0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO LICENCIATURA EN ECOLOGÍA Escuela Nacional de Estudios Superiores, Unidad Morelia Estructura de metacomunidades de vertebrados terrestres tropicales en etapas sucesionales tempranas de un bosque tropical seco T E S I S QUE PARA OBTENER EL TÍTULO DE LICENCIADA EN ECOLOGÍA P R E S E N T A ORIANA RAMÍREZ SÁNCHEZ DIRECTOR DE TESIS: DR. LUIS DANIEL ÁVILA CABADILLA CO-DIRECTORA DE TESIS: DRA. MARIANA YÓLOTL ÁLVAREZ AÑORVE MORELIA, MICHOACÁN JULIO, 2021 UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. 1 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO LICENCIATURA EN ECOLOGÍA Escuela Nacional de Estudios Superiores, Unidad Morelia Estructura de metacomunidades de vertebrados terrestres tropicales en etapas sucesionales tempranas de un bosque tropical seco T E S I S QUE PARA OBTENER EL TÍTULO DE LICENCIADA EN ECOLOGÍA P R E S E N T A ORIANA RAMÍREZ SÁNCHEZ DIRECTOR DE TESIS: DR. LUIS DANIEL ÁVILA CABADILLA CO-DIRECTORA DE TESIS: DRA. MARIANA YÓLOTL ÁLVAREZ AÑORVE MORELIA, MICHOACÁN JULIO, 2021 PET, ESCUFA A. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO ESCUELA NACIONAL DE ESTUDIOS SUPERIORES, UNIDAD MORELIA SECRETARÍA GENERAL SERVICIOS ESCOLARES MTRA. IVONNE RAMÍREZ WENCE DIRECTORA DIRECCIÓN GENERAL DE ADMINISTRACIÓN ESCOLAR PRESENTE Por medio de la presente me permito informar a usted que en la sesión ordinaria 04 del H. Consejo Técnico de la Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia celebrada el día 21 de abril del 2021, acordó poner a su consideración el siguiente jurado para la presentación del Trabajo Profesional del alumno (a) Oriana Ramírez Sánchez adscrito a la Licenciatura en Ecología con número de cuenta 313093728, quien presenta la tesis titulada: “Estructura de metacomunidades de vertebrados terrestres tropicales en etapas sucesionales tempranas de un bosque tropical seco”, bajo la dirección como tutor del Dr. Luis Daniel Ávila Cabadilla y como co-tutora la Dra. Mariana Yólotl Álvarez Añorve El jurado queda integrado de la siguiente manera: Presidente: Dr. Alberto Ken Oyama Nakagawa Vocal: Dra. Julieta Benítez Malvido Secretario: Dr. Luis Daniel Ávila Cabadilla Suplente 1: Dra. Ireri Suazo Ortuño Suplente 2: Dr. Carlos Alberto Yáñez Arenas Sin otro particular, quedo de usted. Atentamente “POR MI RAZA HABLARA EL ESPIRITU” Morelia, Michoacán a 28 de julio del 2021. ye DRA. YESENIA ARREDONDO LEÓN SECRETARIA GENERAL CAMPUS MORELIA Antigua Carretera a Pátzcuaro N* 8701, Col. Ex Hacienda de San José de la Huerta 58190, Morelia, Michoacán, México. Tel: (443)689.3500 y (55)56.23.73.00, Extensión Red UNAM: 80614 www.enesmorelia.unam.mXx 2 3 Agradecimientos Institucionales A la Universidad Nacional Autónoma de México. A los programas que apoyaron y financiaron el proyecto del cual formó parte mi tesis: “Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica” de la Universidad Nacional Autónoma de México (L.D.A.C., IA-203413), (M.Y.A.A., IA-204014); y el Consejo Nacional de Ciencia y Tecnología (L.D.A.C., CB-222202). A las personas que brindaron apoyo técnico y a las que trabajaron en las salidas de campo y la recolección de muestras de este proyecto. A la DGECI y a la University of Bristol, por darme la oportunidad de estudiar un semestre en Reino Unido a través de becas y enriquecer mis estudios con una experiencia internacional. A mis sinodales, el Dr. Alberto Ken Oyama Nakagawa, la Dra. Julieta Benítez Malvido, el Dr. Luis Daniel Ávila Cabadilla, la Dra. Ireri Suazo Ortuño y el Dr. Carlos Alberto Yáñez Arenas, por su valioso tiempo prestado para la lectura y corrección de este trabajo escrito. A mis tutores de tesis, el Dr. Luis Daniel Ávila Cabadilla y la Dra. Mariana Yólotl Álvarez Añorve por plantear el proyecto, buscar financiamiento para el mismo y compartir su conocimiento conmigo a lo largo de la licenciatura, durante la estancia de investigación que realicé con ellos y durante la escritura de la tesis. Al Colegio de Ciencias y Humanidades Sur, por inculcarme un espíritu de investigación que fue muy importante para cursar mi licenciatura con empeño y dedicación; a la Escuela Nacional de Estudios Superiores Morelia y a la Licenciatura en Ecología por todos los conocimientos otorgados, tanto teóricos como prácticos, que son necesarios para mi futuro quehacer científico y académico, así como por brindarme otros espacios culturales y deportivos para tener una formación integral. A los profesores y profesoras de la licenciatura, que compartieron con emoción su conocimiento en cada materia y que se esforzaron por formar a nuestra generación de ecólogos y ecólogas para actuar de manera responsable, profesional y rigurosa en nuestro futuro académico. 4 Agradecimientos personales A mi mamá, a mi papá, a Abril (y a Buddy), que desde que tengo memoria me han apoyado para hacer todo lo que me gusta, han sido soporte cuando las cosas se complican, me aceptan tal y como soy y nunca me han obligado a ser o a hacer algo que no me agrade. No podría pedir una mejor familia y aunque estos últimos años no estuve viviendo con ustedes, siempre me sentí cerca porque estuvieron al pendiente de mí por llamadas y mensajes. Gracias por animarme a irme a Morelia, a Mérida y a Bristol, y por todo lo que hicieron para que fuera posible irme; sin esos ánimos hubiera dudado en irme a vivir sola y ustedes me hicieron ver que podía hacerlo. Agradezco especialmente a mis abuelitos por todos los viajes a Puerto Vallarta, por las pijamadas en su casa viendo películas viejitas y por consentirnos a Abril y a mí con helados, elotes y mil cosas más. A Ame porque eres una abuelita que se ha preocupado por mi educación y siempre me has apoyado para que pueda seguir con mis estudios de la mejor manera, por todo tu cariño, por estar dispuesta a aprender cosas nuevas y por enseñarme que siempre se puede; a Pepe porque siempre me consentiste y sorprendiste con detalles pequeñitos pero que me hacían muy feliz y fuiste el mejor abuelito que se pudo tener. A Pao por ser como una segunda mamá, siempre al pendiente de lo que pasa en mi vida, ayudándome cada vez que lo necesito y divirtiéndonos mucho cada vez que nos vemos. A mis abuelitos Cheli y Carlos, porque se han preocupado siempre por mí y es muy bonito pasar tiempo con ustedes, escuchando sus historias y sus chistes. A Iván y Karla. A Dany y a Sadher, por recibirme en su casa en una ciudad desconocida y hacerme sentir en familia desde el primer minuto. A los y las Heimberger-Ramírez por apapacharme y ser mi espacio seguro cuando todo se complicó en mi viaje. A mis amigas del Colegio Madrid: Sharon, Laura, Ana Paula, Andrea, porque, aunque las conozco desde hace más de una década y nuestra amistad sigue creciendo año con año y sé que se van a quedar para siempre en mi vida. A mis amigas del CCH: Ashley, Adi, Diana, Wendy, Zirse, Gustavo, Paty, Yuli, Vicky, Moni, a quienes extraño mucho y que están en las buenas y en las malas, aunque no podamos vernos tan seguido como nos gustaría y con quienes viví cosas muy divertidas y nuevas. A todxs mis amigxs en Morelia, pero principalmente a Mafer, a Pam, a Isis, a Beatriz, a Piero, Sergio, a Quinoa, a Irlanda por todas las aventuras, fiestas, recesos que vivimos, por el apoyo incondicional que me brindaron al vivir lejos de la familia, por las comidas compartidas, por las veces que me dieron asilo en sus casas, por todas las risas, las bromas, por aguantar mis momentos extraños, por los viajes, los bailes y por todo lo que no cabe aquí. A lxs amigxs que hice en Bristol, especialmente a Joaquín, Mercedes, Barbara, Guillermo, João, Valentina, Asheka, Helena, Mani, Gaby, Pedro y Bernardo, por compartirme sus culturas, por ser mi familia durante seis meses, por todos los viajes, por recibirme en sus casas y enseñarme sus ciudades, lxs extraño y realmente espero que nos podamos reunir en alguna parte del mundo pronto. A lxs amigxs virtuales que conocí durante la pandemia (Tomás, Sofía, Abraham, V, Marithza, Ananya, Moh) y con quienes estudié muchas horas y me distraje jugando videojuegos otras tantas. A Isra por ser un gran amigo y compañero de campo, gracias por compartirme todos los saberes de la selva, de los drones y de la Península de Yucatán. A Meel, gracias por todos los paseos, los planes improvisados y por hacerme sentir en casa cuando estaba en Morelia. A Erik, por ser mi mejor amigo y vivir las aventuras más locas desde CCH, ser roomies en Morelia, compartir un pedacito de nuestra experiencia internacional en Berlín y estar siempre para apoyarme. A Meztli, por ser mi mejor amiga desde secundaria, eres una persona muy importante porque fuiste la primera persona a la que le confié mis colores y me aceptaste tal y como soy, me apoyaste en ese proceso y siempre compartimos momentos muy bonitos comiendo helado, inventando idiomas extraños y cantando canciones del coro. A Paulina, porque con tu materia me enamoré de las salidas a campo, de los líquenes y de la ecología, por recibirme en tu casa y poder convertirnos en amigas y colegas. Quiero agradecer a Pável, Magali y Sandra por ser profesoras y profesores excelentes y haberme dado la oportunidad en CCH de explorar y enamorarme del mundo de la investigación. Gracias al Taller de Ciencias para Jóvenes 2015 porque ahí confirmé que la ciencia es lo que me gusta y porque conocí a muchos amigos que comparten su pasión por la ciencia conmigo. A Nicasio por tu apoyo y asesorías de estadística, R, SIG, por tus clases muy claras en temas enredados, pero principalmente por tu amistad. A Nancy Calderón, por las formas tan creativas y bonitas que encuentras para enseñar conceptos difíciles y abstractos, y por escucharme y sentarse conmigo en momentos difíciles, aunque tu agenda seguramente estaba a reventar. A Luis Servín por consentirnos en las clases, por emocionarte al explicar y compartir cualquier tema, y también por escucharme y darme consejos. Gracias Luis Daniel y Mariana por las materias que nos dieron con dedicación, por organizar las mejores prácticas de campo y por enseñarnos la TBI y lo importante que es ser profesionales con los datos y la organización. A Carolina García de Alba porque sin ella no tendría computadora. A mis compañeros y compañeras de ecología: Ale, Elihú, Nohely, Bruno, Rodrigo, Daniel por ser mi familia durante cuatro años y emprender la aventura de ser la primera generación de la licenciatura en Ecología de la UNAM. Ustedes, más que nadie, saben que estudiar esta carrera requiere de mucha dedicación, paciencia, investigación, estrés y horas sin dormir, por eso mismo sé que triunfarán en todo lo que se propongan y porque algunos de ustedes ya están empezando a cumplir sus sueños. Gracias por todas las exposiciones, los trabajos, las risas, las prácticas de campo, las bromas, incluso los enojos, por Mazatlán y Ría Lagartas, creo que estaremos unidos por estas experiencias para siempre y me alegra haber vivido todo esto con ustedes. 5 Índice Resumen ........................................................................................................................ 6 Capítulo 1 ....................................................................................................................... 8 Introducción ................................................................................................................. 9 Bosques tropicales secos .......................................................................................... 10 Etapas sucesionales tempranas ................................................................................ 11 Metacomunidades ..................................................................................................... 12 Antecedentes ............................................................................................................. 16 Capítulo 2 ..................................................................................................................... 20 Artículo "VERTEBRATE METACOMMUNITIES ALONG ANTHROPOGENIC GRADIENTS IN A TROPICAL DRY FOREST REGION” ........................................... 21 Capítulo 3 ..................................................................................................................... 95 Consideraciones finales ............................................................................................. 96 Referencias .................................................................................................................. 98 6 Resumen Las actividades antropogénicas, como el cambio de uso de suelo, están transformando los bosques en paisajes dominados por etapas sucesionales tempranas (EST). El objetivo de esta tesis fue identificar los mecanismos y estructuras que moldean a las metacomunidades de vertebrados terrestres (anuros, lagartijas, serpientes, aves, roedores y murciélagos) en un bosque tropical seco. Para este propósito, se realizaron muestreos de vertebrados en 13 sitios que representaban bosques secundarios y primarios. Encontramos una alta diversidad beta en todos los grupos, con valores bajos de anidamiento que indican que la mayor contribución a la diversidad beta es la del recambio de especies. Los vertebrados se distribuyeron a lo largo de un gradiente de acuerdo con los análisis basados en el marco conceptual de los elementos de la estructura de la comunidad. Las metacomunidades de anuros, lagartijas, serpientes y aves migratorias mostraron una estructura quasi-Gleasoniana, mientras que las aves residentes y los murciélagos se una estructura quasi-Clementsiana; los roedores presentaron una estructura Gleasoniana. En general, los grupos fueron afectados por atributos del paisaje y la vegetación, esto sugiere que el efecto de masa y “species sorting” son los mecanismos estructurando las metacomunidades en el bosque secundario. Asimismo, observamos que: 1) se pueden encontrar varias especies en las EST, incluyendo especies exclusivas de bosques maduros, probablemente por el uso de los bosques secundarios como corredores biológicos; 2) el bosque maduro actúa como una fuente de especies que se dispersan hacia los remanentes de bosque que permiten la colonización de estos; 3) la conectividad del paisaje, la cobertura forestal y la composición de la vegetación son las variables ambientales más importantes que afectan a las metacomunidades de vertebrados en el bosque tropical seco de Chamela. 7 Abstract Anthropogenic activities such as land-use change are converting forests to landscapes dominated by early successional stages (ESS). This study aimed to identify the mechanisms and structures that shape metacommunities of terrestrial vertebrates (anurans, lizards, snakes, birds, rodents, and bats) in a tropical dry forest. For this purpose, we sampled the vertebrates in 13 sites representing secondary and old-growth forests. We found a high beta diversity in all groups, with low values of nestedness indicating that turnover contributed the most to beta diversity. All groups were distributed along a latent gradient according to the analyses using the “elements of metacommunity structure” framework. Some vertebrate metacommunities showed a quasi-Gleasonian structure (anurans, lizards, snakes, and migratory birds); in contrast, bats and migratory birds showed a quasi-Clementsian structure and rodent group a Gleasonian one. In general, groups were affected by landscape and vegetation attributes, suggesting that species sorting and mass effects are structuring the metacommunities in secondary forests. In addition, we observed that: 1) various species are found in ESS, including some species exclusive of mature forests, probably because secondary forests are used as stepping stones and corridors; 2) old-growth forest is acting as a source of species that disperse to forest remnants and colonize them; 3) landscape connectivity, forest cover, and vegetation composition are the most important environmental variables affecting vertebrate metacommunities in Chamela dry forest. 8 Capítulo 1 9 Introducción La pérdida del hábitat y su fragmentación actualmente son fenómenos comunes que han tenido repercusión sobre la biodiversidad del planeta. De acuerdo con la FAO (2006, 2007), el 3% de los bosques son perturbados cada año en todo el mundo. En el caso de la fragmentación, un hábitat que ha pasado por este proceso se transforma en un paisaje compuesto por varios fragmentos o parches aislados entre sí y embebidos en una matriz de hábitat diferente al original (Franklin et al., 2002). La fragmentación puede tener tanto efectos adversos como beneficiosos sobre la abundancia, interacciones ecológicas y dinámicas poblacionales de diferentes especies, (Fahrig, 2003; Wiegand et al., 2005). Como resultado de la fragmentación y la pérdida del hábitat, se espera que los paisajes de bosques perturbados se encuentren dominados por etapas sucesionales tempranas. Por ejemplo, en el caso de los bosques tropicales secos en México, en el año 2002, el 62% de la cobertura de este tipo de vegetación ya era secundaria con diferentes grados de perturbación (Challenger & Dirzo, 2009). Esto resalta la importancia de estudiar los estadios sucesionales tempranos. Uno de los efectos de la fragmentación y degradación de los hábitats es la pérdida inmediata y a largo plazo de la biodiversidad (Krauss et al., 2010; Solé et al., 2004). La biodiversidad de los vertebrados terrestres en particular (anfibios, reptiles, aves y mamíferos), está declinando como consecuencia de distintas amenazas como la alteración del hábitat, la presencia de especies invasivas, el cambio climático, la sobreexplotación, entre otras. Sin embargo, la alteración y destrucción del hábitat es la principal amenaza (Ducatez & Shine, 2017). En México los vertebrados terrestres con mayor número de especies en alguna categoría de riesgo son los reptiles (443 especies), seguidos por las aves (392), mamíferos (291) y anfibios (194), (Semarnat, 2019). En este sentido, resulta urgente comprender las respuestas de las comunidades de vertebrados terrestres ante los disturbios antropogénicos. Dado que gran parte de los bosques están constituidos por fragmentos que anteriormente conformaron un continuo y que podrían estar potencialmente comunicados por procesos de dispersión en la actualidad (Hagen et al., 2012), el marco conceptual de las metacomunidades puede ser útil para comprender los mecanismos y 10 procesos del ensamblaje de estas comunidades de vertebrados terrestres durante las etapas sucesionales tempranas en los bosques tropicales (Holyoak et al., 2005). Bosques tropicales secos El bosque tropical seco (BTS), también conocido como selva seca, selva baja o bosque tropical caducifolio, es considerado como uno de los ecosistemas tropicales más amenazados del mundo (Janzen, 1988; Olson & Dinerstein, 1998), y se encuentra desapareciendo a tasas alarmantes por presiones tanto naturales como antropogénicas, por ejemplo: cambio climático, incremento en el tamaño poblacional, cambio de uso de suelo, fragmentación del bosque, entre otras (FAO, 2019). Estos bosques son de suma importancia para las comunidades rurales debido a que les proporcionan servicios ecosistémicos y diferentes recursos (Balvanera et al., 2011; Siyum, 2020). El cambio de uso de suelo de los BTS se debe a las condiciones favorables que tienen para que estos puedan ser aprovechados como sitios de extracción de recursos maderables y no maderables, áreas para pastoreo de ganado (cuando el bosque es convertido a pastizales), agricultura, pesca e incluso caza (Burgos & Maass, 2004; Monroy-Sais et al., 2020). Este ecosistema se encuentra distribuido en África, América y Asia, representando casi el 40% de los bosques a nivel mundial (FAO, 2019; Miles et al., 2006; Murphy & Lugo, 1986). De acuerdo con Miles et al. (2006), el 54% de los bosques tropicales secos se encuentra en Latinoamérica. En el caso de México, el BTS se distribuye en la vertiente del Pacífico desde Sonora hasta Chiapas, en el Atlántico al sur de Tamaulipas y en la Península de Yucatán; también es posible encontrarlo al sureste de San Luis Potosí, al norte y centro de Veracruz y en parte de la Huasteca (Rzedowski, 2006). Los BTS se caracterizan por la marcada estacionalidad entre épocas de lluvia y épocas secas, que tiene como consecuencia la pérdida de las hojas de los árboles (Meave et al., 2012; Rzedowski, 2006). Su precipitación varía entre los 600 a 1800 mm anuales en promedio y su altura se encuentra entre los 7 y 15 metros (Murphy & Lugo, 1986). Asimismo, este tipo de ecosistema es muy importante en términos de diversidad biológica, debido a los altos niveles de endemismos y de diversidad beta tanto de 11 especies vegetales como de especies animales (Durán et al., 2006; Janzen, 1988; Pennington et al., 2009). En México, los BTS han experimentado tasas de deforestación del 2% anual desde 1980 (Masera et al., 1997), mientras que los bosques distribuidos a lo largo de la costa del Pacífico se encuentran con altos grados de fragmentación y de deforestación (Sánchez- Azofeifa & Portillo-Quintero, 2011). Esto ha tenido como consecuencia cambios en la presencia y abundancia de diferentes especies de vertebrados, reduciendo la diversidad de forma alarmante y poniendo en peligro a especies y grupos vulnerables a la perturbación (Torres et al., 2014). De igual forma, la degradación de estos ecosistemas puede tener efecto sobre algunos procesos ecológicos como la polinización y reproducción de plantas (Quesada et al., 2011), o el ensamblaje de las comunidades que habitan los sitios perturbados y fragmentados (Fraga-Ramírez et al., 2017; Morales-Díaz et al., 2019; Ruiz-García & Avila-Cabadilla, 2016). Etapas sucesionales tempranas De acuerdo a la FAO (2006), más del 60% de los bosques del mundo se están recuperando de un disturbio pasado. Después de un disturbio, los bosques inician un proceso de sucesión ecológica secundaria que comienza con las etapas sucesionales tempranas (EST). Estas han sido nombradas como las “etapas olvidadas de la sucesión ecológica” (Swanson et al., 2011) debido a los pocos estudios que se han realizado en torno a los procesos ecológicos que ocurren durante estos estadios. Las condiciones iniciales de los bosques secundarios dependen del tipo de disturbio, pero comparten algunos atributos en común. En aras de dilucidar los procesos, mecanismos y características de las EST, Swanson et al. (2011) realizaron una revisión donde se resumen los principales atributos y procesos de estas etapas. Cabe señalar en este punto, que en ecología el término “proceso” se refiere al conjunto de las fases sucesivas de un fenómeno natural (RAE, 2020) y describe cómo surgen los patrones que percibimos, mientras que los “mecanismos” explican por qué ocurren estos patrones (Anand, 1994). 12 Atributos de los EST • Condiciones ambientales: el microclima se ve afectado al remover el dosel de los árboles. Los regímenes de luz cambian y como consecuencia las temperaturas son más extremas, y la humedad del aire y del suelo disminuye. • Supervivientes: los organismos que sobreviven a la perturbación son cruciales para los procesos de repoblación y el restablecimiento de funciones ecológicas. • Complejidad estructural: los remanentes de madera, como troncos o ramas caídas, facilitan el desarrollo de la recuperación del sistema al proporcionar un hábitat a los colonizadores y supervivientes. • Heterogeneidad espacial: los sitios perturbados generalmente resultan en ambientes heterogéneos. Procesos de los EST • Recarga de fuentes de nutrientes: adición de nitrógeno principalmente por la presencia de plantas leguminosas; aumento de tasas de mineralización de materia orgánica como resultado del incremento de la temperatura en estos sitios. • Modificación de regímenes hidrológicos y geomórficos: reducción de la transpiración; mayor contribución al flujo del agua durante eventos hidrológicos de una magnitud pequeña. Cambios en las tasas y patrones de erosión y lixiviación de nutrientes, generalmente un aumento en estas. Además de los atributos anteriores, los bosques secundarios pueden albergar una gran diversidad y riqueza de especies animales a pesar de no tener la diversidad de bosques maduros. Esto se debe a que la vegetación de las EST provee de recursos como alimento (frutas, semillas) o sitios de refugio a diferentes especies, (Blake & Loiselle, 2001; Fraga- Ramírez et al., 2017). Metacomunidades La ecología de comunidades se enfoca generalmente en una escala y asume que las comunidades locales se encuentran cerradas y aisladas (Leibold et al., 2004). Sin embargo, algunos autores han reconocido la importancia del papel de las dinámicas espaciales y temporales, la escala, la heterogeneidad y el proceso de dispersión en este 13 campo (Holyoak et al., 2005; Verhoef & Morin, 2009). De esta forma, se propuso que la interacción entre especies puede ocurrir dentro de una red de comunidades locales potencialmente comunicadas por procesos de dispersión, llamada metacomunidad (Hubbell, 2001; Leibold & Mikkelson, 2002) y que diferentes factores tanto regionales e históricos, como bióticos, influyen en la estructura de esta (Heino et al., 2015; Josefson, 2016). La distribución espacial de las especies dentro de las metacomunidades se puede analizar de dos formas: una aproximación se enfoca en los mecanismos que explican la variación composicional de las especies en las comunidades (Leibold et al., 2004), mientras que la otra se enfoca en los patrones de distribución espacial de las especies a través de gradientes ambientales (Leibold & Mikkelson, 2002; Presley et al., 2010). Por un lado, los mecanismos que determinan la estructura y composición de las metacomunidades, mejor conocidos como los paradigmas de la teoría de metacomunidades son: dinámica de parche, “species sorting”, efecto de masa y la perspectiva neutral (Cottenie, 2005; Leibold et al., 2004). A continuación, se explicará brevemente en qué consiste cada uno: • Dinámica de parche: considera que los parches de una metacomunidad son homogéneos, estos sufren extinciones tanto por procesos determinísticos como estocásticos y pueden estar influidos por interacciones interespecíficas que se contrarrestan por medio de la dispersión. La coexistencia es posible en este paradigma gracias al compromiso ecológico entre la habilidad competitiva y la tasa de dispersión de las especies, (Leibold et al., 2004; Leibold & Chase, 2018; Levins & Culver, 1971). • “Species sorting”: en este mecanismo la heterogeneidad ambiental es muy importante, ya que se asume que las comunidades cambian a lo largo de gradientes ambientales. Asimismo, se consideran los efectos de los elementos abióticos sobre las tasas de vida de las poblaciones y las interacciones de las especies. Este paradigma se enfoca en compromisos ecológicos de las especies que permiten sus especialización en diferentes condiciones locales (o tipos de parche), (Chase & Leibold, 2003; Leibold et al., 2004). 14 • Efecto de masa: se enfoca en los efectos de la emigración y de la inmigración sobre las dinámicas de las poblaciones locales, que son afectadas por estos eventos de dispersión. Similar al paradigma de “species sorting”, el efecto de masa requiere de una heterogeneidad ambiental entre parches y de conectividad entre estos para garantizar la existencia de relaciones fuente-sumidero entre las poblaciones de diferentes parches. Si las tasas de dispersión son muy altas, el efecto de masa puede reducir la coexistencia en la metacomunidad a nivel regional, resultando en una homogeneización de las comunidades locales (Leibold et al., 2004; Mouquet & Loreau, 2003). • Paradigma neutral: este paradigma asume que las especies dentro de una metacomunidad son idénticas y que la coexistencia de estas solamente está influida por procesos estocásticos de demografía, colonización, extinción y limitación de la dispersión. Si no existe especiación e inmigración desde fuera de la metacomunidad, el modelo neutral tenderá lentamente a perder todas las especies competitivas, excepto a una, por un proceso lento de extinción. Es considerado como una hipótesis nula a comparar con los paradigmas anteriores y es contrario al mecanismo de “species sorting”, (Hubbell, 2001; Leibold et al., 2004; Leibold & Chase, 2018). En el caso de los patrones, entendidos como el arreglo espacial de las especies que percibimos, para determinar la estructura de una metacomunidad se deben analizar los “elementos de la estructura de la metacomunidad” (EMS por sus siglas en inglés) a través de matrices de presencia-ausencia entre las especies y los sitios de colecta, estos elementos son: coherencia, recambio de especies o “turnover” y “boundary clumping”. Según el marco conceptual propuesto por Leibold y Mikkelson (2002), la coherencia se mide al contar las interrupciones en las distribuciones de especies o en las composiciones de los sitios; cuando una matriz no es coherente, significa que las especies de la metacomunidad no responden al mismo gradiente ambiental. Por otro lado, el recambio de especies o “turnover” es una medida del reemplazo de una especie por otra a lo largo del eje de ordenación o gradiente ambiental. Finalmente, el “boundary clumping” mide el grado en el que los bordes de los rangos de las especies son coincidentes, es decir, si ocurren o no en el mismo sitio. 