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UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



PROTESTA UNIVERSITARIA DE INTEGRIDAD Y 
HONESTIDAD ACADÉMICA Y PROFESIONAL 

(Graduación con trabajo escrito) 

De conformidad con lo dispuesto en los artículos 87, fracción V, del Estatuto General, 68, primer 
párrafo, del Reglamento General de Estudios Universitarios y 26, fracción 1, y 35 del Reglamento 

General de Exámenes, me comprometo en todo tiempo a honrar a la Institución y a cumplir con los 
principios establecidos en el Código de Ética de la Universidad Nacional Autónoma de México, 

especialmente con los de integridad y honestidad académica. 

De acuerdo con lo anterior, manifiesto que el trabajo escrito titulado: 

Collision energy dependence of the source parameters for primary and secondary pions at NICA 
energies 

que presenté para obtener el grado de -----Maestria----- es original, de mi autoría y lo realicé con 
el rigor metodológico exigido por mi programa de posgrado, citando las fuentes de 
ideas, textos, imágenes, gráficos u otro tipo de obras empleadas para su desarrollo. 

En consecuencia, acepto que la falta de cumplimiento de las disposiciones reglamentarias y 
normativas de la Universidad, en particular las ya referidas en el Código de Ética, llevará a la 
nulidad de los actos de carácter académico administrativo del proceso de graduación. 

Atentamente 

Santiago Bernal Langarica ~ 
No. de Cuenta 312142971 ~ 

(Nombre, firma y Número de cuenta de la persona alumna) 



Resumen

En el estudio de las colisiones de iones pesados relativistas, la caracterización de la estructura
espacio temporal y el tamaño de la región de interacción entre los núcleos que colisionan ha
sido una herramienta básica para el estudio de las propiedades de los sistemas fuertemente
interactuantes que se producen en este tipo de colisiones. El uso de las correlaciones cuánticas
para determinar las caracteŕısticas de dichas regiones es conocido como femtoscoṕıa.

En este trabajo se estudiaron los parámetros que describen la función de correlación
de dos piones, en el contexto de colisiones de iones pesados relativistas, y su evolución
como función de la enerǵıa de la colisión en el intervalo energético de NICA. Para esto, se
simularon cinco millones de colisiones de Bi+Bi, por enerǵıa estudiada, usando el generador
Monte Carlo denominado Ultra-relativistic Quantum Molecular Dynamics. Esta cantidad de
colisiones fue seleccionada para tener suficiente estad́ısitca para el análisis que se hizo. Los
efectos de las correlaciones cuánticas se incluyeron con el formalismo correlation afterburner
CRAB. Los resultados de la función de correlación se ajustaron utilizando distribuciones
Gaussianas, Lorentzianas y de Lévy, donde esta última dio como resultado los mejores
ajustes. La muestra completa se separó en piones que tienen un origen primario y piones
que provienen del decaimiento de resonancias cuya vida media es grande. Se mostró que el
tamaño de la fuente de estas últimas es mucho mayor que el de las primeras, resultado que
es consistente con el modelo de núcleo-halo de la producción de piones. Los efectos de un
detector no ideal se simularon al incluir un parámetro de smearing (embarramiento) en el
momento para representar el momento mı́nimo del par de piones y entonces, por la relación
de incertidumbre de Heisenberg, un tamaño máximo de la fuente que se puede resolver.

Recurriendo una vez más al modelo de núcleo-halo, se mostró que el valor del parámetro
de intersección de la función de correlación es afectado por la presencia de una fracción
significativa de piones del núcleo que provienen del decaimiento de resonancias cuya vida
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media es larga, pero que se mueven lentamente. El estudio de la evolución de estas dos
componentes del núcleo, con la enerǵıa de la colisión, puede mejorar la intuición para buscar
señales de fenómenos cŕıticos en estudios de femtoscoṕıa.

Los resultados de este trabajo se reportaron en forma de art́ıculo en la Ref. [1].



Abstract

In the study of relativistic heavy-ion collisions, the determination of the space-time structure
and size of the interaction region between the colliding nuclei has been a primordial tool to
study the properties of the strongly interacting systems that are produced in this kind of
collisions. The use of quantum correlations to determine the size and space-time structure
of these regions is sometimes referred to as femtoscopy.

In this work, the evolution with the collision energy of the parameters that describe the
two-pion correlation function, in the context of relativistic heavy-ion collisions within the
NICA energy range, were studied. To this end, five million collisions of Bi+Bi, per studied
energy, were simulated using the Monte Carlo generator called Ultra-relativistic Quantum
Molecular Dynamics. This amount of collisions was selected to have enough statistics to
perform the analysis. The effects of the quantum correlations were included by using the
correlation afterburner formalism CRAB. The resulting correlation functions were fitted
using Gaussian, Lorentzian and Lévy distributions, with the latter providing the best fit.
The whole sample was separated into pions coming from primary origin and pions coming
from the decay of long-lived resonances and it was shown that the source size of the latter
is significantly larger than for the former, which is consistent with the core-halo picture
of pion production. The effects of a non-ideal detector were simulated by introducing a
momentum smearing parameter representing the minimum pair momentum and thus, by
means of the Heisenberg uncertainty relation, a maximum source size that can be resolved.
By resorting again to the core-halo picture, it was shown that the values of the correlation
function intercept parameter are affected by the presence of a significant fraction of core
pions coming from the decay of long-lived but slow-moving resonances. The study of the
evolution of these two core components with the collision energy can provide useful insights
to look for signs of criticality in femtoscopy studies.
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Reference [1] is the article where the results of this work were reported.
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las referencias que me recomendó.
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CHAPTER 1

Introduction

One of the fundamental quests that the human kind has ever posed to themselves is the
understanding of the fundamental pieces that form matter, and in particular, the one that
forms us. At the beginning of the 20th century, humanity learned that the so-thought
indivisible elements that compose us, the atoms, are divisible and have a structure composed
of a nucleus, made of protons (and later, after its discovery, neutrons), as well as a cloud of
electrons.

The problem that arose with that model was that the particles that compose the nuclei
should not maintain together since there is an electrostatic repulsive force that repels the
charged particles of the same electric sign (the protons). Hence, it was deducted that
another force, much stronger than the repulsive electromagnetic force, should exist. Almost
half a century later, humanity realized that protons and neutrons are not fundamental
particles, but that are composed of quarks and gluons. Our modern understanding of how
quarks and gluons interact between themselves is a relativistic quantum field theory called
Quantum Chromodynamics (QCD), which is an SU(3) Yang–Mills theory.

As in most quantum field theories, exact calculations in QCD are difficult to perform.
Even more, due to the significant value at low energies (' 200 MeV) of the QCD coupling
constant, perturbative calculations are not always valid, and therefore, the predictions of
QCD are still unknown under certain regimes. According to the current standard model of
particle physics, QCD is a vector theory1, which includes the three generations of quarks,

1In this context, a vector theory refers to the fact that the left- and right-handed components of the
quark fields couple in the same manner to the gluon field. The electroweak theory is an example of a theory
where this does not happen: the left-handed components of the fermion fields couple differently than the
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2 Introduction

Figure 1.1: The conjectured QCD phase diagram in the temperature vs. baryon density
(baryonic chemical potential) plane, and the isospin asymmetry (isospin chemical potential).
Credits: C. Drischler, J. W. Holt and C. Wellenhofer, taken from Ref. [2].

each one composed of two flavours. Consequently, the QCD beta function, which describes
the rate of change of the coupling constant, is negative. This means that the coupling
constant decreases at higher energies, from which the asymptotic freedom property of QCD
is deducted. Due to this asymptotic freedom, it is possible to deconfine the quarks and
gluons from the hadrons in higher energy configurations, such as the quark - gluon plasma
(QGP).

In particular, the exploration of the QCD phase diagram, i.e., of the different states
of matter that exist at different temperatures, baryon chemical potential, magnetic fields,
isospin chemical potential, and other variables, has drawn significant attention of the High–
Energy Physics community over the last decades. Figure 1.1 shows the conjectured QCD
phase diagram in the temperature vs. baryon density (baryonic chemical potential) plane,
and the isospin asymmetry (isospin chemical potential). The regions of low temperature and
high baryon chemical potential are especially fascinating because of the real-life system’s

right-hand components to the gauge fields.
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that exists these conditions. These include the innermost parts of compact stars and the
interaction region at the initial moments of low energy relativistic heavy–ion collisions.
One of the most intriguing aspects of the QCD phase diagram is related to the nature of
the phase transition between the different states, since it has been realized that at zero
baryo-chemical potential, the transition between the hadronic and the QGP phases is a
smooth crossover; while at zero temperature, it is a first-order phase transition [3]. This
behaviour implies that the order of the phase transition changes for different values of
temperature and baryo-chemical potential, thus signalling the existence of a critical endpoint
(CEP) where the first-order phase transition ends and the second-order phase transition
begins.

However, due to the difficulties to obtain exact results in the temperature and baryo-
chemical potential regime, where the CEP might be located, there have been only estimations
of its location with Lattice QCD techniques, as well as effective models; nevertheless, its
location over the phase diagram is widely spread. On the same line, there are regions where
it has been shown that the CEP cannot be 145 ≤ TC ≤ 155 MeV and µB,C/T ≤ 2 MeV
2 [4].

Along the coexistence curve between the different phases, physical quantities such as
the energy and baryonic densities, chiral condensate, among others, or their derivatives
might have a discontinuous behaviour. But near the critical point, these discontinuities
vanish since the two phases become identical. The system’s behaviour near the critical point
induces a variety of characteristic phenomena, called critical phenomena, which are due to
the thermal fluctuations of the system and are the generators of long-range correlations.
In the limit where the correlation length becomes infinite, the long-range thermodynamic
fluctuations can be described by a conformal field theory, defined as the infrared fixed point
of a renormalization group evolution of the system [3].

Nonetheless, the above mentioned phenomenology corresponds to static systems of
infinite volume, but if the system has a finite size, the maximum correlation length must be
limited by the system size, which in the case of relativistic heavy-ion collisions is, at most,
10 fm. Even more, since the system is not around the critical point for a long time, the
correlation length does not achieve its equilibrium value but is related to the characteristic
time scale in which the system is around the critical point, i.e., since the typical evolution
times of the system are around 7-10 fm, the correlation length will be around 2-3 fm [3, 5].

To summarize what has been said until this point, the strongly interacting systems that
are created in the collisions of relativistic heavy-ions, are short-lived and have collective
properties that permeate the evolution of the system and can be used to test the theory
of strong interactions, QCD. There are several interesting measurements that can be used
to test, whether a QGP is formed during heavy-ion collisions. One proposed method is
to check if the production of the J/Ψ meson is suppressed in these collisions compared to
proton+proton collisions. Additionally, a technique called femtoscopy [6], which is based on

2Throughout this work, natural units, where c = ~ = kB = 1, will be used, unless it is noted otherwise.



4 Introduction

the Hanbury-Brown and Twiss effect [7, 8], has been developed to determine the size and
structure of the interaction region between the colliding ions in terms of space and time.

By the end of the 20th century, several experimental facilities were founded with the
aim of colliding nuclei at very high-energies to study the formation and the properties of the
QGP: Super Ion Synchrotron (SIS) at the GSI Helmholtz Center for Heavy Ion Research,
in Germany; Relativistic Heavy Ion Collider (RHIC) and Alternating Gradient Synchrotron
(AGS), both at Brookhaven National Laboratory (BNL), in the United States; Super Proton
Synchrotron (SPS) and Large Hadron Collider (LHC), both at the European Center for
Nuclear Research (CERN) in France and Switzerland, as well as future facilities like the
Facility for Antiproton and Ion Research (FAIR) at the GSI Helmholtz Center for Heavy
Ion Research, in Germany; and the Nucleotron-based Ion Collider fAcility (NICA) complex
at the Joint Institute for Nuclear Research (JINR) in Russia. This last facility will have,
as part of its heavy-ion collision experiments, the Multi-Purpose Detector (MPD), whose
main scientific purpose is “to search for novel phenomena in the baryon-rich region of the
QCD phase diagram by means of colliding heavy nuclei (mostly bismuth, lead and gold) in
the range of 4 GeV ≤ √sNN ≤ 11 GeV” [9]. As it has been said, the MPD experiment is
currently under construction and is expected to have its first experimental run in 2025.

The MPD detector is shown in Figure 1.2 with its various subsystems, including a 3-D
tracking system of detectors, whose central detector is the Time Projection Chamber (TPC);
and a particle identification system composed of the Electromagnetic (ECal) and Forward
Hadronic (FHCal) calorimeters, Time of Flight (ToF) and Fast Forward detectors [9].

The purpose of this work is to study, with the use of femtoscopic techniques and within
the core-halo picture, how the parameters that characterize the size of the whole interaction
region, the sizes of the core and the halo evolve as a function of the collision energy, within
the energy range of the MPD detector at the NICA complex. To this end, simulations of
Bi+Bi collisions were made at √sNN = 4.0, 5.8, 7.7, and 9.2 GeV with the Monte Carlo
event generator UrQMD, and the correlations were added with the CRAB formalism (see
Chapters 2, 3, and 4 for details). The results of this work were reported in the form of an
article in Ref. [1].

This work is organized as follows: in Chapter 2, the formalism of femtoscopy and its
use to compute the two-pion correlation function is explained in a theoretical sense, as
well as from the Monte Carlo simulations point of view. In Chapter 3, the Monte Carlo
simulations are explained, and the main characteristics of the output of the performed
simulations are presented. In Chapter 4, the results of the parameters that characterize the
interaction region are reported together with their evolution as a function of the collision
energy, considering the case of ideal resolution and finite resolution, which seeks to resemble
an actual experimental case. To avoid repetition in this chapter, only the complete analysis
is presented for one of the simulated collision energies. Nevertheless, the complete analysis
for the whole set of explored energies is presented for the interested reader in Appendix A
for the case of ideal resolution and in Appendix B for the case of finite resolution. Finally,
Chapter 5 presents a summary and the conclusions of this work.
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Figure 1.2: Schematic view of the MPD experiment in the first stage of operation with its
inner components. The detector consists of three major parts: the central detector and two
forward detectors. The time-projection chamber, time of flight system, electromagnetic
calorimeter, and fast-forward–detectors are shown. Credits: MPD collaboration, taken from
Ref. [9]
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CHAPTER 2

The two-pion correlation function

In several domains of Physics, the object of study is not directly accessible due to its size,
lifetime, or distance to the observers. Hence, we can focus on the emissions of this object,
called source, and infer its properties from the particles that form these emissions. In
other words, we can characterize the space-time structure of the source by measuring its
emitted particles. The technique that uses the interference of two identical particles emitted
from chaotic sources to determine the angular size of stars by measuring the arrival-time
correlation of photons, was developed by Hanbury-Brown and Twiss [7, 8]. A few years later,
G. Goldhaber, S. Goldhaber, W.-Y. Lee and A. Pais [10] realized that a similar technique
could also be applied to study the interaction region formed in proton-antiproton collisions
and to determine its size with identical pions. Notice, however, that there are fundamental
differences between the two techniques: in the latter, the source is short-lived, evolves in
space-time, and the measurements consist of momentum correlations of outgoing particles,
while in the other case, the sources are static and long-lived and require experimental
filters and assumptions to consider the simultaneous emission of two photons [11]. The
term femtoscopy, coined by Lednicky [6], refers to studies and measurements that provide
spatio-temporal information.

2.1 The Formalism of identical particle femtoscopy

We will start the discussion of the formalism and ideas behind the identical two-particle
correlation function, following Ref. [12]. The single-particle momentum distribution is

7



8 The two-pion correlation function

defined as
P1(p) ≡ d3N

dp3 , (2.1)

where N is the total number of particles, also called the total multiplicity. This single
particle momentum distribution measures the probability of emission of a particle with
momentum p. In a similar manner, the two-particle momentum distribution, viz. the
probability that a particle of momentum p2 is emitted simultaneously with a particle of
momentum p1 is

P2(p1,p2) ≡ d6N

dp3
1 dp3

2
. (2.2)

When the particle emission processes are independent of each other, the two-particle
momentum distribution can be factorized as the product of single-particle momentum
distributions

P2(p1,p2) =
(

d3N

dp3
1

)(
d3N

dp3
2

)
. (2.3)

When the above factorization is not valid, it is due to the fact that the emission probability of
one particle affects the other, in other words, the emission processes are not independent but
correlated. There are several reasons for the particles to be correlated: energy-momentum
conservation (e.g., pair annihilation), a product of decay, and the quantum nature of the
particles. This last reason is caused by the enhancement of the probability of emission of a
pair of bosons if their momenta are similar. In contrast, the probability of emission of a pair
of fermions is reduced if their momenta are similar. Recalling that the wave function of a
many-body system of identical particles is symmetric (bosons) or anti-symmetric (fermions)
under the exchange of a single particle.

