UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS FÍSICAS INSTITUTO DE CIENCIAS NUCLEARES MEASUREMENT OF φ (1020) RESONANCE PRODUCTION IN p-Pb COLLISIONS AT √sNN = 5.02 TeV WITH THE ALICE EXPERIMENT TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIAS FÍSICAS (FÍSICA) PRESENTA: EDGAR PÉREZ LEZAMA TUTOR PRINCIPAL: DR. GUY PAIC INSTITUTO DE CIENCIAS NUCLEARES MIEMBROS DEL COMITÉ TUTOR: DR. ELEAZAR CUAUTLE FLORES INSTITUTO DE CIENCIAS NUCLEARES DR. VARLEN GRABSKI INSTITUTO DE FÍSICA MÉXICO, D. F. Septiembre 2014 UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Dedico esta tesis a mis amados padres ... Agradecimientos El mayor y principal agradecimiento es a mis padres, Ángeles Lezama y Jorge Pérez, por su apoyo incondicional a lo largo de esta trayectoria y por su dedicación para darme una formación académica. Agradezco mis t́ıos y en especial Martha Pérez, Ramón López y Eduardo Pérez, quienes fueron parte importante de este nuevo logro profesional y de alguna u otra manera estuvieron apoyándome y alentándome para poder obtener este importante logro. Al Dr. Guy Paic, mi asesor, le estaré siempre agradecido por dedicar tiempo en mi formación como cientifico y tambien por ayudarme a que este trabajo trascendiera internacionalmente. Gracias por todas las discusiones en el grupo del ICN. Le doy las gracias a mis tutores y sinodales Eleazar Cuautle, Varlen Grabski, Lukas Nellen, Ernesto Belmont, Andrés Sandoval y Gerardo Herrera por dedicar parte de su tiempo en leer mi tesis y aportarme valiosas sugerencias y opiniones que finalmente ayudaron a mejorar este trabajo. Agradezco a mis amigos de la carrera: Tonatiuh Jiménez, Ricardo Román, Iván Toledano, Miguel López y Mart́ın Zumaya, por apoyarme y alentarme en el sinu- oso camino de la ciencia. Espero que nuestra amistad y colaboración se mantenga por mucho tiempo. Especial agradecimiento a Antonio Ortiz por motivarme en la fisica de altas energias y darme consejos muy valiosos para mejorar mi trabajo y mi entendimiento de la f́ısica. Gracias a Enrique Patiño por proporcionarme material y equipo del laboratorio de detectores. My completion of this thesis could not have been accomplished without the sup- port and help of the Resonance Group and specially from Ajay Kumar Dash, Francesca Bellini, Anders Knospe, Viktor Riabov, Mikhail Malaev and Christina Markert. The weekly discussions helped me to improve this work. Thanks to the ALICE collaboration for all your comments and suggestions. La conclusion de este trabajo no hubiera sido posible sin los apoyos economicos que financiaron mis estudios de maestria. Gracias a la beca CONACyT, los apoyos PAEP, el convenio CERN-UNAM, al ICN y especialmente a Alejandro Ayala y a Miguel Alcubierre por apoyarme y darme la oportunidad de realizar estancias en CERN, donde adquiŕı mucha experiencia y conocimiento por parte de los expertos en el area. Contents Contents iv Resumen vi 0.1 Introducción . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 0.1.1 Resonancias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 0.2 Experimento ALICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 0.2.1 Detectores TPC y TOF . . . . . . . . . . . . . . . . . . . . . . . . . ix 0.3 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 0.3.1 Selección de Eventos y de Trazas . . . . . . . . . . . . . . . . . . . . xi 0.3.2 Espectro de momento del mesón φ(1020) . . . . . . . . . . . . . . . . xii 0.3.3 Discusión de Resultados . . . . . . . . . . . . . . . . . . . . . . . . . xiii 0.4 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv Summary xvi List of Figures xvi 1 High Energy Physics 1 1.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Kinematic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Quantum Chromodynamics (QCD) . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Quark Gluon Plasma (QGP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4.1 Phases of strongly interacting matter . . . . . . . . . . . . . . . . . . 6 1.4.2 Strangeness enhancement . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.3 Resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 iv CONTENTS 2 The ALICE Experiment at LHC 11 2.1 Large Hadron Colider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.1 The accelerator complex . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 ALICE (A Large Ion Collider Experiment) . . . . . . . . . . . . . . . . . . . 13 2.2.1 ALICE detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 Particle Identification in ALICE 21 3.1 AliRoot framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 TPC PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 TOF PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4 φ(1020) Analysis Results 26 4.1 Event and Track Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1.2 Track selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2 φ(1020) Meson Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Kaon identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.2 Invariant Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.3 Combinatorial Background Subtraction . . . . . . . . . . . . . . . . . 29 4.2.4 Peak and Residual Background Fits . . . . . . . . . . . . . . . . . . . 33 4.2.5 Raw Yield Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.6 Peak Correction Factor . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1 Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 38 5 φ(1020) Spectra And Systematic Analysis 41 5.1 φ(1020) Invariant Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 Mass and Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 5.3 Systematic Uncertainties Analysis . . . . . . . . . . . . . . . . . . . . . . . . 44 5.3.1 Systematic Uncertainties of the Yield . . . . . . . . . . . . . . . . . . 46 5.3.1.1 Detailed description of each source . . . . . . . . . . . . . . 46 5.3.2 Fits to φ Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.3 Integrated Yield and Particle Ratios . . . . . . . . . . . . . . . . . . 55 5.4 Analysis Combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 v CONTENTS 6 Discussion of Results 62 7 Conclusions 68 Bibliography 70 Appdx A 73 .0.1 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 vi Resumen 0.1 Introducción La f́ısica de altas enerǵıas ha establecido y validado durante las últimas decadas una de- tallada, pero incompleta, teoŕıa de part́ıculas elementales y sus interacciones fundamentales llamada Modelo Estándar. Este modelo ha explicado exitosamente una serie de resultados experimentales y ha predicho de manera precisa una amplia variedad de fenómenos. De acuerdo con la teoŕıa del Modelo Estándar toda la materia está constituida de tres tipos de part́ıculas elementales: leptones, quarks y las part́ıculas mediadoras. En total son doce part́ıculas, seis quarks: up, down, strange, charm, bottom y top, y seis leptones: electrón, neutrino del electrón, muón, neutrino del muón, tauón y neutrino del tau. Los quarks y los leptones se clasifican dentro de la categoria de los fermiones, por tener esṕın semientero. El Modelo Estándar considera tres tipos de interacciones fundamentales y estas se pro- ducen a través del intercambio de bosones (esṕın entero) o part́ıculas mediadoras. El fotón(γ) es la part́ıcula mediadora de la interacción electromagnética, los bosones vectoriales(W± y Z0) son responsables de la interacción débil, y los ocho gluones(g) son los mediadores de la interacción fuerte. El Modelo Estándard tiene, sin embargo, limitaciones que requieren extensiones para mantener la teoria consistente. El aspecto más importante es las masas de los bosones de norma electro-débiles (W± y Z0) que se predicen que debeŕıan ser nulas en la teoŕıa. Lo cual es claramente inconsistente con la teoŕıa. Esta discrepancia puede ser resuelta agregando un bosón de norma adicional, añadido a la teoŕıa, el bosón de Higgs. El mecanismo de Higgs genera las masas para los W± y Z0 mientras que los fotones permanecen sin masa. Resultados recientes del LHC han confirmado la existencia de una part́ıcula desconocida con una masa entre 125 y 127 GeV/c2. En marzo del 2013 se probó que la part́ıcula de- sconocida se comportaba, interactuaba y decaia en muchas de las formas predichas por el vii CONTENTS Modelo Estárdar, y fue tentativamente confirmado de tener paridad positiva y esṕın cero, dos atributos fundamentales del bosón de Higgs. 0.1.1 Resonancias El estudio de la producción de resonancias mesónicas φ(1020) y K∗(892) tiene su particular importancia. Estas part́ıculas tienen masas muy cercanas pero sus tiempos de vida difieren por un factor alrededor de 10, siendo: τφ = 46 fm/c and τK∗0 = 4.0 fm/c, y su contenido de extrañeza o número de quarks extraños difieren por una unidad. Se espera que el K∗0 sea mas sensitivo a efectos de re-dispersión en el medio hadrónico, debido a su corto tiempo de vida. Por otro lado, el mesón φ puede escapar del medio hadrónico casi sin re-dispersión, por esto, esta resonancia es un buen candidato para investigar restauración parcial de simetŕıa quiral en el tiempo de formación. Además, el φ es de gran ayuda para probar la producción extrañeza, siendo el mesón vectorial más ligero compuesto de quarks del mar (ss). 0.2 Experimento ALICE EL LHC1 (Gran Colisionador de Hadrones) comenzó como una idea a mediados de la década de los 80’s. Anteriormente el CERN2 (Organización Europea para la Investigación Nuclear) contaba con el colisionador LEP3 (Gran Colisionador Electrón-Positrón), que funcion de 1989 hasta el ao 2000. EL LHC se encuentra ubicado en la frontera Franco-Suiza cerca de Ginebra, y enterrado a una profundidad entre 50m y 175m. El LHC es un sincrotrón que acelera paquetes de part́ıculas en anillos separados y en sentidos contrarios, cada paquete viaja muchas veces alrededor del anillo del acelerador hasta que se alcanza suficiente enerǵıa para colisionarlas. La enerǵıa máxima de aceleración para protones es de 7 TeV y 2.76 TeV por nucleón en iones de plomo. Con esto, se alcanzan enerǵıas en el centro de masa de la colisión de √ s=14 TeV para protón-protón, √ sNN=5.02 TeV p-Pb y √ sNN=5.5 TeV en iones de plomo. Para mantener los haces enfocados y acelerados hasta el momento de la colisión, el aceler- ador tiene que guiarlos a lo largo del anillo. Para lograr esto, el LHC cuenta con 1232 dipolos de 14.3 m de longitud, que desv́ıan la trayectoria de las part́ıculas. Los dipolos contienen magnetos superconductores que operan a una temperatura de 1.9◦K, lo cual está 0.8◦K por 1Large Hadron Collider 2Centree Européenne pour la Recherche Nucléaire. 