15 Una vez realizados los análisis de EMS, se pueden identificar cinco estructuras o patrones de metacomunidades: tablero de ajedrez, anidado, “evenly spaced”, Gleasoniano, Clementsiano, o un patrón aleatorio (Presley et al., 2010). En seguida, se describirán brevemente las características de cada uno de los patrones mencionados: • Clemenstiano: es una metacomunidad idealizada, basada en una historia evolutiva compartida y con rangos de bordes que coinciden; las especies están distribuidas a lo largo de un gradiente ambiental en forma de comunidades discretas que se reemplazan entre sí como grupos (Clements, 1916; Leibold & Mikkelson, 2002). • Gleasoniano: las especies se distribuyen a lo largo de un gradiente, sin embargo, cada especie responde de forma individualista a las condiciones ambientales. La coexistencia de las especies es consecuencia de una similitud entre los requerimientos y tolerancias de las diferentes especies (Gleason, 1926; Leibold & Mikkelson, 2002; Presley et al., 2010). • “Evenly spaced”: los gradientes resultan en comunidades que no son discretas, sin embargo, los rangos de las especies se encuentran arreglados de una forma más espaciada que la esperada por el azar. En las metacomunidades con esta estructura existe una fuerte competencia interespecífica (Leibold & Mikkelson, 2002; Tilman, 1982). • Tablero de ajedrez: los pares de especies tienen distribuciones mutuamente excluyentes, no obstante, esos pares ocurren de forma independiente a otros pares de especies (Diamond, 1975; Leibold & Mikkelson, 2002). • Anidado: las especies de diferentes sitios conforman un conjunto formal de subconjuntos anidados. Generalmente se observa que las especies de los sitios menos diversos son un sobconjunto de todas las especies que están presentes en los sitios más diversos. La pérdida de especies en los conjuntos menos diversos está asociada a las características especie específicas (Leibold & Mikkelson, 2002; Patterson & Atmar, 1986). • Aleatorio: la distribución de las especies no responde a ningún gradiente u otro patrón detectable (Simberloff, 1983). 16 Es importante mencionar que Presley et al., (2010) propusieron el uso de quasi estructuras (p. ej., quasi Clementsiana, quasi Gleasoniana) cuando el valor del recambio de especies de los análisis no es significativo; en este caso, las quasi estructuras tienen las mismas características que las estructuras reales pero las fuerzas que las estructuran son más débiles comparadas con aquellas que afectan a las estructuras reales. Asimismo, las quasi estructuras pueden surgir ante dos situaciones: cuando la amplitud del nicho de la especie es mayor que el gradiente ambiental existente, o cuando solo una parte del gradiente empírico es muestreado (Ochoa-Ochoa & Whittaker, 2014). Antecedentes Los estudios que se han realizado sobre los mecanismos que estructuran las metacomunidades son principalmente sobre invertebrados, en su mayoría en sistemas acuáticos (Brasil et al., 2017; Heino et al., 2015; Urban, 2004; Willig et al., 2011). Sin embargo, recientemente esta perspectiva ha cobrado fuerza también en estudios de vertebrados terrestres en el continente americano, por ejemplo en comunidades de: anfibios y serpientes en Brasil (Cavalheri et al., 2015; Delatorre et al., 2015; Provete et al., 2014), aves en Cuba, las islas Galápagos y Chile (García–Quintas & A., 2017; Lawson et al., 2019; Meynard & Quinn, 2008), roedores en Estados Unidos, México y Argentina (López-González & Lozano, 2015; Massa et al., 2020; Stevens & Tello, 2009, 2012), o murciélagos en México, Paraguay y Brasil (López-González et al., 2012, 2015; Presley et al., 2009; Stevens et al., 2020). No obstante, a la fecha existen pocos estudios que investiguen metacomunidades de vertebrados en ambientes antropogénicos o perturbados anteriormente por el humano. Un estudio recientemente presentado en la plataforma bioRxiv (Dalmolin et al., 2020) identificó los efectos de los caminos y monocultivos de pinos sobre las metacomunidades de anfibios. Otros estudios en el Desierto Chihuahuense, Estados Unidos, se enfocaron en encontrar los patrones y mecanismos que estructuran una metacomunidad de lagartijas en un paisaje fragmentado (Leavitt & Fitzgerald, 2013; Ryberg & Fitzgerald, 2016). En el caso de mamíferos pequeños no voladores, de la Sancha et al. (2014) analizaron los efectos de la deforestación sobre la estructura una metacomunidad en un bosque fragmentado en el Bosque Atlántico y sus patrones biogeográficos históricos. 17 Asimismo, en Costa Rica, se estudiaron los efectos de la modificación antropogénica del paisaje sobre la estructura de una metacomunidad de murciélagos (Cisneros et al., 2015). En México pocas veces se ha empleado análisis de metacomunidades para comprender los procesos y mecanismos que estructuran a las comunidades del país en ambientes con perturbación antropogénica y en proceso de regeneración. Por un lado, dos investigaciones realizadas en Chiapas estudiaron: 1) los mecanismos que estructuran a las metacomunidades de anfibios en la Selva Lacandona en un gradiente de sucesión ecológica (Hernández-Ordóñez et al., 2019), y 2) la variación espacial y temporal (entre temporadas) de la estructura de la metacomunidades en un bosque tropical húmedo en sitios con diferentes grados de perturbación (Ochoa-Ochoa & Whittaker, 2014). El otro grupo estudiado desde el marco conceptual de comunidades en México es el de las aves; en la región de la Sierra Tarahumara se compararon la composición y tamaño de las metacomunidades entre sitios manejados (ejidos) y no manejados (parque nacional), (Carrillo-Rubio et al., 2014); además, Leyequién-Abarca et al. (2006) estudiaron a las metacomunidades de aves de una zona agroecológica donde se practica el cultivo tradicional de café de sombra. Por otro lado, una serie de trabajos en el BTS de Chamela, Jalisco, estudió las respuestas de las comunidades de herpetofauna (Fraga-Ramírez et al., 2017), murciélagos y sus ectoparásitos (Hernández-Martínez et al., 2019; Martínez- Ferreira et al., 2020), roedores (Morales-Díaz et al., 2019) y aves (Ruiz-García & Avila- Cabadilla, 2016) en etapas sucesionales tempranas. En general, en estos estudios se ha encontrado que las comunidades responden a gradientes ambientales relacionados con los atributos del paisaje (por ejemplo: conectividad o configuración de los parches), así como atributos de la vegetación (por ejemplo: cobertura del dosel). Estos resultados sugieren que el efecto de masa y “species sorting” son unos de los principales mecanismos que actúan sobre las metacomunidades de vertebrados terrestres en ambientes perturbados. No obstante, existen escasos trabajos de metacomunidades de carácter comparativo (multitaxa) que permitan entender, por ejemplo, los factores y procesos que estructuran 18 las metacomunidades de diferentes grupos de vertebrados en un mismo sistema. Entre los pocos que existen, uno de ellos compara las estructuras las metacomunidades de murciélagos, aves y roedores en un gradiente de elevación en Perú (Presley et al., 2012); mientras que otro consiste en una revisión en la que se analizan la biodiversidad y la estructura de metacomunidades, tanto vertebrados como invertebrados, a lo largo de gradientes de altitud en bosques de niebla (Willig & Presley, 2016). En México en particular, no hay trabajos que integren la información de las respuestas de las metacomunidades de diferentes grupos de vertebrados terrestres y mucho menos enfocados en los estadios tempranos de la sucesión en un paisaje antropogénico. En este sentido, hasta donde sabemos, este sería el primer trabajo en evaluar y comparar el efecto de la variación de la vegetación y del paisaje a diferentes escalas sobre diferentes grupos de vertebrados durante las etapas sucesionales tempranas de un bosque tropical. De manera general, el objetivo de este trabajo es identificar y contrastar entre diferentes grupos de vertebrados terrestres (anuros, lagartijas, serpientes, aves, roedores y murciélagos) los factores y procesos que potencialmente estructuran sus metacomunidades en etapas iniciales de la sucesión ecológica de un bosque tropical seco. Nos enfocamos en sitios que representan las etapas iniciales de la sucesión, debido a que: 1) es el tipo de cobertura predominante en una gran proporción de los paisajes tropicales, 2) el entendimiento de los factores y procesos que estructuran las metacomunidades de vertebrados en estas etapas de la sucesión es de vital importancia para la conservación, el manejo y la restauración de este ecosistema y 3) los atributos de las comunidades asociadas a estos estadios pueden determinar en gran medida el curso de proceso sucesional que subyace a la regeneración natural y, con ello, el grado de resiliencia de este ecosistema. El resultado de este trabajo se encuentra reflejado en el artículo científico “Vertebrate metacommunities along anthropogenic gradients in a tropical dry forest region”, que se someterá a publicación en una revisa indizada. Este trabajo se realizó en el marco de los proyectos financiados por el “Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica” de la Universidad Nacional Autónoma de México (L.D.A.C., IA- 19 203413), (M.Y.A.A., IA-204014); y por el Consejo Nacional de Ciencia y Tecnología (L.D.A.C., CB-222202). Mi contribución al artículo en particular fue, bajo la dirección de mis tutores, integrar la información de los diferentes grupos de vertebrados y analizarla utilizando el marco conceptual de las metacomunidades para responder la pregunta planteada en esta tesis. En este sentido, participé activamente en el diseño y redacción del manuscrito y también estuve a cargo del análisis e interpretación de los datos. 20 Capítulo 2 21 VERTEBRATE METACOMMUNITIES ALONG ANTHROPOGENIC GRADIENTS IN A TROPICAL DRY FOREST REGION Ramírez-Sánchez, Oriana a; Suazo-Ortuño, Ireri b; Benitez-Malvido, Julieta c; Alvarado-Díaz, Javier b; Lobato-García, Juan Manuel c; Zamora-Espinosa, Mayra Edith b; Fraga-Ramírez, Yeseniab; Ruiz-García, Sole Yered d; Morales-Díaz, Sharon Patricia d; Oyama, Ken a; Alvarez- Añorve, Mariana Yolotl e*; Avila-Cabadilla, Luis Daniel e*. a Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, Mexico. b Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Av. San Juanito Itzicuaros/n, Col. Nueva Esperanza, Morelia, Michoacán, México. c Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, Mexico. d Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México, Campus II Batalla 5 de mayo s/n esquina Fuerte de Loreto, Col. Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, México. e Escuela Nacional de Estudios Superiores, Unidad Mérida, Universidad Nacional Autónoma de México, Carretera Mérida-Tetiz km. 4.5, C.P. 97357, Ucú, Yucatán, Mexico. Corresponding authors: avila@enesmerida.unam.mx (ACLD); malvarez@enesmerida.unam.mx (AAMY) 22 Abstract Anthropogenic activities such as land-use change are converting forests to landscapes dominated by early successional stages (ESS). This study aimed to identify the mechanisms and structures that shape metacommunities of terrestrial vertebrates (anurans, lizards, snakes, birds, rodents, and bats) in a tropical dry forest. For this purpose, we sampled the vertebrates in 13 sites representing secondary and old-growth forests. We found a high beta diversity in all groups, with low values of nestedness indicating that turnover contributed the most to beta diversity. All groups were distributed along a latent gradient according to the analyses using the “elements of metacommunity structure”. Some vertebrate metacommunities showed a quasi-Gleasonian structure (anurans, lizards, snakes, and migratory birds); in contrast, bats and migratory birds showed a quasi- Clementsian structure and rodent group a Gleasonian one. In general, groups were affected by landscape and vegetation attributes, suggesting that species sorting and mass effects are structuring the metacommunities in secondary forests. Nevertheless, we observed that: 1) various species are found in ESS, including some species exclusive of mature forests, probably because secondary forests are used as stepping stones and corridors; 2) old-growth forest is acting as a source of species that disperse to forest remnants and colonize them; 3) landscape connectivity, forest cover, and vegetation composition are the most important environmental variables affecting vertebrate metacommunities in Chamela dry forest. Key Words Metacommunity, terrestrial vertebrates, beta diversity, turnover, tropical dry forest, early successional stages Introduction The anthropogenic transformations of natural landscapes have caused that today almost the 60% of the remaining forest regions show low landscape-level integrity (Grantham et al. 2020). This significantly impacts not only on the species abundance and distribution, but also on the ecological processes in which they are involved, with consequences for ecosystems resilience, ecosystem services and human health (Betts et al. 2017, Watson et al. 2018). This is particularly evident in the tropics, the most biodiverse and threatened regions around the world, containing over 50% of terrestrial species, while 50% of its coverage has been degraded globally (Stork et al. 2009, Hansen 23 et al. 2013, Betts et al. 2017, FAO and UNEP 2020). In these regions, vegetation continuums are being rapidly replaced by complex mosaics of farmlands, cattle pastures, logging forests and human settlements, therefore, the vegetation is increasingly embedded in anthropogenic matrices, increasingly represented by young secondary forests, and tends to occur in smaller and more isolated patches, displaying a higher edge effect (Chazdon et al. 2009, Haddad et al. 2015). In this way, human disturbance results in substantial transformation of the environmental conditions, resources availability and biodiversity distribution in tropical forest regions, reducing the functional landscape connectivity and altering the spatial heterogeneity that characterizes old- growth landscapes, the ones which the biota has a closer evolutionary relationship with (Givnish 1999). Given this scenario, it is necessary to address local-scale processes structuring single communities, restricted to a certain portion of emerging anthropogenic gradients, but it is also necessary to address the structuration of the metacommunities, by simultaneously analyzing the species distributional patterns across sets of communities potentially connected through dispersal, which together cover larger portions of emerging gradients (Leibold and Chase 2018, Presley et al. 2019). This will allow us to gain a broader understanding about the consequences of habitat shift in amount, quality, and distribution, which is particularly relevant for those very diverse taxa playing critical roles in ecosystems. For example, until now just a few studies have evaluated the structure and mechanisms underlying vertebrates metacommunities along anthropogenic landscape gradients; this topic is an open question today and is considered one of the great challenges of the 21st century (Cisneros et al. 2015, Presley et al. 2019). Addressing these questions is especially important since vertebrates play important ecological roles, by influencing nutrient recycling, ecosystem productivity, and other processes such as mycorrhizal dispersal, herbivory, pollination, and seed dispersal, which determine the biophysical properties of ecosystems (Dirzo et al. 2014). In general, the combination of species ecological traits and requirements (defining species dispersal capability and habitat affinity), with the characteristics of anthropogenic disturbance (defining environmental heterogeneity and landscape connectivity), determine the species distribution along the anthropogenic gradients as well as the extent of spatial change in species composition (-diversity) (Ewers and Didham 2006). For example, on one hand, a reduction in environmental heterogeneity and the proliferation of disturbance-adapted species could result in a 24 reduction of -diversity – a metacommunity species composition homogenization –, whereas, on the other hand, an increase in environmental heterogeneity or spatial constrains and the environmental sorting due to species affinity by patches differing in their biotic and abiotic environment could result in an increase of -diversity – a species composition differentiation – (Cisneros et al. 2015, Morante-Filho et al. 2016). Additionally, it has been expected that metacommunities present nested structures in human-modified landscapes, that is, less speciose communities are composed by a nested subset of species found in the more specious ones, because of a non-random pattern of species loss by interspecific differences in competitive ability and dispersal capacity (Atmar and Patterson 1993). However, contrary to the expectations, most vertebrates metacommunity (i.e., small non volant mammals and different phyllostomid bats ensembles) evaluated to date were never nested along a richness gradient, since they have exhibited Gleasonian (individualistic responses of species along gradients), Clementsian (bundles of species forming cohesive units that are exchanged along gradients) or chequerboard (mutually exclusive species pair) structures. Such structures were associated to local habitat (i.e., fragment size) and landscape attributes (distance between forest patches, edge density, proportion of pasture, forest patch density), as well as to seasonality and historical factors (i.e., vicariance events associated to natural barriers (Clements 1916, Gleason 1926, Diamond 1975, de la Sancha et al. 2014, Cisneros et al. 2015). Taking into consideration the described scenario, this study aimed to characterize cross-taxa patterns in vertebrates metacommunities along anthropogenic gradients to identify potential mechanisms and factor shaping such metacommunities. For this study we focus on a set of quite diverse taxa, from the taxonomic and functional point of view: anurans (for amphibians), lizards and snakes (for reptiles), resident and migratory passerines (for birds), and rodents and noctilionids bats (for mammals). Specifically, we first characterized the spatial -diversity for each study taxa, evaluating the contribution of species replacement and species loss to such change (Baselga 2010). Second, we employed a patterns-based approach looking for potential mechanisms underlying the structuring of vertebrates metacommunities (Leibold and Mikkelson 2002, Holyoak et al. 2005, Presley et al. 2010). Specifically, we performed the hierarchical analysis of three elements of metacommunities (coherence, range turnover, and boundary clumping), to discriminate among six idealized patterns of species distribution: Clementsian, Gleasonian, checkerboard, evenly spaced, nested, and random distribution, as well as among their quasi-structures (Clements 1916, Gleason 25 1926, Diamond 1975, Tilman 1982, Patterson and Atmar 1986, Presley et al. 2010). Finally, we evaluated for patches (i.e., floristic composition and vegetation structure) and landscape attributes (landscape composition and configuration), influencing species distribution. To our knowledge, very few studies have simultaneously evaluated various vertebrate metacommunities (Acevedo-Charry and Aide 2019), but none of them offer an integrated view of the metacommunities structure and its structuring mechanisms on anthropogenic landscapes. As some studies have demonstrated that different taxa have differential responses to human disturbances, it is important to account for such differences by carrying out cross-taxa studies (Torres et al. 2014). With this study we look to expand the traditional empirical community ecology approach, focused on local processes, to a metacommunity approach, to generate an integrated and wider understanding on the effect of anthropogenic transformation of tropical landscapes over fauna. As the location for this study, we selected a tropical dry forest (TDF) region mainly transformed by agricultural and cattle ranging. Globally, TDFs are characterized by a high level of endemism and by a high alfa and beta diversity. However, they are experiencing high rates of deforestation and disturbance, being some of the most threatened ecosystems in the world (Olson and Dinerstein 1998, Miles et al. 2006, Rzedowski 2006, Pennington et al. 2009, Meave et al. 2012). For this study we focused on young secondary forests because: 1) they are the main type of coverage in a great proportion of tropical forests (Miles et al. 2006), 2) the understanding of the factors and processes that structure vertebrate metacommunities during early successional stages (ESS) is crucial to conservation, restoration, and management of dry forests, and there is a lack of information to this respect (Thompson and Donnelly 2018), 3) the attributes of the communities associated to early successional stages can determine the path of the successional process underlying natural regeneration, and, consequently, the resilience degree of the ecosystem. To date, the study of the fauna in young secondary forests has generally received little scientific attention, and the early successional stage has been recognized as “the forgotten stage of forest succession” (Swanson et al. 2011). In general, we expect that the structure of vertebrates metacommunities and the factors that determine such structure along anthropogenic gradients are largely determined by the species life history traits prevalent in metacommunities, such as, movement behavior (i.e., resident or 26 migratory), diel time partitioning strategy, home range, feeding guild, type of roost, as well as by other factors such as the proportion of invasive species or the degree of evolutionary relatedness among species. Specifically, regarding the -diversity patterns, we expect that taxa with higher dispersal abilities (i.e., birds and bats) will display less spatial species turnover and will be less sensible to habitat modification (i.e., simplification of vegetation structural complexity, changes in plant communities composition, reduction in the original vegetation coverage) than taxa with lower dispersal abilities (i.e., anurans, lizards, rodents), as a high dispersal rate contributes to the “rescue effect”, which favors the species persistence in disturbed habitats due to the continuous flow of individuals between patches (Brown and Kodric-Brown 1977, Hames et al. 2001). In addition, we expect that metacommunities with a higher proportion of invasive or disturbance- adapted native species will display a low -diversity, due to a process of biotic homogenization resulting from the loss of species with high habitat specialization requirements and from the ubiquity of disturbance-tolerant species (McKinney and Lockwood 1999). Regarding the metacommunity structure, we expect that all vertebrate taxa show a significant coherence and deviate from random species distribution, because the study metacommunities are composed by a set of horizontal communities, where the species tend to be similar in their ecological requirements and, consequently, should respond to common environmental gradients. Indeed, we expect this to be more marked in those metacommunities composed of more related species, as a consequence of phylogenetic conservatism. In addition, we expect that metacommunities composed by species similar in their ecological requirements and with a low dispersal capacity or restricted to environmental conditions (i.e., less modified, or highly forested sites) will display a chequerboard pattern, as a consequence of competitive exclusion between pairs of species. We also expect that metacommunities where species with a high dispersal capacity dominate will display a Clementsian pattern, as the mobility reduce the interaction strengths (Cisneros et al. 2015). Finally, regarding the effect of vegetation patches and landscape attributes on species occurrence, we expect that all study metacommunities will be modulated by changes in vegetation structure complexity because they are composed of species with different degrees of habitat specialization. This could be more marked for those metacommunities dominated by diurnal species, which are exposed to high variation in environmental conditions, such as radiation level, temperature, humidity, and water availability; these conditions are tightly associated to changes in vegetation structure and can act as environmental filters on species composition (Alvarez-Añorve et al. 2012, 27 Fraga-Ramírez et al. 2017). Finally, we expect that metacommunities composed predominantly by species with low vagility will be less sensible to changes at landscape scale than those composed predominantly by high vagility species, but more sensible to changes in vegetation composition and structure. In this sense, we also expect to find that metacommunities composed of native species are more sensitive to the loss of the original vegetation cover than migratory species, due to their closer evolutionary relationship with such vegetation. Methods Study area The study was conducted in the Chamela region, around the Chamela-Cuixmala Biosphere Reserve (CCBR), located on the west coast of Mexico in the state of Jalisco, Mexico (19°22′– 19°35′N, 104°56′–105°03′W). The region is characterized by a markedly seasonal rainfall pattern, with a dry season lasting approximately seven months (from November to May). The average annual rainfall is 915 ± 311 (S.D.) mm, and the average annual temperature is 24.6°C (Chamela Biological Station: http://www.ibiologia.unam.mx/ebchamela/www/clima.html). This area is dominated by tropical dry forest vegetation (56.1% of the Jalisco coast) and some patches of riparian forest (RF ) (3.7% of the Jalisco coast), followed by other types of vegetation (Lott 2002, Lott and Atkinson 2006, Sánchez-Azofeifa et al. 2009). As a consequence of forest use, the landscape surrounding the CCBR is fragmented and composed of a complex mosaic of patches representing different successional stages, cattle pastures, or agricultural fields (Burgos and Maass 2004, Castillo et al. 2005). Study system For this study, we selected 11 permanent sites outside of the CCBR that represented the early successional stages (from 3 to 9 years of abandonment) of the TDF and two sites inside the reserve representing advanced successional stages (more than 50 years of abandonment) (Fig. 1). The sites location and abandonment age were determined with the help of classified ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite images generated for the region, high-resolution satellite images (Google Earth website: http://earth.google.com), and information from interviews with farmers and landowners (Sánchez-Azofeifa et al. 2009, Avila- Cabadilla et al. 2012). Finally, sites with the following characteristics were selected: 1) accessible 28 Figure 1. Distribution of sampling sites along the Jalisco coast, Mexico and their corresponding buffers (circles) representing the maximum focal scale (3000 m) considered and the type of land cover around the study sites. Land cover classes are: 1) tropical dry forest (gray), 2) riparian forest (black), and 3) other types of coverage (white). Circles with animals and different shading represent values of total beta diversity for each taxon in each site. 29 by road, 2) area of at least 200 x 200 m, 3) minimum distance of 3000 m between each other, 4) representing a gradient in the percentage of dry and riparian forest coverage, and 5) slope < 20°. This design avoids common problems of landscape ecology, such as pseudoreplication, spatial autocorrelation, unappropriated spatial scales for the species and processes studied and minimizes the likelihood of incurring in the Type I error in the statistical analyses (Eigenbrod et al. 2011). Vegetation characterization We established five transects of 2 × 100 m (1000 m2) separated from each other 25 m and at 50 m (at least) from other vegetation types in each site. Vegetation sampling was conducted during the rainy season, when most of the plants in the region have leaves and fruits, facilitating taxonomic identification. All individuals of plant woody species with a diameter at breast height (DBH -1.30 m-) ≥ 2.5 cm were marked. In addition, we measured the following vegetation attributes: 1) the number of species, 2) the number of individuals, 3) the DBH, 4) the number of branches, 5) the total basal area, and 6) the average height of the ten highest trees. We also measured the Plant Area Index (PAI) during the rainy season using an LAI-2000 Plant Canopy Analyzer (LI-COR, USA). The PAI is the projected plant area per unit of a horizontal plane and is considered a helpful indicator of the vegetation structure and canopy structure; its value increases in sites with a higher number of strata (Fournier et al. 2003). Understory density was quantified by taking photographs of the vegetation against a white background of 3 x 3 m located at 10 m from the camera at eight random points in every sampling site (adapted from Marsden et al., 2002). This measure estimates the structural complexity of the understory. For further details about PAI and understory density estimation in the study sites, see Fraga- Ramírez et al. (2017) and Morales-Díaz et al. (2019) studies. Landscape characterization The landscape characterization of the vegetation cover adjacent to each site within a ratio of 3000 m was based on classified SPOT-5 images with the following characteristics: 1) a nominal spatial resolution of 10 m, 2) corresponding to the dry season, which facilitates the discrimination of the main types of vegetation in the region (i.e., dry forest, riparian forest, and pasturelands) (Sánchez- Azofeifa et al. 2009, Avila-Cabadilla et al. 2012), 3) free of clouds, 4) projected on the 30 WGS84/UTM coordinate system, 5) atmospherically corrected, and 6) formed by the first four bands of the SPOT-5 sensor (B1: green, B2: red, B3: near-infrared, B4: infrared medium), plus two additional bands produced by the calculation of the spectral vegetation indexes “Normalized Difference Vegetation Index” (NDVI) and “Single Ratio” (SR), both increasing the discriminant power of the main types of vegetation. Land cover classification included: 1) dry forests, 2) riparian forests, and 3) other types of cover (i.e., crop fields, water, bare soil, and grasslands). Besides, we calculated two independent landscape metrics: 1) the percentage of landscape coverage (PLAND) as a measure of the availability of TDF and RF, and 2) the effective mesh size (meff, connectivity), as a measure of the degree of fragmentation of each habitat. The indices were calculated as: PLAND = (A1 + A2 + … Ai + …An) / Atotal, and the effective mesh size was calculated as meff = 1/Atotal (A1 2+A2 2 + … Ai 2 + … An 2), where n = number of patches, Atotal = total area of the landscape, and Ai = size of patch i (I = 1, … , n) (Jaeger 2000, McGarigal 2002). The effective mesh size can be interpreted from an ecological perspective as two animals' ability, with a random location in a region, to find each other when moving through a certain type of cover (Jaeger 2000). For each study site, we estimated the percentage of coverage of TDF and RF at six