

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE DOCTORADO EN CIENCIAS BIOMÉDICAS FACULTAD DE MEDICINA

CARACTERIZACIÓN DEL PERFIL DE MIRNAS EXOSOMALES CON BASE EN EL ÍNDICE HOMA-Beta EN ETAPAS TEMPRANAS DEL EMBARAZO EN MUJERES QUE DESARROLLAN DIABETES MELLITUS GESTACIONAL

T E S I S QUE PARA OPTAR POR EL GRADO DE DOCTORA EN CIENCIAS

PRESENTA: BRENDA MELISSA RAZO AZAMAR

TUTOR: DRA. MARTHA GUEVARA CRUZ INSTITUTO NACIONAL DE CIENCIAS MÉDICAS Y NUTRICIÓN SALVADOR ZUBIRÁN

> COMITÉ TUTOR: DRA. ANDREA SACHI DIAZ VILLASEÑOR INSTITUTO DE INVESTIGACIONES BIOMÉDICAS UNAM

DRA. LILIA GUADALUPE NORIEGA LÓPEZ INSTITUTO NACIONAL DE CIENCIAS MÉDICAS Y NUTRICIÓN SALVADOR ZUBIRÁN

Ciudad Universitaria, CD. MX., MARZO 2024

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

ÍNDICE

Lista de abreviaturas	1
Resumen	4
Abstract	6
Introducción	3
Marco Teórico	5
Planteamiento del problema	33
Justificación	33
Hipótesis	34
Objetivos	34
Diseño experimental	35
Resultados	44
Discusión	64
Limitaciones	71
Conclusión	71
Perspectivas y recomendaciones	73
Referencias	74
Anexos	86
Anexo I: Carta de Consentimiento Informado	86
Anexo II: Carta de aprobación por el Comité de Ética y Número de Registro	87
Anexo III: Validación estadística de selección de pool por subgrupos con base en el índ HOMA-%β (bajo y alto) en etapas tempranas de la gestación	ice 89
Anexo IV : Perfil de miRNAs de exosomas maternos y placentarios diferencialmente expresados en embarazo en etapas tempranas de la gestación	92
Anexo V : Genes potencialmente regulados por los miRNAs exosomales diferencialmen expresados en etapas tempranas de la gestación por subgrupos	1te 96

Lista de abreviaturas

- **AMPK** proteína cinasa activada por AMP (por sus siglas en inglés)
- **BM** membrana basal (por sus siglas en inglés)
- **CER** ceramidas (por sus siglas en inglés)
- circRNA RNA circular (por sus siglas en inglés)
- CIGMA modelo de evaluación de infusión de glucosa continua (por sus siglas en inglés)
- **CIOMS** Organizaciones Internacionales de las Ciencias Médicas (por sus siglas en inglés)
- CRETI corrosividad, reactividad, explosividad, toxicidad e inflamabilidad (por sus siglas en inglés)
- **CRH** Hormona liberadora de corticotropina placentaria (por sus siglas en inglés)
- CWCS puntuación de contexto ponderada acumulada (por sus siglas en inglés)
- DAMPs proteínas de patrón molecular asociadas al daño (por sus siglas en inglés)
- DMG diabetes mellitus gestacional
- DNA Ácido desoxirribonucleico (por sus siglas en inglés)
- DT2 diabetes tipo 2
- ELISA ensayo por inmunoabsorción ligado a enzimas
- **ESE** endosomas de clasificación temprana (por sus siglas en inglés)
- **ESCRT** complejo de clasificación endosomica necesarios para el transporte (por sus siglas en inglés)
- **EVs** vesículas extracelulares (por sus siglas en inglés)
- FAK cinasa de adhesión focal activa (por sus siglas en inglés)
- **FFAs** ácidos grasos libres (por sus siglas en inglés)
- GEO Gene Expression Omnibus
- **GH** hormona del crecimiento (por sus siglas en inglés)
- **GLUT** transportadores de glucosa (por sus siglas en inglés)
- **GSIS** secreción de insulina inducida por glucosa (por sus siglas en inglés)

HOMA modelo de evaluación homeostático (por sus siglas en inglés)

HOMA-IR modelo de evaluación homeostático resistencia a la insulina (por sus siglas en inglés)

HOMA-% β modelo de evaluación homeostático célula β -pancreática (por sus siglas en inglés)

hPL lactógeno placentario humano (por sus siglas en inglés)

HSL lipasa sensible a hormonas (por sus siglas en inglés)

HSP proteínas de choque térmico (por sus siglas en inglés)

IADPSG Asociación Internacional de Grupos de Estudio para la Diabetes (por sus siglas en inglés)

IEVs vesículas extracelulares grandes (por sus siglas en inglés)

IGF-1 factor de crecimiento tipo-insulina 1 (por sus siglas en inglés)

ILV vesículas intraluminales (por sus siglas en inglés)

IncRNA RNA largo no codificante (por sus siglas en inglés)

INMEGEN Instituto Nacional de Medicina Genómica

IR receptor de insulina (por sus siglas en inglés)

ISIMatsuda índice de sensibilidad a la insulina en la curva de tolerancia oral a la glucosa

ISR receptor de insulina (por sus siglas en inglés)

- **IMC** Índice de masa corporal
- **IRβ** subunidad β del receptor de insulina (por sus siglas en inglés)
- **ISEV** Sociedad Internacional de Vesículas Extracelulares (por sus siglas en inglés)
- **KEGG** Enciclopedia de Genes y Genomas de Kyoto (por sus siglas en inglés)
- LPL lipoproteina lipasa
- LSE endosomas de selección tardía (por sus siglas en inglés)

miRNA micro-RNA

- **MMV** membrana microvellositaria (por sus siglas en inglés)
- **MVB** cuerpos multivesiculares (por sus siglas en inglés)
- **MVE** endosomas multivesiculares (por sus siglas en inglés)
- **NEFAs** ácidos grasos no esterificados (por sus siglas en inglés)

NFkB factor nuclear potenciador de cadenas ligeras Kappa de las células Beta activadas (por sus siglas en inglés)

- **NTA** análisis de rastreo de nanopartículas (por sus siglas en inglés)
- PGH hormona del crecimiento humano placentaria (por sus siglas en inglés)
- **OGTT** Prueba de tolerancia oral a la glucosa (por sus siglas en inglés)
- PLAP fosfatasa placentaria alcalina (por sus siglas en inglés)
- **PPAR** receptores activados por proliferadores de peroxisomas (por sus siglas en inglés)
- **PPRE** proliferador de peroxisomas de elemento de respuesta (por sus siglas en inglés)
- **RE** retículo endoplásmico
- **RNA** Ácido ribonucleico (por sus siglas en inglés)
- **ROS** especies reactivas de oxígeno (por sus siglas en inglés)
- **RPBI** residuos peligrosos biológicos infecciosos (por sus siglas en inglés)
- **RXR** receptor de retinoides X (por sus siglas en inglés)
- **SASPs** proteínas secretoras asociadas a la senescencia (por sus siglas en inglés)
- SCTB sincitiotrofoblasto
- sdg semanas de gestación
- **sEVs** vesículas extracelulares pequeñas (por sus siglas en inglés)

SNARE receptor soluble de la proteína de unión al factor sensible a la N-etilmaleimida (por sus siglas en inglés)

- SNPs Polimorfismo de un solo nucleótido (por sus siglas en inglés)
- **SLC** transportador de soluto (por sus siglas en inglés)
- **TNF-** α factor de necrosis tumoral α (por sus siglas en inglés)
- VLDLs lipoproteínas de muy baja densidad (por sus siglas en inglés)
- WAT tejido adiposo blanco (por sus siglas en inglés)

Resumen

La diabetes mellitus gestacional (DMG) constituye la principal alteración metabólica durante el embarazo afectando alrededor del 17% de los embarazos en México. La relevancia clínica de esta patología radica en las complicaciones a corto y largo plazo como obesidad, diabetes tipo 2 e hipertensión; que afectan a la madre y a su descendencia. El deterioro de la función de las células β pancreática es un mecanismo clave relacionado con el desarrollo de la fisiopatología de la DMG. Los exosomas maternos y placentarios han sido considerados como potenciales reguladores de las adaptaciones maternas y placentarias durante la hiperglucemia en el embarazo tanto fisiológicas como del desarrollo de DMG. Estudios realizados en mujeres embarazadas que desarrollan DMG han asociado a los micro-RNAs (miRNA) exosomales con el desarrollo de dicha patología. Hasta la fecha, no se han reportado estudios que evalúen el perfil de miRNAs presentes en exosomas maternos y placentarios en etapas tempranas de gestación de embarazos que desarrollan DMG con base en el índice HOMA-% β .

El objetivo de este estudio consistió en caracterizar los perfiles de miRNAs exosomales maternos y placentarios en etapas tempranas de la gestación y determinar si este perfil varía con base en la función de la célula β pancreática en mujeres que desarrollarán DMG.

Se realizó un estudio analítico prospectivo anidado de casos y controles para identificar el perfil de miRNA exosomales presente en etapas tempranas del embarazo (<18 semanas de gestación) tanto de mujeres con normoglucemia (n=62) como de aquellas que desarrollaron DMG (n=19) con base en la función de la célula β pancreática usando el índice HOMA-% β . Se aislaron exosomas séricos maternos y placentarios de etapas tempranas del embarazo para obtener el perfil de miRNAs empleando un análisis por microarreglos en el que se identificaron aquellos miRNAs exosomales expresados diferencialmente en cada subgrupo de estudio. Se realizó un análisis de rutas de enriquecimiento de genes y análisis bioinformáticos para identificar las rutas metabólicas y vías de señalización potencialmente reguladas por los miRNAs exosomales maternos y placentarios de iferencialmente en cada subgrupos.

En el presente estudio, se demostró que el tamaño y la concentración de los exosomas maternos se incrementa en mujeres que desarrollarán DMG y varían de acuerdo con la función de la célula β pancreática, mientras que sólo se incrementa el tamaño de los exosomas placentarios en las mujeres que desarrollarán DMG. El análisis bioinformático de redes de expresión de los genes regulados por los miRNAs exosomales maternos expresados diferencialmente en mujeres que desarrollarán DMG se asoció con la resistencia a la insulina, la sensibilidad, la secreción y la función del tejido adiposo. Por otra parte, los miRNAs exosomales placentarios de etapas tempranas de la gestación en mujeres que desarrollarán DMG regulan a genes implicados en la tolerancia inmunitaria al embarazo, el metabolismo y la señalización de los esfingolípidos, así como a las vías de señalización asociadas a mitógenos.

El perfil de miRNAs exosomales maternos y placentarios en etapas tempranas de la gestación está influenciado por la función de la célula β pancreática en aquellas mujeres que desarrollarán DMG. El presente estudio muestra la importancia de la caracterización del perfil de miRNAs exosomales con base en su origen (maternos y placentarios), así como la función de la célula β pancreática de las mujeres embarazadas en etapas tempranas del embarazo (<18 semanas de gestación) que desarrollarán DMG.

Abstract

Gestational diabetes mellitus (GDM) represents the main metabolic alteration during pregnancy affecting around 17% of pregnancies in Mexico. The clinical relevance of this pathology relies on the short and long-term complications such as obesity, diabetes, and hypertension; that affect mother and child. Pancreatic β -cell function impairment is a key mechanism related to the development of GDM. Maternal and placental exosomes regulate maternal and placental responses during hyperglycemia. Studies have associated exosomal micro RNAs (miRNAs) with GDM development. To date, no studies have been reported that evaluate the profile of miRNAs present in exosomes in early stages of gestation from pregnancies that develop GDM.

We assessed whether early pregnancy maternal and placental exosomal miRNA profiles vary according to pancreatic β -cell function in women who will develop GDM.

An analytic prospective nested case-control study was used to identify exosomal miRNAs that vary in early pregnancy stages (<18 weeks of gestation) from both women with normoglycemia (n=62) and those that developed GDM (n=19) based on their pancreatic β -cell function using HOMA-% β index. Early pregnancy maternal and placental serum exosomes were isolated to obtain miRNA profiles. Gene target and gene enrichment pathway analysis were performed to identify metabolic pathways regulated by early pregnancy maternal and placental exosomal miRNAs among subgroups.

Early pregnancy stages maternal exosome size and concentration are modified in women who will develop GDM and fluctuates according to pancreatic β -cell function, whereas only the placental exosome size is modified. Gene target networks analysis of differentially expressed maternal exosomal miRNAs in women who will develop GDM were associated with insulin resistance, sensitivity, secretion, and adipose tissue function. Early-pregnancy placental exosomal miRNAs regulate genes involved with immune tolerance to pregnancy, sphingolipd metabolism and signaling as well as mitogen signaling pathways.

Early pregnancy maternal and placental exosomal miRNA profile is influenced by pancreatic β -cell function in those women who will undergo GDM. The present study showcases the importance of exosomal miRNA profile characterization by secretion origin (maternal and placental) as well as the pregnant women's pancreatic β -cell function in early pregnancy stages (<18 weeks of gestation).

Introducción

La diabetes mellitus gestacional (DMG) constituye la principal alteración metabólica durante el embarazo. Se define como un tipo de diabetes diagnosticada en el segundo o tercer trimestre del embarazo que no era claramente una diabetes manifiesta antes de la gestación [1]. Recientemente la prevalencia de DMG se ha incrementado a nivel mundial, con una prevalencia global estimada del 14% [2]. La relevancia clínica de la DMG radica en su asociación con complicaciones maternas y fetales tanto a corto como a largo plazo. Las complicaciones maternas a corto plazo de la DMG son el desarrollo de preeclampsia, eclampsia o resolución del embarazo por cesárea. Además, las madres diagnosticadas con DMG tienen siete veces más riesgo de desarrollar diabetes tipo 2 (DT2) y es más probable que desarrollen hipertensión, dislipidemia y síndrome metabólico a largo plazo [1, 3-8].

En un estudio realizado por nuestro grupo de investigación [9], se identificó en etapas tempranas de la gestación (antes de la semana 18) un menor índice HOMA-% β (índice indirecto que estima la funcionalidad de la célula β pancreática calculado empleando la concentración de glucosa e insulina en ayuno) en mujeres que desarrollan DMG; así las mujeres que desarrollaron DMG presentaron una menor respuesta de la célula β pancreática en el primer trimestre del embarazo, lo que las hace incapaces de compensar la necesidad de insulina en la etapa de resistencia fisiológica a esta hormona.

Estudios recientes sugieren que las vesículas extracelulares (EVs por sus siglas en inglés), en particular los exosomas, son actores potenciales que participan tanto en la progresión, así como en el desarrollo de la fisiopatología de la DMG y de otras enfermedades relacionadas con el embarazo, debido a su papel clave como mediadores de la comunicación intercelular [10-13]. Las EVs constituyen diversas poblaciones heterogéneas y se pueden clasificar según su tamaño y origen en cuerpos apoptóticos, microvesículas y exosomas [14].

Los exosomas son pequeñas vesículas extracelulares de origen endosomal (con un diámetro promedio de 30 a 150 nm) los cuales son secretados en el compartimento extracelular mediante exocitosis de cuerpos multivesiculares (MVB) [14]. Los exosomas se pueden caracterizar por la presencia de indicadores proteicos universales como algunas tretraspaninas (CD63, CD9, CD81) y marcadores proteicos de biogénesis endosomal como Alix y TSG101 [14, 15]. Además, se ha demostrado que diversos tejidos, incluida la placenta, producen exosomas derivados de las membranas y específicamente pueden ser identificados con un marcador proteico específico como lo es la fosfatasa placentaria alcalina (PLAP por sus siglas en inglés, placental alkaline phosphatase) [11, 16]. Durante el embarazo, los exosomas placentarios (PLAP+) permiten una coordinación adecuada de las funciones biológicas entre la unidad fetoplacentaria y la madre [11, 12, 17].

Aunque los exosomas contienen una gran cantidad de biomoléculas citosólicas (como lípidos, proteínas, DNA y RNAs codificantes y no codificantes) provenientes de la célula de origen [14, 15]; la mayoría de los estudios asociados con el desarrollo de DMG se centran principalmente en los

miRNAs exosomales; los cuales han demostrado su potencial para estimular o inhibir las funciones fisiológicas de la célula diana [18, 19].

Los miRNAs constituyen una familia de moléculas cortas de RNA no codificantes (con una longitud promedio de 21 nucleótidos) que son importantes reguladores de la expresión génica postranscripcional en las células [20]. Los miRNAs desempeñan un papel crucial en el desarrollo del embarazo y en el mantenimiento de las adaptaciones fisiológicas maternas y fetales, mediante la regulación de una variedad de procesos fisiológicos, como el crecimiento de la placenta, la migración de células endoteliales y la angiogénesis [20-22], la transferencia de información genética a las células diana para regular el desarrollo fetal, la homeostasis metabólica materna [23], la comunicación materno-fetal [24] y la supresión de las señales de las células T maternas para garantizar la tolerancia inmunitaria durante el embarazo [25, 26]. Diversos estudios han identificado perfiles de miRNAs en EVs específicos de tejidos maternos en DMG, principalmente en las últimas etapas del embarazo (≥28 semanas de gestación), así como su papel potencial en la mediación de la fisiopatología de la intolerancia a la glucosa [10, 18, 27, 28].

Hasta el momento, no se cuenta con estudios que caractericen el perfil de miRNAs exosomales tanto maternos como placentarios en las primeras etapas del embarazo tomando en cuenta la funcionalidad de la célula β pancreática en embarazos que desarrollarán DMG. Por lo tanto, la presente tesis tuvo como objetivo caracterizar el perfil de miRNAs de exosomas maternos y placentarios en etapas tempranas de la gestación en aquellas mujeres que desarrollarán DMG con base en la funcionalidad de la célula β pancreática.

Marco Teórico

Embarazo

El embarazo es un estado que involucra diversas adaptaciones fisiológicas (anatómicas, hormonales, inmunológicas y metabólicas) que son necesarias para asegurar un correcto aporte de nutrimentos para un adecuado desarrollo y maduración fetal [29, 30]. Dichas adaptaciones se clasifican en dos fases: la fase anabólica y la fase catabólica [29, 31].

En particular, respecto al estado metabólico de la madre durante el embarazo; este proceso conlleva un desafío metabólico notable, durante el cual el metabolismo de la madre tiene que adaptarse para garantizar que los nutrientes estén disponibles para la unidad fetoplacentaria [32]. Estas adaptaciones metabólicas están influenciadas principalmente por dos factores: el estado nutricional y metabólico de la madre durante el embarazo y el efecto de las hormonas y factores endocrinos producidos por la placenta [32].

Durante el embarazo, las demandas de nutrientes se incrementan a medida que avanza el estado de gestación; alcanzando las mayores exigencias en el tercer trimestre. Por lo tanto, los cambios y adaptaciones metabólicas maternas prevén estas necesidades y durante las etapas tempranas del embarazo comienza progresivamente un almacenamiento de nutrientes (estado anabólico hasta la semana 20 de gestación) cambiando luego a un estado catabólico a partir de la mitad del embarazo tardío (alrededor de >20 semanas de gestación hasta la resolución del embarazo). Todas estas adaptaciones tanto en su fase anabólica como catabólica ocurren a medida que la unidad feto-placentaria consume y utiliza las reservas de energía de nutrientes para garantizar el correcto desarrollo, maduración y crecimiento fetal [33]. En la fase anabólica del embarazo, los nutrientes se almacenan principalmente en la grasa corporal, mientras que el incremento fisiológico a la sensibilidad a la insulina induce la lipogénesis [33]. Mientras tanto, durante la fase catabólica del embarazo, la resistencia a la insulina es progresiva con un pico máximo entre las semanas 24 a 28 de gestación (predominantemente resistencia a la insulina en músculo esquelético y tejido adiposo), lo que favorece la lipólisis para hacer frente a las crecientes necesidades maternas y fetoplacentarias, ayudando con el aporte de nutrientes como la glucosa y los aminoácidos a la unidad feto-placentaria [30, 33].

Fase anabólica

Esta fase ocurre durante los primeros dos trimestres de gestación (hasta la semana 20 de gestación), en donde ocurren diversas adaptaciones que tienen la finalidad de incrementar los depósitos lipídicos en tejidos maternos [29] (Figura 1A). En la Tabla 1 se muestran las principales adaptaciones metabólicas fisiológicas que ocurren en esta etapa.

Fase catabólica

Esta fase inicia a finales del segundo trimestre del embarazo (a partir de la semana 20 de gestación hasta la resolución del embarazo) y se caracteriza por un metabolismo acelerado de los depósitos

Desarrollo de hiperfagia	Incremento de lipogénesis <i>de novo</i>	Incremento de la síntesis de glicerol-3- fosfato	Sensibilidad a la insulina	Adaptaciones de la célula β- pancreática	Hipoaminoacidemia,	Glucosa en ayuno
La hiperfagia se	La síntesis de ácidos grasos y	Hay mayor	La sensibilidad a la	Las adaptaciones de	Los aminoácidos son	Las concentraciones
incrementa	glicerol se incrementan, así	síntesis de	insulina aumenta en <mark>los</mark>	la célula β-	requeridos tanto por	de glucosa en ayuno
progresivamente	como la actividad de la	glicerol-3-fostato	tejidos periféricos	pancreática son	la madre como por	disminuyen debido al
a lo largo de la	lipoprotein <mark>a</mark> lipasa (LPL) para	en el tejido	(tejido adiposo y	clave en la	el feto como una	incremento en el
gestación y por	promover la distribución de	adiposo	músculo esquelético)	respuesta a la	fuente energética,	almacenamiento de
consecuente, se	grasa, hidrolizando tanto a	proveniente de	aproximadamente en	sensibilidad	que permite el	glucógeno en el tejido
promueve la	los quilomicrones ricos en	glucosa y de	un 60%, influenciado	materna a la	adecuado	hepático, así como en
disponibilidad	triacilglicéridos como a las	glicerol, lo cual	por la unidad fetal-	insulina. Estas	crecimiento y	el músculo
de sustratos	lipoproteínas de muy baja	favorece la	placentaria [39], debido	adaptaciones son	desarrollo fetal [40,	esquelético, al
metabólicos	densidad (VLDLs) circulantes	síntesis de	al incremento en los	mediadas por las	41]. Principalmente	incremento en la
exógenos [34,	en el plasma, liberando	triacilglicéridos y	receptores de insulina	hormonas maternas	se observa <mark>una</mark>	utilización de glucosa
35].	ácidos grasos y glicerol que	su acumulación	en estos tejidos,	(prolactina) y	disminución en las	periférica, <mark>a la</mark>
	serán captados por el tejido	en el tejido	promoviendo la	placentarias	concentraciones de	disminución de la
	adiposo [36, 37].	adiposo [38].	lipogénesis, reduciendo	(lactógeno humano	aminoácidos	gluconeogénesis
			la oxidación de ácidos	placentario); las	gluconeogénicos	hepática e incremento
			grasos y la lipólisis; y	cuales estimulan	como: alanina,	de la utilización de
			generando un	una hiperplasia de	serina, treonina,	glucosa por parte de
			incremento en los	la célula β-	glutamato y	la unidad feto-
			depósitos de grasa [29].	pancreática	glutamina [42, 43].	placentaria [44-46].
				incrementando la		
				secreción de		
				insulina [29].		

de lípidos como consecuencia al incremento en la actividad lipolítica basal del tejido adiposo en respuesta a la resistencia a la insulina fisiológica [29] (**Figura 1B**). En esta etapa la resistencia a la insulina fisiológica (la cual alcanza un pico máximo entre la 24-28 sdg) y la hipoglucemia relativa resulta en lipólisis, permitiendo a la mujer embarazada preferir el uso de lípidos como sustrato energético, preservando así la disponibilidad de glucosa, aminoácidos y cuerpos cetónicos para su aporte a la unidad feto-placentaria y así asegurar un adecuado crecimiento y desarrollo fetal [33, 47]. Cuando se ven alteradas cualquiera de estas adaptaciones fisiológicas y la mujer embarazada no es capaz de reaccionar adecuadamente a la resistencia a la insulina, es entonces cuando se desarrolla hiperglucemia y consecuentemente diabetes gestacional [48]. En la **Tabla 2** se describen las principales adaptaciones metabólicas fisiológicas que ocurren en esta etapa durante un embarazo normoevolutivo.

Figura 1. Adaptaciones metabólicas embarazo normoevolutivo y diabetes gestacional. A) Adaptaciones metabólicas en relación a homeostasis de la glucosa en la fase anabólica <20sdg: hiperplasia e hipertrofia de la célula β pancreática mediada en parte por acción de hormonas placentarias, lo que ocasiona incremento en la secreción de insulina. Así mismo, se desarrolla mayor sensibilidad a la insulina en tejidos periféricos sensibles a esta hormona manteniendo así la normoglicemia. B) Adaptaciones metabólicas en relación a homeostasis de la glucosa en la fase catabólica >20sdg: desarrollo progresivo de resistencia a la insulina en tejidos periféricos y compensación de las células β pancreática aumentando la secreción de insulina con el objetivo de mantener la glucemia. Imagen creada

en Biorender.com.

Resistencia a la insulina	Adaptaciones de la células β-pancreática	Incremento de la gluconeogénesis hepática	Adaptaciones del tejido adiposo y hepático	Otras adaptaciones hepáticas	Hipoaminoacidemia
Durante el segundo y	En respuesta a la	La gluconeognesis es	Estudios realizados en esta	En el tejido hepático, los triacilglicéridos son	En esta fase se acentúa la
tercer trimestre de	disminución de la	<mark>una</mark> vía metabólica	etapa describen que se	transferidos a las VLDL y posteriormente son	disminución de las concentraciones
gestación disminuye	sensibilidad materna a la	<mark>que</mark> contribuye a la	presenta <mark>una</mark> mayor	liberados a la circulación materna, lo que	de aminoácidos, como resultado
progresivamente la	insulina, se desarrolla	homeostasis de la	expresión y actividad de la	ocasiona que esta fase del embarazo se	del incremento de la
sensibilidad a la insulina	hiperinsulinemia mediada	glucosa durante al	lipasa sensible a hormonas	caracterice por hipertriacilgliceridemia	gluconeogénesis hepática, así como
en los tejidos periféricos	por hormonas maternas	embarazo, al	(HSL) en <mark>el</mark> tejido adiposo	materna [40, 49, 50]. Alternativamente, el	del aumento en la transferencia de
(tejido adiposo y músculo	(prolactina) y placentarias	compensar la	y una disminución en la	glicerol puede ser empleado para la síntesis	aminoácidos de la placenta hacia el
esquelético); alcanzando	(lactógeno humano	resistencia a la	actividad de la	de glucosa mientras que los NEFAs pueden ser	feto, para permitir un adecuado
<mark>un</mark> nivel máximo de	placentario); las cuales	insulina en los tejidos	lipoproteina lipasa (LPL) en	oxidados a Acetil-CoA para la producción de	crecimiento y desarrollo fetal [29].
resistencia en el tercer	estimulan la secreción de	y mantener un estado	el tejido adiposo,	energía, así como para la síntesis de cuerpos	De igual manera, la concentración
trimestre de gestación	insulina y el incremento	normoglicémico [39,	disminuyendo el depósito	cetónicos que son empleados como sustrato	de proteínas séricas maternas
[39]. En el hígado, la	de tamaño y número de	40].	de lípidos en este tejido y	energético fetal y como sustrato para la	disminuye a partir de la semana 20
resistencia a la insulina	las células β-pancreáticas		permitiendo que los ácidos	síntesis de lípidos esenciales para el	de gestación de 46 a 38 g/l,
genera incremento en la	(hipertrofia) [39].		grasos no esterificados	neurodesarrollo fetal [29, 51, 52]. En esta fase	ocasionando una disminución de la
gluconeogénesis y la			(NEFAs) y el glicerol	el uso preferencial de glicerol como sustrato	presión oncótica predisponiendo al
cetogénesis para			puedan ser convertidos en	gluconeogénico, es de gran importancia	desarrollo de edema [40, 53].
mantener un estado			el hígado en acil-CoA y	durante períodos de ayuno materno debido a	
normoglicémico.			glicerol-3-fosfato, para	que los sustratos gluconeogénicos son escasos	
			posteriormente ser re-	mientras que el aporte de glucosa es vital	
			esterificados [49].	para el desarrollo fetal [52].	

Tabla 2. Principales adaptaciones metabólicas fisiológicas que ocurren en la fase catabólica (<20 sdg)

La placenta como órgano metabólico

La placenta actúa como un reflejo metabólico del estado de salud tanto del feto como de la madre, respondiendo al entorno con el objetivo de mantener la viabilidad fetal [49]. La placenta está compuesta de distintos tipos de células epiteliales especializadas, denominadas colectivamente células trofoblásticas, las cuales se encuentran situadas entre las células mesenquimales y la vasculatura en la interfaz materno-fetal. La barrera placentaria está conformada por dos capas que regulan la transferencia de nutrientes entre la circulación materna y la circulación fetal: el sincitiotrofoblasto (SCTB)-que recubre las vellosidades y constituye el transporte del epitelio de la placenta con dos membranas polarizadas (la membrana microvellositaria (MMV) hacia la circulación materna, y la membrana basal membrana plasmática (BM) en el lado fetal-; y la membrana fetal endotelio capilar [50-52].

La glucosa es el principal sustrato energético de la unidad feto-placentaria; de hecho, en ausencia de gluconeogénesis, el transporte placentario de glucosa constituye el único suministro para el feto. En el transporte de la glucosa intervienen dos principales tipos de transportadores de solutos proteicos: transportadores de difusión facilitada (GLUTs y SLC2), los simportadores acoplados a sodio (SGLT, SLC5 y SCL50) [53]. En la placenta, GLUT1 es el principal transportador de glucosa, con una proporción 3 veces mayor en la MVM, incrementando su proporción a lo largo de la gestación y así asegurar el correcto crecimiento fetal [54]. La transferencia de glucosa hacia la unidad feto-placentaria incrementa aproximadamente 8 veces conforme avanza el embarazo [55, 56]. En embarazos complicados, en donde se presenta un ambiente hiperglucémico, se han observado diversas alteraciones en la placenta tales como la mala perfusión vascular materna, trombosis fetal, desequilibrio de moléculas vaso-activas, incremento de estrés oxidativo [57-59], incremento en la masa y volumen placentario [60] así como incremento en la expresión de GLUT 1 en la membrana basal y en la membrana microvellositaria.

La placenta es fundamental en el desarrollo de la resistencia a la insulina durante el embarazo. Entre las hormonas placentarias implicadas en esta compleja reorganización metabólica, el lactógeno placentario humano (hPL por sus siglas en inglés) desempeña un papel decisivo en la regulación del metabolismo de la glucosa materna. El hPL es secretado por la placenta y se encuentra en la circulación materna a partir de la sexta semana de gestación, hasta alcanzar niveles sanguíneos más altos en la segunda mitad del embarazo. El hPL es una hormona peptídica, perteneciente a la misma familia de la hormona del crecimiento (GH por sus siglas en inglés) y de la prolactina y, como esta última, ejerce una acción lipolítica y efectos diabetogénicos, como el incremento en la secreción de ácidos grasos libres (FFAs por sus siglas en inglés), lo cuales son fundamentales como sustratos energéticos para la madre y contribuyen en parte con el desarrollo de la resistencia a la insulina [46, 61]. Además, el hPL se ha asociado a mecanismos regulatorios de hiperplasia e hipertrofia sobre la masa de las células β y la secreción de insulina [46, 61]. Los embarazos que cursan con alteraciones metabólicas, como obesidad y DMG, se han relacionado con alteraciones en la secreción de hPL. La presencia de obesidad durante el embarazo frecuentemente se ha asociado con concentraciones séricas más bajas de hPL, mientras que embarazos que cursan con DMG se asocian a un aumento de los niveles sanguíneos de hPL [62].

La variante de la hormona del crecimiento humano placentaria (PGH por sus siglas en inglés), principalmente es expresada y secretada por las células del sincitiotrofoblasto placentario, contribuyendo a la resistencia a la insulina reemplazando a la GH de la pituitaria en circulación materna, asi como facilitando la lipólisis y la gluconeogénesis, con el objetivo de promover la movilización de sustratos energéticos presentes en las reservas maternas para asegurar un adecuado crecimiento fetal [63]. Además, la PGH, media la resistencia a la insulina mediante la acción del factor de crecimiento tipo-insulina 1 (IGF-1 por sus siglas en inglés) [64]. A pesar de que se conocen las acciones de la hormona PGH para favorecer la resistencia a la insulina, en estudios realizados en embarazos que cursan con DMG no se ha demostrado la correlación entre los niveles de PGH y los niveles de insulina [65].

Tanto el tejido adiposo blanco (WAT por sus siglas en inglés) como la placenta actúan como órganos endocrinos en mujeres embarazadas, que secretan adipocinas y citocinas como la leptina, la adiponectina y el factor de necrosis tumoral α (TNF-α por sus siglas en inglés) que contribuyen a la reprogramación metabólica necesaria para el embarazo normoevolutivo [47, 66]. La secreción de leptina aumenta gradualmente a lo largo de la gestación y se ha demostrado que existe una resistencia a los efectos anorexigénicos de la leptina durante el embarazo [67]. La resistencia a la leptina presente en el segundo y tercer trimestre del embarazo es importante para mantener una mayor ingesta de energía para asegurar el crecimiento fetal [68]. La leptina también contribuye a las adaptaciones del tejido adiposo, presentes durante la fase anabólica del embarazo, para prepararse adecuadamente para la movilización de lípidos durante la fase catabólica en el embarazo. Los embarazos con DMG y obesidad, se han asociado con una hiperleptinemia en etapas tempranas de la gestación, que se ha considerado como un predictor del riesgo para el desarrollo de DMG [69]. Además, la hiperinsulinemia presente en la DMG podría estimular aún más la producción de leptina que a su vez potencia la inflamación [70]; creando un círculo vicioso que perpetúa el estado inflamatorio y la exacerbación de la resistencia a la insulina [66]. La adiponectina es sintetizada casi exclusivamente por los adipocitos, pero también se expresa en el sincitiotrofoblasto [71], ejerciendo un potente efecto sensibilizante a la insulina.

El papel que desempeña la placenta no es únicamente la transferencia de solutos, es un órgano central con funciones metabólicas y endócrinas con comunicación cercana con las adaptaciones metabólicas y endócrinas de la madre para asegurar un embarazo normoevolutivo. En la siguiente tabla se enlistan las principales hormonas y citocinas que tienen un papel importante en establecer y mantener un embarazo normoevolutivo.

Hormona	Función
Leptina	 La secreción de esta hormona peptídica está incrementada en el embarazo principalmente por acción de la placenta. Actividad paracrina y endócrina. Hiperleptinemia en el embarazo relacionada con la hiperfagia, la resistencia a la insulina y el incremento de depósitos lipídicos en el tejido adiposo. Promotora de la angiogénesis placentaria y reguladora del transporte de nutrientes.
Adiponectina	 El incremento en su secreción en el embarazo está mediado por el tejido adiposo blanco (WAT) materno y la placenta. Actividad autocrina y paracrina en la placenta. Regulación de homeostasis de la glucosa. Favorece la oxidación de ácidos grasos. Actividad anti-inflamatoria: inhibición de la señalización de NFkB, y secreción de TNFα por macrófagos. Contrarresta la resistencia a la insulina en el tejido musculo esquelético y en el tejido hepático mediante la activación de la vía de señalización del receptor activado por proliferadores peroxisómicos tipo α (PPARα), así como por la proteína cinasa activada por AMP (AMPK). Inhibición de la apoptosis de la célula β-pancreática mediada por ceramidas o citocinas pro-inflamatorias. La hipoadiponectinemia se ha asociado al desarrollo de DMG
Grelina	 Expresión y secreción incrementada en el primer trimestre del embarazo Favorece la captación de la glucosa y la gluconeogénesis hepática Homeostasis del balance energético
Lactógeno placentario humano (hPL)	 Disminución de la sensibilidad a la insulina Induce síntesis y secreción de Insulina Favorece el incremento de la hiperplasia e hipertrofia en célula β-pancreáticas Favorece la glucólisis, lipólisis y secreción de FFA en la circulación materna
Hormona de crecimiento placentario (PGH)	 Actividad parácrina y autócrina Regulación de la gluconeogénesis y la lipólisis materna Promueve la resistencia a la insulina mediada por la acción de IGF-1
Hormona liberadora de corticotropina placentaria (CRH)	 Mayor secreción en el 3er trimestre del embarazo Promueve la resistencia a la insulina mediante inhibición del IRS-1
Progesterona	 Regulación de la tolerancia inmunológica al embrazo Favorece la resistencia a la insulina en tejido adiposo y músculo esquelético Disminuye la expresión de IRS-1 y GLUT4
Estrógenos (17β-estradiol, estriol y estrona)	 Regulación de la síntesis de progesterona placentaria Función vasodilatadora Incrementa la secreción de la insulina en el primer trimestre del embarazo Favorece la resistencia a la insulina en las semanas 24-28 de gestación
ΤΝΓα	 Promueve la resistencia a la insulina y la intolerancia a la glucosa en etapas tardías del embarazo (>24 semanas de gestación)
IL-6	 Regulación de la captación de FFA en el tejido adiposo blanco (WAT)

Tabla 3. Principales hormonas y citocinas placentarias importantes en las adaptaciones

metabólicas durante el embarazo

Diabetes mellitus gestacional: prevalencia

La DMG se define como un tipo de diabetes diagnosticada en el segundo o tercer trimestre del embarazo que no era claramente una diabetes manifiesta antes de la gestación [1]. Constituye la principal alteración metabólica en el embarazo [72, 73], y en nuestro país, la prevalencia de DMG se reporta entre el 8.7 al 17.7% [74].

Diabetes mellitus gestacional: factores de riesgo

Diversos factores de riesgo se han asociado con una mayor probabilidad de desarrollar DMG y se continúan actualizando guías para la identificación de estos factores de riesgo. Las directrices actuales recomiendan una estrategia de detección selectiva en mujeres, con factores de riesgo identificados de DMG [75]. En general, se pueden clasificar en factores de riesgo moderado y/o alto; sin embargo, actualmente no ha habido un acuerdo internacional sobre qué factores de riesgo pueden identificar mejor un riesgo para desarrollar esta patología (**Tabla 4**).

Tabla 4. Factores de riesgo asociados al desarrollo de DMG [1, 75-79]

- Edad maternal avanzada >35 años
- Sobrepeso u obesidad (IMC ≥25kg/m2)
- Historia familiar de diabetes tipo 2 (familiar en primer grado)
- Etnia: Africana, Latina, Caribeña, Sur de Asia, Medio Oriente
- Antecedentes de diabetes gestacional
- Antecedente de hiperglucemia
- Embarazo previo con producto macrosómico ≥4,000g
- Antecedente de muerte fetal
- Factores genéticos (polimorfismos de un solo nucleótido SNPs) en genes relacionados con insulina, como: rs 2255372 (en *TCF7L2*), rs7903146 (en *TCF7L2*), rs5219 (en *KCNJ11*), y rs1799884 (en *GCK*)
- Antecedente de síndrome de ovario poliquístico
- Tabaquismo
- Uso de cortiocoesteroides y/o antipsicóticos
- Sedentarismo

Diabetes mellitus gestacional: diagnóstico

Tomando en cuenta los factores de riesgo antes mencionados, se recomienda que las mujeres con al menos un factor de riesgo importante se realicen pruebas de detección de DMG, en el momento de su primera evaluación médica prenatal. De hecho, la Asociación Internacional para el Estudio de la Diabetes en el Embarazo (IADPSG por sus siglas en inglés) ha propuesto una estrategia para la detección y diagnóstico de los trastornos hiperglucémicos en el embarazo [79, 80] (como se muestra en la **Tabla 5**). El diagnóstico de la DMG se establece entre las 24 y 28 semanas de gestación realizando pruebas de tolerancia oral a la glucosa (OGTT por sus siglas en inglés) con diferencias en los criterios de carga de glucosa, duración y valores umbral diagnóstico [1, 72, 80] (**Tabla 6**).

Tabla 5. Estrategia de detección y diagnóstico de desórdenes hiperglucémicos en el embarazosegún la IADPSG 2010 en la primera visita prenatal [80]

Glucosa plasmática en ayuno, hemoglobina glucosilada A1C o glucosa plasmática al azar, en todas o en aquellas mujeres embarazadas con factores de riesgo para DMG:

- Diagnóstico de diabetes previa al embarazo:
 - Glucosa plasmática en ayuno: ≥7.0mmol/l;
 - Hemoglobina glucosilada A1C: ≥6.5%
 - Glucosa plasmática al azar: ≥11.1mmol/l (200mg/dl)
- Si el resultado no es compatible con diabetes previa al embarazo;
 - o Glucosa plasmática en ayuno entre ≥5.1mmol/l y <7.0mmol/ se diagnostica **DMG**.
 - Glucosa plasmática en ayuno <5.1mmol/l ; se debe de realizar OGTT entre las semanas 24-28 de embarazo para diagnóstico de DMG.

Tabla 6. Estrategias diagnosticas para la detección de Divid						
Criterio	Carga de glucosa (g)	Glucosa plasmática en ayuno mmol/l (mg/dl)	Glucosa 1-h post-carga de glucosa mmol/l (mg/dl)	Glucosa 2-h post- carga de glucosa mmol/l (mg/dl)	Glucosa 3-hpost- carga de glucosa mmol/l (mg/dl)	Valores alterados requeridos para el diagnóstico
		Estrat	egia de un paso			
IADPSG 2010 [80]	75	≥5.1 (92)	10.0 (180)	≥8.5 (153)	-	≥1
WHO 2013 [81]	75	≥5.1-6.9 (92-125)	10.0 (180)	≥8.5-11 (153-199)	-	≥1
NICE [76]	75	≥5.6 (100)	-	≥7.8 (140)	-	≥1
Canadian Diabetes Association [82]	75	≥5.3 (96)	≥10.6 (191)	≥9.0 (162)	-	≥1
		Estrate	gia de dos pasos			
Canadian Diabetes Association [82]		50	 <7.8 (141): normal 7.8-11.9 (141-214): realizar OGTT con carga de 75g de glucosa ≥11.1 (200): DMG 		-	1
Carpenter y Coustan [1, 83] / NDDMG [1, 84]		50	>130, 135, o 140 (7.2, 7.5, o 7.8): realizar OGTT con carga de 100g de glucosa		-	1
Carpenter y Coustan [1, 83] NDDMG [84]	100 100	≥5.3 (96) ≥5.8 (105)	10.0 (180) 10.6 (190)	≥8.6 (155) ≥9.2 (165)	≥7.8 (140) ≥8.0 (145)	≥2 ≥2

Tabla 6. Estrategias diagnósticas para la detección de DMG

Diabetes mellitus gestacional: fisiopatología

Dos de los principales mecanismos fisiopatológicos que caracterizan a la DMG incluyen defectos de la célula β pancreática junto con una exacerbación de la resistencia a la insulina. Hasta la fecha, los estudios sugieren que estas alteraciones probablemente se desarrollaron antes de la gestación en la mayoría de los casos; y las mujeres con mayores factores de riesgo asociados a la DMG (especialmente obesidad y antecedentes familiares de diabetes tipo 2) tienen riesgo de haber desarrollado una o ambas de dichas alteraciones [78, 85]. La DMG se desarrolla como resultado de una disfunción de las células β paralela a un estado de resistencia crónica a la insulina fisiológica (con un pico alrededor de las 24-28 semanas de gestación). Es importante señalar que más allá de estos dos factores principales en la fisiopatología de la DMG, otros órganos y mecanismos también son claves en su desarrollo (**Tabla 7**) [86-90]. A continuación, se describen dos de los mecanismos mayormente estudiados en la fisiopatología de la DMG: a) la disfunción de la célula β -pancreática y b) el desarrollo crónico de la resistencia a la insulina.

