

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA ENERGÍA - SISTEMAS ENERGÉTICOS

GESTIÓN DE UNA RECARGA DE COMBUSTIBLE EN EQUILIBRIO DE 24 MESES DE OPERACIÓN EN UN REACTOR NUCLEAR DE AGUA EN EBULLICIÓN

TESIS

QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: JAVIER IDALI LÓPEZ LUNA

TUTOR PRINCIPAL DR. JUAN LUIS FRANÇOIS LACOUTURE, FACULTAD DE INGENIERÍA

MÉXICO, CDMX., AGOSTO, 2024

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

PROTESTA UNIVERSITARIA DE INTEGRIDAD Y HONESTI-DAD ACADÉMICA Y PROFESIONAL

De conformidad con lo dispuesto en los artículos 87, fracción V, del Estatuto General, 68, primer párrafo, del Reglamento General de Estudios Universitarios y 26, fracción 1, y 35 del Reglamento General de Exámenes, me comprometo en todo tiempo a honrar a la Institución y a cumplir con los principios establecidos en el Código de Ética de la Universidad Nacional Autónoma de México, especialmente con los de integridad y honestidad académica.

De acuerdo con lo anterior, manifiesto que el trabajo escrito titulado: GESTIÓN DE UNA RECARGA DE COMBUSTIBLE EN EQUILIBRIO DE 24 MESES DE OPERACIÓN EN UN REACTOR NUCLEAR DE AGUA EN EBULLICIÓN, que presenté para obtener el grado de maestría es original, de mi autoría y lo realicé con el rigor metodológico exigido por mi programa de posgrado, citando las fuentes de ideas, textos, imágenes, gráficos u otro tipo de obras empleadas para su desarrollo.

En consecuencia, acepto que la falta de cumplimiento de las disposiciones reglamentarias y normativas de la Universidad, en particular las ya referidas en el Código de Ética, llevará a la nulidad de los actos de carácter académico administrativo del proceso de graduación.

Atentamente

Javier Idali López Luna Número de cuenta: 314256889

Jurado asignado:

Presidente: Dra. Martín del Campo Márquez Cecilia

Secretario: Dr. Castillo Méndez José Alejandro

1er. Vocal: Dr. François Lacouture Juan Luis

2do. Vocal: Dr. Ortiz Servin Juan José

3er. Vocal: Dr. Montes Tadeo José Luis

Lugar o lugares donde se realizó la tesis: POSGRADO DE INGENIERÍA, UNAM.

Tutor de tesis Dr. François Lacouture Juan Luis **FIRM**'A

Agradecimientos

Al igual que en mi tesis de licenciatura agradezco a Leonila, mi madre, por siempre creer en mí y por seguir siendo mi mayor apoyo en todos mis proyectos, espero algún día poder devolverle un poco de lo mucho que hace por mí.

A la par que termino esta tesis se cumplen 14 años de que mi papá no esté conmigo físicamente, pero lo llevo en mi mente siempre, agradezco y valoro el tiempo que compartimos, sin él todo esto no sería posible.

Agradezco a mi tutor y maestro el Dr. Juan Luis François por compartir conmigo su conocimiento para mi formación académica, por su apoyo e infinita paciencia en este trabajo, todo el tiempo me sentí respaldado, muchas gracias.

Al Dr. José Alejandro Castillo y el Dr. Juan José Ortiz, pues a pesar de que a la fecha que escribo este agradecimiento, sólo los conozco por reuniones virtuales, han sido clave para la realización de esta tesis al compartir sus *softwares* de optimización de la *lattice*, la técnica de búsqueda Tabu y enseñarme a usarlos siempre con la mejor disposición.

A la Dra. Cecilia Martín del Campo y el Dr. José Luis Montes, por aceptar ser parte del jurado y por sus valiosas observaciones para mejorar esta tesis.

Al Dr. Vladimir Lemus Yáñez por darme la oportunidad de trabajar con él durante la maestría y por ser un buen amigo.

A la Dra. Pamela Fran Nelson y el M. en C. Edgar Salazar por sus buenas clases y apoyo en la maestría.

A mis amigos Ángel Silva, Aldo Pezzat, Osiris Saavedra, Javier Zamora, Juan Carlos Medina, Patricio Vargas, Julio César Espinosa, Ramón Yabra, gracias por su amistad, espero sigamos siendo amigos por siempre.

A las personas que pagan impuestos en México, su trabajo hace posible que nos otorguen una beca que apoya a nuestra manutención durante el posgrado, espero algún día poder poner un grano de arena para hacer un mejor país.

A CONAHCYT por la beca otorgada en el periodo que realicé mis estudios de maestría.

Índice general

Re	sum	en	11
In	trodı	ıcción	13
1.	Defi	niciones y principios básicos de reactores nucleares	15
	1.1.	Fisión Nuclear	15
		1.1.1. Factor de multiplicación de neutrones efectivo	16
		1.1.2. La fórmula de seis factores	17
		1.1.3. <i>Buckling</i> geométrico y material	18
	1.2.	Reactores Nucleares	20
		1.2.1. Breve contexto histórico	20
		1.2.2. Tipos de Reactores Nucleares	21
		1.2.2.1. Reactores térmicos	21
		1.2.2.2. Reactores rápidos	22
		1.2.3. Central Nuclear Laguna Verde	22
		1.2.3.1. Descripción del núcleo del reactor	24
2.	Adn	ninistración de combustible	27
	2.1.	Primera aproximación	28
	2.2.	Diseño del núcleo del reactor	33
		2.2.1. Límites térmicos	33
		2.2.1.1. Límite termomecánico de estado estacionario MLHGR	
		(Tasa Máxima de Generación de Calor Lineal)	34
		2.2.1.2. Límite de operación MCPR	34
		2.2.2. Factores de pico	35
	2.3.	Diseño del ensamble de combustible	35
		2.3.1. <i>Lattices</i> que componen axialmente un ensamble	35
		2.3.2. Venenos quemables	38
	2.4.	Implementación del ciclo de 24 meses en recarga de combustible	39
3.	Her	ramientas computacionales	41
	3.1.	Sistema CMS	41

3.1.1. CASMO-4	42
3.1.2. CMS-LINK	42
3.1.3. SIMULATE-3	42
3.2. Optimización de la <i>lattice</i> de combustible nuclear mediante redes neuro-	
nales y un sistema de lógica difusa	44
3.3. Técnica de búsqueda Tabu	46
3.3.1. Problema de diseño de las recargas de combustible del BWR	46
3.3.2. Técnica de búsqueda Tabu	48
3.3.3. Implementación de la búsqueda Tabu	48
4. Simulación del diseño del ensamble de combustible	50
4.1. <i>Lattice</i> 2: 5.1% de enriquecimiento	51
4.2. Lattice 3: 4.88% de enriquecimiento con barras vacías	54
4.3. <i>Lattice</i> 4: 4.88% de enriquecimiento con barras parciales	56
5. Optimización de la recarga de combustible	59
5.1. Ciclo 14	60
5.2. Ciclo 15	64
5.3. Ciclo 16	68
5.4. Ciclo 17	72
5.5. Ciclo 18	76
5.6. Ciclo 19	77
5.7. Ciclo 20	78
5.8. Ciclo 21	79
5.9. Exceso de reactividad del ciclo 21	80
6. Análisis económico del ciclo de combustible nuclear	82
6.1. Cálculo del <i>LNFCC</i>	83
6.2. Cálculos de las necesidades de servicios del ciclo del combustible (canti-	
dades necesarias por kgU enriquecido)	84
7. Conclusiones	89
Bibliografía	91

Índice de figuras

1.1. Una posible reacción en cadena de fisión nuclear: 1) Un átomo de uranio-235 absorbe un neutrón y se fisiona en dos fragmentos de fisión, liberando tres nuevos neutrones y una gran cantidad de energía. 2) Uno de esos neutrones es absorbido por un átomo de uranio-238, y no continúa la reacción. Otro neutrón abandona el sistema sin ser absorbido. Sin embargo, un neutrón choca con un átomo de uranio-235, que luego se fisiona y libera dos neutrones y más energía. 3) Ambos neutrones chocan con átomos de uranio-235, cada uno de los cuales se fisiona y libera unos pocos neutrones, que luego pueden continuar la reacción. Imagen tomada de Wikipedia Commons. https://en.wikipedia.org/wiki/Nuclear_chain_reaction#/media/File:Fission_chain_reaction.svg 16

1.2.	Buckling de un reactor cilíndrico finito desnudo (sin reflector). Imagen to-				
	<pre>mada de https://www.nuclear-power.com/nuclear-power/reactor-physics/</pre>				
	neutron-diffusion-theory/geometrical-material-buckling/ 19				

1.3.	Esquema de funcionamiento de un BWR. Imagen tomada de Wikipedia,
	por Robert Steffens, 2004. https://es.wikipedia.org/wiki/Central_
	Nuclear_Laguna_Verde#/media/Archivo:Boiling_water_reactor_no_
	text.svg
1.4.	Esquema del núcleo del <i>BWR-5</i>
1.5.	Esquema del ensamble de combustible del <i>BWR</i> de Laguna Verde 26
2.1.	Esquema de una recarga de combustible. Imagen tomada de IAEA-TECDOC-
	1898. Reload Design and Core Management in Operating Nuclear Power
	Plants, Experiences and Lessons Learned. Vienna, 2020
2.2.	Relación lineal entre el factor de multiplicación neutrónico y el quemado
	(Bd) del combustible $\ldots \ldots 29$
2.3.	Efecto de la fracción de recarga en el ciclo de quemado
2.4.	Relación entre el quemado de descarga y los lotes recargados
2.5.	Diagrama de utilización de combustible BWR-5

2.8. Efecto de diferentes concentraciones de gadolinia en el factor de multipli-
cación de neutrones
3.1. Esquema códigos CMS
3.2. Esquema códigos CMS
3.3. Número de neuronas en la mitad de una <i>lattice</i>
3.4. Diseño de la recarga de combustible en la simetría de un octante 49
4.1. Gráfica k_{inf} vs quemado 5.1%
4.2. Gráfica <i>pin peak vs quemado</i> 5.1%
4.3. Enriquecimientos de la <i>lattice 2</i>
4.4. Distribución de potencia en la <i>lattice</i> a 0 MWd/kg
4.5. Distribución de potencia en la <i>lattice</i> a 35 MWd/kg
4.6. Distribución de potencia en la <i>lattice</i> a 70 MWd/kg
4.7. Gráfica k_{inf} vs quemado 4.88%, barras vacías $\ldots \ldots \ldots \ldots \ldots 54$
4.8. Gráfica <i>pin peak vs quemado</i> 4.88%, barras vacías
4.9. Enriquecimientos de la <i>lattice</i> 3
4.10.Distribución de potencia en la <i>lattice</i> a 0 MWd/kg
4.11.Distribución de potencia en la <i>lattice</i> a 35 MWd/kg
4.12. Distribución de potencia en la <i>lattice</i> a 70 MWd/kg
4.13. Gráfica k_{inf} vs quemado 4.88%, barras parciales
4.14. Gráfica <i>pin peak vs quemado</i> 4.88%, barras parciales
4.15.Enriquecimientos de la <i>lattice</i> 4
4.16. Distribución de potencia en la <i>lattice</i> a 0 MWd/kg
4.17. Distribución de potencia en la <i>lattice</i> a 35 MWd/kg
4.18. Distribución de potencia en la <i>lattice</i> a 70 MWd/kg
5.1. Ciclo 15 sin optimización siguiendo estrategia <i>In-Out</i>
5.2. Propuesta ciclo 14, mitad del núcleo
5.3. Propuesta ciclo 14, segunda mitad del núcleo
5.4. Función objetivo en función de las iteraciones
5.5. Margen de apagado en función de las iteraciones 62
5.6. MFLCPR en función de las iteraciones
5.7. Resultado ciclo 14, primera mitad del núcleo
5.8. Resultado ciclo 14, segunda mitad del núcleo
5.9. Propuesta ciclo 15, mitad del núcleo
5.10. Propuesta ciclo 15, segunda mitad del núcleo
5.11. Función objetivo en función de las iteraciones
5.12. Fracción máxima de Tasa media de generación de calor lineal planar en
función de las iteraciones 66

5.13. Margen de apagado en función de las iteraciones
5.14. MFLCPR en función de las iteraciones
5.15. Núcleo resultado de ciclo 15, primera mitad.
5.16. Núcleo resultado ciclo 15, segunda mitad
5.17. Propuesta ciclo 16, mitad del núcleo
5.18. Propuesta ciclo 16, segunda mitad del núcleo
5.19. Función objetivo en función de las iteraciones
5.20. Fracción máxima de límite operativo en función de las iteraciones 70
5.21. Margen de apagado en función de las iteraciones
5.22. MFLCPR en función de las iteraciones
5.23. Núcleo resultado de ciclo 16, primera mitad.
5.24. Núcleo resultado ciclo 16, segunda mitad
5.25. Propuesta ciclo 17, mitad del núcleo
5.26. Propuesta ciclo 17, segunda mitad del núcleo
5.27. Función objetivo en función de las iteraciones
5.28. Fracción máxima de límite operativo en función de las iteraciones 74
5.29. Margen de apagado en función de las iteraciones
5.30. MFLCPR en función de las iteraciones
5.31. Núcleo resultado de ciclo 17, primera mitad
5.32. Núcleo resultado ciclo 17, segunda mitad
5.33. Núcleo resultado de ciclo 18, primera mitad.
5.34. Núcleo resultado ciclo 18, segunda mitad
5.35. Núcleo resultado de ciclo 19, primera mitad
5.36. Núcleo resultado ciclo 19, segunda mitad
5.37. Núcleo resultado de ciclo 20, primera mitad.
5.38. Núcleo resultado ciclo 20, segunda mitad
5.39. Núcleo resultado de ciclo 21, primera mitad.
5.40. Núcleo resultado ciclo 21, segunda mitad
5.41. Gráfica del quemado por pasos del ciclo 21

Índice de tablas

1.1.	Datos Generales de CNLV	24
1.2.	Número de barras de cada tipo que forman las <i>lattices</i>	26
4.1.	Enriquecimientos del ensamble	50
5.1.	Datos de los ciclos de recarga del núcleo	81
6.1.	Cálculos del costo de los servicios del ciclo de combustible.	85
6.2.	Tiempos de adelanto y retraso del ciclo.	85
6.3.	Cálculos de valor presente de los servicios del ciclo de combustible	86
6.4.	Cálculos de valor presente de los servicios del ciclo de combustible de 24	
	meses	86
6.5.	Cálculos de valor presente de los servicios del ciclo de combustible de 18	
	meses.	87
6.6.	Diferencia entre en costo por MWh entre el ciclo de 24 y 18 meses	88

Resumen

Los dos reactores nucleares *BWR-5* de la Central Nuclear Laguna Verde (CNLV) actualmente operan con ciclos de longitud de 18 meses con un enriquecimiento promedio de 3.85% en peso de U-235 en los ensambles de combustible, sin embargo, algunas referencias en la literatura indican que se podría extender el ciclo de operación a 24 meses con base en un aumento en el enriquecimiento promedio de los ensambles de combustible. El objetivo de esta tesis fue realizar un estudio sobre la viabilidad de extender el ciclo de operación a 24 meses, mediante un análisis de la gestión de combustible dentro del núcleo, con base en el uso de enriquecimientos mayores al 5% en algunas barras de combustible.

Con base en el modelo de reactividad lineal, cálculos de física de reactores y el programa *CASMO-4*, se generó un diagrama de utilización de combustible para determinar el enriquecimiento promedio de U-235 en el ensamble, la fracción del núcleo que se recargará cada ciclo y su quemado de descarga para un ciclo en equilibrio. Se determinó usar un enriquecimiento promedio en el ensamble de 4.5% y una fracción de recarga de n=3, es decir, se cambió un tercio de los ensambles del núcleo cada ciclo.

Una vez determinado el enriquecimiento, el siguiente paso fue diseñar el ensamble de combustible, lo cual se hizo por medio de la optimización de las celdas (*lattices*) de combustible con la técnica de redes neuronales, dando como resultado en las *lattices* enriquecidas lo siguiente: *lattice 2*: 5.1 %, *lattice 3*: 4.88 % con barras vacías y *lattice 4*: 4.88 % con barras parciales.

Para la recarga de combustible se usó la técnica heurística conocida como búsqueda Tabu, la cual busca optimizar el reacomodo de los ensambles de combustible en el núcleo en cada ciclo de operación.

Por último, se calculó el costo nivelado del ciclo abierto de combustible, obteniendo $8.857 \frac{\$}{MWh}$ y se comparó con el costo del ciclo de 18 meses, resultando ser menor con una diferencia porcentual de 11.6%.

Abstract

The two BWR-5 nuclear reactors at Laguna Verde have an 18-month operating cycle with an average enrichment of 3.85% in the fuel bundles, however, new trends indicate that the operating cycle could be extended to 24 months based on an increase in the average enrichment of fuel assemblies. The objective of this thesis is to carry out a study of the feasibility of extended the 24-month operating cycle, through an analysis of in-core fuel management, based on the use of enrichments greater than 5% in some fuel rods.

Based on the linear reactivity model, reactor physics calculations and the program CASMO-4 a fuel utilization diagram was generated to determine the average enrichment of U-235 in the assembly, the fraction of the core that it will recharge each cycle and discharge burnup for an equilibrium cycle. It is decided to use an average enrichment of 4.5% and a recharge fraction of n=3, that is, one-third of the core assemblies were changed each cycle.

Once the enrichment was determined, the next step was to design the fuel bundle, which was done through the use of fuel lattice cell optimization with a neural network technique, resulting in enriched lattices that following: lattice 2: 5.1%, lattice 3: 4.88% with empty rods and lattice 4: 4.88% with partial rods.

For the reload pattern design, the Tabu search technique was used, which searches to optimize the reloading of the fuel assemblies in the core each operation cycle.

Finally, the levelized cost of the open fuel cycle was calculated, obtaining $8.857 \frac{\$}{MWh}$ and was compared with the cost of the 18-month cycle, proving to be lower with a percentage difference of 11.6%.

Introducción

La crisis climática por la que atraviesa el mundo se debe en gran parte a la dependencia de los combustibles fósiles para la generación de electricidad, la cual contribuye al aumento de las emisiones de gases de efecto invernadero, lo que hace necesario implementar medidas hacia una transición energética que no dependa de combustibles fósiles y que cumpla con las necesidades energéticas que demanda el actual crecimiento económico y poblacional. En este sentido se debe contemplar una transición que incluya la energía nuclear como una de las principales alternativas. Entre las ventajas que tiene la energía nuclear están: su bajo impacto ambiental, costos nivelados de generación competitivos, alta confiabilidad, con un factor de planta de alrededor del 92 % [1], alta densidad energética y ser una tecnología de generación eléctrica de carga base.

La energía nuclear se genera a través de reactores nucleares de potencia. Actualmente, la energía nuclear equivale al 10.5% de la energía eléctrica generada a nivel mundial, la cual proviene de 417 reactores, de los cuales 348 son de agua ligera (*LWR*, por sus siglas en inglés) [2]. La mayoría de los *LWR* operan en ciclos de 12 a 18 meses y con enriquecimientos de las barras de combustible inferiores al 5%, que es conocido como uranio de bajo enriquecimiento (*LEU*, por sus siglas en inglés), el valor máximo típico es 4.95%.

Los operadores comerciales de reactores de agua ligera y los proveedores de combustible en el mundo están buscando cambios evolutivos en el combustible nuclear que incluyen combustible de enriquecimiento extendido (*EE*) (enriquecimiento máximo de U-235 entre 5 y 10% en peso). Uno de los objetivos de este esfuerzo es mejorar la economía del ciclo de combustible al lograr que éste se irradie hasta valores más altos de lo que es posible actualmente [3], [4]; es decir, lo que se denomina quemado de descarga del combustible.

El análisis del rendimiento y seguridad del reactor muestra que los enriquecimientos entre el 5% y el 7% tendrían coeficientes de reactividad de temperatura del combustible y de temperatura del moderador similares a los de los combustibles actuales con enriquecimiento menor del 5%. Con estos enriquecimientos más altos, el quemado máximo en el borde de la pastilla de combustible aumentaría en casi un factor de dos [5]. La evaluación del rendimiento del ciclo de combustible muestra que el aumento del enriquecimiento reduce la cantidad de desechos de alto nivel eliminados por unidad de energía generada, pero aumenta las necesidades de recursos naturales normalizados a una base de 1 GW de electricidad por año. Otro impacto es el quemado de descarga más alto, lo que resulta en niveles de actividad algo diferentes del combustible nuclear gastado y radiactividad residual de alto nivel a los 100 y 100,000 años después de la descarga del combustible. Los impactos ambientales, incluidos el uso de la tierra, el uso del agua, las emisiones de carbono y la exposición radiológica, son de la misma magnitud por unidad de energía generada. Sin embargo, los impactos se distribuyen de manera diferente. Un enriquecimiento inferior al 5% tiene un impacto marginalmente mayor en la parte final del ciclo del combustible, y un enriquecimiento superior al 5% tiene un impacto ligeramente mayor en la parte inicial del ciclo del combustible. En última instancia, no se identifican obstáculos de seguridad neutrónicos en los reactores de agua ligera con enriquecimientos superiores al 5% [5].

Objetivo de la tesis

Realizar los análisis de gestión de combustible dentro del núcleo de un reactor *BWR-5*, para evaluar la viabilidad de extender el ciclo de equilibrio a 24 meses con combustible con enriquecimiento extendido.

Estructura de la tesis

Esta tesis está elaborada para ser autocontenida, por lo tanto, el Capítulo 1 está enfocado en los conceptos básicos de la ingeniería nuclear, los reactores nucleares, su origen, funcionamiento y los tipos de reactores. Así como una descripción de la Central Nuclear de Laguna Verde, ya que el análisis está hecho con base en sus dos reactores *BWR-5*. El Capítulo 2 aborda los conceptos de la administración de combustible en el núcleo, los límites térmicos, factores de pico, así como el diseño del núcleo y del ensamble de combustible. El Capítulo 3 está dedicado a la descripción de los métodos y técnicas heurísticas computacionales usados en el desarrollo de este trabajo. El Capítulo 4 muestra los resultados del diseño del ensamble de combustible propuesto, generado utilizando la técnica de redes neuronales (RN). En el Capítulo 5, teniendo los ensambles de combustible, se optimiza la recarga de combustible a través de la técnica de búsqueda tabu. Para tener un análisis más completo de la gestión de la recarga de combustible, en el Capítulo 6 se calcula el costo nivelado del ciclo de combustible de equilibrio de 24 meses, comparado con el de 18 meses. Por último, en el Capítulo 7 se presentan las conclusiones.