3Large Electro-Positron Collider viii CONTENTS debajo de la temperatura de fondo del universo, esta temperatura se logra utilizando helio en estado superfluido. Para enfocar los haces, se tienen 392 cuadrupolos con una longitud entre 5 y 7 metros. El experimento ALICE (A Large Ion Collider Experiment) tiene 16m de alto, 26 m de largo y pesa aproximadamente 10,000 toneladas, ALICE es el cuarto de los grandes experimentos del CERN, que explorará la nueva f́ısica que surja a partir de colisionar nucleos de iones contra nucleos de iones (Pb-Pb) a enerǵıas del LHC, permitiendo el estudio de la f́ısica del equilibrio y del no equilibrio de materia interaccionando fuertemente en densidades del orden de ε ≃ 1− 1000GeVfm−3. El objetivo de ALICE es estudiar a la materia que se encuentra bajo condiciones de densidad extrema, formando aśı un nuevo estado de la materia llamado plasma de quarks y gluones (QGP1). La materia en este estado se encuentra 100,000 veces más caliente que el núcleo del sol y bajo estas condiciones los protones y neutrones se funden, liberando aśı los quarks y gluones que conforman a estos hadrones. Debido a que ningún quark ni gluón han sido observados de forma aislada, siempre están unidos dentro de los hadrones, el estudio de las propiedades del QGP será clave para la Cromodinámica Cuántica en un mejor entendimiento del fenómeno de Confinamiento2. El experimento ALICE es un experimento de propósito general cuyos detectores miden e identifican hadrones, leptones y fotones. Esto se ha logrado analizando un amplio rango de momento (desde ∼ 0.1GeV hasta ∼ 100GeV) utilizando las técnicas de identificación conocidas: pérdida de enerǵıa por ionización dE/dx, tiempo de vuelo, radiación Cherenkov y de transición, calorimetŕıa electromagnética y filtros de muones. 0.2.1 Detectores TPC y TOF TPC El detector TPC o Cámara de Proyección Temporal, es el principal detector de trazas que está optimizado para, junto con los otros detectores ciĺındricos, medir el momento de part́ıculas cargadas, identificar el tipo de part́ıcula y determinar la posición del vértice. El volúmen de este detector, de forma ciĺındrica, está delimitado por un radio interno de 84.8 cm y el radio externo de 246.6 cm, cubre una longitud de 500 cm en la dirección del haz (eje z). El espacio fase cubierto por la TPC en psudorapidez es | η |<0.9 para trazas de part́ıculas 1Por sus siglas en inglés Quark-Gluon Plasma. 2Los quarks y gluones están confinados dentro de los hadrones. ix CONTENTS radiales. Por ser de forma ciĺındrica, cubre completamente el ángulo azimutal (con excepción de las zonas muertas), aśı mismo cubre un amplio rango de pt con buena resolución, desde 0.1 GeV hasta 100 GeV. El detector consiste principalmente de dos partes: la jaula del campo y el electrodo cen- tral. La primera es llenada con 90 m3 de una mezcla de gases: Ne/CO2/N2 (90/10/5), las part́ıculas cargadas que atraviesen este gas excitarán e ionizarán los átomos de la mezcla a lo largo de la trayectoria de la part́ıcula. Como consecuencia de esta ionización, las part́ıculas irán progresivamente perdiendo enerǵıa por unidad de longitud de la traza (dE/dx), la pérdida de enerǵıa es espećıfica y caracteŕıstica según el tipo de part́ıcula que está atrav- esando la TPC. Los electrones son transportados, a lo largo de 2.5 m hacia las tapas del cilindro de la TPC a causa de un fuerte campo eléctrico generado entre las tapas exteriores y el electrodo central, debido a que este último está a un alto voltaje negativo y las tapas externas a un alto voltaje positivo. Las tapas circulares de la TPC son las que detectan los electrones arrastrados desde el punto de ionización, cada tapa está conformada de 18 sectores trapezoidales que son MWPC1 (Cámara Proporcional de Multialambres). El MWPC consiste en una serie de rejillas de cátodos y ánodos a diferentes voltajes. Un ánodo está a un voltaje positivo de 1500V, lo cual conlleva a una amplificación de los electrones arrastrados, pues estos incrementan su enerǵıa debido al potencial, causando mayores ionizaciones y comenzando aśı una avalancha de electrones. La señal que reciben los pads2 son proporcionales al número de electrones y a la enerǵıa perdida de las part́ıculas cargadas ionizantes. Pero esta proporcionalidad se estropeaŕıa si los fotones, que son generados en la avalancha, viajaran más distancia que el tamaño de la avalancha, creando aśı otras nuevas avalanchas que no seŕıan provenientes directamente de los electrones arrastrados, este efecto es minimizado por los gases CO2 y N2 que tienen un alto coeficiente de fotoabsorción sobre un amplio rango de longitud de onda. TOF El detector de Tiempo de Vuelo (TOF), cubre una región central de pseudorapidez de | η |<0.9, es capaz de identificar part́ıculas de un rango de momento intermedio de 0.4 a 2.5GeV para piones y kaones o hasta 4GeV para protones, con una separación mayor a 3σ entre π/K y K/p, esto último se utilizó en esta tesis como método de identificación de part́ıculas en el TOF y se explicará en el siguiente caṕıtulo. 1Por sus siglas en inglés Multi-Wire Proportional Chamber. 2Elementos sensibles a la detección de electrones. x CONTENTS El detector cubre una superficie ciĺındrica con una aceptancia en el ángulo polar entre 45◦ y 135◦. El radio interno del cascarón ciĺındrico es de 370 cm y el radio externo de 399 cm, con una longitud de 741 cm en la dirección z. La estructura modular del TOF cuenta con 18 sectores distribuidos en el ángulo azimutal (φ) y este arreglo se repite en cinco módulos en la dirección z. Los módulos contienen un total de 1638 elementos detectores, llamados MRPC (Multi-gap Resistive Plate Chamber), y cubren un área de 160 m2. La principal caracteŕıstica de estas cámaras es su fuerte campo eléctrico y uniforme en todo el volúmen gaseoso1 del detector, ocasionando que las ionizaciones, debidas a las part́ıculas cargadas producidas en la colisión, generen inmediatamente avalanchas de part́ıculas que producirán señales. Debido a que no existe tiempo de arrastre asociado a los electrones en movimiento, a diferencia de la TPC donde si existe, el tiempo de vuelo de las part́ıculas detectadas es obtenido midiendo el retardo entre la señal del trigger, proporcionada por el detector T0, y la señal del TOF. 0.3 Resultados Usando las ventajas en identificación de part́ıculas de los detectores TPC y TOF, el mesón φ puede ser reconstruido a partir de los productos de su decaimiento. Este trabajo se enfocó en el canal de decaimiento a dos kaones: φ →K++K−. 0.3.1 Selección de Eventos y de Trazas Se analizó en esta tesis los eventos de colisiones p-Pb a una enerǵıa de √ sNN = 5.02 TeV. Debido al diseño del magneto 2-en-1 del LHC, la enerǵıa de los dos haces no puede ser ajustada de manera independiente, llevando esto a diferente enerǵıa por beam. El sistema centro de masa está entonces desplazado con respecto al sistema de laboratorio con una rapidez de yN = -0.465 en la dirección del haz del proton. Los eventos seleccionados a analizar son aquellos que pasan algunos cortes estándar. Los eventos son aceptados si tienen vértice primario reconstruido en el detector SPD y cuya coordenada z se encuentre entre ±10 cm del punto de interacción. La multiplicidad en los eventos es obtenida en terminos del porcentaje del estimador de multiplicidad proporcionado por el detector V0A (lado del Pb). 1El gas contenido en el TOF es una mezcla de: C2H2F4(90%),i− C4H10(5%), SF6(5%) xi CONTENTS Se seleccionaron trazas primarias, que son aquellas producidas en la colisión incluyendo productos de decaimientos electromagnéticos débiles pero excluyendo productos de decaimien- tos débiles y particulas secundarias. Una part́ıcula de decaimiento débil es una part́ıcula hija de un decaimiento débil de un hadron ligero o de un muon. 0.3.2 Espectro de momento del mesón φ(1020) Como ya se mencionó, los mesones φ(1020) son identificados por su canal de decaimiento a dos kaones, los cuales son identificados mediante el uso de los detectores TPC y TOF. Como parte de la información obtenida es la enerǵıa(E) y el momento(p) de cada kaon, con esto se puede calcular la masa invariante de un par de kaones de la siquiente manera: M2 inv = (p21 + p22) = (E1 + E2) 2 − (p1 + p2) 2 (1) Las distribuciones de masa invariante obtenidas tienen una seal alrededor de 1.02 GeV/c junto con una gran cantidad de ruido combinatorio proveniente de kaones no correlacionados. Este ruido se elimina mediante el método de eventos mixtos. La masa invariante de eventos mixtos se calcula a partir de kaones de carga opuesta de diferentes eventos, de tal manera que el pico de la seal no se formará pero si el ruido combinatorio. Después de tener la distribucion de masa invariante, en la que el ruido combinatorio se sustrajo, es posible que ruido residual esté presente todav́ıa. Entonces se ajusta una función Voigt para la region del pico o de la seal del φ y una función polinomial para describir el ruido residual. A partir de integrar la función de Voigt, sobre un amplio rango de masa, se obtiene el yield. Este procedimiento se repite para 15 rangos de momento transverso pT, entonces se obtiene una distribución del yield de la φ en función de pT. Se tiene una distribución semejante para cada intervalo de multiplicidad: 0-5%, 5-10%, 10-20%, 20-40%, 40-60%, 60-80% y 0-100%. A cada espectro de producción, o yield, de la φ se tiene que corregir por algunos factores y correcciones que se relacionan con caracteristicas del detector. El principal es la corrección por eficiencia, en donde se toma en cuenta la imperfecta detección de todas las