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Pauli channels of multiparticle systems
José Alfredo de León Garrido

Resumen

Los canales cuánticos son un formalismo para describir la evolución unitaria
y no unitaria de sistemas cuánticos. Más específicamente, los canales de Pauli
han sido estudiados en el contexto del ruido cuántico y la dinámica de sistemas
de qubits. Un canal de Pauli es un mapeo lineal que actúa sobre el espacio en
el que viven las matrices de densidad de un sistema de qubits y es diagonal en
la base de las matrices de Pauli.

En este trabajo, investigamos dos clases de canales cuánticos de muchas partí-
culas. La primera de estas clases es un subconjunto de los canales de Pauli de
muchos qubits, que nombramos canales “Pauli Component Erasing” (PCE).
Estos canales eliminan o preservan las componentes de Pauli de la matriz de
densidad. La segunda clase que estudiamos es una generalización de los cana-
les de Pauli para sistemas multipartitos de dimensión arbitraria, para lo cual
utilizamos la base de las matrices de Weyl. Estas matrices representan una
generalización unitaria de las matrices de Pauli para dimensiones arbitrarias.

Realizamos una caracterización exhaustiva de los canales PCE y los cana-
les de Weyl. En primer lugar, establecimos una correspondencia uno a uno
de los canales PCE con subespacios vectoriales finitos. A partir de esto, de-
dujimos sus propiedades e identificamos el subconjunto de canales PCE que
puede generarse mediante la composición de canales que preservan la mitad
de las componentes de Pauli. Además, demostramos dos implementaciones de
los canales PCE: en primer lugar, como el límite asintótico de procesos de
decoherencia de qubits markovianos, y en segundo lugar, utilizando modelos
de colisiones.

Después de esto, presentamos los canales de Weyl de muchas partículas, que
engloban tanto a los canales de Pauli como a los canales PCE. Determinamos
los puntos extremos de este conjunto y comprendimos que la estructura al-
gebraica generalizada de los canales PCE está embebida dentro de todos los
canales de Weyl. En otras palabras, no se limita solo a los canales de “com-
ponent erasing”. Finalmente, a través de esta investigación, contribuimos a
una mejor comprensión de los canales cuánticos en el contexto de sistemas de
muchas partículas.

Supervisor: Dr. Carlos Francisco Pineda Zorrilla
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Pauli channels of multiparticle systems
José Alfredo de León Garrido

Abstract

Quantum channels are a formalism to describe the unitary and non-unitary
evolution of quantum systems. More specifically, the so-called Pauli channels
have been studied in the context of quantum noise and the dynamics of qubit
systems. A Pauli channel is a linear map acting on the space in which density
matrices of a qubit system live, and is diagonal in the basis of tensor products
of Pauli matrices.

In this work, we explore two classes of multi-particle quantum channels. The
first one is an intriguing class of Pauli channels, which we refer to as “Pauli
Component Erasing" (PCE) channels. These channels either erase or preserve
the Pauli components of the density matrix. The second class of channels is
one that generalizes Pauli channels for multipartite and arbitrary-dimensional
systems, for which we employ the basis of Weyl matrices. These matrices
represent a unitary generalization of Pauli matrices for arbitrary dimensions.

We conducted a comprehensive characterization of PCE channels and Weyl
channels. Firstly, we established a one-to-one correspondence between finite
vector spaces and PCE channels. From this, we deduced their properties and
identified the subset of PCE channels that can be generated through channel
composition of those preserving half the Pauli components. Furthermore, we
demonstrated two implementations of PCE channels: firstly, as the asymptotic
limit of Markovian qubit decoherence processes, and secondly, using collision
models.

Following this, we introduced many-particle Weyl channels, which encompass
both Pauli and PCE channels. We determined the extreme points of this
set and understood that the generalized vector structure of PCE channels is
embedded within all Weyl channels. In other words, it doesn’t only pertain to
“component erasing" channels. Finally, through this research, we contribute
to a better understanding of quantum channels in the context of many-particle
systems.

Supervisor: Dr. Carlos Francisco Pineda Zorrilla
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Introduction

Quantum channels play a fundamental role in quantum information theory and
quantum computation [1–4]. They represent the mathematical formalism for de-
scribing quantum noise and the evolution of open quantum systems, capturing the
non-unitarity from interaction between the system and its environment. Under-
standing and characterizing quantum channels is relevant for designing quantum
protocols [5–7], analyzing quantum algorithms [1, 8, 9], studying quantum error
correction [10–12], quantum communication [13, 14], quantum entanglement ma-
nipulation [15, 16] and investigating phenomena such as decoherence [17–19]. By
studying the properties and characteristics of quantum channels, we gain insights
into the behavior of quantum systems and develop powerful tools for harnessing
quantum resources [20]. In general, exploring the framework of quantum channels
and their mathematical properties is of paramount importance.

The phenomenon of unintended dissipation of quantum correlations, known as “de-
coherence” [21], plays a pivotal role in quantum physics. To investigate the effects
of decoherence, quantum channels serve as an useful tool. However, character-
izing quantum channels presents a formidable challenge, particularly due to the
rapidly escalating number of parameters required as the Hilbert-space dimension
expands. Additionally, these parameters are constrained in complicated way by
physical constraints, such as the requirement of complete positivity [22].

A detailed exploration of classes of channels possessing specific properties sheds
light on the complex realm of quantum channels. Notably, in the case of qubits,
numerous studies have been dedicated to the “unital” case, that is, the class of
quantum channels leaving the maximally mixed state invariant. This class of chan-
nels, characterized by three parameters, forms the well-known tetrahedron of Pauli
channels [23, 24].

xiii



Moreover, most of the applications in the field of quantum information have been
built upon qubits. Nevertheless, many real-world realizations of quantum systems
have more than two levels that can be used to provide an important technical
advantage. Such advantage is indeed employed to develop several important tasks
like quantum cryptography [25, 26], quantum computation [27–29], violation of
Bell inequalities [30], randomness generation [31], among others. For this reason,
the study of high-dimensional and multiparticle systems is of relevance.

One relevant theoretical study of quantum channels beyond the qubit case has
been provided by Nathason and Ruskai [32]. They examine families of convex
combinations of quantum-classical channels, defined through mutually umbiased
bases, related to unital qubit channels with positive eigenvalues, thereby providing
a generalization of the Bloch sphere. The geometry of these channels have further
been investigated [33]. Furtheremore, several related works have used or studied
quantum channels of systems of qudits [34–37].

In this thesis, we undertake a comprehensive study of two classes of quantum chan-
nels. The first class focuses on qubits and their potential to describe decoherence
processes, while the second class encompasses arbitrary-dimensional systems. This
manuscript begins with a review of the formalism of quantum channels in Chapter
1. Subsequently, in Chapter 2, we introduce the Pauli maps of qubits. Here, we
investigate the conditions for them to be quantum channels, i.e. complete positiv-
ity. In Chapter 3, we shift our attention to the maps that we introduced as Pauli
component erasing (PCE) maps, examining their complete positivity conditions
and establishing a correspondence between PCE channels and finite vector spaces.
This correspondence enables us to identify the smallest subset of PCE channels
that, when composed, generates the complete set. In Chapter 4, we delve into a
demonstration of how the generators of PCE channels represent the fixed point of
a pure dissipative Markovian process. Finally, in Chapter 5, we broaden our scope
to a generalization of Pauli maps, considering systems of arbitrary dimension, and
introduce the Weyl maps. Here, we investigate complete positivity and reveal the
presence of a generalized algebraic structure within all Weyl channels, dispelling
the notion that this structure is not exclusive to the “component erasing” type of
channels.

xiv



Chapter 1

Quantum channels

In this chapter, we introduce the theoretical framework of quantum channels. While

the unitary evolution of an ideal isolated quantum system can be described by

the Schrödinger equation [38], the dynamics of an open quantum system require

a different approximation. In the literature, two main approaches are proposed:

one for continuous systems and another for discrete ones. Continuous systems are

typically addressed with the Lindblad equation [39]. Conversely, discrete systems,

which we focus on, are approached with the theory of quantum channels [3, 4]. Both

descriptions capture the non-unitary effects attributed to the interaction with an

environment, which is not necessarily known.

The chapter is organized as follows. We begin introducing the density matrix

as the mathematical tool to describe quantum states in Section 1.1. Next, we

define a quantum channel in Section 1.2. We will discuss the duality between

quantum states and quantum channels given by a correspondence between them

in Section 1.3. In Section 1.4 we present the Kraus representation of a quantum

channel. Finally, we illustrate the concepts and mathematical tools introduced in

this chapter by deriving the characterization of a general quantum channel of a

single-qubit in Section 1.5.
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1.1. Density matrix formalism: quantum states

1.1. Density matrix formalism: quantum states

The density matrix formalism uses operators to represent quantum states. It is

especially useful when describing the state of an open quantum system [40, 41],

which refers to a system that interacts with its environment. Examples of open

quantum systems include subsystems of a spin chain [42] and a two-level atom

embedded in an electromagnetic field [43]. In these cases, the quantum states are

typically represented as statistical mixtures of pure states, and the density matrix

allows us to capture this statistical nature and study the system’s properties and

evolution.

We will now introduce the mathematical definition of density matrices and justify

it with a physical situation. A density matrix ρ ∈ B(HS) is a positive semi-definite

operator of trace one that acts on the Hilbert space HS of the system [3, 4]. From

a physical perspective, let us consider a situation where the quantum state of a

system is prepared in the laboratory. However the exact state after preparation

is not fully known. Instead, what we have is a statistical ensemble of possible

preparations, where the state after each preparation is |ψk⟩ with probability pk. In

this case, the density matrix for the state of system after the preparation is given

by the expression:

ρ =
∑

k

pk |ψk⟩⟨ψk| . (1.1)

This formulation of quantum states allows us to account for the statistical mixture

of different pure states.

All postulates of quantum mechanics can be reformulated straightforwardly, with

the exception being the measurement postulate. Within the density matrix formal-

ism, quantum measurements are characterized by a set of measurement operators

denoted as {Mm} [3]. Operators Mm act on the Hilbert space of the system being

measured and satisfy the completeness equation
∑

mM †
mMm = 1, with 1 the iden-

tity operator. Given the system is in the state ρ, the probability p(m) of measuring

2



1.1. Density matrix formalism: quantum states

M and obtain m as a result is

p(m) = Tr
(
M †

mMρ
)
. (1.2)

After the measurement of Mm the state of the system is

ρ′ = MmρM
†
m

Tr
(
M †

mMρ
) . (1.3)

As in the state vector formalism, not all density matrices of composite systems

are separable. This is easy to assimilate for the states of a bipartite system with

Hilbert space HA ⊗ HB. Not all states of the total system can be expressed as

a convex superposition of tensor products
∑

k pkρ
k
A ⊗ ρk

B. In such instances, the

density matrix ρ represents an entangled state [4].

Within the vector space of Hermitian matrices, which contains the set of all density

matrices, it is possible to select a basis to expand ρ with. The vector space of

Hermitian matrices is a real subspace of B(H) with dimension N2, where B(H)

is equipped with the inner product ⟨A,B⟩ = TrA†B. Consequently, any general

Hermitian matrix can be expressed as [4]

A = α01 +
N2−1∑
i=1

αiσi. (1.4)

Here, {σi} are any basis for the N2 −1 dimensional subspace of Hermitian matrices

with zero trace, denoted as MN . These matrices serve as generators for the group

SU(N) and satisfy the following relations:

σiσj = 2
N
δij + dijkσk + ifijkσk, (1.5)

where dijk (fijk) is totally symmetric (anti-symmetric).

An orthogonal basis of unitary matrices can be employed to expand a density

matrix ρ. This basis comprises a set {Vs} of d2 matrices, with V0 = 1, that satisfy

3



1.2. Completely positive and trace-preserving maps: quantum dynamics

the condition TrViVk = dδk,d for all j and k. As a result, any density matrix ρ can

be expressed as [32]

ρ = 1
d

1 +
d2∑

s=1
αsVs

, (1.6)

where αs = TrV †
s ρ. This specific basis is important because, for d > 2, this

representation of ρ extends the Bloch representation.

The density matrix formalism also describes reduced states. Consider a composite

system S plus its environment E, with Hilbert space HS ⊗ HE . When measuring

an observable AS , which acts only on HS , the expectation value can be computed

using the reduced density matrix ρS as [3]

Tr [ρ(AS ⊗ 1)] = Tr (ρSAS), (1.7)

where ρS = TrE ρ, with TrE indicating the partial trace over the environmental

degrees of freedom. Similarly, considering the environment as the system, we can

derive the reduced density matrix of the environment, denoted as ρE , by performing

the partial trace over the system degrees of freedom: ρE = TrS ρ.

1.2. Completely positive and trace-preserving maps:

quantum dynamics

The evolution of an open quantum system is typically non unitary. However, by

expanding the system to include an appropriate environment, the reduced evolution

of the system can be described as originating from a unitary evolution of the larger

system. Consider the Hilbert space of the system to be denoted as HS and that of

the environment HE , so the total Hilbert space of the composed system is HS ⊗HE .

We assume the initial state of the total system is a product state ρ⊗|ν⟩⟨ν|, and that

it evolves with an unitary operator U . Therefore, the final state ρ′ of the system

alone is obtained by tracing out the environment from the evolved joint state. This

4



1.2. Completely positive and trace-preserving maps: quantum dynamics

is expressed as [3, 4]

ρ′ = TrE

(
U(ρ⊗ |ν⟩⟨ν|)U †

)
=
∑

i

⟨µi|U |ν⟩ ρ ⟨ν|U †|µi⟩ , (1.8)

with {|µi⟩} an orthonormal basis of HE , and we shall remark that U acts on

HS ⊗ HE while |µi⟩ , |ν⟩ ∈ HE , so ⟨µi|U |ν⟩ is an operator acting on HS . It is also

important to note that ⟨µi|U |ν⟩ is, in general, not unitary. Equation (1.8) is in

essence what is known as the operator-sum or Kraus representation of a completely

positive map, which we will discuss in more detail in section 1.4.

The requirement for a quantum map E to be completely positive, and thus represent

a physical quantum evolution, stems from the fact that it is not enough for E to

solely preserve the positivity of the density matrix ρ. When describing the evolution

of a quantum state ρ, we must consider ρ to be a reduced density matrix derived

from an unknown state of a larger system. Then, complete positivity guarantees

that any extension of the map E ⊗ 1K , where 1K is the identity acting on a system

of arbitrary dimension K, preserves the positivity of all states, including those that

are entangled.

The precise mathematical formulation of complete positivity is the following. A

map E is completely positive if and only if, upon extending the Hilbert space HS

to HS ⊗ HE , where HE is of any finite dimension K, the map E ⊗ 1K is positive

semidefinite. Observe that the states giving meaning to this condition are those

that are entangled, as otherwise, all quantum maps would be trivially completely

positive.

From an operational point of view, evaluating the complete positivity of a map E

is impractical, as it would require verifying the positivity of E ⊗ 1K for the infinite

possibilities of the dimension K. In the next section, we will discuss a connection

between quantum maps and states that will enable a simple verification of complete

positivity.
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1.3. Duality between density matrices and quantum

channels

While quantum states and dynamics may initially appear distinct, there actually

exists a duality between quantum channels and quantum states. This duality proves

to be very important, as it simplifies evaluating the complete positivity of a map

E . It allows to only asses the positivity of the resulting state computed from the

application of the extended map E ⊗ 1 to the maximally entangled state between

the system that E acts upon and another system of the same dimension.

The duality between channels Φ : B(HS) 7→ B(HS) and states ρ : HS ⊗ HS 7→

HS ⊗HS is known as the Choi-Jamiołkowski isomorphism [44, 45]. Although it is

known that this duality does not strictly meet the conditions of an isomorphism,

e.g. [46], it is still referred to as the Choi-Jamiołkowski isomorphism in the liter-

ature. Considering a quantum channel E that acts on states ρ : HS 7→ HS , the

so-called isomorphism is expressed as

E ↔ DE = [E ⊗ 1]
(
ϱ+
)

ϱ+ = 1
d

d−1∑
k,l=0

|k, k⟩⟨l, l| , (1.9)

where d = dim HS and ϱ+ ∈ B(HS ⊗ HS) is the density matrix of the maximally

entangled state between the system E acts upon and another system of the same

dimension. To avoid cluttering the notation we have dropped the Kronecker prod-

uct symbol in |k⟩ ⊗ |k⟩. The matrix DE is known as the Choi-Jamiołkowski matrix

of the quantum channel E . As all quantum states, it is a trace one and positive op-

erator. The correspondence between a quantum channel and a Choi-Jamiołkowski

matrix is one-to-one.

The Choi-Jamiołkowski isomorphism serves a tool for evaluating complete positiv-

ity. It has been proved that a map Φ : B(HS) 7→ B(HS) is trace-preserving and

completely positive if and only if the corresponding Choi-Jamiołkowski matrix DΦ

is positive semidefinite [4].
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1.4. Kraus representation

1.4. Kraus representation

In Section 1.2, we introduced completely positive maps from an environmental

perspective and arrived at its representation in eq. (1.8). In general, any completely

positive map Φ can be expressed in Kraus form:

Φ(ρ) =
∑

i

KiρK
†
i , (1.10)

where Ki are the eigenvectors of the Choi-Jamiołkowski matrix (E ⊗ 1)(ϱ+). Fur-

thermore, if the Kraus operators Ki satisfy the completeness condition
∑

iK
†
iKi =

1, then Φ is trace-preserving and called a quantum channel. Kraus [47] and Sur-

dashan [48] showed independently that (1.10) follows from the dilation Stinespring

theorem [49].

There is no unique set of Kraus operators for a completely positive map Φ. This

fact follows from the theorem of unitary freedom in Kraus representation introduced

by Nielsen and Chuang [3]. According to this theorem, if we have two distinct sets

of Kraus operators {E1, . . . , Em} and {F1, . . . , Fm}, they represent the same map

Φ if and only if there is a unitary matrix u such that Ei =
∑

j uijFj .

To illustrate the consequences of unitary freedom in Kraus representation, let us

consider an example. We have a single-qubit quantum channel E with Kraus op-

erators {1/
√

2, σz/
√

2}, and “another” quantum channel F with Kraus operators

{|0⟩⟨0| , |1⟩⟨1|}. From a physical point of view, E represents a quantum evolution

where, with equal probability, either no operation is performed or the unitary oper-

ation σz is applied to the state ρ. On the other hand, F corresponds to a projective

measurement of ρ in the basis {|0⟩ , |1⟩}. Both sets of Kraus operators are related

via the Hadamard matrix.

A canonical set of Kraus operators for a quantum channel can be defined from the

eigenvectors of its Choi-Jamiołkowski matrix. This set is called canonical in the

sense that Ki are linearly independent [44]. By employing the spectral decomposi-
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1.5. Single-qubit quantum channels

tion of the Choi-Jamiołkowski matrix DΦ of a quantum chanenl Φ, it is expressed

as

DΦ =
∑

i

λi |k(i)⟩⟨k(i)| , |k(i)⟩ =
∑

α

cα(i) |α⟩ . (1.11)

By reshaping the vectors
√
λi |k(i)⟩, we obtain a canonical set of Kraus operators,

denoted by K(i), for the quantum channel Φ, where

Kβγ(i) = cα(i), α = βN + γ − 1 β, γ = 1 . . . , N. (1.12)

1.5. Single-qubit quantum channels

In this last section we characterize the unital and some non-unital single-qubit

quantum channels. While a comprehensive treatment has been previously pre-

sented by Ruskai et al. [50], we will provide our own distinct approach. By devel-

oping our unique treatment, we aim to offer a perhaps easier characterization, as

well as an illustration of how to use the tools introduced in preceding sections.

We begin by expressing the density matrix of a single-qubit system in the basis

composed by the identity plus Pauli matrices, which allows us to expand ρ as in

eq. (1.6):

ρ = 1
2

1∑
m,n=0

rm,nσm,n r0,0 = 1, (1.13)

where the two-indices notation is used to compactly represent all Pauli matrices as

σm,n =
1∑

k=0
(−1)mk |k⟩⟨k + n| , (1.14)

including the identity operator σ0,0 = 1. In this notation the Pauli basis is ordered

as {1, σx, σz, iσy}. Note that r0,0 = 1 for ρ to have unit trace. The projections

rm,n = Trσm,nρ, with (m,n) ̸= (0, 0), are the components of the so-called Bloch

vector, which represents uniquely the state of a qubit. The Bloch vector is a vector

lying in the unit ball, where |(r0,1, r1,0, r1,1)| = 1 corresponds to a pure state, and

8



1.5. Single-qubit quantum channels

Figure 1.1: All quantum states ρ of a single-qubit are represented in the unit ball.
Pure states lie in the surface (|r⃗ | = 1), and mixed states are those within the
surface (|r⃗ | < 1).

|(r0,1, r1,0, r1,1)| < 1 corresponds to a mixed state, as illustrated in Fig. 1.1.

Every trace-preserving linear map E of a single-qubit system transforms the com-

ponents rm,n of the density matrix ρ, as expressed in eq. (1.13), according to [51]:

rm,n 7→ τm,nrm,n + κm,n τ0,0 + κ0,0 = 1. (1.15)

Furthermore, since E preserves the Hermiticity of ρ, both τm,n and κm,n must be

real parameters.

An important subset of trace-preserving maps for single-qubit systems is the class

of unital maps [3, 51]. These unital maps, denoted Eτ⃗ , are those defined in eq. (1.15)

with the specific choice of parameters (κ0,1, κ1,0, κ1,1) = (0, 0, 0). To establish the

conditions for Eτ⃗ to be completely positive, we examine the positivity of the Choi-

Jamiołkowski matrix, which can be computed using eq. (1.9) as follows:

DEτ⃗
=
∑
m,n

τm,nσm,n ⊗ σm,n τ0,0 = 1, (1.16)

Recall that a map E is completely positive if and only if its Choi-Jamiołkowski

9



1.5. Single-qubit quantum channels

1

σx

σy

σz

Figure 1.2: Tetrahedron of all unital single-qubit quantum channels.

matrix D is positive semidefinite. We proceed to diagonalize DΦτ⃗
using the steps

detailed in Sec. 2.3 and obtain its eigenvalues λr,s. The conditions for Eτ⃗ to be

completely positive can then be expressed as:

λr,s =
∑
m,n

(−1)−ms+nrτm,n ≥ 0. (1.17)

These four inequalities define the well-known tetrahedron where all unital single-

qubit quantum channels lie within. We illustrate it in Fig. 1.2. These conditions

have been known since the work of Fujiwara and Algoet in 1999 [52]. All unital

single-qubit quantum channel are then a convex combination of the four extreme

points.

For the broader class of non-unital single-qubit maps, we will focus on two signif-

icant cases. The first case consider maps, denoted as E and defined in eq. (1.15)

with the specific parameters (κ0,0, κ1,0, κ1,1) = (0, 0, κz). This case was studied by

Fujiwara and Algoet [53]. They established the necessary and sufficient condition

10



1.5. Single-qubit quantum channels

for E to be completely positive:

τ2
0,1 + κ2

z ≤ (1 − |τ1,1|)2. (1.18)

The second case of interest pertains to maps Eκ⃗, with all τm,n = 1 and arbitrary

κm,n values. Using eq. (1.9) we compute the Choi-Jamiołkowski matrix to be

DEκ⃗
=
∑
m,n

κm,nσm,n ⊗ 1 κ0,0 = 1. (1.19)

Diagonalizing Eκ⃗ and identifying that the eigenvalues µ± are doubly degenerated,

we obtain the conditions for complete positivity:

µ± = 1 ± |(κ0,0, κ1,0, κ1,1)| ≥ 0. (1.20)

Not all single-qubit quantum channels are the composition Eκ⃗ ◦ Eτ⃗ of a quantum

channel that contracts the Bloch sphere and another that displaces the origin of

coordinates. Even though eq. (1.15) may suggest the contrary, a single-qubit quan-

tum channel can be composed by a not completely positive map deforming the

Bloch sphere and a quantum channel displacing the origin of coordinates. An

specific example of this is the amplitude damping channel, see Tab 1.1.

Sec. 2.3 In Table 1.1 we show a summary of the different types of single-qubit

quantum channels. The first channel is the trivial one, which does nothing to

the state ρ of a single-qubit. The second represents a unitary evolution. Similar

channels describing rotations around any other axis exist. The third channel takes

a pure state to a mixed state. The phase-flip describes a decoherence process,

in which suppresses the off-diagonal elements of ρ in eigenbasis of σz. Finally,

the amplitude-damping describes a relevant physical process because it can take a

mixed state to a pure state.

In this chapter, we have introduced the framework of quantum channels. We

began by presenting the density matrix as the primary tool for describing the
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1.5. Single-qubit quantum channels

Channel τ⃗ κ⃗ Bloch representation

1 Identity (1, 1, 1) (0, 0, 0)

2
Rotation
around
z-axis

(τx, τy, 1) (0, 0, 0)

3 Depolarizing (τx, τx, τx) (0, 0, 0)

4 Phase-flip (τx, τx, 1) (0, 0, 0)

5 Amplitude-
damping

(
τx, τx, τ

2
x

) (
0, 0, 1 − τ2

x

)

Table 1.1: Summary of single-qubit quantum channels.
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1.5. Single-qubit quantum channels

quantum state of an open quantum system. We then moved to quantum channels,

which capture the evolution of the density matrix. These mathematical objects

are completely positive and trace-preserving maps. Subsequently, we discussed the

Choi-Jamiołkowski isomorphism, which provides a practical method for assessing

the complete positivity of a linear map. To illustrate these framework in practical

terms, we provided a derivation of the quantum channels for a single qubit. In

the next chapter, we turn to study a specific but relevant class of N -qubit system

maps.
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Chapter 2

Pauli quantum channels

Our approach to present Pauli quantum channels begins with introducing Pauli

diagonal maps. We recall that, in our terminology, maps are not necessarily

completely positive. Subsequently, we perform the diagonalization of the Choi-

Jamiołkowski matrix of a Pauli diagonal map. We obtain the linear relationship

between the parameters characterizing a Pauli diagonal quantum channel, which

describes how the channel operates on the Pauli components of the density matrix,

and the eigenvalues of its Choi-Jamiołkowski matrix.

2.1. Pauli diagonal maps

To introduce the definition of a Pauli diagonal map we shall begin by express-

ing the density matrix of a multi-qubit system in the basis of tensor products of

Pauli matrices. We will denote a N -qubit Pauli operator, also referred to as Pauli

string [54], as

σm⃗,n⃗ = σm1,n1 ⊗ σm2,n2 ⊗ . . .⊗ σmN ,nN , mj , nj = 0, 1. (2.1)

This notation allows us to associate each N -qubit Pauli operator with a pair of

“vectors” (m⃗, n⃗), where every pair of numbers (mj , nj) corresponds to a local Pauli

operator. From the properties of Pauli matrices it is verified that the N -qubit
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2.2. Choi-Jamiołkowski matrix

Pauli operators satisfy both the orthogonality condition Trσm⃗,n⃗σr⃗,s⃗ = 2Nδm⃗,r⃗δn⃗,s⃗

and the completeness condition 1/2N ∑σm⃗,n⃗σ
†
m⃗,n⃗ = 12N . Hence, this set, including

the identity, forms a basis of the space B
(
C2⊗N

)
. Finally, the density matrix of a

N -qubit system is expressed as

ρ = 1
2N

∑
m⃗,n⃗

rm⃗,n⃗σm⃗,n⃗, (2.2)

where the projections rm⃗,n⃗ = Trσm⃗,n⃗ρ will be referred to as Pauli components.

We define a Pauli diagonal map, or simply a Pauli map, as a linear map that

transforms the Pauli components of the density matrix of a N -qubit system, as

given in eq. (2.2), according to:

rm⃗,n⃗ 7→ τm⃗,n⃗rm⃗,n⃗ τ0⃗,⃗0 = 1, τm⃗,n⃗ ∈ R. (2.3)

By imposing these conditions on the parameters τm⃗,n⃗ of a Pauli map we ensure the

map is trace-preserving and positive. That is, by definition a Pauli map preserves

the normalization condition and transforms positive matrices to positive matrices.

Consequently, we need only investigate the conditions that τm⃗,n⃗ must satisfy for a

Pauli map to be complete positivity, thus becoming a quantum channel. This is

what we do in the next section.

2.2. Choi-Jamiołkowski matrix

In this section, we present two results. Firstly, we derive the generic form of

the Choi-Jamiołkowski matrix for a broader class of diagonal maps than just Pauli

diagonal maps. Secondly, we perform the diagonalization of the Choi-Jamiołkowski

matrix specifically for Pauli diagonal maps to determine the necessary conditions

that τm⃗,n⃗ must satisfy for the map to be completely positive.
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2.2.1. Generic form of the Choi-Jamiołkowski matrix of any

diagonal map

We demonstrate that the Choi-Jamiołkowski matrix of any map that is diagonal

in an orthogonal basis Um⃗,n⃗ of B(H1 ⊗ . . .⊗ HN ), with dim (Hj) arbitrary, has the

following generic form:

D =
∑

τm⃗,n⃗ Um⃗,n⃗ ⊗ U∗
m⃗,n⃗. (2.4)

Recall that the Choi-Jamiołkowski matrix of a map E is computed by applying the

extended map E ⊗ 1 to the maximally entangled state between the system that

E acts upon and another system of the same dimension. To prove eq. (2.4) we

express the maximally entangled state in the orthogonal basis Um⃗,n⃗ and use the

definition of a diagonal map:

E
(
Um⃗,n⃗

)
= τm⃗,n⃗Um⃗,n⃗. (2.5)

We express
∣∣∣⃗k〉〈⃗l ∣∣∣, which is the standard matrix that have only one entry 1 in

position (k⃗, l⃗) and 0 elsewhere, in an orthogonal basis Um⃗,n⃗:

∣∣∣⃗k〉〈⃗l ∣∣∣ =
∑
m⃗,n⃗

Tr
(
U †

m⃗,n⃗

∣∣∣⃗k〉〈⃗l ∣∣∣)Um⃗,n⃗. (2.6)

Following this, we perform a change of basis for the maximally entangled state

ϱmax ent, leading to:

ϱmax ent = 1
d

∑
k⃗,⃗l,m⃗,n⃗,m⃗′,n⃗′

Tr
(
U †

m⃗,n⃗

∣∣∣⃗k〉〈⃗l ∣∣∣)Tr
(
Um⃗′,n⃗′

∣∣∣⃗l 〉〈k⃗∣∣∣)Um⃗,n⃗ ⊗ U∗
m⃗′,n⃗′ . (2.7)

Here, we have used (2.6) and its complex conjugate for the first and second factors

of the tensor product in eq. (1.9), respectively. By applying the definition of the
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trace and the orthogonality condition, we arrive at:

ϱmax ent = 1
d

∑
m⃗,n⃗

Um⃗,n⃗ ⊗ U∗
m⃗,n⃗. (2.8)

This immediately leads us to the result that [E ⊗ 1]
(
ϱmax ent) corresponds to (2.4).