Capítulo 1

Definiciones y principios básicos de reactores nucleares

1.1. Fisión Nuclear

La fisión nuclear es la reacción en la que el núcleo de un átomo pesado, al capturar un neutrón incidente, se divide en dos o más núcleos de átomos más ligeros, llamados fragmentos de fisión, emitiendo en el proceso de 2 o 3 neutrones, rayos gamma y aproximadamente 200 MeV de energía. Cuando los neutrones producidos durante la fisión inciden sobre otros núcleos fisionables desencadenan más reacciones de fisión que a su vez generan más neutrones, a ese efecto se le conoce como reacción en cadena. Dicha reacción en cadena puede describirse de forma cuantitativa en términos del factor de multiplicación de neutrones *k*, que se define como el cociente entre el número de neutrones de fisión en una generación, dividido por el número de neutrones de fisión en la generación precedente [6]. La ecuación que representa este fenómeno es la siguiente:

 $k = \frac{\text{Número de fisiones en la generación N}}{\text{Número de fisiones en la generación N-1}}$ (1.1)

Figura 1.1: Una posible reacción en cadena de fisión nuclear: 1) Un átomo de uranio-235 absorbe un neutrón y se fisiona en dos fragmentos de fisión, liberando tres nuevos neutrones y una gran cantidad de energía. 2) Uno de esos neutrones es absorbido por un átomo de uranio-238, y no continúa la reacción. Otro neutrón abandona el sistema sin ser absorbido. Sin embargo, un neutrón choca con un átomo de uranio-235, que luego se fisiona y libera dos neutrones y más energía. 3) Ambos neutrones chocan con átomos de uranio-235, cada uno de los cuales se fisiona y libera unos pocos neutrones, que luego pueden continuar la reacción. Imagen tomada de Wikipedia Commons. https://en.wikipedia.org/wiki/Nuclear_chain_reaction#/media/File:Fission_chain_reaction.svg

1.1.1. Factor de multiplicación de neutrones efectivo

El valor de k determina cómo se desarrolla una reacción nuclear en cadena:

- k <1 (subcriticidad): el sistema no puede sostener una reacción en cadena y cualquier comienzo de una reacción en cadena desaparece con el tiempo. Por cada fisión que se induce en el sistema, ocurre un total promedio de 1/(1-k) fisiones. Algunos reactores subcríticos propuestos aprovechan el hecho de que una reacción nuclear sostenida por una fuente de neutrones externa puede detenerse cuando se retira la fuente de neutrones. Esto proporciona un cierto grado de seguridad inherente.
- k = 1 (criticidad): Cada fisión causa un promedio de una fisión más, lo que lleva a un nivel de fisión (y potencia) que es constante. Las centrales nucleares funcionan con k=1 a menos que se aumente o disminuya el nivel de potencia.

 k >1 (supercriticidad): Por cada fisión en el material es probable que haya k fisiones después del siguiente tiempo medio de generación. Es decir, la cantidad de fisiones crecerá exponencialmente. Las armas nucleares operan en este estado.

1.1.2. La fórmula de seis factores

El factor de multiplicación de neutrones efectivo k_{eff} se puede describir utilizando el producto de seis factores que describen un sistema nuclear. Estos factores, tradicionalmente ordenados cronológicamente con respecto a la vida de un neutrón en un reactor térmico, incluyen la probabilidad de que no se produzcan fugas de neutrones rápidos P_{FNL} por su siglas en inglés *probability of fast non-leakage*, el factor de fisiones rápidas ϵ , probabilidad de escape a las resonancias *p*, probabilidad de no fuga térmica P_{TNL} , por su siglas en inglés *probability of thermal non-leakage*, el factor de utilización térmica *f*, el factor de reproducción η . La fórmula de seis factores se escribe como:

$$k_{eff} = P_{FNL} \epsilon p P_{TNL} f \eta \tag{1.2}$$

donde cada factor representa:

- *P*_{FNL} describe la probabilidad de que un neutrón rápido no escape del sistema sin interactuar. Los límites de este factor son 0 y 1, y un valor de 1 describe un sistema del que los neutrones rápidos nunca escaparán sin interactuar, es decir, un sistema infinito.
- *c* es la relación entre el total de fisiones y las fisiones causadas únicamente por neutrones térmicos. Los neutrones rápidos tienen una pequeña probabilidad de provocar fisiones en el uranio, específicamente en el uranio-238. El factor de fisión rápida describe la contribución de las fisiones rápidas al factor de multiplicación de neutrones efectivo. Los límites de este factor son 1 a infinito, y un valor de 1 describe un sistema en el que sólo los neutrones térmicos provocan fisiones. Un valor mayor a uno denotaría un sistema en el que los rápidos también contribuyen a las fisiones totales del sistema.
- *p* es la relación entre el número de neutrones rápidos que comienzan a disminuir su energía y el número de neutrones que alcanzan energías térmicas. Los límites de este factor son 0 y 1, con un valor de 1 que describe un sistema en el que todos los neutrones rápidos que no se escapan y no causan fisiones rápidas eventualmente alcanzan energías térmicas. Es decir, se refiere a los neutrones que al ir perdiendo energía logran escapar la región de las resonancias.
- *P*_{TNL} describe la probabilidad de que un neutrón térmico no escape del sistema sin interactuar. Los límites de este factor son 0 y 1, y un valor de 1 describe un

sistema en el que los neutrones térmicos nunca escaparán sin interactuar, es decir, un sistema infinito.

- *f* es la relación entre el número de neutrones térmicos absorbidos por los núcleos fisibles y el número de neutrones absorbidos en todos los materiales del sistema.
- η describe la probabilidad de que un neutrón absorbido en el combustible provoque una reacción de fisión. Este factor describe el comportamiento del material fisionable, específicamente si se absorbe un neutrón, qué probabilidades hay de que cause una fisión y cuántos neutrones produce la fisión.

1.1.3. Buckling geométrico y material

En física de reactores, el concepto de *buckling* (pandeo) se utiliza para describir la relación entre los requerimientos de material fisionable dentro del núcleo de un reactor y las dimensiones y forma de ese núcleo. En general, la criticidad se logra cuando la tasa de producción de neutrones es igual a la tasa de pérdidas de neutrones, incluidas tanto la absorción como la fuga de neutrones.

Buckling material

El *buckling* material está caracterizado por las propiedades del material del núcleo (combustible, refrigerante, otros materiales y moderador si lo hubiere) en un medio infinito y se define como:

$$B_m^2 = \frac{k_\infty - 1}{L^2}$$
(1.3)

Con B² el *buckling* y L² el área de difusión de los neutrones. Nótese que se han usado dos diferentes k, k_{eff} para sistemas no infinitos y k_{∞} o k_{inf} para sistemas infinitos.

Buckling geométrico

El *buckling* geométrico es una medida de la fuga de neutrones, mientras que el *buckling* del material es una medida de la producción de neutrones menos la absorción. Con esta terminología, la condición de criticidad también puede expresarse como la igualdad entre el *buckling* material y el geométrico:

$$B_m = B_g \tag{1.4}$$

La cantidad B_g^2 se denomina *buckling* geométrico del reactor y depende de la geometría. Este término se deriva de la noción de que la distribución del flujo de neutrones está de alguna manera "deformada" (*buckled*) en un reactor finito homogéneo. Se puede derivar que el *buckling* geométrico es la curvatura del flujo de neutrones $(B_g^2 = \frac{\nabla^2 \phi(x)}{\phi(x)})$. El flujo de neutrones tiene una curvatura más cóncava hacia abajo o "deformada" (mayor B_g^2) en un reactor pequeño que en uno grande [7].

Figura 1.2: Buckling de un reactor cilíndrico finito desnudo (sin reflector). Imagen tomada de https://www.nuclear-power.com/nuclear-power/reactor-physics/ neutron-diffusion-theory/geometrical-material-buckling/

Para esta tesis se considerará el núcleo de un *BWR-5*, con forma de cilindro, y para este caso se usa la siguiente fórmula para el *buckling*:

$$B^{2} = \left(\frac{2.405}{R}\right)^{2} + \left(\frac{\pi}{H}\right)^{2}$$
(1.5)

con R el radio del núcleo y H la altura activa respectivamente. Al ser un medio finito es necesario tomar en cuenta el efecto de las fugas de neutrones, para esto se consideran las siguientes ecuaciones de la condición crítica de la teoría modificada de un grupo de energía para un reactor térmico desnudo [6]:

$$\frac{k_{\infty}}{1 - B^2 M^2} = 1$$
(1.6)

$$k_{\infty}P_L = 1 \tag{1.7}$$

Donde M^2 es el área de migración de los neutrones, P_L la probabilidad de no fuga y k_{∞} es el factor de multiplicación de neutrones es un medio infinito. De (1.6) y (1.7), podemos obtener:

$$P_L = \frac{k_{\infty}}{1 - B^2 M^2}$$
(1.8)

En la sección 2.1 se mostrará como influye la ecuación (1.8) en el factor de multiplicación de neutrones *k*.

1.2. Reactores Nucleares

1.2.1. Breve contexto histórico

Iniciando con el descubrimiento del neutrón en 1932 por James Chadwick, un año después el científico húngaro Leó Szilárd desarrolló el concepto de reacción nuclear en cadena provocada por reacciones nucleares inducidas por neutrones. Al año siguiente, presentó una patente para su idea de un reactor simple. Sin embargo, la idea de Szilárd no incorporaba la idea de la fisión nuclear como fuente de neutrones, ya que ese proceso aún no había sido descubierto. Las ideas de Szilárd para reactores nucleares que utilizaran reacciones en cadena nucleares inducidas por neutrones en elementos ligeros resultaron inviables.

La inspiración de un nuevo tipo de reactor que utilizara uranio provino del descubrimiento hecho por Otto Hahn, Lise Meitner y Fritz Strassmann en 1938, de que el bombardeo de uranio con neutrones producía un residuo de bario, que, según razonaron, se creó por la fisión de los núcleos de uranio. En su segunda publicación sobre la fisión nuclear en febrero de 1939, Hahn y Strassmann predijeron la existencia y liberación de neutrones adicionales durante el proceso de fisión, abriendo la posibilidad de una reacción nuclear en cadena. Estudios posteriores a principios de 1939 revelaron que, de hecho, se liberaron varios neutrones durante la fisión, lo que abrió la oportunidad para la reacción nuclear en cadena que Szilárd había previsto años antes.

El 2 de agosto de 1939, Albert Einstein firmó una carta escrita por Szilárd, dirigida al presidente Franklin D. Roosevelt sugiriendo que el descubrimiento de la fisión del uranio podría conducir al desarrollo de "bombas extremadamente poderosas de un nuevo tipo", dando impulso al estudio de reactores de fisión. Szilárd y Einstein se conocían bien y habían trabajado juntos años antes, pero Einstein nunca había pensado en esta posibilidad de la energía nuclear hasta que Szilard se lo informó, al comienzo de su búsqueda para redactar la carta Einstein-Szilárd para alertar al gobierno de Estados Unidos.

Finalmente, el primer reactor nuclear artificial, Chicago Pile-1, fue construido en la Universidad de Chicago por un equipo dirigido por el físico italiano Enrico Fermi, a finales de 1942. Para entonces, el programa había sido presionado durante un año por la entrada de Estados Unidos a la guerra. El Chicago Pile alcanzó su punto crítico el 2 de diciembre de 1942 a las 15:25 horas. La estructura de soporte del reactor estaba hecha de madera, que sostenía una pila (de ahí el nombre) de bloques de grafito, en los que estaban incrustadas 'briquetas' de óxido de uranio natural.

Poco después del Chicago Pile-1, el Laboratorio Metalúrgico desarrolló una serie de reactores nucleares para el Proyecto Manhattan a partir de 1943. El propósito principal de los reactores más grandes era la producción en masa de plutonio para armas nucleares. Se considera que la primera planta de energía nuclear del mundo es el EBR-I (*Experimental Breeder Reactor I*). Originalmente llamado Chicago Pile-4, este LMFBR (*liquid metal fast breeder reactor*) experimental operado por la Comisión de Energía Atómica de EE. UU. produjo 0.8 kW en una prueba el 20 de diciembre de 1951 y 100 kW eléctricos al día siguiente, con una potencia de diseño de 200 kW eléctricos.

1.2.2. Tipos de Reactores Nucleares

Actualmente, en el mundo, la energía eléctrica producida por reactores nucleares equivale al 10.5% del total, la cual proviene de 417 reactores de potencia instalados en 33 países [8]. Hay muchos tipos de reactores nucleares de potencia, a continuación, se mostrará una breve descripción de las tecnologías más importantes. Una central nucleoeléctrica usa la fisión nuclear controlada. En esta sección describiremos cómo funciona una central nuclear y los diferentes mecanismos con los que se controla la reacción nuclear.

Mientras que la mayoría de los reactores generan electricidad, algunos también pueden producir plutonio para armas nucleares y combustible para reactores. Los reactores de potencia utilizan el calor producido por la fisión para generar vapor que gire turbinas y genere electricidad. En este sentido, las plantas nucleares son similares a carboeléctricas y termoeléctricas. Los componentes más comunes de un reactor nuclear son los ensambles de combustible, barras de control, refrigerante, vasija del reactor, contención primaria, contención secundaria y sistemas de emergencia.

Como se mencionó en la Sección 1.1, la fisión se produce cuando un neutrón interactúa con un núcleo pesado (p. ej. U-235) rompiéndolo en dos núcleos ligeros, generando energía y un número de nuevos neutrones de alta energía, sin embargo, dentro del reactor no todos los neutrones fisionan núcleos, algunos son absorbidos por captura radiactiva, otros colisionan con los núcleos cediéndoles su energía de manera elástica o inelástica.

La velocidad de los neutrones en la reacción en cadena determina el tipo de reactor, es decir, reactores térmicos y reactores rápidos [9].

1.2.2.1. Reactores térmicos

La mayoría de las centrales nucleares tienen reactores térmicos moderados por agua. Se categorizan en agua ligera y agua pesada. Los reactores de agua ligera (*LWR*, por sus siglas en inglés) utilizan agua purificada natural (H₂O) como refrigerante y moderador, mientras que los de agua pesada usan óxido de deuterio (D₂O). En los reactores de agua ligera, el agua está presurizada para mantenerla en estado sobrecalentado (Reactores de agua a presión: *PWR*, por sus siglas en inglés) o se le permite evaporarse, formando una mezcla de agua y vapor (Reactor de agua en ebullición: *BWR*, por sus siglas en inglés). En un *PWR* el agua sobrecalentada fluye a través del núcleo del reactor transfiriendo la energía de la fisión a intercambiadores de calor, que producen vapor en un circuito secundario para generar electricidad. El agua que fluye por el núcleo nunca deja la estructura de contención. En un *BWR* el agua que fluye a través del núcleo es convertida directamente en vapor y deja la estructura de contención para ir a las turbinas y generar electricidad. Los *LWR* utilizan como combustible uranio de bajo enriquecimiento. Esta tesis está enfocada en el ciclo de combustible del *BWR-5* de Laguna Verde en Veracruz, México.

Por otro lado, los reactores de agua pesada (*HWR*, por sus siglas en inglés) utilizan agua "enriquecida", cuyas moléculas contienen átomos de hidrógeno compuestos en más de un 99% de deuterio, un isótopo del hidrógeno que es más pesado. Esta agua pesada, empleada como moderador, mejora la economía neutrónica general, lo que permite utilizar un combustible que no necesita enriquecimiento [10].

1.2.2.2. Reactores rápidos

El interés mundial por los reactores rápidos ha ido en aumento desde su aparición en 1960, ya que pueden suministrar energía de manera eficiente, segura y sostenible. Su ciclo cerrado del combustible, puede contribuir al desarrollo a largo plazo de la energía nucleoeléctrica como parte de la canasta de energía mundial en el futuro y reducir la carga de desechos nucleares.

Actualmente se están desarrollando reactores rápidos refrigerados por sodio, reactores rápidos refrigerados por plomo y por plomo-bismuto y reactores rápidos refrigerados por gas, que cumplen unas normas más elevadas de seguridad, sostenibilidad, economía, protección física y resistencia a la proliferación. Además, como opción a largo plazo se está contemplando el concepto de reactor rápido de sales fundidas [11].

1.2.3. Central Nuclear Laguna Verde

La Central Nuclear Laguna Verde es la única central nuclear de generación eléctrica de México. Se encuentra en el municipio de Alto Lucero de Gutiérrez Barrios, en el estado de Veracruz. Es administrada por la Comisión Federal de Electricidad. Cuenta con una capacidad de 1608 MW instalada en dos unidades generadoras de 805 MW_E la Unidad 1 y 803 MW_E la Unidad 2 [2].

La central está formada por dos reactores nucleares BWR-5 que utilizan uranio enriquecido entre 3 % y 5 %. Al llevarse a cabo la reacción en cadena, se libera energía en forma de calor, esta energía calienta el agua dentro del reactor y provoca que se convierta en vapor. Este a su vez pasa por separadores y secadores para elevar su calidad, y fluye hasta llegar a las turbinas, las cuales se mueven y transfieren el movimiento al generador que se encarga de producir electricidad.

El vapor de salida de las turbinas se descarga en el condensador, condensándose por efecto de la refrigeración del mismo mediante agua de mar. Una vez en forma líquida el agua se recircula al reactor para volver a iniciar el proceso (ver Figura 1.3).

El reactor cuenta con sistemas de seguridad redundantes. Para controlar la reacción de fisión en cadena dentro del núcleo del reactor se utilizan barras de control tipo cruciformes. Estas barras de control se introducen y se sacan del reactor de acuerdo con el uso y necesidad de energía. También cumplen con funciones de seguridad: al realizar el apagado rápido del reactor, en el evento conocido como *SCRAM*. Las barras contienen carburo de boro que se encargan de absorber neutrones térmicos y detener la reacción en cadena. En caso de que las barras no se introdujeran de manera adecuada, el reactor cuenta con un sistema que se encarga de apagar el reactor de manera alternativa a las barras de control. Este sistema utiliza una solución de pentaborato de sodio, el cual es inyectado al reactor para detener las reacciones de fisión de manera controlada, permitiendo así el apagado del reactor.

A su vez también cuenta con múltiples sistemas de refrigeración de emergencia en caso de algún accidente por pérdida de refrigerante.

Figura 1.3: Esquema de funcionamiento de un BWR. Imagen tomada de Wikipedia, por Robert Steffens, 2004. https://es.wikipedia.org/wiki/Central_Nuclear_Laguna_Verde# /media/Archivo:Boiling_water_reactor_no_text.svg

La Figura 1.3 muestra un esquema del tipo de reactor usado en la Central Nuclear Laguna Verde. 1 = Vasija del reactor; 2 = combustible nuclear; 3 = Barras de control; 4 = Bombas de circulación; 5 = Motores de las barras de control; 6 = Vapor; 7 = Entrada de agua; 8 = Turbina de alta presión; 9 = Turbina de baja presión; 10 = Generador eléctrico; 11 = Excitador del generador eléctrico; 12 = Condensador de vapor; 13 = Agua fría para el condensador; 14 = Precalentador; 15 = Bomba de circulación de agua; 16 = Bomba de agua fría del condensador; 17 = Contención de concreto; 18 = Conexión a la red eléctrica.

Concepto	Datos				
Números de unidades	2				
Proveedor de los reactores nucleares	General Electric				
Modelo de los reactores	BWR-5/Reactor de agua ligera en ebullición				
Potencia térmica por reactor	2317 MWt				
Número de ensambles combustibles	444				
Altura del núcleo activo	3.81 m				
Enriquecimiento promedio	3.85%				

Tabla 1.1: Datos Generales de CNLV

1.2.3.1. Descripción del núcleo del reactor

Como se observa en la Tabla 1.1, en Laguna Verde, cada reactor cuenta con un núcleo compuesto de 444 ensambles de combustible, distribuidos de tal forma que el núcleo mantenga simetría por octantes, a fin de que se logre un quemado uniforme a lo largo de los ciclos de operación.

Figura 1.4: Esquema del núcleo del BWR-5

En la Figura 1.4 se puede ver el núcleo del reactor, cada color representa un diferente lote de combustible, es decir, en rojo y rosa están los más nuevos (frescos), los intermedios en amarillo y naranja, mientras que en azul se encuentran los más irradiados (quemados).

Cada ensamble de combustible contiene un arreglo de 10x10 varillas de combustible y de agua, sostenido en una matriz cuadrada por las placas de unión superior e inferior y espaciadores de barras de combustible. El ensamble se divide axialmente en zonas o *lattices*. Mide 150 pulgadas (381 cm) y con una masa de uranio enriquecido de 181.459 kg. A continuación se muestra la distribución axial de las *lattices* en el ensamble de combustible.

Figura 1.5: Esquema del ensamble de combustible del BWR de Laguna Verde

La Figura 1.5 muestra que los ensambles de combustible de los reactores de Laguna Verde, están formados por 6 *lattices* y cada una cuenta con las siguientes características ordenadas de la parte inferior a superior del ensamble:

Tipo de <i>lattice</i>	1	2	3	4	5	6
Número de barras de UO2 natural[#]		0	0	0	78	64
Número de barras de UO ₂ enriquecido [#]	0	92	78	78	0	0
Número de barras de H ₂ O [#]		2	2	2	2	2
Número de barras parciales [#]		0	0	14	14	14
Número de barras vacías[#]		0	14	0	0	14

Tabla 1.2: Número de barras de cada tipo que forman las lattices

Capítulo 2

Administración de combustible

La gestión de combustible en el núcleo implica un conjunto de procesos y actividades, cuyo objetivo principal es el uso óptimo del combustible en el reactor nuclear para minimizar el costo de la generación de electricidad, sujeto a las limitaciones operativas y de seguridad del reactor. Estas limitaciones incluyen, entre otros, los requisitos de energía del ciclo, el quemado máximo de descarga del combustible, los límites térmicos (por ejemplo, factores de pico de potencia radial, tasa máxima de generación de calor lineal, etc.) y límites de reactividad (por ejemplo, exceso de reactividad en caliente y margen de parada). La gestión de combustible en el núcleo está estrechamente relacionada con las actividades y decisiones que se toman en el inicio y en el fin del ciclo de combustible.

Hoy en día, la mayoría de los reactores nucleares en operación comercial en todo el mundo (en ebullición y reactores de agua a presión) deben recargar periódicamente parte de su combustible, cada 12, 18 o incluso 24 meses, y para ello deben planificar actividades que deben realizarse con mucha antelación para garantizar el suministro oportuno y rentable de combustible. La empresa propietaria del reactor establece, de acuerdo con las necesidades previstas de la red eléctrica, un Plan de Utilización de energía (PUE) para varios años de operación, donde la duración del ciclo de operación, la interrupción (período de parada del reactor) para recarga de combustible, el factor de capacidad esperado, entre otros parámetros, deben anticiparse (ver Figura 2.1). Además, en esta etapa se define el número de ensambles combustibles (lote: *batch*) que se debe recargar, es decir, la fracción de recarga y el enriquecimiento promedio de U-235 del *batch*.¹

¹La mayor parte del contenido de este capítulo es traducción de la referencia [12]. El autor del curso autorizó esta traducción.

Figura 2.1: Esquema de una recarga de combustible. Imagen tomada de IAEA-TECDOC-1898. Reload Design and Core Management in Operating Nuclear Power Plants, Experiences and Lessons Learned. Vienna, 2020

2.1. Primera aproximación

En el inicio de la gestión de combustible en el núcleo se deben considerar los siguientes parámetros:

- La duración del ciclo de operación (L), que es el tiempo transcurrido entre cada recarga, generalmente se expresa en días efectivos a plena potencia (EFPD).
- El número de lotes de combustible de recarga (n), que también representa la fracción del núcleo que se recargará en cada ciclo de operación, es decir, 1/n.
- El enriquecimiento promedio en U-235 del lote de combustible (e). En el caso del combustible MOX, hay que considerar los isótopos fisibles del plutonio: Pu-239 y Pu-241.
- El quemado de descarga promedio del lote de combustible (Bd). Generalmente, este parámetro es proporcionado por el proveedor de combustible.

