

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOFÍSICA

ANISOTROPÍA SÍSMICA Y FLUJO DEL MANTO SUPERIOR Y SU RELACIÓN CON LA SUBDUCCIÓN DE LA PLACA DE COCOS

T E S I S QUE PARA OPTAR POR EL GRADO DE: DOCTOR EN CIENCIAS DE LA TIERRA

PRESENTA: M. C. SAMUEL JESÚS CELIS GÓMEZ

TUTOR: DR. RAÚL VALENZUELA WONG INSTITUTO DE GEOFÍSICA, UNAM

MIEMBROS DEL COMITÉ TUTORAL: DRA. XYOLI PÉREZ CAMPOS INSTITUTO DE GEOFÍSICA, UNAM DR. MARCO CALÒ INSTITUTO DE GEOFÍSICA, UNAM

CIUDAD DE MÉXICO, ENERO DE 2024

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Declaratoria de ética

Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, las obras de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales.

Samuel Jesús Celis Gómez

Índice general

D	edica	atoria			VI
A	GRA	DECIMIENTOS			VII
R	ESU	MEN			IX
\mathbf{A}	BST	RACT			x
1	\mathbf{Int}	roducción			11
	1.1	Marco teórico			11
		1.1.1 Fábricas de olivino			14
		1.1.2 Anisotropía en zonas de subducción			15
		1.1.2.1 Anisotropía en la cuña del manto			17
		1.1.2.2 Anisotropía en la placa en subducción			18
		1.1.2.3 Anisotropía por debajo de la placa en subducción .			19
		1.1.3 Anisotropía en la corteza continental			20
		1.1.4 Partición de ondas de corte telesísmicas y locales			21
	1.2	Marco tectónico		•	22
		1.2.1 Placa de Cocos		•	22
		1.2.2 Cuña del manto serpentinizada			23
		1.2.3 Tectonoestratigrafía por encima de la subducción horizontal .			27
		1.2.4 Complejos volcánicos en el sureste de México			28
	1.3	Antecedentes			28
	1.4	Planteamiento del problema y objetivos	•••	•	29
2	An	isotropía sísmica a partir de mediciones telesísmicas			31
	2.1	Datos		•	31
		2.1.1 Preparación de datos			31
	2.2	Método		•	31
		2.2.1 Método de Covarianza de Silver y Chan (1991)		•	32
		2.2.1.1 Estimación de la incertidumbre			36
		2.2.2 Pasos a seguir para medir los parámetros de partición		•	37
		2.2.3 Verificación de la medición		•	39
		2.2.4 Problemas y desventajas del método		•	39
	2.3	Resultados			39
	2.4	Discusiones			43

		2.4.1 TMA y región del CVLT: flujo de arrastre y flujo de esquina 4 2.4.2 Extremo oriental de la EVTM: movimiento absoluto de la placa de	5
		Norteamérica	7
		2 4 3 Eies rápidos paralelos al rumbo de la placa subducente	ģ
		24.4 Ejes rápidos obliguos al rumbo de la placa subducente $5.5.5$	0
		2.4.5 Cerce de la frontera entre México y Guatemala	.1
	25	Conclusionos	т Э
	2.0		2
3	An	sotropía sísmica a partir de	
	me	diciones con sismos locales intraplaca 53	3
	3.1	Datos	3
	3.2	Método	3
	3.3	Resultados	5
	3.4	Discusiones	8
		3.4.1 Noroeste de la cordillera subducida de Tehuantepec	8
		3.4.1.1 Ejes rápidos predominantemente normales a la trinchera . 56	8
		3.4.1.2 Ejes rápidos predominantemente paralelos a la trinchera . 60	0
		3.4.1.3 Ejes rápidos cerca de la costa del Océano Pacífico 6	0
		3.4.1.4 Cambio en el patrón de flujo del manto de noroeste a sureste 6	0
		3.4.2 Sureste de la cordillera subducida de Tehuantepec 6	1
		3.4.2.1 Ejes rápidos en le región fronteriza entre México y Guatemala,	
		cerca de la costa del Océano Pacífico	2
		3.4.2.2 Ejes rápidos cerca de la costa de Chiapas 6	2
		3.4.2.3 Ejes rápidos en el interior de Chiapas 66	3
		3.4.3 Por encima de la subducción horizontal de la placa de Cocos 64	4
	3.5	Conclusiones	8
4	Inv	ersión tomográfica 70	0
	4.1	Introducción	0
	4.2	Parametrización del modelo	1
		4.2.1 Datos observados y espacio modelo	1
		4.2.2 Mineralogía, coeficientes elásticos y simetrías cristalográficas 73	3
		4.2.3 Parámetros del modelo	5
	4.3	Modelado directo	5
	4.4	Inversión	8
		4.4.1 Modelo inicial	9
		4.4.2 Parámetros de la inversión	9
		4 4 2 1 Varianza inicial 8	1
		4 4 2 2 Belajación del amortiguamiento	1
		4 4 2 3 Varianza para grandes volúmenes 8	1
		4 4 3 Resolución de los parámetros	$\frac{1}{2}$
	45	Resultados de la inversión tomográfica	$\tilde{2}$
	1.0	4 5 1 Pruebas de recuperación	6
	46		0 0
	ч.U	4.6.1 Eies principales normales a la trinchera al noroeste de la TRe	$\frac{2}{2}$
		-1.0.1 -1.000 principates normates a ta trineneta ar noroeste de la 1100 -1.000	∠-

	4.6.2	Ejes principales paralelos a la trinchera por debajo del interior de Chiapas	93
	4.6.3	Ejes principales paralelos a la trinchera en el extremo de la cuña de manto alrededor de la TRe	93
	4.6.4	Ejes principales perpendiculares a la trinchera cerca de la frontera entre México y Guatemala	94
4.7	Conclu	usiones	96
CONCLUSIÓN 9			97
Referencias bibliográficas 112			112
Apénd	Apéndices 113		

Índice de figuras

Figura	1.1:	Párametros de partición de la onda de corte $(\phi, \delta t)$	12
Figura	1.2:	Cristal de olivino	15
Figura	1.3:	Fábricas de olivino	16
Figura	1.4:	Trayectorias de fases telesísmicas	22
Figura	1.5:	Configuración tectónica del sureste de México	24
Figura	1.6:	Modelo para explicar la serpentinización de la cuña del manto $\ . \ . \ .$	26
Figura	2.1:	Estaciones utilizadas para hacer mediciones con telesismos	32
Figura	2.2:	Mapa de sismos utilizados para hacer mediciones con telesismos	33
Figura	2.3:	Medición y verificación de los parámetros a partir de un evento telesísmico	38
Figura	2.4:	Ejemplos de mediciones nulas de los parámetros de partición	40
Figura	2.5:	Curvas de contorno apiladas	41
Figura	2.6:	Mediciones individuales de ϕ y δt a partir de telesismos	44
Figura	2.7:	Mediciones apiladas por estación a partir de telesismos	45
Figura	2.8:	Parámetros de partición medidos con telesismos en este estudio y en	
		trabajos previos.	46
Figura	2.9:	Interpretación de mediciones telesísmicas: identificación de grupos	47
Figura	2.10:	Diagramas polares: identificación de grupos	50
Figura	3.1:	Estaciones utilizadas para mediciones con sismos locales intraplaca. \therefore	54
Figura	3.2:	Cuatro mediciones buenas asociadas a una celda y sus curvas de contorno	
		apiladas	56
Figura	3.3:	Parámetros de partición de onda de corte medidos a partir de sismos	
		locales intraplaca	57
Figura	3.4:	Parámetros de partición de onda de corte medidos al noroeste y al	
		sureste de la extrensión de la Cordillera de Tehuantepec	59
Figura	3.5:	Interpretación de los parámetros de partición en las regiones al noroeste	
		y al sureste de la TRe	61
Figura	3.6:	Parámetros de partición medidos en la región que corresponde a la	
		subducción horizontal y su interpretación.	65
Figura	3.7:	Perfiles que muestran los trayectos fuente-estación a través de la cuña	
		de manto para las tres regiones	67
Figura	4.1:	Tomografía: Datos observados para la inversión tomográfica de partición	
		de onda de corte	72
Figura	4.2:	Tomografía: Parametrización del espacio modelo.	74
Figura	4.3:	Tomografía: Parámetros del modelo.	75

Figura	4.4:	Tomografía: Ejemplo de partición de onda de corte sintética para calcular	
		los parámetros predichos en el modelado directo.	77
Figura	4.5:	Tomografía: Modelos iniciales	80
Figura	4.6:	Tomografía: Modelo final de orientación cristalográfica	83
Figura	4.7:	Tomografía: Resolución de los parámetros	84
Figura	4.8:	Tomografía: Progresión de la Inversión	85
Figura	4.9:	Tomografía: Parámetros de partición predichos por el modelo invertido.	86
Figura	4.10:	Tomografía: Pruebas de recuperación	88
Figura	4.11:	Tomografía: Modelo final que incluye bloques con un error angular	
		máximo de 35° para el eje a	89
Figura	4.12:	Tomografía: Vista 3D del modelo final	90
Figura	4.13:	Tomografía: Vista 3D del modelo final con mediciones separadas según	
		la relación con la trinchera.	91
Figura	4.14:	Tomografía: Esquema para interpretar la mineralogía y la orientación	
		del flujo en la cuña de manto.	95
Figura	B1:	Tomografía: Selección del modelo inicial	207
Figura	C1:	Tomografía: Selección de la varianza inicial	208
Figura	C2:	Tomografía: Selección de la relajación del amortiguamiento 2	209
Figura	C3:	Tomografía: Selección de la varianza asociada a grandes volúmenes 2	210
Figura	D1:	Tomografía: Efecto de la inclusión de mayores volúmenes en la resolución	
		de los párametros	211
Figura	E1:	Tomografía: Parámetros de partición observados y sintéticos separados	
		según el ángulo con la trinchera	212
Figura	F1:	Comparación con los resultados de Abt et al. (2009)	213

Índice de tablas

2.1	Telesismos: Valores de los parámetros de partición obtenidos al apilar las mediciones encontradas para cada estación
A1	Telesismos: Mediciones individuales (buenas y nulas) y características
	de los simos analizados
A2	${\rm Sismos\ locales:\ Mediciones\ individuales\ con\ sus\ incertidumbres\ y\ caracter{\rm (sticas\ }}$
	de los sismos analizados
A3	Sismos locales: Mediciones nulas y parámetros de fuente (β : ángulo de
	incidencia, D: distancia epicentral)
A4	Sismos locales: Mediciones apiladas por celda
A5	Sismos locales: Mediciones incluidas en la inversión tomográfica 172

Dedicatoria

A mi madre Mabel Gómez,

quien significa todo para mí. Su amor, cariño y apoyo han hecho de mí el ser humano que soy. Este logro va para ti, mamá.

A mi padre Rafael Celis,

quien nunca dudó de mí y creyó fervientemente en mis capacidades.

A mi hermana Abigail Celis,

por haberme impulsado a expandir mis horizontes y a crecer profesionalmente más allá de las fronteras de mi país. Hermana, te debo muchísimo por todo lo que has hecho por mí.

A mis hermanos Aura Celis y Rafael Celis,

quienes siempre han estado para mí y me han apoyado ciegamente.

A Dios,

por iluminar mis pasos y guiarme por el camino que me permitió alcanzar esta meta.

AGRADECIMIENTOS

Al Posgrado en Ciencias de la Tierra-UNAM por la formación académica. Al Consejo Nacional de Humanidades, Ciencia y Tecnología (CONAHCyT) por la beca otorgada para la realización de estudios de Doctorado. Esta investigación ha sido apoyada por el Programa UNAM-PAPIIT IN110822.

Al equipo de trabajo y al Departamento de Análisis e Interpretación de Datos Sísmicos del Servicio Sismológico Nacional de México por el catálogo de sismos locales. De igual forma se agradece a todo el personal del Servicio Sismológico Nacional por el mantenimiento de estaciones y por la adquisición y distribución de datos.

Al equipo de trabajo del Servicio Sismológico Nacional y a todos los voluntarios que participaron en el mantenimiento de estaciones y en la adquisición y distribución de datos del experimento de VEOX.

Al Dr. Francisco Córdoba, al Centro de Ciencias de la Tierra de la Universidad Veracruzana (CCTUV) y al equipo de Defensa Civil del estado de Veracruz (SPC-VER) por los datos de la Red Sísmica de Banda Ancha de Veracruz (RSBAV), al Dr. Allen Husker por los datos del *Rapid Aftershock Deployment for the September 2017 M 8.2 and 7.1 Earthquakes in Mexico* (RADSEM) y al Dr. Carlos Valdés por los datos de la Red del Volcán de Tacaná (VT).

A la Universidad Nacional Autónoma de México por el financiamiento de la red Geometry of Cocos (GECO) a través del Programa de Apoyos a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) IN106119 otorgado a la Dra. Xyoli Pérez-Campos e IN102618 otorgado al Dr. Arturo Iglesias.

A la Lic. Araceli Chaman por toda su ayuda y asesoría administrativa en los trámites universitarios. Agradezco su profesionalismo, su eficiencia y su disposición a ayudar a los estudiantes.

Al Dr. Francisco Sánchez Sesma por todo el apoyo y el conocimiento proporcionado en los diversos cursos que me impartió durante mi formación académica.

A la Dra. Xyoli Pérez-Campos, quien formó parte del comité tutoral de esta tesis, por su valiosa orientación y excelentes sugerencias durante el proceso de investigación y por estar siempre dispuesta a aclarar dudas y a contestar preguntas. Sin su ayuda, este trabajo no hubiera sido posible.

Al Dr. Marco Calò, quien formó parte del comité tutoral de esta tesis, por su entusiasmo, dedicación y esfuerzo en la orientación de este trabajo, especialmente con la tomografía. Sus valiosos consejos y comentarios ayudaron a mejorar los análisis de la tesis.

Muy especialmente, al Dr. Raúl Valenzuela Wong, quien desempeñó una labor admirable e impecable como tutor de esta tesis con mucha dedicación y disposición. Su conocimiento, aportes, enseñanzas, comprensión, apoyo, instrucciones, guía y consejos durante los dos años de Maestría y los cuatro años de Doctorado hicieron que creciera no solo académicamente, sino también personalmente. Le estaré eternamente agradecido por toda su ayuda y su profesionalismo. Toda mi gratitud por haber aceptado dirigir mi tesis de Doctorado y toda mi admiración por su calidad humana y profesional.

Por último pero no menos importante, gracias a Dios por darme la bendición de haber llegado hasta donde estoy y a mi familia por haber confiado en mí desde un principio, en especial a mi mamá, Mabel Gómez, a mi papá, Rafael Celis, y a mi hermana, Abigail Celis, quienes me apoyaron incondicionalmente y me ayudaron a creer en mí.

RESUMEN

Estudiar la anisotropía sísmica del olivino permite conocer las características del flujo en el manto superior y su relación con procesos tectónicos. La anisotropía sísmica es una propiedad que presentan algunos medios que se caracteriza por la partición de la onda de corte (*shear-wave splitting*) en una onda rápida y otra lenta, las cuales son perpendiculares entre sí. Para medirla se requiere de dos parámetros: (1) el tiempo de retardo, δt , y (2) la dirección de polarización de la onda rápida, ϕ . El olivino es el mineral principal del manto superior y presenta una estructura cristalina que es fuertemente anisótropa y que se orienta en respuesta a esfuerzos tectónicos. El presente estudio se enfoca en la región suroriental de México. Con mediciones telesísmicas se observan direcciones de polarización rápida perpendiculares a la trinchera, lo cual es consistente con un flujo de arrastre por debajo de la placa subducida de Cocos y con un flujo de esquina en la cuña del manto exceptuando a la porción de la cuña que está por debajo de la región de Chiapas, donde los ejes rápidos muestran mucha variabilidad y los tiempos de retardo son muy cortos. Con sismos locales intraplaca, las mediciones fueron divididas en tres grupos: (1) Por encima de la subducción horizontal de la placa de Cocos, donde la anisotropía parece estar controlada por efectos corticales como la orientación de sistemas de fallas y alineaciones en foliaciones. (2) Al noroeste de la cordillera subducida de Tehuantepec, en donde los ejes rápidos son consistentes con un flujo de esquina 2D y fábricas de olivino de tipo A en el centro de la cuña de manto y con la presencia de minerales de serpentina en el extremo de la cuña de manto. (3) Al sureste de la cordillera subducida de Tehuantepec, en donde los ejes rápidos son consistentes con un flujo paralelo a la trinchera y fábricas de olivino de tipo A o C en el centro de la cuña del manto y con un flujo paralelo a la trinchera y minerales de serpentina en el extremo de la cuña del manto. Las mediciones de anisotropía sísmica de las últimas dos regiones fueron invertidas tomográficamente para encontrar un modelo tridimensional de orientación cristalográfica en la cuña del manto que permitiera afinar su interpretación. Se asumieron constantes elásticas del olivino y ortopiroxeno con simetría ortorrómbica y se empleó una aproximación de mínimos cuadrados amortiguada e iterativa que contemplara el comportamiento no lineal del proceso de partición. Las mediciones fueron corroboradas y resultaron ser consistentes con una posible ruptura de la placa de Cocos a lo largo de la cordillera subducida de Tehuantepec y no con un cambio continuo en el patrón de flujo de noroeste a sureste a través de esta discontinuidad batimétrica.

ABSTRACT

Studying the upper mantle anisotropy based on olivine fabrics is a well-known procedure to understand the upper mantle flow pattern and its relationship to the geometry of the subducting slab in subduction zones. Seismic anisotropy is a process that is characterized by the existence of fast and slow waves that are orthogonally polarized to each other once a shear wave goes through a transversely anisotropic media (shear-wave splitting). To measure shear-wave splitting for both teleseismic and local intraslab earthquakes, only two parameters are required: (1) the fast-polarization direction (ϕ), and the delay time (δt). Seismic anisotropy may reflect the presence of olivine minerals, which are the most abundant constituents of the Earth's upper mantle. This study focuses on the southeastern region of Mexico, where the Cocos slab subducts beneath the North American plate. Teleseismic measurements are consistent with subslab entrained flow below the subducted Cocos slab and with corner flow in the mantle wedge except for Chiapas region, where the fast directions show great variability and delay times are the shortest of the region. Local measurements can be broadly divided into three regions: (1) The first region is located above the horizontal Cocos slab, where crustal faults and alignments in foliations seem to be the controlling factors of the observed anisotropy. (2) The second region is located northwest of the Tehuantepec Ridge extension. The fast axes measured for the mantle wedge core are trench perpendicular. This could be explained assuming the development of A-type olivine fabric and the existence of corner flow driven by the downdip motion of the Cocos slab. In the mantle wedge tip, measurements are consistent with the presence of a serpentinized mantle wedge. (3) The third region is located southeast of the Tehuantepec Ridge extension. The measured fast-polarization directions show a trench-parallel orientation that can be interpreted to result from the presence of a serpentinized mantle wedge beneath the forearc and a trench-parallel flow through a mantle wedge core made up of A- or C-type olivine fabric. To improve the vertical resolution of the shear-wave splitting measurements for the last two regions, a tomographic inversion was carried out. A damped, iterative least-squares approach was used to find 3D crystallographic orientations of minerals in the mantle wedge, assuming an orthorhombic symmetry. The best-fitting model is consistent with the interpretations made from local intraslab earthquake results. Right above the Tehuantepec Ridge extension, an abrupt change of the fast-polarization directions from trench normal to trench parallel suggests a vertical tear in the Cocos slab coincident with this bathymetric discontinuity.

Capítulo 1

Introducción

1.1. Marco teórico

La mayoría de los minerales que componen el manto superior, principalmente el olivino, presentan una orientación preferencial en su red (*lattice-preferred orientation*) (LPO por sus siglas en inglés) por haber sido sometidos a procesos de deformación generados por algún estado de esfuerzos. Esta orientación preferencial produce una dependencia de las velocidades sísmicas con la dirección (típicamente ondas S), dando lugar a lo que se conoce como anisotropía sísmica. Este fenómeno se caracteriza por la partición de la onda de corte (*shear-wave splitting*), que consiste en la polarización de una onda S en una onda rápida y una onda lenta, que son ortogonales entre sí, una vez que la onda arriba a un medio transversalmente anisótropo. Este fenómeno puede medirse empleando dos parámetros fundamentales: la dirección de polarización rápida, ϕ , y el tiempo de retardo entre el arribo de la onda rápida y la lenta, δt (Figura 1.1). Ambos parámetros proporcionan información rápida depende de la LPO y el tiempo de retardo define la magnitud de la anisotropía (Silver y Chan, 1991; Teanby et al., 2004; Wüstefeld et al., 2008).

Los ejes cristalográficos de los minerales, debido a procesos geodinámicos y/o a la acción del campo gravitacional, tienden a alinearse produciendo fuertes fábricas que dan lugar a la anisotropía sísmica. Algunos minerales y rocas sedimentarias y cristalinas son elásticamente anisótropos y muestran velocidades de ondas sísmicas dependientes de la dirección y algunas otras anomalías sísmicas relacionadas con la polarización de las ondas (Babuska y Cara, 1991).

La anisotropía sísmica es una característica general del interior de la Tierra que no está presente en todos los rangos de profundidad ni a todas las escalas. La observación de anisotropía sísmica a grandes escalas requiere de condiciones como la presencia de cristales anisótropos y la existencia en el presente o pasado de un campo de deformación eficiente a gran escala (Montagner, 1998).

En sistemas convectivos, la amplitud del campo de deformación es muy heterogénea y alcanza su máximo en los límites de capas. Por esta razón se podría asumir que la observación de anisotropía sísmica en el manto es una señal de un fuerte campo de deformación actual asociado con los límites de capas, exceptuando a la corteza y a la

Figura 1.1: Párametros de partición de la onda de corte $(\phi, \delta t)$.

litósfera oceánica y continental en donde podría estar presente anisotropía fosilizada (Montagner, 1998).

La capa D" y el manto superior son considerados como las capas límite del sistema convectivo del manto. La capa D", por encima de la frontera entre el manto y el núcleo externo, es considerada el cementerio de las placas subducidas y la fuente de las grandes plumas del manto. Se caracteriza por un alto grado de heterogeneidad sísmica y por una anisotropía con V_{SH} mayor que V_{SV} (Montagner, 1998). La anisotropía de dicha capa puede estar relacionada con la estratificación horizontal de material frío o con la existencia de inclusiones alineadas debido a la presencia de material fundido (Kendall y Silver, 1996). Vinnik et al. (1995) propusieron, en primer lugar, la existencia de una capa de baja velocidad en la base del manto caracterizada por isotropía transversal y, en segundo lugar, la existencia de posible anisotropía azimutal en la capa D" como un efecto de segundo orden. Este último puede ser causado por la orientación preferencial de minerales que puede surgir dentro de una capa límite de un sistema convectivo.

La región que constituye el manto inferior parece ser en gran parte isótropa, excepto en los últimos 200 - 300 km que corresponden a la capa D". Recientemente se han observado dos grandes provincias fuertemente anisótropas con bajas velocidades de la onda de corte en su interior y altas velocidades en los bordes. Dichas provincias se encuentran por debajo del Pacífico central y de África y presentan valores de V_{SV} mayores que V_{SH} en su interior y una relación opuesta más alla de los bordes. Estas observaciones son consistentes con la presencia de cristales de post-perovskita de $MgSiO_3$, alineados durante la deformación de las placas subducidas que chocan con la frontera entre el manto y el núcleo, y con el flujo hacia arriba de material fundido (plumas) dentro de las provincias antes mencionadas (Romanowicz y Wenk, 2017).

La presencia de anisotropía en la zona de transición (410-670 km de profundidad) resulta ser fundamental debido a que podría dar a entender que dicha zona está actuando como una capa límite. La primera evidencia de anisotropía en la zona de transición favorece el predominio de flujo horizontal y no de flujo vertical. La consecuencia principal de esto es que esta zona podría estar dividiendo al manto en dos sistemas convectivos distintos: el manto superior y el manto inferior, lo cual no descarta la posibilidad de que exista la circulación de flujo entre el manto superior y el inferior. Sin embargo, esto implica que el intercambio de materia entre ambas partes se dificulte (Montagner, 1998). La observación de anisotropía sísmica en el manto superior está fuertemente relacionada con campos de deformación vinculados a la interacción entre las placas tectónicas y refleja la presencia de un flujo de convección que produce la orientación preferencial de los cristales (principalmente del olivino). Por debajo (entre 100-200 km de profundidad) de las grandes placas oceánicas (p.ej., Pacífico, Nazca, entre otras), la dirección del flujo es principalmente horizontal, lo cual resulta consistente con observaciones realizadas con ondas superficiales en las que se evidencia que V_{SH} es mayor que V_{SV} entre los 100 - 200 km de profundidad. Aunque la anisotropía sísmica parece ser más débil por debajo de los continentes, comparte el mismo origen que por debajo de los océanos: orientación preferencial del olivino en el plano horizontal bajo la acción de la deformación de materiales astenosféricos (Babuska y Cara, 1991). La evidencia de que la anisotropía del manto subcontinental es inducida por la orientación preferencial de los minerales como el olivino ha proporcionado un medio para inferir los modos de deformación del manto a partir de observaciones de anisotropía sísmica (Silver y Chan, 1991).

La anisotropía inducida por fracturas ha sido observada en la parte superior de la corteza oceánica y de la corteza continental. Este tipo de anisotropía puede ser modelada a partir de microfracturas o fracturas verticales paralelas, lo cual resulta ser equivalente a un medio transversalmente isótropo. En la corteza, las zonas de milonita representan regiones de anisotropía extremadamente alta (por encima de 20 % para la onda P). Por otro lado, en la litósfera oceánica subcortical, la anisotropía sísmica es causada por alineaciones de cristales de olivino congeladas (anisotropía fosilizada). Los ejes cristalográficos principales parecen estar orientados horizontalmente y paralelos a la dirección del flujo del manto superior que predominó en el momento en el que la litósfera se formó por enfriamiento. Sin embargo, se ha observado que, en porciones de placa antiguas (entre 40 y 80 millones de años, Levin, 1986; Duncan y Richards, 1991), la anisotropía ha sido afectada por cambios en la dirección del movimiento de la placa tectónica (Babuska y Cara, 1991). Las placas subducidas retienen la anisotropía sísmica de la litósfera oceánica subcortical debido al corto tiempo geológico que implica el proceso de subducción. Además, se genera anistropía adicional a la existente debido a la deformación por cizalla que ocurre cerca del contacto entre la placa que subduce y la litósfera que está por encima. Por lo anterior, los patrones de anisotropía en placas subducidas presentan orientaciones de minerales mucho más complicadas que en otras regiones. Los patrones de anisotropía son aún más complicados en la litósfera continental cuando son modificados por procesos tectónicos posteriores como los *rifts* y cizallamiento a gran escala (Babuska y Cara, 1991).

De acuerdo con Silver y Chan (1991), existen tres hipótesis que permiten explicar la anisotropía continental: (1) la deformación asociada con el movimiento absoluto de placa, (2) los esfuerzos corticales y (3) la deformación del pasado y presente del manto superior subcontinental causada por diferentes episodios tectónicos. El episodio de deformación más reciente es el que mejor explica las observaciones de anisotropía.

Babuska y Cara (1991) señalan que las siguientes observaciones pueden ser consideradas como señales directas de la existencia de anisotropía sísmica:

 Partición de la típica onda de corte (4 - 5% de anisotropía): por lo general, se debe a la existencia de fracturas orientadas en la corteza superior y/o a la orientación preferencial de cristales anisótropos en la litósfera y astenósfera por debajo de la corteza, donde se cree que está la fuente principal de la partición de ondas como SKS y ScS.

- Dependencia azimutal de la velocidad de la onda P: en la litósfera subcortical, la anisotropía de la velocidad de la onda P varía entre 3 8 % por debajo de los océanos y entre 2 7 % por debajo de los continentes.
- Velocidad V_{SH} azimutalmente promediada mayor que V_{SV} para la litósfera oceánica profunda a partir de ondas superficiales.
- Variación azimutal de las velocidades de la onda Rayleigh: puede variar hasta 2% en los océanos.

1.1.1. Fábricas de olivino

El olivino, con fórmula química $(Mg, Fe)_2SiO_4$, es un nesosilicato que cristaliza en el sistema ortorrómbico y destaca por ser el componente principal del manto superior. Está conformado por grupos discretos o aislados de tetraedros de SiO_4 unidos por enlaces iónicos y es el primer mineral en cristalizar a altas temperaturas en la Serie de Bowen. Sus cristales se orientan cuando son sometidos a deformaciones que generalmente son causadas por el flujo del manto (Silver y Chan, 1991). Experimentos de laboratorio han demostrado que las fábricas de olivino están vinculadas al estado de esfuerzo, temperatura, contenido de agua, presión y fusión parcial. La relación entre la naturaleza de la anisotropía sísmica y la geometría del flujo en las fábricas de olivino depende de las condiciones fisicoquímicas bajo las cuales se forma la LPO (Karato et al., 2008).

La fábrica de olivino tipo A, también conocida como olivino seco, domina en regiones del manto por debajo de las placas oceánicas, por debajo de las placas subducidas o en el centro de las cuñas de manto debido al bajo contenido de agua, a esfuerzos reducidos y a las altas temperaturas. En este caso, la dirección de polarización rápida se vuelve paralela al eje a [100] del olivino (Figura 1.2) y, por lo tanto, a la dirección de flujo. En presencia de un flujo horizontal, el deslizamiento ocurrirá a lo largo del eje [100] sobre el plano (010) (Zhang v Karato, 1995; Kneller et al., 2005) (Figura 1.3). Las fábricas de olivino tipo C, D o E presentan características similares a la fábrica tipo A en cuanto a la orientación del mineral siempre y cuando el ángulo de incidencia de la onda de corte sea cercano a vertical y el flujo sea predominantemente horizontal (Zhang y Karato, 1995; Jung et al., 2006; Karato et al., 2008). Las fábricas de tipo C y E se desarollan bajo estados de esfuerzos pequeños produciéndose una transición de la fábrica tipo A a las tipo E y C conforme aumenta el contenido de agua en el manto (Jung et al., 2006). Cuando se tienen fábricas tipo C el deslizamiento ocurre a lo largo del eje [001] sobre el plano (100), en cambio, cuando la fábrica dominante es la tipo E, el deslizamiento ocurre a lo largo del eje [100] sobre el plano (001) (Figura 1.3). Por lo general, el olivino de tipo A se encuentra por debajo del interior estable de los continentes (Silver y Chan, 1991; Silver, 1996; Savage, 1999), por debajo de las placas oceánicas (Long y Silver, 2009), por debajo de las placas subducidas (Jung et al., 2006; Long y Silver, 2008) y en la parte central de la cuña del manto (mantle wedge core) (Kneller et al., 2005).

Figura 1.2: Cristal de olivino con las velocidades (km/s) de las ondas P y S relativas a los ejes principales a, b y c. Las velocidades de onda P se muestran a lo largo de los ejes, mientras que las velocidades de onda S se señalan con pares adyacentes de líneas perpendiculares a los ejes. El eje a o [100] representa la dirección más rápida del cristal (modificada de Stein y Wysession, 2003, y de Demouchy, 2021).

Por otro lado, la fábrica de olivino tipo B, también conocida como olivino hidratado, se desarrolla en regiones del manto con alto contenido de agua bajo condiciones de estados de esfuerzos muy grandes y temperaturas relativamente bajas. Esta fábrica se encuentra frecuentemente en el extremo de la cuña del manto (mantle wedge tip) (Kneller et al., 2005; Jung et al., 2006). El olivino de tipo B representa una fábrica inusual debido a que experimentos de laboratorio han demostrado que la dirección de polarización rápida de las ondas de corte se vuelve perpendicular a la dirección de flujo de manto (en un flujo horizontal), siendo el eje c [001] subparalelo a dirección de cizalla y el plano (010) subparalelo al plano de cizalla (Jung y Karato, 2001) (figuras 1.2 y 1.3).

Si el plano de flujo es horizontal, las fábricas tipo A, C y E mostrarán que la dirección de polarización rápida es subparalela a la dirección de flujo, mientras que la de tipo B mostrará una dirección normal a la dirección del flujo. En cambio, si el flujo es de cizalla horizontal, entonces las fábricas de olivino tipo A, B y E resultarán con una relación $V_{SH}/V_{SV} > 1$ (isotropía transversal), mientras que la fábrica tipo C resultará con una relación $V_{SH}/V_{SV} < 1$ (Jung et al., 2006).

1.1.2. Anisotropía en zonas de subducción

Muchos de los problemas de la geodinámica de subducción que no han sido resueltos incluyen aquellos relacionados con la viscosidad y reología de la cuña del manto, la hidratación y deshidratación de la placa subducida, el acoplamiento mecánico entre las placas participantes y el manto circudante, la geometría del flujo del manto por encima y por debajo de las placas y las interacciones entre las placas y discontinuidades como la frontera entre el manto superior y el manto inferior (Long, 2013).

En ambientes de subducción, la anisotropía sísmica varía a lo largo de una estructura de cuatro capas: el manto que subyace a la placa subducida, la placa subducida, la cuña

Figura 1.3: Fábricas de olivino: (a) Diagrama a temperatura constante (entre 1470 - 1570 K) que muestra las condiciones de esfuerzos y contenido de agua que favorecen el desarrollo de las distintas fábricas de olivino, acompañado de proyecciones esféricas de los ejes a, b y c de las distintas fábricas sometidas a una cizalla horizontal (flechas negras). La fábrica tipo B se desarrolla bajo condiciones de grandes esfuerzos y alto contenido de agua, mostrando el eje rápido [100] orientado perpendicularmente a la dirección de cizallamiento (modificada de Kneller et al., 2005). (b) Diagrama esquemático de la relación entre el flujo de manto horizontal y la anisotropía azimutal resultante para diferentes fábricas de olivino. Cuando se tienen fábricas tipo A, C o E el eje rápido es paralelo a la dirección del flujo. Cuando se tienen fábricas tipo B, la misma dirección de flujo producirá un eje rápido perpendicular al anterior. Se muestran figuras polares para las fábricas tipo A y B (modificada de Long y Becker, 2010).

del manto y la placa suprayacente. Esta estructura complica la tarea de interpretar el origen de la anisotropía sísmica observada en registros sismológicos además de limitar la posibilidad de construir un modelo numérico del flujo del manto con el que se puedan comparar las observaciones (Long y Silver, 2008).

El modelo clásico de flujo para sistemas de subducción es bidimensional y está caracterizado por un flujo de esquina (*corner flow*) por encima de la placa subducida y un flujo de arrastre (*subslab entrained flow*) por debajo de ella (Long y Silver, 2008). Este modelo predice que los ejes rápidos de la anisotropía se orientan en la dirección del vector de convergencia que comúnmente es perpendicular a la trinchera. Sin embargo,

se han observado direcciones de polarización rápida paralelas a la trinchera (p. ej., Marianas y Tonga; Long y Silver, 2008) que sugieren que, en vez de estar la placa subducida arrastrando al manto que la rodea y empujándolo hacia abajo en la dirección de movimiento, la placa más bien está actuando como una barrera de modo que el flujo astenosférico es paralelo a ella tanto en la cuña del manto como en el manto que está por debajo (Savage, 1999). Las observaciones de ejes rápidos paralelos a la trinchera pueden ser interpretadas como consecuencias de un flujo tridimensional producido por la migración de la trinchera, ya sea que esta esté avanzando o retrocediendo (Long y Silver, 2008; Long, 2013). Por la gran variedad en las observaciones de anisotropía en ambientes de subducción, se han propuesto modelos alternativos que incluven flujos paralelos a la trinchera en la cuña del manto, flujos inducidos por el hundimiento de la corteza, flujos paralelos a la trinchera por debajo de la placa subducida y transpresión debida a la subducción oblicua. Adicionalmente, se ha propuesto que el olivino puede presentar cambios de fábricas tipo A (o similares) a tipo B (p. ej., Ryukyu, Marianas, Tonga, Kamchatka; Long y Silver, 2008), lo que generaría direcciones de polarización rápida paralelas a la trinchera en la cuña del manto en caso de que el flujo de esquina 2-D sea el dominante (Long y Silver, 2008).

Ninguno de los modelos alternativos logra explicar el rango completo de comportamientos de partición de ondas de corte que se han observado globalmente. De acuerdo con Fouch y Fischer (1996), la variabilidad entre las regiones de subducción sugiere que la deformación litosférica o el flujo astenosférico depende de efectos locales.

1.1.2.1. Anisotropía en la cuña del manto

Las cuñas del manto exhiben diferentes patrones de ϕ y δ t de un sistema de subducción a otro. Algunas (p. ej., zonas de subducción de Ryukyu, Marianas y Tonga) presentan una transición de direcciones de polarización rápida que pasan de ser paralelas a la trinchera por debajo del antearco (en el extremo de la cuña del manto) a ser perpendiculares a la trinchera por debajo del trasarco (en el centro de la cuña del manto), pero algunas otras (p. ej., Kamchatka) exhiben un comportamiento opuesto. De la misma manera, algunas cuñas (p. ej., Indonesia y Sudamérica) son casi isótropas ($\delta t \approx 0$ s), mientras otras (p. ej., Ryukyu v Tonga) exhiben valores de δt mayores que 1 s (Long v Silver, 2008). Además, los cambios de condiciones físicas en la cuña incrementan la probabilidad de cambios a fábricas de olivino tipo B, lo cual produce una rotación de 90° de la relación geométrica esperada entre la deformación y ϕ (Jung y Karato, 2001). La falta de un modelo global único para la anisotropía en la cuña representa un reto para la interpretación de las observaciones en dicha región, pero también representa una ventaja en el sentido de que el patrón de la anisotropía probablemente contenga información acerca de las variables relacionadas a la subducción que, a menudo, son difíciles de interpretar o restringir por medio de otros estudios (p. ej. la distribución de minerales hidratados) (Long, 2013).

Long y Silver (2008) sostienen que la anisotropía en la cuña del manto está controlada por la influencia competitiva de dos campos de flujo: el campo de flujo de esquina 2D, que está controlado por el acoplamiento viscoso entre la placa en subducción y la cuña, y el campo de flujo 3D, que está inducido por la migración de la trinchera (avance o retroceso). En otras palabras, en los sistemas de subducción en los que la trinchera migra rápidamente en comparación con el movimiento hacia abajo de la placa subducida, el campo de flujo en la cuña del manto está dominado por un flujo paralelo a la trinchera con grandes valores para δt , mientras que, aquellos en los que el movimiento hacia abajo de la placa en subducción es grande en comparación con la velocidad de migración de la trinchera, presentan un campo de flujo en la cuña dominado por el flujo de esquina 2D perpendicular a la trichera. En el régimen intermedio, los dos campos de flujo compiten por lo que el flujo resultante es menos coherente y los valores de δt resultan pequeños (Long y Silver, 2008).

Con base en la mineralogía del olivino, las direcciones de polarización rápida paralelas a la trinchera en la cuña del manto pueden observarse bajo dos escenarios distintos: (1) una cuña del manto compuesta por fábricas de olivino tipo B con un campo de flujo de esquina 2D, o (2) una cuña del manto compuesta por fábricas de tipo A, C o similares con un campo de flujo 3D paralelo a la trinchera (Kneller et al., 2005).

La existencia de fábricas de olivino tipo B ha sido propuesta para lograr explicar la orientación de la polarización rápida de la onda de corte paralela a la trinchera en la parte de la cuña del manto que corresponde al antearco (Jung y Karato, 2001; Kneller et al., 2005). Otros modelos relacionados con dichas observaciones invocan la presencia de minerales de serpentina (p. ej., antigorita) deformados y alineados, lo que logra explicar los grandes tiempos de retardo y las direcciones rápidas paralelas a la trinchera que se observan en algunas cuñas en la región de antearco (Kneller et al., 2005; Katayama et al., 2009; Jung, 2011; Mookherjee v Capitani, 2011). En la región de la cuña por debajo del trasarco es poco probable que haya fábricas de olivino de tipo B o minerales de serpentina, por lo que las direcciones rápidas paralelas a la trinchera en esta región pueden explicarse argumentando la existencia de gradientes de presión a lo largo del rumbo de la placa subducida debidos a efectos como la migración de la trinchera (Conder y Wiens, 2007), flujo rápido alrededor del borde de la placa subducida (Jadamec v Billen, 2010, 2012). o morfologías complejas de la placa subducida (Kneller y van Keken, 2007, 2008). La subducción oblicua también puede desempeñar un papel importante en el transporte de material en la dirección del rumbo en las cuñas del manto (Nakajima et al., 2006; Bengtson y van Keken, 2012) y puede generar deformación transpresiva en la parte somera de la cuña (Mehl et al., 2003).

1.1.2.2. Anisotropía en la placa en subducción

De acuerdo con los resultados obtenidos por Long y Silver (2008), la partición de la onda de corte en la región por debajo de la cuña del manto es relativamente simple y muestra una señal anisótropa en la que, en la mayoría de los casos, las orientaciones de la dirección de polarización rápida son paralelas a la trinchera excepto en algunos casos puntuales como lo es el sistema de subducción de Cascadia. Sus resultados sugieren que no hay una gran contribución a la anisotropía por parte de la placa subducida debido a que, en primer lugar, los valores de ϕ son más consistentes con un mecanismo relacionado con la geometría de la subducción que con una anisotropía fosilizada en la litósfera descendente. Además, la edad de la placa subducida debería guardar una relación directamente proporcional con los valores del tiempo de retardo (δt) dado que, a mayor edad, mayor espesor de la placa, pero tal correlación no se ha logrado observar. Aunque la anisotropía presente dentro de la placa en subducción se cree que tiene una menor contribución a la anisotropía acumulada medida en superficie, existen diversos estudios que se han enfocado en estudiarla y que proponen dos grupos de modelos principales para explicarla: aquellos que involucran las estructuras de anisotropía congelada dentro de la litósfera oceánica y aquellos que involucran la anisotropía debida al fallamiento y a la hidratación en la parte somera de la placa en subducción (Long, 2013).

Los modelos de anisotropía litosférica congelada consideran que las estructuras anisótropas son creadas en la astenósfera oceánica debido a la cizalla horizontal generada a medida que la litósfera se mueve por encima de la astenósfera. Cuando la litósfera se aleja de los centros de expansión oceánica y se enfría, se vuelve mecánicamente rígida y difícil de deformar quedando congeladas las estructuras anisótropas creadas por antiguas deformaciones (Forsyth, 1975; Nishamura y Forsyth, 1989). Para el caso en el que la litósfera oceánica haya experimentado cambios en los movimientos de placa a lo largo de su historia, la estructura resultante reflejará diversas capas de anisotropía, representando una complicación potencial en la interpretación de la anisotropía de la placa subducente (Long, 2013).

Por su parte, Faccenda et al. (2008) propusieron que las estructuras anisótropas de las placas pueden ser modificadas por la hidratación y el fallamiento. Específicamente, plantean que en la placa subducente existen fallas muy hidratadas que pueden ser serpentinizadas al alcanzar cierta profundidad, lo cual podría producir una anisotropía efectiva con un eje de polarización rápida paralelo a la trinchera y grandes valores del tiempo de retardo.

1.1.2.3. Anisotropía por debajo de la placa en subducción

Dadas las condiciones físicas del manto por debajo de la placa subducida (esfuerzos reducidos, bajo contenido de agua y temperaturas relativamente altas), la fábrica de olivino que se cree que existe en la región es la de tipo A. Esto implica que los ejes rápidos paralelos a la trinchera observados en muchas zonas de subducción son producidos por el flujo del manto paralelo a la trinchera y como respuesta a su migración (Long y Silver, 2008). Long y Silver (2008) observaron que en los sistemas de subducción en los que las trincheras son prácticamente estacionarias (p. ej., Islas Aleutianas y Ryukyu), la partición por debajo de la placa subducida es poca o nula, mientras que para sistemas de subducción con trincheras que presentan migración, los valores de δt tienden a incrementarse conforme aumenta la magnitud de la velocidad de la trinchera ($|V_t|$). La relación entre $|V_t|$ y δt se mantiene sin importar que la trinchera esté avanzando o retrocediendo. Los mismos autores proponen que la anisotropía por debajo de la placa subducida está controlada principalmente por un flujo de retorno tridimensional casi siempre paralelo a la trinchera e inducido por la migración de esta, combinado con la existencia de una barrera que impide el flujo de arrastre por debajo de la placa subducida. Se ha propuesto que dicha barrera se ubica en la parte superior (a 410 km de profundidad) o en la base (a 670 km de profundidad) de la zona de transición del manto.

Tres modelos conceptuales han sido propuestos para explicar las orientaciones de ϕ , tanto cuando son predominantemente paralelas a la trinchera, como en los casos excepcionales: (1) el modelo de flujo paralelo a trinchera, (2) el modelo de fábrica de

olivino tipo B y (3) el modelo de anisotropía radial fuerte de astenósfera arrastrada.

Modelo de flujo paralelo a la trinchera.- Long y Silver (2008) documentaron una fuerte correlación entre los tiempos de retardo y el valor absoluto de la tasa de migración de la trinchera por debajo de la placa subducida, usando un marco de referencia basado en los puntos calientes del Pacífico. Esta correlación apoya la hipótesis que establece que las trincheras que migran rápidamente inducen un fuerte componente toroidal al campo de flujo del manto que resulta en un fuerte componente de flujo paralelo a la trinchera, mientras que los sistemas de subducción con trincheras casi estacionarias tienden a presentar una anisotropía débil (Long, 2013).

Una consideración importante para este modelo conceptual de flujo paralelo a la trinchera en el manto por debajo de la placa en subducción es que es la geometría de la deformación finita la que controla la geometría de la anisotropía y no la dirección de velocidad del flujo. Las velocidades de flujo del manto predominantemente paralelas a la trinchera deben estar acompañadas por gradientes verticales de manera que se pueda producir una deformación finita para este modelo y demostró que las direcciones de la deformación finita se alineaban eficientemente en una dirección paralela a la trinchera, tal cual lo hace la velocidad promedio del flujo del manto por debajo de la placa subducida. Dicho modelo requiere de un alto grado de desacoplamiento mecánico entre la placa subducida y el manto subyacente, así como de la existencia de una barrera a cierta profundidad que impida el flujo de arrastre, la cual podría ser una de las fronteras de la zona de transición (Long y Silver, 2008; Paczkowski, 2012; Long, 2013).

Cerca de los bordes de placa también se ha observado un campo de flujo paralelo a la trinchera. Faccenda y Capitanio (2012) encontraron que el flujo toroidal alrededor del borde de la placa subducida produce una capa anisótropa profunda con direcciones rápidas paralelas a la trinchera.

Modelo de fábrica de olivino tipo B.- El modelo de fábrica de olivino tipo B, inducido por un aumento en la presión, fue propuesto por Jung et al. (2009) como una alternativa al modelo de flujo paralelo a la trinchera. Los resultados experimentales de dichos autores sugieren que el manto superior debería estar dominado por fábricas de olivino tipo B a profundidades mayores que ~90 km, en lugar del olivino tipo A que es más comúnmente aceptado. Jung et al. (2009) señalan que una de las implicaciones más importantes de su experimento es que si la fábrica de olivino tipo B predomina por debajo de la placa subducida, entonces el flujo de arrastre bidimensional produciría direcciones de polarización rápida paralelas a la trinchera. En este sentido, los sistemas de subducción excepcionales, que exhiben direcciones rápidas perpendiculares a a la trinchera, podrían indicar la ocurrencia de flujo local paralelo a la trinchera.

Modelo de anisotropía radial fuerte de astenósfera arrastrada.- Song y Kawakatsu (2012) propusieron otra explicación para las observaciones de ejes rápidos paralelos a la trinchera por debajo de las placas subducidas. Esta explicación plantea la existencia de una capa de astenósfera suboceánica arrastrada por debajo de las placas subducidas. Este modelo requiere que la astenósfera suboceánica, en cualquier parte, se caracterice por una fuerte anisotropía radial ($V_{SH} > V_{SV}$) y también por una anisotropía azimutal que sea relativamente débil. Song y Kawakatsu (2012) argumentan que la astenósfera oceánica con un componente radial fuerte

y un componente azimutal más débil, lo cual podría implicar la presencia de láminas fundidas alineadas horizontalmente. Considerando que esta anisotropía es trasladada a profundidades por debajo de la placa subducida, al momento en el que sea atravesada por una onda de corte que se propague verticalmente, ocurrirá una partición caracterizada por una dirección de polarización rápida paralela a la trinchera, siempre y cuando el ángulo de buzamiento de la placa sea lo suficientemente grande. Para subducciones de bajo ángulo o planas, el modelo de Song y Kawakatsu (2012) predice direcciones de polarización rápida perpendiculares a la trinchera (considerando incidencia vertical), lo cual puede observarse en varios sistemas con placas subduciendo con un bajo ángulo de buzamiento, como es el caso de México (León Soto et al., 2009) y Cascadia (Currie et al., 2004).

1.1.3. Anisotropía en la corteza continental

Al menos tres causas posibles se han propuesto para explicar la anisotropía en la corteza continental: la alineación de redes de minerales en foliaciones, anisotropía debida a zonas de falla y anisotropía inducida por esfuerzos. En el caso de minerales como facies de esquistos verdes, filitas, esquistos cuarzosos, micas o gneises, que son abundantes en foliaciones (Christensen, 1996), las ondas sísmicas se propagan más rápido a lo largo de la foliación que perpendicular a ella (Okaya et al., 1995). En zonas de falla, el campo de esfuerzos induce alineaciones de fracturas, por tanto, las microfisuras dentro de los cristales de los minerales rotan y producen una dirección preferencial (Bostock y Christensen, 2012). Por último, la anisotropía inducida por esfuerzos resulta a partir de la alineación de grietas saturadas con fluidos a lo largo de la orientación del máximo esfuerzo compresivo. Mientras las grietas sean paralelas al máximo esfuerzo compresivo, permanecerán abiertas y produciendo anisotropía (Crampin, 1994).

1.1.4. Partición de ondas de corte telesísmicas y locales

Telesismos.- Las fases telesísmicas como SKS, SKKS y PKS, que viajan como ondas P en el núcleo externo (K) y como ondas S en el segmento del manto que está del lado del receptor (Figura 1.4), son fases que están naturalmente polarizadas en dirección radial en el manto una vez que las ondas han atravesado el núcleo externo, por lo que la perturbación que generan en las partículas que componen al medio a través del cual se propagan ocurre únicamente en dirección radial. Sin embargo, cuando atraviesan medios anisótropos, la polarización de dichas ondas en el manto cambia y se observa energía en la dirección transversal. Por esta razón, cuando se tienen medios anisótropos por debajo de la estación, estas fases representan una señal clara de su existencia y resultan muy útiles para describirlos. Además, la conversión de P a S en la frontera entre el núcleo y el manto permite inferir que la anisotropía está concentrada en el trayecto del rayo que está del lado de la estación y no antes porque la onda compresional P sólo es capaz de convertirse en ondas de tipo SV y no SH. Lo anterior sugiere que en el caso isótropo no debería existir energía polarizada transversalmente (Silver y Chan, 1991; Valenzuela y León Soto, 2017).

Las ondas tipo *KS inciden en las estaciones sismológicas con un ángulo muy cercano a vertical ($\sim 10^{\circ}$), por lo que presentan una buena resolución lateral y resultan útiles para el estudio e identificación de heterogeneidades laterales. Por otro lado, suelen ser más

Figura 1.4: Fases telesísmicas SKS, SKKS y PKS. La fase SKS es emitida como una onda S en la fuente, se convierte en una onda P(K) en el núcelo externo y vuelve a convertirse en una onda S al abandonar el núcelo e incidir en el manto. La fase SKKS presenta una reflexión en la frontera manto-núcleo antes de incidir en el manto (se muestran las dos trayectorias posibles). La fase PKS es emitida por la fuente como una onda P. Se puede observar como la llegada de la onda S telesísmica contamina a la SKS a distancias menores que 85° (a partir de esta distancia, la SKS se observa como una fase aislada). Las distancias epicentrales que se muestran indican la posición de las estaciones en donde se registran las ondas. El modelo de velocidades que se usó para realizar este esquema fue IASP91.

eficientes para mediciones de partición de ondas de corte a distancias epicentrales entre 85° y 110° porque se encuentran aisladas de la onda S telesísmica (Figura 1.4) y aún conservan una fracción de la energía irradiada por la fuente que permite hacer la medición de manera confiable. Estas ondas también resultan útiles para estudiar la anisotropía en regiones que presentan poca o nula sismicidad, como es el caso de los cratones (Silver y Chan, 1988; Silver, 1996).

La desventaja más importante que presentan las mediciones de partición de onda de corte a partir de ondas tipo *KS es que, debido a su incidencia cercana a vertical, la resolución vertical es muy pobre (Silver y Chan, 1991; Silver, 1996; Savage, 1999). La anisotropía medida en estaciones sismológicas en superficie resulta ser una anisotropía acumulada a lo largo del trayecto de la onda a través del manto una vez que abandona el núcleo externo. Alsina y Sneider (1995) indican que la anisotropía inferida a partir de fases como la SKS está principalmente concentrada en la región que corresponde al manto superior por debajo de la estación sismológica. Además, de acuerdo con Silver (1996), la mayor contribución al tiempo de retardo se produce en el manto superior, puesto que se estiman valores de ~ 0.2 s para la corteza y para el manto inferior. Además de una resolución vertical pobre, existe otra desventaja y es que las fases telesísmicas tipo *KSsólo pueden registrar anisotropía azimutal. Sismos locales.- Las ondas S generadas por sismos que ocurren dentro de una placa en subducción permiten estudiar el comportamiento anisótropo de la cuña del manto, de la placa suprayacente e incluso de la misma placa subducida. Para estudiar la anisotropía de estas capas, comúnmente se incluyen rayos que tengan un ángulo de incidencia no mayor que 35° de modo que se logren minimizar complicaciones ocasionadas por fases convertidas (p.ej. SP) y por la presencia de la superficie libre (Kaneshima, 1990; Yang et al., 1995; León Soto et al., 2009; León Soto y Valenzuela, 2013). La desventaja más importante que presentan las mediciones de partición de onda de corte a partir de sismos locales intraplaca que ocurren dentro de una placa subducida es que la polarización de la onda no se conoce a priori y resulta más díficil interpretar si atraviesan o no un medio anisótropo durante su propagación.

1.2. Marco tectónico

1.2.1. Placa de Cocos

La placa de Cocos subduce por debajo de la placa de Norteamérica y del borde suroccidental de la placa del Caribe en el sureste de México. Esta muestra un cambio en su geometría de noroeste a sureste a lo largo de la Trinchera Mesoamericana (TMA) (Figura 1.5). Al noroeste, debajo del estado de Guerrero, la placa de Cocos subduce horizontalmente (Pardo y Suarez, 1995; Pérez-Campos et al., 2008; Husker y Davis, 2009; Kim et al., 2010). Pérez-Campos et al. (2008) interpretaron una capa delgada de baja velocidad (~ 10 km) entre la placa subducida y la corteza continental inferior, la cual probablemente sea una cuña de manto remanente o una corteza oceánica alterada. También mostraron que la subducción plana alcanza una distancia de 250 km desde la costa antes de comenzar a adentrarse en el manto con un buzamiento abrupto. Al sureste, cerca del Istmo de Tehuantepec en el estado de Oaxaca, la placa de Cocos buza con un ángulo de $\sim 25^{\circ}$ (Pardo y Suarez, 1995; Rodríguez-Pérez, 2007; Kim et al., 2011; Melgar y Pérez-Campos, 2011) y presenta una sismicidad intraplaca que alcanza una profundidad máxima de 120 km (Bravo et al., 2004). Costa afuera en esta región se encuentra la Cordillera de Tehuantepec (*Tehuantepec Ridge*, TR, por sus siglas en inglés), que se origina en la Dorsal del Pacífico Oriental (*East Pacific Rise*, EPR, por sus siglas en inlgés) como la Zona de Fractura de Clipperton (Manea et al., 2005a). Hacia el este, la Zona de Fractura de Clipperton cambia de nombre por el de Zona de Fractura de Tehuantepec (Manea et al.. 2005a, 2013). En el presente estudio se usará el término Cordillera de Tehuantepec (TR) por razones históricas (Klitgord y Mammerickx, 1982; Manea et al., 2005a,b; Manea y Manea, 2008; Calò, 2021). Esta discontinuidad batimétrica representa un límite tectónico dentro de la placa de Cocos (Manea et al., 2005b) en donde se ha estimado un salto en la edad del piso oceánico de ~ 10 Ma. Cerca de la TMA, la edad al noroeste de la TR es ~ 16 Ma (Klitgord v Mammerickx, 1982; Kanjorski, 2003) v aumenta abruptamente a ~ 26 Ma al sureste de la TR frente al estado de Chiapas (Manea et al., 2005a) (Figura 1.5). Al sureste de la TR, por debajo de Chiapas, la placa de Cocos aumenta su ángulo de buzamiento a $\sim 40^{\circ}$ (Rebollar et al., 1999; Bravo et al., 2004) y la sismicidad intraplaca alcanza una extensión máxima de 240 km (Rebollar et al., 1999). Cerca de la frontera entre México y Guatemala, por debajo de la región de antearco del Arco Volcánico Centroamericano (CAVA, por sus siglas en inglés), la placa aumenta nuevamente su ángulo de buzamiento alcanzando $\sim 45^{\circ}$ (Rodríguez-Pérez, 2007).

La extensión de la Cordillera de Tehuantepec (TRe, por sus siglas en inglés) (segmento de cordillera que ha sido subducida) en la placa subducida de Cocos (Figura 1.5) parece controlar la geoquímica del volcán activo El Chichón, ubicado en el extremo noroeste del Arco Volcánico Chiapaneco Moderno (AVCM), que es un cinturón volcánico de ~ 150 km de largo, orientado NO-SE, que se encuentra en una zona que está por encima de la región en la que la placa de Cocos alcanza ~ 200 km de profundidad (Manea et al., 2013) (Figura 1.5). De acuerdo con Calò (2021), la placa de Cocos comienza a rasgarse siguiendo a la TRe a profundidades mavores que 120 - 130 km, produciendo una ventana vertical a partir de los 140 km de profundidad. Además, Nava Lara y Manea (2022), concluyeron que la serpentinización de la TRe favorece el desarrollo de un desgarre vertical de la placa subducida coincidente con la TRe. La existencia de este desgarre podría explicar la contaminación K-alcalina que se observa en la geoquímica del volcán El Chichón (Calò, 2021). Según Manea et al. (2013), la contaminación ocurre debido a fluidos liberados a grandes profundidades por la fuerte deshidratación del manto serpentinizado asociado con la subducción de la TRe. En caso de que exista la ventana vertical coincidente con la TRe, entonces podría haber flujo de manto a través de ella.

1.2.2. Cuña del manto serpentinizada

La porción de la placa de Cocos que subduce por debajo de la placa del Caribe es mayor, más fría y tiene mayor espesor que la porción que subduce por debajo de la placa de Norteamérica (Manea et al., 2005b), lo que podría resultar en una mayor tasa de retroceso de la placa y de la trinchera al sureste de la TRe (debajo de Chiapas) y conducir material de la cuña del manto en una dirección paralela a la trinchera. Si la placa está retrocediendo cerca de sus bordes, es posible que exista flujo de material a lo largo de su rumbo en la cuña del manto (Abt et al., 2009, 2010).

La porción de la placa de Cocos que subduce horizontalmente tiene una temperatura de $\sim 600^{\circ}$ C y se encuentra en contacto al sureste con una cuña del manto con ~ 1300 °C. Por esta razón existe un enfriamiento continuo de la cuña por debajo del Arco Volcánico Chiapaneco Antiguo (AVCA) (también conocido como Sierra Madre de Chiapas) (Figura 1.5). Debido a este enfriamiento, se generan condiciones ideales para crear un campo estable de serpentina (~ 600 °C) (Manea y Manea, 2006). Durante el proceso de subducción de una placa, sus fases hidratadas se van volviendo termodinámicamente inestables y sufren deshidratación, causando al mismo tiempo la hidratación de la cuña del manto peridotítico (Mookherjee y Capitani, 2011). Cuando el extremo de una cuña del manto es enfriado e hidratado, la serpentinización puede tomar lugar como consecuencia de la reacción entre los fluidos liberados y las rocas ultramáficas presentes en la cuña (Hyndman y Peacock, 2003). Por lo anterior, podría esperarse que exista una cuña del manto parcialmente serpentinizada (extremo de la cuña) en la zona de subducción que se encuentra al sureste de la subducción plana principalmente por debajo de la región de antearco del AVCM (Manea y Manea, 2006) (Figura 1.5). La magnitud de la anisotropía sísmica causada por la LPO de la serpentina depende fuertemente del grado de serpentinización (Bhilisse et al., 2019).

Figura 1.5: Configuración tectónica del sureste de México. (a) Límites entre las placas de Cocos, Norteamérica y del Caribe. Las líneas blancas continuas y segmentadas representan las cotas de isoprofundidad de la placa de Cocos (Hayes et al., 2018). Las edades de la placa de Cocos fueron tomadas de Wilson (1996) y de Manea et al. (2005a). EPR - Dorsal del Pacífico Oriental. TMA - Trinchera Mesoamericana. TR - Cordillera de Tehuantepec. TRe - Extensión de la Cordillera de Tehuantepec. Las regiones enmarcadas con una línea roja punteada representan la ubicación de los cinturones volcánicos: FVTM - Faja Volcánica Transmexicana, CVLT - Campo Volcánico Los Tuxtlas, AVCM - Arco Volcánico Chiapaneco Moderno, AVCA - Arco Volcánico Chiapaneco Antiguo (Sierra Madre de Chiapas), CAVA - Arco Volcánico Centroamericano. En el mapa se muestran los volcanes San Martin, El Chichón y Tacaná. Las líneas negras punteadas representan los límites políticos de México, destacando los estados de Guerrero, Oaxaca y Chiapas de noroeste a sureste. Terrenos tectonoestratigráficos, sus complejos metamórficos y los sistemas de fallas que los delimitan (líneas rojas) (modificado de Tolson, 2005) se muestran sobre los estados de Guerrero y Oaxaca. El área sombreada de color rosado representa la cuña del manto parcialmente serpentinizada propuesta por Manea y Manea (2006). (b) Ubicación regional del área de estudio.

Los minerales de serpentina cristalizan en el sistema monoclínico y uno de los más comunes es la antigorita. Las orientaciones preferenciales de la antigorita pueden surgir de procesos vinculados con la deformación, como el deslizamiento por dislocación (*dislocation* glide) o la rotación de granos, o de procesos relacionados con el crecimiento de cristales, como la topotaxia o el crecimiento por relleno de vacíos (growth by void-filling) (Brownlee et al., 2013).

Deformación.- Durante una deformación con una geometría de cizalla simple, la serpentina desarrolla una LPO con el plano (001) paralelo al plano de cizalla con el eje [100] a lo largo de la dirección de cizallamiento, causando una fuerte anisotropía de onda de corte paralela a la foliación (dirección de cizalla) (Katayama et al., 2009; Bezacier et al., 2010; Brownlee et al., 2013). En zonas de subducción, el plano (001) de la serpentina tiende

Figura 1.6: Serpentinización. Modelo de hidratación de la cuña del manto para explicar grandes magnitudes de anisotropía con ejes rápidos paralelos a la trinchera. Región 1: rica en serpentina con cierta cantidad de talco en la base de la cuña. Región 2: mezcla de serpentina, talco y olivino. Región 3: rica en olivino tipo B. En (i) los planos (001) son horizontales y se orientan paralelos a la placa suprayacente; en (ii) y (iii) los planos (001) son aproximadamente verticales y los ejes [010] son paralelos a la trinchera; en (iv) los planos (001) de la antigorita y del talco son paralelos a la placa en subducción (modificado de Mookherjee y Capitani, 2011). En la parte inferior se presenta un modelo esquemático que explica la orientación de los ejes rápido y lento de los minerales de serpentina por encima de la placa subducida (modificado de Katayama et al., 2009).

a orientarse paralelo a la placa subducida con el eje [010] (eje b) paralelo a la trinchera (Katayama et al., 2009; Mookherjee v Capitani, 2011) (Figura 1.6). Si el campo de flujo de esquina 2D domina el sistema de subducción, los minerales de serpentina sufren una especie de plegamiento en el extremo de la cuña del manto volviéndose el plano (001) aproximadamente vertical cerca de la trinchera y aproximadamente horizontal por debajo de la placa suprayacente. Por esta razón, por encima del extremo de la cuña del manto la dirección de polarización rápida será paralela a la trinchera y, por debajo de la placa supravacente hacia el centro de la cuña, será perpendicular a ella, aunque, con base en observaciones, es poco probable que las serpentinas por debajo de la placa suprayacente contribuyan a la anisotropía (Figura 1.6). Los rayos telesísmicos con incidencia cercana a vertical (subparalela al plano (001) de la serpentina), que atraviesan el extremo de la cuña del manto, producen una dirección rápida paralela al eje [010] el cual se orienta paralelo a la trinchera, por lo que los ejes rápidos resultan paralelos a la trinchera (Mookherjee y Capitani, 2011) (Figura 1.6). Por otro lado, las fallas serpentinizadas dentro de la placa subducida han sido propuestas como posible causa de polarización de la onda de corte paralela a la trinchera con grandes tiempos de retardo. Dentro de las fallas, los minerales de serpentina se orientan con los planos de foliación (001) paralelos a la falla y con los ejes [100] o [010] paralelos a la trinchera (Faccenda et al., 2008; Mookherjee y Capitani, 2011) (Figura 1.6).

El talco, que es un mineral extremadamente anisótropo, podría tomar lugar en la cuña del manto en capas relativamente delgadas debido a la alta saturación de SiO_2 que puede presentar el agua proveniente de los sedimentos del canal de subducción y de la deshidratación de la corteza oceánica subducida. Las propiedades físicas de este mineral son similares a las de la serpentina, también orientándose el plano (001) paralelo al plano de cizalla cuando es sometido a una geometría deformación de cizalla simple (Escartin et al., 2008; Mookherjee y Capitani, 2011) (Figura 1.6).

Hacia el centro de la cuña, lejos de la trinchera, una combinación de minerales de serpentina, talco y olivino puede tomar lugar debido a las condiciones de temperatura y contenido de agua, seguida de otra región aún más lejos de la trinchera en la que dominan las fábricas de olivino (tipo B en caso de alto contenido de agua). Si existe olivino tipo B y domina el flujo de esquina 2D, se tendrán direcciones de polarización rápida paralelas a la trinchera para la onda de corte, pero con tiempos de retardo menores a los que produce la serpentina (Long y van der Hilst, 2006; Mookherjee y Capitani, 2011) (Figura 1.6).

Aun siendo dominante el flujo paralelo a la trinchera en el manto por debajo del antearco, se produciría una fuerte anisotropía paralela a la trinchera para placas que subducen con $\sim 45^{\circ}$ de buzamiento, puesto que el plano basal de la serpentina se alinearía subparalelo a la dirección del flujo y el eje [100], que es el eje rápido, se orientaría subparalelo a la dirección de cizallamiento (Katayama et al., 2009).

Crecimiento de cristales.- Cuando la antigorita se orienta debido a procesos vinculados con el crecimiento de cristales como la topotaxia, la dirección de polarización rápida del olivino es reemplazada por la dirección lenta de la antigorita, produciendo una gran anisotropía perpendicular a la dirección de cizallamiento. Cuando la antigorita crece en forma de venas tiende a hacerlo con el plano (001) perpendicular a la pared de la vena, la cual es la única dirección lenta del mineral. El crecimiento de minerales de serpentina dentro de venas se cree que produce muy poca anisotropía (Brownlee et al., 2013).

1.2.3. Tectonoestratigrafía por encima de la subducción horizontal

Por encima de la subducción horizontal, la corteza continental, que es parte de la placa suprayacente de Norteamérica, está constituida por un conjunto de terrenos tectonoestratigráficos de diferentes edades y espesores (Sedlock et al., 1993; Ferrari et al., 2012). De poniente a oriente, los terrenos han sido identificados con los nombres de Guerrero, Mixteco, Zapoteco, Cuicateco y Maya. Al sur de los terrenos Guerrero, Mixteco y Zapoteco se encuentra el denominado terreno Chatino (Tolson, 2005) (Figura 1.5).

El complejo metamórfico Tierra Caliente constituye un subterreno del terreno Guerrero (Figura 1.5) y se caracteriza por una litología de meta-basitas, meta-andesitas y rocas metasedimentarias de altas temperaturas y bajo grado de metamorfismo. Presenta foliaciones, superficies axiales y fallas de cabalgamiento con buzamientos pequeños y horizontales, lo cual probablemente sea el resultado de un trasnporte tectónico hacia el noreste (Ortega-Gutiérrez, 1981). La falla inversa de Papalutla representa el límite entre los terrenos Guerrero y Mixteco (Figura 1.5).

El complejo metamórfico de Acatlán se localiza dentro del terreno Mixteco y se interpreta como una napa deformada que está constituida por dos terrenos principales diferentes: un terreno parautóctono en la parte inferior y otro autóctono en la parte superior. La zona de falla de Caltepec, que se orienta N-S, separa al terreno Mixteco del terreno Zapoteco y representa una estructura destral transpresiva (Nance et al., 2006) (Figura 1.5).

El complejo Oaxaca es la unidad más antigua del terreno Zapoteco y está constituida por un conjunto de meta-anortositas, ortogneises cuarzo-feldespáticos, paragneises, rocas sedimentarias ricas en silicato de calcio y charnockitas. Estratos no marinos del Neógeno y rocas volcánicas fueron depositados en grábenes alargados hacia el NNO que se formaron a lo largo de la falla de Oaxaca en el extremo oriental del terreno Zapoteco (Sedlock et al., 1993). Las rocas de los basamentos cristalinos de los complejos metamórficos de Oaxaca y Acatlán se encuentran en contacto tectónico, desarrollándose una zona de milonitas en el complejo Oaxaca y otra con una intensa deformación de esquistos en el complejo Acatlán (González-Hervert et al., 1984). El límite entre los terrenos Zapoteco y Cuicateco es la falla de gran ángulo de Oaxaca (Figura 1.5).

A lo largo de su borde oriental, el terreno Cuicateco es empujado hacia el este por encima de las rocas metamóficas y de los *red-beds* del terreno Maya a lo largo del sistema de fallas de Vista Hermosa (Figura 1.5). El complejo Cuicateco contiene granitoides deformados y metamorfizados y rocas volcánicas de origen incierto. El terreno Cuicateco es básicamente una cuenca sedimentaria que se formó en un ambiente de arco u oceánico (Sedlock et al., 1993). El complejo milonítico de Juárez se encuentra entre los terrenos Cuicateco y Zapoteco y constituye su zona de sutura (Figura 1.5). Esencialmente consiste en un complejo metamórfico con texturas miloníticas sobreimpuestas. La deformación milonítica ocurrió bajo condiciones metamórficas en el límite entre esquistos verdes y facies de anfibolita (Alaniz-Álvarez et al., 1994).

Finalmente, de oeste a este, los terrenos Guerrero, Mixteco y Zapoteco se encuentran en contacto de falla al sur con el terreno Chatino (Figura 1.5). El contacto del terreno Cuicateco y la parte oriental del terreno Zapoteco con el terreno Chatino, se define como la zona de fallas de Chacalapa. El contacto del terreno Mixteco y la parte occidental del terreno Zapoteco con el terreno Chatino, se conoce como la zona de fallas de Juchatengo (Sedlock et al., 1993).

1.2.4. Complejos volcánicos en el sureste de México

A pesar de que la placa de Cocos subduce de manera continua de un extremo a otro, el vulcanismo en la región es discontinuo y está únicamente representado por complejos volcánicos como lo son la Faja Volcánica Transmexicana (FVTM), el campo volcánico Los Tuxtlas (CVLT), el AVCM y el CAVA (Figura 1.5). La FVTM es un arco continental del Neógeno que yace sobre las placas Rivera y Cocos y que muestra una gran variación en la composición y estilo de vulcanismo y presenta una tectónica extensional intra-arco (Ferrari et al., 2012). Se encuentra en la parte central de México (Figura 1.5) y presenta una firma del magma principalmente de rocas calco-alcalinas (Macías et al., 2003). El CVLT se encuentra al sureste de la FVTM y presenta rocas alcalinas (Nelson et al., 1995). El único volcán con actividad conocida es el volcán basáltico de San Martin (Espíndola et al., 2010) (Figura 1.5). En Chiapas, el AVCM se encuentra a 300 - 350 km de la TMA (Figura (1.5), donde la placa de Cocos alcanza una profundidad de ~ 200 km y está completamente deshidratada (Manea y Manea, 2006). Este arco se orienta en dirección oblicua a la TMA y presenta magmas calco-alcalinos típicos de arcos volcánicos (Damon y Montesinos, 1978), excepto por el volcán El Chichón (Figura 1.5) que presenta magmas K-alcalinos (De Ignacio et al., 2003; Macías et al., 2003). La región actual de antearco del AVCM solía ser el AVCA o parte de la Sierra Madre del Mioceno. Su cese sugiere un enfriamiento de la cuña del manto que se encuentra por debajo que pudo haber sido causada por la proximidad a la placa en subducción horizontal al noroeste (Manea y Manea, 2006). El AVCA fue abandonado cuando se formó el AVCM (Damon y Montesinos, 1978). Más hacia el sureste, después de una brecha de ~ 100 km, se encuentra el volcán calco-alcalino de Tacaná, el cual pertenece al CAVA (Figura 1.5). El CAVA se extiende paralelo a la TMA desde México suroriental hacia Centroamérica y presenta magmas calco-alcalinos típicos de complejos de arcos volcánicos (García-Palomo et al., 2004).

1.3. Antecedentes

Diversos trabajos se han enfocado en estudiar la anisotropía sísmica por debajo de México utilizando datos telesísmicos. Barruol y Hoffmann (1999) midieron los parámetros de anisotropía sísmica en la estación UNM (UNAM), la cual se encuentra en la región central de México y pertenece a la red sismológica internacional *Geoscope*, y encontraron una dirección de polarización rápida orientada NO-SE. Van Benthen (2005) cuantificó los parámetros de anisotropía sísmica con datos de estaciones de banda ancha del Servicio Sismológico Nacional (SSN) y de la parte sur del arreglo temporal de NARS-Baja California (Trampert et al., 2003; Clayton et al., 2004), con lo que demostró que la anisotropía sísmica en el centro y sur de México está controlada por el movimiento absoluto de la placa de Norteamérica. Por otro lado, arreglos densos y temporales han sido empleados para estudiar la subducción de la placa de Cocos (MASE (2007) (Pérez-Campos et al., 2008), VEOX (2010), GECO (Rodríguez-Domínguez et al., 2019)) y la placa Rivera (Yang et al., 2009) por debajo de la placa de Norteamérica. Los datos de estos experimentos han sido utilizados para hacer mediciones de partición de la onda de corte (Stubailo y Davis, 2007; Van Benthem et al., 2013; Stubailo, 2015; Bernal-López et al., 2016; Vázquez Aragón, 2019; León Soto et al., 2021) y han permitido mejorar el entendimiento del flujo del manto por debajo y por arriba de las placas en subducción. En general, los ejes rápidos en México son perpendiculares a la TMA, lo cual es consistente con un flujo del manto arrastrado por debajo de las placas subducidas (subslab entrained flow) y un flujo de esquina en la cuña del manto (Van Benthen, 2005; León Soto et al., 2009; Van Benthem et al., 2013; Bernal-López et al., 2016; Valenzuela y León Soto, 2017; León Soto et al., 2021). A partir de mediciones con ondas S telesísmicas, Lynner y Long (2014) encontraron un patrón simple y consistente para los parámetros de partición en el sureste de México. siendo en su mayoría paralelos al movimiento de placas y perpendiculares a la TMA. Por otra parte, León Soto et al. (2009) reportaron la ocurrencia de flujo toroidal alrededor del extremo occidental de la placa Rivera, el cual explican que se debe al retroceso de dicha placa (slab rollback). También observaron flujo del manto en la separación que existe entre las placas subducidas de Rivera y Cocos. Por último, Valenzuela y León Soto (2017) reportaron mediciones consistentes con una anisotropía débil en Chiapas que podría representar una transición hacia Nicaragua y Costa Rica, donde los ejes rápidos son paralelos a la trinchera (Abt et al., 2009, 2010).

Existen pocos trabajos que se han enfocado en estudiar la anisotropía sísmica usando sismos locales intraplaca dentro de la placa de Cocos. León Soto et al. (2009) intentaron analizar la partición de ondas de corte para sismos ocurridos en la placa Rivera y en la parte occidental de la placa de Cocos, pero únicamente lograron resolver la corteza continental debido a la falta de sismicidad profunda. León Soto y Valenzuela (2013) presentaron un estudio del flujo en la cuña del manto a lo largo del Istmo de Tehuantepec en el sureste de México. Sus observaciones fueron consistentes con un manto compuesto por fábricas de olivino tipo A que se han orientado de acuerdo con un flujo de esquina 2D controlado por el acoplamiento viscoso entre la placa en subducción y los materiales de la cuña del manto.

Huesca-Pérez et al. (2016, 2019) realizaron estudios de anisotropía cortical en el sureste de México empleando tremores tectónicos e interpretaron que el estado de esfuerzos y las estructuras geológicas son los factores principales que controlan la estructura anisótropa de la corteza.

1.4. Planteamiento del problema y objetivos

Como se mencionó anteriormente, la placa de Cocos presenta un buzamiento variable en el sureste de México al ir de poniente a oriente. Se ha propuesto que la placa de Cocos está segmentada en tres partes denominadas Cocos Norte, Cocos Centro y Cocos Sur (Bandy, 1992; Bandy et al., 2000; Dougherty et al., 2012; Dougherty y Clayton, 2014), cambiando el ángulo de buzamiento de forma abrupta de poniente a oriente desde ~40° a ~25° a lo largo de la zona de fractura de Orozco (Dougherty et al., 2012). Este desgarre (*slab tear*) podría deberse al retroceso de la placa de Cocos en la parte central de México (Ferrari, 2004; Pérez-Campos et al., 2008; Dougherty et al., 2012). De igual forma, Dougherty y Clayton (2014) sugieren que la parte central (subducción plana) y sur (subducción normal) de la placa se encuentran separadas por un desgarre. Ellos observan un cambio abrupto en los patrones de sismicidad y lo interpretan como un cambio brusco del buzamiento de la placa. El desgarre que proponen se extiende hasta el extremo oriental de la FVTM y podría deberse al retroceso de la parte sur de la placa de Cocos. Este desgarre también fue observado por Rodríguez Domínguez (2016) y Castellanos et al. (2018) a través del análisis de funciones de receptor y de ruido sísmico, respectivamente. Por el contrario, Fasola et al. (2016) sugieren que la placa es continua debido a que no encontraron discontinuidad en la profundidad de los hipocentros en la transición de la subducción plana a la subducción normal. Más hacia el sur, Calò (2021) propone que existe un desgarre de la placa de Cocos que coincide con la TRe y que comienza entre los 120 y 130 km de profundidad, a lo que atribuye la contaminación K-alcalina del volcán El Chichón. Cuando la placa alcanza la frontera entre México y Guatemala, la subducción aumenta su buzamiento a 45° (Rodríguez-Pérez, 2007).

Con la anisotropía sísmica se puede mejorar el entendimiento de la complicada geometría que presenta la placa de Cocos. Como la anisotropía está controlada por el flujo del material del cual está compuesto el manto, al estudiarla se puede inferir la dirección en la que fluye dicho material y su relación con la geometría de la placa subducente. Para lograr esto, se plantearon los siguientes objetivos:

- Usar fases telesísmicas como la SKS para estudiar la anisotropía del manto superior y su relación con la geometría de la subducción de la placa de Cocos, con el fin de conocer el patrón del flujo y determinar si es consistente o no con alguna ruptura de la placa.
- Usar la onda S de sismos locales intraplaca con profundidades superiores a 50 km para explorar los factores que controlan la anisotropía regional en el sureste de México, va sean efectos corticales o de la cuña del manto, y determinar el patrón de flujo en la cuña del manto. La identificación de los factores que controlan la anisotropía en la cuña permitirá generar una idea acerca de su composición mineralógica y la dirección del flujo del manto en ella, lo que podría proporcionar información acerca del patrón de flujo del manto y su relación con la geometría de la placa de Cocos. Además, la región de estudio resulta importante porque se encuentra en la transición entre dos regímenes distintos para el flujo del manto. Al oeste (Guerrero y Oaxaca) predomina el flujo del manto arrastrado por debajo de la placa subducida y el flujo de esquina en la cuña del manto, mientras que al este (Nicaragua y Costa Rica), el patrón de flujo parace estar controlado por el retroceso de la placa subducida por encima y por debajo de ella. Las mediciones de anisotropía a partir de sismos locales intraplaca podrían ayudar a entender la razón de esta transición, ya sea que se deba a un cambio en la dirección del flujo del manto o de la composición mineralógica del manto en la cuña. Por último, se busca identificar si es la cuña del manto remanente o la corteza continental lo que controla la anisotropía de las ondas de corte de sismos locales intraplaca en la región donde ocurre la subducción horizontal de la placa de Cocos.
- Finalmente, se busca mejorar la resolución vertical de las mediciones de partición de onda de corte a partir de sismos locales intraplaca a través de una inversión tomográfica, lo que permitirá un mayor entendimiento de la orientación de los

cristales y del patrón de flujo en la cuña del manto en donde ocurre la subducción normal de la placa de Cocos (Oaxaca y Chiapas).

Capítulo 2

Anisotropía sísmica a partir de mediciones telesísmicas

2.1. Datos

Las fases telesísmicas (SKS, SKKS y PKS) analizadas fueron registradas por sismómetros de banda ancha pertenecientes a las redes permanentes del Servicio Sismológico Nacional (SSN) (Pérez-Campos et al., 2018; SSN, 2021a) y de la Red Sísmica de Banda Ancha de Veracruz (RSBAV) (Córdoba-Montiel et al., 2018), y a los experimentos temporales de Geometry of Cocos (GECO) (Rodríguez-Domínguez et al., 2019), que operó desde el 2013 hasta el 2019, y de Rapid Aftershock Deployment for the September 2017 M 8.2 and 7.1 Earthquakes in Mexico (RADSEM) (Velasco y Karplus, 2017), que operó desde octubre de 2017 hasta marzo de 2018. Las estaciones que se utilizaron para medir la partición de la onda de corte se muestran en la Figura 2.1. El catálogo sísmico fue tomado de United States Geological Survey (USGS), publicado en la página de Incorporated Research Institutions for Seismology (IRIS).

2.1.1. Preparación de datos

Se seleccionaron sismos con $M \ge 5.9$ ocurridos a distancias epicentrales mayores que 85° para cada estación. Sismos con magnitudes menores que 5.9 no suelen generar ondas SKS con relaciones señal-ruido lo suficientemente fuertes como para producir mediciones confiables de anisotropía y, por otro lado, a distancias epicentrales mayores que 85° se logra evitar la contaminación de la onda S telesísmica en la llegada de la onda SKS. Los datos fueron descargados con una tasa de muestreo de 20 mps y fueron corregidos por el valor de la media y línea de tendencia. Se aplicaron filtros pasa-bandas con frecuencias de esquina, por lo general, de 8 y 25 s, para así mejorar la relación señal ruido y resaltar las fases telesísmicas de interés. Los sismos utilizados y sus trayectorias correspondientes se muestran en la Figura 2.2.

2.2. Método

Los parámetros de partición de onda de corte ($\phi \neq \delta t$) fueron determinados haciendo uso del método de Silver y Chan (1991) y asumiendo un eje de simetría horizontal. Silver

Figura 2.1: Estaciones utilizadas para medir la partición de la onda de corte a partir de telesismos: la leyenda muestra la red sismológica a la que pertenece cada estación. Se señalan los diferentes arcos volcánicos de la región: FVTM - Faja Volcánica Transmexicana, CVLT - Campo Volcánico Los Tuxtlas, AVCM - Arco Volcánico Chiapaenco Moderno, CAVA - Arco Volcánico Centroamericano. La línea con triángulos negros representa la Trinchera Mesoamericana (TMA). Las líneas blancas y continuas indican las cotas de isoprofundidad de la placa de Cocos (Hayes et al., 2018).

y Chan (1991) proponen un método de covarianza que emplea ondas telesísmicas con ángulos de incidencia casi verticales cuando arriban a las estaciones en superficie (p.ej. *SKS*, *SKKS y PKS*) que permite calcular la dirección de polarización de la onda rápida y el tiempo de retardo entre la llegada de la onda rápida y la onda lenta. Las observaciones en superficie de la partición de la onda de corte se deben realizar con especial atención en el ángulo de incidencia porque las ondas se polarizan elípticamente más allá del ángulo crítico (Savage et al., 1989). El cono definido por el ángulo crítico se denomina "ventana de la onda de corte"(*shear-wave window*) (Crampin, 1981).

2.2.1. Método de Covarianza de Silver y Chan (1991)

En un medio isótropo y homogéneo, la llegada a superficie de la onda de corte en un tiempo t_o , después de atravesar una trayectoria de longitud L, está dada por la función

$$u(\omega) = Aw(\omega)exp[-i\omega t_o], \qquad (2.1)$$

donde A representa la amplitud del vector de desplazamiento y $w(\omega)$ la función de la ondícula, que es el producto de la transformada de Fourier de la función temporal de fuente

Figura 2.2: Telesismos analizados y sus trayectorias. a) Trayectorias (líneas blancas) desde los epicentros hasta las estaciones sismológicas. b) Acercamiento a la región de estudio (las líneas grises representan las trayectorias).

por un operador de atenuación y por la respuesta instrumental. Se asume que $A \approx A\hat{p}$, siendo A un escalar complejor y \hat{p} un vector unitario real que apunta en la dirección del desplazamiento y que está contenido en el plano ortogonal a la dirección de propagación \hat{b} , por lo que la Ecuación 2.1 se puede reescribir

$$u(\omega) = w(\omega)exp[-i\omega t_o]\hat{p}, \qquad (2.2)$$

incorporando A en la definición de $w(\omega)$. La Ecuación 2.2 es una buena aproximación para arribos con ángulo de incidencia cercano a vertical ya que, en la práctica, se ignoran cambios de fase en la componente radial debido a la superficie libre.

El método de Silver y Chan (1991) busca modelar la partición de la onda de corte debido a la anisotropía a partir de operaciones geométricas de proyecciones de \hat{p} en las direcciones de polarización rápida y lenta: \hat{f} y \hat{s} , para luego desfasar en tiempo estas componentes $\delta t/2$ y $-\delta t/2$, respectivamente.

Para un tensor elástico c_{ijkl} , \hat{f} y \hat{s} son casi dos autovectores de la matriz de polarización v que está definida por

$$\rho v_{il} = C_{ijkl} \dot{b}_j \dot{b}_k \tag{2.3}$$

(Backus, 1965), con autovalores β_2^2 y β_1^2 , correspondientes a los cuadrados de las dos velocidades de la onda de corte. En caso de existir un efecto de anisotropía pequeño, δt puede ser expresado en términos de una perturbación en la velocidad de la onda de corte, $\delta \hat{\beta} = \beta_o^{-1} (\delta \beta_1 - \delta \beta_2)$, como

$$\delta t = \beta_o^{-1} L \delta \hat{\beta}, \qquad (2.4)$$

donde $\delta\beta_{1,2} = \beta_{1,2} - \beta_o$, siendo β_o la velocidad de la onda de corte en un medio isótropo, por lo que en el caso de no haber anisotropía, $\beta_1 = \beta_2 = \beta_o$ y $\delta\beta_1 + \delta\beta_2 = 0$.

El operador

$$\Gamma = exp[i\omega\delta t/2]\hat{f}\hat{f} + exp[-i\omega\delta t/2]\hat{s}\hat{s}$$
(2.5)

puede ser utilizado sobre una onda de corte $u_s(\omega)$ de la forma 2.2 para generar analíticamente le proceso de partición, siendo la expresión para una onda particionada

$$u_s(\omega) = w(\omega)exp[-i\omega t_o]\Gamma(\phi,\delta t)\cdot\hat{p},$$
(2.6)

donde ϕ es el ángulo entre \hat{f} y \hat{p} , el cual corresponde a la dirección de polarización rápida de la onda de corte.

Si se define el tensor

$$\delta\Gamma = \delta t/2(\hat{f}\hat{f} - \hat{s}\hat{s}), \qquad (2.7)$$

entonces el operador de partición 2.5 puede ser escrito en forma compacta como

$$\Gamma = exp[i\omega\delta T(\phi, \delta t)]. \tag{2.8}$$

Una manera directa de estimar los parámetros ϕ y δt es tratando de corregir la anisotropía por debajo de la estación escogiendo el par que haga que la relación 2.6 sea lo más parecida posible a la relación 2.2, lo que puede lograrse encontrando un operador de partición inverso Γ^{-1} . En la relación 2.5 se puede apreciar que el operador de partición es unitario, por lo que su inverso es simplemente el complejo conjugado Γ^* . Si se asume que el plano de polarización de la onda de corte es conocido, Γ^{-1} puede encontrarse calculando la matriz de covarianza bidimensional en el dominio del tiempo del movimiento de partículas en ese plano de modo que los autovalores puedan ser usados como una medida de linealidad (Vidale, 1986). La matriz de covarianza c_{ij} entre dos componentes ortogonales del movimiento de partículas, a ángulos ϕ y $\phi + \pi/2$ de \hat{p} , se puede definir como

$$c_{ij}(\phi,\delta t) = \int_{-\infty}^{\infty} u_i u_j(t-\delta t) dt, \qquad i,j=1,2$$
(2.9)

para una diferencia de tiempo δt .

En ausencia de anisotropía por debajo de la estación, c_{ij} tiene un único autovalor distinto de cero y es $\lambda_1 = E_u = \int_{-\infty}^{\infty} w^2(t) dt$, y su autovector corresponde a la expresión 2.2. En cambio, en presencia de anisotropía, c_{ij} presenta dos autovalores distintos de cero, λ_1 y λ_2 , a no ser que ϕ sea un múltiplo entero de $\pi/2$ ($\phi = n\pi/2$ con n = 0, 1, 2, ...) o $\delta t = 0s$. De esta manera, puede buscarse Γ^{-1} considerando que $\tilde{u}_s(\omega) = \Gamma^{-1} \cdot u_s(\omega)$ posea una matriz de covarianza singular (que su determinante sea igual a cero).

Para cada par de prueba ϕ y δt , la matriz de covarianza $\tilde{c}(\phi, \delta t)$, de los sismogramas rotados y corridos en tiempo, puede ser expresada en términos de la covarianza $c(\delta t)$ de un sistema coordenado de referencia (p.ej. N-S, E-O), por lo que se obtiene

$$\tilde{c}_{ij}(\phi,\delta t) = \begin{pmatrix} \int_{-\infty}^{\infty} \tilde{u}_1^2(t+\delta t/2)dt & \int_{-\infty}^{\infty} \tilde{u}_1(t+\delta t/2)\tilde{u}_2(t-\delta t/2)dt \\ \int_{-\infty}^{\infty} \tilde{u}_2(t+\delta t/2)\tilde{u}_1(t-\delta t/2)dt & \int_{-\infty}^{\infty} \tilde{u}_2^2(t-\delta t/2)dt \end{pmatrix}$$
(2.10)

lo que puede escribirse como

$$\tilde{c}_{ij}(\phi, \delta t) = \begin{pmatrix} R_{1i}(\phi)c_{ij}(0)R_{1j}(\phi) & R_{1i}(\phi)c_{ij}(0)R_{2j}(\phi) \\ R_{2i}(\phi)c_{ij}(0)R_{1j}(\phi) & R_{2i}(\phi)c_{ij}(0)R_{2j}(\phi) \end{pmatrix},$$
(2.11)

donde R es el tensor de rotación y define el cambio del sistema de coordenadas del marco de referencia al definido por las direcciones de polarización rápida y lenta para cada par de parámetros de prueba.

Las expresiones de los componentes de \tilde{c}_{ij} demuestran que esta matriz está formada por combinaciones lineales de covarianza y auto-covarianza sin cambios temporales en el marco de referencia original, lo que permite una evaluación eficiente de los parámetros de prueba.

En presencia de ruido $\eta(t)$, \tilde{c} no será singular, por lo que se busca la matriz de covarianza que sea lo más singular posible, es decir, que su determinante sea el más cercano a cero. Aunque existen varias formas aparentemente distintas de hacer mediciones de linealidad con base en autovalores, como maximizar $\lambda_1 y \lambda_1/\lambda_2$ o minimizar $\lambda_2 y \lambda_1 \cdot \lambda_2$, en realidad todas son equivalentes porque la traza bidimensional de \tilde{c} , $\Theta = \lambda_1 + \lambda_2$, es invariante con respecto a los cambios de $\phi y \delta t$.

Bowman y Ando (1987) midieron los valores de los parámetros de anisotropía sísmica maximizando la correlación cruzada entre los componentes horizontales, lo cual es equivalente a minimizar el determinante y puede ser comparado con minimizar $\lambda_1\lambda_2 = c_{11}c_{22}-c_{12}^2$. Shih et al. (1989) midieron los parámetros maximizando la relación de aspecto, lo cual es equivalente a maximizar λ_1/λ_2 . Silver y Chan (1988) aplicaron un método equivalente a encontrar el mínimo valor de λ_2 (λ_2^{min}), que correspondía a minimizar la energía de la componente transversal corregida. La ventaja de λ_2^{min} es que constituye una medida de la varianza del proceso de ruido y, como tal, proporciona la base para el cálculo de regiones de confianza para los dos parámetros de partición. Por lo anterior, los parámetros de partición en este estudio se midieron minimizando λ_2 (que corresponde al menor autovalor).

Con las ondas tipo *KS, como SKS y SKKS, el vector de polarización isótropa \hat{p} es conocido. En estos casos, los componentes radial y transversal en ausencia de ruido y en el dominio del tiempo están dados por las expresiones

$$u_r(t) = w(t + \delta t/2)\cos^2 \phi + w(t - \delta t/2)\sin^2 \phi, \qquad (2.12)$$

$$u_t(t) = -\frac{1}{2} [w(t + \delta t/2) + w(t - \delta t/2) \sin 2\phi, \qquad (2.13)$$

La energía de la transversal corregida, $E_t = \int_{-\infty}^{\infty} \tilde{u}_t^2(t) dt$, puede ser minimizada en lugar de λ_2 , como lo hicieron Silver y Chan (1988). Silver y Chan (1991) realizaron mediciones de partición de onda de corte con las fases *SKS* y *SKKS* de dos formas: (1) minimizando la energía del componente transversal (E_t) y (2) minimizando λ_2 . La primera fue empleada para medir los parámetros y la segunda como verificación.

Para valores muy pequeños de δt comparados con el período de estudio, $u_r(t)$ es ligeramente amplificada y distorsionada, mientras que $u_t(t)$, que es igual a cero en un medio isótropo, es aproximadamente proporcional a la derivada de la componente radial. Esta relación se mantiene para cualquier par de componentes en las direcciones paralela y perpendicular a \hat{p} .

2.2.1.1. Estimación de la incertidumbre

Resulta fundamental evaluar la incertidumbre de la medición de los parámetros de anisotropía sísmica porque, en algunos casos, la anisotropía por debajo de la estación no está bien definida o el nivel de ruido impide que se logre una medición confiable. Además, cuando se analizan estaciones que pertenecen a experimentos temporales, el tiempo de registro es necesariamente corto y hay pocos datos disponibles (Silver y Chan, 1991).

Para series de tiempo discretas de n puntos, λ_2^{min} es la suma de los cuadrados de n amplitudes en un proceso de ruido y se asume que sigue una distribución χ^2 . Para ν grados de libertad y κ parámetros, las regiones de confianza se definen mediante la expresión normalizada

$$\frac{\lambda_2}{\lambda_2^{min}} \le 1 + \frac{\kappa}{\nu - \kappa} f_{\kappa,\nu - \kappa} (1 - \alpha), \qquad (2.14)$$

donde f es la inversa de la distribución F, $\kappa = 2$, que corresponde al número de parámetros $(\phi \ y \ \delta t)$, $\alpha = 0.05$, de modo de obtener el grado de 95 % de confianza, y ν representa los grados de libertad y depende de la respuesta instrumental y del espectro de ruido. Este último suele ser mucho menor que n y, generalmente, se toma igual a la duración de la ventana en segundos (Silver y Chan, 1991).

A partir de cada mínimo obtenido, se calcula un estimado de $\hat{\nu}_i = \nu_i/n_i$ para cada registro *i*-ésimo; luego, todas las estimaciones para una estación son promediadas para obtener $\langle \hat{\nu} \rangle$. Para los registros analizados por Silver y Chan (1991), el producto de $\hat{\nu}$ por la tasa de muestreo resulta ser fuertemente constante e igual a un grado de libertad por cada segundo de registro, por lo que es muy común que se asocien los grados de libertad con la duración de la ventana que contenga la onda que se quiere analizar.

La región de confianza es posteriormente definida para cada registro usando $\langle \hat{\nu}_i \rangle n_i$ grados de libertad. Si dicha región es aproximadamente gaussiana, sus valores límite, a lo largo de los ejes de los parámetros, corresponden a valores de incertidumbre iguales a 2σ para $\phi \neq \delta t$. En los casos en los que la región no sea simétrica, pero sí aproximadamente elipsoidal, se determina la región de simetría más grande que incluya la región asimétrica y se asumen incertidumbres de 1σ , que corresponden a la mitad de los valores límite de la región de confianza.

Si no ocurre partición ($\delta t = 0$), $\hat{p} = \hat{f}$ o $\hat{p} = \hat{s}$, la curva del 95 % de confianza no será una curva cerrada y la medición se define como nula. En otras palabras, las últimas dos condiciones implican que, cuando el valor de ϕ (eje rápido) se aproxima (±15°) al

azimut inverso (ϕ_b) o es aproximadamente $(\pm 15^\circ)$ perpendicular a él, la partición no se logra medir y la sensibilidad del tamaño de la región de confianza aumenta a un nivel de contorno crítico.

Cabe resaltar que la presencia de SKS_t puede ser explicada por la presencia de una capa buzante y no solamente por el fenómeno de partición de la onda de corte (Silver y Chan, 1991).

2.2.2. Pasos a seguir para medir los parámetros de partición

La serie de pasos a seguir para medir los parámetros de partición de onda de corte con el método de Silver y Chan (1991) es la siguiente:

- En primer lugar, se debe cortar una ventana de tiempo que contenga la onda de interés (p.ej. SKS) a partir de las componentes N-S y E-O (Figure 2.3a). La duración máxima de las ventanas cortadas en este estudio es de 42 s, lo que representa una duración razonable con respecto al período de la onda de interés (10 - 20 s). Las ventanas fueron seleccionadas de modo que la energía de la onda se concentrara en los últimos segundos (Figura 2.3a).
- Posteriormente, los cortes de ventana son sometidos a una búsqueda de malla rotándolos en intervalos de 1° desde -90° a 90°, lo que corresponde al valor de prueba del parámetro ϕ . Para cada valor de prueba, una componente es desfasada en tiempo con respecto a la otra en intervalos de 0.05 s (si se tienen sismogramas con mayor tasa de muestreo, se pueden escoger menores intervalos de tiempo) hasta alcanzar los 4.5 s, lo que corresponde al valor de prueba del parámetro δt . Para cada par de prueba, ϕ y δt , se calcula la matriz de covarianza entre las componentes rotadas y desfasadas y también sus dos autovalores (λ_1 y λ_2).
- La combinación de ϕ y δt que genere la matriz de covarianza más singular (que se caracteriza por tener el autovalor λ_2^{min}) corresponderá a los parámetros que mejor describen la anisotropía sísmica por debajo de la estación (Figura 2.3d).
- Los contornos de confianza se calculan por medio de la Ecuación 2.14 y las incertidumbres σ_{ϕ} y $\sigma_{\delta t}$ están definidas por el tamaño de la curva de 95 % de confianza (Figura 2.3d). En caso de que no exista partición de la onda de corte por debajo de la estación o que la dirección de polarización rápida coincida con σ_b o sea aproximadamente perpendicular a él, la curva de 95 % de confianza resulta abierta o muy grande y la medición se considera nula (Figura 2.4) por no estar bien constreñida.
- Las curvas de confianza de cada medición individual son promediadas en cada estación para así obtener una región de confianza más pequeña, lo que se traduce en una menor incertidumbre. Para lo anterior se emplea el método de apilado propuesto por Wolfe y Silver (1998). Como ejemplo, en la Figura 2.5 se muestra el proceso de apilado con la estación PEIG.

Figura 2.3: Telesismo. Medición de los parámetros de anisotropía con datos del sismo de M 6.8 ocurrido el 20/5/2015, en Santa Cruz, registrado por la estación HUJI. a) Cortes de ventana de la Norte-Sur y Este-Oeste que se utilizan para la búsqueda de malla de los parámetros. Nótese que la duración de la ventana es de 42 s. b) Componentes rápida y lenta antes y después de la corrección. Nótese que, una vez corregida la anisotropía, la rápida y la lenta entran en fase y la energía *SKS* contenida en la transversal desaparece y la amplitud de la componente radial aumenta ligeramente. c) Con la corrección, el movimiento de partículas radial-transversal pasa de ser elíptico a aproximadamente lineal. d) Con los valores de λ_2^{min} se pueden construir las curvas de contorno y estimar las incertidumbres ($\sigma_{\phi} \ y \ \sigma_{\delta t}$). El área sombreada representa la región de 95 % de confianza y el punto negro indica los valores medidos de $\phi \ y \ \delta t$.

2.2.3. Verificación de la medición

Una vez determinados los parámetros de partición, es necesario comprobar que verdaderamente describen la anisotropía por debajo de la estación. Para ello, es posible realizar una serie de correcciones a los registros y evaluar si efectivamente se logra eliminar la anisotropía.

- Al conocer la orientación del eje rápido, se pueden rotar las componentes N-S y E-O haciendo uso del valor de ϕ y verificar que las componentes rápida y lenta tienen aproximadamente la misma forma de onda y que llega primero la onda rápida (Figura 2.3b). Además, al corregir el desfase temporal haciendo uso de δt , se debe corroborar que las ondas rápida y lenta corregidas estén en fase (Figura 2.3b).
- Luego, se puede comparar el movimiento de partículas de la onda SKS en las componentes radial y transversal antes y después de la corección de anisotropía. El cambio debe ser de un movimiento de partícula elíptico a uno aproximadamente lineal (esto dependerá de qué tan precisa sea la orientación de la estación) (Silver y Chan, 1991) (Figura 2.3c).
- Por último, se puede comprobar que, luego de la corrección de la anisotropía, la energía contenida en la componente transversal haya sido llevada a la componente radial. Esto se hace verificando que la amplitud de la componente radial corregida sea ligeramente mayor que la de la radial original (Figura 2.3b).

2.2.4. Problemas y desventajas del método

Además de la pobre resolución vertical que presenta la técnica por asumir un eje de simetría horizontal (sólo logra medir la componente horizontal de la anisotropía), Teanby et al. (2004) exponen que un problema común del método es que la medición de los parámetros de anisotropía suele ser sensible a la selección de la ventana de análisis, por lo que una selección manual y subjetiva puede influir fuertemente en los resultados. Por otro lado, Walsh et al. (2013) sugieren que el ruido gaussiano no puede ser garantizado debido a la contaminación causada por otras señales coherentes provenientes de dispersión y de otros eventos y que los grados de libertad están siendo sobreestimados por un factor de aproximadamente 4/3, por lo que los errores estándares resultan muy pequeños.

2.3. Resultados

Un total de 1241 registros de fases *SKS*, *SKKS* y *PKS* resultaron útiles. Con 505 de ellos se lograron realizar mediciones buenas de los parámetros de partición de onda de corte y con 736 las mediciones resultaron nulas (las mediciones individuales, incluyendo buenas y nulas, se muestran en la Tabla A1). De acuerdo con Silver y Chan (1991), las mediciones nulas pueden ocurrir cuando no existe partición por debajo de la estación ($\delta t \approx 0s$), cuando la dirección rápida coincide con el azimut inverso ($\pm 15^{\circ}$) o cuando estos son aproximadamente perpendiculares entre ellos. Por otra parte, Barruol y Hoffmann (1999) explican que también podrían generarse por la existencia de múltiples capas anisótropas

Figura 2.4: Telesismos. Mediciones nulas de los parámetros de anisotropía: a) Medición nula con la fase SKKS del sismo de M 6.0 ocurrido el 16/08/2018, en Santa Cruz, registrado por la estación CRIG. El valor de ϕ (-59° o 301°) es aproximadamente igual al σ_b (301.5°), por lo que la curva de 95 % (región sombreada) resulta abierta. b) Medición nula con la fase SKS del sismo de M 6.9 ocurrido el 10/09/2018, en Kermadec, registrado por la estación PEIG. El valor de ϕ (57°) se encuentra a 180° del σ_b (237.6°), por lo que la curva de 95 % de confianza resulta muy grande.

que pueden hacer que las señales telesísmicas interfieran destructivamente anulando las formas de onda. En este caso, la mayoría de las mediciones nulas se realizaron con sismos cuyos azimuts inversos coincidían con la dirección de polarización rápida o eran perpendiculares a ella. De las 58 estaciones analizadas, 50 produjeron registros útiles. Las estaciones BACU, B03, B07, CAXA, JDCR, NOPA, UJAT, ZACA y ZEMP fueron descartadas. Con las estaciones MIXE y PAJA la mayoría de las mediciones resultaron nulas, por lo que con ellas no fue posible definir tiempos de retardo bien acotados. En la Figura 2.6a y b se muestran todas las mediciones individuales que se consideraron buenas. En la Figura 2.6c se muestra un histograma polar para cada estación con el fin de conocer la orientación del eje rápido con mayor número de repeticiones.

Las mediciones apiladas por estación, utilizando el método de Wolfe y Silver (1998), se muestran en la Tabla 2.1 y en la Figura 2.7. Con las estaciones HUJI, HUAT, JOBO, ACAY, UXUV, DAIG y TGIG se encontraron dos grupos de parámetros de partición distintos para diferentes azimuts inversos, por lo que estas aparecen dos veces en la Tabla 2.1. Las estaciones HUEY, ORMO, HUAT(1 y 2), LUPE, BRIO, PEGO, FILI, B01, B02, B04 y B10 presentan valores altos de σ_{ϕ} ($\geq 35^{\circ}$) y $\sigma_{\delta t}$ ($\geq 0.50s$) por lo que se reportan con mucha incertidumbre. Con algunas de estas estaciones no se lograron suficientes mediciones buenas debido a la baja calidad de los registros.

Figura 2.5: Telesismos. Curvas de confianza para 9 de las 14 mediciones individuales que se utilizaron para obtener los parámetros apilados para la estación PEIG. Los parámetros medidos son: a) $\phi = 52 \pm 54$, $\delta t = 0.80 \pm 0.95$, b) $\phi = 0 \pm 19$, $\delta t = 1.70 \pm 0.80$, c) $\phi = 57 \pm 13$, $\delta t = 1.85 \pm 0.60$, d) $\phi = 31 \pm 28$, $\delta t = 1.35 \pm 1.05$, e) $\phi = 67 \pm 55$, $\delta t = 1.40 \pm 0.90$, f) $\phi = 68 \pm 66$, $\delta t = 1.30 \pm 2.70$, g) $\phi = 71 \pm 14$, $\delta t = 1.70 \pm 0.65$, h) $\phi = 59 \pm 48$, $\delta t = 195 \pm 1.45$, i) $\phi = 46 \pm 26$, $\delta t = 1.80 \pm 0.65$. j) Los parámetros apilados son: $\phi = 59 \pm 2$, $\delta t = 1.45 \pm 0.15$ (nótese que al apilar se logra una curva de 95 % de confianza más pequeña).

$\operatorname{\mathbf{Red}}$	Estación	$\operatorname{Latitud}(\circ)$	$\operatorname{Longitud}(\circ)$	$\phi \pm \sigma_{\phi}(\circ)$	$\delta t \pm \sigma_{\delta t}(\mathbf{s})$	\mathbf{N}
GECO	TATA	19.69	-97.11	38 ± 8	1.10 ± 0.15	11
GECO	OCTN	19.80	-97.54	61 ± 4	1.30 ± 0.20	6
GECO	TEPY	19.49	-97.49	60 ± 2	1.35 ± 0.25	3
GECO	$HUEY^*$	20.00	-97.31	54 ± 20	$2.20\ \pm\ 0.80$	1
GECO	HUJI(1)	18.13	-96.84	35 ± 1	1.40 ± 0.05	32
GECO	HUJI(2)	18.13	-96.84	-85 ± 10	0.65 ± 0.25	8
GECO	MARG	18.26	-96.29	35 ± 6	1.90 ± 0.25	6
GECO	BAAY	18.03	-96.67	39 ± 4	1.50 ± 0.10	6
GECO	$ORMO^*$	18.66	-97.29	13 ± 50	0.80 ± 1.20	2
GECO	NAOL	19.65	-96.88	62 ± 2	1.80 ± 0.25	$\overline{7}$
GECO	$HUAT(1)^*$	19.14	-96.98	59 ± 5	3.15 ± 0.55	4
GECO	$HUAT(2)^*$	19.14	-96.98	23 ± 30	$1.10\ \pm\ 0.65$	2
GECO	$LUPE^*$	19.29	-97.34	60 ± 10	2.35 ± 2.00	1
GECO	ZOQU	18.34	-97.03	45 ± 3	1.60 ± 0.05	10
GECO	JOBO(1)	18.41	-96.28	39 ± 1	1.40 ± 0.05	22
GECO	$\rm JOBO(2)$	18.41	-96.28	-83 ± 8	0.95 ± 0.15	8
GECO	BACU	17.80	-96.96			
GECO	ZEMP	19.44	-96.40			
GECO	JOSE	18.39	-96.44	31 ± 4	1.25 ± 0.10	9
GECO	LMAN	18.63	-96.37	23 ± 8	0.90 ± 0.10	$\overline{7}$
GECO	NOPA	18.28	-96.00			
GECO	ANGO	19.22	-96.64	57 ± 8	1.65 ± 0.25	5
GECO	BRIO*	19.12	-96.14	67 ± 30	1.75 ± 1.50	1
GECO	TEZO	18.59	-96.70	35 ± 6	1.20 ± 0.20	12
GECO	CAXA	18.44	-96.77			
GECO	ZACA	18.95	-96.29			
GECO	MATE	16.40	-95.60	38 ± 4	0.95 ± 0.10	11
GECO	LOAL	16.91	-96.26	47 ± 3	1.30 ± 0.15	$\overline{7}$
GECO	LIVI	17.33	-96.15	50 ± 17	0.95 ± 0.40	3
GECO	GUHU	16.79	-95.36	56 ± 2	1.25 ± 0.20	9
GECO	SATU	17.19	-95.37	$79~\pm~6$	1.15 ± 0.15	3
GECO	PAJA	18.27	-94.69	72/-18		
GECO	ACAY(1)	18.00	-94.93	45 ± 10	2.00 ± 0.40	3
GECO	ACAY(2)	18.00	-94.93	-66 \pm 7	1.65 ± 0.25	5
GECO	PEGO*	18.54	-94.89	53 ± 27	0.85 ± 0.55	3
GECO	JDCR	18.24	-95.29			
GECO	FILI*	17.79	-94.24	34 ± 51	1.05 ± 0.80	2
GECO	MIXE	17.68	-94.82	65/-25		
GECO	UJAT	18.08	-93.17	· 		
RADSEM	B01*	14.65	-92.22	59 + 9	1.65 ± 0.65	3

Tabla 2.1: Valores apilados para cada estación. N: número de mediciones individuales apiladas.

Continúa en la página siguiente.

RADSEM	$B02^*$	15.29	-92.69	16 ± 11	2.10 ± 0.85	2
RADSEM	B03	15.44	-92.89			
RADSEM	B04*	15.90	-93.54	66 ± 24	$1.20\ \pm\ 0.85$	2
RADSEM	B05	16.08	-93.78	11 ± 5	0.80 ± 0.15	4
RADSEM	B06	16.29	-94.19	27 ± 6	0.75 ± 0.20	5
RADSEM	B07	16.66	-93.64			
RADSEM	B08	16.22	-95.20	45 ± 7	1.65 ± 0.25	3
RADSEM	B09	15.91	-95.81	$40~\pm~10$	1.10 ± 0.25	5
RADSEM	B10*	16.22	-93.27	-42 ± 20	1.50 ± 0.65	2
RSBAV	CXUV	20.17	-97.59	29 ± 13	0.85 ± 0.20	4
RSBAV	JAUV	19.37	-96.80	19 ± 14	1.00 ± 0.15	7
RSBAV	NEUV(1)	17.71	-95.80	59 ± 2	1.10 ± 0.15	6
RSBAV	NEUV(2)	17.71	-95.80	82 ± 11	0.90 ± 0.15	5
RSBAV	PMUV	18.54	-95.12	-80 ± 11	0.85 ± 0.10	4
RSBAV	$\mathrm{UXUV}(1)$	17.32	-94.15	25 ± 4	0.90 ± 0.05	34
RSBAV	$\mathrm{UXUV}(2)$	17.32	-94.15	76 ± 10	0.80 ± 0.10	3
SSN	CCIG	16.28	-92.14	13 ± 7	0.95 ± 0.15	8
SSN	CRIG	16.74	-99.30	52 ± 2	1.60 ± 0.10	12
SSN	DAIG(1)	17.02	-99.65	42 ± 3	1.15 ± 0.10	17
SSN	DAIG(2)	17.02	-99.65	73 ± 16	0.60 ± 0.15	7
SSN	PCIG	15.70	-93.22	15 ± 9	0.60 ± 0.10	9
SSN	PEIG	16.00	-97.15	59 ± 2	1.45 ± 0.15	14
SSN	$\mathrm{TGIG}(1)$	16.78	-93.12	51 ± 10	0.55 ± 0.25	10
SSN	$\mathrm{TGIG}(2)$	16.78	-93.12	-76 ± 12	0.85 ± 0.10	8
SSN	THIG	14.88	-92.30	$46~\pm~8$	0.60 ± 0.10	4
SSN	TOIG	18.10	-97.06	34 ± 3	1.70 ± 0.05	19

* Mediciones reportadas con mucha incertidumbre

2.4. Discusiones

Las mediciones bien acotadas (con poca incertidumbre) fueron comparadas con las obtenidas en trabajos previos (Figura 2.8). El mapa de la Figura 2.8 muestra las mediciones telesísmicas de anisotropía sísmica realizadas en el sureste de México hasta el momento. Como se observa en las figuras 2.6, 2.7 y 2.8, las direcciones de polarización rápida en el sureste de México son, en general, aproximadamente perpendiculares a la trinchera, lo cual es consistente con un flujo de manto arrastrado por debajo de la placa subducida y con un flujo de esquina 2D en la cuña del manto (Van Benthem et al., 2013; Bernal-López et al., 2016; Valenzuela y León Soto, 2017). Sin embargo, se observan algunos patrones difernentes que se explican a continuación. En la Figura 2.9 se muestran las mediciones apiladas agrupadas para facilitar su interpretación.

Figura 2.6: Mediciones con telesismos. a) Mediciones individuales de ϕ y δt para cada estación utilizando telesismos. b) Acercamiento a la región con mayor número de estaciones. En (a) y (b) la longitud de los vectores es proporcional al valor de δt y su orientación está dada por el valor de ϕ . c) Histogramas polares para conocer el número de observaciones para cada orientación de ϕ . El número que acompaña a cada histograma indica el número de repeticiones al que corresponde la circunferencia externa. Nótese que los diagramas son simétricos.

Figura 2.7: Parámetros de anisotropía sísmica ($\phi \neq \delta t$) apilados para las estaciones analizadas. La longitud del vector es proporcional al valor de $\delta t \neq su$ orientación está definida por ϕ . El tamaño y color de los círculos dibujados sobre cada estación están definidos por el valor de δt como se indica en la leyenda. Los vectores de color rojo indican mediciones con mucha incertidumbre.

2.4.1. TMA y región del CVLT: flujo de arrastre y flujo de esquina

Cerca de la TMA, los valores de los parámetros de anisotropía sísmica medidos con las estaciones B08, B09, CRIG, DAIG, GUHU, LIVI, LOAL, MATE y PEIG (grupo 1 o barras azules en la Figura 2.9), son consistentes con un flujo de arrastre por debajo de la placa de Cocos generado por la subducción horizontal de la misma placa (Pardo y Suarez, 1995; Pérez-Campos et al., 2008; Husker y Davis, 2009), puesto que los ejes rápidos se orientan en la dirección del vector de convergencia de la placa de Cocos, que es perpendicular a la trinchera. En la región cerca del CVLT, los parámetros de anisotropía medidos con las estaciones ACAY(1), NEUV(1) y UXUV(1) (también pertenecientes al grupo 1), son consistentes con un flujo de manto arrastrado por debajo de la placa subducida de Cocos y con un flujo de esquina 2D en la cuña del manto (León Soto y Valenzuela, 2013; León Soto et al., 2021). El flujo de arrastre en la región de la subducción horizontal puede ser causado por el fuerte acoplamiento del manto superior astenosférico y la litósfera de la placa de bido a su corta edad (Long y Silver, 2008, 2009; Bernal-López et al., 2016). Long y

Figura 2.8: Mediciones obtenidas en este estudio y las obtenidas en trabajos previos (MASE, Bernal-López et al., 2016; VEOX, León Soto et al., 2021; SSN, Van Benthem et al., 2013, Valenzuela y León Soto, 2017, Vázquez Aragón, 2019; GECO, Vázquez Aragón, 2019). La línea roja segmentada corresponde a la ruptura propuesta por Dougherty y Clayton (2014) y el área verde sombreada representa el desgarre propuesto por Calò (2021), que coincide con la parte más profunda de la TRe.

Silver (2009) proponen que este flujo de arrastre se debe a que la deformación no es lo suficientemente grande como para que opere el mecanismo de calentamiento por cizalla. Por lo tanto el desacoplamiento entre la placa subducida y la astenósfera por debajo de ella no se ha desarrollado. Por otra parte, el modelo de Song y Kawakatsu (2012) predice polarizaciones rápidas perpendiculares a la trinchera (paralelas a la dirección del movimiento de la placa subducida) en regiones donde ocurren subducciones de bajo ángulo por la fuerte anisotropía radial de la astenósfera suboceánica, lo cual es consistente con las observaciones. La orientación de los ejes rápidos perpendiculares a la trinchera y paralelos al flujo del manto a lo largo de la TMA y cerca de la región donde se encuentra el CVLT (grupo 1) sugiere que el manto por debajo de la placa subducida está constituido por fábricas de olivino de tipo A (presentes en condiciones de bajo contenido de agua, esfuerzos reducidos y temperaturas relativamente altas) (Zhang y Karato, 1995; Kneller et al., 2005; Jung et al., 2006; Karato et al., 2008; Van Benthem et al., 2013) y que la cuña del manto está constituida por fábricas tipo A o C (o similares) por la deshidratación de la placa subducida y, como consecuencia, el aumento del contenido de agua y el descenso de

Figura 2.9: Mediciones telesísmicas agrupadas de acuerdo con la leyenda. Las flechas grises indican la dirección del movimiento absoluto de la placa de Norteamérica (Gripp y Gordon, 2002), mientras que las blancas representan la dirección del movimiento relativo entre la placa de Cocos y la de Norteamérica (DeMets et al., 2010). La línea roja segmentada representa la ruptura propuesta por Dougherty y Clayton (2014). El área sombreada en color verde indica el desgarre propuesto por Calò (2021) y el área sombreada en color azul indica la región de la cuña parcialmente serpentinizada propuesta por Manea y Manea (2006).

la temperatura (Kneller et al., 2005; Jung et al., 2006; Long y Silver, 2008; Bernal-López et al., 2016). Por debajo del CVLT se espera el desarrollo de fábricas de olivino de tipo A debido a las altas temperaturas, esfuerzos de baja magnitud y bajo contenido de agua (Zhang y Karato, 1995; Jung y Karato, 2001; Jung et al., 2006; León Soto y Valenzuela, 2013).

