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Resumen
El Modelo Estándar de partículas describe las interacciones entre fermiones a nivel funda-
mental. Múltiples experimentos lo han puesto a prueba con éxito, haciendo predicciones
para un gran número de propiedades. Sin embargo, la existencia de materia oscura, masas
de neutrinos y asimetría de materia-antimateria en el universo, junto con la falta de una
teoría verificada para dichos fenómenos, indica que el Modelo Estándar está incompleto.
Esto motiva la búsqueda de nueva física, o física más allá del Modelo Estándar.

En este trabajo, nos enfocamos en el problema de las masas de neutrinos. Además de ser
elusivas debido a su nula carga eléctrica, originalmente estas partículas eran consideradas sin
masa en el Modelo Estándar. Con la observación de oscilaciones de neutrinos, se confirmó
que éstos en realidad deberían ser masivos. Experimentos recientes de desintegración β han
puesto una escala a la masa de neutrinos de 1 eV, menor a las partículas cargadas más
ligeras del Modelo Estándar por más de seis órdenes de magnitud. Algunas preguntas que
surgen son, ¿Por qué es esta masa tan pequeña? ¿Cómo adquieren masa los neutrinos? Por
otra parte, los neutrinos son los únicos fermiones que podrían no ser de tipo Dirac, sino,
de tipo Majorana. Esto añade otra incógnita al rompecabezas, siendo que cada posibilidad
deriva en una fenomenología distinta, y experimentos actuales no han podido discernir entre
ambas.

En la presente tesis, se abordan estas interrogantes desde dos perspectivas distintas. En
el primer enfoque, se consideran neutrinos de Majorana y se proponen dos nuevos modelos
radiativos de generación de masas. Estos consisten en una realización ultravioleta del oper-
ador efectivo de Weinberg. Dicha realización se logra extendiendo el Modelo Estándar con
simetrías adicionales e incluyendo nuevos campos que a su vez podrían ser candidatos de
materia oscura. En el primer modelo, se extiende el Modelo Estándar con una simetría Z4,
rompiéndose espontáneamente a una simetría Z2. El campo más ligero con carga no trivial
bajo Z2 es protegido por conservación de carga, convirtiéndose en un candidato de materia
oscura. En este modelo, las masas de neutrinos se generan a un lazo. En el segundo modelo,
se extiende el Modelo Estándar con una simetría continua U(1)B−L, rota espontáneamente a
una simetría discreta Z3, permitiendo también la estabilidad de materia oscura y generando
masas de neutrinos a dos lazos. La fenomenología de ambos modelos es estudiada, incluyendo
análisis de procesos de violación de sabor y canales de aniquilación de materia oscura como
contribución a la densidad de reliquia.

El segundo enfoque consiste en un estudio fenomenológico considerando masas de Dirac
y utilizando ceros de textura. Las texturas se construyen haciendo cero ciertas entradas
de la matriz de masas de los neutrinos, derivando correlaciones entre los parámetros de
oscilación. Así, dada cierta textura, es posible verificar si ésta está en concordancia con
datos experimentales recientes o si está descartada por los mismos. En el presente trabajo se
estudia cuáles de estas texturas están permitidas y se discuten las correlaciones que surgen
a partir de ellas.
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1 Introduction
The Standard Model (SM) of particle physics [1–8] is the theory that describes the inter-
actions between elementary particles. As one of the most validated theories in science of
all time, numerous experiments have successfully tested the SM, providing precise predic-
tions for a wide range of particle properties [9]. Despite this success, several open questions
persist. These include the evidence of the existence of dark matter [10–13] where direct
detection experiments have shown only negative results [14–17], baryon asymmetry in the
universe [18–22], and neutrino masses. Each of these questions, lacking a probed theory be-
hind them, suggests that the Standard Model is incomplete. This motivates the exploration
of new physics, often referred as Beyond the Standard Model (BSM) physics.

Without any direct evidence for their mass at that time, the SM was originally built con-
sidering massless neutrinos. With the later observation of neutrino oscillations [23–34] it
was confirmed that at least two of the three active neutrinos should carry a non-zero mass.
Considering that oscillation phenomena are only sensitive to the squared mass differences
between the three oscillating neutrinos, these experiments are unable to give an absolute
mass scale.

In this respect, an upper limit for the sum of the three light neutrino masses can be obtained
from cosmology. Assuming the ΛCDM cosmological model, the PLANCK collaboration in
2018 [12] obtained ∑

i

mνi ≤ 0.12 eV. (1.1)

A model-independent way to obtain an upper limit for the absolute mass scale is from the
kinematics of β decays. The Karlsruhe Tritium Neutrino (KATRIN) experiment [35, 36]
measures the energy spectrum of a single β decay of molecular tritium:

T2 → 3He + T+ + e− + νe, (1.2)

from which, the presence of neutrino masses results in a decrease in the maximum observed
energy of the electron decay and a small distortion in the spectral shape near the kinematic
endpoint of the β-spectrum. From this, a mass limit for neutrinos is obtained, with the last
result yielding [36]

mν ≤ 0.8 eV. (1.3)

If we compare this result with the mass of the lightest charged fermion in the SM, the
electron, given by

me ≈ 0.511MeV, (1.4)

we observe that me is at least 106 times greater than mν , establishing neutrinos as the
lightest massive particles in the SM.

On the other hand, another open question is whether neutrinos are Dirac particles, like the
charged fermions, or Majorana particles, implying they are their own antiparticle. Neither
neutrino oscillations nor β-decay experiments are sensitive to this difference. If neutrinos
are Majorana particles, there is a possibility to measure the neutrinoless double beta decay
process [37], which, at present, remains the only method to differentiate the nature of neu-
trinos. This process has never been observed despite experimental efforts [38–41], and the
question remains unanswered.
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These unknowns motivate the exploration of BSM physics, in which the SM can be treated
as an effective theory describing particle interactions only within a specific energy range Λ.
In this context, the SM can be extended to consider new physics, offering an explanation for
the smallness of neutrino masses while introducing additional degrees of freedom in sectors or
energy scales not yet explored by experiments. These additions to the SM may also address
the problem of the nature of dark matter.

The first evidence for dark matter came from observation of galaxy rotations [11]. Nowadays,
observations developed by PLANCK of gravitational effects, structure formation and the
Cosmic Microwave Background (CMB) are in agreement with the existence of dark matter
in the universe, providing a value for its relic density [12]:

Ωch
2 = 0.120± 0.0012 at 68% C.L. (1.5)

A theoretical connection between neutrino masses and dark matter emerges when the SM
is extended to consider BSM physics, with the extra degrees of freedom participating in the
mass mechanism acting also as stable dark matter candidates, protected by an additional
symmetry. Naturally, those new additions are constrained to reproduce phenomenology
allowed by particle and cosmological observations.

A different method to study neutrino phenomenology involves model-independent assump-
tions subjected to experimental data. One example is the texture zeros approach, where
specific entries of the neutrino mass matrix are set to zero, leading to correlations among
oscillation parameters. While these textures should arise from a BSM theory, an analysis is
possible without delving into these considerations, scrutinizing which of the textures is in
good agreement with current observations.

Therefore, SM extensions are proposed, studied and tested against experimental constraints
in order to provide a possible explanation to BSM puzzles, while model-independent and
phenomenological approaches rely on assumptions related to data from observations. In this
thesis, we explore both approaches, proposing new mass models for Majorana neutrinos, and
using two-zero textures for Dirac neutrinos.

The thesis is organized as follows. In Section 2, we provide a brief overview of the general
structure of the SM and the electroweak sector. Section 3 contains a short review of neutrino
physics, considering massive neutrinos and their implications. Section 4 explores popular
models for neutrino mass generation, both at tree-level and radiative. In Sections 5 and 6,
we introduce two new radiative models based on a Z4 symmetry and a gauge U(1)B−L

symmetry, respectively. The first model generates Majorana neutrino masses at the one-
loop level, while the second generates them at the two-loop level. These models contain
dark matter candidates. In Section 7, we use the two-zero textures approach to study the
phenomenology of Dirac neutrinos, finding which of the textures are allowed by current
experimental data. Finally, Section 8 presents the conclusions of this thesis.

All Feynman diagrams were drawn using the FeynGame software [42, 43].
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2 The Electroweak Standard Model
In this section, we briefly review the general structure of the SM and study the main features
of the electroweak sector, establishing the key ideas to be used throughout the thesis. The
discussion in this section is strongly inspired by the Giunti and Kim’s book [44].

2.1 Standard Model Structure

The Standard Model (SM) describes the strong, weak and electromagnetic interactions of
elementary particles within the framework of quantum field theory. It is a gauge theory
based on the local symmetry group:

SU(3)C × SU(2)L × U(1)Y . (2.1)

Here, the subscripts C, L and Y represent color, left-handed chirality and weak hypercharge,
respectively. The group SU(n) is the special unitary group of degree n, which is the Lie
group of n × n unitary matrices with determinant 1, and it has n2 − 1 generators. Each
group uniquely defines the interactions, with its generators associated to vector gauge bosons.
There are eight massless gluons that mediate strong interactions, corresponding to the eight
generators of SU(3)C . In Subsection 2.3, we will see that the electromagnetic and weak
interactions must be treated together due to a mixing between the neutral gauge bosons of
SU(2)L and U(1)Y . After spontaneous symmetry breaking, given by

SU(2)L × U(1)Y → U(1)EM , (2.2)

we end with four gauge bosons mediating electroweak interactions, from which three are
massive (W±, Z) and one is massless (γ, the photon). The breaking pattern of Eq. (2.2) will
be discussed in Subsection 2.4.

Strong and electroweak interactions can be studied separately in the SM. The reason is that
the symmetry SU(3)C remains unbroken and does not mix with the SU(2)L×U(1)Y groups.
This section will focus on the electroweak sector of the SM, where the problem of neutrino
masses arises. The theory that describes strong interactions given through the color charge
is called quantum chromodynamics (QCD). It has its own implications1, and they will not
be discussed here. For an introduction to QCD, the reader can be referred to, for example,
[45, 46].

The symmetry group of the SM fixes the number and properties of the vector gauge bosons.
Only one coupling constant is left as a free parameter for each of the groups SU(3)C , SU(2)L,
and U(1)Y , which are later determined by experiments. In contrast, the number and proper-
ties of the fermions and scalar gauge bosons are not constrained by the SM symmetry. What
is constrained is that these must transform according to their group symmetries (they have
to be representations of the groups) and must lead to cancellation of quantum anomalies (see
Appendix A). The number of scalar bosons is chosen to implement the Higgs mechanism in
a minimal way, and the number and properties of fermions are determined by experimental
data. The known particle content in the SM is displayed in Figure 1, where particles are

1The main difference with respect to the electroweak sector is the strong character of the interaction at low
energies, which does not allow perturbative approximations. The dynamics of QCD can be perturbatively
solved only at high energies, where the effective coupling constant becomes small. This phenomenon is
known as asymptotic freedom.
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Figure 1: Scheme with the particle content of the SM, along with their spin and electromagnetic
charges. The SM particles are divided into fermions and bosons. Each gauge boson carries a
fundamental interaction, and each fermion is classified in three different generations.

distributed in families or generations, and classified according to their spin and charges.

Fundamental fermion particles follow Fermi-Dirac statistics and have a spin of 1/2. The
fermion sector is divided into two categories: quarks q and leptons ℓ. Quarks are affected by
all the forces in the Standard Model (strong, weak, and electromagnetic), whereas leptons
participate only in electroweak interactions. Quarks are the constituents of hadrons and
do not exist as free particles; they possess both color and electric charge. Within leptons,
there are charged leptons (e, µ, τ) and neutrinos (νe, νµ, ντ ). Neutrinos are neutral under the
electromagnetic interaction; hence, they interact only via the weak force. This organization
is schematically represented in Fig. 2 resembling a Matryoshka doll, where weak interactions
affect all particles, electromagnetic interactions exclude neutrinos, and strong interactions
affect only quarks. As we will see in Subsection 2.2, the left-handed chiral components of the
fermion fields are grouped into weak isospin doublets, while the right-handed components
transform as singlets under the weak isospin group.

As we mentioned, quarks do not exist as free particles but in composite systems. This
phenomenon is usually known as color confinement, a consequence of gluons having color
charge. Quarks are confined in color-neutral composite particles called hadrons. Depending
on the number of quarks, the hadrons are classified into baryons and mesons. A baryon is
a color-neutral composite particle with three quarks (like the proton and neutron), and a
meson has a quark-antiquark pair (like the pions).

The scalar boson, known as the Higgs particle (h), is neutral under the electromagnetic
interaction. It comes from the Higgs mechanism, from which particles acquire mass. This
mechanism is reviewed in Subsection 2.4.
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Figure 2: Fermion interaction scheme of the SM. Weak interactions affect all fermions, electromag-
netic interactions do not affect neutrinos, and strong interactions affect only quarks.

In the fermion sector, the SM has 13 free parameters, including six quark masses, three
charged lepton masses, three quark mixing angles, and one CP (charge-parity) violating
phase. The gauge sector introduces three additional parameters arising from the coupling
constants. Furthermore, QCD contributes a small parameter linked to the strong CP prob-
lem, while the Higgs sector introduces a Higgs mass and a vacuum expectation value, making
a total of 19 independent free parameters when considering massless neutrinos. If the SM is
minimally extended to incorporate massive neutrinos, more parameters are introduced, in-
volving the three neutrino masses, three neutrino mixing angles, and an extra CP-violating
phase. If neutrinos are Majorana particles, two extra Majorana phases must be consid-
ered.

2.2 Electroweak Standard Model Lagrangian

In order to study neutrino interactions, we review the electroweak part of the SM Lagrangian,
which corresponds to the SU(2)L × U(1)Y part of the SM symmetry group.

The symmetry group SU(2)L is called weak isospin group. The left-handed chiral compo-
nents of the fermion fields transform non-trivially under SU(2)L, while the right-handed
counterparts transform as singlets under weak isospin transformations. The group has three
generators, represented by

Ia (a = 1, 2, 3), (2.3)

which satisfy
[Ia, Ib] = i εabc Ic, (2.4)

where εabc is the antisymmetric tensor with three indices, having ε123 = 1. In a two-
dimensional representation of the group, the generators are Ia = τa/2, where τ1, τ2, τ3 are
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the Pauli matrices.

The symmetry group U(1)Y is called hypercharge group. Its generator is the hypercharge
operator Y , and it is connected to Ia by

Q = I3 + Y, (2.5)

where Q is the electric charge. Eq. (2.5) is known as the Gell-Mann - Nishijima relation 2

[47, 48], and implies the unification of weak and electromagnetic interactions.

To ensure local gauge invariance, it is necessary to introduce three vector gauge bosons
W µ

a (a = 1, 2, 3) associated with the three generators Ia of SU(2)L and one vector gauge
boson Bµ associated with the generator Y of U(1)Y . The covariant derivative Dµ, which
replaces the standard derivative ∂µ in the Lagrangian, is given by

Dµ = ∂µ + igW µ · I + ig′Bµ Y. (2.6)

Here, the notation is

W µ ≡ (W µ
1 ,W

µ
2 ,W

µ
3 ) and I ≡ (I1, I2, I3) , (2.7)

with the scalar product

W µ · I ≡
3∑

a=1

W µ
a Ia. (2.8)

The covariant derivative in Eq. (2.6) has two coupling constants: g associated with the
SU(2)L group, and g′ associated with the U(1)Y group.

The fermion fields are accommodated into representations of the SU(2)L×U(1)Y group. The
left-handed chiral components of the fermion fields form weak isospin doublets. Considering
only the first generation of leptons and quarks for simplicity, we have

LL =

(
νeL
eL

)
, QL =

(
uL
dL

)
. (2.9)

With this choice of representation, we have

I LL =
τ

2
LL, I QL =

τ

2
QL, (2.10)

where τ = (τ1, τ2, τ3). Also,

Y LL = YLL
LL, Y QL = YQL

QL, (2.11)

where YfL is the eigenvalue for the hypercharge. These values are presented in Table 1. The
left-handed fermion fields transform as

LL → L′
L = exp

[
iθ(x) · Iℓ + i η(x)Y ℓ

]
LL and (2.12)

QL → Q′
L = exp [iθ(x) · Iq + i η(x)Y q]QL. (2.13)

2In the literature, it is also commonly defined as Q = I3 + Y ′/2. We will use Y , having Y = Y ′/2. The
inclusion of the 1/2 factor in the hypercharge is a matter of convention.
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In Eqs. (2.12) and (2.13), θ(x) and η(x) are 3 and 1 space-time dependent parameters
respectively. The superscript ℓ and q in I and Y indicates the corresponding value of isospin
and hypercharge for left-handed leptons and quarks.

In the SM, it is assumed that neutrino fields have only left-handed chiral components, im-
plying that neutrinos are massless. However, it is now established that neutrinos have mass.
The masses of neutrinos and their implications are reviewed in Section 3. For now, we will
keep studying the SM with massless neutrinos. The right-handed components of the other
fermions,

eR, uR, dR, (2.14)

are singlets under the weak isospin group. They transform as

fR → f ′
R = exp

[
i η(x)Y f

]
fR, (2.15)

where Y f is the hypercharge value for the corresponding right-handed fermion. Table 1
contains the values for the weak isospin, hypercharge and electric charge of the fermion
doublets and singlets.

Rep I I3 Y Q

lepton doublet
(
νeL
eL

)
1/2

(
1/2
−1/2

)
−1/2

(
0
−1

)

lepton singlet eR 0 0 −1 −1

quark doublet
(
uL
dL

)
1/2

(
1/2
−1/2

)
1/6

(
2/3
−1/3

)

quark singlets uR 0 0 2/3 2/3
dR 0 0 −1/3 −1/3

Table 1: Fermions in their representations of SU(2)L with their values for the weak isospin I, third
component of weak isospin I3, hypercharge Y and electric charge Q.

The electroweak SM Lagrangian is the most general renormalizable Lagrangian invariant
under the local symmetry SU(2)L × U(1)Y constructed with the fermion fields, the gauge
boson fields and a Higgs doublet H(x) to be discussed in Subsection 2.4. Considering only
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the first generation, the Lagrangian yields

L = iLL /DLL + iQL /DQL +
∑

f=e,u,d

ifR /DfR

− 1

4
W µνW

µν − 1

4
BµνB

µν

+ (DµH)† (DµH)− µ2H†H − λ
(
H†H

)2
− ye

(
LLH eR + eRH

†LL

)
− yd

(
QLH dR + dRH

†QL

)
− yu

(
QL H̃ uR + uR H̃

†QL

)
,

(2.16)

where /D ≡ γµDµ, and we define H̃ as

H̃ = iτ2H
∗, (2.17)

along with

Bµν ≡ ∂µBν − ∂νBµ, (2.18)
W µν ≡ ∂µW ν − ∂νW µ. (2.19)

Defining
U (θ(x), η(x)) = exp [iθ(x) · I + i η(x)Y ] , (2.20)

to maintain gauge invariance, the covariant derivative must transform as

Dµ → D′
µ = U (θ(x), η(x)) Dµ U

−1 (θ(x), η(x)) , (2.21)

implying the transformation for the gauge boson fields:

W µ · I → W ′
µ · I = U (θ(x), 0)

[
W µ · I − i

g
∂µ

]
U−1 (θ(x), 0) and (2.22)

Bµ → B′
µ = Bµ −

1

g′
∂µη(x). (2.23)

2.3 Electroweak Interactions

Expanding the covariant derivative (2.6) in the Lagrangian (2.16), and omitting the kinetic
terms, we obtain the electroweak interactions between the fermion and the boson fields:

LI =− 1

2
LL

(
g /W · τ − g′ /B

)
LL − 1

2
QL

(
g /W · τ +

1

3
g′ /B

)
QL

+ g′eR /BeR − 2

3
g′uR /BuR +

1

3
g′dR /BdR.

