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Resumen

En esta tesis presentamos el framework para sistemas computacionales de diseño creativo “compu-
tational creative design systems framework (CCDSF)’’, formulado desde una perspectiva mixta
de los campos de investigación en diseño y creatividad computacional, para describir, anali-
zar y modelar sistemas computacionales de diseño creativo “computational creative design sys-
tems (CCDSs)’’ ya sea como agentes autónomos o como sistemas colaborativos donde participan
dos o más agentes de diseño en modo de interacción exclusivamente computacional o humano-
computadora.

El CCDSF extiende y unifica tres marcos teóricos existentes: i) el framework de diseño
función-comportamiento-estructura “function-behavior-structure framework for designing (FBS)’’,
para integrar conocimiento específico del dominio del diseño; ii) el framework de sistemas crea-
tivos “creative systems framework (CSF)’’, para modelar la actividad de diseñar como un proceso
creativo; y iii) la teoría de espacios conceptuales “conceptual spaces theory (CST)’’, para establecer
un sistema de representación neutral.

El núcleo del CCDSF es un esquema que estructura la actividad de diseñar a través de con-
ceptos de diseño que son producidos por procesos de diseño instrumentados por estrategias de
percepción y acción específicas a uno o varios agentes, que operan dentro de una jerarquía de
niveles de diseño que forman capas (entre dos niveles adyacentes). Cada capa puede considerarse
como si fuera un sistema creativo de acuerdo con el CSF y, dependiendo de las estrategias de sus
agentes, manifestar creatividad exploratoria, combinacional o transformacional ya sea al nivel
del dominio o a un nivel meta-creativo.

Esta arquitectura permite modelar CCDSs en términos de definición/generación/evaluación
de artefactos -considerados creativos- (perspectiva de creatividad computacional) y del proceso
cognitivo situado para diseñar estos artefactos (perspectiva de investigación en diseño).

Demostramos nuestro framework a través de la descripción de un sistema existente y de la
creación de dos CCDSs como prueba de concepto en el campo del diseño de videojuegos: a) un
pequeño CCDS autónomo para diseñar mecánicas de juego, y b) un CCDS colaborativo humano-
computadora, más completo y robusto, para diseñar videojuegos completos del tipo puzzle, in-
cluyendo un agente de diseño computacional colaborativo. Dada la naturaleza interactiva de este
sistema, se aplicaron algunas prácticas de diseño de experiencia del usuario y de interacción al
diseñar y evaluar su interfaz. Además, una evaluación de usuario que puso a prueba el rol del dise-
ñador humano, sugirió que éste podría haberse beneficiado técnica y creativamente al participar
en sesiones de diseño colaborativo con su asistente computacional.



Abstract

In this thesis, we present the computational creative design systems framework (CCDSF), formu-
lated from a design research and computational creativity mixed perspective, to describe, analyze,
and model computational creative design systems (CCDSs), either as autonomous computational
design agents or as collaborative systems involving two or more design agents in computational-
only or human-computer interaction modes.

The CCDSF extends and unifies three existing frameworks: i) the function-behavior-structure
framework for designing (FBS), to integrate design domain-specific knowledge; ii) the creative
systems framework (CSF), to model design as a creative process; and iii) the conceptual spaces
theory (CST), to establish a neutral representational system.

The CCDSF core is a schema that structures the activity of designing through design concepts
produced by design processes instrumented by agent-specific perception and action strategies
within a hierarchy of design levels that form layers (between two adjacent levels). Each layer
could be considered a CSF-like creative system and, depending on its agents’ strategies, display
exploratory, combinational, or transformational creativity at domain- or meta-creative levels.

Such architecture allows modeling CCDSs in terms of definition/generation/evaluation of –
deemed creative– artifacts (computational creativity perspective) and the situated cognitive pro-
cess of designing these artifacts (design research perspective).

We demonstrate our framework by describing an existing system and creating two CCDSs
as proof-of-concept (PoC) in the field of video game design: a) a small autonomous CCDS to
design game mechanics, and b) a more comprehensive and robust human-computer collabora-
tive CCDS to design complete puzzle-type video games, including a collaborative computational
design agent. Due to the interactive nature of this system, some user experience and interaction
design practices were applied in designing and assessing its graphical user interface (GUI). More-
over, a user evaluation testing the human designer’s role suggested that the human designer could
have gained technical and creative advantages by participating in collaborative design sessions
with its computational counterpart.
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1
Introduction

From a unified perspective of design and computational creativity, how could an artifi-
cial design agent, capable of creative collaboration with a human designer, be modeled
and built?

1.1 Background

Since the emergence of the first computer aided design (CAD) tools in the mid-1960s, the ap-
plication of computing and artificial intelligence (mainly evolutionary computing techniques)
to the design domain has been focused mostly on the modeling of designed objects and their
optimization on specific performance criteria, supported by analytical methods, computational
simulations, and human evaluation. However, these processes correspond only to a part of what
design implies.

Various descriptive and prescriptive theories and models that attempt to provide a complete
and integrated explanation of the activity of designing have been proposed in the design research
field1. One notable example is the function-behavior-structure framework for designing (FBS)
developed by Gero (Gero 1990; Gero and Kannengiesser 2014). This design cognition oriented
framework stands on the axiom stating that “the foundations of designing are independent of
the designer, their situation and what is being designed” (Gero and Kannengiesser 2014, pg.

1Some representative design theories and models included in (Chakrabarti and L. Blessing 2015; Chakrabarti
and L. T. M. Blessing 2014): ARIZ/TRIZ, Theory of Technical Systems (TS), General Design Theory (GDT), Ex-
tended GDT, Logic of Design, Mathematical Theory of Design, Universal Design Theory (UDT), KLDE

0––Theory,
Axiomatic Design Theory, Theory of Synthesis, C-K (concept-knowledge) Theory, Infused Design, Domain Inde-
pendent Design Theory, Integrated Model of Designing (IMoD), CPM/PPD framework (Characteristics-Properties
Modeling/Property-Driven Development or Design), Systematized Theory for Concept Generation, Domain Theory,
Integral Design Methodology (IDM).
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264), an idea supported by research (Gero, Kannengiesser, and Pourmohamadi 2014; Gero, Kan-
nengiesser, andWilliams 2014; Kan and Gero 2011; Kannengiesser and Gero 2015; Reymen et al.
2006) that suggests that designing is an act independent of the application domain. A revised ver-
sion of the FBS framework, the situated FBS framework (sFBS) (Gero and Kannengiesser 2002,
2004, 2014), incorporates the situated nature of designing as a recursive process of interaction
between the designer actions and her/his interpretations of the results of these actions. In this
way, sFBS provides elements to describe the objects being designed, the process to design those
objects, as well as situatedness aspects of the designer that executes the design process.

It has become common to confer a creative connotation to designing, the designers, or the
objects they design. This is due to the fact that by the act of designing, humans have conceived
many physical and non-physical artificial objects that have been deemed useful, valuable, innova-
tive, and even unexpected. Moreover, many of these objects have transformed our environment
and shaped our lifestyle.

Some criteria have been proposed to set the distinction between creative design, non-creative
design, and no-design at all (Arciszewski, Michalski, and Wnek 1997; Gero 2000; Gómez de Silva
Garza 2017; Howard, Culley, and Dekoninck 2008), as well as specific mechanisms that may lead
to creative solutions:

• In (Bentley and Wakefield 1998), it is highlighted the possibility for an evolutionary computer
system to become capable of producing creative and diverse designs if one considers that this
kind of system and its operators (e.g., mutation, recombination, selection) are inspired by
natural evolution, an eminently creative designer.

• SCAMPER (Eberle 1996) is a mnemonic format checklist to improve fluent, flexible, and elab-
orative thinking. Checklist items are: to replace an element or component with another
of equivalent functionality (substitute); to mix elements, ideas, and concepts (combine); to
make changes to a concept with other original purposes to fit the design purpose (adjust); to
make changes to properties within their limits (modify/magnify/minify); to find other con-
cept’s purposes (put to another use); to remove elements or components, or simplify the de-
sign (eliminate), and to change the order or the arrangement of elements of a concept (re-
verse/rearrange).

• In (Gero 2000), some creative and innovative design processes are described: the union of
concepts or subsets of variables of them (combination), the alteration of one or more concept’s
variables (transformation), the transference of a concept’s aspect to another matched domain
(analogy), the recognition of properties beyond the concept’s intentional properties (emer-
gence), and the abductive attribution of higher-level properties to concepts (first principles).

• In the C-K theory (Hatchuel and Weil 2007), two spaces are recognized when designing, the
concept space containing ideas or objects, and the knowledge space containing the information
that grounds the concepts or allows them to become realities. This theory considers that being
creative requires expanding these spaces in order to have the required knowledge and desired
properties, a process similar to set forcing in modern mathematics.

• The theory of inventive problem solving (or its literal translation from Russian: theory of the

Jesús Pérez Romero 2
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resolution of invention-related tasks “Tieoriya Riesheniya Izobrietatielskij Zadach”) TIPS/TRIZ
(Webb 2002) provides a process and a toolset to achieve creative solutions. These ideas were
formulated through a systematic analysis of thousands of patents across different fields and
sciences. In TRIZ, a design problem must be decomposed into its most elementary components
in terms of 39 technological features. These features are cross-compared to find contradictions
(a trade-off between two conflicting features) between pairs of them that might be solved by
applying one or more solution patterns called inventive principles (40 in total). This process
repeats for each unsolved contradiction, including new ones that emerged as a side effect of
applying an inventive principle.

• In (Yilmaz et al. 2016), the authors compiled and analyzed several design process outcomes
to extract 77 design heuristics that represent different forms a designer appears to introduce
intentional variations into concepts as cognitive shortcuts for quantity and variety generation.

We consider that many of these mechanisms may correspond to concrete instances of ex-
ploratory, combinational, and transformational creativity strategies (or a combination of them)
identified by Boden (Boden 2004) to come up with “ideas” (abstract or concrete) that could be
judged as creative (i.e., novel, surprising, and valuable). According to her theory, all concepts,
including those individually (p-creative) or historically (h-creative) not yet seen or discovered,
exist inside structured spaces of possibilities within a realm (e.g., domain, style of thought, object
category) called conceptual spaces, on which the three creativity strategies operate. Exploratory
creativity produces concepts by traversing a conceptual space, combinational creativity involves
combining “familiar” concepts in a novel way, and transformational creativity makes previously
unthinkable concepts reachable by transforming the underlying space. She also states that a cre-
ative agent requires evaluative mechanisms to determine the value of the generated or discovered
concepts, not only through implicit validation or by interaction with third parties, but through
self-awareness that enables the creator to modify the creator’s evaluation mechanisms (Boden
1998).

Although some specific mechanisms focused on achieving creative results may denote
(mainly by their name) the idea of combinational creativity, they are actually instances of
exploratory creativity in the sense that the combination of concepts occurs in the same con-
ceptual space, employing the same set of dimensions or attributes. The concepts resulting
from this type of “combinations” are concepts described by the same set of dimensions as the
source concepts (e.g., crossover operator in a standard canonical genetic algorithm). Mech-
anisms such as analogy are mechanisms that better represent combinational creativity since
they combine concepts that are “familiar” in the context of their respective (separated) con-
ceptual spaces.

Wiggins formalizes Boden’s conceptual-space-based nature of the creative process into his cre-
ative systems framework (CSF) (Wiggins 2006), a computational framework to describe generic
creative processes as exploratory creative systems (ECSs) composed of rulesets to define and re-
strict the underlying conceptual space of the creative domain, to traverse the space or a superset
of it (universe) to generate or discover concepts, and to evaluate concepts and determine their
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quality according to some criteria. An ECS essentially abstracts the exploratory strategy to search
for creative concepts within a single object-level or domain-level space. However, as argued by
Wiggins, one or more ECSs can be defined at a meta-level to search for: new ways of defining
the domain-level space and its concepts, alternative means to evaluate members of that space,
or different methods of exploring it. Such a system would be considered as a transformational
creativity strategy if and only if the obtained meta-concepts result in changes at the domain-level
space that lead to finding valuable and novel concepts previously inconceivable, non-assessable
or unreachable.

1.2 Motivation and aim

Within the scope of an ECS, the three Boden’s creativity searching strategies can be visualized as
particular types of exploration, differing on nature and the number of spaces being traversed. If
an exploratory creativity strategy can be visualized as the productive (in terms of creative results
or behavior) traversal of a single object or domain-level conceptual space, we could visualize the
combinational creativity strategy as the fruitful traversal of two or more domain-level conceptual
spaces that give rise to combined concepts, and the transformational creativity strategy as the
productive traversal of one or more meta-spaces, or an object-level space broader than an agreed
one (within a culture or domain). This visualization is essential for our research, without denying
the non-triviality and broader possibilities of each of these strategies.

Although FBS/sFBS and CSF can be useful to describe computational creative design systems
(CCDSs), we find the following limitations. On the one hand, the CSF, being an abstract and
generic framework for any potentially creative domain, does not capture specific details of the
design domain and does not incorporate the element of situatedness as a possible source of trans-
formational creativity (i.e., by situatedness, the space or spaces being traversed by the designer
can be “naturally” shaped and transformed as a result of her/his continuous perception/action
loop during a design session). We believe that trying to build a computational creative agent in
the design domain solely from the CSF could lead the system’s creator to think about the search
methods or artificial intelligence techniques to generate certain types of artifacts instead of con-
sidering first the processes to bemodeled and then think about specific methods or techniques that
could support those processes. On the other hand, the FBS/sFBS frameworks were not conceived
with creativity-related goals in mind but to describe the cognitive process (whether considered
creative or not) performed by a designer when designing and the transformations resulting from
this process. Additionally, FBS/sFBS do not consider the meta-level mechanisms to potentially
exhibit transformational creativity.

Research hypothesis: Creating an integrated framework that combines the sFBS de-
sign framework with the CSF computational creativity framework is expected to yield a
robust tool for comprehensively describing and modeling computational creative design
systems. This tool would facilitate the characterization and modeling of human and ar-
tificial agents engaged in a design process by performing diverse domain-specific tasks
and exhibiting varying degrees of creative responsibility.
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In this work, we propose to extend and unify the CSF and FBS/sFBS frameworks by incor-
porating the strengths of each other. That is, by integrating design domain-specific knowledge
based on FBS/sFBS generalized concepts with an extended version of CSF that enables the model-
ing of design as a creative process, either performed by an autonomous agent or as collaborative
systems integrating different agents, including both pure computational and human-computer
scenarios. In this way, the CSF approach can be used to force a creator of a system to equip a
potential creative design agent with the essential knowledge required to define and recognize
artifacts within its domain, to generate new ones, and to evaluate its own creations (at least
at the Boden’s explorative strategy level); while the FBS/sFBS elements can be used to enable
the system’s creator to bring these creative system’s components to a higher level of detail in a
manner consistent with the design’s cognitive process and transformations.

We call the unified and extended version computational creative design systems framework
(CCDSF), a framework to describe, analyze and model computational creative design systems
(CCDSs). It is supplemented with a representational system based on the Gärdenfors’ conceptual
spaces theory (CST) (Gärdenfors 2004), which provides a cognitive oriented mechanism that
is neutral to actual implementation mechanisms such as connectionist or symbolic systems. By
employing a CST-based representation system, we make the framework compatible with both
the conceptual-space nature of the creative process and the implementation-level representation
systems.

We believe that by unifying both design research and computational creativity perspectives,
the exploratory, combinational, and transformational creativity strategies in the design domain
could be enabled by 1) specific space traversal strategies implemented by computational and
artificial intelligence techniques, 2) by the nature and number of spaces being traversed, and
3) as a side effect of the situated nature of designing. Additionally, in our opinion, the strategies
that Boden proposes to achieve potential creative results (formalized by the CSF), may optimize
the creative scope of a system, independently of different creative/non-creative design criteria.

To illustrate and test the components of the proposed framework, we aim first to analyze and
describe, in terms of the framework, an existing system in the domain of game design and then
to model and build a collaborative CCDS as an interactive proof-of-concept (PoC) in the puzzle-
type video game design domain. We plan to follow an incremental strategy to build this CCDS
–including its graphical user interface (GUI)–, starting from a non-collaborative computational
agent (design support tool) and gradually increasing its creative responsibilities and collabora-
tion skills towards a co-creative agent (Kantosalo and Toivonen 2016) capable of actively partic-
ipate in a human-computer co-design environment. Due to its interactive nature (collaboration
enabler), it is considered to apply some relevant techniques and principles from the human-
computer interaction (HCI), interaction design (IxD), and user experience design (UxD) fields.
Also, for completeness, we intend to model and build another small autonomous CCDS for game
rule design.
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1.3 Objectives

The general objective of this work is to formulate and formalize the integration of Gero’s sFBS
framework of designing with Wiggins’ formalization to Boden’s conceptual theory of creativity
(CSF) and Gärdenfors’ theory of conceptual spaces (CST).

The following specific objectives are derived from the general objective:

1. To test the proposed framework’s potential to comprehensively describe an existing sys-
tem’s design-related and creative components.

2. To test the effectiveness of the proposed framework in directing the modeling and devel-
opment of an artificial agent capable of creative collaboration within a human-computer
context.

2.1. To identify the particularities of the puzzle-type video game design domain to build
the system as a proof-of-concept (PoC) of the proposed framework.

2.2. To set the properties and criteria to build the user experience (UX) and user interface
(UI) of the PoC.

2.3. To determine the computational mechanisms for the PoC implementation.

2.4. To evaluate the UX of the PoC and its impact and influence on the creative process
from the user perspective.

1.4 Document outline

This work is organized as follows. Chapter 2 describes the FBS/sFBS, CST, and CSF frameworks,
as well as a collaborative extension of the CSF, other related computational creative design frame-
works and models, and theoretical key aspects of the puzzle-genre video game design domain. In
Chapter 3, we develop and formalize our proposed integrated framework for both autonomous
and collaborative systems. Chapter 4 employs our proposed framework to describe and analyze
an existing video game design system. Then, we build a PoC in the puzzle-genre video game
design domain: a collaborative system in Chapters 5 to 8 and a small autonomous system in
Chapter 9. Finally, we provide our conclusions in Chapter 10.
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2
Related work

In this chapter, we describe the frameworks of design, representation, and computational cre-
ativity on which the formulation of our framework is based, as well as some other works also
proposed as computational creative design frameworks or models. We also describe the theoreti-
cal basis of the puzzle-genre video game design domain that will support the construction of our
PoC.

2.1 The function-behavior-structure framework for design-
ing (FBS) and situated FBS framework (sFBS)

Gero’s function-behavior-structure framework for designing (FBS) provides three ontological cat-
egories –function, behavior, and structure– of objects to describe the objects being designed, and
eight fundamental processes for designing –formulation, synthesis, analysis, evaluation, docu-
mentation, functional reformulation, behavioral reformulation, and structural reformulation– to
describe the process performed to design the objects.

Gero and Kannengiesser’s situated FBS framework (sFBS) models the situated nature of de-
signing as the interaction between three worlds (or spheres) of the designer: the external world
that contains things in the environment of the designer, the interpreted world that contains ex-
periences, percepts, and concepts formed by the designer’s interactions with the external world,
and the expected world (considered part of the interpreted world) that contains expectations and
hypothesis of the designer about the current state of the world.

These three designer’s worlds give rise to situated ontological categories of objects to denote
the world a representation of an object resides in (i.e., external, interpreted, or expected objects).
The situated objects are inter-world and intra-world connected by four types of interaction pro-
cesses –interpretation, constructive memory, focusing, and transformation or action– which are
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instantiated into 20 specialized design operations1 (in addition to the behavioral comparison
operation) that realize the fundamental processes for designing originally described in the FBS.

2.2 The conceptual spaces theory (CST)

The conceptual spaces theory (CST) is a cognitive-oriented approach to modeling representa-
tions proposed by Gärdenfors as a bridge between the symbolic and connectionist representation
approaches.

Concepts (what is perceived, remembered, or imagined) are represented through conceptual
spaces, which are geometric structures built from quality dimensions. Quality dimensions are
representations of perceived characteristics of an object and allow judging similarity between
objects. From a modeling perspective, these dimensions represent the framework used to charac-
terize objects and relations among them. Some quality dimensions seem to be innate (embedded
dimensions in the case of artificial agents); then, through learning processes, new concepts and
dimensions are acquired (some of them, culturally dependent), resulting in the expansion of
conceptual spaces. The dimensions of a space can be used to create new higher-order dimen-
sions, which are general patterns (regions) that arise from relations among concepts located in a
conceptual space.

The representation of a concept can be organized into domains, which are a type of concep-
tual space spanned by a small group of integral dimensions (e.g., HSL [hue-saturation-luminosity]
color, 2D size). A concept is capable of characterizing both categories of objects (within a con-
creteness range) and concrete objects (e.g., office chairs, ergonomic office chairs, a particular
office chair), which are represented within a conceptual space as regions and points, respec-
tively. These regions represent properties in the context of single dimensions or domains (single-
domain) (e.g., small, big, bluish), and “proper” concepts in the context of “proper” conceptual
spaces (multi-domain) consisting of separable domains.

The constructive utility of the CST not only applies for modeling concepts that represent ob-
jects but other types of concepts such as dynamic properties; actions (force patterns) and events
(Gärdenfors and Warglien 2012); functional properties (Gärdenfors 2007); age and time, visu-
ospatial domains, intensions (Gärdenfors 2014); emotions, visual and physical domains, category
domain, value domain, goals domain (Gärdenfors 2017); and whole-part relationships (Rama
Fiorini, Gärdenfors, and Abel 2015).

1The 20 sFBS specialized design operations: 1) functional requirements interpretation, 2) behavioral require-
ments interpretation, 3) structural requirements interpretation, 4) functional constructive memory, 5) behavioral
constructive memory, 6) structural constructive memory, 7) functional focusing, 8) behavioral focusing, 9) structural
focusing, 10) function-behavior derivation, 11) behavior-structure derivation, 12) structural external representation,
13) structural interpretation, 14) structure-behavior derivation, 15) behavioral comparison, 16) behavior-function
derivation, 17) behavioral external representation, 18) functional external representation, 19) behavioral interpre-
tation, and 20) functional interpretation.
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2.3 The creative systems framework (CSF)

Wiggins’ creative systems framework (CSF) formalizes a Boden’s conceptual space based creative
process as an exploratory creative system (ECS):

⟨ℒ, 𝒰 , ⟦⋅⟧, ⟪⋅, ⋅, ⋅⟫, ℛ, ℰ, 𝒯 ⟩,

where

• 𝒰 is the universe, a superset of the conceptual space 𝒞, capable of describing any type of
concept;

• ℛ is a ruleset that define the conceptual space 𝒞 that contains the concepts of interest, in-
cluding empty and partial concepts in which all or some of the values of their attributes are
undetermined;

• 𝒯 is a ruleset that captures specific space traversal strategies;

• ℰ is a ruleset that defines the criteria and methods to determine the value of concepts;

• ⟦⋅⟧ is selection interpreter that builds a function that selects valid or valued concepts from a
set of concepts, according to definitional or evaluative rulesets;

• ⟪⋅, ⋅, ⋅⟫ is an exploration interpreter that builds a function to generate/discover concepts ac-
cording to the traversal rules, informed by definitional and evaluative rules;

• and ℒ is a language used to express the rulesets (e.g., a programming language).

The ECS components work as follows:

• The function built by the selection interpreter will select a subset of valid concepts from a
given set of concepts according to the definitional ruleset. If the given set were the universe, the
selected concepts would be all the concepts that compose the conceptual space: 𝒞 = ⟦ℛ⟧(𝒰 ).

• The function built by the selection interpreter will select a subset of valued concepts from a
given set of concepts according to the evaluative ruleset. If the given set were the conceptual
space, the selected concepts would be all the concepts that are not only valid but valued:
⟦ℰ⟧(𝒞).

• The function built by the exploration interpreter will discover a new set of concepts from a
given set of concepts according to the traversal ruleset and informed by both definitional and
evaluative rulesets. The expression ⟪ℛ, ℰ, 𝒯 ⟫⋄({⊤}) represents the consecutive execution
of an ECS starting from an empty concept ⊤, where the concepts produced in one iteration are
fed back as input concepts for the next iteration.

This framework identifies and breaks down two properties of creative systems: uninspira-
tion and aberration. Uninspiration occurs in the creative process when the system is not able
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to find valued concepts in one of the following ways: hopeless uninspiration, conceptual unin-
spiration, and generative uninspiration. Hopeless uninspiration is a situation where there are
no valued concepts in the universe, which means that the system is not capable of finding any
valued concept in its universe: ⟦ℰ⟧(𝒰 ) = ∅. Conceptual uninspiration is the situation where
there are no valued concepts within the conceptual space explored, indicating a discordance be-
tween the definitional and evaluative rulesets (one of the rulesets or both are not adequate)
for the system’s creative domain: ⟦ℰ⟧(⟦ℛ⟧(𝒰 )) = ∅. Generative uninspiration occurs when
the traversal strategy does not allow finding any valued concept (although they probably exist):
⟦ℰ⟧(⟪ℛ, ℰ, 𝒯 ⟫⋄({⊤})) = ∅.

An aberration occurs when the creative system finds concepts that do not comply with the
definitional rules, which means that these concepts do not belong to the current conceptual space:
ℬ = ⟪ℛ, ℰ, 𝒯 ⟫⋄({⊤}) ⧵ ⟦ℛ⟧(𝒰 ), ℬ ≠ ∅. An aberration can be perfect when all of the
invalid concepts happen to be valued (i.e., ⟦ℰ⟧(ℬ) = ℬ), productive when some of the invalid
concepts are valued (i.e., ⟦ℰ⟧(ℬ) ⊂ ℬ), or pointless when none are valued (i.e., ⟦ℰ⟧(ℬ) = ∅).

2.4 Human-computer collaborative creative systems

Kantosalo and Toivonen (2016) extend Wiggins’ CSF to formally analyze and describe a co-
creative system scenario both at the system level and the agents involved. The authors describe
two types of collaborative agents: a complete agent capable of constructing and modifying a
shared concept by her/him/it-self (i.e., the agent is equipped with the three rulesets ℛ, ℰ , and
𝒯 of an ECS); and an incomplete agent that is not capable of performing all of the tasks of the
creative process (although a complete agent may choose to behave as an incomplete one). Ad-
ditionally, they identify two modes of collaboration: task-divided collaboration and alternating
co-creativity.

In the task-dividedmode, each collaborator performs different subtasks (i.e., definition, traver-
sal, evaluation) so that an incomplete computational agent will only be able to collaborate in this
mode and will perform the role of definer, generator, or evaluator (or a combination of two).

In the alternating co-creativity mode, each complete agent takes a turn to build and modify
a common concept. This mode will be symmetrical if, after being unable to continue operating
due to some conflict, the agent is able to modify its rules through transformational creativity
and continue operating. It will be asymmetrical if the agent must skip turns to wait for conflict
resolution.

The nature of a complete agent role in the alternating mode is defined by how the agent
chooses to react to human input. At one extreme, the agent behaves complacently and tries to
conform to human-generated ideas and evaluations, and at the other, the agent behaves provoca-
tively and tries to be more challenging to the human. Within the alternating mode, the authors
identify four situations that could lead to conflicts in the creative process. The first, called uni-
versal mismatch, may occur if one of the collaborative agents generates a concept that is outside
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the universe of the other agent (i.e., 𝑐ℎ ∉ 𝒰𝑐 or 𝑐𝑐 ∉ 𝒰ℎ). The second, called conceptual mis-
match, can arise if any of the collaborative agents are unable to recognize as valid the concept
generated by the other agent (i.e., the concepts generated by one agent are not selected by the
definitional rules of the definer agent: ⟦ℛℎ⟧({𝑐𝑐}) = ∅ or ⟦ℛ𝑐⟧({𝑐ℎ}) = ∅). The third, called
artistic disagreement, can arise if one of the two agents does not consider the concept delivered
by the other to be valuable (i.e., the concepts generated by one other agent are not selected by
the evaluative rules of the evaluator agent: ⟦ℰℎ⟧({𝑐𝑐}) = ∅ or ⟦ℰ𝑐⟧({𝑐ℎ}) = ∅). Finally, the
fourth conflict, called generative impotence, is present if one of the two agents is unable to con-
tinue their creative process based on the concept generated by the other collaborator (i.e., the
execution of the exploration interpreter of one agent from concepts generated by the other agent
results in an empty set: ⟪ℛ, ℰ, 𝒯ℎ⟫({𝑐𝑐}) = ∅ or ⟪ℛ, ℰ, 𝒯𝑐⟫({𝑐ℎ}) == ∅).

2.5 Other computational creative design frameworks

Howard, Culley, and Dekoninck (2008) proposed an integrated model of the creative design process
as an extension to Gero’s original FBS framework. In their model, the authors map the creative
processes of analysis, generation, and evaluation into the fundamental processes for designing
and their underlying design operations proposed by the FBS. The authors describe their creative
process of analysis as the continuous construction of design information that occurs in the course
of designing, acting over all of the transformation and comparison operations defined by the
FBS; although the original FBS does not contemplate this process, it is considered by the situated
version of the FBS through the continuous processes of interpretation, reflection, and focusing.
The creative process of evaluation is mapped into the comparison and FBS-analysis operations,
and the creative process of generation is mapped into the FBS operations of synthesis, derivation
of behavior from the function, and the three reformulations.

Kelly and Gero (2015) developed a situated computational creativity model that considers the
interpretation process as the primary trigger of movements between frames, understanding the
frame as the design situation, and the conceptual space the system traverses. The movement
from one conceptual space to another can be beneficial for the creative task since it can locate
the system in a more favorable zone within a universe of possibilities. Interpretation is modeled
as the interaction between experience (what the system knows), expectations (what is in the
current framework), and perception (what is interpreted).

The model employs a modified CSF framework, establishing a set of 𝑅 rules to generate a
conceptual space, a set of 𝑁 rules to interpret stimuli and create internal representations, and
a set of 𝑇 rules to define a space traversal strategy. The universe 𝑈 is restricted to a viable
universe for the system, and the conceptual space 𝐶 is not built from the entire universe but
only from the previous experience of designer 𝑈!. The movement between conceptual spaces
is established through the exploration interpreter ⟪⋅, ⋅, ⋅⟫, which after being executed, creates
the new conceptual space (move to another space) 𝐶𝑖+1 according to the sets of rules and based
on the current conceptual space 𝐶𝑖, making the space traversal to depend solely on previous
experiences in the same design context and not on the whole previous experience 𝑈!. Both
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expectations 𝐸 and situated interpretations 𝐼 are described in the model, distinguishing between
explicit expectations 𝐸∗ (those to which the system is attending) and explicit expectations 𝐸′
(those resulting from experience). Interpretations in this model are dynamically constructed
from a source (external) that is interpreted as percepts 𝑃 , which are interpreted as concepts 𝐶 ,
which are interpreted as a situation 𝑠. Interpretations in this model are built dynamically within
a hierarchy of abstractions; the source 𝑥 is interpreted as a set of percepts 𝑃 to build a first stage
interpretation 𝐼𝑃 , which is interpreted a set of concepts 𝐶 to build a second stage interpretation
𝐼𝐶 , which is interpreted as a design situation 𝑠 to build the third and final interpretation stage 𝐼𝑠.
This interpretation mechanism is chained in such a way that previous interpretations and current
expectations influence new interpretations.

Quanz et al. (2020), proposed an implementation-oriented co-creative design framework com-
posed of three main components: a creator, an iterator, and evaluators. The creator component
captures the design space constraints, receives human designer sketches, and generates designs
and variants of designs. The evaluators predict several design scores, such as novelty, cost, and
consumer appeal, whose influence on the design is controlled by the human designer. Finally, the
iterator component represents the link between the creator/evaluator and a human designer in
order to progressively evolve designs and enable design space exploration based on the generation
of design proposals and learning of human preferences. The authors illustrate their framework
through a perfume bottle design tool. The peculiarity of this framework consists in the incor-
poration of multiple machine learning (ML) methods as a strategy to implement the proposed
components that may address better the adaptation to the diversity of the human designer needs
(e.g., learning methods) and its potential application to diverse domains (e.g., transfer learning,
style transfer).

2.6 Puzzle video game design

According to Juul (2005b), a game can be defined as a goal-oriented rule-based system with
a variable and quantifiable outcome (a final state of a game), where a player exerts effort to
influence that outcome and feels emotionally attached to it. In Juul’s definition, a goal is an
assignment of value to the game’s possible outcomes and refers to the game as an activity, not
as an object. In that same sense, Schell (2008) defines a game as a problem-solving activity,
approached with a playful attitude.

Based on the reflections of the computer game designer, author of the first video game design
theory book, and founder of the game developer conference (GDC), Chris Crawford (1984, 1990),
a puzzle game can be defined as a formal interactive system that offers a challenge to the player,
clearly defined as goals, through entertaining behaviors established by actual or fictional physical
properties, explicit rules, and algorithms. Crawford emphasizes that a puzzle game does not
present a purposeful opponent to the player to be defeated, but the opponent is the challenge
itself. A puzzle game is essentially a game with a dominant strategy that makes the player stop
and think (Schell 2008).
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Three aspects stand out of what constitutes a game: i) the underlying rules, ii) the behavior
enabled, and outcomes obtained in response to the player’s actions; and iii) the emotional, playful
aspect. The mechanics-dynamics-aesthetics game design framework (MDA) (Hunicke, Leblanc,
and Zubek 2004) captures these aspects as rules, system, and “fun” components and establishes
their design counterparts: mechanics, dynamics, and aesthetics, each acting as a “lens” or a “view”
of a game. As of our proposed designing framework, MDA recognizes that from the perspective
of the designer, the mechanics give rise to dynamic system behavior (game dynamics), which in
turn leads to particular aesthetic experiences.

2.6.1 Game experience

In the MDA framework, the aesthetics view describes the desirable emotional responses evoked
in the player when interacting with the game. We argue that MDA’s aesthetic view can be in-
terpreted as the game’s playful experience of the player2. According to the playful experiences
framework (PLEX) (Korhonen, Montola, and Arrasvouri 2009), a playful experience is an emer-
gent approach for a player to enjoy playing a game. The PLEX framework provides a catalog of 22
playful experiences categories (Arrasvuori, Boberg, and Korhonen 2010) as different possibilities
to design and evaluate the playful experience of a player when playing a game. There are auxiliary
tools such as the PLEX cards (Lucero and Arrasvouri 2010), and the playful experiences question-
naire (PLEXQ) (Boberg et al. 2015) to assist designers and evaluators in modeling/identifying
desirable/emerged playful experiences.

The PLEX cards are a set of cards designed to communicate each of the PLEX categories
to inspire designers while designing for playfulness. Each PLEX card consists of two pictures
(carefully selected to avoid feeling them stereotypical) and a central ribbon (Fig. 2.1).

PLEXQ is a validated 5-point Likert scale (strongly disagree, disagree, neither agree nor dis-
agree, agree, strongly agree) questionnaire to reliably measure 17 of the 22 PLEX playful expe-
riences categories. The questionnaire consists of 51 items (3 for each category), developed from
qualitative studies, interviews with video game players, and brainstorming sessions with experts.

PLEX framework may provide a useful foundation to build our set of design dimensions with
PLEX cards and PLEXQ questionnaire as support tools to design and analyze game experiences
from the perspective of playfulness.

For our tool, the PLEX playful experiences categories could function as design dimensions with
PLEX cards and PLEXQ questionnaire as support tools to design and analyze game experiences
from the playfulness point of view.

2We believe the term ‘game experience’ to be more appropriate than ‘aesthetics’ since aesthetics may lead to
confusion with other aspects, such as the video game’s visual appearance.
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Table 2.1: PLEX playful experiences categories

Experience category Brief description: The playful experience emerges from...

Captivation Forgetting one’s surroundings

Challenge Testing abilities in a demanding task

Competition Contest with oneself or an opponent

Completion Finishing a major task or reaching closure

Control Dominating, commanding or regulating

Cruelty Causing mental or physical pain

Discovery Finding something new or unknown

Eroticism A sexually arousing situation

Exploration Investigating an object or situation

Expression Manifesting oneself creatively

Fantasy An imagined situation

Fellowship Friendship, communality or intimacy

Humor Fun, joy, amusement, jokes or gags

Nurture Taking care of oneself or others

Relaxation Relief from bodily or mental work

Sensation Excitement by stimulating senses

Simulation An imitation of everyday life

Submission Being part of a larger structure

Subversion Breaking social rules and norms

Suffering Loss, frustration or anger

Sympathy Sharing emotional feelings

Thrill Excitement derived from risk or danger
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Figure 2.1: PLEX cards: The top half picture is a black and white picture displaying faces to focus on
the emotion; the central ribbon shows some concrete examples of the emotion or short descriptions of it;
finally, the bottom half picture is a color picture displaying concrete examples from everyday life. Both
top and bottom half pictures are tagged with their corresponding PLEX category name.

2.6.2 Game dynamics

MDA’s dynamics view describes the run-time behavior of the mechanics acting on player inputs
and others’ outputs over time. In addition to the run-time (playtest-based) behavior, we argue
that the dynamics view should also be made up of the game’s behavior derived directly from game
mechanics analysis (i.e., intrinsic dynamics). Browne employs a model to measure the games
generated by his Ludi system (2011) based on self-play (automated playtest) and intrinsic game
characteristics. He distinguishes between intrinsic and extrinsic criteria, the latter subdivided into
viability and quality criteria. Intrinsic criteria are those based on rules and equipment, whereas
extrinsic criteria are derived from the automated self-play. Viability criteria are based on game
outcomes and essentially determine the playability of a game, whereas quality criteria are based
on the player moves and attempts to gauge players’ engagement.

Another type of run-time behavior is the gameplay scenario, defined as the set of patterns of
interaction of the player with the game that emerges during playtesting (Lindley 2004). Maze-
based, twitch-based, and logic-based are examples of gameplay scenarios that may be present in
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some puzzle video games (Game Design Ed 2015a,b).

According to Crawford (1984), in maze gameplay scenarios, the player must move through
a labyrinth and might be required to make his/her way to an exit. In addition, there might be
chasing objects that pursue the player through the maze. In «Puzzle Explorer»3 (2015a) a maze-
based puzzle is described as a puzzle in which a player attempts to reach a goal on a game board
by finding the correct path within a complex, branching network of paths.

On the other hand, as explained in «Puzzle Explorer» (2015b), twitch-based gameplay sce-
narios challenge the player’s reaction time and dexterity, perhaps through strategically placed
obstacles and AI-based chasing objects. Twitch gameplay keeps players actively engaged with
quick feedback to their actions (Wikipedia contributors 2020).

Finally, as inferred from (Pustejovsky 2013), logic-based gameplay scenarios require different
kinds of reasoning to resolve the puzzle and challenge the player analytically. Logic-based puzzles
challenge the player’s mind by making him/her holding the puzzle as a system in their head (parts
of the puzzle or the puzzle as a whole) and thinking a few steps ahead of their current situation
(i.e., make and test hypotheses) (Game Design Ed 2015b). Making the player stop and think, as
considered by Schell to describe a puzzle becomes even more characteristic in logical puzzles.

2.6.3 Game mechanics

MDA’s mechanics view describes the particular components of the game at the level of data rep-
resentation and algorithms. Adams and Dormans (2012) describe game mechanics as the core of
a game, composed of rules, processes, and data that determine what players can do and how the
game will react to their actions (e.g., how play progresses, what happens when…, what condi-
tions determine victory or defeat). According to them, most of game mechanics are hidden from
the player, that is, the rules encoded into game mechanics are different from those explicitly
made known to the player as instructions (i.e., what people commonly refer to as game rules).
In a similar direction, Schell (2008) defines game mechanics as objective sets of rules describing
the underlying model of a game and, at the same time, recognizes a rules category of game me-
chanics as the most fundamental category that make all the other types of mechanics possible.
These rules, according to Juul (Juul 2005b), specify limitations and affordances in the game.

The «Puzzle explorer» video series (Game Design Ed 2015b) demonstrates how a puzzle video
game can be designed by arranging different objects (e.g., obstacles, tiles, collectibles, player
token, pushables, actionables, enemies, keys) within a squared grid board. This procedure is
consistent with the activity of designing video game levels, defined by Juul (2005a) as the design
of the physical layout in a game, and by Schell (2008) as the arrangement of the elements of the
game in ways that are fun and interesting.

3«Puzzle Explorer» is a video playlist of the YouTube channel «Game Design Ed» about the tool and game devel-
oped by YETi CGI and published by Fingerprint, Inc. called «National Geographic Puzzle Explorer» (not available at
the time of this research).
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According to Browne (2013), a puzzle game level is a specific instance of a puzzle game
defined by a specific grid (game space) and game objects arrangement. We believe that the
introduction of sufficiently different low-level game mechanics (or a different composition of
them) may allow not only the production of a new level but also a new puzzle game variation or
even a completely new puzzle game.

Game level design is, in fact, an instance of game mechanics design since game levels are
considered a type of gamemechanics. According to Adams and Dormans (2012), a game level can
be considered a progression game mechanics type that dictates how a player can move through
the game world. Similarly, the «Game Mechanics Wiki» (GMW contributors 2011) states that a
game level (sometimes used interchangeably with map) is a game mechanic that makes up the
playable game world.

In addition to the level-type game mechanic, one can recognize other categories of game
mechanics in almost any puzzle video game (like those demonstrated in the «Puzzle Explorer»
video series). The squared grid board is a space game mechanic, defined by Schell (2008) as a
mathematical construct that defines the various places that can exist in a game, and how those
places are related to one another.

The objects being placed and arranged by the designer in the game space fall into the game
object category of game mechanics, considered by Schell (ibid.) as the “nouns” of game mechan-
ics and defined as any object that can be seen or manipulated by the player in a game. Continuing
with Schell, the static (never changing through-out the game) and dynamic attributes (e.g., ap-
pearance, position), and states of any game object are also categories of game mechanics.

Finally, in puzzle video games, we also find rules that encode actions (the “verbs” of game
mechanics [ibid.]) and end conditions game mechanics. Action game mechanics encode changes
(and applicable constraints) in the states and game objects attributes’ values in response to the
player’s input (operative actions [ibid.]) or as side effects of other game object’s changes. On
the other hand, end conditions game mechanics encode situations that cause a game to end with
a player victory (win condition) or a game-over situation (loss condition). In terms of game
outcomes, Juul (2005a) states that winning a game means that the game ends with the outcome
of having a positive value assigned to the player (i.e., the goal was achieved), and losing a game
means that the game ends with the outcome of having a negative value assigned to the player
(i.e., the necessary conditions to achieve the goal no longer exist).

2.7 Rule-based game engine

Based on the definitions in Section 2.6.3, we may consider a puzzle video game (from the game
mechanics perspective) essentially as a rule-based system, where a set of if-then rules (ruleset)
governs the run-time interaction with the player and game outcomes. Thus, a puzzle video game
engine could work exactly as a rule-based system engine where initially, the rules are loaded to
build up the system’s working memory with initial facts. Then, for each game tick or player’s
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move, the rules are fired to produce a new set of facts as the new game state. A relevant example
of such an engine is PuzzleScript (Lavelle 2013), an open source HTML5-based platform devel-
oped by Stephen Lavelle that provides both, a scripting language to describe a tile-based puzzle
video game, and the engine that executes a playable version of the game described.