We emphasize that this generic form of the Choi-Jamiołkowski matrix holds for

any number of particles, even regardless of their dimension. The sole requirement

is that {Um⃗,n⃗} is an orthogonal basis.

Equation (2.4) provides a representation of any map diagonal in an orthogonal

basis of operators, allowing for a direct evaluation of complete positivity, as a map

is completely positive if and only if its Choi-Jamiołkowski is positive.

2.3. Pauli quantum channels

We now focus on deriving the conditions under which a Pauli map is a quantum

channel. To do so, we investigate the conditions of trace preservation and complete

positivity of a Pauli map in terms of its Choi-Jamiołkowski matrix.

We begin by writing the Choi-Jamiołkowski matrix of a Pauli diagonal map of N

qubits. Straightforwardly, by using eq. (2.4), we obtain:

D = 1
2N

∑
m⃗,n⃗

τm⃗,n⃗ σm⃗,n⃗ ⊗ σm,n⃗. (2.9)

A Pauli map is trace-preserving by definition, as τ0⃗,⃗0 = 1. This fixes the trace of

the Choi-Jamiołkowski matrix as:

Tr D = 1
2N

∑
m⃗,n⃗

τm⃗,n⃗22Nδm⃗,⃗0δn⃗,⃗0

= 2Nτ0⃗,⃗0 = 2N . (2.10)

Recall that a Pauli map is completely positive, if and only if its corresponding Choi-
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Jamiołkowski matrix D is positive. Thus, we diagonalize the matrix D, carrying

a series of steps in the following. We begin by observing that all operators in the

sum of right-hand side of eq. (2.9) commute:

[
σm⃗,n⃗ ⊗ σ∗

m⃗,n⃗, σm⃗′,n⃗′ ⊗ σ∗
m′,n⃗′

]
= 0 ∀ m⃗, n⃗, m⃗′, n⃗′, (2.11)

which follows from the following relation:

(
σm⃗,n⃗ ⊗ σ∗

m⃗,n⃗

)(
σm⃗′,n⃗′ ⊗ σ∗

m⃗′,n⃗′

)
= σm⃗,n⃗σm⃗′,n⃗′ ⊗ σ−m⃗,n⃗σ−m⃗′,n⃗′ (2.12)

= σm⃗+m⃗,n⃗+n⃗ ⊗ σ−m⃗−m⃗′,n⃗+n⃗′ . (2.13)

We have used σm⃗,n⃗σm⃗′,n⃗′ = (−1)m⃗′·n⃗σm⃗+m⃗,n⃗+n⃗, which can be proved using the

compact expression for all Pauli matrices.

The commutation relations in eq. (2.11) yield two important implications we now

discuss. On one hand, they allow us to diagonalize D as

P−1DP = 1/2N
∑
m⃗,n⃗

τm⃗,n⃗ P
−1σm⃗,n⃗ ⊗ σ∗

m,n⃗ P, (2.14)

where the columns of P are the common eigenvectors shared by all σm⃗,n⃗ ⊗ σ∗
m,n⃗.

On the other hand, the second implication follows directly from eq. (2.14). There is

a linear relationship between the parameters τm⃗,n⃗ of a Pauli diagonal map and the

eigenvalues λr⃗,s⃗ of its Choi-Jamiołkowski matrix. This allows us to easily study

Pauli diagonal maps either in their superoperator or Choi-Jamiołkowski matrix

representation.

The next step in our diagonalization of D takes advantage of the fact that operators

σm⃗,n⃗ ⊗ σ∗
m⃗,n⃗ and |σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗| commute for all m⃗, n⃗, r⃗, s⃗, which follows from:

σm⃗,n⃗ ⊗ σ∗
m⃗,n⃗ |σr⃗,s⃗⟩⟩ = (−1)m⃗·s⃗+n⃗·r⃗ |σr⃗,s⃗⟩⟩ , (2.15)

where |σr⃗,s⃗⟩⟩ are the vectorized N -qubit Pauli operators in eq. (2.1) and can be
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1

-1

N = 1 N = 2 N = 3(a) (b) (c)

Figure 2.1: Plots of matrix (F2 ⊗ F2)⊗N for N =1, 2 and 3 qubits. This matrix rep-
resents the linear relationship between the τm⃗,n⃗ of a Pauli map and the eigenvalues
λr⃗,s⃗ of its Choi-Jamiołkowski matrix, see eq. (2.18).

expressed as:

|σm⃗,n⃗⟩⟩ =
∑

k⃗

(−1)k⃗·m⃗
∣∣∣⃗k, k⃗ + n⃗

〉
, (2.16)

where the sum k⃗ + n⃗ is performed component-wise.

Finally, from eq. (2.15) the eigenvalues of D are computed straightforwardly to be:

λr⃗,s⃗ = 1
2N

∑
m⃗,n⃗

(−1)m⃗·s⃗+n⃗·r⃗τm⃗,n⃗. (2.17)

The eigenvalues of the Choi-Jamiołkowski may be expressed in terms of the Fourier

transform matrix. If we recognize (−1)m⃗·s⃗+n⃗·r⃗ = (
⊗

α F2 ⊗ F2)2m⃗+n⃗,2s⃗+r⃗, where F2

is the 2 × 2 discrete Fourier transform matrix, we then can re-write eq. (2.17) in

an elegant and compact equation as:

λ⃗ = (F2 ⊗ F2)⊗N τ⃗ . (2.18)

We illustrate in Fig. 2.1 some plots of this linear transformation between λr⃗,s⃗

and τm⃗,n⃗ for Pauli maps of systems with N = 1, 2 and 3 qubits. Note that all

rows and columns are either symmetric or anti-symmetric when reflected. This

will become important when we introduce Pauli component erasing channels in the

next chapter.
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We have diagonalized the Choi-Jamiołkowski matrix of a Pauli diagonal map.

Therefore, from the Choi-Jamiołkowski isomorphism we can state that a Pauli

diagonal map is a quantum channel if and only if

λr⃗,s⃗ = 1
2N

∑
m⃗,n⃗

(−1)m⃗·s⃗+n⃗·r⃗τm⃗,n⃗ ≥ 0 ∀ r⃗, s⃗; (2.19)

∑
λr⃗,s⃗

λr⃗,s⃗ = dN . (2.20)

From the diagonalization of the Choi-Jamiołkowski we can derive the canonical

Kraus representation of a Pauli diagonal quantum channel. From eq. (2.15) follows

the vectorized N -qubit Pauli operators serve as the eigenvectors of D. Thus, the

canonical Kraus representation of a Pauli diagonal quantum channel is given by:

E(ρ) =
∑
r⃗,s⃗

pr⃗,s⃗ σr⃗,s⃗ρσr⃗,s⃗, (2.21)

where pr⃗,s⃗ =
√
λr⃗,s⃗. Vector p⃗ contains the probabilities that matrices σr⃗,s⃗ act on

the density matrix [55]. Thus, provided p⃗, eq. (2.18) tells us how a Pauli diagonal

channel acts over the Pauli components of the density matrix.
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Chapter 3

Pauli component erasing quantum

channels

We wish now to study a specific class of Pauli channels of N qubits, which we call

Pauli component erasing. For a single qubit these channels are those projecting the

Bloch sphere to any of the Cartesian axes, see Figure 3.1. These channels describe

the limiting points of the decoherence processes that erase the non-diagonal terms

of the density matrix, also called coherences, in the eigenbases of each of the Pauli

matrices. Nevertheless, this matter will be left for the next chapter, as here we only

investigate the mathematical structure of PCE channels and some of its properties.

7→

Figure 3.1: Single-qubit PCE channel τ⃗ = (1, 0, 0, 1) projecting the Bloch sphere
onto the z axis. This channel may be seen as the completely phase-flipping channel.
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3.1. PCE maps

3.1. PCE maps

We define a Pauli component erasing (PCE) map as a Pauli map of N qubits, see

eq. (2.3), which acts over the Pauli components as follows:

rm⃗,n⃗ 7→ τm⃗,n⃗rm⃗,n⃗ τ0⃗,⃗0 = 1, τm⃗,n⃗ = 0, 1. (3.1)

That is, a PCE map either preserves or erases the Pauli components of the density

matrix. Analogously, a PCE map projects the density matrix onto a subspace

spanned by a subset of all possible N -qubit Pauli operators.

We shall be interested in investigating how to constrain the components of τ⃗ for a

PCE map to be completely positive. Without these conditions, a PCE map τ⃗ could

be a mathematical object without physical meaning. We delve into the conditions

of complete positivity in the subsequent section, but we provide an illustrative

example before to understand which kind of PCE maps are not associated with a

quantum evolution of a single qubit.

All PCE maps of a single qubit projecting the Bloch sphere to a disk are not

completely positive. Let us consider the PCE map that transforms the Bloch

sphere into a disk in the x-y plane. That PCE map is represented by:

τ⃗ = (1, 1, 1, 0). (3.2)

By computing the eigenvalues of the corresponding Choi-Jamiołkowski matrix, us-

ing eq. (2.18), we obtain:

λ⃗ =
(3

2 ,
1
2 ,

1
2 ,−

1
2

)
. (3.3)

Therefore, the negative eigenvalue indicates that the PCE map (3.2) is not com-

pletely positive, as the extended PCE map acting on two qubits, when they are

maximally entangled, transforms the two-qubit density matrix to a matrix that is

not positive semi-definite. Rotations of the Bloch sphere do not alter the eigenval-
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3.1. PCE maps

ues τ⃗ of a PCE map. Consequently, the Choi-Jamiołkowski matrices of the other

two PCE maps projecting the Bloch sphere onto a disk in either the x-z or y-z

planes, possess identical eigenvalues as those in eq. (3.3). These eigenvalues, how-

ever, correspond to different eigenvectors. In consequence, despite the fact that

PCE maps similar to that defined in (3.2) are indeed positive, as they transform

single-qubit density matrices to single-qubit density matrices, they do not represent

a physical quantum evolution because they are not completely positive.

When studying PCE maps of more than a single qubit, we have no such geometrical

representation as the Bloch sphere to keep visualizing the maps. It is important

to be able to have such a illustrative representation, as it provides intuition about

the mathematical structure. Thus, to visualize PCE maps we have developed a

pictorial tool. This tool represents the components of the PCE map τ⃗ in a N -

dimensional grid. Each square at position (m⃗, n⃗) is colored either black (τm⃗,n⃗ = 1)

or white (τm⃗,n⃗ = 0) depending on the corresponding τm⃗,n⃗. We show in Fig. 3.2 some

examples of PCE maps of a single qubit: the identity map, the map projecting the

Bloch sphere to a disk in the y-z plane, the map projecting the Bloch sphere to the

z axis, and the completely depolarizing map. Similarly, we depict in Fig. 3.3 three

two-qubit PCE maps: the identity, a map projecting the density matrix to the

subspace where the maximally entangled state lives, and another map preserving

the local components ⟨σx ⊗ 1⟩ and ⟨1 ⊗ σy⟩ of both qubits, and the two correlations

⟨σx ⊗ σy⟩ and ⟨σy ⊗ σx⟩.

Though our tool to visualize PCE maps is helpful, it does have its limitations.

Visualizing 3D grids becomes cumbersome, especially those representing PCE maps

with colored cubes in the center. Moreover, when dealing with systems of more

than three qubits the complexity of visualization escalates further. Despite these

limitations, the representation of two-qubit PCE maps will be enough to understand

the structure of PCE maps in the coming section.

We would like to highlight two points regarding our representation of PCE maps.

On one hand, this tool can be employed to represent the density matrix of N qubits
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3.2. PCE quantum channels as vector spaces

1

0

(a) (b) (c) (d)

Figure 3.2: Some PCE maps of a single-qubit system. (a) Identity map: τ⃗ =
(1, 1, 1, 1), (b) PCE map that projects the Bloch sphere to a disk in the y-z plane:
τ⃗ = (1, 0, 1, 1), (c) totally phase-flip channel: see Table 1.1, τ⃗ = (1, 0, 0, 1), and
(d) completely depolarizing channel: τ⃗ = (1, 0, 0, 0). Figure taken and modified
from [56].

as well, by using a gradient to depict the values −1 ≤ rm⃗,n⃗ ≤ 1 instead of the binary

coloring scheme. On the other hand, for N ≥ 3, the complexity of visualizing the

grids can be mitigated by representing PCE maps in a two-dimensional grid format,

where the indices (m⃗, n⃗) are viewed as coming from a tensor product of N 2 × 2

matrices, as we show in Appendix 5.4.

In the following section, it will become more clear how useful the representation of

PCE maps is to distinguish intuitively between quantum channels and non com-

pletely positive maps.

3.2. PCE quantum channels as vector spaces

We now study the subset of PCE maps that describe the physical quantum evolu-

tion of systems of qubits. We begin by deriving the complete positivity conditions

1

0

(a) (b) (c)

Figure 3.3: Some PCE maps of a two-qubit system. (a) identity map, (b) PCE
map projecting the density matrix to the subspace where the maximally entangled
state lives, and (c) a map preserving the local components x and y of qubits one
and two, respectively, and two correlations between them.

24



3.2. PCE quantum channels as vector spaces

G00,00 G10,00 G01,00 G11,00 G00,10 G10,10 G01,10 G11,10

G00,01 G10,01 G01,01 G11,01 G00,11 G10,11 G01,11 G11,11

Figure 3.4: All two-qubit PCE channels that preserve 8/16 of the Pauli components
of the density matrix. The indices (m1, n1) and (m2, n2) of the labels Gm⃗,n⃗ indicate
how the corresponding PCE channel acts locally on each individual qubit. Figure
taken and modified from [56].

for a PCE map to be a quantum channel. Then, we derive from them an elegant

algebraic structure of finite vector spaces for PCE channels.

The complete set of two-qubit PCE maps that preserve eight Pauli components

is presented in Fig. 3.4. Notably, out of the huge number of PCE maps within

this category—totaling 6,435, to be exact—only sixteen are found to be completely

positive. To calculate the number of PCE maps preserving eight Pauli components,

one can determine the number of different subsets {(m,n)}|(m⃗,n⃗) ̸=(⃗0,⃗0) with seven

elements. For each of the PCE channels depicted in Fig. 3.4, there are more than

four hundred additional PCE maps that do not meet the criteria for complete

positivity. Indeed, this highlights how the complete positivity plays a key role to

determine whether a PCE map represent a physical evolution.

Furthermore, upon closer examination of the grids in Fig. 3.4 we are led to the

conclusion that a mathematical structure must underlay these distinctive patterns.

By looking carefully at all the grids a heuristic rule is clear. If a PCE channel

either preserves or erases the local components ⟨σi ⊗ 1⟩ and ⟨1 ⊗ σj⟩ of the density

matrix of both individual qubits, then the correlation ⟨σi ⊗ σj⟩ is preserved as well.

The heuristic rule and, more importantly, the patterns that underlie all PCE chan-

nels are elucidated through an algebraic structure. Each PCE channel is uniquely

characterized by a subspace within
⊕

N (Z2 ⊕ Z2) over the field {0, 1}.
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3.2. PCE quantum channels as vector spaces

Proof. We show that a PCE map is completely positive if and only if W = {(m⃗, n⃗) :

τm⃗,n⃗ = 1} forms a subspace within the aforementioned finite vector space. We begin

proving that completely positive and trace-preserving conditions of a PCE channel

imply the subspace structure. Consider two components τm⃗,n⃗ and τm⃗′,n⃗′ of the

channel such that τm⃗,n⃗ = τm⃗′,n⃗′ = 1. Inverting eq. (2.17) we obtain:

τm⃗,n⃗ = 1
2N

∑
r⃗,s⃗

(−1)m⃗·s⃗+n⃗·r⃗λr⃗,s⃗ (3.4)

1 = 1
2N

∑
r⃗,s⃗

(−1)m⃗·s⃗+n⃗·r⃗λr⃗,s⃗. (3.5)

A similar equation holds for τm⃗′,n⃗′ . We note that −1 ≤ (−1)m⃗·s⃗+n⃗·r⃗ ≤ 1. Fur-

thermore, we take into account that the complete positivity constraints the eigen-

values of the Choi-Jamiołkowski matrix as λr⃗,s⃗ ≥ 0, and trace preservation condi-

tion dictates that
∑

r⃗,s⃗ λr⃗,s⃗ = 2N . Hence, for eq. (3.5) to hold, we conclude that

(−1)m⃗·s⃗+n⃗·r⃗ = 1 for all (r⃗, s⃗), which means:

m⃗ · s⃗+ n⃗ · r⃗ = 0 ∀ (r⃗, s⃗), (m⃗, n⃗) : τm⃗,n⃗ = 1. (3.6)

An analogous condition is derived for the primed versions (m⃗′, n⃗′). Now, calculating

τm⃗+m⃗′,n⃗+n⃗′ using eq. (3.4), and inserting in that expression equations (3.6) and its

primed version, we obtain:

τm⃗+m⃗′,n⃗+n⃗′ = 1
2N

∑
r⃗,s⃗

(−1)(m⃗+m⃗′)·s⃗+(n⃗+n⃗′)·r⃗λr⃗,s⃗ (3.7a)

= 1
2N

∑
r⃗,s⃗

λr⃗,s⃗ = 1. (3.7b)

We have used trace-preserving condition once again in the last line. We have

showed that, if a PCE map is completely positive, then

τm⃗,n⃗τm⃗′,n⃗′ = τm⃗+m⃗′,n⃗+n⃗′ (3.8)
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1

0

(a) (b) (c)

(d) (e) (f)

Figure 3.5: Examples of two-qubit PCE maps exhibiting non-completely positive
and completely positive behaviors. In (a) to (c) we illustrate three non-completely
positive maps, each accompanied by the corresponding τm⃗,n⃗ that are missing to
complete the vector subspace in red font. In (d) to (f) we present three PCE
channels.

holds for all τm⃗,n⃗ = 1. To prove the converse, we only need to prove that the vector

structure implies the complete positivity condition, as a PCE map is already defined

as trace-preserving. Let us assume that the set of indices W = {(m⃗, n⃗) : τm⃗,n⃗ = 1}

forms a vector subspace of
⊕

N (Z2 ⊕ Z2), given that eq. (3.6) holds. The eigenvalue

λr⃗,s⃗ in eq. (2.17) can then be computed by summing exclusively over those indices

in vector space W , allowing us to obtain:

λr⃗,s⃗ = 1
2N

∑
(m⃗,n⃗)∈W

τm⃗,n⃗ = |W |
2N

, (3.9)

where |W | denotes the cardinality of vector subspace W . From this, it follows the

inequality:
1

2N
≤ λr⃗,s⃗ ≤ 2N , (3.10)

as the lowest and highest cardinality of W are those of the trivial and complete

vector spaces, respectively. This inequalities imply that λr⃗,s⃗ ≥ 0, which are the

complete positivity conditions.

Now, the vector structure provides a tool either to check if a PCE map is a quan-
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3.3. Some properties of PCE channels

tum channel or to construct a PCE channel. For instance, take the PCE map

represented in Fig. 3.3(c). The set indices W are not closed under sum modulo 2,

as (01, 00) + (10, 01) = (11, 01) but τ11,01 = 0. Another six examples are shown

in Fig. 3.5. On the other hand, to construct the PCE channel in Fig. 3.3 or, more

generally, a PCE channel preserving 4 = 22 Pauli components we need only to de-

termine two linearly independent vectors (m⃗, n⃗) and (m⃗′, n⃗′); for instance, (01, 01)

and (10, 10).

3.3. Some properties of PCE channels

From the correspondence between PCE channels and vector subspaces, some prop-

erties are derived. These follow from well-known properties of finite vector spaces,

for which we refer to Ref. [57].

Property 1 (Power of two). The number of Pauli components preserved by a PCE

channel is a power of two.

Proof. Given a vector space of dimension K over the finite field of p elements, with

p a prime number, the number of elements of the vector space is pK . PCE channels

correspond to a vector subspace of dimension K over the field {0, 1}. Thus, a the

corresponding subspace to a PCE channel τ⃗ has 2K elements.

Property 2. The number SN,K of PCE channels of N qubits preserving 2K Pauli

components is:

SN,K =
K−1∏
j=0

22N−j − 1
2K−j − 1 . (3.11)

Proof. The number SN,K is equal to the number of different subspaces W with

dimension K, and can be calculated as the ratio NN,K/MK , which is the number of

subsets with K linearly independent vectors out of a set containing 22N −1 vectors,
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3.3. Some properties of PCE channels

divided by the number of different bases that a given subspace of dimension K can

have.

To evaluate NN,K we proceed in K steps:

1. We choose one of the 22N − 1 non-zero vectors.

2. We choose a second vector out of the complement of the initial 22N − 1 non-

zero vectors and the subset spanned by the first selected vector, which has

22N − 2 elements.
...

j + 1. We choose a j + 1-th vector from the complement of the initial 22N − 1 non-

zero vectors and the subset spanned by the first j vectors, which has 22N −2j

elements.
...

K. We choose a K-th vector from the complement of the initial 22N − 1 non-

zero vectors and the subset spanned by the first K − 1 vectors, which has

22N − 2K−1 elements.

From this, it is clear that NN,K evaluates to:

NN,K =
K−1∏
j=0

(
22N − 2j

)
(3.12)

On the other hand, we use that the number of different bases for a subspace W

of dimension K is equal to the number of different linear transformations from W

to itself [57]. Therefore, we consider that all of these linear transformations are all

K ×K non-singular matrices over the field {0, 1}. These can be constructed as:

1. We choose one of the 2K − 1 non-zero vectors of subspace W with dimension

K.
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2. We choose a second vector out of the complement of the initial 2K − 1 non-

zero vectors of subspace W with dimension K and the subset spanned by the

first selected vector, which has 2K − 2 elements.
...

j + 1. We choose a j+1-th vector from the complement of the initial 2K −1 non-zero

vectors of subspace W with dimension K and the subset spanned by the first

j vectors, which has 2K − 2j elements.
...

K. We choose a K-th vector from the complement of the initial 2K − 1 non-zero

vectors of subspace W with dimension K and the subset spanned by the first

K − 1 vectors, which has 2K − 2K−1 elements.

It is then clear that:

MK =
K−1∏
j=0

(
2K − 2j

)
. (3.13)

From this, we see that the ratio NN,K/MK is equal to eq. (3.11).

Property 3. There are the same number of PCE channels of N qubits preserving

2K and 22N−K Pauli components.

Proof. This can be proved using eq. (3.11) and showing that SN,2N−K = SN,K , as

in the following:

SN,2N−K =
2N−K−1∏

j=0

22N−j − 1
22N−K−j − 1 (3.14)

= (22N − 1)(22N−1 − 1) · · · (22N−K − 1) · · · (2K+1 − 1)
(22N−K − 1)(22N−K−1 − 1) · · · (2K+1 − 1) · · · (2 − 1) (3.15)

=
∏2N

x=2N−K+1 2x − 1∏K
y=1 2y − 1

. (3.16)
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Then, using the change of indices x → 2N − j and y → K − j, and taking into

account that swapping the limits of the product leaves the product invariant :

=
K−1∏
j=0

22N−j − 1
2K−j − 1 (3.17)

= SN,K . (3.18)

This symmetry indicates a type of duality between individual PCE channels pre-

serving 2K and 22N−K Pauli components. However, for the time being we have

been unable to find it, as well as we have failed to recognize if it is of physical

importance.

Property 4. The computational complexity of specifying all PCE channels for a

system of N qubits, denoted as O(N), scales linear in the number of qubits.

Proof. The specification of a PCE channel τ⃗ is equivalent to specifying the basis

elements of the corresponding W , which grows linearly in the number of qubits.

A straightforward, albeit naive, approach to specifying PCE channels is to enumer-

ate all possible PCE maps τ⃗ and then verify complete positivity with eq. (2.19).

In fact, this was the initial method we employed at the beginning of this study.

However, the total number of maps, which is 22N−1, becomes exponential in the

number of qubits, making it computationally inefficient.

3.4. Kraus representation of a PCE

We can further investigate the eigenvalues of the Choi-Jamiołkowski matrix of a

PCE quantum channel to derive its canonical Kraus representation.

31



3.5. PCE Generators

We can re-express the eigenvalues of the Choi-Jamiołkowski matrix of a PCE chan-

nel in eq. (2.17) as:

λr⃗,s⃗ = 1
2N

∑
(m⃗,n⃗)∈W

(−1)ϕr⃗,s⃗(m⃗,n⃗), (3.19)

where we are summing only over the non-zero components τm⃗,n⃗. Adittionally, we

have denoted

ϕr⃗,s⃗(m⃗, n⃗) = m⃗ · s⃗+ n⃗ · r⃗ (3.20)

as we have recognized ϕr⃗,s⃗ as a linear map from the vector space of all indices

{(m⃗, n⃗)} to the vector space Z2 = {0, 1}. This is useful, given that a linear map

preserves the vector structure. In other words, the subspace W of indices is mapped

either to the trivial space or Z2. Thus, it follows that the sum reduces either to a

sum of ones or a sum of the same number of 1s and -1s:

λr⃗,s⃗ =

 |W |/2N , ϕr⃗,s⃗(m⃗, n⃗) = 0 ∀ (m⃗, n⃗) ∈ W,

0, otherwise,
(3.21)

where |W | denotes the cardinality of the subspace W , which is the number of

components τm⃗,n⃗ equal to one. Let us define the vector subspace W⊥ = {(r⃗, s⃗) :

ϕr⃗,s⃗(m⃗, n⃗) = 0, ∀ (m⃗, n⃗) ∈ W}. The non-zero λr⃗,s⃗ are then those eigenvalues with

indices (r⃗, s⃗) ∈ W⊥. Once we have obtained the non-zero eigenvalues, the Kraus

representation follows from the diagonalization of the Choi-Jamiołkowski matrix:

E(ρ) =
∑

(r⃗,s⃗)∈W ⊥

λr⃗,s⃗ σr⃗,s⃗ρσr⃗,s⃗. (3.22)

3.5. PCE Generators

The set of PCE channels is itself a semigroup under the composition operation.

That is, the composition of two PCE channels τ⃗ and τ⃗ ′ is another PCE channel

τ⃗ ◦ τ⃗ ′, where ◦ denotes component-wise or Haddmard product. From this, the

question about PCE channels impossible to be obtained from the composition of
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any other two PCE channels is natural. Once again, the vector structure provides

a way to answer this.

By standard theorems of linear algebra, any proper subspace W can be extended

to a maximal non-trivial subspace of dimension 2N − 1. Then, the intersections

of these maximal subspaces reduce to any other subspace W . In other words,

those maximal subspaces corresponding to PCE channels generate, under compo-

sition, the rest of PCEs. We shall now focus on how to determine this set of PCE

generators, which we call from now on PCEGs and denote Gm⃗,n⃗.

One way to specify the set of PCE generators is to determine all different bases of

subspaces with dimension 2N − 1. However, there is a connection between PCEGs

and linear transformation between the components of the Wey channel τ⃗ and the

eigenvalues λ⃗ of its Choi-Jamiołkowski matrix.

The indices (m⃗, n⃗) of all matrix elements equal to one in rows or columns of

(F2 ⊗ F ∗
2 )⊗N can be identified as maximal vector subspaces of W as well as PCE

generators. We see that (−1)m⃗·s⃗+n⃗·r⃗ is the matrix element of (F2 ⊗ F ∗
2 )⊗N in row

(m⃗, n⃗) and column (s⃗, r⃗). Therefore, we require a similar condition to the one ex-

pressed in eq. (3.6) to identify those matrix elements given row (m⃗, n⃗) or column

(r⃗, s⃗) that are equal to one:

m⃗ · s⃗+ n⃗ · r⃗ = 0. (3.23)

From this, considering another matrix element equal to one satisfies a similar condi-

tion for a primed version (m⃗′, n⃗′). Then multiplying both matrix elements, similar

to the proof of the vector space of PCE channels, we arrive at the same closure

relation. Similar to an observation we made before in section 3.4, eq. (3.23) can be

seen as linear map of either the indices (m⃗, n⃗) or (r⃗, s⃗) from the whole vector space

to Z2. The indices are maped either to zero, in which case all matrix elements are

one, or to zero and one, in which case half the matrix elements are one and the

others minus one. That is the subspaces correspond to those with cardinality 22N

or 22N−1.
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F2 ⊗ F2 = ↔

G0,0 G1,0 G0,1 G1,1

1

0

-1

Figure 3.6: Connection between the linear transformation between τ⃗ and λ⃗, and
the PCEGs Gm⃗,n⃗ for a single-qubit system. By taking every row or column and
changing the color green for white, that is, reassigning −1 7→ 0, we obtain the τ⃗ of
all PCEGs of a single qubit.

In fact, the only indices mapped all to zero are those in the first row or column.

Now, it only remains showing that every subspace is different. This may be proved

from the fact that the Fourier matrix F2 has full rank and the rank of a tensor prod-

uct is the product of the ranks. Thus, the linear transformation between τ⃗ and λ⃗

has always full rank. In consequence, if two rows or columns with half the elements

1 and the other half -1 would be characterized by the same maximal subspace W ,

the matrix would no have full rank. Therefore, all subspaces characterizing the -1

in every row or column are indeed different.

The elegant algebraic structure we have used not only to characterize the PCE

channels, but for the 1s in the matrix (F2 ⊗F ∗
2 )⊗N as well, establishes a connection

between PCEGs and matrix (F2 ⊗ F ∗
2 )⊗N . In turn, this provides a way to specify

all PCEGs in a very efficient way. By replacing all −1s with zeroes in matrix

(F2 ⊗ F ∗
2 )⊗N , every row or column is the vector τ⃗ of a PCE generator Gm⃗,n⃗. We

show the example of a single-qubit in Fig. 3.6.

What is more, we see that PCE generators are either symmetric or anti-symmetric

under reflection of the j-th axis. That is, if we consider the map Σk defined as

follows:

m⃗ = (m1, . . . ,mj , . . . ,mN ) → Σj(m⃗) = (m1, . . . , 1 −mj , . . . ,mN ) (3.24)

n⃗ = (n1, . . . , nj , . . . , nN ) → Σj(n⃗) = (n1, . . . , 1 − nj , . . . , nN ), (3.25)

34



3.5. PCE Generators

(a)

Σ1

7→ Σ2

7→

Σ1

7→
(b)

Σ2

7→

1

0

Figure 3.7: Two example of reflections over the first and second particle of two-
qubit PCEGs: (a) G10,01, and (b) G01,00. Here, we reordered the indices of τm⃗,n⃗ as
(m1n1,m2n2) for the purpose of being able to see the symmetry or anti-symmetry
under vertical and horizontal reflection of the grids, correspondingly. We see that
G10,01 is anti-symmetric under reflections over both particles, and G01,00 is symmet-
ric under reflection over the first particle and anti-symmetric over the second one.

we can conclude from the properties of Σk and the dimension of the maximal

subspaces 2N−1, that τ⃗ of a PCE generator is either symmetric or anti-symmetric

under the action of Σk over the indices. We illustrate an example in Fig. 3.7. In

Ref. [56] we use this symmetry to connect the PCEGs Gm⃗,n⃗ with matrix (F2 ⊗

F ∗
2 )⊗N . We have presented another way to do that in this work, but for the time

being, we have been unable to find another connection of this symmetry with

physical properties of PCEGs. However, symmetries in physics have been always

important to characterize.
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Chapter 4

PCE channels and decoherence

In this chapter, we study two implementations of PCE channels. To do so, we

begin by deriving the Kraus representation for PCE generators, as any other PCE

can be obtained through the composition of these.