Órgano involucrado	Mecanismo fisiopatológico		
Páncreas	 Disfunción de la célula β-pancreática Disminución del número y masa de la célula β-pancreática Exacerbación de la resistencia a la insulina 		
Hígado	 Incremento de la tasa de gluconeogénesis Incremento de la producción de especies reactivas de oxígeno (ROS por sus siglas en inglés) y estrés oxidativo Lipotoxicidad 		
Músculo esquelético	 Exacerbación de la resistencia a la insulina Lipotoxicidad Disfunción mitocondrial Incremento de la producción de ROS y estrés oxidativo 		
Tejido adiposo	 Exacerbación de la Resistencia a la insulina Incremento en la tasa de lipólisis Incremento en la secreción de ácidos grasos libres Incremento en la secreción de leptina Estado pro-inflamatorio: polarización de macrófagos M1, incremento de linfocitos T-helper y T-citotóxicos Incremento en las citocinas pro-inflamatorias: IFN-γ, TNF-α, IL-6, IL-1 Hipertrofia del tejido adiposo Lipotoxicidad Reducción de la expansión del tejido adiposo Disminución en la secreción de adiponectina 		
Placenta	 Resistencia a la insulina Incremento en la secreción de leptina placentaria Incremento en la tasa de transporte de nutrientes Crecimiento fetal exacerbado Incremento en la secreción de citocinas pro-inflamatorias y quimiocina: TNF-α, IL- 6, IL-10, MCP-1 		

	Tabla 7. Mecanismos fisio	patológicos	asociados al	desarrollo d	le DMG	[91-95]
--	---------------------------	-------------	--------------	--------------	--------	---------

Diabetes mellitus gestacional: disfunción de la célula β-pancreática

La función principal de la célula β pancreática es almacenar y secretar insulina en respuesta a la carga de glucosa. Cuando estas células pierden la capacidad de detectar adecuadamente las concentraciones de glucosa en sangre y/o de secretar insulina en respuesta a este estímulo de glucosa; se considera una disfunción de la célula β -pancreática. Se ha propuesto que la disfunción de estas células es el resultado de una producción y secreción excesiva y prolongada de insulina en respuesta a un exceso crónico de nutrientes (principalmente glucosa) [91, 92]. La disfunción de la célula β pancreática es un componente clave de la alteración de todas las formas de estados diabéticos. Puede expresarse como uno o dos de estos mecanismos: 1) incapacidad para preservar y mantener suficiente masa de células β pancreáticas; y 2) que estas células sean capaces de adaptarse y responder a cualquier estado de resistencia a la insulina presente. Clínicamente, la alteración principal de este fenómeno se caracteriza por el deterioro y la pérdida de la secreción aguda de insulina inducida por glucosa (GSIS por sus siglas en inglés) [92].

En particular, en el caso del embarazo, en el que se desarrolla resistencia fisiológica a la insulina; las adaptaciones de la fase anabólica de la célula β pancreática se logran mediante el aumento de la secreción de insulina, como producto de una mayor masa celular para compensar el estado fisiológico de resistencia a la insulina que se presentará más adelante [92]. Cuando estas adaptaciones no logran establecerse durante la gestación, se puede desarrollar DMG.

En los embarazos que cursan con DMG, los dos principales mecanismos fisiopatológicos que se presentan son la disfunción de la célula β pancreática y el incremento de la resistencia a la insulina en tejidos periféricos. La disfuncionalidad de la célula β pancreática se puede presentar en dos escenarios: 1) falla para mantener una adecuada masa celular y 2) inadaptación celular para compensar los estados de resistencia a la insulina [91, 93-95]. Clínicamente, la deficiencia de estos mecanismos se presenta como alteración y pérdida de secreción de insulina estimulada por glucosa y consecuente hiperglicemia. Por lo tanto, en la DMG, la disfunción de la célula β pancreática se exacerba a mayor resistencia a la insulina; y una vez que la disfunción de estas células se instaura, se desarrolla un círculo vicioso caracterizado por una hiperglicemia tanto en ayuno como en postprandio, mayor resistencia a la insulina en tejidos periféricos y el favorecimiento de la disfunción progresiva de la célula β pancreática [39, 91, 96].

Diabetes mellitus gestacional: índice HOMA-% β

Como se mencionó anteriormente, la disfunción de la célula β-pancreática es uno de los mecanismos fisiopatológicos más importantes en la DMG. Las mujeres que desarrollan DMG presentan una disfunción crónica en célula β pancreática entre las semanas 24-28 de gestación, lo cual representa un reto tanto para el diagnóstico oportuno como para la prevención de complicaciones materno-fetales a corto y largo plazo. Por lo anterior, resulta relevante evaluar el grado de funcionalidad de célula β pancreática en etapas tempranas de la gestación.

El índice HOMA2-% β es un indicador indirecto empleado para estimar la función de la célula β -pancreática con base en las concentraciones de glucosa e insulina en ayuno; donde un valor del

90-100% se considera normal, es decir una función adecuada de célula β pancreática. Dependiendo de la patología estudiada, así como de la población en la que se realizan los estudios, se han propuesto distintos puntos de corte para considerar los valores de este índice como alto y/o bajo. En en particular, en embarazo aún no se ha llegado aún a un consenso específico de puntos de corte debido a la carencia de estudios suficientes en distintas poblaciones con alto riesgo de diabetes gestacional.

La relación entre la glucosa y la insulina en el estado basal reflejan el balance entre la producción de glucosa hepática y la secreción de insulina, lo cual es mantenido mediante retroalimentación entre el hígado y la célula β pancreática [97, 98]. El índice HOMA2-% β tiene un coeficiente de correlación de 0.87 con respecto al clamp hiperglucémico y al modelo de evaluación de infusión de glucosa continua (CIGMA por sus siglas en inglés), los cuales son los estándares de referencia para la evaluación de la función de la célula β pancreática [97, 99].

Este índice HOMA-2 es resultado de la actualización del modelo publicado en 1985 por David Matthews et al [97], el cual consta de una serie de ecuaciones empíricas lineales que describen las funciones de los órganos y tejidos involucrados en la regulación de la glucosa, los cuales se resuelven numéricamente en la siguiente fórmula HOMA-B = $20 \times [insulina ayuno] (\mu U/ml)/$ [glucosa plasmática] en ayuno (mg/dl). En el modelo propuesto por Matthews et al en 1985, correspondiente al HOMA-1, sobreestimaba o subestimaba los valores de HOMA-1R y HOMA-% en valores de hipo e hiperglicemia, debido a que estas ecuaciones se realizaron considerando un comportamiento lineal. Para resolver este problema, Jonathan Levy et al en 1998 [100] publicaron el modelo computacional actualizado, el HOMA-2, tomando en cuenta las variaciones en la resistencia a la glucosa hepática y periférica, los aumentos en la curva de secreción de insulina para concentraciones de glucosa en plasma superiores 10 mmol/L (>180 mg/dL) y la contribución de la proinsulina circulante. Esta nueva actualización establece así una relación no lineal entre glucosa e insulina (que se ajusta mejor a la realidad fisiológica). El modelo HOMA-2 también se recalibró para proporcionar valores de HOMA2_% y HOMA2_% S del 100 % en adultos tomando en cuentra concentraciones de insulina, insulina específica o péptido C. En 2004, se lanzó una implementación del software HOMA, la HOMA-2 Calculator por la Universidad de Oxford, el cual tiene la patente de dicho software y ofrece licencias para acceder al programa para uso comercial y no comercial.

A pesar de que la relación que potencialmente se tiene entre el HOMA-%β y el desarrollo de DMG representa un área de estudio importante para comprender mejor la fisiopatología de la DMG, se ha abordado poco en estudios clínicos. Un estudio realizado por Endo y colaboradores en la población japonesa (considerada como de alto riesgo para el desarrollo de DMG), evaluó longitudinalmente el HOMA-%β en los tres trimestres del embarazo. En dicho estudio, se observó que las mujeres que desarrollan diabetes gestacional presentan menor índice HOMA-%β promedio en el primer trimestre de gestación en comparación con los controles, independientemente de su IMC [101]. Esto sugiere que las mujeres que desarrollan diabetes gestacional presentan en su primer trimestre de gestación una menor respuesta por parte de la célula β pancreática y cuando se presenta la etapa de resistencia a la insulina fisiológica (final del segundo e inicios del tercer

trimestre) no son capaces de compensar estas adaptaciones. Lo propuesto por Endo et al concuerda con el estudio realizado por Luo et al en 2023 [102] en población China (etnia con alto riesgo de desarrollo de DMG), en donde se observó que las mujeres que desarrollan DMG presentan un índice HOMA- β inferior que las controles, así como una menor secreción de insulina y una disminución en el índice de sensibilidad a la insulina en la curva de tolerancia oral a la glucosa (ISI_{Matsuda}).

Aunque generalmente se ha postulado que la resistencia a la insulina y la disfunción de la célula β pancrática afectan la homeostasis de la glucosa y, en última instancia, conducen al desarrollo de DMG; las contribuciones relativas de la función de la célula β pancreática y la sensibilidad a la insulina en la patogénesis de la DMG no son del todo claras y no se ha establecido cuál de los dos mecanismos es el principal. Discrepancias que podrían ser atribuibles a diferentes poblaciones con distintos grados de función de célula β pancreática.

Diabetes mellitus gestacional: resistencia a la insulina

Cuando las células sensibles a la insulina ya no son capaces de mantener una respuesta adecuada a la insulina; es entonces cuando se produce la resistencia a la insulina. Este fenómeno es el resultado de un deterioro de la señalización de la insulina, lo que provoca alteraciones en las diferentes vías activadas por la insulina en las células. La interacción de esta hormona con su receptor (IR por sus siglas en inglés) deriva en su autofosforilación en el dominio de cinasa de tirosina de la subunidad β del receptor de insulina (IR β , por sus siglas en inglés); activando la cascada de señalización de la insulina dependiendo de la célula del tejido. Además, se tiene evidencia de que los niveles de autofosforilación del IR β son más bajos en embarazos afectados por DMG, que en embarazos con tolerancia normal a la glucosa, correlacionandose con una disminución del 25% en la captación de glucosa en biopsias de músculo esquelético [103].

Uno de los principales defectos de la resistencia a la insulina es la translocación insuficiente de los transportadores de glucosa (GLUT) (por ejemplo, GLUT 4, el principal transportador presente en las células del músculo esquelético y del tejido adiposo) a la membrana plasmática de la célula; generando así una menor captación de glucosa. En particular, algunos estudios han observado que en la DMG la captación de glucosa estimulada por la insulina se reduce hasta en un 54%, en comparación con aquellos embarazos que no desarrollan esta patología [96]. En un estudio que evaluó los mecanismos celulares subyacentes a la resistencia a la insulina relacionada con la DMG [104], se observó que, en el último trimestre del embarazo, la abundancia del receptor de insulina no se vio afectada, mientras que el nivel de IRS-1 (proteína importante para la señalización de la insulina) disminuyó en el músculo esquelético entre un 30% a 50% y en un 52% en el tejido adiposo de las mujeres diagnosticadas.

Se han propuesto varios mecanismos asociados con la resistencia a la insulina en embarazos que cursan con DMG. Es decir, durante el embarazo, la combinación de alteraciones de la función de los tejidos sensibles a la insulina, junto con adaptaciones hormonales, factores ambientales, predisposición genética, y alteraciones en las adaptaciones placentarias; se han relacionado con el desarrollo de resistencia a la insulina (**Figura 2 y 3**).

Figura 2. Resistencia a la insulina en embarazos normo evolutivos y en DMG

Figura 2. Adaptaciones metabólicas embarazo normoevolutivo y diabetes gestacional. A) Adaptaciones metabólicas en relación a homeostasis de la glucosa en la fase catabólica >20sdg: desarrollo progresivo de resistencia a la insulina en tejidos periféricos y compensación de la célula β pancreática aumentando la secreción de insulina con el objetivo de mantener la glucemia. B) Adaptaciones metabólicas en diabetes gestacional: en embarazos que cursan con diabetes gestacional, principalmente en la fase catabólica se presenta disfunción de la célula β pancreática caracterizada por disminución en la secreción de insulina en célula β pancreática (disminución aproximada de un 50-60%), mayor incremento a la resistencia a la insulina en tejidos periféricos (en comparación con embarazos normoevolutivos) y consecuente hiperglucemia tanto en ayuno como en postprandio. Imagen creada en Biorender.com.

Figura 3. Fisiopatología de la diabetes gestacional

Figura 3. Fisiopatología de la diabetes mellitus gestacional: El desarrollo de la diabetes mellitus gestacional es multifactorial, en donde una convergencia de factores y mecanismos de una inadecuada adaptación en el embarazo favorecen su desarrollo. Clínicamente la diabetes gestacional se presenta como resistencia a la insulina, disfunción de célula β-pancreática, hiperinsulinemia, hiperglucemia en ayuno y postprandio y un incremento en la secreción de ácidos grasos libres.

Recientemente se ha demostrado que las vesículas extracelulares (EVs por sus siglas en inglés) desempeñan un papel importante en la comunicación célula-célula y en la regulación de la fisiología celular en la salud y la enfermedad; proponiéndolas como parte de los mecanismos reguladores de procesos de homeostasis y/o desregulación [13]. De particular interés, los exosomas (EVs pequeñas) han sido ampliamente estudiados en estados de embarazo normoevolutivo y DMG; como medio para comprender cómo se desarrollan las patologías metabólicas relacionadas con el embarazo.

Vesículas extracelulares

Según la Sociedad Internacional de Vesículas Extracelulares (ISEV por sus siglas en inglés); una EV se define como: "una partícula liberada naturalmente por la célula que están delimitadas por una bicapa lipídica y no pueden replicarse (no contiene un núcleo funcional)" [105]. De ahí que el término EVs tenga en cuenta una población heterogénea de estructuras derivadas de células que se caracterizan por tener una membrana con una bicapa lipídica y se dividen en dos categorías principales: exosomas y microvesículas o "ectosomas" [15, 105, 106]; aunque algunas clasificaciones de EVs también incluyen a los cuerpos apoptóticos como una tercera clase importante de dichas EVs [107-109]. La heterogeneidad de las EVs radica en las diferencias en sus vías de biogénesis, secreción y absorción [15]. Estas vesículas se pueden encontrar en todos los

fluidos biológicos y se ha demostrado que están involucradas en diversos procesos fisiológicos y patológicos. Ahora se consideran como un mecanismo complementario necesario para la comunicación intercelular, por lo que tienen la capacidad de entregar cargas moleculares específicas (proteínas, lípidos o ácidos nucleicos) a las células diana receptoras y regular la fisiología celular [13].

En general, las principales diferencias entre estas EVs radican en al menos tres vías de biogénesis y tamaño: 1) la formación de vesículas intraluminales dentro de cuerpos multivesiculares (MVB por sus siglas en inglés), acompañadas de proteínas de los complejos de clasificación endosomal necesarios para el transporte (ESCRT por sus siglas en inglés), que es característico de la biogénesis de exosomas (tamaño promedio 30-200 nm); 2) la formación de vesículas por gemación y desprendimiento de la membrana plasmática de la célula, proceso característico de los ectosomas (también llamados microvesículas con un tamaño promedio de 100-1,1000 nm) y; 3) desintegración de la membrana y liberación de EVs por parte de las células que se someten a procesos de fagocitación celular y procesos apoptóticos, un proceso distintivo de la biogénesis de los cuerpos apoptóticos (tamaño promedio ≥1000 nm) [14, 15].

La heterogeneidad de la composición del contenido y la biogénesis de las EVs a menudo se superponen, lo que dificulta su diferenciación, por lo que pueden diferenciarse con base en su densidad, biogénesis y composición, como se resume en la **Tabla 8**. Así mismo, la recomendación de la guía MISEV 2018 [106] para la clasificación de las EVs por tamaño establece dos categorías: 1) vesículas extracelulares pequeñas (sEVs por sus siglas en inglés) las cuales tienen un tamaño promedio de <200 nm de diámetro y 2) vesículas extracelulares grandes (IEVs por sus siglas en inglés) de >100 nm de diámetro.

	Exosomas	Microvesículas	Cuerpos apoptóticos
	[14, 15, 110, 111]	[14, 15, 110, 111]	[14, 15, 109-112]
Tamaño (nm)	30-200	100-1,000	≥1,000
Origen	Endocítico	Gemación de la membrana plasmática	Apoptosis
Forma	Esferoide	Esferoide, en ocasiones irregular	Fluctuante
Densidad (g/ml)	1.13-1.19	1.04-1.07	1.16-1.28
Marcadores protéicos empleados para su identificación	Tetraspaninas (CD9, CD63, CD81), proteínas del complejo ESCRT (Alix, TSG101), integrinas, proteínas de choque térmico (HSP)	Integrinas, flotillina-2, selectinas, ligando CD40, fosfatidilserina	Anexina V, fosfatidilserina
Contenido	Ácidos nucleicos (DNA, RNA, RNAs no codificantes), proteínas, lípidos, metabolitos	Ácidos nucleicos (DNA, RNA, RNAs no codificantes), proteínas, lípidos, metabolitos	Fragmentos de DNA, histonas, remanente de cromatina, proteínas degradadas

Tabla 8. Clasificación de las vesículas extracelula	es
---	----

Eunción	Comunicación cólula cólula	Comunicación célula-	Limpieza de células
FUNCION	Comunication celula-celula	célula	apoptóticas

Vesículas extracelulares: papel en la comunicación célula-célula

La principal función que tienen las EVs es mediar la comunicación célula-célula, ya que al ser secretadas pueden modular la fisiología celular través de tres mecanismos: 1) las EVs son capaces de modular una señalización autocrina actuando sobre su célula de origen (como se observa en la regulación mediada por exosomas de la hematopoyesis y el desarrollo de leucemia al estimular la leucemogénesis) [113]; 2) las EVs pueden participar en la señalización paracrina actuando sobre las células vecinas (como se observa en la modulación de la sensibilidad a la insulina mediada por los miRNAs exosomales de los macrófagos del tejido adiposo) [114] y 3) las EVs regulan la señalización endocrina al atravesar la barrera endotelial para llegar a las células diana (control de la homeostasis de la glucosa mediado por miRNAs exosomales derivados de la célula β pancreática) [115].

Los mecanismos por los cuales las EVs pueden interactuar con las células diana para influir en la fisiología de la célula receptora han sido ampliamente estudiados y son diversos; desde la fusión directa con la membrana plasmática, la endocitosis mediada por balsas lipídicas, hasta la internalización mediada por la interacción del receptor [14, 15, 116-118]. La especificidad mediante la cual las células diana interactúan con las EVs es única para cada tipo y condición de EV; y también está determinado por interacciones distintas y específicas entre los receptores de la membrana celular plasmática de la célula diana y las proteínas enriquecidas en la superficie de la membrana de las EVs, como: tetraspaninas e integrinas; así como también lípidos, proteoglicanos (sulfato de heparina) y lectinas [15, 107].

Exosomas: vesículas extracelulares pequeñas

Los exosomas son una subpoblación de EVs pequeñas de origen endosomal de aproximadamente 40-200 nm, con una densidad de 1.13-1.19 g/mL, los cuales pueden ser identificados gracias a sus marcadores proteicos de membrana, así como de biogénesis (los más comúnmente empleados son: Alix, Tsg101, CD63, CD9 y CD81) [14, 15] (**Figura 4**).

Figura 4. Caracterización de exosomas en embarazos con DMG: Imágenes representativas de exosomas provenientes de plasma de embarazos normoevolutivos (Figura 4A) y con DMG (Figura 4B) con 24-28 SDG. Imágenes obtenidas por microscopía electrónica de transmisión evidenciando la forma esférica característica de los exosomas [18]. En la Figura 4C se observa la caracterización de exosomas empleando rastreo de nanopartículas, Imagen representativa de caracterización de exosomas por tamaño (nm) y concentración (partículas/mL) de embarazos normoevolutivos y con DMG en las semanas 24-28 de gestación [119].

Recientemente, se ha demostrado que diversos tejidos incluida la placenta producen exosomas derivados de las células del cincitiotrofoblasto principalmente [10, 11, 16, 120]. Estas vesículas pueden transportar en su interior una amplia gama de biomoléculas como: ácidos nucleicos (DNA y RNA), metabolitos, especies lipídicas y proteínas citosólicas, dependiendo de la célula de la cual son secretados. Anteriormente, la función que se le atribuía a estas EVs pequeñas era la de vehículo de desechos celulares [121, 122]; sin embargo, gracias a investigaciones adicionales sobre este tema, se ha demostrado que los exosomas sirven como un importante regulador de la comunicación célula-célula como un mecanismo funcional impulsado por componentes celulares selectos y específicos [123-126].

Los exosomas han sido considerados como reguladores de procesos fisiológicos y patológicos en enfermedades cardiovasculares, la progresión del cáncer, infecciones virales, enfermedades del sistema nervioso, enfermedades metabólicas y, más recientemente, en el embarazo.

Exosomas: biogénesis

La biogénesis de los exosomas puede comenzar a partir de componentes extracelulares que interactúan con la membrana celular, así como con las proteínas de la superficie celular; ingresando a la célula a través de procesos endocíticos y de invaginación de la membrana plasmática. Esto conduce a la generación de endosomas de clasificación temprana (ESE por sus siglas en inglés), con la consiguiente maduración a endosomas de selección tardía (LSE por sus siglas en inglés) y, en última instancia, al "paso de maduración" final a MVB que contienen vesículas intraluminales (ILV por sus siglas en inglés) [15, 127-129].

La biogénesis de los exosomas requiere la formación de MVB mediante la invaginación de la membrana limitante endosómica. Este proceso está regulado por tres proteínas principales: las proteínas Rab, las proteínas Sec-1, el receptor soluble de la proteína de unión al factor sensible a la N-etilmaleimida (SNARE por sus siglas en inglés) y las proteínas de la subunidad del complejo de la cubierta [130].

La vía exosomas-MVB comienza cuando se generan las vesículas intraluminales (ILV) (con un tamaño promedio de 30 a 100 nm, similar al tamaño de los exosomas) dentro del lumen de los endosomas, durante su maduración hasta convertirse en endosomas multivesiculares (MVE), un proceso que involucra maquinarias de clasificación particulares y específicas. El primer paso de estas maquinaria es seleccionar primero la carga molecular en los microdominios de la membrana limitante de las MVE con la consiguiente gemación interna y fisión de pequeñas vesículas de membrana [15, 130, 131]. A continuación, se describen los pasos para la biogénesis de los exosomas (Figura 5):

1. Los lípidos y otras proteínas asociadas a la membrana se agrupan en microdominios de membrana en la membrana limitante del endosoma multivesicular (MVE).

2. Estos microdominios participan en el reclutamiento de componentes solubles, tales como proteínas citosólicas y especies de RNA, que están destinadas a ser seleccionadas para su internalización en EVs.

3. En conjunto, la formación de estos microdominios agrupados junto con maquinarias adicionales promueve la gemación de la membrana seguida de un proceso de fisión en la membrana limitante del MVE hacia el lumen del MVE.

4. En este punto de la vía, la carga molecular está compuesta por proteínas de la superficie celular "recicladas", proteínas derivadas del citoplasma y ácidos nucleicos como el RNA.

5. Los mecanismos de biogénesis de los exosomas se conocen ampliamente y en este proceso participan principalmente subunidades del complejo de clasificación endosómica necesaria para el transporte (ESCRT), aunque en diferentes grados. Por ejemplo, se requiere ESCRT-III para la escisión de las vesículas intraluminales (ILV) en el lumen de los MVE. Mientras tanto, la selección de carga y la gemación de membranas pueden ocurrir mediante mecanismos dependientes o independientes de ESCRT. Por ejemplo; las proteínas *de novo* del complejo retículo endoplásmico-Golgi pueden clasificarse selectivamente en estas vesículas a través de dos mecanismos distintos: la maquinaria ESCRT (en particular con la participación de los complejos proteicos TSG101/Vps23 y/o AIP1/Alix/Vps31) [132]; o por una vía dependiente de tetraspaninas/ceramidas [133].

6. Acoplamiento y fusión de MVB a la membrana plasmática. Estos procesos están regulados por las proteínas SNARE, SNAP y Rab. El acoplamiento de los MVB a la membrana plasmática está orquestado por exofilina, moléculas efectoras Rab27b y Rab27 y sinaptotagmina 4 [131, 134]. Simultáneamente, la fusión con la membrana plasmática y la liberación de exosomas está regulada por la proteína R-SNARE YKT6, la proteína v-SNARE VAMP7/TIVAMP, Rab11, Rab31 y Rab27a (con doble función tanto en acoplamiento como en la fusión) [131, 134].

Exosomas en el embarazo

En el embarazo existe una comunicación, para la regulación e intercambio de nutrientes, entre la madre y la unidad feto-placentaria. Esto es necesario para asegurar un desarrollo fetal adecuado y mantener la homeostasis metabólica, tanto en la madre como en la placenta y el feto. Uno de los mecanismos propuestos para lograrlo es a través de EVs, particularmente por la acción de los exosomas [12]. Se ha propuesto que estos exosomas (ya sean fetales, placentarios y/o exosomas derivados de los órganos y tejidos maternos) pueden modular y/o causar adaptaciones fisiológicas maternas normales o enfermedades relacionadas con el embarazo [12, 135]. Estos exosomas pueden identificarse mediante sus biomarcadores clásicos, como se mencionó anteriormente. Sin embargo, los exosomas derivados de la placenta se pueden diferenciar de otras poblaciones de exosomas, por la presencia de proteínas específicas de la placenta (como la fosfatasa alcalina placentaria (PLAP)) y/o miRNAs exosomales derivados de la placenta (los tres grupos principales: la

familia de miRNAs del cluster del cromosoma 14 (C14MC), la familia de miRNAs del cluster del cromosoma 19 (C19MC) y la familia de miRNAs del grupo miR-371-3) [136-138].

Figura 5. Biogénesis de exosomas. La formación de exosomas comienza con interacciones sintetina-sindecan que requieren interacción directa entre las proteínas ALIX y CHMP4. La participación de proteínas que componen el sistema ESCRT: Tsg101 (ESCRT-1) y Vps22 (ESCRT-II) también es importante para la biogénesis de exosomas. Este proceso está regulado por la enzima heparanasa, la cual escinde el sindecan heparán sulfato, mientras que la GT'Pasa Arf6 regula la vía de biogénesis dependiente de sintetina. La interacción de Arf6 y PLD2 afecta la formación de exosomas controlando la gemación de vesículas intraluminales (ILVs) dentro de los cuerpos multivesiculaes (MVBs). Este proceso se encuentra regulado por las proteínas Tsg101 y proteínas Hrs. Asimismo, el incremento en la expresión de la proteína lsg15 inhibe la ubiquitinización de Tsg101, regulando negativamente la formación de MVBs. Dentro de los MVBs, la proteína TSAP6 regula positivamente la síntesis de vesículas pequeñas. La biogénesis de exosomas también ocurre a través de dos vías independiente del sistema de proteínas ESCRT: la vía de las tetraspaninas y la vía de las ceramidas. En la vía de las ceramidas, favoreciendo la gemación de ILVs para posteriormente ser incorporadas dentro de los MVBs. En la via dependiente de tetraspaninas, la tetraspanina CD63 es crucial para formar complejos vesícula-tetraspanina que favorecen la formación de exosomas dependiente de calcio. Las proteínas SNARE y sintaxina-5 permiten el anclaje y la fusión de los MVBs para la secreción de exosomas al espacio extracelular. Figura modificada de Aheget et al [139].

Estos tres subtipos de exosomas (embrionarios, placentarios y maternos) presentes en la circulación materna son potenciales indicadores para comprender y proporcionar un panorama amplio sobre el desarrollo y crecimiento fetal, la función placentaria y las adaptaciones fisiológicas maternas que conllevan a un embarazo normoevolutivo. Por lo tanto, la cuantificación y caracterización de los exosomas placentarios en la circulación materna podría usarse como un indicador de la función placentaria y el crecimiento fetal, como se ha demostrado en un estudio donde estos subtipos de exosomas relacionados con el embarazo podrían ayudar a monitorear el crecimiento fetal en estados de restricción del crecimiento intrauterino [16]. Además, se ha demostrado que los exosomas de origen fetal que cruzan a la circulación materna pueden funcionar para regular las señales a los órganos maternos con el fin de establecer un entorno adecuado para un embarazo y parto normoevolutivo [12, 140]. Estudios en modelos animales han demostrado que los exosomas fetales tienen la capacidad de viajar desde la placenta a la circulación materna para interactuar y liberar su contenido en las células del cuello uterino y el útero (decidua y miometrio); estimulando el parto mediante la liberación de su contenido: proteínas secretoras asociadas a la senescencia (SASPs por sus siglas en inglés) y proteínas de patrón molecular asociadas al daño (DAMPs por sus siglas en inglés) que aumentan la inflamación que desencadenan la transición de estas células inactivas a un estado de trabajo de parto [12, 140]. Se ha planteado la hipótesis de que, en estados de parto prematuro, el contenido de estos exosomas de origen fetal podría servir como un biomarcador potencial de trabajo de parto inminente y ayudar a estudiar la fisiopatología de esta enfermedad.

Además de los exosomas de origen fetal, los exosomas de origen materno también son importantes durante el embarazo, especialmente durante las primeras etapas antes de la implantación [141]. Esta comunicación celular mediada por exosomas se establece incluso antes de la implantación; y consiste principalmente en una comunicación intercelular entre el embrión (en una fase de preimplantación) y el endometrio materno [141]. En el proceso de implantación embrionaria en el endometrio, para garantizar una implantación exitosa, se requieren de interacciones sinérgicas entre el endometrio y el blastocisto dentro de la cavidad uterina. Los exosomas liberados por las células endometrio-epiteliales juegan un papel importante en este evento. Un estudio proteómico de estos exosomas derivados del endometrio-epitelial reveló que la liberación de estos EV está influenciada por el estado hormonal del ciclo menstrual y el estado del embarazo e identificó proteínas relacionadas con adaptaciones críticas durante la implantación, tales como: remodelación de la matriz extracelular, migración, invasión y adherencia [141]. Este estudio también demostró la internalización de estos exosomas por células de trofoblasto humano *in vitro* y la mejora de la capacidad adhesiva de estas células (respuesta parcialmente mediada por la señalización de la cinasa de adhesión focal activa (FAK) [141].

Dado que estos exosomas pueden secretarse en el espacio extracelular, tienen el potencial de regular y mediar la fisiología materna y fetoplacentaria a través de varios mecanismos de señalización, como: 1) señalización paracrina al interactuar y actuar sobre una célula objetivo receptora vecina [114], 2) señalización endocrina a través de la barrera endotelial para llegar a las

células diana de diversos órganos [142] y/o 3) señalización autocrina, que actúa sobre la célula de origen [113].

miRNAs exosomales y diabetes mellitus gestacional

La presencia de DMG está asociada con mayores niveles de secreción de exosomas en la circulación materna. Se ha demostrado que los exosomas placentarios de embarazos con DMG disminuyen la captación de glucosa y la migración celular estimulada por la insulina *in vitro* en células del músculo esquelético de pacientes normoglucémicos e hiperglucémicos [10] (**Figura 6**).

Figura 6. Exosomas provenientes de embarazos con DMG disminuyen la migración celular y captación de glucosa mediada por insulina. A) se observa que los exosomas provenientes de embarazos con DMG disminuyen la migración celular en condiciones basales y con estímulo de insulina *in vitro* en cultivo primario de biopsias de músculo esquelético de mujeres con normoglicemia (barra blanca) y con diabetes tipo 2 (barra negra). B) se observa el efecto de los exosomas para disminuir la captación de glucosa en condiciones basales y con estímulo e insulina *in vitro* en cultivo primario de biopsias de músculo esquelético de mujeres con normoglicemia (barra blanca) y con diabetes tipo 2 (barra negra). B) se observa el efecto de los exosomas para disminuir la captación de glucosa en condiciones basales y con estímulo e insulina *in vitro* en cultivo primario de biopsias de músculo esquelético de mujeres con normoglicemia (barra blanca) y con diabetes mellitus tipo 2 (barra negra). Gráficas obtenidas del estudio realizado por Nair et al 2018 [10].

Además, un estudio observó que, en pacientes con DMG, existe un incremento significativamente marcado en la liberación de exosomas de las células trofoblásticas del primer trimestre correlacionado con los niveles de concentración de glucosa [143]; demostrando así que la glucosa es efectivamente un factor importante que regula la liberación de estos exosomas. Este estudio también demostró que, junto con una mayor liberación de exosomas mediada por los niveles de glucemia; la glucosa también aumenta la bioactividad de los exosomas. Un estudio realizado en células trofoblásticas en etapas tempranas de la gestación que expusieron *in vitro* a un entorno con alto contenido de glucosa, demostró que la capacidad de estos exosomas derivados de trofoblastos, para inducir la liberación de citocinas de las células HUVEC, aumenta 3 veces en comparación con aquellos que estuvieron expuestos a un entorno normoglucémico, demostrando que los exosomas de embarazos con DMG son capaces de inducir la liberación de citocinas [143].

Si bien los mecanismos relacionados con la fisiopatología de la DMG siguen sin elucidarse por completo, diversos estudios han propuesto que el contenido presente en los exosomas podría ser

parte importante de los mecanismos subyacentes a esta enfermedad. Se ha sugerido que los RNA no codificantes [microRNA (miRNA), RNA circular (circRNA) y RNA largo no codificante (lncRNA)] presentes dentro de exosomas podrían estar involucrados en la patogénesis y fisiopatología de la DMG; desempeñando principalmente un papel regulador cuando estas vesículas son internalizadas por sus células diana [11, 20, 27].

Aunque los exosomas contienen una amplia variedad de moléculas (metabolitos, proteínas, DNA, lípidos, RNA), la mayoría de los estudios asociados con el desarrollo de diabetes gestacional se centran en los miRNAs exosomales. Los miRNAs forman parte de la familia de RNAs no codificantes cuya principal función es regulatoria [20]. Estos se encargan de la regulación de aproximadamente 60% de los genes y se estima que un sólo miRNA es capaz de regular hasta 200 mRNAs, lo cual representa su importancia para la expresión génica y una desregulación de la expresión de estos miRNAs está asociada al desarrollo de enfermedades metabólicas, así como enfermedades metabólicas desarrolladas durante la gestación, como la DMG [144].

Hasta la fecha, únicamente cuatro estudios han caracterizado los perfiles de miRNAs exosomales en mujeres con DMG (Tabla 9). En un estudio realizado en 2018 realizado por Nair et al., (Tabla 9) en el que se aislaron explantes de vellosidades coriónicas y exosomas plasmáticos; se identificó un conjunto de miRNAs sobre expresados en pacientes con diabetes mellitus gestacional y su asociación con la regulación de la funcionalidad del músculo esquelético [10]. Este conjunto de miRNAs se asoció con vías que regulan el metabolismo de los hidratos de carbono y la migración celular. Además, los exosomas placentarios que se aislaron de mujeres con diagnóstico de DMG, alteraron la sensibilidad a la insulina y redujeron la absorción de glucosa en células primarias del músculo esquelético obtenidas tanto de pacientes con sensibilidad normal a la insulina como de DT2. Este estudio también demostró que los exosomas placentarios aislados de mujeres embarazadas con tolerancia normal a la glucosa incrementan la sensibilidad y la captación de glucosa en respuesta al estímulo de insulina en biopsias de músculo esquelético obtenidas de pacientes con DT2. Este estudio demuestra que los exosomas secretados en embarazos con DMG así como en embarazos normales son capaces de modificar e influir en los tejidos sensibles a la insulina, como el músculo esquelético. Además, estos hallazgos sugieren que los miRNAs provenientes principalmente de exosomas placentarios actúan potencialmente como un nuevo mecanismo que regula la sensibilidad a la insulina en el músculo esquelético en embarazos que cursan con DMG.

Otro estudio realizado en 2019 realizado por Gillet et al., (**Tabla 9**) que incluyó mujeres que fueron evaluadas en las primeras etapas del embarazo y luego fueron diagnosticadas con diabetes mellitus gestacional; evaluó el perfil de expresión miRNAs específicos de exosomas en suero [28]. Este estudio evaluó 17 miRNAs previamente asociados a exosomas y correlacionados con la regulación de la función placentaria (principalmente miRNAs del cluster de cromosomas 14 y 19) e identificó un conjunto de diez miRNAs sobre-expresados en las primeras etapas del embarazo en aquellas mujeres que luego desarrollarán DMG. Estos miRNAs identificados están implicados
principalmente en la diferenciación y proliferación del trofoblasto; transporte de glucosa en los tejidos placentarios, así como también en la secreción de insulina.

El único estudio que ha descrito el perfil de miRNAs exosomales en orina se realizó en 2020 por Herrera-Van Dostdam et al., en población mexicana evaluando los tres trimestres del embarazo [145]. Este estudio aisló exosomas placentarios urinarios de mujeres embarazadas y evaluó la expresión de un conjunto de miRNAs asociados a la placenta (con la mayoría de miRNAs evaluados pertenecientes al cluster de miRNAs del cromosoma 19; comúnmente denominados "trofomiRs"). Al evaluar la expresión de estos trofomiRs (miR516-5p, miR-517-3p y miR-518-5p) del grupo que desarrolla DMG, se observó un incrementó a lo largo del primer y segundo trimestre del embarazo y a medida que avanzaba el estado de gestación, es decir, en el tercer trimestre de embarazo, los niveles de expresión de estos miRNAs disminuyeron en comparación con el grupo controles. El estudio y la evaluación de los trofomiRs (especies únicas de miRNAs derivados de la placenta que se conservan en primates y tienen funciones placentarias reguladoras especializadas) son cruciales en el embarazo humano debido a su importante papel en la fisiología y función de la placenta para mantener un embarazo saludable. Dado que estos trofomiRs son secretados principalmente por células del sincitiotrofoblasto, han sido propuestos como reguladores clave de funciones placentarias, tales como: la secreción hormonal esencial para el desarrollo fetal, el intercambio de gases (oxígeno y CO₂) materno-fetal, el suministro de nutrientes al feto en crecimiento, la barrera inmunológica y la protección del feto, y la eliminación de productos de desecho [146]. Estos trofomiRs comprenden un vasto grupo de miRNAs expresados diferencialmente en la placenta frente a otros tejidos como: el cluster de miRNAs del cromosoma 19 (C19MC), el cluster de miRNAs del cromosoma 14 (C14MC), miR-141, miR-23a y miR-136 [136, 137, 146, 147].

El estudio más reciente sobre el perfil de miRNA exosomal en la DMG se realizó en 2021 por Nair et al [27]; evaluando los perfiles de miRNAs asociados a sEV durante los tres trimestres la gestación. Este estudio identificó 2822 miRNAs; de los cuales, 563 miRNAs mostraron significativamente un cambio durante el embarazo dependiendo del trimestre y 101 miRNAs se expresaron diferencialmente entre los estados de diabetes gestacional frente a los embarazos normales. Utilizando análisis de modelos predictivos, se identificó a un conjunto de nueve miRNAs por su capacidad para diferenciar a las mujeres embarazadas en las primeras etapas del embarazo que desarrollarán DMG entre las semanas 24 y 28 de gestación (**Tabla 9, Figura 7**). Además, utilizando datos de la expresión de miRNAs a lo largo de la gestación tanto en estado patológico como en embarazos normales; se identificaron tres principales procesos biológicos regulados por exosomas: 1) regulación de la respuesta celular al estímulo de la insulina, 2) regulación de la vía de señalización del receptor de insulina y 3) homeostasis de la glucosa. También se identificaron tres funciones moleculares reguladas por estos miRNAs: 1) unión a proteína, 2) unión al sustrato del receptor de insulina (ISR) y 3) unión al receptor del IGF.

Figura 7. miRNAs exosomales expresados diferencialmente en embarazos que cursan con diabetes mellitus gestacional a lo largo de la gestación. Se muestran los nueve miRNAs exosomales identificados que se expresan diferencialmente en embarazos con diabetes mellitus gestacional a lo largo de la gestación (primer, segundo y tercer trimestre del embarazo). En las gráficas de barras se muestra la expresión longitudinal del miRNA identificado mientras que en las gráficas de líneas se observa la expresión del miRNA identificado normalizado con el miRNA constitutivo RNU6B empleando el método ΔCT. Grupo DMG= círculo negro y línea negra, grupo embarazo normoevolutivo= círculo blanco y línea gris. Gráficas obtenidas del estudio realizado por Nair et al 2021 [27].

Muestra	-Semanas de gestación (sdg) -Edad	Criterio diagnóstico de DMG	Tamaño de muestra	Etnia	miRNAs sobre-expresados	Método de identificación	Referencia
Exosomas provenientes de plasma y placenta	-37-40 sdg -18-40 años	75g OGTT ADIPS y OMS	12 mujeres con DMG 12 controles	Caucásica, Australiana, Asiática, Medio Oriente	miR-125a-3p, miR-99b-5p, miR-197-3p, miR-22-3p, miR- 27b-3p, miR-200a-3p, miR- 141-3p	qPCR	(Nair et al., 2018) [10]
Exosomas séricos	-6-15wog sdg -18-40 años	Prueba de dos pasos: 1. 50g carga de glucosa 2. 75g OGTT Sociedad de Obstetras y Ginecólogos de Canadá	23 mujeres con DMG 46 controles	Caucásica	miR-122-5p, miR-132-3p, miR- 1323, miR-136-5p, miR-182- 3p, miR-210-3p, miR-29a-3p, miR-29b-3p, miR-342-3p, miR- 520h	qPCR	(Gillet et al., 2019) [28]
Exosomas urinarios	Estudio prospectivo longitudinal (1°, 2° y 3° trimestre)	 75g OGTT Prueba de dos pasos: 1. 50g carga de glucosa 2. 75g OGTT 	27 mujeres con DMG 34 controles	Latinoamérica (México)	miR-16-5p, miR-222-3p, miR- 518a-3p, miR-516b-5p, miR- 517-5p (sobre-expresado hasta el 2° trimestre y posteriormente disminución en su expresión en el 3° trimestre)	qPCR	(Herrera-Van Oostdam et al., 2020) [145]
Exosomas plasmáticos	Estudio retrospectivo longitudinal (1°, 2° y 3° trimestre)	75g OGTT ADIPS y OMS	8 mujeres con DMG 14 controles	Asiática (China, Filipinas), Caucásica, Latinoamérica and Este Asiático (India-Pakistán)	hsa-let-7c-5p, hsa-miR-10a- 5p, hsa-miR-16-2-3p, hsa-miR- 16-5p, has-miR-92a-1-3p, hsa- miR-92b-3p, hsa-miR-151b, hsa-miR-423-5p, hsa-miR- 1919-5p	RNASeq	(Nair et al., 2021) [27]

Tabla 9. Estudios que evalúan asociación de miRNAs exosomales con el desarrollo de DMG

Planteamiento del problema

La adaptación metabólica materna es clave para el correcto crecimiento y desarrollo del feto. Para asegurar la homeostasis metabólica y fisiológica es esencial la comunicación materno-fetal. Recientemente, se ha demostrado que diversos tejidos incluida la placenta producen exosomas y vesículas extracelulares derivados de la membrana celular de las células del cincitiotrofoblasto, cuya principal función es permitir la comunicación intercelular.