We can express the single- and two-particle momentum distributions in a more concrete
form. To this end, following Ref. [13], let us assume a dilute system of indistinguishable and
non-interacting bosons, the occupation number of a state with a set of quantum numbers
ω, is given by

Nω = 1
exp(Eω − µ)/T − 1 , (2.4)

where Eω is the energy of the state, µ is the chemical potential associated with the particle
number density, and T is the system temperature. Since the chemical potential does
not correspond to a strictly speaking conserved quantity, it cannot be included in the
Hamiltonian and thus in the Lagrangian in the same way that a conserved quantity would
be included: Ĥ → Ĥ − µQ̂, with Q̂ the conserved charged. In this sense, this chemical
potential corresponds to an effective description of the (in average) approximately conserved
number of particles [13]. Let us assume that, in configuration space, the wave-function
satisfies the normalization condition∫

d3r ψ∗ω(r, t)
←→
∂

∂t
ψω(r, t) = 1, (2.5)
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and its Fourier transform is

ψω(p) =
∫
d3r e− ip·rψω(r). (2.6)

Given that the wave-function of the particles in momentum space, ψω, is properly normalized
according to Eq. (2.5), then it is possible to write the single-particle momentum distribution
as

P1(p) ≡ d3N

dp3 = 1
(2π)3

∑
ω

2EωNωψ
∗
ω(p)ψω(p). (2.7)

The total number of particles can be shown to be obtained from

N =
∑
ω

1
exp(Eω − µ)/T − 1 . (2.8)

For a totally chaotic particle source, which happens when the emission can be characterized as
thermal and hence without any classical (coherent) component, the two-particle momentum
distribution is given by

P2(p1,p2) ≡ d6N

dp3
1 dp3

2
= P1(p1)P1(p2) +

∣∣∣∣∣ 1
(2π)3

∑
ω

2EωNωψ
∗
ω(p1)ψω(p2)

∣∣∣∣∣
2

, (2.9)

from where the two-particle correlation function C2 is expressed in terms of the single- and
two-particle momentum distributions as

C2(p1,p2) ≡ P2(p1,p2)
P1(p1)P1(p2) = 1 +

∣∣∣∣∣∑
ω

EωNωψ
∗
ω(p1)ψω(p2)

∣∣∣∣∣
2

∑
ω

EωNω |ψ(p1)|2
∑
ω

EωNω |ψ(p2)|2
. (2.10)

When the particle source is not totally chaotic, i.e., when there is a degree of coherence in
the emission of particles, which happens when the fraction of particles in the ground state
is not negligible, its contribution to the correlation function must be separated as

C2(p1,p2) = 1 +

∣∣∣∑ω 6=ω0 EωNωψ
∗
ω(p1)ψω(p2)

∣∣∣2∑
ω EωNω |ψ(p1)|2∑ω EωNω |ψ(p2)|2

+
∣∣Eω0Nω0ψ

∗
ω0(p1)ψω0(p2)

∣∣2∑
ω EωNω |ψ(p1)|2∑ω EωNω |ψ(p2)|2

, (2.11)

where ω0 represents the set of quantum numbers corresponding to the ground state. Notice
that when particles coming from the ground state are treated separately from the ones
coming from excited states, the correlation function fails to reach its maximum possible
value C2(q = 0)max = 2, as the ground state occupation number increases. This happens
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since for q = p1 − p2 = 0, the numerator and the denominator of the second and third
terms on the right-hand side of Eq. (2.11) are no longer equal, as they were in Eq. (2.10)
for the case of a totally chaotic source.

Usually, the correlation function is reported as a function of the magnitude of the
momentum difference q = |p1 − p2|, and for fixed values of the average momentum
K = 1

2(p1 + p2), since the Jacobian of the transformation onto these variables is one and
the on-shell constraint

K · q = 1
2
(
p2

1 − p2
2

)
= 1

2
(
m2

1 −m2
2

)
= 0, (2.12)

implies that q0 = q·K
K0

, and hence, only three of the four components of q are independent
and the dependence of the correlation function on q can be translated into a dependence on
q. Moreover, if the two particles of the pair have a similar energy, then K is approximately
on-shell and the correlation function becomes only a function of q and K. Thus, the
two-particle correlation function C2 depends on the six kinematical variables corresponding
to the two particles momenta as well as parametrically on µ, T , and other factors that
affect the system, such as its finite volume, magnetic field, and expansion velocity, among
others [13, 14]. The properties of the correlation function can be more easily studied
by setting particular configurations of these kinematical variables. Notice that the most
important dependence of the correlation function is on the relative momentum since it is
more dependent on q than on the average momentum [15].

The two-particle correlation function can also be related to the particle emitting source
function in phase space, S(x, p), which is the quantum-mechanical analogue of the classical
probability of emitting a particle at the phase-space point (x, p). It is represented by the
covariant Wigner transformation of the source density matrix [16]. If dynamical correlations
are neglected, the single- and two-particle momentum distributions can be written as

P1(p) =
∫
d4x S(x, p) |Ψp(x)|2 , (2.13)

P2(p1, p2) =
∫
d4x1d

4x2 S(x1, p1)S(x2, p2) |Ψp1,p2(x1, x2)|2 , (2.14)

where Ψp and Ψp1,p2 are the single- and two-particle symmetrized, properly normalized
wave functions. Hence, the two-particle correlation function can be written as

C2(p1, p2) =
∫
d4x1d

4x2 S(x1, p1)S(x2, p2) |Ψp1,p2(x1, x2)|2∫
d4x1 S(x1, p1) |Ψp1(x1)|2

∫
d4x2 S(x2, p2) |Ψp2(x2)|2

. (2.15)

Since the squared single-particle wave function must be properly normalized to unity,
it can be omitted from the previous expression. Usually, the squared two-particle wave
function serves as a weight and the particle emitting source function contains all space-
time information about the source [11]. Following Ref. [11], we can write the single- and
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two-particle momentum distributions in terms of T -matrix elements. Beginning with the
single-particle,

P1(p) =
∫
d4x S(x, p) =

∑
F ′

∣∣∣∣∫ d4x TF ′(x)e−ip·x
∣∣∣∣2 , (2.16)

S(x, p) =
∑
F ′

∫
d4δx T ∗F ′(x+ δx/2)TF ′(x− δx/2)eip·δx, (2.17)

where F ′ is the state of all other particles in the system. Recall that all the particle
interactions with the residual system are incorporated into the T - matrix formalism. Notice
that, for example, final-state Coulomb interactions can be incorporated in Eq. (2.16) by
substituting the phase in P1 with an outgoing Coulomb wave function or by including them
in the T matrix. Hence, there exists the possibility to incorporate mean-field interactions
in the T matrix or to incorporate them into the evolution matrix.

Equations (2.16) and (2.17) have four underlying assumptions that must be discussed
before proceeding [11]:

Assumption 1: Higher order symmetrization can be neglected. Equation (2.16) implies
that all the particles with asymptotic momentum p must have had their last interaction
with the source at some point x. If there areN > 1 particles, then it must be considered
T (x1, · · · , xN ) and taken into account that the evolution matrix is no longer a simple
phase, but includes N ! interference terms. The single-particle momentum distribution
can be obtained by integrating over the remaining N − 1 momenta.

Assumption 2: The emission process is initially uncorrelated. Equation (2.16) requires
that the emission is independent. In other words, the two-particle matrix elements
factorize: TF ′′(x1, x2) = TF ′1(x1)TF ′2(x2). If multi-particle symmetrization can be
neglected, the two-particle evolution operator factorizes into a center-of-mass and
a relative operator: U(x1, x2; p1, p2) = eiK·(x1+x2)

(
uq′(x′1 − x′2) + uq′(x′2 − x′1)

)
/
√

2,
where the prime denotes quantities in the center-of-mass frame, where K = 0. Then,
the two-particle momentum distribution can be expressed in terms of the single-particle
momentum distributions as

P2(p1, p2) =
∫
d4x1d

4x2d
4q̃ S1

(
x1, (E′1/Minv)K + q̃

)
S2
(
x2, (E′2/Minv)K + q̃

)
×d4δr′ eiq̃·δr

′
u∗q′(x′1 − x′2 + δr′/2)uq′(x′1 − x′2 − δr′/2), (2.18)

where Minv is the pair invariant mass.

Assumption 3: Smoothness approximation. In general, Eq. (2.18) is very difficult to
determine, as it requires to evaluate the particle emitting source function off-shell. If
it is assumed that the particles do not interact, aside from their identical particles



12 The two-pion correlation function

interference, then uq(x1 − x2) =
(
eiq·(x1−x2) + eiq·(x2−x1)

)
/
√

2 and the integrals over
q̃ and δr′ can be analytically done. Hence,

P2(p1, p2) =
∫
d4x1d

4x2
{
S(x1, p1)S(x2, p2)

+ S(x1,K)S(x2,K) cos
(
(p1 − p2) · (x1 − x2)

)}
. (2.19)

The source functions for the interference term are evaluated off-shell for non-zero rela-
tive and average momentum. The smoothness approximation replaces S(x1,K)S(x2,K)
with either S(x1, E(K),K)S(x2, E(K),K) or with S(x1, p1)S(x2, p2).

Assumption 4: Equal time approximation. The smoothness approximation is used to
neglect the q̃ dependence in the product of source functions of Eq. (2.18). In the
presence of final-state interactions, this assumption is more stringent because the
relevant range of q̃ extends beyond q. Hence, one obtains a δ-function constraint for
δr′, and the integrand of Eq. (2.18) is proportional to the squared evolution matrix
|uq′(x′1 − x′2)|2. This evolution matrix has non-zero time components, which must be
neglected in order to identify it with the relative wave function.

Based on the previous four assumptions (particularly on Assumption 3), one can find that
the two-particle correlation function can be written as

C2(q,K) = 1 +
∫
d3r′SK(r′)

[
|ΨK,q(q′, r′)|2 − 1

]
, (2.20)

SK(r′) ≡
∫
d4x1d

4x2 S1(x1, p̄1)S2(x2, p̄2)δ(r′ − x′1 − x′2)∫
d4x1d4x2 S1(x1, p̄1)S2(x2, p̄2) , (2.21)

where p̄a = 2maK/(m1 +m2) and p̄0
a = E(p̄a). The previous equation allows us to consider

the squared wave function as the kernel from which one transforms from the coordinate
space basis to the relative momentum basis. Additionally, the two-particle correlation
function provides information about the distribution of relative positions of particles, SK,
with identical velocities and average momentum K, as they move in their asymptotic state.
Thus, the analysis of the correlation function cannot be used to determine the size of the
entire source, but it can be used to determine the dimensions of the “region of homogeneity”,
i.e., the size and shape of the phase space cloud of outgoing particles whose velocities have
a specific magnitude and direction [11]. If the collective expansion of the produced matter
is strong, as it occurs in central collisions, then the region of homogeneity is significantly
smaller than the entire source volume [11, 14].

These four assumptions are consistent with a semi-classical formalism, since the quantum-
mechanical particle emission probability, defined by the T -matrix elements, is approximated
by classical particle emitting source functions.

Since in heavy-ion collisions the particles that are more abundantly produced are pions,
we will focus the discussion on the two-pion correlation function. However, most of what
will be stated below is still valid for identical bosons femtoscopy.
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On the other hand, taking into account these assumptions, neglecting final-state inter-
actions and higher order effects, the squared wave functions are [17]

|Ψp(x)|2 = 1 (2.22)

|Ψp1,p2(x1, x2)|2 = 1 + cos
(
(p1 − p2)(x1 − x2)

)
. (2.23)

Notice that, from Eq. (2.20), the curvature of C2 at vanishing relative momentum can be
related to the mean square separation of the three-dimensional shape of SK(r) [11]

− d2C2(q,K)
dq′idq′j

∣∣∣∣∣
q=0

= 〈rirj〉 =
∫
d3r SK(r)rirj . (2.24)

This illustrates the relation between specific space-time information and specific features of
the correlation function [11].

Notice that if we identify the Fourier-transformed source function,

S̃(qx, p) =
∫
d4x eiqx·xS(x, p) (2.25)

then one can write the two-pion correlation function as [17]

C2(p1, p2) = 1 + Re
[
S̃(q, p1)S̃∗(q, p2)
S̃(0, p1)S̃∗(0, p2)

]
, (2.26)

where q = p1 − p2. Now, recall that the pion production in a relativistic heavy-ion collision
is described by the equations of motion of the pion field, φ(x),(

�+m2
)
φ̂(x) = Ĵ(x), (2.27)

where � is the D’Alembert operator and Ĵ is the current operator. The latter operator
can be approximated by a classical commuting space-time function J(x), which means that
at freeze-out, when the pions stop interacting, the emitting source is assumed not to be
affected by the emission of a single pion [18]. Following Ref. [18], for a classical source, the
pion in the final state is a coherent state |J〉, which is an eigenstate of the annihilation
operator

âp |J〉 = iJ̃(p) |J〉 , (2.28)

where J̃ is the on-shell Fourier transformed classical source. By assuming that the classical
current is a superposition of independent elementary source functions J0, then

J̃(p) =
N∑
i=1

eiϕieip·xi J̃0(p− pi), (2.29)
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with ϕi a set of random phases, which characterizes chaotic particle emission. In this case,
the average for an operator Ô, specifying the particle spectra is〈

Ô
〉

=
∞∑
N=0

PN

N∏
i=1

∫
d4xid

4pi ρ(xi, pi)
∫ 2π

0

dϕi
2π 〈J | Ô |J〉 , (2.30)

where PN is the properly normalized probability distribution for N sources and ρ(xi, pi)
is the normalized probability that describes the distribution of the elementary sources J0
in the phase-space. Using this, as well as the commutation relations between the creation
and the annihilation operators, independent particle emission and the absence of final-
state interactions, we can factorize the two-pion momentum distribution, P2, in terms of
single-pion momentum distributions, P1, as

P2(p1,p2) = 〈N(N − 1)〉P
〈N〉2P

(
P1(p1)P1(p2) +

∣∣∣S̄J(p1,p2)
∣∣∣2) , (2.31)

where
S̄J(p1,p2) ≡

√
E1E2

〈
â†p1 âp2

〉
=
√
E1E2

〈
J̃∗(p1)J̃(p2)

〉
, (2.32)

〈N(N − 1)〉P = ∑∞
N=0 PNN(N − 1), 〈N〉P = ∑∞

N=0 PNN and N , denotes the number of
sources. The source function S(x, p) can be identified with the Fourier transform of the
covariant quantity S̄J(p1,p2). The latter is given by the Wigner transform of the density
matrix associated with the classical currents

SJ(x,K) =
∫

d4y

2(2π)3 e
−iK·y

〈
J∗
(
x+ y

2

)
J

(
x− y

2

)〉
. (2.33)

Hence,
SJ(x,K) = 〈N〉P

∫
d4zd4q ρ(z, q)S0(x− z,K − q), (2.34)

with S0 the Wigner functions of the elementary source functions, given by

S0(x,K) =
∫

d4y

2(2π)3 e
−iK·yJ∗0

(
x+ y

2

)
J0

(
x− y

2

)
. (2.35)

By direct substitution of Eqs. (2.31) and (2.32) and assuming that the relative momenta
between the particles is much smaller than the average pair momenta, then the two-pion
correlation function can be written as [15, 18]

C2(q,K) = 1 +
∣∣∫ d4xS(x,K) eiq·x

∣∣2∫
d4xS(x, p1)

∫
d4y S(y, p2) , (2.36)

and identifying the Fourier transform of the source functions, Eq. (2.25),

C2(qinv,Kinv) = 1 +

∣∣∣S̃(qinv,Kinv )
∣∣∣2∣∣∣S̃(0,Kinv)
∣∣∣2 , (2.37)
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which can be written as a function of the Lorentz invariant relative momentum qinv ≡√
qµqµ =

√
q2

0 − |q|2 and for a fixed Lorentz invariant average momentumKinv ≡
√
KµKµ =√

k2
0 − |k|2 [17, 19].
From Eq. (2.37), it can be seen that the two-pion correlation function can reach a

maximum value of two at zero relative momentum, where the correlation function intercept,
C2(qinv → 0), is usually denoted by C2(qinv → 0) = 1+λ, with λ also known as the intercept,
chaoticity or incoherence parameter, where the last two names have their origin from the
relation between the coherence of the emission and the λ parameter (see Refs. [13, 20–22]
for further details on the coherence properties of the emission).

2.2 The core-halo picture

As it has already been mentioned, different effects such as final state interactions, magnetic
fields [13], expanding source boundaries [14], partial coherence [13, 20–23], particle misiden-
tification and a finite experimental resolution [23] can prevent the intercept parameter from
reaching the value of one. This can be understood in terms of the core-halo picture [23, 24],
whereby particles that come from the decay of long-lived resonances create a component
of the source with a size that may not be resolved when the corresponding width of the
pair momentum difference becomes smaller than the detector resolution. In this work, we
will not focus on the other effects, such as coherence, that can reduce the value of the
intercept parameter. We will now proceed to present the core-halo picture following Ref. [16]:
accounting for this possibility, the phase space pion emitting source can be modelled as a
superposition of two components: a central core surrounded by an extended halo, such as is
depicted in Fig. 2.1.