2.4.2. Extremo oriental de la FVTM: movimiento absoluto de la placa de Norteamérica

En la región que corresponde al extremo oriental de la FVTM y su alrededor, pueden identificarse tres grupos diferentes de parámetros de partición de la onda de corte (grupos 2, 3 y 4 en el mapa de la Figura 2.9).

(1) El primer grupo (barras de color negro o grupo 2 de la Figura 2.9) se encuentra al sur del extremo oriental de la FVTM y está conformado por las mediciones realizadas con las estaciones BAAY, HUJI, JOBO, JOSE, LMAN, MARG, TEZO, TOIG y ZOQU. Este grupo se encuentra por encima de la transición de la subducción horizontal a normal de la placa de Cocos y el valor promedio de ϕ es aproximadamente N33°E. Los ejes rápidos encontrados para este grupo se orientan normales al rumbo de la placa subducida, lo cual es consistente con un flujo de esquina lejos de la trinchera en una cuña constituida por fábricas de tipo A o C (Long y Silver, 2008) y con un flujo de arrastre por debajo de la placa subducida. La orientación de los ejes rápidos es consistente con aquellos medidos con estaciones ubicadas más al sur en el región de ante-arco. En estas estaciones se incluyen las que corresponden al grupo 1 (reportadas en este trabajo) y otras analizadas en trabajos anteriores (Figura 2.8; Van Benthem et al., 2013; Bernal-López et al., 2016; Valenzuela y León Soto, 2017; Vázquez Aragón, 2019). Una de las motivaciones para desarrollar esta investigación era evaluar la posibilidad de que exista una ruptura entre los segmentos centro y sur de la placa de Cocos (Dougherty y Clayton, 2014; Castellanos et al., 2018) (figuras 2.8 y 2.9), pero la orientación de los ejes rápidos encontrada para las estaciones ubicadas por encima de la posible ruptura o cerca de ella resultó ser perpendicular al rumbo de la placa y subparalela a la línea a lo largo de la cual Dougherty y Clayton (2014) y Castellanos et al. (2018) interpretan que se está desarrollando una ruptura. Con las mediciones de partición de onda de corte se necesitaría una ventana vertical lo suficientemente grande entre los dos segmentos de la placa que permitiese el flujo de manto a través de ella y, como consecuencia, la reorientación de los minerales anisótropos de la cuña. Por esta razón, aunque los ejes rápidos encontrados para este grupo no son consistentes con el desgarre propuesto por los autores mencionados, éste podría existir o no estar totalmente desarrollado, ya que es un proceso lento que tarda varios millones de años.

(2) El segundo grupo (barras de color granate o grupo 3 de la Figura 2.9) se encuentra por encima del extremo oriental de la FVTM y está conformado por las estaciones ANGO, NAOL, OCTN y TEPY. Este grupo muestra una dirección de polarización rápida aproximadamente N58°E, la cual está rotada ~25° en sentido horario con respecto al grupo anterior. La orientación de los ejes rápidos es consistente con la estación LVIG del SSN (Van Benthem et al., 2013), que se ubica en la misma región (Figura 2.8). La diferencia entre las orientaciones de los ejes rápidos encontrada para este grupo y el anterior sugiere un cambio en la dirección del flujo del manto al ir de sur a norte y al irse alejando de la TMA. Para este segundo grupo, la orientación de los ejes rápidos no es perpendicular al rumbo de la placa y podría deberse a un flujo alrededor del extremo oriental de la placa de Cocos en subducción o a que el flujo del manto (fábricas tipo A o C) en la región esté siendo controlado por el movimiento absoluto de la placa de Norteamérica (Gripp y Gordon, 2002) (Figura 2.9), ya que los ejes rápidos son subparalelos a la dirección de dicho movimiento (N254°E) (Gripp y Gordon, 2002; Valenzuela y León Soto, 2017).

(3) El tercer grupo (barras de color musgo o grupo 4 de la Figura 2.9) está constituido por las estaciones CXUV, JAUV y TATA que, en general, se encuentran cercanas al borde de la región que comprende la FVTM (exceptuando a la estación TATA). Este grupo presenta ejes rápidos orientados aproximadamente N21°E, que resultan perpendiculares al rumbo de la placa, y un promedio de los valores del tiempo de retardo de ~ 0.95 s, que es considerablemente menor que el promedio para el grupo anterior que se encuentra aproximadamente en la misma región (~ 1.95 s). Las mediciones pertenecientes a este grupo son consistentes con los parámetros encontrados para la estación QUEC de GECO (Vázquez Aragón, 2019), que también se encuentra cerca del borde de la FVTM (Figura 2.8). Para este grupo, la orientación de los ejes rápidos es consistente con un flujo de esquina 2D en una cuña del manto constituida por fábricas tipo A o C. Bernal-López et al. (2016) infieren la presencia de fábricas tipo C en el extremo de la cuña del manto debido a las altas temperaturas que alcanzan los 900°C y a la deshidratación de la placa subducida de Cocos que ocurre a partir de los 150 km de profundidad (Manea y Manea, 2011). En el centro de la cuña se espera que exista olivino de tipo A debido a las condiciones de bajo contenido de agua, esfuerzos pequeños y temperaturas relativamente altas (Kneller et al., 2005; Jung et al., 2006; Long y Silver, 2008). El hecho de que este tercer grupo sea consistente con la anisotropía en la cuña del manto, que tenga menores valores de tiempo de retardo y que difiera del grupo anterior a pesar de encontrarse en la misma región podría deberse a que los diferentes azimuts inversos de los sismos empleados para realizar las mediciones con las estaciones de cada grupo. Los sismos analizados con las estaciones del segundo grupo muestran mayor variedad de azimuts inversos que los analizados con las estaciones del tercero, los cuales incluyen sismos ocurridos predominantemente al suroeste (ver Tabla A1). Lo anterior sugiere que podría existir una dependencia de los parámetros con el azimut inverso que podría ser causada por la presencia de más de un estrato anisótropo (Silver y Savage, 1994). Posiblemente la dirección de flujo del manto por debajo de la placa subducida sea diferente a la del flujo en la cuña del manto.

2.4.3. Ejes rápidos paralelos al rumbo de la placa subducente

Los parámetros de partición obtenidos con las estaciones ACAY(2), HUJI(2), JOBO(2) y PMUV (barras de color amarillo o grupo 5 de la Figura 2.9) muestran una orientación rápida que no es perpendicular a la trinchera y tampoco es consistente con el resto de los parámetros medidos en la región. Las estaciones presentan ejes rápidos orientados aproximadamente N79°O, lo cual resulta en una dirección paralela a la trinchera. Los parámetros medidos, exceptuando a la estación PMUV. Las mediciones individuales utilizadas para calcular ambos grupos para tres (HUJI, JOBO y ACAY) de las cuatro estaciones se muestran en los diagramas polares de la Figura 2.10. En los diagramas polares de la figura se puede observar una variación acimutal de los parámetros de partición medidos. Esta variación podría indicar la presencia de una estructura anisótropa más compleja que la que se tendría en caso de existir una única capa. Como se observa en la Figura 2.10, los sismos que ocurren al O o al SO (azimuts inversos cercanos a 250°) producen direcciones de polarización rápida perpendiculares a la trinchera con $\phi = 40^{\circ}\pm4^{\circ}$,

Figura 2.10: Diagramas polares para representar las mediciones de partición realizadas con las estaciones HUJI, JOBO y ACAY. El azimut inverso está medido en sentido horario a partir del norte; el eje radial corresponde al ángulo de incidencia en la estación con intervalos de 1°. Las barras están orientadas de acuerdo con la dirección de polarización rápida y su longitud está definida por el tiempo de retardo de acuerdo con la leyenda. Las barras negras representan la mediciones incluidas en el primer proceso de apilado (grupo 2 de la Figura 2.9), mientras que las amarillas representan las mediciones incluidas en el segundo apilado (grupo 5 de la Figura 2.9). Con las estaciones DAIG(2) y PMUV también ocurre esta variación.

mientras que aquellos que ocurren al NO (azimuts inversos entre $310^{\circ}-315^{\circ}$) producen direcciones de polarización rápida paralelas a la trinchera. Al evaluar las direcciones de polarización rápida en la región cercana al CVLT, medidas con los sismos ocurridos al suroeste, la cual es aproximadamente $\phi = 39^{\circ}\pm5^{\circ}$ (ver grupo 2 en la Figura 2.9), se puede apreciar que aquellos sismos con azimuts inversos de $\sim 310^{\circ}$ tendrán una polarización inicial que se acerca a la dirección de polarización lenta (que es perpendicular a la rápida), por lo que la medición deja de ser confiable. Este valor de $\sim 310^{\circ}$ para el azimut inverso coincide con el azimut inverso de los sismos que produjeron mediciones paralelas y oblicuas a la trinchera, como se observa en la Figura 2.10. El método de covarianza de Silver y Chan (1991) se vuelve poco confiable cuando la dirección de polarización rápida se aproxima al azimut inverso o es aproximadamente perpendicular a él. Por lo anterior, se interpreta que las mediciones confiables son las que se realizaron con sismos cuyos azimuts inversos son O o SO y que las direcciones rápidas paralelas a la trinchera responden a un problema vinculado con la técnica empleada. Algo similar sucede con la estación DAIG(2), por lo que también se incluye en este grupo (Figura 2.9).

2.4.4. Ejes rápidos oblicuos al rumbo de la placa subducente

Las estaciones NEUV(2), SATU, TGIG(2) y UXUV(2) presentan ejes rápidos oblicuos al rumbo de la placa subducida de Cocos (barras rosadas o grupo 6 de la Figura 2.9). Dos de ellas (NEUV(2) y SATU) se encuentran por encima de la cuña del manto parcialmente serpentinizada propuesta por Manea y Manea (2006), mientras que las otras dos (TGIG(2) y UXUV(2)) se encuentran alrededor de la TRe por encima del centro de la cuña del manto.

Las dos estaciones (NEUV(2) y SATU) que se encuentran por encima de la cuña del manto parcialmente serpentinizada (Manea y Manea, 2006), presentan ejes rápidos orientados aproximadamente $\phi = 81^{\circ}\pm9^{\circ}$, lo que corresponde a una orientación oblicua a la trinchera. Si en el extremo de la cuña del manto están presentes minerales de serpentina bajo un régimen de flujo de esquina perpendicular a la trinchera, la antigorita puede sufrir plegamiento, orientando su plano (001) de manera vertical y produciendo anisotropía paralela a la trinchera (Katayama et al., 2009; Mookherjee y Capitani, 2011). Si lo anterior sucede, entonces la señal anisótropa del manto por debajo de la placa, que se interpreta que está causada por un flujo de arrastre perpendicular al rumbo de la placa, no es coherente con la señal anisótropa del extremo de la cuña del manto. Si existen dos capas anisótropas por debajo de la estación, entonces los parámetros de partición medidos son aparentes y exhiben variaciones sistemáticas en función de la polarización inicial con una periodicidad de $\pi/2$ (Silver v Savage, 1994). Sin embargo, para poder hacer un análisis multicapa de anisotropía, se requiere de una buena cobertura azimutal de los eventos, la cual no fue posible debido a que los eventos que produjeron mediciones útiles ocurrieron principalmente al O o al SO de la región. Con base en las observaciones, se propone que la presencia de minerales de serpentina (Manea y Manea, 2006) produce un patrón anisótropo en el extremo de la cuña del manto diferente al que corresponde al manto por debajo de la placa subducida, por lo que las mediciones se interpretan como aparentes. Además, la variación de los parámetros medidos con la estación NEUV(2) con respecto al azimut inverso podría confirmar la existencia de las dos capas anisótropas propuestas (Silver y Savage, 1994).

Las dos estaciones $(TGIG(2) \times UXUV(2))$ que se encuentran alrededor de la TRe por encima del centro de la cuña del manto, presentan ejes rápidos orientados oblicuos al rumbo de la placa subducida. Con ambas estaciones se midieron dos grupos de parámetros de partición de onda de corte: uno de ellos aproximadamente perpendicular (TGIG(1) v)UXUV(1)) y el otro oblicuo (TGIG(2) y UXUV(2)) al rumbo de la placa. Esta dependencia con el azimut inverso puede sugerir la existencia de dos fuentes anisótropas distintas. De acuerdo con Calò (2021) y Nava Lara y Manea (2022), la placa de Cocos presenta un desgarre vertical a lo largo de la TRe. Si dicho desgarre existe, se espera que ocurra flujo de material del manto por debajo de la placa hacia la cuña del manto alrededor del extremo más inclinado y profundo de la placa subducida. Como la placa es mayor, más fría, densa y profunda hacia el sureste (Manea y Manea, 2006), se espera que el flujo toroidal ocurra alrededor del segmento sureste de la placa de Cocos. Como se observó dependencia de los parámetros de partición con el azimut inverso con las dos estaciones que se analizaron alrededor de la TRe por encima del centro de la cuña del manto, se interpreta que los resultados son consistentes con una estructura anisótropa con dos fuentes distintas que podrían ser consistentes con el desgarre de la placa de Cocos a lo largo de la TRe. Por lo anterior, se propone que los parámetros medidos con las estaciones TGIG y UXUV son aparentes y consistentes con el desgarre propuesto por Calò (2021) y Nava Lara y Manea (2022).

2.4.5. Cerca de la frontera entre México y Guatemala

Las mediciones realizadas en la región de Chiapas (estado fronterizo) con las estaciones B05, B06, CCIG, PCIG, TGIG(1) y THIG (barras rojas o grupo 7 de la Figura 2.9) muestran los menores tiempos de retardo de la región (0.80, 0.75, 0.95, 0.60, 0.55 y 0.60 s, respectivamente). En el centro de la cuña del manto (con CCIG y TGIG(1)), como se

explicó en la sección anterior, los parámetros medidos podrían interpretarse infiriendo la existencia de dos direcciones o patrones de flujo de manto diferentes: un flujo paralelo a la trinchera la cuña del manto, asumiendo la presencia de fábricas de olivino de tipo A (o similares), y un flujo perpendicular a la trinchera (o no coherente con el flujo en la cuña) en el manto por debajo de la placa subducida, asumiendo la presencia de fábricas de tipo A de la misma manera. Si el flujo por debajo de la placa subducida es perpendicular a la trinchera y en la cuña del manto es paralelo a ella, podría suceder que las mediciones de partición de fases telesísmicas muestren un valor de polarización rápida aparente que está determinado por la contribución de ambas capas anisótropas y que podría resultar en una disminución del tiempo de retardo y en una desviación del eje rápido. Siguiendo el mismo análisis de la sección anterior, si existen dos medios anisótropos, las mediciones realizadas no corresponderán directamente a alguno de ellos sino que se observa un efecto acumulado de la anisotropía, de modo que los parámetros de partición encontrados serán aparentes (Ponce Cortés, 2012; Silver y Savage, 1994). Si el flujo del manto es paralelo a la trinchera en la cuña del manto por debajo de Chiapas, entonces resulta factible y probable la existencia del desgarre propuesto por Calò (2021) y por Nava Lara y Manea (2022). Por otro lado, en caso de que al sureste de la TRe, donde la placa de Cocos subduce con un ángulo de 45° (Rodríguez-Pérez, 2007), el extremo de la cuña del manto esté parcialmente serpentinizado, como argumentan Manea y Manea (2006) (Figura 1.5), entonces los ejes rápidos para ondas de corte que viajen a través de la serpentina serían paralelos a la trinchera (Katayama et al., 2009; Mookherjee y Capitani, 2011), por lo que no únicamente un flujo paralelo a la trinchera en el extremo de la cuña podría causar la reducción de la magnitud de la anisotropía y la desviación de los ejes rápidos, sino también la presencia de minerales como la antigorita. En este caso, también se tendrían dos fuentes anisótropas distintas (manto por debajo de la placa y minerales de serpentina en el extremo de la cuña del manto), por lo que los parámetros serían aparentes. Para estudiar las características anisótropas de capa capa es necesario tener una buena cobertura azimutal de los eventos, lo que no fue posible debido al corto período de grabación y a la baja calidad de los registros. Sin embargo, la reducción en la magnitud de la anisotropía que se observa en la región de Chiapas se atribuye a la existencia de minerales serpentina en el extremo de cuña del manto y a un flujo paralelo a la trinchera para toda la cuña. Este patrón de flujo puede estar impulsado por el retroceso de la placa de Cocos hacia el sur (Gripp y Gordon, 2002) y por la existencia de un desgarre de la placa subcucida a lo largo de la TRe (Calò, 2021; Nava Lara y Manea, 2022).

2.5. Conclusiones

En el sureste de México, las mediciones de anisotropía sísmica a partir de telesismos permitieron interpretar un flujo de manto arrastrado por debajo de la placa subducida de Cocos, el cual probablemente está constituido por fábricas de olivino de tipo A a gran escala.

A lo largo de la TMA, al noroeste, los ejes rápidos son consistentes con un flujo del manto arrastrado por debajo de la placa subducida de Cocos, ya que se orientan en la dirección del vector de convergencia de la placa de Cocos o perpendiculares a la trinchera. Al sureste, cerca de la TRe, los ejes rápidos también son perpendiculares a la TMA aunque presentan magnitudes significativamente menores, lo que podría deberse a los efectos de una cuña de manto parcialmente serpentinizada (Manea y Manea, 2006) o a un flujo de manto en la cuña no coherente con el flujo por debajo de la placa.

En el extremo oriental de la FVTM se proponen dos explicaciones posibles de los parámetros de anisotropía: un flujo del manto alrededor del extremo oriental de la placa de Cocos en subducción o un flujo controlado por el movimiento absoluto de la placa de Norteamérica. En la cuña del manto en la misma región se interpreta un flujo de esquina 2D de un manto constituido por olivino de tipo A o C. Al sur de la FVTM, la mayoría de los ejes rápidos resultaron perpendicualres al rumbo de la placa y subparalelos a la ruptura propuesta por Dougherty y Clayton (2014), por lo que, en primera instancia, las mediciones de anisotropía no son consistentes con la existencia de una ruptura entre los segmentos central y sur de la placa de Cocos. Sin embargo, la ruptura podría existir sin haber tenido el tiempo suficiente como para generar una ventana vertical que permita el flujo a través de ella y así reorientar los minerales anisótropos del manto superior. Se requiere contar con un mayor número de estaciones sismológicas para evaluar con mayor detalle el flujo en la cuña del manto e identificar con mayor precisión si existe o no dicha ruptura.

Al ir de noroeste a sureste, a través del Istmo de Tehuantepec y de la TRe, las mediciones realizadas presentaron dependencias con el azimut inverso, lo cual es señal de la existencia de dos estratos anisótropos distintos que podrían ser consistentes con la existencia del desgarre propuesto por Calò (2021) y por Nava Lara y Manea (2022). Esto se discutirá y estudiará con mayor detalle en los siguientes capítulos.

Capítulo 3

Anisotropía sísmica a partir de

mediciones con sismos locales intraplaca

3.1. Datos

Las ondas S utilizadas para estudiar la anisotropía sísmica a partir de sismos locales ocurridos dentro de la placa de Cocos en subducción fueron registradas por sismómetros permanentes de banda ancha, pertenecientes a la red del SSN (Pérez-Campos et al., 2018; SSN, 2021a) y a la RSBAV (Córdoba-Montiel et al., 2018), y temporales, pertenecientes al arreglo de GECO (Rodríguez-Domínguez et al., 2019), que operó desde el año 2013 al año 2019, y al arreglo RADSEM (Velasco y Karplus, 2017), que operó desde octubre de 2017 hasta marzo de 2018. Las estaciones utilizadas se encuentran desplegadas en el sureste de México (área de estudio) y se muestran en la Figura 3.1. Se seleccionaron sismos del catálogo del SSN (SSN, 2021b) con magnitudes $3.2 \leq M_d \leq 5.1$. Se definió una profundidad mínima de 50 km para evitar la inclusión de sismos corticales y un ángulo de incidencia mínimo de 35° con el fin de minimizar complicaciones producidas por fases convertidas (p.ej. SP) y evitar efectos de superficie libre (Kaneshima, 1990; Yang et al., 1995; León Soto et al., 2009; León Soto y Valenzuela, 2013).

3.2. Método

Los parámetros que describen y cuantifican la anisotropía por debajo de la estación, ϕ y δt , se midieron empleando el método de covarianza de Silver y Chan (1991) adaptado a sismos locales y asumiendo un único estrato de anisotropía transversal con un eje de simetría horizontal. Los detalles de la técnica se explicaron en el capítulo anterior, por lo que a continuación se describen los aspectos que corresponden a la adaptación del método para realizar la medición de anisotropía con sismos locales.

En primer lugar, se prepararon los registros sísmicos con un filtro pasa-banda de 0.5 a 2 Hz y un *taper* de tipo coseno con un ancho de 5 %. Luego, a partir de las componenentes horizontales (Norte-Sur y Este-Oeste), se procedió a la selección de una ventana con una duración mínima de 4 s y máxima de 12 s (dependiendo de la relación señal-ruido) que contuviera a la onda S al final de ella. Posteriormente, ambas componentes cortadas

Figura 3.1: Estaciones utilizadas para medir la partición de la onda de corte con sismos locales intraplaca: las redes se identifican como se muestra en la leyenda. Las líneas blancas continuas y segmentadas representan las cotas de isoprofundidad de la placa de Cocos (Hayes et al., 2018). Las regiones enmarcadas con una línea roja representan la ubicación de los cinturones volcánicos: FVTM - Faja Volcánica Transmexicana, CVLT - Campo Volcánico Los Tuxtlas, AVCM - Arco Volcánico Chiapaneco Moderno, AVCA - Arco Volcánico Chiapaneco Antiguo (Sierra Madre de Chiapas), CAVA - Arco Volcánico Centroamericano. TMA - Trinchera Mesoamericana. TR - Cordillera de Tehuantepec. TRe - Extensión de la Cordillera de Tehuantepec.

se sometieron a una búsqueda de malla para encontrar los parámetros mencionados anteriormente. Esta búsqueda se basó en la rotación de las componentes horizontales en intervalos de 1° desde -90° a 90° para encontrar el valor de ϕ . Para cada intervalo de rotación, una componente se desfasó con respecto a la otra en intervalos de 0.02 s desde 0 hasta 1.5 s para encontrar el valor de δt . Finalmente, habiendo definido los valores de prueba, se calculó la matriz de covarianza y sus dos autovalores correspondientes (λ_1 y λ_2). De acuerdo con Silver y Chan (1991), si existe anisotropía sísmica por debajo de la estación, entonces la matriz de covarianza tendrá sus dos autovalores distintos de cero. En presencia de ruido, la combinación de los parámetros de prueba que genere la matriz de covarianza con el autovalor mínimo (λ_2) más pequeño (λ_2^{min}) (o la mayor correlación cruzada) es la que mejor describe la anisotropía por debajo de la estación. En otras palabras, la mejor solución está dada por el par de parámetros que produzcan la matriz de correlación más singular posible.

La región de 95 % de confianza se calculó para estimar la incertidumbre de los parámetros medidos. Para ello, se llevó a cabo una prueba F inversa tomando los valores del percentil 95 para dicha distribución (Silver y Chan, 1991). Se definieron como mediciones buenas o confiables aquellas que presentaron una región de 95 % de confianza

pequeña y cerrada. Las mediciones que no mostraron partición o que estaban pobremente restringidas (curvas de 95 % confianza muy grandes) fueron consideras como nulas. Como se mencionó en el capítulo anterior, Silver y Chan (1991) establecen que una medición nula puede puede ocurrir cuando no hay partición de la onda de corte por debajo de la estación ($\delta t \sim 0$ s) o la dirección de polarización rápida coincide con el azimut inverso (±15) o es aproximadamente perpendicular a él.

Una vez que los parámetros han sido determinados, es necesario verificar que describen la anisotropía por debajo de la estación. En el caso de sismos locales, como no se conoce la polarización natural de la onda, no se emplean las componentes radial y transversal para verificar la medición como se suele hacer con telesismos. Para corroborar la medición, se aplicó una corrección a las componentes horizontales usando ϕ y δt con el fin de visualizar las ondas rápida y lenta y verificar que la anisotropía ha sido removida. Si los parámetros medidos describen la anisotropía, se espera que ocurra un cambio en la polarización del movimiento de partícula (con los ejes rápido y lento) después de la corrección. Debe pasar de ser elíptico a ser aproximadamente lineal puesto que las ondas rápida y lenta corregidas deberían estar en fase y sus formas de onda deben ser parecidas. En la Figura 3.2 se muestran cuatro mediciones buenas que exhiben un cambio en la polarización del movimiento de partícula muy claro y una región de 95 % de confianza muy bien acotada.

Los parámetros de partición proporcionan información de los estratos anisótropos a través de los cuales se propaga la onda de corte desde la fuente sísmica hasta la estación. Del mismo modo en que León Soto y Valenzuela (2013) lo hicieron, la anisotropía registrada se asoció con el punto medio de la trayectoria recorrida por el rayo entre la fuente y el receptor, considerando esto una buena aproximación para la ubicación del estrato anisótropo. Para mayor simplicidad y mejor visualización de las mediciones, el área de estudio fue dividida en una malla de celdas de $0.1^{\circ} \times 0.1^{\circ}$ y todas las mediciones cuyos puntos medios cayeran en una misma celda fueron apiladas. El proceso de apilamiento se hizo usando el método de Wolfe y Silver (1998) y los valores resultantes fueron vinculados al centro de cada casilla. El método de apilado permite reducir la curva de 95 % de confianza, reduciendo así la incertidumbre de las mediciones individuales. La Figura 3.2 muestra cuatro mediciones buenas asociadas a una misma celda (centrada en un latitud de 17.35°N y en una longitud de -94.45°E) y sus curvas de contorno apiladas (Figura 3.2e).

3.3. Resultados

Alrededor de 3000 sismos registrados por las 63 estaciones analizadas fueron seleccionados para estudiar la anisotropía de la cuña del manto en el sureste de México. Un total de 750 pares evento-estación proporcionaron mediciones de partición de onda de corte bien constreñidas. Algunos eventos fueron descartados debido a que mostraron formas de onda complejas, saltos de ciclo o una relación señal-ruido muy pobre. Algunas estaciones no registraron ningún sismo (p. ej., BACU, CAXA, JDCR, QUEC y ZACA) y otras no produjeron registros útiles debido a la poca sismicidad directamente por debajo de ellas y a que los sismos intraplaca de Cocos que cumplían con las condiciones resultaron ser muy lejanos (p. ej., ANTE, B07, CAMO, LMAN, ORMO, PAJA, PEGO, PMUV, TEZO y TUIG). Por lo anterior, solo se analizaron sismos registrados por 48 de las 63 estaciones que originalmente se pretendían incluir en el estudio. La Tabla A2 muestra una

Figura 3.2: Cuatro mediciones buenas asociadas a una misma celda (a, b, c y d) y sus curvas de contorno apiladas (e). (a, b, c y d) Mediciones individuales hechas con la estación UXUV: cada panel muestra las componentes rápida (línea continua) y lenta (línea punteada) de la onda S antes (arriba) y después (abajo) de la corrección por anisotropía, el movimiento de partícula antes y después de la corrección, y las curvas de contorno correspondientes. (e) Curvas de contorno apiladas calculadas para las cuatro mediciones mostradas. Los movimientos de partícula de las cuatro mediciones individuales pasan de tener una polarización elíptica a una lineal una vez que la anisotropía ha sido corregida. Los contornos sombreados representan la región de 95 % de confianza y el punto negro indica los valores de ϕ y δt que corresponde a λ_2^{min} .

lista de los sismos analizados con cada estación (incluyendo datos como tiempo origen, localización, magnitud, ángulo de incidencia y distancia epicentral) y los parámetros de partición de onda de corte que se midieron con cada uno de ellos y sus incertidumbres correspondientes. La lista con las mediciones determinadas como nulas se muestra en la Tabla A3. Las 750 mediciones individuales de los parámetros de partición se muestran en la Figura 3.3a. Cada vector está orientado de acuerdo a ϕ y presenta una longitud proporcional a δt , según la leyenda, y es dibujado en el punto medio entre la fuente y la estación, ya que la anisotropía sísmica se acumula a lo largo de toda la trayectoria del rayo y no se produce solamente en la fuente o en la estación. La Figura 3.3b muestra las mediciones apiladas en celdas de $0.1^{\circ} \times 0.1^{\circ}$ haciendo uso del método de Wolfe y Silver

Figura 3.3: Parámetros de partición de onda de corte: (a) mediciones individuales, (b) mediciones apiladas en celdas de 0.1° × 0.1°. Las mediciones individuales con incertidumbres máximas de 30° y 0.10 s para ϕ y δt , respectivamente, fueron apiladas para obtener valores promedio de los parámetros de partición. La longitud de los vectores es proporcional a la magnitud de la anisotropía (δt). Los epicentros de los sismos analizados se muestran utilizando una escala de colores que especifican la profundidad. Los triángulos blancos invertidos representan las estaciones analizadas. Las líneas blancas continuas y segmentadas representan las cotas de isoprofundidad de la placa de Cocos (Hayes et al., 2018).

(1998). El proceso de apilado permite reducir los efectos de polarización elíptica vinculados a la fuente y aumentar la coherencia de los efectos vinculados a la trayectoria de las ondas a través de la cuña del manto. En este caso, los vectores de partición se grafican en el centro de cada celda de la malla. En el proceso de apilado fueron incluidas 513 mediciones confiables, seleccionando aquellas con incertidumbres máximas de 30° y 0.10 s para ϕ y δt , respectivamente (la Tabla A4 muestra una lista de las mediciones apiladas por celda).

3.4. Discusiones

Los parámetros de partición medidos haciendo uso de la onda S de sismos locales intraplaca en el sureste de México (Figura 3.3) pueden ser divididos en tres regiones: (1) la primera región está localizada al noroeste de la TRe (la Cordillera de Tehuantepec subducida, como se mencionó anteriormente), (2) la segunda se localiza al sureste de la TRe y (3) la tercera corresponde a la región en donde ocurre la subducción horizontal de la placa de Cocos (Pérez-Campos et al., 2008; Husker y Davis, 2009).

3.4.1. Noroeste de la cordillera subducida de Tehuantepec

Al noroeste de la TRe (Figura 3.4a), en el Istmo de Tehuantepec, se identificaron tres grupos de orientaciones de ejes rápidos con base en el ángulo β , que se definió como el ángulo entre la dirección de polarización y la orientación de la trinchera (N68°O). Estos grupos se muestran también en un histograma (Figura 3.4c). A la orientación de la trinchera se le asignó el valor $\beta = 0$. Los grupos se identificaron con base en el ángulo β de modo que uno estuviera conformado por ejes rápidos paralelos a la trinchera (β de -30° a 30°), otro conformado por ejes rápidos oblicuos a la trinchera (β de -60° a -30° y de 30° a 60°) y el último conformado por ejes rápidos perpendiculares a la trinchera (β de -90° a -60° y de 60° a 90°) (Figura 3.4c). Las observaciones fueron divididas en dos regiones separadas por la cota de 100 km de isoprofundidad de la placa de Cocos. Se observa una región de ejes rápidos predominantemente perpendiculares a la trinchera al noreste de dicha cota (Figura 3.4a), mientras que las direcciones de polarización rápida se vuelven en su mayoría paralelas a la trinchera al sureste de la cota. Cerca de la costa del océano Pacífico fue identificada una tercera región al suroeste de la cota de 60 km de isoprofundidad.

3.4.1.1. Ejes rápidos predominantemente normales a la trinchera

Al noreste de la cota de 100 km de isoprofundidad de la placa subducente de Cocos, los ejes rápidos están orientados predominantemente perpendiculares a la trinchera, lo cual es consistente con un flujo de esquina en una cuña de manto constituida por fábricas de olivino de tipo A, C o E (Figura 3.5). Debido a condiciones de altas temperaturas, esfuerzos pequeños y bajo contenido de agua, se espera el desarrollo de la fábrica de olivino de tipo A (Zhang y Karato, 1995; Jung y Karato, 2001; Jung et al., 2006; León Soto y Valenzuela, 2013). En esta región la placa oceánica en subducción está completamente deshidratada a profundidades cercanas a los 200 km (Manea y Manea, 2006), por lo que se asume la presencia de la fábrica de olivino de tipo A. León Soto y Valenzuela (2013)

Figura 3.4: Parámetros de partición medidos (a) al noroeste y (b) al sureste de la TRe. En ambas regiones las barras azules representan el grupo de ejes rápidos paralelos a la trinchera, las barras rojas representan el grupo de ejes rápidos normales a la trinchera y las barras verdes representan al grupo de ejes rápidos oblicuos a la trinchera. (c) Histograma elaborado con respecto a la orientación de la trinchera cerca del Istmo de Tehuantepec (N68°O) que muestra los ejes rápidos medidos al noroeste de la TRe. (d) Histograma elaborado con respecto a la orientación de la trinchera (N57°O) que muestra los ejes rápidos medidos al sureste de la TRe. Cabe acotar que al sureste de la TRe la mayoría de las mediciones son paralelas u oblicuas a la trinchera. Las líneas blancas continuas y segmentadas representan las cotas de isoprofundidad de la placa de Cocos (Hayes et al., 2018). TRe - Extensión de la Cordillera de Tehuantepec.

realizaron mediciones de anisotropía sísmica en la cuña de manto por debajo del Istmo de Tehuantepec con sismos registrados por estaciones del experimento Veracruz-Oaxaca (VEOX) y también observaron ejes rápidos perpendiculares a la trinchera al noreste de la cota de 100 km de isoprofundidad de la placa subducente de Cocos.

3.4.1.2. Ejes rápidos predominantemente paralelos a la trinchera

Entre las cotas de isoprofundidad de 60 y 100 km, las direcciones de polarización rápida son predominantemente paralelas a la trinchera (figuras 3.4a y 3.5b). Estos ejes rápidos pueden deberse a la existencia de una cuña de manto parcialmente serpentinizada (Manea y Manea, 2006; Katayama et al., 2009) (Figura 3.5b). La serpentina podría plegarse en el extremo de la cuña de manto debido al flujo de esquina 2-D y a la geometría de cizalla simple, lo que a su vez podría ocasionar que el plano (001) sea casi vertical y que el eje [010] sea paralelo a la trinchera (ver Figura 1.6). Este escenario es probable que produzca direcciones de polarización rápida paralelas a la trinchera en el extremo de la cuña de manto para ondas S con ángulos de incidencia cercanos a ser verticales (Mookherjee y Capitani, 2011). Con base en la extensión del área donde se observan ejes rápidos paralelos a la trinchera, se propone que la región que abarca la cuña de manto parcialmente serpentinizada es mayor que la propuesta por Manea y Manea (2006) (Figura 3.5b).

3.4.1.3. Ejes rápidos cerca de la costa del Océano Pacífico

Al suroeste de la cota de 60 km de isoprofundidad de la placa de Cocos (Figuras 3.4a y 3.5b), los tiempos de retardo son los más cortos de la región y los ejes rápidos observados son perpendiculares a la trinchera. En este caso, cerca de la trinchera, los rayos sísmicos viajan principalmente a través de la corteza continental con pequeños segmentos a través de la placa subducida y de la cuña del manto. Por lo anterior, se espera que los parámetros de partición de onda de corte medidos se deban a un efecto cortical que posiblemente sea el sistema de fallas de Chacalapa (ver Figuras 1.6, 3.4a y 3.5b).

3.4.1.4. Cambio en el patrón de flujo del manto de noroeste a sureste

Justo encima de la TRe (cerca de la cota de 100 km de isoprofundidad de la placa subducida), se observa una transición de las direcciones de polarización rápida al ir del noroeste al sureste (Figuras 3.4a y 3.5). Este resultado es consistente con el modelo de patrones de flujo en la cuña de manto por debajo de las placas del Caribe y de Norteamérica propuesto por Manea y Manea (2006) y en la Fig. 12 de Manea et al. (2013), particularmente el cambio del patrón de flujo del manto por debajo del estado de Chiapas. Una posible explicación para el cambio en el patrón de flujo es la existencia de una ruptura vertical en la placa de Cocos que coincide con la TRe, así como el retroceso de la placa subducida al sureste de la TRe (Gripp y Gordon, 2002). Calò (2021) propuso un desgarre vertical (*vertical slab tear*) que coincide con la ubicación de la TRe (Figura 3.5). De acuerdo con su estudio, el desgarre de la placa subducida, a lo largo de la TRe, comienza a profundidades entre 120 y 130 km, lo que posiblemente podría causar el patrón transicional de ejes rápidos normales a la trinchera a ejes rápidos paralelos a la trinchera por encima de la TRe más allá de la cota de 100 km de isoprofundidad de la placa

Figura 3.5: Interpretación de los parámetros de partición medidos al noroeste y al sureste de la TRe. La longitud de los vectores es proporcional a δt . La porción de la TRe sombreada en rojo representa el desgarre vertical propuesto por Calò (2021). Las áreas sombreadas en rosado corresponden a minerales de serpentina. (a) Mediciones apiladas alrededor de la TRe. El área sombreada en rosado representa la cuña de manto parcialmente serpentinizada propuesta por Manea y Manea (2006) (los signos de interrogación indican que existe incertidumbre en la delimitación de la región del manto compuesta por minerales de serpentina de acuerdo con los autores). (b) Interpretación de las mediciones. La región sombreada con verde corresponde a una región en donde se interpreta flujo de manto normal a la trinchera en presencia de fábricas de olivino de tipo A. La región sombreada con azul indica un flujo transicional y paralelo a la trinchera en presencia de fábricas de olivino de tipo A o C. Nótese que este cambio ocurre cerca de la TRe. El área correspondiente a minerales de serpentina que se interpreta en este estudio es más grande al noroeste y más pequeña al sureste de la TRe que la que proponen Manea y Manea (2006). El área sombreada en rojo indica una región en el extremo de la cuña del manto compuesta por fábricas de olivino de tipo B. Las pocas mediciones normales a la trinchera que se realizaron al noroeste de la TRe, cerca de la TMA, y que se encuentran fuera de las regiones sombreadas, se cree que responden a efectos corticales.

de Cocos. Por su parte, a partir de modelos geodinámicos y cinemáticos, Nava Lara y Manea (2022) encontraron que la serpentinización (o zona de baja viscosidad) favorece la formación de un desgarre vertical de la placa subducida coincidente con la TRe. Al noroeste de la TRe, por debajo del Istmo de Tehuantepec, la placa de Cocos subduce con un ángulo de 25° (Pardo y Suarez, 1995; Rodríguez-Pérez, 2007; Kim et al., 2011; Melgar y Pérez-Campos, 2011), mientras que al sureste de la TRe, en el estado de Chiapas, el buzamiento aumenta a ~40° (Rebollar et al., 1999; Bravo et al., 2004). Por la diferencia en el ángulo de buzamiento de los segmentos de la placa de Cocos al noroeste y al sureste de la TRe y por el retroceso de la placa subducida por debajo de Chiapas, se espera que ocurra un flujo toroidal tridimensional alrededor del borde del segmento con mayor ángulo de buzamiento (Long y Silver, 2008), que es el que se encuentra al sureste. Por lo tanto, material del manto que está por debajo de la placa subducida fluye alrededor del borde del segmento de los de segmento a través de la ventana que se produce entre los bordes de los dos segmentos y hacia la cuña de manto al sureste de la TRe. Por lo anterior, se espera que el material del manto en la cuña fluya de noroeste a sureste, lo cual es consistente con

la orientación paralela a la trinchera de los ejes rápidos observada a través de la TRe.

3.4.2. Sureste de la cordillera subducida de Tehuantepec

Del mismo modo que en la sección anterior, las mediciones fueron separadas en tres grupos distintos: paralelas, oblicuas y normales a la trinchera (Figura 3.4b y d). En este caso, sin embargo, la orientación de la trinchera es aproximadamente N57°O y los grupos de ejes rápidos paralelos y oblicuos a la trinchera presentan mayor número de mediciones que el grupo de ejes rápidos perpendiculares a la trinchera (Figura 3.4b y d).

De acuerdo con Kneller et al. (2005), la fábrica de olivino de tipo B se desarrolla bajo condiciones de bajas temperaturas, alto contenido de agua y grandes esfuerzos, con una temperatura de transición de fábricas tipo B a tipo C entre los 700 y 800 °C en condiciones de cuña de manto (0.1 - 20 MPa). La fábrica de olivino de tipo B comúnmente se observa en el extremo de la cuña del manto y raramente en el centro de ella. El centro de las cuñas de manto está dominado por condiciones de altas temperaturas y esfuerzos pequeños que son más adecuadas para el desarrollo de fábricas de tipo A, C o E, dependiendo del contenido de agua (Kneller et al., 2005). Modelos térmicos sugieren que las bajas temperaturas requeridas para el desarrollo de fábricas de tipo B, así como también para la antigorita (fase de menor temperatura de la serpentina), están presentes en una pequeña área de la cuña de manto al sureste de la TRe (ver perfiles B-B' y C-C' y figuras 3 y 7 en Manea y Manea, 2006).

3.4.2.1. Ejes rápidos en le región fronteriza entre México y Guatemala, cerca de la costa del Océano Pacífico

Abt et al. (2009) estudiaron la cuña de manto por debajo de Nicaragua y Costa Rica y encontraron direcciones de polarización rápida paralelas al CAVA por debajo del arco y del trasarco y perpendiculares a la trinchera por debajo del antearco (extremo de la cuña de manto). Ellos infirieron un flujo paralelo a la trinchera para toda la cuña de manto, ejes adel olivino alineados con la dirección de flujo del manto por debajo del arco y del trasarco y fábricas de olivino de tipo B en el extremo de la cuña de manto como causa de las direcciones de polarización rápida perpendiculares a la trinchera. De manera similar, en el presente estudio, cerca de la frontera entre México y Guatemala, se midieron direcciones de polarización rápida paralelas al CAVA por debajo del arco, donde se encuentra en volcán Tacaná (Figura 3.5), y direcciones de polarización rápida perpendiculares a la trinchera por debajo de la región de antearco. De acuerdo con Kneller et al. (2005), el frente volcánico marca la transición de condiciones adecuadas para el desarrollo de fábricas de tipo B a condiciones más favorables para el desarollo de fábricas de tipo A, C o E. De este modo, es concebiblemente posible la presencia de fábricas de olivino de tipo B en el extremo de la cuña de manto y de fábricas de tipo A o C en el centro de la cuña de manto (Figura 3.5b). Esta observación aumenta la posibilidad de que existan fábricas de olivino de tipo B y ejes rápidos perpendiculares a la trinchera por debajo del antearco, así como fábricas de tipo A o C y ejes rápidos paralelos a la trinchera por debajo del arco y del trasarco, de manera continua desde Chiapas, México, hasta Nicaragua y Costa Rica (Centroamérica). Las mediciones de anisotropía en el estado de Chiapas se discuten a continuación.

3.4.2.2. Ejes rápidos cerca de la costa de Chiapas

Manea y Manea (2006) señalaron que la cuña de manto serpentinizada es paralela a la TMA y se encuentra a ~ 125 km de ella cerca de la TRe (Figura 3.5a). Este fenómeno puede producir un efecto importante en la anisotropía de la cuña del manto. Como se mencionó en el Capítulo 1, el enfriamiento de la cuña de manto ocurre de noroeste a sureste y puede producir un campo de estabilidad para los minerales de serpentina (Manea y Manea, 2006). Además, el extremo de la cuña de manto puede estar altamente hidratado debido al agua proveniente de la corteza oceánica subducida y de los sedimentos en el canal de subducción. Los efectos de los minerales de serpentina (como la antigorita) en la anisotropía pueden ser muy relevantes, aún cuando estén presentes en capas relativamente delgadas (Katayama et al., 2009; Bezacier et al., 2010). Esto sucede porque estos minerales presentan una fuerte anisotropía intrínseca y pueden generar una región de muy baja velocidad para la onda de corte, como lo exponen Kern (1993), Mainprice e Ildefonse, (2009) y Mookherjee y Capitani (2011). De acuerdo con Katayama et al. (2009), la alineación de serpentina en la cuña de manto hidratada resulta en una fuerte anisotropía paralela a la trinchera cuando la subducción es abrupta (buzamiento de $\sim 45^{\circ}$). Asimismo, la placa de Cocos subduce con un ángulo entre 40° y 45° por debajo de Chiapas (Rebollar et al., 1999; Bravo et al., 2004; Rodríguez-Pérez, 2007). Brownlee et al. (2013) argumentan que una capa de antigorita delgada (10-20 km) con buzamiento abrupto ($\sim 45^{\circ}$) podría contribuir con las direcciones de polarización rápida de la onda S paralelas a la trinchera en la cuña del manto. También señalan que si la fábrica de olivino de tipo B es reemplazada por antigorita, entonces el eje rápido del olivino de tipo B pasa a ser el eje lento de la antigorita, produciendo direcciones de polarización rápida paralelas a la trinchera en caso de que el flujo del manto sea paralelo a la trinchera. Además, Jung (2011) estudió la orientanción preferencial de cristales y la anisotropía sísmica en muestras de serpentina y concluyó que, para ángulos de buzamiento de capas serpentinizadas entre 30° y 45°, el eje rápido se vuelve subparalelo a la dirección de flujo. Por lo tanto, el ángulo de buzamiento y las orientaciones de los ejes rápidos en Chiapas son consistentes con las observaciones realizadas por Jung (2011) con la diferencia de que él hizo sus análisis considerando un flujo de manto perpendicular a la trinchera (flujo de esquina) y no un flujo paralelo a la trinchera como el que se propone e interpreta en este estudio. De acuerdo con Katayama et al. (2009), incluso si el flujo paralelo a la trinchera domina en el manto que corresponde a la región de antearco, se produce una fuerte anisotropía paralela a la trinchera, ya que el plano basal de la serpentina se orienta subparalelo a la dirección del flujo. Adicionalmente, las fallas que pueden existir dentro de la placa subducida podrían ser serpentinizadas y generar anisotropía con polarización de la onda de corte paralela a la trinchera (Faccenda et al., 2008). En este estudio, sin embargo, no es posible evaluar esta hipótesis debido a la pobre resolución vertical del método empleado para medir la partición de la onda de corte.

Como se explicó anteriormente, las direcciones de polarización rápida paralelas a la trinchera en el extremo de la cuña de manto del estado de Chiapas, al sureste de la TRe, pueden ser interpretadas como un efecto de una cuña de manto serpentinizada combinado con un flujo de manto hacia el sureste y paralelo a la trinchera. De acuerdo con el modelo presentado en la figura 7 de Manea y Manea (2006), se propone que el extremo de la cuña de manto por debajo de Chiapas está compuesto por minerales de serpentina en la

región que se encuentra más cercana a la trinchera. En este caso, se propone que la región en donde existen minerales de serpentina es más pequeña que la propuesta por Manea y Manea (2006) (Figura 3.5).

3.4.2.3. Ejes rápidos en el interior de Chiapas

La orientación de los ejes rápidos paralelos a la trinchera entre la costa de Chiapas y el AVCM (Figura 3.5) puede estar controlada por la presencia de fábricas de olivino de tipo A o C con sus ejes *a* alineados con el flujo del manto paralelo a la trinchera. Este flujo del manto paralelo a la trinchera puede ocurrir debido a los efectos combinados del retroceso de la placa de Cocos (Gripp y Gordon, 2002) y componentes del movimiento de placas a lo largo del rumbo de la placa subducida (Abt et al., 2009). La TRe representa un salto en la edad de la placa de Cocos, siendo más antigua y profunda al sureste y más joven y somera al noroeste (Manea y Manea, 2006). Dado que la placa es más antigua hacia el sureste, es también más fría y densa, lo que podría provocar su retroceso y conducir un flujo toroidal tridimensional desde el manto por debajo de la placa hacia la cuña alrededor de sus bordes (Long y Silver, 2008), como se discutió en la sección 3.4.1. De igual manera, la placa por debajo de Oaxaca es muy joven y puede disminuir en el tiempo su ángulo de buzamiento. El flujo en la cuña de manto de noroeste a sureste, a lo largo del rumbo de la placa subducida producir las direcciones de polarización rápida reportadas en este estudio (Abt et al., 2009) (Figura 3.5).

3.4.3. Por encima de la subducción horizontal de la placa de Cocos

Al noroeste, por encima de la subducción horizontal de la placa de Cocos (Pérez-Campos et al., 2008; Husker y Davis, 2009), los parámetros de partición muestran una variabilidad significativa (Figura 3.6). En esta región, las estaciones registran sismos cuyas ondas de corte viajan a través de una cuña de manto remanente (RMW, por sus siglas en Inglés) que tiene un espesor aproximado de 10 km (Pérez-Campos et al., 2008). la RMW es delgada en comparación con la corteza continental, la cual presenta un espesor que varía desde 15 km, cerca de la costa del Océano Pacífico, hasta 40 km justo debajo de la FVTM (Rodríguez-Domínguez et al., 2019). Las travectorias de las ondas de corte que se registran en la superficie acumulan la anisotropía contenida en la placa subducida, la RMW y la corteza continental. Tres perfiles en la dirección descendente de la placa de Cocos (Figura 3.7) muestran los diferentes travectos de la onda de corte a través de la cuña de manto a medida que el buzamiento cambia a lo largo de la trinchera de noroeste a sureste. Se presenta un perfil para cada una de las tres regiones en las que se dividieron las mediciones realizadas en este estudio. Particularmente, la Figura 3.7a muestra las longitudes relativas de los trayectos de las ondas de corte a través de la placa subducida, la RMW y la corteza continental en la región en donde la placa de Cocos subduce de manera horizontal. Las Figuras 3.7b y c además incluyen la interpretación referente a las fábricas de olivino y a los minerales de serpentina que se hizo en este estudio.

La gran variabilidad observada en la orientación de los ejes rápidos por encima de la subducción horizontal de la placa de Cocos y el hecho de que no presenten relación alguna con la trinchera (no son ni perpendiculares ni paralelos a ella) sugieren que la anisotropía

Figura 3.6: Parámetros de partición medidos en la región que corresponde a la subducción horizontal de la placa de Cocos y su interpretación. La longitud de los vectores es proporcional a δt . El mapa presenta los terrenos tectonoestratigráficos, sus complejos metamórficos y los diferentes sistemas de fallas en la región (líneas rojas) (modificado de Tolson, 2005). Nótese que las direcciones de polarización rápida son consistentes con la orientación del rumbo de los diferentes planos de falla. El área sombreada en rosado representa la cuña de manto parcialmente serpentinizada propuesta por Manea y Manea (2006). Los pliegues y cabalgamientos del terreno Guerrero fueron tomados de Cerca et al. (2004) y de Huesca-Pérez et al. (2016).

medida surge principalmente de la corteza continental y no de la cuña. Se propone que la RMW produce un efecto menor en los parámetros de partición medidos porque existe una buena correlación entre ellos y los distintos terrenos corticales, particularmente resaltando la alineación de las foliaciones y la orientación de los sistemas de fallas. Antes de examinar la correlación entre los parámetros de partición medidos y los terrenos corticales, se proporcionará una breve discusión acerca de las contribuciones relativas de la corteza continental, la RMW y la placa subducida al tiempo de retardo (δt) .

En el presente estudio, los tiempos de retardo apilados por celda van desde 0.04 s hasta 0.42 s, con un valor promedio de 0.17 s. Estos valores son consistentes con magnitudes de anisotropía cortical reportadas en trabajos anteriores. Mediciones de anisotropía cortical realizadas en distintas partes del mundo han mostrado valores para tiempos de retardo entre 0.1 y 0.3 s con un promedio de 0.2 s (Kaneshima, 1990; Silver y Chan, 1991; Silver, 1996; Crampin y Gao, 2006). Huesca-Pérez et al. (2016) obtuvieron mediciones de partición

de onda de corte usando tremores tectónicos en la región de la subducción plana que coincide con el estado de Guerrero. Ellos encontraron tiempos de retardo que van desde 0.07 s hasta 0.36 s. Dado que el tremor tectónico es producido cerca de la interfaz de la placa, es decir, en la base de la corteza continental (Frank et al., 2013), sus datos solo logran muestrear la corteza continental. Las mediciones de partición de onda de corte realizadas en el presente estudio no permiten estudiar únicamente la anisotropía producida por la corteza continental debido a que los tiempos de retardo medidos se acumulan desde la placa subducente hasta la corteza continental, incluvendo la RMW (Figura 3.7a). Castellanos et al. (2017) y Husker et al. (2022), sin embargo, midieron por separado los parámetros de partición de la corteza continental, de la RMW y de la corteza oceánica subducida empleando funciones de receptor con registros del experimento MASE (Meso-American Subduction Experiment), desplegado en la región de la subducción plana en México. A efectos de comparación, el tiempo de retardo promedio obtenido en este estudio en la región de la subducción plana es $\delta t = 0.17$ s, mientras que Castellanos et al. (2017) obtuvieron valores promedio de $\delta t = 0.15$ s para la corteza continental, $\delta t = 0.16$ s para la RMW y $\delta t = 0.16$ s para la placa oceánica subducida. Esta observación muestra que las contribuciones relativas a la anisotropía de la corteza continental, la RMW y la placa oceánica subducente son aproximadamente las mismas v son, de hecho, comparables con el tiempo de retardo total determinado en este estudio para la región de la subducción plana. Si se sumaran las contribuciones determinadas por Castellanos et al. (2017), el valor total del tiempo de retardo sería $\delta t = 0.47$ s. Sin embargo, se debe ser cuidadoso porque la suma aritmética de los tiempos de retardo para las distintas capas solo es posible si las direcciones de polarización rápida son paralelas a través de ellas (Savage y Silver, 1993; Özalaybey y Savage, 1994, 1995; Silver y Savage, 1994; Castellanos et al., 2017). Desafortunadamente, la técnica empleada en el presente estudio no permite separar los valores de ϕ y δt en cada una de las capas, es decir, en la corteza continental, en la RMW y en la placa subducente. De este modo, la suma de los tiempos de retardo del trabajo de Castellanos et al. (2017) es probable que sea menor que 0.47 s y más cercana al valor determinado en este estudio.

Por encima de la subducción plana de la placa de Cocos, las direcciones de polarización rápida parecen estar controladas por efectos corticales como alineaciones de minerales en foliaciones y sistemas de fallas. El efecto de la RMW en la anisotropía no es evidente y posiblemente sea mucho menor que el efecto cortical, como se explicó anteriormente. En la región, distintos terrenos tectonoestratigráficos han sido identificados con base en datos geológicos y geofísicos (Sedlock et al., 1993) (Figura 3.6).

Terreno Guerrero.- De oeste a este, en el terreno Guerrero, las direcciones de polarización rápida son consistentes con las obtenidas por Huesca-Pérez et al. (2016) a partir de tremores tectónicos. Los ejes rápidos están orientados NE-SO y son oblicuos al máximo esfuerzo compresivo que rodea el área que ellos estudiaron. Por lo tanto, se descarta que la anisotropía esté siendo controlada por esfuerzos tectónicos. Los ejes rápidos son paralelos al rumbo de una serie de pliegues y cabalgamientos del Terciario altamente foliados en esquistos de bajo grado (Huesca-Pérez et al., 2016). Por esta razón, se propone que las direcciones de polarización rápida en el terreno Guerrero están producidas por alineaciones en foliaciones (Okaya et al., 1995; Christensen, 1996) (Figura 3.6).

Terreno Mixteco.- Un poco más hacia el este, en el terreno Mixteco, las ejes rápidos

Figura 3.7: Perfiles que muestran los trayectos fuente-estación a través de la cuña de manto para las tres regiones. El techo de la placa es definido por las cotas de isoprofundidad de Hayes et al. (2018). (a) El Perfil A-A' incluye estaciones localizadas por encima de la subducción horizontal de la placa de Cocos. Nótese que el espesor de la cuña de manto es de 10 km aproximadamente (Pérez-Campos et al., 2008). (b) El Perfil B-B' incluye estaciones localizadas al noroeste de la TRe. El espesor cortical fue tomado de Melgar y Pérez-Campos (2011). El área sombreada en rosado indica la región de posible serpentinización parcial del extremo de la cuña de manto (Manea y Manea, 2006), incluyendo la región que se interpretó en este estudio. El área sombreada en verde indica una región que corresponde a una cuña de manto constituida por fábricas de olivino de tipo A. (c) Para el Perfil C-C' se utilizaron estaciones localizadas al sureste de la TRe. El espesor cortical fue tomado de Manea y Manea (2006). El área sombreada en rojo indica la presencia de fábricas de olivino de tipo B en el extremo de la cuña de manto por debajo del antearco del CAVA. El área sombreada en azul indica una cuña de manto compuesta por fábricas de olivino de tipo A o C. (d) Mapa que muestra la ubicación de los perfiles y la interpretación reportada en este estudio presentada en la Figura 3.5.

están orientados NNO-SSE y son consistentes con los reportados por Huesca-Pérez et al. (2019). El sistema de fallas de Caltepec, que constituye el contacto tectónico entre los complejos de Acatlán y Oaxaca, parece estar controlando los parámetros de partición porque la orientación promedio de los ejes rápidos es paralela a las foliaciones que se encuentran dentro del sistema de fallas (Elías-Herrera et al., 2005) (Figura 3.6). El complejo metamórfico de Acatlán está compuesto por esquistos de mica fuertemente deformados (González-Hervert et al., 1984). De acuerdo con Bostock y Christensen (2012),

quienes cuantificaron la partición de la onda S versus el espesor de la columna de la corteza anisótropa para diferentes clases metamórficas y distintos valores de buzamiento de la foliación, una columna de 10 km de espesor de esquisto micáceo puede producir un tiempo de retardo entre 0.10 y 0.40 s, dependiendo del buzamiento de la foliación. Yañez et al. (1991) estiman que el espesor del complejo Acatlán es de 15 km, por lo que los grandes tiempos de retardo medidos en el terreno Mixteco (~0.26 s) (Figura 3.6) son consistentes con la mineralogía del complejo metamórfico. Esta observación sugiere que las alineaciones de esquistos micáceos controlan la anisotropía. En este caso, tanto el sistema de fallas de Caltepec (Bostock y Christensen, 2012), como las alineaciones de esquistos micáceos en foliaciones (Okaya et al., 1995; Christensen, 1996), se proponen como los factores que controlan la anisotropía en el terreno Mixteco. En el centro del terreno Mixteco, las mediciones de los parámetros de partición realizadas con las estaciones MGIG y TLIG resultan difíciles de interpretar debido a la variabilidad encontrada. Esto podría ocurrir en respuesta a un efecto cortical diferente (p. ej., heterogeneidad litológica) (Figura 3.6).

Terrenos Zapoteco, Cuicateco y Maya.- Aún más hacia el este, en la región entre los terrenos Zapoteco y Cuicateco, los ejes rápidos parecen estar controlados por la orientación de la falla de Oaxaca (Bostock y Christensen, 2012) (Figura 3.6), la cual tiene una dirección de rumbo promedio de N10°O y buza de manera abrupta hacia el oeste (García-Centeno et al., 1990; Campos-Enriquez et al., 2013). Hacia el norte, la mayoría de las mediciones coinciden con el complejo milonítico de Juárez y muestran una orientación NNO-SSE que es paralela a la orientación de la línea de falla de Oaxaca, la cual se encuentra sobre el flanco oeste del complejo (Huesca-Pérez et al., 2019) (Figura 3.6). El complejo milonítico de Juárez presenta rocas metamórficas de bajo grado que pueden ser altamente anisótropas, debido a la orientación preferencial de sus minerales, y que pueden producir los parámetros de partición que se midieron en la región (Christensen, 1996). En las partes central y sur de la zona de falla de Oaxaca, algunas mediciones son paralelas al rumbo del plano de la falla de Oaxaca, mientras que otras son perpendiculares a él. Los ejes rápidos paralelos a la línea de falla pueden también estar controlados por el complejo milonítico de Juárez o por estructuras mineralógicas dentro de la zona de falla de Oaxaca (Huesca-Pérez et al., 2019). Los ejes rápidos que son perpendiculares a la línea de falla podrían indicar efectos producidos por el terreno Cuicateco.

En la parte más oriental de la región, donde se encuentra el terreno Cuicateco, las direcciones de polarización rápida están alineadas NE-SO (Figura 3.6). El sistema de fallas de Oaxaca parece ser el factor que controla la anisotropía de acuerdo con el mecanismo propuesto por Bostock y Christensen (2012). Esto podría ser resultado de la deformación a la que el terreno Cuicateco fue sometido cuando el terreno Zapoteco fue desplazado hacia el este sobre él a o largo de la sutura de Juárez (Sedlock et al., 1993). Al mismo tiempo, el terreno Cuicateco fue empujado hacia el este sobre el terreno Maya, causando deformación interna (Sedlock et al., 1993). En el terreno Maya las direcciones de polarización rápida son paralelas a la falla de Vista Hermosa. Para este terreno se propone que los parámetros de partición son el resultado de la combinación de efectos corticales causados por la falla de Vista Hermosa (Bostock y Christensen, 2012) y de la cuña de manto parcialmente serpentinizada (ya que los ejes rápidos también son paralelos a la trinchera) (Manea y Manea, 2006) (Figura 3.6). Las mediciones realizadas al norte en el terreno Maya muestran

una gran variabilidad y no fueron incluidas en la interpretación presentada en este estudio.

3.5. Conclusiones

Se presentaron mediciones de partición de onda de corte usando sismos ocurridos dentro de la placa de Cocos. Los resultados pueden ser ampliamente divididos en tres regiones diferentes: dos de ellas separadas por la TRe y la tercerca ubicada encima de la subducción horizontal de la placa de Cocos.

(1) Al noroeste de la TRe y al noreste de la cota de 100 km de isoprofundidad de la placa de Cocos, se midieron predominantemente ejes rápidos perpendiculares a la trinchera. De acuerdo con otros estudios, esfuerzos pequeños, altas temperaturas y bajo contenido de agua son las condiciones esperadas para el centro de la cuña de manto en esta región. Por lo tanto, se infiere la existencia de fábricas de olivino de tipo A y un flujo de esquina 2-D en la cuña del manto. A la misma distancia de la trinchera pero hacia el sureste, las direcciones de polarización rápida se vuelven paralelas a la trinchera y marcan una transición en el flujo de manto al pasar de perpendicular a paralelo a la trinchera en una cuña compuesta por fábricas de olivino de tipo A o C. Esta transición es observada cerca de la TRe y puede ser consistente con una ruptura vertical de la placa de Cocos a lo largo de este rasgo geológico. Al suroeste de la cota de 100 km de isoprofundidad, se observan ejes rápidos paralelos a la trinchera que pueden ser interpretados como consecuencia de una cuña de manto parcialmente serpentinizada con los planos (001) de la antigorita cercanos a verticales y los ejes [010] paralelos a la trinchera.

(2) Al sureste de la TRe, se propone un flujo de manto en la cuña paralelo a la trinchera y en dirección sureste para explicar las observaciones. Se midieron direcciones de polarización rápida paralelas a la trinchera en Chiapas, lejos de la costa del Océano Pacífico, que son consistentes con un flujo de manto paralelo a la trinchera a través de una cuña compuesta por fábricas de olivino de tipo A o C. Este flujo puede ocurrir debido al retroceso de la placa de Cocos y a componentes del movimiento de placa a lo largo del rumbo. Se propone que un flujo toroidal 3D conduce material del manto que está por debajo de la placa a través de la ventana formada por la ruptura y hacia la cuña del manto, donde el flujo ocurre de noroeste a sureste. A lo largo de la línea de costa, al sureste de la TRe, también se observaron direcciones de polarización rápida paralelas a la trinchera. Estas son consistentes con el hecho de que el extremo de la cuña de manto esté parcialmente serpentinizado y con un flujo paralelo a la trinchera. Estos ejes rápidos paralelos a la trinchera pueden ser consistentes con planos basales de serpentina subparalelos a la dirección de flujo, con antigoritas que crecieron topotácticamente en olivinos de tipo B bajo un escenario de flujo de manto paralelo a la trinchera y/o con serpentinas desarrolladas dentro de las fallas contenidas en la placa subducida. El método utilizado para medir la partición de onda de corte no permite identificar el proceso que dio lugar a los minerales de serpentina en el extremo de la cuña de manto cerca de la TRe. También al sureste de la TRe, cerca de la frontera entre México y Guatemala, en la región de antearco del CAVA, se observaron ejes rápidos perpendiculares a la trinchera. Estas orientaciones pueden ser explicadas asumiendo la presencia de fábricas de olivino de tipo B y un flujo de manto paralelo a la trinchera de manera que los ejes rápidos se orientan perpendiculares a la dirección de flujo. El patrón de flujo paralelo a la trinchera que se propone en este estudio podría continuar hacia el sureste hasta Nicaragua y Costa Rica.

(3) En la tercera región, por encima de la subducción plana de la placa de Cocos, los ejes rápidos medidos no muestran relación con la trinchera ni con el flujo del manto y los tiempos de retardo con consistentes con magnitudes corticales. Se propone que en el terreno Guerrero una serie de pliegues y cabalgamientos del Terciario altamente foliados es el factor que controla la anisotropía porque los ejes rápidos medidos son aproximadamente paralelos al rumbo de las fallas. En el terreno Mixteco, el sistema de fallas de Caltepec y las alineaciones de esquistos micáceos en foliaciones son los factores que se consideran que están controlando la anisotropía. Entre los terrenos Zapoteco y Cuicateco, los ejes rápidos medidos son aproximadamente paralelos al rumbo del sistema de fallas de Oaxaca, por lo que se propone que el sistema está controlando la anisotropía. Los ejes rápidos NE-SO observados en el terreno Cuicateco son interpretados como el resultado de la deformación interna que sufrió el terreno cuando el terreno Zapoteco fue empujado hacia el este a lo largo del sistema de fallas de Oaxaca y por encima del terreno Cuicateco. Por último, en el terreno Maya, se propone que la anisotropía está siendo controlada por un efecto combinado de la cuña de manto parcialmente serpentinizada y el sistema de fallas de Vista Hermosa, ya que los ejes rápidos medidos son paralelos a la trinchera y al rumbo de dicho sistema de fallas.

Con el fin de mejorar la resolución vertical del modelo presentado en este capítulo, el Capítulo 4 presenta los resultados de una inversión tomográfica de partición de ondas de corte (*SWST: Shear-Wave Splitting Tomography*) al estilo de Abt y Fischer (2008) y Abt et al. (2009).

Capítulo 4

Inversión tomográfica

4.1. Introducción

Los parámetros de partición de onda de corte, medidos a partir del método de covarianza de Silver y Chan (1991), reflejan la contribución anisótropa de todos los cuerpos a través de los cuales ha viajado la onda. Con sismos locales intraplaca, registrados por estaciones en superficie, resulta difícil restringir la profundidad del cuerpo anisótropo porque la partición medida acumula las contribuciones a la anisotropía de la placa subducida, de la cuña del manto y de la corteza continental. Además, se ha demostrado experimentalmente (Bystricky et al., 2000; Jung y Karato, 2001; Holtzman et al., 2003; Mainprice et al., 2005; Jung et al., 2006; Katayama y Karato, 2006) y en observaciones de campo (Mehl et al., 2003; Mizukami et al., 2004) que la relación entre el flujo y la orientación preferencial de la red (LPO) de minerales en el manto depende de las condiciones de presión, temperatura, fusión parcial, contenido de agua y estado de esfuerzos, por lo que con una medición de los parámetros de partición con el método mencionado no se puede constreñir completamente la ubicación, orientación o magnitud de la anisotropía a lo largo de la trayectoria del rayo.

La resolución vertical de las mediciones de partición de onda de corte puede ser fuertemente mejorada a través de una imagen tomográfica que permita la caracterización cuantitativa de la distribución lateral y vertical de la anisotropía. En este estudio se seleccionó la técnica denominada *Shear-Wave Splitting Tomography* (SWST) (Tomografía de Partición de Onda de Corte), propuesta por Abt y Fischer (2008), para invertir las mediciones con sismos locales intraplaca (Capítulo 3) y obtener una imagen anisótropa mejorada y más clara del manto superior, específicamente, de la cuña del manto. Invirtiendo los parámetros de partición obtenidos con ondas de corte de sismos locales se puede mejorar la incertidumbre en la interpretación de la anisotropía medida a partir de fases telesísmicas como la *SKS*, ya que con estas fases existe la ambigüedad de si el origen de la anisotropía se encuentra en el manto por debajo de la placa subducida o en la cuña de manto.

Las zonas de subducción, como es el caso del sureste de México, constituyen un ambiente ideal para la técnica SWST (Abt y Fischer, 2008) porque, por lo general, cuentan con fuentes sísmicas ampliamente distribuidas en la placa subducida que se originan justamente debajo de la cuña de manto. Si se cuenta con un arreglo denso de estaciones en superficie que permita registrar las trayectorias diferenciales de las ondas S de sismos locales intraplaca, entonces con la técnica SWST resulta posible obtener una imagen precisa de anisotropía de la cuña del manto.

Mediciones de anisotropía sísmica en zonas de subducción han demostrado que los patrones de flujo de manto en la cuña son más complejos que los predichos por el flujo de esquina 2-D, el cual depende del desacoplamiento viscoso que existe entre la placa subducente y el manto suprayacente (Fischer et al., 2000; Long y Silver, 2008). Existen diferentes factores físicos que pueden contribuir con el flujo 3-D del manto en la cuña, entre los que destacan el retroceso de la placa subducida (Buttles y Olson, 1998; Kincaid y Griffiths, 2004; Funiciello et al., 2006), los bordes de placa (Kincaid y Griffiths, 2003; Funiciello et al., 2006), la convergencia oblicua (Hall et al., 2000), entre otros.

En este capítulo se presenta un modelo 3-D de orientaciones cristalográficas calculado a partir de una inversión linealizada de mínimos cuadrados de los parámetros de partición de ondas de corte de sismos locales intraplaca, aplicando la técnica SWST (Abt y Fischer, 2008). Se asumen las constantes elásticas del olivino y del ortopiroxeno y se evalúan simetrías hexagonales y ortorrómbicas para encontrar el modelo que mejor se ajuste a los parámetros de partición medidos y que permita entender el comportamiento del flujo 3-D del manto con base en las orientaciones cristalográficas.

El área de estudio se redujo en comparación con las definidas en los capítulos anteriores. El área a invertir se encuentra en el sureste de México comprendiendo los estados Oaxaca, Veracruz y Chiapas sin incluir la región en donde ocurre la subducción plana de la placa de Cocos (Pérez-Campos et al., 2008; Husker y Davis, 2009), ya que el objetivo principal de este trabajo es estudiar la cuña de manto y en esta región es casi inexistente. La inversión tomográfica se llevó a cabo para las regiones al noroeste y al sureste de la TRe.

4.2. Parametrización del modelo

4.2.1. Datos observados y espacio modelo

Se analizaron sismos registrados por 41 estaciones sismológicas desplegadas en el sureste de México. Al igual que se hizo en el capítulo anterior, se estudiaron estaciones de las experimentos temporales de GECO (Rodríguez-Domínguez et al., 2019) y RADSEM (Velasco y Karplus, 2017), de las redes permanentes de RSBAV (Córdoba-Montiel et al., 2018) y SSN (2021b) (Pérez-Campos et al., 2018) y se incluyeron estaciones del perfil VEOX (2010) (Melgar y Pérez-Campos, 2011) y de la Red Sísmica del Tacaná (VT) (disponible en http://www.ssn.unam.mx/acerca-de/estaciones/) ubicadas en la región de interés (Figura 4.1). La selección de sismos, igual que en el Capítulo 3, se hizo restringiendo el ángulo de incidencia a un máximo de 35°, medido desde la vertical hasta la trayectoria del rayo en línea recta, con el fin de evitar complicaciones de formas de onda generadas por efectos de la superficie libre y/o por fases convertidas como la SP (Kaneshima, 1990; Yang et al., 1995; León Soto et al., 2009; León Soto y Valenzuela, 2013). Se emplearon sismos con magnitudes M_D entre 3.1 y 5.5, por lo que, en la mayoría de los casos, la polarización inicial de la onda de corte se desconoce porque los mecanismos de fuente no están disponibles. Las polarizaciones iniciales fueron estimadas a partir

del movimiento de partículas horizontal aproximadamente lineal obtenido después de hacer la corrección de anisotropía empleando los parámetros ϕ y δt calculados con el método de Silver y Chan (1991). Esta medición no es exacta pero se considera una buena aproximación cuando no se conocen los parámetros de fuente (Abt y Fischer, 2008; Abt et al., 2009).

Se analizaron 1277 sismos y se obtuvo un total de 1579 pares sismo-estación que produjeron mediciones útiles que se incluyeron en la inversión. Las mediciones individuales

Figura 4.1: Observaciones de partición de onda de corte (vectores con colores que van del rojo al azul) a partir de sismos locales intraplaca registrados por las estaciones permanentes del SSN y de la RSBAV (cuadros negros) y por estaciones temporales de GECO, RADSEM, VEOX y VT (triángulos negros invertidos). Los 1579 vectores de partición se grafican en el punto medio del trayecto fuente-estación. La longitud de los vectores es proporcional a δt (se muestra un vector de referencia que corresponde a 1 s) y su orientación está definida por ϕ . El color rojo indica una dirección de polarización rápida paralela a la trinchera (N55°O) y el color azul una dirección de polarización rápida normal a la trinchera (N35°E). El sistema de coordenadas está rotado 35° hacia el oeste del norte, de modo que el eje horizontal sea aproximadamente paralelo a la trinchera, y todas las distancias en kilómetros están calculadas con respecto al punto de longitud -94° y latitud 16.15°, que corresponde al centro del área de estudio. Los triángulos amarillos representan los volcanes del área de estudio y los puntos verdes los epicentros de los sismos analizados. Las contornos de la placa de Cocos fueron tomados de Hayes et al. (2018).

de los parámetros de partición calculados a partir del método de covarianza de Silver y Chan (1991) constituyen los datos observados en el proceso de inversión y se muestran en la Figura 4.1. Los vectores de partición se dibujan en el punto medio de la distancia epicentral. El sistema coordenado que se muestra en la Figura 4.1 fue rotado 35° hacia el oeste para lograr que el eje horizontal fuera paralelo a la trinchera. Todas las distancias fueron calculadas a partir del punto con coordenadas (-94°, 16.15°), que corresponde aproximadamente al centro del área de estudio. La Tabla A5 muestra una lista con las 1579 mediciones individuales empleadas en la inversión, incluyendo red y nombre de la estación, características del sismo (fecha, día juliano y hora del origen, latitud, longitud y profundidad del hipocentro, magnitud, ángulo de incidencia, distancia epicentral, parámetros de partición con sus incertidumbres, coordenadas del punto medio de las distancias epicentrales y valor de la polarización inicial estimada con su correspondiente error).

El espacio modelo fue parametrizado en bloques 3-D de 25 km de cada lado (Figura 4.2). En la Figura 4.2a se muestra una vista 3D de los epicentros analizados (1277), las trayectorias de los rayos de las ondas de corte analizadas (1579) y las estaciones (41) cuyos registros sirvieron para medir los parámetros de partición. En la Figura 4.2b se muestra el espacio modelo visto en planta. El espacio modelo se definió de manera que incluyera todas las fuentes y estaciones que se utilizaron para hacer la inversión tomográfica. Se seleccionaron bloques de 25 km de cada lado porque dimensiones mayores no permitirían analizar suficientemente bien variaciones a escalas pequeñas y dimensiones menores aumentarían de manera importante el tiempo de cómputo y reducirían las restricciones de los parámetros en cada bloque, dado que un menor número de rayos los atravesaría (Abt y Fischer, 2008). Sin embargo, se definieron bloques de mayor tamaño en regiones donde usando bloques de 25 km de lado no se alcanza una buena resolución de los parámetros. Estas regiones, en general, se encontraron lejos de la trinchera en donde se tiene menor cobertura de rayos (Abt y Fischer, 2008).

4.2.2. Mineralogía, coeficientes elásticos y simetrías cristalográficas

Para representar la composición de la cuña de manto en el sureste de México, se asumió una mineralogía de 70 % olivino y 30 % ortopiroxeno y se utilizaron las constantes elásticas de la Forsterita $(Mg_{1.8}Fe_{0.2}SiO_4)$ (Anderson e Isaak, 1995; Abramson et al., 1997) y de la Broncita $(Mg_{0.8}Fe_{0.2}SiO_3)$ (Frisillo y Barsch, 1972), incluyendo sus derivadas de presión y temperatura (la Tabla 1 en Abt y Fischer (2008) presenta las nueve constantes elásticas del olivino y del ortopiroxeno necesarias para definir la simetría ortorrómbica y las derivadas de presión y temperatura utilizadas para representar el manto superior en el modelado directo de partición de ondas de corte). Para profundidades corticales estos coeficientes elásticos resultan inapropiados. Por simplicidad, se asumió que todo el espacio del modelo está compuesto por materiales del manto (olivinos y ortopiroxenos) y no se consideraron mineralogías ni propiedades elásticas de la corteza.

Las peridotitas litosféricas deformadas naturalmente, en la mayoría de los casos, presentan una simetría ortorrómbica tanto para olivinos como para ortopiroxenos y una LPO en la que el eje a [100] del olivino es paralelo al eje c [001] del ortopiroxeno (quedando el eje b del olivino paralelo al eje a del ortopiroxeno). Sin embargo, muchos estudios han

Figura 4.2: Parametrización del espacio modelo. Se muestran los epicentros analizados, las trayectorias de las ondas de corte y las estaciones cuyos registros sirvieron para medir los parámetros de partición de onda de corte. a) Vista 3D, b) Vista en planta. Las líneas punteadas en color rojo corresponden a las cotas de isoprofundidad de la placa de Cocos.

demostrado que estos minerales presentan simetrías hexagonales con mayor frecuencia que simetrías puramente ortorrómbicas (Bystricky et al., 2000; Mehl et al., 2003; Michibayashi et al., 2006; Mainprice y Silver, 1993). En el proceso de inversión se probaron simetrías tanto ortorrómbicas como hexagonales para definir el modelo directo. Para simular la simetría hexagonal utilizando los mismos coeficientes elásticos definidos para la simetría ortorrómbica, los valores de los coeficientes y derivadas parciales de los ejes b y c fueron combinados en un plano isótropo perpendicular al eje a, reduciendo las nueve constantes elásticas ortorrómbicas independientes a solo cinco constantes elásticas hexagonales independientes (Montagner y Anderson, 1989). Habiendo definido la orientación de los cristales de olivino (olv) y de ortopiroxeno (opx), si se añade proporcionalmente el tensor de rigideces ($0.7 \times c_{ijkl}^{olv} + 0.3 \times c_{ijkl}^{opx}$) a dicha orientación, se definen completamente las propiedades elásticas del material del manto del modelo ortorrómbico.

4.2.3. Parámetros del modelo

La orientación cristalográfica para cada uno de los bloques (con la mineralogía descrita en la sección anterior) está definida por los ángulos de rotación: θ , ψ y γ (Figura 4.3) (Abt y Fischer, 2008). La orientación cristalográfica para cada bloque del modelo se define con dos ángulos (θ y ψ) en el caso de simetría hexagonal, o con tres ángulos (θ , ψ y γ) en el caso de simetría ortorrómbica. El ángulo θ es el azimut horizontal del eje a [100], el ángulo ψ es la inmersión del eje a [100] desde la horizontal y el ángulo γ es la inmersión del eje c [001] (Figura 4.3) (los ángulos están referidos a los ejes cristalográficos del olivino). Un cuarto parámetro, α , fue empleado para considerar el hecho de que los tiempos de retardo calculados a partir de los bloques definidos son mucho mayores que los tiempos

Figura 4.3: Parámetros del modelo: θ , ψ y γ , que representan ángulos de rotación para definir la orientación de los ejes cristalográficos del olivino y del ortopiroxeno en cada bloque. El eje *a* del olivino es paralelo al eje x_2 inicialmente.

de retardo observados puesto que, en volúmenes reales de la Tierra, los cristales no están perfectamente alineados. Este parámetro se define como parámetro de fuerza o fuerza de la anisotropía y constituye un valor escalar que varía de 0 a 100 % y permite reducir el efecto de la anisotropía en los tiempos de retardo predichos en cada bloque del modelo con respecto al calculado con los coeficientes elásticos del cristal. Este parámetro podría reflejar la relación entre granos orientados aleatoriamente y granos alineados con la orientación especifica del bloque (Abt y Fischer, 2008; Abt et al., 2009).

4.3. Modelado directo

Los parámetros de partición de onda de corte predichos para cada par evento-estación (Figura 4.2) fueron calculados con el método de Perturbación del Movimiento de Partícula propuesto por Fischer et al. (2000), el cual permite distribuir y orientar la anisotropía en tres dimensiones. Este método consiste en (1) calcular la partición incremental debido a cada bloque del modelo que atraviesa un rayo, (2) integrar los efectos calculados en los movimientos de partícula de la onda de corte desde la fuente hasta la superficie y, por último, (3) calcular los parámetros de partición de la onda de corte (ϕ y δt) y sus incertidumbres ($\sigma_{\phi} \ge \sigma_{\delta t}$) a partir de los movimientos de partícula horizontales predichos en la superficie utilizando el método de Silver y Chan (1991). La Figura 4.4 muestra un ejemplo del modelado directo y las formas de onda resultantes para un rayo que atraviesa dos capas (o bloques) anisótropas. Para aproximar los efectos de la anisotropía 3-D en las componentes horizontales del movimiento de partícula de la onda de corte, se rotó y desfasó en tiempo de manera progresiva una ondícula sintética de acuerdo con los autovectores (que definen la dirección de polarización) y los autovalores (que definen las velocidades de fase) de la matriz de Christoffel (Babuska y Cara, 1991) para cada bloque del modelo atravesado por un rayo. La ondícula utilizada para cada rayo presenta un movimiento de partícula inicial horizontal, cuva polarización fue calculada corrigiendo la anisotropía con los parámetros de partición observados medidos con el método de Silver y Chan (1991), y un período de 1.5 s, el cual representa la frecuencia típica de las ondas S de sismos locales en la zona de subducción de Centroamérica (Abt et al., 2006) y se considera una buena estimación para la frecuencia típica de las ondas S de sismos locales intraplaca en el sureste de México (Figura 4.4a).

La matriz de Christoffel,

$$m_{ik} = 1/\rho(z) * c_{ijkl} * n_j * n_l \tag{4.1}$$

(Babuska y Cara, 1991), donde ρ es la densidad en función de la profundidad (por tanto de la presión y de la temperatura), c_{ijkl} es el tensor de rigidez elástica del cristal compuesto por olivino y ortopiroxeno (también dependiente de la presión y de la temperatura) y \hat{n} es la dirección de propagación del rayo, permite obtener las direcciones de polarización (autovectores) y las velocidades de fase (autovalores) para cada segmento de rayo en el orden en el que este atraviesa la estructura anisótropa. La Ecuación 4.1 es lo suficientemente eficiente como para usarla de manera repetitiva en el cálculo de las derivadas parciales requeridas en la inversión (Abt y Fischer, 2008; Abt et al., 2009), ya que, como el proceso de partición es no lineal y dependiente del orden en el que la estructura anisótropa es atravesada por un rayo, dichas derivadas deben recalcularse después de cada iteración. La matriz de Christoffel se caracteriza por tener tres autovectores independientes que corresponden con la dirección de polarización de las

Figura 4.4: Ejemplo de partición de onda de corte para generar datos sintéticos y calcular los parámetros predichos en el modelado directo. (a) Componentes horizontales de la onda de corte: de izquierda a derecha, se muestran las formas de onda sintéticas generadas en la fuente (con polarización inicial de -50°) y las formas de onda perturbadas por dos capas anisótropas con orientaciones definidas por los tres ángulos que aparecen en (b) que muestran los movimientos horizontales de partícula perturbados. Una vez que la onda inicial, con movimiento de partícula linealmente polarizado, atraviesa el primer estrato anisótropo, la polarización pasa a ser elíptica como consecuencia de la partición. Las formas de onda resultantes atraviesan un segundo estrato anisótropo y nuevamente hay partición y perturbación del movimiento de partícula. Las ondas (a) rápida y lenta originales y corregidas y (b) el movimiento de partícula NS-EO corregido se muestran en el extremo derecho. La polarización inicial no se logra recuperar de manera exacta, pero se logra una buena estimación. (c) Curvas de contorno (regiones de confianza) para los parámetros de partición sintéticos medidos: $\phi = 74^{\circ} \pm 6^{\circ}$; $\delta t = 0.50s \pm 0.03s$.

ondas P, $S_{r\acute{a}pida}$ y S_{lenta} (en el caso de simetría hexagonal y propagación a lo largo del eje de simetría, la matríz presenta solo dos autovectores independientes). En un bloque en particular, la dirección de polarización rápida representa la proyección horizontal de la verdadera dirección de polarización de la onda $S_{r\acute{a}pida}$ en ese bloque y las velocidades de fase se calculan por medio de la raíz cuadrada del autovalor correspondiente al autovector que describe la dirección de polarización cada onda (Abt y Fischer, 2008). El tiempo de retardo (Δt) generado por un bloque en particular es $\Delta t = e_i(1/V_{lenta}-1/V_{r\acute{a}pida})\alpha_i$, siendo e_i la longitud del trayecto a través del *i*-ésimo bloque, $V_{r\acute{a}pida}$ y V_{lenta} las velocidades de las ondas de corte rápida y lenta, respectivamente, y α_i el parámetro de fuerza de anisotropía definido en la sección 4.2.3.

Abt y Fischer (2008) compararon los parámetros de partición que obtuvieron implementando el modelo de velocidad/densidad 1-D para el trazado de rayos con los que obtuvieron a partir del método de perturbación del movimiento de partícula y encontraron que los valores eran muy similares, lo que sugiere que, en general, los efectos de flexión de rayos en el cálculo de los parámetros son pequeños. En el presente estudio no se considera el modelo de velocidades para el trazado de rayos sino que se hace la aproximación de trayectorias en línea recta como lo hicieron Abt y Fischer (2008) y Abt et al. (2009).

4.4. Inversión

La inversión de los parámetros de partición de onda de corte ($\phi \ y \ \delta t$) se hizo variando de manera iterativa los ángulos θ , $\psi \ y \ \gamma$, que definen la orientación del cristal en cada bloque, y el parámetro de fuerza, α , con el fin de encontrar el mayor parecido o el menor desajuste entre los datos sintéticos (predichos) y los datos observados en superficie (reales) por medio de una aproximación de mínimos cuadrados linealizada y amortiguada (Tarantola, 1987). Se utilizó la técnica propuesta por Abt y Fischer (2008), en la que los efectos de variación de los parámetros del modelo en el cálculo de los datos predichos se calculan por medio de diferencias finitas.

El modelo predicho,

$$M^{i+1} = M^{i} + C_{mm}G^{T}[GC_{mm}G^{T} + C_{dd}]^{-1}\delta D^{i}$$
(4.2)

(ver expresión 1.101 en Tarantola, 1987), se ajusta con cada iteración (i) para que al perturbar el modelo previo, M^i , se obtenga un modelo con mejor ajuste, M^{i+1} . G es una matriz de derivadas parciales con la forma

$$G = \begin{bmatrix} \frac{\delta\phi_1}{\delta\alpha_1} & \frac{\delta\phi_1}{\delta\theta_1} & \frac{\delta\phi_1}{\delta\psi_1} & \frac{\delta\phi_1}{\delta\gamma_1} & \cdots & \frac{\delta\phi_1}{\delta\alpha_m} & \frac{\delta\phi_1}{\delta\theta_m} & \frac{\delta\phi_1}{\delta\psi_m} & \frac{\delta\phi_1}{\delta\gamma_m} \\ \frac{\delta dt_1}{\delta\alpha_1} & \frac{\delta dt_1}{\delta\theta_1} & \frac{\delta dt_1}{\delta\psi_1} & \frac{\delta dt_1}{\delta\gamma_1} & \cdots & \frac{\delta dt_1}{\delta\alpha_m} & \frac{\delta dt_1}{\delta\theta_m} & \frac{\delta dt_1}{\delta\psi_m} & \frac{\delta dt_1}{\delta\gamma_m} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \frac{\delta\phi_n}{\delta\alpha_1} & \frac{\delta\phi_n}{\delta\theta_1} & \frac{\delta\phi_n}{\delta\psi_1} & \frac{\delta\phi_n}{\delta\gamma_1} & \cdots & \frac{\delta\phi_n}{\delta\alpha_m} & \frac{\delta\phi_n}{\delta\theta_m} & \frac{\delta\phi_n}{\delta\psi_m} & \frac{\delta\phi_n}{\delta\gamma_m} \\ \frac{\delta dt_n}{\delta\alpha_1} & \frac{\delta dt_n}{\delta\theta_1} & \frac{\delta dt_n}{\delta\psi_1} & \frac{\delta dt_n}{\delta\gamma_1} & \cdots & \frac{\delta dt_n}{\delta\alpha_m} & \frac{\delta dt_n}{\delta\theta_m} & \frac{\delta dt_n}{\delta\psi_m} & \frac{\delta dt_n}{\delta\gamma_m} \end{bmatrix},$$
(4.3)

que se asume lineal con respecto al modelo que sufre perturbación (M^i) . En este caso, n es el número de observaciones y m el número de bloques del modelo $(\phi_n \ y \ dt_n \ corresponden$

con los parámetros de partición observados). Si se asume simetría hexagonal o simetría ortorrómbica con el eje c horizontal, las derivadas parciales con respecto al parámetro γ (inmersión del eje c) no son requeridas.

El proceso de partición es un proceso no lineal, por lo que asumir que la matriz G es lineal con respecto a M^i solo puede hacerse si las perturbaciones generadas en las orientaciones de los ejes cristalográficos durante la inversión son pequeñas. Cuando los parámetros θ , ψ y γ varían más de 1° y/o α varía más de 1 % después de una perturbación, las derivadas parciales son recalculadas de modo de reducir el efecto de la no-linealidad entre los parámetros de partición y el modelo con orientaciones cristalográficas (Abt y Fischer, 2008; Abt et al., 2009). También se tienen efectos no-lineales si la onda incidente está linealmente polarizada y su polarización coincide con alguno de los tres ejes cristalográficos, pero esto es poco probable que suceda luego de que la onda salga del primer estrato anisótropo (Abt y Fischer, 2008).

En la expresión 4.2, $\delta D^i = d_{obs} - GM^i$, que corresponde al error entre los datos observados y los sintéticos calculados con el modelo *i*. En la misma expresión, C_{dd} representa una matriz diagonal de covarianza que contiene las sumas de los cuadrados de las incertidumbres estimadas en el modelo directo y las del modelo observado y C_{mm} consiste en una matriz cuya diagonal tiene la función de amortiguar la inversión para mantener los cambios en los parámetros del modelo lo suficientemente pequeños como para que las derivadas parciales lineales (que habitan en G) empleadas en cada iteración sean válidas (Tarantola, 1987; Abt y Fischer, 2008). En otras palabras, con C_{dd} los datos son ponderados por sus errores individuales y con C_{mm} se amortigua la inversión.

4.4.1. Modelo inicial

Se probaron tres modelos iniciales distintos. (1) En primer lugar, se probó un modelo inicial en el que las orientaciones cristalográficas y los valores de fuerza de anisotropía fueron generados aleatoriamente (modelo inicial aleatorio). (2) Luego, se probó un modelo con orientaciones cristalográficas y fuerzas de anisotropía uniformes a través de todo el espacio, con el eje a del olivino orientado N-S y un valor de fuerza anisótropa de 25 % para todos los bloques (modelo inicial uniforme) (Figura 4.5a). (3) Por último, se probó un modelo inicial promediado (Figura 4.5b) en el que el eje a del olivino está contenido en el plano horizontal (es decir, $\psi = 0$ con el eje b en el plano vertical) y el valor de θ se calculó promediando las direcciones de polarización rápida de todos los rayos que atraviesan un bloque en particular. En este caso, el valor de α para un bloque en particular se calculó promediando los tiempos de retardo de todos los rayos que atraviesan dicho bloque considerando la longitud de cada uno de los rayos. El tiempo de retardo total predicho se calculó utilizando los valores de los tiempos de partición por kilómetro para simetrías ortorrómbicas y hexagonales (0.0158 s/km y 0.0197 s/km, respectivamente (Babuska y Cara, 1991; Abt y Fischer, 2008)), multiplicándolos por la longitud del trayecto del rayo y dividiendo el tiempo de partición observado entre este producto (Abt y Fischer, 2008).

La elección del modelo inicial tiene un efecto importante en el tiempo de cómputo y en el ajuste alcanzado por la inversión. Para escoger el modelo inicial óptimo, se comparó el desajuste de los datos (predichos y observados) después de correr una inversión partiendo

Figura 4.5: Modelos iniciales: (a) modelo inicial uniforme en la componente horizontal N-S y (b) modelo inicial promediado. En (a) y (b) se muestra una vista en mapa de los 824 bloques que son atravesados por al menos un rayo. Las observaciones sintéticas del modelado directo, calculadas con los dos modelos iniciales, se muestran en los mapas (c) y (d). Los errores estimados entre los datos reales y los predichos para la iteración 0 se muestran en (c) y (d) en un un recuadro en la esquina superior derecha. Nótese que el modelo inicial promediado presenta un menor desajuste que el modelo uniforme en la componente N-S.

de cada modelo inicial distinto y utilizando exactamente los mismos parámetros (p. ej. simetría cristalina, número de parámetros a invertir, número de iteraciones, entre otros). Después de hacer las tres pruebas, la inversión que permitió alcanzar un mejor ajuste fue la que se hizo partiendo de un modelo inicial promediado (Figura 4.5a), lo cual era de esperarse, ya que el modelo inicial toma en consideración la orientación de los ejes rápidos observados y el valor de los tiempos de retardo. Además, el desajuste inicial entre los datos reales y predichos, luego de calcular los sintéticos con el modelo de partida, es significativamente menor utilizando el modelo inicial promediado (Figura 4.5d) que el que se logra haciendo uso de los otros dos modelos iniciales (p. ej. modelo inicial uniforme en la componenete N-S, que se muestra en la Figura 4.5c). Abt y Fischer (2008) utilizaron datos sintéticos y observaron que, haciendo pruebas de recuperación, con el modelo inicial promediado se lograba recuperar con mayor precisión la estructura del modelo conocido (en el Apéndice B se compara el comportamiento de la inversión con los distintos modelos iniciales).

4.4.2. Parámetros de la inversión

Para evaluar la convergencia hacia el modelo de mejor ajuste en una inversión amortiguada, resulta conveniente incrementar la varianza (o relajar el amortiguamiento) después de un cierto número de iteraciones (Abt y Fischer, 2008). Las inversiones se hicieron considerando un total de 100 iteraciones, con una varianza inicial de 1 % hasta la iteración 40, a partir de la cual se incrementó el valor a 10. Después de la iteración 70, se incluyeron bloques de mayor tamaño con una varianza de 0.1 %, combinando bloques de 25 km^3 de manera de lograr una resolución a mayor escala en las regiones en las que no hay buena cobertura de rayos y en donde los parámetros no logran resolverse de buena manera. La selección de estos parámetros se hizo como se explica a continuación (en el Apéndice C se muestran más detalles acerca del efecto de los distintos parámetros en la convergencia y estabilidad de la inversión).

4.4.2.1. Varianza inicial

Se probaron valores de 1, 5 y 10 % para la varianza inicial del modelo, la cual representa la variabilidad de los datos respecto a su media. Si el mínimo global es alcanzado antes de relajar el amortiguamiento (aumentar la varianza), entonces aumentar la varianza no generará cambios significativos en el modelo. Se encontró que con una varianza inicial de 1 % se logra una inversión con mayor estabilidad y tasa de convergencia. Además, aumentar la varianza a 10, después de cierto número de iteraciones, permite aumentar el número de bloques que se consideran bien resueltos sin afectar de manera significativa la estabilidad de la inversión. Abt y Fischer (2008) hicieron esta misma prueba pero usando datos sintéticos en una zona de subducción ideal y también concluyeron que el mejor valor para la varianza incial es 1 % (ver Figura C1 en el Apéndice C).

4.4.2.2. Relajación del amortiguamiento

Después de cierto número de iteraciones corridas con un una varianza de 1 %, el amortiguamiento es relajado aumentando la varianza a un valor de 10 %. Se probaron valores de 5, 10 y 20 % y, aunque el número de bloques bien resueltos aumenta a medida que se relaja el amortiguamiento, también aumenta el desajuste del modelo. El valor de 10 % para la relajación del amortiguamiento fue considerado el valor óptimo puesto que permitió aumentar el número de bloques bien resueltos sin producir cambios significativos en el ajuste del modelo. El valor de 5 % no generó una buena tasa de convergencia y el valor de 20 % permitió cambios significativos en los parámetros del modelo que impidieron

la convergencia a una solución estable. Abt y Fischer (2008) hicieron pruebas similares y llegaron a la misma conclusión (ver Figura C2 en el Apéndice C).

4.4.2.3. Varianza para grandes volúmenes

Para poder obtener orientaciones cristalográficas en mayores volúmenes de la cuña del manto, específicamente en aquellas regiones donde no hay una buena cobertura de rayos, se emplazaron bloques de mayores dimensiones que los iniciales una vez que se obtuvieron soluciones estables durante el proceso de inversión con los parámetros descritos anteriormente. La incorporación de estos bloques mayores se hizo promediando las orientaciones cristalográficas y la fuerza de anisotropía de los bloques individuales contenidos dentro de cada uno. El efecto de la inclusión de estos grandes bloques es que se logra un aumento en la matriz de resolución en relación a la que presentan cada uno de los bloques individuales contenidos en ese volumen, por lo que la interpretación se puede hacer a una mayor escala (Abt y Fischer, 2008; Abt et al., 2009). Se probaron valores de 10^{-5} , 10^{-3} y 10^{-1} para la varianza asociada a los grandes volúmenes y resultó que con el valor de 10^{-1} se logró una mejor reducción en el desajuste de los datos y del modelo (ver Figura C3 en el Apéndice C). Este valor controla el grado en el que cada bloque individual dentro de un volumen en particular es forzado a mantener los mismos parámetros (Abt et al., 2009). La forma en la que los volúmenes son seleccionados depende del número de rayos que atraviesa cada bloque y de la matriz de resolución (Abt y Fischer, 2008).

4.4.3. Resolución de los parámetros

En inversiones no lineales, como es el caso de este estudio, el significado de la resolución no es tan simple debido a que las derivadas parciales pueden sufrir cambios importantes con cada iteración. Por lo anterior, la matriz de resolución debe interpretarse en relación al modelo de la iteración anterior. Sin embargo, la matriz de resolución sigue teniendo información importante acerca de los parámetros que se definen en el modelo para hacer la inversión (Abt y Fischer, 2008). En este trabajo, la matriz de resolución es utilizada para seleccionar los bloques que se combinan en volúmenes más grandes y para definir las regiones del modelo en la que los parámetros están mejor definidos. En las secciones subsiguientes, solo se muestran los bloques que tienen valores de resolución de los parámetros superiores a 0.25 (siendo 1 el valor que corresponde a una resolución de 100 %) en la matriz que corresponde a la última iteración.

Para calcular la matriz de resolución, R_M , se utiliza la expresión

$$R_M = C_{mm} G^T [G C_{mm} G^T + C_{dd}]^{-1} G$$
(4.4)

(Tarantola, 1987), cuyos elementos de la diagonal reflejan qué tan bien resueltos están los parámetros del modelo. Si el valor de un elemento de la diagonal tiende a cero, la resolución del parámetro correspondiente disminuye.

4.5. Resultados de la inversión tomográfica

El modelo con el que se logró el mejor ajuste entre los datos observados y predichos fue el generado con simetría ortorrómbica, invirtiendo los parámetros α , θ , ψ y γ . El

resultado de la inversión se muestra en la Figura 4.6, en la que se incluyen todos los bloques que son atravesados al menos por un rayo (824). En la Figura 4.6, con el fin de facilitar su interpretación, se muestra la orientación del eje a del olivino proyectada en planos horizontales, es decir, solo se muestra el ángulo θ o la dirección azimutal del eje rápido del olivino.

Como se explicó en la Sección 4.4.3., calcular la resolución de los parámetros del modelo resulta fundamental para interpretar los resultados de la inversión (Tarantola, 1987). Como ejemplo de la resolución final, obtenida después de la iteración 100, en la Figura 4.7 se muestran cuatro paneles distintos (uno para cada parámetro) con los valores del elemento diagonal de R_M calculados a 75 km de profundidad. Se observa que los parámetros θ y α tienen una mayor resolución que los parámetros ψ y γ , siendo mayor la diferencia en la región del Istmo de Tehuantepec donde se encuentran las estaciones correspondientes al perfil VEOX.

Durante el proceso de inversión, el desajuste entre los datos observados y predichos $[(\phi, \delta t)_{observados} - (\phi, \delta t)_{predichos}]$ se calculó para cada iteración (Figura 4.8). El valor del desajuste corresponde a un error promediado a partir de las diferencias entre mediciones observadas y sintéticas y ponderado por los errores individuales de cada tipo de medición (Abt v Fischer, 2008) (para más detalles acerca de la formulación, ver Sección 5.3 en Abt y Fischer, 2008). La progresión de la inversión para cada iteración se muestra en la Figura 4.8, en la que se puede apreciar el porcentaje de bloques con buena resolución y los errores de los parámetros de partición promediados y ponderados. Cuando se relaja el amortiguamiento en la iteración 40, no se generan cambios drásticos en el modelo que pudieran comprometer el proceso de inversión. Cuando se incluyen mayores volúmenes, después de la iteración 70, los parámetros del modelo de bloques individuales son promediados para obtener los parámetros de un bloque de mayores dimensiones, lo que trae como consecuencia un aumento en el error y, por supuesto, en el porcentaje de bloques con buena resolución, ya que un mayor número de rayos pasan a través del bloque de mayor tamaño que contiene a los bloques individuales. Después de emplazar los grandes volúmenes, el error del tiempo de retardo converge al mismo valor (0.06 s), mientras que para la dirección de polarización rápida aumenta de 30° a 32° (en el Apéndice D se muestra el efecto de la inclusión de bloques de mayor tamaño en la resolución de los parámetros). En la Figura 4.8 se aprecia como el porcentaje de bloques con buena resolución aumenta a medida que se relaja el amortiguamiento.

Las mediciones de partición de onda de corte sintéticas, generadas con los parámetros mostrados en el modelo de la Figura 4.6, partiendo del modelo inicial promediado de la Figura 4.5a, se muestran en la Figura 4.9 junto con los datos observados que se pretenden recuperar (en el Apéndice E se muestran los parámetros de partición observados y sintéticos finales separados de acuerdo con el ángulo que forman con la trinchera). El error promedio y ponderado de la dirección de polarización rápida se redujo de 36.8° a 32.4°, mientras que el del tiempo de retardo se redujo de 0.09 s a 0.06 s. Se observa como alrededor del Istmo de Tehuantepec las direcciones de polarización rápida son más perpendiculares a la trinchera que hacia Chiapas, donde predominan mediciones de polarización rápida paralelas a la trinchera. Cerca de la frontera entre Chiapas y Guatemala, en la región cercana a la costa, las direcciones de polarización rápida resultan ser perpendiculares a la trinchera.

b. Ejes rápidos paralelos a la trinchera

c. Ejes rápidos oblicuos y normales a la trinchera

Figura 4.6: Modelo final de orientación cristalográfica para la cuña de manto por debajo del sureste de México, obtenido con la inversión de los parámetros de partición de onda de corte. La inversión se hizo asumiendo simetría ortorrómbica. Los vectores se proyectaron en planos horizontales para facilitar la interpretación de la orientación azimutal del eje a. Se muestra la placa de Cocos y su intersección con los distintos planos. El color representa la relación del azimut del eje principal del olivino con la trinchera. En (a) se muestran los parámetros de partición resultantes para todos los bloques del modelo, en (b) aquellos cuyos ejes rápidos resultaron paralelos a la trinchera ($-30^{\circ} < \phi < 30^{\circ}$, con respecto a la trinchera) y en (c) aquellos cuyos ejes rápidos resultaron oblicuos o perpendiculares a la trinchera.

4.5.1. Pruebas de recuperación

Una vez hecha la inversión con los datos observados (reales), no solo es importante el cálculo de la resolución de los parámetros y del ajuste entre observados y predichos, sino que también es fundamental evaluar la unicidad del modelo con el fin de definir aún mejor las porciones que están bien acotadas. Para ello, se tomaron los datos sintéticos calculados con el modelo final (Figura 4.9) como los datos conocidos y se procedió a invertirlos utilizando los mismos parámetros con los que se hizo la inversión con datos reales.

La prueba de recuperación se hizo considerando un modelo inicial promediado. De acuerdo con Abt y Fischer (2008), las pruebas de recuperación son mejores cuando se parte de un modelo inicial promediado, ya que este es más parecido al modelo de entrada

Figura 4.7: Resolución de los parámetros del modelo, calculada con la Ecuación 4.4 con los resultados de la última iteración. Cada panel representa un corte a una profundidad de 75 km. Los triángulos negros representan las estaciones analizadas y se muestran como referencia. Como se observa en la figura, el panel correspondiente al azimut del eje a (a) y el correspondiente al parámetro de fuerza de anisotropía (d) muestran mayor resolución que los correspondientes a la inmersión del eje a (b) y del eje c (c).

que se pretende recuperar. El resultado de la prueba de recuperación de los parámetros, partiendo de los resultados de la inversión con datos reales (Figura 4.10a, mismo modelo mostrado en la Figura 4.6), se muestra en la Figura 4.10b. La prueba de recuperación permite calcular las diferencias (error) de los parámetros invertidos y recuperados para cada bloque individual del modelo. En la Figura 4.10c se muestran estas diferencias para la orientación del eje a del olivino (promediando el azimut y la inmersión) y en la Figura 4.10d se muestran las diferencias calculadas para el parámetro de fuerza de anisotropía.

Figura 4.8: Progresión del desajuste de los datos durante la inversión. Arriba se muestra el porcentaje de bloques con buena resolución (≥ 0.25) con respecto al total de bloques atravesados. En el medio y abajo se muestran los errores promediados y ponderados de los parámetros de partición δt y ϕ , respectivamente. La estabilidad del modelo no se ve comprometida al relajar el amortiguamiento en la iteración 40. En la iteración 70, a partir de la cual se incluyen mayores volúmenes, se produce un aumento en el desajuste de los parámetros como resultado de promediar los parámetros de varios bloques. El porcentaje de bloques con buena resolución aumenta al relajar el amortiguamiento y aumenta aún más cuando se emplazan mayores volúmenes porque mayor cantidad de rayos atraviesan a un bloque de mayor tamaño.

El modelo resultante de la prueba de recuperación (Figura 4.10b) presenta mayor similitud con el modelo resultante de la inversión (Figura 4.10a) en los primeros 112.5 km de profundidad y lejos de los extremos. Como se puede observar en la Figura 4.10c, la orientación del eje *a* logra recuperarse bien en las regiones verdes y amarillas (error ≤ 35), que corresponden principalmente a la parte superior y central del espacio. Hacia el noroeste en las primeras capas (profundidades menores que 100 km) y hacia el sureste a profundidades mayores que 100 km, el error de la orientación del eje principal supera los 35° (colores anaranjado y rojo) por lo que en estas zonas los parámetros θ y ψ no logran recuperarse de buena manera, lo cual compromete su interpretación. El error angular es mayor en zonas en donde la cobertura de rayos es más escasa (p. ej., a grandes profundidades y en los extremos del espacio). Los errores calculados para el parámetro de fuerza de anisotropía (Figura 4.10d) corresponden con diferencias no superiores a 9 %, por lo que este parámetro se logra recuperar de buena manera en todo el espacio del modelo.

Los resultados de la prueba de recuperación permitieron delimitar el área interpretable de los parámetros invertidos con los datos reales. Como el parámetro de fuerza anisótropa se recuperó de buena manera en todo el espacio, las restricciones de los bloques se hizo solo considerando las diferencias angulares del eje cristalográfico principal. Eliminando aquellos bloques que muestran una diferencia superior a 35° en la prueba de recuperación, se obtiene el modelo que se muestra en la Figura 4.11a. En la Figura 4.11b se puede apreciar que los ejes principales son predominantemente paralelos a la trinchera en el centro de la cuña del manto por debajo de la región de Chiapas y en el extremo de la cuña

Figura 4.9: Parámetros de partición predichos por el modelo final de la inversión. (a) Se muestran los parámetros de partición observados a modo de comparación (los mismos que en la Figura 4.1, que son las observaciones que se invierten y se pretenden recuperar con los parámetros del modelo). (b) Parámetros de partición calculados con el modelo final de orientaciones cristalográficas. El ajuste alcanzado es de 32.4° para ϕ y de 0.06 s para δt .

Figura 4.10: Prueba de recuperación: se utilizó un modelo inicial promediado para invertir el modelo resultante de la inversión obtenido con datos reales: (a) Mismo modelo que se muestra en la Figura 4.6, que es el modelo que se quiere recuperar invirtiendo los datos sintéticos finales (Figura 4.9b) calculados con él. (b) Resultado de la prueba de recuperación. En (a) y en (b) la orientación de los vectores está controlada por el azimut del eje a del olivino y la longitud por la fuerza de anisotropía. Los vectores se proyectan en planos horizontales para facilitar su interpretación. (c) Error angular del eje a (incluyendo azimuth e inmersión) entre el modelo recuperado y el modelo invertido. Las regiones de color verde y amarillo corresponden a diferencias menores de $\sim 35^\circ$, por lo que los parámetros logran recuperarse de buena manera. (d) Error del parámetro de fuerza recuperada. En general, los valores se desvían menos de 9 %, por lo que este parámetro se logra recuperar de mejor manera.

del manto a lo largo, mientras que en la Figura 4.11c se puede apreciar que orientaciones del eje a perpendiculares a la trinchera predominan al noroeste e la región y orientaciones oblicuas a la trinchera predominan por debajo del antearco cerca de la frontera entre México y Guatemala.

Como el parámetro θ (azimut del eje a) presenta mejor resolución que los parámetros ψ y γ y, además, estos últimos presentan promedios de 4.1° y 2.6°, respectivamente, que son muy cercanos a cero, las interpretaciones se hacen con base en la orientación azimutal del eje a, caracterizando su relación con respecto a la trinchera. Como se explicó anteriormente, las porciones que se interpretan con mayor nivel de confianza son aquellas conformadas por bloques con valores de los elementos de la diagonal de la matriz de resolución mayores que 0.25 y con desajustes del eje a entre el modelo inicial promediado, calculado a partir de la inversión de los datos reales, y el modelo resultante de la prueba de recuperación menores o iguales que 35° (Figura 4.11). En este caso, solo se considera la contribución de la cuña de manto a la anisotropía y no las contribuciones de la placa subducida ni de la corteza continental.

En la Figura 4.12 se presenta una vista 3D del modelo final, incluyendo solo 534 bloques con buena resolución, que son aquellos que presentan elementos de la diagonal de la matriz de resolución mayores o iguales que 0.25. En la Figura 4.13 se muestra el modelo final separado en dos grupos: bloques con direcciones de polarización rápida paralelas a la trinchera (Figura 4.13a) y bloques con direcciones de polarización rápida oblicuas y normales a la trinchera (Figura 4.13b). En la siguiente sección se hará la interpretación con base en este modelo teniendo en cuenta los resultados de la prueba de recuperación. En la Figura 4.12, a diferencia de las anteriores, los ejes a no están proyectados en planos horizontales. Sin embargo, se aprecia como de igual forma son predominantemente horizontales, ya que la inmersión de este eje y la del eje c resultaron con valores cercanos a cero para la mayoría de los bloques al finalizar la inversión. Los vectores más gruesos corresponden a parámetros con una resolución mayor a 0.90, mientras que los más delgados presentan una resolución entre 0.25 y 0.90 (los bloques considerados bien resueltos constituyen el 65 % del número total de bloques atravesados por rayos en el espacio modelo).

4.6. Discusión

Los vectores obtenidos en la inversión tomográfica, que describen la orientación cristalográfica para cada bloque individual, pueden ser interpretados con base en su relación con la trinchera. En este caso, el parámetro de fuerza de anisotropía es menor para las dos capas superiores de bloques que para el resto de las capas, por lo que se infiere que la partición de la onda de corte está dominada por la anisotropía de la cuña del manto y no de la corteza continental. Además, los trayectos a través de la placa subducida son cortos en comparación con las longitudes de viaje a través de la cuña, por lo que también se infiere que la placa en subducción no genera una contribución importante en la partición.

La interpretación del modelo obtenido en la inversión se hace con base en la orientación azimutal del eje principal (a), ya que, como se muestra en las figuras 4.12 y 4.13, la mayoría de los vectores que muestran inmersión, tanto del eje rápido como del eje lento, tienen una resolución menor que 0.90 (vectores delgados), contrario a lo que sucede con los vectores

a. Resultado de la inversión Error angular del eje a ≤ 35°. Bloques mostrados: 602.

b. Ejes rápidos paralelos a la trinchera.

c. Ejes rápidos oblicuos y normales a la trinchera.

Figura 4.11: Modelo final mostrado en la Figura 4.6 que incluye solo los bloques que presentan un desajuste angular del eje a menor que 35° después de hacer la prueba de recuperación. Estos vectores son los que se pueden interpretar con mayor nivel de confianza. En (a) se muestran los 602 bloques bien recuperados, en (b) los que presentan ejes rápidos paralelos a la trinchera y en (c) los que presentan ejes rápidos oblicuos y normales a la trinchera.

Modelo final

Figura 4.12: Vista 3D del modelo final desde el norte. La orientación de los vectores está controlada por el azimut y por la inmersión del eje a (en este caso no se proyecta en planos horizontales). Se muestra la TRe, a través de la cual los vectores pasan a ser de perpendiculares a paralelos a la trinchera al ir de noroeste a sureste. Solo se muestran 534 bloques, que corresponden a aquellos cuyos parámeteros tienen buena resolución. Los vectores más gruesos tienen una resolución superior a 0.90, mientras que los más delgados tienen una resolución entre 0.25 y 0.90.

que son horizontales o cercanos a serlo. El hecho de que el parámetro θ presente mejor resolución que los otros parámetros angulares puede deberse a la naturaleza del método utilizado para medir los datos observados (método de covarianza de Silver y Chan, 1991), ya que este solo permite medir la componente horizontal de la anisotropía sísmica. Con base en la matriz de resolución, las orientaciones obtenidas pueden ser divididas en cuatro grupos: (1) orientaciones aproximadamente perpendiculares a la trinchera al noroeste de la TRe, (2) orientaciones paralelas a la trinchera al sureste de la TRe, más allá de los 100 km de isoprofundidad de la placa de Cocos, (3) orientaciones paralelas a la trinchera en el extremo de la cuña de manto al noroeste y al sureste de la TRe y, por último, (4) orientaciones aproximadamente perpendiculares a la trinchera cerca de la frontera entre México y Guatemala y cerca de la costa del Pacífico.

4.6.1. Ejes principales normales a la trinchera al noroeste de la TRe

Al noroeste de la TRe, más allá de los 100 km de isoprofundidad de la placa de Cocos, el eje cristalográfico principal se orienta aproximadamente perpendicular a la trinchera (figuras 4.12 y 4.13b), lo cual es consistente con un flujo de esquina 2D en una cuña

Figura 4.13: Modelo de la Figura 4.12 con las mediciones separadas de acuerdo con la relación entre la dirección de polarización rápida y la trinchera. a) Ejes rápidos paralelos a la trinchera. b) Ejes rápidos perpendiculares y oblicuos a la trichera. Los símbolos son los mismos que se muestran en la figura anterior y son iguales entre (a) y (b). Los valores de ϕ paralelos a la trinchera predominan en el extremo de la cuña del manto alrededor de la TRe y en el centro de la cuña de manto por debajo de la región de Chiapas, mientras que los valores oblicuos y perpendiculares a la trinchera predominan en el centro de la cuña del manto al noroeste de la TRe y en por debajo el antearco en la región fronteriza entre México y Guatemala.

de manto compuesta por fábricas de olivino de tipo A, C o E. Como se mencionó en el Capítulo 3, debido a condiciones de altas temperaturas, esfuerzos pequeños y bajo contenido de agua, se espera que la fábrica desarollada sea la de tipo A (Zhang y Karato, 1995; Jung y Karato, 2001; Jung et al., 2006; León Soto y Valenzuela, 2013). En esta región, la placa subducida se encuentra completamente deshidratada a una profundidad de 200 km (Manea y Manea, 2006), por lo tanto se infiere la presencia de fábricas de olivino de tipo A. León Soto y Valenzuela (2013) hicieron mediciones de partición de onda de corte con sismos locales con estaciones del perfil VEOX, desplegado en línea recta a lo largo del Istmo de Tehuantepec, y observaron que, más allá de los cota de 100 km de isoprofundidad de la placa de Cocos, los ejes rápidos se volvían perpendiculares a la trinchera.

4.6.2. Ejes principales paralelos a la trinchera por debajo del interior de Chiapas

Por debajo de Chiapas, más allá de los 100 km de isoprofundidad de la placa de Cocos, el eje principal se orienta paralelo a la trinchera, por lo que se interpreta un flujo paralelo a la trinchera en dicha región. Dicho flujo paralelo puede estar controlado por el retroceso de la placa subducida (Gripp y Gordon, 2002) o por componentes del movimiento de placa a lo largo del rumbo (Abt et al., 2009). En este caso, se infiere la presencia de fábricas de olivino de tipo A, C o E, ya que se interpreta que el eje principal se orienta paralelo al flujo del manto. La existencia de cualquiera de estas tres fábricas dependerá del contenido de agua presente en la cuña del manto.