In essence, to describe a video game in PuzzleScript, a designer i) labels and defines the
visual aspect of all of the game objects appearing in the game (game object design), ii) assigns
each game object into a layer (the base ‘Background’ layer is mandatory), iii) places a single
game object or a combination of game objects into specific cells of a rectangular game board
(game level design), iv) optionally writes one or more win conditions (end conditions design),
v) and writes one or more game rules (game rule design) that govern the interaction between
the player (movements and actions) and the game objects, and the interaction between game
objects.

Game rules in PuzzleScript are, in fact, if-then rules in the form of substitution patterns.
PuzzleScript game engine searches for game board cell patterns defined at the ‘if’ (left) part of a
rule and replaces every matched pattern with the patterns specified at the ‘then’ (right) part of
the rule. A pattern is just a series of cells where each cell is described by an optional modifier and
a game object. Every game object assigned into a layer can be used (be referenced) in any win
condition or game rule part. If required, game objects can be grouped into ‘virtual’ game objects
(or aliases) and then, use them in win conditions and game rules as regular game objects.
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CCDSF - Computational
creative design systems
framework

3.1 Layered Designing Schema: a model of the activity of
designing

According to Gero’s research on design cognition (Gero 1990; Gero and Kannengiesser 2000), the
act of designing can be defined as the goal-oriented, decision-making, constrained, exploratory,
and situated activity to transform –through a series of fundamental processes– a set of represen-
tations of a required or expected object (design problem) into a design description of an object
that meets expectations (design solution or designed object) and provides sufficient information
about it for its construction.

Design
descriptionsDesigning

Requirements
&

expectations

Figure 3.1: Designing activity

The object being designed or design object can be of any class, including artifacts (digital or
physical), processes, systems, and services. Both expected and designed objects are representa-
tions of the same design object and can be expressed by any appropriate means or can correspond
to the object itself –if one considers the object as a representation of the solution being designed.

19
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Based on the previous definition, on Gero and Kannengiesser’s FBS/sFBS frameworks (Gero
1990; Gero and Kannengiesser 2002, 2004, 2014), and on Gärdenfors’ CST (Gärdenfors 2004),
we propose to model the activity of designing in terms of three main components: design concepts
(i.e., representations of design objects), produced trough a design process modeled by funda-
mental processes for designing instrumented by agent-based perception/action strategies, within a
hierarchy of what we call design levels. We describe these components in the next subsections.

3.1.1 Design levels

A design level 𝐿 is a perspective from which a design object is both described and detailed. On
the one hand, the most general perspective from which any design object can be described is
through ontological categories, such as the function (what the design object is for?), behavior
(what the design object does?), and structure (what the design object is?) categories defined in
the FBS. Other FBS-like frameworks go even further and recognize additional categories above
function, such as purpose (Galle 2009; Salustri 2015), needs (Cascini, Fantoni, and Montagna
2013; Uflacker and Zeier 2008), and user and goals (Cascini, Fantoni, and Montagna 2011). On
the other hand, the abstraction level is another type of perspective that expresses the degree of
detail or granularity of the produced designs. For example, conceptual design, preliminary de-
sign, and detailed design in the engineering design process (Fig. 3.3), or low-fidelity wireframing,
high-fidelity wireframing, mockup, and final UI design in a user interface design process.

Definition 3.1.1. A design level 𝐿 is a unified perspective from which a design object is described
in terms of an ontological category at a given level of detail.

An example of a design level could be one defined by the behavioral ontological category
and the conceptual abstraction level, resulting in what could be called a behavioral conceptual
design level. There might be, however, one or more abstraction levels defined for more than one
ontological category (e.g., behavioral conceptual design, structural conceptual design).

3.1.1.1 Hierarchy of design levels

Within an application-domain-specific design process, a hierarchy of design levels𝐿1, 𝐿2, … , 𝐿𝑛
can be recognized, in such a way that: i) 𝐿𝑖−1 is the level below level 𝐿𝑖, for 1 < 𝑖 ≤ 𝑛, (to make
the notation shorter, from now on we refer to 𝐿𝑖 as 𝐿, 𝐿𝑖−1 as 𝐿−, 𝐿𝑖+1 as 𝐿 , and 𝐿𝐿− as what
we call a design layer formed between 𝐿 and 𝐿−); and ii) different required objects described at
the design level 𝐿, can be satisfied by different design objects described at the design level 𝐿− –or
different objects described at 𝐿− level, can realize different required objects described at 𝐿 level
(Fig. 3.2), that is, the relationships between design levels within a hierarchy are many-to-many
and bidirectional (see example of aircraft design domain in Fig. 3.4).

The hierarchy built-up by design levels reflects the top-bottom approach a designer should
take to make decisions (e.g., the designer decides on behaviors that realize functions, then struc-
tures that perform those behaviors). In this way, the activity of designing can also be regarded
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as the transformation of a high-level description of a design object into a low-level description of
the same object.

O.C.3

O.C.2

O.C.1

Figure 3.2: Relationships between ontological categories (O.C) of design objects

Definition 3.1.2. A design layer 𝐿𝐿− is formed between two adjacent design levels 𝐿 and 𝐿− of
the hierarchy and may constitute, at least conceptually, an independent act of designing by itself.

The hierarchy of design levels leads us to propose that full designing (from initial require-
ments up to final design description) could be decomposed into smaller and specialized design-
ing instances located at each layer 𝐿𝐿− that emerges from the hierarchy. Therefore, the design
descriptions (solutions) produced at a given layer would represent a subset of requirements (part
of the problem) for the layer below (or the final output if no further layers) (Fig. 3.5). Even when
intermediate outputs may not be produced for final construction purposes, they may constitute
an incremental approximation to the final design description.

3.1.1.2 Modeling design levels as design spaces

In the proposed layered schema, any design level 𝐿 gives rise to a design space 𝒟𝐿, which rep-
resents a set of design objects that can be described from the perspective of that design level.
Inspired by the CST, we propose to define design spaces in terms of design dimensions 𝛿 ∊ Δ.

We employ dimensions instead of variables (as in the FBS), considering that not every type
of variable may assume one value from a given set of values. From the perspective of the FBS,
although behavioral and structural dimensions can resemble variables, functional dimensions
(as hypothesized by Gärdenfors) correspond to subjective abstract dimensions constituted by
behavioral dimensions, being subjective as function-behavior mappings (behaviors afforded by
objects to achieve a purpose) are up to individual, social, and cultural knowledge.

Definition 3.1.3. A design dimension 𝛿𝐿 ∊ Δ𝐿: i) is a parameter that represents a characteristic of
a design object within the context of a design level 𝐿, and ii) enables determining similarity and
dissimilarity between two objects with respect to the represented characteristic.
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Figure 3.3: FBS ontological categories and engineering design process

A design dimension can be either separable or integral (Gärdenfors 2004, pg. 24) if it cannot
be separated from other dimensions to be meaningful in its context of use (e.g., when character-
izing the 2D-size of an object, one cannot set a value to the length dimension without assigning a
value to the height dimension). Additionally, design dimensions can be classified as base design
dimensions, compound design dimensions (domains in the CST), and higher-order design dimen-
sions:

• A base design dimension ̇𝛿𝐿 ∊ Δ𝐿 may resemble the concept of mathematical variable; it is
defined by a metric space specified by a range 𝑟 (an arbitrary non-empty set containing all
possible values the dimension can take) and a metric1 𝑚 on this range:

̇𝛿𝐿 ≔ ⟨𝑟, 𝑚 | 𝑟 ∊ 𝒱 ⧵ {∅}⟩,

where 𝒱 is the universal class (the class of which all sets are members).

• A compound design dimension ̈𝛿𝐿 ∊ Δ𝐿 is a bundle of one or more integral design dimensions
𝛿𝐿, including other integral compound dimensions:

̈𝛿𝐿 ≔ ⟨⟨𝛿𝐿𝑖⟩, 𝑚⟩, where

⟨𝛿𝐿𝑖⟩ ≔ ⟨𝛿𝐿1, … , 𝛿𝐿𝑛 | 𝛿𝐿𝑖 ∊ Δ𝐿 ∀𝑖 ∊ {1‥𝑛}⟩;

1The metric could be a generalization of a metric resulting in a generalized metric space.
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Figure 3.4: Aircraft design domain example: In a hierarchy of two design levels, performance conceptual
and structural conceptual, various expected flying vehicles (e.g., 𝑎, 𝑏, 𝑐, 𝑑) can be defined in terms of
their performance determined by two characteristics, the minimum length of the runway 𝑤 required by
the vehicle to perform take-off and landing procedures, and their payload capacity 𝑝. On the other hand,
various families of aircrafts (e.g., average helicopters, average mid-size airliners, average STOL [short take-
off landing] airplanes) can be defined in terms of various structural conceptual features (not depicted).
Performance conceptual flying vehicles represent: 𝑎) a negligible runway length, small payload capacity;
𝑏) a negligible runway length, small-to-medium payload capacity; 𝑐) a medium length runway, small-
to-medium payload capacity; and 𝑑) a large runway, medium-to-large payload capacity. Both 𝑎) and 𝑏)
performances can only be satisfied by the average helicopters family, performance 𝑐) can be satisfied by
both the average STOL airplanes and mid-size airliners families, and performance 𝑑) can only be satisfied
by the average mid-size airliners family. In the opposite direction, the average helicopters family can
realize 𝑎) and 𝑏) performance expectations, the average STOL airplanes family can realize performance
expectation 𝑐), and the average mid-size airliners family can realize two performance expectations 𝑐) and
𝑑).
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Figure 3.5: Chained design levels and layers

its range ran( ̈𝛿𝐿), is the cartesian product of its integral dimensions’ ranges:

ran(𝛿𝐿) ≔
⎧
⎪
⎨
⎪
⎩

𝛿𝐿(1) if 𝛿𝐿 is a ̇𝛿𝐿

|𝛿𝐿|

∏
𝑖=1

ran(𝛿𝐿𝑖) if 𝛿𝐿 is a ̈𝛿𝐿,

where 𝛿𝐿(1) is the first element (i.e., its range) of the tuple that represents the design dimension
𝛿𝐿.

• Finally, a higher-order design dimension ⃛𝛿𝐿 ∊ Δ𝐿 is a special type of compound dimension
integrated by (possibly) constrained dimensions2 𝛿′𝐿− defined at the design level 𝐿− below; in
other words, it is a dimension defined as projected regions over lower-level design spaces:

⃛𝛿𝐿 ≔ ⟨⟨𝛿′𝐿−𝑖⟩, 𝑚⟩, where

⟨𝛿′𝐿−𝑖⟩ ≔ ⟨𝛿′𝐿−1, … , 𝛿′𝐿−𝑛 ∣ ∃𝛿𝐿−𝑖 ∊ Δ𝐿− ∶ 𝛿𝐿−𝑖 = orig(𝛿′𝐿−𝑖) ∀𝑖 ∊ {1‥𝑛}⟩,

and orig ∶ Δ𝐿 → Δ𝐿, is a function that maps a given possibly constrained design dimension 𝛿′𝐿

to the original unconstrained dimension 𝛿𝐿.

2A design dimension is said to be constrained when its range is reduced to a subset (region) of its original full
range, providing another aspect to model the decision-making nature of designing. Both full-range dimensions and
any of the constrained dimensions derived from them are considered as members of the same set of dimensions.
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At a given design level 𝐿, there might not be a set of possible base design dimensions de-
fined (such as in the FBS functional category); instead, one can configure higher-order design
dimensions from dimensions of the immediate lower level 𝐿−.

In general, Gärdenfors suggests employing the Euclidean metric to determine the distance
between constitutive integral base dimensions (inside a non-nested compound dimension) and
Manhattan metric to determine the distance between separable dimensions (Gärdenfors 2004,
pg. 25).

Definition 3.1.4. A design space 𝒟𝐿 is a non-empty collection of full ranged or constrained design
dimensions belonging to an 𝐿 design level (intensional definition):

𝒟𝐿 ≔
{

⟨𝛿′𝐿1, … , 𝛿′𝐿𝑛 ∣ ∃𝛿𝐿𝑖 ∊ Δ𝐿 ∶ 𝛿𝐿𝑖 = orig(𝛿′𝐿𝑖) ∀𝑖 ∊ {1‥𝑛}⟩ (constrained)

⟨𝛿𝐿1, … , 𝛿𝐿𝑛 | 𝛿𝐿𝑖 ∊ Δ𝐿 ∀𝑖 ∊ {1‥𝑛}⟩ (full-ranged)

A design space can also be considered as the set of all design objects representable by a set
of design dimensions (extensional definition).

A consequence of the proposed layered schema is that a given design layer 𝐿𝐿− will contain
two design spaces (one for each bounding level), functionally differentiated by the role they
represent in the design process. The upper bounding space, which we call evaluation space, acts as
the space of possible required design objects, and the lower one, which we call solution space, acts
as the space of possible design objects that represent potential solutions for those requirements.
Thus, the design space 𝒟𝐿 corresponds to the evaluation space ℰ𝐿𝐿−, and the design space 𝒟𝐿−
corresponds to the solution space 𝒮𝐿𝐿−, which will become the evaluation space of the layer below:
𝒟𝐿 = 𝒮𝐿 𝐿 = ℰ𝐿𝐿− (Fig. 3.6).

Our design space enables modeling the explorative nature of designing as the traversal of
the space directed by design decisions and unifies the idea of a conceptual space in the CST
with the notion of all of the «spaces» described by the sFBS, and CSF. The sFBS considers a
design state space as the space of possible design solutions, on the other hand the CSF describes
a conceptual space 𝒞 containing all valid concepts according to the ℛ ruleset, a set we name 𝒱
of valued concepts according to the ℰ ruleset, and a set 𝒞? of concepts unknown to the creator
(i.e., potential novel concepts).

3.1.2 Design objects

During designing, several representations of the design object and perhaps other related objects
are involved; at least, there is one representing the required object and another one representing
the designed object. The representation of the required object is described in terms of the upper
design level of a given design layer with the purpose of defining requirements and constraints. On
the other hand, the representation of the designed object describes the design solution in terms
of the lower design level of the layer. Besides these core representations, a design agent may
produce or consume other representations (mental, virtual, or physical) for other purposes, such
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Figure 3.6: A layered designing schema composed of four levels 𝐿1 … 𝐿4. Three layers emerge from
the design levels hierarchy 𝐿2𝐿1 … 𝐿4𝐿3. Black arrows denote the flow of requirements and constraints
at a given design level. White arrows denote the flow of the produced design solutions that joins the
requirements flow in non-lowest levels. Every design level gives rise to a design space that has a two-
folded function in non-extreme design layers.
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as communication, testing, analysis, or as auxiliary representations to support designer’s own
reflection, and interpretation of referential objects (e.g., inspiring set) or other external objects.
Then, representations of the same design object differ in the design level they are expressed at,
and their purpose in the design process.

3.1.2.1 Modeling design objects as design concepts

We adopt the term design concept to refer to a representation of a design object independently of
its underlying design level and its purpose in the process (Fig. 3.7). This term unifies the notions
of concept in the CST –a means of representation–, and the CSF –a catch-all term for the target
of a creative system processes (i.e., validation of, evaluation of, and search/discovery/generation
of)–, with the idea of representations in the FBS/sFBS.

Other representationsDesign descriptions
(design solutions)

designed object

Requirements
& constraints
(design problem)

required object

Design conceptsDesign object
modeled asrepresented by Design object

representations

Figure 3.7: Design concepts as representations of design objects

Definition 3.1.5. A design concept is a non-empty subset of a design space (extensional defini-
tion).

This definition implies that design spaces are also design concepts and that every concept is
located within a design space. The difference between a design concept and a design space lies
in whether something is defined intentionally or extensionally. A design space describes design
concepts intentionally and it is structured at its most basic level by base design dimensions. On
the other hand, design concepts, whether abstract or concrete, are extensional samples of a design
space. We then consider base design dimensions as the most basic building blocks to represent
not only design spaces, but any design concept 𝑥𝐿:

𝑥𝐿 ≔
{

⟨𝑥1, … , 𝑥|𝒟𝐿| ∣ 𝑥𝑖 ⊆ ran(𝛿𝐿𝑖) ∧ 𝛿𝐿𝑖 ∊ Δ𝐿∀𝑖 ∊ {1‥|𝒟𝐿|}⟩ (intensionally)

𝑥 ⊆ 𝒟𝐿 (extensionally) ,

where |𝒟𝐿| is the number of design dimensions that compose the space 𝒟𝐿.

A designer constructs a design concept by setting regions on each of the constitutive dimen-
sions of the design space. A region may span the full range of the dimension, a subrange, or
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a singleton set (a single value). This approach allows the designer to produce or represent a
broad range of design concepts, from the most general, where no dimension is constrained (i.e.,
the underlying design space itself), to non-concrete concepts (e.g., conceptual objects, family of
objects), to concrete objects, where all dimensions have a particular and valid value assigned.
This construction pattern for building design concepts (and spaces) models the constrained and
decision-making nature of designing described by Gero (1990), a designer requires to decide not
only which design dimensions represent the class of the design object (design space modeling),
but the values of these dimensions that represent a potential solution (design concept modeling).
These decisions may, however, be subject to some externally defined or self-imposed constraints
(the constrained nature of the activity of designing), which can be represented by the same work-
ing set of design dimensions.

In our approach, the notions of empty and partial concepts defined in Wiggins’ CSF take
a slightly different interpretation. The “indetermination” status of the value of a dimension is
modeled by leaving that dimension unconstrained, that is, an empty design concept will span
the full underlying design space, and a partial design concept will have some of its dimensions
unconstrained. Our schema fulfills the empty concept axiom defined in the CSF since every design
space will include an empty design concept:

∏⟨𝑥1, … , 𝑥|𝒟𝐿| | 𝑥𝑖 = ran(𝛿𝐿𝑖) ∧ 𝛿𝐿𝑖 ∊ Δ𝐿 ∀𝑖 ∊ {1‥|𝒟𝐿|}⟩ = ran(𝒟𝐿).

From this perspective, the activity of designing could also be regarded as a process of progres-
sive constraining/loosening of the design space (in addition to adding/removing dimensions) up
to the desired level of concreteness of the design concept (Fig. 3.8).

We provide a formal structural recursive construction 𝜞 to build all and every possible
space, from base dimensions to compound dimensions, to design spaces, up-to the universe:

𝜞𝑘(𝑋) ≔

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝑋 ∶ 𝑘 = 0

⋃
∧× 𝜞𝑘−1(𝑋) ∶ 𝑘 = 1, 𝑘 = 2
2

⋃
𝑖=1

𝜞𝑖(𝑋) ∪ ⋃
∧×

2

⋃
𝑖=1

𝜞𝑖(𝑋) ∶ 𝑘 = 3

𝜞𝑘−1(𝑋) ∪ ⋃
∧× 𝜞𝑘−1(𝑋) ∶ 𝑘 > 3

𝜞 (𝑋) ≔
∞

⋃
𝑘=2

𝜞𝑘(𝑋)

Where ⋃∧× 𝑆 is defined as ⋃∞
𝑛=1 𝑆𝑛, and 𝑆𝑛 is defined as the cartesian power

{⟨𝑥1, … , 𝑥𝑛⟩ | 𝑥𝑖 ∊ 𝑆 ∀𝑖 ∊ {1‥𝑛}}.

From this construction and a set of all possible base design dimensions Δ̇𝐿, one could identify
the key spaces (and many more) to be used in our framework: only base dimensions 𝜞0(Δ𝐿),
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Figure 3.8: The full shaded circle at the top represents a concept corresponding to the full underlying
design space (i.e., empty concept). The designer may constrain (black arrows) or loosen (white arrows)
the space within a range of concreteness of the design concept, from/to partial concepts (right and bottom
shaded shapes) to/from specific points that represent fully concrete objects (left space) in the space.
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only non-nested compound dimensions 𝜞1(Δ𝐿), only non-nested design spaces or 1-nested
compound dimensions 𝜞2(Δ𝐿), up-to (𝑘−1)-nested compound dimensions and design spaces
𝜞𝑘>2(Δ𝐿), and finally the whole universe of design spaces 𝜞 (Δ𝐿).

From this procedure, we also provide a formal description of the construction of all and
every possible design concept within a universe:

{𝑥𝐿𝑘} ≔ 𝜞𝑘(⋃𝑓 Δ𝐿),

where 𝑘 sets the underlying space: 𝑘 = 1 to build design properties3 based on non-nested
compound dimensions, 𝑘 = 2 to build concepts within non-nested design spaces, and 𝑘 > 2
to build concepts within nested design spaces (𝜞 without subscript parameter would mean
building concepts within the whole universe including n-nested compound dimensions and
design spaces);

⋃𝑓 𝑋 ≔ ⋃{𝑓(𝑥) | 𝑥 ∊ 𝑋};

and 𝑓 is a function that sets the desired output abstraction level: ℘≥1 ∘ ran, a function
composition (power set of range) for all possible concepts (abstract and concrete), ℘=1 ∘ ran
for only concrete objects, and ℘>1 ∘ ran for only abstract concepts. For completeness, ℘≥0 ∘
ran would include partial (and empty) concepts according to the original definition in the
CSF. The ℘ (power set) with a subscript modifier filters the resulting power set to subsets
with cardinality determined by the modifier.

These construction procedures for spaces and concepts are provided for formalization
purposes and to set a clear notion of what the universe, design spaces, and dimensions are;
how concepts are structured on those spaces; and to illustrate the combinatorial explosion
that involves designing (and similar creative domains).

3.1.3 Design process

When operating on a design project, design agents perform the activity of designing by adhering to
a specific design process (a series of steps to come up with a designed object), whether holistically
(e.g., conceptual design in the engineering design process), or by comprising designing different
facets or components of an object separately (e.g., game levels, rules, sounds, and characters
in game-mechanics design); that is, separated yet interrelated design projects for each facet or
component4.

3According to Gärdenfors (2004), a property is a region in a domain. Therefore, a design property would be a
region in the space defined by a compound design dimension (e.g., bluish, greenish, and purplish are properties
within the RGB color compound design dimension).

4In this work we focus on single design processes, that is, an holistic process or the design of a single facet or
component.
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Based on the eight fundamental processes for designing described by the FBS/sFBS frame-
works, we propose to model a specific design process in terms of six generalized fundamental
processes for designing that transform design concepts within and across the three sFBS situa-
tional worlds or spheres of the designer.

3.1.3.1 Modeling the design process through fundamental processes for designing

Definition 3.1.6. A fundamental process for designing is a process that renders a major stage in
design progression and is instrumented by a series of intra-world and inter-world related op-
erations performed by one or more design agents on a set of design concepts within the scope
of a design layer to formulate and re-formulate the design problem and to produce and assess
potential solutions.

1. Formulation: Transforms a set of external or memory-recalled design concepts represent-
ing requirements and constraints into a set of expected design concepts that settles the
evaluation and solution spaces.

2. Synthesis: Transforms a set of expected design concepts defined in terms of the evaluation
space dimensions into a set of design concepts representing potential solutions within the
solution space.

3. Analysis: Interprets and transforms a set of design concepts (including potential solutions)
into a set of higher-level design concepts defined in terms of the evaluation space.

4. Evaluation: Assesses potential design solutions or external design concepts by comparing
them against expected design concepts.

5. Documentation: Builds external design descriptions of produced design concepts.

6. Reformulation: Modifies (or recreates) the evaluation or solution spaces (or both) from
new or modified requirements and constraints, produced solutions performance, reinter-
pretation, or new inspiring sets.

FBS/sFBS consider the fundamental processes for designing as processes spanning the full
design project (from the initial highest level requirements to the lowest level, produced design
concepts). Although in our schema, the fundamental processes span a single design layer, it
is also possible to recognize those processes from the perspective of the full design project (all
stacked layers) (Fig. 3.9). The latter can be accomplished by: a) accumulating formulation,
synthesis, analysis, and evaluation of a single layer as part of the formulation process of the layer
below (down to the lowest layer); b) grouping documentation processes of each layer into the
global documentation process; and c) considering synthesis, analysis, and evaluation processes
at the lowest layer as full-level design processes.
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Figure 3.9: Full design project processes

3.1.3.2 Instrumenting the fundamental processes for designing through perception-
action strategies

Based on and generalized from the 20 specialized sFBS design operations, we propose that the
underlying operations of the fundamental processes for designing can be instrumented by agent-
specific instances of perception and action strategies (procedural knowledge) that capture the
situated nature of designing as well as general and domain-specific design capabilities of design
agents.

We employ the symbol 𝑋𝐿 to refer to a set of design concepts represented at 𝐿 design level;
and �̂�𝐿, �̌�𝐿, and �⃑�𝐿 to indicate that the design concepts reside in the external, interpreted or
expected world of the agent, respectively.

3.1.3.2.1 Perception strategies

• Interpretation �̂�𝐿 �̌�𝐿: Creates or updates internal versions (interpretations) of external
design concepts under the influence of current expectations.

• Reflection �̌�𝐿 �̌�𝐿′: Augments or modifies interpreted design concepts based on experience,
knowledge, expectations, and preferences.
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• Focusing �̌�𝐿 ⇄ �⃑�𝐿: Sets or updates current goals and expectations by transferring selected
design concepts from the interpreted world into the expected world, and from the expected
world back to the interpreted world (sets the current situation design space).

• Comparison �⃑�𝐿⇠⇢�̌�𝐿: Contrasts design concepts (already internalized) with expected5 design
concepts.

3.1.3.2.2 Action strategies

• Synthetical derivation �⃑�𝐿 ⤇ �⃑�𝐿−: Produces expected design concepts within the solution space
from expected design concepts defined in terms of the evaluation space.

• Analytical derivation �̌�𝐿 ↦ �̌�𝐿 : Produces internal design concepts defined in terms of the
evaluation space from interpreted design concepts defined in terms of the solution space.

• Externalization �⃑�𝐿 → �̂�𝐿: Creates or modifies external design concepts from expected design
concepts.

A design layer, which can be considered as a design process on its own, is modeled by in-
stances of each of the fundamental processes instrumented by instances of perception and action
strategies (Fig. 3.10).

Perception / action strategy
Fundamental process for designing

Specific deign process (design project)

Figure 3.10: Design process modeling through fundamental processes for designing and perception/action
strategies

At any given design layer, and depending on the design agent role being modeled, the in-
stances of perception-action strategies are required to be specialized in one or both of its bound-
ing design levels. The design layer may require the design agent to know working sets of design

5The term “expected” denotes that the concepts reside in the expected world and represent potential (“mental”
or simulated) solutions that will hopefully satisfy the design requirements (evaluation space concepts) when they
become external and analyzed.
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dimensions (and perhaps design concepts) to build or traverse both the evaluation space and the
solution space of that layer.

When considering the FBS ontological categories, we hypothesize that deriving expected
behavior from required functions might be operationally equivalent to derive structure from
expected behavior, and by applying the same rationale, the process of deriving actual behavior
from a structure might be operationally equivalent to derive actual functions from behaviors.
This pattern leads us to propose synthetical and analytical derivation strategies, and to define
synthesis and analysis as fundamental processes available at any given design layer.

3.2 Computational Creative Design Systems

We propose to define a computational creative design system (CCDS) of 𝑛 design levels6 through
a Layered Designing Schema of 𝑛 − 1 layers, where each layer is an exploratory creative system
(ECS) that is defined using an extended version of Wiggins’ CSF (as illustrated in Fig. 3.11).
This architecture not only reflects our proposed schema but enables fine-grained task and role
modeling. It is worth noting that the hierarchical arrangement implies by no means a sequential
execution of layers, so two or more layers can be executed simultaneously.

3.2.1 Exploratory Creative Systems

In terms of the CSF we formally describe a CCDS layer as:

⟨ℒ, ⟨⟨Δ𝐿𝐿−, 𝒰 𝐿𝐿−⟩, ⟨Δ̊𝐿𝐿−, �̊� 𝐿𝐿−⟩⟩, ⟦⋅, ⋅⟧, ⟪⋅, ⋅, ⋅, ⋅⟫, ℛ𝐿𝐿−, ℰ𝐿𝐿−, 𝒫 𝐿𝐿−, 𝒯 𝐿𝐿−
⟩,

where

• ℒ is a language used to express rulesets (including design dimensions, concepts, and spaces);

• ⟨Δ𝐿𝐿−, 𝒰 𝐿𝐿−⟩, ⟨Δ̊𝐿𝐿−, �̊� 𝐿𝐿−⟩ represent the universe and designer universe, respectively;

• ⟦⋅, ⋅⟧ and ⟪⋅, ⋅, ⋅, ⋅⟫ are extended versions of selection and exploration interpreters;

• and ℛ𝐿𝐿−, ℰ𝐿𝐿−, 𝒫 𝐿𝐿−, and 𝒯 𝐿𝐿− are definitional, evaluative, perception, and action rulesets,
respectively.

We propose that the rulesets can be constituted by both declarative (design concepts and
dimensions) and procedural (perception/action strategies) knowledge provided by the designing
schema.

6The 𝑛th level corresponds to the highest design level

Jesús Pérez Romero 34



3.2. Computational Creative Design Systems

Figure 3.11: CCDS architecture. The CCDS (on the left) is architectured as an arrangement of stacked
extended ECSs, where each ECS (on the right) realizes one layer of the underlying designing schema. A
CCDS layer is implemented by its own set of perception/action strategies, which connect design concepts
located in the external, interpreted, and expected worlds of the designer, including design concepts (resid-
ing in the expected worlds) that constitute each of the design spaces of the layer. [Designer’s worlds and
design operations’ symbols inspired on sFBS authors’ original work in (Gero and Kannengiesser 2014)].

3.2.1.1 Universe and designer universe

In our schema, the universe 𝒰 𝐿 defined in Wiggins’ CSF (Wiggins 2006) would be not only an
infinite design space containing all possible design concepts representable by another (universal
and most likely infinite) set Δ𝐿 of all possible design dimensions in the context of an 𝐿 design
level but also the set of all possible design spaces within that level.

A consequence of the situated nature of designing is that different designers will come up
with different interpretations and designs even if they started from the same set of initial require-
ments and externally defined constraints; furthermore, from the same requirements, a designer
may achieve different designs in different design sessions. This condition is the result not only
of the diversity of perception-action strategies among designers but their particular knowledge,
experience, and preferences. We then propose to separate the notions of universe 𝒰 𝐿 and de-
signer universe �̊� 𝐿 ⊂ 𝒰 𝐿, if the former is the set of all possible design concepts describable from
the set Δ𝐿 of all possible design dimensions, we define the latter as the set of all possible design
concepts representable by the set Δ̊𝐿 of design dimensions known to a particular designer (built-in
and acquired) (Fig. 3.12a). The designer universe sets the creative boundaries of the designer
(i.e., the design agent will not be able to operate on whatever he/she/it is unable to conceive)
(Fig. 3.12b).

The relative complement 𝒰 𝐿 ⧵ �̊� 𝐿 of the designer universe with respect to the universe sets
the room not only for potential expansion of the agent’s knowledge either by experience, training,
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learning, or reasoning but for the design agent to operate towards CSF’s ℛ/ℰ -transformational
creativity without requiring meta-creative exploratory systems. The distinction between the uni-
verse and designer universe is also required to enable collaborative scenarios, where different
agents operate on their universes but share a region (intersection of their universes) within a big-
ger universe; if this region did not exist, the collaboration between agents would be impossible:

⋂{�̊� 𝐿1, … , �̊� 𝐿𝑛 | �̊� 𝐿𝑖 ⊂ 𝒰 𝐿 ∀𝑖 ∊ {1‥𝑛}} ≠ ∅.

The designer universe comprises part of the declarative knowledge of the design agent. There-
fore, in order to discern between effectively created artifacts (during the current design session
and previous design sessions), and conceivable yet not experienced ones, we define two par-
titions of the designer universe, one containing the designer experience �̊� !𝐿 ⊆ �̊� 𝐿, and the
other covering the parts of the designer universe where the agent lacks experience �̊� ?𝐿 ⊆ �̊� 𝐿

(Fig. 3.12a).

(a) (b)

Figure 3.12: (a): Universe 𝒰 𝐿 and designer universe �̊� 𝐿 spanned by a universal set of design dimensions
Δ𝐿 and known dimensions to the designer Δ̊𝐿, respectively. The designer universe is partitioned into the
designer experience �̊� !𝐿 and its complement �̊� ?𝐿. (b): The intersection of the solution spaces 𝒮𝐿𝐿−𝑎 and
𝒮𝐿𝐿−𝑏 of two participant designers 𝑎 and 𝑏, as well as the sets 𝒱𝐿𝐿−𝑎 and 𝒱𝐿𝐿−𝑏 (and their intersection) of
valued design concepts which are the concepts selected by the interpreter ⟦⋅, ⋅⟧ according to evaluative
rulesets of the designers defined in terms of their corresponding evaluation spaces ℰ𝐿𝐿−𝑎 and ℰ𝐿𝐿−𝑏.

3.2.1.2 Definitional ℛ and evaluative ℰ rulesets

Requirements, expectations, constraints, inspiring sets, and working sets of design dimensions
constitute declarative knowledge in the form of design dimensions and concepts that can be
encoded into definitional ℛ and evaluative ℰ rulesets to assist a design agent in setting the
criteria to assess the validity and value of design concepts.

In the context of an 𝐿𝐿− design layer (an ECS), ℛ𝐿𝐿− and ℰ𝐿𝐿− rulesets would define the
solution 𝒮𝐿𝐿− and evaluation ℰ𝐿𝐿− design spaces, respectively. Also, evaluative ℰ𝐿𝐿− rulesets of
non-top layers would need to include the set ⟪ℛ𝐿 𝐿, ℰ𝐿 𝐿, 𝒫 𝐿 𝐿, 𝒯 𝐿 𝐿⟫⋄(∅) of design concepts
produced at the layer above, corresponding to the 𝐿𝐿− expected design objects.
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In addition to declarative knowledge, ℛ and ℰ rulesets may include cultural and domain
agreed procedural knowledge in the form of analytical derivation ↦, focusing ⇄, and comparison
⇠⇢ strategies that implement “standard” procedures to apply the definitional or evaluative criteria
set by declarative knowledge.

ℛ𝐿𝐿− ≔
⎧
⎪
⎨
⎪
⎩𝐿− requirements & constraints

𝑋𝐿−, �̂�𝐿−⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,
𝐿− working set of design dimensions

Δ𝐿−′ ⊂ Δ𝐿−⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿− standard focussing strategies

{(�̌�𝐿− ⇄ �⃑�𝐿−)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿− standar comparison strategies

{(�⃑�𝐿−⇠⇢�̌�𝐿−)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⎫
⎪
⎬
⎪
⎭

ℰ𝐿𝐿− ≔
⎧
⎪
⎨
⎪
⎩ 𝐿 requirements & constraints

𝑋𝐿, �̂�𝐿⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,
concepts produced at the𝐿 𝐿 layer

𝑋𝐿 ⊃ ⟪ℛ𝐿 𝐿, ℰ𝐿 𝐿, 𝒫 𝐿 𝐿, 𝒯 𝐿 𝐿⟫⋄(∅)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿, 𝐿− working sets of design dimensions

Δ𝐿′ ⊂ Δ𝐿, Δ𝐿−′ ⊂ Δ𝐿−⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿 standar focussing strategies

{(�̌�𝐿 ⇄ �⃑�𝐿)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿 standar comparison strategies

{(�⃑�𝐿⇠⇢�̌�𝐿)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,
standar analytical derivation strategies

{(�̌�𝐿− ↦ �̌�𝐿)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⎫
⎪
⎬
⎪
⎭

3.2.1.3 Perception 𝒫 and action 𝒯 rulesets

Wiggins introduced a 𝒯 ruleset in his framework to allow the implementation of different strate-
gies to traverse the conceptual space (and universe) under the influence or independently of
definitional and evaluative rulesets. From our designing schema, the design space traversal is
directed by design decisions formulated through perception and action strategies.

We then introduce a new perception 𝒫 ruleset to encode different perception strategies and
keep 𝒯 ruleset to encode different action strategies. These rulesets make explicit the situated
nature of designing and enable modeling more realistic scenarios (e.g., a highly skilled and expe-
rienced designer, a “talented” executer yet inexperienced designer, different self-motivation and
preferences, different perception models - same style of execution, or same perception model -
different styles of execution).
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𝒫 𝐿𝐿− ≔
⎧
⎪
⎨
⎪
⎩ 𝐿, 𝐿− interpretation strategies

{(�̂�𝐿 �̌�𝐿)𝑘}, {(�̂�𝐿− �̌�𝐿−)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿, 𝐿− reflection strategies

{(�̌�𝐿 �̌�𝐿′)𝑘}, {(�̌�𝐿− �̌�𝐿−′)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿, 𝐿− focusing strategies

{(�̌�𝐿 ⇄ �⃑�𝐿)𝑘}, {(�̌�𝐿− ⇄ �⃑�𝐿−)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿, 𝐿− comparison strategies

{(�̌�𝐿⇠⇢�̌�𝐿′)𝑘}, {(�̌�𝐿−⇠⇢�̌�𝐿−′)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⎫
⎪
⎬
⎪
⎭

𝒯 𝐿𝐿− ≔
⎧
⎪
⎨
⎪
⎩ synthetical derivation strategies

{(�⃑�𝐿 ⤇ �⃑�𝐿−)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝐿, 𝐿− externalization strategies

{(�⃑�𝐿 → �̂�𝐿′)𝑘}, {(�⃑�𝐿− → �̂�𝐿−′)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

analytical derivation strategies

{(�̌�𝐿− ↦ �̌�𝐿)𝑘}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⎫
⎪
⎬
⎪
⎭

3.2.1.4 Interpreters

In our CCDS, the CSF exploration interpreter ⟪⋅, ⋅, ⋅⟫ is now directed by 𝒫 and 𝒯 rulesets (i.e.,
⟪ℛ, ℰ, 𝒫 , 𝒯 ⟫), enabling the production of design concepts from different, perhaps divergent
interpretations of the same design requirements and expectations.

The selection interpreter ⟦⋅⟧, as described in the CSF, should select the same subset of design
concepts when applied to the same set of design concepts and is informed by the same ℛ and ℰ
ruleset. This condition, however, does not reflect the bias introduced by the perception of specific
design agents. To remedy this situation, we also modify the selection interpreter to be influenced
by 𝒫 ruleset (i.e., ⟦ℛ, 𝒫 ⟧ and ⟦ℰ, 𝒫 ⟧).

Our CCDS selection interpreter then allows modeling a more precise scenario where different
agents having diverse experiences, motivations, objectivity or subjectivity levels, and preferences,
interpret the same definitional or evaluative rulesets but not necessarily come to an agreement
regarding the validity or value of a given design concept.

3.2.1.5 Design agent self-defined rulesets

When design agents interpret, augment, and reflect on design dimensions and concepts encoded
into externally defined ℛ and ℰ rulesets, they are actually producing their own versions of
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rulesets ̊ℛ and ̊ℰ . As designing progresses, design agents are, in principle, free to modify their
rulesets according to each design situation. Even in the absence of explicitly defined external
rules (a self-initiative design session) or ill-defined, design agents may build their rulesets from
experience or by interpreting design concepts from an external inspiring set.

3.3 Collaborative creative design systems

A collaborative creative design system would require at least two design agents working in a
common design assignment or project, although sharing the same responsibilities in the design
process is not required to establish collaboration, which can be established between human and
artificial agents, or between artificial agents exclusively7.

3.3.1 Interaction mechanism

Collaborative design agents require some means of interaction, which could be modeled as a
message interchange mechanism between agents instrumented by extended versions of percep-
tion and action strategies encoded into 𝒫 and 𝒯 rulesets and additional classes of dimensions8

(e.g., interaction, communication dimensions). A request or input message is interpreted by the
receiver agent based on current expectations and design situation; then, the agent may execute
definitional, evaluative, or action strategies accordingly (ℛ, ℰ , or 𝒯 rulesets), and finally pre-
pare and send back a response or a new request message via externalization.

3.3.2 Shared and individual rulesets

In a collaborative scenario, a design agent creates and maintains (through the agent’s interpreta-
tion and reflection strategies) individual ̊ℛ and ̊ℰ rulesets9 based on common ℛ and ℰ rulesets
shared by all participant agents:

ℛ ̊ℛ ̊ℛ, ℰ ̊ℰ ̊ℰ

At any given design situation 𝑠, common rulesets could be modified (ℛ/ℰ -transformational)
by promoting some rules or subsets of them from the ambit of one or more agents capable of
reformulation, with or without keeping all or a subset of previously common rules:

ℛ𝐿𝐿−(𝑠) = ℛ𝐿𝐿−(𝑠−1)′ ⊆ ℛ𝐿𝐿−(𝑠−1) ∪ ̊ℛ𝐿𝐿−𝑎′ ⊆ ̊ℛ𝐿𝐿−𝑎 ∪ ̊ℛ𝐿𝐿−𝑏′ ⊆ ̊ℛ𝐿𝐿−𝑏 ∪ … ,

ℰ𝐿𝐿−(𝑠) = ℰ𝐿𝐿−(𝑠−1)′ ⊆ ℰ𝐿𝐿−(𝑠−1) ∪ ̊ℰ𝐿𝐿−𝑎′ ⊆ ̊ℰ𝐿𝐿−𝑎 ∪ ̊ℰ𝐿𝐿−𝑏′ ⊆ ̊ℰ𝐿𝐿−𝑏 ∪ … ;
7In this work we are focussing on human-computer collaboration schemas
8Gärdenfors CST is conceived as a general-purpose theory of representation through concepts.
9In particular, the rules regarding to declarative knowledge in the form of design concepts and dimensions
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furthermore, one or more design agents can also be the source of initial common ℛ and ℰ
rulesets or subsets of these rules (e.g., a project leader, most experienced designer):

ℛ𝐿𝐿− = ̊ℛ𝐿𝐿−𝑎′ ⊆ ̊ℛ𝐿𝐿−𝑎 ∪ ̊ℛ𝐿𝐿−𝑏′ ⊆ ̊ℛ𝐿𝐿−𝑏 ∪ … ,

ℰ𝐿𝐿− = ̊ℰ𝐿𝐿−𝑎′ ⊆ ̊ℰ𝐿𝐿−𝑎 ∪ ̊ℰ𝐿𝐿−𝑏′ ⊆ ̊ℰ𝐿𝐿−𝑏 ∪ …

3.3.3 Collaboration modes

We consider task-divided collaboration (Kantosalo and Toivonen 2016) and co-creative collabora-
tion as two iconic collaboration modes within a range of possibilities. When considering human
design teams, they usually fluctuate between different collaboration modes and could even switch
to periods of autonomous work to incorporate to teamwork afterwhile. It is also common to out-
source some non-critical tasks (depending on the particular design object and process) to focus
on critical ones without affecting the final result.

If collaboration modes are combined, they may provide flexibility to the agents and probably
be useful as a strategy to resolve a stalled design session, to take advantage of highly skilled agents
in selected processes for designing, or to improve design agents’ performance by expanding their
universes, or by learning from their colleagues. These types of switching may become triggers
for moving the design situation to a more favorable region of the space of possibilities.