Como primer enfoque, se considera un ciclo de equilibrio, en el que la duración del ciclo es siempre idéntica, la fracción del núcleo que se recarga periódicamente es constante, así como el enriquecimiento medio del lote de combustible y ubicación de los ensambles en el núcleo. Además, la densidad de potencia y la distribución de temperatura serán idénticas en cada ciclo y el quemado de los elementos combustibles descargados al final del ciclo será casi idéntico. En esta tesis se busca hacer un análisis detallado que tenga en cuenta qué pasa si se cambia la estrategia operativa de 18 a 24 meses, se modifica la fracción de recarga y el enriquecimiento promedio.

Bajo estos supuestos, dado que cada ensamble combustible se irradia (quema) durante **n** ciclos de **L** días, existe una relación directa entre **Bd**, expresado en MWd/t, **L** en días, y **n**, a través de la potencia específica del reactor **P**, expresada en MW/t de combustible:

$$Bd = P * L * n \tag{2.1}$$

Además, según el modelo de reactividad lineal (*LRM*, por sus siglas in inglés) [13], se puede afirmar que en el combustible la reactividad es una función lineal decreciente del quemado, que es una buena aproximación si al combustible no se le añaden venenos quemables, y los principales venenos de neutrones (xenón y samario) están en equilibrio (pocos días después del inicio del funcionamiento del reactor a plena potencia). La figura 2.2 muestra el comportamiento decreciente del factor de multiplicación a lo largo del quemado de un conjunto combustible típico de un reactor de agua en ebullición (*BWR*) con un enriquecimiento promedio de U-235 del 4.35%.

Figura 2.2: Relación lineal entre el factor de multiplicación neutrónico y el quemado (Bd) del combustible

En la mayoría de los reactores nucleares actualmente en funcionamiento (reactores de agua en ebullición y a presión), ya que el combustible se recarga periódicamente, cada 12, 18 o 24 meses, debe haber un exceso de reactividad (k >1) en el inicio del ciclo, para mantener el reactor crítico durante todos los días del ciclo, de lo contrario, el reactor pasaría a estado subcrítico y dejaría de funcionar en unos días.

Con base en el LRM se puede encontrar una relación lineal entre el quemado de descarga y el enriquecimiento del combustible, para cada fracción de recarga n:

$$Bd = A * e + B \tag{2.2}$$

De manera similar es posible encontrar una relación entre **n** y **Bd**. Consideremos que cada lote de combustible se quema de manera uniforme a lo largo del ciclo, y que el factor de multiplicación de neutrones tiene un valor constante **ko**, y que este decrece

linealmente a lo largo del quemado b, por lo que:

$$k(b) = ko - \alpha b \tag{2.3}$$

Entonces, el factor de multiplicación de neutrones del núcleo del reactor, a un quemado b (sin venenos quemables) es igual al promedio del factor de multiplicación de cada lote a un quemado **b**.

Ahora consideremos **n=2** y comparémoslo con **n=1**, siendo **b1** el máximo quemado de descarga de **n=1** y **b2** para **n=2**. En ambos casos el ciclo termina cuando el factor de multiplicación neutrónico del núcleo **k=1.0**. Para **n=1** el ciclo termina en el punto **A** (ver figura 2.3) y todos los ensambles son cambiados para el siguiente ciclo. Para **n=2** el ciclo termina en el punto **B**, y se descarga la mitad de los ensambles, después de haber sido quemados hasta el punto **C**.

De acuerdo a la suposición de que la **k** del núcleo es el promedio del factor de multipliación de cada lote de combustible, para **n=2** se tiene que:

$$\frac{k1+k2}{2} = 1.0\tag{2.4}$$

Es decir,

$$\frac{b2 + \frac{b2}{2}}{2} = b1 \tag{2.5}$$

$$b2 = \frac{4}{3}b1$$
 (2.6)

Para **n=2** el quemado de descarga para cada lote de combustible es 4/3 más grande que para **n=1**. Cabe señalar que, como en ambos casos **Keff = Ko**, entonces tienen el mismo enriquecimiento inicial del combustible (actualmente por debajo del 5 % para los *LWR*), mientras que la duración del ciclo disminuye de b1 a b2/2. Generalizando este resultado:

$$Bd = bn = \frac{2n}{n+1}b1\tag{2.7}$$

Por lo tanto, teóricamente, el quemado de la descarga podría duplicarse cuando **n** tiende a infinito, lo que sería el caso de la recarga continua de combustible (ver Figura 2.4), como en el reactor CANDU de agua pesada a presión. Sin embargo, es necesario considerar que el quemado de descarga tiene un límite tecnológico que está garantizado por el proveedor de combustible y, limitado por los requisitos de seguridad dictados por la autoridad reguladora (La Comisión Nacional Reaguladora, *NRC* de EE.UU., permite que el máximo pico de quemado en las varillas sea de 60 GWd/t). Es importante tener en cuenta que a medida que **n** aumenta, la duración del ciclo (**L**) disminuye para el mismo enriquecimiento, lo que implica que el reactor debe parar con más frecuencia

para recargar combustible, lo que impacta negativamente en el factor de capacidad de la planta. La tendencia actual de las empresas que operan *LWR* es aumentar la duración del ciclo de operación hasta 18 o 24 meses.

Figura 2.3: Efecto de la fracción de recarga en el ciclo de quemado

Figura 2.4: Relación entre el quemado de descarga y los lotes recargados.

Para la elaboración del diagrama de utilización del combustible, se utilizó el programa de física de reactores CASMO- 4^2 . Se realizaron simulaciones de quemado del ensamble de combustible GNF 2^3 , en un medio infinito, considerando un enriquecimiento promedio (*e*) variado entre 2%-5%, en pasos de 0.2%, considerando una fracción de vacíos de 40% y un quemado de descarga máximo de 60,000 MWd/t [14].

²Los detalles del software usado se abordará en el Capítulo 3

 $^{{}^{3}}https://www.gevernova.com/content/dam/gevernova-nuclear/global/en_{u}s/documents/gnf2_{p}oster.pdf$

Considerando que CASMO-4 da valores de k_{∞} y M^2 , se busca obtener el valor de k_{eff} , es decir $P_L^*k_{\infty}$, por lo que se necesita determinar P_L , para eso usaremos las ecuaciones (1.5) y (1.8). Para el caso de los reactores de Laguna Verde, el radio (R)⁴ es 181.176 cm, mientras que la altura activa del núcleo (H) es 381.0 cm. Sustituyendo en (1.5), se obtiene:

$$B^2 = 2.442 x 10^{-4} m^{-2} \tag{2.8}$$

Con base en las relaciones previas, y después de unos cálculos de física de reactores, es posible generar un diagrama de utilización de combustible que relacione **e**, **Bd**, **L** y **n**. La figura 2.5 muestra el diagrama de utilización de combustible para el BWR-5 de Laguna Verde, con una densidad de potencia P=28.75 MW/t. En este diagrama se puede ver la siguiente relación:

$$e = A(BdnL) + B \tag{2.9}$$

Figura 2.5: Diagrama de utilización de combustible BWR-5

Considerando un ciclo de 24 meses y con un factor de operación de $87\%^5$, se tiene que el ciclo efectivo sería de 636 días y nos daría una estrategia de n=3 con un enri-

⁴Este es un radio equivalente que se obtuvo a partir de igualar el área de 444 ensambles de combustible formado por cuadrados de 15.24 cm con un círculo

⁵https://pris.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=421

quecimiento promedio cercano a $4.5\%^6$ y un quemado de descarga de alrededor de 55 MWd/kg.

2.2. Diseño del núcleo del reactor

El diseño del núcleo es una tarea compleja que implica consideraciones económicas, técnicas (neutrónicas, termohidráulicas y termomecánicas) y de seguridad. El objetivo del diseño del núcleo es desarrollar e implementar la recarga de combustible que produzca la energía más confiable al menor costo, que cumpla con los requerimientos de seguridad y desempeño del combustible. En resumen, un diseño adecuado de recarga de combustible asegura que el núcleo diseñado:

- Cumpla con los requerimientos de generación de electricidad.
- Corresponde a las condiciones de análisis de seguridad en la unidad de potencia dada.
- Ser económicamente eficiente en términos de la utilización del combustible durante la operación del reactor.

Como ya se ha dicho, durante la parada para recarga de combustible, una fracción de los ensambles de combustible irradiados o quemados se sustituye por combustible nuevo. Luego, para que el "nuevo"núcleo pueda operar con la longitud esperada del ciclo (12 a 24 meses), debe tener un exceso de reactividad, que se modera con la ayuda de elementos absorbentes de neutrones como ácido bórico diluido en el refrigerante (en *PWR*), venenos quemables mezclados con el propio combustible (*PWR* y *BWR*) y barras de control. Entonces, el exceso de reactividad disminuye a lo largo del ciclo de operación y cuando es imposible operar a la potencia nominal con todas las barras de control fuera, el ciclo termina y el reactor se apagará y habrá una nueva recarga de combustible. Por lo tanto, durante el funcionamiento normal del reactor, el núcleo está compuesto por una combinación de ensambles frescos (nuevos) y de ensambles que han sido irradiados durante múltiples ciclos. Además, la duración del ciclo dependerá de los ensambles de combustible fresco cargados, de su enriquecimiento, de la composición

2.2.1. Límites térmicos

En el funcionamiento del reactor se establecen límites de seguridad para garantizar que pueda ser operado de forma segura bajo cualquier condición real de operación. El

⁶Debido a lo aproximado del modelo lineal de reactividad conviene redondear el enriquecimiento al medio punto porcentual superior.

objetivo de establecer los límites térmicos para el funcionamiento normal y los eventos transitorios es mantener la integridad del encamisado del combustible. Esto se consigue limitando el calor generado y, por tanto, la densidad de potencia de cada una de las barras de combustible, evitando la sobrecarga del encamisado de combustible debido a la expansión diferencial entre la pastilla y el encamisado. Esto asegura que la barra de combustible no se derrita. También debe evitarse la ebullición de transición para evitar daños en el encamisado debido al sobrecalentamiento.

2.2.1.1. Límite termomecánico de estado estacionario MLHGR (Tasa Máxima de Generación de Calor Lineal)

Este límite tiene por objeto garantizar una refrigeración adecuada del núcleo del reactor. Durante el funcionamiento normal garantiza que no se alcancen los límites de tensión y deformación del encamisado del combustible. El límite del pico de potencia lineal depende del quemado. Se establece por la situación térmica o mecánica más limitante. El límite termomecánico en estado estacionario es establecido por el fabricante de cada tipo de combustible. Asociado con esto, en los *BWR*, la Tasa Máxima de Generación de Calor Lineal Planar Promedio (MAPLHGR) asegura que la temperatura máxima del encamisado siguiendo el accidente base de diseño postulado de pérdida de refrigerante (*LOCA*) no excederá un límite de temperatura reglamentario. La temperatura máxima del encamisado después de un accidente de pérdida de refrigerante postulado es principalmente una función de la tasa promedio de generación de calor de todas las barras de un ensamble de combustible en cualquier ubicación axial, y sólo depende secundariamente de la distribución de potencia de varilla a varilla dentro de un conjunto. Este es un límite dependiente del quemado.

2.2.1.2. Límite de operación MCPR

En el funcionamiento de un *BWR*, se pueden distinguir tres tipos de transferencia de calor desde el encamisado de combustible al refrigerante, que son: ebullición nucleada, de transición y ebullición de película. La ebullición nucleada es el modo más eficiente de transferencia de calor. La ebullición de transición se manifiesta por una temperatura de encamisado inestable en las barras de combustible. Para valores de potencia más altos en el ensamble de combustible se produce la ebullición de película, lo que provoca temperaturas de encamisado más altas. La temperatura del encamisado en la ebullición de película y los picos de temperatura en la ebullición de transición acelerada ponen en peligro la integridad del encamisado. Por lo tanto, surge la necesidad de establecer un límite de operación de los *BWR* para evitar el funcionamiento en el régimen de ebullición de transición y por tanto en el régimen de ebullición de película. En el caso de los *BWR*, el valor de la potencia generada por el ensamble de combustible se utiliza para

establecer este límite. Definiendo, entonces, la potencia crítica como aquella potencia que produce la calidad del vapor para el cual se produce la ebullición de transición. Por lo tanto, la relación de potencia crítica (*CPR* por sus siglas en inglés) se define como el cociente (adimensional) de la potencia crítica sobre la potencia actual del conjunto. El CPR debe mantenerse por arriba de un valor preestablecido para todos los ensambles de combustible del núcleo del reactor. El CPR mínimo del conjunto de combustible más limitante en el núcleo se define como la relación de potencia crítica mínima (MCPR).

2.2.2. Factores de pico

Los factores de pico no se utilizan directamente como límites térmicos, sin embargo, son muy útiles como indicadores de la distribución de energía dentro de una malla de combustible (en el caso de los cálculos neutrónicos de malla) o del núcleo (en el caso de los cálculos de recarga de combustible). Además, los factores de pico son utilizados por la computadora de proceso de la planta para calcular los límites térmicos. Se analizan tres factores pico del núcleo:

- Factor de pico radial: El factor de pico radial (RPF por sus siglas en inglés) se define como la relación entre la potencia de un ensamble de combustible individual y la potencia media por ensamble del núcleo de reactor. El RPF es una función de la distribución de potencia radial en el núcleo
- Factor de pico axial: El factor de pico axial (APF) se define como la relación entre la potencia de un nodo de un ensamble de combustible específico y la potencia nodal media de este ensamble. El APF es una función de la distribución de potencia axial en el ensamble.
- Factor de pico local El factor de pico local (LPF) se define como la relación entre la potencia más alta producida por una barra de combustible (pin) en un nodo en particular sobre la potencia promedio de las barras de combustible de este nodo. El LPF es una función de la distribución de potencia de varilla a varilla dentro de un solo nodo de un ensamble de combustible.

2.3. Diseño del ensamble de combustible

2.3.1. Lattices que componen axialmente un ensamble

En este punto, el enriquecimiento promedio del combustible ya ha sido especificado para cumplir con los requisitos del plan de utilización de energía de la central nuclear. Actualmente el máximo enriquecimiento de las barras de combustible debe ser inferior al 5%, que es conocido como uranio de bajo enriquecimiento (*LEU*, por sus siglas en
inglés), el valor máximo típico es 4.95%. Sin embargo, en febrero de 2024, la Comisión Reguladora Nuclear(*NRC*) de Estados Unidos, aprobó a la empresa *GNF (Global Nuclear Fuel*), la manufactura y el análisis de desempeño de combustibles de U-235 con enriquecimientos mayores a 5% [15], ya que puede ofrecer potencialmente una mejor economía del ciclo del combustible nuclear para los reactores actualmente en funcionamiento. A veces se hace referencia a este combustible como *LEU*+ (*higher-enriched fuel*) [15]. El combustible de uranio que contiene entre un 5% y un 20% de U-235 se conoce como combustible de uranio poco enriquecido de alto ensayo o *HALEU* (*high-assay low-enriched uranium fuel*).

Otro elemento de diseño es la potencia relativa limitante de la barra de combustible, que está relacionado con la temperatura del combustible, la tasa de generación de calor lineal (*LHGR*, por sus siglas en inglés), la razón de potencia crítica (*CPR*, por sus siglas en inglés), entre otros. Además, para reducir el exceso de reactividad en caliente y para cumplir con el requisito del margen de parada, algunas barras de combustible deben tener mezclado un material absorbedor de neutrones (veneno) consumible (quemable). En la figura 2.6 se puede ver un ensamble típico de *BWR*, que cuenta con 7 secciones axiales con diferentes tipos de celdas (*lattices*) de combustible. Normalmente, las *lattices* en los extremos del ensamble son de barras de combustible de UO₂ natural, una en la parte inferior y dos en la parte superior (1G01, 1G41 y 1G42 en la figura 2.6). Las otras cuatro *lattices* de combustible tienen una disposición diferente de barras de combustible de uranio enriquecido y varillas de venenos quemables.⁷

⁷Si bien este es el ensamble típico, en esta tesis se trabajará con el ensamble de la figura 1.5

Figura 2.6: Vista axial de un ensamble típico de BWR

En esta tesis se busca lograr el enriquecimiento promedio del ensamble de 4.5% a través de aumentar los enriquecimientos a más de 5% en las *lattices* internas. La figura 2.7 muestra una *lattice* de combustible de un *BWR* con un arreglo de 10x10 varillas de combustible con dos tubos de agua (color rojo) en el centro, cuya función, entre otras, es mejorar la moderación de neutrones, también se pueden ver barras de veneno quemable (UO_2 - Gd_2O_3), con varias regiones radiales marcadas dentro de la barra de combustible. Los diferentes colores de las barras de combustible representan diferentes enriquecimientos de uranio.

Figura 2.7: Lattice típica de 10x10 del BWR

Durante el diseño de combustible, si el enriquecimiento de una barra de combustible o de un conjunto de ellas es muy alto, los límites térmicos de diseño se pueden ver comprometidos, una solución a este problema es reducir de forma relativa la potencia de dichas barras de combustible. Hay dos maneras de hacerlo, reduciendo el enriquecimiento en esas barras o aumentándolo en otras, lo que reduce la potencia de las barras de combustible limitantes. Una regla general es que la máxima potencia relativa en una barra de combustible deber ser menor o igual a 1.5 [12]. Cualquier cambio en el combustible alterará los márgenes a los límites térmicos, por lo que se trata de un proceso complejo entre diseño del ensamble, el diseño de núcleo y el diseño del patrón de barras de control.

2.3.2. Venenos quemables

Los venenos quemables se utilizan mezclados con algunas barras de combustible para reducir el exceso de reactividad del reactor y cumplir con el requisito del margen de parada. En el caso de los *BWR*, el absorbente combustible más común es la gadolinia, Gd₂O₃, en la cual, específicamente los isótopos 155 y 157 del gadolinio tienen una probabilidad muy alta de absorber neutrones térmicos (sección eficaz de absorción alta).

La Figura 2.8 muestra el efecto de diferentes concentraciones de gadolinia en el factor de multiplicación de neutrones en función del quemado del ensamble de combustible. Se observa como al principio, el exceso de reactividad se reduce y después a medida que el veneno se empieza a quemar se inserta reactividad positiva, más rápido que la pérdida de reactividad debido al quemado del combustible. Entonces la reactividad aumenta hasta un punto en el que la quema de combustible agrega reactividad negativa más rápido que la quema de veneno añade reactividad positiva (dado que ya se ha agotado) y la curva cae hasta que se agota el combustible.

Además, si la concentración de gadolinia es muy baja, se quema muy rápido lo cual puede conducir a un pico de reactividad elevado que no pueda ser controlado con barras de control. Por el contrario, si hay mucha gadolinia se corre el riesgo de que se acabe el ciclo de operación y aún no se haya quemado todo el veneno, lo cual es indeseable, pues puede restar días del ciclo de operación. Por lo tanto, a la hora del diseño de combustible se debe calcular de manera correcta la concentración de gadolinia para un quemado óptimo.

Figura 2.8: Efecto de diferentes concentraciones de gadolinia en el factor de multiplicación de neutrones.

2.4. Implementación del ciclo de 24 meses en recarga de combustible

Como se mencionó en el Capítulo 1, el ciclo de combustible de Laguna Verde es de 18 meses con un enriquecimiento promedio de los ensambles de 3.85%. El objetivo de esta tesis es analizar la viabilidad de extenderlo a 24 meses con un aumento de enriquecimiento a 4.5% en los ensambles, con la finalidad de obtener más energía del combustible y ciclos de operación más largos. Esto se hará a través de la estrategia de recarga n=3 (ver sección 2.1), es decir, cada 24 meses se cambiará un tercio (148 ensambles) de los 444 ensambles y cada lote de combustible permanecerá en el núcleo 6 años antes de ser retirado. En el proceso de recarga se debe mantener la simetría por octantes en el núcleo (ver figura 1.4) y no sobrepasar los límites térmicos establecidos, para lograr esto, tomaremos como referencia el ciclo 13 de la unidad 2 de Laguna Verde, que hasta ese punto llevaba un ciclo operativo de 18 meses. A partir del ciclo 14, se introducirán al núcleo los ensambles de combustible diseñados en esta tesis. La optimización de la recarga de combustible se hará por medio del sistema Quinalli, el cual tiene implementada la técnica heurística conocida como búsqueda Tabu y se describe en la sección 3.3.

Capítulo 3

Herramientas computacionales

En este capítulo se presenta una descripción breve de los *software* usados para la simulación del diseño de los ensambles de combustible, así como para el diseño neutrónico de los ensambles del núcleo. Entre los que se incluye *CASMO-4, CMS-LINK, SIMULATE-3*, optimización de la *lattice* de combustible nuclear mediante redes neuronales y un sistema de lógica difusa, y el sistema Quinalli para el diseño de la recarga.

3.1. Sistema CMS

El sistema de códigos de administración de combustible *Core Management System* (CMS) está constituido por varios códigos relacionados entre sí, de acuerdo con el siguiente esquema de cálculo:

Figura 3.1: Esquema códigos CMS

Para los propósitos de esta tesis, se usaron CASMO-4, SIMULATE-3 y CMS-LINK.

3.1.1. CASMO-4

CASMO-4 resuelve la ecuación de transporte de neutrones por el Método de las Características para dos dimensiones, multigrupos de energía y para geometría de combustibles de reactores de agua ligera. Este simulador realiza el cálculo de parámetros neutrónicos de celdas de combustible que representan radialmente la configuración geométrica y la composición de materiales de las regiones que componen axialmente a los ensambles de combustible que se introducen en el núcleo del reactor (BWR en el caso de Laguna Verde). Con CASMO-4 se generan los bancos de datos de secciones eficaces macroscópicas de las celdas de combustible, que serán introducidas en el simulador tridimensional del núcleo del reactor SIMULATE-3. Estos "bancos nucleares" se calculan para diferentes pasos de quemado del combustible (que representan la exposición de la celda a la irradiación neutrónica), diferentes fracciones de vacío del moderador, asimismo, para diferentes condiciones de operación (caliente y frío), así como para presencia o ausencia de barra de control y de los venenos, productos de fisión xenón y samario. CASMO-4 incorpora el agotamiento microscópico directo de venenos quemables, como la gadolinia, en el cálculo principal y se utiliza un modelo totalmente heterogéneo para el cálculo del transporte bidimensional de neutrones [16].

3.1.2. CMS-LINK

Es un código de vinculación que procesa los archivos generados por CASMO-4 en formato ascii (.cax) que contienen la información del banco de parámetros nucleares requeridos por SIMULATE-3 en forma de tablas.

3.1.3. SIMULATE-3

SIMULATE-3 es un código avanzado para el análisis tanto de reactores *BWR* como *PWR*. El código está basado en el modelo neutrónico QPANDA fundamentado en un método nodal analítico y que está completamente escrito en Fortran-77.

SIMULATE-3 permite simular la termo-hidráulica y la neutrónica básica del núcleo de un reactor nuclear de agua ligera. A diferencia de CASMO-4, sus cálculos los basa en la ecuación de difusión de neutrones en dos grupos de energía en modo estacionario y en 3 dimensiones. Entre los principales parámetros nucleares que SIMULATE-3 calcula están: factor de multiplicación de neutrones k_{eff} , distribuciones de potencia radial y axial, fracciones de vacío, límites térmicos de seguridad, temperatura del combustible, quemado de combustible.

