lower amount of cellulose, and higher digestibility [14]. Other authors have reported that the inclusion of powdered alfalfa in poultry diets resulted in positive effects such as a reduction in the feed conversion ratio, mortality, abdominal fat, and cholesterol content of the yolk. In addition, powdered alfalfa increased the content of the pectoral muscle and body weight as well as improved the height of the villi and depth of the duodenal crypts [18,19]. In general, there is a considerable variation in the recommended levels of inclusion of alfalfa in poultry diets. Suwignyo et al. [17], Shahsavari et al. [20], and Suwignyo et al. [18] recommended an inclusion limit of 6%, 5%, and 3% (w/w), respectively. However, alfalfa has a high nutritional value as it is a good source of proteins, minerals, vitamins, flavonoids, and isoflavones [18]. In addition, alfalfa is a natural source of pigments such as xanthophylls, chlorophylls, and carotenoids, giving poultry carcasses a desirable yellowish color [15,18]. In this research, we hypothesize that the use of alfalfa as an adsorbent material could provide certain advantages in the poultry industry, since alfalfa can have a dual-purpose role, that is, as an AFB1 adsorbent and as a feed supplement due to its large amount of nutrients and phytochemicals. To the best of our knowledge, there are no studies on the use of alfalfa leaves as an AFB1 adsorbent; therefore, the aim of the present study was to prepare and characterize an adsorbent material derived from alfalfa leaves and investigate its AFB1 adsorption capacity in two experimental in vitro models. Toxins 2023, 15, 604 3 of 18 2. Results and Discussion 2.1. Adsorption Experiments 2.1.1. The pH-Dependent Model The pH is an important factor in adsorption experiments; in most cases, pH can affect the surface charge of the functional groups of the adsorbent, as well as the ionization of the toxin [21]. For this reason, an in vitro study was carried out with three different pH values (2, 5, and 7) to evaluate the adsorption capacity of the plant-based adsorbent and the YCW (reference material), using a 0.5% (w/v) inclusion rate. Figure 1 shows that the pH variation had no influence on the removal of AFB1 by the alfalfa adsorbent; consequently, there was no statistical significance in the percentage of AFB1 adsorption at the three tested pH values. In general, the percentage of adsorption of AFB1 with the adsorbent derived from alfalfa leaves was significantly higher at the three pH values compared to the YCW. At pH values of 2, 5, and 7, the adsorbent prepared from alfalfa leaves removed 98.2 ± 0.4%, 99.9 ± 0.2%, and 98.2 ± 2.9% of the toxin, respectively. On the contrary, the YCW adsorbed 17.4 ± 3.9%, 63.5 ± 2.5%, and 65.4 ± 6.2% of the mycotoxin, respectively. Therefore, the adsorbent prepared from alfalfa leaves removed 80.2%, 36.5%, and 33.5% more AFB1 than YCW at pH 2, 5, and 7, respectively. The control (without the addition of adsorbent) showed a considerable deficiency of AFB1 uptake (<5%). ff ff tt ff ff ffi tt ffi tt ffi 0 20 40 60 80 100 NS a a ControlAlfalfa AF B 1 a ds or pt io n (% ) pH 7pH 2 pH 5 pH 7pH 2 pH 5 pH 7pH 2 pH 5 YCW b NS Figure 1. The AFB1 adsorption capacity of the adsorbent material derived from alfalfa leaves and the yeast cell wall (YCW) using a pH-dependent in vitro model. Boxes and whiskers not sharing a common superscript differ significantly (Tukey test p < 0.05). NS = not significant. In general, the charge of the AFB1 molecule depends on its acid dissociation constant (pKa = 17.79); thus, AFB1 is neither protonated nor deprotonated within the pH range of this research. Consequently, the variation in the pH of the medium did not affect the adsorption of AFB1 regardless of the surface charge of the adsorbent. These findings are in accordance with the results of other authors [11,22–25]. 2.1.2. The Avian Intestinal Model Another in vitro digestive model was also used, which aimed to simulate the con- ditions of the GIT of birds. Figure 2 shows the percentage of AFB1 adsorption. In the intestinal section, the adsorbent derived from alfalfa leaves had a significantly higher per- centage of adsorption (88.8 ± 4.1%) compared to the YCW (33.6 ± 3.1%). On the contrary, the control group (without adsorbent addition) had a marked lack of AFB1 adsorption (<3%). Various authors have performed AFB1 adsorption studies under the simulation of some GIT conditions; for example, Adunphatcharaphon et al. [26] carried out a study in a standardized digestion model, which included the phases of oral, gastric, and small intestine digestion. The authors using acid-treated durian peel showed that the adsorbent had 98.4% aflatoxin uptake. Moreover, Vázquez-Durán et al. [27] carried out an in vitro Toxins 2023, 15, 604 4 of 18 digestive model simulating the GIT conditions of birds. In the study, adsorbents prepared from kale and lettuce removed 93.6% and 83.7% of the mycotoxin, respectively. In the present investigation, a clear decrease in the adsorption capacity of AFB1 was observed with the adsorbent derived from alfalfa leaves in the avian intestinal model compared to the pH-dependent model. The adsorption of AFB1 in the avian intestinal model was mainly affected by the lack of interaction between the adsorbent and the AFB1 because the feed matrix did not allow the encounter between the adsorbent and the adsorbate, in addition to the effect exerted by the gastric enzymes. In this context, Rasheed et al. [13] compared the efficacy of blueberry pomace (BB) to remove AFB1 using a static in vitro model and a model that simulated gastric conditions. The authors reported that the in vitro model at pH 3 had better adsorption capacity compared to the model that simulated gastric con- ditions. This decrease in the BB adsorbent efficiency was attributed to the difficulty of trapping the AFB1 molecule due to the presence of pepsin in the model that simulated the gastric fluid. These results are consistent with our findings. Control Alfalfa YCW 0 20 40 60 80 100 c AFB1 adsorption (%) a b ff − − − − − − − − − − − − − Figure 2. The AFB1 adsorption capacity of the adsorbent material derived from alfalfa leaves and the yeast cell wall (YCW) using the avian intestinal model. a,b,c Mean values ± standard error. Means not sharing a common superscript differ significantly (Tukey p < 0.05). 2.2. Characterization 2.2.1. FTIR-ATR The FTIR-ATR spectra of the adsorbent material derived from alfalfa leaves and the YCW were collected in the spectral range of 4000 to 400 cm−1 (Figure 3). Table 1 compiles the primary active FTIR vibrations and their functional groups. In general, the functional groups present in the adsorbent materials were further analyzed to investigate the possible interactions between the AFB1 molecule and the functional groups [28]. The adsorbent derived from alfalfa leaves (Figure 3a) exhibited a high intensity of the hydroxyl group at 3668 and 3280 cm−1, the methyl group at 2964, 2917, and 2850 cm−1, the vibration associated with the carboxyl group at 1599 cm−1, the strong vibration of aromatic compounds at 1408 and 1242 cm−1, and the strong molecular vibration of the C–O bond at approximately 1066 cm−1 [13,27,29–31]. On the other hand, the main bands related to chlorophylls are the C–O stretching, the C–C stretching vibration, and the bands originated from the stretching of the methyl groups [32,33]. As can be seen, both adsorbent materials mainly contained four functional groups: hydroxyl at 3281 cm−1, aliphatic chains at 2923 and 2853 cm−1, aromatic compounds at 1532, 1455, 1369, and 1244 cm−1, and the carbonyl group at approximately 1025 cm−1. Furthermore, in Figure 3b, it is also possible to distinguish three characteristic regions of the YCW adsorbent, which correspond to polysaccharides (1182–842 cm−1), proteins (1573–1701 cm−1), and lipids (2797–2990 cm−1) [34]. Toxins 2023, 15, 604 5 of 18 4000 3500 3000 2500 2000 1500 1000 500 40 60 80 100 4000 3500 3000 2500 2000 1500 1000 500 40 60 80 100 (b) Tr an sm itt an ce (% ) Wavenumber (cm−1) US N M K H F E D CB A (a) Tr an sm itt an ce (% ) Wavenumber (cm−1) RTM F V Q O LJI GE D B P − β β β β → α β α α β α α β α Figure 3. Fourier transform infrared spectroscopy (FTIR) spectrum of (a) the adsorbent material derived from alfalfa leaves and (b) the yeast cell wall (YCW). Table 1. Bands assignments and functional groups in the adsorbent material derived from alfalfa leaves and the yeast cell wall (YCW). Band Wavenumber (cm−1) Functional Group Alfalfa YCW A 3668 NF O–H stretching B 3280 3281 O–H and N–H stretching vibrations (carbohydrate and protein) C 2964 NF CH2 antisymmetric stretching (lipids) D 2917 2923 –(CH2)n– antisymmetric stretching (lipids) E 2850 2853 C–CH3 symmetric stretching (lipids) F 1732 1710 C=O stretching (phospholipid esters) G NF 1629 Amide I (N–H bending and C=O stretching) H 1599 NF COOR (carboxylate group) I NF 1532 Amide II (C–N stretching and N–H bending) J NF 1455 OH bending vibration in carboxylic acids K 1408 NF –CH2 deformation (cellulose) L NF 1369 β-anomeric carbons (β-glucans) M 1242 1244 PO2 − antisymmetric stretching (DNA, RNA, phospholipid, phosphorylated protein) N 1066 NF C–O stretching (carbohydrate)jialiC–O–P stretching (phosphate ester) O NF 1025 C–O stretching (carbohydrates) P NF 887 β-anomeric carbons β (1→3)-glucans Q NF 812 Mannans (C–O–C, C–C, and C–OH stretching of pyranose ring) R NF 670 Polysaccharides (α- and β-glucans, α-mannan) S 611 NF NH2 wag (primary amines) T NF 575 Polysaccharides (α- and β-glucans, α-mannan) U 534 NF In plane and out-of-plane ring deformations V NF 508 Polysaccharides (α- and β-glucans, α-mannan) YCW = yeast cell wall. NF = not found. According to what was reported by Vázquez-Durán et al. [27] and Shar et al. [29], the functional groups present in the adsorbents (hydroxyl, methyl, carboxyl, aromatic, and carbonyl) contribute to the adsorption of AFB1. Bearing this in mind and that the alfalfa and YCW share most of the vibrations of these functional groups, the calculation of the bond indexes was carried out to know the real amount of each functional group. According to the results (Figure 4), the adsorbent prepared from alfalfa leaves contained Toxins 2023, 15, 604 6 of 18 fewer methyl groups compared to the YCW; however, in terms of aromatic groups, there was no statistical significance between the two tested materials. On the other hand, the YCW contained 1.9 and 2.5 times more hydroxyl and carbonyl groups, compared to the adsorbent derived from alfalfa leaves. It has been reported that the adsorption of AFB1 can occur due to the hydrophobicity of the adsorbents, and this hydrophobicity is conferred to its surface by the presence of hydrophobic groups such as methyl and aromatics; on the contrary, if hydrophilic groups are present (hydroxyl, carboxyl, and carbonyl), the adsorption efficiency of the adsorbents is compromised [27]. It is important to note that the spectrum of the YCW lacks carboxyl groups compared to the adsorbent derived from alfalfa leaves, which shows a prominent band at around 1599 cm−1. It is well known that functional groups deprotonate if they are at a pH higher than their pKa [35]. In this context, the pKa of the carboxyl group is ~4.5; thus, from pH values above 4.5 the carboxyl loses the hydrogen atom; consequently, this functional group is only capable of forming hydrogen bonds with the oxygen atoms of the AFB1 molecule at pH of 2 (the proventriculus environment). Furthermore, the pKa of the hydroxyl group is ~11.6, the amine group is ~40, and the amide group is ~18; therefore, the presence of these three functional groups favors the formation of hydrogen bonds with the oxygen atoms of the AFB1 molecule in the three simulated sections (crop, proventriculus, and intestine). Regarding the YCW, several authors have reported that β-d-glucans, glucomannans, and mannan-oligosaccharides are the main components responsible for the mycotoxin adsorption [36]. ffi − β ff Figure 4. Bond indexes of the main functional groups of the adsorbent materials. a,b,c Mean values ± standard error. Means not sharing a common superscript differ significantly (Tukey p < 0.05). 2.2.2. ESEM The microstructure and surface morphology of both adsorbent materials were scruti- nized by ESEM (Figure 5). In general, the adsorbent derived from alfalfa leaves showed a rough microstructure with large edges in the form of small sheets or ridges (Figure 5a,b). This set of microstructures could play an important role during the adsorption of AFB1. Shar et al. [29] suggest that functional groups and the heterogeneous microstructure on the surface of the adsorbents contribute to the uptake of mycotoxins. On the other hand, in the YCW, the microstructure of individual cells is clearly observed, with an assembly similar to a raspberry [37], ellipsoid to oval in shape with a smooth surface and some invagina- tions (Figure 5c,d). Hernández-Ramírez et al. [34], reported that the microstructure of the Toxins 2023, 15, 604 7 of 18 YCW is characterized by its oval shape and smooth surface with aggregates of different sizes. Unlike the alfalfa leaf-derived adsorbent, YCW has a notably less rough surface and a less-exposed area, particularities that suggest that YCW would have a lower AFB1 adsorption capacity. ff (a) (b) (c) (d) Figure 5. ESEM micrographs of (a,b) the adsorbent material derived from alfalfa leaves and (c,d) the yeast cell wall (YCW) at 2500× and 5000×, respectively. 2.2.3. XRF With the micro X-ray fluorescence technique on ESEM, it was possible to perform the micro-elemental analysis of both adsorbents. Figure 6 shows the XRF spectra of the adsorbent derived from alfalfa leaves and the YCW. The elemental analysis of the adsorbent prepared from alfalfa leaves showed a significant amount of carbon (49.44%), nitrogen (5.48%), oxygen (43.92%), and traces of sodium (0.22%), magnesium (0.17%), aluminum (0.27%), silicon (0.03%), phosphorus (0.04%), sulfur (0.07%), chlorine (0.07%), potassium (0.18%), and calcium (0.11%). In this context, Zavala-Franco et al. [10] reported that the main elements of the organic adsorbents they studied (banana peel, Pyracantha leaves, and Aloe powder) were carbon and oxygen, which is consistent with our results. On the other hand, in the XRF spectra of the YCW it can be seen that YCW has fewer elements; however, there was a significant amount of carbon (45.32%), oxygen (38.02%), potassium (7.87%), and traces of magnesium (1.32%), aluminum (0.50%), silicon (1.30%), phosphorus (0.49%), sulfur (0.81%), and calcium (1.38%). In this regard, Chen et al. [38] showed that the scanning electron micrograph of the Cinnamomum camphora leaf powder (CLP) adsorbent was modified in terms of the change in intensity of some peaks after adsorption; these changes in the intensity of the XRF peaks suggested that certain elements present in the adsorbent were capable of effectively removing the pollutant [39]. Thus, the adsorbent Toxins 2023, 15, 604 8 of 18 material derived from alfalfa leaves would have a better AFB1 adsorption capacity due to the large amount of carbon and oxygen (up to 93.36%). ff tt (a) (b) ff tt ff ff θ θ ff ff θ θ β − − β 1 2 3 4 Na Si Cl SP Ca Mg K Al O N C ou nt s Energy (keV) C 1 2 3 4 C ou nt s Energy (keV) C O Mg Al Si P S K Ca Figure 6. Micro X-ray fluorescence spectra of (a) the adsorbent derived from alfalfa leaves and (b) the yeast cell wall (YCW). 2.2.4. XRD Figure 7 shows the X-ray diffraction pattern of the adsorbent material derived from alfalfa leaves and the YCW. In the diffractogram of the adsorbent prepared from al- falfa leaves (Figure 7a), a diffraction peak with a considerable intensity was observed at 2θ = 25.04◦. Wada et al. [40] associates this peak with the presence of crystalline cellulose. Two other peaks of minor intensity at 2θ = 13.72◦ and 17.02◦ appeared, which were also related to the presence of the cellulose type I crystalline structure [41] and semicrystalline starch [10]. On the other hand, the diffractogram of the YCW (Figure 7b) showed three diffraction peaks, the most intense at 24.88◦ 2θ and two less intense at 13.23◦ and 18.83◦ 2θ. These peaks correspond to the polymeric crystalline structure of β-glucans [42,43]. The XRD results agree with what was found in the corresponding FTIR spectra of the adsorbent materials. For instance, in the FTIR spectrum of the adsorbent derived from alfalfa leaves, the band around 1408 cm−1 was associated with the presence of cellulose, and in the spectrum of the YCW, the bands located at 887, 812, 670, 575, and 508 cm−1 were associated with the presence of β-glucans. (a) (b) ff tt ζ tt ff ff ζ ζ ζ ζ ζ ζ − − − ζ tt ζ − 10 20 30 40 50 60 70 0 100 200 300 400 500 600 17.02° 13.72° In te ns ity (A .U ) 2θ (degree) 25.04° 10 20 30 40 50 60 70 0 100 200 300 400 500 600 18.83°13.23° In te ns ity (A .U ) 2θ (degree) 24.88° Figure 7. X-ray diffraction patterns of (a) the adsorbent derived from alfalfa leaves and (b) the yeast cell wall (YCW). Toxins 2023, 15, 604 9 of 18 2.2.5. pHpzc and ζ-Potential The pHpzc is a technique to characterize the surface charge of an adsorbent material. It is well known that the adsorption capacity depends on the variation of the pH and the degree to which the adsorbent and the adsorbate are protonated or deprotonated [44]. Figure 8a shows the pHpzc of the adsorbent materials. The pHpzc values of the adsorbent prepared from alfalfa leaves and YCW were 6.51 and 2.45, respectively. Rosas-Castor et al. [21] reported that the pHpzc of the alfalfa adsorbent was 6.9, and Hernández-Ramírez et al. [34] reported that the pHpzc of the YCW was 3.09. According to these results, the adsorbent derived from alfalfa leaves would have a better adsorption capacity at pH 2 and 5, that is, in the first two compartments of the GIT of birds, since the surface charge of the adsorbent at these pH values remained positively charged, which favors the interaction with the oxygen atoms of the AFB1 molecule. However, in the pH-dependent in vitro experiment, there was no statistically significant difference in the adsorption of AFB1 at the three pH values evaluated; thus, it can be hypothesized that at pH 7 electrostatic interaction is not the main adsorption mechanism. These results agree with Adunphatcharaphon et al. [26], who evaluated the effect of pH on AFB1 adsorption using durian peel. (a) (b) ff ff ff ff ffi tt 2 4 6 8 10 12 -4 -3 -2 -1 0 1 2 3 4 5 6 7 Δ pH pH Alfalfa Yeast cell wall 2 4 6 8 10 12 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 Ze ta P ot en tia l ( m V) pH Alfalfa Yeast cell wall Figure 8. Point of zero charge (a) and Zeta potential (b) of the adsorbent materials. On the other hand, ζ-potential is a technique that allows knowing the electric field orig- inated by the surface charges of a certain material [45,46]. In this research, ζ-potential was determined in a pH range from 2 to 11 (Figure 8b). In general, the ζ-potential of the two tested adsorbents was more negative as the pH increased. Electronegative values of ζ-potential indicate a large accumulation of positive charges near the particle surface. On the contrary, electropositive ζ-potential values allow the accumulation of negative charges near the particle surface [46]. Thus, the ζ-potential of the YCW was negative in the entire pH scale that involves the GIT: pH 2 (−0.81 mV), pH 5 (−5.77 mV), and pH 7 (−5.95 mV). On the contrary, the ζ-potential of the adsorbent derived from alfalfa leaves was positive at pH 2 (+2.63 mV), and it was significantly more negative than the YCW in two of the three GIT compartments (pH 5 and pH 7), attaining ζ-potential values of −14.55 mV and −14.91 mV, respectively. Therefore, it is proposed that there is a significant contribution to the AFB1 adsorption when using the alfalfa leaf-derived adsorbent compared to the reference material at acidic pH values (pH 2), due to electrostatic interactions between the adsorbent and the mycotoxin [47]. 2.2.6. Determination of Chlorophylls and Carotenoids Spectral Reflectance Measurements To evaluate the presence of pigments in the adsorbent materials, the UV-Vis diffuse reflectance spectroscopy technique was utilized [12]. Figure 9 shows the diffuse reflectance spectra of the adsorbent derived from alfalfa leaves and the reference material (YCW). The Toxins 2023, 15, 604 10 of 18 adsorbent prepared from alfalfa leaves showed two representative bands (678 nm and 650 nm), which correspond to Chl a and Chl b, respectively. Moreover, the absorbance of anthocyanins is associated with the maxima at 550 nm [27]. Finally, in the range from 430 to 530 nm, the presence of carotenoids was observed [48]. These results agree with Merzlyak et al. [49], who studied the diffuse reflectance spectra of five different apple peels. The authors reported the presence of chlorophylls a and b, carotenoids, and anthocyanins. On the contrary, in the YCW, no representative bands were found (Figure 9). Nava- Ramirez et al. [31] conducted a study to test the efficacy of three adsorbents with a high chlorophyll content (lettuce, pyracantha, and horsetail) for AFB1 adsorption; the researchers demonstrated that the more chlorophylls an adsorbent has, the greater the adsorption capacity. The authors concluded that chlorophylls were able to form strong non-covalent complexes with the AFB1 molecule. In this research, the adsorbent derived from alfalfa leaves contained large amounts of chlorophylls; therefore, it had higher possibilities to form chlorophyll–AFB1 complexes. This ability to form chlorophyll–AFB1 complexes could explain the great adsorption potential of the adsorbent derived from alfalfa leaves. ff 400 500 600 700 800 0.0 0.2 0.4 0.6 0.8 1.0 1.2 C ar ot en oi ds A nt ho cy an in s C hl b Ab so rb an ce (A .U .) Wavelength (nm) Alfalfa Yeast cell wall C hl a Figure 9. Diffuse reflectance UV-Vis spectra of the adsorbent materials. Quantitative Determination of Chlorophylls and Carotenoids To perform the quantification of pigments in both adsorbent materials, Chl a, Chl b, and total carotenoids were extracted with 96% ethanol and subsequently the absorbance of each pigment was determined spectrophotometrically. The spectrum of the adsorbent derived from alfalfa leaves (Figure S1) shows a narrow maximum band in the blue region (near 432 nm) and another band in the red region (near 665 nm). These bands correspond to the presence of Chl a [27,33] [27,33]. Carotenoids have a broad absorption with three shoulders within the blue region between 400 and 500 nm [50]. To know the real content of the main photosynthetic pigments in the alfalfa adsorbent, the specific absorption coefficients of Lichtenthaler and Wellburn [51] were used (Table 2). It was observed that the total chlorophyll content of the adsorbent prepared from alfalfa leaves (2759.1 ± 180.2 µg/g dry weight) was significantly higher than the total carotenoid content (16.3 ± 94.5 µg/g dry weight). The chlorophyll content in alfalfa agrees with that reported by Dziwulska-Hunek et al. [52]. Figure S1 also shows the UV-Vis spectrum of the YCW ethanolic extract; it is clearly observed that this adsorbent does not contain pigments. Toxins 2023, 15, 604 11 of 18 Table 2. Chlorophylls and total carotenoid contents of the adsorbent materials. Photosynthetic Pigment Content (µg/g Dry Weight) Alfalfa YCW Chlorophyll a 1251.2.1 ± 84.4 ND Chlorophyll b 1508.0 ± 132.8 ND Total chlorophyll (a + b) 2759.1 ± 180.2 ND Total carotenoid (x + c) 16.3 ± 94.5 ND x + c = xantophyll + carotenes. ND = not detected. Furthermore, Figure 10 shows the fluorescence spectrum of the chlorophylls of the adsorbent materials. The spectrum of the adsorbent prepared from alfalfa leaves shows two fluorescence maximums, one at 690 nm and the other at 735 nm, which correspond to the red and far-red chlorophyll fluorescence, respectively [27,53]. The fluorescence ratio of these two bands F690/F735 was 8.3. It has been reported that this ratio is a useful tool to detect variations in chlorophyll content in plants and this ratio decreases with increasing the chlorophyll content when re-absorption processes are excluded [27]. Buschmann [54] reported that the F690/F735 ratio of a diluted leaf extract was 5.7 and this ratio decreased to 0.37 with increases in the chlorophyll concentration (from 3 to 159 µg/mL). In this research, in the fluorescence spectrum of the YCW ethanolic extract, it is clearly observed that this adsorbent material does not contain any pigments. π π tt tt π π ff ffi 600 650 700 750 800 0 100 200 300 400 500 600 700 800 Fl uo re sc en ce in te ns ity (A .U .) Wavelength (nm) Alfalfa YCW 735 nm 690 nm Figure 10. Chlorophyll fluorescence spectra of the adsorbent materials. 3. The Proposed Adsorption Mechanism Adsorbent materials are capable of removing AFB1 through a combination of chemi- cal (redox reactions, complex formation, covalent bonds, and proton displacement) and physical (hydrophobic interactions, π–π stacking, dipole–dipole interactions, hydrogen bonding, and Van der Waals forces) mechanisms [55]. These mechanisms can be divided into electrostatic (ionic attractions) and non-electrostatic (dipole–dipole, hydrogen bond- ing, and hydrophobic) interactions [29]. Electrostatic interactions depend on the pH of the solution; therefore, in the present study, ionic attractions play a minor role during AFB1 adsorption. On the other hand, due to the significant presence of hydroxyl, amino, and amide groups, the adsorbent material derived from alfalfa leaves would construct numerous hydrogen bonding networks with the oxygen atoms of the ether, carbonyl, and methoxy groups of the AFB1 molecule. Consequently, we propose that this interaction is one of the main mechanisms for AFB1 adsorption. In addition, the considerable pres- ence of hydrophobic groups such as methyl and aromatics in the adsorbent derived from alfalfa leaves was favorable for the formation of hydrophobic, dipole–dipole, and π–π Toxins 2023, 15, 604 12 of 18 stacking interactions [13,27]. Finally, it has been previously described—by our research group—that chlorophyll, which is a highly hydrophobic molecule, can form strong non- covalent complexes with the AFB1 molecule, regardless of pH [31]. Therefore, the for- mation of these complexes also contributed to the AFB1 adsorption. The set of these electrostatic and non-electrostatic interactions makes the adsorbent derived from alfalfa leaves an effective material for the adsorption of AFB1 from the contaminated feed destined for poultry. 