3.3.3.1 Task-divided collaboration

In a task-divided collaboration mode, two or more incomplete design agents (do not perform the
whole set of fundamental processes for designing, either purposely or for being unskilled) par-
ticipate by performing different tasks or roles which are modeled by instances of fundamental
processes for designing and their underlying perception and action strategies (𝒫 and 𝒯 rule-
sets). Our schema allows defining fine-grained roles ranging from full design schema roles down
to level-specific design roles. A collaborative incomplete agent 𝑎 must be equipped with at least
one externalization strategy encoded into the agent’s action ruleset 𝒯 𝐿𝐿−𝑎 for each design level
covered by this agent; and a full perception ruleset 𝒫 𝐿𝐿−𝑎 implementing interpretation, reflec-
tion, focusing, and comparison strategies for each covered design level. Depending on the agent
role being modeled, the agent will also be required to implement additional action strategies en-
coded in the 𝒯 𝐿𝐿−𝑎 or vía individual definitional ̊ℛ𝐿𝐿−𝑎 or evaluative ̊ℰ𝐿𝐿−𝑎 rulesets. The formal
description of a task-divided collaboration mode depends on the specific roles of the participant
agents (see example in appendix 4).

3.3.3.2 Co-creative collaboration

In co-creative collaboration mode, two or more complete agents work in a common assignment
or project, share a design object, and share the same responsibilities. In terms of Wiggins’ CSF, a
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design layer in co-creative collaboration mode can formally be defined as:

⟨ℒ, ⟨⟨Δ𝐿𝐿−, 𝒰 𝐿𝐿−⟩, ⟨⋃𝑎∊𝐴 Δ̊𝐿𝐿−𝑎, ⋃𝑎∊𝐴 �̊� 𝐿𝐿−𝑎⟩⟩, ⟦⋅, ⋅⟧, ⟪⋅, ⋅, ⋅, ⋅⟫,

ℛ𝐿𝐿− ∪ (⋃𝑎∊𝐴
̊ℛ𝐿𝐿−𝑎), ℰ𝐿𝐿− ∪ (⋃𝑎∊𝐴

̊ℰ𝐿𝐿−𝑎), ⋃𝑎∊𝐴 𝒫 𝐿𝐿−𝑎, ⋃𝑎∊𝐴 𝒯 𝐿𝐿−𝑎⟩.

This definition incorporates both the designer universes and rulesets for each participant complete
agent 𝑎 ∊ 𝐴.

A possible interaction mechanism for a co-creative mode could be the collaborative alternating
mode (Kantosalo and Toivonen 2016), where agents take turns to work on the design with or
without the possibility to skip turns if needed or desired (symmetric vs. alternating co-creativity).

Another possible interaction approach is based onmixed-initiative interaction (Carbonell 1970;
Novick and Sutton 1997; Yannakakis, Liapis, and Alexopoulos 2014). This mechanism establishes
how the participant agents negotiate to determine which agent has control over the current de-
sign situation, how control can be switched to another agent, and how agents may take control
over design. This kind of interaction may require an even more sophisticated extended set of
perception and action strategies encoded into 𝒫 and 𝒯 rulesets as well as additional classes of
dimensions.

Jesús Pérez Romero 41



4
Describing an existing
system through the CCDSF

In this chapter, we describe an existing video game design tool called Sentient Sketchbook (Liapis,
Yannakakis, and Togelius 2013) in terms of our proposed framework.

The Sentient Sketchbook is a tool that allows a human designer to sketch via a GUI, a low-
resolution map (a small set of tiles) for a strategy game by setting each tile of the map to any of
the available types: passable, impassable, base, or resources.

The low-resolution map is a high-level abstraction of a game level that contains only the
essential game elements. A player is expected to start at a base tile (chosen at random) and
collect resources in order to build units that must reach the enemy players’ bases and destroy
them.

As the human designer modifies the map, the tool determines in real-time the playability and
gameplay enabled by the current map configuration, informs the human a series of behavioral
dimensions regarding game pace, player balance and map navigation, and generates up-to twelve
design suggestions inspired on the current map structure (six suggestions generated via genetic
algorithm (GA) optimization on game pace and player balance measures of quality, and six sug-
gestions generated via GA novelty search) from which the human may select an alternative and
apply it as the new design state. Before deciding to apply a suggestion, the human designer can
select a suggestion, and the tool will inform the quality of the selected suggestion side by side
with the reported metrics of the current map (Fig. 4.1).

At any time and on human’s request, the tool can produce different behavioral-based views
of the current map in place of the default, simple view 𝑠𝑖𝑚 (Fig. 4.2).

Finally, on human’s request, the tool is also able to generate a detailed final map, which is a
high-resolution version of the sketch, enhanced with optional thematic styles that can be exported
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Figure 4.1: The Sentient Sketchbook tool during a design session. To the left is the sketch editor (the map),
far to the right are the automatically generated map suggestions; between these elements is the tile palette,
the map viewing modes menu and an overview of map’s behavioral dimensions: game pace dimensions
(bars on the left), player balance dimensions (bars on the right), map navigation metrics (bottom). The
second suggestion of the second column appears as selected, its behavioral dimensions are reported side
by side to the current map dimensions with some helper indicators: better performance (green), worse
(red), equivalent (gray), larger value (+), smaller value (-), much larger (++), and much smaller (--)
[Figure and caption reproduced/adapted from (Liapis, Yannakakis, and Togelius 2013) with permission
from Antonios Liapis].

and used for game level generation (Fig. 4.3).
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(a) Simple (b) Navmesh (c) Resource safety

(d) Safe area (e) Unused space (f) Segments

Figure 4.2: View modes: Simple (a) displays passable tiles (light brown), impassable tiles (dark brown),
resources (cyan), and player bases (white). Navmesh (b) displays the passable pathways on the map and
the location of choke points (red), dead ends (black), and open areas (yellow). Resource safety (c) displays
the safety value of each resource (in shades of green) and connects bases to their safe resources. Safe
area (d) shows the tiles close to each base (here in red and blue) which are considered safe. Unused space
(e) shows all shortest paths between bases and resources, and highlights leftover unused space (orange).
Segments (f) shows the passable areas (in different colors) which are surrounded solely by chokepoints
(Figure and caption reproduced/adapted from (Liapis, Yannakakis, and Togelius 2013) with permission
from Antonios Liapis).

(a) Default �̂�𝑆𝑑𝑑𝑒𝑓 (b) Heightmap �̂�𝑆𝑑ℎ𝑚 (c) Waterways �̂�𝑆𝑑𝑤𝑤 (d) Dungeon �̂�𝑆𝑑𝑑𝑢𝑛

Figure 4.3: Visualizations of the final map, which offers a higher-detail view of the map sketch in Fig. 4.2.
The Default (a) visualization adds detail to resource tiles and impassable tiles. Heightmap (b) elaborates
the impassable regions of Default. Waterways (c) treats impassable tiles and chokepoints as water and
replaces chokepoints with bridges. Dungeon (d) divides the passable segments and dead ends into rooms
and treats chokepoints as corridors (Figure and caption reproduced/adapted from (Liapis, Yannakakis,
and Togelius 2013) with permission from Antonios Liapis).
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4.1 Design levels

The design of game-level maps through the Sentient Sketchbook tool can be modeled with a
hierarchy of three design levels based on the three FBS ontological categories and the «sketch»
abstraction level explicitly covered by the tool: functional-sketch 𝐹 , behavioral-sketch 𝐵, and
structural-sketch 𝑆 (Fig. 4.4).

Figure 4.4: The design of game level maps through the Sentient Sketchbook tool. The complete system is
modeled with a hierarchy of functional-sketch 𝐹 , behavioral-sketch 𝐵, and structural-sketch 𝑆 levels. The
functional-behavioral layer 𝐹𝐵 (top-left) is a human-only layer where the human designer possibly exter-
nalize her/his design decisions into a piece of paper. The behavioral-structural layer 𝐵𝑆 (at the bottom)
is a collaborative layer with the human designer (left) and the computational tool (right) as participants,
sharing external behavioral and structural representations (center). At the behavioral level 𝐵 there are
the behavioral external representations �̂�𝐵 integrated by the interface area where the behavioral metrics
are reported as well as the behavior-based views (only the segments view depicted) that are overlapped
with the structural simple view of the map. At the structural level 𝑆 there are the structural external
representations �̂�𝑆 integrated by the simple map view, the set of suggestions generated by the tool, and
the set of detailed views (not depicted) generated by the tool. (Sentient Sketchbook screenshots repro-
duced/adapted with permission from Antonios Liapis. “Computer user” by Llisole; “Software” by Tami
Nova; and modified “Writing”, original by ArtWorkLeaf; all from thenounproject.com, licensed under Cre-
ative Commons Attribution cb[CC BY]).
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4.1.1 Structural-sketch design level 𝑆

The tile types catalog explicitly described in the tool paper, represents the only one structural-
sketch dimension tile type, formally defined as:

̇𝛿𝑆𝑡𝑡 = ⟨{passable, impassable, bases, resources}, 𝐷𝑐⟩,
where 𝐷𝑐 is a custom categorical distance.

4.1.2 Behavioral-sketch design level 𝐵.

In the case of behavioral dimensions, the tool authors explicitly describes how game pace and
player balance dimensions are composed of other behavioral dimensions, leading us to describe
them according to the compound dimensions pattern (Table 4.1). Also, the authors describe
another set of dimensions or metrics, mostly pertaining to map navigation (Table 4.2).

Table 4.1: Sentient Sketchbook - Working set of behavioral-sketch design dimensions Δ𝐵′ (1)

Dimension Definition

Game pace ̈𝛿𝐵𝑝𝑎𝑐𝑒 = ⟨⟨ ̇𝛿𝐵𝑟𝑒𝑠, ̇𝛿𝐵𝑠𝑎𝑓 , ̇𝛿𝐵𝑒𝑥𝑝⟩, 𝐿2⟩
Resource safety: The percentage of resources close
to only one base.

̇𝛿𝐵𝑟𝑒𝑠 = ⟨𝐼, 𝐿2⟩

Safe area: The percentage of tiles around a base
close only to that base.

̇𝛿𝐵𝑠𝑎𝑓 = ⟨𝐼, 𝐿2⟩

Exploration: How difficult each base is to find
starting from all enemy bases.

̇𝛿𝐵𝑒𝑥𝑝 = ⟨𝐼, 𝐿2⟩

Player balance ̈𝛿𝐵𝑏𝑎𝑙 = ⟨⟨ ̇𝛿𝐵𝑏𝑟𝑒𝑠, ̇𝛿𝐵𝑏𝑠𝑎𝑓 , ̇𝛿𝐵𝑏𝑒𝑥𝑝⟩, 𝐿2⟩
Resource safety balance: The degree to which all
bases have equally safe resources.

̇𝛿𝐵𝑏𝑟𝑒𝑠 = ⟨𝐼, 𝐿2⟩

Safe area balance: The degree to which all bases
have a similar number of safe tiles.

̇𝛿𝐵𝑏𝑠𝑎𝑓 = ⟨𝐼, 𝐿2⟩

Exploration balance: The degree to which all bases
have equally difficult to find enemy bases.

̇𝛿𝐵𝑏𝑒𝑥𝑝 = ⟨𝐼, 𝐿2⟩

𝐿2 ≔ Eucliedan distance

𝐼 ≔ [0, 1] (unit interval)

4.1.3 Functional-sketch design level 𝐹 .

From the functional perspective, a game designed through this tool should provide playability and
enable a particular gameplay. According to the tool authors, a particular gameplay can be defined
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Table 4.2: Sentient Sketchbook - Working set of behavioral-sketch design dimensions Δ𝐵′ (2)

Dimension Definition

Metrics ̈𝛿𝐵𝑚 = ⟨⟨ ̇𝛿𝐵𝑏𝑎𝑠, … , ̇𝛿𝐵𝑢𝑠⟩, 𝐿2⟩
# Bases ̇𝛿𝐵𝑏𝑎𝑠 = ⟨ℕ𝟘, 𝐿2⟩
# Resources ̇𝛿𝐵𝑟𝑒𝑠 = ⟨ℕ𝟘, 𝐿2⟩
# Chokepoints: Tiles with two neighboring
(passable) tiles.

̇𝛿𝐵𝑐ℎ𝑘 = ⟨ℕ𝟘, 𝐿2⟩

# Dead ends: Tiles with one neighboring tile. ̇𝛿𝐵𝑑𝑒 = ⟨ℕ𝟘, 𝐿2⟩
# Open areas: Tiles with the maximum number of
neighboring tiles.

̇𝛿𝐵𝑜𝑎 = ⟨ℕ𝟘, 𝐿2⟩

Maximum distance between bases ̇𝛿𝐵𝑚𝑏𝑑 = ⟨ℤ+, 𝐿2⟩
Average distance between bases ̇𝛿𝐵𝑎𝑏𝑑 = ⟨ℝ+

≥𝟙, 𝐿2⟩
Minimum distance between bases ̇𝛿𝐵𝑛𝑏𝑑 = ⟨ℤ+, 𝐿2⟩
Used space: Percentage of passable tiles on the
shortest path between any two bases or any base and
any resource.

̇𝛿𝐵𝑢𝑠 = ⟨𝐼, 𝐿2⟩

in terms of the game pace and player balance (two behavioral dimensions) and it is defined by
the human designer on the fly. Regarding the playability, the authors provide explicit rules to
distinguish between playable and not-playable maps (Table 4.3).

Table 4.3: Sentient Sketchbook - Working set of functional-sketch design dimensions Δ𝐹′

Dimension Definition

Provide playability: If a map has less than two bases or
unreachable bases, the map is not playable.

⃛𝛿𝐹𝑝𝑙𝑎𝑦 = ⟨
̇𝛿′𝐵𝑏𝑎𝑠

⟨ℕ≥𝟚, 𝐿2⟩,
̇𝛿′𝐵𝑎𝑏𝑑

⟨[1, ∞), 𝐿2⟩⟩

Enable x gameplay: Actual 𝑥 gameplay delineated by
the human designer during design session.

⃛𝛿𝐹𝑔𝑝 = ⟨ ̈𝛿′𝐵𝑝𝑎𝑐𝑒, ̈𝛿′𝐵𝑏𝑎𝑙⟩

4.2 Stacked ECSs

The previously defined design levels give rise to two design layers or stacked ECSs : functional-
behavioral 𝐹𝐵, and behavioral-structural 𝐵𝑆.

The Sentient Sketchbook tool is an example of a system not fitting a precise collaboration
mode definition. The functional-behavioral layer is not collaborative (the tool does not even
provide direct support for this layer), defined only for the human designer ℎ. On the other
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hand, the behavioral-structural layer is a hybrid collaborative layer combining task-divided and
co-creative modes between the human designer ℎ and the computational tool 𝑐.

In terms of the proposed framework, the CCDS enabled by the Sentient Sketchbook tool can
be defined as follows:

4.2.1 Functional-behavioral layer:

⟨ℒ, ⟨⟨Δ𝐹𝐵, 𝒰 𝐹𝐵⟩, ⟨Δ̊𝐹𝐵ℎ, �̊� 𝐹𝐵ℎ⟩⟩, ⟦⋅, ⋅⟧, ⟪⋅, ⋅, ⋅, ⋅⟫, ℛ𝐹𝐵, ℰ𝐹𝐵 ∪ ̊ℰ𝐹𝐵ℎ, 𝒫 𝐹𝐵ℎ, 𝒯 𝐹𝐵ℎ⟩

4.2.2 Behavioral-structural layer:

⟨ℒ, ⟨⟨Δ𝐵𝑆, 𝒰 𝐵𝑆⟩, ⟨Δ̊𝐵𝑆ℎ ∪ Δ̊𝐵𝑆𝑐 , �̊� 𝐵𝑆ℎ ∪ �̊� 𝐵𝑆𝑐⟩⟩, ⟦⋅, ⋅⟧,

⟪⋅, ⋅, ⋅, ⋅⟫, ℛ𝐵𝑆, ℰ𝐵𝑆 ∪ ̊ℰ𝐵𝑆ℎ ∪ ̊ℰ𝐵𝑆𝑐 , 𝒫 𝐵𝑆ℎ ∪ 𝒫 𝐵𝑆𝑐 , 𝒯 𝐵𝑆ℎ ∪ 𝒯 𝐵𝑆𝑐⟩

The working set of functional design dimensions Δ𝐹′ is integrated as a member of the common
evaluative ℰ𝐹𝐵 ruleset of the functional-behavioral layer:

Δ𝐹′ = { ⃛𝛿𝐹 𝑝𝑙𝑎𝑦, ⃛𝛿𝐹 𝑔𝑝} ⊂ Δ𝐹 , Δ𝐹′ ∊ ℰ𝐹𝐵.

Since the behavioral level 𝐵 is shared by the two layers of the system, its working set of
design dimensions Δ𝐵′ is considered to be a member of two rulesets, the common definitional
ℛ𝐹𝐵 ruleset of the functional-behavioral layer and the common evaluative ℰ𝐵𝑆 ruleset of the
behavioral-structural layer:

Δ𝐵′ = { ̈𝛿𝐵𝑝𝑎𝑐𝑒, ̇𝛿𝐵𝑟𝑒𝑠, ̇𝛿𝐵𝑠𝑎𝑓 , ̇𝛿𝐵𝑒𝑥𝑝, ̈𝛿𝐵𝑏𝑎𝑙, ̇𝛿𝐵𝑏𝑟𝑒𝑠, ̇𝛿𝐵𝑏𝑠𝑎𝑓 , ̇𝛿𝐵𝑏𝑒𝑥𝑝,

̈𝛿𝐵𝑚, ̇𝛿𝐵𝑏𝑎𝑠, ̇𝛿𝐵𝑟𝑒𝑠, ̇𝛿𝐵𝑐ℎ𝑘, ̇𝛿𝐵𝑑𝑒, ̇𝛿𝐵𝑜𝑎, ̇𝛿𝐵𝑚𝑏𝑑 , ̇𝛿𝐵𝑎𝑏𝑑 , ̇𝛿𝐵𝑛𝑏𝑑 , ̇𝛿𝐵𝑢𝑠} ⊂ Δ𝐵,

Δ𝐵′ ∊ ℛ𝐹𝐵, Δ𝐵′ ∊ ℰ𝐵𝑆.

Finally, the working set of structural design dimensions Δ𝑆′ is integrated into the common
definitional ℛ𝐵𝑆 ruleset of the behavioral-structural layer:

Δ𝑆′ = { ̇𝛿𝑆𝑡𝑡} ⊂ Δ𝑆, Δ𝑆′ ∊ ℛ𝐵𝑆.

In the next subsections we break down each ruleset of each layer based on the design concepts
and fundamental processes for designing (representing additional declarative and procedural
knowledge, respectively) extracted from the Sentient Sketchbook paper.
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4.3 Design concepts

In this section we identify a series of common and agent-specific key design concepts that repre-
sent requirements and constraints 𝑋𝐿𝑟, and intermediate design objects. These are described for
each design level, and are mapped to their corresponding ℛ and ℰ rulesets.

4.3.1 Requirements and constraints

The explicit and implicit constraints already established by the authors of the system enable us
to define a series of “initial” required design concepts �̂�𝐿𝑟 for each of the design levels. These
concepts may also act as preliminary templates of their corresponding design spaces.

Initial structural-sketch required design concept
A member of the definitional ℛ𝐵𝑆 ruleset of the behavioral-structural layer, this design concept
establishes the structural template of a small sized (8 × 8) map and sets the structural-sketch
solution space 𝒮𝐵𝑆 ⊆ �⃑�𝑆:

�̂�𝑆𝑟 = ⟨ran( ̇𝛿𝑆𝑡𝑡)𝑖 | ∀𝑖 ∊ {1‥64}⟩ ∊ �̂�𝑆, �̂�𝑆𝑟 ∊ ℛ𝐵𝑆.

Initial behavioral-sketch required design concepts
Defines a behavioral empty concept as a precursor of both behavioral evaluation ℰ𝐵𝑆 ⊆ �⃑�𝐵 and
behavioral solution 𝒮𝐹𝐵 ⊆ �⃑�𝐵 spaces. As a concept of a shared design layer, it is considered a
member of both definitional ℛ𝐹𝐵 ruleset of the functional-behavioral layer and the evaluative
ℰ𝐵𝑆 ruleset of the behavioral-structural layer:

�̂�𝐵𝑟 = ⟨
̈𝛿𝐵𝑚𝑒𝑡𝑟𝑖𝑐𝑠

⟨ℕ0, ℕ0, ℕ0, ℕ0, ℕ0, ℤ+, ℝ+
⩾1, ℤ+, 𝐼⟩,

̈𝛿𝐵𝑝𝑎𝑐𝑒
⟨𝐼, 𝐼, 𝐼⟩,

̈𝛿𝐵𝑏𝑎𝑙
⟨𝐼, 𝐼, 𝐼⟩⟩ ∊ �̂�𝐵,

�̂�𝐵𝑟 ∊ ℛ𝐹𝐵, �̂�𝐵𝑟 ∊ ℰ𝐵𝑆.

Initial functional-sketch required design concepts
Captures the rules provided by the tool authors to distinguish between playable and not playable
maps and sets the basis of the functional evaluation space ℰ𝐹𝐵 ⊆ �⃑�𝐹 , therefore it is integrated
into the evaluative ℰ𝐹𝐵 ruleset of the functional-behavioral layer:

�̂�𝐹 𝑟 = ⟨
⃛𝛿𝐹 𝑝𝑙𝑎𝑦

⟨ℕ⩾2, [1, ∞)⟩, ⟨⟨𝐼, 𝐼, 𝐼⟩, ⟨𝐼, 𝐼, 𝐼⟩⟩
⃛𝛿𝐹 𝑔𝑝

⟩ ∊ �̂�𝐹 , �̂�𝐹 𝑟 ∊ ℰ𝐹𝐵.

4.3.2 Intermediate produced design concepts

Evaluative rules ̊ℛ𝐵𝑆ℎ of the human designer must include the design concept produced by she/he
at the functional-behavioral layer. This design concept resides in the human expected world since
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its synthesis was performed “mentally”. Another possibility is that the human designer would had
externalized the design concept, perhaps through notes or some drawing, in which case the design
concept would be considered to reside in her/his external world:

{�⃑�𝐵 = ⟪ℰ𝐹𝐵, ℰ𝐹𝐵, 𝒫 𝐹𝐵ℎ, 𝒯 𝐹𝐵ℎ⟫⋄(∅)} ⊂ ̊ℰ𝐵𝑆ℎ.

4.4 Fundamental processes for designing

In this section we describe the design process enabled by the Sentient Sketchbook through the
identification of each of the fundamental processes for designing and their required percep-
tion/action strategies. Considering these strategies as a form of procedural knowledge, we also
map them to their corresponding rulesets for each participant agent.

4.4.1 Functional-behavioral layer

Formulation: Ideally, the human designer ℎ interprets the established constraints regarding
playability and the rules about how the gameplay is modeled through game pace and player
balance:

{�̂�𝐹 �̌�𝐹 , �̌�𝐹 �̌�𝐹′, �̌�𝐹 ⇄ �⃑�𝐹 , �̂�𝐵 �̌�𝐵, �̌�𝐵 �̌�𝐵′, �̌�𝐵 ⇄ �⃑�𝐵} ⊂ 𝒫 𝐹𝐵ℎ.

Synthesis: The human designer probably decides how many bases should be on the map and,
depending on her/his game level design experience and knowledge about the underlying
dimensions, take reasoned decisions regarding game pace and player balance dimensions
(set specific regions on dimensions’ ranges):

{�⃑�𝐹 ⤇ �⃑�𝐵} ⊂ 𝒯 𝐹𝐵ℎ.

Analysis: Depending on her/his experience and knowledge, the designer may estimate (men-
tally) the playability and gameplay dimensions:

{�⃑�𝐵 ⇄ �̌�𝐵} ⊂ 𝒫 𝐹𝐵ℎ, {�̌�𝐵 ↦ �̌�𝐹} ⊂ ̊ℰ𝐹𝐵ℎ.

Evaluation: The designer compares her/his estimates regarding playability and gameplay against
her/his expectations, in order to assess previously taken design decisions:

{�⃑�𝐹⇠⇢�̌�𝐹} ⊂ 𝒫 𝐹𝐵ℎ.

Reformulation: The human designer may interpret the informed measures of quality of an in-
teresting or unexpected behavior of a design suggestion generated by the tool or by her-
self/himself, leading the designer to modify her/his knowledge regarding how the game-
play is realized through the underlying behavioral dimensions (functional reformulation):

{�̂�𝐵 �̌�𝐵} ⊂ 𝒫 𝐹𝐵ℎ, {�̌�𝐵 ↦ �̌�𝐹} ⊂ 𝒯 𝐹𝐵ℎ, {�̌�𝐹 �̌�𝐹′, �̌�𝐹 ⇄ �⃑�𝐹} ⊂ 𝒫 𝐹𝐵ℎ.
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4.4.2 Behavioral-structural layer

Formulation: A design agent 𝑥 (whether the human designer ℎ or the tool 𝑐) interprets the
established constraints regarding behavior and structure to set their design spaces (the tool
interprets them from configuration files or from hardcoded rules). It is assumed that the
human agent already contains the design object �⃑�𝐵 obtained from the functional-behavioral
layer, as part of her/his expected world. Regarding the tool, we make the assumption that
it is not equipped with any special reflection and focusing strategies, therefore, we can
consider both the reflection and focusing strategies as mere identity functions:

{�̂�𝐵 �̌�𝐵, �̌�𝐵 �̌�𝐵′, �̌�𝐵 ⇄ �⃑�𝐵} ⊂ 𝒫 𝐵𝑆𝑥.

The agents also interpret the empty map (composed of passable tiles only) that is displayed
by default via the simple view 𝑠𝑖𝑚 when executing the interface for the first time:

{�̂�𝑆 �̌�𝑆, �̌�𝑆 �̌�𝑆′, �̌�𝑆 ⇄ �⃑�𝑆} ⊂ 𝒫 𝐵𝑆𝑥, �̂�𝑆𝑠𝑖𝑚 ∊ �̂�𝑆.

Synthesis: The human designer creates or modifies the map by placing or erasing a tile or a set
of tiles on it:

{�⃑�𝐵 ⤇ �⃑�𝑆, �⃑�𝑆 → �̂�𝑆} ⊂ 𝒯 𝐵𝑆ℎ.
She/he can also select a suggestion generated by the tool and apply it as the new design
state:

{�⃑�𝑆𝐺𝐴 �̌�𝑆, �̌�𝑆 ⇄ �⃑�𝑆} ⊂ 𝒫 𝐵𝑆ℎ, {�⃑�𝑆 → �̂�𝑆} ⊂ 𝒯 𝐵𝑆ℎ.
From the last human’s map modification (last design state), the tool 𝑐 generates and dis-
plays up to six suggestions via GA optimization on game pace and player balance dimen-
sions, and up to six suggestions via novelty search GA:

{�⃑�𝐵 ⤇ �⃑�𝑆𝐺𝐴𝑜, �⃑�𝑆𝐺𝐴𝑜 → �̂�𝑆𝐺𝐴𝑜, �⃑�𝐵 ⤇ �⃑�𝑆𝐺𝐴𝑛, �⃑�𝑆𝐺𝐴𝑛 → �̂�𝑆𝐺𝐴𝑛} ⊂ 𝒯 𝐵𝑆𝑐 .

Analysis: The tool computes all behavioral dimensions from the current map and the suggestions
generated:

{�̂�𝑆 �̌�𝑆} ⊂ 𝒫 𝐵𝑆𝑐 , {�̌�𝑆 ↦ �̌�𝐵} ⊂ ̊ℰ𝐵𝑆𝑐 ,
and displays the measures of quality of the current map:

{�̌�𝐵 ⇄ �⃑�𝐵} ⊂ 𝒫 𝐵𝑆𝑐 , {�⃑�𝐵 → �̂�𝐵} ⊂ 𝒯 𝐵𝑆𝑐 .

Evaluation: The human designer evaluates the behavior of the current map or any generated
suggestion by comparing their metrics to her/his expectations:

{�̂�𝐵 �̌�𝐵, �̌�𝐵⇠⇢�⃑�𝐵} ⊂ 𝒫 𝐵𝑆ℎ.

She/he also may compare the behavior of any suggestion generated by the tool to the
behavior of the current map:

{�̂�𝐵𝐺𝐴 �̌�𝐵𝐺𝐴, �̂�𝐵𝑠𝑖𝑚 �̌�𝐵𝑠𝑖𝑚, �̌�𝐵𝑠𝑖𝑚 ⇄ �⃑�𝐵𝑠𝑖𝑚, �⃑�𝐵𝑠𝑖𝑚⇠⇢�̌�𝐵𝐺𝐴} ⊂ 𝒫 𝐵𝑆ℎ.

Jesús Pérez Romero 51



4.5. Consolidated rulesets

Documentation: The tool generates an alternative behavioral view of the map and overlays it
with the simple 𝑠𝑖𝑚 view:

{⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑛𝑚, �̂�𝑆𝑠𝑖𝑚⟩, ⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑟𝑠, �̂�𝑆𝑠𝑖𝑚⟩, ⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑠𝑎, �̂�𝑆𝑠𝑖𝑚⟩,

⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑢𝑠, �̂�𝑆𝑠𝑖𝑚⟩, ⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑠𝑒𝑔, �̂�𝑆𝑠𝑖𝑚⟩} ⊂ 𝒯 𝐵𝑆𝑐 .

The tool also displays behavioral metrics of a selected suggestion side by side with the
current map metrics:

{�̌�𝐵𝐺𝐴 ⇄ �⃑�𝐵𝐺𝐴} ⊂ 𝒫 𝐵𝑆𝑐 , {�⃑�𝐵𝐺𝐴 → �̂�𝐵𝐺𝐴} ⊂ 𝒯 𝐵𝑆𝑐 .

On human’s request the tool generates detailed versions of the map:

{�⃑�𝑆 → �̂�𝑆𝑑𝑑𝑒𝑓 , �⃑�𝑆 → �̂�𝑆𝑑ℎ𝑚, �⃑�𝑆 → �̂�𝑆𝑑𝑤𝑤, �⃑�𝑆 → �̂�𝑆𝑑𝑑𝑢𝑛} ⊂ 𝒯 𝐵𝑆𝑐 .

Reformulation: No behavioral nor structural reformulation are performed at this layer since the
interface does not provide mechanisms to add, remove, constraint, or loosen the design
spaces’ underlying dimensions.

4.5 Consolidated rulesets

Having identified and described the minimum components of declarative and procedural knowl-
edge, we can consolidate them into their corresponding sets of rules:

4.5.1 Functional-behavioral layer:

ℛ𝐹𝐵 = {Δ𝐵′, �̂�𝐵𝑒𝑥𝑝}, ℰ𝐹𝐵 = {Δ𝐹′, �̂�𝐹 𝑒𝑥𝑝}, ̊ℰ𝐹𝐵ℎ = {�̌�𝐵 ↦ �̌�𝐹},

𝒯 𝐹𝐵ℎ = {�⃑�𝐹 ⤇ �⃑�𝐵, �̌�𝐵 ↦ �̌�𝐹},

𝒫 𝐹𝐵ℎ = {�̂�𝐹 �̌�𝐹 , �̌�𝐹 �̌�𝐹′, �̌�𝐹 ⇄ �⃑�𝐹 , �⃑�𝐹⇠⇢�̌�𝐹 ,

�̂�𝐵 �̌�𝐵, �̌�𝐵 �̌�𝐵′, �̌�𝐵 ⇄ �⃑�𝐵, �⃑�𝐵⇠⇢�̌�𝐵}.
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4.5.2 Behavioral-structural layer:

ℛ𝐵𝑆 = {Δ𝑆′, �̂�𝑆𝑟}, ℰ𝐵𝑆 = {Δ𝐵′, �̂�𝐵𝑟}, ̊ℰ𝐵𝑆𝑐 = {�̌�𝑆 ↦ �̌�𝐵}

𝒯 𝐵𝑆ℎ = {�⃑�𝐵 ⤇ �⃑�𝑆, �⃑�𝑆 → �̂�𝑆},

𝒫 𝐵𝑆ℎ = {�̂�𝐵 �̌�𝐵, �̌�𝐵 �̌�𝐵′, �̌�𝐵 ⇄ �⃑�𝐵, �̌�𝐵⇠⇢�⃑�𝐵,

�̂�𝑆 �̌�𝑆, �̌�𝑆 �̌�𝑆′, �̌�𝑆 ⇄ �⃑�𝑆, �̌�𝑆⇠⇢�⃑�𝑆},

𝒯 𝐵𝑆𝑐 = {�⃑�𝐵 ⤇ �⃑�𝑆𝐺𝐴𝑜, �⃑�𝐵 ⤇ �⃑�𝑆𝐺𝐴𝑛, �⃑�𝐵 → �̂�𝐵, ⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑛𝑚, �̂�𝑆𝑠𝑖𝑚⟩,
⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑟𝑠, �̂�𝑆𝑠𝑖𝑚⟩, ⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑠𝑎, �̂�𝑆𝑠𝑖𝑚⟩,
⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑢𝑠, �̂�𝑆𝑠𝑖𝑚⟩, ⟨�⃑�𝐵, �⃑�𝑆⟩ → ⟨�̂�𝐵𝑠𝑒𝑔, �̂�𝑆𝑠𝑖𝑚⟩,

�⃑�𝑆 → �̂�𝑆𝑑𝑑𝑒𝑓 , �⃑�𝑆 → �̂�𝑆𝑑ℎ𝑚, �⃑�𝑆 → �̂�𝑆𝑑𝑤𝑤, �⃑�𝑆 → �̂�𝑆𝑑𝑑𝑢𝑛},

𝒫 𝐵𝑆𝑐 = {�̂�𝐵 �̌�𝐵, �̌�𝐵 �̌�𝐵′, �̌�𝐵 ⇄ �⃑�𝐵, �̂�𝑆 �̌�𝑆, �̌�𝑆 �̌�𝑆′, �̌�𝑆 ⇄ �⃑�𝑆}.
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5
Building a collaborative
CCDS: Building blocks

5.1 Design levels

Founded on the MDA-based views described in Sections 2.6.1 to 2.6.3, we establish three levels
through which a designer could design a puzzle video game with our tool: game experience 𝑃 ,
game dynamics 𝐷, and game mechanics 𝑀 . Two design layers emerge from these levels: the
game experience–dynamics layer 𝑃𝐷, and the game dynamics–mechanics layer 𝐷𝑀 .

Through this designing schema, a PuzzleScript-based video game is generated from expected
game dynamics, which in turn, is derived from a desired player’s playful experience, desired
either by an external requestor (e.g., stakeholders) or designer’s self-initiative. From the gener-
ated video game, actual game dynamics are formatively derived through and immediately after
playtesting. Finally, the player’s actual playful experience is derived summatively (Fig. 5.1).

5.1.1 Game experience 𝑃 level

In our schema, the design concepts produced at this level describe, in terms of the PLEX playful
experiences categories, both the expected to be evoked and the actual evoked game experience
in the player when she/he/it plays the game. On the one hand, the designer (and perhaps some
stakeholders) defines the desired game experience in terms of playful experiences categories.
On the other hand, the player describes the game experience that was evoked after playtesting
through a summative assessment in terms of the same playful experiences categories.

Each PLEX playful experience category is mapped into our schema as a design dimension to
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Expectations Actual

Desired  
player's  playful

experience

Expected
dynamics
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Actual dynamics
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experienced
playfulness

Game
exPerience

Game
Dynamics

Game
Mechanics Synthetical

derivation

Analytical
derivation

Comparison

Figure 5.1: Puzzle video game primary designing schema. Depicts the external design concepts production
flow.

model desired and actual game experiences, resulting in the formation of the following working
set of game experience design dimensions:

Δ′𝑃 ≔ {( ̇𝛿𝑃 𝑥)𝑘}𝑘 ∊ 𝐶𝑝𝑙𝑒𝑥
, Δ′𝑃 ⊂ Δ𝑃 ,

where 𝐶𝑝𝑙𝑒𝑥 ≔ {captivation, challenge, competition, … , thrill} (See Table 2.1) is the set of
PLEX playful experiences categories.

A𝑘𝑘𝑘 playful experience design dimension( ̇𝛿𝑃 𝑥)𝑘( ̇𝛿𝑃 𝑥)𝑘( ̇𝛿𝑃 𝑥)𝑘 represents the intensity of the 𝑘 PLEX playful
experience:

( ̇𝛿𝑃 𝑥)𝑘 ≔ ⟨𝐼, 𝐷𝑐⟩,
where 𝐼 ≔ [0, 1] is the unitary interval,

𝐷𝑐(𝑋, 𝑌 ) ≔ ⟨𝐷𝑐𝑜(𝑋, 𝑌 ), 𝐽 (𝑋, 𝑌 )⟩ (5.1)
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5.1. Design levels

is a custom distance composed of an overall categorical assessment 𝐷𝑐𝑜(𝑋, 𝑌 ) defined as:

𝐷𝑐𝑜(𝑋, 𝑌 ) ≔
⎧⎪
⎪
⎨
⎪
⎪⎩

in-range ∶ 𝑌 ⊆ 𝑋
range partially exceeded ∶ 𝑋 ⊂ 𝑌 ∧ (inf 𝑌 < inf 𝑋 ∨ sup 𝑌 > sup 𝑋)
range exceeded ∶ 𝑋 ⊂ 𝑌 ∧ inf 𝑌 < inf 𝑋 ∧ sup 𝑌 > sup 𝑋
out of range ∶ 𝑋 ∩ 𝑌 = ∅

,

(5.2)
and a set similarity metric (the Jaccard index) 𝐽(𝑋, 𝑌 ) defined as:

𝐽(𝑋, 𝑌 ) ≔
⎧⎪
⎨
⎪⎩

1 ∶ 𝑋 = 𝑌 = ∅
|𝑋 ∩ 𝑌 |
|𝑋 ∪ 𝑌 | ∶ 𝑋 ≠ ∅, 𝑌 ≠ ∅

, (5.3)

where 0 ≤ 𝐽(𝑋, 𝑌 ) ≤ 1.

Although zero intensity may not make sense when defining the desired experience, it allows
the system to capture the situation where a player’s desired-by-design experience is not evoked
at all when playing a game.

Game exPerience Playful experience [1]
...

Figure 5.2: Game experience design dimensions

The set of design dimensions previously described defines the 𝒟𝑃 design space prototype,
which also serves as the prototype of the evaluation space for the 𝑃𝐷 layer:

ℰ𝑃𝐷 = 𝒟𝑃 ≔ ⟨( ̇𝛿𝑃 𝑥)𝑘⟩𝑘 ∊ 𝐾 ⊆ 𝐶𝑝𝑙𝑒𝑥
, where 𝒟𝑃 ⊆ �⃑�𝑃 .

5.1.2 Game dynamics 𝐷 level

According to what was discussed in Section 2.6.2, the expected and actual design concepts pro-
duced at this level could be synthesized and analyzed through intrinsic dynamics and playtest-
based dynamics compound design dimensions. Intrinsic dynamics dimensions are those derived
directly from video game mechanics. On the other hand, playtest-based dynamics dimensions
represent run-time behavior that emerged (or are expected to emerge) from playtesting, whether
human or automated. Playtest-based dynamics dimensions are broken down into three com-
pound design dimensions: playability, player engagement, and gameplay scenario.

The following is the full working set of game dynamics design dimensions:
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Playtest-based

Game Dynamics Complexity

Duration

Paths

Intrinsic

Playability

Player engagement Branching factor

Move effort

Board coverage

Logic-based

Maze-based

Twitch-based

Response time

...

Game object type counter [1]

...

Figure 5.3: Game dynamics design dimensions

Δ′𝐷 ≔{ ̈𝛿𝐷𝑖𝑑 , ̈𝛿𝐷𝑝𝑑} ∪ { ̇𝛿𝐷𝑐} ∪ {( ̇𝛿𝐷𝑜𝑐)𝑘}𝑘 ∊ 𝐶𝑜𝑡𝑠
∪ { ̈𝛿𝐷𝑝, ̈𝛿𝐷𝑝𝑒, ̈𝛿𝐷𝑔𝑠}

  ∪ { ̇𝛿𝐷𝑝𝑡, ̇𝛿𝐷𝑑} ∪ { ̇𝛿𝐷𝑏𝑓 , ̇𝛿𝐷𝑚𝑒, ̇𝛿𝐷𝑟𝑡, ̇𝛿𝐷𝑏𝑐} ∪ {( ̇𝛿𝐷𝑔𝑠)𝑘}𝑘 ∊ 𝐶𝑔𝑠

Intrinsic dynamics ̈𝛿𝐷𝑖𝑑̈𝛿𝐷𝑖𝑑̈𝛿𝐷𝑖𝑑: A compound design dimension that represents the behavior of the game
that emerged directly from the game mechanics

̈𝛿𝐷𝑖𝑑 ≔ ⟨⟨ ̇𝛿𝐷𝑐 , ⟨( ̇𝛿𝐷𝑜𝑐)𝑘⟩𝑘 ∊ 𝐾 ⊆ 𝐶𝑜𝑡𝑠⟩, 𝐷𝑖𝑑
⟩,

where 𝐷𝑖𝑑 is a custom distance between games from the perspective of their intrinsic dynamics.

Complexity ̇𝛿𝐷𝑐̇𝛿𝐷𝑐̇𝛿𝐷𝑐: The number of underlying rules of the game 1 (i.e., the number of rules plus
the number of unique game object types present in game rules)

̇𝛿𝐷𝑐 ≔ ⟨𝕎, 𝐷𝑐⟩
1Design dimensions in italics are based on or borrowed from the Ludi system aesthetic measurement model

(Browne 2011)
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𝑘𝑘𝑘th game object type counter ( ̇𝛿𝐷𝑜𝑐)𝑘( ̇𝛿𝐷𝑜𝑐)𝑘( ̇𝛿𝐷𝑜𝑐)𝑘: The number of 𝑘-type game objects in the game

( ̇𝛿𝐷𝑜𝑐)𝑘 ≔ ⟨𝕎, 𝐷𝑐⟩,

where 𝕎 is the set of whole numbers (i.e., natural numbers together with zero), 𝑘 ∊ 𝐶𝑜𝑡𝑠,
and 𝐶𝑜𝑡𝑠 is the set of all types of game object available to the designer.

Playtest-based dynamics ̈𝛿𝐷𝑝𝑑̈𝛿𝐷𝑝𝑑̈𝛿𝐷𝑝𝑑: A compound design dimension that represents the behavior of
the game that emerged from the interaction of the player through game mechanics

̈𝛿𝐷𝑝𝑑 ≔ ⟨⟨
̈𝛿𝐷𝑃 , ̈𝛿𝐷𝑝𝑒, ⟨( ̇𝛿𝐷𝑔𝑠)𝑘⟩𝑘 ∊ 𝐾 ⊆ 𝐶𝑔𝑠⟩

, 𝐷𝑝𝑑
⟩,

where 𝐷𝑝𝑑 is a custom distance between games from the perspective of their playtest-based dy-
namics.

Playability ̈𝛿𝐷𝑝̈𝛿𝐷𝑝̈𝛿𝐷𝑝: A compound design dimension that represents the degree to which a game
is playable

̈𝛿𝐷𝑝 ≔ ⟨⟨ ̇𝛿𝐷𝑝𝑡, ̇𝛿𝐷𝑑⟩, 𝐷𝑝⟩,
where 𝐷𝑝 is a custom distance between playtest-based dynamics from the perspective of
playability.