Con este código se puede simular el comportamiento del reactor a diferentes valores de potencia, quemado y con distintas configuraciones de las barras de control bajo las condiciones descritas por el usuario. Con la finalidad de poder conocer el comportamiento de un reactor nuclear real cuando se ponga en marcha bajo las condiciones descritas. Así, se puede planear a través del tiempo, la manera de ir cambiando la configuración de las barras de control, saber cuáles y qué tanto mantenerlas insertadas en el núcleo del reactor, para que el reactor pueda mantener su criticidad. Asimismo, se puede verificar si los patrones de barras de control permitirán que el reactor se mantenga crítico conforme pase el tiempo hasta el final del ciclo de operación.

En la siguiente figura se puede apreciar a SIMULATE-3 como parte final de los códigos CMS de Studsvik-Scandpower.

Figura 3.2: Esquema códigos CMS

SIMULATE-3 no puede funcionar por sí solo, sino que requiere que se le provea de cierta información de secciones eficaces creada por medio de CASMO-4 y CMS-LINK, el quemado de los ensambles de combustible (tanto nuevos en el ciclo como de ciclos anteriores que se conservan para el ciclo en cuestión), la disposición geométrica del núcleo del reactor, así como la información correspondiente a las barras de control. Asimismo, necesita conocer el balance térmico de la central nuclear para conocer las diferentes variables termo-hidráulicas en la vasija del reactor.

3.2. Optimización de la *lattice* de combustible nuclear mediante redes neuronales y un sistema de lógica difusa

RENO-CC (Red neuronal para la optimización de celdas de combustible), es un sistema para optimizar las *lattices* de combustible nuclear minimizando los valores de *LPPF*, manteniendo en un rango lo valores de k_{∞} , para reactores de agua en ebullición utilizando una red neuronal recurrente multiestado [17]. El sistema se programó con Fortran 77 utilizando una interfaz UNIX.¹

RENO-CC emplea la red neuronal recurrente multiestado (*MSRNN*, por sus siglas en inglés) con 51 neuronas en una capa para diseñar la *lattice* de combustible. Esta capa corresponde a la mitad de una red de combustible 10x10, una neurona esta asociada con una barra de combustible. Los estados neuronales son números en el intervalo de 1 a R, donde R es la cantidad de diferentes enriquecimientos en el inventario de barras de combustible. Cuatro neuronas en la red de combustible tienen el estado neuronal "0" para representar el canal de agua. Además, las neuronas que se corresponden con las esquinas de la red de combustible tienen estados neuronales con el enriquecimiento más bajo de 2% de U-235. Estas neuronas nunca cambian sus estados neuronales. La Figura 3.3 muestra cómo se numeran las neuronas de la capa. El gran círculo gris oscuro representa el canal de agua. Para proponer una función energética, es necesariamente una formulación matemática de la dependencia de *LPPF* y la k_{∞} en función de los estados neuronales.

¹La descripción de este método es una traducción del artículo de la referencia [17], los autores dieron autorización.

Figura 3.3: Número de neuronas en la mitad de una lattice

Una función de energía que depende de los estados neuronales es muy difícil de escribir de manera analítica. La función de energía propuesta es la siguiente:

$$= w_{1}LPPF(NS) \begin{cases} w_{2}|k_{\infty}(NS) - k_{\infty,t}| \\ \text{si} & |k_{\infty}(NS) - k_{\infty,t}| > 0.1 \\ 0 & \text{Otro caso} \end{cases}$$
(3.1)

Donde:

- 1. NS es el vector de estados neuronales.
- 2. $k_{\infty,t}$ es el factor de multiplicación de neutrones al inicio de la vida de la *lattice* de combustible.
- 3. w_i factores de peso.

En la Ecuación 3.1, LPPF y $k_{\infty,t}$ se calculan con CASMO-4, sin embargo se expresan en términos de estados neuronales para ser consistentes con el razonamiento. El algoritmo de esta red neuronal es el siguiente:

- Todos los estados neuronales se inicializan utilizando el inventario de barras de combustible de acuerdo con los requisitos promedio de enriquecimiento de U-235 y gadolinia.
- 2. Se toma una neurona aleatoria de la figura 3.3.
- 3. Para todas las neuronas de la figura 3.3 se realiza lo siguiente:

- Intercambia su estado neuronal con la neurona elegida en el paso 2.
- Evalúa la función de energía y guarde este valor.
- Devolver ambas neuronas a sus estados neuronales originales.
- 4. Intercambie el estado neuronal de la neurona elegida en el paso 2 con la que produjo el valor de función de energía más bajo para obtener el nuevo estado *MSRNN* global.
- 5. Los pasos 2, 3 y 4 se repiten hasta que se satisface un criterio de parada [17].

3.3. Técnica de búsqueda Tabu

Para el diseño de la recarga de combustible del reactor, se utilizó la Técnica de Búsqueda Tabu, que es un sistema para diseñar recargas optimizadas de combustible en reactores de agua en ebullición basado en la técnica de búsqueda tabú junto con las reglas de acomodo del núcleo con celdas de control (*CCC*, por sus siglas en inglés) y de baja fuga (*LL*, por sus siglas en inglés) [18]. Estas reglas heurísticas son una práctica común en la gestión del combustible del *BWR* para maximizar la utilización del ensamble de combustible y minimizar el daño a la vasija del reactor.²El sistema utiliza el código de simulación SIMULATE-3 y tiene como función objetivo maximizar la longitud del ciclo y al mismo tiempo satisfacer los límites térmicos operativos y las restricciones de apagado en frío [18].

A continuación, se describirá más a fondo el algoritmo que sigue el método.

3.3.1. Problema de diseño de las recargas de combustible del BWR

El problema por resolver es obtener la 'mejor' distribución de ensambles de combustible, haciendo permutaciones de éstos en el núcleo. Para los 444 ensambles de combustible del *BWR-5* de Laguna Verde, este problema requiere que se reacomoden 444 posiciones, lo que significa 444! permutaciones de ensambles. Por lo tanto, la 'mejor' distribución de ensambles es aquella que proporciona la mayor cantidad de energía del ciclo como sea posible, sin violar los límites operativos y de seguridad y con el suficiente margen de apagado para no poner en peligro la integridad del núcleo. A primera vista, se trata de un problema muy complejo que requerirá enormes recursos informáticos. Con el fin de reducir la complejidad del problema, se puede asumir una simetría de octante, entonces solo habrá 60 posiciones diferentes para asignar los conjuntos de combustible que representan 8.32x10⁸¹ permutaciones o movimientos posibles. Además, empleamos la estrategia de baja fuga, lo que significa que los combustibles más

²La descripción de este método es una traducción del artículo de la referencia [18], los autores dieron autorización.

quemados se colocan en la periferia y la regla del núcleo con celdas de control(CCC), lo que significa que no podemos colocar combustible fresco en ciertas posiciones de las celdas de control, el problema de optimización se reduce a 7.361x10⁵⁴ permutaciones diferentes en lugar de las 444! del problema original. Dada la simetría del problema, los ensambles de combustible en diagonal sólo pueden intercambiarse entre ellos, siempre que no violen ninguna regla heurística.

El objetivo principal es obtener una energía maximizada sin violar los límites térmicos operacionales y las restricciones de parada en frío. Se puede lograr mediante la implementación de la técnica de búsqueda tabú utilizando la siguiente función objetivo en términos de valor máximo de energía posible en el ciclo (Energía), Relación Media de Potencia Nominal (*MRNP*, por sus siglas en inglés), Factor de Pico de Potencia Radial (*RPPF*, por sus siglas en inglés), Tasa de Generación de Calor Lineal (*XLHGR*, por sus siglas en inglés), Tasa Máxima de Generación Planar de Energía (*XMPGR*, por sus siglas en inglés), Relación de Potencia Crítica Mínima (*XMCPR*, por sus siglas en inglés) y Margen de Apagado (*SDM*, por sus siglas en inglés):

$$f = Energia + w1 * \Delta MRNP + w2 * \Delta RPPF + w3 * \Delta XHLGR + + w4 * \Delta XMPGR + w5 * \Delta XMCPR + w6\Delta ASDM$$
(3.2)

Donde:

- Energía= Quemado promedio del ciclo.
- Δ MRPN = =MRNP_{max}-MRNP_c
- $\Delta \text{RPPF} = \text{RPPF}_{max} \text{RPPF}_c$
- ΔXLHGR=XLHGR_{max}-XLHGR_c
- ΔXMPGR=XMPGR_{max}-XMPGR_c
- $\Delta XMCPR=XMCPR_c-XMCPR_{min}$
- Δ SDM=SDM_c-SDM_{min}
- $w_1,...,w_6$ son los factores de peso y $w_i>0$, i=1,...,6.

De acuerdo con la diferencia de valores Δ , serán negativos si están violando los límites de seguridad impuestos, en tal caso los factores de ponderación correspondientes serán los dados por el usuario; en caso contrario serían cero, no penalizando la función objetivo. Si se cumplen todas las restricciones, la función objetivo será la energía producida por el núcleo analizado.

3.3.2. Técnica de búsqueda Tabu

El método de búsqueda tabú es una técnica heurística iterativa utilizada para encontrar, en un conjunto X de soluciones factibles, la solución que minimiza una función objetivo f basada en la búsqueda de vecindad (*NS*, por sus siglas en inglés).

En una búsqueda de vecindad, cada solución factible x tiene un conjunto asociado de vecinos, $N \in X$, llamado vecindad de x. *NS* parte de una solución factible inicial elegida al azar y explora el espacio X moviéndose de una solución a otra en su vecindad. En cada iteración del proceso, se genera un subconjunto V de N(x) y pasamos de la solución actual x a la mejor x^* en V, independientemente de que $f(x^*)$ sea mejor o no que f(x). Si N(x) no es grande, es posible tomar V como toda la vecindad. El método de examinar todo el vecindario se vuelve muy costoso a medida que aumenta el tamaño del problema o sus elementos son costosos de evaluar. Por lo tanto, para reducir el tamaño de la muestra de V, se toma el primer movimiento que mejora la solución actual; sin embargo, si no hay ningún movimiento que mejore la solución actual, entonces hay que examinar todos los vecinos en V. Sin embargo, la principal deficiencia del algoritmo NS es un problema de ciclado.

También se deben definir criterios de parada para el proceso iterativo; en muchos casos se conoce de antemano un límite inferior f^* de la función objetivo. Tan pronto como hayamos alcanzado este límite, podemos interrumpir el algoritmo. En general, f^* no está disponible con suficiente precisión, como es el caso del estudio; por lo tanto, el criterio de parada se cumple siempre que se alcanza un número máximo fijo de iteraciones, o si se ha realizado un número máximo dado de iteraciones sin mejorar la mejor solución obtenida hasta el momento.

El algoritmo de búsqueda tabú ofrece otra posibilidad interesante para superar el obstáculo mencionado anteriormente de la técnica NS. Para evitar el ciclado, se prohíbe cualquier movimiento que restablezca ciertos atributos de las soluciones visitadas recientemente. Esto se logra con el manejo de memoria de corto plazo almacenando el movimiento prohibido (tabú) en una lista tabú.

3.3.3. Implementación de la búsqueda Tabu

Para aplicar un algoritmo de búsqueda tabu a un problema de optimización combinatoria hay que definir los siguientes elementos:

- La representación de una solución factible.
- La forma de generar una solución de partida.
- Los movimientos (intercambios permitidos sin violar las restricciones impuestas).
- La forma de la función objetivo y el método para calcular sus valores.

• La estructura de la lista tabu.

Como se mencionó, la búsqueda Tabu opera en un espacio de solución factible y, por lo tanto, para nuestro problema una solución factible será un octante del núcleo de un reactor y está representado por una matriz de 60 posiciones para asignar los ensambles de combustible (ver Figura 3.4). Además, para seguir las estrategias utilizadas en muchas plantas *BWR*, se aplicarán dos reglas heurísticas a lo largo de la técnica de búsqueda Tabu. El proceso comienza conociendo las características de los ensambles de combustible que formarán el núcleo. A continuación, se genera aleatoriamente un patrón de carga inicial teniendo en cuenta las reglas del núcleo de las celdas de control y de baja fuga.

Ρ	Ρ	P	P	P	Ρ	P	1		
8	8	8	8	8	8	8	P		
С	8	8	С	С	8	8	С	P/D/C	
С	8	8	С	С	8	8	D/C		
8	8	8	8	8	8	D			
8	8	8	8	8	D				
С	8	8	С	D/C					
С	8	8	D/C						
8	8	D							
8	D								
D/C									
P:	perij	oher	y	****	1000	ere	na na na	******	tananahana
D: C:	diag cont	onal rol c	ell co	ore					

Figura 3.4: Diseño de la recarga de combustible en la simetría de un octante

La función objetivo incluye los límites térmicos de seguridad y el margen de apagado. La técnica de búsqueda Tabu se implementó junto con las reglas de núcleo de celda de control y baja fuga en el simulador de núcleo de reactor SIMULATE-3 para diseñar el Sistema Quinalli que tiene implementada de Búsqueda Tabu de Optimización. Este sistema es un programa basado en FORTRAN-77 implementado en sistema operativo UNIX. Debido a la forma en que se construye la función objetivo, el sistema requiere tres ejecuciones diferentes de SIMULATE-3; la primera para verificar el estado del núcleo al inicio del ciclo, la segunda para el cálculo Haling y la tercera para el cálculo del margen de apagado en frío. Por lo tanto, esas cuatro corridas componen una evaluación completa de la función objetivo.

El sistema genera recargas de combustible optimizadas que producen en general energías mayores que las producidas por la experiencia del ingeniero.

Capítulo 4

Simulación del diseño del ensamble de combustible

Como se vio en la sección 1.2.3.1, los ensambles del núcleo de Laguna Verde están formados por 6 *lattices* (ver tabla 1.2), con base en eso y usando el diagrama de utilización de combustible (ver figura 2.5), se determinó que el enriquecimiento promedio factible es de 4.5%, por lo tanto, se realizó un promedio pesado para saber cuál debía ser el enriquecimiento de cada *lattice*, con base en cuántos centímetros abarca en el ensamble y considerando que las *lattice* 1, 5 y 6 son de uranio natural. Se obtuvo lo siguiente:

Lattice	Enriquecimiento[%]
6	0.711
5	0.711
4	4.880
3	4.880
2	5.100
1	0.711

Tabla 4.1: Enriquecimientos del ensamble

Una vez determinado el enriquecimiento promedio de las *lattices* internas, se usó la optimización mediante redes neuronales descrita en la seccion 3.2 y CASMO-4, para determinar el mejor acomodo de las barras de combustible y de gadolinia en cada *lattice*. Para este proceso, se ingresa el enriquecimiento deseado y a través del algoritmo de optimización de redes neuronales, el programa selecciona entre diferentes pines con diferentes enriquecimientos y porcentajes de gadolinio y busca la configuración óptima para llegar al enriquecimiento promedio requerido, satisfaciendo el factor de multiplicación en función del quemado requerido y sin violar el pico de potencia

establecido.

El programa se corrió con las siguientes condiciones iniciales:

- Temperatura del combustible: 772 K
- Temperatura del moderador: 560 K
- Porcentaje de vacíos: 40%

Para cada caso se ejecutó el programa cinco veces, se graficó el comportamiento del factor de multiplicación de neutrones (k) en función del quemado (**B**), al igual que el pico máximo de potencia (*power peaking factor*) en la *lattice* en función del mismo quemado. Para las *lattices* 2,3 y 4 se obtuvieron los siguientes resultados.

4.1. *Lattice* 2: 5.1% de enriquecimiento

Figura 4.1: Gráfica k_{inf} vs quemado 5.1%

Figura 4.2: Gráfica pin peak vs quemado 5.1%

En los cinco casos se observa como al principio el exceso de reactividad se reduce y después, a medida que la gadolinia se empieza a quemar se inserta reactividad positiva, más rápido que la pérdida de reactividad debido al quemado del combustible, entonces la reactividad aumenta hasta un punto en el que el quemado de combustible agrega reactividad negativa más rápido que el consumo de veneno añade reactividad positiva (dado que ya se ha agotado) y la curva cae hasta que se agota el combustible.

A su vez se comprueba que la optimización tiene un buen funcionamiento, pues no se viola el pico máximo de potencia que se estableció de 1.5.

Para esta *lattice* se eligió como mejor corrida la 2, con 5.098% de enriquecimiento, con base a que es la que quedó más cerca del enriquecimiento objetivo de 5.1%, ya que con respecto al pico de potencia todas cumplen.

2									
3	6.2								
4.2	5.6 - 5	6.2							
4.2	6.2	6.2	6.2						
4.2	6.2	5.6 - 5	6.2	6.2					
4.2	6.2	6.2	0	0	6.2				
4.2	6.2	6.2	0	0	6	6.2			
4.2	5.6 - 5	6.2	5.6 - 5	6.2	6.2	6	6.2		
4.2	6	5.6 - 5	6.2	5.6 - 5	6.2	6.2	5.6 - 5	6.2	
2.6	3.95	3.8	3.6	3	3.4	3.8	3.4	3.4	2.4

La *lattice* resultante de la corrida 2 es la siguiente:

Figura 4.3: Enriquecimientos de la *lattice 2*

Cada celda representa el enriquecimiento de U-235 y si es el caso, el porcentaje de gadolinia después del guion, es importante resaltar que hay *pines* con enriquecimientos mayores a 5% que es parte del objetivo de esta tesis.

A continuación, se muestra la distribución de potencia en cada pin a lo largo del ciclo, estos mapas de potencia son salida de CASMO-4 (.out) para cada *lattice* corrida, el (*) representa el *pin* con potencia máxima en cada etapa del quemado, se han resaltado en amarillo las barras de combustible que contienen gadolinia.

* POWER DISTRIBUTION PEAK: LL = 1.385 (179.9 W/CM), HSF = 1.385 (55.7 W/CM2) 0.982 1.215 1.372 0.882 1.221 0.468 0.915 1.147 1.061 0.894 0.449 1.236 1.131 1.086 1.051 1.135 1.071 0.000 1.254 1.133 0.000 0.971 1.151 1.077 1.062 0.000 0.000 1.110 0.909 1.203 0.470 0.910 0.452 1.002 0.997 0.932 1.385* 1.304 1.378 0.469 1.006 0.458 1.095 1.098 0.465 1.007 0.859 0.967 1.171 1.323 1.109 1.080 1.050 1.212 1.125

F igura 4.4: Distribución de	potencia en la	<i>lattice</i> a 0	MWd/kg
-------------------------------------	----------------	--------------------	--------

* POWER DISTRIBUTION PEAK: LL = 1.128 (146.5 W/CM), HSF = 1.128 (45.4 W/CM2) 0.854 0.918 1.127 1.024 1.020 0.976 0.960 1.050 0.986 0.971 1.040 1.043 0.954 1.100 0.951 0.956 1.049 1.059 0.000 0.000 1.100 0.000 0.967 1.072 1.024 0.000 0.971 1.077 0.985 1.044 1.028 1.070 1.009 0.970 1.025 1.081 0.997 1.049 1.089 1.053 1.123 1.005 1.047 1.026 1.128* 0.902 0.975 0.950 0.916 0.853 0.885 0.925 0.903 0.918 0.882

Figura 4.5: Distribución de potencia en la *lattice* a 35 MWd/kg

* POWER DISTRIBUTION PEAK: LL = 1.079 (140.1 W/CM), HSF = 1.079 (43.4 W/CM2) 1.028 0.965 0.972 0.966 0.957 1.042 0.964 1.021 1.050 1.052 1.024 1.005 1.079* 0.966 1.067 0.968 1.022 1.063 0.000 0.000 1.077 1.045 0.968 1.063 0.000 1.020 0.000 1.052 0.972 0.959 1.050 1.014 1.064 1.050 1.030 1.035 0.980 0.958 1.016 1.012 0.972 1.020 0.970 0.951 0.968 1.035 0.977 0.963 0.953 0.937 0.944 0.951 0.950 0.964 1.029

Figura 4.6: Distribución de potencia en la lattice a 70 MWd/kg

4.2. Lattice 3: 4.88 % de enriquecimiento con barras vacías

Figura 4.7: Gráfica kinf vs quemado 4.88%, barras vacías

Figura 4.8: Gráfica pin peak vs quemado 4.88%, barras vacías

Para esta *lattice* se escogió la corrida 1 de 4.867%, por tener un comportamiento sin variaciones bruscas en el pico de potencia de 17 MWd/kg hasta el final del ciclo, sus enriquecimientos y contenido de gadolinia son los siguientes, al igual que en la *lattice 2* hay varios *pines* con enriquecimientos mayores a 5%:

3									
3.95	6.2								
4.2	5.6 - 5	5.4							
4.2	4.2	6.2	6.2						
4.2	6.2	6.2	5.4	5.2					
4.2	5.6 - 5	6.2	0	0	5.6				
4.2	3.95	5.4 - 5	0	0	6.2	6.2			
4.2	5.6 - 5	6	6.2	6.2	6.2	5.4	5.2		
4.2	3.95	5.6 - 5	5	5.6 - 5	5.2	3.95	5.6 - 5	6.2	
2.4	3.8	3.8	3.2	3.8	3.8	3.95	3.6	3.6	2.6

Figura 4.9: Enriquecimientos de la lattice 3

A continuación, se muestra la distribución de potencia en cada pin a lo largo del ciclo.

```
* POWER DISTRIBUTION
                        PEAK: LL = 1.379 (211.3 W/CM), HSF = 1.379 (
                                                                           65.4 W/CM2)
0.947
      0.000
1.336
1.206 0.461
1.143 0.000
              0.937
              0.973
                     0.844
                     1.147
      1.096
              0.436
                            0.000
1.113
                     0.000
                            0.000
                                   0.000
1.112 1.122
              1.047
1.139
      0.000
             0.443
                     0.000
                            0.000
                                   1.252
                                           1.007
1.206
      0.459
                     0.448
                            1.146
                                           1.091
                                                  0.982
              0.934
                                   1.122
1.337 0.000
             0.464
                     0.000
                            1.218
                                   1.233
                                          0.000
                                                 0.474
                                                         0.000
1.098 1.264
                     0.934
                            1.058
                                   1.018
                                          1.136 0.985 1.379* 1.191
             1.020
```

Figura 4.10: Distribución de potencia en la *lattice* a 0 MWd/kg

* POWER	R DISTR	IBUTION	PEA	K: LL =	1.138	(174.3	W/CM),	HSF =	1.138	(54.0 W/CM2)
0.822											
0.954	0.000										
0.973	1.065	1.060									
0.958	0.000	1.049	0.923								
0.949	1.082	0.998	1.105	0.000							
0.953	1.092	1.104	0.000	0.000	0.000						
0.968	0.000	1.071	0.000	0.000	1.096	0.973					
0.981	1.087	1.138*	1.070	1.099	1.050	1.044	1.042				
0.959	0.000	1.085	0.000	1.090	1.077	0.000	1.062	0.000			
0.855	0.926	0.883	0.850	0.893	0.871	0.916	0.856	0.950	0.865		

