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Resumen

El modelo cosmológico estándar ΛCDM es un modelo robusto que permite ajustar grupos de datos
cosmológicos de manera precisa que además destaca por su simpleza. Este modelo se compone
de la Relatividad General, la hipótesis de homogeneidad e isotropía además de la necesidad de
introducir los componentes de materia oscura (que nos permite corregir el comportamiento de la
gravedad a grandes escalas) y la energía oscura (que nos permite explicar la expansión acelerada del
universo). Sin embargo, en años recientes el paradigma de dicho modelo se encuentra en constante
cuestionamiento. Esto debido a los problemas relacionados con la naturaleza del mencionado sector
oscuro del que no tenemos confirmación directa, y por la creciente tensión en la determinación
de la constante de Hubble H0 que parece tener dos valores diferentes dependiendo de la forma en
que sea medido. Estos y otros problemas han abierto la posibilidad a mejoras o generalizaciones
al modelo ΛCDM, ya sea usando nuevos grupos de datos (como son los cuasares) o extensiones
de la gravedad como candidatos para resolver los mencionados problemas cosmológicos. En este
trabajo se analizarán dos muestras de Quasares utilizadas para medir distancias en cosmología
que nos permitan realizar constricciones de parámetros de modelos extendidos de la gravedad.
La extensión de la gravedad utilizará diferentes modelos f(T ) en los cuales la interacción de la
gravedad no es la curvatura como en Relatividad General, sino la torsión; que además permiten
explicar un universo sin recurrir a la energía oscura para explicar la expansión acelerada. Con
estos modelos se encontró, además, que usar datos como cuasares con estos modelos f(T ) se puede
reducir la tensión de H0.
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Abstract

The ΛCDM standard cosmological model is a robust framework that allows for a highly precise
adjustment of the current cosmological datasets and is noteworthy for its simplicity. This model
consists of General Relativity, the assumption of homogeneity and isotropy, and the necessity
to introduce components of dark matter (enabling the correction of gravity’s behavior on large
scales) and dark energy (explaining the late-time accelerated expansion of the universe). However,
in recent years, the paradigm of this model has been under constant scrutiny. This is due to
issues related to the nature of the mentioned dark sector, which lacks direct confirmation, and the
growing tension in determining the Hubble constant H0, seemingly having two clear different values
depending on the measurement method. These and other problems have opened the possibility
for improvements or generalizations to the ΛCDM model, whether by using new datasets (such as
Quasars) or extension of the gravity theory that could address the mentioned cosmological issues.

This work analyzes two samples of Quasars used to measure distances in cosmology, allowing for
constraints on parameters of extended gravity models. The extension of the gravity used involves
different f(T ) models where gravity’s interaction is based on torsion rather than curvature as in
General Relativity. Moreover, these models can explain a universe without resorting to dark energy
to account for accelerated expansion. It was found that using Quasar data with these f(T ) models
can alleviate the tension in H0.
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Introduction

The diminution of the expected brightness coming from the Supernovae Ia (SNIa) was crucial
for testing the accelerating universe in 1998 (Riess et al., 1998). We now have more evidence of
this acceleration through different late data sets. The cosmological constant Λ appears to be the
simplest explanation for this phenomenon as we only need to use a fluid with negative pressure in
the standard model of cosmology, or so-called ΛCDM, where Λ refers to this constant and CDM
means Cold Dark Matter. The ΛCDM model has been successful in explaining not only the late-
time cosmic acceleration but the power spectrum of the Cosmic Microwave Background (CMB)
radiation (Aghanim et al., 2020b), and the statistics of the large scale structure (Zhao et al., 2019).
The model’s success is not only based on the predictive accomplishments but also due to the simple
assumptions, including the descriptions of the contents of the universe, and the assumptions of
cosmological principle (Perivolaropoulos and Skara, 2022).

But ΛCDM is not free of issues including the growing difference between the cosmological and
astrophysical data in the estimation of the Hubble parameter at current times H0 (the measurement
of the present expansion rate of the Universe and it is the basic quantity to infer other cosmological
quantities (Riess and Breuval, 2023)) determined using different probes. Other issues of the ΛCDM
model are the ones related to the small scale of the universe, as the missing satellite problem or
the baryonic Tully-Fisher relation problem (Perivolaropoulos and Skara, 2022).

Using a distance ladder approach, in which we rely on distance estimators using geometry via
parallax and then standard candles like Cepheids and SNIa -which are objects that the luminosity is
known independently from the distance- (that is known as late or low redshift), the measurements
of H0 are higher than the ones obtained using the CMB using the standard model (known as early
or high redshift measurements) in ∼ 5σ difference. This could be a hint that something in the
cosmological model is not working properly as this could be a hint that a revision of the systematics
or in the gravitational theory itself needs to be done. In a lesser, the clustering of matter measured
by the quantity S8 = σ8

√
Ωm/0.3 has a discrepancy between the measurements from the CMB

data with ΛCDM and the ones measured using statistical techniques with the galaxy distribution
in the universe (Abdalla et al., 2022; Philcox and Ivanov, 2022).

One of the proposed solutions for the H0 and σ8 tensions is to explain the missing parts of
ΛCDM as a problem in our understanding of gravity leading to an estimate of H0 with Planck
larger and therefore, reconciling with the estimates obtained with late time probes (as SNIa) or
vice versa, lowering the estimate with low z data sets (Abdalla et al., 2022). However, this is
not the only way to attempt a solution to the cosmological tension problems as the modifications
or generalizations from the standard ΛCDM models are not straightforward, which leads us to a
degeneracy of the models.

The different proposals to alleviate the cosmological tensions have to take into account both H0
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and S8 values, and the observational properties of the cosmic expansion, the growth properties of
the Baryonic Acoustic Oscillations (BAO) galaxy power spectrum (Alam et al., 2017), and the void
measurements (Contarini et al., 2022), in addition to the already covered local late-time data using
the ΛCDM model. Nevertheless, the choice of observational data is crucial to the analysis since
the CMB cosmological probes to estimate standard rules sometimes assume the ΛCDM model in
the background.

This dependence in some probes on the standard model makes us select three basic cosmo-
logical data sets to conform to the baseline: The H(z) measurements (or Cosmic Chronometers)
(Moresco et al., 2016) that are a direct and model-independent estimation of the Hubble param-
eter. With this observable, we can use the relation between the scale factor a(t) and the redshift
in the homogeneity assumption by measuring the differential age in galaxies, that have extremely
homogeneous populations and evolve without being disturbed by interactions, and the differential
redshift between them to obtain H(z) (Moresco et al., 2018). Furthermore the SNIa Pantheon
compilation that consists of 1049 SNIa data points calibrated using the cosmic ladder via parallax
and Cepheid period determination. With this technique we estimate the distance to the supernovae
that occur in galaxies where we have already observed Cepheids (Scolnic et al., 2018). Also, we
used BAO that are measurement of the three-dimensional distribution of the galaxies influenced by
the pattern imprinted in the early universe. These measurements come from four different surveys:
Beutler et al. (2011), Jones et al. (2009), Ross et al. (2015) and Alam et al. (2017). As part of
these local measurements, high-redshift observables have been used to analyze deviations from the
standard cosmological model. On this attempt, it has been considering complementary distance
measurements using two different Quasar samples: the xA sample (Negrete et al., 2018) and the
nUVX sample (Lusso et al., 2020). On one hand the xA sample is based on the 4DE1 formalism
to locate ∼ 250 extreme accretors, or the AGNs with the highest accretion rates. These objects
could be considered standard candles using the Eddington Luminosity (which is the luminosity at
which these objects could emit light) and, therefore, bring extra information to the SNIa trend
(Dultzin et al., 2020).

On the other hand, the nUVX sample is based on the empirical relation between the UV and
X-ray emission of ∼ 2500 Quasars fitted through different redshifts to obtain a relation that could
allow us to determine their distance in a model-independent manner (Lusso et al., 2020). As
the two Quasar samples have different formalisms, this work will be analyzed separately for the
selected models along with the baseline data sets.

From the theoretical point of view, modifications to the first principles of the theory of gravity
have been gaining popularity in literature. These modifications promise to alleviate the Hubble
tension, find the dark matter’s nature, and explain the late-cosmic acceleration without dark
energy (Di Valentino et al., 2021a). To modify the GR formalism, we must take into account
the Lovelock theorem. This theorem limits how many theories we can construct using the metric
tensor only, as GR is the field involved in the gravitational action. So, the only possible four-
dimensional gravitational theory involving the metric tensor and its derivatives will construct field
equations that are second-order or less (Clifton et al., 2012). Lovelock’s theorem offers us options
to construct the theories of gravity, working on Riemannian geometry, that differ from general
relativity: (i) Other fields instead of the metric tensor, (ii) higher order derivatives in the theory,
(iii) extra dimensions allowed and (iv) give up symmetry, locality and divergence-free conditions
in the theory (Clifton et al., 2012).

The modified theories of gravity could help in the alleviation of the aforementioned Hubble
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tension. Using the example of f(R) theory in which the curvature scalar R̊ that appears linearly
in GR is substituted by a general function to attempt to solve the astrophysical and cosmological
issues with ΛCDM. In cosmology, the use of early-time data could raise the value of the H0 constant
to values equivalent to the late-time measurements (Di Valentino et al., 2021a). In astrophysics, the
f(R) formalism results in a representation of the galactic rotation curves without the introduction
of dark matter (Capozziello and De Laurentis, 2011). On the contrary, the disadvantage of using
the f(R) theories is that the field equations are in fourth order and, therefore, more complicated
than those of GR.

As there is no reason why the curvature scalar result of the Levi-Civita connection R̊ appears
lineally in the theory, there is no reason why the curvature is the interaction mediator in gravity.
To have a control on the degeneracy of cosmological models that could arise from first principles in
an extension of theories of gravity, in this thesis, we will use the Teleparallel Equivalent Theory of
Gravity (TEGR), more specifically a group of f(T ) theories in which the curvature scalar R̊ in the
Einstein field equations is replaced by a function of the torsion scalar T . This TEGR has the ad-
vantage of leaving the field equations in second order in the field equations. This means that in this
framework the torsion embraces torsion as the mediator of the gravitational interaction (Abdalla
et al., 2022; Di Valentino et al., 2021a) In current times, Teleparallel Gravity (TG) has started
to appear in several cosmological and astrophysical analyses, in particular regarding possible so-
lutions to solve or relax the H0 tension. The motivation is a consequence of first principles, where
modifications of gravity can explain the late time acceleration using torsion geometries instead of
curvature like in General Relativity (GR) description of gravity using a different mathematical
element so-called teleparallel connection, in which the Levi-Civita connection is substituted for a
space-time curvature-free but with the Weitzenböck connection (Bahamonde et al., 2021) induces
torsion results in an equivalent system of differential equations compared to GR (Abdalla et al.,
2022). This theory is known as the TEGR. The models derived from this TEGR description leads
to an alternative explanation for the late time cosmic acceleration (Bengochea and Ferraro, 2009)
and is one of the candidates for lowering the difference between the measurements of H0

This thesis is divided as follows: In Chapter 1 we introduce a general overview of General
Relativity and the standard cosmology (1.1). We describe the cosmological quantities involved in
the theory and give an overview of the cosmological tensions (1.1.2). By the end of the Chapter,
we described the extensions and modifications of gravity theories (1.2,1.3) most discussed in the
literature In Chapter 2 the Cosmology using the TEGR is presented along the cosmological viable
models for f(T ). In Chapter 3 we describe the data sets employed in this work to constrain the
cosmological parameters for the f(T ) models described Additionally, we include the two Quasar
samples. We remark that this analysis has not been treated in the literature so far. The results
are part of an original work (Sandoval-Orozco et al., 2023). In Chapter 4 we present the results
using the different combinations of the observational data sets. On one hand, we consider the com-
binations of H(z), SNIa, and separately the two Quasar samples to differentiate the observational
methods. On the other hand, we consider the use of BAO measurements to separate the data with
ΛCDM dependency. Finally, in Chapter 5 we will point out the most remarkable achievements of
having introduced these Quasar samples. Also, we describe the proper mechanism to increase the
H0 value in these models without arising systematics issues in the baselines considered. Appendix
A includes some extra comments regarding the use of the H(z) measurements covariance matrix.
The aim of introducing this matrix is because previously estimated errors for these measurements
did not consider the systematics in the age determination of the galaxies (Moresco et al., 2020).



Chapter 1

Foundations of Teleparallel Gravity and
Cosmology

1.1 An overview on General Relativity and its symmetries
General Relativity (GR) is a theory based on the principle that space and time constitute a single
structure based on the mathematical principle of Riemann’s manifolds (Cai et al., 2016). In this
scheme, the GR reproduces the Minkowski geometry in the absence of the influence from massive
objects, thus referring to gravity as a geometric consequence of the mass, specifically, the curvature.
In the framework of GR, the dynamical behavior of the different systems is imposed by the metric
choice gµν that induces the causal structure and a non-trivial geometric structure of the space-time
Additionally, the Levi-Civita connection Γ̊µ

νρ defines the geodesic structure (Cai et al., 2016) of
space-time. This is the instrument of gravity that the metric quantifies and the quantities related
to the metric are the dynamical elements (Hohmann, 2022; Misner et al., 2017). Notice that
this is a fundamental difference between the electromagnetic, weak, and strong interactions that
currently are described by transformations taking place in space, but themselves are unrelated to
the structure of the space in which the transformation takes place (Aldrovandi and Pereira, 2013).

The Levi-Civita derived quantities will be written with a circle on top, meaning that the
coefficients can be written as:

Γ̊µ
νρ =

1

2
gµσ(∂νgσρ + ∂ρgσν − ∂σgνρ), (1.1)

which is an important element of the theory, as the metric gµν is the fundamental element in
the GR description of space-time. In this context, the Greek letters µ, ν, ρ, λ = 0, 1, 2, 3 are the
space-time coordinates. As we can notice, the connection Γ̊µ

νρ is derived from only the metric and,
therefore, it determines the causal structure and the geodesic structure. Therefore, space-time is a
Riemannian manifold associated with the metric and it is known as a Metric Affine formulation of
gravity (Cai et al., 2016). Using this connection we can obtain the curvature tensor as (Weinberg,
2008)

R̊µ
νρσ = ∂ρΓ̊

µ
νσ − ∂σΓ̊

µ
νρ + Γ̊µ

τρΓ̊
τ
νσ − Γ̊µ

τσΓ̊
τ
νρ, (1.2)

and from the contractions from the latter, we can obtain the Ricci tensor as

R̊µν = R̊α
µαν , (1.3)
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1.1. AN OVERVIEW ON GENERAL RELATIVITY AND ITS SYMMETRIES 9

where the repeated indices represent a sum. The scalar curvature can be represented as

R̊ = gµνR̊µν . (1.4)

This means that we can rewrite the field equations using the symmetries of the curvature tensors
using

R̊µν −
1

2
gµνR̊ = κ2T̊µν . (1.5)

Seeing the previous equations, notice that for the geometrical part of the field equations, the
connection fulfills the role of being the information about the curvature in the description of
space-time and, therefore, gravity. Finally, to obtain the field equations we need to present the
Einstein-Hilbert action

SEH =
1

2κ2

∫
d4x

√−gR̊+
1

2κ2

∫
d4x

√−gLm, (1.6)

where Lm is the Lagrangian matter and it is a linear equation for the curvature scalar R̊. The
energy-momentum tensor will be defined, in fact, with respect to the Lagrangian density for the
matter fields as

Tµν =
−2√−g

δLm

δgµν
. (1.7)

Varying the action presented in Eq. (1.6) with respect to the metric tensor gµν we can obtain the
Einstein field equations that can be written as

G̊µν = κ2Tµν , (1.8)

where G̊µν = R̊µν − 1
2
gµνR̊ is known as the Einstein tensor and κ2 = 8πG, where G is the

gravitational constant.
In GR the metric tensor R̊µ

ανβ acts as a mere container of information from the Levi-Civita
connection and only quantifies the amount of geometric deformation (Briffa et al., 2022). This
approach has been extremely useful through the different experimental tests in specific systems
as the gravitational waves (Abbott et al., 2017b), the shift of the Mercury perihelion (Shankara-
narayanan and Johnson, 2022) and the direct evidence of black holes (Wielgus et al., 2020); among
other different experiments. This does not mean that GR is the ultimate description of gravity, as
more recently several problems have arisen from this framework (Di Valentino et al., 2021c), and
some of the propositions to solve these problems are through a new description or generalization
of the physics.

• Schwarzschild symmetry. GR has been useful to describe the phenomena in the Universe
and the cosmos itself. However, some symmetries need to be considered to describe them. On
one hand, to study this theory at the astrophysical level the first solution is the Schwarzschild
metric. The geometry of spherical, static geometry is described as

ds2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dθ2 − r2 sin2 (θ)dϕ2, (1.9)

where r, θ, ϕ is the description of the space in spherical coordinates and M is the mass of the
system, making it a metric spherically symmetric. It is important to note that this system
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behaves badly as r → 0 and it is called Schwarzschild radius. This radius is associated
with the event horizon of a non-rotating black hole (Misner et al., 2017). The Schwarzschild
geometry is useful also for calculations like time dilation, and gravitational redshift and
because of its spherical symmetry is useful to describe stars and massive systems like neutron
stars.

In astrophysical scales, we need only baryons to describe the stars and the black holes, the
problem arises when we analyze other systems. We refer as baryons to ordinary matter
composed by nuclei and electrons (Baumann, 2022). Turns out that is not the only form
of matter that is needed to describe the behavior of the universe, as most of the predicted
matter of the universe is in the form of dark matter. One of the most direct observations of
this kind of matter is the measured rotation speed of the objects in galaxies. Instead of this
velocity experimenting a diminution as the distance from the center of the galaxy grows as
expected in GR, the speed star constant far beyond the extent of the visible disk (Baumann,
2022). This is one of the suggestions that there is an invisible content of matter holding the
galaxy together. In bigger scales, it has been detected by gravitational lensing (Jones, 2017)
and the statistical effects on the photons of the CMB (Arbey and Mahmoudi, 2021).

From the particle physics perspective, the Standard Model of particle physics does not provide
a candidate for cold dark matter as it requires to be massive, weekly interacting, and stable
over several billions of years (Arbey and Mahmoudi, 2021). This rules several families of
particles. In this direction, propositions like ALPS (Axion-like particles) could be a candidate
as the interaction with the rest of the Standard Model particles is negligible and could be
generated via the decay of primordial scalar fields. The detection of all light particles is not
possible yet, because the interaction would be too tiny and all the efforts are focused on the
detection of variations of the electric field (Arbey and Mahmoudi, 2021).

From a theoretical point of view, modifications, and extensions of the GR framework have
been proposed. We will talk further but the f(R) formalism is one of the candidates to replace
the necessity for dark matter in astrophysical systems (Capozziello and De Laurentis, 2011;
Mendoza et al., 2011).

We have been searching for the nature of this dark matter without results, yet. On all scales,
the model resumes as cold dark matter as it refers to the same pressureless fluid that we have
not detected directly.

• Cosmological Principle symmetry.

On the other hand, at cosmological scales, the Cosmological Principle has been useful to
describe the universe and its current evolution. This Principle is introduced in the GR
formalism through the Friedmann-Lemaître-Robertson-Walker metric. The FLRW spatially
flat metric can be represented as (Baumann, 2022)

ds2 = dt2 − a2(t)

1− kr2
dr2 − a2(t)r2dθ2 − a2(t)r2 sin2 (θ)dϕ2, (1.10)

where a(t) is the scale factor. This solution to the field equations describes an expanding
universe quantified precisely in the scale factor a(t). The curvature parameter k describes
the geometry of the universe, where if k = 0 the universe is flat. If k = 1 it is positively
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curved and if k = −1 it is negatively curved (Schutz, 2009). In this Thesis, we will use only
the flat metric with k = 0. The metric fulfills the isotropic and homogeneity restrictions as
no matter where an observer stands on a three-surface, it will look the same in all directions
(Schutz, 2009).

The standard scenario in cosmology is based on the cosmological principle in which the
isotropy and homogeneity of the universe at large scales are supported by the CMB observa-
tions (Aghanim et al., 2020b). In current times, we realize that matter and radiation are not
enough to describe the evolution of the universe since the discovery of the late-time cosmic
acceleration (Riess et al., 1998). The source of this acceleration is called dark energy and it is
distinguished from matter and radiation because it has a negative pressure that counteracts
the gravitational force (Amendola and Tsujikawa, 2010). This dark energy is constant in
time and the simplest candidate for this is the so-called cosmological constant Λ.

This energy could be related to the vacuum energy predicted by the quantum field theory
(Baumann, 2022) but the predictions of the size of this energy are much smaller than the
value inferred from cosmological observations in about 10121 times (Amendola and Tsujikawa,
2010). In this cosmological scale, the search for the nature of the dark energy is focused on the
parametrization about its origin and the Λ vanishes. In general, there are two approaches to
the construction of dark energy. The first one includes the modified matter models in which
the energy-momentum tensor Tµν contains an exotic matter source with negative pressure.
The second one is focused on modifying the geometric part of the field equations (1.8)
(Amendola and Tsujikawa, 2010). Examples of the energy-momentum tensor modifications
are the Quintessence scalar fields that explain inflation and dark energy (Tsujikawa, 2013)
and parametrizations of the fluid like the one proposed by Chevallier and Polarski (2001).
Regarding the modifications on the geometry, propositions like f(T ) (Abdalla et al., 2022)
and f(R) (Capozziello and De Laurentis, 2011) are examples of this approach.

In summary, the description of the universe from the astrophysical level to the cosmological
framework needs at least several components:

1. Cosmological principle that induces homogeneity and isotropy.

2. The introduction of dark matter to explain the astrophysical necessities such as the
galactic rotation curves, the gravitational lensing and the CMB physics.

3. The use of dark energy to explain the late-time cosmic acceleration.

The final piece of the cosmological model is the introduction of a primordial phase of cosmic
inflation to address the horizon and flatness problems of the CMB radiation (Guth, 1981).
During this period the fluctuations in the matter distribution are produced by quantum
fluctuation in the early universe (Perivolaropoulos and Skara, 2022). All of these elements
form the ΛCDM model of cosmology.

1.1.1 Standard Cosmology: the evolution equations

Since the field equations are a group of differential equations, we are required to describe in them
the gravitational interactions and the metric as a consequence of the space-time. Therefore, in
GR we need to use a specific description of the framework to describe the physical phenomena
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involved. In the case of Cosmology, the spatially isotropic and homogeneous FLRW is used as a
metric to rewrite the set of field equations onto the special case ones: the Friedmann equations

H2 =

(
ȧ

a

)2

=
8πG

3
ρ, (1.11)

ä

a
= −4πG

3
(ρ+ 3p). (1.12)

In these equations, ρ is the total energy density and p is the pressure of the perfect fluid needed
for the construction of the previous formalism. The explicit form of the tensor to form a perfect
fluid is:

Tµν = (ρ+ p)uµuν + pgµν , (1.13)

where uµ is the four-velocity. This form of the vector also fulfills the requirements of the cosmologi-
cal principle as isotropy requires that the mean value of the three-vector ui vanish and homogeneity
requires that the mean value of a three-scalar is only a function of time (Baumann, 2022).

Additionally, the Hubble parameter H is defined as H ≡ ȧ/a, where the dot denotes derivatives
with respect to the cosmic time t.