different spatial scales; this was assessed by using buffers defined by the area comprised between two concentric circumferences centered on the plot of each sampling site, except for the smallest scale, which was defined as a disc-based buffer. The focal scales analyzed included: 500, 1000, 1500, 2000, 2500, and 3000 m radius. Image classification and the landscape metrics estimation were measured with the software QGIS (v. 2.6.1-Brighton, QGIS Development Team, 2015) and the modules and complements Orfeo, SAGA, GRASS, and LecoS (Landscape Ecology Statistics) implemented in this software. Sampling of vertebrate groups Anurans, lizards and snakes: the sampling of herpetofauna was conducted by the same team of four biologists familiar with the local herpetofauna. The method used for the sampling was the Visual Encounter Survey (VES) (Crump and Scott 1994), in which search for animals is on trees, herbs, shrubs, under rocks, logs and ground litter, and on the ground. The search for animals was time-constrained: two hours in the morning, 09:00-11:00, and two hours at night, 22:00-00:00. All detected individuals were captured, and we registered the following attributes: 1) the species, 2) 31 the sex, 3) the relative age, and 4) the reproductive condition. The toes of lizards and frogs as well as the ventral scales of snakes were clipped to avoid counting the same individual more than once. All animals were released on the same site they were captured. Sites were sampled six times from January 2014 to May 2015, and a total search effort of 1344 person-hours was completed. More details about herpetofaunal sampling can be found on Fraga- Ramírez et al (2017) work. Birds: the present study is focused on birds of the Passeriformes order, the largest order of birds, which includes more than half of all living bird species (Lovette and Fitzpatrick 2016). Birds sampling was carried out in each study site using eight mist nets (12 x 2.5 m and 30 mm mesh size), covering a total sampling area of 240 m2. Nets were arranged at ground level within each plot and separated from each other at least 30 m. Additionally, two point counts of a fixed radius were used (time: 10 min, radius: 30 m, distance between point counts: 50 m), following Ralph et al. (1993) methods. Each sampling session lasted 5 hours, and nets were activated at dawn to cover bird activity's main peak (Ralph et al. 1993). During sampling sessions, the nets were checked every 15-30 minutes, and captured individuals were removed and deposited in cloth bags and processed in situ later. The following attributes were measured for each bird: 1) the species, 2) the sex, 3) the relative age, and 4) the reproductive condition, sensu Ralph et al. (1993). Species identification was determined with the help of Howell and Webb (1995), and NGS (2002) field guides and taxonomic nomenclature used was based on the checklist of the American Ornithologists’ Union, including the fifty-fourth supplement (AOU 1998, Chesser et al. 2013). Individuals were released after registering their attributes. Sites were sampled eight times from July 2013 to June 2015, covering both the dry and the rainy seasons. Further information about birds’ sampling can be found in Ruiz-García (2016). Rodents: rodent sampling was conducted using a standardized sampling unit composed of 100 large folding Sherman traps (https://www.shermantraps.com) set inside a 100 x 100 m grid with a spacing of 10 m. The bait used for the traps was made with vanilla essence, oats, and peanut butter, and the traps remained open from dusk to dawn (11 h). Sampling sessions were carried out during the non-rainy and moonless nights to reduce variation in capture success. Captured individuals were deposited in cloth bags for processing. The following attributes were registered for each rodent: 1) the species, 2) the sex, 3) the relative age, and 4) the reproductive condition. Species 32 determination was carried out with the help of dichotomous keys (Ceballos and Miranda 2000), and taxonomic designation of species follows Reeder and Wilson (2005) and includes modifications presented by (Ceballos 2014). Finally, all individuals were released at the place of capture. All sites were sampled approximately every 96 ± 4 (SD) days, from July 2013 to February 2015, and 8 sampling sessions per site were carried out, four during the rainy season and four during the dry season. More details about rodent sampling on these sites can be found on Morales-Díaz et al. (2019). Bats: this study focuses on bats of the Noctilionoidea superfamily, specifically on the Phyllostomidae and Moormopidae families, distributed only on the Neotropic (Jones et al. 2002). The sampling was carried out using in each site a standardized sampling unit composed of six mist nets (12 x 2.6 m and 30 mm mesh size), with a total sampling area of 187 m2. The nets' arrangement was across potential flight corridors and at ground level within each plot; they were separated from each other by at least 50 m. The nets remained open for 6 hours, being activated one hour before sunset to cover bat activity's main peak (Fenton and Kunz 1977, Williams-Guillén and Perfecto 2011). To evade variation in capture success associated with environmental conditions, we avoided sampling during the full moon and rainy and windy nights (Saldaña-Vázquez and Munguía-Rosas 2013). The nets were checked every 15-30 minutes, and captured individuals were stored in cloth bags and processed in situ. For each captured bat, it was registered: 1) the species, 2) the sex, 3) the relative age, and 4) the reproductive condition. Species identification was carried out with the help of the field guide by Medellín et al. (2007), and the reproductive condition was found using the method by Racey (2009). After the register was made, individuals were released at the place of capture. Sites were sampled approximately every 96 ± 4 (SD) nights for three years, and eight sampling sessions were carried out, covering both the dry and rainy seasons. More details about bat sampling on these sites can be found in Hernández-Martínez et al. (2019) and Martínez-Ferreira et al. (2020). Data analysis All statistical analyses were performed in R 4.0.0 (R Core Team, 2020); we excluded the old forest sites from all the analyses and used them only as a reference of preserved forests. 33 Sampling completeness and spatial autocorrelation test: the percentage of sampled species in relation to the estimated species richness was estimated for all sampling sites; we estimated the species richness by using the rarefaction and extrapolation with Hill numbers estimator; this analysis was performed using the iNEXT R package (Hsieh et al. 2016). This estimator facilitates the comparison of biodiversity data as it standardizes samples based on sampling size or sample completeness (Chao et al. 2014). Additionally, we tested the data for spatial autocorrelation using the Spearman correlation-based Mantel test (999 permutations) and the vegan R package (Oksanen et al. 2019). We tested the correlation between ecological (Jaccard distance) and geographic distance matrices (Euclidean distance). We considered a p < 0.05 value as a significant result for this test. Beta diversity and partition into its components (turnover and nestedness): this study aimed to understand the mechanisms driving ESS vertebrates metacommunities; thus, rather than just studying a total beta diversity alone, we partitioned it into its components (spatial turnover and nestedness), in order evaluate the contribution of species replacement and species loss to such - diversity (Baselga 2010, Baselga and Orme 2012, Soininen et al. 2018). The analyses were performed using the betapart R package (Baselga and Orme 2012), which receives as an input a site-by-species incidence matrix (for each group) and calculates the percentage of the turnover and the nestedness that contributes to the total of the beta value quantified by Jaccard distance coefficient. Two analyses were performed per group: 1) the beta multiple comparison, a computation between the 11 ESS sites resulting in a unique value, and 2) the beta pair comparison, based on paired comparisons among all the 11 sites, resulting in a matrix of distances with the values of the comparisons. We used the average of beta pair analysis per site per group to quantify the species composition differentiation of each community with respect to the other communities, while the beta multiple analysis was used to compare the contribution of species replacement and loss to the observed beta diversity in each group. Elements of metacommunity structure: to detect the best-fit metacommunity structure for anurans, lizards, snakes, bats, rodents, migratory passerines, and resident passerines on the ESS sites of a TDF, we used the Elements of Metacommunity Structure (EMS) approach proposed by Leibold and Mikkelson (2002) and the conceptual framework of Presley et al. (2010). This analysis is divided into three phases, each one refers to a different aspect of the metacommunity structure: 34 coherence, species turnover, and boundary clumping. Before analysis, site-by-species incidence matrices were ordinated via reciprocal averaging, which extracts the first ordination axis and reduces the number of interruptions in species’ ranges, provides a basis for judging whether a metacommunity is nested or dominated by species turnover, and defines the boundaries for species’ ranges in relation to the primary axis of compositional variation (Leibold and Mikkelson 2002). The degree of coherence is indicated by the number of embedded absences (an interruption in a range or community) within the axis; to test significance, embedded absences are compared with a null distribution. A non-significant result suggests a random assembly; a negative coherence suggests a checkerboard distribution. Both non-significant and negative results stop the analysis, but if a metacommunity is positively coherent, we must examine the species turnover and the boundary clumping metrics to find its structure (Leibold and Mikkelson 2002, Leibold and Chase 2018). The turnover analyzes the number of times that a species is replaced by another between two sites in an ordinated matrix (number of replacements) and refers to the changes in species composition across sites. As coherence, results are compared with a null model of replacement values created from 1000 matrices containing randomly shifted species ranges. When turnover is significantly less than expected by chance, a nested distribution is suggested for the metacommunity. If the result is significantly equal or higher than expected by chance, a Clementsian, Gleasonian or evenly spaced structure can be found after boundary clumping analysis (Leibold and Mikkelson 2002). Metacommunities with a non-significant turnover have quasi-structures, that have the same basic characteristics as their idealized structures (Clementsian, evenly spaced, Gleasonian or nested distributions), differing only on the turnover, which is indistinguishable from random (Presley et al. 2010). The third metric to calculate is the boundary clumping, that tests if the boundaries of the ranges of a given metacommunity coincide more or less than expected by chance. It is measured using Morisita’s index; when the result is non-significant, the metacommunity has a Gleasonian or quasi- Gleasonian structure, because community boundaries are randomly distributed. If the index is significantly greater than 1, it suggests a Clementsian or quasi-Clementsian distribution with clumped boundaries; if the value is significantly less than 1, the test indicates over-dispersed boundaries, consistent with evenly spaced, quasi-evenly spaced distributions or hyper-dispersed 35 species loss in nested distributions (Leibold and Mikkelson 2002, Presley et al. 2010, Leibold and Chase 2018). The ordination via reciprocal averaging and analyses of coherence, turnover, and boundary clumping were conducted using the “Metacommunity” function of the R package metacom (Dallas 2014). Parameters characterizing vegetation attributes: for evaluating the study site variation in specific composition of the vegetation, we carried out Non-Metric Multidimensional Scaling ordinations (NMDS), based on a dissimilarity matrix calculated with the Bray-Curtis coefficient (McCune et al. 2002). The Bray-Curtis coefficient reflects the intuitive ordering of sites by the assignment of the same maximum distance to all pairs of non-taxon-sharing sites. We transformed the species abundance data using the square-root transformation before the analysis for minimizing the influence on the coefficient of those species showing the largest difference in abundance (Kindt and Coe 2005). The scores of the sampling sites in the resulting NMDS axes were used as continuous synthetic variables summarizing site variation regarding the vegetation composition for assessing vertebrate responses to such vegetation attributes (Appendix Table A1). Analysis was conducted using the “metaMDS” function of the R package vegan (Oksanen et al. 2019). Vertebrate groups responses to vegetation and landscape attributes: we evaluated the responses of each metacommunity to environmental variables performing three canonical correspondence analyses (CCA) for each group: 1) one for vegetation attributes, including seven attributes of the vegetation structure and the three synthetic variables summarizing the site composition obtained via the NMDS, 2) one for landscape attributes of dry forest (coverage and connectivity) for all the scales, and 3) one for landscape attributes of riparian forest (coverage and connectivity) for all the scales. We associated a site-by-species incidence matrix for each group and an environmental matrix (vegetation matrix, dry forest landscape matrix, or riparian forest landscape matrix) through CCA (McCune et al. 2002). After performing the CCA, we identified the important variables and the best model for the CCA (Noble et al. 2004). For model selection, we used the stepwise method based on the Akaike Information Criterion (AICc) and we performed an ANOVA on the model selected to test the significance of models and predictors (Burnham and Anderson 2002). We used a CCA because 36 the reciprocal averaging methods agree with metacommunity analysis. The CCA analysis was performed with the R package vegan. Results Spatial autocorrelation test Mantel test’s results indicated no evidence of spatial structure in the set of data used for hypothesis testing in six taxonomic groups (anurans r = - 0.105, p = 0.748; lizards r = - 0.02798, p = 0.516; snakes r = - 0.2468, p = 0.974; migratory birds r = 0.05611, p = 0.315; resident birds r = -0.07636, p = 0.668; rodents r = 0.1422, p = 0.143). In contrast, bats’ data set exhibited evidence of spatial structure according to the Mantel test (r = 0.3179, p = 0.017). Completeness Anurans: we recorded a total of 17 species, 13 genera, and 7 families on the ESS sites, the most speciose family was Hylidae with 7 species (41.17%), 3 species were conspicuous and 2 were restricted (Appendix Table A2). On the OGF sites we registered 10 species, none of them was exclusive of this stage, but 7 species were exclusive of ESS (Appendix Table A2). Our sampling effort reached a sampling completeness average value of 59%, ranging from 4% in an ESS site (JGP) to 86% in another ESS site (LFO). We captured 17 of the 19 registered species of anurans for the region (García and Ceballos 1994). Lizards: lizards count was of 18 species, 14 genera, and 8 families on the ESS sites, the most speciose family was Phrynosomatidae with 5 (27.77%), 4 species were conspicuous an only 2 were restricted species (Appendix Table A2). On the OGF 13 species were registered and one was exclusive of this stage (Gerrhonotus liocephalus). In this sense, 6 species were ESS exclusive (Appendix Table A2). The sampling effort reached a sampling completeness average value of 93%, ranging from 87% in an ESS site (ZAP) to 98% in two ESS sites (JMM and BAS). We captured 19 of the 22 registered species for the region (García and Ceballos 1994). Snakes: we recorded 20 species of snakes, 18 genera, and 5 families on the ESS sites. The most speciose family was Colubridae with 15 (75%) and the most conspicuous species was Oxybelis 37 aeneus (10 sites). Five species were present only in one site (Appendix Table A2). On the OGF 11 species were registered and 4 were exclusive of OGF (Appendix Table A2). We found 13 exclusive species of ESS sites (Appendix Table A2). Our sampling effort reached a sampling completeness of 55%, ranging from 6% in an ESS site (NA2) to 93% in an ESS site (JMM). We captured 24 of the 35 species registered for the region (García and Ceballos 1994). Migratory birds: we found 30 species of migratory birds, 21 genera, and 10 families on the ESS sites. The most speciose family was Parulidae with 9 (30%) and 4 species were conspicuous (Appendix Table A2). Eight species were restricted to only one site (Appendix Table A2). On the OGF 15 species were registered and 1 was exclusive of these sites (Basileuterus lachrymosus), whilst 16 species were ESS exclusive (Appendix Table A2). Our sampling effort reached a sampling completeness of 67% ranging from 25% in an ESS site (HN2) to 84% in an ESS site (LFH). Resident birds: we registered 36 species of resident birds, 31 genera, and 14 families on the ESS sites. The most speciose family was Tyrannidae with 12 (33%) and 10 species were conspicuous (Appendix Table A2). There were 5 restricted species to one site (Appendix Table A2). On the OGF we found 26 species and none of them was exclusive of these sites. The ESS exclusive species were 11 (Appendix Table A2). Our sampling effort for birds reached sampling completeness of 93% ranging from 86% in an ESS site (JMM) to 100% in an OGF site (UDG). In total we captured 67 of the 118 passerine birds registered for the region (Arizmendi et al. 1990). Rodents: we found 8 species, 7 genera, and 2 families on the ESS sites. The most speciose family was Cricetidae with 7 (87.5%) and 6 species were conspicuous (Appendix Table A2). On the OGF we registered 6 species, none of them was exclusive of these sites. We found 2 species exclusive of ESS sites (Appendix Table A2). Additionally, we recorded in two ESS sites individuals of Mus musculus, we excluded this species from the analyses. The sampling effort reached sampling completeness of 95% ranging from 89% in two ESS sites (LFH and HN1) to 100% in three ESS sites (HN2, JMM, and ZAP) and in an OGF site (UDG). We captured 8 of the 9 terrestrial rodents reported for the region (Ceballos and Miranda 2000). 38 Bats: for the Mormoopidae family, we found 2 species and 1 genus and for the Phyllostomidae family, we found 12 species of bats and 8 genera on the ESS sites. There were 3 conspicuous species (Appendix Table A2). On the other hand, 4 species were restricted (Appendix Table A2). On the OGF sites, we found 12 species, one of them exclusive of OGF sites (Appendix Table A2). We found 3 ESS exclusive species (Appendix Table A2). Our sampling effort reached sampling completeness of 90% ranging from 73% in an ESS site (JMM) to 100% in an ESS site (LFO). We captured 3 of the 4 Mormoopidae bats registered for the region and 12 of the 15 Phyllostomidae bats registered for the region (Ceballos and Miranda 2000). Beta diversity: turnover and nestedness Average values of beta diversity per site per taxon were measured; anurans’ and snakes’ composition at site BAS showed the highest beta values, while BAS, HN1, JGP, JMM, LFH, LFO, LIM, NA1, and ZAP sites for rodents evinced the lowest beta values (Fig. 1). The highest values of beta diversity were found in snakes (0.89), anurans (0.85), and migratory passerines (0.84), whereas the lowest values were found in resident passerines (0.69) and rodents (0.54) (Fig. 2). After dividing beta diversity into its components, it was found that spatial turnover contributed the most to beta diversity in all the taxonomic groups studied (Fig. 2), contributing more than 75% in all groups. Bats were the group with the highest value of nestedness, which contributed 22.85% to beta diversity. 39 Figure 2. Values of beta partition for anurans, lizards, snakes, migratory birds, resident birds, rodents, and bats showing the contribution of nestedness (JNE) and turnover (JTU). Metacommunity structure The occurrences and matrix fill for each group were (Fig. 3): anurans’ occurrences = 78, matrix fill = 42%; lizards’ occurrences = 106, matrix fill = 54%; snakes’ occurrences = 65, matrix fill = 30%; migratory birds’ occurrences = 131, matrix fill = 40%; resident birds’ occurrences = 246, matrix fill = 62%; rodents’ occurrences = 76, matrix fill = 86%; bats’ occurrences = 82, matrix fill = 53%. 40 Figure 3. Distributional profiles of species (black squares) as ordered via reciprocal averaging for each taxonomic group of metacommunities. The order of sites (rows) and species (columns) is different among communities. Abbreviations of all species are given in Appendix A. 41 Figure 4. Theoretical framework of the analytical method of Elements of Metacommunity Structure (after Presley et al. 2010) and results of analyses of coherence, species range turnover and range boundary clumping for anurans, lizards, snakes, migratory birds, resident birds, rodents, and bats, in the Chamela region. Significant values (p = <0.05) are represented with numbers in bold. 42 The metacommunity of each taxonomic group exhibited significant positive and strong coherence (Fig. 4). The value for spatial turnover for rodents was significant and positive, and boundary clumping was non-significant; these values are characteristic of a Gleasonian structure. However, all the other groups evinced non-significant positive results for spatial turnover analysis. In bats and resident birds, boundary clumping was significant and positive, consistent with quasi- Clementsian structure. Anurans, lizards, snakes, and migratory birds evinced non-significant boundary clumping, consistent with quasi-Gleasonian structure. Vegetation composition For the NMDS used for creating a synthetic variable summarizing the vegetational variation in composition, we just considered three axes because an additional dimension did not substantially diminish the stress values. The low stress (5.02 on a scale of 0 to 100) indicates no real risk of drawing false inferences from ordination (McCune et al. 2002). The NMDS indicates differences among sites according to vegetation composition (Appendix Table A1). Responses of vertebrate groups to environmental variables Anurans: the changes in the specific composition of the communities that are part of the metacommunity were associated with the variation on vegetation attributes and landscape attributes on dry and riparian forests. The resultant model for vegetation attributes (F(2,8)=2.3191, p = 0.001) explained 36% of the variation in specific composition, including the PAI and the axis MDS2 of the vegetation composition (Fig. 5 and Appendix Fig. A1). The variation associated with the dry forest landscape attributes was explained in 32% by the obtained model (F(2,8)=1.9597, p=0.007), including connectivity and coverage at the scale of 1000 m (Fig. 6 and Appendix Fig. A2). Finally, the resulting model for landscape attributes of riparian forest (F(1,9)=1.8449, p=0.24) explained the 17% of the variation in anurans’ communities, including the coverage at 1500 m scale (Fig. 6 and Appendix Fig. A3). Lizards: vegetation attributes were found to explain the 24% of the variation on the metacommunity assemblage of lizards in the resultant model (F(1,9), p=0.004), including the height of woody individuals (Fig. 5 and Appendix Fig. A4). 43 Snakes: we found that none of the variables regarding vegetation and landscape attributes was associated with variation in species composition of metacommunities of snakes. Migratory birds: we found that the variation on the metacommunity of migratory birds was influenced by the Stem Basal Area (SBA) of trees (Fig. 5 and Appendix Fig. A5), a composition vegetation attribute. The model we obtained (F(1,9), p=0.004) explained 18% of the species’ variation. Resident birds: the variation on the metacommunity assemblage of resident birds was only associated with landscape attributes of dry forest, the obtained model (F(1,9)=1.9651, p=0.033) explained 17% of the species data variability, the variable connectivity at 3000 m was found to be the only variable explaining our model (Fig. 6 and Appendix Fig. A6). Rodents: the variation on the metacommunity assemblage of rodents was associated with landscape attributes of riparian forest, the resultant model (F(1, 9)=9.843, p=0.003) explained 52% of the specific variation, including connectivity at the 2500 m scale (Fig. 6 and Appendix Fig. A7). We found that the obtained model for vegetation attributes could be potentially associated with the variation on rodents’ communities (F(1,9)=3.5539, p=0.087), potentially explaining 28% of the variation by the axis MDS2 of the composition of vegetation (Fig. 5 and Appendix Fig. A8). Bats: the specific variation on bats’ communities comprising the metacommunity was associated with vegetation attributes. The resulting model (F(7,3)=1.7487 p=0.021) explained 80% of the variation, including the number of woody individuals and the MDS1 and MDS3 axes of vegetation composition (Fig. 5 and Appendix Fig. A9). 44 Figure 5. Resume of the CCA analyses performed showing the significant variables of vegetation attributes explaining variation in anurans, lizards, resident birds, rodents, and bats. The lines explain the positive (lines with a plus sign) or negative (lines with a minus sign) relation with the axis 1 and 2 of the CCA; grey lines represent a non-significant variable but potentially associated with variation in rodent species. SBA = Stand Basal Area, PAI = Plant Area Index, MDS1 = scores for the first axis of the non-Metric Multidimensional Scaling (MDS) ordination for vegetation composition, MDS2 = scores for the second axis of the MDS for vegetation composition, MDS3 = scores for the third axis of the MDS for vegetation composition. Figure 6. Resume of the CCA analyses performed showing the significant variables of landscape attributes of dry and riparian forest explaining variation in anurans and resident birds. The lines explain the positive (lines with a plus sign) or negative (lines with a minus sign) relation with the axis 1 and 2 of the CCAs. 45 Discussion Sampling completeness varied among surveyed vertebrate groups from 55% to 93%. The lowest values for completeness corresponded to snakes, which are considered a rare group in herpetological surveys (e.g. Suazo-Ortuño et al. 2008, Fraga-Ramírez et al. 2017). The range of completeness values for our vertebrate groups fall within the range reported in other studies for each group (Gómez de Silva and Medellín 2001, de la Peña-Cuéllar et al. 2015, Flores-Peredo and Vázquez-Domínguez 2016, Marroquín-Páramo et al. 2021). The most conspicuous species in ESS sites in all groups were generalist species, capable of tolerating diverse habitats and some degree of disturbance and living in young or disturbed forests' climatic and vegetation conditions. Anurans Agalichnys dacnicolor, Lithobates forreri and Smilisca fodiens have major plasticity in environments associated with disturbed sites such as secondary forests (García and Ceballos 1994, Suazo-Ortuño et al. 2008, Soto-Sandoval et al. 2017). Lizards species Anolis nebulosus, Aspidoscelis communis, Aspidoscelis lineatissima, and Sceloporus utiformis are known to be dominant in disturbed places; size, diet, and activity are traits that could allow them to use these sites (Berriozabal-Islas et al. 2017). The high prey density (e.g., lizards, anurans, rodents) could explain the high richness of snakes on ESS sites (Luiselli 2006); for example, Oxybelis aeneus was the most conspicuous snake, and its preferred prey is the anole A. nebulosus, the most conspicuous species of lizards in the region (Henderson 1974). The habitat of conspicuous species of migratory and resident birds (Icteria virens and Myiarchus tyrannulus; Arremonops rufivirgatus, Cassiculus melanicterus and Thryophilus sinaloa) consists of disturbed or cleared forests and edges on tropical dry forests (Bent 1963, Cadman et al. 2007, Cardiff and Dittmann 2020, Soberanes-González et al. 2020, Ammon and Gilbert 2020, Brush 2020, Collar 2020, Eckerle and Thompson 2020, Fraga 2020). Rodent generalists species, such as the two ESS exclusive species Baiomys musculus and Reithrodontomys fulvescens, are favored in perturbed or secondary forests because of the open canopy and the high presence of shrubs that enhance habitat heterogeneity by increasing the microhabitat diversity (Packard and Montgomery 1978, Spencer and Cameron 1982, Vázquez et al. 1999, 2004, Schnell et al. 2008, Flores-Peredo and Vázquez- Domínguez 2016, Benedek and Sîrbu 2018, Arce-Peña et al. 2019, Bovendorp et al. 2019). The presence of bat species such as Artibeus jamaicensis, Artibeus phaoetis and Glossophaga soricina 46 in almost all the ESS sites can be due to their generalists roosting and feeding habits (Lemke 1984, Alvarez et al. 1991, Ortega and Castro-Arellano 2001). The high species richness of flying groups such as migratory birds, resident birds, and bats could be explained by the high vagility and mobility of them and by the proximity of these sites to old- growth forest patches in the CCBR, which can be considered as the source habitat of several species. These groups could use ESS sites as pathways between forest fragments (Nassar et al. 2013); in this sense, some species may temporarily move to early forests searching for available resources such as fruits (Blake and Loiselle 2001). For migratory birds, early forests are sites with resources, like fruits with seeds, that are important to reunite energy for returning to the north (Blake and Loiselle 2001, Ramos-Ordoñez and Arizmendi 2011, Nassar et al. 2013, Latta et al. 2018). Beta diversity: turnover and nestedness We found high levels of beta diversity in all local communities for all taxa except for rodents and migratory