Paths ̇𝛿𝐷𝑝𝑡̇𝛿𝐷𝑝𝑡̇𝛿𝐷𝑝𝑡: The average number of possible solutions (trajectories towards a solution).

̇𝛿𝐷𝑝𝑡 ≔ ⟨ℝ≥0, 𝐷𝑐⟩

Duration ̇𝛿𝐷𝑑̇𝛿𝐷𝑑̇𝛿𝐷𝑑: The average number of player’s moves required to complete the game.
According to Browne (2011), a game should be terminated within a reasonable number
of moves (not too short, not too long). In our system a move is equivalent to a change
of game state after a single movement command (up, down, left, right) or an action
command from the player 2

̇𝛿𝐷𝑑 ≔ ⟨ℝ≥0, 𝐷𝑐⟩
Player engagement ̈𝛿𝐷𝑝𝑒̈𝛿𝐷𝑝𝑒̈𝛿𝐷𝑝𝑒: A compound design dimension that represents the degree to which
the game may cause the player being engaged or disengaged to playing the game

̈𝛿𝐷𝑝𝑒 ≔ ⟨⟨ ̇𝛿𝐷𝑏𝑓 , ̇𝛿𝐷𝑚𝑒, ̇𝛿𝐷𝑟𝑡, ̇𝛿𝐷𝑏𝑐⟩, 𝐷𝑝𝑒⟩,

where 𝐷𝑝𝑒 is a custom distance between playtest-based dynamics from the perspective of
player engagement.

Branching factor ̇𝛿𝐷𝑏𝑓̇𝛿𝐷𝑏𝑓̇𝛿𝐷𝑏𝑓 : The average number of move choices per game state. A logic-
based puzzle should provide multiple choices, each containing multiple choices (Game
Design Ed 2015b)

̇𝛿𝐷𝑏𝑓 ≔ ⟨ℝ≥0, 𝐷𝑐⟩
2PuzzleScript supports a single action command (i.e., a single action key or button)
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Move effort ̇𝛿𝐷𝑚𝑒̇𝛿𝐷𝑚𝑒̇𝛿𝐷𝑚𝑒: The average number of lookahead moves visited in the search for each
move. A logic-based puzzle should make the player think a few steps ahead of their
current situation (Game Design Ed 2015b)

̇𝛿𝐷𝑚𝑒 ≔ ⟨ℝ≥0, 𝐷𝑐⟩

Response time ̇𝛿𝐷𝑟𝑡̇𝛿𝐷𝑟𝑡̇𝛿𝐷𝑟𝑡: The average amount of time required to formulate each move. A
puzzle makes the player stop and think (Schell 2008)

̇𝛿𝐷𝑟𝑡 ≔ ⟨ℝ≥0, 𝐷𝑐⟩

Board coverage ̇𝛿𝐷𝑏𝑐̇𝛿𝐷𝑏𝑐̇𝛿𝐷𝑏𝑐: The ratio of the grid board cells visited within the total number
of visitable cells. According to Browne (2011), low board coverage indicates that the
game’s starting position or movement rules may not be suitable for its board topology,
or perhaps the board is simply too big

̇𝛿𝐷𝑏𝑐 ≔ ⟨𝐼, 𝐷𝑐⟩

𝑘𝑘𝑘th gameplay scenario ( ̇𝛿𝐷𝑔𝑠)𝑘( ̇𝛿𝐷𝑔𝑠)𝑘( ̇𝛿𝐷𝑔𝑠)𝑘: The degree to which the game represents a 𝑘 gameplay pat-
tern as explained in Section 2.6.2. This dimension type might be suitable for the designer to
provide new dimensions (new gameplay scenarios) to characterize the gameplay

( ̇𝛿𝐷𝑔𝑠)𝑘 ≔ ⟨𝐼, 𝐷𝑐⟩,

where 𝑘 ∊ 𝐶𝑔𝑠, and 𝐶𝑔𝑠 ≔ {maze-based, twitch-based, logic-based, …} is the set of all
possible puzzle gameplay scenarios. Our schema provides three particular gameplay scenario
design dimensions:

{( ̇𝛿𝐷𝑔𝑠)𝑚𝑧, ( ̇𝛿𝐷𝑔𝑠)𝑡𝑤, ( ̇𝛿𝐷𝑔𝑠)𝑙𝑔} ⊂ {( ̇𝛿𝐷𝑔𝑠)𝑘}𝑘 ∊ 𝐶𝑔𝑠

Maze-based ( ̇𝛿𝐷𝑔𝑠)𝑚𝑧( ̇𝛿𝐷𝑔𝑠)𝑚𝑧( ̇𝛿𝐷𝑔𝑠)𝑚𝑧: The degree to which the game could be considered a proper
maze. The more the player is required to move through a labyrinth and find an exit
to solve the puzzle, the more “maze” style the puzzle game would be. This dimension
is also influenced by other dimensions such as paths ̇𝛿𝐷𝑝𝑡, and board coverage ̇𝛿𝐷𝑏𝑐

( ̇𝛿𝐷𝑔𝑠)𝑚𝑧 ≔ ⟨𝐼, 𝐷𝑐⟩

Twitch-based ( ̇𝛿𝐷𝑔𝑠)𝑡𝑤( ̇𝛿𝐷𝑔𝑠)𝑡𝑤( ̇𝛿𝐷𝑔𝑠)𝑡𝑤: The degree to which the game challenges the player’s reaction

time and dexterity. Number of enemies ̇𝛿𝐷𝑔𝑜𝑐𝑒𝑛𝑒𝑚𝑦, and complexity ̇𝛿𝐷𝑐 intrinsic dy-
namics dimensions may be helper dimensions to determine its value (e.g., the number,
speed, and intelligence of pursuer objects influence the pace and difficulty of the game
[Crawford 1984])

( ̇𝛿𝐷𝑔𝑠)𝑡𝑤 ≔ ⟨𝐼, 𝐷𝑐⟩
Logic-based ( ̇𝛿𝐷𝑔𝑠)𝑙𝑔( ̇𝛿𝐷𝑔𝑠)𝑙𝑔( ̇𝛿𝐷𝑔𝑠)𝑙𝑔: The degree to which the game challenges the player’s mind. Pos-

sible correlated dimensions: branching factor ̇𝛿𝐷𝑏𝑓 , move effort ̇𝛿𝐷𝑚𝑒, and response time
̇𝛿𝐷𝑟𝑡

( ̇𝛿𝐷𝑔𝑠)𝑙𝑔 ≔ ⟨𝐼, 𝐷𝑐⟩
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The game dynamics design dimensions define the structure of the two-fold 𝒟𝐷 design space,
the solution space for the 𝑃𝐷 layer and the evaluation space for the 𝐷𝑀 layer:

𝒟𝐷 ≔ ⟨
̈𝛿𝐷𝑖𝑑

⟨ ̇𝛿𝐷𝑐 , ⟨( ̇𝛿𝐷𝑜𝑡)𝑘𝑜⟩𝑘𝑜 ∊ 𝐾𝑜 ⊆ 𝐶𝑜𝑡𝑠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩,

̈𝛿𝐷𝑝𝑑

⟨
̈𝛿𝐷𝑃

⟨ ̇𝛿𝐷𝑝𝑡, ̇𝛿𝐷𝑑⏟⏟⏟⟩,
̈𝛿𝐷𝑝𝑒

⟨ ̇𝛿𝐷𝑏𝑓 , ̇𝛿𝐷𝑚𝑒, ̇𝛿𝐷𝑟𝑡, ̇𝛿𝐷𝑏𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩, ⟨( ̇𝛿𝐷𝑔𝑠)𝑘𝑠⟩𝑘𝑠 ∊ 𝐾𝑠 ⊆ 𝐶𝑔𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
⟩⟩,

where

𝒮𝑃𝐷 = ℰ𝐷𝑀 = 𝒟𝐷

and

𝒟𝐷 ⊆ �⃑�𝐷

5.1.3 Game mechanics 𝑀 level

A design concept produced at this level represents a puzzle video game as a set of win conditions,
game rules and a rectangular grid board (game space) composed of a collection of cells, each
containing a background game object and a set of non-background game objects.

In a PuzzleScript-based video game, game objects are squared objects, each spanning a full
grid board cell. Background-type game objects (also known as tiles) build the base layer (back-
ground layer) or floor of the game. On the other hand, non-background game objects (also known
as tokens) are those positioned over the background layer.

Game objects in PuzzleScript are organized into layers starting with the background, manda-
tory layer. The game engine employs these layers not only to determine the order the game
objects are rendered in the screen but to resolve movements and collisions (e.g., two game ob-
jects positioned in the same layer cannot coexist in the same cell, they collide).

We use the following working set of design dimensions Δ′𝑀 to describe the design of the
puzzle video game at the game mechanics level:
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Game Mechanics

Win conditions Win condition [1]

...

Aliases Alias [1] Name

Object in alias [1]
...

...

Layers Layer [1] Object in layer [1]
...

...

Game rules Game rule [1]

...

Cell [1,1] Object in cell [1]

...

Cells
...

Cell [2,1]

...

Modifier

Object

'On' object

Modifier

Pattern cell item [left, 1, 1, 1]

Object in cell [1]
...

Pattern cell item [left, 1, 1, ...]

...

Pattern cell item [left, 1, ..., ...]

Pattern cell item [left, ..., ..., ...]

...

...

...

Pattern cell item [right, 1, 1, 1]

Pattern cell item [right, 1, 1, ...]

...

Pattern cell item [right, 1, ..., ...]

Pattern cell item [right, ..., ..., ...]

...

...

Modifier
Object 

Modifier
Object 

Modifier
Object 

Modifier
Object 

Modifier
Object 

Modifier
Object 

Modifier
Object 

Modifier
Object 

Figure 5.4: Game mechanics design dimensions
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Δ′𝑀 ≔{ ̈𝛿𝑀𝑙𝑠, ̈𝛿𝑀𝑎𝑠, ̈𝛿𝑀𝑤𝑠, ̈𝛿𝑀𝑟𝑠, ̈𝛿𝑀𝑐𝑠} ∪ {( ̇𝛿𝑀𝑙)𝑖}𝑖 ∊ ℕ
∪ {( ̇𝛿𝑀𝑎)ℎ}𝑖 ∊ 𝐶𝑎𝑛

∪ {( ̈𝛿𝑀𝑤)𝑖}𝑖 ∊ ℕ
∪

{( ̈𝛿𝑀𝑟)𝑖}𝑖 ∊ ℕ
∪ { ̇𝛿𝑀𝑤𝑚, ̇𝛿𝑀𝑤𝑜, ̇𝛿𝑀𝑤𝑜𝑛, } ∪ { ̇𝛿𝑀𝑟𝑚} ∪

{( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑢, 𝑣, 𝑤}𝑠 ∊ {left, right},
𝑢 ∊ ℕ,
𝑣 ∊ ℕ,
𝑤 ∊ ℕ

∪ { ̇𝛿𝑀𝑟𝑐𝑚, ̈𝛿𝑀𝑟𝑐𝑜} ∪ {( ̇𝛿𝑀𝑐)𝑖, 𝑗}𝑖 ∊ ℕ,
𝑗 ∊ ℕ

Layers ̈𝛿𝑀𝑙𝑠̈𝛿𝑀𝑙𝑠̈𝛿𝑀𝑙𝑠: A compound dimension that configures the layers of the game

̈𝛿𝑀𝑙𝑠 ≔ ⟨( ̇𝛿𝑀𝑙)𝑖⟩
𝑛 ∊ ℕ
𝑖=1

𝑖𝑖𝑖th layer ( ̇𝛿𝑀𝑙)𝑖( ̇𝛿𝑀𝑙)𝑖( ̇𝛿𝑀𝑙)𝑖: A base dimension describing a layer as an aggregation of game object types

( ̇𝛿𝑀𝑙)𝑖 ≔ ⟨𝐶𝑜𝑡𝑠, 𝐷𝐻⟩,

where 𝐷𝐻 is the Hamming distance between game object types.

Aliases ̈𝛿𝑀𝑎𝑠̈𝛿𝑀𝑎𝑠̈𝛿𝑀𝑎𝑠: A compound dimension that defines ‘virtual’ game object types or synonyms for a
group of game object types

̇𝛿𝑀𝑎𝑠 ≔ ⟨( ̈𝛿𝑀𝑎)ℎ⟩ℎ ∊ 𝐻 ⊆ 𝐶𝑎𝑛
,

where 𝐶𝑎𝑛 is the set of possible alias names.

ℎℎℎ alias ( ̇𝛿𝑀𝑎)ℎ( ̇𝛿𝑀𝑎)ℎ( ̇𝛿𝑀𝑎)ℎ: A base dimension that configures an alias as an aggregation of game object
types

( ̇𝛿𝑀𝑎)ℎ ≔ ⟨𝐶𝑜𝑡𝑠, 𝐷𝐻⟩.

Win conditions ̈𝛿𝑀𝑤𝑠̈𝛿𝑀𝑤𝑠̈𝛿𝑀𝑤𝑠: A compound dimension defining a series of win conditions according to
PuzzleScript’s specifications3

̈𝛿𝑀𝑤𝑠 ≔ ⟨( ̈𝛿𝑀𝑤)𝑖⟩
𝑛 ∊ ℕ
𝑖=1

𝑖𝑖𝑖th win condition ( ̈𝛿𝑀𝑤)𝑖( ̈𝛿𝑀𝑤)𝑖( ̈𝛿𝑀𝑤)𝑖: A compound dimension that represents a single win condition

( ̈𝛿𝑀𝑤)𝑖 ≔ ⟨ ̇𝛿𝑀𝑤𝑚, ̇𝛿𝑀𝑤𝑜, ̇𝛿𝑀𝑤𝑜𝑛⟩

Win condition modifier ̇𝛿𝑀𝑤𝑚̇𝛿𝑀𝑤𝑚̇𝛿𝑀𝑤𝑚: A quantifier that sets the required amount of game ob-
jects of a specific type to satisfy the win condition

̇𝛿𝑀𝑤𝑚 ≔ ⟨𝐶𝑤𝑚, 𝐷𝐻⟩, where 𝐶𝑤𝑚 ≔ {no, some, all}
3According to PuzzleScript specification, a game ends in victory condition if and only if all win conditions are

satisfied.
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Win condition game object ̇𝛿𝑀𝑤𝑜̇𝛿𝑀𝑤𝑜̇𝛿𝑀𝑤𝑜: The type of the game object (or the alias name of a
set of object types) quantified by the win condition modifier

̇𝛿𝑀𝑤𝑜 ≔ ⟨𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛, 𝐷𝐻⟩

Win condition ‘on’ game object ̇𝛿𝑀𝑤𝑜𝑛̇𝛿𝑀𝑤𝑜𝑛̇𝛿𝑀𝑤𝑜𝑛: An optional base dimension that specifies the
type (or alias) of the game object that must share the same board cell as the quantified
object (specified in the first part of the win condition) to satisfy the win condition

̇𝛿𝑀𝑤𝑜𝑛 ≔ ⟨𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛, 𝐷𝐻⟩

In our framework, optionality can be modeled either by omitting the dimension from the
design space/concept or setting the dimension to the empty set ∅, which is a valid subset of
the dimension range.

Game rules ̈𝛿𝑀𝑟𝑠̈𝛿𝑀𝑟𝑠̈𝛿𝑀𝑟𝑠: A compound dimension defining a series of game rules (actual rules govern-
ing player interaction with game objects and interaction between game objects) according to
PuzzleScript’s specifications

̈𝛿𝑀𝑟𝑠 ≔ ⟨( ̈𝛿𝑀𝑟)𝑖⟩𝑖 ∊ 𝐼 ⊆ ℕ

𝑖𝑖𝑖th game rule ( ̈𝛿𝑀𝑟)𝑖( ̈𝛿𝑀𝑟)𝑖( ̈𝛿𝑀𝑟)𝑖: A compound dimension representing a single game rule conformed by
two sides, left and right, each side composed of an equal number of 𝑝𝑖 symmetric patterns,
each pattern constituted by 𝑞𝑢 symmetric rule cells composed of 𝑡 cell items4

( ̈𝛿𝑀𝑟)𝑖 ≔
⟨

̇𝛿𝑀𝑟𝑚, ⟨( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑢, 𝑣, 𝑤⟩ 𝑠 ∊ {left, right},
𝑢 ∊ {1‥𝑝𝑖 ∊ ℕ},
𝑣 ∊ {1‥𝑞𝑢 ∊ ℕ},
𝑤 ∊ {1‥𝑡 ∊ ℕ}

⟩

Game rule modifier ̇𝛿𝑀𝑟𝑚̇𝛿𝑀𝑟𝑚̇𝛿𝑀𝑟𝑚: An optional dimension that either sets the rule to be fired
after consuming the player move (late rule) or defines all possible patterns (and their
cells) directions to be considered by the engine when looking for matches (i.e., all direc-
tions when the modifier is set to the empty set, only horizontal directions, only vertical
directions, or concrete up, down, left, or right directions)

̇𝛿𝑀𝑟𝑚 ≔ ⟨𝐶𝑟𝑚, 𝐷𝐻⟩,

where 𝐶𝑟𝑚 ≔ {late, horizontal, vertical, up, down, right, left}
𝑤𝑤𝑤th cell item of 𝑣𝑣𝑣th cell of 𝑢𝑢𝑢th pattern of 𝑠𝑠𝑠 side ( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑢, 𝑣, 𝑤( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑢, 𝑣, 𝑤( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑢, 𝑣, 𝑤: A compound dimension
representing a single game rule cell item

( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑢, 𝑣, 𝑤 ≔ ⟨ ̇𝛿𝑀𝑟𝑐𝑚, ̇𝛿𝑀𝑟𝑐𝑜⟩
4According to the PuzzleScript language definition, “in a rule, each pattern to match on the left must have a

corresponding pattern on the right of equal length (number of cells)”; also, placing more than one cell items in a
single cell is used to specify more than one layered game objects sharing the same board cell (Lavelle 2013).
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Cell item modifier ̇𝛿𝑀𝑟𝑐𝑚̇𝛿𝑀𝑟𝑐𝑚̇𝛿𝑀𝑟𝑐𝑚: An optional modifier that describes the behavior a game
object is displaying when the engine performs pattern matching.

̇𝛿𝑀𝑟𝑐𝑚 ≔ ⟨𝐶𝑟𝑐𝑚, 𝐷𝐻⟩,

where 𝐶𝑟𝑐𝑚 ≔ {no, stationary, moving, orthogonal, parallel, perpendicular,
>, <, ^, v, up, down, right, left, action, random, randomDir}.

If the modifier is set to ‘no,’ the engine matches a game object absence; when set
to ‘stationary,’ the engine matches a static object; if set to ‘moving,’ the engine
matches either an action (the action button pressed) on an object or a movement
command (up, down, right, left) applied to an object. If the modifier is set to
‘orthogonal,’ the engine matches an object moving (up. down, right, left). ‘>,’
‘<,’ ‘^,’ and ‘v’ are relative directional modifiers that mean towards, away from,
upwards, and downwards respectively. ‘Parallel’ and ‘perpendicular’ are relative
group modifiers. ‘random’ and ‘randomDir’ are special modifiers used only on the
right side of a game rule to produce the random appearance or random movement
of an object, respectively. Finally, setting the modifier to the empty set tells the
engine to ignore the specific object behavior; that is, the engine will only look for
game object presence (or will leave it as is).

Cell item object type ̇𝛿𝑀𝑟𝑐𝑜̇𝛿𝑀𝑟𝑐𝑜̇𝛿𝑀𝑟𝑐𝑜: The game object type whose behavior is described by
the cell item modifier

̇𝛿𝑀𝑟𝑐𝑜 ≔ ⟨𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛 ∪ {“…”}, 𝐷𝐻⟩

Setting both the cell item modifier and cell item object type to the empty set is
interpreted by the game engine as a board cell without any non-background game
object. Setting the cell item modifier to the empty set and the cell item game object
type to the special value “…” (ellipsis) makes the game engine to interpret variable
length patterns.

Board cells ̈𝛿𝑀𝑐𝑠̈𝛿𝑀𝑐𝑠̈𝛿𝑀𝑐𝑠: A compound dimension that represents the rectangular game board as a series
of board cells

̈𝛿𝑀𝑐𝑠 ≔ ⟨( ̇𝛿𝑀𝑐)𝑖, 𝑗⟩
𝑛, 𝑚 ∊ ℕ

𝑖=1, 𝑗=1

𝑖, 𝑗𝑖, 𝑗𝑖, 𝑗th board cell ( ̇𝛿𝑀𝑐)𝑖, 𝑗( ̇𝛿𝑀𝑐)𝑖, 𝑗( ̇𝛿𝑀𝑐)𝑖, 𝑗: A base dimension representing a single board cell as an aggrega-
tion of game objects

( ̇𝛿𝑀𝑐)𝑖, 𝑗 ≔ ⟨𝐶𝑜𝑡𝑠, 𝐷𝐻⟩

The game mechanics design dimensions give rise to the structure of the 𝒟𝑀 design space that
corresponds to the solution space of the 𝐷𝑀 layer:
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𝒮𝐷𝑀 = 𝒟𝑀 ≔
⟨

̈𝛿𝑀𝑙𝑠

⟨( ̇𝛿𝑀𝑙)𝑖𝑙⟩
𝑛𝑙 ∊ ℕ

𝑖𝑙=1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
,

̈𝛿𝑀𝑎𝑠

⟨( ̇𝛿𝑀𝑎)ℎ⟩ℎ ∊ 𝐻 ⊆ 𝐶𝑎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

̈𝛿𝑀𝑤𝑠

( ̈𝛿𝑀𝑤)𝑖𝑤

⟨ ⟨ ̇𝛿𝑀𝑤𝑚, ̇𝛿𝑀𝑤𝑜, ̇𝛿𝑀𝑤𝑜𝑛⟩𝑖𝑤⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩
𝑛𝑤 ∊ ℕ

𝑖𝑤=1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

,

̈𝛿𝑀𝑟𝑠

( ̈𝛿𝑀𝑟)𝑖

⟨ ⟨⟨
( ̈𝛿𝑀𝑟𝑐)𝑠𝑖, 𝑢𝑖, 𝑣𝑖, 𝑤𝑖

⟨ ̇𝛿𝑀𝑟𝑐𝑚, ̇𝛿𝑀𝑟𝑐𝑜⟩𝑠𝑖, 𝑢𝑖, 𝑣𝑖, 𝑤𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩ 𝑠𝑖 ∊ {left, right},
𝑢𝑖 ∊ {1‥𝑝𝑖 ∊ ℕ},
𝑣𝑖 ∊ {1‥𝑞𝑢𝑖 ∊ ℕ},

𝑤𝑖 ∊ {1‥𝑡 ∊ ℕ}

⟩

𝑖⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩

𝑛 ∊ ℕ

𝑖=1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

,

̈𝛿𝑀𝑐𝑠

⟨( ̇𝛿𝑀𝑐)𝑖𝑐 , 𝑗𝑐 ⟩
𝑛𝑐 , 𝑚𝑐 ∊ ℕ

𝑖𝑐=1, 𝑗𝑐=1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩
.

5.2 Design concepts

As described in our framework, any design concept is defined as a series of constrained design
dimensions’ ranges (i.e., subsets of original ranges)5:

𝑥𝑃 ≔
( ̇𝛿𝑃 𝑥)𝑘𝑥

⟨⊆𝐼⏟⟩𝑘𝑥 ∊ 𝐾𝑥 ⊆ 𝐶𝑝𝑙𝑒𝑥
,

𝑥𝐷 ≔ ⟨

̈𝛿𝐷𝑖𝑑

⟨ ⊆𝕎⏟
̇𝛿𝐷𝑐

,
( ̇𝛿𝐷𝑜𝑡)𝑘𝑜

⟨⊆𝕎⏟⟩𝑘𝑜 ∊ 𝐾𝑜 ⊆ 𝐶𝑜𝑡𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩ ,

̈𝛿𝐷𝑝𝑑

⟨

̈𝛿𝐷𝑝

⟨⊆ℝ≥0⏟
̇𝛿𝐷𝑝𝑡

, ⊆ℝ≥0⏟
̇𝛿𝐷𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩,

̈𝛿𝐷𝑝𝑒

⟨⊆ℝ≥0⏟
̇𝛿𝐷𝑏𝑓

, ⊆ℝ≥0⏟
̇𝛿𝐷𝑚𝑒

, ⊆ℝ≥0⏟
̇𝛿𝐷𝑟𝑡

, ⊆𝐼⏟
̇𝛿𝐷𝑏𝑐⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩,
( ̇𝛿𝐷𝑔𝑠)𝑘𝑠

⟨⊆𝐼⏟⟩𝑘𝑠 ∊ 𝐾𝑠 ⊆ 𝐶𝑔𝑠

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩⟩,

5We employ ⊆𝑋 as a contracted form of the expression 𝑥 ⊆ 𝑋, 𝑥 ≠ ∅ to generically denote ‘a subset of X’
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𝑥𝑀 ≔
⟨

̈𝛿𝑀𝑙𝑠

( ̇𝛿𝑀𝑙)𝑖𝑙

⟨(⊆𝐶𝑜𝑡𝑠)𝑖𝑙⏟⏟⏟⏟⏟⟩

𝑛𝑙 ∊ ℕ

𝑖𝑙=1
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

,

̈𝛿𝑀𝑎𝑠

( ̇𝛿𝑀𝑎)ℎ

⟨(⊆𝐶𝑜𝑡𝑠)ℎ⏟⏟⏟⟩
ℎ ∊ 𝐻 ⊆ 𝐶𝑎𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

,

̈𝛿𝑀𝑤𝑠

⟨

( ̈𝛿𝑀𝑤)𝑖𝑤

⟨ ⊆𝐶𝑤𝑚⏟
̇𝛿𝑀𝑤𝑚

, ⊆(𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
̇𝛿𝑀𝑤𝑜

, ⊆(𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
̇𝛿𝑀𝑤𝑜𝑛⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩𝑖𝑤 ∊ 𝐼𝑤 ⊆ ℕ

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩ ,

̈𝛿𝑀𝑟𝑠

⟨

( ̈𝛿𝑀𝑟)𝑖

⟨ ⊆𝐶𝑟𝑚⏟
̇𝛿𝑀𝑟𝑚

,

( ̇𝛿𝑀𝑟𝑐)𝑠𝑖, 𝑢𝑖, 𝑣𝑖, 𝑤𝑖

⟨ ⊆𝐶𝑤𝑚⏟
̇𝛿𝑀𝑟𝑐𝑚

, ⊆(𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛 ∪ {“…”})⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
̇𝛿𝑀𝑟𝑐𝑜⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩ 𝑠𝑖 ∊ {left, right},
𝑢𝑖 ∊ {1‥𝑝𝑖 ∊ ℕ},
𝑣𝑖 ∊ {1‥𝑞𝑢𝑖 ∊ ℕ},

𝑤𝑖 ∊ {1‥𝑡 ∊ ℕ}
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩𝑖 ∊ 𝐼𝑟 ⊆ ℕ

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩ ,

̈𝛿𝑀𝑐𝑠

( ̇𝛿𝑀𝑐)𝑖𝑐 , 𝑗𝑐

⟨⊆𝐶𝑜𝑡𝑠⏟ ⟩
𝑛𝑐 , 𝑚𝑐 ∊ ℕ

𝑖𝑐=1, 𝑗𝑐=1
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩
.

By employing the design dimensions defined in previous sections, it is possible to describe
all design concepts relevant to designing a puzzle video game, both the concepts representing
requirements and constraints, and the produced design concepts that should satisfy those re-
quirements.

Example 5.2.1. The following is an example of externally defined requirements and constraints
and how can they be modeled through our framework:

a) In a game experience design space spanned by ‘challenge’ and ‘exploration’ design dimen-
sions,

b) the game experience evoked in the player has to be primarily ‘challenge’ (at least 75%
intensity), combined with a precise balance of ‘exploration’ (50%).

c) The game should be a pure maze-based puzzle (i.e., ‘maze-based’ dimension should be
greater than 75%),

d) having 1 player token, 1 finish token and some wall tokens (at least 4) used to constrain
player movements within the board.
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e) The game must contain a win condition 𝑤 ∊ 𝐶𝑤𝑐 that ends a game with a victory when
the player token collects the finish token.

f) The game must be solvable, that is, there must be at least one path from the player starting
position to the finish tile position (i.e., the range of the paths ̇𝛿𝐷𝑝𝑡 design dimension has to
be constrained from the set of non-negative real numbers ℝ≥0 into the set of positive reals
greater or equal to one ℝ≥1).

g) Finally, the grid board must be a 8 × 8 square.

These requirements and constraints correspond to the early expectations for the designing activity
and can be modeled as design concepts as follows:

�̂�𝑃 𝑟 ≔ ⟨[.75, 1]
b)

, {.5}
b)

⟩
a)

,

�̂�𝐷𝑟 ≔ ⟨⟨𝕎, ⟨ {1}
d) player token

, {1}
d) finish token

, {4‥}
d) wall tokens

⟩⟩,

⟨⟨ℝ≥1
f)

, ℝ≥0⟩, ⟨ℝ≥0, ℝ≥0, ℝ≥0, 𝐼⟩, ⟨(.75, 1]
c)

, 𝐼, 𝐼⟩⟩⟩,

�̂�𝑀𝑟 ≔
⟨

⟨{background, …} ⊂ 𝐶𝑜𝑡𝑠, {finish, …} ⊂ 𝐶𝑜𝑡𝑠, {player, wall, …} ⊂ 𝐶𝑜𝑡𝑠⟩,

⟨(⊆𝐶𝑜𝑡𝑠)ℎ⟩ℎ ∊ 𝐻 ⊆ 𝐶𝑎𝑛
, ⟨⟨{all}, {player}, {finish}⟩

e)
⟩,

⟨⟨⊆𝐶𝑟𝑚, ⟨⊆𝐶𝑤𝑚, ⊆(𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛 ∪ {“…”})⟩ 𝑠𝑖𝑟 ∊ {left, right},
𝑢𝑖𝑟 ∊ {1‥𝑝 ∊ ℕ},
𝑣𝑖𝑟 ∊ {1‥𝑞𝑢 ∊ ℕ},
𝑤𝑖𝑟 ∊ {1‥𝑡𝑣 ∊ ℕ}

⟩

𝑖𝑟 ∊ 𝐼𝑟 ⊆ ℕ

⟩
,

⟨⊆𝐶𝑜𝑡𝑠⟩𝑖𝑐 ∊ {1‥8},
𝑗𝑐 ∊ {1‥8}
g)

⟩
,

𝐶𝑜𝑡𝑠 ≔ {background, player, finish, wall, …},
�̂�𝑃 𝑟 ∊ �̂�𝑃 , �̂�𝐷𝑟 ∊ �̂�𝐷, �̂�𝑀𝑟 ∊ �̂�𝑀,

�̂�𝑃 𝑟 ∊ ℰ𝑃𝐷, �̂�𝐷𝑟 ∊ ℛ𝑃𝐷, �̂�𝐷𝑟 ∊ ℰ𝐷𝑀, �̂�𝑀𝑟 ∊ ℛ𝐷𝑀.
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5.3 System evolution

The possibilities for building a system within the creative responsibility continuum are innumer-
able. Then we aim to build our collaborative system incrementally, starting with a computational
agent with minimum responsibility, providing it later with greater responsibilities and capabili-
ties, even with the possibility of replacing and improving strategies as part of its evolution.

We plan to develop three versions of the computational agent that will collaborate to some
degree with a human designer. These versions are not exhaustive but just a minimal set of rep-
resentatives within the creative responsibility continuum (Table 5.1).

Table 5.1: System roadmap. À Assistant, Á Apprentice assistant, and Â “Creative” assistant. This table
shows the role of a particular version of the computational agent in the collaborative system for each design
layer and fundamental process for designing.

Process Observer Helper Suggester Co-responsible Responsible

Game experience-dynamics layer 𝑃𝐷

Formulation 7 7 7 7 7

Synthesis
Á

Supervised
learning

7

Â

Game
dynamics
ideas

7 7

Analysis
Á

Supervised
learning

7

Â

Common
artifact & own

ideas

7 7

Evaluation 7 7 7 7

À

Task dividing
mode

Documentation 7 7 7 7 7

Reformulation 7 7 7 7 7

Game dynamics–mechanics layer 𝐷𝑀

Formulation 7 7 7 7 7

Synthesis
Á

Supervised
learning

7
Â

Game ideas
7 7

Table continued on next page

Jesús Pérez Romero 68



5.3. System evolution

Table 5.1 – continued from previous page

Process Observer Helper Suggester Co-responsible Responsible

Analysis
Á

Supervised
learning

À

Playable game
generation

Â

Common
artifact & own

ideas

À

Automatic
playtesting

7

Evaluation 7 7 7 7

À

Task dividing
mode

Documentation 7 7 7 7 7

Reformulation 7 7 7 7 7

In the following chapters (Chapters 6 to 8), we develop these versions of the collaborative sys-
tem. We formalize them and describe them according to the framework components formulated
in Chapter 3 and the design levels defined in Section 5.1. We also describe the computational
mechanisms and artificial intelligence techniques used to implement the most relevant perception
and action strategies and the design and evaluation aspects of the GUI illustrated with mockups
and screenshots of the actual interface.
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6
Building a collaborative
CCDS: Assistant
computational agent

In this version of the system, a computational agent 𝑐 is co-responsible for the game mechanics
analysis process, which implies playing (automatic playtesting) several times, using four search
algorithms, a human-designed video game. Agent 𝑐 is also fully responsible for the evaluation
processes in both design layers; that is, it determines and assesses the similarity between expected
and actual game experience and between expected and actual game dynamics. Finally, this ver-
sion of the 𝑐 agent assists the game mechanics analysis process conducted by the human player
(ℎ agent) through the production of the human-playable video game from the computer-playable
game.

We then formally define this system version1:

Game experience-dynamics layer 𝑃𝐷:

⟨ℒ, ⟨⟨Δ𝑃𝐷, 𝒰 𝑃𝐷⟩, ⟨Δ̊𝑃𝐷ℎ ∪ Δ̊𝑃𝐷𝑐 , �̊� 𝑃𝐷ℎ ∪ �̊� 𝑃𝐷𝑐⟩⟩, ⟦⋅, ⋅⟧, ⟪⋅, ⋅, ⋅, ⋅⟫,

ℛ𝑃𝐷 ∪ ̊ℛ𝑃𝐷ℎ ∪ ̊ℛ𝑃𝐷𝑐 , ℰ𝑃𝐷 ∪ ̊ℰ𝑃𝐷ℎ ∪ ̊ℰ𝑃𝐷𝑐 , 𝒫 𝑃𝐷ℎ ∪ 𝒫 𝑃𝐷𝑐 , 𝒯 𝑃𝐷ℎ ∪ 𝒯 𝑃𝐷𝑐⟩,

ℛ𝑃𝐷 = {Δ′𝐷, �̂�𝐷𝑟}, ℰ𝑃𝐷 = {Δ′𝑃 , �̂�𝑃 𝑟},
1In terms of framework coverage, this system version’s GUI supports all of the processes for designing except for

the documentation process.
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where

• ⟨⟨Δ𝑃𝐷, 𝒰 𝑃𝐷⟩, ⟨Δ̊𝑃𝐷ℎ ∪ Δ̊𝑃𝐷𝑐 , �̊� 𝑃𝐷ℎ ∪ �̊� 𝑃𝐷𝑐⟩⟩ is the 𝑃𝐷 layer’s universe represented by both

the whole domain universe ⟨Δ𝑃𝐷, 𝒰 𝑃𝐷⟩, and the designers’ universes ⟨Δ̊𝑃𝐷ℎ ∪ Δ̊𝑃𝐷𝑐 , �̊� 𝑃𝐷ℎ ∪
�̊� 𝑃𝐷𝑐⟩;

• ℛ𝑃𝐷 ∪ ̊ℛ𝑃𝐷ℎ ∪ ̊ℛ𝑃𝐷𝑐 is the 𝑃𝐷 layer’s definitional ruleset composed of both the common
and shared rules ℛ𝑃𝐷 consisting of the working set of game dynamics design dimensions Δ′𝐷

and external game dynamics requirements �̂�𝐷𝑟, and the designers’ individual rules ̊ℛ𝑃𝐷ℎ and
̊ℛ𝑃𝐷𝑐;

• ℰ𝑃𝐷 ∪ ̊ℰ𝑃𝐷ℎ ∪ ̊ℰ𝑃𝐷𝑐 is the 𝑃𝐷 layer’s evaluative ruleset composed of both the common and
shared rules ℰ𝑃𝐷 consisting of the working set of game experience design dimensions Δ′𝑃 and
game experience requirements �̂�𝑃 𝑟, and the designers’ individual rules ̊ℛ𝑃𝐷ℎ and ̊ℛ𝑃𝐷𝑐;

• 𝒫 𝑃𝐷ℎ ∪ 𝒫 𝑃𝐷𝑐 is the 𝑃𝐷 layer’s perception ruleset composed of both the human 𝒫 𝑃𝐷ℎ, and the
computational 𝒫 𝑃𝐷𝑐 agent rules;

• 𝒯 𝑃𝐷ℎ ∪ 𝒯 𝑃𝐷𝑐 is the 𝑃𝐷 layer’s action ruleset composed of both the human 𝒯 𝑃𝐷ℎ, and the
computational 𝒯 𝑃𝐷𝑐 agent rules.

Game dynamics-mechanics layer 𝐷𝑀:

⟨ℒ, ⟨⟨Δ𝐷𝑀 ∪ Δ𝐼, 𝒰 𝐷𝑀 ∪ 𝒰 𝐼⟩, ⟨Δ̊𝐷𝑀ℎ ∪ Δ̊𝐼ℎ ∪ Δ̊𝐷𝑀𝑐 ∪ Δ̊𝐼𝑐 , �̊� 𝐷𝑀ℎ ∪ �̊� 𝐼ℎ ∪ �̊� 𝐷𝑀𝑐 ∪ �̊� 𝐼𝑐⟩⟩,

⟦⋅, ⋅⟧, ⟪⋅, ⋅, ⋅, ⋅⟫,

ℛ𝐷𝑀 ∪ ̊ℛ𝐷𝑀ℎ ∪ ̊ℛ𝐷𝑀𝑐 , ℰ𝐷𝑀 ∪ ̊ℰ𝐷𝑀ℎ ∪ ̊ℰ𝐷𝑀𝑐 , 𝒫 𝐷𝑀ℎ ∪ 𝒫 𝐷𝑀𝑐 , 𝒯 𝐷𝑀ℎ ∪ 𝒯 𝐷𝑀𝑐⟩,

ℛ𝐷𝑀 = {Δ′𝑀, �̂�𝑀𝑟}, ℰ𝐷𝑀 = {Δ′𝐷, �̂�𝐷𝑟, �̂�𝐷𝑒ℎ},

where

• ⟨⟨Δ𝐷𝑀 ∪ Δ𝐼, 𝒰 𝐷𝑀 ∪ 𝒰 𝐼⟩, ⟨Δ̊𝐷𝑀ℎ ∪ Δ̊𝐼ℎ ∪ Δ̊𝐷𝑀𝑐 ∪ Δ̊𝐼𝑐 , �̊� 𝐷𝑀ℎ ∪ �̊� 𝐼ℎ ∪ �̊� 𝐷𝑀𝑐 ∪ �̊� 𝐼𝑐⟩⟩ is the 𝐷𝑀
layer’s universe represented by both the whole domain universe ⟨Δ𝐷𝑀 ∪ Δ𝐼, 𝒰 𝐷𝑀 ∪ 𝒰 𝐼⟩, and
the designers’ ones ⟨Δ̊𝐷𝑀ℎ ∪ Δ̊𝐼ℎ ∪ Δ̊𝐷𝑀𝑐 ∪ Δ̊𝐼𝑐 , �̊� 𝐷𝑀ℎ ∪ �̊� 𝐼ℎ ∪ �̊� 𝐷𝑀𝑐 ∪ �̊� 𝐼𝑐⟩;

• 𝐼 is an interaction category (non-design category) of dimensions;

• ℛ𝐷𝑀 ∪ ̊ℛ𝐷𝑀ℎ ∪ ̊ℛ𝐷𝑀𝑐 is the 𝐷𝑀 layer’s definitional ruleset composed of both the common
and shared rules ℛ𝐷𝑀 consisting of the working set of game mechanics design dimensions Δ′𝑀

and external game mechanics requirements �̂�𝑀𝑟, and the designers’ individual rules ̊ℛ𝐷𝑀ℎ
and ̊ℛ𝐷𝑀𝑐;

• ℰ𝐷𝑀 ∪ ̊ℰ𝐷𝑀ℎ ∪ ̊ℰ𝐷𝑀𝑐 is the 𝐷𝑀 layer’s evaluative ruleset composed of both the designers’
individual rules ̊ℰ𝐷𝑀ℎ and ̊ℰ𝐷𝑀𝑐 , and the common rules ℰ𝐷𝑀 consisting of the working set of
game dynamics design dimensions Δ′𝐷, game dynamics requirements �̂�𝐷𝑟, and the external
representation of the (expected) game dynamics design concept �̂�𝐷𝑒ℎ produced at the upper
𝑃𝐷 layer by the human agent ℎ;
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• 𝒫 𝐷𝑀ℎ ∪ 𝒫 𝐷𝑀𝑐 is the 𝐷𝑀 layer’s perception ruleset composed of both the human 𝒫 𝐷𝑀ℎ, and
the computational 𝒫 𝐷𝑀𝑐 agent rules;

• 𝒯 𝐷𝑀ℎ ∪ 𝒯 𝐷𝑀𝑐 is the 𝐷𝑀 layer’s action ruleset composed of both the human 𝒯 𝐷𝑀ℎ, and the
computational 𝒯 𝐷𝑀𝑐 agent rules.

6.1 Design process

According to our framework, each fundamental process for designing is modeled through a series
of perception and action strategies. Each instance of these strategies represents a different step,
activity, or operation within the process. Therefore, in the following sections, we break down the
fundamental processes for designing into smaller steps and provide a detailed description and
definition in terms of our framework. We have labeled them for descriptive purposes.

In some cases, there are execution dependencies between steps, or situations where some
steps are performed in parallel. For these cases, we provide activity diagrams to make these
characteristics explicit.

When applicable, we integrate a detailed description of the tool’s GUI, emphasizing how the
design operations involved are implemented in it and how the different elements of the frame-
work are supported.

6.1.1 Formulation

In this system, the formulation processes for each of the design levels share a pattern of steps or
activities depicted in (Fig. 6.1).

6.1.1.1 Game experience formulation

{�̂�𝑃 𝑟 �̌�𝑃 ℎ, �̂�𝑃 𝑛 �̌�𝑃 ℎ, �̌�𝑃 ℎ �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑚ℎ �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑒ℎ ⇄ �⃑�𝑃 𝑒ℎ} ⊆ 𝒫 𝑃𝐷ℎ,

{�⃑�𝑃 𝑒ℎ → �̂�𝑃 𝑒ℎ} ⊆ 𝒯 𝑃𝐷ℎ.