4.1. Kraus operators of PCE generators

We can further examine the Kraus representation we derived in eq. (3.22) in Sec. 3.4,

specifically focusing on PCE generators. Here, we investigate the vector subspaces

W⊥ associated with each maximal non-trivial subspace W .

It is important to recall that vector subspaces W⊥ are associated with homomor-

phisms ϕr⃗,s⃗ that map a subspace W to the trivial vector space. We proceed by

identifying that homomorphisms ϕr⃗,s⃗ determine whether the matrix element of

(F2 ⊗ F ∗
2 )⊗N in column (s⃗, r⃗) and row (m⃗, n⃗) is -1 or 1. As discussed in Sec. 3.5,

the positions of ones in the matrix correspond to the maximal non-trivial subspaces

W ∗. Now, we consider two homomorphisms, ϕr⃗,s⃗(m⃗, n⃗) and ϕr⃗ ′,s⃗ ′(m⃗, n⃗), such that

(r⃗, s⃗) ̸= (r⃗ ′, s⃗ ′) ̸= (⃗0, 0⃗). Both homomorphisms map the same maximal subspace

W ∗ to the trivial vector space if and only if the columns (s⃗, r⃗) and (s⃗ ′, r⃗ ′) of matrix

(F2 ⊗F ∗
2 )⊗N are the same, which is not true. Therefore, by contradiction, only the

homomorphisms ϕ0⃗,⃗0 and ϕr⃗,s⃗ map all elements of one maximal non-trivial subspace
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4.2. Pure dissipative implementation

to the trivial vector space {(⃗0, 0⃗)}. With eqs. (3.21) and (3.22) we can express the

Kraus representation of a PCEG Gm⃗,n⃗ as:

Gm⃗,n⃗(ρ) = 1
2
(
ρ+ σm⃗,n⃗ρσm⃗,n⃗

)
. (4.1)

4.2. Pure dissipative implementation

We can demonstrate that a PCEG can be seen as a fixed point of pure dissipative

processes. Consequently, every PCE channel can be regarded as the fixed point of

another pure dissipative process.

Examining eq. (4.1), we can identify that a PCEG is the asymptotic limit of the

following dynamical process:

Gm⃗,n⃗,t(ρ) =
(

1 + e−γt

2

)
ρ+

(
1 − e−γt

2

)
σm⃗,n⃗ρσm⃗,n⃗ γ > 0. (4.2)

Now, we shall prove that this family of quantum channels with the parameter

t is indeed constitutes a dynamical process, satisfying the semi-group property

Gm⃗,n⃗,t2 ◦ Gm⃗,n⃗,t2 = Gm⃗,n⃗,t1+t2 :

Gm⃗,n⃗,t2

(
Gm⃗,n⃗,t1(ρ)

)
= Gm⃗,n⃗,t2

((
1 + e−γt1

2

)
ρ+

(
1 − e−γt1

2

)
σm⃗,n⃗ρσm⃗,n⃗

)
(4.3)

=
(

1 + e−γt1

2

)[(
1 + e−γt2

2

)
ρ+

(
1 − e−γt2

2

)
σm⃗,n⃗ρσm⃗,n⃗)

]

+
(

1 − e−γt1

2

)[(
1 + e−γt2

2

)
σm⃗,n⃗ρσm⃗,n⃗ +

(
1 − e−γt2

2

)
ρ

]
(4.4)

=
(

1 + e−γ(t1+t2)

2

)
ρ+

(
1 − e−γ(t1+t2)

2

)
σm⃗,n⃗ρσm⃗,n⃗ (4.5)

= Gm⃗,n⃗,t1+t2(ρ). (4.6)
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4.2. Pure dissipative implementation

Figure 4.1: One PCE channel is the fixed point of more than one Markovian
dissipative process. The two-qubit PCE channel in (a) is the fixed point of a
Markovian process with the Lindblad generators of any two PCEGs in (b)-(d).

The Lindblad generator can be obtained by the standard procedure:

Lm⃗,n⃗[ρ] =
dGm⃗,n⃗,t(ρ)

dt

∣∣∣∣
t=0

= γ

2
(
σm⃗,n⃗ρσm⃗,n⃗ − ρ

)
, (4.7)

where the unique Lindblad operator corresponding to the relaxation ratio γ/2 is

σm⃗,n⃗. Thus, the process is purely dissipative [58].

Since PCEGs commute, every PCE channel can also be regarded as the asymptotic

limite of a decoherence process. Let us consider the example of the PCE channel

depicted in Fig. 4.1(a). First, we see that this channel can be obtained as the

composition of G01,10 and G01,11. Thus, it is the fixed point of the dissipation

process described by:

L(ρ) = γ01,10
2 (σ01,10ρσ01,10 − ρ) + γ01,11

2 (σ01,11ρσ01,11 − ρ). (4.8)

This process has the Lindbladian operators σ01,10 = σx ⊗ σz and σ01,11 = iσx ⊗ σy,

each with relaxation ratios γ01,10 and γ01,11, respectively. Nonetheless, such election

of Lindblad operators is not unique, as the PCE channel is also equal to the com-

position of G00,01 with any of the aforementioned PCEGs. Thus, the corresponding

dissipative process can be such with one of the aforementioned Lindbladian oper-

ators and σ00,01 = 1 ⊗ σx.
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4.3. Collision model implementation

Figure 4.2: Illustration of a collision model in (a) vs a conventional system-bath
model in (b). Taken from [59].

4.3. Collision model implementation

Another way to implement PCE channels is through collision models. A collision

model is a tool used to describe the interaction between the system and its envi-

ronment. In this model, the environment is composed of a large, discrete collection

of smaller units, and the open system interacts with these units one at a time. In

contrast, in a conventional system-bath model, the bath typically consists of a con-

tinuum of normal modes, and the system interacts with all of them simultaneously.

We illustrate this in Fig. 4.2.

The collision model for implementing a PCEG Gm⃗,n⃗ is constructed as follows. Since

Gm⃗,n⃗ have two Kraus operators, we can choose a single qubit in the environment.

The system interacts with the ancilla qubit through a unitary transformation de-

fined as:

Um⃗,n⃗ |ψ⟩ |0⟩ = 1√
2
(
|ψ⟩ |0⟩ + σm⃗,n⃗ |ψ⟩ |0⟩

)
, (4.9)

Um⃗,n⃗ |ψ⟩ |1⟩ = 1√
2
(
|ψ⟩ |0⟩ − σm⃗,n⃗ |ψ⟩ |0⟩

)
. (4.10)

It is straightforward to show that if the system of qubits interacts with an ancilla

qubit in the state |0⟩ the reduced dynamics is that of a PCEG, that is:

Gm⃗,n⃗(ρ) = TrE

[
Um⃗,n⃗(ρ⊗ |0⟩⟨0|), U †

m⃗,n⃗

]
, (4.11)
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4.3. Collision model implementation

where TrE denotes the partial trace over the environment.

Every PCE channel can be then implemented with a collision model as well. Given

that a PCE channel is the composition of M PCEGs as E = Gm⃗M ,n⃗M
◦ · · · ◦ Gm⃗1,n⃗1 ,

there are two approaches for implementation:

1. The channel E can be implemented as a single collision with M ancilla qubits

in the product state |0⟩⊗M .

2. Alternatively, it can be realized through M collisions with a single qubit reset

to state |0⟩ after each collision.
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Chapter 5

Weyl channels for multipartite

systems

In the preceding chapters, we established the significance of PCE channels in de-

scribing qubit decoherence processes, emphasizing their elegant vector structure.

This chapter aims to explore the potential for extending this algebraic framework

to quantum channels of more general systems. Specifically, we seek to investigate

the generalization of these concepts for quantum channels in systems involving

multiple particles with arbitrary dimensions, a class of channels that has received

limited attention thus far.

In this chapter, we introduce a generalization of Pauli maps for arbitrary-dimensional

multi-particle systems, employing Weyl matrices. These matrices are a unitary

generalization of Pauli matrices that have a number of useful properties. Notably,

these properties enable us to diagonalize the Choi-Jamiołkowski matrix of a Weyl

quantum map, thereby enabling the study of the subset of physically meaningful

quantum maps: Weyl channels.

The chapter is organized as follows. We begin by discussing in Sec. 5.1 the reasons

of why we choose Weyl matrices to study quantum maps of many particles. Subse-

quently, in Sec. 5.2, we define a Weyl map and diagonalize its Choi-Jamiołkowski

matrix to establish the conditions of complete positivity for the map to represent
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5.1. Why the basis of Weyl matrices?

a quantum channel. From these conditions, we investigate in Sec. 5.3 the extreme

points within the convex set of quantum channels and, in Sec. 5.4, uncover the

embedded group structure within all channels.

The group structure offers an answer to the initial question that initiated the study

of Weyl maps, a motivation drawn from our results of PCE channels. However,

our most significant discovery lies in the universality of these structure. They are

not exclusive to the “component erasing” type of channels but are a property of all

Weyl channels.

5.1. Why the basis of Weyl matrices?

We shall begin by discussing, from a mathematical point of view, what character-

istics we desire the basis of B(Hd ⊗ Hd) to have. It is worth noting that all the

properties of PCE channels are derived from the underlying vector structure. This

vector structure, in turn, originates from the complete positivity conditions. These

conditions are a direct outcome of the diagonalization of the Choi-Jamiołkowski

matrix of a Pauli map. Fundamentally, the derivation of all results about PCE

channels rely on performing the diagonalization the Choi-Jamiołkowski matrix.

We desire a basis of B(Hd ⊗ Hd) having analogous properties to those of the N -

qubit operators σm⃗,n⃗ that allowed us to diagonalize the Choi-Jamiołkowski matrix

in Sec. 2.3. Those properties are:

1. All operators in {σm⃗,n⃗⊗σ∗
m⃗,n⃗} mutually commute. From this follows the linear

relationship between eigenvalues of the map and those of its corresponding

Choi-Jamiołkowski matrix.

2. All operators in {σm⃗,n⃗ ⊗ σ∗
m⃗,n⃗} commute with all operators in {|σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗|}.

In consequence, |σr⃗,s⃗⟩⟩ are the eigenvectors of D and the derivation of its

eigenvalues is straightforward.
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5.1. Why the basis of Weyl matrices?

The second property might have appeared fortuitous in Sec. 2.3, In fact, that

was the case when we first realized it. Nevertheless, we later uncovered a deeper

understanding, which we have saved until this moment.

Both sets of operators {|σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗|} and {σm⃗,n⃗ ⊗ σ∗
m⃗,n⃗} actually span the same

space. From the properties of Pauli matrices, it follows that {σm⃗,n⃗ ⊗σ∗
m⃗,n⃗} forms a

basis of B
(
(C2)⊗N ⊗ (C2)⊗N

)
. Then, the linear transformation between both sets,

specified by:

Tr
[(
σm⃗,n⃗ ⊗ σ∗

m⃗′,n⃗′

)†
|σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗|

]
= 2N (−1)m⃗·s⃗+n⃗·r⃗δm⃗,m⃗′δn⃗,n⃗′ , (5.1)

implies that operators |σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗| are expanded only over elements of the form

σm⃗,n⃗ ⊗ σ∗
m⃗,n⃗.

Proof. To prove this, we begin by computing the following product:

(
σm⃗,n⃗ ⊗ σm⃗′,n⃗′

)† |σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗| =
∑

k⃗,⃗l,µ⃗,ν⃗

(−1)m⃗·(k⃗+n⃗)+m⃗′·(⃗l+n⃗′)+r⃗·(µ⃗+ν⃗)
∣∣∣⃗k, l⃗〉〈k⃗ + n⃗, l⃗ + n⃗′

∣∣∣×
|µ⃗, µ⃗+ s⃗⟩⟨ν⃗, ν⃗ + s⃗|

=
∑
k⃗,ν⃗

(−1)m⃗·(k⃗+n⃗)+m⃗′·(k⃗+s⃗+n⃗)+r⃗·(k⃗+n⃗+ν⃗)×

∣∣∣⃗k, k⃗ + s⃗+ n⃗− n⃗′
〉〈
ν⃗, ν⃗ + s⃗

∣∣∣
(5.2)

Then, computing the trace, we obtain:

Tr
[(
σm⃗,n⃗ ⊗ σm⃗′,n⃗′

)† |σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗|
]

=
∑
k⃗,ν⃗

(−1)m⃗·(k⃗+n⃗)+m⃗′·(k⃗+n⃗+s⃗)+r⃗·(k⃗+n⃗+ν⃗)×

δ
k⃗,ν⃗
δ

k⃗+s⃗+n⃗−n⃗′,ν⃗+s⃗

=
∑

k⃗

(−1)m⃗·(k⃗+n⃗)+m⃗′·(k⃗+n⃗+s⃗)+r⃗·n⃗δn⃗,n⃗′
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5.1. Why the basis of Weyl matrices?

= (−1)m⃗′·s⃗+r⃗·n⃗(−1)m⃗′·n⃗+m⃗·n⃗∑
k⃗

(−1)k⃗·(m⃗+m⃗′)δn⃗,n⃗′

= 2N (−1)m⃗′·s⃗+r⃗·n⃗(−1)m⃗′·n⃗+m⃗·n⃗δm⃗,m⃗′δn⃗,n⃗′ , (5.3)

which reduces to eq. (5.1).

This serves as a way more clear explanation of why the commutation relations

between operators |σr⃗,s⃗⟩⟩⟨⟨σr⃗,s⃗| and σm⃗,n⃗ ⊗ σ∗
m⃗,n⃗ hold.

A basis of matrices for B(Hd ⊗ Hd) satisfying the aforementioned relations are the

Weyl matrices. Weyl matrices were first introduced by Weyl [60] and can be all

expressed in the following compact expression [61]:

Um,n =
∑

k

ωmk |k⟩⟨k + n| ω = e2πi/d. (5.4)

From now on, all arithmetical operations are taken modulo d. Furthermore, we

introduce the multi-particle Weyl matrices as:

Um⃗,n⃗ =
⊗

α

Umα,nα , (5.5)

where 1 ≤ α ≤ N labels the particles in the system. Some well-known properties

of these matrices are:

Tr
(
U †

m,nUm′,n′

)
= dδm,m′δn,n′ (5.6)

Um,nUm′,n′ = ωm′nUm+m′,n+n′ (5.7)

Um,nUm′,n′ = ωm′n−mn′
Um′,n′Um,n (5.8)

U †
m,n = ωmnU−m,−n, (5.9)

as well as their vector equivalents [61].

We now discuss how the previously discussed conditions forN -qubit Pauli operators

also apply to operators Um⃗,n⃗ ⊗U∗
m⃗,n⃗ and |Ur⃗,s⃗⟩⟩⟨⟨Ur⃗,s⃗|. They come as a consequence

44



5.2. Weyl chanels

of the properties of Weyl matrices. The first condition, which concerns the com-

mutation relations between different
(
Um,n ⊗ U∗

m,n

)
, arises from the symmetry in

the following expression:

(
Um,n ⊗ U∗

m,n

)(
Um′,n′ ⊗ U∗

m′,n′

)
=
(
Um,nUm′,n′

)
⊗
(
U−m,nU

∗
−m′,n′

)
(5.10)

= Um+m′,n+n′ ⊗ U−(m+m′),n+n′ . (5.11)

In the first line, we have applied the property from eq. (5.4), and in the second

line, we used the property from eq. (5.7). On the other hand, the second condition,

concerning the commutation relations between Um⃗,n⃗ ⊗ U∗
m⃗,n⃗ and |Ur⃗,s⃗⟩⟩⟨⟨Ur⃗,s⃗| is a

result from the linear relationship between them, established in:

Tr
[(
Um⃗,n⃗ ⊗ U∗

m⃗′,n⃗′

)†
|Ur⃗,s⃗⟩⟩⟨⟨Ur⃗,s⃗|

]
= dNωm⃗·s⃗−n⃗·r⃗δm⃗,m⃗′δn⃗,n⃗′ . (5.12)

In the next section we use the Weyl matrices to define a Weyl map.

5.2. Weyl chanels

The density matrix of a system of N d-level particles can be expressed in the basis

of multi-particle Weyl matrices as:

ρ = 1
dN

∑
m⃗,n⃗

αm⃗,n⃗Um⃗,n⃗ α∗
m⃗,n⃗ = ω−m⃗·n⃗α−m⃗,−n⃗. (5.13)

Unlike the basis of Pauli matrices, αm⃗,n⃗ is generally a complex coefficient. We

define a Weyl map through the transformation of the components of the density

matrix (5.13) as:

αm⃗,n⃗ 7→ τm⃗,n⃗αm⃗,n⃗ τ0⃗,⃗0 = 1 τm⃗,n⃗ ∈ C. (5.14)
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5.2. Weyl chanels

See that we have defined a Weyl map as a trace-preserving map already. We

will refer to τ⃗ as the Weyl map. This vector, comprising the eigenvalues of the

superoperator of a Weyl map, uniquely characterizes the map.

We shall find the complete positivity conditions for a Weyl map τ⃗ to be a quantum

channel. To achieve this, we proceed diagonalizing the Choi-Jamiołkowski matrix

and investigate the conditions under which it is positive semidefinite. Let us begin

by writing the Choi-Jamiołkowski matrix D from eq. (2.4) in Sec. 2.2.1:

D = 1
dN

∑
m⃗,n⃗

τm⃗,n⃗Um⃗,n⃗ ⊗ U∗
m⃗,n⃗. (5.15)

We follow the same steps for the diagonalization as presented in Sec. 2.3 to obtain

the eigenvalues λr⃗,s⃗. From this, the complete positivitity conditions on a Weyl map

τ⃗ read:

τm⃗,n⃗ = τ∗
−m⃗,−n⃗, (5.16a)

λr⃗,s⃗ = 1
dN

∑
m⃗,n⃗

ωm⃗·r⃗−n⃗·s⃗τm⃗,n⃗ ≥ 0. (5.16b)

The first condition ensures that λr⃗,s⃗ are real. Furthermore, the linear relationship

between λ⃗ and τ⃗ can be expressed, once again, in terms of Fourier matrices, similar

to Pauli maps, as:

τ⃗ =
(⊗

α

Fdα ⊗ F ∗
dα

)
λ⃗. (5.17)

We shall add that the trace-preserving condition in the Choi-Jamiołkowski matrix

representation reads: ∑
r⃗,s⃗

λr⃗,s⃗ = dN . (5.18)

This condition follows directly computing the trace of (5.15) and recalling that all

Weyl matrices Um⃗,n⃗ are traceless except for the identity U0⃗,⃗0.

As a consequence of the structure of multi-particle Weyl matrices Um⃗,n⃗, interesting

and beautiful different patterns arise in matrix
⊗

α Fdα⊗F ∗
dα

, the argument of which
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N = 1, d = 2 N = 3, d = 2 N = 1, d = 3 N = 2, d = 3

N = 1, d = 8 N = 1, d = 9 N = 1, d = 10 N = 1, d = 11

(a) (b)

(c)

Figure 5.1: Plots of the argument of matrix
⊗

α Fdα ⊗F ∗
dα

for systems of (a) qubits,
(b) qutrits and (c) higher single d-level systems. Taken from [62].

we illustrate in Fig. 5.1. We present plots for qubits, qutrits and higher single-d

level particles. Even though a system of 3 qubits and a single 8-level system are

similar, in the sense that their Hilbert spaces are isomorphic, the corresponding

plots in Fig. 5.1(a) and Fig. 5.1(c) remind us that their corresponding bases are

different.

5.3. Convex structure of Weyl channels

From the eigenvalues in eq. (5.16b) of the Choi-Jamiołkowski matrix we can unveil

the convex structure of Weyl channels and identify its extreme points. Given that

all eigenvalues λr⃗,s⃗ are non-negative and sum up to dN , they form the standard

d2N−1 dimensional simplex. Furthermore, since the transformation between λr⃗,s⃗

and τm⃗,n⃗ is linear and invertible, the set of all τm⃗,n⃗ forms also a d2N−1 dimensional

simplex.

From the diagonalization of the Choi-Jamiołkowski of a Weyl map, we see that the

Kraus representation of generic Weyl channels is:

E(ρ) =
∑
m⃗,n⃗

Um⃗,n⃗ρU
†
m⃗,n⃗. (5.19)
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Therefore, the extreme points of the λ’s simplex are clearly

λr⃗,s⃗ = dNδr⃗,r⃗0δs⃗,s⃗0 , (5.20)

where (r⃗0, s⃗0) is fixed and labels the extreme point. Then, the extreme points of

the τ ’s simplex are obtained by inverting eq. (5.16a) and inserting eq. (5.20):

τm⃗,n⃗ = 1
dN

∑
r⃗,s⃗

(
dNδr⃗,r⃗0δs⃗,s⃗0

)
ω−m⃗·r⃗+n⃗·s⃗ (5.21)

= ω−m⃗·r⃗0+n⃗·s⃗0 . (5.22)

Such Weyl channels τ⃗ can be called extreme Weyl channels.

An important fact about extreme Weyl channels τ⃗ can be concluded from eq. (5.22).

A Weyl channel τ⃗ is extreme if and only if
∣∣τm⃗,n⃗

∣∣ = 1. We have already proved that

an extreme Weyl channel has roots of unity for the components of its corresponding

vector τ⃗ , see eq. (5.22). The converse holds as the linear transformation between

τm⃗,n⃗ and λr⃗,s⃗ is invertible. That is, if we can go from eq. (5.20) to eq. (5.22), we

can go back as well.

All Weyl channels can be identified as random unitary channels. For these channels,

all Kraus operators are unitary [63]. Random unitary channels are important be-

cause their Kraus operators may be experimentally realized through quantum gates.

Recall that the vectorized Weyl matrices |Um⃗,n⃗⟩⟩ diagonalize the Choi-Jamiołkowski

matrix. Thus, from eq. (5.20) the Kraus representation of a Weyl channels follows:

E(ρ) =
∑
r⃗,s⃗

λr⃗,s⃗Ur⃗,s⃗ρU
†
r⃗,s⃗. (5.23)

5.4. A mathematical structure within Weyl channels

In this section, we show how the vector structure of PCE channels generalizes for

Weyl channels. Nevertheless, which is more important, we show that the algebraic
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structure is embedded within all Weyl channels τ⃗ . It is not exclusive to the type

of “component erasing” channels, like PCEs.

The subset of indices (m⃗, n⃗) for which its corresponding components in τ⃗ of a Weyl

channel satisfy
∣∣τm⃗,n⃗

∣∣ = 1, form a subgroup of a finite abelian group.

Proof. We will proceed trying to recycle the elements from the proof for vector

spaces corresponding to PCE channels in Sec. 3.2. Let us invert eq. (5.16b):

τm⃗,n⃗ = 1
dN

∑
r⃗,s⃗

λr⃗,s⃗ ω
−m⃗·r⃗+n⃗·s⃗. (5.24)

We see here that τm⃗,n⃗ is a convex combination of roots of unity. Thus, for
∣∣τm⃗,n⃗

∣∣ = 1

we can take, without loss of generality, τm⃗,n⃗ = ωk, with k a positive integer. Then:

ωk = 1
dN

∑
r⃗,s⃗

λr⃗,s⃗ ω
−m⃗·r⃗+n⃗·s⃗ (5.25)

1 = 1
dN

∑
r⃗,s⃗

λr⃗,s⃗ ω
−m⃗·r⃗+n⃗·s⃗−k. (5.26)

Once more, the key here is to note that −1 ≤ Re(ω−m⃗·r⃗+n⃗·s⃗−k) ≤ 1. Therefore,

even if
∑

r⃗,s⃗ λr⃗,s⃗ Im(ω−m⃗·r⃗+n⃗·s⃗−k) = 0, it is impossible that
∑

r⃗,s⃗ λr⃗,s⃗ Re(ω−m⃗·r⃗+n⃗·s⃗)

equals dN unless ω−m⃗·r⃗+n⃗·s⃗−k = 1, for all (r⃗, s⃗). Hence, the following condition

holds:

−m⃗ · r⃗ + n⃗ · s⃗ = jd+ k j, k ∈ Z ∀ (r⃗, s⃗). (5.27)

Obviously, without loss of generality, we can choose j = 0. A similar equation

to eq. (5.27) holds for the primed version of indices. Computing τm⃗+m⃗′,n⃗+n⃗′ we

obtain:

τm⃗+m⃗′,n⃗+n⃗′ = 1
dN

∑
r⃗,s⃗

ω−(m⃗+m⃗′)·r⃗+(n⃗+n⃗′)·s⃗λr⃗,s⃗ = ωk+k′
, (5.28)

where we have used equations (5.27) and its primed version, as well as
∑

r⃗,s⃗ λr⃗,s⃗ =
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dN . Finally, we have proved that:

τm⃗,n⃗τm⃗′,n⃗′ = τm⃗+m⃗′,n⃗+n⃗′ . (5.29)

This establishes that the set H = {(m⃗, n⃗) :
∣∣τm⃗,n⃗

∣∣ = 1} forms a subgroup of the

direct product G =
⊕

N Zd ⊕ Zd.

In general, a vector structure does not exist, as Zd is a field only when d is prime.

In any other case, one encounters elements in the group without inverses.

The group structure within Weyl channels described in eq. (5.29) does not specify

the actual values those τm⃗,n⃗ can take. In the case of PCE channels, we did not

need to concern ourselves with how to assign values to the τm⃗,n⃗ of those (m⃗, n⃗)

in the vector subspace, as the only option is to assign the value 1. However, for

Weyl channels, we may identify τm⃗,n⃗ as a map from the group H to the roots of

unity. These elements form also a group, which is isomorphic to Zd. Therefore,

determining how to assign an appropriate root of unity given a subgroup H is

equivalent to asking for the homomorphisms τ : H 7→ Zd.

As established in eq. (5.29) we have shown that the indices for which
∣∣τm⃗,n⃗

∣∣ = 1

form a subgroup. We intentionally have not explored the reverse relationship as it

leads to an important result: the group structure can coexist with other τm⃗,n⃗ with

indices not in the group and whose modulus is different from one.

Now, let us break down the expression for the eigenvalues λr⃗,s⃗ in eq. (5.16b) into

two separate sums, one over the elements within the group H and the other over

the rest:

λr⃗,s⃗ = 1
dN

∑
(m⃗,n⃗)∈H

ωm⃗·r⃗−n⃗·s⃗τm⃗,n⃗ + 1
dN

∑
(m⃗,n⃗)/∈H

ωm⃗·r⃗−n⃗·s⃗τm⃗,n⃗ (5.30)

= 1
dN

∑
(m⃗,n⃗)∈H

ωm⃗·(r⃗+r⃗0)−n⃗·(s⃗+s⃗0) + 1
dN

∑
(m⃗,n⃗)/∈H

ωm⃗·r⃗−n⃗·s⃗τm⃗,n⃗ (5.31)

The first term can be evaluated identifying that the function ϕ(m⃗, n⃗) = m⃗ · (r⃗ +
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r⃗0) − n⃗ · (s⃗+ s⃗0) is an homomorphism ϕ : H 7→ Zd. This lead to:

1
dN

∑
(m⃗,n⃗)∈H

ωm⃗·(r⃗+r⃗0)−n⃗·(s⃗+s⃗0) =

 |H|/dN , ϕr⃗,s⃗(m⃗, n⃗) = 0 ∀ (m⃗, n⃗) ∈ H,

0, otherwise.

(5.32)

The homomorphisms ϕr⃗,s⃗ mapping H to zero form a group as well, which we denote

H⊥. Therefore, the conditions of complete positivity of a Weyl map read:

−|H| ≤ 1
dN

∑
(m⃗,n⃗)/∈H

ωm⃗·r⃗−n⃗·s⃗τm⃗,n⃗ (r⃗, s⃗) ∈ H⊥ (5.33a)

0 ≤ 1
dN

∑
(m⃗,n⃗)/∈H

ωm⃗·r⃗−n⃗·s⃗τm⃗,n⃗ (r⃗, s⃗) /∈ H⊥. (5.33b)

This inequality is significant since the right-hand sides are real numbers due to

the property τ∗
m⃗,n⃗ = τ−m⃗,−n⃗, which still holds because all elements in H have an

inverse −(m⃗, n⃗); consequently, those not in H have inverses as well. This shows

that the group structure is inherent in all Weyl channels. In other words, a Weyl

channel have a subset of τm⃗,n⃗ with indices forming a subgroup, while the rest are

constrained by inequalities (5.33).

All Weyl channels may be algorithmically constructed in the following steps:

1. Find all subgroups H ⊆ G.

2. Find all homomorphisms τ : G 7→ Zd-

3. Assign the values of τm⃗′,n⃗′ , for (m⃗′, n⃗′) /∈ H, according to completely positivity

inequalities.

We devote Appendix 5.4 to present an algorithm to find the subgroups of the most

general group we may encounter for Weyl channels. Additionally, in Appendix 5.4

we present how to determine all homomorphisms. We show single-qutrit Weyl

channels examples in Fig. 5.2 where we are using the PCE representation of Ap-

pendix 5.4.
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5.4. A mathematical structure within Weyl channels

(a) (b) (c) (d)

Figure 5.2: Examples of single-qutrit Weyl channels. The colored squared form a
subgroup of Z3⊕Z3, and the colors are assigned by some homomorphism Z3⊕Z3 7→
Z3. Those τm⃗,n⃗ in the white squares are indicated, as they need not to be zero, but
instead be constrained by inequalities in Eq. (5.33).
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In this thesis, we have explored two classes of quantum channels. Firstly, we in-

troduced and conducted a comprehensive study of Pauli component erasing (PCE)

maps for systems of qubits. Subsequently, we occupied with the task of study-

ing a generalization of the Pauli maps for multipartite systems with arbitrary-

dimensional particles. To achieve this, we used the Weyl matrices, which are uni-

tary generalization of Pauli matrices. Using tools drawn of linear algebra and

finite group theory, we have uncovered insightful characterizations for both classes

of quantum channels.