birds. The same result was found in vegetation in early successional stages in Chamela tropical dry forest (Durán et al. 2006, Alvarez-Añorve et al. 2012). When partitioning the beta diversity, we found that the contribution of turnover to beta diversity was high, ranging from 77% in bats to 94% in snakes, compared to the low percentage of nestedness contributing in all groups; this means beta diversity is mainly caused by variation in species composition, instead of differences in species richness among local communities (Baselga and Orme 2012). In this sense, it has been proposed that turnover is a consequence of historical spatial constraints or a degree of species sorting (Baselga 2010). The tendency found across our metacommunities has been reported in numerous studies; according to the meta-analysis performed by Soininen et al. (2018), in most of the local studies using beta partitioning, turnover contributes the most to beta diversity. When comparing beta diversity between the taxa studied, we found some similarities across some of the metacommunities. For example, ectotherms (lizards, anurans, and snakes) showed high levels of biodiversity, probably because the ectotherm group is constrained by environmental variables like temperature, moisture and depend on environmental sources for heat gain (sun and warm surfaces) and heat loss (shade, water, and cool surfaces) (Vitt and Caldwell 2014). On the other hand, volant groups (migratory and resident birds and bats) showed lower beta diversity 47 values than ectotherms, except for the migratory birds. The high vagility of these taxa might allow the movement between patches of species, resulting in more similar communities. The high beta diversity and high levels of turnover in the anurans metacommunity were expected as a result of the low mobility of the group (Qian 2009, Dobrovolski et al. 2012, da Silva et al. 2014) and because of their dependence on specific environmental conditions for dispersal and reproduction (e.g. water bodies, environmental moisture, cooler temperatures, rainfall) (Wells 2010, Vitt and Caldwell 2014, Thompson and Donnelly 2018). In addition, the formation of ephemeral habitats in ESS (e.g. temporary ponds) could increase the microhabitat availability for some species of anurans, leading to high diversity in different sites (Hernández-Ordóñez et al. 2015, Acevedo-Charry and Aide 2019). Finally, coverage of dry and riparian forests and attributes of vegetation structure (PAI and composition) were important in determining the presence of some species in our metacommunity of anurans, which will be discussed later. Lizards also depend on light, sun exposure, humidity, and temperature for regulating temperatures; they have a lower vagility than bats and birds, restricting their dispersal capacity and enhancing beta diversity in the metacommunity. In addition to this, ESS have a high structural complexity of vegetation (Huang et al. 2013), which may lead to higher diversity and the co-occurrence of various species of lizards with different requirements as a result of the availability of more habitats: different strata for perching, availability of gaps for thermoregulation, or litter layer (Genet et al. 2001, Gienger et al. 2002, González-Sánchez 2012). Thus, the environmental heterogeneity is crucial for allowing the coexistence of different species of lizards, leading to higher diversity when the heterogeneity is higher; this result has been found in desert lizards (Pianka 1966), in lizards inhabiting coffee crops (Macip-Ríos and Muñoz-Alonso 2008), and in lizards of TDF (Berriozabal-Islas et al. 2017). Snakes showed the highest beta diversity of all groups, as seen with anurans and lizards; snakes are ectotherms more restricted by environmental variables. For example, Soininen et al. (2018) found that taxa occupying high trophic positions, such as carnivores specialists, have a higher beta diversity because of the spatial distribution of the food availability. Other studies on beta diversity on snakes have found that snake assemblages are affected by environmental variables, such as soil texture and variation in tree cover that generates mosaics (Moura et al. 2017, de Fraga et al. 2018), 48 and prey availability, like high abundances of rodents, lizards, and amphibians (Akani et al. 2008, Soininen et al. 2018, Zipkin et al. 2020). Migratory birds showed a high beta diversity; this result was not expected for a group with high vagility; however, migrants from different species can show differential responses to variation in landscape (Hutto 1989), and the structural heterogeneity in the landscape may increase the diversity of migrants (Hovick et al. 2014, Ke et al. 2018). Some studies have demonstrated that many neotropical migrants take advantage of different habitats in a landscape perturbed by anthropogenic disturbance and that live fences in landscapes are very important to these species (Estrada and Coates-Estrada 2005). The tropical dry forest could be either a habitat for staying or a stopover for some species; thus, this could explain the dissimilarity between sites. In the case of species that use Chamela tropical dry forest as a stopover, some species may use the habitat differently: individuals with different levels of fuel stores (energy) might have different demands for the habitats, some will be searching for safer places that protect them from predation, while others will be searching for sites with resources, this might vary between individuals from the same species (Moore and Aborn 2000, Petit 2000, Chernetsov 2012). Compared to migratory birds, resident birds evinced lower beta diversity values; this group could be considered less sensitive to variation in landscape structure (Flather and Sauer 1996, Trzcinski et al. 1999). We expected this result because birds are vagile and volant, and dispersion between patches at the landscape level is high. As stated before, the sharing species between sites might be a consequence of the resources present in these patches that birds use for feeding or as stepping stones, but not necessarily as sites for residing (Estrada et al. 1997). The slight dissimilarity between sites could be due to a different input of species depending on the matrix of each forest fragment in which the communities are embedded; MacGregor-Fors and Schondube (2011) found that bird communities in agricultural habitats, cattle pastures, and orchards were different. Bats diversity was higher than the ones of resident birds and rodents but lower than the ectotherms and migratory birds, indicating that the metacommunity of this group shares some species because of its vagility, yet also responds to some environmental constraints like availability and abundance of food resources that causes the replacement of bat species (García-Estrada et al. 2006). A study in Chamela dry forest showed that communities became more homogeneous after hurricane disturbance (Sil-Berra et al. 2021); thus, we could expect a similar response to human disturbance. 49 The number of woody individuals and the vegetation composition were the two variables explaining the bat diversity in our study. Finally, rodents showed the lowest total and site values of beta diversity. However, the low turnover values were significant according to the EMS analysis; this must be due to the ubiquitous presence of almost all species in all local communities and the few species number (eight) compared with the number of species in other groups. Generalist species of rodents are favored by habitat degradation. They are abundant and diverse during early successional stages (García- Estrada et al. 2002, Arce-Peña et al. 2019) because of the microhabitats proportioned by shrubs and trees that offer shelter to these species (Flores-Peredo and Vázquez-Domínguez 2016, Benedek and Sîrbu 2018). Another plausible explanation of the widespread distribution of all rodent species in our metacommunity is the reduction of the competitors and predators as a consequence of forest fragmentation (Morales-Díaz et al. 2019, Bovendorp et al. 2019). We found connectivity of riparian forest at high scales was important to rodent metacommunity and that there might be an effect on vegetation composition. Metacommunity structure The metacommunity approach is helpful for testing species that inhabit gradients or latent gradients and test if those species in metacommunities are distributed along the gradient. For example, vertebrate metacommunities in Chamela early successional forests presented a significant and positive coherence, which means species respond to the same latent environmental gradient and that their structure is different from the expected from random (Leibold and Mikkelson 2002). Most of the studies analyzing the patterns and structure of vertebrate metacommunities have found Clementsian patterns (López-González et al. 2012, Ochoa-Ochoa and Whittaker 2014, Leibold and Chase 2018); however, four of our metacommunities showed a Gleasonian or quasi-Gleasonian pattern. These structures are more common to appear at small or local scales when species show an individualistic response to gradients, while Clementsian structures are expected at regional or continental scales when higher shifts in species composition occur (Leibold and Chase 2018). The rodent group was the only metacommunity showing a real structure in this study: the Gleasonian pattern. It occurs in metacommunities with randomly distributed boundaries, which 50 indicates that species are structured along a gradient. Species responses are independent in this pattern (Gleason 1939, Leibold and Mikkelson 2002, Presley et al. 2010), and their coexistence results from chance similarities in their environmental requirements (Gleason 1926). The rodent metacommunity was structured along the latent gradient (Fig. 3), with the species R. fulvescens associated to one side of the gradient in sites with low proportions of forest cover and sites dominated by dry forests. This species is opportunistic and more common in disturbed sites than conserved ones (Spencer and Cameron 1982, Vázquez et al. 1999, Flores-Peredo and Vázquez- Domínguez 2016). At the end of the gradient, we found Peromyscus perfulvus, associated with sites with a higher cover of dry and riparian forests. The distribution of this species is restricted to the coastal region of Jalisco, Colima, Cuenca del Balsas in Guerrero and Michoacán states, in Mexico (Ramírez-Pulido et al. 2001) and is an arboreal species found in sites with dry forests (Sánchez-Hernández et al. 2009). The other species were equally distributed along the gradient (e.g. Liomys pictus, Osgoodomys banderanus, B. musculus); these species are generalists and favored by the vegetation of early forests. Studies in San Pedro-Mezquital River and the Mojave Desert in the United States showed a Gleasonian and quasi-Gleasonian structure, with relationships to environmental conditions like humidity or vegetation and edaphic features (Stevens and Tello 2009, López-González and Lozano 2015). However, studies in the Atlantic Forest and the Peruvian Andes showed a Clementsian structure in rodent metacommunity, associated with gradients of temperature seasonality and elevation (Presley et al. 2012, de la Sancha et al. 2014). According to the analyses regarding the responses of rodents to habitat variation, we could suggest the rodent metacommunity is structured by landscape variables regarding riparian forest and by a gradient in the composition of vegetation; similarly, Stevens and Tello (2012) found that rodent metacommunity was associated with the spatial configuration and environmental conditions in the Mojave Desert. Anurans, lizards, snakes, and migratory birds showed a quasi-Gleasonian structure; in this pattern, the responses to the latent gradient and environment are also species-specific, but the metacommunities have larger niche breadths and weaker structuring forces than Gleasonian metacommunities, which have a significant turnover (Presley et al. 2010). Some of the species found in the anuran metacommunity were more related to one side in the latent gradient, including sites dominated by riparian forests and dry forests (Fig. 3); for example, 51 Trachycephalus typhonius, Eleutherodactylus nitidus, Craugastor hobartsmithi and Craugastor occidentalis, are species associated with forested and wet areas (Reyna-Bustos et al. 2007, Peltzer et al. 2013, Rosas-Espinoza et al. 2013). Most of the species were present along the entire gradient, while species like Hypopachus variolosus, Tlalocohyla smithii, Dendropsophus sartori and Leptodactylus melanonotus were found at the end of the gradient, these species have in common they inhabit close to water bodies and muddy soils (Caldwell 1986, García and Ceballos 1994, Lee 1996, Bartlett and Bartlett 2006, Rosas-Espinoza et al. 2013). Although some of the sites are in a matrix with a low proportion of riparian forests, temporal ponds can be formed in perturbed sites and are important to species inhabiting sites with low canopy cover (Richter-Boix et al. 2007, Acevedo-Charry and Aide 2019). Other metacommunities of Mexican anurans have exhibited quasi-Gleasonian, Gleasonian, and Clementsian structures, describing a gradient from an open matrix to interior forest (Ochoa-Ochoa and Whittaker 2014). The anurans of our metacommunity may respond individually to a gradient in landscape features (e.g. connectivity) of dry and riparian forests and compositional changes of vegetation; similar results were found at Lacandona rainforest and north-east Spain, where the amphibian metacommunities were influenced by dispersal events and patch quality (Richter-Boix et al. 2007, Hernández-Ordóñez et al. 2019). We also found that some species in lizards metacommunity were aggregated at one side of the latent gradient with lower proportions of forest cover (Fig. 3), for example, Phrynosoma asio, which inhabits open areas (García and Ceballos 1994). However, species occupying the end of the gradient like Marisora brachypoda, Coleonyx elegans or Plestiodon parvulus, depend on the amount of litter, surface debris, and moist sites (García and Ceballos 1994, Lee 1996); this side of the gradient was associated with larger proportions of dry forest or riparian forest. Many species were common along the whole gradient without showing a particular type of site preference. The latent gradient structuring lizard metacommunity could be associated with attributes of vegetation like the height of woody individuals; however, other attributes like the landscape configuration and quality have explained the assembly of lizard metacommunities in dune, pine forest, and lowland wet forest habitats (Leavitt and Fitzgerald 2013, Kurz et al. 2014, Johnson et al. 2016, Ryberg and Fitzgerald 2016). Although there was a quasi-Gleasonian structure in snakes metacommunity, the latent gradient is less clear than the other groups analyzed, and many species were present only at one site. However, 52 the conspicuous species (e.g., Imantodes gemmistratus, Lampropeltis triangulum, O. aeneus) occupied the entire gradient; these species are generalists and common in second forests and forests edges (Lee 1996). Other studies suggest some variables structuring snake communities, for example, multi-scale fluvial and geomorphic processes (e.g. particle size) that may lead to Clementsian or Gleasonian structures (Welsh Jr and Hodgson 2011); landscape attributes in insular systems like: distance to the mainland and area of the island (Burbrink et al. 2015), matrix surrounding forest remnants (Kurz et al. 2014), prey density (Naulleau 1994, Johnson et al. 2016), or coarse woody debris (Owens et al. 2008). The metacommunity of migratory birds showed that species are distributed along a latent gradient but with individualistic responses; species of this group can vary in habitat requirements, some species require undisturbed habitats, while others are favored by second and disturbed forests (Finch 1991), this support the quasi-Gleasonian structure found in the study. In this respect, some species were present at the gradient side characterized by sites immersed in a heterogeneous matrix (Fig. 3), such as Pheucticus melanocephalus, Icterus spurius and Tachycineta bicolor, common in open areas and edges transitions (DeGraaf and Rappole 1995). However, most migratory species were distributed across the entire gradient, while six species were more associated with the end of the gradient, associated with sites dominated by dry forests. These species (e.g. Seiurus aurocapilla, Piranga ludoviciana, Catharus ustulatus) depend on mature or second growth dry forests, dense tall understory, and are vulnerable to deforestation (DeGraaf and Rappole 1995). The latent gradient found is coherent with other migratory bird communities in Mexico and South Africa shaped by landscape variables, like patch size and connectivity, and by attributes of the habitat, like vegetation cover (Leyequién-Abarca et al. 2006a, Ehlers Smith et al. 2018, 2019). In addition to this, environmental variables such as precipitation or water availability could contribute to differences in metacommunities of migrant birds because of their relation to abundance and availability of resources (e.g. insect density, fruit production), which are essential factors affecting winter survival of migrants (Cody 1981, Sherry and Holmes 1996, Brennan 2006). The two metacommunities that exhibited quasi-Clementsian structures were bats and resident birds. Clementsian structures may reflect the effect of biogeographic processes and barriers, and species form discrete groups that replace each other along the gradient and share an evolutionary history (Clements 1916, Leibold and Mikkelson 2002, Dallas and Presley 2014). However, when 53 a quasi-Clementsian pattern appears, the turnover is not significant, the range boundaries are coincident or quasi-coincident, and the majority of species cover a great part of the gradient, characterizing a metacommunity with a compositional unity along most of the gradient (Presley et al. 2010). In the case of the resident birds, species such as Tyrannus crassirostris, Melanotis caerulescens and Sporophila minuta that inhabit secondary forests, riparian edges, and open areas (Rodríguez- Parga et al. 2012, Lowther et al. 2020, Rising and Jaramillo 2020), always occupied only one side of the gradient (Fig. 3); whereas species strongly related to dry forests, for example Xiphorhynchus flavigaster, Tyrannus melancholicus, Tityra semifasciata, Myiodynastes luteiventris (Vega-Rivera et al. 2003, Lowther and Stotz 2020, Marantz et al. 2020, Mobley and de Juana 2020, Stouffer et al. 2020), were present at the other side of the gradient. Furthermore, many species with generalist habits were common along the whole gradient. Landscape attributes, for example, connectivity or tree cover, may represent the gradient to which resident birds are responding; this association has been previously found in woodlands and grassland habitats in France in two Clementsian bird metacommunities, in a traditional shade coffee agro-ecological zone and in pine-oak forests, both in Mexico (Leyequién-Abarca et al. 2006b, Bonthoux et al. 2013, Carrillo-Rubio et al. 2014, Bonthoux and Balent 2015, Henckel et al. 2019). Moreover, Presley et al. (2012) also found a quasi-Clementsian structure in Peruvian passerines related to an elevational gradient, and they discuss that this structure may arise as a result of the high vagility of birds coupled with the use of presence-absence data and that metacommunity structure could be different for each guild. The species of bats present at one side of the gradient (Fig. 3) were Pteronotus davyi and Musonycteris harrisoni, the first one is a species that inhabits in moist and warm caves and feeds on insects, specially moths (Adams 1989, Jiménez-Guzmán and Ceballos 2005); the second one is a nectarivore species endemic to the Pacific Coast of Mexico (Tellez and Ortega 1999). Both species are small-sized and cannot resist low temperatures (Bonaccorso et al. 1992, Tschapka et al. 2008). On the other side of the latent gradient, Choeroniscus godmani and Artibeus hirsutus were present; both species prefer undisturbed dry forests (Arita 2005, Téllez-Girón 2005, Avila- Cabadilla et al. 2009). Other species (e.g., A. jamaicensis and G. soricina) were common along the entire gradient. The quasi-Clementsian structure we found in Chamela region coincides with the Clementsian structures in other bats metacommunities at large scales in Mexican and 54 Paraguayan bats (Presley et al. 2009, López-González et al. 2012). Nonetheless, Gleasonian, quasi- Gleasonian and nested patterns have structured bats at local scales in San Pedro-Mezquital River, in the Caribbean lowlands of north-eastern Costa Rica, in Mount Nimba in Liberia and Guinea, and in Manu, Peru (Presley et al. 2012, Cisneros et al. 2015, López-González and Lozano 2015, Reardon and Schoeman 2017), responding to the gradients of elevation, humidity, and vegetation, the distance between forest patches and forest edge density. Our results coupled with the CCAs performed suggest that vegetation composition is related to the distribution of bats in the early forests of Chamela. Responses of vertebrate groups to environmental variables Anurans: coverage and connectivity of dry forest and coverage of riparian forest, both at small scales, explained the presence of anurans in the different metacommunities. Dry forests, even if disturbed, are habitats that favor some species, possibly with larger body size like A. dacnicolor or S. fodiens; these two species were found in 10 and six communities during this study (Fraga- Ramírez et al. 2017, Suazo-Ortuño et al. 2018a). Riparian forests provide shelter and resources to anurans, especially during the dry season, leading to greater species diversity and the establishment of anuran populations (García and Cabrera-Reyes 2008, Medina-Rangel 2011, Suazo-Ortuño et al. 2011). A change in anuran species' location between dry and riparian forests between dry and wet seasons has been studied (Suazo-Ortuño et al. 2011); the connectivity of dry forests must be an important variable because it allows individuals' movement during different seasons through the forest. We did not measure if species composition was related to each community's distance to the mature forest of the reserve; however, there might be an effect on species composition in communities with different distances to mature forests. Studies in insular systems have shown that the species richness of anurans decreases and changes when the distance from continuous forest increases (Watling and Donnelly 2008, da Silva et al. 2014). The following vegetation attributes were also significant for anurans' presence: Plant Area Index, which indicates the vegetation structural complexity (Fournier et al. 2003), and vegetation composition. Sites more complex in terms of vegetation have shown a greater number of microhabitats for anurans, which is very important for selecting sites to avoid evaporative water loss through the skin (Navas 1996, García and Cabrera-Reyes 2008, Rittenhouse et al. 2008, Wells 2010). Microhabitat selection and 55 vegetation composition are also necessary for breeding purposes (Afonso and Eterovick 2007, Provete et al. 2014). Lizards: the structural complexity of riparian and dry forests are variables that cause an effect on lizard assemblages. Usually, a higher structural complexity leads to higher levels of diversity and abundance (García and Cabrera-Reyes 2008, Suazo-Ortuño et al. 2011). The CCAs conducted showed that the height of woody individuals was the only variable explaining lizards' variation between communities. This result agrees with previous studies demonstrating a vertical differentiation of the habitat use between anoles’ species (Moermond 1979, Ramírez-Bautista and Benabib 2001, Losos and Greene 2009). Lizards in tropical dry forests also indicate differential habitat utilization on the vertical plane. For instance, A. nebulosus and Sceloporus melanorhinus use low and high perches, while S. utiformis is predominantly a terrestrial species that uses leaf- litter; Urosaurus bicarinatus occupies higher perches (García 2008), and the beaded lizard Heloderma horridum uses the forest floor (Beck and Lowe 1991). The utilization of different strata could result from competition, prey availability, moisture, or thermoregulation requirements (Losos and Greene 2009). The lizards’ ability to climb surfaces and occupy different strata and heights is related to running (sprinting), clinging and jumping, and morphological features such as the snout-vent length (Irschick and Losos 1999, Tulli et al. 2011), so species with different morphological features can use different strata. Besides, lizard assemblages of TDFs have shown a structure based on diet composition (de Pinho Werneck et al. 2009), which could be another variable structuring the metacommunity of lizards in Chamela. Snakes: snakes metacommunity variation was not influenced by any of the variables we measured; the low capture rate for this group could limit our capacity to identify causal relationship (Gu and Swihart 2004). However, it has been hypothesized that snakes’ distribution is determined principally by prey availability (Webb and Shine 1997, Barbo et al. 2011, Wasko and Sasa 2012). In addition, some studies have shown an effect of landscape and microhabitat characteristics on snakes diversity like the presence of edges, percentage of trees canopy and open habitats, and ground cover (Carfagno and Weatherhead 2006, de Fraga et al. 2011, França and Braz 2013). Migratory birds: the stand basal area (SBA) was the only variable explaining the variation in the metacommunity of migratory birds, lower values of SBA are common in younger sites in a successional gradient, while higher values are representative of older forests (Kariuki and 56 Kooyman 2005). Most of the birds were associated with sites with low SBA values; in this respect, migrants are common in open areas and forest edges, probably because of the use of small insects and fruits that are not exploited by resident birds (Willis 1980); also, food availability could be four times greater in edge than in interior habitats. Some species might be favored by open areas because they provide access to the ground and foraging habitat for insectivorous species (Conner and Adkisson 1975). In this sense, abundance and availability of food resources are essential to migrants because they need enough food to store fat and survive during migration (Hutto 1980, 1985, Willis 1980, Greenberg et al. 1997). Compared to resident birds, migrants may not depend on specific habitat attributes (e.g., undisturbed dry forest) (Hutto 1989). Furthermore, these results show a similar pattern to the metacommunity ordenation and species related to more conserved forests and vulnerable to deforestation (e.g. C. ustulatus) were associated with sites with higher values of SBA, which are the sites dominated by dry forest cover. Resident birds: the CCAs conducted for resident birds exhibited that connectivity of dry forest at 3000 m was an important variable when structuring the birds’ metacommunity, probably because of the flight capability of the group. According to Taylor et al. (1993), landscape connectivity is the degree to which the landscape facilitates or impedes movement among resource patches; therefore, high connectivity could allow birds to use habitat fragments as stepping stones or corridors to avoid long flights crossing forest gaps. Besides, fragments provide sites where individuals can rest, feed, or shelter from predators (Clergeau and Burel 1997, Pearman 2002, Boscolo et al. 2008); corridors could also be used as breeding or roosting sites by some species and not only as foraging habitats (Faria et al. 2006). In this sense, connectivity can reduce the adverse effects of fragmentation by increasing the area and quality of habitat for birds when all the fragments are functionally connected (Andrén 1994, Martensen et al. 2008, Boscolo et al. 2008). For example, Lees and Peres (2008) found that connected corridors had higher structural integrity than remnants that had lost connectivity to source patches. Rodents: we found connectivity of riparian forest at high scales was important to rodent metacommunity, explaining the low beta diversity in this group. Corridors of habitat allow rodent dispersal between patches, Garrido-Garduño et al. (2016) demonstrated that gene dispersal of rodents between localities in Chamela is usually associated with corridors of forested areas. The landscape connectivity of riparian forest is important to rodents because the movements across the 57 habitat have a lower risk of predation than movements on an open matrix. Studies translocating rodents to patches with different degrees of isolation and connectivity have shown that individuals prefer connected habitats than isolated patches (Rizkalla and Swihart 2007, Büchner 2008, Mortelliti et al. 2011, 2013) and that rodents’ populations establish and have higher population growth rates in connected habitats (Fahrig and Merriam 1985). Riparian forests show higher species richness of rodents (Ceballos 1990), this habitat may provide more resources such as food or shelter to rodent species, especially during the dry season, than dry forest (Zarazúa-Carbajal et al. 2017); species like O. banderanus, P. perfulvus are common in moist habitats associated with water bodies (Ceballos 1990). The composition of vegetation potentially influenced rodent variation. For example, the most conspicuous plants present in our sites (Caesalpinia coriaria, Jacquinia nervosa, Acacia farnesiana) produce fruits and seeds consumed by rodent species like L. pictus (Janzen 1970, Traveset 1990, Sánchez-Rojas et al. 2004). Therefore, resource availability provided by these and other plant species may determine some rodent species' presence in this habitat (Mortelliti et al. 2014, Flores-Peredo and Vázquez-Domínguez 2016, Yang et al. 2018). Bats: the plant species composition axes were the most important variables structuring bat metacommunity; plants’ identity determines the availability of trophic resources, so vegetation composition will probably be an important predictor of bat variation (Chambers et al. 2016, Martínez-Ferreira et al. 2020). The early successional vegetation of dry forest and riparian forest could increase the abundance, diversity, and quality of flower resources (Avila-Cabadilla et al. 2009). Indeed, the number of woody individuals, which can be related to resource production (e.g. fruits, flowers, insects) and roosting or shelter sites (Hale et al. 2012, Kalda et al. 2015), was the other variable explaining bat variation. Plant species like Acacia cochliacantha, Cordia alliodora, and J. nervosa were conspicuous and abundant in our study sites; they all produce fruits and flowers (Janzen 1970, Johnson and Morales 1972, Seigler and Ebinger 1988, Chaves and Avalos 2006) that could be food for bats. This group forage selectively and prefer areas with high resource availability (Ripperger et al. 2015) probably because they spend less time flying when using sites with a high abundance of food and reduce flight distance between resources. Besides, the spatial use within the home range is correlated with food plant abundance (Rothenwöhrer et al. 2011). 