part́ıculas provenientes de la colision. A partir de simulaciones Monte Carlo usando en particular el generador DPMJET, la eficiencia se calcula como el cociente siguiente: ǫrec = φreconstruido,TPC−TOF φgenerado , donde (2) xii CONTENTS • Generado φ: Son los mesones φ generados de eventos que cumplen los cortes ya antes descritos, y que no tienen interacción con los sistemas de detección, en este trabajo seria el caso de los detectores TPC y TOF. • Reconstruido φ: Se refiere al numero de mesones φ para el cual sus dos kaones hijas en las que decayó son recontruidas dentro de la TPC o del TOF. Para obtener es espectro de la part́ıcula φ se usa la siguiente expresión: d2N dpTdy = d2Nraw dpTdy · εtrig εrecεPC (3) donde • εrec : Es la eficiencia de reconstrucción. • εPC : Es la corrección de la seal, la cual toma en cuenta el numero de mesones φ que caen fuera de la región de integración. • εtrig : Corrección que toma en cuenta la eficiencia del vértice y del trigger, tiene un valor de 97.8± 1% para mediciones Minimum Bias. d2Nraw dpTdy = Y ield Nevt × BR× dpTdy (4) 0.3.3 Discusión de Resultados Los espectros del mesón φ se obtuvieron en función de pT para siete multiplicidades. Para obtener información de estos espectros es necesario ajustar alguna función de la cual podamos extraer parametros. En particular se buscó obtener el yield integrado(dN/dy), mediante el ajuste de la función de Levy-Tsallis a cada uno de los espectros de las multiplicidades, de este ajuste. También se pudo obtener el pT promedio (〈pT〉). Se encontó una tendencia creciente para dN/dy para el φ, llendo de las colisiones mas perifericas a las mas centrales. El 〈pT〉 se comparó con colisiones pp y con otros hadrones tales como: (K∗0,Λ, p,K±, π±). Similar a lo que se encontró en colisiones Pb-Pb, el 〈pT〉 tiene una tendencia creciente como función de la multiplicidad. Se esperaŕıa que el comportamiento entre los hadrones K∗0, p, φ y Λ fuera el mismo, sin embargo, se obtuvo que siguen una gerarqúıa aparente de masas. xiii CONTENTS Se comparó la producción del mesón φ con la producción de K, π, p, en función de la multiplicidad y para collisiones pp y Pb-Pb. El comportamiento de los resultados en p-Pb es compatible con Pb-Pb, y pp, además de que la prediccion del Modelo Termal concuerda con los resultados más centrales. Las diferencias en los mecanismos de producción de bariones y mesones pueden ser es- tudiados en las razones barión-mesón. Si la producción de hadrones puede ser explicada en terminos de hidrodinámica, entonces las masas de las particulas juega un rol importante en determinar la forma de las distribuciones de pT. Para estudiar este aspecto, la distribución de pT del mesón φ es comparada con la de los protones, el cual es un barion de masa similar pero diferente contenido de quarks. En las razones p/φ como funcion de pT muestran una tendencia decreciente tanto en colisiones perifericas y centrales. Las colisiones pp y Pb- Pb(80-90%) tienen un excelente acuerdo con las perifericas en Pb-Pb, mientras que (0-5%) en p-Pb es intermedio entre pp y Pb-Pb(0-10%). En la razón φ/π una tendencia creciente y muy semejante entre colisiones perifericas(60- 80%) y centrales(0-5%). Si comparamos con la razon barión-mesón p/π en p-Pb y en Pb-Pb, vemos que son comportamientos crecientes muy parecidos. Esto indicaŕıa que el numero de quarks no es un factor importante que determine las distribuciones de pT de las particulas en bajo y pT intermedio, para colisiones centrales. 0.4 Conclusiones En este trabajo se midió la producción del mesón φ en colisiones p-Pb a una enerǵıa de √ sNN = 5.02 TeV, en la región de rapidez −0.5 < y < 0. Se estudió el canal de decaimiento a dos kaones, el cual tiene una probabilidad de decaimiento del 48.9%. Mediante el uso de las capacidades de identificación de part́ıculas de los detectores TPC y TOF los kaones fueron seleccionados y calculandose aśı la masa invariante. El ruido combinatorio es sustraido de las distribuciones de masa invariante mediante la técnica de Eventos Mezclados. La producción del mesón φ se obtuvo mediante el conteo de las entradas en la distribución de masas invariantes, después se aplicaron correcciones y factores de normalización para obtener el espectro de pT del mesón φ para eventos divididos en siete multiplicidades, la cual es medida por el detector V0A. Al espectro del φ se ajusta una función Levy-Tsallis para obtener la producción integrada (dN/dy) y pT promedio. Que después se comparan con los valores de otras part́ıculas más estables (p, K, π). Se encontró que el 〈pT〉 tiene una tendencia creciente, en función de xiv CONTENTS multiplicidad, y que aparentemente se sigue una jerarqúıa de masas en los casos de p, K∗0 y φ. El mismo comportamiento esta presente en colisiones pp. Las razones φ/p como función de pT para colisiones p-Pb perifericas (60-80%) es com- patible con los resultados de pp y Pb-Pb(80-90%). Para colisiones p-Pb centrales (0-5%) los valores de la razón son intermedios entre colisiones centrales y perifericas de Pb-Pb, compor- tamiento que era esperado. Por el otro lado, en la razón mesón-mesón φ/π prácticamente no hay diferencia entre los valores de colisiones centrales y perifericas p-Pb. Una tendencia creciente semejante se presenta en p/π para Pb-Pb, entonces podemos concluir que la masa de las part́ıculas es un parametro importante y no tanto el contenido de quarks. xv List of Figures 1.1 Fundamental particles and the forces mediators. . . . . . . . . . . . . . . . . . . 2 1.2 a) The momentum vector in the plane x-z, b) Transverse plane, where pT is mea- sured, c) Illustrative values for the pseudorapidity and their respective θ angle values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Regions of the principal forms of hadronic matter are shown in the baryon-density- temperature plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Distributions of the CERN’s accelerators that increase the energy of the pro- tons up to 7 TeV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 ALICE schematic layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Pseudorapidity (η) ranges covered by ALICE detectors. . . . . . . . . . . . . . . 16 2.4 ITS detector dimensions and sub-detectors. . . . . . . . . . . . . . . . . . . . . 17 2.5 TPC detector dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.6 Schematic illustration of the working principle and the read-out chambers of the TPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 TOF detector design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1 Data processing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 dE/dx-spectra from TPC detector together with a Bethe-Bloch curve for each par- ticle. Signals coming from p-Pb collisions. . . . . . . . . . . . . . . . . . . . . 23 3.3 TOF signal as a function of momentum. The clear bands correspond to each type of particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.1 V0A particles multiplicity in terms of percentile ranges. . . . . . . . . . . . . . . 27 4.2 Left: TOF PID response for the kaon hypothesis. Right: TPC PID response for the kaon hypothesis. Dashed lines correspond to 2σ, 3σ and 4σ particle selection limits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 xvi LIST OF FIGURES 4.3 K+K− Invariant mass distributions in several pT ranges are shown as black points and the combinatorial background(event mixing) are blue points. . . . . . . . . . 31 4.4 K+K− Invariant mass distributions for high pT values are shown as black points and the combinatorial background(event mixing) are blue points. . . . . . . . . . 32 4.5 Invariant mass distribution after the mixed events background subtraction using the information from TPC and TOF combined. Results correspond to 0-100% multiplicity bin, magenta line is the total fit (ResidualBg+Voigt). . . . . . . . . . 35 4.6 Invariant mass distribution after the mixed events background subtraction using the information from TPC and TOF combined. Results correspond to 0-100% multiplicity bin, magenta line is the total fit (ResidualBg+Voigt). . . . . . . . . . 36 4.7 Peak correction factor for the default analysis parameters in the multiplicity bin 0− 100% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.8 Ratios of the efficiency as a function of multiplicity over the Minimum Bias efficiency (0-100)%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.9 Efficiency used to correct the TPC-TOF data, 3σ and 4σ are shown. . . . . . . . 40 5.1 Fully corrected φ Spectra 1/2πpT×(d2N/dpTdy) obtained with TPC-TOF detectors information, for Minimum Bias, 0-5%, 5-10%, 10-20%, 20-40%, 40-60% and 60-80% multiplicity measurements. Only statistical errors are shown. . . . . . . . . . . . 42 5.2 Mass of the φ mesons measured in Minimum bias, 0-5% and 60-80% multiplicity ranges. Only statistical uncertainties are shown. . . . . . . . . . . . . . . . . . 43 5.3 Width of the φ mesons measured in Minimum bias, 0-5% and 60-80% multiplicity ranges. Only statistical uncertainties are shown. . . . . . . . . . . . . . . . . . 44 5.4 pT dependent systematic uncertainty due to material budget(MB) for the φ. . . 49 5.5 pT dependent systematic uncertainty due to hadronic interaction cross section for the φ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.6 pT dependent systematic uncertainty due to analysis cuts variations for the φ. . . 50 5.7 Percentage of the systematic uncertainties for each source in 0-100% multiplicity bin, using the combined TPC-TOF information. . . . . . . . . . . . . . . . . . . 51 5.8 Fractional smoothed systematic uncertainties for each multiplicity range and for each systematic source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.9 Fully corrected spectra for φ(K+K−) using the combined TPC-TOF information, corresponding to minimum bias. Statistical uncertainties (bars) and systematic uncertainties (boxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 xvii LIST OF FIGURES 5.10 Fully corrected spectra for φ(K+K−) using the combined TPC-TOF information as a function of multiplicity. Statistical uncertainties are shown in bars and systematic uncertainties are shown in boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.11 Fits to the corrected φ spectra (d2N/dpTdy) in the 5-10% multiplicity bin. . . . . 