We revised the theory of quantum channels in Chapter 1. In Chapter 2, we in-

troduced the Pauli maps for systems of qubits. We defined a Pauli map as a

diagonal in the basis of N -qubit Pauli operators. Then, we took a detour to show

the generic form of the Choi-Jamiołkowski matrix of any quantum map diagonal

in an orthogonal basis. Afterwards, we returned to Pauli maps and diagonalized

its Choi-Jamiołkowski matrix to derive the conditions of complete positivity which

dictates when the map is a quantum channel.

Moving forward to Chapter 3, we introduced the concept of Pauli component eras-

ing (PCE) maps and systematically explored the subset of quantum channels within

this domain. We defined a PCE map as a trace-preserving quantum map that ei-

ther preserves or erases the Pauli components of the density matrix of a system
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of qubits. From the complete positivity conditions we obtained in the preceding

chapter, we showed that PCE quantum channels are completely characterized by

finite vector subspaces. In turn, these vector structure enabled us to derive several

properties of PCE channels. Additionally, we identified the smallest subset that

generate, under composition, the entire set of PCE channels. Finally, we studied

the Kraus representation of PCE channels.

To ground these mathematical concepts, Chapter 4 was dedicated to present physi-

cal implementations of PCE channels We showed that PCE channels can be viewed

as fixed points of Markovian processes, and derived their corresponding Lindbla-

dian generators. Furthermore, we demonstrated that simple collision models can

implement PCE channels as well.

The intriguing vector structure of PCE channels naturally prompted us to ponder

the possibility of a generalization for systems of arbitrary-dimensional particles.

Thus, we introduced and studied the Weyl maps for systems of qudits in Chapter

5. Our choice of the Weyl matrices was because these have similar properties to the

Pauli matrices, enabling the analytical diagonalization of the Choi-Jamiołkowski

matrix. Through the complete positivity conditions, we unveiled two pivotal re-

sults. Firstly, we identified the extreme points of the set, elucidating that Weyl

channels are random unitary channels. Secondly, we revealed a non-trivial fact–the

generalization of the vector structure of PCE channels is a group structure, em-

bedded within all Weyl channels.

Our work contributes significantly to the comprehension of many-body quantum

channels, as well as the dynamics of both qubits and d-level systems, an area

of escalating importance for theoretical and practical endeavors. Future research

directions include extending the notion of “component erasin” channels within the

set of Weyl channels, probing other properties of these channels such as divisibility,

non-Markovianity, channel capacity, and characterizing the subset of entanglement

breaking channels. Additionally, we aim to delve deeper into the interplay between

the algebraic structure of Weyl channels and quantum error-correcting codes, while
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exploring physical implementations and systems whose interactions are described

by such channels.
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Beyond PCE figures

In this appendix, we will explore a method for adapting our representation of PCE

maps, as discussed in Section 3.1, to visualize an N -qubit PCE map within a 2D

grid. The underlying concept involves treating the vector τ⃗ as a matrix that is the

tensor product of single-qubit matrices τj of dimension 2 × 2.

Consequently, the indices (i, j) of the matrix element τi,j correspond with the

indices (m⃗, n⃗) according to the following relation:

(i, j) =
(
2N−1m1 + 2N−2m2 + . . .+mN , 2N−1n1 + 2N−2n2 + . . .+ nN

)
. (34)

This perspective allows us to envision τ⃗ as divided into four 2N−1 × 2N−1 subgrids,

each determined by the positions (m1, n1). Simultaneously, these subgrids can be

further divided into four 2N−2 ×2N−2 subgrids, with their positions being (m2, n2).

This grid subdivision process can be iterated until j = N . Examples of systems

with N = 1, 2, 3 qubits are illustrated in Figures 1-3 for clarity.

1

0

(a) (b) (c) (d)

Figure 1: All single-qubit PCE channels in the new representation.
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1

0

(a) (b) (c)

Figure 2: Three two-qubit PCE channels in the new representation.

1

0

(a) (b)

Figure 3: Two three-qubit PCE channels in the new representation.
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To determine all τ(m⃗, n⃗) of Weyl channels satisfying eq. (5.29) we proceed in two

steps. The first step involves identifying all subgroups of G. We begin by stating

two relevant facts about finite abelian groups, and then discuss how to find the

subgroups for the more general case of an abelian group G, which encompasses the

majority of our discussion in this section. After that, we describe the second step,

which is how to determine all phases of τm⃗,n⃗ of a WCE channel by determining all

homomorphisms from a subgroup to the roots of unity.

Whenever p and q are coprime, the group Zpq is isomorphic to Zp ⊕ Zq. Therefore,

we may use the prime decomposition of dα to separate each Zdα as a sum of cyclic

groups of prime power order. We proceed in this way for all α, and then we group

the terms corresponding to different primes, so G can be written as

G =
⊕

p

Gp, (35)

with Gp =
⊕

i Zpki , for each prime p that appears in the decomposition of any of

the dα.

Since the direct sum of two arbitrary abelian groups of orders m and n that are

coprime yield all abelian groups of ordermn, we can directly construct all subgroups

of G by finding all the subgroups of each Gp. In other words, although G may have

a complicated decomposition, we focus only in determining the subgroups of Gp,
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which will be convenient to write as

Gp =
r⊕

α=1
ZpMα (36)

where Mα are in non-increasing order.

The group Gp is associated with the sequence M = M1 . . . Mr, which is a partition

of M =
∑

αMα. Therefore, we will refer to Gp as a group of type M . Furthermore,

for any partition of M there exists an abelian group of order pM that is unique

up to an isomorphism [64]. If one has a subgroup Hp of Gp, the corresponding

partition, let us call it N , satisfies Nα ≤ Mα. On the other hand, once the choice

of the non-increasing order for the partition of the group Gp, the corresponding

partitions for the subgroups Hp inherit a well-defined order from the group, and

the corresponding partitions cannot therefore be taken in non-increasing order.

Another important fact about finite abelian groups is that they all have a basis;

that is, they can be generated by the integer combinations of a set of elements.

In our particular case, a simple way of choosing a basis is by picking a generating

element for each cyclic group in eq. (36). We denote them e⃗α, and therefore an

arbitrary h ∈ H can be uniquely expressed as

h =
r∑

α=1
nαe⃗α, (37)

where nα ∈ ZpMα , and the multiplication of a group element by an integer m is

defined as the addition of the group element to itself repeated m times. The number

r of elements in the basis is independent of the choice of basis and it is known as

the group’s rank r.

The general idea for finding all subgroups of Gp is to determine a subset of subgroups

such that, upon applying all automorphisms T : Gp 7→ Gp, all others are found. We

will say that two subgroups of Gp are T -isomorphic when there is an automorphism

T mapping one to the other. Then, to find the subgroups of Gp we first determine
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any subset with the maximum number of subgroups that are not T -isomorphic. We

call these “representative subgroups”. By definition, applying all automorphisms T

(which we describe how to find in Appendix 5.4) to the representative subgroups

all other subgroups of Gp are found.

Note the difference between the concept of isomorphism for the subgroups, and the

concept of T -isomorphism. The latter depends not only on the group structure of

the subgroup H, but also on the way in which it is embedded in the group Gp. For

instance, we can embed the group Z2 in the group Z22 ⊕ Z2 either as a subgroup

of the first summand or as a subgroup of the second. In other words, the partition

M describing the full group is M = 2 1 and the subgroup Z2 can be embedded

with a partition 0 1 as well as 1 0. The two subgroups, being both isomorphic to

Z2, are abstractly isomorphic, but that isomorphism cannot be extended to an

isomorphism of Z4 ⊕ Z2.

All subgroups of Gp are found applying all its automorphisms T to the subgroups

generated by the bases

B = {ps1 e⃗1, . . . , p
sr e⃗r} 0 ≤ sα ≤ Mα. (38)

Nevertheless, more than one different selection S = {sα} may determine two bases

of subgroups T -isomorphic, in other words, that are connected by an automorphism

of Gp. For example, consider a group Gp of type M = 2 2 1 1. The partitions

S = 0 1 0 1 and S′ = 1 0 1 1 determine bases of T -isomorphic subgroups, because

the automorphism defined as T (e⃗1) = e⃗2, T (e⃗2) = e⃗1, T (e⃗3) = e⃗4 and T (e⃗4) = e⃗3

maps one to the other. From each of these T -isomorphic sets of subgroups we can

pick an arbitrary element, which will be called the representative subgroup.

To find the representative subgroups we need a criterion to determine when two

bases B of the form (38) generate T -isomorphic groups. Let us denote M̃1, . . . , M̃q

the q different values in the sequence of numbers in M (for instance, if M̄ = 2211,

then q = 2 and M̃1 = 2, M̃2 = 1). Furthermore, we define the subset Sj = {sα, ∀α :
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Mα = M̃j} of S, that is, Sj is the subset of S formed by all the sα whose αs

correspond to the indices of the Mα that are equal to M̃j . Then, the criterion is the

following: two different sets S and S′ determine bases of T -isomorphic subgroups

whenever their corresponding subsets Sj and S′
j are the same for all j.

We are ready to describe the complete algorithm to determine all the subgroups of

a given group G. First, decompose G as a sum of prime power order groups Gp. For

every Gp, find all sets S = {sα} and discriminate between them to find the only ones

that determine representative subgroups. Then apply to them all automorphisms

T of Gp, so all subgroups of Gp will be found, albeit with repetitions. A description

of the group of automorphisms of an arbitrary abelian group G is provided in [65],

and the technique is summarized for completeness’ sake in Appendix 5.4. Finally,

to find the subgroups of G apply the direct sum between all different subgroups of

each Gp.

Furthermore, a way to count the total number of subgroups of Gp is already known

in the literature. Since any abelian group of prime power order can only have

subgroups that are also of prime power order, subgroups of order pL, with L < M ,

can also be characterized by a partition L of L. It is shown in [64, 66] that necessary

and sufficient conditions for the partition L to correspond to a possible subgroup

of the group determined by the partition M of M are

Lα = 0 (α > r), (39a)

Lα ≤ Mα, (39b)

Lα ≥ Lα+1. (39c)

An expression for the number of different subgroups of type L is already known

in the literature.

To fully determine the coefficients τm⃗,n⃗ with norm 1, we interpret them as a function

that maps H to the group of roots of unity ωj . We consider τm⃗,n⃗ = ωϕ(m⃗,n⃗), thus

we are looking for all homomorphisms ϕ :
⊕

Mα
ZpMα 7→ ZpM1 . To determine one
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of such functions uniquely, it is sufficient to specify the values of ϕ on a basis of H,

as described in Appendix 5.4.

Note that all the above remarks greatly simplify when d is a prime number. In

that case the group G is additionally a vector space. The set of subgroups can then

be described as the set of vector subspaces using the usual techniques of linear

algebra. All the partitions described above then reduce to partitions of the type

where Mα is either 1 or 0, and the partition is fully characterized by the number of

its non-zero elements, which correspond to the subspace’s dimension. Finally, the

homomorphism τ can be described as a linear map from the vector space G to the

field Zd, which is once more straightforwardly described in terms of linear algebra.
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Here we describe the set of homomorphisms ϕ from an abelian group of the form

H =
⊕r

α=1 ZpMα to the cyclic group ZpM1 . As always, the numbers Mα are ordered

in decreasing order.

We may as always choose a basis e⃗α of H, each having order pMα . The homomor-

phism ϕ is then uniquely determined by a set of homomorphisms ϕα from the cyclic

groups ZpMα to ZpM1 .

Whenever M1 = Mα, ϕα simply reduces to multiplication by an arbitrary rα num-

ber modulo pM1 . On the other hand, if Mα < M1, then ϕα is given by the mul-

tiplication by a number of the form pM1−Mαrα where rα is an arbitrary number

modulo pMα .

If we therefore define ν as the number of Mα = M1, so that Mν ≥ M1 but Mν+1 <

M1, and ν = 0 if Mα < M1 for all α, then ϕ can be expressed as follows:

ϕ

(∑
α

cαe⃗α

)
= ϕ⃗ · c⃗ :=

∑
α

ϕαcα (40a)

ϕα =

 pM1−Mαsα (α ≥ ν)

tα (α < ν)
(40b)

where sα and tα are numbers modulo pMα and pM1 respectively.
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The total number of such homomorphisms is therefore given by pK with

K =
ν∑

α=1
Mα +M1(r − ν) (41)

Automorphisms of finite abelian groups

In the following we describe the bijective homomorphisms T of an arbitrary abelian

group. Without loss of generality we limit ourselves to groups that are the direct

sum of groups of the type ZpM , specifically

G =
r⊕

α=1
ZpMα . (42)

To fix notations, we shall work with a fixed basis e⃗α, 1 ≤ α ≤ r, where r is the rank

of G. The map T is therefore uniquely determined by the values of T e⃗α. Since e⃗α

is a basis, we can write

T e⃗α =
r∑

β=1
tαβ e⃗β. (43)

The tαβ are then uniquely determined, if we view them as homomorphisms from

Z
p

Mβ to ZpMα . Since such homomorphisms can always be expressed through the

multiplication by some appropriate number, the expression given in (43) is mean-

ingful.

Now let us specify more precisely the range of variation of the tαβ. We distinguish

two cases

1. Mα ≤ Mβ: in this case any number modulo pMα will do, and two different

such numbers provide different homomorphisms.

2. Mα > Mβ: in this case, the number needs to be a multiple of pMα−Mβ , since

otherwise it is not possible to define the map. In that case, we may describe

tαβ as pMα−Mβταβ, where ταβ is an arbitrary number modulo pMβ
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Consider the matrix T in greater detail, and just as in the main text, let us denote

by M̃1, · · · , M̃q the distinct values of Mα in strictly decreasing order. We define να

to be the number of times M̃α appears repeated in the original series. This defines

a division of the T matrix in blocks of size να × νβ, where 1 ≤ α, β ≤ q.

We first take the elements tαβ modulo p. As a consequence of the observation (2),

all blocks with α < β are filled with zeros, whereas all other blocks have arbitrary

entries. It thus follows that the matrix is invertible modulo p if and only if all the

diagonal blocks are invertible. The number of invertible να × να matrices modulo

p is given by

Iα =
να∏

β=1

(
pνα − pβ−1

)
. (44)

One sees this by observing that we may first choose an arbitrary non-zero vector

of length να in pνα − 1 different ways, then chose a second vector independent from

the first, and so on.

All the other entries in the blocks below the diagonal, that is, the tαβ with α > β,

can be chosen arbitrarily. If we thus define

K0 =
∑

1≤β<α≤q

νανβ, (45)

then the total number of possible forms of the matrix T modulo p is

N(p) = pK0
q∏

α=1
Iα. (46)

We now need to work out the number of ways this can be extended to the full

matrix, where the entries have the full range of variation specified above. Note

first that the condition of invertibility carries over automatically upon extension,

as the inverse matrix of T modulo p can be extended uniquely to the inverse of the

extended matrix.

To the entries on or below the diagonal, that is, with tαβ such that α ≥ β, we can

add any number of the form pταβ, where ταβ is an arbitrary number taken modulo
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pM̃α−1. So the number of possibilities of extending these blocks is given by pK1 ,

where

K1 =
∑

1≤β≤α≤q

(M̃α − 1)νανβ. (47)

For the blocks above the diagonal, that is, the blocks with tαβ such that α < β,

they are of the form pM̃α−M̃βταβ, with ταβ a number modulo pM̃β , so that the total

number of ways of extending the blocks above the diagonal is pK2 , with

K2 =
∑

1≤α<β≤q

M̃βνανβ. (48)

The final result for the total number of automorphisms is thus given by

Ntot(M1, . . . ,Mr) = pK0+K1+K2
q∏

α=1
Iα. (49)
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Decoherence of quantum systems is described by quantum channels. However, a complete understanding of
such channels, especially in the multiparticle setting, is still an ongoing difficult task. We propose the family
of quantum maps that preserve or completely erase the components of a multiqubit system in the basis of Pauli
strings, which we call Pauli component erasing maps. For the corresponding channels, it is shown that the
preserved components can be interpreted as a finite vector subspace, from which we derive several properties
and complete the characterization. Moreover, we show that the obtained family of channels forms a semigroup
and derive its generators. We use this simple structure to determine physical implementations and connect the
obtained family of channels with Markovian processes.
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I. INTRODUCTION

Quantum correlations [1–3], including entanglement [4],
are an important resource for a wide variety of tasks that
include teleportation [5], quantum computation [6], and others
[7]. However, this resource is also extremely delicate [6,8],
especially for multiparticle systems [4]; that is why an im-
portant part of the efforts of the community implementing
quantum technologies is devoted to tackle this issue from an
experimental [9,10] and theoretical [11–13] point of view. The
process by which quantum correlations are unintentionally
dissipated is called decoherence [8,14]. One of the main tools
to study the effects of decoherence are quantum channels.
Quantum channels can describe quantum noise [15,16], open
quantum systems dynamics [6,17], and recently even coarse
graining [18,19]. One of the main difficulties in character-
izing quantum channels is that, like for quantum states, the
number of parameters required for their description increases
quite rapidly with Hilbert-space dimension. Moreover, such
parameters are constrained in a complicated way by physical
conditions, such as complete positivity [20]. Describing in
detail families of channels having a given property provides
insight into the jungle of quantum operations. For the qubit
case there are several studies concerning the unital case, for
which nontrivial properties can be described using only three
parameters, which in turn form the well-known tetrahedron
of Pauli channels [15,16,21]. More generally, in Ref. [22] the
authors study families of convex combinations of quantum-
classical channels that relate to unital qubit channels with
positive eigenvalues, and give a generalization of the Bloch
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sphere. Similarly, a generalization of Pauli channels based on
mutually unbiased measurements is introduced and studied in
Ref. [23]. Other studies of channels beyond the qubit can be
found [24–27].

In this paper we present a generalization of idempotent
Pauli channels—i.e., the qubit flip operations (bit, phase, and
bit-phase when the flip probability is 1/2), total depolarizing
qubit channel, and the identity channel—to the case of N
qubits. The generalization is done by extending Pauli ob-
servables to Pauli strings (tensor products of Pauli matrices)
[28,29]. The resulting maps are unital and diagonal in the
Pauli strings’ basis. We shall in the following refer to such
maps as Pauli component erasing (PCE) maps.

The main task which we perform in this paper is the iden-
tification of the conditions which an arbitrary PCE map must
satisfy in order to be completely positive. The answer turns
out to involve a strikingly simple and unexpected mathemat-
ical structure that is exploited to gain deeper understanding
on aforementioned channels, as we show in Sec. III B. This
structure allows us, for example, to describe such channels
with a much reduced set of parameters (as compared to spec-
ifying a list of all erased Pauli components) or to define an
interesting semigroup structure on the set of all PCE chan-
nels. Additionally, these channels are, in a sense, the simplest
possible channels, and as such can be used as building blocks
of more general channels. For instance, one can combine them
(through convex superposition) or compose them with unitary
transformations. To summarize succinctly the final result, we
show that it is possible to assign to every Pauli string a sim-
ple PCE channel, obtained by extending the system with an
ancilla of a single qubit, acting on the combined system by a
unitary involving the Pauli string and tracing over the ancilla.
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It then follows from our results that all PCE channels arise
from such channels by composition.

The paper is organized as follows. In Sec. II we recall the
properties of quantum channels needed to proceed with the
definition of PCE maps. In Sec. III we diagonalize analytically
the Choi matrix for arbitrary PCE maps and characterize their
complete positivity by interpreting PCE quantum channels
as finite vector subspaces. We study the generators of the
semigroup structure associated to the set of PCE channels
in Sec. IV, and we use them to derive meaningful physical
interpretations of PCE channels in Sec. V, as well as Kraus
operators of the generators. To finish, we conclude and discuss
future perspectives and possible generalizations in Sec. VI.

II. PAULI COMPONENT ERASING MAPS

In this section we introduce the family of PCE maps. Let
us start our discussion with a brief review of several basic
concepts of quantum channels that will allow us to introduce
some notation, and finish with the definition of PCE maps
and some generalities. We further introduce a useful graphical
representation for them.

A. Quantum channels

Quantum channels are the most general linear operations
that a quantum system undergoes independently of its past
[20,30]. The physical system under study will be associated
with a Hilbert space denoted by H, and the set of linear
operators over such space will be denoted by B(H). That way,
a density matrix ρ of such system is an element of B(H).

The construction of quantum channels includes basically
three ingredients: linearity, trace preservation, and complete
positivity. Linearity is needed to map every convex combi-
nation of density matrices into a convex combination of the
evolution of such density matrices. The trace preserving prop-
erty is required for the process E to happen with probability
1, and reads trE[ρ] = trρ = 1. The complete positivity condi-
tion is needed to preserve positive semidefiniteness and handle
the nonlocal nature of quantum theory. A linear map E is pos-
itive if it maps density operators to density operators, i.e., if
E[ρ] � 0 for all density matrices ρ. On the other hand, if one
extends a positive map to include an ancilla, the resulting map
is not always positive. If, for an ancillary system of arbitrary
dimension, such extension results in a positive map, we say
that the original map is completely positive [31]. Quantum
channels are required to be completely positive so as to allow
the proper evolution of potentially entangled states with an
ancilla; to test this condition we require some additional steps.

A simple algorithm to test the complete positivity of a
quantum channel was developed by Jamiokowski [32] and
Choi [33]. One first exploits the isomorphism that maps a
channel E to the state D = (id ⊗ E )[|�〉〈�|], where |�〉 =
1/ dim(H)

∑dim(H)
i |i〉|i〉 is a maximally entangled state be-

tween the original system and an ancilla and “id” is the
identity channel. Remarkably, the map E is completely posi-
tive if and only if D (also called the Choi or dynamical matrix
of E) is positive semidefinite [32,33].

FIG. 1. In (a) we introduce the notation in the diagrams that
represent the single-qubit PCE maps, so that each square corre-
sponds to a single τα , α = 0, 1, 2, 3. The diagrams in (b), (c), and
(d) correspond to the identity map, completely dephasing channel,
and complete depolarization, respectively, as the color of each square
indicates the value attained by the corresponding τα , either 0 (white)
or 1 (black). In (e) we show a map that only erases the component r1,
collapsing the Bloch sphere into a disk, and thus does not correspond
to a quantum channel.

B. Structure of PCE maps

We have discussed the main features of quantum channels,
and now we turn our attention to introduce the Pauli com-
ponent erasing maps. We start by exploring the single-qubit
scenario and then we treat the N-qubit case.

The most general single-qubit density matrix can be writ-
ten as

ρ = 1

2

3∑
α=0

rασα, (1)

with σ0 = 1, and σ1,2,3 the usual Pauli matrices. Normaliza-
tion requires that r0 = 1 and the remaining r1,2,3 form the
Bloch vector. Consider the map that projects each component
in the following way:

rα �→ ταrα (2)

where τα is either 0 or 1 (trace preserving requires that τ0 =
1). From now on we refer to any operation like that described
in Eq. (2), as a single-qubit PCE map. Not every such opera-
tion is a quantum channel; for example, collapsing the entire
Bloch ball to a disk on the xy plane (τ1 = τ2 = 1 and τ3 = 0)
leads to a violation of the complete positivity conditions.
Indeed, a direct evaluation of such conditions yields [15,20]

1 + τ1 + τ2 + τ3 � 0,

1 + τα − τβ − τγ � 0 ∀ α �= β �= γ , (3)

where trace preserving is already imposed, and shows that five
out of the eight single-qubit PCE maps are quantum chan-
nels. These operations are the identity map, the completely
depolarizing channel (ρ �→ 1/2), as well as the bit, phase, and
bit-phase flip (with flip probability of 1/2) channels [34], and
can be pictured using one column tables showing the positions
of 0s and 1s (see Fig. 1).

In order to present and develop the N-qubit case, it is useful
to introduce the so-called Pauli strings, defined as

σ	α = σα1 ⊗ σα2 ⊗ · · · ⊗ σαN , (4)

where 	α denotes a multi-index (α1, . . . , αN ) and αi =
0, 1, 2, 3. These Hermitian operators form an orthogonal basis
in the space of operators acting on N qubits. In fact, trσ	ασ	α′ =
2Nδ	α	α′ and trσ	α = 2Nδ	α	0.
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FIG. 2. In (a) we introduce the positions of two qubit diagrams.
The diagram in (b) corresponds to a quantum channel that results
from the tensor product of bit flip channels in each qubit [see
Fig. 1(c)], and in (c) a diagram of a map that is not a quantum channel
is presented.

Similarly to the single-qubit case, the density matrix ρ of
a system of N qubits can be written using Pauli strings in the
following way:

ρ = 1

2N

∑
	α

r	ασ	α, (5)

so r	α = 〈σ	α〉 = tr(ρσ	α ) is the coefficient corresponding to the
expansion of the density matrix in the normalized basis of
Pauli strings. Again, normalization of the state requires that
r	0 = 1. We shall refer to r	α as the Pauli components of the
density matrix of a system of qubits.

In general, a PCE map is a map that either preserves or
completely erases the Pauli components of a density matrix.
That is,

r	α �→ τ	αr	α, τ	α = 0, 1. (6)

In addition, for the operation to be trace preserving, it is
required that τ	0 = 1. It is worth noticing that, as for the
single-qubit case, not all PCE maps are quantum operations.
On the other hand, constructing and evaluating the conditions
for complete positivity is nontrivial and is the main problem
addressed in this paper. We shall refer to the map r	α �→ τ	αr	α ,
with arbitrary values of τ	α (only restricted by complete posi-
tivity), as Pauli diagonal maps.

A graphical representation for PCE maps may be intro-
duced, with the two-qubit case proving to be the most useful.
Consider a N-dimensional Cartesian grid, with 4N places.
Each place has N integer coordinates, ranging from 0 to 3, so
each place corresponds to a given 	α in Eq. (5). For a given
PCE, we shall fill the square if the corresponding τ	α = 1.
Otherwise, we leave it empty. Examples for N = 1 and 2 are
provided in Figs. 1 and 2, respectively.

It is worth noticing that the set of PCE maps overlaps
with the set of “Pauli diagonal channels constant on axes”
defined in Ref. [22], consisting of convex combinations of
quantum-classical channels. In particular, it can be shown
that quantum-classical channels defined with the eigenbasis of
some set of 2N − 1 commuting Pauli observables [29] yield
a PCE map with exactly 2N components equal to 1s in its
diagonal. For details, we refer the reader to Appendix A.

III. MATHEMATICAL CONSIDERATIONS

This section is devoted to deriving the conditions a Pauli
diagonal map needs to satisfy the complete positivity condi-
tion, i.e., that all the eigenvalues of the Choi matrix associated
to the channel are non-negative. To do so, we calculate and

diagonalize the Choi matrix of a general Pauli diagonal map,
first for a single qubit and then for N qubits. Finally, we
restrict from Pauli diagonal maps to PCE maps, and provide
a connection between a vector subspace and the set of coeffi-
cients {τ	α} in Eq. (6) of a PCE quantum channel. This allows
us to derive several important properties of this particular
family of channels.

A. Diagonalization of the Choi matrix

We now construct the Choi matrix of a single-qubit Pauli
diagonal map E . As described above, E is a linear map from
B(H) to itself. We shall denote elements of B(H) by the nota-
tion |·〉〉. Thus, for instance, |σα〉〉 represents the Pauli matrix σα

understood as a vector belonging to B(H), for the present case,
in which H = C2. Since the scalar product in B(H) is given
by 〈〈A1|A2〉〉 = trA†

1A2, elements of the Pauli basis satisfy
the relation 〈〈σα|σα′ 〉〉 = tr(σ †

ασα′ ) = 2δαα′ . In this language,
the state of a single qubit reads |ρ〉〉 = 2−1 ∑3

α=0 rα |σα〉〉 and
the matrix form of the map E is

Ê = 1

2

3∑
α=0

τα |σα〉〉〈〈σα| . (7)

After some steps, detailed from Eq. (B3) to Eq. (B6), it is
possible to show that the Choi matrix of E reads

D = 1

2

3∑
α=0

τασα ⊗ σ ∗
α . (8)

Notice that |σα〉〉〈〈σα| and σα ⊗ σ ∗
α are different operators. In-

deed, the former acts as a linear map upon the vector space
B(H), whereas the latter acts on the tensor product H ⊗ H.
Of course, there is a basis dependent identification between
these two spaces, which is used in the construction of the Choi
matrix. Surprisingly, one can in fact show that D is diagonal in
the Pauli basis (see Appendix B for details). The eigenvalues
are

λα = 1

2

3∑
β=0

aαβτβ, (9)

where

a =

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠. (10)

We wish to add that one can replace a with H ⊗ H , with H the
Hadamard matrix, and still diagonalize the same Choi matrix
D. This is due to the fact that a corresponds to a permutation
of rows of H ⊗ H . However, we chose the aforementioned
definition as some later considerations [see Eq. (32)] cannot
be easily written in terms of H ⊗ H .

The same program can be carried out for N qubits. In this
case, one uses the vectorized Pauli strings:

|σ	α〉〉 = ∣∣σα1 ⊗ · · · ⊗ σαN

〉〉
. (11)

This vectorization must not be confused with the tensor prod-
uct of all |σαi〉〉, since the tensor product and the vectorization
process generally do not commute [35]. The vectors satisfy
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the orthogonality relation 〈〈σ	α|σ	α′ 〉〉 = 2Nδ	α	α′ . The matrix rep-
resentation of the map corresponding to a Pauli diagonal
map is

ÊN = 1

2N

∑
	α

τ	α |σ	α〉〉〈〈σ	α| . (12)

As in the previous case, the Choi matrix DN may be written in
terms of tensor products of Pauli matrices:

DN = 1

2N

∑
	α

τ	α
N⊗

j=1

σα j ⊗ σ ∗
α j

. (13)

This matrix is again diagonal in the (multiqubit) Pauli basis,
with the eigenvalue corresponding to |σ	α〉〉 given by

λ	α = 1

2N

∑
	β

A	α	βτ	β, (14)

where

A = a⊗N . (15)

Again, the proofs are provided in Appendix B. We wish to
add that we could diagonalize DN with H⊗2N instead of a⊗N ,
which might be more convenient for other applications.

B. PCE quantum channels as vector spaces

In this subsection we will provide a one-to-one relation
between PCE quantum channels and the subspaces of a dis-
crete vector subspace associated with the indices 	α labeling
the components of a state [see Eq. (5)]. Some established facts
about vector spaces will allow us to derive the main features
of PCE quantum channels.

Let us start by recalling that the problem of determining
complete positivity of a PCE map can be recast as determining
which coefficients τ	α are mapped via A to positive eigenvalues
λ	α , as in Eq. (14). Using the fact that a−1 = a/4, and so

A−1 = 1

4N
A, (16)

we can directly invert Eq. (14) to obtain∑
	β

A	α	βλ	β = 2Nτ	α, (17)

which will serve as a starting point for our analysis. This is
a remarkable equation, as it provides a method to diagonalize
the Choi matrix of any Pauli diagonal map.