The scale factor a(t) is a function of the cosmic time t where a(t0) = a0 = 1, where t0 is the
present time. Also, the redshift can be defined as z ≡ a0/a− 1, which can be used as a reference
to the age or scale of the Universe indistinctly. In the case of the Hubble factor, at current times
is defined as H(t0) = H0, also known as the current Hubble constant. By using the conservation
equation ∇̊µTµν = 0 or the derivative with respect to time of the first equation (1.11), we can
arrive at the last of the set of Friedmann equations

ρ̇+ 3
ȧ

a
ρ(1 + wi) = 0, (1.14)

where wi defined as the Equation-of-State (EoS) when we consider Tµν as a perfect fluid with
components i’s. Under this assumption, p = wiρ, with w = 0 denoting matter contributions and
w = 1/3 denoting radiation. Other cases consider w = −1, which denotes a fluid with negative
pressure usually associated with the aforementioned cosmological constant Λ or an unknown vac-
uum energy. Defining the critical density as ρcrit = 3H2

0/8πG (Dodelson, 2002) we can rewrite the
first Friedmann equation (1.11) as

E2(z) =

(
H(z)

H0

)2

= Ωm(1 + z)3 + Ωr(1 + z)4 + ΩDE, (1.15)

where DE denotes Dark Energy. It is important to note that the energy densities are evaluated
in current times as z = 0. Also, the power expression for the (1 + z) part represents the volumet-
ric expansion for the matter density and additionally the Doppler shift in case of the radiation
component. This equation gives the standard cosmological evolution for a flat FLRW space-time
in GR. However, while this evolution has been well tested with current observables (Baumann,
2022), there are some issues related to that involve a modification of the standard model of par-
ticles to maintain GR as the main framework, by proposing the existence of the cold dark matter
(CDM) (Di Valentino et al., 2021c) as a particle(s). Moreover, the test of the accelerating universe
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(Riess et al., 1998) led to the introduction of another element that is responsible for this effect,
the so-called dark energy, which is commonly related to Λ. So far, we have not a unique answer to
what can be or which measured component is this dark energy. Combining both dark components,
known as the dark sector, gives rise to the standard cosmological model ΛCDM, where the cold
dark matter acts on gravitational scales in the GR framework, while the Λ is responsible for the
cosmological scales interactions and responsible for the cosmic acceleration.

So, ΛCDM is a well-defined, predictive, and simple cosmological model that has a remarkable
success in explaining most of the properties and dynamics of almost all datasets, including the late-
time cosmic acceleration (Riess et al., 1998), the power spectrum of the CMB (Aghanim et al.,
2020b), the statistical properties of the large scale structure of the universe (Alam et al., 2017) and
the observed abundances of different types of elements (Perivolaropoulos and Skara, 2022; Cyburt
et al., 2016). The simplicity of the model relies on six base parameters that include the linear
perturbations and the homogeneous and isotropic background that cover the aforementioned wide
range of cosmological observations (Abdalla et al., 2022).

As ΛCDM describes well the observational evidence, both the dark matter and dark energy
have been questioned as consistency problems arise. We have an important lack of direct detection
of the dark matter from the particle perspective and the dark energy formalism is still missing the
description of the nature of the late-time cosmic acceleration (Abdalla et al., 2022).

1.1.2 On the cosmological tensions

Although GR, and its cosmological-derived model ΛCDM, can reproduce the current cosmological
data sets, we still need to find an explanation for the nature of the dark sector and explain the
current cosmological tensions. On average, from available data, the dark energy component is
around 70% (ΩΛ ≈ 0.7) of the total density of the universe (Aghanim et al., 2020b; Magaña
et al., 2018; Riess et al., 2021b; Zhao et al., 2019), and the matter component is around Ωm ≈ 0.3
(Ωb ≈ 0.05) (Aghanim et al., 2020b). These values suggest that only 5% of the universe interacts
with baryonic matter via electromagnetic force, and we have not found a unique answer to the
nature or the origin of these dark components, yet.

Moreover, the ΛCDM model, and therefore GR, needs an additional element to explain the
evolution of the universe at early stages: Inflation (Guth, 1981). This proposition is made to solve
the issues regarding the flatness problem and the horizon problem. The observational confirmation
of this scenario is still missing as we lack the direct detection using the polarization of the CMB
radiation (Kamionkowski and Kovetz, 2016).

Regarding the current cosmic acceleration observed, the dark energy component needs to be
identified with a negative pressure EoS ρ = −p (Abdalla et al., 2022), even though its nature per
se is still unknown. However, aligned to this issue, dark energy does not explain why the observed
value of its related constant Λ is 120 orders of magnitude lower compared to the value of the
vacuum energy density derived from Particle Physics (Faraoni and Capozziello, 2011).

While the latter issues are still at hand, the standard cosmological model suffers from another
problem: statistical tensions in observable parameters. Tension is a statistical term used to
describe results that appear to be in discrepancy when catalogs from different surveys are employed
(Escamilla-Rivera et al., 2011). Currently, in cosmology, we have groups of data in which tension is
present. The most remarkable discrepancies come when a comparison between the Planck Satellite
measurements of the Cosmic Microwave Background (CMB) (Aghanim et al., 2020b) and the low
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redshift probes as the Supernovae H0 Equation State project (SH0ES) (Riess et al., 2022) is done in
the calibration of two cosmological parameters: the expansion rate measured through the Hubble
constant H0, and the degree of clustering of matter σ8 or S8. And, if these discrepancies do not
come from systematic errors they could be an indication of a failure in our current standard model
ΛCDM. Is important to mention that these tensions could suggest deviations from a flat universe
(Di Valentino et al., 2021b).

We can divide the analysis of cosmological tension into two:

1. Early measurements (inferred). We consider early measurements of the expansion rate
H0 those corresponding to the z > 1100, in which we need several assumptions about the
neutrinos, particle interactions, and magnetic fields; to mention some of them (Di Valentino
et al., 2021a). In this scheme, an expansion history is needed to reconstruct the evolution of
the scale parameter to constrain H0 (Bernal et al., 2016). In this context, CMB experiments
obtain different values for the expansion rate H0. The most cited late value for H0 is the result
from the CMB Planck Collaboration using a ΛCDM flat universe with H0 = 67.36 ± 0.54
km s−1 Mpc−1, including lensing effects (Aghanim et al., 2020b). Other CMB probes give
results with somehow less tension, but also with very large uncertainties such as the Atacama
Cosmology Telescope (ACT) using the same flat ΛCDM which obtains H0 = 67.9 ± 1.5
km s−1 Mpc−1 (Aiola et al., 2020). The result from the Wilkinson Microwave Anisotropy
Probe (WMAP) with H0 = 70.2 ± 2.2 km s−1 Mpc−1 (Bennett et al., 2013). The Atacama
Cosmology Polarimeter (ACTPol) that obtains H0 = 69.72 ± 1.63 km s−1 Mpc−1 (Wang
and Huang, 2020), among others that use the same kind of calibration involving an analysis
of the power spectrum from the CMB temperature, electric field and if it is possible with
polarization. Other examples of early time measurements are the BAO that constrains the
product of the sound horizon rs and the Hubble constant together, estimating H0 dependent
on the abundance estimates and the physics of the early universe. The Baryon Acoustic
Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) in which the measurement
of clustering in galaxies gives a result of H0 = 67.9± 1.1 km s−1 Mpc−1 (Ivanov et al., 2020).
The most recent results in this field are given by the extended BOSS (eBOSS) DR16 data
measurements in which H0 is constrained using a priori on Ωmh

2 as H0 = 69.6 ± 1.8 km
s−1 Mpc−1(Alam et al., 2021), and the result combining the eBOSS data, the 6-degree Field
Galaxy Survey (6dFGS) and the WMAP data obtaining H0 = 68.36+3.0

−5.5 km s−1 Mpc−1

(Zhang and Huang, 2019).

2. Late measurements (measured). Late measurements are those related to several methods
that rely on local measurements of H0 usually employing our capacity to measure progres-
sively bigger distances using different methods, from geometrical in parallax (see for example
Vallenari et al. (2022)) to the luminosity and calibration dependent as SNIa (Riess et al.,
2021b). Precisely, this approach is used for measuring the pulsating Cepheids in our galaxy
to calibrate the SNIa visible to great distances due to its great visibility. Furthermore,
these methods can be used to measure the cosmic expansion. The standard candles method
employs the same luminosity without reference to stellar reference or astrophysics theory
(Di Valentino et al., 2021a). The Supernovae H0 Equation of State (SH0ES) project measured
uses this method of distance ladder via the Cepheid stars to obtain a value of H0 = 73.3±1.04
km s−1 Mpc−1 (Riess et al., 2021b). The value obtained by Early Data Release 3 (ERD3)
from Gaia Space Telescope that measured Cepheids results in H0 = 74.03 ± 1.42 km s−1
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Mpc−1 (Riess et al., 2021a). The measured Cepheids in infrared from the Spitzer Space
Telescope conducted by the Carnegie Hubble Program, which is in concordance with other
Cepheid measurements, reports H0 = 74.3 ± 2.2 km s−1 Mpc−1 (Freedman et al., 2012).
We must mention that Cepheids are not the only stars to calibrate the distance ladder and
substitutes have been proposed such as the Tip of the Red Giant Branch (TRGB) calibrating
H0 = 69.8± 0.8 km s−1 Mpc−1 (Freedman et al., 2020), the variable red giant stars MIRAS
that measured H0 = 73.3 ± 4.0 km s−1 Mpc−1 (Huang et al., 2019), and the Tully-Fisher
relation (between the rotation rate of spiral galaxies and their absolute luminosity) that
found H0 = 76.0 ± 1.1(stat) ± 2.2(sys) km s−1 Mpc−1 (Kourkchi et al., 2020). Other forms
to determine the Hubble constant via astrophysical methods are the H0 Lenses in COSMO-
GRAIL’s Wellspring (H0LICOW) project that measures H0 through the analysis of different
images from the same distant quasar measuring the time-delay path of the light in strong
gravitational lensing with H0 = 71.9+2.4

−3.0 km s−1 Mpc−1 (Suyu et al., 2017). Furthermore, the
combination between the information contained in electromagnetic and gravitational waves
(called dark standard sirens) to estimate the luminosity distance to highly energetic events
like the GW170817 that constraint the Hubble parameter in H0 = 70.0+12.0

−8.0 km s−1 Mpc−1

(Abbott et al., 2017a; Escamilla-Rivera and Torres Castillejos, 2023).

The summary of these parameters related to the Hubble value tension can be found in Figure
1.1.

Regarding the second kind of tension, the clustering of matter measured by σ8 or S8 =

σ8

(
Ωm

0.3

)1/2, the direct measurements of the large-scale structure and the inferred by the probes
of the early universe, also give some issues. The lower redshift measurements are lower than the
ones obtained by the CMB estimations even though the determination of the S8 quantity is in all
cases model-dependent (Abdalla et al., 2022). The use of the S8 parameter also correspond with
the usefulness of incorporating the matter density in the analyses. This make that the combination
measures the amplitude of the matter perturbations and the statistics of the galaxy clusters in the
large scale universe (Poulin et al., 2023).

In the case of the CMB-based measurements, the Planck satellite measured S8 = 0.834± 0.013
including all fields and the lensing (Aghanim et al., 2020b). The combination between ACT and
WMAP yields S8 = 0.840± 0.030, consistent with the previous Planck result (Aiola et al., 2020).
For large-scale measurements such as the galaxy clustering statistics, the S8 parameter is related
to the fσ8(z = 0) parameter, where f = [Ωm(z)]

0.55 that approximates the growth rate in GR as
a function of the matter density. Results of this kind are the measurements with BOSS DR12 in
which the correlation function for the galaxy sample is measured that obtains S8 = 0.703± 0.045
(Ivanov et al., 2020) and the obtained by Kilo-Degree Survey (KiDS-1000) in a similar method
arising a result of S8 = 0.759+0.024

−0.021 (Asgari et al., 2021).
As we can notice, although Planck measures the CMB with high precision, the results obtained

for the H0 and σ8 parameters are in a 5σ (Abdalla et al., 2022) difference from the ones at low z
measurements such as SH0ES (Riess et al., 2019, 2021b). Furthermore, there is also a 3σ tension
for the S8 parameter. Moreover, the obtained results in the CMB observations are indirect, and
therefore they are model-dependent. For example, to constrain H0 it is needed to assume an
expansion history model and several early-time physical conditions (Bernal et al., 2016). In this
context, the late time measurements for the different parameters only rely on our capacity to
calibrate distances up to several megaparsecs (Mpc), and therefore, the uncertainty generated is
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Figure 1.1: Whisker plot for the Hubble parameter values for several projects. The blue dots
represent the late-time measurements of H0. The red dots represent the early-time inferences of
H0. The blue and red shadowed regions represent the C.L from the SH0ES project Riess et al.
(2022) measurement and the Planck 2018 determination Aghanim et al. (2020b), respectively.

larger and depends on other physical assumptions. Despite that, modified and extended gravity
have popularity among studies for their potential to alleviate tensions.

As a step further, in this thesis, we consider extended theories of gravity with viable f(T )
models and constrain them with new data sets. Some advances in this line of work has been done
in Briffa et al. (2022, 2023a), where using late measurements the H0 tension is relaxed between
1−2σ with the CMB results using different f(T ) models preferring values closer to the estimations
made with early universe assumptions, obtaining, for example, H0 = 68.5± 1.1 km s−1 Mpc−1.

1.2 Modified and extended theories of gravity
Extensions to the current understanding of gravity from GR have been widely studied in the
literature to solve the ΛCDM and GR problems. However, we require that the extended theories
fulfill some minimal requirements in the reproduction of the Solar System dynamics including
the Newtonian dynamics in the weak field limit, the Galactic dynamics, the large-scale structure
formation, and the reproduction of the cosmological parameters (Capozziello and De Laurentis,
2011). This means that a new theory or a generalization must cover the previous test to be a
candidate for a generalization.

Some of these solutions for the cosmological problems include the introduction of a scalar field
ϕ that in his properties could explain the inflationary epoch, and also the presence of a fluid with
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negative pressure giving rise to so-called quintessence models (Faraoni and Capozziello, 2011). The
problem with quintessence is that the the nature of the scalar field is still unknown and the lack
of its explanation for the missing dark matter is still an open topic. Therefore, another approach
to the problem of late cosmic acceleration is to understand it as a manifestation of some change
in the theory of gravity.

• Modified theories of gravity. The simplest way to modify gravity is the idea behind
f(R). This kind of theory arises from the modification in one of the five postulates in
the Lovelock theorem (Clifton et al., 2012). Its derivation came from the fact that we can
consider high-order terms in the Lagrangian, e.g. fourth-order, to explain dark energy. Of
course, not all the solutions are viable f(R) are the most healthy solutions in this scheme, e.g.
without unstable or ghost scenarios. The first ideas in this direction began to appear years
after Einstein’s first papers on GR and this is an attempt to generalize the Einstein-Hilbert
action by adding different scalar curvature functions in the Lagrangian. In this modified
version of gravity, we do not assume the linear dependence with the curvature scalar in the
Einstein-Hilbert action in Eq. (1.6), and therefore

Sf(R) =
1

2κ2

∫
dx4

√−gf(R) +
1

2κ2

∫
dx4

√−gLm, (1.16)

where Lm is the matter Lagrangian. In this case, the field equations are (Nojiri et al., 2017)

1

2
gµνf(R)−Rµνf

′(R)− gµν□f ′(R) +∇µ∇νf
′(R) = −κ2

2
Tµν . (1.17)

In this framework, the field equations using a flat FRLW metric (1.10) are

f(R)

2
= 3
(
H2 + Ḣ

)
f ′(R)− 18

(
4H2Ḣ +HḦ

)
f ′′(R) + κ2ρm,

(1.18)

−f(R)
2

= −
(
Ḣ + 3H2

)
f ′(R) + 6

(
8H2Ḣ + 4Ḣ2 + 6HḦ +

...
H
)
f ′′(R) + 36

(
4HḢ + Ḧ

)2
f ′′′(R) + κ2pm,

(1.19)

where the Hubble parameter adopts the same definition as H = ȧ/a, and in this case the
scalar curvature R is equal to R = 12H2 + 6Ḣ. Additionally, ρm = (3/κ2)H2 and pm =

−1/κ2
(
3H2 + 2Ḣ

)
. So, in this case, the EoS can be given using only the Hubble parameter

weff = −1− 2Ḣ

3H2
. (1.20)

At first, the problem that we encounter using this kind of theory is that a description for
f(R) is needed, leading to a degeneracy of models. Using the arguments that a modified
gravity theory must fulfill certain astrophysical and cosmological cutoffs, we must select the
functions viable to use in the previous Lagrangian. In the specific case of f(R) the necessary
function is the one that unifies the accelerating expansion and the early-time inflation (Nojiri
et al., 2017). The details of these procedures to find viable descriptions with this modified
gravity can be found in Faraoni and Capozziello (2011), Clifton et al. (2012) and Nojiri et al.
(2017), where extra features of the discussed theories are provided.
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• Extended theories of gravity. The idea behind Teleparallel Gravity (TG) is to allow
extension in the core of the connection, allowing instead of curvature, modifications of non-
vanishing torsion or nonmetricity. Theories of this type are known as teleparallel theories
of gravity. In teleparallelism, the Levi-Civita connection is substituted by the Teleparallel
connection, where the torsion T is used as a fundamental dynamical element instead of the
Ricci scalar of curvature R̊. This precisely came from the definition of the Levi-Civita con-
nection. Under this scheme Lagrangian changes and becomes a function of f(T ) instead of
f(R̊), as in the previously mentioned modified gravity (Nojiri et al., 2017). But, in GR the
curvature is used as a description of the space-time to mediate the gravitational interaction,
meanwhile, in teleparallelism, the gravity is related to torsion accounting for the gravity
interaction acting as a force. The torsion descriptions depend on the origins to justify the
appearance of the geometry and the mechanism in which it modifies all the physical com-
ponents in the universe as the velocity, acceleration, and dynamics of the expansion. The
geometrical meaning of introducing the torsion is that when performing parallel transporta-
tion on a vector field the infinitesimal parallelogram breaks (contrary to the case in which
the curvature is constructed when the parallel transportation changed the direction of the
curve) (Cai et al., 2016). An intuitive way to understand this is to understand that parallel
transportation does not return to the original place. The introduction of torsion in the grav-
itational theory came first from Einstein himself (Unzicker and Case, 2005) as an attempt
to create a further generalization for the gravitational theory. The main difference between
teleparallelism is the introduction of tetrad fields that can be adopted to define a different
tool: the Weitzenböck connection that contains information about the torsion of the space
instead of the curvature. This field of tetrads can be used to construct a metric gµν and this
can be done because in the same space-time, the connection can be constructed, and using
the field of tetrads both the curvature and teleparallelism formalism can be constructed inde-
pendently. In the last few years, the attention to teleparallelism, especially to f(T ) theories,
has been rising originating from the attempts to explain the different acceleration epochs of
the universe and contrary to f(R), the paradigm for f(T ) arrives to second order differential
equations that essentially are the same to the ones in GR, with different features such as
apparent solutions to cosmology issues. This topic will be explored carefully in the following
sections.

1.2.1 Other theories to alleviate the Hubble tension

One of the most basic and direct attempts to alleviate these cosmological tensions is to derive
better numerical and, in such cases, analytical solutions to the Friedmann equations (Sandoval-
Orozco and Escamilla-Rivera, 2022). However, the results are not competitive with other options
that explore new physics or try to reformulate the way we use existing data. Let us remember
that this consistency needs to be fully in agreement with the observables and their systematics
well-treated. However, involving new models of physics like a new description of gravity would
not be so easy, because it involves new degrees of freedom related to new observed parameters
contained in the theory. In addition, some proposals allow to explain the H0 tension but fail to
explain the S8 tension and vice versa (Abdalla et al., 2022), and for that reason, it is necessary to
perform fittings with several groups of data coming from the different cosmic stages to give a more
complete overview. Examples of different approaches include the constraints derived from black
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hole observations via the luminosity distance and the size of the shadow (Escamilla-Rivera and
Torres Castillejos, 2023). Other proposals include the use of statistical tools to explore further the
current data like the use of Gaussian processes to address the S8 tension (Reyes and Escamilla-
Rivera, 2022), the constraints using f(R) theories that recover a H0 value close to the one obtained
with CMB measurements, e.g. H0 = 69.5 ± 2.0 km s−1 Mpc−1 and alleviates the tension to 1.5σ
(D’Agostino and Nunes, 2020). Furthermore, works on f(T,B) cosmologies have also been showing
some promising development where a cosmographic fit is performed (Escamilla-Rivera et al., 2021)
for high redshift to constraint possible implications in the use of a modified gravity.

As problems regarding GR and deviations from the ΛCDM model began to arise, several
different attempts to find some more general framework or even a new description of gravity have
been brought to our attention.

Another example is the proposal of a theory f(R, T ) in which a function of the curvature
scalar and the energy-momentum tensor could solve the Hubble tension down to 2σ (Myrzakulov
et al., 2023). Other ideas include the use of f(Q) gravity in which the non-metricity tensor
Qαµν = ∇αgµν is introduced to generalize assumptions in the construction of gravity theories
(Mandal et al., 2020), and that could potentially solve the existing tensions. Constraints on such
models have been performed in (Lazkoz et al., 2019) using CMB and BAO, in (Barros et al., 2020)
using Large Scale Structure (LSS), and (Nájera et al., 2023) using gravitational waves. Also, we
found proposals that consider the replacement of the Newton constant G with a time-varying G(t)
proposed by Brans and Dicke (Brans and Dicke, 1961) that solves the Hubble tension using the
early-time data to 1σ (Solà Peracaula et al., 2019), and attempts to introduce quantum effects to
gravitation via the non-local gravity that improves the H0 estimation to 2σ tension with late time
estimations (Belgacem et al., 2020).

Although the aforementioned proposals are not the only ones, we mention some examples of
alternative ones of different natures to solve the current cosmological issues Perivolaropoulos and
Skara (2022). Most complete reviews for the state-of-art in cosmology related to this topic can be
found in (Di Valentino et al., 2021a; Abdalla et al., 2022).

1.3 Teleparallel Equivalent Theory of Gravity
The proposal of teleparallelism has been gaining momentum in the last decades as one of the
extension candidates for GR (Bahamonde et al., 2021). In this theory, the curvature is replaced
by torsion as the mechanism in which gravity is produced and it is based on the substitution of
the curvature-based Levi-Civita connection by a torsion-based teleparallel connection known as
the Weitzenböck connection.

The standard way of working in teleparallel gravity is in terms of tetrads, which are the basis
of the tangent space from a point in a manifold (Golovnev, 2023).

1.3.1 Tetrads

To start talking about telleparalelism, we need to start with tetrads since they are the dynamic
elements of the theory. They are defined as a base of orthonormal vectors eAµ where the Latin
capital letters A,B,C = 0, 1, 2, 3 are the tangent space-time coordinates. These tetrads fulfill the
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relations
eAµE

ν
B = δνµ, eµAE

B
ν = δBA , (1.21)

where EA
µ is the inverse of the tetrad, and the metric can be written as

ηAB = ηAB = diag(1,−1,−1,−1); (1.22)

and the space-time metric is derived using

gµν = ηABe
A
µe

B
ν , gµν = ηABE µ

A E ν
B . (1.23)

The featured theory of gravity in this thesis is the Teleparallel Equivalent Theory of Gravity
(TEGR), in which an alternative to GR is constructed by substituting the curvature for the
torsion (Maluf, 2013). In this theory, given a set of tetrad fields it is possible to construct the
metric tensor gµν and the new connection is going to be used: the Teleparallel connection Γλ

µν =

Eλ
A

(
∂νe

A
ν + ωA

Bνe
B
µ

)
. Here the construction is a generalization of the Riemannian geometry.

So, in this case, given a nontrivial tetrad, it is possible to construct a connection that involves
torsion without curvature (Cai et al., 2016). We can expand the construction of the teleparallel
connection as

Γσ
µν = E σ

A

(
∂νe

A
µ + ωA

Bνe
B
µ

)
, (1.24)

where ωA
Bµ represents the components of the teleparallel spin connection (Bahamonde et al., 2021).

The spin connection represent the Lorentz frame of this new geometric construction, allowing that
the covariant derivative present all the necessary properties to transform covariantly under Lorentz
transformations (de Andrade et al., 2001).