58 Potential structuring mechanisms in vertebrate metacommunities in Chamela region Based on all the analyses performed on the metacommunity structures obtained for each group, we propose the mechanisms shaping the vertebrate metacommunities during the early successional stages of the Chamela tropical dry forest. Following the framework proposed by Leibold et al. (2004), we propose that the principal mechanisms operating over the vertebrate metacommunities in Chamela are in between mass effects and species sorting paradigms or archetypes (Leibold and Chase 2018). This result agrees with most studies searching for the mechanisms shaping metacommunities; a review made by Cottenie (2005) showed that species sorting was the principal mechanism, followed by the combination of species sorting and mass effects. Species sorting is the traditional “niche-based” mechanism, in which species specialize on different local conditions and dispersal is limited at the scale of the region; therefore, the communities change over environmental gradients (Leibold et al. 2004). On the other hand, mass effects include niche selection considering both dispersal and habitat heterogeneity; patches must have different conditions, and they must be connected in order to allow dispersal, this can result in source-sink dynamics (Mouquet and Loreau 2003, Leibold et al. 2004, Leibold and Chase 2018). For instance, mass effects could allow the arrival of OGF species to regenerating local communities, thus explaining the presence of those species (e.g., the rodent P. perfulvus, the lizards H. horridum and Phyllodactylus lanei, the frog T. smithii, the snake I. gemmistratus, the migratory bird Passerina caerulea) in the early forests in Chamela region. Leibold and Chase (2018) and Cottenie (2005) indicate the importance of noting that the factors affecting the relative mechanisms of metacommunities are patch heterogeneity, the degree of connectivity, dispersal rates of individuals among those habitats and connectivity rates between habitats. Therefore, mechanisms can coexist, and metacommunities can land into a continuum among the patch dynamics, mass effects, species sorting and neutral processes. We propose that some of the vertebrate groups studied in this work are in different positions on the continuum (Fig. 7). The metacommunities shaped by species' sorting and mass effects suggest that some species are strongly affected by environmental conditions and processes, while dispersal processes influence the other set of species. 59 Figure 7. Mechanisms structuring metacommunities of anurans, lizards, snakes, migratory birds, resident birds, rodents, and bats, in the Chamela region. Populations are dispersal limited and extinctions are high compared to colonization to the left of line E. There is dispersal excess and high immigration compared with local death rates to the right of line D. E = local extinction rate, D = local death rate, PD = patch dynamics, SS = species sorting, ME = mass effects, NT = neutral model, Comp-Col = competition colonization models. Modified from Leibold 2011 and Leibold and Chase 2018. Anurans: this group showed high turnover, but it was non-significant, resulting in a quasi- Gleasonian structure. The species-specific responses to environmental characteristics, such as the composition of the vegetation or understory cover, support that the anuran metacommunity is structured by species sorting. Besides, other species with increased dispersal abilities favored by landscape attributes, such as dry forest connectivity and riparian and dry forest cover, could be influenced by mass effects, indicating high dispersal rates and sink-source dynamics. Similar to our findings, other amphibian metacommunities in different places like a Mexican rainforest, an urban ecosystem, and water bodies in a Michigan reserve and Connecticut were structured by species-sorting and mass effects mechanisms. The species in these studies responded to the successional gradient of young, intermediate and old-growth forests (Hernández-Ordóñez et al. 2019), the gradient of the surface area of ponds (Parris 2006), the gradient of hydroperiod and 60 forest canopy cover (Werner et al. 2007), and the gradient of vegetation structure and pond area (Urban 2004). Lizards: similar to anurans, lizards showed high levels of turnover, but it was non-significant, leading to a quasi-Gleasonian structure. Each lizard species was associated with different local environmental conditions, consistent with the gradient related to vegetation attributes (height of woody individuals); this result agrees with a species sorting mechanism driving lizard metacommunity in this region. A reptile metacommunity in tallgrass prairies with different patch types resulting from disturbance (fire, grassland, cattle grazing) showed that species were responding to habitat variables such as food availability or physiological constraints (Larson 2014). In addition, communities of Amazonian lizards were separated due to different food preferences (Vitt et al. 1999). Ryberg and Fitzgerald (2016) found that lizards in a dune land ecosystem were also shaped by species sorting; however, when analyzing the metacommunity at higher scales, the most relevant mechanism was mass-effects, indicating regional factors were more important than environmental attributes. Snakes: the quasi-Gleasonian structure coupled with the non-significant turnover in snake metacommunity suggest species-sorting as the structuring mechanism, each species respond individually to resources and environmental variables; although we did not find any variable suggesting the gradient to which snakes were responding, prey availability could explain the diversity in the metacommunity, as stated in previous sections in the discussion. Cavalheri et al. (2015) work in Brazil showed the importance of habitat type and habitat filtering on the phylogenetic structure of Neotropical snake metacommunities; in contrast, metacommunities in islands on the Eastern Nearctic were structured by neutral processes and not by habitat filtering (Burbrink et al. 2015). To our knowledge, the two mentioned works and this study are the only ones studying snakes with the metacommunity framework. Hence, the results and information derived from this work could shed some light on the mechanisms shaping snake metacommunities at local scales. Migratory birds: this group showed high turnover that was non-significant and a quasi-Gleasonian structure, and the SBA was the variable explaining the species variation in the metacommunity. Evidence from other studies suggests that the metacommunities of migrant birds are shaped by the abundance and availability of food and resources (Lefebvre and Poulin 1996, Gram and Faaborg 61 1997). For example, Neotropical migrants in a fragmented forest and man-made habitats (e.g. shaded arboreal plantations, live fences, pastures) in Mexico take advantage of these landscapes by consuming the available resources (Estrada and Coates-Estrada 2005). A review by Cohen et al. (2017) summarizes that habitat quality (e.g. the shelter provided from predators, abundance, and spatial distribution of food resources) is crucial to determine the distribution of migrant species during migration. These results propose that the species sorting mechanism structures the migratory bird metacommunity. Resident birds: the quasi-Clementsian structure of the metacommunity of the resident birds and the influence of connectivity at a large scale in species variation imply the operation of a mass effect; nonetheless, a supplementary role played by species sorting should not be discarded. Various studies have demonstrated that mass effects structure bird systems; for example, the composition of the landscape (e.g. the cover of pastures, crops, woodlands, and hedgerows) had shaped a metacommunity in southwest France in two different dates separated by 25 years (Bonthoux et al. 2013, Bonthoux and Balent 2015). Similarly, bird diversity in a Cuban archipelago was strongly determined by landscape attributes such as the area and shape of the fragments and minimum distance between cays and isle of Cuba (García–Quintas and A. 2017). Recent work by Morante-Filho et al. (2021) found that birds metacommunity was affected mainly by landscape composition metrics (i.e., forest cover amount and matrix quality); they discuss the possible relation between habitat amount and landscape connectivity and how this relation makes forest cover a key predictor for forest birds. Comparably, other bird metacommunities in the mountains in Turkey and in a temperate South American forest showed evidence of species sorting (related to habitat features like foliage density and understory cover) and mass effects shaping the bird assembly. However, in contrast to what we discovered, they found the strongest mechanism to be the one associated with niche processes, while the spatial factors played a weaker role (Meynard and Quinn 2008, Özkan et al. 2013). Rodents: we propose that the most relevant mechanism structuring rodent metacommunity is mass effects related to connectivity of riparian forest at larger scales; however, we also suggest that species sorting mechanism plays a supplementary role in metacommunity assembly, these affirmations are based on the Gleasonian structure exhibited. The individualistic responses of rodents might be related not only to landscape attributes but also to food availability and resources 62 derived from vegetation composition. Similar to our results, mass effects (colonization and extinction dynamics) and species sorting (niche characteristics) appeared to structure desert rodents in Arizona and Mexico (Ernest et al. 2008, López-González and Lozano 2015). In contrast, a Peruvian metacommunity was strongly influenced by local factors and did not show any effects related to landscape attributes (Presley et al. 2012). In particular, the seasonality of Chamela explains why dispersal processes are important for this metacommunity; rodents use riparian corridors during the dry season to find resources that are not available in dry forests but are present in riparian forests (Zarazúa-Carbajal et al. 2017). Mass effects have been reported in other rodent systems; for example, rodents in deserts in North America demonstrated the importance of spatial characteristics and events of colonization and extinction in structuring rodents metacommunities (Goheen et al. 2005, Stevens and Tello 2012). Bats: the quasi-Clementsian structure and the moderate and non-significant turnover suggest that the species sorting mechanism is structuring bat metacommunity. The vegetation composition and number of woody individuals might be related to the abundance of food resources and roosting sites. Likewise, bats in Peru and Paraguay were strongly influenced by food distribution and abundance (e.g. fruit, nectar, insects) along an elevational gradient (Presley et al. 2012) and gradients representing precipitation and temperature (Presley et al. 2009); insectivores bats in an elevational gradient in West Africa and Mexican bats also seemed to be responding to niche characteristics (López-González et al. 2012, Reardon and Schoeman 2017). In this respect, a combination of species sorting and mass effects is suggested for a system in Costa Rica with different degrees of landscape modification, distances between patches and forest cover, and abundance of food resources in different patches seem to shape that bat metacommunity (Cisneros et al. 2015). Concluding remarks To our knowledge, this is the first work in Mexico using the EMS approach to study the vertebrate responses during early successional stages. Our results demonstrated that the analysis of metacommunities from the mechanism and pattern perspectives at different scales could unveil the mechanisms shaping animal communities after disturbance in secondary forests. 63 The most relevant highlights from these findings include: First, the vertebrate metacommunities in the TDF studied are assembled by species sorting, mass effects, or a combination of both mechanisms. Thus, microhabitat variables, such as the composition of vegetation, height of trees, plant area index, or stand basal area, could be related to resource availability and are important to determine the presence of different species during ESS. In addition, landscape attributes like connectivity and dry and riparian forest cover are also important for the dispersal of species between forest fragments. The connectivity between forest fragments allows them to act as stepping-stones or corridors, and cover of dry and riparian forest provide resources to species in disturbed sites. However, García-Girón et al. (2020) highlight that biotic interactions should be integrated into the metacommunity framework; hence we do not discard that such interactions could play an important role in shaping the vertebrate metacommunities (e.g. snake group). In addition, it is important to emphasize that patterns and mechanisms structuring the metacommunities can change across time and scale, the former as a result of succession, human or natural disturbances (e.g. fragmentation, fires, hurricanes), and seasonality (Leibold et al. 2004, Alexander et al. 2012, Leavitt and Fitzgerald 2013, Ochoa-Ochoa and Whittaker 2014, Cisneros et al. 2015, Ryberg and Fitzgerald 2016). Thus, stochastic processes, patch dynamics or neutral processes could shape vertebrate metacommunities after a disturbance leading to identical forest fragments. Second, the importance of the old-growth forests for various vertebrate groups. These may function as a source of species that disperse to the early forests, allowing the presence of species that are usually found in conserved forests in ESS and providing resilience to the metacommunities. In this sense, the CCBR acts as a buffer zone to different threatens occurring in the TDF, like human and natural disturbances. Recently, the Chamela region was impacted by two hurricanes: Jova (2011) and Patricia (2015); various studies in the region demonstrated the role of OGF on preserving vertebrate species and diversity after both hurricanes (Suazo-Ortuño et al. 2018a, 2018b, Marroquín-Páramo et al. 2021, Sil-Berra et al. 2021). Therefore, we must protect large continuums of old-growth forest to preserve the source of propagules that will disperse and colonize other patches, enhancing and maintaining species diversity after disturbances (e.g. change of land use, cattle grazing, logging, or hurricanes and fires). 64 Third, the high levels of beta diversity between ESS forests result from a high turnover between local communities. Therefore, the importance of preserving these forests to conserve different assemblages and greater diversity. Additionally, secondary forests provide habitats and resources to species in all the vertebrate groups (DeWalt et al. 2003) and might be used as corridors and stepping-stones, allowing species dispersal between fragments and the old-growth forest. Finally, the coexistence of species exclusive of OGF and generalist species in early forests could be due to an effect of the intermediate disturbance in ESS forests (Connell 1978). Fourth, the different responses to landscape and vegetation attributes between vertebrate groups highlight the need for having a multi-taxa perspective when working on management and conservation plans and strategies in tropical dry forests; otherwise, ecological requirements by a specific group might be dismissed, leading to a potential loss of biodiversity in the system. In this sense, a metacommunity framework is an advantageous approach for biodiversity conservation because it provides tools when understanding distribution and abundance patterns of species and local communities of conservation interest, and it can predict the stability of the community (Chase et al. 2020). Finally, assessing the responses of vertebrate groups after disturbance in ESS is crucial to understand the pathways of succession in TDF. Animals play an active role during succession (Swanson et al. 2011); for example, de la Peña-Domene et al. (2014) found two endangered plant species present in early successional habitats in Los Tuxtlas, Mexico, as a consequence of the presence of birds and bats. Moreover, fragmentation and disturbance can affect seed dispersal networks, changing the interactions between specialist plants and specialist animals that disperse seeds (Emer et al. 2020). In this respect, some examples of the processes that are affected and depend on the animal presence in ESS are seed dispersal, principally by frugivorous species of bats, birds, and some rodents (Tellería et al. 2005, Hilje et al. 2015); seed and plant recruitment, by predation from granivorous rodents (Velho et al. 2012); pollination, by nectarivores bats (Muscarella and Fleming 2007, Hilje et al. 2015); top-down effects and herbivory control, by predators such as snakes, lizards, and anurans (Dial and Roughgarden 1995, Heithaus et al. 2012, Cortés-Gómez et al. 2015). 65 Acknowledgments This work was supported by the ‘Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica’ of the ‘Universidad Nacional Autónoma de México’ (L.D.A.C., IA-203413), (M.Y.A.A., IA-204014); and the ‘Consejo Nacional de Ciencia y Tecnología’ (L.D.A.C., CB- 222202). Technical support was also provided by the Engs. S. Sauza and E. Canales of the ‘Escuela Nacional de Estudios Superiores, Unidad Mérida’ (ENES-Mérida), UNAM; and by the Eng. J. Morales of the ‘Unidad Académica de Ciencias y Tecnología de la Facultad de Ciencias en Yucatán’, UNAM. Logistical support was offered by the ENES-Mérida, the ENES-Morelia, and the ‘Estación de Biología Chamela’ of the UNAM. Fieldwork wand samples processing were largely performed with the help of S. Amador, M. Zamora-Espinoza, P. Zarate, KI. Torres, M. Pineda, A. López, S. Ruiz and J. Ruiz. Finally, we thank C. Ramírez for the preparation of the figures. The results of this study are part of the thesis of the first author, under the supervision of Dr. Luis Daniel Avila-Cabadilla and Dr. Mariana Yolotl Alvarez Añorve. 66 Literature cited Acevedo-Charry, O., and T. M. Aide. 2019. Recovery of amphibian, reptile, bird and mammal diversity during secondary forest succession in the tropics. Oikos 128:1065–1078. Adams, J. K. 1989. Pteronotus davyi. Mammalian Species:1–5. Afonso, L. G., and P. C. Eterovick. 2007. Microhabitat choice and differential use by anurans in forest streams in southeastern Brazil. Journal of Natural History 41:937–948. Akani, G. C., N. Ebere, L. Luiselli, and E. A. Eniang. 2008. Community structure and ecology of snakes in fields of oil palm trees (Elaeis guineensis) in the Niger Delta, southern Nigeria. African Journal of Ecology 46:500–506. Alexander, H. M., B. L. Foster, F. Ballantyne IV, C. D. Collins, J. Antonovics, and R. D. Holt. 2012. Metapopulations and metacommunities: combining spatial and temporal perspectives in plant ecology. Journal of Ecology 100:88–103. Alvarez-Añorve, M. Y., M. Quesada, G. A. Sánchez-Azofeifa, L. D. Avila-Cabadilla, and J. A. Gamon. 2012. Functional regeneration and spectral reflectance of trees during succession in a highly diverse tropical dry forest ecosystem. American Journal of Botany 99:816–826. Alvarez, J., M. R. Willig, J. K. Jones Jr., and W. D. Webster. 1991. Glossophaga soricina. Mammalian Species:1–7. Ammon, E. M., and W. M. Gilbert. 2020. Wilson’s Warbler (Cardellina pusilla). Page in P. G. Rodewald, editor. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Andrén, H. 1994. Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos 71:355–366. AOU. 1998. Check-list of North American Birds. 7th edition. American Ornithologists’ Union, Washington, DC, USA. Arce-Peña, N. P., V. Arroyo-Rodríguez, M. San-José, D. Jiménez-González, I. Franch-Pardo, E. Andresen, and L. D. Avila-Cabadilla. 2019. Landscape predictors of rodent dynamics in fragmented rainforests. Biodiversity and Conservation 28:655–669. Arita, H. T. 2005. Choeroniscus godmani. Page 212 in G. Ceballos and G. Oliva, editors. Los mamíferos silvestres de México. 1st edition. Fondo de Cultura Económica, Distrito Federal, Mexico. Arizmendi, M. del C., H. Berlanga, L. Márquez-Valdelamar, L. Navarijo, and F. Ornelas. 1990. Avifauna de la región de Chamela, Jalisco, Cuadernos del Instituto de Biología, No. 4. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico. Atmar, W., and B. D. Patterson. 1993. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96:373– 382. Avila-Cabadilla, L. D., G. A. Sanchez-Azofeifa, K. E. Stoner, M. Y. Alvarez-Añorve, M. Quesada, and C. A. Portillo-Quintero. 2012. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests. PLoS ONE 7:e35228. Avila-Cabadilla, L. D., K. E. Stoner, M. Henry, and M. Y. Alvarez-Añorve. 2009. Composition, structure and diversity of phyllostomid bat assemblages in different successional stages of a tropical dry forest. Forest Ecology and Management 258:986–996. Barbo, F. E., O. A. V Marques, and R. J. Sawaya. 2011. Diversity, Natural History, and Distribution of Snakes in the Municipality of São Paulo. South American Journal of Herpetology 6:135–160. Bartlett, R. D., and P. P. Bartlett. 2006. Guide and reference to the amphibians of eastern and central North America (north of Mexico). University Press of Florida, United States. Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19:134–143. Baselga, A., and C. D. L. Orme. 2012. Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution 3:808–812. Beck, D. D., and C. H. Lowe. 1991. Ecology of the Beaded Lizard, Heloderma horridum, in a Tropical Dry Forest in Jalisco, México. Journal of Herpetology 25:395–406. Benedek, A. M., and I. Sîrbu. 2018. Responses of small mammal communities to environment and agriculture in a rural mosaic landscape. Mammalian Biology 90:55–65. Bent, A. C. 1963. Life Histories of North American Flycatchers, Larks, Swallows, and Their Allies. Dover Publications, New York, United States. Berriozabal-Islas, C., L. M. Badillo-Saldaña, A. Ramírez-Bautista, and C. E. Moreno. 2017. Effects of Habitat Disturbance on Lizard Functional Diversity in a Tropical Dry Forest of the Pacific Coast of Mexico. Tropical Conservation Science 10:1940082917704972. Betts, M. G., C. Wolf, W. J. Ripple, B. Phalan, K. A. Millers, A. Duarte, S. H. M. Butchart, and T. Levi. 2017. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547:441–444. Blake, J. G., and B. A. Loiselle. 2001. Bird Assemblages in Second-Growth and Old-Growth Forests, Costa Rica: Perspectives From Mist Nets and Point Counts. The Auk 118:304–326. Bonaccorso, F. J., A. Arends, M. Genoud, D. Cantoni, and T. Morton. 1992. Thermal Ecology of Moustached and Ghost-Faced Bats (Mormoopidae) in Venezuela. Journal of Mammalogy 73:365–378. Bonthoux, S., and G. Balent. 2015. Bird metacommunity processes remain constant after 25 years of landscape changes. Ecological Complexity 21:39–43. Bonthoux, S., J.-Y. Barnagaud, M. Goulard, and G. Balent. 2013. Contrasting spatial and temporal responses of bird communities to landscape changes. Oecologia 172:563–574. Boscolo, D., C. Candia-Gallardo, M. Awade, and J. P. Metzger. 2008. Importance of Interhabitat Gaps and Stepping-Stones for Lesser Woodcreepers (Xiphorhynchus fuscus) in the Atlantic Forest, Brazil. Biotropica 40:273–276. Bovendorp, R. S., F. T. Brum, R. A. McCleery, B. Baiser, R. Loyola, M. V Cianciaruso, and M. Galetti. 2019. Defaunation and fragmentation erode small mammal diversity dimensions in tropical forests. Ecography 42:23–35. Brennan, E. K. 2006. PhD Thesis. LOCAL AND LANDSCAPE LEVEL VARIABLES INFLUENCING MIGRATORY BIRD ABUNDANCE, DIVERSITY, BEHAVIOR, AND COMMUNITY STRUCTURE IN RAINWATER BASIN WETLANDS. Texas Tech University. Brown, J. H., and A. Kodric-Brown. 1977. Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology 58:445–449. Brush, T. 2020. Olive Sparrow (Arremonops rufivirgatus). Page in A. F. Poole, editor. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Büchner, S. 2008. Dispersal of common dormice Muscardinus avellanarius in a habitat mosaic. Acta Theriologica 53:259–262. Burbrink, F. T., A. D. McKelvy, R. A. Pyron, and E. A. Myers. 2015. Predicting community structure in snakes on Eastern Nearctic islands using ecological neutral theory and phylogenetic methods. Proceedings of the Royal Society B: Biological Sciences 282:20151700. Burgos, A., and J. M. Maass. 2004. Vegetation change associated with land-use in tropical dry forest areas of Western Mexico. Agriculture, Ecosystems and Environment 104:475–481. Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach. 2nd edition. 67 Springer Verlag. Cadman, M. D., D. A. Sutherland, G. G. Beck, D. Lepage, and A. R. Couturier. 2007. Atlas of the breeding birds of Ontario, 2001-2005. Page (M. D. Cadman, D. A. Sutherland, G. G. Beck, D. Lepage, and A. R. Couturier, Eds.). Bird Studies Canada, Environment Canada, Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature. Caldwell, J. P. 1986. A Description of the Tadpole of Hyla smithii with Comments on Tail Coloration. Copeia 1986:1004–1006. Cardiff, S. W., and D. L. Dittmann. 2020. Brown-crested Flycatcher (Myiarchus tyrannulus), version 1.0. Page in A. F. Poole and F. B. Gill, editors. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Carfagno, G. L. F., and P. J. Weatherhead. 2006. Intraspecific and interspecific variation in use of forest-edge habitat by snakes. Canadian Journal of Zoology 84:1440–1452. Carrillo-Rubio, E., M. Kéry, S. Morrelae, P. J. Sullivan, B. Gardner, E. G. Cooch, and J. P. Lassoie. 2014. Use of Multispecies Occupancy Models to Evaluate the Response of Bird Communities to Forest Degradation Associated with Logging. Conservation Biology 28:1034–1044. Castillo, A., A. Magaña, A. Pujadas, L. Martínez, and C. Godínez. 2005. Understanding the interaction of rural people with ecosystems: A case study in a tropical dry forest of Mexico. Ecosystems 8:630–643. Cavalheri, H., C. Both, and M. Martins. 2015. The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities. PLoS ONE 10:e0127959. Ceballos, G. 1990. Comparative Natural History of Small Mammals from Tropical Forests in Western Mexico. Journal of Mammalogy 71:263– 266. Ceballos, G. 2014. Mammals of Mexico. 1st edition. Johns Hopkins University Press. Ceballos, G., and A. Miranda. 2000. Guía de campo de los mamíferos de la costa de Jalisco. Fundación Ecológica de Cuixmala, A.C./Instituto de Biología, Universidad Nacional Autónoma de México, Mexico. Chambers, C. L., S. A. Cushman, A. Medina-Fitoria, J. Martínez-Fonseca, and M. Chávez-Velásquez. 2016. Influences of scale on bat habitat relationships in a forested landscape in Nicaragua. Landscape Ecology 31:1299–1318. Chao, A., N. J. Gotelli, T. C. Hsieh, E. L. Sander, K. H. Ma, R. K. Colwell, and A. M. Ellison. 2014. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs 84:45–67. Chase, J. M., A. Jeliazkov, E. Ladouceur, and D. S. Viana. 2020. Biodiversity conservation through the lens of metacommunity ecology. Annals of the New York Academy of Sciences 1469:86–104. Chaves, Ó. M., and G. Avalos. 2006. Is the inverse leafing phenology of the dry forest understory shrub Jacquinia nervosa (Theophrastaceae) a strategy to escape herbivory? Revista de Biología Tropical 54:951–963. Chazdon, R. L., C. A. Peres, D. Dent, D. Sheil, A. E. Lugo, D. Lamb, N. E. Stork, and S. E. Miller. 2009. The Potential for Species Conservation in Tropical Secondary Forests. Conservation Biology 23:1406–1417. Chernetsov, N. 2012. Passerine Migration: Stopovers and Flight. Springer, Berlin, Heidelberg. Chesser, R. T., R. C. Banks, F. K. Barker, C. Cicero, J. L. Dunn, A. W. Kratter, I. J. Lovette, P. C. Rasmussen, J. V Remsen Jr, and J. D. Rising. 2013. Fifty-fourth supplement to the American Ornithologists’ Union check-list of North American birds. The Auk 130:558–571. Cisneros, L. M., M. E. Fagan, and M. R. Willig. 2015. Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. Journal of Animal Ecology 84:373–385. Clements, F. E. 1916. Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington, Washington, USA. Clergeau, P., and F. Burel. 1997. The role of spatio-temporal patch connectivity at the landscape level: an example in a bird distribution. Landscape and Urban Planning 38:37–43. Cody, M. L. 1981. Habitat Selection in Birds: The Roles of Vegetation Structure, Competitors, and Productivity. BioScience 31:107–113. Cohen, E. B., W. C. Barrow Jr., J. J. Buler, J. L. Deppe, A. Farnsworth, P. P. Marra, S. R. McWilliams, D. W. Mehlman, R. R. Wilson, M. S. Woodrey, and F. R. Moore. 2017. How do en route events around the Gulf of Mexico influence migratory landbird populations? The Condor 119:327–343. Collar, N. 2020. Orange-billed Nightingale-Thrush (Catharus aurantiirostris). Page in J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, editors. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Connell, J. H. 1978. Diversity in Tropical Rain Forests and Coral Reefs. Science 199:1302–1310. Conner, R. N., and C. S. Adkisson. 