55 5.12 Fits to the corrected φ spectra (d2N/dpTdy) in the 60-80% multiplicity bin. . . . 56 5.13 Left: φ points, for 0-5%, moved down to the systematic unc. limit. Right: φ points moved up to the systematic unc. limit. The red curve is the Levy fit to each spectra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.14 Left: φ integrated yield as a function of multiplicity. dNφ/dy vs dNch/dη. Right: φ mean pT ( 〈pT〉 ) as a function of multiplicity. Systematic uncertainties (boxes), statistical uncertainties (lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.15 Comparison between the three different methods to obtain the φ spectra. The fit is compared to the data point at the bottom of the plot. . . . . . . . . . . . . . 60 5.16 Combined φ invariant spectra for minimum bias measurement, Levy-Tsallis fit func- tion is shown. Statistical uncertainties (bars), Systematic uncertainties (boxes). . 61 5.17 Combined φ invariant spectra for six multiplicity ranges, and the respectively Levy-Tsallis fit functions. Statistical uncertainties (bars), Systematic uncertain- ties (boxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.1 φ integrated yield(dNφ/dy) as a function of multiplicity. Statistical uncertain- ties(bars), systematic uncertainties(boxes) and uncorrelated systematic (shaded boxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.2 Mean transverse momentum of π±,K±,K0 s,K ∗0 s , p,Λ and φ for two collision systems, pp at √ s = 7 TeV and p-Pb at √ sNN = 5.02 TeV. . . . . . . . . . . . . . . . . 63 6.3 Left: Ratio φ/π as a function of multiplicity (dNch/dη) 1/3 for the three collision systems: pp, p-Pb and Pb-Pb. Right: Ratio φ/p as a function of multiplicity (dNch/dη) 1/3 for the same collision systems described before. Statistical uncer- tainties(bars), systematic uncertainties(boxes) and uncorrelated systematic (shaded boxes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 xviii LIST OF FIGURES 6.4 Left: Ratio φ/K− as a function of multiplicity (dNch/dη) 1/3 and comparison be- tween pp, p-Pb and Pb-Pb collision systems. Right: Ratio φ/K as a function of the collision energy( √ sNN ) , compared with different collision systems in other experi- ments. The values given by a grand-canonical thermal model with a chemical freeze- out temperature of 156 MeV are also shown [37]. Statistical uncertainties(bars), systematic uncertainties(boxes) and uncorrelated systematic (shaded boxes) are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.5 Ratio p/φ as a function of pT for pp at √ s = 7 TeV, p-Pb at √ sNN = 5.02 TeV and Pb-Pb at √ sNN = 2.76 TeV, comparing central and peripheral intervals. . . 66 6.6 Ratio φ/π as a function of pT for p-Pb at √ sNN = 5.02 TeV and comparing central and peripheral measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.7 Ratio p/π = (p+p)/(π++π−) as a function of pT in the rapidity interval 0 < y < 0.5 (left panel). The ratios are compared to results in Pb-Pb collisions measured at mid-rapidity, shown in right panel. The empty boxes show the total systematic uncertainty; the shaded boxes indicate the contribution uncorrelated across multi- plicity bins. Figure taken from [27]. . . . . . . . . . . . . . . . . . . . . . . . . 67 1 Resolution histogram (truncated Gaussian fit) in the transverse momentum 1.0 < pT < 1.5 (left plot) and 2.5 < pT < 3.0 (right plot), both in the multiplicity bin 0− 100%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2 Reconstructed histogram with a Voigtian0 fit, where σvoi is obtained. The left plot is shown in the transverse momentum 1.0 < pT < 1.5 and the right plot in 2.5 < pT < 3.0, both in the multiplicity bin 0− 100% . . . . . . . . . . . . . . . 74 3 Three calculations of the resolution are presented, σGauss, σh, σvoi in the 0-100% multiplicity bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 xix Chapter 1 High Energy Physics 1.1 Standard Model The High Energy Physics(HEP) has established and tested since the 60’s a detailed theory of the elementary particles and their fundamental interactions called Standard Model. The Standard Model describes the fundamental forces and the composition of matter. It is a gauge theory that includes the strong, weak, and electromagnetic forces and the related interactions. Being the gravity the fourth force that is not included in this theory. According to the Standard Model theory, all mater is constituted out of point-like particles which have a spin 1/2 and grouped into three families, each family has two quarks and two leptons members [1]. The SU(3) × SU(2) × U(1) Standard Model(SM) is the combination of three theories, describing each of the forces. The Quantum Chromodynamics (QCD) is one of the com- ponents of the SM(SU(3)), it is a gauge theory which describes the strong interactions of colored quarks(q) and gluons(g). The color is a property similar to the charge in strong interactions, for example, a quark of specific flavor can have three different color charge (green, blue and red) and in order to form hadrons which are colorless(white), either with three colored quarks or a quark and an anti-quark. Hadrons are grouped into baryons and mesons. Baryons consist of three quarks, qqq or qqq while mesons consist of two quarks (qq). The gluons are the mediators of the strong force. The interaction between quarks and gluons can change the color but not the flavor. Since color (like electric charge) is always conserved, this means that the gluon come in eight different bi-colored combinations [1]. The electro-weak interaction is based on the gauge theory group SU(2) × U(1). There 1 1. High Energy Physics are two kinds of electro-weak interactions: charged(mediated by W±) and neutral(mediated by Z0), the first one is the only that changes flavor. The Quantum Electrodynamics(QED) describes the electromagnetic interactions mediated by the exchange of photons(γ). Leptons are affected by the weak force and the charged ones in addition by electromagnetic force. The Standard Model has also, however, limitations that require extensions to keep the theory consistent. The most important issue is the masses of the electro-weak gauge bosons predicted to be zero within the theory. This is clearly inconsistent with experiment. This situation can be resolved by an additional gauge boson added to the theory, the Higgs boson. The Higgs mechanism generates the masses for the W± and the Z0 while the γ remains massless. Recent results from LHC have confirmed, in July 2012, the existence of a unknown particle with a mass between 125 and 127 GeV/c2. By March 2013, the particle has been proven to behave, interact and decay in many of the ways predicted by the Standard Model, and was also tentatively confirmed to have positive parity and zero spin, two fundamental attributes of a Higgs boson [2]. Figure 1.1: Fundamental particles and the forces mediators. 2 1. High Energy Physics 1.2 Kinematic Variables In order to analyse and measure the properties of the hadrons, it is convenient to define some variables that depend on some measurable quantities of the particles. The energy-momentum four-vector is: pµ = (p0, p1, p2, p3) = (E/c, px, py, pz) (1.1) The transverse momentum is defined in terms of the px and py components of the total momentum p. pT = √ p2x + p2y, (1.2) then the energy-momentum four-vector can be written as pµ = (E, pT , pz) where c=1. In the figure 1.2, left image, it is shown the momentum vector over the x-z plane, where θcms is the direction of the vector with respect to z-axis (beam axis) and the right image shows the transverse momentum vector in the x-y plane [3]. The rapidity(y) is defined as a function of the energy(E) and the longitudinal momentum(pz) of the same particle, the expression is: y = 1 2 ln E + pz E − pz (1.3) If one considers the case in which the momentum magnitude of a particle is much bigger than the mass of the same particle, i.e. p ≫ m, the rapidity(y) can be approximated as y ≈ −ln[tan(θ/2)] where θ is the vector momentum angle with respec to the beam axis (z direction). Under this approximation the rapidity is known as pseudorapidity[3]. η = −ln[tan(θ/2)] (1.4) The figure 1.2 shows examples of the different values of the pseudorapidity and its cor- responding angle in the x-z plane. 3 1. High Energy Physics protónprotón P x-z Plane cm Transverse plane x-y pt φ θ=90 θ=45 θ=10 θ=0 η=0 η=0.88 η=2.44 η= x z y x a) b) c) Figure 1.2: a) The momentum vector in the plane x-z, b) Transverse plane, where pT is measured, c) Illustrative values for the pseudorapidity and their respective θ angle values. 