External requirements interpretation: ℎ interprets explicit external game experience require-
ments (i.e., the desired game experience to be evoked in the player)

�̂�𝑃 𝑟 �̌�𝑃 ℎ.
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External requirements
interpretation

External inspiring
set interpretation

Internalized
concepts reflection

Self-initiative
driven reflection

Design space
definition

GUI update

External motivation

Internal motivation

Explicit requirements Other

Figure 6.1: An activity diagram representing the overall formulation process pattern implemented in the
three design levels, game experience 𝑃 , game dynamics 𝐷, and game mechanics 𝑀 .

External inspiring set interpretation: ℎ interprets a game experience design concept from an
external inspiring set (e.g., an article on the Web, an existing game, a conversation)

�̂�𝑃 𝑛 �̌�𝑃 ℎ.

Internalized concepts reflection: Through reflection, and based on her/his knowledge, expe-
rience, preferences, and memories, ℎ accommodates and augments the interpreted version of
the externally defined game experience, attempts to model it (mentally) in terms of one or more
PLEX playful experiences categories, and roughly determines some of their intensity ranges

�̌�𝑃 ℎ �̌�𝑃 𝑒ℎ.

Self-initiative driven reflection: Through reflection, and based on her/his knowledge, experi-
ence, preferences, and memories, ℎ imagines a game experience in terms of one or more PLEX
playful experiences categories and roughly determines some of their intensity ranges

�̌�𝑃 𝑚ℎ �̌�𝑃 𝑒ℎ.
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Design space definition: Through focusing, ℎ establishes her/his game experience design space
(i.e., the internal representation of the expected game experience design concept)

�̌�𝑃 𝑒ℎ ⇄ �⃑�𝑃 𝑒ℎ, 𝒟𝑃 ℎ = �⃑�𝑃 ℎ.

GUI update: Through the game experience panel’s expected-experience related widgets, ℎ se-
lects the PLEX cards that correspond with her/his game experience design space’s dimensions,
setting for each category its intensity range

�⃑�𝑃 𝑒ℎ → �̂�𝑃 𝑒ℎ.

The game experience panel of the tool’s GUI allows the human designer ℎ configuring her/his
game experience design space (i.e., setting her/his expected game experience design concept).

1. The panel starts with an empty design space (Fig. 6.2), so the designer can add one or more
game experience design dimensions into her/his design space.

Figure 6.2: Game experience panel - empty game experience design space. The dotted rounded rectangle
represents an ‘empty’ card (i.e., PLEX card).

2. By pressing the ‘+’ button, the designer invokes a ‘carousel’ widget that allows her/him to
navigate through the different PLEX categories and select the desired category (Fig. 6.3).

3. The selected category then becomes a new game experience design dimension (Fig. 6.4).

4. The designer sets the range of the dimension through a double thumb vertical slider (Fig. 6.5),
set to its full range by default.

5. The designer can also set the dimension range with the assistance of the PLEXQ question-
naire. With this option, the designer only requires to answer a small 3-item 4-scale2 Likert
survey (Fig. 6.6).

This process is performed for each dimension the designer decides to incorporate into her/his
design space.

2Although PLEXQ originally uses a 5-scale Likert survey for each item, we employ a 4-scale (Brown 2010) to avoid
neutral responses such as ‘non-applicable’ or ‘neither agree nor disagree.’
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Figure 6.3: PLEX card deck

6.1.1.2 Game dynamics formulation

𝒫 𝑃𝐷ℎ ⊇ {�̂�𝐷𝑟 �̌�𝐷ℎ, �̂�𝐷𝑛 �̌�𝐷ℎ, �̌�𝐷ℎ �̌�𝐷𝑒ℎ, �̌�𝐷𝑚ℎ �̌�𝐷𝑒ℎ, �̌�𝐷𝑒ℎ ⇄ �⃑�𝐷𝑒ℎ} ⊆ 𝒫 𝐷𝑀ℎ,

𝒯 𝑃𝐷ℎ ⊇ {�⃑�𝐷𝑒ℎ → �̂�𝐷𝑒ℎ} ⊆ 𝒯 𝐷𝑀ℎ.

External requirements interpretation: ℎ interprets explicit external game dynamics require-
ments that may impose constraints such as particular gameplay scenarios, maximum game dura-
tion, and the forcing/prevention of specific game objects types’ usage in the game

�̂�𝐷𝑟 �̌�𝐷ℎ.

External inspiring set interpretation: ℎ interprets a game dynamics design concept from an
external inspiring set

�̂�𝐷𝑛 �̌�𝐷ℎ.

Internalized concepts reflection: Through reflection, and based on her/his knowledge, experi-
ence, preferences, and memories, ℎ accommodates and augments the interpreted version of the
externally defined game dynamics constraints, attempts to model it (mentally) in terms of the set
of design dimensions currently present in the game dynamics panel of the tool’s GUI as well as
any other design dimensions of the types ‘gameplay scenario’ and ‘game object type counter’ that
are considered appropriate, and roughly determines some of their ranges

�̌�𝐷ℎ �̌�𝐷𝑒ℎ.
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Figure 6.4: Game experience panel with one dimension. The ‘minus’ button removes the card (i.e., removes
the design dimension from the design space). The ‘padlock’ toggle button allows the designer to lock or
unlock both the PLEX card and its range (i.e., to fix some/all design dimensions of the game experience
design space). If a card is unlocked (left), the designer is free to remove the dimension, set or update its
range, or replace it with another card from the card deck (with the ‘opposite directions’ parallel arrows’
button). If a card is locked (right), the designer cannot replace it, nor remove it, nor modify its range. The
‘3-stacked bars’ button activates the PLEXQ mini-survey to assist in setting the dimension range (only if
the card is unlocked).

Self-initiative driven reflection: Through reflection, ℎ imagines a game dynamics in terms of
the set of design dimensions currently present in the game dynamics panel of the tool’s GUI and
any other design dimensions of the types ‘gameplay scenario’ and ‘game object type counter’ that
are considered appropriate, and roughly determines some of their ranges

�̌�𝐷𝑚ℎ �̌�𝐷𝑒ℎ.

Design space definition: Through focusing, ℎ establishes her/his game dynamics design space
(i.e., the internal representation of the expected game dynamics design concept)

�̌�𝐷𝑒ℎ ⇄ �⃑�𝐷𝑒ℎ, �⃑�𝐷𝑒ℎ = 𝒟𝐷ℎ.

GUI update: Through the game dynamics panel’s expected-dynamics related widgets, ℎ adds any
required ‘gameplay scenario’ or ‘game object type counter’ design dimensions and may configure
their ranges and the range of any other dimensions to reflect her/his game dynamics design space.

�⃑�𝐷𝑒ℎ → �̂�𝐷𝑒ℎ.

The game dynamics panel of the tool’s GUI allows the human designer ℎ to configure her/his
game dynamics design space (i.e., setting her/his expected game dynamics design concept).

1. The panel starts with a default design space composed of a set of computer-analyzed game
dynamics design dimensions and the three default ‘gameplay scenario’ dimensions whose
actual values are derived by the human analyzer (Fig. 6.7).
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Figure 6.5: Dimension’s range vertical slider widget. The double thumb feature of the sliders allows
the designer to define a region within the dimension’s range, spanning from the full range (each thumb
positioned at the slider extremes) to a region, to a specific value (both thumbs positioned at the same
value).

Figure 6.6: PLEXQ 3-item 4-scale Likert mini-survey.

2. Through the panel, the human designer ℎ can add as many ‘gameplay scenario’ and ‘game
object type counter’ design dimensions into her/his design space as required. By press-
ing the ‘+’ button of the ‘gameplay scenarios’ or ‘game object type counters’ sections, the
designer adds a new game dynamics design dimension of any of those types by simply en-
tering/selecting the name of the gameplay scenario or the type of game object, respectively
(Fig. 6.8).

3. The ℎ designer configures her/his game dynamics design space by setting the range of each
required design dimensions according to her/his mental design space. Dimensions whose
original ranges are defined within the unit interval 𝐼 are represented with horizontal sliders
and share functionality with the game experience panel’s vertical sliders. On the other
hand, dimensions with ranges defined within the non-negative reals ℝ≥0, positive integers
(natural numbers) ℕ, or non-negative integers 𝕎 are represented with a custom interval
widget (Fig. 6.9).
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Figure 6.7: Game dynamics panel - default game dynamics design space. Both computer-analyzed and
human-analyzed game dynamics design dimensions are grouped and located in their own sections of the
panel. All design dimensions are set to their full range by default (i.e., representing the ‘empty’ design
concept). The section dedicated to the ‘game object type counter’ design dimensions is displayed, but no
dimensions are contained in it by default.

6.1.1.3 Game mechanics formulation

{�̂�𝑀𝑟 �̌�𝑀ℎ, �̂�𝑀𝑛 �̌�𝑀ℎ, �̌�𝑀ℎ �̌�𝑀𝑎ℎ, �̌�𝑀𝑚ℎ �̌�𝑀𝑎ℎ, �̌�𝑀𝑎ℎ ⇄ �⃑�𝑀𝑎ℎ} ⊆ 𝒫 𝐷𝑀ℎ,

{�⃑�𝑀𝑎ℎ → �̂�𝑀𝑎} ⊆ 𝒯 𝐷𝑀ℎ.

External requirements interpretation: ℎ interprets explicit external game mechanics require-
ments thatmay impose some constraints such as the game board shape and size, the forcing/prevention
of specific game objects’ usage in the game, the placement of specific game objects in the board,
and pre-existing game rules and win conditions

�̂�𝑀𝑟 �̌�𝑀ℎ.

External inspiring set interpretation: ℎ interprets a game from an external inspiring set

�̂�𝑀𝑛 �̌�𝑀ℎ.

Internalized concepts reflection: Through reflection, and based on her/his knowledge, experi-
ence, preferences, and memories, ℎ accommodates and augments the interpreted version of the
externally defined game mechanics constraints, attempts to model them (mentally) in terms of
the set of design dimensions currently present in the game editor of the tool’s GUI and roughly
determines some of their ranges. For example, ℎ may resolve that the game would require one
player token and one finish token (perhaps positioned in random cells at this time) so that a
canonical maze win condition could be fired

�̌�𝑀ℎ �̌�𝑀𝑎ℎ.
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Figure 6.8: Game dynamics panel - creating new design dimensions. Adding a new gameplay scenario
(top panel). Adding a new game object type counter (bottom panel).

Self-initiative driven reflection: Through reflection, ℎ imagines a game in terms of the set of
design dimensions currently present in the game editor of the tool’s GUI and roughly determines
some of their ranges

�̌�𝑀𝑚ℎ �̌�𝑀𝑎ℎ.

Design space definition: Through focusing, ℎ establishes her/his game mechanics design space
(i.e., the internal representation of the actual game mechanics design concept)

�̌�𝑀𝑎ℎ ⇄ �⃑�𝑀𝑎ℎ, �⃑�𝑀𝑎ℎ = 𝒟𝑀ℎ.

GUI update: ℎ roughly sketches the game via the game editor panel to reflect her/his current
game mechanics design space, such as shaping and sizing the game board, configuring layers and
aliases, and placing specific game objects into the board or entering specific win conditions or
game rules if dictated by some constraints

�⃑�𝑀𝑎ℎ → �̂�𝑀𝑎.

The game editor panel of the tool’s GUI allows the human designer ℎ configuring her/his game
mechanics design space.
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Figure 6.9: Game dynamics panel - custom interval widget. The custom widget provides mechanisms to
define intervals. Values can be typed directly (the widget will prevent invalid entered values) or selected
with the number-stepper up and down arrows. Each of the two number-stepper widgets represent one
side of a closed interval (a). Any of the two sides of the interval can be disabled (one at a time) with their
switches to set either left-closed (b) or right-closed intervals (c). Right and left arrow buttons set the range
of the design dimension to a single value (d). The ‘right arrow’ button copies the value from the right to
the left, and the ‘left arrow’ button does the opposite. A dimension’s range can be configured to be single-
valued by enabling/disabling the synchronization feature through the ‘chain link’ toggle buttons (broken
link and closed link) (e). As with the sliders, this custom widget can be locked or unlocked through the
‘padlock’ toggle button (f).

1. The panel starts with a default design space composed of two fixed sets of game object types
(background and non-background), two empty layers (the background and the first non-
background layer), a 1 × 1 squared grid board or game space, and the background (empty)
alias (Fig. 6.10).

2. Through a pair of number-stepper controls (rows and columns), the designer can shape and
size the game space (i.e., the cells design dimension). Adding a cell is equivalent to adding
a dimension into the design space (Fig. 6.11).

3. The designer can configure the layers design dimension by creating individual layer con-
tainers and populating them with game object types picked from the game object pools.
Reactively, the tool’s GUI keeps synced both the background layer container and the de-
fault background container that corresponds to the alias dimension labeled as ‘background’3

(Fig. 6.12).

4. The designer can configure the aliases design dimension by creating individual alias con-
tainers (different from the background auto-created alias), labeling them, and populating
them with objects already placed in any of the layers (Fig. 6.13).

5. If required by some requirements or initial inspiration, the designer may

3By keeping the alias design dimension synced with the background layer, the designer may be able to use the
background alias in both win conditions and game rules.

Jesús Pérez Romero 80



6.1. Design process

Figure 6.10: Game editor panel - default game mechanics design space. Several dimensions are repre-
sented in the game editor: the section Game objects in the first column represents the set of all possible
game objects available in the tool (i.e., 𝐶𝑔𝑜𝑠) partitioned into two game object containers or pools, the pool
of background game objects and the pool of non-background game objects, respectively. In the second col-
umn, the layer design dimensions are represented as stacked game object containers (empty by default).
In the third column, cell type compound design dimensions are represented through a grid of light gray
cells that shape the game board (1 × 1 by default). In the fourth column, the alias design dimensions are
represented as labeled game object containers (empty by default), including the default background alias.
Finally, the win conditions and game rules are represented in the last column. Both types of dimensions
are empty by default.

Figure 6.11: Game editor panel - Game space defined after setting the game board size.

(a) place specific game objects into specific cells (See Section 6.1.2.2 and Fig. 6.15),

(b) predefine specific win conditions (See Section 6.1.2.2 and Fig. 6.17),

(c) and predefine the number of game rules, their structure (number of patterns per rule
and number of cells per pattern), and specific game rules (See Section 6.1.2.2 and Fig. 6.18).
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Figure 6.12: Game editor panel - Configuring layers. In the upper figure, the human designer drags and
drops a background object type from the background pool into the background layer and a non-background
object from the non-background pool into the first non-background layer. In the lower figure, the objects
are placed in their corresponding layers. Any background game object added into the background layer
is automatically added into the background alias container. The GUI allows the designer to add new
layers (with the ‘+’ button) on top of the default background and first non-background layers, and to lock
individual layers with the ‘padlock’ button.

6.1.2 Synthesis

6.1.2.1 Game dynamics synthesis

{�⃑�𝑃 𝑒ℎ ⤇ �⃑�𝐷𝑒ℎ, �⃑�𝐷𝑒ℎ → �̂�𝐷𝑒ℎ} ⊆ 𝒯 𝑃𝐷ℎ

Design synthesis: Based on her/his expected game experience, ℎ creates or updates a mental
expected game dynamics design concept by setting specific values or regions on the design di-
mensions that span the game dynamics design space

�⃑�𝑃 𝑒ℎ ⤇ �⃑�𝐷𝑒ℎ.
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Figure 6.13: Game editor panel - Configuring aliases. In the top-left figure, the human designer presses
the ‘plus’ button to invoke the ‘New alias’ dialog window at the right. In the dialog window, the designer
enters the new alias name and selects one or more game objects from the pool in the bottom. The pool
contains the set of all game objects already assigned into layers. The figure on the bottom shows the
created alias. The GUI allows the designer to lock individual aliases with the ‘padlock’ button.

GUI update: ℎ manipulates the game dynamics panel’s expected-dynamics related widgets to
reflect her/his new or updated expected game dynamics design concept

�⃑�𝐷𝑒ℎ → �̂�𝐷𝑒ℎ.

To externalize her/his synthesized game dynamics design concept, the designer ℎ uses the game
dynamics panel of the tool’s GUI and follows a workflow very similar to that of the formulation
process, with the exception of adding or removing design dimensions, or widening their ranges
(Fig. 6.14).

The GUI does not prevent the designer from performing those actions (i.e., adding or remov-
ing design dimensions, or widening their ranges); therefore, if the designer adds or removes
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dimensions or broadens the range of one or more dimensions, it would merely mean that the
designer is externalizing a reformulation’s result or a simultaneous synthesis-reformulation.
This is practical evidence that the fundamental processes for designing are not a list of activ-
ities that are always performed in a specific order but processes performed by the designer
as required by her/his current situation and, in some cases, so fast that they seem to be
performed simultaneously.

Figure 6.14: Game dynamics panel - a representation of an expected game dynamics design concept.
The designer sets the game dynamics design dimensions’ ranges to specific values or constrained regions.
The game dynamics panel also provides a widget with a chart view of the current game dynamics design
concept (top right), which is updated in real-time as the designer defines a dimension’s value.

6.1.2.2 Game mechanics synthesis

{�⃑�𝐷𝑒ℎ ⤇ �⃑�𝑀𝑎ℎ, �⃑�𝑀𝑎ℎ → �̂�𝑀𝑎} ⊆ 𝒯 𝐷𝑀ℎ

Design synthesis: Based on her/his expected game dynamics, ℎ creates or updates a mental
game (actual design) by setting specific values or regions on the design dimensions that span the
game mechanics design space.

�⃑�𝐷𝑒ℎ ⤇ �⃑�𝑀𝑎ℎ

Jesús Pérez Romero 84



6.1. Design process

GUI update: Through the game editor, ℎ creates/modifies the ‘physical’ representation of her/his
actual game mechanics design concept

�⃑�𝑀𝑎ℎ → �̂�𝑀𝑎.

The game editor panel of the tool’s GUI allows the human designer ℎ to externalize her/his
synthesized game.

1. The designer can place game objects (tiles and tokens) at any cell of the game board by
simply dragging the desired object into the target cell and dropping it there.

2. If the designer needs to remove an object from a cell, they simply drag it out of the board
(Fig. 6.15).

Figure 6.15: Game editor panel - Laying out the game. A cell is nothing more than a stack of objects
whose order is governed by how the layer design dimensions are defined. The designer can select any
object from any of the layer containers and drag it into any of the cells in the game space. The GUI will
allow the designer to place (drop) the dragged object only if the cell is empty and the object belongs to the
background layer or if the dragged object belongs to a layer higher than the layer to which the last object
(the top of the stack) already placed in the cell belongs. No matter the cell contents, placing a background
object will override (clear) the cell, leaving only the new background object. The designer can also remove
objects (in a stack fashion) from any cell by dragging them out of the grid and dropping them there.

3. The game editor also provides the designer with another, more fluent method for plac-
ing/removing objects to/from the game space by using a ‘tool selection’ and ‘stamp tool’
UxD metaphors (Fig. 6.16).

4. Win conditions and game rules are ‘written’ in the game editor fully visually through sim-
ple widgets that reassemble the textual structure of the rules and win conditions expressed
in the PuzzleScript language. Each of the win conditions and game rules base design di-
mensions are represented by specific widgets that are hierarchically grouped to represent
various compound dimensions. The tool’s GUI not only allows the designer to add, edit,
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Figure 6.16: Game editor panel - Fluently laying out the game. If the designer selects an object (by clicking
on it) from any of the layer containers (tool selection), the regular pointer cursor will be transformed into
a copy of the image of the selected object (stamp tool). Having the tool selected, the designer can “stamp”
the object in any number of cells over which the cursor hovers while holding the pointer button pressed.
If the object at the top of a cell corresponds to the same object selected, the “stamping” action will remove
the object from the cell.

remove, lock, and unlock both win conditions and game rules but to add or remove any
number of cells per pattern and any number of patterns per game rule to express not only
simple but really complex game rules (Figs. 6.17 and 6.18).

6.1.3 Analysis and evaluation

6.1.3.1 Game mechanics analysis

The analysis process at the game mechanics level is a collaborative process that involves depen-
dencies and parallelism between both ℎ and 𝑐 operations execution (Fig. 6.19).

{�̂�𝑀𝑎 �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎𝑐 �̌�𝑀𝛼𝑐 , �̌�𝑀𝑎𝑐 �̌�𝐼𝑐 , �̌�𝑀𝛼𝑐 ⇄ �⃑�𝑀𝛼𝑐 , �̌�𝐷𝑎𝑐 ⇄ �⃑�𝐷𝑎𝑐 , �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐} ⊆ 𝒫 𝐷𝑀𝑐 ,

{�⃑�𝑀𝛼𝑐 → �̂�𝑀𝛼𝑐 , �⃑�𝐷𝑎𝑐 → �̂�𝐷𝑎𝑐 , �⃑�𝐼𝑐 → �̂�𝐼𝑐} ⊆ 𝒯 𝐷𝑀𝑐 , {�̌�𝑀𝑎𝑐 ↦ �̌�𝐷𝑎𝑐} ⊆ ̊ℰ𝐷𝑀𝑐 ,

{�̂�𝑀𝛼𝑐 �̌�𝑀𝛼𝑐
ℎ, �̌�𝐷𝑎ℎ ⇄ �⃑�𝐷𝑎ℎ} ⊆ 𝒫 𝐷𝑀ℎ, {�⃑�𝐷𝑎ℎ → �̂�𝐷𝑎ℎ} ⊆ 𝒯 𝐷𝑀ℎ, {�̌�𝑀𝛼𝑐

ℎ ↦ �̌�𝐷𝑎ℎ} ⊆ ̊ℰ𝐷𝑀ℎ.
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Figure 6.17: Game editor panel - Entering win conditions. The figure shows the steps to enter the win
condition All Crate On Target. The game objects Crate (yellow box), and Target (black square with
a check mark) are currently placed in the second and first non-background layers, respectively, so they
are available to be used in win conditions. a) The designer presses the ‘+’ button in the Win conditions
section of the game editor. b) A dialog appears with an empty win condition. c) The designer sets both the
modifier and the game object design dimensions of the win condition. d) With a switch widget the designer
activates the on-game-object design dimension of the win condition. e) The on-game-object dimension is
added to the dialog. f) The designer sets the on-game-object dimension value. g) Finally, the win condition
is added to the set of win conditions of the game being designed.

Actual design interpretation (𝑐): whenever ℎ updates her/his actual game design (game me-
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Figure 6.18: Game editor panel - Entering game rules. The figure shows the steps to enter the game rule
[ > Player | Crate ] -> [ > Player | > Crate ] interpreted as: replace a Player moving towards
a contiguous Crate, with the Player moving and the Create also moving into the same direction of the
Player’s movement. The game objects Crate (yellow box), and Player (blue human shape) are currently
placed in the second non-background layer so they are available to be used in game rules. a) The designer
presses the ‘+’ button in the Game rules section of the game editor. b) A simple empty game rule —a rule
with no modifier composed of one pattern of one empty cell— is added into the set of game rules of the
game. c) The designer sets the first game object (Player) of the left cell. d) A modifier dimension for the
newly game object is added into the game rule. e) The designer sets the modifier. f) The designer presses
the ‘+’ button inside the left cell to add another game object into the cell. g) A new empty game object
dimension is added into both the left and the right cells to keep the symmetry required by PuzzleScript.
h) Finally, the designer sets the values of the remaining cells’ design dimensions (both left and right sides)
to complete the rule definition.
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Actual design
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«c»
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«c»
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Human
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Figure 6.19: An activity diagram representing the overall analysis process at the 𝑀 game mechanics level.

chanics level), 𝑐 creates/updates an internal version of the actual game design

�̂�𝑀𝑎 �̌�𝑀𝑎𝑐 .

Actual design conversion (𝑐): 𝑐 augments the updated interpreted version of the actual game
design with a representation of the game encoded into the PuzzleScript scripting language

�̌�𝑀𝑎𝑐 �̌�𝑀𝛼𝑐 .

Human-playable game preparation (𝑐): 𝑐 selects the augmented part (PuzzleScript language
version) of the actual game design representation

�̌�𝑀𝛼𝑐 ⇄ �⃑�𝑀𝛼𝑐 .

Human-playable game rendering (𝑐): 𝑐 converts the augmented part of the actual game de-
sign representation into a human playable game by compiling and executing the PuzzleScript
language code with the PuzzleScript game engine which is linked to a canvas frame of the tool’s
GUI (Fig. 6.20)

�⃑�𝑀𝛼𝑐 → �̂�𝑀𝛼𝑐 .
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Figure 6.20: Human-playable game

Actual design partial analysis start notification (𝑐): 𝑐 places a looping progress bar widget la-
beled as ‘Analyzing’ in the tool’s GUI to notify that analytical derivation has commenced (Fig. 6.21)

�̌�𝑀𝛼𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

Figure 6.21: Game mechanics–dynamics analytical derivation notificacion.

Actual design partial analysis (𝑐): The 𝑐 partial analysis process4 starts with the computation
of the intrinsic dynamics design dimensions values. Complexity is derived by counting the number
of game rules and game object types present in them, while the game-object-type-counter design
dimensions values are derived by directly counting the number of type-objects placed in the game
board.

Next, 𝑐 performs automatic playtesting by simulating four different players through four search
algorithms —breadth-first search (BFS), depth-first search (DFS), Greedy Best-first search, and
𝐴∗—, and builds its partial representation of the emerged playtesting-based game dynamics

�̌�𝑀𝛼𝑐 ↦ �̌�𝐷𝑎𝑐 .

The cost function used by the search algorithms is the function proposed and implemented in
the work of Lim and Harrell (2014) as a linear combination of two heuristics: the manhattan
distance between win condition objects (i.e., game objects appearing in win conditions), and the
manhattan distance between the ‘player’ object and win condition objects.

4The produced game dynamics design concept is partial since 𝑐 does not derive values of the ‘gameplay scenario’
design dimensions.
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The function is computed at each game state change and, according to its authors, characterizes
game states where objects used in win conditions are close together, and game states where the
player is closer to objects used in win conditions, intuitively meaning that favored game states
are those with shorter distances between win condition objects and the ‘player’ object.

The search algorithms are enhanced with a series of callback functions that are executed at key
stages of the search algorithm process: a) at the beginning of an iteration, b) after a search node
is expanded, c) after nodes are placed into the OPEN list, and d) at the end of an iteration. These
callback points assist the process of deriving actual values of the branching factor, move effort,
and response time game dynamics design dimensions by accumulating/averaging their values.
Both duration and paths design dimensions are derived directly from the search algorithm output
(i.e., the list of moves representing the solution for the game). Finally, the board coverage design
dimension value is derived by executing the steps or moves of the solution on the game board.
Final values of the playtesting-based game dynamics design dimensions are computed by aver-
aging the four derived sets of values. If a search algorithm does not find a solution for a game
within 1000 iterations, the game is considered unsolvable (i.e., an infinite number of moves) and
the algorithm is discarded for final values computation.

Partial results preparation (𝑐): 𝑐 selects its partially derived dynamics representation

�̌�𝐷𝑎𝑐 ⇄ �⃑�𝐷𝑎𝑐 .

Partial GUI update (𝑐): 𝑐 updates the game dynamics panel’s actual-dynamics related widgets
to reflect the partial derived game dynamics

�⃑�𝐷𝑎𝑐 → �̂�𝐷𝑎𝑐 .
The analyzer agent 𝑐 externalizes its actual game dynamics design concept into the dynamics
panel by setting the actual value for each dimension of its (partial) concept in the same (shared)
widgets employed by the human designer ℎ to set the expected values (Fig. 6.22).

Figure 6.22: Game dynamics panel - setting the actual value of computer-analyzed design dimensions.
Actual numerical values computed by the 𝑐 agent are displayed below the expected values and are visually
differentiated from the expected values (in this figure, actual values are displayed over a gray background).

Partial analysis finish notification (𝑐): 𝑐 removes the analyzing looping progress bar from the
tool’s GUI to notify that analytical derivation has been completed

�̌�𝐷𝑎𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .
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Actual design interpretation and partial analysis (ℎ) : Human playtesting is performed through
a perception/action loop in which the player interprets the current state of the game expressed
through the game graphics (external representation), plans the next movement or action, and
performs it via a physical interface (e.g., game control, keyboard, touch screen). The game mod-
ifies its state in response to the player’s action, and ℎ interprets the new video game state. This
cycle is repeated until reaching an end condition, or when the player abandons the game5.

From the perspective of our designing framework, each time the player interprets the new state of
the video game, a design concept is developed in her/his mind representing the game dynamics
that emerge in terms of ‘gameplay scenario’ design dimensions. For simplicity, we represent the
playtesting loop with two operations, the interpretation of the playable game, and the derivation
of dynamics from the interpreted game.

�̂�𝑀𝛼𝑐 �̌�𝑀𝛼𝑐
ℎ, �̌�𝑀𝛼𝑐

ℎ ↦ �̌�𝐷𝑎ℎ.

Partial results preparation (ℎ): ℎ focuses on her/his partially derived dynamics representation

�̌�𝐷𝑎ℎ ⇄ �⃑�𝐷𝑎ℎ.

Partial GUI update (ℎ): ℎ updates the game dynamics panel’s actual-dynamics related widgets
to reflect human’s dynamics representation

�⃑�𝐷𝑎ℎ → �̂�𝐷𝑎ℎ.

The tool’s GUI allows a human analyzer ℎ (i.e., the player) externalizing her/his actual ‘gameplay
scenario’ game dynamics in the game dynamics panel. For each ‘gameplay scenario’ design dimen-
sion, ℎ sets the actual value by moving a second double thumb horizontal slider located below the
one used in formulation, reformulation or synthesis (Fig. 6.23). As depicted in (Fig. 6.19), once

Figure 6.23: Game dynamics panel - setting the actual value of a ‘gameplay scenario’ design dimension.
As in the ‘expected-dynamics’ related slider, the ‘actual-dynamics’ slider allows setting a specific value or
a range region. The game analyzer may even set a particular value of 0 to express that the associated
gameplay scenario was not perceived by the player during playtesting. Both ‘expected-experience’ and
‘actual-experience’ sliders are also visually distinguished (in this figure they have different thumbs shapes
and styles applied). Actual values are displayed with a different visual style and below the expected values.

the playable versions of the game for ℎ and 𝑐 agents become available, the process is forked into
two parallel processes to complete and externalize the analysis of the game in terms of dynamics

5It is worthy of mentioning that the game engine also works as a type of perception/action loop. The game engine
interprets the player’s actions, modifies the state of the game, and externalizes the new state.
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dimensions. After that, the processes are joined, resulting in the dynamics panel displaying a
complete expected and actual game dynamics representation (Fig. 6.24). The tool’s GUI allows
the agents to analyze the game independently (i.e., an agent does not need to wait for the other
agent).

Figure 6.24: Game dynamics panel - game dynamics representation after analyzing the mechanics of a
game. Both human-analyzed and computer-analyzed actual values are displayed along with the expected
values.

6.1.3.2 Game dynamics evaluation

{{�̂�𝐷𝑒ℎ, �̂�𝐷𝑎ℎ} {�̌�𝐷𝑒ℎ𝑐 , �̌�𝐷𝑎ℎ
𝑐 }, {�̌�𝐷𝑎ℎ

𝑐 , �̌�𝐷𝑎𝑐} �̌�𝐷𝑎𝑐ℎ
𝑐 , �̌�𝐷𝑒ℎ𝑐 ⇄ �⃑�𝐷𝑒ℎ𝑐 , �̌�𝐷𝑣𝑐 ⇄ �⃑�𝐷𝑣𝑐} ⊆ 𝒫 𝐷𝑀𝑐 ,

{�⃑�𝐷𝑣𝑐 → �̂�𝐷𝑣𝑐} ⊆ 𝒯 𝐷𝑀𝑐 , {�̌�𝐷𝑎𝑐ℎ
𝑐 ⇠⇢�⃑�𝐷𝑒ℎ𝑐 , } ⊆ ̊ℰ𝐷𝑀𝑐 .

Expected & actual design interpretation: 𝑐 interprets both expected and partial actual human-
sourced game dynamics from the dynamics panel

{�̂�𝐷𝑒ℎ, �̂�𝐷𝑎ℎ} {�̌�𝐷𝑒ℎ𝑐 , �̌�𝐷𝑎ℎ
𝑐 }.

Actual design augmentation: 𝑐 augments the interpreted version of the partial actual human-
sourced game dynamics with its own partial actual game dynamics

{�̌�𝐷𝑎ℎ
𝑐 , �̌�𝐷𝑎𝑐} �̌�𝐷𝑎𝑐ℎ

𝑐 .
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Assessment data preparation: 𝑐 selects the human-sourced expected game dynamics

�̌�𝐷𝑒ℎ𝑐 ⇄ �⃑�𝐷𝑒ℎ𝑐 .

Design assessment: 𝑐 compares actual game dynamics to the human-sourced expected game
dynamics by computing the distances associated with the game dynamics design dimensions’
metrics

�̌�𝐷𝑣𝑐 = (�̌�𝐷𝑎𝑐ℎ
𝑐 ⇠⇢�⃑�𝐷𝑒ℎ𝑐 ).

Results preparation: 𝑐 selects the computed game dynamics’ distances (i.e., game dynamics
evaluation concept)

�̌�𝐷𝑣𝑐 ⇄ �⃑�𝐷𝑣𝑐 .

GUI update: 𝑐 reflects the distances between expected and actual game dynamics design con-
cepts in the game dynamics panel

�⃑�𝐷𝑣𝑐 → �̂�𝐷𝑣𝑐 .
To help the human designer interpreting the similarity or dissimilarity between her/his expecta-
tions and the actual design, the game dynamics panel of the tool’s GUI provide a visual represen-
tation of the distances between expected and actual game dynamics design concepts (Figs. 6.25
and 6.26).

6.1.3.3 Game dynamics analysis

{{�̂�𝐷𝑎ℎ, �̂�𝐷𝑎𝑐} {�̌�𝐷𝑎ℎ, �̌�𝐷𝑎𝑐
ℎ}, {�̌�𝐷𝑎ℎ, �̌�𝐷𝑎𝑐

ℎ} �̌�𝐷𝑎𝑐ℎ
ℎ , �̌�𝑃 𝑎ℎ ⇄ �⃑�𝑃 𝑎ℎ} ⊆ 𝒫 𝑃𝐷ℎ,

{�⃑�𝑃 𝑎ℎ → �̂�𝑃 𝑎ℎ} ⊆ 𝒯 𝑃𝐷ℎ, {�̌�𝐷𝑎𝑐ℎ
ℎ ↦ �̌�𝑃 𝑎ℎ} ⊆ ̊ℰ𝑃𝐷ℎ.

Actual design interpretation: 𝑐 interprets both human-sourced and computer-sourced external
representations of the actual game dynamics from the game dynamics panel’s widgets

{�̂�𝐷𝑎ℎ, �̂�𝐷𝑎𝑐} {�̌�𝐷𝑎ℎ, �̌�𝐷𝑎𝑐
ℎ}.

Actual design combination: ℎ merges the partial interpreted versions of the actual game dy-
namics

{�̌�𝐷𝑎ℎ, �̌�𝐷𝑎𝑐
ℎ} �̌�𝐷𝑎𝑐ℎ

ℎ .

Actual design analysis: From her/his interpretation of the actual game dynamics, ℎ builds-up
a mental game experience design concept representing the evoked playfulness when playing the
game

�̌�𝐷𝑎𝑐ℎ
ℎ ↦ �̌�𝑃 𝑎ℎ.
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Figure 6.25: Game dynamics panel - evaluation of expected vs actual design concepts (detailed view).
The distances between expected and actual game dynamics design concepts are represented with two
small stacked bars at the very right of each of the game dynamics design dimensions. The top bar color
represents one of the four categories defined in Eq. (5.2): in-range (green), range partially exceeded
(yellow), range exceeded (orange), and out of range (red); and the fill length of the bottom bar represents
the similarity defined in Eq. (5.3). No bottom bar (i.e., fill length = 0) represents 0% similarity, while a
full filled bottom bar represents 100% similarity.

Results preparation: ℎ focuses on her/his evoked game experience

�̌�𝑃 𝑎ℎ ⇄ �⃑�𝑃 𝑎ℎ.

GUI update: ℎ manipulates the game experience panel’s widgets to reflect her/his evoked game
experience

�⃑�𝑃 𝑎ℎ → �̂�𝑃 𝑎ℎ.
The tool’s GUI allows a human agent ℎ (i.e., the player) to externalize her/his actual game ex-
perience in the same panel where the game experience design space was configured through
formulation. For each PLEX card representing a game experience design dimension, ℎ sets the
actual intensity of the evoked experience (if evoked) by moving a second double thumb vertical
slider located at the right of the one used in formulation or reformulation (Fig. 6.27). ℎ analyzer
can also set the intensity value through the PLEXQ mini-survey.
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Figure 6.26: Game dynamics panel - evaluation of expected vs actual design concepts (complete view).

6.1.3.4 Game experience evaluation

{{�̂�𝑃 𝑒ℎ, �̂�𝑃 𝑎ℎ} {�̌�𝑃 𝑒ℎ𝑐 , �̌�𝑃 𝑎ℎ
𝑐 }, �̌�𝑃 𝑒ℎ𝑐 ⇄ �⃑�𝑃 𝑒ℎ𝑐 , �̌�𝑃 𝑣𝑐 ⇄ �⃑�𝑃 𝑣𝑐} ⊆ 𝒫 𝑃𝐷𝑐 ,

{�⃑�𝑃 𝑣𝑐 → �̂�𝑃 𝑣𝑐} ⊆ 𝒯 𝑃𝐷𝑐 , {�̌�𝑃 𝑎ℎ
𝑐 ⇠⇢�⃑�𝑃 𝑒ℎ𝑐 , } ⊆ ̊ℰ𝑃𝐷𝑐 .

Expected & actual design interpretation: 𝑐 interprets both actual and expected human-sourced
game experience from the game experience panel

{�̂�𝑃 𝑒ℎ, �̂�𝑃 𝑎ℎ} {�̌�𝑃 𝑒ℎ𝑐 , �̌�𝑃 𝑎ℎ
𝑐 }.

Assessment preparation: 𝑐 selects the expected game experience

�̌�𝑃 𝑒ℎ𝑐 ⇄ �⃑�𝑃 𝑒ℎ𝑐 .

Design assessment: 𝑐 compares actual game experience to expected game experience by com-
puting the distances associated with the game experience design dimensions’ metrics

�̌�𝑃 𝑣𝑐 = (�̌�𝑃 𝑎ℎ
𝑐 ⇠⇢�⃑�𝑃 𝑒ℎ𝑐 ).

Results preparation: 𝑐 selects the computed game experiences’ distances

�̌�𝑃 𝑣𝑐 ⇄ �⃑�𝑃 𝑣𝑐 .
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Figure 6.27: Game experience panel - setting the actual game experience. As in the ‘expected-experience’
related slider, the ‘actual-experience’ slider allows setting a specific intensity value or a range. The analyzer
may even set a particular value of 0 to express that the associated playful experience was not evoked at
all.

GUI update: 𝑐 reflects the distances between expected and actual game experience design con-
cepts in the game experience panel

�⃑�𝑃 𝑣𝑐 → �̂�𝑃 𝑣𝑐 .
To help the human designer interpreting the similarity or dissimilarity between her/his game
experience expectations and the evoked game experience, the game experience panel of the tool’s
GUI provide a visual representation of the distances between expected and actual game dynamics
design concepts (Fig. 6.28)

Figure 6.28: Game experience panel - evaluation. The distance between the expected and actual game
experience is represented using the same mechanism as in the game dynamics panel. Each dimension
(PLEX card) is decorated with a pair of stacked bars on the right side, indicating both its categorical rating
and similarity according to the metric defined in Eq. (5.1).
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6.1.4 Reformulation

In this system, the formulation processes at the game experience and game dynamics levels share
the same pattern of steps which is illustrated in (Fig. 6.29).

6.1.4.1 Game experience reformulation

New/modified external
requirements interpretation

External inspiring set
interpretation

Internalized concepts
reflection

External trigger

Changes in explicit
requirements

Other

Current design
re-interpretation Memory recall

Internal trigger

Current design
re-imagination

Design space
redefinition

GUI update

Figure 6.29: An activity diagram representing the overall reformulation process pattern implemented in
the game experience 𝑃 and game dynamics 𝐷 levels.

{�̂�𝑃 𝑟 �̌�𝑃 ℎ, �̂�𝑃 𝑛 �̌�𝑃 ℎ, {�̂�𝑃 𝑎ℎ, �̂�𝑃 𝑒ℎ, �̂�𝑃 𝑣𝑐} {�̌�𝑃 𝑎ℎ, �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑣𝑐
ℎ},

�̌�𝑃 ℎ �̌�𝑃 𝑒ℎ, {�̌�𝑃 𝑎ℎ, �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑣𝑐
ℎ} �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑚ℎ �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑒ℎ ⇄ �⃑�𝑃 𝑒ℎ} ⊆ 𝒫 𝑃𝐷ℎ,

{�⃑�𝑃 𝑒ℎ → �̂�𝑃 𝑒ℎ} ⊆ 𝒯 𝑃𝐷ℎ.
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New/modified external requirements interpretation: ℎ interprets new or modified external
game experience expectations

�̂�𝑃 𝑟 �̌�𝑃 ℎ.

External inspiring set interpretation: At any time, ℎ interprets a game experience design con-
cept from an external inspiring set

�̂�𝑃 𝑛 �̌�𝑃 ℎ.

Internalized concepts reflection: Through reflection, ℎ accommodates and augments the in-
terpreted version of the externally defined game experience, attempts to model it (mentally) in
terms of a possibly different set of PLEX playful experiences categories (different from the current
design space) or intensities

�̌�𝑃 ℎ �̌�𝑃 𝑒ℎ.

Current design re-interpretation: At any time, ℎ interprets the current actual and expected
game experiences from the game experience panel and the distances computed by 𝑐 between
expected and actual game experiences (reported evaluation) 6

{�̂�𝑃 𝑎ℎ, �̂�𝑃 𝑒ℎ, �̂�𝑃 𝑣𝑐} {�̌�𝑃 𝑎ℎ, �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑣𝑐
ℎ}.

Current design re-imagination: Through reflection, ℎ reimagines the game experience in terms
of a possibly different set of PLEX playful experiences categories or intensities

{�̌�𝑃 𝑎ℎ, �̌�𝑃 𝑒ℎ, �̌�𝑃 𝑣𝑐
ℎ} �̌�𝑃 𝑒ℎ.

Memory recall: By reflection, ℎ may recall an appropriate game experience defined in terms of
a possibly different set of PLEX playful experiences categories or intensities

�̌�𝑃 𝑚ℎ �̌�𝑃 𝑒ℎ.

Design space re-definition: ℎ focuses on the new design dimensions and ranges used to model
the desired game experience and removes the focus on discarded ones, updating her/his game
experience design space

�̌�𝑃 𝑒ℎ ⇄ �⃑�𝑃 𝑒ℎ, �⃑�𝑃 𝑒ℎ = 𝒟𝑃 ℎ.

GUI update: ℎ updates her/his game experience design space (i.e., the updated expected expe-
rience design concept) via the game experience panel

�⃑�𝑃 𝑒ℎ → �̂�𝑃 𝑒ℎ.

The designer follows a very similar GUI workflow as in the formulation process (See GUI update in
Section 6.1.1.1). She/he may add new dimensions, replace dimensions, modify their intensities
and, additionally, remove dimensions if required (See Fig. 6.4).