(2.24)

Considering only the lepton sector, we have

LI,L = −1

2

(
νeL eL

)( g /W 3 − g′ /B g
(
/W 1 − i /W 2

)
g
(
/W 1 + i /W 2

)
−g /W 3 − g′ /B

)(
νeL
eL

)
+ g′eR /BeR. (2.25)

The previous Lagrangian can be separated into a charged-current (CC) Lagrangian corre-
sponding to the off-diagonal terms in Eq. (2.25), given by

LCC
I,L = −g

2

[
νeL
(
/W 1 − i /W 2

)
eL + eL

(
/W 1 + i /W 2

)
νeL
]
, (2.26)
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and a neutral-current (NC) Lagrangian corresponding to the diagonal terms:

LNC
I,L = −1

2

[
νeL
(
g /W 3 − g′ /B

)
νeL − eL

(
g /W 3 + g′ /B

)
eL − 2g′eR /BeR

]
. (2.27)

Defining the field W±
µ as

W±
µ ≡

W 1
µ ∓ iW 2

µ√
2

, (2.28)

the CC Lagrangian yields

LCC
I,L = − g

2
√
2
νeγ

µ
(
1− γ5

)
eW+

µ + h.c., (2.29)

where we have applied the projection operator

fL = PL f ≡ 1− γ5

2
f (2.30)

into the electron field. The bosons W± are known as the weak charged boson fields, carriers
of the charged-current weak interactions.

Considering now the neutral-current Lagrangian, it is possible to perform a rotation of the
fields W µ

3 and Bµ through an angle θW :

Aµ = sin θW W µ
3 + cos θWB

µ, (2.31)
Zµ = cos θW W µ

3 − sin θWB
µ. (2.32)

Here, the boson Aµ is identified as the massless photon field, since the theory must include
the electromagnetic interactions. The boson Zµ is the neutral weak boson field, responsible
of neutral-current weak interactions. The angle θW is known as the weak mixing angle,
or Weinberg angle [1, 2]. Inserting Eqs. (2.31) and (2.32) into the CC Lagrangian, we
obtain

LNC
I,L = −1

2

{
νeL
[
(g cos θW + g′ sin θW ) /Z + (g sin θW − g′ cos θW ) /A

]
νeL

− eL
[
(g cos θW − g′ sin θW ) /Z + (g sin θW + g′ cos θW ) /A

]
eL

− 2g′eR
[
− sin θW /Z + cos θW /A

]
eR

}
.

(2.33)

Neutrinos are neutral particles. Therefore, they do not couple to the photon field. This
implies the relation

g sin θW = g′ cos θW ⇒ tan θW =
g′

g
. (2.34)

Using Eq. (2.34), we finally obtain

LNC
I,L =− g

2 cos θW

[
νeL /ZνeL −

(
1− 2 sin2 θW

)
eL /ZeL + 2 sin2 θW eR /ZeR

]
+ g sin θW e /Ae.

(2.35)
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We identify the electromagnetic coupling in the last term with

g sin θW = e, (2.36)

where e is the elementary electric charge. Using again Eq. (2.34), the following relation
holds:

g2 + g′2 = e2. (2.37)

The derivation of weak interactions for quarks is completely analogous. Also, the generaliza-
tion for three generations is straightforward. For reference, the complete derivation can be
found in [44]. Charged-current and neutral-current interactions, generalized to quarks and
three generations, are given through the Lagrangian

LI =− g

2
√
2

∑
i

Ψiγ
µ
(
1− γ5

) (
T+W+

µ + T−W−
µ

)
Ψi

− e
∑
i

QiΨiγ
µΨiAµ −

g

2 cos θθW

∑
i

Ψiγ
µ
(
giV − giAγ

5
)
ΨiZµ,

(2.38)

where T+ and T− are weak isospin raising and lowering operators, and the vector and axial-
vector couplings giV and giA are given by

giV ≡ t3L(i)− 2Qi sin
2 θW , (2.39)

giA ≡ t3L(i). (2.40)

In definitions (2.39) and (2.40), t3L(i) is the weak isospin of fermion i and Qi is the charge
of Ψi.

2.4 Higgs Mechanism and Electroweak Symmetry Breaking

The Higgs mechanism [49–51] provides masses for the W± and Z gauge bosons, as well as
for the fermions. This mechanism is implemented by the Higgs doublet

H(x) =

(
H+(x)
H0(x)

)
, (2.41)

where H+(x) is a charged complex scalar field and H0(x) is a neutral complex scalar field.
The gauge quantum numbers for the Higgs field are listed in Table 2. The Higgs doublet

I I3 Y Q

Higgs doublet H(x) ≡
(
H+(x)
H0(x)

)
1/2

(
1/2
−1/2

)
1/2

(
1
0

)

Table 2: Higgs doublet with its values for the weak isospin I, third component of weak isospin I3,
hypercharge Y and electric charge Q.

transforms as
H → H ′ = exp

[
i

2
θ(x) · τ +

i

2
η(x)

]
H. (2.42)
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Taking the Higgs sector of the Lagrangian in Eq. (2.16), we have

LHiggs = (DµH)† (DµH)− V (H) , (2.43)

where the Higgs potential is given by

V (H) = µ2H†H + λ
(
H†H

)2
. (2.44)

Whereas the coefficient λ must be positive to ensure that the potential V (H) is bounded
from below, the coefficient µ2 can be assumed negative. Defining

v ≡
√
−µ

2

λ
, (2.45)

the Higgs potential can be rewritten as

V (H) = λ

(
H†H − v2

2

)2

, (2.46)

where we have neglected a constant term v4/4. The minimum of the potential is then
achieved when

H†H → v2

2
. (2.47)

The minimum of the potential corresponds to the vacuum, namely, the lowest energy state.
Fermions and vector bosons must possess a vanishing value in the vacuum to preserve Lorentz
invariance. Similarly, charged scalar must also have a vanishing value in the vacuum, since
the vacuum is electrically neutral. However, neutral scalar fields can possess a nonzero value
for the vacuum, which is called the vacuum expectation value or VEV. Therefore, the Higgs
field acquires a VEV ⟨H⟩ given by

⟨H⟩ = 1√
2

(
0
v

)
. (2.48)

In the vacuum, the symmetry SU(2)L × U(1)Y is spontaneously broken by the VEV ⟨H⟩,
since it transforms non trivially:

I1⟨H⟩ = τ1
2
⟨H⟩ = 1

2
√
2

(
v
0

)
̸= 0,

I2⟨H⟩ = τ2
2
⟨H⟩ = − i

2
√
2

(
v
0

)
̸= 0,

I3⟨H⟩ = τ3
2
⟨H⟩ = − 1

2
√
2

(
0
v

)
̸= 0,

Y ⟨H⟩ = 1

2
⟨H⟩ = 1

2
√
2

(
0
v

)
̸= 0.

(2.49)

On the other hand,
Q⟨H⟩ = (I3 + Y ) ⟨H⟩ = 0, (2.50)

which implies that the vacuum is invariant under gauge transformations belonging to the
group U(1)EM :

eiQ⟨H⟩ = ⟨H⟩. (2.51)
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The invariance under this symmetry ensures the existence of a massless gauge boson asso-
ciated with the U(1)EM group, which is identified with the photon. Consequently, we have
the spontaneous symmetry breaking (SSB) represented by

SU(2)L × U(1)Y
SSB−−→ U(1)EM . (2.52)

The breaking of the SU(2)L × U(1)Y symmetry to a U(1)EM is known as Electroweak Sym-
metry Breaking (EWSB).

In the unitary gauge, in which the physical states appear explicitly, the Higgs doublet can
be defined as

H(x) =
1√
2

(
0

v + h(x)

)
, (2.53)

where h(x) is the physical Higgs boson, corresponding to excitations of the neutral Higgs
field above the vacuum. Inserting Eq. (2.53) in the Lagrangian (2.43), using the covariant
derivative (2.6) and expanding terms, we finally obtain

LHiggs =
1

2
(∂h)2 − λv2h2 − λvh3 − λ

4
h4 +

g2v2

4
W−

µ W
µ+ +

g2v2

8 cos2 θW
ZµZ

µ

+
g2v

2
W−

µ W
µ+h+

g2v

4 cos2 θW
ZµZ

µh

+
g2

4
W−

µ W
µ+h2 +

g2

8 cos2 θW
ZµZ

µh2.

(2.54)

The second term in Eq. (2.54) is the mass term for the Higgs field, given by

mh =
√
2λv2. (2.55)

The first observation of the Higgs particle was carried out in [52, 53]. Using experimental
data, the values for the Higgs mass and the VEV v yield

mh = 125.25± 0.17 GeV, and v = 246.22 GeV. (2.56)

The fifth and sixth terms give the masses for the W± and Z bosons:

mW =
gv

2
, mZ =

gv

2 cos θW
. (2.57)

Their values were first obtained experimentally in [54, 55], giving3

MZ = 91.1875± 0.0021 GeV and MW = 80.376± 0.033 GeV. (2.58)

2.5 Charged lepton masses

Fermion masses arises as a consequence of the Higgs mechanism through the Yukawa inter-
actions between the fermions and the Higgs doublet.

3These values correspond to the pole masses.
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A fermion mass term is built with the coupling of a left-handed with a right-handed field4.
The Dirac mass terms are of the form

f f = fLfR + fRfL, (2.59)

which are forbidden by gauge symmetry given that left-handed and right-handed fields trans-
form differently under SU(2)L × U(1)Y . Lepton masses come from the fourth line of the
Lagrangian (2.16), which, generalized to three generations, is

LH,L = −
∑

α,β=e,µ,τ

Y ′ℓ
αβ L

′
αLH ℓ′βR + h.c. (2.60)

The matrix Y ′ℓ of Yukawa couplings is, in general, a non-diagonal complex 3× 3 matrix. In
the unitary gauge, with the Higgs acquiring a VEV v, Eq. (2.60) becomes

LH,L = −
(
v + h√

2

) ∑
α,β=e,µ,τ

Y ′ℓ
αβ ℓ

′
αL ℓ

′
βR + h.c. (2.61)

The term proportional to v is a mass term for the charged lepton, while the term proportional
to h represent a coupling to the Higgs boson. Since Y ′ℓ is in general non-diagonal, fields
e′, µ′, τ ′ do not have definite masses. To have definite masses, is necessary to diagonalize the
matrix Y ′ℓ. Defining the arrays

ℓ′L =

e′Lµ′
L

τ ′L

 and ℓ′R =

e′Rµ′
R

τ ′R

 , (2.62)

the Higgs-lepton Yukawa Lagrangian can be written as

LH,L = −
(
v + h√

2

)
ℓ′L Y

′ℓ ℓ′R + h.c. (2.63)

The Yukawa matrix Y ′ℓ can be diagonalized as

V ℓ†
L Y

′ℓ V ℓ
R = Y ℓ, with Y ℓ

αβ = yℓα δαβ (α, β = e, µ, τ), (2.64)

with yℓα real and positive. Here, V ℓ
L and V ℓ

R are 3 × 3 unitary matrices. Defining the
transformations

ℓL = V ℓ†
L ℓ′L ≡

eLµL

τL

 , ℓR = V ℓ†
R ℓ′R ≡

eRµR

τR

 , (2.65)

we can write the diagonalized Lagrangian as

LH,L = −
(
v + h√

2

)
ℓL Y

ℓ ℓR + h.c.

= −
(
v + h√

2

) ∑
α=e,µ,τ

yℓα ℓαLℓαR + h.c.
(2.66)

4The coupling between two right-handed or two left-handed fields is identically zero since mΨRΨR =
mΨPL PRΨ = 0 = mΨLΨL, by the property PL PR = 0.
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Using the Dirac fields

ℓα = ℓαL + ℓαR (α = e, µ, τ), (2.67)

we obtain

LH,L = −
∑

α=e,µ,τ

yℓαv√
2
ℓαℓα −

∑
α=e,µ,τ

yℓα√
2
ℓαℓαh. (2.68)

Therefore, the masses for the charged leptons are given by

mα =
yℓα v√
2

(α = e, µ, τ). (2.69)

The masses mα can be considered as free parameters of the SM and are obtained experi-
mentally. With those results, the Yukawa coefficients yℓα can be extracted. From Eq. (2.69),
it can be seen that the trilinear coupling between the charged leptons and the Higgs boson
is proportional to the charged lepton mass.

Now we analyze the charged and neutral interactions under transformations (2.65). The CC
Lagrangian for leptons is

LCC
I,L = − g

2
√
2

∑
α=e,µ,τ

L′
αγ

µ
(
1− γ5

) (
T+W+

µ + T−W−
µ

)
L′
α. (2.70)

Defining the array

ν ′
L ≡

ν ′eLν ′µL
ν ′τL

 , (2.71)

the Lagrangian (2.70) can be written as

LCC
I,L = − g

2
√
2
ν ′
Lγ

µ ℓ′LW
+
µ + h.c.

= − g

2
√
2
ν ′
Lγ

µ (V ℓ
L ℓL)W

+
µ + h.c.

(2.72)

We can transform the massless neutrino fields as

νL = V ℓ†
L ν ′

L ≡

νeLνµL
ντL

 . (2.73)

Therefore, the CC Lagrangian yields

LCC
I,L = − g

2
√
2
νLγ

µ ℓLW
+
µ + h.c.

= − g

2
√
2

∑
α=e,µ,τ

ναL γ
µ ℓαLW

+
µ + h.c.

(2.74)

The neutrino fields νe, νµ, ντ are called flavor neutrino fields, since each of them couples with
the corresponding charged lepton in the charged weak interaction given by Eq. (2.74). In
the SM, with the assumption of massless neutrinos, these fields are also mass eigenstates. In
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Section 3, we will see that this is not longer true for massive neutrinos, implying neutrino
oscillations.

In the case of neutral interactions, it can be shown that the NC Lagrangian for leptons
remains the same after transformations (2.65) and (2.73).

The case for quark masses is slightly different from the lepton case, since all quarks possess
a right-handed component and are massive, in contrast to neutrino fields. This difference
implies the existence of mixing between mass and flavor eigenstates in the quark sector,
described by the CKM matrix [56, 57]. Rather than reviewing quark masses, we will focus
on the scenario with a right-handed neutrino in Section 3.

As can be seen from Eq. (2.74), weak interactions between leptons conserve a quantum
number called flavor lepton number. The assignment is shown in Table 3. Furthermore,

Fields Le Lµ Lτ

(νe, e
−) +1 0 0

(νµ, µ
−) 0 +1 0

(ντ , τ
−) 0 0 +1

Table 3: Flavor lepton number assignment. For antiparticles, the corresponding number is −1.

lepton number, defined as L = 1 for leptons and L = −1 for antileptons, is conserved. This
conservation is related to the invariance of the Lagrangian under a global U(1)ℓ symmetry5.
Something similar happens in processes involving baryons, where a global symmetry U(1)B
can be associated to baryon number conservation. If a baryon number is assigned as B = 1
for baryons and B = −1 for antibaryons, then B is conserved in weak interactions. However,
this symmetry is anomalous in the SM, which means that while it is preserved at the classical
level, it is broken at the quantum level.

From these two conserved numbers, it follows that another symmetry, U(1)B−L, exists, where
B−L represents the difference between baryon number and lepton number. Unlike U(1)ℓ and
U(1)B, this symmetry can be anomaly free when three right-handed neutrinos are considered.
For further discussion regarding anomalies in symmetries, see Appendix A.

In BSM physics, the non-conservation of lepton number plays an important role, as we will
see in following sections.

5Note that we have used ℓ instead of L for the lepton number symmetry group, to avoid confusion with
left-chirality.
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3 Basics of Neutrino Physics
In this section, we shortly review the neutrino interactions in the SM, which were intro-
duced in the previous section. We now consider massive neutrinos, extending the SM with
right-handed neutrinos and introducing Majorana mass terms. We also study an important
consequence of the existence of neutrino masses: neutrino mixing and oscillations. For a
more complete review concerning neutrinos in general, see for example [44, 58].

3.1 Neutrinos in the SM

As discussed in the previous section, neutrinos are spin 1/2 fermions that have neither color
nor electric charge. Therefore, they are singlets of the subgroup SU(3)C×U(1)EM . Neutrinos
are part of the lepton doublets

LLℓ =

(
νℓ
ℓ

)
L

, (3.1)

where fL is the left-handed component of the fermion f , with fL = PL f ≡ 1−γ5
2
f . Neutrinos

that appear in these doublets are called active neutrinos, left-handed neutrinos or light
neutrinos. In the SM, there is one active neutrino for each charged lepton, ℓ = e, µ, τ ,
and no right-handed neutrinos. Active neutrinos only interact through weak forces with
the exchange of Z and W± bosons. These interactions, invariant under SU(2)L, are given
by

LCC = − g√
2

∑
ℓ

ν̄Lℓ γ
µ ℓ−L W

+
µ + h.c. and (3.2)

LNC = − g

2 cos θW

∑
ℓ

ν̄Lℓ γ
µ νLℓ Zµ. (3.3)

Here, g is the coupling constant of SU(2) and θW is the Weinberg angle, as reviewed in
Section 2. Eq. (3.2) corresponds to weak charged-current interactions (CC) where neutrinos
interact with their associated charged leptons, and Eq. (3.3) represents neutral-current in-
teractions (NC) where neutrinos interact with themselves. From the latter, the decay width
of the Z boson into light neutrinos can be obtained. Thus, a measurement of the total
decay width can indicate the number of active neutrinos. In Z decays produced in electron-
positron collisions by the ALEPH, DELPHI, L3 and OPAL experiments at LEP and the
SLD experiment at SLC, both reported in [54], such measurements give the result

Nν = 2.9840± 0.0082. (3.4)

The corresponding plot is displayed in Fig. 3, where the hadron production cross section
measurements are shown around the Z resonance. Predicted cross sections for 2, 3 and 4
neutrinos are plotted considering SM couplings and negligible masses for fermions. Therefore,
in the SM and in any extension of it, there should be three, and only three, light left-handed
neutrinos, provided that

mν <
mZ

2
. (3.5)

3.2 Neutrino Masses

The absence of right-handed neutrinos in the SM forbids mass terms for light neutrinos
at the Lagrangian level. This led to the construction of the SM with the assumption of
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Figure 3: Hadron production cross section measurements around the Z resonance. The predicted
cross sections for two, three and four neutrinos are shown. Plot from [54].

massless neutrino fields. However, recent experimental evidence, including the PLANCK
collaboration [12], the KATRIN experiment [35, 36] and the observation of neutrino oscil-
lations [23–34], indicates that at least two neutrinos must carry a mass of the order of 1
eV. The arising question is how this mass can be obtained within the SM framework. A
minimal way to accomplish neutrino masses is adding a right-handed neutrino to the SM,
obtaining the minimally extended Standard Model. Such addition allows two possible mass
terms: Dirac masses and Majorana masses.