La función y los efectos de los exosomas derivados de la placenta sobre el feto y la madre aún no se han dilucidado por completo. Se sabe por estudios in vitro que la biogénesis, liberación y contenido de los exosomas provenientes de placenta puede modificarse en respuesta a cambios en el entorno extracelular, como la hipoxia y las altas concentraciones de glucosa.

El perfil de miRNAs ha sido estudiado con diversas patologías metabólicas, incluida la DMG; sin embargo, poco se conoce sobre si este difiere en etapas tempranas de la gestación y si varía dependiendo de su origen (exosomas maternos o placentarios) tomando en cuenta el índice HOMA-%β.

Por lo que la pregunta de investigación es: ¿Existirá variación en el perfil de miRNAs de exosomas maternos y placentarios provenientes de gestación temprana de mujeres que desarrollan DMG con base en el índice HOMA-%β?

Justificación

En México, la DMG representa un problema de salud pública, con una alta incidencia (del 17-30% dependiendo del criterio de diagnóstico empleado) [148-150]. La DMG se asocia al desarrollo de diversas complicaciones tanto maternas como fetales tales como macrosomía fetal, preeclampsia y eclampsia en la madre, así como riesgo de desarrollar enfermedades metabólicas como diabetes tipo 2 e incremento de riesgo cardiovascular a largo plazo tanto en la madre como en el producto [1, 2].

Adicionalmente, las mujeres mexicanas presentan un mayor riesgo a desarrollar esta patología en comparación con otras poblaciones, debido a que poseen diversos factores de riesgo asociados al desarrollo de DMG. A continuación se enumeran algunos de estos factores de riesgo: 1) pertenecen a un grupo étnico de alto riesgo (SNPs en población mexicana con mayor susceptibilidad para desarrollar DMG [151]; 2) la presencia de obesidad pregestacional, en donde en México el 75.0% de las mujeres en edad reproductiva presentan sobrepeso u obesidad de acuerdo a los datos de la ENSANUT 2021 [151]; 3) tienen cuando menos un familiar en primer grado con diabetes tipo 2 (30.7% con un padre o madre con diabetes tipo 2 y 6% con ambos padres con diabetes, según los datos de la ENSANUT 2021 [151] y 4) antecedentes de embarazos previos con desarrollo de DMG.

Las EVs, en particular los exosomas, tienen un papel importante en la comunicación célula-célula y son importantes para la regulación de las adaptaciones del embarazo [11, 27, 93]. El estudio del perfil transcriptómico presente en estas sEV pequeñas representa una ventana para el estudio del

estado en que se encuentra un proceso celular en específico, ya sea evaluando estados de salud o de enfermedad [124]. Particularmente en el estudio de exosomas, evaluar el perfil de miRNAs presentes en dichas vesículas permite estudiar y entender el perfil de expresión y regulación génica tanto de las células de origen como de los potenciales blancos e identificar a las vías de señalización que se pudieran estar regulando en las células a las cuales se internalizan dichas vesículas [11, 80, 124, 152]

A la fecha se carecen de estudios que evalúen el perfil de miRNAs de los exosomas séricos en etapas tempranas de la gestación y si este tiene alguna asociación con base en el índice HOMA-%β. Es por esto por lo que es necesario evaluar y analizar el perfil de miRNAs exosomales de origen materno y placentario en las etapas tempranas de la gestación para lograr un mejor entendimiento de los procesos fisiológicos asociados en mujeres que desarrollarán DMG.

Hipótesis

El perfil de los miRNAs provenientes de exosomas maternos y placentarios obtenidos en etapas tempranas de la gestación de mujeres que desarrollarán DMG se ve influenciado con base en el índice HOMA-%β.

Objetivos

Objetivo general

Caracterizar el perfil de miRNAs de exosomas séricos (maternos y placentarios) presentes en etapas tempranas de la gestación (<18 semanas de gestación (sdg)) con base en el índice HOMA-%β de mujeres que desarrollarán diabetes gestacional.

Objetivos específicos

- 1. Obtener las características descriptivas de los subgrupos.
- Caracterizar los exosomas placentarios y maternos presentes en etapas tempranas de la gestación provenientes de suero de mujeres con DMG (DMG+) y sin desarrollo de DMG (DMG-) con base en el índice HOMA%β bajo y alto.
- Obtener el perfil de expresión diferencial de miRNAs presentes en exosomas placentarios y maternos en etapas tempranas de la gestación provenientes de mujeres DMG+ y DMGcon índice HOMA%β bajo y alto.
- 4. Identificar aquellos miRNAs maternos y placentarios y asociar sus mRNAs blancos con vías relacionadas al desarrollo de DMG con base en el índice HOMA%β.

Diseño experimental

Diagrama de flujo

Figura 8. Diseño experimental: diagrama de flujo

Figura 8. Diseño experimental empleado en el estudio. Diagrama de flujo del diseño experimental empleado en los cuatro subgrupos evaluados con base en el p50 del índice HOMA-%β (bajo y alto) y el diagnóstico (DMG y control). Imagen creada en BioRender.com

Diseño del estudio

Estudio retrospectivo cuantitativo, observacional, analítico, prospectivo parcial y descriptivo.

Para este estudio se emplearon las muestras de suero provenientes de mujeres embarazadas que cumplieron con los criterios de inclusión y exclusión en el estudio previo antes mencionado por nuestro grupo de investigación en el laboratorio, los cuales se enlistan en el apartado correspondiente a criterios de inclusión y exclusión [9]. El diagnóstico de estas mujeres embarazadas se realizó de acuerdo con los criterios diagnósticos establecidos por la Asociación Internacional de Grupos de Estudio para la Diabetes (IADPSG) [80].

Universo del estudio

Mujeres embarazadas mexicanas clínicamente sanas con edad gestacional menor a 18 semanas de gestación, que cumplan con los criterios de inclusión y que asistan a la institución de salud participante (Centros de Salud de Primer Nivel pertenecientes a la jurisdicción sanitaria Tlalpan y Gustavo A Madero de la Secretaría de Salud de la Ciudad de México).

Critorios	Caractorísticas
Criterios	Calacteristicas
Inclusión	 -Mujeres embarazadas clínicamente sanas mayores de 18 años y menores de 35 años, que vivan dentro del área metropolitana y conurbada de la Ciudad de México sin importar el número de gestas previas, antecedentes heredofamiliares de primer grado y antecedente de DMG en embarazo(s) previos. -Mujeres embarazadas con producto único vivo que acepten seguir el control prenatal en la institución de salud participante. -Mujeres con edad gestacional menor a 18 semanas, confirmada mediante ultrasonido. -Que acepten participar libremente en el estudio mediante la previa firma del consentimiento informado.
Exclusión	-Mujeres que cursen con alguna patología subyacente al embarazo, que requiera tratamiento médico, tales como: diabetes mellitus, hipertensión arterial sistémica, dislipidemia, síndrome de ovario poliquístico, enfermedades autoinmunes, tiroideas, renales, neurológicas, virales activas (VIH, TORCH), VDRL positivo y cáncer. -Mujeres embarazadas con hábito activo de tabaquismo, alcoholismo y/o toxicomanías.

Criterios de inclusión y exclusión

Tamaño de muestra

Las mujeres embarazadas pertenecientes a la cohorte [9], se dividieron de acuerdo con su diagnóstico positivo de DMG y las que no desarrollaron esta patología. A su vez, cada grupo se subdividió de acuerdo con el índice HOMA-% β bajo (inferior a la mediana, correspondiente a los valores inferiores al percentil 50 (<p50)) e índice HOMA-% β alto (superior a la mediana, correspondiente a los valores superiores al percentil 50 (<p50)). Para cada grupo se calculó un tamaño de muestra de 5 y se realizó una selección aleatoria de las participantes de la cohorte de acuerdo con el índice HOMA-% β que corresponda. Se recolectaron 5 muestras de suero de mujeres embarazadas para realizar un pool por grupo de estudio. En cada estudio se realizaron triplicados.

Variables

A continuación, se enlistan y describen las variables utilizadas en el estudio:

Tabla 10. Variables del protocolo de investigación

Variable	Тіро	Definición Operacional	Escala de Medición	Calificación
Edad materna	Control	Edad en años cumplidos de la participante.	Cuantitativa discreta	años
Peso actual	Control	Peso reportado en la primera visita.	Cuantitativa continua	kg
Talla	Control	Talla reportada en la primera visita.	Cuantitativa continua	m
IMC	Control	Relación entre el peso / (talla)^2 en la primera visita.	Cuantitativa continua	kg/m ²
Edad gestacional 1ª visita	Independiente	Semanas de gestación por fecha de última menstruación confirmada por ultrasonido en la primera visita.	Cuantitativa continua	semanas
Glucosa	Independiente	Concentración de glucosa sérica determinada mediante química sanguínea.	Cuantitativa continua	mmol/L
β-hidroxibutirato	Independiente	Concentración de β -hidroxibutirato sérica determinada mediante colorimetría.	Cuantitativa continua	mM/L
Insulina	Independiente	Concentración de insulina sérica determinada mediante ensayo por inmunoabsorción ligado a enzimas (ELISA).	Cuantitativa continua	mmol/L
HOMA-IR	Independiente	Índice de resistencia a la insulina empleando las concentraciones de glucosa e insulina en ayuno.	Cuantitativa continua	Unidades con decimales
ΗΟΜΑ-%β	Independiente	Índice para estimar la función de la célula beta pancreática en función de las concentraciones de insulina y glucosa en ayuno.	Cuantitativa continua	Unidades con decimales
Diabetes gestacional	Dependiente	Diagnóstico de diabetes gestacional según los criterios que establece la IADPSG	Cualitativa dicotómica	Positivo / Negativo
Exosomas maternos	Independiente	Vesículas extracelulares pequeñas caracterizadas con base en los criterios propuestos por las guías MISEV2018 presentes en el sobrenadante de los exosomas placentarios seleccionados por inmunoprecipitación	Cualitativa dicotómica	Presente / Ausente
Exosomas placentarios	Independiente	Vesículas extracelulares pequeñas caracterizadas con base en los criterios propuestos por las guías MISEV2018 seleccionados por inmunoprecipitación	Cualitativa	Presente / Ausente
miRNAs exosomales	Independiente	Fold-change en la expresión de miRNAs exosomales obtenidos por microarreglo	Cuantitativa continua	Fold-Change

Primera visita

Se realizó antes de las 18 semanas de gestación. En esta visita se recolectó la siguiente información:

- Edad materna
- Edad gestacional
- Medidas antropométricas: peso, talla y cálculo de IMC

Se recolectó una muestra de sangre venosa (5 mL) en ayuno, en tubos con BD Vacutainer con activador de coagulación (tapón rojo).

Segunda visita

Se realizó entre las 24 a 28 semanas de gestación. En esta visita se realizó lo siguiente:

- Medidas antropométricas: peso, talla y cálculo de IMC.
- Edad gestacional
- Prueba estándar de referencia diagnóstica según lo establece la IADPSG [80]

Métodos

Historia clínica: Se elaboró la historia clínica ginecológica según lo establece la NOM-004-SSA3-2012, Del expediente clínico en su apartado 6.1 Historia Clínica, 6.1.1 Interrogatorio, 6.1.2 Exploración física y 6.1.3 Diagnósticos o problemas clínicos [153].

Edad gestacional: Se define como el periodo transcurrido desde el primer día de la última menstruación normal en una mujer con ciclos menstruales regulares, sin uso de anticonceptivos hormonales; con fecha de última menstruación confiable, hasta el nacimiento o hasta el evento gestacional en estudio. Se expresa en semanas y días completos [154].

Medidas antropométricas:

- <u>Peso:</u> Se colocó a la participante embarazada en el centro de la báscula (marca SECA) con ropa ligera, sin calzado, con los talones juntos y las puntas ligeramente separadas, se le pidió a la participante que se mantuviera erguida con la mirada al frente y los brazos colgados paralelos al eje del cuerpo. El peso se registró en kilogramos.
- <u>*Talla:*</u> Se indicó a la participante embarazada que se colocara erguida, descalza y con los talones juntos empleando un estadímetro (marca SECA). La talla se registró en metros.
- <u>Cálculo del índice de masa corporal (IMC)</u>: Se obtuvo por medio de la fórmula de Quetelet (cociente entre el peso en kilogramos entre la estatura en metros al cuadrado). Se empleó la clasificación propuesta por la Organización Mundial de la Salud para la población adulta.

Prueba estándar de referencia diagnóstica (curva de tolerancia oral a la glucosa con carga de <u>75g de glucosa):</u> se realizó según lo establece IADPSG [80], la cual consistió en:

- 1. La participante acudió a la visita en estado de ayuno (no haber consumido ningún tipo de alimento o bebida) de mínimo 8 h y máximo de 12 h.
- Se realizó toma de muestra de sangre venosa en ayuno del antebrazo en donde se extrajeron aproximadamente 5ml de sangre. Posteriormente, la participante ingirió una solución con una carga de glucosa de 75g (DEXTROSOL PTGO, 250ml Solución glucosada sabor natural 75g de glucosa).
- Después del consumo de la solución, se realizaron dos tomas de muestra de sangre venosa del antebrazo con un intervalo de 60 min entre cada toma hasta completar 120 min. Cada muestra de sangre fue de aproximadamente 5ml.
- 4. El diagnóstico de DMG se estableció según los criterios mencionados por IADPSG [80].

<u>Obtención de suero</u>: Se centrifugaron los tubos BD Vacutainer (tapón rojo) con activador de coagulación a 1,500xg por 10 min para la obtención de suero, el cual fue almacenado en alícuotas de 500 μ l en un ultracongelador a -70°C, hasta la realización de los análisis de química sanguínea, determinación de β -hidroxibutirato, insulina y aislamiento de exosomas.

<u>Química sanguínea</u>: Las concentraciones séricas de glucosa, triacilglicéridos y colesterol total fueron determinadas mediante autoanalizador Miura 200 y los kits Diagnostics Systems, DyaSys.

<u>Determinación de 6-hidroxibutirato</u>: la concentración sérica de β -hidroxibutirato fue determinada mediante la técnica de colorimetría mediante el uso del kit EnzyChrom Ketone Body Assay Kit.

Determinación de insulina: la concentración sérica de insulina fue determinada mediante la técnica de ensayo por inmunoabsorción ligado a enzimas (ELISA) empleando el kit Human Insulin EZH1-14K/EZHI-14BK, Merck Milipore.

<u>Cálculo de índice HOMA-IR y HOMA-%6</u>: el modelo de evaluación homeostático (HOMA por sus siglas en inglés) es un método para la evaluación y estimación de la función de la célula β -pancreática (HOMA-% β) y la resistencia a la insulina (HOMA-IR por sus siglas en inglés) obtenido a través de las concentraciones en ayuno de glucosa e insulina. Los cálculos del índice HOMA-IR y el cálculo del índice HOMA-% β se realizaron con base en la fórmula del modelo computacional HOMA-2 Calculator propuesta por The University of Oxford Diabetes Trials Unit (Universidad de Oxford, https://www.dtu.ox.ac.uk/homacalculator/download.php). (Referirse a la sección Diabetes mellitus gestacional: índice HOMA-% β de la presente tesis, páginas 16-17).

Aislamiento de exosomas:

El aislamiento de exosomas en suero se realizó empleando el kit exoRNeasy Midi Kit (Qiagen cat#77144). Para lo cual los sueros fueron filtrados empleando un filtro de 0.20 μ m y posteriormente mezclados con el buffer de unión (XBP). La mezcla se transfirió a las columnas de afinidad exoEasy y se centrifugaron a 500 x g por 1 min. Posteriormente se añadieron 3.5ml del buffer de lavado (XWP) a la columna de afinidad y se centrifugó a 5,000 x g por 5 min. La columna se transfirió a un tubo colector y se añadieron 500 μ l de buffer de elusión (XE) dejando incubar por 5 min a temperatura ambiente. Finalmente, se centrifugaron las columnas a 500 x g por 1 min y se recolectó la elusión de exosomas totales.

Caracterización de los exosomas por análisis de rastreo de nanopartículas (NTA):

Una vez extraídos los exosomas se suspendieron en solución PBS para determinar su morfología, tamaño y concentración por medio de dispersión de luz dinámica, empleando el equipo NanoSight NS300 (NTA). La técnica de NTA provee una visualización, estimación del tamaño y concentración de las EVs en tiempo real; el equipo tiene un rango de detección de tamaño promedio entre 10 a 1000 nm de partículas en suspensión [155, 156]. El fundamento de dicha técnica se basa en la caracterización de cada partícula analizada individualmente; relacionando su grado de movimiento de acuerdo con su movimiento Browniano y a su rango hidrodinámico, lo cual proporciona una medición exacta de su tamaño y distribución [155, 156]. Las partículas en la muestra a analizar se

iluminan con un láser, el cual varía entre 635, 535 o 404nm y la dispersión de luz y el movimiento que genera cada partícula es detectada con una cámara CCD, en donde el software del equipo rastrea cada partícula determinando su coeficiente de difusión de su movimiento Browniano [155, 156]. Para el caso del empleo de NTA, el cálculo del tamaño de cada partícula se obtiene empleando la ecuación Stokes-Einstein [159,160]; en donde el tamaño de partícula se calcula como el camino promedio al cuadrado en dos dimensiones (x, y), tomando en cuenta parámetros como la constante de Boltzmann (K_B) , la temperatura absoluta (T), el tiempo de medición (t), la viscosidad (η) y el diámetro hidrodinámico (d_h) . La ecuación de Stokes-Einstein que se emplea en NTA es la siguiente:

$$\frac{(x,y)}{4} = Dt = \frac{K_B T}{3\pi\eta d_h}$$

Inmunoprecipitación de exosomas PLAP+:

Los exosomas derivados de placenta fueron enriquecidos de la población de exosomas totales basados en su expresión de la enzima fosfatasa placentaria alcalina (PLAP+) de acuerdo con el protocolo propuesto por Lai et al [157]. Se emplearon anticuerpos anti-PLAP conjugados con perlas de proteína A-agarosa (SC-271431AC). Las perlas conjugadas con el anticuerpo se incubaron con las muestras de exosomas séricos durante toda la noche a 4°C. Posterior a la incubación las muestras fueron centrifugadas a 13,000 rpm por 1 min a 4°C y el sobrenadante de cada tubo fue almacenado obteniendo así exosomas maternos (no derivado de tejido placentario). Los exosomas PLAP+ unidos a las perlas fueron eluídos mediante la adición de una solución de glicina-ácido clorhídrico. El enriquecimiento tanto de exosomas totales como de PLAP+ fue validado mediante la técnica de Western Blot, empleando anticuerpos anti CD63+ (para exosomas maternas) y PLAP+ (para exosomas de origen placentario).

Western Blot:

Los exosomas maternos y los placentarios fueron homogenizados en buffer de lisis (PBS 1X, NP-40 al 1%, deoxicolato de sodio al 0.5%, SDS al 0.1% y azida de sodio al 0.006%) y una mezcla de inhibidores de proteasas (Complete, Roche). Para la determinación de CD63, PLAP y TSG101 se colocaron 40 µg de proteína en un gel SDS-PAGE al 12%. El gel se sometió a una electroforesis de 70 V por 30 min y posteriormente a 100 V por 150 min. Las proteínas se electrotransfirieron (100 V por 120 min) a una membrana de PVDF, que posteriormente se colocó en solución de bloqueo (TBS [10 mmol/l Tris, 0.25 mol/l NaCl, pH 7.6], 0.1% de albúmina y 0.1% Tween 20) durante 1 h a temperatura ambiente. Una vez bloqueada la membrana se incubó durante 16 h a 4 °C con los anticuerpos primarios policionales para la detección de CD63 (ab134045), PLAP (ab133602) y TSG101 (ab125011) empleando las siguientes diluciones: 1:1000, 1: 30,000 y 1:1000, respectivamente. Posteriormente, las membranas se lavaron y se incubaron durante 1 h a temperatura ambiente con una dilución 1:3500 de un anticuerpo secundario anti-rabbit. Después de revelarse con luminol, se procedió a la cuantificación de las bandas obtenidas utilizando el programa Image J (NCBI).

Identificación de los miRNAs presentes en los exosomas DMG- y DMG+:

Una vez aislados y caracterizados los exosomas maternos y placentarios, se realizó la identificación de los miRNAs presentes en los exosomas DMG- (con índice HOMA-%β alto y bajo), DMG+ (con índice HOMA-%β alto y bajo). Para esta identificación se aisló el RNA total de estos exosomas empleando el kit exoRNeasy Midi Kit (Qiagen cat#77144). La concentración del RNA se cuantificó mediante espectrofotometría empleando el equipo Nanodrop 2000. Posteriormente, el RNA se hibridó empleando el chip de microarreglo GeneChip miRNA 4.0 Array (Applied Biosystems, cat#902412) para determinación de los miRNAs por cada subgrupo.

Análisis bioinformático de miRNAs:

La expresión diferencial de los perfiles de miRNAs exosomales (maternos y placentarios) entre los subgrupos de estudio, se realizó utilizando el software Affymetrix Transcriptome Analysis Console (TAC) versión 4.0.1 (Affymetrix, Applied Biosystems). Brevemente, los datos sin procesar obtenidos del escáner Affymetrix GeneChip se pre-procesaron (normalización, control de calidad y análisis estadístico) utilizando la consola de expresión Affymetrix. Los archivos resultantes se analizaron para identificar los miRNAs expresados diferencialmente (DEmiRNAs) entre los subgrupos. Posteriormente los DEmiRNA se identificaron utilizando la versión 4.01 del software Affymetrix Transcriptome Analysis Console (TAC) (Affymetrix, Applied Biosystems) de acuerdo con los parámetros estándar del software. Los resultados se procesaron previamente con parámetros RMA+DABG-NONORM-Human-only. Para este propósito se utilizaron la prueba t de Student, las correcciones de pruebas múltiples y la predicción de la tasa de descubrimiento falso (false-discovery rate). Aquellos genes con un valor de p < 0.05 y que mostraron al menos una diferencia de 2 veces entre el grupo control y los subgrupos de contraste se consideraron estadísticamente significativos y expresados diferencialmente. Los datos del microarreglo se depositaron en la base de datos *Gene Expression Omnibus* (GEO) con el número de acceso GSE243374.

Una vez que se identificaron los DEmiRNA para cada subgrupo, la predicción de los genes blanco para cada DEmiRNA identificado se realizó utilizando la base de datos TargetScanHuman 8.0 [158]. La puntuación de contexto ponderada acumulada (CWCS por sus siglas en inglés, cumulative weighted context score) de TargetScanHuman de -0.7 o inferior se utilizó como punto de corte para cada miRNA. Cada CWCS indica que un microRNA reprime un determinado blanco de mRNA en al menos un 38%, en comparación con el nivel inicial normal. Una vez que se identificaron los genes diana, el análisis de los datos de expresión génica se realizó utilizando la plataforma ExpressAnalyst (//www.expressanalyst.ca). Se generaron redes de enriquecimiento global funcional y estadística de expresión génica, utilizando la base de datos de la Enciclopedia de Genes y Genomas de Kyoto (KEGG) para cada condición de comparación entre los subgrupos de control y de contraste. Los análisis de la vía humana de KEGG 2021 se realizaron utilizando la plataforma Enrichr (https://maayanlab.cloud/Enrichr/) [159].

Análisis estadístico:

Para determinar la normalidad de las variables se emplea previamente la prueba estadística de Kolmogorov-Smirnov. En el análisis descriptivo las variables cuantitativas continuas se expresan como promedios y desviaciones estándar (paramétricas) o como medianas y percentiles 25 y 75 (no paramétricas), dependiendo de su curva de distribución. Para presentar las variables dicotómicas se utilizan frecuencias y porcentajes. Se realizaron pruebas t de student o U de Mann Whitney para muestras independientes según el caso. Se realizaron pruebas de ANOVA de una vía con prueba de Tukey-Kramer post-hoc o prueba de Kruskal-Wallis según el caso. Para los análisis de correlación se realizaro la correlación de Pearson de dos colas o la correlación de Spearman según el caso. En todos los análisis estadísticos se asumio una significancia estadística si el valor de probabilidad es < 0.05.

Aspectos éticos

Este trabajo mantuvo un apego estricto con el "Reglamento de la Ley General de la Salud en Materia de Investigación para la Salud" [160], la Declaración de Helsinki [161] y los lineamientos reportados por el Consejo de Organizaciones Internacionales de las Ciencias Médicas (CIOMS) [162].

Los aspectos éticos de la investigación en seres humanos dispuestos en el Título Segundo del "Reglamento de la Ley General de la Salud en Materia de Investigación para la Salud", permitieron clasificar a este proyecto como de riesgo mínimo para los sujetos de investigación, como se detalla en el artículo 17 índice II del Capítulo I. Así mismo, los datos clínicos, bioquímicos y antropométricos por recabar de las participantes embarazadas también recaen en esta disposición del Capítulo IV en los artículos 42 al 56 del mismo reglamento [160].

Las mujeres embarazadas participantes fueron informadas de manera verbal de los procedimientos y beneficios por obtener en este proyecto de investigación antes de su participación y consentimiento, para el cual firmaron una "Carta de Consentimiento Informado" (**ver Anexo I**) al momento de su aceptación de participación en el protocolo. Se empleó un lenguaje claro y conciso con las participantes para la colecta de datos durante la participación de la participante. Los investigadores no tuvieron autoridad para decidir sobre el manejo del control prenatal, momento, método o procedimiento empleados para terminar el embarazo, ni participaron en decisiones sobre la vialidad del feto. El grupo de investigación se comprometió y entregó todos los resultados de las pruebas de laboratorio al médico tratante del control prenatal de la participante.

Los datos clínicos e información colectada fueron de uso confidencial y exclusivo para ser analizado por parte de los participantes de este proyecto con todo el manejo apegado a la "Ley Federal de Protección de Datos Personales en Posesión de los Particulares" [163].

El protocolo de investigación fue aprobado por el Comité de Ética del Instituto Nacional de Medicina Genómica (INMEGEN), con número de registro CEI 16/2023 (Anexo II) y por el Comité de

Ética de la Secretaría de Salud de la Ciudad de México, con número de registro 102-010-02-18 (Anexo II).

Aspectos de bioseguridad

El personal encargado del procesamiento de los sueros fue debidamente capacitado y empleó el equipo de protección básico como bata, lentes de protección, guantes y cubrebocas para evitar una posible contaminación y transmisión de infecciones virales transmitidas, por diferentes agentes biológico-infecciosos. Todo el material utilizado en el sitio de procesamiento fue estéril y desechable. Antes y después de cada procedimiento, se realizó la antisepsia de la superficie con hipoclorito de sodio al 0.5% o alcohol al 70%, para eliminar cualquier residuo biológico.

El suero se mantuvo en ultracongelación a -70°C hasta su procesamiento. Los procesos de centrifugación de las muestras se realizaron con estrictas medidas de seguridad con la finalidad de evitar derrames durante el proceso.

El material de desecho (gasas, guantes, puntas de micropipeta, tubos) se depositó en una bolsa de polietileno roja la cual se verificó que no sobrepasara el 80% de su capacidad, mientras que los objetos punzo cortantes se desecharon en recipientes de plástico de polipropileno rojo, los cuales son rígidos, resistente a golpes o fracturas y fueron etiquetados con la leyenda "residuos peligrosos punzocortantes biológico-infecciosos"; verificando que su capacidad no sobrepasara el 80% de su capacidad. Tanto las bolsas de polietileno y los recipientes de polipropileno se colocaron en un área específica en el laboratorio y no se almacenaron por más de un mes [164].

Todo el personal del laboratorio participante adoptó las medidas preventivas para su protección en el almacenamiento, transporte y manejo de substancias tóxicas e infecciosas generadas por el manejo de técnicas moleculares; tomando en cuenta los requisitos que señalen las disposiciones generales aplicables en la materia, en particular las normas oficiales mexicanas NOM-018-STPS-2000 [164] y NOM-087-SEMARNAT-SSA1-2002 [165].

Dado que el manejo y disposición final de los residuos peligrosos biológico-infecciosos, se llevó a cabo de acuerdo con los criterios de seguridad establecidos, este proyecto de investigación no implicó riesgo ambiental, cumpliendo con todo lo establecido en la NOM-087-SEMARNAT-SSA1-2002 sobre Protección ambiental-Salud, ambiental-Residuos peligrosos, biológico-infecciosos-Clasificación y especificaciones de manejo [165].

Los residuos peligrosos biológicos infecciosos (RPBI) que se generaron de este proyecto en el laboratorio como la sangre y los objetos punzocortantes, fueron identificados, envasados, recolectados, transportados, desechados y destruidos de forma particular siguiendo las indicaciones del INMEGEN [166] y con apego a la norma NOM-087-SEMARNAT-SSA1-2002 [165].

Los residuos químicos fueron identificados y clasificados de acuerdo con los elementos normativos aplicables con base en la NOM-052 SEMARNAT-2005 [167], que enlista los residuos peligrosos para el ambiente por sus características de corrosividad, reactividad, explosividad, toxicidad e inflamabilidad (CRETI).

Resultados

Características clínicas de los subgrupos

Este análisis comprendió un total de 81 participantes del estudio previo [9]; de las cuales 62 corresponden a mujeres que no desarrollaron diabetes mellitus gestacional (preDMG⁻) y 19 mujeres con diagnóstico de esta patología (preDMG⁺). Se procedió a realizar la división de los dos grupos experimentales con base en el p50 (percentil 50) del índice HOMA-% β , obteniendo: en el grupo que no desarrolló diabetes mellitus gestacional (preDMG⁻) un valor de mediana p50 de HOMA-% β de 129.98 y en el grupo que desarrolló diabetes mellitus gestacional (preDMG+) un valor de HOMA-% β de 80.60. Los subgrupos fueron divididos en índice HOMA- β bajo (<p50) y alto (>p50) para cada grupo experimental.

En la **Tabla 11** se observa que del grupo preDMG-; 35 participantes fueron clasificadas en el subgrupo HOMA-% β bajo y 27 participantes se clasificaron en el subgrupo HOMA-% β alto. El grupo DMG+ estuvo conformado por 9 participantes pertenecientes al subgrupo HOMA-% β bajo y 10 participantes pertenecientes al subgrupo HOMA-% β alto. Se realizaron análisis ANOVA de 1 vía con corrección post-hoc de Tukey para evaluar diferencias entre los 4 subgrupos para las características descriptivas (**Tabla 11**). Se observaron diferencias en la edad y peso gestacional en la primera visita, en donde el subgrupo DMG+ HOMA-% β alto presentó mayor edad en comparación con los subgrupos DMG- HOMA-% β bajo y DMG- HOMA-% β alto. De igual manera los dos subgrupos característicos de DMG+ (DMG+ HOMA-% β alto y bajo) presentaron diferencias estadísticamente significativas en comparación con los dos subgrupos que no desarrollaron esta patología. En relación con la talla, el subgrupo DMG+ HOMA-% β bajo y alto. Se observó diferencia en el IMC, en donde el subgrupo DMG+ HOMA-% β alto mostró discrepancia con el subgrupo DMG- HOMA-% β bajo y alto. Se observó

	DMG		DN		
	HOMA-%β bajo	HOMA-%β alto	HOMA-%β bajo	HOMA-%β alto	Valor <i>p</i>
	(n=35)	(n=27)	(n=9)	(n=10)	
Edad (años)	25.57 (±5.67)	26.52 (±3.93)	27.00 (±6.34)	31.60 (±3.37) ^{a,c}	0.013
Semanas de gestación	12.7 (±2.6)	13.1 (±3.6)	12.7(±3.2)	13.2 (±4.3)	0.975
Paridad	1 (1-1)	1 (1-1)	3 (1-4) ^{a,c}	3 (2-3) ^{a,c}	0.001
Peso (kg)	62.54 (±12.28)	70.53 (±14.69)	61.00 (±16.16)	77.32 (±18.06) ^a	0.011
Talla (m)	1.56 (±0.06)	1.58 (±0.06)	1.50 (±0.06) ^{a,c}	1.57 (±0.08)	0.008
IMC gestacional (kg/m ²)	25.51 (±4.49)	28.19 (±5.65)	26.95 (±6.75)	31.29 (±5.31) ^a	0.019
 Normopeso (n(%)) 	20(57.14)	8 (29.63)	4 (44.44)	1 (10)	
 Sobrepeso (n(%)) 	8 (22.86)	10 (37.04)	2 (22.22)	4 (40)	
 Obesidad I (n(%)) 	6 (17.14)	6 (22.22)	1 (11.11)	2 (20)	0.194
 Obesidad II (n(%)) 	1 (2.86)	2 (7.41)	2 (22.22)	2 (20)	
• Obesidad III (n(%))	-	1 (3.70)	-	1 (10)	

Tabla 11. Características descriptivas de la muestra de estudio DMG⁻ y DMG⁺ HOMA-% β bajo y alto

*p<0.05, prueba ANOVA de una vía post-hoc de Tukey; ^ap<0.05 vs DMG⁻ HOMA bajo; ^bp<0.05 vs DMG⁺ HOMA bajo, ^cp<0.05 vs DMG⁻ HOMA alto + vs resto de categorías de IMC, prueba exacta de Fisher. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas y como mediana (p25-p75) para las variables no paramétricas.

En relación con las variables de la química sanguínea (**Tabla 12**), se observaron diferencias en las variables glucosa, β hidroxibutirato, insulina, índice HOMA-IR y HOMA-% β . El subgrupo DMG+

HOMA-% β alto presentó diferencias en la concentración media de glucosa en comparación con los subgrupos DMG- HOMA-% β bajo y DMG+ HOMA-% β bajo. En cuanto a la concentración de β -hidroxibutirato se observó un incremento en la concentración entre el subgrupo DMG+ HOMA-% β alto vs los subgrupos DMG- HOMA-% alto y DMG+ HOMA-% β bajo (Tabla 12); así como también en el grupo DMG+ HOMA-% β bajo y los subgrupos DMG- HOMA-% β bajo y alto. Así mismo, el subgrupo DMG+ HOMA-% β alto presentó incremento en la concentración de insulina en comparación con el subgrupo DMG+ HOMA-% β bajo (mediana 47.08 vs 17.54 respectivamente). Al evaluar el índice HOMA-IR se observaron diferencias en tres grupos respectivamente DMG+ HOMA-% β bajo y alto y DMG- HOMA-% β alto. El subgrupo DMG+ HOMA-% β bajo y DMG+ HOMA-% β bajo y DMG+ HOMA-% β bajo (mediana 146.5 vs 84.64 y 45.33 respectivamente). También se observaron diferencias en relación con el índice HOMA-% β bajo y alto al presentar el índice más bajo, el cual difirió entre los grupos DMG- HOMA-% β bajo y alto al presentar el índice más bajo, el cual difirió entre los grupos DMG- HOMA-% β bajo y alto al presentar el índice más bajo de función de célula β -pancreática (mediana 45.33 vs 84.64 y 152.45 respectivamente).

	D	MG ⁻	DI	_	
	DMG ⁻ HOMA-%β bajo	DMG ⁻ HOMA-%β alto	DMG⁺HOMA-%β bajo (n=0)	DMG⁺HOMA-%β alto	Valor p
	(11=35)	(1=27)	(1=9)	(1=10)	
Glucosa (mmol/L)	4.71 (±0.56)⁵	4.29 (±0.49)	4.82 (±0.43)	4.06 (±0.37) ^{a,c}	0.001
Triacilglicéridos (mmol/L)	1.48(±0.49)	1.46 (±0.40)	1.94 (±0.60)	1.81 (±0.94)	0.076
Colesterol total (mmol/L)	4.53(±0.87)	4.50 (±0.73)	4.65 (±0.58)	4.54 (±0.59)	0.974
β-hidroxibutirato (µmol/L)	56.67 (8.64-60.51)	58.59 (9.96-58.59)	32.66 (15.37-40.34) ^{a,b}	73.96 (66.75-79.96) ^{b,c}	0.013
Insulina (pmol/L)	36.20 (21.62-50.55)	70.40 (54.20-96.20)ª	17.54 (13.07-34.94) ^b	47.08 (34.22-56.30) ^c	0.001
HOMA-IR	0.93 (0.45-1.34)	2.08(1.21-2.55) ^a	0.44 (0.36-0.74) ^b	1.34 (1.05-1.84) ^c	0.001
ΗΟΜΑ-%β	84.64 (67.00-127.10)	152.45 (150.70-193.30) ^a	45.33 (31.52-67.00) ^{a,b}	146.5 (104.75-192.85) ^{a,c}	0.001

*p<0.05, prueba ANOVA de una vía post-hoc Tukey; *p<0.05, prueba Kruskal Wallis para muestras independientes post-hoc Dunn

^ap<0.05 vs DMG⁻ HOMA bajo; ^bp<0.05 vs DMG⁻ HOMA alto; ^cp<0.05 vs DMG⁺ HOMA bajo

Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las

variables paramétricas y como mediana (p25-p75) para las variables no paramétricas.

Características clínicas de los subgrupos: generación de pool

Posteriormente, se realizó la selección de muestras que conformaron cada pool en los subgrupos. Esta selección fue aleatoria empleando un generador de números aleatorios dependiendo del tamaño de muestra por subgrupo. Se generaron 3 pooles por cada subgrupo experimental y se realizó análisis estadístico entre grupos para validar la correcta asignación de las muestras en la generación de estos. Se realizaron análisis ANOVA de 1 vía con corrección post-hoc de Tukey para evaluar diferencias entre los pool para las características descriptivas y metabólicas por subgrupo (**Anexo III**). Para todos los subgrupos; no se observaron diferencias significativas entre los pool en las variables descriptivas evaluadas (edad, semanas de gestación, paridad, peso, talla, IMC) así como en las variables de química sanguínea evaluadas (glucosa, triacilglicéridos, colesterol total, β -hidroxibutirato, insulina, HOMA-IR y HOMA-% β).

DMG afecta la concentración y tamaño de exosomas maternos y placentarios en el primer trimestre de embarazo

Se realizó la caracterización de exosomas maternos y placentarios (evaluar tamaño, distribución y concentración) empleando la técnica de rastreo de nanopartículas (NTA) con el equipo NanoSight NS300. Con base en un estudio previo desarrollado por Salomon et al (33), se demostró que los embarazos que desarrollarán diabetes gestacional presentan una mayor abundancia de exosomas totales (de origen materno y placentario) en el primer trimestre, en comparación con embarazos que no desarrollan DMG. Sin embargo, el mismo estudio (33) no muestra diferencias significativas entre la distribución del tamaño de los exosomas totales en embarazos que desarrollarán DMG. Por tal motivo, en este estudio se evaluaron diferencias entre la concentración y tamaño de los exosomas maternos y placentarios, con base en si pertenecieron al grupo que no desarrolló DMG (control) y al grupo que si desarrolló DMG (Figura 9). En relación con los exosomas maternos, se observaron diferencias únicamente en la concentración (Figura 9A) en el grupo que desarrolla DMG vs el control; pero no en tamaño (Figura 9B). El grupo que desarrolla DMG tuvo una concentración con una mediana de 4.02E+06 partículas/ml (3.17E+06 - 4.51E+06, IC 95%) vs el grupo control que tiene una concentración con una mediana de 9.42E+05 (6.50E+05 - 1.28E+06, IC 95%). En la Figura 9B se observa la distribución de tamaño de los exosomas maternos tanto para el grupo control como en el grupo que desarrolla DMG; en donde no se observaron diferencias significativas (mediana 134nm en el grupo control vs mediana 153.6nm en el grupo DMG). Al evaluar si hay diferencias de concentración de los exosomas placentarios se encontraron diferencias significativas; en donde el grupo que no desarrolla DMG presentó un valor de mediana de concentración mayor con 6.83E+05 partículas/ml (4.08E+05 - 8.64E+05, IC 95%) vs una concentración mediana de 4.83E+05 partículas/ml (4.19E+05 - 6.28E+05, IC 95%) en el grupo que desarrolla DMG (Figura 9C). También se encontraron diferencias significativas en el tamaño de exosomas de origen placentarios (Figura 9D); donde el grupo que desarrolla DMG presenta una mayor mediana en el tamaño de estas vesículas extracelulares pequeñas (mediana 128.7nm, 120.7 – 138.3nm IC95%) en comparación con el grupo control (mediana 114nm, 104.9 – 127.9nm IC95%).

Figura 9. Caracterización de exosomas séricos maternos y placentarios en etapas tempranas de la gestación por diagnóstico empleando NTA. A. Concentración de exosomas séricos maternos en el grupo control vs el grupo que desarrolla DMG. **B**. Concentración de exosomas séricos placentarios en el grupo control vs el grupo que desarrolla DMG. **C**. Distribución de tamaño de exosomas séricos maternos en el grupo que desarrolla DMG. **D**. Distribución de tamaño de exosomas séricos placentarios en el grupo que desarrolla DMG. **D**. Distribución de tamaño de exosomas séricos placentarios en el grupo que desarrolla DMG. **D**. Distribución de tamaño de exosomas séricos placentarios en el grupo que desarrolla DMG. **D**. Distribución de tamaño de exosomas séricos placentarios en el grupo que desarrolla DMG. DMG= diabetes mellitus gestacional. * p<0.05 . *** p<0.0001. Prueba T de Student muestras independientes.