1975. Effects of Clearcutting on the Diversity of Breeding Birds. Journal of Forestry 73:781–785. Cortés-Gómez, A. M., C. A. Ruiz-Agudelo, A. Valencia-Aguilar, and R. J. Ladle. 2015. Ecological functions of neotropical amphibians and reptiles: a review. Universitas Scientiarum 20:229–245. Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8:1175–1182. Crump, M. L., and N. Y. Scott. 1994. Visual encounter surveys. Pages 84–92 in W. Heyer, M. A. Donnelley, R. A. McDiarmid, L. C. Hayek, and M. C. Foster, editors. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. Smithsonian Institution, USA. Dallas, T. 2014. metacom: an R package for the analysis of metacommunity structure. Ecography 37:402–405. Dallas, T., and S. J. Presley. 2014. Relative importance of host environment, transmission potential and host phylogeny to the structure of parasite metacommunities. Oikos 123:866–874. DeGraaf, R. M., and J. H. Rappole. 1995. Neotropical Migratory Birds: Natural History, Distribution, and Population Change. Cornell University Press. DeWalt, S. J., S. K. Maliakal, and J. S. Denslow. 2003. Changes in vegetation structure and composition along a tropical forest chronosequence: implications for wildlife. Forest Ecology and Management 182:139–151. Dial, R., and J. Roughgarden. 1995. Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects. Ecology 76:1821– 1834. Diamond, J. M. 1975. Assembly of species communities. Pages 342–444 in M. L. Cody and J. M. Diamond, editors. Ecology and evolution of communities. Harvard University Press. Dirzo, R., H. S. Young, M. Galetti, G. Ceballos, N. J. B. Isaac, and B. Collen. 2014. Defaunation in the Anthropocene. Science 345:401–406. Dobrovolski, R., A. S. Melo, F. A. S. Cassemiro, and J. A. F. Diniz-Filho. 2012. Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography 21:191–197. Durán, E., J. A. Meave, E. J. Lott, and G. Segura. 2006. Structure and tree diversity patterns at the landscape level in a Mexican tropical deciduous forest. Boletín de la Sociedad Botánica de México:43–60. Eckerle, K. P., and C. F. Thompson. 2020. Yellow-breasted Chat (Icteria virens). Page in A. F. Poole and F. B. Gill, editors. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Ehlers Smith, D. A., Y. C. Ehlers Smith, and C. T. Downs. 2019. Promoting functional connectivity of anthropogenically-fragmented forest patches 68 for multiple taxa across a critically endangered biome. Landscape and Urban Planning 190:103579. Ehlers Smith, D. A., X. Si, Y. C. Ehlers Smith, and C. T. Downs. 2018. Seasonal variation in avian diversity and tolerance by migratory forest specialists of the patch-isolation gradient across a fragmented forest system. Biodiversity and Conservation 27:3707–3727. Eigenbrod, F., S. J. Hecnar, and L. Fahrig. 2011. Sub-optimal study design has major impacts on landscape-scale inference. Biological Conservation 144:298–305. Emer, C., P. Jordano, M. A. Pizo, M. C. Ribeiro, F. R. da Silva, and M. Galetti. 2020. Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica 52:81–89. Ernest, S. K. M., J. H. Brown, K. M. Thibault, E. P. White, and J. R. Goheen. 2008. Zero Sum, the Niche, and Metacommunities: Long‐Term Dynamics of Community Assembly. The American Naturalist 172:E257–E269. Estrada, A., and R. Coates-Estrada. 2005. Diversity of Neotropical migratory landbird species assemblages in forest fragments and man-made vegetation in Los Tuxtlas, Mexico. Biodiversity & Conservation 14:1719–1734. Estrada, A., R. Coates-Estrada, and D. A. Meritt. 1997. Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. Biodiversity & Conservation 6:19–43. Ewers, R. M., and R. K. Didham. 2006. Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews 81:117–142. Fahrig, L., and G. Merriam. 1985. Habitat Patch Connectivity and Population Survival. Ecology 66:1762–1768. FAO, and UNEP. 2020. The State of the World’s Forests 2020. Forests, biodiversity and people. Rome, Italy. Faria, D., R. R. Laps, J. Baumgarten, and M. Cetra. 2006. Bat and Bird Assemblages from Forests and Shade Cacao Plantations in Two Contrasting Landscapes in the Atlantic Forest of Southern Bahia, Brazil. Biodiversity & Conservation 15:587–612. Fenton, M. B., and T. Kunz. 1977. Movements and behavior. Pages 351–364 in R. J. Baker, J. K. Jones, Jr., and D. C. Carter, editors. Biology of Bats of the New World family Phyllostomatidae. Texas Tech University Press, Texas, USA. Finch, D. M. 1991. Population ecology, habitat requirements, and conservation of neotropical migratory birds. Rocky Mountain Forest and Range Experiment Station, United States. Flather, C. H., and J. R. Sauer. 1996. Using Landscape Ecology to Test Hypotheses About Large-Scale Abundance Patterns in Migratory Birds. Ecology 77:28–35. Flores-Peredo, R., and G. Vázquez-Domínguez. 2016. Influence of vegetation type and season on rodent assemblage in a Mexican temperate forest mosaic. Therya 7:357–369. Fournier, R. A., D. Mailly, J.-M. N. Walter, and K. Soudani. 2003. Indirect measurement of forest canopy structure from In Situ optical sensors. Pages 77–113 in M. A. Wulder and S. E. Franklin, editors. Remote sensing of forest environments. Springer, Boston, Massachusetts, USA. Fraga-Ramírez, Y., I. Suazo-Ortuño, L. D. Avila-Cabadilla, M. Y. Alvarez-Añorve, and J. Alvarado-Díaz. 2017. Multiscale analysis of factors influencing herpetofaunal assemblages in early successional stages of a tropical dry forest in western Mexico. Biological Conservation 209:196–210. Fraga, R. 2020. Yellow-winged Cacique (Cassiculus melanicterus). Page in J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, editors. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. de Fraga, R., M. Ferrão, A. J. Stow, W. E. Magnusson, and A. P. Lima. 2018. Different environmental gradients affect different measures of snake β-diversity in the Amazon rainforests. PeerJ 6:e5628. de Fraga, R., A. Pimentel-Lima, and W. E. Magnusson. 2011. Mesoscale spatial ecology of a tropical snake assemblage: the width of riparian corridors in central Amazonia. Herpetological Journal 21:51–57. França, F. G. R., and V. da S. Braz. 2013. Diversity, activity patterns, and habitat use of the snake fauna of Chapada dos Veadeiros National Park in Central Brazil. Biota Neotropica 13:74–84. García-Estrada, C., A. Damon, C. Sánchez-Hernández, L. Soto-Pinto, and G. Ibarra-Núñez. 2006. Bat diversity in montane rainforest and shaded coffee under different management regimes in southeastern Chiapas, Mexico. Biological Conservation 132:351–361. García-Estrada, C., M. de L. Romero-Almaraz, and C. Sánchez-Hernández. 2002. Comparison of rodent communities in sites with different degrees of disturbance in deciduous forest of southeartern Morelos, Mexico. Acta Zoológica Mexicana 85:153–168. García-Girón, J., J. Heino, F. García-Criado, C. Fernández-Aláez, and J. Alahuhta. 2020. Biotic interactions hold the key to understanding metacommunity organisation. Ecography 43:1180–1190. García–Quintas, A., and P. I. A. 2017. Underlying factors promoting nestedness of bird assemblages in cays of the Jardines de la Reina archipelago, Cuba. Animal Biodiversity and Conservation 40:7–16. García, A. 2008. The use of habitat and time by lizards in a tropical deciduous forest in western Mexico. Studies on Neotropical Fauna and Environment 43:107–115. García, A., and A. Cabrera-Reyes. 2008. Estacionalidad y estructura de la vegetación en la comunidad de anfibios y reptiles de Chamela, Jalisco, México. Acta Zoológica Mexicana 24:91–115. García, A., and G. Ceballos. 1994. Guía de campo de los reptiles y anfibios de la costa de Jalisco, México. Fundación Ecológica de Cuixmala, A.C./Instituto de Biología, Universidad Nacional Autónoma de México, Mexico. Garrido-Garduño, T., O. Téllez-Valdés, S. Manel, and E. Vázquez-Domínguez. 2016. Role of habitat heterogeneity and landscape connectivity in shaping gene flow and spatial population structure of a dominant rodent species in a tropical dry forest. Journal of Zoology 298:293–302. Genet, K., J. Genet, T. Burton, and P. Murphy. 2001. The lizard community of a subtropical dry forest: Guanica Forest, Puerto Rico. Tropical Ecology 42:97–109. Gienger, C. M., D. D. Beck, N. C. Sabari, and D. L. Stumbaugh. 2002. Dry Season Habitat Use by Lizards in a Tropical Deciduous Forest of Western Mexico. Journal of Herpetology 36:487–490. Givnish, T. J. 1999. On the causes of gradients in tropical tree diversity. Journal of Ecology 87:193–210. Gleason, H. A. 1926. The Individualistic Concept of the Plant Association. Bulletin of the Torrey Botanical Club 53:7–26. Gleason, H. A. 1939. The Individualistic Concept of the Plant Association. The American Midland Naturalist 21:92–110. Goheen, J. R., E. P. White, S. K. M. Ernest, and J. H. Brown. 2005. INTRA-GUILD COMPENSATION REGULATES SPECIES RICHNESS IN DESERT RODENTS. Ecology 86:567–573. Gómez de Silva, H., and R. A. Medellín. 2001. Evaluating Completeness of Species Lists for Conservation and Macroecology: a Case Study of Mexican Land Birds. Conservation Biology 15:1384–1395. González-Sánchez, V. H. 2012. Diversidad y selección de hábitat de reptiles en sitios con diferentes estados de regeneración vegetal en el ejido X- Hazil Sur y anexos, Quintana Roo. Master Thesis. El Colegio de la Frontera Sur. Gram, W. K., and J. Faaborg. 1997. The Distribution of Neotropical Migrant Birds Wintering in the El Cielo Biosphere Reserve, Tamaulipas, 69 Mexico. The Condor 99:658–670. Grantham, H. S., A. Duncan, T. D. Evans, K. R. Jones, H. L. Beyer, R. Schuster, J. Walston, J. C. Ray, J. G. Robinson, M. Callow, T. Clements, H. M. Costa, A. DeGemmis, P. R. Elsen, J. Ervin, P. Franco, E. Goldman, S. Goetz, A. Hansen, E. Hofsvang, P. Jantz, S. Jupiter, A. Kang, P. Langhammer, W. F. Laurance, S. Lieberman, M. Linkie, Y. Malhi, S. Maxwell, M. Mendez, R. Mittermeier, N. J. Murray, H. Possingham, J. Radachowsky, S. Saatchi, C. Samper, J. Silverman, A. Shapiro, B. Strassburg, T. Stevens, E. Stokes, R. Taylor, T. Tear, R. Tizard, O. Venter, P. Visconti, S. Wang, and J. E. M. Watson. 2020. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications 11:5978. Greenberg, R., P. Bichier, and J. Sterling. 1997. Acacia, cattle and migratory birds in southeastern Mexico. Biological Conservation 80:235–247. Gu, W., and R. K. Swihart. 2004. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. Biological Conservation 116:195–203. Haddad, N. M., L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, T. E. Lovejoy, J. O. Sexton, M. P. Austin, C. D. Collins, W. M. Cook, E. I. Damschen, R. M. Ewers, B. L. Foster, C. N. Jenkins, A. J. King, W. F. Laurance, D. J. Levey, C. R. Margules, B. A. Melbourne, A. O. Nicholls, J. L. Orrock, D.-X. Song, and J. R. Townshend. 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances 1:e1500052. Hale, J. D., A. J. Fairbrass, T. J. Matthews, and J. P. Sadler. 2012. Habitat Composition and Connectivity Predicts Bat Presence and Activity at Foraging Sites in a Large UK Conurbation. PLoS ONE 7:e33300. Hames, R. S., K. V Rosenberg, J. D. Lowe, and A. A. Dhondt. 2001. Site Reoccupation in Fragmented Landscapes: Testing Predictions of Metapopulation Theory. Journal of Animal Ecology 70:182–190. Hansen, M. C., P. V Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend. 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342:850–853. Heithaus, M. R., A. J. Wirsing, and L. M. Dill. 2012. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Marine and Freshwater Research 63:1039–1050. Henckel, L., C. N. Meynard, V. Devictor, N. Mouquet, and V. Bretagnolle. 2019. On the relative importance of space and environment in farmland bird community assembly. PLoS ONE 14:e0213360. Henderson, R. W. 1974. Aspects of the Ecology of the Neotropical Vine Snake, Oxybelis aeneus (Wagler). Herpetologica 30:19–24. Hernández-Martínez, J., J. B. Morales-Malacara, M. Y. Alvarez-Añorve, S. Amador-Hernández, K. Oyama, and L. D. Avila-Cabadilla. 2019. Drivers potentially influencing host-bat fly interactions in anthropogenic neotropical landscapes at different spatial scales. Parasitology 146:74–88. Hernández-Ordóñez, O., B. A. Santos, R. A. Pyron, V. Arroyo-Rodríguez, J. N. Urbina-Cardona, M. Martínez-Ramos, G. Parra-Olea, and V. H. Reynoso. 2019. Species sorting and mass effect along forest succession: Evidence from taxonomic, functional, and phylogenetic diversity of amphibian communities. Ecology and Evolution 9:5206–5218. Hernández-Ordóñez, O., N. Urbina-Cardona, and M. Martínez-Ramos. 2015. Recovery of Amphibian and Reptile Assemblages During Old-Field Succession of Tropical Rain Forests. Biotropica 47:377–388. Hilje, B., J. Calvo-Alvarado, C. Jiménez-Rodríguez, and A. Sánchez-Azofeifa. 2015. Tree Species Composition, Breeding Systems, and Pollination and Dispersal Syndromes in Three Forest Successional Stages in a Tropical Dry Forest in Mesoamerica. Tropical Conservation Science 8:76–94. Holyoak, M., M. A. Leibold, and R. D. Holt. 2005. Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago. Hovick, T. J., R. D. Elmore, and S. D. Fuhlendorf. 2014. Structural heterogeneity increases diversity of non-breeding grassland birds. Ecosphere 5:art62. Howell, S. N. G., and S. Webb. 1995. A Guide to the Birds of Mexico and Northern Central America. Oxford University Press, USA. Hsieh, T. C., K. H. Ma, and A. Chao. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7:1451–1456. Huang, Y., G. A. Sánchez-Azofeifa, B. Rivard, and M. Quesada. 2013. Linkages between ecosystem structure, composition and Leaf Area Index along a tropical dry forest chronosequence in Mexico. Pages 267–280 in G. A. Sánchez-Azofeifa, J. S. Powers, G. W. Fernandes, and M. Quesada, editors. Tropical Dry Forests in the Americas. CRC Press, United States. Hutto, R. L. 1980. Winter habitat distribution of migratory land birds in western Mexico, with special reference to small, foliage-gleaning insectivores. Pages 181–203 in A. Keast and E. S. Morton, editors. Migrant Birds in the Neotropics: Ecology, Behavior, Distribution, and Conservation. Smithsonian Institution Press, New York, United States. Hutto, R. L. 1985. Habitat Selection by Nonbreeding, Migratory Land Birds. Pages 455–476 in M. L. Cody, editor. Habitat Selection in Birds. Academic Press, Orlando, United States. Hutto, R. L. 1989. The Effect of Habitat Alteration on Migratory Land Birds in a West Mexican Tropical Deciduous Forest: A Conservation Perspective. Conservation Biology 3:138–148. Irschick, D. J., and J. B. Losos. 1999. Do Lizards Avoid Habitats in Which Performance Is Submaximal? The Relationship between Sprinting Capabilities and Structural Habitat Use in Caribbean Anoles. The American Naturalist 154:293–305. Jaeger, J. A. G. 2000. Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landscape Ecology 15:115–130. Janzen, D. H. 1970. Jacquinia pungens, a Heliophile from the Understory of Tropical Deciduous Forest. Biotropica 2:112–119. Jiménez-Guzmán, A., and G. Ceballos. 2005. Pteronotus davyi. Pages 179–180 in G. Ceballos and G. Oliva, editors. Los mamíferos silvestres de México. 1st edition. Fondo de Cultura Económica, Distrito Federal, Mexico. Johnson, B. A., J. A. Homyack, K. Barrett, and R. F. Baldwin. 2016. Factors influencing herpetofaunal assemblages of aquatic systems in a managed pine forest. Forest Ecology and Management 379:124–132. Johnson, P., and R. Morales. 1972. A review of Cordia alliodora (Ruiz & Pav.) Oken. Turrialba 22:210–220. Jones, K. E., A. Purvis, A. N. N. Maclarnon, O. R. P. Bininda-Emonds, and N. B. Simmons. 2002. A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biological Reviews 77:223–259. Kalda, O., R. Kalda, and J. Liira. 2015. Multi-scale ecology of insectivorous bats in agricultural landscapes. Agriculture, Ecosystems & Environment 199:105–113. Kariuki, M., and R. M. Kooyman. 2005. Floristic changes and regeneration patterns for a 12-year period during the 3rd and 4th decades following selection logging in a subtropical rainforest. Austral Ecology 30:844–855. 70 Ke, A., M. D. Sibiya, C. Reynolds, R. A. McCleery, A. Monadjem, and R. J. Fletcher. 2018. Landscape heterogeneity shapes taxonomic diversity of non-breeding birds across fragmented savanna landscapes. Biodiversity and Conservation 27:2681–2698. Kindt, R., and R. Coe. 2005. Tree diversity analysis: a manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre. Kurz, D. J., A. J. Nowakowski, M. W. Tingley, M. A. Donnelly, and D. S. Wilcove. 2014. Forest-land use complementarity modifies community structure of a tropical herpetofauna. Biological Conservation 170:246–255. de la Peña-Cuéllar, E., J. Benítez-Malvido, L. D. Avila-Cabadilla, M. Martínez-Ramos, and A. Estrada. 2015. Structure and diversity of phyllostomid bat assemblages on riparian corridors in a human-dominated tropical landscape. Ecology and Evolution 5:903–913. de la Peña-Domene, M., C. Martínez-Garza, S. Palmas-Pérez, E. Rivas-Alonso, and H. F. Howe. 2014. Roles of Birds and Bats in Early Tropical- Forest Restoration. PLoS ONE 9:e104656. de la Sancha, N. U., C. L. Higgins, S. J. Presley, and R. E. Strauss. 2014. Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Diversity and Distributions 20:1058–1070. Larson, D. M. 2014. Grassland Fire and Cattle Grazing Regulate Reptile and Amphibian Assembly Among Patches. Environmental Management 54:1434–1444. Latta, S. C., N. L. Brouwer, D. A. Mejía, and M. M. Paulino. 2018. Avian community characteristics and demographics reveal how conservation value of regenerating tropical dry forest changes with forest age. PeerJ 6:e5217. Leavitt, D. J., and L. A. Fitzgerald. 2013. Disassembly of a dune-dwelling lizard community due to landscape fragmentation. Ecosphere 4:art97. Lee, J. C. 1996. The amphibians and reptiles of the Yucatán Peninsula. Cornell University Press, New York, United States. Lees, A. C., and C. A. Peres. 2008. Conservation Value of Remnant Riparian Forest Corridors of Varying Quality for Amazonian Birds and Mammals. Conservation Biology 22:439–449. Lefebvre, G., and B. Poulin. 1996. Seasonal Abundance of Migrant Birds and Food Resources in Panamanian Mangrove Forests. The Wilson Bulletin 108:748–759. Leibold, M. A. 2011. The Metacommunity Concept and Its Theoretical Underpinnings. Pages 163–184 in S. M. Scheiner and M. R. Willig, editors. The Theory of Ecology. University of Chicago Press, Chicago, United States. Leibold, M. A., and J. M. Chase. 2018. Metacommunity Ecology, Volume 59. Princeton University Press, New Jersey, USA. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. Gonzalez. 2004. The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters 7:601–613. Leibold, M. A., and G. M. Mikkelson. 2002. Coherence, species turnover, and boundary clumping: Elements of meta-community structure. Oikos 97:237–250. Lemke, T. O. 1984. Foraging Ecology of the Long-Nosed Bat, Glossophaga Soricina, With Respect to Resource Availability. Ecology 65:538– 548. Leyequién-Abarca, E., W. F. de Boer, and A. K. Skidmore. 2006a. Linking species-environment relationships and multiple spatial scales in community ecology. Wageningen University. Leyequién-Abarca, E., W. F. de Boer, and V. M. Toledo. 2006b. Fragmentation and habitat loss: species richness responses in an avian metacommunity in Cuetzalan region, Mexico. Wageningen University. López-González, C., and A. Lozano. 2015. Metacommunity Structure of Small Mammals In Western Mexico: Is the San Pedro-Mezquital River a Biological Corridor? The Southwestern Naturalist 60:327–335. López-González, C., S. J. Presley, A. Lozano, R. D. Stevens, and C. L. Higgins. 2012. Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. Journal of Biogeography 39:177–192. Losos, J., and H. W. Greene. 2009. Lizards in an Evolutionary Tree : Ecology and Adaptive Radiation of Anoles. University of California Press, Berkeley, United States. Lott, E. J. 2002. Lista anotada de las plantas vasculares de Chamela-Cuixmala. Pages 99–136 in F. A. Noguera, J. H. Vega, A. N. García, and M. Quesada, editors. Historia Natural de Chamela. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico. Lott, E. J., and T. H. Atkinson. 2006. Mexican and Central American Seasonally Dry Tropical Forests: Chamela-Cuixmala, Jalisco, as for Comparison. Pages 315–342 in R. T. Pennington, G. P. Lewis, and J. A. Ratter, editors. Neotropical savannas and seasonally dry forests: Plant diversity, biogeography, and conservation. CRC Press, USA. Lovette, I. J., and J. W. Fitzpatrick. 2016. Handbook of bird biology. 3rd edition. John Wiley & Sons, Chichester, West Sussex, UK. Lowther, P. E., P. Pyle, and M. A. Patten. 2020. Thick-billed Kingbird (Tyrannus crassirostris), version 1.0. Page in P. G. Rodewald, editor. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Lowther, P. E., and D. F. Stotz. 2020. Sulphur-bellied Flycatcher (Myiodynastes luteiventris), version 1.0. Page in A. F. Poole and F. B. Gill, editors. Birds of the World. Ithaca, NY, USA. Luiselli, L. 2006. Resource partitioning and interspecific competition in snakes: the search for general geographical and guild patterns. Oikos 114:193–211. MacGregor-Fors, I., and J. E. Schondube. 2011. Use of Tropical Dry Forests and Agricultural Areas by Neotropical Bird Communities. Biotropica 43:365–370. Macip-Ríos, R., and A. Muñoz-Alonso. 2008. Diversidad de lagartijas en cafetales y bosque primario en el Soconusco chiapaneco. Revista Mexicana de Biodiversidad 79:185–195. Marantz, C. A., A. Aleixo, L. R. Bevier, and M. A. Patten. 2020. Ivory-billed Woodcreeper (Xiphorhynchus flavigaster), version 1.0. Page in J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, editors. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Marroquín-Páramo, J. A., I. Suazo-Ortuño, N. Urbina-Cardona, and J. Benítez-Malvido. 2021. Cumulative effects of high intensity hurricanes on herpetofaunal assemblages along a tropical dry forest chronosequence. Forest Ecology and Management 479:118505. Marsden, S. J., A. H. Fielding, C. Mead, and M. Z. Hussin. 2002. A technique for measuring the density and complexity of understorey vegetation in tropical forests. Forest Ecology and Management 165:117–123. Martensen, A. C., R. G. Pimentel, and J. P. Metzger. 2008. Relative effects of fragment size and connectivity on bird community in the Atlantic Rain Forest: Implications for conservation. Biological Conservation 141:2184–2192. Martínez-Ferreira, S. R., M. Y. Alvarez-Añorve, A. E. Bravo-Monzón, C. Montiel-González, J. I. Flores-Puerto, S. P. Morales-Díaz, X. Chiappa- Carrara, K. Oyama, and L. D. Avila-Cabadilla. 2020. Taxonomic and Functional Diversity and Composition of Bats in a Regenerating Neotropical Dry Forest. Diversity 12:332. McCune, B., J. B. Grace, and D. L. Urban. 2002. Analysis of Ecological Communities. MJM Software Design, Gleneden Beach, Oregon, USA. McGarigal, K. 2002. Landscape pattern metrics. Pages 1135–1142 in A. H. El-Shaa-rawi and W. W. Piegorsch, editors. Encyclopedia of 71 Environmetrics. John Wiley & Sons, Ltd, UK. McKinney, M. L., and J. L. Lockwood. 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution 14:450–453. Meave, J. A., M. A. Romero-Romero, S. H. Salas-Morales, E. A. Pérez-García, and J. A. Gallardo-Cruz. 2012. Diversidad, amenazas y oportunidades para la conservación del bosque tropical caducifolio en el estado de Oaxaca, México. Ecosistemas 21:85–100. Medellín, R. A., H. T. Arita, and O. Sánchez. 2007. Identificación de los murciélagos de México. 2nd edition. Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico. Medina-Rangel, G. F. 2011. Diversidad alfa y beta de la comunidad de reptiles en el complejo cenagoso de Zapatosa, Colombia. Revista de Biología Tropical 59:935–968. Meyer, C., M. J. Struebig, and M. Willig. 2016. Responses of tropical bats to habitat fragmentation, logging, and deforestation. Pages 63–103 in C. C. Voigt and T. Kingston, editors. Bats in the Anthropocene: Conservation of Bats in a Changing World. Springer. Meynard, C. N., and J. F. Quinn. 2008. BIRD METACOMMUNITIES IN TEMPERATE SOUTH AMERICAN FOREST: VEGETATION STRUCTURE, AREA, AND CLIMATE EFFECTS. Ecology 89:981–990. Miles, L., A. C. Newton, R. S. DeFries, C. Ravilious, I. May, S. Blyth, V. Kapos, and J. E. Gordon. 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography 33:491–505. Mobley, J. A., and E. de Juana. 2020. Masked Tityra (Tityra semifasciata), version 1.0. Page in J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, editors. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Moermond, T. C. 1979. Habitat Constraints on the Behavior, Morphology, and Community Structure of Anolis Lizards. Ecology 60:152–164. Moore, F. R., and D. A. Aborn. 2000. Mechanisms of En Route Habitat Selection: How Do Migrants Make Habitat Decisions During Stopover? Studies in Avian Biology 20:34–42. Morales-Díaz, S. P., M. Y. Alvarez-Añorve, M. E. Zamora-Espinoza, R. Dirzo, K. Oyama, and L. D. Avila-Cabadilla. 2019. Rodent community responses to vegetation and landscape changes in early successional stages of tropical dry forest. Forest Ecology and Management 433:633– 644. Morante-Filho, J. C., V. Arroyo-Rodríguez, and D. Faria. 2016. Patterns and predictors of β-diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest specialist and generalist birds. Journal of Animal Ecology 85:240–250. Morante-Filho, J. C., M. Benchimol, and D. Faria. 2021. Landscape composition is the strongest determinant of bird occupancy patterns in tropical forest patches. Landscape Ecology 36:105–117. Mortelliti, A., G. Amori, D. Capizzi, C. Cervone, S. Fagiani, B. Pollini, and L. Boitani. 2011. Independent effects of habitat loss, habitat fragmentation and structural connectivity on the distribution of two arboreal rodents. Journal of Applied Ecology 48:153–162. Mortelliti, A., L. Santarelli, G. Sozio, S. Fagiani, and L. Boitani. 2013. Long distance field crossings by hazel dormice (Muscardinus avellanarius) in fragmented landscapes. Mammalian Biology 78:309–312. Mortelliti, A., G. Sozio, D. A. Driscoll, L. Bani, L. Boitani, and D. B. Lindenmayer. 2014. Population and individual-scale responses to patch size, isolation and quality in the hazel dormouse. Ecosphere 5:art107. Mouquet, N., and M. Loreau. 2003. Community Patterns in Source‐Sink Metacommunities. The American Naturalist 162:544–557. Moura, M. R., H. C. Costa, A. J. S. Argôlo, and W. Jetz. 2017. Environmental constraints on the compositional and phylogenetic beta-diversity of tropical forest snake assemblages. Journal of Animal Ecology 86:1192–1204. Muscarella, R., and T. H. Fleming. 2007. The Role of Frugivorous Bats in Tropical Forest Succession. Biological Reviews 82:573–590. Nassar, J., K. E. Stoner, L. D. Avila-Cabadilla, M. M. do Espírito-Santo, C. I. Aranguren, J. A. González-Carcacía, J. M. Lobato-García, L. Olívio- Leite, M. Y. Alvarez-Añorve, and H. N. de Matos-Brandão. 2013. Fruit-eating bats and birds of three seasonal tropical dry forests in the Americas. Pages 173–220 in A. Sánchez-Azofeifa, J. Powers, G. W. Fernandes, and M. Quesada, editors. Tropical Dry Forests in the Americas. CRC Press, United States. Naulleau, G. 1994. Environment & Population Dynamics. Pages 144–155 in R. Bauchot, editor. Snakes: a natural history. Sterling Publishing Company Inc. Navas, C. A. 1996. Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia 108:617–626. NGS. 2002. Field Guide to the Birds of North America. 4th edition. National Geographic Books, USA. Noble, R., E. P. Smith, and K. Ye. 2004. Model selection in canonical correlation analysis (CCA) using Bayesian model averaging. Environmetrics 15:291–311. Ochoa-Ochoa, L. M., and R. J. Whittaker. 2014. Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico. Journal of Tropical Ecology 30:537–549. Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. Mcglinn, P. R. Minchin, R. B. O’hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, E. Szoecs, and H. W. Maintainer. 2019. Package “vegan” Title Community Ecology Package Version 2.5-6. Olson, D. M., and E. Dinerstein. 1998. The global 200: A representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology 12:502–515. Ortega, J., and I. Castro-Arellano. 2001. Artibeus jamaicensis. Mammalian Species:1–9. Owens, A. K., K. R. Moseley, T. S. McCay, S. B. Castleberry, J. C. Kilgo, and W. M. Ford. 2008. Amphibian and reptile community response to coarse woody debris manipulations in upland loblolly pine (Pinus taeda) forests. Forest Ecology and Management 256:2078–2083. Özkan, K., J.-C. Svenning, and E. Jeppesen. 2013. Environmental species sorting dominates forest-bird community assembly across scales. Journal of Animal Ecology 82:266–274. Packard, R. L., and J. B. Montgomery. 1978. Baiomys musculus. Mammalian Species 2:1–3. Parris, K. M. 2006. Urban amphibian assemblages as metacommunities. Journal of Animal Ecology 75:757–764. Patterson, B. D., and W. Atmar. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28:65–82. Pearman, P. B. 2002. THE SCALE OF COMMUNITY STRUCTURE: HABITAT VARIATION AND AVIAN GUILDS IN TROPICAL FOREST UNDERSTORY. Ecological Monographs 72:19–39. Peltzer, P. M., R. C. Lajmanovich, A. M. Attademo, C. M. Junges, M. C. Cabagna-Zenklusen, M. R. Repetti, M. E. Sigrist, and H. Beldoménico. 2013. Effect of exposure to contaminated pond sediments on survival, development, and enzyme and blood biomarkers in veined treefrog (Trachycephalus typhonius) tadpoles. Ecotoxicology and Environmental Safety 98:142–151. Pennington, R. T., M. Lavin, and A. Oliveira-Filho. 2009. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics 40:437–457. 72 Petit, D. R. 2000. Habitat Use by Landbirds along Nearctic-Neotropical Migration Routes: Implications for Conservation of Stopover Traits. Studies in Avian Biology 20:15–33. Pianka, E. R. 1966. Convexity, Desert Lizards, and Spatial Heterogeneity. Ecology 47:1055–1059. de Pinho Werneck, F., G. R. Colli, and L. J. Vitt. 2009. Determinants of assemblage structure in Neotropical dry forest lizards. Austral Ecology 34:97–115. Presley, S. J., L. M. Cisneros, B. T. Klingbeil, and M. R. Willig. 2019. Landscape ecology of mammals. Journal of Mammalogy 100:1044–1068. Presley, S. J., L. M. Cisneros, B. D. Patterson, and M. R. Willig. 2012. Vertebrate metacommunity structure along an extensive elevational gradient in the tropics: A comparison of bats, rodents and birds. Global Ecology and Biogeography 21:968–976. Presley, S. J., C. L. Higgins, C. López-González, and R. D. Stevens. 