Figura 4.11: Distribución de potencia en la lattice a 35 MWd/kg

*	POWER	DISTR	IBUTION	PEAH	<: LL =	1.072	(164.1	W/CM),	HSF =	1.072	(50.8 W/CM2)
1.	025											
0.	979	0.000										
Θ.	978	0.963	1.044									
0.	973	0.000	1.054	1.001								
Θ.	972	1.031	1.013	1.072*	0.000							
0.	973	1.027	1.066	0.000	0.000	0.000						
0.	975	0.000	1.009	0.000	0.000	1.064	1.022					
0.	981	0,959	1.052	1.004	1.056	1.051	1.039	1.022				
0.	983	0.000	0.954	0.000	1.014	1.015	0.000	0.952	0.000			
1.	031	0.979	0.964	0.950	0.954	0.948	0.959	0.956	0.977	1.027		

Figura 4.12: Distribución de potencia en la lattice a 70 MWd/kg

4.3. *Lattice* 4: 4.88 % de enriquecimiento con barras parciales

Figura 4.14: Gráfica pin peak vs quemado 4.88%, barras parciales

Para esta *lattice* se escogió la corrida 1 de 4.831%, debido a que tuvo el menor máximo de K-INF a lo largo del ciclo de quemado, dentro de las corridas que cumplieron con el desempeño esperado (todas menos la corrida 2). Sus enriquecimientos y gadolonia

CAPÍTULO 4. SIMULACIÓN DEL DISEÑO DEL ENSAMBLE DE COMBUSTIBLE

son los siguientes:

2									
4.2	5.8								
4.2	5.6 - 5	6.2							
4.2	3.95	6.2	5.6						
4.2	6.2	<mark>5.6 - 5</mark>	6.2	5.2					
4.2	5.6 - 5	6.2	0	0	5.2				
4.2	3.95	6.2	0	0	6.2	6.2			
4.2	5.8 - 5	6.2	5.8 - 5	6.2	4.8	5.6	5.4	-	
3.95	6	5.8 - 5	4.2	6.2	6.2	3.95	5.6 - 5	6.2	
2.6	3.95	3.95	3.2	3	3.6	3	3.2	3.2	2.8

Figura 4.15: Enriquecimientos de la lattice 4

A continuación, se muestra la distribución de potencia en la *lattice* a lo largo del ciclo.

```
* POWER DISTRIBUTION
                        PEAK: LL = 1.395 (213.6 W/CM), HSF = 1.395 (
                                                                          66.1 W/CM2)
0.930
1.395* 0.000
1.187 0.447
              0.932
1.127 0.000
              0.945
                    0.909
1.070
       1.039
              0.420
                     1.165
                            0.000
              1.025
                     0.000
                            0.000
                                   0.000
1.057
       0.433
1.129
      0.000
              1.089
                     0.000
                            0.000
                                   1.304
                                          1.119
                                         1.046
                                                0.957
1.198
      0.453
              0.976
                     0.442
                            1.180
                                   0.967
1.341
      0.000
             0.456
                     0.000
                            1.270
                                   1.297
                                          0.000 0.469
                                                        0.000
1.155 1.359
             1.190
                    0.999
                           0.939
                                  1.091
                                         0.985 1.067
                                                       1.220 1.288
```

Figura 4.16: Distribución de potencia en la *lattice* a 0 MWd/kg

* POWER DISTRIBUTION PEAK: LL = 1.142 (174.9 W/CM), HSF = 1.142 (54.2 W/CM2) 0.810 0.974 0.000 1.092 0.972 1.080 0.960 0.000 1.059 0.985 0.949 1.098 0.000 1.007 1.111 0.953 1.046 1.110 0.000 0.000 0.000 0.000 1.044 0.000 1.106 0.967 0.000 1.131 0.978 1.097 1.142* 1.073 1.105 0.929 1.005 1.020 1.097 0.000 0.000 0.955 0.000 1.099 0.000 1.077 1.088 0.858 0.953 0.950 0.865 0.830 0.884 0.839 0.869 0.875 0.865

Figura 4.17: Distribución de potencia en la lattice a 35 MWd/kg

* POWE	R DISTR	IBUTION	PEA	K: LL =	1.069	(163.7	W/CM),	HSF =	1.069	(50.7	W/CM2)
1.027						(*********************						
0.988	0.000											
0.983	0.970	1.064										
0.978	0.000	1.064	1.038									
0.975	1.037	1.019	1.069*	0.000								
0.975	0.982	1.068	0.000	0.000	0.000							
0.979	0.000	1.058	0.000	0.000	1.054	1.046						
0.985	0.963	1.053	1.003	1.051	0.982	1.006	1.002					
0.989	0.000	0.959	0.000	1.008	1.007	0.000	0.948	0.000				
1.033	0.988	0.980	0.958	0.944	0.952	0.950	0.963	0.977	1.030			

Figura 4.18: Distribución de potencia en la lattice a 70 MWd/kg

Además del efecto de la gadolinia sobre la reactividad, ésta también puede afectar la distribución de energía en la *lattice*. Debido a su elevada sección de absorción, en las barras de combustible en las que se coloca gadolinia, el flujo de neutrones se deprime y por tanto también la potencia, de modo que ésta se desplaza hacia otros *pines* en los cuales aumentan su potencia. Este efecto se nota claramente cuando la *lattice* está fresca, mientras que con el quemado se va desvaneciendo para tener una distribución de potencia más homogénea conforme la gadolinia se consume. A partir de estas corridas se generaron los archivos ascii (.cax) para vincularlos a través de CMS-LINK y obtener los bancos de parámetros nucleares que se usan en SIMULATE y poder pasar a la optimización de la recarga de combustible.

Capítulo 5

Optimización de la recarga de combustible

Como se vio en la Sección 2.4 se utilizó la búsqueda Tabu para optimizar el reacomodo de los ensambles de combustible en cada recarga. Se tomó como referencia el ciclo 14 de la unidad 2 de Laguna Verde, es decir, en el ciclo 13 se introdujeron 140 ensambles con enriquecimiento promedio de 3.85 %, a partir del ciclo 14 se introdujeron al núcleo 148 ensambles cada 24 meses, tal como se había determinado en el diagrama de utilización de combustible (ver Figura 2.5) con la finalidad de en tres recargas haber cambiado los 444 ensambles y tener un enriquecimiento promedio en el núcleo de 4.5 %. El objetivo de este capítulo es llegar a un ciclo de equilibrio, es decir, una vez que se alcance y permanezca constante la longitud de ciclo deseada, en este caso 17.011 MWd/kgU, se buscará que el quemado del núcleo al inicio del ciclo converja. Esta

longitud de ciclo se obtuvo con la fórmula:

$$Lc = P * EFPD * FC = 17.011MW/kgU$$

$$(5.1)$$

Donde:

- P = densidad de potencia = 28.75 MW/tU
- EFPD = 2 años = 730.5 días
- FC = Factor de carga = 0.81^{1}

En el sistema que utiliza la búsqueda Tabu se puede que proponer un acomodo del núcleo y elegir si se quiere que a partir de esa propuesta se realice el proceso iterativo, o que se haga una combinación aleatoria de los ensambles, y de ahí empezar la optimización. A su vez se tiene que indicar el valor máximo relativo de los límites térmicos, en este caso de 0.9 , y el valor mínimo del margen de parada de 1 % $\frac{\Delta k}{k}$.

¹https://pris.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=421

El diseño de patrón de recarga del núcleo, tanto el propuesto como el resultado de la búsqueda tabu sigue la estrategia *In-Out* para reducir la fuga de neutrones y maximizar el flujo de neutrones en el combustible más reactivo, esto se logra colocando el combustible más reactivo hacia el centro del núcleo, mientras que los ensambles menos reactivos se colocan en la periferia, sin embargo esta estrategia podría producir picos de potencia muy elevados, por lo cual es importante que los ensambles tengan la cantidad adecuada de veneno quemable, para evitar esos picos no deseados, sin comprometer la longitud del ciclo [12]. Para ejemplificar dicha estrategia en la figura 5.1 muestra el núcleo del BWR-5 a comienzo de un hipotético ciclo 15, sin optimización y únicamente siguiendo la estrategia In-Out, es decir, los ensambles menos reactivos se ubican en la periferia, generalmente los más irradiados (naranjas del ciclo 12 y los amarillos más irradiados del ciclo 13), posteriormente acercándose más al centro del núcleo y siguiendo un patrón de tablero de ajedrez se acomodan los ensambles más reactivos (verde del ciclo 14 y azul del ciclo 15), los ensambles amarillos del ciclo 13 ubicados al centro del núcleo sirven para compensar el exceso de reactividad en el centro de parte de los ensambles más frescos.

Figura 5.1: Ciclo 15 sin optimización siguiendo estrategia In-Out

Esta semilla aleatoria o propuesta con la que se inicia la búsqueda Tabu, contiene los 444 ensambles del núcleo identificados por medio de seis caracteres, los primeros dos para saber en qué ciclo entró en el núcleo, el siguiente una letra para identificar el tipo de ensamble, por ejemplo, en caso de que haya diferentes tipos en un mismo lote, y los siguientes tres son números para identificar el ensamble. Por ejemplo, los ensambles 11T958 y 11S873, ambos entraron al núcleo en el ciclo 11, sin embargo, son de diferente tipo, uno S y otro T.

5.1. Ciclo 14

Para el ciclo 14 se usó la siguiente propuesta de núcleo que se basa en la estrategia usada en el ciclo 13 de Laguna Verde, y aumentando ocho ensambles frescos:

		8	3	115873	12V377	12V381	12V365	12V389	12V369	12V385
			11T977	12V397	12V329	14J141	14J027	12U269	14J001	12V353
		12V373	115878	14J019	13W141	14J002	13W129	14J003	13X181	14J004
	11T958	12U317	14J005	13W133	14J006	13W121	14J007	13X165	14J008	13W105
115935	115921	14J025	13W137	14J009	13X217	14J010	120281	14J011	120301	14J012
115877	120285	13W145	14J013	13X205	14J014	13X157	14J015	12V321	14J016	120293
11T953	120289	14J017	13W117	14J018	13X153	12V333	13X201	13W109	13X221	13X209
12V361	14J035	13W125	14J020	120277	14J021	13X197	120313	13X189	14J022	13X185
12V393	120273	14J023	13X161	14J024	12V325	13W101	13X193	14J026	13X169	120261
12V401	14J028	13X177	14J029	12U305	14J030	13X225	14J031	13X173	14J032	14J145
12V349	12V357	14J033	13W113	14J034	120297	13X213	13W149	12U265	12V341	120309
12V352	12V360	14J036	13W116	14J037	120300	13X216	13W152	12U268	12V344	120312
120320	14J039	13X180	14J040	12U308	14J041	13X228	14J042	13X176	14J043	14J146
12V396	120276	143044	13X168	14J045	12V328	13W104	13X196	14J047	13X172	120264
12V364	14J038	13W144	14J049	12U280	14J050	13X200	120316	13X192	1 4J051	13X188
115928	120292	14J052	13W120	14J053	13X156	12V336	13X204	13W112	13X224	13X212
11T959	120288	13W128	14J055	13X208	14J056	13X160	14J057	12V324	14J058	12U296
115876	11T960	14J046	13W140	14J059	13X220	14J060	120284	14J061	120304	14J062
	115940	12V404	14J063	13W136	14J064	13W124	14J065	13X164	14J066	13W108
		12V376	11T956	14J054	13W132	14J067	13W148	14J068	13X184	14J069
			115936	12V400	12V332	14J142	14J048	120272	14J070	12V356
				11T976	12V380	12V384	12V368	12V392	12V372	12V388

Figura 5.2: Propuesta ciclo 14, mitad del núcleo

12V386	12V370	12V390	12V366	12V382	12V378	115918				
12V354	14J071	12U270	14J093	14J143	12V330	12V398	11T973			
14J072	13X182	14J073	13W130	14J074	13W142	14J087	11T968	12V374		
13W106	14J075	13X166	14J076	13W122	14J077	13W134	14J078	12V402	11T962	
14J079	120302	14J080	12U282	14J081	13X218	14J082	13W138	14J095	11T979	115950
12U294	14J083	12V322	14J084	13X158	14J085	13X206	14J086	13W146	120286	11T983
13X198	13X222	13W110	13X214	12V334	13X154	14J088	13W118	14J089	120290	115926
13X186	14J090	13X190	12U314	13X210	14J091	120278	14J092	13W126	14J103	12V362
12U262	13X170	14J094	13X194	13W102	12V326	14J096	13X162	14J097	120274	12V394
14J147	14J098	13X174	14J099	13X226	14J100	120306	14J101	13X178	14J102	12U318
120310	12V342	120266	13W150	13X202	12U298	14J104	13W114	14J105	12V358	12V350
12U311	12V343	12U267	13W151	13X203	12U299	14J107	13W115	14J108	12V359	12V351
14J148	14J109	13X175	14J110	13X183	14J111	120307	14J112	13X223	14J113	12V403
12U263	13X171	14J115	13X195	13W103	12V327	14J117	13X167	14J118	120275	12V395
13X187	14J119	13X191	120315	13X211	14J120	120279	14J121	13W127	14J106	12V363
13X199	13X179	13W111	13X215	12V335	13X155	14J123	13W119	14J124	120291	115946
12U295	14J125	12V323	14J126	13X159	14J127	13X207	14J128	13W143	120287	115923
14J129	120303	14J130	12U283	14J131	13X219	14J132	13W139	14J116	115875	11T955
13W107	14J133	13X163	14J134	13W123	14J135	13W135	14J136	12U319	11T984	
14J137	13X227	14J138	13W131	14J139	13W147	14J122	115927	12V375		
12V355	14J140	120271	14J114	14J144	12V331	12V399	11T963			
12V387	12V371	12V391	12V367	12V383	12V379	115933				

Figura 5.3: Propuesta ciclo 14, segunda mitad del núcleo

Se realizaron cinco corridas y se analizaron los límites térmicos y la longitud de ciclo. Los límites térmicos y los valores de la función objetivo para el ciclo 14 se muestran a continuación:

Figura 5.4: Función objetivo en función de las iteraciones

Figura 5.5: Margen de apagado en función de las iteraciones

Figura 5.6: MFLCPR en función de las iteraciones

El quemado del núcleo al inicio del ciclo fue 16.266 MWd/kg, aunque ninguna corrida viola los límites térmicos establecidos, la elegida fue la número 5, debido a que tuvo una mayor longitud de ciclo, 15.83 MWd/kg. Este es el reacomodo resultado de la búsqueda Tabu:

				115873	12V377	12V381	12V365	12V389	12V369	12V385
			11T977	12V397	12V329	14J141	14J027	12U269	14J001	12V353
		12V373	11 5878	14J019	13W141	14J002	13W129	14J003	13X181	14J004
	11T958	120317	1 4J005	13W133	14J006	13W121	14J007	13X165	14J008	13W105
115935	115921	14J025	13W137	14J009	13X217	14J010	12U281	14J011	12U301	14J012
115877	120285	13W145	14J013	13X205	14J014	13X157	14J015	12V321	14J016	120293
11T953	120289	14J017	13W117	14J018	13X153	12V333	13X201	13W109	13X221	13X209
12V361	14J035	13W125	14J020	120277	14J021	13X197	120313	13X189	14J022	13X185
12V393	120273	14J023	13X161	14J024	12V325	13W101	13X193	14J026	13X169	120261
12V401	14J028	13X177	14J029	12U305	14J030	13X225	143031	13X173	143032	14J145
12V349	12V357	14J033	13W113	14J034	120297	13X213	13W149	120265	12V341	120309
12V352	12V360	14J036	13W116	14J037	12U300	13X216	13W152	120268	12V344	120312
120320	14J039	13X180	143040	120308	143041	13X228	14J042	13X176	143043	14J146
12V396	120276	14J044	13X168	14J045	12V328	13W104	13X196	14J047	13X172	120264
12V364	14J038	13W144	143049	120280	14J050	13X200	120316	13X192	143051	13X188
115928	120292	14J052	13W120	14J053	13X156	12V336	13X204	13W112	13X224	13X212
111959	120288	13W128	14J055	13X208	14J056	13X160	14J05/	12V324	14J058	120296
115876	111960	14J046	13W140	14J059	13X220	14J060	120284	14J061	120304	14J062
	115940	12V404	14J063	13W136	14J064	13W124	14J065	13X164	14J066	13W108
		120376	111956	14J054	13W132	14J067	13W148	14J068	13X184	14J069
			115936	120400	12V332	14J142	14J048	120272	14J070	12V356
				1119/6	120380	12V384	121368	12V392	12/3/2	12V388

Figura 5.7: Resultado ciclo 14, primera mitad del núcleo

12V386	12V370	12V390	12V366	12V382	12V378	115918				
12V354	14J071	12U270	14J093	14J143	12V330	12V398	11T973			
14J072	13X182	14J073	13W130	14J074	13W142	14J087	11T968	12V374		
13W106	14J075	13X166	14J076	13W122	14J077	13W134	14J078	12V402	11T962	
14J079	12U302	14J080	120282	14J081	13X218	14J082	13W138	14J095	11T979	115950
12U294	14J083	12V322	14J084	13X158	14J085	13X206	14J086	13W146	12U286	11T983
13X198	13X222	13W110	13X214	12V334	13X154	14J088	13W118	14J089	120290	115926
13X186	14J090	13X190	120314	13X210	14J091	120278	14J092	13W126	14J103	12V362
12U262	13X170	14J094	13X194	13W102	12V326	14J096	13X162	14J097	120274	12V394
14J147	14J098	13X174	14J099	13X226	14J100	120306	14J101	13X178	14J102	120318
120310	12V342	12U266	13W150	13X202	120298	14J104	13W114	14J105	12V358	12V350
120311	12V343	12U267	13W151	13X203	12U299	14J107	13W115	14J108	12V359	12V351
14J148	14J109	13X175	14J110	13X183	14J111	120307	14J112	13X223	14J113	12V403
120263	13X171	14J115	13X195	13W103	12V327	14J117	13X167	14J118	120275	12V395
13X187	14J119	13X191	120315	13X211	14J120	120279	14J121	13W127	14J106	12V363
13X199	13X179	13W111	13X215	12V335	13X155	14J123	13W119	14J124	120291	115946
120295	14J125	12V323	14J126	13X159	14J127	13X207	14J128	13W143	120287	115923
14J129	12U303	14J130	120283	14J131	13X219	14J132	13W139	14J116	115875	11T955
13W107	14J133	13X163	14J134	13W123	14J135	13W135	14J136	120319	11T984	
14J137	13X227	14J138	13W131	14J139	13W147	14J122	115927	12V375		
12V355	14J140	12U271	14J114	14J144	12V331	12V399	11T963			
12V387	101/071	10001	101/067	101/202	101070	110000				

Figura 5.8: Resultado ciclo 14, segunda mitad del núcleo

Tal como se mencionó al inicio del capítulo, el resultado de la búsqueda tabu sigue una estrategia *In-Out* para evitar fugas y tener una mejor distribución de flujo neutrónico, y por lo tanto de la potencia en el núcleo.

5.2. Ciclo 15

Para el ciclo 15, se usó de inicio la siguiente propuesta de núcleo que se obtuvo del ciclo 14:

5 T										
				13X201	13X185	13X157	13W145	13X173	13X161	13X176
			13W105	13X225	13X216	13X217	13X197	14J004	13X165	14J137
		13X204	13X168	13X182	14J143	15J145	14 J 141	15J144	14J015	15J018
	13W108	13X202	13X213	143009	15J038	14J006	15J067	14J003	153047	14J057
12V373	13X205	13X172	14J041	15J028	14J007	15J068	14J011	153066	14J008	15J037
12V341	13X221	14J035	15J019	14J018	15J026	14J034	15J054	14J019	153044	14J002
12V369	13W124	15J015	143030	15J029	14J017	15J058	14J022	15J048	14J016	153060
12V333	13X177	14J013	15J023	143044	15J012	14J031	15J053	14J026	153043	14J038
12V365	13W133	15J003	14J020	15J030	14J010	15J057	143027	153049	14J032	153034
12V353	15J001	14J029	15J020	14J024	15J061	14J012	15J052	14J063	15J042	13X189
12V397	13W113	15J013	13W152	15J009	14J023	15J007	14J005	15J005	13W148	13X193
12V389	13W144	15J014	13W104	15J010	14J040	15J008	14J033	15J006	13W141	13X196
12V336	15J002	14J047	15J021	14J045	15J059	14J048	15J055	14J028	15J039	13X192
12V368	13W137	15J004	14J049	15J031	14J037	15J062	14J043	15J050	14J051	15J011
12V372	13W140	14J067	15J024	14J053	15J069	14J046	15J056	14J054	153040	14J062
12V400	13X184	15J017	14J055	15J032	14J050	15J063	14J042	15J051	14J058	15J035
12V376	13X180	14J052	15J025	14J059	15J070	14J060	15J064	14J061	15J041	14J021
12V392	13W116	13X160	14J066	15J033	14J056	15J071	14J065	15J065	14J064	15J036
	13W109	13X203	13W121	14J039	15J072	14J036	15 J 073	14J068	15J045	14J069
		13W117	13W120	13X215	14J144	15J141	14J142	15J027	14J070	15J046
			13X220	13X188	13W112	13W128	13X164	14J025	13X169	14J106
				13X208	13X228	13X181	13X153	13W125	13X212	13W129

Figura 5.9: Propuesta ciclo 15, mitad del núcleo

13X207	13X198	13X206	13X222	13X170	13X178	13W138				
14J103	13X159	14J077	13X186	13X158	13X154	13W126	13W134			
15J090	14J072	15J104	14J073	15J139	14J145	13W122	13W142	13X218		
14J075	153079	143076	15J100	14J014	15J115	14J147	13W101	13W139	13X226	
153089	14J080	15J103	14J081	15J116	143074	15J138	14J079	13W147	13W146	12V390
14J083	15J099	14J084	15J114	14J085	15J125	14J086	15J078	14J082	13X214	12V374
15J088	14J087	15J102	14J001	15J117	14J088	15J137	14J089	15J077	13W130	12V371
14J090	15J098	14J071	15J113	14J091	15J126	14J092	15J142	14J099	13X174	12V326
15J087	14J094	15J101	14J095	15J118	14J096	15J136	14J097	15J082	13W102	12V370
13X190	15J097	14J148	15J112	14J100	15J127	14J101	15J081	14J093	15J075	12V323
13X194	13W150	15J096	14J105	15J119	14J104	15J140	13X210	15J135	13W118	12V398
13X195	13W106	15J095	14J108	15J120	14J107	15J016	13X211	15J134	13W119	12V379
13X191	15J094	14J078	15J111	14J111	15J128	14J112	15J080	14J098	153076	12V327
15J086	14J115	15J105	14J116	15J121	14J117	15J133	14J118	15J146	13W110	12V399
14J119	15J093	14J140	15J110	14J120	15J129	14J121	15 J1 43	14J109	13X166	12V331
15J085	14J122	15J106	14J113	15J122	14J123	15J132	14J124	15J147	13X162	12V366
14J125	15J092	14J126	15J109	14J127	15J130	14J128	15J022	14J110	13X167	12V354
15J084	14J130	15J107	14J131	15J123	14J132	15J131	14J114	13X200	13X155	12V391
14J133	15J091	14J134	15J108	14J135	15J148	14J136	13W149	13W136	13X175	
15J083	14J138	15J124	14J146	153074	14J102	13W114	13X223	13W135		
14J129	13X183	14J139	13W103	13W115	13W111	13X199	13W151			
13X219	13W123	13X163	13W107	13X227	13X187	13W131				

Figura 5.10: Propuesta ciclo 15, segunda mitad del núcleo

Se realizaron cinco corridas y se analizaron los límites térmicos y longitud de ciclo. Los límites térmicos y los valores de la función objetivo para el ciclo 15 se muestran a continuación:

Figura 5.11: Función objetivo en función de las iteraciones

Fracción máxima del límite operativo (MAPRAT) vs iteraciones (ciclo 15)

Figura 5.12: Fracción máxima de Tasa media de generación de calor lineal planar en función de las iteraciones

Figura 5.13: Margen de apagado en función de las iteraciones

Fracción máxima de la relación de potencia crítica límite de funcionamiento (MFLCPR) vs iteraciones (ciclo 15)

Figura 5.14: MFLCPR en función de las iteraciones

El quemado del núcleo al inicio del ciclo 15 fue 17.903 MWd/kg, aunque en ninguna corrida viola los límites térmicos establecidos, la elegida fue la número 4, debido a que tuvo una mayor longitud de ciclo, 16.511 MWd/kg. Éste es el reacomodo resultado de la búsqueda Tabu.