3.2.1 Dirac Fermion Masses

By adding right-handed neutrinos to the SM, it is possible to obtain neutrino masses from the
Higgs mechanism. This extension consists in the introduction of right-handed components
ναR of the neutrino fields (α = e, µ, τ).

With these new fields, Dirac mass terms can be constructed as

Y ν
ij L

i H̃ νjR, (3.6)

where H̃ was first introduced in Eq. (2.17), with H̃ = iτ2H
∗. This transformation gives

a Higgs doublet with hypercharge Y = −1/2. Since Li and H̃ have the same weak and
hypercharge quantum numbers, νR must be neutral under both the weak and electromagnetic
force to maintain gauge invariance. Therefore, νR is a gauge singlet under the SM, and it is
usually referred as sterile neutrino, as its only interaction is gravitational.

It is important to note that these sterile neutrinos do not play a role in SM quantum
anomalies (see Appendix A). Hence, the number of right-handed neutrino fields added is
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not limited by anomaly cancellation constraints on the SM symmetry groups6. However,
because of neutrino oscillation experiments, at least two right-handed neutrinos are needed
to reproduce experimental data.

With the insertion of three right-handed neutrinos, the SM Higgs-lepton Yukawa Lagrangian
in Eq. (2.60) is extended, giving

LH,L = −
∑

α,β=e,µ,τ

Y
′ℓ
αβ LαLH ℓ′βR −

∑
α,β=e,µ,τ

Y
′ν
αβ LαL H̃ ν ′βR + h.c., (3.7)

where Y ′ν is a new matrix of Yukawa couplings. After SSB, the Lagrangian can be written
as

LH,L = −
(
v + h√

2

)[
ℓ′LY

′ℓℓ′R + ν ′
LY

′νν ′
R

]
+ h.c., (3.8)

with the arrays ℓ′L, ℓ
′
R and ν ′

L defined in Eqs. (2.62) and (2.71), and the new array for
right-handed neutrinos given by

ν ′
R =

ν ′eRν ′µR
ν ′τR

 . (3.9)

The Yukawa matrix Y ′ν can be diagonalized as

V ν†
L Y

′ν V ν
R = Y ν , with Y ν

kj = yνk δkj (k, j = 1, 2, 3), (3.10)

with yνk real and positive, and V ν
L and V ν

R being 3 × 3 unitary matrices. Defining the
transformations

nL = V ν†
L νL ≡

ν1Lν2L
ν3L

 , nR = V ν†
R νR ≡

ν1Rν2R
ν3R

 , (3.11)

together with transformations (2.65) we can write the diagonalized Lagrangian as

LH,L = −
(
v + h√

2

)[
ℓLY

ℓℓR + nLY
νnR

]
+ h.c.

= −
(
v + h√

2

)[ ∑
α=e,µ,τ

yℓα ℓαLℓαR +
3∑

k=1

yνk νkLνkR

]
+ h.c.

(3.12)

Using the Dirac fields of Eq. (2.67) and

νk = νkL + νkR (k = 1, 2, 3), (3.13)

we obtain

LH,L = −
∑

α=e,µ,τ

yℓαv√
2
ℓαℓα −

3∑
k=1

yνkv√
2
νkνk −

∑
α=e,µ,τ

yℓα√
2
ℓαℓα h−

3∑
k=1

yνk√
2
νkνk h. (3.14)

6As we discuss in Appendix A, if an additional symmetry is considered, for example, U(1)B−L, then the
number and charges of right-handed neutrinos can be constrained to maintain an anomaly free symmetry.
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Therefore, neutrino masses are given by

mk =
yνk v√
2

(k = 1, 2, 3). (3.15)

With this derivation, neutrino masses are proportional to the Higgs VEV, v, in the same
way that the rest of particles in the SM do. However, the masses of neutrinos are much
smaller than those of quarks and charged leptons. For example, the mass of the lightest
charged lepton, the electron, is me ≈ 0.511 MeV. Given that v = 246.22 GeV, this implies
a Yukawa coefficient of ye ∼ 10−6. Now, considering a neutrino with mass mν ∼ 10−12 GeV,
its Yukawa coefficient would be yν ∼ 10−15. In the minimally extended Standard Model,
there is no explanation for the very small values of yνk .

3.2.2 Majorana Neutrinos and Majorana Mass Term

Quantum Field Theory must be invariant under CPT transformations (charge conjugation,
parity and time reversal)7. As such, the theory must contain the CPT conjugate of a neutrino
field with spin ±1/2 and momentum p⃗, which corresponds to an antineutrino:

CPT |ν (p⃗,±1/2)⟩ = |ν (p⃗,∓1/2)⟩. (3.16)

Other fermions in the Standard Model are distinguishable from their respective CPT con-
jugates because of electric charge. However, in the case of neutrinos, there is no way to
distinguish a neutrino and an antineutrino unless there is an additional quantum number.
If this extra symmetry exists, then neutrinos and antineutrinos are distinguishable and they
are Dirac particles. A natural example of this extra symmetry is lepton number, introduced
in Subsection 2.5. If this is not the case, then neutrinos are the same as their antineutrinos
and therefore they are defined as Majorana particles.

We define the charge conjugation transformation C as

ψ
C−→ C ψT ≡ ψc, (3.17)

which transforms a particle into its antiparticle. The matrix C is the charge conjugation
matrix, represented in the Dirac basis with

C = −iγ0γ2, (3.18)

where γi are the Dirac matrices. The charge conjugated field ψc transforms with the opposite
chirality of ψ:

PL,R ψ = ψL,R
C−→
(
ψc
L,R

)
= (ψc)R,L = PR,L ψ

c. (3.19)

Defining a Majorana field as
ψM = ψL + ψc

L, (3.20)

the Majorana condition reads
ψM = ψc

M . (3.21)

If neutrinos are Majorana fields, then a Majorana mass term can be constructed using only
left-handed neutrinos as

mL ν
c
LνL + h.c. (3.22)

7A proof can be found in [59]. For a rigorous proof, see [60].
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(a) Ordinary neutrino double beta decay (2νββ). (b) Neutrinoless double beta decay (0νββ).

Figure 4: In 4a, ordinary neutrino double beta decay with two electrons and two electron antineutri-
nos emitted from the decaying nucleus. In 4b, neutrinoless double beta decay, where only electrons
are emitted. This process violates lepton number by two, and it is only possible if neutrinos are
Majorana particles.

This term is Lorentz-invariant, since νcL transforms as a right-handed field. If a lepton
number L = 1 is assigned to neutrinos, Eq. (3.22) violates it by two units, i.e, ∆L = 2.
Furthermore, it also violates U(1)Y and SU(2)L, but preserves U(1)EM

8. Hence, if it exists,
then it should be derived from a theory beyond the SM.

If right-handed neutrinos are considered, the most general mass expression including Dirac
and Majorana terms is written as

mD νRνL +
1

2
mL ν

c
LνL +

1

2
mR ν

c
RνR + h.c., (3.23)

where mD has the form of Eq. (3.15). The possibilities for this mass term are

• mL = mR = 0 : Dirac neutrinos with mass mD.

• mD = 0: νL and νR are both Majorana neutrinos with masses mL and mR, respectively.

• mD ̸= 0 and at least mR ̸= 0 or mL ̸= 0: neutrinos are Majorana, and their masses
are obtained diagonalizing the mass matrix. As we will see in Subsection 4.2, the case
for mL = 0 and mR ̸= 0 corresponds to the so-called seesaw mechanism.

If neutrinos are Majorana particles, there is a possibility to measure the neutrinoless double
beta decay process [37], displayed in Fig. 4. However, this process has never been observed
despite experimental efforts [38–41]. Consequently, when neutrino masses are studied with
SM extensions, both natures, Majorana and Dirac, are still considered.

8Note that in the case of a Majorana mass term for sterile neutrinos mR νcRνR the gauge symmetries of
the SM are preserved.
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3.3 Neutrino Mixing and Oscillations

In 1957, Bruno Pontecorvo initially introduced the idea of neutrino oscillations, exploring
neutrino–antineutrino mixing inspired by the oscillation behavior observed in neutral kaons
[61, 62]. In 1962, Maki, Nakagawa, and Sakata proposed that interaction and propagation
eigenstates in neutrinos could be different [63]. The notion that oscillations result from
interference among distinct massive neutrinos was subsequently developed by Pontecorvo
[64].

In the Homestake experiment [65], during the late 1960s, using a detector based on the
reaction

νe +
37 Cl → e− +37 Ar, (3.24)

it was observed a deficit in the flux of electron neutrinos from the sun with respect to the
prediction of the SM and the Solar Standard Model. This discrepancy was known as the
solar neutrino problem. The results were confirmed later in 1989 by the Kamiokande exper-
iment [66] with Cherenkov effect based detectors. In these, the neutrino-electron scattering
process

νe + e→ νe + e, (3.25)

produces charged electrons propagating through water and emitting cones of light, detected
by photomultiplier tubes (PMTs). However, the origin for this deficit was not explained
until the detection of solar neutrinos in flavor-sensitive processes by the Sudbury Neutrino
Observatory [25] in 2002. It was possible to distinguish outcomes from different neutrino
flavors with the CC, NC and electron scattering (ES) reactions using deuterium:

CC : νe + d→ p+ p+ e,

NC : νe,µ,τ + d→ p+ n+ νe,µ,τ ,

ES : νe,µ,τ + e→ e+ νe,µ,τ .

(3.26)

The three neutrino flavors interact through the exchange of a Z boson, whereas neutrino
electrons also interact by the exchange of W bosons. With this experiment, it was confirmed
that solar neutrinos were oscillating, finally explaining the flux deficit.

On the other hand, the detection of atmospheric neutrinos led to a similar puzzle regarding
neutrino fluxes. Atmospheric neutrinos are produced from collisions of cosmic rays with
nuclei in the atmosphere. This production is dominated by the processes

π+ →µ+ + νµ

↪→ µ+ → e+ + νµ + νe.
(3.27)

A similar decay occurs for π− particles. From this chain, a ratio for the fluxes of muon
neutrinos and electron neutrinos νµ/νe of 2 to 1 is expected. However, the Super-Kamiokande
experiment [24] found a dependence of the muon neutrino flux with the zenith angle, with
the number of upward-going muon neutrinos (generated on the other side of the Earth) with
a deficit respect to downward-going muon neutrinos. This was explained again with neutrino
oscillations, since these depend on the travelled distance.

Reactor anti-neutrino disappearance was first reported by the KamLAND collaboration [26].
Later, disappearance of reactor electron antineutrinos was also observed in the Double Chooz
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experiment [30] using two detectors at different distances from the reactor. In this short-
baseline oscillation experiment, the reactor mixing angle, to be introduced in Subsection
3.3.3, was measured. This results were confirmed by the Daya Bay [31] and RENO [32]
reactor neutrino observatories.

Furthermore, neutrino oscillations in neutrino beams have been also detected, for example
by the K2K [27], MINOS [28] and Super-Kamiokande experiments.

3.3.1 Neutrino mixing

Oscillation of neutrinos arise from the mixing between their mass and flavor eigenstates.
This mixing is a consequence of the mismatch between the three neutrino states that interact
with the charged leptons and the three propagating neutrino states of definite mass. That is,
neutrinos are absorbed and emitted through weak processes in flavor eigenstates, but travel
as mass eigenstates. Both basis are related by means of a unitary mixing matrix, similar to
the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix in the quark sector [56, 57]. The
linear combinations are then

|να⟩ =
∑
i

Uαi |νi⟩, (3.28)

|νi⟩ =
∑
α

U∗
iα |να⟩. (3.29)

Here, |να⟩ is a neutrino with definite flavor α = e, µ, τ , |νi⟩ is a neutrino with definite
mass mi where i = 1, 2, 3, and U is the lepton mixing matrix or PMNS matrix (Pon-
tecorvo–Maki–Nakagawa–Sakata). When three active neutrinos are considered, the matrix
is 3× 3:

UPMNS ≡ U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (3.30)

Using the PDG parametrization [9], the PMNS matrix is written as

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1


=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 ,

(3.31)

where cij = cos θij and sij = sin θij respectively. The phase δ is also known as Dirac phase,
and accounts for CP violation. If Majorana neutrinos are considered, then extra phases enter
in the PMNS matrix as

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

eiα1/2 0 0
0 eiα2/2 0
0 0 1

 .

(3.32)
The phases α1 and α2 are non-vanishing only if neutrinos are Majorana particles, and they
do not contribute to oscillation phenomena.
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3.3.2 Oscillation Probability

We want to know the time evolution of a neutrino. This is achieved with the evolution
operator as

|νi(t) ⟩ = e−iEit |νi(0) ⟩. (3.33)

In the ultra-relativistic limit, in which pi ≫ mi, and assuming that all states i have the same
momenta, we derive

Ei =
√
p2i +m2

i ≃ pi +
m2

i

2pi
≈ E +

m2
i

2E
, (3.34)

where E is the energy of the particle viewed as a wavepacket. In the ultra-relativistic limit,
we can take t ∼ L:

|νi(t) ⟩ = e−iEL e
−i

(
m2

i L

2E

)
|νi(0) ⟩. (3.35)

The probability of an initial neutrino of flavour α oscillating to a flavour β at a time t is
given by

Pα→β =
∣∣∣⟨νβ |να(t) ⟩∣∣∣2 =

∣∣∣∣∣∑
i

U∗
αiUβie

−i
m2

i L

2E

∣∣∣∣∣
2

, (3.36)

where we have used Eq. (3.28). Note that the exponential term e−iEL in Eq. (3.35) disappears
in the transition probability. The final expression yields

Pα→β = δαβ − 4
∑
i>j

Re
[
U∗
αiUβiUαjU

∗
βj

]
sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im
[
U∗
αiUβiUαjU

∗
βj

]
sin

(
∆m2

ijL

2E

)
,

(3.37)

with ∆m2
ij = m2

i −m2
j . It is evident from here that, in order to have oscillations, at least

two neutrinos must be massive.

Neutrino oscillations violate flavor lepton number, but total lepton number is still con-
served.

3.3.3 Oscillation Parameters

Neutrino oscillations depend on three mixing angles θij, a CP violation phase δ and the
squared mass differences ∆m2

ij. Oscillation experiments can be categorized based on the
source of the observed neutrinos, namely solar, atmospheric, and reactor neutrino experi-
ments. Each of these experiments has measured specific parameters, which further serve
to define their names: θ12 and ∆m2

12 are also called solar parameters (∆m2
12 ≡ ∆m2

sol), θ23
and ∆m2

23 are atmospheric parameters (∆m2
23 ≡ ∆m2

atm), and θ13 is the nuclear mixing
angle.

There are two possible hierarchies for neutrino masses, shown in Fig. 5. In normal ordering
(NO), the hierarchy is m1 < m2 < m3. In Inverted Ordering (IO), is m3 < m2 < m1.

The best fit values for neutrino oscillation parameters are presented in Table 4, obtained
from the Valencia global fit collaboration [68]. See [69] for the global fit of the NuFIT
collaboration.
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Figure 5: Possible orderings of the neutrino mass eigenstates. The contribution of each flavour
is represented by colours: electron, muon and tau are given in red, blue and green, respectively.
Figure from [67].

Parameters Best Fit ±1σ 3σ Range

∆m2
21 : [10

−5eV2] 7.50+0.22
−0.20 6.94− 8.14

|∆m2
31| : [10−3eV2] (NO) 2.55+0.02

−0.03 2.47− 2.63

|∆m2
31| : [10−3eV2] (IO) 2.45+0.02

−0.03 2.37− 2.53

sin2 θ12/10
−1 3.18± 0.16 2.71− 3.69

sin2 θ23/10
−1 (NO) 5.74± 0.14 4.34− 6.10

sin2 θ23/10
−1 (IO) 5.78+0.10

−0.17 4.33− 6.08

sin2 θ13/10
−2 (NO) 2.200+0.069

−0.062 2.000− 2.405

sin2 θ13/10
−2 (IO) 2.225+0.064

−0.070 2.018− 2.424

δCP/π (NO) 1.08+0.13
−0.12 0.71− 1.99

δCP/π (IO) 1.58+0.15
−0.16 1.11− 1.96

Table 4: Global fit for neutrino oscillation parameters, given by [68].
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(a) Long range probability. (b) Short range probability.

Figure 6: Probability of an initial electron neutrino νe transforming into νe,µ,τ (red, blue and green)
in vacuum vs. L/E. In 6a, the probability is shown for long range ratios, whereas in 6b is displayed
for short range.

The probability of an initial electron neutrino transforming into another flavor (or the same
flavor) in vacuum is displayed in Fig. 6. The horizontal axis corresponds to the relation
L/E in Km/GeV. The oscillation parameters used for the probability are those of the best
fit [68]. In disappearance and appearance experiments, a deficit in the neutrino flux of a
determined flavor is measured. This can be understood with the probability plots, where,
for example, at a value of L/E ∼ 15000 Km/GeV, electron neutrinos are less likely to be
observed compared to other distances.

Neutrino oscillations also occur in matter [70], with a change in the probability due to NC
and CC interactions of νe with electrons, and NC reactions for νµ and ντ . Then, for example,
in solar neutrino detectors, neutrino oscillations inside the Sun must be considered for the
calculation of probabilities. A review about neutrino oscillations in matter can be found
in [71, 72].
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4 Neutrino Mass Generation
Neutrino masses represent BSM physics. Originally postulated massless, it is until ex-
periments observed oscillations that we know that neutrinos should carry a mass. How-
ever, its generation together with a natural explanation for their smallness is currently
unknown.

We review the most popular mechanisms to generate Majorana neutrino masses. These
represent UV realizations of the Weinberg operator to be introduced below. Each model has
its own implications and phenomenology, briefly discussed throughout this section.

4.1 Dim-5 Weinberg Operator

If we allow non-renormalizable operators in the SM, a dim-5 neutrino mass term can be
constructed using only SM fields. This effective operator violates lepton number, is unique
and has the form

O(5)
W =

cαβ
Λ
Lc
αLβH̃

∗H̃† + h.c., (4.1)

with H̃ = iσ2H∗, cαβ a model-dependent coefficient and Λ the scale of new physics. This
operator was first proposed by Weinberg in 1979 [73], so it is called the dim-5 Weinberg
Operator, and its Feynman diagram is shown in Figure 7. After electroweak symmetry

Figure 7: Feynman diagram of the dim-5 Weinberg operator. This interaction is effective, and
therefore non-renormalizable.

breaking, the Weinberg operator gives rise to Majorana neutrino masses:

O(5)
W → v2

2Λ
cαβ ν

c
α νβ, (4.2)

with v the VEV of the SM Higgs. Therefore, the neutrino mass scale is approximately

mν ∼ cαβ
v2

Λ
. (4.3)

Considering a SM VEV of v ∼ 102 GeV, the upper bound for neutrino masses leads to
cαβ/Λ ∼ 10−14 GeV−1. Assuming a coefficient cαβ ∼ O(1), the scale for new physics is
given by Λ ∼ 1014GeV, being far from current experimental energy limits. However, if we
consider a more suppressed cαβ, then the scale Λ can be lowered, being potentially accessible
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(a) Seesaw type-I. (b) Seesaw type-II. (c) Seesaw type-III.