Índice HOMA- $\%\beta$ afecta la concentración y tamaño de exosomas maternos y placentarios en primer trimestre

Como se mencionó previamente, los estudios que evalúan exosomas sólo toman en cuenta el diagnóstico y no la funcionalidad de la célula beta. En este estudio primeramente se evaluó la concentración y tamaño de exosomas séricos maternos y placentarios, con base en el índice HOMA-% independientemente de si desarrollan o no DMG; con el objetivo de observar si existen diferencias por el origen de los exosomas. En la **Figura 10A** y **Figura 10B** se muestran las diferencias entre la concentración y tamaño de los exosomas respectivamente con base en el grado de funcionalidad de la célula β pancreática; en donde se observan diferencias estadísticamente significativas. El grupo que se caracteriza por presentar una buena función de célula β pancreática (HOMA-% alto) tuvo una mediana de concentración de exosomas maternos de 3.90E+06 partículas/ml (3.78E+06 - 4.05E+06, IC95%); siendo esta mayor que el grupo con un

índice de HOMA-%β bajo (mediana 1.98E+06 partículas/ml, 1.55E+06 - 2.45E+06 IC95%). Por otro lado, el grupo que se caracteriza por presentar disfunción en la célula β pancreática (HOMA-%β bajo) presentó un mayor tamaño de exosomas de origen materno, con una mediana de 149.7 nm (138.6 – 162.4nm, IC95%) en comparación con el grupo HOMA-%β alto que se caracterizó por presentar una mediana de 138.4 nm (128.9-149.7nm, IC95%); siendo esta diferencia estadísticamente significativa (**Figura 10C**). Cuando se evaluó la concentración de exosomas placentarios (**Figura 10B**), se observó una diferencia significativa en el grupo HOMA-%β alto que presentó mayor concentración de estas vesículas extracelulares (mediana 7.99E+05 partículas/ml; 5.89E+05 - 9.76E+05 partículas/ml IC95%) en comparación con el grupo HOMA-%β bajo (mediana 3.64E+05 partículas/ml; 2.99E+05 - 4.95E+05 partículas/ml IC95%). Por el contrario, no se observaron diferencias significativas en el tamaño de los exosomas de origen placentario en ambos grupos (**Figura 10D**).

Figura 10. Caracterización de exosomas séricos maternos y placentarios en etapas tempranas de la gestación con base en índice HOMA-%β empleando NTA. A. Concentración de exosomas séricos maternos en el grupo HOMA-%β alto (control) vs el grupo que presenta disfunción en la célula β pancreática (grupo HOMA-%β bajo). **B**. Concentración de exosomas séricos placentarios en el grupo HOMA-%β alto (control) vs el grupo que presenta disfunción en la célula β pancreática (grupo HOMA-%β bajo). **C**. Distribución de tamaño de exosomas séricos maternos en los grupos grupo HOMA-%β alto y grupo HOMA-%β bajo. **D**. Distribución de tamaño de

exosomas séricos placentarios en los grupos grupo HOMA-%β alto y grupo HOMA-%β bajo. * p<0.05 *** p<0.0001. Prueba T de Student muestras independientes.

Índice HOMA-%β y desarrollo de DMG afecta la concentración y tamaño de exosomas maternos y placentarios en primer trimestre

Con el fin de cumplir con el objetivo 2, correspondiente a la caracterización de los exosomas placentarios y maternos presentes en etapas tempranas de la gestación provenientes de suero de mujeres con (DMG⁺) y sin desarrollo de DMG (DMG⁻) con base en el índice HOMA% bajo y alto; se determinó si existían diferencias de concentración y tamaño entre los exosomas de origen materno y placentario por subgrupos. Los exosomas maternos se caracterizaron por inmunoblot empleando marcadores proteicos de referencia para exosomas tales como CD63 y TSG101, así como marcadores protéicos de control negativo PLAP y albúmina (Figura 11A) y empleando análisis NTA para evaluar su tamaño y concentración (Figura 11B). En cuanto a la distribución de tamaño en exosomas maternos (Figura 11C), únicamente se observó diferencia significativa en el subgrupo que desarrolla DMG y presenta un índice de HOMA-%β bajo, con una mediana de 169.1 nm (154.5-184 nm, IC95%). En relación con la concentración de los exosomas maternos, se observaron diferencias entre los subgrupos que desarrollan DMG, mientas que los subgrupos que no desarrollan esta patología no presentaron diferencias significativas entre ellos (Figura 11D). El grupo que presentó mayor concentración de exosomas maternos fue el grupo que desarrolla DMG y tiene un índice de HOMA-%β alto (mediana 5.84E+06 partículas/ml; 5.41E+06 - 5.98E+06 partículas/ml IC95%) y el grupo que presentó una concentración menor fue el grupo control con un índice HOMA-%β bajo (mediana 2.19E+06 partículas/ml; 1.89E+06 - 2.42E+06 partículas/ml IC95%).

Los exosomas placentarios se caracterizaron por inmunoblot empleando marcadores protéicos de referencia para exosomas tales como CD63 y TSG101, así como el marcador de exosoma placentario PLAP y marcador protéico de control negativo albúmina (**Figura 11E**) y empleando análisis de rastreo de nanopartículas NTA para evaluar su tamaño y concentración (**Figura 11F**). Los grupos que presentaron diferencias significativas en cuanto a su distribución de tamaño fueron los que se caracterizan por presentar un índice de HOMA-%β bajo (**Figura 11G**). El grupo que desarrolla DMG y tiene un índice de HOMA-%β bajo presenta una mediana mayor (130.6 nm, 121.2-141.7 nm IC95%) en comparación con el grupo control con índice HOMA-%β bajo (112.3 nm, 100.1-120.8 nm IC95%). No se observaron diferencias estadísticamente significativas entre los grupos con índice HOMA-%β alto. Se observaron diferencias de concentración en los exosomas placentarios (**Figura 11H**), siendo el subgrupo control con índice HOMA-%β bajo el que menor concentración presentó, teniendo una mediana de concentración de 1.15E+06 partículas/ml (6.60E+05 - 1.30E+06 partículas/ml, IC95%).

Figura 11. Caracterización de exosomas séricos maternos y placentarios en etapas tempranas del embarazo con base en el índice HOMA-%β y el desarrollo de diabetes gestacional. A. Western blot representativo para marcadores enriquecidos en exosomas CD63, TSG101 y marcadores negativos PLAP y albúmina en muestras de subgrupos de exosomas maternos en suero. **B.** Distribución de tamaño y concentración de subgrupos de exosomas maternos en suero aislados utilizando NTA. **C.** Comparación del tamaño de exosomas séricos maternos en subgrupos con base en el índice HOMA-% β y el desarrollo de DMG. **D.** Comparación de la distribución de concentraciones de exosomas séricos maternos con base en el índice HOMA-% β y el desarrollo de DMG. **E.** Western blot representativo para los marcadores enriquecidos en exosomas CD63, PLAP, TSG101 y el marcador negativo Albúmina en muestras de subgrupos de exosomas placentarios en suero. **F.** Distribución de tamaño y concentración de subgrupos de exosomas placentarios séricos utilizando NTA. **G.** Comparación del tamaño del exosomas séricos placentarios en subgrupos con base en el índice HOMA-% β y el desarrollo de DMG. **H.** Comparación de la distribución de concentración de exosomas placentarios séricos con base en el índice HOMA-% β y el desarrollo de DMG.

Perfil de miRNAs exosomales (maternos y placentarios) en etapas tempranas de la gestación

Se evaluó el perfil de miRNAs expresados diferencialmente entre los exosomas de origen maternos y placentarios en etapas tempranas de la gestación (Figura 12), en donde se encontraron 32 miRNAs sobre-expresados y 5 miRNAs sub-expresados (Tabla A IV.I Anexo IV). En la Figura 12A, se muestran las expresiones promedio de los miRNAs encontrados diferencialmente expresados en ambas subpoblaciones de exosomas (maternos y placentarios). Se identificaron seis miRNAs expresados exclusivamente en los exosomas de origen materno, un solo miRNA expresado exclusivamente en exosomas de origen placentarios y 30 miRNAs que comparten ambas subpoblaciones de vesículas extracelulares (Figura 12B).

Figura 12. Perfil de miRNAs de exosomas maternos y placentarios en etapas tempranas de la gestación. A. Abundancia en la expresión de miRNAs diferenciados diferencialmente entre exosomas maternos y placentarios (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). B. Diagrama de Venn que muestra la distribución de expresión entre los exosomas maternos (exoPLAP;amarillo) y ambos.

Perfil de miRNAs exosomales (maternos y placentarios) en etapas tempranas de la gestación de embarazos normoevolutivos

Se evaluó la expresión de miRNAs en el grupo que no desarrolla diabetes gestacional, se identificaron miRNAs expresados diferencialmente entre los exosomas de origen materno y placentario (Figura 13). Se encontraron 36 miRNAs sobre-expresados y 6 miRNAs sub-expresados (Tabla A IV.II Anexo IV). En la Figura 13A, se muestran las expresiones promedio de los miRNAs encontrados diferencialmente expresados en ambas subpoblaciones de exosomas (maternos y placentarios). Se identificaron 15 miRNAs expresados exclusivamente en los exosomas de origen materno, un solo miRNA expresado exclusivamente en exosomas de origen placentarios y 26 miRNAs que comparten ambas subpoblaciones de vesículas extracelulares (Figura 13B).

Figura 13. Perfil de miRNAs de exosomas maternos y placentarios en etapas tempranas de la gestación en embarazos que no desarrollan diabetes gestacional. A. Abundancia en la expresión de miRNAs diferenciados diferencialmente entre exosomas maternos y placentarios (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). B. Diagrama de Venn que muestra la distribución de expresión entre los exosomas maternos (exoMAT; azul), placentarios (exoPLAP; amarillo) y ambos.

Diabetes mellitus gestacional altera el perfil de miRNAs exosomales (maternos y placentarios) en etapas tempranas de la gestación

Se evaluó la expresión de miRNAs en el grupo que desarrolla diabetes gestacional, se identificaron miRNAs expresados diferencialmente entre los exosomas de origen materno y placentario (Figura 14). Se encontraron 36 miRNAs sobre-expresados y 5 miRNAs sub-expresados (Tabla A IV.III Anexo IV). En la Figura 14A, se muestran las expresiones promedio de los miRNAs encontrados diferencialmente expresados en ambas subpoblaciones de exosomas (maternos y placentarios). Se identificaron 7 miRNAs expresados exclusivamente en los exosomas de origen materno, ningún miRNA expresado exclusivamente en exosomas de origen placentarios y 34 miRNAs que comparten ambas subpoblaciones de vesículas extracelulares (Figura 14B).

Figura 14. Perfil de miRNAs de exosomas maternos y placentarios en etapas tempranas de la gestación en embarazos que desarrollan diabetes mellitus gestacional. A. Abundancia en la expresión de miRNAs diferenciados diferencialmente entre exosomas maternos y placentarios (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). B. Diagrama de Venn que muestra la distribución de expresión entre los exosomas maternos (exoMAT; azul), placentarios (exoPLAP; amarillo) y ambos.

Comparación del perfil de miRNAs exosomales (maternos y placentarios) en etapas tempranas de la gestación en embarazos con DMG y control

Con el objetivo de identificar diferencias entre los embarazos que desarrollan DMG y el grupo control sin tener en cuenta el índice HOMA-%β; se evaluó la expresión de miRNAs maternos y placentarios. Se identificaron miRNAs expresados diferencialmente entre los exosomas de origen materno y placentario (**Figura 15**). Se identificaron 8 miRNAs sobre-expresados y 2 miRNAs sub-expresados con relación a lo exosomas de origen materno (**Tabla A IV.IV Anexo IV**). A su vez, se identificaron únicamente dos miRNAs sub-expresados en exosomas de origen placentario (**Tabla A IV.IV Anexo IV**). En las **Figura 15A** y **Figura 15B**, se muestran las expresiones promedio de los miRNAs encontrados diferencialmente expresados en ambas subpoblaciones de exosomas (maternos y placentarios) entre el grupo control y el grupo que desarrolla DMG. Se identificaron 10 miRNAs expresados exclusivamente en los exosomas de origen materno, y dos miRNAs expresados únicamente en los exosomas de origen placentario.

Figura 15. Perfil de miRNAs de exosomas maternos y placentarios en etapas tempranas de la gestación en embarazos que no desarrollan DMG y aquellos que si desarrollan DMG. A. Abundancia en la expresión de miRNAs de exosomas maternos diferencialmente expresados entre grupo control y DMG (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia esta marcada en color verde). **B**. Abundancia en la expresión de miRNAs de exosomas placentarios diferencialmente expresados entre grupo control y DMG (mayor abundancia en color rojo, mientras que la menor abundancia esta marcada en color verde). **B**. Abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). **C**. Diagrama de Venn que muestra la distribución de expresión entre los exosomas maternos (exoMAT; azul) y placentarios (exoPLAP); amarillo con la comparación entre el grupo control y DMG.

El índice HOMA-%β altera el perfil de miRNAs exosomales (maternos y placentarios) en etapas tempranas de la gestación

Tomando en cuenta que en las etapas tempranas de la gestación aún no se ha desarrollado diabetes gestacional; se realizó una comparación del perfil de expresión diferencial de exosomas maternos y placentario con base en el índice de funcionalidad de la célula β pancreática. Se identificaron miRNAs expresados diferencialmente entre los exosomas de origen materno y placentario (Figura 16) con base en el índice HOMA-% β , ya sea si presentaban una adecuada funcionalidad (HOMA-% β alto) o si presentaban alguna disfunción (HOMA-% β bajo). Tanto en exosomas maternos y placentarios se observaron miRNAs sub-expresados entre estas dos condiciones. Se identificaron 3 miRNAs sub-expresados en relación con los exosomas de origen materno (Tabla A IV.VI Anexo IV). A su vez, se identificaron únicamente dos miRNAs sub-expresados en exosomas de origen placentario (Tabla A IV.VI Anexo IV). A su vez, se identificaron únicamente dos miRNAs sub-expresados en ambas subpoblaciones de exosomas (maternos y placentarios) entre el grupo HOMA-% β alto y el grupo HOMA-% β bajo. Se identificaron tres miRNAs expresados exclusivamente en los exosomas de origen materno, y dos miRNA de origen placentario (Figura 16C).

Figura 16. Perfil de miRNAs de exosomas maternos y placentarios en etapas tempranas de la gestación en embarazos con base en el índice HOMA-%β (alto y bajo). A. Abundancia en la expresión de miRNAs de exosomas maternos diferencialmente expresados entre grupo HOMA-%β alto y bajo (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). **B**. Abundancia en la expresión de miRNAs de exosomas placentarios diferencialmente expresados entre grupo HOMA-%β alto y bajo (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). **C**. Diagrama de Venn que muestra la distribución de expresión entre los exosomas maternos (exoMAT; azul) y placentarios (exoPLAP; amarillo) con la comparación entre el grupo HOMA-%β alto y bajo.

La funcionalidad de la célula β pancreática y el desarrollo de DMG influencian la expresión de miRNAs exosomales (maternos y placentarios) en etapas tempranas de la gestación

Se dividió a las participantes en subgrupos con base en su grado de funcionalidad de la célula β pancreática y si desarrollarán DMG. Se realizó una comparación del perfil de expresión diferencial de exosomas maternos y placentario por subgrupos. Se identificaron miRNAs expresados diferencialmente entre los exosomas de origen materno y placentario (**Figura 17, Tablas 13 y 14**) con base en el índice HOMA-% β , ya sea si presentaban una adecuada funcionalidad (HOMA-% β

alto) o si presentaban alguna disfunción (HOMA-% β bajo), así como si desarrollarán DMG (control y DMG).

En la **Figura 17A** y **Figura 17B**, se muestran las expresiones promedio de los miRNAs encontrados diferencialmente expresados en ambas subpoblaciones de exosomas (maternos y placentarios) por subgrupos de estudio. En la **Figura 17C** y **Figura 17D** se muestran los miRNAs que se comparten entre subgrupos dependiendo del origen (materno o placentario). Se identificó un miRNA (hsa-miR-6724-5p) en común presente en los exosomas de origen materno para los subgrupos que desarrollan DMG independiente de su índice de funcionalidad de la célula β pancreática. Este miRNA puede ayudar a identificar a las mujeres que desarrollarán DMG independiente de la célula β pancreática. Por otro lado, se identificó un miRNA de origen materno en el grupo que desarrollará DMG con un índice HOMA-% β bajo: hsa-miR-455-3p. Este miRNA se encuentra sobre-expresado en relación con los controles y pudiera ayudar a identificar a las mujeres que desarroller **17C**).

En relación con la expresión diferencial en los exosomas de origen placentario comparando el subgrupo HOMA- $\%\beta$ alto control con los demás subgrupos fue la siguiente: en el subgrupo HOMA- $\%\beta$ bajo control se identificaron cuatro miRNAs sub-expresados, en el subgrupo HOMA- $\%\beta$ alto DMG se identificó un miRNA sobre-expresado y cuatro miRNAs sub-expresados y en el subgrupo HOMA- $\%\beta$ bajo DMG se identificó un miRNA sobre-expresado y ocho miRNAs sub-expresados (**Tabla 14**).

Con respecto a los exosomas de origen placentario se identificó un miRNA (hsa-miR-7704) en común entre subgrupos; el cual incrementa su expresión en los subgrupos conforme se altera la funcionalidad de la célula β pancreática y se desarrolla la DMG. También se identificó un miRNA (hsa-miR-3665) en común en el grupo que desarrolla DMG independiente del índice HOMA-% β ; el cual puede identificar aquellas mujeres en etapas tempranas del embarazo que desarrollarán DMG. También resulta interesante resaltar, que con base en el índice de funcionalidad de la célula β bajo se identificó un miRNA en común (hsa-miR-4706) en los grupos que desarrollarán DMG y el control. Este miRNA se encuentra más expresado en el grupo que desarrollarán DMG, sugiriendo que este miRNA pudiera ser clave para identificar aquellas mujeres que desarrollarán DMG y que presenten un índice de HOMA-% β bajo en etapas tempranas de la gestación (**Figura 17D**).

Control HOMA-%β alto vs Control HOMA-%β baio			Control HOMA-%β alto vs			Control HOMA-%β alto vs		
miRNA	miRNA Fold Valor- p ajustado Change		MiRNA	Fold Change	Valor- p ajustado	miRNA	Fold Change	Valor- p ajustado
hsa-miR-6511b-5p	2.36	0.0012	hsa-miR-4440	7.97	0.0355	hsa-miR-455-3p	-2.26	0.0156
hsa-miR-6796-5p	-2.13	0.0242	hsa-miR-4793-3p	4.07	0.0298	hsa-miR-6724-5p	-3.25	0.0014
hsa-miR-6858-5p	-2.6	0.0097	hsa-miR-1268a	2.13	0.0307			
hsa-miR-4632-5p	-2.75	0.0242	hsa-miR-6803-5p	-2.0	0.011			
hsa-miR-3907	-3.26	0.0047	hsa-miR-4497	-2.04	0.0347			
hsa-miR-4486	-5.2	0.0259	hsa-miR-3656	-2.1	0.0201			
			hsa-miR-6724-5p	-2.15	0.0258			
			hsa-miR-4745-5p	-2.21	7.06E-05			
			hsa-miR-663a	-2.24	0.0041			
			hsa-miR-4487	-2.4	0.006			
			hsa-miR-7108-5p	-2.75	0.0131			
			hsa-miR-8069	-2.77	0.013			
			hsa-miR-149-3p	-3.3	0.0193			
			hsa-miR-6125	-5.23	0.0167			

Tabla 13. Perfil de miRNAs expresados diferencialmente en etapas tempranas de exosomas maternos entre subgrupos

Control HOMA-%β alto vs Control HOMA-%β bajo		Control HOMA-%β alto vs preDMG HOMA-%β alto			Control HOMA-%β alto vs preDMG HOMA-%β bajo			
miRNA Fold Change		Valor- p ajustado	miRNA	Fold Change	Valor- p ajustado	miRNA	Fold Change	Valor- p ajustado
hsa-miR-5787	-2.02	0.0193	hsa-miR-5189-3p	2.05	0.0008	hsa-miR-455-3p	2.16	0.0032
hsa-miR-7704	-2.16	0.0055	hsa-miR-6727-5p	-2.09	0.0178	hsa-miR-2277-5p	-2.01	1.08E-05
hsa-miR-4516	-2.16	0.0213	hsa-miR-3665	-2.79	0.0376	hsa-miR-6087	-2.13	0.0276
hsa-miR-4706	-2.23	0.0391	hsa-miR-7704	-3.3	9.02E-05	hsa-miR-6729-5p	-2.54	0.0005
			hsa-miR-5787	-5.7	8.34E-07	hsa-miR-6750-5p	-2.86	1.29E-07
						hsa-miR-1469	-2.93	2.53E-09
						hsa-miR-7704	-3.25	0.0011
					hsa-miR-3665	-3.49	0.011	
						hsa-miR-4706	-12.7	6.23E-06

Tabla 14. Perfil de miRNAs expresados diferencialmente en etapas tempranas de exosomas placentarios entre subgrupos

ΗΟΜΑβ个C- ΗΟΜΑβ个DMG

ΗΟΜΑβ个C- ΗΟΜΑβ个DMG

Figura 17. Perfil de miRNAs de exosomas maternos y placentarios en etapas tempranas de la gestación en embarazos con base en el índice HOMA-%β (alto y bajo) y si desarrollan o no DMG. A. Abundancia en la expresión de miRNAs de exosomas maternos diferencialmente expresados entre subgrupos: grupo HOMA-%β alto control, HOMA-%β bajo control, HOMA-%β alto DMG y HOMA-%β bajo DMG (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). **B**. Abundancia en la expresión de miRNAs de exosomas placentarios diferencialmente expresados entre subgrupos: grupo HOMA-%β alto control, HOMA-%β bajo control, HOMA-%β alto DMG y HOMA-%β bajo DMG (mayor abundancia se encuentra en color rojo, mientras que la menor abundancia está marcada en color verde). **C**. Diagrama de Venn que muestra la distribución de expresión entre los exosomas maternos entre subgrupos: grupo HOMA-%β alto control, HOMA-%β bajo control (azul), HOMA-%β alto DMG (verde) y HOMA-%β bajo DMG (amarillo). **D**. Diagrama de Venn que muestra la distribución de expresión entre los exosomas placentarios entre subgrupos: grupo HOMA-%β alto control, HOMA-%β bajo control (azul), HOMA-%β alto DMG (verde) y HOMA-%β bajo DMG (amarillo). La secreción y señalización de insulina están reguladas por miRNAs exosomales maternos en etapas tempranas de la gestación en mujeres que desarrollarán DMG

Una vez que se caracterizó el perfil de miRNAs exosomales maternos y placentarios, se evaluaron los genes blancos regulados por cada conjunto de miRNA expresados diferencialmente con base en la funcionalidad de célula β pancreática y el desarrollo de DMG. En el grupo que desarrollará DMG y presenta un índice HOMA-% β alto, se identificaron un total de 694 genes diana potencialmente regulados por este conjunto de miRNA (Anexo V, Tabla V.I). De acuerdo con los análisis de las vías canónicas más significativas por KEGG Human 2021; la vía de señalización PI3K-Akt, la secreción de insulina y la vía de señalización Ras se encuentran entre las vías más vinculadas con los genes regulados de este conjunto de miRNAs exosomales maternos expresados en el subgrupo preDMG de alto índice HOMA-% β (Figura 18A y Figura 18B). En el subgrupo preDMG con índice HOMA-%β bajo, se identificó un miRNA exosomal (hsa-miR-455-3p) que regula potencialmente un total de 11 genes (Anexo V, Tabla V.II); y los principales procesos biológicos estadísticamente significativos que son regulados potencialmente son: la regulación de la lipólisis en los adipocitos, la vía de señalización de HeDMGehog, la vía de señalización de adipocitocinas y señalización de PPAR (Figura 18C y Figura 18D). Por último, se evaluaron las vías metabólicas y de señalización reguladas por el miRNA exosomal materno expresado en ambos subgrupos de preDMG independientemente de su funcionalidad de la célula β-pancreática (hsamiR-6724-5p); de los cuales se identificaron un total de 50 genes regulados principalmente por este miRNA (Anexo V, Tabla V.III). Principalmente, los procesos metabólicos y de señalización regulados por estos genes fueron el metabolismo de la riboflavina y la tiamina, los lisosomas, la autofagia y las vías de apoptosis (Figura 18E y Figura 18F).

La tolerancia inmune y procesos biosintéticos están regulados por miRNAs exosomales placentarios en etapas tempranas del embarazo en mujeres que desarrollarán DMG

Asimismo, se realizaron redes de expresión de los genes regulados por miRNAs exosomales placentarios, así como análisis de los procesos metabólicos y las vías de señalización reguladas por esta subpoblación de EVs. En mujeres con índice HOMA-% alto y que desarrollarán DMG, se identificó un conjunto de dos miRNAs exosomales placentarios únicos expresados diferencialmente entre subgrupos (hsa-miR-5189-3p y hsa-miR-6727-5p); que regulan un total de 45 genes diana (Anexo V, Tabla V.IV). Basado en los principales análisis de vías metabólicas y de señalización canónica, la vía de señalización de la oxitocina, la diferenciación de las células Th1 y Th2, la vía de señalización del receptor de lectina tipo C, la síntesis, secreción y acción de la hormona paratiroidea, la diferenciación de las células Th17, la citotoxicidad mediada por células asesinas naturales y las vías de apoptosis, se encuentran entre las vías asociadas con la genes regulados de este conjunto de miRNAs exosomales placentarios expresados en el subgrupo preDMG de alto índice HOMA-% β (Figura 19A y Figura 19B).

Por otro lado, el subgrupo preDMG con índice HOMA-% β bajo presentó seis miRNAs de exosomas placentarios únicos, que potencialmente regulan un total de 129 genes (**Anexo V, Tabla V.V**). En el subgrupo de preDMG con índice HOMA-%β bajo, los principales procesos estadísticamente significativos que se están regulando son el metabolismo de los esfingolípidos y la vía de señalización de IL-17 (**Figura 19C** y **Figura 19D**).

Finalmente, se realizó un análisis de la vías y expresión génica de enriquecimiento con el miRNA exosomal materno (hsa-miR-3665) expresado en ambos subgrupos de preDMG independientemente de su funcionalidad β pancreática. Se identificó un total de 31 genes que estaban regulados principalmente por este miRNA (**Anexo V, Tabla V.VI**). El análisis de la vía con el miRNA exosomal materno expresado en ambos subgrupos de preDMG, independientemente de su funcionalidad β pancreática asociada, fueron las vías de señalización Wnt y mTOR (**Figura 19E-F**).

Figura 18. Redes de expresión y análisis de vías y procesos metabólicos de los miRNAs expresados diferencialmente entre subgrupos. A-F: Exosomas séricos maternos. Red de expresión génica (**A**) y análisis de vías y procesos metabólicos (**B**) regulados por los miRNAs exosomales maternos en etapas tempranas de la gestación presentes en el grupo con alto índice HOMA-%β que desarrollará DMG. Red de expresión génica (**C**) y análisis de vías y procesos metabólicos (**D**) regulados por los miRNAs exosomales maternos en etapas tempranas de la gestación presentes en el grupo con bajo índice HOMA-%β en el subgrupo que desarrollará DMG. Red de expresión génica (**E**) y análisis de vías y procesos metabólicos (**F**) regulados por los miRNAs exosomales maternos en etapas tempranas de la gestación presentes en el grupo que desarrollará DMG. Red de expresión génica (**E**) y análisis de vías y procesos metabólicos (**F**) regulados por los miRNAs exosomales maternos en etapas tempranas de la gestación presentes en el grupo que desarrollará DMG. Red de expresión génica (**E**) y análisis de vías y procesos metabólicos (**F**) regulados por los miRNAs exosomales maternos en etapas tempranas de la gestación presentes en el grupo que desarrolla DMG independientemente del índice HOMA-%β. Análisis de redes de expresión génica realizados en la plataforma ExpressAnalyst. Análisis de vías y procesos metabólicos realizados en la plataforma Enrichr empleando la base de datos KEGG2021 Human.

Figura 19. Redes de expresión y análisis de vías y procesos metabólicos de los miRNAs expresados diferencialmente entre subgrupos. A-F: Exosomas séricos placentarios. Red de expresión génica (**A**) y análisis de vías y procesos metabólicos (**B**) regulados por los miRNAs exosomales placentarios en etapas tempranas de la gestación presentes en el grupo con alto índice HOMA-%β que desarrollará DMG. Red de expresión génica (**C**) y análisis de vías y procesos metabólicos (**D**) regulados por los miRNAs exosomales placentarios en etapas tempranas de la gestación presentes en el grupo con bajo índice HOMA-%β en el subgrupo que desarrollará DMG. Red de expresión génica (**E**) y análisis de vías y procesos metabólicos (**F**) regulados por los miRNAs exosomales placentarios en etapas tempranas de la gestación presentes en el grupo que desarrollará DMG. Red de expresión génica (**E**) y análisis de vías y procesos metabólicos (**F**) regulados por los miRNAs exosomales placentarios en etapas tempranas de la gestación presentes en el grupo que desarrollará DMG. Red de expresión génica (**E**) y análisis de vías y procesos metabólicos (**F**) regulados por los miRNAs exosomales placentarios en etapas tempranas de la gestación presentes en el grupo que desarrolla DMG independientemente del índice HOMA-%β. Análisis de redes de expresión génica realizados en la plataforma ExpressAnalyst. Análisis de vías y procesos metabólicos realizados en la plataforma Enrichr empleando la base de datos KEGG2021 Human.

Discusión

La principal alteración metabólica que se desarrolla durante el embarazo es la DMG, que afecta alrededor del 15% de los embarazos en todo el mundo y se considera un importante problema de salud pública mundial [168]. La relevancia de esta patología recae en el desarrollo de complicaciones maternoperinatales a corto y largo plazo, así como incrementar el riesgo de desarrollar enfermedades metabólicas a largo plazo como obesidad, síndrome metabólico y diabetes tipo 2 (DT2) [6, 169]. Históricamente, los factores placentarios como el estradiol, la progesterona y el cortisol [170], así como la hormona del crecimiento placentario humano [171] y la prolactina [172], se han asociado con la resistencia a la insulina en embarazos con DMG. Sin embargo, al evaluar la correlación de estos factores placentarios en circulación, no se han encontrado fuertes correlaciones con la resistencia materna a la insulina [173], lo que sugiere que otros mecanismos juegan un papel clave en el desarrollo de esta patología.

En particular, las EVs, en específico los exosomas han sido postulados como mediadores clave de la comunicación célula-célula en el desarrollo de patologías metabólicas incluyendo la DMG [10, 13, 18, 120, 174]. Las EVs se encuentran involucradas en la regulación de procesos celulares como la regulación post-transcripcional génica, el metabolismo y el crecimiento celular; por lo tanto, son claves para establecer una adecuada comunicación intercelular [13]. Este efecto regulador está mediado por la heterogeneidad del contenido de las EVs, ya que transportan todo tipo de biomoléculas involucradas en la señalización celular (proteínas, lípidos y ácidos nucleicos) antes de ser secretados mediante exocitosis [13]. Además, dado que el contenido de estas EVs es específico del tipo de célula que la origina, sirven como una "huella" de la célula secretora y su condición metabólica y/o fisiológica.

Es de destacar que, entre las EVs, los exosomas se han estudiado ampliamente en enfermedades metabólicas en el embarazo como la DMG. En particular el contenido de estos exosomas incluye todo tipo de RNAs no codificantes, como los miRNAs; los exosomas actuan como vehículos que protegen a los miRNAs de las ribonucleasas exógenas, convirtiendolos en un mecanismo adecuado para transferir estos miRNAs e influir en los procesos celulares en los tejidos diana [175, 176]. En particular en los estados de diabetes, los exosomas han sido asociados con el desarrollo de esta patología ya que se ha demostrado que tienen efectos en el metabolismo de la glucosa, en órganos como los adipocitos, el hígado, tejido músculo esquelético y la célula β -pancreática [18, 114, 177-179].

El mecanismo fisiopatológico de la DMG se basa en cambios en la respuesta y sensibilidad a la insulina; que comprenden defectos en el deterioro de la señalización de la insulina en los principales órganos sensibles a esta hormona y de absorción de glucosa, tales como el hígado, el músculo esquelético y el tejido adiposo; así como también la incapacidad de la célula β pancreática para compensar el marcado aumento de la resistencia a la insulina y la reducción de la secreción de insulina frente a un estímulo de alta glucosa [47, 48, 91, 180].

Durante el embarazo, las EVs, incluidos los exosomas, se pueden encontrar en la circulación sistémica materna. El origen de estos exosomas se puede subdividir en dos categorías principales: exosomas de origen materno (secretado por células de órganos maternos) y exosomas de origen placentario

(secretado por células placentarias, principalmente células del sincitiotrofoblasto) [17, 143, 181-184]. Los resultados presentados en el presente trabajo resaltan las diferencias en la concentración de exosomas maternos que ocurren exclusivamente en los subgrupos que desarrollarán DMG. Estas diferencias están influenciadas por el grado de funcionalidad de la célula β pancreática. Cabe destacar que el grupo que mostró el mayor tamaño de exosomas es el grupo predispuesto a desarrollar DMG con un índice HOMA-%β bajo. Estas diferencias observadas en concentración y tamaño en los subgrupos que desarrollarán DMG pueden sugerir que la madre probablemente incremente respuestas fisiológicas para poder adaptarse a la etapa anabólica del embarazo (<20 semanas de gestación). Por otro lado, las discrepancias observadas en los exosomas placentarios, tanto en concentración como en tamaño, se podrían explicar debido a que en esta etapa del embarazo la placenta también puede presentar cierto grado de incapacidad para adaptarse a la etapa anabólica del embarazo, lo que sugiere una inadaptación placentaria. En general, los resultados presentados en el presente estudio concuerdan con los observados por Salomon et al., en donde los embarazos que desarrollarán DMG tienen una mayor concentración de exosomas totales y placentarios al comienzo del embarazo (11-14 semanas de gestación) en comparación con aquellas mujeres que no desarrollarán esta patología [174]. El presente estudio observó que tanto el tamaño como la concentración de exosomas en el grupo de DMG dependen del índice HOMA- β ; esto concuerda con otros estudios donde se ha demostrado que las concentraciones de insulina y el índice HOMA- $\%\beta$ en estados de DT2 y prediabetes se correlacionan positivamente con la concentración de exosomas [185].

Los miRNAs exosomales se han asociado ampliamente con el desarrollo de DMG. Sin embargo, pocos estudios evalúan los perfiles de los miRNAs exosomales en las primeras etapas de la gestación [18, 27, 28]. Los resultados descritos en la presente tesis indican que los embarazos con un índice HOMA-%β alto que desarrollarán DMG en comparación con los embarazos normoglucémicos presentan miRNAs exosomales maternos involucrados en las vías de señalización de PI3K-Akt, secreción de insulina, MAPK, AMPK y Ras. Estos hallazgos concuerdan con Endo et al., en donde se sugiere que, a diferencia de los embarazos normoevolutivos en donde se observa una mayor funcionalidad de las células β a medida que avanza la gestación; la disfunción de las células β pancreáticas ocurre en mujeres que desarrollan DMG en un contexto de resistencia crónica a la insulina. Por lo tanto, la secreción de insulina en mujeres que desarrollan DMG puede incrementar a lo largo del embarazo; sin embargo, la tasa de secreción de insulina al comienzo del embarazo en mujeres que desarrollarán DMG es inferior en comparación con embarazos saludables [101]. Esto sugiere que estos miRNAs exosomales maternos identificados en las primeras etapas del embarazo en el presente trabajo tienen el potencial de modular la resistencia a la insulina en los tejidos sensibles a la insulina; como se ha observado en los miRNAs exosomales de embarazos con DMG en etapas tardías en el embarazo que modulan la respuesta a la insulina, demostrado por Nair et al [10].

La disfunción de la célula β pancreática en forma de alteración de la secreción de insulina y resistencia a la insulina son dos características principales del desarrollo de DMG [48]. La alteración en la señalización de la insulina es fundamental para el desarrollo de resistencia a la insulina en tejidos como el hígado, el músculo esquelético y el tejido adiposo. La resistencia a la insulina está mediada por una red de procesos de señalización celular altamente interconectada que regula y controla numerosos procesos en las
células de los tejidos específicos sensibles a esta hormona, siendo esta respuesta tejido-específica [186]. El receptor de insulina (IR) fosforila las proteínas sustrato del receptor de insulina (proteínas IRS) en presencia de insulina, lo que conduce a la activación de dos vías de señalización: la vía fosfatidilinositol 3cinasa (PI3K)-AKT/proteína cinasa B (PKB), que está a cargo de la mayoría de las acciones metabólicas de la insulina, y la vía de la proteína cinasa activada por mitógenos Ras (MAPK), que controla la expresión génica y trabaja en conjunto con la vía PI3K para regular el desarrollo y la diferenciación celular [186]. En particular en el grupo que se caracteriza por un índice HOMA-%β alto y que desarrollará DMG; los miRNAs diferencialmente expresados identificados en este trabajo sugieren una supresión de la señalización a la insulina al ser blanco de genes que están involucrados en la señalización de PI3K-Akt, MAPK, AMPK y Ras. Estos hallazgos sugieren que desde etapas tempranas de la gestación los exosomas maternos provenientes de este subgrupo en específico, podrían tener un papel potencial en la mala adaptación a la insulina. Sin embargo, se requieren estudios que evalúen en específico estos miRNAs exosomales de origen materno para elucidar el impacto que tienen en la señalización a la insulina en el contexto de etapas tempranas del embarazo que desarrolla DMG.

Los miRNAs exosomales provenientes de embarazos con diagnóstico de DMG al final del embarazo pueden modular la respuesta del tejido metabólico a la insulina, tal como lo demostró un estudio realizado por Nair et al [10], donde se identificó un conjunto específico de miRNAs exosomales que están asociados con la sensibilidad a la insulina del músculo esquelético; específicamente, a la captación de glucosa. Con base en el perfil de expresión de genes potencialmente regulado por este conjunto de 13 miRNAs identificados en el presente trabajo, se puede plantear la hipótesis de que es probable que en este subgrupo de mujeres que desarrollarán DMG y presentan un índice HOMA-%β alto en etapas tempranas de la gestación, estos mecanismos clave en la fisiopatología de la DMG regulados por estos miRNAs exosomales maternos (vías de señalización de PI3K-Akt, secreción de insulina, MAPK, AMPK y Ras) ya se encuentran alterados en las primeras etapas del embarazo. Esto también puede sugerir que la mujer embarazada que se enfrente a la resistencia fisiológica a la insulina, entre las semanas 24-28 de gestación, y que no pueda compensar adecuadamente esta adaptación, en consecuencia desarrollará DMG.

Además, en el presente estudio, las mujeres que desarrollarán DMG y que presentan un índice HOMA-%β alto tienen dos miRNAs placentarios expresados de forma única en comparación con el grupo normoglucémico. Estos dos miRNAs exosomales placentarios regulan potencialmente los procesos biológicos implicados en la vía de señalización de la oxitocina, la diferenciación de las células Th1, Th2 y Th17, así como la citotoxicidad mediada por células natural-killer (NK) y la apoptosis. Más allá de las alteraciones metabólicas clásicas, la patogénesis de la DMG implica una desregulación de los procesos biológicos relacionados con el sistema inmunológico, como alteraciones en la inmunidad adaptativa y las células T reguladoras [187]. En los embarazos que desarrollan DMG, la hiperglucemia potencia e influye significativamente un entorno proinflamatorio; estas condiciones son propensas para modular el fenotipo de las NK y las citocinas que se encuentran en la unidad fetoplacentaria y en la circulación materna [188]. Este fenómeno se ha observado en estudios en los que la DMG aumenta la presencia de poblaciones de células inmunitarias citotóxicas y secretores de citocinas en la interfaz materno-fetal [189]. Las células T son linfocitos que desempeñan un papel importante en la inmunidad mediada por células, particularmente en la respuesta inmune adaptativa, donde protegen al huésped contra patógenos [190]. Los fenotipos de células T incluyen células T helpers 1 y 2 (Th1 y Th2) y otros subtipos funcionales como células Th17, Treg y células T citotóxicas (Tc) [190]. A las 28-34 semanas de gestación, las pacientes con DMG muestran una mayor proporción de células T periféricas que expresan IL-13 (respuesta de tipo Th2), células Th17 y células Treg que expresan IL-10 en comparación con embarazos normoevolutivos [191]. Así mismo, en embarazos que cursan con DMG existe una expansión y proliferación de células Th17 que secretan IL-17 (una citocina que promueve la inflamación y el reclutamiento de neutrófilos) y expresan el factor de transcripción RORyT [192]. Estudios recientes también sugieren que en los embarazos con DMG existe una expansión y proliferación de células Th17 y una mayor proporción de Th1:Treg y Th17:Treg, lo que constituye y favorece un entorno proinflamatorio característico de estadios de diabetes [192, 193]. El papel principal de las células Th17 es la secreción pro-inflamatoria de IL-17, que aumenta la actividad fagocítica y citotóxica de los macrófagos y neutrófilos; y la evidencia sugiere que la relación de Treg/Th17 podría ser crucial para predecir el inicio de una enfermedad metabólica similar a la observada en DMG [194]. Los resultados identificados en este trabajo sugieren que los miRNAs de exosomas placentarios en etapas tempranas del embarazo, expresados en mujeres que desarrollarán DMG, podrían influir potencialmente en la respuesta inmune materna y fomentar un entorno pro-inflamatorio que favorezca el desarrollo de resistencia a la insulina y/o alteración en la respuesta de la célula β -pancreática, lo que posteriormente conduciría a la progresión de la DMG.

Con respecto al subgrupo de mujeres que desarrollarán DMG y presentan una menor función de la célula β en las primeras etapas del embarazo (bajo índice HOMA-%β), solo se expresó diferencialmente el miRNA hsa-miR-455-3p en exosomas maternos. Este miRNA regula procesos biológicos como el ritmo circadiano, la regulación de la lipólisis en los adipocitos, la vía de señalización de adipocitocinas y la vía de señalización de los PPAR. Los receptores activados por proliferadores de peroxisomas (PPAR)) son factores de transcripción activados por ligando que interactúan con el receptor de retinoides X (RXR) y se unen a los elementos de respuesta de la proteína del proliferador de peroxisomas de elemento de respuesta (PPRE) en los promotores de genes diana [195]. La familia de los PPARs (PPAR α , PPAR β/δ y PPARy) controla la expresión génica en los estados de inflamación, estrés oxidativo, señalización de la insulina, el metabolismo de la glucosa y la adipogénesis [196, 197]. Además, PPARy puede disminuir la producción de citocinas inflamatorias como TNF-, IL-1 e IL-6 por monocitos y macrófagos [198-200]. La expresión de PPARy se encuentra disminuida en tejido adiposo, placenta y células placentarias en mujeres con embarazos diagnosticados con DMG [180, 201-203]. Por el contrario, un estudio realizado por Gao et al [199] en población asiática con embarazos con DMG entre las semanas 26 y 37 de gestación; evaluaron la expresión del mRNA y la proteína de PPARy en placenta y tejido adiposo; en donde se observaron expresión reducida del mRNA de PPARy en estos órganos y se correlacionó negativamente con los niveles de glucosa en una OGTT de 75 g. Estos resultados contradictorios en PPARy podrían ser específicos de la etapa de embarazo y del tejido evaluado; lo que demuestra que el papel que desempeña PPARy en el desarrollo de DMG sigue siendo complejo.