1.3 Quantum Chromodynamics (QCD) The QCD is the theory of the strong interactions. The strong interactions have been studied since the beginning of the 20th century soon after the discovery of the atomic nucleus. This interaction is a fundamental force describing interactions between quarks and gluons which make up hadrons (protons, neutron, pions, etc), similar description to the way QED does for electrons and photons. In QCD, the interactions are invariant under a SU(3) transformation in colour space (SU(3) colour symmetry). Thus, the quarks carry three colour charges, and each gluon is a combination of eight different combinations of colour and anti-colour charge. The intrinsic charge of the gauge field (the gluon) is the decisive modification in compari- son to QED; it makes the pure gluons system self-interactive, in contrast to the ideal gas of photons[13]. The two main strong interaction features of interest for heavy-ion physics are: • Colour confinement: the force between quarks does not diminish as they are sep- arate. Because of this. When one tries to separate two quarks, the energy is enough to create another quark and then creating another quark pair; they are forever bound into hadrons such as the proton and the neutron or the pion and kaon. Although an- alytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. • Asymptotic freedom: the value of the strong coupling constant, αS, depends on the momentum transfer (Q2) at which an observed process occurs (running coupling 4 1. High Energy Physics constant). αS decreases with increasing energy and asymptotically, at infinite energy, tends to zero . There is no known phase-transition line separating these two properties; confinement is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes domi- nant. This theory predicts that strong interaction properties in a complex system may differ from those observed in the vacuum. Quark confinement inside hadrons can disappear at energy densities higher than those typical of normal nuclear matter [13]. The Lagrangian density of QCD is given by [4]: L = −1 4 F a µνF µν a + ∑ f ψ f α(iγµD µ)ψ f β (1.5) with the non Abelian group tensor F a µν = (∂µA a ν − ∂νA a µ − gfa bcA b µA c ν) (1.6) and Dµ = ∂µ + ig λa 2 Aa µ (1.7) The fundamental degrees of freedom of the theory are the 3× 6 quarks fermionic fields ψ and the eight gluonic fields Aµ. λa and fa bc are the eight SU(3) group generators (the 3× 3 Gell-Mann matrices) and the structure constants. The inclusion of quark masses would add a term Lm = ∑ f mfψ f αψ fα (1.8) in Eq. 1.5. Equation 1.7 contains one dimensionless coupling constant g, and hence Eq. 1.5 provides no scale: QCD predicts only the ratios of physical quantities, not absolute values in terms of physical units. In QCD hadrons are colour-neutral bound states of quarks (baryons) or of quark-antiquark pairs (mesons); they are thus the chromodynamic analogue of atoms as the electrically-neutral bound states in QED. The differences between the two theories becomes significant at large distances: while a finite ionization energy ∆E suffices to break up the electrodynamic bound, this is not possible in the case of quark binding. This property of the QCD leads to the concept of “confinement”. At short distances QCD shows another peculiar behaviour, the decrease of the colour charge with decreasing the 5 1. High Energy Physics distance from the colour-probe to the charge itself. This leads to the concept of “asymptotic freedom”, which implies that partons1 inside hadrons interact weakly among themselves and can be considered as almost free. 1.4 Quark Gluon Plasma (QGP) Ultra-relativistic heavy ion collisions offer a good opportunity to investigate highly excited dense nuclear matter under controlled laboratory conditions. The aim for such studies is the expectation that an entirely new form of matter may be created from such reactions. That form of matter, called Quark Gluon Plasma (QGP), is the QCD analogue of the plasma phase of ordinary atomic matter. Nevertheless, the deconfined quanta of a QGP are not directly observable because of the fundamental confining property of the physical QCD vac- uum. What is observable are hadronic and leptonic residues of the transient QGP state. Among some probes there are the Leptonic probes, γ, e+e−, µ+µ−, they carry information about the spectrum of electromagnetic current fluctuations in the QGP stat; the abundance of quarkonia Ψ,Ψ′,Υ,Υ′ (also observed via l+l−) carry information about the chromoelectric field fluctuations in the QGP. The large number of hadronic probes, π,K, p, p,Λ,Ξ,Ω, φ, ρ, ... provide information on the quark flavor chemistry and baryon number transport. Theory suggest that with decays such as ρ → e+e− the properties of the hadronization and chi- ral symmetry breaking can be indirectly studied. Quantum statistical interference patterns in ππ,KK, pp,ΛΛ correlations provide somewhat cloudy lenses with which the space-time geometry of hadronic ashes of the QGP can be investigated. The detailed rapidity and trans- verse momentum spectra of hadrons provide barometric information of pressure gradients during the explosive expansion of the QGP medium[5]. The main problem with all the above probes is precisely that they are all indirect mes- sengers. Since we can not see free quarks and gluons it is not trivial to verify the QCD predictions of the QGP state. However, nature choses to hide those constituents within the confines of colour neutral composite many body systems hadrons. 1.4.1 Phases of strongly interacting matter It is expected that in heavy ion collisions, one reaches conditions under which the structured confining vacuum is dissolved, forming a domain of thermally equilibrated hadronic matter 1The basic constituents of hadrons, quarks and gluons. 6 1. High Energy Physics comprising freely moving quarks and gluons. A schematic plot of the the phase diagram of dense hadronic matter is shown in figure 1.3 The different phases populate different domains of temperature T and baryon density. For high temperatures and/or high baryon density, we have the deconfined phase. If deconfinement is reached in the nuclear-collision, it freezes back into the state containing hadrons during the temporal evolution of the small fireball. The most difficult domain to reach experimentally is the one of low baryon number density, at high T , corresponding to the conditions that were in the early Universe. This demands extreme collision energies, which would permit the baryon number to escape from the central rapidity region, where only the collision energy is deposited. Now we want to qualitatively understand the magnitude of the temperature at which the deconfined quark-gluon phase will freeze into hadrons. The order of magnitude of this transition temperature (if a phase change occurs) or cross temperature (if no phase transition occurs) is obtained by evaluating where a benchmark value for energy density occurs, εH ≈ 3PH = 1 GeV fm−3 [6]. The generalized Stefan-Boltzmann law describes the energy density ε and pressure P as functions of the temperature T of a massless relativistic gas: P SB = 1 3 εSB = π2 90 gT 4 (1.9) where the quantity g is the number of different (relativistic) particle states available and is often called the ‘number of degrees of freedom’ or ‘degeneracy’. In the deconfined phase, g ≡ gg + 7 4 gq, (1.10) which comprises the contribution of massless gluons(bosons) and quarks(fermions). The relative factor 2× 7 8 = 7 4 expresses the presence of particles and antiparticles (factor 2) and the smaller fermion phase space, compared with the boson case, given the exclusion principle. Gluons and quarks carry color and spin, but quarks in addition come in two(nf = 2) flavors u and d. Since at high temperatures the flavor count may include the strange quark, we leave (nf = 2) as a variable. Then we obtain the following degeneracy in a QGP: gluons : gg = 2(spin)× (N2 c )(color) = 2× 8 = 16, quarks : gq = 2(spin)×Nc(color)× nf (flavor) = 2× 3× nf . When the semi-massive strange quarks are present, the effective number of ‘light’ flavors is 7 1. High Energy Physics ≈ 2.5. Thus, g ≈ 40 in equation 1.9, to be compared with just two directions of polarization for photons[6]. For a massless ideal quark-gluon gas, we find TH = 160MeV, for εH = 1.1 GeVfm−3 Hagedorn introduced this critical temperature in his study of the boiling point of hadronic matter[29]. Figure 1.3: Regions of the principal forms of hadronic matter are shown in the baryon-density- temperature plane. 1.4.2 Strangeness enhancement The quarks u and d from which the stable matter is made are easily produced as quark- antiquark pair because they have small masses. Another abundantly added quark flavor is strangeness, particularly if the deconfined QGP phase of matter is formed. Strangeness was one of the first proposed signatures of the deconfined phase. The mass of strange quarks and antiquarks is of the same magnitude as the temperature T at which protons, neutrons, and other hadrons are expected to dissolve into quarks. This means that the abundance of strange quarks is sensitive to the conditions, structure, and dynamics of the deconfined- matter phase. In proton proton collisions, the production of particles containing strange quarks is strongly suppressed as compared to the production of particles with u and d quarks [7]. 8 1. High Energy Physics It has been argued that this suppression is due to the higher mass of the ss quark pair. The suppression increases with the strangeness content of the particles produced in proton proton collisions. In case of QGP formation, ss pairs can either be produced via the interactions of two gluons or of qq pairs. Leading order αs pQCD calculation suggest that the second pro- cess dominates only for √ s ≤ 0.6 GeV. The time-scale of chemical equilibration of (anti-) strangeness due to gluon gluon interaction is estimated to be about 3 to 6 fm/c, depending on the temperature of the plasma[8]. Following this line, the yield of strange and multi-strange mesons and baryons has been predicted to be strongly enhanced in the presence of a QGP as compared to a purely hadronic scenario at the same temperature. However, the estimated equilibration times may not be sufficient rapid to cause a saturation in the production of strange hadrons before QGP freeze-out. Some examples of strange particles are listed below: • Cascades Ξ(qss): The doubly strange cascades, Ξ0(uss) and Ξ−(dss), are below the mass threshold for hadronic decays into hyperons and kaons. Consequently, there is only one decay in each case, Ξ0 → Λ+π− (cτ = 4.9cm) and Ξ0 → Λ+π0 (cτ = 8.7cm). There are also several Ξ∗ resonances known, which normally feed down in a hadronic decay into the hyperon and kaon abundances: Ξ∗(qss) → Y (qqs) +K(qs). • Omegas Ω−(qss): There are several primary weak-interaction decay channels leading to the relatively short proper decay path, (cτ = 2.46cm): Ω−(1672) → Λ+K− (68%), Ω−(1672) → Ξ0 + π− (24%) and Ω−(1672) → Ξ− + π0 (9%). The first of these decay channels is similar to the decay of the Ξ−, except that the pion is replaced by a kaon in the final state. In the other two options, after cascading has finished, there is a neutral pion in the final state, which makes the detection of these channels impractical. • Phi φ(ss): The species