2009. Elements of metacommunity structure of Paraguayan bats: multiple gradients require analysis of multiple ordination axes. Oecologia 160:781–793. Presley, S. J., C. L. Higgins, and M. R. Willig. 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119:908– 917. Provete, D. B., T. Gonçalves-Souza, M. V Garey, I. A. Martins, and D. de C. Rossa-Feres. 2014. Broad-scale spatial patterns of canopy cover and pond morphology affect the structure of a Neotropical amphibian metacommunity. Hydrobiologia 734:69–79. Qian, H. 2009. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks. Journal of Systematics and Evolution 47:509–514. Racey, P. A. 2009. Reproductive assessment of bats. Pages 249–264 in T. H. Kunz and S. Parsons, editors. Ecological and Behavioral Methods for the Study of Bats. Johns Hopkins University Press, Baltimore, Maryland, USA. Ralph, C. J., G. R. Geupel, P. Pyle, T. E. Martin, and D. F. DeSante. 1993. Handbook of Field Methods for Monitoring Landbirds. USA. Ramírez-Bautista, A., and M. Benabib. 2001. Perch Height of the Arboreal Lizard Anolis nebulosus (Sauria: Polychrotidae) from a Tropical Dry Forest of México: Effect of the Reproductive Season. Copeia 2001:187–193. Ramírez-Pulido, J., A. Castro-Campillo, and A. Salame-Méndez. 2001. Los Peromyscus (Rodentia: Muridae) en la colección de mamíferos de la Universidad Autónoma Metropolitana-Unidad Iztapalapa (UAMI). Acta Zoológica Mexicana 83:83–114. Ramos-Ordoñez, M. F., and M. del C. Arizmendi. 2011. Parthenocarpy, attractiveness and seed predation by birds in Bursera morelensis. Journal of Arid Environments 75:757–762. Reardon, S., and M. C. Schoeman. 2017. Species Richness, Functional Diversity and Assemblage Structure of Insectivorous Bats Along an Elevational Gradient in Tropical West Africa. Acta Chiropterologica 19:273–285. Reeder, D., and D. Wilson. 2005. Mammal Species of the World. 1st edition. Johns Hopkins University Press, Baltimore, Maryland, USA. Reyna-Bustos, O., I. T. Ahumada-Carrillo, and O. Vázquez-Huízar. 2007. Anfibios y reptiles del bosque La Primavera. Universidad de Guadalajara, Gobierno del Estado de Jalisco, Guadalajara, Mexico. Richter-Boix, A., G. A. Llorente, and A. Montori. 2007. Structure and dynamics of an amphibian metacommunity in two regions. Journal of Animal Ecology 76:607–618. Ripperger, S. P., E. K. V Kalko, B. Rodríguez-Herrera, F. Mayer, and M. Tschapka. 2015. Frugivorous Bats Maintain Functional Habitat Connectivity in Agricultural Landscapes but Rely Strongly on Natural Forest Fragments. PLoS ONE 10:e0120535. Rising, J. D., and A. Jaramillo. 2020. Ruddy-breasted Seedeater (Sporophila minuta), version 1.0. Page in J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. de Juana, editors. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Rittenhouse, T. A. G., E. B. Harper, L. R. Rehard, and R. D. Semlitsch. 2008. The Role of Microhabitats in the Desiccation and Survival of Anurans in Recently Harvested Oak–Hickory Forest. Ichthyology & Herpetology 2008:807–814. Rizkalla, C. E., and R. K. Swihart. 2007. Explaining movement decisions of forest rodents in fragmented landscapes. Biological Conservation 140:339–348. Rodríguez-Parga, L. de los M., S. Contreras-Martínez, J. Rost, and J. C. Gómez-Lamas. 2012. Abundancia estacional, fenología reproductiva y fidelidad al sitio del mulato (Melanotis caerulescens) en ambientes ribereños del suroeste de Jalisco. Revista Mexicana de Biodiversidad 83:468–476. Rosas-Espinoza, V. C., J. M. Rodríguez-Canseco, A. L. Santiago-Pérez, A. Ayón-Escobedo, and M. Domínguez-Laso. 2013. Distribution of some amphibians from central western Mexico: Jalisco. Revista Mexicana de Biodiversidad 84:690–696. Rothenwöhrer, C., N. I. Becker, and M. Tschapka. 2011. Resource landscape and spatio-temporal activity patterns of a plant-visiting bat in a Costa Rican lowland rainforest. Journal of Zoology 283:108–116. Ruiz-García, S. Y., and L. D. Avila-Cabadilla. 2016. Factores que determinan la estructura y composición de las comunidades de aves en etapas iniciales de la sucesión del bosque tropical seco. Universidad Nacional Autónoma de México. Ryberg, W. A., and L. A. Fitzgerald. 2016. Landscape composition, not connectivity, determines metacommunity structure across multiple scales. Ecography 39:932–941. Rzedowski, J. 2006. Bosque tropical caducifolio. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMxC12.pdf. Saldaña-Vázquez, R. A., and M. A. Munguía-Rosas. 2013. Lunar phobia in bats and its ecological correlates: A meta-analysis. Mammalian Biology 78:216–219. Sánchez-Azofeifa, G. A., M. Quesada, P. Cuevas-Reyes, A. Castillo, and G. Sánchez-Montoya. 2009. Land cover and conservation in the area of influence of the Chamela-Cuixmala Biosphere Reserve, Mexico. Forest Ecology and Management 258:907–912. Sánchez-Hernández, C., G. D. Schnell, and M. de L. Romero-Almaraz. 2009. Peromyscus perfulvus (Rodentia: Cricetidae). Mammalian Species:1– 8. Sánchez-Rojas, G., V. Sánchez-Cordero, and M. Briones. 2004. Effect of Plant Species, Fruit Density and Habitat on Post-Dispersal Fruit and Seed Removal by Spiny Pocket Mice (Liomys pictus, Heteromyidae) in a Tropical Dry Forest in Mexico. Studies on Neotropical Fauna and Environment 39:1–6. Schnell, G. D., C. J. Poindexter, C. Sánchez-Hernández, M. de L. Romero-Almaraz, M. L. Kennedy, T. L. Best, M. C. Wooten, and A. Pérez Jiménez. 2008. Demographic features and habitat preferences of southern pygmy mice (Baiomys musculus) in Colima, Mexico. Canadian Journal of Zoology 86:507–524. Seigler, D. S., and J. E. Ebinger. 1988. Acacia macracantha, A. pennatula, and A. cochliacantha (Fabaceae: Mimosoideae) Species Complexes in Mexico. Systematic Botany 13:7–15. Sherry, T. W., and R. T. Holmes. 1996. Winter Habitat Quality, Population Limitation, and Conservation of Neotropical-Nearctic Migrant Birds. Ecology 77:36–48. Sil-Berra, L. M., C. Sánchez-Hernández, M. de L. Romero-Almaraz, and V. H. Reynoso. 2021. Vulnerability to natural disturbance in communities 73 of Neotropical bats: Short-term impact of Hurricane Patricia on the Mexican Pacific Coast. Forest Ecology and Management 479:118596. da Silva, F. R., M. Almeida-Neto, and M. V. N. Arena. 2014. Amphibian Beta Diversity in the Brazilian Atlantic Forest: Contrasting the Roles of Historical Events and Contemporary Conditions at Different Spatial Scales. PLoS ONE 9:e109642. Soberanes-González, C. A., M. del C. Arizmendi, and T. S. Schulenberg. 2020. Sinaloa Wren (Thryophilus sinaloa). Page in T. S. Schulenberg, editor. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Soininen, J., J. Heino, and J. Wang. 2018. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography 27:96–109. Soto-Sandoval, Y., I. Suazo-Ortuño, N. Urbina-Cardona, J. Marroquín-Páramo, and J. Alvarado-Díaz. 2017. Efecto de los estadios sucesionales del bosque tropical seco sobre el microhábitat usado por Agalychnis dacnicolor (Anura: Phyllomedusidae) y Smilisca fodiens (Anura: Hylidae). Revista de Biología Tropical 65:777–798. Spencer, S. R., and G. N. Cameron. 1982. Reithrodontomys fulvescens. Mammalian Species:1–7. Stevens, R. D., and J. S. Tello. 2009. Micro- and Macrohabitat Associations in Mojave Desert Rodent Communities. Journal of Mammalogy 90:388–403. Stevens, R. D., and J. S. Tello. 2012. Do desert rodents form metacommunities? Journal of Mammalogy 93:1029–1041. Stork, N. E., J. A. Coddingnton, R. K. Colwell, R. L. Chazdon, C. W. Dick, C. A. Peres, S. Sloan, and K. Willis. 2009. Vulnerability and Resilience of Tropical Forest Species to Land-Use Change. Conservation Biology 23:1438–1447. Stouffer, P. C., R. T. Chesser, and A. E. Jahn. 2020. Tropical Kingbird (Tyrannus melancholicus), version 1.0. Page in S. M. Billerman, editor. Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. Suazo-Ortuño, I., J. Alvarado-Díaz, and M. Martínez-Ramos. 2008. Effects of Conversion of Dry Tropical Forest to Agricultural Mosaic on Herpetofaunal Assemblages. Conservation Biology 22:362–374. Suazo-Ortuño, I., J. Alvarado-Díaz, and M. Martínez-Ramos. 2011. Riparian Areas and Conservation of Herpetofauna in a Tropical Dry Forest in Western Mexico. Biotropica 43:237–245. Suazo-Ortuño, I., J. Benítez-Malvido, J. Marroquín-Páramo, Y. Soto, H. Siliceo, and J. Alvarado-Díaz. 2018a. Resilience and vulnerability of herpetofaunal functional groups to natural and human disturbances in a tropical dry forest. Forest Ecology and Management 426:145–157. Suazo-Ortuño, I., J. N. Urbina-Cardona, N. Lara-Uribe, J. Marroquín-Páramo, Y. Soto-Sandoval, J. Rangel-Orozco, L. Lopez-Toledo, J. Benítez- Malvido, and J. Alvarado-Díaz. 2018b. Impact of a hurricane on the herpetofaunal assemblages of a successional chronosequence in a tropical dry forest. Biotropica 50:649–663. Swanson, M. E., J. F. Franklin, R. L. Beschta, C. M. Crisafulli, D. A. DellaSala, R. L. Hutto, D. B. Lindenmayer, and F. J. Swanson. 2011. The forgotten stage of forest succession: Early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment 9:117–125. Taylor, P. D., L. Fahrig, K. Henein, and G. Merriam. 1993. Connectivity Is a Vital Element of Landscape Structure. Oikos 68:571–573. Tellería, J. L., Á. Ramírez, and J. Pérez-Tris. 2005. Conservation of seed-dispersing migrant birds in Mediterranean habitats: Shedding light on patterns to preserve processes. Biological Conservation 124:493–502. Téllez-Girón, G. 2005. Artibeus hirsutus. Pages 226–227 in G. Ceballos and G. Oliva, editors. Los mamíferos silvestres de México. 1st edition. Fondo de Cultura Económica, Distrito Federal, Mexico. Tellez, G., and J. Ortega. 1999. Musonycteris harrisoni. Mammalian Species:1–3. Thompson, M. E., and M. A. Donnelly. 2018. Effects of Secondary Forest Succession on Amphibians and Reptiles: A Review and Meta-analysis. Copeia 106:10–19. Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press. Torres, R., N. I. Gasparri, P. G. Blendinger, and H. R. Grau. 2014. Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study. Regional Environmental Change 14:1549–1561. Traveset, A. 1990. Post-dispersal predation of Acacia farnesiana seeds by Stator vachelliae (Bruchidae) in Central America. Oecologia 84:506– 512. Trzcinski, M. K., L. Fahrig, and G. Merriam. 1999. INDEPENDENT EFFECTS OF FOREST COVER AND FRAGMENTATION ON THE DISTRIBUTION OF FOREST BREEDING BIRDS. Ecological Applications 9:586–593. Tschapka, M., E. B. Sperr, L. A. Caballero-Martínez, and R. A. Medellín. 2008. Diet and Cranial Morphology of Musonycteris harrisoni, a Highly Specialized Nectar-Feeding Bat in Western Mexico. Journal of Mammalogy 89:924–932. Tulli, M. J., V. Abdala, and F. B. Cruz. 2011. Relationships among morphology, clinging performance and habitat use in Liolaemini lizards. Journal of Evolutionary Biology 24:843–855. Urban, M. C. 2004. Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85:2971–2978. Vázquez, L. B., G. N. Cameron, and R. A. Medellín. 1999. HÁBITOS ALIMENTARIOS Y BIOLOGÍA POBLACIONAL DE DOS ESPECIES DE ROEDORES EN EL OCCIDENTE DE MÉXICO. Revista Mexicana de Mastozoología 4:5–21. Vázquez, L. B., G. N. Cameron, and R. A. Medellín. 2004. Characteristics of Diet of Peromyscus aztecus and Reithrodontomys fulvescens in Montane Western Mexico. Journal of Mammalogy 85:196–205. Vega-Rivera, J. H., D. Ayala, and C. A. Haas. 2003. Home-range size, habitat use, and reproduction of the Ivory-billed Woodcreeper (Xiphorhynchus flavigaster) in dry forest of western Mexico. Journal of Field Ornithology 74:141–151. Velho, N., K. Isvaran, and A. Datta. 2012. Rodent seed predation: effects on seed survival, recruitment, abundance, and dispersion of bird-dispersed tropical trees. Oecologia 169:995–1004. Vitt, L. J., and J. P. Caldwell. 2014. Herpetology: An Introductory Biology of Amphibians and Reptiles. 4th ed. Academic Press, United States. Vitt, L. J., P. A. Zani, and M. C. Espósito. 1999. Historical Ecology of Amazonian Lizards: Implications for Community Ecology. Oikos 87:286– 294. Wasko, D. K., and M. Sasa. 2012. Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): an experimental study. Zoology 115:179–187. Watling, J. I., and M. A. Donnelly. 2008. Species richness and composition of amphibians and reptiles in a fragmented forest landscape in northeastern Bolivia. Basic and Applied Ecology 9:523–532. Watson, J. E. M., T. Evans, O. Venter, B. Williams, A. Tulloch, C. Stewart, I. Thompson, J. C. Ray, K. Murray, A. Salazar, C. McAlpine, P. Potapov, J. Walston, J. G. Robinson, M. Painter, D. Wilkie, C. Filardi, W. F. Laurance, R. A. Houghton, S. Maxwell, H. Grantham, C. Samper, S. Wang, L. Laestadius, R. K. Runting, G. A. Silva-Chávez, J. Ervin, and D. Lindenmayer. 2018. The exceptional value of intact forest ecosystems. Nature Ecology & Evolution 2:599–610. Webb, J. K., and R. Shine. 1997. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biological Conservation 82:203–217. 74 Wells, K. D. 2010. The Ecology and Behaviour of Amphibians. University of Chicago Press, Chicago, United States. Welsh Jr, H. H., and G. R. Hodgson. 2011. Spatial relationships in a dendritic network: the herpetofaunal metacommunity of the Mattole River catchment of northwest California. Ecography 34:49–66. Werner, E. E., K. L. Yurewicz, D. K. Skelly, and R. A. Relyea. 2007. Turnover in an amphibian metacommunity: the role of local and regional factors. Oikos 116:1713–1725. Williams-Guillén, K., and I. Perfecto. 2011. Ensemble composition and activity levels of insectivorous bats in response to management intensification in coffee agroforestry systems. PLoS One 6:e16502. Willis, E. O. 1980. Ecological Roles of Migratory and Resident Birds on Barro Colorado Island, Panama. Pages 205–226 in A. Keast and E. S. Morton, editors. Migrant Birds in the Neotropics: Ecology, Behavior, Distribution, and Conservation. Smithsonian Institution Press, New York, United States. Yang, X., C. Yan, Q. Zhao, M. Holyoak, M. A. Fortuna, J. Bascompte, P. A. Jansen, and Z. Zhang. 2018. Ecological succession drives the structural change of seed-rodent interaction networks in fragmented forests. Forest Ecology and Management 419–420:42–50. Zarazúa-Carbajal, M., L. D. Avila-Cabadilla, M. Y. Alvarez-Añorve, J. Benítez-Malvido, and K. E. Stoner. 2017. Importance of riparian habitat for frugivorous bats in a tropical dry forest in western Mexico. Journal of Tropical Ecology 33:74–82. Zipkin, E. F., G. V DiRenzo, J. M. Ray, S. Rossman, and K. R. Lips. 2020. Tropical snake diversity collapses after widespread amphibian loss. Science 367:814 LP – 816. 75 Appendix A. List of species and sites and their abbreviations. A.1. Species and abbreviations of anurans: Agalichnys dacnicolor (agda), Craugastor hobartsmithi (crho), Craugastor occidentalis (croc), Dendropsophus sartori (desa), Diaglena spatulata (disp), Eleutherodactylus nitidus (elni), Hypopachus ustus (hyus), Hypopachus variolosus (hyva), Incilius marmoreus (inma), Incilius mazatlanensis (inmaz), Leptodactylus melanonotus (leme), Lithobates forreri (lifo), Rhinella marina (rhma), Smilisca baudini (smba), Smilisca fodiens (smfo), Tlalocohyla smithii (tlsm), Trachycephalus typhonius (trty). A.2. Species and abbreviations of lizards: Anolis nebulosus (anne), Aspidoscelis communis (asco), Aspidoscelis deppii (asde), Aspidoscelis lineatissima (asli), Coleonyx elegans (coel), Ctenosaura pectinata (ctpe), Gerrhonotus liocephalus (geli), Heloderma horridum (heho), Holcosus undulatus (houn), Iguana iguana (igig), Marisora brachypoda (mabr), Phrynosoma asio (phas), Phyllodactylus lanei (phla), Plestiodon parvulus (plpa), Sceloporus horridus (scho), Sceloporus melanorhinus (scme), Sceloporus utiformis (scut), Scincella assata (urbi), Urosaurus bicarinatus (scas). A.3. Species and abbreviations of snakes: Agkistrodon bilineatus (agbi), Boa constrictor (boco), Coniophanes lateritius (cola), Conophis vittatus (covi), Crotalus basiliscus (crba), Dipsas gaigeae (diga), Drymobius margaritiferus (drma), Drymarchon melanurus (drme), Imantodes gemmistratus (imge), Lampropeltis triangulum (latr), Leptophis diplotropis (ledi) Leptodeira maculata (lema), Leptodeira uribei (leur), Masticophis mentovarius (mame), Mastigodryas melanolomus (masme), Micrurus distans (midi), Oxybelis aeneus (oxae), Rena humilis (rehu), Salvadora mexicana (same), Sibon nebulatus (sine), Symphimus leucostomus (syle), Tantilla bocourti (tabo), Tantilla calamarina (taca), Trimorphodon biscutatus (trbi). A.4. Species and abbreviations of migratory birds: Basileuterus lachrymosus (baslac), Cardellina pusilla (carpus), Catharus aurantiirostris (cataur), Catharus ustulatus (catust), Empidonax minimus (empmin), Geothlypis tolmiei (geotol), Icteria virens (ictvir), Icterus cucullatus (ictcuc), Icterus spurius (ictspu), Melospiza lincolnii (mellin), 76 Mniotilta varia (mnivar), Molothrus ater (molate), Myiarchus cinerascens (myicin), Myiarchus tyrannulus (myityr), Oreothlypis luciae (oreluc), Oreothlypis ruficapilla (oreruf), Parkesia motacilla (parmot), Passerina caerulea (pascae), Passerina ciris (pascir), Passerina versicolor (pasver), Pheucticus melanocephalus (phemel), Piranga ludoviciana (pirlud), Piranga rubra (pirrub), Polioptila caerulea (polcae), Saltator coerulescens (salcoe), Seiurus aurocapilla (seiaur), Setophaga petechia (setpet), Tachycineta bicolor (tacbic), Vireo bellii (virbel), Vireo gilvus (virgil), Vireo hypochryseus (virhyp). A.5. Species and abbreviations of resident birds: Arremonops rufivirgatus (arrruf), Attila spadiceus (attspa), Camptostoma imberbe (camimb), Cassiculus melanicterus (casmel), Cyanocompsa parellina (cyapar), Cyanocorax formosa (cyafor), Cyanocorax sanblasianus (cyasan), Deltarhynchus flammulatus (delfla), Empidonax difficilis (empdif), Granatellus venustus (graven), Icterus pustulatus (ictpus), Melanotis caerulescens (melcae), Myiarchus nuttingi (myinut), Myiarchus tuberculifer (myitub), Myiarchus tyrannulus (myityr), Myiodynastes luteiventris (myilut), Pachyramphus aglaiae (pacagl), Passerina leclancherii (paslec), Peucaea ruficauda (peuruf), Pheucticus chrysopeplus (phechr), Pheugopedius felix (phefel), Pitangus sulphuratus (pitsul), Polioptila nigriceps (polnig), Quiscalus mexicanus (quimex), Rhodinocichla rosea (rhoros), Setophaga pitiayumi (setpit), Sporophila minuta (spomin), Thryophilus sinaloa (thrsin), Tityra semifasciata (titsem), Turdus rufopalliatus (turruf), Tyrannus crassirostris (tyrcra), Tyrannus melancholicus (tyrmel), Tyrannus vociferans (tyrvoc), Uropsila leucogastra (uroleu), Volatinia jacarina (voljac), Xiphorhynchus flavigaster (xipfla). A.6. Species and abbreviations of rodents: Baiomys musculus (baimus), Liomys pictus (lipoic), Oryzomys couesi (orycou), Osgoodomys banderanus (osgban), Peromyscus perfulvus (perper), Reithrodontomys fulvescens (reiful), Sigmodon alleni (sigall), Sigmodon mascotensis (sigmas). A.7. Species and abbreviations of bats: Artibeus hirsutus (arthir), Artibeus jamaicensis (artjam), Artibeus lituratus (artlit), Artibeus phaeotis (artpha), Artibeus toltecus (arttol), Centurio cenex (censen), Choeroniscus godmani (chogod), Desmodus rotundus (desrot), Glossophaga soricina (glosor), Leptonycteris 77 yerbabuenae (lepyer), Mormoops megalophylla (mormeg), Musonycteris harrisoni (mushar), Pteronotus davyi (ptedav), Pteronotus parnellii (ptepar), Sturnira parvidens (stupar). A.8. Sites and abbreviations Road to the dump in Careyes town (BAS), Hidalgo Nuevo 1 (HN1), Hidalgo Nuevo 2 (HN2), Juan Gil Preciado (JGP), José María Morelos (JMM), Ley Federal Hidalgo (LFH), La Fortuna (LFO), Limoncitos (LIM), Nacastillo 1 (NA1), Nacastillo 2 (NA2), Zapata (ZAP), biological station of the UDG (UDG), biological station of the UNAM (UNAM). Appendix Table A1. Plant communities scores in non-Metric Multidimensional Scaling axis summarizing site variations in vegetation species composition, stress % = 5.02. Site Axis 1 Axis 2 Axis 3 BAS -1.4054 0.2266 -0.1389 HN1 0.5422 0.4480 -0.0365 HN2 0.6228 0.1117 -0.4534 JGP -0.0240 0.0869 0.2823 JMM -0.2545 0.1344 -0.1445 LFO -0.3233 0.1746 -0.0297 LFH -0.7156 -0.4562 0.3335 LIM 0.6986 0.1904 0.3380 NA1 0.0838 -0.4728 -0.4826 NA2 0.5949 -0.5815 0.1217 ZAP 0.1804 0.1378 0.2101 78 Appendix Table A2. List of conspicuous and restricted species in ESS sites, and exclusive species of ESS and OGF sites. Taxa Conspicuous species in ESS Restricted species in ESS Exclusive species of ESS Exclusive species of OGF Anurans Agalichnys dacnicolor (10 sites), Lithobates forreri (9 sitess), Smilisca baudini (10 sites) Craugastor hobartsmithi (1 site), Hypopachus variolosus (1 site) Craugastor hobartsmithi, Craugastor occidentalis, Eleutherodactylus nitidus, Hypopachus variolosus, Incilius marmoreus, Incilius mazatlanensis, Smilisca fodiens Lizards Anolis nebulosus (11 sites), Aspidoscelis communis (11 sites), Aspidoscelis lineatissima (11 sites), Sceloporus utiformis (11 sites) Heloderma horridum (1 site), Iguana iguana (2 sites), Plestiodon parvulus (2 sites) Heloderma horridum, Iguana iguana, Marisora brachypoda, Phrynosoma asio, Phrynosoma parvulus, Urosaurus bicarinatus Gerrhonotus liocephalus Snakes Oxybelis aeneus (10 sites) Coniophanes lateritius (1 site), Conophis vittatus (1 site), Leptodeira uribei (1 site), Symphimus leucostomus (1 site), Tantilla bocourti (1 site) Agkistrodon bilineatus, Boa constrictor, Coniophanes lateritius, Crotalus basiliscus, Drymarchon melanurus, Imantodes gemmistratus, Lampropeltis triangulum, Masticophis mentovarius, Micrurus distans, Rena humilis, Salvadora mexicana, Symphimus leucostomus, Tantilla calamarina Drymobius margaritiferus, Mastigodryas melanolomus, Sibon nebulatus, Trimorphodon biscutatus Migratory birds Icteria virens (10 sites), Myiarchus tyrannulus (11 sites), Passerina versicolor (11 sites) Catharus aurantiirostris (1 site), Oreothlypis luciae (1 site), Passerina caerulea (1 site), Pheucticus melanocephalus (1 site), Piranga ludoviciana (1 site), Seiurus aurocapilla (1 site), Tachycineta bicolor (1 site), Vireo hypochryseus (1 site) Cardellina pusilla, Catharus aurantiirostris, Geothlypis tolmiei, Icterus cucullatus, Icterus spurius, Melospiza lincolnii, Mniotilta varia, Molothrus ater, Oreothlypis luciae, Passerina caerulea, Pheucticus melanocephalus, Piranga rubra, Polioptila caerulea, Setophaga petechia, Tachycineta bicolor, Vireo hypochryseus Basileuterus lachrymosus Resident birds Arremonops rufivirgatus (11 sites), Cassiculus melanicterus (11 sites), Cyanocompsa parellina (11 sites), Empidonax difficilis (11 sites), Icterus pustulatus (11 sites), Myiarchus nuttingi (11 sites), Myiarchus tuberculifer (11 sites), Passerina leclancherii (11 sites), Pheugopedius felix (11 sites), Tyrannus vociferans (11 sites) Quiscalus mexicanus (1 site), Sporophila minuta (1 site), Tityra semifasciata (1 site), Tyrannus crassirostris (1 site), Tyrannus melancholicus (1 site) Camptostoma imberbe, Melanotis caerulescens, Myiodynastes luteiventris, Peucaea ruficauda, Pitangus sulphuratus, Quiscalus mexicanus, Saltator coerulescens, Sporophila minuta, Tyrannus crassirostris, Tyrannus melancholicus, Volatinia jacarina Rodents Liomys pictus (11 sites), Baiomys musculus (11 sites), Oryzomys couesi (10 sites), Osgoodomys banderanus (11 sites), Sigmodon alleni (10 sites), Sigmodon mascotensis (11 sites) Baiomys musculus, Reithrodontomys fulvescens Bats Artibeus jamaicensis (11 sites), Artibeus phaeotis (10 sites), Glossophaga soricina (11 sites) Pteronotus davyi (1 site), Musonycteris harrisoni (1 site), Artibeus hirsutus (1 site), Centurio senex (2 sites) Pteronotus davyi, Musonycteris harrisoni, Centurio senex Mormoops megalophylla 79 Appendix Table A3. Incidence matrix and summary of richness for anuran species at each study site. Family Species BAS HN1 HN2 JGP JMM LFH LFO LIM NA1 NA2 ZAP UDG UNAM Bufonidae Incilius marmoreus 0 1 0 1 1 0 1 1 0 0 0 0 0 Incilius mazatlanensis 0 0 0 0 0 0 0 0 1 1 0 0 0 Rhinella marina 1 1 1 0 1 1 1 0 0 0 0 1 1 Craugastoridae Craugastor hobartsmithi 0 0 0 1 0 0 0 0 0 0 0 0 0 Craugastor occidentalis 0 0 0 1 0 0 0 0 0 1 0 0 0 Eleutherodactylidae Eleutherodactylus nitidus 0 1 1 1 0 0 0 0 0 1 0 0 0 Hylidae Agalichnys dacnicolor 0 1 1 1 1 1 1 1 1 1 1 1 1 Dendropsophus sartori 0 0 0 0 0 1 1 0 1 0 0 0 1 Diaglena spatulata 1 1 0 1 0 0 0 0 0 0 1 1 0 Smilisca baudini 0 1 1 1 1 1 1 1 1 1 1 1 0 Smilisca fodiens 0 0 0 1 1 1 1 0 1 1 0 0 0 Tlalocohyla smithii 0 0 0 0 1 1 1 0 1 0 1 0 1 Trachycephalus typhonius 0 1 1 0 0 0 0 1 0 1 0 1 1 Leptodactylidae Leptodactylus melanonotus 0 0 0 0 0 0 1 0 1 0 0 0 1 Microhylidae Hypopachus ustus 0 0 1 0 0 0 1 1 0 1 0 0 1 Hypopachus variolosus 0 0 0 0 1 0 0 0 0 0 0 0 0 Ranidae Lithobates forreri 1 1 0 1 1 1 1 0 1 1 1 0 1 Species richness 3 8 6 9 8 7 10 5 8 9 5 5 8 80 Appendix Table A4. Incidence matrix and summary of richness for lizard species at each study site. Family Species BAS HN1 HN2 JGP JMM LFH LFO LIM NA1 NA2 ZAP UDG UNAM Anguidae Gerrhonotus liocephalus 0 0 0 0 0 0 0 0 0 0 0 1 0 Dactyloidae Anolis nebulosus 1 1 1 1 1 1 1 1 1 1 1 1 1 Eublepharidae Coleonyx elegans 0 1 1 1 0 0 0 0 0 0 0 0 1 Helodermatidae Heloderma horridum 0 0 0 0 0 0 0 1 0 0 0 0 0 Iguanidae Ctenosaura pectinata 1 1 1 1 1 0 1 1 1 1 1 1 0 Iguana iguana 0 0 0 0 0 0 1 0 0 0 1 0 0 Phrynosomatidae Phrynosoma asio 1 0 0 0 0 0 1 0 1 0 0 0 0 Sceloporus horridus 0 1 1 0 0 0 1 1 1 0 0 0 1 Sceloporus melanorhinus 1 1 0 1 1 1 1 1 0 0 1 1 1 Sceloporus utiformis 1 1 1 1 1 1 1 1 1 1 1 1 1 Urosaurus bicarinatus 0 0 1 0 0 0 0 0 0 1 1 1 0 Phyllodactylidae Phyllodactylus lanei 0 1 1 0 0 1 0 0 0 1 0 1 1 Scincidae Marisora brachypoda 0 1 0 0 0 0 1 0 0 0 1 0 0 Plestiodon parvulus 0 0 1 0 0 0 0 0 0 1 0 0 0 Scincella assata 1 0 1 1 1 1 1 0 1 0 0 0 0 Teiidae Aspidoscelis communis 1 1 1 1 1 1 1 1 1 1 1 1 1 Aspidoscelis deppii 1 0 0 0 1 0 1 1 1 0 0 0 1 Aspidoscelis lineatissima 1 1 1 1 1 1 1 1 1 1 1 1 1 Holcosus undulatus 0 1 1 1 0 1 0 0 0 1 1 1 1 Species richness 9 11 12 9 8 8 12 9 9 9 10 10 10 81 Appendix Table A5. Incidence matrix and summary of richness for snake species at each study site. Family Species BAS HN1 HN2 JGP JMM LFH LFO LIM NA1 NA2 ZAP UDG UNAM Boidae Boa constrictor 0 1 0 0 0 1 0 0 0 0 0 0 0 Colubridae Coniophanes lateritius 0 0 1 0 0 0 0 0 0 0 0 0 0 Conophis vittatus 0 0 0 0 0 0 0 0 1 0 0 0 1 Dipsas gaigeae 0 1 0 0 0 0 0 1 0 0 0 1 1 Drymobius margaritiferus 0 0 0 0 0 0 0 0 0 0 0 1 1 Drymarchon melanurus 0 1 0 1 0 0 0 1 0 0 0 0 0 Imantodes gemmistratus 0 1 0 1 1 1 1 0 1 0 1 0 0 Lampropeltis triangulum 0 0 1 1 0 0 0 1 1 1 0 0 0 Leptophis diplotropis 0 0 1 1 1 1 1 0 1 1 1 1 0 Leptodeira maculata 0 0 1 1 0 0 1 0 0 1 1 0 1 Leptodeira uribei 0 0 0 0 0 0 0 0 0 1 0 1 0 Masticophis mentovarius 0 1 0 0 0 0 1 0 0 0 0 0 0 Mastigodryas melanolomus 0 0 0 0 0 0 0 0 0 0 0 0 1 Oxybelis aeneus 0 1 1 1 1 1 1 1 1 1 1 1 1 Salvadora mexicana 0 0 0 0 0 0 0 0 1 0 1 0 0 Sibon nebulatus 0 0 0 0 0 0 0 0 0 0 0 1 0 Symphimus leucostomus 0 0 0 0 1 0 0 0 0 0 0 0 0 Tantilla bocourti 0 0 0 0 0 0 0 0 0 1 0 0 1 Tantilla calamarina 1 1 0 0 0 0 0 0 0 0 0 0 0 Trimorphodon biscutatus 0 0 0 0 0 0 0 0 0 0 0 1 0 Elapidae Micrurus distans 1 1 1 1 0 0 0 1 0 0 0 0 0 Leptotyphlopidae Rena humilis 0 1 0 0 0 0 0 0 0 0 1 0 0 Viperidae Agkistrodon bilineatus 0 0 0 1 0 0 1 0 0 0 0 0 0 Crotalus basiliscus 0 1 0 0 0 0 1 0 0 1 0 0 0 Species richness 2 10 6 8 4 4 7 5 6 7 6 7 7 82 Appendix Table A6. Incidence matrix and summary of richness for migratory bird species at each study site. Family Species BAS HN1 HN2 JGP JMM LFH LFO LIM NA1 NA2 ZAP UDG UNAM Cardinalidae Passerina caerulea 0 0 0 0 1 0 0 0 0 0 0 0 0 Passerina ciris 1 0 0 0 1 0 1 1 1 0 1 1 0 Passerina versicolor 1 1 1 1 1 1 1 1 1 1 1 1 0 Pheucticus melanocephalus 0 0 0 0 0 0 1 0 0 0 0 0 0 Piranga ludoviciana 0 0 0 0 0 0 0 0 0 1 0 0 1 Piranga rubra 1 1 1 0 0 0 0 0 0 0 0 0 0 Emberizidae Melospiza lincolnii 0 0 0 0 1 1 0 0 1 1 0 0 0 Hirundinidae Tachycineta bicolor 0 0 0 0 0 0 0 0 1 0 0 0 0 Icteridae Icterus cucullatus 0 0 0 0 0 0 1 1 0 0 1 0 0 Icterus spurius 0 0 0 0 1 0 1 0 1 0 1 0 0 Molothrus ater 0 0 0 0 1 0 0 0 1 0 0 0 0 Parulidae Basileuterus lachrymosus 0 0 0 0 0 0 0 0 0 0 0 1 0 Cardellina pusilla 0 1 0 1 0 0 0 0 0 1 0 0 0 Geothlypis tolmiei 0 0 1 0 0 0 0 0 0 0 1 0 0 Icteria virens 1 1 1 1 1 1 1 1 1 0 1 1 0 Mniotilta varia 1 0 0 0 0 0 1 0 0 0 0 0 0 Oreothlypis luciae 0 0 0 0 0 0 0 0 0 0 1 0 0 Oreothlypis ruficapilla 1 1 0 1 0 1 1 1 1 1 0 1 1 Parkesia motacilla 0 0 0 0 0 1 1 0 0 0 0 0 1 Seiurus aurocapilla 0 0 1 0 0 0 0 0 0 0 0 0 1 Setophaga petechia 1 0 1 1 1 0 1 1 1 0 1 0 0 Polioptilidae Polioptila caerulea 1 0 0 1 1 1 1 1 1 1 0 0 0 Thraupidae Saltator coerulescens 1 0 0 1 1 1 1 1 1 1 1 0 1 Turdidae Catharus aurantiirostris 0 1 0 0 0 0 0 0 0 0 0 0 0 Catharus ustulatus 0 1 0 0 0 0 0 0 0 1 0 1 1 Tyrannidae Empidonax minimus 1 1 1 1 1 1 0 1 1 0 1 0 1 Myiarchus cinerascens 1 0 0 0 1 1 0 1 1 1 1 1 0 Myiarchus tyrannulus 1 1 1 1 1 1 1 1 1 1 1 1 1 Vireonidae Vireo bellii 1 0 0 0 0 0 1 1 1 0 0 0 1 Vireo gilvus 1 0 0 0 1 0 1 1 1 0 0 1 1 Vireo hypochryseus 0 0 0 0 1 0 0 0 0 0 0 0 0 Species richness 14 9 8 9 15 10 15 13 16 10 12 9 10 83 Appendix Table A7. Incidence matrix and summary of richness for resident bird species at each study site. Family Species BAS HN1 HN2 JGP JMM LFH LFO LIM NA1 NA2 ZAP UDG UNAM Cardinalidae Cyanocompsa parellina 1 1 1 1 1 1 1 1 1 1 1 1 1 Granatellus venustus 0 1 1 1 1 0 1 0 0 1 0 1 1 Passerina leclancherii 1 1 1 1 1 1 1 1 1 1 1 0 1 Pheucticus chrysopeplus 0 0 0 1 0 0 0 1 0 0 0 0 1 Corvidae Cyanocorax formosa 1 1 1 1 0 1 1 0 1 1 0 1 1 Cyanocorax sanblasianus 1 0 0 1 1 1 1 1 1 0 1 1 1 Emberizidae Arremonops rufivirgatus 1 1 1 1 1 1 1 1 1 1 1 1 1 Peucaea ruficauda 1 0 1 1 1 1 1 1 1 1 1 0 0 Furnariidae Xiphorhynchus flavigaster 0 0 1 1 0 0 0 0 0 1 0 1 1 Icteridae Cassiculus melanicterus 1 1 1 1 1 1 1 1 1 1 1 1 1 Icterus pustulatus 1 1 1 1 1 1 1 1 1 1 1 1 1 Quiscalus mexicanus 0 0 0 0 1 0 0 0 0 0 0 0 0 Mimidae Melanotis caerulescens 0 0 0 0 1 1 0 0 0 0 1 0 0 Parulidae Setophaga pitiayumi 1 1 1 1 1 1 0 1 0 1 1 1 1 Polioptilidae Polioptila nigriceps 1 0 0 1 0 0 1 0 1 1 0 1 0 Rhodinocichlidae Rhodinocichla rosea 0 0 1 0 0 0 0 1 0 1 1 1 1 Thraupidae Sporophila minuta 0 0 0 0 0 0 0 0 0 0 1 0 0 Volatinia jacarina 1 1 0 1 1 1 1 1 1 1 1 0 0 Tityridae Pachyramphus aglaiae 0 0 1 0 0 0 0 1 0 1 0 0 1 Tityra semifasciata 0 0 0 0 0 0 0 0 0 1 0 1 1 Troglodytidae Pheugopedius felix 1 1 1 1 1 1 1 1 1 1 1 1 1 Thryophilus sinaloa 1 1 1 1 1 1 1 1 1 1 1 1 1 Uropsila leucogastra 1 1 1 1 1 1 1 1 1 0 1 1 1 Turdidae Turdus rufopalliatus 1 0 1 1 1 1 1 1 1 1 1 0 1 Tyrannidae Attila spadiceus 1 1 0 1 1 1 0 0 1 1 0 1 1 Camptostoma imberbe 0 0 0 0 1 0 0 1 1 1 0 0 0 Deltarhynchus flammulatus 1 0 0 0 1 0 0 1 0 1 0 0 1 Empidonax difficilis 1 1 1 1 1 1 1 1 1 1 1 1 1 Myiarchus nuttingi 1 1 1 1 1 1 1 1 1 1 1 1 1 Myiarchus tuberculifer 1 1 1 1 1 1 1 1 1 1 1 1 1 Myiarchus tyrannulus 0 0 1 1 1 1 1 1 1 0 1 0 1 Myiodynastes luteiventris 0 0 0 0 0 0 0 1 0 1 0 0 0 Pitangus sulphuratus 0 0 0 0 1 1 1 0 0 1 0 0 0 Tyrannus crassirostris 0 0 0 0 0 0 1 0 0 0 0 0 0 Tyrannus melancholicus 0 0 0 0 0 0 0 1 0 0 0 0 0 Tyrannus vociferans 1 1 1 1 1 1 1 1 1 1 1 1 1 Species richness 21 17 21 24 25 22 22 25 21 27 21 20 25 84 Appendix Table A8. Incidence matrix and summary of richness for rodent species at each study site. Family Species BAS HN1 HN2 JGP JMM LFH LFO LIM NA1 NA2 ZAP UDG UNAM Cricetidae Baiomys musculus 1 1 1 1 1 1 1 1 1 1 1 0 0 Oryzomys couesi 1 1 1 1 1 1 1 1 1 0 1 1 1 Osgoodomys banderanus 1 1 1 1 1 1 1 1 1 1 1 1 1 Peromyscus perfulvus 1 1 1 1 0 1 0 0 0 0 1 1 1 Reithrodontomys fulvescens 0 1 0 0 1 0 1 1 1 1 0 0 0 Sigmodon alleni 1 1 0 1 1 1 1 1 1 1 1 0 1 Sigmodon mascotensis 1 1 1 1 1 1 1 1 1 1 1 0 1 Heteromyidae Liomys pictus 1 1 1 1 1 1 1 1 1 1 1 1 1 Species richness 7 8 6 7 7 7 7 7 7 6 7 4 6 85 Appendix Table A9. Incidence matrix and summary of richness for bat species at each study site. Family Species BAS HN1 HN2 JGP JMM LFH LFO LIM NA1 NA2 ZAP UDG UNAM Mormoopidae Mormoops megalophylla 0 0 0 0 0 0 0 0 0 0 0 0 1 Pteronotus davyi 1 0 0 0 0 0 0 0 0 0 0 0 0 Pteronotus parnellii 1 1 0 0 1 0 1 1 1 1 1 1 1 Phyllostomidae Artibeus hirsutus 0 0 1 0 0 0 0 0 0 0 0 1 0 Artibeus jamaicensis 1 1 1 1 1 1 1 1 1 1 1 1 1 Artibeus lituratus 0 1 1 0 0 0 0 0 1 1 1 0 1 Artibeus phaeotis 1 1 1 1 1 1 0 1 1 1 1 1 1 Artibeus toltecus 1 0 0 1 0 1 0 1 1 1 0 1 0 Centurio cenex 0 0 0 0 0 0 0 0 1 1 0 0 0 Choeroniscus godmani 0 0 1 1 0 0 0 0 0 1 0 0 1 Desmodus rotundus 1 1 1 1 0 1 1 0 1 1 1 1 1 Glossophaga soricina 1 1 1 1 1 1 1 1 1 1 1 1 1 Leptonycteris yerbabuenae 1 0 1 1 1 1 0 0 1 0 0 1 1 Musonycteris harrisoni 0 0 0 0 0 0 0 0 1 0 0 0 0 Sturnira parvidens 1 1 1 0 0 1 0 1 1 1 1 0 1 Species richness 9 7 9 7 5 7 4 6 11 10 7 8 10 86 Appendix Figure A1. Canonical ordination of the anuran metacommunity in Chamela region in relation to vegetation attributes. Species are indicated with a red color. Sites are written in black. Vegetation variables are color blue and indicated as: LAI = Leaf Area Index, MDS2 = scores for the second axis of the MDS for vegetation composition. Abbreviations of anuran species are given in Appendix A.1. 