El cambio de ejes perpendiculares a ejes paralelos, al ir de noroeste a sureste, ocurre alrededor de la TRe (figuras 4.12 y 4.13). Esto es consistente con el modelo de patrones de flujo en la cuña de manto por debajo de las placas del Caribe y Norteamérica propuesto por Manea y Manea (2006) y Manea et al. (2013). Esta transición en el flujo del manto podría ocurrir debido a un desgarre de la placa de Cocos a lo largo de la TRe, impulsado por el retroceso de la placa hacia el sur (Gripp y Gordon, 2002), a partir de los 150 km de profundidad aproximadamente. Calò (2021) observó este posible desgarre y argumenta que comienza a lo largo de la TRe a profundidades mayores que 120-130 km. A partir de modelos numéricos, Nava Lara y Manea (2022) concluyeron que la serpentinización a lo largo de la TRe favorece el desarrollo del desgarre vertical en la placa subducida. Para poder inferir la presencia de este desagarre con la técnica SWST, es necesario el desarrollo de una ventana lo suficientemente amplia como para que exista flujo de material de manto a través de él y los minerales puedan orientarse de acuerdo con el flujo toroidal que conduce material del manto por debajo de placa hacia la cuña alrededor del segmento de placa más profundo. Al observar las orientaciones azimutales de los ejes a al sureste de la TRe y más allá de los 100 km de profundidad (figuras 4.12 y 4.13 a), se aprecia que son consistentes con un posible flujo toroidal a través de la ventana vertical, ya que resultan paralelos a la trinchera para el resto de las profundidades examinadas durante el proceso de inversión. El retroceso del segmento sureste de la placa de Cocos podría deberse a su antigüedad y, por lo tanto, a que es más frío y denso que el segmento que se encuentra al noroeste de la TRe (Manea y Manea, 2006). La transición en el patrón de flujo podría ocurrir sin la necesidad de que exista un desgarre en la placa subducida, sin embargo, en ese caso deberían observarse ejes cristalográficos que se van haciendo cada vez más paralelos a la trinchera de noroeste a sureste a través de la TRe. Los resultados de este estudio muestran un cambio muy marcado de ejes normales a ejes paralelos a través de la TRe, por lo que son más consistentes con la existencia de un desgarre que con un cambio transicional en el patrón de flujo en la cuña debido al retroceso hacia el sur del segmento sureste de la placa de Cocos.

4.6.3. Ejes principales paralelos a la trinchera en el extremo de la cuña de manto alrededor de la TRe

En el extremo de la cuña del manto, al sureste y al noroeste de la TRe (antes de los 100 km de isoprofundidad de la placa de Cocos), los ejes cristalográficos principales están orientados paralelos a la trinchera (figuras 4.12 y 4.13a). El hecho de observar ejes a paralelos al trinchera tanto en la región en la que se propone un patrón de flujo normal, como en la región en la que se propone un patrón de flujo paralelo a la trinchera, conlleva a pensar que posiblemente exista una composición mineralógica distinta en el extremo de la cuña que la que se infiere en el centro de ella. Manea y Manea (2006) señalan que la cuña del manto está parcialmente serpentinizada alrededor de la TRe a aproximadamente 125 km de la trinchera. Cuando ocurre enfriamiento e hidratación del manto, pueden desarrollarse minerales de serpentina como consecuencia de la reacción entre los fluidos contenidos en el canal de subducción y las rocas ultramáficas presentes en la cuña del manto (Hyndman y Peacock, 2003). Katayama et al. (2009), Jung (2011) y Brownlee et al. (2013) explican que, cuando se tienen placas que subducen con ángulos entre 30° y 45°, que es el caso de la placa de Cocos en la región, los ejes rápidos [100] de la serpentina se orientan subparalelos a la dirección de flujo. En caso de que exista flujo de esquina 2D (como el que se propone para el noroeste de la TRe), los minerales de serpentina sufren una especie de plegamiento en el extremo de la cuña del manto, volviéndose el plano (001) aproximadamente vertical cerca de la trinchera, por lo que por encima de dicha región la dirección de polarización rápida será paralela a la trinchera. En caso de que predomine el flujo paralelo a la trinchera en la cuña del manto (como el que se propone para el sureste de la TRe), la presencia de minerales de serpentina produciría una fuerte anisotropía paralela a la trinchera para placas que subducen con ángulos cercanos a los 45° (que es el caso de la subducción por debajo de Chiapas, de acuerdo con Rebollar et al., 1999; Bravo et al., 2004; Rodríguez-Pérez, 2007) debido a que el plano basal de la serpentina se alinería subparalelo a la dirección del flujo quedando el eje [100] (eje rápido) orientado subparalelo a la dirección de cizallamiento (Katayama et al., 2009). Por lo anterior, se propone que el extremo de la cuña de manto alrededor de la TRe, hasta aproximadamente 100 km de profundidad, está constituido por minerales de serpentina (p.ej., antigorita). En la Figura 4.12 se puede observar como hacia el noroeste de la TRe el porcentaje de fuerza anisótropa es significativamente menor que hacia el sureste, lo que podría deberse al hecho de que el eje [100] se vuelve paralelo a la trinchera cuando el flujo es predominantemente paralelo a ella, resultando en una anisotropía más fuerte, y a que cuando el flujo es perpendicular a la trinchera, el eje [100] se vuelve vertical, por lo que la anisotropía horizontal es controlada por ele eje [010] que se vuelve paralelo a la trinchera (Katayama et al., 2009).

4.6.4. Ejes principales perpendiculares a la trinchera cerca de la frontera entre México y Guatemala

Las orientaciones de los ejes principales perpendiculares a la trinchera obtenidas en la región fronteriza entre México y Guatemala (figuras 4.12 y 4.13b) se interpretan como consecuencia de un flujo paralelo a la trinchera a través de un extremo de la cuña del manto compuesto por fábricas de olivino de tipo B. No se interpreta un cambio en el patrón de flujo, sino un cambio de fábrica de olivino, ya que las fábricas tipo B se caracterizan por alinear el eje *a*, que es el de polarización rápida, perpendicular a la dirección del flujo de manto.

Abt et al. (2009), con mediciones de anisotropía realizadas en Costa Rica y Nicaragua, observaron direcciones de polarización rápida normales a la trinchera por debajo de la región de antearco del CAVA. Ellos infirieron un flujo paralelo a la trinchera para toda la cuña, por lo que dichas direcciones rápidas normales a la trinchera las interpretaron como un posible cambio de fábrica de olivino (en la Figura F1 se muestra una comparación de los resultados de este trabajo con los de Abt et al., 2009). De acuerdo con Kneller et al. (2005), el frente volcánico corresponde con la región en la que se produce el cambio de fábricas de tipo B a condiciones más favorables para el desarrollo de fábricas de tipo A, C o E, por lo que es posible que se desarrolle la fábrica de tipo B en el extremo de la cuña del manto por debajo de la región fronteriza entre México y Guatemala.

Como se observa en las figuras 4.12 y 4.13b, los ejes principales en esta región no son horizontales, sino que presentan un buzamiento hacia el norte. Esto podría deberse a que posiblemente las fábricas de olivino de tipo B estén siendo afectadas por el enfriamiento continuo de la cuña del manto de noroeste a sureste, por debajo del AVCA, el cual podría crear condiciones más favorables para el desarrollo de minerales de serpentina (Manea y Manea, 2006). También podría suceder que exista algún efecto del movimiento de la placa del Caribe, aunque el límite de placas en esta región no está bien definido.

El dibujo que se muestra en la Figura 4.14 presenta las interpretaciones principales realizadas a partir de la inversión tomográfica de los datos de partición de onda de corte. Se observan los distintos patrones de flujo propuestos y las distintas composiciones mineralógicas inferidas para la región. Se interpreta que la TRe rompe la placa de Cocos generando una ventana a aproximadamente 150 km de profundidad.

4.7. Conclusiones

La inversión tomográfica, a partir de mediciones locales (con sismos intraplaca) de partición de onda de corte, mostró que la estructura anisótropa de la cuña de manto por debajo del sureste de México es consistente con dos regímenes principales de flujo: uno perpendicular a la trinchera o de esquina al noroeste de la cordillera de Tehuantepec subducida y otro paralelo a la trinchera al sureste de este rasgo geológico. Al noroeste se infiere que el centro de la cuña de manto está compuesto por fábricas de olivino de tipo A debido a que la placa subducida está totalmente deshidratada y, al sureste, se infiere que el centro de la cuña de manto está compuesto por fábricas de olivino de tipo A, C o E, debido a que los ejes rápidos son consistentes con la dirección de flujo inferida y a que las condiciones de temperatura, contenido de agua y estado de esfuerzos, estudiadas por

Figura 4.14: Esquema que resume las interpretaciones realizadas en este estudio. Al noroeste de la TRe se interpreta un flujo de esquina (flecha verde) en el centro de la cuña del manto compuesta por fábricas de olivino de tipo A (área sombreada en azul). Al sureste de la TRe se interpreta un flujo paralelo a la trinchera (flecha azul) en el centro de la cuña del manto compuesta por fábricas de olivino de tipo A, C o E. La placa de Cocos empieza a rasgarse siguiendo a la TRe antes de los 150 km de profundidad, produciéndose una ventana a través de la cual se infiere un flujo toroidal alrededor del segmento de placa más profundo (flecha roja). Se muestra el extremo de la cuña de manto parcialmente serpentinizado (área sombreada en rosado) como consecuencia de procesos de enfriamiento e hidratación. En la región froteriza entre México y Guatemala se interpreta la presencia de fábricas de olivino de tipo B (área sombreada en rojo) para el extremo de la cuña de manto, bajo un régimen de flujo paralelo a la trinchera.

otros autores, son favorables para el desarrollo de estos tipos de fábricas.

Ejes a del olivino con buena resolución revelaron la existencia de una posible ruptura de la placa de Cocos coincidente con la cordillera subducida de Tehuantepec a partir de ~ 150 km de profundidad, ya que mostraron un cambio drástico en su orientación azimutal de normales a paralelos a la trinchera, al ir de noroeste a sureste a través de este rasgo geológico. Este cambio podría deberse a que un flujo toroidal esté conduciendo material del manto por debajo de la placa subducida hacia la cuña alrededor del segmento de placa más profundo, orientando los ejes principales del olivino de forma paralela a la trinchera.

En el extremo de la cuña de manto, alrededor de la cordillera subducida de Tehuantepec, se interpreta una región parcialmente serpentinizada. Esta interpretación se hace debido a que los ejes principales resultaron paralelos a la trinchera tanto al noroeste como al sureste la cordillera, sin importar el patrón de flujo interpretado, y a que las condiciones de temperatura y contenido de agua reportadas por otros estudios son favorables para el desarrollo de minerales de serpentina. En caso de que ocurra serpentinización en en el extremo de la cuña de manto en zonas donde las placas subducen con ángulos entre 30° y 45° , la polarización rápida será paralela a la trinchera, ya sea que predomine un flujo de esquina 2D o un flujo 3D paralelo a la trinchera, por lo que inferir la existencia de serpentina en la región resulta plausible. En el extremo de la cuña de manto,

por debajo de la región fronteriza entre México y Guatemala, se infiere la existencia de fábricas de olivino de tipo B. Estas fábricas alinean al eje a normal a la dirección de flujo que, en este caso, se interpreta paralelo a la trinchera.

Más allá de las cuatro regiones interpretadas anteriormente, los efectos de borde y la poca cobertura de rayos no permiten hacer una interpretación confiable de los parámetros, por lo que si se desea ampliar el área de estudio se requiere incluir un mayor número de estaciones y, por lo tanto, un mayor número de sismos, sin dejar a un lado el efecto de curvatura de la Tierra, de ser neceario.

CONCLUSIÓN

Las mediciones de partición de onda de corte a partir de telesismos y de sismos locales intraplaca permitieron estudiar la anisotropía sísmica del manto superior y de la corteza continental en el sureste de México.

Como las direcciones de polarización rápida medidas con telesismos son, en general, perpendiculares a la trinchera, se interpretó la existencia de un flujo de manto arrastrado por debajo de la placa subducida, el cual es consistente con la presencia de fábricas de olivino de tipo A. En el extremo oriental de la Faja Volcánica Transmexicana, las mediciones son consistentes con un flujo de manto alrededor del borde de la placa de Cocos o con el movimiento absoluto de la placa de Norteamérica, en presencia de fábricas de tipo A, y con un flujo de esquina perpendicular a la trinchera en una cuña de manto constituida por fábricas de olivino de tipo A o C. La mediciones realizadas al sur de la Faja Volcánica Transmexicana no son consistentes con la ruptura propuesta por Dougherty y Clayton (2014). Sin embargo, en caso de que exista la ruptura, esta podría no estar lo suficientemente desarrollada como para haber formado una ventana vertical a través de la cual pudiera fluir material del manto. Con las mediciones telesísmicas también se interpretó un flujo de manto en la cuña no coherente con el flujo de manto por debajo de la placa por debajo de Chiapas, ya que los parámetros medidos presentan mucha variabilidad y magnitudes pequeñas en comparación con el resto de los parámetros medidos. Esto sugiere que las direcciones de polarización rápida en la cuña de manto por debajo de Chiapas no son consistentes con aquellas que describen al manto por debajo de la placa subducida. Esto posiblemente se deba a la existencia de minerales de serpentina en el extremo de la cuña del manto y a un flujo paralelo al rumbo de la placa en toda la cuña del manto al sureste de la TRe que no es coherente con el flujo por debajo de la placa subducida.

A partir de las mediciones con sismos locales intraplaca, se interpretaron tres regiones diferentes: (1) por encima de la subducción horizontal, (2) al noroeste y (3) al sureste de la cordillera subducida de Tehuantepec. La inversión tomográfica de partición de onda de corte, asumiendo una simetría ortorrómbica, invirtiendo la orientación azimutal y la inmersión del eje a, la inmersión del eje c y la fuerza de anisotropía con una aproximación de mínimos cuadrados amortiguada y linealizada, permitió mejorar la resolución vertical de las mediciones realizadas con sismos locales intraplaca y, como consecuencia, se afinaron los detalles de la interpretación de las últimas dos regiones.

(1) Por encima de la subducción horizontal de la placa de Cocos, la anisotropía

sísmica está controlada por efectos corticales. Se propone que una serie de pliegues y cabalgamientos del Terciario altamente foliados controlan la anisotropía sísmica en el terreno Guerrero, el sistema de fallas de Caltepec y las alineaciones de esquistos micáceos en foliaciones controlan la anisotropía en el terreno Mixteco, el sistema de fallas de Oaxaca controla la anisotropía entre los terrenos Zapoteco y Cuicateco y, en el terreno Maya, la anisotropía está controlada por el sistema de fallas de Vista Hermosa con algunas evidencias de posibles efectos de una cuña de manto parcialmente serpentinizada.

(2) Al noroeste de la cordillera subducida de Tehuantepec se propone un flujo de esquina en una cuña de manto constituida por fábricas de olivino de tipo A, más allá de los 100 km de isoprofundidad de la placa de Cocos, y la presencia de minerales de serpentina en el extremo de la cuña de manto antes de que la placa alcance los 100 km de profundidad. Hacia el sureste de esta región, a partir de los 150 km de profundidad de la placa de Cocos, se observa un cambio de ejes rápidos, pasando de ser perpendiculares a paralelos a la trinchera a través de la cordillera subducida de Tehuantepec. Esto es consistente con un cambio de un flujo de esquina 2D a un flujo 3D paralelo a la trinchera, que es el que se propone para el (3) sureste de la cordillera subducida de Tehuantepec. En el centro de la cuña del manto, el cambio en el patrón de flujo puede ser ocasionado por una posible ruptura de la placa de Cocos a lo largo de cordillera. En caso de existir, esta permitiría el flujo toroidal de material desde abajo de la placa subducida hacia la cuña de manto, por lo que las direcciones de polarización rápida resultarían paralelas a la trinchera en presencia de las fábricas de olivino de tipo A, C o E, que son las más factibles para la región. Calò (2021) propone la existencia de un desgarre de la placa subducida, que coincide con la TRe, a una profundidad entre 120 y 130 km, lo cual es consistente con lo observado en este estudio. Adicionalmente, a partir de modelos numéricos, Nava Lara y Manea (2022) encontraron que la serpentinización de la TRe favorece la formación de un desgarre vertical de la placa subducida a lo largo de la TRe. Sumado a la ruptura o en caso de que no existiese, este flujo paralelo a la trinchera por debajo del interior de Chiapas podría ser impulsado por el retroceso de la placa hacia el sur y por componentes del movimiento de placa paralelos al rumbo de la placa subducida. Sin embargo, en caso de tener un flujo transicional y no una ruptura, el cambio en el patrón debería se continuo y no abrupto como el observado.

En el extremo de la cuña de manto alrededor de la cordillera subducida de Tehuantepec, los ejes rápidos medidos son paralelos a la trinchera al noroeste y al sureste de este rasgo geológico, lo cual es consistente con la presencia de minerales de serpentina (Manea y Manea, 2006). Al noroeste de la cordillera, bajo un regimen de flujo de esquina, los planos (001) de la antigorita se vuelven casi verticales con el eje [010] paralelo a la trinchera, lo que genera una anisotropía débil paralela a la trinchera como la observada para la región. Al sureste de la cordillera, en donde se propone un flujo paralelo a la trinchera, los planos basales de la antigorita se alinean subparalelos a la dirección del flujo, generando una fuerte anisotropía paralela a la trinchera. Además, las condiciones de temperatura y contenido de agua para el extremo de la cuña de manto son favorables para que ocurra la serpentinización, fenómeno cuya existencia se ha propuesto para la región en trabajos anteriores.

En la región fronteriza entre México y Guatemala, los ejes a del olivino se vuelven perpendiculares a la trinchera. Sin embargo, en este caso, se interpreta el desarrollo de fábricas de tipo B y no un cambio en el patrón de flujo. Se propone que el patrón de flujo paralelo a la trinchera es continuo hasta Nicaragua y Costa Rica, por lo que por debajo de la región de antearco del Arco Volcánico Centroamericano el flujo inferido es paralelo a la trinchera. En caso de que se desarrollen fábricas de olivino de tipo B, los ejes principales (ejes rápidos) se alinean perpendiculares a la dirección del flujo. En el extremo de la cuña de manto por debajo de la región fronteriza entre México y Guatemala, se interpreta la existencia de fábricas de olivino de tipo B bajo un régimen de flujo paralelo a la trinchera, por lo que los ejes rápidos resultan perpendiculares al rumbo de la placa subducida. En el extremo de la cuña de manto las condiciones de temperatura, contenido de agua y presión son ideales para el desarrollo de fábricas de olivino como la de tipo B.

Se recomienda instalar un mayor número de estaciones en la región de estudio para lograr un mayor número de mediciones y evaluar con mayor nivel de detalle los distintos aspectos interpretados con relación al comportamiento del flujo del manto. Por último, se recomienda hacer una comparación del modelo tomográfico obtenido con resultados magnetotelúricos para conocer con mayor nivel de detalle la estructura del manto superior y delimitar, por ejemplo, zonas de posible fusión parcial.

Bibliografía

- Abramson, E. H., Brown, J. M., Slutsky, L. J., y Zaug, J. (1997). The elastic constants of san carlos olivine to 17 gpa. Journal of Geophysical Research: Solid Earth, 102(B6):12253-12263.
- Abt, D., Fischer, K., Martin, L., Abers, G., Protti, M., Gonzalez, V., y Strauch, W. (2006). Shear-wave splitting tomography in the central american subduction zone: Implications for flow and melt in the mantle wedge. AGU Fall Meeting Abstracts, -1:05.
- Abt, D. L. y Fischer, K. M. (2008). Resolving three-dimensional anisotropic structure with shear wave splitting tomography. *Geophysical Journal International*, 173:859–886.
- Abt, D. L., Fischer, K. M., Abers, G. A., Protti, M., González, V., y Strauch, W. (2010). Constraints on upper mantle anisotropy surrounding the Cocos slab from SK(K)S splitting. J. Geophys. Res. Solid Earth, 115:1–16.
- Abt, D. L., Fischer, K. M., Abers, G. A., Strauch, W., Protti, J. M., y González, V. (2009). Shear wave anisotropy beneath Nicaragua and Costa Rica: Implications for flow in the mantle wedge. *Geochemistry, Geophysics, Geosystems*, 10(5).
- Alaniz-Alvarez, S. A., Nieto-Samaniego, A. F., y Ortega-Gutiérrez, F. (1994). Structural evolution of the Sierra de Juárez Mylonitic Complex, State of Oaxaca, Mexico. Revista Mexicana de Ciencias Geológicas, 11(March 2014):147–156.
- Alsina, D. y Sneider, R. K. (1995). Small scale sublithospheric continental deformation: constraints from SKS splitting observations. *Geophys. J. Int.*, 123:431–448.
- Anderson, O. L. y Isaak, D. G. (1995). Elastic Constants of Mantle Minerals at High Temperature, pages 64–97. American Geophysical Union (AGU).
- Babuska, V. y Cara, M. (1991). Seismic anisotropy in the Earth. Springer Science and Business Media, Netherlands.
- Backus, G. E. (1965). Possible forms of seismic anisotropy of the uppermost mantle under oceans. J. Geophys. Res., 70:3429–3439.
- Bandy, W. L. (1992). Geological and geophysical investigation of the Rivera-Cocos plate boundary; implications for plate fragmentation. ??, (June):255.
- Bandy, W. L., Hilde, T. W. C., y Yan, C.-Y. (2000). The Rivera-Cocos plate boundary: Implications for Rivera-Cocos relative motion and plate fragmentation. *Geological Society of America*, 334.
- Barruol, G. y Hoffmann, R. (1999). Upper mantle anisotropy beneath the Geoscope stations. Journal of Geophysical Research: Solid Earth, 104(B5):10757-10773.
- Bengtson, A. K. y van Keken, P. E. (2012). Three-dimensional thermal structure of subduction zones: Effects on oblquity and curvature. *Solid Earth Discuss*, 4:919–941.
- Bernal-López, L. A., Garibaldi, B. R., León Soto, G., Valenzuela, R. W., y Escudero, C. R. (2016). Seismic Anisotropy and Mantle Flow Driven by the Cocos Slab Under Southern Mexico. *Pure and Applied Geophysics*, 173(10-11):3373–3393.
- Bezacier, L., Reynard, B., Bass, J. D., Sanchez-valle, C., y Moortèle, B. V. D. (2010). Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones. *Earth and Planetary Science Letters*, 289(1-2):198-208.
- Bhilisse, M., Admou, H., Aydda, A., y Maacha, L. (2019). Mineralogical and seismic properties of serpentinite of Ait Ahmane fault zone of Bou Azzer ophiolite, central Anti-Atlas of Morocco. Comptes Rendus - Geoscience, 351(4):303–311.
- Bostock, M. G. y Christensen, N. I. (2012). Split from slip and schist: crustal anisotropy beneath northern Cascadia from non-volcanic tremor. *Journal of Geophysical Research*, 117 B08303(B08303).
- Bowman, J. R. y Ando, M. (1987). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. *Geophys. J. R. Astron. Soc.*, 88:25–41.
- Bravo, H., Rebollar, C. J., Uribe, A., y Jimenez, O. (2004). Geometry and state of stress of the Wadati-Benioff zone in the Gulf of Tehuantepec , Mexico. *Journal of Geophysical Research*, 109(January 1999):B04307.
- Brownlee, S. J., Hacker, B. R., Harlow, G. E., y Seward, G. (2013). Seismic signatures of a hydrated mantle wedge from antigorite crystal-preferred orientation (CPO). *Earth* and Planetary Science Letters, 375:395–407.
- Buttles, J. y Olson, P. (1998). A laboratory model of subduction zone anisotropy. *Earth* and Planetary Science Letters, 164(1):245–262.
- Bystricky, M., Kunze, K., Burlini, L., y Burg, J.-P. (2000). High Shear Strain of Olivine Aggregates: Rheological and Seismic Consequences. *Science*, 290:1564–1567.
- Calò, M. (2021). Tears, windows, and signature of transform margins on slabs. Images of the Cocos plate fragmentation beneath the Tehuantepec isthmus (Mexico) using Enhanced Seismic Models. *Earth and Planetary Science Letters*, 560(116788).

- Campos-Enriquez, J. O., Corbo-Camargo, F., Arzate-Flores, J., Keppie, J. D., y Arango-Galván, C. (2013). The buried southern continuation of the Oaxaca-Juarez terrane boundary and Oaxaca Fault, southern Mexico: Magnetotelluric constraints. *Journal of South American Earth Sciences*, 43:62–73.
- Castellanos, J., Pérez-Campos, X., Valenzuela, R., Husker, A., y Ferrari, L. (2017). Crust and upper-mantle seismic anisotropy variations from the coast to inland in central and Southern Mexico. *Geophysical Journal International*, 210(1):360–374.
- Castellanos, J. C., Clayton, R. W., y Pérez-Campos, X. (2018). Imaging the Eastern Trans-Mexican Volcanic Belt With Ambient Seismic Noise: Evidence for a Slab Tear. *Journal of Geophysical Research: Solid Earth*, 123(9):7741–7759.
- Cerca, M., Ferrari, L., Bonini, M., Corti, G., y Manetti, P. (2004). The role of crustal heterogeneity in controlling vertical coupling during Laramide shortening and the development of the Caribbean-North America transform boundary in southern Mexico: insights from analogue models. *Geological Society Special Publication*, 227:117–140.
- Christensen, N. I. (1996). Poisson's ratio and crustal seismology. *Journal of Geo*, 101:3139–3156.
- Clayton, R. W., Trampert, J., Rebollar, C., Ritsema, J., Persaud, P., Paulssen, H., Pérez-Campos, X., van Wettum, A., Pérez-Vertti, A., y DiLuccio, F. (2004). The NARS-Baja seismic array in the Gulf of California rift zone. *MARGINS Newsletter*, 13:1–4.
- Conder, J. A. y Wiens, D. A. (2007). Rapid mantle flow beneath the Tonga volcanic arc. *Earth Planet. Sci. Lett.*, 264:299–307.
- Córdoba-Montiel, F., Iglesias, A., Pérez-Campos, X., Sieron, K., Valdés-González, C., Singh, S. K., y Pacheco, J. F. (2018). The Broadband Seismological Network of Veracruz, Mexico: Toward a Regional Seismotectonic Interpretation. *Seismological Research Letters*, 89(2A):345–355.
- Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media. Wave Motion, 3:343-391.
- Crampin, S. (1994). The fracture criticality of crustal rocks. *Geophys. J. Int.*, 118:428–438.
- Crampin, S. y Gao, Y. (2006). A review of techniques for measuring shear-wave splitting above small earthquakes. *Physics of the Earth and Planetary Interiors*, 159(1-2):1-14.
- Currie, C. A., Cassidy, J. F., Hyndman, R., y Bostock, M. G. (2004). Shear wave anisotropy beneath the Cascadia subduction zone and western North American craton. *Geophys.* J. Int., 157:341–353.
- Damon, P. E. y Montesinos, E. (1978). Late Cenozoic volcanism and metallogenesis over an active Benioff zone in Chiapas, Mexico. Arizona Geological Society Digest, XI(October):155–168.

- De Ignacio, C., Castineiras, P., Marquez, A., Oyarzun, R., Lillo, J., y López, I. (2003). El Chichón volcano (Chiapas volcanic belt, México) transitional calc-alkaline to adakitic-like magmatism: Petrologic and tectonic implications. *International Geology Review*, 45:1020–1028.
- DeMets, C., Gordon, R. G., y Argus, D. F. (2010). Geologically current plate motions. *Geophysical Journal International*, 181:1–80.
- Demouchy, S. (2021). Defects in olivine. European Journal of Mineralogy, 33(3):249–282.
- Dougherty, S. L. y Clayton, R. W. (2014). Seismicity and structure in central Mexico: Evidence for a possible slab tear in the South Cocos plate. Journal of Geophysical Research: Solid Earth, 119(4):3424–3447.
- Dougherty, S. L., Clayton, R. W., y Helmberger, D. V. (2012). Seismic structure in central Mexico: Implications for fragmentation of the subducted Cocos plate. *Journal of Geophysical Research: Solid Earth*, 117(9):1–17.
- Duncan, R. A. y Richards, M. A. (1991). Hotspots, mantle plumes, flood basalts, and true polar wander. *Reviews of Geophysics*, 29(1):31–50.
- Elías-Herrera, M., Ortega-Gutiérrez, F., y Sánchez-Zavala, J. L. (2005). The Caltepec fault zone: exposed roots of long lived tectonic boundary between two continental terranes of southern Mexico. *Mexican Geological Society Bulletin*, LVII:83–109.
- Escartin, J., Andreani, M., Hirth, G., y Evans, B. (2008). Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. *Earth Planet. Sci. Lett.*, 268:463–475.
- Espíndola, J. M., Zamora-Camacho, A., Godínez, M. L., Schaaf, P., y Rodríguez, S. R. (2010). The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico. Journal of Volcanology and Geothermal Research, 197(1-4):188-208.
- Faccenda, M., Burlini, L., Gerya, T., y Mainprice, D. (2008). Fault-induced seismic anisotropy by hydration in subducting oceanic plates. *Nature*, 455:1097–1101.
- Faccenda, M. y Capitanio, F. A. (2012). Development of mantle seismic anisotropy during subduction-induced 3-D flow. *Geophys. Res. Lett.*, 39:1–5.
- Fasola, S., Brudzinski, M. R., Ghouse, N., Solada, K., Sit, S., Cabral-Cano, E., Arciniega-Ceballos, A., Kelly, N., y Jensen, K. (2016). New perspective on the transition from flat to steeper subduction in Oaxaca, Mexico, based on seismicity, nonvolcanic tremor, and slow slip. *Journal of Geophysical Research: Solid Earth*, 121(3):1835–1848.
- Ferrari, L. (2004). Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. *Geology*, 32(1):77–80.
- Ferrari, L., Orozco-Esquivel, T., Manea, V., y Manea, M. (2012). The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. *Tectonophysics*, 522-523:122-149.

- Fischer, K. M., Parmentier, E. M., Stine, A. R., y Wolf, E. R. (2000). Modeling anisotropy and plate-driven flow in the tonga subduction zone back arc. *Journal of Geophysical Research: Solid Earth*, 105(B7):16181–16191.
- Forsyth, D. W. (1975). The early structural evolution and anisotropy of the oceanic upper mantle. *Geophys. J. Roy. Astron. Soc.*, 43:103–162.
- Fouch, M. J. y Fischer, K. M. (1996). Mantle anisotropy beneath northwest Pacific subduction zones. J. Geophys. Res., 101:15987–16002.
- Frank, W. B., Shapiro, N. M., Kostoglodov, V., Husker, A. L., Campillo, M., Payero, J. S., y Prieto, G. A. (2013). Low-frequency earthquakes in the Mexican sweet spot. *Geophysical Research Letters*, 40(11):2661–2666.
- Frisillo, A. L. y Barsch, G. R. (1972). Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. *Journal of Geophysical Research* (1896-1977), 77(32):6360-6384.
- Funiciello, F., Moroni, M., Piromallo, C., Faccenna, C., Cenedese, A., y Bui, H. A. (2006). Mapping mantle flow during retreating subduction: Laboratory models analyzed by feature tracking. *Journal of Geophysical Research: Solid Earth*, 111(B3).
- García-Centeno, E., Ortega-Gutiérrez, F., y Corona-Esquivel, R. (1990). Oaxaca Fault: Cenozoic Reactivation of the Suture Between the Oaxaca and Juarez Terranes, Southern Mexco. *Geological Society of America*, 22:13.
- García-Palomo, A., Macías, J. L., y Espíndola, J. M. (2004). Strike-slip faults and K-alkaline volcanism at El Chichón volcano southeastern México. *Journal of Volcanology* and Geothermal Research, 136:247–268.
- González-Hervert, M. G., Martínez-González, P. R., Martínez-Graza, J. A., y Rosas-Rojas, R. (1984). Stratigraphic and structural characteristics of the limit of the Mixtecan and Oaxacan terranes, in the Los Reyes Metzontla region, Puebla. *Mexican Geological Society Bulletin*, 45:21–32.
- Gripp, A. E. y Gordon, R. G. (2002). Young tracks of hotspots and current plate velocities. *Geophysical Journal International*, 150(2):321–361.
- Hall, C. E., Fischer, K. M., Parmentier, E. M., y Blackman, D. K. (2000). The influence of plate motions on three-dimensional back arc mantle flow and shear wave splitting. *Journal of Geophysical Research: Solid Earth*, 105(B12):28009-28033.
- Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., y Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. *Science*, 362(6410):58-61.
- Holtzman, B. K., Kohlstedt, D. L., Heidelbach, F., Zimmerman, M. E., Hustoft, J., y Hiraga, T. (2003). Melt Segregation and Strain Partitioning: Implications for Seismic Anisotropy and Mantle Flow. *Science*, 301:1227–1230.

- Huesca-Pérez, E., Valenzuela, R. W., Carciumaru, D., Ortega, R., Cabral-cano, E., y Husker, A. (2019). Margin-wide continental crustal anisotropy in the Mexican subduction zone. *Geophysical Journal International*, 217:1854–1869.
- Huesca-Pérez, E., Valenzuela, R. W., y Ortega, R. (2016). Crustal anisotropy from tectonic tremor in Guerrero, Mexico. *Geochemistry, Geophysics, Geosystems*, 17:2323–2335.
- Husker, A., Castellanos, J. C., Pérez-Campos, X., Valenzuela, R. W., y Frank, W. B. (2022). Crust and upper-mantle seismic anisotropy variations from the coast to inland in central and Southern Mexico (2): Correlations with tectonic tremor. *Geophysical Journal International*, 228(3):1713–1723.
- Husker, A. y Davis, P. M. (2009). Tomography and thermal state of the cocos plate subduction beneath Mexico City. *Journal of Geophysical Research: Solid Earth*, 114(4):1–15.
- Hyndman, R. D. y Peacock, S. M. (2003). Serpentinization of the forearc mantle. 212:417-432.
- Jadamec, M. A. y Billen, M. I. (2010). Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge. *Nature*, 465:338–341.
- Jadamec, M. A. y Billen, M. I. (2012). The role of rheology and slab shape on rapid mantle flow: Three dimensional numerical models of the Alaska slab edge. J. Geophys. Res., 117:1–20.
- Jung, H. (2011). Seismic anisotropy produced by serpentine in mantle wedge. *Earth and Planetary Science Letters*, 307:535–543.
- Jung, H. y Karato, S. I. (2001). Water-induced fabric transitions in olivine. *Science*, 293(5534):1460–1463.
- Jung, H., Katayama, I., Jiang, Z., Hiraga, T., y Karato, S. (2006). Effect of water and stress on the lattice-preferred orientation of olivine. *Tectonophysics*, 421:1–22.
- Jung, H., Mo, W., y Green, H. W. (2009). Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. *Nature Geosci.*, 2:73–77.
- Kaneshima, S. (1990). Origin of Crustal Anisotropy: Shear Wave Splitting Studies in Japan. Journal of Geophysical Research, 95(B7):11,121–11,133.
- Kanjorski, M. N. (2003). Cocos plate structure along the Middle America subduction zone off Oaxaca and Guerrero, Mexico: Influence of subducting plate morphology on tectonics and seismicity. PhD thesis, San Diego, University of California.
- Karato, S.-I., Jung, H., Katayama, I., y Skemer, P. (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36:59–95.

- Katayama, I., Hirauchi, K.-i., Michibayashi, K., y Ando, J.-i. (2009). Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. *Nature*, 461(October):1114–1118.
- Katayama, I. y Karato, S. (2006). Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. *Physics of the Earth and Planetary Interiors*, 157:33–45.
- Kendall, J. M. y Silver, P. G. (1996). Constraints from seismic anisotropy on the nature of the lowermost mantle. *Nature*, 381:409–412.
- Kern, H. (1993). P- and S-wave anisotropy and shear-wave splitting at pressure and temperature in possible mantle rocks and their relation to the rock fabric. *Physics of the Earth and Planetary Interiors*, 78:245–256.
- Kim, Y., Clayton, R. W., y Jackson, J. M. (2010). Geometry and seismic properties of the subducting Cocos plate in central Mexico. 115:1–22.
- Kim, Y., Clayton, R. W., y Keppie, F. (2011). Evidence of a collision between the Yucatán Block and Mexico in the Miocene. *Geophysical Journal International*, 187:989–1000.
- Kincaid, C. y Griffiths, R. W. (2003). Laboratory models of the thermal evolution of the mantle during rollback subduction. *Nature*, 425:58–62.
- Kincaid, C. y Griffiths, R. W. (2004). Variability in flow and temperatures within mantle subduction zones. *Geochemistry, Geophysics, Geosystems*, 5(6).
- Klitgord, K. D. y Mammerickx, J. (1982). Northern East Pacific Rise: magnetic anomaly and bathymetric framework. *Journal of Geophysical Research*, 87(138):6725–6750.
- Kneller, E. A. y van Keken, P. E. (2007). Trench-parallel flow and seismic anisotropy in the Marianas and Andean subduction systems. *Nature*, 450:1222–1225.
- Kneller, E. A. y van Keken, P. E. (2008). The effects of threedimensional slab geometry on deformation in the mantle wedge: Implications for shear wave anisotropy. *Geochem. Geophys. Geosyst.*, 9:1–21.
- Kneller, E. A., van Keken, P. E., Karato, S. I., y Park, J. (2005). B-type olivine fabric in the mantle wedge: Insights from high-resolution non-Newtonian subduction zone models. *Earth and Planetary Science Letters*, 237(3-4):781–797.
- León Soto, G., Ni, J. F., Grand, S. P., Sandvol, E., Valenzuela, R. W., Speziale, M. G., González, J. M., y Reyes, T. D. (2009). Mantle flow in the Rivera-Cocos subduction zone. *Geophysical Journal International*, 179(2):1004–1012.
- León Soto, G. y Valenzuela, R. W. (2013). Corner flow in the Isthmus of Tehuantepec, Mexico inferred from anisotropy measurements using local intraslab earthquakes. *Geophysical Journal International*, 195(2):1230–1238.

- Levin, H. L. (1986). Contemporary Physical Geology, Second Edition. Saunders College Publishing, Philadelphia.
- León Soto, G., Valenzuela, R. W., Arceo, R., Huesca-Pérez, E., y Vazquez Rosas, R. (2021). Teleseismic measurements of upper mantle shear wave anisotropy in the Isthmus of Tehuantepec, Mexico. *Geophys. J. Int.*, 227:1784–1794.
- Long, M. D. (2013). Constraints on subduction geodynamics from seismic anisotropy. *Rev. Geophys.*, 51:76–112.
- Long, M. D. y Becker, T. W. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3):341–354.
- Long, M. D. y Silver, P. G. (2008). The Subduction Zone Flow Field from Seismic Anisotropy: A Global View. *Science*, 319:315–318.
- Long, M. D. y Silver, P. G. (2009). Mantle flow in subduction systems: The subslab flow field and implications for mantle dynamics. *Journal of Geophysical Research*, 114(B10312):B10312.
- Long, M. D. y van der Hilst, R. D. (2006). Shear wave splitting from local events beneath the Ryukyu arc: Trench-parallel anisotropy in the mantle wedge. *Phys. Earth Planet. Inter.*, 155:300–312.
- Lynner, C. y Long, M. D. (2014). Sub-slab anisotropy beneath the sumatra and circum-pacific subduction zones from source-side shear wave splitting observations. *Geochemistry, Geophysics, Geosystems*, 15(6):2262–2281.
- Macías, J. L., Arce, J. L., Mora, J. C., Espíndola, J. M., Saucedo, R., y Manetti, P. (2003). The ~550 BP Plinian eruption of El Chichón volcano, Chiapas, México: explosive volcanism linked to reheating of a magma chamber. *Journal of Geophysical Research*, 108 (ECV3):1–18.
- Mainprice, D. y Silver, P. G. (1993). Interpretation of sks-waves using samples from the subcontinental lithosphere. *Physics of the Earth and Planetary Interiors*, 78(3):257–280.
- Mainprice, D., Tommasi, A., Couvy, H., Cordier, P., y Frost, D. J. (2005). Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth's upper mantle. *Nature*, 433:731–733.
- Mainprice, David e Ildefonse, Benoit (2009). Seismic Anisotropy of Subduction Zone Minerals – Contribution of Hydrous Phases. Frontiers in Earth Sciences, pages 63–84.
- Manea, M. y Manea, V. C. (2008). On the origin of El Chichón volcano and subduction of Tehuantepec Ridge: A geodynamical perspective. *Journal of Volcanology and Geothermal Research*, 175(4):459–471.
- Manea, M., Manea, V. C., Ferrari, L., Kostoglodov, V., y Bandy, W. L. (2005a). Tectonic evolution of the Tehuantepec Ridge. *Earth and Planetary Science Letters*, 238(2):64–77.

- Manea, M., Manea, V. C., Kostoglodov, V., y Guzmán-Speziale, M. (2005b). Elastic thickness of the oceanic lithosphere beneath Tehuantepec ridge. *Geofisica Internacional*, 44(1):157–168.
- Manea, V. C. y Manea, M. (2006). Origin of the modern Chiapanecan Volcanic arc in southern México inferred from thermal models. Special Paper of the Geological Society of America, 412(412):27–38.
- Manea, V. C. y Manea, M. (2011). Flat-slab thermal structure and evolution beneath central Mexico. *Pure Appl. Geophys.*, 168:1475–1487.
- Manea, V. C., Manea, M., y Ferrari, L. (2013). A geodynamical perspective on the subduction of Cocos and Rivera plates beneath Mexico and Central America. *Tectonophysics*, 609:56–81.
- MASE (2007). Meso America Subduction Experiment. Caltech. Dataset, doi:10.7909/C3RN35SP.
- Mehl, L., Hacker, B. R., Hirth, G., y Kelemen, P. B. (2003). Arc-parallel flow within the mantle wedge: Evidence from the accreted Talkeetna arc, south central Alaska. J. Geophys. Res., 108:1–18.
- Melgar, D. y Pérez-Campos, X. (2011). Imaging the moho and subducted oceanic crust at the isthmus of Tehuantepec, Mexico, from receiver functions. *Pure and Applied Geophysics*, 168(8-9):1449-1460.
- Michibayashi, K., Abe, N., Okamoto, A., Satsukawa, T., y Michikura, K. (2006). Seismic anisotropy in the uppermost mantle, back-arc region of the northeast japan arc: Petrophysical analyses of ichinomegata peridotite xenoliths. *Geophysical Research Letters*, 33(10).
- Mizukami, T., Wallis, S. R., y Yamamoto, J. (2004). Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. *Nature*, 427:432–436.
- Montagner, J. P. (1998). Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers. *Pure and Applied Geophysics*, 151:223–256.
- Montagner, J.-P. y Anderson, D. L. (1989). Petrological constraints on seismic anisotropy. *Physics of the Earth and Planetary Interiors*, 54(1):82–105.
- Mookherjee, M. y Capitani, G. C. (2011). Trench parallel anisotropy and large delay times : Elasticity and anisotropy of antigorite at high pressures. *Geophysical Research Letters*, 38(L09315).
- Nakajima, J., Shimizu, J., Hori, S., y Hasegawa, A. (2006). Shear-wave splitting beneath the southwestern Kurile arc and northeastern Japan arc: A new insight into mantle return flow. *Geophys. Res. Lett.*, 33:1–4.

- Nance, R. D., Miller, B. V., Keppie, J. D., Murphy, J. B., y Dostal, J. (2006). Acatlan Complex, southern Mexico: Record spanning the assembly and breakup of Pangea. *Geology*, 34(October):857–860.
- Nava Lara, S. V. y Manea, V. C. (2022). Numerical models for slab tearing beneath southern mexico and northern central america. *Journal of South American Earth Sciences*, 115:103771.
- Nelson, S., Gonzalez-Caver, E., y Kyser, T. (1995). Constraints on the origin of alkaline and calc-alkaline magmas from the Tuxtla Volcanic Field, Veracruz, Mexico. Contrib Mineral Petrol, 122:191–211.
- Nishamura, C. E. y Forsyth, D. W. (1989). The anisotropic structure of the upper mantle in the Pacific. *Geophys. J.*, 96:203–229.
- Okaya, D., Christensen, N., Stanley, D., y Stern, T. (1995). Crustal anisotropy in the vicinity of the Alpine Fault Zone, South Island, New Zealand. N.Z. Geol. Geophys., 38:579–583.
- Ortega-Gutiérrez, F. (1981). Metamorphic belts of southern Mexico and their tectonic significance. *Geofisica Internacional*, 20-3(July 1981):177–202.
- Özalaybey, S. y Savage, M. K. (1994). Double-layer anisotropy resolved from S phases. Geophysical Journal International, 117(3):653–664.
- Özalaybey, S. y Savage, M. K. (1995). Shear-wave splitting beneath western United States in relation to plate tectonics. *Journal of Geophysical Research*, 100(B9):18,135–18,149.
- Paczkowski, K. (2012). Dynamic analysis of modifications to simple plate tectonics tehory. PhD thesis, Yale University, Cambridge.
- Pardo, M. y Suarez, G. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implications. *Journal of Geophysical Research*, 100(B7).
- Pérez-Campos, X., Espíndola, V. H., Pérez, J., Estrada, J. A., Monroy, C. C., Bello, D., González-López, A., Ávila, D. G., Esparza, M. G. C. R., Maldonado, R., Tan, Y., Rasilla, I. R., Rosas, M. Á. V., Cruz, J. L., Cárdenas, A., Estrada, F. N., Hurtado, A., De Jesús Mendoza Carvajal, A., Montoya-Quintanar, E., y Pérez-Velázquez, M. A. (2018). The Mexican National Seismological Service: An overview. Seismological Research Letters, 89(2A):318–323.
- Pérez-Campos, X., Kim, Y. H., Husker, A., Davis, P. M., Clayton, R. W., Iglesias, A., Pacheco, J. F., Singh, S. K., Manea, V. C., y Gurnis, M. (2008). Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. *Geophysical Research Letters*, 35(18):1–6.

- Ponce Cortés, J. G. (2012). Medición de la anisotropía de las ondas SKS en el manto superior, debajo de las estaciones permanentes del Servicio Sismológico Nacional instaladas a partir del año 2005.
- Rebollar, C. J., Espíndola, V. H., Uribe, A., Mendoza, A., y Pérez-Vertti, A. (1999). Distributions of stresses and geometry of the Wadati-Benioff zone under Chiapas, Mexico. *Geofisica Internacional*, 38(2):95–106.
- Rodríguez-Domínguez, M., Pérez-Campos, X., Montealegre-Cázares, C., Clayton, R. W., y Cabral-Cano, E. (2019). Crustal structure variations in south-central Mexico from receiver functions. *Geophysical Journal International*, 219(3):2174–2186.
- Rodríguez Domínguez, M. Á. (2016). Transición del ángulo de subducción de la placa de Cocos en la zona centro-sur de México. Master's thesis, Universidad Nacional Autónoma de México (UNAM).
- Rodríguez-Pérez, Q. (2007). Estructura tridimensional de velocidades para el sureste de México, mediante el análisis de trazado de rayos sísmicos de sismos regionales. Master's thesis, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- Romanowicz, B. y Wenk, H. R. (2017). Anisotropy in the deep Earth. *Phys. Earth Planet. Inter.*, 269:58–90.
- Savage, M. K. (1999). Seismic anisotropy and mantle deformation. Reviews of Geophysics, (98):65-106.
- Savage, M. K., Shih, X. R., Meyer, R. P., y Aster, R. C. (1989). Shear-wave anisotropy of active tectonic regions via automated S-wave polarization analysis. *Tectonophysics*, 165:279–292.
- Savage, M. K. y Silver, P. G. (1993). Mantle deformation and tectonics: constraints from seismic anisotropy in the western United States. *Physics of the Earth and Planetary Interiors*, 78(3-4):207-227.
- Sedlock, R. L., Ortega-Gutiérrez, F., y Speed, R. C. (1993). Tectonostratigraphic Terranes and Tectonic Evolution of Mexico. *Geological Society of America*, (Special Paper 278):Special Paper 278.
- Shih, X. R., Meyer, R. P., y Schneider, J. F. (1989). An automated, analytical method to determine shear-wave splitting. *Tectonophysics*, 165:271–278.
- Silver, P. G. (1996). Seismic anisotropy beneath the continents: Probing the depths of Geology. Annual Review of Earth and Planetary Sciences, 24(1):385-432.
- Silver, P. G. y Chan, W. W. (1988). Implications for continental structure and evolution from seismic anisotropy. *Nature*, 335:34–39.
- Silver, P. G. y Chan, W. W. (1991). Shear Wave Splitting and Subcontinental Mantle Deformation. *Journal of Geophysical Research*, 96:16429–16454.

- Silver, P. G. y Savage, M. K. (1994). The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers. *Geophysical Journal International*, 119:949–963.
- Song, T.-R. A. y Kawakatsu, H. (2012). Subduction of oceanic asthenosphere: Evidence from sub-slab seismic anisotropy. *Geophys. Res. Lett.*, 39:1–6.
- SSN (2021a). Servicio Sismológico Nacional, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico.
- SSN (2021b). Servicio Sismológico Nacional, Instituto de Geofísica, Universidad Nacional Autónoma de México, Mexico City, Mexico. Revised catalog. Available http://www2.ssn.unam.mx:8080/catalogo/. earthquake on https://doi.org/10.21766/SSNMX/EC/MX.
- Stein, S. y Wysession, M. (2003). Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell Publishing.
- Stubailo, I. (2015). Seismic anisotropy below Mexico and its implications for mantle dynamics. PhD thesis, University of California, Los Angeles.
- Stubailo, I. y Davis, P. (2007). Shear wave splitting measurements and interpretation beneath Acapulco-Tampico transect in Mexico. Eos Trans. AGU, 88, 52, Fall Meet. Suppl., Abstract T51B-0539.
- Tarantola, A. (1987). Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, Amsterdam.
- Teanby, N. A., Kendall, J., y Baan, M. V. D. (2004). Automation of Shear-Wave Splitting Measurements using Cluster Analysis. Bull. Seism. Soc. Am., 94(2):453-463.
- Tolson, G. (2005). The Chacalapa fault in southern Oaxaca. Boletín de la Sociedad Geológica Mexicana, 57(1):111-122.
- Trampert, J., Paulssen, H., van Wettum, A., Ritsema, J., Clayton, R., Castro, R., Rebollar, C., y Pérez-Vertti, A. (2003). New array monitors seismic activity near the Gulf of California in Mexico. *Eos Trans. AGU*, 84, 29, 32.
- Valenzuela, R. W. y León Soto, G. (2017). Shear wave splitting and mantle flow in Mexico: What have we learned? *Geofisica Internacional*, 56(2):187–217.
- Van Benthem, S. A. C., Valenzuela, R. W., y Ponce, G. J. (2013). Measurements of shear wave anisotropy from a permanent network in southern Mexico. *Geophys. J. Int.*, 52:385–402.
- Van Benthen, S. A. C. (2005). Anisotropy and flow in the upper mantle under Mexico. PhD thesis, Utrecht and Universidad Nacional Autónoma de México.
- Vázquez Aragón, L. A. (2019). Anisotropía sísmica del manto y estructura con datos del proyecto geometría de cocos.

- Velasco, A. y Karplus, M. (2017). Rapid aftershock deployment for the September 2017 M=8.1 and M=7.1 earthquakes in Mexico (RADSEM). International Federation of Digital Seismograph Networks.
- VEOX (2010). Veracruz-Oaxaca Subduction Experiment. Caltech. Dataset. doi:10.7909/C3MW2F2C.
- Vidale, J. E. (1986). Complex polarization analysis of particle motion. Bull. Seismol. Soc. Am., 76:1393–1405.
- Vinnik, L., Romanowicz, B., Le Stunff, Y., y Makeyeva, L. (1995). Seismic Anisotropy in the D"layer. *Geophys. Res. Lett.*, 22:1657–1660.
- Walsh, E., Arnold, R., y Savage, M. K. (2013). Silver and Chan revisited. J. Geophys. Res., 118:5500-5515.
- Wilson, D. S. (1996). Fastest known spreading on the Miocene Cocos-Pacific plate boundary. *Geophysical Research Letters*, 23(21):3003–3006.
- Wolfe, C. J. y Silver, P. G. (1998). Seismic anisotropy of oceanic upper mantle: Shear wave splitting methodologies and observations. *Journal of Geophysical Research: Solid Earth*, 103(B1):749–771.
- Wüstefeld, A., Bokelmann, G., Zaroli, C., y Barruol, G. (2008). SplitLab : A shear-wave splitting environment in Matlab. *Computers and Geosciences*, 34:515–528.
- Yañez, P., Ruiz, J., Patchett, P. J., Ortega-Gutiérrez, F., y Gehrels, G. E. (1991). Isotopic studies of the Acatlan Complex, southern Mexico: Implications for Paleozoic North American tectonics. *Geological Society of America*, 103:817–828.
- Yang, T., Grand, S. P., Wilson, D., Guzman-Speziale, M., Gomez-Gonzalez, J. M., Dominguez-Reyes, T., y Ni, J. (2009). Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography. *Journal of Geophysical Research: Solid Earth*, 114(1):1–12.
- Yang, X., Fischer, K. M., y Abers, G. A. (1995). Seismic anisotropy beneath the Shumagin Islands segment of the Aleutian-Alaska subduction zone. *Journal of Geophysical Research*, 100(B9):18,165–18,177.
- Zhang, S. y Karato, S. (1995). Lattice preferred orientation of olivine aggregates in simple shear. Nature, 375(June):774-777.

Apéndices

Apéndice A: Tablas

s)	ior		
ula	dic		
n	me		
У	las		
as	ara		
uen	ų L		
ld)	lón.		
S	taci		
uale	l es		
vid	ada		
ndi	a c		
•	paı		
nes	\log	ġ.	
icio	izac	ľ	
Iedi	nali	net	
Z	sa	urár	
:sc	imo	l pŝ	
sme	s si	a e	
lesi	e lc	ort	
Ъ	s d	rep	
÷	tica	se	
A	sr íst	ólo	
la	acte	as s	
Tab	Car	ul;	
ъ	0	_	

Tabla A1: Telesismos: Mediciones individuales (buenas y nulas) y características de los simos analizados para cada estación. Para las mediciones nulas sólo se reporta el parámetro ϕ .	ación Sismo Sismo Sismo	n Latitud Longitud Fecha Hora Mag. Fase Latitud Longitud $\phi_b(\mathcal{I}) \phi_{\mathcal{I}}(\mathcal{I}) \sigma_{\mathcal{I}}(s) \sigma_{\mathcal{I}}(s)$ Region epicentral	19.69 -97.11 20/01/2014 02:52:45 6.3 SKS -40.6371 175.7893 259 51 — — — – NORTH ISLAND- NEW ZEALAND 19.69 -97.11 2014/02/01* 03:58:45 6.2 SKS -56.9339 -27.3456 149 -16 76 0.90 >4.50 SOUTH SANDWICH ISLANDS REGION	19.69 - 97.11 = 03/02/2014 = 03.08.46 = 6.0 SKS 38.2552 = 20.4368 = 45 = 8 = GREECE	19.69 -97.11 07/02/2014 08:40:13 6.5 SKS -15.0764 167.4164 258 88 VANUATU ISLANDS	19.69 - 97.11 $12/02/2014$ 09:19:48 6.9 SKS 35.8767 82.5807 0.3 4 XIZANG	19.69 -97.11 05/03/2014 09:56:58 6.4 SKS -14.835 169.8319 257 89 VANUATU ISLANDS	19.69 -97.11 2014/04/12* 20:14:38 7.6 SKS -11.2581 162.1387 263 76 56 1.85 2.15 SOLOMON ISLANDS	19.69 -97.11 2014/04/13* 12:36:19 7.4 SKS -11.4669 161.9601 263 44 40 1.20 2.05 SOLOMON ISLANDS	19.09 -97.11 19/04/2014 15:28:00 7:5 202 -0.708 124:392 270 -81 — — — — SOLOMON ELANDS 19.69 -97.11 11/05/2014 06:36.6.6 SKS -21.4381 170:3099 251 -10 — — — SOLITHFAST OF LOVALTY ISLANDS	19.69 -97.11 16/02/2015 22:00:54 6.3 SKS -55.5186 -28.2292 148 -6 46 0.90 1.15 SOUTH SANDWICH ISLANDS REGION	19.69 -97.11 16/02/2015 23:06:28 6.7 SKS 39.9468 143.1771 318 -55 OFF EAST COAST OF HONSHU- JAPAN	19.69 -97.11 19/02/2015 13:18:33 6.4 SKS -16.4423 168.2083 256 79 — — — VANUATU ISLANDS	19.69 -97.11 20/02/2015 04:25:23 6.2 SKS 39.8189 143.6157 317 -47 OFF EAST COAST OF HONSHUL JAPAN	19.69 -97.11 22/03/2015 05:46:22 6.1 SKS -17.9137 -178.3919 250 69 — — — FIJI ISLANDS REGION	19.69 -97.11 29/03/2015 23:48:31 7.5 SKS -4.7758 152.5778 273 83 — — — NEW BRITAIN REGION- P.N.G.	19.69 -97.11 17/04/2015 15:52:53 6.5 SKS -16.0488 -178.4403 252 77	19.69 -97.11 10/08/2015 04:12:14 6.6 SKS -9.2843 158.265 266 0 SOLOMON ISLANDS	19.69 -97.11 2015/08/15* 07:47:07 6.4 SKS -10.9382 163.8328 263 19 40 1.55 1.25 SOLOMON ISLANDS 10.60 07:11 2015/11/10* 10:01.04 6.9 CVC 0.6004 159.4917 267 69 31 1.60 1.40 COLOMON ISLANDS	19.09 -97.11 2010)/11/01 10.20.01.04 0.0 3A.9 -0.6394 19.04.12 10.0 12 31 1.00 1.40 20UAUU ADAINDA 10.60 -07.11 11/01/04 16.38.05 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	19.69 -97.11 11/01/2016 17:08:03 6.2 SKS 44.4761 141.0867 322 52 — — HOKKAIDO-JAPAN RFGION	19.69 -97.11 14/01/2016 03:25:33 6.7 SKS 41.9723 142.781 320 49 HOKKAIDO-JAPAN REGION	19.69 -97.11 02/03/2016 12:49:48 7.8 SKKS -4.9521 94.3299 322 -45 SOUTHWEST OF SUMATRA- INDONESIA	19.69 -97.11 2016/05/27* 04:08:43 6.4 SKS -20.8101 -178.6481 249 55 17 1.80 1.20 FIJI ISLANDS REGION	19.69 -97.11 2016/05/28* 05:38:50 6.9 SKS -21.9724 -178:2038 247 49 24 1.20 1.40 F1J1 ISLANDS KEGION	19.69 -97.11 28/05/2016 09:46:59 7.2 SKS -56.2409 -26.9353 148 78 — — — SOUTH SANDWICH ISLANDS KEGION 19.69 -97.11 19/n6/2016 no:47:93 6.3 SKS -20.2793 160.0737 259 [-90 — VANDATTI ISLANDS	19.69 -97.11 26/06/2016 11:17:11 6.4 SKS 39.4793 73.3388 9 -16 — — TAJIKISTAN-XINJIANG BORDER REG.	19.69 -97.11 26/06/2016 11:17:11 6.4 SKKS 39.4793 73.3388 9 -74 TAJIKISTAN-XINJIANG BORDER REG.	19.69 -97.11 13/07/2016 12:11:12 6.3 SKS -28.0052 -176.443 240 52 — — — KERMADEC ISLANDS REGION	19.69 -97.11 20/07/2016 15:13:16 6.1 SKS -18.9285 169.0547 253 72 — — — VANUATU ISLANDS	19.69 -97.11 25/07/2016 19:38:45 6.4 SKKS -2.969 148.0345 276 -70 — — — ADMIRALTY ISLANDS REGION P.N.G. 19.69 -97.11 2016/08/19* 01:96:36 7.9 SKS -29.478 173 1108 240 28 29 240 150 SUITHFACT OF LOVALTV ISLANDS	10.60 - 2011 2016/08/104 01:2020-2014 25: 25: 21:27:01 21:01:2020 24:01 20 02 24:01 20 02 24:01 20 02 24:01 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	19.69 -97.11 20/08/2016 09:01:26 6.0 SKS 40.3564 143.6799 317 54 — — — OFF EAST COAST OF HONSHUL JAPAN	19.69 -97.11 20/08/2016 15:58:04 6.0 SKS 40.2933 143.7539 317 32 — — — OFF EAST COAST OF HONSHU- JAPAN	19.69 -97.11 2016/08/21* 03:45:23 6.4 SKS -55.2775 -31.7546 148 -19 71 2.10 >4.50 SOUTH GEORGIA ISLAND REGION	19.69 -97.11 24/08/2016 01:36:32 6.2 SKS 42.723 13.1877 43 67 — — — CENTRAL ITALY	19.69 -9/.11 2016/08/31~ 03:11:36 6.7 5K5 -3:6914 152.7879 273 35 62 1.15 3.25 NEW IKELAND KEGION- F.N.G. 10.60 07.54 2014/02/19* 00:10:48 6.0 5K2 25.6757 25.560 26 42 26 26 25 12 12 VIZANC	19.00 -91.04 2014/02/12 03.19.40 0.9 0.00 00.00 02.0001 02.0001 27 10 2.20 1.00 (ALLAND ALLAND Continuation of a página signiente.
	•	d Longitue	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11 -07.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-97.11 -97.11	-97.11	-97.11	-97.11	-97.11	-97.11	-07 11	-97.11	-97.11	-97.11	-97.11	-97.11 07 54	F0.12-
	ación .	n Latitu	19.69 19.69	19.69	19.69	19.69	19.69	19.69	10.69	19.69 19.69	19.69	19.69	19.69	19.69	19.69	19.69	19.69	19.69	10.69 10.60	10.60 10.60	19.69	19.69	19.69	19.69	19.69	19.69 19.69	19.69	19.69	19.69	19.69	19.69 10.60	10.60 10.60	19.69	19.69	19.69	19.69	10.60 10.60	00.61
	Est:	Estació	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	TATA	ATAT ATAT	TATA	TATA	TATA	TATA	TATA	IAIA	ATAT TATA	TATA	TATA	TATA	ATATA	TATA TATA	TATA	TATA	TATA	TATA	TATA	TATA	
		Ked	GECO GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO		GECO	GECO	GECO	GECO	GECO	GECO GECO	GECO	GECO	GECO	GECO	GECO	CECO	GECO	GECO	GECO	GECO	GECO	00000

Región epicentral	EAST OF SOUTH SANDWICH ISLANDS	SOLOMON ISLANDS	SOLOMON ISLANDS	SANTA CRUZ ISLANDS REGION	SOLOMON ISLANDS	KERMADEC ISLANDS- NEW ZEALAND	VOLCANO ISLANDS- JAPAN REGION	SOUTH SANDWICH ISLANDS REGION	KURIL ISLANDS	HOKKAIDO- JAPAN REGION	NEW BRITAIN REGION- P.N.G.	OFF E. COAST OF N. ISLAND- N.Z.	EASTERN HONSHU- JAPAN	SOUTH SANDWICH ISLANDS REGION	SOUTH OF KERMADEC ISLANDS	GREECE	VANUATU ISLANDS	XIZANG	VANUATU ISLANDS	EAST OF SOUTH SANDWICH ISLANDS	SOLOMON ISLANDS	SOLOMON ISLANDS	SOUTHEAST OF LOYALTY ISLANDS	SOUTH OF FIJI ISLANDS	KERMADEC ISLANDS- NEW ZEALAND	SOUTH SANDWICH ISLANDS REGION	FIJI ISLANDS REGION	FIJI ISLANDS REGION	SOLOMON ISLANDS	NORTH ISLAND- NEW ZEALAND	SOUTH OF KERMADEC ISLANDS	GREECE	VANUATU ISLANDS	HOKKAIDO- JAPAN KEGION		OFF E. COAST OF N. ISLAND- N.Z. FACTEDN HONGIII JADAN		SULUMUN ISLANDS IZEDMANDET IST ANDS DECION		OFF EAST COAST OF HONSHU- JAPAN	FIJI ISLANDS KEGION	E. CAROLINE ISLANDS- MICRONESIA	E. CAKULINE ISLANDS- MICKUNESIA	MAKIANA ISLANDS	HOKKAIDU- JAPAN KEGIUN	NUDERAN CUNERAL IN
) $\sigma_{\delta t}(\mathbf{s})$		5 1.95	5 1.15		5 0.90				5 1.25) > 4.50						5 1.00) > 4.50		5 1.40) > 4.50		5 >4.50				0.00			1 T-UU		00	0.2.0	GY.U (J >4.0U
(°) δt(s		6 2.95	0 1.25		7 1.55				2 1.05	8 1.40						8 1.55				1 1.40		0 1.25							2 0.8(5 1.75				0 2.21			0.3(0 2.00				N N N
(°) σ _φ (32 –	34 60	31 4(- 18	32 2'	28 –	50 -	34 –	38	57 8	- 9	- 69	54 -	34 –	53	56 13	36 –	8	- 22	21 5	- 22	59 41	53 –	53	54 –	41 -	33	30 –	57 8:	31 –	45 7	15	10	32	17 77	- 5		24 8	 	H3	90 90 11 12	06 20 20		2 2 2	51 51	õ.
$\phi () \phi $	151 (263 8	263	262	270 (239 -	304 -	148 (319 (319	273	233	317 3	149 -	236	45	257 (360	257	151 -	263	263	251 -	245	239	148 -	249 (248 -	270	259 (236 -	45	258 -	318 318	ν 240	233	- 010 010	012	- 2007	315	249	182	- 182	- 794 -	318 318	249 4 Juiente
Longitud 9	-20.1181	162.1387	161.9601	164.8414	154.992	.177.5306	142.6581	-28.3956	148.7838	142.279	148.263	179.6109	137.8915	-27.3456	.177.9203	20.4368	167.4164	82.5807	169.8319	-20.1181	162.1387	161.9601	170.3099	179.0407	177.5306	-28.3956	.178.4001	177.8334	154.4603	175.7893	177.9203	20.4368	167.4164	143.2067 177 2224	-1//.0334	197.001E	0160.101	176 9	0.011-	142.4525 170.4001	1/8.4001	146.1113 146.1115	146.1113	144.4725	143.2067	Ltt 8334 1 página sig
Latitud	-60.8439	-11.2581	-11.4669	-11.1795	-6.708	-30.0038	24.4506	-55.4757	44.6419	41.134	-6.027	-37.5989	36.638	-56.9339	-32.9594	38.2552	-15.0764	35.8767	-14.835	-60.8439	-11.2581	-11.4669	-21.4381	-24.7338	-30.0038 -	-55.4757	-19.8015 -	-19.8023	-6.5108	-40.6371	-32.9594	38.2552	-15.0764	41.0615	- 19.8U23	-37.5989	000.00	-0.01US	- ou ou	37.0052	- CIUS.EI-	0.8323	0.8323	13.819	41.0615	-19.8023 tinúa en lo
Fase	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	CAC CALC	SKS 01/0		C/10		SKS		SNS	SNNS	SKS 2712	SKS	Con
Mag.	6.4	7.6	7.4	6.1	7.5	6.9	6.2	6.8	6.3	6.1	6.6	6.7	6.2	6.2	6.4	6.0	6.5	6.9	6.4	6.4	7.6	7.4	6.6	6.6	6.9	6.8	6.9	7.1	6.6	6.3	6.4	6.0	6.5	0.0 1 0:0		9.7 9	7.0	0.0 9	0.0	9.0 0.0	0.9 0	2.0 2.0	x. 0	2.0 0	0.0	T.)
Hora	02:44:06	20:14:38	12:36:19	04:13:13	13:28:00	19:19:17	05:56:32	07:52:56	18:32:47	03:43:18	03:33:55	22:33:23	13:08:18	03:58:45	09:26:36	03:08:46	08:40:13	09:19:48	09:56:58	02:44:06	20:14:38	12:36:19	06:36:36	09:15:52	19:19:17	07:52:56	14:54:41	18:57:22	01:22:02	02:52:45	09:26:36	03:08:46	08:40:13	02:35:48	77:/C:QT	22:33:23	01-00-61	10.52.10	01-00-01-	19:22:00	14:04:41	10:22:00	10:22:00	06:14:40	07:35:48	77:10:81
Fecha	11/03/2014	2014/04/12*	2014/04/13*	18/04/2014	2014/04/19*	23/06/2014	29/06/2014	29/06/2014	2014/07/20*	2014/08/10*	07/11/2014	16/11/2014	22/11/2014	01/02/2014	02/02/2014	2014/02/03*	07/02/2014	12/02/2014	05/03/2014	11/03/2014	12/04/2014	$2014/04/13^{*}$	01/05/2014	04/05/2014	23/06/2014	29/06/2014	21/07/2014	01/11/2014	2014/12/07*	20/01/2014	02/02/2014	03/02/2014	07/02/2014	11/10/2014	-10/11/5107	16/11/2014	4107/11/77	02/02/2014	#107/10/en	11/07/2014	2014/07/21*	2014/08/03*1	03/08/2014	T7/09/2014	11/10/2014	.TU/11/9102
Longitud	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.54	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.49	-97.31	-97.31	-97.31	-97.31	-97.31	-91.31	-97.31	10.18-	-91.51 06.04	-30.04	-96.84	-90.84	-96.84	-96.84	-96.84	-96.84	-90.84
Latitud	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.80	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	19.49	20.00	20.00	20.00	20.00	20.00	20.00	20.00	00.02	00.02	01.01 01.01	18.13	18.13	18.13	18.13	10.13	18.13	18.13
Estación	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	OCTN	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	TEPY	HUEY	HUEY	HUEY	HUEY	HUEY	HUEI HUEI	HUEY		HUEY UTTT						ILUH		IrnH
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	CDECO CECO	GECO		CECO CECO		GECO GECO	GECO	GECO GECO	GECO	0DECO	CDECO	GECO

Región epicentral	NEW BRITAIN REGION- P.N.G.	OFF E. COAST OF N. ISLAND- N.Z.	EASTERN HONSHU- JAPAN	SOLOMON ISLANDS	VANUATU ISLANDS	FIJI ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	OFF EAST COAST OF HONSHU- JAPAN	SANTA CRUZ ISLANDS REGION	VANUATU ISLANDS	OFF EAST COAST OF HONSHU- JAPAN	OFF EAST COAST OF HONSHU- JAPAN	FLORES SEA	FLORES SEA	FIJI ISLANDS REGION	NEW BRITAIN REGION- P.N.G.	SOUTH ISLAND- NEW ZEALAND	FIJI ISLANDS REGION	NEW BRITAIN REGION- P.N.G.	SOLOMON ISLANDS	NEAR EAST COAST OF HONSHU- JAPAN	SANTA CRUZ ISLANDS REGION	SOLOMON ISLANDS	SOLOMON ISLANDS	SOUTHERN MID-ATLANTIC RIDGE	BONIN ISLANDS- JAPAN REGION	SOUTHEAST OF HONSHU- JAPAN	FIJI ISLANDS REGION	BONIN ISLANDS- JAPAN REGION	BONIN ISLANDS- JAPAN REGION	SOUTH OF KERMADEC ISLANDS	VANUATU ISLANDS	HINDU KUSH KEGION- AFGHANISTAN	CURTER O I VU IN TO LEAVELING SOLOMON ISLANDS	HOKKAIDO- JAPAN REGION	HOKKAIDO- JAPAN REGION	KERMADEC ISLANDS REGION	SOLOMON ISLANDS	SOUTHWEST OF SUMATRA- INDONESIA	FIJI ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	KERMADEC ISLANDS- NEW ZEALAND	VANUATU ISLANDS	VANUATU ISLANDS	LOYALTY ISLANDS	
$\sigma_{\delta t}(\mathbf{s})$	0.40			0.50	0.20	1.05	2.25		0.55	0.60			I	0.50	1.65	0.75	0.70	0.70	0.80	0.20		0.15	0.30	1.10		1.70	>4.50	0.25		1.05	0.60	0.90	1.20	09 U			0.90		1	0.60		1.10		0.45	>4.50	
°) $\delta t(s)$	1.35			1.75	1.20	1.10	1.15		2.20	1.50				1.05	1.40	1.70	1.75	1.90	2.10	1.55		1.55	1.80	2.50		0.95	1.35	1.60		0.80	2.35	2.10	2.25	07.7 030	8		2.15			2.50		2.90		1.85	0.70	
$) \sigma_{\phi}($	7 18	6	ي ب	2 12	4 13	5 26	4 65	ی م	6 14	9 29	4	ي ب	4	9 30	5 44	4 26	7 17	5 20	0 30	8 12	4	0 12	0 11	3 64		2 31	0 78	1 12	ي م	0 40	9 16	2 46	9 T 8	8 TT 8	- 	ן ס ק	3 16	8	20	5 7	+	1 10	0	3 12	6 51	
) ϕ (() 9(72 2'	33 49	17 -4	20 7:	55 32	48 3	48 22	18 4	63 5	56 2	17 -4	17 -4	81 -7	81 69	51 4	72 72	30 3,	48 5	71 6	69 4	17 -4	62 4	62 51	62 6	08 3	08 -6	10 -7	48 1	00 31	09 -7	36	58 58 158		0-12 99	22 -3	19 - 4	39 4:	69 -8	19 4	47 5	$48 5_{4}$	39 5.	54 7	52 4:	52 3(viente.
ongitud ϕ_{i}	148.263 2	79.6109 2	37.8915 3	54.4603 2	68.5545 2	178.3597 2	28.2292 1	43.1771 3	64.1384 2	68.2083 2	43.6157 3	43.5175 3	22.4906 2	22.4906 2	178.3919 2	52.5778 2	173.108 2	178.5801 2	51.8641 2	54.5554 2	42.0217 3	64.1741 2	63.5935 2	63.2121 2	14.2615 1	40.4939 3	42.9777 3	178.9194 2	39.7885 3	39.7885 3	177.8599 2	67.3028 2	10.3676	58 4217 9	41.0867 3	142.781 3	179.9563 2	54.7073 2	94.3299 3	178.2038 2	26.9353 1	177.8359 2	68.8279 2	69.0737 2	68.7595 2	página sig
Latitud I	-6.027	-37.5989]	36.638	-6.5108	-17.064	-20.9998 -	-55.5186	39.9468	-10.7948	-16.4423	39.8189	39.8287	-7.358	-7.358	-17.9137 -	-4.7758	-42.1047	-20.8766 -	-5.5168	-7.3019	38.9005]	-10.9253	-11.1336	-11.1646 1	-16.8146	27.8281	30.7933	-20.3973 -	27.6883	27.6883	-32.8199 -	-14.8595]	36.5244	- 80001.5	44.4761	41.9723	-30.7636 -	-6.6214]	-4.9521	-21.9724 -	-56.2409 -	-30.0235 -	-18.7609	-20.2793	-20.2072	inúa en la
Fase	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKKS	0 X X X	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	Cont
Mag.	6.6	6.7	6.2	6.6	6.8	6.2	6.3	6.7	6.1	6.4	6.2	6.0	7.0	7.0	6.1	7.5	6.0	6.1	7.5	7.0	6.8	6.8	7.0	6.9	6.3	7.9	6.2	6.0	6.5	6.5	6.3	7.1	<u>.</u>	0 8.9	6.2	6.7	6.2	6.4	7.8	6.9	7.2	6.1	6.2	6.3	6.0	
Hora	03:33:55	22:33:23	13:08:18	01:22:02	03:47:27	02:43:19	22:00:54	23:06:28	09:32:29	13:18:33	04:25:23	10:13:53	13:45:05	13:45:05	05:46:22	23:48:31	03:36:42	16:39:39	01:44:04	07:10:23	21:12:58	22:48:54	21:45:20	23:59:33	04:53:23	11:23:02	18:49:07	06:17:00	12:18:30	12:18:30	09:13:56	21:52:02	09:09:42	20:01:31 18:31-04	17:08:03	03:25:33	19:00:46	16:19:13	12:49:48	05:38:50	09:46:59	02:35:32	13:49:22	09:47:23	03:50:55	
Fecha	2014/11/07*	16/11/2014	22/11/2014	2014/12/07*	2015/01/23*	$2015/01/28^{*}$	2015/02/16*	16/02/2015	$2015/02/18^{*}$	2015/02/19*	20/02/2015	21/02/2015	2015/02/27*	2015/02/27*	2015/03/22*	$ 2015/03/29^*$	$2015/04/24^{*}$	$ 2015/04/28^{*}$	05/05/2015	$ 2015/05/07^*$	12/05/2015	$ 2015/05/20^*$	2015/05/22*	22/05/2015	24/05/2015	$ 2015/05/30^{**} $	$ 2015/05/30^{**} $	$ 2015/06/16^{*}$	23/06/2015	$2015/06/23^{**}$	2015/09/07*	2015/10/20*	2012/10/26*	2012/11/2015	11/01/2016	14/01/2016	$20\dot{1}6/\dot{0}2/01^{*}$	$08/\dot{0}2/\dot{2}016$	02/03/2016	$2016/05/28^{*}$	28/05/2016	$ 2016/06/06^*$	14/06/2016	$ 2016/06/19^*$	$ 2016/06/20^{*}$	_
Longitud	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-90.04 -96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	
ı Latitud	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18-13 18-13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	
Estaciór	IfUH	IUUI	ILUH	IUUI	ILUH	ILUH	ILUH	ICUH	ICUH	IfUH	ICUH	IUUH	ILUH	IUUI	ILUH	IUUH	IUJI	IUUH	IUJI	ILUH	ILUH	ILUH	ILUH	ILUH	ILUH	ILUH	ILUH	ILUH	IUUI	IfuH	ILUH	ILUH	ILUH	ICUH	HU.JI	IfUH	ILUH	ILUH	ILUH	ILUH	ICUH	IfUH	IUUH	IUUH	IfUH	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	CORD CECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

tegión epicentral	AJIKISTAN-XINJIANG BORDER REG.	AJIKISTAN-XINJIANG BORDER REG.	(ERMADEC ISLANDS REGION	ANUATU ISLANDS	ADMIRALTY ISLANDS REGION- P.N.G.	AARIANA ISLANDS	OLCANO ISLANDS- JAPAN REGION	OLCANO ISLANDS- JAPAN REGION	OUTHEAST OF LOYALTY ISLANDS	OUTH GEORGIA ISLAND REGION	DFF EAST COAST OF HONSHU- JAPAN	DFF EAST COAST OF HONSHU- JAPAN	OUTH GEORGIA ISLAND REGION	JENTRAL ITALY	IEW IRELAND REGION- P.N.G.	DFF E. COAST OF N. ISLAND- N.Z.	AST OF KURIL ISLANDS	AST OF KURIL ISLANDS	OLOMON ISLANDS	OUTHWEST OF SUMATRA- INDONESIA	ANUATU ISLANDS	ANUATU ISLANDS	ANUATU ISLANDS	CYUSHU- JAPAN	CYUSHU- JAPAN	ANUATU ISLANDS	TJI ISLANDS REGION	TJI ISLANDS REGION	ANUATU ISLANDS	XERMADEC ISLANDS REGION	ADMIKALTY ISLANDS REGION- P.N.G.	AAKIANA ISLANDS Atteritea set of toxyateny tstands	UUTHEAST UF LUTALI I ISLANDS NEF FAET COAET OF HONEIIII - IADAN	JEF EAST COAST UF HUNSHU- JAFAN OITTH GEORGIA ISLAND REGION	HIKOTAN - RUSSIA	ADALI - SOLOMON ISLANDS	ATA - SOLOMON ISLANDS	ADALI - SOLOMON ISLANDS	JRAKIRA - SOLOMON ISLANDS	IACHIJO-JIMA - JAPAN	ADALI - SOLOMON ISLANDS	SHKASHAM - AFGHANISTAN	HIZUNAI - JAPAN	ESPERANCE ROCK - NEW ZEALAND	KUMAMOTO-SHI - JAPAN	
$\delta_t(\mathbf{s}) \mathbf{F}$	0.40 T	T 07.0	0.70 F	0.75 V	1.00 A	0.80 N	1.00	1.15	3.90 S	0.60 S	<u> </u>	<u> </u>	<u>s</u>	<u> </u>		3.50 C	<u>ш</u> 	2.90 E	0.90 S	0.75 S	<u>~</u>	<u>~</u>	2.60 \	<u>ч</u>	<u>بر</u>	1.60 1	<u>щ</u> 	<u> </u>	<u>~</u> ;	<u>د</u> -	≪ <i>•</i> 		00.0 00.0	<u>ע</u> ר 	יי נ 	<u></u> 	1.35 T.	1.30 E	1.90 K	<u>ш</u>).50 L	 	 	1.70 L	<u>لم</u> ا	
$\delta t(s) \sigma$	2.40 (2.50 (1.60 (1.40 (1.85	1.25 (1.85	1.00	2.30 (1.60 (1.60 (1.50	3.55 (2.35 (2.85			1.55						1275	, 04.2				1.45 (1.60 (1.55 (2.05 (2.55		
$\sigma_{\phi}(\degree)$	14	20	6	34	41	14	10	43	24	17					I	7		00	12	23			72			32						[13				14	20	22		S			17		
$\phi(\circ)$	53	71	42	24	35	-77	-69	-67	51	-11	-53	-45	-39	43	81	37	-31	-53	73	-13	-21	ς.	20	-52	-66	39	-28	81	22	37	j x	7 T	0 1	-94	45-	5 25	30	39	61	-43	75	-57	-34	52	-20	
$\phi_b(^{\circ})$	6	6	240	253	276	298	305	305	249	148	317	317	148	43	273	233	319	319	270	321	259	259	258	318	318	257	248	247	252	240	2/0	298	249	148	319	266	263	266	262	311	266	12	319	239	. 318 	
Longitud	73.3388	73.3388	-176.443	169.0547	148.0345	145.541	142.0141	142.0141	173.1108	-31.874	143.6799	143.6799	-31.7546	13.1877	152.7879	179.1461	148.0042	148.0042	154.7073	94.3299	166.8551	166.6245	166.4334	130.7543	130.7543	167.3786	-178.6481	-178.2038	169.0737	-176.443	148.0345	145.541 179.1100	149 6700	14.0.0199 -31 7546	148 0042	158.3424	165.1009	158.0265	163.8328	141.6	158.4217	71.1263	142.781	-179.9563	130.7543	
Latitud	39.4793	39.4793	-28.0052	-18.9285	-2.969	18.5439	24.9447	24.9447	-22.4778	-55.2793	40.3564	40.3564	-55.2775	42.723	-3.6914	-37.3586	43.9697	43.9697	-6.6214	-4.9521	-14.3235	-14.0683	-14.5284	32.7906	32.7906	-16.0429	-20.8101	-21.9724	-20.2793	-28.0052	-2.969	18.5439 20.4770	40 9561	40.0004 -55 9775	43 9697	-9.3539	-10.4574	-9.2843	-10.9382	31.1806	-8.8994	36.4935	41.9723	-30.7636	32.7906	
Fase	SKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SAAS	SKKS	C/10		SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	
Mag.	6.4	6.4	6.3	6.1	6.4	7.7	6.3	6.3	7.2	7.4	6.0	6.0	6.4	6.2	6.7	7.0	6.3	6.3	6.4	7.8	6.9	6.7	6.4	7.0	7.0	7.0	6.4	6.9	6.3		0 I 7- I	7.7	7.7	0.0 6 4	63	6.7	2.0	6.6	6.4	6.0	6.8	6.3	6.7	6.2	7.0	
Hora	11:17:11	11:17:11	12:11:12	15:13:16	19:38:45	21:18:26	16:24:33	16:24:33	01:26:36	07:32:22	09:01:26	09:01:26	03:45:23	01:36:32	03:11:36	16:37:57	05:10:27	05:10:27	16:19:13	12:49:48	08:23:52	06:58:48	21:50:27	16:25:06	16:25:06	19:33:24	$04{:}08{:}43$	05:38:50	09:47:23	12:11:12	19:38:45 61 10 00	21:18:26	01:20:30	03:45:23	05-10-28	04:12:42	02:27:33	04:12:15	07:47:06	15:25:09	18:31:04	19:14:47	03:25:33	19:00:46	16:25:06	
Fecha	26/06/2016	26/06/2016	$2016/07/13^{*}$	$2016/07/20^{*}$	25/07/2016	$ 2016/07/29^{**} $	$2016/08/04^{**}$	$ 2016/08/04^{**} $	$2016/08/12^{*}$	2016/08/19*	2016/08/20a	2016/08/20b	21/08/2016	24/08/2016	31/08/2016	2016/09/01*	07/07/2015	2015/07/07*	$2016/02/08^{*}$	$2016/03/02^{*}$	03/04/2016	06/04/2016	$2016/04/14^{*}$	15/04/2016	15/04/2016	$2016/04/28^{*}$	27/05/2016	28/05/2016	19/06/2016	13/07/2016	9102/J0/GZ	9016/07/2016	30 /06 /2016	20/08/2016 91/08/9016	07/07/2015	10/07/2015	2015/07/18*	$2015/08/10^{*}$	$2015/08/15^{*}$	01/09/2015	18/11/2015	25/12/2015	14/01/2016	01/02/2016	15/04/2016	
Longitud	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.84	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-96.29	-90.29	-96.29	- 90.29	- 90.29	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	
Latitud	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.13	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.26	18.20	18.26	10.20	10.20 18 96	18.03	18.03	18.03	18.03	18.03	18.03	18.03	18.03	18.03	18.03	18.03	
Estación	IUUI	ILUH	ILUH	ILUH	IfUH	IfuH	ILUH	IfuH	ILUH	ILUH	ILUH	ICUH	ILUH	ICUH	ILUH	ICUH	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	MARG	BAAV	BAAY	BAAY	BAAY	BAAY	BAAY	BAAY	BAAY	BAAY	BAAY	BAAY	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO		00000 5 ECO	CDEC CEECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

	ATU	IfI	IJI	IANA ISLANDS	IANA ISLANDS	N	PUA NEW GUINEA	RYUKYU ISLANDS	DS	NDS REGION	GION	GION	CH ISLANDS REGION	DS	JIANG BORDER REG.	JIANG BORDER REG.	EGION- P.N.G.	ST OF HONSHU- JAPAN	DS	DS	ATLANTIC RIDGE	JAPAN REGION	JAPAN REGION	DS	DS	GION- AFGHANISTAN	S- INDONESIA	AN REGION	DS	DS	A BORDER REGION	A BORDER REGION	сл С	NOID	GION	CH ISLANDS REGION	JIANG BORDER REG.	NDS REGION	DS	DS	LOYALTY ISLANDS	ISLAND REGION	r of honshu- Japan	ISLAND REGION	
) Región epicentral	NORSUP - VANUA	NDOI ISLAND - FI	NDOI ISLAND - FI	AGRIHAN - MARI	AGRIHAN - MARI	IWO-JIMA - JAPA	NAMATANAI - PA	NORTHWEST OF	SOLOMON ISLAN	KERMADEC ISLA	FIJI ISLANDS REG	FIJI ISLANDS REG	SOUTH SANDWIC	VANUATU ISLANI	TAJIKISTAN-XINJ	[UIX-NETZINILAT]	NEW BRITAIN RE	NEAR EAST COA	SOLOMON ISLAN	SOLOMON ISLAN	SOUTHERN MID-	BONIN ISLANDS-	BONIN ISLANDS-	SOLOMON ISLAN	SOLOMON ISLAN	HINDU KUSH REC	TALAUD ISLAND	HOKKAIDO- JAP/	VANUATU ISLANI	VANUATU ISLAN	MYANMAK-INDIA	MYANMAK-INDIA	VANUALU ISLAN	FUILISI, ANDS REC	FILL ISLANDS REC	SOUTH SANDWIC	LAJIKISTAN-XIN	KERMADEC ISLA	MARIANA ISLAN	MARIANA ISLAN	SOUTHEAST OF I	SOUTH GEORGIA	OFF EAST COAST	SOUTH GEORGIA	CENTRAL TALY
$\sigma_{\delta t}(\mathbf{s})$	1.05	0.55	1.15		1.40		0.25					2.00		2.75																			I	>450				>4.50							
) $\delta t(\mathbf{s})$	2.30	1.35	2.00		2.35		1.60					0.70		1.45																				2.25				1.75							
$) \sigma_{\phi}($	15	1 28	21		36		20		 	- 2		53		8 77		9			2			+	6				ي م	9			-			84	5			83	- 2				-		
,)¢ (.)	56 71	48 31	47 52	98 31	98 25	05 36	73 48	18 25	36 - 8	39 -1,	48 67	47 23	48 67	52 68	9 10	9 <u>-</u> 6	72 6	17 61	53 -8	53 <u>8</u> 6	08 46	09 - 4-	-36 -36	<u>56 -3</u>	<u>53</u> 85	2 10	94 -31	20 -2	- 82 - 82	20 22	14 100	14 16 16		0 7 7	47 81	18 72	5	40 73	98 <mark>-</mark> 4′	12 86	$^{49} 84$	48 60	17 -2	48 65	3 -1 vente.
tud ϕ_b	786 2	3481 2/	2038 22	541 29	541 29	141 30	879 2'	729 3	217 20	563 2	3481 22	2038 22	353 1	737 21	388	388	641 2'	217 3	935 2	121 2	615 10	939 30	885 31	265 20	328 20	376 1	569 29	781 3:	551 - 2		554 32	554 32 224 32	0.04 10 10 10 10 10 10 10 10 10 10 10 10 10	040 481 2.	038 22	$353 1_{2}$	888	443 2/	541 29	541 29	108 2/	874 1/	799 3	546 1 [,]	877 4 na sian
Longi	167.3	-178.6	-178.2	145.8	145.5	142.0	152.7	128.8	158.4	-179.0	-178.6	-178.2	-26.9	169.0	73.35	73.35	151.8	142.0	163.5	163.2	-14.2	140.4	139.7	158.0	163.8	70.3(126.8	142.7	166.8	166.8	94.8(94.8(190.4	178 f	-178.5	-26.9	73.35	-176.	145.8	145.8	173.1	-31.8	143.6	-31.7	13.18 1a. náai
Latitud	-16.0429	-20.8101	-21.9724	18.5439	18.5439	24.9447	-3.6914	31.0009	-8.8994	-30.7636	-20.8101	21.9724	56.2409	20.2793	39.4793	39.4793	-5.5168	38.9005	-11.1336	-11.1646	-16.8146	27.8281	27.6883	-9.2843	-10.9382	36.5244	3.8966	41.9723	-14.3235	-14.3235	23.0944	23.0944	-14.0284 -14.0284	20 8101	-21.9724	56.2409	39.4793	-28.0052	18.5439	18.5439	-22.4778	-55.2793	40.3564	55.2775	42.723 iniía en
Fase	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKKS -	SKS	SKKS	CAC 2/12	eve SXS	SKS	SKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS Conti
Mag.	7.0	6.4	6.9	7.7	7.7	6.3	6.8 1	6.7	6. 8	6.2	6.4	6.9	7.2	6.3	6.4	6.4	7.5	6.8	7.0	6.9	6.3	7.9	6.5	6.6	6.4	7.5	6.5	6.7	6.9	6.9	6.9	6.9 7	1 0.4	6.4 6	6.9	7.2	6.4	6.3	7.7	7.7	7.2	7.4	6.0	6.4	6.2
Hora	19:33:24	04:08:43	05:38:50	21:18:24	21:18:24	16:24:33	03:11:34	20:51:31	18:31:04	19:00:46	04:08:43	05:38:50	09:46:59	09:47:23	11:17:11	11:17:11	01:44:04	21:12:58	21:45:20	23:59:33	04:53:23	11:23:02	12:18:30	04:12:14	07:47:07	09:09:42	16:38:05	03:25:33	08:23:52	08:23:52	13:55:17	13:55:17	72:00:17	10:20:00 04:08:43	05:38:50	09:46:59	11:17:11	12:11:12	21:18:26	21:18:26	01:26:36	07:32:22	09:01:26	03:45:23	01:36:32
Fecha	28/04/2016	2016/05/27*	$2016/05/28^{*}$	29/07/2016	29/07/2016	04/08/2016	$2016/08/31^{*}$	13/11/2015	18/11/2015	01/02/2016	27/05/2016	$2016/05/28^{*}$	28/05/2016	$2016/06/19^{*}$	26/06/2016	26/06/2016	05/05/2015	12/05/2015	22/05/2015	22/05/2015	24/05/2015	30/05/2015	23/06/2015	10/08/2015	15/08/2015	26/10/2015	11/01/2016	14/01/2016	03/04/2016	03/04/2016	13/04/2016	13/04/2016	14/04/2016 15 /04 /9016	2016/05/27*	28/05/2016	$\frac{-0}{28}/05/2016$	26/06/2016	$20\dot{1}6/\dot{0}7/13^{*}$	29/07/2016	29/07/2016	12/08/2016	19/08/2016	20/08/2016	21/08/2016	54/08/2010
Longitud	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	-96.67	-97.29	-97.29	-97.29	-97.29	-97.29	-97.29	-97.29	-97.29	-97.29	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	- 30.00	-90.00- -96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88 20	-96.88
Latitud 1	18.03	18.03	18.03	18.03	18.03	18.03	18.03	18.66	18.66	18.66	18.66	18.66	18.66	18.66	18.66	18.66	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	10.6E	19.00 19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65
Estación	BAAY	BAAY	BAAY	BAAY	BAAY	BAAY	BAAY	ORMO	ORMO	ORMO	ORMO	ORMO	ORMO	ORMO	ORMO	ORMO	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAUL	NAOL	NAOL	NAOL NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAUL
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO		C D D D D D D D D D D D D D D D D D D D	GECO GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO

Región epicentral	NEW IRELAND REGION- P.N.G.	NEW IRELAND REGION- P.N.G.	OFF E. COAST OF N. ISLAND- N.Z.	SOUTHEAST OF HONSHU- JAPAN	SOUTHEAST OF HONSHU- JAPAN	OFF EAST COAST OF HONSHU- JAPAN	TONGA ISLANDS	CENTRAL ITALY	SOUTH ISLAND- NEW ZEALAND	SOUTH ISLAND- NEW ZEALAND	BANDA SEA	SOLOMON ISLANDS	SOLOMON ISLANDS	SOLOMON ISLANDS	NEW IRELAND REGION- P.N.G.	NEW IRELAND REGION- P.N.G.	SOUTH OF FIJI ISLANDS	CELEBES SEA	CELEBES SEA	SOLOMON ISLANDS	SOLOMON ISLANDS	SOLOMON ISLANDS	SOUTH OF FIJI ISLANDS	SOUTH SANDWICH ISLANDS REGION	SULAWESI- INDONESIA	NEW IRELAND REGION- P.N.G.	DODECANESE ISLANDS- GREECE	BANDA SEA	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	TOYALI'Y ISLANDS	IRAN-IRAQ BORDER REGION	EASTERN AIZANG-INDIA BORDER REG.	W. CAROLINE ISLANDS- MICRONESIA SANTA CRITZ ISLANDS		SOLOMON ISLANDS	NORTHWEST OF RYUKYU ISLANDS	SOLOMON ISLANDS	TALAUD ISLANDS- INDONESIA	TALAUD ISLANDS- INDONESIA	HOKKAIDO- JAPAN REGION	SOLOMON ISLANDS	VANUATU ISLANDS	VANUATU ISLANDS	VANUATU ISLANDS	
$\sigma_{\delta t}(\mathbf{s})$					0.55												0.70		1.30											0.85					1 50	1.90		0.45		0.90					0.80	
) $\delta t(\mathbf{s})$					1.90												2.20		2.30											1.30					9 15	1.40	ļ	3.10		2.55					1.25	
$) \sigma_{\phi}($	 ∞	-	9		8								6	2	ور م		3 25	 	32	 %	6					9		6		20					13	e e e e e e e e e e e e e e e e e e e		7 10	- 2	5 17		 		' ش	32	
$\phi(.)$	73 -7	73 -3	33 -2	10 6(10 6(14 72	49 -1	3 5(29 4	29 5	82 0	64 10	64 -7	64 -8	72 -6	72 25	46 13	97 -5	97 5(64 -7	64 -7	70 - 27	45 8	48 66	91 47	72 -7	3 6(82 -5	20 	21 07	21 X	5 7 1 2	47	0- 78 78	, y y y y y y y y y y y y y y y y y y y	22	18	66 57	94 -7	94 45	20 44	2- 02	20 21	59 -3	59 19	iiente
tud ϕ_t	879 2	879 2	461 2	478 3	478 3	368 3	984 2	84	647 2	543 2	802 2	298 2	298 2	137 2	216 2	216 2	383 2	575 2	575 2	304 2	318 2	442 2	033 2	827 1	335 2	958 2	-35	401 2	$^{00}_{-2}$	879 2	185 2		197 197	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	000 965 9	328 2 328 2	729 3	217 2	569 2	569 2	781 3	073 2	551 2	551 - 2	245 2	na sıgı
Longi	152.7	152.7	179.1	142.0	142.0	141.6	-174.	13.08	173.0	173.2	123.3	161.3	161.3	161.3	153.5	153.5	179.2	122.5	122.5	161.0	161.5	155.1	-178.8	-25.7	120.4	153.1	27.41	123.0	169.5	168.8	168.9	45.95	94.97	140.2 165 1	158.0	163.8	128.8	158.4	126.8	126.8	142.7	154.7	166.8	166.8	166.6	la págı
Latitud	-3.6914	-3.6914	37.3586	30.5017	30.5017	34.4619	18.1706	42.8547	42.7245	42.6058	-7.3158	-10.676	-10.676	10.8416	-4.5049	-4.5049	23.2513	4.4634	4.4634	10.1255	10.3433	-6.2145	23.2601	56.4277	-1.2872	-4.7722	36.9249	-7.2364	21.6645	21.6689	21.7928	34.9052	29.8327	10.1104 10.4574	0.08/3	10.9382	31.0009	8.8994	3.8966	3.8966	41.9723	-6.6214	14.3235	14.3235	14.0683	núa en
Fase 1	SKS	SKKS	- SKS	SKS	SKKS :	SKS	- SXS	SKS	- SXKS -	- SKS	SKKS	SKS	SKKS	- SKS	SKS	SKKS	SKS -	SKS	SKKS	SKS -	SKKS -	SKS	- SKS	- SKS	PKS	SKS	SKS	PKS	SKS -	SKS -	SKS -	SKS	PKS 2172	CANC	SKG	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS -	SKKS -	SKS -	Conti
Mag.	6.7	6.7	7.0	6.1	6.1	6.2	6.4	6.6	7.8	6.5	6.3	7.8	7.8	6.5	7.9	7.9	6.3	7.3	7.3	6.3	6.5	7.9	6.9	6.5	6.6	6.4	6.6	6.7	6.8	9 . 9	6.0	7.3	6.4 4.0	0.4 6 0	9 9 9	0.0 6.4	6.7	6.8	6.5	6.5	6.7	6.4	6.9	6.9	6.7	
Hora	3:11:36	3:11:36	16:37:57	16:21:16	16:21:16	00:14:34	21:07:15	06:40:19	11:02:59	0:34:22	01:13:04	17:38:46	17:38:46	21:56:07	10:51:10	10:51:10	13:14:02	06:13:47	06:13:47	15:27:15	23:04:21	04:30:22	17:28:44	23:23:37	[4:35:2]	3:36:08	22:31:11	10:47:47	00:42:06	(2:23:55)	15:09:00	18:18:17	22:34:19	10:22:04 10:72:39	71-01-70	71212112	20:51:31	18:31:04	16:38:05	16:38:05	3:25:33	16:19:13	8:23:52)8:23:52	06:58:48	
Fecha	31/08/2016	31/08/2016	01/09/2016	20/09/2016	$2016/09/20^{*}$	23/09/2016	24/09/2016	30/10/2016	13/11/2016	14/11/2016	05/12/2016	08/12/2016	08/12/2016	08/12/2016	17/12/2016	17/12/2016	2017/01/02*	2017/01/10*	2017/01/10* (10/01/2017	19/01/2017	22/01/2017	24/02/2017	10/05/2017	29/05/2017	13/07/2017	20/07/2017	24/10/2017	31/10/2017	2017/11/01*	01/11/2012	12/11/2017	710/11/2012	08/12/2016	9015/08/10*	2015/08/15* 0	13/11/2015	$2015/11/18^{*}$	11/01/2016	11/01/2016	14/01/2016	08/02/2016	03/04/2016	03/04/2016	$2016/04/06^{**}$	
ongitud	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-96.88	-90.88	-90.08- -06.08	-06.08	-96.98	-96.98	-96.98	-96.98	-96.98	-96.98	-96.98	-96.98	-96.98	-96.98	
Latitud 1	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65	19.65 10.67	10 17	10 14	19.14	19.14	19.14	19.14	19.14	19.14	19.14	19.14	19.14	19.14	
Estación	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAOL	NAUL	NAOL	NAOL	HIAT	HILAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	CDECO CECO		C ECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

Región epicentral	MYANMAR-INDIA BORDER REGION	MYANMAR-INDIA BORDER REGION	VANUATU ISLANDS	FIJI ISLANDS REGION	FIJI ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	KERMADEC ISLANDS- NEW ZEALAND	VANUATU ISLANDS	TAJIKISTAN-XINJIANG BORDER REG.	TAJIKISTAN-XINJIANG BORDER REG.	TALAUD ISLANDS- INDONESIA	TALAUD ISLANDS- INDONESIA	HOKKAIDO- JAPAN REGION	VANUATU ISLANDS	VANUATU ISLANDS	VANUATU ISLANDS	VANUATU ISLANDS	FIJI ISLANDS REGION	FIJI ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	VANUATU ISLANDS	VANUATU ISLANDS	LOYALTY ISLANDS	DADALI - SOLOMON ISLANDS	GIZO - SOLOMON ISLANDS	KIRAKIRA - SOLOMON ISLANDS	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	MAKURAZAKI - JAPAN	MAKURAZAKI - JAPAN	DADALI - SOLOMON ISLANDS	AGRIHAN - MARIANA ISLANDS	SHIZUNAI - JAPAN	DODT OI DV VANITATII	FURT-ULAT - VANUATU	UTALIA - VANIATI		KUMAMOTO-SHI - JAPAN	NORSUP - VANUATU	NDOI ISLAND - FIJI	NDOI ISLAND - FIJI	RAOUL ISLAND - NEW ZEALAND	FIJI ISLANDS REGION	FIJI ISLANDS REGION	SOUTH SANDWICH ISLANDS KEGIUN	
$\sigma_{\delta t}(\mathbf{s})$		1.80				0.60		2.10								I			1.60						0.30	0.25	0.80				0.30			0.75 1.75	0.10	0.40	0.00	2.00	0.45	0.90	0.55	0.35	0.85	0.55		
) $\delta t(\mathbf{s})$		2.65				3.10		1.00											2.35						1.70	1.75	2.30				1.65			01.2	1 05	00.6	1 50	1.00	1.80	1.35	2.65	1.00	2.65	1.90		
$\sigma_{\phi}(\degree)$		61				2		46											10						14	6	14				14		0	ς α	70 o	0 7	1 =	69	6	31	5	26	9	4		
$()\phi()$	9-	-24	69	62	58	50	67	-7	-61	0	-88	-73	-28	72	78	27	75	69	09	-38	-14	Ŷ	89	86	43	52	36	-32	44	-40	30	-82	-36	2T 2	80 V	41 م	1 8	-24	57	45	59	19	55	49	-31	ute.
$\phi_b(^{\circ})$	344	344	257	248	247	148	239	252	6	6	293	293	319	258	259	258	257	248	247	148	254	252	252	266	266	262	239	236	318	318	266	298	319	759	0020	950 950	010 07.0	318	256	248	247	239	248	247	. 148	iquier
Longitud	94.8654	94.8654	167.3786	.178.6481	.178.2038	-26.9353	.177.8359	169.0737	73.3388	73.3388	126.8569	126.8569	142.781	166.8551	166.6245	166.4334	167.3786	.178.6481	.178.2038	-26.9353	168.8279	169.0737	168.7595	158.0265	157.821	163.8328	.179.0971	177.8599	128.8729	128.8729	158.4217	145.2659	142.781	166 0551	100.0001 166 6945	166 5013	166 4334	130.7543	167.3786	.178.6481	178.2038	.177.8359	.178.6481	178.2038	-26.9353	v página s
Latitud	23.0944	23.0944	-16.0429	-20.8101	-21.9724	-56.2409	-30.0235	-20.2793	39.4793	39.4793	3.8966	3.8966	41.9723	-14.3235	-14.0683	-14.5284	-16.0429	-20.8101	-21.9724	-56.2409	-18.7609	-20.2793	-20.2072	-9.2843	-9.3071	-10.9382	-30.6497	-32.8199	31.0009	31.0009	-8.8994	18.7787	41.9723	-30.7030 14 9995	14 0609	-13 0805	-14 5984	32.7906	-16.0429	-20.8101	-21.9724	-30.0235	-20.8101	-21.9724	-56.2409	inúa en lo
Fase	SKS	KKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	KKS	SKS	KKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	KKS	SKS	SKS	SKS	CAC	0VI0	a Ko	ake	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS ≥∑	Cont
Iag.	6.9	6.9 S	7.0	6.4	6.9	7.2	6.1	6.3	6.4	6.4 S	6.5	6.5 S	6.7	6.9	6.7	6.4	7.0	6.4	6.9	7.2	6.2	6.3	0.0	6.6	6.5	6.4	0.0	6.3	6.7	6.7 S	0.8 8	0.0	6.7	7.0	 א ת ש ס	- 1-		2.0	7.0	6.4	6.9	6.1	6.4	0.0	7.)	
ora N	5:17	5:17	3:24	8:43	8:50	. 65:59	5:32	7:23	7:11	7:11	8:05	8:05	5:33	3:52	8:48	0:27	3:24	8:43	8:50	. 6:29	9:22	7:23	0:55	2:15	9:24	2:06	1:26	3:56	1:31	1:31	1:04	1:35	[2:33	01:10	20.0	0.40	20.7	5:06	3:24	8:43	8:50	5:32	8:43	8:50	6:53	
Η	13.5	13.5	19:3	04:0	05:3	: 00:4	02:3	* 09:4	11:1	11:1	16:3	16:3	03:2	08:2	06:5	21:5	19:3	04:C	. 05:3	60:4	13:4	60:4	03.5	04:1	: 18:4	. 07:4	09:4	09:1	20:5	20:5	: 18:3	13:2	03:2	1:6T	7:00 :	000 :		16:2	: 19:3	: 04:0	05:3	02:3	· 04:C	· 05:3	09:4	
Fecha	13/04/2016	13/04/2016	28/04/2016	27/05/2016	28/05/2016	$2016/05/28^{*}$	06/06/2016	2016/06/19*	26/06/2016	26/06/2016	11/01/2016	11/01/2016	14/01/2016	03/04/2016	06/04/2016	14/04/2016	28/04/2016	27/05/2016	$2016/05/28^{*}$	28/05/2016	14/06/2016	19/06/2016	20/06/2016	10/08/2015	$2015/08/12^{*}$	$2015/08/15^{*}$	24/08/2015	07/09/2015	13/11/2015	13/11/2015	$2015/11/18^{*}$	24/11/2015	14/01/2016	0102/20/10 \$60/70/06	.00/10/0107 *90/10/0107	2016/04/00 2016/04/07*	2010/01/01 2016/04/14*	15/04/2016	$20\dot{1}6/\dot{0}4/28^{*}$	$2016/05/27^{*}$	28/05/2016	$2016/06/06^{*}$	$2016/05/27^{*}$	2016/05/28*	91U2/6U/82	
ngitud	96.98	96.98	96.98	96.98	96.98	96.98	96.98	96.98	96.98	96.98	97.34	97.34	97.34	97.34	97.34	97.34	97.34	97.34	97.34	97.34	97.34	97.34	97.34	97.03	97.03	97.03	97.03	97.03	97.03	97.03	97.03	97.03	97.03	97.03	60.70 60.70	50-10 07-03	20.10	97.03	97.03	97.03	97.03	97.03	96.28	96.28	96.28	
titud Lo	9.14 -6	9.14 -6	9.14 -6	9.14 -6	9.14 -6	9.14 -6	9.14 -9	9.14 -{	9.14 -{	9.14 -9	9.29 -6	9.29 -6	9.29 -6	9.29 -6	9.29 -{	9.29 -(9.29 -{	9.29 -(9.29 -{	9.29 -{	9.29 -{	9.29 -{	9.29 -6	8.34 -{	8.34 -6	8.34 -{	8.34 -6	8.34 -(8.34 -(8.34 -{	8.34 -(8.34 -(8.34	8.34 -;-	- +0.0 10.0	- 12 x - 10 x -	5 57 - C	8.34 -5	8.34 -6	8.34 -6	8.34 -6	8.34 -6	8.41 -{	8.41 -(8.41 -;	
ín La	i i	Ť.	ï	ï	÷	÷	i	Ť	Ť	i	Ť	Ť	Ť	Ť	ï	ï	Ť	Ť	ï	Ť	Ì	Ť	Ť	Ţ.	Ĩ	Ţ.	Ĩ	Ť	Ţ.	Ĩ	Ĩ	- -	ří ř		i ř	- -	÷ ۲	ΗĨ	ĩ	Ĩ	Ĩ	Ĩ	Ť	17	Ļ	
Estacić	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	HUAT	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	LUPE	ZOQU	ZOQU	ZOQU	ZOQU	ZOQU	ZOQU	zoqu	ZOQU	zoqu	ZOQU	1002		20001		ZOQU	zoou	zoqu	ZOQU	ZOQU	JOBO	JOBO	JUBU	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO					GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

Región epicentral	VANUATU ISLANDS	VANUATU ISLANDS	KERMADEC ISLANDS REGION	VANUATU ISLANDS	ADMIRALTY ISLANDS REGION- P.N.G.	MARIANA ISLANDS	MARIANA ISLANDS	VOLCANO ISLANDS- JAPAN REGION	SOUTHEAST OF LOYALTY ISLANDS	SOUTH GEORGIA ISLAND REGION	OFF EAST COAST OF HONSHU- JAPAN	CENTRAL ITALY	NEW IRELAND REGION- P.N.G.	OFF E. COAST OF N. ISLAND- N.Z.	SOUTHEAST OF HONSHU- JAPAN	SOUTHEAST OF HONSHU- JAPAN	OFF EAST COAST OF HONSHU- JAPAN	SOUTH ISLAND- NEW ZEALAND	SOLOMON ISLANDS	SOLOMON ISLANDS	SOLOMON ISLANDS	SOLOMON ISLANDS	NEW IRELAND REGION- P.N.G.	NEW IRELAND REGION- P.N.G.	SOLOMON ISLANDS	SOLOMON ISLANDS	MINDANAO- PHILIPPINES	SOUTH OF FILLISLANDS	VANUATU ISLANDS	SUUTH SANDWICH ISLANDS REGION	SULAWEDI- INDUNEDIA	REMINDEC IDLANDS- NEW ZEALAND	SUUIH UF FIJI ISLANDS	FUL ISLANDS REGION	NERMADEC ISLANDS- NEW ZEALAND	NEW IRELAND REGION- P.N.G.	DODECANESE ISLANDS- GREECE	AUCKLAND ISLANDS- N.Z. REGION	SOUTH OF FIJI ISLANDS	TONGA ISLANDS	BANDA SEA It ovattuv islands					
$\sigma_{\delta t}(\mathbf{s})$	1.20	1.55	1.10		1.25	0.60	0.50	0.85	2.55			0.50		1.50	0.70	0.55			1.30						0.55			1.15					1.20				1.3U				0.55		1.05		ר קר	0.00
) $\delta t(\mathbf{s})$	2.00	0.85	2.10		2.00	0.75	1.25	1.60	3.15			1.45		1.50	1.45	1.05			1.65						1.95			1.40				.	1.80				T./U				1.05		2.15		1 20	T
$\sigma_{\phi}(^{\circ}$	32	43	20	I	45	41	29	15	74		I	17	l	25	×	25			Π					I	12		l	33					21			1	49				Ъ		16		06	24
(.) <i>\</i> (46	37	44	52	82	89	67	-20	52	-35	-64	-88	53	29	-60	-69	-52	-47	28	36	-50	42	68	-34	32	49	79	48	63	68	-46	-77	57	071	- -	0.0	₹ 5	17-	-49	89	23. 23	-47	43		- [] 33	l vv nte.
$\phi_b($ °	254	252	240	253	276	298	298	305	249	148	317	43	273	233	310	310	314	229	229	229	229	229	264	264	264	264	272	272	264	270	301	245	258	148 148	167	252	240	047 066	007	7.17	43	315	245	246	282	+04 sinnie
Longitud	168.8279	169.0737	-176.443	169.0547	148.0345	145.541	145.541	142.0141	173.1108	-31.874	143.6799	13.1877	152.7879	179.1461	142.0478	142.0478	141.6368	173.0647	173.0647	173.6997	173.2543	173.2543	161.3298	161.3137	161.1227	161.1227	153.5216	153.5216	161.1952	155.1442	125.4516	-178.8033	167.3767	-25.1821	170 071	1400.011-	176.46008	-1/0.4023 177 6616	2100.111-	153.1958	27.4135	162.5497	-176.9366	-173.8022	123.0401 168 8870	1 náaina.
Latitud	-18.7609	-20.2793	-28.0052	-18.9285	-2.969	18.5439	18.5439	24.9447	-22.4778	-55.2793	40.3564	42.723	-3.6914	-37.3586	30.5017	30.5017	34.4619	-42.7245	-42.7245	-42.2972	-42.6058	-42.6058	-10.676	-10.8416	-10.748	-10.748	-4.5049	-4.5049	-10.2273	-6.2145	9.9071	-23.2601	-14.5884	-56.4277	-1.28/2	-3U.01394	-24.0934	-19.0004 90.9109	-30.3103	-4.7722	36.9249	-50.371	-23.7135 23.7135	-20.5914	-7.2364 91.6680	-21.000
Fase	SKS	SKS	SKS	SKS	IKKS	SKS	KKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	KKS	SKS	SKS	KKS	SKS	SKS	KKS	SKS	SKS	SKS	KKS	SKS	KKS	SKS	SKS	KKS	SKS	SKS	SKS 2710	CA1			C/10		SKS	SKS	SKS	SKS	SKS	rks ska	Cont
Aag.	6.2	6.3	6.3	6.1	6.4 S	7.7	7.7	6.3	7.2	7.4	6.0	6.2	6.7	7.0	6.1	6.1 S	6.2	7.8	7.8	6.2	6.5	6.5 S	7.8	6.5	6.9	6.9 S	7.9	2.9	6.0	7.9	6.5 V	6.9	8.0 1.0	0.0 1	0.0	0.0	0.1	7.0	0.0	6.4 0.4		6.1	6.4 -	6.L	6.1 e e	0.0
Hora N	3:49:22	9:47:23	2:11:12	5:13:16	9:38:45	1:18:26	1:18:26	6:24:33	1:26:36	7:32:22	9:01:26	1:36:32	3:11:36	6:37:57	6:21:16	6:21:16	0:14:34	1:02:59	1:02:59	3:31:26	0:34:22	0:34:22	7:38:46	1:56:07	9:10:07	9:10:07	0:51:10	0:51:10	5:46:25	4:30:22	4:03:43	7:28:44	3:52:10	3:23:37	4:30:41	11:07:0	10:07:7	1:42:3U 0:30:55	00:UZ:0	3:36:08	2:31:11	1:43:30	4:20:00 3 30 50	2:00:59 2 47 47	0:47:47 9.93.55	00.04.4
Fecha	$2016/06/14^{*}$]	2016/06/19* 0	$2016/07/13^{*}$ 1	20/07/2016 1	2016/07/25** 1	2016/07/29** 2	$2016/07/29^{**}$	$2016/08/04^{**}$]	$2016/08/12^{*}$ (19/08/2016 (20/08/2016 (2016/08/24** (31/08/2016 ($2016/09/01^*$ 1	$2016/09/20^{**}$]	$2016/09/20^{**}$]	23/09/2016 ($2016/11/13^*$]	$2016/11/13^{*}$ 1	13/11/2016 1	14/11/2016 (14/11/2016 (08/12/2016 1	08/12/2016 2	$2016/12/09^{*}$ 1	$2016/12/09^*$ 1	2016/12/17* 1	2016/12/17* 1	18/12/2016 (22/01/2017 (10/02/2017 1	24/02/2017]	2017/05/09*]	10/09/2017	1 107/00/67	0 /TNZ/00/CT	2 .JT/90/JT07	1 2106/20/07	r /TNZ/00/07	13/07/2017 (20/06/2017	$2017/09/26^{\circ}$	18/10/2017	5 *10/2/01/2705	· · · · / · · · / · · · / · · · · · · ·
Longitud	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	- 20.28	-90.28	-90.28	- 20.28	-90.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28 06.98	07.08-
Latitud	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	19.41	16.41	18.41	10.41	16.41	18.41	18.41	18.41	18.41	18.41	18.41 18.41	T 1:01
Estación	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	OBOL	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	OBOL	JOBO	OBUL						OBOL	0BU 10BU	OBOL	JUBU JOBO	UBU UBU		222
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	CECO CECO			GECO		CORCO Service	GECO	GECO	GECO	GECO	GECO	CDEC CECO	00000