Recall that the experiments designed to detect the pions emitted from the collisions of
heavy-ions have a minimum resolution on the pair relative, qmin, as well as on their average
momenta, Kmin. Since the Bose-Einstein enhancement of the correlation comes from the
region of small relative momenta, the effect of the finite resolution must be understood
within the core-halo picture that is based on four assumptions [24]:

Assumption 1: The phase space emission source function does not have a determinate
scale, due to its power-law–like structure.

Assumption 2: The pions are emitted either from a central part, called the core and
whose source is denoted by Score, or from the surrounding halo, whose source is
denoted by Shalo. Hence, the complete emission source can be written as

S = Score + Shalo, (2.38)

where each component has a Fourier transform, and the core is composed of pions
that are produced from fragmentation or recombination of partons [25], hydrodynamic
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Figure 2.1: Outline of the core-halo picture, with the central, red gradient part representing
the core and the spotted yellow ring representing the halo. The black arrows represent the
pions being emitted by the core and the halo.
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evolution or production from excited strings and subsequent re-scattering of the
particles [26]. These processes are known as primary or direct processes.

Assumption 3: The emission source that describes the halo changes on a length-scale
Rhalo that is larger than Rmin = 1/qmin, the maximum length scale that can be
resolved. The length scale of the core, Rcore, is smaller than the maximum resolvable
scale. Thus,

Rcore < Rmax < Rhalo. (2.39)

Assumption 4: The fraction of pions emitted from the core, with respect to the total,
varies slowly on the relative momentum scale.

Notice that the single-pions momentum distribution emitted from the core and the halo
can be expressed, in terms of the Fourier transformed source function, as

P1,core(Kinv) =
∫
d4x Score(x,Kinv) = S̃core(0,Kinv) ≡ Ncore, (2.40)

P1,halo(Kinv) =
∫
d4x Shalo(x,Kinv) = S̃halo(0,Kinv) ≡ Nhalo, (2.41)

and hence, P1(Kinv) = S̃(0,Kinv) = Ncore +Nhalo = N . The measured correlation function
is determined for q > qmin, and any structure within the q < qmin region will not be
resolved. Since, by Assumption 3, the pions coming from the halo come from a length-scale
larger than Rmax, then they will create a narrow peak in the region of q < qmin, therefore
S̃halo(qinv,Kinv) ≈ 0 for qinv < qmin, i.e., the Fourier transform of the emission source of the
halo vanishes at the minimum resolution of the experiment. At zero relative momentum,
this source gives the single-particle momentum distribution from the halo, which is not
affected by the two-particle resolution [24].

Thus, for experimentally resolvable values of the relative momentum, it can be assumed
that S̃(qinv,Kinv) ' S̃core(qinv,Kinv). Therefore, the two-pion correlation function can be
expressed as

C2(qinv,Kinv) = 1 +
(

Ncore
Ncore +Nhalo

)2
∣∣∣S̃core(qinv,Kinv)

∣∣∣2∣∣∣S̃core(0,Kinv)
∣∣∣2 . (2.42)

As a consequence, in the core-halo picture, we can identify, for a given pair invariant
momentum [16, 24, 27]

λ =
(

Ncore
Ncore +Nhalo

)2
, (2.43)

which, in general, is a function of the pair average momentum. Notice that, as a consequence
of the core-halo picture, the height of the two-pion correlation function at vanishing relative
momentum is no longer two but 1 + λ, where λ is related to the fraction of pions emitted
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Figure 2.2: Predicted effect of the finite resolution on the two-pion correlation within the
core-halo picture. Credits: T. Csörgő, taken from Ref.[16]

by the core. Hence, by measuring λ, one could infer the fraction of pions from the core.
The effects predicted by the core-halo picture on the two-pion correlation picture are shown
in Fig. 2.2.

2.3 Correlation functions from Monte Carlo simulations and
the CRAB formalism

Nowadays, there exists a plethora of models of heavy-ion collisions, many of which have
been implemented as numerical or Monte Carlo simulations. They provide an important
tool for the study of these systems and, in particular, to perform femtoscopy studies on
these models. The previous definitions of the two-pion correlation function are barely used
when dealing with experimental or Monte Carlo produced data due to the difficulty of
working with them. Instead of Eq. (2.10), it is usual to compute the two-pion correlation
function from measurements or simulations as [15]

C2(q,K) = NB
NA

A(q,K)
B(q,K) , (2.44)

where A(q,K) is the pair relative momentum distribution of pions, which contains the
femtoscopic correlations, also called the signal distribution, and B(q,K) is the same as A,
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but it does not contain Bose-Einstein correlations, also called the background distribution.
NA and NB are normalization factors for A and B; most commonly, the number of pairs used
to construct the distributions or

∫ q2
q1
D(q,K)dq, where D(q,K) is either A or B and [q1, q2]

is an interval of large-q where Bose-Einstein effects no longer affect the correlation [15, 17].
An additional multiplicative factor can be included to take into account non-femtoscopic
correlations (see, for example, Ref. [11]). It is usual to look for particular characteristics
of the events and specific values of K to construct C2 as a function of q, so the main
dependence comes from the relative momentum.

Several techniques have been developed to construct the signal and background distri-
butions [11], but one of the most popular is the event mixing technique, where the signal
distribution is computed from the relative momentum distribution of pions coming from the
same event, whereas the background distribution is computed from the relative momentum
distribution of pions coming from different events that share the same characteristics as those
that were used for A. This technique minimizes non-quantum-statistical correlations [15],
but does not remove them entirely [28], although it must be stated that for elementary
particle collisions or in low multiplicity events, the event mixing technique can violate
the total energy-momentum conservation, and hence the obtained correlation can reflect
non-femtoscopic as well as femtoscopic correlations [11].

However, when dealing with numerical simulations and not with experimental data,
not all the available simulators include the effects of Bose-Einstein statistics, since Monte
Carlo simulations are formulated via probabilities of interactions and do not take into
account the quantum mechanical symmetrization effects, and hence, the simulated collisions
lack Bose-Einstein correlations. Nevertheless, this could be done, in principle, by properly
propagating symmetrized N -particle amplitudes from some initial condition [18]. To include
this correlations, two main methods have been developed: one method is motivated by
Eq. (2.20), which involves constructing a discretized version of Eq. (2.36). In the so-called
“classical interpretation” of the output of the Monte Carlo simulation, the output phase-space
points are identified as the pion emitting source function and the two-pion correlation
function takes the form [18]

C2(q,K) = 1 +

Nev∑
m=1

∣∣∣∣∣
Nm∑
i=1

δ
(ε)
p̌i,K ei(q

0 ťi−q·ři)
∣∣∣∣∣
2

−
Nm∑
i=1

(
δ

(ε)
p̌i,K

)2


Nev∑
m=1

(Nm∑
i=1

δ
(ε)
p̌i,p1

)Nm∑
j=1

δ
(ε)
p̌j ,p2

− Nm∑
i=1

δ
(ε)
p̌i,p1

δ
(ε)
p̌i,p2

 , (2.45)

where Nev is the number of simulated events, Nm is the multiplicity of each event, (ři, ťi, p̌i)
are the phase-space points output of the simulation and the rectangular “bin functions”,
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δ
(ε)
p̌i,p are defined by

δ
(ε)
p̌i,p =

{
1/ε3 if pj − ε

2 ≤ p̌i,j ≤ pj + ε
2 (j = x, y, z),

0 else .
(2.46)

In general, the value of the correlation at a particular (q,K) configuration will depend on
the bin width ε, but accurate results require large statistics and small ε. There exists a
variant of this method, called the “quantum interpretation”, in which the output of the
simulation is identified with the center of Gaussian wave packets. In both interpretations
of this method, the inclusion of final-state interactions increases the complexity of the
algorithm from O(Nm) to O(N2

m) [18].
The second method, randomly samples the position of pairs of particles, regardless of

their momenta. The numerator of the correlation function is then computed by generating
pairs and weighting them by the square of the relative wave function, while the denominator
is obtained in a similar manner, but without weighting the pairs. This method has the
advantage that kinematic or experimental effects can easily be taken into account, while
the first method makes a quicker calculation [11]. An example of this second method is the
Correlation After Burner formalism (CRAB), developed by S. Pratt et al. [29, 30]1. This
formalism performs the computation of the correlation function as follows [29]:

1. Perform a dynamical simulation that yields the final momenta and space-time points
of final interaction (freeze-out position) for particles of a given type.

2. Repeat the calculation many times for several impact parameters. Store the points in
a different file for each impact parameter.

3. Choose pairs of particles from the same impact parameter weighted by the two-particle
multiplicity and any possible impact parameter cuts that are needed.

4. Test whether the two particles will be detected by the experiment. If not, pick a new
pair.

5. Boost these points to the center of mass of the pair reference frame. Calculate the pair
relative wave function and square it (see Eq. (2.23)) in terms of the pair separation and
their relative momentum in this reference frame, which is the invariant momentum.

6. For the numerator, bin the event according to the relative momentum, this can be
done in any desired reference frame. To this bin, add the squared relative wave
function as a weight.

1The code of CRAB, is available at the website
https://web.pa.msu.edu/people/pratts/freecodes/crab/home.html [30]

https://web.pa.msu.edu/people/pratts/freecodes/crab/home.html
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7. For the denominator, choose two separate pairs from those in part 6. As a weight, use
the product of the weights of the two pairs. This would correspond to the experimental
procedure of using only two-particle events to calculate the denominator.

8. Divide the bins by one another to obtain the correlation function.

This procedure includes the correlations due to averaging the impact parameter, but will
not include the effects of event-to-event large-scale fluctuations. To include this effects, it is
necessary to treat each event as a separate impact parameter, and hence there would be
a need for much more statistics. Final-state interactions can be added at the moment of
weighting the numerator by modifying the relative wave function, to include the desired
effect.

The CRAB formalism became a popular tool in the field by many years, but it was later
discovered that, for small systems at TeV energies, the predictions made by CRAB were
not very precise, and hence, more modern versions were developed, such as “Correlation
Analysis Tools using Schrödinger equation” (CATS) [31] and “Correlation Algorithm Library”
(CorAL, based on CRAB) [32–34]. Some of the developed formalisms may also include final
state interactions, like CRAB and the one found in Refs. [35, 36].

2.4 Parametrizations and fits of the two-pion correlation
function

Once the procedure previously described for constructing the two-pion correlation function
is complete, it is possible to make certain assumptions about the shape of the pion emitting
source and find if the obtained correlation function is consistent with those assumptions. To
begin with, and for clarity purposes, following Refs. [27, 37], let’s start by considering the
simplest case of a one-dimensional static pion emitting source function in phase space that
can be factorized into a space-time distribution f(x) and a momentum space distribution
g(p), i.e.,

S(x, p) = f(x) g(p), (2.47)

where x and p are one dimensional coordinate and momentum variables, respectively. The
normalization of such distributions is chosen such that∫

dx f(x) = 1 and
∫
dp g(p) = 〈n〉, (2.48)

where 〈n〉 is the pion mean multiplicity. Then, the single-pion momentum distribution can
be obtained as (Eq. (2.13))

P1(p) =
∫
dx S(x, p) = g(p). (2.49)
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Assuming a chaotic pion emission and a plane wave approximation, the two-pion, sym-
metrized wave function can be expressed as (Eq. (2.23))

Ψp1,p2(x1, x2) = 1√
2

[exp(ip1x1 + ip2x2) + exp(ip1x2 + ip2x1)] . (2.50)

The two-pion momentum distribution is then (Eq. (2.14))

P2(p1, p2) =
∫
dx1dx2 S(x1, p1)S(x2, p2) |Ψp1,p2(x1, x2)|2 . (2.51)

Thus, the two-pion correlation function is

C2(p1, p2) = P2(p1, p2)
P1(p1)P1(p2) =

∫
dx1dx2 f(x1)g(p1)f(x2)g(p2) |Ψp1,p2(x1, x2)|2∫

dx1 f(x1)g(p1)
∫
dx2f(x2)g(p2)

=
∫
dx1dx2 f(x1)f(x2) |Ψp1,p2(x1, x2)|2 . (2.52)

Noting that |Ψp1,p2(x1, x2)|2 = 1 + 1
2 [exp(iq(x1 − x2)) + exp(−iq(x1 − x2))], then

C2(p1, p2) =
∫
dx1dx2 f(x1)f(x2)

[
1 + 1

2 (exp(iq(x1 − x2)) + exp(−iq(x1 − x2)))
]

= 1 + 1
2

[∫
dx1 f(x1)eiqx1

∫
dx2 f(x2)e−iqx2

+
∫
dx1 f(x1)e−iqx1

∫
dx2 f(x2)eiqx2

]
= 1 + f̃(q)f̃∗(q) = 1 +

∣∣∣f̃(q)
∣∣∣2 , (2.53)

where f̃(q) =
∫
dx exp(iqx)f(x). Hence, the two-pion correlation function measures the

squared norm of the Fourier transformed source coordinate-space distribution function of
the pion emitting source, where the Fourier transformed source density is often called the
characteristic function. Notice that the two-pion correlation function is insensitive to the
phase of the characteristic function, and as a consequence it only measures the relative
coordinates distributions of the source, but it cannot measure the location of the center of
the source distribution [27].

If the characteristic function is an analytic function at q = 0 and can be expanded into
a convergent Taylor series

f̃(q) ≈ 1 + iq〈x〉 − q2〈x2〉/2 + . . . , (2.54)

where
〈xn〉 =

∫
dx xnf(x), (2.55)

then, the two-pion correlation function can be expressed as

C2(q,K) = 1 +
∣∣∣f̃(q)

∣∣∣2 ≈ 2− q2(〈x2〉 − 〈x〉2) + . . . ≈ 1 + exp
(
− q2R2

)
, (2.56)
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where a Gaussian source radius parameter R is defined as the width of the source emission
function R =

√
〈x2〉 − 〈x〉2. To a first approximation, this ansatz can give a good description

of the data. Therefore, it is possible to perform a fit to a Gaussian of a measured two-pion
correlation function and obtain the source radius, which will be further discussed. However,
we could wonder about the physical conditions under which this ansatz remains valid. To
have a better understanding of it, the pion emission may be figured out as a superposition of
many independent processes that shift by δx the coordinate x, and that the final production
point, is a sum of many similarly distributed random shifts, x = ∑

i δxi. If the shifts are
characterized by a finite variance, then, by means of the Central Limit Theorem2, for such
random variables, the probability distribution for x tends to a Gaussian. Since the Fourier
transform of a Gaussian is also a Gaussian, so it is expected that the shape of the two-pion
correlation function is also a Gaussian [27].

Nonetheless, there are many random processes for additive random variables where
a limiting distribution exists, but it is not a Gaussian. For example, in the vicinity of
a critical point, where the phase transition changes from a first order to a second order,
fluctuations appear on all possible wavelengths and scales. These fluctuations are signalled
by a decreased attenuation length at all possible wavelengths. As the characteristic size
disappears from the physical description of second-order phase transitions at the critical
point, power-law distributions emerge and characterize the physical quantities and the
exponents of these power laws [37]. Due to this power-law behaviour of the distributions,
the variance of the elementary process diverges, and thus, there is a non-analytic behaviour
for small values of the arguments, then the probability distribution will deviate from a
Gaussian. This kind of distribution is called Lévy or stable distribution [27]. For a more
complete discussion of Lévy distributions, see Ref. [27] and references therein. Following
Ref. [27], let’s write a generalized univariate stable distribution (the characteristic function)
as

f̃(q) = exp
(
−γαLévy |q|αLévy + iβγαLévy |q|αLévysign(q) tan

(
αLévyπ

2

)
+ iqδ

)
, (2.57)

where αLévy 6= 1. Hence, this characteristic function depends on four parameters: the Lévy
index of stability, 0 < αLévy ≤ 2; the skewness parameter, −1 ≤ β ≤ 1; the scale parameter,
0 < γ and the location parameter, −∞ < δ < ∞. Let’s consider a special case of this
general distribution, where β = 0, γ = R/21/αLévy and δ = x0, then

f̃(q) = exp(iqx0 + |qR|αLévy) ≈ 1 + iqx0 −
1
2 |qR|

αLévy . (2.58)

Notice that this expression is only analytical if αLévy = 2, which corresponds to the Gaussian
limit. Hence, the two-pion correlation function is

C2(q;αLévy) = 1 + exp(−|qR|αLévy). (2.59)
2In a few words, the Central Limit Theorem states that, under certain conditions, the distribution of the

sum of a large number of random variables converges to a limit distribution. If the elementary distributions
have finite mean and variance, then the limit distribution of their sum is a Gaussian.
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The physical meaning of the index of stability is that the Lévy distribution decreases for large
values of the coordinate x as a power-law, f(x) ∝ x−1−αLévy for x� R. These distributions
are long-tailed and are related to the self-similarity of the generating mechanism. Particular
cases of this expression correspond to αLévy = 2, which is the already discussed Gaussian
case, and αLévy = 1, which is referred as the Cauchy form [27]. The three dimensional
generalization of the previous discussion can be found in Ref. [27], but it is beyond the
scope of this work.