Two other simple but crucial observations are the follow-
ing. For valid quantum channels it holds that∑

	α∈�

λ	α = 0 ⇒ λ	α = 0, ∀	α ∈ � (18)

for an arbitrary subset of multi-indices �, as each member
of the sum is greater than or equal to zero, due to complete
positivity of the underlying channel. Finally, setting 	α = 0 in
Eq. (17), and taking into account the normalization condition

TABLE I. Definition of the ⊕ operation [see Eq. (23)]. Note
that the operation is an Abelian group; in fact it corresponds to the
Klein group, where the neutral element is zero. This is the reason for
choosing an additive notation for the operation defined in (23).

⊕ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

that τ	0 = 1, we obtain ∑
	α

λ	α = 2N , (19)

since A	0,	β = 1 for all 	β.
Now we need a definition: to each multi-index 	α we asso-

ciate a set of multi-indices �(	α) as follows:

�(	α) = {	β : A	α	β = 1}. (20)

If we now assume that τ	α = 1, and calculate the difference
between Eq. (19) and

∑
	β A	α	βλ	β = 2N [which follows from

Eq. (17) and τ	α = 1], one obtains

λ	β = 0, ∀	β /∈ �(	α). (21)

Thus, if τ	α = 1, then τ	γ and τ 	γ ′ are equal if

A	β 	γ = A	β 	γ ′ , ∀	β ∈ �(	α). (22)

This follows from restricting the sum Eq. (17) to the indices
	β such that λ	β �= 0, given in Eq. (21). Condition (22) there-

fore connects three multi-indices, 	α, 	γ , and 	γ ′. When such a
connection exists, τ	α = 1 implies τ	γ = τ 	γ ′ .

Let us now work out the nature of the aforementioned
connection. For arbitrary k we define a vector 	βk such that
	βk ∈ �(	α) as follows: 	βk is zero everywhere except for the kth
coordinate, which takes a value β such that aαkβ = 1. Since
aα0 = 1 for any α, this particular choice of 	β indeed belongs
to �(	α), so that if Eq. (22) holds for all 	β ∈ �(	α) it must hold
for that particular 	βk , which leads to

aβγk = aβγ ′
k

(23)

for all β such that aαkβ = 1. One can verify, by working out
the different cases, that Eq. (23) is equivalently expressed as

γ ′
k = αk ⊕ γk (24)

where ⊕ denotes the operation of the Klein group (see Table I
for a detailed description).

It will be useful to think of the multi-index 	α as an ele-
ment of a vector space. To do so, we notice that any group
with the property that α ⊕ α = 0 is indeed a vector space
under the two-element field {0, 1}. We notice that the Klein
group described in Table I is actually isomorphic to the two-
dimensional vector space over the field of two elements {0, 1}.
Then, we build the complete vector space, with the same field,
and defining 	α ⊕ 	β = (α1 ⊕ β1, · · · , αN ⊕ βN ) [36]. We can
indeed restate Eq. (24) and say that, for quantum channels, if
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τ	α = 1, then τ	γ = τ	α⊕	γ . For example, in Fig. 2(c) the indices
that correspond to preserved components are 	α(0) = (0, 0),
	α(1) = (0, 2), 	α(2) = (1, 0), 	α(3) = (2, 2), and 	α(4) = (3, 2).
However, 	α(1) + 	α(2) = (1, 2), which is not preserved, and
thus this diagram does not correspond to a quantum channel.
From this view we can derive several interesting observations
that will be presented in the rest of the section.

From this readily follows an amusing property: the set of
all multi-indices 	γ for which τ	γ = 1 is closed under binary
vector addition; in other words, it forms a vector subspace
of the set of all multi-indices. A moment’s consideration will
further show that the above reasoning can be inverted; that is,
if we set all τ	γ equal to 1 whenever 	γ belongs to a given vector
subspace of the set of all indices, then τ indeed has an image
which has only positive components. In other words, there is a
one-to-one correspondence between a quantum channel, and
a vector subspace of the aforementioned space.

With this information, we present a procedure to generate
all solutions: we start out from the solution having τ	0 = 1,
with everything else zero. We may then successively switch
τ	α’s to 1 for various values of 	α, taking care immediately
to set equal to 1 the components of τ that correspond to
values of 	β generated by the previously switched values of
	α via the operation ⊕. Doing so, in an ordered way, allows
one to generate all PCE quantum channels with a given set
of preserved components, without the need of exploring the
exponentially large space of all PCE maps.

We can show that all PCE quantum channels preserve 2K

components. First recall that a vector space of dimension d
over a field of q elements has qd elements [37]. Now V is a
vector space on a field of two elements having dimension 2N .
We have seen earlier that

W = {	α : 	α ∈ V, τ	α = 1} (25)

is a subspace of V . As such, W has a given dimension K ,
which means that W has 2K elements. In other words, a set
of indices τ	α with the property discussed above can only have
2K elements equal to 1, for a given integer K .

It is natural to ask how many PCE quantum channels exist
that preserve 2K components. One can calculate such num-
ber, SN,K , by examining the number of different independent
subsets of vectors that spawn a given vector subspace. In
Appendix C we show that

SN,K =
K−1∏
m=0

22N−m − 1

2K−m − 1
. (26)

From the above expression, it is easy to see the symmetry
relation

SN,K = SN,2N−K (27)

which suggests a relation between individual channels that
preserve K and 2N − K Pauli components that for the time
being has escaped our efforts to identify.

Finally, let us point out the following: if we wish to specify
a PCE channel explicitly, the naive way to proceed would be
simply to list all the Pauli components which are not erased.
This requires in general, however, an exponential amount of
information: that is, if the system has N qubits, we generally
require of the order of 2N bits to do this. If, on the other

hand, we take advantage of the vector space structure of a PCE
channel, we only need to specify a basis. Since a basis consists
of N vectors of length N , the information required is only of
N2 bits, so that we have obtained a very substantial improve-
ment by exploiting complete positivity. This is reminiscent
of a rather similar effect in stabilizer states which can also
be specified by N2 bits, as opposed to an exponentially large
number of basis coefficients for arbitrary states. A stabilizer
state is one which is the common eigenvector to the eigenvalue
1 of a set of N commuting Pauli strings. The similarity is
highly intriguing, and potentially of interest, since stabilizer
states are of central importance in quantum error correction
[38].

IV. GENERATORS

We now discuss the existence of a generator set for all PCE
quantum channels and how to label each of them uniquely
as G	α (according to its local action on every qubit in the
system). Finally we will discuss a symmetry of PCE quantum
channel generators and a connection between them and A [see
Eq. (15)].

There exists a subset of PCE quantum channels that gen-
erates the entire set; the nature of these generators may be
studied, as we shall see, with the properties of the aforemen-
tioned vector space. By standard theorems of linear algebra,
any proper subspace W [see Eq. (25)] can be extended to a
maximal nontrivial subspace of dimension 2N − 1 by adjoin-
ing appropriate additional basis elements. This can be done
in different ways. We therefore arrive to the set of maximal
extensions of W , where every maximal subspace corresponds
to a PCE quantum channel that preserves half of the Pauli
components. The intersection of all the elements of this set
reduces to W itself, and since intersection of subspaces trans-
lates to composition of PCE channels this implies that all PCE
quantum channels can be obtained as compositions of PCE
channels corresponding to maximally nontrivial subspaces,
plus the identity map. In other words, the set of PCE quantum
channels that preserve half of the components plus the identity
map is a generator set for all PCE channels. Consider Fig. 3;
Figs. 3(c)–3(e) represent nontrivial PCE generators (PCEGs)
and the composition of any two of them yields the PCE chan-
nel corresponding to Fig. 3(b).

A PCEG may be characterized by its local action on every
qubit in the system. This action can be encoded using a multi-
index 	α, as in (4), hence each of the different 4N multi-indices
may be uniquely related to each of the PCE generators and
thus denoted as G	α (see Figs. 4 and 5). The proof is simplified
if one uses the Kraus representation developed in Sec. V, so
we postpone the demonstration to Appendix D. For single
qubits, the identity corresponds to G0, shown in Fig. 1(b),
whereas G3 is shown in Fig. 1(c). The two-qubit PCE genera-
tor represented in Fig. 3(c) acts on the first qubit (first column)
as a map of its Bloch sphere to the x axis, and on the second
qubit (first row) as an identity, hence it is labeled G(1,0). See
Fig. 5 for the notation of all two-qubit PCE generators.

A reflection symmetry is identified for PCE generators.
Consider the map �(k) that reflects a multi-index 	α with
respect to the kth axis. This map leaves all components of
	α invariant, except the kth component, which is transformed
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FIG. 3. Examples of diagrams for several two-qubit PCE quan-
tum channels: (a) the totally depolarizing channel and (b) a PCE
channel that preserves four components—the normalization compo-
nent, one local component of qubit 2, and two correlations between
the two qubits. (c), (d), and (e) show the three generators G(1,0), G(3,2),
and G(2,2), respectively; the combination (overlap of diagrams) of any
two of them yields the channel in (b). (f) represents the identity map.

according to

0 �→ 3, 3 �→ 0, 1 �→ 2, 2 �→ 1. (28)

The maps have the following properties:
(1) �(k)(	α) ⊕ �(k)(	β ) = 	α ⊕ 	β.
(2) �(k)(	α) �= 	α.
From the first property, we now obtain

	α = �(k)(	α) ⊕ �(k)(	0). (29)

This implies that if �(k)(	0) belongs to a channel then τ	α =
τ�(k) (	α), where we used the fact that for channels the nonzero
elements are closed under ⊕. In other words, the components
of a PCE channel are symmetric under reflection over the kth
axis. Now consider the case in which �(k)(	0) does not belong
to generator. Then τ	α �= τ�(k) (	α), since the case τ	α = τ�(k) (	α) =
1 is forbidden due to Eq. (28) and the case τ	α = τ�(k) (	α) = 0 is
also forbidden because for generators the codimension of the
associated vector space is 1. This means that the components
of a PCE channel are antisymmetric with respect to reflec-
tion over the kth axis. Indeed, the two-qubit PCE generators
G(1,0), G(3,2), and G(2,2) represented in Figs. 2(c), 2(d) and 2(e),
respectively, are either symmetric or antisymmetric under re-

FIG. 4. The connection between rows or columns of a and
single-qubit PCE generators Gα is shown. One can identify the −1s
of a with zeros in the sets {τα} of preserved and erased components
of each Gα . For any number of particles, such a simple relation holds
see Sec. IV and Appendix D.

FIG. 5. PCE generators for two qubits. Notice that all generators
are either symmetric or antisymmetric under horizontal and vertical
reflections.

flection with respect to lines that divide the diagram in half
vertically and horizontally.

Finally, it is worth pointing out that A (and thus a) [see
Eq. (15)] encodes all the information of PCE generators G	α
and, therefore, of all PCE quantum channels. From A, the
tensor power of matrix a, one can infer the components {τ	α}
of a PCE generator G	α by taking row (or column) 	α of A and
replacing −1 with 0. The proof of the connection between
PCEGs and A is given in Appendix D, and in Fig. 4 we
illustrate this connection for the single-qubit case.

V. PCE CHANNELS AND DECOHERENCE

Lindblad processes arise naturally in many theoreti-
cal [15,30,39–42] and experimental [43] settings and are
archetypical in decoherence dynamics. Moreover, these pro-
cesses lead to a monotonic (continuous) loss of information
[44] and describe noninvertible channels in the asymptotic
limit t → ∞ [this can be seen from the monotonic (contin-
uous) decrease of the determinant (see Ref. [30])]. It is known
that not every quantum channel can be seen as a snapshot of a
process arising from a traditional Lindblad equation or even
a time-dependent Lindblad equation [15,30]. Therefore, an
interesting question is whether PCE channels can be seen as
limit points of some Markovian processes. In this section we
prove that in fact they are, and give two examples of Marko-
vian implementations. The first of them consists in identifying
each PCE channel as a fixed point of some pure dissipative
process, and in the second implementation we relate each PCE
channel to fixed points of some memoryless collision model.

A. Kraus representation

To derive the aforementioned implementations, we exploit
the existence of the PCEGs and their Kraus representation (or
operator-sum representation) which, for an arbitrary channel
E , reads

E[ρ] =
∑

i

KiρK†
i , (30)

with
∑

i K†
i Ki = 1 (the trace-preserving condition) [45]. In-

spection of the Kraus operators for two-qubit PCEGs leads to
the ansatz that the Kraus operators for the generator of G	α are

K0 = 1√
2
, K1 = σ	α√

2
, (31)

since the Kraus operators corresponding to a single-qubit
PCE are {1/√2, σα/

√
2}, corresponding to the operation that
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leaves the component σα invariant [6]. Notice that according
to Kraus operators the generators G	α are N-qubit flip channels
with flip probability 1/2, where the joint flip is ρ �→ σ	αρσ	α . In
fact, tracing out all particles except the kth one gives the well-
known qubit flip channels, i.e., tr �kG	α = Gαk [see Eq. (D1)].
More generally, tracing out m particles leaves a N − m parti-
cles flip channel (completely dephasing).

We shall first show that the Kraus operators in Eq. (31)
produce a PCE. Notice that σασβσα = aαβσβ [see Eq. (10)],
which in turn implies that

σ	ασ	βσ	α = A	α	βσ	β. (32)

Next, consider the action of a channel with Kraus representa-
tion (31) on a N-qubit system:

ρ �→ 1

2N

∑
	β

r	β

(
1

2
σ	β + 1

2
σ	ασ	βσ	α

)

= 1

2N

∑
	β

r	β
1 + A	α	β

2
σ	β. (33)

However, since A	α	β = ±1, the channel characterized by the
Kraus operators in Eq. (31) is a PCE channel. Moreover, one
can notice that, except for the first row, half of the matrix
elements of each row are +1 and half are −1, which implies
that the channel is a PCEG.

Observe also that a different choice of 	α in Eq. (31) leads
to different channels. This follows from the fact that if two
channels were the same this would imply that the matrix rep-
resentation of the corresponding superoperator of ρ �→ σ	αρσ	α
would have to be the same, which is clearly false. Since there
are 4n different 	α values, this implies that all PCEGs (plus the
identity map) are in one-to-one correspondence.

B. Pure dissipative implementation

In this section we show that any PCE channel can be
seen as the fixed point of some decoherence process, starting
with PCEGs and then extending to more general channels.
Consider the following dynamical process that implements G	α
when t → ∞:

G	α,t [ρ] = e−γ tρ + (1 − e−γ t )G	α[ρ]

= (1 + e−γ t )

2
ρ + (1 − e−γ t )

2
σ	αρσ	α, (34)

where γ > 0. It is easy to show that the family of channels
G	α,t parametrized with t � 0 forms a one-parametric semi-
group, i.e., G	α,t1G	α,t2 = G	α,t1+t2 . Therefore G	α,t describes a
dissipative time-homogeneous Markovian process, which is
always characterized by some Lindblad generator [39]. The
Lindblad generator of G	α,t , denoted by L	α , can be obtained
using the standard procedure:

L	α[ρ] = dG	α,t [ρ]

dt

∣∣∣∣
t=0

= γ (σ	αρσ	α − ρ)

2
, (35)

where the unique Lindblad operator associated with the re-
laxation ratio γ /2 is simply σ	α . Notice that σ	α is traceless,
therefore the process is purely dissipative [30].

Since PCEGs commute, we can describe easily any other
PCE channel as a fixed point of a decoherence process. For

them, the Lindblad generators are the sum of the Lindbladians
of the corresponding generators. As an example, consider the
channel depicted in Fig. 2(b); it is equal to G(0,3)G(3,3), there-
fore it is the fixed point of the dissipation process described
with the following Lindbladian:

L[ρ] = γ(0,3)(σ(0,3)ρσ(0,3) − ρ)

2
+ γ(3,3)(σ(3,3)ρσ(3,3) − ρ)

2
,

(36)
where γ(0,3) and γ(3,3) are positive and correspond to the
Lindblad operators σ(0,3) and σ(3,3). Notice that such election
of Lindblad operators is not unique, as the PCE channel de-
scribed here is also equal to G(0,3)G(3,0).

C. Collision model implementation

We show now that PCE channels can also be implemented
with simple collision models [46]. To do this, observe that
employing the Stinespring dilation theorem [47] PCEGs can
be implemented using a unitary over the system and an ancilla.
Since PCEGs always have Kraus rank 2, one can always
choose a qubit as the ancillary system. Concretely,

G	α[ρ] = trqubit[U	α (ρ ⊗ |0〉〈0|)U †
	α ], (37)

where trqubit denotes the partial trace over the ancillary qubit,
with the unitary defined as follows:

U	α|ψ〉|0〉 = 1√
2

(|ψ〉|0〉 + σ	α|ψ〉|1〉), (38)

U	α|ψ〉|1〉 = 1√
2

(|ψ〉|0〉 − σ	α|ψ〉|1〉). (39)

Therefore, any concatenation of PCEGs can be described as a
collision model with as many collisions as generators needed.
In fact, generators are described with one collision. For the
general case consider some PCE channel E generated with
{G	α1 ,G	α2 , . . . ,G	αM }. For this we can define an environment
consisting of M qubits initially in the state (|0〉〈0|)⊗M , or
equivalently one qubit with the additional assumption that
its state is reset to |0〉 after each collision (memoryless col-
lisions). The collision with the k-th particle is described by
U	αk , which acts solely over the system and the kth particle.
Therefore E can be written as follows:

E[ρ] = trE
[(

U	α1 . . .U	αM

)
ρ ⊗ (|0〉〈0|)⊗M

(
U	α1 . . .U	αM

)†]
,

(40)

where trE is the partial trace over all ancillary qubits. Notice
that as PCEGs commute the order of the collisions is irrele-
vant.

VI. CONCLUSIONS AND OUTLOOK

In this paper we introduce and characterize a set of quan-
tum maps which either preserve or completely erase the
components of a multiqubit density matrix, in the basis of
Pauli strings; we call those maps Pauli component erasing
maps. For a single qubit these include the completely depo-
larizing and dephasing channels. To start the characterization,
we note that not all PCE maps are quantum channels, as some
are not completely positive. In fact, the most laborious task
of this paper was to evaluate complete positivity conditions
given by the Choi-Jamiokowski isomorphism, after which we

042604-7



JOSE ALFREDO DE LEON et al. PHYSICAL REVIEW A 106, 042604 (2022)

showed that the components of PCE quantum channels form
a finite vector space. This in turn allows us to unravel several
properties, such as the possible number of PCE channels and
the number of components preserved, while also providing
advantages to study numerically this set, for example, by im-
plying an efficient method to construct all quantum channels
for a given number of qubits.

Similar to other objects in open quantum systems (for
example, Lindblad processes), PCE quantum channels form
a semigroup, but finite in this case. For PCE channels, the
generators are generalized flip operations, i.e., channels that
with probability 1/2 apply a joint flip. This structure allows
us to link this channel with multiqubit decoherence processes
which can be described, say, by simple dissipative processes
or memoryless collision models, which in turn may pave a
way to either implement these channels or connect them with
already existing decoherence families. This, together with the
discovered algebraic structure that translates complete posi-
tivity into an explicit conditioned preservation of many-body
correlations, encompasses an advance in the knowledge of the
mathematical structures underlying general quantum chan-
nels.

In the future we might consider generalizations (such as
going from qubits to qudits) as well as the geometric role
of PCE channels within the set of all quantum channels to
further advance the understanding of open quantum systems.
We have thus described a family of quantum channels with a
very special mathematical structure that allows us to widen the
understanding of quantum channels in the context of many-
body systems.
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APPENDIX A: QUANTUM-CLASSICAL CHANNELS

A quantum-classical (QC) channel is defined by using an
orthonormal basis in the Hilbert space. Let B = {|ψi〉} be such
a basis in H with dim(H) = 2N ; the QC channel associated to
B is

EQC
B [ρ] =

2N∑
i=1

〈ψi|ρ|ψi〉|ψi〉〈ψi|, (A1)

that is, QC channels project density matrices onto the corre-
sponding diagonal matrix in the basis B [22].

Consider now that the basis B is the simultaneous eigen-
basis of a maximal set of commuting Pauli strings denoted
by set(B); such a set contains 2N elements (including the
identity), and there are 2N + 1 of such sets [29]. Now we

proceed to demonstrate that the QCs defined in this way are
PCE channels with 2N 1s on their diagonal.

First we compute the components of EQC
B in the basis

2−N/2{σ	α}:
(
EQC

B

)
	k	l = 1

2N

2N∑
i=1

〈ψi|σ	k|ψi〉〈ψi|σ	l |ψi〉. (A2)

To evaluate the components, observe that 〈ψi|σ	k|ψi〉2 =
1 ∀σ	k ∈ set(B), and from the formula for the purity of |ψi〉,

1 = 1

2N

∑
	k

〈ψi|σ	k|ψi〉2, (A3)

it follows that 〈ψi|σ	k′ |ψi〉 = 0 ∀σ	k′ �∈ set(B) since there are
only positive terms in the sum, and 2N of them are already
equal to 1. Therefore,(

EQC
B

)
	k	k = 1,(

EQC
B

)
	k	l ′ = (

EQC
B

)
	l ′ 	l ′ = 0 ∀σ	k ∈ set(B) ∀σ	l ′ �∈ set(B). (A4)

To compute (EQC
B )	k	l for σ	k, σ	l ∈ set(B) with 	k �= 	l , observe

that (EQC
B )	k	l = (EQC

B )	l	k , i.e., the matrix corresponding to EQC

is an orthogonal projector. Thus, considering the block,[(
EQC

B

)
	k	k

(
EQC

B

)
	k	l(

EQC
B

)
	k	l

(
EQC

B

)
	l	l

]
=

[
1

(
EQC

B

)
	k	l(

EQC
B

)
	k	l 1

]
, (A5)

it is easy to check that the latter is a projector only if (EQC
B )	k	l =

0. Since there are exactly 2N elements of the form (EQC
B )	k	k

with σ	k ∈ set(B), then the channel EQC
B is PCE with 2N 1s on

its diagonal.

APPENDIX B: DIAGONALIZATION OF CHOI MATRIX DN

In order to simplify the derivation of the relations, let us
employ pairs of binary indices instead of a single quater-
nary, i.e., α → j + 2k. For the sake of clarity, we use Latin
symbols for binary indices, and reserve Greek letters for
quaternary ones. We can write the elements of the Pauli ba-
sis (σ0, σ1, iσ2, σ3), compactly as σkl = ∑1

j=0(−1) jk| j〉〈 j +
l (mod2)|. In vectorized form

|σkl〉〉 =
1∑

j=0

(−1) jk| j〉| j + l (mod 2)〉, (B1)

and its inverse relation

|k〉|k + l (mod 2)〉 = 1

2

1∑
j=0

(−1) jk |σ jl〉〉 . (B2)

On the other hand, the matrix form of an arbitrary Pauli map
E may be written as

Ê = 1

2

1∑
lm=0

τlm |σlm〉〉〈〈σlm| (B3)

= 1

2

∑
jklm

τlm(−1)l ( j+k)

× | j〉| j + m(mod 2)〉〈k|〈k + m(mod 2)|. (B4)
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After applying the reshuffling operation on Ê , we obtain the
Choi matrix associated to the map. It reads

D = 1

2

∑
jklm

τlm(−1)l ( j+k)

× | j〉|k〉〈 j + m(mod2)|〈k + m(mod2)|. (B5)

Note furthermore that the expression above may also be writ-
ten as a combination of tensor products of Pauli matrices:

D = 1

2

∑
lm

τlmσlm ⊗ σ ∗
lm. (B6)

Returning to Eq. (B5), let us apply the index relabeling k →
j + k(mod2); then the Choi matrix reads

D = 1

2

∑
jklm

τlm(−1)lk

×| j〉| j+k(mod 2)〉〈 j + m(mod 2)|〈 j + m + k(mod 2)|,
(B7)

since (−1) j+( j+k(mod2)) = (−1)k . To continue, we use the re-
lation between computational and Pauli elements [Eq. (B2)],
and notice that

∑
j (−1) j(m±n) = 2δmn. We arrive to the simple

expression

D = 1

2

∑
jk

(
1

2

∑
lm

(−1) jm+klτlm

)
|σ jk〉〉〈〈σ jk| . (B8)

Notice that D is already written in its diagonal form, and one
can identify by inspection the eigenvalues. The eigenvalues
read

λ jk = 1

2

∑
lm

(−1) jm+klτlm, (B9)

or more compactly λ = (1/2)H ⊗ Hτ , where H is the
Hadamard matrix.

For the sake of convenience in the demonstration of several
useful properties of the PCE channels, we shall reorder the
eigenvalues, to write

λ = 1
2 aτ (B10)

with a the matrix shown in Eq. (10) instead of H ⊗ H . This
can be done due to the fact that both matrices (a and H ⊗ H)
are equivalent up to a permutation of rows. In other words this
operation corresponds to a reordering of the eigenvalues.

N qubits

To work out the N-qubit case, we again rely on binary
indices. In this case, we replace N-dimensional vector 	α with
a pair of N-dimensional vector binary indices 	j and 	k so that
each entry αi of 	α is identified with the pair ji and ki as in
the single-qubit case of the previous subsection. Then, all the
steps leading to Eq. (B9) can be redone.

The tensor product of Pauli matrices, in vector form, will
be denoted by |σ	k	l〉〉. With this in mind, a N-qubit Pauli map
can be written as

ÊN = 1

2N

∑
	l 	m

τ	l 	m |σ	l 	m〉〉〈〈σ	l 	m| . (B11)

The generalizations of Eqs. (B1) and (B2) read

|σ	k	l〉〉 =
∑

	j
(−1)	j·	k| 	j〉| 	j + 	l (mod2)〉, (B12)

|	l〉|	l + 	n(mod2)〉 = 1

2N

∑
	m

(−1) 	m·	l |σ 	m	n〉〉 . (B13)

By employing the previous relations, we can write the
matrix representation of the map, ÊN in the N-qubit compu-
tational basis, as

Ê = 1

2

∑
	j	k	l 	m

τ	l 	m(−1)	l (	j+	k)

× |	j〉| 	j + 	m(mod2)〉〈	k|〈	k + 	m(mod2)|. (B14)

In this way it is straightforward to apply the reshuffling op-
eration on ÊN to obtain the associated Choi matrix, and then
transform back to the Pauli basis and simplify to obtain

DN = 1

2N

∑
	m	n

⎛
⎝ 1

2N

∑
	l 	m

τ	l 	m(−1)	l·	n+ 	m· 	m

⎞
⎠ |σ 	m	n〉〉〈〈σ 	m	n| .

(B15)

All intermediate steps, from Eq. (B3) to Eq. (B8) are similar,
but with a vectorized version of the indices, and appropriate
normalization constants. Again, we are left with an expression
that displays explicitly the eigenvalues of the Choi matrix, so
we can write

λ	j	k = 1

2N

∑
	l 	m

(−1)	j· 	m+	k·	lτ	l 	m (B16)

or more compactly λ = (H ⊗ H/2)⊗Nτ . Again, we prefer to
reorganize the indices to be able to write

λ = 1

2N
Aτ, (B17)

where A = a⊗N .

APPENDIX C: NUMBER OF PCE’S FOR A FIXED
NUMBER OF INVARIANT COMPONENTS

Finally, we may enumerate straightforwardly the subspaces
W of dimension K . We do this in two steps: first, we evaluate
NK,N , the number of all linearly independent subsets V with
K elements. Each of these is the basis of one subspace of
dimension K , but each subspace has a number MK of dif-
ferent bases. The crucial point is that MK is independent of
the subspace under consideration: MK simply describes the
number of linear maps of W onto itself. The total number SN,K

of subspaces of dimension K is therefore NN,K/MK .
To evaluate NN,K we proceed by steps: the first element of

the basis can be any nonzero element, of which the number
is 22N − 1. For the basis element m + 1, we must choose
from those which do not belong to the m-dimensional space
generated by the first m basis elements, so that one chooses
from 22N − 2m. We thus have

NN,K =
K−1∏
m=0

(22N − 2m). (C1)
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On the other hand, any map of a K-dimensional vector space
W onto itself is uniquely defined by a nonsingular binary
K × K matrix over the field {0, 1}. To count these, we pro-
ceed as above: the first line is an arbitrary nonzero vector, of
which there are 2K − 1. For the row m + 1 we must choose an
arbitrary vector not belonging to those generated by the first
m vectors, of which there are 2K − 2m. This eventually yields

MK =
K−1∏
m=0

(2K − 2m). (C2)

From this it follows that

SN,K =
K−1∏
m=0

22N−m − 1

2K−m − 1
. (C3)

APPENDIX D: LOCAL ACTION AND LABELING OF
PCE GENERATORS

The local action of a generator G	α on every qubit in the
system depends only, as its notation suggests, on the multi-
index 	α. This index has a simple meaning that can be read
from the graphical representation of the channel. Recall the
single-qubit PCE generators, shown in Fig. 4, denoted by G0

(corresponding to the identity map) and G1,2,3 (corresponding
to the completely bit, phase, and bit-phase flip channels, re-
spectively). One can easily read the diagrams in the following
manner: α = 0 corresponds to all squares black, whereas for
α > 0 we have only the zeroth and the αth squares black.
Let us generalize this characterization rule for N-qubit PCE
generators. Consider that the reduced density matrix of the
kth qubit after generator G	α acts on the entire system

tr �kG	α[ρ] = 1

2
tr �k (ρ + σ	αρσ	α ) = ρk

2
+ σαk ρkσαk

2

= Gαk [ρk], (D1)

where � k means that all qubits except for the kth one are traced
out. We can read from (D1) that αk not only characterizes
Gαk but actually tells us which single-qubit channel is acting
locally on the kth qubit. The action of Gαk on the local com-
ponents of the reduced density matrix ρk reads r0,..., jk ,...,0 �→
τ0,..., jk ,...,0r0,..., jk ,...,0. The general characterization rule for all
PCE generators G	α is clear now: if all τ0,..., jk ,...,0 = 1, then
αk = 0; otherwise, if τ0,..., jk ,...,0 = 1 (with jk > 0), then αk =
jk . For two-qubit PCE diagrams this means that the multi-
index 	α is encoded in the first column and row of the diagrams.
For example, see G(0,2) in Fig. 5, where all τ j1,0 = 1 and
τ(0,2) = 1, and thus 	α = (0, 2). In Fig. 5 we show all two-qubit
PCE generators and their corresponding notation G	α .