Región epicentral	SOUTHEAST OF HONSHU- JAPAN	IRAN-IRAQ BORDER REGION	EASTERN XIZANG-INDIA BORDER REG.	LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	W. CAROLINE ISLANDS- MICRONESIA	W. CAROLINE ISLANDS- MICRONESIA	W. CAROLINE ISLANDS- MICRONESIA		TONGA ISLANDS	VANUATU ISLANDS	SOUTH SANDWICH ISLANDS REGION	SULAWESI- INDONESIA	AEGEAN SEA	SOUTH OF FIJI ISLANDS	FIJI ISLANDS REGION	DODECANESE ISLANDS- GREECE	FIJI ISLANDS REGION	BONIN ISLANDS- JAPAN REGION	AUCKLAND ISLANDS- N.Z. REGION	SOUTH OF FIJI ISLANDS	TONGA ISLANDS	TONGA ISLANDS	BANDA SEA	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	SOUTHEAST OF HONSHU- JAPAN	IRAN-IRAQ BORDER REGION	EASTERN XIZANG-INDIA BORDER REG.	LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	W. CAROLINE ISLANDS- MICRONESIA	HOKKAIDU- JAPAN KEGIUN	NEW GUINEA- PAPUA NEW GUINEA	NEW GUINEA- PAPUA NEW GUINEA	SOLOMON ISLANDS	SOLOMON ISLANDS	SOUTH OF FIJI ISLANDS	VANUATU ISLANDS	SOUTH SANDWICH ISLANDS REGION	SULAWESI- INDONESIA	KERMADEC ISLANDS- NEW ZEALAND	SOUTH OF FIJI ISLANDS	FIJI ISLANDS REGION	
$\sigma_{\delta t}(\mathrm{s})$	0.70	1.35		0.30	0.60	0.35						0.80							0.65			1.10				1.05	0.25				0.95	0.40	0.45	1.15						0.55	0.80				1.90		
) $\delta t(\mathbf{s})$	1.55	1.90		1.90	1.15	1.10						2.20							1.45			1.15				2.10	1.00				1.45	1.25	1.40	1.75						1.05	1.40				1.30		
$) \sigma_{\phi}($	1 23	18		18	15	19						16							23			55				20	16				35	16	17	35						26	12				82		
.)ø (.)	2 7	3 41	17 -16	61 31	51 42	61 19	34 34	30 30	92 - 79	-	-8- 1-87	8 15	8 60	1 22	2 -32	5 70	8 61	3 62	51 32	9 25	5 50	5 6	12	6 -3	32 19	50 -2	1 40	2 -4(3 72	1 -3	51 47	51 54	51 43	32 58	-0 - -	4	4 80	64 4	70 67	5 31	59 59	18 55	1 -74	88 -24	5 25	18 -3(iente
ϕ_b pn	38 3]	53 33 3	76 34	95 25	43 25	33 25	97 29	97 29	97 29	1	59 24	67 25	27 14	35 29	13 4	59 24	26 2 <u>4</u>	35 4	106 25	41 30	97 31	66 24	59 24	22 24	01 28)9 25	79 25	38 31	33 3	76 34	95 25	43 25	33 25	97 29	23 31	27 27	.77.	18 26	42 27	33 24	67 25	$27 1_{4}$	35 29	641 25	59 24	;292∉	a sigu
Longit	141.4;	45.95	94.97	168.69	168.57	168.63	140.21	140.21	140.21		-175.56	167.37	-25.78	120.43	26.37	179.60	-176.4(27.41:	-178.84	139.80	162.54	-176.93	-175.56	-173.8(123.04	169.2(168.88	141.4	45.95(94.97	168.69	168.57	168.63	140.21	142.43	142.61	142.61	161.3	155.14	-178.8(167.37	-25.78	120.43	-178.0	179.60	-176.4(a págu
Latitud	32.5208	34.9052	29.8327	-21.654	-21.5112	-21.3337	10.1164	10.1164	10.1164		-18.9903	-14.5884	-56.4277	-1.2872	38.9154	-24.0934	-19.6664	36.9249	-17.9609	27.7829	-50.371	-23.7135	-18.9903	-20.5914	-7.2364	-21.6645	-21.6689	32.5208	34.9052	29.8327	-21.654	-21.5112	-21.3337	10.1164	41.1034	-6.2933	-6.2933	-10.3433	-6.2145	-23.2601	-14.5884	-56.4277	-1.2872	-30.5139	-24.0934	-19.6664	inúa en l
Fase	SKS	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKKS		SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKKS	SKKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	Cont
Mag.	6.0	7.3	6.4	6.3	6.6	7.0	6.4	6.4	6.4		6.1	6.8	6.5	6.6	6.3	6.1	6.2	6.6	6.4	6.1	6.1	6.4	6.1	6.1	6.7	6.8	6.6	6.0	7.3	6.4	6.3	6.6	7.0	6.4	6.3	6.7	6.7	6.5	7.9	6.9	6.8	6.5	6.6	6.0	6.1	6.2	
Hora	07:42:11	18:18:17	22:34:19	09:25:47	15:09:03	22:43:29	00:22:54	00:22:54	00:22:54		14:04:38	13.52.10	23:23:37	14:35:21	12:28:39	22:26:01	17:42:30	22:31:11	02:00:52	17:26:49	01:43:30	04:20:00	14:04:38	12:00:59	10:47:47	00:42:06	02:23:55	07:42:11	18:18:17	22:34:19	09:25:47	15:09:03	22:43:29	00:22:54	10:51:19	14:13:06	14:13:06	23:04:21	04:30:22	17:28:44	13:52:10	23:23:37	14:35:21	00:26:17	22:26:01	17:42:30	
Fecha	$2017/11/09^{**}$	2017/11/12*	17/11/2017	2017/11/19*	2017/11/19*	2017/11/19*	08/12/2017	08/12/2017	08/12/2017	.	08/10/2017	$20\dot{1}7/\dot{0}5/09^{*}$	10/05/2017	29/05/2017	12/06/2017	17/06/2017	25/06/2017	20/07/2017	$20\dot{1}7/\dot{0}8/19^{*}$	07/09/2017	20/09/2017	$2017/09/26^{*}$	08/10/2017	18/10/2017	24/10/2017	$20\dot{1}7\dot{1}0/31^{*}$	2017/11/01*	09/11/2017	12/11/2017	17/11/2017	2017/11/19*	2017/11/19*	$2017/11/19^{*}$	$2017/12/08^{*}$	24/01/2018	06/03/2018	06/03/2018	19/01/2017	22/01/2017	$2017/02/24^{*}$	$2017/05/09^*$	10/05/2017	29/05/2017	15/06/2017	2017/06/17*	25/06/2017	
Longitud	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28	-96.28		-96.40	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.44	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	
Latitud	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41	18.41		19.44	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.39	18.63	18.63	18.63	18.63	18.63	18.63	18.63	18.63	18.63	
Estación	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	JOBO	BACU	ZEMP	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	JOSE	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

Región epicentral	KERMADEC ISLANDS- NEW ZEALAND	DODECANESE ISLANDS- GREECE	SOUTH OF FIJI ISLANDS	TONGA ISLANDS	TONGA ISLANDS	SOUTHEAST OF LOYALTY ISLANDS	IRAN-IRAQ BORDER REGION	LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	NEW GUINEA- PAPUA NEW GUINEA	SOUTH OF FIJI ISLANDS	VANUATU ISLANDS	SOUTH SANDWICH ISLANDS REGION	SULAWESI- INDONESIA	TONGA ISLANDS	BANDA SEA	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	NEW GUINEA- PAPUA NEW GUINEA	SOUTHEAST OF HONSHU- JAPAN	EASTERN XIZANG-INDIA BORDER REG.	W. CAROLINE ISLANDS- MICRONESIA	W. CAROLINE ISLANDS- MICRONESIA	HOKKAIDO- JAPAN REGION	SOUTH OF FIJI ISLANDS	VANUATU ISLANDS	SOUTH SANDWICH ISLANDS REGION	FIJI ISLANDS REGION	KERMADEC ISLANDS- NEW ZEALAND	NERMADEC IDLANDS REGION	NEW IKELAND KEGION- P.N.G. Dodrem niege ist ande oberote	DUPPOANDE ISLANDS - GIVERUE	BONIN ISL'ANDS- JAPAN REGION	AUCKLAND ISLANDS- N.Z. REGION	SOUTH OF FIJI ISLANDS	TONGA ISLANDS	TONGA ISLANDS	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	SOUTH OF FIJI ISLANDS	FIJI ISLANDS REGION	BONIN ISLANDS- JAPAN KEGION	
$\sigma_{\delta t}(\mathbf{s})$			0.85			>4.50			0.50	2.15							1.20				2.00							1.90								0.65					>4.50	0.75	1.25			
°) $\delta t(\mathbf{s})$	-		2.20			1.15			1.60	1.15							2.40			1	2.75						1	. 1.30					<u>-</u>			2.05					1.10	1.85	1.75			
(°) $\sigma_{\phi}($	- 0	58	4 14	- 2	51 -	4 72	- 02	16	6 24	0 55	87 —	31 -	14 —	54 —	88	53	75 6		55 	2	50 24	نۍ ا	- 62		22	4	88	6 47	 ∞ ;	 9 9	 	2 v 2 v 2 v	- FR	- 75 - 75	- 50	9 5	12 —	4		55 	4 75	6 16	7 31	88	1	
$ \phi (.)^{q_0}$	238 5	43 -6	245 4	249 -	246 -(250 4	33	251 -4	251 5	251 1	274 -8	245 -3	258 -	148 -	291 -8	246 -8	282 - 7	250 2	251 6	276 1	312	347 1	292 -	292 -	319 -	245 7	258 -8	148	248	238	200		110 171 1	309	315 -5	245 5	249 -	246 5	250 7	251 6	251 5	251 6	245 6	248 -8	3- 608	uente.
ongitud ø	177.6618 2	27.4135	176.9366 2	175.5659 2	173.8022 2	169.209 2	45.9563	168.6995	168.5743 2	168.683 2	142.7703 2	178.8033 2	167.3767	-25.7827	120.4335 2	173.8022 2	123.0401	169.209 2	168.8879 2	143.4846	141.438	94.9776	140.2197	140.2197	142.4323	178.8033 2	167.3767	-25.7827	176.4629	170.09c0	1/9.9209 1	103.1958 2 97.4195	179 9005 °C	139.8041	162.5497	176.9366 2	175.5659 2	173.8022 2	169.209 2	168.9362	168.8879 2	168.9185 2	178.8033 2	176.4629	139.8041	págına sıg
Latitud 1	-30.3103 -	36.9249	-23.7135 -	-18.9903 -	-20.5914 -	-21.6645	34.9052	-21.654	-21.5112	-21.3337	-6.0529	-23.2601 -	-14.5884	-56.4277	-1.2872	-20.5914 -	-7.2364	-21.6645	-21.6689	-4.2433	32.5208	29.8327	10.1164	10.1164	41.1034	-23.2601 -	-14.5884	-56.4277	-19.6664 -	-30.3103 -	-31.1U0	-4.7722 96.0040	00.9243 17 0600	27.7829	-50.371	-23.7135 -	-18.9903 -	-20.5914 -	-21.6645	-21.7305	-21.6689	-21.7928	-23.2601 -	-19.6664 -	27.7829	inúa en la
Fase	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	PKS	SKS	SKS	SKKS	SKS	PKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS		SAS 272	2712	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS.	Cont
Mag.	6.0	6.6	6.4	6.1	6.1	6.8	7.3	6.3	6.6	7.0	7.5	6.9	6.8	6.5	6.6	6.1	6.7	6.8	6.6	6.5	6.0	6.4	6.4	6.4	6.3	6.9	6.8	6.5	6.2	0.0	0.0	و و م	0.0 8	6.1	6.1	6.4	6.1	6.1	6.8	6.1	6.6	6.0	6.9	6.2	6.1	
Hora	18:20:55	22:31:11	04:20:00	14:04:38	12:00:59	00:42:06	18:18:17	09:25:47	15:09:03	22:43:29	17:44:44	17:28:44	13:52:10	23:23:37	14:35:21	12:00:59	10:47:47	00:42:06	02:23:55	21:26:38	07:42:11	22:34:19	00:22:54	00:22:54	10:51:19	17:28:44	13:52:10	23.23.37	17:42:30	18:20:55	01:03:12	03:36:08	00.00.59	17:26:49	01:43:30	04:20:00	14:04:38	12:00:59	00:42:06	00:09:29	02:23:55	05:09:00	17:28:44	17:42:30	17:26:49	
Fecha	728/06/2017	20/07/2017	$ 2017/09/26^*$	08/10/2017	18/10/2017	$2017/10/31^{*}$	12/11/2017	19/11/2017	2017/11/19*	2017/11/19*	25/02/2018	24/02/2017	09/05/2017	10/05/2017	29/05/2017	18/10/2017	$ 2017/10/24^*$	31/10/2017	01/11/2017	07/11/2017	2017/11/09*	17/11/2017	08/12/2017	08/12/2017	24/01/2018	24/02/2017	09/05/2017	$2017/05/10^{*}$	25/06/2017	28/06/2017	2107/00/67	13/07/2017	9017/08/10*	07/09/2017	20/09/2017	$20\dot{1}7/\dot{0}9/26*$	08/10/2017	18/10/2017	31/10/2017	01/11/2017	$ 2017/11/01^*$	$2017/11/01^{*}$	$2017/02/24^{*}$	25/06/2017	07/09/2017	
Longitud	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.37	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.00	-96.64	-96.64	-96.64	-96.64	-96.64	-90.04	-96.64	-90.04 06.64	-96.64	-96.64	-96.64	-96.64	-96.64	-96.64	-96.64	-96.64	-96.64	-96.14	-96.14	-96.14	
Latitud	18.63	18.63	18.63	18.63	18.63	18.63	18.63	18.63	18.63	18.63	18.63	18.28	18.28	18.28	18.28	18.28	18.28	18.28	18.28	18.28	18.28	18.28	18.28	18.28	18.28	19.22	19.22	19.22	19.22	19.22	10.02	10.99	10.99	19.22	19.22	19.22	19.22	19.22	19.22	19.22	19.22	19.22	19.12	19.12	19.12	
Estación	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	LMAN	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	NOPA	ANGO	ANGO	ANGO	ANGO	ANGO	ANGO			ANGO	ANGO	ANGO	ANGO	ANGO	ANGO	ANGO	ANGO	ANGO	BRIO	BRIO	BRIU	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO GECO	GECO		GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

) Región epicentral	AUCKLAND ISLANDS- N.Z. REGION	SOUTH OF FIJI ISLANDS	TONGA ISLANDS	TONGA ISLANDS	BANDA SEA	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	W. CAROLINE ISLANDS- MICRONESIA	SOUTH OF FIJI ISLANDS	0 SOUTH SANDWICH ISLANDS REGION	SOUTH OF FIJI ISLANDS	FIJI ISLANDS REGION	NEWITDEC ISLANDS KEGION	NEW IRELAND REGION- F.N.G. DODETANESE ISI ANDS - ZDEEZE	FULLISIANDS RECION	TONGA ISLANDS	BANDA SEA	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	NEW GUINEA- PAPUA NEW GUINEA	NEW GUINEA- PAPUA NEW GUINEA	SOUTHEAST OF HONSHU- JAPAN	IRAN-IRAQ BORDER REGION	EASTERN XIZANG-INDIA BORDER REG.	LOYALTY ISLANDS	LUTALIT ISLANDS I OVALTY ISLANDS	W CARDINE ISLANDS MICRONESIA	HOKKAIDO- JAPAN REGION	SOUTHWEST OF AFRICA	NEW BRITAIN REGION- P.N.G.	SOUTH OF FIJI ISLANDS			JAPAN	NEW ZEALAND	FIJI ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	JAPAN	BULOLO - PAPUA NEW GUINEA	BULOLO - PAPUA NEW GUINEA	NAMATANAI - PAPUA NEW GUINEA	
s) $\sigma_{\delta t}(s)$											5 > 4.5	0 0.55		0.00 U	0.00 0	5 045			0 1.35	5 1.80	5 0.55	0 1.35						0 1.25	67-0 0 020 0	<u> </u>									5 1.15		5 1.45	5 1.70			
(°) δt(s				1		1	1			1	7 1.4	8 1.2			9 Z.U	6 14			2 1.4	0 1.9	4 0.9	1 0.9						0 1.5	т. г. г. г.									1	9 1.5		1 1.8	4 1.8			
ϕ (°) σ_{ϕ}	-37 -	- 06	-1-	85 -	- 89	- 68	ى ١	- 89	-	85 -	53 8	31 2	65 10	71 0 110			20 20 20	- 13	5 3	61 5	36 2	32 4	85 -	86 -	-41 -	23 –	74 -	57 57 57	31 26 10	 	- 29	-46 -	83 -	-37 -			-45 -	-40 -	54 6	43 -	-38	72 5	- 86	53 -	
$\phi_b(\circ) _{q\phi}$	315 .	245	249	246	282	250	251	251	292	243	148	245	248	258	7)7	551 150	246	282	250	251	251	251	276	276	312	33	347	251	201 081	-00 -00	319	140	271	243			318	237	251	149	318	271	271	272	quiente
Longitud	162.5497	-176.9366	-175.5659	-173.8022	123.0401	169.209	168.6995	168.5743	140.2197	-176.6055	-25.7827	179.6059	-176.4629 170.0020	159 1050	103.1908 97.4195	178 8406	-173.8022	123.0401	169.209	168.9362	168.8879	168.9185	143.4846	143.4846	141.438	45.9563	94.9776	168.6995	168.5743 168.692	140.9197	142.4323	9.6842	151.396	-176.6055			146.9126	-177.8845	-178.5889	-27.856	143.2985	146.4505	146.4505	152.5694	a página si
Latitud	-50.371	-23.7135	-18.9903	-20.5914	-7.2364	-21.6645	-21.654	-21.5112	10.1164	-24.8965	-56.4277	-24.0934	-19.6664	-31.1U0	2711. 1 -	0090-11-	-20.5914	-7.2364	-21.6645	-21.7305	-21.6689	-21.7928	-4.2433	-4.2433	32.5208	34.9052	29.8327	-21.654	-2110.12 91 2227	1000017-	41.1034	-53.0623	-5.4617	-24.8965			41.9557	-32.0238	-17.8512	-55.9206	40.4096	-6.973	-6.973	-4.081	tinúa en le
Fase	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	C/10	C/10	SKG	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	PKS	SKS	CNC DND	SKG	SKS	SKS	SKS	SKS			SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKKS	Con
Mag.	6.1	6.4	6.1	6.1	6.7	6.8	6.3	6.6	6.4	6.1	6.5	6.1	2.9 0.7	0.0	9.4 9	0.0 9	6.1	6.7	6.8	6.1	6.6	6.0	6.5	6.5	6.0	7.3	6.4	6.3	0.0	Р.Ч	6.3	6.6	6.6	6.1			5.9	6.4	6.2	6.4	6.0	7.1	7.1	7.6	
Hora	01:43:30	04:20:00	14:04:38	12:00:59	10:47:47	00:42:06	09:25:47	15:09:03	00:22:54	05:57:31	23:23:37	22:26:01	17:42:30	07:26:00	00:06:60 11.16.66	00.60	12:00:59	10:47:47	00:42:06	00:09:29	02:23:55	05:09:00	21:26:38	21:26:38	07:42:11	18:18:17	22:34:19	09:25:47	00-67-66	77-01-77	10.51.19	16:03:03	09:51:00	05:57:31			03:22:54	15:46:14	08:12:26	16:14:16	08:18:21	21:19:37	21:19:37	12:58:25	
Fecha	20/09/2017	26/09/2017	08/10/2017	18/10/2017	24/10/2017	31/10/2017	19/11/2017	19/11/2017	08/12/2017	02/04/2018	2017/05/10*	2017/06/17*	25/06/2017	467/90/2106	20/02/2012	0117/08/10*	18/10/2017	24/10/2017	$20\dot{1}7\dot{1}0/31^{*}$	2017/11/01*	2017/11/01*	2017/11/01*	07/11/2017	07/11/2017	09/11/2017	12/11/2017	17/11/2017	$2017/11/19^{\circ}$	2012/11/108	08/19/9017	24/01/2018	28/01/2018	26/03/2018	02/04/2018			02/03/2019	06/03/2019	2019/03/10*	05/04/2019	11/04/2019	06/05/2019	06/05/2019	14/05/2019	
Longitud	-96.14	-96.14	-96.14	-96.14	-96.14	-96.14	-96.14	-96.14	-96.14	-96.14	-96.70	-96.70	-96.70	-90.10	-90.10 06.70	07.06-	-96.70	-96.70	-96.70	-96.70	-96.70	-96.70	-96.70	-96.70	-96.70	-96.70	-96.70	-96.70	-90.70 06.70	01.06-	-96.70	-96.70	-96.70	-96.70			-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	
Latitud	19.12	19.12	19.12	19.12	19.12	19.12	19.12	19.12	19.12	19.12	18.59	18.59	18.59	10.09	10 EO	18 50	18.59	18.59	18.59	18.59	18.59	18.59	18.59	18.59	18.59	18.59	18.59	18.59	10.09 10 50	18 50	18.59	18.59	18.59	18.59			16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	
Estación	BRIO	BRIO	BRIO	BRIO	BRIO	BRIO	BRIO	BRIO	BRIO	BRIO	TEZO	TEZO	TEZO	1 E.Z.O	1 EZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	TEZO	1 EZO	TEZO	TEZO	TEZO	TEZO	TEZO	CAXA	ZACA	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO GECO		CDECO CECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO CECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

Región epicentral	TADINE - NEW CALEDONIA	VAINI - TONGA	'OHONUA - TONGA	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	TSURUOKA - JAPAN	LESPERANCE ROCK - NEW ZEALAND	RAOUL ISLAND - NEW ZEALAND	VISOKOI ISLAND	NDOI ISLAND - FIJI	BITUNG - INDONESIA	OZERNOVSKIY - RUSSIA	MAMURRAS - ALBANIA	KIRAKIRA - SOLOMON ISLANDS	KIRAKIRA - SOLOMON ISLANDS	SOUTH SANDWICH ISLANDS REGION	KOKOPO - PAPUA NEW GUINEA	KURILSK - RUSSIA	KERMADEC ISLANDS REGION	SOLA - VANUATU	BONIN ISLANDS - JAPAN REGION	BONIN ISLANDS - JAPAN REGION	GREECE	BANDA SEA	LATA - SOLOMON ISLANDS	NAZE - JAPAN	KERMADEC ISLANDS	BATANG - INDONESIA	POPONDETTA - PAPUA NEW GUINEA	XIZANG	SOUTH SANDWICH ISLANDS REGION	DULID UF FIJI IJEANDO	BULOLO - PAPUA NEW GUINEA	NAMATANAI - PAPUA NEW GUINEA	VAINI - TONGA	JAPAN REGION	LESPERANCE ROCK - NEW ZEALAND	TSURUOKA - JAPAN	LESPERANCE ROCK - NEW ZEALAND	RAOUL ISLAND - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	LAKATORO - VANUATU	NAMIE - JAPAN	OZERNOVSKIY - RUSSIA	
$\sigma_{\delta t}(\mathbf{s})$		0.90		1.55	0.80	1.60			0.70	2.40	0.75				0.70		0.95	0.45	1.75			1.75				1.10		2.05	0.70	0.15	0.25	0.80	1.1U			1.10		0.65					1.20		3.10	
) $\delta t(\mathbf{s})$		1.00		1.00	0.75	1.40			0.70	1.00	1.05				2.65		1.60	2.00	0.50			1.10				2.50		0.70	1.85	1.15	1.35	1.50	1.4U			1.35		1.70					1.70		0.80	
$\sigma_{\phi}(^{\circ}$		26		74	39	51	I		58	80	51	I			13		23	15	55	I	I	56				13		53	21	12	77	17	10	5		58	I	9					44		83	
$()\phi()$	-13	37	67	-22	24	39	48	56	36	44	43	19	-36	-49	-	58	-18	59	က္	-29	176	-34	23	-36	82	72	47	16	43	38	<u>б</u>	44	40 7 C	1 02	16	43	-53	51	43	68	-24	55	-10	-43	-15 ·	nte.
$\phi_b(^{\circ})$	250	247	247	239	238	238	318	238	239	148	247	289	326	43	264	264	152	271	321	241	259	308	308	47	277	261	316	236	290	270	357	152	244 971	571	272	246	310	238	318	238	238	238	256	316	325	igure
Longitud	169.7779	-176.3171	-174.169	-178.106	-178.0827	-177.5972	139.4804	-177.5541	-177.787	-26.2338	-179.4911	126.414	153.6852	19.5212	161.2756	161.2756	-25.5526	152.1522	148.9293	-175.6074	167.0277	140.1312	140.1312	25.7124	129.8613	166.6482	128.2713	-177.8383	110.6952	147.7754	86.8666	-25.4055	-118.1039 146 4505	146.4505	152.5694	-176.3171	139.2932	-178.106	139.4804	-177.5541	-177.787	-177.4658	167.9982	141.6089	153.6852	ı págına s
Latitud	-21.6619	-21.7541	-21.1807	-30.644	-31.069	-30.9381	38.637	-31.0214	-30.6004	-55.6659	-21.9688	1.6199	53.1633	41.5149	-10.418	-10.418	-59.9212	-5.4925	45.6313	-27.3664	-13.1364	27.1271	27.1271	34.2045	-6.7949	-12.0662	28.8591	-33.2938	-5.5956	-7.8386	33.1463	-60.7812	- 24. / UD9 6 079	-6.973	-4.081	-21.7541	29.0623	-30.644	38.637	-31.0214	-30.6004	-30.8598	-16.1985	37.7597	53.1633	inúa en le
Fase	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	\mathbf{PKS}	SKS	SKS	SKS	SKKS	SKS	KKS	SKS	SKS	SKS	SKS	SXKS	SKS	PKS	SKS	SKS	SKS	KKS	SKS	PKS	SKS	CVC 0/10	KKS	KKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	Cont
Aag.	6.3	6.0	6.1	7.3	6.3	6.1	6.4	5.9	6.4	6.1	6.5	7.1	6.3	6.4	6.0	6.0	6.0	6.1	7.0	6.4	6.1	6.6	6.6	6.5	6.8	6.6	6.6	7.4	6.7	7.0	6.3	6.4	0.0 1	1.1	2.6	0.0	6.4	7.3	6.4	5.9	6.4	6.2	6.6	6.3	6.3	
Hora N	01:23:29	15:38:01	21:56:10	22:55:04	5:17:14	06:02:04	13:22:19	16:05:17	07:01:45	18:08:41	10:44:44	16:17:40	08:26:08	02:54:12	13:49:49	13:49:49	14:32:58	06:04:29	10:33:44	10:01:17	33:13:45	08:25:37	08:25:37	12:51:05	13:53:55	22:41:12	15:51:24	12:49:53	22:54:47	02:50:22	50:07:19	00:53:59	14:20:10	21:19:37	12.58.25	15:38:01	04:39:16	22:55:04	13:22:19	16:05:17	07:01:45	08:37:16	15:02:33	10:23:03	08:26:08	
Fecha	19/05/2019	$2019/05/30^{*}$	15/06/2019	15/06/2019	$2019/06/16^{*}$	2019/06/17*	18/06/2019	18/06/2019	2019/06/19*	2019/11/02*	$2019/11/08^{*}$	$14/\dot{1}1/\dot{2}019$	20/11/2019	26/11/2019	29/01/2020	29/01/2020	08/02/2020	09/02/2020	$2020/02/13^{*}$	14/03/2020	18/03/2020	$2020/04/18^{*}$	18/04/2020	02/05/2020	06/05/2020	12/05/2020	13/06/2020	$2020/06/18^{*}$	06/07/2020	2020/07/17*	22/07/2020	26/07/2020	2019/04/23* 9010/05/06*	2019/00/00 06/05/2019	14/05/2019	$2019/05/30^{*}$	04/06/2019	$20\dot{1}9/\dot{0}6/15^{*}$	18/06/2019	18/06/2019	19/06/2019	21/06/2019	31/07/2019	04/08/2019	2019/11/20*	
Longitud	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	-95.60	07.06-	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	
Latitud	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.40	16.01 16.01	16.01	16.91	16.91	16.91	16.91	16.91	16.91	16.91	16.91	16.91	16.91	16.91	
Estación	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	LUAL	LOAL	LOAL	LOAL	LOAL	LOAL	LOAL	LOAL	LOAL	LOAL	LOAL	LOAL	LUAL	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO		GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

	VICH							VICH										AND	AND	AND		AND		AND						VICH			NOL	NOT		AND		AND	VICH						VICH	
	UTH SAND ⁷	W GUINEA	REGION		AN REGION	ANDS		UTH SAND ¹	LANDS	V GUINEA	V GUINEA		SLANDS			REGION		NEW ZEAL	NEW ZEAL	NEW ZEAL		NEW ZEAL	IA	NEW ZEAL			Α			UTH SAND				TANDS		NEW ZEAL		NEW ZEAL	UTH SAND					~	UTH SAND	
tral	AND - SO	APUA NEV	ISLANDS	UATU	NDS - JAP	MON ISLA	AND	AND - SO	THE FIJI IS	APUA NEV	APUA NEV	APAN	THE FIJI IS	GA	FONGA	3 - JAPAN	FONGA	E ROCK -	E ROCK -	E ROCK -	- JAPAN	E ROCK -	INDONES	E ROCK -	PAN	D - FIJI	- ALBANI	GRECIA	GRECIA	AND - SOI	ISLANDS	DONESIA		TCT II DI MO	LONGA	E ROCK -	- JAPAN	E ROCK -	AND - SO	D - FIJI	AND	D - FIJI	DONESIA	- TURKEY	AND - SU	
tegión epicen	BRISTOL ISI	KOKOPO - P	(ERMADEC	OLA - VAN	30NIN ISLA	ATA - SOLC	JSOKOI ISL	BRISTOL ISI	OUTH OF T	3ULOLO - P	3ULOLO - P	/IYAKO - J∤	OUTH OF T	/AINI - TON	- AUNOHC	ZU ISLANDS	- AUNOHC	ESPERANC	ESPERANC	ESPERANC	SURUOKA	ESPERANC	AUMLAKI -	ESPERANC	HINGU - JA	IDOI ISLAN	AMURRAS	LATANOS -	LATANOS -	SRISTOL ISI	AERMADEC	SATANG - IP	ULANG DITTTI 9 NI	L TH OF T	- AUNOHC	ESPERANC	SURUOKA	ESPERANC	BRISTOL ISI	VDOI ISLAN	JSOKOI ISI	VDOI ISLAN	BITUNG - IN	OGANYOL	3RISTOL ISI	
$\delta_t(\mathbf{s}) \mathbf{F}$	1.20 E	1.10 F	<u>بر</u> ا	0.55 S	1.10 I	J.60 I	1.05 \	<u> </u>	1.15 S	1.65 E	J.85 E	-	<u>s</u>	1.45 \	2.50 1	- -	<u></u>	1.65 I	1 06.C	J.80 I	-	1.40 I	<u>s</u>	2.15 I	1.60 S	1.90	-	<u> </u>	<u> </u>		<u></u>		7 09 C		,40 ⁷	<u> </u>		<u> </u> 	1.10 E	-	<u>-</u> 	-	0.75 I	<u> </u>	<u></u> 	
$\delta t(\mathbf{s}) \sigma$	2.75	1.00		2.95 (1.65	1.30 (3.35		0.60	2.35	1.95 (2.25	0.80			1.85	1.35 (1.10		2.15		0.75	1.90	0.80						<u>-</u>	01.1 01.1		2.35 (1.40				2.00			
$\sigma_{\phi}(^{\circ})$	12	44		7	43	30	10		42	48	15			34	55			10	30	11		12		65	58	20				I			00 15	4	10	1			61				10			
$()\phi$	48	51	99	74	-40	49	42	54	13	81	76	-33	62	52	67	-42	64	-19	56	54	-29	57	19	52	37	51	-35	48	56	-24	2	22	40 7 7 7	5-1-	82	69	-22	-25	59	68	-15	-18	-79	34	-19	-+
$(\circ)^{q\phi}$	151	270	240	259	307	260	148	150) 244	271	271	318	245	247	5 247	310	247	239	, 239	239	319	3 239	278	3 239	315	- 248	43	47	47	152	1 24 1	291	000 150	1045	247	239	319	3 239	152	249	148	- 248	290	37	152	000000000
Longitud	-25.5526	152.1522	-175.6074	167.0277	140.1312	166.6482	-27.856	-25.2559	-178.7639	146.4505	146.4505	143.2985	-178.7639	-176.3171	-173.9076	139.2932	-174.169	-178.106	-178.0827	-177.5972	139.4804	-177.4658	129.1692	-177.3528	137.325	-179.4911	19.5212	23.2673	23.2673	-25.5526	-1/0.01/1-	110.6952	80.8000	-178 7630	-174.169	-178.0827	139.4804	-177.3528	-26.5801	-178.567	-26.2338	-179.4911	126.414	39.0883	-25.5526	0 00000
Latitud	-59.9212	-5.4925	-27.3664	-13.1364	27.1271	-12.0662	-55.9206	-58.6064	-24.7059	-6.973	-6.973	40.4096	-24.7059	-21.7541	-21.2091	29.0623	-21.1807	-30.644	-31.069	-30.9381	38.637	-30.8598	-6.4078	-30.763	33.1461	-21.9688	41.5149	35.7272	35.7272	-59.9212	-27.3064	-5.5956	60.1405 60.7019	-24 7059	-21.1807	-31.069	38.637	-30.763	-60.2152	-20.3599	-55.6659	-21.9688	1.6199	38.3897	-59.9212	Longia and
Fase	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	SKKS	SKS	SKKS	SKS	SKKS	SKS	SAS	SKKS	CA7	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	(non-
Mag.	0.0	6.1	6.4	6.1	6.6	6.6	6.4	6.5	6.0	7.1	7.1	6.0	6.0	6.0	6.0	6.4	6.1	7.3	6.3	6.1	6.4	6.2	7.3	5.9	6.3	6.5	6.4	6.0	6.0	6.0	6.4 1		0.0 7	109	6.1	6.3	6.4	5.9	6.6	6.6	6.1	6.5	7.1	6.7	6.0	
Hora	14:32:58	06:04:29	10:01:17	03:13:45	08:25:37	22:41:12	16:14:16	17:53:58	14:20:17	21:19:37	21:19:37	08:18:21	14:20:17	15:38:01	10:36:29	04:39:16	21:56:10	22:55:04	05:17:14	06:02:04	13:22:19	08:37:16	02:53:39	11:34:08	18:31:07	10:44:44	02:54:12	07:23:42	07:23:42	14:32:58	/T:TO:OT	22:54:47	61:10:02	14-20-17	21.56.10	05:17:14	13:22:19	11:34:08	23:55:19	15:54:20	18:08:41	10:44:44	16:17:40	17:55:14	14:32:58	
Fecha	08/02/2020	$2020/02/09^{*}$	14/03/2020	18/03/2020	18/04/2020	$2020/05/12^{*}$	05/04/2019	09/04/2019	$2019/04/23^{*}$	$2019/05/06^{*}$	$2019/05/06^{*}$	11/04/2019	23/04/2019	30/05/2019	$2019/06/02^*$	04/06/2019	15/06/2019	$2019/06/15^{*}$	$2019/06/16^{*}$	2019/06/17*	18/06/2019	$2019/06/21^{*}$	24/06/2019	$2019/06/24^{*}$	27/07/2019	$2019/11/08^{*}$	26/11/2019	27/11/2019	27/11/2019	08/02/2020	14/03/2020	06/07/2020	-72/10/0707	23/04/2019	$\frac{-3}{15}/06/2019$	16/06/2019	18/06/2019	24/06/2019	27/08/2019	01/09/2019	02/11/2019	08/11/2019	14/11/2019	24/01/2020	08/02/2020	
Longitud	-96.26	-96.26	-96.26	-96.26	-96.26	-96.26	-96.15	-96.15	-96.15	-96.15	-96.15	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	-95.36	- 90.30	-95.37	-95.37	-95.37	-95.37	-95.37	-95.37	-95.37	-95.37	-95.37	-95.37	-95.37	-95.37	
Latitud	16.91	16.91	16.91	16.91	16.91	16.91	17.33	17.33	17.33	17.33	17.33	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	10.79	16.79	16-70	17 19	17.19	17.19	17.19	17.19	17.19	17.19	17.19	17.19	17.19	17.19	17.19	
Estación	LOAL	LOAL	LOAL	LOAL	LOAL	LOAL	LIVI	LIVI	LIVI	LIVI	LIVI	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU		SATII	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	C C C C C C C C C C C C C C C C C C C			GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

Región epicentral	KURILSK - RUSSIA	KURILSK - RUSSIA	BANDA SEA	LATA - SOLOMON ISLANDS	LESPERANCE ROCK - NEW ZEALAND	SOUTH OF THE FIJI ISLANDS	BULOLO - PAPUA NEW GUINEA	IZU ISLANDS - JAPAN REGION	OHONUA - TONGA	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	RAOUIT, ISLAND - NEW ZEALAND	ILESPERANCE ROCK - NEW ZEALAND	LESPERANCE BOCK - NEW ZEALAND	TAMBACA FIII			LUWUK - INDUNESIA	BULOLO - PAPUA NEW GUINEA	IZU ISLANDS - JAPAN REGION	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	TSURUOKA - JAPAN	SAUMLAKI - INDONESIA	NDOI ISLAND - FIJI	OZERNOVSKIY - RUSSIA	MAMURRAS - ALBANIA	MAMURRAS - ALBANIA	DOGANYOL - TURKEY	BANDA SEA	NAZE - JAPAN	NAZE - JAPAN	NEMURO - JAPAN	BRISTOL ISLAND - SOUTH SANDWICH	SOUTH OF THE FIJI ISLANDS	BULOLO - PAPUA NEW GUINEA	BULOLO - PAPUA NEW GUINEA	OHONUA - TONGA	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	TSURUOKA - JAPAN	LESPERANCE ROCK - NEW ZEALAND	SAUMLAKI - INDONESIA	LESPERANCE ROCK - NEW ZEALAND	NAMIE - JAPAN	
$\sigma_{\delta t}(\mathbf{s})$	1.80	0.45	1.20					2.35										00.0			1.20				0.50	1.35		0.60			1.40	0.70	1.30	1.60			1.45				3.65				0.85			
) $\delta t(\mathbf{s})$	0.95	1.05	1.55					0.75					l				000	00.2		l	0.90				1.85	1.90		1.60			1.80	2.00	2.15	1.25		l	1.65				0.85				2.05			
$\sigma_{\phi}(\degree)$	84	43	40	I	I			54		I							G	70			38			I	20	63		27			33	25	46	43	I		54		I		63				21			
$()\phi$	84	81	62	74	-12	77	×	-67	87	-25	-23	2	64	34	- 72	29	36	707	1	?	86	-36	50	-27	-65	33	59	-62	-49	-49	53	32	-62	81	-55	-29	-16	-2	18	-10	45	-30	52	-27	36	22	-42	tte.
$(\circ)^{q\phi}$	321	321	278	261	238	245	272	311	247	239	239	239	239	230	938	012 071	104	919 000	289	272	311	239	239	239	319	279	248	326	43	43	37	279	317	317	319	151	245	272	272	247	239	239	319	239	280	239	317	iguier
Longitud	148.9293	148.9293	129.8613	166.6482	-177.8845	-178.7639	146.4505	139.2932	-174.169	-178.106	-177.5972	177.5541	-177.787	177 35 28	177 8845	179 5990	149 000°	140.2300 100 7707	7700.221	146.4505	139.2932	-178.106	-178.0827	-177.5972	139.4804	129.1692	-179.4911	153.6852	19.5212	19.5212	39.0883	129.8613	128.2713	128.2713	146.9126	-25.2559	-178.7639	146.4505	146.4505	-174.169	-178.0827	-177.5972	139.4804	-177.4658	129.1692	-177.3528	141.6089	ı página s
Latitud	45.6313	45.6313	-6.7949	-12.0662	-32.0238	-24.7059	-6.973	29.0623	-21.1807	-30.644	-30.9381	-31.0214	-30.6004	-30.763	32 0238	17 9519	- 7TCO-1T-	40.4090	2102.1-	-6.973	29.0623	-30.644	-31.069	-30.9381	38.637	-6.4078	-21.9688	53.1633	41.5149	41.5149	38.3897	-6.7949	28.8591	28.8591	41.9557	-58.6064	-24.7059	-6.973	-6.973	-21.1807	-31.069	-30.9381	38.637	-30.8598	-6.4078	-30.763	37.7597	inúa en le
Fase	SKS	SKKS	\mathbf{PKS}	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	o Ko			CAC CALC	SKKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKKS	SKS	PKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	Cont
Mag.	7.0	7.0	6.8	6.6	6.4	6.0	7.1	6.4	6.1	7.3	6.1	5.9	6.4	10	6.4	- C 9	4 C	0.0	ν. 1 0.0	7.1	6.4	7.3	6.3	6.1	6.4	7.3	6.5	6.3	6.4	6.4	6.7	6.8	6.6	6.6	5.9	6.5	6.0	7.1	7.1	6.1	6.3	6.1	6.4	6.2	7.3	5.9	6.3	
Hora 1	10:33:44	10:33:44	13:53:55	22:41:12	15:46:14	14:20:17	21:19:37	04:39:16	21:56:10	22:55:04	06:02:04	16:05:17	07:01:45	11-34-08	15.46.14	19-19-96	10-12-20 10-10-01	17:01:01	11:40:49	21:19:37	04:39:16	22:55:04	05:17:14	06:02:04	13:22:19	02:53:39	10:44:44	08:26:08	02:54:12	02:54:12	17:55:14	13:53:55	15:51:24	15:51:24	03:22:54	17:53:58	14:20:17	21:19:37	21:19:37	21:56:10	05:17:14	06:02:04	13:22:19	08:37:16	02:53:39	11:34:08	10:23:03	
Fecha	$2020/02/13^{*}$	$2020/02/13^{*}$	2020/05/06*	12/05/2020	06/03/2019	23/04/2019	06/05/2019	04/06/2019	15/06/2019	15/06/2019	17/06/2019	18/06/2019	19/06/2019	24/06/2019 24/06/2019	-1/00/2010 06/03/2010	00/09/2019 10/02/9010	0107/00/01	11/04/2019	12/04/2019	06/05/2019	$2019/06/04^{**}$	15/06/2019	16/06/2019	17/06/2019	$2019/06/18^{**}$	$2019/06/24^{*}$	08/11/2019	$2019/11/20^{**}$	26/11/2019	26/11/2019	$2020/01/24^{*}$	$2020/05/06^{*}$	$2020/06/13^{**}$	$2020/06/13^{**}$	02/03/2019	09/04/2019	23/04/2019	06/05/2019	06/05/2019	15/06/2019	$2019/06/16^{*}$	17/06/2019	18/06/2019	21/06/2019	24/06/2019	24/06/2019	04/08/2019	
Longitud	-95.37	-95.37	-95.37	-95.37	-94.69	-94.69	-94.69	-94.69	-94.69	-94.69	-94.69	-94.69	-94.69	-04 60	-04 03	04.02	06.16-	- 94.90 04.00	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.93	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	-94.89	
Latitud	17.19	17.19	17.19	17.19	18.27	18.27	18.27	18.27	18.27	18.27	18.27	18.27	18.27	18 27	18.00	18.00	10.00	10.00 10.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.00	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	
Estación	SATU	SATU	SATU	SATU	PAJA	PAJA	PAJA	PAJA	PAJA	PAJA	PA.JA	PAJA	PA.IA	PAJA	ACAV			ACAL	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	PEGO	
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	0010 0010	CODE CODE CODE CODE CODE CODE CODE CODE				GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

0 PEGO 155 45. 41,411 26. 41,411 2	ed Esta. ECO PEG	ción Latitud O 18.54	Longitud -94.89	Fecha 2019/09/01*	Hora 15:54:20	Mag. 6.6	Fase SKS	Latitud -20.3599	Longitud -178.567	$\frac{\phi_b(^\circ)}{249}$	$\phi(\circ) \circ \frac{\phi(\circ)}{68}$	$\frac{\phi(\circ)}{57}$	$\frac{\delta t(s)}{1.75} \epsilon$	$\frac{\tau_{\delta t}(\mathbf{s})}{1.40}$	Región epicentral NDOI ISLAND - FIJI
PECO B54 -0.13 -0.11/2010 -0.6173 -0.13 -0.11/2010 -0.677800V5KY-RUSSIA PECO 15.41 -0.12 -0.	O PEG	0 18.54	-94.89	$\frac{-09}{2019}$	10:44:44	6.5	SKS	-21.9688	-179.4911	248	52	34	0.80	0.60	NDOI ISLAND - FIJI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O PEG	0 18.54	-94.89	14/11/2019	16:17:40	7.1	SKKS	1.6199	126.414	292	49	;			BITUNG - INDONESIA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 PEG	O 18.54	-94.89	20/11/2019	08:26:08	6.3	SKS	53.1633	153.6852	326	-71	21	1.15	0.25	OZERNOVSKIY - RUSSIA
0 TLO.X -0.43 T/0/2010 124/35 10.0 355 10.0 355 10.0 355 10.0 355 3412 1777 9 250 TMARANAL FARANS FARANAL 0 TT 777 94.3 T/0/2010 5553 17.733 15 1.5 1.5 2.2 1.0	O PEG	0 18.54	-94.89	26/11/2019	02:54:12	6.4	SKS	41.5149	19.5212	43	-41				MAMURRAS - ALBANIA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 JDC	н Н		'		I									· · · · · · · · · · · · · · · · · · ·
0 F11 17.7 94.3 17.02/001 163.13 153 125 201 100.102/001 111.13 17.7 94.3 101.02/001 163.13 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 153 154 153 153 154 153 153 154 153 153 154 153 153 154 153 153 154 154 154 154 154 154 154 154 154 154 154 155 155 155 156 155 155 156 155 155 156 155 155 156 155 155 156 155 156	O FILI	17.79	-94.24	12/02/2019	12:34:16	6.0	SKS	19.02	145.7965	299	46	$\frac{22}{5}$	2.60	1.00	MARIANA ISLANDS
0 FILI 11.7 9-34.3 2019/03/16 51.3 11.3 11.5	O FILI	17.79	-94.24	17/02/2019	14:35:55	6.4	SKKS	-3.3412	152.1319	274	H	с, Г	2.85	0.75	NAMATANAI - PAPUA NEW GUINEA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O FILI	17.79	-94.24	2019/03/06*	15:46:14	6.4 0	SKS	-32.0238	-177.8845 179.7000	238	41	55	1.25 1 7 7	2.20	LESPERANCE ROCK - NEW ZEALAND
MIXE T168 -9.82 U/0/10/12 MIXE		11.19 17.00	-94.24 04.00	2018/03/10-	02:21:20	7.0		-11.5012	-1/5.0509	107	5- 5-	60	CC-1		
0 MIXE 17.68 -94.82 53.66/5-0019 143.6456 27.5 -5.7 - - - - 00111110 112.1112.13.4713 0 MIXE 17.68 -94.82 16/6/6/2019 123.815 -6.53 55.85 -5.064 -175.10 52.85 -0.041 177.1112.13.4713 53.85 -0.041 177.105 -175.10 52.85 -0.041 177.105 -175.10 52.85 -0.041 177.105 -175.10 53.85 -0.041 177.105 -175.105 147.11		E 17.68	-94.82	11/04/2019	08:18:21	6.0 0	SKS	40.4096	143.2985	319	-71		1		MI YAKU - JAPAN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		E 17.68	-94.82	23/04/2019	14:20:17	0.0 1	SKS	-24.7059 24.7059	-1/8./639	245	7.7-				SOUTH OF THE FIJI ISLANDS
0 MIXE T/68 -94.8 0/0/5/2010 012/35/36 51.85 -0.11		E 17.68	-94.82	06/05/2019	21:19:37	7.1	SKKS	-6.973	146.4505	272	-87				BULOLO - PAPUA NEW GUINEA
D NIXE T.G.	O MIX	E I7.68	-94.82	19/05/2019	01:23:29	6.3	SKS	-21.6619	169.7779	751	62				TADINE - NEW CALEDONIA
D MIXE 17.68 -94.82 [16)(6)(2)(0) 535540 73 3553 -0 - - LESPERANCE ROCK - NEW ZEALAND D MIXE 17.68 -94.82 [16)(2)(2)(0) 05337541 73 314 15 - - LESPERANCE ROCK - NEW ZEALAND D MIXE 17.68 -94.82 [16)(2)(2)(0) 05333541 513 314 140 BNUTCL FLORE ROCK - NEW ZEALAND D MIXE 17.68 -94.82 [16)(2)(2)(0) 05333541 513 314 140 BNUTCL FLORE ROCK - NEW ZEALAND D MIXE 17.68 -94.82 [16)(2)(2)(2) 0545200 1154-124 52 91001 154.24 53 910 128 140 180 114.1 176 140 154 140 154 154 154 154 154 154 154 154 154 154 154 155 141 158 150 154 154 154 154 154 </td <td>0 MIX</td> <td>E 17.68</td> <td>-94.82</td> <td>04/06/2019</td> <td>04:39:16</td> <td>6.4</td> <td>SKS</td> <td>29.0623</td> <td>139.2932</td> <td>311</td> <td>-36</td> <td></td> <td></td> <td></td> <td>IZU ISLANDS - JAPAN REGION</td>	0 MIX	E 17.68	-94.82	04/06/2019	04:39:16	6.4	SKS	29.0623	139.2932	311	-36				IZU ISLANDS - JAPAN REGION
D MIXE 17.68 -04.82 [16)(2)(2)(6)(2)(6)(2)(6) 53.85 -31.0381 177.130 -04.82 [17)(6)(2)(0) 65.236.16 53.85 -30.381 177.157 -17 20 080 SMUMLARL - INDONESIA D MIXE 17.68 -94.82 21/(6)(2)(0) 65.353.61 66 SIXS -0.125 75.14.61 JMONCESIA NIVE TAB JMONCESIA NIVE TAB -14.82 75/(6)(2)(0) 55.353.61 66 SIXS -0.128 75.14.61 JMONCESIA NIVE TAB JMONCESIA NIVE TAB JMONCESIA NIVE JMONCESIA JMONCESI	0 MIX	E 17.68	-94.82	15/06/2019	22:55:04	7.3	SKS	-30.644	-178.106	239	-20				LESPERANCE ROCK - NEW ZEALAND
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 MIX	E 17.68	-94.82	16/06/2019	05:17:14	6.3	SKS	-31.069	-178.0827	239	62				LESPERANCE ROCK - NEW ZEALAND
0 MIXE T/68 94.82 21/05/2019 02553:13 73 64.078 129.165 75 149 DIMLEMAND	0 MIX	E 17.68	-94.82	17/06/2019	06:02:04	6.1	SKS	-30.9381	-177.5972	239	-34				LESPERANCE ROCK - NEW ZEALAND
D MIXE T/68 94.82 T/09/2010 E55.45.66 E55.45.66 E55.45.65 E5 L43 L44 E54.20 E5 SIXTND-FJI DVIXTND-FJI 0 MIXE T/68 -94.82 0/09/2010 12.65.420 66 SIXS-30.175 -177.661 13 D01 SIXTND-FJI DVIXTND-FJI DVIXTND-FJI DVIXTND-FJI DVIXTD-FJI DVIXTD-FJI<	0 MIX	E 17.68	-94.82	24/06/2019	02:53:39	7.3	PKS	-6.4078	129.1692	279	-71	20	2.30	0.80	SAUMLAKI - INDONESIA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 MIX	E 17.68	-94.82	27/08/2019	23:55:19	6.6	SKS	-60.2152	-26.5801	152	59	75	1.45	1.40	BRISTOL ISLAND - SOUTH SANDWICH
D MIXE I7.68 -94.32 27/09/2019 129.6302 61 SKS -90.1755 -177.8611 239 -30 - - RAOUL ISIAND - NEW ZEALAND 0 MIXF 17.68 -94.32 31/0/2017 192.63.03 319 24 - - RAOUL ISIAND - NEW ZALAND 0 UAXT - - - - - RAOUL ISIAND - NEW ZALAND 55 - - - - - - RAOUL ISIAND - NEW ZALAND 55 - <	O MIX	E 17.68	-94.82	01/09/2019	15:54:20	6.6	SKS	-20.3599	-178.567	249	-15	75	1.40	1.95	NDOI ISLAND - FIJI
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 MIX	E 17.68	-94.82	27/09/2019	12:05:02	6.1	SKS	-30.1755	-177.8611	239	-30				RAOUL ISLAND - NEW ZEALAND
D UJAT	XIM 0	E 17.68	-94.82	03/05/2020	11:54:24	5.9	SKKS	31.404	128.8393	319	24			1	KUSHIKINO - JAPAN
BDI 14.56 -92.22 31/10/2017 0642.06 57 S10 101 Each	O UJA	L				I									1
BDI 14.56 -9.22 2017/11/09* 07.42:11 6.0 SKS 34.905 36 55 1 1 1 1.400 IAAA JAPAN SEM B01 14.56 -9.22 2017/11/9* 09.25:18 6.3 SKS -21.635 53 1.5 1.6 1.9 1.400 IAAA JADNE IAAAA JADNE IAAA JADNA	SEM B01	14.56	-92.22	31/10/2017	00:42:08	6.7	SKS	-21.6645	169.209	251	64				TADINE - NEW CALEDONIA
SEM B01 14.56 -92.22 12/11/2017 81.81:7 7.3 SKS 34.9052 55.91.65 -0 -1 HALABJAH - IRAQ SEM B01 14.56 -92.22 2017/17/119* 092.33 SKS -21.654 186.683 55.0 -1 76 19.5 ZMDNIE -NEW CALEDONIA SEM B01 14.56 -92.22 2018/01/24* 10551:19 6.3 SKS 41.1034 142.4323 319 78 - - MISAWA - JAPAN SEM B01 14.56 -92.22 2018/01/24* 10551:19 6.3 SKS 41.1034 142.4323 319 73 49 120 IDNNE - NEW CALEDONIA SEM B01 14.56 -92.22 2018/01/24* 10551:19 6.3 SKS 21.034 102.4100 ISAWA - JAPAN SEM B02 15.29 -92.06 17/17/2017 223475 6.4 SKKS 10.102107 23337 94.9776 350 -23 -1011104 10.201104 10.1164 10.12017	SEM B01	14.56	-92.22	2017/11/09*	07:42:11	6.0	SKS	32.5208	141.438	313	37	57	1.90	1.40	HACHIJO-JIMA - JAPAN
SEM B01 14.56 -92.22 2017/11/19* 09:25:48 5.3 SKS -21:337 168.683 250 17 0 1.9 1.20 DOIN SEM B01 14.56 -92.22 19/11/2017 22:43:29 10.551:19 6.3 SKS -1.035 11.337 168.683 250 7 -1 -1 MGXMV- JAPAN SEM B01 14.56 -92.22 20/01/2018 10.551:19 6.3 SKS -1.034 142.4323 319 73 49 1.20 1.00 MISAWA- JAPAN SEM B02 15.29 -92.69 01/1/2017 02:23:357 6.3 SKS -1.15 14 -1 -1 TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 01/1/2017 02:458 16:351:9 6.3 SKS -21:337 168.877 27 -15 14 -1 120 100 MISAWA- JAPAN SEM B02 15.29 -92.69 17/11/2017 02:23:41.103 </td <td>SEM B01</td> <td>14.56</td> <td>-92.22</td> <td>12/11/2017</td> <td>18:18:17</td> <td>7.3</td> <td>SKS</td> <td>34.9052</td> <td>45.9563</td> <td>36</td> <td>-55</td> <td> </td> <td>1</td> <td> </td> <td>HALABJAH - IRAQ</td>	SEM B01	14.56	-92.22	12/11/2017	18:18:17	7.3	SKS	34.9052	45.9563	36	-55		1		HALABJAH - IRAQ
BDI 14.56 -92.22 19/11/2017 22:43:29 70 SKS -11.034 142:43:23 110 -111 -111<	SEM B01	14.56	-92.22	2017/11/19*	09:25:48	6.3	SKS	-21.654	168.6995	250	-	76	1.95	2.30	TADINE - NEW CALEDONIA
SEM B01 14.56 -92.22 24/01/2018 10551:19 6.3 SKS 41.1034 142.4323 319 73 49 120 10.0 MISAWA - JAPAN SEM B01 14.56 -92.22 26/01/2018 10551:19 6.3 SKS 41.1034 142.4323 319 73 49 120 ID MISAWA - JAPAN SEM B01 14.56 -92.22 26/01/02018 2.7 5.5 S50 -24 MISAWA - JAPAN SEM B02 15.29 -92.69 01/11/2017 024208 6.7 SKS -21.6639 6.8 SKS -23.1337 16.8688 250 -24 MISAWA - JAPAN SEM B02 15.29 -92.69 01/11/2017 022357 6.6 SKS -11.034 142.4323 319 -0 -105 NYINGCHI - CHINA SEM B02 15.29 -92.69 19/11/2017 2234327 6.4 SKS 41.02317 323 142.4323 319 -0 <td>SEM B01</td> <td>14.56</td> <td>-92.22</td> <td> 19/11/2017</td> <td>22:43:29</td> <td>7.0</td> <td>SKS</td> <td>-21.3337</td> <td>168.683</td> <td>250</td> <td>71</td> <td></td> <td></td> <td> </td> <td>TADINE - NEW CALEDONIA</td>	SEM B01	14.56	-92.22	19/11/2017	22:43:29	7.0	SKS	-21.3337	168.683	250	71				TADINE - NEW CALEDONIA
SEM B01 14.56 -92.22 2018/01/24* 10.51:19 6.3 SKKS 41.034 142.4323 319 73 49 120 100 MISAWA JAPAN SEM B01 14.56 -92.22 26/01/2018 224.457 6.3 SKS -3.5138 145.8477 274 -15 14 -0 MISAWA JAPAN SEM B02 15.29 -92.69 011/1/2017 022357 6.5 SKS -21.6689 168.887 250 -23 TADINE NEW CALEDONIA SEM B02 15.29 -92.69 01/1/2017 022357 6.6 SKS -21.6689 168.887 250 -18 TADINE NFW GCHI -CHINA SEM B02 15.29 -92.69 03/11/2017 2234329 7.0 SKS 41.02317 223 142.4323 319 40 MISAWA JAPAN SEM B02	SEM B01	14.56	-92.22	24/01/2018	10:51:19	6.3	SKS	41.1034	142.4323	319	58				MISAWA - JAPAN
SEM B01 14.56 -92.22 26/01/2018 22:47:57 6.3 SKS -3.5138 145.847 274 15 14 - - TADING PAPUA NEW GUINEA SEM B02 15.29 -92.69 01/11/2017 02:23:57 6.6 SKS -21.6645 169.209 250 -24 - - TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 17/11/2017 22:33:19 6.4 SKKS 29.689 168.8879 250 -24 - - TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 19/11/2017 22:34:10 6.4 SKKS 10.10217 22:34:20 70 SKS -11.4 - - - TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 08/12/2017 02:22:34:10 6.3 SKS 41.102197 292 -74 - - - TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 24/01/2018 10:51:19 6.3 SKKS 41.02197 292 -74	SEM B01	14.56	-92.22	$2018/01/24^{*}$	10:51:19	6.3	SKKS	41.1034	142.4323	319	73	49	1.20	1.00	MISAWA - JAPAN
SEM B02 15.29 -92.69 31/10/2017 00:42:08 6.5 SKS -21.6645 169.209 251 -14 -1 -1 TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 17/11/2017 02:23:371 6.6 SKS -21.6689 168.8879 250 -24 -1 -1 TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 19/11/2017 22:33:19 6.4 SKS -21.6689 168.8779 250 -23 -1 -1 -1 TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 19/11/2017 22:34:19 6.4 SKS -10.164 140.2197 23 12 -1 -1 -1 -1 NYINGCHI -CHLEDONIA SEM B02 15.29 -92.69 19/11/2017 22:34:19 6.3 SKS 41.1034 142.4323 319 40 -1 -1 TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 24/01/2018 10:51:19 6.3 SKKS 41.1034 142.4323 319 40 -1 -1 MISAWA - JAPUA	SEM B01	14.56	-92.22	26/01/2018	22:47:57	6.3	SKS	-3.5138	145.8477	274	-15	14	3.05	0.45	MADANG - PAPUA NEW GUINEA
SEM B02 15.29 -92.69 0/1/1/2017 02:23:37 6.6 SKS -21.6689 168.8879 250 -24 - - TADINE - NEW CALEDONIA SEM B02 15.29 -92.69 17/11/2017 22:34:19 6.4 SKKS 29.837 168.683 250 -18 - - NYINGCHI - CHINA SEM B02 15.29 -92.69 19/11/2017 22:34:19 6.4 SKKS 10.1164 140.2197 292 -74 - - - NYINGCHI - CHINA SEM B02 15.29 -92.69 24/01/2018 1051:19 6.3 SKKS 41.1034 142.4323 319 40 - - - MISAWA - JAPAN SEM B02 15.29 -92.69 2018/02/28* 02:45:45 6.1 SKKS -11034 142.4323 319 40 - - - MISAWA - JAPAN SEM B02 15.29 -92.69 2018/02/28* 02:45:45 6.1 SKKS -1673 142.4795 273 16 09 070 078 0710 078 0710	SEM B02	15.29	-92.69	31/10/2017	00:42:08	6.7	SKS	-21.6645	169.209	251	-14		1		TADINE - NEW CALEDONIA
SEM B02 15.29 -92.69 17/11/2017 22:34:19 6.4 SKKS 29.8327 94.9776 350 -23 -23 -24 - - MNGCHI CHINA SEM B02 15.29 -92.69 19/11/2017 22:43:29 7.0 SKS 10.1164 140.2197 292 -74 - - - MNGCHI CHINA SEM B02 15.29 -92.69 19/11/2018 1051:19 6.3 SKS 41.03197 292 -74 - - - MNGCHI CHINA SEM B02 15.29 -92.69 24/01/2018 1051:19 6.3 SKKS 41.03197 292 74 - - - MISAWA JAPAN SEM B02 15.29 -92.69 24/01/2018 1051:19 6.3 SKKS 41.03495 273 16 19 210 0.9 36 DORGERA PAPUA NEW GUINEA SEM B02 15.29 -92.69 2918/02/28* 02:45:45 6.1 SKKS -142.4795 273 16 19 210 0.9 <	SEM B02	15.29	-92.69	01/11/2017	02:23:57	9.0	SKS	-21.6689	168.8879	250	-24				TADINE - NEW CALEDONIA
SEM B02 15.29 -92.69 19/11/2017 22:43:29 7.0 SKS -21.3337 168.683 250 -18 - - - Habbit Table - NEW CALEDONIA SEM B02 15.29 -92.69 08/12/2017 02:22:43:29 7.0 SKS 10.1164 140.2197 292 -74 - - - Miscanda Similar SEM B02 15.29 -92.69 24/01/2018 1051:19 6.3 SKKS 41.1034 142.4323 319 -40 - - Miscanda - SMAN JAPAN SEM B02 15.29 -92.69 24/01/2018 1051:19 6.3 SKKS 41.1034 142.4323 319 -40 - - Miscanda - SMAN JAPAN SEM B02 15.29 -92.69 24/01/2018 1051/208* 02:453 61.573 142.4795 273 16 19 2.10 0.95 PORGERA - PAPUA NEW GUINEA SEM B02 15.29 -93.54 6.1 SKKS -6.1673 142.4795 273 37 65 0.70 3.60 0.70 3.61 0.	SEM B02	15.29	-92.69	17/11/2017	22:34:19	6.4	SKKS	29.8327	94.9776	350	-23				NYINGCHI - CHINA
SEM B02 15.29 -92.69 08/12/2017 00:22:54 6.4 SKKS 10.1164 140.2197 292 -74 -7	SEM B02	15.29	-92.69	19/11/2017	22:43:29	7.0	SKS	-21.3337	168.683	250	-18				TADINE - NEW CALEDONIA
SEM B02 15.29 -92.69 24/01/2018 10:51:19 6.3 SKS 41.1034 142.4323 319 54 MISAWA - JAPAN SEM B02 15.29 -92.69 24/01/2018 10:51:19 6.3 SKKS 41.1034 142.4323 319 -40 MISAWA - JAPAN SEM B02 15.29 -92.69 2018/02/28* 02:4/51 6.1 SKKS -6.1673 142.4795 273 16 19 2.10 0.95 PORGERA - PAPUA NEW GUINEA SEM B02 15.29 -92.69 2018/02/28* 02:4/51 6.1 SKKS -6.1673 142.4795 273 16 19 2.10 0.95 PORGERA - PAPUA NEW GUINEA SEM B02 15.29 -92.69 2018/02/28* 02:4/519 6.1 SKKS -6.1673 142.4795 273 37 65 0.70 3.60 PORGERA - PAPUA NEW GUINEA SEM B04 15.90 -93.54 6.4 SKKS 20.8327 94.9776 350 83 - - - NYINGCHI - CHINA SE	SEM B02	15.29	-92.69	08/12/2017	00:22:54	6.4	SKKS	10.1164	140.2197	292	-74				FAIS - MICRONESIA
SEM B02 15.29 -92.69 24/01/2018 10:51:19 6.3 SKKS 41.1034 142.4323 319 -40 MISAWA - JAPAN SEM B02 15.29 -92.69 2018/02/28* 02:45:45 6.1 SKS -6.1673 142.4795 273 16 19 2.10 0.95 PORGERA - PAPUA NEW GUINEA SEM B02 15.29 -92.69 2018/02/28* 02:45:45 6.1 SKS -6.1673 142.4795 273 37 65 0.70 3.60 PORGERA - PAPUA NEW GUINEA SEM B03	SEM B02	15.29	-92.69	24/01/2018	10:51:19	6.3	SKS	41.1034	142.4323	319	54				MISAWA - JAPAN
SEM B02 15.29 -92.69 2018/02/28* 02:45:45 6.1 SKS -6.1673 142.4795 273 16 19 2.10 0.95 PORGERA - PAPUA NEW GUINEA SEM B02 15.29 -92.69 2018/02/28* 02:45:45 6.1 SKKS -6.1673 142.4795 273 37 65 0.70 3.60 PORGERA - PAPUA NEW GUINEA SEM B03	SEM B02	15.29	-92.69	24/01/2018	10:51:19	6.3	SKKS	41.1034	142.4323	319	-40				MISAWA - JAPAN
SEM B02 15.29 -92.69 2018/02/28* 02:45:45 6.1 SKKS -6.1673 142.4795 273 37 65 0.70 3.60 PORGERA - PAPUA NEW GUINEA SEM B03	SEM B02	15.29	-92.69	$2018/02/28^{*}$	02:45:45	6.1	SKS	-6.1673	142.4795	273	16	19	2.10	0.95	PORGERA - PAPUA NEW GUINEA
SEM B03 — … </td <td>SEM B02</td> <td>15.29</td> <td>-92.69</td> <td>$2018/02/28^{*}$</td> <td>02:45:45</td> <td>6.1</td> <td>SKKS</td> <td>-6.1673</td> <td>142.4795</td> <td>273</td> <td>37</td> <td>65</td> <td>0.70</td> <td>3.60</td> <td>PORGERA - PAPUA NEW GUINEA</td>	SEM B02	15.29	-92.69	$2018/02/28^{*}$	02:45:45	6.1	SKKS	-6.1673	142.4795	273	37	65	0.70	3.60	PORGERA - PAPUA NEW GUINEA
SEM B04 15.90 -93.54 17/11/2017 22:34:19 6.4 SKKS 29.8327 94.9776 350 83 NYINGCHI - CHINA SEM B04 15.90 -93.54 08/12/2017 00:22:54 6.4 SKKS 10.1164 140.2197 292 74 14 2.85 1.45 FAIS - MICRONESIA SEM B04 15.90 -93.54 2018/02/25* 17:44:44 7.5 SKKS -6.0529 142.7703 273 65 31 1.15 1.00 PORGERA- PAPUA NEW GUINEA SEM B04 15.90 -93.54 28/02/2018 02:45:45 6.1 SKS -6.1673 142.4795 273 71 PORGERA - PAPUA NEW GUINEA	SEM B03					I									1
SEM B04 15.90 -93.54 08/12/2017 00:22:54 6.4 SKKS 10.1164 140.2197 292 -74 14 2.85 1.45 FAIS - MICRONESIA SEM B04 15.90 -93.54 2018/02/25* 17:44:44 7.5 SKKS -6.0529 142.7703 273 65 31 1.15 1.00 PORGERA- PAPUA NEW GUINEA SEM B04 15.90 -93.54 28/02/2018 02:45:45 6.1 SKS -6.1673 142.4795 273 71 PORGERA - PAPUA NEW GUINEA	SEM B04	15.90	-93.54	17/11/2017	22:34:19	6.4	SKKS	29.8327	94.9776	350	83				NYINGCHI - CHINA
SEM B04 15.90 -93.54 2018/02/25* 17:44:44 7.5 SKKS -6.0529 142.7703 273 65 31 1.15 1.00 PORGERA- PAPUA NEW GUINEA SEM B04 15.90 -93.54 28/02/2018 02:45:45 6.1 SKS -6.1673 142.4795 273 71 PORGERA - PAPUA NEW GUINEA	SEM B04	15.90	-93.54	08/12/2017	00:22:54	6.4	SKKS	10.1164	140.2197	292	-74	14	2.85	1.45	FAIS - MICRONESIA
SEM B04 15.90 -93.54 28/02/2018 02:45:45 6.1 SKS -6.1673 142.4795 273 71 — — — PORGERA - PAPUA NEW GUINEA	SEM B04	15.90	-93.54	$2018/02/25^{*}$	17:44:44	7.5	SKKS	-6.0529	142.7703	273	65	31	1.15	1.00	PORGERA- PAPUA NEW GUINEA
	SEM B04	15.90	-93.54	28/02/2018	02:45:45	6.1	SKS	-6.1673	142.4795	273	71				PORGERA - PAPUA NEW GUINEA

$\sigma_{\phi}(^{\circ}) \delta t(\mathbf{s}) \sigma_{\delta t}(\mathbf{s}) \mathrm{Región \ epicentral}$	60 1.35 2.45 PORGERA - PAPUA NEW GUINEA	— — — PALUE - INDONESIA	54 0.45 4.00 TADINE - NEW CALEDONIA	— — — TADINE - NEW CALEDONIA	50 0.70 0.85 TADINE - NEW CALEDONIA	26 3.05 2.35 HACHIJO-JIMA - JAPAN	— — — HALABJAH - IRAQ	— — — NYINGCHI - CHINA	47 2.25 1.55 TADINE - NEW CALEDONIA	— — — TADINE - NEW CALEDONIA	18 0.65 0.20 FAIS - MICRONESIA	— — — MISAWA - JAPAN	33 2.60 1.90 PORGERA - PAPUA NEW GUINEA	— — — PALUE - INDONESIA	— — — TADINE - NEW CALEDONIA	— — — TADINE - NEW CALEDONIA	14 0.95 0.55 TADINE - NEW CALEDONIA	79 1.20 1.40 HACHIJO-JIMA - JAPAN	— — — HALABJAH - IRAQ	31 1.25 0.90 TADINE - NEW CALEDONIA	— — — MISAWA - JAPAN	— — — MISAWA - JAPAN	32 1.10 0.75 SIGAVE - WALLIS AND FUTUNA	24 2.45 0.70 MENDI - PAPUA NEW GUINEA	26 0.95 0.60 PORGERA - PAPUA NEW GUINEA	 	24 1.40 1.30 TADINE - NEW CALEDONIA	— — — TADINE - NEW CALEDONIA	— — — TADINE - NEW CALEDONIA	— — — TADINE - NEW CALEDONIA	18 2.90 1.25 HALABJAH - IRAQ	27 1.40 1.10 TADINE - NEW CALEDONIA	14 1.70 0.35 TARON - PAPUA NEW GUINEA	— — — PALUE - INDONESIA	— — — TADINE - NEW CALEDONIA	33 1.30 1.25 TADINE - NEW CALEDONIA	32 2.70 2.05 TADINE - NEW CALEDONIA	— — — HACHIJO-JIMA - JAPAN	— — — HALABJAH - IRAQ	53 2.05 1.60 NYINGCHI - CHINA	19 2.30 1.00 NYINGCHI - CHINA	— — — TADINE - NEW CALEDONIA	— — — ROTA - MARIANA ISLANDS	— — — PORGERA - PAPUA NEW GUINEA	55 1.15 3.35 PORGERA - PAPUA NEW GUINEA	26 1.70 1.00 PALUE - INDONESIA	-
$\phi(\circ) \circ$	67	-79	48	73	21	-38	-38	75	6	-15	-28	-37	72	-85	67	-37	40	27	46	16	-45	-36	9	35	55		42	63	-30	-30	-31	34	48	~	65	40	56	42	-58	69	66	63	78	-80	72	-64	
$\phi_b(^{\circ})$	273	279	251	250	250	313	36	350	250	250	292	319	273	279	251	250	250	313	36	250	319	319	252	272	273		251	250	250	250	36	250	271	279	251	250	250	313	36	350	350	250	269	271	271	279	
Longitud	142.4795	123.0401	169.209	168.8879	168.9185	141.438	45.9563	94.9776	168.6995	168.683	140.2197	142.4323	142.7703	123.0401	169.209	168.8879	168.9185	141.438	45.9563	168.6995	142.4323	142.4323	-177.3954	143.2706	142.4795		169.209	168.9362	168.8879	168.9185	45.9563	168.6995	153.1874	123.0401	169.209	168.8879	168.9185	141.438	45.9563	94.9776	94.9776	168.6995	146.4377	142.4795	142.4795	123.0401	
Latitud	-6.1673	-7.2364	-21.6645	-21.6689	-21.7928	32.5208	34.9052	29.8327	-21.654	-21.3337	10.1164	41.1034	-6.0529	-7.2364	-21.6645	-21.6689	-21.7928	32.5208	34.9052	-21.654	41.1034	41.1034	-16.645	-6.4274	-6.1673		-21.6645	-21.7305	-21.6689	-21.7928	34.9052	-21.654	-4.3853	-7.2364	-21.6645	-21.6689	-21.7928	32.5208	34.9052	29.8327	29.8327	-21.654	13.8205	-6.1673	-6.1673	-7.2364	
Fase	SKKS	PKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKKS	SKS	SKKS	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKKS	SKS		SKS	SKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKKS	PKS	
Mag.	6.1	6.7	6.7	6.6	5.9	6.0	7.3	6.4	6.3	7.0	6.4	6.3	7.5	6.7	6.7	6.6	5.9	6.0	7.3	6.3	6.3	6.3	6.0	5.9	6.1		6.7	6.1	6.6	5.9	7.3	6.3	6.8	6.7	6.7	6.6	5.9	6.0	7.3	6.4	6.4	6.3	6.0	6.1	6.1	6.7	
Hora	02:45:45	10:47:47	00:42:08	02:23:57	05:09:00	07:42:11	18:18:17	22:34:19	09:25:48	22:43:29	00:22:54	10:51:19	17:44:44	10:47:47	00:42:08	02:23:57	05:09:00	07:42:11	18:18:17	09:25:48	10:51:19	10:51:19	11:05:50	08:26:57	02:45:45		00:42:08	00:09:30	02:23:57	05:09:00	18:18:17	09:25:48	17:39:51	10:47:47	00:42:08	02:23:57	05:09:00	07:42:11	18:18:17	22:34:19	22:34:19	09:25:48	23:14:15	02:45:45	02:45:45	10:47:47	
Fecha	$2018/02/28^{*}$	24/10/2017	$2017/10/31^{*}$	01/11/2017	$2017/11/01^{*}$	09/11/2017	12/11/2017	17/11/2017	2017/11/19*	$19/\dot{1}1/2017$	$2017/12/08^{*}$	$24/\dot{0}1/\dot{2}018$	25/02/2018	24/10/2017	31/10/2017	01/11/2017	$20\dot{1}7/\dot{1}1/01^{*}$	2017/11/09*	$12/\dot{1}1/2017$	$20\dot{1}7/\dot{1}1/19^*$	24/01/2018	24/01/2018	2018/02/01*	$26/\dot{0}2/\dot{2}018$	$20\dot{1}8/\dot{0}2/28^{*}$		$2017/10/31^{*}$	01/11/2017	01/11/2017	01/11/2017	12/11/2017	$2017/11/19^{*}$	$2018/03/08^{*}$	24/10/2017	31/10/2017	$2017/11/01^{*}$	$2017/11/01^{*}$	09/11/2017	12/11/2017	2017/11/17*	2017/11/17*	$19/\dot{1}1/\dot{2}017$	11/02/2018	28/02/2018	$2018/02/28^{*}$	$2017/10/24^{*}$	
Longitud	-93.54	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-93.78	-94.19	-94.19	-94.19	-94.19	-94.19	-94.19	-94.19	-94.19	-94.19	-94.19	-94.19	-94.19		-95.20	-95.20	-95.20	-95.20	-95.20	-95.20	-95.20	-95.81	-95.81	-95.81	-95.81	-95.81	-95.81	-95.81	-95.81	-95.81	-95.81	-95.81	-95.81	-93.27	
n Latitud	15.90	16.08	16.08	16.08	16.08	16.08	16.08	16.08	16.08	16.08	16.08	16.08	16.08	16.29	16.29	16.29	16.29	16.29	16.29	16.29	16.29	16.29	16.29	16.29	16.29		16.22	16.22	16.22	16.22	16.22	16.22	16.22	15.91	15.91	15.91	15.91	15.91	15.91	15.91	15.91	15.91	15.91	15.91	15.91	16.22	
Red Estació	RADSEM B04	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B05	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B06	RADSEM B07	RADSEM B08	RADSEM B08	RADSEM B08	RADSEM B08	RADSEM B08	RADSEM B08	RADSEM B08	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B09	RADSEM B10	

I

Región epicentral	TADINE - NEW CALEDONIA	HACHIJO-JIMA - JAPAN	NYINGCHI - CHINA	NYINGCHI - CHINA	TADINE - NEW CALEDONIA	TADINE - NEW CALEDONIA	FAIS - MICRONESIA	SARY TASH - KYRGYZSTAN	SARY TASH - KYRGYZSTAN	ISANGEL - VANUATU	LORENGAU - PAPUA NEW GUINEA	IWO JIMA - JAPAN	CHAUK - BURMA	HONIARA - SOLOMON ISLANDS	KATSUURA - JAPAN	AUKI - SOLOMON ISLANDS	ANGORAM - PAPUA NEW GUINEA	PORT OLRY - VANUATU	ISANGEL - VANUATU	SARY TASH - KYRGYZSTAN	SARY TASH - KYRGYZSTAN	RAOUL ISLAND - NEW ZEALAND	ILE HUNTER - NEW CALEDONIA	NORCIA - ITALY	MACQUARIE ISLAND - AUSTRALIA	KATSUURA - JAPAN	KASIGUNCU - INDONESIA	PLOMARION - GREECE	LESPERANCE ROCK - NEW ZEALAND	LAMBASA - FIJI	PALUE - INDONESIA	TADINE - NEW CALEDONIA	HACHIJO-JIMA - JAPAN	ISANGEL - VANUATU	PORT OLRY - VANUATU	NORSUP - VANUATU	ISANGEL - VANUATU	SARY TASH - KYRGYZSTAN	SARY TASH - KYRGYZSTAN	RAOUL ISLAND - NEW ZEALAND	ISANGEL - VANUATU	LORENGAU - PAPUA NEW GUINEA	IWO JIMA - JAPAN	NORCIA - ITALY	HONIARA - SOLOMON ISLANDS	KATSUURA - JAPAN	
$\sigma_{\delta t}(\mathbf{s})$	I						0.45	1.40	1.50		1.85		0.60			1.25	1	0.70	0.90	0.90			1.30				1.20		1.60	1.95	0.75	2.20		2.35	1.20	1.70						0.55	2.45	1.15	1.35		
$\delta t(\mathbf{s})$							1.55	1.00	1.45		0.85		1.10			1.30	I	1.90	1.55	2.55			1.65				1.10		2.05	1.10	2.10	1.25		1.70	0.90	0.75						1.55	0.55	2.15	0.80	I	
$\sigma_{\phi}(^{\circ})$						l	15	23	45	l	48		44			40		22	16	14	l	l	30	l			45		38	39	20	50		74	70	60				l		17	53	20	69		
$()\phi$	99	-60	-17	76	71	72	-38	12	85	-21	58	27	9	20	35	68	-53	55	49	88	86	61	31	50	20	-79	50	52	41	14	35	63	43	2	64	14	67	1-	86	62	-20	99	-20	56	63	50	te.
$\phi_b(^{\circ})$	251	313	350	350	250	250	292	×	×	253	276	305	343	266	314	266	312	258	252	6	6	240	249	44	266	314	292	42	239	251	282	251	312	253	258	257	252	10	10	241	253	275	305	44	265	314	iguien
Longitud	169.209	141.438	94.9776	94.9776	168.6995	168.683	140.2197	73.3388	73.3388	169.0547	148.0345	142.0141	94.5687	159.1673	141.6368	160.7536	141.438	166.4334	169.0737	73.3388	73.3388	-176.443	173.1108	13.1877	159.1673	141.6368	120.4335	26.3713	179.9269	.178.8406	123.0401	169.209	141.438	169.0224	166.4334	167.3786	169.0737	73.3388	73.3388	-176.443	169.0547	148.0345	142.0141	13.1877	159.1673	141.6368	ı página s
Latitud	-21.6645	32.5208	29.8327	29.8327	-21.654	-21.3337	10.1164	39.4793	39.4793	-18.9285	-2.969	24.9447	20.9224	-9.329	34.4619	-8.1364	32.5208	-14.5284	-20.2793	39.4793	39.4793	-28.0052	-22.4778	42.723	-9.329	34.4619	-1.2872	38.9154	-31.106	-17.9609	-7.2364	-21.6645	32.5208	-18.9332	-14.5284	-16.0429	-20.2793	39.4793	39.4793	-28.0052	-18.9285	-2.969	24.9447	42.723	-9.329	34.4619	inúa en lo
\mathbf{Fase}	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKKS	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	Cont
Mag.	6.7	6.0	6.4	6.4	6.3	7.0	6.4	6.4	6.4	6.1	6.4	6.3	6.8	6.0	6.2	6.0	0.0	6.4	6.3	6.4	6.4	6.3	7.2	6.2	6.0	6.2	6.6	6.3	6.0	6.4	6.7	6.7	0.0	6.4	6.4	7.0	6.3	6.4	6.4	6.3	6.1	6.4	6.3	6.2	0.0	6.2	
Hora 1	00:42:08	07:42:11	22:34:19	22:34:19	09:25:48	22:43:29	00:22:54	11:17:11	11:17:11	15:13:16	19:38:45	16:24:33	10:34:54	07:25:00	00:14:34	15:43:25	07:42:11	21:50:27	09:47:23	11:17:11	11:17:11	12:11:12	01:26:36	01:36:32	07:25:00	00:14:34	14:35:21	12:28:39	07:03:11	02:00:52	10:47:47	00:42:08	07:42:11	09:46:49	21:50:27	19:33:24	09:47:23	11:17:11	11:17:11	12:11:12	15:13:16	19:38:45	16:24:33	01:36:32	07:25:00	00:14:34	
Fecha	31/10/2017	09/11/2017	17/11/2017	17/11/2017	19/11/2017	19/11/2017	$2017/12/08^{*}$	26/06/2016	$2016/06/26^{*}$	20/07/2016	$2016/07/25^{*}$	04/08/2016	$2016/08/24^{*}$	14/09/2016	23/09/2016	$2017/03/19^{*}$	09/11/2017	$2016/04/14^{*}$	$2016/06/19^{*}$	26/06/2016	26/06/2016	13/07/2016	$2016/08/12^{*}$	24/08/2016	14/09/2016	23/09/2016	29/05/2017	12/06/2017	$2017/06/29^{*}$	$2017/08/19^*$	24/10/2017	$2017/10/31^{*}$	09/11/2017	$2018/07/13^{*}$	$2016/04/14^{*}$	$2016/04/28^{*}$	19/06/2016	26/06/2016	26/06/2016	13/07/2016	20/07/2016	$2016/07/25^{*}$	04/08/2016	$2016/08/24^{**}$	2016/09/14*	23/09/2016	
Longitud	-93.27	-93.27	-93.27	-93.27	-93.27	-93.27	-93.27	-97.59	-97.59	-97.59	-97.59	-97.59	-97.59	-97.59	-97.59	-97.59	-97.59	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-96.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	
Latitud	16.22	16.22	16.22	16.22	16.22	16.22	16.22	20.17	20.17	20.17	20.17	20.17	20.17	20.17	20.17	20.17	20.17	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	19.37	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	
Estación	B10	B10	B10	B10	B10	B10	B10	CXUV	CXUV	CXUV	CXUV	CXUV	CXUV	CXUV	CXUV	CXUV	CXUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	JAUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	
Red	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	

s) Región epicentral) NORCIA - ITALY	LESPERANCE ROCK - NEW ZEALAND	LAMBASA - FIJI	BRISTOL ISLAND - SOUTH SANDWICH	MIYAKO - JAPAN	SOUTH OF THE FIJI ISLANDS	NAMATANAI - PAPUA NEW GUINEA	TADINE - NEW CALEDONIA	VAINI - TONGA	SHINGU - JAPAN	BRISTOL ISLAND - SOUTH SANDWICH	NDOI ISLAND - FIJI	RAOUL ISLAND - NEW ZEALAND	ISANGEL - VANUATU	NDOI ISLAND - FIJI	BITUNG - INDONESIA	5 OZERNOVSKIY - RUSSIA) MAMURRAS - ALBANIA	PLATANOS - GRECIA	5 PLATANOS - GRECIA	ISANGEL - VANUATU	MAGSAYSAY - PHILIPPINES	SARANGANI - PHILIPPINES	SARANGANI - PHILIPPINES	SHIZUNAI - JAPAN	LESPERANCE ROCK - NEW ZEALAND	SOLA - VANUATU	SOLA - VANUATU	MAWLAIK - BURMA	PORT OLRY - VANUATU	NDOI ISLAND - FIJI	NDOI ISLAND - FIJI	RAOUL ISLAND - NEW ZEALAND	ISANGEL - VANUATU	ISANGEL - VANUATU	DARI IADH - NIRUZAIAN	KAUUL ISLAND - NEW ZEALAND	NODOTA TTATY		KATSUUKA - JAPAN	NADI - FIJI	NDOI ISLAND - FIJI	PORT OLRY - VANUATU	VISOKOI ISLAND	PLOMAKION - GREECE	CUNIALCI ILLI ANT TU ALUNC
s) $\sigma_{\delta t}($	0 1.5								0 3.1						0 1.6		0 0.5	0 0.6		0 1.1		5 0.6				0.0.8												U 3.4								
(°) δt(0 1.5		1	1		1		1	9 0.4						6 0.4		1 1.0	6 0.5		2 1.4		2 1.9				5 1.2					1	1		1		1		с U.4	1	1	1	1			1	1
(°) σ _φ	9 6	- 14	। छ	32 -	- 39	1	4	2	7 5	12 -	ی ت		- 69	13 -	4 6	- 01	33	33	- 9	33 3	- 69	36 1	- 02	- 92	- 1	46 2	- 0.	14 -	-	- 2	22	1	। स	- 02	- 14	। ⊣ 2	47 Z	1 1 1		ا ي	16 -	। छ	13	। ु0्रा	। १२१२	- 77
$\phi ()^{q}$	44 5	37	251 6	50	18	45	.73	51	47	15 -	52 6	49 6	39	53	47 -	103	26 8	43 6	47	47 -(53 6	:- 26	16	16	20 -	39 -	120 7	- 623	46 -	129	148	47	40	40	- 70		1 F	400 7 7		41	- 12	46 6	58	-49 - 5	43	40 -
ongitud ϕ	13.0884	177.8845 2	178.5889 2	25.2559 1	43.2985 3	178.7639 2	52.5694 2	69.7779 2	176.3171 2	137.325 3	26.5801 1	178.567 2	177.8611 2	69.4883 2	[79.4911 2	126.414 2	53.6852 3	19.5212	23.2673	23.2673	69.5748 2	25.1739 2	26.8569 2	26.8569 2	142.781 3	179.9563 2	66.6245 2	66.5943 2	94.8654 3	66.4334 2	[78.6481 2	178.2038 2	[77.8359 2	68.8279 2	69.U/3/ 2	170 110 5	L/0.443 2	09.U547 2	- 1101.61 - 1101.61	41.6368	176.058 2	[78.8033 2	67.3767 2	25.7827	26.3713	né aina sia
Latitud L	42.8547	32.0238	17.8512	-58.6064 -	40.4096 1	-24.7059 -	-4.081 1	-21.6619 1	-21.7541 -	33.1461	-60.2152 -	-20.3599 -	30.1755 -	-19.0184 1	21.9688	1.6199	53.1633 1	41.5149	35.7272	35.7272	-19.0677 1	6.6969 1	3.8966 1	3.8966 1	41.9723	30.7636	-14.0683 1	-13.9805 1	23.0944	-14.5284 1	-20.8101 -	-21.9724	-30.0235 -	-18.7609 1	-20.2793 I	39.4/93 90.0070	- ZCUU.82-	1 0828.81	42.120	34.4619 1	-19.3542	-23.2601	-14.5884 1	-56.4277	38.9154 :	- 24.U934 _1 iniía en la
Fase	SKS	SKS	SKS	SKS	SKS	SKS	KKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	IKKS	SKS	PKS	PKS	KKS	SKS	SKS	SKS	SKS	PKS	SKS	SKS	SKS	SKS		SKS	CAN		242 212		SKS	SKS	SKS	SKS	SKS	SKS	SNS Cont
vIag.	6.6	6.4	6.2	6.5	6.0	0.0	7.6 S	6.3	6.0	6.3	6.6	6.6	6.1	6.4	6.5	7.1	6.3	6.4	6.0	6.0 S	6.0	6.8	6.5	6.5 S	6.7	6.2	6.7	6.7	6.9	6.4	6.4	6.9	6.1	0.2	0.3 2	4.0 4.0 10	0.3 1	0.1	7.0	6.2 0	6.9	6.9	6 . 8	6.5	6.3 - 1	1.0
Hora 1	06:40:18	15:46:14	08:12:26	17:53:58	08:18:21	14:20:17	12:58:25	01:23:29	15:38:01	18:31:07	23:55:19	15:54:20	12:05:02	02:52:29	10:44:44	16:17:40	08:26:08	02:54:12	07:23:42	07:23:42	20:10:03	06:11:51	16:38:05	16:38:05	03:25:33	19:00:46	06:58:48	03:32:53	13:55:17	21:50:27	04:08:43	05:38:50	02:35:32	13:49:22	09:47:23	TT:/T:TT	17.19.12	15:13:10	70:00:TO	00:14:34 01 20 20	21:52:30 	17:28:44	13:52:10	23:23:36	12:28:39	70:07:77
Fecha	$2016/10/30^{**}$	06/03/2019	10/03/2019	09/04/2019	11/04/2019	23/04/2019	14/05/2019	19/05/2019	$2019/05/30^{*}$	27/07/2019	27/08/2019	01/09/2019	27/09/2019	21/10/2019	$2019/11/08^{*}$	14/11/2019	$2019/11/20^{**}$	$2019/11/26^{**}$	27/11/2019	$2019/11/27^{**}$	04/12/2019	15/12/2019	11/01/2016	11/01/2016	14/01/2016	$2016/02/01^{*}$	06/04/2016	07/04/2016	13/04/2016	14/04/2016	27/05/2016	28/05/2016	06/06/2016	14/06/2016	19/06/2016	0107/00/07	13/07/2016 90.07/9016	20/07/2016 24/08/2016	0102/00/42	23/09/2016	03/01/2017	24/02/2017	09/05/2017	10/05/2017	12/06/2017	τι/αυ/λη
Longitud	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.80	-95.12	-95.12	-95.12	-95.12	-95.12	-95.12	-95.12	-95.12	-95.12	-95.12	-95.12	- 95.12	-95.12	-90.12	-90.12	-90.12	-90.12	-95.12	-95.12	-95.12	-95.12	-95.12	-95.12	- 21.02
Latitud	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	17.71	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	18.54	10.01	18.04	10.54 10.74	10.04	18.54	18.54	18.54	18.54	18.54	18.54 19 54	10.34
Estación	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	PMUV	PMUV	PMUV	PMUV	PMUV	PMUV	PMUV	PMUV	PMUV	PMUV	PMUV		VUMA		P MU V	PMIUV		PMUV	PMUV	PMUV	PMUV	PMUV	PMUV	LIMOV
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	KSBAV DGD AII	RSBAV	R2BAV	K5BAV	KSBAV DCD AV	VEDGA	RSBAV	KSBAV Top III	RSBAV	RSBAV	RSBAV	RSBAV	VAdGN

		D																								Q								ΗC												
	LAND	ZEALAN					SC						t,	SC									ONIA	ONIA	ANDS	ZEALAN	SC							SANDWI									LAND			
	EW ZEAI	VEW			PAN		I ISLANI	_	EDONIA	EDONIA	PAN	EDONIA		I ISLANI		SLANDS	RUSSIA		SIA				CALED	CALED	ON ISLA	 VEW 	I ISLANI		RUSSIA	ISSIA	EDONIA	G		SUUTH	IPPINES		ATU			ATU			EW ZEAI	U 	YZSTAN	
ntral	IND - UN	JE ROCI	CE	FLJI	MA - JA	JAPAN	THE FIJ	DONESI	EW CAL	EW CAL	MA - JA	EW CAL	LAND	THE FL		OMON IS	HILSK -	JAPAN	INDONE	ILIA - UV	FLJI	SLANDS	R - NEW	R - NEW	· SOLOM	CE ROCI	THE FIJ	ILIA - UV	JRILSK -	KIY - RU	EW CAL	GREECI	FLJI	LAND -		JAPAN	- VANU	UATU	UATU	- VANU	ILI - UV	ILI - UV	IN - UNA	VANUAT	- KYRG	
ción epicei	OUL ISLA	SPERAN(S - GREE	MBASA -	ICHI-SHI	MAISHI	UTH OF	LUE - INI	DINE - N	DINE - N	CHIJO-JI	DINE - N	UVET IS	UTH OF	NGEL -	IA - SOL	VERO KL	- AMIL C	GILAT -	OI ISLAN	MBASA -	RIANA I	HUNTE	HUNTE	AKIRA	SPERAN	UTH OF	OI ISLAN	VERO KI	ERNOVS	DINE - N	- IXAXI -	MBASA -	NUCAN STUDE IS	R A NC2A N	ZUNAI -	RT OLRY	LA - VAN	LA - VAN	RT OLRY	OI ISLAN	OI ISLAN	OUL ISLA	NGEL -	RY TASH	
s) Reg	S RA	LE	KO	LA	CH	KA	SO	[PA]	TA	AT	HA	TA	BO	S	ISA	LA.	SE	Ň	Z		TA	MA	ILF	ILF	KII	LE	SOS	QN) SE	20 SZ	TA	MC	LA	R A A			PO	SO]	SO	O PO	<u>N</u>	<u>ND</u>	RA	ISA ISA	SAI	
$\sigma_{\delta t}(s)$	36.0																0.8(0.9(5 0.13		5 0.7(1 G(0.9(0.6(0.2	0.13	0.4(0.7(2.1	
$^{\circ}) \delta t(s)$	37.0																0.8												0.75	36.0		1.05			121	1.5				1.35	1.00	0.9(1.5(36.0	1.3	
$) \sigma_{\phi}($	9 31	 %) x		- 2											;	7 39) 46	16		8 27			- 53 - 53	37		2		24	3 14	i 15	22	12	52	
.)ø[(.)	;9- 6;	9 -28	4 -38	1 76	0 -4	.6 4C	5 63	2 -8(1 -2(- <u>5</u> -	1 24	2 20	4	4 76		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	-50	-66	-10			0	0 76	55 86		55 55	1 -18	2 80	30 83 10 83	1 72	6 -28	1 67	و 1 44	b à t z	136	6	1- 69	9 -4	9 47	9 38	7 25	6 0	2	1 77 iente	erne.
ϕpn	18 25	69 25	55 4	06 25	41 31	01 31	66 24	01 28) 10 10 10	62 25	33	95 25	$\frac{1}{2}$	155 24 2. 24	. 25	202	ي م	87 30	41 28	36 25	32 25	95 20	02 25	02 25	25 26	28 25	59 24	88 25	68 32	29 32	99 25	55 4	73 25	50 50 50 50	60 20 80 20	325	51 - 25	45 25	43 25	34 25	81 24	38 24	59 24 -	37 25	88 1 2 Sion	nhie n
Longit	-177.66	179.92	27.413	-178.84	139.80	144.66	-176.93	123.04	169.20	168.93	141.43	168.69	2.168	-176.60	169.02	166.43	154.92	143.31	119.83	-178.15	-178.03	146.83	170.05	170.05	161.50	-179.37	178.20	-178.07	156.29	153.24	169.48	20.563	-178.92	-26.46	196.85	142.78	166.85	166.62	166.59	166.43	-178.64	-178.20	-177.83	169.07	73.338 14 nánin	n puyer
atitud	30.3103	-31.106	36.9249	17.9609	27.7829	37.9814	23.7135	7.2364	21.6645	21.7305	32.5208	21.654	54.2177	24.8965	18.9332	11.5936	I8.4526	23.4226	7.4263	18.1125	16.9783	[6.8044]	22.0663	22.0663	10.0207	31.7447	25.421	18.3465	l9.2902	52.8549	21.9362	37.5148	17.8735	58.5981 2 2066	3 8066	9.0900 11.9723	14.3235	14.0683	13.9805	14.5284	20.8101	21.9724	30.0235	20.2793	39.4793	ann cu i
Fase 1	- SXS	SKS	SKS	- SXS	SKS	SKS	- SXS	PKS	- SKS	SKS -	SKS	SKS	SKKS -	SKS -	SKS -	SKS -	SKS	SKS	SKKS	SKS -	- SXS	SKS	- SXS	SKKS -	- SXS	- SXS	SKS	- SXS	SKS	SKS	- SXS	SKS	SKS -	- SXS DVC	SKKG	SKS	SKS -	- SXS	SKS -	SKS -	SKS .	CUTEE				
Mag.	0.0	6.0	6.6	6.4	6.1	6.1	6.4	6.7	6.7	6.1	6.0	6.3	0.5 0	6.1	6.4	0.0	6.0	6.3	6.5	8.2	6.4	6.4	7.1	7.1	6.5	6.9	6.5	6.7	6.5	6.7	6.3	6.8		е к 1.1	ч с v	- 2-0 9-1-0	6.9	6.7	6.7	6.4	6.4	6.9	6.1	6.3	6.4	
Hora	18:20:55	07:03:11	22:31:11	02:00:52	17:26:49	16:37:16	04:20:00	10:47:47	00:42:08	00:00:30	07:42:11	09:25:48	18:03:43	05:57:35	19:46:49	07:02:53	18:12:07	18:22:53	15:35:01	00:19:40	04:28:58	22:35:13	03:51:56	03:51:56	19:31:35	04:19:02	21:11:48	10:52:23	23:16:02	11:10:22	00:28:13	22:54:52	20:25:46	12:26:29 16-28-05	16-38-05	03:25:33	08:23:52	06:58:48	332:53	21:50:27	04:08:43	05:38:50)2:35:32	09:47:23	11:17:11	
гa	3/28*]	2017 0	2017 2	2017 (2017	2017]	2017 (2017	2017 (2017 (2017 (2017 (2017]	2018 (2018 (2018 (2/10*	2018	2018	2018 (2018 (2018 2	2018 (2018 (2018]	2018 (2018 2	2018]	/10* 2)/13*]	2018 (2018 2	2018 2	2018 (- 0107 /11** 1	/14* (2016 (2016 (2016 (l/14* 2	5/27* (6/28* (?/0e* (3/19* (3/26*]	
Fech	2017/06	29/06/	20/07/	19/08/	07/09/	20/09/	26/09/	24/10/	31/10/	01/11/	09/11/	19/11/	13/12/	02/04/	L3/07/	17/07/	2018/08	16/08/	17/08/	19/08/	19/08/	28/08/	29/08/	29/08/	/60/60	10/09/	16/09/	30/09/	2018/10	2018/10	16/10/	25/10/	18/11/	11/12/	7016/01	2016/01	03/04/	06/04/	07/04/	2016/04	2016/05	2016/05	2016/06	2016/06	2016/06	
ongitud	95.12	-95.12	95.12	95.12	95.12	-95.12	-95.12	95.12	95.12	95.12	95.12	95.12	-95.12	95.12	95.12	95.12	95.12	95.12	95.12	-95.12	95.12	-95.12	95.12	-95.12	-95.12	-95.12	-95.12	-95.12	95.12	95.12	95.12	95.12	95.12	95.12 04.15	01.15	94.15	-94.15	94.15	-94.15	-94.15	-94.15	.94.15	94.15	94.15	94.15	
atitud Lo	8.54	.8.54	8.54	.8.54	8.54	8.54	.8.54	8.54	8.54	8.54	8.54	8.54	.8.54 	-8.54 	8.54	.8.54 	8.54	8.54	8.54	8.54	8.54	8.54	8.54	.8.54	8.54	.8.54	.8.54	8.54	.8.54	8.54	8.54	8.54	-8.54 5.54	-8.54 7 20	7 39	7.32	7.32	7.32	7.32	7.32	7.32	7.32	7.32	7.32	7.32	
ión La	V 1	V 1	V 1	V 1	V 1	V 1	V 1	V 1	V :	V 1	V 1	V :	\sim	; > ;		-			1		1	V 1	V 1	V 1	V 1	V 1	V 1	V 1	V 1	V 1	V 1	V 1				- 1	V 1	V 1	V 1	V 1	V 1	V 1	∧ . . 1	۲ ۱	V 1	
Estac	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	PMU	TIVIT		UXU UXU	UXU	UXU	UXU	UXU	UXU	UXU	NXN	UXU	UXU	
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RCRAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	

	AND	NIA						-	EALAND		AND																				A T A	NIA	EALAND										
) - NEW ZEAL	NEW CALEDO	APAN	ЗA	Υ		FIJI	GREECE	ROCK - NEW Z	E FIJI ISLANDS) - NEW ZEAL		I	FAIN	UATU Thirter America	5 FIJI ISLANDS	GA CALEDONIA	CALEDONIA	TAPAN	ADD TILL	CALEDONIA		1N	E FIJI ISLANDS	IUATU	ON ISLANDS	PAN	ONESIA	FIJI	_	NDS	NEW CALEDO	ROCK - NEW Z	E FIJI ISLANDS	SK - RUSSIA	- RUSSIA	CALEDONIA	EECE	SIA	Ι	IAB - IRAN	IAB - IRAN	ĽŪ
Región epicentra	RAOUL ISLANI	ILE HUNTER -	KATSUURA - J.	NEIAFU - TON	NORCIA - ITAL	NADI - FIJI	NDOI ISLAND	PLOMARION -	LESPERANCE	SUUTH UF THI	RAOUL ISLAN	KOS - GREECE	LAMBASA - FL.	KAMAISHI - JA	ISANGEL - VAN South of this	SUUTH OF THI	TADUAL - LUN	TADINE NEW	VINI OTHORI	HALARIAH - TH	TADINE - NEW	BOUVET ISLAI	MISAWA - JAP/	SOUTH OF THI	ISANGEL - VAN	LATA - SOLOM	IWO JIMA - JA	NGGILAT - INE	NDOI ISLAND	LAMBASA - FL.	MARIANA ISLA	LLE HUNIER - KTRAKTRA SC	LESPERANCE	SOUTH OF THI	SEVERO KURII	OZERNOVSKIY	TADINE - NEW	MOUZAKI - GR	VOSTOK - RUS	LAMBASA - FI.	SARPOL E ZAF	SARPOL E ZAF	SOLA - VANUA
$\sigma_{\delta t}(\mathbf{s})$	0.90			2.05	2.50	1.80	0.05		1.95	0.90		;	1.70		1 1 0	0.15			0.8.0	0.20	1.00			0.10						0.70		0.40	0.20	0.50			0.65			0.35			0.70
) $\delta t(\mathbf{s})$	1.60			0.75	1.00	1.10	0.95	.	1.00	c1.1		;	1.30			0.80			1 05	1.05	1.15			1.30					.	1.50	-	1.4U	0.95	0.75			1.60			1.20			1.85
$\sigma_{\phi}($	23			53	65	68	6		20	38			54		:	11			27	94	$^{-46}$			11						25	÷	IU	16	37			11			23		8	78
$)\phi (.)$	1 36	19 -19	5 -26	60 37	5 60	52 3	6 27	3 48	30 -22			4 21	2 	0-14-	-7- -7- -7-	0 Z/				99	51 2	12 55	0 46	15 20	54 -3	52 -4	14 -52	32 11	1 73	52 -12	90- 19- 19-	20 0 0	39 21 39 21	5 3	22 63	26 - 25	61 -10	7 41	21 -22	52 24	55	- <u>-</u> 58	91 1 <u>6</u>
ϕ_p pn	43 24	08 24	68 31	84 25	34 4	58 25	33 24	13 4	541 25 70 25	59 Z4	518 . 25	35 4	106 25 21 05	10 10	46 Z5	500 Z4	00 7 7 0 0	50 F	77 77 77 77 77 77 77 77 77 77 77 77 77	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	$\frac{95}{25}$	1 14	23 32	55 24	24 25	32 26	87 30	41 28	536 25	32 25	95 95 95	72 72 72	$\frac{1}{28}$	59 24	68 32	29 32	99 25	35 4	81 32	25 25	32 3	5 33 5 33	16 26
Longit	-176.4	173.11	141.63	-174.9	13.088	176.0	-178.80	26.37	-178.05	179.6U	-177.66	27.41:	-178.84	144.00	169.09	-176.95	-1/0.01 160.90	169.02	PE-ONT	45 950	168.69	2.168	142.43	-176.60	169.02	166.4;	143.31	119.83	-178.15	-178.0	146.83	161 50 U.US	-179.37	178.20	156.29	153.24	169.48	20.56	146.71	-178.92	45.74:	45.74	166.81
atitud	8.0052	2.4778	1.4619	8.1706	2.8547	9.3542	3.2601	8.9154	0.5139	4.U934 5.5155	0.3103	5.9249	7.9609	1.9814	8.7854	3.7135	8.9903 1 6645	1 7205	1,1000	1 9052	21.654	4.2177	1.1034	4.8965	8.9332	1.5936	3.4226	7.4263	8.1125	6.9783	3.8044	2.0003	1.7447	25.421	9.2902	2.8549	1.9362	7.5148	7.8166	7.8735	1.3464	1.3464	[3.394]
ase L	KS -2	KS -2	KS 34	KS -1	KS 45	KS -1	KS -2	KS 38	KS -3		KS 1 2 3	KS 3(KS 1 S 2 S 2 S		KS 					KS 32.2	KS - 2	KS -5	KS 4.	KS -2	KS -1	KS -1	KS 23	CKS -7	KS -1	 	KS 16	2- CAN	KS -3	KS -2	KS 49	KS 52	KS -2	KS 37	KS 47	KS -1	KS 34	KKS 32	KS -
lag. F	5.3 S	7.2 S	5.2 S	5.4 S	5.6 S	5.9 S	5.9 S	5.3 S	0.0 1 - 0	0.T	5.0 2.0 2.0	5.6 S . S	5.4 2.5 2.0	0.1 0 0	5.4 2.6 2.0	4.0 7.7		שם 		2 0 0		5.5 S.5	5.3 S	5.1 S	5.4 S	5.0 S	5.3 S	5.5 SF	8.2 - S	5.4 . S	5.4 S	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.0 0.0	5.5 S	5.5 S	6.7 S	5.3 S	5.8 S	5.0 S	5.8 S	5.3 S	5.3 SF	5.0 S
ora N	1:12 (6:36	4:34	7:15 (0:18	2:30	8:44	8:39	6:17	0:02	0:55		0:52	0T:/	9:49 (00:00	4:30	0.50	00.6	8-17	5:48	3:43	1:19	7:35 (6:49 (2:53 (2:53 (5:01	9:40	8:58 •	5:13 7 - 7	1:36 1:35	9:02 -	1:48	6:02	0:22	8:13 (4:52 (1:15	5:46	7:32	7:32	2:01
Hc	* 12:1	01:2	00:1	* 21:0	* 06:4	* 21:5	* 17:2	12:2	* 00:2	7.7.7	18:2	22.3	0.7:0 * 0.7:0	10:3	20:0	• 04:Z	14:U	1.00	7-20 *		* 09:2	18:0	10:5	* 05:5	09:4	0:20	18:2	15:3	00:1	* 04:2	22:3	0.5U 10.2	* 04:1	* 21:1	23:1	11:1	* 00:2	22:5	11:0	* 20:2	16:3	16:3	* 14:2
Fecha	2016/07/13	12/08/2016	23/09/2016	2016/09/24	$2016/10/30^{*}$	2017/01/03	2017/02/24	12/06/2017	2017/06/15	71/90/7102	28/06/2017	20/07/2017	2017/08/19	107/60/07	107/60/07	97/60/7107	08/10/201/ 21/10/201/	2106/11/10	00/11/2006	20/11/11/102	2017/11/19	13/12/2017	24/01/2018	2018/04/02	13/07/2018	17/07/2018	16/08/2018	17/08/2018	19/08/2018	2018/08/19	28/08/2018	2018/08/29	2018/09/10	2018/09/16	10/10/2018	13/10/2018	2018/10/16	25/10/2018	02/11/2018	2018/11/18	25/11/2018	25/11/2018	2018/12/22
Longitud	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15 24.15	-94.LD	-94.15	-94.15	-94.13 04.15	07 12	- 31.10 04.15	-04.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15 04.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15
Latitud 1	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	11.32 1-32	17.32 17.92	17.32	17.32 17.32	17 20	17 20	17 32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32 17.39	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32
Estación	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV			NUXU	NUXU									UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV				UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV Ege AU	RSBAV	RSBAV	RSBAV	R5BAV	RSBAV BGD M	KSBAV DGD AV	NAGGA PCP AV	PCBAV	VAUCH	RSRAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV

Región epicentral	PONDAGUITAN - PHILIPPINES	TOBELO - INDONESIA	PRINCE EDWARD ISLANDS REGION	NDOI ISLAND - FIJI	LESPERANCE ROCK - NEW ZEALAND	LAMBASA - FIJI	MIYAKO - JAPAN	SOUTH OF THE FIJI ISLANDS	VAINI - TONGA	SHINGU - JAPAN	BRISTOL ISLAND - SOUTH SANDWICH	NDOI ISLAND - FIJI	RAOUL ISLAND - NEW ZEALAND	BITUNG - INDONESIA	OZERNOVSKIY - RUSSIA	MAMURRAS - ALBANIA	PLATANOS - GRECIA	PLATANOS - GRECIA	ISANGEL - VANUATU	MAGSAYSAY - PHILIPPINES	PLOMARION - GREECE	LESPERANCE ROCK - NEW ZEALAND	SOUTH OF THE FIJI ISLANDS	LESPERANCE ROCK - NEW ZEALAND	KOS - GREECE	KAMAISHI - JAPAN	ISANGEL - VANUATU	SOUTH OF THE FIJI ISLANDS	PANGAI - TONGA	NAZE - JAPAN	TADINE - NEW CALEDONIA	TADINE - NEW CALEDONIA	HACHIJO-JIMA - JAPAN	HACHIJO-JIMA - JAPAN	HALABJAH - IRAQ	HALABJAH - IRAQ	NYINGCHI - CHINA	NYINGCHI - CHINA	TADINE - NEW CALEDONIA	TADINE - NEW CALEDONIA	HIHIFO - TONGA	BOUVET ISLAND	MISAWA - JAPAN	MISAWA - JAPAN	PORGERA - PAPUA NEW GUINEA	PORGERA - PAPUA NEW GUINEA	
$\sigma_{\delta t}(\mathrm{s})$			3.25	0.55	2.05	0.25		0.25	1.80	2.25		0.30								0.25	2.40		2.20	0.60	2.00	1.60		0.55	0.75		0.40						0.65	2.00	0.40								
$\delta t(\mathbf{s})$			0.40	1.10	0.85	1.05		1.10	1.40	0.60		1.00								0.40	1.00		1.15	0.80	1.70	1.55		1.00	2.20		0.75						1.30	2.05	1.05								
$\sigma_{\phi}(\degree)$		I	57	34	00	17		15	54	57		22		I		I				31	66		72	27	43	45		19	22		27			I			28	80	32								
$(.)\phi$	-64	-66	13	မာ	-12	28	-40	2	52	-14	50	37	-23	-64	27	49	-41	72	-4	-10	-19	-22	က္	28	2	-30	-24	မှ	25	47	28	-10	44	-45	33	-52	45	6	21	-26	20	61	-36	-37	8.5	-86	ute.
$\phi_b(^{\circ})$	296	292	134	249	238	251	319	245	247	316	152	249	240	291	326	44	47	47	253	298	44	238	246	240	45	316	253	245	248	316	251	250	311	311	37	37	350	350	250	250	252	143	320	320	274	274	iguier
Longitud	126.9209	126.7361	42.3568	178.9592	177.8845	178.5889	143.2985	178.7639	176.3171	137.325	-26.5801	-178.567	177.8611	126.414	153.6852	19.5212	23.2673	23.2673	169.5748	125.1739	26.3713	178.0541	179.6059	179.9269	27.4135	144.6601	169.0946	176.9366	173.8022	131.21	169.209	168.9185	141.438	141.438	45.9563	45.9563	94.9776	94.9776	168.6995	168.683	175.0735	2.1681	142.4323	142.4323	142.4795	142.4795	: página s
Latitud	5.8983	2.2414	-43.1219	-21.0475	-32.0238	-17.8512	40.4096	-24.7059	-21.7541	33.1461	-60.2152	-20.3599	-30.1755	1.6199	53.1633	41.5149	35.7272	35.7272	-19.0677	6.6969	38.9154	-30.5139 -	-24.0934	-31.106	36.9249	37.9814	-18.7854	-23.7135	-20.5914	28.39	-21.6645	-21.7928	32.5208	32.5208	34.9052	34.9052	29.8327	29.8327	-21.654	-21.3337	-14.7255 -	-54.2177	41.1034	41.1034	-6.1673	-6.1673	inúa en lo
Fase	\mathbf{PKS}	\mathbf{PKS}	PKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	\mathbf{PKS}	SKS	\mathbf{SKS}	SKS	SKKS	SKS	PKS	SKKS	SKKS	SKS	SKS	SKKS	SKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKKS	SKS	SKKS	SKS	SKKS	SKKS	SKKS	SKS	SKKS	SKS	SKKS	SKS	SKKS	Cont
Aag.	7.0	6.6	6.7	6.2	6.4	6.2	6.0	0.0	6.0	6.3	6.6	6.6	6.1	7.1	6.3	6.4	6.0	6.0	0.0	6.8	6.3	6.0	6.1	0.0	6.6	6.1	6.4	6.4	6.1	5.9	6.7	5.9	6.0	0.0	7.3	7.3	6.4	6.4	6.3	2.0	0.0	6.5	6.3	6.3	6.1	0.T	
Hora N	3:39:09	7:27:18	-9:01:43	9:56:44	5:46:14	8:12:26	8:18:21	4:20:17	5:38:01	8:31:07	3:55:19	5:54:20	2:05:02	6:17:40	8:26:08	2:54:12	7:23:42	7:23:42	0:10:03	6:11:51	2:28:39	0:26:17	2:26:02	7:03:11	2:31:11	-6:37:16	0:09:49	4:20:00	2:00:59	9:02:02	0:42:08	15:09:00	7:42:11	7:42:11	8:18:17	8:18:17	2:34:19	2:34:19	9:25:48	2:43:29	8:51:07	8:03:43	0:51:19	0.51.19)2:45:45	(2:45:45)	
Fecha	29/12/2018 (06/01/2019	$2019/01/22^{*}$	$2019/01/26^{*}$	$2019/03/06^{*}$	2019/03/10* (11/04/2019 ($2019/04/23^{*}$	$2019/05/30^{*}$	2019/07/27*	27/08/2019	2019/09/01*	27/09/2019	14/11/2019	20/11/2019 (26/11/2019 (27/11/2019 (27/11/2019 (04/12/2019	15/12/2019 ($2017/06/12^*$	15/06/2017 (2017/06/17* 2	2017/06/29* (2017/07/20* 2	20/09/2017	20/09/2017	2017/09/26* ($2017/10/18^{*}$	19/10/2017 (2017/10/31* (01/11/2017 (09/11/2017 (09/11/2017 (12/11/2017	12/11/2017	17/11/2017	17/11/2017	2017/11/19* (19/11/2017	20/11/2017	13/12/2017	24/01/2018	24/01/2018	$\frac{28}{02}$	28/02/2018 0	
Longitud	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-94.15	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	-92.14	
Latitud	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	17.32	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	16.28	
Estación	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