Figure 8: The three canonical types of the seesaw mechanism, which are UV realizations of the
dim-5 Weinberg operator at tree-level. In type-I, a singlet fermion N is introduced, whereas in
type-II and type-III a triplet scalar ∆ and a triplet fermion Σ are introduced, respectively.

to experiments. Such suppression can be achieved considering a radiative mass generation
mechanism in which cαβ ∝ ( 1

16π2 )
n, where n is the number of loops.

Having a mass dimension of five, the Weinberg operator is a non-renormalizable effective
operator. To generate masses coming from this operator, a UV realization is needed, where
Eq. (4.1) is constructed using renormalizable and gauge invariant operators. This is achieved
considering extensions of the SM, with the addition of new fields and symmetries. There are
several UV realizations proposed in the literature, both at tree-level and radiative. In the
next sections, we review the seesaw mechanism and the Scotogenic model, which correspond
to tree-level and one-loop level completions respectively.

4.2 Tree-level Realizations: Seesaw Mechanism

The most straightforward way to complete the Weinberg operator is at tree-level. Tak-
ing (4.1) and recalling that H̃ = iσ2H∗, by Fierz transformations we have the equalities(

Lc
αH̃

∗
)(

H̃†Lβ

)
=

1

2

(
Lc
ασ

iLβ

) (
H̃†σiH̃∗

)
= −

(
Lc
ασ

iH̃∗
)(

H̃†σiLβ

)
, (4.4)

where we have used
(σi)ab (σ

i)cd = 2 δad δbc − δab δcd, (4.5)

with a, b, c, d being SU(2) indices. In Eq. (4.4), the first term can be completed with the
coupling of LH to a fermion singlet under the SM, the second term with a scalar triplet
with hypercharge 1 and the last to a fermion triplet with zero hypercharge. Each one of
these cases defines a different type of the seesaw mechanism, with the corresponding diagram
shown in Fig. 8.

4.2.1 Type-I Seesaw

As we reviewed in Section 3.2, neutrino masses can be generated by adding a right-handed
neutrino νR with mass mR to the SM. The UV completion of the Weinberg operator with just
right-handed neutrinos corresponds to the type-I seesaw mechanism [74, 75]. To reproduce
neutrino oscillations data, we need at least two copies of this right-handed neutrino.
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Recalling the mass terms of Eq. (3.23), if we consider the case mL = 0, the relevant La-
grangian for neutrino masses can be rewritten as

LνI =
1

2

(
νcL νR

)
Mν

(
νL
νcR

)
+ h.c., (4.6)

with the neutrino mass matrix given by

Mν =

(
0 mD

mD mR

)
. (4.7)

Considering the limit mR ≫ mD
9, the eigenvalues for the neutrino mass matrix can be

approximated to

m1 ≈ −mD · m−1
R · mD, (4.8)

m2 ≈ mR. (4.9)

Therefore, masses for a light and a heavy neutrino, m1 and m2, are obtained. The origin
for the term “seesaw” comes from the relation between these masses: as one gets larger, the
other gets smaller.

If the Dirac mass term is given through a Yukawa coupling y, i.e,

y LHνR (4.10)

then mD = v y/
√
2 after SSB, and

m1 ≈
v2 y2

2mR

. (4.11)

While the smallness of neutrino masses can be achieved with this mechanism, imposing
m1 ∼ 1 eV and y ∼ O(1) implies m2 ∼ 1013GeV. A smaller value for y could also be
considered natural. However, taking y2 ∼ 10−4, makes m2 ∼ 109GeV, which is still far
beyond experimental limits for detection.

4.2.2 Type-II Seesaw

In the type-II seesaw, a scalar triplet with hypercharge 1 is added to the SM [76–79]. This
triplet is ∆ = (∆++,∆+,∆0) and it is usually expressed in the double representation of
SU(2)L as

∆ =

(
∆+/

√
2 ∆++

∆0 −∆+/
√
2

)
. (4.12)

The relevant Lagrangian terms are

LνII =
(
Y∆ L

c∆L− µ H̃†∆†H + h.c
)
+M2

∆ ∆†∆. (4.13)

The simultaneous presence of Y∆ and µ implies lepton number violation by two units, having
as possibilities L = −2 or L = 0 for ∆. Additionally, the presence of the µ term induces

9For example, having mD ∼ O(me,mµ,mτ ) and mR ∼ O(1014 GeV), which is the scale of new physics
derived from the Weinberg operator considering couplings of O(1).
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a VEV ⟨∆⟩ ≠ 0 when ⟨H⟩ ≠ 0. This can be derived from the tadpole equations of the
potential terms in (4.13). After SSB, we have

∂V

∂v∆

∣∣∣∣∣
Ψ=0

= 0 ⇒ v∆ =
µ v2√
2M2

∆

. (4.14)

Therefore, the smallness of the neutrino masses depends of the smallness of the VEV v∆,
with

mν = Y∆
v∆√
2
. (4.15)

The seesaw mechanism here is dictated by the dependence of v∆ with M∆: the larger the
mass of ∆, the smaller the mass of the neutrinos.

4.2.3 Type-III Seesaw

The type-III seesaw [80] is similar to the type-I, but now the added fermion is a triplet
Σ = (Σ+, Σ0, Σ− ) with zero hypercharge. The Lagrangian is

LνIII =
1

2

(
νcL Σ0

)
Mν

(
νL
Σ0c

)
+ h.c., (4.16)

with the corresponding mass matrix

Mν =

(
0 mD

mD mΣ

)
. (4.17)

While it has the same structure as the seesaw type-I, the gauge indices are contracted
differently because of the triplet structure. The neutrino masses have an analogous expression
given by

m1 ≈ mD · m−1
Σ · mD. (4.18)

The main difference between the type-I and type-III seesaws is the phenomenology associated
to the charged components of Σ. Note that Σ+ and Σ− do not participate in the mass
mechanism, as can be seen from Eq. (4.16).

4.3 A One-Loop Realization: Scotogenic Model

The dim-5 Weinberg operator can also be generated through radiative mechanisms. From
these, the first proposed models were the Zee model [81] and the Zee-Babu model [82, 83]
at one- and two-loop level respectively. Another one-loop mechanism is the Scotogenic
model [84]. Here we will discuss the latter, being closely related to the models to be intro-
duced in Sections 5 and 6.

The Scotogenic10 model is one of the most popular neutrino mass models, because it links
neutrino masses with dark matter. This model consists of a one-loop UV completion of
the Weinberg Operator (4.1) given an extra Z2 discrete symmetry (also known as parity
symmetry, with ±1 as possible charges). This extension of the SM reads

SU(3)C × SU(2)L × U(1)Y × Z2, (4.19)
10From ancient Greek, “scoto” means “darkness”, while “genic” means “generated”.
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where the Z2 symmetry is preserved after EWSB [85]. The particle content of the model is
presented in table 5. As a UV realization of the Weinberg operator, new fields are added:
three Majorana neutrinos Ni singlets under the SM, and an inert scalar doublet η. These
new particles are odd (negative charge) under Z2, while the SM particles are even (positive
charge).

Fields SU(2)L ⊗ U(1)Y Z2

Fe
rm

io
ns Li (2,−1/2) +1

eRi
(1,−1) +1

Ni (1, 0) −1

Sc
al

ar
s

H+, H0 (2, 1/2) +1
η+, η0 (2, 1/2) −1

Table 5: Particle content in the Scotogenic Model [84], with i ∈ {1, 2, 3}.

Because of the extra Z2 symmetry, Dirac mass terms of the form fij ν̄iHNj are forbidden,
and neutrinos remain massless at tree-level. The relevant Yukawa interactions are given
by

LY = fij
(
H−νi +H0ℓi

)
ℓcj + yij

(
νiη

0 − ℓjη
+
)
Nj + h.c., (4.20)

while the scalar potential of the model is

V =µ2
H H

†H + µ2
η η

†η +
1

2
λ1
(
H†H

)2
+

1

2
λ2
(
η†η
)
+ λ3

(
H†H

) (
η†η
)

+ λ4
(
H†η

) (
η†H

)
+

1

2
λ5

[(
H†η

)2
+ h.c.

]
.

(4.21)

The one-loop mechanism is constructed with the terms

1

2
MiN

c
iNi + h.c., (4.22)

1

2
λ5(H

†η)2 + h.c. (4.23)

Operators (4.22) and (4.23) violate lepton number by two units, whether if a lepton number
is assigned to Ni or to η. From the potential, the masses for the particles are given by

m2(
√
2H0

R) = 2λ1v
2, (4.24)

m2(η±) = m2
2 + λ3v

2, (4.25)

m2(
√
2 η0R) = m2

2 + (λ3 + λ4 + λ5)v
2 ≡ m2

R, (4.26)

m2(
√
2 η0I ) = m2

2 + (λ3 + λ4 − λ5)v
2 ≡ m2

I . (4.27)

The mass mechanism of the Scotogenic model is shown in Fig. 9. In the mass basis, the
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Figure 9: Feynman diagram of the one-loop neutrino mass generation mechanism in the Scotogenic
Model [84].

diagram is calculable and yields

(Mν)ij =
∑
k

yikyjkMk

32π2

[
m2

R

m2
R −M2

k

ln
m2

R

M2
k

− m2
I

m2
I −M2

k

ln
m2

I

M2
k

]
. (4.28)

From Eqs. (4.26) and (4.27), the mass splitting between the scalar and the pseudoscalar is
given by the coupling λ5 as

m2
R −m2

I = 2λ5v
2. (4.29)

If we consider
2λ5v

2 ≪ m2
R +m2

I

2
= m2

0, (4.30)

and the limit where M2
k ≈ m2

0, expression (4.28) reduces to

(Mν)ij ≈
λ5v

2

32π2

∑
k

yikyjk
Mk

. (4.31)

Comparing to the seesaw type-I in Eq. (4.11), neutrino masses get an additional suppression
given by the factor λ5/16π2. Considering λ5 ∼ y2 ∼ 10−4 11, the scale is then reduced
from 109 GeV in the seesaw type-I to just 103 GeV in the Scotogenic model, feasible for
experimental exploration.

4.3.1 Dark matter in the Scotogenic Model

In the model, there is a dark matter candidate. Due to the Z2 symmetry, a decay of a dark
particle into only SM matter is forbidden by charge conservation. Therefore, the lightest
particle odd under Z2 will be stable. This is represented schematically in Figure 10. In the
Scotogenic model, there can be a scalar or a fermionic dark matter candidate, namely, the
lightest particle between η and the three fermions Ni.

11Considering the naturalness definition of G. ’t Hooft [86], a small value for λ5 could be considered natural
since when λ5 → 0, lepton number is conserved, increasing the symmetry of the model.
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(a) Not allowed decay of dark particles into purely
SM particles.

(b) Allowed decay of dark particles into SM and
lighter dark particles.

(c) Allowed decay of dark particles into an even
number of lighter dark particles.

Figure 10: Diagram of dark matter stability under a Z2 symmetry. A dark particle can not decay
into purely SM particles because of charge conservation. However, it is possible for a dark particle
to decay into SM and a lighter dark particle, or an even number of lighter dark particles. Therefore,
the lightest dark particle is stable, and it is a dark matter candidate.

Considering the fermionic case, and assuming M1 < M2 < M3 < mη± , the following decays
are possible:

η± → ℓ±N1,2,3, (4.32)

followed by

N3 → ℓ± ℓ∓N1,2 and (4.33)
N2 → ℓ± ℓ∓N1 (4.34)

through the exchange of η±. In the scalar case, in which all Mk are greater than the mass
of η, the following decays could be observed:

N1,2,3 → ℓ±η∓, (4.35)
η∓ → η0 +W∓, (4.36)

where the W boson becomes a lepton or quark pair through weak interaction.

The model also allows for Lepton Flavor Violation (LFV) processes trough Yukawa inter-
action with η. These will be of interest for our one-loop and two-loop model of Sections 5
and 6. More discussion regarding this phenomenological implication will be postponed until
then.
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4.4 Zn and U ′(1) Models

In the Scotogenic model, the Z2 symmetry is imposed by hand, allowing radiative neutrino
masses and a stable dark matter candidate. However, other symmetries can be proposed for
the same purpose, resulting in a different phenomenology.

Consider the finite cyclic group Zn, whose elements are powers of a particular element ω
with ωn = ω0 = 1. Under this group, particle fields transform as

ψ → ωk ψ, (4.37)

where ω is the n-th root of unity:
ω = e

2πi
n . (4.38)

In Eq (4.37), k represent the Zn charge of ψ, and its power dictates if ψ is odd or even under
the symmetry. In the Z2 case:

ω0 = ω2 = +1,

ω1 = −1.
(4.39)

Different Zn symmetries can be used to build new models according to the particle content
and desired phenomenology. The motivation is to forbid unwanted terms and to ensure
stability for dark matter. Distinct Zn have implications in the particle nature of neutrinos,
allowing Dirac or Majorana mass terms [87]. As example, a two-loop model with a Z3

symmetry is presented in [88].

A Zn symmetry can also be obtained from spontaneously breaking of a U ′(1) symmetry [89].
This is the case for extension models of the form

SU(3)C × SU(2)L × U(1)Y × U ′(1), (4.40)

where the extra U ′(1) can be taken from some symmetry already present in the SM. A
natural selection is the accidental U(1)ℓ lepton number symmetry. With this possibility, the
symmetry Zn that was previously imposed without further explanation now is motivated
from the breaking of an apparent symmetry of the SM [87, 90, 91]:

SU(2)L × U(1)Y × U(1)ℓ → U(1)EM × Zn. (4.41)

A consequence of taking a U ′(1) symmetry is the presence of extra bosons, derived from the
SSB process. When a global U(1) symmetry is considered, a Goldstone boson is generated,
which usually receives the name of majoron [79, 92].

Another possibility is the U(1)B−L symmetry. The special feature of this symmetry is that
it can be anomaly free with the addition of right-handed neutrinos (see Appendix A) so it
can be gauged to obtain a richer phenomenology, including the existence of a gauge boson.
This is the case of Z ′ models.

In next sections, we propose a neutrino mass model with a Z4 symmetry spontaneously
broken to a Z2, and another with a U(1)B−L spontaneously broken to a Z3 symmetry.
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5 One-Loop Mass Generation Model
In this section, we introduce a new proposal for a radiative Majorana neutrino mass model.
We extend the SM with a discrete Z4 symmetry, spontaneously broken to Z2. We include
three singlet fermions, along with a doublet and a singlet scalar. The lightest of these
particles will represent a dark matter candidate, stabilized by the preserved Z2 symmetry.
Additionally, we include a singlet scalar which gets mixed with the Higgs particle and opens
annihilation channels for dark matter. This model will generate neutrino masses through
a one-loop mechanism. We explore the model, including a brief discussion regarding dark
matter phenomenology when the dark matter candidate is a fermion.

5.1 The Model

We work in an extension of the SM given as

SU(3)C × SU(2)L × U(1)Y × Z4, (5.1)

where we have imposed an extra Z4 symmetry. The matter content of the model is shown
in Table 6. In the fermionic sector, we add three fermions Nk singlets of the SM, with

Fields SU(2)L ⊗ U(1)Y Z4 Z2

Fe
rm

io
ns Lj (2,−1/2) 1 1

eRj
(1,−1) 1 1

Nk (1, 0) i −1

Sc
al

ar
s H (2, 1/2) 1 1

η (2, 1/2) i −1
σ (1, 0) i −1
ϕ (1, 0) −1 1

Table 6: Particle content of the model with j ∈ {e, µ, τ} and k ∈ {1, 2, 3}. All the fields listed are
SU(3)C singlets. Fields with charges i under Z4 correspond to dark matter candidates. The scalar
field ϕ is real.

imaginary charge e
2πi
4 = i under Z4. In the scalar sector, we add a scalar doublet η with

the same hypercharge as the Higgs boson and a scalar σ singlet under the SM. Both fields
transform as i under Z4. Additionally, we include a real singlet scalar ϕ with a −1 charge
under Z4. The extra symmetry of the model is spontaneously broken to Z2:

SU(2)L × U(1)Y × Z4 → U(1)EM × Z2. (5.2)

Therefore, fields with imaginary charge i under Z4 will be protected by a residual Z2 sym-
metry after SSB, with the lightest particle being a dark matter candidate.
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Before SSB, the scalar potential is given by

V =µ2
H

(
H†H

)
+ µ2

η

(
η†η
)
+ µ2

σ (σ
∗σ) + µ2

ϕ

(
ϕ2
)

+ λ1
(
H†H

)2
+ λ2

(
H†H

) (
η†η
)
+ λ3

(
H†η

) (
η†H

)
+ λ4

(
H†H

)
(σ∗σ) + λ5

(
H†H

)
ϕ2

+ λ6
(
η†η
)2

+ λ7
(
η†η
)
(σ∗σ) + λ8

(
η†η
)
ϕ2 + λ9 (σ

∗σ)2 + λ10 (σ
∗σ)ϕ2

+ λ11ϕ
4 +

[
ξ
(
H†η

)
σ ϕ+ κ1

(
H†η

)
σ∗ + κ2 σ

2ϕ+ h.c.

]
,

(5.3)
where

H =

(
H+

H0

)
, η =

(
η+

η0

)
. (5.4)

In Eq. (5.3), we have taken ξ, κ1 and κ2 as real coefficients. The relevant Yukawa terms of
the model are

LY = Yp L η̃ N + YvN
cN ϕ+ h.c. (5.5)

The charges under Z4 forbid Dirac mass terms at tree-level, similarly to the Scotogenic
model. Therefore, a Majorana mass term is built at one-loop level, as shown in Figure 11.

Figure 11: One-loop Feynman diagram for neutrino mass generation in our model, which is a
radiative UV realization of the Weinberg operator. After SSB, Majorana neutrino masses are
generated. The particles inside the loop are dark matter candidates.

5.2 Mass Spectrum

We perform a change to the mass basis to get the mass spectrum. To achieve this, we first
put the scalar fields explicitly in terms of their real and imaginary parts, and let them acquire
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a VEV as
H0 → 1√

2

(
vH + h0R + i h0I

)
,

η0 → 1√
2

(
vη + η0R + i η0I

)
,

σ → 1√
2
(vσ + σR + i σI) ,

ϕ→ 1√
2
(vϕ + ϕR) .

(5.6)

Recall that ϕ is a real scalar field. In Eqs. (5.6), vH is the SM Higgs VEV of Eq. (2.56). We
find the tadpole equations given by

∂V

∂vΨ

∣∣∣∣∣
Ψ=0

= 0, (5.7)

where Ψ = {H0, η0, σ, ϕ} and vΨ is each one of their VEVs. Eq. (5.7) will give us four tadpole
equations, one for each vΨ. A possible solution for vη and vσ tadpole equations is setting
directly vη = vσ = 0. Considering this scenario, the other equations are

vH : v3H λ1 +
1

2
vH v

2
ϕ λ5 + vH µ

2
H = 0,

vϕ : v3ϕ λ11 +
1

2
v2H vϕ λ5 + vϕ µ

2
ϕ = 0.