4. Conclusions Taken together, these findings suggest that the use of an adsorbent material derived from alfalfa leaves is a viable alternative for removing AFB1 in in vitro digestion models that closely mimic the complex physiological conditions of birds. Both in vitro trials demonstrated that the plant-based adsorbent was efficient for the adsorption of AFB1 due to the combination of electrostatic and non-electrostatic interactions. Therefore, this material can be used at a low inclusion level (0.5% w/w), to successfully remove the AFB1 present in poultry feed. However, since in vitro models do not perfectly mimic the GIT conditions, in vivo studies are also required to help determine the efficacy of the alfalfa adsorbent in reducing the toxic effects of AFB1. Our group of researchers is already conducting these relevant studies. The results will be published elsewhere. 5. Materials and Methods 5.1. Chemicals and Reagents The AFB1 standard (CAS number: 1162-65-8), dimethyl sulfoxide (≥99.9% purity, CAS number 67-68-5), HPLC grade methanol (CAS number 67-56-1), 96% ethanol (CAS number 64-17-5), sodium hydroxide (NaOH; ≥97% purity; CAS number 1310-73-2), hydrochloric acid (HCl; ~37% purity; CAS number 7647-01-0), and sodium hypochlorite solution (CAS number 7681-52-9) were acquired from Merck KGaA (Darmstadt, Germany). 5.2. Adsorbent Materials The in vitro experiments were carried out with alfalfa leaves (Medicago sativa L.), collected in the Botanic Garden of the Superior Studies Faculty at Cuautitlan (National Autonomous University of Mexico). A commercial premium yeast cell wall (YCW) from Saccharomyces cerevisiae (SafMannan, Phileo Lesaffre Animal Care, Lesaffre Iberica S.A., Valladolid, Spain) was used as a reference material. Briefly, alfalfa leaves were separated manually and thoroughly washed with distilled water to remove surface-adhered dirt particles. Subsequently, the fresh leaves were dried for 24 h at a constant temperature (40 ◦C) in an oven (Binder model RE-115, Tuttlingen, Germany). The dried leaves were ground in a C-11-1 type electric plate mill (Glen Mills Inc., Clifton, NJ, USA). Since adsorp- tion is affected by varying the particle size, the ground material was sieved to obtain a size within the optimal range for AFB1 adsorption, attaining an average size of <250 µm (60 mesh sieve) as recommended by Zavala-Franco et al. [10]. Finally, the freshly prepared material was stored in a vacuum-sealed plastic container and kept in a desiccator until use. In the in vitro experiments, an inclusion level of 0.5% (w/w) was utilized, which is in accordance with the safe limit that the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) considers for a mycotoxin binder montmorillonite [11]. 5.3. In Vitro Adsorption Studies 5.3.1. Preparation of the Aflatoxin B1 (AFB1) Solution and the pH-Dependent Model A stock solution of AFB1 (100 µg/mL, equivalent to 0.32 mM) was prepared by dissolving the toxin in dimethyl sulfoxide (DMSO). The stock solution was stored in the dark at 4 ◦C until further use. Then, the stock solution was diluted in deionized water adjusted at three pH values (2, 5, and 7) until reaching a final concentration of 250 ng AFB1/mL. Toxins 2023, 15, 604 13 of 18 To assess the efficacy of the adsorbent in removing AFB1, a single in vitro model was considered. Samples of 25 mg (0.5% w/w) of the adsorbent materials were accurately weighed and dispersed in glass vials with 5 mL of the solutions containing the AFB1. The flasks were incubated in an agitated water bath (Bellco Glass Inc. Vineland, NJ, USA) and carefully homogenized at 120 rpm at a temperature of 40 ◦C for 2 h. Subsequently, the adsorbent was separated by centrifugation at 7000× g (5810 R centrifuge, Eppendorf, Hamburg, Germany) for 7 min, and the supernatant was filtered through a PTFE membrane syringe filter (pore size 0.22 µm) and subjected to ultra-performance liquid chromatography with fluorescence detection (UPLC-FLR). The pH was determined using a glass electrode (Conductronic PC-45, Puebla, Mexico). All determinations were performed in quintuplicate. Control samples (without the addition of adsorbents) were also included in the experiment to confirm the stability of the AFB1 molecule in the different pH media under the same incubation conditions. 5.3.2. Preparation of the AFB1-Contaminated Diet and the Avian Intestinal Model A commercial maize-soybean meal poultry diet (Nutricion Tecnica Animal SA de CV, Queretaro, Mexico) containing 26% protein (12.64 MJ/kg metabolizable energy) was contaminated at a content of 250 µg AFB1/kg. Levels of AFB1, total fumonisins, and deoxynivalenol were determined in the commercial feed using VICAM’s fluorometric tests based on monoclonal antibody-based affinity columns (VICAM Science Technology, Watertown, MA, USA). To check the homogeneity of the aflatoxin-contaminated feed, five random samples were taken, and the presence of AFB1 was confirmed using the 991.31 AOAC procedure [56]. An avian intestinal model was used to evaluate the adsorption capacity of the adsor- bent materials using the procedure reported by Hernandez-Patlán et al. [57] with minimal modifications. The test was carried out with one reference material (YCW) and one treat- ment (the adsorbent prepared from alfalfa leaves). The experiment was conducted at 40 ◦C to emulate the poultry body temperature with constant agitation (19 rpm). In the first stage, 5 g of the AFB1-contaminated feed and 0.5% (w/w) of the adsorbent material was mixed and poured into polypropylene centrifuge tubes (50 mL capacity). To emulate the crop environment, 10 mL of 0.03 M HCl were added, and tubes were incubated for 30 min. The pH value was around 5. After this period, 2.5 mL of 1.5 M HCl and 3000 U of pepsin (Merck KGaA, Darmstadt, Germany) per gram of feed was added to each tube to emu- late the proventriculus environment, reaching a pH of 2. Tubes were incubated again for 45 min. Finally, to emulate the intestinal section, 6.84 mg of 8× pancreatin (Merck KGaA, Darmstadt, Germany) in 6.5 mL of 1.0 M NaHCO3 was added to the tubes and incubated for another 120 min. The entire avian intestinal model simulation took 195 min. At the end of the assay, the tubes were centrifuged at 7000× g for 10 min, and the residual AFB1 concentration remaining in the supernatant was quantified by the UPLC-FLR technique. All determinations were also performed in quintuplicate. Control samples (without the addition of adsorbent materials) were also included to know the real concentration of AFB1 per tube under the simulated conditions of the gastrointestinal tract of birds. The percentage of AFB1 adsorbed was computed using the following mathematical expression: Adsorption (%) = (Ci − Cs) Ci × 100 (1) where Ci is the concentration of AFB1 in the control samples (ng/mL), and Cs is the concentration of AFB1 in the supernatant (ng/mL). 5.3.3. Analysis of Aflatoxin B1 (AFB1) To quantify the AFB1 concentration in the supernatants, immunoaffinity columns based on monoclonal antibodies (Afla-B, VICAM Science Technology, Watertown, MA, USA) were used as a clean-up protocol. Subsequently, the purified toxin was analyzed Toxins 2023, 15, 604 14 of 18 by UPLC-FLR using a Waters ACQUITY H-class System. Briefly, the methanolic extracts collected from the immunoaffinity columns (1 µL) were injected and eluted with a mobile phase of water:methanol:acetonitrile (64:18:18) at a flow rate of 700 µL/min. The AFB1 was detected using excitation and emission wavelengths of 365 nm and 435 nm, respectively. The AFB1 concentration was estimated using a reference standard (AFB1, Merck KGaA, Darmstadt, Germany) with a calibration curve. The detection limit of AFB1 was found to be 0.002 µg/L. 5.4. Characterization 5.4.1. Fourier Transform Infrared Spectroscopy with Attenuated Total Reflection (FTIR-ATR) Infrared spectra were collected using a Frontier SP8000 Fourier transform infrared spectrophotometer (Perkin Elmer, Waltham, MA, USA) equipped with an attenuated total reflection (ATR) attachment (DuraSamplIR II, Smiths Detection, Warrington, UK). The adsorbents were scanned in the 4000–400 cm−1 region. The bond indexes (BIs) of the principal functional groups were calculated using the following mathematical expressions: BIOH = BA3281 ∑ BA (2) BI(CH2)n = BA2916 + BA2850 ∑ BA (3) BICOOR = BA1613 ∑ BA (4) BIC=C = BA1406 ∑ BA (5) BIC−O = BA1031 ∑ BA (6) where BAx is the band area around the corresponding wavenumber (cm−1); and ΣBA is the total area of all bands in the corresponding FTIR spectrum. 5.4.2. Environmental Scanning Electron Microscopy (ESEM) The microstructure and morphology of the adsorbents were characterized by environ- mental scanning electron microscopy (Philips-XL30 ESEM, Eindhoven, The Netherlands) with an accelerating voltage of 3, 5, and 20 kV. Samples were coated with a thin layer of gold using a sputter coater (Denton Vacuum Inc., Desk V HP, Moorestown, NJ, USA) operated at 7 mA for 3 min. Microscopy analysis (2500× and 5000×) was performed in a secondary electron imaging (SEI) mode. 5.4.3. X-ray Fluorescence Spectroscopy (XRF) The multi-elemental analysis was conducted in triplicate, using a high-performance XTrace microspot X-ray source, and the photon-induced micro-X-ray fluorescence spectrum was measured with the XFlash® 6/10 silicon drift detector (Bruker Nano GmbH, Berlin, Germany). The technique was carried out using an environmental scanning electron microscope equipped with X-ray fluorescence spectroscopy (Phillips XL30/40 XRF-ESEM, Eindhoven, The Netherlands). 5.4.4. X-ray Diffraction (XRD) The X-ray diffraction measurements were conducted on a 2100-Rigaku diffractometer (Rigaku Co., Tokyo, Japan). The diffraction data were recorded for 2θ between 5◦ and 70◦ with a resolution of 0.02◦. Toxins 2023, 15, 604 15 of 18 5.4.5. Point of Zero Charge (pHpzc) and Zeta Potential (ζ-Potential) The point of zero charge (pHpzc) was determined following the procedure described by Zavala-Franco et al. [10]. In brief, samples of each of the adsorbent materials (25 mg) were weighed in five flasks containing deionized water adjusted at different pH values (pHi=2, 5, 7, 9, and 11). Subsequently, samples were shaken at 200 rpm at room temperature for 195 min. Thereafter, the final pH (pHf) of the supernatant was recorded using a glass electrode. A plot of pHpzc was constructed as follows: ∆pH (pHi–pHf) against pHi. On the other hand, Zeta potential (ζ-potential) measurements were performed using the ZetaSizer Pro (Malvern Instruments, Worcestershire, UK) following the recommendations of Ramales- Valderrama [11]. All determinations were conducted at room temperature in quintuplicate. 5.4.6. Chlorophyll and Carotenoid Quantification A Lambda 365 UV-Vis-diffuse reflectance spectrophotometer (Perkin Elmer, Waltham, MA, USA) equipped with a 100-mm integrating sphere was used. The optical absorp- tion spectra of powders were collected in the range of 400–800 nm. The pigments such as chlorophyll a (Chl a), chlorophyll b (Chl b), and total carotenoids (xanthophylls + carotenes) were extracted with 96% ethanol and characterized using a Cary 8454 UV- Vis Diode Array System spectrophotometer (Agilent Technologies, Santa Clara, CA, USA). The absorption coefficients reported by Lichtenthaler and Wellburn [51] were utilized for pigment quantification. 5.5. Experimental Design and Statistical Analysis The experiments were conducted as a completely randomized design, and data were analyzed by means of a one-way analysis of variance (ANOVA). The Tukey test was used to compare the means from the ANOVA. The threshold for significance level was set at α = 0.05. The OriginPro v8 software was used. Supplementary Materials: The following supporting information can be downloaded at: https: //www.mdpi.com/article/10.3390/toxins15100604/s1, Figure S1: UV-Vis spectrum of the main pigments contained in the adsorbent materials. Author Contributions: Conceptualization, A.M.-A. and C.L.-C.; methodology, M.d.J.N.-R., D.H.- P. and B.S.-C.; formal analysis, J.d.D.F.-C., A.V.-D. and M.d.J.N.-R.; resources, A.M.-A. and G.T-I.; data curation, M.d.J.N.-R., D.H.-P. and B.S.-C.; writing—original draft preparation, M.d.J.N.-R. and A.M.-A.; writing—review and editing, A.M.-A., C.L.-C. and G.T.-I.; supervision, A.M.-A., A.V.-D., C.L.-C., J.d.D.F.-C. and G.T-I.; project administration, A.M.-A. and A.V.-D. All authors have read and agreed to the published version of the manuscript. Funding: This work was supported by UNAM-PAPIIT grant number IA101523 and by funds pro- vided by USDA-NIFA, Sustainable Agriculture Systems, grant number 2019-69012-29905. Institutional Review Board Statement: Not applicable. Informed Consent Statement: Not applicable. Data Availability Statement: The datasets used and or analyzed during the current study are available from the corresponding author upon reasonable request. Acknowledgments: The authors wish to thank the expert technical assistance of José Juan Vélez Med- ina, José Eleazar Urbina Álvarez, and Martín Adelaido Hernández Landaverde from CINVESTAV- IPN Unidad Queretaro in ESEM, EDXRS, and XRD characterization. María de Jesus Nava Ramírez acknowledges CONAHCYT for the scholarship CVU. 866355. Conflicts of Interest: The authors declare no conflict of interest. Toxins 2023, 15, 604 16 of 18 References 1. Jaynes, W.F.; Zartman, R.E.; Hudnall, W.H. Aflatoxin B1 adsorption by clays from water and corn meal. Appl. Clay Sci. 2007, 36, 197–205. [CrossRef] 2. Zhang, M.; Guo, X. Emerging strategies in fluorescent aptasensor toward food hazard aflatoxins detection. Trends Food Sci. Technol. 2022, 129, 621–633. [CrossRef] 3. Zeng, L.; Wang, S.; Peng, X.; Geng, J.; Chen, C.; Li, M. Al–Fe PILC preparation, characterization and its potential adsorption capacity for aflatoxin B1. Appl. Clay Sci. 2013, 83–84, 231–237. [CrossRef] 4. Meneely, J.P.; Kolawole, O.; Haughey, S.A.; Miller, S.J.; Krska, R.; Elliott, C.T. The Challenge of Global Aflatoxins Legislation with a Focus on Peanuts and Peanut Products: A Systematic Review. Expo. Health 2022, 15, 467–487. [CrossRef] 5. IARC. Some Naturally Occurring Substances: Food Items and Constituents, Heterocyclic Aromatic Amines and Mycotox- ins. Available online: http://bases.bireme.br/cgi-bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google&base= WHOLIS&lang=p&nextAction=lnk&exprSearch=9283212568&indexSearch=ID (accessed on 7 September 2023). 6. Van Rensburg, C.J.; Van Rensburg, C.E.J.; Van Ryssen, J.B.J.; Casey, N.H.; Rottinghaus, G.E. In Vitro and In Vivo Assessment of Humic Acid as an Aflatoxin Binder in Broiler Chickens. Poult. Sci. 2006, 85, 1576–1583. [CrossRef] 7. Pérez-Fernández, B.; de la Escosura-Muñiz, A. Electrochemical biosensors based on nanomaterials for aflatoxins detection: A review (2015–2021). Anal. Chim. Acta 2022, 1212, 339658. [CrossRef] [PubMed] 8. Aguilar-Zuniga, K.; Laurie, V.F.; Moore-Carrasco, R.; Ortiz-Villeda, B.; Carrasco-Sánchez, V. Agro-industrial Waste Products as Mycotoxin Biosorbents: A Review of In Vitro and In Vivo Studies. Food Rev. Int. 2021, 39, 2914–2930. [CrossRef] 9. Pérez-Gómez, E.; García-Rosales, G.; Longoria-Gándara, L.; Gómez-Vilchis, J. Obtention of biochar-Ca nanoparticles using Citrus tangerina: A morphological, surface and study remotion of Aflatoxin AFB1. J. Hazard. Mater. 2021, 424, 127339. [CrossRef] 10. Zavala-Franco, A.; Hernández-Patlán, D.; Solís-Cruz, B.; López-Arellano, R.; Tellez-Isaias, G.; Vázquez-Durán, A.; Méndez- Albores, A. Assessing the Aflatoxin B1 Adsorption Capacity between Biosorbents Using an In Vitro Multicompartmental Model Simulating the Dynamic Conditions in the Gastrointestinal Tract of Poultry. Toxins 2018, 10, 484. [CrossRef] 11. Ramales-Valderrama, R.A.; Vázquez-Durán, A.; Méndez-Albores, A. Biosorption of B-aflatoxins Using Biomasses Obtained from Formosa Firethorn [Pyracantha koidzumii (Hayata) Rehder]. Toxins 2016, 8, 218. [CrossRef] 12. Vázquez-Durán, A.; Nava-Ramírez, M.d.J.; Téllez-Isaías, G.; Méndez-Albores, A. Removal of Aflatoxins Using Agro-Waste-Based Materials and Current Characterization Techniques Used for Biosorption Assessment. Front. Vet. Sci. 2022, 9, 897302. [CrossRef] 13. Rasheed, U.; Ain, Q.U.; Yaseen, M.; Santra, S.; Yao, X.; Liu, B. Assessing the Aflatoxins Mitigation Efficacy of Blueberry Pomace Biosorbent in Buffer, Gastrointestinal Fluids and Model Wine. Toxins 2020, 12, 466. [CrossRef] [PubMed] 14. Yıldız, A.; Şentürk, E.; Olgun, O. Use of alfalfa meal in layer diets—A review. Worlds Poult. Sci. J. 2020, 76, 134–143. [CrossRef] 15. Samur, S.I.N.; Suwignyo, B.; Suryanto, E. The effect of Alfalfa (Medicago sativa L.) on different basal feeds for hybrid duck performance. E3S Web Conf. 2020, 200, 03013. [CrossRef] 16. Koçer, B.; Bozkurt, M.; Ege, G.; Tüzün, A.E.; Konak, R.; Olgun, O. Effects of a meal feeding regimen and the availability of fresh alfalfa on growth performance and meat and bone quality of broiler genotypes. Br. Poult. Sci. 2018, 59, 318–329. [CrossRef] [PubMed] 17. Suwignyo, B.; Sasongko, H. The effect of fresh and hay alfalfa (Medicago sativa L.) supplementation on hybrid duck performance. IOP Conf. Ser. Earth Environ. Sci. 2019, 387, 012085. [CrossRef] 18. Suwignyo, B.; Rini, E.A.; Fadli, M.K.; Ariyadi, B. Effects of alfalfa (Medicago sativa L.) supplementation in the diet on the growth, small intestinal histomorphology, and digestibility of hybrid ducks. Vet. World 2021, 14, 2719. [CrossRef] [PubMed] 19. Pliego, A.B.; Tavakoli, M.; Khusro, A.; Seidavi, A.; Elghandour, M.M.M.Y.; Salem, A.Z.M.; Márquez-Molina, O.; Rivas-Caceres, R.R. Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: A review. Anim. Biotechnol. 2020, 33, 369–391. [CrossRef] 20. Shahsavari, K. Influences of different sources of natural pigments on the color and quality of eggs from hens fed a wheat-based diet. Iran. J. Appl. Anim. Sci. 2015, 5, 167–172. 21. Rosas-Castor, J.M.; Garza-González, M.T.; García-Reyes, R.B.; Soto-Regalado, E.; Cerino-Córdova, F.J.; García-González, A.; Loredo-Medrano, J.A. Methylene blue biosorption by pericarp of corn, alfalfa, and agave bagasse wastes. Environ. Technol. 2013, 35, 1077–1090. [CrossRef] 22. Greco, D.; D’Ascanio, V.; Santovito, E.; Logrieco, A.F.; Avantaggiato, G. Comparative efficacy of agricultural by-products in sequestering mycotoxins. J. Sci. Food Agric. 2018, 99, 1623–1634. [CrossRef] 23. Avantaggiato, G.; Greco, D.; Damascelli, A.; Solfrizzo, M.; Visconti, A. Assessment of Multi-mycotoxin Adsorption Efficacy of Grape Pomace. J. Agric. Food Chem. 2013, 62, 497–507. [CrossRef] [PubMed] 24. Fernandes, J.-M.; Calado, T.; Guimarães, A.; Rodrigues, M.A.M.; Abrunhosa, L. In vitro adsorption of aflatoxin B1, ochratoxin A, and zearalenone by micronized grape stems and olive pomace in buffer solutions. Mycotoxin Res. 2019, 35, 243–252. [CrossRef] [PubMed] 25. Perali, C.; Magnoli, A.P.; Aronovich, M.; Rosa, C.A.D.R.; Cavaglieri, L.R. Lithothamnium calcareum (Pallas) Areschoug seaweed adsorbs aflatoxin B1 in vitro and improves broiler chicken’s performance. Mycotoxin Res. 2020, 36, 371–379. [CrossRef] [PubMed] 26. Adunphatcharaphon, S.; Petchkongkaew, A.; Greco, D.; D’ascanio, V.; Visessanguan, W.; Avantaggiato, G. The Effectiveness of Durian Peel as a Multi-Mycotoxin Adsorbent. Toxins 2020, 12, 108. [CrossRef] [PubMed] Toxins 2023, 15, 604 17 of 18 27. Vázquez-Durán, A.; Nava-Ramírez, M.d.J.; Hernández-Patlán, D.; Solís-Cruz, B.; Hernández-Gómez, V.; Téllez-Isaías, G.; Méndez-Albores, A. Potential of Kale and Lettuce Residues as Natural Adsorbents of the Carcinogen Aflatoxin B1 in a Dynamic Gastrointestinal Tract-Simulated Model. Toxins 2021, 13, 771. [CrossRef] 28. Maguey-González, J.A.; Nava-Ramírez, M.d.J.; Gómez-Rosales, S.; de Lourdes Angeles, M.; Solís-Cruz, B.; Hernández-Patlán, D.; Merino-Guzmán, R.; Hernández-Velasco, X.; Figueroa-Cárdenas, J.d.D.; Vázquez-Durán, A.; et al. Humic Acids Preparation, Characterization, and Their Potential Adsorption Capacity for Aflatoxin B1 in an In Vitro Poultry Digestive Model. Toxins 2023, 15, 83. [CrossRef] 29. Shar, Z.H.; Fletcher, M.T.; Sumbal, G.A.; Sherazi, S.T.H.; Giles, C.; Bhanger, M.I.; Nizamani, S.M. Banana peel: An effective biosorbent for aflatoxins. Food Addit. Contam. Part A 2016, 33, 849–860. [CrossRef] 30. Karmanov, A.P.; Kanarsky, A.V.; Kanarskaya, Z.A.; Kocheva, L.S.; Semenov, E.I.; Bogdanovich, N.I.; Belyy, V.A. In vitro adsorption- desorption of aflatoxin B1 on Pepper’s lignins isolated from grassy plants. Int. J. Biol. Macromol. 2019, 144, 111–117. [CrossRef] 31. De Jesus Nava-Ramírez, M.; Salazar, A.M.; Sordo, M.; López-Coello, C.; Téllez-Isaías, G.; Méndez-Albores, A.; Vázquez-Durán, A. Ability of low contents of biosorbents to bind the food carcinogen aflatoxin B1 in vitro. Food Chem. 2021, 345, 128863. [CrossRef] 32. Phongamwong, T.; Barrabés, N.; Donphai, W.; Witoon, T.; Rupprechter, G.; Chareonpanich, M. Chlorophyll-modified Au25(SR)18- functionalized TiO2 for photocatalytic degradation of rhodamine B. Appl. Catal. B Environ. 2023, 325, 122336. [CrossRef] 33. Baraka, A.; Dickson, S.; Gobara, M.; El-Sayyad, G.S.; Zorainy, M.; Awaad, M.I.; Hatem, H.; Kotb, M.M.; Tawfic, A.F. Synthesis of silver nanoparticles using natural pigments extracted from Alfalfa leaves and its use for antimicrobial activity. Chem. Pap. 2017, 71, 2271–2281. [CrossRef] 34. Hernández-Ramírez, J.O.; Merino-Guzmán, R.; Téllez-Isaías, G.; Vázquez-Durán, A.; Méndez-Albores, A. Mitigation of AFB1- Related Toxic Damage to the Intestinal Epithelium in Broiler Chickens Consumed a Yeast Cell Wall Fraction. Front. Vet. Sci. 2021, 8, 677965. [CrossRef] 35. Nogueira, W.V.; Moyano, F.J.; García, M.J.A.; Tesser, M.B.; Buffon, J.G. Preliminary assessment of bioaccessibility of aflatoxin B1 in fish. Aquac. Int. 2022, 30, 1315–1325. [CrossRef] 36. Pfliegler, W.P.; Pusztahelyi, T.; Pócsi, I. Mycotoxins—Prevention and decontamination by yeasts. J. Basic Microbiol. 2015, 55, 805–818. [CrossRef] 37. Song, R.; Bai, B.; Jing, D. Hydrothermal synthesis of TiO2-yeast hybrid microspheres with controllable structures and their application for the photocatalytic reduction of Cr (VI). J. Chem. Technol. Biotechnol. 2014, 90, 930–938. [CrossRef] 38. Chen, H.; Dai, G.; Zhao, J.; Zhong, A.; Wu, J.; Yan, H. Removal of copper(II) ions by a biosorbent—Cinnamomum camphora leaves powder. J. Hazard. Mater. 2010, 177, 228–236. [CrossRef] 39. Abdolali, A.; Ngo, H.H.; Guo, W.; Zhou, J.L.; Du, B.; Wei, Q.; Wang, X.C.; Nguyen, P.D. Characterization of a multi-metal binding biosorbent: Chemical modification and desorption studies. Bioresour. Technol. 2015, 193, 477–487. [CrossRef] [PubMed] 40. Wada, M.; Heux, L.; Sugiyama, J. Polymorphism of Cellulose I Family: Reinvestigation of Cellulose IVI. Biomacromolecules 2004, 5, 1385–1391. [CrossRef] 41. Chen, D.; Lawton, D.; Thompson, M.; Liu, Q. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste. Carbohydr. Polym. 2012, 90, 709–716. [CrossRef] 42. Bai, Y.-P.; Zhou, H.-M.; Zhu, K.-R.; Li, Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021, 271, 118416. [CrossRef] 43. Veverka, M.; Dubaj, T.; Gallovič, J.; Jorík, V.; Veverková, E.; Mičušík, M.; Šimon, P. Beta-glucan complexes with selected nutraceuticals: Synthesis, characterization, and stability. J. Funct. Foods 2014, 8, 309–318. [CrossRef] 44. Egbedina, A.O.; Ugwuja, C.G.; Dare, P.A.; Sulaiman, H.D.; Olu-Owolabi, B.I.; Adebowale, K.O. CTAB-activated Carbon from Peanut Husks for the Removal of Antibiotics and Antibiotic-resistant Bacteria from Water. Environ. Process. 2023, 10, 20. [CrossRef] 45. Li, D.; Zhao, Y.; Wang, X.; Tang, H.; Wu, N.; Wu, F.; Yu, D.; Elfalleh, W. Effects of (+)-catechin on a rice bran protein oil-in-water emulsion: Droplet size, zeta-potential, emulsifying properties, and rheological behavior. Food Hydrocoll. 2019, 98, 105306. [CrossRef] 46. Dembek, M.; Bocian, S.; Buszewski, B. Solvent Influence on Zeta Potential of Stationary Phase—Mobile Phase Interface. Molecules 2022, 27, 968. [CrossRef] [PubMed] 47. Clogston, J.D.; Patri, A.K. Zeta potential measurement. In Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: Totowa, NJ, USA, 2011; pp. 63–70. [CrossRef] 48. Zandomeneghi, M.; Festa, C.; Carbonaro, L.; Galleschi, L.; Lenzi, A.; Calucci, L. Front-Surface Absorbance Spectra of Wheat Flour: Determination of Carotenoids. J. Agric. Food Chem. 2000, 48, 2216–2221. [CrossRef] 49. Merzlyak, M.N.; Solovchenko, A.E.; Gitelson, A.A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–211. [CrossRef] 50. Lichtenthaler, H.K.; Buschmann, C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.3.1–F4.3.8. [CrossRef] 51. Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [CrossRef] 52. Dziwulska-Hunek, A.; Ćwintal, M.; Niemczynowicz, A.; Boroń, B.; Matwijczuk, A. Effect of Stress Caused by Electromagnetic Stimulation on the Fluorescence Lifetime of Chlorophylls in Alfalfa Leaves. Pol. J. Environ. Stud. 2019, 28, 3133–3143. [CrossRef] Toxins 2023, 15, 604 18 of 18 53. Agati, G.; Fusi, F.; Mazzinghi, P.; di Paola, M.L. A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves. J. Photochem. Photobiol. B Biol. 1993, 17, 163–171. [CrossRef] 54. Buschmann, C. Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. Photosynth. Res. 2007, 92, 261–271. [CrossRef] [PubMed] 55. Sharma, A.; Kumar, N.; Sillanpää, M.; Makgwane, P.R.; Kumar, S.; Kumari, K. Carbon nano-structures and functionalized associates: Adsorptive detoxification of organic and inorganic water pollutants. Inorg. Chem. Commun. 2022, 141, 109579. [CrossRef] 56. Horwitz, W. Official methods of analysis of AOAC International. J. AOAC Int. 1997, 80, 127A. 57. Hernandez-Patlan, D.; Solis-Cruz, B.; Méndez-Albores, A.; Latorre, J.D.; Hernandez-Velasco, X.; Tellez-Isaías, G.; López-Arellano, R. Comparison of PrestoBlue® and plating method to evaluate antimicrobial activity of ascorbic acid, boric acid and curcumin in an in vitro gastrointestinal model. J. Appl. Microbiol. 2018, 124, 423–430. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. Vol.:(0123456789) Mycotoxin Research (2024) 40:269–277 https://doi.org/10.1007/s12550-024-00527-4 ORIGINAL ARTICLE Efficacy of powdered alfalfa leaves to ameliorate the toxic effects of aflatoxin B1 in turkey poults M. J. Nava‑Ramírez1 · J. A. Maguey‑González2 · S. Gómez‑Rosales3 · J. O. Hernández‑Ramírez1 · J. D. Latorre2 · Xiangwei Du4 · C. López‑Coello5 · B. M. Hargis2 · G. Téllez‑Isaías2 · A. Vázquez‑Durán1 · A. Méndez‑Albores1 Received: 25 October 2023 / Revised: 19 February 2024 / Accepted: 22 February 2024 / Published online: 29 February 2024 © The Author(s) 2024 Abstract This experiment was conducted to determine the effect of an adsorbent material based on powdered alfalfa leaves added in the aflatoxin B1 (AFB1)-contaminated diet of turkey poults on production parameters, blood cell count, serum biochemistry, liver enzymes, and liver histology. For this purpose, three hundred and fifty female Nicholas-700 poults were randomly assigned into five treatments: (1) Control, AFB1-free diet; (2) AF, diet contaminated with 250 ng AFB1/g; (3) Alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) AF+alfalfa, diet contaminated with 250 ng AFB1/g + 0.5% (w/w) adsorbent, and (5) AF+ yeast cell wall (YCW), diet contaminated with 250 ng AFB1/g + 0.5% (w/w) of yeast cell wall (a commercial mycotoxin binder used as reference material). The in vivo efficacy of powdered alfalfa leaves was assessed during a 28-day period. In general, the addition of powdered alfalfa leaves in the AFB1-free diet gave the best performance results (body weight, body weight gain, and feed intake) and improved the values of total protein, glucose, calcium, creatinine, and blood urea nitrogen. Moreover, the addition of powdered alfalfa leaves in the AFB1-contaminated diet enhanced body weight and body weight gain and significantly reduced the feed intake, compared to the AF and AF+YCW groups. Additionally, significant altera- tions in serum parameters were observed in poults intoxicated with the AFB1, compared to the Control group. Furthermore, typical histopathological lesions were observed in the liver of the AF group, which were significantly ameliorated with the addition of powdered alfalfa leaves. Conclusively, these results pointed out that low inclusion of powdered alfalfa leaves in the contaminated feed counteracted the adverse effects of AFB1 in turkey poults. Keywords Turkey poults · Aflatoxin B1 · Powdered alfalfa leaves · Adsorption · Performance · Histology Introduction Aflatoxins are mycotoxins composed of a pentacyclic struc- ture with a difuran and coumarin skeleton and are mainly produced by fungal species of the genus Aspergillus (Lala et al. 2016). Aflatoxin B1 (AFB1) is ubiquitous in rations intended for poultry consumption, and this molecule pos- sesses the most powerful carcinogenic, teratogenic, muta- genic, and immunosuppressive potential (Rawal et al. 2010). Turkeys are found among the most susceptible species to AFB1 due to their deficient detoxification mechanism in the liver (Reed et al. 2019). Consumption of feed contaminated with considerable amounts of AFB1 causes various adverse effects in poultry such as alteration in feed consumption, weight gain, increased morbidity and mortality, hematologi- cal and biochemical changes, and in some cases reduction in the relative weight of immune organs, as well as important macroscopic and microscopic changes in the liver (Grozeva * A. Méndez-Albores albores@unam.mx 1 Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico 2 Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA 3 Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km 1 Carretera a Colon Ajuchitlán, Querétaro 76280, Mexico 4 Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA 5 Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico 04510, Mexico 270 Mycotoxin Research (2024) 40:269–277 et al. 2020). Currently, the incidence of AFB1 contamina- tion in grains destined for feed production has had great- est variability due to global climate change; consequently, the development of environmentally friendly strategies is required to guarantee the safety of certain feed ingredients (Khodaei et al. 2021). In this context, the most used strat- egy for the physical control of aflatoxins in feedstuffs is the addition of inorganic adsorbent materials such as zeolites, aluminosilicates, hydrated sodium calcium aluminosilicate (HSCAS), clays, among others. In recent years, plant-based adsorbents have turned out to be promising compared to inorganic adsorbents since they have been shown to be effec- tive and more cost-effective (Vila-Donat et al. 2018). Several in vitro studies have been carried out using agri- cultural wastes as adsorbent materials for AFB1 removal. In these studies, the main effects of several variables such as pH, temperature, time, and dose (adsorbent/adsorbate) have been evaluated. Very recently, our research group carried out an investigation to determine the effectiveness of an adsor- bent made from powdered alfalfa leaves for the removal of AFB1 using two in vitro models (Nava-Ramírez et al. 2023). When using a pH-dependent model, adsorption values above 98% were obtained and when an avian intestinal model was utilized, a considerable reduction in the AFB1 uptake by the powdered alfalfa leaves was observed (88.8%). How- ever, until now, few in vivo studies have been carried out for the evaluation of the efficacy of plant-based materials as AFB1 adsorbents (Gambacorta et al. 2016; Perali et al. 2020; Taranu et al. 2020). It has been reported that the addition of alfalfa to the diet of poultry significantly improved body weight, body weight gain, growth performance, and the reproductive capacity. Addition- ally, a positive effect has also been observed in some serum biochemical parameters, and the height of the villi and depth of the duodenal crypt of the intestine (Suwignyo and Sasongko 2019). To the best of our knowledge, the in vivo efficacy of alfalfa as an AFB1 adsorbent material has not been reported; consequently, the aim of the present research was to evaluate the effect of powdered alfalfa leaves to ameliorate the toxic effects of AFB1 in turkey poults. Materials and methods Preparation of the adsorbent material Alfalfa (Medicago sativa L.) leaves collected from the botanic garden of the National Autonomous University of Mexico-Superior Studies Faculty at Cuautitlan were washed with distilled water and dried in an oven (Binder model RE-115, Tuttlingen, Germany) at 40 °C for 48 h. The dried leaves were finely ground in an electric plate mill (Glen Mills Inc., Clifton, NJ, USA) and subsequently passed through a 60 mesh to obtain a particle size distribu- tion of < 250 µm. Finally, the powdered alfalfa leaves were deposited in a plastic container and placed in a desiccator over silica pellets. A commercial aflatoxin binder based on yeast cell wall (YCW) from Saccharomyces cerevisiae (SafMannan, Phileo Lesaffre Animal Care, Lesaffre Iberica S.A., Valladolid, Spain) was used as a reference material. Aflatoxin production Aflatoxins were produced on rice according to the recom- mendations of Shotwell et al. (1966). A spore suspension of the Aspergillus flavus strain NRRL 2999 was utilized to inoculate the solid substrate in 250-mL Erlenmeyer flasks (50 g of rice + 25 mL water + 0.5 mL of the conidia suspen- sion). Flasks were incubated in a New Brunswick incubator at 28 °C for 5 days under agitation (188 rpm) at the Vet- erinary Medical Diagnostic Laboratory of the University of Missouri, Columbia, USA. At the end of the incubation period, the aflatoxin-contaminated rice was steam-sterilized (121 °C, 106 kPa, 15 min), dried, finely ground, and the aflatoxin content was estimated by means of liquid chro- matography with fluorescence detection according to the recommendations of Göbel and Lusky (2004). Preparation of the aflatoxin‑contaminated diet and mycotoxin analyses To assure a proper distribution of the aflatoxins, the highly con- taminated rice was previously mixed in the commercial turkey poult diet (Nutricion Tecnica Animal SA de CV, Queretaro, Mexico) to a content of 25,000 ng AFB1 per gram of feed. This stock was subsequently used to contaminate the rest of the commercial feed, using 10 g of the stock per kg of feed. The composition of the diet was similar to previously reported data for turkeys (Maguey-González et al. 2023). Batches of 30 kg were artificially contaminated to give a final content of 250 ng AFB1/g feed. Before the contamination process, the commer- cial turkey poult diet was analyzed for total aflatoxins (AFB1, AFB2, AFG1, and AFG2), total fumonisins (FB1, FB2, and FB3), and deoxynivalenol (DON) following the recommendations of VICAM, Science Technology, Watertown, MA, USA (https:// www. vicam. com/ categ ory/ aflat oxin- testi ng- solut ions, https:// www. vicam. com/ categ ory/ fumon isin- testi ng- solut ions, and https:// www. vicam. com/ toxins/ deoxy nival enol, accessed on 08 February 2024). The adsorbent materials (powdered alfalfa leaves and YCW) were also mixed in the respective diet at an inclusion level of 0.5% (w/w). Finally, five aflatoxin-contam- inated feed samples were taken at random, and the content of AFB1 was estimated according to the 991.31 AOAC methodol- ogy (Horwitz 2010). 271Mycotoxin Research (2024) 40:269–277 Experimental design of in vivo experiment All procedures on experimental animals were in accord- ance with and approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Arkan- sas under protocol number 22020. Three hundred and fifty one-day-old female Nicholas-700 turkey poults (Aviagen Inc., AR, USA) were randomly distributed in five pens with seven repetitions each (n = 70 per treatment) as follows: (1) Control, AFB1-free diet; (2) AF, diet contaminated with 250 ng AFB1/g; (3) Alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) AF + alfalfa, diet contaminated with 250 ng AFB1/g + 0.5% (w/w) adsorbent, and (5) AF+YCW, diet contaminated with 250 ng AFB1/g + 0.5% (w/w) of YCW (a commercial mycotoxin binder used as reference mate- rial). Poults were maintained for 28 days with free access to feed and water. The temperature and lighting programs were followed according to the recommendations of the supplier (Aviagen 2015). Collection of samples and measurements Poults and feed were weighed on a weekly basis to calculate the body weight (BW), body weight gain (BWG), feed conver- sion ratio (FCR), and feed intake (FI). Mortality was recorded throughout the experiment. At the end of the trial, 21 turkeys were randomly selected from each treatment (three poults per replicate) and samples of whole blood were taken and serum prepared. Serum analysis was performed with a spectrophotom- eter using commercially available kits (BioSystems, Barcelona, Spain) to determine total protein (TP), glucose (Glu), calcium (Ca), uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), and the enzymes alanine aminotransferase (ALT), alka- line phosphatase (ALP), aspartate aminotransferase (AST), cre- atine kinase (CK), and glutamate dehydrogenase (GLDH). The determination of hematocrit (Hct), and cell count of leukocytes (WBCs), lymphocytes (Ls), basophils (Ba), monocytes (Mn), and heterophils (H) was performed using an automated hema- tology analyzer (Cell-Dyn 1700; Abbott Diagnostics, Abbott Park, IL, USA), following the recommendations of Maguey- González et al. (2023). Finally, the bled poults were sacrificed by inhalation of 80% carbon dioxide, 5% oxygen, and 15% nitrogen (Coenen et al. 2000). The liver, spleen, and bursa of Fabricius were removed, rinsed with cold saline, and weighed. For the histological study, liver samples were selected from the left hepatic lobe and fixed in 10% neutral buffered formalin, embedded in paraffin, cut into 5-μm thick sections, and stained with the hematoxylin and eosin (H&E) technique. The slides were examined at 40× magnification. The classification scheme of the semiquantitative evaluation of the liver lesions was as follows: severity grade 0 (lesion not present or within normal levels), grade 1 (mild lesion), grade 2 (moderate lesion), and grade 3 (severe lesion). Statistical analysis Data on productive parameters, relative organ weight, blood count cells, biochemical, and enzymatic analysis were sub- jected to analysis of variance (ANOVA) using the General Linear Model (GLM) procedure in the Statistical Analysis System software version 8.0 (SAS Institute Inc. Cary, NC, USA). Means were separated by the Tukey procedure. The Kruskal-Wallis non-parametric test was performed to assess the histological analysis. A value of p < 0.05 was considered to reject null hypothesis. Results and discussion Analysis of dietary aflatoxins In general, the uncontaminated commercial feed samples analyzed contained slightly higher than the lowest detect- able content of the total aflatoxins, total fumonisins, and deoxynivalenol. The contents of these fungal toxins in the commercial diet were 1.7 ng/g, 0.02 mg/kg, and 0.09 mg/kg, respectively. Thus, the presence of these mycotoxins in the feed was considered to be negligible (Méndez-Albores et al. 2005). Moreover, the artificially aflatoxin-contaminated tur- key diet contained 250 ± 14 ng AFB1/g, analyzed by means of the 991.31 AOAC methodology. Production parameters The production parameters of the turkey poults from day 1 to day 28 are shown in Table 1. At the beginning of the experiment (day old poults), no statistically significant dif- ferences were found between the five treatments in terms of BW. However, in the last week of the trial (28 day old), it was observed that turkeys that received the diet contami- nated with AFB1 had a significant reduction in BW, show- ing a deviation of −12.94%, compared to the Control group. Oyegunwa et al. (2021) reported that offering an experi- mental diet contaminated with 200 ng AFB1/g feed during a 28-day period produced a significant decrease on turkey BW (up to 33% compared to the control group). Other authors also reported a significant reduction in BW in broiler chick- ens fed a diet contaminated with 200 ng AFB1/g (Tessari et al. 2006). On the contrary, the marked reduction in BW caused by the AFB1 consumption, improved significantly (p < 0.0001) with the use of powdered alfalfa leaves; conse- quently, poults of the AF+alfalfa group presented a devia- tion of − 4.4% compared to the Control group. Furthermore, with the use of YCW, a significant reduction in the BW was also observed in the AF+YCW group showing a deviation of −10.2% compared to the Control group. These results agree with the findings reported by Hernández-Ramírez 272 Mycotoxin Research (2024) 40:269–277 et al. (2021), who reported that the addition of YCW (0.05%) to a diet contaminated with AFB1 (500 ng/g) did not allevi- ate the negative effects caused by the mycotoxin in broiler chickens. Interestingly, the treatment that was provided with the powdered alfalfa leaves (Alfalfa) had a significantly higher BW, up to 528.21 g/poult (7.41 deviation compared to the Control group). Ouyang et al. (2016) also reported that the inclusion of alfalfa flavonoids (15 mg/kg) in a diet intended for female broilers significantly improved BW by 4.77%. These results are consistent with our findings. Regarding BWG, turkeys that were given the AF-free diet with the addition of powdered alfalfa leaves had no statisti- cally significant differences when compared to the Control group (471.56 vs 435.00 g). However, the three experimental groups that were fed with the diet contaminated with AFB1 (AF, AF+alfalfa, and AF+YCW), showed a significant reduc- tion in BWG compared to the Control and Alfalfa groups. These results are similar to those reported by Samur et al. (2020), who showed that the supplementation of a commercial duck- ling diet with 10% (w/w) fresh alfalfa had no effect in BWG. Interestingly, poults that were given the diet supplemented with powdered alfalfa leaves had the greatest numerical value in BWG compared to the Control group (but not statistically significant). In this context, Suwignyo et al. (2021) showed that 3% (w/w) alfalfa supplementation in the diet increased BWG up to 8.05% in ducks from 1 to 35 days of age. In this research, the AF+alfalfa group did not present a significant difference in BWG compared to the Control group, and this could pos- sibly be explained by the immuno- and hepatoprotective effect of the powdered alfalfa leaves. Moreover, a significant reduc- tion in FI (g/poult) was observed in the AF and AF+YCW groups compared to the Control group, attaining a reduction of up to −16.96% and −14.49%, respectively (Table 1). These results agree to those reported by Rauber et al. (2007), who showed a −9.13% reduction in FI in turkeys fed a diet with 200 ng AFB1/g feed. Additionally, Singh (2019) reported a significant decrease (up to −34.61%) in feed consumption in 4-week-old turkey poults, which were fed a diet with 150 μg AFB1/kg feed. In this work, there was no significant difference in FI between the AF+alfalfa and the Control group (Table 1). Furthermore, it was observed that FI was significantly higher in the group of turkeys that were offered the AFB1-free diet with the addition of the powdered alfalfa leaves (Table 1). In this context, Suwignyo et al. (2021) also showed that 3% (w/w) alfalfa supplementation in the diet increased FI and BWG of ducks at 35 days of age. In this study, it was observed that there was no statistically significant difference in the FCR between treatments. These results are in close agreement with Samur Table 1 Evaluation of body weight (BW), body weight gain (BWG), feed intake (FI), and feed conversion ratio (FCR) in 28-day-old tur- key poults consuming a maize-soybean based diet contaminated with 250  ng AFB1/g supplemented with the powdered alfalfa leaves and yeast cell wall Seven replicates per group (n = 10 poults per replicate). Means ± SE abc Means with non-matching superscripts within columns indicates significant difference (p < 0.05) Treatment Body weight (g) Body weight gain (g) Feed intake (g) Feed conversion ratio Deviation from Control (%) Control 491.76 ± 8.32a,b 0 435.00 ± 8.20a,b 683.68 ± 25.10a,b 1.571 ± 0.02 AF 428.14 ± 6.71c -12.94 371.76 ± 6.74c 567.76 ± 7.00c 1.533 ± 0.04 Alfalfa 528.21 ± 3.83a 7.41 471.56 ± 3.70a 726.27 ± 23.57a 1.532 ± 0.04 AF+alfalfa 470.17 ± 9.81b,c -4.40 414.61 ± 9.94b,c 607.30 ± 22.89b,c 1.474 ± 0.04 AF+YCW 441.68 ± 10.38c -10.18 385.30 ± 10.64c 584.60 ± 34.70c 1.512 ± 0.03 p-value < 0.0001 < 0.0001 < 0.001 0.16 Table 2 Relative weight of the liver, spleen, bursa of Fabricius in 28-day-old turkey poults consuming a maize-soybean based diet contaminated with 250 ng AFB1/g supplemented with powdered alfalfa leaves and yeast cell wall Means ± SE ab Means with non-matching superscripts within columns indicates significant difference (p < 0.05) Treatment Liver Spleen Bursa of Fabricius Bursa/spleen ratio Control 3.72 ± 0.133a 0.11 ± 0.005b 0.18 ± 0.010b 1.56 ± 0.095 AF 2.89 ± 0.127b 0.17 ± 0.009a 0.20 ± 0.010a,b 1.18 ± 0.069 Alfalfa 3.08 ± 0.121b 0.12 ± 0.005b 0.16 ± 0.007b 1.42 ± 0.081 AF+alfalfa 2.89 ± 0.134b 0.14 ± 0.009a,b 0.20 ± 0.012a,b 1.43 ± 0.115 AF+YCW 3.08 ± 0.119b 0.16 ± 0.011a 0.21 ± 0.011a 1.40 ± 0.120 p-value < 0.0001 < 0.0001 0.0042 0.10 273Mycotoxin Research (2024) 40:269–277 et al. (2020), who reported that the consumption of a diet con- taminated with 200 ng AFB1/g feed does not show a significant difference in FCR in turkeys. Finally, the mortality observed during the experiment (7%) was not related to the dietary AFB1 level, but rather due to yolk sac infection. Relative weight of organs The effect of the different treatments on the relative organ’s weight is shown in Table 2. Compared to the Control group, the relative weight of the liver decreased significantly in the poults of the four experimental groups (AF, Alfalfa, AF+alfalfa, and AF+YCW). These results are consistent to those reported by Gómez-Espinosa et al. (2017), who observed that the relative weight of the liver of the poults that consumed a diet contami- nated with AFB1 (331 ng AFB1/g feed) decreased significantly. Moreover, the group of turkeys that were offered the AFB1-free diet with the addition of powdered alfalfa leaves (Alfalfa) and the AF+alfalfa group did not show significant differences in terms of the relative weight of the spleen compared to the Control group (Table 2). Notoriously, two of the experimental groups that were fed with the diet contaminated with AFB1 (AF and AF+YCW), showed a significant increase on the relative weight of the spleen compared to the Control group (Table 2). Peng et al. (2015) showed that broiler chickens that were fed with a diet contaminated with aflatoxins (216.4 ng AFB1/g feed) increased the relative weight of the spleen. Finally, the three groups that were fed with the diet contaminated with AFB1 showed that the relative weight of the bursa of Fabricius increased by 11.1% (AF), 11.1% (AF+alfalfa), and 16.7% (AF+YCW), with respect to the Control group. Regarding the bursa/spleen ratio, there were no statistically significant dif- ferences between treatments. Maguey-González et al. (2023) reported that the relative weight of the spleen and the bursa of Fabricius increased significantly in poults that were fed with a diet containing AFB1 (250 ng AFB1/g feed). These results are in accordance with those obtained in the present study. Blood count cells At the end of the trial, certain trends were observed in the blood cell count values; however, no significant differences were found in all the values analyzed such as Hct, WBCs, Ls, the ratio of H to Ls, Ba, Mn, and H (Table 3). These results agree with what was reported by Quist et al. (2000) and Oyegunwa et al. (2021), who studied the effect of a diet contaminated with 200 and 150 ng AFB1/g in turkey poults, respectively. Selected biochemical constituents Table  4 shows the results of some biochemical con- stituents. In general, the plasmatic concentrations of Table 3 Blood count cells in 28-day-old turkey poults consuming a maize-soybean based diet contaminated with 250 ng AFB1/g supplemented with powdered alfalfa leaves and yeast cell wall Means with non-matching superscripts within columns indicates significant difference (p < 0.05). Seven replicates per group (n = 3 poults per replicate). Means ± SE Hct Hematocrit, WBCs Leukocytes, Ls Lymphocytes, H/L ratio of heterophils to lymphocytes, Ba Basophils, Mn Monocytes, H heterophils Treatment Hct WBCs H Ls H/L Ba Mn Control 40.75 ± 3.22 15.87 ± 1.67 6421 ± 1505.83 6966 ± 492.59 0.98 ± 0.29 961 ± 298.73 1500 ± 284.19 AF 36.60 ± 3.36 20.58 ± 5.07 5169 ± 1592.10 6749 ± 1013.02 0.73 ± 0.12 650 ± 154.08 2423 ± 669.84 Alfalfa 45.66 ± 0.84 16.59 ± 1.93 5950 ± 657.23 7286 ± 890.40 0.85 ± 0.07 433 ± 203.19 2918 ± 491.72 AF+alfalfa 42.80 ± 2.54 14.26 ± 2.10 5720 ± 1018.31 5942 ± 777.85 0.94 ± 0.09 216 ± 122.07 2363 ± 792.75 AF+YCW 37.50 ± 2.20 19.90 ± 1.41 6627 ± 764.86 8795 ± 999.97 0.83 ± 0.12 784 ± 293.27 3783 ± 720.88 p-value 0.097 0.46 0.90 0.22 0.77 0.16 0.19 Table 4 Biochemical parameters in 28-day-old turkey poults consuming a maize-soybean based diet contaminated with 250 ng AFB1/g supplemented with powdered alfalfa leaves and yeast cell wall Means ± SE TP Total protein, Glu Glucose, Ca Calcium, UA uric acid, CRE creatinine, BUN blood urea nitrogen abc Means with non-matching superscripts within columns indicates significant difference (p < 0.05). Seven replicates per group (n = 3 poults per replicate) Treatment TP Glu Ca UA CRE BUN Control 3.82 ± 0.10a 583.00 ± 49.90a 9.04 ± 0.35a 10.80 ± 0.23 0.20 ± 0.01a 4.6 ± 0.50a,b AF 1.68 ± 0.04b 405.00 ± 12.84b,c 5.76 ± 0.29b 9.74 ± 0.25 0.11 ± 0.01b 3.6 ± 0.24b Alfalfa 3.88 ± 0.09a 528.20 ± 31.22a,b 8.58 ± 0.35a 10.10 ± 0.20 0.23 ± 0.01a 4.6 ± 0.24a,b AF+alfalfa 2.00 ± 0.08b 373.00 ± 18.89c 5.74 ± 0.29b 8.50 ± 0.21 0.12 ± 0.01b 4.8 ± 0.20a AF+YCW 1.90 ± 0.08b 382.20 ± 17.79c 4.66 ± 0.24b 9.24 ± 0.26 0.13 ± 0.01b 4.8 ± 0.20a p-value < 0.001 0.0003 < 0.0001 0.34 < 0.0001 < 0.001 274 Mycotoxin Research (2024) 40:269–277 TP, Glu, Ca, CRE, and BUN in the poults fed with the AFB1-contaminated diet significantly decreased com- pared to the Control group. Aflatoxin consumption by poultry has been reported to cause a reduction in serum total protein levels due to impaired protein synthesis in the liver (Van Rensburg et al. 2006). Thus, 2.27-, 1.91-, and 2-fold decrease in total serum protein was found in the AF, AF+alfalfa, and AF+YCW groups, respectively. Finally, the group of poults fed the AFB1-free diet, and the Alfalfa group did not present a significant difference in the TP concentration compared with the Control group. These findings are in accordance with earlier reports, Wan et al. (2013) reported that the amount of TP in the serum