As it has been said, in the vicinity of the critical point, where a second-order phase
transition becomes a first-order phase transition, there is an emergence of critical behaviour,
in which certain properties of the system diverge or go to zero. To keep track of these
rapid variations in the system properties, critical exponents are introduced to describe their
behaviour around the critical point. In particular, for the case of QCD matter described in
Chapter 1, there exist six critical exponents [37, 38]:

• The critical exponent α 3, that measures the power-law behaviour of the heat capacity
C near the critical point, is defined as

C(t) ' |t|−α, (2.60)

where t is the reduced temperature t = (T − TC)/TC

• The critical exponent β, which signals the temperature dependence near, but below,
the critical point of the order parameter, |φ|, (the quark condensate) is defined as

|φ(t)| ' |t|β (2.61)

• The susceptibility exponent γ, defined as∫
d3r G(r, t) ∝ |t|−γ , (2.62)

where r is a measure of the relative coordinates and G(r, t) = 〈φ(r, t)φ(0, t)〉−〈φ(0, t)〉2
is the order parameter correlation function

• The exponent δ is related to the expectation value of the order parameter in the
presence of a small external field that is related to the masses of the light quarks
H ∝ mq = mu = md, it is defined as

〈φ(t = 0, H → 0)〉 ∝ |H|1/δ (2.63)

• The exponent ν of the correlation length ζ, defined as

ζ ∝ |t|−ν (2.64)
3Not to be confused with the Lévy index of stability, αLévy.
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• The exponent η of the Fourier transformed correlation function of the order parameter
in the critical point, defined as

G̃(k → 0) ∝ |k|−2+η (2.65)

Only two of these six critical exponents are independent, while the remaining four are
related by

α = 2− d ν,
β = ν

2 (d− 2 + η) ,
γ = (2− η) ν,

δ = d+ 2− η
d− 2 + η

, (2.66)

where d is the number of dimensions (d = 3 for heavy ions).
In a model of QCD where there are two species of massless quarks, based on the

symmetries of the order parameter, Rajagopal and Wilczek [38] argued that to describe a
second-order chiral phase transition, the order parameter should have an O(4) symmetry
group of rotations in internal space. Hence, the universality class of two flavour massless
QCD should be the same of the 3d Ising model.

Since the universality class of QCD is predicted to be that of the 3d Ising model, it
is possible to compute the values of the six critical exponents. Nevertheless, due to the
violent conditions of heavy-ion collisions, the universality class is not the one of the 3d Ising
model but rather that of the random field 3d Ising model [37]. The values of the critical
exponents are [37, 39]

η = 0.5± 0.05,
ν = 1.1± 0.2,
α = −1.3± 0.6,
β = 0.6± 0.1,
γ = 2.2± 0.4,
δ = 4.7± 0.3. (2.67)

On the other hand, recall that in the QGP, the vacuum expectation value of the quark
condensate vanishes, while in the hadron gas phase it is non-zero. The correlation function
of this order parameter is defined as [37]

ρ(r) = 〈φ(r)φ(0)〉 − 〈φ〉2, (2.68)

and measures the spatial correlations between pions. In the vicinity of the critical point,
this correlation must decay as a power-law [37]

ρ(r) ∝ r−(d−2+η). (2.69)
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For Lévy stable sources, the correlation between initial and actual positions must also decay
as a power-law [37]

ρ(r) ∝ r−(1+αLévy), (2.70)

hence, for the case of QCD matter in d = 3, the correlation exponent is equal to the Lévy
index of stability, i.e.,

η = αLévy. (2.71)

Therefore, the measurement of the two-pion correlation function not only gives us information
about the size and shape of the pion emitting source, but it can also be used to signal the
presence of critical phenomena in heavy-ion collisions [37, 40, 41].



CHAPTER 3

Monte Carlo simulations with UrQMD

This chapter presents a description of the Monte Carlo simulations used to perform the
femtoscopy studies. Firstly, a concise description of the model utilized to generate phase-
space distributions, from which the two-pion correlation function was computed, is presented.

3.1 The UrQMD approach to heavy-ion collisions

Numerical simulations of heavy-ion collisions provide an excellent tool for studying several
aspects of these systems. As mentioned in the preceding chapter, a great variety of models
has been developed, each providing us with a better description of some phenomena at
a particular energetic regime. Several approaches exist to the modelling of relativistic
collisions of heavy-ions, such as thermal models, hydrodynamic models and microscopic
transport models [12]. Within this last category, one of the most widely used models at
low (within the range of SIS, 2.7-10 GeV, and the range of RHIC, up to 100 GeV) and
high energies (within the range of LHC, 2.76 - 5.02 TeV) is the Ultra-relativistic Quantum
Molecular Dynamics (UrQMD) model [42–44], which describes the evolution of the hadronic
degrees of freedom produced during the whole evolution of the collision. UrQMD is a
multi-purpose tool that aims to describe the collision by propagating the particles along
straight-line classical trajectories until there is an interaction at some point on a one-to-one
basis. This simulation mode is sometimes referred to as cascade model [11]. In other words,
UrQMD describes the collision by effectively solving, with Monte Carlo techniques, the

27
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Boltzmann equation [12]

dfi(x, p)
dt ≡ ∂p

∂t

∂fi(x, p)
∂p

+ ∂x

∂t

∂fi(x, p)
∂x

+ ∂fi(x, p)
∂t

= Stfi(x, p), (3.1)

where fi is the phase space density of the particle species i = N, ∆, Λ, etc., x and p are
the position and momentum of the particle, respectively, and Stfi is the collision term of
this particle species, which is connected to any other particle species phase space density
fk [12].

In UrQMD, only binary collisions are considered, and for two particles to interact, the
following condition must be satisfied: the area of the circumference whose diameter is the
transverse distance of the closest approach between them, dtrans, must be smaller than the
total cross-section for interaction between the two, σtot, [12]

dtrans <

√
σtot
π
, (3.2)

with the interactions described as probabilities, weighted by their branching ratios. In the
low energy regime (< 5 GeV), particle production is dominated by resonance decays, while
at higher energies, elastic scatterings, soft resonance production, string fragmentation, and
string excitation (Lund model) becomes more relevant [12, 45].

The UrQMD model considers around 50 baryon and 45 meson species, together with
their respective antiparticle, and all the possible reactions between them: nucleon–nucleon,
meson–meson, meson–baryon and baryon–baryon [12].

UrQMD works as a Fortran77 and GNU-make code, which is compiled with an input
file that indicates the collision parameters (number of nucleons involved, center of mass
energy, impact parameter, and final evolution time), the particular model that will be
used and the expected output format. There are six possible output formats, each one
containing different information, such as the particle identity, its freeze-out phase-space
coordinates and the phase-space coordinates at some specific time or / and at the end of
the simulation, as well as the process that produced it and the parent particle. To see the
list of all the different particles that are included in UrQMD, just as the different process
that can produce particles, see Ref. [44].

3.2 Simulation of Bi+Bi collisions

To perform the femtoscopy studies, five million central collisions of the bismuth isotopes
209
83 Bi were simulated using UrQMD in its cascade mode at four different center-of-mass

collision energies: √sNN = 4.0, 5.8, 7.7 and 9.2 GeV, with the impact parameter chosen to
be a random number between 0 and 1 fm, this impact parameter was chosen to avoid any
effect related to the angular momentum generated in non-central collisions. The simulations
were stopped after an evolution time of 200 fm. These energies were chosen to be within



3.2 Simulation of Bi+Bi collisions 29

the NICA energy range. Including the first experimental run of the NICA collider: Bi+Bi
at √sNN = 9.2 GeV.

The CRAB formalism requires the input files which contain the phase space points to
be in the OSCAR1997A format [30], which includes a file-header consisting of [44]

1. Output format: OSC1997A

2. File contents: final_id_p_x

3. General information, which contains the model and its version, projectile and target
nuclei, reference frame, incident beam energy, and number of test particles per nucleon,
for example:

UrQMD 3.4 (209, 83)+(209, 83) eqsp 0.4324E+02 1

The main file body consists of a one-line event header, which contains [44]:

1. Event counter.

2. Number of particles in the event.

3. Impact parameter in fm.

4. Rotation of the plane, which is fixed to zero in UrQMD.

And the subsequent particle vectors, in which time units are [t] = 1 fm, position units are
[r] = 1 fm, energy (and hence momenta) units are [E] = 1 GeV and mass units are [m] = 1
GeV [44]:

1. Particle counter.

2. PDG particle identification number1.

3. Particle’s momentum component along the x direction.

4. Particle’s momentum component along the y direction.

5. Particle’s momentum component along the z direction.

6. Particle’s energy.

7. Particle’s mass.

8. Particle’s freeze-out position component along the x direction.
1See the Particle Data Group website https://pdg.lbl.gov/2023/listings/contents listings.html for more

information on the particle ID.

https://pdg.lbl.gov/2023/listings/contents_listings.html
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Figure 3.1: Example of the OSCAR1997A format.

9. Particle’s freeze-out position component along the y direction.

10. Particle’s freeze-out position component along the z direction.

11. Particle’s freeze-out time.

An example of the OSCAR1997A format can be seen in Fig. 3.1. UrQMD supports this
output file format on its output type .f19.

As it has been stated in the preceding chapters, since charged pions are the most
abundantly detected particles in heavy-ion collisions, they are the most commonly used
femtoscopy tool. Thus, we are going to focus on positively charged pions.

In the study of heavy-ion collisions, Monte Carlo simulations provide an equivalent tool
to obtain experimentally measurable quantities. Since not all of the quantities of interest
can be experimentally measured, they must be found from the handful of experimentally
measurable quantities [46], such as the multiplicity, the total and the transverse momentum
distribution, among others. Recall, from what was discussed in Chapter 2, that the two-pion
correlation function can be obtained from the total and transverse momentum distributions
of pairs of particles.

In Fig. 3.2, the positively charged pion multiplicity is shown for the four center-of-mass
energies that were studied. As it is expected, the average multiplicity grows as the energy
increases. Whereas in Fig. 3.3, their transverse momentum distributions are shown, which
shows an exponential decay, as expected.

3.3 Separation of primary and secondary pions

Since we are interested in taking into account the core-halo picture, discussed in Chapter 2,
we must separate the particles coming from the core, which from now on will be referred to
as primary pions, and those coming from the halo, which will be referred to as secondary
pions. Recall that, in simulations of relativistic heavy-ion collisions, the primary and
secondary language is typically used for particles that come from primary processes and
from the decay of long-lived resonances, respectively. To accomplish this, we must make
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Figure 3.2: Positively charged pion multiplicity, normalized to the total number of events,
at (a) √sNN = 4.0 GeV, (b) √sNN = 5.8 GeV, (c) √sNN = 7.7 GeV and (d) √sNN = 9.2
GeV, for events with impact parameters between 0− 1 fm.
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Figure 3.3: Transverse momentum distribution of positively charged pion, normalized to
the total number of events and integrated over the rapidity interval, at (a) √sNN = 4.0
GeV, (b) √sNN = 5.8 GeV, (c) √sNN = 7.7 GeV and (d) √sNN = 9.2 GeV, for events with
impact parameters between 0− 1 fm.
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use of the parent process type information, which is provided in the UrQMD output file
type .f13. This output file includes a detailed event header per event [44]:

1. Model, version, and output file type.

2. Projectile and target nuclei.

3. Transformation velocity between the center-of-mass reference frame, the laboratory
and the projectile frame.

4. Impact parameter and total cross-section information.

5. Equation of state and collision energy in the laboratory, center-of-mass and projectile
reference frames.

6. Event number, random seed, simulation total time and elapsed time between the start
and end of the simulation.

7. Information about the simulation options (these lines start with the characters op).

8. Information about the optional parameters used in the simulation (these lines start
with the characters pa).

9. A description of the particle vector will be listed below (this line starts with the
characters pvec).

The event header is followed by a line that contains the number of particles and the
simulation output time. The next line is the collision counter line, which contains:

1. Number of collisions.

2. Number of elastic collisions.

3. Number of inelastic collisions.

4. Number of Pauli-blocked collisions.

5. Number of decays.

6. Number of produced hard baryon resonances.

7. Number of produced soft baryon resonances.

8. Number of baryon resonances produced via the decay of another resonances.

After the collision counter line, the final particle’s phase space information is contained
within the aforementioned particle vector, which includes [44]:
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1. Particle’s time.

2. Particle’s position component along the x direction.

3. Particle’s position component along the y direction.

4. Particle’s position component along the z direction.

5. Particle’s energy.

6. Particle’s momentum component along the x direction.

7. Particle’s momentum component along the y direction.

8. Particle’s momentum component along the z direction.

9. Particle’s mass.

10. Particle urqmd type.

11. Two times the particle’s isospin.

12. Particle’s charge.

13. Parent collision number.

14. Number of collisions.

15. Parent process type.

16. Particle’s freeze-out time.

17. Particle’s freeze-out position component along the x direction.

18. Particle’s freeze-out position component along the y direction.

19. Particle’s freeze-out position component along the z direction.

20. Particle’s freeze-out energy.

21. Particle’s freeze-out momentum component along the x direction.

22. Particle’s freeze-out momentum component along the y direction.

23. Particle’s freeze-out momentum component along the z direction.
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Figure 3.4: Example of the .f13 format.

The units in the particle momentum follow the same conventions as in the particle vector
the OSCAR1997A format. An example of the .f13 format can be seen in Fig. 3.4.

Therefore, by identifying the particles whose parent process is a decay, it is possible to
separate the pions coming from the halo than those coming from the core and rewrite the
information given in the .f13 file to the OSCAR1997A format and pass it to CRAB in order
to obtain the two-pion correlation function.

The secondary pions, whose origin is the decay of resonances, come mainly from the
decay of the ρ, ∆, ω, and K∗ resonances, whose mean lifetimes are τρ = 1.64 fm, τ∆ = 1.21
fm, τω = 23.4 fm and τK∗ = 3.94 fm, respectively. These “parent” resonances are consistent
with the long-lived resonances discussed in Ref. [23].

In Figs. 3.5 and 3.6, the positively charged primary and secondary pion multiplicity are
shown for the four center-of-mass energies that were studied, respectively. This multiplicities
are normalized over the total number of events. Once again, as it is expected, the average
multiplicity grows as the energy increases for both kinds. Figures 3.7 and 3.8 show the
transverse momentum distributions of primary and secondary pions, respectively. Again,
these distributions show an exponential decay, as expected.

Notice that the primary pion average multiplicity (between 10 and 50 primary pions per
event) is significantly smaller than for the secondary pions (between 110 and 350 secondary
pions per event). This means that most of the pions are produced by decays of resonances
and not by primary processes. Figure 3.9 shows the distribution of the event-by-event
fraction, fPrimary, of primary to all pions. The mean fraction of primary pions is

fPrimary(√sNN = 4.0 GeV) = 0.061987, (3.3)
fPrimary(√sNN = 5.8 GeV) = 0.108306, (3.4)
fPrimary(√sNN = 7.7 GeV) = 0.123475, (3.5)
fPrimary(√sNN = 9.2 GeV) = 0.129207, (3.6)

which means that between 6 and 13 % of the produced pions are of primary origin, and
this event-by-event fraction increases with the collision energy.
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Figure 3.5: Multiplicity of positively charged primary pions, normalized to the total number
of events, at (a) √sNN = 4.0 GeV, (b) √sNN = 5.8 GeV, (c) √sNN = 7.7 GeV and (d)√
sNN = 9.2 GeV, for events with impact parameters between 0− 1 fm.
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Figure 3.6: Multiplicity of positively charged secondary pions, normalized to the total
number of events, at (a) √sNN = 4.0 GeV, (b) √sNN = 5.8 GeV, (c) √sNN = 7.7 GeV and
(d) √sNN = 9.2 GeV, for events with impact parameters between 0− 1 fm.
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Figure 3.7: Transverse momentum distribution of positively charged primary pions, nor-
malized to the total number of events and integrated over the rapidity interval, at (a)√
sNN = 4.0 GeV, (b) √sNN = 5.8 GeV, (c) √sNN = 7.7 GeV and (d) √sNN = 9.2 GeV,

for events with impact parameters between 0− 1 fm.
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Figure 3.8: Transverse momentum distribution of positively charged secondary pions,
normalized to the total number of events and integrated over the rapidity interval, at (a)√
sNN = 4.0 GeV, (b) √sNN = 5.8 GeV, (c) √sNN = 7.7 GeV and (d) √sNN = 9.2 GeV,

for events with impact parameters between 0− 1 fm.
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Figure 3.9: Distribution of the event-by-event fraction of primary to all positively charged
pions at (a) √sNN = 4.0 GeV, (b) √sNN = 5.8 GeV, (c) √sNN = 7.7 GeV and (d)√
sNN = 9.2 GeV, for events with impact parameters between 0− 1 fm.



CHAPTER 4

Results of the source size and parameters from
two-pion correlation function

The main results of this work are presented in this chapter: using the Monte Carlo
simulations of five million Bi+Bi collisions, the two-pion correlation function was computed
using the CRAB formalism for the whole set of positively charged pions and for the separated
sets of primary and secondary pions. By using the Gaussian, Lévy, and Lorentz forms of
the two-pion correlation function, the source size, and parameters were obtained within the
context of the core-halo picture.