(5.8)

Solving in terms of µ2 yields

µ2
H = −v2H λ1 −

1

2
v2ϕ λ5

µ2
ϕ = −v2ϕ λ11 −

1

2
v2H λ5.

(5.9)

The mass matrices M are obtained with

Mij =
∂2V

∂Ψi∂Ψj

∣∣∣∣∣
Ψ=0

, (5.10)

where, again, Ψ is each one of the scalar fields. We will find three different matrices, one for
the visible sector12 (with h0R and ϕR), one for the scalar dark sector (η0R and σR) and one for
the pseudoscalar dark sector (η0I and σI). The Higgs pseudoscalar h0I will be the Goldstone
boson of the SM Higgs mechanism.

After substituting Eqs. (5.9), the mass matrix for the visible sector is given by

MVisible =

(
2 v2H λ1 vH vϕ λ5
vH vϕ λ5 2 v2ϕ λ11

)
. (5.11)

The mass matrix is diagonalized by a 2× 2 rotation matrix

OVisible =

(
cos θV sin θV
− sin θV cos θV

)
, (5.12)

12We call dark sector to every particle with imaginary charge i under Z4 in this model. From the dark
sector, only the lightest particle is dark matter. We call visible sector to any particle not belonging to the
dark sector, including SM particles.

47



Rolando Martínez Ramírez
IF-UNAM
Neutrino Masses: Radiative Models and Phenomenology

where
tan (2θV ) =

vH vϕ λ5
v2ϕ λ11 − v2H λ1

. (5.13)

Thus, the rotation between the interaction and mass eigenstates V1 and V2 is given by(
V1
V2

)
= OVisible

(
h0R
ϕR

)
. (5.14)

The masses for these eigenstates are

m2
V1

=
(
v2H λ1 + v2ϕ λ11 −

√
(v2H λ1 − v2ϕ λ11)

2 + (vH vϕ λ5)2
)
, (5.15)

m2
V2

=
(
v2H λ1 + v2ϕ λ11 +

√
(v2H λ1 − v2ϕ λ11)

2 + (vH vϕ λ5)2
)
. (5.16)

We identify one of these mass eigenstates as the physical Higgs field, withmh = 125.25 GeV.

For the scalar dark sector, the mass matrix is given by

MDMX
=

(
a bX
bX cX

)
, (5.17)

where
a =

1

2

[
v2H (λ2 + λ3) + v2ϕ λ8 + 2µ2

η

]
,

bX =
1

2
vH

(√
2κ1 + ζX vϕ ξ

)
,

cX =
1

2

[
ζX 2

√
2 vϕ κ2 + v2ϕ λ10 + v2H λ4 + 2µ2

σ

]
.

(5.18)

Here, X = {R, I} indicates real and imaginary, with ζR = 1 and ζI = −1. Similar to the
visible case, the mass matrices are diagonalized by a 2× 2 rotation matrix given by

ODMX
=

(
cos θX sin θX
− sin θX cos θX

)
, (5.19)

where
tan (2 θX) =

2 bX
cX − a

. (5.20)

The rotation between the interaction and mass eigenstates X1 and X2
13 is(

X1

X2

)
= ODMX

(
η0X
σX

)
. (5.21)

The masses for these eigenstates are

m2
X1

=
1

2

(
a+ cX −

√
(a− cX)2 + 4 b2X

)
, (5.22)

m2
X2

=
1

2

(
a+ cX +

√
(a− cX)2 + 4 b2X

)
. (5.23)

13Therefore, the notation is R1 and R2 for the scalars, and I1 and I2 for the pseudoscalars.
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Figure 12: One-loop Feynman diagram in the mass basis, where the scalar fields are mixed and H0

and ϕ have acquired a VEV.

Therefore,
m2

X2
= m2

X1
+∆m2

X , (5.24)

where ∆m2
X is the mass splitting between the two scalars, given by

∆m2
X =

√
(a− cX)2 + 4 b2X . (5.25)

The mass for the charged scalar particle η± is

m2
η± =

1

2

(
v2H λ2 + v2ϕ λ8

)
+ µ2

η. (5.26)

Regarding the fermionic sector, the mass of the fermions Nk are given through SSB by

mNk
=

√
2 (Yv)kk vϕ. (5.27)

We work in a basis where fermions Nk do not mix with each other, implying a diagonal
Yukawa matrix Yv.

5.3 Neutrino Masses and Numerical Analysis

After scalar fields get mixed through Eq. (5.14) and Eq. (5.21), the resulting one-loop Feyn-
man diagram in the mass basis is shown in Fig. 12. The propagator is now one of each of
the mixed scalar fields R1,2 and pseudoscalars I1,2. The amplitude for this diagram in the
vanishing external momentum limit reads

M = V A

∫
d4k

(2π)4
mNk

(k2 −m2
A)(k

2 −m2
Nk
)
, (5.28)

where V A are vertex coefficients arising from the couplings in Yp L η̃ N . Linear momentum
terms vanish when integrated. The integral (5.28) is the one-loop scalar Passarino-Veltman
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function B0 [93], whose solution is Eq. (C.14), given in the Appendix C. The total integral
amplitude yields

(Mν)αβ =
3∑
i

(Yp)αi (Yp)iβ
32π2

MNi

4∑
A=1

VA(θX)V
∗
A(θX)

[
m2

A logm2
A −M2

Ni
logM2

Ni

m2
A −M2

Ni

]
(5.29)

with
m1 = mR1 , m2 = mI1 , m3 = mR2 , m4 = mI2 ; (5.30)

and

V1 = cos (θR) , V2 = −i cos (θI) , V3 = − sin (θR) and V4 = i sin (θI) .
(5.31)

The neutrino mass matrix can be rewritten as

(Mν)αβ =
(
Y T
p ΛYp

)
αβ
, (5.32)

where the Λ matrix is

Λ =

Λ1 0 0
0 Λ2 0
0 0 Λ3

 , with

Λi =
1

32π2
MNi

4∑
A=1

VA(θX)V
∗
A(θX)

[
m2

A logm2
A −M2

Ni
logM2

Ni

m2
A −M2

Ni

]
.

(5.33)

The neutrino mass matrix is diagonalized with

UT
PMNSMν UPMNS = m̂ν ≡

m1 0 0
0 m2 0
0 0 m3

 . (5.34)

where the mixing matrix UPMNS is given in Eq. (3.30)14. Using the Casas-Ibarra parametriza-
tion [94], the Yukawa matrix (Yp)iα can be written as

Yp =
√
Λ

−1
R
√
m̂ν U

†
PMNS, (5.35)

where R is a complex orthogonal matrix such that RTR = 1. Using this parametrization,
we are allowed to use neutrino oscillation data as input to determine the Yukawa matrix
values.

It is possible to make a numerical scan in order to obtain numerical results for the model
parameters. First, we obtain the Yukawa matrix with Eq. (5.35), assuming normal ordering,
a light mass of mν1 = 10−3 eV, and assigning the best-fit value for oscillation parameters
in UPMNS from Table 4. This ensures that our Yukawa couplings can reproduce correctly
neutrino masses and oscillation data. The values assigned as inputs for the masses, mixing
angles and some couplings in the model are shown in Table 7, where we have introduced a
mass splitting between the scalar and pseudoscalar fields as

∆M2 = m2
I2
−m2

R2
. (5.36)

14Majorana phases will be neglected in the computations.
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Parameter Input

λ6, λ9 1

λ2, λ4, λ7 10−4

µ2
η, µ

2
σ 100 GeV2

cos(θR), cos(θV ) [0.75, 0.99]

mR1 [300, 2000] GeV

∆m2
R [10, 100]2 GeV2

∆m2
I [10, 100]2 GeV2

∆M2 [10, 100]2 GeV2

mϕ [300, 2000] GeV

mη± [300, 2000] GeV

mNi
[10,min(mR1,2 ,mI1,2 ,mη±) ] GeV

Table 7: Input parameters for the one-loop model.

We will analyze the case of a fermionic dark matter candidate, namely, Ni. Thus, in order
to maintain Ni as the stable dark matter candidate of the model, the maximum possible
value for its mass is the minimum value between all the other odd scalar fields. The mixing
angles θX and θV are selected to be small, indicating minimal mixing between the mass and
flavor eigenstates of the scalar and pseudoscalar particles in the model. The input parameter
values completely determine the spectrum parameter, defining a benchmark point from which
phenomenology of the model can be studied.

The condition for a potential to be bounded from below imposes additional constraints in
the parameter spectrum [95, 96]. For potential (5.3), these conditions read

λ1,6,9,11 > 0, λ2 ≥ −2
√
λ1 λ6, λ4 ≥ −2

√
λ1 λ9, λ5 ≥ −2

√
λ1 λ11,

λ7 ≥ −2
√
λ6 λ9, λ8 ≥ −2

√
λ6 λ11, λ10 ≥ −2

√
λ9 λ11, λ2 + λ3 ≥ −2

√
λ1λ6.
(5.37)

With these inputs and constraints, a correlation between the Yukawa values and the fermion
mass mN is displayed in Fig 13. We can see that the Yukawa couplings in the model can be
less suppressed than those of a tree-level seesaw mechanism, achieving small neutrino masses
in a more natural way.
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Figure 13: Fermion mass vs Tr
(
Y †Y

)
in the one-loop model.

5.4 Dark Matter Phenomenology

We consider fermionic dark matter, with Ni the lightest particle. The annihilation chan-
nels are shown in Figure 14. The Yukawa interaction Yp L η̃ N gives rise to LFV processes,
namely, ℓα → ℓβγ and ℓα → 3 ℓβ, where ℓα = {e, µ, τ}. These processes are constrained
by experimental limits15, which impose the Yukawa coupling Yp to be small (Yp ≪ 1) [97].
Therefore, the annihilation via t-channel (Fig. 14a) becomes suppressed, inducing dark mat-
ter overabundance [98, 99]. The addition of the real singlet scalar ϕ allows another two
channels for NN annihilation through the interaction YvN cNϕ, shown in Figs. 14b and 14c.
These annihilation channels contribute to the dark matter relic abundance without being
constrained by LFV upper limits. Two similar models are discussed in [97] and [100], but
with an additional Majoron field coming from spontaneous lepton number breaking.

In our model, there is the possibility of cannibalism effect [101], which allows three particles
to annihilate into two. In such a 3 → 2 process, mass is turned into kinetic energy of
the outgoing particles, heating the dark sector [102]. In this model, this can be achieved
through

3N → N + ϕ, (5.38)

whose diagram is shown in Fig. 15.
15The LFV Feynman diagrams and experimental bounds are displayed in Section 6, in Figs. 19,20,21, and

Table 10, respectively.
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(a) t-channel for dark matter annihilation through
η into SM leptons.

(b) t-channel for dark matter annihilation to ϕ fields.

(c) s-channel for dark matter annihilation through
the Higgs portal into SM particles.

Figure 14: Fermionic dark matter annihilation channels.

Figure 15: Cannibal process in which three particles annihilate into two: 3N → N + ϕ.

An extra condition mNi
> mϕ/2 has to be imposed to kinematically allow such process. If

allowed, it contributes also to the dark matter relic density, leading to a different cosmological
history.

A numerical scan of the relic abundance versus the dark matter mass mNi
can be made. The

input parameters should fulfill the constraints given by Eq. (5.37), neutrino oscillation data,
LFV processes and electroweak precision [103, 104]. There are two regions of interest to be
explored:

53



Rolando Martínez Ramírez
IF-UNAM
Neutrino Masses: Radiative Models and Phenomenology

• mNi
< mϕ: forbidden region.

• mNi
> mϕ: secluded region.

In the forbidden region, the t-channel of Fig. 14b is kinematically suppressed. Inside this
region, when 1.5mNi

< mϕ < 2mNi
, the cannibal process of Fig. 15 becomes relevant.

There are also two resonant regions with mNi
∼ mV1/2 and mNi

∼ mV2/2, where dark
matter annihilates more efficiently.

Using the computer tools SARAH (versions 4.15.2 and 4.11.0)16 [106], SPheno (4.0.2)
[107, 108] and micrOmegas (5.3.41) [109] we can obtain a numerical value for the relic den-
sity for different benchmark points. First, the model is implemented in SARAH, a Mathematica
package that provides analytical information about the model. With SARAH it is possible to
obtain a source code for SPheno, where the analytical expressions are evaluated numerically
given input values. Several observables can also be obtained in SPheno with the FlavorKit
extension [108], such as LFV branching ratios. Finally, SARAH also generates a source code for
micrOmegas17, which is a routine that calculates the relic density for the numerical outputs
obtained with SPheno.

We perform a numerical scan considering N1 as the dark matter candidate, and fixing mϕ =
30GeV. We consider the input values in table 8. The Yukawa couplings (Yp)ij are fixed to
reproduce neutrino oscillation data and to be allowed by LFV constraints. Other parameters
have been fixed, having ξ = 10−13, λ11 = 0.1 and the Higgs mixing coupling with ϕ as
λ5 = 0.01. The parameter λ1 is solved in each iteration for mH = 125.25GeV and mϕ.
The Yukawa couplings (Yv)22 and (Yv)33 are chosen to be > 1, ensuring heavy fermions. To
perform the scan, we have used an approximate numerical solution given in [110].

Parameter Input

λ2,3,4,6,7,9, κ2 [10−6, 1]

λ8 [10−2, 1]

λ10 [10−6, 10−2]

κ1 [10−6, 10−3]

µ2
η, µ

2
σ [106, 107] GeV2

(Yv)11 [0.06, 0.45]

vϕ [5, 300] GeV

Table 8: Input parameters for relic density scan

16For a pedagogical SARAH tutorial, see [105].
17We have used SARAH (4.15.2) for micrOmegas (5.3.41) and SARAH (4.11.0) for SPheno (4.0.2),

ensuring compatibility between distinct versions of the programs.

54



Rolando Martínez Ramírez
IF-UNAM
Neutrino Masses: Radiative Models and Phenomenology

The corresponding plot is shown in Fig. 16. The horizontal lines represent the value of the
relic density observed by PLANCK in 2018 with a 3σ range [12]:

ΩN1h
2 = 0.120± 0.0036. (5.39)

Points falling within this range are printed in red color. Points below the line, printed in
blue, indicate underabundant dark matter, implying that contributions from another dark
matter candidate are required to reproduce the correct relic density value. The green vertical
line represents mN1 = 30GeV. The region to the left of this line is the forbidden region,
while the region to the right is the secluded region. At mN1 ∼ mϕ/2 = 15GeV we observe
the first resonance region, where dark matter annihilates efficiently resulting in low values
for the relic density. The second resonance occurs at mN1 ∼ mh/2 ≈ 62GeV, as depicted in
the plot.

Figure 16: Cannibal process in which three particles annihilate into two: 3N → N + ϕ.

5.5 One-loop Model Summary

We have proposed a neutrino mass model that generates neutrino masses at one-loop level.
This extension of the SM consists of a discrete Z4 symmetry spontaneously broken to Z2,
with the addition of three singlet fermions Ni, a scalar doublet η, and a scalar singlet σ,
constituting the dark sector of the model. Additionally, we have included a scalar singlet ϕ,
enabling two extra annihilation channels for dark matter when considering a fermionic dark
matter candidate.
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We have derived the mass spectrum for the model and included a numerical analysis where
points reproduce neutrino oscillation data. Furthermore, we have discussed the possibilities
for the dark matter relic density contributions in a fermionic dark candidate scenario, gener-
ating a numerical scan which includes the forbidden and secluded regions, with points repro-
ducing correctly the dark matter relic density and also underabundant dark matter.

Additional relic density scans, the analysis of the cannibal process and a discussion regarding
the cosmological history within the model represent future goals and possibilities, which are
still work in progress at the moment of the realization of this thesis.
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6 Two-Loop Mass Generation Model
In this section, we introduce another proposal for a radiative neutrino mass model, in which
a two-loop mechanism generates Majorana neutrino masses. Given an extra suppression
factor of ( 1

16π2 )
2 due to the two loops, the Yukawa couplings can have a greater value than

in a one-loop mechanism to reproduce the light neutrino masses.

In this model, the SM is extended with a U(1)B−L gauge symmetry, spontaneously broken
to Z3. We include three singlet fermions, a doublet, and a singlet scalar as the dark matter
sector. The lightest of these particles will represent a dark matter candidate, protected by
the preserved Z3 symmetry. We include three fermions along with singlet scalar fields to
have an anomaly free U(1)B−L symmetry, as explained below. We derive the mass spectrum
of the model and study some of its phenomenological implications, such as Lepton Flavor
Violation processes.

6.1 Model and Mass Spectrum

We extend the SM with a gauged symmetry U(1)B−L spontaneously broken into a discrete
symmetry Z3:

SU(2)L × U(1)Y × U(1)B−L → U(1)EM × Z3. (6.1)

The particle content of the model is given in Table 9. The vector-like singlet fermions χL,R,

Fields SU(2)L ⊗ U(1)Y U(1)B−L Z3

Fe
rm

io
ns Li (2,−1/2) −1 1

eRi
(1,−1) −1 1

χ(L,R)j (1, 0) −1/3 ω2

Nk (1, 0) (−4,−4, 5) 1

Sc
al

ar
s

H (2, 1/2) 0 1
η (2, 1/2) 2/3 ω2

ρ (1, 0) 2/3 ω2

ϕ1, ϕ2, ϕ6, ϕ8 (1, 0) (1, 2, 6, 8) 1

Table 9: Particle content of the model with i ∈ {e, µ, τ}, j ∈ {1, 2, 3} and k ∈ {−4,−4, 5},
corresponding to each one of the charges (−4,−4, 5). All the fields listed are SU(3)C singlets.
Particles with non-trivial charges under Z3 correspond to dark matter candidates.

the doublet scalar η and the singlet scalar ρ are dark matter candidates, having non-trivial
charges under Z3. The Nk charges (−4,−4, 5) are assigned to cancel anomalies for the
extra symmetry U(1)B−L (see Appendix A). Consequently, fields ϕ1 and ϕ8 are included to
give masses to Nk, avoiding extra radiation contributions to the universe constrained by
cosmological observations. However, an accidental U(1)′ symmetry emerges when ϕ1 and ϕ8

are added. This symmetry is undesired since it generates an extra Goldstone boson in the
theory. To avoid such accidental symmetry, we include ϕ6. An alternative to this addition
would be considering soft-breaking terms in the Lagrangian, which consist of terms with
couplings of positive mass dimension breaking softly18 the U(1)′ symmetry.

18The idea of softly breaking a symmetry is to break it at low-energies with an explicit term in the
Lagrangian, but with the symmetry conserved at high-energy limits. We will not discuss further in this
thesis. For an example, see [111] in the context of supersymmetry.
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Figure 17: Two-loop Feynman diagram for neutrino mass generation in our model. After SSB,
Majorana neutrino masses are generated. Particles inside the loops are dark matter candidates.