La lipólisis es un mecanismo clave de los adipocitos que regula la sensibilidad a la insulina durante el embarazo. En condiciones de embarazo normoevolutivo, la hipertrofia de los adipocitos es responsable del almacenamiento de grasa. Durante el embarazo, la resistencia a la insulina fisiológica permite una lipólisis controlada y bien regulada con el objetivo de mantener el suministro de nutrientes a la unidad feto-placentaria [204]. En los embarazos con diagnóstico de DMG, algunos estudios han propuesto y respaldado la hipótesis de que la hipertrofia del tejido adiposo subcutáneo y las tasas reducidas de hiperplasia de este tejido provocan un incremento exacerbado de la secreción de ácidos grasos. Los sitios ectópicos (como el hígado, el tejido adiposo visceral y el páncreas) tienen el potencial de captar esta sobrecarga de ácidos grasos y provocar insuficiencia de las células β pancreáticas [119, 205, 206]. Los resultados identificados en el presente trabajo, podrían indicar que los procesos biológicos en etapas tempranas de la gestación de mujeres que desarrollarán DMG podrían estar orientados a la disfunción de los adipocitos durante el embarazo debido a la desregulación en la lipólisis y la estimulación de hipertrofia y/o hiperplasia de los adipocitos, que consecuentemente conducen al desarrollo de resistencia a la insulina y a la disfunción de la célula β pancreática [119, 199, 204]. Por ejemplo, la señalización de PPARy en los adipocitos mejora la captura de glucosa en sangre, al aumentar la absorción de glucosa; en consecuencia, la disminución de la expresión de PPARy en la DMG puede ayudar a favorecer la intolerancia a la glucosa característica de esta patología [207].

De igual forma, se identificaron seis miRNAs de exosomas derivados de placenta expresados de forma única en el grupo de DMG con un índice de HOMA% β bajo. Estos seis miRNAs regulan potencialmente 129 genes asociados con el metabolismo de los esfingolípidos y su vía de señalización. Los esfingolípidos se han asociado con la disminución de la sensibilidad a la insulina, favoreciendo el estado proinflamatorio característico de la diabetes tipo 2; también favorecen los estados de apoptosis y la disfunción en órganos, incluido el páncreas [208]. La apoptosis, la secreción de citocinas celulares, el tráfico vesicular del retículo endoplásmico (RE) al aparato de Golgi, procesos de autoinmunidad de los islotes pancreáticos (como los observados en diabetes tipo 1) y la expresión del gen de la insulina son sólo algunos de los procesos biológicos que están influenciados por metabolitos de esfingolípidos como las ceramidas, los glicoesfingolípidos, la esfingosina 1-fosfato, y los gangliósidos [209]. Los esfingolípidos están especialmente implicados en la lipotoxicidad de la célula β -pancreática. Además, la síntesis de novo de esfingolípidos ocurre en las membranas subcelulares junto con la producción de vesículas secretoras, el tráfico vesicular y los procesos de maduración de los gránulos vesiculares que contienen insulina. La composición de la membrana plasmática de la célula está mediada por la actividad de las esfingomielinasas neutras, lo que afecta la excitabilidad de las células β y la exocitosis de la insulina; mientras que otro glicoesfingolípido (sulfatida) determina la estabilidad de la insulina en los gránulos [209]. También resulta relevante resaltar que el metabolismo de los esfingolípidos en las membranas celulares está fuertemente relacionado con la regulación de la apoptosis de las células β pancreáticas en estados de resistencia a la insulina [209]. Además, este menor contenido de ceramidas en las placentas afectadas con DMG se acompaña de aumento de los niveles de proteína de ASAH1 (enzima limitante de la velocidad de degradación del CER en esfingosina y ácidos grasos); posiblemente contribuyendo a la respuesta de disfunción placentaria a la insulina, exacerbando la resistencia a la insulina en este órgano [210]. A su vez, en la DMG, los esfingolípidos se han asociado fuertemente con la disfunción placentaria. Embarazos con DMG se caracterizan por presentar menor contenido de ceramidas en el trofoblasto de las vellosidades y las mitocondrias placentarias, así como por concentraciones más bajas de ceramidas de cadena larga (CER) como C16:0–CER, C18:0–CER y C24:0–CER [210, 211]. En este escenario, en el presente trabajo se plantea la hipótesis de que, en el caso de una disfunción de la célula β pancreática, los miRNAs de exosomas placentarios podrían tener un papel importante en la regulación de la cólula β pancreática y el desarrollo de disfunción placentaria, que podrían ser actores clave en la patogénesis de la DMG entre las 24 y 28 semanas de gestación.

También se identificó un miRNA exosomal materno único en el grupo que desarrollará DMG independientemente de la función de la célula β pancreática: el miRNA hsa-miR-6724-5p. Este miRNA regula 50 genes asociados con las vías del metabolismo de la riboflavina y la tiamina, el funcionamiento de los lisosomas, así como regulación de autofagia y apoptosis. La tiamina (vitamina B1) y la riboflavina (vitamina B2) son vitaminas esenciales que se requieren durante el embarazo y desempeñan un papel importante en el metabolismo de un sólo carbono necesario para la metilación del DNA en el desarrollo fetal (asegurar embriogénesis y crecimiento fetal adecuado) y tienen un papel importante como cofactores en varios complejos enzimáticos implicados en el metabolismo energético. La tiamina actúa como cofactor en complejos enzimáticos involucrados en procesos metabólicos que comprenden hidratos de carbono y aminoácidos [212]. En estados diabéticos, la deficiencia de tiamina se ha asociado con el grado de actividad de la enzima transcetolasa citosólica en los eritrocitos, así como con un mayor riesgo cardiovascular [213-216]. Además, la riboflavina actúa como un cofactor importante para la síntesis de energía aeróbica, el metabolismo mitocondrial y la oxidación de ácidos grasos [217, 218]. La suplementación con riboflavina en un modelo murino con diabetes ha demostrado que la riboflavina puede actuar como un agente antioxidante contra el estrés oxidativo, en particular la peroxidación lipídica, la carbonilación de proteínas y el daño oxidativo del DNA; así como aumentar los niveles de calcio y la expresión de GLUT-4, mejorando la captación de glucosa y la sensibilidad periférica a la insulina [219]. Los niveles subóptimos de riboflavina, se han asociado con aumento del peso corporal y la deposición de grasa, disminución de la expresión de GLUT-4 en el tejido adiposo y de la enzima glucocinasa (GCK), y una mayor expresión de marcadores inflamatorios como el receptor C-C quimiocina tipo 5 (CCR5), la IL-1β y el receptor tipo toll-4 (TLR4) [220]. Por lo tanto, podemos postular que la tiamina y la riboflavina sirven como cofactores claves en la regulación de la adaptación metabólica materna al inicio del embarazo, principalmente el metabolismo de los hidratos de carbono, aminoácidos y ácidos grasos, metabolismo mitocondrial e incluso la disponibilidad de GLUT-4 en el tejido músculo esquelético y el tejido adiposo (un proceso regulado por acción de la insulina); y que una desregulación en su metabolismo puede impactar negativamente durante el embarazo y potencialmente contribuir al desarrollo de la marcada resistencia a la insulina observada en los embarazos con DMG en la fase catabólica.

La regulación de la macroautofagia es esencial para mantener la función de las células β pancreáticas en respuesta al estrés celular asociado con la DT2 y la etapa en la que se desarrolla la patología [119, 221]. La autofagia es esencial para el desarrollo placentario, la implantación y las adaptaciones maternas durante el embarazo. Los trofoblastos extravellosos de placentas con DMG cultivadas en condiciones de hiperglucemia parecen regular la autofagia y la apoptosis celular [222, 223]. Aunque muchos estudios

sobre la autofagia se han centrado únicamente en la placenta, no se puede menospreciar el papel que se ha demostrado que tiene la autofagia en la función de las células β pancreáticas en los estados con DT2. Por lo tanto, los resultados de este trabajo sugieren que la autofagia es un mecanismo para regular las adaptaciones maternas y placentarias en etapas tempranas del embarazo. La desregulación de la autofagia puede ser responsable de la mala adaptación de la función de la célula β pancreática observada en las primeras etapas del embarazo, que conducirá a una mala adaptación cuando se produzca la resistencia fisiológica a la insulina y se desarrolle DMG.

Por último, se identificó un miRNA exosomal placentario expresado de manera única (hsa-miRNA-3665) en etapas tempranas de embarazos que desarrollarán DMG independientemente de la función de las células β pancreáticas. Este miRNA regula principalmente las vías implicadas en las vías de señalización Wnt y mTOR. Las alteraciones y supresión de la vía Wnt se han asociado con el desarrollo de DT2 [224]. La vía de señalización Wnt se ha asociado con la homeostasis metabólica, como el metabolismo normal del colesterol [225], la secreción y función de las incretinas [226], la inhibición de la adipogénesis [227, 228], la proliferación de células β pancreáticas [229-235] y la estimulación de la glucosa en lasecreción de insulina (GSIS) [225]. La vía mTOR es un regulador clave de procesos como la proliferación y el crecimiento celular Durante el embarazo, la vía de mTOR es importante en la función y crecimiento de la placenta, debido a que regula la expresión de proteínas placentarias y el crecimiento celular de la placenta respondiendo a la disponibilidad de nutrientes y a los estímulos de crecimiento [236]. La DMG, preeclampsia y eclampsia se han relacionado con la alteración de la señalización mTOR [236]. mTOR se activa por fosforilación a través del eje de señalización fosfatidilinositol-3 guinasa (PI3K)/AKT; y las proteínas p70S6K y 4EBP1 regulan el inicio de la traducción y la síntesis de proteínas. En condiciones fisiológicas, p70S6K también está regulado por la vía de ERK [237]. Un estudio realizado por Tsai et al evaluó la expresión de proteínas relacionadas con la vía de señalización de mTOR en placentas a término de mujeres con diagnóstico de DMG e identificó una mayor expresión de mTOR fosforilado, 4EBP1 fosforilado y AKT fosforilado [236]. Nuestro estudio identificó dos vías principales de señalización que sugieren que el deterioro de la señalización de mTOR y Wnt al comienzo del embarazo podría ser parte de los mecanismos que desencadenan la patogénesis de la DMG, entre las semanas 24 y 28 de gestación. Por lo tanto, en etapas tempranas del embarazo, en mujeres que desarrollarán DMG, los miRNAs exosomales placentarios tendrían el potencial de alterar la señalización de mTOR en tejidos sensibles a la insulina, regulando la resistencia a la insulina y la disfunción placentaria en este órgano a través de la desregulación de la vía Wnt.

El presente trabajo cuenta con varias fortalezas. Este es el primer estudio que evalúa el perfil de miRNAs exosomales en las primeras etapas del embarazo con base en la función de la célula β pancreática y el origen de los exosomas (exosomas maternos y placentarios) en mujeres que desarrollarán DMG. Este estudio es relevante porque ningún otro estudio ha evaluado el perfil de miRNAs exosomales maternos y placentarios en las primeras etapas del embarazo. Las diferencias identificadas en este estudio ponen en evidencia que este perfil de miRNAs exosomales no sólo está influenciado por el origen materno o placentario; sino, además, que la función de la célula β pancreática en etapas tempranas de la gestación también es un determinante de estas diferencias encontradas. El hallazgo de que estos dos factores (el origen del exosoma y la función de la célula β pancreática) influyen en la expresión diferencial de

miRNAs sugiere que el análisis del perfil de miRNAs exosomales podría ser de utilidad en la identificación de posibles biomarcadores de diagnóstico temprano de DMG y servir para comprender mejor los mecanismos fisiopatológicos implicados en el desarrollo de esta enfermedad. Una limitante de este estudio es la ausencia de datos experimentales que demuestren que los miRNAs identificados alteran la secreción de insulina. Por lo tanto, únicamente se puede formular hipótesis sobre los mecanismos que probablemente podrían ocurrir en el contexto de las adaptaciones tempranas del embarazo en los embarazos que desarrollarán DMG.

Limitaciones

Este estudio exclusivamente caracteriza el perfil de miRNAs presentes en los exosomas de origen materno y placentario, por lo que se limita a evaluar un solo componente del contenido de las vesículas extracelulares pequeñas (proteínas, metabolitos, lípidos, DNA, mRNA y otros tipos de RNA no codificantes) que pudieran estar influenciando en el desarrollo de DMG.

Esta tesis realizó la investigación tomando en cuenta que hasta el momento se carecen de marcadores tejido-específico de exosomas de origen materno, limitando así la identificación de un perfil característico de los exosomas que son secretados por los tejidos sensibles a la insulina (célula β pancreática, tejido hepático, músculo esquelético y tejido adiposo).

Conclusión

Esta investigación pone en evidencia el papel potencial de los miRNAs exosomales maternos y placentarios en la regulación de la comunicación entre la madre y la placenta durante el embarazo, sobre todo en etapas tempranas de la gestación (Figura 20). En general, en el presente estudio, los miRNAs exosomales maternos regulan principalmente a genes relacionados con la regulación de la glucosa, el metabolismo, la secreción y señalización de insulina. Por otro lado, los miRNAs exosomales placentarios regulan genes implicados en la respuesta a la tolerancia inmunológica del embarazo y a las vías asociadas con la disfunción placentaria. Asimismo, los presentes hallazgos respaldan que los perfiles de miRNAs difieren según su origen (materno o placentario) y la función de las células β pancreáticas (evaluado indirectamente mediante el uso del índice HOMA-%β) en etapas tempranas de la gestación. La presente tesis enfatiza la importancia de los miRNAs exosomales que se encuentran relacionados en los procesos metabólicos y biológicos; los cuales están influenciados desde etapas tempranas del embarazo por el origen de su secreción (exosomas maternos y/o exosomas placentarios) y el grado de funcionalidad de las células β pancreáticas evaluado por un índice indirecto (HOMA-% β) en aquellas mujeres que desarrollan DMG. Esta investigación proporciona información sobre el perfil de miRNAs entre los miRNA exosomales maternos y placentarios y puede tener implicaciones para identificar posibles biomarcadores u objetivos terapéuticos para esta patología, principalmente en etapas tempranas de la gestación. Se requieren de mayores estudios futuros para determinar los mecanismos moleculares exactos que conducen y regulan estas adaptaciones metabólicas en la unidad materna y fetoplacentaria que eventualmente resultarán en el desarrollo de DMG. Además, la investigación del efecto de los exosomas maternos y/o placentarios sobre las células ß pancreáticas secretoras de insulina y otros tejidos diana sensibles a la insulina, como el hígado, los adipocitos y el músculo esquelético, puede ayudar a elucidar sobre la fisiopatología de la DMG y la identificación de biomarcadores y/o nuevos blancos terapéuticos. Este nuevo conocimiento ayudará a comprender las adaptaciones metabólicas maternas y placentarias al embarazo, que son esenciales para el crecimiento y desarrollo fetal óptimos.

Figura 20. En etapas tempranas de la gestación, el perfil de miRNAs exosomales maternos y placentarios varía con base en el índice HOMA-%β, regulando vías de señalización y procesos moleculares distintos. En etapas tempranas de la gestación (<18 semanas de gestación), las mujeres que desarrollarán DMG presentan perfiles de miRNAs maternos y placentarios distintos dependiendo del índice de función de célula β pancreática (HOMA-%β) que presenten. Aquellas mujeres que presentan un índice HOMA-%β alto se caracterizan por tener concentración de insulina incrementada, en contraste con una normoglucemia y un índice de resistencia a la insulian HOMA-IR normal. En estas mujeres, los miRNAs exosomales maternos regulan procesos de secreción de insulina, así como de vías de señalización asociados con esta hormona, como lo son las vías de señalizaión PI3K-Akt y RAS. Los miRNAs exosomales placentarios en etapas tempranas de mujeres que desarrollaránn diabetes gestacional y presentan un índice HOMA- $\%\beta$ alto, regulan procesos de apoptosis y procesos de tolerancia inmunológica al embarazo. Por lo que se refiere a aquellas mujeres con un bajo índice HOMA-% se caracterizan por presentar bajos niveles de insulina, índice HOMA-IR bajo y normoglucemia. Sin embargo en estas mujeres, el exosoma materno identificado expresado diferencialmente en este grupo, regula procesos fisiológicos en los adipocitos (regulación de lipólisis, vías de señalización de adipocitocinas, PPAR y AMPK), así como resistencia a la insulina. En cambio, los exosomas de origen placentario regulan procesos asociados con el metabolismo y vías de señalización de esfingolípidos, los cuales están implicados en la función de la célula β pancreática; también estos miRNAs regulan la vía de señalización p53 y procesamiento protéico en retículo endoplásmico, procesos asociados con la función placentaria. Este estudio pone en evidencia que, desde etapas tempranas de la gestación, en mujeres que desarrollarán DMG, el perfil de miRNAs exosomales maternos y placentarios es distinto dependiendo del índice HOMA-% β y que a su vez regulan procesos metabólicos y vías de señalización distintos.

Perspectivas y recomendaciones

Con base en los resultados discutidos en la presente tesis, los miRNAs identificados en exosomas maternos como placentarios pueden ser empleados como biomarcadores ya sea de diagnóstico, pronóstico o progresión de DMG en etapas tempranas de la gestación. Los resultados presentados en este trabajo abren paso a nuevas interrogantes, como es saber si dichos miRNAs, que fueron identificados en etapas tempranas del embarazo, se mantienen a lo largo del mismo, o si en todo caso, dicho perfil cambia con base en el índice HOMA-%β presente en etapas tempranas de la gestación. Para esto se requieren nuevos estudios con cohortes que incluyan un tamaño de muestra mayor y que incluso sea comparable con otras poblaciones con alto riesgo de desarrollar DMG. Para demostrar si estos miRNAs exosomales maternos y/ó placentarios identificados en cada subgrupo evaluado (índice HOMA-%β bajo o alto) que desarrollará DMG, alteran la secreción de insulina y/o afectan la función de la célula β pancreática y otros tejidos sensibles a la insulina es necesario realizar estudios experimentales *in vitro* o *in vivo*.

Dado que el contenido de los exosomas es heterogéneo y depende de la célula que los secreta, es necesario caracterizar y evaluar también el perfil proteómico, metabolómico, lipidómico, genómico, y transcriptómico de estas vesículas extracelulares pequeñas para poder elucidar mejor el papel y el impacto que tiene el contenido de estas vesículas en la fisiopatología de la diabetes gestacional. Por último, este trabajo de investigación se enfoca únicamente en caracterizar el perfil de miRNAs presentes en los exosomas, los cuales constituyen un grupo de vesículas extracelulares que han sido principalmente asociados al desarrollo de patologías metabólicas. Ahora queda abierta la posibilidad de un estudio integral en donde se tomen en cuenta los demás grupos de vesículas extracelulares tales como los exómeros, microvesículas y/o cuerpos apoptóticos que complementen la información que se tiene hasta el momento sobre la fisiopatología de la DMG.

Referencias

- 1. ElSayed, N.A., et al., 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care, 2023. **46**(Suppl 1): p. S19-S40.
- 2. Meek, C.L., *An unwelcome inheritance: childhood obesity after diabetes in pregnancy.* Diabetologia, 2023. **66**(11): p. 1961-1970.
- 3. Ye, W., et al., *Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis.* Bmj, 2022. **377**: p. e067946.
- 4. Lowe, L.P., et al., *Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study: associations of maternal A1C and glucose with pregnancy outcomes.* Diabetes Care, 2012. **35**(3): p. 574-580.
- 5. Moon, J.H., S.H. Kwak, and H.C. Jang, *Prevention of type 2 diabetes mellitus in women with previous gestational diabetes mellitus.* Korean J Intern Med, 2017. **32**(1): p. 26-41.
- 6. Barker, D.J.P., et al., *Fetal origins of adult disease: strength of effects and biological basis.* International Journal of Epidemiology, 2002. **31**(6): p. 1235-1239.
- 7. Burton, G.J., A.L. Fowden, and K.L. Thornburg, *Placental Origins of Chronic Disease*. Physiological Reviews, 2016. **96**(4): p. 1509-1565.
- 8. Kim, C., *Maternal outcomes and follow-up after gestational diabetes mellitus.* Diabetic Medicine: A Journal of the British Diabetic Association, 2014. **31**(3): p. 292-301.
- 9. Razo-Azamar, M., et al., *An early prediction model for gestational diabetes mellitus based on metabolomic biomarkers.* Diabetol Metab Syndr, 2023. **15**(1): p. 116.
- 10. Nair, S., et al., *Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity.* Clinical Science (London, England: 1979), 2018. **132**(22): p. 2451-2467.
- 11. Nakahara, A., et al., *Circulating Placental Extracellular Vesicles and Their Potential Roles During Pregnancy*. The Ochsner Journal, 2020. **20**(4): p. 439-445.
- 12. Sheller-Miller, S., et al., *Feto-Maternal Trafficking of Exosomes in Murine Pregnancy Models.* Frontiers in Pharmacology, 2016. **7**: p. 432.
- Salomon, C., et al., Extracellular Vesicles and Their Emerging Roles as Cellular Messengers in Endocrinology: An Endocrine Society Scientific Statement. Endocrine Reviews, 2022. 43(3): p. 441-468.
- 14. Colombo, M., G. Raposo, and C. Théry, *Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles.* Annual Review of Cell and Developmental Biology, 2014. **30**: p. 255-289.
- 15. van Niel, G., G. D'Angelo, and G. Raposo, *Shedding light on the cell biology of extracellular vesicles*. Nature Reviews. Molecular Cell Biology, 2018. **19**(4): p. 213-228.
- 16. Miranda, J., et al., *Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction Liquid biopsies to monitoring fetal growth.* Placenta, 2018. **64**: p. 34-43.
- 17. Jin, J. and R. Menon, *Placental exosomes: A proxy to understand pregnancy complications.* American Journal of Reproductive Immunology (New York, N.Y.: 1989), 2018. **79**(5): p. e12788.
- James-Allan, L.B., et al., Regulation of glucose homeostasis by small extracellular vesicles in normal pregnancy and in gestational diabetes. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 2020. 34(4): p. 5724-5739.
- 19. James-Allan, L.B., et al., *A novel technique using chronic infusion of small extracellular vesicles from gestational diabetes mellitus causes glucose intolerance in pregnant mice*. Clin Sci (Lond), 2022. **136**(21): p. 1535-1549.

- 20. Zhang, T.-N., et al., *Non-Coding RNAs and Extracellular Vehicles: Their Role in the Pathogenesis of Gestational Diabetes Mellitus.* Frontiers in Endocrinology, 2021. **12**.
- 21. Salomon, C., et al., *A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration*. PloS One, 2014. **9**(6): p. e98667.
- 22. Salomon, C., et al., *Hypoxia-induced changes in the bioactivity of cytotrophoblast-derived exosomes.* PloS One, 2013. **8**(11): p. e79636.
- 23. Mitchell, M.D., et al., *Placental exosomes in normal and complicated pregnancy*. American Journal of Obstetrics and Gynecology, 2015. **213**(4 Suppl): p. S173-181.
- 24. Chang, G., et al., *Expression and trafficking of placental microRNAs at the feto-maternal interface.* The FASEB Journal, 2017. **31**(7): p. 2760-2770.
- 25. Gercel-Taylor, C., et al., *Shed membrane fragment modulation of CD3-zeta during pregnancy: link with induction of apoptosis.* Journal of Reproductive Immunology, 2002. **56**(1-2): p. 29-44.
- 26. Mincheva-Nilsson, L. and V. Baranov, *Placenta-derived exosomes and syncytiotrophoblast microparticles and their role in human reproduction: immune modulation for pregnancy success.* American Journal of Reproductive Immunology (New York, N.Y.: 1989), 2014. **72**(5): p. 440-457.
- 27. Nair, S., et al., *Extracellular vesicle-associated miRNAs are an adaptive response to gestational diabetes mellitus.* Journal of Translational Medicine, 2021. **19**(1): p. 360.
- 28. Gillet, V., et al., *miRNA Profiles in Extracellular Vesicles From Serum Early in Pregnancies Complicated by Gestational Diabetes Mellitus.* The Journal of Clinical Endocrinology and Metabolism, 2019. **104**(11): p. 5157-5169.
- 29. Zeng, Z., F. Liu, and S. Li, *Metabolic Adaptations in Pregnancy: A Review*. Ann Nutr Metab, 2017. **70**(1): p. 59-65.
- 30. Parrettini, S., A. Caroli, and E. Torlone, *Nutrition and Metabolic Adaptations in Physiological and Complicated Pregnancy: Focus on Obesity and Gestational Diabetes.* Front Endocrinol (Lausanne), 2020. **11**: p. 611929.
- 31. Herrera, E., *Lipid metabolism in pregnancy and its consequences in the fetus and newborn.* Endocrine, 2002. **19**(1): p. 43-55.
- 32. Sferruzzi-Perri, A.N., et al., *Exploring the causes and consequences of maternal metabolic maladaptations during pregnancy: Lessons from animal models.* Placenta, 2020. **98**: p. 43-51.
- 33. *Gestational Diabetes: A Decade after the HAPO Study*, ed. A. Lapolla, et al. 2020: S.Karger AG.
- 34. Murphy, S.P. and B.F. Abrams, *Changes in energy intakes during pregnancy and lactation in a national sample of US women.* Am J Public Health, 1993. **83**(8): p. 1161-3.
- 35. Villar, J., et al., *Effect of fat and fat-free mass deposition during pregnancy on birth weight*. Am J Obstet Gynecol, 1992. **167**(5): p. 1344-52.
- 36. Alvarez, J.J., et al., *Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women.* J Lipid Res, 1996. **37**(2): p. 299-308.
- 37. Palacin, M., et al., *Circulating metabolite utilization by periuterine adipose tissue in situ in the pregnant rat.* Metabolism, 1991. **40**(5): p. 534-9.
- 38. Soma-Pillay, P., et al., *Physiological changes in pregnancy*. Cardiovasc J Afr, 2016. **27**(2): p. 89-94.
- 39. Angueira, A.R., et al., *New insights into gestational glucose metabolism: lessons learned from 21st century approaches.* Diabetes, 2015. **64**(2): p. 327-34.
- 40. Hadden, D.R. and C. McLaughlin, *Normal and abnormal maternal metabolism during pregnancy.* Semin Fetal Neonatal Med, 2009. **14**(2): p. 66-71.
- 41. van den Akker, C.H., et al., *Human fetal amino acid metabolism at term gestation*. Am J Clin Nutr, 2009. **89**(1): p. 153-60.
- 42. Delplancke, T.D.J., et al., *Analysis of sequential hair segments reflects changes in the metabolome across the trimesters of pregnancy.* Sci Rep, 2018. **8**(1): p. 36.

- 43. Lindsay, K.L., et al., *Longitudinal Metabolomic Profiling of Amino Acids and Lipids across Healthy Pregnancy.* PLoS One, 2015. **10**(12): p. e0145794.
- 44. Brizzi, P., et al., *Lipoprotein metabolism during normal pregnancy*. Am J Obstet Gynecol, 1999. **181**(2): p. 430-4.
- 45. Mazaki-Tovi, S., et al., *Insulin sensitivity in late gestation and early postpartum period: the role of circulating maternal adipokines.* Gynecol Endocrinol, 2011. **27**(9): p. 725-31.
- 46. Newbern, D. and M. Freemark, *Placental hormones and the control of maternal metabolism and fetal growth.* Curr Opin Endocrinol Diabetes Obes, 2011. **18**(6): p. 409-16.
- 47. Kampmann, U., et al., *Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview.* Journal of Diabetes Research, 2019. **2019**: p. 5320156.
- Gajera, D., et al., Detailed Review on Gestational Diabetes Mellitus with Emphasis on Pathophysiology, Epidemiology, Related Risk Factors, and its Subsequent Conversion to Type 2 Diabetes Mellitus. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones Et Metabolisme, 2023. 55(5): p. 295-303.
- 49. !!! INVALID CITATION !!! [54].
- 50. Blundell, C., et al., *A microphysiological model of the human placental barrier*. Lab Chip, 2016. **16**(16): p. 3065-73.
- 51. Brett, K.E., et al., *Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta.* Int J Mol Sci, 2014. **15**(9): p. 16153-85.
- 52. Lager, S. and T.L. Powell, *Regulation of nutrient transport across the placenta*. J Pregnancy, 2012. **2012**: p. 179827.
- 53. Illsley, N.P. and M.U. Baumann, *Human placental glucose transport in fetoplacental growth and metabolism.* Biochim Biophys Acta Mol Basis Dis, 2020. **1866**(2): p. 165359.
- 54. Baumann, M.U., S. Deborde, and N.P. Illsley, *Placental glucose transfer and fetal growth*. Endocrine, 2002. **19**(1): p. 13-22.
- 55. Hay, W.W., Jr., *Placental-fetal glucose exchange and fetal glucose metabolism.* Trans Am Clin Climatol Assoc, 2006. **117**: p. 321-39; discussion 339-40.
- 56. Carayannopoulos, M.O., et al., *GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst.* Proc Natl Acad Sci U S A, 2000. **97**(13): p. 7313-8.
- 57. Shargorodsky, M., et al., *Does a First-Degree Family History of Diabetes Impact Placental Maternal and Fetal Vascular Circulation and Inflammatory Response?* J Clin Endocrinol Metab, 2017. **102**(9): p. 3375-3380.
- 58. Scifres, C.M., et al., *Placental maternal vascular malperfusion and adverse pregnancy outcomes in gestational diabetes mellitus.* Placenta, 2017. **49**: p. 10-15.
- 59. Castillo-Castrejon, M. and T.L. Powell, *Placental Nutrient Transport in Gestational Diabetic Pregnancies.* Front Endocrinol (Lausanne), 2017. **8**: p. 306.
- 60. Taricco, E., et al., *Foetal and placental weights in relation to maternal characteristics in gestational diabetes*. Placenta, 2003. **24**(4): p. 343-7.
- 61. Armistead, B., et al., *Placental Regulation of Energy Homeostasis During Human Pregnancy*. Endocrinology, 2020. **161**(7).
- 62. Sibiak, R., et al., *Placental Lactogen as a Marker of Maternal Obesity, Diabetes, and Fetal Growth Abnormalities: Current Knowledge and Clinical Perspectives.* J Clin Med, 2020. **9**(4).
- 63. Velegrakis, A., M. Sfakiotaki, and S. Sifakis, *Human placental growth hormone in normal and abnormal fetal growth.* Biomed Rep, 2017. **7**(2): p. 115-122.
- 64. Freemark, M., *Placental hormones and the control of fetal growth.* J Clin Endocrinol Metab, 2010. **95**(5): p. 2054-7.

- 65. Fuglsang, J., et al., *Human placental growth hormone, insulin-like growth factor I and -II, and insulin requirements during pregnancy in type 1 diabetes.* J Clin Endocrinol Metab, 2003. **88**(10): p. 4355-61.
- 66. Parrettini, S., et al., *Adipokines: A Rainbow of Proteins with Metabolic and Endocrine Functions.* Protein Pept Lett, 2020. **27**(12): p. 1204-1230.
- 67. Ladyman, S.R., R.A. Augustine, and D.R. Grattan, *Hormone interactions regulating energy balance during pregnancy.* J Neuroendocrinol, 2010. **22**(7): p. 805-17.
- 68. Khant Aung, Z., D.R. Grattan, and S.R. Ladyman, *Pregnancy-induced adaptation of central sensitivity to leptin and insulin.* Mol Cell Endocrinol, 2020. **516**: p. 110933.
- 69. Qiu, C., et al., *Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus.* Obstet Gynecol, 2004. **103**(3): p. 519-25.
- 70. Nuamah, M.A., et al., Significant increase in maternal plasma leptin concentration in induced delivery: a possible contribution of pro-inflammatory cytokines to placental leptin secretion. Endocr J, 2004. **51**(2): p. 177-87.
- 71. Chen, J., et al., *Secretion of adiponectin by human placenta: differential modulation of adiponectin and its receptors by cytokines.* Diabetologia, 2006. **49**(6): p. 1292-302.
- 72. Agarwal, M.M., *Gestational diabetes mellitus: An update on the current international diagnostic criteria.* World J Diabetes, 2015. **6**(6): p. 782-91.
- 73. American Diabetes, A., 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care, 2018. **41**(Suppl 1): p. S13-S27.
- 74. Social, I.M.d.S., *Diagnóstico y tratamiento de la diabetes en el embarazo*. 2016, Instituto Mexicano del Seguro Social: México.
- 75. Mirghani Dirar, A. and J. Doupis, *Gestational diabetes from A to Z*. World J Diabetes, 2017. **8**(12): p. 489-511.
- 76. (NICE), N.I.f.H.a.C.E., *Gestational Diabetes*, in *Diabetes in pregnancy: management from preconception to the postnatal period*. 2020: London.
- 77. Egan, A.M., M.L. Dow, and A. Vella, *A Review of the Pathophysiology and Management of Diabetes in Pregnancy*. Mayo Clin Proc, 2020. **95**(12): p. 2734-2746.
- 78. McIntyre, H.D., et al., *Gestational diabetes mellitus*. Nature Reviews. Disease Primers, 2019. **5**(1): p. 47.
- 79. Feig, D.S., et al., *Diabetes in pregnancy outcomes: a systematic review and proposed codification of definitions.* Diabetes Metab Res Rev, 2015. **31**(7): p. 680-90.
- 80. Metzger, B.E., et al., International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care, 2010. **33**(3): p. 676-82.
- 81. Diagnostic criteria and classification of hyperglycaemia first detected in pregnancy: a World Health Organization Guideline. Diabetes Res Clin Pract, 2014. **103**(3): p. 341-63.
- 82. Feig, D.S., et al., *Diabetes and Pregnancy*. Can J Diabetes, 2018. **42 Suppl 1**: p. S255-s282.
- 83. Carpenter, M.W. and D.R. Coustan, *Criteria for screening tests for gestational diabetes*. Am J Obstet Gynecol, 1982. **144**(7): p. 768-73.
- 84. *Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. National Diabetes Data Group.* Diabetes, 1979. **28**(12): p. 1039-57.
- 85. Homko, C., et al., *Insulin secretion during and after pregnancy in patients with gestational diabetes mellitus.* J Clin Endocrinol Metab, 2001. **86**(2): p. 568-73.
- 86. Huerta-Cervantes, M., et al., *Gestational Diabetes Triggers Oxidative Stress in Hippocampus and Cerebral Cortex and Cognitive Behavior Modifications in Rat Offspring: Age- and Sex-Dependent Effects.* Nutrients, 2020. **12**(2).

- 87. Sudharshana Murthy, K.A., et al., *Evaluation of Oxidative Stress and Proinflammatory Cytokines in Gestational Diabetes Mellitus and Their Correlation with Pregnancy Outcome.* Indian J Endocrinol Metab, 2018. **22**(1): p. 79-84.
- 88. Pantham, P., I.L. Aye, and T.L. Powell, *Inflammation in maternal obesity and gestational diabetes mellitus*. Placenta, 2015. **36**(7): p. 709-15.
- 89. Virtue, S. and A. Vidal-Puig, *Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome--an allostatic perspective.* Biochim Biophys Acta, 2010. **1801**(3): p. 338-49.
- 90. Szlapinski, S.K. and D.J. Hill, *Metabolic Adaptations to Pregnancy in Healthy and Gestational Diabetic Pregnancies: The Pancreas Placenta Axis.* Curr Vasc Pharmacol, 2021. **19**(2): p. 141-153.
- 91. Plows, J.F., et al., *The Pathophysiology of Gestational Diabetes Mellitus*. International Journal of Molecular Sciences, 2018. **19**(11): p. 3342.
- 92. Weir, G.C., et al., *Beta-cell adaptation and decompensation during the progression of diabetes.* Diabetes, 2001. **50 Suppl 1**: p. S154-9.
- 93. Nguyen-Ngo, C., et al., *Molecular pathways disrupted by gestational diabetes mellitus.* J Mol Endocrinol, 2019. **63**(3): p. R51-r72.
- 94. Law, K.P. and H. Zhang, The pathogenesis and pathophysiology of gestational diabetes mellitus: Deductions from a three-part longitudinal metabolomics study in China. Clin Chim Acta, 2017.
 468: p. 60-70.
- 95. Berberoğlu, Z., *Pathophysiology of Gestational Diabetes Mellitus*. EMJ Diabetes, 2019.
- 96. Catalano, P.M., *Trying to understand gestational diabetes*. Diabetic Medicine: A Journal of the British Diabetic Association, 2014. **31**(3): p. 273-281.
- 97. Matthews, D.R., et al., *Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man.* Diabetologia, 1985. **28**(7): p. 412-9.
- 98. Wallace, T.M., J.C. Levy, and D.R. Matthews, *Use and abuse of HOMA modeling*. Diabetes Care, 2004. **27**(6): p. 1487-95.
- 99. Hosker, J.P., et al., *Continuous infusion of glucose with model assessment: measurement of insulin resistance and beta-cell function in man.* Diabetologia, 1985. **28**(7): p. 401-11.
- 100. Levy, J.C., D.R. Matthews, and M.P. Hermans, *Correct homeostasis model assessment (HOMA)* evaluation uses the computer program. Diabetes Care, 1998. **21**(12): p. 2191-2192.
- 101. Endo, S., et al., *Differences in insulin sensitivity in pregnant women with overweight and gestational diabetes mellitus.* Gynecological Endocrinology: The Official Journal of the International Society of Gynecological Endocrinology, 2006. **22**(6): p. 343-349.
- 102. Luo, P., et al., *Metabolic Characteristics of Gestational Diabetes Mellitus and the Effects on Pregnancy Outcomes.* Diabetes Metab Syndr Obes, 2023. **16**: p. 15-29.
- 103. Friedman, J.E., et al., *Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes.* Diabetes, 1999. **48**(9): p. 1807-1814.
- 104. Barbour, L.A., et al., *Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes*. Diabetes Care, 2007. **30 Suppl 2**: p. S112-119.
- 105. Welsh, J.A., et al., *Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.* J Extracell Vesicles, 2024. **13**(2): p. e12404.
- 106. Théry, C., et al., *Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.* Journal of Extracellular Vesicles, 2018. **7**(1): p. 1535750.

- 107. Gurung, S., et al., *The exosome journey: from biogenesis to uptake and intracellular signalling*. Cell Communication and Signaling, 2021. **19**(1): p. 47.
- 108. Pegtel, D.M. and S.J. Gould, *Exosomes*. Annu Rev Biochem, 2019. 88: p. 487-514.
- 109. Battistelli, M. and E. Falcieri, *Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication.* Biology (Basel), 2020. **9**(1).
- 110. S, E.L.A., et al., *Extracellular vesicles: biology and emerging therapeutic opportunities.* Nat Rev Drug Discov, 2013. **12**(5): p. 347-57.
- 111. Raposo, G. and W. Stoorvogel, *Extracellular vesicles: exosomes, microvesicles, and friends.* The Journal of Cell Biology, 2013. **200**(4): p. 373-383.
- 112. Crescitelli, R., et al., *Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes.* J Extracell Vesicles, 2013. **2**.
- 113. Gu, H., et al., Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis. J Clin Invest, 2016. **126**(12): p. 4537-4553.
- 114. Ying, W., et al., *Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and In Vitro Insulin Sensitivity.* Cell, 2017. **171**(2): p. 372-384.e12.
- 115. Li, J., et al., *Pancreatic* β cells control glucose homeostasis via the secretion of exosomal miR-29 family. J Extracell Vesicles, 2021. **10**(3): p. e12055.
- 116. Christianson, H.C., et al., Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A, 2013.
 110(43): p. 17380-5.
- 117. Svensson, K.J., et al., *Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1.* J Biol Chem, 2013. **288**(24): p. 17713-24.
- 118. Costa Verdera, H., et al., *Cellular uptake of extracellular vesicles is mediated by clathrinindependent endocytosis and macropinocytosis.* J Control Release, 2017. **266**: p. 100-108.
- 119. Jayabalan, N., et al., *Adipose Tissue Exosomal Proteomic Profile Reveals a Role on Placenta Glucose Metabolism in Gestational Diabetes Mellitus.* The Journal of Clinical Endocrinology and Metabolism, 2019. **104**(5): p. 1735-1752.
- 120. Nair, S., et al., *Extracellular vesicles and their potential role inducing changes in maternal insulin sensitivity during gestational diabetes mellitus.* American Journal of Reproductive Immunology (New York, N.Y.: 1989), 2021. **85**(2): p. e13361.
- 121. Johnstone, R.M., et al., *Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins.* J Cell Physiol, 1991. **147**(1): p. 27-36.
- 122. Johnstone, R.M., *The Jeanne Manery-Fisher Memorial Lecture 1991. Maturation of reticulocytes: formation of exosomes as a mechanism for shedding membrane proteins.* Biochem Cell Biol, 1992. **70**(3-4): p. 179-90.
- 123. Zhang, B., et al., *Adipose-derived exosomes: A novel adipokine in obesity-associated diabetes.* J Cell Physiol, 2019. **234**(10): p. 16692-16702.
- 124. Chang, W. and J. Wang, *Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus.* Cells, 2019. **8**(8).
- 125. Azevedo, L.C., et al., *Platelet-derived exosomes from septic shock patients induce myocardial dysfunction*. Crit Care, 2007. **11**(6): p. R120.
- 126. Liu, T., et al., Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun, 2019. **515**(2): p. 352-358.
- 127. Mathieu, M., et al., *Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication.* Nat Cell Biol, 2019. **21**(1): p. 9-17.

- 128. Hessvik, N.P. and A. Llorente, *Current knowledge on exosome biogenesis and release*. Cell Mol Life Sci, 2018. **75**(2): p. 193-208.
- 129. Kalluri, R. and V.S. LeBleu, *The biology, function, and biomedical applications of exosomes.* Science, 2020. **367**(6478).
- 130. McKelvey, K.J., et al., *Exosomes: Mechanisms of Uptake*. J Circ Biomark, 2015. **4**: p. 7.
- 131. Bobrie, A., et al., *Exosome Secretion: Molecular Mechanisms and Roles in Immune Responses*. Traffic, 2011. **12**(12): p. 1659-1668.
- 132. Hurley, J.H., *ESCRT complexes and the biogenesis of multivesicular bodies*. Curr Opin Cell Biol, 2008. **20**(1): p. 4-11.
- 133. Trajkovic, K., et al., *Ceramide triggers budding of exosome vesicles into multivesicular endosomes.* Science (New York, N.Y.), 2008. **319**(5867): p. 1244-1247.
- 134. Ostrowski, M., et al., *Rab27a and Rab27b control different steps of the exosome secretion pathway.* Nat Cell Biol, 2010. **12**(1): p. 19-30; sup pp 1-13.
- 135. Czernek, L. and M. Düchler, *Exosomes as Messengers Between Mother and Fetus in Pregnancy*. Int J Mol Sci, 2020. **21**(12).
- 136. Morales-Prieto, D.M., et al., *Pregnancy-associated miRNA-clusters*. J Reprod Immunol, 2013. **97**(1): p. 51-61.
- 137. Bentwich, I., et al., *Identification of hundreds of conserved and nonconserved human microRNAs.* Nat Genet, 2005. **37**(7): p. 766-70.
- 138. Bortolin-Cavaillé, M.L., et al., *C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts.* Nucleic Acids Res, 2009. **37**(10): p. 3464-73.
- 139. Aheget, H., et al., *Exosome: A New Player in Translational Nanomedicine*. J Clin Med, 2020. 9(8).
- 140. Menon, R., S. Mesiano, and R.N. Taylor, *Programmed Fetal Membrane Senescence and Exosome-Mediated Signaling: A Mechanism Associated With Timing of Human Parturition.* Front Endocrinol (Lausanne), 2017. **8**: p. 196.
- 141. Greening, D.W., et al., *Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions.* Biol Reprod, 2016. **94**(2): p. 38.
- 142. Tong, M., et al., *Placental Nano-vesicles Target to Specific Organs and Modulate Vascular Tone In Vivo.* Hum Reprod, 2017. **32**(11): p. 2188-2198.
- 143. Rice, G.E., et al., *The Effect of Glucose on the Release and Bioactivity of Exosomes From First Trimester Trophoblast Cells.* The Journal of Clinical Endocrinology and Metabolism, 2015.
 100(10): p. E1280-1288.
- 144. Iljas, J.D., et al., *Review: Bio-compartmentalization of microRNAs in exosomes during gestational diabetes mellitus.* Placenta, 2017. **54**: p. 76-82.
- 145. Herrera-Van Oostdam, A.S., et al., *Placental exosomes isolated from urine of patients with gestational diabetes exhibit a differential profile expression of microRNAs across gestation.* Int J Mol Med, 2020. **46**(2): p. 546-560.
- 146. Sadovsky, Y., et al., *The Function of TrophomiRs and Other MicroRNAs in the Human Placenta*. Cold Spring Harb Perspect Med, 2015. **5**(8): p. a023036.
- 147. Noguer-Dance, M., et al., *The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta*. Hum Mol Genet, 2010. **19**(18): p. 3566-82.
- 148. Dainelli, L., et al., *Screening and management of gestational diabetes in Mexico: results from a survey of multilocation, multi-health care institution practitioners.* Diabetes Metab Syndr Obes, 2018. **11**: p. 105-116.