4.1 Correlation function fits and parameters

Let us start by briefly summarizing the functional forms that the two-pion correlation
function can take, as discussed in Chapter 2. As it has been mentioned, in general, it is
assumed that the phase space source distribution, S, can be factorized into a space-time
distribution and momentum distribution. The Fourier transform of the space-time part is
assumed to be an analytic function around zero relative momentum and its second order
Taylor expansion characterizes its behaviour, even for large values of qinv [27]. Thus, the
two-pion correlation function can be approximately written as

C2(qinv) = 1 + λ exp
(
−q2

invR
2
inv

)
, (4.1)

41
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where Rinv is the characteristic size of the source and qinv =
√
q2

0 − |q|2 is the invariant
relative momentum. Eq. (4.1) will be referred to as the Gaussian form. The previously men-
tioned assumptions can be translated into the stochastic nature of the several (independent)
pion emission processes. If one assumes that many independent processes shift the emission
position and that the final production point is a sum of many, similarly distributed, random
shifts whose variance is finite, then according to the Central Limit Theorem, the distribution
tends to a Gaussian. However, suppose the processes are characterized by large fluctuations
originating power-like tails and a non-analytic behaviour of the characteristic function. In
that case, the limiting distribution is not a Gaussian but instead a Lévy distribution [27].
A special case of this distribution is the one named symmetric stable Lévy distribution,
which is written as

C2(qinv) = 1 + λ exp(−|qinvRinv|α), (4.2)
where α is called the stability index and can be related to the correlation critical exponent of
QCD [37, 47]. Equation (4.2) will be referred to as the Lévy form of the correlation function.
As a last example of the different functions that can describe the two-pion correlation
function, we consider the Lorentzian distribution

C2(qinv) = 1 + λ
Γ2

q2
inv + Γ2 , (4.3)

where Γ is the width of the distribution and is related to the characteristic size of the source
by Γ = 1

2Rinv
. Equation (4.3) will be referred to as the Lorentzian form of the correlation

function. At this point, a clarification should be made: in the literature, the Cauchy form
discussed in Chapter 2 is sometimes also called the Lorentzian form, since it can be deducted
from a Lorentzian characteristic function. However, the form of the correlation function is
different from the Lorentzian form of Eq. (4.3).

4.2 Two-pion correlation function with ideal resolution

In the context of the core-halo picture, the two-pion correlation function is distorted due to
the effects of the finite resolution of the detectors and the multi-component source, hence, to
explore the nature of these effects, we start by computing the two-pion correlation function
for all the positively charged pions, obtained from the five million Bi+Bi collisions, and
fitting the three previously discussed functional forms. We compute the correlation function
for separating the primary and secondary pions of those five million Bi+Bi collisions, and
fit them to the same forms to compare the results. The fits are done to the central value
of the correlation function in each bin. The rationale is to simulate the case of a huge
statistical sample. To avoid repetition, only one of the four collision energies studied will
be fully presented in this chapter and the evolution of the source parameters as a function
of the collision energy, obtained through the fits, will be shown. However, the complete
data of the four collision energies will be presented in Appendix A, for the interested reader.
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Figure 4.1: Two-pion correlation function for Bi+Bi collisions at √sNN = 5.8 GeV, with
impact parameter b = 0− 1 fm. The blue dots represent the output of CRAB, while the
solid lines of different colors represent the Lorentzian (black), Gaussian (red) and Lévy
(green) fits.

Afterwards, the effect of the finite resolution will be taken into account and, the analysis
above will be redone with this new dataset. Once again, to avoid repetition, only one
of the four collision energies studied will be fully presented, and the evolution of the fit
parameters will be shown. Nonetheless, the complete data of the four collision energies will
be presented in Appendix B for the interested reader.

4.2.1 Two-pion correlation function for the complete set of pions

With the simulated Bi+Bi collisions, the CRAB formalism was applied to the phase space
points. For the case of √sNN = 5.8 GeV, the two-pion correlation function for the complete
set of pions is shown in Fig. 4.1, together with its fits to the Lorentzian, Eq. (4.3), Gaussian,
Eq. (4.1), and Lévy, Eq. (4.2), forms. The fit parameters are shown in Table 4.1. Notice
that the fit that better describes the correlation function, by visual inspection and by the
χ2-value 1, is obtained with the Lévy form.

1In this case, the χ2-value is defined as χ2 =
∑

i

(xfit−xdata)2
σfit

, where xfit is the value predicted by the fit,
xdata is the value obtained from CRAB and σfit is the error associated with the fit.
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Rinv [fm] λ α χ2 / n.d.f.
Lorentzian 5.632± 0.142 1.027± 0.018 — 45.27
Gaussian 7.254± 0.166 0.919± 0.018 — 38.301

Lévy 8.121± 0.059 1.05± 0.006 1.312± 0.015 0.835

Table 4.1: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the complete pion set obtained at √sNN = 5.8 GeV.

The same analysis can be done for the rest of the simulated collision energies (see
Appendix A) and then obtain the fit that better describes the correlation function, which
in all cases, it turns out to be the Lévy form. This is shown in Fig. 4.2.

Notice that for the whole sample of pions, there is a general tendency for Rinv to increase
as the collision energy increases. The index α slightly decreases with the collision energy
from the lowest to the largest energy considered but the overall decrease is non-monotonic.

As can be seen from Fig. 4.2, there appears to be a correlation between the fit parameters
Rinv, λ and α. This was found in Ref. [17], and based on the findings of Ref. [48], a new
scale parameter was introduced, without any theoretical motivation, that relates the other
three by

R̂ ≡ R

λ(1 + α) . (4.4)

Figure 4.3 shows the behaviour of R̂ as a function of the collision energy for the complete
set of pions. It can be seen that this parameter grows monotonically with the collision
energy.

4.2.2 Two-pion correlation function for the separated samples

With the simulated Bi+Bi collisions and the separation of primary and secondary pions,
discussed in Chapter 3, the CRAB formalism was applied to the phase space points of
primary and secondary pions. For the case of √sNN = 5.8 GeV, the two-pion correlation
function for primary and secondary pions is shown in Fig. 4.4, together with its fits to
the already discussed forms. Tables 4.2 and 4.3 show the resulting fit parameters for
primary and secondary pions, respectively. Figure 4.4 also shows the comparison between
the obtained correlation function for primary and secondary pions.

The results of the fits are consistent with the core-halo picture since the source of
primary pions has a size of Rinv, prim = 3.516 fm, which is significantly smaller than that
of secondary pions, Rinv, second = 8.402 fm. Notice that the following hierarchies of the
source parameters hold: Rinv, prim < Rinv, all < Rinv, second, λprim < λall < λsecond and
αsecond . αall < αprim. Also, the correlation function for primary pions has the closest
behaviour to a Gaussian.

Once again, using a visual inspection and the χ2-value, the fit that better describes
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Figure 4.2: Source size Rinv (blue dots) and Lévy index of stability α (red squares) as a
function of the collision energy, √sNN , for the complete sets of pions obtained from Bi+Bi
collisions with impact parameter b = 0− 1 fm. Rinv and α are obtained from fits to a Lévy
form.

Rinv [fm] λ α χ2 / n.d.f.
Lorentzian 2.445± 0.079 1.03± 0.022 — 158.468
Gaussian 3.476± 0.017 0.965± 0.004 — 3.132

Lévy 3.516± 0.014 0.982± 0.004 1.863± 0.021 0.353

Table 4.2: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the primary pion set obtained at √sNN = 5.8 GeV.

Rinv [fm] λ α χ2 / n.d.f.
Lorentzian 5.828± 0.168 1.041± 0.021 — 54.205
Gaussian 7.455± 0.17 0.93± 0.018 — 30.012

Lévy 8.402± 0.065 1.066± 0.007 1.31± 0.016 0.321

Table 4.3: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the secondary pion set obtained at √sNN = 5.8 GeV.
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Figure 4.3: Scale parameter, R̂, as a function of the collision energy, √sNN , for the complete
set of pions obtained from Bi+Bi collisions with impact parameter b = 0 − 1 fm. R̂ is
obtained from the fits to a Lévy form and Eq. (4.4).
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Figure 4.4: Two-pion correlation function for Bi+Bi collisions at √sNN = 5.8 GeV, with
impact parameter b = 0 − 1 fm for (a) primary and (b) secondary pions. The blue
dots represent the output of CRAB, while the solid lines of different colors represent the
Lorentzian (black), Gaussian (red) and Lévy (green) fits. The comparison between the
correlation function of primary and secondary pions, together with its fits to the Lévy form
is shown in (c), where the CRAB output is represented by blue dots for the case of primary
pions set and by red squares for the case of secondary pions, while the solid lines represent
the fit to Lévy forms shown in (a) and (b).



48 Results of the source size and parameters from two-pion correlation function

the correlation function is obtained with the Lévy form. This holds true for the range
of explored collision energies. Hence, the same analysis can be done for the rest of the
simulated collision energies (see Appendix A).

Figure 4.5 shows the evolution of the source radii and the Lévy index of stability with
the collision energy for the sets of primary and secondary pions, while Fig. 4.6 shows the
comparison between the evolution of the source size and the Lévy index of stability for the
complete, primary and secondary pions sets. Notice that for the separate samples of primary
and secondary pions. However, Rinv grows with the collision energy from the lowest to the
largest energy considered, this growth is non-monotonic. The index α slightly decreases
with the collision energy from the lowest to the largest energy considered but, except for the
case of the primary pion sample, the overall decrease is non-monotonic. For all the energies
considered, we observe the source parameters hierarchies Rinv, prim < Rinv, all < Rinv, second
and αsecond . αall < αprim. Hence, the general behaviour for the source radii is to grow
with the collision energy, while the Lévy index of stability does not have a clear general
tendency, except for the case of primary pions, which tend to deviate for the Gaussian case,
signalling the importance of Lévy distributions when describing this phenomenon at higher
collision energies. Also, the behaviour and values of Rinv and α for secondary pions are
very similar to those of the complete pions.

Figure 4.7 shows the scale parameter R̂ evolution with the collision energy for the sets
of primary and secondary pions. The comparison of the complete sample with the primary
and secondary pions is also shown in Fig. 4.7. Notice that, once again, the scale parameter
grows monotonically with the collision energy.

Ref. [17] also found that the inverse of the scale parameter, R̂−1, has a linear behaviour
as a function of the pion transverse mass mT ≡

√
m2 +K2

T , with KT ≡ 1
2

√
K2
x +K2

y . The
explanation of this linearity is unknown, according to Ref. [17]. This linear behaviour is
also shown as a function of the collision energy in Fig. 4.8.

4.3 Two-pion correlation function with finite resolution

To account for finite resolution effects, the NICA-MPD collaboration has reported to have
a minimum momentum resolution around 1.0 and 1.5 % for single-particles with total
momentum, |p|2 = p2

‖ + p2
⊥, around 0.2 GeV. For particles whose total momentum is

between 0.6 and 0.8 GeV, the minimum momentum resolution is around 2 % [49], as shown
in Fig. 4.9. Therefore, the average relative momentum resolution of MPD can be thought to
be about 10 MeV. This effect can be included in this work by fixing the smearing parameter
of CRAB to 10 MeV. The smearing function of CRAB adds to each components of the
momentum of the particle a random value that is Gaussianlly distributed, whose mean
is zero and its standard deviation is the value of the smearing parameter. The effect of
this smearing function is to “spread” the values of the momentum for each pion by a value
related to the minimum resolution of the detector.
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Figure 4.5: Source size Rinv and Lévy index of stability α as a function of the collision
energy, √sNN , for (a) the primary pions and (b) the secondary pions obtained from Bi+Bi
collisions with impact parameter b = 0− 1 fm. Rinv and α are obtained from fits to a Lévy
form.
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Figure 4.6: Comparison of the behaviour of (a) the source size and (b) the Lévy index of
stability for the complete (black dots), primary (blue squares) and secondary (red diamonds)
obtained from Bi+Bi collisions with impact parameter b = 0−1 fm. Rinv and α are obtained
from fits to a Lévy form.

Rinv [fm] λ α χ2 / n.d.f.
Lorentzian 4.449± 0.13 0.641± 0.013 — 28.227
Gaussian 5.856± 0.094 0.582± 0.008 — 13.295

Lévy 6.238± 0.046 0.632± 0.004 1.502± 0.022 0.912

Table 4.4: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 5.8 GeV, to Lorentzian, Gaussian, and Lévy forms for the complete pion set that

takes into account the finite resolution effects of MPD, by setting the smearing parameter
to 10 MeV.

In this section, the analysis of the previous section is repeated but includes the finite
resolution effects and compared with the results obtained for the ideal resolution case. Once
again, only the case of √sNN = 5.8 GeV will be presented, but the full analysis of the four
collision energies will be presented on Appendix B for the interested reader.

4.3.1 Finite resolution effects on the two-pion correlation function for
the complete set of pions

The effects of the finite resolution on the two-pion correlation function can be seen in
Fig. 4.10, with the fit parameters shown in Table 4.4. Once again, the fit to the Lévy form
is the one that better describes the correlation function. The same is true for the rest of
the explored collision energies.
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Figure 4.7: Scale parameter, R̂, as a function of the collision energy, √sNN , for (a) the
primary pions and (b) the secondary pions obtained from Bi+Bi collisions with impact
parameter b = 0 − 1 fm. R̂ is obtained from the fits to a Lévy form and Eq. (4.4). The
comparison between the complete, primary and secondary pions is shown in (c).
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Figure 4.8: Inverse of the scale parameter, R̂−1 as a function of the collision energy, √sNN ,
for the complete (black dots), primary (blue squares) and secondary (red diamonds) sets.

Figure 4.9: MPD total momentum resolution as a function of the total momentum. Credits:
A. Maevskiy et al., taken from Ref. [49].
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(a) Fits to finite resolution correlation function
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Figure 4.10: Two-pion correlation function of Bi+Bi collisions at √sNN = 5.8 GeV, with
impact parameter b = 0− 1 fm. In (a), the output of CRAB is shown but with the finite
resolution effect of MPD, with a smearing of 10 MeV. The blue dots represent the output
of CRAB, while the solid lines represent the fits to the Lorentz, Gaussian, and Lévy forms.
In (b), a comparison between the ideal and finite resolution is made, where the blue dots
represent the same output of CRAB of Figure 4.1, while the red dots include the finite
resolution effect of MPD, with a smearing of 10 MeV. Solid lines represent the fit to a Lévy
form.

Rinv [fm] λ α χ2 / n.d.f.
w. smearing 6.238± 0.046 0.632± 0.004 1.502± 0.022 0.912
wo. smearing 8.121± 0.059 1.05± 0.006 1.312± 0.015 0.835

Table 4.5: Results of the fit to the two-pion correlation function with a Lévy form accounting
for a finite resolution of the detector, setting a smearing of 10 MeV for the complete pion
set obtained at √sNN = 5.8 GeV.
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Figure 4.11: Source size Rinv and Lévy index of stability α as a function of the collision
energy for the complete set of pions obtained from Bi+Bi collisions with impact parameter
b = 0 − 1 fm and a smearing of 10 MeV. Rinv and α are obtained from the fit to a Lévy
form.

The comparison of the fit parameters of the Lévy forms between the case of ideal and
finite resolution is shown in Table 4.5. Notice that the finite resolution has the effect of
significantly diminishing the source size (by about 23 %) and the value of the intercept
(by about 39 %) while increasing the value of the Lévy stability index (by about 14 %).
While for the different energies considered, the effect of the finite resolution is of different
intensity, in average, its effect is to diminish, on average, the source size by 23 % and the
value of the intercept by 39 %, while increasing, the value of the Lévy stability index by 14
%, in average.

The evolution of the source radii and the Lévy index with respect to the collision energy,
accounting for the finite resolution effects of the detector, are shown in Fig. 4.11. Notice
that Rinv shows an overall tendency to increase with the collision energy, whereas α is
basically constant around the same value α ' 1.5. This behaviour is in agreement with the
preliminary results of the STAR collaboration [50], which indicate that α decreases very
slowly as a function of the collision energy.

Figure 4.12 shows the behaviour of R̂ as a function of the collision energy for the
complete set of pions, accounting for the finite resolution effects of the detector. Notice
that the scale parameter monotonically grows with the collision energy, just as in the case
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Figure 4.12: Scale parameter, R̂, as a function of the collision energy, √sNN , for the
complete set of pions obtained from Bi+Bi collisions with impact parameter b = 0− 1 fm
and a smearing of 10 MeV. R̂ is obtained from the fits to a Lévy form and Eq. (4.4).
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Rinv [fm] λ α χ2 / n.d.f.
Lorentzian 2.341± 8.843 0.93± 0.014 — 60.619
Gaussian 3.339± 0.027 0.869± 0.006 — 13.614

Lévy 3.426± 0.012 0.905± 0.003 1.709± 0.016 1.615

Table 4.6: Parameters resulting from fits of the two-pion correlation function, obtained
at √sNN = 5.8 GeV, to Lorentzian, Gaussian, and Lévy forms for the primary pions,
accounting for a finite resolution of the detector, setting a smearing of 10 MeV.