of ducks that consumed a diet contaminated with 100 ng AFB1/g feed, decreased by 1.13-fold. In general, the groups of turkeys that were fed a diet contaminated with AFB1 (AF, AF+alfalfa, and AF+YCW) showed a decrease in serum Glu, Ca, and CRE concentrations, compared to the Control group (Table 4). On the other hand, the group of turkeys that were offered the AFB1-free diet but with the addition of the powdered alfalfa leaves, did not show significant differences in the serum concentration of Glu, Ca, and CRE. These findings agree with various reports with broilers (Gowda et al. 2009; Sridhar et al. 2015; Gómez-Espinosa et al. 2017; Hernández-Ramírez et al. 2021). On the other hand, there were no significant differences in the concentration of UA. Sharma et al. (2019) showed that the consumption of a diet contaminated with 150 and 300 ng AFB1/g feed in broiler chickens did not affect the UA concentration. Finally, the BUN value decreased only in the AF group. In this context, Xie et al. (2022) showed that the BUN value was not affected in broilers fed with two levels of AFB1 (60 and 120 ng/g), at 21 and 42 days post-exposure. Liver enzymes Table 5 shows the results of some serum liver enzymes. There were no statistically significant differences between the five experimental groups in the serum concentrations of ALP, AST, CK, and GLDH. Comparable results are also reported by other researchers (Quist et al. 2000; Gómez- Espinosa et al. 2017). However, the only enzyme in which a marked increase was observed in the AF+YCW group was the ALT. Lala et al. (2016) reported that ALT levels showed a significant increase in poultry fed with 60 ng AFB1/g feed, which is consistent with our findings. Liver histology Table 6 and Fig. 1 show the histopathological changes in the liver of turkey poults. In general, no significant liver lesions were observed in the Control group (Fig. 1a). However, exposure to AFB1 caused important changes in the liver of poults. For instance, a significant increase in the severity of liver lesions, including vacuolar Table 5 Liver enzyme concentrations in 28-day-old turkey poults that consumed a maize-soybean based diet contaminated with 250 ng AFB1/g supplemented with powdered alfalfa leaves and yeast cell wall Seven replicates per group (n = 3 poults per replicate). Means ± SE ALT alanine transaminase, ALP alkaline phosphatase, AST aspartate aminotransferase, CK creatine kinase, GLDH glutamate dehydrogenase ab Means with non-matching superscripts within columns indicates significant difference (p < 0.05) Treatment ALT ALP AST CK GLDH Control 4.80 ± 1.11b 2569.40 ± 130.07 302.60 ± 15.38 6644 ± 1567.32 11.00 ± 1.26 AF 3.00 ± 1.00b 2561.40 ± 123.31 259.00 ± 13.61 3832 ± 474.72 8.00 ± 0.44 Alfalfa 4.60 ± 1.66b 2471.40 ± 127.44 298.80 ± 25.25 5032 ± 2141.89 17.60 ± 6.09 AF+alfalfa 2.20 ± 0.20b 2159.20 ± 66.77 247.20 ± 14.01 3460 ± 738.57 7.6 ± 1.53 AF+YCW 8.80 ± 2.83a 2356.80 ± 119.92 318.80 ± 36.72 10244 ± 742.04 7.4 ± 1.12 p-value < 0.001 0.43 0.11 0.13 0.14 Table 6 Histopathological changes in the liver of 28-day- old turkey poults that consumed a maize-soybean based diet contaminated with 250 ng AFB1/g supplemented with powdered alfalfa leaves and yeast cell wall Seven replicates per group (n = 3 poults per replicate). Means ± SE ab Means with non-matching superscripts within columns indicates significant difference (p < 0.05) Treatment Vacuolar degeneration Inflammation Bile duct hyperplasia Fibrosis Control 1.00 ± 0.28b 0.50 ± 0.20b 0b 0b AF 2.00 ± 0.28a 2.00 ± 0.22a 2.00 ± 0.15a 1.00 ± 0.18a Alfalfa 1.00 ± 0.20b 0b 1.00 ± 0.11b 0b AF+alfalfa 1.50 ± 0.27a,b 1.00 ± 0.14a,b 1.50 ± 0.09b 0b AF+YCW 2.00 ± 0.24a 1.00 ± 0.23a,b 1.50 ± 0.18b 1.00 ± 0.11a p-value < 0.01 < 0.0001 < 0.001 < 0.0001 275Mycotoxin Research (2024) 40:269–277 degeneration, inflammation, bile duct hyperplasia, and fibrosis was observed in the AF group (Fig. 1b). Previ- ous studies have reported histopathological alterations in the liver of poultry fed with AFB1 levels ranging from 50 to 1000 ng AFB1/g (Giambrone et al. 1985; Sridhar et al. 2015; Lala et al. 2016; Hernández-Ramírez et al. 2021; Xie et al. 2022). These alterations include vacu- olar degeneration, fatty liver, hemorrhage, congestion, leukocyte infiltration, bile duct hyperplasia, hypertro- phy, and portal fibrosis. Conversely, in the two experi- mental groups supplemented with the powdered alfalfa leaves, no significant differences in the liver lesions were observed compared to the Control group (Table 6), suggesting that the lesions caused by the AFB1 were significantly ameliorated when the powdered alfalfa was included in the AFB1-contaminated diet. Regarding the Fig. 1 Comparative histological changes in the liver of 28-day- old turkey poults that consumed a maize-soybean based diet contaminated with 250 ng AFB1/g and supplemented with powdered alfalfa and yeast cell wall. H&E-stained tissue of: a Control, b AF, c Alfalfa, d AF+alfalfa, and e AF+YCW. Black circles show vacuolar degeneration, blue circles show inflammation, yellow circles show bile duct hyperplasia, and red circles show fibrosis 276 Mycotoxin Research (2024) 40:269–277 AF+YCW group, it was observed that there were no significant differences in inflammation and hyperplasia of bile ducts, compared with the Control group. How- ever, marked vacuolar degeneration and fibrosis were observed (Fig. 1e). In general, the decrease in lesions in poults that received 0.5% (w/w) powdered alfalfa could be related to the effects of flavonoids, carotenoids, and chlorophylls contained in the leaves and mainly to its adsorption properties against AFB1 (Nava-Ramírez et al. 2023). To the best of our knowledge, this is the first report showing the effect of a low inclusion level (0.5%, w/w) of powdered alfalfa leaves in the diet of turkey poults con- taminated with AFB1 (250 ng/g) on production parameters, relative organ weights, total blood cell counts, biochemi- cal and enzymatic parameters, and liver histology. In gen- eral, the addition of the adsorbent material derived from powdered alfalfa leaves significantly improved the produc- tion parameters, the relative weight of the organs, and the histological lesions of the liver. Moreover, the powdered alfalfa leaves did not cause deleterious changes in the bio- chemical and enzymatic parameters, as well as in the total blood cell count. Taken together, these results allowed us to confirm that powdered alfalfa is an effective material to adsorb AFB1 and, therefore, prevent its toxic effects in in vivo trials. However, it is pertinent to carry out more in vivo studies on the complete growing cycle of this and other avian species to understand the complete protective role of powdered alfalfa leaves and other plant-based mate- rials with adsorptive properties against AFB1. Research in this direction is in progress in our laboratories. Acknowledgements María de Jesús Nava Ramírez acknowledges CONAHCYT for the scholarship CVU. 866355. Author contribution Conceptualization: A.M.-A., C.L.-C., and A.V.-D; Methodology: M. d. J. N.-R., J.A.M.-G., and J.O.H.-R; Formal analysis and investigation: S.G.-R., and J.D.-L.; Writing—original draft prepa- ration: M. d. J. N.-R., and A.M.-A; Writing—review and editing: X.-D., S.G.-R., J.A.M.-G., B.M-H., and G.T.-I; Funding acquisition: A.M.-A., G.T.-I., and B.M-H.; Resources: G.T.-I., and B.M-H.; Supervision: A.M.-A., G.T.-I., and B.M-H. Funding This work was supported by UNAM-PAPIIT grant number IA101523 and by funds provided by USDA-NIFA, Sustainable Agri- culture Systems, grant number 2019-69012-29905. Title of Project: Empowering U.S. Broiler Production for Transformation and Sustain- ability USDA-NIFA. Data availability The datasets generated during and/or analyzed dur- ing the current study are available from the corresponding author on reasonable request. Declarations Conflicts of interest None. Open Access This article is licensed under a Creative Commons Attri- bution 4.0 International License, which permits use, sharing, adapta- tion, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. References Aviagen (2015) Management guidelines. Raising commercial tur- keys. Aviagen, Scotland, UK. https:// www. aviag entur keys. us/ perfo rmance- objec tives. Accessed 10 Jan 2024 Coenen A, Smit A, Zhonghua L, Van Luijtelaar G (2000) Gas mixtures for anaesthesia and euthanasia in broiler chickens. Worlds Poult Sci J 56(3):226–234. https:// doi. org/ 10. 1079/ WPS20 000017 Gambacorta L, Pinton P, Avantaggiato G, Oswald IP, Solfrizzo M (2016) Grape pomace, an agricultural byproduct reducing myco- toxin absorption: In vivo assessment in pig using urinary bio- markers. J Agric Food Chem 64(35):6762–6771. https:// doi. org/ 10. 1021/ acs. jafc. 6b021 46 Giambrone J, Diener U, Davis N, PanangalaV HF (1985) Effects of aflatoxin on young turkeys and broiler chickens. Poult Sci 64(9):1678–1684. https:// doi. org/ 10. 3382/ ps. 06416 78 Göbel R, Lusky K (2004) Simultaneous determination of aflatoxins, ochratoxin A, and zearalenone in grains by new immunoaffin- ity column/liquid chromatography. J AOAC Int 87(2):411–416. https:// doi. org/ 10. 1093/ jaoac/ 87.2. 411 Gómez-Espinosa D, Cervantes-Aguilar FJ, Del Río-García JC, Villarreal-Barajas T, Vázquez-Durán M-A (2017) Ameliorative effects of neutral electrolyzed water on growth performance, biochemical constituents, and histopathological changes in Turkey poults during aflatoxicosis. Toxins 9(3):104. https:// doi. org/ 10. 3390/ toxin s9030 104 Gowda NK, Ledoux DR, Rottinghaus GE, Bermudez AJ, Chen YC (2009) Antioxidant efficacy of curcuminoids from turmeric (Cur- cuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. Br J Nutr 102(11):1629–1634. https:// doi. org/ 10. 1017/ S0007 11450 99908 69 Grozeva N, Valchev I, Lazarov L, Hristov T, Kanakov D, Dimitrov K, Binev R (2020) Cloacal bursa morphology in turkey broil- ers challenged with aflatoxin B1 alone or co-administered with mycotox NG. Bulg J Vet Med 23(1):121–129. https:// doi. org/ 10. 15547/ bjvm. 2140 Hernández-Ramírez JO, Merino-Guzmán R, Téllez-Isaías G, Vázquez- Durán A, Méndez-Albores A (2021) Mitigation of AFB1-related toxic damage to the intestinal epithelium in broiler chickens con- sumed a yeast cell wall fraction. Front Vet Sci 8:677965. https:// doi. org/ 10. 3389/ fvets. 2021. 677965 Horwitz W (2010) Official methods of analysis of AOAC Interna- tional. Volume I, agricultural chemicals, contaminants, drugs/ edited by William Horwitz. AOAC International, 1997, Gaith- ersburg (Maryland) Khodaei D, Javanmardi F, Khaneghah AM (2021) The global over- view of the occurrence of mycotoxins in cereals: A three-year 277Mycotoxin Research (2024) 40:269–277 survey. Curr Opin Food Sci 39:36–42. https:// doi. org/ 10. 1016/j. cofs. 2020. 12. 012 Lala A, Ajayi O, Oso A, Ajao M, Oni O, Okwelum N, Idowu O (2016) Effect of dietary supplementation with clay-based binders on biochemical and histopathological changes in organs of turkey fed with aflatoxin-contaminated diets. J Anim Physiol Anim Nutr 100(6):1191–1202. https:// doi. org/ 10. 1111/ jpn. 12421 Maguey-González JA, Nava-Ramírez MDJ, Gómez-Rosales S, Ángeles MDL, Solís-Cruz B, Hernández-Patlán D, Merino-Guzmán R, Hernandez-Velasco X, Hernández-Ramírez JO, Loeza I, Senas- Cuesta R, Latorre DJ, Vázquez-Durán A, Du X, Méndez-Albores A, Hargis BM, Téllez-Isaías G (2023) Evaluation of the efficacy of humic acids to counteract the toxic effects of aflatoxin B1 in turkey poults. Front Vet Sci. https:// doi. org/ 10. 3389/ fvets. 2023. 12767 54 Méndez-Albores A, Arambula-Villa G, Loarca-Piña M, Castano- Tostado E, Moreno-Martínez E (2005) Safety and efficacy evalua- tion of aqueous citric acid to degrade B-aflatoxins in maize. Food Chem Toxicol 43:233–238. https:// doi. org/ 10. 1016/j. fct. 2004. 09. 009 Nava-Ramírez MDJ, Vázquez-Durán A, Figueroa-Cárdenas JDD, Hernández-Patlán D, Solís-Cruz B, Téllez-Isaías G, López- Coello C, Méndez-Albores A (2023) Removal of Aflatoxin B1 using alfalfa leaves as an adsorbent material: A comparison between two in vitro experimental models. Toxins 15(10):604. https:// doi. org/ 10. 3390/ toxin s1510 0604 Ouyang K, Xu M, Jiang Y, Wang W (2016) Effects of alfalfa flavonoids on broiler performance, meat quality, and gene expression. Can J Anim Sci 96(3):332–341. https:// doi. org/ 10. 1139/ cjas- 2015- 0132 Oyegunwa A, Ewuola E, Agboola A, Iyayi E (2021) Alleviation of the effect of dietary aflatoxin in turkey poults using bentonite mont- morillonite or yeast binder. Niger J Anim Prod 48(5):275–284. https:// doi. org/ 10. 51791/ njap. v48i5. 3211 Peng X, Bai S, Ding X, Zeng Q, Zhang K, Fang J (2015) Pathological changes in the immune organs of broiler chickens fed on corn naturally contaminated with aflatoxins B1 and B2. Avian Pathol 44(3):192–199. https:// doi. org/ 10. 1080/ 03079 457. 2015. 10231 79 Perali C, Magnoli AP, Aronovich M, Rosa CADR, Cavaglieri LR (2020) Lithothamnium calcareum (Pallas) Areschoug seaweed adsorbs aflatoxin B1 in vitro and improves broiler chicken’s per- formance. Mycotoxin Res 36:371–379. https:// doi. org/ 10. 1007/ s12550- 020- 00402-y Quist C, Bounous D, Kilburn J, Nettles V, Wyatt R (2000) The effect of dietary aflatoxin on wild turkey poults. J Wildl Dis 36(3):436– 444. https:// doi. org/ 10. 7589/ 0090- 3558- 36.3. 436 Rauber R, Dilkin P, Giacomini L, Almeida CA, Mallmann C (2007) Performance of turkey poults fed different doses of aflatoxins in the diet. Poult Sci 86(8):1620–1624. https:// doi. org/ 10. 1093/ ps/ 86.8. 1620 Rawal S, Kim JE, Coulombe R Jr (2010) Aflatoxin B1 in poultry: Toxi- cology, metabolism and prevention. Res Vet Sci 89(3):325–331. https:// doi. org/ 10. 1016/j. rvsc. 2010. 04. 011 Reed KM, Mendoza KM, Coulombe RA Jr (2019) Altered gene response to aflatoxin B1 in the spleens of susceptible and resistant turkeys. Toxins 11(5):242. https:// doi. org/ 10. 3390/ toxin s1105 0242 Samur SIN, Suwignyo B, Suryanto E (2020) The effect of Alfalfa (Medicago sativa L) on different basal feeds for hybrid duck per- formance. In: E3S Web Conf. EDP Sci. https:// doi. org/ 10. 1051/ e3sco nf/ 20202 00030 13 Sharma M, Mandal A, Singh R (2019) Effect of dietary Aflatoxin B1 and Ochratoxin A alone or in combination on blood biochemi- cals and organs histopathology in broiler chickens. Livest Res Int 7(2):98–106 Shotwell OL, Hesseltine C, Stubblefield R, Sorenson W (1966) Produc- tion of aflatoxin on rice. Appl Microbiol 14(3):425–428. https:// doi. org/ 10. 1128/ am. 14.3. 425- 428. 1966 Singh R (2019) Effect of dietary inclusion of Mycodetox B2 on live- ability, immunity and organ pathology during aflatoxicosis in Turkey poults. Livest Res Int 7(2):55–61 Sridhar M, Suganthi R, Thammiaha V (2015) Effect of dietary res- veratrol in ameliorating aflatoxin B1-induced changes in broiler birds. J Anim Physiol Anim Nutr 99(6):1094–1104. https:// doi. org/ 10. 1111/ jpn. 12260 Suwignyo B, Rini EA, Fadli MK, Ariyadi B (2021) Effects of alfalfa (Medicago sativa L.) supplementation in the diet on the growth, small intestinal histomorphology, and digestibility of hybrid ducks. Vet World 14(10):2719. https:// doi. org/ 10. 14202/ vetwo rld. 2021. 2719- 2726 Suwignyo B, Sasongko H (2019) The effect of fresh and hay alfalfa (Medicago sativa L.) supplementation on hybrid duck perfor- mance. In: IOP Conf Ser Earth Environ Sci. https:// doi. org/ 10. 1088/ 1755- 1315/ 387/1/ 012085 Taranu I, Hermenean A, Bulgaru C, Pistol GC, Ciceu A, Grosu IA, Marin DE (2020) Diet containing grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. Ecotoxi- col Environ Saf 203:110899. https:// doi. org/ 10. 1016/j. ecoenv. 2020. 110899 Tessari ENC, Oliveira CAF, Cardoso A, Ledoux D, Rottinghaus G (2006) Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. Br Poult Sci 47(3):357–364. https:// doi. org/ 10. 1080/ 00071 66060 07560 71 Van Rensburg CJ, Van Rensburg CJC, Van Ryssen JBJ, Casey NH, Rottinghaus GE (2006) In  vitro and in  vivo assessment of humic acid as an aflatoxin binder in broiler chickens. Poult Sci 85(9):1576–1583. https:// doi. org/ 10. 1093/ ps/ 85.9. 1576 Vila-Donat P, Marín S, Sanchis V, Ramos A (2018) A review of the mycotoxin adsorbing agents, with an emphasis on their multi- binding capacity, for animal feed decontamination. Food Chem Toxicol 114:246–259. https:// doi. org/ 10. 1016/j. fct. 2018. 02. 044 Wan X, Yang Z, Yang W, Jiang S, Zhang G, Johnston S, Chi F (2013) Toxicity of increasing aflatoxin B1 concentrations from contam- inated corn with or without clay adsorbent supplementation in ducklings. Poult Sci 92(5):1244–1253. https:// doi. org/ 10. 3382/ ps. 2012- 02748 Xie K, He X, Hu G, Zhang H, Chen Y, Hou DX, Song Z (2022) The preventive effect and mechanisms of adsorbent supplementation in low concentration aflatoxin B1 contaminated diet on sub- clinical symptom and histological lesions of broilers. Poult Sci 101(3):101634. https:// doi. org/ 10. 1016/j. psj. 2021. 101634 Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Citation: Nava-Ramírez, M.d.J.; Liu, J.; Hernández-Ramírez, J.O.; Hernandez-Velasco, X.; Latorre, J.D.; Vázquez-Durán, A.; Zhang, G.; Senas-Cuesta, R.; Gómez-Rosales, S.; Stein, A.; et al. Exploring the Effects of an Alfalfa Leaf-Derived Adsorbent on Microbial Community, Ileal Morphology, Barrier Function, and Immunity in Turkey Poults during Chronic Aflatoxin B1 Exposure. Int. J. Mol. Sci. 2024, 25, 7977. https:// doi.org/10.3390/ijms25147977 Academic Editor: Hirokazu Fukui Received: 14 May 2024 Revised: 12 July 2024 Accepted: 15 July 2024 Published: 22 July 2024 Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). International Journal of Molecular Sciences Article Exploring the Effects of an Alfalfa Leaf-Derived Adsorbent on Microbial Community, Ileal Morphology, Barrier Function, and Immunity in Turkey Poults during Chronic Aflatoxin B1 Exposure María de Jesús Nava-Ramírez 1 , Jing Liu 2,*, Juan Omar Hernández-Ramírez 1 , Xochitl Hernandez-Velasco 3 , Juan D. Latorre 4, Alma Vázquez-Durán 1, Guolong Zhang 2 , Roberto Senas-Cuesta 4 , Sergio Gómez-Rosales 5 , Andressa Stein 4, Billy M. Hargis 4, Guillermo Téllez-Isaías 4 , Abraham Méndez-Albores 1 and Jesús A. Maguey-González 4,* 1 Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores (FES) Cuautitlán, UNAM, Cuautitlán Izcalli 54740, Mexico; mari_551293@comunidad.unam.mx (M.d.J.N.-R.); mvzjohr@hotmail.com (J.O.H.-R.); almavazquez@comunidad.unam.mx (A.V.-D.); albores@unam.mx (A.M.-A.) 2 Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA; glenn.zhang@okstate.edu 3 Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México 04510, Mexico; xochitlh@fmvz.unam.mx 4 Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; jl11@uark.edu (J.D.L.); rsenascu@uark.edu (R.S.-C.); andressastein.s@gmail.com (A.S.); bhargis@uark.edu (B.M.H.); gtellez@uark.edu (G.T.-I.) 5 Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km 1 Carretera a Colon, Ajuchitlán, Querétaro 76280, Mexico; gomez.sergio@inifap.gob.mx * Correspondence: jing.liu12@okstate.edu (J.L.); jm201@uark.edu (J.A.M.-G.) Abstract: This article follows-up on our recently published work, which evaluated the impact of the addition of an alfalfa leaf-derived adsorbent in the aflatoxin B1 (AFB1)-contaminated diet in regard to the production parameters, blood cell count, serum biochemistry, liver enzymes, and liver histology of turkey poults. This paper presents complementary results on microbial community, ileal morphology, barrier function, and immunity. For this purpose, 350 1-day-old female turkey poults were randomly distributed into five groups: (1) Control, AFB1-free diet; (2) AF, AFB1-contaminated diet at 250 ng/g; (3) alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and (5) YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). In general, in the AF group, the growth of opportunistic pathogens was promoted, which lead to gut dysbacteriosis, mainly influenced by Streptococcus lutetiensis. Conversely, a significant increase in beneficial bacteria (Faecalibacterium and Coprococcus catus) was promoted by the addition of the plant-based adsorbent. Moreover, the AF group had the lowest villus height and a compromised barrier function, as evidenced by a significant (p < 0.05) increase in fluorescein isothiocyanate dextran (FITC-d), but these negative effects were almost reversed by the addition of the alfalfa adsorbent. Furthermore, the AF + YCW and alfalfa + AF groups exhibited a significant increase in the cutaneous basophil hypersensitivity response compared to the rest of the experimental groups. Taken together, these results pointed out that the alfalfa counteracts the adverse effects of AFB1 in poults, facilitating the colonization of beneficial bacteria and improving the barrier function of the turkey poults. Keywords: aflatoxin B1; alfalfa; cellular immunity; gut integrity; microbiota; turkey poults Int. J. Mol. Sci. 2024, 25, 7977. https://doi.org/10.3390/ijms25147977 https://www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2024, 25, 7977 2 of 13 1. Introduction Aflatoxin B1 (AFB1) is a potent secondary metabolite mainly synthesised by Aspergillus spp. AFB1 contamination in poultry feed negatively influences gut health, immunity, and performance. As a result, AFB1 contamination has become a major preoccupation in the world of poultry producers and researchers [1]. Consequently, to avoid these adverse effects, multiple strategies have been developed to control AFB1 in feed and to improve the health of broiler birds in the poultry industry. Recently, functional natural feed additives have been considered as promising substitutes for antibiotic growth promoters due to their antioxidant, anti-inflammatory, and immune-modulation properties [2]. While maize and soy remain the foundation of many (if not most) broiler diets, sup- plementation with nutrient-dense forages such as alfalfa could offer several advantages. Packed with vitamins, minerals, and bioactive compounds, alfalfa stands to enhance the environmental profile of broiler production while promoting the health and welfare of the chicken itself. First, alfalfa is nutritious, its protein content is high, and, as such, it is an excellent building block for muscle. Moreover, vitamins A, E, and K, along with its calcium, magnesium, and iron content, provide health support and promote strong and healthy bones [3]. Alfalfa’s carotene content also contributes to the yellow colouration of the chicken skin and yolk, something that is linked to important economic preference in certain consumer markets [4]. Concerning gut health, alfalfa’s high fibre content stimulates the production of beneficial gut bacteria, helping to keep the chicken healthy and enhance their efficiency [5]. In this context, some researchers have also suggested the possibility of having higher meat quality when alfalfa is included in broiler diets [6]. Moreover, the high level of natural antioxidants contributes to increasing the shelf life of the meat as well as reducing lipid oxidation [7]. Feeding alfalfa also brings about environmental benefits. The nitrogen-fixing ability of alfalfa reduces fertiliser application in a pasture, while its deep roots improve soil health and the retention of water [8]. These benefits can be translated to lower environmental impact and higher sustainability during broiler production. The outcomes from the recent in vitro [9] and in vivo [10] studies from our labora- tories confirmed the efficacy of alfalfa in ameliorating AFB1 toxicity and enhancing the performance in turkey poults. The present study continues the same experimental design to determine the effects of alfalfa on the composition and diversity of the gut microbial community, intestinal permeability, the morphometric analysis of ileum, and the cellular immunity. This research complements and indicates crucial roles of alfalfa leaves in the protection against aflatoxin B1-induced toxicity, suggesting that this intervention can be used as a novel approach to improve intestinal health and enhance resilience in turkey poults during aflatoxicosis. 2. Results There were no obvious distinctions among the experimental groups in terms of α- diversity (Figure 1). Nevertheless, the AF group exhibited a lower diversity (number of observed ASVs, Evenness, and Shannon indexes) than the Control group, indicating that the challenge to AFB1 could potentially result in the proliferation of specific pathogenic bacteria, which could contribute to a change in the bacterial community. However, supplementation of alfalfa could almost restore this decreased trend of bacteria to healthy levels (Figure 1). Similarly, there was no significant separation among groups based on the weighted UniFrac distance (Figure 1). However, an unweighted UniFrac distance showed a significant difference among the Control and AF groups, indicating the influence of AFB1 on the microbial community composition (p < 0.05). In addition, a clear separation between the AF group and the AF + YCW group was also observed (p = 0.017, R2 = 0.168), suggesting that YCW supplementation during the AFB1 challenge could also change the bacterial community structure (β-diversity). Int. J. Mol. Sci. 2024, 25, 7977 3 of 13 Figure 1. Alpha and beta diversities of the cecal microbiota among different experimental groups. The cecal contents (n = 7/treatment) were subjected to 16S rRNA gene sequencing. Observed ASV, Pielou’s Evenness, and Shannon Index were calculated to measure the α-diversity of the cecal mi- crobiota. Kruskal–Wallis test was used for statistical significance determination. The β-diversity- weighted UniFrac and unweighted UniFrac distances were used to generate the principal coordi- nates analysis (PCoA) plots. Permutational multivariate analysis of variance (PERMANOVA) was used for statistical significance determination. Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Table 1 summarises the findings of the relative abundances (%) of the cecal bacterial phyla and their families between the experimental groups. The contamination with 250 ng AFB1/g did not affect the phyla relative abundances of the microbial community in the caecum of any of the experimental groups. However, at the family level, a significant de- crease in Streptococcaceae populations was observed in the Control group compared to the rest of the experimental groups (p < 0.04). In addition, the relative genera abundance of Coprobacillaceae was reduced in the AF and alfalfa + AF groups, and the same pattern was observed in the ASV levels (p < 0.02). On the other hand, the alfalfa group exhibited a substantial increase in Faecalibacterium levels in contrast to the other experimental groups (Table 2). At the ASV level, bacterial biomarkers for each group were identified using lin- ear discriminant analysis effect size (LEfSe), employing an all-against-all multiclass anal- ysis approach (Figure 2). Several bacterial species were found to be enriched in the LEfSe analysis using the data from all experimental groups. For instance, the signature ASVs for the Control group were Mediterraneibaer (F91) and Lachnospiracaeae unidentified (F25), while AF group had greater abundances of Streptococcus lutetiensis (F6). In addition, the alfalfa group were Faecalibacterium (F7 and F53) and Coprococcus catus (F85), while the al- falfa + AF group had greater abundances of Bacillus (F8) and Anaerotignum (F99). Figure 1. Alpha and beta diversities of the cecal microbiota among different experimental groups. The cecal contents (n = 7/treatment) were subjected to 16S rRNA gene sequencing. Observed ASV, Pielou’s Evenness, and Shannon Index were calculated to measure the α-diversity of the cecal microbiota. Kruskal–Wallis test was used for statistical significance determination. The β-diversity-weighted UniFrac and unweighted UniFrac distances were used to generate the principal coordinates analysis (PCoA) plots. Permutational multivariate analysis of variance (PERMANOVA) was used for statistical significance determination. Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Table 1 summarises the findings of the relative abundances (%) of the cecal bacterial phyla and their fa ilies between the experimental groups. The contamination with 250 ng AFB1/g did not affect the phyla relative abundances of the microbial community in the caecum of any of the experimental groups. However, at the family level, a significant decrease in Streptococcaceae populations was observed in the Control group compared to the rest of the experimental groups (p < 0.04). In addition, the relative genera abundance of Coprobacillaceae was reduced in the AF and alfalfa + AF groups, and the same pattern was observed in the ASV levels (p < 0.02). On the other hand, the alfalfa group exhibited a substant al increase in Faecalibacterium levels in contrast to the other experimental grou s (Table 2). At the ASV level, bacterial biomarkers for each group were identified using linear discriminant analysis effect size (LEfSe), employing an all-against-all multiclass analysis approach (Figure 2). Several bacterial species were found to be enriched in the LEfSe analysis using the data from all experimental groups. For instance, the signature ASVs for the Control group were Mediterraneibaer (F91) and Lachnospiracaeae unidentified (F25), while AF group had greater abundances of Streptococcus lutetiensis (F6). In addition, the alfalfa group were Faecalibacterium (F7 nd F53) and Coprococc s catus (F85), while the alfalfa + AF group had greater abundances of Bacillus (F8) and Anaerotignum (F99). Int. J. Mol. Sci. 2024, 25, 7977 4 of 13 Table 1. Relative abundances (%) of the cecal bacterial phyla and families among the experimental groups. Taxon Control AF Alfalfa Alfalfa + AF AF + YCW SEM p-Value Phyla Firmicutes 79.42 74.04 81.02 82.45 72.78 1.92 0.13 Proteobacteria 14.10 20.76 16.52 12.93 20.82 1.64 0.17 Tenericutes 3.85 2.84 1.11 2.94 4.57 0.58 0.45 Cyanobacteria 0.78 1.45 0.08 0.26 0.02 0.26 0.62 Actinobacteria 0.45 0.08 0.08 0.42 0.15 0.08 0.39 Families Oscillospiraceae 32.72 32.53 40.05 39.90 30.04 2.06 0.06 Lachnospiraceae 32.28 25.69 28.66 28.64 28.21 1.05 0.15 Enterobacteriaceae 14.10 20.75 16.52 12.89 20.82 1.64 0.17 Clostridiales_unidentified 4.85 5.97 4.11 3.29 4.05 0.45 0.24 Erysipelotrichaceae 3.81 1.70 4.74 2.54 4.04 0.54 0.09 Bacillaceae 1.55 1.47 0.52 4.20 2.12 0.61 0.06 Mollicutes_unidentified 3.04 2.56 0.81 2.19 4.01 0.52 0.30 Lactobacillaceae 1.67 1.84 0.36 1.51 1.74 0.27 0.10 Christensenellaceae 0.76 0.81 0.80 0.93 1.23 0.08 0.68 Streptococcaceae 0.09 b 0.97 a 1.09 a 0.71 a 0.45 a 0.18 0.04 Vampirovibrio_unidentified 0.78 1.45 0.08 0.26 0.02 0.26 0.62 Enterococcaceae 0.67 0.14 0.10 0.20 0.23 0.10 0.18 Clostridia_unidentified 0.14 0.85 0.03 0 0 0.16 0.58 Peptostreptococcaceae 0.41 0.29 0.09 0.13 0.09 0.06 0.12 Clostridiaceae 1 0.25 0.29 0.19 0.12 0.19 0.02 0.69 The mean relative abundances (%) of top five phyla and top 15 families of cecal microbiota of different groups are shown means (n = 7/treatment). a,b indicates significant differences between the treatments within the rows (p < 0.05). Statistical as significance was determined using the Kruskal–Wallis test, followed by the pairwise Wilcoxon rank sum test. Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Table 2. Relative abundances (%) of the cecal bacterial genera and ASVs among the experimental groups. Taxon Control AF Alfalfa Alfalfa + AF AF + YCW SEM p-Value Genera Escherichia/Shigella 13.16 20.71 16.37 12.76 20.67 1.73 0.17 Oscillospiraceae_unidentified 10.21 11.14 10.97 14.11 11.05 0.67 0.68 Mediterraneibacter 10.54 7.50 8.76 9.49 8.96 0.49 0.62 Lachnospiraceae_unidentified 6.27 6.07 6.29 7.30 6.83 0.22 0.69 Subdoligranulum 8.70 4.93 7.29 6.65 3.03 0.98 0.59 Pseudoflavonifractor 5.04 5.91 4.36 7.05 5.76 0.45 0.32 Enterocloster 4.64 3.54 5.24 5.05 3.99 0.32 0.48 Clostridiales_unidentified 4.85 5.97 4.11 3.29 4.05 0.45 0.24 Blautia 4.24 2.67 2.36 1.56 2.37 0.44 0.21 Bacillus 1.55 1.47 0.52 4.20 2.12 0.61 0.06 Faecalibacterium 0.18 0.26 7.70 0.37 0.66 1.46 0.07 Coprobacillaceae_unidentified 1.72 ab 0.44 b 3.06 a 0.69 b 2.24 a 0.48 0.02 Mollicutes_unidentified 3.04 2.56 0.81 2.19 4.01 0.52 0.30 Anaerostipes 2.51 0.75 1.35 1.43 1.33 0.28 0.11 Eisenbergiella 1.50 1.55 1.23 0.78 1.44 0.14 0.46 Int. J. Mol. Sci. 2024, 25, 7977 5 of 13 Table 2. Cont. Taxon Control AF Alfalfa Alfalfa + AF AF + YCW SEM p-Value ASVs Escherichia/Shigella_F1 12.8 20.24 15.86 12.54 20.23 1.69 0.14 Subdoligranulum_variabile_F4 5.11 1.88 3.80 3.36 1.93 0.60 0.81 Mediterraneibacter_F2 2.65 2.02 1.37 2.54 3.79 0.39 0.25 Mediterraneibacter_F3 2.14 3.31 3.41 1.02 2.03 0.44 0.35 Enterocloster_F5 2.65 1.25 2.56 2.08 2.06 0.24 0.44 Bacillus_F8 1.55 1.47 0.52 4.20 2.12 0.61 0.06 Mollicutes_unidentified_F9 2.77 1.19 0.64 0.80 3.30 0.54 0.50 Blautia_obeum_F18 2.93 1.67 1.34 1.07 1.31 0.33 0.82 Coprobacillaceae_unidentified_F13 1.72 ab 0.44 b 3.06 a 0.69 b 2.24 a 0.48 0.02 Enterocloster_F11 1.24 1.36 1.51 1.68 1.04 0.10 0.79 Pseudoflavonifractor_capillosus_F16 0.93 1.22 1.03 1.30 2.43 0.27 0.45 Pseudoflavonifractor_F14 1.10 1.57 1.17 1.48 1.29 0.08 0.57 Oscillospiraceae_unidentified_F17 0.80 0.92 1.06 1.39 1.96 0.20 0.98 Oscillospiraceae_unidentified_F23 2.08 0.33 0.78 1.09 1.73 0.31 0.30 Pseudoflavonifractor_F20 1.35 1.14 0.55 2.06 0.44 0.29 0.21 Butyricicoccus_pullicaecorum_F24 1.29 0.13 1.72 1.98 0.47 0.35 0.68 Anaerostipes_butyraticus_F19 1.77 0.56 1.20 0.71 1.10 0.21 0.18 Faecalibacterium_F7 0.13 b 0.24 b 4.60 a 0.34 b 0.36 b 0.86 0.02 Pseudoflavonifractor_F21 0.82 1.07 0.73 1.25 1.23 0.10 0.60 Oscillibacter_F15 0.92 1.25 0.58 1.30 0.91 0.13 0.73 The mean relative abundances (%) of top 15 genera, and top 20 ASVs of cecal microbiota of different groups are shown as means (n = 7/treatment). a,b indicates significant differences between the treatments within the rows (p < 0.05). Statistical significance was determined using the Kruskal–Wallis test, followed by the pairwise Wilcoxon rank sum test. Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Figure 2. Differential enrichment of bacterial ASVs between different experimental groups (n = 7/treatment) was determined using linear discriminant analysis (LDA) effect size (LEfSe), with the all-against-all multiclass analysis, p < 0.05, and a logarithmic LDA threshold of 3.0. Control, AFB1- free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1- contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Figure 3. Relative abundances of differentially enriched bacterial ASVs (n = 7/treatment). Signifi- cance was calculated using Kruskal–Wallis test. a,b indicates significant differences between treat- ments (p < 0.05). Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Figure 2. Differential enrichment of bacterial ASVs between different experimental groups (n = 7/treatment) was determined using linear discriminant analysis (LDA) effect size (LEfSe), with the all-against-all multiclass analysis, p < 0.05, and a logarithmic LDA threshold of 3.0. Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) ad- sorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contam nated diet at 25 ng/g + 0.5% (w/w) commercial yeast cell wall- ased adsorb nt (reference group). In addition, Figure 3 shows the relative abundances of differentially enriched bacterial ASVs. Alfalfa administration led to a substantial increase in Faecalibacterium and C. catus (p < 0.05). Moreover, the populations of Bacillus and Anaerotignum, as well as microorgan- isms related to beneficial bacteria populations and producers of short-chain fatty acids (SCFAs), exhibited a substantial increase in poults that were fed with alfalfa and challenged Int. J. Mol. Sci. 2024, 25, 7977 6 of 13 with AFB1 (p < 0.05). On the other hand, the results of the morphometric analysis, serum levels of FITC-d, and cutaneous basophil hypersensitivity response (CBH) are summarised in Table 3. In general, the AF group had the lowest villus height (p < 0.0001) and the total villus cross-sectional area (p < 0.0001). Meanwhile, the Control (780.0 µm), AF + YCW (700.0 µm), alfalfa (693.3 µm), and alfalfa + AF (611.9 µm) groups showed a significant increase in villus height, followed by the AF (350.6 µm) group. Similarly, a significant increase in the total villus cross-sectional area was observed in the Control (103.2 µm2), AF + YCW (74.1 µm2), alfalfa (71.7 µm2), and alfalfa + AF (63.6 µm2) groups, followed by the AF (44.7 µm2) group (Figure 4). Furthermore, the AF group had the greatest serum FITC-d concentration (p < 0.007) in comparison to the other experimental groups. Moreover, poults of the AF + YCW (0.96 mm) and alfalfa + AF (0.86 mm) groups showed a significant increase in CBH response (p < 0.0001) in comparison to the rest of the experimental groups. Figure 2. Differential enrichment of bacterial SVs between different experimental groups (n = 7/treatment) was determined using linear discriminant analysis (LDA) effect size (LEfSe), with the all-against-all multiclass analysis, p < 0.05, and a logarithmic LDA threshold of 3.0. Control, AFB1- free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1- contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Figure 3. Relative abundances of differentially enriched bacterial ASVs (n = 7/treatment). Signifi- cance was calculated using Kruskal–Wallis test. a,b indicates significant differences between treat- ments (p < 0.05). Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Figure 3. Relative abundances of differentially enriched bacterial ASVs (n = 7/treatment). Significance was calculated using Kruskal–Wallis test. a,b indicates significa t differenc s between tr atments (p < 0.05). Control, AFB1-free diet; AF, B1-contaminated diet a 250 ng/g; alfalfa, AFB1-fr i t . ( w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) ad- sorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Table 3. Effect of powdered alfalfa leaves on ileum morphometric analysis §, serum levels of FITC-d ¥, and cutaneous basophil hypersensitivity response (CBH) in turkey poults consuming a maize–soybean-meal-based diet contaminated with 250 ng AFB1/g for 28 days. Control AF Alfalfa Alfalfa + AF AF + YCW SEM * p-Value Villus height (µm) 780.0 c 350.6 a 693.3 bc 611.9 b 700.0 bc 271.8 <0.0001 Villus width (µm) 118.9 a 146.3 b 108.8 a 112.7 a 116.9 a 36.9 0.02 Total area (µm2) 103.2 c 44.7 a 71.7 b 63.6 b 74.1 b 33.3 <0.001 FITC-d (ng/mL) 263.3 b 858.2 a 214.8 b 213.5 b 230.7 b 654.7 0.007 CBH (mm) 0.37 b 0.50 b 0.53 b 0.86 a 0.96 a 0.23 <0.0001 a,b,c Means with non-matching superscripts within rows indicates significant difference at p < 0.05. § Sixty-three measurements were taken per variable (In each treatment). ¥ Seven replicates/group (n = 1 poults per replicate). * Standard error of the mean. Control, AFB1-free diet; AF, AFB1-contaminated diet at 250 ng/g; alfalfa, AFB1- free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Int. J. Mol. Sci. 2024, 25, 7977 7 of 13 Table 3. Effect of powdered alfalfa leaves on ileum morphometric analysis §, serum levels of FITC- d ¥, and cutaneous basophil hypersensitivity response (CBH) in turkey poults consuming a maize– soybean-meal-based diet contaminated with 250 ng AFB1/g for 28 days. Villus height (μm) (μm) Total area (μm a,b,c Means with non-matching superscripts within rows indicates significant difference at p < 0.05. § Sixty-three measurements were taken per variable (In each treatment). ¥ Seven replicates/group (n = 1 poults per replicate). * Standard error of the mean. Control, AFB1-free diet; AF, AFB1-contami- nated diet at 250 ng/g; alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; alfalfa + AF, AFB1-contami- nated diet at 250 ng/g + 0.5% (w/w) adsorbent; and YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). Figure 4. Morphometric analysis of the ileum in turkey poults fed a diet containing AFB1 and ad- sorbent materials. Histological images were taken using a 4× objective on H&E-stained tissue sec- tions. (A) Control, AFB1-free diet; (B) AF, AFB1-contaminated diet at 250 ng/g; (C) alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (D) alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) ad- sorbent; and (E) YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). L = Large (μm); W = Width (μm); A = Area (μm2). 3. Discussion In this work, the inclusion of powdered alfalfa leaves into the AFB1-contaminated feed confirmed the adsorbent properties of this material previously described in in vitro [9] and in vivo [10] assays. AFB1-contaminated feed may lower the growth rate and feed efficiency of poultry. However, due to the high protein content and balanced mineral com- position, alfalfa may partly alleviate these adverse effects by supporting optimal growth for turkey poults. Thus, the adsorbent properties of alfalfa against AFB1 explain the reason for having improved growth of poults challenged with AFB1 [10]. Furthermore, alfalfa Figure 4. Morphometric analysis of the ileum in turkey poults fed a diet containing AFB1 and adsorbent materials. Histological images were taken using a 4× objective on H&E-stained tissue sections. (A) Control, AFB1-free diet; (B) AF, AFB1-contaminated diet at 250 ng/g; (C) alfalfa, AFB1- free diet + 0.5% (w/w) adsorbent; (D) alfalfa + , AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and (E) YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent (reference group). L = Large (µm); = Width (µm); A = Area (µm2). 3. iscussion In this work, the inclusion of powdered alfalfa leaves into the AFB1-contaminated feed confirmed the adsorbent properties of this material previously described in in vitro [9] and in vivo [10] assays. AFB1-contaminated feed may lower the growth rate and feed efficiency of poultry. However, due to the high protein content and balanced mineral composition, alfalfa may partly alleviate these adverse effects by supporting optimal growth for turkey poults. Thus, the adsorbent properties of alfalfa against AFB1 explain the reason for having improved growth of poults challenged with AFB1 [10]. Furthermore, alfalfa provides vitamins, minerals, fibre, and proteins that enhance chickens’ diets and favour wellness and overall performance. Notably, the natural antioxidants present in alfalfa, such as vitamins A, C, and E, help to prevent the oxidative stress induced by AFB1 [11]. Indeed, AFB1 could generate a series of reactive oxygen species, and antioxidants in alfalfa might increase the ability of broilers to counteract oxidative damage. In addition, alfalfa contains a diverse array of immune-boosting compounds [12]. By boosting the immune system, alfalfa helps broiler chickens manage the immunosuppressive effects of AFB1 [13]. It is well known that AFB1 primarily attacks the liver when administered to poultry [14], causing increased liver damage while lowering the antioxidant status in the liver tissue and plasma. Alfalfa’s potential detoxification properties and nutrient profile may prove useful in maintaining liver function and preventing the damage of the liver from toxins such as AFB1 [15]. In the present study, the LEfSE analysis likely identified S. lutetiensis as the most abundant bacterial species in the AFB1-treated group. This finding suggests that the presence of AFB1 improves the proliferation of S. lutetiensis in the gut of turkey poults. The toxic effects of AFB1 can affect both cell-mediated and humoral immunity in poultry, thus facilitating the entry and invasion of bacterial pathogens [16]. Hence, the mycotoxin- induced immunosuppression promotes the colonization of opportunistic pathogens like S. Int. J. Mol. Sci. 2024, 25, 7977 8 of 13 lutetiensis in the gut of turkey poults [17,18]. In addition, AFB1 has been reported to cause dysbacteriosis [19] and impair the nutrient absorption capacity, weaken their immune system, and generate a more suitable environment for S. lutetiensis growth [20]. On the other hand, the LEfSE analysis also showed an enhanced abundance of Faecal- ibacterium within the alfalfa-fed group compared with the positive control group (poults that received the AFB1), possibly due to the intricate interactions between alfalfa’s prop- erties and AFB1’s toxicity. Alfalfa has plenty of bioactive compounds, such as saponins and phenolic acids, which have the potential to bind AFB1 within the gut, thus reducing its absorption and minimising its toxicity [21]. This finding suggests that Faecalibacterium, rather than being inhibited by the AFB1 challenge, has flourished within a friendlier gut environment. Furthermore, alfalfa is replete with dietary fibres, particularly oligosaccha- rides and fructooligosaccharides (FOS), acting as prebiotics—substances that stimulates the growth and activity of a specific, beneficial gut bacteria—such as Faecalibacterium [22]. FOS have also been reported to exhibit antimicrobial activity by prohibiting pathogenic microbes from adhering to the intestinal epithelium. Furthermore, alfalfa demonstrates antioxidant potency, most notably by carotenoids and phenolic acids [23]. These antioxidants battle the oxidative stress that stems from AFB1 and, consequently, promote friendlier gut envi- ronments for Faecalibacterium growth [21]. Interestingly, a recent study has demonstrated a natural resilience of Faecalibacterium towards AFB1 [24] while also documenting the pro- duction of anti-inflammatory metabolites, especially butyrate, which can help ameliorate the gut inflammation linked to AFB1 [25]. The combination of Faecalibacterium prolifer- ation with those anti-inflammatory metabolites may in turn facilitate the proliferation of other health-promoting microbes and limiting pathogenic microbes by reducing their growth and their ability to colonise the gastrointestinal tract [26]. Taken together, the competitive microbial advantage, in combination with the changes to the gut environment through alfalfa supplementation, could add to the explanation for the Faecalibacterium’s increased abundance. Another notation worthy of mentioning by the LEfSE analysis is the increased relative abundance of C. catus in turkey poults that received alfalfa and AFB1. C. catus belongs to the class Clostridia, order Eubacteriales. Recently, investigators have noticed favourable correlations between C. catus and health [27]. Consequently, it is plausible to speculate that the increased abundance in C. catus in the turkey poults that received the diet contaminated with AFB1 might be attributed to the capability of the bacterium to resist and metabolise AFB1 [28]. This in turn will be a selective advantage for it over other bacteria, which succumb to the toxic effects of AFB1 [29]. Interestingly, exposure of prokaryotes and eukaryotes to AFB1 has been documented as a cause of stress [30]. C. catus has been shown to exhibit enhanced stress tolerance in comparison with other gut microbiota [31], which might afford it superior survival in the gut stressed by AFB1 and ultimately increase its relative abundance. The notable reduction in the serum concentration of FITC-d in turkey poults fed with alfalfa and AFB1 compared with the positive control group may be influenced by several factors. For instance, AFB1 can induce intestinal inflammation and increase intestinal permeability [32]. On the other hand, alfalfa is rich in bioactive compounds such as tannins and phenolic acids, which are well known for their binding properties against AFB1 in the digestive tract, particularly in the intestine, reducing its absorption [33]. Consequen- tially, this should result in a lower serum concentration of FITC-d. Moreover, alfalfa is rich in antioxidants, mainly expressed by the presence of chlorophyll, carotenoids, and vitamin E ([34]. These bioactive compounds have the capability of scavenging free radicals generated during the AFB1 metabolism and, ultimately, reducing the degree of oxidative damage, which could be responsible for the translocation of FITC-d, by affecting intestinal epithelial cells [34]. Overall, a better intestinal barrier will contribute to a better intestinal integrity. Furthermore, alfalfa can also improve the performance of the gastrointestinal tract by augmenting populations of beneficial bacteria and suppressing those considered harmful [6]. The shift from ‘harmful’ to ‘beneficial’ gut microbiota will be essential in Int. J. Mol. Sci. 2024, 25, 7977 9 of 13 increasing the efficiency of bacteria responsible for AFB1 degradation, as well as for com- peting with the mycotoxin for binding sites in the intestine, all of which will ultimately decrease its bioavailability. Alternatively, the immunomodulatory action of alfalfa [35] and its anti-inflammatory properties [36] could contribute to the epithelial tissue repair in the intestinal epithelium and, therefore, reduce the FITC-d leakage. In addition, the increase in ileum villus height in the AFB1-treated turkey poults with the addition of alfalfa as compared with the Control birds is quite interesting, but the exact mechanism is complex. AFB1 is a very potent hepatotoxin; however, exposure to this mycotoxin can also impair functions of the intestine, which can result in damage to the lining of villus where the enterocytes are situated. This damage can result in a reduction in the capacity of the body to absorb nutrients and can also have an impact on the overall health of the gut. Despite the damage to the enterocytes lining the villus, the body might try to compensate for this damage by increasing the height of the villus in order to maintain a greater surface area for absorption. This effect could possibly be viewed as a mechanism to help the body adapt over the short-term exposure. Moreover, fibres and other bioactive compounds from alfalfa could be prebiotic to beneficial gut bacteria, thus promoting their growth and maintaining the health of the gut and the absorption of nutrients [37]. For instance, increasing beneficial bacteria and their metabolites could stimulate villus growth and improve intestinal function. The antioxidants present in alfalfa might also reduce oxidative stress because of AFB1, which, in turn, could be beneficial in regard to healthier villus [23]. 4. Materials and Methods 4.1. Animal Source, Diets, and Experimental Design Three hundred and fifty 1-day-old female Nicholas-700 turkey poults (Aviagen Inc., Huntsville, AR, USA) were raised in pens for 28 d. Yeast cell wall (YCW) was used as a reference material because it is a commercial mycotoxin binder. Poults were collectively weighted (10 birds/pen) with 7 repetitions per treatment and randomly allocated to one of the five experimental groups: (1) Control, AFB1-free diet; (2) AF (aflatoxin), AFB1- contaminated diet at 250 ng/g; (3) alfalfa (alfalfa adsorbent), AFB1-free diet + 0.5% (w/w) adsorbent; (4) alfalfa + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) adsorbent; and (5) YCW + AF, AFB1-contaminated diet at 250 ng/g + 0.5% (w/w) commercial yeast cell wall-based adsorbent. The percentage of adsorbents added to the diets is equivalent to 5 g of adsorbent/kg of feed consumed. Details of the experimental diet contaminated with AFB1 and the adsorbent material are fully described in our previous study [9]. Water and feed were offered ad libitum. After 28 d, from each replication, three poults (n = 21) were selected to evaluate gut integrity and cellular immunity. One poult from each replication (n = 7) was also selected to assess the morphometry of the ileum and ceca content for the microbiota analysis. All animal handling procedures complied with the Institutional Animal Care and Use Committee (IACUC) at the University of Arkansas, Fayetteville (protocol No. 22020). 