addressed in this thesis, the vector (J=1) meson φ is believed to be a ‘pure’ bound state of the strange-quark pair φ = ss. With mass 1019.45 MeV, it has a relatively narrow full width Γφ = 4.26 MeV. The main two decay channels are: φ→ K+ +K−, 48.9% φ→ K0 L +K0 S, 34.2% 9 1. High Energy Physics 1.4.3 Resonances Hadronic resonances have their importance in high energy collisions analyses because they can provide experimental evidence for partial chiral symmetry restoration in the deconfined Quark-Gluon phase produced in this energetic collisions. The production of resonances occurs both during the transition (at a critical temperature T ≈ 160 MeV) from the quark- gluon plasma (QGP) to the hadronic phase and in the hadronic phase itself by regeneration. Since the resonances lifetimes are comparable to the lifetime of the partonic plasma phase (a few fm/c) they are an important tool to investigate medium modifications to the resonant state due to chiral transition[9]. It is expected that chiral symmetry is restored at around the same critical temperature as the deconfined phase transition, with the quark-antiquark condensate decreasing towards 0 with increasing temperature. Resonances that interact with the medium in the mixed or early hadronic phase, when chiral symmetry is at least partially restored, may be shifted of their mass and exhibit broader widths than observed in vacuum[10]. The temperature evolution and lifetime of the hadronic phase affect the relative strengths of resonance-generation processes and re-scattering, and therefore ratios of resonance yields to non-resonance yields. Particle ratios have been predicted as functions of the chemical freeze-out temperature and the elapsed time between chemical and thermal freeze-out using thermal models[10]. In principle, measurements of two different particle ratios are needed to tune the thermal models and determine uniquely the chemical freeze-out temperature and the lifetime of the hadronic medium. The study of the mesonic resonances φ(1020) and K∗0(892) production is of particular interest. They have mass close to the proton mass but their lifetimes differ of about a factor of 10, being τφ = 46 fm/c and τK∗0 = 4.0 fm/c, and their strangeness content differ by one unity. The K∗0 is expected to be more sensitive to the re-scattering effects in the hadronic medium because of the much shorter lifetime. The φ is other story because it can escape the medium with almost no re-scattering, then this resonance is a good candidate to investigate partial restoration of chyral symmetry at the formation time. In addition, the φ can help to probe strangeness production, being the lightest vector meson composed of sea quarks (ss). In pp collisions, ss pair production was found to be significantly suppressed with respect to uu and dd[15]. 10 Chapter 2 The ALICE Experiment at LHC 2.1 Large Hadron Colider The LHC is, at the moment, the biggest particle accelerator in the world. The idea of the project started in 1984, was approved in 1994 and the construction work in the underground tunnel started in 2001. Before the LHC, CERN1 had the LEP2 that was working from 1989 to 2000. Then after dismantling of the LEP, the LHC used the same underground tunnel of 27 km of circumference. The LHC is located under the the Swiss-French border area close to Geneva at a depth of 50 to 175 m. The LHC is a synchrotron that accelerates two counter-rotating beams in separate beam pipes. Each beam rotates several times around the ring until it reach enough energy to collide. The largest achievable acceleration energies are 7 TeV for protons and 2.76 TeV per nucleon for lead ions, therefore providing collisions at √ s = 14 TeV and √ s = 5.5 TeV, respectively. To keep the beam focused and to bend the beam through the ring, the LHC has 1232 dipoles of 14.3 m length and contains superconducting magnets which operate at a tem- perature of 1.9 K. And 392 quadrupoles maintain the beam focused, each quadrupole has a length between 5 and 7 m. Powered by a maximum current of 11.7 kA the dipoles can provide a magnetic field from 0.535 T during the injection (beam energy of 450 GeV) up to 8.33 during the collisions(energy of 7 TeV) [11]. 1Centre Européen pour la Recherche Nucléaire. 2Large Electron Positron Collider 11 2. The ALICE Experiment at LHC 2.1.1 The accelerator complex The accelerator complex at CERN is a succession of machines that accelerate particles to increasingly higher energies. Each machine boosts the energy of a beam of particles, before injecting the beam into the next machine in the sequence. In the Large Hadron Collider (LHC) the last element in this chain particle beams are accelerated up to an energy of 4 TeV per beam. Most of the other accelerators in the chain have their own experimental halls where beams are used for experiments at lower energies. The proton source is a simple bottle of hydrogen gas. An electric field is used to strip hydrogen atoms of their electrons to yield protons. Linac 2, the first accelerator in the chain, accelerates the protons to the energy of 50 MeV. The beam is then injected into the Proton Synchrotron Booster (PSB), which accelerates the protons to 1.4 GeV, followed by the Proton Synchrotron (PS), which pushes the beam to 25 GeV. Protons are then sent to the Super Proton Synchrotron (SPS) where they are accelerated to 450 GeV. The protons are finally transferred to the two beam pipes of the LHC. The beam in one pipe circulates clockwise while the beam in the other pipe circulates anticlockwise. It takes 4 minutes and 20 seconds to fill each LHC ring, and 20 minutes for the protons to reach their maximum energy of 4 TeV. Beams circulate for many hours inside the LHC beam pipes under normal operating conditions. The two beams are brought into collision inside four detectors ALICE, ATLAS, CMS and LHCb where the total energy at the collision point is equal to 8 TeV. The accelerator complex includes the Antiproton Decelerator and the Online Isotope Mass Separator (ISOLDE) facility, and feeds the CERN Neutrinos to Gran Sasso (CNGS) project and the Compact Linear Collider test area, as well as the neutron time-of-flight facility (nTOF). Protons are not the only particles accelerated in the LHC. Lead ions for the LHC start from a source of vaporized lead and enter Linac 3 before being collected and accelerated in the Low Energy Ion Ring (LEIR). They then follow the same route to maximum energy as the protons. 12 2. The ALICE Experiment at LHC AD S- Booster ISLODE n- ToF LINAC2 LINAC3 (ions) Leir PS SPS LHC Gran Sasso 7 30 km ALICE CMS LHCb ATLAS East Area North Area 78m 628m 157m 182m 7 km 27 km proton ióno antiproton neutron neutrino neutrino protón protón neutrón antiprotón Figure 2.1: Distributions of the CERN’s accelerators that increase the energy of the protons up to 7 TeV. 2.2 ALICE (A Large Ion Collider Experiment) The ALICE, one of the four big experiments at CERN and the one in which this thesis is focused, is 16 m high, 26 m length and has a total weight around 10,000 t. It is designed to address the physics of strong interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. ALICE will allow the comprehension of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei (Pb-Pb). The physics programme also includes collision with lighter ions and at lower energy, in order to vary energy density and interaction volume, as well as dedicated proton- nucleus runs[18]. Proton-proton runs recorded in ALICE will provide reference data for the heavy-ion programme and address a number of specific strong-interaction topics for which ALICE is complementary to the other LHC detectors. The ALICE physics programme is summarized below: • pp collisions at √ s = 900 GeV and 7 TeV during 2010 13 2. The ALICE Experiment at LHC • PbPb collisions at √ s = 2.76 TeV in November 2010 • pp collisions at √ s = 7 TeV during 2011 • PbPb collisions at √ s = 2.76 TeV in Autumn 2011 • LHC technical stop in 2012 • pp collision at √ s = 14 TeV starting from 2013 and then regular runs • Subsequent heavy-ion program: 1-2 years PbPb 1 year pPb-like collision (pPb,dPb or αPb) 1-2 years Ar-Ar Among some physics observables that ALICE can study are the global event structure such as multiplicity and transverse or zero-degree energy flow. With this is possible to define the geometry, i.e. impact parameter, shape and orientation of the collision volume, and number of interacting nucleons. Nuclear modification to the parton distribution function can be extracted by comparing global event features and, more directly, specific hard processes like direct photons, heavy flavours in pp, pA and A-A collisions. 14 2. The ALICE Experiment at LHC Figure 2.2: ALICE schematic layout. 2.2.1 ALICE detectors ALICE consists of an ensemble of several detectors, it has the central barrel part which mea- sures hadrons, electrons, and photons, and a forward muon spectrometer. The central part cover polar angles from 45◦ to 135◦ and is embedded in a large solenoid magnet. From inside out, the barrel contains an Inner Tracking System (ITS) of six planes of high-resolution silicon pixel (SPD), drift (SDD), and strip (SSD) detectors, a cylindrical Time-Projection Chamber (TPC), three particle identification arrays of Time-of-Flight (TOF), Ring Imag- ing Cherenkov (HMPID) and Transition Radiation (TRD) detectors, and two calorimeters (PHOS and EMCal). Excepting HMPID, PHOS, and EMCal all the other detectors cover the full azimuthal angle. VZERO The V0 detector [16] is a small angle detector consisting of two arrays of scintillator counters, called V0A and V0C, which are installed on either side of the ALICE interaction point. 