6A common designer’s re-interpretation trigger would be having performed a reformulation on the design level
below.
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6.1.4.2 Game dynamics reformulation

𝒫 𝑃𝐷ℎ ⊇ {�̂�𝐷𝑟 �̌�𝐷ℎ, �̂�𝐷𝑛 �̌�𝐷ℎ, {�̂�𝐷𝑎ℎ, �̂�𝐷𝑒ℎ, �̂�𝐷𝑣𝑐} {�̌�𝐷𝑎ℎ, �̌�𝐷𝑒ℎ, �̌�𝐷𝑣𝑐
ℎ},

�̌�𝐷ℎ �̌�𝐷𝑒ℎ, {�̌�𝐷𝑎ℎ, �̌�𝐷𝑒ℎ, �̌�𝐷𝑣𝑐
ℎ} �̌�𝐷𝑒ℎ, �̌�𝐷𝑚ℎ �̌�𝐷𝑒ℎ, �̌�𝐷𝑒ℎ ⇄ �⃑�𝐷𝑒ℎ} ⊆ 𝒫 𝐷𝑀ℎ,

𝒯 𝑃𝐷ℎ ⊇ {�⃑�𝐷𝑒ℎ → �̂�𝐷𝑒ℎ} ⊆ 𝒯 𝐷𝑀ℎ.

New/modified external requirements interpretation: ℎ interprets new or modified external
game dynamics constraints and requirements

�̂�𝐷𝑟 �̌�𝐷ℎ.

External inspiring set interpretation: At any time, ℎ interprets a game dynamics design con-
cept from an external inspiring set

�̂�𝐷𝑛 �̌�𝐷ℎ.

Internalized concepts reflection: Through reflection, ℎ accommodates and augments the inter-
preted version of the externally defined game dynamics constraints. They attempt to model it in
terms of different dimensions’ ranges or a possibly different set of ‘gameplay scenario’ and ‘game
object type counter’ types of dimensions

�̌�𝐷ℎ �̌�𝐷𝑒ℎ.

Current design re-interpretation: At any time, ℎ interprets the current actual and expected
game dynamics from the game dynamics panel and the distances computed by 𝑐 between ex-
pected and actual game dynamics (reported evaluation)

{�̂�𝐷𝑎ℎ, �̂�𝐷𝑒ℎ, �̂�𝐷𝑣𝑐} {�̌�𝐷𝑎ℎ, �̌�𝐷𝑒ℎ, �̌�𝐷𝑣𝑐
ℎ}.

Current design re-imagination: Through reflection, ℎ reimagines the game dynamics design
concept in terms of different dimensions’ ranges or a possibly different set of ‘gameplay scenario’
and ‘game object type counter’ types of dimensions

{�̌�𝐷𝑎ℎ, �̌�𝐷𝑒ℎ, �̌�𝐷𝑣𝑐
ℎ} �̌�𝐷𝑒ℎ.

Memory recall: By reflection, ℎ may recall an appropriate game dynamics defined in terms of
different dimensions’ ranges or a possibly different set of ‘gameplay scenario’ and ‘game object
type counter’ types of dimensions

�̌�𝐷𝑚ℎ �̌�𝐷𝑒ℎ.

Design space re-definition: ℎ focuses on the new design dimensions and ranges used to model
the desired game dynamics and removes the focus on discarded ones, updating her/his game
dynamics design space

�̌�𝐷𝑒ℎ ⇄ �⃑�𝐷𝑒ℎ, �⃑�𝐷𝑒ℎ = 𝒟𝐷ℎ.
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GUI update: ℎ updates her/his game dynamics design space via the game dynamics panel

�⃑�𝐷𝑒ℎ → �̂�𝐷𝑒ℎ.

The designer follows a very similar GUI workflow as in the formulation process (See GUI update
in Section 6.1.1.2); that is, they may add new ´gameplay scenario’ or ´game object type counter’
dimensions, modify ranges of current dimensions and, additionally, remove ´gameplay scenario’
or ´game object type counter’ dimensions if required (See Figs. 6.8 and 6.9).

6.1.4.3 Game mechanics reformulation

This process incorporates a broader set of input sources or triggers for reformulation (e.g., existing
games, game design tutorials, the designs produced by the autonomous CCDS) (Fig. 6.30).

New/modified external
requirements interpretation

External inspiring set
interpretation

Changes in explicit requirements
Other

External trigger

Internalized concepts
reflection

Current design
re-interpretation

Current design
re-imagination

Design space
redefinition

GUI
update

Memory
recall

Internal trigger

Figure 6.30: An activity diagram representing the overall reformulation process pattern implemented in
the game mechanics 𝑀 level.
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{�̂�𝑀𝑟 �̌�𝑀ℎ, �̂�𝑀𝑛 �̌�𝑀ℎ, �̂�𝑀𝑎 �̌�𝑀𝑎ℎ,

�̌�𝑀ℎ �̌�𝑀𝑎ℎ, �̌�𝑀𝑎ℎ �̌�𝑀𝑎ℎ, �̌�𝑀𝑚ℎ �̌�𝑀𝑎ℎ, �̌�𝑀𝑎ℎ ⇄ �⃑�𝑀𝑎ℎ} ⊆ 𝒫 𝐷𝑀ℎ,

{�⃑�𝑀𝑎ℎ → �̂�𝑀𝑎} ⊆ 𝒯 𝐷𝑀ℎ.

New/modified external requirements interpretation: ℎ interprets new or modified external
game constraints

�̂�𝑀𝑟 �̌�𝑀ℎ.

External inspiring set interpretation: At any time, ℎ interprets a game design concept from an
external inspiring set (e.g., a design generated by the autonomous CCDS)

�̂�𝑀𝑛 �̌�𝑀ℎ.

Internalized concepts reflection: Through reflection, ℎ accommodates and augments the in-
terpreted version of the externally defined game mechanics constraints and attempts to model
it in terms of different dimensions’ ranges (e.g., different/modified layers/aliases, number and
structure of game rules and win conditions) or dimensions (e.g., a different game board shape
and size)

�̌�𝑀ℎ �̌�𝑀𝑎ℎ.

Current design re-interpretation: At any time, ℎ may interprets the game editor’s current game

�̂�𝑀𝑎 �̌�𝑀𝑎ℎ.

Current design re-imagination: Through reflection, ℎ reimagines the game in terms of different
dimensions or ranges

�̌�𝑀𝑎ℎ �̌�𝑀𝑎ℎ.

Memory recall: By reflection, ℎ may recall a game defined in terms of different dimensions or
ranges

�̌�𝑀𝑚ℎ �̌�𝑀𝑎ℎ.

Design space re-definition: ℎ focuses on the new design dimensions and ranges used to model
the desired game and removes the focus on discarded ones, updating her/his game mechanics
design space

�̌�𝑀𝑎ℎ ⇄ �⃑�𝑀𝑎ℎ, �⃑�𝑀𝑎ℎ = 𝒟𝑀ℎ.

GUI update: ℎ updates her/his game mechanics design space via the game editor panel

�⃑�𝑀𝑎ℎ → �̂�𝑀𝑎.
The designer follows a very similar GUI workflow as in the formulation process (See GUI update
in Sections 6.1.1.3 and 6.1.2.2). That is, they may set a new game board shape and size, modify
the layers and aliases, and modify the number and structure of game rules and win conditions
(See Figs. 6.10 to 6.13, 6.15, 6.17 and 6.18).
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6.2 Evaluation

At this stage of the collaborative CCDS development, only the evaluation of the user interface
(GUI) is considered. Incorporating an evaluation of either the computational agent’s creative
capacity (perhaps when the agent acquires greater responsibilities in the creative process) or of
the creative process itself is pending.

6.2.1 GUI evaluation

With the collaboration of a professional user interface (UI)/UX/IxD designer, an evaluation tool
was defined based on the ten heuristics (Table 6.1) proposed by Jakob Nielsen (1994, 2020) for
assessing usability, interaction, and user experience. These heuristics has been developed and
improved since 1990 within the field of HCI as general principles or broad rules (rather than
specific usability guidelines) for interaction design.

Table 6.1: The ten Nielsen’s interaction design heuristics as published in (ibid.).

Visibility of system status
Designs should keep users informed about what is going on,
through appropriate, timely feedback.

Match between system and
the real world

The design should speak the users’ language. Use words, phrases,
and concepts familiar to the user, rather than internal jargon. Fol-
low real-world conventions, making information appear in a natu-
ral and logical order.

User control and freedom
Users often perform actions bymistake. They need a clearly marked
”emergency exit” to leave the unwanted action without having to
go through an extended process.

Consistency and standards
Users should not have to wonder whether different words, situa-
tions, or actions mean the same thing. Follow platform and indus-
try conventions.

Error prevention

Good error messages are important, but the best designs carefully
prevent problems from occurring in the first place. Either eliminate
error-prone conditions, or check for them and present users with a
confirmation option before they commit to the action.

Recognition rather than recall

Minimize the user’s memory load by making elements, actions, and
options visible. The user should not have to remember information
from one part of the interface to another. Information required to
use the design (e.g. field labels or menu items) should be visible or
easily retrievable when needed.

Flexibility and efficiency of
use

Shortcuts — hidden from novice users — may speed up the inter-
action for the expert user such that the design can cater to both in-
experienced and experienced users. Allow users to tailor frequent
actions.
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Aesthetic and minimalist
design

Interfaces should not contain information which is irrelevant or
rarely needed. Every extra unit of information in an interface com-
petes with the relevant units of information and diminishes their
relative visibility.

Help users recognize,
diagnose, and recover from
errors

Error messages should be expressed in plain language (no error
codes), precisely indicate the problem, and constructively suggest
a solution.

Help and documentation
It is best if the system doesn’t need any additional explanation.
However, it may be necessary to provide documentation to help
users understand how to complete their tasks.

The concrete elements of each assessment item were formulated during an interview with
the UI/UX designer to discuss the system’s purpose. Then, after defining the elements of each
evaluation item, an external evaluation of the system’s GUI was carried out in the actual tool’s
GUI (Figs. 6.31 to 6.34).

Figure 6.31: Collaborative CCDS with computational ‘assistant’ - actual GUI game experience panel screen-
shot.

Figure 6.32: Collaborative CCDS with computational ‘assistant’ - actual GUI game dynamics panel screen-
shot depicting the automatic plot to compare expected with actual game dynamics design concepts.

Each item is evaluated on a 0 to 2 scale, where 0 indicates that the system does not comply
with the minimum necessary, 1 indicates that the system complies with the minimum necessary,
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Figure 6.33: Collaborative CCDS with computational ‘assistant’ - actual GUI game dynamics panel screen-
shot (2).

Figure 6.34: Collaborative CCDS with computational ‘assistant’ - actual GUI game mechanics panel screen-
shot.

and 2 indicates that the system satisfactorily complies with the evaluated item. Once each element
has been evaluated, the global evaluation is computed to assess the overall compliance with the
heuristics Fig. 6.35 and Table 6.2).

Table 6.2: Collaborative CCDS with computational ‘assistant’ - GUI detailed evaluation.

Heuristic/item Value %

Visibility of system status

The system provides textual, graphical, auditory or sensory (vibration)
prompts when the system requires time to process information before
displaying it.

1

Continued on next page
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Table 6.2 – Continued from previous page

Heuristic/item Value %

Interactive elements (e.g., buttons, inputs, controls) provide feedback to the
user when the user manipulates them.

2

Feedback from interactive elements (e.g., buttons, inputs, controls) is clear to
the user.

2

The system uses textual, graphical, auditory, or sensory (vibrations) warnings
whether the tasks have been performed successfully or not.

1

Subtotal 6 75.00%

Match between system and real world

The system has a language or terminology that is familiar to the user. 1

There is a hierarchy in the information presented (e.g., title, subtitle, text box,
images, icons).

2

The icons used are clear to the user. 1

Icons that are not clear to the user have descriptive support labels. 2

The labels of interactive elements correspond with the functions they perform
or request.

2

Field labels are descriptive concerning the information requested. 2

The system uses metaphors for navigation or interaction elements (e.g., tabs,
accordion, bookmarks).

1

The transition between screens presents a logical sense of navigation (e.g.,
right-to-left, up-to-down, down-to-up, fade-in, fade-out, rotate).

2

Subtotal 13 81.25%

User control and freedom

When the user performs a task by mistake, the system presents undo and or
redo options.

0

When the user wants to edit data in a previously filled-in field, the system
allows her/him to do it easily.

2

The fields allow for easy entry of information. 1

Subtotal 3 50.00%

Consistency and standards

In multi-step tasks, the user is shown which step she/he is in and how many
steps are left to complete the task.

2

The native elements of each operating system or platform are used
appropriately.

2

Appropriate interaction elements and controls are used for each action. 2

Continued on next page
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Table 6.2 – Continued from previous page

Heuristic/item Value %

For interactive elements, the use of standard colors and styles (e.g., links,
green for accept, red for cancel) is followed.

2

The visual aspect and style of graphical elements and interactive elements are
consistent throughout the system.

2

The way of functioning of the interactive elements is the same throughout the
system.

2

The language and terminology are the same throughout the system. 2

Subtotal 14 100.00%

Error prevention

Tasks that remove or modify sensitive information request confirmation from
the user before being executed.

1

Validation systems are in place to prevent the user from submitting/entering
erroneous information (e.g., checking form fields on the fly).

1

The system prevents the user from entering invalid characters (e.g., numeric
fields do not allow entering alphabetic or special characters).

2

Subtotal 4 66.67%

Recognition rather than recall

The affordance of interactive elements is evident. 2

There is no affordance in non-interactive elements. 2

Field labels are always visible. 2

The main interaction elements have a predominant color in contrast with the
rest of the interface elements.

2

The main interaction elements are visible when they are required. 2

In multi-step tasks, the system alleviates the user from having to remember
decisions previously made.

1

Subtotal 11 91.67%

Flexibility and efficiency of use

The system is flexible enough that novice users can interact with it without
any problem.

1

The system has “accelerators” which allow frequent actions to be performed
more quickly.

2

The system has advanced options that are displayed on demand by advanced
users.

2

The user has customization options within the system. 1

Subtotal 6 75.00%

Continued on next page
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Table 6.2 – Continued from previous page

Heuristic/item Value %

Aesthetic and minimalism design

The system avoids information overload, displaying only the necessary
information for each section.

2

The system has an interface free of visual noise, avoiding displaying decorative
elements that do not support the message transmitted in each section.

2

The system has a visual resting space between elements. 2

The system uses different levels of detail to display the content. 2

Subtotal 8 100.00%

Recognize, diagnose, and recover from errors

When the system is faulty, it informs the user with textual or graphical
messages.

2

Error messages have a clear description of the problem and offer a possible
solution.

1

Fields requesting complex or unusual information have clear contextual help. 2

The fields that the user does not fill in correctly show clear contextual help. 2

Subtotal 7 87.50%

Help and documentation

The system has a help button or link to information regarding the operation of
the system.

0

The help button or link is located in a visible and standard area. 0

The help information is focused on the user’s tasks. It is displayed as a list
with a series of steps to be performed.

0

The system has a mini-tour, which briefly explains the main elements of the
system.

0

Subtotal 0 0.00%

Total 72.71%
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Figure 6.35: Collaborative CCDS with computational ‘assistant’ - GUI global evaluation.
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7
Building a collaborative
CCDS: Apprentice assistant
computational agent

In this system version, the computational agent 𝑐 keeps performing its previous roles and, addi-
tionally, starts learning how to perform specific processes based on the observation of human (ℎ
agent) performing (supervised learning). This version does not require major modifications to
the tool’s GUI.

The computational agent 𝑐 should be able to:

• Learn the rules to produce expected game dynamics design concepts that the human designer
would likely produce when trying to satisfy particular game experiences (the human designer
𝑃𝐷 synthesis encoded rationale). The agent should learn 𝑋 ↦ 𝑌 rules, where 𝑋 are game
experience design concepts, and 𝑌 are game dynamics design concepts.

• Learn the rules to derive actual game experience design concepts from actual game dynamics
design concepts (the encoded dynamics↦experience mapping described in the MDA frame-
work). The agent should learn 𝑋 ↦ 𝑌 rules, where 𝑋 are game dynamics design concepts,
and 𝑌 are game experience design concepts.

• Learn the rules to produce games that the human designer would likely produce when trying
to satisfy particular game dynamics (the human designer 𝐷𝑀 synthesis encoded rationale).
The agent should learn 𝑋 ↦ 𝑌 rules, where 𝑋 are game dynamics design concepts, and 𝑌
are games.

• Learn the rules to derive actual game dynamics design concepts from actual games (the en-
coded mechanics↦dynamics mapping described in the MDA framework). The agent should
learn 𝑋 ↦ 𝑌 rules, where 𝑋 are games, and 𝑌 are game dynamics design concepts.
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7.1. Design process update

The construction of this version of the system requires adding new strategies to the existing
rulesets of the participant agents. The formalization of the system is only slightly affected at the
high level in the game experience–dynamics 𝑃𝐷 layer to incorporate the 𝐼 interaction category
(non-design category) of dimensions:

⟨ … , ⟨⟨Δ𝑃𝐷 ∪ Δ𝐼, 𝒰 𝑃𝐷 ∪ 𝒰 𝐼⟩, ⟨Δ̊𝑃𝐷ℎ ∪ Δ̊𝐼ℎ ∪ Δ̊𝑃𝐷𝑐 , �̊� 𝑃𝐷ℎ ∪ �̊� 𝐼ℎ ∪ �̊� 𝑃𝐷𝑐⟩⟩, … ⟩.

In the following section, we first describe the generalities of the computational implementation of
the new strategies, followed by the details of each of them within their corresponding processes.

7.1 Design process update

This system version involves a computational agent capable of learning concept derivation rules
(synthetical ⤇ and analytical ↦) between two pairs of design levels ⟨𝑃 , 𝐷⟩, and ⟨𝐷, 𝑀⟩. In
terms of the framework, this new capability requires to add two types of chained reflection
strategies to the computational agent perception rulesets 𝒫 𝑃𝐷𝑐 and 𝒫 𝐷𝑀𝑐:

a) A reflection strategy (conversion units) to convert the internal representations of concepts
(already interpreted by the assistant agent) into specialized representations suitable for a
learning algorithm {�̌�𝐿 , �̌�𝐿} {�̌�𝐿 ′, �̌�𝐿′}.

b) A second chained reflection strategy (learning units) to build the corresponding learning
models and formation of learning memory {�̌�𝐿 , �̌�𝐿} {�̌�𝐿 ′′, �̌�𝐿′′}.

Computationally, second-level reflection strategies are implemented (in a first revision) with
a backpropagation algorithm to train a regression multilayer perceptron (MLP) with a single hid-
den layer. This algorithm’s selection leads to implementing the first level reflection strategies as
conversion units to convert interpreted representations of concepts into specialized representa-
tions in the form of vectors that will be the input data for the second level reflection learning
units.

Learning strategies are performed online (i.e., each learning model is updated each time the
apprentice is presented with a pair of design concepts of different levels to learn). However, it
is not strictly incremental since when the agent is presented with an example and is requested
to learn it, it must execute its learning strategy considering the new example plus the concepts
already stored in its memory as a training set. This situation, however, may not be a significant
issue as long as the size of the training set is small.

Specialized representations of concepts (input vectors) produced by reflection strategies of
the type {�̌�𝐿 , �̌�𝐿} {�̌�𝐿 ′, �̌�𝐿′} are static; they are limited to a specific subset of design
dimensions, and in some cases, their ranges are also limited to a subset. That is, in the case of
dimensions having unbounded intervals as ranges, the range is converted to a bounded interval
within -100 and 100.
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In the case of numerical dimensions, two vector positions are used to encode the subset of the
range of the dimension being learned, and in the case of categorical dimensions, a single vector
position is used to encode a design dimension.

In all cases, the hyperbolic tangent function tanh which is defined in the range (−1, 1) is
used as MLP activation function to allow encoding both the presence or absence of a dimension
and its value if it is present in a submitted design concept:

• Categorical dimension values are encoded in one vector position by mapping a set of 𝑛 cate-

gorical values indexed by 𝐼 ≔ {1‥𝑛} to numerical values in the interval [
𝑖−1
𝑛 , 𝑖

𝑛) for each 𝑖th
category.

• On the other hand, numerical dimension values are normalized to the interval [0, 1] and en-
coded in two vector positions, each in the interval [0, 1] that establish a subregion or subset
(as a percentage) of the original range of the design dimension.

• A negative value in one or two vector positions would indicate that the dimension is absent in
the concept (it is not part of the current design space).

Example 7.1.1.

• Given the paths dimension ̇𝛿𝐷𝑝𝑡 ≔ ⟨{0‥10}, 𝐷𝑐⟩ and a design concept 𝑥𝐷 = ⟨… , {1‥5}, …⟩,
the paths dimension value {1‥5}would be transformed into two vector positions [… , 0.1, 0.5, …]
in the vector representation of the concept. The value of the left side of the dimension value
1 corresponds to the 10% of the original range, and the right side of the dimension value 5
corresponds to the 50% of the original range.

• If the maze-based dimension ( ̇𝛿𝐷𝑔𝑠)𝑚𝑧 ≔ ⟨𝐼, 𝐷𝑐⟩ is not present in a design concept 𝑥𝐷 but it
is defined in the learning model algorithm, the dimension in the transformed concept would
be represented by two vector positions with negative one [… , −1.0, −1.0, …].

• Given thewin condition game object dimension ̇𝛿𝑀𝑤𝑜 ≔ ⟨𝐶𝑜𝑡𝑠 ∪ 𝐶𝑎𝑛, 𝐷𝐻⟩, the set 𝐶𝑜𝑡𝑠∪𝐶𝑎𝑛 =
{background, player, wall, target, crate}, and a design concept 𝑥𝑀 = ⟨… , {player}, …⟩, the
dimension value {player} in the transformed concept would be [… , 0.2, …].

In all cases the mean squared error (MSE) is used as the cost function to be minimized by the
backpropagation learning algorithm.

7.1.1 Synthesis

7.1.1.1 Game dynamics synthesis

{ … , �̌�𝐷𝑒ℎ �̌�𝐼ℎ, �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ} ⊆ 𝒫 𝑃𝐷ℎ, { … , �⃑�𝐼ℎ → �̂�𝐼ℎ} ⊆ 𝒯 𝑃𝐷ℎ,
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{ … , �̂�𝐼ℎ �̌�𝐼ℎ
𝑐 , {�̌�𝑃 𝑒ℎ, �̌�𝐷𝑒ℎ} {�̌�𝑃 𝑒ℎ𝑐 , �̌�𝐷𝑒ℎ𝑐 }, {�̌�𝑃 𝑒ℎ𝑐 , �̌�𝐷𝑒ℎ𝑐 } {�̌�𝑃 𝑒ℎ′

𝑐 , �̌�𝐷𝑒ℎ′
𝑐 },

{�̌�𝑃 𝑒ℎ′
𝑐 , �̌�𝐷𝑒ℎ′

𝑐 } �̌�𝑃𝐷ℎ
𝑐 , �̌�𝐼ℎ

𝑐 �̌�𝐼𝑐 , �̌�𝑃𝐷ℎ
𝑐 �̌�𝐼𝑐 , �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐} ⊆ 𝒫 𝑃𝐷𝑐 ,

{ … , �⃑�𝐼𝑐 → �̂�𝐼𝑐} ⊆ 𝒯 𝑃𝐷𝑐 .

…

Learning request elaboration (ℎ): After having synthesized the expected game dynamics de-
sign concept (or at any time), if the human designer ℎ deems the concept sufficiently complete
and that it is worthwhile for their computational apprentice 𝑐 to learn the derivation rules that
generated it, then she/he generates the intention to call the apprentice’s attention and request it
to learn the derivation rules for this state of the design

�̌�𝐷𝑒ℎ �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ.

GUI update (ℎ): ℎ externalizes their request via an action button (Fig. 7.1)

�⃑�𝐼ℎ → �̂�𝐼ℎ.

Figure 7.1: Game experience-dynamics synthetical derivation learning request button.

Learning request interpretation (𝑐): 𝑐 interprets the human’s request to watch out for the ex-
pected concepts of experience and dynamics and learn the synthetical derivation rules that relate
them

�̂�𝐼ℎ �̌�𝐼ℎ
𝑐 .

Learning start notification (𝑐): In response to the human’s request, the computational agent 𝑐
places a looping progress bar widget labeled as ‘Learning’ in the tool’s GUI to notify that the 𝑐
agent’s learning task has commenced (Fig. 7.2)

�̌�𝐼ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

Figure 7.2: Learning-in-progress notification.
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Expected experience & dynamics interpretation (𝑐): 𝑐 interprets the human-sourced expected
game experience and dynamics design concepts

{�̌�𝑃 𝑒ℎ, �̌�𝐷𝑒ℎ} {�̌�𝑃 𝑒ℎ𝑐 , �̌�𝐷𝑒ℎ𝑐 }.

Expected experience & dynamics transformation (𝑐): 𝑐 transforms the interpreted represen-
tations of expected game experience and dynamics design concepts into specialized representa-
tions suitable for the learning algorithm

{�̌�𝑃 𝑒ℎ𝑐 , �̌�𝐷𝑒ℎ𝑐 } {�̌�𝑃 𝑒ℎ′
𝑐 , �̌�𝐷𝑒ℎ′

𝑐 }.

The new, specialized representations are vectors that will be the input data for the learning algo-
rithm according to the procedure explained at the beginning of Section 7.1. This strategy covers
the complete working set of game experience design dimensions Δ′𝑃 and a subset of the working
set of game dynamics design dimensions Δ′𝐷 including 36 game-object-type-counter design dimen-
sions for each game object available in the tool, and omitting the response time and any additional
gameplay-scenario design dimension (other than maze-based, twitch-based, and logic-based). That
is, 22 dimensions that correspond to 22 PLEX playfulness categories and 45 dynamics dimen-
sions that are transformed into an experience vector of 44 positions and a dynamics vector of 90
positions; that is, two positions per design dimension.

Expected experience–dynamics derivation learning (𝑐): As a second-level chained reflection
strategy, 𝑐 builds or updates a learning model of experience-dynamics synthetical derivation rules

{�̌�𝑃 𝑒ℎ′
𝑐 , �̌�𝐷𝑒ℎ′

𝑐 } �̌�𝑃𝐷ℎ
𝑐 , where �̌�𝑃 𝑒ℎ′

𝑐 ∊ �̌�𝑃 𝑒ℎ′
𝑐 , �̌�𝐷𝑒ℎ′

𝑐 ∊ �̌�𝐷𝑒ℎ′
𝑐 .

The MLP architecture consists of an input layer of 44 units (game experience), a hidden layer
of 8 units (determined empirically by experimentation), and an output layer of 90 units (game
dynamics) (Fig. 7.3).

The backpropagation algorithm that creates or updates the learning model is executed for 100
epochs with a learning rate of 0.1, both parameters determined empirically by some experimen-
tation.

Learning finish notification (𝑐): Having the learningmodel built or updated, the computational
agent 𝑐 removes the learning looping progress bar widget from the tool’s GUI to notify the human
agent ℎ that her/his request has been completed

�̌�𝑃𝐷ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

7.1.1.2 Game mechanics synthesis

{ … , �̌�𝑀𝑎ℎ �̌�𝐼ℎ, �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ} ⊆ 𝒫 𝐷𝑀ℎ, { … , �⃑�𝐼ℎ → �̂�𝐼ℎ} ⊆ 𝒯 𝐷𝑀ℎ,
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𝑥2

𝑥44

⋮

𝑎(1)
1

𝑎(1)
8

⋮

𝑦1

𝑦2

𝑦3

𝑦4

𝑦90

⋮

�̌�𝑃 𝑒ℎ′
𝑐

�̌�𝐷𝑒ℎ′
𝑐

Figure 7.3: MLP architecture for expected experience-dynamics derivation learning.

{ … , �̂�𝐼ℎ �̌�𝐼ℎ
𝑐 , {�̂�𝐷𝑒ℎ, �̂�𝑀𝑎} {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐}, {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐} {�̌�𝐷𝑒ℎ′

𝑐 , �̌�𝑀𝑎′
𝑐},

{�̌�𝐷𝑒ℎ′
𝑐 , �̌�𝑀𝑎′

𝑐} �̌�𝐷𝑀ℎ
𝑐 , �̌�𝐼ℎ

𝑐 �̌�𝐼𝑐 , �̌�𝐷𝑀ℎ
𝑐 �̌�𝐼𝑐 , �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐} ⊆ 𝒫 𝐷𝑀𝑐 ,

{ … , �⃑�𝐼𝑐 → �̂�𝐼𝑐} ⊆ 𝒯 𝐷𝑀𝑐 .

…

Learning request (ℎ): After having synthesized the actual game mechanics design concept (or
at any time), if the human designer ℎ deems the concept sufficiently complete and that it is
worthwhile for their computational apprentice 𝑐 to learn the derivation rules that generated it,
then she/he requests to its computational apprentice 𝑐, via an action button (Fig. 7.4), to pay
attention to both expected game dynamics and actual game mechanics design concepts and learn
the synthetical derivation rules

�̌�𝑀𝑎ℎ �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ → �̂�𝐼ℎ.

Figure 7.4: Game dynamics-mechanics synthetical derivation learning request button.
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Learning request interpretation (𝑐): 𝑐 interprets the human’s request to watch out for the ex-
pected game dynamics and actual game mechanics design concepts, and learn the synthetical
derivation rules that relate them

�̂�𝐼ℎ �̌�𝐼ℎ
𝑐 .

Learning start notification (𝑐): In response to the human’s request, the computational agent 𝑐
places a looping progress bar widget labeled as ‘Learning’ in the tool’s GUI to notify that the 𝑐
agent’s learning task has commenced (Fig. 7.2)

�̌�𝐼ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

Expected dynamics & actual mechanics interpretation (𝑐): 𝑐 interprets the human-sourced ex-
pected game dynamics and actual game mechanics design concepts

{�̂�𝐷𝑒ℎ, �̂�𝑀𝑎} {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐}.

Expected dynamics & actual mechanics transformation (𝑐): 𝑐 transforms the interpreted rep-
resentations of expected game dynamics and actual game mechanics design concepts into spe-
cialized representations suitable for the learning algorithm

{�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐} {�̌�𝐷𝑒ℎ′
𝑐 , �̌�𝑀𝑎′

𝑐}.

This strategy covers a subset of the working set of game dynamics design dimensions Δ′𝐷 omitting
the response time and any additional gameplay-scenario design dimension, and a subset of the
working set of game mechanics design dimensions Δ′𝑀 as explained as follows:

• A game board consisting of up to 22 × 22 cells (or smaller), each containing up to 4 stacked
game objects for a total of 22 × 22 × 4 = 1936 base dimensions.

• A background-exclusive alias (labeled as ‘background‘) with up to 4 game object types (4 di-
mensions).

• Up to 3 additional aliases labeled as ‘player’, ‘alias1’, and ‘alias2 containing up to 4 game object
types each (12 dimensions).

• Up to 2 win conditions composed of a quantifier, a game object or alias, and an ‘on’ game
object or alias (6 dimensions).

• Up to 5 game rules, each consisting of a rule modifier, a single pattern composed of up to
5 cells; each cell composed of a modifier and a game object type or alias for a total of 105
dimensions.

A total of 45 dynamics dimensions and 2063 mechanics dimensions are transformed into a dy-
namics vector of 90 positions and a mechanics vector of 2063 positions; that is, two positions per
dynamics design dimension and one position per mechanics design dimension.

Expected dynamics–actual mechanics derivation learning (𝑐): As a second-level chained re-
flection strategy, 𝑐 builds or updates a learning model of dynamics-mechanics synthetical deriva-
tion rules

{�̌�𝐷𝑒ℎ′
𝑐 , �̌�𝑀𝑎′

𝑐} �̌�𝐷𝑀ℎ
𝑐 , where �̌�𝐷𝑒ℎ′

𝑐 ∊ �̌�𝐷𝑒ℎ′
𝑐 , �̌�𝑀𝑎′

𝑐 ∊ �̌�𝑀𝑎′
𝑐 .
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The MLP architecture consists of an input layer of 90 units (game dynamics), a hidden layer of
6 units, and an output layer of 2063 units (game mechanics) (Fig. 7.5). The backpropagation
algorithm that creates or updates the learning model is executed for 100 epochs with a learning
rate of 0.1.

𝑥1

𝑥2

𝑥3

𝑥90

⋮

𝑎(1)
1

𝑎(1)
6

⋮

𝑦1

𝑦2

𝑦3

𝑦4

𝑦5

𝑦2063

⋮

�̌�𝐷𝑒ℎ′
𝑐

�̌�𝑀𝑎′
𝑐

Figure 7.5: MLP architecture for expected dynamics – actual mechanics derivation learning.

Learning finish notification (𝑐): Having the learningmodel built or updated, the computational
agent 𝑐 removes the learning looping progress bar widget from the tool’s GUI to notify the human
agent ℎ that her/his request has been completed

�̌�𝐷𝑀ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

7.1.2 Analysis

7.1.2.1 Game mechanics analysis

Human-based partial analysis

{ … , �̌�𝐷𝑎ℎ �̌�𝐼ℎ, �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ} ⊆ 𝒫 𝐷𝑀ℎ, { … , �⃑�𝐼ℎ → �̂�𝐼ℎ} ⊆ 𝒯 𝐷𝑀ℎ,

Jesús Pérez Romero 117



7.1. Design process update

{ … , �̂�𝐼ℎ �̌�𝐼ℎ
𝑐 , {�̂�𝑀𝑎, �̂�𝐷𝑎ℎ} {�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎ℎ

𝑐 }, {�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎ℎ
𝑐 } {�̌�𝑀𝑎′

𝑐 , �̌�𝐷𝑎ℎ′
𝑐 },

{�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎ℎ′

𝑐 } �̌�𝑀𝐷ℎ
𝑐 , �̌�𝐼ℎ

𝑐 �̌�𝐼𝑐 , �̌�𝑀𝐷ℎ
𝑐 �̌�𝐼𝑐 , �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐} ⊆ 𝒫 𝐷𝑀𝑐 ,

{ … , �⃑�𝐼𝑐 → �̂�𝐼𝑐} ⊆ 𝒯 𝐷𝑀𝑐 .
…

Learning request (ℎ): After having produced its partial actual game dynamics concept by
analyzing the actual game mechanics through playtesting, the human designer ℎ requests
to its computational apprentice 𝑐, via an action button (Fig. 7.6), to pay attention to both
actual game mechanics and human-sourced game dynamics design concepts and learn the
analytical derivation rules

�̌�𝐷𝑎ℎ �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ → �̂�𝐼ℎ.

Figure 7.6: Game dynamics-experience analytical derivation learning request button.

Learning request interpretation (𝑐): 𝑐 interprets the human’s request to watch out for the
actual game mechanics and human-sourced partial game dynamics design concepts, and
learn the analytical derivation rules that relate them

�̂�𝐼ℎ �̌�𝐼ℎ
𝑐 .

Learning start notification (𝑐): In response to the human’s request, the computational agent
𝑐 places a looping progress bar widget labeled as ‘Learning’ in the tool’s GUI to notify that
the 𝑐 agent’s learning task has commenced (Fig. 7.2)

�̌�𝐼ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

Actual mechanics & partial dynamics interpretation (𝑐): 𝑐 interprets the human-sourced
actual game mechanics and partial dynamics design concepts

{�̂�𝑀𝑎, �̂�𝐷𝑎ℎ} {�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎ℎ
𝑐 }.

Actual mechanics & partial dynamics transformation (𝑐): 𝑐 transforms the interpreted rep-
resentations of human-sourced actual game mechanics and partial dynamics design concepts
into specialized representations suitable for the learning algorithm

{�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎ℎ
𝑐 } {�̌�𝑀𝑎′

𝑐 , �̌�𝐷𝑎ℎ′
𝑐 }.

This strategy covers the same subset of the working set of game mechanics design dimen-
sions Δ′𝑀 described in Section 7.1.1.2 and a subset of the working set of game dynamics
design dimensions Δ′𝐷 omitting any computer-analyzed dimension. That is, 2063 mechanics
dimensions and 6 dynamics dimensions transformed into vectors.
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Actual mechanics–human-analyzed-dynamics derivation learning (𝑐): As a second-level
chained reflection strategy, 𝑐 builds or updates a learning model of mechanics-dynamics
analytical derivation rules

{�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎ℎ′

𝑐 } �̌�𝑀𝐷ℎ
𝑐 , where

�̌�𝑀𝑎′
𝑐 ∊ �̌�𝑀𝑎′

𝑐 , �̌�𝐷𝑎ℎ′
𝑐 ∊ �̌�𝐷𝑎ℎ′

𝑐 .
The MLP architecture consists of an input layer of 2063 units (game mechanics), a hidden
layer of 4 units, and an output layer of 6 units (game dynamics) (Fig. 7.7). The backpropa-
gation algorithm that creates or updates the learning model is executed for 100 epochs with
a learning rate of 0.1.

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥2063

⋮

𝑎(1)
1

𝑎(1)
4

⋮

𝑦1

𝑦2

𝑦6

⋮

�̌�𝑀𝑎′
𝑐

�̌�𝐷𝑎ℎ′
𝑐

Figure 7.7: MLP architecture for actual mechanics–human-analyzed-dynamics derivation learning.

Learning finish notification (𝑐): Having the learning model built or updated, the computa-
tional agent 𝑐 removes the learning looping progress bar widget from the tool’s GUI to notify
the human agent ℎ that her/his request has been completed

�̌�𝑀𝐷ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

Computer-based partial analysis (𝑐)

{ … , �̌�𝐷𝑎𝑐 �̌�𝐼𝑐 , {�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎𝑐} {�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎′

𝑐},

{�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎′

𝑐} �̌�𝑀𝐷𝑐 , �̌�𝑀𝐷𝑐 �̌�𝐼𝑐 , �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐} ⊆ 𝒫 𝐷𝑀𝑐 ,
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{ … , �⃑�𝐼𝑐 → �̂�𝐼𝑐} ⊆ 𝒯 𝐷𝑀𝑐 .

…

Learning start: After having produced the partial actual game dynamics concept by analyz-
ing the human-sourced actual game mechanics through automatic playtesting, the compu-
tational agent 𝑐 places a looping progress bar widget labeled as ‘Learning’ in the tool’s GUI
to notify that it is starting a learning task to learn the analytical rules that made it producing
the game dynamics concept (Fig. 7.2)

�̌�𝐷𝑎𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

Actual mechanics & dynamics transformation: 𝑐 transforms the already interpreted rep-
resentations of human-sourced actual game mechanics and its own partial game dynamics
design concepts into specialized representations suitable for the learning algorithm

{�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎𝑐} {�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎′

𝑐}.

This strategy covers the same subset of the working set of gamemechanics design dimensions
Δ′𝑀 described in Section 7.1.1.2, and a subset of the working set of game dynamics design
dimensions Δ′𝐷 omitting the response time and any human-analyzed design dimension. That
is, 2063 mechanics dimensions and 42 dynamics dimensions transformed into vectors.

Actual mechanics–dynamics derivation learning: As a second-level chained reflection strat-
egy, 𝑐 builds or updates a learning model of mechanics-dynamics analytical derivation rules

{�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎′

𝑐} �̌�𝑀𝐷𝑐 , where

�̌�𝑀𝑎′
𝑐 ∊ �̌�𝑀𝑎′

𝑐 , �̌�𝐷𝑎′
𝑐 ∊ �̌�𝐷𝑎′

𝑐 .
The MLP architecture consists of an input layer of 2063 units (game mechanics), a hidden
layer of 4 units, and an output layer of 84 units (game dynamics) (Fig. 7.8). The backpropa-
gation algorithm that creates or updates the learning model is executed for 100 epochs with
a learning rate of 0.1.

Learning finish notification: 𝑐 removes the learning looping progress bar widget from the
tool’s GUI to notify that its learning task has ended

�̌�𝑀𝐷𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

7.1.2.2 Game dynamics analysis

{ … , �̌�𝑃 𝑎ℎ �̌�𝐼ℎ, �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ} ⊆ 𝒫 𝑃𝐷ℎ, { … , �⃑�𝐼ℎ → �̂�𝐼ℎ} ⊆ 𝒯 𝑃𝐷ℎ,

{ … , �̂�𝐼ℎ �̌�𝐼ℎ
𝑐 , {�̂�𝐷𝑎ℎ, �̂�𝑃 𝑎ℎ} {�̌�𝐷𝑎ℎ

𝑐 , �̌�𝑃 𝑎ℎ
𝑐 }, {�̌�𝐷𝑎𝑐 , �̌�𝐷𝑎ℎ

𝑐 , �̌�𝑃 𝑎ℎ
𝑐 } {�̌�𝐷𝑎𝑐ℎ′

𝑐 , �̌�𝑃 𝑎ℎ′
𝑐 },

{�̌�𝐷𝑎𝑐ℎ′
𝑐 , �̌�𝑃 𝑎ℎ′

𝑐 } �̌�𝐷𝑃 𝑐ℎ
𝑐 , �̌�𝐼ℎ

𝑐 �̌�𝐼𝑐 , �̌�𝐷𝑃 ℎ
𝑐 �̌�𝐼𝑐 , �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐} ⊆ 𝒫 𝑃𝐷𝑐 ,
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Figure 7.8: MLP architecture for actual mechanics–computer-analyzed-dynamics derivation learning.

{ … , �⃑�𝐼𝑐 → �̂�𝐼𝑐} ⊆ 𝒯 𝑃𝐷𝑐 .

…

Learning request (ℎ): After having produced the actual game experience by analyzing the actual
game dynamics, the human designer ℎ requests to its computational apprentice 𝑐, via an action
button (Fig. 7.9), to pay attention to both actual game experience and dynamics design concepts
and learn the analytical derivation rules

�̌�𝑃 𝑎ℎ �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ → �̂�𝐼ℎ.

Figure 7.9: Game dynamics-experience analytical derivation learning request button.

Learning request interpretation (𝑐): 𝑐 interprets the human’s request to watch out for the ac-
tual game dynamics and experience design concepts, and learn the analytical derivation rules
that relate them

�̂�𝐼ℎ �̌�𝐼ℎ
𝑐 .
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Learning start notification (𝑐): In response to the human’s request, the computational agent 𝑐
places a looping progress bar widget labeled as ‘Learning’ in the tool’s GUI to notify that the 𝑐
agent’s learning task has commenced (Fig. 7.2)

�̌�𝐼ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .

Actual dynamics & experience interpretation (𝑐): 𝑐 interprets the human-sourced actual game
dynamics and experience design concepts

{�̌�𝐷𝑎ℎ, �̌�𝑃 𝑎ℎ} {�̌�𝐷𝑎ℎ
𝑐 , �̌�𝑃 𝑎ℎ

𝑐 }.

Actual dynamics & experience transformation (𝑐): 𝑐 transforms the interpreted representations
of actual game dynamics (both human and computer sourced) and experience design concepts
into specialized representations suitable for the learning algorithm

{�̌�𝐷𝑎𝑐 , �̌�𝐷𝑎ℎ
𝑐 , �̌�𝑃 𝑎ℎ

𝑐 } {�̌�𝐷𝑎𝑐ℎ′
𝑐 , �̌�𝑃 𝑎ℎ′

𝑐 }.