The connection satisfies the tetrad postulate as

∂µe
A
ν + wA

Bµe
B
ν − Γρ

νρe
A
ρ, (1.25)

where the vectors remain parallel, which gives rise to the name teleparallel gravity.
Using the spin connection description we can describe the curvature, torsion, and non-metricity

tensors that are independent of the choice of the tetrad, and therefore we can define the curvature
tensor as

Rα
βµν = ∂µω

α
βµ − ∂νω

α
βµ + ωα

γµω
α
βν − ωα

γνω
γ
βµ, (1.26)

with the torsion tensor

Tα
µν = ∂µe

α
ν − ∂νe

α
µ + ωα

βµe
β
ν − ωα

βνe
β
µ, (1.27)

and the non-metricity tensor

Sµαβ = ∇µgαβ = −ηαγω
γ
βµ − ηγβω

γ
αµ. (1.28)

If the spin connection is zero, the torsion tensor only depends on the tetras as:

T λ
µν = E λ

A

(
eAν,µ − eAµ,ν

)
, (1.29)

where this connection is known as the Weitzenböck connection.
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To explore further the concept of torsion we need to consider two curves C1 parameterized
by the λ parameter as xµ = xµ(λ) and C2 parameterized by x̃µ = x̃µ(λ). So, if we calculate the
displacement of a tangent vector uµ along C2 and obtain a u′ν in first order we will obtain

u′ν = uν + (∂νu
ν)dx̃ν , (1.30)

where dx̃µ represents the displacement mentioned before. If we recall that uν is a parallel trans-
ported vector and

dx̃µ

dλ
∇uν = 0 =

dx̃µ

dλ
∂µu

ν + Γν
βµ

dx̃µ

dλ
uβ. (1.31)

So, separating the terms we obtain:

(∂µu
ν)dx̃µ = −Γν

βµu
βũµdλ. (1.32)

Introducing this latter to the expression for u′ν we obtain

u′ν = uν − Γν
βµu

βũµdλ. (1.33)

Performing the same procedure now using the displacement of ũµ along C1 we arrive at the ex-
pression

ũ′ν = ũν − Γν
βµũ

βuµdλ. (1.34)

Finally, we can express the combined previous expressions (1.33) and (1.34) with some index
relabeling as:

(ũν + u′ν)− (uν + ũ′ν) = −T ν
µβ ũ

µuβdλ. (1.35)

If the vectors (ũν + u′ν) and (uν + ũ′ν) are the same, T ν
βµ = 0. So, the torsion tensor T represents

the closeness of a curve in the parallel transport of two vectors in different geometries. If we define
the vector that shows the deviation from an infinitesimal parallelogram as V αdλ = (ũα + u′α) −
(uα + ũ′α) we can express the torsion tensor simply as

V α = −Tα
µν ũ

µuν , (1.36)

and this represents the cracked parallelogram that is true for small displacements in the directions
of ũµ and uν computed at the starting point of the path of the transport (Akrami et al., 2021).

The use of the teleparallel geometry causes the parallel transport along a curve to be non-trivial
and to change the transported vector making it not symmetric under exchanging the transported
vector and the direction of transport (Bahamonde et al., 2021).

1.3.2 Teleparallel Equivalent Field Equations

In the direction of the TEGR, we need to introduce the contortion tensor given by

Kα
µν = Γα

µν − Γ̊α
µν =

1

2

(
T α
µ ν + T α

ν µ − Tα
µν

)
, (1.37)

which is defined entirely on the torsion tensor quantities much like the Riemann tensor is defined
entirely on the Levi-Civita connection. This tensor takes into account the difference between the
teleparallel and the Levi-Civita connections. We can define also

Lµ
νρ =

1

2

(
Qµ

νρ −Q µ
µ ρ −Q µ

ρ ν

)
, (1.38)
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that quantifies the non-metricity. So, the Riemann curvature tensor can be written in the form

Rµ
νρσ = R̊µ

νρσ −∇ρD
µ
νρ −∇σD

µ
νρ +Dµ

τρD
τ
νσ −Dµ

τσD
τ
νρ (1.39)

where a new distortion tensor is defined as

Dµ
νρ = Γµ

νρ − Γ̊µ
νρ = Kµ

νρ + Lµ
νρ. (1.40)

If we chose a vanishing curvature tensor Rµ
νρσ = 0 we can express the Levi-Civita connection

Riemann tensor as

R̊µ
νρσ = Kµ

τσK
τ
νρ −Kµ

τρK
τ
νσ +∇σK

µ
νρ −∇ρK

µ
νρ , (1.41)

in terms of the contortion tensor. So, the Ricci scalar can be expressed as

R̊ = Kµ
ρνK

ρν
µ −Kµ

ρµK
ρν

ν − 2∇µK
µν

ν , (1.42)

that can be traced to (Bahamonde et al., 2021)

R = −T + 2∇µT
νµ

ν = −T +B (1.43)

where B is the boundary term and T is the torsion scalar that can be defined by multiple forms
(Akrami et al., 2021). The boundary term B guarantees the dynamical equivalence between the
Einstein-Hilbert and the TEGR action constructed from the torsion scalar (Bahamonde et al.,
2021). One of the representations of T can be given by

T =
1

2
T ρ

µν S
µν

ρ =
1

4
T µνρTµνρ +

1

2
T µνρTρνµ − T µ

µρ T
νρ

ν , (1.44)

using the superpotential as
Sµ

µρ = Kµρ
ρ − δµρTσσν + δνρT

σµ
σ . (1.45)

In the boundary, a divergence does not affect the field equations. Assuming a teleparallel geometry
one may transform the Einstein-Hilbert action shown (1.6) into alternative formulations (Baha-
monde et al., 2021). As the torsion tensor encompasses all the information about the gravitational
field (Bengochea and Ferraro, 2009) the dynamical equations for this TEGR can be constructed
based on this tensor that can be read as

STEGR = − 1

2κ2

∫
d4x|e|T +

1

2κ2

∫
dx4|e|Lm. (1.46)

Using the notation where |e| = det
(
eAµ
)
=

√−g, and the variation of this action yields the following
field equations

∇ρS
ρ

(µν) − 1

2
S ρσ
(µ Tν)ρσ +

1

2
Tgµν = κ2Tµν . (1.47)

Notice that the l.h.s is similar to the ones obtained using the Einstein-Hilbert action, so the
equations are completely equivalent to the ones in GR. In this teleparallel context, we are capable
of introducing a whole new class of theories known as f(T ), where f is the functional of the torsion
scalar T in an attempt to generalize further the previously obtained field equations (Akrami et al.,
2021) to incorporate the missing observational features like the late time acceleration.
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The action describing the modified teleparallel gravity for f(T ) is given by

Sf(T ) =
1

2κ2

∫
dx4|e|[−T + f(T )] +

1

2κ2

∫
dx4|e|Lm, (1.48)

where again, Lm is the matter Lagrangian. It is important to notice that the teleparallel connection
has been employed only in the gravitational part of the action and the matter action remains
unchanged, although is possible to couple the matter and the geometric connection (Bahamonde
et al., 2021). Also, using tetrads as dynamical variables of the theory, instead of the metric allows
us to obtain second differential equations.

Variation of the action respect to the tetrad eAµ give us the field equations

W µ
α :=

1

e
∂µ
(
eE ρ

α S µν
ρ

)
[fT − 1]− E λ

α T ρ
νλS

νµ
ρ [fT − 1] +

1

4
E µ

α [f(T )− T ]

+ E ρ
α S µν

ρ ∂ν(T )fTT + E λ
β ωβ

ανS
νµ

λ [fT − 1] = κ2E ρ
α T µ

ρ ;
(1.49)

where fT = f ′(T ) = ∂Tf just to simplify the notation. The previous field equations can therefore
be represented as

W(µν) = κ2Θµν , and W[µν] = 0. (1.50)

In the field equations, the tetrad and the spin connection are represented in respectively each
of the symmetric and antisymmetric operators upon Wµν . Specifically, if we chose that the spin
connection vanishes, we have the Weitzenböck gauge (Briffa et al., 2023b). In this specific choice
of gauge, the ten tetrad differential equations are the gravitational equations of motions.

So, the next step is to choose a specific tetrad and the function f(T ) to describe our physical
situation. One of the effects of introducing the teleparallel connection is that the geodesic equation
is changed. Originally, using the Levi-Civita connection the geodesic equation was described as:

d2xµ

dτ 2
+ Γ̊µ

αβ

dxα

dτ

dxβ

dτ
= 0, (1.51)

that describes the path of test particles. In the teleparallel geometry, the geodesic equation changes
to:

d2xµ

dτ 2
+ Γµ

αβ

dxα

dτ

dxβ

dτ
= Kµ

αβ

dxα

dτ

dxβ

dτ
, (1.52)

which reflects the transformation from the curvature-based connection to the torsion-based based.
This equation represents how the equation recovers that the particles are influenced by a force-like
contribution (Bahamonde et al., 2021) in the form of the contortion tensor which acts on test
particles as a force term.



Chapter 2

Precision Cosmology for Teleparallel
Gravity

With the fast rate of increasing data overcoming within the new collaborations and missions, we are
in the era to attend the standard cosmology as precision cosmology (Escamilla Rivera and Vecchyo,
2023). Precision is the main characteristic in which we deal with statistics and probabilistic schemes
(Escamilla-Rivera, 2021). While the possibility to constrain cosmological models has been done
for several years, we are now capable of classifying and exploring the probability of these models to
reproduce the observational data. Furthermore, there have been studies that attempt to break the
degeneracy of standard cosmologies to explore a unique scenario that can fulfill all the conditions
required at the further sides of the distance ladder. However, the majority of the proposal arrives at
the same conclusion: we require a new cosmological model that gives us a first-principle explanation
of the dark sector and solves the cosmological tensions at the same time. Even when deviations
from the ΛCDM model and modified gravities can explain one or another, there has not been a
consensus on which is the right path.

In this line of thought, performing precision cosmology in extended theories of gravity has
offered a viable path to tackle these issues from first principles, i.e. from a Lagrangian formulation
we can identify naturally if these dark components come from geometry effects and how they can
be constrained with data.

The most interesting applications in this direction are f(T ) theories, which attempt to describe
the late-time cosmic acceleration and fulfill the constraints using SNIa catalogs. Furthermore, the
cosmological models derived from these theories allow us to explain the nature of this phenomenon
as a merely geometrical consequence without recurring to dark energy (Maluf, 2013). Another
interesting characteristic of the f(T ) theories is the possibility of relaxing the cosmological tension
related to H0 and fσ8, the latter by avoiding the dark matter component added as a matter
contribution or a scalar field (Akrami et al., 2021). Several f(T ) models have been proposed
for specific goals to solve cosmological problems, and in this thesis, four different models will be
explored, each one proposed with different characteristics as we shall see.

24
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2.1 Cosmology for Teleparallel Equivalent Gravity
To develop cosmological treatments in TG, we require the Weitzenböck connection. The problem
arises when doing a linear transformation of the tetrads, where the torsion tensor is non-covariant
(Bahamonde et al., 2021). In such case, the term good tetrad was started using to refer to tetrads
and spin connections that preserve the invariance over linear transformations and that led to
non-trivial solutions of the field equations of f(T ) gravity. In this scheme, the spin connection
needs to be different from zero to fulfill the geometric necessities. In TG, one tetrad could have
a nonzero spin connection that fulfills the symmetries of the physical problem and also solves the
antisymmetric part of the field equations (1.50). So, a good tetrad fulfills being compatible with
the choice of spin connection and solves the field equations without constraining the theory itself
(Bahamonde et al., 2021).

In TG, the two good tetrads to describe the positive curvature parameter k = +1 and the
negative curvature parameter k = −1, are similar to each other. The case k = 0 makes them both
coincide with each other (Bahamonde et al., 2021). At this point, we are interested in the tetrad
that does not incorporate the curvature effects, so the tetrad used to obtain FLRW cosmologies
with k = 0 can be written as (see e.g. Eq.1.10)

ds2 = diag(1, a(t), a(t), a(t)), (2.1)

that using the vanishing spin connection and the definition of the torsion scalar and the boundary
term becomes

T = −6H2, B = −18H2 − 6Ḣ, (2.2)

and this becomes the Ricci scalar as

R̊ = −T +B = −12H2 − 6Ḣ. (2.3)

This means that the Ricci scalar differs by a boundary term which guarantees the dynamical
equivalence between the Einstein-Hilbert action (1.6) and the TEGR action (1.46). The boundary
term is related to the Lovelock theorem that induces minor modifications in the Einstein-Hilbert
action (Bahamonde et al., 2021). This means that in special cases, we can get rid of the boundary
term since it does not contribute dynamically to the theory. This means that we are interested only
in f(T ) theories rather than f(T,B). In this case, the modified FLRW equations are described by

H2 +
f(T )

3
fT − f(T )

6
=

κ2

3
ρ, (2.4)

Ḣ(1− fT − 2TfTT ) = −κ2

2
(ρ+ p), (2.5)

where the sub index T refers to partial derivative respect to the torsion scalar T and the dot refers
to time derivative as ḟT = fTT Ṫ . This equations are obtained by using the tetrad (2.1) in the field
equations in (1.50).

In this newly modified Friedmann equation, the accelerated expansion of the universe codified
in the dark energy has a gravitational origin, defining

ρDE =
3

κ2

[
−f

6
+

TfT
3

]
, (2.6)
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and therefore, a natural introduction of a negative EoS to explain the effect of the accelerated
expansion. However, it requires the specification of f(T ) form to describe its evolution. In this
case, the effective EoS can be written as

wDE = −
f
T
− fT + 2TfTT

(1 + fT + 2TfTT )
(
f
T
− 2fT

) , (2.7)

and if fT = 0 we recover the ΛCDM model condition in which wDE = −1 (Briffa et al., 2023a). By
defining the normalized Hubble parameter E(z) := H(z)/H0 we can rewrite the Hubble parameter
in a useful manner as

E2(z) = Ωm(1 + z)3 + (1− Ωm)y(z, b), (2.8)

where Ωm is the fractional matter density today and y(z, b) is a function that depends on the free
parameters introduced with the f(T ) functions (Wang and Mota, 2020) as

y(z, b) =
1

6H2
0 (1− Ωm)

[2TfT − f ] . (2.9)

As we can notice, for all cosmological models, any deviation from the ΛCDM model is contained
in the function y(z, b). This is the first theoretical test to relax the degeneracy of models.

Once with the Friedmann evolution equations, we can explore its observational constraints by
rewriting the dynamical quantities in terms of the observational parameters. To perform these
calculations, it is necessary to find the relationship between these dynamical parameters and
the measurements reported for each observational catalog. On this topic, we can classify the
observables as:

• Standard (Standarizable) candels.

To measure the distances in the universe it is necessary to adapt our measurements as
the distance grows. With this in mind, we use the so-called cosmic distance ladder. For
this method in astrophysics, we use standard candles, which are objects with a well-known
luminosity (Weinberg et al., 2013). This is used because one of the only ways we can obtain
information from distant objects is through their light. The distance ladder is calibrated
locally using the parallax technique in which the distance of several hundred million stars is
known as stars (Brown et al., 2021) including the variable Cepheids stars. In cosmology, the
Period-Luminosity (PL) relation is well known used to measure distances as we can measure
the apparent brightness in the sky (m) and we can infer the same quantity at 10 pc (M) using
the PL relation. For more distant distances where Cepheids can no longer be measured SNIa
are used as standard candles as we assume the maximum brightness is equal for all these
events (Jones, 2017). This leads to the important distance modulus relation µ = m−M that
will be used later.

To connect the distance ladder with the cosmological models, we need to use the comoving
distance that is the total line-of-sight of a photon traveling at redshift intervals dz′ weighted
by the Hubble parameter (Hogg, 2000) written as The luminosity distance can be written as

Dc(z) =
c

H0

∫ z

0

dz′

E(z′)
, (2.10)
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where c is the light speed in km/s and the result of the distance is written in Mpc units.
The luminosity distance is the relation between the measured flux and the luminosity of an
object in all frequencies across different redshifts (Hogg, 2000). This distance can be written
in the following form

DL(z) = (1 + z)
c

H0

∫ z

0

dz′

E(z′)
= (1 + z)Dc(z), (2.11)

and the distance modulus can simply be expressed as:

µ(z) = 5 log10 (DL(z)) + 25, (2.12)

using Mpc units in the logarithm.

• Standard rulers. The standard rules rely on the assumption that we know the apparent
size and shape of an object independent of the distance. In different studies, one of the most
used rulers is the sound horizon at recombination epoch (Alam et al., 2017). This sound
scale can be calculated explicitly from the integral

rs(z) =

∫ ∞

z

dz′
cs(z

′)

H(z′)
, (2.13)

where the sound speed cs(z) can be approximated as cs ≈ c[3 + 9/4ρb/ργ] using ρb and ργ are
the baryon and photon densities. This sound horizon is the comoving distance traveled by a
sound wave to the point of the last scattering surface of CMB photons (Stevens et al., 2023).
It is important to notice that we refer, on one hand to recombination to the process when the
universe had cooled enough for the first atoms to form. And on the other, at the time when
those atoms stopped interacting with the photons is called the drag epoch. This is because in
the hotter universe the interactions between matter and radiation created oscillations that
stopped when the temperature conditions cooled down (Baumann, 2022).
For the calculations of standard rulers it is also used the angular distance diameter DA(z) is
as

DA(z) =
1

1 + z

c

H0

∫ z

0

dz′

E(z′)
=

Dc(z)

1 + z
, (2.14)

and this is the derived distance used in standard rulers that depends on the cosmology used.
The angular distance has some interesting effects as the apparent angular diameter decreases
up to z ∼ 2.5 where the objects start to grow in the sky due to the expansion of the Universe
(Baumann, 2022).

2.2 f (T ) cosmological models
As we analyzed in the latter section, with Eq.(2.9) we can measure the degeneracy of cosmological
models through viable deviations from the standard cosmological model. Once this condition is
fulfilled, we can proceed with the selection of f(T ) models. In this scheme, several f(T ) models
have been proposed to solve different astrophysical and cosmological issues, and some of these
examples will be reviewed in this section.
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2.2.1 Power Law model

One of the first f(T ) models analyzed at the cosmological level is the power law model. We refer to
it as f1(T ) (Bengochea and Ferraro, 2009), which proposes an explanation for the late time cosmic
acceleration without invoking dark energy as a fluid component. Explicitly, the model introduces
the specific function f1(T ) as

f1(T ) = α1(−T )b1 . (2.15)

Evaluating the Friedmann equation (2.5) at late times (meaning the evaluation T |0 = T0) we obtain

α1 =
(
6H2

0

)1−b1 1− Ωm

1− 2b1
, (2.16)

which means that α1 is not a free parameter and depends directly on the choice of b1. So, analogous
to ΛCDM we can write the normalized Hubble parameter as

E2(z) = Ωm(1 + z)3 + (1− Ωm)E
2b1(z), (2.17)

which precisely reproduces ΛCDM when b1 = 0. When b1 = 1 the additional component in
the Hubble parameter produces a gravitational constant term, and therefore, the b1 < 1 will be
a significant upper limit to take into account as a physical limit if we want to reproduce the
observations of an accelerating universe (Briffa et al., 2022).
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Figure 2.1: Top: Evolution of the Hubble parameter H(z) (2.17). Bottom: Evolution of the
modulus distance µ(z) (2.12), for the Power Law model (2.15). We denote in a dotted black
line the ΛCDM model using conservative priors H0 = 73.3km/s/Mpc and Ωm = 0.3. Different
evolutions for this f(T ) are given with b1 values (purple/green/yellow color lines).
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2.2.2 Linder model

In Linder (2010) was proposed a model for f(T ) to explicitly avoid the use of an extra component
of dark energy as a constant. This case is quite similar to a stable solution in f(R) theories. For
such a scheme, it is proposed an exponential dependence in the torsion scalar as

f2(T ) = α2T0

(
1− exp

[
−b2

√
T

T0

])
, (2.18)

where α2 and b2 are constants and T0 = T |t=t0 = 6H2
0 . The introduction of the quotient T/T0 is

to avoid dealing with units in the exponential expression.
If we evaluate this function at current times we can reach an expression for the b2 parameter

given by

α2 =
1− Ωm

(1 + b2)e−b2 − 1
. (2.19)

Analogous to the previous model, notice that this function has only a free parameter b2. We can
rewrite the Friedmann equation for this case as

E2(z) = Ωm(1 + z)3 +
1− Ωm

(b2 + 1)e−b2 − 1

[
(1 + b2E(z)e−b2E(z) − 1

]
. (2.20)

The f2(T ) model reduces to ΛCDM for b2 → ∞. For this model, it is usual to perform analyses
using instead 1/b2 as the free parameter to achieve convergence, so that 1/b+2 → 0 turns into
ΛCDM (Briffa et al., 2022).
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Figure 2.2: Top: Evolution of the Hubble parameter H(z) (2.20). Bottom: Evolution of the total
line-of-sight distance c

H0
Dc(z) (2.10), for the Linder model (2.18). We denote in a dotted black

line the ΛCDM model using conservative priors H0 = 73.3km/s/Mpc and Ωm = 0.3. Different
evolutions for this f(T ) are given with b1 values (yellow/red/purple color lines).
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2.2.3 Modified Linder model

Proposed in Nesseris et al. (2013) the modified Linder model takes into consideration not only the
exponential factor, like in f(R), but also considers another interpretation of new parameters in a
f3(T ) function to include corrections in these terms. This model is given by

f3(T ) = α3T0

(
1− e

−b3
T
T0

)
, (2.21)

where α3 and b3 are constants. Evaluating this function at current times we obtain

α3 =
1− Ωm

(1 + 2b3)e−b3 − 1
. (2.22)

The Friedmann equation can be written in terms of the free parameters including b3 as

E2(z) = Ωm(1 + z)3 +
1− Ωm

(1 + 2b3)e−b3 − 1

[
(1 + 2b3E

2(z))e−b3E2(z) − 1
]
. (2.23)

This behavior is similar to the one shown in f2(T ), where for b3 → ∞ the model recovers ΛCDM,
implying that again for the sake of analyses, 1/b3 is going to be the subject of the studies. In this
case 1/b+3 → 0 recovers ΛCDM.
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Figure 2.3: Top: Evolution of the Hubble parameter H(z) (2.23). Bottom: Evolution of the
total line-of-sight distance c

H0
Dc(z) (2.10), for the Modified Linder model (2.21). We denote in a

dotted black line the ΛCDM model using conservative priors H0 = 73.3km/s/Mpc and Ωm = 0.3.
Different evolutions for this f(T ) are given with b1 values (green/blue color lines).
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2.2.4 Logarithmic model

The logarithmic model was proposed in Bamba et al. (2011) and is described as

f4(T ) = α4T0

√
T

b4T0

log

(
b4T0

T

)
, (2.24)

where α4 and b4 are constants. It is important to mention that in this model we have no set of
specific values that recover the ΛCDM model. Using the same argument from the previous models
and evaluating for t = t0, only one free parameter is obtained

α4 = −(1− Ωm)
√
b4

2
, (2.25)

and this reduces the Friedmann equation as

E2(z) = Ωm(1 + z)3 + (1− Ωm)E(z). (2.26)

This means that there is no additional free parameter apart from the ones related to the ΛCDM
model, and therefore, in this case, we have no bias that recovers the standard cosmology.
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Figure 2.4: Top: Evolution of the Hubble parameter H(z) (2.26). Bottom: Evolution of the total
line-of-sight distance c

H0
Dc(z) (2.10), for the Logarithmic model (2.24). We denote in a dotted

black line the ΛCDM model using conservative priors H0 = 73.3km/s/Mpc and Ωm = 0.3. Different
evolutions for this f(T ) are given with b1 values (purple/green/yellow/red color lines).

2.3 Precision cosmology for Teleparallel Gravity
After describing a well-behaved gravitational theory, it is important to confront its viability and
predictions with the available observational data. From a purely gravitational point of view,
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the first test should be at Solar System scales, in which our current GR understanding seems
to be working well (Akrami et al., 2021). The formal approach to this is using the weak-field
approximation that has to be essentially the Newton approximation to gravity. In the case of
f(T ), is different because the dynamical element is the tetrads instead of the metric (Chen et al.,
2015). f(T ) has tested successfully at Solar System scales (Iorio et al., 2015) and via orbital
motions for the Power Law model (Iorio and Saridakis, 2012). Other observational bounds that
need to be fulfilled are the detection of Gravitational Waves (Abbott et al., 2016), which constrain
the speed of propagation for f(T ) predictions with the speed of light c, analogous to GR. In the
experiments we obtain |c/cGW − 1| ≲ 2 × 10−5 (Akrami et al., 2021) and the polarization modes
are similar in both GR and f(T ) theories. At this point, we remember that at this level it is
impossible to distinguish GR from TEGR, as we saw theoretically. More recently, the shadow of
the Sgr A* black hole in the center of our galaxy (Akiyama et al., 2019, 2022) was used to test
f(T ) theories Jusufi et al. (2022) and in the future, new kinds of probes like primordial black holes
could give us insight about the early universe El Bourakadi et al. (2022).