15 2. The ALICE Experiment at LHC Figure 2.3: Pseudorapidity (η) ranges covered by ALICE detectors. This detector has several functions. It provides minimum-bias triggers for the central barrel detectors in pp, pA and A-A collisions. These triggers are given by particles originating from initial collision and from secondary interactions in the vacuum chamber elements. As the dependence between the number of registered particles on the V0 arrays and the number of primary emitted particles is monotone, the V0 serves as an indicator of the centrality of the collision via the multiplicity recorded in the event. The V0A detector is located 340 cm from the vertex on the side opposite to the muon spectrometer whereas V0C is fixed to the front face of the hadronic absorber, 90 cm from the vertex. They cover the pseudo-rapidity ranges 2.8 < η < 5.1 (V0A) and 2.8 < η < 5.1 (V0C) and are segmented into 32 individual counters each distributed in four rings. Inner Tracking System (ITS) The ITS is the closest detector to the beam axis. As shown schematically in figure 2.4 the ITS consist of six cylindrical layers of silicon detectors, located at a radii between 4 and 43 cm. ITS covers the rapidity range of |η| < 0.9 for al vertices located within the length of the interaction diamond (±1σ, i.e. ±5.3 cm along the beam direction). The number, position and segmentation of the layers were optimized for efficient track finding and high impact-parameter resolution. The two first layers correspond to the SPD1 located at r = 4 and 7.2 cm respectively and a length of 28.2 cm along z axis. The next two layers correspond 1Silicon Pixel Detector 16 2. The ALICE Experiment at LHC to SDD1 with radii of r = 15 and 23.9 cm being the inner cylinder shorter than the outer one, 44.4 cm and 59.4 cm respectively. The last two layers, the SSD2 with r = 38.5 and 43.6 cm [17]. The main tasks of the ITS are to localize the primary vertex with a resolution better than 100 µm, to reconstruct secondary vertices from the decays of hyperons and D and B mesons, to track and identify particles with momentum below 200 MeV/c, to improve the momentum and angle resolution for particles reconstructed by the Time Projection Chamber (TPC) and to reconstruct particles traversing dead regions of the TPC [19]. Figure 2.4: ITS detector dimensions and sub-detectors. Time Projection Chamber (TPC) The Time Projection Chamber is the main tracking detector of the central barrel and is op- timised to provide, together with other central barrel detectors, charged particle momentum measurements with good two-track separation, particle identification, and vertex determi- nation. In addition, data from central barrel detectors are used to generate a fast online High-Level Trigger (HLT) for the selection of low cross section signals. The TPC is a cylin- drical detector with an inner radii of 84.8 cm and outer radii of 246.6 cm, covering 500 cm along the beam axis. The phase space covered by the TPC is |η| < 0.9 for tracks with full radial track length(matches in ITS, TRD, and TOF detectors). The TPC covers the full azimuth (with exception of the dead zones). A large pT range is covered from about 0.1 GeV/c up to 100 GeV/c with good momentum resolution [19]. 1Silicon Drift Detector 2Silicon micro-Strip Detector 17 2. The ALICE Experiment at LHC This detector consist of two main parts: the field cage and the readout chambers. Both are filled with a gas mixture of Neon, Nitrogen and CO2. If a charged particle travels through the gas volume, it excites and ionizes has atoms along its track. As a consequence, it loses an amount of energy per unit track length (dE/dx) which is specific for every particle type. Inside the field cage, a homogeneous electric field perpendicular to the readout chambers is generated: The cathode plane of the readout chambers is at a potential of 0V and, in the middle of the TPC, the parallel central electrode is set to a negative voltage of 100kV. At the borders of the field, the homogeneity of the field is achieved by special equipotential strips which are connected by a voltage divider. Thus, every strip is put to a potential that its center would have in a homogeneous field [23]. Figure 2.5: TPC detector dimensions. The readout chamber is a multi-wire proportional chamber (MWPC) shown in figure 2.6. It is consisting of a segmented cathode pad plane and the anode, cathode and gating wire planes. The anode wires are set to a positive voltage of 1500V which leads to an amplification of the drifted electrons: In the vicinity of the wire the electric field grows proportional to 1/r. The electron energy rises which leads to ionization and the released electrons themselves cause an avalanche process [23]. TPC allows the three-dimensional reconstruction of the tracks. The pads provide the re- construction of the coordinates (x,y) via the distribution of the induced signal. The position 18 2. The ALICE Experiment at LHC Figure 2.6: Schematic illustration of the working principle and the read-out chambers of the TPC. of the particle in the drift direction is obtained with the measurement of the drift time (∆t) till the readout planes. The drift velocity of the electrons (ve) in the gas is well known; then the coordinate z is calculated with z = ve∆t. The three dimensional signal is called cluster. Time Of Flight (TOF) The Time-Of-Flight (TOF) detector is a large area array that covers the central pseudo- rapidity region (|η| < 0.9) for Particle IDentification (PID) in the intermediate momentum range, below about 2.5 GeV/c for pions and kaons, up to 4 GeV/c for protons, with a π/K and K/p separation better than 3σ. The TOF, coupled with the ITS and TPC for tracks and vertex reconstruction and for dE/dx measurements in the low-momentum range (up to about 1GeV/c), provides even-by-event identification of large samples of pions, kaons, and protons. In addition, at the inclusive level, identified kaons allow invariant mass studies, in particular detection of open heavy-flavoured states and vector-meson resonances such as the φ mesons, on which this thesis is about [17]. The detector covers a cylindrical surface of polar acceptance |θ − 90◦| < 45◦. It has a modular structure corresponding to 18 sectors in ϕ and to 5 segments in z direction. The 19 2. The ALICE Experiment at LHC Figure 2.7: TOF detector design. whole device is inscribed in a cylindrical shell with an internal radius of 370cm and an external one of 399cm. The basic unit of the TOF system is a 10-gap double-stack MRPC1 strip 122 cm long and 13 cm wide, the key aspects of these chambers is that the electric field is high and uniform over the full sensitive gaseous volume of the detector. Any ionization produced by a traversing charged particle immediately starts a gas avalanche process which generates the observed signals on the pick-up electrodes. Unlike other types of gaseous detectors, there is no drift time associated with the movement of the electrons to a region of high electric field. Thus the time jitter of these devices is caused by the fluctuations in the growth of the avalanche [26]. 1Multi-gap Resistive-Plate Chamber 20 Chapter 3 Particle Identification in ALICE 3.1 AliRoot framework The ALICE offline framework, AliRoot[25], is shown schematically in figure 3.1. Its imple- mentation is based on Object-Oriented techniques for programming and, as a supporting framework, on the ROOT system, complemented by AliEn system which gives access to the computing Grid. These fundamental technical choices result in one single framework, entirely written in C++. The AliRoot framework is used for simulation, alignment, calibration, reconstruction, visualization and analysis of the experimental data. AliRoot has been in continuous de- velopment since 1998. In the figure 3.1 the kinematics tree containing, for example, the physics processes at the parton level and the results of the fragmentation(primary particles) is created by event generators. The data produced by the event generators contain full information about the generated particles: type, momentum, charge, and mother-daughter relationship. The hits (energy deposition at a given point and time) are stored for each detector. The information is complemented by the so called track references corresponding to the location where the particles are crossing user defined reference planes. The hits are converted into digits taking into account the detector and associated electronics response function. Finally, the digits are stored in the specific hardware format of each detector as raw data. At this point the reconstruction chain is activated. 21 3. The ALICE Experiment at LHC Figure 3.1: Data processing framework 3.2 TPC PID From the TPC, the number of clusters assigned ncl to each track the energy loss (dE/dx) information can be extracted, having in each cluster a total charge Qtot, representing the sum over the pads in the row. In the measured energy loss there is a tail towards higher energy losses, this leads to a problem because the average energy loss would not be a good estimator for the mean energy loss as it would be for a Gaussian distribution. Therefore the truncated mean method is used to overcome this problem. It is characterized by a cut-off parameter η between 0 and 1. The truncated mean 〈S〉η is then defined as the average over the m=ηn lowest values among the ncl samples: 〈S〉η = 1 m m ∑ i=0 Qi (3.1) where i = 0,...,n and Qi−1 ≤ Qi for all i. If one simulates with the Monte Carlo method based on typical ionization distributions the measurement of many tracks in order to deter- mine an optimal value for η, one finds a value between 0.35 and 0.75. For the ALICE TPC this value is currently set to η = 0.5. The signals in the TPC can be identified as a certain type of particles (electrons, pions, kaons, protons, etc) by the Bethe-Bloch formula. This formula can describe the energy loss 22 3. The ALICE Experiment at LHC curve of a particle with mass m traversing certain medium, this parametrization has been previously used by the ALEPH experiment[24] as follows: f(βγ) = P1 βP4 (P2 − βP4 − ln(P3 + 1 (βγ)P5 )) (3.2) where the parameters Pi depend on the data sample being analysed. The figure 3.2 shows the TPC energy loss as a function of momentum as well as the Bethe-Bloch parametrization curves for each type of particle. )c (GeV/p 0.2 0.3 0.4 1 2 3 4 5 6 7 8 910 ( a rb . u n it s ) x /d E T P C d 0 100 200 300 400 500 600 700 π e K p d t 05/03/2013 TeV 5.02 = NNsp-Pb Figure 3.2: dE/dx-spectra from TPC detector together with a Bethe-Bloch curve for each particle. Signals coming from p-Pb collisions. The particles are identified by selecting certain range (2σ, 3σ, etc) from the Bethe-Bloch curve parametrized to each type of particle. 