This strategy covers the same subsets of working sets of game dynamics Δ′𝐷 and game experience
Δ′𝑃 design dimensions described in Section 7.1.1.1 but backwards. 45 dynamics dimensions and
22 game experience dimensions are transformed into an experience vector of 44 positions and a
dynamics vector of 90 positions.

Actual dynamics–experience derivation learning (𝑐): As a second-level chained reflection strat-
egy, 𝑐 builds or updates a learning model of dynamics-experience analytical derivation rules

{�̌�𝐷𝑎𝑐ℎ′
𝑐 , �̌�𝑃 𝑎ℎ′

𝑐 } �̌�𝐷𝑃 𝑐ℎ
𝑐 , where

�̌�𝐷𝑎𝑐ℎ′
𝑐 ∊ �̌�𝐷𝑎𝑐ℎ′

𝑐 , �̌�𝑃 𝑎ℎ′
𝑐 ∊ �̌�𝑃 𝑎ℎ′

𝑐 .
The MLP architecture consists of an input layer of 90 units (game dynamics), a hidden layer of
11 units (determined empirically by experimentation), and an output layer of 44 units (game ex-
perience) (Fig. 7.10). The backpropagation algorithm that creates or updates the learning model
is executed for 100 epochs with a learning rate of 0.1, both parameters determined empirically
by some experimentation.

Learning finish notification (𝑐): Having the learningmodel built or updated, the computational
agent 𝑐 removes the learning looping progress bar widget from the tool’s GUI to notify the human
agent ℎ that her/his request has been completed

�̌�𝐷𝑃 𝑐ℎ
𝑐 �̌�𝐼𝑐 ⇄ �⃑�𝐼𝑐 → �̂�𝐼𝑐 .
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Figure 7.10: MLP architecture for actual dynamics-experience derivation learning.

7.2 Computational results

7.2.1 Test designs set

A small set of six puzzle video games was developed both to functionally and comprehensively test
the PoC tool and to have a way to systematically test and tune the learning strategies introduced
in this version of the computational agent (i.e., different MLP architectures and parameters).

The games were designed, implemented, and analyzed directly in the tool with the help of
a puzzle video game hobbyist and casual gamer (not a professional game designer) with access
to PuzzleScript’s video game gallery as an inspiring set. For this task, no significant constraints
were imposed on the non-professional designer other than the limitations imposed by the char-
acteristics of the learning strategies (such as restrictions on the number of or ranges of specific
dimensions) and the express request to try to create interesting but straightforward games (games
for experimentation). Before and during the design process, the designer was instructed about
the meaning of some of the design dimensions, especially the game dynamics level dimensions
that were somewhat unintuitive to a person who is not immersed in the formal terminology of
video game design theory. Although the set of game objects remains static in the tool, the objects
requested by the designer were introduced to the system to be available in the tool interface.

During the video game design exercise, the designer expressed the need to incorporate a
mechanism to name and draw game objects at game mechanics and dynamics design levels.
“It is possible to design games with generic game objects or a static game object palette;
however, their specific names and appearances help create a theme or atmosphere directly
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related to ludic experiences evocation.” This request (which may be satisfied in future work)
reflects the importance of the user interface of a creative support tool or creative-domain
collaboration system and evidences the cause-effect relationship between the different design
levels.

The following is a brief description of the designs created:

Design 1 - ‘Alice’: It is a canonical maze-based game in which the player’s avatar (Alice) must
meet the ‘mad hatter’ to win the game. It did not require modeling any game rules as it uses the
implicit movement rules of the PuzzleScript engine, which allows the player to move his avatar
freely on the board as long as his path is not blocked by some other object located on the same
layer on which the player’s avatar is located. In order to make the labyrinth more interesting, a
large board was chosen.

The game experience design concept was designed with only two dimensions: ‘challenge’ and
‘completion’ (Fig. 7.11a). Two dynamics design dimensions were added into the dynamics default
design space: ‘alice’ and ‘strippedwall’ counter dimensions (Figs. 7.11b and 7.11c). The game
mechanics were designed with a 21×22 game space, two non-background layers, one ‘player’
alias (additional to the default background alias) to cast the ‘alice’ object as the ‘player’ object,
and one win condition 'All alice On madhatter' to produce the playable game depicted in
Fig. 7.12.

Design 2 - ‘CookieMonster’: In this game, the cookie monster (the player’s avatar) must eat all
the cookies that appear in the game space. The cookie monster can only move from its current
position to the position of a cookie placed directly in front of it (orthogonally), free of obstacles in
between and no matter how many cells are between the monster and the cookie. The movement
restrictions make the player run the risk of getting stuck if it eats the cookies in the wrong order.

The game experience was modeled with two dimensions: ‘challenge’ and ‘nurture’ (Fig. 7.13a).
Two dynamics design dimensions were added into the dynamics default design space: ‘cmon-
ster’ and ‘cookie’ counter dimensions (Figs. 7.13b and 7.13c). The playable game (Fig. 7.14)
was produced by synthetizing the game mechanics with a small 7×8 game space, a single non-
background layer, one ‘player’ alias to cast ‘cmonster’ as ‘player’, one simple win condition 'No
cookie', and the following pair of game rules:

[ > cmonster | ... | cookie ] -> [ | ... | cmonster ]
[ > cmonster ] -> [ cmonster ]

Design 3 - ‘Hulk’ It is a game in which the player (hulk) must move rocks to make his way to
the heart token.

The game experience was modeled with three dimensions: ‘captivation’, ‘exploration’, and ‘fan-
tasy’ (Fig. 7.15a). Three dynamics design dimensions were added into the dynamics default de-
sign space: ‘rock’, ‘tree’, and ‘rockwall’ counter dimensions (Figs. 7.15b and 7.15c), although ‘tree’

Jesús Pérez Romero 124



7.2. Computational results

(a) Game experience

(b) Game dynamics (1/2)

(c) Game dynamics (2/2)

Figure 7.11: Design 1 - Game experience & dynamics.

game object was not used in the actual game mechanics design. The playable game (Fig. 7.16)
was produced by synthetizing the game mechanics design concept with a rectangular 5×10 game
space, two non-background layers, a ‘player’ alias to cast ‘hulk’ as ‘player’, a ‘alias1’ alias to cre-
ate a synonym for ‘rockwall’ (static object) and ‘rock’ (movable object) objects, a ‘alias2’ alias to
create a synonym for ‘rockwall’ and ‘step’ objects, one win condition 'All hulk On heart', and
five somewhat complex game rules:

vertical [ > hulk ] -> [ > hulk ]
[ > hulk | no alias1 ] -> [ > hulk | ]
horizontal [ > hulk | rock | ... | no alias1 | alias2 ] ->
[ > hulk | > rock | ... | | alias2 ]
horizontal [ > rock | ... | rock ] -> [ > rock | ... | > rock ]
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Figure 7.12: Design 1 - Game mechanics (playable game).

horizontal [ rock | ... | > rock ] -> [ > rock | ... | > rock ]

Design 4 - ‘Zombie’ In this game, the player’s avatar is a zombie, and the objective is to turn
all the humans that appear in the game space into zombies. When a human token becomes a
zombie, it joins the zombie horde, which moves as a whole. If any of the horde members pass
over a bomb, the game becomes unable to be won.

The game experience was modeled with two dimensions: ‘exploration’ and ‘humor’ (Fig. 7.17a).
Two dynamics design dimensions were added into the dynamics default design space: ‘bomb’ and
‘zombie’ counter dimensions (Figs. 7.17b and 7.17c). The playable game (Figs. 7.18a and 7.18b)
was produced by synthetizing the game mechanics design concept with a rectangular 7×9 game
space, two non-background layers, a ‘player’ alias to cast the ‘zombie’ as ‘player’, a pair of win
conditions 'No human2', 'No skull', and the following pair of game rules:

late [ zombie | human2 ] -> [ zombie | zombie ]
[ > zombie | bomb ] -> [ | skull]

Design 5 - ‘Zombiekiller’ It is a game that adds some complexity to a typical maze-based puzzle
(like design 1). In this case, the player, in addition to finding the labyrinth’s exit, must extermi-
nate all the zombies in the game space.

The game experience was modeled with two dimensions: ‘cruelty’ and ‘exploration’ (Fig. 7.19a).
The ‘zombie’ counter dimension was added to the dynamics default design space: (Figs. 7.19b
and 7.19c). The playable game (Fig. 7.20) was synthesized as a small 5×5 square game space,
three non-background layers, a ‘player’ alias to cast the ‘human1’ object as ‘player’ object, a pair
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(a) Game experience

(b) Game dynamics (1/2)

(c) Game dynamics (2/2)

Figure 7.13: Design 2 - Game experience & dynamics.

of win conditions 'No zombie', 'All human1 On bottle', and the single game rule [ action
human1 | zombie ] -> [ human1 | blood ].

Design 6 - ‘Zombiekiller2’ It is the same game as design 5 but within a much larger game space.

The ‘challenge’ experience was added into the experience design space of the design 5 (Fig. 7.21a).
The playable game (Fig. 7.22) was synthesized as a larger 21×22 square game space, keeping
the same layers, aliases, win conditions, and game rules as the design 5.
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Figure 7.14: Design 2 - Game mechanics (playable game).

(a) Game experience

(b) Game dynamics (1/2)

(c) Game dynamics (2/2)

Figure 7.15: Design 3 - Game experience & dynamics.
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Figure 7.16: Design 3 - Game mechanics (playable game).

(a) Game experience

(b) Game dynamics (1/2)

(c) Game dynamics (2/2)

Figure 7.17: Design 4 - Game experience & dynamics.

Jesús Pérez Romero 129



7.2. Computational results

(a) Initial game state (b) The zombie player becomes a zombie horde player

Figure 7.18: Design 4 - Game mechanics.

7.2.2 Strategies performance

The set of 6 designs was used to experiment, tune, and fix the architecture and parameters of
the different learning strategies with two objectives in mind: to achieve an acceptable error and,
at the same time, to avoid the agent taking too much time to execute each strategy. Once the
architectures and parameters were fixed, the following performance was achieved after a 20-
executions round (Table 7.1):

Table 7.1: Computational ‘assistant’ learning strategies performance.

Second-level reflection strategy MLP architecture Epochs Learning rate MSE

{�̌�𝑃 𝑒ℎ′
𝑐 , �̌�𝐷𝑒ℎ′

𝑐 } �̌�𝑃𝐷ℎ
𝑐 44 × 8 × 90

100 0.1

0.03

{�̌�𝐷𝑒ℎ′
𝑐 , �̌�𝑀𝑎′

𝑐} �̌�𝐷𝑀ℎ
𝑐 90 × 6 × 2063 0.10

{�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎ℎ′

𝑐 } �̌�𝑀𝐷ℎ
𝑐 2063 × 4 × 6 0.03

{�̌�𝑀𝑎′
𝑐 , �̌�𝐷𝑎′

𝑐} �̌�𝑀𝐷𝑐 2063 × 4 × 84 0.11

{�̌�𝐷𝑎𝑐ℎ′
𝑐 , �̌�𝑃 𝑎ℎ′

𝑐 } �̌�𝐷𝑃 𝑐ℎ
𝑐 90 × 11 × 44 0.01
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(a) Game experience

(b) Game dynamics (1/2)

(c) Game dynamics (2/2)

Figure 7.19: Design 5 - Game experience & dynamics.
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Figure 7.20: Design 5 - Game mechanics (playable game).

(a) Game experience

(b) Game dynamics (1/2)

(c) Game dynamics (2/2)

Figure 7.21: Design 6 - Game experience & dynamics.
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Figure 7.22: Design 6 - Game mechanics (playable game).
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8
Building a collaborative
CCDS: “Creative” assistant
computational agent

In this chapter, we describe the next version of the collaborative CCDS. In addition to its previous
roles, the computational agent 𝑐 that we call in this version ‘creative’ assistant, provides design
ideas to the human designer ℎ based on the current design state.

In particular, a scenario similar to a brainstorming session is established where the human
designer asks (when some inspiration is required) the computational agent to produce a set of
video-game-level ideas (arrangements of game objects in the game space) based on the human
designer’s current game-level design. At the same time, through the previously implemented
learning strategies, the computational agent can keep collecting valuable knowledge that could
later be used to implement capabilities such as providing analysis estimates and thus speeding
up the design process and saving computational resources by avoiding costly evaluations1.

1After building the previous version of the CCDS, the next step in its evolution was to turn the computational
agent from an assistant/apprentice into a ‘creative’ assistant. Learning capabilities were provided to the agent so
that it could learn (via multilayer perceptrons) derivation rules for synthesis and analysis. The initial improvement
strategy was to leverage the agent learning capabilities (and acquired knowledge) to generate concepts from this
learning. However, although this approach could be suitable for estimation (generating approximate concepts)
in analysis processes, it did not seem to be very useful for concept generation by synthesis because the creative
potential for a given input concept is limited (and fixed) to a single output concept (the multilayer perceptron will
always give the same output for the same input) and what we are interested in is that the agent produces not only
a single concept but a set of concepts from an expected concept of a higher level of design. We tried a variational
autoencoder (instead of a multilayer perceptron) to give another chance to the connectionist paradigm to learn
and generate variant concepts. Although the implementation worked, the concepts produced (variants of a seed
concept) were highly similar since our test set was probably minimal (for a connectionist paradigm). However,
we believe this option could still be feasible if a more extensive set is available. We then decided to explore other
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A new section and widgets were crafted and incorporated into the GUI on which the artificial
agent externalizes its ideas (including their analysis and evaluations) and the human designer
manages the brainstorming session and selects an idea provided by her/his assistant to be pro-
moted into the new state of the design.

We also document a formative and summative qualitative evaluation of the brainstorming
scenario conducted by a user interface designer and puzzle video game enthusiast. The evaluation
results may suggest that the human designer could have benefited technically and creatively after
participating in collaborative design sessions with the artificial assistant.

8.1 Design process update

The construction of this system version requires adding new strategies to the existing perception,
action and evaluative rulesets of the participant agents, more specifically, into the synthesis,
analysis, and evaluation processes for designing. Computationally, the “creative” assistant utilizes
evolutionary computation (EC) techniques as the basis for its synthesis strategy. In particular,
two ways of implementing these strategies (selectable by the human designer) are implemented
in the system, one based on a direct-representation GA with fitness-proportional mutation and
the other based on a custom (𝜇 /𝜌, 𝜆)-type (Beyer and Schwefel 2002) evolution strategy (ES).
Both algorithms were modified and implemented as interactive evolutionary algorithms (EAs), so
the human designer always controls the evolution of the brainstorming session (one generation
at a time).

For this CCDS version, the computational agent 𝑐 should be able to:

• Build an internal representation of the current human-led design at both expected game dy-
namics �̂�𝐷𝑒ℎ and actual game mechanics �̂�𝑀𝑎 levels.

• Produce partial game mechanics design concepts �̂�𝑀𝑎𝑐 as design suggestions to satisfy ex-
pected game dynamics besides being based on the current human designer’s design (𝑀 syn-
thesis).

• Derive game dynamics produced by each game level idea (𝑀 analysis).

• Assess derived game dynamics for each generated idea against both expected and current de-
sign’s actual game dynamics (𝐷 evaluation).

On the other hand, the human designer ℎ should be able to:

• Request creative assistance of the computational agent 𝑐.

• Assess ideas �̂�𝑀𝑎𝑐 produced by her/his assistant (𝑀 analysis and 𝐷 evaluation).

computational alternatives to incorporate more creative behavior in the agent, taking advantage of the CCDSF’s
modular architecture.
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• Pick an idea �̂�𝑀𝑎𝑐 and set it as her/his current design �̂�𝑀𝑎.

• Parametrize and manage the flow of the brainstorming session, thus affecting the “creative”
behavior of her/his assistant.

• Restore the design to its previous state �̂�𝑀𝑎(𝑡−1).

In the following sections, we describe the new strategies, their computational implementation
within their corresponding synthesis, analysis, and evaluation (already operational) processes
for designing, and the GUI related additions. Three scenarios are described and implemented:
the initial 𝑐-creative turn, the subsequent ℎ-turn(s), and the subsequent 𝑐-creative turn(s) of a
brainstorming session.

8.1.1 Brainstorming session initial 𝑐-creative turn

This process models the scenario where the human designer requests (and obtains) the creative
assistance of the artificial agent for the first time. The ‘first time’ refers to the point after the
human designer has altered the game’s design in terms of game mechanics or dynamics levels,
either by formulation, synthesis, or reformulation (i.e., when the assistant’s current design spaces
are no longer compatible with the human ones) for which a new brainstorming session can be
initiated (triggered by the human) based on the new state of the design.

Both human and computational agents are provided with new perception 𝒫 and action 𝒯
strategies embedded into the synthesis and analysis processes at the game mechanics level and
the evaluation process at the game dynamics level as follows:

{ … , �̂�𝑀𝑎 �̌�𝑀𝑎ℎ �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ,

{�̂�𝑀𝑎𝑐 , �̂�𝑀𝑣ℎ, �̂�𝐷𝑎𝑐 , �̂�𝐷𝑣𝑐} {�̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ}} ⊆ ̊𝒫 𝐷𝑀ℎ,

{ … , �⃑�𝐼ℎ → �̂�𝐼ℎ} ⊆ ̊𝒯 𝐷𝑀ℎ,

{ … , {�̂�𝐼ℎ, �̂�𝐷𝑒ℎ, �̂�𝑀𝑎} {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐}, �̌�𝑀𝑎𝑐 �̌�𝑀𝑎″
𝑐 ,

{�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎″
𝑐 } ⇄ {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎″

𝑐 },

{�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎″
𝑐 , �⃑�𝑀𝑎𝑐} ⇄ {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎″

𝑐 , �̌�𝑀𝑎𝑐},

�̂�𝐷𝑎𝑐 �̌�𝐷𝑎𝑐 , {�̌�𝐷𝑒ℎ𝑐 , �̌�𝐷𝑎𝑐} ⇄ {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝐷𝑎𝑐},

{�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎𝑐 , �̌�𝐷𝑣𝑐} ⇄ {�⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑎𝑐 , �⃑�𝐷𝑣𝑐}} ⊆ ̊𝒫 𝐷𝑀𝑐 ,

{ … , {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎″
𝑐 } ⤇ �⃑�𝑀𝑎𝑐 ,

{�⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑎𝑐 , �⃑�𝐷𝑣𝑐} → {�̂�𝑀𝑎𝑐 , �̂�𝐷𝑎𝑐 , �̂�𝐷𝑣𝑐}} ⊆ ̊𝒯 𝐷𝑀𝑐 ,
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{ … , ({�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝐷𝑎𝑐}⇠⇢�̌�𝐷𝑎𝑐), {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎″
𝑐 , �̌�𝑀𝑎𝑐} ↦ �̌�𝐷𝑎𝑐} ⊆ ̊ℰ𝐷𝑀𝑐

1) Brainstorming session initiation request (ℎ): After (re)formulation or at any time during
the synthesis process at the game mechanics level, the human designer may require creative
support to continue developing her/his idea or, perhaps, to discover new possibilities. If so,
the designer ℎ asks the computational assistant 𝑐 to provide a set of game-level design ideas
based on her/his current design, whether the level is empty (she/he has only formulated the
design space) or already in progress

�̂�𝑀𝑎 �̌�𝑀𝑎ℎ �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ.

2) GUI update (ℎ): ℎ externalizes her/his request via an action button identified by a ‘bulb’
(idea) icon in a new GUI container widget (Fig. 8.1) located next to the main design game
board widget of the game editor panel (Fig. 6.12)

�⃑�𝐼ℎ → �̂�𝐼ℎ.

Figure 8.1: Game-level-design ideas widget ready to start brainstorming session. The ‘undo’ button (only
enabled when an assistant’s idea is currently applied as the main design) resets the design to the state prior
to applying one of the ideas provided by the assistant. With the ‘bulb’ (idea) button, the human designer
requests the computational assistant to start a brainstorming session or to move to a new round of ideas
within the same session. With the ‘restart’ button (only enabled during an active session), the human
designer requests the computational assistant to generate a new brainstorming session from scratch.

3) Brainstorming session starting up (𝑐): 𝑐 interprets the human request to participate in a
brainstorming session and triggers the interpretation of the current human-designed concept
at the game mechanics level and the expected game dynamics

{�̂�𝐼ℎ, �̂�𝐷𝑒ℎ, �̂�𝑀𝑎} {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐}.

4) Reference design transformation (𝑐): 𝑐 extracts a partial concept from the whole current
design concept at the game mechanics level and encodes it as a reference genotype �̌�𝑀𝑎″

𝑐 to
be used in its EAs-based synthesis strategy

�̌�𝑀𝑎𝑐 �̌�𝑀𝑎″
𝑐 .

The genotype is a direct representation of a video game level encoded into a fixed length vector
of integers (its length is fixed relative to the current formulated design space: game objects
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and the number of layers) where the first two positions encode the size of the game space
(rows × columns) between a minimum of 4×4 and a maximum of 10×10, and the remaining
positions encode a flattened three-dimensional matrix where each position corresponds to a
game object (encoded with a string lookup table) placed in a three-dimensional coordinate
(row, column, layer). The genotype always encodes a 10 × 10 game space; however, the first
two control genes express the actual size. In the initialization stage of the EA, the size of the
reference design game board may be smaller than the 10 × 10 maximum size, in which case
the genetic information is completed by repeating the first (10 × 10 × the number of layers) −
(rows × columns × the number of layers) placed game objects of the level. Otherwise (the
reference game board is bigger than 10 × 10 in any dimension), the board is truncated to
10 × 10.
For the ES underlying algorithm, one extra gene (position) is appended to the genotype to
encode the mutation probability endogenous parameter, which evolves along with its ‘do-
main’ genes and is randomly generated during initialization within a range of minimum and
maximum mutation probabilities (an exogenous parameter).

5) Reference concepts gathering (𝑐): 𝑐 collects the reference concepts at game dynamics and
mechanics levels required to produce design ideas including the EA’s seed genotype

{�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎″
𝑐 } ⇄ {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎″

𝑐 }.

6) EA-population-initialization-based synthesis (𝑐): 𝑐 produces the first set of design ideas
(game levels) through the population initialization routine of the underlying EA

{�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎″
𝑐 } ⤇ �⃑�𝑀𝑎𝑐 .

Each new member of the initial population is created by repeatedly applying two custom
operators:

a) Fluctuating mutation operator: This custom operator works with two parameters,
a minimum and maximum mutation probabilities. A random probability within the
[minimum, maximum] range is computed for each new individual and taken as the
mutation probability for a standard uniform mutation operator that is applied to the
reference concept genotype, thus creating a reference concept mutant.

This operator aims to obtain a population composed of individuals with different levels
of similarity to the reference concept, some remarkably similar and others not so similar
but still preserving some common ancestral features. The operator attempts to model
the influence of the reference concept (inspiration concept) from the game mechanics
design level.

b) “Booster” operator: This custom operator attempts to model the influence of the ex-
pected game dynamics concept by randomly removing objects placed in excess (by pre-
vious variation operators) in the level for each game-object-type-counter game dynamics
dimension.

A reason for incorporating this operator in the processing pipeline was to compensate
for the slow convergence obtained as a side effect of transforming the algorithm from
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its traditional form to an interactive one, thus introducing early, hopefully beneficial,
features and repairs to the population.

7) Self-analysis preparation (𝑐): 𝑐 collects the reference concepts along with the produced con-
cepts (level ideas) in preparation for analysis as complete games

{�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎″
𝑐 , �⃑�𝑀𝑎𝑐} ⇄ {�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎″

𝑐 , �̌�𝑀𝑎𝑐}.

8) Self-analysis (𝑐): following the EA’s logic, the computational agent 𝑐 derives a game dynamics
concept for each generated idea (through its ability, it already had to play and perform an
intrinsic analysis of the game)

{�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎″
𝑐 , �̌�𝑀𝑎𝑐} ↦ �̌�𝐷𝑎𝑐 .

Since, in this process stage, the computational agent must analyze several ideas (EA’s pop-
ulation size) instead of just one, the analysis is performed using only one search algorithm:
Greedy Best-first search. This algorithm was selected after reviewing the performance of all
the search algorithms (Section 6.1.3.1) playing the test set of games previously created (Sec-
tion 7.2.1), finding that this algorithm offered the highest efficiency (the shortest solutions in
the fewest number of iterations). The maximum number of iterations was also reduced at this
stage of the process by 40% since it was also found that, at least for the test set, the selected
algorithm could solve the games within a smaller number of iterations.

9) Current dynamics interpretation (𝑐): 𝑐 interprets the external representation of the actual
game dynamics derived from the current game (which it previously obtained using its existing
capabilities) in order to contrast it with the actual game dynamics concepts derived for each
of its game level ideas

�̂�𝐷𝑎𝑐 �̌�𝐷𝑎𝑐 .

10) Self-evaluation preparation (𝑐): 𝑐 selects the current design’s expected and actual game
dynamics concepts

{�̌�𝐷𝑒ℎ𝑐 , �̌�𝐷𝑎𝑐} ⇄ {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝐷𝑎𝑐}.

11) Self-evaluation (𝑐): 𝑐 compares the actual game dynamics (derived by analysis) of each
of the ideas to the expected and actual game dynamics of the reference design by using a
modified comparison strategy to determine the distances between each idea’s dynamics and
the reference expected and actual dynamics and, in terms of EC, the fitness of each individual
(ideas)

�̌�𝐷𝑣𝑐 = ({�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝐷𝑎𝑐}⇠⇢�̌�𝐷𝑎𝑐).

Because the complexity dimension ̇𝛿𝐷𝑐 is not affected by the arrangement of game objects
in the game space, it is suppressed from the analysis and evaluation of ideas. The fitness
computation of each individual is performed in three stages:
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I) For each actual game dynamics (derived from each idea), a categorical assessment (see
Eq. 5.2) is computed for each dimension. The categorical value is converted to a nu-
merical value according to the following equivalences:

out-of-range 0
range-partially-exceeded 1/3
range-exceeded 2/3
in-range 1

Then, the obtained values are grouped and averaged into three fitness values: ‘intrin-
sic game dynamics’ (game-object-type-counters), ‘player engagement’ (branching factor,
move effort, response time, board coverage), and ‘playability’ (paths, duration). Finally,
the three fitnesses are combined into a single fitness value through linear scalarization
with the following weights:

‘intrinsic dynamics’ 0.5
‘player engagement’ 0.3
‘playability’ 0.2

II) For each idea’s actual game dynamics concept, the statistical mode of its categorical
assessments is computed, and a global categorical assessment is assigned: mostly-out-
of-range if the mode in the group is out-of-range, and rarely-out-of-range otherwise. In
this same stage, a feasibility checklist test is performed based on the generated game’s
correctness and the duration dimension’s value. Through this test, each individual is
assigned a feasibility category as follows:

a) Uncompilable if the generated game does not compile in the PuzzleScript engine.

b) Unsolvable if the game is playable in the PuzzleScript engine, although the search
algorithm could not find a solution.

c) Irrelevant if the game has a less than three moves solution.

d) Relevant if the game has a duration greater than three moves.

III) Finally, the fitness of each individual computed in the first stage is penalized according
to its feasibility and overall categorical assessment:

uncompilable 100% (full penalization)

unsolvable — mostly-out-of-range 95%
unsolvable — rarely-out-of-range 80%
irrelevant — mostly-out-of-range 75%
irrelevant — rarely-out-of-range 50%
relevant — mostly-out-of-range 20%
relevant — rarely-out-of-range 0% (no penalization)
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12) Ideas curation (𝑐): 𝑐 integrates the ideas produced with their corresponding actual game
dynamics and evaluation concepts and selects the four2 best ideas according to the computed
fitness

{�̌�𝑀𝑎𝑐 , �̌�𝐷𝑎𝑐 , �̌�𝐷𝑣𝑐} ⇄ {�⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑎𝑐 , �⃑�𝐷𝑣𝑐}.

13) GUI update (𝑐): 𝑐 presents its ideas’ selection to the human designer by rendering them on
the GUI’s game-level-design-ideas widget (Fig. 8.2) together with the results of the analysis
and evaluation

{�⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑎𝑐 , �⃑�𝐷𝑣𝑐} → {�̂�𝑀𝑎𝑐 , �̂�𝐷𝑎𝑐 , �̂�𝐷𝑣𝑐}.

Figure 8.2: Game-level-design-ideas populated widget. The container is divided into three sections. In the
upper section, each of the four ideas curated by the computational assistant is rendered in detail (albeit in
a smaller size than the main design). Three buttons are provided for each rendered idea: a) a button to
review the results of the analysis �̂�𝐷𝑎𝑐 and evaluation �̂�𝐷𝑣𝑐 of the idea through a visual representation (chart)
of the distances between expected, current actual, and idea’s actual game dynamics concepts similar to the
chart in the game dynamics main panel (Figs. 6.25 and 6.26), b) a button to apply the idea (promote it
into current design) �̂�𝑀𝑎 = �̂�𝑀𝑎𝑐 , and c) a ‘toggle’ button to mark as ‘liked’ (or remove the mark) the idea,
thus setting a human-based evaluation �̂�𝐷𝑣ℎ. The general action buttons are now placed into the lowest
part of the container.

14) Game-level-ideas interpretation (ℎ): The human designer interprets the ideas proposed
by the assistant, their corresponding analysis and evaluation results, and the current ‘liked’

2It was experimentally determined that 4 was a reasonable number of options to offer to the human designer
since, on the one hand, it does not represent a heavy cognitive load for the designer, and on the other hand, it
reduces expensive rendering resources.
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status of the ideas �̌�𝑀𝑣ℎ(𝑡−1) previously set by her/himself (if any)

{�̂�𝑀𝑎𝑐 , �̂�𝑀𝑣ℎ, �̂�𝐷𝑎𝑐 , �̂�𝐷𝑣𝑐} {�̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ}.

8.1.2 Brainstorming session subsequent ℎ-turn(s)

Once the game-level ideas produced by the computational assistant 𝑐 are presented in the GUI
|�̂�𝑀𝑎𝑐| = |�̂�𝐷𝑎𝑐| = |�̂�𝐷𝑣𝑐| = 4, the human designer ℎ can take her/his turn in the collaborative
process to perform any of the following potential actions on or concerning some idea or ideas:

{ … , �̌�𝑀𝑣ℎ(𝑡+1) ⇄ �⃑�𝑀𝑣ℎ(𝑡+1), �̌�𝑀𝑎𝑐
ℎ �̌�𝐼𝑎ℎ ⇄ �⃑�𝐼𝑎ℎ, �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ} ⊆ ̊𝒫 𝐷𝑀ℎ,

{ … , �⃑�𝑀𝑣ℎ(𝑡+1) → �̂�𝑀𝑣ℎ, �⃑�𝐼𝑎ℎ → �̂�𝐼𝑎ℎ, �⃑�𝐼ℎ → �̂�𝐼ℎ} ⊆ ̊𝒯 𝐷𝑀ℎ,

{ … , ({�⃑�𝐷𝑒ℎ, �⃑�𝑀𝑎ℎ}⇠⇢{�̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ}),

({�⃑�𝐷𝑒ℎ, �⃑�𝑀𝑎ℎ}⇠̇⇢{�̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ}),

({�⃑�𝐷𝑒ℎ, �⃑�𝑀𝑎ℎ}⇠̇⇢{�̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ})} ⊆ ̊ℰ𝐷𝑀ℎ,

{ … , {�̂�𝐼𝑎ℎ, �̂�𝑀𝑎} {�̌�𝐼𝑎ℎ
𝑐 , �̌�𝑀𝑎𝑐}, �̌�𝑀𝑎𝑐 �̌�𝑀𝑎𝑐(𝑡−1), �̌�𝐼𝑎ℎ

𝑐 �̌�𝑀𝑎𝑐 ⇄ �⃑�𝑀𝑎𝑐 ,

�̂�𝐼ℎ �̌�𝐼ℎ
𝑐 �̌�𝑀𝑎𝑐(𝑡−1) ⇄ �⃑�𝑀𝑎𝑐(𝑡−1)} ⊆ ̊𝒫 𝐷𝑀𝑐 ,

{ … , �⃑�𝑀𝑎𝑐 → �̂�𝑀𝑎, �⃑�𝑀𝑎𝑐(𝑡−1) → �̂�𝑀𝑎} ⊆ ̊𝒯 𝐷𝑀𝑐

8.1.2.1 Sets/updates ‘liked’ status of one or more ideas

‘Liked’ status update (ℎ): By contrasting the ideas provided by the assistant 𝑐 with her/his ex-
pected design at the game dynamics level and her/his actual design at the game mechanics level,
the human designer ℎ determines (or updates) which ideas the assistant provided are to her/his
liking

�̌�𝑀𝑣ℎ(𝑡+1) = ({�⃑�𝐷𝑒ℎ, �⃑�𝑀𝑎ℎ}⇠⇢{�̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ}),

�̌�𝑀𝑣ℎ(𝑡+1) ⇄ �⃑�𝑀𝑣ℎ(𝑡+1).
GUI update (ℎ): The human designer externalizes her/his current ‘like’ status through the GUI’s
‘toggle’ button of each affected idea (Fig. 8.3)

�⃑�𝑀𝑣ℎ(𝑡+1) → �̂�𝑀𝑣ℎ.

The GUI allows the human designer to either mark an idea as ‘liked’ or unmark it. This mechanism
does not force the human designer to “rate” every idea but will function to reinforce a trend in
the assistant’s ideas generation process that the human designer deems appropriate.
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Figure 8.3: Game-level-design-ideas ‘liking’. An idea marked as ‘liked’ (on the left) and an unmarked one
(on the right).

8.1.2.2 Promote an idea into current design

Idea selection (ℎ): The human designer ℎ compares the ideas supplied by the assistant 𝑐 with
her/his expectations and current results and selects one of the ideas to be promoted into current
design of the video game level

�̌�𝑀𝑎𝑐
ℎ = ({�⃑�𝐷𝑒ℎ, �⃑�𝑀𝑎ℎ}⇠̇⇢{�̌�𝑀𝑎𝑐

ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐
ℎ, �̌�𝐷𝑣𝑐

ℎ}),

�̌�𝑀𝑎𝑐
ℎ �̌�𝐼𝑎ℎ ⇄ �⃑�𝐼𝑎ℎ.

Promotion request (ℎ): The human designer indicates his selection through the GUI’s ‘apply
idea’ button (See Fig. 8.2), thus triggering the replacement of the current design representation
with the design of the selected idea

�⃑�𝐼𝑎ℎ → �̂�𝐼𝑎ℎ.

Promotion initiation (𝑐): The computational assistant interprets the human designer’s request
along with the actual design of the video game level

{�̂�𝐼𝑎ℎ, �̂�𝑀𝑎} {�̌�𝐼𝑎ℎ
𝑐 , �̌�𝑀𝑎𝑐}.

Previous design memorization (𝑐): The computational assistant 𝑐 secures the previous design
(already interpreted) to restore it later if necessary

�̌�𝑀𝑎𝑐 �̌�𝑀𝑎𝑐(𝑡−1).

Promotion preparation (𝑐): The computational assistant pulls from the human designer’s re-
quest the design idea selected by the human designer and prepares to perform the replacement
of the current design

�̌�𝐼𝑎ℎ
𝑐 �̌�𝑀𝑎𝑐 ⇄ �⃑�𝑀𝑎𝑐 .

GUI update (𝑐): The assistant 𝑐 realizes the idea promotion by replacing the current video-game-
level design with its human-selected idea

�⃑�𝑀𝑎𝑐 → �̂�𝑀𝑎.
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8.1.2.3 Restore design

Restoration decision (ℎ): The human designer ℎ compares the ideas supplied by the assistant
𝑐 with her/his expectations and current results and decides to restore the design to the state
previous to applying an idea provided by the computational agent 𝑐

�̌�𝐼ℎ = ({�⃑�𝐷𝑒ℎ, �⃑�𝑀𝑎ℎ}⇠̇⇢{�̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ(𝑡), �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ}),

�̌�𝐼ℎ ⇄ �⃑�𝐼ℎ.
There could be several reasons why the human designer decides to restore her/his design; how-
ever, a frequent use case could be when previously, the human designer applied an idea supplied
by the assistant in order to be able to generate the playable version of the game and perform a
more detailed playtesting-based analysis and then return to the previous state.

Restoration request (ℎ): The human designer asks her/his assistant to restore the design state
prior to the last idea applied through the GUI’s ‘undo’ button (See Fig. 8.2)

�⃑�𝐼ℎ → �̂�𝐼ℎ.

Previous design recall (𝑐): The computational assistant interprets the human designer’s request,
recalls the previously backed-up design and prepares to override the current design

�̂�𝐼ℎ �̌�𝐼ℎ
𝑐 �̌�𝑀𝑎𝑐(𝑡−1) ⇄ �⃑�𝑀𝑎𝑐(𝑡−1).

GUI update (𝑐): The assistant 𝑐 restores the previous game-level design into the GUI game editor

�⃑�𝑀𝑎𝑐(𝑡−1) → �̂�𝑀𝑎.

8.1.3 Brainstorming session subsequent 𝑐-creative turn(s)

{ … , {�̂�𝑀𝑎, �̂�𝑀𝑎𝑐 , �̂�𝑀𝑣ℎ, �̂�𝐷𝑎𝑐 , �̂�𝐷𝑣𝑐} {�̌�𝑀𝑎ℎ, �̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ, �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ},

{�̌�𝑀𝑎ℎ, �̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ, �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ} �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ} ⊆ ̊𝒫 𝐷𝑀ℎ,

{ … , �⃑�𝐼ℎ → �̂�𝐼ℎ} ⊆ ̊𝒯 𝐷𝑀ℎ,

{ … , {�̂�𝐼ℎ, �̂�𝐷𝑒ℎ, �̂�𝑀𝑎, �̂�𝑀𝑣ℎ} {�̌�𝐼ℎ
𝑐 , �̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑣ℎ

𝑐 },

{�̌�𝑀𝑣ℎ
𝑐 , �̌�𝐷𝑣𝑐 , �̌�𝑀𝑎𝑐} �̌�𝐷𝑣′

𝑐 ,

{�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝐷𝑣′
𝑐 , �̌�𝐼ℎ

𝑐 } ⇄ {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑣′
𝑐 , �⃑�𝐼ℎ

𝑐 }} ⊆ ̊𝒫 𝐷𝑀𝑐 ,

{ … , {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑣′
𝑐 , �⃑�𝐼ℎ

𝑐 } ⤇ �⃑�𝑀𝑎𝑐(𝑡+1)} ⊆ ̊𝒯 𝐷𝑀𝑐
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1) Brainstorming session next round request (ℎ): At any time during a brainstorming session,
the human designer ℎ may ask the computational assistant 𝑐 to provide a new set of game-
level design ideas

{�̂�𝑀𝑎, �̂�𝑀𝑎𝑐 , �̂�𝑀𝑣ℎ, �̂�𝐷𝑎𝑐 , �̂�𝐷𝑣𝑐} {�̌�𝑀𝑎ℎ, �̌�𝑀𝑎𝑐
ℎ, �̌�𝑀𝑣ℎ, �̌�𝐷𝑎𝑐

ℎ, �̌�𝐷𝑣𝑐
ℎ} �̌�𝐼ℎ ⇄ �⃑�𝐼ℎ.

2) GUI update (ℎ): ℎ externalizes her/his request via the ‘bulb’ action button (Fig. 8.2)

�⃑�𝐼ℎ → �̂�𝐼ℎ.

Beginning on the second time the human designer requests the assistant to provide a batch
of ideas, the �̂�𝐼ℎ request now includes parameter values intended to influence (‘tweak’) the
assistant’s creative behavior. These values are, in terms of EC, exogenous parameters of the
specific underlying algorithms that can be set by the human designer through controls pro-
vided by the GUI (Fig. 8.4) depending on the current underlying EA (globally set in the system
settings). From the EC perspective, this exogenous parameters regulation mechanism is cru-
cial to compensate for the reduction in evolutionary speed that results after adapting the
algorithms to be interactive.

3) Brainstorming session current state interpretation (𝑐): 𝑐 interprets the human request to
generate the next batch of ideas and triggers the interpretation of reference concepts (actual
design at the game mechanics level and the expected game dynamics) and the human-based
evaluations �̂�𝑀𝑣ℎ (if any)

{�̂�𝐼ℎ, �̂�𝐷𝑒ℎ, �̂�𝑀𝑎, �̂�𝑀𝑣ℎ} {�̌�𝐼ℎ
𝑐 , �̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑣ℎ

𝑐 }.

4) Human-based evaluation integration (𝑐): 𝑐 re-computes the evaluation (fitness) of all the
ideas it generated last time (not only the ones it submitted to the human designer) through a
weighted sum of its self-evaluation and the evaluation of the human designer. For the human-
based evaluation, the nominal value (before weighting) is 1 when the idea is marked as ‘liked’
or 0 otherwise. In our experiments, 0.85 and 0.15 were used as weights for self- �̌�𝐷𝑣𝑐 and
human-based- �̌�𝑀𝑣ℎ

𝑐 evaluation, respectively. In terms of its underlying EAs, the assistant is
just re-computing its current population fitnesses before applying its selection and variation
operators. This mechanism has a penalizing effect (in this case, by 15%) on the assistant’s
self-evaluation if an idea has not been marked as ‘liked’ by the human designer or has not
even been selected to be presented

{�̌�𝑀𝑣ℎ
𝑐 , �̌�𝐷𝑣𝑐 , �̌�𝑀𝑎𝑐} �̌�𝐷𝑣′

𝑐 .

The resulting �̌�𝐷𝑣′
𝑐 set of concepts is, in terms of EC, the vector of the population evaluations

(fitnesses).

5) New ideas production preparation (𝑐): 𝑐 collects the reference concepts at game dynamics
and mechanics levels in addition to, in terms of its underlying EAs, the current population
�̌�𝑀𝑎𝑐 , evaluations �̌�𝐷𝑣′

𝑐 , and specific algorithm exogenous parameters embedded into �̌�𝐼ℎ
𝑐

{�̌�𝐷𝑒ℎ𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝑀𝑎𝑐 , �̌�𝐷𝑣′
𝑐 , �̌�𝐼ℎ

𝑐 } ⇄ {�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑣′
𝑐 , �⃑�𝐼ℎ

𝑐 }.
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(a) GA tweaking controls. The human designer can 1) set the ‘combination rate’ that
corresponds to the crossover probability value employed by the one-point crossover
operator of the GA; and 2) the ‘modification rate range’ that sets the minimum and
maximum values of the mutation probability employed by the fitness-proportional
mutation operator of the GA.

(b) ES tweaking controls. The human designer can set the ‘modification rate range’
and the ‘modification rate update pace’ that set the minimum and maximum values
of the mutation probability and the learning rate, respectively, of the auto-adaptive
mutation operator of the ES.

Figure 8.4: Game-level-design-ideas - tweaking controls. The GUI provides the human designer with con-
trols (placed right between the ideas and general buttons areas) for influencing (‘tweaking’) the assistant’s
creative behavior for the next batch of ideas (subsequent execution of its synthesis strategies). It is not
entirely required for the human designer to manipulate these controls every time she/he requests the as-
sistant for a new batch of ideas, as by default, they are set to automatic mode, thus making the underlying
algorithm use default parameter values. The human designer can return these controls to automatic mode
at any time (through the switch widgets), enabling the scenario where the human designer needs the
assistant to return to a more stable behavior after having influenced, perhaps in excess, the assistant’s
behavior.