An interesting relation of the generators and the A ma-
trix can be derived with the tools developed. Consider the
generator G	α , and its Pauli components τ

(	α)
	β . We can calcu-

late the former studying the action of the generator on the
non-normalized state � = ∑

	γ σ	γ . Let us proceed with such
calculation, using the Kraus decomposition Eq. (31):

τ
(	α)
	β = trσ	βG	α[�] (D2)

= 1

2

∑
	γ

tr[σ	βσ	γ + σ	βσ	ασ	γ σ	α] (D3)

= 1

2
(1 + A	α	β ) (D4)

where we have used the orthogonality relations of Pauli ma-
trices and Eq. (32). This means that one can read the αth
generators directly from matrix A (see Fig. 4 for the n = 1
case). Alternatively one could construct the A matrix for
n = 2, from Fig. 5, where the first row of this matrix is read
from G(0,0), replacing black (white) squares with 1s (−1s), the
second row from G(0,1), etc.
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Quantum channels, a subset of quantum maps, describe the unitary and non-unitary evolution of
quantum systems. We study a generalization of the concept of Pauli maps to the case of multipartite
high dimensional quantum systems through the use of the Weyl operators. The condition for such
maps to be valid quantum channels, i.e. complete positivity, is derived in terms of Fourier transform
matrices. From these conditions, we find the extreme points of this set of channels and identify an
elegant algebraic structure nested within them. In turn, this allows us to expand upon the concept of
’component erasing channels’ introduced in earlier work by the authors. We show that these channels
are completely characterized by elements drawn of finite cyclic groups. An algorithmic construction
for such channels is presented and the smallest subsets of erasing channels which generate the whole
set are determined.

PACS numbers: 03.65.Yz, 03.65.Ta, 05.45.Mt

I. INTRODUCTION

The description of open quantum systems [1, 2] serves
a twofold purpose. Firstly, it lies at the core of the mea-
surement problem [3, 4], thus bearing a fundamental in-
terest. On the other hand, it describes quantum sys-
tems where the inevitable interaction with an environ-
ment is taken into account [5]. For most implementa-
tions of quantum devices it is crucial to understand and
control such unwanted interaction. In both cases, a nat-
ural language for such a description is that of quantum
channels, which have been subject of intense research [6].

The properties of a quantum channel dictate the char-
acteristics of the associated quantum dynamics. In the
realm of qubits, the set of quantum channels has been ex-
plored and thanks to a better understanding of its geom-
etry, several physical properties of the set, such as divis-
ibility [7–9], non-Markovianity [10, 11], channel capacity
[12], among others have been unraveled. In a previous
paper [13] we proposed and studied a class of channels
acting on multi-qubit systems that either erased or pre-
served the Pauli components of the state. These are the
so called Pauli component erasing (PCE) maps, which
are an important subset of the Pauli maps. We found
that every PCE channel corresponds uniquely to a vec-
tor subspace of a discrete vector space. Such channels can
be associated with measurements and asymptotic Lind-
bladian evolution.

Moreover, most of the applications in the field of quan-
tum information have been built upon qubits. Neverthe-
less, many real-world realizations of quantum systems
have more than two levels that can be used to provide
an important technical advantage. Such advantage is in-
deed employed to develop several important tasks like

∗ carlospgmat03@gmail.com

quantum cryptography [14, 15], quantum computation
[16–18], violation of Bell inequalities [19], randomness
generation [20], among others. For this reason, the study
of high-dimensional and multiparticle systems is of rele-
vance.

In this article, we introduce the concept of Weyl chan-
nels for systems composed of many particles, allowing
each of these to be of different dimensions. We be-
gin defining these channels in sec. II as diagonal chan-
nels in the basis of multi-particle Weyl matrices, which
are tensor products of the well-known Weyl matrices.
Moving forward, we proceed to diagonalize the Choi-
Jamiołkowski matrix, revealing a linear relationship be-
tween the eigenvalues and those of the channel. From
this, we find two significant properties of the set of Weyl
channels: (1) its extreme points in sec. III, and (2) a sub-
group structure of all Weyl channels in sec. IV. Then, in
sec. V we extend the notion of component erasing chan-
nels by introducing the Weyl erasing channels. Given its
semigroup property, we describe the generator subset by
means of the aforementioned algebraic structure of Weyl
channels. Finally, we wrap up and conclude in sec. VI.

II. WEYL CHANNELS

A well-known generalization of the Pauli matrices to
arbitrary d-dimensional Hilbert spaces was introduced by
Weyl [21] and involves the following unitary matrices [22]:

U(m,n) =
d−1∑

k=0

ωmk |k⟩ ⟨k + n| . (1)

Here we introduce the notation we shall use throughout:
ω is the primitive d-th root of unity exp(2πi/d). All
arithmetical operations over latin indices are taken over
modulo d.
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We will further be mainly concerned with systems of
N qudits, for which we introduce the following standard
notations:

U(m⃗, n⃗) =

N⊗

α=1

U(mα, nα) (2)

Greek indices will always run over a range from 1 to N ,
and the arithmetic operations over them will always be
the usual ones. When the range is not specified, it will
be from 1 to N .

We now write for example

U(m⃗, n⃗) =
∑

k⃗

ωm⃗·⃗k
∣∣∣⃗k
〉〈

k⃗ + n⃗
∣∣∣ , (3)

the notational conventions being self-explanatory. Note
further that all our results can routinely be extended to
the more complicated case in which the different particles
in the N -particle system have different dimensions, dα.
The “vectors” m⃗ are then replaced by lists of integers,
with 0 ≤ mα ≤ dα − 1. Whereas this complicates the
notation considerably, no points of essential interest are
thereby introduced. We thus leave it to the interested
reader to develop these issues. When non-trivial points
arise in this respect, we shall explicitly point this out.

These unitary matrices satisfy certain elementary
properties:

trU(m,n)†U(m′, n′) = dδmm′δnn′ (4)

U(m,n)U(m′, n′) = ωm′nU(m+m′, n+ n′)

U(m,n)U(m′, n′) = ωm′n−mn′
U(m′, n′)U(m,n)

U(m,n)† = ωmnU(−m,−n)

as well, of course, as their vectorial equivalents.

We now define Weyl maps and the corresponding chan-
nels: any density matrix on the space of N qudits, that

is, on (Cd)⊗N , can be expressed as

ρ =
1

dN

∑

m⃗,n⃗

α(m⃗, n⃗)U(m⃗, n⃗) (5)

where α(m⃗, n⃗) satisfies α(m⃗, n⃗) = ωm⃗·n⃗α∗(−m⃗,−n⃗) in
order for ρ to satisfy the condition of hermiticity. More
intricate conditions need to be satisfied in order to yield
a positive matrix, but we shall not be concerned with
these.

A Weyl map is now defined as follows

ρ → ρ′ = E [ρ] = 1

dN

∑

m⃗,n⃗

τ(m⃗, n⃗)α(m⃗, n⃗)U(m⃗, n⃗). (6)

Here the τ(m⃗, n⃗) are complex numbers, whereas ρ is
the density matrix given in (5). In other words, if the
U(m⃗, n⃗) are viewed as generators of the vector space of
all Hermitian matrices, the Weyl maps act diagonally on
this set.

We now wish to find the conditions necessary and suf-
ficient for E to be a quantum channel, that is, to be trace
and hermiticity preserving, as well as completely positive.
For the former two conditions, we require

τ(m⃗, n⃗) = τ(−m⃗,−n⃗)∗, (7a)
τ(0, 0) = 1. (7b)

To verify complete positivity, we must check the cir-
cumstances under which the Choi–Jamiołkowski matrix,
given by

D =
1

dN

∑

m⃗,n⃗

τ(m⃗, n⃗)U(m⃗, n⃗)⊗ U(m⃗, n⃗)∗ (8)

is positive semidefinite. Interestingly, eq. (8) is the corre-
sponding Choi–Jamiołkowski matrix, even if U(m⃗, n⃗) are
not Weyl operators, but an arbitrary basis of Hilbert-
Schmidt space, as shown in Appendix A. To specify the
criteria for matrix in eq. (8) to be positive semidefi-
nite, we evaluate its eigenvalues λ(m⃗, n⃗). This is easily
done after noticing that the various elements of the sum,
namely the U(m⃗, n⃗)⊗U(m⃗, n⃗)∗ all commute for arbitrary
values of m⃗ and n⃗, as readily follows from (4):

(
U(m,n)⊗ U(m,n)∗

)(
U(m′, n′)⊗ U(m′, n′)∗

)
=
(
U(m,n)U(m′, n′)

)
⊗
(
U(−m,n)U(−m′, n′)

)

=
(
U(m+m′, n+ n′)

)
⊗
(
U(−(m+m′), n+ n′)

)
(9)

The symmetry of the final expression proves the claim,
and the extension to the case of arbitrary N is straight-
forward.

It now remains to determine the eigenvalues of
U(m⃗, n⃗), which given its tensor product structure [see

eq. (2)] can be reduced to the single-qudit case of
U(m,n). These can be calculated directly studying the
recursion relation that follows from the eigenvalue equa-
tion for the Weyl operators, see Appendix B. One can
then readily see that the eigenvalues µ(r, s) of U(m,n)⊗
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U(m,n)∗ take the form

µ(r, s) = ωmr−ns, (10)

where r and s are arbitrary integers modulo d that serve
as labels for the eigenvalue. The degeneracy pattern of
these eigenvalues is complicated, but since our focus is
on the positivity of D, we do not need to consider these
details.

The set of eigenvalues of U(m⃗, n⃗) ⊗ U(m⃗, n⃗)∗ is then
given by

µ(r⃗, s⃗) = ωm⃗·r⃗−n⃗·s⃗. (11)

The condition for the positive semidefiniteness of D is
thus that, for all r⃗ and s⃗,

d−N
∑

m⃗,n⃗

τ(m⃗, n⃗)ωm⃗·r⃗−n⃗·s⃗ = λ(r⃗, s⃗) ≥ 0. (12)

Note that condition (7a) on τ(m⃗, n⃗) straightforwardly
shows that the left-hand side of (12) is real, so that the
inequality is meaningful.

The λ(r⃗, s⃗) are the eigenvalues of D. They can also be
used to characterize the Weyl channel E . Inverting the
relation (12) we get

τ(m⃗, n⃗) = d−N
∑

r⃗,s⃗

λ(r⃗, s⃗)ω−m⃗·r⃗+n⃗·s⃗, (13a)

∑

r⃗,s⃗

λ(r⃗, s⃗) = dN . (13b)

Here (13b) follows from trD = dN , which is a conse-
quence of (7b) and (8).

From (8) and (10) follows that the τ(m⃗, n⃗) and the
λ(r⃗, s⃗) are connected by the following linear relationship:

τ(m⃗, n⃗) =
∑

r⃗,s⃗

⊗

α

[Fα ⊗ F ∗
α] (m⃗, n⃗; r⃗, s⃗)λ(r⃗, s⃗), (14)

where Fα is the quantum Fourier transform matrix for
dimension dα in the general case, and of dimension d in
the case we shall generally study (see Fig. 1).

We have therefore obtained a full characterization of
Weyl channels: choosing arbitrary λ(r⃗, s⃗) that are posi-
tive and add up to dN , the τ(m⃗, n⃗) given by (13a) define
a Weyl channel.

It is important to highlight that the set of channels
introduced in the present work are different from other
kinds of generalization of Pauli channels introduced pre-
viously [23–25]. On the other hand, similar expressions
for the eigenvalues associated to random unitary channels
on single d-level systems have been presented in [26, 27].

III. SET OF EXTREME POINTS

The set of Weyl channels is clearly convex, since equa-
tions (13) imply that any Weyl channel is given by a
convex sum of channels of the form

τr⃗0,s⃗0(m⃗, n⃗) = ω−m⃗·r⃗0+n⃗·s⃗0 , (15)

where r⃗0, s⃗0 are fixed vectors whose elements are integer
numbers modulo d.

Furthermore, we can see that the set of Weyl channels
is in fact a d2N − 1 dimensional simplex. Recall that
all eigenvalues λ(r⃗, s⃗) of the Choi–Jamiołkowski matrix
of a Weyl channel must be non-negative, and sum up to
dN [see eq. (13b)]. The set λ(r⃗, s⃗) is thus the standard
d2N − 1 dimensional simplex. Since the connection (12)
between the λ’s and the τ ’s is linear and invertible, then
the set of all τ ’s is also a d2N − 1 dimensional simplex.
Note however that the τ ’s are complex, so they are actu-
ally part of a bigger 2d2N dimensional real vector space.
Nonetheless, conditions (7) (which are automatically sat-
isfied by the formulae (12)) additionally limit the τ ’s so
that the number of degrees of freedom is back to d2N −1.

Moreover, the extreme points of the simplex of Weyl
channels are given by the d2N channels of equation (15).
This is because the extreme points of the λ’s simplex are
clearly

λ(r⃗, s⃗) = dNδr⃗,r⃗0δs⃗,s⃗0 . (16)

Therefore, those of the set of Weyl channels are given
by applying the transformation (13a) to these extreme
points, obtaining as a result the channels of equation
(15). In fact, these channels are the only Weyl chan-
nels with the property that for all m⃗, n⃗, |τ(m⃗, n⃗)| = 1, as
shown in the following theorem.

Theorem 1. A Weyl channel is an extreme point of the
set of Weyl channels if and only if |τ(m⃗, n⃗)|= 1 for all
m⃗, n⃗.

Proof. We have already proved that extreme points are
of the form (15), and therefore satisfy that |τ(m⃗, n⃗)|= 1,
so we only need to prove the converse. Equation (13a)
says that

τ(m⃗, n⃗) = d−N
∑

r⃗,s⃗

λ(r⃗, s⃗)ω−m⃗·r⃗+n⃗·s⃗. (17)

Recall that d−Nλ(r⃗, s⃗) are non-negative and add up to 1.
It follows from the triangle inequality that if the sum in
the right-hand side of (17) has more than one term, then
|τ(m⃗, n⃗)| < 1. Thus, a Weyl channel with |τ(m⃗, n⃗)| = 1
must have all λ(r⃗, s⃗) equal to 0 except one, say λ(r⃗0, s⃗0).
In other words, if the Choi–Jamiołkowski matrix of a
Weyl channel has only one eigenvalue λ(r⃗0, s⃗0) different
from zero, then that Weyl channel is an extreme point.

The simplest case that illustrates the result of this the-
orem are the single-qubit Weyl quantum channels. Given
that the Weyl operators for d = 2 reduce to the Pauli
operators, the extremal points for these are the vertices
of the well-known tetrahedron of qubit quantum chan-
nels [28], which we illustrate in Fig. 2(a).

We can now characterize in greater detail these ex-
treme points. For a given value of r⃗0, s⃗0, the effect of the
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N = 1, d = 2 N = 3, d = 2 N = 1, d = 3 N = 2, d = 3

N = 1, d = 8 N = 1, d = 9 N = 1, d = 10 N = 1, d = 11

(a) (b)

(c)

Figure 1. Visualization of the argument of the matrix elements
⊗

α [Fα ⊗ F ∗
α ] (m⃗, n⃗; r⃗, s⃗) for different dimensions and number

of particles; rows and columns are indexed by the double indices (m⃗, n⃗) and (r⃗, s⃗), respectively. This matrix map the τ(m⃗, n⃗)
of a Weyl map to the eigenvalues λ(r⃗, s⃗) of its Choi-Jamiołkowski matrix, see eqs (12) and (14). We show plots for systems
of (a) qubits, (b) qutrits, and (c) single-qudits. Notice that not only the total dimension is relevant, but also the number of
particles; for instance, compare N = 3, d = 2 with N = 1, d = 8.

channel given by (15) on a Weyl matrix U(m⃗, n⃗) is

Er⃗0,s⃗0 [U(m⃗, n⃗)] = ω−r⃗0·m⃗+s⃗0·n⃗U(m⃗, n⃗)

= U(s⃗0, r⃗0)U(m⃗, n⃗)U(s⃗0, r⃗0)
†. (18)

We see therefore that the extreme points of the set of
all Weyl channels are unitary channels. Since all Weyl
channels are convex combinations of the extreme points
[29], it immediately follows that all the Weyl channels
are simply random unitary channels, constructed from
the Weyl unitaries.

IV. A MATHEMATICAL STRUCTURE WITHIN
WEYL CHANNELS

In this section, we focus on a subset of Weyl chan-
nels with physical relevance and mathematical beauty.
We consider the Weyl channels, which, when iterated in-
finitely, converge to channels that completely erase, pre-
serve, or introduce phases to the projections of the den-
sity matrix onto the Weyl operator basis. Our main re-
sults include the characterization of the group property of
this particular subset and a method to determine these
channels. Specifically, we show that the corresponding
channels can be obtained by identifying all subgroups of
Zd ⊕ Zd and their homomorphisms to Zd.

A. Subgroup property of Weyl channels

Theorem 2. Let τ(m⃗, n⃗) and τ(m⃗′, n⃗′) have both norm
1. Then so does τ(m⃗+ m⃗′, n⃗+ n⃗′) and additionally

τ(m⃗+ m⃗′, n⃗+ n⃗′) = τ(m⃗, n⃗)τ(m⃗′, n⃗′) (19)

Proof. From (13) follows that, quite generally, τ(m⃗, n⃗)
are convex combinations of complex numbers of the form
ωk, with k an integer. Nonetheless, the only such convex
combinations having norm 1 are themselves numbers of
the form ωk, with k an integer, therefore τ(m⃗, n⃗) and
τ(m⃗′, n⃗′) are, under the hypotheses of the theorem, of
the form ωk and ωk′

, respectively. Similarly for τ(m⃗′, n⃗′),
which we take to be equal to ωk′

.
Setting τ(m⃗, n⃗) = ωk in 13a and conveniently rewriting

the equation results in

ωk = d−N
∑

l

ωl
∑

r⃗,s⃗

λ(r⃗, s⃗)δ−m⃗·r⃗+n⃗·s⃗,l (20)

and a similar expression for ωk′
, replacing m⃗ and n⃗

with their primed versions. Since λ(r⃗, s⃗) are positive and
sum up to dN , it follows that the right-hand side is a
convex sum of ωl. For it to equal ωk, an extreme point,
only the term with l = k can be different from zero. It
follows that λ(r⃗, s⃗) = 0, whenever −m⃗ · r⃗ + n⃗ · s⃗ ̸= k or
−m⃗′ · r⃗ + n⃗′ · s⃗ ̸= k′. From this follows straightforwardly
that again λ(r⃗, s⃗) = 0 whenever

−(m⃗+ m⃗′) · r⃗ + (n⃗+ n⃗′) · s⃗ ̸= (k + k′) (21)
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which implies

τ(m⃗+ m⃗′, n⃗+ n⃗′) = ωk+k′
= τ(m⃗, n⃗)τ(m⃗′, n⃗′). (22)

This means that the set of all (m⃗, n⃗), such that τ(m⃗, n⃗),
has norm 1 form an additive subgroup of the abelian
group

G = Z⊕N
d ⊕ Z⊕N

d (23)

with respect to vector addition modulo d. Note that
this is one case where a significant difference arises when
the N particles have different dimensions dα; the vectors
(m⃗, n⃗) would then belong to the group

G =

(
N⊕

α=1

Zdα

)
⊕
(

N⊕

α=1

Zdα

)
. (24)

In other words, the set H ⊆ G on which τ(m⃗, n⃗) has
norm 1 forms a subgroup of G and τ can be seen as a
homomorphism from H to Zd.

To determine all τ(m⃗, n⃗) of Weyl channels satisfying
eq. (19), we must proceed in 2 steps:

1. Determine all subgroups H ⊆ G.

2. Determine all homomorphisms from H to Zd.

In the following section we present an algorithm to de-
termine all subgroups H of G and homomorphisms from
H to Zd.

We wish to remark that given a quantum channel for
which some of its coefficients τ(m⃗, n⃗) satisfy Eq. 19, the
rest of coefficients are not necessarily null. However, still
these are restricted by the complete positivity condition,
Eq. 12.

B. Weyl channels

To determine all τ(m⃗, n⃗) of Weyl channels satisfying
eq. (19) we proceed in two steps. The first step involves
identifying all subgroups of G [cf. eq. (24)]. We begin
by stating two relevant facts about finite abelian groups,
and then discuss how to find the subgroups for the more
general case of an abelian group G, which encompasses
the majority of our discussion in this section. After that,
we describe the second step, which is how to determine
all phases of τ(m⃗, n⃗) of a WCE channel by determin-
ing all homomorphisms from a subgroup to the roots of
unity. We refer the reader to Appendix E to illustrate
with several examples the algorithm we present in this
section.

Whenever p and q are coprime, the group Zpq is iso-
morphic to Zp ⊕ Zq. Therefore, we may use the prime
decomposition of dα to separate each Zdα

in eq. (24) as
a sum of cyclic groups of prime power order. We pro-
ceed in this way for all α in eq. (24), and then we group

the terms corresponding to different primes, so G can be
written as

G =
⊕

p

Gp, (25)

with Gp =
⊕

i Zpki , for each prime p that appears in the
decomposition of any of the dα.

Since the direct sum of two arbitrary abelian groups of
orders m and n that are coprime yield all abelian groups
of order mn, we can directly construct all subgroups of G
by finding all the subgroups of each Gp. In other words,
although G in eq. (24) may have a complicated decom-
position, we focus only in determining the subgroups of
Gp, which will be convenient to write as

Gp =
r⊕

α=1

ZpMα (26)

where Mα are in non-increasing order.
The group Gp is associated with the sequence M =

M1 . . . Mr, which is a partition of M =
∑

α Mα. There-
fore, we will refer to Gp as a group of type M . Fur-
thermore, for any partition of M there exists an abelian
group of order pM that is unique up to an isomorphism
[30]. If one has a subgroup Hp of Gp, the corresponding
partition, let us call it N , satisfies Nα ≤ Mα. On the
other hand, once the choice of the non-increasing order
for the partition of the group Gp, the corresponding par-
titions for the subgroups Hp inherit a well-defined order
from the group, and the corresponding partitions cannot
therefore be taken in non-increasing order.

Another important fact about finite abelian groups is
that they all have a basis; that is, they can be gener-
ated by the integer combinations of a set of elements. In
our particular case, a simple way of choosing a basis is
by picking a generating element for each cyclic group in
eq. (26). We denote them e⃗α, and therefore an arbitrary
h ∈ H can be uniquely expressed as

h =

r∑

α=1

nαe⃗α, (27)

where nα ∈ ZpMα , and the multiplication of a group el-
ement by an integer m is defined as the addition of the
group element to itself repeated m times. The number r
of elements in the basis is independent of the choice of
basis and it is known as the group’s rank r.

The general idea for finding all subgroups of Gp is to
determine a subset of subgroups such that, upon apply-
ing all automorphisms T : Gp 7→ Gp, all others are found.
We will say that two subgroups of Gp are T -isomorphic
when there is an automorphism T mapping one to the
other. Then, to find the subgroups of Gp we first deter-
mine any subset with the maximum number of subgroups
that are not T -isomorphic. We call these “representative
subgroups”. By definition, applying all automorphisms
T (which we describe how to find in Appendix C) to the
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Figure 2. Simplexes of (a) the τ(m,n) of all single-qubit Weyl channels, in which we identify τ(0, 1) = τx, τ(1, 0) = τy, and
τ(1, 1) = τz, as usual, and similarly for λs; and of (b) the eigenvalues λ(m,n) of the corresponding Choi-Jamiołkowski matrix.
Additionally, we depict in (c) and (d) the extreme points of (a) and Weyl erasing generators, respectively.

representative subgroups all other subgroups of Gp are
found.

Note the difference between the concept of iso-
morphism for the subgroups, and the concept of T -
isomorphism. The latter depends not only on the group
structure of the subgroup H, but also on the way in which
it is embedded in the group Gp. For instance, we can
embed the group Z2 in the group Z22 ⊕ Z2 either as a
subgroup of the first summand or as a subgroup of the
second. In other words, the partition M describing the
full group is M = 21 and the subgroup Z2 can be embed-
ded with a partition 0 1 as well as 1 0. The two subgroups,
being both isomorphic to Z2, are abstractly isomorphic,
but that isomorphism cannot be extended to an isomor-
phism of Z4 ⊕ Z2.

All subgroups of Gp are found applying all its automor-
phisms T to the subgroups generated by the bases

B = {ps1 e⃗1, . . . , psr e⃗r} 0 ≤ sα ≤ Mα. (28)

Nevertheless, more than one different selection S = {sα}
may determine two bases of subgroups T -isomorphic, in
other words, that are connected by an automorphism of
Gp. For example, consider a group Gp of type M = 22 1 1.
The partitions S = 01 0 1 and S′ = 10 1 1 determine
bases of T -isomorphic subgroups, because the automor-
phism defined as T (e⃗1) = e⃗2, T (e⃗2) = e⃗1, T (e⃗3) = e⃗4 and
T (e⃗4) = e⃗3 maps one to the other. From each of these
T -isomorphic sets of subgroups we can pick an arbitrary
element, which will be called the representative subgroup.

To find the representative subgroups we need a cri-
terion to determine when two bases B of the form (28)
generate T -isomorphic groups. Let us denote M̃1, . . . , M̃q

the q different values in the sequence of numbers in M
(for instance, if M̄ = 2211, then q = 2 and M̃1 = 2, M̃2 =
1). Furthermore, we define the subset Sj = {sα, ∀α :

Mα = M̃j} of S, that is, Sj is the subset of S formed
by all the sα whose αs correspond to the indices of the
Mα that are equal to M̃j . Then, the criterion is the
following: two different sets S and S′ determine bases
of T -isomorphic subgroups whenever their corresponding
subsets Sj and S′

j are the same for all j.
We are ready to describe the complete algorithm to de-

termine all the subgroups of a given group G. First, de-
compose G as a sum of prime power order groups Gp. For
every Gp, find all sets S = {sα} and discriminate between
them to find the only ones that determine representative
subgroups. Then apply to them all automorphisms T of
Gp, so all subgroups of Gp will be found, albeit with rep-
etitions. A description of the group of automorphisms of
an arbitrary abelian group G is provided in [31], and the
technique is summarized for completeness’ sake in Ap-
pendix C. Finally, to find the subgroups of G apply the
direct sum between all different subgroups of each Gp.

Furthermore, a way to count the total number of sub-
groups of Gp is already known in the literature. Since
any abelian group of prime power order can only have
subgroups that are also of prime power order, subgroups
of order pL, with L < M , can also be characterized by
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a partition L of L. It is shown in [30, 32] that necessary
and sufficient conditions for the partition L to correspond
to a possible subgroup of the group determined by the
partition M of M are

Lα = 0 (α > r), (29a)
Lα ≤ Mα, (29b)
Lα ≥ Lα+1. (29c)

An expression for the number of different subgroups of
type L is already known in the literature. For that mat-
ter, we refer the reader to Appendix F.

To fully determine the coefficients τ(m⃗, n⃗) with norm 1,
we interpret them as a function that maps H to the group
of roots of unity ωj . We consider τ(m⃗, n⃗) = ωϕ(m⃗,n⃗), thus
we are looking for all homomorphisms ϕ :

⊕
Mα

ZpMα 7→
ZpM1 . To determine one of such functions uniquely, it is
sufficient to specify the values of ϕ on a basis of H, as
described in Appendix D.

Note that all the above remarks greatly simplify when
d is a prime number. In that case the group G is addi-
tionally a vector space. The set of subgroups can then be
described as the set of vector subspaces using the usual
techniques of linear algebra. All the partitions described
above then reduce to partitions of the type where Mα is
either 1 or 0, and the partition is fully characterized by
the number of its non-zero elements, which correspond to
the subspace’s dimension. Finally, the homomorphism τ
can be described as a linear map from the vector space
G to the field Zd, which is once more straightforwardly
described in terms of linear algebra.

V. WEYL ERASING CHANNELS

A. Generalities

In this section we focus on a particular class of Weyl
channels; those for which |τ(m⃗′, n⃗′)| = 0 or 1. In other
words, we will discuss Weyl channels that completely
erase, preserve or introduce specific phases to the pro-
jections of the density matrix of a system of qudits onto
the Weyl matrices basis. We will refer to this subset of
Weyl channels as Weyl erasing channels.

Weyl erasing channels are an interesting subset of Weyl
channels, as they arise from the composition of one or
more of these channels an infinite number of times. For
instance, the infinite composition of any Weyl channel for
which all |τ(m⃗, n⃗)| < 1, except τ (⃗0, 0⃗) = 1, results in the
completely depolarizing channel. In the general case, the
repeated application of a Weyl channel may not converge
to a single Weyl erasing channel, however it oscillates be-
tween two or more such channels. For example, applying
many times the single-qubit Weyl channel depicted with
an asterisk in Fig. 2(a) asymptotically oscillates between
the channel collapsing the Bloch sphere onto the y axis
and other channel collapsing it onto the y axis while re-
flecting it across the x-z plane. This oscillation continues

indefinitely between τ⃗ = (1, 0, 1, 0) and τ⃗ ′ = (1, 0,−1, 0).
In the following, we derive a Kraus representation of

Weyl erasing channels that will provide insight into the
physical implementation of these channels. We then fo-
cus on deriving an expression of the eigenvalues of the
Choi-Jamiołkowski matrix of Weyl erasing channels ex-
clusively, as we already have an expression for all Weyl
channels [c.f. (12)]. For this, we begin presenting an algo-
rithm that uses the mathematical machinery developed
in section IVB to find all τ(m⃗, n⃗) of any Weyl erasing
channel:

1. Find all sets of indices {(m⃗, n⃗) : |τ(m⃗, n⃗)| = 1} by
determining all subgroups H ⊂ G, with G that in
(25).

2. Find the values of τ(m⃗, n⃗) = ωϕ(m⃗,n⃗) for all
(m⃗, n⃗) ∈ H by determining all homomorphisms
ϕ : H 7→⊕

p ZpM1(p) , with M1(p) such that ZpM1(p)

denotes the largest order cyclic group for every Gp

in (25).

3. Assign τ(m⃗′, n⃗′) = 0 for all (m⃗′, n⃗′) /∈ H.

While an exhaustive enumeration of all Weyl erasing
channels for a large number N of particles is not prac-
tical, the construction provides insights into the mathe-
matical structure of this set. In fact, we show examples of
Weyl erasing channels for a single-qubit, a 4-level system
and a system composed by both of them in Figs. 4-8. We
remark that the algorithms to determine τ(m⃗, n⃗) of Weyl
and Weyl erasing channels are both the same up until de-
termining all homomorphisms. Then, for the former one
may assign any value to the τ(m⃗′, n⃗′) /∈ H as long as they
keep the channel completely positive, whereas for the lat-
ter one must assign the value zero to all τ(m⃗′, n⃗′) /∈ H.