Due to these tests, most of the TEGR models have been made at cosmological scales, where
a deviation from GR and the ΛCDM model can be studied. We described some approaches as
follows (Akrami et al., 2021):

• Explaining the late acceleration of the universe without the cosmological constant. As seen
before, the f(T ) cosmology obtains naturally the result of an effective dark energy sector
from gravitational nature as wDE = 3

κ2

[
−f

6
+ TfT

3

]
, so the viability of the model is reduced

to find meaningful physical models (Bahamonde et al., 2021). For example, the Power Law
model (Bengochea and Ferraro, 2009) was developed to explain the cosmic late acceleration
through a T function that becomes important at H → H0.

• Solving the cosmological tensions. We have mentioned that TG could help to solve the H0

tension. For example, using the Power Law model we can demonstrate that f(T ) could alle-
viate the tension down to 2.2σ using the early universe data Nunes (2018). Other examples
use the Exponential function of T to reduce the tension to 1.4σ through a Gaussian prior
on H0 (Hashim et al., 2021a), and calculations at a perturbative level reduce tension at 1σ
using early data (Hashim et al., 2021b). A recent proposal on f(T ) shows a diminution of
the Hubble tension (Briffa et al., 2023a). This thesis is focused in this direction.

• Avoiding dark matter to describe galactic dynamics. Although TG is not the only extension
of gravity to introduce corrections to alleviate the galactic dynamics observed, this theory
introduces only cosmological dark matter responsible for the structure formation in the early
universe. This leaves the galactic rotation curves (Weinberg et al., 2013) to an explanation
from within the same extension of the theory. Using f(T ) gravity as in Finch and Said (2018)
we obtained successful rotation curves for the Milky Way using only the disk and the bulge
in agreement with the data.

• Solutions involving the early universe to describe inflation. Cosmic inflation was proposed
to solve the flatness, magnetic monopole, and horizon problems (Guth, 1981), where scalar
fields have been proposed as the mechanism that led to that process. TG could be a good
candidate to induce natural inflation from f(T ) models in a Born-Infeld context Ferraro and
Fiorini (2008), and a Higgs inflation mechanism in a teleparallel context Raatikainen and
Rasanen (2019). This is obtained naturally using an scalar field in the teleparallel theory.
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2.3.1 Bayesian cosmology: numerical implementation

One of the goals of this thesis is to find cosmological constraints by analyzing the available obser-
vational data. The most popular methodology to perform these constraint analyses is the Bayesian
method (Hobson, 2009; Trotta, 2017). The idea of using data to constrain cosmological parame-
ters in different theories is to generate a deeper understatement of the physics that led to those
measurements. This is in fact, the inverse problem of cosmology (Munõz and Escamilla-Rivera,
2020) in which we want to extract from the available data all the information we can have about
the nature of a cosmological model, and from a theory of gravity.

The advantage of the Bayes method over other algorithms to constraint parameters is that
the optimization algorithms take into account extra or nuissance parameters, e.g. the signal in
background noise in an astrophysical image, the incorporation of a priori information about the
parameters, the best performance in finding the truth value in robust models and the simplicity
to incorporate several data sets to constraints the same set of parameters.

In this context, the Bayes theorem can be seen as (Hobson, 2009; Trotta, 2017)

P(θ|d) = P(d|θ)P(θ)
P(d)

, (2.27)

where P(θ|d) is the posterior probability for θ (or the cosmological parameters) that represents our
degree of belief about the value of θ after the algorithm has seen the data d; P(d|θ) is the likelihood
or the probability of the data given a certain value of the parameters θ, and finally P(d) is the
prior probability distribution. The degree of belief in the parameter for the values of θ before the
data is usually dominated by the physical conditions that determine the real or possible solutions.
For example, as we shall see in our analysis, in the case of a power law model in f(T ) gravities,
its free parameter is labeled b1 < 0 for accelerating universe, and therefore the prior should be
written to fulfill this condition.

The algorithms to perform Bayesian analyses take different approaches, but specifically for our
analysis the used method is the Markov Chain Monte Carlo (MCMC). This MCMC process consists
of a sequence of points in the parameters (sample) that is proportional to the density of the samples.
Using some kind of generation of a new sample, we obtain that the final dataset depends only on
the last position of the n points. After several new generations of points, the distribution of these
points converges to a distribution centered on the real value of the parameters. The generation of
the new sample in computational methods usually relies on random number generation to generate
the points, and it is decided in a process of maximizing the likelihood or closeness of the model to
the data. In this thesis, we will quantify the values using the χ2 that will be described for each
observational data set.

Finally, the computational version of MCMC used in our analyses is going to be a modified
version of emcee (Foreman-Mackey et al., 2013). This is a code that implements a version of the
affine-invariant ensemble sampler for the MCMC routine and it is one of the most used algorithms
for both Astrophysics and Cosmology. Now, we will describe how to write the necessary code for
an emcee routine in the context of f(T ) cosmologies.

We created a specific section of code dedicated to the theoretical calculations needed. As seen
before, the free parameters will be Ωm, H0 and the additional for every model named bi, meaning
that Θ = (Ωm, H0, bi). The mentioned free parameters are due to the fact that we are working
in the late universe where radiation is no longer a notable contributor to the total energy density



2.3. PRECISION COSMOLOGY FOR TELEPARALLEL GRAVITY 34

(Aghanim et al., 2020b). So, for the cosmology part of the code, the calculations are done the
following way:

1. Write the Friedmann equations in terms of the normalized Hubble parameter E2(z) as seen
in Equations (2.17), (2.20), (2.23) and (2.26). As seen in those Equations, the parameter
E(z) is present in a polynomial form that we need to solve for every set of parameters.

2. Solve the polynomial for E(z) using a root finder for each set of values for Θ. In the case
that the Hubble parameter H(z) is needed, we perform H(z) = H0E(z) to obtain the desired
quantity.

3. Use this normalized parameter E(z) value to perform the integral done in Equation (2.10).
All the other distances to calculate come from this expression, so the rest of the theoretical
quantities are calculated trivially.

We decided to put all the theoretical parts of the Hubble parameter calculations and the
distances into one program so that we could use the results in the rest of the necessary steps. The
next step is the calculation of the likelihood and the generation of the MCMC routine.

Almost all the likelihoods will be written as:

L ∝ −1

2

(yteor − yobs)
2

σ2
y

, (2.28)

with y2teor the modeled quantity for the desired model, y2obs the observed or measured quantities
and σy the error associated to the measurements. This will be adapted depending on the details
of each set.

For the MCMC routine, we will consider the following:

1. Select several steps required for the MCMC routine. This is the number of variations of the
vector parameter p that is going to be random varying.

2. Using the EnsembleSampler function we will construct the vector with dimension equivalent
to the free parameters in Θ. This is the vector that is going to vary freely to find the best
fit.

3. We suggest using some kind of correlation check to quantify if the code is achieving conver-
gence. This is imposed to avoid the code having to go through all of the steps and therefore
make the code more efficient.

4. Use the likelihood functions and the derivated quantities to maximize the likelihood function
to obtain the best fit using the run_mcmc function in the package.

5. We suggest using the backend function to save the progress for posterior analyses, in which
the chains and the calculated likelihood will be stored.

Finally, for the chains analyses, we suggest different public packages like chainconsumer
(Hinton, 2016) and getdist (Lewis, 2019).



Chapter 3

Late-time observations: theory and
constraints

To learn more about the aforementioned issues in the ΛCDM model it is important to keep using
the available datasets and to continue to generate new ones. New datasets are crucial to learn
about the systematic errors in the previous and to create a new playground to test alternative
models. If this new data reaches bigger redshifts could help us to check if deviations from the
standard model and to obtain more refined parameter estimations.

In this direction, for example, the Joint Light-Curve Analyses (JLA) sample of SNIa was
upgraded by the Pantheon project (Scolnic et al., 2018) and the last one likewise improved by
the Pantheon+ catalog (Riess et al., 2021b). The use of upgraded SNIa samples improved the
estimations of Ωm through time as Ωm = 0.295±0.034 for JLA to Ωm = 0.298±0.022 with Pantheon
and finally to Ωm = 0.334 ± 0.018 with Pantheon+. A similar effect had the update in the CMB
observations from WMAP DR9 (Bennett et al., 2013) to the Planck Space Telescope (Aghanim
et al., 2020a). Recently, the use of new observation instruments could bring new light to the
calibration of parameters and explore areas that currently are not observed. The use of the cosmic
distance ladder has its limits if we can detect brightness from events dimmer than the operative
limits of telescopes like the Hubble Space Telescope (HST) (Scolnic et al., 2018). In this context,
the use of the new James Webb Space Telescope (JWST) or the Euclid spectroscopic survey (Jelic-
Cizmek et al., 2023) could bring a more and farther dataset than the previous instruments (Riess
et al., 2023). The use of datasets obtained with these new instruments could bring light about the
behavior of the universe at higher redshifts like the analyses done in Alonso et al. (2023).

Improvement in the cosmological measurements could help us to do a better calibration of the
cosmological parameters. Additionally could also test the accuracy of the previous measurements
and show us new issues with the parameters.

To perform the analyses for cosmological models, and tests for gravity theories, in certain
regions of cosmic evolution, we divide the measurements as follows:

• Late measurements (low redshift). We consider these as the ones that are independent of
the standard ΛCDM model. From the cosmological tension issue, all of these measurements
are in agreement with a higher H0 value and are in tension with the CMB measurements.
To treat models with these measurements we require the empirical method of the distance
ladder, which allows us to measure H0 locally, measuring the distance-redshift relation. One
of the techniques used within this method is the parallax, which is used to calibrate the

35
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luminosities of star types. Supernovae calibrated by Cepheids, as has been done by the
SH0ES collaboration (Riess et al., 2022) belong to this division.

• Early measurements (high redshift). These are based on several assumptions, such as
the model used to describe the evolution of the universe, i.e. the standard ΛCDM scenario,
neutrino properties, or the dark energy. Also, we can consider initial values from the in-
flationary epoch, the number of relativistic particles, and dark matter properties. Since we
are considering s fixed cosmology, the H0 tension could be the indication of a failure of this
model. All of these measurements are in agreement with a lower value for the H0.

For completeness, we should mention that the ΛCDM model reproduces the majority of catalogs
available in the literature. However, some issues arise in the mentioned H0 and σ8 tensions, and the
aforementioned incomplete description regarding the nature of the dark matter and dark energy.

Dark energy, related to the late-time cosmic expansion, can be detected in the late universe,
so the search for an answer in this sector will be using data available for the late universe. To
distinguish the nature of this phenomenon between the standard cosmological constant Λ and the
propositions made using f(T ) gravity, in this work, we use low redshift data which can be crucial
to study deviations from the standard model and possibly to find a solution to the cosmological
tension. In this line of thought, we consider a set containing the samples of Cosmic Chronometers
to measure H(z), Supernovae Ia (SNIa), and two different quasars (QSO) samples. Additionally,
we will use the BAO data set from different surveys to add at least one viewpoint from the early
universe physics without the need to calculate the cosmological perturbations. This last data set
will be used separately to contrast the different results taking into account that the surveys are
sensitive to the theory and the dynamics that led to the growth of structure (Bahamonde et al.,
2021; Zhao et al., 2019). Meanwhile, the late time data is more likely to be sensitive to the
numerical analyses and the systematic errors of the data extraction. Therefore the BAO data set
will have an impact on the H0 estimation.

The different data sets each have their peculiarities that must be taken into account when
analyzing them to contrast different cosmological models, so in this regard, we will describe each
of the sets to be used in a Bayesian analysis.

3.1 Constraining cosmological models with measurements
In the cosmological parameter estimation, we have dataset D with a model with free parameter
vector Θ from which the data will generate the set of best parameters in the form of likelihood L.
We usually have a prior distribution for those parameters that represent the previous knowledge
about the parameters or the physical limits of the numerical values can take (Liddle, 2009).

Bayesian inference works by updating our state of knowledge about a parameter as new data
is processed in every iteration of the numerical process (Trotta, 2017). In this direction, every
iteration becomes the next information that the code updates in the space parameter provided
depending on the cosmological model.

MCMC methods based on Bayesian statistics are known as the most important tool for cos-
mologists to work with. Other methods include the techniques of deep learning (Pan et al., 2020)
in which machine learning techniques are used to estimate cosmological parameters from datasets
that are very big for an MCMC routine to perform in a reasonable time.
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In the next subsections, we are going to describe the observational catalogs and baseline used
to constrain our f(T ) cosmologies from Chapter 2. In this Thesis, we will focus on late-time ob-
servations to study deviations from the ΛCDM model using the empirical distance ladder method.

3.2 Cosmic Chronometers measurements
The method called Cosmic Clocks or Cosmic Chronometers was first introduced by (Jimenez and
Loeb, 2002). In this method, the Hubble parameter is measured using cosmology-independent
methods starting from the definition

H(z) =
ȧ

a
= − 1

1 + z

dz

dt
, (3.1)

where we need to measure the difference between two galaxy ages (to obtain ∆t) that passively
evolve and were formed roughly at the same time separated by a small redshift separation ∆z. For
a found pair of galaxies that match the requirements in redshift, the challenge is to measure the
age difference to determine the observational Hubble parameter. As we can determine the redshift
with a precision of δz/z ≲ 0.0001 (Moresco et al., 2020) using spectroscopic techniques we now
have to find an efficient and robust method to rely on the determination of the time difference
using ages.

In this work, we used the 31 points obtained in (Moresco et al., 2016) that cover up to a redshift
z ≤ 2. The data for this sample was obtained from BOSS Data Release 9 (DR9) survey (Dawson
et al., 2012) that originally was going to map the BAO and select a sample of passively evolving
populations. The evolution of the stars in those galaxies only depends on nuclear processes,
therefore we do not need to include any kind of cosmological assumption that makes the data
sample model-dependent. This population of stars also contains a constant number density to
avoid contamination while the stellar masses, emission lines, and velocity dispersion were already
measured by the survey considered. The passive evolving galaxies are among the largest Mstars >
1011M⊙, the earlier in age –most of them formed in redshift z ≳ 2– have not encountered a boost
in star formation. Previous works have shown that instead of introducing the evolutionary stellar
population synthesis models, the direct observation of the galaxy spectra, especially the break
at 4000 Å was more effective and introduced less uncertainty for age estimation (Moresco et al.,
2012).

The break at 4000 Å (D4000) is a good indicator of the metal absorption in the stellar contri-
bution that can be related to the metallicity and therefore can be employed as an age indicator for
the galaxy. For the selected objects this break is calculated by measuring the flux of the continuum
between two bands: 3850-3950 Å and 4000-4100 Å as

D4000 =

(
λblue
2 − λblue

1

) ∫
red Fνdλ

(λred
2 − λred

1 )
∫

blue Fνdλ
, (3.2)

where
∫

blue Fνdλ and
∫

red Fνdλ are the integrals between the λ1 and λ2 limits for each continuum
blue or red part. To use this relation, according to (Balogh et al., 1999) the D4000 break and the
age of the galaxy are linear in the form D4000= A · age + B, where A is the slope and B is the
normalization. Therefore we can express the Hubble parameter as:
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H(z) = − 1

1 + z
A

dz

d(D4000)
. (3.3)

The factor A represents the slope and includes the possible effects of metallicity and the star
formation history. After analyzing the survey results, in (Moresco et al., 2016) was obtained
the mentioned 31 points including z,H(z), and a Covariance Matrix, which is a combination of
uncertainties based on the different methods applied to calculate the age, includes the different
stellar evolution models, the assumed star formation history, metallicity and statistical errors
(Moresco et al., 2018, 2020).

Involving all, the χ2 for Cosmic Clocks is given as:

χ2
H(z) = ∆H(zi,Θ)TC−1

H(z)∆H(zi,Θ), (3.4)

where ∆H(zi,Θ) = H(zi,Θ) − Hobs(zi) comparing both the observed Hubble parameter and the
theoretically calculated. C−1

H(z) is the covariance matrix mentioned before. One of the advantages
of using the H(z) measurements is that we do not need additional parameters to obtain the
cosmological quantity.

More details about the usage of the matrix and the descriptions of the effect of using these
systematic errors compared to the previous estimations are given in Appendix A.

3.3 Supernovae Ia
Supernovae Ia (SNIa) classification is based on spectra properties. In comparison to SN Type II
features hydrogen emission lines, SN Type I does not have the same characteristic lines. This latter
SN shows absorption due to ionized silicon at 6355 Å (Krisciunas, 2012). The standard scenario for
the SNIa consists of a binary system where an explosion happens and a carbon-oxygen dwarf star
(WD) approaches the Chandrasekhar limit of 1.4 M⊙ by either gas gains from its main-sequence
neighbor or from the merging of white dwarf stars. This means that SNIa represents some of the
most energetic explosions of the entire Universe producing a luminosity ∼ 1043 erg s−1 (Livio and
Mazzali, 2018) and they occur in all types of galaxies.

SNIa exhibits a relation between the peak luminosity and both the rate of the decline after
the maximum brightness and the color at the maximum (Livio and Mazzali, 2018) which can be
expressed in the B-band as Mmax(B) = ⟨M0

B⟩+ b∆m15(B), where ∆m15(B) represents the change
in B-band magnitude 15 days after the peak of intensity and b a quantity to be adjusted from the
observations. This variation is about ≲ 2 (Phillips, 1993) where we can find that the weighted
average value ⟨M0

B⟩ is obtained from the Cepheid-calibrated SNIa (Tripp and Branch, 1999). This
specific trend in the luminosity curve has to do with the amount of Ni formed in the explosion
as a result of the sudden change in temperature and ionization (Kasen and Woosley, 2007). The
observed brightness can be linked to a progenitor with a mass between 0.1M⊙ ≲ M ≲ 1M⊙
(Wygoda et al., 2019) and understanding the physical conditions is the key to using them as
standard candles. Additionally, the SNIa curve of luminosity is corrected by color complementing
the relation shown previously, by adding the color correction for every detection, and the reddening
caused by dust as

MB = ⟨M0
B⟩ − b(∆m15 − 1.05)−R(B − V ), (3.5)
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where B and V are the apparent blue and visual magnitudes, and in this case the ∆m15 is nor-
malized to 1.05 (Tripp and Branch, 1999) as known as the Tripp calibration.

The calibration process for SNIa also uses the measured distance to a galaxy via the well-
known Period-Luminosity (PL) relation for the Cepheid stars (Ngeow and Kanbur, 2006). This
calibration is done when an explosion occurs in a galaxy where we have previously measured the
distance using Cepheids (Mortsell et al., 2022). These variable stars have a very well-studied and
fitted relation as M = −5.93 − 3.96(logP − 1) using their well-behaved aforementioned relation
(Riess et al., 2018).

Fitting both ⟨M0
B⟩ for the measured Cepheids and SNIa in the same galaxy host we can obtain

a calibration for the measured SN (Tripp and Branch, 1999; Mortsell et al., 2022). Cepheids
also need calibration with a known working distance estimator as parallax (Riess et al., 2018).
Therefore, in the host of this event, the calibration for the apparent magnitude can be expressed
as mH = mF160W−0.386(mF555W−mF814W), using mF555W, mF814W, and mF160W as the fibers used
to measure the magnitude (Riess et al., 2018).

The sample that we use for our analysis with SNIa is the current Pantheon sample (Scolnic
et al., 2018), which uses SN as standardizable candles by calibrating the apparent magnitude of
the explosion measuring not only the m but a correction for dust extinction, bias, and color. The
calibration to obtain the light curves is expressed as

µ = mB −M + αx1 − βc+∆M +∆B, (3.6)

where µ is the distance modulus, ∆M is the correction in the distance based on the host-galaxy
mass, α is the relation between luminosity and stretch, and β is the relation between luminosity
and color. The ∆B is the correction for the distance accounting for the predicted biases from
simulations and finally, mB is the apparent magnitude in the B-Band and M is the absolute
magnitude.

SNIa Pantheon sample consists of 1048 data points that measure the apparent magnitude for
several explosion events of this type in a redshift range from 0.01 < z < 2.3, and also provides the
factors to reproduce the correction by the stretch, color, brightness of the host galaxy, position
bias and so to reproduce the data. The aforementioned 1048 points are necessary to represent the
cosmological quantity µ = m−M , where the absolute magnitude M is going to be calibrated for
every H0 value as a degeneracy between these two values is present (Zhang et al., 2021). The χ2

for this sample is

χ2
SNIa = ∆µ(zi,Θ)TC−1

SNIa∆µ(zi,Θ) + ln

(
S

2π

)
, (3.7)

where C−1
SNIa is the inverse of the covariance matrix for the data sample, S is the sum of all

components of the inverse of the matrix and ∆µ(zi,Θ) is the difference between the data and the
calculated theoretically distance modulus

µ(zi,Θ) = 5 log10 (DL) + 25, (3.8)

when using the units in Mpc and DL is the luminosity distance.
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3.4 Baryon Acoustic Oscillations
The Baryon Acoustic Oscillation (BAO) method is based on the relics left behind by the sound
waves in the early cosmic times that caused a statistical imprint on the clustering of galaxies and
matter distribution in the late Universe (Weinberg et al., 2013). To calculate BAO the so-called
Statistical Standard Rule (SSR) is used. The waves were caused by the early plasma of coupled
baryons to photons oscillating between the gravitational attraction and the perturbation from
the photon pressure, so eventually when electrons and protons form hydrogen the photons escape
freely leaving the sound wave shells of baryon frozen in the imprint of galaxy power spectrum
(Perivolaropoulos and Skara, 2022). These techniques are distinct three-dimensional clustering
patterns imprinted in the spatial distribution of galaxies that map the expansion history and the
structure growth of the universe (Zhao et al., 2019).

The BAO technique measures distances using this standard rule (see Chapter 2), which means
we need an object of known size at a known distance (or redshift z) whose change in size as it
gets further in distance. This method is very well understood so we can keep track of how the
universe is changing through different redshift z bins. For that we measure separations on the
transverse line of sight measured by changes in the angle of vision that depend on the angular
diameter distance and the comoving sound horizon at the baryon drag epoch DA(z)/rs (Bassett
and Hlozek, 2009). The needed quantities to use the BAO measurements include this distance,
and several other physical quantities (Weinberg et al., 2013; Bargiacchi et al., 2022; Bassett and
Hlozek, 2009) and calculated as

DA(z) =
c

H0(1 + z)
√−Ωk

sin

(√
−Ωk

∫ z

0

dz′

E(z′)

)
, (3.9)

where Ωk = 0 for a flat universe and the angular diameter distance is simply calculated as DA(z) =
c
H0

(1 + z)
∫ z

0
dz′

E(z′)
. The sound horizon at the baryon drag epoch

rs(zd) =

∫ ∞

zd

cs(z
′)

H(z′)
dz′, (3.10)

using cs is the sound speed will be calculated from cosmological fixed parameters as

cs(z) =
c√

3
[
1 +

3Ωb,0

Ωγ,0

1
1+z

] , (3.11)

and the redshift at the baryon drag epoch zd can be calculated in several ways (Aizpuru et al.,
2021), one of them as

zd =
1291(Ωmh

2)
0.251

1 + 0.659(Ωmh2)0.828

[
1 + b1

(
Ωb,0h

2
)b2], (3.12)

with

b1 = 0.313
(
Ωmh

2
)−0.419

[
1 + b1

(
Ωb,0h

2
)b2], (3.13)

b2 = 0.238
(
Ωmh

2
)0.223

. (3.14)
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In these mentioned relations, Ωγ,0 and Ωb,0 are the density parameters of photon and baryon
respectively. The quantities are going to be fixed for the analysis as Ωb,0h

2 = 0.0224 and Ωγ,0h
2 =

2.469× 10−5 in agreement with Planck 2018 (Aghanim et al., 2020b). The radius rs of the sound
horizon at last scattering can be calculated using the distance that the wave can travel from the
origin of the universe t = 0, z → ∞ to time td, zd at the drag epoch when photons can no longer
prevent the gravitational interaction of baryons and that is why the integral (3.10) is calculated
(Perivolaropoulos and Skara, 2022).