- 149. Reyes-Muñoz, E., et al., *Effect of the diagnostic criteria of the International Association of* Diabetes and Pregnancy Study Groups on the prevalence of gestational diabetes mellitus in urban Mexican women: a cross-sectional study. Endocr Pract, 2012. **18**(2): p. 146-51.
- 150. Huerta-Chagoya, A., et al., *Genetic determinants for gestational diabetes mellitus and related metabolic traits in Mexican women.* PLoS One, 2015. **10**(5): p. e0126408.
- 151. Shamah-Levy T, R.-M.M., Barrientos-Gutiérrez T, Cuevas-Nasu L, Bautista-Arredondo S, Colchero MA, Gaona-Pineda EB, L.-P. E. & Martínez-Barnetche J, Alpuche-Arana C. , *Encuesta Nacional de Salud y Nutrición 2021 sobre Covid-19. Resultados nacionales*. 2022.
- 152. Wang, B., et al., *Reviving the Transcriptome Studies: An Insight Into the Emergence of Single-Molecule Transcriptome Sequencing.* Front Genet, 2019. **10**: p. 384.
- 153. MEXICANA, N.O., NOM-004-SSA3-2012, Del expediente clínico. 2012.
- 154. MEXICANA, N.O., *NOM-007-SSA2-2016, Para la atención de la mujer durante el embarazo, parto y puerperio, y de la persona recién nacida*. 2016.
- 155. van der Pol, E., et al., *Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing.* J Thromb Haemost, 2014. **12**(7): p. 1182-92.
- 156. Comfort, N., et al., *Nanoparticle Tracking Analysis for the Quantification and Size Determination of Extracellular Vesicles.* J Vis Exp, 2021(169).
- 157. Lai, A., et al., *Optimized Specific Isolation of Placenta-Derived Exosomes from Maternal Circulation.* Methods in Molecular Biology (Clifton, N.J.), 2018. **1710**: p. 131-138.
- 158. McGeary, S.E., et al., *The biochemical basis of microRNA targeting efficacy*. Science, 2019. **366**(6472).
- 159. Xie, Z., et al., *Gene Set Knowledge Discovery with Enrichr*. Current Protocols, 2021. **1**(3): p. e90.
- 160. FEDERACIÓN, D.O.D.L., *Reglamento de la Ley General de Salud en Materia de Investigación para la Salud*. 1984.
- 161. (WMA), T.H.D.o.t.W.M.A., *Ethical principles of medical research involving human subjects*, T.H.D.o.t.W.M.A. (WMA), Editor. 2014.
- 162. Science, C.f.I.O.o.M., *International ethical guidelines for biomedical research involving human subjects*, C.f.I.O.o.M. Science, Editor. 2002.
- 163. FEDERACION, D.O.D.L., *Ley Federal de Protección de Datos Personales en Posesión de los Particulares*, D.O.D.L. FEDERACION, Editor. 2010.
- 164. MEXICANA, N.O., *NOM-018-STPS-2000. Sistema para la identificación y comunicación de peligros y riesgos por sustancias químicas peligrosas en los centros de trabajo*, N.O. MEXICANA, Editor. 2000.
- 165. MEXICANA, N.O., *NOM-087-ECOL-SSA1-2002. Protección ambiental Salud ambiental Residuos peligrosos biológico-infecciosos Clasificación y especificaciones de manejo*, N.O. MEXICANA, Editor. 2001.
- 166. J, R.G., *Manejo de Residuos Peligrosos Biológicos-Infecciosos en el INMEGEN*, I.N.d.M.G. (INMEGEN), Editor. 2009.
- 167. MEXICANA, N.O., *NOM-052-SEMARNAT-2005*. *Que establece las características, el procedimiento de identificación, clasificación y los listados de los residuos peligrosos,* N.O. MEXICANA, Editor. 2005.
- 168. Wang, H., et al., *IDF Diabetes Atlas: Estimation of Global and Regional Gestational Diabetes Mellitus Prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group's Criteria.* Diabetes Research and Clinical Practice, 2022. **183**: p. 109050.
- 169. Group, H.S.C.R., et al., *Hyperglycemia and adverse pregnancy outcomes*. The New England Journal of Medicine, 2008. **358**(19): p. 1991-2002.

- 170. Ryan, E.A. and L. Enns, *Role of gestational hormones in the induction of insulin resistance*. The Journal of Clinical Endocrinology and Metabolism, 1988. **67**(2): p. 341-347.
- 171. Barbour, L.A., et al., *Human placental growth hormone increases expression of the p85* regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology, 2004. **145**(3): p. 1144-1150.
- 172. Arumugam, R., et al., *The Interplay of Prolactin and the Glucocorticoids in the Regulation of β-Cell Gene Expression, Fatty Acid Oxidation, and Glucose-Stimulated Insulin Secretion: Implications for Carbohydrate Metabolism in Pregnancy.* Endocrinology, 2008. **149**(11): p. 5401-5414.
- 173. Kirwan, J.P., et al., *TNF-alpha is a predictor of insulin resistance in human pregnancy*. Diabetes, 2002. **51**(7): p. 2207-2213.
- 174. Salomon, C., et al., *Gestational Diabetes Mellitus Is Associated With Changes in the Concentration and Bioactivity of Placenta-Derived Exosomes in Maternal Circulation Across Gestation.* Diabetes, 2016. **65**(3): p. 598-609.
- 175. Valadi, H., et al., *Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells.* Nature Cell Biology, 2007. **9**(6): p. 654-659.
- 176. Cheng, L., et al., *Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood.* Journal of Extracellular Vesicles, 2014. **3**.
- 177. Guay, C. and R. Regazzi, *Exosomes as new players in metabolic organ cross-talk*. Diabetes, Obesity & Metabolism, 2017. **19 Suppl 1**: p. 137-146.
- 178. Kranendonk, M.E., et al., *Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease.* Cardiovascular Diabetology, 2014. **13**: p. 37.
- 179. Aswad, H., et al., *Exosomes participate in the alteration of muscle homeostasis during lipidinduced insulin resistance in mice.* Diabetologia, 2014. **57**(10): p. 2155-2164.
- 180. Catalano, P.M., et al., *Downregulated IRS-1 and PPARgamma in obese women with gestational diabetes: relationship to FFA during pregnancy*. American Journal of Physiology. Endocrinology and Metabolism, 2002. **282**(3): p. E522-533.
- 181. Lok, C.A.R., et al., *Changes in microparticle numbers and cellular origin during pregnancy and preeclampsia*. Hypertension in Pregnancy, 2008. **27**(4): p. 344-360.
- 182. Katzenell, S., et al., Characterization of negatively charged phospholipids and cell origin of microparticles in women with gestational vascular complications. Thrombosis Research, 2012.
 130(3): p. 479-484.
- 183. Radu, C.M., et al., *Origin and levels of circulating microparticles in normal pregnancy: A longitudinal observation in healthy women.* Scandinavian Journal of Clinical and Laboratory Investigation, 2015. **75**(6): p. 487-495.
- 184. Liu, X. and H. Qiu, *Placenta-Derived Exosomes and Gestational Diabetes Mellitus*. Diabetes, Metabolic Syndrome and Obesity, 2022. **15**: p. 1391-1404.
- 185. Freeman, D.W., et al., *Altered Extracellular Vesicle Concentration, Cargo, and Function in Diabetes.* Diabetes, 2018. **67**(11): p. 2377-2388.
- 186. Taniguchi, C.M., B. Emanuelli, and C.R. Kahn, *Critical nodes in signalling pathways: insights into insulin action.* Nature Reviews Molecular Cell Biology, 2006. **7**(2): p. 85-96.
- 187. Sharma, S., et al., *Immunobiology of Gestational Diabetes Mellitus in Post-Medawar Era*. Frontiers in Immunology, 2021. **12**: p. 758267.
- 188. Yang, F., Q. Zheng, and L. Jin, Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Frontiers in Immunology, 2019. 10: p. 2317.

- Lobo, T.F., et al., Impaired Treg and NK cells profile in overweight women with gestational diabetes mellitus. American Journal of Reproductive Immunology (New York, N.Y.: 1989), 2018.
 79(3).
- 190. Hirahara, K. and T. Nakayama, *CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm.* International Immunology, 2016. **28**(4): p. 163-171.
- 191. Sifnaios, E., et al., *Gestational Diabetes and T-cell (Th1/Th2/Th17/Treg) Immune Profile.* In Vivo (Athens, Greece), 2019. **33**(1): p. 31-40.
- 192. Sheu, A., et al., *A proinflammatory CD4+ T cell phenotype in gestational diabetes mellitus.* Diabetologia, 2018. **61**(7): p. 1633-1643.
- 193. Zhao, Y., et al., *Immune checkpoint molecules on T cell subsets of pregnancies with preeclampsia and gestational diabetes mellitus.* Journal of Reproductive Immunology, 2020. **142**: p. 103208.
- 194. Lee, Y., et al., *Induction and molecular signature of pathogenic TH17 cells.* Nature Immunology, 2012. **13**(10): p. 991-999.
- 195. Ganss, R., *Maternal Metabolism and Vascular Adaptation in Pregnancy: The PPAR Link.* Trends in Endocrinology & Metabolism, 2017. **28**(1): p. 73-84.
- 196. McCarthy, F.P., et al., *PPAR-γ a possible drug target for complicated pregnancies.* British Journal of Pharmacology, 2013. **168**(5): p. 1074-1085.
- 197. Wójcik, M., et al., Gestational diabetes mellitus is associated with increased leukocyte peroxisome proliferator-activated receptor γ expression. Archives of Medical Science : AMS, 2015. 11(4): p. 779-787.
- 198. Gao, J., et al., *Adipocyte-derived extracellular vesicles modulate appetite and weight through mTOR signalling in the hypothalamus.* Acta Physiologica (Oxford, England), 2020. **228**(2): p. e13339.
- 199. Gao, Y., R. She, and W. Sha, *Gestational diabetes mellitus is associated with decreased adipose and placenta peroxisome proliferator-activator receptor γ expression in a Chinese population.* Oncotarget, 2017. **8**(69): p. 113928-113937.
- 200. Jiang, C., A.T. Ting, and B. Seed, *PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines.* Nature, 1998. **391**(6662): p. 82-86.
- Arck, P., et al., Nuclear receptors of the peroxisome proliferator-activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biology of Reproduction, 2010.
 83(2): p. 168-176.
- 202. Holdsworth-Carson, S.J., et al., *Peroxisome proliferator-activated receptors are altered in pathologies of the human placenta: gestational diabetes mellitus, intrauterine growth restriction and preeclampsia.* Placenta, 2010. **31**(3): p. 222-229.
- 203. Knabl, J., et al., *Peroxisome proliferator-activated receptor-gamma (PPARγ) is down regulated in trophoblast cells of gestational diabetes mellitus (GDM) and in trophoblast tumour cells BeWo in vitro after stimulation with PPARγ agonists.* Journal of Perinatal Medicine, 2014. **42**(2): p. 179-187.
- 204. Trivett, C., Z.J. Lees, and D.J. Freeman, *Adipose tissue function in healthy pregnancy, gestational diabetes mellitus and pre-eclampsia.* European Journal of Clinical Nutrition, 2021. **75**(12): p. 1745-1756.
- 205. Oliva, K., et al., *2D-DIGE to identify proteins associated with gestational diabetes in omental adipose tissue.* The Journal of Endocrinology, 2013. **218**(2): p. 165-178.
- 206. Ma, Y., et al., *Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue.* Journal of Proteome Research, 2016. **15**(2): p. 628-637.

- 207. Lendvai, Á., et al., *The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development*. American Journal of Physiology. Endocrinology and Metabolism, 2016. **310**(10): p. E797-810.
- 208. Russo, S.B., J.S. Ross, and L.A. Cowart, *Sphingolipids in Obesity, Type 2 Diabetes, and Metabolic Disease.* Handbook of experimental pharmacology, 2013(216): p. 373-401.
- 209. Boslem, E., P.J. Meikle, and T.J. Biden, *Roles of ceramide and sphingolipids in pancreatic* β-cell function and dysfunction. Islets, 2012. **4**(3): p. 177-187.
- 210. Abbade, J., et al., *Increased placental mitochondrial fusion in gestational diabetes mellitus: an adaptive mechanism to optimize feto-placental metabolic homeostasis?* BMJ open diabetes research & care, 2020. **8**(1): p. e000923.
- 211. Mejia, J.F., et al., *Differential placental ceramide levels during gestational diabetes mellitus (GDM).* Reproductive biology and endocrinology: RB&E, 2019. **17**(1): p. 81.
- 212. Frank, L.L., *Thiamin in Clinical Practice*. JPEN J Parenter Enteral Nutr, 2015. **39**(5): p. 503-20.
- 213. Page, G.L., D. Laight, and M.H. Cummings, *Thiamine deficiency in diabetes mellitus and the impact of thiamine replacement on glucose metabolism and vascular disease*. Int J Clin Pract, 2011. **65**(6): p. 684-90.
- 214. Jermendy, G., *Evaluating thiamine deficiency in patients with diabetes*. Diab Vasc Dis Res, 2006.
 3(2): p. 120-1.
- 215. Saito, N., et al., *Blood thiamine levels in outpatients with diabetes mellitus.* J Nutr Sci Vitaminol (Tokyo), 1987. **33**(6): p. 421-30.
- 216. Thornalley, P.J., et al., *High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease.* Diabetologia, 2007. **50**(10): p. 2164-70.
- 217. Powers, H.J., B.M. Corfe, and E. Nakano, *Riboflavin in development and cell fate.* Subcell Biochem, 2012. **56**: p. 229-45.
- 218. Thakur, K., et al., *Riboflavin and health: A review of recent human research*. Crit Rev Food Sci Nutr, 2017. **57**(17): p. 3650-3660.
- 219. Alam, M.M., S. Iqbal, and I. Naseem, *Ameliorative effect of riboflavin on hyperglycemia, oxidative stress and DNA damage in type-2 diabetic mice: Mechanistic and therapeutic strategies.* Arch Biochem Biophys, 2015. **584**: p. 10-9.
- 220. Mazur-Bialy, A.I. and E. Pocheć, *Riboflavin Reduces Pro-Inflammatory Activation of Adipocyte-Macrophage Co-culture. Potential Application of Vitamin B2 Enrichment for Attenuation of Insulin Resistance and Metabolic Syndrome Development.* Molecules, 2016. **21**(12).
- 221. Quan, W., et al., Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia, 2012. **55**(2): p. 392-403.
- 222. Shigihara, N., et al., *Human IAPP-induced pancreatic β cell toxicity and its regulation by autophagy*. J Clin Invest, 2014. **124**(8): p. 3634-44.
- 223. Ji, L., et al., *Systematic Characterization of Autophagy in Gestational Diabetes Mellitus.* Endocrinology, 2017. **158**(8): p. 2522-2532.
- 224. Chen, J., et al., *Role of Wnt signaling pathways in type 2 diabetes mellitus*. Molecular and Cellular Biochemistry, 2021. **476**(5): p. 2219-2232.
- 225. Fujino, T., et al., *Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion.* Proceedings of the National Academy of Sciences of the United States of America, 2003. **100**(1): p. 229-234.
- 226. García-Martínez, J.M., et al., *WNT/beta-catenin increases the production of incretins by enteroendocrine cells.* Diabetologia, 2009. **52**(9): p. 1913-1924.
- 227. de Winter, T.J.J. and R. Nusse, *Running Against the Wnt: How Wnt/β-Catenin Suppresses Adipogenesis.* Frontiers in Cell and Developmental Biology, 2021. **9**.

- 228. Ross, S.E., et al., *Inhibition of adipogenesis by Wnt signaling*. Science (New York, N.Y.), 2000. **289**(5481): p. 950-953.
- 229. Murtaugh, L.C., et al., *Beta-catenin is essential for pancreatic acinar but not islet development*. Development (Cambridge, England), 2005. **132**(21): p. 4663-4674.
- Lim, H.W., et al., *Identification of differentially expressed mRNA during pancreas regeneration of rat by mRNA differential display*. Biochemical and Biophysical Research Communications, 2002.
 299(5): p. 806-812.
- 231. Papadopoulou, S. and H. Edlund, *Attenuated Wnt signaling perturbs pancreatic growth but not pancreatic function*. Diabetes, 2005. **54**(10): p. 2844-2851.
- 232. Heller, R.S., et al., *Expression of Wnt, Frizzled, sFRP, and DKK genes in adult human pancreas.* Gene Expression, 2003. **11**(3-4): p. 141-147.
- 233. Heller, R.S., et al., Expression patterns of Wnts, Frizzleds, sFRPs, and misexpression in transgenic mice suggesting a role for Wnts in pancreas and foregut pattern formation. Developmental Dynamics: An Official Publication of the American Association of Anatomists, 2002. 225(3): p. 260-270.
- 234. Heiser, P.W., et al., *Stabilization of beta-catenin impacts pancreas growth*. Development (Cambridge, England), 2006. **133**(10): p. 2023-2032.
- 235. Rulifson, I.C., et al., *Wnt signaling regulates pancreatic beta cell proliferation.* Proceedings of the National Academy of Sciences of the United States of America, 2007. **104**(15): p. 6247-6252.
- 236. Tsai, K., et al., *Differential expression of mTOR related molecules in the placenta from gestational diabetes mellitus (GDM), intrauterine growth restriction (IUGR) and preeclampsia patients.* Reproductive Biology, 2021. **21**(2): p. 100503.
- 237. Knuth, A., et al., *Placenta growth factor induces invasion and activates p70 during rapamycin treatment in trophoblast cells.* American Journal of Reproductive Immunology (New York, N.Y.: 1989), 2015. **73**(4): p. 330-340.

<u>Anexo I: Carta de Consentimiento Informado</u> CARTA DE CONSENTIMIENTO INFORMADO

Ciudad de México, a

2						
a	Día		Mes		Año	

A quien corresponda:

					Dia	INIC	3	

Yo ________ declaro libre y voluntariamente que acepto participar en el estudio de "Uso de una huella metabolómica antes de la semana 18 de gestación para la detección de mujeres embarazadas que desarrollarán diabetes gestacional", que se realiza en el centro de salud CST III Dr. Gabriel Garzón Cossa y el Instituto Nacional de Medicina Genómica y cuyo objetivo general consiste en: Emplear una huella metabolómica antes de la semana 18 de gestación en mujeres embarazadas que asisten al CST III Dr. Gabriel Garzón Cossa adscrito a la Jurisdicción Gustavo A. Madero que permita identificar aquellas mujeres embarazadas que serán diagnosticadas entre las semanas 24 a 28 de gestación con diabetes gestacional mediante el estándar de oro (curva de tolerancia a la glucosa, utilizando los criterios que establece la NOM-007-SSA2-2016, Para la atención de la mujer durante el embarazo, parto y puerperio, y de la persona recién nacida).

Estoy consciente de que los procedimientos y pruebas para lograr el objetivo consisten en:

- 1. Permitir el acceso a mi expediente clínico con la finalidad de conocer mi estado de salud durante el embarazo; el cual será tratado siempre bajo estricta confidencialidad y respeto a mis datos personales.
- 2. Permitir que se me realice un ultrasonido para conocer de forma exacta cuántos meses tengo de embarazo.
- 3. Asistir en estado de ayuno (no haber consumido ningún tipo de alimento o bebida) de mínimo 8 horas y máximo de 12 horas antes de las dos visitas programadas.
 - a. Primera visita (antes de los 4 meses de embarazo): Se me tomará una muestra de sangre equivalente a 1 cucharada soperas (5 ml) y se me realizará un breve cuestionario y mediciones de mi cuerpo (peso y talla).
 - b. Segunda visita (entre los 6 y 7 meses de embarazo): Se me realizará una curva de tolerancia a la glucosa, la cual consiste en una toma de muestra de sangre venosa en ayuno (no haber consumido ningún tipo de alimento o bebida) de mínimo 8 horas y máximo de 12 horas. Posteriormente se me solicitará que consuma una bebida que contiene el equivalente de azúcar de una lata de 355 ml de un refresco. Después de consumir la bebida se me realizarán dos tomas de sangre cada hora, hasta completar dos horas.

También sé que entre los posibles riesgos y efectos para mi persona pueden estar:

- Todas las muestras serán tomadas por personal de salud capacitado. Sin embargo algunas personas cuando le sacan sangre del brazo experimentan dolor y se les hace un moretón en el sitio del piquete y en raras ocasiones algunas personas presentan náusea y/o vómito y/o mareo e incluso algunas se desmayan.
- 2. Cuando consuma la bebida con azúcar usted podrá experimentar náusea y/o vómito y/o mareo e incluso en raras ocasiones algunas personas se desmayan.

Entiendo que del presente estudio se derivarán los siguientes beneficios.

- 1. El grupo de investigación se compromete entregar todos los resultados de mis pruebas de sangre a mi médico tratante. Esta información será útil para mi tratamiento y toma de decisiones sobre mi embarazo de mi médico.
- 2. Este estudio permitirá que en un futuro otras pacientes puedan beneficiarse del conocimiento obtenido.

El presente estudio no representa ningún riesgo para la salud de mi embarazo y de mi bebé. Es de mi conocimiento que seré libre de retirarme de esta investigación en el momento que yo así lo desee. En caso de que decidiera retirarme, la atención que como paciente recibo en este centro de salud CST III Dr. Gabriel Garzon Cossa no se verá afectada. Estoy consciente de que los procedimientos y pruebas realizados en este estudio son gratuitos y que no habrá ningún pago por mi participación en este estudio. Todas las muestras de sangre que se obtengan serán utilizadas sólo y exclusivamente para este estudio y posteriormente serán destruidas.

Entiendo que mi información personal será manejada con las reservas que establece la normatividad vigente en materia de protección de datos personales.

Así mismo, cualquier trastorno, duda o pregunta relacionada con esta investigación con esta investigación podré consultarla con el Dr Rafael Figueroa Escobar al Teléfono: 50-38-17-00 ext 7020 localizado en Calle Nte 72-A 3541, Col. Las Joya CP. 07890 Del. Gustavo A. Madero, quien comunicará el evento a la Dirección de Educación e Investigación de la SSDF, en donde se decidirá la necesidad de convocar al investigador principal y al Cuerpo Colegiado competente para su resolución. Usted deberá cubrir los demás procedimientos relacionados con la resolución de su embarazo en la institución de salud participante, como cualquier otra paciente perteneciente al mismo.

Nombre de la participante:		Firma:
Domicilio.	Teléfono	
Nombre y firma del testigo o cónyuge		Firma:
Domicilio.	Teléfono	
Nombre y firma del testigo o cónyuge.		Firma.
Domicilio.	Teléfono	

Nombre y firma del Investigador responsable. Dra. Berenice Palacios González	Firma.	
Domicilio. Periférico Sur 4809 Col Arenal Tepepan, Delg. Tlalpan CP 14610, CDMX	Teléfono	53501900 ext 1220
c. c. n. Paciente o familiar c. n. Investigador (conservar en el expediente de la investigación)		

c. c. p. Paciente o familiar c. c. p. Investigador (conservar en el expediente de la investigación)

Ciudad de México, 30 de junio de 2023 Dictamen No. 16/2023

Comité de Investigación del Instituto Nacional de Medicina Genómica

El Comité de Investigación del Instituto Nacional de Medicina Genómica (INMEGEN), con fundamento en lo dispuesto por los artículos 99, 100, 102 y 11 del Reglamento de la Ley General de Salud en Materia de Investigación en Salud, 41, fracciones I y III de la Ley de los Institutos Nacionales de Salud, artículo 4º, fracción IV del Estatuto Orgánico del INMEGEN y de conformidad con su propio Manual de Funcionamiento, emite el presente documento.

Titulo de Proyecto	"Caracterización de exosomas provenientes de gestación temprana de mujeres que desarrollan diabetes gestacional y su efecto en la secreción de insulina en células beta."
Investigador Responsable	Dra. Berenice Palacios González
Documentos sometidos a revisión	- Protocolo, Anexo 1- Protección de participantes Anexo 2- DESGLOSE FINANCIERO Anexo 3- Protocolo revisado Anexo 4- Protocolo revisado
Cometarios al Proyecto de Investigación	El proyecto fue evaluado por tres miembros del comité de Investigación, los comentarios adicionales hechos por los evaluadores fueron respondidos de forma adecuada por el investigador principal y revisados en las fechas 14 de abril y 9 de junio de 2023 en segunda revisión.
Fecha de Elaboración del Dictamen	30 de junio de 2023
Resolución de la Evaluación	APROBADO

Durante la 5a. Sesión Conjunta del Comité Investigación y del Comité de Ética en Investigación del INMEGEN, se revisaron las respuestas a los comentarios de los revisores al protocolo No. 445, aceptándose las modificaciones hechas al proyecto por la investigadora quien respondió a todas las sugerencias realizadas, por lo que la resolución de la segunda evaluación del proyecto es: **Aprobado**.

Dr. Alfredo Hidalgo/Miranda Presidente del Comité de Investigación del Instituto Nacional de Medicina Genómica.

Ciudad de México, 28 de mayo de 2018. Oficio No. SSDF/DGPCS/DEI/SECI/JUDI/1018/17. ASUNTO: Registro de protocolo de investigación.

Dra. Berenice Palacios González Doctora en Ciencias Bioquímicas Investigador en Ciencias Médicas "C" Instituto Nacional de Medicina Genómica. Unidad de Vinculación Científica de la Facultad de Medicina en INMEGEN PRESENTE

Con relación al proyecto de investigación titulado: "Uso de una huella metabolómica antes de la semana 18 de gestación para la detección de mujeres embarazadas que desarrollarán diabetes gestacional", que remite para evaluación de procedencia, le comunico que el Comité de Ética en Investigación de la Secretaría de Salud de la Ciudad de México, con registro CONBICÉTICA-09-CEI-004-20180213 ante la Comisión Nacional de Bioética lo considera de información relevante y con riesgo mínimo, toda vez que de acuerdo con la normatividad vigente en materia de protección de datos personales, "la información identificatoría (personal) se encuentra desvinculada de la información sustantiva para el estudio y solo se requiere para validar la información", amén de las normas éticas, morales y los acuerdos internacionales que se aplican a la discreción y secrecía en el ejercicio de la profesión médica, así como la seguridad de la información genética. Por lo anterior, ha dictaminado la aprobación con observaciones, asignándole el número de registro: 102-010-02-18.

En ese sentido y con el propósito de brindar un mejor apoyo a sus actividades, debo señalarles que los apoyos que solicitan para su proyecto, deben ser gestionados directamente en la Unidad de Atención que se requiera, ante el titular que corresponda, quién decidirá libremente la participación de su unidad, de la misma manera que el personal operativo que deseé involucrarse, considerando como prioridad el servicio y la atención a los usuarios.

ATENTAMENTE.

M. EN ISS, CAROLINA SALINAS OVIEDO PRESIDENTE DEL COMITÉ DE ÉTICA EN INVESTIGACIÓNSECRETARIA DE SALUD

CIUDAD DE MÉXICO DIRECCIÓN DE EDUCACIÓN E INVESTIGACIÓN

c.c.p. Archivo

Dr. Jorge Pérez Vias.- Médico responsable del CST III Dr. Gerardo Varela Mariscal, Jurisdicción Tlalpan. Dr. José Antonio Reyes Garduño.-Médico responsable del CST III San Miguel Topilejo, Jurisdicción Tlalpan.

> SECRETARIA DE SALUD Dirección de Educación e Investigación Subdirección de Educación Continua e Investigación Jefatura de Unidad Departamental de Investigación

Alternation of 23 of Free Co. Medical P. 1980 Set Rank Long To. Frankling Co. 1985 (1996) 199

		heer and the		<u>, , , , , , , , , , , , , , , , , , , </u>		
Control HOMA-%β bajo						
	Pool 1	Pool 2	Pool 3	Valor p		
	(n=5)	(n=5)	(n=5)			
Edad (años)	26.00 (±5.05)	22.40 (±2.96)	23.67 (±8.96)	0.470		
Semanas de gestación	14.3 (±2.7)	14.4 (±2.0)	14.0 (±3.6)	0.921		
Paridad	1 (1-1)	1 (1-2)	1 (1-1)	0.619		
Peso (kg)	55.2 (±5.93)	60.04 (±16.51)	55.9 (±12.43)	0.771		
Talla (m)	1.54 (±0.07)	1.59 (±0.09)	1.51 (±0.07)	0.595		
IMC gestacional (kg/m ²)	23.51 (±3.95)	23.49 (±5.20)	24.53 (±5.57)	0.853		
 Normopeso (n(%)) 	4 (80)	4 (80)	3 (60)			
 Sobrepeso (n(%)) 	-	-	1 (20)			
 Obesidad I (n(%)) 	1 (20)	1 (20)	1 (20)	1.000		
• Obesidad II (n(%))	-	-	-			
Obesidad III (n(%))	-	-	-			

Tabla III.I: Características descriptivas por pool subgrupo: control HOMA-% β bajo

Prueba ANOVA de una vía; prueba exacta de Fisher. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas y como mediana (p25-p75) para las variables no paramétricas.

Tabla III.II: Análisis de química sanguínea por pool subgrupo: control HOMA-% β bajo

	Control HOMA-%β bajo					
	Pool 1	Pool 2	Pool 3			
	(n=5)	(n=5)	(n=5)			
Glucosa (mmol/L)	4.74 (±0.24)	4.89 (±0.47)	4.56 (±0.15)	0.192		
Triacilglicéridos (mmol/L)	1.46 (±0.38)	1.40 (±0.42)	1.79 (±0.36)	0.351		
Colesterol total (mmol/L)	4.57 (±0.99)	3.91 (±0.29)	5.07 (±1.12)	0.071		
β-hidroxibutirato (µmol/L)	56.67 (±0.87)	58.59 (±0.87)	32.66 ((±0.87)	0.935		
Insulina (pmol/L)	54.56 (±12.27)	50.71 (±15.87)	64.67 (±8.93)	0.815		
HOMA-IR	0.99 (±0.50)	1.34(±0.47)	0.62 (±0.36)	0.094		
ΗΟΜΑ-%β	116.81 (±27.87)	100.37 (±27.24)	94.76 (±58.54)	0.493		

Prueba ANOVA de una vía. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas.

Tabla III.III: Características descriptivas por pool subgrupo: control HOMA alto

Control HOMA-%β alto					
	Pool 1	Pool 2	Pool 3	Valor p	
	(n=5)	(n=5)	(n=5)		
Edad (años)	24.60 (±3.21)	24.60 (±3.13)	28.60 (±4.28)	0.167	
Semanas de gestación	15.1 (±2.4)	14.3 (±4.4)	12.3 (±4.4)	0.517	
Paridad	1 (1-1)	1 (1-1)	1 (1-2)	0.110	
Peso (kg)	72.56 (±18.46)	75.28 (±22.21)	71.60 (±8.44)	0.942	
Talla (m)	1.59 (±0.06)	1.59 (±0.04)	1.56 (±0.07)	0.609	
IMC gestacional (kg/m ²)	28.70 (±6.95)	30.04 (±9.37)	29.50 (±1.66)	0.953	
 Normopeso (n(%)) 	2 (40)	2 (40)	-		
 Sobrepeso (n(%)) 	-	1 (20)	3 (60)		
 Obesidad I (n(%)) 	2 (40)	-	2 (40)	0.174	
Obesidad II (n(%))	1 (20)	1 (20)	-		
Obesidad III (n(%))	-	1 (20)	-		

Prueba ANOVA de una vía; prueba exacta de Fisher. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas y como mediana (p25-p75) para las variables no paramétricas.

Tabla mite. Analisis de químea sangamea por poor susgrapo: control noma // p ato								
		Control HOMA-%β alto						
	Pool 1	Pool 2	Pool 3	Valor p				
	(n=5)	(n=5)	(n=5)					
Glucosa (mmol/L)	4.78 (±0.07)	4.54 (±0.49)	4.36 (±0.49)	0.291				
Triacilglicéridos (mmol/L)	1.69 (±0.39)	1.39 (±0.29)	1.60 (±0.14)	0.291				
Colesterol total (mmol/L)	4.60 (±0.39)	4.28 (±0.26)	4.84 (±0.35)	0.065				
β-hidroxibutirato (µmol/L)	67.23 (±11.96)	45.82 (±22.67)	38.14 (±28.89)	0.144				
Insulina (pmol/L)	72.28 (±13.05)	60.48 (±26.33)	80.75 (±60.87)	0.718				
HOMA-IR	2.14 (±0.40)	1.39 (±0.95)	2.23 (±1.68)	0.460				
ΗΟΜΑ-%β	149.82 (+8.78)	159.16 (±16.00)	168.26 (±66.54)	0.777				

Tabla III.IV: Análisis de química sanguínea por pool subgrupo: control HOMA-% β alto

Prueba ANOVA de una vía. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas.

Tabla III.V: Características descriptivas por pool subgrupo: preDMG HOMA-%β bajo

	pre			
	Pool 1	Pool 2	Pool 3	Valor p
	(n=5)	(n=5)	(n=5)	
Edad (años)	27.00 (±7.94)	24.50 (±2.12)	24.25 (±7.41)	0.983
Semanas de gestación	12.2 (±4.1)	12.6 (±2.1)	14.1 (±3.4)	0.544
Paridad	1 (1-2)	3 (3-4)	1 (1-2)	0.551
Peso (kg)	69.00 (±14.24)	46.00 (±8.06)	66.88 (±18.71)	0.416
Talla (m)	1.49 (±0.02)	1.53 (±0.08)	1.52 (±0.05)	0.662
IMC gestacional (kg/m ²)	31.02 (±5.62)	19.53 (±1.31)	29.04 (±8.51)	0.187
 Normopeso (n(%)) 	1 (20)	3 (60)	3 (60)	
 Sobrepeso (n(%)) 	1 (20)	2 (40)	-	
 Obesidad I (n(%)) 	1 (20)	-	-	0.706
Obesidad II (n(%))	2 (40)	-	2 (40)	
Obesidad III (n(%))	-	-	-	

Prueba ANOVA de una vía; prueba exacta de Fisher. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas y como mediana (p25-p75) para las variables no paramétricas.

Tabla III.VI: Análisis de química sanguínea por pool subgrupo: preDMG HOMA%β bajo

	preDMG HOMA-%β bajo					
	Pool 1	Pool 2	Pool 3	Valor p		
	(n=5)	(n=5)	(n=5)			
Glucosa (mmol/L)	4.89 (±0.50)	4.67 (±0.23)	5.05 (±0.45)	0.627		
Triacilglicéridos (mmol/L)	2.13 (±0.53)	1.48 (±0.68)	2.02 (±0.59)	0.430		
Colesterol total (mmol/L)	4.64 (±0.63)	4.69 (±0.66)	5.05 (±0.39)	0.533		
β-hidroxibutirato (µmol/L)	33.62 (±11.32)	17.77 (±3.39)	27.62 (±14.78)	0.341		
Insulina (pmol/L)	21.15 (±9.11)	25.21 (±17.67)	25.07 (±13.06)	0.901		
HOMA-IR	0.66 (±0.35)	0.26 (±0.14)	0.56 (±0.23)	0.311		
ΗΟΜΑ-%β	45.78 (±16.43)	58.6 (±31.11)	46.43 (±23.94)	0.692		

Prueba ANOVA de una vía. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas.

Tabla III.VII: Características descriptivas por pool subgrupo: preDMG HOMA-%β alto

	pre	eDMG HOMA-%β a	lto	
	Pool 1	Pool 2	Pool 3	Valor p
	(n=5)	(n=5)	(n=5)	
Edad (años)	28.00 (±4.36)	32.50 (±2.12)	29.00 (±4.24)	0.291
Semanas de gestación	13.1 (±4.4)	10.1 (±3.1)	13.1 (±3.7)	0.881
Paridad	1 (1-2)	3 (3-4)	1 (1-3)	0.539
Peso (kg)	75.03 (±17.22)	80.80 (±1.84)	79.92 (±12.94)	0.950
Talla (m)	1.56 (±0.07)	1.52 (±0.04)	1.54 (±0.06)	0.415
IMC gestacional (kg/m ²)	30.45 (±4.54)	34.99 (±1.16)	33.45 (±3.62)	0.422
 Normopeso (n(%)) 	1 (20)	-	-	
 Sobrepeso (n(%)) 	3 (60)	2 (40)	2 (40)	
 Obesidad I (n(%)) 	-	1 (20)	1 (20)	0.886
Obesidad II (n(%))	1 (20)	2 (40)	2 (40)	
 Obesidad III (n(%)) 	-	-	-	

Prueba ANOVA de una vía; prueba exacta de Fisher. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas y como mediana (p25-p75) para las variables no paramétricas.

Tabla III.VIII: Análisis de química sanguínea por pool subgrupo: preDMG HOMA%β alto

		preDMG HOMA-%β alto		
	Pool 1	Pool 2	Pool 3	Valor p
	(n=5)	(n=5)	(n=5)	
Glucosa (mmol/L)	4.36 (±0.27)	4.06 (±0.65)	3.89 (±0.48)	0.331
Triacilglicéridos (mmol/L)	1.96 (±0.70)	1.60 (±0.91)	1.65 (±0.92)	0.770
Colesterol total (mmol/L)	4.65 (±0.60)	4.65 (±0.65)	4.83 (±0.80)	0.892
β-hidroxibutirato (µmol/L)	70.36 (±11.04)	77.31 (±4.36)	77.56 (±4.20)	0.246
Insulina (pmol/L)	44.12 (±9.09)	41.87 (±27.68)	44.13 (±17.52)	0.416
HOMA-IR	1.14 (±0.17)	2.06 (±0.64)	1.63 (±0.63)	0.275
ΗΟΜΑ-%β	114.6 (±19.39)	219.66 (±121.72)	203.06 (±130.01)	0.264

Prueba ANOVA de una vía. Análisis realizados en el primer trimestre de la gestación 12.7±.3.1 SDG. Los resultados se muestran como media (±D.E.) para las variables paramétricas.