				13W145	13X161	13X176	13X217	13X201	13X216	13X182
			13X185	13X157	13X173	14J057	15J048	14J008	13X165	14J006
		13X213	13X168	15J043	14J002	15J145	14J026	15J144	14J032	15J018
	12V341	13X202	153049	14J009	15J038	14J141	153067	14J015	153047	14J034
12V333	12V369	15J052	14J041	153028	14J003	153068	14J007	153066	14J016	153037
12V353	12V365	14J023	15J019	14J020	15J026	14J011	15J054	14J038	15J044	14J019
12V397	13W152	153015	14J013	15J029	143044	15J058	13X197	13W105	13X189	13X225
13W124	15J057	14J027	153023	14J018	15J012	13X177	13X204	14J137	15J060	143004
12V373	14J024	15J003	14J029	153030	14J005	13W108	13W113	15J053	14J143	15J034
13X221	15J001	14J063	153020	14J012	15J061	13W148	15J007	14J035	15J042	14J022
13X172	14J030	15J013	14J017	153009	14J010	13X205	13W133	15J005	14J031	13X193
13X160	14J055	153014	14J050	153010	14J037	13W116	13W137	15J006	14J046	13X196
13X180	15J002	14J028	153021	14J048	153059	13W141	15J008	14J052	15J039	14J042
12V392	14J045	153004	143047	15J031	14J033	13W109	13W144	153056	14J144	15J011
13X184	15J062	14J043	153024	14J059	15J069	13W140	13W117	14 J1 06	15J035	14J025
12V389	13W104	15J017	14J067	15J032	14J053	15J063	13X164	13X220	13X192	13X188
12V336	12V368	14]040	153025	14J049	15J070	14J065	15J064	14J062	153041	14J061
12V372	12V400	153055	14J066	153033	14J068	153071	14J056	15J065	14J058	15J036
	12V376	13X203	153050	14J039	153072	14J142	15J073	14J070	153045	14J060
		13W121	13W120	153040	14J021	15J141	14J054	153027	14J051	153046
			13X228	13X181	13W125	141069	150051	143064	13X169	14J036
				13X123	13X212	13W129	13W128	13X208	13W112	138215

Figura 5.15: Núcleo resultado de ciclo 15, primera mitad.

13W122	13X154	13W138	13X158	13X207	13X198	13X222				
14J014	13X159	14J080	15J102	14J075	13X206	13X170	13X178			
15J090	14J094	15J104	14J071	15J139	14J083	15J098	13W142	13W101		
14J085	15J079	14J072	15J100	14J073	15J115	14J147	15J101	13W139	12V374	
153089	14J087	15J103	14J074	15J116	14J076	15J138	14J079	15J112	12V371	12V326
14J084	15J099	14J090	15J114	14J081	15J125	14J097	15J078	14J104	12V370	12V323
13W126	13X190	13W134	13X186	15J117	14J092	15J137	14J099	153077	13X210	12V398
143077	15J088	14J103	13X218	13X174	15J126	14J086	15J142	14J095	15J118	13W130
153087	14J145	15J113	13W118	13X226	14J105	15J136	14J093	153082	14J101	12V390
14J001	15J097	143082	15J119	13W150	15J127	14J100	15J081	14J148	15J075	13X214
13X194	14J091	15J096	13W102	13W146	14J096	15J140	14J088	15J135	143089	13W147
13X195	14J120	15J095	13W110	13X155	14J117	15J016	14J123	15J134	14J124	13X200
14J113	1 5J094	14J110	15J120	13W106	15J128	14J111	15J080	14J078	15J076	13X167
153086	14J102	15 J 110	13W119	13X175	14J108	15J133	14J098	15J146	14J112	12V391
14J139	15J085	14J129	13W135	13X166	15J129	14J128	15J143	14J116	15J121	13X162
13X199	13X191	13W151	13W103	15J122	14J121	15J132	14J109	153147	13X211	12V379
14J126	15J092	14J119	15J109	14J131	15J130	14J118	15J022	14J107	12V399	12V327
15J084	14J122	15 J 107	14J132	15J123	14J134	15J131	14 J 114	15J111	12V366	12V331
14J127	15J091	14J138	15J108	14J146	15J148	14J136	15J105	13W136	12V354	
15J083	14J115	15J124	14J140	153074	14J125	15J093	13X223	13W149		
14J135	13X183	14J130	15J106	14J133	13X163	13X227	13X187			
13W114	13W111	13W131	13W115	13X219	13W123	13W107				

Figura 5.16: Núcleo resultado ciclo 15, segunda mitad.

5.3. Ciclo 16

El ciclo 16 es el primero en que el núcleo tiene los 444 ensambles del diseño con 4.5% de enriquecimiento, se usó la siguiente propuesta de núcleo que se obtuvo del ciclo 15:

				14J054	14J007	14J040	14J018	14J061	143057	14J083
			14J022	14J011	14J023	14J056	14J003	14J068	16J059	153034
		14J027	14J029	14J038	15J038	16J031	15J067	16J049	153059	16J069
	14J031	14J041	14J063	15J028	16J023	15J009	16J041	15J066	16J060	153037
14J034	14J015	14J009	15J019	16J015	15J026	16J032	15J068	16J050	153047	16J070
14J008	14J020	15J005	16J009	15J029	16J024	15J054	16J042	15J048	16J061	15J060
14J016	14J030	15J135	15J023	16J016	15J012	16J033	15J058	16J051	153044	16J071
14J032	14J013	15J030	16J010	15J015	16J025	15J053	16 J 043	15J049	16J062	15J018
14J051	14J035	16J004	15J020	16J017	15J061	16J034	15J057	16J052	153043	16J072
14J062	16J001	15J001	16J011	15J003	16J026	15J055	16J044	15J006	16J063	14J143
14J130	14J005	16J005	14J052	16J018	15J007	16J035	15J017	16J053	14J004	14J039
14J064	14J047	16J006	14J082	16J019	15J008	16J036	15J013	16J054	14J141	14J142
14J026	16J002	15J014	16J012	15J002	16J027	15J052	16J045	15J050	16J064	14J144
14J021	14J067	16J007	15J021	16J020	15J069	16J037	15J056	16J055	153039	16J073
14J058	14J049	15J033	16J013	15J031	16J028	15J062	16J046	15J051	16J065	15J011
14J060	14J066	15J146	15J024	16J021	15J070	16J038	15J064	16J056	153040	16J074
14J046	14J045	15J010	16J014	15J032	16J029	15J063	16J047	15J065	16J066	15J085
14J048	14J053	14J017	153025	16J022	15J072	16J039	15J073	16J057	153041	16J075
	14J012	143044	14J006	15J145	16J030	15J071	16 J 048	15J027	16J067	15J084
		14J043	14J028	14J065	15J004	16 J040	15J144	16J058	153045	16J076
			14J042	14J036	14J033	14J002	14J024	14J106	16J068	15J042
				14J010	14J037	14J050	14J019	14J075	14J059	14J133

Figura 5.17: Propuesta ciclo 16, mitad del núcleo

14J076	14J084	14J105	14J100	14J116	14J081	14J096				
15J087	16J085	14J071	14J140	14J103	14J072	14J086	14J085			
16J077	15J096	16J095	15J100	16J113	15J115	14J092	14J099	14J088		
15J089	16J086	153095	16J105	15J139	16J123	15J138	14J093	14J025	14J091	
16J078	15J079	16J096	15J114	16J114	15J125	16J131	15J078	14J001	14J108	14J111
15J088	16J087	15J103	16J106	15J116	16J124	15J137	16J139	15J082	14J078	14J080
16J079	15J099	163097	15J113	16J115	15J126	16J132	15J016	15J075	14J073	14J087
15J090	16J088	15J102	16J107	15J117	16J125	15J136	16J140	15J077	14J079	14J115
16J080	15J098	16J098	15J097	16J116	15J118	16J133	15J140	16J003	14J089	14J119
14J145	16J089	15J101	16J108	15J112	16J126	15J127	16J141	15J081	16J145	14J090
14J136	14J147	16J099	15J141	16J117	15J119	16J134	14J077	16 J 147	14J074	14J094
14J146	14J070	16J100	15J104	16J118	15J120	16J135	14J137	16J148	14J098	14J107
14J102	16J090	153094	16J109	15J111	16J127	15 J 142	16J142	15J134	16J146	14J129
16J081	15J093	16J101	15J110	16J119	15J128	16J136	15J133	16J008	14J118	14J125
153035	16J091	15J105	16J110	15J121	16J128	15J129	16J143	15J080	14J135	14J122
16J082	15J092	16J102	15J109	16J120	15J132	16J137	15J147	15J076	14J128	14J121
15J036	16J092	15J106	16J111	15J122	16J129	15J130	16J144	15J143	14J114	14J127
16J083	15J091	16J103	15J108	16J121	15J123	16J138	15J022	14J109	14J148	14J120
15J083	16J093	15J107	16J112	153074	16J130	15J131	14J097	14 J 110	14J123	
16J084	15J046	16J104	15J124	16J122	15J148	14J101	14J124	14J014		
15J086	16J094	14J138	14J055	14J139	14J069	14J113	14J117			
14J132	14J112	14J126	14J134	14J131	14J095	14J104				

Figura 5.18: Propuesta ciclo 16, segunda mitad del núcleo

Se realizaron cinco corridas y se analizaron los límites térmicos y longitud de ciclo. Los límites térmicos y los valores de la función objetivo para el ciclo 16 se muestran a continuación:

Figura 5.19: Función objetivo en función de las iteraciones

Fracción máxima del límite operativo (MAPRAT) vs iteraciones (ciclo 16)

Figura 5.20: Fracción máxima de límite operativo en función de las iteraciones

Figura 5.21: Margen de apagado en función de las iteraciones

Fracción máxima de la relación de potencia crítica límite de funcionamiento (MFLCPR) vs iteraciones (ciclo 16)

Figura 5.22: MFLCPR en función de las iteraciones

El quemado del núcleo al inicio del ciclo 16 fue 19.413 MWd/kg, aunque en ninguna corrida viola los límites térmicos establecidos, la elegida fue la número 5, debido a que tuvo una mayor longitud de ciclo, 17.083 MWd/kg. Éste es el reacomodo resultado de la búsqueda Tabu.

				143057	14J083	14J029	14J143	14J007	14J061	14J022
			14J054	143011	14J018	14J056	16J072	14J068	16J059	15J034
		14J027	14J040	14J038	14J023	16J062	15J067	16J049	15J018	16J069
	14J034	14J016	16J052	15J060	16J023	16J031	16J041	15J058	16J060	15J043
14J062	14J015	14J009	15J007	16J015	15J038	16J032	15J028	16J050	153047	16J070
14J130	14J032	14J020	16J009	15J005	16J024	15J026	16J042	15J048	16J061	15J068
14J041	14J030	16J044	15J135	16J016	15J029	16J033	15J066	16J051	153044	16J071
14J004	16J053	15J030	16J010	15J019	16J025	15J020	16J043	153049	15J009	15J059
14J008	14J035	16J004	15J053	16J017	153061	16J034	15J057	14J063	153054	14J003
14J051	16J001	15J017	16J011	15J003	16J026	15J055	15J023	15J012	14J039	15J037
14J031	14J005	16J005	153006	16J018	15J015	16J035	15J001	14J013	14J052	16J063
14J012	14J047	16 J 006	15J050	16J019	153031	16J036	15J014	14J049	14J082	16J064
14J021	16J002	15J013	16J012	15J002	16J027	15J052	15J024	15J070	14J142	15J084
14J046	14J067	16J007	15J062	16J020	15J069	16J037	15J056	14J006	15J063	14J024
14J141	16J054	15 J 033	16J013	15J025	16J028	15J021	16J046	153051	153071	15J045
143044	14J066	16J045	15J146	16J021	153032	16J038	15J027	16J056	15J040	16J074
143064	14J058	143045	16J014	15J010	16J029	15J072	16J047	153065	16J066	15J073
14J026	14J053	14J017	15J008	16J022	15J004	16J039	15J145	16J057	153041	16J075
	14J048	143060	16J055	15J085	16J030	16J040	16J048	153064	163067	15J039
		14J043	14J050	14J065	14J033	16J065	15J144	16J058	15J011	16J076
			14J010	14J036	14J019	14J002	16J073	14J106	16J068	15J042
				143059	14J133	14J028	143144	14J037	14J075	14J042

Figura 5.23: Núcleo resultado de ciclo 16, primera mitad.
14J085	14J105	14J081	14J145	14J099	14J076	14J084				
15J087	16J085	14J071	16J080	14J103	14J100	14J086	14J096			
16J077	153090	16J095	15J100	16J088	14J072	14J092	14J116	14J088		
15J098	16J086	15J113	16J105	16J113	16J123	153088	16J098	14J087	14J111	
16J078	15J079	16J096	15J138	16J114	15J115	16J131	15J119	14J001	14J108	14J090
15J114	16J087	15J103	16J106	15J125	16J124	15J082	16J139	14J078	14J115	14J094
16J079	15J099	16J097	153095	16J115	15J137	16J132	153075	16J108	14J073	14J025
153096	15J139	15J102	16J107	15J140	16J125	15J078	16J140	15J077	16J099	14J147
14J140	15J116	14J093	15J097	16J116	15 J 118	16J133	15J117	16J003	14J089	14J080
15J089	14J136	15J126	15J016	15J112	16J126	15J127	16J141	15J141	16J145	14J119
16J089	14J077	14J079	15J081	16J117	15J136	16J134	15J101	16J147	143074	14J091
16J090	14J137	14J135	15J134	16J118	15J129	16J135	153094	16J148	14J098	14J123
15J083	14J146	15J132	15J147	15J111	16J127	15J142	16J142	15J104	16J146	14J125
14J055	15J122	14J097	15J110	16J119	15J128	16J136	15J121	16J008	14J118	14J127
153046	15J074	15J105	16J110	15J133	16J128	15J022	16J143	15J080	16J100	14J070
16J082	15J092	16J102	15J107	16J120	15J130	16J137	15J076	16J109	14J128	14J110
15J108	16J092	15J106	16J111	15J123	16J129	15J143	16J144	14J114	14J122	14J107
16J083	15J091	16J103	15J131	16J121	15J148	16J138	15J120	14J109	14J148	14J129
15J093	16J093	15J109	16J112	16J122	16J130	15J036	16J101	14J121	14J120	
16J084	15J035	16J104	15J124	16J091	14J069	14J101	14J131	14J014		
15J086	16J094	14J138	16J081	14J139	14J134	14J113	14J104			
14J117	14J126	14J095	14J102	14J124	14J132	14J112				

Figura 5.24: Núcleo resultado ciclo 16, segunda mitad.

5.4. Ciclo 17

Para el ciclo 17 se usó la siguiente propuesta de núcleo que se obtuvo del ciclo 16:

				15J011	15J007	15J040	15 J 003	15J061	15J031	15J083
			15J039	15J027	15J023	15J082	15J075	15J068	17J059	16J034
		153054	15J026	15J141	16J038	17J031	16 J 067	17J049	16J044	17J069
	15J057	15J041	15J022	16J028	17J023	16J009	17J041	16J066	17J060	16J037
15 J 012	153015	153009	16J019	17J015	16J026	17J032	16J068	173050	16J043	173070
15 J 008	15J020	16J005	17J009	16J029	17J024	16J054	173042	16J048	17J061	16J084
15J049	15J030	16J135	16J023	17J016	16J012	17J033	16J058	17J051	16J047	17J071
15 J 056	15J013	163030	17J010	16J015	17J025	16J053	17J043	16J049	17J062	16J059
15 J 051	15J035	173004	16J020	17J017	16J061	17J034	16 J 057	17J052	16J060	17J072
15J062	173001	16J001	17J011	16J003	17J026	16J055	173044	16J006	17J063	15J143
153052	15J130	173005	153005	17J018	16J007	17J035	16J017	17J053	15J002	153029
15 J 064	153047	17J006	15J032	17J019	16J008	17J036	16 J 013	173054	15J038	15J142
15 J 063	17J002	16J014	17J012	16J002	173027	16J052	17J045	16J050	173064	15J144
153006	153067	173007	16J021	17J020	163069	17J037	16J056	173055	16J040	17J073
15 J 058	15J016	16J033	17J013	16J031	17J028	16J062	17J046	16J051	173065	16J085
15 J 060	15J066	16J146	16J024	17J021	16J070	17J038	16J064	173056	16J041	173074
15J053	153045	16J010	17J014	16J032	17J029	16J063	173047	16J065	17J066	16J011
15J048	153046	153034	16J025	173022	16J072	17J039	16J073	173057	16J039	173075
	15J044	15J017	15J028	16J145	17J030	16J071	17J048	16J027	17J067	16J018
		153043	15J021	15J042	16J004	17J040	16J144	173058	16J045	173076
			15J065	15J010	15J033	15J004	15J019	153018	173068	16J042
				15J036	15J037	15J050	15J024	15J106	15J059	15J133

Figura 5.25: Propuesta ciclo 17, mitad del núcleo

15J076	15J084	15J105	15J100	15J116	15J081	15J096				
16J087	17J085	15J071	15J140	15J103	15J072	15J086	15J085			
17J077	16J096	17J095	16J100	17J113	16J115	15J092	15J099	15J088		
16J089	17J086	16J095	17J105	16J139	17J123	16J138	15J093	15J025	15J091	
17J078	16J079	17J096	16J114	17J114	16J125	17J131	16J078	15J001	15J108	15J111
16J088	17J087	16J103	17J106	16J116	17J124	16J137	17J139	16J082	15J078	15J070
17J079	16J099	17J097	16J113	17J115	16J126	17J132	16J016	16J075	15J073	15J087
16J090	17J088	16J102	17J107	16J117	17J125	16J136	17J140	16J077	153079	15J115
17J080	16J098	17J098	16J097	17J116	16J118	17J133	16J140	17J003	153089	15J119
15J145	17J089	16J101	17J108	16J112	17J126	16J127	17J141	16J081	17J145	15J090
15J136	15J147	17J099	16J141	173117	16J119	17J134	153077	17J147	153074	15J094
15J146	15J080	17J100	16J104	17J118	16J120	17J135	15J137	17J148	15J098	15J107
15J102	17J090	16J094	17J109	16J111	17J127	16J142	17J142	16J134	17J146	15J129
17J081	16J093	17J101	16J110	17J119	16J128	17J136	16J133	17J008	15J118	15J125
16J035	17J091	16J105	17J110	16J121	17J128	16J129	17J143	16J080	15J135	15J122
17J082	16J092	17J102	16J109	17J120	16J132	17J137	16J147	16J076	15J128	15J121
16J036	17J092	16J106	17J111	16J122	17J129	16J130	17J144	16J143	15J114	15J127
17J083	16J091	17J103	16J108	17J121	16J123	17J138	16J022	15J109	15J148	15J120
16J083	17J093	16J107	17J112	16J074	17J130	16J131	15J097	15J110	15J123	
17J084	16J046	17J104	16J124	17J122	16J148	15J101	15J124	153014		
16J086	173094	15J138	15J055	15J139	15J069	15J113	15J117			
15J132	15J112	15J126	15J134	15J131	15J095	15J104				

Figura 5.26: Propuesta ciclo 17, segunda mitad del núcleo

Se realizaron cinco corridas y se analizaron los límites térmicos y longitud de ciclo. Los límites térmicos y los valores de la función objetivo para el ciclo 17 se muestran a continuación:

Figura 5.27: Función objetivo en función de las iteraciones

Fracción máxima del límite operativo (MAPRAT) vs iteraciones (ciclo 17)

Figura 5.28: Fracción máxima de límite operativo en función de las iteraciones

Figura 5.29: Margen de apagado en función de las iteraciones

Figura 5.30: MFLCPR en función de las iteraciones

El quemado del núcleo al inicio del ciclo 17 fue 20.695 MWd/kg, aunque en ninguna corrida viola los límites térmicos establecidos, la elegida fue la número 2, debido a que tuvo una mayor longitud de ciclo, 15.846 MWd/kg. Este es el reacomodo resultado de la búsqueda Tabu.

				15 J039	15J031	15J023	153027	153003	15J061	15J083
			15J075	15J068	153141	15J026	17J062	16J034	17J059	16J037
		15J054	153040	17J072	16J009	17J042	16J043	17J049	16J068	17J069
	15J013	15J049	173063	17J031	17J023	16J059	173041	16J047	173060	16J044
153057	15J035	17J053	16J135	17J015	16J026	17J032	16J048	173050	16J038	173070
15J062	15J009	16J023	17J009	16J029	17J024	16J060	16J066	16J049	17J061	16J084
15J020	15J041	17J025	16J017	17J016	16J006	17J033	16J054	17J051	16J028	16J067
15J015	17J044	16J003	17J010	16J061	16J020	16J012	17J043	16J058	173071	15J011
15J056	15J130	17J004	16J055	17J017	16J057	17J034	16J053	17J052	15J143	15J007
15J051	17J001	16J015	173011	16J005	173026	16J019	17J035	15J002	15J022	15J082
15J052	153005	17J005	16J001	17J018	16J007	163030	15J012	15J008	15J030	15J029
15J064	15J032	17J006	16J014	17J019	16J008	16J033	15J048	15J053	15J066	15J142
15J006	17J002	16J031	173012	16J010	17J027	16J025	17J036	15J038	15J028	153004
15J058	15J047	17J007	16J052	17J020	16J056	17J037	16J062	173055	15J144	15J037
15J046	17J045	16J002	17J013	16J069	16J021	16J070	17J046	16J064	173074	15J036
15J045	15J017	17J028	16J013	17J021	16J050	173038	16J063	17J056	16J145	16J144
15J063	153034	16J024	17J014	16J032	17J029	163040	16J027	16J051	17J066	16J011
15J044	15J067	17J054	16J146	17J022	16J072	17J039	16J065	173057	16J004	173075
	15J016	15J060	17J064	17J040	17J030	16J085	17J048	16J041	17J067	16J045
		15J043	15J050	17J073	16J071	173047	16J039	17J058	16J073	17J076
			153019	15J018	15J042	15J021	173065	16J042	17J068	16J018
				15J065	153059	15J033	15J010	153024	15J106	15J133

Figura 5.31: Núcleo resultado de ciclo 17, primera mitad.