The assigned U(1)B−L charges forbid tree- and one loop-level neutrino masses. The renor-
malizable scalar potential of the model is given by

LV =
∑
i

µ2
i Φ

†
iΦi +

1

2

∑
i,j

λij

(
Φ†

iΦi

)(
Φ†

jΦj

)
+ λ

(
H†η

) (
η†H

)
+
(
ξ1 ρ

3ϕ∗
2 + ξ2 ϕ

∗
6 ϕ

3
2 + ξ3 ϕ

∗
8 ϕ6 ϕ

2
1 + κ1H

†ηρ∗ + κ2 ϕ
2
1 ϕ

∗
2 + κ3 ϕ8 ϕ

∗
6 ϕ

∗
2 + h.c.

)
,

(6.2)

where
Φ ∈ {H, η, ρ, ϕ1, ϕ2, ϕ6, ϕ8}, (6.3)

and
H =

(
H+

H0

)
, η =

(
η+

η0

)
. (6.4)

The explicit scalar potential is displayed in Appendix B. The relevant Yukawa interactions
are

LY ⊂ (Y1)αi Lα η̃ χRi
+ (Y2)ij ρχRi

c χRj
+mχ χLi

χRj
+ h.c., (6.5)

where α = 1, 2, 3. We consider three copies of the fermion χR with no mixing between them.
So we have i = j = 1, 2, 3. A mass term for χ is given as

mχ χLi
χRj

+ h.c. (6.6)

The two-loop diagram for neutrino masses is presented in Fig. 17. To obtain the neutrino
masses, we perform a change to the mass basis.

The scalar dark sector composed by the scalars η0r and ρr, and the pseudoscalars η0i and
ρi, get mixed in the mass basis. After obtaining their mass matrices (see Appendix B), we
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found that the scalar and pseudoscalar dark bosons are degenerate. Therefore, we have two
equal 2× 2 mass matrices given by

MR
DM = MI

DM = MDM =

(
a b
b c

)
, (6.7)

with
a =

1

2

[
v2ϕ1

λ11 + v2ϕ6
λ12 + v2ϕ2

λ13 + v2ϕ8
λ14 + v2H (λ2 + λ3)

]
+ µ2

η,

b =
vH κ2√

2
,

c =
1

2

[
v2ϕ1

λ16 + v2ϕ6
λ17 + v2ϕ2

λ18 + v2ϕ8
λ19 + v2Hλ4

]
+ µ2

ρ.

(6.8)

The mass matrix is diagonalized by a 2× 2 rotation matrix

ODM =

(
cos θ sin θ
− sin θ cos θ

)
, (6.9)

where we have just one mixing angle given by

tan 2θ =
2b

a− c
. (6.10)

Thus, a rotation between the interaction and mass eigenstates R1, R2, I1 and I2 can be done
with (

R1

R2

)
= ODM

(
η0r
ρr

)
and

(
I1
I2

)
= ODM

(
η0i
ρi

)
. (6.11)

The mass for these eigenstates are

m2
R1

= m2
I1
=

1

2

(
a+ c+

√
(a− c)2 + 4b2

)
,

m2
R2

= m2
I2
=

1

2

(
a+ c−

√
(a− c)2 + 4b2

)
.

(6.12)

Therefore
m2

R1
= m2

R2
+∆m2, (6.13)

where ∆m2 is the mass splitting between the two scalars, given by ∆m2 =
√

(a− c)2 + 4b2.
The mass of the charged scalar η± is

m2
η± =

√
a− 1

2
v2Hλ3, (6.14)

where a is defined in eq. (6.8). Finally, the two-loop diagram in the mass basis is shown in
Fig. 18.

6.2 Integral Amplitude

The scalar propagators in Fig. 18 can be one of the four mass eigenstates. To calculate the
total diagram amplitude, we need to sum each possible combination. The amplitude for an
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Figure 18: Two-loop diagram in the mass basis. Here, R1,2 and I1,2 are the scalar and pseudoscalar
mass eigenstates, respectively. The total amplitude corresponds to the sum of all the field com-
binations in the diagram. Vertex and momentum labels are also shown, in the vanishing external
momentum limit.

ABC configuration is

iMABC = V ABC × IABC

= V ABC ×
∫

d4k

(2π)4

∫
d4q

(2π)4
(/k +mχ)(/q +mχ)

(k2 −m2
A)(k

2 −m2
χ)(q

2 −m2
C)(q

2 −m2
χ)[(k + q)2 −m2

B]
.

(6.15)
Here, {A,B,C} represent the left, middle and right propagators emerging from vertex V3,
and they can be any of {R1, R2, I1, I2}. The coefficient V ABC corresponds to the vertex
products in the diagram.

The three relevant interactions are (Y1)αi L̄α η̃ χRi
, (Y2)ij ρχ

c
Ri
χRj

and ξ1 ρ3ϕ∗
2, each one with

its complex conjugate term. Dropping the matrix structure of the Yukawa couplings for now,
we have:

V1 : y1L̄ η̃ χR + h.c.

−→ y1ν̄Lη
0∗χR + h.c. mass basis−−−−−−→ y1ν̄L√

2

(
cθR1 − sθR2 − icθI1 + isθI2

)
χR + h.c., (6.16)

V2 : y2 ρχ
c
R χR + h.c.

mass basis−−−−−−→ y2√
2

(
sθR1 + cθR2 + isθI1 + icθI2

)
χ̄c
RχR + h.c., (6.17)

V3 : ξ1 ρ
3ϕ∗

2 + h.c.

SSB−−→ ξ1

(
ρr + iρi√

2

)3
vϕ2√
2
+ h.c. Mass Basis−−−−−−→ ξ1

4
[(sθR1 + cθR2) + i (sθI1 + cθI2)]

3 vϕ2 + h.c.

= ξ1vϕ2

(
1

2
s3θR

3
1 +

1

2
c3θR

3
2 +

3

2
s2θcθR

2
1R2 +

3

2
c2θsθR

2
2R1 −

3

2
s3θI

2
1R1 −

3

2
s2θcθI

2
1R2

− 3

2
c2θsθI

2
2R1 −

3

2
c3θI

2
2R2 − 3c2θsθI1I2R2 − 3s2θcθI1I2R1

)
. (6.18)

Therefore, depending on the field combination, the vertex coefficient will change accordingly,
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given by

V ABC =
y21 y2 ξ1vϕ2

2
√
2

[
V A
1 (θ)× V B

2 (θ)× V C
1 (θ)× V ABC

3 (θ)
]
. (6.19)

Note that all terms in the V3 vertex are real, which means that diagrams with an odd number
of pseudoscalar fields I are zero, i.e., V IR2

3 = V I3

3 = 0.

Now we evaluate IABC . We have

IABC =

∫
d4k

(2π)4

∫
d4q

(2π)4
(/k +mχ)(/q +mχ)

(k2 −m2
A)(k

2 −m2
χ)(q

2 −m2
C)(q

2 −m2
χ)[(k + q)2 −m2

B]
. (6.20)

The numerator can be written as a trace, giving

Tr{(γµkµ +mχ)(γ
νqν +mχ)} = kµqν Tr{γµγν}+ Tr

{
m2

χ

}
= 4 kµqνηµν + 4m2

χ

= 4 k · q + 4m2
χ

= 4
{1
2
[(k + q)2 − k2 − q2] +m2

χ

} (6.21)

Thus, the integral IABC is:

IABC =
4

(16π2)2

[
m2

χI
(1)
ABC +

1

2

(
I
[(k+q)2]
ABC − I

(k2)
ABC − I

(q2)
ABC

)]
. (6.22)

These integrals can be written in terms of “master integrals” which solution is known, given
in appendix C. After a rescaling in m2

B, we obtain that

1

m2
B

I
(1)
ABC =

1

m2
B

1

(tAB − rB)(tCB − rB)

{
− ĝ(tAB, tCB) + ĝ(rB, tCB) + ĝ(tAB, rB)− ĝ(rB, rB)

}
,

(6.23)

I
(k2)
ABC =

{
1

tCB − rB
[−ĝ(rB, tCB) + ĝ(rB, rB)]

+
tAB

(tAB − rB)(tCB − rB)
[−ĝ(tAB, tCB) + ĝ(tAB, rB) + ĝ(rB, tCB)− ĝ(rB, rB)]

}
,

(6.24)

I
(q2)
ABC =

{
1

tAB − rB
[−ĝ(tAB, rB) + ĝ(rB, rB)]

+
tCB

(tAB − rB)(tCB − rB)
[−ĝ(tAB, tCB) + ĝ(tAB, rB) + ĝ(rB, tCB)− ĝ(rB, rB)]

}
,

(6.25)

I
[(k+q)2]
ABC =

{
B̂′

0(0, rB, tAB) B̂
′
0(0, rB, tCB) +

−ĝ(tAB, tCB) + ĝ(tAB, rB) + ĝ(rB, tCB)− ĝ(rB, rB)

(tAB − rB)(tCB − rB)

}
.

(6.26)
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LFV Process Branching Ratio Present Bound

µ→ eγ 4.2× 10−13 [112]

τ → eγ 3.3× 10−8 [113]

τ → µγ 4.4× 10−8 [113]

µ→ 3e 1.0× 10−12 [114]

τ → 3e 2.7× 10−8 [115]

τ → 3µ 2.1× 10−8 [115]

Table 10: Current experimental upper bounds for the branching ratio of LFV observables.

Here,

rB =

(
mχ

mB

)2

, tAB =

(
mA

mB

)2

, tCB =

(
mC

mB

)2

. (6.27)

Combining all terms, we have the final result for the neutrino mass matrix:

(Mν)αβ =

3∑
i

4 (Y1)iα (Y2)ii (Y1)iβ ξ1vϕ2

2
√
2 (16π2)2

×
∑
ABC

(
V A
1 V B

2 V C
1 V ABC

3

) [(m2
χ)i

m2
B

I
(1)
ABC +

1

2

(
I
[(k+q)2]
ABC − I

(k2)
ABC − I

(q2)
ABC

)]
,

(6.28)
with {A,B,C} all combinations of R1, R2, I1 and I2.

6.3 Lepton Flavor Violation Processes

The previously analyzed model allows for processes with Lepton Flavor Violation (LFV), in
which the flavor lepton number for the charged leptons, displayed in Table 3, is violated.
While neutrino oscillations can be understood as a flavor-violating process, this type of
phenomenon has not been observed for charged leptons. The experimental searches for LFV
processes such as ℓα → ℓβγ and ℓα → 3ℓβ have resulted in upper bounds on their branching
ratios, as showed in table 10. In this section we analyze those processes in the context of
the two-loop model, following the reference [98].

As in the one-loop model of Section 5, the neutrino mass matrix in eq. (6.28) can be rewritten
as

(Mν)αβ =
(
Y T
1 ΛY1

)
αβ
, (6.29)
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Figure 19: Diagrams contributing to LFV process ℓα → ℓβγ.

where the Λ matrix is

Λ =

Λ1 0 0
0 Λ2 0
0 0 Λ3

 , with

Λi =
4 (Y2)ii ξ1vϕ2

2
√
2 (16π2)2

×
∑
ABC

(
V A
1 V B

2 V C
1 V ABC

3

) [(m2
χ)i

m2
B

I
(1)
ABC +

1

2

(
I
[(k+q)2]
ABC − I

(k2)
ABC − I

(q2)
ABC

)]
.

(6.30)
After using again the Casas-Ibarra parametrization, the Yukawa matrix (Y1)iα can be written
as

Y1 =
√
Λ

−1
R
√
m̂ν U

†
PMNS. (6.31)

6.3.1 ℓα → ℓβγ

The process can be described by the effective Lagrangian

Leff =
(µαβ

2

)
ℓ̄βσ

µνℓαFµν , (6.32)

where µβα is a transition magnetic moment. The Feynman diagrams contributing to ℓα →
ℓβγ at lowest order are shown in Fig. 19. It is convenient to define µβα in terms of the dipole
form factor AD as

µβα = emαAD/2, (6.33)

where terms proportional tomβ have been neglected. Here, e is the electromagnetic coupling,
with αem = e2/(4π). The 1-loop contributions lead to [98]:

AD =
3∑

i=1

(Y1)
∗
iβ (Y1)iα

2(4π)2
1

m2
η+
F2(ζi) (6.34)

where ζi ≡ m2
χi
/m2

η+ and the function F2(x) is given in appendix D. The branching ratio for
ℓα → ℓβγ yields

Br(ℓα → ℓβγ) =
3(4π)3 αem

4G2
F

|AD|2 Br(ℓα → ℓβναν̄β), (6.35)

with GF the Fermi constant.
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6.3.2 ℓα → 3 ℓβ

This process, denoted more accurately as ℓα → ℓβ ℓ̄βℓβ, has four types of contributions at
lowest order. These are γ-penguins, Z-penguins, Higgs penguins and box diagrams. Higgs-
penguins diagrams are suppressed by the small Yukawa coupling of leptons µ and e, so
they will be neglected. The contributing Feynman diagrams are displayed in Fig. 20 and
Fig. 21.

Figure 20: Penguin diagrams contributing to LFV process ℓα → 3ℓβ . The boson exchange can be
either a photon or a Z boson.

Figure 21: Box diagrams contributing to LFV process ℓα → 3ℓβ .

Following the notation of [98], which is itself inspired in [116, 117], we label the momenta as
ℓα(p) → ℓβ(k1)ℓ̄β(k2)ℓβ(k3). Then, neglecting factors suppressed by charged lepton masses,
the γ-penguin diagrams in Fig. 20 give

iMγ =ie2AND ū(k1)γ
µPL u(p)ū(k3)γµv(k2)

+ ie2
mα

q2
AD ū(k1)σ

µνqνPR u(p)ū(k3)γµv(k2)− (k1 ↔ k3),
(6.36)

where q ≡ k1 − p is the photon momentum. The coefficient AND corresponds to photonic
non-dipole contributions and is given by

AND =
3∑

i=1

(Y1)
∗
iβ (Y1)iα

6(4π)2
1

m2
η+
G2(ζi), (6.37)

where the loop function G2(x) is defined in appendix D. Considering now the Z-penguin
diagrams, the amplitude can be written as

iMZ =
iF

m2
Z

ū(k1)γ
µ PR u(p)ū(k3)γµ

(
gℓLPL + gℓRPR

)
v(k2)− (k1 ↔ k3) , (6.38)
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where
gℓL =

g2
cos θW

(
1

2
− sin2 θW

)
and gℓR = − g2

cos θW

(
sin2 θW

)
, (6.39)

are the couplings between the Z boson and the charged leptons, with g2 the SU(2)L gauge
coupling and θW the weak mixing angle. The coefficient F is given by

F =
3∑

i=1

(Y1)iβ (Y1)iα
2(4π)2

mαmβ

m2
η+

g2
cos θW

F2(ζi). (6.40)

For ℓα → 3 ℓβ, Z-penguins diagrams are suppressed by the product of masses mαmβ, so the
main contributions come from γ-penguins and box diagrams. For the latter, the amplitude
reads

iMbox = ie2B [ū(k3)γ
µPL v(k2)][ū(k1)γµPL u(p)]. (6.41)

The coefficient B is defined as

B =
1

e2(4π)2m2
η+

×
3∑

i,j=1

[
1

2
D1 (ζi, ζj) (Y1)

∗
jβ(Y1)jβ(Y1)

∗
iβ(Y1)jα +

√
ζiζj D2 (ζi, ζj) (Y1)

∗
jβ(Y1)

∗
jβ(Y1)iβ(Y1)iα

]
,

(6.42)
where the loop functions D1 (ζi, ζj) and D2 (ζi, ζj) are given in Appendix D.

Finally, the branching ratio is

Br
(
ℓα → ℓβ ℓ̄βℓβ

)
=
3(4π)2α2

em

8G2
F

[
|AND|2 + |AD|2

(
16

3
log

(
mα

mβ

)
− 22

3

)
+

1

6
|B|2

+
1

3

(
2|FRR|2 + |FRL|2

)
+

(
−2ANDA

∗
D +

1

3
ANDB

∗ − 2

3
ADB

∗ + h.c.

)]
× Br (ℓα → ℓβναν̄β) ,

(6.43)
where

FRR =
F gℓR

g22 sin
2 θW m2

Z

and FRL =
F gℓL

g22 sin
2 θW m2

Z

. (6.44)

6.3.3 Parameter Scan

Once we have defined the required functions, we can make a scan in the parameters to
obtain the branching ratios in our model. First, we obtain the Yukawa matrix with eq.
(6.31), assuming normal ordering, a light mass of mν1 = 10−3 eV, and assigning a random
value for oscillation parameters in the 3σ range from table 4. This ensures that our Yukawa
couplings can reproduce correctly neutrino masses and oscillation data. The values assigned
for the other free parameters in the model are shown in table 11. In order to maintain χ
as the dark matter candidate of the model, the maximum possible value for its mass is the
minimum value of the mass of the scalar particle R2. The parameter θ is selected to be
small, indicating minimal mixing between the mass and flavor eigenstates of the scalar and
pseudoscalar particles in the model.
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Parameter Input

mν1 10−12GeV

Y2 0.001

ξ1 vϕ2 1GeV

λ3 −0.003

θ [0.01, 0.7]

mR2 [1, 5] TeV

∆m [10, 100] GeV

mχ [10,min(mR2) ] GeV

Table 11: Input parameters for the scan of the branching ratios.

In Fig. 22, the branching ratios for ℓα → ℓβγ and ℓα → 3 ℓβ are plotted as function of mχ.
For the chosen input parameters, all the branching ratios are below the experimental limits
specified in Table 10. The couplings Y2 and ξ1vϕ2 can be lowered or increased to obtain
more or less suppressed results. Fig. 23 shows the correlation between the branching ratio
and the Yukawa entries for µ → eγ and µ → 3e. As the Yukawa coupling Y1 decrease, the
branching ratio gets more suppressed. The values for the branching ratio of ℓα → 3ℓβ are
more constrained with respect to ℓα → ℓβγ.
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(a) Branching ratio µ → eγ vs mχ. (b) Branching ratio µ → 3e vs mχ.

(c) Branching ratio τ → eγ vs mχ. (d) Branching ratio τ → 3e vs mχ.

(e) Branching ratio τ → µγ vs mχ. (f) Branching ratio τ → 3µ vs mχ.

Figure 22: Branching Ratios for LFV processes ℓα → ℓβγ and ℓα → 3ℓβ vs fermion mass mχ.
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(a) Branching ratio µ → eγ vs Tr (Y †
1 Y1). (b) Branching ratio µ → 3e vs Tr (Y †

1 Y1).

Figure 23: Branching Ratios for LFV processes vs the trace of the product of the Yukawa matrix.

6.4 Two-loop Model Summary and Perspectives

In this section, we have proposed a radiative neutrino mass model, generating Majorana
neutrino masses at two-loop order. This extension consists of a gauge U(1)B−L symmetry
spontaneously broken to Z3, which stabilizes the dark matter. We have included three singlet
fermions χj, one doublet scalar η and one singlet scalar ρ constituting the dark sector of the
model. We also have included a singlet scalar ϕ2 which participates in the neutrino mass
mechanism, and the three singlet fermions N(−4,−4, 5) along with the singlet scalars ϕ1,8 to
ensure an anomaly free symmetry, and to give masses to Nk avoiding radiation contributions
to the universe. An additional singlet scalar ϕ6 is included to break an accidental U(1)
symmetry.