Rinv [fm] λ α χ2 / n.d.f.
Lorentzian 4.673± 0.147 0.65± 0.014 — 31.385
Gaussian 6.083± 0.108 0.587± 0.009 — 10.753

Lévy 6.591± 0.054 0.647± 0.005 1.447± 0.022 0.259

Table 4.7: Parameters resulting from fits of the two-pion correlation function, obtained
at √sNN = 5.8 GeV, to Lorentzian, Gaussian, and Lévy forms for the secondary pions,
accounting for a finite resolution of the detector, setting a smearing of 10 MeV.

without finite resolution effects.

4.3.2 Finite resolution effects on the two-pion correlation function for
the separated samples

The effect of the finite resolution on the separated samples, as well as the fits to the
Lorentzian, Gaussian, and Lévy forms are shown in Fig. 4.4, while Tables 4.6 and 4.7 show
the resulting fit parameters for primary and secondary pions, respectively. Figure 4.13 also
shows the comparison between the effects of the finite resolution for primary and secondary
pions.

As it has happened recurrently, the fit to the Lévy form is the one that better describes
the correlation function for both primary and secondary pions, and the same happens for
the whole range of explored collision energies, and hence, the same analysis can be done for
the rest of the collision energies (see Appendix B).

The comparisons of the fit parameters of the Lévy forms between the case of ideal
resolution and finite resolution for primary and secondary pions are shown in Tables 4.8
and 4.9, respectively.

Notice that, once again, the finite resolution has the effect of diminishing the source
size (by about 2 % for primary pions and about 21 %, for secondary pions) and the
value of the intercept (by about 8 % for primary pions and about 39 % for secondary
pions), while the value of the Lévy index decreases for primary pions (by about 8 %) and
increases for secondary pions (by about 10 %). This means that the effect of the finite
resolution is of the same order for the set containing all the pions as for the set containing
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Figure 4.13: Two-pion correlation function of (a) primary and (b) secondary pions, produced
in Bi+Bi collisions at √sNN = 5.8 GeV, with impact parameter b = 0− 1 fm. The blue
dots and the red squares represent the output of CRAB with a smearing of 10 MeV, while
the solid lines represent the fits Lorentzian (black), Gaussian (red), and Lévy (green) fits.
The two-pion correlation function of primary and secondary pion, together with its fits to
the Lévy forms are compared in (c).
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Rinv [fm] λ α χ2 / n.d.f.
w. smearing 3.426± 0.012 0.905± 0.003 1.709± 0.016 1.615
wo. smearing 3.516± 0.014 0.982± 0.004 1.863± 0.021 0.353

Table 4.8: Results of the fit to the two-pion correlation function with a Lévy form accounting
for a finite resolution of the detector, setting a smearing of 10 MeV for the primary pions
obtained at √sNN = 5.8 GeV.

Rinv [fm] λ α χ2 / n.d.f.
w. smearing 6.591± 0.054 0.647± 0.005 1.447± 0.022 0.259
wo. smearing 8.402± 0.065 1.066± 0.007 1.31± 0.016 0.321

Table 4.9: Results of the fit to the two-pion correlation function with a Lévy form accounting
for a finite resolution of the detector, setting a smearing of 10 MeV for the secondary pions
obtained at √sNN = 5.8 GeV.

only the secondary pions, while the effect of a finite resolution barely affects the set of
primary pions. Additionally, the hierarchy of the fit parameters remains the same for
the invariant radii, Rinv, prim, FR < Rinv, all, FR < Rinv, second, FR, but it changes for the
intercept parameter becoming λall, FR < λsecond, FR < λprim, FR, and it remains the same for
αsecond, FR < αall, FR < αprim, FR. For the different energies considered, these hierarchies
hold for the invariant radii and for the Lévy index of stability, but the hierarchy of λall, FR
and λsecond, FR changes for some energies.

Figure 4.14 shows the evolution of the source radii and the Lévy index with respect to
the collision energy for the sets separating the pion sample into primary and secondary
pions, accounting for the effects of the finite resolution of the detector, while Fig. 4.15 shows
the comparison between the evolution of the source size and the Lévy index of stability
for the complete, primary and secondary pion sets, with a smearing of 10 MeV. Notice
that for the set of primary pions, Rinv is basically constant for the energy range considered
whereas α shows a moderate decrease with energy. This means that a finite momentum
resolution has a small effect on the pions of primary origin. The values for Rinv and α
for the set of secondary pions are closer to the corresponding parameters when the whole
pion sample is considered. This means that when no separation of the sample between
primary and secondary pions is made, the full sample is dominated by the secondary pions.
As it happened for the case of the whole sample of pions, shown in Fig. 4.11, for the set
of secondary pions, Rinv shows an overall tendency to increase with the collision energy,
whereas for both of these samples, α is basically constant around the same value α ' 1.5.
It also can be shown that, as the collision energy increases, the set of pions of primary
origin are worse described by a Gaussian fit. In this sense, the Lévy fit becomes a better
alternative for the correlation function as the collision energy increases.
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Figure 4.14: Source size Rinv and Lévy index of stability α as a function of the collision
energy for (a) primary and (b) secondary pions obtained from Bi+Bi collisions with impact
parameter b = 0− 1 fm and a smearing of 10 MeV. Rinv and α are obtained from the fit to
a Lévy form.
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Figure 4.15: Comparison of the behaviour of (a) the source size and (b) the Lévy index of
stability for the complete (black dots), primary (blue squares) and secondary (red diamonds)
obtained from Bi+Bi collisions with impact parameter b = 0− 1 fm and a smearing of 10
MeV. Rinv and α are obtained from fits to a Lévy form.

Figure 4.16 shows the scale parameter R̂ evolution with the collision energy for the
sets of primary and secondary pions. The comparison of the complete sample with the
primary and secondary pions is also shown in Fig. 4.16. Notice that, once again, the scale
parameter grows monotonically with the collision energy. Fig. 4.17 shows the inverse of the
scale parameter, accounting for the finite resolution effects. Once again, the behaviour of
the inverse of the scale parameter is linear with the collision energy.

Table 4.10 shows the evolution of the intercept parameter λ with respect to the collision
energy for the complete set of pions, as well as for the primary and secondary pions. Notice
that for all the cases, the value of λ decreases as the energy increases. Nonetheless, for the
complete set and the secondary pions the decrease is around 10 %, whereas for the primary
pions the decrease is only marginal and around 2 %.

√
sNN [GeV] λall λprim λsecond

4.0 0.677± 0.003 0.907± 0.002 0.651± 0.004
5.8 0.632± 0.004 0.905± 0.003 0.647± 0.005
7.7 0.625± 0.004 0.9± 0.003 0.608± 0.003
9.2 0.595± 0.007 0.887± 0.005 0.602± 0.003

Table 4.10: Evolution of the intercept parameter λ with the collision energy for the complete,
primary and secondary sets of pions, obtained from fits to a Lévy form accounting for a
finite resolution of the detector with a smearing of 10 MeV.
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Figure 4.16: Scale parameter, R̂, as a function of the collision energy, √sNN , for (a) the
primary pions and (b) the secondary pions obtained from Bi+Bi collisions with impact
parameter b = 0− 1 fm and a smearing of 10 MeV. R̂ is obtained from the fits to a Lévy
form and Eq. (4.4). The comparison between the complete, primary and secondary pions is
shown in (c).
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Figure 4.17: Inverse of the scale parameter, R̂−1, as a function of the collision energy,√
sNN , for the complete (black dots), primary (red squares) and secondary (blue diamonds)

sets, accounting for the finite resolution effects.



4.3 Two-pion correlation function with finite resolution 63

As it was discussed in Chapter 2, within the context of the core-halo picture, the
intercept parameter can be related to the square of the fraction of pions coming from the
core. This implies, according to Eq. (2.43), that between 77 % and 82 % of the pions should
come from the core, and only a smaller fraction should come from the halo. According
to the previously discussed definition of secondary particles, pions of secondary origin are
those coming from the decay of long-lived resonances. The results show that simulating a
finite resolution detector with a smearing ∆q ∼ 10 MeV, the fraction of pions of secondary
origin together with the pions of primary origin come from a space-time region within
Rinv, such that ∆q · Rinv ∼ 1 implying that Rinv . 20 fm. In other words, a minimum
momentum resolution of 10 MeV translates into a maximum source size of 20 fm, from
where pion pairs can be identified. Since the intercept parameter for secondary particles
decreases more than for the primaries as the energy increases, this means that for larger
energies, long-lived resonances decay further away from the center, as expected, and thus
contribute less to the population of core pions. As discussed in Chapter 3, from the UrQMD
simulation, it is possible to directly identify that the average fraction of pions produced
by primary processes, which always populate the core, increases marginally with energy to
be between 6 % and 13 %. Therefore, we can conclude that for lower energies, the core
is mainly populated by pions produced from slow moving resonance decays and that this
population gradually decreases as the collision energy increases.
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CHAPTER 5

Conclusions

In this work, the two-pion correlation function has been presented as a prime femtoscopy
tool that can be used in the context of the study of the interaction region formed in
relativistic heavy-ion collisions. The main formalism of the two-particle has been presented
and the rationale for using this correlation functions as a tool for extracting the pion source
size and shape was also presented.

For collisions whose energy is within the NICA energy range, the evolution with
collision energy of the parameters that describe the two-pion correlation function has been
investigated. Monte Carlo simulations have been performed using the Ultra-relativistic
Quantum Molecular Dynamics (UrQMD) event generator to produce five million events for
each of the following center-of-mass collision energies: √sNN = 4.0, 5.8, 7.7 and 9.2 GeV.
In each case, the quantum correlations are included using the CRAB formalism, which is
implemented as an analyzing code. No other source of correlations but the quantum ones
have been considered. The correlation function is studied as a function of the invariant
relative pair momentum for a fixed value of the average pair momentum. To find the
parameters that describe the correlation function, fits were performed using Gaussian,
Lorentzian and symmetric Lévy distributions. The distribution that provides the better
description of the correlations is the Lévy distribution for the different settings and across
the considered energy range. The simulated pion sample was separated into its primary
and secondary components. The latter is defined as the set of pions coming from the decay
of long-lived resonances, concretely ρ, ∆, ω, and K∗. As it was expected, the source size
for the sample of secondary pions is larger than that for the whole sample and significantly
larger than the source size of the primary pions. In some cases, the intercept parameter
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exhibits the same hierarchy as the source size, whereas the Lévy index exhibits the opposite.
For the case of the primary pion sample, the Lévy index shows an overall slight decrease
with collision energy, however, the secondary and full set of pions do not show a clear
tendency with collision energy. When comparing the source parameters of the complete pion
sample with those of primary and secondary origin, it is possible to see that the secondary
pions dominate the behaviour of the whole set.

In order to obtain a more accurate picture of the space-time characteristics of the pion
producing sources, the case of a non-ideal detector was simulated by introducing a smearing
parameter in the CRAB code to mimic a minimum resolution for the determination of
the relative pair momentum, the value of which is consistent with the expected average
momentum resolution reported by the MPD collaboration. From the uncertainty relation
between momentum and position, this minimum resolution translates into a maximum
source size from where pion pairs can be identified. This smearing produces that the
intercept of the correlation function becomes smaller than unity. Within the core-halo
picture, the impossibility of determining source sizes larger than the inverse of the smearing
momentum can be turned into an advantage since the intercept size can be directly identified
with the square of the fraction of pions coming from the core. The presented results indicate
that the pion sample coming from the core has a significant component whose origin is the
decay of long-lived but slow-moving resonances, as well as a small component of pions from
primary processes. The former decreases, whereas the latter increases with collision energy.

In this sense, the analysis of the relative abundance of pions in the core coming from
resonance decays and primary processes, as the collision energy changes, becomes more
important as a tool to study signals of criticality within the NICA energy range. Indeed,
when particle-producing processes introduce extra sources of correlations with lengths of
the order of the size of the system, the core in this case, it is expected that they can be
captured, in particular, by a non-monotonic evolution of the Lévy index with collision
energy. Since the model of UrQMD that was used in this analysis, which considers the pion
emitting source as a hadron gas, does not include a phase transition whose signature could
be captured in this kind of analysis, this work can be extended by changing the model
and generator to one that does have a phase transition, and then, it might be possible to
see which are the effects of this transition on the two-pion correlation function and the
space-time parameters that characterize the pion emitting source. This could, in turn, be
used as a signal of the presence of the critical phenomena associated with the presence of a
critical end-point in the QCD phase diagram, since in the vicinities of the critical end-point,
the value of the correlation critical exponent is predicted by theory to be approximately
0.5 and this can be measured with the Lévy index of stability. Even more, with enough
statistics, this kind of analysis could constrain the equation of state of nuclear matter. A
similar analysis to the one recently proposed has already been performed for the RHIC and
LHC energies (√sNN = 200 GeV and 2.76 TeV, respectively) in Refs. [51, 52]

9=:



APPENDIX A

Two-pion correlation function fits:
Ideal resolution case

As it has already been mentioned, the purpose of this Appendix is to show the complete
analysis of the two-pion correlation functions obtained for all the explored energies, not
considering finite resolution effects.

A.1 Two-pion correlation function for the complete set of
pions

Figure A.1 shows the two-pion correlation function for the complete sample of positively
charged pions at a collision energy √sNN = 4.0 GeV, together with its fits to the Lorentzian,
Gaussian and Lévy forms. The resulting fit parameters are shown in Table A.1. Notice
that the fit that better describes the correlation function is obtained with the Lévy form.

Rinv [fm] λ α χ2

Lorentzian 5.213± 0.146 1.021± 0.02 — 138.842
Gaussian 6.787± 0.126 0.922± 0.015 — 75.25

Lévy 7.346± 0.051 1.018± 0.006 1.428± 0.018 3.533

Table A.1: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the complete pion set obtained at √sNN = 4.0 GeV.
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Figure A.1: Two-pion correlation function for Bi+Bi collisions at √sNN = 4.0 GeV, with
impact parameter b = 0− 1 fm. The blue dots represent the output of CRAB, while the
solid lines of different colors represent the Lorentzian (black), Gaussian (red) and Lévy
(green) fits.
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Figure A.2: Two-pion correlation function for Bi+Bi collisions at √sNN = 5.8 GeV, with
impact parameter b = 0− 1 fm. The blue dots represent the output of CRAB, while the
solid lines of different colors represent the Lorentzian (black), Gaussian (red) and Lévy
(green) fits.

The two-pion correlation function for the complete sample pions at a collision energy√
sNN = 5.8 GeV, together with its fits to the Lorentzian, Gaussian and Lévy forms is

shown in Fig. A.2. The resulting fit parameters are shown in Table A.2. Notice that the fit
that better describes the correlation function is obtained with the Lévy form.

The two-pion correlation function for the complete sample pions at a collision energy√
sNN = 7.7 GeV, together with its fits to the Lorentzian, Gaussian and Lévy forms is

shown in Fig. A.3. The resulting fit parameters are shown in Table A.3. Notice that the fit
that better describes the correlation function is obtained with the Lévy form.

The two-pion correlation function for the complete sample pions at a collision energy√
sNN = 9.2 GeV, together with its fits to the Lorentzian, Gaussian and Lévy forms is

shown in Fig. A.4. The resulting fit parameters are shown in Table A.4. Notice that the fit
that better describes the correlation function is obtained with the Lévy form.



70 Two-pion correlation function fits: Ideal resolution case

Rinv [fm] λ α χ2

Lorentzian 5.632± 0.142 1.027± 0.018 — 45.27
Gaussian 7.254± 0.166 0.919± 0.018 — 38.301

Lévy 8.121± 0.059 1.05± 0.006 1.312± 0.015 0.835

Table A.2: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the complete pion set obtained at √sNN = 5.8 GeV.
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Figure A.3: Two-pion correlation function for Bi+Bi collisions at √sNN = 7.7 GeV, with
impact parameter b = 0− 1 fm. The blue dots represent the output of CRAB, while the
solid lines of different colors represent the Lorentzian (black), Gaussian (red) and Lévy
(green) fits.

Rinv [fm] λ α χ2

Lorentzian 5.688± 0.141 0.995± 0.017 — 94.24
Gaussian 7.362± 0.158 0.894± 0.017 — 78.49

Lévy 8.119± 0.061 1.007± 0.006 1.352± 0.017 3.432

Table A.3: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the complete pion set obtained at √sNN = 7.7 GeV.
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Figure A.4: Two-pion correlation function for Bi+Bi collisions at √sNN = 9.2 GeV, with
impact parameter b = 0− 1 fm. The blue dots represent the output of CRAB, while the
solid lines of different colors represent the Lorentzian (black), Gaussian (red) and Lévy
(green) fits.

Rinv [fm] λ α χ2

Lorentzian 6.124± 0.146 1.049± 0.018 — 34.342
Gaussian 7.77± 0.218 0.93± 0.023 — 44.516

Lévy 9.149± 0.054 1.109± 0.005 1.19± 0.01 0.289

Table A.4: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the complete pion set obtained at √sNN = 9.2 GeV.
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Rinv [fm] λ α χ2

Lorentzian 2.494± 0.086 1.049± 0.024 — 436.399
Gaussian 3.529± 0.014 0.982± 0.003 — 3.923

Lévy 3.567± 0.01 0.998± 0.003 1.878± 0.015 3.481

Table A.5: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the primary pion set obtained at √sNN = 4.0 GeV.