<u>Anexo IV : Perfil de miRNAs de exosomas maternos y placentarios diferencialmente expresados en embarazo en etapas</u> <u>tempranas de la gestación</u>

Tabla IV.I Perfil de miRNAs de exosomas maternos y placentarios diferencialmente expresados en etapas tempranas de lagestación

miRNA	Fold Change	Valor P-ajustado
hsa-miR-4440	11.42	6.99E-07
hsa-miR-3665	10.68	2.55E-13
hsa-miR-4516	8.97	4.74E-15
hsa-miR-6089	8.29	8.86E-12
hsa-miR-6090	8.2	3.71E-14
hsa-miR-8069	7.58	1.96E-12
hsa-miR-4793-3p	7.31	1.77E-06
hsa-miR-6087	6.49	1.56E-10
hsa-miR-4466	6.28	1.46E-10
hsa-miR-6125	6.01	1.97E-12
hsa-miR-7704	5.94	3.61E-09
hsa-miR-4484	5.52	4.22E-10
hsa-miR-3960	5.21	3.46E-11
hsa-miR-6727-5p	5.07	3.60E-11
hsa-miR-6088	5.01	1.51E-10
hsa-miR-1915-3p	3.96	2.20E-11
hsa-miR-6869-5p	3.71	6.07E-11
hsa-miR-3196	3.62	8.03E-10
hsa-miR-6729-5p	3.45	6.80E-12
hsa-miR-4787-5p	3.05	3.56E-10
hsa-miR-762	3.05	3.70E-06
hsa-miR-3620-5p	2.87	2.89E-05
hsa-miR-6786-5p	2.81	1.03E-10
hsa-miR-3656	2.8	1.20E-07
hsa-miR-1237-5p	2.76	1.78E-07
hsa-miR-2861	2.66	6.42E-08
hsa-miR-638	2.32	0.0003
hsa-miR-6850-5p	2.16	2.16E-07
hsa-miR-6791-5p	2.14	3.93E-09
hsa-miR-6724-5p	2.1	4.55E-08
hsa-miR-6803-5p	2.1	1.84E-05
hsa-miR-455-3p	2.04	0.0117
hsa-miR-4668-5p	-3.68	6.41E-08
hsa-miR-3128	-4.03	5.40E-08
hsa-miR-8084	-4.16	2.61E-08
hsa-miR-3201	-4.34	1.96E-08
hsa-miR-3613-3p	-4.34	5.18E-09

Tabla IV.II Perfil de miRNAs de exosomas maternos y placentarios diferencialmente en etapas tempranas de la gestación expresados en embarazos que no desarrollan DMG

_

miRNA	Fold Change	Valor P-ajustado
hsa-miR-4440	43.23	3.43E-08
hsa-miR-4793-3p	19.92	4.08E-08
hsa-miR-3665	13.33	9.61E-09
hsa-miR-6089	12	8.35E-08
hsa-miR-6090	8.87	9.34E-09
hsa-miR-7704	7.6	8.39E-06
hsa-miR-6087	7.23	5.92E-07
hsa-miR-4516	7.22	3.86E-09
hsa-miR-8069	6.76	1.33E-06
hsa-miR-6727-5p	5.81	7.52E-08
hsa-miR-5093	5.44	0.0001
hsa-miR-4484	4.95	5.02E-06
hsa-miR-6088	4.81	2.53E-06
hsa-miR-3620-5p	4.72	9.96E-06
hsa-miR-6125	4.68	2.50E-07
hsa-miR-3960	4.65	5.84E-07
hsa-miR-4466	4.61	2.67E-06
hsa-miR-4507	4.35	8.75E-06
hsa-miR-1915-3p	3.94	2.54E-08
hsa-miR-3196	3.87	4.69E-06
hsa-miR-4787-5p	3.74	3.20E-06
hsa-miR-6729-5p	3.7	1.60E-07
hsa-miR-1228-5p	3.42	0.0002
hsa-miR-762	3.4	0.0006
hsa-miR-4486	3.26	0.0001
hsa-miR-6869-5p	2.92	5.99E-07
hsa-miR-2861	2.9	4.61E-07
hsa-miR-6786-5p	2.9	7.05E-06
hsa-miR-4532	2.73	0.0002
hsa-miR-3656	2.45	3.30E-05
hsa-miR-638	2.42	0.0061
hsa-miR-1268a	2.37	0.0001
hsa-miR-6791-5p	2.34	3.96E-07
hsa-miR-4632-5p	2.29	0.0002
hsa-miR-1237-5p	2.19	0.0003
hsa-miR-1469	2.01	0.0004
hsa-mir-7515	-2.32	1.16E-05
hsa-miR-3128	-2.81	8.45E-05
hsa-miR-8084	-4	6.69E-06
hsa-miR-4668-5p	-5.1	5.67E-06
hsa-miR-3201	-5.8	2.32E-07
hsa-miR-3613-3p	-6.86	9.13E-07

Tabla IV.III Perfil de miRNAs de exosomas maternos y placentarios diferencialmente expresados en etapas tempranas de la gestación en embarazos que desarrollan DMG

miRNA	Fold Change	Valor P-ajustado
hsa-miR-4516	10.82	1.12E-09
hsa-miR-4466	7.79	4.47E-10
hsa-miR-6125	7.73	3.21E-11
hsa-miR-3665	7.25	4.79E-09
hsa-miR-8069	7.25	7.39E-11
hsa-miR-6090	6.78	2.14E-09
hsa-miR-6089	6.46	1.54E-09
hsa-miR-4484	5.79	1.40E-07
hsa-miR-6087	5.57	2.47E-09
hsa-miR-3960	4.93	5.35E-09
hsa-miR-6869-5p	4.51	2.31E-07
hsa-miR-6088	4.5	3.98E-09
hsa-miR-7704	3.81	3.84E-09
hsa-miR-1915-3p	3.44	1.60E-07
hsa-miR-3196	3.31	2.13E-07
hsa-miR-6727-5p	3.26	3.84E-06
hsa-miR-3656	3.21	4.74E-07
hsa-miR-6786-5p	2.99	3.04E-09
hsa-miR-6729-5p	2.94	7.75E-09
hsa-miR-149-3p	2.74	2.61E-07
hsa-miR-2861	2.67	7.12E-05
hsa-miR-6791-5p	2.63	2.20E-06
hsa-miR-4745-5p	2.51	8.08E-06
hsa-miR-6724-5p	2.49	3.97E-08
hsa-miR-4674	2.45	1.39E-07
hsa-miR-1237-5p	2.36	1.86E-06
hsa-miR-4787-5p	2.32	1.54E-07
hsa-miR-762	2.32	0.0002
hsa-miR-5189-3p	2.3	6.37E-06
hsa-miR-4497	2.26	2.05E-06
hsa-miR-6803-5p	2.19	0.0007
hsa-miR-101-5p	2.18	0.0041
hsa-miR-455-3p	2.17	0.0056
hsa-miR-638	2.08	0.0063
hsa-miR-6850-5p	2.07	2.14E-05
hsa-miR-6800-5p	2.06	0.0003
hsa-miR-4668-5p	-2.89	5.80E-05
hsa-miR-3201	-3.06	0.0003
hsa-miR-3613-3p	-3.73	6.74E-06
hsa-miR-8084	-5	6.07E-05
hsa-miR-3128	-5.45	1.33E-06

Tabla IV.IV Perfil de miRNAs de exosomas maternos diferencialmente expresados en etapas tempranas de gestación : control vs DMG

miRNA	Fold Change	Valor P-ajustado
hsa-miR-4440	24.46	0.0037
hsa-miR-4793-3p	13.49	0.0021
hsa-miR-5093	5.82	0.0183
hsa-miR-3620-5p	4.49	0.0182
hsa-miR-4486	3.68	0.025
hsa-miR-4507	3.51	0.0189
hsa-miR-4632-5p	2.83	0.0027
hsa-miR-1268a	2.52	0.0024
hsa-miR-149-3p	-2.2	0.0189
hsa-miR-6125	-2.37	0.0092

Tabla IV.V Perfil de miRNAs de exosomas placentarios diferencialmente expresados en etapas tempranas de gestación : control vs DMG

miRNA	Fold Change	Valor P-ajustado
hsa-miR-7704	-2.25	0.0023
hsa-miR-5787	-2.27	0.0025

Tabla IV.VI Perfil de miRNAs de exosomas maternos diferencialmente expresados en etapas tempranas de la gestación con base en el índice HOMA-%β : alto vs bajo

miRNA	Fold Change	Valor P-ajustado
hsa-miR-4462	-2.1	0.048
hsa-miR-4632-5p	-2.56	0.0427
hsa-miR-4486	-4.21	0.0493

Tabla IV.VII Perfil de miRNAs de exosomas placentarios diferencialmente expresados en etapas tempranas de la gestación con base en el índice HOMA-%β : alto vs bajo

miRNA	Fold Change	Valor P-ajustado
hsa-miR-638	-2.18	7.17E-05
hsa-miR-4706	-2.6	0.0004

Anexo V : Genes potencialmente regulados por los miRNAs exosomales diferencialmente expresados en etapas tempranas <u>de la gestación por subgrupos</u>

Tabla V.I. Genes potencialmente regulados por el set de miRNAs exosomales maternos diferencialmente expresados en mujeres con un índice HOMA-% β alto y que desarrollará DMG

Gen blanco	Nombre del gen	Cumulative weighted context++ score (CWCS)	Pocentaje de supresión del mRNA con base en CWCS
GNG13	guanine nucleotide binding protein (G protein), gamma 13	-8.04	99.62%
FLJ00104	HCG1980662; Uncharacterized protein	-7.99	99.61%
CXXC11	CXXC finger protein 11	-7.3	99.37%
MUC19	mucin 19, oligomeric	-7.11	99.28%
GIPC3	GIPC PDZ domain containing family, member 3	-7.01	99.22%
C10orf91	chromosome 10 open reading frame 91	-4.27	94.82%
C1orf86	chromosome 1 open reading frame 86	-2.67	84.29%
вок	BCL2-related ovarian killer	-2.41	81.18%
H6PD	hexose-6-phosphate dehydrogenase (glucose 1-dehydrogenase)	-2.3	79.69%
PACS1	phosphofurin acidic cluster sorting protein 1	-2.2	78.24%
NDUFS7	NADH dehydrogenase (ubiquinone) Fe-S protein 7, 20kDa (NADH-coenzyme Q reductase)	-1.97	74.47%
MEIS3	Meis homeobox 3	-1.96	74.30%
SCRT2	scratch homolog 2, zinc finger protein (Drosophila)	-1.91	73.39%
NFIC	nuclear factor I/C (CCAAT-binding transcription factor)	-1.9	73.21%
POU2AF1	POU class 2 associating factor 1	-1.9	73.21%
PCSK1N	proprotein convertase subtilisin/kexin type 1 inhibitor	-1.88	72.83%
CTXN1	cortexin 1	-1.8	71.28%
HES4	hairy and enhancer of split 4 (Drosophila)	-1.79	71.08%
C6orf223	chromosome 6 open reading frame 223	-1.73	69.85%
ZBTB7A	zinc finger and BTB domain containing 7A	-1.72	69.65%
ZNF385A	zinc finger protein 385A	-1.71	69.43%
FOXP4	forkhead box P4	-1.66	68.36%
BCL9L	B-cell CLL/lymphoma 9-like	-1.65	68.14%
SCRT1	scratch homolog 1, zinc finger protein (Drosophila)	-1.63	67.69%
KCNC3	potassium voltage-gated channel, Shaw-related subfamily, member 3	-1.62	67.47%
MKNK2	MAP kinase interacting serine/threonine kinase 2	-1.58	66.55%
SIPA1L3	signal-induced proliferation-associated 1 like 3	-1.57	66.32%

CYB561D1	cytochrome b561 family, member D1	-1.55	65.85%
PARVG	parvin, gamma	-1.55	65.85%
RAB11B	RAB11B, member RAS oncogene family	-1.54	65.61%
RFX1	regulatory factor X, 1 (influences HLA class II expression)	-1.54	65.61%
ТТҮНЗ	tweety family member 3	-1.54	65.61%
ANKRD52	ankyrin repeat domain 52	-1.53	65.37%
IGF2	insulin-like growth factor 2 (somatomedin A)	-1.52	65.13%
PRSS22	protease, serine, 22	-1.51	64.89%
HCFC1	host cell factor C1 (VP16-accessory protein)	-1.5	64.64%
HDAC10	histone deacetylase 10	-1.5	64.64%
ADAM29	ADAM metallopeptidase domain 29	-1.49	64.40%
FKBP8	FK506 binding protein 8, 38kDa	-1.49	64.40%
NACC1	nucleus accumbens associated 1, BEN and BTB (POZ) domain containing	-1.49	64.40%
C20orf96	chromosome 20 open reading frame 96	-1.48	64.15%
SSC5D	scavenger receptor cysteine rich domain containing (5 domains)	-1.48	64.15%
KLK4	kallikrein-related peptidase 4	-1.47	63.90%
CRTC1	CREB regulated transcription coactivator 1	-1.46	63.65%
DNAJB5	DnaJ (Hsp40) homolog, subfamily B, member 5	-1.46	63.65%
NPTXR	neuronal pentraxin receptor	-1.46	63.65%
RALB	v-ral simian leukemia viral oncogene homolog B	-1.46	63.65%
SLC8A2	solute carrier family 8 (sodium/calcium exchanger), member 2	-1.44	63.14%
KIAA0040	KIAA0040	-1.43	62.89%
KSR2	kinase suppressor of ras 2	-1.43	62.89%
GJD3	gap junction protein, delta 3, 31.9kDa	-1.42	62.63%
POU2F2	POU class 2 homeobox 2	-1.42	62.63%
WDTC1	WD and tetratricopeptide repeats 1	-1.42	62.63%
B3GALT5	UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, polypeptide 5	-1.41	62.37%
FAM131C	family with sequence similarity 131, member C	-1.41	62.37%
ZNF256	zinc finger protein 256	-1.41	62.37%
ZSWIM4	zinc finger, SWIM-type containing 4	-1.41	62.37%
AL627309.1	Uncharacterized protein	-1.4	62.11%
FAIM2	Fas apoptotic inhibitory molecule 2	-1.4	62.11%
HSD11B2	hydroxysteroid (11-beta) dehydrogenase 2	-1.4	62.11%
ATXN2L	ataxin 2-like	-1.39	61.84%

STK11	serine/threonine kinase 11	-1.39	61.84%
ONECUT3	one cut homeobox 3	-1.37	61.31%
VWA1	von Willebrand factor A domain containing 1	-1.37	61.31%
GNAT1	guanine nucleotide binding protein (G protein), alpha transducing activity polypeptide 1	-1.36	61.04%
SHISA7	shisa family member 7	-1.36	61.04%
CSDC2	cold shock domain containing C2, RNA binding	-1.35	60.77%
EEF1A2	eukaryotic translation elongation factor 1 alpha 2	-1.34	60.50%
PABPC1L2A	poly(A) binding protein, cytoplasmic 1-like 2A	-1.34	60.50%
PABPC1L2B	poly(A) binding protein, cytoplasmic 1-like 2B	-1.34	60.50%
DLGAP4	discs, large (Drosophila) homolog-associated protein 4	-1.33	60.22%
SYNGR1	synaptogyrin 1	-1.33	60.22%
CCDC163P	coiled-coil domain containing 163, pseudogene	-1.3	59.39%
CXorf64	chromosome X open reading frame 64	-1.3	59.39%
NOVA2	neuro-oncological ventral antigen 2	-1.29	59.10%
RAB35	RAB35, member RAS oncogene family	-1.28	58.82%
RENBP	renin binding protein	-1.28	58.82%
MARK2	MAP/microtubule affinity-regulating kinase 2	-1.27	58.53%
AL162389.1	Uncharacterized protein	-1.26	58.25%
NDUFA11	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 11, 14.7kDa	-1.26	58.25%
RAX	retina and anterior neural fold homeobox	-1.26	58.25%
C19orf26	chromosome 19 open reading frame 26	-1.25	57.96%
CHCHD5	coiled-coil-helix-coiled-coil-helix domain containing 5	-1.25	57.96%
PRRG3	proline rich Gla (G-carboxyglutamic acid) 3 (transmembrane)	-1.25	57.96%
SOX12	SRY (sex determining region Y)-box 12	-1.25	57.96%
HOXA7	homeobox A7	-1.24	57.66%
NRARP	NOTCH-regulated ankyrin repeat protein	-1.24	57.66%
PCDH1	protocadherin 1	-1.24	57.66%
RAB30	RAB30, member RAS oncogene family	-1.24	57.66%
THRA	thyroid hormone receptor, alpha	-1.23	57.37%
C3orf72	chromosome 3 open reading frame 72	-1.22	57.07%
LSP1	lymphocyte-specific protein 1	-1.22	57.07%
MAFF	v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F	-1.22	57.07%
PPARD	peroxisome proliferator-activated receptor delta	-1.22	57.07%

PPP1R12B	protein phosphatase 1, regulatory subunit 12B	-1.21	56.77%
TNFRSF4	tumor necrosis factor receptor superfamily, member 4	-1.21	56.77%
VPS37C	vacuolar protein sorting 37 homolog C (S. cerevisiae)	-1.21	56.77%
ZNF469	zinc finger protein 469	-1.21	56.77%
FAM127A	family with sequence similarity 127, member A	-1.2	56.47%
FGFRL1	fibroblast growth factor receptor-like 1	-1.2	56.47%
PCP4L1	Purkinje cell protein 4 like 1	-1.2	56.47%
REPIN1	replication initiator 1	-1.2	56.47%
SCN4B	sodium channel, voltage-gated, type IV, beta subunit	-1.2	56.47%
C17orf103	chromosome 17 open reading frame 103	-1.17	55.56%
CNIH2	cornichon family AMPA receptor auxiliary protein 2	-1.17	55.56%
ARAF	v-raf murine sarcoma 3611 viral oncogene homolog	-1.16	55.25%
PCBD1	pterin-4 alpha-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor 1 alpha	-1.16	55.25%
BCL2L1	BCL2-like 1	-1.15	54.94%
PAX2	paired box 2	-1.15	54.94%
SLC22A13	solute carrier family 22 (organic anion/urate transporter), member 13	-1.15	54.94%
ZBTB16	zinc finger and BTB domain containing 16	-1.15	54.94%
KMT2D	lysine (K)-specific methyltransferase 2D	-1.14	54.62%
RNF224	ring finger protein 224	-1.14	54.62%
SCAMP4	secretory carrier membrane protein 4	-1.14	54.62%
ARC	activity-regulated cytoskeleton-associated protein	-1.13	54.31%
CCL22	chemokine (C-C motif) ligand 22	-1.13	54.31%
BET1L	Bet1 golgi vesicular membrane trafficking protein-like	-1.12	53.99%
C1orf200	chromosome 1 open reading frame 200	-1.12	53.99%
CCDC64	coiled-coil domain containing 64	-1.12	53.99%
EHD2	EH-domain containing 2	-1.12	53.99%
KCTD15	potassium channel tetramerization domain containing 15	-1.12	53.99%
PIANP	PILR alpha associated neural protein	-1.12	53.99%
PRRT1	proline-rich transmembrane protein 1	-1.12	53.99%
BCAM	basal cell adhesion molecule (Lutheran blood group)	-1.11	53.67%
CACNB1	calcium channel, voltage-dependent, beta 1 subunit	-1.11	53.67%
FAM127C	family with sequence similarity 127, member C	-1.11	53.67%
KCNIP3	Kv channel interacting protein 3, calsenilin	-1.11	53.67%

RNF34	ring finger protein 34, E3 ubiquitin protein ligase	-1.11	53.67%
SRRM4	serine/arginine repetitive matrix 4	-1.11	53.67%
SYP	synaptophysin	-1.11	53.67%
NAPA	N-ethylmaleimide-sensitive factor attachment protein, alpha	-1.1	53.35%
MFI2	antigen p97 (melanoma associated) identified by monoclonal antibodies 133.2 and 96.5	-1.09	53.02%
MTSS1L	metastasis suppressor 1-like	-1.09	53.02%
SLC45A3	solute carrier family 45, member 3	-1.09	53.02%
BCL3	B-cell CLL/lymphoma 3	-1.08	52.70%
CLCN6	chloride channel, voltage-sensitive 6	-1.08	52.70%
DDA1	DET1 and DDB1 associated 1	-1.08	52.70%
ELAVL3	ELAV like neuron-specific RNA binding protein 3	-1.08	52.70%
HSPB6	heat shock protein, alpha-crystallin-related, B6	-1.08	52.70%
LGI3	leucine-rich repeat LGI family, member 3	-1.08	52.70%
PDK2	pyruvate dehydrogenase kinase, isozyme 2	-1.08	52.70%
RP11-463J10.2	Uncharacterized protein	-1.08	52.70%
CREB3L2	cAMP responsive element binding protein 3-like 2	-1.07	52.37%
NFIX	nuclear factor I/X (CCAAT-binding transcription factor)	-1.07	52.37%
SPI1	spleen focus forming virus (SFFV) proviral integration oncogene	-1.07	52.37%
TEX35	testis expressed 35	-1.07	52.37%
AP1S1	adaptor-related protein complex 1, sigma 1 subunit	-1.06	52.04%
CLIP3	CAP-GLY domain containing linker protein 3	-1.06	52.04%
LTBP4	latent transforming growth factor beta binding protein 4	-1.06	52.04%
RAB3IL1	RAB3A interacting protein (rabin3)-like 1	-1.06	52.04%
SIRT6	sirtuin 6	-1.06	52.04%
SMARCD1	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily d, member 1	-1.06	52.04%
CD300LD	CD300 molecule-like family member d	-1.05	51.70%
CMTM1	CKLF-like MARVEL transmembrane domain containing 1	-1.05	51.70%
DKFZP779L1853		-1.05	51.70%
MDGA1	MAM domain containing glycosylphosphatidylinositol anchor 1	-1.05	51.70%
MEX3A	mex-3 RNA binding family member A	-1.05	51.70%
CEP170B	centrosomal protein 170B	-1.04	51.37%
DCTN3	dynactin 3 (p22)	-1.04	51.37%
FOXO6	forkhead box O6	-1.04	51.37%

PEA15	phosphoprotein enriched in astrocytes 15	-1.04	51.37%
TNFRSF12A	tumor necrosis factor receptor superfamily, member 12A	-1.04	51.37%
CBLN3	cerebellin 3 precursor	-1.03	51.03%
CMIP	c-Maf inducing protein	-1.03	51.03%
LENG8	leukocyte receptor cluster (LRC) member 8	-1.03	51.03%
MRPL36	mitochondrial ribosomal protein L36	-1.03	51.03%
PVRL1	poliovirus receptor-related 1 (herpesvirus entry mediator C)	-1.03	51.03%
VAMP2	vesicle-associated membrane protein 2 (synaptobrevin 2)	-1.03	51.03%
AC006486.1		-1.02	50.69%
ACKR2	atypical chemokine receptor 2	-1.02	50.69%
HOGA1	4-hydroxy-2-oxoglutarate aldolase 1	-1.02	50.69%
IGSF8	immunoglobulin superfamily, member 8	-1.02	50.69%
TOR4A	torsin family 4, member A	-1.02	50.69%
AP003068.23	Uncharacterized protein	-1.01	50.35%
AP2A1	adaptor-related protein complex 2, alpha 1 subunit	-1.01	50.35%
APOD	apolipoprotein D	-1.01	50.35%
G6PC3	glucose 6 phosphatase, catalytic, 3	-1.01	50.35%
			50.05%
GPC1	glypican 1	-1.01	50.35%
GPC1 KCNMB1	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1	-1.01	50.35% 50.35%
GPC1 KCNMB1 OTOS	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin	-1.01 -1.01 -1.01	50.35% 50.35% 50.35%
GPC1 KCNMB1 OTOS PIP5K1C	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma	-1.01 -1.01 -1.01	50.35% 50.35% 50.35% 50.35%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2	-1.01 -1.01 -1.01 -1.01	50.35% 50.35% 50.35% 50.35% 50.35%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01	50.35% 50.35% 50.35% 50.35% 50.35% 50.35%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76 MYL9	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76 myosin, light chain 9, regulatory	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1 -1 -1	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00% 50.00%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76 MYL9 PACSIN1	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76 myosin, light chain 9, regulatory protein kinase C and casein kinase substrate in neurons 1	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1 -1 -1 -1 -1 -1	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00% 50.00% 50.00%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76 MYL9 PACSIN1 RHOJ	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76 myosin, light chain 9, regulatory protein kinase C and casein kinase substrate in neurons 1 ras homolog family member J	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1 -1 -1 -1 -1 -1	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76 MYL9 PACSIN1 RHOJ RHOJ RPH3AL	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76 myosin, light chain 9, regulatory protein kinase C and casein kinase substrate in neurons 1 ras homolog family member J rabphilin 3A-like (without C2 domains)	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1 -1 -1 -1 -1 -1 -1 -1 -1	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76 MYL9 PACSIN1 RHOJ RHOJ RHOJ RPH3AL TCTE1	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76 myosin, light chain 9, regulatory protein kinase C and casein kinase substrate in neurons 1 ras homolog family member J rabphilin 3A-like (without C2 domains) t-complex-associated-testis-expressed 1	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1. -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76 MYL9 PACSIN1 RHOJ RHOJ RHOJ RPH3AL TCTE1 AC016559.1	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76 myosin, light chain 9, regulatory protein kinase C and casein kinase substrate in neurons 1 ras homolog family member J rabphilin 3A-like (without C2 domains) t-complex-associated-testis-expressed 1 Uncharacterized protein	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 49.65%
GPC1 KCNMB1 OTOS PIP5K1C RAP1GAP2 SNCB ZYX DCUN1D3 KRT76 MYL9 PACSIN1 RHOJ RHOJ RHOJ RHOJ RPH3AL TCTE1 AC016559.1	glypican 1 potassium large conductance calcium-activated channel, subfamily M, beta member 1 otospiralin phosphatidylinositol-4-phosphate 5-kinase, type I, gamma RAP1 GTPase activating protein 2 synuclein, beta zyxin DCN1, defective in cullin neddylation 1, domain containing 3 keratin 76 myosin, light chain 9, regulatory protein kinase C and casein kinase substrate in neurons 1 ras homolog family member J rabphilin 3A-like (without C2 domains) t-complex-associated-testis-expressed 1 Uncharacterized protein apolipoprotein C-II	-1.01 -1.01 -1.01 -1.01 -1.01 -1.01 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.35% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 49.65% 49.65%
ENTPD2	ectonucleoside triphosphate diphosphohydrolase 2	-0.99	49.65%
------------	---	-------	--------
GRIN1	glutamate receptor, ionotropic, N-methyl D-aspartate 1	-0.99	49.65%
RASSF3	Ras association (RalGDS/AF-6) domain family member 3	-0.99	49.65%
SOX13	SRY (sex determining region Y)-box 13	-0.99	49.65%
STX1A	syntaxin 1A (brain)	-0.99	49.65%
ZNF70	zinc finger protein 70	-0.99	49.65%
ZNF784	zinc finger protein 784	-0.99	49.65%
ARHGDIA	Rho GDP dissociation inhibitor (GDI) alpha	-0.98	49.30%
ATG9B	autophagy related 9B	-0.98	49.30%
EGR4	early growth response 4	-0.98	49.30%
HOXA1	homeobox A1	-0.98	49.30%
NRSN2	neurensin 2	-0.98	49.30%
PNPO	pyridoxamine 5'-phosphate oxidase	-0.98	49.30%
RASD2	RASD family, member 2	-0.98	49.30%
ADAMTS17	ADAM metallopeptidase with thrombospondin type 1 motif, 17	-0.97	48.95%
ADAMTS4	ADAM metallopeptidase with thrombospondin type 1 motif, 4	-0.97	48.95%
DBNDD2	dysbindin (dystrobrevin binding protein 1) domain containing 2	-0.97	48.95%
SCGB1A1	secretoglobin, family 1A, member 1 (uteroglobin)	-0.97	48.95%
ZNF772	zinc finger protein 772	-0.97	48.95%
CCDC167	coiled-coil domain containing 167	-0.96	48.59%
GPR173	G protein-coupled receptor 173	-0.96	48.59%
INMT	indolethylamine N-methyltransferase	-0.96	48.59%
ISOC2	isochorismatase domain containing 2	-0.96	48.59%
LYPLA2	lysophospholipase II	-0.96	48.59%
LZTS3	Homo sapiens leucine zipper, putative tumor suppressor family member 3 (LZTS3), transcript variant 2, mRNA.	-0.96	48.59%
RSPO4	R-spondin 4	-0.96	48.59%
SCN3B	sodium channel, voltage-gated, type III, beta subunit	-0.96	48.59%
TMEM120B	transmembrane protein 120B	-0.96	48.59%
TOM1L2	target of myb1-like 2 (chicken)	-0.96	48.59%
AC135983.2	Protein LOC100996413	-0.95	48.24%
ALPL	alkaline phosphatase, liver/bone/kidney	-0.95	48.24%
BSPH1	binder of sperm protein homolog 1	-0.95	48.24%
CITED2	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2	-0.95	48.24%

CLSTN1	calsyntenin 1	-0.95	48.24%
DIS3L2	DIS3 mitotic control homolog (S. cerevisiae)-like 2	-0.95	48.24%
KRT80	keratin 80	-0.95	48.24%
RPRD2	regulation of nuclear pre-mRNA domain containing 2	-0.95	48.24%
SH2B1	SH2B adaptor protein 1	-0.95	48.24%
CD34	CD34 molecule	-0.94	47.88%
SORCS2	sortilin-related VPS10 domain containing receptor 2	-0.94	47.88%
AC019294.1		-0.93	47.51%
AC138655.1	CDNA: FLJ23120 fis, clone LNG07989; HCG1987724; Uncharacterized protein	-0.93	47.51%
GAL3ST3	galactose-3-O-sulfotransferase 3	-0.93	47.51%
NUDT18	nudix (nucleoside diphosphate linked moiety X)-type motif 18	-0.93	47.51%
PDX1	pancreatic and duodenal homeobox 1	-0.93	47.51%
PRKACA	protein kinase, cAMP-dependent, catalytic, alpha	-0.93	47.51%
PRRC2B	proline-rich coiled-coil 2B	-0.93	47.51%
SLC7A8	solute carrier family 7 (amino acid transporter light chain, L system), member 8	-0.93	47.51%
SYNGAP1	synaptic Ras GTPase activating protein 1	-0.93	47.51%
XKR7	XK, Kell blood group complex subunit-related family, member 7	-0.93	47.51%
BEAN1	brain expressed, associated with NEDD4, 1	-0.92	47.15%
CTD-2162K18.4	Uncharacterized protein	-0.92	47.15%
DLX4	distal-less homeobox 4	-0.92	47.15%
FAM222B	family with sequence similarity 222, member B	-0.92	47.15%
FOXK1	forkhead box K1	-0.92	47.15%
HES3	hairy and enhancer of split 3 (Drosophila)	-0.92	47.15%
LAMTOR1	late endosomal/lysosomal adaptor, MAPK and MTOR activator 1	-0.92	47.15%
MYRF	myelin regulatory factor	-0.92	47.15%
SAMD10	sterile alpha motif domain containing 10	-0.92	47.15%
SPINT1	serine peptidase inhibitor, Kunitz type 1	-0.92	47.15%
TMEM249	transmembrane protein 249	-0.92	47.15%
HRAS	Harvey rat sarcoma viral oncogene homolog	-0.91	46.78%
ICOSLG	inducible T-cell co-stimulator ligand	-0.91	46.78%
PLBD2	phospholipase B domain containing 2	-0.91	46.78%
PPAPDC3	phosphatidic acid phosphatase type 2 domain containing 3	-0.91	46.78%
РҮҮ	peptide YY	-0.91	46.78%
SFXN3	sideroflexin 3	-0.91	46.78%

SH3GL1	SH3-domain GRB2-like 1	-0.91	46.78%
SPRR1B	small proline-rich protein 1B	-0.91	46.78%
UBALD1	UBA-like domain containing 1	-0.91	46.78%
ZNF587	zinc finger protein 587	-0.91	46.78%
C17orf107	chromosome 17 open reading frame 107	-0.9	46.41%
CPLX2	complexin 2	-0.9	46.41%
DLX3	distal-less homeobox 3	-0.9	46.41%
DPF1	D4, zinc and double PHD fingers family 1	-0.9	46.41%
ERI3	ERI1 exoribonuclease family member 3	-0.9	46.41%
FOSB	FBJ murine osteosarcoma viral oncogene homolog B	-0.9	46.41%
GPR3	G protein-coupled receptor 3	-0.9	46.41%
GYPC	glycophorin C (Gerbich blood group)	-0.9	46.41%
KCNC1	potassium voltage-gated channel, Shaw-related subfamily, member 1	-0.9	46.41%
PRR12	proline rich 12	-0.9	46.41%
TMEM184B	transmembrane protein 184B	-0.9	46.41%
ACE	angiotensin I converting enzyme	-0.89	46.04%
CDKN1A	cyclin-dependent kinase inhibitor 1A (p21, Cip1)	-0.89	46.04%
CNN2	calponin 2	-0.89	46.04%
DAGLA	diacylglycerol lipase, alpha	-0.89	46.04%
DBNDD1	dysbindin (dystrobrevin binding protein 1) domain containing 1	-0.89	46.04%
GRASP	GRP1 (general receptor for phosphoinositides 1)-associated scaffold protein	-0.89	46.04%
GRK1	G protein-coupled receptor kinase 1	-0.89	46.04%
LCN15	lipocalin 15	-0.89	46.04%
MS4A4A	membrane-spanning 4-domains, subfamily A, member 4A	-0.89	46.04%
PIN1	peptidylprolyl cis/trans isomerase, NIMA-interacting 1	-0.89	46.04%
PNPLA2	patatin-like phospholipase domain containing 2	-0.89	46.04%
ТКАРРС9	trafficking protein particle complex 9	-0.89	46.04%
ARHGAP17	Rho GTPase activating protein 17	-0.88	45.66%
C15orf37	chromosome 15 open reading frame 37	-0.88	45.66%
DCXR	dicarbonyl/L-xylulose reductase	-0.88	45.66%
GNG7	guanine nucleotide binding protein (G protein), gamma 7	-0.88	45.66%
KHDC3L	KH domain containing 3-like, subcortical maternal complex member	-0.88	45.66%
MAP1A	microtubule-associated protein 1A	-0.88	45.66%
NR5A1	nuclear receptor subfamily 5, group A, member 1	-0.88	45.66%

PPP1R9B	protein phosphatase 1, regulatory subunit 9B	-0.88	45.66%
RAB3D	RAB3D, member RAS oncogene family	-0.88	45.66%
SH3PXD2B	SH3 and PX domains 2B	-0.88	45.66%
VEGFB	vascular endothelial growth factor B	-0.88	45.66%
ZNF268	zinc finger protein 268	-0.88	45.66%
APLN	apelin	-0.87	45.29%
DPF3	D4, zinc and double PHD fingers, family 3	-0.87	45.29%
DUSP8	dual specificity phosphatase 8	-0.87	45.29%
HPD	4-hydroxyphenylpyruvate dioxygenase	-0.87	45.29%
NARF	nuclear prelamin A recognition factor	-0.87	45.29%
PPCS	phosphopantothenoylcysteine synthetase	-0.87	45.29%
SKI	v-ski avian sarcoma viral oncogene homolog	-0.87	45.29%
SMIM21	small integral membrane protein 21	-0.87	45.29%
CDKN2A	cyclin-dependent kinase inhibitor 2A	-0.86	44.90%
CIC	capicua transcriptional repressor	-0.86	44.90%
FAM73B	family with sequence similarity 73, member B	-0.86	44.90%
FGF17	fibroblast growth factor 17	-0.86	44.90%
HIF3A	hypoxia inducible factor 3, alpha subunit	-0.86	44.90%
IL2RG	interleukin 2 receptor, gamma	-0.86	44.90%
KLHL26	kelch-like family member 26	-0.86	44.90%
KRT82	keratin 82	-0.86	44.90%
RNF44	ring finger protein 44	-0.86	44.90%
SLC6A17	solute carrier family 6 (neutral amino acid transporter), member 17	-0.86	44.90%
SOX3	SRY (sex determining region Y)-box 3	-0.86	44.90%
ZNF830	zinc finger protein 830	-0.86	44.90%
ANKRD63	ankyrin repeat domain 63	-0.85	44.52%
C2orf53	chromosome 2 open reading frame 53	-0.85	44.52%
CHTF8	CTF8, chromosome transmission fidelity factor 8 homolog (S. cerevisiae)	-0.85	44.52%
HSPB1	heat shock 27kDa protein 1	-0.85	44.52%
KIAA0247	KIAA0247	-0.85	44.52%
MBD3L1	methyl-CpG binding domain protein 3-like 1	-0.85	44.52%
MC5R	melanocortin 5 receptor	-0.85	44.52%
MEX3B	mex-3 RNA binding family member B	-0.85	44.52%
TRIM67	tripartite motif containing 67	-0.85	44.52%

ZNF837	zinc finger protein 837	-0.85	44.52%
ALKBH5	alkB, alkylation repair homolog 5 (E. coli)	-0.84	44.14%
ANAPC2	anaphase promoting complex subunit 2	-0.84	44.14%
CACNG4	calcium channel, voltage-dependent, gamma subunit 4	-0.84	44.14%
COMMD5	COMM domain containing 5	-0.84	44.14%
CTD-2207O23.12	Uncharacterized protein	-0.84	44.14%
FBXL16	F-box and leucine-rich repeat protein 16	-0.84	44.14%
FBXO10	F-box protein 10	-0.84	44.14%
HDGFL1	hepatoma derived growth factor-like 1	-0.84	44.14%
HOXC4	Homeobox protein Hox-C4	-0.84	44.14%
KIF21B	kinesin family member 21B	-0.84	44.14%
MMP25	matrix metallopeptidase 25	-0.84	44.14%
MOB3B	MOB kinase activator 3B	-0.84	44.14%
OBP2A	odorant binding protein 2A	-0.84	44.14%
RHOG	ras homolog family member G	-0.84	44.14%
RP11-195F19.5	HCG2040265, isoform CRA_a; Uncharacterized protein; cDNA FLJ50015	-0.84	44.14%
SERINC4	serine incorporator 4	-0.84	44.14%
SHOX	short stature homeobox	-0.84	44.14%
STX1B	syntaxin 1B	-0.84	44.14%
TESPA1	thymocyte expressed, positive selection associated 1	-0.84	44.14%
TMEM88	transmembrane protein 88	-0.84	44.14%
AKT1S1	AKT1 substrate 1 (proline-rich)	-0.83	43.75%
BARX1	BARX homeobox 1	-0.83	43.75%
C16orf96	chromosome 16 open reading frame 96	-0.83	43.75%
C5orf45	chromosome 5 open reading frame 45	-0.83	43.75%
C7orf71	chromosome 7 open reading frame 71	-0.83	43.75%
HSPB7	heat shock 27kDa protein family, member 7 (cardiovascular)	-0.83	43.75%
ILK	integrin-linked kinase	-0.83	43.75%
ISM1	isthmin 1, angiogenesis inhibitor	-0.83	43.75%
LRFN1	leucine rich repeat and fibronectin type III domain containing 1	-0.83	43.75%
LYSMD3	LysM, putative peptidoglycan-binding, domain containing 3	-0.83	43.75%
MILR1	mast cell immunoglobulin-like receptor 1	-0.83	43.75%
NXPH4	neurexophilin 4	-0.83	43.75%
PROP1	PROP paired-like homeobox 1	-0.83	43.75%

RP1	retinitis pigmentosa 1 (autosomal dominant)	-0.83	43.75%
TBC1D3	TBC1 domain family, member 3	-0.83	43.75%
TBC1D3F	TBC1 domain family, member 3F	-0.83	43.75%
TENC1	tensin like C1 domain containing phosphatase (tensin 2)	-0.83	43.75%
WNK2	WNK lysine deficient protein kinase 2	-0.83	43.75%
DRAXIN	dorsal inhibitory axon guidance protein	-0.82	43.36%
GSX1	GS homeobox 1	-0.82	43.36%
hsa-mir-1199	hsa-mir-1199	-0.82	43.36%
LHX6	LIM homeobox 6	-0.82	43.36%
LSM2	LSM2 homolog, U6 small nuclear RNA associated (S. cerevisiae)	-0.82	43.36%
RAB15	RAB15, member RAS oncogene family	-0.82	43.36%
SLC22A1	solute carrier family 22 (organic cation transporter), member 1	-0.82	43.36%
SPACA7	sperm acrosome associated 7	-0.82	43.36%
TAB1	TGF-beta activated kinase 1/MAP3K7 binding protein 1	-0.82	43.36%
TMEM43	transmembrane protein 43	-0.82	43.36%
TPBGL	trophoblast glycoprotein-like	-0.82	43.36%
TSKU	tsukushi, small leucine rich proteoglycan	-0.82	43.36%
UBIAD1	UbiA prenyltransferase domain containing 1	-0.82	43.36%
AC007405.2	Uncharacterized protein	-0.81	42.96%
AL353791.1		-0.81	42.96%
ALG13	ALG13, UDP-N-acetylglucosaminyltransferase subunit	-0.81	42.96%
ARF5	ADP-ribosylation factor 5	-0.81	42.96%
C7orf26	chromosome 7 open reading frame 26	-0.81	42.96%
C9orf142	chromosome 9 open reading frame 142	-0.81	42.96%
CLCN2	chloride channel, voltage-sensitive 2	-0.81	42.96%
COL6A1	collagen, type VI, alpha 1	-0.81	42.96%
HCN2	hyperpolarization activated cyclic nucleotide-gated potassium channel 2	-0.81	42.96%
MPP2	membrane protein, palmitoylated 2 (MAGUK p55 subfamily member 2)	-0.81	42.96%
RANBP3	RAN binding protein 3	-0.81	42.96%
RAPGEFL1	Rap guanine nucleotide exchange factor (GEF)-like 1	-0.81	42.96%
RING1	ring finger protein 1	-0.81	42.96%
RUFY4	RUN and FYVE domain containing 4	-0.81	42.96%
S100A5	S100 calcium binding protein A5	-0.81	42.96%
SIX5	SIX homeobox 5	-0.81	42.96%

SSBP3	single stranded DNA binding protein 3	-0.81	42.96%
TREML1	triggering receptor expressed on myeloid cells-like 1	-0.81	42.96%
AHDC1	AT hook, DNA binding motif, containing 1	-0.8	42.57%
AZU1	azurocidin 1	-0.8	42.57%
CALN1	calneuron 1	-0.8	42.57%
CNNM1	cyclin M1	-0.8	42.57%
COL20A1	collagen, type XX, alpha 1	-0.8	42.57%
CSNK2A1	casein kinase 2, alpha 1 polypeptide	-0.8	42.57%
DUS1L	dihydrouridine synthase 1-like (S. cerevisiae)	-0.8	42.57%
FAXDC2	fatty acid hydroxylase domain containing 2	-0.8	42.57%
GMEB1	glucocorticoid modulatory element binding protein 1	-0.8	42.57%
HIST2H2BF	histone cluster 2, H2bf	-0.8	42.57%
HMGA1	high mobility group AT-hook 1	-0.8	42.57%
HPCA	hippocalcin	-0.8	42.57%
LCE1C	late cornified envelope 1C	-0.8	42.57%
LDB3	LIM domain binding 3	-0.8	42.57%
MPV17	MpV17 mitochondrial inner membrane protein	-0.8	42.57%
NR1D1	nuclear receptor subfamily 1, group D, member 1	-0.8	42.57%
PDIA2	protein disulfide isomerase family A, member 2	-0.8	42.57%
РНҮНІР	phytanoyl-CoA 2-hydroxylase interacting protein	-0.8	42.57%
PRPF3	pre-mRNA processing factor 3	-0.8	42.57%
RAB3A	RAB3A, member RAS oncogene family	-0.8	42.57%
SEPT5	septin 5	-0.8	42.57%
SRCIN1	SRC kinase signaling inhibitor 1	-0.8	42.57%
TANGO2	transport and golgi organization 2 homolog (Drosophila)	-0.8	42.57%
TMEM51	transmembrane protein 51	-0.8	42.57%
TPCN1	two pore segment channel 1	-0.8	42.57%
TRIM46	tripartite motif containing 46	-0.8	42.57%
ZFP41	ZFP41 zinc finger protein	-0.8	42.57%
AC012215.1	Uncharacterized protein	-0.79	42.17%
ALX4	ALX homeobox 4	-0.79	42.17%
BCL2L12	BCL2-like 12 (proline rich)	-0.79	42.17%
C10orf82	chromosome 10 open reading frame 82	-0.79	42.17%
CBLN1	cerebellin 1 precursor	-0.79	42.17%

CNTFR	ciliary neurotrophic factor receptor	-0.79	42.17%
CXCR3	chemokine (C-X-C motif) receptor 3	-0.79	42.17%
DNAJC5G	DnaJ (Hsp40) homolog, subfamily C, member 5 gamma	-0.79	42.17%
FAM213B	family with sequence similarity 213, member B	-0.79	42.17%
FAM43B	family with sequence similarity 43, member B	-0.79	42.17%
FURIN	furin (paired basic amino acid cleaving enzyme)	-0.79	42.17%
G6PD	glucose-6-phosphate dehydrogenase	-0.79	42.17%
GAS2L1	growth arrest-specific 2 like 1	-0.79	42.17%
ISLR2	immunoglobulin superfamily containing leucine-rich repeat 2	-0.79	42.17%
MAZ	MYC-associated zinc finger protein (purine-binding transcription factor)	-0.79	42.17%
NAB2	NGFI-A binding protein 2 (EGR1 binding protein 2)	-0.79	42.17%
NTSR1	neurotensin receptor 1 (high affinity)	-0.79	42.17%
PAQR4	progestin and adipoQ receptor family member IV	-0.79	42.17%
PYCRL	pyrroline-5-carboxylate reductase-like	-0.79	42.17%
RP11-162A12.2	Uncharacterized protein	-0.79	42.17%
SLC6A11	solute carrier family 6 (neurotransmitter transporter), member 11	-0.79	42.17%
TGFB1I1	transforming growth factor beta 1 induced transcript 1	-0.79	42.17%
ACAP1	ArfGAP with coiled-coil, ankyrin repeat and PH domains 1	-0.78	41.76%
CCL1	chemokine (C-C motif) ligand 1	-0.78	41.76%
CD300LG	CD300 molecule-like family member g	-0.78	41.76%
COL11A2	collagen, type XI, alpha 2	-0.78	41.76%
COL5A3	collagen, type V, alpha 3	-0.78	41.76%
ERF	Ets2 repressor factor	-0.78	41.76%
FKSG62		-0.78	41.76%
HIPK2	homeodomain interacting protein kinase 2	-0.78	41.76%
KLHL21	kelch-like family member 21	-0.78	41.76%
NKIRAS2	NFKB inhibitor interacting Ras-like 2	-0.78	41.76%
NRN1	neuritin 1	-0.78	41.76%
NTN5	netrin 5	-0.78	41.76%
PPDPF	pancreatic progenitor cell differentiation and proliferation factor	-0.78	41.76%
SLCO2A1	solute carrier organic anion transporter family, member 2A1	-0.78	41.76%
SNAP47	synaptosomal-associated protein, 47kDa	-0.78	41.76%
STXBP1	syntaxin binding protein 1	-0.78	41.76%
TIMP2	TIMP metallopeptidase inhibitor 2	-0.78	41.76%