Región epicentral	KIMBE - PAPUA NEW GUINEA	KIMBE - PAPUA NEW GUINEA	ISHKASHIM - TAJIKISTAN	ISHKASHIM - TAJIKISTAN	SOUTH OF THE FIJI ISLANDS	AEGEAN SEA	KERMADEC ISLANDS - NEW ZEALAND	SOUTH OF THE FIJI ISLANDS	KERMADEC ISLANDS - NEW ZEALAND	DEDECANESE ISLANDS - GREECE	BONIN ISLANDS - JAPAN REGION	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	IRAN-IRAQ BORDER REGION	EASTERN XIZANG-INDIA BORDER REGION	LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	HOKKAIDO - JAPAN	HOKKAIDO - JAPAN	NEW GUINEA - PAPUA NEW GUINEA	NEW GUINEA - PAPUA NEW GUINEA	NEW BRITAIN REGION - P.N.G.	SOUTH OF THE FIJI ISLANDS	VANUATU ISLANDS	SANTA CRUZ ISLANDS	VOLCANO ISLANDS - JAPAN REGION	VOLCANO ISLANDS - JAPAN REGION	FIJI ISLANDS REGION	MARIANA ISLANDS	SOUTHEAST OF LOYALTY ISLANDS	SOUTHEAST OF LOVALTY ISLANDS	KERMADEC ISLANDS - NEW ZEALAND	SUUTH OF THE FULLSLANDS	FIJI ISLANDS REGION	NORTHWEST OF KURIL ISLANDS	SOUTHEAST OF LOYALTY ISLANDS	IONIAN SEA	SOUTH SANDWICH ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	MINDANAO - PHILIPPINES	SOUTH OF THE FIJI ISLANDS	SOUTH OF THE FIJI ISLANDS	SOLOMON ISLANDS	_
) $\sigma_{\delta t}(\mathbf{s})$	I				0.55	1.45						1.40	0.40	1.20		0.00		0.45				1.02	0.45	1.40			1.10			0.85	0.95		0.70			0.95		1.20					0.25	1.50	0.65	0.00	
°) $\delta t(s)$					0.80	0.65						2.00	1.60	1.40		1.10		1.15				2.70	1.80	3.00			3.40			1.15	2.50		1.45			0.95		1.05					1.50	1.60	1.45	1.60	
$) \sigma_{\phi}($	- 2	2	6	- 2	2 22	.09 9	8	67	8		- 81	3 33	9 15	9 35	55	2 40		3 32	ري رو	8	ي ت	3 11	2 22	9 13	- -		3 10		- 69	5 39	4 9	8	4 16	 []	د د	6 61	2 2	32		9	22	33	3 20	7 70	L5 10	1 31	
$\phi(") \phi($	271 8	121	16 1	16 1	245 5	41 7	38 5	145 -2	38 5	42 -4	807 -4	250 6	250 4	250 3	32 -5	343 1	250 7	50 4	20 7	817 4	817 -3	172 6	272 5	5 023	242 7	252 -1	900 S	801 -6	<u>801 -5</u>	43 4	393 3	249 -2	249 5	237 -2	43 0	49 4	324 4	849 3	44 -4	48 5	49 -3	49 6	92 7	45 4	250 -1	- 203	uiente.
ongitud ϕ	-51.396 2	51.396 2	71.3833	71.3833	78.8033 2	6.3713	78.0541 2	79.6059 2	77.6618 2	27.4135	39.8041 3	69.209 2	68.8879 2	68.9185 2	5.9563	4.9776 3	68.6995 2	68.5743 2	68.683 2	42.4323 3	42.4323 3	42.4795 2	42.4795 2	51.396 2	76.6055 2	69.0224 2	66.432 2	43.3187 3	43.3187 3	78.0332 2	46.8395 2	70.0502 2	70.0502 2	79.3728 2	18.ZU59 2	78.0788 2	53.2429 3	69.4899 2	20.5635	25.546 1	26.4656 1	26.4656 1	26.9209 2	79.2383 2	76.058 2	61.318 2	página sig
Latitud L	-5.4617	-5.4617]	36.9916 7	36.9916 7	23.2601 -1	38.9154 2	30.5139 -1	24.0934 1	30.3103 -1	36.9249 2	27.7829 1	21.6645]	21.6689 1	21.7928 1	34.9052 4	29.8327 9	-21.654 1	21.5112 1	21.3337	41.1034 1	41.1034 1	6.1673 1	6.1673 1	-5.4617	24.8965 -1	18.9332 1	11.5936	23.4226 1	23.4226 1	16.9783 -1	16.8044 1	22.0663 1	22.0663 1	31.7447 -1	1 124.02-	18.3465 -1	52.8549 1	21.9362 1	37.5148 2	56.7065 -	58.5981 -:	58.5981 -:	5.8983 1	23.2513 1	19.3542	10.3433]	núa en la
Fase]	SKS	SKKS	SKS	SKKS :	- SKS	SKS	SKS -	SKS -	SKS -	SKS	SKS	- SXS	SKS -	- SKS	SKS	SKS	SKS	- SXS	SKS -	SKS	SKKS 4	SKS	SKKS	SKS	SKS -	- SXS	SKS -	SKS	SKKS	- SXS	SKS	- SXS	SKKS -	SKS -	SNS	SKS -	SKS	- SXS	SKS	- SXS	SKS -	SKKS -	SKKS	- SXS	- SXS	- SXS	Conti
Mag.	6.7	6.7	6.2	6.2	6.9	6.3	6.0	6.1	6.0	6.6	6.1	6.8	6.6	6.0	7.3	6.4	6.3	6.6	7.0	6.3	6.3	6.1	6.1	6.6	6.1	6.4	6.0	6.3	6.3	6.8	6.4	7.1	7.1	6.9	0.0	0.0	6.7	6.3	6.8	6.3	7.1	7.1	7.0	6.3	6.9	6.5	
Hora	09:51:00	09:51:00	10:41:45	10:41:45	17:28:44	12:28:39	00:26:17	22:26:01	18:20:55	22:31:11	17:26:49	00:42:06	02:23:55	05:09:00	18:18:17	22:34:19	09:25:47	15:09:03	22:43:29	10:51:19	10:51:19	02:45:45	02:45:45	09:51:00	05:57:31	09:46:49	07:02:53	18:22:53	18:22:53	04:28:58	22:35:13	03:51:56	03.51.56	04:19:02	21:11:48	10.52.23	11:10:22	00:28:12	22:54:52	20:02:21	02:26:32	02:26:32	03:39:09	13:14:02	21:52:30	23:04:21	
Fecha	26/03/2018	26/03/2018	09/05/2018	09/05/2018	$2017/02/24^{*}$	$2017/06/12^{*}$	15/06/2017	17/06/2017	28/06/2017	20/07/2017	07/09/2017	$2017/10/31^{*}$	$2017/11/01^{*}$	$2017/11/01^{*}$	12/11/2017	17/11/2017	19/11/2017	$2017/11/19^{*}$	19/11/2017	24/01/2018	24/01/2018	28/02/2018	$2018/02/28^{*}$	26/03/2018	02/04/2018	13/07/2018	17/07/2018	16/08/2018	16/08/2018	$2018/08/19^*$	28/08/2018	29/08/2018	$2018/08/29^*$	10/09/2018	10/08/2018	$2018/09/30^{*}$	13/10/2018	2018/10/16*	25/10/2018	15/11/2018	11/12/2018	11/12/2018	$ 2018/12/29^*$	2017/01/02*	2017/01/03*	2017/01/19*	_
Longitud	-92.14	-92.14	-92.14	-92.14	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.13	-99.65	-99.65	-99.65	
Latitud	16.28	16.28	16.28	16.28	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	16.74	17.02	17.02	17.02	
Estación	CCIG	CCIG	CCIG	CCIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	CRIG	DAIG	DAIG	DAIG	
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NSS	NN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	
) Región epicentral	SOLOMON ISLANDS	SOUTH OF THE FIJI ISLANDS	VANUATU ISLANDS	SOUTH SANDWICH ISLANDS REGION	AEGEAN SEA	KERMADEC ISLANDS - NEW ZEALAND	SOUTH OF THE FIJI ISLANDS	KERMADEC ISLANDS - NEW ZEALAND	DODECANESE ISLANDS - GREECE	BONIN ISLANDS - JAPAN REGION	HONSHU - JAPAN	SOUTH OF THE FIJI ISLANDS	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	SOUTHEAST OF HONSHU - JAPAN	IRAN-IRAQ BORDER REGION	XIZANG-INDIA BORDER REGION	LOYALTY ISLANDS	LOYALTY ISLANDS	HOKKAIDO - JAPAN	HOKKAIDO - JAPAN	TAIWAN	NEW GUINEA - PAPUA NEW GUINEA	NEW GUINEA - PAPUA NEW GUINEA	NEW GUINEA - PAPUA NEW GUINEA	NEW BRITAIN REGION - P.N.G.	SOUTH OF THE FIJI ISLANDS	VANUATU ISLANDS	SANTA CRUZ ISLANDS	VOLCANO ISLANDS - JAPAN REGION	VOLCANO ISLANDS - JAPAN REGION	FIJI ISLANDS REGION	MARIANA ISLANDS	IONIAN SEA	SOUTH SANDWICH ISLANDS REGION	IRAN-IRAQ BORDER REGION	SOUTH SANDWICH ISLANDS REGION	SOUTH SANDWICH ISLANDS REGION	MINDANAO - PHILIPPINES	PLOMARION - GREECE	LESPERANCE ROCK - NEW ZEALAND	SOUTH OF THE FIJI ISLANDS	LESPERANCE ROCK - NEW ZEALAND	KOS - GREECE	KOS - GREECE	
--------------------------	-----------------	---------------------------	------------------	-------------------------------	-------------------	--------------------------------	---------------------------	--------------------------------	-----------------------------	------------------------------	----------------	---------------------------	------------------------------	------------------	------------------	-----------------------------	-------------------------	----------------------------	-----------------	-----------------	------------------	------------------	-------------------	-------------------------------	-------------------------------	-------------------------------	-----------------------------	---------------------------	------------------	--------------------	--------------------------------	--------------------------------	---------------------	------------------	------------	-------------------------------	-------------------------	-------------------------------	-------------------------------	------------------------	--------------------	-------------------------------	---------------------------	-------------------------------	--------------	--------------	-----------
$\sigma_{\delta t}(s)$		0.60	0.60		1.35				0.45	2.45		0.45	1.40	0.25	1.20				0.70				1.30	1.95	1.80		1.40		2.45	2.00		0.95	0.80	1.05		2.50	L.35	1.85		1.35			1.05				
) $\delta t(\mathbf{s})$		0.55	2.10		1.45				0.65	1.15		1.05	1.20	1.55	2.20				1.80				1.00	0.75	0.75		1.45		1.80	2.20		0.75	1.40	1.95		0.55	1.05	0.75		1.35			0.75				
$\sigma_{\phi}($		38	14		65				64	82		-7	56	×	27				26				31	55	62		42		79	34	I	53		14		57	56	61		26		1	61				
(°)¢ (-	39	54	-36	52	54	99	57	58	-66	-56	-22	=	40	42	-46	-60	62	54	-27	42	49	-72	32	35	-86	24	64	-10	က 	47	88	-12		47	32	20	36	61	-86	45	-26	57	-37	-41	47	nte.
$\phi_{p}($	268	3 245	257	148	41	- 238	245	238	42	307	314	5 244	250	250	250	311	32	343	250	250	317	317	315	272	271	271	270	242	252	260	301	301	243	. 293	44	148	325	149	149	292	44	- 238	246	240	45	45	siguie
Longitud	155.1442	-178.8033	167.3767	-25.7827	26.3713	-178.0541	179.6059	-177.6618	27.4135	139.8041	144.6601	-176.9366	169.209	168.8879	168.9185	141.438	45.9563	94.9776	168.5743	168.683	142.4323	142.4323	121.658	142.4795	142.6127	142.6127	151.396	-176.6055	169.0224	166.432	143.3187	143.3187	-178.0332	146.8395	20.5635	-25.546	45.7432	-26.4656	-26.4656	126.9209	26.3713	-178.0541	179.6059	179.9269	27.4135	27.4135	a página
Latitud	-6.2145	-23.2601	-14.5884	-56.4277	38.9154	-30.5139	-24.0934	-30.3103	36.9249	27.7829	37.9814	-23.7135	-21.6645	-21.6689	-21.7928	32.5208	34.9052	29.8327	-21.5112	-21.3337	41.1034	41.1034	24.1359	-6.1673	-6.2933	-6.2933	-5.4617	-24.8965	-18.9332	-11.5936	23.4226	23.4226	-16.9783	16.8044	37.5148	-56.7065	34.3464	-58.5981	-58.5981	5.8983	38.9154	-30.5139	-24.0934	-31.106	36.9249	36.9249	inúa en l
Fase	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKKS	SKKS	SKKS	SKS	SKS	SKS	SKKS	Cont
Aag.	7.9	6.9	6.8	6.5	6.3	0.0	6.1	6.0	6.6	6.1	6.1	6.4	6.8	6.6	0.0	6.0	7.3	6.4	6.6	7.0	6.3	6.3	6.4	6.1	6.7	6.7	6.6	6.1	6.4	6.0	6.3	6.3	6.8	6.4	6.8	6.3	6.3	7.1	7.1	7.0	6.3	0.0	6.1	0.0	9 . 9	9.0	
Hora N	04:30:22	17:28:44	13:52:10	23:23:37	12:28:39	00:26:17	22:26:01	18:20:55	22:31:11	17:26:49	16:37:16	04:20:00	00:42:06	02:23:55	05:09:00	07:42:11	18:18:17	22:34:19	15:09:03	22:43:29	10:51:19	10:51:19	15:50:43	02:45:45	14:13:06	14:13:06	09:51:00	05:57:31	09:46:49	07:02:53	18:22:53	18:22:53	04:28:58	22:35:13	22:54:52	20:02:21	16:37:32	02:26:32	02:26:32	03:39:09	12:28:39	00:26:17	22:26:02	07:03:11	22:31:11	22:31:11	
Fecha	22/01/2017	$2017/02/24^*$	$2017/05/09^{*}$	10/05/2017	$2017/06/12^{**}$	15/06/2017	17/06/2017	28/06/2017	$2017/07/20^{**}$	$2017/09/07^{**}$	20/09/2017	$2017/09/26^{*}$	$2017/10/31^{*}$	$2017/11/01^{*}$	$2017/11/01^{*}$	09/11/2017	12/11/2017	17/11/2017	19/11/2017	19/11/2017	24/01/2018	24/01/2018	$2018/02/06^{**}$	$2018/02/28^{*}$	$2018/03/06^{*}$	06/03/2018	$2018/03/26^{*}$	02/04/2018	$2018/07/13^{*}$	2018/07/17*	16/08/2018	$2018/08/16^{**}$	$2018/08/19^*$	$2018/08/28^{*}$	25/10/2018	$2018/11/15^{*}$	2018/11/25**	2018/12/11*	11/12/2018	$2018/12/29^{**}$	12/06/2017	15/06/2017	2017/06/17*	29/06/2017	20/07/2017	20/07/2017	
Longitud	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-99.65	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	
Latitud	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	17.02	15.70	15.70	15.70	15.70	15.70	15.70	
Estación	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	DAIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	
Red	SSN	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NSS	SSN	SSN	

) Región epicentral	KAMAISHI - JAPAN	ISANGEL - VANUATU	SOUTH OF THE FIJI ISLANDS	BOUVET ISLAND	TADINE - NEW CALEDONIA	TADINE - NEW CALEDONIA	TADINE - NEW CALEDONIA	HACHIJO-JIMA - JAPAN	HALABJAH - IRAQ	HALABJAH - IRAQ	TADINE - NEW CALEDONIA	TADINE - NEW CALEDONIA	TADINE - NEW CALEDONIA	KERMAN - IRAN	BOUVET ISLAND	NDOI ISLAND - FIJI	MISAWA - JAPAN	MISAWA - JAPAN	MENDI - PAPUA NEW GUINEA	PORGERA - PAPUA NEW GUINEA	PORGERA - PAPUA NEW GUINEA	PORGERA - PAPUA NEW GUINEA	KIMBE - PAPUA NEW GUINEA	KIMBE - PAPUA NEW GUINEA	SOUTH OF THE FIJI ISLANDS	SOUTH OF THE FIJI ISLANDS	FIJI ISLANDS REGION	ISHKASHIM - TAJIKISTAN	LESPERANCE ROCK - NEW ZEALAND	SOUTH OF THE FIJI ISLANDS	SOUTH OF THE FIJI ISLANDS	SOLOMON ISLANDS	SOUTH OF THE FIJI ISLANDS	VANUATU ISLANDS Solith sandaich ist ands begion	TEDNATES IST AND A DESTRICTION SEAL AND	COLITH OF THE FIII ISLANDS - NEW DEADAND COLITH OF THE FIII ISLANDS	KERMADEC ISLANDS - NEW ZEALAND	DEDECANESE ISLANDS - GREECE	DEDECANESE ISLANDS - GREECE	HONSHU - JAPAN	ISANGEL - VANUATU	SOUTH OF THE FIJI ISLANDS	BOUVET ISLAND	SOUTHEAST OF LOYALTY ISLANDS	LOYALTY ISLANDS	
) $\sigma_{\delta t}(s$	0 1.75	0 1.4(0.50		5 2.6(5 0.8(5 0.75	0 1.8(5 0.75				0 1.55						5 1.10							5 1.35	5 0.75				0.1.0) I.Z							5 2.05			0.8(
$^{\circ}) \delta t(s$	3 1.0	6.1.9	5 0.4		t 1.3	2.8		8 1.1.	9.1.8		1.2				2.0						7 1.0							7 1.1	1.6				1.1 ~	D-1-0							2.4			1.7		
$) \sigma_{\phi}($	45	46	8 45	-	12 2	2 7		38	32	6	3(1	0	-	1	2		9	1					-	6		2	3,	30				žě i	ы С	1.	 0 ~				ا ى	$\frac{1}{2}$			10	- -	
)ø (_)	-6 8	-'- :3	12 33	2 4	51	50 -1	0.8	$\frac{1}{2}$	7 58	7 -4	50 1	60 60	50 -2	1-4	3 -2	-1	0 4	20 -4	2 8	4 6	4	³ 3 -1	1	1 	l4 −1	14 6.	-1	90 	2; 	-9 9	$1 - 6^2$	8	9 9	20 20 20		0 <u></u>	000 000 000	5 ic 3 m) 4 	- <u>-</u>	-1	5 6	2 64	0 0	60 - 2	iente.
ϕ_{p}	11 31	46 25	66 24	5 14	9 25	32 25	35 25	8 31	3 3 3		3 25	3 25	35 25	5 3	l 14	81 25	23 32	23 32	5 27	95 27	$\frac{35}{2}$ 27	27 27	6 27	6 27	55 24	55 24	75 25	33	73 23	33 24	8 25	12 26	33 24	20 1 70		14 14 14	57 ST	5 7 7 7) 4 4	л - 31 -	16 25	66 24	5 14	9 25	79 25	a sigu
Longitı	144.66(169.094	-176.93	8.605!	169.20	168.93(168.918	141.43	45.956	45.956	168.68	168.68	168.699	57.270	2.168	-179.29	142.432	142.432	143.25	142.479	142.479	142.612	151.39	151.39	-176.60	-176.60	-177.93	71.383	-179.44	179.238	176.05	155.144	-178.80	167.37(170.05	-170 60.	-177 66	27.413	27.413	144.66(169.094	-176.93	8.6058	169.20	168.887	a págine
Latitud	37.9814	.18.7854	23.7135	54.2584	21.6645	21.7305	21.7928	32.5208	34.9052	34.9052	.21.3337	-21.3337	-21.654	30.7196	54.2177	.19.4488	41.1034	41.1034	-6.5052	-6.1673	-6.1673	-6.2933	-5.4617	-5.4617	-24.8965	-24.8965	.18.0199	36.9916	33.7895	23.2513	.19.3542	-6.2145	23.2601	14.5884	0613.06	8610.06-	30 3103	36.9249	36.9249	37.9814	18.7854	23.7135	54.2584	21.6645	21.6689	núa en l
Fase	SKS	KKS	SKS	KKS	SKS	KKS .	SKS	SKS	SKS	KKS	SKS	KKS	KKS	SKS	KKS	SKS .	SKS	KKS	KKS	SKS	KKS	KKS	SKS	KKS	SKS	KKS	SKS .	KKS	SKS	SKS	SKS	SKS	SKS	SYS			a Ko	SKS	KKS	SXS	KKS	SKS	SKS	SKS	SKS	$Cont_3$
Iag.	6.1	6.4 S	6.4	6.7 S	6.7	6.1 S	5.9	0.0	7.3	7.3 S	7.0	7.0 S	6.3 S	0.0	6.5 S	5.9	6.3	6.3 S	6.3 S	6.1	6.1	6.7 S	6.7	6.7 S	6.1	6.1 S	5.9	6.2 S	5.9	6.3	6.9	7.9	6.9	х ч с				999		2	6.4 S	6.4	6.7	6.8	0.6	
Iora N	37.16	09:49	:20:00	53:27	:42:08	09:30	00:60:	:42:11	:18:17	:18:17	:43:29	43:29	25:48	:43:18	03:43	57:18	51:19	51:19	:18:00	45:45	45.45	:13:07	51:00	51:00	57:35	57:35	47.53	41:45	:22:17	:14:02	:52:30	:30:22	:28:44	01:20	26.17	11:02:	-00-55	31:11	31:11	37:16	09:49	:20:00	:53:27	:42:06	:23:55	
)* 16)* 20	3* 04	7 18	l* 00	7 00	7 05	±01 *0	7 18	7 18	3 [∗] 22	7 22	7 09	7 08	7 18	8 19	8 10	8 10	8 15	8 02	3* 02	8 14	8 09	8 09	8 05	8 05	8 19	8 10	3* 17	7 13	7 21	7 04		7 I3 7 7 7 7		7 00 7	- 14	7 22	7 22	7 16)* 20	7 04	7 18	l* 00	7 02	
Fecha	2017/09/20	2017/09/20	2017/09/26	10/10/201	2017/10/31	01/11/201	01/11/201	2017/11/09	12/11/201	12/11/201	2017/11/19	$19/\dot{1}1/\dot{2}01$	19/11/201	12/12/201	13/12/201	16/01/201	24/01/201	24/01/201	26/02/201	28/02/201	2018/02/28	06/03/201	26/03/201	26/03/201	02/04/201	02/04/201	01/05/201	09/05/201	2018/05/16	02/01/201	03/01/201	22/01/201	2017/02/24	30/90/7107	105/00/01	102/00/21 12/06/201	20/20/11 28/06/201	20/00/201	20/07/201	20/09/201	2017/09/20	$26/\dot{0}9/\dot{2}01$	10/10/201	2017/10/31	01/11/201	
Longitud	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-93.22	-97.15	-97.15	-97.15	-97.15	-97.15 07.15	01.10-	-97.15	-07.15	97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	
Latitud 1	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	15.70	16.00	16.00	16.00	16.00	16.00	16.00	16 00	16 00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	
Estación	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PEIG	PEIG	PEIG	PEIG	PEIG DEND		PEIC		PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NNN		NSS		NSS	NSS	SSN	SSN	SSN	SSN	SSN	NSS	

Región epicentral	TADINE - NEW CALEDONIA	SOUTHEAST OF HONSHU - JAPAN	IRAN-IRAQ BORDER REGION	EASTERN XIZANG-INDIA BORDER REGION	EASTERN XIZANG-INDIA BORDER REGION	LOYALTY ISLANDS	LOYALTY ISLANDS	MISAWA - JAPAN	MISAWA - JAPAN	TAIWAN	PORGERA - PAPUA NEW GUINEA	PORGERA - PAPUA NEW GUINEA	SOUTH OF THE FIJI ISLANDS	SOUTH OF THE FIJI ISLANDS	PANDAN - PHILIPPINES	VANUATU ISLANDS	SANTA CRUZ ISLANDS	VOLCANO ISLANDS - JAPAN REGION	FIJI ISLANDS REGION	MARIANA ISLANDS	LOYALTY ISLANDS	LOYALTY ISLANDS	SOLOMON ISLANDS	SOLOMON ISLANDS	KERMADEC ISLANDS - NEW ZEALAND	SOUTH OF THE FIJI ISLANDS	KURIL ISLANDS	IONIAN SEA	SOUTH SANDWICH ISLANDS REGION	LOYALTY ISLANDS	MINDANAO - PHILIPPINES	PLOMARION - GREECE	KOS - GREECE	KAMAISHI - JAPAN	ISANGEL - VANUATU	SOUTH OF THE FIJI ISLANDS	TADINE - NEW CALEDONIA	HACHIJO-JIMA - JAPAN	HACHIJO-JIMA - JAPAN	HALABJAH - IRAQ	NYINGCHI - CHINA	TADINE - NEW CALEDONIA	HIHIFO - TONGA	MISAWA - JAPAN	MISAWA - JAPAN	SOUTH OF THE FIJI ISLANDS	
$\sigma_{\delta t}(\mathbf{s})$		1.85	1.80	0.95	1.50	1.05					0.65	2.70	1.40						0.90	0.90			0.65	1.45								1.65	3.95	1.20		0.95	1.25	2.45	3.30						1.80		
$\delta t(\mathbf{s})$		1.40	1.85	1.70	2.65	1.35					1.70	1.30	0.65						1.40	2.50			1.80	1.95								2.35	0.55	1.25		2.05	0.90	1.70	0.80						2.00		
$\sigma_{\phi}(^{\circ})$		70	13	32	14	28					14	66	63						55	7			26	48								18	68	20		9	35	52	55						75		
$()\phi()$	-22	50	57	56	ي. -	31	-72	48	-33	-37	71	68	0	-27	43	20	73	-63	67	-75	65	-16	46	59	57	-20	-55	36	-34	-19	28	52	-68	-29	8.5	68	51	-32	73	36	92	67	85	53	64	-21	nte.
$\phi_b(^{\circ})$	251	311	37	346	346	250	250	320	320	315	274	274	244	244	307	252	260	301	243	293	249	249	263	263	237	243	324	44	148	249	292	44	45	316	253	245	251	311	311	37	350	250	252	320	320	244	siguie
Longitud	168.9185	141.438	45.9563	94.9776	94.9776	168.6995	168.5743	142.4323	142.4323	121.658	142.4795	142.4795	-176.6055	-176.6055	123.9192	169.0224	166.432	143.3187	-178.0332	146.8395	170.0502	170.0502	161.5025	161.5025	-179.3728	178.2059	156.2968	20.5635	-25.546	169.4179	126.9209	26.3713	27.4135	144.6601	169.0946	-176.9366	169.209	141.438	141.438	45.9563	94.9776	168.683	-175.0735	142.4323	142.4323	-176.6055	a página :
Latitud	-21.7928	32.5208	34.9052	29.8327	29.8327	-21.654	-21.5112	41.1034	41.1034	24.1359	-6.1673	-6.1673	-24.8965	-24.8965	14.5708	-18.9332	-11.5936	23.4226	-16.9783	16.8044	-22.0663	-22.0663	-10.0207	-10.0207	-31.7447	-25.421	49.2902	37.5148	-56.7065	-21.9568	5.8983	38.9154	36.9249	37.9814	-18.7854	-23.7135	-21.6645	32.5208	32.5208	34.9052	29.8327	-21.3337	-14.7255	41.1034	41.1034	-24.8965	inúa en l
Fase	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKKS	SKKS	SKS	SKKS	SKS	SKKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKKS	SKS	SKKS	SKKS	SKS	SKS	SKKS	SKS	Cont
Mag.	5.9	6.0	7.3	6.4	6.4	6.3	6.6	6.3	6.3	6.4	6.1	6.1	6.1	6.1	6.1	6.4	6.0	6.3	6.8	6.4	7.1	7.1	6.5	6.5	6.9	6.5	6.5	6.8	6.3	7.5	7.0	6.3	6.6	6.1	6.4	6.4	6.7	6.0	0.0	7.3	6.4	7.0	6.0	6.3	6.3	6.1	
Hora	05:09:00	07:42:11	18:18:17	22:34:19	22:34:19	09:25:47	15:09:03	10:51:19	10:51:19	15:50:43	02:45:45	02:45:45	05:57:35	05:57:35	06:19:05	09:46:49	07:02:56	18:22:53	$04{:}28{:}58$	22:35:13	03:51:56	03:51:56	19:31:34	19:31:34	04:19:02	21:11:48	23:16:02	22:54:52	20:02:21	04:18:08	03:39:09	12:28:39	22:31:11	16:37:16	20:09:49	04:20:00	00:42:08	07:42:11	07:42:11	18:18:17	22:34:19	22:43:29	18:51:07	10:51:19	10:51:19	05:57:35	
Fecha	01/11/2017	$2017/11/09^*$	2017/11/12*	2017/11/17*	$17/\dot{1}1/\dot{2}017$	$20\dot{1}7/\dot{1}1/19^{*}$	$19/\dot{1}1/\dot{2}017$	24/01/2018	24/01/2018	06/02/2018	$2018/02/28^{*}$	$2018/02/28^{*}$	$2018/04/02^{*}$	$02/\dot{0}4/\dot{2}018$	05/05/2018	13/07/2018	17/07/2018	16/08/2018	$2018/08/19^{*}$	28/08/2018	29/08/2018	29/08/2018	$2018/09/09^{*}$	2018/09/09*	$10/\dot{0}9/\dot{2}018$	16/09/2018	10/10/2018	25/10/2018	15/11/2018	05/12/2018	29/12/2018	12/06/2017	20/07/2017	$2017/09/20^{**}$	20/09/2017	$2017/09/26^{*}$	$2017/10/31^{*}$	2017/11/09**	$2017/11/09^{**}$	12/11/2017	17/11/2017	19/11/2017	20/11/2017	24/01/2018	$2018/01/24^{**}$	02/04/2018	
Longitud	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-97.15	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	-93.12	
Latitud	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.00	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	16.79	
Estación	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	PEIG	TGIG	TGIG	TGIG	J'GIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	
Red	SSN	SSN	SSN	SSN	SSN	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

$\frac{\text{Red}}{\text{SSN}}$	Estación TGIG	Latitud 16.79	Longitud -93.12	Fecha 02/04/2018	Hora 05:57:35	Mag. 6.1	Fase SKKS -	Latitud -24.8965	Longitud -176.6055	$\frac{\phi_b(^\circ)}{244}$	φ(°) 68	φ(°)	5t(s) c	$\frac{r_{\delta t}(s)}{-}$	Región epicentral SOUTH OF THE FIJI ISLANDS
SSN	TGIG	16.79	-93.12	16/05/2018	17:22:17	5.9	SKS	-33.7895	-179.4473	236	61			1	LESPERANCE ROCK - NEW ZEALAND
SSN	TGIG	16.79	-93.12	26/01/2019	19:56:44	6.2	SKS	-21.0475	-178.9592	248	71				CHIROVANGA - SOLOMON ISLANDS
SSN	TGIG	16.79	-93.12	17/02/2019	14:35:55	6.4	SKS	-3.3412	152.1319	274	15				NAMATANAI - PAPUA NEW GUINEA
SSN	TGIG	16.79	-93.12	17/02/2019	14:35:55	6.4	SKKS	-3.3412	152.1319	274	7			1	NAMATANAI - PAPUA NEW GUINEA
SSN	TGIG	16.79	-93.12	06/03/2019	15:46:14	6.4	SKS	-32.0238	-177.8845	238	60	I			LESPERANCE ROCK - NEW ZEALAND
SSN	TGIG	16.79	-93.12	2019/03/10*	08:12:26	6.2	SKS	-17.8512	-178.5889	252	-14	82	1.05	1.50	LAMBASA - FIJI
SSN	TGIG	16.79	-93.12	$2019/03/20^{*}$	15:23:58	6.3	SKS	-15.5965	167.6551	257	64	24	2.10	0.00	LUGANVILLE - VANUATU
SSN	TGIG	16.79	-93.12	05/04/2019	16:14:16	6.4	SKS	-55.9206	-27.856	149	-13	1			VISOKOI ISLAND
SSN	TGIG	16.79	-93.12	09/04/2019	17:53:58	6.5	SKS	-58.6064	-25.2559	151	52				SOUTH SANDWICH ISLANDS REGION
SSN	TGIG	16.79	-93.12	06/05/2019	21:19:37	7.1	SKKS	-6.973	146.4505	271	83				BULOLO - PAPUA NEW GUINEA
SSN	TGIG	16.79	-93.12	04/06/2019	04:39:16	6.4	SKS	29.0623	139.2932	311	44	1			PONDAGUITAN - PHILIPPINES
SSN	TGIG	16.79	-93.12	$2019/06/04^{**}$	04:39:16	6.4	SKKS	29.0623	139.2932	311	-75	37	1.35	0.00	PONDAGUITAN - PHILIPPINES
SSN	LGIG	16.79	-93.12	2019/06/15*	21:56:10	6.1	SKS	-21.1807	-174.169	247	26^{-1}	68	0.65	2.75	OHONUA - TONGA
SSN	TGIG	16.79	-93.12	15/06/2019	22:55:04	7.3	SKS	-30.644	-178.106	239	-27				LESPERANCE ROCK - NEW ZEALAND
SSN	TGIG	16.79	-93.12	16/06/2019	05:17:14	6.3	SKS	-31.069	-178.0827	239	-28				LESPERANCE ROCK - NEW ZEALAND
NSS	TGIG	16.79	-93.12	17/06/2019	06:02:04	6.1	SKS	-30.9381	-177.5972	239	-24	;			LESPERANCE ROCK - NEW ZEALAND
SSN	DID I	16.79	-93.12	2019/06/18**	13:22:19	6.4	SKS	38.637	139.4804	319	-52	30	1.40	1.20	ISURUOKA - JAPAN
SSN	TGIG	16.79	-93.12	$ 2019/06/18^{**} $	13:22:19	6.4	SKKS	38.637	139.4804	319	-72	32	1.20	1.15	TSURUOKA - JAPAN
SSN	TGIG	16.79	-93.12	19/06/2019	07:01:45	6.4	SKS	-30.6004	-177.787	239	-28				RAOUL ISLAND - NEW ZEALAND
SSN	TGIG	16.79	-93.12	21/06/2019	08:37:16	6.2	SKS	-30.8598	-177.4658	239	-27				LESPERANCE ROCK - NEW ZEALAND
SSN	TGIG	16.79	-93.12	2019/06/27*	11:04:56	6.3	SKS	-30.3859	-179.2332	239	44	60	1.40	1.85	LESPERANCE ROCK - NEW ZEALAND
SSN	TGIG	16.79	-93.12	28/06/2019	15:51:31	6.4	SKKS	19.8515	144.3477	300	-18	38	1.30	1.75	MARIANA ISLANDS
SSN	TGIG	16.79	-93.12	27/07/2019	18:31:07	6.3	SKS	33.1461	137.325	316	43				SHINGU - JAPAN
SSN	TGIG	16.79	-93.12	$ 2019/07/31^*$	15:02:33	6.6	SKS	-16.1985	167.9982	256	53	36	0.70	1.40	LAKATORO - VANUATU
SSN	TGIG	16.79	-93.12	02/08/2019	12:03:27	6.9	SKKS	-7.2668	104.8245	292	-4	39	2.35	1.75	TUGU HILIR - INDONESIA
SSN	TGIG	16.79	-93.12	04/08/2019	10:23:03	6.3	SKS	37.7597	141.6089	317	53				NAMIE - JAPAN
SSN	TGIG	16.79	-93.12	27/08/2019	23:55:19	6.6	SKS	-60.2152	-26.5801	152	20				SOUTH SANDWICH ISLANDS REGION
SSN	TGIG	16.79	-93.12	$2019/09/01^*$	15:54:20	6.6	SKS	-20.3599	-178.567	249	66	20	1.10	0.85	NDOI ISLAND - FIJI
SSN	TGIG	16.79	-93.12	2019/09/27*	12:05:02	6.1	SKS	-30.1755	-177.8611	239	36	58	0.90	2.10	RAOUL ISLAND - NEW ZEALAND
SSN	DIDL	16.79	-93.12	2019/11/08*	10:44:44	6.5	SKS	-21.9688	-179.4911	248	51	64	0.65	1.25	NDOI ISLAND - FIJI
SSN	TGIG	16.79	-93.12	11/11/2019	23:03:28	6.2	SKS	-18.8857	-175.3598	249	-27				NEIAFU - TONGA
SSN	LGIG	16.79	-93.12	$2019/11/20^{**}$	08:26:08	6.3	SKS	53.1633	153.6852	326	-26	24	1.00	0.45	OZERNOVSKIY - RUSSIA
NSS	LGIG	16.79	-93.12	26/11/2019	02:54:12	6.4	SKS	41.5149	19.5212	44	41	I			MAMUKKAS - ALBANIA
NIN	JHIC	14.88	-92.30	1102/00/21	12:28:39	0.3	SAAS	38.9154	26.3713	44	54				FLUMARIUN - GREECE
SSN	THG	14.88	-92.30	20/07/2017	22:31:11	9.0	SKS	36.9249	27.4135	$\frac{45}{2}$	89	25	1.80	0.85	KOS - GREECE
SSN	THIG	14.88	-92.30	.5017/09/26*	04:20:00	6.4	SKS	-23.7135	-176.9366	245	40	54	0.40	1.20	SOUTH OF THE FUI ISLANDS
SSN	THG	14.88	-92.30	18/10/2017	12:00:59	6.1 2	SKS	-20.5914	-173.8022	248	59	∞;	2.50	1.25	PANGAI - TONGA
SSN	THIG	14.88	-92.30	24/01/2018	10:51:19	6.3	SKS	41.1034	142.4323	320	-49	74	1.10	2.00	MISAWA - JAPAN
SSN	THIG	14.88	-92.30	24/01/2018	10:51:19	6.3	SKKS	41.1034	142.4323	320	-55	18	1.35	1.05	MISAWA - JAPAN
SSN	THIG	14.88	-92.30	28/01/2018	16:03:03	6.6	SKS	-53.0623	9.6842	141	-45				SOUTHWEST OF AFRICA
SSN	THIG	14.88	-92.30	02/04/2018	05:57:35	6.1	SKS	24.8965	-176.6055	244	74			1	SOUTH OF THE FIJI ISLANDS
SSN	THIG	14.88	-92.30	02/04/2018	05:57:35	6.1	SKKS	-24.8965	-176.6055	244	69				SOUTH OF THE FIJI ISLANDS
SSN	THG	14.88	-92.30	05/04/2019	16:14:16	6.4	SKS	-55.9206	-27.856	148	48				VISOKOI ISLAND
SSN	THG	14.88	-92.30	23/04/2019	05:37:53	6.4	SKKS	11.8458	125.1869	303	-49	•			TUTUBIGAN - PHILIPPINES
SSN	THIG	14.88	-92.30	06/05/2019	21:19:37	7.1	SKKS	-6.973	146.4505	271	-1	34	1.40	1.85	BULOLO - PAPUA NEW GUINEA
							Conti	inúa en le	a página s	iguient	е.				

I

Región epicentral	IZU ISLANDS - JAPAN REGION	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	RAOUL ISLAND - NEW ZEALAND	LESPERANCE ROCK - NEW ZEALAND	SAUMLAKI - INDONESIA	TUGU HILIR - INDONESIA	NAMIE - JAPAN	NDOI ISLAND - FIJI	COLUMBIO - PHILIPPINES	NEIAFU - TONGA	NDOI ISLAND - FIJI	NEIAFU - TONGA	PORT-VILA - VANUATU	NDOI ISLAND - FIJI	LATA - SOLOMON ISLANDS	NDOI ISLAND - FIJI	KOKOPO - PAPUA NEW GUINEA	CHICHI-SHIMA - JAPAN	NDOI ISLAND - FIJI	CHICHI-SHIMA - JAPAN	CHICHI-SHIMA - JAPAN	LESPERANCE ROCK - NEW ZEALAND	YILKIQI - CHINA	SHIKOTAN - RUSSIA	DADALI - SOLOMON ISLANDS	LATA - SOLOMON ISLANDS	DADALI - SOLOMON ISLANDS	GIZO - SOLOMON ISLANDS	KIRAKIRA - SOLOMON ISLANDS	LESPERANCE ROCK - NEW ZEALAND	HACHIJU-JIMA - JAPAN	DODT OI DV VANUATI	MARTIDAZART TADAN	NA KTEVAZAKT - TA PAN	DADAT SOLOMON IST ANDS	CHIZINAL - JAPAN	BIIMOI - JAPAN	LESPERANCE BOCK - NEW ZFALAND	PORT-OLRY - VANUATU	SOLA - VANUATU	SOLA - VANUATU	PORT-OLRY - VANUATU	KUMAMOTO-SHI - JAPAN	
$\sigma_{\delta t}(\mathbf{s})$			1.70				1.50			0.60	1.05	0.75	0.55		0.70	0.40		0.85	1.00		0.75			0.65	0.50		0.60	0.30	0.30	0.40	0.15	0.40		0.80	лт . т		о 15 Г	ст•о		0.35	3	0.60	0.75	0.40		
) $\delta t(\mathbf{s})$			0.95				1.20	l		0.80	3.65	2.45	3.40		2.55	2.05		2.00	2.05		1.95			2.60	2.65		2.35	1.60	1.35	1.85	1.55	2.40		2.15	01.2		1 70			1.80		1.40	2.25	1.95		
$\sigma_{\phi}(\degree)$			65			I	62		I	32	19	15	က		6	15		17	6		17			5 2	15		10	16	21	20	10	9	;	11	P#		Γ	4		Ś	,	18	14	×		
$ \phi(^{\circ})$	46	66	56	-14	75	-16	32	-74	56	36	-89	-7	-1	-15	57	38	2	41	79	-67	39	-71	28	38	30	53	60	35	57	25	59	39	-01	ۍ ۲	t G	00-	5.5	3 2	-41	34	, -	48	59	57	54	ite.
$\phi_b(\degree)$	311	239	239	239	239	239	277	292	317	249	297	250	248	249	255	248	261	248	271	308	248	309	309	237	ഹ	319	265	262	265	266	262	239	311	230	007	217	956	319	322	239	258	258	259	258	318	iguier
Longitud	139.2932	-178.106	-178.0827	177.5972	-177.787	-177.4658	138.5675	104.8245	141.6089	-178.567	125.0012	-175.272	.179.4911	175.3598	168.5545	178.3597	166.4836	-178.5801	151.8641	140.4939	-178.3692	139.7885	139.7885	178.1228	78.1205	148.0042	158.3424	165.1009	158.0265	157.821	163.8328	-179.0971	141.6	90.06 7.11-	190 0790	198 8790	158 4917	142.781	141 0867	179.9563	166.8551	166.6245	166.5943	166.4334	130.7543	ı página s
Latitud	29.0623	-30.644	-31.069	-30.9381	-30.6004	-30.8598	-2.7756	-7.2668	37.7597	-20.3599	6.7138	-18.5747	-21.9688	-18.8857	-17.064	-20.9998	-12.0844	-20.8766	-5.5168	27.8281	-20.4655	27.6883	27.6883	-32.2156	37.4703	43.9697	-9.3539	-10.4574	-9.2843	-9.3071	-10.9382	-30.6497	31.1806	-32.8199 - 14 eere	010001e	31 0000	6000.10	-0.0994 41 9723	44 4761	30.7636	-14.3235	-14.0683	-13.9805	-14.5284	32.7906	inúa en le
Fase	SKKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	CNC 0/10	01/10	CARC	o No	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	Cont
Mag.	6.4	7.3	6.3	6.1	6.4	6.2	6.1	6.9	6.3	6.6	6.4	6.6	6.5	6.2	6.8	6.2	6.2	6.1	7.5	7.8	6.0	6.5	6.5	6.0	6.4	6.3	6.7	7.0	6.6	6.5	6.4	6.0	0.0	0.0 1	- 1- 3	U	- 0 9	0.0 9	6.2	6.5	6.9	6.7	6.7	6.4	7.0	
Hora 1	04:39:16	22:55:04	05:17:14	06:02:04	07:01:45	08:37:16	01:05:29	12:03:27	10:23:03	15:54:20	11:37:06	22:43:32	10:44:44	23:03:28	03:47:27	02:43:19	22:57:15	16:39:39	01:44:06	11:23:02	21:28:16	12:18:30	12:18:30	18:45:57	01:07:47	05:10:28	04:12:42	02:27:33	04:12:15	18:49:24	07:47:06	09:41:26	15:25:09	J9:13:00	20.20.12	20.51.31	19-21-04	13-25-33	17-08-03	19:00:46	08:23:52	06:58:48	03:32:53	21:50:27	16:25:06	
Fecha	04/06/2019	15/06/2019	$20\dot{1}9/\dot{0}6/16^{*}$	17/06/2019	19/06/2019	21/06/2019	$20\dot{1}9/\dot{0}6/24^{*}$	$02/\dot{0}8/\dot{2}019$	04/08/2019	$2019/09/01^{*}$	16/10/2019	04/11/2019	08/11/2019	11/11/2019	23/01/2015	$2015/01/28^{*}$	22/04/2015	$2015/04/28^{*}$	05/05/2015	30/05/2015	$2015/06/21^{*}$	23/06/2015	23/06/2015	25/06/2015	03/07/2015	07/07/2015	10/07/2015	$2015/07/18^{*}$	$2015/08/10^{*}$	$2015/08/12^{*}$	$2015/08/15^{*}$	24/08/2015	01/09/2015	2015/09/07* 2015/10/20*	19/11/015	13/11/2015	9015/11/10*	2013/11/10 14/01/2016	11/01/2016	2016/02/01*	03/04/2016	$20\dot{1}6/\dot{0}4/06^{*}$	2016/04/07*	$2016/04/14^{*}$	15/04/2016	
Longitud	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-92.30	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-91.00	01.16-	-91.00	02.00	-97.06	-07.06	97.06	-97.06	-97.06	-97.06	-97.06	-97.06	
Latitud]	14.88	14.88	14.88	14.88	14.88	14.88	14.88	14.88	14.88	14.88	14.88	14.88	14.88	14.88	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	10.10	10 10	18 10	18 10	18 10	18 10	18.10	18.10	18.10	18.10	18.10	18.10	
Estación	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	DIOL	TOIG	LOIG					TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	
Red	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NSS	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN		NICC	Noo	Noo	und Con	NSS	NSS	NSS	NSS	SSN	SSN	SSN	SSN	

$\sigma_{\phi}(^{\circ}) \delta t(\mathbf{s}) \sigma_{\delta t}(\mathbf{s}) ext{Region epicentral}$	22 1.70 0.55 NORSUP - VANUATU	6 1.90 0.35 NDOI ISLAND - FIJI	7 3.10 0.75 NDOI ISLAND - FIJI	23 1.60 0.65 RAOUL ISLAND - NEW ZEALAND	7 2.05 0.25 ISANGEL - VANUATU	— — — ISANGEL - VANUATU	20 1.65 0.45 ISANGEL - VANUATU	— — — MARIANA ISLANDS	19 1.90 0.80 MARIANA ISLANDS	— — — IWO-JIMA - JAPAN	18 1.90 0.50 NAMATANAI - PAPUA NEW GUINEA	cluidas en el segundo apilado.	
$()\phi$	30	43	59	-11	40	56	26	-80	64	-65	53	es in	
$(^{\circ})^{q\phi}$	256	248	247	239	252	252	253	297	297	305	273	licion	
Longitud	167.3786	-178.6481	-178.2038	-177.8359	169.0737	168.7595	169.0547	145.541	145.541	142.0141	152.7879	. (**) Med	
Latitud	-16.0429	-20.8101	-21.9724	-30.0235	-20.2793	-20.2072	-18.9285	18.5439	18.5439	24.9447	-3.6914	er apilado	
\mathbf{Fase}	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKS	SKKS	SKS	SKS	prim	
Mag.	7.0	6.4	6.9	6.1	6.3	6.0	6.1	7.7	7.7	6.3	6.8	s en el	
Hora	19:33:24	04:08:43	05:38:50	02:35:32	09:47:23	03:50:55	15:13:16	21:18:24	21:18:24	16:24:33	03:11:34	s incluida	
Fecha	$2016/04/28^{*}$	2016/05/27*	28/05/2016	06/06/2016	2016/06/19*	20/06/2016	2016/07/20*	29/07/2016	29/07/2016	04/08/2016	$2016/08/31^{*}$	(*) Medicione	
Longitud	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06	-97.06		
Latitud	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10	18.10		
Estación	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG	TOIG		
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN		

sns	ncia,	
con	cide	
$\delta t(\mathbf{s}))$	llo de in	
$(\phi(^{\circ}),$	β : ángu	
ndividuales	i de fuente (
Mediciones i	y parámetros	
locales:	$^{\circ}), \sigma_{\delta t}(\mathbf{s}))$	ral).
Sismos	$\operatorname{res}(\sigma_{\phi}($	a epicent
A2:	duml	anci
Tabla	incerti	D: dist

Esta	ción				Sismo						Paráı	netros	
Red	Estación	Fecha	Hora	Latitud	Longitud I	Prof. (km)	Mag.	β(°)	D (km)	, (°)¢	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s}) \in$	$ au_{\delta t}(\mathbf{s})$
GECO	ACAY	2019-03-25	12:01:33	17.45	-94.90	131.6	4.4	24.99	61.04	39	20	0.14	0.02
GECO	ACAY	2019-03-26	01:37:13	17.31	-94.83	131.7	4.1	30.45	77.05	-16	13	0.18	0.08
GECO	ACAY	2019-04-06	23:26:43	17.22	-94.96	127.2	4.1	34.33	86.41	36	27	0.26	0.06
GECO	ACAY	2019-04-08	23:00:29	17.36	-94.77	140.6	4.1	27.52	72.90	54	84	0.24	0.10
GECO	ACAY	2019-04-13	12:07:35	17.64	-94.78	149.5	4.1	16.22	43.31	48	55	0.20	0.16
GECO	ACAY	2019-04-17	05:47:28	17.25	-94.25	163.2	4.2	34.50	111.72	-11	18	0.32	0.06
GECO	ACAY	2019-04-24	12:04:23	17.18	-94.68	140.5	4.0	34.12	94.74	12	40	0.26	0.14
GECO	ACAY	2019-05-20	05:48:10	17.69	-94.95	133.6	4.1	14.46	34.29	11	6	0.18	0.02
GECO	ACAY	2019-06-02	00:33:00	17.19	-94.91	130.5	4.1	34.62	89.65	6	26	0.22	0.06
GECO	ACAY	2019-06-02	16:30:54	17.58	-95.00	128.1	4.2	20.40	47.40	35	62	0.08	0.12
GECO	ACAY	2019-06-05	08:44:21	17.35	-94.30	155.2	4.1	32.72	99.29	6-	18	0.34	0.08
GECO	ACAY	2019-06-13	21:19:31	17.46	-94.45	176.1	4.1	24.47	79.86	-18	15	0.32	0.10
GECO	ACAY	2019-06-16	15:30:36	17.24	-94.65	139.6	4.3	32.71	89.23	13	14	0.34	0.02
GECO	ACAY	2019-06-23	19:35:52	17.18	-94.75	135.8	5.1	34.35	92.38	-7	30	0.26	0.04
GECO	ACAY	2019-06-30	22:58:21	17.50	-95.14	133.0	4.1	24.53	60.41	°	59	0.12	0.22
GECO	ACAY	2019-07-12	18:12:51	17.39	-94.65	143.2	4.0	27.68	74.77	-37	38	0.36	0.10
GECO	BAAY	2015-09-23	12:07:50	18.04	-96.61	84.5	3.5	4.34	6.40	-25	81	0.06	0.16
GECO	BAAY	2015-11-22	05:58:53	18.00	-97.02	70.2	3.4	29.06	38.66	-19	78	0.10	0.08
GECO	BAAY	2016-02-29	21:23:52	17.58	-96.69	79.8	3.7	31.98	49.43	83	6	0.18	0.04
GECO	BAAY	2016-04-10	13:11:10	18.01	-96.79	73.0	3.6	10.62	13.59	-31	62	0.06	0.02
GECO	BAAY	2016-05-27	07:36:52	17.85	-96.84	76.4	4.2	19.89	27.42	14	86	0.06	0.08
GECO	BAAY	2016-08-20	12:05:31	17.70	-96.76	74.6	3.9	27.02	37.72	-13	85	0.08	0.08
GECO	COIX	2013-12-15	08:15:39	17.40	-97.11	75.4	4.0	30.57	43.37	63	7	0.06	0.02
GECO	COIX	2013-12-25	17:22:33	17.67	-97.13	68.8	3.6	18.93	22.98	47	25	0.08	0.02
GECO	COIX	2014-01-05	06:35:38	17.61	-97.00	7.77	3.5	27.14	38.82	45	26	0.08	0.02
GECO	COIX	2014-02-03	16:59:08	17.39	-97.17	74.0	4.3	29.28	40.40	39	20	0.08	0.04
GECO	COIX	2014-02-04	10:06:12	18.01	-97.16	76.3	3.8	26.65	37.32	34	31	0.08	0.02
GECO	COIX	2014-02-12	14:16:40	17.62	-97.55	60.2	4.1	24.09	26.08	66	2	0.10	0.02
GECO	COIX	2014-06-18	16:39:02	17.88	-97.56	62.9	3.4	26.18	29.99	45	2	0.14	0.02
GECO	COIX	2014-11-05	13:23:39	17.60	-97.43	71.9	4.0	13.56	16.98	70	×	0.12	0.02
GECO	COIX	2015-01-08	18:29:30	17.71	-96.96	64.7	3.5	33.42	41.39	°	62	0.10	0.06
GECO	CUIT	2015-12-15	04:06:06	18.79	-96.34	92.7	3.7	24.31	41.71	-60	22	0.22	0.06
GECO	FILI	2019-02-19	08:51:54	16.92	-93.92	156.1	4.0	33.20	101.75	-16	43	0.14	0.14
GECO	FILI	2019-03-01	06:22:09	16.87	-93.81	161.5	3.9	34.95	112.45	× ×	62	0.14	0.22
GECO	FILI	2019-03-02	13:25:53	16.94	-94.06	159.5	4.0	31.13	95.96	-26	37	0.28	0.16
GECO	FILI	2019-03-12	04:15:56	17.05	-93.96	166.6	4.0	27.67	87.05	-20	71	0.28	0.16
GECO	FILI	2019-03-25	12:01:33	17.45	-94.90	131.6	4.4	31.90	81.54	4	26	0.12	0.04
GECO	FILI	2019-03-26	01:37:13	17.31	-94.83	131.7	4.1	32.69	84.12	60	ъ	0.20	0.04
GECO	FILI	2019-03-30	02:24:45	17.07	-94.58	133.7	4.0	33.37	87.66	-50	30	0.14	0.08
GECO	FILI	2019-03-30	03:36:12	17.03	-94.40	135.2	4.0	32.59	86.05	-49	24	0.24	0.08
GECO	GUHU	2019-04-06	15:47:42	17.15	-94.94	123.4	4.2	26.55	61.34	-33	15	0.16	0.04
			-	Continúo	ı en la pág	ina siguier	te.						

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	()	D (km)	φ(°)	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$
GECO	GUHU	2019-04-06	23:26:43	17.22	-94.96	127.2	4.1	27.17	64.95	-51	18	0.30	0.06
GECO	GUHU	2019-04-11	13:32:38	16.93	-94.98	111.9	4.2	21.83	44.57	-20	24	0.10	0.02
GECO	GUHU	2019-04-14	16:48:18	17.31	-95.39	120.3	4.9	25.53	57.14	-34	26	0.10	0.04
GECO	GUHU	2019-04-17	19:08:58	17.05	-95.47	103.9	4.1	16.66	30.91	-49	30	0.12	0.04
GECO	GUHU	2019-04-24	12:04:23	17.18	-94.68	140.5	4.0	31.73	86.48	7	66	0.10	0.40
GECO	GUHU	2019-05-02	20:50:54	16.95	-94.93	117.2	4.0	23.52	50.72	ທີ	∞.	0.34	0.04
GECO	GUHU	2019-05-06	20:42:14	17.03	-95.01	116.7	4.0	22.01	46.93	-27	16	0.30	0.06
GECO	GUHU	2019-05-09	19:24:10	17.01	-95.40	102.1	4.0	13.67	24.68	-30	42	0.26	0.14
GECO	GUHU	2019-05-17	09:03:09	17.28	-94.87	126.5	4.2	31.50	77.14	-83	32	0.12	0.02
GECO	GUHU	2019-05-25	14:32:55	16.52	-95.04	86.7	4.0	28.11	45.97	-33	54	0.10	0.02
GECO	GUHU	2019-05-25	16:27:35	16.63	-95.11	87.2	4.0	20.97	33.17	85	15	0.08	0.04
GECO	GUHU	2019-05-30	04:38:08	16.88	-94.83	113.4	4.0	28.08	60.16	-49	100	0.12	0.10
GECO	GUHU	2019-06-01	06:31:54	16.87	-95.12	104.7	4.1	15.07	28.03	-74	23	0.14	0.04
GECO	GUHU	2019-06-02	00:33:00	17.19	-94.91	130.5	4.1	27.11	66.49	-26	4	0.24	0.02
GECO	GUHU	2019-06-03	12:28:04	16.76	-94.86	103.7	4.0	28.29	55.48	-34	11	0.30	0.04
GECO	GUHU	2019-06-10	06:08:34	16.57	-94.99	89.7	4.0	28.17	47.69	23	23	0.14	0.02
GECO	GUHU	2019-06-13	05:17:22	17.12	-95.09	118.5	4.2	21.74	47.00	24	22	0.16	0.10
GECO	GUHU	2019-06-14	06:37:08	16.59	-94.75	142.1	4.1	26.59	70.80	-32	43	0.10	0.06
GECO	GUHU	2019-06-16	15:30:36	17.24	-94.65	139.6	4.3	33.71	92.72	-81	30	0.30	0.06
GECO	GUHU	2019-06-23	19:35:52	17.18	-94.75	135.8	5.1	30.75	80.40	26	37	0.18	0.06
GECO	GUHU	2019-06-30	22:58:21	17.50	-95.14	133.0	4.1	31.80	82.06	40	46	0.22	0.06
GECO	GUHU	2019-07-04	11:53:11	16.93	-94.76	121.0	4.0	29.58	68.30	18	53	0.10	0.08
GECO	GUHU	2019-07-04	20:21:44	16.87	-95.36	90.1	4.0	5.92	9.30	-37	12	0.16	0.04
GECO	GUHU	2019-07-05	23:48:19	16.87	-95.00	110.5	4.1	20.39	40.83	-50	22	0.22	0.04
GECO	GUHU	2019-07-06	23:53:14	16.56	-94.83	93.7	4.0	34.51	63.98	81	24	0.10	0.04
GECO	GUHU	2019-07-10	18:30:42	17.08	-94.95	129.4	4.0	23.41	55.75	-30	9	0.24	0.02
GECO	GUHU	2019-07-20	04:54:27	17.06	-95.06	116.1	4.2	21.06	44.46	74	6	0.18	0.06
GECO	GUHU	2019-07-21	12:45:21	17.48	-95.31	114.7	4.0	33.78	76.29	-25	37	0.20	0.06
GECO	GUHU	2019-07-21	16:26:42	16.98	-95.27	109.4	4.1	12.31	23.75	73	27	0.10	0.04
GECO	GUHU	2019-07-22	15:14:25	17.00	-94.88	127.2	4.0	24.71	58.24	-	47	0.08	0.08
GECO	IfUH	2014-11-16	04:23:02	17.91	-96.66	73.5	3.7	23.17	30.78	77	52	0.30	0.18
GECO	IfUH	2014-12-16	00:38:20	17.76	-96.80	77.9	3.9	28.31	41.09	4	22	0.20	0.10
GECO	IfUH	2015-02-08	03:26:32	18.01	-97.15	72.3	3.7	27.85	37.36	2	15	0.14	0.04
GECO	IfUH	2015-02-24	13:38:49	17.67	-96.69	77.9	3.9	34.96	53.32	36	6	0.16	0.02
GECO	IfUH	2015-04-05	19:19:04	17.97	-96.41	87.8	4.1	30.02	49.79	-39	×	0.16	0.04
GECO	IfUH	2016-04-12	10:45:17	18.35	-96.41	103.3	3.8	27.66	53.29	-44	24	0.14	0.06
GECO	IfUH	2016-08-20	12:05:31	17.70	-96.76	74.6	3.9	33.41	48.13	35	49	0.14	0.10
GECO	ULXI	2013-06-25	00:39:57	17.18	-96.23	79.0	3.7	22.54	32.04	31	22	0.28	0.04
GECO	ULXI	2013-07-27	06:31:58	17.07	-96.37	68.4	3.8	23.58	29.07	16	21	0.18	0.04
GECO	ULXI	2013-08-19	03:41:56	17.15	-96.07	84.9	3.7	30.63	49.16	0	15	0.24	0.02
GECO	ULXI	2013-10-29	02:21:04	17.03	-96.17	70.0	4.0	34.01	45.96	48	22	0.28	0.02
GECO	ULXI	2013-11-12	01:50:56	17.20	-96.52	61.6	3.5	11.99	12.82	-46	39	0.16	0.08
GECO	ULXI	2013-12-03	04:15:55	16.99	-96.66	71.7	3.9	29.87	40.10	48	18	0.16	0.04
GECO	ULXI	2013-12-25	13:01:09	16.94	-96.65	68.5	3.3	33.86	44.70	6	85	0.12	0.10
GECO	ULXI ULXI	2014-05-22	17:05:55	16.97	-96.55	62.3	6. •	32.09	37.89	48	24	0.14	0.02
ODAD	ULXJU	2014-08-03	14:49:56	I7.00	-96.63	63 . 1	4.1	31.53	37.58	14	80	0.12	0.08
				Continue	a en la pa	tina siguiei	ute.						

Estac	iói	1 Fecha 2014-11-11	Hora 21:07:16	Latitud 17.17	Longitud -96.65	Prof. (km) 59.5	Mag. 3.3	$\beta(^{\circ})$ 22.24	D (km) 23.62	$\frac{\phi(\circ)}{41}$	$\frac{\sigma_{\phi}(\circ)}{10}$	$\frac{\delta t(\mathrm{s})}{0.16}$	$\frac{\sigma_{\delta t}(\mathbf{s})}{0.04}$
IXJU 2014-12-24 17 IV III 2014 12 28 01	2014-12-24 17	17	:27:25	17.65	-96.23 06.63	86.4	4.4 2 0	28.79	46.45	58 23	18 1	0.08	0.02
JOBO 2016-11-17 03:	2016-11-17 03:	03:1	53:59 53:59	17.92	-90.00 -95.83	108.8	6.9 4.2	34.17	24.02 73.83	-24	19	0.38	0.06 0.06
JOBO 2017-08-27 01:0	2017-08-27 01:0	01:0	2:36	18.06	-96.64	82.8	3.5	34.00	55.81	-61	74	0.12	0.08
JOBO 2017-11-06 16:12 JOBO 2017-11-28 05:20	2017-11-06 16:12 2017-11-28 05:20	16:120	2:22	18.07	-96.03 -96.50	99.3 89.6	4.3 4.0	25.13 22.44	46.56 36.99	-72	21	$0.12 \\ 0.22$	$0.04 \\ 0.06$
JOSE 2017-06-21 13:12	2017-06-21 13:12	13:12	:31	17.95	-96.08	101.3	3.7	31.94	63.10	42	48	0.16	0.10
JOSE 2017-10-26 15:22	2017-10-26 15:22	15:22	:54	18.57	-96.11	111.7	3.8	20.46	41.65	-11	16	0.26	0.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2017-11-06 16:12:	16:12: 27 22	77	18.07	-96.03	99.3 20.3	4.3	30.20	57.74 87.22	-51	7	0.16	0.02
JOSE 2017-11-28 05:20: LTVT 2010-04-11 04:36:	2017-11-28 05:20:	05:20:	44 2	17 51	-96.50 -05.78	89.6 109.4	4.0	16.17 23.81	25.95 44.61	-56	104 101	0.14	0.06 0.16
LIVI 2019-04-18 11:59:5	2019-04-18 11:59:2	11:59:2	50	17.28	-96.15	6.77	3.7	3.80	5.26	12	18	0.20	0.04
LIVI 2019-04-22 22:22:4	2019-04-22 22:22:4	22:22:4	\sim	17.71	-95.71	108.1	3.9	30.81	63.66	-36	21	0.18	0.06
LIVI 2019-04-30 15:35:1	2019-04-30 15:35:1	15:35:1	6	16.96	-96.21	64.0	3.9	33.03	40.76	-43	6	0.10	0.04
LIVI 2019-05-07 01:48:1	2019-05-07 01:48:1	01:48:1	\sim	17.81	-95.74 06.01	109.8	n o n	32.48	69.04	84 84	60 F	0.18	0.16
LOAL 2019-04-30 15:55:17 LOAL 2019-05-13 12:55:20	2019-05-13 12:52:20	12:52:2	നധ	16.76 16.76	-96.58	04.U 63.2	0.0 0	14 31.93	8.32 38.30	30 84	14 33	0.12	0.06
LOAL 2019-05-13 13:51:41	2019-05-13 13:51:41	13:51:4	ംറ	16.72	-96.58	64.7	3.8	32.90	40.73	76	17	0.16	0.04
LOAL 2019-05-22 12:24:14	2019-05-22 12:24:14	12:24:14		16.98	-96.30	67.8	3.8	8.22	9.70	48	23	0.16	0.04
LOAL 2019-05-26 14:08:28	2019-05-26 14:08:28	14:08:28	\sim	16.67	-96.17	69.2	3.8	22.07	27.39	59	19	0.22	0.04
LOAL 2019-06-10 11:51:23	$ 2019-06-10 \ 11:51:2($	11:51:23	\sim	16.80	-96.07	67.3	4.0	20.01	23.91	64	26	0.32	0.06
LOAL 2019-06-17 01:37:58	2019-06-17 01:37:58	01:37:58	~	17.09	-95.60	130.4	3.9	30.34	75.28	56	32	0.26	0.06
LOAL 2019-06-21 05:16:24	2019-06-21 05:16:24	05:16:24		16.87	-96.55	71.0	4.2	25.19	32.59	13	21	0.18	0.04
LOAL 2019-07-20 02:34:34	2019-07-20 02:34:34	02:34:34		17.01	-96.22	71.6	3. S	10.25	12.75	37	21	0.30	0.06
LOAL 2019-07-21 09:06:37	2019-07-27 09:06:37	19:06:37		16.68	-96.51	56.5 24.3	0.4 0.1	34.04	37.00	29	14 14	0.16	0.02
LOAL 2019-07-25 16:59:24 TOAT 2010-08 19 04:95:41	2010 00 12 01:25	10:59:24		16.09 16.09	-90.2U	04.1 60 E	0.7 1 1	00.62	30.12 96 79	ч - То	ჯ -	0.16	80.0
LOAL 2019-00-13 04:20:41 LOAL 2019-08-20 11:28:21	2019-08-20 11:28:21	11:28:21		16.98	-90.43 -96.41	00.0 65.1		15.97	18.20	57 1	52 22	0.18	0.04
MARG 2016-08-14 14:39:53	2016-08-14 14:39:53	14:39:53		17.95	-95.78	105.0	4.0	31.73	64.90	21	24 - 24	0.18	0.04
MATE 2019-03-03 16:57:34	2019-03-03 16:57:34	16:57:34		16.42	-95.11	80.4	4.7	33.91	53.92	79	16	0.18	0.04
MATE 2019-03-06 08:34:57	2019-03-06 08:34:57	08:34:57	N.	16.87	-95.61	82.6	3.9	32.18	51.85	67	26	0.22	0.10
MATE 2019-03-10 22:50:03	$ 2019-03-10 \ 22:50:03$	22:50:03	\sim	16.97	-95.15	114.1	3.9	34.80	79.17	- 84	17	0.20	0.02
MATE 2019-03-12 05:00:4	2019-03-12 05:00:4	05:00:4	က်	16.82	-95.19	98.5	4.4	32.93	63.66 77 07	9- 3	30	0.10	0.04
MATE 2019-03-21 12:51:2	2019-03-21 12:51:2	12:10:21	5	17.03	-95.31	110.7	4.0	33.11 24.05	70.97	80 - 80	40	0.16	0.12
NATE 2019-04-08 03:35:5 MATE 2019-04-17 10:09:5	2019-04-08 03:33:3 2010-04-17 10:08-5	10.06.50	⊃ 0	17.05	-93.10	0.211	ء ب - در	04.20 24.60	01.07	71 71	03 76	0.20	01.0
MALE 2019-04-1/ 19:06:04	0010 04 10 04 10 04 00 0	TA:U0:04	00	10.00	-90.47	6.601	4.F	04.09	00.77	07-	0,2	01.0	71.0
MATE 2019-04-18 04:19:16 MATE 2010-04-22 10:27:07	2019-04-18 04:19:16	10-27-01	~ _	16.09 16.84	-95.19 -05.13	80.3 105 1	0.0 0	34.23 33 70	54.5U 70.91	-10	00 96	0.10 0.16	0.10
MATE 2013-01-22 13:21:00	9010 05 00 10.94.10	10.94.10		17 01	05 40	1001	0.0	01.00 21.11	10.01	10	2 C	0.00	0.06
MATE 2013-03-03 13:27.	2019-05-11 14-00-	14.00.5	2 2	10-11 16-96	-90-40 -05 87	11771 77 8	0.4 4	21.93	00.60 22.71		n a	02.0	0.10
MATE 2013-03-11 12:00:	9010-05-13 91-39-			16 03	-90.01 -05.45	0.00	0.0 0	20.87	50.16		8 -	0.00	71.0
MATE 2019-05-16 12:02	2019-05-16 12:07	12.07		16.97	-95.20	712.6	0 0 0	34.03	75.91	17	54	0.14	0.02
MATE 2019-05-18 15:07	2019-05-18 15:07	15:07	29	16.73	-95.43	20.3	3.9	27.16	40.58	-44	37	0.16	0.06
MATE 2019-06-19 07:38	2019-06-19 07:38	07:38	07	16.35	-95.38	54.9	3.9	24.51	24.94	30	30	0.14	0.10
MIXE 2019-04-17 05:47:	2019-04-17 05:47:	05:47:	28	17.25	-94.25	163.2	4.2	25.86	78.88	55	26	0.12	0.02
				Continú	n en la ná	Tinna Simir	ote						

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	$\beta(^{\circ})$	D (km)	(.) <i>φ</i>	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$
GECO	MIXE	2019-05-02	12:31:03	17.26	-94.28	164.7	4.1	24.67	75.47	44	37	0.10	0.04
GECO	MIXE	2019-05-02	20:50:54	16.95	-94.93	117.2	4.0	34.73	80.93	-49	25	0.24	0.04
GECO	MIXE	2019-05-26	11:57:01	17.29	-95.36	117.9	4.4	32.01	73.42	34	50	0.20	0.10
GECO	MIXE	2019-06-13	05:17:22	17.12	-95.09	118.5	4.2	30.09	68.43	-65	50	0.10	0.12
GECO	MIXE	2019-06-26	04:51:54	17.33	-94.73	142.6	4.0	15.49	39.41	39	40	0.22	0.10
GECO	MIXE	2019-07-13	17:12:52	16.98	-94.27	145.1	4.0	34.11	97.97	49	32	0.14	0.02
GECO	MIXE	2019-07-19	00:22:43	17.21	-94.52	139.8	4.0	23.88	61.69	46	56	0.10	0.16
GECO	MIXE	2019-07-21	12:45:21	17.48	-95.31	114.7	4.0	26.77	57.64	38	40	0.28	0.06
GECO	MIXE	2019-07-27	12:28:27	17.52	-94.82	144.2	4.0	7.06	17.80	22	14	0.24	0.14
GECO	MIXE	2019-07-28	10:20:23	17.61	-94.75	140.9	4.0	4.47	11.00	39	80	0.12	0.16
GECO	MIXE	2019-08-20	21:22:14	17.12	-94.61	126.8	4.0	27.41	65.54	26	30	0.18	0.04
GECO	MIXE	2019-09-07	18:34:35	17.16	-94.56	132.9	4.0	25.80	64.03	48	27	0.16	0.04
GECO	MIXE	2019-09-09	21:36:59	17.30	-94.36	143.3	4.1	24.66	65.60	47	21	0.10	0.02
GECO	MIXE	2019-09-14	08:49:54	17.08	-95.05	122.4	4.0	30.01	70.44	ĉ	33	0.20	0.10
GECO	MIXE	2019-09-20	02:41:44	17.72	-94.72	138.8	4.0	5.04	12.20	56	39	0.16	0.10
GECO	NOPA	2017-11-06	16:12:22	18.07	-96.03	99.3	4.3	13.03	22.98	-64	31	0.12	0.04
GECO	PAMA	2015-12-15	04:06:06	18.79	-96.34	92.7	3.7	21.71	36.76	2	18	0.24	0.06
GECO	PAMA	2016-04-12	10:45:17	18.35	-96.41	103.3	3.8	33.50	68.12	6	62	0.14	0.24
GECO	RODE	2015-09-25	09:25:04	17.90	-97.50	64.6	3.6	16.31	18.41	-36	60	0.08	0.06
GECO	RODE	2015 - 10 - 04	17:51:03	18.07	-97.53	62.6	3.4	19.98	22.10	-35	85	0.08	0.08
GECO	RODE	2015-11-22	05:58:53	18.00	-97.02	70.2	3.4	28.33	36.78	-	53	0.10	0.04
GECO	RODE	2016-01-01	13:13:58	17.66	-97.24	67.0	3.8	29.90	37.40	-34	55	0.16	0.08
GECO	RODE	2016-01-14	07:12:40	17.72	-97.18	62.9	3.5	29.55	34.55	20	36	0.16	0.06
GECO	RODE	2016-01-17	03:33:17	18.10	-96.95	73.2	4.0	33.45	47.04	24	55	0.20	0.08
GECO	RODE	2016-03-15	02:32:03	17.69	-97.12	69.0	3.6	31.39	40.89	-9	25	0.20	0.02
GECO	RODE	2016-05-30	06:43:44	17.68	-97.41	66.0	3.5	27.40	33.21	6-	41	0.18	0.08
GECO	RODE	2016-07-19	04:34:43	18.29	-97.38	56.7	3.9	31.74	33.86	-21	10	0.16	0.04
GECO	RODE	2016-07-24	15:20:38	17.92	-97.49	71.6	4.4	12.69	15.80	-38	2	0.20	0.04
GECO	RODE	2016-08-21	16:17:49	17.99	-97.01	68.4	3.4	29.43	37.48	11	52	0.10	0.04
GECO	RODE	2016-08-23	18:15:59	18.05	-97.45	65.9	3.9	11.86	13.56	51	45	0.12	0.16
GECO	SATU	2019-04-06	23:26:43	17.22	-94.96	127.2	4.1	19.45	44.86	84	14	0.20	0.02
GECO	SATU	2019-04-11	04:36:30	17.51	-95.78	102.4	4.1	29.19	57.12	56	11	0.10	0.04
GECO	$\operatorname{SATU}_{\cdot}$	2019-04-13	12:07:35	17.64	-94.78	149.5	4.1	28.64	81.58	37	20	0.08	0.02
GECO	SATU	2019-04-17	19:08:58	17.05	-95.47	103.9	4.1	10.54	19.30	-44	. o	0.16	0.02
GECO	D.I.VS	2019-05-19	04:22:56	17.60	-94.73	144.0	4.2	30.20	83.71	-78	₽.	0.26	0.02
GECO	SATU	2019-05-20	05:48:10	17.69	-94.95	133.6	4.1	28.20	71.55	09	15	0.14	0.02
GECO	SATU	2019-06-01	06:31:54	16.87	-95.12	104.7	4.1	23.13	44.65	-84	×	0.14	0.02
GECO	SATU	2019-06-02	00:33:00	17.19	-94.91	130.5	4.1	21.06	50.19	56	4	0.32	0.02
GECO	SATU	2019-06-13	05:17:22	17.12	-95.09	118.5	4.2	14.87	31.42	68	21	0.22	0.04
GECO	SATU	2019-06-13	21:19:31	17.46	-94.45	176.1	4.1	30.95	105.51	37	11	0.14	0.04
GECO	SATU	2019-06-14	06:27:53	17.19	-94.56	158.7	4.2	29.39	89.32	52	<u>13</u>	0.30	0.02
GECO	$\operatorname{SATU}_{\cdot}$	2019-06-16	15:30:36	17.24	-94.65	139.6	4.3	29.51	78.93	-29	34	0.04	0.02
GECO	SATU	2019-06-28	00:18:57	17.20	-94.42	155.0	4.3	34.04	104.62	34	14	0.12	0.06
GECO	SATU	2019-06-30	22:58:21	17.50	-95.14	133.0	4.1	17.57	42.08	63	9	0.32	0.02
GECO	SATU	2019-07-05	23:48:19	16.87	-95.00	110.5	4.1	26.10	54.06	-37	21 ș	0.10	0.02
GECO	N.I.VS	2019-07-20	04:54:27	17.06	-95.06	. 116.1	4.2	17.73	37.08	-69	17	0.18	0.02
				Continú	a en la pá	gina sigurer	nte.						

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	$\beta(°)$	D (km)	φ(°) ο	$\tau_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\tau_{\delta t}(\mathbf{s})$
GECO	SATU	2019-07-21	16:26:42	16.98	-95.27	109.4	4.1	13.46	26.15	-69	15	0.24	0.08
GECO	SATU	2019-07-31	13:15:22	17.61	-94.80	149.2	4.2	27.45	77.45	59	11	0.14	0.02
GECO	SATU	2019-08-06	23:51:28	17.55	-94.79	149.1	4.2	26.69	74.88	-74	9	0.28	0.02
GECO	SATU	2019-08-12	20:59:02	17.46	-94.85	131.0	4.1	26.25	64.53	10	73	0.04	0.06
GECO	SATU	2019-08-14	04:24:45	17.20	-95.04	125.9	4.1	16.06	36.21	- 83	10	0.22	0.02
GECO	SATU	2019-08-22	03:21:17	17.48	-94.79	138.5	4.3	27.32	71.48	69	30	0.20	0.04
GECO	SATU	2019-09-05	16:41:54	16.88	-95.18	108.1	4.4	20.52	40.40	-80	38	0.08	0.08
GECO	SATU	2019-09-09	04:23:23	16.76	-94.89	105.4	4.2	33.98	70.94	46	49	0.06	0.06
GECO	SATU	2019-09-29	10:45:46	17.12	-94.97	114.1	4.5	21.28	44.38	-59	29	0.12	0.02
GECO	SATU	2019-10-02	01:33:46	17.13	-94.91	125.6	4.1	22.08	50.90	-45	7	0.20	0.04
GECO	SATU	2019-10-06	01:50:17	16.73	-95.13	0.66	4.1	30.06	57.21	-63	16	0.26	0.06
GECO	SATU	2019-10-07	12:10:39	17.54	-94.87	138.3	4.1	25.94	67.19	-83	25	0.28	0.04
GECO	SATU	2019-10-10	18:20:25	16.84	-95.10	107.5	4.1	24.65	49.27	-82	13	0.20	0.02
GECO	SATU	2019-10-11	09:21:20	17.30	-94.61	144.0	4.2	30.43	84.50	23	22	0.10	0.02
GECO	SATU	2019-10-26	11:30:35	17.61	-94.74	146.2	4.1	29.74	83.43	56	17	0.20	0.04
GECO	SATU	2019-10-28	02:35:25	17.69	-95.00	138.7	4.5	26.18	68.11	76	16	0.18	0.02
GECO	SATU	2019-10-28	05:39:12	17.13	-94.66	127.9	4.1	31.47	78.19	14	S	0.22	0.02
GECO	VANA	2013-09-10	21:15:07	18.05	-96.27	104.4	3.8	16.02	29.96	79	21	0.10	0.04
GECO	VANA	2013-11-20	13:07:11	17.60	-95.56	120.9	3.8	34.76	83.85	-56	20	0.20	0.04
GECO	VANA	2013-12-14	02:26:20	17.49	-96.41	67.8	3.4	27.04	34.57	-32	91	0.12	0.14
GECO	VANA	2014-07-29	11:19:59	17.79	-95.65	106.4	4.2	33.68	70.86	-54	21	0.26	0.06
GECO	VANA	2014-07-29	12:14:10	17.76	-95.64	105.7	3.6	34.41	72.34	-68	27	0.24	0.02
GECO	VANA	2014-07-30	17:27:40	17.78	-95.67	104.8	3.5	33.29	68.77	-13	49	0.08	0.20
GECO	VANA	2014-07-31	01:29:46	17.87	-95.73	108.2	3.8	30.28	63.12	-51	16	0.20	0.04
GECO	VANA	2014-09-13	17:53:20	17.82	-95.74	114.6	3.9	28.13	61.23	-54	21	0.18	0.02
GECO	VANA	2014-11-16	04:23:02	17.91	-96.66	73.5	3.7	30.20	42.74	-30	62	0.08	0.16
GECO	VANA	2014-12-11	23:29:51	17.66	-95.67	106.5	3.9	33.26	69.81	-48	21	0.22	0.04
GECO	VANA	2014-12-28	01:54:49	17.48	-96.63	76.7	3.9	32.39	48.61	47	13	0.12	0.06
GECO	ZOQU	2015-10-06	01:58:31	17.99	-96.65	83.9	3.7	34.89	56.86	85	10	0.24	0.12
GECO	ZOQU	2015-11-22	05:58:53	18.00	-97.02	70.2	3.4	28.54	36.94	-9	29	0.16	0.04
GECO	zoqu	2015-12-13	03:05:43	18.20	-97.27	66.2	3.5	24.67	29.40	21	П	0.34	0.06
GECO	zoqu	2016-01-17	03:33:17	18.10	-96.95	73.2	4.0	21.11	27.44	-21	20	0.34	0.02
GECO	ZOQU	2016-01-27	21:22:44	18.28	-97.33	69.5	4.1	25.82	32.54	-32	9	0.30	0.06
GECO	ZOQU	2016-04-12	10:45:17	18.35	-96.41	103.3	3.8	34.41	69.14	-39	25	0.28	0.06
RADSEM	B01	2017-10-28	01:57:55	14.91	-92.64	91.7	4.0	33.32	60.28	17	20	0.14	0.08
RADSEM	B01	2017-10-29	14:39:25	14.36	-92.13	74.2	4.1	17.78	23.80	-21	16	0.14	0.02
RADSEM	B01	2017-10-30	08:11:49	14.25	-92.26	94.6	4.3	19.88	34.22	-16	108	0.24	0.25
RADSEM	B01	2017-10-31	20:42:30	14.92	-92.61	86.5	3.9	34.19	58.76	29	35	0.20	0.12
RADSEM	B01	2017-11-08	20:19:24	14.46	-92.19	80.4	4.0	8.36	11.82	19	17	0.16	0.04
RADSEM	B01	2017-11-15	15:04:54	14.64	-92.09	101.7	4.0	9.15	16.37	-20	20	0.12	0.04
RADSEM	B01	2017-11-25	23:05:36	14.74	-92.65	80.6	4.4	32.17	50.70	22	7	0.08	0.04
RADSEM	B01	2017-12-15	09:07:43	14.55	-91.67	107.6	5.0	29.45	60.77	43	20	0.20	0.04
RADSEM	B01	2018-01-20	04:42:46	14.64	-92.25	97.9	3.8	5.49	9.41	10	40	0.14	0.06
RADSEM	B01	2018-01-28	03:49:27	14.34	-91.90	80.4	3.9	27.95	42.66	-15	84	0.30	0.14
RADSEM	B01	2018-02-10	01:31:38	14.64	-92.61	73.1	4.4	31.18	44.24	-44	18	0.10	0.02
RADSEM	B01	2018-02-14	15:37:28	14.89	-92.50	93.6	3.9	27.06	47.81	16	14	0.14	0.02
				Continú	n en la pá	nina sianie	nte.			_			

$\sigma_{\delta t}(\mathbf{s})$	0.08	0.06	0.24	0.02	0.06	0.02	0.16	0.04	0.02	0.04	0.18	0.02	0.04	0.06	0.02	0.06	0.16	0.02	0.08	0.12	0.04	0.04	0.04	0.04	0.12	0.10	0.04	0.10	0.12	0.20	0.06	0.10	0.06	0.12	0.04	0.08	0.18	0.12	0.02	0.06	0.04	0.06	0.20	0.04	0.02	
$\delta t(\mathbf{s})$	0.18	0.10	0.12	0.12	0.10	0.12	0.22	0.38	0.12	0.26	0.24	0.20	0.10	0.14	0.10	0.10	0.20	0.18	0.06	0.14	0.14	0.12	0.10	0.14	0.20	0.10	0.14	0.40	0.16	0.18	0.12	0.08	0.30	0.14	0.10	0.22	0.10	0.24	0.16	0.08	0.16	0.24	0.14	0.08	0.10	
$\sigma_{\phi}(^{\circ})$	15	20	27	10	41	10	55	12	12	×	39	20	17	33	31	72	61	15	42	98	24	00	28	18	84	83	10	61	62	55	43	90	7	58	×	17	73	64	2	44	45	6	88	30	20	
$\phi(\circ)$	-74	-55	-38	45	-19	-11	71	45	44	28	-79	63	-42	32	45	-7	-79	-17	-34	-45	55	-46	-57	57	20	-29	81	-49	50	-10	-35	38	-51	30	-2	-88	-55	9	-39	-21	85	-75	87	-52	-50	
D (km)	18.88	11.17	27.43	43.67	68.30	48.05	41.83	44.71	41.45	72.19	28.49	63.33	31.19	65.67	43.92	39.37	74.25	34.82	64.90	57.49	30.63	47.94	48.66	57.40	38.76	124.70	38.86	48.12	41.06	66.48	43.75	57.13	21.19	27.54	44.05	20.92	25.25	90.47	60.42	42.83	49.47	72.22	41.44	64.02	29.06	
$\beta(")$	15.76	8.30	17.26	26.16	20.77	29.51	24.52	29.20	25.60	34.43	10.56	31.93	11.86	23.16	33.80	22.64	18.99	19.48	19.01	15.81	15.48	23.30	27.47	31.91	24.57	32.15	22.44	25.45	24.79	32.54	15.97	26.06	8.12	16.27	28.13	10.65	16.58	26.13	30.64	22.96	28.74	33.87	27.21	24.01	16.47	
Mag.	4.4	3.9	4.3	4.0	4.3	3.9	4.0	3.9	3.9	3.9	3.9	4.1	4.4	4.2	4.6	4.0	4.1	3.9	4.4	4.1	3.9	4.7	3.9	4.5	4.1	4.1	4.2	4.6	4.0	4.3	3.9	4.0	4.4	4.0	4.0	4.7	4.1	4.1	3.9	4.6	3.8	3.8	3.8	3.8	4.3	
Prof. (km)	66.9	76.5	88.3	88.9	180.1	84.9	91.7	80.0	86.5	105.3	152.9	101.6	148.6	153.5	65.6	94.4	215.8	98.4	188.4	203.1	110.6	111.3	93.6	92.2	84.8	198.4	94.1	101.1	88.9	104.2	152.9	116.8	148.6	94.4	82.4	111.3	84.8	184.4	102.0	101.1	90.2	107.6	80.6	143.7	98.3	
Longitud	-92.39	-92.30	-92.39	-93.04	-92.81	-93.11	-92.64	-93.04	-92.61	-93.00	-92.49	-92.38	-92.75	-92.76	-92.88	-93.04	-92.06	-92.98	-92.17	-92.47	-92.86	-93.07	-92.50	-93.19	-93.04	-93.14	-92.93	-93.30	-93.04	-93.42	-92.49	-93.40	-92.75	-93.04	-93.26	-93.07	-93.04	-92.07	-94.08	-93.30	-93.75	-94.15	-93.68	-93.66	-93.75	
Latitud	14.59	14.62	14.74	15.10	15.90	15.16	14.91	15.08	14.92	14.71	15.46	14.81	15.57	15.88	14.94	15.24	15.52	15.17	15.56	15.77	15.51	15.51	14.89	15.44	15.27	16.33	15.03	15.59	15.10	15.73	15.46	15.35	15.57	15.24	15.28	15.51	15.27	15.37	15.99	15.59	15.50	16.14	15.55	16.47	15.73	
Hora	11:12:10	12:58:52	08:33:30	11:11:32	02:17:14	06:25:23	01:57:55	16:18:21	20:42:30	05:19:35	08:30:50	19:11:54	23:21:16	21:58:17	02:10:14	05:45:44	10:33:32	10:23:08	03:33:49	10:39:14	16:16:03	23:44:20	15:37:28	21:01:51	15:12:55	20:22:58	01:11:52	23:55:45	11:11:32	04:08:19	08:30:50	16:58:58	23:21:16	05:45:44	10:48:46	23:44:20	15:12:55	16:10:54	20:51:09	23:55:45	00:08:18	10:23:30	16:02:48	23:42:54	11:22:40	
Fecha	2018-02-20	2018 - 02 - 20	2018-03-01	2017 - 10 - 16	2017 - 10 - 19	2017-10-19	2017-10-28	2017-10-29	2017-10-31	2017-11-05	2017-11-21	2017-11-28	2017-11-30	2017-12-15	2017-12-23	2018-01-04	2018-01-11	2018-01-16	2018-01-31	2018-01-31	2018-02-01	2018-02-11	2018-02-14	2018-02-27	2018-03-02	2018-03-07	2018-03-16	2017-10-10	2017 - 10 - 16	2017-11-19	2017-11-21	2017-11-21	2017-11-30	2018-01-04	2018-01-09	2018-02-11	2018-03-02	2018 - 03 - 04	2017 - 10 - 09	2017-10-10	2017-10-11	2017-10-11	2017-10-12	2017-10-15	2017-10-20	
Estación	B01	B01	B01	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B03	B03	B03	B03	B03	B03	B03	B03	B03	B03	B03	B04	B04	B04	B04	B04	B04	B04	
Red	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	

$\sigma_{\delta t}(\mathbf{s})$	0.06	0.06	0.04	0.10	0.04	0.04	0.08	0.02	0.02	0.06	0.04	0.02	0.12	0.02	0.10	0.04	0.16	0.12	0.16	0.08	0.06	0.04	0.10	0.15	0.04	0.02	0.12	0.02	0.02	0.12	0.06	0.06	0.04	0.04	0.04	0.06	0.10	0.10	0.04	0.02	0.08	0.02	0.08	0.06	0.04	
$\delta t(\mathbf{s})$	0.10	0.20	0.12	0.10	0.16	0.14	0.14	0.28	0.10	0.18	0.12	0.12	0.10	0.14	0.16	0.08	0.22	0.18	0.16	0.28	0.14	0.22	0.14	0.18	0.22	0.10	0.18	0.10	0.10	0.24	0.26	0.06	0.12	0.12	0.14	0.16	0.14	0.12	0.08	0.22	0.10	0.30	0.12	0.10	0.10	
$\sigma_{\phi}(^{\circ})$	14	6	10	26	62	16	32	21	30	28	25	23	61	4	60	16	83	89	65	16	14	20	58	87	15	20	24	10	14	35	18	46	21	19	32	37	36	62	ъ	11	79	10	21	34	19	
(.) ϕ	22	-31	-58	-69	78	-37	19	-26	-12	-19	-21	-29	13	-29	-26	ъ	7	-2	55	-20	-39	-27	-52	-36	-21	-16	86	6-	-7	-68	-66	-30	-59	63	86	-57	- 32	20	-51	-27	71	-81	-43	-65	- 33	
D (km)	50.42	67.56	34.48	31.04	25.29	54.39	56.34	34.40	38.33	45.86	35.53	21.52	41.51	43.20	43.26	37.07	96.72	30.10	115.47	92.95	50.09	1.91	100.54	38.60	75.80	37.11	36.26	50.58	43.76	124.06	81.53	59.20	59.73	24.18	57.15	48.41	23.16	44.60	42.48	55.14	74.12	90.06	54.12	31.84	61.68	
β(°)	32.98	31.26	17.68	18.06	15.32	25.96	34.14	18.64	21.30	27.44	21.87	13.71	18.71	29.68	26.68	26.49	31.36	16.26	34.26	23.18	29.32	1.05	32.16	23.33	20.91	22.05	22.58	33.79	27.49	29.01	32.31	30.57	34.11	11.16	20.62	21.09	11.94	29.51	29.99	24.88	25.04	34.07	28.79	16.06	25.80	
Mag.	3.8 8	4.7	3.8	3.9	4.3	3.8	4.0	3.9	4.3	4.4	3.9	3.9	4.8	4.3	3.9	3.9	4.2	3.9	4.1	4.3	4.2	4.4	4.2	3.9	4.1	4.3	4.0	4.0	4.0	4.2	4.0	4.1	3.9	4.8	3.9	4.1	3.9	4.2	4.1	4.3	4.2	4.2	4.3	3.9	3.9	
Prof. (km)	7.77	111.3	108.2	95.2	92.3	111.7	83.1	102.0	98.3	88.3	88.5	88.2	122.6	75.8	86.1	74.4	158.7	103.2	169.5	217.1	89.2	104.7	159.9	89.5	198.4	91.6	87.2	75.6	84.1	223.7	128.9	100.2	88.2	122.6	151.9	125.5	109.5	78.8	73.6	118.9	158.7	146.5	98.5	110.6	127.6	
Longitud	-93.95	-93.07	-93.48	-93.81	-93.66	-93.92	-94.21	-94.08	-93.75	-93.69	-93.92	-93.82	-93.99	-93.86	-93.80	-93.83	-93.99	-93.55	-94.11	-92.97	-93.85	-93.79	-94.04	-93.73	-93.14	-93.82	-93.76	-93.95	-93.91	-93.06	-94.39	-94.62	-93.82	-93.99	-93.86	-93.80	-94.33	-94.56	-94.31	-94.42	-93.99	-94.36	-94.64	-93.96	-94.29	
Latitud	15.70	15.51	15.59	15.98	15.71	16.21	15.80	15.99	15.73	15.67	15.79	15.89	16.39	15.69	15.69	15.75	16.93	15.93	17.08	16.32	15.63	16.09	16.96	15.73	16.33	15.74	15.75	15.65	15.70	16.33	17.00	16.62	15.89	16.39	16.69	16.50	16.45	16.13	15.92	16.74	16.93	17.18	16.49	16.11	16.84	
Hora	12:34:16	23:44:20	15:42:37	06:33:59	03:12:28	17:32:35	19:35:03	20:51:09	11:22:40	13:28:33	20:08:53	07:03:42	16:49:26	04:15:10	18:00:11	19:58:55	14:43:34	23:01:43	11:00:01	21:22:38	22:07:18	08:22:02	03:24:06	11:29:24	20:22:58	11:35:35	20:52:01	20:57:28	23:43:18	09:04:10	15:00:46	23:27:40	07:03:42	16:49:26	05:44:47	11:07:47	16:26:20	17:38:27	10:23:16	19:04:21	14:43:34	09:46:39	13:18:36	15:09:36	17:25:41	
Fecha	2017-11-13	2018-02-11	2018-02-13	2018-02-14	2018 - 02 - 19	2018-02-28	2017-10-08	2017 - 10 - 09	2017-10-20	2017-10-20	2017-11-01	2017-11-03	2017-11-03	2017-11-07	2017-11-14	2017-12-09	2017-12-13	2017-12-13	2017-12-26	2017-12-31	2018-01-03	2018 - 01 - 06	2018-01-07	2018-01-22	2018-03-07	2018 - 03 - 09	2018 - 03 - 09	2018 - 03 - 12	2018-03-12	2017-10-19	2017-10-20	2017-10-31	2017-11-03	2017-11-03	2017-11-20	2017-11-21	2017-11-22	2017-12-01	2017-12-11	2017-12-12	2017-12-13	2018-01-26	2018-01-30	2018-02-07	2018-02-12	
Estación	B04	B04	B04	B04	B04	B04	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B06	B06	B06	B06	B06	B06	B06	B06	B06								
Red	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	$\beta(^{\circ})$	D (km)	$\phi(\circ)$	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$
RADSEM	B06	2018-02-21	00:43:52	16.81	-94.29	130.2	4.0	24.03	58.05	-40	35	0.12	0.08
RADSEM	B06	2018-02-22	05:02:19	17.04	-94.23	146.3	3.9	29.61	83.15	-60	83	0.16	0.08
RADSEM	B06	2018-02-26	20:02:42	15.83	-94.22	81.1	3.9	32.11	50.90	76	70	0.16	0.02
RADSEM	B08	2017-10-06	10:12:00	16.46	-95.18	82.5	4.4	17.69	26.31	2	10	0.18	0.08
RADSEM	B08	2017-10-07	20:29:02	16.70	-95.21	92.3	4.6	29.77	52.80	67	35	0.16	0.08
RADSEM	B08	2017-10-21	09:52:56	16.83	-94.85	114.1	4.1	34.21	77.58	74	35	0.12	0.06
RADSEM	B08	2017-12-19	15:21:42	16.08	-95.13	66.5	4.2	14.57	17.28	-83	57	0.04	0.02
RADSEM	B08	2018-01-30	13:18:36	16.49	-94.64	98.5	4.3	34.71	68.23	68	18	0.22	0.08
RADSEM	B08	2018-02-24	15:11:47	16.06	-95.08	68.8	4.4	17.95	22.28	-62	26	0.12	0.06
RADSEM	B08	2018-02-25	23:36:51	16.47	-94.69	96.0	4.2	32.94	62.20	-49	21	0.12	0.02
RADSEM	B09	2017-10-23	17:49:36	16.01	-95.93	61.1	4.0	15.35	16.77	-76	20	0.22	0.16
RADSEM	B09	2018-01-02	15:04:17	15.76	-95.55	50.6	3.9	33.41	33.38	40	12	0.12	0.04
RADSEM	B09	2018-02-06	02:52:44	16.00	-96.07	59.1	4.3	26.75	29.79	68	22	0.06	0.08
RADSEM	B09	2018-02-09	03:40:57	16.00	-95.78	52.2	3.8	11.70	10.81	82	48	0.04	0.06
RADSEM	B09	2018-02-14	07:53:47	15.96	-95.69	60.6	3.8	13.34	14.37	27	12	0.10	0.06
RADSEM	B10	2017-10-10	23:55:45	15.59	-93.30	101.1	4.6	34.30	68.96	-46	13	0.16	0.02
RADSEM	B10	2017-10-15	23:42:54	16.47	-93.66	143.7	3.8	19.42	50.66	-65	23	0.20	0.04
RADSEM	B10	2017-10-19	02:17:14	15.90	-92.81	180.1	4.3	18.91	61.71	49	57	0.10	0.08
RADSEM	B10	2017-10-19	09:04:10	16.33	-93.06	223.7	4.2	6.54	25.63	-37	25	0.28	0.04
RADSEM	B10	2017-10-23	22:22:49	15.81	-92.72	174.3	3.8	23.48	75.73	-77	45	0.16	0.04
RADSEM	B10	2017-11-19	04:08:19	15.73	-93.42	104.2	4.3	28.59	56.78	-57	27	0.16	0.06
RADSEM	B10	2017-11-20	05:44:47	16.69	-93.86	151.9	3.9	28.70	83.16	-28	34	0.24	0.04
RADSEM	B10	2017-11-21	11:07:47	16.50	-93.80	125.5	4.1	27.66	65.78	-28	25	0.24	0.06
RADSEM	B10	2017-11-24	09:07:22	16.05	-93.28	130.8	3.8	8.08	18.58	-59	13	0.18	0.04
RADSEM	B10	2017-11-27	09:50:34	16.43	-93.52	153.7	3.8	13.07	35.67	-24	25	0.18	0.02
RADSEM	B10	2017-11-30	23:21:16	15.57	-92.75	148.6	4.4	31.77	92.01	61	29	0.08	0.02
RADSEM	B10	2017-12-23	04:42:23	16.45	-93.70	137.5	3.8	21.15	53.18	-84	45	0.12	0.06
RADSEM	B10	2017-12-30	08:26:45	16.82	-93.86	154.1	3.9	30.85	92.04	-31	27	0.24	0.04
RADSEM	B10	2018-02-14	06:33:59	15.98	-93.81	95.2	3.9	34.47	65.34	-38	×	0.22	0.02
RADSEM	B10	2018-02-28	17:32:35	16.21	-93.92	111.7	3.8	32.79	71.95	-70	00	0.12	0.12
SSN	ARIG	2018-01-01	10:49:29	18.15	-100.56	55.9	3.9	25.57	26.94	38	ю	0.24	0.04
SSN	ARIG	2018-01-22	02:55:10	18.25	-100.15	56.2	3.8	20.75	21.45	23	72	0.02	0.48
SSN	ARIG	2018-01-24	22:12:37	18.02	-100.22	62.0	3.8	27.38	32.32	27	22	0.12	0.02
SSN	ARIG	2018-02-14	14:05:27	18.22	-100.20	54.2	3.8	17.89	17.63	-10	9	0.16	0.04
SSN	ARIG	2018-03-05	23:40:25	17.98	-100.29	57.9	3.8	30.00	33.66	26	40	0.18	0.12
SSN	ARIG	2018-04-19	08:56:41	18.12	-100.19	50.5	3.8	25.79	24.60	25	21	0.10	0.02
SSN	ARIG	2018-05-16	22:02:14	18.22	-100.47	55.6	3.8	15.00	15.01	-22	83	0.04	0.10
SSN	ARIG	2018-05-23	09:46:25	18.10	-100.11	57.9	3.8	29.13	32.48	42	×	0.12	0.02
SSN	ARIG	2018-05-26	09:52:27	18.16	-100.63	50.5	4.4	33.47	33.65	22	13	0.12	0.04
NSS	ARIG	2018-05-31	07:35:09	18.06	-100.53	59.8	3.8	27.90	31.88	84	15	0.10	0.02
SSN	ARIG	2018-06-15	23:20:03	18.26	-100.20	52.3	3.8	17.47	16.59	ъ	16	0.10	0.02
SSN	ARIG	2018-06-25	08:26:26	18.18	-100.50	55.8	3.8	19.53	19.94	37	12	0.14	0.02
SSN	ARIG	2018-08-21	06:10:00	18.16	-100.65	61.4	3.9	29.99	35.67	24	15	0.16	0.04
SSN	ARIG	2018-09-05	19:47:27	18.28	-100.16	59.6	3.8	19.16	20.85	22	39	0.06	0.02
SSN	ARIG	2018-09-10	20:35:23	18.08	-100.48	53.1	4.0	26.10	26.20	44	က	0.14	0.02
SSN	ARIG	2018-10-06	14:35:47	18.04	-100.22	63.6	3.8	25.04	29.90	46	35	0.10	0.02
				Continú	a en la pá	gina siguier	ute.						

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	$\beta(^{\circ})$	D (km)	• (。)φ	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$
SSN	ARIG	2018-10-10	07:43:23	18.10	-100.55	59.2	3.9	26.16	29.27	55	18	0.08	0.02
SSN	ARIG	2018-10-13	18:17:11	18.23	-100.38	62.7	3.9	5.88	6.51	53	12	0.10	0.02
SSN	ARIG	2018-11-30	07:22:47	18.18	-100.16	55.3	3.9	22.80	23.42	29	13	0.10	0.04
SSN	ARIG	2018-12-05	00:10:07	17.95	-100.30	54.2	3.9	33.99	36.82	-51	15	0.10	0.06
SSN	ARIG	2018-12-05	16:44:33	17.97	-100.10	64.3	4.2	34.22	44.00	26	6	0.18	0.02
SSN	ARIG	2019-03-14	22:53:58	18.13	-100.40	55.9	3.9	17.07	17.30	38	24	0.08	0.06
SSN	ARIG	2019-03-28	07:14:42	18.08	-100.16	55.7	3.8	28.66	30.67	46	71	0.08	0.14
SSN	ARIG	2019-04-21	14:27:17	18.31	-100.14	52.4	3.9	23.36	22.81	-7	20	0.12	0.02
SSN	ARIG	2019-05-24	18:27:09	18.15	-100.40	57.3	4.0	14.88	15.33	60	13	0.14	0.02
SSN	ARIG	2019-05-28	03:14:47	18.16	-100.47	56.4	3.8	18.90	19.45	53	×	0.10	0.02
SSN	ARIG	2019-06-13	23:36:37	18.23	-100.47	56.2	4.0	14.31	14.44	34	×	0.10	0.02
SSN	ARIG	2019-06-17	14:20:16	18.33	-100.27	56.2	3.8	9.60	9.58	6	2	0.10	0.02
SSN	ARIG	2019-08-18	12:51:46	18.15	-100.33	53.2	4.3	14.61	13.98	-10	9	0.08	0.02
SSN	ARIG	2019-09-13	04:14:12	18.30	-100.41	55.0	3.8	6.84	6.66	54	6	0.12	0.02
SSN	ARIG	2019-09-14	12:40:13	18.04	-100.48	52.2	3.9	29.80	30.12	69	21	0.08	0.02
SSN	ARIG	2019-11-13	06:41:15	18.14	-100.61	52.6	3.8	31.53	32.52	-51	22	0.16	0.10
SSN	ARIG	2019-11-13	17:56:03	18.28	-100.18	57.5	3.8	17.75	18.54	38	13	0.10	0.02
SSN	ARIG	2019-11-21	16:11:35	18.02	-100.44	51.7	3.9	30.73	30.97	-65	×	0.08	0.02
SSN	ARIG	2019-11-27	13:14:35	18.44	-100.32	51.0	4.4	18.66	17.36	-24	66	0.04	0.08
SSN	ARIG	2019-11-30	05:16:28	18.17	-100.14	51.0	4.0	26.66	25.81	27	16	0.08	0.02
SSN	CCIG	2018-01-11	10:33:32	15.52	-92.06	215.8	4.1	21.18	84.26	-66	46	0.14	0.08
NSS	CCIG	2018-01-31	03:33:49	15.56	-92.17	188.4	4.4	22.61	79.15	88	44	0.16	0.10
NSS	CCIG	2018-03-04	16:10:54	15.37	-92.07	184.4	4.1	28.33	100.32	17	47	0.16	0.16
SSN	CCIG	2018-04-12	14:54:23	15.82	-92.67	171.7	4.3	23.92	76.89	-80	9	0.24	0.04
NSS	CCIG	2018-09-16	20:31:07	15.92	-92.77	179.2	4.1	23.77	79.68	-49	45	0.14	0.12
SSN	CCIG	2018-10-22	11:08:43	15.84	-92.42	201.4	4.3	15.82	57.55	-47	30	0.14	0.06
SSN	CCIG	2018-12-29	12:53:12	15.74	-92.63	211.0	4.2	20.73	80.51	-44	25	0.18	0.06
SSN	CCIG	2019-01-11	00:56:00	15.39	-91.99	220.1	4.2	24.17	99.55	-40	60	0.20	0.14
SSN	CCIG	2019-06-27	03:25:49	15.55	-92.20	177.2	4.1	24.34	80.91	86	21	0.22	0.06
SSN	CCIG	2019-07-16	08:27:23	15.63	-92.10	204.4	4.1	19.35	72.38	-50	66	0.06	0.06
SSN	CCIG	2019-09-13	20:14:45	15.91	-92.94	184.1	4.2	27.73	97.65	-77	17	0.24	0.08
SSN	CCIG	2019-09-25	02:27:13	15.65	-92.67	189.1	4.1	25.43	90.69	-49	23	0.18	0.06
SSN	CCIG	2019-09-25	22:09:34	15.45	-92.55	153.7	4.1	33.34	102.20	-71	34	0.08	0.10
SSN	CMIG	2018-01-18	08:43:57	17.03	-94.82	113.0	4.7	5.19	10.27	-44	21	0.12	0.02
SSN	CMIG	2018-02-07	13:48:21	17.33	-94.72	147.3	4.3	12.26	32.02	9	22	0.18	0.02
SSN	CMIG	2018-05-06	03:03:16	16.74	-95.05	101.1	4.7	23.07	43.08	63	30	0.08	0.06
SSN	CMIG	2018-05-15	08:08:24	16.79	-94.31	122.5	4.4	30.37	71.82	45	£	0.12	0.06
SSN	CMIG	2018-05-22	03:01:42	17.12	-94.05	165.6	4.4	29.07	92.09	29	12	0.12	0.02
SSN	CMIG	2018-06-06	00:15:00	16.99	-94.27	137.9	4.3	26.32	68.25	36	23	0.12	0.02
SSN	CMIG	2018-09-13	22:48:18	16.92	-94.83	116.3	4.3	9.72	19.94	-32	39	0.08	0.02
SSN	CMIG	2018-09-28	10:14:57	17.28	-94.42	145.9	4.3	20.53	54.65	41	က	0.10	0.02
SSN	CMIG	2018-11-23	00:38:12	16.99	-94.75	123.1	4.3	8.47	18.35	87	×	0.20	0.02
SSN	CMIG	2018-12-16	22:47:23	16.72	-94.66	107.2	4.3	23.76	47.22	15	00	0.10	0.08
SSN	CMIG	2018-12-27	09:00:44	16.60	-94.60	103.7	4.5	31.04	62.45	43	31	0.16	0.06
SSN	CMIG	2019-01-10	13:37:19	17.44	-94.83	138.2	4.4	15.75	39.01	-10	12	0.10	0.02
SSN	CMIG	2019-01-13	17:10:05	16.94	-94.28	140.2	4.3	26.16	68.90	41	24	0.12	0.02
				Continuu	ı en la páç	tina siguter	nte.						

(s) $\sigma_{\delta t}(s)$	14 0.02	12 0.04	26 0.02	18 0.02	10 0.04	16 0.04	10 0.04	22 0.04	16 0.06	16 0.04	24 0.14	34 0.10	20 0.02	26 0.06	32 0.40	14 0.44	20 0.04	14 0.06	16 0.02	28 0.12	16 0.02	24 0.04	24 0.04	16 0.04	14 0.08	14 0.04	20 0.02	22 0.02	10 0.04	28 0.02	18 0.02	14 0.10	22 0.04	26 0.04	26 0.02	18 0.02	18 0.08	22 0.04	36 0.02	06 0.12	10 0.04	20 0.04	10 0.02	18 0.04	12 0.04	000
$_{\phi}(^{\circ}) \delta t_{1}$	7 0.	30 0.	7 0.	20 0.	35 0.	27 0.	36 0.	12 0.	85 0.	13 0.	17 0.	10 0.	12 0.	26 0.	11 0.	50 0.	15 0.	38 0.	12 0.	23 0.	12 0.	10 0.	28 0.	15 0.	20 0.	9 0.	7 0.	7 0.	26 0.	13 0.	12 0.	48 0.	16 0.	16 0.	13 0.	12 0.	26 0.	14 0.	9 0.	70 0.	32 0.	11 0.	12 0.	20 0.	10 0.	-
φ(°) σ,	74	-	62	-10	46	17	сı vo	51	40	-18	52	34	-11	6	6-	-29	53	-19	24	-48	-2	-28	-10	co C	57	69	-15	-26	-	-4	-10	-21	-27	6-	-4	-13	-19	20	-19	-69-	49	8	-10	6	45	
D (km)	16.89	92.87	6.86	57.06	45.43	60.11	44.05	67.30	91.80	46.98	34.69	20.09	3.35	11.80	40.47	28.39	27.87	14.97	40.17	33.36	12.72	31.53	8.96	36.15	22.00	34.99	21.76	21.67	33.00	38.35	39.99	34.96	3.75	37.81	38.78	20.76	17.82	6.17	2.81	38.87	17.73	29.57	21.29	31.53	27.28	
$\beta(")$	16.49	27.36	3.04	23.77	24.75	24.42	17.64	25.87	34.34	33.57	31.91	20.83	3.46	12.46	33.82	23.72	25.66	15.35	33.67	32.63	10.73	28.49	9.17	33.80	23.13	32.60	21.17	20.07	27.75	31.25	34.27	31.66	3.66	32.74	33.50	20.89	19.40	6.36	3.21	28.57	15.45	24.72	18.39	25.40	26.45	
Mag.	4.8	4.3	4.5	4.3	4.4	4.4	4.3	4.5	4.3	3.9	3.5	3.8	3.6	3.9	3.5	3.6	3.9	3.6	4.3	3.6	3.8	3.9	3.8	3.6	3.6	3.7	3.7	3.7	3.8	3.9	4.4	3.7	3.6	3.9	3.7	3.6	3.5 2	3.6	3.5	3.7	3.6	3.7	3.9	3.6	3.9	
Prof. (km)	57.0	179.4	128.9	129.5	98.5	132.3	138.5	138.7	134.3	70.8	55.7	52.8	55.4	53.4	60.4	64.6	58.0	54.5	60.3	52.1	67.1	58.1	55.5	54.0	51.5	54.7	56.2	59.3	62.7	63.2	58.7	56.7	58.5	58.8	58.6	54.4	50.6	55.3	50.0	69.5	62.0	62.3	62.0	64.5	52.9	
Longitud	-94.83	-94.04	-94.89	-94.42	-95.19	-94.36	-94.79	-95.00	-94.13	-97.78	-98.41	-98.31	-98.15	-98.22	-97.77	-98.29	-98.28	-98.27	-98.49	-98.44	-98.19	-98.42	-98.12	-97.97	-98.32	-98.45	-98.32	-98.31	-97.86	-97.82	-97.80	-97.88	-98.12	-97.82	-97.82	-98.32	-98.18	-98.13	-98.12	-97.45	-97.72	-97.54	-97.64	-97.52	-97.87	
Latitud	17.23	17.13	17.03	16.86	16.82	16.95	17.48	17.69	16.73	18.14	17.76	17.94	17.93	17.97	17.92	17.70	17.70	17.93	17.86	17.89	17.81	17.88	17.99	18.19	17.97	17.89	17.83	17.82	17.79	17.75	17.75	18.10	17.88	17.76	17.74	17.89	18.06	17.85	17.93	17.78	17.69	17.85	17.72	17.79	18.07	
Hora	17:57:03	10:47:38	15:23:17	10:07:57	05:00:43	18:45:43	03:21:17	02:35:25	12:59:49	12:27:44	16:14:38	07:44:58	04:32:50	04:19:12	12:46:38	15:27:01	04:03:01	14:33:30	17:36:10	02:45:01	05:58:27	19:30:48	10:56:46	10:16:05	18:50:11	15:21:20	17:53:53	17:55:36	14:01:16	12:47:36	12:48:48	09:22:44	19:57:26	23:35:55	14:06:32	18:22:44	17:21:35	06:47:01	17:10:53	12:54:54	06:39:15	08:09:09	04:48:40	10:49:43	11:53:30	
Fecha	2019-01-13	2019-01-14	2019-02-04	2019-02-07	2019-03-12	2019-08-10	2019 - 08 - 22	2019 - 10 - 28	2019 - 11 - 24	2016 - 01 - 02	2016-03-12	2016 - 09 - 26	2016-12-16	2016 - 12 - 29	2016-12-29	2017-01-19	2017-03-20	2017-05-26	2017-06-19	2017-07-29	2017-10-31	2017-10-31	2017-12-15	2018-01-13	2018-02-11	2018-04-17	2018-06-25	2018-06-25	2018-07-19	2018 - 07 - 20	2018 - 07 - 24	2018 - 08 - 30	2018-12-02	2018-12-11	2019-01-17	2019-01-17	2019 - 03 - 18	2019-07-02	2019-09-07	2018-04-02	2018-04-14	2018 - 05 - 28	2018-06-20	2018-06-25	2018-06-25	
Estación	CMIG	CMIG	CMIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	FTIG	HLIG	HLIG	HLIG	HLIG	HLIG	HLIG							
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN							

$\sigma_{\delta t}(\mathbf{s})$	0.06	0.02	0.02	0.02	0.04	0.04	0.06	0.04	0.04	0.02	0.14	0.10	0.04	0.02	0.08	0.02	0.02	0.04	0.06	0.02	0.04	0.02	0.04	0.08	0.08	0.06	0.06	0.02	0.06	0.02	0.02	0.04	0.02	0.04	0.04	0.02	0.02	0.06	0.04	0.02	0.08	0.10	0.08	0.04	0.02	0.04
$\delta t(\mathbf{s})$	0.10	0.12	0.14	0.10	0.20	0.08	0.20	0.20	0.24	0.26	0.10	0.12	0.10	0.22	0.14	0.12	0.10	0.08	0.12	0.18	0.14	0.10	0.10	0.10	0.16	0.10	0.06	0.22	0.16	0.14	0.10	0.42	0.10	0.08	0.08	0.22	0.12	0.16	0.06	0.16	0.16	0.14	0.22	0.12	0.14	0.16
$\sigma_{\phi}(^{\circ})$	65	11	12	13	12	30	6	S	14	9	82	72	40	9	36	17	4	22	22	6	39	39	19	49	59	41	51	9	36	14	က	31	6	24	34	7	17	16	26	4	38	00	9	15	21	44
φ(°)	-65	31	59	51	37	48	44	49	36	35	-72	-62	-82	53	53	46	61	64	82	31	57	52	68	43	-68	-22	31	، ؟	-36	61	41	-24	-34	5 L	-41	-13	-36	19	-52	14	42	27	25	-32	9	4
D (km)	18.01	23.72	15.80	25.71	24.43	8.60	24.58	31.25	27.13	33.51	40.39	31.57	27.88	30.11	38.76	24.16	21.58	17.27	12.69	23.86	20.49	7.20	12.00	9.04	18.22	28.98	34.80	26.94	40.11	41.49	40.17	17.43	19.70	29.00	39.29	38.68	17.69	15.67	18.53	24.51	29.12	40.97	14.50	37.08	12.58	9175
β(°)	18.35	22.89	17.12	23.07	24.36	8.91	22.66	29.18	27.48	31.46	34.92	29.56	27.03	28.11	32.15	23.80	21.18	16.80	12.51	23.50	19.91	7.21	13.24	9.30	17.82	28.10	32.25	24.27	33.26	34.42	33.47	13.16	15.25	22.31	26.46	34.67	12.53	11.35	15.04	17.87	23.12	31.86	11.76	25.36	10.81	16 03
Mag.	3.6	3.6	3.8	3.7	3.6	3.6	3.9	3.7	3.9	4.0	3.6	3.7	3.6	3.8	3.6	4.1	3.8	3.7	4.3	3.6	3.6	3.7	3.6	3.6	3.9	3.7	3.9	3.6	3.4	3.7	4.2	3.9	3.7	3.9	3.6	3.7	3.7	3.6	3.9	4.2	3.8	3.6	3.7	3.7	3.6	ი ი
Prof. (km)	53.7	55.6	50.7	59.8	53.4	54.2	58.3	55.4	51.6	54.2	57.3	55.1	54.1	55.8	61.1	54.2	55.1	56.6	56.6	54.3	56.0	56.2	50.4	54.5	56.1	53.7	54.6	57.5	59.0	58.4	58.6	72.4	70.2	68.8	77.1	54.1	77.4	75.8	66.9	74.1	66.3	64.1	67.4	76.4	63.5	737
Longitud	-99.46	-99.53	-99.69	-99.62	-99.82	-99.67	-99.82	-99.72	-99.79	-99.32	-99.25	-99.34	-99.83	-99.84	-99.97	-99.49	-99.74	-99.74	-99.72	-99.40	-99.43	-99.68	-99.73	-99.59	-99.62	-99.88	-99.41	-98.40	-98.27	-98.70	-98.54	-96.89	-96.57	-96.50	-96.52	-96.53	-96.63	-96.64	-96.66	-96.69	-96.53	-96.84	-96.60	-96.55	-96.62	06 61
Latitud	17.96	18.12	18.05	17.69	18.03	17.86	18.01	18.19	18.11	17.88	17.92	17.98	18.06	18.08	17.89	18.10	18.08	18.03	17.86	17.94	17.94	17.92	17.90	18.00	17.76	17.96	18.16	17.30	17.25	17.61	17.59	17.03	17.14	16.96	17.36	16.79	17.20	17.18	16.92	17.29	16.90	16.72	17.09	17.35	17.11	17 95
Hora	13:42:31	19:30:25	13:56:58	11:37:04	23:40:16	23:44:32	10:09:08	12:11:14	09:45:30	13:22:01	03:13:55	15:08:28	20:25:28	22:29:02	19:49:23	15:45:12	06:05:31	21:13:39	16:49:25	01:35:22	17:19:16	05:31:48	02:08:14	00:58:59	04:23:13	00:00:58	17:19:16	21:23:37	09:07:31	22:00:28	05:42:16	23:58:18	11:48:16	23:01:59	11:51:46	07:54:04	18:43:16	18:11:29	11:34:35	23:02:37	07:00:38	04:40:08	11:06:15	01:47:46	02:13:57	70.00.01
Fecha	2018 - 09 - 16	2018-09-17	2018 - 10 - 13	2018-10-27	2018-11-06	2019-04-30	2019 - 05 - 10	2019 - 05 - 24	2019-05-27	2019 - 06 - 25	2019-06-30	2019-07-20	2019-07-20	2019-08-01	2019-08-16	2019-08-17	2019-08-18	2019-08-24	2019-09-11	2019-09-18	2019-10-07	2019-10-13	2019-10-16	2019-10-18	2019-10-20	2019-11-09	2019-11-29	2019-02-16	2019-04-19	2019-05-10	2019-08-19	2018-01-11	2018 - 01 - 24	2018-01-30	2018 - 02 - 02	2018-02-06	2018 - 02 - 24	2018 - 03 - 09	2018-03-17	2018-03-17	2018-04-20	2018-07-15	2018 - 07 - 29	2018-08-24	2018-08-27	2010 00 20
Estación	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MEIG	MGIG	MGIG	MGIG	MGIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	OXIG	
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NUU

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	$\beta(")$	D (km)	$\phi(\circ) c$	$r_{\phi}(^{\circ})$	$\delta t(s)$	$\tau_{\delta t}(\mathbf{s})$
SSN	OXIG	2018 - 10 - 14	18:33:05	17.08	-96.60	67.7	3.6	11.83	14.66	13	Ξ	0.20	0.02
SSN	OXIG	2018-11-06	13:15:01	16.93	-96.34	71.4	4.0	32.03	45.80	0	2	0.14	0.02
SSN	OXIG	2018-11-14	13:05:54	16.87	-96.29	76.1	4.0	34.49	53.51	2	17	0.28	0.02
SSN	OXIG	2018-11-17	16:09:21	16.97	-96.39	64.5	3.6	30.56	39.17	-12	21	0.36	0.04
SSN	OXIG	2019-01-30	16:49:48	16.90	-96.58	61.1	3.7	21.88	25.30	-13	30	0.12	0.04
SSN	OXIG	2019-02-01	09:22:19	16.95	-96.36	68.2	3.8	31.87	43.53	1	19	0.16	0.06
SSN	OXIG	2019-02-12	07:18:42	17.15	-96.70	69.8	3.8	6.78	8.69		20	0.20	0.06
SSN	OXIG	2019-05-13	13:51:45	16.72	-96.58	64.7	3.8	32.16	41.82	-0	22	0.28	0.02
SSN	OXIG	2019-05-22	23:33:37	17.33	-96.45	74.8	3.8	29.13	42.70	-13	18	0.12	0.02
SSN	OXIG	2019-06-21	05:16:24	16.87	-96.55	71.0	4.2	22.43	30.09	1	20	0.12	0.02
SSN	OXIG	2019-06-25	22:08:50	17.15	-96.61	63.1	3.6	13.62	15.81	-17	19	0.18	0.04
SSN	OXIG	2019-08-13	04:25:41	16.98	-96.49	68.6	4.1	21.84	28.25	×	11	0.20	0.02
SSN	OXIG	2019-08-20	11:28:21	16.98	-96.41	65.1	3.6	28.87	36.91	×	13	0.24	0.02
SSN	OXIG	2019-08-27	06:53:21	17.40	-96.57	79.5	4.0	26.23	40.08	-29	12	0.16	0.06
SSN	OXIG	2019-09-04	13:01:57	17.03	-96.57	74.8	3.7	13.51	18.48	ъ	17	0.14	0.02
SSN	OXIG	2019-11-13	09:06:59	17.18	-96.72	71.0	4.1	8.94	11.59	-25	11	0.10	0.02
SSN	OXIG	2019-11-30	15:17:12	16.86	-96.57	62.4	4.2	24.30	29.03	29	17	0.16	0.02
SSN	PCIG	2018-01-31	03:33:49	15.56	-92.17	188.4	4.4	31.77	116.74	-45	53	0.04	0.18
SSN	PCIG	2018-02-19	03:12:28	15.71	-93.66	92.3	4.3	27.95	49.03	-17	ъ	0.12	0.02
SSN	PCIG	2018-02-27	21:01:51	15.44	-93.19	92.2	4.5	17.48	29.07	-22	14	0.14	0.04
SSN	PCIG	2018-04-04	18:24:41	15.55	-93.45	100.6	4.3	17.01	30.81	2	×	0.06	0.02
SSN	PCIG	2018-05-07	00:49:41	15.25	-93.27	79.4	4.3	32.12	49.92	-51	19	0.08	0.02
SSN	PCIG	2018-06-24	15:21:45	16.32	-93.20	182.8	4.5	20.46	68.25	-47	31	0.22	0.14
SSN	PCIG	2018-06-29	12:29:00	15.68	-93.70	86.8	4.3	31.63	53.53	20	2	0.18	0.06
SSN	PCIG	2018-07-04	04:14:12	15.54	-92.98	107.7	4.2	16.56	32.05	-46	16	0.22	0.02
SSN	PCIG	2018-07-09	04:15:21	15.21	-93.11	107.4	4.7	27.61	56.23	-30	က	0.16	0.02
SSN	PCIG	2018-07-24	13:09:02	15.80	-93.81	95.0	4.3	34.68	65.80	-25	49	0.16	0.04
SSN	PCIG	2018-07-28	17:36:41	16.01	-92.97	175.4	4.5	14.02	43.82	-33	က	0.18	0.02
SSN	PCIG	2018-08-06	20:15:46	16.02	-92.99	174.4	4.4	13.80	42.86	-32	9	0.18	0.04
SSN	PCIG	2018-08-19	02:42:57	15.52	-93.67	78.6	4.5	34.40	53.90	-35	25	0.12	0.10
SSN	PCIG	2018-09-15	01:50:35	15.52	-93.62	80.7	4.2	30.83	48.24	-30	83	0.10	0.12
SSN	PCIG	2019-03-14	10:05:26	15.53	-92.15	192.0	4.6	31.76	118.94	-56	10	0.38	0.02
SSN	PCIG	2019-05-20	18:06:00	15.91	-93.60	112.9	4.3	22.96	47.88	-20	20	0.16	0.04
SSN	PCIG	2019-05-29	03:17:14	15.69	-92.54	175.6	4.2	22.91	74.25	45	29	0.12	0.06
SSN	PCIG	2019-06-01	07:09:22	16.00	-92.94	182.7	4.3	13.91	45.26	4	32	0.16	0.04
SSN	PCIG	2019-06-14	13:29:12	16.17	-93.08	192.2	4.3	15.47	53.21	-22	15	0.30	0.04
SSN	PCIG	2019-09-26	03:32:06	15.63	-93.52	86.8	4.2	21.59	34.40	-49	23	0.14	0.02
SSN	PCIG	2019-10-24	14:44:59	15.50	-93.26	93.4	4.6	13.97	23.25	53	12	0.14	0.10
SSN	PCIG	2019 - 10 - 30	00:52:50	15.62	-93.59	86.1	4.2	25.91	41.88	-32	15	0.16	0.04
SSN	PLIG	2018-04-10	01:08:17	18.09	-99.42	51.8	3.7	33.09	34.41	-82	14	0.16	0.06
SSN	PLIG	2018-09-17	19:30:25	18.12	-99.53	55.6	3.6	27.92	30.01	26	46	0.12	0.06
SSN	PLIG	2018-10-15	04:12:53	18.24	-99.32	57.4	3.5	24.62	26.77	49	44	0.16	0.10
SSN	PLIG	2018-12-01	19:24:42	18.01	-99.49	59.4	3.6	34.88	42.10	62	40	0.20	0.06
SSN	PLIG	2019-03-16	04:16:00	18.15	-99.80	63.2	3.7	33.08	41.82	32	22	0.18	0.06
SSN	PLIG	2019-05-05	20:24:38	18.04	-99.53	59.2	3.4	32.49	38.33	52	35	0.16	0.10
SSN	PLIG	2019-05-26	01:47:25	18.18	-99.42	51.9	3.5	25.01	24.69	62	26	0.12	0.08
				$Continu_{i}$	a en la pá	gina siguie	nte.						