15J076	15J105	15J100	153086	15J072	153084	151085	151140			
173077	16J114	17J095	16J079	17J106	16J139	173080	15J140 15J116	15J088		
16J096	173086	16J099	17J105	16J090	17J123	17J113	17J089	153087	15J079	
17J078	16J115	17J096	16J103	17J114	16 J 125	17J131	16J075	17J099	15J089	15J091
16J088	17J087	16J102	16J095	16J098	17J124	16J137	17J139	16J016	15J001	15J090
16J100	16J138	17J097	16J116	17J115	16J101	17J132	16J141	17J125	15J025	15J078
15J096	17J079	16J113	17J107	16J126	16 J 140	16J118	17J140	16J127	17J108	15J108
15J081	15J145	17J098	16J117	17J116	16J097	17J133	16J112	17J003	15J074	15J115
15J103	15J093	15J147	17 J 117	16J078	17J126	16J082	17J141	16J136	17J145	15J119
15J136	15J073	15J070	15J111	16J077	16 J 119	17J134	16J081	17J147	153077	153094
15J146	15J128	15J127	15J120	16J080	16J120	17J135	16J134	17J148	15J137	15J107
15J139	15J097	15J080	17J118	16J022	17J127	16J143	17J142	16J129	17J146	15J125
15J095	15J102	17J101	16J121	17J119	16J110	17J136	16J111	17J008	15J098	15J122
15J104	17J082	16J109	17J110	16J132	16 J 133	16J128	17J143	16J142	17J109	15J148
16J124	16J131	17J102	16J122	17J120	16J094	17J137	16J104	17J128	15J110	15J114
16J036	17J092	16J105	16J107	16J093	17J129	16J130	173144	16J147	15J109	15J129
17J083	16J148	17J103	16J106	17J121	16J123	17J138	16J076	17J100	15J118	15J123
16J046	173093	16J092	17J112	16J035	17J130	17J122	17J090	15J121	15J135	
17J084	16J108	17J104	16J091	17J111	16J074	17J081	15J131	153014		
16J083	173094	16J086	17J091	15J124	15J101	15J138	15J055			
15J132	15J126	15J134	15J113	15J069	15 J 112	15J117				

Figura 5.32: Núcleo resultado ciclo 17, segunda mitad.

Para este punto la longitud de ciclo disminuyó y no se mantuvo en 17,00 MWd/kg, sin embargo, se ejecutaron cuatro ciclos más para lograr llegar al equilibrio en el quemado del núcleo.

5.5. Ciclo 18

En este caso se utilizó como propuesta que el programa hiciera movimientos aleatorios al núcleo y a partir de ahí comenzara la búsqueda.

El objetivo de los siguientes ciclos será buscar la convergencia en el quemado del núcleo, por lo cual únicamente nos fijaremos en el quemado al inicio del ciclo, además ya se vio en los ciclos anteriores que los resultados del programa no violan los límites térmicos ni el margen de parada. El resultado de la búsqueda tabu para el ciclo 18 es el siguiente:

				16J049	16J048	16J043	16J066	18J083	16J009	16J028
			16J084	163058	18J141	16J067	16J037	17J061	18J027	16J060
		183054	16J047	163044	17J071	18J061	17]049	18J023	17J069	18J143
	16J007	16J055	17J043	18J011	17J051	17J023	17J041	17J032	17J059	17J062
16J057	16J053	16J001	18J012	17J052	18J003	173060	18J026	173050	18J075	17J072
16J061	18J009	17J035	17J034	18J056	17J015	18J039	17J042	16J034	17J070	18J031
16J003	16J030	18J051	17J009	17J011	18J057	173024	18J040	16J068	18J082	17J031
16J020	18J005	17J004	17J010	18J041	17J025	18J049	17J033	18J007	16J059	18J068
18J052	173026	18J020	17J016	173017	18J130	16J015	18]008	17J063	16J026	16J054
16J023	18J015	17J005	17J001	18J013	17J018	18J030	16J017	16J029	18J029	16J038
16J019	16J006	18J002	17J044	17J053	18J062	16J135	18J035	16J012	16J005	18J022
16J025	16J050	18J038	17J045	173054	18J063	16J146	18J067	16J070	16J010	18J028
16J024	18J046	173006	17J002	18J016	17J019	18 J 066	16J013	16J032	18J142	16J004
18J064	17J027	18J045	17J021	17J020	18J047	16J031	18J053	17J064	16J072	16J063
16J021	18J032	17J007	17J013	18J017	17J028	18J060	1 7J038	18J037	16J085	18J018
16J002	16J033	18J006	173014	17J012	18J044	17J029	18J050	16J073	18J004	17J040
16J069	18J034	17J036	17J037	18J058	17J022	18J065	17J047	16J042	17J075	18J059
16J056	16J062	16J014	18J048	173055	18J024	173067	18J021	173057	18J019	173073
	16J008	16J052	17J046	18J036	17J056	17J030	17J048	17J039	17J068	17J065
		18J043	16J041	16J045	17J074	18J106	17J058	18J033	17J076	18J144
			16J011	163064	18J042	16J144	16J018	17J066	18J010	16J040
				16J051	16J065	16J039	16J027	18J133	16J071	16J145

Figura 5.33: Núcleo resultado de ciclo 18, primera mitad.

16J139	18J076	16J095	16J079	16J103	16J102				
18J086	17J087	16J089	16J100	18J092	16J113	16J088			
17J077	18J072	17J095	18J105	17J079	16J096	16J099	18J088		
17J085	17J114	17J105	17J123	17J097	18J096	17J107	16J112	16J119	
18J140	173096	18J099	17J086	18J100	173098	18J111	16J081	16J117	16J097
17J078	16J087	17J106	18J085	17J131	18J115	17J116	17J117	18J001	16J118
18J103	16J114	18J116	17J124	18J091	17J141	17J139	18J119	16J077	16J127
16J090	18J081	17J115	18J087	17J125	18J025	17J140	17J003	18J077	16J140
16J125	17J089	18J070	16J136	18J074	17J133	17J132	18J078	17J126	18J094
18J136	16J137	16J141	18J073	17J134	18J079	17J145	17J147	18J108	16J016
16J082	16J126	18J089	16J075	18J090	17J099	17J108	18J147	16J101	16J078
16J143	16J132	18J118	16J076	18J129	17J100	17J109	18J080	16J094	16J022
18J146	16J130	16J104	18J128	17J135	18J135	17J146	17J148	18J148	16J147
16J123	173090	18J127	16J129	18J098	17J136	17J137	18J114	17J127	18J107
16J035	183095	17J120	18J121	17J128	18J110	17J143	173008	18J137	16J133
18J139	16J108	18J131	17J129	18J123	17J142	17J144	18J125	16J080	16J142
17J083	16J086	17J111	18J117	17J138	18J122	17J119	17J118	18J109	16J128
18J055	17J103	18J124	17 J 093	18J134	17J101	18J120	16J134	16J121	16J110
17J094	17J121	17J112	17J130	17J102	18J104	17J110	16J111	16J120	
17J084	18J069	17J104	18J126	17J082	163046	16J092	18J014		
18J113	17J092	16J083	16J124	18J101	16J109	16J036			
16 J074	18J132	16J107	16J091	16J106	16J105				
	16J139 18J086 17J077 17J085 18J140 17J078 18J103 16J090 16J125 18J136 16J082 16J143 18J146 16J123 16J035 18J139 17J083 18J055 17J094 17J084 18J113 16J074	16J13918J07618J08617J08717J07718J07217J08517J11418J14017J09617J07816J08718J10316J11416J09018J08116J12517J08918J13616J13716J08216J12316J14316J13218J14616J13016J12317J09016J03518J09518J19916J10817J08316J08618J05517J10317J09417J12117J08418J06918J11317J09216J07418J132	16J13918J07616J09518J08617J08716J08917J07718J07217J09517J08517J11417J10518J14017J09618J09917J07816J08717J10618J10316J11418J11616J09018J08117J11516J12517J08918J07018J13616J13716J14116J08216J12618J08916J14316J12618J08916J14316J13016J10416J12317J09018J12716J03518J09517J12018J13916J10818J13117J08316J08617J11118J05517J10318J12417J08418J06917J10418J11317J09216J08316J07418J13216J107	16J13918J07616J09516J07918J08617J08716J08916J10017J07718J07217J09518J10517J08517J11417J10517J12318J14017J09618J09917J08617J07816J08717J10618J08518J10316J11418J11617J12416J09018J08117J11518J08716J12517J08918J07016J13618J13616J13716J14118J07316J08216J12618J08916J07516J14316J12318J1816J07618J14616J13016J10418J12816J12317J09018J12716J12916J03518J09517J12018J12118J13916J10818J13117J12917J08316J08617J11118J17718J05517J10318J12417J09317J09417J12117J10418J12618J11317J09216J08316J12416J07418J13216J10716J091	16J13918J07616J09516J07916J10318J08617J08716J08916J10018J09217J07718J07217J09518J10517J07917J08517J11417J10517J12317J09718J14017J09618J09917J08618J10017J07816J08717J10618J08517J13118J10316J11418J11617J12418J09116J09018J08117J1518J08717J12516J12517J08918J07016J13618J07418J30616J13716J14118J07317J13416J08216J12618J08916J07518J09016J14316J12716J14118J07518J29918J14616J13016J14418J12817J13516J12317J09018J12716J2918J08816J3518J09517J12018J12317J12818J3916J10818J11117J12918J12317J08316J08617J11118J17717J13818J05517J10318J12417J09318J14417J09417J12117J13017J10217J08418J06917J10418J12617J08218J11317J09216J08316J12418J10116J07418J13216J10716J09116J106	16J13918J07616J09516J07916J10316J10218J08617J08716J08916J10018J09216J11317J07718J07217J09518J10517J07916J09617J08517J11417J10517J12317J09718J09618J14017J09618J09917J08618J10017J09817J07816J08717J10618J08517J13118J11518J10316J11418J11617J12418J09117J14116J09018J08117J11518J08717J12518J02516J12517J08918J07016J13618J07417J13318J13616J13716J14118J07317J13418J07916J08216J12618J08916J07518J09017J09916J14316J13218J11816J07518J09017J10918J14616J13016J10418J12817J13518J15516J12317J09018J12716J12918J08917J12618J14616J13016J10418J12817J12818J11218J3316J10818J13117J12918J12317J14218J05517J10318J12417J09318J13417J10117J08418J06917J10418J12617J08216J04618J11317J09216J08316J12418J10116J10916J07418J13216J10716J09116J10616J109	16J13918J07616J09516J07916J10316J10218J08617J08716J08916J10018J09216J11316J08817J07718J07217J09518J10517J07916J09616J09917J08517J11417J10517J12317J09718J09617J10718J14017J09618J09917J08618J10017J09818J11117J07816J08717J10618J08517J11118J11517J16618J10316J11418J11617J12418J09117J14117J3916J09018J08117J1518J08717J12518J02517J14016J12517J08918J07016J13618J07417J13317J12218J13616J13716J14118J07317J14318J07917J14516J08216J12618J08916J07518J09017J09917J10816J14316J12218J1816J07618J12917J10017J19918J14616J13016J10418J12817J13518J13517J14616J12317J09018J12716J2918J08917J13617J13716J35518J09517J12018J12117J12818J11017J14318J13916J10818J13117J12918J13417J10118J12017J08418J08917J11418J17717J13818J12417J18218J05517J10318J12417J08216J04616J09218J11317J092	16J13918J07616J09516J07916J10316J10218J08617J08716J08916J10018J09216J11316J08817J07718J07217J09518J10517J07916J09616J09918J08817J08517J11417J10517J12317J09718J09617J10716J11218J14017J09618J09917J08618J10017J09818J11116J08117J07816J08717J10618J08517J13118J11517J11617J11718J10316J11418J11617J12418J09117J14117J13918J11916J09018J08117J1518J08717J12518J02517J14017J00316J12517J08918J07016J16318J07417J13317J13218J07818J3616J13716J14118J07317J13418J07917J14517J14716J08216J12618J08916J07518J09017J10918J08018J14616J13218J11816J07618J12917J10017J10918J08018J14516J10418J12817J13518J13517J14617J14816J13316J10818J11717J12818J11017J14317J00818J14516J10818J11117J12918J12317J14217J14418J12517J08316J08617J11118J11717J13818J12417J10818J12417J10818J12417J10118J12016J141<	16J13918J07616J09516J07916J10316J10218J08617J08716J08916J10018J09216J11316J08817J07718J07217J09518J10517J07916J09616J09918J08817J08517J11417J10517J12317J09718J09617J10716J11216J11918J14017J09618J09917J08618J10017J09818J11116J08116J11717J07816J08717J10618J08517J13118J11517J11617J11718J00118J10316J11418J11617J12418J09117J14117J10918J11916J07716J09018J08117J11518J08717J12518J02517J14017J00318J07716J12517J08918J07016J13618J07417J13317J13218J07817J12618J13616J13716J14118J07518J09017J19917J14718J10816J08216J12618J08916J07518J09017J10917J10818J14716J10116J14316J12318J1816J07618J12917J10017J10918J08016J09418J14616J13016J10418J12817J13518J13517J14617J14818J14816J12317J09018J12716J12918J08017J13718J11417J12716J03518J09517J12018J12117J12818J11017J14317J00818J137

Figura 5.34: Núcleo resultado ciclo 18, segunda mitad.

El quemado del núcleo al inicio del ciclo 18 fue 19.940 MWd/kg, la longitud de quemado fue: 15.720 MWd/kg. Aunque se inició con un patrón de recarga aleatorio, el resultado tiene un patrón *In-Out* como todos los demás núcleos resultados de la búsqueda Tabu.

5.6. Ciclo 19

El patrón fue propuesto a partir de movimientos aleatorios, después de la búsqueda Tabu, el núcleo resultante para el ciclo 19 fue:

				173050	17J061	173041	17J032	17J062	17J070	17J060
			173042	17J071	19J059	18J061	17J031	18J023	19J060	18J027
		17J033	173059	193028	193037	19J038	18J143	193044	18J083	19J043
	17J025	17J001	173024	18J068	193047	18J141	19J058	18J031	19J084	18J011
17J017	17J035	19J019	18J035	17J015	18J026	193054	18J075	19 J 049	18J039	18J003
17J026	19J017	18J005	19J055	18J041	18J022	19J034	17J049	18J082	17J072	19J066
17J010	18J051	19J005	18J009	19J012	18J130	18J029	193009	17J023	19J068	18J007
17J016	19J135	18J002	19J053	18J013	17J004	19J023	17J063	19 J 048	17J069	17J051
17J044	18J020	19J001	18J062	19J057	18J030	17J009	19J061	18J054	19J067	18J040
17J018	19J006	18J052	193007	18J057	17J053	193015	17J005	19J030	17J043	19J026
17 J011	18J015	19J003	18J012	18J056	19J020	18J008	17J034	18J049	19J029	17J052
17J012	18J046	19J002	18J048	18J058	19J021	18J053	17J037	18J060	19J032	17J055
17J019	19J050	18J064	19J008	18J044	17J054	19J031	17J006	19J033	17J046	19J072
17J045	18J045	19J014	18J063	19J056	18J066	173014	19J069	18J043	19J144	18J050
17J021	19J146	18J038	19J062	18J016	17J007	193024	17J064	19J065	17J076	17J056
17J013	18J006	19J010	18J034	193070	18J047	18J142	19J071	17J030	19J073	18J037
17J027	19J013	18J032	19J052	18J017	18J028	19J042	17J058	18J004	17J073	19J027
17J020	17J036	19J025	18J067	17J022	18J021	19J063	18J019	19J051	18J065	18J024
	17J028	17J002	173029	18J018	19J041	18J042	19J064	18J059	19J011	18J036
		17J038	173068	19J145	19J018	19J004	18J144	193045	18J133	19J039
			173047	17J074	19J085	18J106	17J040	18J033	19J040	18J010
				17J057	17J066	17J048	17J039	17J065	17J075	17J067

Figura 5.35: Núcleo resultado de ciclo 19, primera mitad.

17J086	17J078	17J088	17J114	17J105	173087	17J096				
183086	193098	18J072	17J113	18J105	193090	17J079	17J106			
19J079	18J076	19J096	18J145	19J115	193089	19J138	173085	17J115		
18J096	19J088	18J084	19J113	18J092	193099	18J071	17J124	17J145	17J125	
18J100	18J085	19J102	18J140	19J116	18J099	17J131	18J089	19J078	17J117	17J133
193095	17J080	18J103	17J095	193087	18J093	18J025	19J112	18J077	19J141	17J126
18J081	19J114	17J123	19J139	18J136	18J074	19J126	18J001	19J082	18J119	17J140
17J097	173077	19J103	17J089	19J016	17J003	18J079	19J117	18J147	19J075	17J132
18J116	19J100	18J088	19J118	17J139	18J073	19J097	18J090	19J081	18J078	17J108
19J125	17J107	193077	17J147	19J136	17J099	18J091	19J119	18J094	19J101	17J134
17J098	19J137	18J087	17J116	18J070	19J140	18J115	18J111	19J127	18J108	17J141
17J101	19J130	18J121	17J119	18J127	19J133	18J122	18J120	19J142	18J148	17J142
19J123	17J110	19J080	17J148	19J129	17J100	18J123	19J120	18J107	193094	17J135
18J131	19J124	18J014	19J128	17J144	18J128	19J110	18J129	19J13 4	18J114	17J109
17J102	17J084	19J106	17J090	19J147	17J008	18J135	19J121	18J080	19J076	17J137
18J095	19J108	17J130	19J074	18J146	18J098	19J132	18J109	19J143	18J125	17J143
19J107	17J081	18J139	17J104	19J086	18J097	18J110	19J111	18J137	19J104	17J127
18J134	18J117	19J105	18J055	19J122	18J124	17J138	18J118	19J022	17J118	17J136
18J104	193036	18J112	19J109	18J101	193092	18J138	17J129	17J146	17J128	
19J091	18J132	19J046	18J102	19J148	19J083	19J131	173094	17J120		
18J113	19J093	18J069	17J122	18J126	193035	17J082	17J111			
17J093	17J083	17J091	17J121	17J112	17J092	17J103				

Figura 5.36: Núcleo resultado ciclo 19, segunda mitad.

El quemado del núcleo al inicio del ciclo 19 fue 18.854 MWd/kg, la longitud de ciclo fue: 16.796 MWd/kg.

5.7. Ciclo 20

El patrón fue propuesto a partir de movimientos aleatorios, después de la búsqueda Tabu, el núcleo resultante para el ciclo 20 fue:

				18J075	18J068	18J031	18J003	18J007	18J040	18J082
			18J023	18J083	203071	193044	203032	19J009	20J072	18J039
		18J054	19J034	20J023	19J047	20J051	193054	20J062	19J066	20J060
	18J020	18J130	20J024	19J060	203050	19J038	203049	19J058	20J069	19J049
18J013	18J052	20J009	19J006	20J052	18J027	20J070	19J043	19J084	19J059	20J042
18J035	20J035	19J055	20J017	18J015	20J015	18J061	203059	19J028	20J041	18J011
18J062	19 J001	203034	19J005	20J018	18J051	18J022	18J141	20J031	18J143	18J026
18J056	20J016	19J012	20J004	19J003	201001	18J009	203043	19J037	19J048	19J067
18J008	19J023	203044	19J053	19J007	19J019	19J135	18J005	20J033	19J026	20J061
18J049	203053	19J020	201005	19J017	201010	183002	19J061	19J029	203063	19J068
18J030	18J057	20J011	19J057	20J025	18J012	18J041	193030	20J026	19J015	18J029
18J066	183044	203012	19J056	201028	18]048	18J017	193033	20J027	193031	18J142
18J060	203054	19 J 021	201006	19J013	201013	18J038	193069	19J032	203064	19J073
18J053	19J024	203045	19J062	193008	19J025	19 J146	18J032	201038	19J072	201066
18J058	20J021	19J070	203007	19J002	201002	18J034	203046	19J018	19J065	19J144
18J063	19J014	203037	19J010	20J019	18J006	18J028	18J042	20J040	18J144	18J021
18J067	203036	19 J 052	201020	18J046	201022	18J106	201068	19J145	203048	18J036
18J016	18J064	20J014	19J050	20J055	18J010	20J075	193039	19J011	19J085	20J047
	18J045	18J047	201029	193040	203057	193004	203058	19J064	203076	193051
		18J043	19J042	201030	193041	20J056	19J063	20J065	19J027	201067
			18J033	18J133	203074	19J045	201039	19J071	203073	18J065
				18J019	18J018	18J059	18J024	18J037	18J050	18 J004

Figura 5.37: Núcleo resultado de ciclo 20, primera mitad.

18J103	18J116	18J081	18J100	18J084	18J071	18J140				
18J085	201080	19J139	20J114	193096	201079	18J076	18J072			
203086	19J095	203088	19J116	203097	193099	20J123	19J087	18J088		
19J102	203077	19J113	20J095	19J115	201096	193098	20J124	183074	18J078	
20J106	19J090	19J088	19]079	203078	183086	203098	19J101	20J139	18J094	18J079
18J096	20J105	19J138	20J085	18J105	20J131	18J108	20J133	19J112	20J117	18J089
18J099	18J145	20J113	18J092	18J093	18J119	20J134	19J082	20J116	193081	18J090
19J100	19J103	19J089	20J107	18J001	20J145	19J127	201003	19J126	20J132	18J115
203087	19J125	20J115	18J077	19J075	19]078	19J119	19J117	20J108	19J016	18J070
19J114	20J089	19J137	19J118	18J147	20J140	19J141	20J147	19J140	201099	18J087
18J136	19J136	20J126	193077	18J025	18J111	20J125	19J097	20J141	18J091	18J073
18J146	19J129	20J127	19J080	18J110	18J120	20J128	19J110	20J142	18J123	18J128
19J108	201090	19J130	19J128	18J080	20J143	19J104	20J148	19J133	20J100	18J121
20J092	19J123	20J120	18J137	19J076	19J022	19J120	19J121	20J109	19J147	18J127
19J124	19J106	19J083	20J110	18J109	20J146	19J142	201008	19J132	20J137	18J122
18J124	18J102	20J122	18J101	18J097	18J125	20J135	19J143	20J119	19J134	18J129
18J104	20J112	19J131	201094	18J126	20J138	18J148	20J136	19J111	20J118	18J118
20J111	19J035	19J036	19J091	203083	18J113	20J101	19J094	20J144	18J107	18J135
19J105	20J084	19J109	20J104	19J148	20J103	19J093	20J129	18J098	18J114	
201093	19J107	20J091	19J122	20J102	19J092	20J130	19J086	183014		
18J117	20J081	19J074	20J121	193046	20J082	18J132	18J069			
18J139	18J131	18J095	18J134	18J112	18J138	18J055				

Figura 5.38: Núcleo resultado ciclo 20, segunda mitad.

El quemado del núcleo al inicio del ciclo 20 fue 19.161 MWd/kg, la longitud de ciclo fue: 16.235 MWd/kg.