We have derived the mass spectrum for the model, obtaining degenerate masses for the scalar
and pseudoscalar fields. We have made a numerical analysis regarding LFV processes. We
obtained that these processes are suppressed in the model given our numerical scan.

The dark matter and Z ′ phenomenology discussion of the model is still pending. The im-
plementation of the model in SARAH, SPheno and micrOmegas to make a complete numerical
analysis represent future perspectives to be explored. In particular, it is of interest a numer-
ical scan including constraints of the dark matter relic density in a fermionic or scalar dark
matter scenario.

An alternative option under consideration is to consider N(−1,−1,−1) instead of N(−4,−4, 5) to
avoid the scalar fields ϕ1,6,8. This choice would allow mass terms at tree level, resulting
in a seesaw type-I mechanism along with the two-loop mechanism contributing to neutrino
masses. However, the seesaw type-I can be suppressed considering small couplings and heavy
masses for N , thereby making the two-loop mechanism the primary contribution.

This project with its perspectives is still work in progress at the moment of the realization
of the present thesis.
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7 Dirac Neutrinos Phenomenology with Texture Zeros
In the previous section, a new model assuming Majorana neutrinos was proposed and some
of its phenomenological implications were studied. A different approach to study neutrinos
phenomenology is making approximations or assumptions directly in the neutrino mass ma-
trix in a model-independent way. By this means, correlations between the parameters in the
matrix can be obtained. One example is the zero textures approach, in which some entries
of the neutrino mass matrix are set to zero, deriving correlations between oscillation param-
eters. This can be applied either to Dirac or Majorana neutrinos, each case with its own
implications. In this section, two-zero textures for Dirac neutrinos are studied on the charged
lepton diagonal mass basis and assuming the neutrino mass matrix to be Hermitian.

7.1 Two-zero textures

The number of vanishing elements and their position determines the type of texture. Nat-
urally, not all textures will be allowed by experimental observations. With one vanishing
element, the Majorana neutrino case gives one zero equation and is compatible with the
oscillation data. For two vanishing elements, only some cases are consistent with the ex-
perimental data [118]. Three or more vanishing elements are too restrictive and therefore
excluded. In the case of Dirac neutrinos with a Hermitian mass matrix, there are 15 possible
textures for two vanishing elements19:

A1 :

0 0 x
0 x x
x x x

 , A2 :

0 x 0
x x x
0 x x

 ; (7.1)

B1 :

x x 0
x 0 x
0 x x

 , B2 :

x 0 x
0 x x
x x 0

 , B3 :

x 0 x
0 0 x
x x x

 , B4 :

x x 0
x x x
0 x 0

 ; (7.2)

C :

x x x
x 0 x
x x 0

 ; (7.3)

D1 :

x x x
x 0 0
x 0 x

 , D2 :

x x x
x x 0
x 0 0

 ; (7.4)

E1 :

0 x x
x 0 x
x x x

 , E2 :

0 x x
x x x
x x 0

 , E3 :

0 x x
x x 0
x 0 x

 ; (7.5)

F1 :

x 0 0
0 x x
0 x x

 , F2 :

x 0 x
0 x 0
x 0 x

 , F3 :

x x 0
x x 0
0 0 x

 . (7.6)

19Note that a vanishing element (Mν)ij = 0 implies (Mν)ji = 0 since we are assuming Mν to be Hermitian.
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We follow the notation for Majorana neutrinos given in [118]. In Eqs. (7.1)-(7.6), x represents
a non-vanishing entry.

Several studies have examined the texture zeros for Majorana neutrinos [119–124]. The
phenomenological implications of texture zeros for the Dirac scenario in the diagonal charged
lepton mass matrix basis were also studied previously [125–127]. The purpose of taking this
approach is to relate the observables based on the analytical expressions derived from the
vanishing elements. This is achieved using a numerical technique based on a scanning in the
parameters inside the 3σ region of the Global Fit presented in Table 4.

The following sections provide an overview of the general approach and some implications
of the previous textures in normal ordering (NO) and inverted ordering (IO) of the neutrino
mass spectrum. Finally, the numerical analysis and the correlations resulting from the
numerical analysis for the favored textures are presented.

7.2 General Approach

In the charged lepton diagonal mass basis, the Hermitian Dirac neutrino mass matrix Mν is
diagonalized by the PMNS matrix as20

U †
PMNSMν UPMNS = m̂ν ≡

m1 0 0
0 m2 0
0 0 m3

 . (7.7)

The parametrization for UPMNS is the same of Eq. (3.30):

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 . (7.8)

From Eq. (7.7), we can write the neutrino mass matrix as

Mν = UPMNS m̂ν U
†
PMNS. (7.9)

The right-hand side of Eq. (7.9) depends only on the neutrino mixing angles, the CP-violating
phase, and the neutrino masses. From here, it is clear that in Eq. (7.9), a zero on the
left-hand side will imply an equation relating neutrino masses with the CP-phase and the
neutrino mixing angles.

The Dirac mass matrices in the SM are arbitrary 3× 3 matrices. However, due to the polar
theorem of linear algebra, it can be written as the product of a Hermitian matrix times a
unitary matrix [128]. Moreover, this unitary matrix can be absorbed in a redefinition of the
right-handed fields, since there are no constraints for the form of these fields in the SM. In
this way, we can take the neutral mass matrix for Dirac neutrinos to be Hermitian without
losing generality.

We have six real numbers and three phases as parameters in a 3 × 3 Hermitian matrix.
Now, using a weak basis transformation, we can reduce the number of phases from three to
one, obtaining an Hermitian matrix with six real parameters and just one phase, enough to

20Note the difference with Eq. (5.34), where the Majorana neutrino mass matrix is diagonalized by
UT

PMNS Mν UPMNS.
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accommodate the seven physical parameters, namely, the three neutrino masses, the three
mixing angles, and the CP-violating phase.

Imposing to zero an element in the neutrino mass matrix reduces the number of free param-
eters. One texture zero establishes a single relationship between physical parameters, i.e.,
mixing angles, and neutrinos masses. With two vanishing elements, there are two relations.
It is important to note that these relationships may or may not agree with the current ex-
perimental oscillation data. The phenomenology of each texture should be studied to see
this compatibility.

7.2.1 Numerical Analysis

We obtain a system of two equations (the corresponding to the vanishing entries of Mν),
i.e., (Mν)ij ≡ Mij = 0 and (Mν)kl ≡ Mkl = 0 with ij ̸= kl. These equations allow us to
write two neutrino masses as functions of the other neutrino mass (we choose the lightest)
and the neutrino oscillation parameters. For NO (IO), the equations are of the form:

ηm1Ui1U
∗
1j + κm2Ui2U

∗
2j +m3Ui3U

∗
3j = 0,

ηm1Uk1U
∗
1l + κm2Uk2U

∗
2l +m3Uk3U

∗
3l = 0,

(7.10)

where η and κ are the relative m1 and m2 signs respect to m3. The eigenvalues of a Hermitian
matrix are always real. As the masses correspond to the eigenvalues of the neutrino mass
matrix, they must take real values. Consequently, the permissible values of δ in Eqs. (7.10)
are constrained by the realness of the neutrino masses. The result will indicate whether or
not CP is conserved:

• CP violation: The neutrino mass matrices with all the zeroes in the diagonal allow
CP violation. In such a case, i = j and k = l, and the Eqs. (7.10) are both real, no
matter the value of the δ CP phase. The textures that allow CP violation are C, E1,
and E2 in Eqs. (7.3) and (7.5).

• CP conservation: All the remaining textures lead to CP conservation. In Eq. (7.10),
the realness of the neutrino masses forces δ to take the values 0 or π.

We use the squared mass differences to write two masses in terms of the lightest neutrino
mass:

∆m2
21 = m2

2 −m2
1,

∆m2
31 = m2

3 −m2
1.

(7.11)

We then give random values to the square mass differences in the 3σ range from the neutrino
oscillations global fit [68]. After this, we assign numerical values to the lightest neutrino
masses.

Three textures are found to be compatible with the current neutrino oscillation data. Two
textures, A1 and A2, are CP conserving (those textures have an off-diagonal vanishing matrix
element) and are compatible only for normal ordering. The third one is texture C. This
texture is compatible with CP violation for both neutrino mass hierarchies.

In the next section, the results for textures A1, A2, and C are presented.
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(a) sin2 θ12 vs. sin2 θ23 for texture A1 in NO. (b) sin2 θ23 vs. δ for texture A1 in NO.

(c)
∑

mν vs. sin2 θ12 for texture A1 in NO.

Figure 24: Correlations for texture A1 (Mee = Meµ = 0) in NO. Plots 24a and 24b have contours
corresponding to the 3σ, 2σ, and 1σ along with the best fit point provided by the Global Fit
Collaboration [68]. Points in lighter pink represent solutions inside the contours also consistent
with the upper mass limits [35], [12] and [129].

7.3 Allowed Textures

From all the possible Dirac neutrino Hermitian mass matrices with two vanishing elements,
only three of these textures are compatible with current experimental data. Textures A1
and A2 are compatible with the normal ordering of the neutrino masses, and texture C
is compatible with both hierarchies. These textures show clear correlations between some
observables depending on the particular texture. The results of the neutrino phenomenology
concerning such correlations are presented in Figs. 24-27. The mass values are compared
with the upper limits from KATRIN collaboration [35] (mν < 1.1 eV, with mν being the
absolute mass scale for neutrinos), PLANCK collaboration [12] (

∑
mν < 0.12 eV) and the

most constraining bound up to date from cosmology of
∑
mν < 0.09 eV [129].
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(a) sin2 θ12 vs. sin2 θ23 for texture A2 in NO. (b) sin2 θ23 vs. δ for texture A2 in NO.

(c)
∑

mν vs. sin2 θ12 for texture A2 in NO.

Figure 25: Correlations for texture A2 (Mee = Meτ = 0) in NO. The 3σ, 2σ, 1σ contours and the
best fit point are shown in Figs. 25a and 25b. Points in lighter pink represent solutions inside the
contours also consistent with the bounds from [35], [12] and [129].

7.3.1 Texture A1

This texture is only compatible with inverse hierarchy. This restriction arises from the
requirement for real masses, which constrains δ to be either π or 0. However, neither of
these values falls within the 3σ range for the inverted ordering. The solutions found in the
3σ scan for this texture are presented in Fig 24. Points printed in lighter pink are solutions
inside the global fit contour corresponding to 3σ, also consistent with PLANCK, KATRIN
and the cosmological upper mass limit. Fig. 24a displays a correlation between the solar and
atmospheric mixing angles, showing a wide region of overlap with the Global Fit contours.
As the parameter sin2 θ12 increases, there is a corresponding increase in sin2 θ23. In Fig. 24b,
δ = π indicates CP conservation. Fig. 24c shows the correlation between

∑
mi and the solar

mixing angle. For this texture, the mass values are consistent with all the upper limits.
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(a) sin2 θ23 vs. δ for texture C in IO. (b)
∑

mν vs. sin2 θ12 for texture C in IO.

Figure 26: Correlations for texture C (Mµµ = Mττ = 0) in IO. The 3σ, 2σ, and 1σ contours and
the best fit point are shown for Fig. 26a. The red vertical line in Fig. 26b represents the upper
constraint given by the PLANCK collaboration [12]. Points inside the contours that fulfill this
condition are shown in cyan color for both plots. Points in purple represent solutions inside the
contours also consistent with the KATRIN limit, but not with PLANCK.

(a) sin2 θ23 vs. δ for texture C in NO. (b)
∑

mν vs. sin2 θ12 for texture C in NO.

Figure 27: Correlation for texture C (Mµµ = Mττ = 0) in NO. The 3σ, 2σ, and 1σ contours and
the best fit point are shown in Fig. 27a. Points in purple represent solutions inside the contours
also consistent with the KATRIN limit, but not with PLANCK.

7.3.2 Texture A2

As in the previous case, this texture is only compatible with normal ordering for the neutrino
masses. The solutions for this texture are displayed in Fig 25. The correlation between the
solar and atmospheric mixing angles is shown in Fig. 25a. In contrast to texture A1, a
decreasing in sin2 θ23 implies an increasing in sin2 θ12. Fig. 25b indicates CP conservation.
The overlap with the contours is also limited to greater values for the angles in this case. In
Fig. 25c, the mass correlation is displayed, showing mass values lower than those in texture
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A1. This is consistent with the upper limits as well.

7.3.3 Texture C in Inverse Ordering

The correlation between the atmospheric angle and the CP phase is displayed in Fig. 26a for
the inverse ordering. Solutions inside the contours give a value for the CP phase δ ≈ 3π/2,
leading to CP violation. Fig. 26b shows the negative correlation of the solar mixing angle
with

∑
mi. Mass values printed in purple are consistent only with the bound from KATRIN,

while cyan points are also consistent with the PLANCK bound. However, all points are ruled
out by the limit imposed by the Cosmological bound from [129].

7.3.4 Texture C in Normal Ordering

Fig. 27a shows the correlation between the atmospheric angle and the CP phase for normal
ordering. Compared to inverse ordering, there is a higher range for CP-phase values inside
the contours. Also, the maximal θ23 ≈ π/4 is preferred, implying quasi-degeneration between
neutrino masses. The correlation between the reactor mixing angle and

∑
mi is displayed

in Fig 27b. The mass values are greater than those in inverse ordering, consistent only with
the KATRIN limit.

7.4 Summary

Our results, as those in [126], found that textures A1, A2, and C are compatible with the
current experimental neutrino oscillation data. However, the correlation for δ vs. sin2 θ23 in
texture C with IO are different from those in [126] . The work in [127] considers two-zero
textures with Hermitian and non-Hermitian Dirac neutrino mass matrices. In the Hermitian
case, they found that textures A1 and C are allowed, while A2 is ruled out.

In summary, the cases compatible with the experimental data are textures A1 and A2 for
normal ordering and C for both hierarchies. Textures A1 and A2, with normal ordering,
predict CP conservation, while texture C predicts CP violation in both hierarchies. Texture
C, with normal ordering, leads to quasi-degenerate neutrino masses.
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8 Conclusions
The Standard Model (SM) was originally formulated considering massless neutrinos, since
no evidence for their masses were available at that time. Having only upper mass limits as
indication, the assumption of massless left-handed neutrinos was enough to describe weak
interactions, as discussed in Section 2. However, with the subsequent discovery of neutrino
oscillations, it became evident that neutrinos must be massive.

The observation of oscillating neutrinos represents a direct evidence of Beyond the Standard
Model (BSM) physics, where the need for a mechanism to generate neutrino masses arises.
To consider massive neutrinos in the SM, the addition of a right-handed neutrino or the
assumption of neutrinos being Majorana-type particles can be used. However, as pointed
out in Section 3, doing so does not explain why the neutrino masses are at least six orders of
magnitude smaller than the electron mass, according to current experimental limits.

In this regard, the SM can be extended to explain the smallness of neutrino masses. In
Section 4, we learned that neutrino masses can be generated either at tree-level or through
radiative mechanisms. The advantage of a radiative mass generation mechanism is an extra
suppression factor for each loop, providing a natural explanation for small masses. Moreover,
extensions of the SM can also incorporate a dark matter candidate, linking the neutrino mass
problem with the unknown nature of the dark sector, whose existence is also evidence for
BSM physics.

With these considerations, we have proposed two radiative models for Majorana neutrino
masses: one at the one-loop level and the other at the two-loop level, presented in Sections 5
and 6.

In the first one, we extended the SM with a discrete symmetry Z4, introducing three fermions
Ni and a doublet scalar η with charges i under the new symmetry. Being protected by
charge conservation of a conserved Z2, the lightest of these particles represents a dark matter
candidate. Through a numerical scan, we found that the parameter spectrum can reproduce
neutrino oscillation data, using the inputs from Table 7. This extension is similar to the
Scotogenic model, with the difference lying in the addition of a real singlet scalar ϕ. This
scalar gives mass to the fermions Ni and also allows for an extra annihilation channel 2N →
2ϕ and 2N → 2SM through ϕ exchange, contributing to the dark matter relic density
without the experimental constraints on the Yukawa interaction coming from LFV processes.
Additionally, under the kinematic condition mN > mϕ/2, a cannibal process 3N → N +ϕ is
possible. A numerical scan in the parameter spectrum for the relic abundance is presented,
where two regions, forbidden and secluded, are briefly discussed.

The second model also considers Majorana neutrino masses, but now the SM is extended
with an anomaly free gauged U(1)B−L symmetry, which spontaneously breaks into a Z3.
The dark sector involves a scalar doublet η, a singlet scalar ρ and a vector-like fermion χ.
Additionally, three fermions Nk with B − L charges of (−4,−4, 5) are introduced to the
theory, ensuring anomaly cancellations. To provide masses for these fermions and prevent
accidental symmetries, four extra singlet scalars are included.

In this model, masses are generated at the two-loop level, leading to the possibility of greater
values for the Yukawa couplings due to the extra suppression factor of (16π2)2 in the denom-
inator. Its phenomenological implications include the possibility of lepton flavor-violating
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processes. We have computed the branching ratio for ℓα → ℓβγ and ℓα → 3ℓβ, obtaining
results consistent with current experimental bounds. The phenomenology of the dark sector,
which includes the physics of Z ′, is still pending for this model.

On the other hand, in Section 7, we explored a different approach to studying neutrino
phenomenology. We employed the texture zeros method, where specific entries of the neu-
trino mass matrix are set to zero, implying correlations between oscillation parameters. We
specifically investigated the case of two-zero textures for Dirac neutrinos.

With this study, we have found that textures (1, 1) = (1, 2) = 0 and (1, 1) = (1, 3) = 0
(referred to as A1 and A2 textures) in Normal Ordering, and (2, 2) = (3, 3) = 0 (referred to
as the C texture) in Inverse and Normal Ordering, are compatible with recent experimental
data and some upper mass limits for Dirac neutrinos. These textures show correlations
between several oscillation parameters, consistent with the σ contours of the Global Fit
[68]. Textures A in normal hierarchy predict CP conservation, while texture C predicts CP
violation in both hierarchies. C texture in NO leads to quasi-degenerate neutrino masses.
Incoming experiments should increase the precision for neutrino mixing parameters, enabling
to discard or favor some of the previous textures with more certainty.

In summary, we have studied neutrino masses and phenomenology both with SM extensions
and with the texture zeros approach. We have proposed two models that reproduce neutrino
oscillation data and have dark matter candidates. With the two-zero textures, we have found
allowed textures according to current experimental data.
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A Anomalies
In this Appendix, we shortly review some aspects of anomalies in the SM and U(1) extensions
of the SM. Rather than provide a rigorous proof and calculation, we mainly describe the
general idea and present the anomaly cancellation constraints that we use. For a more
comprehensive yet understandable review of quantum anomalies, we refer to, for example,
[130], which inspired the discussion in this appendix.

An anomaly occurs when a symmetry is conserved at classical level but not at quantum
level, coming from the same Lagrangian. In such cases, that symmetry is said to be anoma-
lous. From Noether’s theorem, a continuous symmetry implies a conserved current. If a
symmetry is anomalous, then it is not actually a symmetry and the associated current will
not be conserved. Therefore, in quantum field theory, gauge symmetries must be anomaly
free, since the non-conservation of currents associated to those symmetries could imply uni-
tarity violation. This restriction is strong and constraints the assigned charges to fermions,
implying also a quantized electric charge, as we will see below.