4.2. Microbial Community Following euthanasia, one cecum was removed, and the contents were manually squeezed into a sterile tube featuring a RNA/DNA shield (Zymo Research, Irvine, CA, USA). Samples were stores at −20 ◦C until DNA extraction was performed. A Quick-DNA Fecal/Soil Mi-crobe Miniprep Kit (Zymo Research, Irvine, CA, USA) was used to extract microbial DNA from the ceca contents following the manufacturer’s instructions. With the NanoDrop ND-1000 (Wilmington, DE, USA), the DNA concentration and quality were assessed. The bacterial 16S rRNA gene’s V3–V4 region was amplified using primers 341F (CCTAYGGGRBGCASCAG) and 806R (GGACTAC-NNGGGTATCTAAT). A NEBNext® UltraTM Library Prep Kit (New England Biolabs, Ipswich, MA, USA) was used to produce a library, which was then sequenced using PE250 on an Illumina HiSeq platform. Int. J. Mol. Sci. 2024, 25, 7977 10 of 13 4.3. Bioinformatics and Statistical Analysis The QIIME 2 pipeline (v. 2023.07) was employed to analyse raw DNA sequencing reads. In summary, the cut–adapt plugin was used to eliminate primer and adapter sequences from every read. After that, low-quality reads were eliminated using the quality filter and paired-end reads were combined using VSEARCH join pairs. Sequences were then trimmed to 403 nucleotides and denoised by Deblur [38]. The resultant amplicon sequence variants (ASVs) were then classified using a Bayesian classifier and the Ribosomal Database Project (RDP) 16S rRNA training set (v. 18) for the bacterial taxonomy. For categorization, a bootstrap confidence of 80% was applied. ASVs with a classification of <80% were assigned the name of the last confidently assigned level followed by “unclassified”. The analysis excluded samples with ASVs found in less than 5% of the samples. The EzBioCloud 16S database (v.2023.08.23. https://www.ezbiocloud.net/identify Accessed on 28 November 2024) was used to further confirm Tophree 50 ASVs and other differentially enriched microorganisms, reclassifying them as needed. 4.4. Ileal Morphology A hematoxylin and eosin (H&E) staining technique was routinely applied to ileum samples that were obtained midway between Meckel’s diverticulum and the ileocecal junction. The samples were cut into 5 µm thick sections and embedded in paraffin. Pho- tomicrographs were taken using a camera ICC50W associated with a microscope Leica DM2500 (Leica, Wetzlar, Germany). The variables measured were the villus height, villus width, and the villus cross-sectional area (villus height × villus width). Morphometric measurements were performed using the ImageJ 1.52v software. Every variable in each treatment considered 63 measurements (9 per replicate). 4.5. Barrier Function Intestinal permeability was assessed by measuring the levels of the biomarker fluores- cein isothiocyanate dextran (FITC-d, molecular weight 3–5 kDa, Merck KGaA, Darmstadt, Germany) in the serum. To achieve this, FITC-d (8.32 mg/kg) was given orally to twenty- one poults per treatment one hour before euthanasia. The serum samples were processed according to the recommendations of Baxter et al. [39], and fluorescence measurements were performed at 485 nm excitation and 528 nm emission using a Synergy HT multimode micro plate reader (Bio Tek Instruments, Inc., Winooski, VT, USA). 4.6. Immunity The skin response to phytohemagglutinin m (PHA-M) was used to measure cellular im- mune activity using cutaneous basophil hypersensitivity (CBH). On day 28, three poults per replicate were randomly selected and injected intradermally in the interdigital skin between the third and fourth digits of the left foot with 0.1 mL of PHA m (Gibco, Grand Island, NY, USA). The CBH response was calculated by using the following mathematical expression: CBH (mm) = (thickness 24 h postinjection)− (thickness preinjection) 4.7. Statistical Analysis The ASV tables were standardised through the application of cumulative sum scaling (CSS) within the R (v. 1.4.0) metagenome Seq package [40]. The phyloseq package v. 1.42.0 was used to calculate the α-diversity (Shannon’s Index, Observed ASV, and Pielou’s Evenness) and β-diversity (unweighted and weighted UniFrac distances), which were then plotted using the ggplot2 program in R [41]. The statistical significance of α-diversity and relative abundance was assessed by a non-parametric Kruskal–Wallis test, which was followed by a pairwise Wilcoxon rank sum test. Using the ADONIS function in the vegan package v. 2.6.4, the non-parametric permutational multivariate analysis of variance (PERMANOVA) was used to determine the significance in β-diversity [42]. To determine the differential enrichment of bacteria ASVs among different groups of bacteria, linear Int. J. Mol. Sci. 2024, 25, 7977 11 of 13 discriminant analysis (LDA) effect size (LEfSe) was employed, with a threshold of p < 0.05 and an LDA score of ≥3.0 [43]. Finally, morphometric, serum concentrations of FITC-d, and CBH data were all subjected to ANOVA in a completely randomised design, utilising the general linear model process in SAS [44]. By using the Tukey multiple range test at p < 0.05, means were separated. 4.8. Data Availability Raw sequencing reads were deposited in the NCBI GenBank SRA database under the accession number PRJNA1020155. 5. Conclusions In the present study, the results indicated that the addition of alfalfa adsorbent pro- moted the proliferation of beneficial bacteria, like Faecalibacterium and Coprococcus catus, increased the height of the villi and significantly enhanced intestinal permeability, which was in contrast to the AF group. Finally, we evaluated the complex link between dietary supplementation with alfalfa, AFB1, and the cellular immune response. The significant increase in CBH in response to phytohemagglutinin injection in turkey poults supple- mented with alfalfa and AFB1 may be explained by the fact that alfalfa and AFB1 interact to boost the immunological response, since alfalfa contains components that may counteract the immunosuppressive effects of AFB1, resulting in a more robust immune response. In conclusion, the results of this study indicate that alfalfa may serve as an effective dietary intervention for the mitigation of the adverse effects of AFB1 in turkey poults. Author Contributions: Conceptualization, J.A.M.-G., J.L., S.G.-R., A.M.-A. and G.T.-I.; methodol- ogy, M.d.J.N.-R., J.O.H.-R., J.D.L. and R.S.-C.; software, M.d.J.N.-R. and A.V.-D.; validation, G.Z., S.G.-R., A.M.-A. and G.T.-I.; formal analysis, M.d.J.N.-R. and A.V.-D.; investigation, J.D.L., A.S. and R.S.-C.; resources, B.M.H. and G.T.-I.; data curation, M.d.J.N.-R. and J.L.; writing—original draft preparation, J.A.M.-G., J.L., S.G.-R. and A.M.-A.; writing—review and editing, X.H.-V. and G.T.-I.; visualization, J.L. and J.A.M.-G.; supervision, S.G.-R., A.M.-A. and G.T.-I.; project administration and funding acquisition, B.M.H. and G.T.-I. All authors have read and agreed to the published version of the manuscript. Funding: This project was funded by UNAM-PAPIIT grant number IA101523 and by funds pro- vided by USDA Animal Health Awards (FY2021 & FY2022), as well as by USDA-NIFA Sustain- able Agriculture Systems, Grant No. 2019-69012-29905. Title of Project: Empowering U.S. Broiler Production for Transformation and Sustainability USDA-NIFA (Sustainable Agriculture Systems): No. 2019-69012-29905. Institutional Review Board Statement: All animal handling procedures complied with the Institu- tional Animal Care and Use Committee (IACUC) at the University of Arkansas, Fayetteville (protocol No. 22020). Informed Consent Statement: Not applicable. Data Availability Statement: Upon reasonable request, and subject to review, the authors will provide the data that support the findings of this study. Conflicts of Interest: The authors declare no conflicts of interest. References 1. Ghaemmaghami, S.S.; Rouhanipour, H.; Sharifi, S.D. Aflatoxin levels in poultry feed: A comparison of mash and pellet forms. Poult. Sci. 2024, 103, 103254. [CrossRef] [PubMed] 2. Fathima, S.; Al Hakeem, W.G.; Selvaraj, R.K.; Shanmugasundaram, R. Beyond protein synthesis: The emerging role of arginine in poultry nutrition and host-microbe interactions. Front. Physiol. 2024, 14, 1326809. [CrossRef] [PubMed] 3. Kim, W.K.; Herfel, T.M.; Dunkley, C.S.; Hester, P.Y.; Crenshaw, T.D.; Ricke, S.C. The effects of alfalfa-based molt diets on skeletal integrity of white leghorns. Poult. Sci. 2008, 87, 2178–2185. [CrossRef] [PubMed] 4. Yıldız, A.Ö.; Şentürk, E.T.; Olgun, O. Use of alfalfa meal in layer diets–a review. J. World’s Poult. Sci. 2020, 76, 134–143. [CrossRef] 5. Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [CrossRef] Int. J. Mol. Sci. 2024, 25, 7977 12 of 13 6. Chen, X.; Li, X.; Chen, D.; Zhao, W.; Zhang, X.; Yuan, W.; Si, H.; Deng, X.; Du, R.; Xu, C. Effects of dietary alfalfa meal supplementation on the growth performance, nutrient apparent digestibility, serum parameters, and intestinal microbiota of raccoon dogs (Nyctereutes procyonoides). Animals 2024, 14, 623. [CrossRef] [PubMed] 7. Ouyang, K.; Xu, M.; Jiang, Y.; Wang, W. Effects of alfalfa flavonoids on broiler performance, meat quality, and gene expression. Can. J. Anim. Sci. 2021, 96, 332–341. [CrossRef] 8. Qin, P.; Hu, L.; Liu, Y.; Hu, X.; Zhang, X.; Rosado, A.S.; Wei, G.; Chen, C. Responses of soil microbial communities and nutrient dynamics under continuous alfalfa (Medicago sativa L.) cultivation. Appl. Soil Ecol. 2024, 197, 105356. [CrossRef] 9. Nava-Ramírez, M.J.; Vázquez-Durán, A.; Figueroa-Cárdenas, J.d.D.; Hernández-Patlán, D.; Solís-Cruz, B.; Téllez-Isaías, G.; López-Coello, C.; Méndez-Albores, A. Removal of aflatoxin B1 using alfalfa leaves as an adsorbent material: A comparison between two in vitro experimental models. Toxins 2023, 15, 604. [CrossRef] [PubMed] 10. Nava-Ramírez, M.J.; Maguey-González, J.A.; Gómez-Rosales, S.; Hernández-Ramírez, J.O.; Latorre, J.D.; Du, X.; López-Coello, C.; Hargis, B.M.; Téllez-Isaías, G.; Vázquez-Durán, A.; et al. Efficacy of powdered alfalfa leaves to ameliorate the toxic effects of aflatoxin B1 in turkey poults. Mycotoxin Res. 2024, 40, 269–277. [CrossRef] 11. Alpsoy, L.; Yalvac, M.E. Key roles of vitamins A, C, and E in aflatoxin B1-induced oxidative stress. Vitam. Horm. 2024, 2011, 287–305. [CrossRef] 12. Ahmadi, A.; Shahidi, S.A.; Safari, R.; Motamedzadegan, A.; Ghorbani-HasanSaraei, A. Evaluation of stability and antibacterial properties of extracted chlorophyll from alfalfa (Medicago sativa L.). Food Chem. Toxicol. 2022, 163, 112980. [CrossRef] [PubMed] 13. Mohsenzadeh, M.S.; Hedayati, N.; Riahi-Zanjani, B.; Karimi, G. Immunosuppression following dietary aflatoxin B1 exposure: A review of the existing evidence. Toxin Rev. 2016, 35, 121–127. [CrossRef] 14. Quezada, T.; Cuellar, H.; Jaramillo-Juarez, F.; Valdivia, A.G.; Reyes, J.L. Effects of aflatoxin B1 on the liver and kidney of broiler chickens during development. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2000, 125, 265–272. [CrossRef] [PubMed] 15. Christou, A.; Antoniou, C.; Christodoulou, C.; Hapeshi, E.; Stavrou, I.; Michael, C.; Fatta-Kassomps, D.; Fotopoulos, V. Stress- related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.) plants. Sci. Total Environ. 2016, 557, 652–664. [CrossRef] [PubMed] 16. Ditta, Y.A.; Mahad, S.; Bacha, U. Aflatoxins: Their toxic effect on poultry and recent advances in their treatment. In Mycotoxins- Impact and Management Strategies; IntechOpen: London, UK, 2018. [CrossRef] 17. Crispo, M.; Shivaprasad, H.L.; Cooper, G.L.; Bickford, A.A.; Stoute, S.T. Streptococcosis in commercial and noncommercial avian species in California: 95 cases (2000–2017). Avian Dis. 2018, 62, 152–162. [CrossRef] [PubMed] 18. Maguey-González, J.A.; Liu, J.; Zhang, G.; Latorre, J.D.; Hernández-Ramírez, J.O.; de Jesús Nava-Ramírez, M.; Senas-Cuesta, R.; Gómez-Rosales, S.; de Lourdes Ángeles, M.; Stein, A.; et al. Assessment of the impact of humic acids on intestinal microbiota, gut integrity, ileum morphometry, and cellular immunity of turkey poults fed an aflatoxin B1-contaminated diet. Toxins 2024, 16, 122. [CrossRef] 19. Huang, S.; Lin, L.; Wang, S.; Ding, W.; Zhang, C.; Shaukat, A.; Xu, B.; Yue, K.; Zhang, C.; Liu, F. Total flavonoids of Rhizoma drynariae mitigates aflatoxin B1-induced liver toxicity in chickens via microbiota-gut-liver axis interaction mechanisms. Antioxidants 2023, 12, 819. [CrossRef] [PubMed] 20. Chen, X.; Naehrer, K.; Applegate, T.J. Interactive effects of dietary protein concentration and aflatoxin B1 on performance, nutrient digestibility, and gut health in broiler chicks. Poult. Sci. 2016, 95, 1312–1325. [CrossRef] 21. Wang, L.; Gao, M.; Kang, G.; Huang, H. The potential role of phytonutrients flavonoids influencing gut microbiota in the prophylaxis and treatment of inflammatory bowel disease. Front. Nutr. 2021, 8, 798038. [CrossRef] [PubMed] 22. Kim, W.K.; Donalson, L.M.; Mitchell, A.D.; Kubena, L.F.; Nisbet, D.J.; Ricke, S.C. Effects of alfalfa and fructooligosaccharide on molting parameters and bone qualities using dual energy X-ray absorptiometry and conventional bone assays. Poult. Sci. 2006, 85, 15–20. [CrossRef] [PubMed] 23. Zhang, X.; Guo, X.S.; Li, F.H.; Usman, S.; Zhang, Y.X.; Ding, Z.T. Antioxidant, flavonoid, α-tocopherol, β-carotene, fatty acids, and fermentation profiles of alfalfa silage inoculated with novel Lactiplantibacillus plantarum and Pediococcus acidilactici strains with high-antioxidant activity. Anim. Feed. Sci. Technol. 2022, 288, 115301. [CrossRef] 24. Jin, J.; Beekmann, K.; Ringø, E.; Rietjens, I.M.; Xing, F. Interaction between food-borne mycotoxins and gut microbiota: A review. Food Control 2021, 126, 107998. [CrossRef] 25. Sitkin, S.; Pokrotnieks, J. Clinical potential of anti-inflammatory effects of Faecalibacterium prausnitzii and butyrate in inflammatory bowel disease. Inflamm. Bowel Dis. 2019, 25, e40–e41. [CrossRef] [PubMed] 26. Nyangale, E.P.; Farmer, S.; Cash, H.A.; Keller, D.; Chernoff, D.; Gibson, G.R. Bacillus coagulans GBI-30, 6086 modulates Faecalibac- terium prausnitzii in older men and women. J. Nutr. 2015, 145, 1446–1452. [CrossRef] [PubMed] 27. Yang, R.; Shan, S.; Shi, J.; Li, H.; An, N.; Li, S.; Ciu, K.; Guo, H.; Li, Z. Coprococcus eutactus, a potent probiotic, alleviates colitis via acetate-mediated IgA response and microbiota restoration. J. Agric. Food Chem. 2023, 71, 3273–3284. [CrossRef] [PubMed] 28. Belanche, A.; Palma-Hidalgo, J.M.; Jiménez, E.; Yáñez-Ruiz, D.R. Enhancing rumen microbial diversity and its impact on energy and protein metabolism in forage-fed goats. Front. Vet. Sci. 2023, 10, 1272835. [CrossRef] [PubMed] 29. Mirzaei, R.; Afaghi, A.; Babakhani, S.; Sohrabi, M.R.; Hosseini-Fard, S.R.; Babolhavaeji, K.; Ali Akbari, S.K.; Yousefimashouf, R.; Karampoor, S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed. Pharmacother. 2021, 139, 111619. [CrossRef] [PubMed] 30. Wang, J.; Xie, Y. Review on microbial degradation of zearalenone and aflatoxins. Grain Oil Sci. Technol. 2020, 3, 117–125. [CrossRef] Int. J. Mol. Sci. 2024, 25, 7977 13 of 13 31. Rais, A.; Chand, P.; Malik, M.; Prasad, T. Human microbiota: Role in cancer progression and therapy. In Microbial Crosstalk with Immune System; Academic Press: New Delhi, India, 2002; pp. 145–175. 32. Hernández-Ramírez, J.O.; Nava-Ramírez, M.J.; Merino-Guzmán, R.; Téllez-Isaías, G.; Vázquez-Durán, A.; Méndez-Albores, A. The effect of moderate-dose aflatoxin B 1 and Salmonella Enteritidis infection on intestinal permeability in broiler chickens. Mycotoxin Res. 2020, 36, 31–39. [CrossRef] [PubMed] 33. Adeleye, A.O.; Ajiboye, T.O.; Iliasu, G.A.; Abdussalam, F.A.; Balogun, A.; Ojewuyi, O.B.; Yakubu, M.T. Phenolic extract of Dialium guineense pulp enhances reactive oxygen species detoxification in aflatoxin B1 hepatocarcinogenesis. J. Med. Food 2014, 17, 875–885. [CrossRef] [PubMed] 34. Cao, W.; Yu, P.; Yang, K.; Cao, D. Aflatoxin B1: Metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicol. Mech. Methods 2022, 32, 395–419. [CrossRef] [PubMed] 35. Olayem, B.S.; Olaitan, O.B.; Akinola, A.B. Immunomodulatory plant based foods, it’s chemical, biochemical and pharmacological approaches. In Medicinal Plants-Chemical, Biochemical, and Pharmacological Approaches; IntechOpen: London, UK, 2023. [CrossRef] 36. Zhang, Y.; Usman, S.; Li, Q.; Li, F.; Zhang, X.; Nussio, L.G.; Guo, X. Effects of antioxidant-rich Lactiplantibacillus plantarum inoculated alfalfa silage on rumen fermentation, antioxidant and immunity status, and mammary gland gene expression in dairy goats. J. Anim. Sci. Biotechnol. 2024, 15, 9. [CrossRef] [PubMed] 37. Li, Z.; Sang, R.; Feng, G.; Feng, Y.; Zhang, R.; Yan, X. Microbiological and metabolic pathways analysing the mechanisms of alfalfa polysaccharide and sulfated alfalfa polysaccharide in alleviating obesity. Int. J. Biol. Macromol. 2024, 263, 130334. [CrossRef] [PubMed] 38. Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Zech Xu, Z.; Kightley, E.P.; Thompson, L.R.; Hyde, E.R.; Gonzalez, A.; et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2017, 2, e00191–e00216. [CrossRef] [PubMed] 39. Baxter, M.F.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, K.D.; Graham, L.E.; Wolfenden, A.D.; Hernandez- Velasco, X.; Bielke, L.R.; et al. Optimizing fluorescein isothiocyanate dextran measurement as a biomarker in a 24-h feed restriction model to induce gut permeability in broiler chickens. Front. Vet. Sci. 2017, 4, 56. [CrossRef] [PubMed] 40. Paulson, J.N.; Stine, O.C.; Bravo, H.C.; Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 2013, 10, 1200–1202. [CrossRef] [PubMed] 41. McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [CrossRef] [PubMed] 42. Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package, Package Version 2.5-5. 2019. Available online: https://github.com/vegandevs/vegan (accessed on 6 May 2024). 43. Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [CrossRef] [PubMed] 44. SAS Institute Inc. SAS/Share: 9.4 User’s Guide, 2nd ed.; SAS Documentation: Cary, NC, USA, 2002; 288p. Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 51 Discusión Experimentos de adsorción in vitro En la presente investigación, se evaluó la capacidad adsorbente de AFB1 de un adsorbente orgánico derivado de hojas de alfalfa usando dos modelos in vitro (un modelo pH-dependiente y un modelo que emuló el TGI de las aves). Varios métodos in vitro han proporcionado una mayor comprensión en cuanto a la afinidad y la capacidad de unión entre los agentes adsorbentes y las micotoxinas, lo que los convierte en herramientas útiles para determinar su eficacia de adsorción (Diaz et al., 2003). La mayoría de los estudios con modelos in vitro, se han enfocado en utilizar soluciones buffer con pHs que van desde 3 a 7, principalmente, con el fin de imitar el pH estomacal e intestinal de los animales, respectivamente (Kolawole et al., 2019). En este estudio, se observó que el uso del adsorbente de hojas de alfalfa (0.5%, p/v) en un modelo in vitro pH-dependiente con tres diferentes valores de pH (2, 5 y 7), y a una concentración de 250 ng de AFB1/mL, no mostró una diferencia estadísticamente significativa en el porcentaje de adsorción de AFB1 en ninguno de los tres valores de pH (2, 5 y 7), dando porcentajes del 98.2%, 99.9% y 98.2%, respectivamente. Se ha comprobado que el pH de una solución puede afectar significativamente la capacidad de adsorción de un adsorbato en un medio acuoso debido a las interacciones electrostáticas existentes entre la carga superficial del adsorbente y el adsorbato (Abollino et al., 2003). Si la interacción electrostática fuera el único mecanismo para la adsorción de AFB1, entonces la capacidad de eliminación debería ser máxima dentro del rango de pH 2-5 (pHpcz = 6.51). En este rango de pH, la superficie del adsorbente de hojas de alfalfa está cargada positivamente y los átomos de oxígeno de la molécula de AFB1 están cargados negativamente, lo cual permitiría la formación de enlaces de hidrógeno entre el adsorbente y el adsorbato (Al-Degs et al., 2008). Sin embargo, el pH en el presente estudio no ejerció ninguna influencia en la eliminación de AFB1 en este modelo in vitro, lo que sugiere que podría estar involucrada algún otro tipo de interacción. Sin embargo, estas condiciones no reflejan completamente el entorno del TGI de los animales, dado que otros factores como la temperatura, el tiempo de paso del alimento, la presencia de enzimas digestivas, el tipo de alimento, las sales biliares y los nutrientes pueden influir en el proceso de adsorción, por lo que, algunos investigadores han desarrollado modelos in vitro que emulen con 52 mayor precisión el TGI de los animales (Di Gregorio et al., 2014; Kolawole et al., 2019; Vázquez- Durán et al., 2022). En este estudio, también se empleó un modelo que emula el TGI de las aves, en este modelo se observó que el uso del adsorbente de hojas de alfalfa (0.5%, p/v), a una concentración de 250 ng de AFB1/mL disminuyó su porcentaje de adsorción (88.8%). Esto se atribuyó a la dificultad que encontró el adsorbente para capturar la molécula AFB1 en un entorno más complejo que contiene pepsina y sales biliares (Li et al., 2016). Además, Oliveira et al. (2019) reportaron que la pérdida y generación o liberación de compuestos es bastante común durante la digestión, principalmente en la sección intestinal, debido a la actividad de las sales biliares. Además, el impedimento estérico en moléculas orgánicas puede obstaculizar o limitar la proximidad entre las moléculas en una reacción química, afectando así la capacidad de adsorción de las micotoxinas (Avantaggiato et al., 2014). Finalmente, según Avantaggiato et al. (2004), la presencia de diversas sustancias, como coccidiostáticos, vitaminas, minerales, aminoácidos y otros componentes de la dieta, podrían influir en la capacidad del adsorbente para unirse a niveles bajos de AFB1. En ambos modelos in vitro, el porcentaje de adsorción de AFB1 de la PCL fue significativamente menor, en comparación con el adsorbente orgánico. Caracterización del adsorbente de hojas de alfalfa La caracterización de los adsorbentes orgánicos de micotoxinas se lleva a cabo mediante diversas técnicas con el objetivo de comprender los principales mecanismos físicos y químicos implicados en la adsorción (Vázquez-Durán et al., 2022). La espectroscopia FTIR es una técnica ampliamente empleada para caracterizar a los adsorbentes orgánicos de micotoxinas debido a que proporciona información detallada de la presencia de los grupos funcionales de los materiales (Pellenz et al., 2023). Los adsorbentes orgánicos están compuestos principalmente por proteínas, carbohidratos, lípidos, curcuminoides, flavonoides, alcaloides, esteroides, terpenoides, saponinas, fenólicos, glucósidos y clorofilas. Todos estos componentes presentan diversos grupos funcionales, como hidroxilo, amino, carboxilo, carboxilato, amida, fosfato, éster y cetona, que pueden desempeñar un papel parcial en la adsorción de aflatoxinas (Adunphatcharaphon et al., 2020; Karmanov et al., 2020; Shar et al., 2016). El material adsorbente que se estudió en esta investigación, presentó principalmente cinco grupos funcionales: los hidroxilo, las cadenas alifáticas, los compuestos aromáticos, los carboxilos y los carbonilos. Se ha 53 documentado que la adsorción de AFB1 puede ser facilitada por la hidrofobicidad de los adsorbentes, la cual se atribuye a la presencia de grupos hidrofóbicos como los metilos y los grupos aromáticos en su superficie (Vázquez-Durán et al., 2021). Teniendo en cuenta que el pH del medio podría influir en la adsorción de AFB1, es crucial determinar la constante de disociación ácida (pka) de los grupos funcionales presentes en el adsorbente de hojas de alfalfa. El pka indica la tendencia de un ácido a ceder un protón (H⁺) en una solución. Los grupos funcionales se desprotonan cuando el pH del medio supera su pKa (Nogueira et al., 2022). Se sabe que un menor valor de pKa indica una mayor fuerza ácida, lo que implica una mayor tendencia para perder o liberar un protón en una solución acuosa. Por el contrario, un mayor valor de pKa señala un ácido más débil y menos propenso a ceder un protón. Esencialmente, determinar el pKa proporciona información valiosa sobre la capacidad del adsorbente para interactuar con AFB1 en diferentes condiciones de pH (Nogueira et al., 2022). Dado que el pKa del grupo hidroxilo es de ~11.6, del grupo amina es de ~40 y del grupo amida es de ~18, a un pH más bajo, aproximadamente por debajo de ~11.6, ~40 y ~18 para el grupo hidroxilo, la amina y la amida respectivamente, estarán principalmente protonados, mientras que, a un pH más alto, estarán principalmente desprotonados. Esta condición facilita la formación de enlaces de hidrógeno con los átomos de oxígeno de la molécula de AFB1 en las tres secciones simuladas del TGI (pH 2, 5 y 7) de las aves (Figura 1). La presencia del grupo carboxilo solo permite la formación de enlaces de hidrógeno a pH de 2 debido a que su pka es de ~4.5. Es relevante destacar que el pKa de la molécula AFB1 es de 17.79, lo que indica que en el intervalo de pH 2 a 7, la AFB1 no se encuentra ni protonada ni desprotonada. Por lo tanto, en el contexto de este estudio, el pH no afectó la adsorción de AFB1, independientemente de la carga superficial del adsorbente. 