Rinv [fm] λ α χ2

Lorentzian 5.346± 0.154 1.04± 0.021 — 144.286
Gaussian 6.918± 0.133 0.936± 0.016 — 67.044

Lévy 7.566± 0.035 1.043± 0.004 1.399± 0.011 1.298

Table A.6: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the secondary pion set obtained at √sNN = 4.0 GeV.

A.2 Two-pion correlation function for the separated samples

Figure A.5 shows the two-pion correlation function for primary and secondary pions at a
collision energy √sNN = 4.0 GeV, together with its fits to the Lorentzian, Gaussian and
Lévy forms. The comparison between the correlation function for primary and secondary
pions is also shown. Tables A.5 and A.6 show the resulting fit parameters for primary
and secondary pions, respectively. Notice that the fit that better describes the correlation
function for both, primary and secondary pions, is obtained with the Lévy form.

Figure A.6 shows the two-pion correlation function for primary and secondary pions at
a collision energy √sNN = 5.8 GeV, together with its fits to the Lorentzian, Gaussian and
Lévy forms. The comparison between the correlation function for primary and secondary
pions is also shown. Tables A.7 and A.8 show the resulting fit parameters for primary
and secondary pions, respectively. Notice that the fit that better describes the correlation
function for both, primary and secondary pions, is obtained with the Lévy form.

Figure A.7 shows the two-pion correlation function for primary and secondary pions at
a collision energy √sNN = 7.7 GeV, together with its fits to the Lorentzian, Gaussian and

Rinv [fm] λ α χ2

Lorentzian 2.445± 0.079 1.03± 0.022 — 158.468
Gaussian 3.476± 0.017 0.965± 0.004 — 3.132

Lévy 3.516± 0.014 0.982± 0.004 1.863± 0.021 0.353

Table A.7: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the primary pion set obtained at √sNN = 5.8 GeV.
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(a) Primary pions
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(b) Secondary pions
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(c) Primary and secondary pions

Figure A.5: Two-pion correlation function for Bi+Bi collisions at √sNN = 4.0 GeV, with
impact parameter b = 0 − 1 fm for (a) primary and (b) secondary pions. The blue
dots represent the output of CRAB, while the solid lines of different colors represent the
Lorentzian (black), Gaussian (red) and Lévy (green) fits. The comparison between the
correlation function of primary and secondary pions, together with its fits to the Lévy form
is shown in (c), where the CRAB output is represented by blue dots for the case of primary
pions set and by red squares for the case of secondary pions, while the solid lines represent
the fit to Lévy forms shown in (a) and (b).
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Figure A.6: Two-pion correlation function for Bi+Bi collisions at √sNN = 5.8 GeV, with
impact parameter b = 0 − 1 fm for (a) primary and (b) secondary pions. The blue
dots represent the output of CRAB, while the solid lines of different colors represent the
Lorentzian (black), Gaussian (red) and Lévy (green) fits. The comparison between the
correlation function of primary and secondary pions, together with its fits to the Lévy form
is shown in (c), where the CRAB output is represented by blue dots for the case of primary
pions set and by red squares for the case of secondary pions, while the solid lines represent
the fit to Lévy forms shown in (a) and (b).
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Rinv [fm] λ α χ2

Lorentzian 5.828± 0.168 1.041± 0.021 — 54.205
Gaussian 7.455± 0.17 0.93± 0.018 — 30.012

Lévy 8.402± 0.065 1.066± 0.007 1.31± 0.016 0.321

Table A.8: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the secondary pion set obtained at √sNN = 5.8 GeV.

Rinv [fm] λ α χ2

Lorentzian 2.494± 0.071 1.039± 0.019 — 204.973
Gaussian 3.512± 0.024 0.968± 0.006 — 13.577

Lévy 3.596± 0.007 1.002± 0.002 1.752± 0.009 0.385

Table A.9: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the primary pion set obtained at √sNN = 7.7 GeV.

Lévy forms. The comparison between the correlation function for primary and secondary
pions is also shown. Tables A.9 and A.10 show the resulting fit parameters for primary
and secondary pions, respectively. Notice that the fit that better describes the correlation
function for both, primary and secondary pions, is obtained with the Lévy form.

Figure A.8 shows the two-pion correlation function for primary and secondary pions at
a collision energy √sNN = 9.2 GeV, together with its fits to the Lorentzian, Gaussian and
Lévy forms. The comparison between the correlation function for primary and secondary
pions is also shown. Tables A.11 and A.12 show the resulting fit parameters for primary
and secondary pions, respectively. Notice that the fit that better describes the correlation
function for both, primary and secondary pions, is obtained with the Lévy form.

Rinv [fm] λ α χ2

Lorentzian 5.847± 0.17 0.996± 0.02 — 120.194
Gaussian 7.558± 0.143 0.896± 0.015 — 53.64

Lévy 8.235± 0.038 0.995± 0.004 1.409± 0.012 1.516

Table A.10: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the secondary pion set obtained at √sNN = 7.7 GeV.
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Figure A.7: Two-pion correlation function for Bi+Bi collisions at √sNN = 7.7 GeV, with
impact parameter b = 0 − 1 fm for (a) primary and (b) secondary pions. The blue
dots represent the output of CRAB, while the solid lines of different colors represent the
Lorentzian (black), Gaussian (red) and Lévy (green) fits. The comparison between the
correlation function of primary and secondary pions, together with its fits to the Lévy form
is shown in (c), where the CRAB output is represented by blue dots for the case of primary
pions set and by red squares for the case of secondary pions, while the solid lines represent
the fit to Lévy forms shown in (a) and (b).
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Figure A.8: Two-pion correlation function for Bi+Bi collisions at √sNN = 9.2 GeV, with
impact parameter b = 0 − 1 fm for (a) primary and (b) secondary pions. The blue
dots represent the output of CRAB, while the solid lines of different colors represent the
Lorentzian (black), Gaussian (red) and Lévy (green) fits. The comparison between the
correlation function of primary and secondary pions, together with its fits to the Lévy form
is shown in (c), where the CRAB output is represented by blue dots for the case of primary
pions set and by red squares for the case of secondary pions, while the solid lines represent
the fit to Lévy forms shown in (a) and (b).
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Rinv [fm] λ α χ2

Lorentzian 2.548± 0.07 1.042± 0.019 — 144.415
Gaussian 3.559± 0.035 0.967± 0.008 — 15.472

Lévy 3.686± 0.02 1.016± 0.005 1.668± 0.023 1.074

Table A.11: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the primary pion set obtained at √sNN = 9.2 GeV.

Rinv [fm] λ α χ2

Lorentzian 6.074± 0.172 1.01± 0.02 — 66.828
Gaussian 7.801± 0.165 0.905± 0.017 — 34.548

Lévy 8.647± 0.047 1.022± 0.005 1.353± 0.012 0.469

Table A.12: Parameters resulting from fits of the two-pion correlation function to Lorentzian,
Gaussian and Lévy forms for the secondary pion set obtained at √sNN = 9.2 GeV.



APPENDIX B

Two-pion correlation function fits:
Finite resolution case

In this Appendix, the complete analysis of the obtained correlations functions for all the
explored energies and with finite resolution effects is shown. Recall, from Chapter 4, that
the MPD relative momentum resolution is about 10 MeV. Thus, this effect can be included
into the CRAB formalism by fixing the CRAB smearing parameter to 10 MeV.

B.1 Finite resolution effects on the two-pion correlation func-
tion for the complete set of pions

Figure B.1 shows the finite resolution effects on the two-pion correlation function for the
complete set of positively charged pions at a collision energy √sNN = 4.0 GeV, together
with its fits to the Lorentzian, Gaussian and Lévy forms. The resulting fit parameters are
shown in Table B.1. Notice that the fit that better describes the correlation function is
obtained with the Lévy form.

The comparison of the obtained correlation function including the finite resolution
effects and without those effects is also shown in Fig. B.1, while the comparison of the fit
parameters of the Lévy forms between those two cases is shown in Table B.2

Figure B.2 shows the finite resolution effects on the two-pion correlation function for the
complete set of pions at a collision energy √sNN = 5.8 GeV, together with its fits to the
Lorentzian, Gaussian and Lévy forms. The resulting fit parameters are shown in Table B.3.

79
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Figure B.1: Two-pion correlation function of Bi+Bi collisions at √sNN = 4.0 GeV, with
impact parameter b = 0− 1 fm. In (a) the output of CRAB is shown but with the finite
resolution effect of MPD, with a smearing of 10 MeV. The blue dots represent the output
of CRAB, while the solid lines represent the fits to the Lorentz, Gaussian and Lévy forms.
In (b), a comparison between the ideal and finite resolution is made, where the blue dots
represent the same output of CRAB of Figure A.1, while the red dots include the finite
resolution effect of MPD, with a smearing of 10 MeV. Solid lines represent the fit to a Lévy
form.

Rinv [fm] λ α χ2

Lorentzian 4.352± 0.125 0.684± 0.014 — 73.23
Gaussian 5.715± 0.094 0.619± 0.009 — 33.323

Lévy 6.129± 0.031 0.677± 0.003 1.478± 0.014 1.22

Table B.1: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 4.0 GeV, to Lorentzian, Gaussian and Lévy forms for the complete pion set that

takes into account the finite resolution effects of MPD.

Rinv [fm] λ α χ2

w. smearing 6.129± 0.031 0.677± 0.003 1.478± 0.014 1.22
wo. smearing 7.346± 0.051 1.018± 0.006 1.428± 0.018 3.533

Table B.2: Results of the fit to the two-pion correlation function with a Lévy form accounting
for a finite resolution of the detector, setting a smearing of 10 MeV, for the complete pion
set obtained at √sNN = 4.0 GeV.
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Figure B.2: Two-pion correlation function of Bi+Bi collisions at √sNN = 5.8 GeV, with
impact parameter b = 0− 1 fm. In (a) the output of CRAB is shown but with the finite
resolution effect of MPD, with a smearing of 10 MeV. The blue dots represent the output
of CRAB, while the solid lines represent the fits to the Lorentz, Gaussian and Lévy forms.
In (b), a comparison between the ideal and finite resolution is made, where the blue dots
represent the same output of CRAB of Figure A.2, while the red dots include the finite
resolution effect of MPD, with a smearing of 10 MeV. Solid lines represent the fit to a Lévy
form.

Notice that the fit that better describes the correlation function is obtained with the Lévy
form.

The comparison of the obtained correlation function including the finite resolution
effects and without those effects is also shown in Fig. B.2, while the comparison of the fit
parameters of the Lévy forms between those two cases is shown in Table B.4

Figure B.3 shows the finite resolution effects on the two-pion correlation function for the
complete set of pions at a collision energy √sNN = 7.7 GeV, together with its fits to the
Lorentzian, Gaussian and Lévy forms. The resulting fit parameters are shown in Table B.5.
Notice that the fit that better describes the correlation function is obtained with the Lévy
form.

The comparison of the obtained correlation function including the finite resolution
effects and without those effects is also shown in Fig. B.3, while the comparison of the fit
parameters of the Lévy forms between those two cases is shown in Table B.6

Figure B.4 shows the finite resolution effects on the two-pion correlation function for the
complete set of pions at a collision energy √sNN = 9.2 GeV, together with its fits to the
Lorentzian, Gaussian and Lévy forms. The resulting fit parameters are shown in Table B.7.
Again, the fit that better describes the correlation function is obtained with the Lévy form.
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Rinv [fm] λ α χ2

Lorentzian 4.449± 0.13 0.641± 0.013 — 28.227
Gaussian 5.856± 0.094 0.582± 0.008 — 13.295

Lévy 6.238± 0.046 0.632± 0.004 1.502± 0.022 0.912

Table B.3: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 5.8 GeV, to Lorentzian, Gaussian and Lévy forms for the complete pion set that

takes into account the finite resolution effects of MPD.

Rinv [fm] λ α χ2

w. smearing 6.238± 0.046 0.632± 0.004 1.502± 0.022 0.912
wo. smearing 8.121± 0.059 1.05± 0.006 1.312± 0.015 0.835

Table B.4: Results of the fit to the two-pion correlation function with a Lévy form accounting
for a finite resolution of the detector, setting a smearing of 10 MeV, for the complete pion
set obtained at √sNN = 5.8 GeV.
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Figure B.3: Two-pion correlation function of Bi+Bi collisions at √sNN = 7.7 GeV, with
impact parameter b = 0− 1 fm. In (a) the output of CRAB is shown but with the finite
resolution effect of MPD, with a smearing of 10 MeV. The blue dots represent the output
of CRAB, while the solid lines represent the fits to the Lorentz, Gaussian and Lévy forms.
In (b), a comparison between the ideal and finite resolution is made, where the blue dots
represent the same output of CRAB of Figure A.3, while the red dots include the finite
resolution effect of MPD, with a smearing of 10 MeV. Solid lines represent the fit to a Lévy
form.
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Rinv [fm] λ α χ2

Lorentzian 4.569± 0.127 0.631± 0.012 — 55.101
Gaussian 5.995± 0.103 0.571± 0.008 — 31.039

Lévy 6.43± 0.046 0.625± 0.004 1.469± 0.02 1.838

Table B.5: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 7.7 GeV, to Lorentzian, Gaussian and Lévy forms for the complete pion set that

takes into account the finite resolution effects of MPD.

Rinv [fm] λ α χ2

w. smearing 6.43± 0.046 0.625± 0.004 1.469± 0.02 1.838
wo. smearing 8.119± 0.061 1.007± 0.006 1.352± 0.017 3.432

Table B.6: Results of the fit to the two-pion correlation function with a Lévy form accounting
for a finite resolution of the detector, setting a smearing of 10 MeV, for the complete pion
set obtained at √sNN = 7.7 GeV.
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Figure B.4: Two-pion correlation function of Bi+Bi collisions at √sNN = 9.2 GeV, with
impact parameter b = 0− 1 fm. In (a) the output of CRAB is shown but with the finite
resolution effect of MPD, with a smearing of 10 MeV. The blue dots represent the output
of CRAB, while the solid lines represent the fits to the Lorentz, Gaussian and Lévy forms.
In (b), a comparison between the ideal and finite resolution is made, where the blue dots
represent the same output of CRAB of Figure A.4, while the red dots include the finite
resolution effect of MPD, with a smearing of 10 MeV. Solid lines represent the fit to a Lévy
form.
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Rinv [fm] λ α χ2

Lorentzian 4.547± 0.14 0.607± 0.013 — 24.513
Gaussian 5.994± 0.104 0.552± 0.008 — 12.394

Lévy 6.342± 0.088 0.595± 0.007 1.526± 0.042 1.324

Table B.7: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 9.2 GeV, to Lorentzian, Gaussian and Lévy forms for the complete pion set that

takes into account the finite resolution effects of MPD.

Rinv [fm] λ α χ2

w. smearing 6.342± 0.088 0.595± 0.007 1.526± 0.042 1.324
wo. smearing 9.149± 0.054 1.109± 0.005 1.19± 0.01 0.289

Table B.8: Results of the fit to the two-pion correlation function with a Lévy form accounting
for a finite resolution of the detector, setting a smearing of 10 MeV, for the complete pion
set obtained at √sNN = 9.2 GeV.

The comparison of the obtained correlation function including the finite resolution
effects and without those effects is also shown in Fig. B.4, while the comparison of the fit
parameters of the Lévy forms between those two cases is shown in Table B.8

B.2 Finite resolution effects on the two-pion correlation func-
tion for the separated samples

Figure B.5 shows the effects of finite resolution on the two-pion correlation function for
primary and secondary pions at a collision energy √sNN = 4.0 GeV, together with its fits
to the Lorentzian, Gaussian and Lévy forms. Tables B.9 and B.10 show the resulting fit
parameters for primary and secondary pions, respectively. Notice that the fit that better
describes the correlation for both, primary and secondary pions, is obtained with the Lévy
form.

Rinv [fm] λ α χ2

Lorentzian 2.373± 9.506 0.938± 0.016 — 175.441
Gaussian 3.381± 0.022 0.878± 0.005 — 18.747

Lévy 3.454± 0.008 0.907± 0.002 1.757± 0.011 2.016

Table B.9: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 4.0 GeV, to Lorentzian, Gaussian and Lévy forms for the primary pions, accounting

for a finite resolution of the detector, setting a smearing of 10 MeV.
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Figure B.5: Two-pion correlation function of (a) primary and (b) secondary pions, produced
in Bi+Bi collisions at √sNN = 4.0 GeV, with impact parameter b = 0− 1 fm. The blue
dots and the red squares represent the output of CRAB with a smearing of 10 MeV, while
the solid lines represent the fits Lorentzian (black), Gaussian (red) and Lévy (green) fits.
The two-pion correlation function of primary and secondary pion, together with its fits to
the Lévy forms are compared in (c).