3.3 TOF PID The TOF detector, differently from TPC, does not identify particles by the energy loss. Instead it uses the time the particle travels from the primary vertex to one of the TOF sensitive pads. In ALICE, the TOF particle identification is based on the comparison between 23 3. The ALICE Experiment at LHC the time-of-flight measured by TOF (tTOF) and the expected time (texp,i)). The latest is calculated in terms of the momentum, length L and mass hypothesis i of each type of particle as follows: (texp,i) = ∑ k ∆ti,k = ∑ k √ p2k +m2 i pk ∆lk (3.3) In order to take into account the energy loss and the consequent variation in the track momentum, (texp,i)) is calculated as the sum over k of the small time increments ∆ti,k; the time a particle of mass mi and momentum pk takes to travel along each propagation step k (of ∆lk length) during the track reconstruction procedure. To perform TOF particle identification it is necessary to define tTOF−t0−texp,i, where t0 is subtracted. The resolution for the mass hypothesis i (σPID,i), is the combination of the TOF detector time resolution (σTOF), the time-zero resolution (σt0) and the tracking resolution (σtexp), and the expression is given as follows: σPID,i = √ σ2 TOF + σ2 t0 + σ2 texp (3.4) where σtexp is defined as: σ2 texp =   ∆p · texp,i 1 + p2 m2 i   2 (3.5) and assuming that the resolution on the length of the track is negligible with respect to the one on the momentum and ∆p. The PID separation relies on the difference between the observed time-of-flight (tTOF−t0), and the expected time texp,i for all the particles types (π, K, p). The particle separation is in terms of nσ as: nσi = tTOF − t0− texp,i σPID,i (3.6) where σPID,i is shown in eq. 3.4. The specific nσ cuts for kaons are explained in the next chapter; where the analysis details are discussed. 24 3. The ALICE Experiment at LHC p-Pb minimum bias p K π p K π = 5.02 TeV NN sp-Pb 5/03/2013 (GeV/c)p 0 1 2 3 4 5 β T O F 0.2 0.4 0.6 0.8 1 = 5.02 TeV N sp-Pb Figure 3.3: TOF signal as a function of momentum. The clear bands correspond to each type of particle. 25 Chapter 4 φ(1020) Analysis Results 4.1 Event and Track Selection In this section the characteristics of the event selection and the corresponding tracks used to measure the φ(1020) mesons will be described in detail. 4.1.1 Event Selection The collision system p-Pb at √ sNN = 5.02 TeV collected by ALICE in the beginning of 2013, is analyzed in the present work. Because of the 2-in-1 magnet design of the LHC[28], the energy of the two beams cannot be adjusted independently, leading this to a different energies per beam due to the different Z/A. The nucleon-nucleon center-of-mass system, therefore, is moved in the laboratory frame with a rapidity of yN = −0.465 in the proton beam direction. The events selected are those that passed some standard cuts. Events are accepted if they have a primary vertex, reconstructed in the SPD, whose z coordinate is within ±10 cm from the interaction point. The multiplicity classes in the events are selected in terms of percentiles of the raw multiplicity estimator, being the V0A (in Pb direction) the detector that provides the multiplicity information. The cuts applied to the events are the following: • Physics Selection Task, which selects events according to the ALICE triggers defini- tions. In this work the trigger used was kINT7. • Events required to have a reconstructed primary vertex. 26 4. φ(1020) Analysis Results • Events with vertex-z cut of | vz |< 10 cm. • Multiplicity ranges (V0A): 0-5%,5-10%,10-20%,20-40%,40-60%, 60-80% and 0-100% . After the trigger and vertex selection described before, the total number of Minimum Bias events analyzed is 9.4 × 107. In the figure 4.1 the multiplicity distribution of the accepted events, divided in ranges of multiplicity percentage, is shown. VZERO-A amplitude (a.u.) 0 100 200 300 400 500 600 700 800 900 E v e n ts ( a .u .) 1 10 210 310 410 0 -5 % 5 -1 0 % 1 0 -2 0 % 2 0 -4 0 % 4 0 -6 0 % 6 0 -8 0 % 8 0 -1 0 0 % = 5.02 TeV NN sALICE p-Pb at 0-5% 5-10% 10-20% 20-40% 40-60% 60-80% 80-100% 03/05/2013 Figure 4.1: V0A particles multiplicity in terms of percentile ranges. 4.1.2 Track selection The primary particles are those produced in the collision including weak and electromag- netic decays products, but excluding products from strange weak decays and particles from secondary interactions. In ALICE we have a set of track cuts that are optimized to select the primary particles, this set is known within the Collaboration as the 2011 Standard Track Cuts and they are summarized in the list below. • Tracks are required to have at least 70 crossed rows in the TPC, and a χ2 of the momentum fit smaller than 4 per cluster. 27 4. φ(1020) Analysis Results • The Distance-of-Closest Approach (DCA) in the Z direction to the reconstructed event vertex is required to be less than 2 cm and in the XY plane less than 0.0105+0.0350/p1.1T cm. • At least two clusters in the ITS must be associated to the track. • χ2 per ITS cluster less than 36. • TPC and ITS refit. • Pions and kaons daughter rejection. The φ mesons are identified via two charged kaons (φ → K−K+), which is the most probable decay channel (branching ratio of 0.489± 0.005). Also, for a pair of kaons to be considered as a φ candidate, its rapidity was asked to be within the range 0 < ycms < 0.5 [27]. 4.2 φ(1020) Meson Identification 4.2.1 Kaon identification After applying the track selection cuts mentioned in the previous section, the kaons are identified through their time of flight signal in the TOF (Time of Flight) detector and their energy loss in the TPC (Time Projection Channel). The advantage of using both detector combined procedure is that TPC can provide track information at low transverse momentum pT < 1.0 GeV/c and TOF contribute to reduce the background at high transverse momentum pT > 5.0. Whenever a track has TOF information it is taken in the analysis and when this is not the case the TPC information is used. Two different cuts in Nσ for kaons are used, |nσK,TPCTOF | < 3 and |nσK,TPCTOF | < 4. The figure 4.2 shows the PID response (n− σ) as a function of pT for TOF and TPC detectors, taking the kaon hypothesis. 4.2.2 Invariant Mass Having the kaons identified by the n-sigma method described before, then the φ invariant mass has to be calculated in function of energy and momentum from each kaon daugh- 28 4. φ(1020) Analysis Results TOF PID response, kaon hypothesis TPC PID response, kaon hypothesis Figure 4.2: Left: TOF PID response for the kaon hypothesis. Right: TPC PID response for the kaon hypothesis. Dashed lines correspond to 2σ, 3σ and 4σ particle selection limits. ter. If the first and second kaon daughters are denoted by the subscript numbers 1 and 2 respectively, then the invariant mass equation is given as follows: M2 inv = (p21 + p22) = (E1 + E2) 2 − (p1 + p2) 2 (4.1) The figures 4.3 and 4.4 show the φ invariant mass (eq. 4.1) distribution in all the pT ranges analyzed. A prominent peak is located at Mk+k− ≈ 1.02 GeV/c2, corresponding to the φ mass range. From the plots a large background below the signal is notorious and needs to be subtracted in order to extract the φ meson yield. 4.2.3 Combinatorial Background Subtraction Depending on the underlying physics and on the event multiplicity, the background originates from uncorrelated particles and/or from correlated particles i.e. of common origin. In principle if one choses appropriate functions, the signal can be extracted by fitting the signal+background distributions, but this technique, however, does not work if signal and background have a similar shape. Then, the only way to overcome this problem is to estimate independently the background distribution and to subtract it from the signal+background spectrum. Two methods are used to estimate the combinatorial background, the Event Mixing and Like Charge. In this analysis the default method is Event Mixing, being Like Charge used only as a cross check because it does not have a good reproduction of the 29 4. φ(1020) Analysis Results background shape. 1. Event Mixing (default choice): Invariant-mass distribution are calculated for pairs of oppositely charged kaons from different events. Each event analyzed is mixed with 5 other events in which for a pair of events, the difference in vertex-z is required to be less than 1 cm and the multiplicity percentile difference is required to be less than 10%. 2. Like Charge: Invariant-mass distribution are calculated using pairs of kaons with the same charge from the same event. In each invariant mass bin, the value of the like- charge background is 2 √ N−−N++, where N−−(N++) is the number of K−K−(K+K+) pairs in the bin. The figures 4.3 and 4.4 show the invariant mass distributions of the unlike-charge and mixed events in all pT bins analyzed. Where the mixed event background is normalized in such a way that it has the same integral as the unlike-charge distribution in a given invariant mass range. The normalization region chosen as default is: 1.04 < m < 1.06 GeV/c2. 30 4. φ(1020) Analysis Results )2c(GeV/φM 0.98 1 1.02 1.04 1.06 1.08 1.1 2 c C o u n ts /1 M e V / 0 200 400 600 800 1000 1200 Unlike sign Mixed Events <0.8 (GeV/c) T 0.4

227 45±1 5-10% 187-227 36.2±0.8 10-20% 142-187 30.5±0.7 20-40% 89-142 23.2±0.5 40-60% 52-89 16.1±0.4 60-80% 22-52 9.8±0.2 80-100% <22 4.4±0.1 Table 5.1: Definition of the event classes as fractions of the analyzed event sample and their corresponding 〈dNch/dη〉 within |ηlab| < 0.5 (systematic uncertainties only, statistical uncertainties are negligible). Table values taken from [27]. |<0.5 lab η| 〉 lab η/d ch dN〈 10 15 20 25 30 35 40 45 /d Y φ d N 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 =5.02 TeV NN spPb, <0.5 cms , 0