The considered BAO data comes from different independent surveys:

1. The result obtained from the Six-degree Field Galaxy Survey measurement (6dFGS) at redshift
z = 0.106 (Beutler et al., 2011). The 6dFGS is a survey of 136,304 extragalactic sources
that covers almost the entire southern sky up to redshift z = 0.92 (Jones et al., 2009).
From a subsample of 75,117 galaxies at redshift z = 0.106 a two-point correlation function
is calculated to estimate the BAO signal at these scales, using the Hubble parameter H(z)
and the angular diameter distance DA(z). Performing analyses to the data points between
10h−1 Mpc and 190h−1 Mpc the best fit of the DV (z) = 456±27 Mpc is obtained. Although,
the constant rs(zd)/DV (z) is measured and found a result of 0.336± 0.015. This is the value
used in this Thesis.

2. The result from Sloan Digital Sky Survey (SDSS) Main Galaxy Sample Measurement (MGS)
from Data Release 7 (DR7) at redshift z = 0.15 (Ross et al., 2015). The Sloan Digital
Sky Survey (SDSS) (York et al., 2000) is a project to measure spectroscopic and spectro-
metric characteristics for extra-galactic sources. Included in the complete survey, there is a
flux-limited low-redshift sample known as the Main Galaxy Sample (MGS) that is used to
constrain the BAO scale at 4% using the density field finding a consensus at z = 0.105. For
this sample, the rfids = 148.69 Mpc. The results for the volume-averaged distance weighted
over the sound horizon at drag epoch was DV (z)r

fid
s /rs(zd) was 664± 25 Mpc.

3. The data points from Baryon Acoustic Oscillation from Spectroscopic Survey (BOSS) con-
tained in SDSS DR12 at z = 0.38, 0.51, 0.61 (Alam et al., 2017). For this sample, the BAO
scale is measured anisotropically in redshift space using the correlation function and the
power spectrum. Computing the shift from the BAO peak position and the expected value
for a fiducial cosmology gives the angular diameter distance DM(z). In this case, the fiducial
cosmological model rfids = 147.78 Mpc. The final results are the ones presented in Table 3.1.
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Measurement Redshift Result
DM(z)

(
rfids
rs

)
[Mpc] z = 0.38 1512.39

DM(z)
(

rfids
rs

)
[Mpc] z = 0.51 1975.22

DM(z)
(

rfids
rs

)
[Mpc] z = 0.61 2306.68

H(z)
(

rs
rfids

)
[km s−1 Mpc−1] z = 0.38 81.2087

H(z)
(

rs
rfids

)
[km s−1 Mpc−1] z = 0.51 90.9029

H(z)
(

rs
rfids

)
[km s−1 Mpc−1] z = 0.61 98.9647

Table 3.1: Results from BOSS from SDSS DR12 clustering analysis to obtain the standard rule at
different redshifts (Alam et al., 2017).

4. The data points from Baryon Acoustic Oscillation from Spectroscopic Survey (BOSS) located
in SDSS DR14 at z = 0.978, 1.23, 1.526, 1.944 (Zhao et al., 2019). Similar to the previous
point, this BAO measurement quantifies the space distribution of galaxies at different redshift
bins computing the BAO peak position compared to the expected value using a fiducial
cosmology. Notice that there slight differences in the computational procedure and the
calculated quantity. In this case, the averaged angular distance DA(z). The results are
summarized in table 3.2.

Measurement Redshift Result
DA(z)

(
rfids
rs

)
[Mpc] z = 0.98 1586.18

DA(z)
(

rfids
rs

)
[Mpc] z = 1.23 1769.08

DA(z)
(

rfids
rs

)
[Mpc] z = 1.52 1768.77

DA(z)
(

rfids
rs

)
[Mpc] z = 1.94 1807.98

H(z)
(

rs
rfids

)
[km s−1 Mpc−1] z = 0.98 113.72

H(z)
(

rs
rfids

)
[km s−1 Mpc−1] z = 1.23 131.44

H(z)
(

rs
rfids

)
[km s−1 Mpc−1] z = 1.52 148.11

H(z)
(

rs
rfids

)
[km s−1 Mpc−1] z = 1.94 172.63

Table 3.2: Results from BOSS from SDSS DR14 clustering analysis to obtain the standard rule at
different redshifts (Zhao et al., 2019).

Concerning the χ2 for the BAO sample, the data from both SDSS DR12 and DR14 from BOSS
are going to be treated with a 6×6 and 8×8 covariance matrix, respectively. The data extraction
was done with partially overlapped redshift slices (Alam et al., 2017; Zhao et al., 2019) as

χ2
BOSS = −1

2

[
(y(Θ)− ϕ)TC−1

BOSS(y(Θ)− ϕ)
]
, (3.15)
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where ϕ is the vector where the modeled quantities are represented (see table 3.1 and 3.2) and
y(Θ) is the theoretically calculated equivalent parameter. The rest of the Surveys are going to be
considered as usual

χ2
SS = −1

2

∑
i

[
(yi − y(Θ))2

σ2
i

]
, (3.16)

where yi is the measured parameter and y(Θ) is the modeled quantity. For the complete BAO
sample, the corresponding χ2

BAO is

χ2
BAO = χ2

BOSS−DR12 + χ2
BOSS−DR14 + χ2

6dFGS + χ2
SDSS−DR7, (3.17)

where all the surveys are included in the χ2 expression above.

3.5 Quasars
The basis for this observable is our current understanding of the Active Galactic Nuclei galaxies
(AGN) which are one of the most luminous objects in the Universe. The term refers to the existence
of an energetic source that cannot be attributed directly to stellar activity (Peterson, 1997) in the
core region of galaxies. Nowadays, an AGN is defined as a galaxy containing a massive M > 105M⊙
accreting black hole (BH) with several components (Netzer, 2015):

• Rotational dominated accretion flow usually labeled simply as accretion disk.

• High-density gas clouds moving in orbits around the black hole between a tenth to a parsec
(pc) known as Broad Line Region (BLR) whose luminosity depends on their accretion rate.

• Low-density gas clouds moving in orbits farther away from the black hole known as Narrow
Line Region (NLR).

• Disk and dusty structure up to 10 pc away from the BH simply known as torus.

• A thin molecular disk and finally,in around one thousand of the objects, a jet associated with
higher energy emission.

The study of AGNs has been influenced by the history in which they have been discovered.
In the ’60s, the compilation of the third Cambridge Catalogue (3C) discovered a large number
of galaxies that were highly emitting in radio and in optical images appeared to be blue stars
(Beckmann and Shrader, 2012). This led to the fact that similar objects were labeled as Quasi
Stellar Objects (QSO) or Quasars. This is one of the two largest subclasses of AGNs and the
distinction of different categories is only a matter of the historical and observational properties.

Quasars have the following observational features (Peterson, 1997): (i) High emission in UV
and radio, (ii) broad emission lines, (iii) large cover in redshift, and (iv) variable flux in time in
all wavelengths. However, Quasars properties have to be analyzed by their broad Spectral Energy
Distribution (SED). The UV and optical spectra of Quasars can be distinguished by strong and
broad emission lines in particular the hydrogen Balmer-series lines, hydrogen Lyα and ions like
Mg ii and C iv, whose emergence depends heavily in the redshift of the object (Beckmann and
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Shrader, 2012). Other objects in the AGN family are the Seyfert galaxies, radio galaxies, Blazars
and several others that depend on their physical features (Padovani et al., 2017).

The differences between the several groups of AGN can be explained by the standard model,
where was proposed to describe all observational properties in one framework being a small number
of physical parameters depending on diverse factors, e.g. accretion rate, change of line of sight,
and size dust absorption (Netzer, 2015).

The basic mechanism for this unified model is the accretion occurring near the BH: matter
falling into a compact object leading to conversion between mass and gravitational potential energy
into electromagnetic energy (Beckmann and Shrader, 2012; Peterson, 1997). Intrinsically, the light
Quasars are variable objects. However, at the highest accretion rates (meaured using the LEdd for
a Massive Black Hole) the luminosity can be considered constant or saturated. This is despite the
possible variations in the accretion rate. So, this result is important for its cosmological use as one
of the approaches for observables is through the standard candles rule. In such a case, we will rely
on the use of Eddington’s luminosity (Dultzin et al., 2020) defined by accretion parameters.

Our interest in using Quasars to constrain the cosmological models derived from extended the-
ories of gravity, resides in the fact that its high luminosity could help us reach up to z ∼ 7 in the
Hubble diagram, e.g. as the analyses in (Banados et al., 2021, 2018). This is a redshift that SNIa
and Cosmic Chronometers have not reached yet and where we could start to see deviations in the
physical conditions that would allow us to explore different cosmologies.

As we described above, we are going to focus on two samples of QSO:

• Extreme Acretors (xA) sample. The fundamental criteria to do a selection of Quasars
for this sample is that these objects feature in their spectrum lots of different lines, profiles,
and intensities that come from multiple ionic species (Dultzin et al., 2020). These varieties
of observational properties could be a hint of highly dynamic physical conditions that are
producing the phenomena we are seeing and could be chosen to provide a link to physical
relations. To obtain a luminosity related to the BH mass via the L−MBH relation (Marziani
and Sulentic, 2014), we can find a model-independent luminosity with an estimation of the
cosmological distance modulus µ(z). The method employed is the quasar optical Eigenvector
1, which is composed of two fundamental properties: (i) the parameter RFe ii that is defined
as the ratio between the integrated flux of Fe iiλ4570 blend of multiplets (which means we
have a lot of very close lines in the spectra) and (ii) the Hβ broad component. This means
that the parameter can be written as (Marziani et al., 2018)

RFe ii =
I(Fe iiλ4570)

I(Hβ)
, (3.18)

where I denote the intensity of each line in the spectra. According to (Marziani and Sulentic,
2014) the 4DE1 parameters measure the:

1. FWHM Hβ: The dispersion in low ionization broad-line region (BLR) gas velocity and,
therefore, can be used as a virial estimator for low z objects. This is a fundamental
parameter in the Quasar study because is linked to the orientation angle compared to
our sight of the vision, the BH mass, and the Eddington radio.
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2. RFe ii: Measure the intensity ratio between the Fe emission and the Hβ and it is more
likely to be driven by the numerical density of hydrogen nH, ionization and metallicity.
The ratios can be used even though Fe ii emission maintains the same relative intensity,
with respect to Hβ changes from object to object.

3. Γsoft: Excess of soft X-ray can be seen as a thermal indication of accretion in BH
systems.

4. C ivλ1549: Radial motions in high ionization BLR gas driven by accretion phenomena
very near the center of the Quasar.

The first two observed characteristics of the 4DE1 formalism are usually presented in the
so-called optical plane (Dultzin et al., 2020). The distribution of the data in this plane traces
the main sequence of quasars, and if we define a grid of bins with size ∆RFe ii = 0.5 in one
axis, and in the other in terms of increasing ∆FWHM= 4000 km s−1 we found distinctive
populations of objects. The sources that belong to the same group show similar spectroscopic
characteristics for cosmological use. In this case, we are interested in one particular group:
Population A. On one hand, Population A shows FWHM Hβ < 4000 km s−1, a stronger RFe ii,
a soft X-ray excess and C ivλ1549 with blue asymmetry (Marziani and Sulentic, 2014). On
the other hand, Population B shows FWHM Hβ > 400 km s−1 with weaker RFe ii with no
X-ray excess and no indications of asymmetry or blueshift in C ivλ1549. The whole previous
analysis is valid for objects with z < 1.0 where the spectra components are visible in the
visible spectrum. The problem comes with objects where infrared is not available (Marziani
and Sulentic, 2014), in such cases we need to find another candidate to measure the 4DE1
formalism. One alternative is the high-z selector that contains the blend of Al iii λ1860,
Si iii] λ1892 and C iii] λ1909 that contains same the physical conditions that the Fe blend
measures in optical spectra.

The selection criteria for xA objects will be denoted by two UV line ratios:

(i). Al iii λ1860 / Si iii] λ1892 ≥ 0.5, and
(ii). Si iii] λ1892 / C iii] λ1909 ≥ 1.0.

For the objects in the sample with z > 1, the selection criteria were the mentioned quotients.
The conditions satisfied for xA objects are the following (Dultzin et al., 2020):

(a) Constant highly Eddington ratio L/LEdd = λEdd ≲ 1, which means xA objects radiate
near to the Eddington limit.

(b) Virial motion of the BLR. We can express the BH mass as a virial relation

MBH =
rBLR(δv)

2

G
, (3.19)

where G is the gravitational constant.
(c) The ionization parameter U can be written as

U =
Q(H)

4πr2BLRnHc
∝ L

r2nH

, (3.20)

where Q(H) is the number of hydrogen ionizing photons.
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The mentioned luminosity-BH mass ratio relation can be expressed in combination with the
necessary conditions for xA objects as

L

M
≈ 104.53λEdd

(
L

MBH

)
⊙
≈ 104.81λEdd erg s−1 g−1, (3.21)

where MBH is the BH mass and L the luminosity. This luminosity can be rewritten as

L ≈ ξλEddM ≈ ξλEddfs
rBLR(δv)

2

G
, (3.22)

using fs as a structure factor (Marziani and Sulentic, 2014), δv the virial velocity dispersion
and rBLR the BLR radius. For this analysis the factor ξ ≈ 104.81erg s−1 g−1 (Marziani et al.,
2018; Dultzin et al., 2020; Marziani and Sulentic, 2014). The ionization parameter, using
spherical symmetry, can be written as

U =

∫∞
ν0

Lν

hν
dν

4πnHcr2BLR

, (3.23)

where Lµ is the luminosity per unit frequency, h is the Planck constant and ν0 the Rydberg
frequency, in addition to c the speed of light, and nH the hydrogen number density. For
our analysis, the rBLR can be used as the distance between the source of ionization to the
emitting region (Marziani and Sulentic, 2014) – analogous to the reverberation mapping
(Peterson et al., 1998)– and we can use another way to estimate this radius as

rBLR =

[∫∞
ν0

Lν

hν
dν

4πUnHc

]1/2
=

(
κL

2πUnHchν̄i

)1/2

, (3.24)

with κ = 0.5 and Lion = κL. Using the previous relations we finally find an expression for
the luminosity that depends on the quantities that we can measure as

L ≈ 7.8× 1044
λ2
Eddκ0.5f

2
s,2

hν̄i,100ev

1

(nHU)109.6
(δv)4 erg s−1. (3.25)

Therefore, the normalized virial luminosity relation can be written as

L(FWHM) = 7.88× 1044(FWHM)41000, (3.26)

where the FWHM is expressed in units of 1000 km/s and using that is related to the virial
estimation δv. Now, using the luminosity we can calculate the distance modulus written as
(Negrete et al., 2018)

µ = 2.5[logL− log(fλλ)]− 100.19 + 5 log(1 + z), (3.27)

where we use that fλλ is the rest-frame flux measured in 5100 Å. The mentioned ∼250 points
is going to use a χ2 expressed as

χ2
xA = −1

2

[
(µi − µ(zi,Θ))2

δµ2
i

+ ln
(
δµ2

i

)]
, (3.28)
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where similar to the χ2 for the SNIa sample, we will compare the data points distance
modulus and the theoretically calculated µ(zi,Θ), using also the error δµi for every data
point. Most of the data points in this sample are in the redshift range z < 1 and in z ∼ 2.5
due to the characteristics in the spectroscopic analyses as the necessary lines are not visible
for all the redshifts in the SDSS ranges of observations.

• X-UV (nUVX) sample. The basis of this sample is the non-linear relation between the
ultraviolet-measured flux at 2500 Å and the X-ray flux measured at 2 keV to obtain model-
independent luminosity distance to contribute to the Hubble diagram at higher redshift
than the SNIa limit z ∼ 2 (Lusso et al., 2020). The objects used to calculate this sample
were taken mainly from Sloan Digital Sky Survey (SDSS) DR14 (Pâris et al., 2018). This
observable passed through a cross-match with other optical and X-ray surveys including a
cross-match between XMM-XXL spectroscopic North Quasar sample (Menzel et al., 2016)
and the XMM-Newton source catalog in its DR19 (Webb et al., 2020) to select the objects
with the better and most complete observations. The reason behind the relation between the
X-ray and the UV measurements is not fully well understood (Lusso et al., 2020), but some
possible explanations are the global emission of the accretion disk combined with nuclear
emission. More recent studies suggest that this may be about the hot X-ray emitted by the
corona of the accretion disk (Risaliti et al., 2023). The attempt to make Quasars sources as
standard candles in this approach is to use the relation

log (LX) = β + γ log (LX), (3.29)

where the slope γ is constant and is the same for every z (Risaliti et al., 2023; Lusso et al.,
2020). Meanwhile, the parameter β′ depends on the source distance and therefore the cos-
mological distance as

β = β′ + (γ − 1) log(4π) + 2(γ − 1) log(dL). (3.30)

The FX−FUV relation was tested in different redshift intervals to make sure that the relation
was correct for every different cosmic epoch, and in every interval, the slope, interception,
and dispersion using MCMC techniques (Lusso et al., 2020). The slope and dispersion did
not show a correlation with the redshift intervals taken and both of them adjusted very
similar values along the calculated intervals. However, at z > 4 there was not a clear relation
in the values and therefore, to use the high z data we need to use the non-adjusted slope
and interception values in the cosmological inference. As the name suggests from the fitted
X-ray and UV observable, we will call the sample nUVX from now on. Using the relation
for slow redshifts between the X-ray and the UV-flux, we can obtain the Hubble diagram for
those objects calculating the luminosity distance as

log dL =
[logFX − γFUV]

2(γ − 1)
+ β′, (3.31)

where FX and FUV are the measured fluxes densities normalized to the 27.5 in the case of
UV. In this example, dL is in cm and normalized to 28.5 so this has to be converted if we
want to obtain modulus distance compatible with Mpc units. The intercept β′ is considered



3.5. QUASARS 48

0 1 2 3 4 5 6 7
z

35

40

45

50

Pantheon
xA
nUVX

Figure 3.1: Evolution of the µ(z) and their uncertainties using the xA (green color dots) and nUVX
(pink color dots) QSO samples and SNIa Pantheon sample (black color dots).

a free nuisance parameter that will be fitted in posterior analyses. Finally, the χ2 we will
use for the use of this sample is

χ2
nUVX = −1

2

N∑
i

(
[yi −Ψi(Θ)]2

s2i
− ln s2i

)
, (3.32)

where N is the number of data points, s2i = (d logFX)
2 + γ2(d logFUV)

2 + exp(2 ln δ) with
δ = 0.21 and γ = 0.702 fixed and taking into account data uncertainties.

Finally, yi is the calculated distance modulus µ(zi, θ) and yi is the direct measurements
calculated as

µ(zi, θ) =
5

2(γ − 1)
(logFX − γFUV) + 5β′. (3.33)

The use of this data set requires only the calculation of the luminosity distance but will have
to take into account the dispersion of the data, and the changes in the relation between the
fluxes and their errors.

3.5.1 Comment: Quasars in Cosmology

Currently, Quasar samples are gradually becoming important in cosmological model analyses. The
most popular sample in literature is the nUVX catalog, which trend deviates from the flat ΛCDM
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model in objects higher than z ∼ 3 in more than 4σ (Lusso et al., 2019). Doing a follow-up on this
result (Bargiacchi et al., 2022), we redo new analyses that are carried out with other cosmological
models confirming the existing cosmological tension. A more conservative analysis in this Thesis
might suggest that it is also due to the decision to set a value for H0 fixed since the beginning.

In general, the two samples can be seen represented in Figure 3.1, where is clear that the
information that they will bring to the analyses is from z ≥ 1, in which the samples of SNIa are
the statistically dominant.

The most recent results obtained using the Quasar nUVX sample have been obtained in (Dain-
otti et al., 2023), where with an H0 = 70 km s−1 Mpc−1 fixed the ΛCDM model is tested through
different redshift bins. Meanwhile, in (Bargiacchi et al., 2023) the sample is also explored in com-
bination with other cosmological probes to test calibrations and implications for the geometry in
the ΛCDM context.

• QSO sample to constraint standard flat cosmologies: Bargiacchi et al. (2022) ana-
lyzed the nUVX QSO sample with SNIa and BAO datasets testing the flat-ΛCDM model in
different combinations with a fixed H0 = 70 km s−1 Mpc−1. The only free parameter in the
analyses is Ωm when using the flat ΛCDM. That is why, additionally dark energy parametriza-
tions are tested including wCDM, CPL, JBP, Exponential, and BA. In this framework, some
extra parameters are added to the behavior of the dark energy in an attempt to investigate
the nature of the late-time cosmic acceleration.

• QSO sample to constraint standard non-flat cosmologies: The authors in Du et al.
(2023) the standard ΛCDM model is studied constraining also the curvature component
Ωk to test the nUVX sample, GRB data detection, and Lensing data. For this analysis,
a cosmographic fit is used over the ΛCDM model, which could be misleading about the
promising results regarding the H0 values obtained. In terms of curvature, the QSO sample
prefers small negative curvature densities Ωk ≤ 0 in combination with Lensing.

Again, Bargiacchi et al. (2022) complemented the results for the flat models adding the non-
flat versions for ΛCDM, wCDM, and CPL to test the effect of curvature in the combinations
of datasets including the nUVX QSO sample. The results are that QSO strongly disagrees
with flat the ΛCDM model at high redshifts at more than 2σ with a Ωk < 0.

• QSO sample to constraint cosmologies from modified theories of gravity: Shi
(2023) performed analyses using the extended covariant f(Q) cosmology using H(z) mea-
surements, SNIa, BAO and a reduced nUVX sample. The results seem promising solving the
Hubble tension to 2.5σ using different affine Connections Γ and two different non-metricity
models. Just for completeness f(Q) is part of extensions of gravity called Symmetric Telepar-
allel Equivalent of GR (STEGR) in which the gravitational interaction is described by a non-
metricity quantity Q without torsion and curvature (Bahamonde et al., 2021). In this case
the action used is S =

∫
d4x

√−gf(Q)(Aggarwal et al., 2022). Using again f(Q) models, the
analyses in Aggarwal et al. (2022) the action S =

∫
d4x

√−g[f1(Q)/2κ2 + f2(Q)Lm] is tested
using H(z) measurements and the nUVX QSO sample fixing H0 = 67.76 km s−1 Mpc−1.

The clearest disadvantage in all the previous studies is that usually, the QSO samples involve a
fixed H0 value. This heavily influences the parameter determination as an expansion parameter is
fixed and therefore the fractional densities can not vary as freely in numerical analyses. However,
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the fixed H0 value tends to make the numerical codes faster for big samples like the nUVX dataset.
In this thesis, we try to remediate the problems with H0 leaving it as a free parameter in all our
numerical analyses.

Another of the problems regarding the nUVX QSO sample is the notorious dispersion that is
present in the data. In this direction, efforts to better understand the nature of the non-linear
relation between the fluxes are being made, including the recalibration of the luminosity distances
estimated using other distance determination methods like reverberation mapping (Khadka et al.,
2023).

It is important to mention that the previously mentioned analyses did not take into account
the xA QSO. We decided to use the two different samples to contrast the physical approaches to
construct the Hubble diagram using those objects. This will give this analysis a wider approach
than those done using only the nUVX sample. The analyses done in literature so far only include
the ΛCDM model and different dark energy parametrizations, as well as some counted examples
of f(Q) test using only the nUVX sample. Accordingly, we decided to use the two samples to
perform analyses using the TEGR to test higher redshift regions via the nUVX sample and to
explore different approaches to the QSO Hubble diagram.

Finally, according to the mentioned latter studies, our goal is to find better constraints in
the local universe for f(T ) cosmologies that can help to understand the systematics and the H0

tension.



Chapter 4

Constraining f (T ) cosmologies: analyses
and results

In this Chapter, we present the analyses and results published in (Sandoval-Orozco et al., 2023).
The main goal is to explore possible deviations from the standard ΛCDM model that can explain
the current H0 tension. To achieve this we use the current local observables described in Chapter
3 and combine them with two new calibrated Quasars (QSO) datasets using ultraviolet, x-ray,
and optical plane techniques. As we discussed, these observables can be identified as part of the
high-redshift standardizable candels since the main characteristic is based on fluxes distributions
calibrated up to z ∼ 7. This is an advantage, as previous analyses using f(T ) cosmologies as Briffa
et al. (2022) and Briffa et al. (2023a) uses low redshift data up to z ∼ 2 with only SNIa samples.

The cosmological models considered for this statistical test were described in Chapter 2, also
we will consider five H0 prior scenarios to develop the calibrations for the samples. Our second
goal is to find possible estimations that can provide the possibility to relax the H0 tension at 2σ
using these new QSO samples.