Let us now evaluate the eigenvalues of the Choi matrix
of a Weyl erasing channel. To be consistent with the
previous section, we consider Weyl erasing channels of
a system of N particles, each with dimension a power
of p, so the group in question is Gp [see eq. (26)]. The
group’s rank is then r = 2N . Recall these channels have
τ(m⃗, n⃗) = 0 for all (m⃗, n⃗) /∈ H, thus, we find from (17)

λ(r⃗, s⃗) = d−N
∑

(m⃗,n⃗)∈H
τ(m⃗, n⃗)

N∏

α=1

ωmαrα−nαsα
α (30)

where ωα = exp
(
2πi/pM2α

)
Since the composition of

two Weyl channels is simply to multiply both sets of
τ(m⃗, n⃗), we can see that τ(m⃗, n⃗) of Weyl erasing chan-
nels are those of an extreme Weyl channel [c.f. (15)] for
all (m⃗, n⃗) ∈ H, and τ(m⃗′, n⃗′) = 0 for all (m⃗′, n⃗′) /∈
H. Hence, substituting τ(m⃗, n⃗), and considering ωk

pα =

ωp(α−β)k

pβ , α > β, we can write

λ(r⃗, s⃗) =
∑

(m⃗,n⃗)∈H
ω
f(m⃗,n⃗)

pM1
, (31)
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where f(m⃗, n⃗) =
∑N

α=1 p
M1−M2α−1(mα(rα − r0,α) −

nα(sα−s0,α)). To evaluate this expression we note that f
is an homomorphism f : Gp 7→ ZpM2 . Therefore, the sum
evaluates to zero unless f maps H to the trivial group:

λ(r⃗, s⃗) =

{|H| f(m⃗, n⃗) = 0 for all (m⃗, n⃗) ∈ H
0 otherwise,

(32)

where |H| is defined as the number of elements of H.
Furthermore, let us consider the group H⊥ = {(m⃗, n⃗) :
f(m⃗, n⃗) = 0}. The only non-zero λ(r⃗, s⃗) are those with
indices (r⃗, s⃗) such that (r⃗ − r⃗0, s⃗− s⃗0) ∈ H⊥.

Finally, having obtained the eigenvalues of the Choi-
Jamiołkowski matrix of Weyl erasing channels we de-
scribe their canonical Kraus representation. Recall that
that Weyl matrices are the Kraus operators of Weyl chan-
nels with probabilities equal to λ(r⃗, s⃗) [c.f. eq. (18)].
It then follows that Kraus operators of Weyl erasing
channels are the subset of Weyl matrices U(r⃗, s⃗), with
(r⃗ − r⃗0, s⃗− s⃗0) ∈ H⊥, each with probability |H⊥|/|G|.

B. Generators

In the following, we investigate the smallest subset of
Weyl erasing channels which, under composition, gener-
ate the whole set. For the sake of simplicity, we start by
finding the generators of Weyl channels with τ(m⃗, n⃗) = 0
or 1, as these are Weyl channels characterized only by
subgroups of G. Subsequently, we move to the most gen-
eral Weyl erasing channels that either preserve, erase or
introduce phases to the density matrix.

We shall determine those subgroups that are Indecom-
posable, in the sense that they cannot be generated as the
non-trivial composition of two Weyl channels. We call
these the generator subgroups. We consider once again
the group G shown in eq. (25), thus, we first discuss how
to determine the generator subgroups of Gp, and, from
those, determine the generator subgroups of G. Similarly
to what we did in section IVB, the generator subgroups
Vp of Gp can be found constructing representative gener-
ator subgroups V ∗

p and applying all automorphisms of Gp

to them.
We claim that a representative subgroup is a generator

Vp of Gp if and only if its basis is of the form

BVp
= {e⃗1, . . . , e⃗j−1, p

sj e⃗j , e⃗j+1, . . . , e⃗r}, 1 ≤ sj ≤ Mj .

(33)

This is verified as follows. Consider a subgroup Hp with
basis (28) such that its set of values S = {sα}α has two
(or more) values sβ , sγ ̸= 0. That is, Hp has the ba-
sis BHp

= {e⃗1, . . . , e⃗β−1, p
sβ e⃗β , . . . , e⃗γ−1, p

sγ e⃗γ , . . . , e⃗r}.
Then, Hp can be expressed as the non-trivial in-
tersection of the group g′p with basis BV ′

p
=

{e⃗1, . . . , e⃗β−1, p
sβ e⃗β , . . . , e⃗r} and another group V ′′

p with
basis BV ′′

p
= {e⃗1, . . . , e⃗γ−1, p

sγ e⃗γ , . . . , e⃗r}. Now, we check

that a group Hp with a basis of the form (33) cannot be
expressed as an intersection of two subgroups containing
Hp strictly. Note that groups H′

p satisfying Hp ⊊ H′
p ⊂

Gp must have a basis of the form {e⃗1, · · · , ps
′
j e⃗j , · · · , e⃗r},

with s′j < sj . Therefore, if we have two such groups
H′

p and H′′
p, then the group arising from intersection

H′
p∩H′′

p has a basis {e⃗1, · · · , pmax(s′j ,s
′′
j )e⃗j , · · · , e⃗r}, which

doesn’t generate Hp because the integer span of psj′ e⃗j′ or
psj′′ e⃗j′′ are strictly larger than the integer span of psj e⃗j .

Finally, to find all generator subgroups V of G =
⊕

p Gp

we proceed as follows. We begin by finding the generator
subgroups of Gp. Then, the generator subgroups V are
the subgroups of the form

V =
⊕

p

Hp, (34)

where Hp = Gp for all p except for one p = p′, for which
Hp′ = Vp′ . To see this, notice that V is a generator since
any other subgroup H′ strictly containing it must also
have H ′

p = Gp for p ̸= p′ and H ′
p′ ⊊ Vp′ . Therefore, for

two such subgroups H′ and H′′ to generate V , H ′
p′ and

H ′′
p′ should generate Vp′ , which is impossible since Vp′ is

a generator of Gp′ . On the other hand, any subgroup
of G that is composed as the sum of groups Gp except
for two (or more) primes p′ and p′′ in which the sum is
of any corresponding generator subgroup, may be gener-
ated by two subgroups H of the form (34) with suitable
generators Hp′ = Vp′ and Hp′′ = Vp′′ .

To summarize up to this point: to determine the gen-
erators of Weyl erasing channels with τ(m⃗, n⃗) = 0, 1 one
is only required to determine the generator subgroups of
the corresponding group in which the indices (m⃗, n⃗) of
τ(m⃗, n⃗) = 1 live. To determine the generators of Weyl
erasing channels that also introduce phases one must still
find generator subgroups, and a suitable homomorphism
for each of them as well.

More specifically, a Weyl erasing generator with
|τ(m⃗, n⃗)| = 0, 1 is completely characterized by a gen-
erator subgroup of G and a homomorphism ϕ : G 7→⊕

ZpM2(p) , with ZpM2(p) is the largest order cyclic group
for every Gp. The composition of two channels with sub-
groups H1 and H2 and homomorphisms ϕ1 and ϕ2 yields
a channel corresponding to H1 ∪H2 and homomorphism
ϕ1+ϕ2. Therefore, for every generator subgroup V , if we
define a basis ϕα

V of the space of homomorphisms, then
the set of channels corresponding to each generator sub-
group V , together with any element ϕα

V mapping V to
the whole group ZpM2(p) , form a set of generators. For
instance, we show a set of Weyl erasing generators of a
4-level system in Fig. 3

To avoid misunderstandings, note that the “genera-
tors” for channels with τ(m⃗, n⃗) = 0, 1, those charac-
terized completely by a generator subgroup (and one
may say that also by a homomorphism ϕ = 0), are
not generators of the whole set of Weyl erasing channels
(|τ(m⃗, n⃗)| = 0, 1). The former channels can always be ob-
tained through iterated composition of channels with a
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Figure 3. Weyl erasing generators for a single-particle of di-
mension d = 4. Concatenating in all possible ways the corre-
sponding channels one obtains all the Weyl quantum channels
of a 4-level system with |τ(m,n)| = 0, 1.

non-zero homomorphism. For example, the single-qubit
Weyl erasing channels depicted with a blue point in Fig.
2(a), except for the one located at τ⃗ = (0, 0, 0), are Weyl
generator channels with τ(m,n) = 0, 1. However, they
can be obtained from composing two times each of the
three Weyl generator channels depicted with a red point.
Those are the generators of all Weyl erasing channels of
a single-qubit.

VI. CONCLUSIONS

In this paper, we explored a class of quantum channels
of multipartite systems with different-dimensional parti-
cles. Our focus was on extending the study of Pauli and
Weyl channels; the former have been studied for systems
of many qubits and the latter for single d-level systems.

We begin by introducing the multi-particle Weyl oper-
ators U(m⃗, n⃗) to define a Weyl map as a diagonal map
in this basis; its eigenvalues are denoted by τ(m⃗, n⃗). We
derived the constraints on τ(m⃗, n⃗) for a Weyl map to pre-
serve the trace and hermiticy of the density matrix, as
well as to be completely positive. For the latter, we diag-
onalized its Choi-Jamiołkowski matrix and found the lin-
ear relationship between these eigenvalues and τ(m⃗, n⃗).

Several features of Weyl channels emerged from our
study. We identified the extreme points of the set, which
correspond to Weyl operators, highlighting the random
unitary nature of Weyl channels. Additionally, we es-
tablished a subgroup structure within a Weyl channel,
showing that the indices (m⃗, n⃗) of all |τm⃗,n⃗| = 1 is a sub-
group of the direct product of groups Zdα

⊕ Zdα
, where

dα represents the dimension of the α-th particle.

Furthermore, we introduced Weyl erasing channels,
which are Weyl channels that either preserve, erase, or in-
troduce phases to the Weyl operator basis. These extend
the concept of component erasing channels. Given that
all channels of this type exhibit the subgroup structure,
with the remaining τm⃗,n⃗ set to zero, we were able to find
the smallest subset which generate, under composition,
the whole set.

Our work contributes to the understanding of many-
body quantum channels, and, moreover, to the dy-
namics of d-level systems, which have growing impor-
tance for both theoretical and practical purposes. Fu-
ture research directions include investigating divisibility,
non-Markovianity, channel capacity, and the subset of
entanglement-breaking channels among other properties
of the Weyl channel set.
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Appendix A: Computation of the
Choi–Jamiołkowski matrix

This appendix demonstrates that the Choi-
Jamiołkowski matrix of any diagonal map E takes
the form

D =
1

dN

∑

m⃗,n⃗

τ(m⃗, n⃗)U(m⃗, n⃗)⊗ U(m⃗, n⃗)∗, (A1)

whenever U(m⃗, n⃗) form an orthogonal basis of uni-
taries [23].

The Choi–Jamiołkowski matrix of a quantum map E
is defined as follows:

D =
1

dN

∑

k⃗,⃗l

E
[∣∣∣⃗k
〉〈

l⃗
∣∣∣
]
⊗
(∣∣∣⃗k
〉〈

l⃗
∣∣∣
)
. (A2)

We may now express
∣∣∣⃗k
〉〈

l⃗
∣∣∣ in terms of any orthogonal

basis of unitaries U(m⃗, n⃗)

∣∣∣⃗k
〉〈

l⃗
∣∣∣ = 1

dN

∑

m⃗,n⃗

Tr
(
U†(m⃗, n⃗)

∣∣∣⃗k
〉〈

l⃗
∣∣∣
)
U(m⃗, n⃗). (A3)

Substituting this in the expression (A2) for D yields.
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1

dN

∑

k⃗,⃗l

E
(∣∣∣⃗k
〉〈

l⃗
∣∣∣
)
⊗
∣∣∣⃗k
〉〈

l⃗
∣∣∣ = 1

d2N

∑

k⃗,⃗l,m⃗,m⃗′,n⃗,n⃗′

E
[
Tr
(
U†(m⃗, n⃗)

∣∣∣⃗k
〉〈

l⃗
∣∣∣
)
U(m⃗, n⃗)

]
⊗
[
Tr
(
U†(m⃗′, n⃗′)

∣∣∣⃗k
〉〈

l⃗
∣∣∣
)
U(m⃗′, n⃗′)

]

(A4a)

=
1

d2N

∑

k⃗,⃗l,m⃗,m⃗′,n⃗,n⃗′

Tr
(
U†(m⃗, n⃗)

∣∣∣⃗k
〉〈

l⃗
∣∣∣
)
Tr
(
U(m⃗′, n⃗′)

∣∣∣⃗l
〉〈

k⃗
∣∣∣
)
τ(m⃗, n⃗)U(m⃗, n⃗)⊗ U(m⃗′, n⃗′)∗,

(A4b)

where we have used the complex conjugate of (A3). Then, using the definition of trace it follows

=
1

d2N

∑

k⃗,⃗l,m⃗,m⃗′,n⃗,n⃗′

⟨l|U†(m⃗, n⃗)|k⟩ ⟨k|U(m⃗′, n⃗′)|l⟩ τ(m⃗, n⃗)U(m⃗, n⃗)⊗ U(m⃗′, n⃗′)∗ (A4c)

=
1

dN

∑

m⃗,n⃗

τ(m⃗, n⃗)U(m⃗, n⃗)⊗ U(m⃗, n⃗)∗. (A4d)

This expression can also be obtained also using a recently
result of Siewert, in which he derives an expression for
the maximally entangled state in terms of an arbitrary
orthogonal basis [33].

Appendix B: Eigenvalues of U(m,n) and of
U(m,n)⊗ U(m,n)∗

We will find the eigenvalues of U(m,n). Since it is
unitary, we will express the eigenvalues as ωc, with c ∈ R.
Let us consider an eigenvector |ϕ⟩ =

∑
r ϕ(r)|r⟩ with

eigenvalue ξ = ωc. The eigenvalue equation for U(m,n)
leads to the following relation:

ϕ(r + n) = ω−mrωcϕ(r). (B1)

Starting with an arbitrary index r and applying this re-
cursion equation l − 1 times, we obtain

ϕ(r + nl) = ω−lmr− 1
2 l(l−1)mn+clϕ(r). (B2)

In the particular case in which l = l′ :=
d

gcd(d, n)
we

may use that l′n is a multiple of d, so:

ϕ(r) = ω−l′mr− 1
2 l

′(l′−1)mn+cl′ϕ(r), (B3)

which implies that (for values of r such that ϕ(r) ̸= 0):

−l′mr − 1

2
l′(l′ − 1)mn+ cl′ = sd (B4)

for some integer s. Therefore:

c =
sd

l′
+
1

2
(l′−1)mn+mr = gcd(d, n)s+mr+

1

2
(l′−1)mn.

(B5)
So we conclude that all eigenvalues of U(m,n) necessarily
have the form

ωgcd(d,n)s+mr+ 1
2 (l

′−1)mn (B6)

for s and r integers.
Furthermore, taken modulo d, the set {gcd(d, n)s +

mr | s, r ∈ Zd} is equivalent to {ns + mr | s, r ∈ Zd}
which is also equivalent to {gcd(m,n)k | k ∈ Zd}. There-
fore, the d eigenvalues of U(m,n) have are

ξ = ωgcd(m,n)k+ 1
2 (l

′−1)mn. (B7)

From this, it is straightforward that the eigenvalues of
U(m,n)⊗ U(m,n)∗ are

µ(r, s) = ωgcd(m,n)k−gcd(m,n)h. (B8)

This set is equivalent to

µ(r, s) = ωmr−ns (B9)

where r, s are integers modulo d.

Appendix C: Automorphisms of finite abelian groups

In the following we describe the bijective homomor-
phisms T of an arbitrary abelian group. Without loss of
generality we limit ourselves to groups that are the direct
sum of groups of the type ZpM , specifically

G =
r⊕

α=1

ZpMα . (C1)

To fix notations, we shall work with a fixed basis e⃗α, 1 ≤
α ≤ r, where r is the rank of G. The map T is therefore
uniquely determined by the values of T e⃗α. Since e⃗α is a
basis, we can write

T e⃗α =
r∑

β=1

tαβ e⃗β . (C2)
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The tαβ are then uniquely determined, if we view them
as homomorphisms from ZpMβ to ZpMα . Since such ho-
momorphisms can always be expressed through the mul-
tiplication by some appropriate number, the expression
given in (C2) is meaningful.

Now let us specify more precisely the range of variation
of the tαβ . We distinguish two cases

1. Mα ≤ Mβ : in this case any number modulo pMα

will do, and two different such numbers provide dif-
ferent homomorphisms.

2. Mα > Mβ : in this case, the number needs to be a
multiple of pMα−Mβ , since otherwise it is not pos-
sible to define the map. In that case, we may de-
scribe tαβ as pMα−Mβταβ , where ταβ is an arbitrary
number modulo pMβ

Consider the matrix T in greater detail, and just as in
the main text, let us denote by M̃1, · · · , M̃q the distinct
values of Mα in strictly decreasing order. We define να
to be the number of times M̃α appears repeated in the
original series. This defines a division of the T matrix in
blocks of size να × νβ , where 1 ≤ α, β ≤ q.

We first take the elements tαβ modulo p. As a conse-
quence of the observation (2), all blocks with α < β are
filled with zeros, whereas all other blocks have arbitrary
entries. It thus follows that the matrix is invertible mod-
ulo p if and only if all the diagonal blocks are invertible.
The number of invertible να × να matrices modulo p is
given by

Iα =

να∏

β=1

(
pνα − pβ−1

)
. (C3)

One sees this by observing that we may first choose an
arbitrary non-zero vector of length να in pνα −1 different
ways, then chose a second vector independent from the
first, and so on.

All the other entries in the blocks below the diagonal,
that is, the tαβ with α > β, can be chosen arbitrarily. If
we thus define

K0 =
∑

1≤β<α≤q

νανβ , (C4)

then the total number of possible forms of the matrix T
modulo p is

N(p) = pK0

q∏

α=1

Iα. (C5)

We now need to work out the number of ways this can
be extended to the full matrix, where the entries have the
full range of variation specified above. Note first that the
condition of invertibility carries over automatically upon
extension, as the inverse matrix of T modulo p can be
extended uniquely to the inverse of the extended matrix.

To the entries on or below the diagonal, that is, with
tαβ such that α ≥ β, we can add any number of the form

pταβ , where ταβ is an arbitrary number taken modulo
pM̃α−1. So the number of possibilities of extending these
blocks is given by pK1 , where

K1 =
∑

1≤β≤α≤q

(M̃α − 1)νανβ . (C6)

For the blocks above the diagonal, that is, the blocks with
tαβ such that α < β, they are of the form pM̃α−M̃βταβ ,
with ταβ a number modulo pM̃β , so that the total number
of ways of extending the blocks above the diagonal is pK2 ,
with

K2 =
∑

1≤α<β≤q

M̃βνανβ . (C7)

The final result for the total number of automorphisms
is thus given by

Ntot(M1, . . . ,Mr) = pK0+K1+K2

q∏

α=1

Iα. (C8)

Appendix D: Homomorphisms from H to the cyclic
group Zd

Here we describe the set of homomorphisms ϕ from an
abelian group of the form H =

⊕r
α=1 ZpMα to the cyclic

group ZpM1 . As always, the numbers Mα are ordered in
decreasing order.

We may as always choose a basis e⃗α of H, each having
order pMα . The homomorphism ϕ is then uniquely de-
termined by a set of homomorphisms ϕα from the cyclic
groups ZpMα to ZpM1 .

Whenever M1 = Mα, ϕα simply reduces to multipli-
cation by an arbitrary rα number modulo pM1 . On the
other hand, if Mα < M1, then ϕα is given by the multi-
plication by a number of the form pM1−Mαrα where rα
is an arbitrary number modulo pMα .

If we therefore define ν as the number of Mα = M1, so
that Mν ≥ M1 but Mν+1 < M1, and ν = 0 if Mα < M1

for all α, then ϕ can be expressed as follows:

ϕ

(∑

α

cαe⃗α

)
= ϕ⃗ · c⃗ :=

∑

α

ϕαcα (D1a)

ϕα =

{
pM1−Mαsα (α ≥ ν)

tα (α < ν)
(D1b)

where sα and tα are numbers modulo pMα and pM1 re-
spectively.

The total number of such homomorphisms is therefore
given by pK with

K =

ν∑

α=1

Mα +M1(r − ν) (D2)



12

Appendix E: Examples

To illustrate the application of the mathematical tools
presented in the main text, we will provide detailed exam-
ples of how to identify the Weyl channels as is described
in section IV. Remember that said channels are charac-
terized by a subgroup H of the group of indices G (which
corresponds to the indices whose τ ’s have norm 1) and
an homomorphism (which gives the phases to each τ).
The examples will be arranged in increasing generality,
starting with a system of one qudit with prime dimension
and ending with the most general case of many qudits of
arbitrary dimensions.

1. Single particle with prime dimension

Here we show how to follow the algorithm described in
section IV for the case of one qudit with prime dimension
d = p. In this case, the group of indices for the τ ’s
is simply Zp ⊕ Zp and we search for all its subgroups

and then all homomorphisms to Zp. While we do this
in general, we simultaneously show the specific case for
p = 2 (a single qubit).

We start determining the types of subgroups of Zp⊕Zp

and a representative subgroup of each type. For that, we
take the following steps:

• We select a basis for Zp ⊕ Zp, the simplest would
be {e⃗1, e⃗2} := {(1, 0), (0, 1)}.

• Define Mα as the number such that pMα is the order
of e⃗α. In this case, M1 = M2 = 1 and therefore the
partition for the group is M̄ = M1M2 = 11.

• Find all the sets S = {sα} with 0 ≤ sα ≤
Mα. In this case, there are four said sets:
{0, 0}, {0, 1}, {1, 0}, {1, 1}

• For each set, we define the basis B = {ps1 e⃗1, ps2 e⃗2},
and therefore get the following bases:

S = {0, 0} → B = {p0e⃗1, p0e⃗2} = {e⃗1, e⃗2} , S = {0, 1} → B = {p0e⃗1, p1e⃗2} = {e⃗1}, (E1)

S = {1, 0} → B = {p1e⃗1, p0e⃗2} = {e⃗2} , S = {0, 0} → B = {p0e⃗1, p0e⃗2} = {}. (E2)

Notice that pe⃗α = (0, 0), which doesn’t contribute
to the basis.

• Now we only keep bases that are not T-isomorphic,
so as to avoid unnecessary redundancies when ap-
plying automorphisms in the next step.
As mentioned in the main text, we do so by first
defining the sequence of numbers M̃1, · · · , M̃q given
by the q different values in the sequence of numbers
in M̄ . In this case, as M̄ = 11, there is only one
number in said sequence, being M̃1 = 1. Then,
we define the subsets Sj = {sα,∀α : Mα = M̃j}.
In this case, we only have one such subset, which
happens to be the whole set, S1 = {s1, s2}. As
described in the main text, two different bases
of the ones described in the previous step are T-
isomorphic if all their sets Sj are the same. In this
case, this means that the bases constructed from
S = {1, 0} and S = {0, 1} are T-isomorphic. There-
fore, we may only keep one of those bases, let’s say
we keep {0, 1} and discard the other one, so that
the representative bases are:

{e⃗1, e⃗2}, {e⃗1}, {}. (E3)

The subgroups generated by these bases are the
“representative subgroups”. Then, to find all possible

subgroups, we need to find all automorphisms of Zp⊕Zp

and apply them to these representative groups, so that
we can obtain all subgroups of each type starting from
the representatives.

As shown in eq.(C2), automorphisms of Zp ⊕ Zp are
determined by a matrix tαβ with dimensions r×r, where
r is the number of elements in the basis of the group.
Therefore, in this case the automorphisms are character-
ized by 2 × 2 matrices, where each entry tαβ can be a
number modulo p.

Furthermore, these entries are constrained by the con-
ditions given in Appendix C, and since in this case
M1 = M2, all tαβ fall into case 1 of the aforementioned
conditions. This implies that all tαβ are numbers mod-
ulo pMα = p. This gives a total of p4 possible matrices,
but we need to only keep those that are invertible. For
example, for the especial case of one qubit, we construct
all 2 × 2 matrices such that all entries tαβ are numbers
modulo 2, and out of these 16 matrices, only 6 of them
are invertible:

T1 =

(
0 1
1 1

)
, T2 =

(
1 0
1 1

)
, T3 =

(
1 1
0 1

)
, (E4)

T4 =

(
1 1
1 0

)
, T5 =

(
0 1
1 0

)
, T6 =

(
1 0
0 1

)
. (E5)

Therefore, these matrices represent the 6 possible
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automorphisms of Z2 ⊕ Z2.

To find all the subgroups, we simply apply all automor-
phisms on each representative subgroup found in eq.(E3).
For the case of one qubit, the result would be as follows:

• {e⃗1, e⃗2}: The group generated by this basis is the
whole gruop, and when we apply any automor-
phism, we always get back the whole group because
automorphisms are invertible. Therefore, the only
group here is the whole group Zp ⊕ Zp.

• {e⃗1}: For this basis, the representative subgroup
it generates is {(0, 0), (1, 0)}. As before, we apply
all the automorphisms to this subgroup. We can
see an example for the case of one qubit, when ap-
plying T1 to the element(1, 0), we get as a result
(0, 1), so applying T1 to the subgroup gives as a re-
sult {(0, 0), (0, 1)}. Similarly, when using the other
automorphisms in the case of one qubit, we get the
following subgroups (excluding repetitions):

{(0, 0), (1, 0)}, {(0, 0), (0, 1)}, {(0, 0), (1, 1)}. (E6)

• {}: In this case, the representative subgroup is
the trivial {(0, 0)} and applying any automorphism
leaves this subgroup intact.

Therefore, we have found all subgroups of Zp ⊕ Zp.
For the case of p = 2, they are: the complete group, the
subgroups obtained in eq. (E6) and the trivial subgroup
{(0, 0)}, see Fig 4. That is, up until this point we have
found the sets of indices {m,n} for which τ(m,n) can
have norm 1 in a Weyl channel.

Figure 4. Single-qubit Weyl erasing channels with τ(m,n) =
0, 1. These are completely characterized by the sets {(m,n) :
τ(m,n) = 1}, which are the subgroups of Z2 ⊕ Z2.

Now we find all homomorphisms ϕ : Zp ⊕ Zp → Zp.
A homomorphism is characterized by its value in each
element in the basis, ϕα := ϕ(e⃗α). To know the possible
values of ϕα, we first define ν like in Appendix D, as the
number such that Mν ≥ n but Mν+1 < n (where n is
the exponent of the co-domain of ϕ, in this case the co-
domain is Zp, so that n = 1 and we can see that ν = 2).
The possible values of ϕα are given by the cases in eq.
(D1b):

• ϕ1: Since α = 1 < ν = 2, we have the second case
and therefore ϕ1 is a number modulo pn = p.

• ϕ2: Since α = 2 ≥ ν = 2, we have the first case, so
that ϕ2 = pn−M2ss = s2 with s2 a number modulo
pM2 = p. Therefore, ϕ2 is also a number modulo p.

To find all possible homomorphisms, we determine all
possible pairs ϕ1, ϕ2. Since ϕ1, ϕ2 can be any number
modulo p, we have a total of p2 homomorphisms. In the
special case of one qubit, they are: ϕ1 = ϕ2 = 0; ϕ1 =
0, ϕ2 = 1; ϕ1 = 1, ϕ2 = 0; and ϕ1 = ϕ2 = 1. We show in
Fig. 5 all Weyl erasing channels of a single qubit.

Figure 5. Single-qubit Weyl erasing channels with
|τ(m,n)| = 0, 1. These are completely characterized by
two elements: (i) the sets {(m,n) : |τ(m,n)| = 1}, which
are the subgroups of Z2 ⊕ Z2, and (ii) all homomorphisms
ϕ : Z2 ⊕ Z2 7→ Z2.

2. Single particle with d = pn

Now we generalize to the case of a single particle
with d = pn. To have a concrete example to show, we
consider a particle with d = 22 = 4.

• We select a basis of Zpn ⊕ Zpn , for example,
{e⃗1, e⃗2} = {(1, 0), (0, 1)}.

• Define Mα as the number such that pMα is the order
of e⃗α. In this case, M1 = M2 = n, so the partition
of the group is M̄ = M1M2 = nn. For the special
case of a 4-level system, the partition is M̄ = 22.

• Find all the sets S = {sα} with 0 ≤ sα ≤ Mα. For
the case of a 4-level system, there are nine said sets:
{0, 0}, {0, 1}, · · ·, {2, 1}, {2, 2}.

• For each set, we define a basis B = {ps1 e⃗1, ps2 e⃗2}.
For example, for a 4-level system, the bases are:
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S = {0, 0} → B = {e⃗1, e⃗2}, S = {0, 1} → B = {e⃗1, 2e⃗2}, S = {0, 2} → B = {e⃗1}, (E7)
S = {1, 0} → B = {2e⃗1, e⃗2}, S = {1, 1} → B = {2e⃗1, 2e⃗2}, S = {1, 2} → B = {2e⃗1}, (E8)

S = {2, 0} → B = {e⃗2}, S = {2, 1} → B = {2e⃗2}, S = {2, 2} → B = {}. (E9)

Figure 6. Some 4-level system Weyl erasing channels with
τ(m,n) = 0, 1. Each of those is completely characterized by
a set {(m,n) : τ(m,n) = 1}, which is a subgroup of Z4 ⊕ Z4.

• We define the sequence of numbers M̃1, · · · , M̃q

given by the q different values in the sequence M̄ .
In this case, we only have M̃1 = n. Then, we de-
fine the subsets Sj = {sα,∀α : Mα = M̃j}; in this
case we only have S1 = {s1, s2}. As said before,
different bases are T-isomorphic if all sets Sj are
the same, and we only need to keep one of them.
Therefore, for the case of one 4-level system, we
only have to keep the following bases, which gener-
ate the representative subgroups:

{e⃗1, e⃗2}, {e⃗1, 2e⃗2}, {e⃗1}, {2e⃗1, 2e⃗2}, {2e⃗1}, {}.

Once again, automorphisms are characterized by 2× 2
matrices tαβ . Since M1 = M2 = n, all tαβ fall into the
first case of Appendix C, which implies that all tαβ are
numbers modulo pMα = pn. This gives a total of p4n

possible matrices, of which we only keep those that are
invertible (have non-zero determinant modulo p). For
example, in the case of a 4-level system, there are 96
such matrices.

Find all subgroups: As before, to find all subgroups
of Zd ⊕ Zd, we apply all automorphisms to each of the
representative subgroups found in the first step and omit
duplicates. As always, these subgroups describe the in-
dexes τ(m,n) which can have norm 1. We show in Fig. 6
some Weyl erasing channels of a 4-level system that are
completely characterized by subgroups of Z4 ⊕ Z4.

We find all homomorphisms ϕ : Zpn ⊕ Zpn → Zpn . As
for the last case, the homomorphism is characterized by
two values ϕ1 = ϕ(e⃗1), ϕ2 = ϕ(e⃗2). Using Appendix D,
we find that ϕ1 and ϕ2 are both numbers modulo pn.

Figure 7. Some Weyl erasing channels, with d = 4, N = 1,
and |τ(m,n)| = 0, 1. Each of those is completely characterized
by (1) a set {(m,n) : |τ(m,n)| = 1}, which is a subgroup of
Z4 ⊕ Z4, and (2) an homomorphism ϕ : Z4 ⊕ Z4 7→ Z4.