54 Figura 1. Formación de enlaces de hidrógeno entre la molécula de AFB1 y los principales grupos funcionales existentes en el adsorbente de alfalfa en las tres secciones simuladas del tracto gastrointestinal de las aves (pH 2, 5 y 7). La microscopía electrónica de barrido (MEB) destaca como una de las técnicas más empleadas para el análisis detallado de la microestructura y morfología. Es ampliamente reconocido que las propiedades de adsorción de los adsorbentes orgánicos pueden estar vinculadas tanto a sus características estructurales como químicas ya que las cavidades proporcionan un área de unión entre la superficie del adsorbente y el adsorbato (Malik et al., 2015). Por lo general, la capacidad de adsorción de aflatoxinas aumenta proporcionalmente con la cantidad de poros o cavidades presentes en la superficie de los biomateriales (Vázquez-Durán et al., 2022). La espectroscopia de fluorescencia de rayos X (EFRX) constituye una técnica de microanálisis químico típicamente complementaria al MEB, ya que se aplica extensamente para la identificación elemental y el mapeo compositivo de muestras sólidas (Hodoroaba, 2020; Shindo et al., 2002). El adsorbente derivado de hojas de alfalfa, exhibe una estructura caracterizada por una superficie rugosa con algunos bordes dispuestos en una configuración laminar. Estos espacios entre las estructuras desordenadas y heterogéneas podrían proporcionar una amplia disponibilidad de sitios de superficie y una mayor exposición de los grupos funcionales presentes en el adsorbente de hojas de alfalfa. Esta disposición 55 favorece la adsorción de AFB1, los resultados concuerdan con lo reportado previamente por Shar et al. (2016) quienes observaron una mejor adsorción de aflatoxinas con el adsorbente elaborado a partir de cáscaras de plátano secadas en horno, el cual exhibía una estructura superficial rugosa y un tamaño de poro más grande en comparación con el adsorbente elaborado a partir de cáscaras de plátano liofilizadas (Wang et al., 2020). En cuanto al análisis elemental, el adsorbente preparado a partir de hojas de alfalfa mostró una cantidad significativa de tres elementos principalmente: carbono (49.44%), oxígeno (43.92%) y nitrógeno (5.48%), lo cual resulta esencial para el proceso de eliminación de la AFB1, estos resultados son similares a los reportados por Vázquez-Durán et al. (2023) quienes observaron que el adsorbente a base de cuscuta, presentó valores de 51.24% de carbono, 43.52% de oxígeno y 4.62% de nitrógeno, los cuales son esenciales en la capacidad adsorbente de contaminantes. La técnica de difracción de rayos X (DRX) es una técnica que se usa para investigar las propiedades cristalinas de los materiales. Esta técnica permite evaluar la disposición atómica, el tamaño de los cristales, los parámetros de la red y las imperfecciones en los materiales estudiados (Pellenz et al., 2023). Los patrones de DRX para el adsorbente derivado de las hojas de alfalfa mostró una estructura amorfa distintiva basada en amplios picos de difracción, presentando tres picos de intensidad considerable a 2θ = 25.04°,13.72° y 17.02°, los cuales se asociaron con la presencia de celulosa cristalina y almidón semicristalino. Diversos autores han señalado que los desechos agrícolas se caracterizan por un alto contenido de celulosa, hemicelulosa, lignina, almidón y ceniza los cuales contienen una gran variedad de grupos funcionales formados principalmente por carbono y oxígeno, lo que les confiere propiedades favorables para la adsorción de contaminantes y metales pesados (Hashem et al., 2006; Sud et al., 2008). En contraste con los resultados obtenidos del espectro FTIR, se observó una banda entre los 3668 y 3280 cm−1, la cual corresponde a las vibraciones de estiramiento de O-H y los enlaces H asociados a la celulosa, pectina y lignina, los principales componentes de adsorción según lo reportado por Adunphatcharaphon et al. (2020). La celulosa, al ser un homopolímero cristalino de glucosa con enlaces de hidrógeno intramoleculares e intermoleculares (Sud et al., 2008), tendría la capacidad de formar una gran cantidad de enlaces de hidrógeno con los oxígenos de la molécula de AFB1. Por otro lado, el punto de carga cero (pHpzc) ofrece información relevante sobre la carga neta superficial de los adsorbentes orgánicos y se define como el pH en el cual la carga superficial del adsorbente se equilibra y alcanza cantidades iguales en la capacidad de intercambio catiónico y aniónico. Se ha sugerido que cuando el pH es menor que el pHpzc, la superficie del biomaterial 56 adquiere una carga positiva, mientras que, si el pH es mayor que el pHpzc, la superficie estará cargada negativamente (Lim et al., 2017; Zavala-Franco et al., 2018). Se determinó que el pHpzc del adsorbente derivado de las hojas de alfalfa fue de 6.51. En consecuencia, la superficie del adsorbente está cargada positivamente para valores de pH inferiores a 6.51 y negativamente para valores de pH superiores a éste, por lo que en el rango de pH de 2 a 5, la interacción entre la superficie del adsorbente de hojas de alfalfa y los átomos de oxígeno (cargados negativamente) de la molécula de AFB1 permitirían la interacción electrostática entre el adsorbente y el adsorbato (Figura 2). Sin embargo, en el experimento in vitro dependiente del pH, no se observaron diferencias estadísticamente significativas en la adsorción de AFB1, lo que sugiere que, a un pH de 7, la interacción electrostática no constituye el principal mecanismo de adsorción, lo cual concuerda con lo reportado por Adunphatcharaphon et al. (2020). Figura 2. Interacción electrostática de acuerdo con el pHpzc entre la superficie del adsorbente de hojas de alfalfa y los átomos de oxígeno de la molécula de AFB1. 57 El potencial ζ también se emplea para estudiar la carga superficial de los adsorbentes y sus posibles interacciones con el adsorbato y se determina experimentalmente a través de la medición de la movilidad electroforética de las partículas sólidas dispersas en un líquido al aplicar un campo eléctrico en la suspensión (Pellenz et al., 2023). El potencial ζ del adsorbente derivado de las hojas de alfalfa fue positivo a pH 2 y significativamente más negativo en los pHs de 5 y 7. Por lo tanto, se propone que existe una contribución significativa a la adsorción de AFB1 cuando se utiliza el adsorbente en pH ácidos (pH 2), debido a las interacciones electrostáticas entre el adsorbente y la AFB1 (Figura 3). Las interacciones electrostáticas varían según el pH de la solución; por ende, en este estudio, las atracciones iónicas tienen una influencia menor en el proceso de adsorción de AFB1. El punto isoeléctrico (pI) se define como el pH en el cual una molécula o una superficie sólida lleva una carga neta igual a cero, debido al equilibrio entre los grupos funcionales que pueden ionizarse en la superficie. Cuando el pH de una solución es menor que el pI, predominarán las cargas positivas en la estructura. Esto ocurre debido al exceso de iones H+ en la solución, lo que provoca que los grupos funcionales ácidos (como los grupos carboxilo) presentes en el adsorbente estén predominantemente protonados. El pI del adsorbente de hojas de alfalfa fue de 2.2, por lo que se esperaría que a un pH inferior a su pI, la superficie del adsorbente interactúe con la molécula de AFB1 mediante la formación de enlaces de hidrógeno con los grupos oxígeno de la AFB1, dando mejores resultados de adsorción (Figura 3). 58 Figura 3. Interacción en la interfase del potencia ζ y el punto isoeléctrico (pI) entre el adsorbente de hojas de alfalfa y los átomos de oxígeno de la molécula de AFB1. Varios estudios han demostrado que la clorofila, es capaz de formar complejos no covalentes con la AFB1, independientemente de la temperatura o el pH (Arimoto et al., 1993; Nava-Ramírez et al., 2021; Simonich et al., 2007). Por lo tanto, en el presente estudio se realizó la determinación cuantitativa de la clorofila y los carotenoides mediante las técnicas de espectroscopía de UV-Vis y la espectroscopía de fluorescencia, las cuales son útiles para evaluar el contenido de los pigmentos fotosintéticos de los adsorbentes orgánicos. Para determinar el contenido preciso de los principales pigmentos fotosintéticos en el adsorbente de alfalfa, se emplearon los coeficientes de absorción específicos desarrollados por Lichtenthaler y Buschmann. (2001), utilizando la técnica de espectroscopía de UV-Vis. Se observó que el contenido total de clorofila en el adsorbente preparado a partir de hojas de alfalfa, fue significativamente mayor que el contenido total de carotenoides. El espectro de fluorescencia del adsorbente de alfalfa muestra dos máximos de fluorescencia (690 nm y 735 nm), los cuales corresponden a la fluorescencia de la clorofila. Por consiguiente, se demostró que la alfalfa posee una cantidad considerable de clorofilas totales. Recientemente, nuestro grupo de investigación llevaron a cabo un estudio teórico y una serie de experimentos in vitro en donde se demostró la posible formación de complejos entre la clorofila y 59 la AFB1. En el estudio teórico (Vázquez-Durán et al., 2022), se sugiere que la formación de complejos clorofila-AFB1 se debe principalmente a la interacción entre los cationes Mg2+ de la clorofila y los átomos de oxígeno del sistema β-dicarbonilo de la molécula de AFB1 (Figura 4). Sin embargo, también podría existir la formación de enlaces de hidrógeno entre: a) los iones H+ de la molécula de AFB1 y los oxígenos de los grupos éster carbonilo, carbonílico del acetato de fitol y cetónico de la molécula de clorofila y b) el oxígeno del grupo furano de la AFB1 y los H+ de los grupos cetónicos y éster de la clorofila. Figura 4. Interacción entre la clorofila del adsorbente de las hojas de alfalfa y la molécula de la AFB1. Finalmente, se ha reportado que, la clorofila, una molécula altamente hidrofóbica, puede formar complejos no covalentes con la molécula AFB1, independientemente del pH. En los experimentos previos in vitro se utilizaron adsorbentes a base de lechuga, cola de caballo (Nava-Ramírez et al., 2020) y kale (Vázquez-Durán et al., 2021). En el primer experimento, se emplearon adsorbentes de lechuga y cola de caballo en un modelo in vitro acuoso pH-dependiente y se observaron tasas de adsorción máximas de AFB1 del 95% para la lechuga y del 71% para la cola de caballo. El segundo experimento fue realizado con un modelo in vitro que emuló el TGI de las aves, en este estudio se mostraron porcentajes de adsorción de AFB1 del 94% para el kale y del 84% para la lechuga. Ambos 60 estudios demostraron que los adsorbentes que contenían mayores cantidades de clorofilas exhibieron una mayor capacidad de adsorción de AFB1. Estos resultados concuerdan con el presente estudio. La combinación de estas interacciones, tanto electrostáticas como no electrostáticas, confiere al adsorbente derivado de las hojas de alfalfa una eficacia notable en la adsorción de AFB1 presente en el alimento contaminado destinado a las aves. Eficacia del adsorbente de hojas de alfalfa en pavitos Considerando que los modelos in vitro podrían no replicar plenamente las condiciones fisiológicas del TGI de las aves, lo cual puede influir en la predicción de los resultados, se optó por evaluar la eficacia del adsorbente de hojas de alfalfa, agregado en una dieta contaminada con 250 ng de AFB1/g de alimento, destinada a pavitos Nicholas-700 de un día de edad. Se utilizó este modelo ya que los pavos tienen una capacidad limitada para metabolizar y detoxificar la AFB1. Sus sistemas enzimáticos, como el citocromo P450, que están involucrados en la destoxificación de toxinas, no son tan eficientes como en otras aves. En la semana final del experimento (28 días de edad), se observó que el grupo de AF tuvo una reducción significativa en el peso corporal, la ganancia de peso y el consumo de alimento, en comparación con el grupo control. Sin embargo, cuando se agregó el adsorbente de hojas de alfalfa, los parámetros productivos de los pavitos mejoraron significativamente. Guerrini y Tedesco. (2023) observaron resultados similares a los del presente estudio al agregar cardo mariano en una dieta contaminada con AFB1 destinada para pollos de engorda, observando una mejoría en los parámetros productivos. Los autores atribuyen que el tratamiento es eficaz para contrarrestar los efectos tóxicos de la AFB1 debido a los efectos hepatoprotectores, antioxidantes, y antiinflamatorias del cardo mariano. Además, Adams et al. (2019) observaron que la suplementación de fibra dietética de alfalfa en la dieta de lechones promovió el crecimiento y la salud de los lechones. Los componentes de la fibra pueden ser fermentados por microorganismos en el TGI, generando grandes cantidades de ácidos grasos de cadena corta, que sirven como principal fuente de energía y para la reducción de la población de bacterias entéricas en el intestino. Es importante recalcar que el grupo de Alfalfa fue el que obtuvo los mejores valores de los parámetros productivos en los pavitos. Oyegunwa et al. (2021) informaron que ofrecer una dieta experimental contaminada con 150 ng de AFB1/g de alimento durante un período de 28 días, produjo una disminución significativa en el peso corporal, 61 la ganancia de peso y el consumo de alimento de los pavitos. Algunos autores han demostrado que la eficacia de los subproductos de la uva en la mejora de los parámetros productivos se atribuye principalmente a la influencia de sus biomoléculas activas en la composición microbiana del intestino y a la regulación negativa de varios genes proinflamatorios en diferentes regiones intestinales (Taranu et al., 2019). Este es el primer experimento en pavitos en donde se estudió el efecto adsorbente de AFB1 de las hojas de alfalfa; sin embargo, se han realizado algunos experimentos para reducir los efectos tóxicos causados por la AF en aves utilizando productos y subproductos de origen vegetal con propiedades antioxidantes, antiinflamatorias y hepatoprotectoras como Satureja khuzistanica, Zataria multiflora Boiss, Thymus vulgaris, Sauropsus androgynus, Hemidesmus indicus, Leucas aspera, Moringa oleifera, Eclipta alba, Curcuma longa, Silybum marianum, Urtica dioica, and cítricos (Umaya et al., 2021). En cuanto al peso relativo de los órganos, en contraste con el grupo de control, se observó una disminución significativa en el peso relativo del hígado en los pavitos de los otros cuatro grupos experimentales (Alfalfa, AF, AF+alfalfa y AF+PCL). El peso relativo del bazo y de la bolsa de Fabricio no tuvo diferencias estadísticas significativas entre los grupos que fueron alimentados con AFB1 (AF, AF+alfalfa y AF+PCL). Por otro lado, el grupo de Alfalfa no presentó diferencias estadísticamente significativas en comparación con el grupo control. Estos hallazgos son consistentes con los informados por Sridhar et al. (2015) quienes afirmaron que el aumento en el peso relativo de ciertos órganos producido por el consumo de aflatoxinas se revirtió exitosamente gracias a la suplementación con resveratrol en la dieta de pollos de engorde. Es posible que las alteraciones orgánicas inducidas por la AFB1 se hayan atenuado gracias al adsorbente orgánico, que impidió la disociación de la molécula de AFB1 a lo largo del TGI de las aves. Esto podría haber evitado su metabolización en el órgano blanco, el hígado. Además, estos agentes orgánicos parecen disminuir la inflamación, la necrosis, y la fibrosis, al mismo tiempo que intervienen en el metabolismo de los lípidos hepáticos (Lakkawar et al., 2004). Se ha reportado que algunos materiales naturales mitigan la toxicidad inducida por la AFB1 mediante diversos mecanismos, incluyendo la inhibición del estrés oxidativo, la supresión de la respuesta inflamatoria, la inhibición de la apoptosis y la modulación de la respuesta inmune (Dai et al., 2022). Estos materiales son ricos en saponinas, polifenoles, ácidos grasos poliinsaturados, vitaminas y minerales los cuales tienen una fuerte actividad antioxidante, lo que podría aumentar la capacidad 62 de defensa del animal frente a la acción negativa de las micotoxinas, aumentando la absorción de antígenos del intestino (Pietrzak y Grela, 2015; Taranu et al., 2019). En cuanto a la bioquímica sanguínea, se observó una reducción en los valores de PT, Glu, Ca y Cr en los grupos AF, AF+alfalfa y AF+PCL en comparación con el grupo control. Sin embargo, el grupo de Alfalfa no mostró diferencias estadísticamente significativas en comparación con el grupo control, los cuales presentaron un aumento significativo en los niveles de PT, Glu, Ca y Cr en relación con los grupos alimentados con AFB1. Se ha informado que las aflatoxinas causan una disminución significativa en el contenido de creatinina (Gómez-Espinosa et al., 2017), glucosa (Sridhar et al., 2015) y calcio (Gowda et al., 2009) en aves de corral. Esto está estrechamente relacionado con lo observado en el estudio actual. Por último, el ácido úrico no mostró diferencias significativas entre los cinco grupos de pavitos, estos hallazgos concuerdan estrechamente con los resultados encontrados por Quist et al. (2000). Pietrzak y Grela. (2015) reportaron un mayor contenido de proteínas totales en el plasma sanguíneo, sin observan cambios significativos en los niveles de ácido úrico, esto lo atribuyen al efecto positivo de la suplementación con un concentrado de proteínas de alfalfa en el metabolismo de las proteínas en el animal. En general, un incremento en la actividad de las enzimas hepáticas se asocia comúnmente con degeneración hepatocelular; por lo tanto, se produce una fuga de estas enzimas a la circulación sanguínea (Singh, 2019). En cuanto a la concentración de las enzimas hepáticas ALP, AST, CK y GLDH, no se encontraron diferencias estadísticas significativas entre los cinco tratamientos. La ALT fue la única enzima en la que se observó un marcado aumento en el grupo AF+PCL. Quist et al. (2000) no encontraron diferencias significativas en el nivel de AST entre pavos que consumieron una dieta contaminada con 200 ng de AFB1/g de alimento y el grupo control. Además, Gómez-Espinosa et al. (2017) no observaron diferencias significativas en los niveles de ALT y ALP en pavitos alimentados con 430 ng de AFB1/g de alimento en comparación con el grupo de control. Algunos autores han demostrado los efectos positivos en los niveles de enzimas hepáticas debido a la adición de algunos materiales orgánicos. Fani et al. (2013) informaron que la adición de semillas de Silybum marianum (SMS) en una dieta de pollo de engorde contaminada con 250 ng AFB1/g, no produjo diferencias significativas en los niveles de AST y ALT en comparación con el grupo control. Los autores concluyeron que los SMS podrían prevenir los efectos adversos causados por la AFB1 en las aves, debido a su efecto antioxidante y antiinflamatorio. En línea con estos resultados, Masouri et al. (2022) demostraron que la adición de menta en polvo a una dieta contaminada con aflatoxinas destinada a codornices japonesas alivió los efectos causados por las aflatoxinas, sin encontrar 63 diferencias significativas en los niveles de ALT y AST en comparación con el grupo de control. El alivio de los efectos negativos de la toxina se debe probablemente al impedimento del adsorbente en la presentación de estrés oxidativo en los hepatocitos y a la prevención de la inflamación hepática (Taranu et al., 2020). Finalmente, en cuanto a la histología del hígado, en el grupo de AF se observó un incremento significativo en la severidad de las lesiones hepáticas, evidenciando características como degeneración vacuolar, inflamación, hiperplasia de los conductos biliares y fibrosis. Sin embargo, en los dos grupos experimentales suplementados con hojas de alfalfa, no se registraron diferencias significativas en las lesiones hepáticas en comparación con el grupo de control. Estos hallazgos concuerdan con lo reportado por Perali et al. (2020) quienes señalaron que los efectos negativos de 1018 μg de AFB1/kg de alimento sobre el peso relativo, los cambios macroscópicos y microscópicos en el hígado y los parámetros bioquímicos mejoraron con la adición de 0.2% de Lithothamnium calcareum debido a su efecto adsorbente de AFB1 aunado a su aporte nutricional sobre las aves. Wang et al. (2022) demostraron que la adición de la curcumina redujo la acumulación de aductos de ADN-AFB1 en el hígado, aliviando la hepatotoxicidad al inhibir el estrés oxidativo inducido por AFB1 y potenciar la desintoxicación mediada por las enzimas de conjugación de la fase II, a través de la acción de la GST. Asimismo, inhibió la respuesta inflamatoria inducida por AFB1 y el estrés oxidativo mediante la regulación positiva del factor nuclear eritroide 2 (Nrf2). Adicionalmente, se estudió el efecto del adsorbente de alfalfa sobre la microbiota intestinal, la permeabilidad intestinal, el análisis de la morfología del íleon y la inmunidad celular en los pavitos a los 28 días de edad. En general, los cinco grupos de aves no presentaron diferencias estadísticas significativas en cuanto a la diversidad α y β de la microbiota cecal, a excepción de la diversidad β, según la distancia no ponderada de UniFrac, la cual indica una diferencia estadística significativa entre el grupo Control y el grupo AF. En este contexto, Maguey-González et al. (2023) reportaron resultados similares al agregar ácidos húmicos (AH) en una dieta contaminada con AFB1 destinada para los pavos. Los autores encontraron una diferencia estadísticamente significativa en la diversidad β, entre el grupo control y el grupo que consumió la dieta contaminada con AFB1, lo que indicó la influencia de AFB1 en la composición de la microbiota intestinal. Sin embargo, no se encontró diferencia estadísticamente significativa entre el grupo control y el grupo de pavos que consumieron los AH, lo que sugiere una mejoría en la restauración de la microbiota intestinal y un aumento en la presencia de bacterias benéficas. 64 En cuanto a las abundancias relativas (%) de bacterias cecales, la familia Streptococcaceae mostró una disminución en su población en el grupo Control en comparación con los cuatro grupos restantes. Además, la abundancia relativa de los géneros de Coprobacillaceae se redujo 1.19 y 4.41 veces en los grupos AF y Alfalfa+AF, respectivamente, en comparación con el grupo Control. Asimismo, la abundancia relativa de las variantes de secuencia de amplicones (ASV) de Coprobacillaceae se redujo 3.91 y 2.49 veces en los grupos AF y Alfalfa+AF, respectivamente, en comparación con el grupo Control. En contraste, el grupo Alfalfa mostró un aumento significativo en los niveles de Faecalibacterium en comparación con el resto de los grupos experimentales. La presencia de la familia Streptococcaceae está asociada con mejores parámetros productivos en las aves, por lo que, su presencia, se asocia comunmente a una microbiota intestinal saludable (Marková et al., 2024). Por otro lado, la familia Coprobacillaceae se encuentra en la mayoría de los conjuntos de datos de microbiomas de diversos huéspedes. Sin embargo, no está bien estudiada y hay poca información disponible (Liu et al., 2015). Según Rychlik, (2020), el género Faecalibacterium tiene la capacidad de consumir oxígeno a bajas concentraciones, lo que mantiene un ambiente estrictamente anaeróbico. Esto restringe la capacidad de Escherichia coli y Salmonella para utilizar el metabolismo respiratorio anaeróbico, evitando así su crecimiento excesivo. En el enriquecimiento diferencial de ASV bacteriano, se encontró una mayor abundancia de Mediterraneibaer (F91) y Lachnospiracaeae (F25) en el grupo Contro; Faecalibacterium (F7 y F53) y Coprococcus catus (F85) en el grupo Alfalfa; Bacillus (F8) y Anaerotignum (F99) en el grupo AF+Alfalfa; mientras que el grupo AF tuvo mayores abundancias de Streptococcus lutetiensis (F6). De acuerdo con lo reportado por Monson et al. (2015), el consumo de una dieta contaminada con AFB1, incluso en contenidos bajos, puede dañar el sistema inmunológico de las aves, el cual depende de la bolsa de Fabricio, el timo, y el bazo. Por lo tanto, la ingesta de AFB1 durante el crecimiento puede provocar atrofia del tejido inmunológico y suprimir las respuestas inmunes innatas y adaptativas, lo que puede llevar al aumento del crecimiento de bacterias patógenas como Streptococcus lutetiensis (Maguey-González et al., 2024). Por otra parte, se ha informado que la abundancia de Coprococcus catus y de Faecalibacterium, bacterias productoras de butirato, son potencialmente benéficas para el intestino. Además, se ha observado que Faecalibacterium puede disminuir la inflamación y prevenir el aumento de la permeabilidad intestinal (Richards et al., 2019; Yang et al., 2023). De esta manera, es posible asociar el consumo del adsorbente de alfalfa con una mejor microbiota intestinal (Figura 5). 65 Por otra parte, en el análisis morfométrico del íleon, se observó que los grupos Control y Alfalfa presentaron una mayor altura de las vellosidades, seguido de los grupos AF+PCL y AF+alfalfa. El grupo AF mostró la menor altura de las vellosidades, siendo 2.12 veces menor en comparación con el grupo Control. Además, el grupo Control presentó un área total de las vellosidades mayor en comparación con los cuatro grupos restantes. Sin embargo, el grupo AF presentó la menor área total de las vellosidades, siendo 2.31 veces menor en comparación con el Control. Estos resultados concuerdan con lo reportado por Rajput et al. (2013), quienes demostraron que la suplementación dietética con curcumina aumentó la altura de las vellosidades del intestino delgado. Los autores sostienen que las vellosidades más altas proporcionan una mayor área de absorción de nutrientes, mientras que las vellosidades intestinales cortas o dañadas perjudican la capacidad de absorción debido a la disminución del área. En cuanto a la permeabilidad intestinal, el nivel sérico de isotiocianato de fluoresceína dextrán (FITC- d) aumentó 3.26, 4 y 4.02 veces más en el grupo AF, en comparación con el grupo Control. Estos hallazgos concuerdan con lo reportado por Hernández-Ramírez et al. (2020), quienes reportaron un aumento significativo en la concentración sérica del FITC-d en pollos alimentados con una dieta contaminada con AFB1 (470 ng/g). Finalmente, la respuesta de hipersensibilidad cutánea a los basófilos (CBH) se incrementó en los grupos AF+alfalfa y AF+PCL, en comparación con el resto de los grupos experimentales. 