Is important to remark that our results can be an initial start for more serious treatments in
the quasars physics from ultraviolet, x-ray, and optical plane techniques on local observations as
cosmological tests to relax, and even find a solution, to the cosmological tensions issues.

4.1 Settings: cosmological priors and baselines
We will use several combinations for the described data sets (see Chapter 3) to compare the f(T )
cosmologies and their constraints. We based our analysis on the χ2-statistics, where the total χ2

T

is the sum of each data set, e.g. χ2
H(z)+SNIa = χ2

H(z) + χ2
SNIa, and the same for each data sample.

We will consider the following two groups of baselines:

1. First group baselines:

– H(z) measurements + Pantheon Supernovae (SNIa).

– H(z) measurements + SNIa + QSO xA.

– H(z) measurements + SNIa + QSO nUVX.

2. Second group baselines:

51
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– H(z) measurements + SNIa + BAO.

– H(z) measurements + SNIa + BAO + QSO xA.

– H(z) measurements + SNIa + BAO + QSO nUVX.

The subdivision for the two different Quasar samples is made to compare the different method-
ologies to obtain them using the 4DE1 formalism and the non-linear relation between UV and
X-rays.

Additionally, we will use the following H0 priors:

• R21: H0 = 73.3±1.04 km s−1 Mpc−1 from the most recent SH0ES collaboration (Riess et al.,
2021b). [Color code: R21]

• P18: H0 = 67.36 ± 0.54 km s−1 Mpc−1 from the results from the Planck Space Telescope
(Aghanim et al., 2020b) using TT+TE+EE+lowE+Lensing. [Color code: P18]

• GD3: H0 = 74.03± 1.42 km s−1 Mpc−1 from the EDR3 GAIA Mission (Di Valentino et al.,
2021c; Brown et al., 2021). [Color code: GD3]

• F20: H0 = 69.8± 0.8 km s−1 Mpc−1 from the most recent calibration of the Tip of the Red
Giant Branch (Freedman et al., 2020). [Color code: F20]

• ACT: H0 = 67.9 ± 1.5 km s−1 Mpc−1 from the latest results of the Atacama Cosmology
Telescope (Aiola et al., 2020). [Color code: ACT]

To compare, we will present each model without any assumption on the H0 prior. For the rest
of the cosmological parameters, a flat (uninformative) prior represented by [θmin, θmax] will be used
as

P(θ) =

{
1

θmax−θmin
θmax ≤ θ ≤ θmin,

0 otherwise,
(4.1)

in which Ωm ∈ [0.1, 0.9], M ∈ [−30, 0], β′ ∈ [−20, 20] and for the specific parameters for each
f(T ) model b1 ∈ [−5, 1] and 1/b2, 1/b3 ∈ (0, 1]. The value of χ2

min is calculated as using χ2
min =

−2 lnLmax.
Notice that in our results we remark on the importance of adding BAO survey measurements

to the combinations, resulting in a lower value of H0. This result is due to the assumptions of the
early universe, similar to what Planck Collaboration results have done, and therefore preferring an
H0 much closer to the estimated H0 ∼ 67 km s−1 Mpc −1. This is the reason why we considered
using the BAO sample separately from the others in the baselines.

Finally, before showing the results it is important to mention that the absolute magnitude M
value is degenerated with H0, and therefore the estimation depends on the priors used on the
Hubble parameter.

4.2 ΛCDM model
The test on this standard model will provide the perspective of the results obtained through other
cosmologies. Furthermore, it will show how the data sets estimate the results with an expected
convergence on the MCMC runs that occur faster and result in a Gaussian for almost every
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combination. The results using H(z) + SNIa baseline with and without BAO sample are shown
in Table 4.1 and in both Figures 4.1.

Notice that the use of H(z) and SNIa samples without a prior gives almost no constraint to H0

resulting in a lower value for H0 = 69.6+3.0
−4.1 km s−1 Mpc−1 but with high uncertainty. Meanwhile, as

mentioned above the use of BAO observable, reduces the H0 value to H0 = 67.3+0.7
−0.6 km s−1 Mpc−1,

which is consistent with the Planck prior at the expense of using an early universe assumption.

Data set H0 [km s−1 Mpc−1] Ωm M χ2
min

H(z) + SNIa 69.6+3.0
−4.1 0.299± 0.021 −19.37+0.10

−0.12 949.41

& R21 73.1+0.7
−0.8 0.289+0.020

−0.017 −19.26± 0.02 950.72
& P18 67.4± 0.4 0.305+0.018

−0.020 −19.43+0.02
−0.01 949.65

& F20 69.8+0.6
−0.5 0.298+0.020

−0.018 −19.36± 0.02 949.45
& GD3 73.6+1.0

−0.9 0.289+0.018
−0.02 −19.24± 0.03 951.15

& ACT 68.0+1.0
−1.1 0.301+0.021

−0.019 −19.42+0.04
−0.03 949.52

H(z) + SNIa + BAO 67.3+0.7
−0.6 0.318± 0.013 −19.43± 0.02 960.30

& R21 70.2± 0.5
(
293.5+10.4

−9.6

)
× 10−3 −19.35± 0.02 995.28

& P18 67.4+0.3
−0.4 0.317± 0.010 −19.43± 0.01 960.29

& F20 68.8+0.4
−0.5

(
305.7+9.6

−10.3

)
× 10−3 −19.38+0.01

−0.02 968.01
& GD3 69.5± 0.6

(
299.2+10.9

−10.0

)
× 10−3 −19.37± 0.02 998.59

& ACT 67.5± 0.6
(
315.3+11.9

−9.8

)
× 10−3 −19.42± 0.02 960.49

Table 4.1: ΛCDM model constraints for the combinations of H(z) measurements, Pantheon SNIa
compilation and BAO catalogs. At the top of the table are the results without the BAO sample,
while at the bottom are the results including this latter sample with different results corresponding
to the priors imposed on H0. The color codes are indicated in the description for each before
consideration.

Using H(z) + SNIa baseline the highest value for H0 is the one obtained with the GD3 prior
H0 = 73.6+1.0

−0.9 km s−1 Mpc−1, also this is the lowest estimation for the fractional matter density at
Ωm = 0.289+0.018

−0.020. Similar to the one obtained using the R21 prior, where the lowest value for H0

is given using the P18 prior with H0 = 67.4±0.4 km s−1 Mpc−1 with the highest Ωm = 0.305+0.018
−0.020.

As mentioned, the introduction of the BAO sample modifies the result in lowering the H0 value
for example to H0 = 70.2± 0.5 km s−1 Mpc−1. Using the R21 prior leads to the lowest estimation
in Ωm ≈ 0.293, which means that all the estimations for H0 are lower than this value. Even the
estimation using the GD3 prior gives H0 = 69.5±0.6 probably due to the higher error compared to
the R21 prior. Both ACT and P18 priors behave similarly for the values of Ωm and H0. Meanwhile,
F20 prior preferrs some intermediate values as H0 = 69.8+0.6

−0.5 km s−1 Mpc−1.
It is important to notice that using this combination of data sets the value for H0 is not

reduced, except when using the BAO sample which is not a surprise considering the early universe
assumptions.
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Figure 4.1: C.L posterior results for the (a) H(z) and SNIa Pantheon compilation. (b) Combination
including the BAO sample. The shadowed regions correspond to 1σ and 2σ, respectively. We use
the color code blue for R21 prior, purple for GAIA, red for P18, green for F20, and yellow for
ACT. Additionally, the model that was tested with flat prior is represented in black color.

The first improvements for the ΛCDM model are shown using the xA quasar sample. This
can be seen in both Figures 4.2 and in Table 4.2. Using the H(z) + SNIa + xA baseline without
prior results in a H0 consistent with the P18 prior and with the Planck results as H0 = 67.4± 1.0
km s−1 Mpc−1. However, this result gives a higher uncertainty. Adding the BAO sample to this
combination maintains the value of H0 = 67.2+0.6

−0.5 km s−1 Mpc−1. This means that only adding the
xA sample can result in a diminution of the Hubble tension down to 2σ. This has consequences
also in the use of other priors, e.g. R21 and GD3, which reduces the value to H0 = 71.2± 0.6 km
s−1 Mpc−1, and H0 = 70.6± 0.7 km s−1 Mpc−1, respectively. Using the combination without the
BAO sample the values go lower to 2σ for the P18 prior. Similar effects to the previous results
occur in the fractional matter density for the results as Ωm tends to be higher for the lower values
of H0, fulfilling the physical Friedmann constraint equation.
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Data set H0 [km s−1 Mpc−1] Ωm M χ2
min

H(z) + SNIa + xA 67.4± 1.0 0.299± 0.021 −19.43± 0.03 2616.59

& R21 71.2± 0.6 0.265+0.016
−0.015 −19.33± 0.02 2639.99

& P18 67.4+0.3
−0.4 0.299+0.018

−0.017 −19.43± 0.01 2617.00
& F20 69.2± 0.5 0.283+0.016

−0.017 −19.38± 0.02 2621.45
& GD3 70.6± 0.7 0.269+0.019

−0.017 −19.34± 0.02 2639.22
& ACT 67.6± 0.7 0.297+0.018

−0.019 −19.42± 0.02 2617.09

H(z) + SNIa + BAO + xA 67.2+0.6
−0.5 0.316+0.012

−0.010 −19.43± 0.02 2628.24

& R21 69.6± 0.5
(
292.5+11.2

−9.7

)
× 10−3 −19.37+0.02

−0.01 2670.17
& P18 67.3+0.4

−0.3

(
315.2+10.0

−9.8

)
× 10−3 −19.43± 0.01 2628.27

& F20 68.6+0.4
−0.5

(
303.7+9.2

−10.3

)
× 10−3 −19.39+0.01

−0.02 2638.32
& GD3 69.0+0.5

−0.6

(
298.1+11.4

−9.0

)
× 10−3 −19.38± 0.02 2662.63

& ACT 67.4± 0.5 0.314+0.011
−0.010 −19.43± 0.02 2628.53

Table 4.2: ΛCDM model constraints for the combination H(z) measurements, SNIa compilation,
and with both BAO surveys. We include the QSO xA sample.

 

65
.0

67
.5

70
.0

72
.5

75
.0

H0 

0.2
4

0.2
8

0.3
2

0.3
6

m
 

H(z) + SNIa + xA
+ TRGB
+ GAIA
+ ACT
+ R21
+ P18

 

(a)

 

66 68 70 72 74
H0 [km s 1 Mpc 1] 

0.2
8

0.3
0

0.3
2

0.3
4

0.3
6

m
 

H(z) + SNIa + BAO + xA
+ TRGB
+ GAIA
+ ACT
+ R21
+ P18

 

(b)

Figure 4.2: C.L posterior results for the (a) H(z) and SNIa Pantheon compilation with the QSO
xA sample, and (b) the combination including the BAO sample. The shadowed regions correspond
to 1σ and 2σ, respectively. We use the color code blue for R21 prior, purple for GAIA, red for
P18, green for F20, and yellow for ACT. Additionally, the model that was tested with flat prior is
represented in black color.
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Data set H0 [km s−1 Mpc−1] Ωm M β′ χ2
min

H(z) + SNIa + nUVX 69.0+3.6
−3.5 0.300+0.020

−0.022 −19.37± 0.11 −11.42+6.6
−7.7 2993.82

& R21 73.2+0.7
−0.8 0.308± 0.011 −19.25± 0.02 −11.429+0.095

−0.094 3044.75
& P18 67.4± 0.4 0.309± 0.011 −19.43± 0.01 −11.39+0.15

−0.16 3068.76
& F20 69.7+0.7

−0.5

(
308.5+10.0

−9.9

)
× 10−3 −19.35± 0.02 −11.40± 0.14 3067.97

& GD3 73.5+2.2
−2.0 0.307± 0.012 −19.24± 0.06 −11.42± 0.12 3047.23

& ACT 67.9+1.6
−1.4 0.308± 0.011 −19.41± 0.05 −11.40± 0.12 3068.20

H(z) + SNIa + BAO + nUVX 67.3± 0.7 0.317+0.012
−0.011 −19.43± 0.02 −11.03+1.69

−1.75 3117.92

& R21 70.2± 0.5
(
293.8+9.9

−9.8

)
× 10−3 −19.35± 0.02 −11.46± 1.78 3152.89

& P18 67.3± 0.3
(
318.1+9.7

−10.9

)
× 10−3 −19.43± 0.01 −11.12+1.54

−1.91 3117.91
& F20 68.8+0.5

−0.4

(
305.4+9.7

−10.3

)
× 10−3 −19.384+0.013

−0.014 −11.46+1.62
−1.77 3125.63

& GD3 69.5± 0.6 0.299± 0.010 −19.37± 0.02 −11.49+1.77
−1.65 3148.20

& ACT 67.5± 0.6 0.317+0.010
−0.012 −19.42± 0.02 −11.47+1.64

−1.86 3118.18

Table 4.3: ΛCDM model constraints for the baseline H(z) measurements, SNIa compilation, and
BAO sample. We include the QSO nUVX sample.
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Figure 4.3: C.L posterior results for the combinations (a) H(z) and SNIa Pantheon compilation
with the QSO nUVX sample, and (b) the combination with the BAO sample. The shadowed
regions correspond to 1σ and 2σ, respectively. We use the color code blue for R21 prior, purple for
GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the model that was tested
with flat prior is represented in black color.

Finally, using the QSO nUVX sample gives interesting results that can be seen in Table 4.3 and
in both figures 4.3. In the baseline H(z) + SNIa + nUVX without any prior, H0 = 69.0+3.6

−3.5 km s−1

Mpc−1 clearly shows a diminution in the Hubble tension up to 3σ, but with a higher uncertainty. In
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this combination, the highest H0 estimation occurs using the GD3 prior H0 = 73.5+2.2
−2.0, along with

the lowest estimation of the fractional matter density Ωm = 0.307± 0.012. this is in concordance
with the R21 prior and as we have seen before, the expected result using a late-time H0 estimation
as a prior. However, using P18 and ACT result in the lowest H0 estimation and the highest Ωm

values as H0 = 67.4± 0.4 km s−1 Mpc−1 for P18. The use of the BAO sample as mentioned above
results in the diminution of the estimation of H0, and in this case the highest estimation is the
one obtained using the R21 prior as H0 = 70.2 ± 0.5 km s−1 Mpc−1, and the lowest estimation
of Ωm = 0.308 ± 0.011. The GD3 prior gives a lower estimation due to the larger uncertainty in
the prior. The prior F20, as in the previous samples, tends to maintain an intermediate estimate
between the previous P18 and R21 as H0 = 68.8+0.5

−0.4 km s−1 Mpc−1. In this sample, the additional
parameter β′ seems to be exhibiting an almost constant behavior between β′ = −11 and β′ = −12,
as is the zero-point flux for this quasar sample.

In the case of the ΛCDM model, as seen in the Tables 4.1, 4.2, 4.3 the value of the χ2
min is low

and close to the dataset size. For the combination of H(z) and SNIa the value is lower than the
combination using the BAO results with a consistent result independently from the prior used. On
the contrary, the use of the xA sample appears to add dispersion in the calculation of χ2

min as the
numerical value is higher than the dataset size. This is not present in the nUVX analyses where
the χ2

min is closer to the dataset size, and consistent independently from the prior imposed.

4.3 Power law model
For the power law model f1(T ), the results are quite similar to those obtained for the ΛCDM
model. The use of BAO measurements influences the results in a lower value H0. In this direction,
using the combinations with H(z), SNIa and BAO measurements without any prior we obtain a
result of H0 = 67.8+0.9

−1.0 km s−1 Mpc−1, which is consistent also with the P18 prior, and a free
parameter from this model gives b1 = −0.06+0.12

−0.17, which is near to b1 = 0. This case recovers the
standard cosmological model ΛCDM. This is in contrast to the case using only H(z) and SNIa
where b1 = −0.41+0.59

−0.61, this result deviates from the ΛCDM model but still is at 2σ C.L from within
the observations. Regarding the use of priors, the late universe measurements from R21 and GD3
result in a model closer to ΛCDM using the combination without BAO. While the introduction
of the BAO sample results in deviations from the standard model with more than 2σ, that is
b1 = −0.52+0.16

−0.21 for R21, and b1 = −0.46+0.17
−0.20 for GD3. For the early universe inferences of H0, e.g.

P18 and ACT, the combination of H(z), SNIa with BAO measurements results in b1 → 0 at 2σ
with b1 = −0.05+0.10

−0.11 for P18 prior, and b1 = −0.09+0.12
−0.15 for ACT prior.
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Data set H0 [km s−1 Mpc−1] Ωm b1 M χ2
min

H(z) + SNIa 68.1+3.6
−4.1 0.370+0.051

−0.068 −0.41+0.59
−0.61 −19.41+0.11

−0.13 949.01

& R21 73.0+0.8
−0.7 0.322+0.054

−0.063 −0.08+0.45
−0.52 −19.26+0.02

−0.03 950.70
& P18 67.4± 0.4 0.371+0.042

−0.059 −0.42+0.52
−0.59 −19.44± 0.02 949.05

& F20 69.8+0.5
−0.6 0.348+0.048

−0.056 −0.27+0.47
−0.54 −19.36± 0.02 949.19

& GD3 73.8+0.9
−1.1 0.327+0.046

−0.075 −0.07+0.47
−0.49 −19.25± 0.03 951.15

& ACT 67.9+1.0
−1.1 0.365+0.045

−0.055 −0.32+0.41
−0.68 −19.42± 0.04 949.01

H(z) + SNIa + BAO 67.8+0.9
−1.0 0.321+0.011

−0.013 −0.06+0.12
−0.17 −19.42± 0.02 959.98

& R21 71.3± 0.6 0.315± 0.011 −0.52+0.16
−0.21 −19.34± 0.02 981.26

& P18 67.4± 0.4 0.322+0.012
−0.013 −0.05+0.10

−0.11 −19.43± 0.01 960.0
& F20 69.8+0.5

−0.6 0.343+0.030
−0.033 −0.21+0.24

−0.34 −19.36± 0.02 963.50
& GD3 70.8± 0.7 0.315+0.012

−0.011 −0.46+0.17
−0.20 −19.35± 0.02 980.64

& ACT 67.9+0.6
−0.8 0.321+0.013

−0.012 −0.09+0.12
−0.15 −19.42± 0.02 959.99

Table 4.4: f1(T ) model (2.17) constraints for the combinations of H(z) measurements, Pantheon
SNIa compilation and BAO catalogs. At the top of the table are the results without the BAO
sample, while at the bottom are the results including this latter sample with different results
corresponding to the priors imposed on H0. The color codes are indicated in the description for
each prior to consideration.
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Figure 4.4: C.L posterior results using f1(T ) model (2.17) for the (a) H(z) and SNIa Pantheon
compilation. (b) Combination including the BAO sample. The shadowed regions correspond to 1σ
and 2σ, respectively. We use the color code blue for R21 prior, purple for GAIA, red for P18, green
for F20, and yellow for ACT. Additionally, the model that was tested with flat prior is represented
in black color.

Data set H0 [km s−1 Mpc−1] Ωm b1 M χ2
min

H(z) + SNIa + xA 68.1± 1.0 0.405+0.027
−0.028 −1.43+0.49

−0.77 −19.44± 0.03 2606.16

& R21 71.4± 0.6 0.387+0.024
−0.026 −1.97+0.69

−0.79 −19.35± 0.02 2624.62
& P18 67.5+0.3

−0.4 0.411+0.024
−0.030 −1.45+0.54

−0.69 −19.453+0.02
−0.01 2606.55

& F20 69.4± 0.5 0.399+0.025
−0.027 −1.73+0.64

−0.71 −19.40± 0.02 2608.69
& GD3 71.0± 0.7 0.389± 0.025 −1.88+0.62

−0.82 −19.36± 0.02 2624.50
& ACT 68.0± 0.7 0.407+0.026

−0.029 −1.58+0.62
−0.65 −19.44± 0.02 2606.18

H(z) + SNIa + BAO + xA 68.3+0.8
−0.9 0.324+0.014

−0.013 −0.23+0.15
−0.21 −19.41± 0.02 2625.79

& R21 71.0± 0.6 0.320± 0.011 −0.72+0.19
−0.26 −19.35± 0.01 2648.17

& P18 67.5+0.3
−0.4 0.325+0.013

−0.012 −0.15+0.12
−0.13 −19.43± 0.01 2626.52

& F20 69.3± 0.5 0.322+0.016
−0.014 −0.41+0.16

−0.19 −19.39± 0.01 2628.70
& GD3 70.5+0.6

−0.7 0.322+0.011
−0.012 −0.65+0.22

−0.23 −19.36± 0.02 2646.78
& ACT 68.1± 0.7 0.326+0.011

−0.013 −0.23+0.15
−0.17 −19.412± 0.02 2625.81

Table 4.5: f1(T ) model (2.17) constraints for the combination H(z) measurements, SNIa compila-
tion, and with both BAO surveys. We include the QSO xA sample.

Constraining this model with the xA sample has the consequence of raising the value of the
fractional matter density Ωm, and lowering the H0 value. For example, considering the R21 prior
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we obtain H0 = 71.4 ± 0.6 km s−1 Mpc−1, Ωm = 0.387+0.024
−0.026, and b1 = −1.97+0.69

−0.79. These results
show a difference of more than 2σ in comparison to ΛCDM. This behavior gets relaxed when using
the BAO data, from where we obtain H0 = 71.0 ± 0.6 km s−1 Mpc−1, Ωm = 0.320 ± 0.011, and
b1 = −0.72+0.19

−0.26 by using the R21 prior. However, these constraints still are not consistent with
ΛCDM within 2σ.

In the case when we select the P18 prior, with and without the BAO sample, the H0 constraints
are similar to the latter, and the free parameter b1 approaches to ΛCDM using only the BAO data
with H0 = 67.5+0.3

−0.4 km s−1 Mpc−1 and b1 = −0.15+0.12
−0.13. We obtain b1 = −1.45+0.54

−0.69 without this
observable. Similar things happen using ACT and F20 priors, clearly being the ones using the
BAO data closer to b1 → 0. All the results can be seen in both Table 4.5 and Figure 4.5.
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Figure 4.5: C.L posterior results using the f1(T ) model (2.17) for the (a) H(z) and SNIa Pantheon
compilation with the QSO xA sample, and (b) the combination including the BAO sample. The
shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue for R21 prior,
purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the model that
was tested with flat prior is represented in black color.
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Data Set H0 [km s−1 Mpc−1] Ωm b1 M β′ χ2
min

H(z) + SNIa + nUVX 67.2+4.3
−3.5 0.369+0.052

−0.069 −0.41+0.63
−0.64 −19.42+0.12

−0.13 −11.74+1.31
−1.82 3106.06

& R21 73.2+0.6
−0.8 0.327+0.051

−0.067 −0.11+0.47
−0.55 −19.26+0.03

−0.02 −10.57+1.13
−1.94 3108.32

& P18 67.5+0.3
−0.4 0.322+0.012

−0.013 −0.05± 0.11 −19.43± 0.01 −11.54+1.28
−1.84 3117.72

& F20 69.8+0.5
−0.6 0.351+0.045

−0.062 −0.25+0.47
−0.57 −19.36± 0.02 −10.9+1.06

−1.99 3106.82
& GD3 70.8± 0.7 0.317+0.010

−0.012 −0.45+0.16
−0.21 −19.35± 0.02 −11.09+1.42

−1.69 3138.27
& ACT 67.9± 0.7 0.321+0.013

−0.012 −0.10± 0.13 −19.42± 0.02 −10.12+1.14
−1.97 3117.61

H(z) + SNIa + BAO + nUVX 67.8+1.0
−0.9 0.321± 0.012 −0.08+0.14

−0.15 −19.42+0.03
−0.02 −11.82+1.31

−1.80 3117.59

& R21 71.3± 0.6 0.315+0.011
−0.012 −0.53+0.17

−0.20 −19.34± 0.02 −11.36+1.27
−1.86 3138.83

& P18 67.4+0.4
−0.3 0.322+0.014

−0.015 −0.05+0.11
−0.13 −19.43± 0.01 −10.78+1.17

−1.92 3117.71
& F20 69.3± 0.5 0.318+0.013

−0.011 −0.26+0.13
−0.16 −19.38± 0.01 −10.73+1.25

−1.92 3121.12
& GD3 70.8± 0.7 0.316± 0.012 −0.46+0.18

−0.20 −19.35± 0.02 −11.01+1.12
−1.98 3138.27

& ACT 67.8± 0.7 0.321+0.012
−0.013 −0.10+0.13

−0.14 −19.42± 0.02 −10.89+1.15
−1.83 3117.67

Table 4.6: f1(T ) model (2.17) constraints for the baseline H(z) measurements, SNIa compilation,
and BAO sample. We include the QSO nUVX sample.
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Figure 4.6: C.L posterior results for the f1(T ) model (2.17) for the combinations (a) H(z) and
SNIa Pantheon compilation with the QSO nUVX sample, and (b) the combination with the BAO
sample. The shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue
for R21 prior, purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the
model that was tested with flat prior is represented in black color.