5.8. Ciclo 21

El patrón fue propuesto a partir de movimientos aleatorios, después de la búsqueda Tabu, el núcleo resultante para el ciclo 21 fue:

				193026	193084	193067	19J068	19J066	19J049	19J058
			19J048	193054	19J043	21J075	20J061	21J082	20J042	21J031
		213054	19J059	201070	21J143	203060	21J011	20J051	21J083	20J032
	19J061	193017	20J043	21J023	20J062	21J026	20J050	21J040	20J069	21J061
19J029	19J012	203018	21J020	203024	19J037	203023	21J003	193047	21J007	19J060
19J007	19J003	21J002	203044	21J005	20J033	21J068	193044	21J039	193009	21J027
19J030	21J013	20J011	21J041	201009	21J035	203015	20J041	20J031	20J049	20J072
193015	20J026	21J012	20J017	21J056	19J001	203010	20J052	20J071	21J141	19J028
19J020	21J030	203034	21J049	193055	21J057	19J135	20J035	21J022	20J059	19J034
19J057	20J025	21J052	20J005	21J008	19J023	203004	21J009	20J001	21J029	19J038
19J053	21J062	203016	21J051	193006	21J015	203053	19J019	21J130	19J005	20J063
19J062	21J063	203021	21J006	193050	21J046	203054	19J025	213047	19J010	20J064
19J056	201028	213064	20J006	21J053	19J024	203007	2 1 J 0 34	203002	21J142	19J004
19J021	21J066	203037	21J060	19J052	21J044	19J146	20J036	21J028	201068	19J042
19J031	203027	21J048	201020	21J058	19J014	20J013	20J055	203074	21J042	19J145
19J033	21J016	20J012	21J017	203014	21J067	201022	201048	203040	20J058	20J073
19J008	19J002	21J038	20J045	21J032	20J038	21J018	19J045	21J065	19J071	21J010
19J032	193070	20J019	21J045	203029	19J018	203030	21J024	193041	21J037	19J040
	19J069	19J013	20J046	21J033	20J065	21J021	20J057	21J050	20J076	21J106
		213043	19J085	203075	21J144	203067	21J036	20J056	21J133	20J039
			19J065	193063	19J039	21J019	20J066	213004	201047	21J059
				19J072	19J011	19J144	19J073	19J027	19J051	19J064

Figura 5.39: Núcleo resultado de ciclo 21, primera mitad.

19J113	19J102	19J095	19J114	19J100	19J088	19J125				
21J084	20J106	21J103	203087	21J140	19J079	19J116	19J103			
20J114	21J076	203097	21J096	201086	21J145	203078	193090	21J088		
21J105	203077	21J116	203096	21J099	201088	21J072	20J107	19J141	19J118	
19J098	21J081	193099	21J100	20J123	19J089	20J124	21J078	20J134	19J126	19J137
21J086	19J139	21J085	19J096	21J071	20J115	21J077	20J108	21J147	19J127	19J119
201080	203095	20J113	20J105	20J131	21J089	20J139	21J025	20J141	21J079	19J077
19J138	21J092	20J079	201098	20J140	19J081	21J115	20J133	21J111	20J126	19J136
19J087	203085	21J093	20J117	19J075	21J091	19 J 112	21J087	20J116	21J073	19J140
19J115	21J136	20J145	21J001	201003	19J016	21J070	20J147	21J094	20J125	19J097
201089	19 J 082	21J074	19J078	201099	21J108	19J101	21J119	20J132	21J090	19J117
201090	19 J 143	21J098	19J022	20J100	21J148	193094	21J125	20J137	21J129	19J121
19J148	21J146	20J146	21J109	201008	19J147	21J127	20J148	21 J1 07	20J128	19J110
19J086	203094	21J097	20J118	19J076	21J123	19J111	21J121	20J119	21J128	19J133
19J131	21J101	201082	20J101	20J143	19J134	21J122	20J136	21J120	20J127	19J129
20J081	20J104	20J122	20J112	20J138	21J118	20J144	21J110	20J142	21J135	19J080
21J113	193074	21J117	19J046	21J138	20J120	21J137	20J109	21J080	19J142	19J120
19J093	213095	193092	21J134	201130	193083	20J129	21J114	20J135	19J132	19J130
21J126	203084	21J131	20J103	21J124	20J091	21J069	20J110	19J104	19J128	
20J121	21J132	20J102	21J104	201093	21J102	201083	19J035	21J014		
21J112	20J111	21J139	203092	21J055	19J091	19J122	19J106			
19J109	19J105	19J107	19J108	19J124	19J036	19J123				

Figura 5.40: Núcleo resultado ciclo 21, segunda mitad.

El quemado del núcleo al inicio del ciclo 21 fue 19.160 MWd/kg, la longitud de quemado fue: 16.413 MWd/kg.

Nótese que aunque se alcanzó el equilibrio en el quemado del núcleo, sin embargo, la longitud de quemado sigue por debajo de los 17.000 MWd/kg.

5.9. Exceso de reactividad del ciclo 21

En la Tabla 5.1 se muestran los quemados al inicio de cada ciclo y las longitudes de ciclo; a partir del ciclo 20 se alcanza el equilibrio en el quemado del núcleo, pero la longitud aún no es la deseada, esto se atribuye a que la simulación se hace mediante

el quemado Haling que, aunque disminuye los tiempos de cómputo, es un principio creado en 1963, que no contempla los nuevos diseños de combustibles ni las nuevas estrategias de operación. Por lo tanto, se decidió correr el ciclo 21 con pasos de quemado en SIMULATE.

Ciclo	Quemado del núcleo al inicio del ciclo [MWd/kg]	Longitud del ciclo [MWd/kg]
14	16.266	15.83
15	17.903	16.511
16	19.413	17.083
17	20.695	15.846
18	19.940	15.720
19	18.854	16.796
20	19,161	16.235
21	19.160	16.413

Tabla 5.1: Datos de los ciclos de recarga del núcleo

De esta forma, como se ve en la figura 5.41 se logró alcanzar los 17.000 MWd/kg.

K-EFF v BURNUP CICLO 21 (16.413)

Figura 5.41: Gráfica del quemado por pasos del ciclo 21.

Capítulo 6

Análisis económico del ciclo de combustible nuclear

El costo del combustible debe considerar los costos asociados a cada paso del ciclo del combustible: *front-end*: parte inicial del ciclo (etapa de preirradiación), operación del reactor y *back-end*: parte final de ciclo (etapa postirradiación). La fase *front-end* del ciclo de combustible considera cuatro etapas: compra de uranio y la conversión de torta amarilla a hexafluoruro de uranio, el enriquecimiento y la fabricación de combustible. En cuanto a la fase de operación del reactor, se consideran los costos de almacenamiento de combustible nuevo o irradiado en el sitio del reactor, mientras que los costos asociados con la gestión o eliminación de los desechos sólidos producidos durante las operaciones del reactor no están incluidos en los costos del ciclo de combustible.

Para el *back-end*, se consideran dos opciones: almacenamiento directo u opción de reprocesamiento (reciclaje de uranio y plutonio para la fabricación de MOX que se utilizará en *LWR*).

La opción de almacenamiento directo incluye el costo de transporte y almacenamiento del combustible gastado y el costo de acondicionamiento/disposición final. La opción de reprocesamiento considera el costo del transporte del combustible gastado, los costos del reprocesamiento que incluye almacenamiento, tratamiento y almacenamiento de residuos, eliminación de residuos de baja, residuos de actividad intermedia y eliminación de residuos de muy alta actividad.

Por lo tanto, se calcula el costo nivelado del ciclo del combustible nuclear (*LNFCC*, por sus siglas en inglés), en \$/MWh, de un lote de combustible, como el valor presente de los costos totales de los servicios del ciclo del combustible por unidad del valor presente

de electricidad generada, relacionada con una fecha de referencia.¹

$$LNFCC = \frac{\sum_{i} C(i) * (1+d)^{T(i)}}{\sum_{j} E(j) * (1+d)^{T(j)}}$$
(6.1)

donde:

- *d* es la tasa de descuento.
- *C*(*i*) es el gasto directo para la *i-ésima* (*i*) etapa del ciclo de combustible.
- *T*(*i*) es el tiempo de adelanto o retraso de los gastos de la *i-ésima* etapa relacionados con la fecha de referencia.
- *E*(*j*) es la electricidad generada por el lote de combustible durante su ciclo de irradiación *j*[MWh].
- *T*(*j*) es el tiempo de retraso de los ingresos de la electricidad generada, con respecto a la fecha de referencia durante el ciclo de irradiación *j*.

Además:

- *C*(*i*)=*A*(*i*)**UC*(*i*) (Cantidad de *i*(kg) × Costo unitario de i(\$/kg)).
- $E(j)=B_d *24*\eta_{th}*M(j)$ (Quemado de descarga del lote de combustible $j*24 \frac{hr}{dia}*$ eficiencia térmica de la planta*Masa del lote de combustible).
- B_d en MWd/tU.
- *E*(*j*) en MWh.

6.1. Cálculo del LNFCC

El objetivo de este capítulo es calcular el *LNFCC* para el ciclo de combustible propuesto de 24 meses con enriquecimiento de 4.5%, quemado de descarga B_d de 54.8MWd/kgU, colas de 0.25 w/o, tasa de descuento anual(d) de 7%, fecha de referencia: la fecha de carga del lote de combustible, y datos del **Nuclear Cost Calculator**². El quemado de descarga se obtuvo a partir del modelo de reactividad lineal mediante la fórmula:

$$B_d = PLn \tag{6.2}$$

Donde:

¹Parte del contenido de este capítulo es traducción de la referencia François J. L., The economics of the nuclear fuel cycle, 2023. El autor autorizó esta traducción.

²https://cnpce.ne.anl.gov/cgi-bin/qnecost?select=EGcalc&egtyp=eg01&id= ObcetDmnzwdObAmZ

- P es la densidad de potencia = 28.75 MW/tU
- L = Longitud del ciclo: 2 años por el Factor de carga $(0.87)^3 = 635.5$ días
- n = 3

A continuación, se muestran los precios unitarios en USD:

- $Uranio(U_3O_8) = $135/kgU$
- Conversión a UF₆= \$12/kgU
- Enriquecimiento= \$95/kgSWU
- Fabricación= \$350/kgU_{enr}
- Almacenemiento= \$93/kgHM
- Menejo de desechos final(geológico)= \$540/kgHM
- Desconversión de uranio empobrecido= \$6/kgDU
- Desechos de uranio empobrecido= \$9/kgDU

6.2. Cálculos de las necesidades de servicios del ciclo del combustible (cantidades necesarias por kgU enriquecido)

Para saber la cantidad de uranio necesaria se usa la siguiente fórmula: [6]

$$M_F = \frac{x_P - x_T}{x_F - x_T} M_P \tag{6.3}$$

Donde:

- x_p es el enriquecimiento= 4.5 %
- x_T es el porcentaje de colas= 0.25 %
- x_F es el porcentaje de U-235 en el uranio natural= 0.711 %
- $M_P = 1 \text{kgU}_{enr}$

³https://pris.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=421

Sustituyendo en (6.2), se obtiene que la cantidad de uranio natural es: M_F =9.239 kgU_{nat}. Por lo tanto la cantidad de conversión es: 9.239 kgU_{nat}.

Para el enriquecimiento debemos calcular los kg por unidades de trabajo separativo (*SWU*, por sus siglas en inglés):

$$SWU = M_P[V(x_P) - V(x_T)] - M_F[V(x_F) - V(x_T)]$$
(6.4)

$$V(x) = (1 - 2x) ln\left(\frac{1 - x}{x}\right)$$
(6.5)

Entonces, SWU= $6.879 \text{ kg por } 1 \text{ kgU}_{enr}$.

A su vez, se tendrá que fabricar 1kgU_{enr} , de almacenamiento de combustible gastado y disposición final son: 1 kgHM, respectivamentre.

De uranio empobrecido serán 8.239kgDU.

Servicio del ciclo	(Cantidad[kg] x costo unitario[\$/kg])[\$]
Compra del Uranio	(9.239*135)=1247.282
Conversión	(9.239*12)=110.869
Enriquecimiento	(6.879*95)=653.518
Fabricación	(1*350)=350
Almacenamiento de combustible gastado	(1*93)=93
Disposición final	(1*540)=540
Desconversión de uranio empobrecido	(8.239*6)=49.434
Desechos de uranio empobrecido	(8.239*9)=74.152

Tabla 6.1: Cálculos del costo de los servicios del ciclo de combustible.

Etapa del ciclo	Tiempos[años]		
Compra del Uranio	2		
Conversión	1.5		
Enriquecimiento	1		
Fabricación	0.5		
Irradiación	6 (3 ciclos de 24 meses)		
Almacenamiento de combustible gastado	2		

Tabla 6.2: Tiempos de adelanto y retraso del ciclo.

6.2. CÁLCULOS DE LAS NECESIDADES DE SERVICIOS DEL CICLO DEL COMBUSTIBLE (CANTIDADES NECESARIAS POR KGU ENRIQUECIDO)

Servicio del ciclo	Cálculos del valor presente[\$]
Compra del Uranio	$(1247.282^*1.07^2) = 1428.013$
Conversión	$(110.869*1.07^{1.5})=122.712$
Enriquecimiento	(653.518*1.07 ¹)=699.264
Fabricación	$(350^*1.07^{0.5})=362.042$
Almacenamiento de combustible gastado	$(93*1.07^{-8})=54.126$
Disposición final	(540*1.07 ⁻⁸)=359.824
Desconversión de uranio empobrecido	$(49.434^*1.07^0) = 49.434$
Desechos de uranio empobrecido	$(74.152^*1.07^0) = 74.152$

Tabla 6.3: Cálculos de valor presente de los servicios del ciclo de combustible.

De las tablas 6.1, 6.2 y 6.3, obtenemos los sumandos del numerador de *LNFCC*, queda por calcular el denominador, que es la generación de energía eléctrica:

$$55 * 0.33 * 24 * 1 * 1.07^{-3} = 355.579MWh$$
(6.6)

El valor actual de la electricidad generada por el lote de combustible se ha trasladado a la mitad del tiempo que permanece el combustible en el núcleo del reactor, cuando produjo la energía, es decir 6/2=3.

Por lo tanto, el costo nivelado del ciclo del combustible nuclear es:

$$\frac{(1428.013 + 122.712 + 699.264 + 362.042 + 54.126 + 359.824 + 49.434 + 74.152)\$}{355.579MWh} = \frac{(6.7)}{(6.7)}$$

$$LNFCC = 8.857 \frac{\$}{MWh} \tag{6.8}$$

El desglose del *LNFCC* es:

Servicio del ciclo	\$/MWh	fase
Compra del Uranio	4.016	front-end
Conversión	0.345	front-end
Enriquecimiento	1.966	front-end
Fabricación	1.018	front-end
Almacenamiento de combustible gastado	0.152	back-end
Disposición final	1.011	back-end
Desconversión de uranio empobrecido	0.139	back-end
Desechos de uranio empobrecido	0.208	back-end

Tabla 6.4: Cálculos de valor presente de los servicios del ciclo de combustible de 24 meses.

De la tabla 6.4, se obtiene que el *front-end* es 7.345 \$/MWh, mientras que el *back-end* es 1.511\$/MWh.

A su vez se realizó el cálculo de *LNFCC* para un ciclo de 18 meses, es decir, el tiempo de irradiación en este caso es de 4.5 años, un quemado de descarga de 43.5 MWd/kgU, enriquecimiento de 3.85%, mismas colas y tasa de descuento que en el primer cálculo. El quemado de descarga se obtuvo a partir del modelo de reactividad lineal mediante la fórmula:

$$B_d = PLn \tag{6.9}$$

Donde:

- P es la densidad de potencia = 28.75 MW/tU
- L = Longitud del ciclo: 1.5 años por el Factor de carga $(0.87)^4$ = 476.7 días
- n = 444/140 = 3.17

Calculando la generación eléctrica para este caso tenemos:

$$43.5 * 0.33 * 24 * 1 * 1.07^{-2.25} = 281.230MWh$$
(6.10)

Sustituyendo los datos para este caso en (6.1) tenemos que:

$$\frac{(1209.611 + 103.944 + 562.207 + 362.042 + 59.908 + 398.260 + 40.956 + 61.434)\$}{281.230MWh} = \frac{9.950\$}{MWh}$$
(6.11)

Desglosando el *LNFCC* para el ciclo de 18 meses:

Servicio del ciclo	\$/MWh	fase
Compra del Uranio	4.301	front-end
Conversión	0.369	front-end
Enriquecimiento	1.999	front-end
Fabricación	1.287	front-end
Almacenamiento de combustible gastado	0.213	back-end
Disposición final	1.416	back-end
Desconversión de uranio empobrecido	0.145	back-end
Desechos de uranio empobrecido	0.218	back-end

Tabla 6.5: Cálculos de valor presente de los servicios del ciclo de combustible de 18 meses.

⁴https://pris.iaea.org/PRIS/CountryStatistics/ReactorDetails.aspx?current=421

A continuación, se muestra una tabla con las diferencias de costo por MWh en cada fase entre el ciclo de 24 y el de 18 meses.

Servicio del ciclo	Diferencia \$/MWh	fase
Compra del Uranio	-0.285	front-end
Conversión	-0.024	front-end
Enriquecimiento	-0.033	front-end
Fabricación	-0.269	front-end
Almacenamiento de combustible gastado	-0.061	back-end
Disposición final	-0.405	back-end
Desconversión de uranio empobrecido	-0.006	back-end
Desechos de uranio empobrecido	-0.01	back-end

Tabla 6.6: Diferencia entre en costo por MWh entre el ciclo de 24 y 18 meses.

Las cantidades negativas indican el ahorro en cada etapa con el ciclo de 24 meses. Considerando las dos fases, en el *front-end* el ciclo de 24 meses ahorra $0.611 \frac{\$}{MWh}$, mientras que en el *back-end* ahorra $0.482 \frac{\$}{MWh}$.

Capítulo 7

Conclusiones

Con la metodología empleada, el diseño de los ensambles y la optimización de la recarga de combustible propuestas en esta tesis, el núcleo del BWR-5 es capaz de ofrecer un ciclo operativo de equilibrio de 24 meses operando a plena potencia.

El periodo operativo entre recargas de dos años es factible con 148 ensambles de combustible tipo GNF2 con un enriquecimiento promedio de 4.5%, recargando con un lote de combustible fresco una tercera parte del núcleo.

El diseño de las *lattices* no viola los límites de reactividad y potencia para la operación segura del reactor. Por los que se concluye que la optimización de la *lattice* de combustible nuclear mediante redes neuronales es una muy buena opción a la hora de diseñar ensambles de combustible.

La búsqueda Tabu es un método eficiente para optimizar las recargas de combustible, se tenga un acomodo previo o no, en cualquier caso no viola límites térmicos y maximiza la longitud de ciclo.

El principio Haling es muy útil para reducir el tiempo de cómputo y darnos una buena estimación del quemado del núcleo, sin embargo, dado que fue propuesto en 1963, no toma en cuenta las nuevas estrategias operativas y diseños de combustible, por lo que ejecutar las simulaciones de los ciclos con pasos de quemado da resultados más acertados.

Los resultados del *LNFCC* nos muestran que el costo del ciclo de combustible abierto de la extensión de ciclo de 18 a 24 meses redunda en un menor costo.

Este análisis se realizó sin tener patrón de barras de control, es decir, todas las barras estaban totalmente extraídas durante la simulación del quemado del núcleo. Una posible mejora a este trabajo sería utilizar un optimizador de patrón de barras de control a fin de mejorar el quemado en el núcleo y confirmar que se obtiene la longitud del ciclo requerida.

Incrementar el ciclo de operación a 24 meses, a través de incrementar el enriquecimiento en los *pines* a más del 5% es una opción viable, sin embargo, faltaría ver el impacto que tienen esos seis meses más de operación en el mantenimiento de ciertos sistemas que se realizan durante los periodos de recarga.

Bibliografía

- [1] EIA. Electric Power Monthly. https://www.eia.gov/electricity/monthly/ epm_table_grapher.php?t=epmt_6_07_b, accessed 28-04-2024.
- [2] IAEA PRIS. The Database on Nuclear Power Reactors. https://pris.iaea.org/ pris/Home.aspx, accessed 19-03-2024.
- [3] M. Diaz. Advanced Fuels Update on the Front End of the Fuel Cycle. https: //www.nrc.gov/docs/ML1925/ML19255F598.pdf, accessed 17-04-2024.
- [4] F. Pimental. The economic benefits and challenges with utilizing increased enrichment and fuel burnup for light-water reactors, 2019.
- [5] Joseph R. Burns Richard Hernandez Kurt A. Terrani Andrew T. Nelson Nicholas R. Brow. Reactor and fuel cycle performance of light water reactor fuel with ²³⁵U enrichments above 5%, 2019.
- [6] J.R Lamarsh. *Introduction to nuclear engineering*. Prentice-Hall, New Jersey, 3 edition, 2001.
- [7] Nuclear Power. Geometrical and Material Buckling. https: //www.nuclear-power.com/nuclear-power/reactor-physics/ neutron-diffusion-theory/geometrical-material-buckling/, accessed 19-03-2024.
- [8] IAEA. The Database on Nuclear Power Reactors. https://pris.iaea.org/PRIS/ home.aspx, accessed 8-04-2024.
- [9] McDaniel Patrick Zouri Bahman. *Thermodynamics in Nuclear Power Plant Systems*. Springer, Gewerbesstrasse 11, 6330 Cham, Switzerland, 2 edition, 2015.
- [10] OIEA. Reactores refrigerados por agua. https://www.iaea.org/es/temas/ reactores-refrigerados-por-agua#:~:text=Los%20reactores%20de% 20agua%20pesada,hidr%C3%B3geno%20que%20es%20m%C3%A1s%20pesado., accessed 5-02-2024.

- [11] OIEA. Reactores rápidos. https://www.iaea.org/es/temas/ reactores-rapidos, accessed 5-02-2024.
- [12] J.L. François. Nuclear fuel management: a practical approach Specialization. Course 3: In core nuclear fuel management. Coursera-UNAM https://www.coursera.org/specializations/nuclear-fuel#courses, accessed 19-03-2024.
- [13] T. J.; Pilat E. E. Driscoll, M. J.; Downar. *The Linear Reactivity Model for Nuclear Fuel Management*. American Nuclear Society, 1990.
- [14] Arturo Jiménez Facio. Gestión de combustible dentro del núcleo de un reactor nuclear BWRX-300. Tesis de Maestría en Ingeniería, UNAM, 2023.
- [15] World Nuclear News. GNF gets approval to manufacture higher enrichment fuel. https://www.world-nuclear-news.org/Articles/ GNF-gets-approval-to-manufacture-higher-enrichment, accessed 7-03-2024.
- [16] Dave Knott. Casmo-4, a fuel assembly burnup program, methodology. *Studsvik of Americ*, 1995.
- [17] Juan Jose Ortiz. Alejandro Castillo. Jose Luis Montes. Raul Perusquia. Jose Luis Hernandez. Nuclear fuel lattice optimization using neural networks and a fuzzy logic system. *Nuclear Science and Engineering*, (162), 2009.
- [18] Alejandro Castillo. Gustavo Alonso. Luis B Morales. Cecilia Martín del Campo. JL François. Edmundo Del Valle. BWR fuel reloads design using a tabu search technique. Annals of nuclear energy, (31), 2003.