87 Appendix Figure A2. Canonical ordination of the anuran metacommunity in Chamela region in relation to landscape attributes of dry forest. Species are indicated with a red color. Sites are written in black. Landscape variables are color blue. Abbreviations of anuran species are given in Appendix A.1. 88 Appendix Figure A3. Canonical ordination of the anuran metacommunity in Chamela region in relation to landscape attributes of riparian forest. Species are indicated with a red color. Sites are written in black. The landscape variable is color blue. Abbreviations of anuran species are given in Appendix A.1. 89 Appendix Figure A4. Canonical ordination of the lizard metacommunity in Chamela region in relation to vegetation attributes. Species are indicated with a red color. Sites are written in black. The vegetation variable is color blue. Abbreviations of lizard species are given in Appendix A.2. 90 Appendix Figure A5. Canonical ordination of the metacommunity of migratory birds in Chamela region in relation to vegetation attributes. Species are indicated with a red color. Sites are written in black. The vegetation variable is color blue. Abbreviations of migratory bird species are given in Appendix A.4. 91 Appendix Figure A6. Canonical ordination of the metacommunity of resident birds in Chamela region in relation to landscape attributes of dry forest. Species are indicated with a red color. Sites are written in black. The landscape variable is color blue. Abbreviations of resident bird species are given in Appendix A.5. 92 Appendix Figure A7. Canonical ordination of the rodent metacommunity in Chamela region in relation to landscape attributes of riparian forest. Species are indicated with a red color. Sites are written in black. The landscape variable is color blue. Abbreviations of rodent species are given in Appendix A.6. 93 Appendix Figure A8. Canonical ordination of the rodent metacommunity in Chamela region in relation to vegetation attributes. Species are indicated with a red color. Sites are written in black. The vegetation variable is color blue and is indicated as: MDS2 = scores for the second axis of the MDS for vegetation composition. Abbreviations of rodent species are given in Appendix A.6. 94 Appendix Figure A9. Canonical ordination of the bat metacommunity in Chamela region in relation to vegetation attributes. Species are indicated with a red color. Sites are written in black. Vegetation variables are color blue and are indicated as: MDS1 = scores for the first axis of the MDS for vegetation composition, MDS3 = scores for the third axis of the MDS for vegetation composition, Num. Woody Individuals = number of woody individuals. Abbreviations of bat species are given in Appendix A.7. 95 Capítulo 3 96 Consideraciones finales Esta tesis tuvo como objetivo identificar los mecanismos que estructuran a las metacomunidades de anuros, lagartijas, serpientes, aves, roedores y murciélagos en las etapas sucesionales tempranas del bosque tropical seco de Chamela. Con base en los resultados obtenidos a partir de los análisis de los elementos de la estructura de la metacomunidad, se puede concluir que las metacomunidades de vertebrados presentan en su mayoría quasi estructuras, principalmente de patrón gleasoniano, seguido por el clementsiano. Se sugiere que las especies de las metacomunidades con estructura Gleasoniana o quasi Gleasoniana en este sistema responden de manera individual a los gradientes ambientales en la región, mientras que aquellas de estructura quasi Clementsiana podrían responder de forma conjunta a este gradiente (Leibold et al., 2004; Presley et al., 2010). Asimismo, estos resultados en conjunto con los análisis de las respuestas de los grupos vertebrados a los atributos del paisaje y la vegetación apuntan a que los principales mecanismos operando en las EST son los de “species sorting” y efecto de masa. Esto resalta la importancia conservar la conectividad y cobertura de bosque seco y ripario a diferentes escalas, así como de preservar la diversidad vegetal, ya que tanto los atributos del paisaje, así como la composición y complejidad estructural de la vegetación demostraron ser responsables de parte de la variación de las especies de vertebrados en las metacomunidades. Por otro lado, la presencia de especies que generalmente son exclusivas de bosques maduros en los sitios en regeneración resalta la importancia de los bosques secundarios como sitios de refugio y de provisión de recursos (p. ej., alimentos) (DeWalt et al., 2003) que son utilizados por diferentes especies de vertebrados. En este sentido, aunque a simple vista los bosques en EST pudieran parecer de menor valor ecológico comparados con los bosques maduros, los altos niveles de diversidad y de recambio de especies encontrados para las comunidades locales, apoyan también la necesidad de conservar los diferentes remanentes de BTS que se encuentran en estas etapas para asegurar la protección del mayor número de especies y comunidades posibles. 97 Estos datos sugieren que actualmente las comunidades de vertebrados terrestres en el bosque tropical seco de Chamela son resilientes y pueden absorber en cierto grado la perturbación humana, sin embargo, esto solo es posible gracias a: 1) el papel fundamental que juega el bosque maduro de la Reserva de la Biósfera Chamela- Cuixmala, que funge como la fuente de especies que permite la dispersión, recolonización y presencia de estas en sitios que fueron perturbados y que están experimentado un proceso de sucesión secundaria; 2) la conectividad entre los fragmentos de bosque, que permiten la dispersión de las especies entre parches; 3) la capacidad de dispersión de las especies y la tolerancia a las condiciones encontradas en los bosques secundarios. Finalmente, no hay que olvidar que el estudio de las etapas sucesionales tempranas y de los grupos que las habitan es muy importante para evaluar si el ecosistema es resiliente ante cambios ocasionados por disturbios de origen antrópico. La presencia de ciertas especies y mecanismos durante estos estadios pueden definir el camino del bosque tropical seco a lo largo de la sucesión ecológica (Swanson et al., 2011) al alterar o modificar procesos como la polinización, el reclutamiento de plantas, la dispersión de semillas, el control de herbivoría, entre otros (Cortés-Gómez et al., 2015; Dial & Roughgarden, 1995; Heithaus et al., 2012; Hilje et al., 2015; Muscarella & Fleming, 2007; Tellería et al., 2005; Velho et al., 2012). Por estos motivos, las EST deben ser tomadas en cuenta en el futuro dentro de los planes de conservación y manejo para preservar su diversidad característica y sus procesos ecológicos. 98 Referencias Anand, M. (1994). PATTERN, PROCESS AND MECHANISM - THE FUNDAMENTALS OF SCIENTIFIC INQUIRY APPLIED TO VEGETATION SCIENCE. Coenoses, 9(2), 81–92. Balvanera, P., Castillo, A., & Martínez-Harms, M. J. (2011). Ecosystem Services in Seasonally Dry Tropical Forests. In R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally Dry Tropical Forests: Ecology and Conservation (pp. 259–277). Island Press. https://doi.org/10.5822/978-1-61091- 021-7_15 Blake, J. G., & Loiselle, B. A. (2001). Bird Assemblages in Second-Growth and Old-Growth Forests, Costa Rica: Perspectives From Mist Nets and Point Counts. The Auk, 118(2), 304–326. https://doi.org/10.1093/auk/118.2.304 Brasil, L. S., Vieira, T. B., de Oliveira-Junior, J. M. B., Dias-Silva, K., & Juen, L. (2017). Elements of metacommunity structure in Amazonian Zygoptera among streams under different spatial scales and environmental conditions. Ecology and Evolution, 7(9), 3190–3200. https://doi.org/10.1002/ece3.2849 Burgos, A., & Maass, J. M. (2004). Vegetation change associated with land-use in tropical dry forest areas of Western Mexico. Agriculture, Ecosystems and Environment, 104(3), 475–481. https://doi.org/10.1016/j.agee.2004.01.038 Carrillo-Rubio, E., Kéry, M., Morrelae, S., Sullivan, P. J., Gardner, B., Cooch, E. G., & Lassoie, J. P. (2014). Use of Multispecies Occupancy Models to Evaluate the Response of Bird Communities to Forest Degradation Associated with Logging. Conservation Biology, 28(4), 1034–1044. https://doi.org/https://doi.org/10.1111/cobi.12261 Cavalheri, H., Both, C., & Martins, M. (2015). The Interplay between Environmental Filtering and Spatial Processes in Structuring Communities: The Case of Neotropical Snake Communities. PLoS ONE, 10(6), e0127959. Challenger, A., & Dirzo, R. (2009). Factores de cambio y estado de la biodiversidad. In J. Sarukhán, R. Dirzo, R. González, & I. J. March (Eds.), Capital natural de México, vol II: Estado de conservación y tendencias de cambio (pp. 37–73). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Chase, J. M., & Leibold, M. A. (2003). Ecological Niches. University of Chicago Press. https://doi.org/doi:10.7208/9780226101811 Cisneros, L. M., Fagan, M. E., & Willig, M. R. (2015). Season-specific and guild-specific effects of anthropogenic landscape modification on metacommunity structure of tropical bats. Journal of Animal Ecology, 84(2), 373–385. https://doi.org/https://doi.org/10.1111/1365-2656.12299 99 Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Carnegie Institution of Washington. Cortés-Gómez, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A., & Ladle, R. J. (2015). Ecological functions of neotropical amphibians and reptiles: a review. Universitas Scientiarum, 20(2), 229–245. Cottenie, K. (2005). Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters, 8(11), 1175–1182. https://doi.org/10.1111/j.1461-0248.2005.00820.x Dalmolin, D. A., Tozetti, A. M., & Pereira, M. J. R. (2020). Living in a changing world: effects of roads and Pinus monocultures on an anuran metacommunity in southern Brazil. BioRxiv, 2020.07.31.231647. https://doi.org/10.1101/2020.07.31.231647 de la Sancha, N. U., Higgins, C. L., Presley, S. J., & Strauss, R. E. (2014). Metacommunity structure in a highly fragmented forest: Has deforestation in the Atlantic Forest altered historic biogeographic patterns? Diversity and Distributions, 20(9), 1058–1070. https://doi.org/10.1111/ddi.12210 Delatorre, M., Cunha, N., Raizer, J., & Ferreira, V. L. (2015). Evidence of stochasticity driving anuran metacommunity structure in the Pantanal wetlands. Freshwater Biology, 60(11), 2197–2207. https://doi.org/https://doi.org/10.1111/fwb.12648 DeWalt, S. J., Maliakal, S. K., & Denslow, J. S. (2003). Changes in vegetation structure and composition along a tropical forest chronosequence: implications for wildlife. Forest Ecology and Management, 182(1), 139–151. https://doi.org/https://doi.org/10.1016/S0378-1127(03)00029-X Dial, R., & Roughgarden, J. (1995). Experimental Removal of Insectivores from Rain Forest Canopy: Direct and Indirect Effects. Ecology, 76(6), 1821–1834. https://doi.org/https://doi.org/10.2307/1940714 Diamond, J. M. (1975). Assembly of species communities. In M. L. Cody & J. M. Diamond (Eds.), Ecology and evolution of communities (pp. 342–444). Harvard University Press. Ducatez, S., & Shine, R. (2017). Drivers of Extinction Risk in Terrestrial Vertebrates. Conservation Letters, 10(2), 186–194. https://doi.org/https://doi.org/10.1111/conl.12258 Durán, E., Meave, J. A., Lott, E. J., & Segura, G. (2006). Structure and tree diversity patterns at the landscape level in a Mexican tropical deciduous forest. Boletín de la Sociedad Botánica de México, 79, 43–60. Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 FAO. (2006). Global Forest Resources Assessment 2005 (No. 147). FAO Forestry paper. https://doi.org/10.1017/CBO9781107415324.004 100 FAO. (2007). State of the World’s Forests 2007. FAO. FAO. (2019). Trees, forests and land use in drylands: the first global assessment. In Forest Ecology and Management (No. 158; Vol. 158). FAO. Fraga-Ramírez, Y., Suazo-Ortuño, I., Avila-Cabadilla, L. D., Alvarez-Añorve, M. Y., & Alvarado-Díaz, J. (2017). Multiscale analysis of factors influencing herpetofaunal assemblages in early successional stages of a tropical dry forest in western Mexico. Biological Conservation, 209, 196–210. https://doi.org/10.1016/j.biocon.2017.02.021 Franklin, A., Noon, B., & George, T. (2002). What is habitat fragmentation? Studies in Avian Biology, 25, 20–29. García–Quintas, A., & A., P. I. (2017). Underlying factors promoting nestedness of bird assemblages in cays of the Jardines de la Reina archipelago, Cuba. Animal Biodiversity and Conservation, 40(1), 7– 16. https://doi.org/10.32800/abc.2017.40.0007 Gleason, H. A. (1926). The Individualistic Concept of the Plant Association. Bulletin of the Torrey Botanical Club, 53(1), 7–26. https://doi.org/10.2307/2479933 Hagen, M., Kissling, W. D., Rasmussen, C., De Aguiar, M. A. M., Brown, L. E., Carstensen, D. W., Alves- Dos-Santos, I., Dupont, Y. L., Edwards, F. K., Genini, J., Guimarães, P. R., Jenkins, G. B., Jordano, P., Kaiser-Bunbury, C. N., Ledger, M. E., Maia, K. P., Marquitti, F. M. D., Mclaughlin, Ó., Morellato, L. P. C., … Olesen, J. M. (2012). 2 - Biodiversity, Species Interactions and Ecological Networks in a Fragmented World. In U. Jacob & G. B. T.-A. in E. R. Woodward (Eds.), Global Change in Multispecies Systems Part 1 (Vol. 46, pp. 89–210). Academic Press. https://doi.org/https://doi.org/10.1016/B978- 0-12-396992-7.00002-2 Heino, J., Melo, A. S., Siqueira, T., Soininen, J., Valanko, S., & Bini, L. M. (2015). Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshwater Biology, 60(5), 845–869. https://doi.org/10.1111/fwb.12533 Heithaus, M. R., Wirsing, A. J., & Dill, L. M. (2012). The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Marine and Freshwater Research, 63(11), 1039–1050. Hernández-Martínez, J., Morales-Malacara, J. B., Alvarez-Añorve, M. Y., Amador-Hernández, S., Oyama, K., & Avila-Cabadilla, L. D. (2019). Drivers potentially influencing host-bat fly interactions in anthropogenic neotropical landscapes at different spatial scales. Parasitology, 146(1), 74–88. https://doi.org/10.1017/S0031182018000732 Hernández-Ordóñez, O., Santos, B. A., Pyron, R. A., Arroyo-Rodríguez, V., Urbina-Cardona, J. N., Martínez-Ramos, M., Parra-Olea, G., & Reynoso, V. H. (2019). Species sorting and mass effect along 101 forest succession: Evidence from taxonomic, functional, and phylogenetic diversity of amphibian communities. Ecology and Evolution, 9(9), 5206–5218. https://doi.org/https://doi.org/10.1002/ece3.5110 Hilje, B., Calvo-Alvarado, J., Jiménez-Rodríguez, C., & Sánchez-Azofeifa, A. (2015). Tree Species Composition, Breeding Systems, and Pollination and Dispersal Syndromes in Three Forest Successional Stages in a Tropical Dry Forest in Mesoamerica. Tropical Conservation Science, 8(1), 76–94. https://doi.org/10.1177/194008291500800109 Holyoak, M., Leibold, M. A., & Holt, R. D. (2005). Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press. Hubbell, S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press. https://doi.org/10.2307/j.ctt7rj8w Janzen, D. H. (1988). Tropical Dry Forests. In E. O. Willis & F. M. Peter (Eds.), Biodiversity (pp. 130–137). National Academy Press. Josefson, A. B. (2016). Species Sorting of Benthic Invertebrates in a Salinity Gradient – Importance of Dispersal Limitation. PLoS ONE, 11(12), e0168908. Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R. K., Helm, A., Kuussaari, M., Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Pöyry, J., Raatikainen, K. M., Sang, A., Stefanescu, C., Teder, T., Zobel, M., & Steffan-Dewenter, I. (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecology Letters, 13(5), 597–605. https://doi.org/https://doi.org/10.1111/j.1461-0248.2010.01457.x Lawson, L. P., Niedzwiecki, J., & Petren, K. (2019). Darwin’s finches: a model of landscape effects on metacommunity dynamics in the Galápagos Archipelago. Ecography, 42(10), 1636–1647. https://doi.org/https://doi.org/10.1111/ecog.04511 Leavitt, D. J., & Fitzgerald, L. A. (2013). Disassembly of a dune-dwelling lizard community due to landscape fragmentation. Ecosphere, 4(8), art97. https://doi.org/https://doi.org/10.1890/ES13-00032.1 Leibold, M. A., & Chase, J. M. (2018). Metacommunity Ecology, Volume 59. Princeton University Press. https://doi.org/10.2307/j.ctt1wf4d24 Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R., Tilman, D., Loreau, M., & Gonzalez, A. (2004). The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7(7), 601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x Leibold, M. A., & Mikkelson, G. M. (2002). Coherence, species turnover, and boundary clumping: Elements 102 of meta-community structure. Oikos, 97(2), 237–250. https://doi.org/10.1034/j.1600- 0706.2002.970210.x Levins, R., & Culver, D. (1971). Regional Coexistence of Species and Competition between Rare Species. Proceedings of the National Academy of Sciences, 68(6), 1246–1248. https://doi.org/10.1073/pnas.68.6.1246 Leyequién-Abarca, E., de Boer, W. F., & Toledo, V. M. (2006). Fragmentation and habitat loss: species richness responses in an avian metacommunity in Cuetzalan region, Mexico. In E. Leyequién-Abarca (Ed.), PhD Thesis. Birds, Traditional Coffee Plantations and Spatial complexity: The Diversity Puzzle. Wageningen University. López-González, C., & Lozano, A. (2015). Metacommunity Structure of Small Mammals In Western Mexico: Is the San Pedro-Mezquital River a Biological Corridor? The Southwestern Naturalist, 60(4), 327–335. https://doi.org/10.1894/0038-4909-60.4.327 López-González, C., Presley, S. J., Lozano, A., Stevens, R. D., & Higgins, C. L. (2012). Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. Journal of Biogeography, 39(1), 177–192. https://doi.org/https://doi.org/10.1111/j.1365-2699.2011.02590.x López-González, C., Presley, S. J., Lozano, A., Stevens, R. D., & Higgins, C. L. (2015). Ecological biogeography of Mexican bats: the relative contributions of habitat heterogeneity, beta diversity, and environmental gradients to species richness and composition patterns. Ecography, 38(3), 261–272. https://doi.org/https://doi.org/10.1111/ecog.00813 Martínez-Ferreira, S. R., Alvarez-Añorve, M. Y., Bravo-Monzón, A. E., Montiel-González, C., Flores-Puerto, J. I., Morales-Díaz, S. P., Chiappa-Carrara, X., Oyama, K., & Avila-Cabadilla, L. D. (2020). Taxonomic and Functional Diversity and Composition of Bats in a Regenerating Neotropical Dry Forest. Diversity, 12(9), 332. https://doi.org/10.3390/d12090332 Masera, O. R., Ordóñez, M. J., & Dirzo, R. (1997). CARBON EMISSIONS FROM MEXICAN FORESTS: CURRENT SITUATION AND LONG-TERM SCENARIOS. Climatic Change, 35(3), 265–295. https://doi.org/10.1023/A:1005309908420 Massa, C., Teta, P., & Cueto, G. R. (2020). Changes in the roles of spatial and environmental processes in the structuring of rodent metacommunities. Basic and Applied Ecology, 45, 42–50. https://doi.org/https://doi.org/10.1016/j.baae.2020.03.001 Meave, J. A., Romero-Romero, M. A., Salas-Morales, S. H., Pérez-García, E. A., & Gallardo-Cruz, J. A. (2012). Diversidad, amenazas y oportunidades para la conservación del bosque tropical caducifolio en el estado de Oaxaca, México. Ecosistemas, 21(1–2), 85–100. 103 Meynard, C. N., & Quinn, J. F. (2008). BIRD METACOMMUNITIES IN TEMPERATE SOUTH AMERICAN FOREST: VEGETATION STRUCTURE, AREA, AND CLIMATE EFFECTS. Ecology, 89(4), 981–990. https://doi.org/https://doi.org/10.1890/07-0350.1 Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3), 491–505. https://doi.org/10.1111/j.1365-2699.2005.01424.x Monroy-Sais, S., García-Frapolli, E., Mora, F., Skutsch, M., Casas, A., Gerritsen, P. R. W., Cohen-Salgado, D., & Ugartechea-Salmerón, O. (2020). Unraveling households’ natural resource management strategies: a case study in Jalisco, Mexico. Ecosystems and People, 16(1), 175–187. https://doi.org/10.1080/26395916.2020.1767213 Morales-Díaz, S. P., Alvarez-Añorve, M. Y., Zamora-Espinoza, M. E., Dirzo, R., Oyama, K., & Avila- Cabadilla, L. D. (2019). Rodent community responses to vegetation and landscape changes in early successional stages of tropical dry forest. Forest Ecology and Management, 433(November 2018), 633–644. https://doi.org/10.1016/j.foreco.2018.11.037 Mouquet, N., & Loreau, M. (2003). Community Patterns in Source‐Sink Metacommunities. The American Naturalist, 162(5), 544–557. https://doi.org/10.1086/378857 Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17(1986), 67–88. Muscarella, R., & Fleming, T. H. (2007). The Role of Frugivorous Bats in Tropical Forest Succession. Biological Reviews, 82(4), 573–590. https://doi.org/https://doi.org/10.1111/j.1469-185X.2007.00026.x Ochoa-Ochoa, L. M., & Whittaker, R. J. (2014). Spatial and temporal variation in amphibian metacommunity structure in Chiapas, Mexico. Journal of Tropical Ecology, 30(6), 537–549. Olson, D. M., & Dinerstein, E. (1998). The global 200: A representation approach to conserving the earth’s most biologically valuable ecoregions. Conservation Biology, 12(3), 502–515. https://doi.org/10.1046/j.1523-1739.1998.012003502.x Patterson, B. D., & Atmar, W. (1986). Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society, 28(1–2), 65–82. https://doi.org/10.1111/j.1095-8312.1986.tb01749.x Pennington, R. T., Lavin, M., & Oliveira-Filho, A. (2009). Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. Annual Review of Ecology, Evolution, and Systematics, 40(1), 437–457. https://doi.org/10.1146/annurev.ecolsys.110308.120327 Presley, S. J., Cisneros, L. M., Patterson, B. D., & Willig, M. R. (2012). Vertebrate metacommunity structure 104 along an extensive elevational gradient in the tropics: A comparison of bats, rodents and birds. Global Ecology and Biogeography, 21(10), 968–976. https://doi.org/10.1111/j.1466-8238.2011.00738.x Presley, S. J., Higgins, C. L., López-González, C., & Stevens, R. D. (2009). Elements of metacommunity structure of Paraguayan bats: multiple gradients require analysis of multiple ordination axes. Oecologia, 160(4), 781–793. https://doi.org/10.1007/s00442-009-1341-x Presley, S. J., Higgins, C. L., & Willig, M. R. (2010). A comprehensive framework for the evaluation of metacommunity structure. Oikos, 119(6), 908–917. https://doi.org/10.1111/j.1600-0706.2010.18544.x Provete, D. B., Gonçalves-Souza, T., Garey, M. V, Martins, I. A., & Rossa-Feres, D. de C. (2014). Broad- scale spatial patterns of canopy cover and pond morphology affect the structure of a Neotropical amphibian metacommunity. Hydrobiologia, 734(1), 69–79. https://doi.org/10.1007/s10750-014-1870- 0 Quesada, M., Rosas, F., Aguilar, R., Ashworth, L., Rosas-Guerrero, V. M., Sayago, R., Lobo, J. A., Herrerías-Diego, Y., & Sánchez-Montoya, G. (2011). Human Impacts on Pollination, Reproduction, and Breeding Systems in Tropical Forest Plants. In R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally Dry Tropical Forests: Ecology and Conservation (pp. 173–194). Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-021-7_11 RAE. (2020). Diccionario de la lengua española, 23.a ed. [versión 23.4 en línea]. https://dle.rae.es Ruiz-García, S. Y., & Avila-Cabadilla, L. D. (2016). Factores que determinan la estructura y composición de las comunidades de aves en etapas iniciales de la sucesión del bosque tropical seco. Universidad Nacional Autónoma de México. Ryberg, W. A., & Fitzgerald, L. A. (2016). Landscape composition, not connectivity, determines metacommunity structure across multiple scales. Ecography, 39(10), 932–941. https://doi.org/https://doi.org/10.1111/ecog.01321 Rzedowski, J. (2006). Bosque tropical caducifolio (J. Rzedowski (ed.)). Vegetación de México; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. http://www.biodiversidad.gob.mx/publicaciones/librosDig/pdf/VegetacionMxC12.pdf Sánchez-Azofeifa, G. A., & Portillo-Quintero, C. (2011). Extent and Drivers of Change of Neotropical Seasonally Dry Tropical Forests. In R. Dirzo, H. S. Young, H. A. Mooney, & G. Ceballos (Eds.), Seasonally Dry Tropical Forests: Ecology and Conservation (pp. 45–57). Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-021-7_3 Semarnat. (2019). Informe de la Situación del Medio Ambiente en México, edición 2018. Simberloff, D. (1983). Competition Theory, Hypothesis-Testing, and Other Community Ecological 105 Buzzwords. The American Naturalist, 122(5), 626–635. https://doi.org/10.1086/284163 Siyum, Z. G. (2020). Tropical dry forest dynamics in the context of climate change: syntheses of drivers, gaps, and management perspectives. Ecological Processes, 9(1), 25. https://doi.org/10.1186/s13717- 020-00229-6 Solé, R. V, Alonso, D., & Saldaña, J. (2004). Habitat fragmentation and biodiversity collapse in neutral communities. Ecological Complexity, 1(1), 65–75. https://doi.org/https://doi.org/10.1016/j.ecocom.2003.12.003 Stevens, R. D., Stuhler, J. D., & Grimshaw, J. R. (2020). Chiropteran metacommunity structure in the Atlantic Forest of South America. Journal of Biogeography, 47(10), 2141–2155. https://doi.org/https://doi.org/10.1111/jbi.13921 Stevens, R. D., & Tello, J. S. (2009). Micro- and Macrohabitat Associations in Mojave Desert Rodent Communities. Journal of Mammalogy, 90(2), 388–403. https://doi.org/10.1644/08-MAMM-A-141.1 Stevens, R. D., & Tello, J. S. (2012). Do desert rodents form metacommunities? Journal of Mammalogy, 93(4), 1029–1041. https://doi.org/10.1644/11-MAMM-A-292.2 Swanson, M. E., Franklin, J. F., Beschta, R. L., Crisafulli, C. M., DellaSala, D. A., Hutto, R. L., Lindenmayer, D. B., & Swanson, F. J. (2011). The forgotten stage of forest succession: Early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment, 9(2), 117–125. https://doi.org/10.1890/090157 Tellería, J. L., Ramírez, Á., & Pérez-Tris, J. (2005). Conservation of seed-dispersing migrant birds in Mediterranean habitats: Shedding light on patterns to preserve processes. Biological Conservation, 124(4), 493–502. https://doi.org/https://doi.org/10.1016/j.biocon.2005.02.011 Tilman, D. (1982). Resource Competition and Community Structure. Princeton University Press. https://doi.org/doi:10.1515/9780691209654 Torres, R., Gasparri, N. I., Blendinger, P. G., & Grau, H. R. (2014). Land-use and land-cover effects on regional biodiversity distribution in a subtropical dry forest: A hierarchical integrative multi-taxa study. Regional Environmental Change, 14(4), 1549–1561. https://doi.org/10.1007/s10113-014-0604-1 Urban, M. C. (2004). DISTURBANCE HETEROGENEITY DETERMINES FRESHWATER METACOMMUNITY STRUCTURE. Ecology, 85(11), 2971–2978. https://doi.org/https://doi.org/10.1890/03-0631 Velho, N., Isvaran, K., & Datta, A. (2012). Rodent seed predation: effects on seed survival, recruitment, abundance, and dispersion of bird-dispersed tropical trees. Oecologia, 169(4), 995–1004. https://doi.org/10.1007/s00442-012-2252-9 106 Verhoef, H., & Morin, P. (2009). Community Ecology: Processes, Models, and Applications. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199228973.001.0001 Wiegand, T., Revilla, E., & Moloney, K. A. (2005). Effects of Habitat Loss and Fragmentation on Population Dynamics. Conservation Biology, 19(1), 108–121. https://doi.org/https://doi.org/10.1111/j.1523- 1739.2005.00208.x Willig, M. R., & Presley, S. J. (2016). Biodiversity and metacommunity structure of animals along altitudinal gradients in tropical montane forests. Journal of Tropical Ecology, 32(5), 421–436. https://doi.org/DOI: 10.1017/S0266467415000589 Willig, M. R., Presley, S. J., Bloch, C. P., Castro-Arellano, I., Cisneros, L. M., Higgins, C. L., & Klingbeil, B. T. (2011). Tropical metacommunities along elevational gradients: Effects of forest type and other environmental factors. Oikos, 120(10), 1497–1508. https://doi.org/10.1111/j.1600-0706.2011.19218.x