66 Figura 5. Efecto del adsorbente de alfalfa y la AFB1 sobre la microbiota intestinal, la permeabilidad intestinal, y la altura de las vellosidades intestinales de los pavos. 67 Conclusiones La caracterización del adsorbente de las hojas de alfalfa permitió identificar el tipo de interacciones entre éste y la molécula de AFB1. Primeramente, los análisis FTIR-ATR, MEB, y EFRX revelaron, la presencia de diversos grupos funcionales, la morfología y la estructura superficial del adsorbente, y su composición elemental. En conjunto, los resultados de la caracterización, indican un papel crucial en el proceso de adsorción de la molécula de AFB1, especialmente en la capacidad de formar enlaces de hidrógeno con los átomos de oxígeno de la AFB1 en las tres secciones intestinales de las aves. En cuanto a las propiedades de carga del adsorbente, se concluyó que éste formó interacciones electrostáticas con la molécula de AFB1 principalmente bajo condiciones de pH de 2 y 5. Finalmente, el uso de la espectroscopía UV-Vis y la espectroscopía de fluorescencia permitieron cuantificar las clorofilas y los carotenoides presentes en el adsorbente, los cuales son cruciales en la adsorción debido a la formación de complejos clorofila- AFB1. En cuanto a los estudios de adsorción in vitro, el modelo pH-dependiente mostró una alta eficiencia de adsorción de AFB1, con valores superiores al 98.2% en los tres valores de pH evaluados (2, 5 y 7). Sin embargo, el modelo que emuló el TGI de las aves mostró una disminución en el porcentaje de adsorción, alcanzando un 88.8%. Finalmente, en el modelo in vivo, la suplementación de la dieta de los pavitos con el adsorbente de hojas de alfalfa mejoró significativamente los parámetros productivos, mientras que los valores de la bioquímica sanguínea no revelaron diferencias significativas en comparación con el grupo control. Respecto a la histología hepática, los dos grupos experimentales suplementados con las hojas de alfalfa no presentaron diferencias significativas en lesiones hepáticas en comparación con el grupo de control. En cuanto a la microbiota, la suplementación con el adsorbente de alfalfa promovió el crecimiento de bacterias benéficas como Faecalibacterium y Coprococcus catus, aumentó la altura de las vellosidades (771.3 μm), y mejoró significativamente la permeabilidad intestinal (214.8 ng/mL), en comparación con el grupo AF (858.2 ng/mL). Finalmente, el grupo AF+alfalfa tuvo un aumento en la respuesta de hipersensibilidad de los basófilos cutáneos (0.83 mm) en comparación con los demás grupos experimentales. El uso de un nivel bajo de inclusión del adsorbente derivado de las hojas de alfalfa (0.5% p/p) resultó altamente efectivo en la adsorción de AFB1 en ambos modelos in vitro. Esto se debió principalmente a la abundancia de clorofilas en el adsorbente, lo cual permitió la formación de complejos clorofila- 68 AFB1. Además, las interacciones electrostáticas y no electrostáticas, otorgaron al adsorbente derivado de las hojas de alfalfa una notable eficacia en la adsorción de AFB1 presente en el alimento contaminado destinado para las aves. En términos generales, la incorporación del material adsorbente contrarrestó los efectos negativos de la AFB1 en las aves, principalmente por las diversas interacciones estudiadas en los modelos in vitro, sumadas a su posible efecto antioxidante, antiinflamatorio e inmunoestimulante en los pavos, favoreciendo la colonización del intestino por bacterias benéficas y mejorando la permeabilidad intestinal. Estos resultados, permiten concluir que el adsorbente de hojas de alfalfa es un material eficaz para remover AFB1 y, por tanto, mitigar sus efectos tóxicos en los pavos. Perspectivas Se considera necesario la realización de isotermas de adsorción con el adsorbente de alfalfa, ya que nos permiten conocer con mayor precisión la tasa de adsorción de la AFB1 en un período de tiempo y a una temperatura determinados. Además, sería importante llevar a cabo estudios de adsorción in vitro con el adsorbente de alfalfa para otras micotoxinas, las cuales son relevantes para la salud de animales y humanos. Finalmente, es imprescindible continuar investigando diversos productos orgánicos que se caractericen por tener una estructura porosa, contener mayores cantidades de clorofilas, ser una fuente potencialmente valiosa de antioxidantes y poseer una amplia variedad de grupos funcionales. 69 Referencias ABOLLINO, O., ACETO, M., MALANDRINO, M., SARZANINI, C., MENTASTI, E. 2003. Adsorption of heavy metals on Na-montmorillonite. Effect of pH and organic substances. Water research, 37(7), 1619-1627. ADAMS, S., KONG, X., CHE, D., QIN, G., JIANG, H. 2019. Effects of dietary supplementation of alfalfa (Medicago sativa) fibre on the blood biochemistry, nitrogen metabolism, and intestinal morphometry in weaning piglets. Applied Ecology & Environmental Research, 17(2). ADUNPHATCHARAPHON, S., PETCHKONGKAEW, A., GRECO, D., D’ASCANIO, V., VISESSANGUAN, W., & AVANTAGGIATO, G. 2020. The effectiveness of durian peel as a multi-mycotoxin adsorbent. Toxins, 12(2), 108. AL-DEGS, Y. S., EL-BARGHOUTHI, M. I., EL-SHEIKH, A. H., WALKER, G. M. 2008. Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and pigments, 77(1), 16-23. ARIMOTO, S., FUKUOKA, S., ITOME, C., NAKANO, H., RAI, H., HAYATSU, H. 1993. Binding of polycyclic planar mutagens to chlorophyllin resulting in inhibition of the mutagenic activity. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 287(2), 293-305. ATANDA, S., PESSU, P., AGODA, S., ISONG, I., ADEKALU, O., ECHENDU, M., FALADE, T. 2011. Fungi and mycotoxins in stored foods. African Journal of Microbiology Research, 5(25), 4373-4382. AVANTAGGIATO, G., GRECO, D., DAMASCELLI, A., SOLFRIZZO, M., VISCONTI, A. 2014. Assessment of multi-mycotoxin adsorption efficacy of grape pomace. Journal of agricultural and food chemistry, 62(2), 497-507. AVANTAGGIATO, G., HAVENAAR, R., VISCONTI, A. 2004. Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food and Chemical Toxicology, 42(5), 817-824. AYALEW, A. 2010. Mycotoxins and surface and internal fungi of maize from Ethiopia. African Journal of Food, Agriculture, Nutrition and Development, 10(9). BBOSA, G. S., KITYA, D., ODDA, J., OGWAL-OKENG, J. 2013. Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health, 2013. BENNETT, J., KLICH, M. 2003. Mycotoxins. Clinical microbiology reviews, 16(3), 497. BERTHILLER, F., CREWS, C., DALL'ASTA, C., SAEGER, S. D., HAESAERT, G., KARLOVSKY, P., STROKA, J. 2013. Masked mycotoxins: A review. Molecular nutrition & food research, 57(1), 165-186. BOČAROV-STANČIĆ, A., LOPIČIĆ, Z. R., BODROŽA-SOLAROV, M. I., STANKOVIĆ, S., JANKOVIĆ, S., MILOJKOVIĆ, J. V. & KRULJ, J. A. 2018. In vitro removing of mycotoxins by using different inorganic adsorbents and organic waste materials from Serbia. Food and Feed Research, 45, 87-96. BOUDERGUE, C., BUREL, C., DRAGACCI, S., FAVROT, M. C., FREMY, J. M., MASSIMI, C., PRIGENT, P., DEBONGNIE, P., PUSSEMIER, L. & BOUDRA, H. 2009. Review of mycotoxin-detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety. EFSA Supporting Publications, 6, 22E. BRYDEN, W. L. 2012. Mycotoxin contamination of the feed supply chain: Implications for animal productivity and feed security. Animal Feed Science and Technology, 173(1-2), 134-158. BUENO, D. J., SALVANO, M., SILVA, J. O., GONZÁLEZ, S. N. & OLIVER, G. 2001. Micotoxinas: diagnóstico y prevención en aves de corral. Boletín Micológico, 16. CAMPAGNOLLO, F. B., GANEV, K. C., KHANEGHAH, A. M., PORTELA, J. B., CRUZ, A. G., GRANATO, D., SANT'ANA, A. S. 2016. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food Control, 68, 310-329. 70 CARVAJAL, M. 2013. Transformación de la aflatoxina B1 de alimentos, en el cancerígeno humano, aducto AFB1-ADN. TIP Revista Especializada en Ciencias Químico-Biológicas, 16(2), 109-120. CRUZ-LUJAN, L.A., ALBARRÁN-PORTILLO, B., JASSO-ARRIAGA X., GARCÍA-MARTÍNEZ A. 2023. Typology of backyard creole turkey production units in temascaltepec, Mexico state,Mexico. Tropical and Subtropical Agroecosystems. DAI, C., TIAN, E., HAO, Z., TANG, S., WANG, Z., SHARMA, G., SHEN, J. 2022. Aflatoxin B1 toxicity and protective effects of curcumin: Molecular mechanisms and clinical implications. Antioxidants, 11(10), 2031. DENLI, M. & PÉREZ, J. F. 2006. Contaminación por micotoxinas en los piensos: efectos, tratamiento y prevención. XXII Curso de Especialización FEDNA, 1-18. DI GREGORIO, M. C., NEEFF, D. V. D., JAGER, A. V., CORASSIN, C. H., CARÃO, Á. C. D. P., ALBUQUERQUE, R. D., OLIVEIRA, C. A. F. 2014. Mineral adsorbents for prevention of mycotoxins in animal feeds. Toxin Reviews, 33(3), 125-135. DIAZ, D. E., HAGLER, W. M., HOPKINS, B. A., WHITLOW, L. W. 2003. Aflatoxin binders I: in vitro binding assay for aflatoxin B1 by several potential sequestering agents. Mycopathologia, 156, 223- 226. DO, J. H., CHOI, D. K. 2007. Aflatoxins: detection, toxicity, and biosynthesis. Biotechnology and Bioprocess Engineering, 12, 585-593. FANI, M., O., AFZALI, N., & OMIDI, A. 2013. Effect of milk thistle on the immune system, intestinal related variables, appearance and mortality of broilers contaminated with Aflatoxin B1. Journal of Medicinal Herbs, "J. Med Herb" (Formerly known as Journal of Herbal Drugs or J. Herb Drug), 4(1), 33-38. FERNANDES, J.-M., CALADO, T., GUIMARÃES, A., RODRIGUES, M. A. M. & ABRUNHOSA, L. 2019. In vitro adsorption of aflatoxin B1, ochratoxin A, and zearalenone by micronized grape stems and olive pomace in buffer solutions. Mycotoxin Research, 35, 243-252. FERNANDEZ, A., VERDE, M., GOMEZ, J., GASCON, M., RAMOS, J. 1995. Changes in the prothrombin time, haematology and serum proteins during experimental aflatoxicosis in hens and broiler chickens. Research in Veterinary Science, 58, 119-122. FRISVAD, J. C. 2012. Media and growth conditions for induction of secondary metabolite production. Fungal secondary metabolism: methods and protocols, 47-58. FRISVAD, J. C., HUBKA, V., EZEKIEL, C., HONG, S.-B., NOVßKOVß, A., CHEN, A., MAHAKARNCHANAKUL, W. 2019. Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in mycology, 93(1), 1-63. GALVANO, F., PIVA, A., RITIENI, A. & GALVANO, G. 2001. Dietary strategies to counteract the effects of mycotoxins: a review. Journal of Food Protection, 64, 120-131. GIAMBRONE, J. J., DIENER, U. L., DAVIS, N. D., PANANGALA, V. S., HOERR, F. J. (1985). Effects of aflatoxin on young turkeys and broiler chickens. Poultry Science, 64(9), 1678-1684. GÓMEZ-ESPINOSA, D., CERVANTES-AGUILAR, F. J., DEL RÍO-GARCÍA, J. C., VILLARREAL-BARAJAS, T., VÁZQUEZ-DURÁN, A., MÉNDEZ-ALBORES, A. 2017. Ameliorative effects of neutral electrolyzed water on growth performance, biochemical constituents, and histopathological changes in Turkey poults during aflatoxicosis. Toxins, 9(3), 104. GOWDA, N. K., LEDOUX, D. R., ROTTINGHAUS, G. E., BERMUDEZ, A. J., CHEN, Y. C. 2009. Antioxidant efficacy of curcuminoids from turmeric (Curcuma longa L.) powder in broiler chickens fed diets containing aflatoxin B1. British Journal of Nutrition, 102(11), 1629-1634. GRECO, D., D'ASCANIO, V., SANTOVITO, E., LOGRIECO, A. F. & AVANTAGGIATO, G. 2019. Comparative efficacy of agricultural by-products in sequestering mycotoxins. Journal of the Science of Food and Agriculture, 99, 1623-1634. 71 GUERRINI, A., TEDESCO, D. E. A. 2023. Restoring activity of milk thistle (Silybum marianum L.) on serum biochemical parameters, oxidative status, immunity, and performance in poultry and other animal species, poisoned by mycotoxins: A review. Animals, 13(3), 330. HASHEM, A., ABOU-OKEIL, A., EL-SHAFIE, A., EL-SAKHAWY, M. 2006. Grafting of high α-cellulose pulp extracted from sunflower stalks for removal of Hg (II) from aqueous solution. Polymer- Plastics Technology and Engineering, 45(1), 135-141. HERNÁNDEZ-RAMÍREZ, J. O., NAVA-RAMÍREZ, M. J., MERINO-GUZMÁN, R., TÉLLEZ-ISAÍAS, G., VÁZQUEZ-DURÁN, A., MÉNDEZ-ALBORES, A. 2020. The effect of moderate-dose aflatoxin B 1 and Salmonella Enteritidis infection on intestinal permeability in broiler chickens. Mycotoxin research, 36, 31-39. HODOROABA, V.D. 2020. Energy-dispersive X-ray spectroscopy (EDS). In Characterization of Nanoparticles (pp. 397-417): Elsevier. HUWIG, A., FREIMUND, S., KÄPPELI, O. & DUTLER, H. 2001. Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122, 179-188. KARMANOV, A. P., KANARSKY, A. V., KANARSKAYA, Z. A., KOCHEVA, L. S., SEMENOV, E. I., BOGDANOVICH, N. I. & BELYY, V. A. 2020. In vitro adsorption-desorption of aflatoxin B1 on Pepper's lignins isolated from grassy plants. International Journal of Biological Macromolecules, 144, 111-117. KLEIN, P. J., BUCKNER, R., KELLY, J., COULOMBE, R. A. 2000. Biochemical basis for the extreme sensitivity of turkeys to aflatoxin B1. Toxicology and Applied Pharmacology, 165(1), 45-52. KOLAWOLE, O., MENEELY, J., GREER, B., CHEVALLIER, O., JONES, D. S., CONNOLLY, L., ELLIOTT, C. 2019. Comparative in vitro assessment of a range of commercial feed additives with multiple mycotoxin binding claims. Toxins, 11(11), 659. LAKKAWAR, A. W., CHATTOPADHYAY, S. K., JOHRI, T. S. 2004. Experimental aflatoxin B1 toxicosis in young rabbits-a clinical and patho-anatomical study. Slov Vet Res, 41(2), 73-81. LEE, S. D., YU, I. S., JUNG, K., KIM, Y. S. 2014. Incidence and level of aflatoxins contamination in medicinal plants in Korea. Mycobiology, 42(4), 339-345. LI, W., ZHAO, J., ZHAO, Q., ZHENG, H., DU, P., TAO, S., XING, B. (2016). Adsorption and bioaccessibility of phenanthrene on carbon nanotubes in the in vitro gastrointestinal system. Science of the Total Environment, 566, 50-56. LICHTENTHALER, H. K., BUSCHMANN, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current protocols in food analytical chemistry, 1(1), F4. 3.1-F4. 3.8. LIM, L. B., PRIYANTHA, N., TENNAKOON, D., CHIENG, H. I., DAHRI, M. K., & SUKLUENG, M. 2017. Breadnut peel as a highly effective low-cost biosorbent for methylene blue: equilibrium, thermodynamic and kinetic studies. Arabian Journal of Chemistry, 10, S3216-S3228. LIU, S., BENNETT, D. C., TUN, H. M., KIM, J. E., CHENG, K. M., ZHANG, H., & LEUNG, F. C. 2015. The effect of diet and host genotype on ceca microbiota of Japanese quail fed a cholesterol enriched diet. Frontiers in Microbiology, 6, 144736. MAGUEY-GONZÁLEZ, J. A., NAVA-RAMÍREZ, M. D. J., GÓMEZ-ROSALES, S., ÁNGELES, M. D. L., SOLÍS- CRUZ, B., HERNÁNDEZ-PATLÁN, D., MÉNDEZ-ALBORES, A. 2023. Humic acids preparation, characterization, and their potential adsorption capacity for aflatoxin B1 in an in vitro poultry digestive model. Toxins, 15(2), 83. MAGNOLI, A., MONGE, M., MIAZZO, R., CAVAGLIERI, L., MAGNOLI, C., MERKIS, C., CRISTOFOLINI, A., DALCERO, A., CHIACCHIERA, S. 2011. Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite. Poultry Science, 90, 48-58. 72 MALIK, D., JAIN, C., YADAV, A. K., VISHWAVIDYALAYA, G. K. 2015. Preparation and characterization of plant based low cost adsorbents. Journal of Global biosciences, 4(1), 1824-1829. MARKOVÁ, K., KREISINGER, J., VINKLER, M. 2024. Are there consistent effects of gut microbiota composition on performance, productivity and condition in poultry?. Poultry Science, 103752. MASOURI, L., BAGHERZADEH-KASMANI, F., MEHRI, M., ROKOUEI, M., MASOURI, B. 2022. Mentha piperita as a promising feed additive used to protect liver, bone, and meat of Japanese quail against aflatoxin B1. Tropical Animal Health and Production, 54(5), 254. MILANI, J. M. 2013. Ecological conditions affecting mycotoxin production in cereals: a review. Veterinarni Medicina, 58(8). MIRANDA, M. M. M., DEL RÍO, L. M. V., QUINTERO, V. M. G. 2013. Aflatoxinas: Incidencia, impactos en la salud, control y prevención. Biosalud, 12(2), 89-109. MONSON, M. S., COULOMBE, R. A., & REED, K. M. 2015. Aflatoxicosis: Lessons from toxicity and responses to aflatoxin B1 in poultry. Agriculture, 5(3), 742-777. MOUSAVI KHANEGHAH, A., EŞ, I., RAEISI, S., FAKHRI, Y. 2018. Aflatoxins in cereals: State of the art. Journal of food safety, 38(6), e12532. MURUGESAN, G., LEDOUX, D., NAEHRER, K., BERTHILLER, F., APPLEGATE, T., GRENIER, B., SCHATZMAYR, G. 2015. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry science, 94(6), 1298-1315. NAVA-RAMÍREZ, M. J., SALAZAR, A.M., SORDO, M., LÓPEZ-COELLO, C., TÉLLEZ-ISAÍAS, G., MÉNDEZ- ALBORES, A., VÁZQUEZ-DURÁN, A. 2020. Ability of low contents of biosorbents to bind the food carcinogen aflatoxin B1 in vitro. Food Control. NAVA-RAMÍREZ, M. J., SALAZAR, A. M., SORDO, M., LÓPEZ-COELLO, C., TÉLLEZ-ISAÍAS, G., MÉNDEZ- ALBORES, A., & VÁZQUEZ-DURÁN, A. 2021. Ability of low contents of biosorbents to bind the food carcinogen aflatoxin B1 in vitro. Food Chemistry, 345, 128863. NEEFF, D. V. D., LEDOUX, D. R., ROTTINGHAUS, G. E., BERMUDEZ, A., DAKOVIC, A., MURAROLLI, R. A., OLIVEIRA, C. A. F. D. 2013. In vitro and in vivo efficacy of a hydrated sodium calcium aluminosilicate to bind and reduce aflatoxin residues in tissues of broiler chicks fed aflatoxin B1. Poultry science, 92(1), 131-137. NOGUEIRA, W. V., MOYANO, F. J., GARCÍA, M. J. A., TESSER, M. B., BUFFON, J. G. 2022. Preliminary assessment of bioaccessibility of aflatoxin B1 in fish. Aquaculture International, 30(3), 1315- 1325. NOM-188-SSA1 2010. Productos y Servicios. Control de aflatoxinas en cereales para consumo humano y animal. Especificaciones sanitarias. NOM-188-SSA1-2002. Disponible en: http://www. salud. gob. mx/unidades/cdi/nom OLIVEIRA, A. L. M. S., MACIEL, G. M., ROSSETTO, R., DE LIZ, M. V., RAMPAZZO RIBEIRO, V., HAMINIUK, C. W. I. 2019. Saccharomyces cerevisiae biosorbed with grape pomace flavonoids: adsorption studies and in vitro simulated gastrointestinal digestion. International journal of food science & technology, 54(4), 1413-1422. OYEGUNWA, A., EWUOLA, E., AGBOOLA, A., IYAYI, E. 2021. Alleviation of the effect of dietary aflatoxin in turkey poults using bentonite montmorillonite or yeast binder. Nigerian Journal of Animal Production, 48(5), 275-284. PELLENZ, L., DE OLIVEIRA, C. R. S., DA SILVA JÚNIOR, A. H., DA SILVA, L. J. S., DA SILVA, L., DE SOUZA, A. A. U., DA SILVA, A. 2023. A comprehensive guide for characterization of adsorbent materials. Separation and Purification Technology, 305, 122435. 73 PERALI, C., MAGNOLI, A. P., ARONOVICH, M., ROSA, C. A. D. R., CAVAGLIERI, L. R. 2020. Lithothamnium calcareum (Pallas) Areschoug seaweed adsorbs aflatoxin B 1 in vitro and improves broiler chicken’s performance. Mycotoxin Research, 36, 371-379. PIETRZAK, K., GRELA, E. R. 2015. Influence of alfalfa protein concentrate dietary supplementation on blood parameters of growing-finishing pigs. Journal of Veterinary Research, 59(3), 393-399. QUIST, C., BOUNOUS, D., KILBURN, J., NETTLES, V., WYATT, R. 2000. The effect of dietary aflatoxin on wild turkey poults. Journal of Wildlife Diseases, 36(3), 436-444. RAJPUT, N., MUHAMMAD, N., YAN, R., ZHONG, X., WANG, T. 2013. Effect of dietary supplementation of curcumin on growth performance, intestinal morphology and nutrients utilization of broiler chicks. The Journal of Poultry Science, 50(1), 44-52. RAMALES-VALDERRAMA, R. A., VÁZQUEZ-DURÁN, A. & MÉNDEZ-ALBORES, A. 2016. Biosorption of B-aflatoxins using biomasses obtained from formosa firethorn [Pyracantha koidzumii (Hayata) Rehder]. Toxins, 8, 218. RICHARDS, P., FOTHERGILL, J., BERNARDEAU, M., & WIGLEY, P. 2019. Development of the caecal microbiota in three broiler breeds. Frontiers in veterinary science, 6, 201. RINGOT, D., LERZY, B., CHAPLAIN, K., BONHOURE, J.-P., AUCLAIR, E. & LARONDELLE, Y. 2007. In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models. Bioresource Technology, 98, 1812-1821. RUSHING, B. R., SELIM, M. I. 2019. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and Chemical Toxicology, 124, 81- 100. RYCHLIK, I. 2020. Composition and function of chicken gut microbiota. Animals, 10(1), 103. SANDERS, T., COLE, R., BLANKENSHIP, P., DORNER, J. 1993. Aflatoxin contamination of peanuts from plants drought stressed in pod or root zones. Peanut Science, 20(1), 5-8. SARROCCO, S., MAURO, A. & BATTILANI, P. 2019. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins, 11, 701. SHAR, Z. H., FLETCHER, M. T., SUMBAL, G. A., SHERAZI, S. T. H., GILES, C., BHANGER, M. I., NIZAMANI, S. M. 2016. Banana peel: an effective biosorbent for aflatoxins. Food Additives & Contaminants: Part A, 33(5), 849-860. SHINDO, D., OIKAWA, T., SHINDO, D., OIKAWA, T. 2002. Energy dispersive x-ray spectroscopy. Analytical electron microscopy for materials science, 81-102. SIMONICH, M. T., EGNER, P. A., ROEBUCK, B. D., ORNER, G. A., JUBERT, C., PEREIRA, C., WILLIAMS, D. E. 2007. Natural chlorophyll inhibits aflatoxin B 1-induced multi-organ carcinogenesis in the rat. Carcinogenesis, 28(6), 1294-1302. SINGH, R. 2019. Effect of Dietary Inclusion of Mycodetox B2 on Liveability, Immunity and Organ Pathology during Aflatoxicosis in Turkey Poults. SIRHAN, A. Y., TAN, G. H., AL-SHUNNAQ, A., ABDULRA'UF, L., WONG, R. C. 2014. QuEChERS-HPLC method for aflatoxin detection of domestic and imported food in Jordan. Journal of Liquid Chromatography & Related Technologies, 37(3), 321-342. SRIDHAR, M., SUGANTHI, R., THAMMIAHA, V. 2015. Effect of dietary resveratrol in ameliorating aflatoxin B1-induced changes in broiler birds. Journal of Animal Physiology and Animal Nutrition, 99(6), 1094-1104. SUD, D., MAHAJAN, G., KAUR, M. 2008. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions–A review. Bioresource technology, 99(14), 6017-6027. 74 TARANU, I., HERMENEAN, A., BULGARU, C., PISTOL, G. C., CICEU, A., GROSU, I. A., MARIN, D. E. 2020. Diet containing grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. Ecotoxicology and environmental safety, 203, 110899. TARANU, I., MARIN, D. E., PALADE, M., PISTOL, G. C., CHEDEA, V. S., GRAS, M. A., ROTAR, C. 2019. Assessment of the efficacy of a grape seed waste in counteracting the changes induced by aflatoxin B1 contaminated diet on performance, plasma, liver and intestinal tissues of pigs after weaning. Toxicon, 162, 24-31. TOLA, M., KEBEDE, B. 2016. Occurrence, importance and control of mycotoxins: A review. Cogent Food & Agriculture, 2(1), 1191103. UMAYA, S. R., VIJAYALAKSHMI, Y., SEJIAN, V. 2021. Exploration of plant products and phytochemicals against aflatoxin toxicity in broiler chicken production: Present status. Toxicon, 200, 55-68. UNA, UNIÓN NACIONAL DE AVICULTORES. Compendio de Indicadores Económicos del Sector Avícola. 2022. Disponible en: https://una.org.mx/indicadores-economicos/ VÁZQUEZ-DURÁN, A., DE JESÚS NAVA-RAMÍREZ, M., MARTÍNEZ-ESCUTIA, R., DE DIOS FIGUEROA- CÁRDENAS, J., LÓPEZ-COELLO, C., TÉLLEZ-ISAÍAS, G., MÉNDEZ-ALBORES, A. 2023. Highly efficient adsorptive removal of the carcinogen aflatoxin B1 using the parasitic plant Cuscuta corymbosa Ruiz & Pavon. Environmental Science and Pollution Research, 1-13. VÁZQUEZ-DURÁN, A., NAVA-RAMÍREZ, M. D. J., HERNÁNDEZ-PATLÁN, D., SOLÍS-CRUZ, B., HERNÁNDEZ-GÓMEZ, V., TÉLLEZ-ISAÍAS, G., MÉNDEZ-ALBORES, A. 2021. Potential of kale and lettuce residues as natural adsorbents of the carcinogen aflatoxin B1 in a dynamic gastrointestinal tract-simulated model. Toxins, 13(11), 771. VÁZQUEZ-DURÁN, A., NAVA-RAMÍREZ, M. D. J., TÉLLEZ-ISAÍAS, G., & MÉNDEZ-ALBORES, A. 2022. Removal of aflatoxins using agro-waste-based materials and current characterization techniques used for biosorption assessment. Frontiers in Veterinary Science, 9, 897302. VÁZQUEZ-DURÁN, A., TÉLLEZ-ISAÍAS, G., HERNÁNDEZ-RODRÍGUEZ, M., RUVALCABA, R. M., MARTÍNEZ, J., NICOLÁS-VÁZQUEZ, M. I., MÉNDEZ-ALBORES, A. 2022. The Ability of Chlorophyll to Trap Carcinogen Aflatoxin B1: A Theoretical Approach. International Journal of Molecular Sciences, 23(11), 6068. VIJAYANANDRAJ, S., BRINDA, R., KANNAN, K., ADHITHYA, R., VINOTHINI, S., SENTHIL, K., CHINTA, R. R., PARANIDHARAN, V., VELAZHAHAN, R. 2014. Detoxification of aflatoxin B1 by an aqueous extract from leaves of Adhatoda vasica Nees. Microbiological Research, 169, 294-300. VILA-DONAT, P., MARÍN, S., SANCHIS, V., RAMOS, A. 2018. A review of the mycotoxin adsorbing agents, with an emphasis on their multi-binding capacity, for animal feed decontamination. Food and Chemical Toxicology, 114, 246-259. VILLERS, P. (2014). Aflatoxins and safe storage. Frontiers in Microbiology, 5, 158. VUJANOVIC, V., SMORAGIEWICZ, W., KRZYSZTYNIAK, K. 2001. Airborne fungal ecological niche determination as one of the possibilities for indirect mycotoxin risk assessment in indoor air. Environmental Toxicology: An International Journal, 16(1), 1-8. WANG, Q., YANG, Q., WU, W. 2020. Progress on Structured Biosensors for Monitoring Aflatoxin B1 From Biofilms: A Review. Frontiers in Microbiology, 11, 408. WANG, Y., LIU, F., LIU, M., ZHOU, X., WANG, M., CAO, K., FENG, X. 2022. Curcumin mitigates aflatoxin B1-induced liver injury via regulating the NLRP3 inflammasome and Nrf2 signaling pathway. Food and Chemical Toxicology, 161, 112823. WIELOGÓRSKA, E., MACDONALD, S. & ELLIOTT, C. 2016. A review of the efficacy of mycotoxin detoxifying agents used in feed in light of changing global environment and legislation. World Mycotoxin Journal, 9, 419-433. 75 YANG, R., SHAN, S., SHI, J., LI, H., AN, N., LI, S., LI, Z. 2023. Coprococcus eutactus, a potent probiotic, alleviates colitis via acetate-mediated IgA response and microbiota restoration. Journal of Agricultural and Food Chemistry, 71(7), 3273-3284. ZAVALA-FRANCO, A., HERNÁNDEZ-PATLÁN, D., SOLÍS-CRUZ, B., LÓPEZ-ARELLANO, R., TELLEZ-ISAIAS, G., VÁZQUEZ-DURÁN, A., & MÉNDEZ-ALBORES, A. 2018. Assessing the aflatoxin B1 adsorption capacity between biosorbents using an in vitro multicompartmental model simulating the dynamic conditions in the gastrointestinal tract of poultry. Toxins, 10(11), 484.