UBE2V1	ubiquitin-conjugating enzyme E2 variant 1	-0.78	41.76%
YWHAQ	tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide	-0.78	41.76%
A1BG	alpha-1-B glycoprotein	-0.77	41.36%
ALOX15	arachidonate 15-lipoxygenase	-0.77	41.36%
ANXA2	annexin A2	-0.77	41.36%
C22orf42	chromosome 22 open reading frame 42	-0.77	41.36%
CCRN4L	CCR4 carbon catabolite repression 4-like (S. cerevisiae)	-0.77	41.36%
CIDEC	cell death-inducing DFFA-like effector c	-0.77	41.36%
CLDN8	claudin 8	-0.77	41.36%
EFCC1	EF-hand and coiled-coil domain containing 1	-0.77	41.36%
EFNA2	ephrin-A2	-0.77	41.36%
FASN	fatty acid synthase	-0.77	41.36%
GSK3A	glycogen synthase kinase 3 alpha	-0.77	41.36%
ITGA5	integrin, alpha 5 (fibronectin receptor, alpha polypeptide)	-0.77	41.36%
KCNAB2	potassium voltage-gated channel, shaker-related subfamily, beta member 2	-0.77	41.36%
KRTAP4-11	keratin associated protein 4-11	-0.77	41.36%
MIXL1	Mix paired-like homeobox	-0.77	41.36%
OAF	OAF homolog (Drosophila)	-0.77	41.36%
PPP5C	protein phosphatase 5, catalytic subunit	-0.77	41.36%
REG4	regenerating islet-derived family, member 4	-0.77	41.36%
SLC39A2	solute carrier family 39 (zinc transporter), member 2	-0.77	41.36%
SPATA12	spermatogenesis associated 12	-0.77	41.36%
YJEFN3	YjeF N-terminal domain containing 3	-0.77	41.36%
ZNF22	zinc finger protein 22	-0.77	41.36%
AC117395.1	LOC646903 protein; Uncharacterized protein	-0.76	40.95%
CTSD	cathepsin D	-0.76	40.95%
DBH	dopamine beta-hydroxylase (dopamine beta-monooxygenase)	-0.76	40.95%
DDX11	DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11	-0.76	40.95%
DNAJB2	DnaJ (Hsp40) homolog, subfamily B, member 2	-0.76	40.95%
DPP9	dipeptidyl-peptidase 9	-0.76	40.95%
EFHD1	EF-hand domain family, member D1	-0.76	40.95%
EIF4EBP1	eukaryotic translation initiation factor 4E binding protein 1	-0.76	40.95%
F8A1	coagulation factor VIII-associated 1	-0.76	40.95%

F8A2	coagulation factor VIII-associated 2	-0.76	40.95%
F8A3	coagulation factor VIII-associated 3	-0.76	40.95%
FOXA2	forkhead box A2	-0.76	40.95%
FTSJ2	FtsJ RNA methyltransferase homolog 2 (E. coli)	-0.76	40.95%
GAS7	growth arrest-specific 7	-0.76	40.95%
GGT6	gamma-glutamyltransferase 6	-0.76	40.95%
LDHD	lactate dehydrogenase D	-0.76	40.95%
MOB3A	MOB kinase activator 3A	-0.76	40.95%
NAT8L	N-acetyltransferase 8-like (GCN5-related, putative)	-0.76	40.95%
PPP6R1	protein phosphatase 6, regulatory subunit 1	-0.76	40.95%
PTGDS	prostaglandin D2 synthase 21kDa (brain)	-0.76	40.95%
RHOXF2B	Rhox homeobox family, member 2B	-0.76	40.95%
RNF39	ring finger protein 39	-0.76	40.95%
RP11-625H11.1	Uncharacterized protein	-0.76	40.95%
S100A7A	S100 calcium binding protein A7A	-0.76	40.95%
SERPINA1	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 1	-0.76	40.95%
TBC1D24	TBC1 domain family, member 24	-0.76	40.95%
TINAGL1	tubulointerstitial nephritis antigen-like 1	-0.76	40.95%
TMEM229A	transmembrane protein 229A	-0.76	40.95%
TNNI1	troponin I type 1 (skeletal, slow)	-0.76	40.95%
ZCCHC3	zinc finger, CCHC domain containing 3	-0.76	40.95%
AL645730.2		-0.75	40.54%
ATPIF1	ATPase inhibitory factor 1	-0.75	40.54%
CPLX1	complexin 1	-0.75	40.54%
CXCL16	chemokine (C-X-C motif) ligand 16	-0.75	40.54%
FIZ1	FLT3-interacting zinc finger 1	-0.75	40.54%
GSG1L	GSG1-like	-0.75	40.54%
LIME1	Lck interacting transmembrane adaptor 1	-0.75	40.54%
MALL	mal, T-cell differentiation protein-like	-0.75	40.54%
MVB12A	multivesicular body subunit 12A	-0.75	40.54%
PAXIP1-AS2	PAXIP1 antisense RNA 2	-0.75	40.54%
PDLIM7	PDZ and LIM domain 7 (enigma)	-0.75	40.54%
PTMS	parathymosin	-0.75	40.54%
SCN1B	sodium channel, voltage-gated, type I, beta subunit	-0.75	40.54%

SDHB	succinate dehydrogenase complex, subunit B, iron sulfur (Ip)	-0.75	40.54%
SYT5	synaptotagmin V	-0.75	40.54%
TCL1A	T-cell leukemia/lymphoma 1A	-0.75	40.54%
XKR9	XK, Kell blood group complex subunit-related family, member 9	-0.75	40.54%
AIF1L	allograft inflammatory factor 1-like	-0.74	40.13%
AL133373.1	Uncharacterized protein	-0.74	40.13%
АРОВЕСЗН	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3H	-0.74	40.13%
C6orf123	chromosome 6 open reading frame 123	-0.74	40.13%
EFNA4	ephrin-A4	-0.74	40.13%
EPHX1	epoxide hydrolase 1, microsomal (xenobiotic)	-0.74	40.13%
EYA3	eyes absent homolog 3 (Drosophila)	-0.74	40.13%
FAM228A	family with sequence similarity 228, member A	-0.74	40.13%
GNAI2	guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 2	-0.74	40.13%
GRIN2D	glutamate receptor, ionotropic, N-methyl D-aspartate 2D	-0.74	40.13%
MIB2	mindbomb E3 ubiquitin protein ligase 2	-0.74	40.13%
MOB3C	MOB kinase activator 3C	-0.74	40.13%
MRPL4	mitochondrial ribosomal protein L4	-0.74	40.13%
MYO1G	myosin IG	-0.74	40.13%
NTF4	neurotrophin 4	-0.74	40.13%
POLR2J2	DNA-directed RNA polymerase II subunit RPB11-b1	-0.74	40.13%
PPP1R27	protein phosphatase 1, regulatory subunit 27	-0.74	40.13%
PSG5	pregnancy specific beta-1-glycoprotein 5	-0.74	40.13%
RBPMS2	RNA binding protein with multiple splicing 2	-0.74	40.13%
SLC4A2	solute carrier family 4 (anion exchanger), member 2	-0.74	40.13%
TAF8	TAF8 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 43kDa	-0.74	40.13%
TMEM8C	transmembrane protein 8C	-0.74	40.13%
ZC3H18	zinc finger CCCH-type containing 18	-0.74	40.13%
ABCG4	ATP-binding cassette, sub-family G (WHITE), member 4	-0.73	39.71%
C1QB	complement component 1, q subcomponent, B chain	-0.73	39.71%
C22orf26	chromosome 22 open reading frame 26	-0.73	39.71%
CD79A	CD79a molecule, immunoglobulin-associated alpha	-0.73	39.71%
CYTH1	cytohesin 1	-0.73	39.71%
FAM129C	family with sequence similarity 129, member C	-0.73	39.71%
FAM214B	family with sequence similarity 214, member B	-0.73	39.71%

FHL3	four and a half LIM domains 3	-0.73	39.71%
FOSL1	FOS-like antigen 1	-0.73	39.71%
HCFC1R1	host cell factor C1 regulator 1 (XPO1 dependent)	-0.73	39.71%
IRF2BPL	interferon regulatory factor 2 binding protein-like	-0.73	39.71%
KIFC2	kinesin family member C2	-0.73	39.71%
MSI1	musashi RNA-binding protein 1	-0.73	39.71%
NPM2	nucleophosmin/nucleoplasmin 2	-0.73	39.71%
P4HTM	prolyl 4-hydroxylase, transmembrane (endoplasmic reticulum)	-0.73	39.71%
PABPN1	poly(A) binding protein, nuclear 1	-0.73	39.71%
PPP2R4	protein phosphatase 2A activator, regulatory subunit 4	-0.73	39.71%
RAB20	RAB20, member RAS oncogene family	-0.73	39.71%
RCVRN	recoverin	-0.73	39.71%
RP5-850E9.3	Uncharacterized protein	-0.73	39.71%
SLC25A45	solute carrier family 25, member 45	-0.73	39.71%
TRUB2	TruB pseudouridine (psi) synthase family member 2	-0.73	39.71%
U2AF1L4	U2 small nuclear RNA auxiliary factor 1-like 4	-0.73	39.71%
URM1	ubiquitin related modifier 1	-0.73	39.71%
USP11	ubiquitin specific peptidase 11	-0.73	39.71%
XAB2	XPA binding protein 2	-0.73	39.71%
ZBTB3	zinc finger and BTB domain containing 3	-0.73	39.71%
ZNF787	zinc finger protein 787	-0.73	39.71%
BICD2	bicaudal D homolog 2 (Drosophila)	-0.72	39.29%
C17orf96	chromosome 17 open reading frame 96	-0.72	39.29%
C19orf77	chromosome 19 open reading frame 77	-0.72	39.29%
C1QTNF8	C1q and tumor necrosis factor related protein 8	-0.72	39.29%
CAPS	calcyphosine	-0.72	39.29%
CHST3	carbohydrate (chondroitin 6) sulfotransferase 3	-0.72	39.29%
CREB3L1	cAMP responsive element binding protein 3-like 1	-0.72	39.29%
CREB3L3	cAMP responsive element binding protein 3-like 3	-0.72	39.29%
CTD-2140B24.4	Zinc finger protein 268	-0.72	39.29%
DMPK	dystrophia myotonica-protein kinase	-0.72	39.29%
FBRS	fibrosin	-0.72	39.29%
FXR2	fragile X mental retardation, autosomal homolog 2	-0.72	39.29%
IFI35	interferon-induced protein 35	-0.72	39.29%

KRTAP10-5	keratin associated protein 10-5	-0.72	39.29%
LCE1A	late cornified envelope 1A	-0.72	39.29%
LCE6A	late cornified envelope 6A	-0.72	39.29%
LDOC1	leucine zipper, down-regulated in cancer 1	-0.72	39.29%
MEF2D	myocyte enhancer factor 2D	-0.72	39.29%
NGF	nerve growth factor (beta polypeptide)	-0.72	39.29%
P2RX6	purinergic receptor P2X, ligand-gated ion channel, 6	-0.72	39.29%
P2RX7	purinergic receptor P2X, ligand-gated ion channel, 7	-0.72	39.29%
PGLYRP1	peptidoglycan recognition protein 1	-0.72	39.29%
PLCB2	phospholipase C, beta 2	-0.72	39.29%
PP13004		-0.72	39.29%
RAB37	RAB37, member RAS oncogene family	-0.72	39.29%
RHOC	ras homolog family member C	-0.72	39.29%
RNF207	ring finger protein 207	-0.72	39.29%
RP11-1070N10.3	Uncharacterized protein	-0.72	39.29%
S100A1	S100 calcium binding protein A1	-0.72	39.29%
SEMA4G	sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4G	-0.72	39.29%
SLC16A2	solute carrier family 16, member 2 (thyroid hormone transporter)	-0.72	39.29%
SPATA33	spermatogenesis associated 33	-0.72	39.29%
TMEM143	transmembrane protein 143	-0.72	39.29%
TXNL4B	thioredoxin-like 4B	-0.72	39.29%
UBE2M	ubiquitin-conjugating enzyme E2M	-0.72	39.29%
ZFP36L1	ZFP36 ring finger protein-like 1	-0.72	39.29%
BLOC1S1	biogenesis of lysosomal organelles complex-1, subunit 1	-0.71	38.87%
CLDN9	claudin 9	-0.71	38.87%
CYP2W1	cytochrome P450, family 2, subfamily W, polypeptide 1	-0.71	38.87%
FAM195B	family with sequence similarity 195, member B	-0.71	38.87%
FCER1G	Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide	-0.71	38.87%
FHDC1	FH2 domain containing 1	-0.71	38.87%
GNB3	guanine nucleotide binding protein (G protein), beta polypeptide 3	-0.71	38.87%
HOXB8	homeobox B8	-0.71	38.87%
IQSEC2	IQ motif and Sec7 domain 2	-0.71	38.87%
KIAA1462	KIAA1462	-0.71	38.87%

KRTAP17-1	keratin associated protein 17-1	-0.71	38.87%
МАРК13	mitogen-activated protein kinase 13	-0.71	38.87%
MARVELD1	MARVEL domain containing 1	-0.71	38.87%
MFN2	mitofusin 2	-0.71	38.87%
MSN	moesin	-0.71	38.87%
PDDC1	Parkinson disease 7 domain containing 1	-0.71	38.87%
RHOB	ras homolog family member B	-0.71	38.87%
RP11-1212A22.4	NPIP-like protein 1	-0.71	38.87%
RP11-204N11.1	Uncharacterized protein	-0.71	38.87%
RPTN	repetin	-0.71	38.87%
SENP3	SUMO1/sentrin/SMT3 specific peptidase 3	-0.71	38.87%
SHD	Src homology 2 domain containing transforming protein D	-0.71	38.87%
SLC29A1	solute carrier family 29 (equilibrative nucleoside transporter), member 1	-0.71	38.87%
SPRED3	sprouty-related, EVH1 domain containing 3	-0.71	38.87%
TBC1D28	TBC1 domain family, member 28	-0.71	38.87%
TGFBR3L	transforming growth factor, beta receptor III-like	-0.71	38.87%
TMEM229B	transmembrane protein 229B	-0.71	38.87%
TNFSF12	tumor necrosis factor (ligand) superfamily, member 12	-0.71	38.87%
TPRXL	tetra-peptide repeat homeobox-like	-0.71	38.87%
TRAPPC4	trafficking protein particle complex 4	-0.71	38.87%
TRPV2	transient receptor potential cation channel, subfamily V, member 2	-0.71	38.87%
TUBB4A	tubulin, beta 4A class IVa	-0.71	38.87%
ZNF474	zinc finger protein 474	-0.71	38.87%
ZNF865	zinc finger protein 865	-0.71	38.87%
AC026202.1	Uncharacterized protein	-0.7	38.44%
ARHGEF1	Rho guanine nucleotide exchange factor (GEF) 1	-0.7	38.44%
ATXN2	ataxin 2	-0.7	38.44%
BEGAIN	brain-enriched guanylate kinase-associated	-0.7	38.44%
C1orf106	chromosome 1 open reading frame 106	-0.7	38.44%
C3orf70	chromosome 3 open reading frame 70	-0.7	38.44%
CARM1	coactivator-associated arginine methyltransferase 1	-0.7	38.44%
CCDC105	coiled-coil domain containing 105	-0.7	38.44%
CSF1R	colony stimulating factor 1 receptor	-0.7	38.44%
CSTA	cystatin A (stefin A)	-0.7	38.44%

DTV4	$\frac{1}{1}$	0.7	29.440/
DTX4	deltex homolog 4 (Drosophila)	-0.7	38.44%
EMR3	egf-like module containing, mucin-like, hormone receptor-like 3	-0.7	38.44%
FAM84A	family with sequence similarity 84, member A	-0.7	38.44%
FLJ27365	hsa-mir-4763	-0.7	38.44%
GPR37L1	G protein-coupled receptor 37 like 1	-0.7	38.44%
KCNQ4	potassium voltage-gated channel, KQT-like subfamily, member 4	-0.7	38.44%
LASP1	LIM and SH3 protein 1	-0.7	38.44%
LBX1	ladybird homeobox 1	-0.7	38.44%
MICAL3	microtubule associated monooxygenase, calponin and LIM domain containing 3	-0.7	38.44%
NKX2-5	NK2 homeobox 5	-0.7	38.44%
NRGN	neurogranin (protein kinase C substrate, RC3)	-0.7	38.44%
OLFML2A	olfactomedin-like 2A	-0.7	38.44%
PCP4	Purkinje cell protein 4	-0.7	38.44%
PGLYRP2	peptidoglycan recognition protein 2	-0.7	38.44%
PHF15	PHD finger protein 15	-0.7	38.44%
PNCK	pregnancy up-regulated non-ubiquitously expressed CaM kinase	-0.7	38.44%
PRSS46	protease, serine, 46	-0.7	38.44%
RNF185	ring finger protein 185	-0.7	38.44%
SDHAF1	succinate dehydrogenase complex assembly factor 1	-0.7	38.44%
SLC35F1	solute carrier family 35, member F1	-0.7	38.44%
SLC3A2	solute carrier family 3 (amino acid transporter heavy chain), member 2	-0.7	38.44%
SMYD5	SMYD family member 5	-0.7	38.44%
SUFU	suppressor of fused homolog (Drosophila)	-0.7	38.44%
TLX3	T-cell leukemia homeobox 3	-0.7	38.44%
TNK1	tyrosine kinase, non-receptor, 1	-0.7	38.44%
TRH	thyrotropin-releasing hormone	-0.7	38.44%
XCL2	chemokine (C motif) ligand 2	-0.7	38.44%

<u>Tabla V.II. Genes potencialmente regulados por el set de miRNAs exosomales maternos diferencialmente expresados en mujeres con un</u> <u>índice HOMA-% β bajo y que desarrollarán DMG</u>

Gen blanco	Nombre del gen	Cumulative weighted context++ score (CWCS)	Pocentaje de supresión del mRNA con base en CWCS
MUC19	mucin 19, oligomeric	-2.26	79.12%
JTB	jumping translocation breakpoint	-0.76	40.95%
AC106873.4	Uncharacterized protein	-0.69	38.01%
TSPAN18	tetraspanin 18	-0.65	36.27%
FABP4	fatty acid binding protein 4, adipocyte	-0.61	34.48%
HOXC4	Homeobox protein Hox-C4	-0.59	33.57%
SLC25A3	solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 3	-0.54	31.22%
PRKAB2	protein kinase, AMP-activated, beta 2 non-catalytic subunit	-0.52	30.26%
EID1	EP300 interacting inhibitor of differentiation 1	-0.52	30.26%
C3orf38	chromosome 3 open reading frame 38	-0.51	29.78%
CUL3	cullin 3	-0.5	29.29%

Tabla V.III. Genes potencialmente regulados por el miRNA (hsa-miR-6724-5p) exosomales maternos diferencialmente expresados en mujeres que desarrollarán DMG

Gen blanco	Nombre del gen	Cumulative weighted context++ score (CWCS)	Pocentaje de supresión del mRNA con base en CWCS
AL627309.1	Uncharacterized protein	-2.24	78.8%
вок	BCL2-related ovarian killer	-1.4	62.1%
PPP2R4	protein phosphatase 2A activator, regulatory subunit 4	-1.3	59.4%
HMGA1	high mobility group AT-hook 1	-1.12	54.0%
SUMF2	sulfatase modifying factor 2	-1.01	50.3%
GATA6	GATA binding protein 6	-1	50.0%
CD6	CD6 molecule	-0.95	48.2%
CHTF8	CTF8, chromosome transmission fidelity factor 8 homolog (S. cerevisiae)	-0.94	47.9%
FGFBP2	fibroblast growth factor binding protein 2	-0.9	46.4%
ANG	angiogenin, ribonuclease, RNase A family, 5	-0.89	46.0%
GNG12	guanine nucleotide binding protein (G protein), gamma 12	-0.87	45.3%
NME3	NME/NM23 nucleoside diphosphate kinase 3	-0.85	44.5%
SNX21	sorting nexin family member 21	-0.85	44.5%
CRYGS	crystallin, gamma S	-0.83	43.7%
ARSH	arylsulfatase family, member H	-0.83	43.7%
SNX12	sorting nexin 12	-0.82	43.4%
ST3GAL3	ST3 beta-galactoside alpha-2,3-sialyltransferase 3	-0.82	43.4%
RBMXL3	RNA binding motif protein, X-linked-like 3	-0.81	43.0%
USF1	upstream transcription factor 1	-0.81	43.0%
RIC3	RIC3 acetylcholine receptor chaperone	-0.81	43.0%
SYNGR1	synaptogyrin 1	-0.8	42.6%
GAREML	GRB2 associated, regulator of MAPK1-like	-0.79	42.2%
ARMC5	armadillo repeat containing 5	-0.78	41.8%
CBX7	chromobox homolog 7	-0.77	41.4%
CTNS	cystinosin, lysosomal cystine transporter	-0.76	41.0%
DAPK2	death-associated protein kinase 2	-0.76	41.0%
ITGB4	integrin, beta 4	-0.76	41.0%
NCALD	neurocalcin delta	-0.75	40.5%
CCDC38	coiled-coil domain containing 38	-0.75	40.5%
REPIN1	replication initiator 1	-0.75	40.5%

ZCCHC24	zinc finger, CCHC domain containing 24	-0.74	40.1%
SLC41A1	solute carrier family 41 (magnesium transporter), member 1	-0.74	40.1%
SLC7A6	solute carrier family 7 (amino acid transporter light chain, y+L system), member 6	-0.74	40.1%
TREML4	triggering receptor expressed on myeloid cells-like 4	-0.74	40.1%
ACP1	acid phosphatase 1, soluble	-0.73	39.7%
STAC	SH3 and cysteine rich domain	-0.73	39.7%
AC092850.1	Protein LOC100996701	-0.73	39.7%
C16orf45	chromosome 16 open reading frame 45	-0.73	39.7%
HM13	histocompatibility (minor) 13	-0.73	39.7%
FOXK1	forkhead box K1	-0.72	39.3%
IFNK	interferon, kappa	-0.72	39.3%
RNF44	ring finger protein 44	-0.72	39.3%
DNAH10OS	dynein, axonemal, heavy chain 10 opposite strand	-0.72	39.3%
ҮКТ6	YKT6 v-SNARE homolog (S. cerevisiae)	-0.72	39.3%
CAPNS1	calpain, small subunit 1	-0.72	39.3%
RP11-849H4.2	Putative short transient receptor potential channel 2-like protein	-0.71	38.9%
KCTD15	potassium channel tetramerization domain containing 15	-0.71	38.9%
BCL2L1	BCL2-like 1	-0.71	38.9%
AC008964.1		-0.71	38.9%
PSAPL1	prosaposin-like 1 (gene/pseudogene)	-0.7	38.4%

Tabla V.IV. Genes potencialmente regulados por el set de miRNAs exosomales placentarios diferencialmente expresados en mujeres con un índice HOMA-% β alto y que desarrollarán DMG

Gen blanco	Nombre del gen	Cumulative weighted context++ score (CWCS)	Pocentaje de supresión del mRNA con base en CWCS
C19orf26	chromosome 19 open reading frame 26	-1.26	58.25%
RADIL	Ras association and DIL domains	-1.18	55.86%
POLR2L	polymerase (RNA) II (DNA directed) polypeptide L, 7.6kDa	-1.06	52.04%
IL2RG	interleukin 2 receptor, gamma	-1.04	51.37%
NXN	Nucleoredoxin	-1.04	51.37%
TBX1	T-box 1	-1.03	51.03%
CMTM1	CKLF-like MARVEL transmembrane domain containing 1	-1.01	50.35%
CRHR2	corticotropin releasing hormone receptor 2	-1.01	50.35%
LYPD2	LY6/PLAUR domain containing 2	-0.99	49.65%
TOR4A	torsin family 4, member A	-0.99	49.65%
DMKN	Dermokine	-0.95	48.24%
DNAJC4	DnaJ (Hsp40) homolog, subfamily C, member 4	-0.89	46.04%
RANGRF	RAN guanine nucleotide release factor	-0.88	45.66%
KCNJ12	potassium inwardly-rectifying channel, subfamily J, member 12	-0.86	44.90%
HRK	harakiri, BCL2 interacting protein (contains only BH3 domain)	-0.83	43.75%
REPIN1	replication initiator 1	-0.83	43.75%
FOXB1	forkhead box B1	-0.82	43.36%
DYDC1	DPY30 domain containing 1	-0.81	42.96%
PAX2	paired box 2	-0.81	42.96%
MSTN	Myostatin	-0.79	42.17%
PRR19	proline rich 19	-0.79	42.17%
ATP5G2	ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9)	-0.78	41.76%
GSG2	germ cell associated 2 (haspin)	-0.78	41.76%
LCE2C	late cornified envelope 2C	-0.77	41.36%
NNAT	Neuronatin	-0.77	41.36%
PFKFB3	6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3	-0.77	41.36%
AIFM1	apoptosis-inducing factor, mitochondrion-associated, 1	-0.76	40.95%
MGRN1	mahogunin ring finger 1, E3 ubiquitin protein ligase	-0.76	40.95%
PRX	Periaxin	-0.76	40.95%

DDX49	DEAD (Asp-Glu-Ala-Asp) box polypeptide 49	-0.75	40.54%
EIF5A2	eukaryotic translation initiation factor 5A2	-0.75	40.54%
RPUSD4	RNA pseudouridylate synthase domain containing 4	-0.75	40.54%
CACNG3	calcium channel, voltage-dependent, gamma subunit 3	-0.74	40.13%
CASR	calcium-sensing receptor	-0.74	40.13%
FAM178B	family with sequence similarity 178, member B	-0.74	40.13%
VIMP	VCP-interacting membrane protein	-0.74	40.13%
SLC7A5	solute carrier family 7 (amino acid transporter light chain, L system), member 5	-0.73	39.71%
TRPV5	transient receptor potential cation channel, subfamily V, member 5	-0.73	39.71%
CLEC4C	C-type lectin domain family 4, member C	-0.72	39.29%
FCER1G	Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide	-0.72	39.29%
NKX2-2	NK2 homeobox 2	-0.72	39.29%
TENC1	tensin like C1 domain containing phosphatase (tensin 2)	-0.72	39.29%
PPP3R1	protein phosphatase 3, regulatory subunit B, alpha	-0.71	38.87%
CXCR1	chemokine (C-X-C motif) receptor 1	-0.7	38.44%
IL15RA	interleukin 15 receptor, alpha	-0.7	38.44%

Tabla V.V. Genes potencialmente regulados por el set de miRNAs exosomales placentarios diferencialmente expresados en mujeres con un índice HOMA-% β bajo y que desarrollarán DMG

Gen blanco	Nombre del gen	Cumulative weighted context++ score (CWCS)	Pocentaje de supresión del mRNA con base en CWCS
CXXC11	CXXC finger protein 11	-3.74	92.52%
MUC19	mucin 19, oligomeric	-2.26	79.12%
C19orf26	chromosome 19 open reading frame 26	-2.23	78.68%
BAX	BCL2-associated X protein	-1.46	63.65%
RSPO4	R-spondin 4	-1.37	61.31%
MAPK4	mitogen-activated protein kinase 4	-1.35	60.77%
OTX1	orthodenticle homeobox 1	-1.33	60.22%
C8orf82	chromosome 8 open reading frame 82	-1.3	59.39%
VWA1	von Willebrand factor A domain containing 1	-1.27	58.53%
CERS1	ceramide synthase 1	-1.26	58.25%
IL17RE	interleukin 17 receptor E	-1.21	56.77%
ТАРВР	TAP binding protein (tapasin)	-1.21	56.77%
HCN2	hyperpolarization activated cyclic nucleotide-gated potassium channel 2	-1.17	55.56%
RHOG	ras homolog family member G	-1.17	55.56%
FGFRL1	fibroblast growth factor receptor-like 1	-1.1	53.35%
TPPP	tubulin polymerization promoting protein	-1.1	53.35%
R3HDM4	R3H domain containing 4	-1.05	51.70%
FEZF2	FEZ family zinc finger 2	-1.04	51.37%
ОТР	orthopedia homeobox	-1.04	51.37%
IFITM2	interferon induced transmembrane protein 2	-1.03	51.03%
MCM5	minichromosome maintenance complex component 5	-1.03	51.03%
AP000350.4	Uncharacterized protein	-1.02	50.69%
GALNS	galactosamine (N-acetyl)-6-sulfate sulfatase	-1.02	50.69%
CTF1	cardiotrophin 1	-1	50.00%
CYP20A1	cytochrome P450, family 20, subfamily A, polypeptide 1	-1	50.00%
C15orf37	chromosome 15 open reading frame 37	-0.99	49.65%
PRRT1	proline-rich transmembrane protein 1	-0.99	49.65%
S100A7A	S100 calcium binding protein A7A	-0.98	49.30%
KHDC3L	KH domain containing 3-like, subcortical maternal complex member	-0.97	48.95%
ZNF726	zinc finger protein 726	-0.97	48.95%

C1QL1	complement component 1, q subcomponent-like 1	-0.96	48.59%
JUND	jun D proto-oncogene	-0.92	47.15%
MSC	musculin	-0.92	47.15%
PITX1	paired-like homeodomain 1	-0.92	47.15%
SCRT2	scratch homolog 2, zinc finger protein (Drosophila)	-0.92	47.15%
C1orf53	chromosome 1 open reading frame 53	-0.91	46.78%
MARVELD1	MARVEL domain containing 1	-0.91	46.78%
MZF1	myeloid zinc finger 1	-0.9	46.41%
POFUT2	protein O-fucosyltransferase 2	-0.9	46.41%
SCN1B	sodium channel, voltage-gated, type I, beta subunit	-0.89	46.04%
ZIC4	Zic family member 4	-0.89	46.04%
C11orf96	chromosome 11 open reading frame 96	-0.88	45.66%
MNX1	motor neuron and pancreas homeobox 1	-0.88	45.66%
C14orf2	chromosome 14 open reading frame 2	-0.87	45.29%
CNTD2	cyclin N-terminal domain containing 2	-0.87	45.29%
DDX39B	DEAD (Asp-Glu-Ala-Asp) box polypeptide 39B	-0.86	44.90%
PLCXD1	phosphatidylinositol-specific phospholipase C, X domain containing 1	-0.86	44.90%
AMIGO3	adhesion molecule with Ig-like domain 3	-0.85	44.52%
МОК	MOK protein kinase	-0.85	44.52%
РСВР3	poly(rC) binding protein 3	-0.85	44.52%
RAB40C	RAB40C, member RAS oncogene family	-0.85	44.52%
VMA21	VMA21 vacuolar H+-ATPase homolog (S. cerevisiae)	-0.85	44.52%
HPD	4-hydroxyphenylpyruvate dioxygenase	-0.84	44.14%
SH3GL1	SH3-domain GRB2-like 1	-0.84	44.14%
ZC3H12D	zinc finger CCCH-type containing 12D	-0.84	44.14%
DRP2	dystrophin related protein 2	-0.83	43.75%
TMEM185B	transmembrane protein 185B	-0.82	43.36%
CCDC12	coiled-coil domain containing 12	-0.81	42.96%
MDM4	Mdm4 p53 binding protein homolog (mouse)	-0.81	42.96%
PDDC1	Parkinson disease 7 domain containing 1	-0.81	42.96%
CLCN6	chloride channel, voltage-sensitive 6	-0.8	42.57%
PPIAL4C	peptidylprolyl isomerase A (cyclophilin A)-like 4C	-0.8	42.57%
BCL2L12	BCL2-like 12 (proline rich)	-0.79	42.17%
C17orf72	chromosome 17 open reading frame 72	-0.79	42.17%

PDSS1	prenyl (decaprenyl) diphosphate synthase, subunit 1	-0.79	42.17%
PPIAL4A	peptidylprolyl isomerase A (cyclophilin A)-like 4A	-0.79	42.17%
PPIAL4B	peptidylprolyl isomerase A (cyclophilin A)-like 4B	-0.79	42.17%
PPIAL4D	peptidylprolyl isomerase A (cyclophilin A)-like 4D	-0.79	42.17%
TTLL10	tubulin tyrosine ligase-like family, member 10	-0.79	42.17%
AC097381.1		-0.78	41.76%
CST7	cystatin F (leukocystatin)	-0.78	41.76%
DEGS2	delta(4)-desaturase, sphingolipid 2	-0.78	41.76%
MVB12B	multivesicular body subunit 12B	-0.78	41.76%
NRGN	neurogranin (protein kinase C substrate, RC3)	-0.78	41.76%
BRSK2	BR serine/threonine kinase 2	-0.77	41.36%
FAM43B	family with sequence similarity 43, member B	-0.77	41.36%
HTR3D	5-hydroxytryptamine (serotonin) receptor 3D, ionotropic	-0.77	41.36%
STXBP1	syntaxin binding protein 1	-0.77	41.36%
TULP3	tubby like protein 3	-0.77	41.36%
ZDHHC19	zinc finger, DHHC-type containing 19	-0.77	41.36%
ABCC12	ATP-binding cassette, sub-family C (CFTR/MRP), member 12	-0.76	40.95%
		0.76	40.95%
ATP8B3	A Pase, aminophospholipid transporter, class I, type 8B, member 3	-0.76	40.9370
ATP8B3 BGN	A i rase, aminophospholipid transporter, class I, type 8B, member 3 biglycan	-0.76	40.95%
ATP8B3 BGN CAPN1	A i rase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit	-0.76 -0.76	40.95% 40.95%
ATP8B3 BGN CAPN1 GREM2	A I Pase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist	-0.76 -0.76 -0.76	40.95% 40.95% 40.95%
ATP8B3 BGN CAPN1 GREM2 JTB	A i rase, aminophospholipid transporter, class i, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint	-0.76 -0.76 -0.76 -0.76	40.95% 40.95% 40.95% 40.95%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G	A I rase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76	40.95% 40.95% 40.95% 40.95% 40.95%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5	A I rase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76	40.95% 40.95% 40.95% 40.95% 40.95% 40.95%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A	A I rase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A CACNB1	A I rase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A CACNB1 CMYA5	A I rase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit cardiomyopathy associated 5	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.54%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A CACNB1 CMYA5 CYB5R3	A Frase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit cardiomyopathy associated 5 cytochrome b5 reductase 3	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75 -0.75 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.54% 40.54%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A CACNB1 CMYA5 CYB5R3 GDPD5	A I Pase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit cardiomyopathy associated 5 cytochrome b5 reductase 3 glycerophosphodiester phosphodiesterase domain containing 5	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75 -0.75 -0.75 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.54% 40.54%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A CACNB1 CMYA5 CYB5R3 GDPD5 LRRC3	A I Pase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit cardiomyopathy associated 5 cytochrome b5 reductase 3 glycerophosphodiester phosphodiesterase domain containing 5 leucine rich repeat containing 3	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.54% 40.54% 40.54% 40.54%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A CACNB1 CMYA5 CYB5R3 GDPD5 LRRC3 PDZD11	A I Pase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit cardiomyopathy associated 5 cytochrome b5 reductase 3 glycerophosphodiester phosphodiesterase domain containing 5 leucine rich repeat containing 3 PDZ domain containing 11	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.54% 40.54% 40.54% 40.54% 40.54% 40.54%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 COR4A CACNB1 CMYA5 CYB5R3 GDPD5 LRRC3 PDZD11 RNF166	A I Pase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit cardiomyopathy associated 5 cytochrome b5 reductase 3 glycerophosphodiester phosphodiesterase domain containing 5 leucine rich repeat containing 3 PDZ domain containing 11 ring finger protein 166	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.54% 40.54% 40.54% 40.54% 40.54% 40.54% 40.54% 40.54% 40.54%
ATP8B3 BGN CAPN1 GREM2 JTB PPIAL4G SLC12A5 TOR4A CACNB1 CMYA5 GDPD5 LRRC3 PDZD11 RNF166 RP11-67H2.1	A I Pase, aminophospholipid transporter, class I, type 8B, member 3 biglycan calpain 1, (mu/I) large subunit gremlin 2, DAN family BMP antagonist jumping translocation breakpoint peptidylprolyl isomerase A (cyclophilin A)-like 4G solute carrier family 12 (potassium/chloride transporter), member 5 torsin family 4, member A calcium channel, voltage-dependent, beta 1 subunit cardiomyopathy associated 5 cytochrome b5 reductase 3 glycerophosphodiester phosphodiesterase domain containing 5 leucine rich repeat containing 3 PDZ domain containing 11 ring finger protein 166 Uncharacterized protein	-0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.76 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75	40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.95% 40.54% 40.54% 40.54% 40.54% 40.54% 40.54% 40.54%

C1orf86	chromosome 1 open reading frame 86	-0.74	40.13%
RAX	retina and anterior neural fold homeobox	-0.74	40.13%
SLC25A45	solute carrier family 25, member 45	-0.74	40.13%
TNFRSF12A	tumor necrosis factor receptor superfamily, member 12A	-0.74	40.13%
AC103801.2		-0.73	39.71%
AL049840.1	Uncharacterized protein; cDNA FLJ53535	-0.73	39.71%
CYP1A2	cytochrome P450, family 1, subfamily A, polypeptide 2	-0.73	39.71%
FAM114A1	family with sequence similarity 114, member A1	-0.73	39.71%
нвв	hemoglobin, beta	-0.73	39.71%
LAMTOR4	late endosomal/lysosomal adaptor, MAPK and MTOR activator 4	-0.73	39.71%
LGALS3BP	lectin, galactoside-binding, soluble, 3 binding protein	-0.73	39.71%
NDE1	nudE neurodevelopment protein 1	-0.73	39.71%
SLC48A1	solute carrier family 48 (heme transporter), member 1	-0.73	39.71%
SPHK2	sphingosine kinase 2	-0.73	39.71%
TNFRSF13C	tumor necrosis factor receptor superfamily, member 13C	-0.73	39.71%
DMPK	dystrophia myotonica-protein kinase	-0.72	39.29%
FAM19A5	family with sequence similarity 19 (chemokine (C-C motif)-like), member A5	-0.72	39.29%
RHPN1	rhophilin, Rho GTPase binding protein 1	-0.72	39.29%
RP11- 195F19.5	HCG2040265, isoform CRA_a; Uncharacterized protein; cDNA FLJ50015	-0.72	39.29%
SOX12	SRY (sex determining region Y)-box 12	-0.72	39.29%
TMEM243	transmembrane protein 243, mitochondrial	-0.72	39.29%
UBE2D4	ubiquitin-conjugating enzyme E2D 4 (putative)	-0.72	39.29%
ATP6V1H	ATPase, H+ transporting, lysosomal 50/57kDa, V1 subunit H	-0.71	38.87%
PPP2R5B	protein phosphatase 2, regulatory subunit B', beta	-0.71	38.87%
EVX1	even-skipped homeobox 1	-0.7	38.44%
GLTPD2	glycolipid transfer protein domain containing 2	-0.7	38.44%
HIST2H3A	histone cluster 2, H3a	-0.7	38.44%
HIST2H3C	histone cluster 2, H3c	-0.7	38.44%
KDM6B	lysine (K)-specific demethylase 6B	-0.7	38.44%
MAF1	MAF1 homolog (S. cerevisiae)	-0.7	38.44%
SLC25A10	Mitochondrial dicarboxylate carrier; Uncharacterized protein; cDNA FLJ60124, highly similar to Mitochondrial dicarboxylate carrier	-0.7	38.44%

Tabla V.VI. Genes potencialmente regulados por el miRNAs exosomal placentario (hsa-miR-3665) diferencialmente expresados en mujeres que desarrollarán DMG

Gen blanco	Nombre del gen	Cumulative weighted context++ score (CWCS)	Pocentaje de supresión del mRNA con base en CWCS
ВОК	BCL2-related ovarian killer	-4.04	93.9%
WNT9A	wingless-type MMTV integration site family, member 9A	-2.3	79.7%
RPL30	ribosomal protein L30	-1.36	61.0%
FUT6	fucosyltransferase 6 (alpha (1,3) fucosyltransferase)	-1.2	56.5%
AC079602.1		-1.2	56.5%
CXorf36	chromosome X open reading frame 36	-1.16	55.2%
ARHGAP19-SLIT1	ARHGAP19-SLIT1 readthrough (NMD candidate)	-1.03	51.0%
RP11-67H2.1	Uncharacterized protein	-1	50.0%
CRYGN	crystallin, gamma N	-0.96	48.6%
SCGB2B2	secretoglobin, family 2B, member 2	-0.93	47.5%
SNAI3	snail family zinc finger 3	-0.93	47.5%
PPAN-P2RY11	PPAN-P2RY11 readthrough	-0.92	47.1%
FBXO31	F-box protein 31	-0.89	46.0%
TNFRSF1B	tumor necrosis factor receptor superfamily, member 1B	-0.87	45.3%
NDFIP1	Nedd4 family interacting protein 1	-0.87	45.3%
WNT3	wingless-type MMTV integration site family, member 3	-0.8	42.6%
RAB7L1	RAB7, member RAS oncogene family-like 1	-0.79	42.2%
OPRL1	opiate receptor-like 1	-0.79	42.2%
P2RX7	purinergic receptor P2X, ligand-gated ion channel, 7	-0.79	42.2%
SPRR2E	small proline-rich protein 2E	-0.78	41.8%
CAMK2A	calcium/calmodulin-dependent protein kinase II alpha	-0.77	41.4%
COLQ	collagen-like tail subunit (single strand of homotrimer) of asymmetric acetylcholinesterase	-0.76	41.0%
EVC	Ellis van Creveld syndrome	-0.75	40.5%
PLIN1	perilipin 1	-0.74	40.1%
МҮО9В	myosin IXB	-0.74	40.1%
PRM2	protamine 2	-0.74	40.1%
B3GAT2	beta-1,3-glucuronyltransferase 2 (glucuronosyltransferase S)	-0.73	39.7%
SUV39H1	suppressor of variegation 3-9 homolog 1 (Drosophila)	-0.73	39.7%
TMSB10	thymosin beta 10	-0.73	39.7%

C16orf13	chromosome 16 open reading frame 13	-0.72	39.3%
SNX21	sorting nexin family member 21	-0.71	38.9%