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	$\beta(^{\circ})$	D (km)	φ(°) ₆	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$
SSN	PLIG	2019-07-19	13:12:27	18.25	-99.29	50.7	3.6	28.80	28.43	38	29	0.12	0.04
SSN	TGIG	2018-01-07	03:24:06	16.96	-94.04	159.9	4.2	32.55	102.48	-13	22	0.12	0.04
SSN	TGIG	2018-04-26	19:09:02	16.50	-93.26	110.6	4.2	16.94	33.88	-29	44	0.14	0.08
SSN	TGIG	2018-04-30	19:22:00	15.62	-92.46	221.2	4.2	33.54	147.07	-60	11	0.18	0.04
SSN	TGIG	2018-05-22	03:01:42	17.12	-94.05	165.6	4.4	33.15	108.57	-71	6	0.32	0.04
SSN	TGIG	2018-06-07	18:57:26	16.65	-93.62	162.4	4.3	19.29	57.05	-44	15	0.12	0.02
SSN	TGIG	2018-07-01	21:39:57	16.91	-93.93	150.8	4.1	30.63	89.65	64	12	0.18	0.04
SSN	TGIG	2018-07-28	17:36:41	16.01	-92.97	175.4	4.5	25.98	85.78	-60	16	0.08	0.02
SSN	TGIG	2018-07-31	00:59:45	16.83	-93.80	176.6	4.1	22.89	74.82	84	×	0.20	0.02
SSN	TGIG	2018-08-03	11:33:51	16.70	-93.93	142.3	4.1	31.92	89.04	-45	18	0.14	0.04
SSN	TGIG	2018-08-06	20:15:46	16.02	-92.99	174.4	4.4	25.78	84.53	-52	11	0.12	0.04
SSN	TGIG	2018-09-11	15:30:36	16.68	-93.90	145.8	4.3	30.66	86.81	48	10	0.24	0.06
SSN	TGIG	2018-09-11	22:42:41	16.88	-93.79	179.0	4.1	22.51	74.46	46	20	0.22	0.08
SSN	TGIG	2018-09-16	20:31:07	15.92	-92.77	179.2	4.1	29.56	102.01	-70	40	0.10	0.06
SSN	TGIG	2018-09-24	23:53:19	16.67	-93.70	145.0	4.3	23.80	64.23	54	2	0.22	0.04
SSN	TGIG	2018-10-22	11:08:43	15.84	-92.42	201.4	4.3	32.55	128.94	-59	51	0.10	0.10
SSN	TGIG	2018-11-29	03:34:59	16.60	-93.53	177.6	4.2	15.20	48.42	20	14	0.24	0.08
SSN	TGIG	2018-12-01	22:47:35	16.73	-93.65	182.5	4.1	17.50	57.73	67	11	0.18	0.04
SSN	TGIG	2018-12-15	19:26:02	16.53	-93.88	147.5	4.3	30.67	87.85	-12	16	0.20	0.08
SSN	TGIG	2018-12-24	16:09:20	16.93	-93.99	152.8	4.1	32.33	97.11	77	10	0.30	0.06
SSN	TGIG	2018-12-29	12:53:12	15.74	-92.63	211.0	4.2	30.81	126.20	-73	53	0.08	0.14
SSN	TGIG	2018-12-30	16:29:31	16.86	-93.89	163.1	4.2	27.43	84.99	-86	16	0.20	0.08
SSN	TGIG	2018-12-31	10:13:31	17.17	-94.05	172.7	4.9	32.50	110.41	-51	27	0.22	0.06
SSN	TGIG	2019-01-01	03:30:21	16.50	-93.48	178.7	4.1	15.45	49.58	-55	16	0.16	0.04
SSN	TGIG	2019-01-14	02:15:18	16.85	-93.96	148.2	4.3	31.91	92.69	75	25	0.16	0.06
SSN	TGIG	2019-02-10	09:37:02	16.03	-92.36	184.3	4.1	32.31	116.97	-41	46	0.24	0.12
SSN	TGIG	2019-03-03	02:45:33	16.69	-93.94	142.6	4.2	32.38	90.84	-46	13	0.16	0.02
SSN	TGIG	2019-03-05	08:35:37	16.68	-93.58	170.9	4.1	16.82	51.86	66	10	0.20	0.04
SSN	TGIG	2019-05-30	11:04:10	16.55	-93.46	183.7	4.1	13.83	45.37	22	14	0.18	0.04
SSN	TGIG	2019-06-01	07:09:22	16.00	-92.94	182.7	4.3	25.52	87.53	-55	6	0.12	0.04
SSN	TGIG	2019-06-13	02:08:04	16.91	-93.88	167.0	4.4	26.85	84.86	-86	6	0.18	0.02
SSN	TGIG	2019-06-26	11:16:47	16.54	-93.75	132.6	4.1	28.85	73.40	-50	50	0.08	0.04
SSN	TGIG	2019-08-31	10:10:43	16.57	-93.70	150.5	4.1	24.19	67.89	-75	25	0.10	0.02
SSN	TGIG	2019-09-13	20:14:45	15.91	-92.94	184.1	4.2	27.87	97.70	-80	32	0.08	0.06
SSN	JGIG	2019-10-17	10:45:40	16.53	-93.72	145.9	4.1	26.08	71.73	-82	31	0.06	0.06
SSN	TGIG	2019-11-14	12:52:16	16.70	-93.83	145.2	4.1	28.39	78.82	30	43	0.20	0.08
SSN	THIG	2018-01-31	03:33:49	15.56	-92.17	188.4	4.4	22.01	76.21	19	16	0.22	0.04
SSN	THIG	2018-02-03	00:28:00	14.73	-92.07	103.3	4.4	15.95	29.57	44	18	0.08	0.06
SSN	THIG	2018-02-20	11:12:10	14.59	-92.39	66.9	4.4	26.51	33.44	25	2	0.14	0.04
SSN	THIG	2018-03-01	08:33:30	14.74	-92.39	88.3	4.3	12.00	18.80	55	30	0.04	0.02
SSN	THIG	2018-04-19	19:17:35	15.57	-92.40	179.4	4.3	23.09	76.53	35	18	0.16	0.06
SSN	THIG	2018-05-07	$04{:}28{:}19$	15.04	-92.83	96.5	4.3	32.60	61.79	-44	41	0.06	0.06
SSN	THIG	2018-05-21	01:38:26	14.77	-92.07	118.6	4.5	13.38	28.25	76	18	0.14	0.02
SSN	THIG	2018-08-23	12:22:25	14.84	-92.78	79.0	4.3	34.15	53.67	45	40	0.26	0.16
SSN	THIG	2018-09-19	02.55.02	14.53	-92.43	74.4	4.3	29.22	41.69	51	47	0.08	0.04
SSIN	SIHT	2018-11-24	08:44:53	15.39 ~ · · `	-92.03	. 206.9	4.4	L7.03	63.41	-32)	0.24	0.06
				Continu	a en la pa	gına sıguler	te.						

$\sigma_{\delta t}(\mathbf{s})$	0.02	0.08	0.02	0.06	0.02	0.06	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.12	0.04	0.08	0.04	0.02	0.18	0.02	0.02	0.02	0.02	0.04	0.08	0.02	0.04	0.04	0.08	0.02	0.06	0.02	0.02	0.04	0.12	0.06	0.06	0.06	0.02	0.02	0.06	0.04	0.06	0.08	
$\delta t(\mathbf{s})$	0.20	0.20	0.14	0.20	0.10	0.16	0.14	0.16	0.08	0.20	0.08	0.18	0.14	0.14	0.28	0.12	0.20	0.10	0.10	0.08	0.12	0.28	0.36	0.38	0.34	0.28	0.10	0.34	0.16	0.34	0.20	0.18	0.36	0.24	0.10	0.18	0.10	0.14	0.12	0.08	0.28	0.16	0.20	0.24	0.16	
$\sigma_{\phi}(^{\circ})$	17	11	13	18	17	25	25	16	13	14	16	ъ	20	13	20	27	30	40	13	65	15	14	16	15	9	29	27	10	×	30	10	37	33	×	.57	45	42	32	33	2	4	37	17	×	25	
$()\phi$	-47	46	58	51	-39	45	-66	÷.	68	64	-88	-64	-87	44	-45	87	29	37	43	79	15	2	-16	-4	-7	11	-4	-7	13	37	-30	33	-20	15	-14	6	-21	-47	-	-72	25	35	-18	9	-20	
D (km)	84.84	37.74	44.84	52.15	41.89	37.29	73.51	43.24	23.45	31.36	14.20	96.50	35.41	50.94	31.57	35.16	15.38	38.80	40.62	26.24	3.65	43.42	13.49	34.63	14.20	42.71	32.69	25.58	18.06	30.26	28.81	14.92	13.59	19.36	23.52	26.01	26.32	34.96	44.38	25.58	34.96	24.98	25.12	27.00	22.36	
β(°)	20.97	26.31	31.58	34.10	26.69	27.15	20.94	30.36	15.58	22.93	8.18	21.15	23.87	17.13	26.55	32.22	14.45	32.90	33.50	24.49	3.32	28.76	11.25	28.30	12.36	32.25	25.10	25.18	14.14	24.21	23.36	11.87	11.81	15.74	19.20	21.48	23.55	26.75	33.66	22.25	27.78	24.04	22.28	21.40	18.11	
Mag.	4.3	4.3	4.3	4.3	4.3	4.3	4.6	4.4	4.3	4.4	4.3	4.3	4.3	4.5	3.7	3.2	3.7	3.5	3.8	3.4	4.2	3.5	3.7	3.9	3.9	3.6	3.9	3.6	3.8	3.9	4.0	3.6	3.6	3.7	4.0	3.6	3.4	3.7	3.7	3.9	3.9	3.6	3.6	3.9	4.0	
Prof. (km)	221.2	76.2	72.8	76.9	83.2	72.6	192.0	73.7	84.0	74.0	98.6	249.3	79.9	165.2	62.0	54.6	58.4	58.8	60.2	56.4	58.6	79.1	67.8	64.3	64.8	67.7	69.8	54.4	71.7	67.3	66.7	71.0	65.0	68.7	65.9	64.5	58.8	67.8	65.1	60.9	64.8	54.4	59.7	67.3	66.7	
Longitud	-92.33	-92.64	-92.46	-92.60	-92.08	-92.48	-92.15	-92.62	-92.31	-92.48	-92.39	-92.24	-92.51	-92.08	-98.75	-98.48	-98.70	-98.86	-98.80	-98.57	-98.54	-96.76	-97.14	-97.22	-97.17	-97.11	-96.99	-97.26	-96.95	-97.33	-97.29	-97.16	-97.16	-96.94	-97.47	-97.40	-97.34	-97.14	-97.25	-97.37	-97.17	-97.26	-97.49	-97.33	-97.29	
Latitud	15.65	14.87	14.51	14.52	14.57	14.60	15.53	14.66	14.67	14.67	14.80	15.76	14.64	15.29	17.78	17.87	17.61	17.76	17.85	17.80	17.59	17.85	18.19	17.82	18.16	17.71	17.81	18.22	18.21	18.18	18.23	18.00	18.17	18.22	18.24	18.19	18.18	18.19	18.03	18.19	18.16	18.22	18.23	18.18	18.23	
Hora	18:57:16	09:01:59	18:44:40	22:46:50	18:08:24	15:54:23	10:05:26	04:26:08	19:31:30	11:43:11	10:35:26	19:41:12	11:33:37	01:33:31	11:55:14	00:23:56	22:00:28	04:38:46	22:02:33	16:04:25	05:42:16	12:13:07	08:11:55	03:50:51	06:21:29	02:21:59	05:27:56	15:13:25	08:49:37	03:42:13	10:02:40	10:04:12	07:30:36	18:19:43	08:40:54	00:58:42	16:26:36	08:11:55	01:51:56	04:43:12	06:21:29	15:13:25	18:55:26	03:42:13	10:02:40	
Fecha	2018-12-12	2019-01-06	2019-02-01	2019-02-02	2019-03-02	2019-03-08	2019-03-14	2019-03-19	2019-04-14	2019-04-19	2019-06-24	2019-07-02	2019-07-06	2019-09-12	2018-01-01	2018-01-03	2019-05-10	2019-05-11	2019-08-09	2019-08-16	2019-08-19	2018-07-19	2018-08-16	2018-09-30	2018-12-29	2019-01-27	2019-02-12	2019-02-22	2019-04-26	2019-06-22	2019-06-29	2019-09-23	2019-10-21	2019-11-27	2018-02-12	2018-04-11	2018-04-26	2018-08-16	2018-10-30	2018-11-20	2018-12-29	2019-02-22	2019-02-25	2019-06-22	2019-06-29	
Estación	THIG	TLIG	TOIG	DIAL	TPIG	-																																								
Red	SSN																																													

Red	Estación	Fecha	Hora	Latitud	Longitud	Prof. (km)	Mag.	$\beta(")$	D (km)	$\phi(\circ)$	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$
SSN	TPIG	2019-11-23	06:51:59	18.25	-97.62	60.8	3.8	28.55	33.93	-	ъ	0.42	0.02
SSN	TXIG	2014 - 12 - 30	22:03:58	17.19	-98.08	55.7	3.8	32.68	35.73	-60	56	0.08	0.28
SSN	TXIG	2015-12-24	18:49:00	17.50	-97.51	65.0	3.9	30.97	39.02	-59	11	0.28	0.04
SSN	TXIG	2016-09-12	09:49:20	17.21	-98.04	57.6	4.1	27.88	30.47	-40	×	0.20	0.02
SSN	TXIG	2016-09-18	19:22:21	17.26	-97.38	64.3	4.1	33.08	41.89	-26	42	0.18	0.46
SSN	TXIG	2018-08-18	13:44:31	17.53	-97.77	63.2	3.4	25.44	30.06	-45	20	0.16	0.04
SSN	TXIG	2019-01-26	13:47:09	17.15	-97.84	59.5	3.5	13.59	14.38	-19	9	0.26	0.02
SSN	TXIG	2019-10-03	22:32:36	17.26	-97.83	60.3	3.6	7.08	7.49	-29	18	0.22	0.02
SSN	YOIG	2017-03-22	21:30:05	16.88	-97.60	54.0	3.8	6.68	6.33	56	20	0.18	0.04
SSN	YOIG	2017-08-02	01:39:43	16.66	-97.80	51.9	3.4	33.84	34.80	-51	24	0.16	0.04
SSN	YOIG	2017-11-01	01:12:16	16.84	-97.85	51.2	3.5	33.11	33.40	-12	15	0.16	0.02
SSN	YOIG	2018-03-24	20:09:07	17.15	-97.34	60.7	3.6	33.03	39.47	16	20	0.12	0.04
RSBAV	NEUV	2018-07-13	14:26:24	17.33	-95.38	114.5	4.0	28.50	62.22	-78	14	0.18	0.04
RSBAV	NEUV	2018-07-26	16:27:40	17.65	-95.47	106.9	4.0	18.97	36.78	-15	က	0.16	0.02
RSBAV	NEUV	2018-12-29	11:13:56	17.95	-96.06	102.5	4.0	20.51	38.37	35	10	0.14	0.02
RSBAV	NEUV	2019-02-09	22:27:38	17.48	-95.78	97.5	4.2	14.48	25.20	67	21	0.12	0.06
RSBAV	NEUV	2019-03-13	07:13:50	17.22	-95.25	127.2	4.2	32.41	80.81	20	21	0.20	0.06
RSBAV	NEUV	2019-03-19	07:44:29	17.32	-95.10	130.4	4.0	34.28	88.93	11	ъ	0.22	0.04
RSBAV	NEUV	2019-05-20	05:48:10	17.69	-94.95	133.6	4.1	34.90	93.26	υ	П	0.10	0.06
RSBAV	NEUV	2019-05-26	11:57:01	17.29	-95.36	117.9	4.4	29.65	67.16	69	14	0.18	0.04
RSBAV	NEUV	2019-06-30	22:58:21	17.50	-95.14	133.0	4.1	30.01	76.86	81	33	0.30	0.06
RSBAV	NEUV	2019-08-09	05:48:02	17.61	-94.99	135.0	4.3	33.72	90.16	59	9	0.20	0.02
RSBAV	NEUV	2019-09-26	10:30:54	17.61	-95.00	130.2	4.0	34.22	88.62	79	11	0.24	0.04
RSBAV	NEUV	2019-10-04	16:27:34	17.24	-95.31	113.0	4.0	33.53	74.92	45	20	0.22	0.04
RSBAV	NEUV	2019-10-28	02:35:25	17.69	-95.00	138.7	4.5	32.38	88.02	-25	ъ	0.28	0.06
RSBAV	NEUV	2019-11-04	15:16:10	17.24	-95.22	120.0	4.2	34.29	81.88	-65	57	0.10	0.12
RSBAV	NEUV	2019-11-23	20:27:18	17.37	-95.37	116.0	4.0	27.46	60.33	-82	10	0.22	0.02
RSBAV	UXUV	2018-01-07	03:24:06	16.96	-94.04	159.9	4.2	14.52	41.46	-69	6	0.18	0.02
RSBAV	UXUV	2018-01-08	08:31:10	17.43	-94.74	137.7	4.2	25.67	66.24	65	16	0.24	0.04
RSBAV	UXUV	2018-01-19	19:12:38	17.39	-94.71	144.7	4.2	23.36	62.56	63	2	0.22	0.04
RSBAV	UXUV	2018-01-26	09:46:39	17.18	-94.36	146.5	4.2	10.78	27.91	-22	က	0.28	0.02
RSBAV	UXUV	2018-01-26	21:44:29	17.58	-94.68	149.8	4.2	23.52	65.25	-18	7	0.20	0.06
RSBAV	UXUV	2018-02-07	13:48:21	17.33	-94.72	147.3	4.3	23.37	63.72	-89	27	0.10	0.04
RSBAV	UXUV	2018-05-22	03:01:42	17.12	-94.05	165.6	4.4	8.26	24.07	22	27	0.10	0.02
RSBAV	UXUV	2018-05-24	10:35:46	16.66	-94.36	116.0	4.2	33.20	76.00	50	9	0.20	0.04
RSBAV	UXUV	2018-05-31	00:15:08	17.23	-93.99	177.9	4.2	6.25	19.50	42	6	0.14	0.02
RSBAV	UXUV	2018-06-06	00:15:00	16.99	-94.27	137.9	4.3	15.55	38.40	- 84	15	0.28	0.02
RSBAV	UXUV	2018-06-07	18:57:26	16.65	-93.62	162.4	4.3	29.90	93.47	-60	28	0.12	0.04
RSBAV	UXUV	2018-06-18	13:26:02	17.72	-94.43	168.5	4.2	17.87	54.37	-2	30	0.16	0.08
RSBAV	UXUV	2018-07-17	$04{:}08{:}27$	17.15	-93.42	150.9	4.3	28.39	81.62	-79	30	0.12	0.04
RSBAV	UXUV	2018-07-23	00:18:34	16.84	-94.14	143.5	4.3	20.03	52.36	-46	11	0.24	0.02
RSBAV	UXUV	2018-07-31	13:46:45	17.22	-94.27	165.9	4.2	5.94	17.27	12	6	0.12	0.04
RSBAV	UXUV	2018-08-28	17:01:27	17.08	-94.69	131.3	4.4	26.56	65.69	66	S	0.18	0.04
RSBAV	UXUV	2018-09-11	15:30:36	16.68	-93.90	145.8	4.3	27.36	75.50	-63	10	0.16	0.02
RSBAV	UXUV	2018-09-22	17:00:01	16.89	-94.64	115.3	4.5	31.93	71.93	42	n S	0.12	0.04
KSBAV	UXUV	2018-09-24	23:53:19	16.67	-93.70	145.0	4.3	30.94	86.99	-66	07	0.18	0.08
				Continu	a en la pa	gina siguiei	nte.						

$\delta t(\mathbf{s})$.04	90.0	.04	0.02	.08	0.02	0.02	0.02	90.0	90.0	0.02	0.02	0.02	0.02	90.0	.04	90.0	0.02	90.0
s) a	40	4 0	4	8	4	4	2	22	000	90	0	22	000	4	9.0	9.0	8 8	9.9	4
$\delta t($	0.5	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.0	0.1	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1
$\sigma_{\phi}(^{\circ})$	14	21	16	14	21	14	42	П	15	36	18	13	12	15	25	16	15	19	17
(.)ø	-33	-75	55	75		-62	57	-49	43	-77	-79	-63	-77	66	-39	-84	81	64	-48
D (km)	104.34	91.52	80.31	58.37	87.71	57.58	76.48	55.30	23.23	55.28	53.74	72.83	27.48	77.58	71.44	74.85	72.68	51.05	29.56
β(°)	30.41	31.79	32.36	25.22	33.36	19.43	28.94	20.44	7.37	23.58	16.63	27.03	10.20	32.38	26.36	26.64	27.67	19.50	9.82
Mag.	4.2	4.3	4.3	4.2	4.2	4.2	4.4	4.3	4.3	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.3	4.2	4.2
Prof. (km)	177.6	147.5	126.6	123.8	133.1	163.1	138.2	148.2	179.4	126.5	179.8	142.6	152.6	122.2	144.0	149.1	138.5	144.0	170.6
Longitud	-93.53	-93.88	-94.87	-94.63	-94.94	-93.89	-94.83	-93.96	-94.04	-94.42	-93.88	-93.94	-94.14	-94.84	-94.73	-94.79	-94.79	-94.61	-94.38
Latitud	16.60	16.53	17.22	17.11	17.43	16.86	17.44	16.85	17.13	16.90	16.91	16.69	17.07	17.22	17.60	17.55	17.48	17.30	17.46
Hora	03:34:59	19:26:02	01:24:47	18:00:16	05:12:09	16:29:31	13:37:19	02:15:18	10:47:38	03:02:27	03:43:58	02:45:33	03:34:27	16:41:27	04:22:56	23:51:28	03:21:17	09:21:20	22:49:16
Fecha	2018-11-29	2018-12-15	2018-12-22	2018-12-22	2018-12-27	2018-12-30	2019-01-10	2019-01-14	2019-01-14	2019-01-26	2019-02-13	2019-03-03	2019-03-18	2019-05-09	2019-05-19	2019-08-06	2019-08-22	2019-10-11	2019-11-21
Estación	UXUV																		
Red	RSBAV																		

Tabla A3: Sismos locales: Mediciones nulas (solo se reporta el parámeti y parámetros de fuente (β : ángulo de incidencia, D: distancia epicentra Sismo

	$\sigma_{\delta t}(\mathrm{s})$			1	ľ			ľ				ľ			ľ						ľ			ľ										ľ	ľ		ľ							
metros	$\delta t(\mathbf{s})$			1	ľ		1	ľ	1	1		ľ	1		ľ	1		1	1	1	ľ	1	1	ľ				1				ľ		ľ	ľ		ľ							
Pará	$\sigma_{\phi}(^{\circ})$		1	ľ		1		ľ			ľ	ľ		1	ľ		1				ľ				ľ	ľ	ľ		ľ	ľ	ľ	ľ		ľ	ľ	ľ	ľ	l	ľ	ľ	ľ	ľ	ľ	
	$()\phi$	-10	63	44	7	-34	44	-46	35	-27	55	60	-35	-40	-48	-50	75	-43	63	62	-57	-68	64	26	2	18	-58	-73	20	-7	12	-18	63	65	56	51	-39	မာ	28	70	34	-50	34	
	D (km)	76.33	79.74	64.43	77.15	4.82	31.35	45.97	38.02	75.11	88.54	80.37	37.46	38.78	30.59	99.39	64.56	100.11	25.36	12.39	13.43	13.8	31.06	24.89	63.1	24.38	20.85	38.5	25.6	63.55	43.87	43.95	37.9	59.38	95.22	52.66	35.29	6.39	50.75	13.05	14.65	54.9	19.66	
	$\beta(^{\circ})$	30.8	32.36	28.67	28.53	3.28	23.36	24.12	29.3	34.98	33.85	27.87	19.42	18.9	17.18	32.16	25.8	34.89	17.1	9.74	10.3	10.87	22.54	20.42	32.7	23.14	17.49	31.38	20.64	33.92	23.93	29.07	31.7	34.32	33.86	22.56	14.13	2.45	22.63	5.19	6.27	22.08	8.31	
	Mag.	3.9	4.2	3.9	4	3.7	4	3.8	3.4	3.6	4	4.2	4	4	4	4.2	4	4	3.7	4	3.7	3.6	4.2	3.4	3.9	3.7	3.4	3.7	3.7	3.7	3.6	3.8	3.8	4	4.1	4.1	4.1	4.1	4.2	4.2	4.1	5.1	4.3	ute.
	Prof. (km)	128.7	126.5	118.5	142.6	83.9	73.2	103.3	68.4	107.7	132.6	152.6	106.9	113.9	9.60	158.7	134.2	144.2	83.9	73.2	75	73	76.4	68.4	100.2	58.8	67.8	65	69.7	96.4	98.9	80.8	63.1	87.2	142.1	127.2	140.6	149.5	122.2	144	133.6	135.8	135	pina siguien
Sismo	Longitud	-95.02	-94.87	-95.36	-94.73	-96.65	-96.95	-96.41	-97.01	-96.07	-94.98	-94.14	-95.22	-95.06	-95.48	-94.56	-94.78	-94.82	-96.65	-96.95	-96.81	-96.79	-96.84	-97.01	-95.91	-96.63	-96.41	-96.74	-96.64	-95.91	-96.34	-96.42	-96.42	-95.11	-94.75	-94.96	-94.77	-94.78	-94.84	-94.73	-94.95	-94.75	-94.99	ı en la pág
	Latitud	17.32	17.28	17.61	17.33	17.99	18.1	18.35	17.99	18.58	17.48	17.07	17.09	16.97	17.04	17.19	16.82	17.52	17.99	18.1	18.01	18.01	17.85	17.99	17.26	17.14	17.49	17.07	17.14	17.37	18.81	17.27	16.6	16.63	16.59	17.22	17.36	17.64	17.22	17.6	17.69	17.18	17.61	Continú
	Hora	23:55:39	09:03:09	03:21:55	04:51:54	01:58:31	03:33:17	10:45:17	16:17:49	23:20:15	09:45:26	03:34:27	07:04:06	17:31:07	01:54:48	06:27:53	23:18:28	12:28:27	01:58:31	03:33:17	13:14:51	13:11:10	07:36:52	16:17:49	01:03:24	20:35:40	02:26:20	16:36:20	09:36:47	05:23:49	17:09:17	16:23:20	02:30:28	16:27:35	06:37:08	23:26:43	23:00:29	12:07:35	16:41:27	04:22:56	05:48:10	19:35:52	05:48:02	
	Fecha	2019 - 04 - 03	2019-05-17	2019-06-08	2019-06-26	2015-10-06	2016-01-17	2016-04-12	2016-08-21	2015-12-27	2019-03-15	2019-03-18	2019-04-26	2019-05-12	2019-05-13	2019-06-14	2019-06-22	2019-07-27	2015-10-06	2016-01-17	2016-03-28	2016-04-10	2016-05-27	2016-08-21	2013-10-10	2013-10-16	2013-12-14	2013-12-27	2014-10-30	2014-11-01	2016-12-18	2019-06-14	2019-07-22	2019-05-25	2019-06-14	2019-04-06	2019-04-08	2019-04-13	2019-05-09	2019-05-19	2019-05-20	2019-06-23	2019-08-09	
ación	Estación	ACAY	ACAY	ACAY	ACAY	BAAY	BAAY	BAAY	BAAY	CUIT	FILI	FILI	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	IfUH	IfUH	IfUH	IfUH	IfUH	IfUH	ULXI	ULXI	ULXI	ULXI	ULXI	ULXI	JOBO	LOAL	LOAL	MATE	MATE	MIXE								
Est	Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

$\sigma_{\delta^4}(s)$		I	ľ	1	I	I	I	I	I	I			ľ	1	1	I	I	I	I	I	I	I																									
$\delta t(\mathbf{s})$				I	1		ľ						ľ	I								ľ																									
$\sigma_{\phi}(^{\circ})$	×	I	ľ	I	I	ĺ		ľ		ĺ	I	I	I	I	ſ	I		ľ	I	I			I														I				I	I					
(.) <i>φ</i>	43	37	-66	-87	66	-25	11	56	-39	-61	13	47	36	-63	-44	-45	-7	-19	76	-51	50	-74	-45	-46	-19	-73	-35	-36	-38	75	-49	-39	-9	-28	-44	-66	-43	-60	-65	-31	56	-71	-62	-40	81	66	_
D (km)	24.38	38.97	56.5	36.91	34.23	56.93	37.18	31.41	26.59	33.5	26.28	30.56	39.19	47.17	12.46	57.93	58.59	68.16	62.28	51.86	52.52	43.7	64.68	41.27	37.26	50.77	57.57	57.93	51.28	99.35	46.99	22.73	40.86	32.91	80.32	48.42	63.46	47.06	108.56	83.42	55.25	55.33	45.76	29.06	37.75	40.9	
B(°)	10.58	16.92	29.3	20.02	17.04	32.44	28.83	27.45	22.46	26.38	23.47	25.99	32.84	20.94	5.92	25.39	24.6	26.68	24.79	33.71	34.64	31.02	30.99	20.08	23.87	33.3	29.09	21.35	15.89	23.95	29.28	13.55	25.26	19.65	24.04	30.87	34.54	30.56	31.08	20.45	34.66	27.97	20.03	17.37	18.11	26.65	
Mag.	4.1	4	4	3.7	3.8	4	3.7	3.4	3.5	4.1	3.3	3.3	3.8	4.2	4.9	4.2	4.2	5.1	4.3	3.6	3.2	3.7	3.9	4.2	3.8	4.3	5.1	3.9	4.3	4.2	4	3.9	4.1	4.5	4.3	3.9	4.5	3.8	4.3	4.2	4	4.3	4.1	4.1	4	4.2	te.
Prof. (km)	131	128.5	100.7	101.3	111.7	89.6	69.5	62.4	66.2	69.5	62.4	64.6	62.7	123.4	120.3	122.2	128.1	135.8	135	77.8	76.1	75	107.7	112.9	84.2	77.3	103.5	148.2	180.1	223.7	83.8	94.3	86.6	92.2	180.1	81	92.2	7.9.7	180.1	223.7	79.9	104.2	125.5	92.9	115.4	81.5	ina siguien
Loneitud	-94.85	-94.84	-95.97	-96.08	-96.11	-96.5	-97.1	-97.56	-97.27	-97.33	-97.58	-97.61	-97.7	-94.94	-95.39	-94.84	-95	-94.75	-94.99	-96.76	-96.6	-96.81	-92.59	-92.17	-92.55	-92.61	-92.51	-92.18	-92.81	-93.06	-93.31	-93.08	-93.23	-93.19	-92.81	-93.85	-93.19	-93.94	-92.81	-93.06	-93.57	-93.42	-93.8	-94.03	-93.92	-93.95	a en la pág
Latitud	17.46	17.32	17.77	17.95	18.57	18.17	17.76	17.78	18.2	18.28	17.91	17.88	17.9	17.15	17.31	17.22	17.58	17.18	17.61	17.72	17.41	18.01	15.02	14.93	14.63	14.8	14.99	15.15	15.9	16.33	15.36	15.35	15.29	15.44	15.9	15.59	15.44	15.74	15.9	16.33	15.62	15.73	16.5	16	16.39	15.75	Continú
Hora.	20:59:02	17:09:48	06:06:23	13:12:31	15:22:54	05:20:44	19:25:26	15:40:34	03:05:43	21:22:44	17:24:54	03:02:54	15:58:56	15:47:42	16:48:18	16:41:27	16:30:54	19:35:52	05:48:02	14:53:35	17:06:25	13:14:51	10:15:50	10:08:10	14:04:07	04:46:31	11:04:13	16:47:35	02:17:14	09:04:10	06:21:21	00:00:48	06:00:25	21:01:51	02:17:14	09:40:34	21:01:51	17:00:32	02:17:14	09:04:10	04:22:34	04:08:19	11:07:47	21:26:21	01:53:39	04:06:15	
Fecha.	2019-08-12	2019-10-05	2017-02-21	2017-06-21	2017-10-26	2017-11-28	2015-09-24	2015-10-18	2015-12-13	2016-01-27	2016-03-05	2016-05-19	2016-08-18	2019-04-06	2019-04-14	2019-05-09	2019-06-02	2019-06-23	2019-08-09	2013-11-06	2014-10-17	2016-03-28	2017-10-20	2017-11-10	2017-11-24	2017-12-11	2018-02-10	2018-03-12	2017-10-19	2017-10-19	2017-12-31	2018-01-06	2018-01-18	2018-02-27	2017-10-19	2018-02-24	2018-02-27	2018-03-01	2017-10-19	2017-10-19	2017-10-23	2017-11-19	2017-11-21	2017-12-22	2017-12-23	2017-12-30	
Estación	MIXE	MIXE	NOPA	NOPA	NOPA	NOPA	RODE	SATU	SATU	SATU	SATU	SATU	SATU	VANA	VANA	ZOQU	[B01	I B02	[B03	I B04	I B04	[B04	I B04	I B05	I B05	[B05]	[B05]	I B05	I B05	[B05]	[B05]																
Red	GECO	RADSEM																																													

$\sigma_{\delta t}(\mathbf{s})$																																															
$\delta t(\mathbf{s})$																																															
$\sigma_{\phi}(^{\circ})$					I		I			I	I	I			I				I		I					I			I				I			I	I							I		I	
(.) <i>\phi</i>	78	- 34	-25	35	61	47	-85	74	53	49	47	-52	48	-32	36	25	29	-58	-24	25	20	60	-70	-65	-70	-71	-57	-66	-52	-56	-53	-21	83	-26	21	30	50	36	-57	-37	39	-59	17	-47	-61	32	
D (km)	42.08	45.63	42.98	54.88	46.87	54.12	34.59	59	37.94	35.66	35.54	51.54	46.9	50.21	81.87	52.71	151.79	86.19	41.18	17.76	29.37	32.26	13.96	86.55	87.4	83.52	88.9	82.21	122.7	75.39	97.76	25.18	29.69	35.35	31.9	29.72	28.96	27.99	28.56	25.38	36.93	31.39	45.35	62.3	30.65	73.23	
()	25.25	25.85	24.97	34.12	26.63	33.08	18.73	24.25	34.7	30.85	31.02	33.29	31.61	34.01	33.73	22.77	34.87	25.11	17.13	18.33	28.63	29.94	13.82	22.52	27.37	24.76	26.94	23	30.91	22.46	28.96	26.5	28.85	32.31	25.96	25.93	28.69	27.87	27.28	22.87	34.06	24.89	29.3	19.93	29.53	18.61	
Mag.	4	3.9	4.3	3.9	4	4	3.9	4.1	3.8	4.1	4.3	3.8	3.9	4.3	4.8	3.8	4	3.8	3.8	4	3.8	4.3	3.8	4.5	4.1	4.3	4.3	4.6	4.1	4.1	4.2	3.9	3.6	3.5 2.5	4.5	3.6	3.6	3.6	3.8	3.9	3.7	3.7	3.9	4.3	3.7	4.1	te.
Prof. (km)	89.2	94.2	92.3	81	93.5	83.1	102	131	54.8	59.7	59.1	78.5	76.2	74.4	122.6	125.6	217.8	183.9	133.6	53.2	53.4	55.6	56.3	207.1	167.2	179.4	173.3	192	203.3	180.7	175	50.5	53.9	55.9	63.6	59.2	51	51	54.8	59.6	52.8	65.8	79	171.7	53.1	216.8	ina siguien
Longitud	-93.76	-93.83	-93.66	-93.85	-93.99	-94.21	-94.08	-94.28	-95.66	-95.61	-95.62	-95.36	-95.4	-95.46	-93.99	-93.67	-92.1	-93.83	-93.14	-100.47	-100.58	-100.44	-100.35	-92.03	-92.81	-92.4	-92.75	-92.15	-93.24	-92.55	-91.95	-97.9	-98.38	-97.82	-97.99	-97.77	-97.88	-97.87	-99.38	-99.48	-96.43	-96.59	-96.46	-92.67	-99.25	-92.9	a en la pág
Latitud	15.7	15.67	15.71	15.59	15.71	15.8	15.99	16.82	16.22	16.17	16.17	16.03	16.04	16.2	16.39	15.96	15.49	16.77	15.87	18.17	18.14	18	18.15	15.5	15.86	15.57	15.75	15.53	16.43	15.73	15.41	17.91	18.01	17.82	17.6	18.1	18.08	18.08	18.03	17.74	16.92	17.32	17.39	15.82	18.27	16.15	Continú
Hora	05:30:32	11:37:09	03:12:28	09:40:34	04:45:17	19:35:03	20:51:09	08:39:14	08:42:59	09:56:09	08:26:53	05:38:58	13:28:56	14:22:25	16:49:26	07:43:33	04:01:08	19:07:10	13:04:35	00:26:13	07:20:32	22:53:02	01:00:00	22:30:33	15:55:54	19:17:35	03:37:52	10:05:26	14:43:21	20:38:41	14:28:15	23:57:19	05:52:35	04:46:06	14:53:26	01:25:38	03:32:15	11:12:08	23:40:27	02:45:14	12:11:17	19:35:43	06:40:50	14:54:23	10:46:55	10:19:52	
Fecha	2018-01-19	2018 - 01 - 24	2018 - 02 - 19	2018 - 02 - 24	2018-03-12	2017 - 10 - 08	2017 - 10 - 09	2018-01-16	2017-12-12	2017-12-13	2017 - 12 - 16	2017-12-20	2017-12-22	2018-01-09	2017-11-03	2017-11-08	2017-11-09	2017-12-29	2018-01-16	2018-06-13	2019-01-13	2019-02-06	2019 - 02 - 22	2018-03-18	2018-04-12	2018-04-19	2018-12-24	2019-03-14	2019-03-24	2019-06-16	2019-09-18	2018-06-01	2018-11-25	2019-03-31	2018-05-30	2018-09-29	2019-05-30	2019-08-30	2019-03-29	2019-06-04	2018-02-26	2018-05-08	2018 - 05 - 25	2018-04-12	2019-06-04	2018-01-02	
Estación	B05	B05	B05	B05	B05	B06	B06	B06	B09	B09	B09	B09	B09	B09	B10	B10	B10	B10	B10	ARIG	ARIG	ARIG	ARIG	CCIG	FTIG	FTIG	FTIG	HLIG	HLIG	HLIG	HLIG	MEIG	MEIG	OXIG	OXIG	OXIG	PCIG	PLIG	TGIG								
Red	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

$\sigma_{\delta t}(\mathrm{s})$																													
$\delta t(\mathbf{s})$																													
$\sigma_{\phi}(^{\circ})$																			I										
$()\phi$	-2	-52	28	-44	23	39	-47	42	-86	-32	-11	35	-23	-41	-15	9-	-35	-25	82	-27	4	-14	-31	78	-58	26	-88	-83	67
D (km)	132.24	50.53	148.7	34.98	41.01	29.06	40.22	40.22	21.58	32.03	19.92	44.91	37.56	43.86	32.84	4.63	37.27	21.96	31.84	28.76	29.28	42.51	9.54	11.78	98.13	60.48	85.99	75.65	58.28
$\beta(^{\circ})$	32.99	15.4	30.75	19.16	25.8	19.75	29.94	33.63	18.34	26.37	15.9	33.05	33.76	34.7	30.48	4.71	31.85	20.42	24.34	24.78	26.83	33.84	0.09	11.73	34.52	23.17	32.62	31.24	24.21
Mag.	4.1	4.5	4.3	4.3	4.4	4.3	4.3	3.7	3.7	3.3	3.7	3.4	3.3	3.4	4	3.6	3.9	3.7	3.6	3.4	3.4	4.1	3.8	3.7	4	4.2	4.2	4.2	4.3
Prof. (km)	203.1	182.8	249.3	100.5	84.7	80.8	69.7	59.3	65.1	64.6	60.9	67.5	56.2	63.4	55.8	56.1	60	59	70.4	62.3	57.9	63.4	59.6	56.7	142.6	141.2	134.2	124.6	129.5
Longitud	-92.47	-93.2	-92.24	-92.1	-92.11	-92.55	-92.57	-98.31	-97.25	-97.19	-97.22	-97.23	-97.52	-97.73	-97.86	-97.73	-97.69	-97.79	-97.79	-97.85	-97.87	-97.59	-97.7	-97.65	-94.94	-94.68	-94.92	-94.14	-94.42
Latitud	15.77	16.32	15.76	14.63	14.56	14.81	14.64	17.82	18.03	17.83	18.2	18.03	17.49	17.65	17.54	17.28	17.59	17.45	17.54	17.5	17.5	17.6	17.32	16.83	17.5	17.46	17.4	16.63	16.86
Hora	10:39:14	15:21:45	19:41:12	06:00:24	11:28:11	22:42:50	04:01:37	17:55:36	01:51:56	22:29:25	01:16:06	17:52:27	18:46:40	06:17:15	09:56:03	19:42:17	01:44:39	03:56:38	13:38:04	10:03:08	05:40:53	03:06:26	13:56:21	12:36:09	14:13:01	20:00:51	21:24:01	08:13:03	10:07:57
Fecha	2018-01-31	2018-06-24	2019-07-02	2018-11-04	2019-07-11	2019-02-01	2019-02-21	2018-06-25	2018-10-30	2019-10-11	2019-07-26	2018-08-19	2018-06-27	2018-07-02	2018-07-24	2018-09-07	2018-09-28	2019-01-26	2019-04-25	2019-05-22	2019-07-21	2019-08-25	2019-09-06	2019-09-17	2018-07-22	2018-05-01	2018-12-25	2019-01-20	2019-02-07
Estación	TGIG	TGIG	TGIG	THIG	THIG	THIG	THIG	TLIG	TOIG	TOIG	TOIG	TPIG	TXIG	YOIG	NEUV	UXUV	UXUV	UXUV	UXUV										
Red	SSN	NSS	SSN	SSN	SSN	NSS	SSN	SSN	SSN	SSN	NSS	SSN	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV												

Centros	de celdas	Pa	arámetr	os apila	ados
Latitud (°)	Longitud (°)	$\phi(\circ)$	$\sigma_{\phi}(\degree)$	$\delta t({ m s})$	$\sigma_{\delta t}({ m s})$
18.15	-100.45	59	9	0.10	0.02
18.25	-100.45	32	4	0.12	0.02
18.15	-100.35	-63	25	0.08	0.04
18.25	-100.35	53	5	0.10	0.02
18.35	-100.35	9	7	0.10	0.02
18.15	-100.25	22	14	0.14	0.01
18.25	-100.25	23	9	0.08	0.01
17.85	-99.75	24	3	0.16	0.04
17.95	-99.75	42	9	0.20	0.04
18.05	-99.75	50	10	0.22	0.02
17.85	-99.65	61	12	0.10	0.02
17.95	-99.65	54	6	0.12	0.01
18.05	-99.65	47	7	0.12	0.02
18.25	-99.65	41	22	0.20	0.06
17.95	-99.55	65	11	0.12	0.02
18.05	-99.55	41	3	0.14	0.01
17.95	-99.45	35	6	0.26	0.02
18.25	-99.45	78	49	0.10	0.12
18.35	-99.35	42	29	0.12	0.04
17.45	-98.65	62	14	0.14	0.02
17.55	-98.65	31	30	0.20	0.08
17.75	-98.65	43	13	0.10	0.02
17.25	-98.55	-3	6	0.22	0.02
17.45	-98.55	41	3	0.10	0.02
17.55	-98.55	16	15	0.12	0.02
17.75	-98.55	90	27	0.12	0.04
17.85	-98.35	24	12	0.16	0.02
17.85	-98.25	-23	6	0.22	0.02
17.95	-98.25	45	42	0.22	0.16
17.85	-98.15	-12	19	0.20	0.02
17.95	-98.15	-15	15	0.22	0.02
18.05	-98.05	5	15	0.16	0.04
17.85	-97.95	-6	12	0.26	0.02
17.95	-97.95	55	12	0.18	0.02
18.05	-97.95	-18	13	0.16	0.04
17.25	-97.85	-18	6	0.26	0.02
17.65	-97.85	64	14	0.06	0.02
17.75	-97.85	41	10	0.06	0.01
17.85	-97.85	31	16	0.06	0.02

Tabla A4: Mediciones de partición de onda de corte apiladas por celda.

Latitud (°)	Longitud (°)	$\phi(\circ)$	$\sigma_{\phi}(\degree)$	$\delta t({ m s})$	$\sigma_{\delta t}(\mathrm{s})$
17.95	-97.85	80	22	0.04	0.01
18.05	-97.85	65	6	0.20	0.02
17.25	-97.75	-27	18	0.22	0.02
17.35	-97.75	-42	20	0.16	0.04
17.65	-97.75	81	22	0.14	0.04
17.75	-97.75	16	17	0.12	0.02
17.95	-97.75	-13	34	0.04	0.04
18.05	-97.75	-86	4	0.14	0.02
16.75	-97.65	-49	24	0.16	0.04
16.85	-97.65	-10	15	0.16	0.02
17.75	-97.65	-10	17	0.10	0.02
17.85	-97.65	10	6	0.18	0.02
16.85	-97.55	58	20	0.18	0.04
17.05	-97.45	17	20	0.12	0.04
17.65	-97.45	66	7	0.10	0.02
17.85	-97.45	45	7	0.14	0.02
17.95	-97.45	-38	7	0.20	0.04
18.35	-97.45	-5	10	0.42	0.06
17.65	-97.35	70	8	0.12	0.02
18.15	-97.35	-21	10	0.16	0.04
18.35	-97.35	8	7	0.10	0.04
17.55	-97.25	54	5	0.10	0.02
17.65	-97.25	50	25	0.08	0.02
17.85	-97.25	-3	25	0.20	0.02
18.25	-97.25	25	4	0.28	0.02
17.05	-97.15	-40	8	0.20	0.02
17.65	-97.15	47	26	0.08	0.02
17.95	-97.15	-3	15	0.38	0.02
18.15	-97.15	-23	29	0.18	0.24
18.25	-97.15	22	11	0.34	0.06
18.35	-97.15	-32	6	0.30	0.06
17.95	-97.05	-12	29	0.10	0.06
18.15	-97.05	11	10	0.22	0.04
17.95	-96.95	4	14	0.28	0.02
18.05	-96.95	3	15	0.14	0.04
18.25	-96.95	-19	20	0.34	0.02
17.25	-96.85	-59	11	0.28	0.04
17.95	-96.85	5	22	0.20	0.10
17.15	-96.75	17	7	0.12	0.02
17.85	-96.75	36	9	0.16	0.02
18.35	-96.75	-35	25	0.30	0.06
16.85	-96.65	-4	22	0.28	0.02
16.95	-96.65	43	10	0.18	0.04

Latitud (°)	Longitud (°)	$\phi(\circ)$	$\sigma_{\phi}(\degree)$	$\delta t({ m s})$	$\sigma_{\delta t}({ m s})$
17.05	-96.65	22	6	0.18	0.02
17.15	-96.65	-47	15	0.14	0.02
17.25	-96.65	-33	9	0.12	0.04
17.85	-96.65	83	9	0.18	0.04
18.05	-96.65	-36	8	0.14	0.04
18.25	-96.65	-36	24	0.16	0.06
16.95	-96.55	9	17	0.28	0.02
17.05	-96.55	7	11	0.20	0.04
17.15	-96.55	54	19	0.14	0.02
17.25	-96.55	-41	16	0.10	0.02
17.35	-96.55	23	16	0.24	0.04
18.85	-96.55	-58	22	0.22	0.06
16.85	-96.45	70	44	0.14	0.04
17.15	-96.45	18	21	0.18	0.04
17.65	-96.45	47	13	0.12	0.06
18.85	-96.45	3	18	0.24	0.06
16.75	-96.35	68	14	0.16	0.02
16.95	-96.35	48	25	0.18	0.02
17.15	-96.35	50	22	0.28	0.02
17.25	-96.35	33	22	0.28	0.04
17.45	-96.35	59	18	0.08	0.02
18.25	-96.35	-12	21	0.22	0.06
16.75	-96.25	59	19	0.22	0.04
16.95	-96.25	14	24	0.18	0.08
17.25	-96.25	2	15	0.24	0.02
17.95	-96.25	79	21	0.10	0.04
18.25	-96.25	-49	12	0.16	0.02
18.45	-96.25	-10	16	0.26	0.04
16.85	-96.15	64	26	0.32	0.06
17.15	-96.15	-42	9	0.10	0.04
17.35	-96.15	17	18	0.18	0.04
18.25	-96.15	-70	20	0.12	0.04
17.75	-96.05	-51	21	0.18	0.02
17.85	-96.05	-50	16	0.20	0.04
18.15	-96.05	42	22	0.20	0.06
15.95	-95.95	70	22	0.08	0.08
17.55	-95.95	-35	21	0.18	0.06
17.65	-95.95	-54	20	0.20	0.04
17.75	-95.95	-53	18	0.24	0.04
17.85	-95.95	35	10	0.14	0.02
15.95	-95.75	28	12	0.10	0.06
17.55	-95.75	71	21	0.14	0.06
15.85	-95.65	40	12	0.12	0.04

Latitud (°)	Longitud (°)	$\phi(\circ)$	$\sigma_{\phi}(\degree)$	$\delta t({ m s})$	$\sigma_{\delta t}(\mathrm{s})$
16.65	-95.65	68	26	0.22	0.10
17.65	-95.65	60	3	0.16	0.02
16.65	-95.55	90	10	0.18	0.04
17.35	-95.55	56	11	0.10	0.04
17.45	-95.55	62	25	0.20	0.06
17.55	-95.55	-87	14	0.20	0.04
16.35	-95.45	30	30	0.14	0.10
16.75	-95.45	-61	13	0.22	0.06
16.95	-95.45	-46	30	0.12	0.04
17.15	-95.45	-44	6	0.16	0.02
17.55	-95.45	11	5	0.22	0.04
17.65	-95.45	66	11	0.22	0.04
17.75	-95.45	-25	5	0.28	0.06
16.45	-95.35	80	16	0.18	0.04
16.65	-95.35	35	11	0.18	0.04
16.85	-95.35	-32	9	0.12	0.04
17.05	-95.35	-46	59	0.12	0.08
17.75	-95.35	-6	11	0.46	0.06
16.75	-95.25	85	15	0.08	0.04
16.85	-95.25	-66	23	0.12	0.04
16.95	-95.25	-83	30	0.06	0.04
17.05	-95.25	88	10	0.18	0.02
17.15	-95.25	-76	14	0.18	0.02
17.35	-95.25	64	6	0.32	0.02
16.15	-95.15	-62	26	0.12	0.06
16.35	-95.15	2	10	0.18	0.08
16.65	-95.15	26	23	0.14	0.02
16.75	-95.15	-33	11	0.30	0.04
16.85	-95.15	-70	16	0.14	0.04
16.95	-95.15	-32	5	0.24	0.02
17.05	-95.15	-37	19	0.30	0.04
17.15	-95.15	-51	9	0.14	0.06
17.25	-95.15	83	8	0.20	0.06
17.35	-95.15	-80	25	0.28	0.04
17.45	-95.15	61	20	0.14	0.02
16.65	-95.05	87	24	0.08	0.04
17.05	-95.05	-77	30	0.30	0.06
17.15	-95.05	14	5	0.22	0.02
17.35	-95.05	-76	7	0.26	0.04
17.45	-95.05	34	34	0.10	0.06
16.35	-94.95	-67	35	0.14	0.04
16.95	-94.95	67	30	0.08	0.06
17.15	-94.95	53	13	0.30	0.02

Continúa en la página siguiente.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Latitud (°)	Longitud (°)	$\phi(\circ)$	$\sigma_{\phi}(\degree)$	$\delta t({ m s})$	$\sigma_{\delta t}({ m s})$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.25	-94.95	26	22	0.10	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.35	-94.95	46	19	0.18	0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.55	-94.95	12	26	0.22	0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.65	-94.95	40	27	0.24	0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.75	-94.95	42	20	0.14	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.85	-94.95	12	9	0.18	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.05	-94.85	86	14	0.22	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.15	-94.85	60	10	0.18	0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.25	-94.85	-14	13	0.12	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.35	-94.85	-46	25	0.24	0.04	
17.65 -94.85 -15 13 0.18 0.08 17.25 -94.75 1 22 0.16 0.06 17.35 -94.75 29 30 0.18 0.04 17.65 -94.75 14 14 0.34 0.02 16.95 -94.65 -8 20 0.18 0.02 17.05 -94.65 19 27 0.16 0.04 17.15 -94.65 48 3 0.42 0.02 17.45 -94.65 51 27 0.16 0.04 17.65 -94.65 -6 18 0.32 0.08 17.75 -94.65 -17 15 0.32 0.10 17.05 -94.55 40 29 0.12 0.02 17.25 -94.55 12 0.14 0.04 17.35 -94.55 12 0.14 0.04 17.35 -94.55 12 0.14 0.04 17.55 -94.55 58 36 0.12 0.04 17.55 -94.55 58 36 0.12 0.04 17.55 -94.55 -7 66 0.38 0.30 16.35 -94.45 -7 66 0.38 0.30 17.55 -94.45 59 9 0.14 0.04 17.25 -94.45 59 9 0.14 0.02 17.45 -94.45 57 9 0.10 0.02 17.45 <	17.55	-94.85	-4	30	0.26	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.65	-94.85	-15	13	0.18	0.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.25	-94.75	1	22	0.16	0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.35	-94.75	29	30	0.18	0.04	
16.95 -94.65 -8 20 0.18 0.02 17.05 -94.65 19 27 0.16 0.04 17.15 -94.65 51 27 0.16 0.04 17.45 -94.65 51 27 0.16 0.04 17.65 -94.65 -6 18 0.32 0.08 17.75 -94.65 -17 15 0.32 0.10 17.05 -94.55 40 29 0.12 0.02 17.25 -94.55 40 29 0.12 0.02 17.25 -94.55 121 0.14 0.04 17.35 -94.55 121 0.14 0.04 17.55 -94.55 58 36 0.12 0.04 17.65 -94.55 58 36 0.12 0.04 17.55 -94.55 -7 66 0.38 0.30 16.35 -94.45 -42 21 0.12 0.08 17.15 -94.45 59 9 0.14 0.04 17.25 -94.45 67 15 0.14 0.02 17.35 -94.45 87 9 0.10 0.02 17.45 -94.35 -27 11 0.22 0.02 17.45 -94.35 -27 11 0.22 0.02 17.45 -94.35 -27 11 0.22 0.02 17.45 -94.35 -47 24 0.24 0.08 <td>17.65</td> <td>-94.75</td> <td>14</td> <td>14</td> <td>0.34</td> <td>0.02</td> <td></td>	17.65	-94.75	14	14	0.34	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.95	-94.65	-8	20	0.18	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.05	-94.65	19	27	0.16	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.15	-94.65	48	3	0.42	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.45	-94.65	51	27	0.16	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.65	-94.65	-6	18	0.32	0.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.75	-94.65	-17	15	0.32	0.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.05	-94.55	40	29	0.12	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.25	-94.55	56	16	0.14	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.35	-94.55	1	21	0.14	0.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.45	-94.55	58	36	0.12	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.55	-94.55	60	5	0.20	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.65	-94.55	-7	66	0.38	0.30	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.35	-94.45	-42	21	0.12	0.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.15	-94.45	59	9	0.14	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.25	-94.45	67	15	0.14	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.35	-94.45	87	9	0.10	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.45	-94.45	-16	33	0.08	0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.55	-94.35	-27	11	0.22	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.15	-94.35	42	5	0.12	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.25	-94.35	76	14	0.18	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.35	-94.35	66	19	0.16	0.02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17.45	-94.35	-47	24	0.24	0.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.15	-94.25	-51	5	0.08	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.55	-94.25	-48	19	0.54	0.04	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16.65	-94.25	-65	18	0.26	0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16.75	-94.25	-80	10	0.30	0.02	
17.15 -94.25 -82 15 0.28 0.02	16.95	-94.25	54	6	0.54	0.04	
	17.15	-94.25	-82	15	0.28	0.02	

Latitud (°)	Longitud (°)	$\phi(\circ)$	$\sigma_{\phi}(\degree)$	$\delta t({ m s})$	$\sigma_{\delta t}(\mathrm{s})$
17.25	-94.25	-16	8	0.24	0.08
17.35	-94.25	-47	17	0.14	0.06
17.55	-94.25	2	30	0.14	0.08
16.95	-94.15	-56	12	0.26	0.04
17.05	-94.15	-45	11	0.24	0.02
17.15	-94.15	-76	12	0.20	0.02
17.25	-94.15	-70	20	0.12	0.04
16.05	-94.05	-58	21	0.12	0.04
16.35	-94.05	64	19	0.12	0.04
16.95	-94.05	-68	14	0.16	0.04
17.05	-94.05	-55	17	0.20	0.04
17.15	-94.05	-65	30	0.16	0.04
17.25	-94.05	46	9	0.14	0.02
16.05	-93.95	-24	21	0.28	0.02
16.15	-93.95	-35	20	0.16	0.04
16.95	-93.95	-65	20	0.18	0.08
15.85	-93.85	-9	17	0.08	0.04
15.95	-93.85	-22	10	0.14	0.02
16.05	-93.85	-75	9	0.24	0.06
16.95	-93.85	-29	22	0.22	0.06
15.85	-93.75	24	14	0.12	0.06
15.95	-93.75	-18	29	0.10	0.02
16.05	-93.75	-21	20	0.18	0.02
17.25	-93.75	-77	30	0.12	0.04
15.85	-93.65	-50	20	0.10	0.02
15.95	-93.65	-68	26	0.10	0.10
15.75	-93.55	47	27	0.08	0.04
15.85	-93.55	-60	6	0.24	0.04
16.15	-93.55	-24	12	0.16	0.04
16.35	-93.55	-26	25	0.24	0.06
16.55	-93.55	-28	27	0.24	0.04
16.65	-93.55	-7	16	0.52	0.08
16.75	-93.55	-42	11	0.16	0.04
16.85	-93.55	-68	48	0.10	0.10
16.95	-93.55	-75	21	0.26	0.10
15.65	-93.45	-28	7	0.10	0.04
15.75	-93.45	-17	5	0.12	0.02
15.85	-93.45	-18	20	0.16	0.04
16.25	-93.45	-20	15	0.22	0.04
16.35	-93.45	-63	23	0.20	0.04
16.65	-93.45	-72	25	0.10	0.02
16.75	-93.45	55	7	0.22	0.04
16.85	-93.45	82	14	0.20	0.04

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
15.75 -93.35 -31 9 0.20 0.06	
15.95 -93.35 -55 27 0.16 0.06	
16.15 -93.35 -15 16 0.26 0.08	
16.25 -93.35 -15 16 0.26 0.08	
16.35 -93.35 -22 25 0.18 0.02	
16.65 -93.35 -67 90 0.14 0.10	
16.75 -93.35 80 27 0.14 0.06	
15.45 -93.25 -50 19 0.08 0.02	
15.55 -93.25 -21 14 0.14 0.04	
15.65 -93.25 54 12 0.16 0.10	
15.95 -93.25 -45 13 0.16 0.02	
16.15 -93.25 -59 13 0.18 0.04	
$16.65 ext{-}93.25 ext{ }26 ext{ }14 ext{ }0.16 ext{ }0.04 ext{}$	
15.45 -93.15 -30 3 0.16 0.02	
15.55 -93.15 -32 23 0.16 0.04	
15.85 -93.15 -28 6 0.46 0.04	
15.95 -93.15 -20 15 0.30 0.04	
16.25 -93.15 -35 25 0.28 0.04	
15.35 -93.05 -7 8 0.42 0.04	
15.65 -93.05 -44 16 0.22 0.02	
15.85 -93.05 -31 10 0.16 0.08	
16.35 -93.05 -56 9 0.10 0.02	
15.35 -92.95 59 18 0.14 0.04	
15.45 -92.95 90 17 0.24 0.08	
15.05 -92.85 29 8 0.26 0.04	
15.15 -92.85 65 20 0.16 0.06	
15.25 -92.85 -20 12 0.16 0.02	
15.55 -92.85 -51 7 0.30 0.06	
15.65 -92.85 46 29 0.12 0.06	
15.45 -92.75 47 28 0.14 0.06	
$16.15 ext{-}92.75 ext{-}60 ext{11} ext{0.18} ext{0.04}$	
15.15 -92.65 45 12 0.12 0.02	
15.65 -92.65 -55 10 0.38 0.02	
$14.95 ext{-}92.55 ext{ }65 ext{ }15 ext{ }0.10 ext{ }0.02$	
15.05 -92.55 -62 10 0.16 0.04	
16.05 -92.55 -75 17 0.24 0.08	
$14.65 ext{-92.45} ext{-59} ext{6} ext{0.08} ext{0.02}$	
14.75 -92.45	
14.85 -92.45 48 11 0.18 0.08	
15.95 -92.45 -46 23 0.18 0.06	
$16.05 -92.45 \ -80 6 0.24 0.04$	
14.55 -92.35 -74 15 0.18 0.08	

Latitud (°)	Longitud (°)	$\phi(\degree)$	$\sigma_{\phi}(\degree)$	$\delta t({ m s})$	$\sigma_{\delta t}({ m s})$
14.65	-92.35	51	10	0.12	0.04
14.75	-92.35	26	2	0.14	0.02
14.85	-92.35	-86	9	0.06	0.02
15.25	-92.35	-44	17	0.18	0.04
16.05	-92.35	-42	25	0.18	0.06
14.55	-92.25	23	11	0.14	0.06
15.25	-92.25	-64	33	0.14	0.06
15.35	-92.25	-64	5	0.18	0.02
16.05	-92.25	-41	30	0.16	0.06
14.45	-92.15	-19	16	0.14	0.02
14.65	-92.15	-19	20	0.12	0.04
14.75	-92.15	-38	17	0.10	0.02
14.85	-92.15	38	15	0.14	0.08
15.05	-92.15	45	13	0.14	0.04
15.15	-92.15	-31	7	0.24	0.06
15.95	-92.15	88	21	0.22	0.06
14.55	-91.95	44	20	0.20	0.04

luales de partición de onda de corte incluidas en la	e la red y nombre de la estación, las características	lencia, D: distancia epicentral), los parámetros de	del punto medio fuente-estación y la polarización	e (PI) con su error estimado (σ_{PI}).
ediciones individuales de partición de ond	1579). Se incluye la red y nombre de la est	: ángulo de incidencia, D: distancia epicei	itud y longitud del punto medio fuente-e	onda en la fuente (PI) con su error estim.
Tabla A5: M	tomografía (del sismo (β :	partición, lat	inicial de la e

Ĺ	σ_{PI}	69	Г	72	13	Ţ	ъ	2	2	ŝ	5	4	2	-	ŝ	ŝ	2	17	30	2	37	4	1	26	2	2	ŝ	2	16	22	2		2	1	×	က	1	10	က	ŝ							
INI	$PI(\circ)$	<u>ب</u>	-30	-14	27	-72	48	70	67	54	-25	50	47	54	-48	37	-79	29	18	-55	14	68	-41	-26	71	43	67	-71	26	-14	-41	77	88	-87	-38	-68	66	-32	76	36							
Punto medio	Lon.(°)	-94.913	-94.878	-94.943	-94.848	-94.853	-94.588	-94.803	-94.938	-94.918	-94.963	-94.613	-94.688	-94.788	-94.838	-95.033	-94.788	-94.081	-94.026	-94.151	-94.101	-94.571	-94.536	-94.411	-94.321	-95.152	-95.162	-95.172	-95.377	-95.417	-95.022	-95.147	-95.187	-95.382	-95.117	-95.202	-95.237	-95.097	-95.242	-95.137							
	Lat.(°)	17.727	17.657	17.612	17.682	17.822	17.627	17.592	17.847	17.597	17.792	17.677	17.732	17.622	17.592	17.752	17.697	17.356	17.331	17.366	17.421	17.621	17.551	17.431	17.411	16.968	17.003	16.858	17.048	16.918	16.983	16.868	16.908	16.898	17.033	16.653	16.708	16.833	16.828	16.988	_						
ción	$\sigma_{\delta t}(\mathrm{s})$	0.02	0.08	0.06	0.10	0.16	0.06	0.14	0.02	0.06	0.12	0.08	0.10	0.02	0.04	0.22	0.10	0.14	0.22	0.16	0.16	0.04	0.04	0.08	0.08	0.04	0.06	0.02	0.04	0.04	0.40	0.04	0.06	0.14	0.02	0.02	0.04	0.10	0.04	0.02							
de parti	$\delta t(\mathbf{s})$	0.14	0.18	0.26	0.24	0.20	0.32	0.26	0.18	0.22	0.08	0.34	0.32	0.34	0.26	0.12	0.36	0.14	0.14	0.28	0.28	0.12	0.20	0.14	0.24	0.16	0.30	0.10	0.10	0.12	0.10	0.34	0.30	0.26	0.12	0.10	0.08	0.12	0.14	0.24							
ámetros	$\sigma_{\phi}(^{\circ})$	20	13	27	84	55	18	40	6	26	62	18	15	14	30	59	38	43	62	37	71	26	ъ	30	24	15	18	24	26	30	66	×	16	42	32	54	15 100	23	4								
Par	$\phi(\circ)$	39	-16	36	54	48	-11	12	11	6	35	6-	-18	13	-7	ŝ	-37	-16	~ ~	-26	-20	4	60	-50	-49	-33	-51	-20	-34	-49	2	ъ	-27	-30	-83	-33	85	-49	-74	-26							
	D (km)	61.04	77.05	86.41	72.90	43.31	111.72	94.74	34.29	89.65	47.40	99.29	79.86	89.23	92.38	60.41	74.77	101.75	112.45	95.96	87.05	81.54	84.12	87.66	86.05	61.34	64.95	44.57	57.14	30.91	86.48	50.72	24.03 46.93 24.68 77.14	45.97	33.17	60.16	28.03	66.49	nte.								
	$\beta(^{\circ})$	24.99	30.45	34.33	27.52	16.22	34.50	34.12	14.46	34.62	20.40	32.72	24.47	32.71	34.35	24.53	27.68	33.20	34.95	31.13	27.67	31.90	32.69	33.37	32.59	26.55	27.17	21.83	25.53	16.66	31.73	23.52	22.01	13.67	31.50	28.11	20.97	28.08	15.07	27.11	ia siguie						
	Mag.	4.4	4.1	4.1	4.1	4.1	4.2	4.0	4.1	4.1	4.2	4.1	4.1	4.3	5.1	4.1	4.0	4.0	3.9	4.0	4.0	4.4	4.1	4.0	4.0	4.2	4.1	4.2	4.9	4.1	4.0	4.0	4.0	4.0	4.2	4.0	4.0	4.0	4.1	4.1	la págir						
l sismo	Prof. (km)	131.6	131.7	127.2	140.6	149.5	163.2	140.5	133.6	130.5	128.1	155.2	176.1	139.6	135.8	133.0	143.2	156.1	161.5	159.5	166.6	131.6	131.7	133.7	135.2	123.4	127.2	111.9	120.3	103.9	140.5	117.2	116.7	102.1	126.5	86.7	87.2	113.4	104.7	130.5	Continúa en						
erísticas de	$Lon.(^{\circ})$	-94.90	-94.83	-94.96	-94.77	-94.78	-94.25	-94.68	-94.95	-94.91	-95.00	-94.30	-94.45	-94.65	-94.75	-95.14	-94.65	-93.92	-93.81	-94.06	-93.96	-94.90	-94.83	-94.58	-94.40	-94.94	-94.96	-94.98	-95.39	-95.47	-94.68	-94.93	-95.01	-95.40	-94.87	-95.04	-95.11	-94.83	-95.12	-94.91							
Caract	Lat.(°)	17.45	17.31	17.22	17.36	17.64	17.25	17.18	17.69	17.19	17.58	17.35	17.46	17.24	17.18	17.50	17.39	16.92	16.87	16.94	17.05	17.45	17.31	17.07	17.03	17.15	17.22	16.93	17.31	17.05	17.18	16.95	17.03	17.01	17.28	16.52	16.63	16.88	16.87	17.19							
	Hora	12:01:33	01:37:13	23:26:43	23:00:29	12:07:35	05:47:28	12:04:23	05:48:10	00:33:00	16:30:54	08:44:21	21:19:31	15:30:36	19:35:52	22:58:21	18:12:51	08:51:54	06:22:09	13:25:53	04:15:56	12:01:33	01:37:13	02:24:45	03:36:12	15:47:42	23:26:43	13:32:38	16:48:18	19:08:58	12:04:23	20:50:54	20:42:14	19:24:10	09:03:09	14:32:55	16:27:35	04:38:08	06:31:54	00:33:00							
	Fecha/Juliano	2019-03-25/85	2019-03-26/86	2019-04-06/96	2019-04-08/98	2019-04-1 $3/103$	2019-04-17/107	2019-04-24/114	2019-05-20/140	2019-06-02/152	2019-06-02/152	2019-06-05/155	2019-06-13/163	2019-06-16/166	2019-06-23/173	2019-06-30/180	2019-07-12/192	2019-02-19/49	2019-03-01/61	2019-03-02/62	2019-03-12/72	2019-03-25/85	2019-03-26/86	2019-03-30/90	2019-03-30/90	2019-04-06/96	2019-04-06/96	2019-04-11/101	2019-04-14/104	2019-04-17/107	2019-04-24/114	2019-05-02/122	2019-05-06/126	2019-05-09/129	2019-05-17/137	2019-05-25/145	2019-05-25/145	2019-05-30/150	2019-06-0 $1/151$	2019-06-02/152							
ión	ID	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	ACAY	FILI	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU														
Estac	Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO							
σ_{PI}	9	2	13	2	6	ŝ	2	2	5	-	Ţ	4	2	18	2	2			-	2	Ţ	2	-	ŝ	1	F	7	11	2	75	Ţ	53	61	65	34	2	2	20	61	36	ŝ	4	×	52	29	×	
---------------------------------	-------------------	----------------	-------------------	----------------	----------------	----------------	-------------------	-------------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	----------------	---------------	---------------	---------------	---------------	---------------	---------------	----------------	----------------	----------------	-----------------------	----------------	----------------	----------------	----------------	-------------------	-------------------	----------------	----------------	----------------	-------------------	----------------	----------------	-------------------	----------------	----------------	----------------	-------------------	-------------------	----------------	----------------	-------------
$PI(^{\circ})$	30	72	14	83	-42	67	-86	76	31	83	64	35	61	27	51	49	-68	87	42	40	36	36	83	-58	42	48	14	19	-33	-11	-45	19	×	-13	-18	-29	63	16	-12	-11	36	23	-17	12	6	35	
Lon.(°)	-95.112	-95.177	-95.227	-95.057	-95.007	-95.057	-95.252	-95.062	-95.362	-95.182	-95.097	-95.157	-95.212	-95.337	-95.317	-95.122	-95.354	-95.604	-95.374	-95.394	-95.454	-95.379	-95.534	-95.394	-95.364	-95.499	-95.734	-95.524	-95.399	-95.514	-95.489	-94.536	-94.551	-94.876	-95.091	-94.956	-94.776	-94.546	-94.671	-95.066	-94.821	-94.786	-94.716	-94.691	-94.591	-94.936	
Lat.(°)	16.773	16.678	16.953	16.688	17.013	16.983	17.143	16.858	16.828	16.828	16.673	16.933	16.923	17.133	16.883	16.893	16.412	16.637	16.687	16.612	16.717	16.672	16.727	16.547	16.622	16.707	16.332	16.667	16.687	16.567	16.377	17.464	17.469	17.314	17.484	17.399	17.504	17.329	17.444	17.579	17.599	17.644	17.399	17.419	17.489	17.379	
$\sigma_{\delta t}(\mathrm{s})$	0.04	0.02	0.10	0.06	0.06	0.06	0.06	0.08	0.04	0.04	0.04	0.02	0.06	0.06	0.04	0.08	0.04	0.10	0.02	0.04	0.12	0.16	0.12	0.06	0.10	0.06	0.12	0.04	0.02	0.06	0.10	0.02	0.04	0.04	0.10	0.12	0.10	0.02	0.16	0.06	0.14	0.16	0.04	0.04	0.02	0.10	
$\delta t(\mathbf{s})$	0.30	0.14	0.16	0.10	0.30	0.18	0.22	0.10	0.16	0.22	0.10	0.24	0.18	0.20	0.10	0.08	0.18	0.22	0.20	0.10	0.16	0.20	0.18	0.16	0.16	0.20	0.08	0.18	0.14	0.16	0.14	0.12	0.10	0.24	0.20	0.10	0.22	0.14	0.10	0.28	0.24	0.12	0.18	0.16	0.10	0.20	
$\sigma_{\phi}(^{\circ})$	11	23	22	43	30	37	46	53	12	22	24	9	6	37	27	47	16	26	17	30	46	63	76	50	26	13	88	10	24	37	30	26	37	25	50	50	40	32	56	40	14	80	30	27	21	33	
φ(°)	-34	23	24	-32	-81	26	40	18	-37	-50	81	-30	74	-25	73	-	79	67	-84	-9	86	12	-26	-10	-32	-64	-71	90	17	-44	30	55	44	-49	34	-65	39	49	46	38	22	39	26	48	47	م	
D (km)	55.48	47.69	47.00	70.80	92.72	80.40	82.06	68.30	9.30	40.83	63.98	55.75	44.46	76.29	23.75	58.24	53.92	51.85	79.17	63.66	75.97	76.15	72.30	54.50	70.21	69.88	33.71	60.16	75.91	40.58	24.94	78.88	75.47	80.93	73.42	68.43	39.41	97.97	61.69	57.64	17.80	11.00	65.54	64.03	65.60	70.44	nte.
$\beta(^{\circ})$	28.29	28.17	21.74	26.59	33.71	30.75	31.80	29.58	5.92	20.39	34.51	23.41	21.06	33.78	12.31	24.71	33.91	32.18	34.80	32.93	33.11	34.26	34.89	34.23	33.79	34.44	31.23	32.87	34.03	27.16	24.51	25.86	24.67	34.73	32.01	30.09	15.49	34.11	23.88	26.77	7.06	4.47	27.41	25.80	24.66	30.01	na siguie
Mag.	4.0	4.0	4.2	4.1	4.3	5.1	4.1	4.0	4.0	4.1	4.0	4.0	4.2	4.0	4.1	4.0	4.7	3.9	3.9	4.4	4.0	3.9	4.1	3.9	3.9	4.0	3.9	3.9	3.9	3.9	3.9	4.2	4.1	4.0	4.4	4.2	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.1	4.0	la pági
Prof. (km)	103.7	89.7	118.5	142.1	139.6	135.8	133.0	121.0	90.1	110.5	93.7	129.4	116.1	114.7	109.4	127.2	80.4	82.6	114.1	98.5	116.7	112.0	103.9	80.3	105.1	102.1	55.8	93.3	112.6	79.3	54.9	163.2	164.7	117.2	117.9	118.5	142.6	145.1	139.8	114.7	144.2	140.9	126.8	132.9	143.3	122.4	Continúa en
$Lon.(^{\circ})$	-94.86	-94.99	-95.09	-94.75	-94.65	-94.75	-95.14	-94.76	-95.36	-95.00	-94.83	-94.95	-95.06	-95.31	-95.27	-94.88	-95.11	-95.61	-95.15	-95.19	-95.31	-95.16	-95.47	-95.19	-95.13	-95.40	-95.87	-95.45	-95.20	-95.43	-95.38	-94.25	-94.28	-94.93	-95.36	-95.09	-94.73	-94.27	-94.52	-95.31	-94.82	-94.75	-94.61	-94.56	-94.36	-95.05	
Lat.(°)	16.76	16.57	17.12	16.59	17.24	17.18	17.50	16.93	16.87	16.87	16.56	17.08	17.06	17.48	16.98	17.00	16.42	16.87	16.97	16.82	17.03	16.94	17.05	16.69	16.84	17.01	16.26	16.93	16.97	16.73	16.35	17.25	17.26	16.95	17.29	17.12	17.33	16.98	17.21	17.48	17.52	17.61	17.12	17.16	17.30	17.08	
Hora	12:28:04	06:08:34	05:17:22	06:37:08	15:30:36	19:35:52	22:58:21	11:53:11	20:21:44	23:48:19	23:53:14	18:30:42	04:54:27	12:45:21	16:26:42	15:14:25	16:57:34	08:34:57	22:50:03	05:00:43	12:51:29	03:35:50	19:08:58	04:19:13	19:27:01	19:24:10	14:00:34	21:32:57	12:07:17	15:07:29	07:38:07	05:47:28	12:31:03	20:50:54	11:57:01	05:17:22	04:51:54	17:12:52	00:22:43	12:45:21	12:28:27	10:20:23	21:22:14	18:34:35	21:36:59	08:49:54	
Fecha/juliano	2019-06-0 $3/153$	2019-06-10/160	2019-06- $13/163$	2019-06-14/164	2019-06-16/166	2019-06-23/173	2019-06- $30/180$	2019-07-04 $/184$	2019-07-04/184	2019-07-05/185	2019-07-06/186	2019-07-10/190	2019-07-20/200	2019-07-21/201	2019-07-21/201	2019-07-22/202	2019-03-03/63	2019-03-06/66	2019-03-10/70	2019-03-12/72	2019-03-21/81	2019-04-08/98	2019-04-17/107	2019-04-18/108	2019-04-22/112	2019- 05 - $09/129$	2019-05-11/131	2019-05-13/133	2019-05-16/136	2019-05-18/138	2019-06- $19/169$	2019-04- $17/107$	2019-05-02/122	2019-05-02/122	2019-05-26/146	2019-06-1 $3/163$	2019-06-26/176	2019-07-13/193	2019-07- $19/199$	2019-07-21/201	2019-07-27/207	2019-07-28/208	2019-08- $20/230$	2019-09-07 $/247$	2019-09-09/249	2019-09-14/254	
ID	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	GUHU	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MATE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE	MIXE							
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	

σ_{PI}	4	4	1		6	40	-	1	28	က		33	9	2	37	6			1	44	1	4	2		1	2	1	ŝ	4	5 S	4	2			82	5 C	ų	28	2	ų	Η	23	ŝ	2	12	10	
$PI(^{\circ})$	30	41	-46	82	19	6-	-75	69	-7	31	65	6	31	51	-11	28	52	00	86	8 <mark>-</mark>	80	51	-60	63	77	80	63	-90	-38	50	70	89	-67	-59	4	-75	-37	12	78	33	-68	6-	-30	-63	-29	31	
Lon.(°)	-94.771	-95.165	-95.575	-95.075	-95.420	-95.050	-95.160	-95.245	-95.140	-95.230	-94.910	-94.965	-95.010	-94.895	-95.255	-95.185	-95.215	-95.320	-95.085	-95.080	-95.110	-95.205	-95.080	-95.275	-95.130	-95.170	-95.140	-95.250	-95.120	-95.235	-94.990	-95.055	-95.185	-95.015	-94.970	-95.110	-95.075	-95.180	-95.175	-95.060	-95.115	-94.950	-94.895	-95.115	-95.140	-95.000	
Lat.(°)	17.699	17.207	17.352	17.417	17.122	17.397	17.442	17.032	17.192	17.157	17.327	17.192	17.217	17.197	17.347	17.032	17.127	17.087	17.402	17.372	17.327	17.197	17.337	17.037	16.977	17.157	17.162	16.962	17.367	17.017	17.247	17.402	17.442	17.162	16.620	16.455	16.430	16.410	16.425	16.480	16.470	16.430	16.420	16.440	16.455	16.635	
$\sigma_{\delta t}(\mathrm{s})$	0.10	0.02	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.04	0.02	0.02	0.06	0.02	0.02	0.02	0.08	0.02	0.02	0.06	0.02	0.04	0.08	0.06	0.02	0.04	0.06	0.04	0.02	0.02	0.04	0.02	0.02	0.04	0.14	0.12	0.06	0.12	0.10	0.08	0.08	0.04	0.06	0.14	0.02	
$\delta t(\mathbf{s})$	0.16	0.20	0.10	0.08	0.16	0.26	0.14	0.14	0.32	0.22	0.14	0.30	0.04	0.12	0.32	0.10	0.18	0.24	0.14	0.28	0.04	0.22	0.20	0.08	0.06	0.12	0.20	0.26	0.28	0.20	0.10	0.20	0.18	0.22	0.32	0.26	0.18	0.06	0.10	0.24	0.26	0.12	0.20	0.20	0.18	0.10	
$\sigma_{\phi}(\degree)$	39	14	11	20	9	4	15	8	4	21	11	13	34	14	9	12	12	15	11	9	73	10	30	38	49	29	7	16	25	13	22	17	16	5	2	80	41	75	69	22	33	34	18	88	60	15	
(°)	92	84	56	37	-44	-78	60	-84	56	68	37	52	-29	34	63	-37	-69	-69	59	-74	10	-83	69	-80	46	-59	-45	-63	-83	-82	23	56	76	14	84	76	41	-65	14	-77	76	44	30	-51	34	87	
D (km)	12.20	44.86	57.12	81.58	19.30	83.71	71.55	44.65	50.19	31.42	105.51	89.32	78.93	104.62	42.08	54.06	37.08	26.15	77.45	74.88	64.53	36.21	71.48	40.40	70.94	44.38	50.90	57.21	67.19	49.27	84.50	83.43	68.11	78.19	40.99	20.41	11.93	35.91	34.09	12.45	22.08	15.72	27.34	21.09	26.58	42.87	nte.
$\beta(^{\circ})$	5.04	19.45	29.19	28.64	10.54	30.20	28.20	23.13	21.06	14.87	30.95	29.39	29.51	34.04	17.57	26.10	17.73	13.46	27.45	26.69	26.25	16.06	27.32	20.52	33.98	21.28	22.08	30.06	25.94	24.65	30.43	29.74	26.18	31.47	31.00	15.00	10.00	34.00	23.00	10.00	15.00	16.00	14.00	17.00	21.00	23.00	na siguie
Mag.	4.0	4.1	4.1	4.1	4.1	4.2	4.1	4.1	4.1	4.2	4.1	4.2	4.3	4.3	4.1	4.1	4.2	4.1	4.2	4.2	4.1	4.1	4.3	4.4	4.2	4.5	4.1	4.1	4.1	4.1	4.2	4.1	4.5	4.1	3.9	3.8	3.7	3.9	3.8	4.0	3.7	3.6	3.9	3.6	4.0	4.1	la pági
Prof. (km)	138.8	127.2	102.4	149.5	103.9	144.0	133.6	104.7	130.5	118.5	176.1	158.7	139.6	155.0	133.0	110.5	116.1	109.4	149.2	149.1	131.0	125.9	138.5	108.1	105.4	114.1	125.6	0.99	138.3	107.5	144.0	146.2	138.7	127.9	67.7	77.9	69.7	52.6	81.0	68.2	84.5	55.2	105.7	70.8	69.3	102.0	Continúa en
Lon.(°)	-94.72	-94.96	-95.78	-94.78	-95.47	-94.73	-94.95	-95.12	-94.91	-95.09	-94.45	-94.56	-94.65	-94.42	-95.14	-95.00	-95.06	-95.27	-94.80	-94.79	-94.85	-95.04	-94.79	-95.18	-94.89	-94.97	-94.91	-95.13	-94.87	-95.10	-94.61	-94.74	-95.00	-94.66	-94.92	-95.20	-95.13	-95.34	-95.33	-95.10	-95.21	-94.88	-94.77	-95.21	-95.26	-94.98	
Lat.(°)	17.72	17.22	17.51	17.64	17.05	17.60	17.69	16.87	17.19	17.12	17.46	17.19	17.24	17.20	17.50	16.87	17.06	16.98	17.61	17.55	17.46	17.20	17.48	16.88	16.76	17.12	17.13	16.73	17.54	16.84	17.30	17.61	17.69	17.13	16.80	16.47	16.42	16.38	16.41	16.52	16.50	16.42	16.40	16.44	16.47	16.83	
Hora	02:41:44	23:26:43	04:36:30	12:07:35	19:08:58	04:22:56	05:48:10	06:31:54	00:33:00	05:17:22	21:19:31	06:27:53	15:30:36	00:18:57	22:58:21	23:48:19	04:54:27	16:26:42	13:15:22	23:51:28	20:59:02	04:24:45	03:21:17	16:41:54	04:23:23	10:45:46	01:33:46	01:50:17	12:10:39	18:20:25	09:21:20	11:30:35	02:35:25	05:39:12	05:32:42	22:38:14	18:07:11	01:35:55	01:55:11	05:11:38	05:47:16	00:36:56	16:27:22	08:51:10	05:07:10	08:35:41	
Fecha/juliano	2019-09-20/260	2019-04-06/96	2019-04-11/101	2019-04-13/103	2019-04-17/107	2019-05-19/139	2019-05- $20/140$	2019-06-0 $1/151$	2019-06-02/152	2019-06-13/163	2019-06-13/163	2019-06-14/164	2019-06-16/166	2019-06-28/178	2019-06-30/180	2019-07-05/185	2019-07-20/200	2019-07-21/201	2019-07-31/211	2019-08-06/216	2019-08-12/222	2019-08-14/224	2019-08-22/232	2019-09-05/245	2019-09-09/249	2019-09-29/269	2019 - 10 - 02/272	2019 - 10 - 06/276	2019 - 10 - 07/277	2019 - 10 - 10/280	2019 - 10 - 11/281	2019 - 10 - 26/296	2019 - 10 - 28/298	2019 - 10 - 28/298	2018-02-09/40	2018-02-09/40	2018-02-10/41	2018-02-11/42	2018-02-11/42	2018-02-11/42	2018-02-12/43	2018-02-13/44	2018-02-13/44	2018-02-14/45	2018-02-15/46	2018-02-15/46	
ID	MIXE	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	SATU	A01												
Red	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	GECO	RADSEM												

σ_{PI}	2	က	4	5 L	5	20	16	71	70	5 2	12	76	-	24	5 L	-	7	2	1	25	2	4	1	11	65	က	ъ	4	1	-	6	1	-	n	2	Г	13	ъ	9	29	9	32	n	2	ഹ	4	
$PI(^{\circ})$	52	22	70	24	26	-10	28	-19	31	55	14	-14	-77	-12	38	-56	-19	-36	42	18	35	27	-58	-36	15	55	39	-27	36	-88	-20	-82	-50	-39	-38	-64	17	39	27	15	31	-13	36	-50	17	-64	
Lon.($^{\circ}$)	-95.005	-95.040	-95.165	-95.105	-95.020	-95.005	-95.095	-94.960	-94.980	-95.065	-95.070	-95.040	-95.045	-95.010	-94.995	-95.095	-95.050	-95.065	-95.095	-95.190	-94.855	-95.060	-95.025	-95.195	-95.070	-95.060	-95.055	-95.085	-95.165	-95.080	-95.025	-95.125	-94.965	-95.055	-95.010	-95.065	-95.045	-95.130	-95.250	-95.035	-94.940	-95.085	-95.085	-94.470	-94.250	-94.660	
Lat.(°)	16.410	16.455	16.450	16.430	16.410	16.560	16.460	16.545	16.465	16.740	16.630	16.395	16.320	16.415	16.430	16.450	16.250	16.445	16.475	16.390	16.455	16.485	16.475	16.445	16.475	16.465	16.465	16.410	16.480	16.465	16.360	16.485	16.380	16.450	16.500	16.395	16.450	16.485	16.450	16.470	16.455	16.415	16.425	16.540	16.815	CU7.01	
$\sigma_{\delta t}(\mathrm{s})$	0.04	0.02	0.16	0.04	0.04	0.08	0.06	0.04	0.02	0.34	0.14	0.04	0.02	0.02	0.08	0.06	0.04	0.00	0.06	0.08	0.02	0.02	0.04	0.02	0.04	0.14	0.28	0.00	0.88	0.06	0.02	0.06	0.12	0.14	0.04	0.12	0.06	0.08	0.10	0.04	0.06	0.04	0.10	0.36	0.30	0.12	
$\delta t(\mathbf{s})$	0.32	0.14	0.08	0.12	0.14	0.10	0.08	0.18	0.20	0.12	0.20	0.12	0.12	0.18	0.04	0.20	0.16	0.10	0.26	0.20	0.12	0.10	0.14	0.14	0.12	0.10	0.18	0.10	0.10	0.16	0.10	0.22	0.06	0.22	0.28	0.22	0.12	0.08	0.18	0.16	0.22	0.16	0.10	0.14	0.20	0.14	
$\sigma_{\phi}(\degree)$	6	9	68	×	6	45	52	2	8	34	87	27	7	×	47	7	23	×	85	11	20	17	29	57	49	52	16	6	22	35	14	51	81	06	ŝ	14	33	69	50	13	23	10	74	<u> </u>	27	53	
(°)	-60	39	-70	-81	-78	-41	56	75	20	-64	0	67	-57	59	86	-43	4	-74	-39	32	2	78	85	×	25	33	47	-75	-73	47	-71	65	50	-22	61	-54	34	55	61	84	84	61	-81	-64	-81	-41	
D (km)	7.30	5.74	31.48	18.65	6.60	26.96	16.91	26.26	10.73	66.46	43.58	10.93	26.52	6.53	5.37	17.06	42.84	9.69	18.05	38.89	36.24	12.99	7.66	38.25	13.89	10.16	9.40	15.13	33.33	14.53	17.30	25.63	17.78	8.48	13.47	13.70	5.99	25.92	51.18	7.50	17.86	15.18	14.26	39.82	111.93	85.75	nte.
$\beta(^{\circ})$	7.00	6.00	28.00	15.00	7.00	16.00	14.00	26.00	12.00	28.00	22.00	11.00	27.00	7.00	6.00	11.00	32.00	11.00	19.00	30.00	21.00	13.00	6.00	30.00	13.00	10.00	9.00	14.00	28.00	10.00	15.00	20.00	14.00	8.00	10.00	12.00	4.00	23.00	33.00	7.00	12.00	13.00	9.00	19.00	32.00	34.00	na sigure
Mag.	3.5	3.5	3.7	3.7	3.8	3.6	3.8	3.4	3.8	4.1	3.9	3.8	4.1	3.8	3.9	3.7	4.4	3.9	3.8	4.4	4.2	3.7	3.9	4.0	3.9	4.0	3.9	3.9	3.9	3.9	3.8	3.9	3.9	3.7	3.9	3.9	3.8	4.0	3.8	3.7	3.9	3.9	3.4	3.9	4 . 0	4.2	ta pagu
Prof. (km)	58.5	59.4	58.1	69.4	55.1	96.1	68.1	53.4	51.8	123.6	110.1	55.9	51.0	52.9	53.3	89.1	68.8	51.6	51.9	67.8	96.0	57.3	68.2	66.4	61.4	57.5	59.3	61.7	62.4	84.9	63.5	70.8	71.7	57.4	77.0	63.9	88.5	60.2	77.6	63.4	84.4	67.7	86.5	114.2	176.2	128.5	Continua en
Lon.(°)	-94.99	-95.06	-95.31	-95.19	-95.02	-94.99	-95.17	-94.90	-94.94	-95.11	-95.12	-95.06	-95.07	-95.00	-94.97	-95.17	-95.08	-95.11	-95.17	-95.36	-94.69	-95.10	-95.03	-95.37	-95.12	-95.10	-95.09	-95.15	-95.31	-95.14	-95.03	-95.23	-94.91	-95.09	-95.00	-95.11	-95.07	-95.24	-95.48	-95.05	-94.86	-95.15	-95.15	-94.46	-94.02	-94.84	
Lat.(°)	16.38	16.47	16.46	16.42	16.38	16.68	16.48	16.65	16.49	17.04	16.82	16.35	16.20	16.39	16.42	16.46	16.06	16.45	16.51	16.34	16.47	16.53	16.51	16.45	16.51	16.49	16.49	16.38	16.52	16.49	16.28	16.53	16.32	16.46	16.56	16.35	16.46	16.53	16.46	16.50	16.47	16.39	16.41	16.72	17.27	17.U5	
Hora	12:53:56	11:43:37	02:36:03	04:37:34	06:08:44	14:08:06	04:32:08	07:04:15	16:47:06	22:38:48	13:23:14	00:25:09	13:45:35	00:42:09	02:51:58	08:21:04	15:11:47	18:38:16	22:54:16	09:53:09	23:36:51	03:55:40	08:47:35	13:11:48	07:09:05	04:57:58	22:26:43	00:11:13	12:28:04	11:26:42	23:50:11	11:09:26	11:33:53	04:41:17	00:18:03	16:20:56	02:08:22	10:28:49	22:24:27	05:24:38	15:40:35	04:24:40	06:51:37	01.53:29	09:29:33	18:33:13	
Fecha/juliano	2018-02-17/48	2018-02-18/49	2018-02-20/51	2018-02-20/51	2018-02-20/51	2018-02-20/51	2018-02-21/52	2018-02-21/52	2018-02-21/52	2018-02-21/52	2018-02-22/53	2018-02-23/54	2018-02-23/54	2018-02-24/55	2018-02-24/55	2018-02-24/55	2018-02-24/55	2018-02-24/55	2018-02-24/55	2018-02-25/56	2018-02-25/56	2018-02-26/57	2018-03-01/60	2018-03-01/60	2018-03-03/62	2018-03-05/64	2018-03-05/64	2018-03-06/65	2018-03-06/65	2018-03-07/66	2018-03-07/66	2018-03-08/67	2018-03-08/67	2018-03-09/68	2018-03-10/69	2018-03-10/69	2018-03-11/70	2018-03-11/70	2018-03-11/70	2018-03-12/71	2018-03-12/71	2018-03-13/72	2018-03-14/73	2017 - 10 - 13/286	2017-10-14/287	2017-10-17/290	
ID	A01	A03	A03	A03																																											
Red	RADSEM	RADSEM	RADSEM																																												

Red	ID	Fecha/juliano	Hora	Lat.(°)	Lon.(°)	Prof. (km)	Mag.	β(°)	D (km)	(°) ϕ	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$	Lat.(°)	Lon.(°)	(°) I I	σ_{PI}
DSEM 1	A03	2017-10-18/291	15:30:30	17.30	-94.33	163.5	4.1	33.00	104.69	-49	17	0.14	0.02	16.830	-94.405	83	4
ZEM Z	A03	2017 - 10 - 19/292	04:40:44	15.92	-94.20	103.8	3.5	29.00	57.86	-40	49	0.10	0.08	16.140	-94.340	-75	2
ZEM Z	A03	2017 - 10 - 21/294	09:52:56	16.83	-94.85	114.1	4.1	30.00	65.68	50	2	0.30	0.02	16.595	-94.665	-35	1
ZEM Z	A03	2017-10-29/302	12:09:28	16.81	-94.79	112.9	3.9	28.00	59.84	-30	7	0.10	0.02	16.585	-94.635	-50	2
JSEM 1	A03	2017 - 10 - 30/303	02:58:24	17.13	-94.60	131.2	4.0	33.00	85.52	-34	14	0.12	0.06	16.745	-94.540	73	1
SEM 4	A03	2017-10-31/304	23:27:40	16.62	-94.62	100.2	4.1	18.00	32.20	-17	63	0.04	1.04	16.490	-94.550	-49	2
SEM 4	A03	2017-11-02/306	20:20:20	15.96	-94.83	83.4	3.8	35.00	57.88	32	85	0.10	0.04	16.160	-94.655	-72	1
SEM 4	A03	2017-11-03/307	16:49:26	16.39	-93.99	122.6	4.8	24.00	53.51	66	12	0.16	0.04	16.375	-94.235	47	7
JSEM 1	A03	2017-11-03/307	19:53:47	17.08	-94.58	128.7	4.0	32.00	80.17	-19	18	0.12	0.04	16.720	-94.530	86	1
JSEM 4	A03	2017-11-07/311	02:53:22	16.59	-94.88	91.5	4.0	29.00	50.76	-78	13	0.18	0.02	16.475	-94.680	-33	5
JSEM 1	A03	2017-11-10/314	22:28:25	16.36	-94.90	69.0	4.2	34.00	45.68	-90	2	0.36	0.10	16.360	-94.690	14	23
JSEM 1	A03	2017-11-20/324	05:44:47	16.69	-93.86	151.9	3.9	27.00	77.28	38	14	0.14	0.02	16.525	-94.170	-79	Η
JSEM 1	A03	2017-11-21/325	11:07:47	16.50	-93.80	125.5	4.1	31.00	76.18	-23	27	0.12	0.26	16.430	-94.140	-83	4
JSEM 1	A03	2017-11-23/327	14:04:59	16.42	-94.91	77.2	3.9	32.00	47.41	-50	40	0.14	0.10	16.390	-94.695	-25	×
JSEM 1	A03	2017-11-26/330	02:24:44	16.22	-94.76	73.4	3.9	25.00	34.94	-31	82	0.16	0.06	16.290	-94.620	81	1
ZEM Z	A03	2017-11-29/333	06:22:30	15.97	-94.20	86.6	3.9	31.00	52.53	51	79	0.18	1.28	16.165	-94.340	27	×
ZEM Z	A03	2017-12-01/335	17:38:27	16.13	-94.56	78.8	4.2	19.00	27.16	55	60	0.10	0.04	16.245	-94.520	26	15
7 JSEM	A03	2017-12-05/339	17:22:10	16.22	-94.27	96.7	3.8	16.00	27.98	67	27	0.14	0.04	16.290	-94.375	20	19
ZEM Z	A03	2017-12-06/340	$04{:}21{:}58$	16.67	-94.00	136.1	3.7	25.00	62.50	63	85	0.10	0.30	16.515	-94.240	-47	2
ZEM Z	A03	2017-12-07/341	02:16:12	17.09	-94.09	163.5	3.7	29.00	91.23	72	32	0.16	0.04	16.725	-94.285	30	11
JSEM 4	A03	2017-12-11/345	10:23:16	15.92	-94.31	73.6	4.1	35.00	51.29	-25	9	0.14	0.02	16.140	-94.395	44	2
JSEM 1	A03	2017-12-22/356	21:26:21	16.00	-94.03	92.9	4.1	34.00	63.08	-78	19	0.28	0.04	16.180	-94.255	49	4
JSEM 1	A03	2017-12-23/357	01:53:39	16.39	-93.92	115.4	4.0	28.00	62.01	-62	22	0.12	0.18	16.375	-94.200	-43	2
ZEM 7	A03	2017-12-23/357	10:53:48	16.52	-94.89	92.5	3.9	27.00	47.89	56	11	0.24	0.02	16.440	-94.685	77	4
ZEM 7	A03	2017-12-26/360	11:00:01	17.08	-94.11	169.5	4.1	28.00	88.51	-14	30	0.20	0.06	16.720	-94.295	-70	2
DSEM 1	A03	2017 - 12 - 29/363	02:20:58	17.26	-94.23	164.9	4.2	32.00	102.25	-32	62	0.06	0.30	16.810	-94.355	-84	
ZEM 7	A03	2017-12-30/364	08:26:45	16.82	-93.86	154.1	3.9	29.00	85.25	11	17	0.16	0.02	16.590	-94.170	67	2
SEM 1	A03	2018-01-07/7	03:24:06	16.96	-94.04	159.9	4.2	27.00	81.83	-28	18	0.22	0.02	16.660	-94.260	-76	-
SEM 1	A03	2018-01-08/8	07:18:21	16.77	-94.91	107.3	3.9	31.00	64.76	-81	15	0.28	0.06	16.565	-94.695	37	5
SEM 1	A03	2018-01-13/13	06:36:57	16.73	-94.58	115.9	4.0	20.00	42.60	ъ.	44	0.08	0.04	16.545	-94.530	-50	ю.
SEM 1	A03	2018-01-15/15	04:45:58	16.98	-94.86	119.0	4.0	34.00	80.73	64	11	0.30	0.04	16.670	-94.670	-51	4
SEM 1	A03	2018-01-17/17	16:29:54	16.06	-94.73	67.7	3.7	32.00	42.54	-46	11	0.18	0.02	16.210	-94.605	70	2
SEM 7	A03	2018-01-20/20	10:18:46	16.57	-94.24	116.6	3.9	17.00	35.08	-72	64	0.30	0.06	16.465	-94.360	-50	4
DSEM 2	A03	2018-01-20/20	12:17:51	17.32	-94.30	169.8	3.7	32.00	107.56	-57	× ;	0.16	0.04	16.840	-94.390	63	2
	A03	7018-01-22/22	11:43:13	17.05	-94.74	138.8	9.0 7	30.00	81.33	- 13	19	0.24	0.12	16.705	-94.610	33	1 1
SEM 7	A03	2018-02-01/32	04:08:31	16.81	-94.84	117.2	3.7	29.00	63.78	-89	61	0.06	0.26	16.585	-94.660	-36	ഹ
SEM 1	A03	2018-0.2-04/35	18:48:02	16.62	-94.19	131.5	3.7	18.00	42.86	-41		0.24	0.06	16.490	-94.335	85	→ .
SEM 2	A03	2018-02-06/37	04:03:24	16.85	-94.80	110.5	3.6	30.00	64.13	-68	59	0.16	0.26	16.605	-94.640	- 43	16
SEM 7	A03	2018-02-07/38	15:09:36	16.11	-93.96	110.6	3.9	30.00	63.09	-76	24	0.14	0.06	16.235	-94.220	-53	-
SEM 1	A03	2018-02-10/41	21:47:57	16.98	-94.81	116.3	3.8	34.00	77.90	-88	21	0.24	0.10	16.670	-94.645	26	×
SEM 7	A03	2018-02-20/51	14:08:06	16.68	-94.99	96.1	3.6	35.00	66.84	-65	24	0.24	0.42	16.520	-94.735	45	2
SEM 1	A03	2018-02-20/51	22:17:52	16.49	-94.22	112.0	3.5	16.00	31.81	-58	61	0.08	0.32	16.425	-94.350	-32	13
SEM 1	A03	2018-03-10/69	03:08:56	16.66	-94.09	135.7	3.7	22.00	53.75	-41	22	0.14	0.04	16.510	-94.285	28	×
SEM 1	A04	2017-09-12/255	08:09:54	15.74	-93.92	81.1	3.3	35.00	55.78	-4	$\overline{00}$	0.26	0.18	15.995	-93.915	68	
SEM 1	A04	2017-09-13/256	01:43:19	15.86	-94.15	134.4	3.7	21.00	50.95	57	84	0.24	0.14	16.055	-94.030	-58	-
SEM 1	A04	2017-09-13/256	05:48:54	15.70	-93.66	136.7	3.8	26.00	66.52	0	68	0.14	0.12	15.975	-93.785	54	9
						Continúa en	la pági	na siguie	nte.								

Red	E I	Fecha/juliano	Hora	Lat.(°)	Lon.(°)	Prof. (km)	Mag.	β(°)	D (km)	$\phi(\circ)$	$\sigma_{\phi}(^{\circ})$	$\delta t(\mathbf{s})$	$\sigma_{\delta t}(\mathbf{s})$	Lat.(°)	Lon.(°)	(°) Iq	σ_{PI}
KADSEM	A04	2017-09-13/256	12:48:33	15.88	-93.74	94.3	4.5	25.00	44.68	Q	59	0.18	0.16	16.U65	-93.825	69	-
RADSEM	A04	2017-09-15/258	04:22:40	15.67	-93.80	123.2	3.6	28.00	65.07	-57	57	0.22	0.14	15.960	-93.855	-41	က
RADSEM	A04	2017-09-15/258	12:11:44	15.60	-94.16	123.0	3.4	32.00	76.96	71	2	0.36	0.04	15.925	-94.035	-33	-
RADSEM	A04	2017-09-15/258	14:40:07	15.99	-93.72	91.4	3.7	21.00	35.84	18	10	0.26	0.08	16.120	-93.815	-87	-
RADSEM	A04	2017-09-17/260	01:20:22	16.02	-93.53	117.4	3.6	23.00	49.07	-35	84	0.14	0.48	16.135	-93.720	35	2
RADSEM	A04	2017-09-19/262	05:20:34	15.52	-93.71	129.8	4.3	33.00	83.53	-61	90	0.32	0.44	15.885	-93.810	41	2
RADSEM	A04	2017-09-20/263	00:52:26	16.23	-93.59	125.7	3.9	16.00	35.36	-53	32	0.14	0.04	16.240	-93.750	-26	13
RADSEM	A04	2017-09-20/263	18:12:51	16.22	-93.58	125.1	3.8	16.00	36.28	-74	10	0.34	0.04	16.235	-93.745	41	2
RADSEM	A04	2017-09-20/263	23:01:05	16.22	-93.72	141.6	4.0	8.00	21.15	12	72	0.08	0.14	16.235	-93.815	44	4
RADSEM	A04	2017-12-10/344	12:07:45	16.62	-93.73	133.9	3.9	19.00	45.27	-59	52	0.28	0.14	16.435	-93.820	57	ŝ
RADSEM	A04	2017-12-12/346	19:04:21	16.74	-94.42	118.9	4.3	33.00	77.25	-49	15	0.26	0.42	16.495	-94.165	74	က
RADSEM	A04	2017 - 12 - 14/348	19:56:28	16.77	-94.13	140.6	3.7	24.00	61.78	86	43	0.10	0.46	16.510	-94.020	-28	×
RADSEM	A04	2017-12-15/349	14:13:27	16.29	-93.11	212.5	3.7	22.00	87.58	-40	11	0.28	0.04	16.270	-93.510	74	-
RADSEM	A04	2017-12-15/349	15:50:03	16.09	-94.22	101.9	3.7	21.00	38.30	-60	52	0.14	0.06	16.170	-94.065	50	2
RADSEM	A04	2017 - 12 - 21/355	09:26:59	15.88	-94.24	81.3	3.8	34.00	54.74	-30	23	0.18	0.04	16.065	-94.075	-85	Н
RADSEM	A04	2017 - 12 - 23/357	01:53:39	16.39	-93.92	115.4	4.0	8.00	15.92	-26	22	0.28	0.04	16.320	-93.915	16	19
RADSEM	A04	2017 - 12 - 23/357	04:42:23	16.45	-93.70	137.5	3.8	13.00	31.96	-20	23	0.32	0.06	16.350	-93.805	-75	
RADSEM	A04	2017-12-26/360	11:00:01	17.08	-94.11	169.5	4.1	29.00	93.51	-71	25	0.24	0.08	16.665	-94.010	45	-
RADSEM	A04	2017 - 12 - 30/364	$04{:}06{:}15$	15.75	-93.95	81.5	4.2	34.00	55.02	-75	11	0.28	0.02	16.000	-93.930	49	1
RADSEM	A04	2017 - 12 - 31/365	21:22:38	16.32	-92.97	217.1	4.3	26.00	103.76	-38	24	0.26	0.44	16.285	-93.440	69	2
RADSEM	A04	2018-01-06/6	08:22:02	16.09	-93.79	104.7	4.4	12.00	21.63	-49	38	0.14	0.06	16.170	-93.850	-56	46
RADSEM	A04	2018-01-07/7	03:24:06	16.96	-94.04	159.9	4.2	26.00	79.04	-72	16	0.20	0.04	16.605	-93.975	54	4
RADSEM	A04	2018-01-15/15	01:03:21	15.74	-93.92	81.7	3.8	34.00	55.60	-10	7	0.28	0.02	15.995	-93.915	52	1
RADSEM	A04	2018-01-15/15	10:46:12	15.89	-93.83	82.0	4.0	26.00	40.42	13	44	0.28	0.02	16.070	-93.870	72	ŝ
RADSEM	A04	2018-01-20/20	07:16:57	16.85	-94.11	147.5	3.9	25.00	70.12	81	10	0.22	0.06	16.550	-94.010	4	58
RADSEM	A04	2018-01-22/22	04:52:45	17.20	-93.92	184.1	3.7	30.00	104.72	-60	19	0.32	0.08	16.725	-93.915	-86	2
RADSEM	A04	2018-01-22/22	20:21:32	16.42	-93.65	147.5	3.7	13.00	33.82	78	65	0.18	0.52	16.335	-93.780	51	4
RADSEM	A04	2018-01-24/24	11:37:09	15.67	-93.83	94.2	3.9	34.00	64.72	9	36	0.08	0.04	15.960	-93.870	-43	9
RADSEM	A04	2018-02-06/37	23:28:55	16.81	-93.82	164.0	4.0	21.00	62.14	89	×	0.36	0.04	16.530	-93.865	20	14
RADSEM	B01	2017-10-28/298	01:57:55	14.91	-92.64	91.7	4.0	33.32	60.28	17	70	0.14	0.08	14.735	-92.430	42	2
RADSEM	B01	2017-10-29/299	14:39:25	14.36	-92.13	74.2	4.1	17.78	23.80	-21	16	0.14	0.02	14.460	-92.175	19	6
RADSEM	B01	2017-10-30/300	08:11:49	14.25	-92.26	94.6	4.3	19.88	34.22	-16	108	0.24	0.25	14.405	-92.240	18	39
RADSEM	B01	2017 - 10 - 31/301	20:42:30	14.92	-92.61	86.5	3.9	34.19	58.76	29	35	0.20	0.12	14.740	-92.415	51	7
RADSEM	B01	2017-11-08/308	20:19:24	14.46	-92.19	80.4	4.0	8.36	11.82	19	17	0.16	0.04	14.510	-92.205	75	7
RADSEM	B01	2017-11-15/315	15:04:54	14.64	-92.09	101.7	4.0	9.15	16.37	-20	20	0.12	0.04	14.600	-92.155	-53	က
RADSEM	B01	2017-11-25/325	23:05:36	14.74	-92.65	80.6	4.4	32.17	50.70	22	7	0.08	0.04	14.650	-92.435	-61	1
RADSEM	B01	2017-12-15/345	09:07:43	14.55	-91.67	107.6	5.0	29.45	60.77	43	20	0.20	0.04	14.555	-91.945	11	42
RADSEM	B01	2018-01-20/20	04:42:46	14.64	-92.25	97.9	3.8	5.49	9.41	10	40	0.14	0.06	14.600	-92.235	-26	12
RADSEM	B01	2018-01-28/28	03:49:27	14.34	-91.90	80.4	3.9	27.95	42.66	-15	84	0.30	0.14	14.450	-92.060	20	53
RADSEM	B01	2018-02-10/40	01:31:38	14.64	-92.61	73.1	4.4	31.18	44.24	-44	18	0.10	0.02	14.600	-92.415	-18	14
RADSEM	B01	2018-02-14/44	15:37:28	14.89	-92.50	93.6	3.9	27.06	47.81	16	14	0.14	0.02	14.725	-92.360	48	7
RADSEM	B01	2018-02-20/50	11:12:10	14.59	-92.39	66.9	4.4	15.76	18.88	-74	15	0.18	0.08	14.575	-92.305	-15	72
RADSEM	B01	2018-02-20/50	12:58:52	14.62	-92.30	76.5	3.9	8.30	11.17	-55	20	0.10	0.06	14.590	-92.260	19	15
RADSEM	B01	2018-03-01/61	08:33:30	14.74	-92.39	88.3	4.3	17.26	27.43	-38	27	0.12	0.24	14.650	-92.305	39	7
RADSEM	B02	2017-10-16/286	11:11:32	15.10	-93.04	88.9	4.0	26.16	43.67	45	10	0.12	0.02	15.195	-92.865	-21	×
RADSEM	B02	2017-10-19/289	02:17:14	15.90	-92.81	180.1	4.3	20.77	68.30	-19	41	0.10	0.06	15.595	-92.750	-45	
						Continúa en	la págir	ıa siguieı	ite.								