To find all possible homomorphisms, we determine all
possible pairs of ϕ1, ϕ2 which gives a total total of p2n

homomorphisms. For the case of a 4-level system, the 16
homomorphisms are given by all pairs of numbers ϕ1, ϕ2

modulo 4. We show in Fig. 7 some Weyl erasing channels
for a 4-level system.

3. Single particle with arbitrary dimension

Now we consider a single particle with arbitrary dimen-
sion d, which can be written with its prime factorization
as d =

∏K
i=1 p

ni
i . In this case, what we have done in

the last examples does not apply, since it only applies for
groups of the form ZpM1 ⊕ZpM2 ⊕· · ·⊕ZpMK (notice that
all the groups in the sum are powers of the same prime).

However, we can still find the subgroups of Zd ⊕ Zd.
To do it, we use the fact that Zpq ≃ Zp ⊕ Zq whenever p
and q are coprime. Therefore, Zd ≃ Zp

n1
1

⊕ · · · ⊕ Zp
nK
K

,
and after reordering we have that:

Zd ⊕ Zd ≃
K⊕

i=1

Zp
ni
i

⊕ Zp
ni
i
. (E10)

Furthermore, it is a well known fact that subgroups of
F1 ⊕ F2 with F1 and F2 groups of coprime orders, are
obtained as cartesian products of subgroups of F1 with
subgroups of F2. Therefore, because of the decomposi-
tion of eq.(E10), we can find the subgroups of Zd⊕Zd by
obtaining all the subgroups of each Zp

ni
i

⊕ Zp
ni
i

(which
can be done as in the last example) and then taking all
their possible cartesian products.
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To find the homomorphisms ϕ : Zd⊕Zd → Zd, we pic-
ture the ϕ as going from

⊕K
i=1 Zp

ni
i
⊕Zp

ni
i

to
⊕K

i=1 Zp
ni
i

.
Any such homomorphism can be written as the direct
sums of homomorphisms ϕi : Zp

ni
i

⊕ Zp
ni
i

→ Zp
ni
i

, which
we obtained in the last example. Therefore, by construct-
ing all such direct sums, we obtain all the homomor-
phisms we were looking for.

For example, if d = 12 all we need to do is find all the
subgroups and homomorphisms of Z4⊕Z4 and of Z3⊕Z3

and then take cartesian products of these subgroups and
the direct sum of the homomorphisms.

4. N particles of dimension of prime power
dimension

Now we consider a system consisting of N particles,
each with dimension pni for i = 1, · · · , N , ordered such
that n1 ≥ n2 ≥ · · · ≥ nN (notice that the prime p is the
same for all particles). In this case, the problem is to find
all the subgroups of G = Zpn1 ⊕ Zpn1 ⊕ · · ·ZpnN ⊕ ZpnN

and homomorphisms from G to Zpn1 . As an example, we
will develop a system of one qubit and one 4-level system.

Similarly to the other examples, to find the represen-
tative subgroups we take the following steps:

• Select a basis of G. For example, in the case
of a qubit and a 4-level system, the group is
G = Z4 ⊕ Z4 ⊕ Z2 ⊕ Z2, and we can choose a

basis {e⃗1, e⃗2, e⃗3, e⃗4}, with e⃗1 = (1, 0, 0, 0) e⃗2 =
(0, 1, 0, 0) e⃗3 = (0, 0, 1, 0) e⃗4 = (0, 0, 0, 1), where
the first two entries add mod 4 and the last two
add mod 2.

• Next, we find the partition of G. For the qubit and
4-level system, the orders of e⃗1 and e⃗2 are 4 and
the orders of e⃗3, e⃗4 are 2, so that the partition of
the group is M̄ = M1M2M3M4 = 2211.

• We find all the sets S = {sα} with 0 ≤ sα ≤ Mα,
in this case there are 36 said sets.

• For each set S, we define the basis B =
{ps1 e⃗1, ps2 e⃗2, ps3 e⃗3, ps4 e⃗4}.

• As before, some of the bases created this way are
redundant, since they are T-isomorphic. To elim-
inate this redundancy, we first define M̃1, · · · , M̃q

given by the q different values of numbers in M̄ .
In the example of a 4-level system and a qubit,
we have that M̃1 = 2, M̃2 = 1. Then, we define
the sets Sj = {sα,∀α : Mα = M̃j}, which in this
case are S1 = {s1, s2} and S2 = {s3, s4}. Finally,
bases are T−isomorphic if their corresponding sets
Sj are equal. For example, the bases that come
from the sets S = {2, 1, 1, 0} and S′ = {1, 2, 0, 1}
are T−isomorphic, since S1 = S′

1 = {2, 1} and
S2 = S′

2 = {1, 0}. Therefore, after eliminating re-
dundant bases and keeping only one of each batch,
we get the following 18 bases:

S = {0, 0, 0, 0} → B = {e⃗1, e⃗2, e⃗3, e⃗4} , S = {0, 0, 0, 1} → B = {e⃗1, e⃗2, e⃗3} , S = {0, 0, 1, 1} → B = {e⃗1, e⃗2},
S = {0, 1, 0, 0} → B = {e⃗1, 2e⃗2, e⃗3, e⃗4} , S = {0, 1, 0, 1} → B = {e⃗1, 2e⃗2, e⃗3} , S = {0, 1, 1, 1} → B = {e⃗1, 2e⃗2},

S = {0, 2, 0, 0} → B = {e⃗1, e⃗3, e⃗4} , S = {0, 2, 0, 1} → B = {e⃗1, e⃗4} , S = {0, 2, 1, 1} → B = {e⃗1},
S = {1, 1, 0, 0} → B = {2e⃗1, 2e⃗2, e⃗3, e⃗4} , S = {1, 1, 0, 1} → B = {2e⃗1, 2e⃗2, e⃗3} , S = {1, 1, 1, 1} → B = {2e⃗1, 2e⃗2},

S = {2, 1, 0, 0} → B = {2e⃗2, e⃗3, e⃗4} , S = {2, 1, 0, 1} → B = {2e⃗2, e⃗3} , S = {2, 1, 1, 1} : {2e⃗2},
S = {2, 2, 0, 0} → B = {e⃗3, e⃗4} , S = {2, 2, 0, 1} → B = {e⃗3} , S = {2, 2, 0, 0} → B = {}

As in the other cases, these bases form the repre-
sentative subgroups of the group.

As before, the automorphisms are described by matrices
tαβ . For the special case of a qubit and 4-level system,
the matrices are of dimensions 4× 4 (because there are 4
elements in the basis) and the conditions on the entries
tαβ can be found using the cases described in Appendix
C, which lead to:

• t11: M1 = M1 so that t11 is a number modulo
pM1 = 22 = 4.

• t12: M1 = M2 so that t12 is a number modulo
pM1 = 22 = 4.

• t13: M1 > M3 so that t13 = pM1−M3τ13 = 2τ13
with τ13 a number modulo pM3 = 2. Therefore, the
possible values are 0 and 2.

• The same can be done for the rest of the
values, and we find that t11, t12, t21, t22 ∈
{0, 1, 2, 3}; t13, t14, t23, t24 ∈ {0, 2} and
t31, t32, t33, t34, t41, t42, t43, t44 ∈ {0, 1}.

Then, running through all possible matrices with these
entries and keeping only the invertible ones, we find
147456 matrices.

As before, to find all subgroups, we apply these auto-
morphisms to every representative subgroup and discard
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Figure 8. Some Weyl erasing channels of a system with a
4-level particle and a qubit, with τ(m⃗, n⃗) = 0, 1. Recall that
(mα, nα) corresponds to α-th particle.

repetitions. This procedure gives us the 249 subgroups
of Z4⊕Z4⊕Z2⊕Z2, some of which are shown in fig. (8).

Finally, we find the homomorphisms ϕ : G → Zpn1 .
For the case of a qubit and a 4-level system, we need
the homomorphisms ϕ : Z4 ⊕ Z4 ⊕ Z2 ⊕ Z2 → Z4. As
before, we need to follow the procedure mentioned in
Appendix D. In this case, n = 2 and therefore ν = 2.
The homomorphisms ϕ are characterized by the values in
the basis ϕα = ϕ(e⃗α) which have to follow the conditions
of eq.(D1b), that lead to:

• ϕ1: Since α = 1 < 2 = ν, we are in the second case
of eq.(D1b), thus ϕ1 is a number modulo pn = 4.

• ϕ2: Since α = 2 = 2 = ν, we are in the first case
of eq. (D1b), thus ϕ2 = pn−M2s2 = s2 with s2 a
number modulo pM2 = 4.

• ϕ3 : Since α = 3 > 2, ϕ3 = pn−M3s3 = 2s3 with s3
a number modulo pM3 = 2, so that ϕ3 = 0, 2.

• ϕ4 : Equivalently to ϕ3 we find that ϕ4 = 0, 2.

Therefore, the homomorphisms for a qubit and a 4-level
system are given by the 4 numbers ϕ1, ϕ2, ϕ3, ϕ4 with

ϕ1, ϕ2 ∈ {0, 1, 2, 3} and ϕ3, ϕ4 ∈ {0, 2} for a total of 64
possibilities.

5. Most General Case

In the most general case we have N particles, each with
arbitrary dimension di and so the group under consider-
ation is G =

⊕N
i=1 Zdi

⊕ Zdi
.

Then, in this direct sum, we can first separate each
Zdi

as a sum of cyclic groups of prime power orders, such
as it was done in section E 3 of this appendix. Then,
having written G as a direct sum of cyclic groups with
prime power order, we collect together the cyclic groups
of order that is a power of 2, then cyclic groups of order
power of 3, 5, 7, and so on for each prime.

After this, we can find the subgroups and homomor-
phisms of each of these collections as it was done in sec-
tion E 4. Finally, the subgroups of G can be found as
cartesian products of subgroups of different collections.

Appendix F: Number of subgroups per type L

An expression for the number of different subgroups of
type L is already known in the literature. To introduce
this expression we first need to consider the Ferrers graph
of L, that is, L squares of which the first L1 are in the
first row, the next L2 in the second, and so on. Then,
the conjugate partition L

′
is defined as the Ferrers graph

of L obtained by inverting rows and columns. Similarly,
the partition M

′
is defined as the conjugate partition of

L. The number of subgroups H of type L of Gp is given
by

∏

α≥1

pM
′
α+1(L

′
α−M ′

α)

[
L′
α −M ′

α+1

M ′
α −M ′

α+1

]

p

, (F1)

where the symbol

[ n
m

]
p
=

m∏

s=1

pn−s+1 − 1

pm−s+1 − 1
(F2)

denotes the number of vector subspaces of dimension m
in a vector space of dimension n over the field Zp. The
proof is rather intricate, and we refer the reader to the
relevant literature, such as [32, 34]. However, the key
fact is that the number of subgroups obtained by our
algorithm can be compared with (F1) to check that all
subgroups of a given partition L have been found.

[1] H.-P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, 2007).

[2] A. Rivas and S. F. Huelga, Open quantum systems,
Vol. 10 (Springer, 2012).

[3] M. Schlosshauer, Decoherence, the measurement prob-
lem, and interpretations of quantum mechanics (2004),
arXiv:0312059 [quant-ph].

[4] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).



17

[5] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition
(Cambridge University Press, 2010).

[6] M. M. Wilde, Quantum Information Theory , 2nd ed.
(Cambridge University Press, 2017).

[7] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys.
Rev. Lett. 101, 150402 (2008).

[8] D. Davalos, M. Ziman, and C. Pineda, Quantum 3, 144
(2019).

[9] T. Heinosaari and M. Ziman, The mathematical language
of quantum theory: from uncertainty to entanglement
(Cambridge University Press, 2011).

[10] Á. Rivas, S. F. Huelga, and M. B. Plenio, Reports on
Progress in Physics 77, 094001 (2014).

[11] H. P. Breuer, E. M. Laine, J. Piilo, and B. Vacchini,
Reviews of Modern Physics 88, 021002 (2016).

[12] L. Gyongyosi, S. Imre, and H. V. Nguyen, IEEE Com-
munications Surveys & Tutorials 20, 1149 (2018).

[13] J. A. de Leon, A. Fonseca, F. Leyvraz, D. Davalos,
and C. Pineda, Physical Review A 106, 42604 (2022),
arXiv:2205.05808.

[14] D. Bruß and C. Macchiavello, Physical Review Letters
88, 127901 (2002).

[15] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin,
Physical Review Letters 88, 127902 (2002).

[16] T. C. Ralph, K. J. Resch, and A. Gilchrist, Physical Re-
view A - Atomic, Molecular, and Optical Physics 75,
022313 (2007), arXiv:0806.0654.

[17] E. T. Campbell, Physical Review Letters 113, 230501
(2014).

[18] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Frontiers in
Physics 8, 1 (2020), arXiv:2008.00959.

[19] T. Vértesi, S. Pironio, and N. Brunner, Physical Review
Letters 104, 060401 (2010), arXiv:0909.3171.

[20] P. Skrzypczyk and D. Cavalcanti, Physical Review Let-
ters 120, 260401 (2018), arXiv:1803.05199.

[21] H. Weyl, Zeitschrift für Physik 46, 1 (1927).
[22] R. A. Bertlmann and P. Krammer, Journal of Physics

A: Mathematical and Theoretical 41, 235303 (2008),
arXiv:0806.1174.

[23] M. Nathanson and M. B. Ruskai, Journal of Physics A:
Mathematical and Theoretical 40, 8171 (2007).

[24] H. Ohno and D. Petz, Acta Mathematica Hungarica 124,
165 (2009).

[25] D. Chruściński and K. Siudzińska, Physical Review A 94,
022118 (2016), arXiv:1606.02616.

[26] D. Chruściński and F. A. Wudarski, Physics Letters, Sec-
tion A: General, Atomic and Solid State Physics 377,
1425 (2013), arXiv:1212.2029.

[27] D. Chruściński and F. A. Wudarski, Physical Review A
- Atomic, Molecular, and Optical Physics 91, 012104
(2015), arXiv:1408.1792.

[28] I. Bengtsson and K. Życzkowski, Geometry of Quantum
States (Cambridge University Press, 2017).

[29] G. Dahl, An introduction to convexity (2010).
[30] W. Burnside, Theory of groups of finite order (The Uni-

versity Press, 1911).
[31] C. Hillar and D. Rhea, The American Mathematical

Monthly 114, 917 (2007).
[32] G. Birkhoff, Proceedings of the London Mathematical

Society 2, 385 (1935).
[33] J. Siewert, Journal of Physics Communications 6, 055014

(2022).
[34] L. Butler, Proceedings of the American Mathematical So-

ciety 101, 771 (1987).



Bibliographic references

[1] Z. Hu, R. Xia, and S. Kais, “A quantum algorithm for evolving open quantum

dynamics on quantum computing devices”, Scientific reports 10, 3301 (2020),

arXiv:1904.00910 [quant-ph].

[2] F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, “Quantum channels and

memory effects”, Rev. Mod. Phys. 86, 1203–1259 (2014).

[3] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum infor-

mation: 10th anniversary edition, 10th (Cambridge University Press, USA,

2011).

[4] I. Bengtsson and K. Życzkowski, Geometry of quantum states: an introduction

to quantum entanglement, 2nd. (Cambridge University Press, 2017).

[5] Y. Mafi, P. Kazemikhah, A. Ahmadkhaniha, H. Aghababa, and M. Kolah-

douz, “Bidirectional quantum teleportation of an arbitrary number of qubits

over a noisy quantum system using 2 n bell states as quantum channel”,

Optical and Quantum Electronics 54, 568 (2022).

[6] L. Gyongyosi and S. Imre, “Advances in the quantum internet”, Communi-

cations of the ACM 65, 52–63 (2022).

[7] D.-G. Im et al., “Optimal teleportation via noisy quantum channels without

additional qubit resources”, npj Quantum Information 7, 86 (2021).

97

https://doi.org/https://doi.org/10.1038/s41598-020-60321-x
https://arxiv.org/abs/1904.00910
https://doi.org/10.1103/RevModPhys.86.1203
https://doi.org/https://doi.org/10.1007/s11082-022-03951-x


Bibliographic references

[8] A. Gilyén, S. Lloyd, I. Marvian, Y. Quek, and M. M. Wilde, “Quantum al-

gorithm for petz recovery channels and pretty good measurements”, Physical

Review Letters 128, 220502 (2022).

[9] E. Fontana, N. Fitzpatrick, D. M. n. Ramo, R. Duncan, and I. Rungger,

“Evaluating the noise resilience of variational quantum algorithms”, Phys.

Rev. A 104, 022403 (2021).

[10] S. Choi, Y. Bao, X.-L. Qi, and E. Altman, “Quantum error correction in

scrambling dynamics and measurement-induced phase transition”, Physical

Review Letters 125, 030505 (2020).

[11] V. Sivak et al., “Real-time quantum error correction beyond break-even”,

Nature 616, 50–55 (2023).

[12] S. J. Beale, J. J. Wallman, M. Gutiérrez, K. R. Brown, and R. Laflamme,

“Quantum error correction decoheres noise”, Physical review letters 121,

190501 (2018).

[13] A. A. Abbott, J. Wechs, D. Horsman, M. Mhalla, and C. Branciard, “Com-

munication through coherent control of quantum channels”, Quantum 4, 333

(2020).

[14] S. Pirandola, “End-to-end capacities of a quantum communication network”,

Communications Physics 2, 51 (2019).

[15] H.-Y. Ku et al., “Quantifying quantumness of channels without entangle-

ment”, PRX Quantum 3, 020338 (2022).

[16] J. Cotler et al., “Entanglement wedge reconstruction via universal recovery

channels”, Physical Review X 9, 031011 (2019).

[17] S. Harraz, S. Cong, and J. J. Nieto, “Enhancing quantum teleportation fi-

delity under decoherence via weak measurement with flips”, EPJ Quantum

Technology 9, 1–12 (2022).

98

https://doi.org/10.1103/PhysRevA.104.022403
https://doi.org/10.1103/PhysRevA.104.022403


Bibliographic references

[18] N Abouelkhir, H. E. Hadfi, A Slaoui, and R. A. Laamara, “A simple analytical

expression of quantum fisher and skew information and their dynamics under

decoherence channels”, Physica A: Statistical Mechanics and its Applications

612, 128479 (2023).

[19] W.-C. Li et al., “Dynamics of multipartite quantum steering for different

types of decoherence channels”, Scientific Reports 13, 3798 (2023).

[20] E. Chitambar and G. Gour, “Quantum resource theories”, Reviews of Modern

physics 91, 025001 (2019).

[21] M. Schlosshauer, “Decoherence, the measurement problem, and interpreta-

tions of quantum mechanics”, Rev. Mod. Phys. 76, 1267–1305 (2005).

[22] T. Heinosaari and M. Ziman, The mathematical language of quantum theory:

from uncertainty to entanglement (Cambridge University Press, 2011).

[23] D. Davalos, M. Ziman, and C. Pineda, “Divisibility of qubit channels and

dynamical maps”, Quantum 3, 144 (2019), arXiv:1812.11437.

[24] M. Beth Ruskai, S. Szarek, and E. Werner, “An analysis of completely-positive

trace-preserving maps on M2”, Linear Algebra and its Applications 347, 159–

187 (2002), arXiv:quant-ph/0101003.

[25] D. Bruß and C. Macchiavello, “Optimal Eavesdropping in Cryptography with

Three-Dimensional Quantum States”, Phys. Rev. Lett. 88, 127901 (2002).

[26] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, “Security of Quantum

Key Distribution Using d-Level Systems”, Phys. Rev. Lett. 88, 127902 (2002).

[27] T. C. Ralph, K. J. Resch, and A. Gilchrist, “Efficient Toffoli gates using

qudits”, Phys. Rev. A 75, 022313 (2007), arXiv:0806.0654.

[28] E. T. Campbell, “Enhanced Fault-Tolerant Quantum Computing in d -Level

Systems”, Phys. Rev. Lett. 113, 230501 (2014).

[29] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, “Qudits and High-Dimensional

Quantum Computing”, Front. Phys. 8, 1–24 (2020), arXiv:2008.00959.

99

https://doi.org/10.1103/RevModPhys.76.1267
https://doi.org/10.22331/q-2019-05-20-144
https://arxiv.org/abs/1812.11437
https://doi.org/https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/https://doi.org/10.1016/S0024-3795(01)00547-X
https://arxiv.org/abs/quant-ph/0101003
https://doi.org/10.1103/PhysRevLett.88.127901
https://doi.org/10.1103/PhysRevLett.88.127902
https://doi.org/10.1103/PhysRevA.75.022313
https://arxiv.org/abs/0806.0654
https://doi.org/10.1103/PhysRevLett.113.230501
https://doi.org/10.3389/fphy.2020.589504
https://arxiv.org/abs/2008.00959


Bibliographic references

[30] T. Vértesi, S. Pironio, and N. Brunner, “Closing the detection loophole in Bell

experiments using qudits”, Phys. Rev. Lett. 104, 060401 (2010), arXiv:0909.

3171.

[31] P. Skrzypczyk and D. Cavalcanti, “Maximal Randomness Generation from

Steering Inequality Violations Using Qudits”, Phys. Rev. Lett. 120, 260401

(2018), arXiv:1803.05199.

[32] M. Nathanson and M. B. Ruskai, “Pauli diagonal channels constant on axes”,

Journal of Physics A: Mathematical and Theoretical 40, 8171 (2007).

[33] K. Siudzińska, “Geometry of pauli maps and pauli channels”, Phys. Rev. A

100, 062331 (2019), arXiv:1909.07722 [quant-ph].

[34] Chruściński, Dariusz and Siudzińska, Katarzyna, “Generalized pauli channels

and a class of non-markovian quantum evolution”, Phys. Rev. A 94, 022118

(2016).

[35] I. Sergeev, “Generalizations of 2-dimensional diagonal quantum channels with

constant frobenius norm”, Reports on Mathematical Physics 83, 349–372

(2019).

[36] A. Fonseca, “High-dimensional quantum teleportation under noisy environ-

ments”, Phys. Rev. A 100, 062311 (2019).

[37] H. Ohno and D. Petz, “Generalizations of pauli channels”, Acta Mathematica

Hungarica 124, 165–177 (2009).

[38] J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge Uni-

versity Press, 2017).

[39] H.-P. Breuer and F. Petruccione, The theory of open quantum systems (Ox-

ford University Press, USA, 2002).

[40] C. Gerry and P. L. Knight, Introductory quantum optics (Cambridge univer-

sity press, 2005).

[41] B. C. Hall, “Systems and subsystems, multiple particles”, in Quantum theory

for mathematicians (Springer, 2013), pp. 419–440.

100

https://doi.org/10.1103/PhysRevLett.104.060401
https://arxiv.org/abs/0909.3171
https://arxiv.org/abs/0909.3171
https://doi.org/10.1103/PhysRevLett.120.260401
https://doi.org/10.1103/PhysRevLett.120.260401
https://arxiv.org/abs/1803.05199
https://doi.org/10.1103/PhysRevA.100.062331
https://doi.org/10.1103/PhysRevA.100.062331
https://arxiv.org/abs/1909.07722
https://doi.org/10.1103/PhysRevA.94.022118
https://doi.org/10.1103/PhysRevA.94.022118
https://doi.org/https://doi.org/10.1016/S0034-4877(19)30055-2
https://doi.org/https://doi.org/10.1016/S0034-4877(19)30055-2
https://doi.org/10.1103/PhysRevA.100.062311
https://doi.org/10.1007/s10474-009-8171-5
https://doi.org/10.1007/s10474-009-8171-5


Bibliographic references

[42] F. Nathan and M. S. Rudner, “Universal lindblad equation for open quantum

systems”, Physical Review B 102, 115109 (2020).

[43] V. Y. Shishkov, E. S. Andrianov, A. A. Pukhov, A. P. Vinogradov, and

A. A. Lisyansky, “Relaxation of interacting open quantum systems”, Physics-

Uspekhi 62, 510 (2019).

[44] M.-D. Choi, “Completely positive linear maps on complex matrices”, Linear

Algebra and its Applications 10, 285–290 (1975).

[45] A. Jamiołkowski, “Linear transformations which preserve trace and positive

semidefiniteness of operators”, Reports on Mathematical Physics 3, 275–278

(1972).

[46] M. Jiang, S. Luo, and S. Fu, “Channel-state duality”, Phys. Rev. A 87, 022310

(2013).

[47] K. Kraus, “General state changes in quantum theory”, Annals of Physics 64,

311–335 (1971).

[48] E. Sudarshan, P. Mathews, and J. Rau, “Stochastic dynamics of quantum-

mechanical systems”, Physical Review 121, 920 (1961).

[49] W. F. Stinespring, “Positive functions on C∗-algebras”, Proceedings of the

American Mathematical Society 6, 211–216 (1955).

[50] M. Beth Ruskai, S. Szarek, and E. Werner, “An analysis of completely-positive

trace-preserving maps on m2”, Linear Algebra and its Applications 347, 159–

187 (2002).

[51] C. King and M. Ruskai, “Minimal entropy of states emerging from noisy

quantum channels”, IEEE Transactions on Information Theory 47, 192–209

(2001), arXiv:quant-ph/9911079.

[52] A. Fujiwara and P. Algoet, “One-to-one parametrization of quantum chan-

nels”, Phys. Rev. A 59, 3290–3294 (1999).

101

https://doi.org/https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1103/PhysRevA.87.022310
https://doi.org/10.1103/PhysRevA.87.022310
https://doi.org/https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/https://doi.org/10.1016/S0024-3795(01)00547-X
https://doi.org/10.1109/18.904522
https://doi.org/10.1109/18.904522
https://arxiv.org/abs/quant-ph/9911079
https://doi.org/10.1103/PhysRevA.59.3290


Bibliographic references

[53] A Fujiwara and P Algoet, “Affine parameterization of quantum channels”, in

Proceedings. 1998 ieee international symposium on information theory (cat.

no. 98ch36252) (IEEE, 1998), p. 87.

[54] X. Mi et al., “Information scrambling in quantum circuits”, Science 374,

1479–1483 (2021), arXiv:2101.08870 [quant-ph].

[55] S. T. Flammia and J. J. Wallman, “Efficient estimation of pauli channels”,

ACM Transactions on Quantum Computing 1, 1–32 (2020).

[56] J. A. de Leon, A. Fonseca, F. Leyvraz, D. Davalos, and C. Pineda, “Pauli

component erasing quantum channels”, Phys. Rev. A 106, 042604 (2022),

arXiv:2205.05808v2 [quant-ph].

[57] Y. J. Ionin and M. S. Shrikhande, Combinatorics of symmetric designs, New

Mathematical Monographs (Cambridge University Press, 2006).

[58] M. M. Wolf and J. I. Cirac, “Dividing quantum channels”, Communications

in Mathematical Physics 279, 147–168 (2008).

[59] F. Ciccarello, S. Lorenzo, V. Giovannetti, and G. M. Palma, “Quantum col-

lision models: open system dynamics from repeated interactions”, Physics

Reports 954, 1–70 (2022).

[60] H. Weyl, “Quantenmechanik und gruppentheorie”, Zeitschrift für Physik 46,

1–46 (1927).

[61] R. A. Bertlmann and P. Krammer, “Bloch vectors for qudits”, Journal of

Physics A: Mathematical and Theoretical 41, 235303 (2008), arXiv:0806.

1174 [quant-ph].

[62] T. Basile, J. A. de Leon, A. Fonseca, F. Leyvraz, and C. Pineda, Weyl chan-

nels for multipartite systems, 2023, arXiv:2310.10947 [quant-ph].

[63] K. M. R. Audenaert and S. Scheel, “On random unitary channels”, New

Journal of Physics 10, 023011 (2008).

[64] W. Burnside, Theory of groups of finite order (The University Press, 1911).

102

https://doi.org/10.1126/science.abg5029
https://doi.org/10.1126/science.abg5029
https://arxiv.org/abs/2101.08870
https://doi.org/10.1103/PhysRevA.106.042604
https://arxiv.org/abs/2205.05808v2
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/10.1007/s00220-008-0411-y
https://doi.org/https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/https://doi.org/10.1016/j.physrep.2022.01.001
https://doi.org/10.1007/BF02055756
https://doi.org/10.1007/BF02055756
https://doi.org/10.1088/1751-8113/41/23/235303
https://doi.org/10.1088/1751-8113/41/23/235303
https://arxiv.org/abs/0806.1174
https://arxiv.org/abs/0806.1174
https://arxiv.org/abs/2310.10947
https://doi.org/10.1088/1367-2630/10/2/023011
https://doi.org/10.1088/1367-2630/10/2/023011


Bibliographic references

[65] C. Hillar and D. Rhea, “Automorphisms of finite abelian groups”, Am. Math.

Mon. 114, 917–923 (2007).

[66] G. Birkhoff, “Subgroups of abelian groups”, Proc. London Math. Soc. 2, 385–

401 (1935).

103

https://doi.org/10.1080/00029890.2007.11920485
https://doi.org/10.1080/00029890.2007.11920485
https://doi.org/https://doi.org/10.1112/plms/s2-38.1.385
https://doi.org/https://doi.org/10.1112/plms/s2-38.1.385


Colophon

This thesis is based on a template developed by Matthew Townson and Andrew

Reeves. It was typeset with LATEX 2ε. It was created using the memoir package,

maintained by Lars Madsen, with the madsen chapter style. The font used is Latin

Modern, derived from fonts designed by Donald E. Kunith.


	Front Page
	Contents
	Declaration
	List of Figures
	List of Tables
	Introduction
	Chapter 1. Quantum Channels
	Density matrix formalism: quantum states
	Completely positive and trace-preserving maps: quantum dynamics
	Duality between density matrices and quantum channels
	Kraus representation
	Single-qubit quantum channels

	Chapter 2. Pauli Quantum Channels
	Pauli diagonal maps
	Choi-Jamiołkowski matrix
	Generic form of the Choi-Jamiołkowski matrix of any diagonal map

	Pauli quantum channels

	Chapter 3. Pauli Component Erasing Quantum Channels
	PCE maps
	PCE quantum channels as vector spaces
	Some properties of PCE channels
	Kraus representation of a PCE
	PCE Generators

	Chapter 4. PCE Channels and Decoherence
	Kraus operators of PCE generators
	Pure dissipative implementation
	Collision model implementation

	Chapter 5. Weyl Channels for Multipartite Systems
	Why the basis of Weyl matrices?
	Weyl chanels
	Convex structure of Weyl channels
	A mathematical structure within Weyl channels

	Conclusions
	Beyond PCE Figures
	Determining Subgroups
	Determining Homomorphisms
	Pauli Component Erasing Quantum Channels
	Weyl channels for Multipartite Systems
	References
	Colophon