Anomalies of gauge symmetries are called gauge anomalies. Global anomalies, coming from
global symmetries, do not lead to inconsistencies in quantum theory21. Actually, there exist
global anomalies in the SM. One example is baryon number, whose associated symmetry is
U(1)B. The symmetry U(1)B being anomalous implies baryon number violation, which is in
fact a necessary condition to explain baryon asymmetry in the universe [18].

On the other hand, the need for absence of gauge anomalies in the SM imposes strong
restrictions on the fermions. These restrictions arise from the calculation of the anomalies
using triangle diagrams as shown in Figure 28. This diagram originally represented the

Figure 28: Triangle diagram resulting in chiral anomalies. The internal propagators are fermion
particles, whereas the external legs are a combination of gauge boson fields corresponding to the
SU(3)C , SU(2)L and U(1)Y interactions.

decay process of π0 → γ γ. When the decay rate was successfully computed, it was shown
that axial symmetry was broken by quantum corrections, leading to a chiral anomaly [131,
132].

In diagram 28, the propagators are fermions and each corner is a vertex with a coupling to
21When a symmetry is said to be anomaly free, means absence of gauge anomalies only.
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an external gauge field. These gauge fields couple to both the vector current ψγµψ and the
axial current ψγ5γµψ. Depending on the gauge fields, different constraints regarding the SM
symmetries are obtained. When all the three considered bosons are Bµ, with Bµ the gauge
boson associated to U(1)Y , the gauge anomaly reads

U(1)3Y :
∑
L

Y 3
l −

∑
R

Y 3
R. (A.1)

The full amplitude for the diagram considers left- and right-handed particles. The minus sign
corresponds to a flip from left- to right-handedness through γ5. This anomaly is represented
as the U(1)3Y anomaly, and its vanishing requires

0 =
(
2Y 3

L − Y 3
e − Y 3

ν

)
+ 3

(
2Y 3

Q − Y 3
u − Y 3

d

)
. (A.2)

Here, YL, Ye, Yν , YQ, Yu and Yd are the hypercharges for the left-handed leptons, right-handed
charged leptons, right-handed neutrinos, left-handed quarks, right-handed up-type quarks
and right-handed down-type quarks. If we check the hypercharges for these particles from
Table 1, and recalling that right-handed neutrinos must be singlets under the SM, we can
see that the U(1)3Y anomaly actually vanishes.

By group theory properties, any anomaly involving exactly one factor of SU(2) or SU(3)
vanishes. An SU(3)C anomaly also vanishes since QCD is non-chiral. The remaining anoma-
lies to be cancelled are SU(3)2C U(1)Y and SU(2)2L U(1)Y . An extra anomaly emerges from
gravity interactions, grav2 U(1)Y , where the mediating gauge boson is the graviton. As all
anomalies involve the U(1)Y symmetry, four constraints are derived for the fermion hyper-
charges, displayed in Table 12.

Anomaly Constraint

U(1)3Y (2Y 3
L − Y 3

e − Y 3
ν ) + 3

(
2Y 3

Q − Y 3
u − Y 3

d

)
= 0

SU(3)2C U(1)Y 2YQ − Yu − Yd = 0

SU(2)2L U(1)Y YL + 3YQ = 0

grav2 U(1)Y (2YL − Ye − Yν) + 3 (2YQ − Yu − Yd) = 0

Table 12: Anomaly constraints on the hypercharges of SM particles.

The constraint YL + 3YQ = 0 means that the electron must have exactly the same electric
charge as the proton, implying that the electric charge is quantized. A general solution to
the equations of Table 12 is

YL = −a
2
− b, Ye = −a− b, Yν = −b,

YQ =
a

6
+
b

3
, Yu =

2a

3
+
b

3
, Yd = −a

3
+
b

3
,

(A.3)
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for any a and b. In the SM, the solution is a = 1 and b = 0.

Lets consider now an extension of the SM, with an extra U ′(1) symmetry with charges Y ′
i .

For anomalies to cancel, all conditions in Table 12 must hold with Yi → Y ′
i . In addition,

U(1)2Y U(1)Y ′ and U(1)Y U(1)
2
Y ′ anomalies must cancel. The only possibility for Y ′

i is to
satisfy Eq. (A.3) with Yi → Y ′

i . Taking now the orthogonal solution, a = 0 and b = 1,
gives

Y ′
L = Y ′

e = Y ′
ν = −1, Y ′

Q = Y ′
u = Y ′

d =
1

3
, (A.4)

thus having a charge −1 for leptons and 1/3 for quarks. This assignment corresponds to
the group U(1)B−L, introduced in Subsection 2.5. Therefore, the symmetry U(1)B−L is not
anomalous and can be promoted to be local.

In Section 6, the charges (−4,−4,−5) under U(1)B−L are assigned to three right-handed
neutrinos in the two-loop model. This is done in order to avoid Dirac mass terms at tree-
level. It can be shown that this charge assignment is also a valid solution for anomaly
cancellation. Let us take the U(1)3Y ′ anomaly constraint:

U(1)3Y ′ :
∑
L

Y ′3
l −

∑
R

Y ′3
R . (A.5)

Quarks do not contribute to the anomaly, since the baryon number assignation remains as
1/3. Then, substituting the corresponding charges for leptons we obtain

U(1)3Y ′ :
∑

Y ′3
L −

∑
Y ′3
e −

∑
Y ′3
ν

= 6(−1)3 − 3(−1)2 − (−4)3 − (−4)3 − (5)3

= 0.

(A.6)

A similar check can be made for the grav2 U(1)Y anomaly. Other anomalies do not involve
right-handed neutrinos and therefore remain vanished. The anomalies U(1)2Y U(1)Y ′ and
U(1)Y U(1)

2
Y ′ vanish as in the case (A.4), due to Yν = 0. Finally, a vector-like fermion (as χ

in the two-loop model) do not contribute to U ′(1) anomalies since the left- and right-handed
parts cancel each other.
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B Two-loop Model: Full Potential Treatment
In this Appendix, we review the full potential of the model described in Section 6. Opening
Eq. 6.2, we obtain the full expression:

LV =µ2
H H

†H + µ2
η η

†η + µ2
ρ ρ

∗ρ+ µ2
ϕ1
ϕ∗
1ϕ1 + µ2

ϕ2
ϕ∗
2ϕ2 + µ2

ϕ6
ϕ∗
6ϕ6 + µ2

ϕ8
ϕ∗
8ϕ8

+ λ1 (H
†H)2 + λ2

(
H†H

) (
η†η
)
+ λ3

(
H†η

) (
η†H

)
+ λ4

(
H†H

)
(ρ∗ρ) + λ5

(
H†H

)
(ϕ∗

1ϕ1)

+ λ6
(
H†H

)
(ϕ∗

6ϕ6) + λ7
(
H†H

)
(ϕ∗

2ϕ2) + λ8
(
H†H

)
(ϕ∗

8ϕ8) + λ9
(
η†η
)2

+ λ10
(
η†η
)
(ρ∗ρ)

+ λ11
(
η†η
)
(ϕ∗

1ϕ1) + λ12
(
η†η
)
(ϕ∗

6ϕ6) + λ13
(
η†η
)
(ϕ∗

2ϕ2) + λ14
(
η†η
)
(ϕ∗

8ϕ8) + λ15 (ρ∗ρ)2

+ λ16 (ρ∗ρ) (ϕ∗
1ϕ1) + λ17 (ρ∗ρ) (ϕ∗

6ϕ6) + λ18 (ρ∗ρ) (ϕ∗
2ϕ2) + λ19 (ρ∗ρ) (ϕ∗

8ϕ8) + λ20 (ϕ
∗
1ϕ1)

2

+ λ21 (ϕ
∗
1ϕ1) (ϕ

∗
6ϕ6) + λ22 (ϕ

∗
1ϕ1) (ϕ

∗
2ϕ2) + λ23 (ϕ

∗
1ϕ1) (ϕ

∗
8ϕ8) + λ24 (ϕ

∗
6ϕ6)

2

+ λ25 (ϕ
∗
6ϕ6) (ϕ

∗
2ϕ2) + λ26 (ϕ

∗
1ϕ1) (ϕ

∗
8ϕ8) + λ27 (ϕ

∗
2ϕ2)

2 + λ28 (ϕ
∗
2ϕ2) (ϕ

∗
8ϕ8) + λ29(ϕ

∗
8ϕ8)

2

+
(
ξ1 ρ

3ϕ∗
2 + ξ2 ϕ

∗
6 ϕ

3
2 + ξ3 ϕ

∗
8 ϕ6 ϕ

2
1 + κ1H

†ηρ∗ + κ2 ϕ
2
1 ϕ

∗
2 + κ3 ϕ8 ϕ

∗
6 ϕ

∗
2 + h.c.

)
.

(B.1)
Here, the Higgs and the scalar doublet η are

H =

(
H+

H0

)
and η =

(
η+

η0

)
. (B.2)

The scalar fields in Eq. (B.1) are complex. After SSB, the next substitution is made in the
potential:

H0 → 1√
2

(
vH + h0R + i h0I

)
,

η0 → 1√
2

(
vη + η0R + i η0I

)
,

ρ→ 1√
2
(vρ + ρR + i ρI) ,

ϕj →
1√
2

(
vϕj

+ ϕjR + i ϕjI

)
,

(B.3)

with j = 1, 2, 6, 8. Then, we find the tadpole equations given by

∂V

∂vΨ

∣∣∣∣∣
Ψ=0

= 0. (B.4)

where Ψ is one each of the fields and vΨ is its VEV. Eq. (B.4) will give us a tadpole equation
for each field. For η we obtain

η :
1

2

[
vη
(
v2ρλ10 + v2ϕ1

λ11 + v2ϕ6
λ12 + v2ϕ2

λ13 + v2ϕ8
λ14 + 2v2ηλ9 + 2µ2

η + 2v2ηλ9 + 2µ2
η

)
+v2Hvη (λ2 + λ3) +

√
2vHvρκ2

]
= 0.

(B.5)

For ρ, we have

ρ :
1

2

[
vρ
(
3vρvϕ2ξ1 + v2ηλ10 + 2v2ρλ15 + v2ϕ1

λ16 + v2ϕ6
λ17 + v2ϕ2

λ18 + v2ϕ8
λ19 + v2Hλ4 + 2µ2

ρ + 2µ2
ρ

)
+
√
2vHvηκ2

]
= 0.

(B.6)
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One possible solution to both equations is setting vη = vρ = 0 simultaneously. With this
election, the other tadpole equations lead to

µ2
H = −

2v3Hλ1 + vHv
2
ϕ1
λ5 + vHv

2
ϕ6
λ6 + vHv

2
ϕ2
λ7 + vHv

2
ϕ8
λ8

2vH
, (B.7)

µ2
ϕ1

=

−
2vϕ1vϕ6vϕ8ζ3 + 2

√
2vϕ1vϕ2κ1 + 2v3ϕ1

λ20 + vϕ1v
2
ϕ6
λ21 + vϕ1v

2
ϕ2
λ22 + vϕ1v

2
ϕ8
λ23 + v2Hvϕ1λ5

2vϕ1

,

(B.8)
µ2
ϕ2

=

−
3v2ϕ2

vϕ6ζ2 +
√
2v2ϕ1

κ1 +
√
2vϕ6vϕ8κ3 + v2ϕ1

vϕ2λ22 + vϕ2v
2
ϕ6
λ25 + 2v3ϕ2

λ27 + vϕ2v
2
ϕ8
λ28 + v2Hvϕ2λ7

2vϕ2

,

(B.9)
µ2
ϕ6

=

−
v3ϕ2

ζ2 + v2ϕ1
vϕ8ζ3 +

√
2vϕ2vϕ8κ3 + v2ϕ1

vϕ6λ21 + 2v3ϕ6
λ24 + v2ϕ2

vϕ6λ25 + vϕ6v
2
ϕ8
λ26 + v2Hvϕ6λ6

2vϕ6

,

(B.10)
µ2
ϕ8

=

−
v2ϕ1

vϕ6ζ3 +
√
2vϕ2vϕ6κ3 + v2ϕ1

vϕ8λ23 + v2ϕ6
vϕ8λ26 + v2ϕ2

vϕ8λ28 + 2v3ϕ8
λ29 + v2Hvϕ8λ8

2vϕ8

.
(B.11)

The couplings µ2
η and µ2

ρ remain as free parameters in the model.

The mass matrices are obtained with

Mij =
∂2V

∂Ψi∂Ψj

∣∣∣∣∣
Ψ=0

. (B.12)

We obtain the same mass matrix for the scalar and pseudoscalar fields of the dark sector and
two mass matrices for the scalar and pseudoscalar visible fields. The resulting mass matrices
are displayed in next page.
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C Master Integrals for CLBZ Two-loop Diagrams
The strategy when solving two-loop diagrams is to rewrite the amplitude in terms of mas-
ter integrals. According to the classification of genuine two-loop diagrams given in [133],
our model corresponds to a CLBZ (Cheng-Lee-Babu-Zee [82, 83, 134]) type, presented in
Fig. 29. The label “genuine two-loop diagram” refers to those where no one-loop nor tree-
level neutrino masses exist. In CLBZ genuine two-loop diagrams, there are two types of

Figure 29: Genuine two-loop diagram corresponding to a CLBZ type, according to the classification
in [133].

integrals:

Iab,αβ,X =
1

(2π)8

∫
d4k

∫
d4q

1

(k2 −m2
a)(k

2 −m2
α)(q

2 −m2
b)(q

2 −m2
β)[(q + k)2 −m2

X ]
,

(C.1)

I{k2,q2,(k+q)2}
ab,αβ,X =

1

(2π)8

∫
d4k

∫
d4q

{k2, q2, (k + q)2}
(k2 −m2

a)(k
2 −m2

α)(q
2 −m2

b)(q
2 −m2

β)[(q + k)2 −m2
X ]
.

(C.2)

The term {k2, q2, (k + q)2} implies that the numerator can be any of k2, q2 or (k + q)2. The
fermion masses are labeled as a, b and the scalar masses as α, β. Here, X is the inner scalar
particle. Integrals C.1 and C.2 are rewritten in terms of master integrals as follows. First,
we rescale the integral with respect to m2

X with

k, q → k

mX

,
q

mX

, d4k, d4q → d4k

(mX)4
,
d4q

(mX)4
. (C.3)

Hence, we have

Iab,αβ,X =
1

(2π)8
1

m2
x

Îab,αβ,

I{k2,q2,(k+q)2}
ab,αβ,X =

1

(2π)8
Î{k2,q2,(k+q)2}
ab,αβ

(C.4)

with

Îab,αβ =

∫
d4k

∫
d4q

1

(k2 − ra)(k2 − tα)(q2 − rb)(q2 − tβ)[(q + k)2 − 1]
(C.5)

Î{k2,q2,(k+q)2}
ab,αβ =

∫
d4k

∫
d4q

{k2, q2, (k + q)2}
(k2 − ra)(k2 − tα)(q2 − rb)(q2 − tβ)[(q + k)2 − 1]

(C.6)
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Here, ra,b = (mFa,b
/mX)

2 and tα,β = (mSα,β
/mX)

2. Using the properties

1

(k2 − x1)(k2 − x2)
=

1

x1 − x2

(
1

k2 − x1
− 1

k2 − x2

)
and

q2

(k2 − x1)(q2 − x2)
=

1

k2 − x1
+

x2
(k2 − x1)(q2 − x2)

,

(C.7)

integrals C.5 and C.6 can be reduced to “master integrals” of the form:

I(s, t) = µϵ

∫
dnk

∫
dnq

1

(k2 − s)(q2 − t)[(k + q)2 − 1]
(C.8)

and
B0(0, s, t) =

∫
d4k

(2π)4
1

(k2 − s)(k2 − t)
. (C.9)

Integral C.8 has been solved in [135]. The finite part of the solution yields

ĝ(s, t) =
s

2
ln s ln t+

∑
±

±s(1− s) + 3st+ 2(1− t)x±
2ω

×
[
Li2
(

x±
x± − s

)
− Li2

(
x± − s

x±

)
+ Li2

(
t− 1

x±

)
− Li2

(
t− 1

x± − s

)]
,

(C.10)

with the standard di-logarithm

Li2(x) = −
∫ x

0

ln(1− y)

y
dy, (C.11)

and
x± =

1

2
(−1 + s+ t± ω), ω =

√
1 + s2 + t2 − 2(s+ t+ st). (C.12)

Integral C.9 is the well-known one-loop scalar Passarino-Veltman function B0 [93] in the
vanishing external momentum limit (p→ 0). Defining

B0(0, s, t) =
1

(2π)4
B̂0(0, s, t), (C.13)

the finite part of the solution is given by

B̂0(0, s, t) = −π2i

(
s ln s− t ln t

s− t

)
= π2B̂′

0(0, s, t). (C.14)

Thus, integrals C.5 and C.6 give [133]:

π−4Îab,αβ =
1

(tα − ra)(tβ − rb)

{
− ĝ(tα, tβ) + ĝ(ra, tβ) + ĝ(tα, rb)− ĝ(ra, rb)

}
, (C.15)

π−4Î(k2)
ab,αβ =

{
1

tβ − rb
[−ĝ(ra, tβ) + ĝ(ra, rb)]

+
tα

(tα − ra)(tβ − rb)
[−ĝ(tα, tβ) + ĝ(tα, rb) + ĝ(ra, tβ)− ĝ(ra, rb)]

}
,

(C.16)
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π−4Î(q2)
ab,αβ =

{
1

tα − ra
[−ĝ(tα, rb) + ĝ(ra, rb)]

+
tβ

(tα − ra)(tβ − rb)
[−ĝ(tα, tβ) + ĝ(tα, rb) + ĝ(ra, tβ)− ĝ(ra, rb)]

}
,

(C.17)

π−4Î [(k+q)2]
ab,αβ =

{
B̂′

0(0, ra, tα) B̂
′
0(0, rb, tβ) +

−ĝ(tα, tβ) + ĝ(tα, rb) + ĝ(ra, tβ)− ĝ(ra, rb)

(tα − ra)(tβ − rb)

}
.

(C.18)

The last expressions correspond only to the finite piece of the integrals. For CLBZ types,
the divergent piece always cancels [133], giving finite results.
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D Loop Functions in LFV
In this appendix, the loop functions used for LFV processes are presented:

F2(x) =
1− 6x+ 3x2 + 2x3 − 6x2 log x

6(1− x)4
, (D.1)

G2(x) =
2− 9x+ 18x2 − 11x3 + 6x3 log x

6(1− x)4
, (D.2)

D1(x, y) = − 1

(1− x)(1− y)
− x2 log x

(1− x)2(x− y)
− y2 log y

(1− y)2(y − x)
, (D.3)

D2(x, y) = − 1

(1− x)(1− y)
− x log x

(1− x)2(x− y)
− y log y

(1− y)2(y − x)
. (D.4)

The case with degenerate masses for χi corresponds to the limit x → y. Then, functions D
become

D1(x) =
−1 + x2 − 2x log x

(1− x)3
, (D.5)

D2(x) =
−2 + 2x− (1 + x) log x

(1− x)3
. (D.6)
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