σ_{PI}	2	24	1	27	2	1	18	ŝ	ъ	12	က	2	4	5	2	21	ŝ	2	71	33	2	34	47	7	44	H	2	T	2	4	1	12	n	11	n	10	ŝ	-	29	-	2	33	Ţ	2		17	
$PI(^{\circ})$	-34	13	-77	-15	-80	-64	16	-76	-36	-17	-30	-45	-57	-80	-72	15	-80	67	84	-9	-64	12	-10	24	13	-57	-77	-71	46	65	62	22	53	22	-59	44	34	- 81	-21	- 81	-70	32	46	47	-60	27	
Lon.(°)	-92.900	-92.665	-92.865	-92.650	-92.845	-92.590	-92.535	-92.720	-92.725	-92.785	-92.865	-92.375	-92.835	-92.430	-92.580	-92.775	-92.880	-92.595	-92.940	-92.865	-92.915	-92.810	-93.095	-92.965	-93.155	-92.690	-93.145	-92.820	-92.965	-93.075	-92.980	-92.965	-92.480	-93.810	-93.420	-93.645	-93.845	-93.610	-93.600	-93.645	-93.695	-93.745	-93.305	-93.510	-93.675	-93.600	
Lat.(°)	15.225	15.100	15.185	15.105	15.000	15.375	15.050	15.430	15.585	15.115	15.265	15.405	15.230	15.425	15.530	15.400	15.400	15.090	15.365	15.280	15.810	15.160	15.515	15.270	15.585	15.450	15.395	15.505	15.340	15.360	15.475	15.355	15.405	15.945	15.745	15.700	16.020	15.725	16.185	15.815	15.835	15.800	15.705	15.745	15.940	15.805	
$\sigma_{\delta t}(\mathrm{s})$	0.02	0.16	0.04	0.02	0.04	0.18	0.02	0.04	0.06	0.02	0.06	0.16	0.02	0.08	0.12	0.04	0.04	0.04	0.04	0.12	0.10	0.04	0.10	0.12	0.20	0.06	0.10	0.06	0.12	0.04	0.08	0.18	0.12	0.02	0.06	0.04	0.06	0.20	0.04	0.02	0.04	0.06	0.06	0.04	0.10	0.04	
$\delta t(\mathbf{s})$	0.12	0.22	0.38	0.12	0.26	0.24	0.20	0.10	0.14	0.10	0.10	0.20	0.18	0.06	0.14	0.14	0.12	0.10	0.14	0.20	0.10	0.14	0.40	0.16	0.18	0.12	0.08	0.30	0.14	0.10	0.22	0.10	0.24	0.16	0.08	0.16	0.24	0.14	0.08	0.10	0.12	0.10	0.20	0.12	0.10	0.16	
$\sigma_{\phi}(^{\circ})$	10	55	12	12	×	39	20	17	33	31	72	61	15	42	98	24	60	28	18	84	83	10	61	62	55	43	$\overline{00}$	7	58	×	17	73	64	2	44	45	6	88	30	20	33	14	6	10	26	62	
$\phi(\circ)$	-11	71	45	44	28	-79	63	-42	32	45	-7	-79	-17	-34	-45	55	-46	-57	57	70	-29	81	-49	50	-10	-35	38	-51	30	-2	-88	-55	9	-39	-21	85	-75	87	-52	-50	-38	22	-31	-58	-69	78	
D (km)	48.05	41.83	44.71	41.45	72.19	28.49	63.33	31.19	65.67	43.92	39.37	74.25	34.82	64.90	57.49	30.63	47.94	48.66	57.40	38.76	124.70	38.86	48.12	41.06	66.48	43.75	57.13	21.19	27.54	44.05	20.92	25.25	90.47	60.42	42.83	49.47	72.22	41.44	64.02	29.06	37.03	50.42	67.56	34.48	31.04	25.29	nte.
$\beta(^{\circ})$	29.51	24.52	29.20	25.60	34.43	10.56	31.93	11.86	23.16	33.80	22.64	18.99	19.48	19.01	15.81	15.48	23.30	27.47	31.91	24.57	32.15	22.44	25.45	24.79	32.54	15.97	26.06	8.12	16.27	28.13	10.65	16.58	26.13	30.64	22.96	28.74	33.87	27.21	24.01	16.47	23.54	32.98	31.26	17.68	18.06	15.32	na siguie
Mag.	3.9	4.0	3.9	3.9	3.9	3.9	4.1	4.4	4.2	4.6	4.0	4.1	3.9	4.4	4.1	3.9	4.7	3.9	4.5	4.1	4.1	4.2	4.6	4.0	4.3	3.9	4.0	4.4	4.0	4.0	4.7	4.1	4.1	3.9	4.6	3.8	3.8	3.8	3.8	4.3	3.8	3.8	4.7	3.8	3.9	4.3	t la pági
Prof. (km)	84.9	91.7	80.0	86.5	105.3	152.9	101.6	148.6	153.5	65.6	94.4	215.8	98.4	188.4	203.1	110.6	111.3	93.6	92.2	84.8	198.4	94.1	101.1	88.9	104.2	152.9	116.8	148.6	94.4	82.4	111.3	84.8	184.4	102.0	101.1	90.2	107.6	80.6	143.7	98.3	85.0	7.77	111.3	108.2	95.2	92.3	Continúa en
Lon.(°)	-93.11	-92.64	-93.04	-92.61	-93.00	-92.49	-92.38	-92.75	-92.76	-92.88	-93.04	-92.06	-92.98	-92.17	-92.47	-92.86	-93.07	-92.50	-93.19	-93.04	-93.14	-92.93	-93.30	-93.04	-93.42	-92.49	-93.40	-92.75	-93.04	-93.26	-93.07	-93.04	-92.07	-94.08	-93.30	-93.75	-94.15	-93.68	-93.66	-93.75	-93.85	-93.95	-93.07	-93.48	-93.81	-93.66	
Lat.(°)	15.16	14.91	15.08	14.92	14.71	15.46	14.81	15.57	15.88	14.94	15.24	15.52	15.17	15.56	15.77	15.51	15.51	14.89	15.44	15.27	16.33	15.03	15.59	15.10	15.73	15.46	15.35	15.57	15.24	15.28	15.51	15.27	15.37	15.99	15.59	15.50	16.14	15.55	16.47	15.73	15.77	15.70	15.51	15.59	15.98	15.71	
Hora	06:25:23	01:57:55	16:18:21	20:42:30	05:19:35	08:30:50	19:11:54	23:21:16	21:58:17	02:10:14	05:45:44	10:33:32	10:23:08	03:33:49	10:39:14	16:16:03	23:44:20	15:37:28	21:01:51	15:12:55	20:22:58	01:11:52	23:55:45	11:11:32	$04{:}08{:}19$	08:30:50	16:58:58	23:21:16	05:45:44	10:48:46	23:44:20	15:12:55	16:10:54	20:51:09	23:55:45	00:08:18	10:23:30	16:02:48	23:42:54	11:22:40	00:29:40	12:34:16	23:44:20	15:42:37	06:33:59	03:12:28	
Fecha/juliano	2017-10-19/289	2017 - 10 - 28/298	2017 - 10 - 29/299	2017 - 10 - 31/301	2017-11-05/305	2017-11-21/321	2017 - 11 - 28/328	2017 - 11 - 30/330	2017-12-15/345	2017 - 12 - 23/353	2018-01-04/4	2018-01-11/11	2018-01-16/16	2018-01-31/31	2018-01-31/31	2018-02-01/31	2018-02-11/41	2018-02-14/44	2018-02-27/57	2018-03-02/62	2018-03-07/67	2018-03-16/76	2017 - 10 - 10/280	2017-10-16/286	2017 - 11 - 19/319	2017 - 11 - 21/321	2017 - 11 - 21/321	2017 - 11 - 30/330	2018-01-04/4	2018-01-09/9	2018-02-11/41	2018-03-02/62	2018-03-04/64	2017-10-09/279	2017 - 10 - 10/280	2017 - 10 - 11/281	2017-10-11/281	2017 - 10 - 12/282	2017 - 10 - 15/285	2017 - 10 - 20/290	2017 - 10 - 28/298	2017 - 11 - 13/313	2018-02-11/41	2018-02-13/43	2018-02-14/44	2018-02-19/49	
ID	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B02	B03	B03	B03	B03	B03	B03	B03	B03	B03	B03	B03	B04	B04	B04	B04	B04	B04	B04	B04	B04	B04	B04	B04	B04	
Red	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	

σ_{PI}	55	က	23	1	ŝ	2	1	11	1	ŝ	2	16	ъ	5 L	1	ŝ	2	-	1	1	Ţ	1	1	1	ŝ	2	4	2	4	ŝ	2	43	23	2	4	2	4	2	1	20	Ļ	51	34	I	2	59	
PI(°)	-20	53	15	-74	-54	-86	-88	-16	45	37	64	-20	-37	31	-49	-53	-67	-89	45	-59	-70	73	60	59	-48	54	-84	-83	33	49	84	-26	-15	29	33	-32	40	-65	- 89	23	-71	-51	11	48	81	17	
Lon.(°)	-93.730	-93.995	-93.930	-93.765	-93.735	-93.850	-93.800	-93.885	-93.820	-93.790	-93.805	-93.885	-93.665	-93.945	-93.375	-93.815	-93.785	-93.910	-93.755	-93.460	-93.800	-93.770	-93.865	-93.845	-93.625	-94.290	-94.405	-94.005	-94.090	-94.025	-93.995	-94.260	-94.375	-94.250	-94.305	-94.090	-94.275	-94.415	-94.075	-94.240	-94.000	-94.240	-94.210	-94.205	-95.190	-95.205	
Lat.(°)	16.055	15.940	16.035	15.905	15.875	15.935	15.985	16.235	15.885	15.885	15.915	16.505	16.005	16.580	16.200	15.855	16.085	16.520	15.905	16.205	15.910	15.915	15.865	15.890	16.310	16.645	16.455	16.090	16.340	16.490	16.395	16.370	16.210	16.105	16.515	16.610	16.735	16.390	16.200	16.565	16.135	16.550	16.665	16.060	16.340	16.460	
$\sigma_{\delta t}(\mathbf{s})$	0.04	0.08	0.02	0.02	0.06	0.04	0.02	0.12	0.02	0.10	0.04	0.16	0.12	0.16	0.08	0.06	0.04	0.10	0.15	0.04	0.02	0.12	0.02	0.02	0.12	0.06	0.06	0.04	0.04	0.04	0.06	0.10	0.10	0.04	0.02	0.08	0.02	0.08	0.06	0.04	0.04	0.08	0.08	0.02	0.08	0.08	
$\delta t(\mathbf{s})$	0.14	0.14	0.28	0.10	0.18	0.12	0.12	0.10	0.14	0.16	0.08	0.22	0.18	0.16	0.28	0.14	0.22	0.14	0.18	0.22	0.10	0.18	0.10	0.10	0.24	0.26	0.06	0.12	0.12	0.14	0.16	0.14	0.12	0.08	0.22	0.10	0.30	0.12	0.10	0.10	0.16	0.12	0.16	0.16	0.18	0.16	
$\sigma_{\phi}(\degree)$	16	32	21	30	28	25	23	61	4	00	16	83	89	65	16	14	20	58	87	15	20	24	10	14	35	18	46	21	19	32	37	36	62	S	11	79	10	21	34	19	20	35	83	20	10	35	
$\phi(^{\circ})$	-37	19	-26	-12	-19	-21	-29	13	-29	-26	2	7	-2	55	-20	-39	-27	-52	-36	-21	-16	86	6-	-7	-68	-66	-30	-59	63	86	-57	-32	20	-51	-27	71	-81	-43	-65	-33	-37	-40	-60	76	2	67	
D (km)	54.39	56.34	34.40	38.33	45.86	35.53	21.52	41.51	43.20	43.26	37.07	96.72	30.10	115.47	92.95	50.09	1.91	100.54	38.60	75.80	37.11	36.26	50.58	43.76	124.06	81.53	59.20	59.73	24.18	57.15	48.41	23.16	44.60	42.48	55.14	74.12	90.06	54.12	31.84	61.68	54.07	58.05	83.15	50.90	26.31	52.80	nte.
β(°)	25.96	34.14	18.64	21.30	27.44	21.87	13.71	18.71	29.68	26.68	26.49	31.36	16.26	34.26	23.18	29.32	1.05	32.16	23.33	20.91	22.05	22.58	33.79	27.49	29.01	32.31	30.57	34.11	11.16	20.62	21.09	11.94	29.51	29.99	24.88	25.04	34.07	28.79	16.06	25.80	29.59	24.03	29.61	32.11	17.69	29.77	na siguie
Mag.	3.8	4.0	3.9	4.3	4.4	3.9	3.9	4.8	4.3	3.9	3.9	4.2	3.9	4.1	4.3	4.2	4.4	4.2	3.9	4.1	4.3	4.0	4.0	4.0	4.2	4.0	4.1	3.9	4.8	3.9	4.1	3.9	4.2	4.1	4.3	4.2	4.2	4.3	3.9	3.9	3.9	4.0	3.9	3.9	4.4	4.6	ı la pági
Prof. (km)	111.7	83.1	102.0	98.3	88.3	88.5	88.2	122.6	75.8	86.1	74.4	158.7	103.2	169.5	217.1	89.2	104.7	159.9	89.5	198.4	91.6	87.2	75.6	84.1	223.7	128.9	100.2	88.2	122.6	151.9	125.5	109.5	78.8	73.6	118.9	158.7	146.5	98.5	110.6	127.6	95.2	130.2	146.3	81.1	82.5	92.3	Continúa er
$Lon.(^{\circ})$	-93.92	-94.21	-94.08	-93.75	-93.69	-93.92	-93.82	-93.99	-93.86	-93.80	-93.83	-93.99	-93.55	-94.11	-92.97	-93.85	-93.79	-94.04	-93.73	-93.14	-93.82	-93.76	-93.95	-93.91	-93.06	-94.39	-94.62	-93.82	-93.99	-93.86	-93.80	-94.33	-94.56	-94.31	-94.42	-93.99	-94.36	-94.64	-93.96	-94.29	-93.81	-94.29	-94.23	-94.22	-95.18	-95.21	
Lat.(°)	16.21	15.80	15.99	15.73	15.67	15.79	15.89	16.39	15.69	15.69	15.75	16.93	15.93	17.08	16.32	15.63	16.09	16.96	15.73	16.33	15.74	15.75	15.65	15.70	16.33	17.00	16.62	15.89	16.39	16.69	16.50	16.45	16.13	15.92	16.74	16.93	17.18	16.49	16.11	16.84	15.98	16.81	17.04	15.83	16.46	16.70	
Hora	17:32:35	19:35:03	20:51:09	11:22:40	13:28:33	20:08:53	07:03:42	16:49:26	04:15:10	18:00:11	19:58:55	14:43:34	23:01:43	11:00:01	21:22:38	22:07:18	08:22:02	03:24:06	11:29:24	20:22:58	11:35:35	20:52:01	20:57:28	23:43:18	09:04:10	15:00:46	23:27:40	07:03:42	16:49:26	05:44:47	11:07:47	16:26:20	17:38:27	10:23:16	19:04:21	14:43:34	09:46:39	13:18:36	15:09:36	17:25:41	06:33:59	00:43:52	05:02:19	20:02:42	10:12:00	20:29:02	
Fecha/juliano	2018-02-28/58	2017-10-08/278	2017-10-09/279	2017-10-20/290	2017-10-20/290	2017-11-01/301	2017-11-03/303	2017-11-03/303	2017-11-07/307	2017-11-14/314	2017-12-09/339	2017 - 12 - 13/343	2017 - 12 - 13/343	2017-12-26/356	2017 - 12 - 31/361	2018-01-03/3	2018-01-06/6	2018-01-07/7	2018-01-22/22	2018-03-07/67	2018-03-09/69	2018-03-09/69	2018-03-12/72	2018-03-12/72	2017-10-19/289	2017-10-20/290	2017-10-31/301	2017-11-03/303	2017-11-03/303	2017-11-20/320	2017-11-21/321	2017-11-22/322	2017-12-01/331	2017-12-11/341	2017-12-12/342	2017-12-13/343	2018-01-26/26	2018-01-30/30	2018-02-07/37	2018-02-12/42	2018-02-14/44	2018-02-21/51	2018-02-22/52	2018-02-26/56	2017-10-06/276	2017-10-07/277	
ID	B04	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B05	B06	B06	B06	B06	B06	B06	B06	B06	B06	B08	B08																						
Red	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	

σ_{PI}	11	×	2	°	61	34	1	×	75	10	21	6	7	2	41	ъ	4	16	-	ŝ	9	3		56	2	H		4	22	13	66	3	2	Ţ	S	3	3 S	76	ъ	33	2	55	0	Т	က	2	
$PI(\circ)$	24	36	34	47	59	9	71	-25	က	-36	12	22	27	-33	20	-57	67	22	-66	-39	-50	-87	-80	-51	-52	-66	79	-81	31	40	-16	-74	00	56	-35	42	63	9	21	70	57	-19	75	-86	45	64	
Lon.(°)	-95.025	-95.165	-94.920	-95.140	-94.945	-93.285	-93.465	-93.040	-93.165	-92.995	-93.345	-93.565	-93.535	-93.275	-93.395	-93.010	-93.485	-93.565	-93.540	-93.595	-95.595	-95.640	-95.935	-95.795	-95.530	-95.455	-95.380	-95.585	-95.781	-95.475	-95.400	-95.405	-95.560	-95.405	-95.515	-95.590	-95.625	-95.510	-95.919	-95.867	-95.469	-95.819	-95.387	-95.584	-95.386	-95.293	
Lat.(°)	16.525	16.150	16.355	16.140	16.345	15.905	16.345	16.060	16.275	16.015	15.975	16.455	16.360	16.135	16.325	15.895	16.335	16.520	16.100	16.215	17.521	17.681	17.831	17.596	17.466	17.516	17.701	17.501	17.796	17.606	17.661	17.661	17.476	17.701	17.476	17.541	17.544	17.608	17.453	17.548	17.518	17.768	17.702	17.473	17.704	17.574	
$\sigma_{\delta t}(\mathrm{s})$	0.06	0.02	0.08	0.06	0.02	0.02	0.04	0.08	0.04	0.04	0.06	0.04	0.06	0.04	0.02	0.02	0.06	0.04	0.02	0.12	0.04	0.02	0.02	0.06	0.06	0.04	0.06	0.04	0.34	0.06	0.02	0.04	0.04	0.06	0.12	0.02	0.04	0.06	0.12	0.02	0.08	0.36	0.20	0.14	0.04	0.10	
$\delta t(\mathbf{s})$	0.12	0.04	0.22	0.12	0.12	0.16	0.20	0.10	0.28	0.16	0.16	0.24	0.24	0.18	0.18	0.08	0.12	0.24	0.22	0.12	0.18	0.16	0.14	0.12	0.20	0.22	0.10	0.18	0.12	0.30	0.20	0.24	0.22	0.28	0.10	0.22	0.10	0.22	0.30	0.24	0.18	0.32	0.10	0.30	0.30	0.18	
$\sigma_{\phi}(^{\circ})$	35	57	18	26	21	13	23	57	25	45	27	34	25	13	25	29	45	27	×	60	14	ŝ	10	21	21	ъ	11	14	48	33	9	11	20	ъ	57	10	31	15	18	24	28	19	83	31	2 C	31	
(.) <i>φ</i>	74	-83	68	-62	-49	-46	-65	49	-37	-77	-57	-28	-28	-59	-24	61	-84	-31	-38	-70	-78	-15	35	67	70	11	- 2	69	-14	81	59	79	45	-25	-65	-82	-63	69	-88	20	75	-65	64	-61	-33	44	
D (km)	77.58	17.28	68.23	22.28	62.20	68.96	50.66	61.71	25.63	75.73	56.78	83.16	65.78	18.58	35.67	92.01	53.18	92.04	65.34	71.95	62.22	36.78	38.37	25.20	80.81	88.93	93.26	67.16	18.80	76.86	90.16	88.62	74.92	88.02	81.88	60.33	53.76	68.32	62.63	38.91	84.91	12.80	91.35	71.41	91.45	116.14	nte.
$\beta(^{\circ})$	34.21	14.57	34.71	17.95	32.94	34.30	19.42	18.91	6.54	23.48	28.59	28.70	27.66	8.08	13.07	31.77	21.15	30.85	34.47	32.79	28.50	18.97	20.51	14.48	32.41	34.28	34.90	29.65	9.22	30.01	33.72	34.22	33.53	32.38	34.29	27.46	27.00	28.00	35.00	24.00	33.00	7.00	34.00	32.00	32.00	34.00	na sigure
Mag.	4.1	4.2	4.3	4.4	4.2	4.6	3.8	4.3	4.2	3.8	4.3	3.9	4.1	3.8	3.8	4.4	3.8	3.9	3.9	3.8	4.0	4.0	4.0	4.2	4.2	4.0	4.1	4.4	4.2	4.1	4.3	4.0	4.0	4.5	4.2	4.0	4.0	3.9	4.2	3.6	3.7	3.9	3.8	3.7	4.1	4.0	la págu
Prof. (km)	114.1	66.5	98.5	68.8	96.0	101.1	143.7	180.1	223.7	174.3	104.2	151.9	125.5	130.8	153.7	148.6	137.5	154.1	95.2	111.7	114.5	106.9	102.5	97.5	127.2	130.4	133.6	117.9	115.7	133.0	135.0	130.2	113.0	138.7	120.0	116.0	105.3	130.0	89.4	89.0	128.4	103.3	134.6	115.5	144.3	170.8	Continúa en
$Lon.(^{\circ})$	-94.85	-95.13	-94.64	-95.08	-94.69	-93.30	-93.66	-92.81	-93.06	-92.72	-93.42	-93.86	-93.80	-93.28	-93.52	-92.75	-93.70	-93.86	-93.81	-93.92	-95.38	-95.47	-96.06	-95.78	-95.25	-95.10	-94.95	-95.36	-95.76	-95.14	-94.99	-95.00	-95.31	-95.00	-95.22	-95.37	-95.45	-95.22	-96.04	-95.93	-95.14	-95.84	-94.97	-95.37	-94.97	-94.78	
$Lat.(^{\circ})$	16.83	16.08	16.49	16.06	16.47	15.59	16.47	15.90	16.33	15.81	15.73	16.69	16.50	16.05	16.43	15.57	16.45	16.82	15.98	16.21	17.33	17.65	17.95	17.48	17.22	17.32	17.69	17.29	17.88	17.50	17.61	17.61	17.24	17.69	17.24	17.37	17.38	17.50	17.19	17.38	17.32	17.82	17.69	17.23	17.70	17.44	
Hora	09:52:56	15:21:42	13:18:36	15:11:47	23:36:51	23:55:45	23:42:54	02:17:14	09:04:10	22:22:49	$04{:}08{:}19$	05:44:47	11:07:47	09:07:22	09:50:34	23:21:16	04:42:23	08:26:45	06:33:59	17:32:35	14:26:24	16:27:40	11:13:56	22:27:38	07:13:50	07:44:29	05:48:10	11:57:01	09:25:00	22:58:21	05:48:02	10:30:54	16:27:34	02:35:25	15:16:10	20:27:18	19:42:44	14:19:17	01:24:55	16:58:16	14:13:50	09:46:19	04:39:25	16:16:21	02:22:24	06:16:14	
Fecha/juliano	2017 - 10 - 21/291	2017 - 12 - 19/349	2018-01-30/30	2018-02-24/54	2018-02-25/55	2017-10-10/280	2017 - 10 - 15/285	2017 - 10 - 19/289	2017 - 10 - 19/289	2017 - 10 - 23/293	2017 - 11 - 19/319	2017 - 11 - 20/320	2017 - 11 - 21/321	2017 - 11 - 24/324	2017 - 11 - 27/327	2017 - 11 - 30/330	2017 - 12 - 23/353	2017 - 12 - 30/360	2018-02-14/44	2018-02-28/58	2018-07-13/193	2018-07-26/206	2018 - 12 - 29/359	2019-02-09/39	2019-03-13/73	2019-03-19/79	2019-05-20/140	2019-05-26/146	2019-05-27/147	2019-06-30/180	2019-08-09/219	2019-09-26/266	2019 - 10 - 04/274	2019 - 10 - 28/298	2019-11-04/304	2019 - 11 - 23/323	2020-01-14/14	2020-01-30/30	2020-02-23/54	2020-02-26/57	2020-03-06/66	2020-03-11/71	2020-03-24/84	2020-03-29/89	2020-04-07/98	2020-04-29/120	
ID	B08	B08	B08	B08	B08	B10	B10	B10	B10	B10	B10	B10	B10	B10	B10	B10	B10	B10	B10	B10	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	
Red	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RADSEM	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	

σ_{PI}	67	4	4	12	39	-	11	46	12	9	1	4	2	6	4	7	5 L	21	ŝ	ŝ	5 2	2	2	2	9	5 L	2	2	3	-	0	2	-	-	5 L	12	°	0	2	7	က	0	×	2	2	က	
$PI(^{\circ})$	-6	53	52	-25	11	-59	-34	10	13	-23	-55	-38	71	32	25	-38	-34	-16	34	59	-44	-78	60	50	28	49	54	47	65	33	-68	-66	-80	51	31	30	66	86	-64	26	54	84	-29	72	-52	55	
Lon.(°)	-95.680	-95.811	-95.471	-95.576	-95.412	-95.887	-95.614	-95.640	-95.422	-95.495	-95.550	-95.577	-95.513	-95.876	-95.626	-95.644	-95.632	-95.528	-95.732	-95.691	-95.771	-95.593	-95.761	-95.603	-95.448	-95.599	-95.478	-95.508	-95.882	-95.377	-95.871	-95.578	-95.496	-95.456	-95.472	-95.626	-95.554	-95.946	-95.382	-95.482	-95.620	-95.401	-95.695	-95.374	-95.741	-95.559	
Lat.(°)	17.417	17.720	17.521	17.466	17.540	17.707	17.485	17.606	17.690	17.767	17.492	17.905	17.678	17.588	17.427	17.458	17.446	17.578	17.674	17.602	17.612	17.494	17.666	17.508	17.668	17.520	17.652	17.683	17.923	17.622	17.545	17.558	17.780	17.516	17.635	17.443	17.665	17.535	17.681	17.619	17.627	17.656	17.575	17.677	17.493	17.451	
$\sigma_{\delta t}(\mathbf{s})$	0.18	0.04	0.06	0.52	0.20	0.04	0.04	0.04	0.02	0.16	0.08	0.04	0.14	0.08	0.04	0.08	0.02	0.04	0.12	0.14	0.10	0.12	0.04	0.02	0.02	0.02	0.10	0.02	0.06	0.04	0.06	0.08	0.08	0.08	0.04	0.02	0.62	0.12	0.02	0.48	0.02	0.14	0.08	0.08	0.14	0.08	
$\delta t(\mathbf{s})$	0.16	0.12	0.10	0.22	0.36	0.16	0.16	0.18	0.26	0.26	0.14	0.16	0.10	0.22	0.18	0.12	0.16	0.36	0.28	0.10	0.10	0.14	0.26	0.10	0.28	0.16	0.18	0.18	0.18	0.34	0.08	0.14	0.30	0.24	0.30	0.16	0.18	0.16	0.28	0.28	0.14	0.28	0.26	0.14	0.16	0.10	
$\sigma_{\phi}(\degree)$	66	32	31	28	86	11	12	14	×	83	35	29	48	63	13	41	12	36	33	75	49	76	6	21	11	12	34	17	46	5 L	39	81	12	19	13	29	76	62	12	26	17	7	18	60	83	37	
$\phi(\circ)$	-67	1	-87	-65	-63	-36	-51	73	63	87	-76	6	-57	-9	85	-71	-67	-66	-82	-7	-56	81	-56	-87	72	-76	72	81	24	-44	-14	62	-10	78	72	81	44	-40	63	74	85	77	-51	50	62	-76	
D (km)	70.42	2.67	84.12	73.70	93.78	18.64	64.83	42.74	83.65	68.49	73.71	65.15	63.99	31.94	73.69	65.90	69.57	67.27	17.48	34.49	23.27	66.56	13.74	62.67	78.49	61.46	72.50	64.99	49.47	95.66	39.86	59.85	69.01	87.62	74.63	70.80	55.66	50.26	92.73	73.36	44.28	89.07	38.24	94.42	50.19	78.52	nte.
$\beta(")$	34.00	1.00	33.00	35.00	35.00	10.00	30.00	21.00	34.00	30.00	31.00	26.00	27.00	19.00	33.00	32.00	33.00	29.00	9.00	34.00	13.00	30.00	8.00	28.00	31.00	29.00	30.00	29.00	26.00	34.00	24.00	27.00	29.00	35.00	30.00	34.00	25.00	30.00	35.00	30.00	21.00	34.00	20.00	34.00	27.00	34.00	ıa sigure
Mag.	3.9	3.8	3.8	3.8	4.5	3.7	4.2	3.9	4.0	3.8	4.0	4.0	3.8	3.5	3.9	3.8	4.3	4.3	3.9	3.7	4.0	4.0	3.9	4.2	3.9	4.0	4.3	3.8	3.8	3.9	4.1	3.8	3.7	3.9	3.9	3.8	3.7	3.9	4.2	3.9	4.0	4.1	4.2	4.2	ŝ	3.9	la págu
Prof. (km)	104.6	102.4	131.9	107.0	134.0	103.0	114.2	111.4	123.6	118.9	121.1	133.3	123.6	91.5	111.8	107.4	106.3	120.0	105.4	51.3	103.6	114.6	99.3	119.5	128.2	110.7	126.5	119.1	103.4	139.3	87.5	117.9	123.6	126.9	127.4	105.8	120.2	86.4	133.0	126.9	114.3	133.7	105.4	138.4	98.8	117.0	Continúa en
$Lon.(^{\circ})$	-95.56	-95.82	-95.14	-95.35	-95.02	-95.97	-95.43	-95.48	-95.04	-95.19	-95.30	-95.35	-95.22	-95.95	-95.45	-95.49	-95.46	-95.25	-95.66	-95.58	-95.74	-95.38	-95.72	-95.40	-95.09	-95.40	-95.15	-95.21	-95.96	-94.95	-95.94	-95.35	-95.19	-95.11	-95.14	-95.45	-95.31	-96.09	-94.96	-95.16	-95.44	-95.00	-95.59	-94.95	-95.68	-95.32	
Lat.(°)	17.12	17.73	17.33	17.22	17.37	17.70	17.26	17.50	17.67	17.82	17.27	18.10	17.64	17.46	17.14	17.20	17.18	17.44	17.64	17.49	17.51	17.28	17.62	17.30	17.62	17.33	17.59	17.65	18.13	17.53	17.38	17.40	17.85	17.32	17.56	17.17	17.62	17.36	17.65	17.53	17.54	17.60	17.44	17.64	17.27	17.19	
Hora	06:03:15	10:08:33	19:15:39	04:52:35	10:32:30	20:23:10	20:52:53	22:00:24	04:31:40	21:15:06	03:24:20	12:00:01	15:00:15	19:22:35	03:45:07	23:44:56	11:15:25	08:19:49	$04{:}03{:}12$	11:25:23	23:38:02	12:52:59	07:06:05	16:14:17	17:54:08	13:52:37	23:39:13	13:19:51	07:00:29	08:33:02	01:47:03	04:01:02	04:52:33	09:56:51	19:17:13	21:23:27	14:25:04	11:56:15	02:06:39	11:37:59	17:09:20	01:26:52	09:43:00	02:12:46	02:24:12	02:57:43	
Fecha/juliano	2020-05-02/123	2020-05-06/127	2020-05-16/137	2020-05-24/145	2020-05-24/145	2020-05-25/146	2020-05-25/146	$2020 extsf{-}06 extsf{-}09/161$	2020-06- $16/168$	2020-08-0 $1/214$	2020-08-04/217	2020-08-10/223	2020-08-14/227	2020-08-30/243	2020-08-31/244	2020-09-0 $1/245$	2020 - 10 - 07/281	2020 - 10 - 12/286	2020 - 10 - 18/292	2020 - 10 - 22/296	2020 - 11 - 04/309	2020 - 11 - 05/310	2020 - 11 - 09/314	2020 - 11 - 11/316	2020-11-12/317	2020 - 11 - 26/331	2020 - 12 - 04/339	2020 - 12 - 11/346	2020 - 12 - 13/348	2020 - 12 - 16/351	2020 - 12 - 22/357	2020 - 12 - 27/362	2020 - 12 - 27/362	2021-01-05/5	2021-01-14/14	2021-02-04/35	2021-03-23/82	2021-03-29/88	2021-04-03/93	2021-04-25/115	2021-04-25/115	2021-04-29/119	2021 - 05 - 13/133	2021-05-20/140	2021-06-23/174	2021-06-28/179	
ID	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV								
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV								

σ_{PI}	2	er:		9	2	13	33	72	2	-1	ŝ	0	4	-1	2	2	-1	27	2	4	-	1	e C	S	-1	S	1	7	2	×	31	ŝ	2	იი ·	-	16	4	2	2	Н	81	2	5 L	7	4		
(.)Id	68	46	78	20	-72	16	60	-23	57	76	80	79	31	70	-79	-44	67	-20	43	-28	-65	75	44	29	72	-28	-69	44	-58	15	11	-67	00	45	65	18	34	-29	69	-81	-13	65	-28	-49	-42	55	
Lon.(°)	-95.582	-95.841	-95.486	-95.908	-95.635	-95.528	-95.477	-95.842	-95.499	-95.588	-95.721	-95.556	-95.438	-95.656	-95.706	-95.524	-95.880	-95.484	-95.541	-95.509	-95.589	-95.699	-95.457	-95.486	-95.830	-95.782	-95.599	-95.512	-95.619	-95.446	-95.856	-95.506	-95.761	-95.585	-95.461	-95.716	-95.606	-95.461	-95.596	-95.591	-95.391	-95.811	-94.093	-94.443	-94.428	-94.253	
Lat.(°)	17.757	17.780	17.789	17.567	17.489	17.587	17.558	17.770	17.625	17.629	17.509	17.545	17.528	17.519	17.540	17.540	17.730	17.669	17.625	17.676	17.486	17.486	17.625	17.610	17.603	17.620	17.512	17.686	17.512	17.516	17.606	17.771	17.492	17.563	17.496	17.686	17.696	17.526	17.811	17.506	17.681	17.601	17.139	17.374	17.354	17.249	
$\sigma_{\delta t}({ m s})$	0.10	0.02	0.04	0.02	0.08	0.06	0.32	0.02	0.08	0.12	0.06	0.12	0.04	0.04	0.04	0.06	0.06	0.04	0.06	0.02	0.18	0.08	0.06	0.02	0.16	0.06	0.10	0.04	0.48	0.02	0.02	0.04	0.06	0.04	0.14	0.06	0.08	0.02	0.06	0.06	0.02	0.18	0.02	0.04	0.04	0.02	
$\delta t(\mathbf{s})$	0.12	0.24	0.26	0.14	0.20	0.26	0.14	0.28	0.16	0.20	0.24	0.22	0.26	0.14	0.10	0.20	0.20	0.28	0.18	0.22	0.16	0.22	0.26	0.30	0.34	0.16	0.24	0.16	0.16	0.36	0.14	0.22	0.12	0.22	0.12	0.24	0.24	0.26	0.16	0.14	0.22	0.32	0.18	0.24	0.22	0.28	
$\sigma_{\phi}(^{\circ})$	34	12	14	13	33	19	81	24	41	78	16	24	21	13	20	29	23	17	35	19	81	24	13	10	25	30	12	31	71	4	21	16	24	15	63	26	17	12	28	13	×	27	6	16	7	ŝ	
$()\phi$	38	-14	50	-26	45	27	69	-39	82	-28	-35	er,	72	-39	-11	-76	4	54	88	-75	42	48	68	20	-84	-61	33	72	44	-60	-33	-2	-89	2.2	-84	78	-77	-89	42	26	52	-39	-69	65	63	-22	
D (km)	49.32	17.19	71.54	39.76	61.36	66.37	79.16	15.40	69.31	50.47	48.19	65.49	89.77	53.35	43.41	71.93	17.56	70.54	60.58	65.04	68.45	54.83	78.35	73.09	24.89	20.88	62.82	63.99	59.72	89.43	26.25	66.38	49.48	57.90	88.84	19.78	43.26	85.48	50.24	64.92	90.67	24.58	41.46	66.24	62.56	27.91	nte.
$\beta($ ° $)$	22.00	00.6	29.00	26.00	30.00	28.00	32.00	8.00	29.00	23.00	25.00	30.00	35.00	26.00	24.00	32.00	10.00	30.00	26.00	27.00	31.00	29.00	33.00	30.00	15.00	12.00	30.00	28.00	29.00	35.00	16.00	28.00	29.00	27.00	35.00	10.00	19.00	34.00	25.00	30.00	34.00	14.00	14.52	25.67	23.36	10.78	ina siguie
Mag.	3.9	3.9	4.1	3.8	3.8	3.6	3.9	3.8	3.9	3.7	3.6	3.7	3.8	3.7	4.3	3.7	3.6	3.8	3.9	4.0	3.8	3.8	3.9	3.9	4.1	3.7	4.0	3.7	3.9	4.1	3.8	3.9	3.8	3.9	3.4	3.9	4.7	3.5 2.5	3.6	3.8	4.1	3.5	4.2	4.2	4.2	4.2	n la páa
Prof. (km)	121.1	109.0	129.9	81.8	107.7	122.4	127.0	106.5	124.0	121.3	103.8	112.2	129.6	109.4	98.9	114.7	103.3	121.9	122.2	125.3	113.3	99.2	120.2	124.4	93.2	99.4	110.3	122.2	108.7	128.0	93.0	124.0	87.9	115.3	127.0	113.0	127.0	126.0	109.0	113.0	133.0	99.2	159.9	137.7	144.7	146.5	Continúa e
Lon.(°)	-95.36	-95.88	-95.17	-96.01	-95.47	-95.25	-95.15	-95.88	-95.20	-95.37	-95.64	-95.31	-95.07	-95.51	-95.61	-95.25	-95.96	-95.17	-95.28	-95.22	-95.38	-95.60	-95.11	-95.17	-95.86	-95.76	-95.40	-95.22	-95.44	-95.09	-95.91	-95.21	-95.72	-95.37	-95.12	-95.63	-95.41	-95.12	-95.39	-95.38	-94.98	-95.82	-94.04	-94.74	-94.71	-94.36	
Lat.(°)	17.80	17.85	17.87	17.42	17.27	17.46	17.40	17.83	17.54	17.55	17.31	17.38	17.34	17.33	17.37	17.37	17.75	17.62	17.54	17.64	17.26	17.26	17.54	17.51	17.49	17.53	17.31	17.66	17.31	17.32	17.50	17.83	17.27	17.41	17.28	17.66	17.68	17.34	17.91	17.30	17.65	17.49	16.96	17.43	17.39	17.18	
Hora	10:30:56	12:44:31	13.19.44	19:11:49	09:45:29	12:33:00	08:09:03	02:47:06	20:16:26	12:24:12	23:00:27	22:51:06	17:02:36	11:44:27	23:38:27	08:43:16	23:00:21	20:26:35	02:55:54	07:37:10	19:57:07	04:33:34	12:12:45	15:46:20	16:07:26	22:04:22	18:28:56	21:09:56	13:42:37	09:49:13	04:12:58	15:01:02	13:30:02	14:34:47	22:27:24	22:57:55	09:56:19	20:23:30	03:02:51	00:11:00	15:40:57	22:34:40	03:24:06	08:31:10	19:12:38	09:46:39	
Fecha/juliano	2021-06-30/181	2021-07-08/189	2021-07-10/191	2021-07-19/200	2021-08-18/230	2021-08-19/231	2021-08-28/240	2021-09- $30/273$	2021 - 10 - 06/279	2021 - 10 - 27/300	$2021 extrm{-}10 extrm{-}30/303$	2021 - 11 - 06/310	2021 - 11 - 17/321	2021 - 12 - 03/337	2021 - 12 - 08/342	2021 - 12 - 10/344	2021 - 12 - 12/346	2021 - 12 - 17/351	2022-02-04/35	2022-02-25/56	2022-03-11/70	2022-03-15/74	2022-03-17/76	2022-03-22/81	2022-05-09/129	2022-05-14/134	2022-05-20/140	2022-06-27/178	2022 - 06 - 28/179	2022-07-06/187	2022-07-23/204	2022-07-26/207	2022-08-20/232	2022 - 08 - 24/236	2022-09-01/244	2022-09-08/251	2022-09-11/254	2022-09-24/267	2022 - 10 - 18/291	2022 - 10 - 24/297	2022 - 11 - 14/318	2022-12-10 $/344$	2018-01-07/7	2018-01-08/8	2018-01-19/19	2018-01-26/26	
ID	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	NEUV	UXUV	UXUV										
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV								

σ_{PI}	3	1	°	S	2	က	23	2	ŝ	49	-	-	က	2	ъ	68	9	2	15	2	7	ŝ	20	ъ	2	2	24	°	7	9	c,	4	45	13	က	11	26	ŝ	0	18	က		10	9	2	2	
$PI(^{\circ})$	61	-65	-53	-56	-73	-53	-24	66	-49	14	82	77	-34	-37	-46	16	73	-73	26	-54	34	-58	-19	-28	-72	-70	-14	-65	-31	-36	-32	-36	15	36	74	-28	30	-69	73	29	-46	79	-22	28	-30	34	
Lon.(°)	-94.413	-94.433	-94.098	-94.253	-94.068	-94.208	-93.883	-94.288	-93.783	-94.143	-94.208	-94.418	-94.023	-94.393	-93.923	-94.143	-94.168	-94.448	-93.838	-94.013	-94.508	-94.388	-94.543	-94.018	-94.098	-94.488	-94.053	-94.093	-94.283	-94.013	-94.043	-94.143	-94.493	-94.438	-94.468	-94.468	-94.378	-94.263	-94.328	-94.510	-94.446	-94.405	-94.418	-93.974	-94.039	-94.349	
Lat.(°)	17.449	17.324	17.219	16.989	17.274	17.154	16.984	17.519	17.234	17.079	17.269	17.199	16.999	17.104	16.994	16.984	17.284	17.154	16.959	16.924	17.269	17.214	17.374	17.089	17.244	17.379	17.084	17.224	17.109	17.114	17.004	17.194	17.269	17.459	17.434	17.399	17.309	17.389	17.427	17.310	17.198	17.373	17.198	16.968	17.153	17.164	
$\sigma_{\delta t}(\mathrm{s})$	0.06	0.04	0.02	0.04	0.02	0.02	0.04	0.08	0.04	0.02	0.04	0.04	0.02	0.04	0.08	0.02	0.04	0.12	0.04	0.06	0.04	0.02	0.08	0.02	0.04	0.02	0.02	0.06	0.06	0.02	0.02	0.02	0.02	0.06	0.04	0.06	0.02	0.06	0.06	0.06	0.06	0.12	0.10	0.06	0.06	0.02	
$\delta t(\mathbf{s})$	0.20	0.10	0.10	0.20	0.14	0.28	0.12	0.16	0.12	0.24	0.12	0.18	0.16	0.12	0.18	0.28	0.16	0.22	0.24	0.14	0.14	0.18	0.14	0.14	0.20	0.12	0.22	0.20	0.06	0.10	0.22	0.20	0.14	0.16	0.16	0.18	0.16	0.14	0.26	0.10	0.18	0.18	0.08	0.24	0.16	0.12	
$\sigma_{\phi}(^{\circ})$	2	27	27	9	6	15	28	30	30	11	6	2 2	10	2	20	11	32	20	14	21	16	14	21	14	6	42	11	15	36	18	13	12	15	25	16	15	19	17	ю	37	26	61	65	20	22	.72	
(.) <i>\phi</i>	-18	-89	77	50	42	-84	-60	-2	-79	-46	12	99	-63	42	-66	-58	-76	38	-33	-75	55	75	1	-62	40	57	-49	43	-77	-79	-63	-77	99	-39	-84	81	64	-48	-9	67	68	2	-46	62	-58	18	
D (km)	65.25	63.72	24.07	76.00	19.50	38.40	93.47	54.37	81.62	52.36	17.27	65.69	75.50	71.93	86.99	73.41	9.04	76.24	104.34	91.52	80.31	58.37	87.71	57.58	19.62	76.48	55.30	23.23	55.28	53.74	72.83	27.48	77.58	71.44	74.85	72.68	51.05	29.56	46.70	80.04	71.11	58.34	65.44	85.85	43.36_{-}	56.07	nte.
β(°)	23.52	23.37	8.26	33.20	6.25	15.55	29.90	17.87	28.39	20.03	5.94	26.56	27.36	31.93	30.94	30.76	2.98	31.74	30.41	31.79	32.36	25.22	33.36	19.43	6.48	28.94	20.44	7.37	23.58	16.63	27.03	10.20	32.38	26.36	26.64	27.67	19.50	9.82	15.00	32.00	28.00	22.00	26.00	32.00	15.00	23.00	$na \ sigure$
Mag.	4.2	4.3	4.4	4.2	4.2	4.3	4.3	4.2	4.3	4.3	4.2	4.4	4.3	4.5	4.3	5.4	4.5	4.3	4.2	4.3	4.3	4.2	4.2	4.2	4.9	4.4	4.3	4.3	4.2	4.2	4.2	4.2	4.2	4.2	4.2	4.3	4.2	4.2	4.1	4.1	4.0	4.1	4.2	4.1	4.0	4.9	ı la págı
Prof. (km)	149.8	147.3	165.6	116.0	177.9	137.9	162.4	168.5	150.9	143.5	165.9	131.3	145.8	115.3	145.0	123.2	173.7	123.1	177.6	147.5	126.6	123.8	133.1	163.1	172.7	138.2	148.2	179.4	126.5	179.8	142.6	152.6	122.2	144.0	149.1	138.5	144.0	170.6	174.7	129.0	130.9	145.9	135.4	138.4	157.3	129.8	Continúa er
$Lon.(^{\circ})$	-94.68	-94.72	-94.05	-94.36	-93.99	-94.27	-93.62	-94.43	-93.42	-94.14	-94.27	-94.69	-93.90	-94.64	-93.70	-94.14	-94.19	-94.75	-93.53	-93.88	-94.87	-94.63	-94.94	-93.89	-94.05	-94.83	-93.96	-94.04	-94.42	-93.88	-93.94	-94.14	-94.84	-94.73	-94.79	-94.79	-94.61	-94.38	-94.51	-94.87	-94.75	-94.66	-94.69	-93.80	-93.93	-94.55	
Lat.(°)	17.58	17.33	17.12	16.66	17.23	16.99	16.65	17.72	17.15	16.84	17.22	17.08	16.68	16.89	16.67	16.65	17.25	16.99	16.60	16.53	17.22	17.11	17.43	16.86	17.17	17.44	16.85	17.13	16.90	16.91	16.69	17.07	17.22	17.60	17.55	17.48	17.30	17.46	17.54	17.30	17.08	17.43	17.08	16.62	16.99	17.01	
Hora	21:44:29	13:48:21	03:01:42	10:35:46	00:15:08	00:15:00	18:57:26	13:26:02	04:08:27	00:18:34	13:46:45	17:01:27	15:30:36	17:00:01	23:53:19	21:43:03	21:34:40	00:38:12	03:34:59	19:26:02	01:24:47	18:00:16	05:12:09	16:29:31	10:13:31	13:37:19	02:15:18	10:47:38	03:02:27	03:43:58	02:45:33	03:34:27	16:41:27	04:22:56	23:51:28	03:21:17	09:21:20	22:49:16	01:10:58	07:59:14	06:03:45	11:16:37	09:17:32	18:00:08	16:24:26	09:49:17	
Fecha/juliano	2018-01-26/26	2018-02-07/37	2018-05-22/142	2018-05-24/144	2018-05-31/151	2018-06-06/156	2018-06-07/157	2018-06-18/168	2018-07-17/197	2018-07-23/203	2018-07-31/211	2018-08-28/238	2018-09-11/251	2018-09-22/262	2018-09-24/264	2018 - 10 - 01/271	2018 - 11 - 07/307	2018 - 11 - 23/323	2018 - 11 - 29/329	2018 - 12 - 15/345	2018 - 12 - 22/352	2018 - 12 - 22/352	2018 - 12 - 27/357	2018 - 12 - 30/360	2018 - 12 - 31/361	2019-01-10/10	2019-01-14/14	2019-01-14/14	2019-01-26/26	2019-02-13/43	2019-03-03/63	2019-03-18/78	2019-05-09/129	2019-05-19/139	2019-08-06/216	2019-08- $22/232$	2019- 10 - $11/281$	2019-11- $21/321$	2020-01-07/7	2020-01-08/8	2020-01-09/9	2020-01-10/10	2020 - 01 - 12/12	2020 - 01 - 13/13	2020-01-16/16	2020-01-21/21	
ID	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV		
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	

σ_{PI}	e S	7	0	34	1	c.	4	0	7	က	1	ŝ	2	1	1	4	2	2	1	2	2	c.	1	1	2	1	0	2	4	ŝ	ŝ	1	4	2	2	0	1	ŝ	2	2	2	1	1	က	က	35	
$\mathrm{PI}(\circ)$	-62	-27	74	21	-76	-33	-27	82	-33	-42	-89	-27	40	-50	-65	71	82	-49	-77	-73	-71	58	-75	56	-37	86	71	-56	-28	-52	-34	86	-34	-81	-68	72	73	-54	-79	-75	87	-79	80	-43	-20	-9	
Lon.(°)	-94.121	-94.027	-94.415	-94.434	-94.239	-94.247	-94.006	-94.453	-94.079	-94.407	-94.213	-93.958	-94.519	-94.096	-94.177	-94.196	-94.183	-94.152	-94.418	-94.246	-94.409	-94.493	-94.416	-94.236	-94.404	-94.399	-94.383	-94.321	-94.369	-94.146	-94.403	-94.159	-94.063	-94.242	-94.541	-94.123	-94.296	-94.423	-94.526	-94.409	-94.454	-94.069	-94.174	-94.125	-94.502	-94.445	
Lat.(°)	17.184	17.083	17.291	17.377	17.428	17.414	17.043	17.239	17.170	17.424	17.014	16.978	17.439	17.099	17.143	17.473	17.076	17.077	17.305	17.100	17.331	17.413	17.474	17.136	17.307	17.452	17.390	17.359	17.122	17.129	17.325	17.156	17.112	17.322	17.223	17.268	17.302	17.151	17.239	17.437	17.153	17.260	17.162	17.208	17.417	17.418	
$\sigma_{\delta t}(\mathrm{s})$	0.06	0.04	0.12	0.10	0.08	0.02	0.02	0.06	0.04	0.06	0.08	0.02	0.06	0.02	0.02	0.12	0.04	0.06	0.04	0.10	0.04	0.08	0.06	0.52	0.08	0.04	0.06	0.10	0.04	0.06	0.08	0.08	0.04	0.12	0.04	0.02	0.06	0.06	0.02	0.36	0.02	0.04	0.04	0.02	0.04	0.12	
$\delta t(\mathbf{s})$	0.16	0.16	0.22	0.12	0.24	0.16	0.16	0.14	0.22	0.14	0.12	0.16	0.18	0.18	0.20	0.12	0.16	0.18	0.14	0.14	0.14	0.22	0.24	0.30	0.18	0.26	0.22	0.16	0.16	0.22	0.18	0.18	0.14	0.14	0.16	0.34	0.14	0.18	0.16	0.26	0.16	0.30	0.12	0.16	0.10	0.22	
$\sigma_{\phi}(\degree)$	56	22	15	57	13	11	20	23	29	24	43	17	15	24	13	69	30	37	23	50	14	15	×	12	25	S	4	40	5	26	54	88	22	66	25	က	34	45	24	6	23	4	23	15	28	51	
(°)	84	-57	-7	46	34	88	-63	56	2	63	49	-66	62	74	67	-89	21	-82	37	57	36	78	27	-20	71	2	6-	-39	51	-82	81	25	83	-46	45	-4	×	99	50	26	41	22	28	-90	-66	-77	
D (km)	30.04	57.83	59.55	64.66	31.71	30.72	67.90	69.80	35.82	62.07	68.59	85.57	86.26	49.52	39.13	35.75	53.99	52.98	59.96	52.84	57.99	79.12	68.73	44.61	56.74	63.07	54.53	39.68	65.29	41.61	56.66	35.68	48.73	21.18	89.41	12.08	33.31	71.09	85.32	63.53	77.04	21.24	34.83	24.61	81.27	69.39	nte.
$\beta(")$	10.00	20.00	22.00	24.00	0.00	0.00	22.00	28.00	13.00	23.00	29.00	29.00	33.00	18.00	15.00	32.00	22.00	21.00	23.00	22.00	22.00	30.00	23.00	18.00	21.00	21.00	19.00	13.00	29.00	17.00	21.00	14.00	18.00	7.00	35.00	4.00	13.00	30.00	33.00	21.00	31.00	6.00	13.00	0.00	29.00	25.00	na siguie
Mag.	4.0	4.1	4.1	4.0	4.2	4.1	4.0	4.0	4.0	4.2	4.0	4.2	4.0	4.3	4.0	4.0	4.0	4.0	4.2	4.0	4.1	4.1	4.0	4.1	4.2	4.1	4.2	4.0	4.2	4.0	4.0	4.0	4.0	4.0	4.1	4.3	4.0	4.1	4.3	4.0	4.0	4.3	4.0	4.2	4.2	4.0	la pági
Prof. (km)	162.4	159.3	146.3	144.8	196.3	188.6	165.4	132.9	150.0	148.6	122.5	156.7	134.1	155.0	149.7	57.2	131.1	138.2	141.4	131.1	143.9	135.2	158.4	135.5	145.7	160.2	159.7	175.9	116.0	140.0	146.1	139.4	153.0	161.4	129.1	178.7	146.6	121.5	130.6	161.6	127.6	186.5	145.5	163.2	148.3	149.4	Continúa en
$Lon.(^{\circ})$	-94.10	-93.91	-94.68	-94.72	-94.33	-94.35	-93.87	-94.76	-94.01	-94.67	-94.28	-93.77	-94.89	-94.05	-94.21	-94.25	-94.22	-94.16	-94.69	-94.35	-94.67	-94.84	-94.69	-94.33	-94.66	-94.65	-94.62	-94.50	-94.59	-94.15	-94.66	-94.17	-93.98	-94.34	-94.94	-94.10	-94.45	-94.70	-94.91	-94.67	-94.76	-93.99	-94.20	-94.10	-94.86	-94.74	
Lat.(°)	17.05	16.85	17.26	17.44	17.54	17.51	16.77	17.16	17.02	17.53	16.71	16.64	17.56	16.88	16.97	17.63	16.83	16.84	17.29	16.88	17.34	17.51	17.63	16.95	17.30	17.59	17.46	17.40	16.93	16.94	17.33	16.99	16.91	17.33	17.13	17.22	17.29	16.98	17.16	17.56	16.99	17.20	17.01	17.10	17.52	17.52	
Hora	17:29:21	23:44:50	12:47:45	03:37:25	08:31:21	04:12:47	15:08:07	00:48:29	04:27:43	07:22:28	12:04:58	18:12:37	19:05:49	23:13:33	07:51:44	04:42:09	12:18:31	23:48:52	08:30:57	04:50:33	13:44:39	14:52:51	19:05:44	02:15:26	13:53:43	08:44:34	02:37:53	03:54:32	14:13:33	03:07:34	21:16:41	22:03:45	21:45:04	10.55.10	11:02:53	03:49:01	18:29:37	00:23:44	19:52:01	02:17:34	00:01:39	20:53:04	19:02:35	07:38:57	19:34:42	03:29:32	
Fecha/juliano	2020-01-24/24	2020-01-24/24	2020-01-27/27	2020-02-09/40	2020-02-18/49	2020-02-23/54	2020-02-27/58	2020-03-02/62	2020-08-30/243	2020-08-31/244	2020-09-09/253	2020-09-09/253	2020-09-16/260	2020-09-16/260	2020-09-21/265	2020-09-23/267	2020-09-28/272	2020-09-28/272	2020 - 10 - 01/275	2020 - 10 - 15/289	2020 - 10 - 15/289	2020 - 10 - 17/291	2020 - 10 - 21/295	2020 - 10 - 22/296	2020 - 10 - 24/298	2020 - 10 - 26/300	2020 - 11 - 05/310	2020 - 11 - 08/313	2020 - 11 - 08/313	2020 - 11 - 09/314	2020 - 11 - 09/314	2020 - 11 - 09/314	2020 - 11 - 13/318	2020 - 11 - 22/327	2020 - 11 - 22/327	2020 - 11 - 24/329	2020 - 11 - 28/333	2020 - 12 - 11/346	2020 - 12 - 14/349	2020 - 12 - 21/356	2020 - 12 - 22/357	2020 - 12 - 28/363	2021-01-01/1	2021-01-02/2	2021-01-06/6	2021-01-08/8	
ID	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV																				
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV																			

σ_{PI}	2	9	4	2	2	2	2	-	ŝ	-	-	2	7	-	2	2	2	2	က	6	2	ŝ	2	ŝ	1	4	°°		2	4	2	-	1	2	1	-	က	×	-	ŝ	က	2	2	31	26	-	
$PI(^{\circ})$	-39	-39	43	-60	-37	-51	-48	75	42	-82	-53	-38	23	69	-63	-86	-40	-61	-48	-22	-67	-36	-68	-54	-58	-24	-26	81	-50	-38	-33	68	-81	-41	-88	-68	-43	-20	-72	-36	82	-45	-61	21	-23	-48	
Lon.(°)	-94.414	-94.437	-94.438	-94.176	-94.356	-94.228	-94.011	-94.179	-93.898	-94.342	-94.520	-93.987	-94.424	-94.013	-94.145	-94.063	-94.475	-94.504	-94.115	-94.058	-94.117	-94.113	-94.192	-94.386	-94.255	-94.034	-94.320	-94.504	-94.157	-94.386	-94.497	-94.351	-94.478	-94.451	-94.538	-94.272	-94.254	-94.478	-94.520	-94.046	-94.546	-94.005	-94.098	-94.410	-94.042	-94.523	
Lat.(°)	17.314	17.167	17.271	17.165	17.211	17.043	16.987	16.988	16.955	17.362	17.438	16.972	17.430	17.014	17.177	17.259	17.405	17.206	17.070	17.149	17.231	17.036	17.129	17.361	17.414	17.105	17.280	17.205	17.154	17.213	17.433	17.243	17.370	17.453	17.257	17.284	17.101	17.475	17.415	17.076	17.480	17.206	17.214	17.321	17.143	17.373	
$\sigma_{\delta t}(\mathrm{s})$	0.08	0.06	0.46	0.04	0.08	0.10	0.04	0.06	0.08	0.12	0.02	0.02	0.08	0.02	0.08	0.08	0.04	0.06	0.04	0.02	0.04	0.06	0.10	0.04	0.06	0.02	0.08	0.02	0.02	0.06	0.06	0.66	0.06	0.16	0.08	0.06	0.06	0.06	0.04	0.02	0.04	0.04	0.04	0.32	0.04	0.04	
$\delta t(\mathbf{s})$	0.20	0.10	0.16	0.22	0.22	0.24	0.20	0.22	0.24	0.18	0.18	0.20	0.34	0.32	0.16	0.18	0.12	0.20	0.22	0.22	0.16	0.24	0.18	0.22	0.24	0.20	0.18	0.12	0.22	0.14	0.12	0.08	0.14	0.12	0.16	0.14	0.22	0.16	0.18	0.20	0.16	0.14	0.16	0.12	0.26	0.18	
$\sigma_{\phi}(^{\circ})$	52	37	44	21	×	55	15	×	35	62	16	×	6	9	49	34	33	17	18	10	23	29	58	8	7	13	25	17	17	22	45	59	37	68	22	56	20	24	14	10	21	6	49	70	26	13	
(_) <i>\phi</i>	81	-83	61	88	65	-83	-74	0	75	30	-88	-68	-54	4	62	-54	-80	52	-79	-60	50	-72	75	58	46	-65	6-	39	-87	69	-62	27	37	-71	21	53	72	-47	41	-67	-61	67	27	78	-40	63	
D (km)	58.90	72.28	65.21	34.20	51.83	63.09	78.69	73.03	96.71	44.21	86.44	83.77	65.94	72.90	31.13	22.40	74.96	82.61	55.03	42.01	20.19	62.44	42.70	53.74	32.06	52.98	39.18	82.67	36.16	57.74	81.37	48.07	73.88	73.49	87.25	28.79	53.33	80.72	84.99	57.60	95.01	39.52	25.18	58.18	44.79	83.87	nte.
β(°)	22.00	30.00	24.00	13.00	21.00	28.00	29.00	31.00	33.00	17.00	32.00	30.00	26.00	25.00	13.00	7.00	28.00	33.00	20.00	15.00	7.00	24.00	17.00	21.00	10.00	18.00	15.00	31.00	13.00	24.00	29.00	19.00	28.00	27.00	35.00	11.00	23.00	31.00	32.00	22.00	34.00	13.00	9.00	21.00	16.00	31.00	$ia \ signie$
Mag.	4.0	4.1	4.0	4.3	4.3	4.0	4.0	4.1	4.0	4.0	4.5	4.1	4.0	4.2	4.0	4.1	4.3	4.1	4.0	4.4	4.1	4.4	4.1	4.4	4.2	4.0	4.0	4.0	4.3	4.0	4.1	4.1	4.7	4.0	4.1	4.1	4.3	4.1	4.0	4.2	4.2	4.1	4.0	4.2	4.1	4.0	la págin
Prof. (km)	146.9	125.1	146.6	147.1	134.1	120.4	141.1	123.8	148.1	148.4	135.8	144.1	137.5	156.6	139.7	181.0	141.5	128.6	148.1	157.5	170.0	137.1	137.4	140.0	186.6	159.9	148.5	139.6	152.9	128.1	145.8	139.0	140.2	143.5	126.0	145.1	123.1	133.9	134.7	144.2	138.4	171.2	156.7	148.5	151.9	138.7	Continúa en
$Lon.(^{\circ})$	-94.68	-94.73	-94.73	-94.21	-94.57	-94.31	-93.88	-94.21	-93.65	-94.54	-94.89	-93.83	-94.70	-93.88	-94.14	-93.98	-94.80	-94.86	-94.08	-93.97	-94.09	-94.08	-94.24	-94.63	-94.36	-93.92	-94.49	-94.86	-94.17	-94.63	-94.85	-94.56	-94.81	-94.76	-94.93	-94.40	-94.36	-94.81	-94.89	-93.95	-94.95	-93.86	-94.05	-94.67	-93.94	-94.90	
Lat.(°)	17.31	17.02	17.22	17.01	17.10	16.77	16.66	16.66	16.59	17.41	17.56	16.63	17.54	16.71	17.04	17.20	17.49	17.09	16.82	16.98	17.14	16.75	16.94	17.40	17.51	16.89	17.24	17.09	16.99	17.11	17.55	17.17	17.42	17.59	17.20	17.25	16.88	17.63	17.51	16.83	17.64	17.09	17.11	17.32	16.97	17.43	
Hora	21:14:57	13:25:37	17:58:39	09:35:38	12:07:46	14:54:46	04:16:07	13:55:23	11:25:14	01:41:26	18:36:27	22:30:37	20:37:04	09:15:00	22:32:20	19:45:48	02:48:57	07:10:53	15:17:25	05:21:30	07:32:14	06:07:59	16:56:58	03:48:18	18:55:56	01:08:19	07:56:00	11:44:05	13:30:33	12:29:46	07:06:01	15:52:26	15:49:12	02:28:25	01:57:07	08:25:00	17:37:11	04:54:52	07:39:27	03:47:16	02:12:46	10:27:55	23:31:06	03:27:11	03:29:15	04:00:41	
Fecha/juliano	2021-01-08/8	2021-01-10/10	2021-01-11/11	2021 - 01 - 21/21	2021-01-21/21	2021-01-24/24	2021-01-26/26	2021 - 01 - 27/27	2021-01-28/28	2021-01-31/31	2021-02-04/35	2021-02-07/38	2021-02-08/39	2021-02-13/44	2021-02-15/46	2021-02-17/48	2021-02-18/49	2021-02-18/49	2021-02-21/52	2021-03-04/63	2021-03-11/70	2021-03-13/72	2021-03-14/73	2021-03-15/74	2021-03-15/74	2021-03-16/75	2021-03-17/76	2021-03-18/77	2021-03-19/78	2021-03-27/86	2021-03-29/88	2021-04-0 $1/91$	2021-04-07 $/97$	2021-04-17/107	2021-04-18/108	2021-04-21/111	2021-04-22/112	2021-04-24/114	2021-04-30/120	2021 - 05 - 06/126	2021-05-20/140	2021 - 05 - 20/140	2021 - 05 - 21/141	2021 - 05 - 23/143	2021-06-02/153	2021-06-02 $/153$	
ID	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV		
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	

σ_{PI}	1	1	57	1	9	2	က		2	2	ŝ	ŝ	1	13	55	5	9	38	1	1	2	ŝ	ŝ	1	2	17	ŝ	2	1			2	က	2		40	0	1	1	2	2	2	8	ŝ	2 0	ŝ	
$PI(^{\circ})$	-67	-61	% *	-48	-29	-70	-53	-64	-47	-70	-78	-40	-55	27	11	-29	-28	10	-66	-61	-63	-53	-29	69	-45	23	-64	-41	-45	-86	-64	63	-33	87	-45	-12	70	-66	-47	-47	-88	-59	20	-31	-42	-52	
Lon.(°)	-94.103	-94.244	-94.343	-94.531	-94.082	-94.468	-94.188	-94.080	-94.045	-94.162	-94.530	-94.123	-94.159	-94.055	-94.334	-94.005	-94.046	-93.669	-94.281	-94.453	-94.436	-94.108	-93.957	-94.395	-94.235	-94.392	-94.135	-94.456	-94.529	-94.204	-94.486	-94.440	-94.403	-94.369	-94.503	-93.935	-94.382	-94.130	-94.407	-94.508	-94.178	-94.449	-94.203	-93.997	-94.064	-94.383	
Lat.(°)	17.288	17.421	17.414	17.376	17.131	17.325	17.127	17.232	17.273	17.210	17.387	17.122	17.369	17.178	17.244	17.119	17.029	16.867	17.085	17.127	17.135	17.137	17.010	17.304	17.342	17.277	17.183	17.485	17.275	16.967	17.266	17.110	17.200	17.112	17.196	17.020	17.340	17.112	17.276	17.331	17.138	17.321	17.277	17.070	17.013	17.360	
$\sigma_{\delta t}(\mathbf{s})$	0.02	0.06	0.02	0.04	0.02	0.02	0.02	0.02	0.10	0.06	0.06	0.02	0.04	0.10	0.02	0.02	0.02	0.06	0.12	0.04	0.04	0.06	0.02	0.06	0.02	0.06	0.02	0.04	0.48	0.08	0.02	0.06	0.08	0.02	0.06	0.06	0.04	0.04	0.42	0.04	0.08	0.04	0.06	0.02	0.02	0.08	
$\delta t(\mathbf{s})$	0.16	0.24	0.18	0.14	0.22	0.14	0.24	0.16	0.16	0.18	0.14	0.20	0.22	0.22	0.16	0.18	0.24	0.26	0.16	0.14	0.12	0.20	0.14	0.22	0.16	0.16	0.16	0.18	0.14	0.18	0.16	0.18	0.24	0.20	0.22	0.28	0.24	0.16	0.20	0.18	0.16	0.20	0.34	0.16	0.18	0.16	
$\sigma_{\phi}(\degree)$	10	ъ	12	25	19	13	14	10	25	50	20	14	×	50	26	13	12	21	71	63	33	39	22	10	7	33	22	10	74	11	21	10	6	16	6	31	4	21	12	11	69	10	2	12	15	45	
$\phi(\circ)$	52	40	-64	79	-67	53	-87	54	57	78	43	-76	53	47	47	-63	-61	-49	56	57	81	-85	-86	-6	71	50	81	67	56	18	73	50	68	52	58	-44	-9	54	54	65	37	48	-55	-73	-80	19	
D (km)	11.56	31.20	48.18	85.69	43.52	70.97	42.93	23.83	24.41	23.98	85.96	43.39	11.55	36.62	44.61	53.67	67.28	144.43	59.18	79.63	75.54	40.76	79.59	55.00	20.28	54.84	29.77	77.54	84.77	78.34	75.70	79.20	62.19	66.87	83.01	80.27	52.15	45.43	58.09	79.62	40.30	66.66	15.42	63.70	69.45	52.90	nte.
$\beta(")$	4.00	0.00	18.00	31.00	16.00	27.00	18.00	8.00	7.00	0.00	33.00	16.00	4.00	13.00	18.00	18.00	26.00	34.00	26.00	33.00	32.00	16.00	28.00	21.00	7.00	21.00	11.00	28.00	34.00	33.00	27.00	34.00	22.00	28.00	35.00	27.00	17.00	18.00	23.00	30.00	16.00	27.00	6.00	21.00	27.00	19.00	ou siguie
Mag.	4.0	4.1	4.2	4.0	4.3	4.2	4.3	4.1	4.0	4.3	4.2	4.0	4.1	4.0	4.1	4.3	4.4	4.2	4.0	4.0	4.1	4.0	4.1	4.1	4.5	4.0	4.2	4.3	4.2	4.0	4.1	4.0	4.2	4.0	4.0	4.1	4.1	4.1	4.0	4.2	4.1	4.1	4.3	4.0	4.0	4.1	la págu
Prof. (km)	162.6	186.7	148.9	142.7	154.7	138.5	128.6	170.2	190.4	145.9	134.5	149.4	182.4	162.6	137.4	163.0	138.1	214.0	120.6	122.5	120.4	138.2	151.4	141.6	176.7	142.3	157.7	145.2	124.2	122.1	148.6	118.7	150.2	124.5	120.6	157.8	167.1	142.8	140.0	136.3	143.9	131.3	156.2	161.8	139.0	153.9	Continúa en
$Lon.(^{\circ})$	-94.06	-94.34	-94.54	-94.92	-94.02	-94.79	-94.23	-94.01	-93.94	-94.18	-94.92	-94.10	-94.17	-93.97	-94.52	-93.86	-93.95	-93.19	-94.42	-94.76	-94.73	-94.07	-93.77	-94.65	-94.32	-94.64	-94.12	-94.77	-94.91	-94.26	-94.83	-94.73	-94.66	-94.59	-94.86	-93.72	-94.62	-94.11	-94.67	-94.87	-94.21	-94.75	-94.26	-93.85	-93.98	-94.62	
Lat.(°)	17.26	17.52	17.51	17.43	16.94	17.33	16.94	17.15	17.23	17.10	17.46	16.93	17.42	17.04	17.17	16.92	16.74	16.42	16.85	16.94	16.95	16.96	16.70	17.29	17.37	17.24	17.05	17.65	17.23	16.62	17.21	16.90	17.08	16.91	17.07	16.72	17.36	16.91	17.23	17.34	16.96	17.32	17.24	16.82	16.71	I7.40	
Hora	16:31:13	03:58:01	14:27:42	07:41:48	21:13:10	12:43:21	06:51:33	07:21:15	06:12:08	06:39:57	13:12:28	12:28:33	02:50:10	06:09:28	07:13:21	13:26:10	23:26:33	08:57:30	21:28:36	21:49:56	21:30:24	19:47:32	07:28:43	07:39:05	05:54:54	06:48:51	13:27:31	10:59:27	21:51:49	16:43:59	01:46:13	07:44:31	08:16:03	23:13:11	20:58:54	07:53:10	22:09:15	05:44:09	14:33:27	13:31:47	20:21:47	13:55:31	15:35:59	20:02:33	18:58:13	03:07:11	
Fecha/juliano	2021-06-08/159	2021-06-21/172	2021-06-22/173	2021-06-24/175	2021-06-24/175	2021-06-25/176	2021-07-06/187	2021-07-27/208	2021-07-30/211	2021-09-22/265	2021-09-28/271	2021-09-29/272	2021-09-30/273	2021 - 10 - 01/274	2021 - 10 - 07/280	2021 - 10 - 14/287	2021 - 10 - 17/290	2021 - 10 - 20/293	2021 - 10 - 23/296	2021 - 10 - 25/298	2021 - 10 - 31/304	2021 - 11 - 13/317	2021 - 11 - 17/321	2021 - 11 - 19/323	2021 - 11 - 20/324	2021 - 11 - 21/325	2021 - 11 - 22/326	2021 - 12 - 01/335	2021 - 12 - 13/347	2021 - 12 - 19/353	2021 - 12 - 22/356	2021 - 12 - 22/356	2021 - 12 - 24/358	2022-01-04/4	2022-01-07/7	2022-01- $20/20$	2022-01-26/26	2022-02-01/32	2022-02-01/32	2022- 02 - $04/35$	2022-02-06/37	$2022 extsf{-}03 extsf{-}03/62$	2022-03-07/66	2022-03-20/79	2022-03-28/87	2022-03-31/90	
ID	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV		UXUV				UXUV	UXUV	UXUV				UXUV																													
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV																																	

σ_{PI}	2	0	1	S	1	17	1	1	4	1	2	28	16	2	2		1	7	18	86	9	2	2	2	2	19	2	1	ъ	ŝ	2	ŝ	2	2	1	1	2 2	15	1	2		ŝ	ŝ	4	0	2	
PI(°)	-42	78	-47	-48	-74	-28	-65	-76	-44	82	-65	16	-17	-56	-78	84	-43	-21	-21	-2	-23	06	-74	-42	-56	-14	64	-63	27	-38	76	45	-81	-51	40	83	-26	-19	-89	-88	-58	50	56	-30	-90	-53	
Lon.($^{\circ}$)	-94.097	-94.518	-94.022	-94.129	-94.106	-94.117	-94.074	-94.428	-94.116	-94.437	-94.451	-93.726	-94.116	-94.364	-94.536	-94.136	-94.465	-94.087	-93.975	-94.496	-94.001	-94.112	-94.444	-94.237	-94.101	-94.151	-94.393	-94.403	-94.433	-94.008	-94.038	-94.123	-94.143	-94.403	-94.513	-94.303	-94.003	-94.153	-94.363	-94.318	-94.218	-94.438	-93.993	-94.013	-94.473	-94.128	
Lat.(°)	17.152	17.393	16.957	17.217	17.014	17.204	17.182	17.310	17.181	17.288	17.179	16.914	17.089	17.220	17.399	16.980	17.443	17.055	17.110	17.383	17.066	17.231	17.265	17.030	17.222	17.180	17.144	17.289	17.589	17.079	16.999	17.124	16.939	17.204	17.384	17.349	17.104	17.064	17.224	17.399	17.064	17.414	17.149	17.069	17.299	17.059	
$\sigma_{\delta t}(\mathbf{s})$	0.02	0.04	0.02	0.02	0.10	0.14	0.08	0.04	0.02	0.04	0.02	0.04	0.04	0.04	0.06	0.14	0.08	0.02	0.04	0.06	0.02	0.04	0.10	0.10	0.02	0.10	0.04	0.04	0.12	0.02	0.04	0.06	0.10	0.04	0.16	0.06	0.02	0.04	0.14	0.10	0.08	0.10	0.06	0.02	0.04	0.04	
$\delta t(\mathbf{s})$	0.18	0.26	0.18	0.16	0.16	0.12	0.26	0.20	0.16	0.18	0.18	0.24	0.26	0.20	0.12	0.20	0.14	0.24	0.18	0.20	0.18	0.20	0.18	0.24	0.14	0.24	0.18	0.22	0.34	0.16	0.30	0.18	0.12	0.14	0.08	0.20	0.18	0.26	0.24	0.18	0.16	0.22	0.14	0.12	0.18	0.20	
$\sigma_{\phi}(\degree)$	12	4	10	17	78	48	6	20	17	6	18	29	19	12	56	50	35	12	26	6	14	10	39	24	13	12	10	10	18	17	10	33	57	26	68	15	10	25	56	16	57	12	47	20	9	36	
$\phi(\circ)$	-76	٦	-80	-90	84	-57	41	44	-85	58	63	-34	-57	60	68	9	-69	-63	-49	22	-58	25	37	-18	68	2	46	46	49	-72	13	-77	65	73	16	-76	-60	-61	69	-76	20	62	85	-76	13	87	_
D (km)	38.03	83.48	83.92	22.65	67.47	25.86	33.82	62.07	30.89	64.42	73.85	128.18	50.84	52.62	87.63	74.31	75.47	59.26	59.24	78.42	63.92	20.51	66.66	66.41	23.41	30.47	66.49	56.92	86.86	60.70	74.09	42.98	83.38	61.87	82.06	35.23	56.61	55.90	52.05	41.85	58.09	67.64	50.14	62.09	72.08	57.12	oto
$\beta(^{\circ})$	14.00	31.00	32.00	8.00	27.00	0.00	11.00	24.00	11.00	26.00	30.00	33.00	19.00	22.00	32.00	30.00	28.00	23.00	19.00	29.00	21.00	7.00	27.00	29.00	8.00	11.00	29.00	22.00	29.00	21.00	27.00	16.00	35.00	25.00	33.00	12.00	19.00	21.00	21.00	14.00	25.00	25.00	17.00	21.00	29.00	24.00	
Mag.	4.0	4.2	4.0	4.0	4.1	4.0	4.1	4.1	4.0	4.0	4.0	4.1	4.0	4.0	4.0	4.1	4.0	4.1	4.0	4.1	4.1	4.1	4.0	4.0	4.2	4.1	4.2	4.2	4.3	4.1	4.0	4.2	4.0	4.0	4.0	4.0	4.2	4.2	4.2	4.1	4.1	4.3	4.1	4.2	4.2	4.2	in mini
Prof. (km)	156.6	138.2	134.0	156.8	135.0	168.1	171.1	141.0	157.9	132.3	125.9	199.6	143.8	129.0	137.8	130.5	140.2	140.6	167.5	138.7	166.4	169.9	133.0	120.5	169.9	149.9	122.0	141.0	159.0	162.0	146.0	154.0	119.0	132.0	128.0	167.0	164.0	147.0	133.0	170.0	125.0	148.0	166.0	159.0	129.0	130.0	O antimica a
$Lon.(^{\circ})$	-94.05	-94.89	-93.90	-94.11	-94.07	-94.09	-94.00	-94.71	-94.09	-94.73	-94.76	-93.31	-94.09	-94.58	-94.93	-94.13	-94.79	-94.03	-93.80	-94.85	-93.86	-94.08	-94.74	-94.33	-94.06	-94.16	-94.64	-94.66	-94.72	-93.87	-93.93	-94.10	-94.14	-94.66	-94.88	-94.46	-93.86	-94.16	-94.58	-94.49	-94.29	-94.73	-93.84	-93.88	-94.80	-94.11	
Lat.(°)	16.99	17.47	16.60	17.12	16.71	17.09	17.05	17.30	17.04	17.26	17.04	16.51	16.86	17.12	17.48	16.64	17.57	16.79	16.90	17.45	16.81	17.14	17.21	16.74	17.13	17.04	16.97	17.26	17.86	16.84	16.68	16.93	16.56	17.09	17.45	17.38	16.89	16.81	17.13	17.48	16.81	17.51	16.98	16.82	17.28	16.80	
Hora	11:46:57	11:39:08	04:29:24	22:07:15	03:30:52	04:19:22	23:53:36	06:11:35	11:41:46	17:24:12	23:26:56	07:18:28	12:34:14	03:48:44	05:27:50	11:15:54	19:21:31	00:00:00	23:01:45	07:37:00	14:34:45	08:13:00	16:38:21	20:02:48	10:51:03	15:58:20	09:28:32	07:40:33	11:16:19	12:49:59	22:38:14	16:49:06	10:02:23	09:43:08	03:49:58	13:18:45	15:54:45	16:36:48	07:12:14	05:02:32	09:00:25	19:03:58	06:37:43	02:30:23	06:01:05	06:12:44	
Fecha/juliano	2022-04-05/95	2022-04-13/103	2022-04- $16/106$	2022-04-18/108	2022-04-22/112	2022-04-26/116	2022-04-27/117	2022-04-28/118	2022 - 04 - 28/118	2022 - 04 - 29/119	2022-05-03/123	2022-05-15/135	2022 - 05 - 16/136	2022- 05 - $19/139$	2022-05-22/142	2022-05-22/142	2022 - 05 - 23/143	2022-05-24/144	2022 - 05 - 31/151	2022-06-07/158	2022-06-07/158	2022-06- $16/167$	2022-06-17/168	2022-06-17/168	2022-06-22/173	2022-06-25/176	2022-09-07/250	2022-09-09/252	2022-09-13/256	2022-09-19/262	2022-09-19/262	2022-09- $30/273$	2022 - 10 - 07/280	2022 - 10 - 13/286	2022 - 10 - 15/288	2022 - 10 - 15/288	2022 - 10 - 17/290	2022 - 10 - 18/291	2022 - 10 - 21/294	2022 - 10 - 23/296	2022-11-04/308	2022-11-05/309	2022 - 11 - 21/325	2022-11- $23/327$	2022 - 11 - 24/328	2022 - 11 - 25/329	
ID	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	UXUV	
Red	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	RSBAV	

σ_{PI}	2	2	2	49	73	75	1	4	2	က	48	20	13	6	2	2	ŝ	17	10	24	9	4	17	2	×	2	11	30	2	4	ŝ	3	×	1	9	9	1	30	12	ъ	11	7	42	2	2	19	
$PI(^{\circ})$	-47	$\overline{76}$	-32	-11	-45	37	-69	-40	-53	-26	55	19	36	28	-73	72	80	25	40	17	44	78	-33	48	-24	-69	-19	10	56	44	37	28	26	79	41	35	62	10	-25	25	-34	24	10	-84	53	-16	
Lon.(°)	-94.088	-94.233	-94.028	-94.023	-94.108	-94.393	-94.463	-94.108	-94.488	-93.953	-92.098	-92.153	-92.103	-92.403	-92.453	-92.278	-92.383	-92.063	-92.168	-92.118	-92.538	-92.403	-92.343	-92.465	-92.327	-92.320	-92.295	-92.138	-92.075	-92.224	-92.067	-92.126	-92.376	-92.291	-92.328	-92.539	-92.049	-92.097	-92.281	-92.397	-92.312	-92.322	-92.441	-92.143	-92.468	-92.367	
Lat.(°)	17.224	17.314	17.064	17.059	17.004	17.224	17.179	17.204	17.394	16.929	15.901	15.921	15.826	16.051	16.101	16.061	16.011	15.836	15.916	15.956	16.096	15.966	15.866	16.048	15.862	15.962	15.926	15.781	15.810	15.898	15.858	15.827	15.992	15.937	15.872	16.146	15.713	15.917	15.858	15.943	15.855	15.891	16.065	15.864	16.093	16.023	
$\sigma_{\delta t}(\mathrm{s})$	0.04	0.04	0.02	0.04	0.02	0.02	0.04	0.02	0.08	0.02	0.08	0.10	0.16	0.04	0.12	0.06	0.06	0.14	0.06	0.06	0.08	0.06	0.10	0.14	0.04	0.52	0.02	0.08	0.14	0.04	0.70	0.50	0.04	0.08	0.10	0.08	0.10	0.48	0.12	0.08	0.06	0.04	0.14	0.08	0.14	0.04	
$\delta t(\mathbf{s})$	0.16	0.20	0.14	0.22	0.24	0.24	0.16	0.14	0.14	0.24	0.14	0.16	0.16	0.24	0.14	0.14	0.18	0.20	0.22	0.06	0.24	0.18	0.08	0.20	0.16	0.16	0.28	0.22	0.10	0.14	0.24	0.24	0.14	0.26	0.28	0.24	0.16	0.38	0.10	0.18	0.12	0.28	0.16	0.28	0.22	0.28	
$\sigma_{\phi}(^{\circ})$	16	13	14	19	12	6	41	20	66	10	46	44	47	9	45	30	25	90	21	66	17	23	34	81	17	69	13	23	65	40	88	34	21	22	36	18	58	6	74	66	26	10	54	29	66	18	
$\phi(\circ)$	69	-70	-90	-42	-48	58	58	-85	-76	-63	-66	88	17	-80	-49	-47	-44	-40	86	-50	-77	-49	-71	-60	-86	8 <mark>-</mark>	-69	40	-11	6	15	6	50	-35	-80	-80	°	-69	87	57	-62	83	-48	-22	24	-66	
D (km)	24.29	19.18	61.61	63.07	69.58	58.16	76.17	26.43	77.10	95.52	84.26	79.15	100.32	76.89	79.68	57.55	80.51	99.55	80.91	72.38	97.65	90.69	102.20	88.62	101.45	81.07	85.67	110.19	104.69	86.56	94.59	100.10	82.73	83.06	99.50	93.46	126.57	80.71	98.46	94.10	101.44	95.14	82.09	91.90	83.82	76.17	nte.
$\beta(")$	8.00	7.00	22.00	22.00	27.00	24.00	32.00	9.00	28.00	35.00	21.18	22.61	28.33	23.92	23.77	15.82	20.73	24.17	24.34	19.35	27.73	25.43	33.34	28.00	33.00	24.00	23.00	33.00	31.00	26.00	27.00	28.00	28.00	21.00	33.00	31.00	30.00	20.00	34.00	31.00	32.00	30.00	23.00	25.00	23.00	19.00	ia siguie
Mag.	4.0	4.2	4.1	4.0	4.1	4.0	4.1	4.0	4.0	4.1	4.1	4.4	4.1	4.3	4.1	4.3	4.2	4.2	4.1	4.1	4.2	4.1	4.1	4.1	4.3	4.2	3.8	4.3	4.1	4.1	3.9	4.4	3.8	3.8	4.3	3.4	3.4	4.1	3.5	4.4	4.1	4.1	3.7	3.6	3.5	5.0	la págin
Prof. (km)	174.3	162.7	152.9	156.5	134.2	132.2	122.9	166.8	145.9	138.5	215.8	188.4	184.4	171.7	179.2	201.4	211.0	220.1	177.2	204.4	184.1	189.1	153.7	164.7	153.0	177.7	196.9	168.6	171.5	174.8	185.2	187.7	155.0	216.3	151.8	151.4	214.0	225.1	145.5	158.0	161.3	164.4	195.0	194.4	197.7	213.6	Continúa en
$Lon.(^{\circ})$	-94.03	-94.32	-93.91	-93.90	-94.07	-94.64	-94.78	-94.07	-94.83	-93.76	-92.06	-92.17	-92.07	-92.67	-92.77	-92.42	-92.63	-91.99	-92.20	-92.10	-92.94	-92.67	-92.55	-92.79	-92.52	-92.50	-92.45	-92.14	-92.01	-92.31	-92.00	-92.11	-92.62	-92.44	-92.52	-92.94	-91.96	-92.06	-92.43	-92.66	-92.49	-92.51	-92.74	-92.15	-92.80	-92.60	
Lat.(°)	17.13	17.31	16.81	16.80	16.69	17.13	17.04	17.09	17.47	16.54	15.52	15.56	15.37	15.82	15.92	15.84	15.74	15.39	15.55	15.63	15.91	15.65	15.45	15.81	15.44	15.64	15.57	15.28	15.34	15.51	15.43	15.37	15.70	15.59	15.46	16.01	15.14	15.55	15.43	15.60	15.43	15.50	15.85	15.45	15.90	15.76	
Hora	08:14:53	23:36:49	18:23:07	03:36:51	09:32:30	21:22:04	03:38:33	07:39:39	23:46:52	03:24:55	10:33:32	03:33:49	16:10:54	14:54:23	20:31:07	11:08:43	12:53:12	00:56:00	03:25:49	08:27:23	20:14:45	02:27:13	22:09:34	16:20:46	15:18:40	11:26:04	18:51:44	19:49:16	$04{:}22{:}16$	20:18:26	20:18:26	21:15:48	03:26:16	06:03:18	08:00:24	01:02:27	20:33:37	00:03:42	13:59:14	08:36:27	03:05:51	07:52:11	17:32:36	11:36:49	23:35:50	05:21:31	
Fecha/juliano	2022 - 12 - 10/344	2022 - 12 - 12/346	2022 - 12 - 14/348	2022 - 12 - 18/352	2022 - 12 - 18/352	2022 - 12 - 19/353	2022 - 12 - 21/355	2022 - 12 - 23/357	2022 - 12 - 26/360	2022 - 12 - 29/363	2018-01-11/11	2018-01-31/31	2018-03-04/64	2018-04-12/102	2018-09-16/256	2018 - 10 - 22/292	2018 - 12 - 29/359	2019-01-11/11	2019-06-27/177	2019-07-16/196	2019-09-13/253	2019-09-25/265	2019-09-25/265	2020-02-04/35	2020-02-15/46	2020-03-07/67	2020-03-13/73	2020-03-18/78	2020-04-07/98	2020-04-14/105	2020-04-22/113	2020-04-22/113	2020-05-28/149	2020 - 11 - 06/311	2020 - 11 - 17/322	2020 - 12 - 31/366	2021-01-04/4	2021-01-10/10	2021-02-05/36	2021-03-11/70	2021-04-14/104	2021-04-28/118	2021-06-0 $1/152$	2021 - 06 - 13/164	2021-06-25/176	2021-07-25/206	
ID	UXUV	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG										
Red	RSBAV	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN										

σ_{PI}	38	-	ŝ	66	4	2	24	22	2	2	2	2	2	7	4	×	ŝ	11	13	22	66	2	4	ŝ	7	2	1	4	15	21	10	Ţ	2	က	9	30	13	12	58	14	11	17	7	5	20	က	
PI(°)	-11	41	43	37	-40	59	-19	6 -	52	61	75	35	44	-45	38	19	44	34	18	-22	-14	64	59	74	16	58	59	51	-13	18	23	42	34	-82	43	24	28	-22	-15	26	32	-31	21	42	23	58	
Lon.(°)	-92.350	-92.516	-92.270	-92.117	-92.286	-92.261	-92.325	-92.378	-92.244	-92.217	-92.190	-92.581	-92.456	-92.247	-92.103	-92.086	-91.993	-92.308	-92.464	-92.350	-92.589	-92.296	-92.389	-92.384	-92.529	-92.297	-92.043	-92.494	-92.454	-92.112	-92.223	-92.453	-92.359	-94.852	-94.802	-94.967	-94.597	-94.467	-94.577	-94.792	-94.857	-94.652	-94.817	-94.772	-94.742	-94.857	
Lat.(°)	15.935	16.066	16.010	15.762	15.829	15.968	15.877	15.904	16.302	15.918	15.847	16.188	16.046	15.862	15.855	15.798	15.865	15.881	16.033	15.949	16.137	15.942	16.192	16.057	16.146	15.914	15.901	16.071	16.124	15.830	15.871	16.046	15.851	17.061	17.211	16.916	16.941	17.106	17.041	17.236	17.006	17.186	17.041	16.906	16.846	17.266	
$\sigma_{\delta t}(\mathbf{s})$	0.62	0.10	0.04	0.08	0.10	0.04	0.36	0.16	0.46	0.08	0.10	0.16	0.66	0.10	0.10	1.28	0.10	0.02	0.08	0.04	0.12	0.04	0.08	0.22	0.06	0.04	0.10	0.12	0.68	0.08	0.46	0.60	0.04	0.02	0.02	0.06	0.06	0.02	0.02	0.06	0.02	0.02	0.02	0.08	0.06	0.02	
$\delta t(\mathbf{s})$	0.20	0.14	0.20	0.20	0.10	0.20	0.12	0.18	0.22	0.18	0.20	0.14	0.10	0.10	0.22	0.22	0.12	0.34	0.22	0.08	0.18	0.26	0.38	0.14	0.14	0.32	0.12	0.28	0.18	0.14	0.32	0.16	0.26	0.12	0.18	0.08	0.12	0.12	0.12	0.18	0.08	0.10	0.20	0.10	0.16	0.10	
$\sigma_{\phi}(\degree)$	57	42	20	29	54	21	52	90	31	42	54	79	56	59	11	69	63	16	41	56	40	15	17	70	27	19	72	39	77	50	12	76	18	21	22	30	33	12	23	23	39	ŝ	×	00	31	12	
$\phi(^{\circ})$	-68	74	-83	32	78	-61	-84	1	-62	37	52	10	-79	-86	48	-47	-15	84	55	-77	51	-56	81	40	87	-81	-17	-80	-81	-35	-48	56	87	-44	9	63	45	29	36	0	-32	41	87	15	43	-10	
D (km)	89.59	96.02	66.60	114.42	104.98	74.24	98.24	98.72	24.04	81.97	96.34	99.90	87.21	95.47	94.34	107.14	96.99	95.90	90.39	86.98	104.38	82.47	58.88	73.45	91.34	88.20	86.29	91.14	78.02	99.53	92.39	86.86	106.60	10.27	32.02	43.08	71.82	92.09	68.25	37.63	19.94	54.65	18.35	47.22	62.45	39.01	nte.
β(°)	31.00	30.00	17.00	35.00	33.00	20.00	33.00	34.00	20.00	24.00	28.00	30.00	28.00	32.00	25.00	29.00	24.00	31.00	30.00	30.00	32.00	19.00	15.00	19.00	31.00	27.00	25.00	28.00	19.00	30.00	27.00	29.00	34.00	5.19	12.26	23.07	30.37	29.07	26.32	14.04	9.72	20.53	8.47	23.76	31.04	15.75	na sigure
Mag.	3.6	3.9	4.1	3.8	3.6	4.7	3.8	3.7	3.6	3.9	3.8	3.9	4.0	4.1	4.3	3.7	4.4	3.9	3.9	4.0	4.1	4.0	3.8	4.0	3.9	3.7	3.9	3.9	4.3	3.5	4.0	4.2	3.8	4.7	4.3	4.7	4.4	4.4	4.3	5.0	4.3	4.3	4.3	4.3	4.5	4.4	la págu
Prof. (km)	145.9	164.9	209.7	164.6	158.2	204.5	152.2	146.0	64.4	179.8	181.4	171.3	165.9	152.6	203.9	189.6	214.9	157.8	154.7	146.1	166.2	233.4	215.5	215.1	151.6	175.1	184.0	172.0	226.2	168.7	176.0	157.0	157.8	113.0	147.3	101.1	122.5	165.6	137.9	150.4	116.3	145.9	123.1	107.2	103.7	138.2	Continúa en
$Lon.(^{\circ})$	-92.56	-92.90	-92.40	-92.10	-92.43	-92.38	-92.51	-92.62	-92.35	-92.30	-92.24	-93.03	-92.77	-92.36	-92.07	-92.03	-91.85	-92.48	-92.79	-92.56	-93.04	-92.45	-92.64	-92.63	-92.92	-92.46	-91.95	-92.85	-92.77	-92.09	-92.31	-92.77	-92.58	-94.82	-94.72	-95.05	-94.31	-94.05	-94.27	-94.70	-94.83	-94.42	-94.75	-94.66	-94.60	-94.83	
Lat.(°)	15.59	15.85	15.74	15.24	15.38	15.65	15.47	15.53	16.32	15.55	15.41	16.09	15.81	15.44	15.43	15.31	15.45	15.48	15.78	15.62	15.99	15.60	16.10	15.83	16.01	15.55	15.52	15.86	15.97	15.38	15.46	15.81	15.42	17.03	17.33	16.74	16.79	17.12	16.99	17.38	16.92	17.28	16.99	16.72	16.60	17.44	
Hora	13:57:50	14:47:12	02:34:08	23:51:16	03:39:48	09:33:12	07:11:23	07:28:42	11:04:40	06:53:40	07:18:03	10:43:46	01:27:06	07:57:43	14:43:33	03:09:59	07:25:26	12:42:13	12:16:13	08:38:31	12:51:15	16:21:25	15:57:50	18:56:35	06:52:34	12:12:41	06:10:33	10:28:29	13:23:20	06:58:35	09:39:47	21:39:17	22:27:59	08:43:57	13:48:21	03:03:16	08:08:24	03:01:42	00:15:00	12:39:40	22:48:18	10:14:57	00:38:12	22:47:23	09:00:44	13:37:19	
Fecha/juliano	2021-08-22/234	2021-08-28/240	2021-09-11/254	2021-09-27/270	2021-10-0 $3/276$	$2021 ext{-} 10 ext{-} 09 / 282$	2021 - 10 - 22/295	2021 - 10 - 25/298	2021-11- $25/329$	2021-12-07 $/341$	2021 - 12 - 13/347	2021 - 12 - 18/352	2021- 12 - $21/355$	2021- 12 - $25/359$	2022-01-03/3	2022-01-17/17	2022 - 01 - 31/31	2022-02-08/39	2022-03-07/66	2022-04-03/93	2022-04-05/95	2022-04-12/102	2022 - 05 - 03 / 123	2022 - 05 - 08/128	2022-06-29/180	$2022 extsf{-}06 extsf{-}29/180$	2022-07-24/205	2022-07-28/209	2022-08-03/215	2022-08-18/230	2022-09- $26/269$	2022 - 10 - 14/287	2022 - 12 - 31/365	2018-01-18/18	2018-02-07/37	2018-05-06/126	2018-05-15/135	2018-05-22/142	2018-06-06/156	2018-07-22/186	2018-09-13/253	2018-09-28/268	2018 - 11 - 23/323	2018 - 12 - 16/346	2018 - 12 - 27/357	2019-01-10/10	
ID	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CCIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	CMIG	
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

σ_{PI}	66	1	9	56	4	-	-	21	S	ŝ	56	32	1	က	1	35	10	4	2	_	11	5 L	2	2	ŝ	ŝ	1	ŝ	28	20	6	22	4	20	I	11	22	11	45	-	2	9	0	6	2	1	
(°) Iq	-46	53	-43	7	-64	-73	-77	-21	-35	81	90	-17	-84	-89	70	13	-25	-30	82	46	32	45	44	41	-42	-72	68	-82	34	-25	49	22	-37	50	62	25	36	-14	-11	-85	67	51	76	22	-79	-62	
Lon.($^{\circ}$)	-94.582	-94.857	-94.462	-94.887	-94.652	-95.037	-95.137	-94.622	-94.837	-94.942	-94.507	-92.694	-93.439	-93.204	-93.334	-93.244	-93.209	-93.459	-93.099	-93.164	-93.514	-93.094	-93.104	-93.444	-93.419	-92.684	-92.684	-93.184	-93.409	-92.879	-93.079	-93.149	-93.509	-93.369	-93.239	-93.404	-93.072	-93.352	-93.394	-93.466	-92.884	-93.348	-93.199	-93.006	-93.475	-93.440	
Lat.(°)	17.016	17.161	17.111	17.061	16.976	16.956	17.201	17.021	17.286	17.391	16.911	15.632	15.707	15.572	15.627	15.477	16.012	15.692	15.622	15.457	15.752	15.857	15.862	15.612	15.612	15.782	15.617	15.587	15.807	15.697	15.852	15.937	15.807	15.667	15.602	15.662	15.801	15.631	15.627	15.698	15.559	15.669	15.486	15.759	15.732	15.721	
$\sigma_{\delta t}(\mathrm{s})$	0.02	0.02	0.04	0.02	0.02	0.04	0.04	0.04	0.04	0.04	0.06	0.18	0.02	0.04	0.02	0.02	0.14	0.06	0.02	0.02	0.04	0.02	0.04	0.10	0.12	0.04	0.02	0.04	0.04	0.06	0.04	0.04	0.04	0.02	0.10	0.04	0.06	0.08	0.04	0.04	0.04	0.04	0.14	0.08	0.08	0.12	
$\delta t(\mathbf{s})$	0.12	0.14	0.12	0.26	0.18	0.10	0.32	0.16	0.10	0.22	0.16	0.04	0.12	0.14	0.06	0.08	0.22	0.18	0.22	0.16	0.16	0.18	0.18	0.12	0.10	0.20	0.38	0.18	0.16	0.12	0.16	0.30	0.28	0.14	0.14	0.16	0.16	0.22	0.24	0.16	0.30	0.24	0.24	0.12	0.22	0.26	
$\sigma_{\phi}(\degree)$	24	7	30	7	20	35	4	27	36	12	85	53	ъ	14	×	19	31	7	16	က	49	c.	9	25	83	10	10	20	20	29	32	15	7	23	12	15	31	61	11	×	16	31	25	59	34	8	
$()\phi$	41	74	1	62	-10	46	-1	17	2	51	40	-45	-17	-22	ъ	-51	-47	70	-46	-30	-25	-33	-32	-35	-30	84	-56	-34	-20	45	4	-22	-57	-49	53	-32	-23	-73	-35	-11	-72	×	-28	-38	-26	20	
D (km)	68.90	16.89	92.87	6.86	57.06	45.43	60.06	60.11	44.05	67.30	91.80	116.74	49.03	29.07	30.81	49.92	68.25	53.53	32.05	56.23	65.80	43.82	42.86	53.90	48.24	69.21	118.94	27.17	47.88	74.25	45.26	53.21	68.03	34.40	23.25	41.88	38.77	33.46	42.25	54.42	80.30	29.48	48.34	48.39	56.71	48.71	nte.
$\beta(")$	26.16	16.49	27.36	3.04	23.77	24.75	26.52	24.42	17.64	25.87	34.34	31.77	27.95	17.48	17.01	32.12	20.46	31.63	16.56	27.61	34.68	14.02	13.80	34.40	30.83	32.65	31.76	15.00	22.96	22.91	13.91	15.47	34.36	21.59	13.97	25.91	13.00	23.00	27.00	33.00	29.00	18.00	26.00	16.00	31.00	29.00	na siguie
Mag.	4.3	4.8	4.3	4.5	4.3	4.4	4.9	4.4	4.3	4.5	4.3	4.4	4.3	4.5	4.3	4.3	4.5	4.3	4.2	4.7	4.3	4.5	4.4	4.5	4.2	4.7	4.6	4.7	4.3	4.2	4.3	4.3	5.5	4.2	4.6	4.2	3.9	3.8	4.1	4.6	3.9	3.8	3.8	4.1	3.8	3.9	la pági
Prof. (km)	140.2	57.0	179.4	128.9	129.5	98.5	120.3	132.3	138.5	138.7	134.3	188.4	92.3	92.2	100.6	79.4	182.8	86.8	107.7	107.4	95.0	175.4	174.4	78.6	80.7	107.9	192.0	101.3	112.9	175.6	182.7	192.2	99.4	86.8	93.4	86.1	166.1	78.4	81.5	82.4	142.9	89.2	99.8	164.7	94.9	86.1	Continúa en
$Lon.(^{\circ})$	-94.28	-94.83	-94.04	-94.89	-94.42	-95.19	-95.39	-94.36	-94.79	-95.00	-94.13	-92.17	-93.66	-93.19	-93.45	-93.27	-93.20	-93.70	-92.98	-93.11	-93.81	-92.97	-92.99	-93.67	-93.62	-93.83	-92.15	-93.15	-93.60	-92.54	-92.94	-93.08	-93.80	-93.52	-93.26	-93.59	-92.92	-93.49	-93.57	-93.71	-92.55	-93.48	-93.18	-92.79	-93.73	-93.66	
$Lat.(^{\circ})$	16.94	17.23	17.13	17.03	16.86	16.82	17.31	16.95	17.48	17.69	16.73	15.56	15.71	15.44	15.55	15.25	16.32	15.68	15.54	15.21	15.80	16.01	16.02	15.52	15.52	15.86	15.53	15.47	15.91	15.69	16.00	16.17	15.91	15.63	15.50	15.62	15.90	15.56	15.55	15.69	15.41	15.63	15.27	15.81	15.76	15.74	
Hora	17:10:05	17:57:03	10:47:38	15:23:17	10:07:57	05:00:43	16:48:18	18:45:43	03:21:17	02:35:25	12:59:49	03:33:49	03:12:28	21:01:51	18:24:41	00:49:41	15:21:45	12:29:00	04:14:12	04:15:21	13:09:02	17:36:41	20:15:46	02:42:57	01:50:35	19:17:13	10:05:26	03:36:05	18:06:00	03:17:14	07:09:22	13:29:12	20:39:35	03:32:06	14:44:59	00:52:50	11:21:50	04:13:32	06:14:39	05:42:44	15:23:30	15:46:48	20:47:04	16:20:46	12:30:40	16:14:41	
Fecha/juliano	2019-01-13/13	2019-01-13/13	2019-01-14/14	2019-02-04/34	2019-02-07/37	2019-03-12/72	2019-04-14 $/104$	2019-08-10/220	2019-08-22/232	2019 - 10 - 28/298	2019 - 11 - 24/324	2018-01-31/31	2018-02-19/49	2018-02-27/57	2018-04-04/94	2018-05-07/127	2018-06-24/174	2018-06-29/179	2018-07-04/184	2018-07-09/189	2018-07-24/204	2018-07-28/208	2018-08-06/216	2018-08-19/229	2018-09-15/255	2019-03-10/70	2019-03-14/74	2019-04-01/91	2019-05-20/140	2019-05-29/149	2019-06-01/151	2019-06-14/164	2019-08-12/222	2019-09-26/266	2019 - 10 - 24/294	2019 - 10 - 30/300	2020-01-02/2	2020-01-12/12	2020-01-13/13	2020-01-14/14	2020-01-14/14	2020-01-30/30	2020-01-31/31	2020-02-04/35	2020-02-09/40	2020-02-13/44	
ID	CMIG	CMIG	CMIG	CMIG	CMIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG							
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN							

σ_{PI}	1	1	2	2	7	-	2	Ţ	0	2	2	Ţ	15	14	Ţ	6	2	9	Ţ	1	2	Ţ	61	1	12	0	-	9	1	2	ŝ	4	2	-	0	6		-	2	9	-	1	Ļ	2	-	-	
$PI(^{\circ})$	58	-74	43	38	26	35	44	-78	61	63	46	-63	31	20	47	22	42	27	-84	-67	-81	86	-6	74	45	73	49	33	53	50	-23	38	52	75	59	22	50	87	-34	-22	-64	41	78	-25	62	46	
Lon.(°)	-93.365	-92.868	-93.223	-93.407	-93.508	-93.435	-93.402	-93.322	-93.276	-92.765	-93.235	-93.462	-93.478	-93.082	-93.427	-93.132	-93.185	-93.391	-93.371	-93.450	-92.869	-93.094	-93.412	-93.183	-93.335	-93.165	-93.243	-93.239	-93.420	-93.410	-93.448	-93.251	-93.339	-93.463	-93.117	-93.009	-93.024	-93.011	-93.126	-93.435	-93.176	-93.406	-92.938	-93.096	-92.963	-92.974	
Lat.(°)	15.670	15.573	15.501	15.590	15.852	15.599	15.604	15.606	15.513	15.610	15.498	15.975	15.624	15.454	15.672	15.496	15.634	15.651	15.650	15.826	15.583	15.570	15.617	15.733	15.622	15.513	15.752	15.518	15.652	15.656	15.717	15.505	15.632	15.739	15.466	15.504	15.463	15.646	15.603	15.757	15.658	15.609	15.654	15.829	15.683	15.535	
$\sigma_{\delta t}(\mathrm{s})$	0.08	0.06	0.06	0.06	0.16	0.08	0.02	0.04	0.06	0.04	0.06	0.08	0.04	0.06	0.04	0.06	0.02	0.12	0.14	0.06	0.06	0.06	0.02	0.06	0.10	0.02	0.16	0.06	0.08	0.06	0.06	0.02	0.06	0.02	0.02	0.12	0.08	0.02	0.02	0.04	0.04	0.06	0.08	0.16	0.10	0.08	
$\delta t(\mathbf{s})$	0.18	0.32	0.16	0.24	0.34	0.16	0.16	0.20	0.14	0.36	0.12	0.16	0.18	0.26	0.22	0.32	0.20	0.20	0.24	0.24	0.18	0.18	0.08	0.38	0.24	0.22	0.12	0.12	0.14	0.14	0.08	0.14	0.18	0.22	0.28	0.18	0.36	0.24	0.18	0.14	0.30	0.18	0.28	0.26	0.22	0.28	
$\sigma_{\phi}(^{\circ})$	38	19	14	14	65	20	16	17	6	11	55	22	62	17	4	8	16	$\overline{00}$	60	16	18	46	22	7	41	9	52	75	74	48	35	19	31	°	°	36	9	11	23	13	6	11	14	32	54	6	
(_) <i>\</i>	-13	-38	-33	12	-31	-38	6-	-29	-37	-48	6	-37	-18	-10	-33	-51	×-	-49	-15	-4	-53	-52	-46	-31	Ŀ	ъ	29	6	-24	-22	-59	-2	-9	-28	-44	40	-52	-36	13	-49	-40	-33	-78	-45	-75	-58	
D (km)	32.98	82.48	44.92	48.40	71.40	52.87	45.95	31.48	44.08	102.10	45.66	79.98	59.70	62.73	46.39	49.82	17.14	39.63	35.49	57.33	81.53	40.52	46.62	10.16	31.46	43.69	11.79	41.24	45.67	43.33	50.55	44.55	30.90	54.17	57.11	63.86	68.42	47.46	30.32	48.93	13.94	46.18	62.71	38.32	56.42	65.53	nte.
$\beta(^{\circ})$	19.00	28.00	26.00	32.00	35.00	33.00	29.00	19.00	27.00	30.00	30.00	32.00	29.00	33.00	31.00	30.00	0.00	27.00	21.00	31.00	28.00	21.00	28.00	5.00	20.00	22.00	6.00	23.00	30.00	29.00	30.00	30.00	19.00	34.00	31.00	31.00	33.00	19.00	17.00	29.00	7.00	28.00	22.00	12.00	19.00	30.00	na sigure
Mag.	4.0	4.3	4.0	3.9	3.8	3.9	4.1	4.1	4.1	4.1	3.9	4.0	3.8	3.8	4.2	3.8	4.0	3.8	3.9	4.0	4.3	3.8	4.3	3.9	3.8	4.4	3.9	4.0	4.0	3.8	4.1	4.0	4.0	3.9	4.1	4.1	3.8	3.9	3.8	3.8	3.8	3.9	4.4	3.8	4.6	3.8	ı la págu
Prof. (km)	95.0	153.0	92.1	77.8	101.9	81.1	82.5	91.3	85.9	174.8	80.5	129.0	108.3	97.7	77.1	85.7	105.5	76.7	93.2	96.4	151.8	107.4	87.5	126.5	85.7	110.6	107.9	96.4	78.9	78.3	86.3	78.1	89.8	80.0	93.3	105.7	103.5	134.9	99.2	86.8	116.4	88.5	158.0	179.1	165.9	114.9	Continúa en
$Lon.(^{\circ})$	-93.51	-92.52	-93.23	-93.59	-93.80	-93.65	-93.58	-93.43	-93.33	-92.31	-93.25	-93.71	-93.74	-92.95	-93.64	-93.04	-93.15	-93.56	-93.52	-93.68	-92.52	-92.97	-93.60	-93.15	-93.45	-93.11	-93.27	-93.26	-93.62	-93.60	-93.68	-93.28	-93.46	-93.71	-93.02	-92.80	-92.83	-92.80	-93.03	-93.65	-93.13	-93.59	-92.66	-92.97	-92.71	-92.73	
Lat.(°)	15.64	15.44	15.30	15.48	16.00	15.49	15.50	15.51	15.32	15.51	15.29	16.24	15.54	15.20	15.64	15.29	15.56	15.60	15.60	15.95	15.46	15.43	15.53	15.76	15.54	15.32	15.80	15.33	15.60	15.61	15.73	15.30	15.56	15.77	15.23	15.30	15.22	15.59	15.50	15.81	15.61	15.51	15.60	15.95	15.66	15.37	
Hora	14:49:49	15:18:40	10:36:37	17:26:24	06:11:40	19:48:51	20:58:08	13:00:21	07:42:38	20:18:26	03:12:41	07:39:31	17:33:32	09:40:00	03:54:14	03:14:48	08:51:15	06:32:15	04:38:44	16:39:52	08:00:24	19:37:16	18:37:14	03:18:38	00:45:44	02:34:27	23:16:57	03:37:44	11:14:52	15:13:40	18:57:39	01:16:37	21:28:00	13:03:27	19:45:43	12:40:17	09:34:53	21:23:34	01:57:55	16:13:12	14:39:59	12:47:22	08:36:27	02:14:27	03:06:05	01:42:44	
Fecha/juliano	2020-02-14/45	2020-02-15/46	2020-02-18/49	2020-02-18/49	2020-03-05/65	2020-03-10/70	2020-03-15/75	2020-03-30/90	2020-04-09/100	2020-04-14/105	2020-04-22/113	2020-04-24/115	2020-04-26/117	2020-04-28/119	2020-05-05/126	2020-05-11/132	2020 - 10 - 23/297	2020 - 10 - 27/301	2020 - 10 - 29/303	2020 - 10 - 31/305	2020 - 11 - 17/322	2020 - 11 - 17/322	2020 - 11 - 28/333	2020 - 12 - 01/336	2020-12-07/342	2020 - 12 - 16/351	2020 - 12 - 22/357	2020 - 12 - 30/365	2021-01-07/7	2021-01-07/7	2021-01-24/24	2021-01-26/26	2021-01-26/26	2021-02-07/38	2021-02-12/43	2021-02-16/47	2021-02-19/50	2021-02-23/54	2021-02-26/57	2021-02-28/59	2021-03-01/60	2021-03-05/64	2021-03-11/70	2021-03-12/71	2021-03-14/73	2021-03-16/75	
ID	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG																	
Red	NSS	SSN	SSN	SSN	SSN	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN																

σ_{PI}	1	1	0	3	1	17	2	ŝ	ŝ	1	0	7	1	1	1	2	5 L	2	63	19	ę	ę	70	66	1	20	2	က	2	1	1	3	2	-	5 L	2	1	26	2	-	2	11	1	ъ	2	Н	
(°) Iq	60	55	56	26	42	-13	36	35	-78	51	50	-28	38	46	-71	29	35	73	6-	-21	48	32	29	10	58	6-	46	41	48	36	43	33	37	73	-46	44	67	14	70	57	64	33	54	22	52	45	
Lon.($^{\circ}$)	-93.019	-93.269	-93.319	-93.254	-93.442	-93.067	-93.130	-93.270	-92.850	-93.385	-93.310	-93.336	-93.280	-93.260	-93.391	-93.428	-93.255	-93.137	-93.435	-92.815	-93.350	-93.054	-93.474	-92.799	-93.268	-93.276	-93.354	-93.389	-93.385	-93.418	-93.410	-93.278	-93.261	-93.152	-92.788	-93.368	-93.230	-93.343	-93.260	-93.132	-93.362	-93.370	-93.404	-93.469	-93.240	-93.371	
Lat.(°)	15.539	15.541	15.517	15.561	15.681	15.413	15.433	15.538	15.532	15.661	15.574	15.746	15.595	15.558	15.699	15.711	15.513	15.430	15.664	15.596	15.512	15.455	15.726	15.573	15.503	15.603	15.674	15.627	15.632	15.609	15.638	15.544	15.502	15.692	15.574	15.687	15.547	15.616	15.646	15.622	15.697	15.645	15.630	15.685	15.472	15.639	
$\sigma_{\delta t}(\mathrm{s})$	0.12	0.02	0.02	0.04	0.08	0.10	0.06	0.04	0.06	0.02	0.04	0.04	0.04	0.04	0.02	0.02	0.02	0.06	0.08	0.44	0.04	0.02	0.04	0.08	0.04	0.02	0.06	0.06	0.04	0.02	0.06	0.02	0.02	0.10	0.14	0.04	0.10	0.02	0.10	0.12	0.06	0.14	0.10	0.06	0.02	0.02	
$\delta t(\mathbf{s})$	0.20	0.22	0.20	0.18	0.20	0.16	0.18	0.10	0.22	0.20	0.16	0.20	0.08	0.22	0.16	0.14	0.14	0.16	0.08	0.14	0.14	0.32	0.14	0.18	0.12	0.12	0.22	0.18	0.28	0.16	0.14	0.22	0.14	0.18	0.06	0.28	0.22	0.14	0.18	0.18	0.16	0.22	0.16	0.14	0.16	0.16	
$\sigma_{\phi}(^{\circ})$	41	2	9	24	20	26	9	44	14	6	5 L	19	52	5 L	20	18	26	21	44	47	16	5	26	57	24	15	46	36	5 L	S	66	ŝ	12	78	62	32	90	30	39	83	43	74	68	65	19	11	
$()\phi$	-47	-27	34	-39	-30	-38	-45	-25	-47	-12	-31	-83	-23	-32	-23	-20	0	-40	-57	-43	10	-35	-56	-57	17	-70	7	-11	-30	-37	-27	-48	-10	-36	-23	2	-37	-25	43	-19	27	-42	-16	-48	-2	-10	
D (km)	57.06	37.61	46.76	32.56	49.33	72.42	62.91	38.40	89.64	37.88	35.02	27.25	27.63	33.62	37.94	46.10	42.80	62.99	48.33	91.93	51.31	65.90	56.39	96.91	45.67	25.70	30.60	41.09	39.87	48.72	44.62	37.70	45.58	14.88	99.11	33.02	34.83	33.60	15.77	26.37	31.62	35.69	43.91	55.28	51.42	36.42	nte.
β(°)	28.00	24.00	30.00	20.00	31.00	23.00	31.00	23.00	31.00	24.00	22.00	15.00	16.00	22.00	24.00	27.00	30.00	34.00	33.00	29.00	31.00	34.00	35.00	30.00	28.00	16.00	19.00	27.00	26.00	33.00	31.00	21.00	31.00	0.00	33.00	20.00	22.00	21.00	9.00	13.00	18.00	22.00	29.00	34.00	34.00	26.00	na sigure
Mag.	3.9	3.8	4.1	3.8	3.8	4.0	3.9	3.8	3.9	4.0	4.4	3.8	3.9	3.9	3.8	4.1	3.8	3.8	4.0	4.0	4.0	3.9	3.8	3.8	3.8	3.8	3.9	3.9	3.8	4.1	4.2	4.1	3.8	3.8	4.1	3.8	4.0	3.9	3.8	3.9	3.8	3.8	3.8	3.8	3.8	3.9	la págu
Prof. (km)	106.3	85.6	80.9	89.8	81.8	167.2	103.6	89.3	147.7	83.4	86.7	104.2	98.0	85.2	86.4	91.7	73.3	94.6	74.8	165.2	84.0	95.9	81.4	164.5	84.2	88.0	87.7	82.1	80.4	74.6	74.4	98.2	77.0	98.4	152.6	88.7	86.5	89.0	100.8	111.8	95.3	87.3	78.9	80.4	76.3	73.9	Continúa en
$Lon.(^{\circ})$	-92.82	-93.32	-93.42	-93.29	-93.66	-92.92	-93.04	-93.32	-92.48	-93.55	-93.40	-93.45	-93.34	-93.30	-93.56	-93.64	-93.29	-93.06	-93.65	-92.41	-93.48	-92.89	-93.73	-92.38	-93.32	-93.33	-93.49	-93.56	-93.55	-93.62	-93.60	-93.34	-93.30	-93.09	-92.36	-93.52	-93.24	-93.47	-93.30	-93.04	-93.51	-93.52	-93.59	-93.72	-93.26	-93.52	
Lat.(°)	15.37	15.38	15.33	15.42	15.66	15.12	15.16	15.37	15.36	15.62	15.44	15.79	15.49	15.41	15.69	15.72	15.32	15.16	15.62	15.49	15.32	15.20	15.75	15.44	15.30	15.50	15.64	15.55	15.56	15.51	15.57	15.38	15.30	15.68	15.44	15.67	15.39	15.53	15.59	15.54	15.69	15.59	15.56	15.67	15.24	15.57	
Hora	08:28:14	11:49:22	03:35:24	09:27:29	05:32:22	20:29:26	22:53:11	02:09:55	06:43:01	12:50:54	09:44:54	23:08:25	18:58:08	18:57:39	17:21:05	11:15:52	04:17:13	16:32:52	10:59:45	10:51:39	13:07:43	10:54:34	01:50:39	07:54:21	15:46:52	20:41:31	07:00:52	02:19:00	05:14:37	18:34:56	19:01:11	04:50:38	20:47:42	13:25:29	07:57:43	15:47:03	18:24:56	01:10:00	22:34:25	11:30:49	08:24:43	05:05:22	08:07:36	21:49:54	15:16:10	18:17:55	
Fecha/juliano	2021-03-28/87	2021-03-29/88	2021-04-16/106	2021-04-24/114	2021-04-30/120	2021 - 05 - 05/125	2021 - 05 - 06/126	2021-05-08/128	2021 - 05 - 08/128	2021-05-14/134	2021 - 05 - 16/136	2021 - 05 - 16/136	2021-05-17/137	2021-05-28/148	2021-06-03/154	2021-06-25/176	2021-07-03/184	2021-07-03/184	2021-07-04/185	2021-07-10/191	2021-07-21/202	2021 - 08 - 05/217	2021-08-08/220	2021-08-12/224	2021-08-29/241	2021-08-29/241	2021-09-28/271	2021 - 10 - 01/274	2021 - 10 - 01/274	2021 - 10 - 19/292	2021 - 10 - 19/292	2021 - 12 - 08/342	2021 - 12 - 08/342	2021 - 12 - 23/357	2021 - 12 - 25/359	2021 - 12 - 26/360	2022-01-17/17	2022-01-26/26	2022- 01 - $27/27$	2022-01- $29/29$	2022-02-02/33	2022-02-06/37	2022-02-21/52	2022-02-22/53	2022-02-24/55	2022-02-24/55	
ID	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	
Red	NSS	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