86 Two-pion correlation function fits: Finite resolution case

Rinv [fm] λ α χ2

Lorentzian 4.328± 0.138 0.668± 0.015 — 83.766
Gaussian 5.716± 0.079 0.608± 0.007 — 24.708

Lévy 6.022± 0.036 0.651± 0.004 1.564± 0.019 1.594

Table B.10: Parameters resulting from fits of the two-pion correlation function, obtained
at √sNN = 4.0 GeV, to Lorentzian, Gaussian and Lévy forms for the secondary pions,
accounting for a finite resolution of the detector, setting a smearing of 10 MeV.

Rinv [fm] λ α χ2

w. smearing 3.454± 0.008 0.907± 0.002 1.757± 0.011 2.016
wo. smearing 3.567± 0.01 0.998± 0.003 1.878± 0.015 3.481

Table B.11: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
primary pions obtained at √sNN = 4.0 GeV.

The comparison between the correlation function for primary and secondary pions,
including the finite resolution effects, is also shown in Fig. B.5, while the comparison of the
fit parameters of the Lévy forms between those two cases is shown in Tables B.11 and B.12,
respectively.

Figure B.6 shows the effects of finite resolution on the two-pion correlation function for
primary and secondary pions at a collision energy √sNN = 5.8 GeV, together with its fits
to the Lorentzian, Gaussian and Lévy forms. Tables B.13 and B.14 show the resulting fit
parameters for primary and secondary pions, respectively. Notice that the fit that better
describes the correlation for both, primary and secondary pions, is obtained with the Lévy
form.

The comparison between the correlation function for primary and secondary pions,
including the finite resolution effects, is also shown in Fig. B.6, while the comparison of the
fit parameters of the Lévy forms between those two cases is shown in Tables B.15 and B.16,
respectively.

Rinv [fm] λ α χ2

w. smearing 6.022± 0.036 0.651± 0.004 1.564± 0.019 1.594
wo. smearing 7.566± 0.035 1.043± 0.004 1.399± 0.011 1.298

Table B.12: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
secondary pions obtained at √sNN = 4.0 GeV.
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Figure B.6: Two-pion correlation function of (a) primary and (b) secondary pions, produced
in Bi+Bi collisions at √sNN = 5.8 GeV, with impact parameter b = 0− 1 fm. The blue
dots and the red squares represent the output of CRAB with a smearing of 10 MeV, while
the solid lines represent the fits Lorentzian (black), Gaussian (red) and Lévy (green) fits.
The two-pion correlation function of primary and secondary pion, together with its fits to
the Lévy forms are compared in (c).
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Rinv [fm] λ α χ2

Lorentzian 2.341± 8.843 0.93± 0.014 — 60.619
Gaussian 3.339± 0.027 0.869± 0.006 — 13.614

Lévy 3.426± 0.012 0.905± 0.003 1.709± 0.016 1.615

Table B.13: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 5.8 GeV, to Lorentzian, Gaussian and Lévy forms for the primary pions, accounting

for a finite resolution of the detector, setting a smearing of 10 MeV.

Rinv [fm] λ α χ2

Lorentzian 4.673± 0.147 0.65± 0.014 — 31.385
Gaussian 6.083± 0.108 0.587± 0.009 — 10.753

Lévy 6.591± 0.054 0.647± 0.005 1.447± 0.022 0.259

Table B.14: Parameters resulting from fits of the two-pion correlation function, obtained
at √sNN = 5.8 GeV, to Lorentzian, Gaussian and Lévy forms for the secondary pions,
accounting for a finite resolution of the detector, setting a smearing of 10 MeV.

Rinv [fm] λ α χ2

w. smearing 3.426± 0.012 0.905± 0.003 1.709± 0.016 1.615
wo. smearing 3.516± 0.014 0.982± 0.004 1.863± 0.021 0.353

Table B.15: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
primary pions obtained at √sNN = 5.8 GeV.

Rinv [fm] λ α χ2

w. smearing 6.591± 0.054 0.647± 0.005 1.447± 0.022 0.259
wo. smearing 8.402± 0.065 1.066± 0.007 1.31± 0.016 0.321

Table B.16: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
secondary pions obtained at √sNN = 5.8 GeV.



B.2 Finite resolution effects on the two-pion correlation function for the separated
samples 89

Rinv [fm] λ α χ2

Lorentzian 2.347± 8.157 0.92± 0.013 — 79.954
Gaussian 3.338± 0.031 0.859± 0.007 — 27.6

Lévy 3.441± 0.013 0.9± 0.003 1.67± 0.017 2.779

Table B.17: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 7.7 GeV, to Lorentzian, Gaussian and Lévy forms for the primary pions, accounting

for a finite resolution of the detector, setting a smearing of 10 MeV.

Rinv [fm] λ α χ2

Lorentzian 4.718± 0.151 0.621± 0.014 — 50.612
Gaussian 6.182± 0.091 0.563± 0.007 — 14.717

Lévy 6.557± 0.035 0.608± 0.003 1.532± 0.017 0.647

Table B.18: Parameters resulting from fits of the two-pion correlation function, obtained
at √sNN = 7.7 GeV, to Lorentzian, Gaussian and Lévy forms for the secondary pions,
accounting for a finite resolution of the detector, setting a smearing of 10 MeV.

Figure B.7 shows the effects of finite resolution on the two-pion correlation function for
primary and secondary pions at a collision energy √sNN = 7.7 GeV, together with its fits
to the Lorentzian, Gaussian and Lévy forms. Tables B.17 and B.18 show the resulting fit
parameters for primary and secondary pions, respectively. Notice that the fit that better
describes the correlation for both, primary and secondary pions, is obtained with the Lévy
form.

The comparison between the correlation function for primary and secondary pions,
including the finite resolution effects, is also shown in Fig. B.7, while the comparison of the
fit parameters of the Lévy forms between those two cases is shown in Tables B.19 and B.20,
respectively.

Figure B.8 shows the effects of finite resolution on the two-pion correlation function for
primary and secondary pions at a collision energy √sNN = 9.2 GeV, together with its fits
to the Lorentzian, Gaussian and Lévy forms. Tables B.21 and B.22 show the resulting fit
parameters for primary and secondary pions, respectively. Notice that the fit that better

Rinv [fm] λ α χ2

w. smearing 3.441± 0.013 0.9± 0.003 1.67± 0.017 2.779
wo. smearing 3.596± 0.007 1.002± 0.002 1.752± 0.009 0.385

Table B.19: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
primary pions obtained at √sNN = 7.7 GeV.
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Figure B.7: Two-pion correlation function of (a) primary and (b) secondary pions, produced
in Bi+Bi collisions at √sNN = 7.7 GeV, with impact parameter b = 0− 1 fm. The blue
dots and the red squares represent the output of CRAB with a smearing of 10 MeV, while
the solid lines represent the fits Lorentzian (black), Gaussian (red) and Lévy (green) fits.
The two-pion correlation function of primary and secondary pion, together with its fits to
the Lévy forms are compared in (c).
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Rinv [fm] λ α χ2

w. smearing 6.557± 0.035 0.608± 0.003 1.532± 0.017 0.647
wo. smearing 8.235± 0.038 0.995± 0.004 1.409± 0.012 1.516

Table B.20: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
secondary pions obtained at √sNN = 7.7 GeV.

Rinv [fm] λ α χ2

Lorentzian 2.357± 8.253 0.909± 0.013 — 60.526
Gaussian 3.352± 0.032 0.848± 0.007 — 21.856

Lévy 3.451± 0.02 0.887± 0.005 1.681± 0.025 2.61

Table B.21: Parameters resulting from fits of the two-pion correlation function, obtained at√
sNN = 9.2 GeV, to Lorentzian, Gaussian and Lévy forms for the primary pions, accounting

for a finite resolution of the detector, setting a smearing of 10 MeV.

describes the correlation for both, primary and secondary pions, is obtained with the Lévy
form.

The comparison between the correlation function for primary and secondary pions,
including the finite resolution effects, is also shown in Fig. B.8, while the comparison of the
fit parameters of the Lévy forms between those two cases is shown in Tables B.23 and B.24,
respectively.

Rinv [fm] λ α χ2

Lorentzian 4.813± 0.155 0.613± 0.014 — 35.826
Gaussian 6.297± 0.095 0.556± 0.007 — 10.377

Lévy 6.7± 0.039 0.602± 0.003 1.518± 0.018 0.43

Table B.22: Parameters resulting from fits of the two-pion correlation function, obtained
at √sNN = 9.2 GeV, to Lorentzian, Gaussian and Lévy forms for the secondary pions,
accounting for a finite resolution of the detector, setting a smearing of 10 MeV.
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Figure B.8: Two-pion correlation function of (a) primary and (b) secondary pions, produced
in Bi+Bi collisions at √sNN = 9.2 GeV, with impact parameter b = 0− 1 fm. The blue
dots and the red squares represent the output of CRAB with a smearing of 10 MeV, while
the solid lines represent the fits Lorentzian (black), Gaussian (red) and Lévy (green) fits.
The two-pion correlation function of primary and secondary pion, together with its fits to
the Lévy forms are compared in (c).
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Rinv [fm] λ α χ2

w. smearing 3.451± 0.02 0.887± 0.005 1.681± 0.025 2.61
wo. smearing 3.686± 0.02 1.016± 0.005 1.668± 0.023 1.074

Table B.23: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
primary pions obtained at √sNN = 9.2 GeV.

Rinv [fm] λ α χ2

w. smearing 6.7± 0.039 0.602± 0.003 1.518± 0.018 0.43
wo. smearing 8.647± 0.047 1.022± 0.005 1.353± 0.012 0.469

Table B.24: Results of the fit to the two-pion correlation function with a Lévy form
accounting for a finite resolution of the detector, setting a smearing of 10 MeV, for the
secondary pions obtained at √sNN = 9.2 GeV.



94 Two-pion correlation function fits: Finite resolution case



Bibliography

[1] A. Ayala, S. Bernal-Langarica, I. Dominguez, I. Maldonado, and M. E. Tejeda-Yeomans,
“Collision energy dependence of source sizes for primary and secondary pions at NICA
energies,” (2023), arXiv:2401.00619 [hep-ph] .

[2] C. Drischler, J. W. Holt, and C. Wellenhofer, “Chiral Effective Field Theory and
the High-Density Nuclear Equation of State,” Ann. Rev. Nucl. Part. Sci. 71, 403–432
(2021), arXiv:2101.01709 [nucl-th] .

[3] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu, “Mapping the
Phases of Quantum Chromodynamics with Beam Energy Scan,” Phys. Rept. 853, 1–87
(2020), arXiv:1906.00936 [nucl-th] .

[4] S. Sharma (Bielefeld-BNL-CCNU), “The QCD Equation of state and critical end-point
estimates at O(µ6

B),” Nucl. Phys. A 967, 728–731 (2017), arXiv:1704.05969 [hep-lat] .

[5] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, “Event-by-event fluctuations
in heavy ion collisions and the QCD critical point,” Phys. Rev. D 60, 114028 (1999),
arXiv:hep-ph/9903292 .

[6] R. Lednicky, “Progress in correlation femtoscopy,” in 32nd International Symposium
on Multiparticle Dynamics (2002) pp. 21–26, arXiv:nucl-th/0212089 .

[7] R. Hanbury Brown and R. Q. Twiss, “A New type of interferometer for use in radio
astronomy,” Phil. Mag. Ser. 7 45, 663–682 (1954).

[8] R. Hanbury Brown and R. Q. Twiss, “A Test of a new type of stellar interferometer on
Sirius,” Nature 178, 1046–1048 (1956).

95

http://arxiv.org/abs/2401.00619
http://dx.doi.org/ 10.1146/annurev-nucl-102419-041903
http://dx.doi.org/ 10.1146/annurev-nucl-102419-041903
http://arxiv.org/abs/2101.01709
http://dx.doi.org/10.1016/j.physrep.2020.01.005
http://dx.doi.org/10.1016/j.physrep.2020.01.005
http://arxiv.org/abs/1906.00936
http://dx.doi.org/ 10.1016/j.nuclphysa.2017.05.008
http://arxiv.org/abs/1704.05969
http://dx.doi.org/10.1103/PhysRevD.60.114028
http://arxiv.org/abs/hep-ph/9903292
http://dx.doi.org/10.1142/9789812704962_0005
http://dx.doi.org/10.1142/9789812704962_0005
http://arxiv.org/abs/nucl-th/0212089
http://dx.doi.org/ 10.1080/14786440708520475
http://dx.doi.org/ 10.1038/1781046a0


96 BIBLIOGRAPHY

[9] V. Abgaryan et al. (MPD), “Status and initial physics performance studies of the MPD
experiment at NICA,” Eur. Phys. J. A 58, 140 (2022), arXiv:2202.08970 [physics.ins-det]
.

[10] G. Goldhaber, S. Goldhaber, W.-Y. Lee, and A. Pais, “Influence of Bose-Einstein
statistics on the anti-proton proton annihilation process,” Phys. Rev. 120, 300–312
(1960).

[11] M. A. Lisa, S. Pratt, R. Soltz, and U. Wiedemann, “Femtoscopy in relativistic heavy
ion collisions,” Ann. Rev. Nucl. Part. Sci. 55, 357–402 (2005), arXiv:nucl-ex/0505014 .

[12] A. K. Chaudhuri, A short course on Relativistic Heavy Ion Collisions (IOPP, 2014)
arXiv:1207.7028 [nucl-th] .

[13] A. Ayala, S. Bernal-Langarica, and C. Villavicencio, “Finite volume and magnetic
field effects on the two-pion correlation function in relativistic heavy-ion collisions,”
Phys. Rev. D 105, 056001 (2022), arXiv:2111.05951 [hep-ph] .

[14] A. Ayala and A. Sanchez, “Boundary and expansion effects on two pion correlation
functions in relativistic heavy ion collisions,” Phys. Rev. C 63, 064901 (2001), arXiv:nucl-
th/0101020 .

[15] H. Adhikary et al. (NA61/SHINE), “Two-pion femtoscopic correlations in Be+Be
collisions at √sNN = 16.84 GeV measured by the NA61/SHINE at CERN,” Eur. Phys.
J. C 83, 919 (2023), arXiv:2302.04593 [nucl-ex] .

[16] T. Csorgo, “Particle interferometry from 40-MeV to 40-TeV,” Acta Phys. Hung. A 15,
1–80 (2002), arXiv:hep-ph/0001233 .
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[52] B. Kórodi, D. Kincses, and M. Csanád, “Event-by-event investigation of the two-
particle source function in sNN=2.76 TeV PbPb collisions with EPOS,” Phys. Lett. B
847, 138295 (2023), arXiv:2212.02980 [nucl-th] .

http://dx.doi.org/10.1140/epjc/s10052-021-09366-4
http://arxiv.org/abs/2012.04595
https://indico.cern.ch/event/1352455/contributions/5696657/attachments/2764575/4823959/kincsesd_zimanyi2023_talk_v2.pdf
https://indico.cern.ch/event/1352455/contributions/5696657/attachments/2764575/4823959/kincsesd_zimanyi2023_talk_v2.pdf
https://indico.cern.ch/event/1352455/contributions/5696657/attachments/2764575/4823959/kincsesd_zimanyi2023_talk_v2.pdf
https://indico.cern.ch/event/1352455/contributions/5696657/attachments/2764575/4823959/kincsesd_zimanyi2023_talk_v2.pdf
http://dx.doi.org/10.3390/e24030308
http://dx.doi.org/10.3390/e24030308
http://arxiv.org/abs/2201.07962
http://dx.doi.org/10.1016/j.physletb.2023.138295
http://dx.doi.org/10.1016/j.physletb.2023.138295
http://arxiv.org/abs/2212.02980

	Front Page

	Resumen

	Abstract

	Contents
	Chapter 1. Introduction

	Chapter 2. The Two-Pion Correlation Function 

	The Formalism of identical particle femtoscopy
	The core-halo picture
	Correlation functions from Monte Carlo simulations and the CRAB formalism
	Parametrizations and fits of the two-pion correlation function

	Chapter 3. Monte Carlo Simulations with UrQMD

	The UrQMD approach to heavy-ion collisions
	Simulation of Bi+Bi collisions
	Separation of primary and secondary pions

	Chapter 4. Results of the Source Size and Parameters from Two-Pion Correlation Function

	Correlation function fits and parameters
	Two-pion correlation function with ideal resolution
	Two-pion correlation function for the complete set of pions
	Two-pion correlation function for the separated samples

	Two-pion correlation function with finite resolution
	Finite resolution effects on the two-pion correlation function for the complete set of pions
	Finite resolution effects on the two-pion correlation function for the separated samples


	Chapter 5. Conclusions

	Appendix A. Two-Pion Correlation Function Fits: Ideal Resolution Case

	Two-pion correlation function for the complete set of pions
	Two-pion correlation function for the separated samples

	Appendix B. Two-Pion Correlation Function Fits: Finite Resolution Case

	Finite resolution effects on the two-pion correlation function for the complete set of pions
	Finite resolution effects on the two-pion correlation function for the separated samples

	Bibliography