The constraints using the QSO nUVX sample can be seen both in Figure 4.6 and Table 4.6.
Similar to previous results, without using priors, the H0 value is comparable to the one obtained
by Planck Collaboration, but with a higher uncertainty H0 = 67.2+4.3

−3.5 km s−1 Mpc−1 without the
BAO sample, and H0 = 67.8+1.0

−0.9 km s−1 Mpc−1 with the BAO sample, both values at 2σ from the
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Planck estimation. Using R21 and GD3 priors, the estimations resemble a high H0 value with a
low fractional matter Ωm. This is contrary to the results using ACT and P18 priors, which result in
lower values for H0 and high values for Ωm. For example the highest H0 value is the one obtained
using the combination H(z), SNIa, nUVX baseline with the R21 prior with H0 = 73.2+0.6

−0.8 km s−1

Mpc−1. Finally, the lowest value obtained using H(z), SNIa, BAO and nUVX baseline with the
P18 prior is H0 = 67.4+0.4

−0.3 km s−1 Mpc−1.
As done with the ΛCDM model, the Power-law model shows consistency along the datasets

independently from the used prior. However the value of χ2
min is slightly higher than the one ob-

tained with the Standard cosmological model for all the dataset combinations. The BAO tendency
to increase the χ2

min value is still present in this model. The same could be said for the xA sample
and the nUVX where the first sample reduces the error in the parameter estimation.

4.4 Linder model
For the Linder model, when b2 → ∞ we recover the standard ΛCDM model, so the results here
are represented using the inverse of the free parameter, and therefore when 1/b2 → 0 we recover
the standard model. For the baselines, the results can be seen in Table 4.7 and in Figures 4.7.

Data set H0 [km s−1 Mpc−1] Ωm 1/b2 M χ2
min

H(z) + SNIa 69.8+3.4
−3.8 0.292+0.029

−0.034 0.00+0.27
−0.00 −19.36± 0.11 949.41

& R21 73.1+0.8
−0.7 0.283+0.030

−0.039 0.00+0.31
−0.00 −19.25+0.03

−0.02 950.71
& P18 67.4± 0.4 0.300+0.024

−0.031 0.027+0.224
−0.024 −19.43± 0.02 949.66

& F20 69.7+0.6
−0.5 0.290+0.029

−0.031 0.00+0.27
−0.00 −19.35± 0.02 949.45

& GD3 73.7± 1.0 0.281+0.028
−0.037 0.00+0.34

−0.00 −19.24± 0.03 951.15
& ACT 68.0+1.1

−1.0 0.295+0.026
−0.029 0.00+0.25

−0.00 −19.41+0.03
−0.04 949.52

H(z) + SNIa + BAO 68.0± 0.7
(
300.6+8.6

−11.6

)
× 10−3 0.048+0.178

−0.046 −19.41± 0.02 961.25

& R21 70.2± 0.5
(
294.0+9.6

−10.3

)
× 10−3 0.059+0.059

−0.058 −19.35± 0.2 995.28
& P18 67.4+0.3

−0.4 0.316+0.011
−0.010 0.047+0.107

−0.046 −19.42± 0.01 960.30
& F20 68.9± 0.4

(
296.7+11.0

−9.6

)
× 10−3 0.00+0.14

−0.00 −19.38+0.01
−0.02 964.89

& GD3 69.4± 0.5
(
294.9+10.3

−9.5

)
× 10−3 0.083+0.047

−0.081 −19.37± 0.02 987.31
& ACT 67.4± 0.6 0.323+0.010

−0.012 0.045+0.106
−0.042 −19.42± 0.02 961.25

Table 4.7: f2(T ) model (2.20) constraints for the combinations of H(z) measurements, Pantheon
SNIa compilation and BAO catalogs. At the top of the table are the results without the BAO
sample, while at the bottom are the results including this latter sample with different results
corresponding to the priors imposed on H0. The color codes are indicated in the description for
each prior to consideration.

For this model, using H(z) and SNIa baseline without prior results in constraints with a low
H0 value consistent with P18, but with a large error estimation and a confirmation of ΛCDM as
1/b2 = 0.00+0.27

−0.00. Using R21 and GD3 priors show the largest values for H0 as H0 = 73.1+0.8
−0.7 km

s−1 Mpc−1, and H0 = 73.7 ± 1.0 km s−1 Mpc−1, respectively. The fractional matter density Ωm
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also has the slowest values using those priors and both of them recover 1/b2 → 0. Constraining
the model with the F20 prior shows also a preference for the ΛCDM model as the use of P18
and ACT obtaining the lowest H0 values H0 = 67.4 ± 0.4 km s−1 Mpc−1 and H0 = 68.0+1.1

−1.0

km s−1 Mpc−1, respectively. The constraints give highest matter densities as Ωm = 0.300+0.024
−0.031

and Ωm = 0.295+0.026
−0.029 for the those priors. As mentioned before, the use of the BAO sample

modifies the H0 estimations resulting in a lower value, that without a prior the combination
obtains H0 = 68.0 ± 0.7 km s−1 Mpc−1, with a 1/b2 = 0.048+0.178

−0.046 at 2σ from the confirmation of
ΛCDM. Using priors results in higher H0 estimates for R21 and GD3 priors. Furthermore, R21 and
ACT priors estimate lower values of H0 and higher Ωm with 1/b2 closer to ΛCDM confirmation.
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Figure 4.7: C.L posterior results using f2(T ) model (2.20) for the (a) H(z) and SNIa Pantheon
compilation. (b) Combination including the BAO sample. The shadowed regions correspond to 1σ
and 2σ, respectively. We use the color code blue for R21 prior, purple for GAIA, red for P18, green
for F20, and yellow for ACT. Additionally, the model that was tested with flat prior is represented
in black color.
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Data set H0 [km s−1 Mpc−1] Ωm 1/b2 M χ2
min

H(z) + SNIa + xA 67.4+1.0
−0.9 0.296± 0.019 0.00+0.15

−0.00 −19.43± 0.03 2616.99

& R21 71.2± 0.6 0.264± 0.019 0.00+0.14
−0.00 −19.33± 0.02 2639.99

& P18 67.4± 0.4 0.297± 0.019 0.094+0.066
−0.091 −19.43+0.01

−0.02 2617.00
& F20 69.2+0.6

−0.5 0.281± 0.017 0.053+0.093
−0.051 −19.4± 0.02 2621.45

& GD3 70.7+0.7
−0.8 0.269± 0.020 0.00+0.14

−0.00 −19.34± 0.02 2639.23
& ACT 67.7+0.7

−0.8 0.294+0.020
−0.018 0.018+0.141

−0.014 −19.42± 0.02 2617.09

H(z) + SNIa + BAO + xA 67.9± 0.5 0.298+0.012
−0.011 0.025+0.134

−0.023 −19.41± 0.02 2628.34

& R21 69.6± 0.5 0.293± 0.011 0.00+0.10
−0.00 −19.37+0.01

−0.02 2670.16
& P18 67.3± 0.3 0.314+0.012

−0.011 0.022+0.107
−0.021 −19.43± 0.01 2628.27

& F20 68.6+0.4
−0.3

(
295.0+9.0

−9.3

)
× 10−3 0.038+0.087

−0.036 −19.39± 0.01 2634.83
& GD3 69.0+0.5

−0.4

(
293.2+9.1

−9.4

)
× 10−3 0.051+0.072

−0.050 −19.38+0.02
−0.01 2658.71

& ACT 67.9+0.4
−0.5 0.300+0.010

−0.011 0.056+0.107
−0.052 −19.42± 0.02 2628.34

Table 4.8: f2(T ) model (2.20) constraints for the combination H(z) measurements, SNIa compila-
tion, and with both BAO surveys. We include the QSO xA sample.

The constraints for the f2(T ) model using the QSO xA sample can be seen in Table 4.8 and in
both figures in 4.8. Both results using the QSO xA sample without a prior and the BAO sample
for the H0 are in agreement with the Planck Collaboration results with H0 = 67.4+1.0

−0.9 km s−1

Mpc−1 without the BAO sample, and H0 = 67.9 ± 0.5 km s−1 Mpc−1 with the BAO sample.
Both estimations of b2 → 0, and Ωm ∼ 0.29 achieve similar results, consistent with a confirmation
towards the ΛCDM model. Similar to previous results, the highest H0 estimation are the ones
obtained using R21 and GD3 priors without the BAO data set, and the lower values are the ones
obtained with ACT and P18 priors. Using the F20 prior we obtain H0 ∼ 69 km s−1 Mpc−1, which
is consistent with an intermediate value. It is important to remark that when using all the priors
the value for 1/b2 shows a confirmation of the ΛCDM model at 2σ level, i.e. 1/b2 → 0 meaning
that b2 → ∞, which means that this specific model does not show a significantly different behavior
from the standard cosmological model at least using these combinations with the QSO xA sample.
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Figure 4.8: C.L posterior results using the f2(T ) model (2.20) for the (a) H(z) and SNIa Pantheon
compilation with the QSO xA sample, and (b) the combination including the BAO sample. The
shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue for R21 prior,
purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the model that
was tested with flat prior is represented in black color.

Data set H0 [km s−1 Mpc−1] Ωm 1/b2 M β′ χ2
min

H(z) + SNIa + nUVX 69.9+3.4
−3.9 0.291+0.031

−0.033 0.11+0.16
−0.11 −19.35+0.11

−0.12 −11.38+2.24
−2.98 3107.04

& R21 73.1+0.8
−0.7 0.282+0.028

−0.035 0.00+0.31
−0.00 −19.25+0.02

−0.03 −10.73+1.15
−1.04 3108.34

& P18 67.4± 0.4 0.298+0.026
−0.030 0.017+0.227

−0.014 −19.43± 0.02 −10.52+1.19
−1.00 3107.27

& F20 69.8+0.5
−0.6 0.292+0.026

−0.032 0.046+0.231
−0.043 −19.35± 0.02 −10.12+1.12

−1.98 3107.07
& GD3 73.7+1.0

−0.9 0.281+0.028
−0.037 0.099+0.238

−0.096 −19.24± 0.03 −10.90+1.01
−1.18 3107.76

& ACT 68.2+0.8
−1.2 0.297+0.028

−0.032 0.046+0.203
−0.043 −19.41+0.03

−0.04 −9.9+1.18
−1.99 3107.14

H(z) + SNIa + BAO + nUVX 67.2+0.8
−0.7 0.317+0.013

−0.012 0.071+0.097
−0.070 −19.43± 0.02 −10.83+1.59

−1.51 3117.91

& R21 70.2+0.5
−0.6

(
294.8+8.9

−10.9

)
× 10−3 0.025+0.092

−0.024 −19.35± 0.02 −10.85+1.02
−1.26 3152.89

& P18 67.3± 0.3 0.317+0.011
−0.010 0.030+0.126

−0.029 −19.43± 0.01 −10.52+1.15
−1.01 3117.91

& F20 68.8+0.4
−0.5 0.305± 0.010 0.075+0.052

−0.074 −19.39± 0.01 −10.13+1.11
−1.98 3125.64

& GD3 69.4± 0.6 0.300+0.010
−0.011 0.054+0.075

−0.052 −19.37± 0.02 −10.34+1.14
−1.96 3148.19

& ACT 67.5± 0.6 0.316± 0.011 0.055+0.102
−0.054 −19.42± 0.02 −10.34+1.17

−1.96 3118.12

Table 4.9: f2(T ) model (2.20) constraints for the baseline H(z) measurements, SNIa compilation,
and BAO sample. We include the QSO nUVX sample.
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Figure 4.9: C.L posterior results for the f2(T ) model (2.20) for the combinations (a) H(z) and
SNIa Pantheon compilation with the QSO nUVX sample, and (b) the combination with the BAO
sample. The shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue
for R21 prior, purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the
model that was tested with flat prior is represented in black color.

The constraints using the QSO nUVX sample have similar behavior to the previous combina-
tions of data sets. As for all the priors, the free parameter 1/b2 → 0, meaning that we have a
confirmation for the ΛCDM model. This combination of data does not show a significant deviation
from the standard model.

Regarding H0, as shown before with other data set combinations, the results using BAO sets
give lower values for this Hubble parameter. Using SNIa and H(z) with the QSO nUVX sample
results in a higher value for it. For example, without the BAO sample and using the GD3 prior
H0 = 73.7+1.0

−0.9 km s−1 Mpc−1, being the highest value in this baseline which corresponds to Ωm =
0.281+0.028

−0.037. The lowest H0 value corresponds to the one obtained using all the data sets including
the BAO sample and the P18 prior H0 = 67.3±0.3 km s−1 Mpc−1. This corresponds to the highest
fractional matter density Ωm = 0.317+0.011

−0.010. All the results can be explored in Figure 4.9 and Table
4.9.

Similar to the ΛCDM case, in the Linder model we have consistency in the datasets used
independently from the prior used. The lowest χ2

min is the one using only the H(z) and SNIa
datasets while, similar to the previous models, the xA sample increases the value. Altough the xA
sample also increases the accuracy in the parameter estimation. The nUVX sample is the contrary,
reduces the χ2

min but increases the inaccuracy in the parameter determination.
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4.5 Modified Linder model
For the baselines described, the results are shown in Figure 4.10 and Table 4.10. We can recover
the ΛCDM model in this case when 1/b3 → 0, and all the combinations with the priors obtain the
respective confirmation for this standard scenario.

Data set H0 [km s−1 Mpc−1] Ωm 1/b3 M χ2
min

H(z) + SNIa 69.5+3.5
−3.7 0.294+0.024

−0.022 0.015+0.130
−0.014 −19.37± 0.11 949.41

& R21 73.1± 0.8 0.286+0.024
−0.023 0.059+0.090

−0.058 −19.26± 0.03 950.71
& P18 67.4± 0.4 0.302+0.019

−0.022 0.00+0.14
−0.00 −19.43± 0.02 949.65

& F20 69.8+0.6
−0.5 0.294+0.021

−0.020 0.00+0.14
−0.00 −19.36± 0.02 949.45

& GD3 73.7± 1.0 0.285+0.022
−0.020 0.050+0.106

−0.049 −19.235± 0.03 951.15
& ACT 67.7+1.2

−0.7 0.299+0.023
−0.024 0.00+0.014

−0.00 −19.41± 0.04 949.51

H(z) + SNIa + BAO 68.1+0.5
−0.6 0.300+0.012

−0.011 0.093+0.053
−0.091 −19.41± 0.02 960.24

& R21 70.2+0.5
−0.6 0.294+0.011

−0.010 0.001+0.091
−0.000 −19.35± 0.02 995.28

& P18 67.3+0.3
−0.4 0.318± 0.010 0.030+0.087

−0.029 −19.42± 0.01 960.30
& F20 68.8+0.5

−0.4

(
305.5+9.8

−10.6

)
× 10−3

(
7.3+95.6

−6.2

)
× 10−3 −19.38+0.01

−0.02 968.02
& GD3 69.4± 0.5

(
294.8+10.9

−9.7

)
× 10−3 0.062+0.042

−0.061 −19.37± 0.02 987.32
& ACT 67.4+0.5

−0.6

(
322.3+9.9

−9.8

)
× 10−3 0.077+0.037

−0.076 −19.42± 0.02 961.25

Table 4.10: f3(T ) model (2.23) constraints for the combinations of H(z) measurements, Pantheon
SNIa compilation and BAO catalogs. At the top of the table are the results without the BAO
sample, while at the bottom are the results including this latter sample with different results
corresponding to the priors imposed on H0. The color codes are indicated in the description for
each prior to consideration.

Without priors, the constraints for this model using the baseline combination get H0 = 69.5+3.5
−3.7

km s−1 Mpc−1, that is in concordance with Planck values, however, with a higher error estimation.
Using the BAO sample we obtain H0 = 68.1+0.5

−0.6 km s−1 Mpc−1. When using priors, the higher
estimation for the Hubble constant is H0 = 73.7 ± 1.0 km s−1 Mpc−1 using the GD3 prior and
without the BAO data set. This corresponds to a lower fractional matter density Ωm = 0.285+0.022

−0.020.
The lower estimation using the P18 prior with the BAO data set estimates H0 = 67.3+0.3

−0.4 km s−1

Mpc−1 with Ωm = 0.318 ± 0.010. With other priors, we obtain intermediate values maintaining
the behavior in which the BAO data reduces the value of H0 similar to the previous cases.

Using the QSO xA sample we obtain different results but maintain the same trend when using
the BAO data, meaning that the value of H0 still gets lower. r In this case, H0 = 67.2±0.6 km s−1

Mpc−1 is the lowest value and corresponds to Ωm = 0.317+0.011
−0.012, which is the highest estimation

for the matter fraction. On the other way around, the highest H0 = 71.2 ± 0.6 km s−1 Mpc−1

corresponds to the lowest Ωm = 0.286+0.024
−0.023. With other priors, we obtain 1/b3 → 0, which confirms

ΛCDM. This can be seen in Figure 4.10 and Table 4.10.
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Figure 4.10: C.L posterior results using f3(T ) model (2.23) for the (a) H(z) and SNIa Pantheon
compilation. (b) Combination including the BAO sample. The shadowed regions correspond to 1σ
and 2σ, respectively. We use the color code blue for R21 prior, purple for GAIA, red for P18, green
for F20, and yellow for ACT. Additionally, the model that was tested with flat prior is represented
in black color.

Data set H0 [km s−1 Mpc−1] Ωm 1/b3 M χ2
min

H(z) + SNIa + xA 67.4± 1.0 0.297+0.020
−0.018

(
6.9+108.4

−6.1

)
× 10−3 −19.43± 0.03 2616.99

& R21 71.2± 0.6 0.265+0.015
−0.017 0.028+0.077

−0.028 −19.33± 0.02 2639.99
& P18 67.4+0.3

−0.4 0.299+0.017
−0.020 0.033+0.088

−0.032 −19.43± 0.02 2617.00
& F20 69.2± 0.5 0.281+0.017

−0.016 0.083+0.030
−0.082 −19.38± 0.02 2621.45

& GD3 70.7± 0.7 0.269+0.018
−0.016 0.055+0.051

−0.055 −19.34± 0.02 2639.22
& ACT 67.7+0.6

−0.8 0.294+0.024
−0.021 0.032+0.079

−0.031 −19.42+0.02
−0.03 2617.09

H(z) + SNIa + BAO + xA 67.2± 0.6 0.317+0.011
−0.012 0.000+0.099

−0.000 −19.429+0.017
−0.019 2628.24

& R21 69.6± 0.5
(
293.0+10.1

−9.7

)
× 10−3 0.052+0.043

−0.051 −19.37± 0.02 2670.17
& P18 67.3± 0.3 0.315+0.011

−0.010 0.064+0.044
−0.063 −19.43± 0.01 2628.27

& F20 68.6+0.4
−0.5 0.302+0.012

−0.011 0.038+0.062
−0.037 −19.39± 0.01 2638.32

& GD3 68.9+0.5
−0.6

(
298.9+10.7

−10.0

)
× 10−3 0.008+0.076

−0.007 −19.38± 0.02 2662.63
& ACT 67.4± 0.5

(
313.9+11.3

−9.9

)
× 10−3 0.078+0.031

−0.077 −19.43± 0.02 2628.54

Table 4.11: f3(T ) model (2.23) constraints for the combination H(z) measurements, SNIa compi-
lation, and with both BAO surveys. We include the QSO xA sample.
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Figure 4.11: C.L posterior results using the f3(T ) model (2.23) for the (a) H(z) and SNIa Pantheon
compilation with the QSO xA sample, and (b) the combination including the BAO sample. The
shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue for R21 prior,
purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the model that
was tested with flat prior is represented in black color.

Data set H0 [km s−1 Mpc−1] Ωm 1/b3 M β′ χ2
min

H(z) + SNIa + nUVX 69.8+3.0
−4.2 0.296+0.022

−0.023 0.00+0.14
−0.00 −19.36+0.10

−0.12 −12.64+0.14
−0.73 3107.02

& R21 73.2+0.7
−0.8 0.288+0.019

−0.021 0.059+0.090
−0.058 −19.27± 0.02 −12.21+0.13

−0.70 3108.34
& P18 67.4± 0.4 0.301+0.021

−0.022 0.021+0.124
−0.020 −19.43± 0.02 −12.62+0.61

−0.53 3107.26
& F20 69.8± 0.6 0.295± 0.021 0.077+0.065

−0.076 −19.36± 0.02 −12.51+0.66
−0.49 3107.06

& GD3 73.8+0.9
−1.1 0.285± 0.021 0.018+0.133

−0.017 −19.24± 0.03 −12.63+0.48
−0.63 3108.77

& ACT 68.0± 1.0 0.299+0.021
−0.022 0.00+0.14

−0.00 −19.41± 0.03 −12.52+0.68
−0.47 3107.14

H(z) + SNIa + BAO + nUVX 67.3+0.6
−0.8 0.318± 0.012 0.061+0.058

−0.060 −19.43± 0.02 −11.48+0.19
−0.11 3117.91

& R21 70.1± 0.2 0.294± 0.010 0.067+0.032
−0.066 −19.39± 0.02 −12.61+0.45

−0.73 3152.90
& P18 67.3+0.4

−0.3 0.318± 0.012 0.00+0.12
−0.00 −19.43± 0.01 −11.39+0.77

−0.36 3117.92
& F20 68.8± 0.4 0.304+0.012

−0.011 0.020+0.085
−0.018 −19.39+0.02

−0.01 −11.77+0.77
−0.32 3125.63

& GD3 69.5± 0.6 0.299+0.011
−0.010 0.018+0.079

−0.018 −19.37± 0.02 −11.37+0.88
−0.62 3148.20

& ACT 67.4+0.6
−0.5 0.316± 0.011 0.00+0.12

−0.00 −19.42± 0.02 −11.45+0.11
−0.10 3118.11

Table 4.12: f3(T ) model (2.23) constraints for the baseline H(z) measurements, SNIa compilation,
and BAO sample. We include the QSO nUVX sample.
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Figure 4.12: C.L posterior results for the f3(T ) model (2.23) for the combinations (a) H(z) and
SNIa Pantheon compilation with the QSO nUVX sample, and (b) the combination with the BAO
sample. The shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue
for R21 prior, purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the
model that was tested with flat prior is represented in black color.

Using the QSO nUVX sample, a confirmation for ΛCDM again happens for each of the prior
considered at least at 2σ level. With this baseline the highest H0 estimation is obtained using
the R21 prior without the BAO sample H0 = 73.2+0.7

−0.8 km s−1 Mpc−1, with the lowest estimation
of Ωm = 0.288+0.019

−0.021. Finally, the lowest estimation is H0 = 67.3+0.4
−0.3 km s−1 Mpc−1 with Ωm =

0.318± 0.012.
For the Modified Linder model, the trend in the datasets continues being H(z) and SNIa the

lower χ2
min determination. The introduction of sample xA enables smaller parameter estimation

errors as seen in Table 4.11. However, the χ2
min estimation is higher due to the high dispersion

of the data obtained for the sample. This is in contrast to the nUVX sample, where parameter
estimation contains a higher error determination but the χ2

min is significantly smaller. Again, in
this model, in overall the χ2

min is slighly higher than the one obtained with ΛCDM.