σ_{PI}	1	ŝ	1	1	12	2	1	4	-	2	45	×	4	1	2	က	20	15	2	က	2	2	ŝ	T	1	5	17	ŝ	2	76	57	4	2	2	31	2	2	က	2	2	5 2	2	2	7	2	က	
$PI(^{\circ})$	-39	37	57	-55	22	39	53	42	75	52	-10	31	35	65	35	42	11	14	65	70	38	46	29	60	76	30	28	44	-38	-7	% *	-48	-39	-30	14	-36	-61	-73	-44	-51	-32	88	-51	-71	-30	-41	
Lon.(°)	-93.354	-93.231	-93.135	-93.354	-93.130	-93.250	-93.294	-93.184	-93.227	-93.133	-93.430	-92.949	-93.077	-93.148	-93.234	-93.443	-93.432	-93.177	-92.920	-92.964	-93.224	-93.294	-93.219	-93.264	-92.884	-93.244	-93.581	-93.191	-92.791	-93.586	-93.371	-93.526	-93.046	-93.461	-93.526	-93.056	-93.511	-93.456	-92.946	-93.411	-92.771	-93.326	-93.386	-93.501	-93.556	-92.876	
Lat.(°)	15.673	15.532	15.489	15.591	15.849	15.489	15.445	15.506	15.484	15.482	15.698	15.805	15.485	15.476	15.573	15.682	15.702	15.478	15.494	15.612	15.597	15.497	15.527	15.557	15.627	15.527	16.869	16.639	16.199	16.949	16.714	16.844	16.394	16.804	16.739	16.399	16.729	16.829	16.349	16.724	16.309	16.689	16.754	16.654	16.854	16.259	
$\sigma_{\delta t}(\mathbf{s})$	0.06	0.04	0.10	0.02	0.02	0.02	0.04	0.06	0.08	0.24	0.02	0.06	0.08	0.10	0.04	0.04	0.02	0.06	0.04	0.36	0.12	0.06	0.06	0.08	0.02	0.08	0.04	0.08	0.04	0.04	0.02	0.04	0.02	0.02	0.04	0.04	0.06	0.08	0.06	0.04	0.10	0.08	0.04	0.08	0.06	0.14	
$\delta t(\mathbf{s})$	0.08	0.36	0.22	0.18	0.18	0.16	0.12	0.20	0.14	0.06	0.14	0.20	0.08	0.26	0.16	0.20	0.14	0.20	0.18	0.16	0.08	0.16	0.14	0.06	0.32	0.08	0.12	0.14	0.18	0.32	0.12	0.18	0.08	0.20	0.14	0.12	0.24	0.22	0.10	0.22	0.10	0.24	0.18	0.20	0.30	0.08	
$\sigma_{\phi}(\degree)$	38	9	67	17	18	18	36	25	29	75	14	19	61	76	15	24	7	38	16	23	65	27	68	47	17	62	22	44	11	6	15	12	16	×	18	11	10	20	40	7	51	14	11	16	10	53	
$\phi(^{\circ})$	0	-40	-52	-13	-30	-15	ŝ	74	56	-54	-59	-41	63	-52	-32	-14	-62	-47	-48	-41	-27	-24	-36	75	-54	ъ	-13	-29	-60	-71	-44	64	-60	84	-45	-52	48	46	-70	54	-59	20	67	-12	77	-73	
D (km)	30.48	38.14	50.95	38.93	37.27	47.87	59.40	44.33	48.48	52.58	46.57	63.27	57.60	52.62	29.19	49.48	46.92	50.78	80.49	59.54	23.64	48.54	39.01	33.92	75.51	39.41	102.48	33.88	147.07	108.57	57.05	89.65	85.78	74.82	89.04	84.53	86.81	74.46	102.01	64.23	128.94	48.42	57.73	87.85	97.11	126.20	nte.
β(°)	19.00	32.00	30.00	25.00	13.00	31.00	34.00	25.00	32.00	31.00	29.00	18.00	31.00	32.00	19.00	31.00	30.00	33.00	35.00	26.00	14.00	30.00	25.00	21.00	24.00	25.00	32.55	16.94	33.54	33.15	19.29	30.63	25.98	22.89	31.92	25.78	30.66	22.51	29.56	23.80	32.55	15.20	17.50	30.67	32.33	30.81	ra siguie
Mag.	4.2	3.9	4.3	4.2	4.1	4.1	3.9	3.9	3.9	3.8	4.0	4.2	3.8	3.8	3.8	3.9	3.9	3.8	4.1	3.8	3.8	3.9	3.8	3.8	4.4	4.9	4.2	4.2	4.2	4.4	4.3	4.1	4.5	4.1	4.1	4.4	4.3	4.1	4.1	4.3	4.3	4.2	4.1	4.3	4.1	4.2	la pági
Prof. (km)	89.6	61.4	87.5	83.3	166.2	78.3	87.8	96.8	78.3	88.9	82.5	196.3	97.3	85.1	85.0	82.4	79.8	78.3	116.8	121.0	93.0	84.0	85.0	87.0	166.0	85.5	159.9	110.6	221.2	165.6	162.4	150.8	175.4	176.6	142.3	174.4	145.8	179.0	179.2	145.0	201.4	177.6	182.5	147.5	152.8	211.0	Continúa en
$Lon.(^{\circ})$	-93.49	-93.24	-93.05	-93.49	-93.04	-93.28	-93.37	-93.15	-93.24	-93.05	-93.64	-92.68	-92.93	-93.08	-93.25	-93.67	-93.65	-93.14	-92.62	-92.71	-93.23	-93.37	-93.22	-93.31	-92.55	-93.27	-94.04	-93.26	-92.46	-94.05	-93.62	-93.93	-92.97	-93.80	-93.93	-92.99	-93.90	-93.79	-92.77	-93.70	-92.42	-93.53	-93.65	-93.88	-93.99	-92.63	
Lat.(°)	15.64	15.36	15.27	15.48	15.99	15.27	15.19	15.31	15.26	15.26	15.69	15.91	15.26	15.25	15.44	15.66	15.70	15.25	15.28	15.52	15.49	15.29	15.35	15.41	15.55	15.35	16.96	16.50	15.62	17.12	16.65	16.91	16.01	16.83	16.70	16.02	16.68	16.88	15.92	16.67	15.84	16.60	16.73	16.53	16.93	15.74	
Hora	22:00:55	14:37:47	00:25:00	18:52:52	12:51:15	07:39:09	08:27:42	18:59:04	20:21:26	13:02:20	21:52:55	00:52:17	14:59:13	09:14:10	08:43:12	14:36:59	22:12:45	22:50:44	08:52:53	09:31:19	04:38:56	02:53:07	10:42:16	16:19:01	08:59:27	15:38:54	03:24:06	19:09:02	19:22:00	03:01:42	18:57:26	21:39:57	17:36:41	00:59:45	11:33:51	20:15:46	15:30:36	22:42:41	20:31:07	23:53:19	11:08:43	03:34:59	22:47:35	19:26:02	16:09:20	12:53:12	
Fecha/juliano	2022-03-05/64	2022-03-12/71	2022-03-26/85	2022-03-29/88	$2022 extsf{-}04 extsf{-}05/95$	2022-04-11/101	2022-04-11/101	2022-04-11/101	2022-04-21/111	2022-04-23/113	2022-04-28/118	2022-04-30/120	2022-05-04/124	2022 - 05 - 10/130	2022 - 05 - 21/141	2022-05-27/147	2022-05-30/150	2022-06-05/156	2022-06-27/178	2022-07-23/204	2022-09-24/267	2022 - 10 - 13/286	2022 - 11 - 19/323	2022 - 11 - 30/334	2022 - 12 - 02/336	2022 - 12 - 31/365	2018-01-07/7	2018-04-26/116	2018-04-30/120	2018-05-22/142	2018-06-07/157	2018-07-01/181	2018-07-28/208	2018-07-31/211	2018-08-03/213	2018-08-06/216	2018-09-11/251	2018-09-11/251	2018-09-16/256	2018-09-24/264	2018 - 10 - 22/292	2018 - 11 - 29/329	2018 - 12 - 01/331	2018 - 12 - 15/345	2018 - 12 - 24/354	2018 - 12 - 29/359	
ID	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	PCIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

σ_{PI}	18	60	×	9	ŝ	4	67	2	2	2	×	21	ъ	ŝ	4	4	4	4	21	4	က	ŝ	2	18	10	ъ	2	Ţ	2	9	ŝ	8	18	9	ç	12	2	25	ŝ	ŝ	ŝ	0	2	I	6	2	
PI(°)	-21	22	-28	-39	-48	-24	18	-45	88	-40	-21	-21	-27	-43	-33	88	-71	-53	14	-24	-35	54	-41	14	-28	39	43	-85	-46	31	-72	32	-19	-26	-62	18	-81	×	36	27	45	76	-28	-79	19	55	
Lon.(°)	-93.506	-93.586	-93.301	-93.541	-93.581	-92.741	-93.531	-93.351	-93.291	-93.031	-93.501	-93.436	-93.411	-93.031	-93.421	-93.476	-93.437	-93.125	-93.585	-93.527	-93.380	-93.519	-93.601	-93.609	-93.516	-93.485	-93.492	-93.271	-93.494	-93.579	-93.400	-93.064	-93.482	-93.561	-93.413	-93.564	-92.861	-93.553	-93.388	-93.645	-93.497	-93.414	-93.093	-93.418	-93.500	-93.280	
Lat.(°)	16.819	16.974	16.639	16.814	16.954	16.404	16.734	16.729	16.664	16.389	16.844	16.659	16.674	16.344	16.654	16.739	16.627	16.519	16.889	16.883	16.669	16.847	16.977	16.914	16.813	16.737	16.822	16.617	16.773	16.823	16.648	16.466	16.793	16.769	16.510	16.877	16.311	16.789	16.735	16.999	16.873	16.511	16.603	16.637	16.739	16.618	
$\sigma_{\delta t}(\mathrm{s})$	0.08	0.06	0.04	0.06	0.06	0.12	0.02	0.04	0.04	0.04	0.02	0.04	0.02	0.06	0.06	0.08	0.18	0.46	0.08	0.08	0.02	0.06	0.14	0.10	0.04	0.06	0.06	0.06	0.14	0.14	0.48	0.08	0.12	0.06	0.08	0.08	0.20	0.02	0.06	0.18	0.14	0.02	0.22	0.06	0.08	0.08	
$\delta t(\mathbf{s})$	0.20	0.22	0.16	0.16	0.30	0.24	0.16	0.20	0.18	0.12	0.18	0.08	0.10	0.08	0.06	0.20	0.24	0.10	0.14	0.30	0.14	0.22	0.30	0.14	0.16	0.12	0.22	0.20	0.26	0.22	0.24	0.26	0.16	0.16	0.20	0.14	0.28	0.20	0.26	0.10	0.10	0.40	0.18	0.34	0.30	0.22	
$\sigma_{\phi}(^{\circ})$	16	27	16	25	19	46	13	10	14	6	6	50	25	32	31	43	68	82	21	10	14	40	30	34	23	34	17	22	81	$\overline{00}$	15	34	75	41	30	51	90	12	23	50	71	2	81	12	39	36	
(°)	-86	-51	-55	75	68	-41	-46	99	22	-55	-86	-50	-75	-80	-82	30	-41	-73	-58	82	85	-67	-13	-62	-82	81	-72	-53	67	14	-18	67	-46	-65	55	-15	-11	-31	-15	62	-74	-35	86	-13	-23	84	
D (km)	84.99	110.41	49.58	92.69	108.38	116.97	90.84	51.86	45.37	87.53	84.86	73.40	67.89	97.70	71.73	78.82	76.89	56.91	104.76	91.96	61.48	88.57	113.96	111.19	86.85	80.27	81.86	48.22	81.81	100.85	67.45	69.74	79.09	96.42	86.94	99.62	117.72	94.85	59.17	124.71	85.08	86.92	39.00	72.12	83.45	49.44	nte.
$\beta(")$	27.43	32.50	15.45	31.91	31.05	32.31	32.38	16.82	13.83	25.52	26.85	28.85	24.19	27.87	26.08	28.39	29.00	18.00	35.00	30.00	21.00	28.00	34.00	34.00	28.00	27.00	24.00	17.00	26.00	33.00	25.00	23.00	27.00	35.00	32.00	33.00	32.00	31.00	20.00	35.00	25.00	34.00	10.00	26.00	29.00	16.00	ra siguie
Mag.	4.2	4.9	4.1	4.3	4.3	4.1	4.2	4.1	4.1	4.3	4.4	4.1	4.1	4.2	4.1	4.1	3.7	3.7	4.1	4.0	4.0	4.1	3.7	4.0	4.1	3.9	3.6	3.7	4.0	3.7	3.9	3.9	3.9	3.8	3.5	3.8	3.8	4.1	3.6	3.8	4.0	4.0	4.3	3.9	3.7	3.9	la pági
Prof. (km)	163.1	172.7	178.7	148.2	179.4	184.3	142.6	170.9	183.7	182.7	167.0	132.6	150.5	184.1	145.9	145.2	135.7	179.1	150.7	157.3	163.7	166.1	170.4	162.4	159.3	159.1	181.5	160.1	165.4	155.5	144.3	167.4	156.8	138.5	136.2	155.0	186.3	160.3	157.8	180.2	178.9	129.0	229.9	147.2	147.2	170.6	Continúa en
$Lon.(^{\circ})$	-93.89	-94.05	-93.48	-93.96	-94.04	-92.36	-93.94	-93.58	-93.46	-92.94	-93.88	-93.75	-93.70	-92.94	-93.72	-93.83	-93.75	-93.13	-94.05	-93.93	-93.64	-93.92	-94.08	-94.10	-93.91	-93.85	-93.86	-93.42	-93.87	-94.03	-93.68	-93.01	-93.84	-94.00	-93.70	-94.01	-92.60	-93.98	-93.65	-94.17	-93.87	-93.71	-93.06	-93.71	-93.88	-93.44	
Lat.(°)	16.86	17.17	16.50	16.85	17.13	16.03	16.69	16.68	16.55	16.00	16.91	16.54	16.57	15.91	16.53	16.70	16.48	16.26	17.00	16.99	16.56	16.92	17.18	17.05	16.85	16.70	16.87	16.46	16.77	16.87	16.52	16.15	16.81	16.76	16.24	16.98	15.84	16.80	16.69	17.22	16.97	16.24	16.43	16.50	16.70	16.46	
Hora	16:29:31	10:13:31	03:30:21	02:15:18	10:47:38	09:37:02	02:45:33	08:35:37	11:04:10	07:09:22	02:08:04	11:16:47	10:10:43	20:14:45	10:45:40	12:52:16	22:30:05	$04{:}00{:}35$	06:15:28	16:24:26	07:56:10	21:06:24	20:24:25	17:29:21	23:44:50	11:53:54	08:47:36	06:28:54	15:08:07	17:19:02	11:47:53	20:08:23	03:03:36	03:57:48	08:09:00	20:04:24	19:00:25	18:52:09	17:56:07	21:42:06	09:15:51	07:39:31	09:41:33	06:21:40	00:18:52	01:06:49	
Fecha/juliano	2018 - 12 - 30/360	2018 - 12 - 31/361	2019-01-01/1	2019-01-14/14	2019-01-14/14	2019-02-10/40	2019-03-03 $/63$	2019-03-05/65	2019-05-30/150	2019-06-01/151	2019-06-13/163	2019-06-26/176	2019-08-31/241	2019-09-13/253	2019 - 10 - 17/287	2019 - 11 - 14/314	2020-01-01/1	2020-01-02/2	2020-01-02/2	2020-01-16/16	2020-01-19/19	2020-01-19/19	2020-01-23/23	2020-01-24/24	2020-01-24/24	2020-02-09/40	2020-02-10/41	2020-02-18/49	2020-02-27/58	2020-03-05/65	2020-03-10/70	2020-03-13/73	2020-03-20/80	2020-03-26/86	2020-03-26/86	2020-03-26/86	2020-03-31/91	2020-04-03/94	2020-04-09/100	2020-04-21/112	2020-04-22/113	2020-04-24/115	2020-04-29/120	2020-04-30/121	2020-05-03/124	2020-05-13/134	
ID	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

σ_{PI}	2 2	1	1	1	ŝ		0	2	က	2	2	2	9	ŝ	2	21	1	18	27	1	27	ŝ	10	22	1	2	2	62	ъ	T	1	15	4	46	×	9	-	17	7	Т	13	-	2	4	C1 '	-	
$PI(^{\circ})$	25	72	63	-50	46	-82	-61	-75	-31	-41	-55	-44	-30	23	-29	16	88	×	8	-49	12	44	13	14	80	44	-37	10	-24	-50	-56	17	-30	12	-34	-27	67	20	-20	54	18	-44	-44	23	49 	-75	
$Lon.(^{\circ})$	-93.443	-93.191	-93.277	-93.455	-93.593	-93.491	-93.443	-93.557	-93.529	-93.040	-93.361	-93.646	-93.461	-93.268	-93.483	-93.428	-93.611	-93.567	-93.536	-93.446	-93.584	-93.372	-93.512	-93.478	-93.566	-93.282	-93.552	-93.495	-93.387	-93.482	-93.437	-93.495	-93.598	-93.499	-93.386	-93.606	-92.940	-93.501	-93.510	-93.338	-93.546	-93.605	-93.522	-93.469	-93.326	-92.688	
Lat.(°)	16.721	16.509	16.648	16.726	16.916	16.769	16.737	16.890	16.640	16.502	16.879	16.856	16.634	16.481	16.853	16.738	16.810	16.900	16.851	16.708	16.829	16.549	16.841	16.834	16.788	16.652	16.842	16.825	16.681	16.775	16.760	16.853	16.832	16.717	16.685	16.886	16.314	16.744	16.870	16.639	16.879	16.961	16.835	16.946	16.674	16.258	
$\sigma_{\delta t}(\mathrm{s})$	0.02	0.02	0.12	0.04	0.08	0.06	0.04	0.46	0.14	0.18	0.14	0.08	0.12	0.04	0.10	0.14	0.06	0.12	0.04	0.06	0.04	0.06	0.10	0.14	0.04	0.04	0.04	0.06	0.02	0.06	0.04	0.06	0.14	0.12	0.12	0.44	0.14	0.04	0.16	0.04	0.02	0.46	0.04	0.14	0.16	0.08	
$\delta t(\mathbf{s})$	0.26	0.24	0.34	0.24	0.38	0.26	0.28	0.26	0.16	0.26	0.30	0.36	0.18	0.36	0.32	0.16	0.26	0.22	0.18	0.28	0.14	0.20	0.22	0.20	0.26	0.26	0.34	0.22	0.12	0.30	0.26	0.22	0.16	0.38	0.12	0.26	0.26	0.26	0.24	0.22	0.16	0.26	0.30	0.30	0.28	0.26	
$\sigma_{\phi}(\degree)$	17	13	15	2	21	23	8	26	56	59	22	18	25	20	11	53	45	25	6	2	16	26	81	45	22	22	ъ	10	17	7	2	11	59	45	76	18	20	12	64	32	34	27	ъ	18	80	6	
$\phi(\circ)$	-16	-57	-9	60	15	-31	48	-35	-60	-57	56	-13	-47	53	77	62	-44	-70	-64	54	-51	-17	-14	-18	-45	85	69	-67	-80	56	52	-54	-62	-40	-59	-9	-10	-44	89	-89	-19	-16	64	-20	73	-58	
D (km)	71.60	61.09	44.36	73.98	107.90	81.23	71.17	98.65	94.43	63.29	56.91	116.43	80.90	72.66	81.07	67.79	107.72	101.44	92.46	72.89	102.14	74.52	86.79	79.28	97.67	44.65	95.51	82.70	62.10	79.17	69.38	83.70	105.42	83.97	61.59	109.09	109.59	83.71	87.58	56.45	95.77	113.61	88.82	84.73	50.25	149.10	nte.
$\beta(")$	24.00	19.00	14.00	25.00	32.00	25.00	22.00	29.00	34.00	16.00	19.00	35.00	30.00	25.00	24.00	23.00	34.00	34.00	31.00	25.00	33.00	29.00	27.00	26.00	33.00	15.00	32.00	26.00	22.00	28.00	23.00	26.00	35.00	31.00	22.00	34.00	32.00	28.00	30.00	20.00	31.00	34.00	29.00	23.00	16.00	34.00	na sigure
Mag.	4.1	3.7	3.8	4.5	4.1	3.6	3.9	4.1	4.1	4.1	3.8	3.9	4.3	3.7	3.9	3.8	4.0	4.0	3.9	4.2	4.3	3.9	3.9	3.8	3.9	3.7	4.0	4.1	3.9	3.9	3.5	4.1	4.0	4.0	4.0	3.9	4.2	4.2	4.0	3.9	4.4	4.1	4.0	4.1	3.7	4.0	la págu
Prof. (km)	162.8	174.7	176.8	156.5	174.0	175.5	171.7	175.1	138.8	218.1	164.9	168.0	140.9	153.1	178.8	155.5	158.8	150.0	154.6	156.7	155.0	132.4	167.3	162.6	151.9	165.0	153.0	167.3	155.5	145.5	159.1	171.9	152.0	141.1	148.1	159.6	173.9	156.6	151.0	151.4	157.5	170.0	159.9	194.6	179.5	224.4	Continúa en
$Lon.(^{\circ})$	-93.76	-93.26	-93.43	-93.79	-94.06	-93.86	-93.76	-93.99	-93.94	-92.96	-93.60	-94.17	-93.80	-93.41	-93.84	-93.73	-94.10	-94.01	-93.95	-93.77	-94.05	-93.62	-93.90	-93.83	-94.01	-93.44	-93.98	-93.87	-93.65	-93.84	-93.75	-93.87	-94.07	-93.88	-93.65	-94.09	-92.76	-93.88	-93.90	-93.55	-93.97	-94.09	-93.92	-93.82	-93.53	-92.25	
Lat.(°)	16.66	16.24	16.52	16.67	17.05	16.76	16.70	17.00	16.50	16.23	16.98	16.93	16.49	16.18	16.93	16.70	16.84	17.02	16.92	16.64	16.88	16.32	16.90	16.89	16.80	16.53	16.91	16.87	16.58	16.77	16.74	16.93	16.89	16.66	16.59	16.99	15.85	16.71	16.96	16.50	16.98	17.14	16.89	17.11	16.57	15.74	
Hora	20:53:57	03:19:46	20:52:10	$04{:}28{:}46$	18:29:05	01:55:42	22:21:03	17:32:17	02:02:52	13:52:08	15:30:59	17:13:37	01:04:10	08:30:15	19:43:28	$04{:}05{:}39$	05:28:45	04:27:43	15:40:23	18:12:37	23:13:33	07:49:38	14:35:45	18:43:52	11:28:31	05:05:31	21:45:04	04:50:36	08:06:39	09:52:16	08:02:59	15:53:17	01:03:33	04:16:07	11:25:14	22:48:43	02:13:04	09:15:00	04:31:22	21:36:25	05:21:30	07:32:14	01:08:19	03:18:17	10:55:15	18:57:28	
Fecha/juliano	2020-05-15/136	2020-05-18/139	2020-05-28/149	2020-05-29/150	2020-05-30/151	2020-06-03/155	2020-06-03/155	2020-06-20/172	2020-06-26/178	2020-06-27/179	2020-06-28/180	2020-07-03/185	2020-07-13/195	2020-07-17/199	2020-07-18/200	2020-08-13/226	2020-08-26/239	2020-08-30/243	2020-08-30/243	2020-09-09/253	2020-09-16/260	2020-09-17/261	2020-09-17/261	2020 - 10 - 12/286	2020 - 10 - 14/288	2020 - 10 - 26/300	2020 - 11 - 13/318	2020 - 11 - 19/324	2020-11-28/333	2020 - 12 - 13/348	2020 - 12 - 27/362	2021-01-05/5	2021- 01 - $16/16$	2021 - 01 - 26/26	2021 - 01 - 28/28	2021 - 01 - 31/31	2021-02-01/32	2021-02-13/44	2021-02-18/49	2021-02-19/50	2021-03-04/63	2021-03-11/70	2021-03-16/75	2021-03-16/75	2021-03-21/80	2021-03-24/83	
ID	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	DID.L																								
Red	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN																					

σ_{PI}	2	2	2	9	2	18	2	2	2	2	11	5 L	80	2	0	12	4	26	1	7	78	2	2	1	2	0	1	9	2	2	-	°	2	73	17	4	4	ŝ	1	1	1	2	3 S	1	2	36	
$PI(^{\circ})$	-83	39	-72	30	68	-12	-58	37	60	77	22	30	-17	-52	76	-17	-49	-12	-68	22	×	69	47	-43	-44	-76	-48	-26	51	-63	59	43	85	×	22	-38	61	-43	53	-64	68	-36	40	-76	-46	×	
Lon.(°)	-93.333	-93.612	-93.531	-93.495	-93.586	-93.535	-93.353	-93.433	-93.280	-93.566	-93.507	-93.112	-93.528	-93.514	-93.490	-93.588	-93.194	-93.494	-92.860	-93.541	-93.564	-93.533	-93.526	-93.488	-93.496	-92.763	-93.482	-93.540	-93.495	-93.501	-93.533	-93.451	-93.120	-93.537	-93.602	-93.493	-93.157	-93.141	-93.600	-93.456	-93.565	-93.445	-93.443	-93.468	-92.952	-93.509	
Lat.(°)	16.692	16.984	16.938	16.862	17.048	16.806	16.565	16.765	16.711	17.016	16.794	16.581	16.868	16.795	16.872	16.872	16.538	16.778	16.271	16.909	16.827	17.003	16.798	16.811	16.809	16.258	16.804	16.719	16.820	16.766	16.887	16.697	16.521	16.727	16.979	16.849	16.597	16.565	16.896	16.718	17.001	16.740	16.724	16.784	16.369	16.888	
$\sigma_{\delta t}(\mathbf{s})$	0.08	0.18	0.10	0.06	0.16	0.02	0.08	0.02	0.06	0.06	0.52	0.06	0.16	0.04	0.02	0.22	0.12	0.06	0.12	0.10	0.14	0.12	0.02	0.02	0.10	0.26	0.04	0.02	0.08	0.12	0.04	0.08	0.08	0.02	0.20	0.42	0.48	0.10	0.02	0.06	0.04	0.04	0.44	0.10	0.12	0.08	
$\delta t(\mathbf{s})$	0.24	0.26	0.30	0.16	0.30	0.16	0.24	0.28	0.26	0.24	0.22	0.32	0.12	0.30	0.24	0.30	0.10	0.22	0.26	0.12	0.30	0.28	0.30	0.28	0.32	0.32	0.30	0.24	0.20	0.30	0.24	0.40	0.28	0.20	0.12	0.34	0.10	0.22	0.36	0.28	0.26	0.18	0.30	0.32	0.10	0.18	
$\sigma_{\phi}(^{\circ})$	34	<u> 60</u>	31	20	85	13	54	10	6	40	65	6	61	18	11	82	60	23	13	62	15	71	11	4	6	86	9	26	38	22	11	35	19	6	79	13	48	33	6	10	15	11	25	24	57	13	
$\phi(^{\circ})$	-51	-71	-36	-80	-50	-57	62	-10	35	-53	-51	-38	-28	-15	-47	88	-75	-42	36	46	19	-53	9	66	59	-65	58	-72	-67	-35	-54	-9	15	-44	51	67	-69	71	16	45	-52	74	-13	38	78	-65	
D (km)	50.00	116.93	96.49	84.06	118.10	90.90	69.20	68.31	37.60	110.73	84.69	43.32	91.39	86.25	83.44	104.47	55.12	81.72	125.54	96.57	97.66	102.95	88.85	80.79	82.51	139.07	79.42	92.86	82.43	83.31	93.46	74.52	56.46	91.81	114.34	83.00	40.63	47.01	108.23	74.60	109.10	71.47	71.45	76.10	97.46	88.40	nte.
$\beta(")$	17.00	34.00	29.00	25.00	33.00	32.00	27.00	24.00	11.00	32.00	29.00	12.00	31.00	29.00	25.00	35.00	18.00	31.00	30.00	29.00	32.00	28.00	31.00	26.00	28.00	33.00	26.00	32.00	25.00	27.00	28.00	27.00	15.00	32.00	33.00	27.00	11.00	12.00	34.00	26.00	32.00	25.00	25.00	26.00	25.00	30.00	ra siguie
Mag.	3.5	3.9	3.9	3.9	3.9	4.2	4.0	3.5	4.2	3.8	3.5	3.9	3.5	3.8	4.3	4.0	3.8	4.0	5.0	3.8	3.9	4.0	3.9	4.2	3.6	4.1	4.3	3.6	3.8	3.9	3.8	3.9	4.2	3.9	3.8	4.3	4.2	3.8	3.9	3.9	3.8	4.1	3.9	3.7	3.9	3.7	la pági
Prof. (km)	160.3	175.0	172.9	176.1	178.0	144.2	135.0	153.6	194.8	178.8	149.6	207.4	152.3	156.4	174.8	150.8	172.5	137.8	213.6	170.6	152.8	190.4	147.2	168.7	155.1	209.7	162.9	146.6	173.5	161.3	173.9	144.8	205.7	144.5	175.7	163.0	214.0	213.7	158.8	149.6	175.6	151.4	150.5	157.3	210.0	151.1	Continúa en
Lon.(°)	-93.54	-94.10	-93.94	-93.87	-94.05	-93.95	-93.58	-93.74	-93.44	-94.01	-93.89	-93.10	-93.93	-93.91	-93.86	-94.05	-93.27	-93.87	-92.60	-93.96	-94.00	-93.94	-93.93	-93.85	-93.87	-92.40	-93.84	-93.96	-93.87	-93.88	-93.94	-93.78	-93.12	-93.95	-94.08	-93.86	-93.19	-93.16	-94.08	-93.79	-94.01	-93.77	-93.76	-93.81	-92.78	-93.90	
Lat.(°)	16.61	17.19	17.10	16.95	17.32	16.83	16.35	16.75	16.64	17.25	16.81	16.38	16.96	16.81	16.97	16.97	16.30	16.78	15.76	17.04	16.88	17.23	16.82	16.84	16.84	15.74	16.83	16.66	16.86	16.75	17.00	16.62	16.26	16.68	17.18	16.92	16.42	16.35	17.01	16.66	17.22	16.70	16.67	16.79	15.96	17.00	
Hora	12:58:18	11:22:10	10:09:23	09:21:44	14:26:04	03:47:16	23:58:11	12:43:39	14:30:36	03:17:51	22:35:52	04:57:14	21:03:12	04:07:20	04:56:37	06:40:16	21:54:20	04:53:02	05:21:31	16:07:35	06:12:23	06:12:08	09:28:45	03:19:26	23:22:40	02:34:08	19:07:49	15:26:19	13:50:32	11:27:15	20:33:36	09:19:02	09:21:02	21:44:18	23:43:06	13:26:10	08:57:30	04:13:05	16:54:29	02:41:09	00:09:34	07:28:43	16:28:46	14:44:39	04:25:13	07:54:05	
Fecha/juliano	2021-03-31/90	2021-04-21/111	2021-04-29/119	2021-04-30/120	2021-05-01/121	2021 - 05 - 06/126	2021 - 05 - 08/128	2021- 05 - $10/130$	2021-05-14/134	2021-06-14 $/165$	2021-06-14/165	2021-06-21/172	2021-06-21/172	2021-06-28/179	2021 - 06 - 29/180	2021-07-05 $/186$	2021-07-13/194	2021-07- $21/202$	2021-07-25/206	2021-07-27/208	2021-07-28/209	2021-07-30/211	2021-08-24/236	2021-09-03/246	2021-09-05/248	2021-09-11/254	2021-09-12/255	2021-09-17/260	2021-09-23/266	2021-09-27/270	2021 - 09 - 30/273	2021 - 10 - 02/275	2021 - 10 - 02/275	2021 - 10 - 13/286	2021 - 10 - 13/286	2021 - 10 - 14/287	2021-10- $20/293$	2021 - 10 - 22/295	2021 - 10 - 22/295	2021 - 11 - 10/314	2021 - 11 - 11/315	2021 - 11 - 17/321	2021 - 11 - 26/330	2021- 12 - $04/338$	2021 - 12 - 07/341	2021-12-10/344	
ID	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	
Red	SSN	SSN	SSN	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

σ_{PI}	9	1	Ţ	2	1	-	ŝ	2	-	15	2	7	2	°	21	-	2	5	4	2	8	2	2	ŝ	ŝ	Ţ	14	1	ŝ	54	4	7	Ţ	4		Ţ	ŝ	Ţ	5 S	-	2	2	13	Ţ	7	က	
$PI(^{\circ})$	-58	68	-71	-90	68	62	-26	-72	-53	21	-29	-30	-86	-33	-10	-75	-43	-32	-34	57	-15	-31	-31	-38	-38	-58	-20	-64	50	15	36	35	73	-58	-48	55	-54	58	41	-63	-65	-52	-24	-65	-17	-37	
Lon.(°)	-93.366	-93.462	-93.074	-93.340	-93.537	-93.511	-93.517	-93.302	-93.391	-93.333	-93.425	-93.464	-93.484	-93.594	-93.514	-93.271	-93.384	-93.376	-93.074	-93.242	-93.498	-93.435	-93.499	-93.485	-93.552	-93.240	-93.520	-93.082	-92.956	-93.540	-93.481	-93.447	-93.547	-93.385	-93.436	-93.224	-92.945	-93.215	-93.558	-93.548	-93.286	-93.600	-93.504	-92.996	-93.533	-92.951	
Lat.(°)	16.684	16.853	16.436	16.486	16.920	16.809	16.861	16.492	16.775	16.624	16.764	16.807	16.803	16.948	16.771	16.641	16.649	16.702	16.421	16.564	16.823	16.824	16.823	16.800	16.743	16.602	16.815	16.385	16.389	17.057	16.829	16.780	16.972	16.604	16.757	16.601	16.391	16.644	16.926	16.806	16.655	16.961	16.836	16.404	16.655	16.359	
$\sigma_{\delta t}(\mathrm{s})$	0.48	0.10	0.08	0.06	0.08	0.06	0.44	0.10	0.08	0.10	0.08	0.06	0.10	0.14	0.10	0.10	0.04	0.12	0.16	0.04	0.06	0.04	0.18	0.06	0.04	0.06	0.04	0.04	0.04	0.06	0.08	0.56	0.04	0.14	0.06	0.04	0.06	0.04	0.56	0.08	0.08	0.04	0.16	0.04	0.06	0.04	
$\delta t(\mathbf{s})$	0.32	0.32	0.24	0.32	0.24	0.22	0.34	0.36	0.28	0.28	0.14	0.20	0.26	0.24	0.30	0.28	0.16	0.14	0.24	0.26	0.16	0.22	0.26	0.28	0.34	0.12	0.14	0.28	0.28	0.18	0.14	0.24	0.20	0.34	0.30	0.24	0.22	0.16	0.16	0.32	0.20	0.28	0.24	0.24	0.18	0.14	
$\sigma_{\phi}(^{\circ})$	15	34	6	14	19	24	10	23	10	16	54	32	51	64	18	×	14	50	90	7	48	14	82	×	15	47	18	4	16	30	49	32	23	18	9	21	32	13	77	14	23	18	86	24	34	15	
$()\phi$	-37	-58	31	-24	-49	-56	75	-16	53	-49	-78	88	-29	9-	15	26	68	-66	-51	ې ب	-77	85	74	67	-70	-23	-79	37	85	56	75	-28	-57	-36	56	-85	-12	-	-77	-38	44	-18	-86	-25	-60	-63	
D (km)	57.42	76.48	76.07	80.05	96.34	85.74	88.69	74.29	59.21	57.37	66.72	75.36	79.65	110.27	86.19	44.58	64.16	58.16	79.17	54.05	83.20	69.48	83.38	80.00	94.86	46.70	87.78	86.84	93.11	110.44	79.76	71.47	102.79	69.35	69.24	45.03	93.75	35.83	101.15	93.85	45.13	112.60	85.01	86.94	94.26	99.57	nte.
$\beta(^{\circ})$	20.00	23.00	24.00	31.00	29.00	27.00	31.00	29.00	19.00	20.00	24.00	25.00	26.00	32.00	29.00	14.00	23.00	20.00	28.00	18.00	27.00	22.00	30.00	26.00	34.00	35.00	30.00	28.00	24.00	30.00	26.00	26.00	29.00	25.00	24.00	15.00	24.00	10.00	31.00	32.00	15.00	33.00	28.00	24.00	35.00	27.00	na sigure
Mag.	4.1	3.7	3.9	3.9	3.9	3.8	3.6	4.0	3.5	3.8	4.0	3.8	4.0	3.8	3.8	4.2	3.8	3.7	3.7	4.2	3.9	3.9	3.4	4.0	4.0	3.9	3.9	4.1	4.0	4.0	3.9	3.8	4.1	3.8	3.8	3.7	3.9	4.1	3.8	4.0	3.7	4.1	3.8	4.1	3.0	4.2	ı la págu
Prof. (km)	158.2	179.6	171.3	132.3	175.1	167.3	148.1	134.9	170.7	156.4	152.4	162.7	165.8	174.1	155.7	173.4	150.4	158.6	150.9	164.8	159.9	167.9	146.5	161.8	139.0	66.5	151.2	166.2	208.0	193.6	162.7	145.6	187.9	149.0	151.4	170.3	206.3	199.6	167.9	150.1	169.3	169.9	162.3	193.2	134.0	198.0	Continúa er
$Lon.(^{\circ})$	-93.61	-93.80	-93.03	-93.56	-93.95	-93.90	-93.91	-93.48	-93.66	-93.54	-93.73	-93.81	-93.84	-94.07	-93.91	-93.42	-93.65	-93.63	-93.03	-93.36	-93.87	-93.75	-93.88	-93.85	-93.98	-93.36	-93.92	-93.04	-92.79	-93.96	-93.84	-93.77	-93.97	-93.65	-93.75	-93.33	-92.77	-93.31	-93.99	-93.97	-93.45	-94.08	-93.89	-92.87	-93.94	-92.78	
Lat.(°)	16.59	16.93	16.09	16.19	17.06	16.84	16.94	16.21	16.77	16.47	16.75	16.84	16.83	17.12	16.76	16.50	16.52	16.63	16.06	16.35	16.87	16.87	16.87	16.82	16.71	16.43	16.85	15.99	16.00	17.34	16.88	16.78	17.17	16.43	16.74	16.42	16.00	16.51	17.07	16.83	16.53	17.14	16.89	16.03	16.53	15.94	
Hora	06:51:16	16:25:42	10:43:46	18:59:02	21:39:48	03:51:34	20:33:22	21:01:57	02:21:01	09:08:03	02:43:08	21:40:38	09:28:49	09:41:24	03:53:25	07:26:01	22:40:33	16:59:55	04:55:18	13:26:03	03:25:38	00:04:42	00:04:19	20:02:33	18:58:13	12:07:47	14:36:14	12:51:15	14:28:27	16:22:18	05:39:40	05:53:03	04:22:04	23:06:30	01:18:11	11:17:39	22:21:24	07:18:28	08:44:29	15:49:01	22:02:19	08:13:00	13:00:54	12:44:07	19:00:10	04:14:12	
Fecha/juliano	2021 - 12 - 15/349	2021 - 12 - 15/349	2021 - 12 - 18/352	2021 - 12 - 22/356	2021 - 12 - 25/359	2021 - 12 - 28/362	2022-01-0 $1/1$	2022-01-03/3	2022-01-10/10	2022-01-15/15	2022-01-16/16	2022-01-20/20	2022-01-22/22	2022-01-26/26	2022-01-29/29	2022-02-02/33	2022-02-06/37	2022-03-03/62	2022-03-06/65	2022-03-09/68	2022-03-10/69	2022-03- $17/76$	2022-03-18/77	2022-03-20/79	2022-03-28/87	2022-04-0 $1/91$	2022-04-04/94	2022-04-05/95	2022-04-15/105	2022-04-15/105	2022-04-21/111	2022-04-24/114	2022-04-28/118	2022-04- $28/118$	2022 - 05 - 02/122	2022-05-02/122	2022- 05 - $09/129$	2022 - 05 - 15/135	2022 - 05 - 23/143	2022 - 05 - 31/151	2022-06-07/158	2022-06- $16/167$	2022-06-20/171	2022-06-28/179	2022-06-29/180	2022-07-01/182	
ID	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	L'GIG	
Red	SSN	SSN	NSS	NSS	\mathbf{SSN}	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	NSS	NSS	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

σ_{PI}	7	18	0	7	1	48	2	15	-	9	2	က	59	27	ъ	က	5 2	15	37	4	-	2	2	5	က	12	2	1	ŝ		39	47	9	2	6	က	9	က		2		31	7	19	2	S	
$PI(^{\circ})$	-23	18	-67	34	68	8 <mark>-</mark>	- 88	-16	57	49	68	-42	7	21	33	47	30	15	-9	33	-59	-47	-35	27	49	19	-57	66	-35	88	21	10	20	-39	16	-37	60	32	32	22	58	-22	30	-23	86	30	
Lon.(°)	-93.491	-93.506	-93.326	-93.381	-93.572	-93.460	-93.314	-93.539	-93.596	-93.180	-93.556	-93.496	-93.526	-93.461	-93.476	-93.556	-93.131	-93.396	-93.516	-93.306	-93.591	-93.421	-93.326	-93.316	-93.356	-93.301	-93.286	-93.481	-93.501	-93.576	-93.521	-93.531	-93.516	-93.511	-93.526	-93.091	-92.233	-92.183	-92.343	-92.343	-92.348	-92.563	-92.183	-92.538	-92.363	-92.438	
Lat.(°)	16.834	16.849	16.694	16.649	16.990	16.823	16.618	16.729	17.000	16.528	17.029	16.809	16.814	16.594	16.804	16.784	16.624	16.739	16.839	16.634	16.919	16.719	16.724	16.684	16.709	16.594	16.644	16.879	16.799	16.954	16.809	16.814	16.794	16.789	16.864	16.434	15.221	14.806	14.736	14.811	15.226	14.961	14.826	14.861	14.706	14.746	
$\sigma_{\delta t}(\mathbf{s})$	0.02	0.06	0.10	0.04	0.14	0.06	0.02	0.06	0.04	0.04	0.08	0.06	0.08	0.06	0.08	0.06	0.06	0.06	0.06	0.08	0.06	0.10	0.08	0.54	0.08	0.02	0.08	0.02	0.04	0.02	0.56	0.06	0.02	0.06	0.12	0.10	0.04	0.06	0.04	0.02	0.06	0.06	0.02	0.16	0.04	0.04	
$\delta t(\mathbf{s})$	0.24	0.18	0.32	0.22	0.36	0.12	0.16	0.16	0.24	0.20	0.26	0.30	0.26	0.12	0.14	0.24	0.30	0.28	0.18	0.20	0.30	0.26	0.18	0.30	0.14	0.18	0.16	0.22	0.20	0.28	0.20	0.18	0.20	0.22	0.12	0.10	0.22	0.08	0.14	0.04	0.16	0.06	0.14	0.26	0.08	0.12	
$\sigma_{\phi}(\degree)$	2	46	11	19	25	36	22	31	15	32	18	2	27	50	43	24	7	17	27	26	29	13	44	23	47	18	59	10	22	16	55	38	22	54	09	56	16	18	2	30	18	41	18	40	47	40	
$\phi(\circ)$	88	-34	40	-21	-49	-52	-40	-70	-63	84	10	65	-24	-12	74	×	-43	43	-73	54	-22	57	84	-43	-87	-32	57	-54	83	-41	-29	-44	-21	-4	-15	87	19	44	25	55	35	-44	76	45	51	-7	
D (km)	82.08	85.88	48.51	63.63	109.37	74.99	55.02	92.34	115.10	56.42	110.27	82.53	89.20	84.83	78.06	95.46	33.94	60.85	87.68	51.38	107.71	67.02	46.39	47.40	53.64	56.45	46.57	82.01	83.47	107.09	88.01	90.30	86.72	85.58	90.84	75.99	76.21	29.57	33.44	18.80	76.53	61.79	28.25	53.67	41.69	43.02	nte.
$\beta(")$	27.00	29.00	16.00	22.00	32.00	26.00	19.00	34.00	33.00	18.00	29.00	27.00	31.00	34.00	26.00	33.00	9.00	21.00	31.00	17.00	31.00	25.00	16.00	15.00	19.00	21.00	16.00	26.00	28.00	31.00	29.00	33.00	29.00	29.00	31.00	24.00	22.01	15.95	26.51	12.00	23.09	32.60	13.38	34.15	29.22	31.97	na sigure
Mag.	4.3	3.4	4.0	4.0	4.2	4.0	4.0	4.0	4.1	4.0	3.7	4.1	3.6	4.0	3.4	3.4	4.2	3.9	3.5	3.5	3.6	3.6	3.5	3.6	3.6	4.0	3.5	4.1	4.2	4.0	3.7	3.5	4.1	4.0	3.9	3.4	4.4	4.4	4.4	4.3	4.3	4.3	4.5	4.3	4.3	5.0	la págu
Prof. (km)	160.0	154.0	172.0	157.0	176.9	151.6	156.5	134.4	177.4	172.9	197.0	162.0	146.0	126.0	158.0	149.0	215.0	154.0	146.0	164.0	178.0	146.0	165.0	176.0	158.0	147.0	167.0	166.0	159.0	174.3	158.3	136.8	152.9	156.5	151.2	166.5	188.4	103.3	66.9	88.3	179.4	96.5	118.6	79.0	74.4	68.8	Continúa en
$Lon.(^{\circ})$	-93.86	-93.89	-93.53	-93.64	-94.02	-93.80	-93.51	-93.96	-94.07	-93.24	-93.99	-93.87	-93.93	-93.80	-93.83	-93.99	-93.14	-93.67	-93.91	-93.49	-94.06	-93.72	-93.53	-93.51	-93.59	-93.48	-93.45	-93.84	-93.88	-94.03	-93.92	-93.94	-93.91	-93.90	-93.93	-93.06	-92.17	-92.07	-92.39	-92.39	-92.40	-92.83	-92.07	-92.78	-92.43	-92.58	
Lat.(°)	16.89	16.92	16.61	16.52	17.20	16.87	16.46	16.68	17.22	16.28	17.28	16.84	16.85	16.41	16.83	16.79	16.47	16.70	16.90	16.49	17.06	16.66	16.67	16.59	16.64	16.41	16.51	16.98	16.82	17.13	16.84	16.85	16.81	16.80	16.95	16.09	15.56	14.73	14.59	14.74	15.57	15.04	14.77	14.84	14.53	14.61	
Hora	18:42:09	01:38:33	23:37:01	15:23:29	03:43:18	07:33:30	15:21:51	04:42:15	21:14:34	20:26:30	01:17:19	12:49:59	14:58:19	07:58:01	18:32:38	01:31:19	17:38:35	18:14:09	15:53:59	23:53:19	15:25:35	17:05:21	05:26:46	07:07:49	10:54:45	21:28:43	06:00:35	06:37:43	02:30:23	08:14:53	12:23:21	09:30:32	18:23:07	03:36:51	21:13:04	02:05:00	03:33:49	00:28:00	11:12:10	08:33:30	19:17:35	$04{:}28{:}19$	01:38:26	12:22:25	02.55.02	17:32:13	
Fecha/juliano	2022- 07 - $13/194$	2022-07-14/195	2022-07-16/197	2022-07-27/208	2022-08-01/213	2022-08-06 $/218$	2022-08-08/220	2022-08-09 $/221$	2022-08-12/224	2022-08-28/240	2022-09-02/245	2022-09-19/262	2022-09-25/268	2022-09-26/269	2022-09-28/271	2022 - 10 - 10 / 283	2022 - 10 - 11/284	2022 - 10 - 12/285	2022 - 10 - 13/286	2022 - 10 - 13/286	2022 - 10 - 20/293	2022- 10 - $30/303$	2022 - 11 - 01/305	2022 -11-01 $^{\prime}305$	2022-11-05/309	2022 - 11 - 11/315	2022 - 11 - 15/319	2022 - 11 - 21/325	2022 - 11 - 23/327	2022-12-10/344	2022 - 12 - 11/345	2022 - 12 - 12/346	2022-12-14/348	2022 - 12 - 18/352	2022- 12 - $20/354$	2022- 12 - $22/356$	2018-01-31/31	2018-02-03/33	2018-02-20/50	2018-03-01/61	2018-04-19/109	2018-05-07/127	2018-05-21/141	2018-08-23/233	2018-09-19/259	2018-09-27/267	
ID	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	TGIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	SIHT	
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	

σ_{PI}		ŝ	Т	°	6	2	62	3	78	ŝ	°	2	43	9	1	×	2	2	4	1	2	1	1	2	2	2	2	9	2	-	ŝ	2	4	2	48	Н	3	1	1	-	-	7	-	<u> </u>	5	13	
$PI(^{\circ})$	74	50	89	75	36	64	6-	77	17	68	50	35	10	23	-60	27	35	50	-52	70	70	56	-81	-61	-60	77	67	24	56	71	71	74	-83	80	10	62	56	57	-56	-48	53	-32	50	79	36	20	
Lon.(°)	-92.163	-92.388	-92.313	-92.498	-92.468	-92.428	-92.378	-92.448	-92.188	-92.388	-92.223	-92.458	-92.513	-92.303	-92.388	-92.533	-92.343	-92.268	-92.403	-92.343	-92.188	-94.907	-94.939	-95.006	-95.012	-95.030	-94.959	-94.927	-95.001	-94.940	-94.870	-95.106	-94.969	-94.890	-94.964	-94.902	-94.832	-94.902	-95.161	-94.752	-95.196	-94.920	-94.861	-95.021	-94.979	-94.887	
Lat.(°)	15.136	14.656	15.266	15.361	14.876	14.701	14.696	14.701	14.726	14.741	15.206	14.771	15.036	14.776	14.776	14.976	14.841	15.321	14.761	14.786	15.086	17.747	17.911	17.681	17.708	17.816	17.737	17.688	17.676	17.727	17.699	17.662	17.633	17.640	17.628	17.679	17.566	16.687	16.841	17.061	16.742	16.825	16.613	16.799	16.689	16.488	
$\sigma_{\delta t}(\mathrm{s})$	0.06	0.04	0.02	0.12	0.08	0.06	0.02	0.06	0.02	0.06	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.04	0.02	0.04	0.06	0.16	0.02	0.02	0.04	0.10	0.02	0.04	0.04	0.36	0.08	0.52	0.08	0.06	0.02	0.06	0.06	0.14	0.10	0.06	0.02	0.06	0.10	
$\delta t(\mathbf{s})$	0.24	0.12	0.20	0.18	0.20	0.24	0.14	0.20	0.10	0.16	0.14	0.16	0.22	0.08	0.20	0.12	0.08	0.18	0.14	0.16	0.14	0.24	0.32	0.32	0.34	0.12	0.20	0.28	0.34	0.22	0.30	0.10	0.14	0.28	0.38	0.34	0.26	0.20	0.20	0.14	0.22	0.30	0.28	0.34	0.30	0.26	
$\sigma_{\phi}(^{\circ})$	7	14	17	89	11	6	13	18	17	25	25	16	က	13	14	15	16	ъ	20	12	13	14	12	10	12	18	12	17	17	14	14	27	35	9	90	14	23	ю	24	7	15	17	9	11	18	90	
$\phi(^{\circ})$	-32	-57	-47	-85	46	48	58	51	-39	45	-66	°-	-66	68	64	63	-88	-64	-87	37	44	2	44	10	17	29	25	58	32	29	35	38	75	-21	-65	38	19	-15	-28	-61	-44	-52	-24	-42	-30	-37	
D (km)	63.41	53.91	84.84	114.41	37.74	49.30	44.84	52.15	41.89	37.29	73.51	43.24	58.46	23.45	31.36	56.02	14.20	96.50	35.41	23.16	50.94	67.11	40.26	68.35	62.41	38.99	61.93	74.79	69.87	66.13	53.82	49.85	55.82	61.52	57.28	52.81	82.20	22.59	43.82	90.18	44.40	26.33	39.22	16.11	9.97	58.50	nte.
β(°)	17.03	32.34	20.97	33.40	26.31	34.57	31.58	34.10	26.69	27.15	20.94	30.36	29.19	15.58	22.93	27.74	8.18	21.15	23.87	15.62	17.13	25.00	14.00	26.00	23.00	15.00	21.00	28.00	25.00	24.00	20.00	21.00	22.00	23.00	21.00	20.00	28.00	13.00	23.00	30.00	19.00	12.00	25.00	7.00	6.00	23.00	na siguie
Mag.	4.4	4.4	4.3	4.4	4.3	4.5	4.3	4.3	4.3	4.3	4.6	4.4	4.4	4.3	4.4	4.9	4.3	4.3	4.3	5.0	4.5	4.5	4.5	4.0	4.1	4.1	3.9	4.0	4.2	4.3	4.5	4.0	4.0	4.0	4.2	4.3	4.0	4.0	4.3	3.8	3.8	4.0	3.8	3.8	4.0	4.0	la pági
Prof. (km)	206.9	85.0	221.2	173.4	76.2	71.4	72.8	76.9	83.2	72.6	192.0	73.7	104.5	84.0	74.0	106.4	98.6	249.3	79.9	82.7	165.2	145.4	160.6	137.6	144.7	141.7	160.4	141.9	152.1	147.7	145.4	130.1	137.6	141.9	152.1	147.7	153.4	100.5	103.3	158.9	130.0	126.4	84.7	132.5	87.9	137.7	Continúa en
$Lon.(^{\circ})$	-92.03	-92.48	-92.33	-92.70	-92.64	-92.56	-92.46	-92.60	-92.08	-92.48	-92.15	-92.62	-92.73	-92.31	-92.48	-92.77	-92.39	-92.24	-92.51	-92.39	-92.08	-94.70	-94.77	-94.90	-94.91	-94.95	-94.81	-94.74	-94.89	-94.77	-94.70	-95.17	-94.90	-94.74	-94.89	-94.77	-94.63	-94.81	-95.33	-94.51	-95.40	-94.85	-94.73	-95.05	-94.96	-94.78	
Lat.(°)	15.39	14.43	15.65	15.84	14.87	14.52	14.51	14.52	14.57	14.60	15.53	14.66	15.19	14.67	14.67	15.07	14.80	15.76	14.64	14.69	15.29	17.52	17.85	17.39	17.44	17.66	17.50	17.40	17.38	17.48	17.52	17.45	17.39	17.40	17.38	17.48	17.25	16.64	16.95	17.39	16.75	16.92	16.50	16.87	16.65	16.24	
Hora	08:44:53	19:42:31	18:57:16	$04{:}01{:}07$	09:01:59	16:59:28	18:44:40	22:46:50	18:08:24	15:54:23	10:05:26	$04{:}26{:}08$	17:41:16	19:31:30	11:43:11	13:49:15	10:35:26	19:41:12	11:33:37	16:24:24	01:33:31	01:53:19	03:16:06	07:53:19	12:02:39	$04{:}08{:}08$	06:19:13	02:54:58	10:23:29	14:28:12	01:53:19	08:35:18	07:53:19	02:54:58	10:23:29	14:28:12	10:22:07	21:39:02	05:10:03	03:17:14	13:35:29	11:40:13	11:29:34	18:25:17	15:08:51	07:56:55	
Fecha/juliano	2018 - 11 - 24/324	2018 - 12 - 09/339	2018 - 12 - 12/342	2018 - 12 - 29/359	2019-01-06/6	2019- 02 - $01/31$	2019-02-01/31	2019-02-02/32	2019-03-02/62	2019-03-08/68	2019-03-14/74	2019-03-19/79	2019-03-24/84	2019-04-14/104	2019-04-19/109	2019-05-29/149	2019-06-24/174	2019-07-02/182	2019-07-06/186	2019-07-18/198	2019-09-12/252	2008-01-21/20	2008-01-25/24	2008-03-19/78	2008-04-21/111	2008-05-06/126	2008-05-28/148	2008-06-21/172	2008-06-26/177	2008-06-29/180	2008-01-21/20	2008-03-17/76	2008-03-19/78	2008-06-21/172	2008-06-26/177	2008-06-29/180	2008 - 12 - 18/352	2007-08-26/237	2008-04-11/101	2008-04-24/114	2008-07-16/197	2008-09-02/245	2008-09-08/251	2008-09-08/251	2008-09-11/254	2008 - 10 - 02/275	
ID	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	THIG	AGUA	AGUA	AGUA	AGUA	AGUA	AGUA	AGUA	AGUA	AGUA	AGUC	AGUC	AGUC	AGUC	AGUC	AGUC	AGUC	CHIV									
Red	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	SSN	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	

σ_{PI}	2	Ţ	ŝ	4	2	48	17	42	ŝ	-1	H	-	က	-	ŝ	2	2	6		48	4	4	Η	°°	0	Η	°°	2	-	-	-	ŝ	2	2	10	61	4	2	ъ	2	2	6	2	2	39	11	
$PI(^{\circ})$	-84	68	33	35	71	-21	24	-10	48	-78	-72	-65	-43	-66	-79	65	-72	-18	64	11	-37	-45	-52	86	09	-79	-63	-62	-78	72	-55	-52	54	85	37	22	46	27	38	73	56	-32	58	-36	: -	Τ	
$Lon.(^{\circ})$	-95.014	-94.911	-94.854	-94.853	-94.856	-94.837	-94.735	-95.030	-95.020	-94.774	-94.782	-94.790	-94.692	-95.143	-94.935	-95.126	-94.883	-94.850	-94.710	-94.924	-94.863	-94.930	-94.902	-94.983	-94.843	-95.003	-94.869	-95.082	-94.792	-94.863	-94.996	-94.966	-94.835	-95.034	-94.854	-94.800	-94.847	-94.906	-94.856	-95.203	-94.753	-94.896	-94.928	-95.161	-94.757	-95.193	
Lat.(°)	16.950	16.876	16.692	16.732	17.068	17.543	17.614	17.508	17.656	16.953	16.986	17.014	16.958	16.822	17.068	16.806	17.097	17.048	16.921	17.036	17.087	16.869	16.806	16.980	16.595	16.781	16.469	16.793	16.974	16.820	16.932	16.822	16.673	17.310	17.437	17.340	17.459	17.552	17.487	17.400	17.558	17.580	17.744	17.365	17.430	16.727	
$\sigma_{\delta t}(\mathrm{s})$	0.44	0.06	0.02	0.04	0.02	0.30	0.08	0.08	0.46	0.04	0.10	0.06	0.04	0.06	0.08	0.32	0.04	0.04	0.04	0.04	0.02	0.30	0.08	0.04	0.02	0.04	0.02	0.02	0.06	0.02	0.04	0.06	0.02	0.06	0.04	0.04	0.04	0.06	0.06	0.24	0.04	0.08	0.02	0.12	0.04	0.04	
$\delta t(\mathbf{s})$	0.12	0.18	0.28	0.28	0.14	0.36	0.24	0.18	0.10	0.24	0.16	0.12	0.20	0.14	0.14	0.20	0.14	0.10	0.26	0.24	0.16	0.20	0.26	0.18	0.16	0.26	0.26	0.22	0.20	0.20	0.30	0.18	0.18	0.30	0.26	0.16	0.28	0.26	0.36	0.28	0.38	0.32	0.28	0.32	0.16	0.28	
$\sigma_{\phi}(\degree)$	36	21	5	26	25	14	34	27	65	က	22	×	11	53	58	18	24	11	11	30	16	06	12	42	9	6	18	12	5	ŝ	6	37	6	67	12	13	16	×	20	06	16	10	10	82	20	ΤΥ	
(.) <i>\phi</i>	-35	89	-34	-17	-56	64	-14	-25	-60	20	27	-77	-66	6-	79	-15	82	-45	.	56	-75	-55	-73	32	-12	-12	86	-17	20	-ر م	-78	-85	۰.	-23	4	32	°,	10	-2	-24	ъ	22	4	35	18	-38	
D (km)	48.40	36.76	32.24	31.10	80.18	65.89	76.07	53.75	22.27	69.93	74.94	79.44	82.40	49.48	82.44	44.31	90.18	81.39	73.85	75.64	88.99	39.08	27.61	63.05	33.47	21.51	53.16	34.95	71.48	34.58	52.96	28.11	27.37	73.47	68.31	91.60	66.36	44.55	61.32	58.45	75.97	44.45	42.11	62.48	86.27	57.31	nte.
$\beta(")$	21.00	16.00	17.00	15.00	31.00	24.00	23.00	22.00	9.00	26.00	28.00	28.00	29.00	26.00	30.00	23.00	29.00	30.00	27.00	26.00	31.00	15.00	12.00	25.00	22.00	0.00	21.00	18.00	25.00	16.00	22.00	14.00	15.00	31.00	26.00	32.00	25.00	17.00	23.00	27.00	23.00	17.00	15.00	27.00	30.00		ıa sıgure
Mag.	4.0	3.9	4.2	3.9	4.5	4.1	4.6	4.1	3.9	4.0	4.2	4.1	3.9	4.3	4.1	4.3	3.9	4.0	4.0	4.2	4.3	3.8	4.0	4.1	3.8	3.8	4.0	4.0	4.0	3.9	4.0	3.8	4.2	4.1	4.2	4.0	4.2	4.2	4.1	4.2	4.6	4.5	4.5	4.1	3.9	4.3	la págu
Prof. (km)	129.1	127.1	103.7	113.9	135.5	148.6	183.2	133.1	138.8	144.0	142.7	148.6	150.1	103.3	144.7	106.5	160.4	141.9	145.6	152.1	147.7	144.1	126.4	133.1	84.7	132.5	137.7	106.0	153.4	120.6	129.1	117.0	103.7	121.1	142.2	148.0	142.7	142.2	148.6	116.4	183.2	145.4	160.6	121.3	150.1	103.3	Continúa en
$Lon.(^{\circ})$	-95.03	-94.83	-94.71	-94.71	-94.72	-94.62	-94.42	-95.01	-94.99	-94.59	-94.61	-94.62	-94.43	-95.33	-94.91	-95.29	-94.81	-94.74	-94.46	-94.89	-94.77	-94.90	-94.85	-95.01	-94.73	-95.05	-94.78	-95.21	-94.63	-94.77	-95.03	-94.97	-94.71	-94.98	-94.62	-94.51	-94.61	-94.72	-94.62	-95.32	-94.42	-94.70	-94.77	-95.23	-94.43	-95.33	
$Lat.(^{\circ})$	17.17	17.02	16.65	16.73	17.40	17.33	17.48	17.27	17.56	17.21	17.28	17.33	17.22	16.95	17.44	16.92	17.50	17.40	17.15	17.38	17.48	17.04	16.92	17.27	16.50	16.87	16.24	16.89	17.25	16.95	17.17	16.95	16.65	16.98	17.23	17.04	17.28	17.46	17.33	17.16	17.48	17.52	17.85	17.09	17.22	16.95	
Hora	16:51:44	16:44:51	01:53:01	06:22:45	00:22:47	04:31:01	01:03:27	23:51:50	00:27:49	03:23:46	22:11:31	04:31:01	10:05:48	05:10:03	12:02:39	04:37:55	06:19:13	02:54:58	16:31:03	10:23:29	14:28:12	22:30:48	11:40:13	23:51:50	11:29:34	18:25:17	07:56:55	20:13:32	10:22:07	11:19:08	16:51:44	12:53:00	01:53:01	01:56:57	18:17:54	03:52:41	22:11:31	20:21:57	04:31:01	14:52:50	01:03:27	01:53:19	03:16:06	02:25:06	10:05:48	05:10:03	
Fecha/juliano	2009-01-09/8	2009-01-26/25	2009-02-16/46	2009-02-18/48	2009-02-20/50	2007 - 12 - 03/336	2008-01-14/13	2008-09-06/249	2008 - 10 - 21/294	2007 - 10 - 04/276	2007 - 10 - 12/284	2007 - 12 - 03/336	2008-02-06/36	2008-04-11/101	2008-04-21/111	2008-05-12/132	2008-05-28/148	2008-06-21/172	2008-06-22/173	2008-06-26/177	2008-06-29/180	2008-07-15/196	2008-09-02/245	2008-09-06/249	2008-09-08/251	2008-09-08/251	2008 - 10 - 02/275	2008 - 11 - 07/311	2008 - 12 - 18/352	2009-01-04/3	2009-01-09/8	2009-01-10/9	2009-02-16/46	2007-08-11/222	2007-09-15/257	2007 - 10 - 05/277	2007 - 10 - 12/284	2007-11-16/319	2007 - 12 - 03/336	2007-12- $21/354$	2008-01-14/13	2008-01-21/20	2008-01-25/24	2008-01-26/25	2008-02-06/36	2008-04-11/101	
ID	CHIV	CHIV	CHIV	CHIV	CHIV	CUAU	CUAU	CUAU	CUAU	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	ELME	GUVI	GUVI	GUVI	GUVI	GUVI	GUVI	GUVI	GUVI	GUVI	GUVI	GUVI	GUVI	TX1A	
Red	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEUX	

σ_{PI}	33	2	15	0	2	9	ŝ	Ţ	2	2	ŝ	×	0	4	39	2	9	5 L	1	10	44	2	ŝ	2	4	F	16	2	1	2	1	2	2		24	2	Ţ	2	4	Г	2	ŝ	2 2	က	×	ъ	
$PI(^{\circ})$	43	35	23	65	25	37	-68	-65	-55	47	36	20	35	26	7	32	39	13	43	18	12	57	29	25	38	61	29	-90	-79	-85	49	-42	30	47	-35	34	-77	52	-34	63	-60	46	44	49	21	26	
Lon.(°)	-94.917	-95.118	-95.229	-94.901	-95.203	-94.893	-95.156	-95.011	-95.075	-94.803	-95.016	-94.943	-94.886	-95.051	-95.114	-94.959	-94.931	-95.225	-94.915	-95.105	-95.203	-94.932	-94.925	-95.048	-94.917	-94.836	-95.184	-94.734	-94.876	-95.142	-94.966	-94.810	-94.948	-95.099	-95.029	-95.041	-94.881	-94.838	-95.042	-94.838	-94.682	-94.828	-94.756	-94.813	-94.618	-95.055	
Lat.(°)	16.567	16.689	16.628	16.566	16.770	16.499	16.297	16.575	16.427	16.643	16.726	16.762	16.618	16.772	16.724	16.550	16.560	16.757	16.653	16.831	16.824	16.596	16.529	16.756	16.608	17.334	17.247	17.404	17.427	17.212	17.284	17.314	17.126	17.408	17.299	17.241	17.259	17.293	17.251	17.345	17.092	17.058	16.968	17.047	16.874	16.893	
$\sigma_{\delta t}(\mathbf{s})$	0.16	0.02	0.14	0.26	0.02	0.06	0.08	0.12	0.18	0.28	0.14	0.10	0.12	0.02	0.08	0.06	0.02	0.16	0.02	0.02	0.06	0.02	0.06	0.04	0.08	0.02	0.04	0.04	0.02	0.02	0.08	0.10	0.08	0.14	0.04	0.02	0.02	0.02	0.10	0.04	0.02	0.06	0.06	0.04	0.10	0.04	
$\delta t(\mathbf{s})$	0.28	0.36	0.30	0.04	0.36	0.08	0.32	0.26	0.26	0.12	0.22	0.22	0.18	0.20	0.12	0.14	0.18	0.28	0.38	0.20	0.12	0.14	0.10	0.20	0.20	0.18	0.12	0.30	0.26	0.24	0.28	0.30	0.16	0.16	0.14	0.26	0.36	0.14	0.24	0.24	0.32	0.18	0.22	0.16	0.30	0.10	
$\sigma_{\phi}(\degree)$	21	4	58	47	9	40	33	25	36	73	80	18	86	8	17	18	15	11	4	15	51	49	44	×	13	11	29	10	9	9	ŝ	19	38	45	23	13	8	24	17	11	11	7	2	7	11	36	
$\phi(\circ)$	25	-71	77	-71	-87	82	72	46	-42	64	-43	2	-61	62	23	-77	26	-67	-58	51	43	85	89	51	60	17	73	31	42	-14	55	74	က	65	14	76	46	-2	72	37	53	-54	30	-55	4	85	
D (km)	34.19	42.84	46.21	37.47	66.56	36.49	50.21	18.94	17.28	64.25	49.88	62.29	45.72	48.56	35.34	36.02	42.04	48.15	49.65	58.94	60.00	42.40	44.08	45.45	46.16	46.97	35.07	71.25	43.40	33.51	21.36	53.00	50.82	19.65	8.85	20.48	40.69	47.35	18.13	46.59	90.60	60.01	64.43	61.09	92.00	4.80	nte.
$\beta(")$	20.00	20.00	20.00	25.00	29.00	23.00	31.00	12.00	15.00	29.00	23.00	26.00	22.00	22.00	18.00	21.00	23.00	25.00	24.00	24.00	29.00	27.00	28.00	21.00	24.00	18.00	17.00	21.00	17.00	15.00	0.00	19.00	22.00	7.00	4.00	22.00	16.00	17.00	8.00	17.00	30.00	23.00	25.00	23.00	33.00	3.00	na siguie
Mag.	4.0	4.0	3.8	4.0	3.8	3.8	4.1	4.0	4.2	4.0	3.8	3.9	3.9	4.1	4.5	3.9	4.1	4.3	3.9	3.9	4.3	4.0	3.8	3.8	4.2	4.1	4.2	4.6	4.5	4.1	4.0	3.9	4.0	4.0	4.1	3.9	3.9	4.0	4.0	3.9	4.0	4.2	3.9	4.0	4.0	3.8	la pági
Prof. (km)	94.5	117.3	130.0	81.8	120.8	84.7	84.2	87.9	64.6	116.0	117.0	127.1	113.9	121.1	107.0	94.8	96.8	103.3	111.3	133.5	107.3	81.8	84.7	117.0	103.7	148.6	116.4	183.2	145.4	121.3	140.5	154.4	126.4	156.2	133.1	51.3	142.9	153.4	129.1	155.2	156.7	142.2	137.0	144.0	143.7	108.0	Continúa en
$Lon.(^{\circ})$	-94.78	-95.18	-95.40	-94.74	-95.35	-94.73	-95.25	-94.96	-95.09	-94.55	-94.97	-94.83	-94.71	-94.98	-95.10	-94.80	-94.74	-95.33	-94.71	-95.09	-95.28	-94.74	-94.73	-94.97	-94.71	-94.62	-95.32	-94.42	-94.70	-95.23	-94.88	-94.57	-94.85	-95.15	-95.01	-95.03	-94.71	-94.63	-95.03	-94.63	-94.33	-94.62	-94.48	-94.59	-94.20	-95.07	
Lat.(°)	16.63	16.88	16.75	16.63	17.04	16.50	16.09	16.65	16.35	16.78	16.95	17.02	16.73	16.98	16.88	16.54	16.56	16.95	16.74	17.10	17.08	16.63	16.50	16.95	16.65	17.33	17.16	17.48	17.52	17.09	17.23	17.29	16.92	17.48	17.27	17.15	17.18	17.25	17.17	17.36	17.30	17.23	17.05	17.21	16.87	16.90	
Hora	07:52:23	09:51:12	13:35:29	10:23:20	00:45:54	11:29:34	15:37:12	15:08:51	05:38:12	08:22:02	12:53:00	16:44:51	06:22:45	01:56:57	21:34:24	19:24:20	20:33:47	05:10:03	07:25:05	13:39:36	09:09:33	10:23:20	11:29:34	12:53:00	01:53:01	04:31:01	14:52:50	01:03:27	01:53:19	02:25:06	02:30:11	00:50:05	11:40:13	05:57:43	23:51:50	10:50:59	10:59:19	10:22:07	16:51:44	08:19:18	10:16:42	18:17:54	14:39:53	03:23:46	17:53:25	23:58:01	
Fecha/juliano	2008-06-09/160	2008-06-28/179	2008-07-16/197	2008-08-19/231	2008-08-21/233	2008-09-08/251	2008-09-08/251	2008-09-11/254	2008 - 12 - 04/338	2008 - 12 - 08/342	2009-01-10/9	2009-01-26/25	2009-02-18/48	2007-08-11/222	2008-01-18/17	2008-02-02/32	2008-03-11/70	2008-04-11/101	2008-05-13/133	2008-05-14/134	2008-05-18/138	2008-08-19/231	2008-09-08/251	2009-01-10/9	2009-02-16/46	2007-12-03/336	2007 - 12 - 21/354	2008-01-14/13	2008-01-21/20	2008-01-26/25	2008-03-03/62	2008-07-16/197	2008-09-02/245	2008-09-05/248	2008-09-06/249	2008 - 10 - 04/277	2008 - 10 - 23/296	2008 - 12 - 18/352	2009-01-09/8	2009-01-24/23	2007-08- $30/241$	2007-09-15/257	2007-09-22/264	2007-10-04 $/276$	2008-01-05/4	2008-02-24/54	
ID	IXTA	IXTA	IXTA	IXTA	IXTA	IXTE	IXTE	IXTE	IXTE	IXTE	IXTE	IXTE	IXTE	IXTE	IXTE	IXTE	IXTE	LACU	LACU	LACU	LACU	LACU	LACU	\mathbf{LACU}	LACU	LACU	LACU	LACU	LACU	LACU	LACU	\mathbf{LACU}	MARO	MARO	MARO	MARO	MARO	MARO									
Red	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX									

σ_{PI}	4	က	2	2	×	55	ъ	n	1	9	2	က	က	1	1	27	1	36	65	×	46	22	2	H	7	36	33	1	61	2	4	2		60	ŝ	25	က	23	ŝ	11	49	-	I	ŝ	-	-	
$PI(\circ)$	39	-59	-45	-39	21	-11	40	-31	69	-51	-51	43	67	-64	60	13	-76	-13	8 <mark>-</mark>	17	28	17	47	88	-19	-15	-15	71	60	46	-53	-77	-85	40	-74	-30	42	-27	50	21	-22	56	00	44	54	56	
Lon.(°)	-94.848	-95.182	-95.169	-94.993	-95.062	-94.890	-95.106	-94.902	-95.217	-95.133	-94.683	-94.709	-94.804	-94.728	-94.845	-94.897	-95.019	-94.991	-94.961	-94.830	-95.032	-94.904	-95.201	-94.926	-95.159	-94.755	-95.012	-94.834	-95.182	-94.795	-95.142	-94.732	-94.874	-94.907	-95.004	-94.761	-94.818	-94.779	-94.826	-94.795	-94.801	-94.985	-94.875	-94.854	-95.111	-94.874	
Lat.(°)	17.141	16.916	16.798	17.270	16.990	17.142	16.879	17.181	16.817	16.896	17.054	16.497	17.016	17.012	16.631	16.776	16.491	16.901	16.791	16.643	17.254	17.495	17.344	17.688	17.309	17.374	17.028	17.204	17.117	17.116	17.378	17.275	17.297	17.461	17.196	17.124	17.204	17.118	17.236	17.177	17.178	17.285	17.358	17.298	17.320	17.239	
$\sigma_{\delta t}(\mathrm{s})$	0.02	1.18	0.02	0.06	0.14	0.02	0.06	0.00	0.02	0.28	0.06	0.10	0.04	0.06	0.04	0.04	0.06	0.02	0.02	0.04	0.06	0.06	0.06	0.00	0.02	0.02	0.06	0.04	0.02	0.06	0.02	0.06	0.02	0.04	0.04	0.38	0.08	0.32	0.04	0.10	0.04	0.04	0.04	0.02	0.04	0.04	
$\delta t(\mathbf{s})$	0.14	0.08	0.22	0.16	0.14	0.26	0.20	0.38	0.26	0.18	0.22	0.20	0.14	0.14	0.20	0.34	0.10	0.36	0.22	0.26	0.20	0.08	0.16	0.38	0.40	0.18	0.32	0.22	0.34	0.28	0.24	0.30	0.28	0.22	0.22	0.14	0.18	0.16	0.22	0.28	0.12	0.18	0.36	0.18	0.16	0.28	
$\sigma_{\phi}(^{\circ})$	17	65	7	18	47	×	7	4	16	90	25	20	23	6	×	16	41	10	14	5 L	43	41	27	4	9	12	12	13	10	6	21	17	9	11	14	34	15	22	13	9	26	9	11	17	9	12	
$(.)\phi$	20	-90	-79	29	34	66	-62	81	-56	-61	-78	56	-85	41	-50	-47	33	-65	-57	31	55	82	70	25	44	37	60	40	-63	22	88	45	40	-68	-48	39	29	49	20	10	50	-20	34	-17	-26	27	
D (km)	70.41	32.89	34.56	85.93	24.45	65.67	15.37	72.14	42.26	70.91	109.51	60.35	90.15	96.41	22.54	33.40	34.86	59.81	34.93	25.96	61.17	40.31	47.76	49.67	50.70	79.95	12.64	54.62	31.33	56.06	70.16	82.00	61.97	90.48	9.49	64.68	50.30	61.33	49.29	55.51	54.19	23.99	52.12	48.10	30.96	39.18	nte.
$\beta(\circ)$	25.00	18.00	23.00	31.00	10.00	25.00	7.00	26.00	18.00	31.00	31.00	29.00	31.00	31.00	15.00	15.00	28.00	25.00	17.00	14.00	27.00	16.00	22.00	17.00	23.00	28.00	6.00	20.00	15.00	22.00	28.00	24.00	23.00	29.00	4.00	25.00	19.00	23.00	19.00	22.00	21.00	10.00	20.00	18.00	13.00	15.00	na sigure
Mag.	4.4	4.3	3.6	4.1	3.9	4.0	4.0	4.3	3.8	4.2	4.6	4.2	4.4	3.8	4.0	4.0	4.2	4.0	3.8	4.2	4.1	4.2	4.2	4.5	4.1	3.9	4.1	4.1	4.2	3.9	4.0	4.6	4.5	4.5	3.9	3.9	4.0	4.0	4.2	3.9	3.8	4.3	4.5	4.4	4.0	3.9	la págu
Prof. (km)	150.6	103.3	80.7	141.7	133.5	141.9	117.3	147.7	130.0	116.4	183.2	108.1	150.6	158.9	81.8	126.4	64.6	129.1	117.0	103.7	121.1	142.2	116.4	160.6	121.3	150.1	121.1	148.6	116.4	139.7	131.9	183.2	145.4	160.6	127.8	137.0	144.0	148.0	142.7	139.7	139.1	134.3	145.4	150.6	130.1	148.2	Continúa en
$Lon.(^{\circ})$	-94.66	-95.33	-95.30	-94.95	-95.09	-94.74	-95.18	-94.77	-95.40	-95.32	-94.42	-94.47	-94.66	-94.51	-94.74	-94.85	-95.09	-95.03	-94.97	-94.71	-94.98	-94.72	-95.32	-94.77	-95.23	-94.43	-94.98	-94.62	-95.32	-94.54	-95.24	-94.42	-94.70	-94.77	-94.96	-94.48	-94.59	-94.51	-94.61	-94.54	-94.56	-94.92	-94.70	-94.66	-95.17	-94.70	
Lat.(°)	17.40	16.95	16.71	17.66	17.10	17.40	16.88	17.48	16.75	17.16	17.48	16.36	17.40	17.39	16.63	16.92	16.35	17.17	16.95	16.65	16.98	17.46	17.16	17.85	17.09	17.22	16.98	17.33	17.16	17.16	17.68	17.48	17.52	17.85	17.20	17.05	17.21	17.04	17.28	17.16	17.16	17.37	17.52	17.40	17.45	17.28	
Hora	12:04:19	05:10:03	09:49:38	$04{:}08{:}08$	13:39:36	02:54:58	09:51:12	14:28:12	13:35:29	14:52:50	01:03:27	22:51:42	12:04:19	03:17:14	10:23:20	11:40:13	05:38:12	16:51:44	12:53:00	01:53:01	01:56:57	20:21:57	14:52:50	03:16:06	02:25:06	10:05:48	01:56:57	04:31:01	14:52:50	05:43:35	15:47:43	01:03:27	01:53:19	03:16:06	12:01:20	14:39:53	03:23:46	03:52:41	22:11:31	05:43:35	18:07:07	14:57:42	01:53:19	12:04:19	08:35:18	16:32:37	
Fecha/juliano	2008-02-26/56	2008-04-11/101	2008-04-25/115	2008-05-06/126	2008-05-14/134	2008-06-21/172	2008-06-28/179	2008-06-29/180	2008-07-16/197	2007 - 12 - 21/354	2008-01-14/13	2008-01-31/30	2008-02-26/56	2008-04-24/114	2008-08-19/231	2008-09-02/245	2008 - 12 - 04/338	2009-01-09/8	2009-01-10/9	2009-02-16/46	2007-08-11/222	2007 - 11 - 16/319	2007 - 12 - 21/354	2008-01-25/24	2008-01-26/25	2008-02-06/36	2007-08-11/222	2007 - 12 - 03/336	2007 - 12 - 21/354	2007 - 12 - 24/357	2008-01-12/11	2008-01-14/13	2008-01-21/20	2008-01-25/24	2007-08-14/225	2007-09-22/264	2007 - 10 - 04/276	2007 - 10 - 05/277	2007 - 10 - 12/284	2007 - 12 - 24/357	2007 - 12 - 25/358	2007-12-27/360	2008-01-21/20	2008-02-26/56	2008-03-17/76	2008-03-31/90	
ID	MARO	MARO	MARO	MARO	MARO	MARO	MARO	MARO	MARO	MAZH	MAZH	MAZH	MAZH	MAZH	MAZH	MAZH	MAZH	MAZH	MAZH	MAZH	NUMO	NUMO	NUMO	NUMO	OMUN	NUMO	PARE	PARE	PARE	PARE	PARE	PARE	PARE	PARE	TOLO	TOLO	TOLO	TOLO	TOLO	TOLO	TOLO	TOLO	TOLO	TOLO	TOLO	LOTO	
Red	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	VEOX	

σ_{PI}	4	4	1	ъ	2	4	-	7	4	ŝ	4	15	4	-	64	7	2	25	S	က	ŝ	0	1	က	ŝ	7	20	12	34	2	17	4	7	54	7	38	2	7	9	1	-	1		48	ۍ.	-	
$PI(^{\circ})$	06	-36	73	-34	59	59	66	-33	27	37	35	19	44	-81	7	40	47	18	30	-52	45	58	-68	-55	-71	-25	-24	21	-7	71	22	42	-69	10	-34	% •	71	-85	-28	75	82	85	68	10	-28	22	
Lon.(°)	-95.077	-94.998	-94.927	-94.895	-94.968	-95.111	-94.858	-95.140	-95.097	-92.120	-92.243	-92.323	-92.164	-92.145	-92.294	-92.250	-92.257	-92.302	-92.091	-92.274	-92.202	-92.285	-92.253	-92.252	-92.132	-92.148	-92.190	-92.111	-92.273	-92.356	-92.374	-92.184	-92.164	-92.388	-92.167	-92.289	-92.029	-92.239	-92.447	-92.424	-92.386	-92.339	-92.371	-92.483	-92.575	- 92.208	
Lat.(°)	17.303	17.427	17.347	17.299	17.287	17.035	17.365	16.987	17.339	14.945	14.992	14.990	15.043	14.920	15.227	14.931	15.349	14.901	14.935	14.905	14.956	15.051	15.066	14.938	14.912	14.937	15.047	14.992	14.913	15.060	15.071	15.036	15.268	15.100	14.927	14.976	15.307	15.012	15.064	15.169	15.001	14.894	15.309	15.322	15.119	14.932	
$\sigma_{\delta t}(\mathrm{s})$	0.12	0.02	0.02	0.06	0.08	0.06	0.04	0.12	0.06	0.02	1.42	0.66	0.08	0.06	0.14	0.06	0.04	0.08	0.06	0.02	0.04	0.16	0.10	0.04	0.06	0.16	0.22	0.12	0.04	0.06	0.12	0.04	0.48	0.16	0.04	0.04	0.46	0.06	0.06	0.08	0.06	0.02	1.02	0.16	0.06	0.04	
$\delta t(\mathbf{s})$	0.20	0.22	0.28	0.28	0.14	0.32	0.24	0.26	0.34	0.14	0.08	0.12	0.14	0.18	0.10	0.10	0.32	0.10	0.28	0.14	0.28	0.24	0.18	0.22	0.38	0.16	0.10	0.12	0.18	0.22	0.22	0.08	0.16	0.12	0.16	0.14	0.14	0.28	0.24	0.30	0.22	0.14	0.16	0.20	$0.26_{\hat{1}\hat{1}\hat{0}}$	0.10	
$\sigma_{\phi}(\degree)$	64	20	14	39	24	29	29	13	15	23	85	83	26	17	62	26	13	75	22	47	24	06	34	11	17	82	74	72	34	28	48	35	72	81	20	42	57	23	10	17	17	15	89	85	31	Τ	
$\phi(^{\circ})$	-66	13	31	26	-14	-73	10	-18	58	83	-76	38	-74	-14	36	63	16	34	-4	.	ŝ	74	-45	-31	45	-82	17	88	49	-54	-48	85	-6	29	87	-66	-78	61	79	-43	-31	48	-38	-58	-12	13	
D (km)	24.58	52.07	42.63	40.42	26.53	37.94	55.81	50.15	33.54	32.79	37.23	52.56	16.55	39.00	50.32	47.48	64.91	60.20	35.06	55.23	36.65	40.01	32.48	46.67	40.37	35.65	20.82	22.33	53.90	54.92	58.67	20.87	40.32	61.57	38.85	47.48	50.02	33.96	48.38	43.24	42.07	54.34	51.78	71.08	74.92	, 41.15	nte.
$\beta(^{\circ})$	0.00	20.00	15.00	16.00	10.00	18.00	18.00	26.00	12.00	14.00	21.00	26.00	8.00	22.00	19.00	24.00	19.00	34.00	19.00	31.00	21.00	21.00	14.00	26.00	24.00	19.00	10.00	12.00	32.00	22.00	29.00	11.00	13.00	33.00	23.00	25.00	15.00	18.00	28.00	14.00	21.00	34.00	17.00	26.00	24.00	23.00	or signic
Mag.	3.9	4.1	3.9	4.0	4.2	4.0	3.8	3.8	4.0	3.9	3.7	4.1	3.9	3.2	3.9	3.5	3.8	3.8	3.7	3.8	3.1	3.4	4.2	3.7	3.9	3.6	3.7	4.0	4.2	3.3	4.1	3.3	5.5	3.7	3.8	4.3	3.9	3.5	4.3	3.9	4.1	4.2	4.1	3.5	4.0	3.2	la pagu
Prof. (km)	158.6	141.7	160.4	141.9	152.1	117.3	173.0	101.6	156.2	132.4	97.0	107.6	118.5	96.7	147.7	104.4	186.8	88.9	100.5	89.4	93.9	103.0	129.1	92.8	89.0	100.9	111.2	104.9	85.6	136.4	103.3	106.1	178.2	91.7	89.8	101.1	184.0	102.0	90.8	173.2	107.6	79.9	164.4	144.7	167.2	96.7	Continua en
$Lon.(^{\circ})$	-95.11	-94.95	-94.81	-94.74	-94.89	-95.18	-94.67	-95.23	-95.15	-92.13	-92.38	-92.54	-92.22	-92.18	-92.48	-92.39	-92.40	-92.50	-92.07	-92.44	-92.30	-92.46	-92.40	-92.40	-92.15	-92.19	-92.27	-92.11	-92.44	-92.60	-92.64	-92.26	-92.22	-92.67	-92.22	-92.47	-91.95	-92.37	-92.66	-92.61	-92.54	-92.44	-92.51	-92.73	-92.92	-92.18	
Lat.(°)	17.41	17.66	17.50	17.40	17.38	16.88	17.54	16.78	17.48	14.80	14.89	14.89	14.99	14.75	15.36	14.77	15.60	14.71	14.78	14.72	14.82	15.01	15.04	14.78	14.73	14.78	15.00	14.89	14.73	15.03	15.05	14.98	15.44	15.11	14.76	14.86	15.52	14.93	15.01	15.22	14.89	14.67	15.50	15.53	15.12	14.75	
Hora	04:54:51	04:08:08	06:19:13	02:54:58	10:23:29	09:51:12	16:57:39	11:29:43	05:57:43	12:01:33	05:45:27	09:26:24	00:37:56	23:19:57	06:43:01	05:23:58	11:12:33	07:40:59	01:39:13	00:51:44	16:29:35	02:27:21	16:05:34	02:16:48	03:18:21	01:02:49	03:33:17	21:20:34	08:41:25	17:53:19	22:57:55	17:40:38	07:03:07	01:33:27	20:38:33	22:18:55	06:10:33	05:35:15	18:19:16	18:04:54	09:26:24	07:59:55	07:52:11	23:09:44	20:29:26	23:19:57	
Fecha/juliano	2008-04-14/104	2008-05-06/126	2008-05-28/148	2008-06-21/172	2008-06-26/177	2008-06-28/179	2008-07-02/183	2008-08-02/214	2008-09-05/248	2021-04- $12/102$	2021-04-1 $3/103$	2021-04-24/114	2021-04- $29/119$	2021-05-06/126	2021 - 05 - 08/128	2021-05-11/131	2021-05-11/131	2021 - 05 - 19/139	2021 - 05 - 28/148	2021-06-06/157	2021-06-06/157	2021-08-05/217	2021 - 08 - 21/233	2021-08-31/243	2021 - 08 - 31/243	2021-09-12/255	2021-09-24/267	2021 - 10 - 04/277	2021-11-01/305	2021 - 11 - 15/319	2021 - 11 - 24/328	2021 - 12 - 12/346	2021 - 12 - 13/347	2022 - 02 - 05/36	2022-02-18/49	2022- 05 - $05/125$	2022 - 07 - 24/205	2022-07-25/206	2021-04-11/101	2021-04- $12/102$	2021-04-24 $/114$	2021-04-27/117	2021-04-28/118	2021-05-04/124	2021-05-05/125	20.21-05-06/ 126	
ID	TOLO	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	CHIQ	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATK									
Red	VEOX	ΓT	ΓT	ΓT	VT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	VT	ΓT	ΓT	ΓT	VT	ΓT	VT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	VT	ΓT	ΓT	ΓT	ΤΛ	.1.7									

σ_{PI}	°.	-	1	6	1	S	2	-	16	9	2			2	15	2	4		2	7		က	2	1	49	0	1	9	2	2	2	2	1	7	1	ŝ	က	-	7	1	-	ъ	က	2		7	
$PI(^{\circ})$	48	80	65	-16	-89	-31	-53	79	-14	35	57	-90	48	50	-14	-63	-25	-73	51	22	89	-33	-60	54	-7	79	63	29	78	60	39	42	-62	-60	-77	-31	85	64	56	68	-77	41	63	74	<u>-1</u>	77	
Lon.($^{\circ}$)	-92.313	-92.365	-92.154	-92.226	-92.321	-92.336	-92.374	-92.116	-92.442	-92.307	-92.214	-92.411	-92.341	-92.306	-92.306	-92.157	-92.316	-92.512	-92.194	-92.211	-92.253	-92.179	-92.253	-92.206	-92.506	-92.226	-92.342	-92.425	-92.418	-92.437	-92.329	-92.537	-92.267	-92.227	-92.484	-92.092	-92.372	-92.207	-92.302	-92.497	-92.507	-92.225	-92.302	-92.357	-92.272	-92.107	
Lat.(°)	14.943	14.912	14.947	14.901	14.907	14.916	15.442	15.127	15.415	15.014	14.937	15.109	14.925	15.121	15.279	15.261	15.077	15.152	14.923	14.948	14.901	14.903	15.059	15.171	15.256	14.878	15.066	14.985	15.072	15.083	14.913	15.166	14.910	15.280	15.181	15.319	15.399	14.984	15.024	15.124	15.142	14.917	15.079	15.059	14.909	15.239	
$\sigma_{\delta t}(\mathrm{s})$	0.04	0.04	0.06	0.10	0.04	0.04	0.52	0.06	0.04	0.04	0.04	0.06	0.08	0.04	0.10	0.10	0.06	0.12	0.04	0.02	0.00	0.16	0.04	0.06	0.14	0.06	0.08	0.30	0.06	0.06	0.08	0.02	0.06	0.06	0.16	0.04	0.04	0.04	0.04	0.02	0.08	0.58	0.04	0.06	0.04	0.04	
$\delta t(\mathbf{s})$	0.10	0.14	0.24	0.24	0.10	0.18	0.20	0.20	0.24	0.10	0.24	0.18	0.14	0.12	0.12	0.18	0.18	0.12	0.28	0.28	0.18	0.12	0.18	0.30	0.22	0.16	0.24	0.14	0.12	0.24	0.16	0.18	0.16	0.14	0.10	0.34	0.14	0.28	0.16	0.08	0.24	0.10	0.12	0.22	0.24	0.32	
$\sigma_{\phi}(\degree)$	65	37	14	11	25	41	00	57	21	36	15	09	53	27	64	44	14	74	2	15	2	64	28	6	57	41	9	29	28	33	52	18	44	51	68	18	26	ъ	23	26	6	50	50	19	26	14	
$\phi(\circ)$	-21	26	-2	-2	38	-2	14	-47	-65	-16	-66	26	-19	-16	-39	-87	~ ~	-57	-57	-30	18	-63	-25	-56	-18	52	-18	-72	-41	22	23	-1	-11	-30	6-	-82	-58	-37	8 <mark>-</mark>	-41	-90	83	-4	45	-55	-55	
D (km)	42.08	53.48	41.33	47.63	50.10	49.55	77.81	25.99	79.90	27.80	39.79	39.04	48.44	15.91	38.97	35.95	20.07	61.72	43.48	37.47	47.78	48.57	13.56	13.26	67.33	52.53	26.22	51.08	41.80	45.26	49.50	67.44	46.23	35.87	56.81	54.23	68.98	29.96	25.44	57.89	60.21	44.01	17.20	29.97	46.63	38.66	nte.
$\beta($ °)	22.00	31.00	22.00	29.00	30.00	29.00	20.00	9.00	24.00	15.00	21.00	19.00	27.00	9.00	13.00	11.00	9.00	32.00	26.00	20.00	30.00	26.00	7.00	4.00	31.00	32.00	13.00	31.00	17.00	23.00	33.00	33.00	28.00	11.00	29.00	16.00	20.00	17.00	14.00	30.00	30.00	22.00	0.00	16.00	29.00	12.00	na sigure
Mag.	3.5	3.8	3.7	4.0	3.3	3.8	3.9	4.0	3.9	3.6	3.8	3.7	3.9	3.4	3.8	3.7	4.2	3.6	3.9	3.6	3.8	3.4	3.7	3.7	3.9	3.3	4.0	3.8	3.3	4.1	3.6	3.8	3.7	5.5	3.6	3.9	4.2	3.8	3.5	3.5	3.7	3.4	3.4	3.5	3.6	4.0	la págu
Prof. (km)	104.4	88.9	100.5	84.1	85.0	89.4	215.7	158.0	175.5	102.1	103.1	114.1	92.7	104.5	164.5	177.3	129.1	99.5	89.0	100.9	82.0	96.4	111.2	172.4	110.1	83.3	111.5	82.4	136.4	103.3	73.7	101.7	84.3	178.2	101.7	184.0	193.0	0.06	102.0	101.0	103.2	110.4	110.0	100.0	84.0	179.0	Continúa en
$Lon.(^{\circ})$	-92.39	-92.50	-92.07	-92.22	-92.41	-92.44	-92.51	-92.00	-92.65	-92.38	-92.19	-92.59	-92.45	-92.38	-92.38	-92.08	-92.40	-92.79	-92.15	-92.19	-92.27	-92.12	-92.27	-92.18	-92.78	-92.22	-92.45	-92.62	-92.60	-92.64	-92.42	-92.84	-92.30	-92.22	-92.73	-91.95	-92.51	-92.18	-92.37	-92.76	-92.78	-92.22	-92.37	-92.48	-92.31	-91.98	
Lat.(°)	14.77	14.71	14.78	14.68	14.70	14.72	15.77	15.14	15.71	14.91	14.76	15.10	14.73	15.13	15.44	15.41	15.04	15.19	14.73	14.78	14.68	14.69	15.00	15.22	15.40	14.64	15.02	14.85	15.03	15.05	14.71	15.21	14.70	15.44	15.25	15.52	15.68	14.85	14.93	15.13	15.17	14.72	15.04	15.00	14.70	15.36	
Hora	05:23:58	07:40:59	01:39:13	06:57:44	03:48:12	00:51:44	17:39:35	00:04:52	09:34:49	05:11:30	06:02:23	05:38:36	04:00:49	17:43:24	07:54:21	11:35:15	16:05:34	00:18:27	03:18:21	01:02:49	07:19:53	03:01:39	03:33:17	03:47:32	21:21:06	23:41:03	14:25:36	21:32:45	17:53:19	22:57:55	11:33:42	12:05:01	03:27:40	07:03:07	23:38:56	06:10:33	09:33:48	15:46:47	05:35:15	22:43:35	04:16:41	20:15:31	01:22:38	23:40:26	16:26:05	07:49:36	
Fecha/juliano	2021-05-11/131	2021-05-19/139	2021 - 05 - 28/148	2021 - 05 - 31/151	2021-06-0 $5/156$	2021-06-06/157	2021-06-19/170	2021-06-30/181	2021-07-02/183	2021-07-06/187	2021-07-11/192	2021-08-03/215	2021-08-09/221	2021-08-10/222	2021-08-12/224	2021-08-18/230	2021-08-21/233	2021-08-24/236	2021 - 08 - 31/243	2021-09-12/255	2021-09-14/257	2021-09- $19/262$	2021-09-24/267	2021 - 10 - 03/276	2021 - 10 - 18/291	2021 - 10 - 22/295	2021 - 11 - 02/306	2021 - 11 - 13/317	2021 - 11 - 15/319	2021 - 11 - 24/328	2021 - 11 - 28/332	2021 - 12 - 07/341	2021 - 12 - 13/347	2021 - 12 - 13/347	2022-06-16/167	2022-07-24/205	2022-07-24/205	2022-07-24/205	2022-07-25/206	2022-07- $26/207$	2022-08-09/221	2022-08-14/226	2022-10-0 $3/276$	2022 - 10 - 23/296	2022 - 10 - 26/299	2022-11-02/306	
ID	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PATR	
Red	ΓT	ΓT	VT	VT	ΓV	ΓT	ΓV	ΓT	ΓT	VT	VT	VT	ΓV	VT	ΓV	VT	VT	ΓT	ΓT	ΓT	ΓV	VT	ΓV	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	VT	ΤΛ	.T.A										

σ_{PI}	1	1	2	2	1	ĉ	73	0	15	1	2	2	1	2	2	1	2	က	က	1	39	1	2	2	1	4	1	1	2	1	2	3	2	-	-	5	1	2	2	2	1	1	ŝ	2	4	-	
PI(°)	-65	-79	-41	-46	68	57	-72	-82	26	-60	61	-86	-67	-51	-67	-59	-66	-52	-75	-78	-14	68	-65	53	-57	-55	-57	-65	-51	-65	-65	84	63	-90	79	78	-43	-60	-78	71	-62	-61	-84	-60	64	-57	
Lon.(°)	-92.087	-92.337	-92.382	-92.057	-92.127	-92.392	-92.427	-92.155	-92.278	-92.546	-92.179	-92.291	-92.519	-92.163	-92.262	-92.345	-92.344	-92.414	-92.413	-92.233	-92.493	-92.320	-92.381	-92.313	-92.278	-92.128	-92.288	-92.484	-92.305	-92.286	-92.402	-92.373	-92.409	-92.278	-92.307	-92.155	-92.267	-92.014	-92.385	-92.282	-92.255	-92.316	-92.429	-92.321	-92.255	-92.305	
Lat.(°)	15.164	14.914	15.189	15.309	14.984	15.069	15.094	14.995	15.041	15.157	14.970	15.398	15.174	15.320	15.320	15.480	15.177	15.452	15.207	15.415	15.314	15.101	15.263	14.962	15.317	15.299	15.115	15.190	15.597	14.987	15.095	15.253	15.121	15.510	15.133	15.006	15.318	15.321	15.160	15.147	15.399	15.398	15.549	14.978	14.979	15.178	
$\sigma_{\delta t}(\mathrm{s})$	0.06	0.06	0.10	0.02	0.06	0.08	0.08	0.08	0.04	0.10	0.02	0.02	0.34	0.10	0.08	0.06	0.06	0.08	0.08	0.10	0.04	0.04	0.08	0.04	0.06	0.06	0.16	0.02	0.10	0.04	0.08	0.08	0.02	0.06	0.08	0.04	0.06	0.10	0.04	0.10	0.38	0.06	0.06	0.04	0.06	0.06	
$\delta t(\mathbf{s})$	0.16	0.14	0.14	0.36	0.16	0.20	0.22	0.12	0.16	0.20	0.20	0.12	0.06	0.18	0.12	0.14	0.10	0.20	0.08	0.08	0.20	0.28	0.06	0.24	0.06	0.12	0.26	0.08	0.18	0.08	0.10	0.14	0.24	0.16	0.22	0.14	0.24	0.08	0.08	0.16	0.06	0.12	0.14	0.14	0.28	0.04	
$\sigma_{\phi}(\degree)$	23	81	63	9	42	30	46	27	37	13	13	15	75	44	37	73	47	15	74	81	12	10	64	11	18	83	16	27	21	14	65	62	12	24	2	23	2	47	20	40	73	81	56	24	12	47	
$\phi(^{\circ})$	-34	-89	-80	81	-58	27	-40	-68	$\overline{76}$	-75	-76	-52	-41	-75	32	17	4	-70	-59	-65	58	-89	-42	-10	-48	-74	-68	-35	26	-50	-50	-72	2	-59		-78	34	-79	-58	87	-2	17	-55	-20	-4	-26	
D (km)	33.91	50.18	36.17	57.36	37.63	36.37	42.78	43.86	39.98	81.54	49.05	51.70	75.18	28.10	33.68	73.19	36.92	77.30	51.95	50.52	74.29	37.28	47.41	58.76	35.11	25.72	29.69	67.47	93.25	51.20	53.94	45.06	53.28	73.26	31.44	41.32	33.83	45.70	46.34	25.11	48.53	54.44	96.01	56.87	49.97	28.34	nte.
β(°)	10.00	34.00	17.00	15.00	20.00	19.00	23.00	18.00	22.00	26.00	26.00	15.00	34.00	8.00	11.00	19.00	18.00	24.00	25.00	14.00	26.00	20.00	22.00	32.00	12.00	8.00	13.00	34.00	24.00	28.00	27.00	22.00	27.00	18.00	15.00	22.00	12.00	12.00	21.00	12.00	14.00	13.00	26.00	32.00	27.00	14.00 :	na sigure
Mag.	4.2	3.7	3.3	4.4	3.2	3.6	3.5	3.9	3.7	4.0	3.2	3.8	3.5	3.6	4.0	3.9	3.4	3.9	3.7	3.9	3.7	3.4	3.6	3.9	3.8	3.7	4.2	3.6	3.7	3.7	4.4	3.7	4.1	3.8	3.8	3.9	4.1	4.4	4.0	3.6	4.0	4.0	4.2	3.9	3.0	3.7	la págn
Prof. (km)	195.0	73.0	116.0	218.0	102.0	104.0	100.0	132.4	97.0	167.2	96.7	186.8	110.6	194.4	174.9	215.7	110.8	175.5	107.5	194.3	153.7	103.0	118.1	92.7	164.5	177.3	129.1	99.5	209.9	92.8	102.6	111.4	103.3	224.7	113.7	101.7	152.6	214.9	121.8	113.4	193.5	233.4	196.3	90.6	95.0	$\frac{111.0}{2}$	Continúa en
$Lon.(^{\circ})$	-91.94	-92.44	-92.53	-91.88	-92.02	-92.55	-92.62	-92.13	-92.38	-92.92	-92.18	-92.40	-92.86	-92.15	-92.35	-92.51	-92.51	-92.65	-92.65	-92.29	-92.81	-92.46	-92.58	-92.45	-92.38	-92.08	-92.40	-92.79	-92.43	-92.40	-92.63	-92.57	-92.64	-92.38	-92.44	-92.13	-92.36	-91.85	-92.59	-92.39	-92.33	-92.45	-92.68	-92.46	-92.33	-92.43	
Lat.(°)	15.21	14.71	15.26	15.50	14.85	15.02	15.07	14.80	14.89	15.12	14.75	15.60	15.16	15.45	15.45	15.77	15.16	15.71	15.22	15.64	15.43	15.01	15.33	14.73	15.44	15.41	15.04	15.19	16.00	14.78	15.00	15.31	15.05	15.83	15.07	14.82	15.44	15.45	15.13	15.10	15.61	15.60	15.91	14.76	14.77	15.16	
Hora	09:46:34	22:20:02	21:39:38	16:01:23	21:37:34	07:55:52	23:57:35	12:01:33	05:45:27	20:29:26	23:19:57	11:12:33	16:08:52	11:36:49	08:05:50	17:39:35	13:24:31	09:34:49	00:24:56	20:40:13	01:22:28	02:27:21	03:35:45	$04{:}00{:}49$	07:54:21	11:35:15	16:05:34	00:18:27	08:37:52	02:16:48	22:30:58	03:57:43	22:57:55	20:06:55	02:14:27	04:17:52	07:57:43	07:25:26	16:19:48	20:13:28	05:01:13	16:21:25	00:52:17	07:26:33	10:21:26	19:28:49	
Fecha/juliano	2022 - 11 - 02/306	2022 - 11 - 02/306	2022 - 11 - 17/321	2022 - 11 - 22/326	2022-12-04/338	2022 - 12 - 08/342	2022-12-1 $2/346$	2021-04-12/102	2021-04-1 $3/103$	2021 - 05 - 05/125	2021 - 05 - 06/126	2021 - 05 - 11/131	2021 - 05 - 15/135	2021-06-13/164	2021-06-17/168	2021-06-19/170	2021-06-25/176	2021-07-02/183	2021-07-07/188	2021-07-07/188	2021-07-31/212	2021-08-05/217	2021 - 08 - 08/220	2021 - 08 - 09/221	2021-08-12/224	2021 - 08 - 18/230	2021 - 08 - 21/233	2021-08-24/236	2021-08-29/241	2021 - 08 - 31/243	2021 - 10 - 18/291	2021 - 11 - 11/315	2021 - 11 - 24/328	2021 - 12 - 11/345	2021 - 12 - 15/349	2021- 12 - $25/359$	2021 - 12 - 25/359	2022 - 01 - 31/31	2022 - 02 - 06/37	2022- 02 - $09/40$	2022-04-10/100	2022-04- $12/102$	2022-04- $30/120$	2022-04-30/120	2022-04-30/120	2022-05-07/127	
ID	PATR	PATR	PATR	PATR	PATR	PATR	PATR	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	PAVE	
Red	ΓT	ΓV	ΓV	VT	ΓT	ΓT	ΓT	VT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	VT	ΓT	ΓT	ΓT	VT	VT	ΓT	ΓV	VT	VT	VT	VT	VT	ΓT	ΓT	ΓT	ΓV	ΓT	VT	VT	VT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	ΓT	Γ	TV	.T.A	

σ_{PI}	e S		2	က	က	2		4	4	0	2	2		က	Η	9			2	2	2	1
(.)Id	58	-88	-62	-61	-29	-62	-55	-74	37	-75	81	-64	58	-46	-77	-39	-65	-67	-60	-77	-65	-85
$Lon.(^{\circ})$	-92.258	-92.065	-92.391	-92.399	-92.479	-92.064	-92.344	-92.204	-92.469	-92.244	-92.234	-92.349	-92.449	-92.409	-92.029	-92.159	-92.139	-92.334	-92.354	-92.394	-92.479	-92.414
Lat.(°)	15.042	15.396	15.482	15.238	15.566	15.356	15.436	14.951	15.161	15.326	15.001	15.396	15.196	15.411	15.346	15.291	15.251	15.256	15.121	15.241	15.316	15.186
$\sigma_{\delta t}(\mathrm{s})$	0.08	0.10	0.08	0.06	0.06	0.08	0.04	0.26	0.06	0.12	0.08	0.30	0.10	0.04	0.06	0.04	0.04	0.12	0.06	0.06	0.08	0.08
$\delta t(\mathbf{s})$	0.24	0.20	0.14	0.06	0.32	0.12	0.16	0.08	0.16	0.08	0.10	0.10	0.20	0.16	0.20	0.26	0.12	0.20	0.16	0.16	0.08	0.14
$\sigma_{\phi}(^{\circ})$	20	19	58	36	7	81	5 L	61	40	84	59	11	28	7	10	9	31	10	11	25	30	32
(.) <i>\phi</i>	87	21	15	-17	45	-80	24	86	83	23	18	15	81	31	28	38	56	17	47	-50	-53	-66
D (km)	37.66	51.18	79.20	49.79	105.62	43.84	64.92	53.40	64.48	32.84	43.88	58.57	59.71	70.05	47.03	22.10	15.46	37.15	41.86	48.80	71.68	52.03
$\beta(^{\circ})$	21.00	13.00	20.00	23.00	28.00	13.00	18.00	33.00	32.00	10.00	26.00	17.00	27.00	18.00	12.00	6.00	5.00	12.00	23.00	24.00	33.00	25.00
Mag.	3.5	4.1	3.9	4.1	4.2	3.9	4.2	3.8	3.5	4.0	3.4	4.4	3.8	4.0	4.4	4.2	3.9	3.7	3.6	3.9	3.6	4.1
Prof. (km)	97.1	214.8	217.5	116.8	198.0	184.0	193.0	80.0	101.0	176.0	0.06	187.0	113.0	208.0	218.0	219.0	177.0	179.0	98.7	105.7	107.7	110.1
$Lon.(^{\circ})$	-92.34	-91.95	-92.61	-92.62	-92.78	-91.95	-92.51	-92.23	-92.76	-92.31	-92.29	-92.52	-92.72	-92.64	-91.88	-92.14	-92.10	-92.49	-92.53	-92.61	-92.78	-92.65
Lat.(°)	14.89	15.60	15.77	15.28	15.94	15.52	15.68	14.71	15.13	15.46	14.81	15.60	15.20	15.63	15.50	15.39	15.31	15.32	15.05	15.29	15.44	15.18
Hora	00:26:55	16:07:44	09:53:46	08:52:53	04:14:12	06:10:33	09:33:48	02:56:55	22:43:35	09:39:47	15:38:34	11:58:51	05:40:29	04:33:18	16:01:23	19:36:20	15:41:32	21:27:08	01:48:42	03:15:48	13:29:23	20:38:23
Fecha/juliano	2022-05-12/132	2022-06-08/159	2022-06-20/171	2022-06-27/178	2022-07-01/182	2022-07-24/205	2022-07-24/205	2022-07-25/206	2022-07-26/207	2022-09-26/269	2022 - 10 - 04/277	2022 - 10 - 16/289	2022 - 11 - 09/313	2022 - 11 - 13/317	2022 - 11 - 22/326	2022 - 11 - 23/327	2022 - 12 - 03/337	2022 - 12 - 06/340	2022 - 12 - 12/346	2022 - 12 - 14/348	2022 - 12 - 15/349	2022-12-15/349
ID	PAVE	PAVE																				
Red	LΛ	ΓT	ΓV	ΓT	ΓT																	

Apéndice B: Modelos iniciales

Se probraron tres modelos iniciales: (1) modelo inicial promediado, (2) modelo inicial aleatorio y (3) modelo inicial uniforme en la componente horizontal Norte-Sur. Para cada inversión se definieron los mismos parámetros (en este caso, simetría hexagonal y tres parámetros a invertir: α , θ y γ). Como se observa en la Figura B1. El modelo que generó el mejor ajuste fue el modelo inicial promediado, por lo que fue el escogido como el inicial para las inversiones que se realizaron en este estudio.

Figura B1: Progresión del desajuste de los datos durante la inversión utilizando tres modelos iniciales distintos: modelo inicial uniforme en la componente horizontal N-S y modelo inicial promediado. Nótese que el modelo inicial promediado presenta un menor desajuste que los otros dos. Nota: la selección de los parámetros utilizados en la inversión se explica en la sección 4.4.2.

Apéndice C: Selección de parámetros de la inversión

Para seleccionar la varianza inicial, la relajación del amortiguamiento y la varianza asociada a los mayores volúmenes emplezados luego de que la inversión alcanza estabilidad, se hicieron distintas pruebas y se seleccionó el parámetro que proporcionara el mejor comportamiento en conjunto de la estabilidad, convergencia y número de bloques bien resueltos durante la inversión. Las pruebas se hicieron para un total de 20 iteraciones, corriendo las primeras ocho con el valor de la varianza incial, relajando el amortiguamiento a partir de la iteración 8 e icluyendo mayores volúmenes después de la iteración 14.

Varianza inicial.- Se probaron valores de 1, 5 y 10. Como se muestra en la Figura C1, el valor que proporciona el mejor compartamiento de la inversión es el de 1 %, ya que, a medida que aumenta el número de bloques bien resueltos, se mantiene la estabilidad del ajuste del modelo y se logra una mejor convergencia.

Figura C1: Progresión de la inversión para distintos valores de varianza inicial (1, 5 y 10 %). Se observa que con el valor de 1 % se logra disminuir el error de los parámetros del modelo (eje a y α ponderados con respecto a la estructura conocida) y el error de los datos (se muestra solo ϕ porque el efecto en δt no es tan evidente).

Relajación del amortiguamiento.- Se probaron valores de 5, 10 y 20 % para la relajación del amortiguamiento después de la iteración 8. Como se puede observar en la Figura C2,
el valor de 10 % permitió aumentar el número de bloques bien resueltos, conservando una buena tasa de convergencia sin generar cambios significativos al modelo. Al incrementar la varianza (disminuir el amortiguamiento) a 5 y 20 %, el error de los parámetros angulares del modelo aumenta considerablemente por lo que la estabilidad y la convergencia del modelo se ven comprometidas. Además, el mejor ajuste se obtiene con un valor de 10.

Figura C2: Progresión de la inversión para distintos valores de relajación del amortiguamiento (5, 10 y 20 %). Se observa que con el valor de 10 % se logra disminuir el error de los parámetros del modelo (eje $a \neq \alpha$ ponderados con respecto a la estructura conocida) y el error de los datos.

Varianza asociada a mayores volúmenes.- Se probaron valores de 10^{-5} , 10^{-3} y 10^{-1} para la varianza asociada a los volúmenes mayores emplazados luego de que la inversión alcanzara estabilidad. Esto se hizo para aumentar la resolución en regiones donde la cobertura de rayos es pobre. Como se puede observar en la Figura C3, el valor de 10^{-1} proporcionó el mejor ajuste de los datos, conservando una buena estabilidad y tasa de convergencia durante el proceso de inversión. Con 10^{-5} el error de los parámetros aumenta de manera significativa, mientras que con 10^{-3} el ajuste alcanzado es menor que en los otros dos casos.

Por lo explicado anteriormente, todas las inversiones en este trabajo se hicieron con una varianza inicial de 1, un valor de 10 para la relajación del amortiguamiento y un valor

Figura C3: Progresión de la inversión para distintos valores de la varianza asociada a grandes volúmenes $(10^{-5}, 10^{-3} \text{ y } 10^{-1})$. Se observa que con el valor de 10^{-1} se logra disminuir el error de los datos (ϕ) mientras que la estabilidad y la convergencia del modelo no se ven comprometidas de manera importante.

de 10^{-1} para la varianza asociada a los mayores volúmenes emplazados luego de que la inversión alcanzara estabilidad.

Apéndice D: Efecto de la inclusión de mayores volúmenes en la resolución de los parámetros

Mayores volúmenes son incluidos a partir de la iteración 70 con el fin de mejorar la resolución de los parámetros en aquellas regiones del espacio en donde no hay una buena cobertura de rayos. Cuando los bloques individuales son agrupados en volúmenes mayores, los parámetros correspondientes a cada bloque son promediados para obtener el conjunto de parámetros que describa la orientación cristalográfica del bloque mayor. Un bloque de mayores dimensiones permitirá que un mayor número de rayos lo atraviesen y permitirá un mejor ajuste de la dirección preferencial de la red. Con esto se logra que el área del modelo que se puede interpretar aumente considerablemente (Abt y Fischer, 2008; Abt et al., 2009).

Figura D1: Efectos de la inclusión de mayores volúmenes en la resolución de los parámetros. Se muestran los valores de los elementos de la diagonal de la matriz de resolución R_M que corresponden al parámetro α (arriba) y al parámetro θ (abajo), antes (iteración 70) y justo después (iteración 71) de la inclusión de mayores volúmenes. Los planos horizontales corresponden a 75 km de profundidad. Se observa como la resolución aumenta, haciendo mayor el área interpretable.

Apéndice E: Parámetros de partición observados y sintéticos calculados con el modelo final separados de acuerdo con la relación con la trinchera

Se muestran los parámetros observados y los parámetros sintéticos generados con el modelo final ortorrómbico separados en paralelos a la trinchera ($-30^\circ \leq \phi \leq 30^\circ$, con respecto a la trinchera) y perpendiculares y oblicuos a la trinchera.

Figura E1: Parámetros de partición observados y sintéticos calculados con el modelo final. a) Parámetros observados que resultan paralelos a la trinchera ($-30^\circ \le \phi \le 30^\circ$, con respecto a la trinchera). b) Parámetros sintéticos que resultan paralelos a la trinchera. c) Parámetros observados oblicuos y normales a la trinchera. d) Parámetros sintéticos oblicuos y normales a la trinchera.

Apéndice F: Comparación de las interpretaciones de este estudio con las de Abt et al. (2009) en Nicaragua y Costa Rica

Abt et al. (2009) interpretaron un flujo paralelo a trinchera a través de la cuña del manto y en dirección noroeste. Infirieron la existencia de olivino de tipo B en el extremo de la cuña y de tipo A en el centro por la orientación de los ejes rápidos. En este trabajo, se interpretó una flujo de esquina al noroeste de la TRe, un flujo toroidal a través del desgarre de la placa de Cocos a lo largo de la TRe y un flujo paralelo a la trinchera al sureste de la TRe en presencia de fábricas de olivino de tipo A, C, D o E. Este flujo se infiere que ocurre hacia el sureste. En el extremo de la cuña del manto alrededor de la TRe, se las mediciones fueron consistentes con la presencia de minerales de serpentina. Por debajo del antearco, en la región fronteriza entre México y Guatemala, se initerpretó la existencia de olivino de tipo B en un régimen de flujo paralelo a la trinchera.

Figura F1: Comparación con los resultados del trabajo de Abt et al. (2009). Las flechas indican el sentido de flujo en la cuña del manto para el sureste de México (presente estudio) y para Nicaragua y Costa Rica (Abt et al., 2009). Las flechas blancas indican flujo de esquina, la verde representa un flujo toroidal y las amarillas indican flujo paralelo a la trinchera. Las áreas sombreadas en colores corresponden con las distintas mineralogías interpretadas de acuerdo con la leyenda. Las cotas de isoprofundidad de la placa de Cocos se grafican cada 20 km de profundidad y fueron tomadas de Hayes et al. (2018).