4.6 Logarithmic Model
f4(T ) has the same free parameters as the ΛCDM model, therefore we do not have a confirmation
bias in this analysis. Using the H(z) and SNIa baseline, the constraints show a diminution for the
H0 tension up to 2σ, but with a higher error estimation and a fractional matter estimation lower
than the one predicted with other cosmological models. This results gives Ωm = 0.202+0.014

−0.019. All
the constraints using both priors priors obtain Ωm ∼ 0.2 with their respective value of H0 close
to the imposed prior. Additionally, using the BAO sample we estimate low H0 estimations, e.g.
including the R21 prior we obtain H0 = 68.2 ± 0.6 km s−1 Mpc−1 consistent with the P18 prior.
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The same happens to the GD3 prior to obtaining a H0 even lower than the one reported by the
Planck Collaboration. With the P18 prior we obtain a low value H0 = 66.4+0.4

−0.3 km s−1 Mpc−1

with a matter density of approximately Ωm ∼ 0.27. The complete results are reported in Table
4.13 and Figure 4.13.

Data Set H0 [km s−1 Mpc−1] Ωm M χ2
min

H(z) + SNeIa 70.1+3.9
−3.3 0.202+0.014

−0.019 −19.30+0.08
−0.13 951.61

& R21 73.2+0.7
−0.8 0.195+0.016

−0.015 −19.25+0.03
−0.02 952.17

& P18 67.4± 0.4 0.205± 0.016 −19.42+0.01
−0.02 952.41

& F20 69.8+0.6
−0.5 0.200+0.016

−0.015 −19.35± 0.02 951.66
& GD3 73.9+0.9

−1.0 0.194+0.016
−0.014 −19.23± 0.03 952.47

& ACT 68.0+1.1
−1.0 0.203+0.017

−0.016 −19.40+0.04
−0.03 952.12

H(z) + SNeIa + BAO 64.8± 0.5
(
264.0+9.7

−9.9

)
× 10−3 −19.48± 0.02 974.34

& R21 68.2± 0.6
(
258.6+10.3

−8.6

)
× 10−3 −19.37± 0.02 1088.61

& P18 66.4+0.4
−0.3

(
273.8+8.8

−10.6

)
× 10−3 −19.42± 0.01 1018.55

& F20 67.4+0.4
−0.5

(
265.3+10.2

−8.8

)
× 10−3 −19.39± 0.01 1044.32

& GD3 66.2+0.6
−0.5

(
289.9+9.3

−8.8

)
× 10−3 −19.42± 0.02 1087.61

& ACT 64.9+0.5
−0.7

(
284.4+12.0

−9.1

)
× 10−3 −19.47± 0.02 1006.92

Table 4.13: f4(T ) model (2.26) constraints for the combinations of H(z) measurements, Pantheon
SNIa compilation and BAO catalogs. At the top of the table are the results without the BAO
sample, while at the bottom are the results including this latter sample with different results
corresponding to the priors imposed on H0. The color codes are indicated in the description for
each prior to consideration.
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Figure 4.13: C.L posterior results using f4(T ) model (2.26) for the (a) H(z) and SNIa Pantheon
compilation. (b) Combination including the BAO sample. The shadowed regions correspond to 1σ
and 2σ, respectively. We use the color code blue for R21 prior, purple for GAIA, red for P18, green
for F20, and yellow for ACT. Additionally, the model that was tested with flat prior is represented
in black color.

Using the QSO xA sample we reduce the value H0 = 67.3± 1.0 km s−1 Mpc−1 with the H(z)
and SNIa baseline. We obtain H0 = 64.2 ± 0.6 km s−1 Mpc−1 when including the BAO sample.
This also has the impact of raising the fractional matter density estimation to Ωm = 0.291+0.011

−0.013

closer to the obtained using the ΛCDM model and larger than the one obtained without the BAO
sample with Ωm = 0.201+0.017

−0.014. The lowest Ωm estimation is obtained using the R21 prior with
the H(z) and SNIa baseline, which shares also the biggest H0 value with Ωm = 0.175+0.012

−0.013 and
H0 = 71.1+0.7

−0.5 km s−1 Mpc−1.
In this model, the use of the BAO sample in the entire baselines has the impact of lowering

the value of H0 and raising the estimation of Ωm, as for all the results independently of the prior,
Ωm ∼ 0.26 and a low value of H0 as seen in H0 = 65.0 ± 0.5 km s−1 Mpc−1 using, e.g. the ACT
prior.
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Data Set H0 [km s−1 Mpc−1] Ωm M χ2
min

H(z) + SNIa + xA 67.3± 1.0 0.201+0.017
−0.014 −19.43± 0.03 2627.82

& R21 71.1+0.7
−0.5 0.175+0.012

−0.013 −19.32± 0.02 2652.04
& P18 67.4± 0.4 0.202+0.014

−0.013 −19.42± 0.01 2627.82
& F20 69.1± 0.5 0.188+0.014

−0.012 −19.375± 0.02 2632.91
& GD3 70.6+0.7

−0.8 0.178+0.014
−0.013 −19.34± 0.02 2651.11

& ACT 67.5+0.8
−0.7 0.199+0.016

−0.013 −19.42± 0.02 2628.01

H(z) + SNIa + BAO + xA 64.2± 0.6 0.291+0.011
−0.013 −19.49± 0.02 2675.19

& R21 67.6± 0.5
(
257.7+9.1

−10.0

)
× 10−3 −19.39± 0.02 2772.13

& P18 66.4+0.3
−0.4

(
269.0+9.7

−8.9

)
× 10−3 −19.42± 0.01 2697.35

& F20 67.0± 0.4
(
262.7+9.6

−9.0

)
× 10−3 −19.41± 0.01 2725.01

& GD3 66.5+0.6
−0.5 0.267± 0.010 −19.42± 0.02 2748.71

& ACT 65.0± 0.5 0.282+0.011
−0.010 −19.46± 0.02 2684.88

Table 4.14: f4(T ) model (2.26) constraints for the combination H(z) measurements, SNIa compi-
lation, and with both BAO surveys. We include the QSO xA sample.

 

64 68 72 76 80
H0 

0.1
5

0.1
8

0.2
1

0.2
4

m
 

H(z) + SNIa + xA
+ TRGB
+ GAIA
+ ACT
+ R21
+ P18

 

(a)

 

62
.5

65
.0

67
.5

70
.0

H0 [km s 1 Mpc 1] 

0.2
4

0.2
7

0.3
0

0.3
3

m
 

H(z) + SNIa + BAO + xA
+ TRGB
+ GAIA
+ ACT
+ R21
+ P18

 

(b)

Figure 4.14: C.L posterior results using the f4(T ) model (2.26) for the (a) H(z) and SNIa Pantheon
compilation with the QSO xA sample, and (b) the combination including the BAO sample. The
shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue for R21 prior,
purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the model that
was tested with flat prior is represented in black color..
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Data Set H0 [km s−1 Mpc−1] Ωm M β′ χ2
min

H(z) + SNIa + nUVX 71.4+2.4
−2.0

(
196.3+6.5

−6.1

)
× 10−3 −19.31± 0.03 −10.7+8.5

−7.2 3404.16

& R21 73.3+0.7
−0.8 (197.3± 2.7)× 10−3 −19.25± 0.02 −10.7+0.7

−0.9 3405.16
& P18 67.4± 0.4

(
198.0+6.3

−6.4

)
× 10−3 −19.43± 0.01 −11.3+0.9

−0.6 3405.14
& F20 69.8+0.5

−0.6

(
1972.1+8.7

−9.3

)
× 10−4 −19.35± 0.02 −10.8+0.7

−0.8 3408.23
& GD3 73.8+0.9

−1.0

(
195.9+3.0

−0.0

)
× 10−3 −19.23± 0.03 −10.4+0.7

−0.9 3405.06
& ACT 68.2+0.9

−1.2

(
197.6+4.5

−5.3

)
× 10−3 −19.40+0.03

−0.04 −10.9± 0.8 3407.80

H(z) + SNIa + BAO + nUVX 63.7± 0.7 0.295± 0.012 −19.50± 0.02 −10.79+1.61
−1.87 3153.12

& R21 68.2+0.5
−0.6 (260.0± 9.5)× 10−3 −19.37± 0.02 −10.7+1.25

−1.24 3246.22
& P18 66.5+0.3

−0.4

(
272.9+9.2

−9.5

)
× 10−3 −19.42± 0.01 −10.65+1.52

−1.87 3176.16
& F20 67.3+0.5

−0.4

(
266.5+9.8

−10.3

)
× 10−3 −19.39± 0.02 −11.12+1.67

−1.75 3201.93
& GD3 66.9± 0.6

(
268.9+10.2

−9.6

)
× 10−3 −19.40± 0.02 −10.24+1.62

−1.71 3226.86
& ACT 64.8+0.6

−0.5 0.285+0.011
−0.010 −19.46± 0.02 −12.11+1.86

−1.50 3164.54

Table 4.15: f4(T ) model (2.26) constraints for the baseline H(z) measurements, SNIa compilation,
and BAO sample. We include the QSO nUVX sample.
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Figure 4.15: C.L posterior results for the f4(T ) model (2.26) for the combinations (a) H(z) and
SNIa Pantheon compilation with the QSO nUVX sample, and (b) the combination with the BAO
sample. The shadowed regions correspond to 1σ and 2σ, respectively. We use the color code blue
for R21 prior, purple for GAIA, red for P18, green for F20, and yellow for ACT. Additionally, the
model that was tested with flat prior is represented in black color.

Using the QSO nUVX sample, the constraints for this model have a similar impact to the QSO
xA sample. Using H(z) and SNIa baseline, we obtain a value of H0 = 71.4+2.4

−2.0 km s−1 Mpc−1 that
reduces the tension but with a large uncertainty. With the other priors, we have similar effects
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in comparison to previous models as the R21 and GD3 priors tend to have the larger H0 value
estimations and both the ACT and P18 priors tend to have the lowest. For the F20 prior we have
an intermediate value around H0 = 70 km s−1 Mpc−1

Considering the BAO sample makes the fractional matter density grow up to Ωm ≲ 0.3 for all
the applied priors and reduces the value of H0 down to H0 = 64.8+0.6

−0.5 km s−1 Mpc−1 using the
ACT prior and being the highest value with the R21 prior H0 = 68.2+0.5

−0.6 km s−1 Mpc−1.
In the Logarithmic model the estimation of the χ2

min value is crucial since we lack a set of values
that allow us to directly contrast the results with the ΛCDM model. In this scenario, the values
are higher than those of the standard cosmological model. However, for all combinations of data,
the parameter estimation is smaller which is expected for a model with less free parameters than
the previous. The remaining trends persist for both BAO, which increases the numerical value
of χ2

min, and for the xA and nUVX samples, maintaining their behavior where better parameter
estimation does not necessarily imply a better χ2

min.

4.7 General remarks
On one hand, using local baselines provides a raising on the value of H0 which tends to prefer a
lower value of Ωm to preserve the quantity Ωmh

2, i.e. the geometric degeneracy (Abdalla et al.,
2022). Several facts on these constraints are present in all combinations between the local catalogs
including the Quasar samples.

Using SNIa and H(z) measurements was not sufficient to estimate the value of H0 as the error
estimation is bigger than the one obtained with other measurements.

This error estimation is consistent with literature as there is a degeneracy present in the H0−M
parameter space for SNIa compilation (Riess et al., 2021b). This degeneracy is a product of the
estimations of the distance modulus as µ = m − M which will act as a zero-point calibration
(Bargiacchi et al., 2022). One of the ways to avoid this problem is to leave some fixed value for
the absolute magnitude M with the implication of already assuming an H0 value and therefore a
preferred cosmology.

On the other hand, we notice that the reason why we chose to analyze the baseline without
the BAO sample is because the latter is a cosmology-dependent catalog, therefore, the conversion
from angles and redshifts to distances in the calculations or through the assumptions of fiducial
cosmology creates a baseline that can be used to fit the model, but not localize a deviation from
the model used as a prior. In this line of thought, the estimation of the Hubble parameter H(z),
and the angular diameter distance DA(z), for the BAO sample needs the radial distance dr|| =

cδz/H(z), and the transverse distance dr⊥ = (1 + z)DAθ (with θ = (1+z)rs
DA(z)

. From these relations
the measured angular scale of the sound horizon at the drag epoch depends on the cosmological
assumption made (Perivolaropoulos and Skara, 2022; Abdalla et al., 2022). However, the problem
with the determination of these parameters and the physical quantities from BAO measurements
(see Sec.3.4) is that this observable prefers values setting at early cosmic times, so the distance
at the drag epoch has an existing issue known as the H0 − rs(zd) tension, which impacts our
estimations of the Hubble constant H0. In our analysis of all the cosmological models discussed,
we notice that the estimation of the H0 is always lower using the BAO sample. Furthermore, in
the literature H0 − rs(zd) is considered as a combined parameter in the triplet H0 − rs(zd) − Ωm

(L’Huillier and Shafieloo, 2017; Abdalla et al., 2022). Knowing these data characteristics is now
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clear that the trend about H0 using the BAO catalogs in all models and baseline, is biased through
the calculation of rs(zd). This highly depends on the chosen values for Ωγ,0h

2 and Ωb,0h
2.

The first step for testing the different models was to use the flat priors in H0, inducing that
the data chooses the preferred H0 without a bias introduced using the prior.

Using the flat prior is clear that both SNIa, H(z) measurements and QSO nUVX sample have
the biggest error determination for the Hubble constant H0. This is interesting as using nUVX
with both f2(T ) and f3(T ) models the sample seems to be alleviating the H0 tension to 2σ. On
the contrary, using the QSO xA sample results in low H0 values in agreement with the Planck
2018 estimations (Aghanim et al., 2020b) for all the tested models. The results can be found in
Figure 4.16.

Regarding the aforementioned issues of the H0 estimation is that we decided to introduce
Gaussian priors to constrain the rest of the parameter space allowing us to seek any possible
influence from the Hubble tension. We consider five different priors reported in the literature
shown in section 4.1.
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Figure 4.16: Whisker plot for the flat H0 priors. The highlighted vertical C.L represents the R21
prior (blue) and the P18 prior (red). The black solid line in f1(T ), f2(T ) and f3(T ) represents the
value in which the free parameter bi or 1/bi in the different models reproduces the ΛCDM model
behavior. CC refers to H(z) measurements and SN refers to the SNIa Pantheon catalog.

The results from the R21 (Riess et al., 2022) prior are shown in figure 4.17 where is clear that
using H(z) measurements, SNeIa, and the nUVX sample the value of H0 adopted is the imposed
by the prior.

This is in contrast with the results obtained with the QSO xA sample and BAO results that
reduce the H0 value to a closer to the estimations of Planck 2018 (Aghanim et al., 2020b). Here
is interesting to notice that the usage of BAO and QSO xA obtain values for the free parameter
that represent a deviation from the ΛCDM model of more than 2σ for the f1(T ) model. The rest
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of the combination of the different datasets mimic the behavior of ΛCDM model as 1/bi ≈ 0 at 2σ
level.
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Figure 4.17: Whisker plot for the R21 H0 priors. The blue line in f1(T ), f2(T ) and f3(T ) represents
the value in which the free parameter bi or 1/bi in the different models reproduces the ΛCDM model
behavior. CC refers to H(z) measurements and SN refers to the SNIa Pantheon catalog.
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Figure 4.18: Whisker plot for the P18 H0 priors. The red line in f1(T ), f2(T ) and f3(T ) represents
the value in which the free parameter bi or 1/bi in the different models reproduces the ΛCDM
model behavior. CC refers to H(z) measurements and SN refers to the SNIa Pantheon catalog.
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Figure 4.19: Whisker plot for the F20 H0 priors. The red line in f1(T ), f2(T ) and f3(T ) represents
the value in which the free parameter bi or 1/bi in the different models reproduces the ΛCDM
model behavior. CC refers to H(z) measurements and SN refers to the SNIa Pantheon catalog.
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Figure 4.20: Whisker plot for the GAIA H0 priors. The purple line in f1(T ), f2(T ) and f3(T )
represents the value in which the free parameter bi or 1/bi in the different models reproduces the
ΛCDM model behavior. CC refers to H(z) measurements and SN refers to the SNIa Pantheon
catalog.
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Figure 4.21: Whisker plot for the ACT H0 priors. The yellow line in f1(T ), f2(T ) and f3(T )
represents the value in which the free parameter bi or 1/bi in the different models reproduces the
ΛCDM model behavior. CC refers to H(z) measurements and SN refers to the SNIa Pantheon
catalog.

The P18 prior results are shown in Figure 4.18, where is clear that the value preferred for H0

is the one imposed by the prior for every model and dataset combination. It is important to note
that the estimations for the fractional matter density Ωm ≈ 0.2 for f4(T ) model, while the rest of
the parameters behave as ΛCDM at 2σ. The only noted deviation is present using the combination
H(z), SNIa, and QSO xA sample with f2(T ) model where more than a 2σ deviations are found
for the free parameter 1/b2.

The rest of the priors imposed on the parameters are shown in Figures 4.19, 4.21, and 4.20.



Chapter 5

Conclusions

In this thesis we introduced the General Relativity and the standard cosmology in Chapter 1,
including a description of the quantities involved in the theory, the mathematical formalism and
we perform a summary in the state-of-the-art about the cosmological tensions 1.1.2. This allowed
us to introduce the concept of extensions and modifications on the gravitational theory 1.2. We
discussed in detail the TEGR approach introducing the cosmological viable f(T ) models 2. In
Chapter 3 we revisited the employed cosmological observations to constraint the cosmological
parameters for the f(T ) models including the two Quasar samples. Finally in Chapter 4 we
presented the results for the constraints in those viable f(T ) models.

So, in this Thesis, we perform statistical analyses with two new samples of Quasars with differ-
ent detection methods to standardize types of AGNs. Along with the standard local observables,
such as SNIa and H(z) measurements, we found new constraints for f(T ) viable cosmologies at
higher redshifts, showing notable deviations from the ΛCDM model and relaxing the tension on
H0.

The xA sample of Quasars (Marziani and Sulentic, 2014; Negrete et al., 2018; Dultzin et al.,
2020) is based on a spectroscopic approach to identify objects whose emission from accretion from
near the black hole is very close to the Eddington luminosity limit, allowing us to use them as
standard candle using various cosmological model-independent assertions. This sample is composed
of 220 data points consisting of redshift and distance modulus µ determined using the black hole
mass-luminosity relation, the hydrogen ionizing photons, and the hydrogen number density. The
focus of the nUVX sample (Lusso et al., 2020), on the other hand, is the non-linear relationship
between the ultraviolet emission at 2500 A and the X-ray flux measured at 2 keV to obtain the
luminous distance independently of the cosmological model and allow us to achieve a redshift of up
to z ∼ 7, that may be the result of the X-ray emission of the corona of the accretion disk (Risaliti
et al., 2023) although at the time of writing it is still considered an empirical relationship for which
an explanation is still being sought. nUVX consists of 2422 data points consisting of fluxes for
X-ray and UV from which the luminosity distance is calculated. These two different samples of
Quasars were treated independently to make a comparison between the two distance calculation
methodologies.

These two data samples have previously been used in the literature only to test dark energy
parameterisations and to test curvature models (Bargiacchi et al., 2022) and the vanilla ΛCDM.
This work is the first time that Quasar samples are used for extended gravity analyses.

In this work, we presented the constraints on TEGR f(T ) models by adding these two new
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Quasar observables. Although this work was carried out in an attempt to constraint the free
parameter from the different teleparallel f(T ) models, it was clear that almost every combination
of probes and priors returned the confirmation for ΛCDM at least for the early values of H0,
especially for the xA sample, where for almost every used prior deviates from ΛCDM in more than
2σ but in the rest of the models and priors had the impact of lowering the H0 value.

In the direction of the Hubble tension, some results could be indicators that the usage of more
local distance measurements of this kind may reduce the value of H0 as a result and therefore
reduce the tension down to 2σ. This can be seen most clearly by looking at the results for prior
P18 shown in figure 4.18 where almost all the combinations of data sets return the expected H0

value with all the models. However, this is not a conclusive result since both the BAO data and
it could be that some cosmological model-dependent element is hidden within the assumptions for
generating the Quasar samples and is therefore preferring values close to the H0 of the standard
Planck cosmology.

This is why we consider the results shown in works such as Bargiacchi et al. (2022) to be biased
since they assume a fixed value of H0 = 70 with which cosmology already has a value it will prefer,
so introducing different models involving curvature or dark energy parameterisations will tend to
lead to deviations if complete freedom in the fit is not allowed. This is why the nUVX sample was
included allowing the H0 value to vary in the parameter space, thus allowing us to contrast the
results obtained above at least for standard cosmology.

Within the conducted analysis for this thesis, it is important to exhibit that the two Quasar
samples show a notable dispersion when compared to other cosmological tests, such as SNIa.
This is because, for the xA sample, the physical process behind the construction of the luminous
distance measurement is reasonably well understood (Marziani and Sulentic, 2014). However, for
the nUVX sample, reasons for the existence of the relationship between X-ray and UV emission
as a measurement of the coronal gas in the accretion disk region are still under consideration
(Signorini et al., 2023). Hence, a comprehensive understanding of the physical processes that led
to the mentioned relations in the selected AGN samples is crucial to continue employing them in
cosmology.

Efforts have been made to reduce the dispersion in the xA sample, as documented in (Negrete
et al., 2018), where corrections for object orientation are used to address potential effects on
distance estimation influenced by dust obscuration.

As a perspective for this work, looking now to perform the perturbative calculations to be able
to use other CMB-based data sets such as Planck (Aghanim et al., 2020b) or ACT (Aiola et al.,
2020) that allow a more complete fit and that comply with covering all possible data sets from both
the early and late Universe is essential for further progress in teleparallel gravity, incorporating this
calculation in existing computational codes that allow us to perform the necessary analyses. This
work could also be extended to more models of gravity extensions either within TEGR itself or in
other approaches presented previously in the text. In addition to this, the incorporation of new
data sets such as the updated SNeIa Pantheon+ sample (Riess et al., 2021b), that is necessary to
keep fit with the state-of-the-art cosmology probes. Within this update of the data, it would also
be interesting to incorporate new Quasar data of the same type of processing as that carried out to
obtain the xA sample and an eventual update of the nUVX sample. Finally, another proposed data
set from AGNs could be the use of distance estimation using the reverberation mapping technique
(Watson et al., 2011) that is also a model-independent distance estimator.
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Appendix A

On the H(z) covariance matrix

The standard usage of the H(z) measurements in precision cosmology is to incorporate the sys-
tematical error band in the calculation of the χ2. This means that the usual way is:

χ2 =
N∑
i

[
(H(zi,Θ)−Hi)

2

σ2
H

]
, (A.1)

where σH is the systematical error, H(zi,Θ) are the calculated Hubble function for every redshift
and Hi are the observations reported, in addition N is the total number of the observations. The
not-so-recent novelty we are introducing in this work is the usage of the covariance matrix for
this measurement given by Moresco et al. (2020). This means that the new χ2 that we will use is
given as (3.4) and this has important effects on the posteriors obtained for the cosmological tested
models. The covariance matrix is expressed as:

Covij = Covstat
ij + Covyoung

ij + Covmodel
ij + Covmet

ij ; (A.2)

where the different contributions of the statistical errors are informed through the upper indexes
including the statistical error, the young component contamination, the stellar metallicity deter-
mination error, and the dependence on the chosen model for evolution determination. The model
part can be decomposed in the error including the Stellar Formation History (SFH), the Initial
Mass function, and both the stellar library and the stellar synthetic characteristics (Moresco et al.,
2020). This means that using the full covariance matrix will give us a better approximation for
the true errors of the H(z) measurements. The prize to pay is that this matrix will result in more
uncertainty than the original method because it takes account in the different systematic errors
for the methods and simulations needed.

In figure A.1 the effect of introducing the new likelihood compared to the previous one is
observed for the ΛCDM model, where both H0 and Ωm are estimated with less certainty, which is an
expected result. In figure A.2 the effect is also shown when both the H(z) and SNe measurements
are included in the analyses, where a correlation between the H0 and Ωm begins to occur and can
be the explanation between the light correlation between the same two parameters in the analyses
in the text.
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Figure A.1: Comparison between the usage of
the full covariance matrix for the H(z) mea-
surements (blue) and the use of only the statis-
tical error in the diagonal (green).
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Figure A.2: Comparison between the usage of
the full covariance matrix for the H(z) mea-
surements adding also the SNe data set (blue)
and the use of only the statistical error in the
diagonal with the SNe data set (green).
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