6) EA-loop-iteration-based synthesis (𝑐): 𝑐 produces a new set of video-game-level ideas by
applying its underlying EAs selection and variation operators to the current set of ideas (in-
cluding those previously omitted from externalization)

{�⃑�𝐷𝑒ℎ𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝑀𝑎𝑐 , �⃑�𝐷𝑣′
𝑐 , �⃑�𝐼ℎ

𝑐 } ⤇ �⃑�𝑀𝑎𝑐(𝑡+1).

From the EC perspective, this step is equivalent to creating the next generation (i.e., a single
loop iteration):

a) GA-based synthesis:

• New ideas (individuals) are created through a one-point crossover operator from two
ancestors selected through the fitness proportional selection (FPS) method. Through
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the exogenous crossover probability parameter (‘combination rate’ for the human de-
signer [Fig. 8.4a]), the human designer controls how likely each new idea is gener-
ated by combining two existing ideas (or is a clone if not combined). The FPS method
helps to increase the probability of selecting highly fitted ancestors, expecting (with-
out guarantee) that the combined idea will also obtain appropriate fitness.

• A fitness proportional uniform mutation operator is then applied to each new individ-
ual to introduce small (or significant) changes. The number of changes introduced
depends on a generation-wise probability computed inversely proportional to the av-
erage generation fitness (i.e., the fitter the generation, the steeply declining proba-
bility of mutation, and vice versa) within the range defined by the ‘modification rate
range’ exogenous parameter (Fig. 8.4a), also controllable by the human designer.

• As in population-initialization-based synthesis (step 6 described in Section 8.1.1), a
“booster” operator is applied to each individual to make themmore suitable to comply
with the requirements embedded into the expected game dynamics concept.

• Finally, the new generation is assembled by taking the best (elitist selection) ideas
from the current generation and a set of randomly selected new ideas.

b) Synthesis based on (𝝁 /𝝆, 𝝀)-ES:

• A pool of ancestors is created by selecting the 𝜇 fittest individuals (ideas) from the
current 𝜆-size generation.

• Each of the 𝜆 new individuals is created through the ‘dominant’ and ‘intermediate’
recombination operators (Beyer and Schwefel 2002) as follows:

– A pool of 𝜌 distinct recombinants is sampled from the 𝜇-size ancestors pool.

– The part of the new individual’s genotype that encodes the video game level (all
but one gene) is assembled by copying each ith gene from a randomly picked re-
combinant (‘dominant recombination’).

– The gene that encodes the individual’s mutation probability endogenous parameter
is computed by averaging all recombinant pool’s mutation probability gene values
(‘intermediate recombination’).

• The newly created individuals are modified through an auto-adaptive method accord-
ing to the canonical specification of the (𝜇 /𝜌, 𝜆)-ES (ibid.). The part of the genotype
that encodes the video game level is altered through a uniform mutation operator
where the mutation probability is first determined for each individual (endogenous
parameter) through a discrete logistic transformation function (Eq. 8.1, [Li et al.
2013])

𝜚′ = 1
1 + 1−𝜚

𝜚 exp(−𝜏𝑁(0, 1))
(8.1)

(normalized to the human-controllable [𝜚𝑚𝑖𝑛, 𝜚𝑚𝑎𝑥] ‘modification rate range’ exoge-
nous parameter [Fig. 8.4b]), that computes the new mutation probability 𝜚′ from the

Jesús Pérez Romero 147



8.2. User evaluation

current mutation probability 𝜚 and the adaptability rate or ‘modification rate update
pace’ exogenous parameter 𝜏 (also set by the human designer [Fig. 8.4b]).

• Finally, as in GA-based synthesis, the “booster” operator is applied to each new idea.

This step is followed by steps 7–14 described in Section 8.1.1. Subsequently, either a new
𝑐-creative turn described in this section or one or more of the alternatives described in Sec-
tion 8.1.2 are performed.

When implementing the the new system capabilities, some of the parameters of the underlying
EAs were empirically determined and set for the subsequent user testing and evaluation of the
new features:

a) Common parameters:

• Population size (𝜆 in ES): 17
• Initialization fluctuating mutation range: [.02, .25]

b) GA:

• Population size: 17
• Elitism size: 1 (guarantees preserving the best idea)

• Crossover probability (‘combination rate’ when set to ‘Auto’): 0.9
• Mutation probability range (‘modification rate range’ when set to ‘Auto’): [10−4, 0.6]

c) (𝜇 /𝜌, 𝜆)-ES:

• Ancestors pool size 𝜇: 4
• Recombinants pool size 𝜌: 4
• Mutation probability range [𝜚𝑚𝑖𝑛, 𝜚𝑚𝑎𝑥] (‘modification rate range’ when set to ‘Auto’):

[
1

3 ⋅ genotype length
, 0.5] (as suggested in [Li et al. 2013])

• Adaptability rate 𝜏 (‘modification rate update pace’ when set to ‘Auto’): 1

8.2 User evaluation

In order to assess the new system features, a qualitative evaluation was conducted by a profes-
sional UI/UX designer and puzzle-video-game enthusiast.

The evaluation consisted of conducting five design sessions, a free design session (familiar-
ization and exploration), and four structured ones:
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8.2.1 Structured evaluation sessions’ specific results

1. Unassisted session starting from an empty game space (blank game-level layout). In
this session, the designer started from the existing game design ‘Zombiekiller’ (Design 5
in Section 7.2.1) with an empty game level, establishing the scenario in which both the
design spaces and the expected design concepts are fully formulated/synthesized at the
experience and game dynamics levels and partially formulated/synthesized at the game
mechanics level. Upon completion of the session, the designer produced the design in
Fig. 8.5. During the session and the following moments after its end, the human designer

(a) Video game level (game mechanics design
level)

(b) Expected vs actual game dynamics (1/2)

(c) Expected vs actual game dynamics (2/2)

Figure 8.5: Session 1 - Final video game design.

made some remarks and brief explanations regarding her game-level construction process.
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Concerning the laying out (design decisions) sequence, the designer mostly worked in
layers from back to front. The designer explained that she always starts by imagining the
maze shape, then she starts thinking about the position of the start and end objects, trying
to put them as far as possible, drawing the most intricate possible path between them,
which usually triggers adjustments in the maze structure. She then relocates the bottle
(end object) to a more confined position. Finally, she decides on the number and positions
of the zombie objects in a way that forces the player to make intricate and long runs to
find a way to the bottle. The designer stated that the maximum size limitation prevented
making a more complex labyrinth, and because of this constraint, framing the maze was
avoided, although it would typically have been done.

2. Creatively assisted session starting from an empty game space. In this session, the
human designer also started from the existing game design ‘Zombiekiller’ with an empty
game board. This time, the designer requested and received creative assistance from the
GA-based computational agent to produce the design depicted in Fig. 8.6.

In this session, the human designer reported that at the beginning, she was surprised to see
many players (start tokens), bottles (end tokens), and blood objects in the ideas provided
by the assistant while she was expecting to see one start, one end, and no blood objects.
However, after some analysis, she solved the problem by adding and properly restricting
some dimensions in the game dynamics level (more on this later in this chapter).

After three turns, she also observed very few walls on the boards, which she immediately
identified as a problem that would be solved by adding and restricting the appropriate
dimension (wall counter) at the dynamics level. Once the corrections were made (she
set the minimum number of walls to 25), the designer perceived a positive change after
three turns. However, she perceived that between one turn and the next, there were no
significant changes (she did not get the amount of wall she expected), so she increased the
‘modification rate’ (mutation probability range) to a [.7, 1] range (something that could be
considered very high in a standard, no-interactive, evolutionary algorithm). She obtained
the desired result with this action and immediately returned the assistant’s behavior to
’Auto’ mode (during the familiarization session, the designer realized that just one shift
could be enough to get the agent out of a possible impasse or to steer it in a different
direction). Only at this point did the designer use the liking feature and mark as ‘liked’ two
design ideas. Then gave one more turn to the artificial agent, selected one of the proposed
ideas from this final turn, and promoted it into the main design, making only a few final
manual adjustments.

The human designer explained that when dealing with labyrinths, one has the established
idea that mazes have very obvious or marked trajectories (when visualized from the top
in a 2D view) and that when designing them, one tends to frame the labyrinth and leave
only the entrance and exit cells free. However, after examining the ideas proposed by
the assistant, she realized that making the trajectories less obvious (with more spaces) in-
creases the complexity of the maze, something that was not obvious or usual to observe (a
contribution of the computational agent to the human designer mindset). The human de-
signer stated that after studying and understanding this behavior, she purposely exploited
the computational assistant’s “technique” to create even more confusing mazes with less
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(a) Video game level (game mechanics design
level)

(b) Expected vs actual game dynamics (1/2)

(c) Expected vs actual game dynamics (2/2)

Figure 8.6: Session 2 - Final video game design.

obvious trajectories. She also mentioned that designing mazes following this technique is
difficult when starting from a blank board precisely because the trajectories are not evident
for the designer herself.

In an idea proposed by the computational assistant, it placed the start and end objects right
next to each other. According to the human designer, at first glance, this would seem silly
(even incompetent), but given the rules of the game, this scenario would make the player
perform even more moves because she/he/it first had to go and eliminate the zombies
(spread along the board) and would always be forced to return to the same point to solve
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the puzzle (again more moves).

The human designer informed that the computational assistant sometimes places objects
under other objects, thus hiding them (to a human player). Although not incorrect from
the point of view of the rules, this could interfere with the game experience; for example,
according to the layers visible to the player, the player could judge that the current visible
state should be the ending state, but because there are hidden objects, the end conditions
may not be activated, leading the player to believe that there is something else to do and
making her/him feel frustrated for not finding anywhere the missing move (which does
not exist in reality). Regarding this situation, the human designer stated that as a future
improvement to the system’s tool, the human designer should be allowed to introduce more
complex structural rules (not necessarily required by PuzzleScript).

3. Unassisted session starting from an existing design (nonempty game space). In this
session, the human designer was requested to try to improve the original design of the
‘CookieMonster’ game (Design 2 in Section 7.2.1) without the creative assistance of the
computational agent. Upon completion of the session, the human designer produced the
design in Figs. 8.7 and 8.8.

Figure 8.7: Session 3 - Original vs redesigned video game (game mechanics).

According to the human designer, it was a complicated task to try to obtain a more in-
teresting and complex game than the original, especially not to make the solution to the
puzzle so obvious. Notably, in this particular game, the human designer resorted more to
reviewing the analysis and evaluation conducted by the assistant (pre-existing capabilities)
and playing the game herself, whether to find a solution or to grasp the obtained game dy-
namics and experience. The designer stated that she used this technique more because the
solutions for this game are difficult to visualize mentally and that after making the first
modifications, she judged that the game would have a solution when it did not, and she
had to modify the design again. Finally, the human designer expressed that she had not
achieved a better game than the original (already the ’optimal’ version she had come up
with) only by modifying the game level, but she probably could reach a better design with
more time and effort.

4. Creatively assisted session starting from an existing design. In this session, the human
designer tried again redesigning (for better) the ‘CookieMonster’ game, this time with the
ideas provided by the computational agent (in its (𝜇 /𝜌, 𝜆)-ES mode). Upon completion of
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(a) Expected vs actual game dynamics. Original (top) vs redesigned (bottom) (1/2)

(b) Expected vs actual game dynamics. Original (top) vs redesigned (bottom) (2/2)

Figure 8.8: Session 3 - Original vs redesigned video game (game dynamics).

the session, the human designer, with the computational agent’s creative support, produced
the design depicted in Figs. 8.9 and 8.10.

During this last testing session, the human designer observed that almost no ideas had
a solution. From previous experience, the designer reviewed the design at the game dy-
namics level and detected an error in the specification of the ‘duration’ dimension (it was
defined in the range [0, 10]), obviously discovering that a 0 value made no sense (it makes
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Figure 8.9: Session 4 - Original vs redesigned video game (game mechanics).

no sense for a game to have no solution) so she again corrected the situation from a higher
design level. After evolving the design a few more turns, the human designer noticed ideas
with up to 2 monster-type objects. Having two player avatars on the board fascinated the
human designer as it opened up the possibility of the player having not only one object but
a “team” under the player’s control. The human designer said that she had specified up to
2 player avatars in the original game design but had never really tried this possibility and
had “automatically” (an unconscious decision) placed only one avatar at the beginning of
the game.

As she found this ‘control a team’ feature interesting, she decided to redefine the design to
allow ≥ 1 monster-type objects to see how far this idea could go. A few turns later, the
human designer marked as ‘liked’ two ideas with three avatars on the board. After a cou-
ple more turns, however, level ideas with too many avatars (> 4) began to appear, which
seemed to the designer excessive, so she again modified the design at the game dynamics
level, leaving the number of avatars constrained to the range [1, 4]. At that moment, she
decided to apply the computational agent’s idea to be able to play it by herself and experi-
ence the dynamics of controlling a team (Fig. 8.11). The human designer expected that this
feature would allow the player to perform simultaneous movements, i.e., more than one or
even all avatars would move at the same time; however, although this behavior was indeed
present in some ideas (if their object layout allowed it), it was not always the case. Some-
times, many avatars did not move while only one moved, or even sometimes, some avatars
did not move at all (they were completely useless). Even with this situation, the designer
stated that without a doubt, her –seeing multiple player avatars moving simultaneously–
expectation came from the idea generated by the computational agent, and it was just a
matter of selecting one of the designs she found most interesting and modifying it by hand
in order to provoke as many simultaneous movements as possible.

At this point, the designer decided to continue with the brainstorming process, marked
ideas that she liked, and continued for three more turns until the computational agent
came up with an idea with four avatars in place that she liked and promoted into the ac-
tual design. The human designer explained that she had difficulties not only visualizing
but finding by herself (by playing) the solutions that, according to the analysis of the com-
putational agent, a game level had (in some cases, she had to play a level up to 7 times to
find the shortest solutions). In order to continue experimenting, the designer decided to
continue evolving the design some more turns until the process reached a design that was
to her liking, for which, however, she could not find the shortest solution reported by the
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(a) Expected vs actual game dynamics. Original (top) vs redesigned (bottom) (1/2)

(b) Expected vs actual game dynamics. Original (top) vs redesigned (bottom) (2/2)

Figure 8.10: Session 4 - Original vs redesigned video game (game dynamics).

computational agent. As in the previous session, the human designer also reviewed the
analysis and evaluation generated by the computational agent more frequently since she
explained that in this particular game, it is more difficult to visualize the solutions and the
board’s coverage.
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Figure 8.11: Session 4 - Selected idea to test ‘controlling a team’.

8.2.2 Overall evaluation results

Throughout the collaborative sessions with the artificial agent (including the first familiariza-
tion session), some unexpected patterns and behaviors emerged that led the human designer to
make design decisions not only at the level of game mechanics but also at the level of game dy-
namics and to become aware of some essential aspects for the design process that are typically
taken into account by the designer but unconsciously or automatically, which although help to
streamline the process, can bring as a disadvantage the possible generation of design fixations or
conventional practices that end up limiting her creative scope.

For example, according to the game rules established by the human designer in the ‘Zombie’
game, when a zombie object stands on a bomb object, the zombie is replaced by a skull-type
object (to represent the dead zombie visually). This same situation occurs in the ‘ZombieKiller’
action maze game, where a zombie killed by direct player action leaves a bloodstain as a trace
(a blood object replaces the zombie object). Because of these rule patterns, an unexpected be-
havior emerged when the ability to generate and contribute level ideas was incorporated into the
artificial agent. The human designer observed that some of the ideas contributed by the artificial
agent included skull-type (or blood-type) objects placed in the game space (initially). This situ-
ation does not make sense (according to the mental concept expected by the human designer)
since skull- and blood-type objects should appear as a consequence of the execution of the game
rules and not at the beginning of the game (game board initial state). The human designer then
reviewed the specifications of the expected game dynamics concept and could realize that there
was no constraint preventing the artificial agent from placing skull- and blood-type objects on
the board, i.e., the design concept did not have the counter dimension for the skull- and blood-
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type object. Then, the human designer added the appropriate counter-type dimension(s) to the
expected dynamics concept and restricted its/their value(s) to precisely 0 (zero) instances. With
this, the human designer automatically constrained the design space at the game mechanics level
by modifying the design at the next higher level (game dynamics). As a result, the artificial agent
generated level ideas without placing unexpected objects in the initial game space (Fig. 8.12).
While a constraint like this would seem evident to the human designer (not placing skull-type
objects in the startup), it was not to the computational assistant. The human designer realized
the importance of externalizing her design concepts (communicating design decisions) through
the GUI as accurately and thoroughly as possible, thus helping herself to get conscious (literally
passing information from the unconscious to the conscious part of her mind) about crucial design
aspects.

Figure 8.12: Free session - Mechanics level design based on dynamics level. Unexpected skull-type objects
(left) vs expected design pattern (right) after modifying the expected game dynamics concept.

Another unexpected behavior emerged when the artificial agent put several objects (> 1) on
the game board that the human designer had considered as avatars of the player or as unique
tokens that triggered a game win condition. In general, this situation caused the human designer
to update the design of the expected dynamics and the game dynamics design space by including
counter dimensions that limited these object types to precisely one (or any other required specific
number). However, in the case of the ‘CookieMonster’ game, the human designer realized that
having more than one player avatar was very interesting as it brought to the game the feature that
the player could control not just one character but a team of characters and have to take advantage
of that behavior. This case is an example where the human designer explicitly mentioned that
the ideas provided by the artificial agent allowed her to be more creative by discovering new
gameplay possibilities. In her mind, she was fixed on considering only one player avatar, and the
artificial agent’s ideas helped her to break this fixation (go out of the box as she explicitly stated).

A further example of how the ideas generated by the computational agent allowed the human
designer to rethink pre-conceived ideas about the structure of a game was presented in maze-like
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games. Within the evolution of ideas proposed for the ‘Alice’3 game, the human designer ob-
served that the artificial agent sometimes evolved its ideas into board layouts with short, widely
dispersed walls (Fig. 8.13). Initially, this situation seemed counter-intuitive to the human de-
signer per her maze design procedure, which consisted of placing continuous lines of wall objects
from which precise trajectories emerge. However, upon reviewing the comparative evaluation
of these ideas, she observed that, in some cases, the number of steps (duration) to solve these
mazes exceeded the number of steps required to solve the base or inspiration maze. After ana-
lyzing the situation, the human designer realized that having small and scattered walls made it
difficult for the player to visualize continuous trajectories, thus increasing the difficulty not only
in solving the maze but also in designing them using that technique (because it is also difficult
for the designer to see trajectories). This behavior allowed the human designer to incorporate
this new knowledge to design more interesting and complex mazes.

Figure 8.13: Free session - Computational agent’s maze design.

The human designer was able to identify that, in some types of games, it is challenging at first
glance to estimate whether a level has a solution or not, regardless of whether it looks exciting
or not. In these cases, the analysis and evaluation provided by the artificial agent were of great
value.

The human designer generally borrowed ideas provided by the artificial agent that she found
interesting. She did not seem to want to find perfect ideas, but those that she found interesting
and different from what she was used to getting for herself (surprise). Once these ideas were

3A reduced version of the original game was created to comply with the maximum size restriction.
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applied, she would modify them to achieve her purpose. This behavior could exemplify that the
collaborative scheme could have influenced the creative performance of the human designer and
that some signs of creative teamwork were present (the contribution of one agent influenced the
conceptualization of the other, ideas were supplemented or augmented, and solutions were built
with contributions from both).

The overall opinion of the human designer was that working with the computational agent’s
assistance effectively allowed her to obtain results that she could not obtain without the assis-
tance. According to her, the collaborative sessions allowed her to understand better how her
designs relate and are affected from one design level to another (as described in the framework),
(i.e., how a specification at a higher level affects the outcome at the lower level and vice versa).
Finally, the human designer tried to explain (in her terms) the artificial agent’s behavior as a
strategy to grasp why the assistant had arrived at one idea or another. Regarding the idea gener-
ation strategies, the human designer could understand roughly how they worked, but mainly she
could interpret some aspects of the algorithms’ behavior. (e.g., to induce ”divergent thinking” by
increasing the modification rate, to detect periods of ”lack of inspiration” or ”fixation” –several
turns with no apparent progress–, to figure out how to get the computational agent out of that
situation, to induce algorithm stabilization to allow evolving a promising idea).
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9
Building an autonomous
CCDS

9.1 Design levels

For purposes of demonstrating the framework’s capability to describe and model not only col-
laborative but also autonomous systems, we present an autonomous system designing schema to
design new game rules (an essential type of game mechanics) for existing games. For this schema
we are only considering two design levels, game dynamics 𝐷 and game mechanics (game rules)
𝑀 levels to originate the dynamics-mechanics design layer 𝐷𝑀 .

In this designing schema, new game rules are created from expected game dynamics. Then,
actual game dynamics are derived through automated playtesting on a puzzle video game built
from an existing game whose game rules have been replaced with the newly created rules. (i.e.,
a new variant of the original game) (Fig. 9.1).

9.1.1 Game dynamics 𝐷 level

Lim and Harrell (2014) developed a method to evaluate the playability, feasibility, and validity
of rulesets (game mechanics) of PuzzleScript games. Playability is assessed via a set of intrin-
sic dynamic design dimensions called ruleset heuristics, while both feasibility and validity are
playtest-based design dimensions. These dimensions, together with the duration dimension in-
herited from the primary schema, constitute the working set of dynamic design dimensions for
modeling expected and actual design concepts produced at this level:
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Expectations Actual

Expected
dynamics

Actual game rules
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Figure 9.1: Puzzle video game design autonomous CCDS designing schema. Depicts the main design
concepts production flow.

Δ′𝐷 ≔{ ̈𝛿𝐷𝑟ℎ, ̇𝛿𝐷𝑟𝑓 , ̇𝛿𝐷𝑟𝑣, ̇𝛿𝐷𝑑} ∪ { ̇𝛿𝐷𝑝𝑟, ̇𝛿𝐷𝑜𝑟, ̇𝛿𝐷𝑝𝑙, ̇𝛿𝐷𝑝𝑚, ̇𝛿𝐷𝑢𝑑}.

Ruleset heuristics ̈𝛿𝐷𝑟ℎ̈𝛿𝐷𝑟ℎ̈𝛿𝐷𝑟ℎ: A compound design dimension that represents the weighted average of
scores from each ruleset heuristic1

̈𝛿𝐷𝑟ℎ ≔ ⟨⟨ ̇𝛿𝐷𝑝𝑟, ̇𝛿𝐷𝑜𝑟, ̇𝛿𝐷𝑝𝑙, ̇𝛿𝐷𝑝𝑚, ̇𝛿𝐷𝑢𝑑⟩, 𝐿2⟩,

where 𝐿2 is the Euclidean distance representing the distance between games from the perspective
of the playability enabled directly from the game ruleset.

Player in ruleset ̇𝛿𝐷𝑝𝑟̇𝛿𝐷𝑝𝑟̇𝛿𝐷𝑝𝑟: An indicator for the presence of a player game object in the game
ruleset

̇𝛿𝐷𝑝𝑟 ≔ ⟨{0, 1}, 𝐿1⟩,

where 𝐿1 is the Manhattan distance. The absence of player-type game objects in the ruleset
prevents interaction (at all) with the human or computational player.

1Design dimensions in italics are based on or borrowed from the set of dimensions described in (Lim and Harrell
2014)
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Game Dynamics Player in rulesetRuleset heuristics
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Figure 9.2: Game dynamics design dimensions of subsidiary designing schema

Objects in ruleset ̇𝛿𝐷𝑜𝑟̇𝛿𝐷𝑜𝑟̇𝛿𝐷𝑜𝑟: The proportion of non-player game objects appearing in its ruleset

̇𝛿𝐷𝑜𝑟 ≔ ⟨𝐼, 𝐿2⟩.

Lim and Harrell hypothesize that rulesets affecting more objects in the game should increase
playability; however, this might not be necessarily true for pure, simple maze-based puzzles
where non-player game objects are positioned just as static obstacles for the player.

Player in LHS ̇𝛿𝐷𝑝𝑙̇𝛿𝐷𝑝𝑙̇𝛿𝐷𝑝𝑙: An indicator for the presence of a player-type game object precisely on
the left-hand side of a game rule

̇𝛿𝐷𝑝𝑙 ≔ ⟨{0, 1}, 𝐿1⟩.

The presence of a player game object on the left side of a game rule is a sign that the player
can perform actions and, perhaps, modify the current game state.

Player movement in ruleset ̇𝛿𝐷𝑝𝑚̇𝛿𝐷𝑝𝑚̇𝛿𝐷𝑝𝑚: An indicator for the presence of player movements in the
game ruleset

̇𝛿𝐷𝑝𝑚 ≔ ⟨{0, 1}, 𝐿1⟩.
According to Lim and Harrell, player movements appearing in rules increase the likelihood
of the player both performing and receiving actions.

Unique directions per rule ̇𝛿𝐷𝑢𝑑̇𝛿𝐷𝑢𝑑̇𝛿𝐷𝑢𝑑: The reciprocal of the proportion of unique directional moves
per rule

̇𝛿𝐷𝑢𝑑 ≔ ⟨𝐼, 𝐿2⟩.
As stated in (Lim and Harrell 2014), playability could be negatively affected by the presence
of erratic directional changes.
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Ruleset feasibility ̇𝛿𝐷𝑟𝑓̇𝛿𝐷𝑟𝑓̇𝛿𝐷𝑟𝑓 : A marker indicating whether or not a game generated from a ruleset and
other game mechanics has a solution

̇𝛿𝐷𝑟𝑓̇𝛿𝐷𝑟𝑓̇𝛿𝐷𝑟𝑓 ≔ ⟨{0, 1}, 𝐿1⟩.

Ruleset validity ̇𝛿𝐷𝑟𝑣̇𝛿𝐷𝑟𝑣̇𝛿𝐷𝑟𝑣: A marker indicating whether or not a game generated from a ruleset and
other game mechanics produce runtime errors in the PuzzleScript game engine

̇𝛿𝐷𝑟𝑣̇𝛿𝐷𝑟𝑣̇𝛿𝐷𝑟𝑣 ≔ ⟨{0, 1}, 𝐿1⟩.

Duration ̇𝛿𝐷𝑑̇𝛿𝐷𝑑̇𝛿𝐷𝑑: (See 5.1.2).

The previous design dimensions define the structure of the 𝒟𝐷 design space that works as the
evaluation space for the 𝐷𝑀 layer:

𝒟𝐷 = ℰ𝐷𝑀 ≔ ⟨
̈𝛿𝐷𝑟ℎ

⟨ ̇𝛿𝐷𝑝𝑟, ̇𝛿𝐷𝑜𝑟, ̇𝛿𝐷𝑝𝑙, ̇𝛿𝐷𝑝𝑚, ̇𝛿𝐷𝑢𝑑⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩, ̇𝛿𝐷𝑟𝑓 , ̇𝛿𝐷𝑟𝑣, ̇𝛿𝐷𝑑⟩, 𝒟𝐷 ⊆ �⃑�𝐷.

9.1.2 Game mechanics 𝑀 level

The working set of design dimensions in this schema comprises a modified, simplified subset of
the primary schema’s:

Δ′𝑀 ≔{ ̈𝛿𝑀𝑟} ∪ { ̇𝛿𝑀𝑟𝑚} ∪ {( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑣, 𝑤}𝑠 ∊ {left, right},
𝑣 ∊ ℕ,
𝑤 ∊ ℕ

∪ { ̇𝛿𝑀𝑟𝑐𝑚, ̈𝛿𝑀𝑟𝑐𝑜}.

Game rule ̈𝛿𝑀𝑟̈𝛿𝑀𝑟̈𝛿𝑀𝑟: A compound dimension representing a single game rule conformed by two sides,
left and right, each side composed of one pattern, each pattern constituted by exactly two rule
cells composed of 𝑡 cell items

̈𝛿𝑀𝑟 ≔
⟨

̇𝛿𝑀𝑟𝑚, ⟨( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑣, 𝑤⟩𝑠 ∊ {left, right},
𝑣 ∊ {1‥2},

𝑤 ∊ {1‥𝑡 ∊ ℕ}

⟩
.

Game rule modifier ̇𝛿𝑀𝑟𝑚̇𝛿𝑀𝑟𝑚̇𝛿𝑀𝑟𝑚: (See Section 5.1.3).

𝑤𝑤𝑤th cell item of 𝑣𝑣𝑣th cell of 𝑠𝑠𝑠 side ( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑣, 𝑤( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑣, 𝑤( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑣, 𝑤: A compound dimension representing a single
game rule cell item

( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑣, 𝑤 ≔ ⟨ ̇𝛿𝑀𝑟𝑐𝑚, ̇𝛿𝑀𝑟𝑐𝑜⟩.
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9.1. Design levels

Game Mechanics Game rule Modifier

Pattern cell item [left, 1, 1] Modifier
Object 

Pattern cell item [left, 1, ...] Modifier
Object 

Modifier
Object 

Modifier
Object 

Modifier
Object 

Modifier
Object 

Pattern cell item [right, 1, 1]

Pattern cell item [right, 1, ...]

...

...

Pattern cell item [left, 2, 1]

Pattern cell item [left, 2, ...]

Pattern cell item [right, 2, 1]

Pattern cell item [right, 2, ...]

...

...
Modifier
Object 

Modifier
Object 

Figure 9.3: Game mechanics design dimensions of subsidiary designing schema

Cell item modifier ̇𝛿𝑀𝑟𝑐𝑚̇𝛿𝑀𝑟𝑐𝑚̇𝛿𝑀𝑟𝑐𝑚: (See Section 5.1.3).

Cell item object type ̇𝛿𝑀𝑟𝑐𝑜̇𝛿𝑀𝑟𝑐𝑜̇𝛿𝑀𝑟𝑐𝑜: (See Section 5.1.3).

These design dimensions give rise to the structure of the 𝒟𝑀 design space that corresponds
to the solution space of the 𝐷𝑀 layer:

𝒟𝑀 = 𝒮𝐷𝑀 ≔
⟨

̈𝛿𝑀𝑟

⟨
( ̈𝛿𝑀𝑟𝑐)𝑠, 𝑣, 𝑤

⟨ ̇𝛿𝑀𝑟𝑐𝑚, ̇𝛿𝑀𝑟𝑐𝑜⟩𝑠, 𝑣, 𝑤⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⟩
𝑠 ∊ {left, right},

𝑣 ∊ {1‥2},
𝑤 ∊ {1‥𝑡 ∊ ℕ}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

⟩
.
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9.2. CCDS definition

9.2 CCDS definition

The autonomous CCDS composed of a single design layer is formally described as follows:

⟨ℒ, ⟨⟨Δ𝐷𝑀, 𝒰 𝐷𝑀⟩, ⟨Δ̊𝐷𝑀, �̊� 𝐷𝑀⟩⟩, ⟦⋅, ⋅⟧, ⟪⋅, ⋅, ⋅, ⋅⟫, ℛ𝐷𝑀, ℰ𝐷𝑀 ∪ ̊ℰ𝐷𝑀, 𝒫 𝐷𝑀, 𝒯 𝐷𝑀⟩,

ℛ𝐷𝑀 = {Δ′𝑀, �̂�𝑀𝑔}, ℰ𝐷𝑀 = {Δ′𝐷, �̂�𝐷𝑒},

where

• ⟨⟨Δ𝐷𝑀, 𝒰 𝐷𝑀⟩, ⟨Δ̊𝐷𝑀, �̊� 𝐷𝑀⟩⟩ is the universe represented by both the whole domain universe

⟨Δ𝐷𝑀, 𝒰 𝐷𝑀⟩, and the designer’s universe ⟨Δ̊𝐷𝑀, �̊� 𝐷𝑀⟩;

• ℛ𝐷𝑀 is the definitional ruleset consisting of the working set of game mechanics design dimen-
sions Δ′𝑀, and an existing game design (game mechanics) �̂�𝑀𝑔;

• ℰ𝐷𝑀 ∪ ̊ℰ𝐷𝑀 is the evaluative ruleset composed of both the common ℰ𝐷𝑀 consisting of the
working set of game dynamics design dimensions Δ′𝐷 and the game dynamics ‘optimal’ ex-
pected design concept �⃑�𝐷𝑒 = ⟨⟨1, 1.0, 1, 1, 1.0⟩, 1, 1, 65⟩ (See Section 9.3.3.2 for details),
and the designer’s individual ruleset ̊ℰ𝐷𝑀;

• 𝒫 𝐷𝑀 is the the computational agent perception ruleset;

• 𝒯 𝐷𝑀 is the the computational agent action ruleset.

9.3 Design process

In the following sections, we break down the fundamental processes for designing into smaller
steps and provide a detailed description and definition in terms of our framework with mappings
to the components of a direct representation genetic algorithm (GA).

9.3.1 Formulation & reformulation

{�̂�𝐷𝑒 �̌�𝐷𝑒, �̌�𝐷𝑒 ⇄ �⃑�𝐷𝑒, �̂�𝑀𝑔 �̌�𝑀𝑔, �̌�𝑀𝑔 �̌�𝑀𝑝, �̌�𝑀𝑝 ⇄ �⃑�𝑀𝑝} ⊆ 𝒫 𝐷𝑀.

The design task starts with the computational agent receiving, as arguments, both the expected
dynamics design concept �̂�𝐷𝑒 and the existing game mechanics design concept �̂�𝑀𝑔 (an element
of a inspiring set)

�̂�𝐷𝑒 �̌�𝐷𝑒, �̂�𝑀𝑔 �̌�𝑀𝑔.
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9.3. Design process

The agent removes the game rule dimensions of the existing game to set a game mechanics design
concept template

�̌�𝑀𝑔 �̌�𝑀𝑝.
With these two interpreted design concepts, the agent formulates its game dynamics and me-
chanics design spaces

�̌�𝐷𝑒 ⇄ �⃑�𝐷𝑒, �̌�𝑀𝑝 ⇄ �⃑�𝑀𝑝.

9.3.2 Synthesis

{�⃑�𝐷𝑒 ⤇ �⃑�𝑀𝑟, �⃑�𝑀𝑟 → �̂�𝑀𝑟} ⊆ 𝒯 𝐷𝑀.

In the first design iteration (population initialization stage of the GA), the agent randomly pro-
duces a set of new game rules (partial game mechanics design concepts) �⃑�𝑀𝑟, taking into account
the game objects already present in its game mechanics design concept template �⃑�𝑀𝑝.

In subsequent design iterations (inside the main evolution loop of the GA), the agent produces
new sets of game rules by applying its uniform mutation and uniform recombination operators
to members of its current set of produced game rules selected by the method FPS (fitness propor-
tional selection) according to their evaluations

�⃑�𝐷𝑒 ⤇ �⃑�𝑀𝑟.

At the end of each design iteration, the agent outputs its synthesized designs via logging

�⃑�𝑀𝑟 → �̂�𝑀𝑟.

9.3.3 Analysis & evaluation

9.3.3.1 Game mechanics analysis

{{�⃑�𝑀𝑟, �̌�𝑀𝑝} ⇄ {�̌�𝑀𝑟, �̌�𝑀𝑝}, {�̌�𝑀𝑟, �̌�𝑀𝑝} �̌�𝑀𝑎} ⊆ 𝒫 𝐷𝑀,

{�̌�𝑀𝑎 ⤇ �̌�𝐷𝑎} ⊆ ℰ𝐷𝑀.

In order to analyze its designs, the agent first retrieve its game mechanics template and the set
of synthesized rules

{�⃑�𝑀𝑟, �̌�𝑀𝑝} ⇄ {�̌�𝑀𝑟, �̌�𝑀𝑝}.
Next, the agent produces a set of complete playable games (game mechanics representations)

{�̌�𝑀𝑟, �̌�𝑀𝑝} �̌�𝑀𝑎,
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9.3. Design process

and derives a set of actual game dynamics concepts through automatic playtesting and intrinsic
analysis (See ‘Actual design partial analysis (𝑐)’ in Section 6.1.3.1)

�̌�𝑀𝑎 ⤇ �̌�𝐷𝑎.

9.3.3.2 Game dynamics evaluation

{�̌�𝐷𝑑 ⇄ �⃑�𝐷𝑑} ⊆ 𝒫 𝐷𝑀, {�⃑�𝐷𝑒⇠⇢�̌�𝐷𝑎} ⊆ ℰ𝐷𝑀, {�⃑�𝐷𝑑 → �̂�𝐷𝑑} ⊆ 𝒯 𝐷𝑀.

Fitness computation: The agent computes the fitness (as evaluation value) for each of the de-
rived game dynamics concepts through a combined weighted metric and compares them with its
expected game dynamics concept to determine if the design task is completed or further design
iterations may be required (stop criteria in the GA)

�̌�𝐷𝑑 = (�⃑�𝐷𝑒⇠⇢�̌�𝐷𝑎).
For each �̌�𝐷𝑎 actual game dynamics design concept:

a) the agent computes the fitness of the duration dimension value according to the function

𝑓𝑑(𝑥) ≔

⎧⎪
⎪
⎨
⎪
⎪⎩

0 if (𝑥 < 2) ∨ (𝑥 > 150)
(𝑥 − 2)

63 if 𝑥 ≤ 65
(151 − 𝑥)

86 ow.

This function disfavors games requiring less than two or more than 150 moves to fire its
win conditions and considers a 65-moves game to have the highest fitness. The fitness of
games requiring more than 65 moves decreases with a steeper slope than games requiring
less than 65 moves (Fig. 9.4).

b) computes the fitness of the ruleset heuristics dimension as a weighted sum of its base dimen-
sions’ actual values

𝑓ℎ(𝑥) ≔
| ̈𝛿𝐷𝑟ℎ|

∑
𝑖=1

𝑤𝑖𝑥𝑖

for 𝑤 = [0.20, 0.15, 0.30, 0.25, 0.10],
c) and computes the final design concept fitness �̌�𝐷𝑑 as the weighted sum of the complete set

of game dynamics fitness values

𝑓(𝑥) ≔
|𝒟𝐷|

∑
𝑖=1

𝑤𝑖𝑥𝑖

for 𝑥 = [𝑓ℎ(�̌�𝐷𝑎(0)), �̌�𝐷𝑎(1), �̌�𝐷𝑎(2), 𝑓𝑑(�̌�𝐷𝑎(3))] , and 𝑤 = [0.10, 0.30, 0.30, 0.30].

Fitness logging: At the end of each design iteration, the agent outputs its computed evaluation
via logging

�⃑�𝐷𝑑 → �̂�𝐷𝑑.
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9.4. Experimental results
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Figure 9.4: Autonomous CCDS - duration dimension fitness function

9.4 Experimental results

The overall activity of the agent was implemented as a direct representation genetic algorithm
(GA) with the following parameters:

• Mutation probability: 3% (determined empirically through experimentation)

• Swapping probability: 90% (determined empirically through experimentation)

• Elitism: 1 individual

• Number of generations: 50

After 27 executions (Figs. 9.5 and 9.6), the autonomous CCDS was able to come up with the
original game rule and several new ones (Fig. 9.7) that would account for new variants of the
original game.

For example, the original rule [ > player | create ] -> [ > player | > crate ],
interpreted as “if the player moves towards an adjacent crate then the player moves and the crate
also moves in the same direction”, enables the player to push crates on the board and thus be able
to place them in a position to fire a win condition. One of the rules designed by the autonomous
system was [ crate | < player ] -> [ < crate | > player ], interpreted as “if the player
moves towards an adjacent crate then the player’s avatar moves in the opposite direction to its
original direction and the crate moves in the player’s original direction”, enables the player to
push crates on the board bouncing when doing so, thus introducing a variant to the game, a new
condition that the human or computational player must consider if she/he/it wants to trigger the
win condition.
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9.4. Experimental results

The Fig. 9.5 shows the fitness curve for the experiment:
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Figure 9.5: Autonomous CCDS designing activity convergence.
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Figure 9.6: Autonomous CCDS - produced game rulesets by fitness.

Adding the duration dimension into the set of dimensions described in Lim and Harrel’s work
was very beneficial because it increased the evolutionary pressure of the genetic algorithm to find
rules that caused more interesting (longer) games than just games with valid rules.

We initially implemented the agent’s overall behavior through grammatical evolution (GE)
to allow the agent to design rulesets of any size and complexity (open-ended design). However,
we decided to switch to a direct and fixed representation GA. After running some experiments,
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Figure 9.7: Autonomous CCDS - produced game rulesets by duration. An infinite number of moves means
that none of the simulated players used during analysis could find a solution for the game within 1000
iterations of its search algorithm.

we detected too much overrepresentation and underrepresentation of gens that diminished the
effect of the variation (synthesis) operators.

Another problem with grammatical evolution was that sometimes too large and complicated
rules were generated (e.g., a ruleset composed of many rules, with some rules composed of many
patterns, and patterns composed of many cells) that although valid, made it difficult to find a
solution by automatic playtesting, or caused ‘undetermined’ compilation errors in the PuzzleScript
engine.
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10
Conclusions

We started this work by reviewing several theories, models, and systems in fields related to design
research, computational creativity, and cognitive science, and we thoroughly studied the three
fundamental theoretical models: Gero’s FBS/sFBS, Wiggins’ CSF, and Gärdenfors’ CST.

Then, by unifying, adapting, and extending these reference models, we formally and com-
prehensively formulated the computational creative design systems framework (CCDSF) to de-
scribe, analyze and model autonomous and collaborative computational creative design systems
(CCDSs), which we published (Pérez-Romero and Aguilar 2020) together with a description and
analysis, in terms of the CCDSF, of an existing system in the domain of video game design «Sec-
ondary objective 1».

Our framework generalizes FBS and sFBS by introducing the possibility of modeling an unlim-
ited number of design levels, enabling the description of different views or perspectives involved
in a particular design process. It considers the design layers that form between levels as creative
design systems in themselves (even if they belong to a more extensive system), with the advan-
tage that each layer or system can be studied and described independently with its own universe,
conceptual space, and rulesets for defining, evaluating and producing design objects. Another
consequence of our layered structure is that the two-fold function of a design space (conceptual
space) becomes evident: solution space and evaluation space. We extend CSF by introducing
an additional set of rules to model different modes of perception (understood as cognitive pro-
cesses), giving the possibility to distinguish, for example, between different agents using the same
techniques for synthesizing objects of the same type.

Our framework consolidates the declarative and procedural knowledge of the design process
in question through rulesets that not only encode the different specific operations of the design
domain that each agent performs in the process but also group them into different categories
of processes for designing (formulation, synthesis, analysis, evaluation, documentation, refor-
mulation) and clearly identifies their defining, evaluating or generating nature according to the
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creative systems perspective, that is, it allows the definition or distinction of both design process
responsibilities and creative responsibilities.

Our framework introduces the distinction between the idea of the universal conceptual space
(universe) of a specific design domain and the universe of the designer (agent), the former being
the space within which the latter has the opportunity to expand and intersect with the universes of
other agents with whom it collaborates. This reasoning is replicated in the rulesets distinguishing
between different types of shared rules (e.g., domain rules, cultural rules, rules established by
requirements) and agent-internal rules.

The conceptual spaces theory (CST) was crucial to integrate the notion of conceptual space
from Boden’s conceptual theory of creativity with those of design space and variables of FBS,
allowing to establish a representation scheme of design concepts through sets of (design) dimen-
sions belonging to each of the levels involved that can be directly mapped to different concrete
computational implementation mechanisms (e.g., vectors, maps, objects). The integration of CST
also allowed our framework to propose that both design spaces and design objects themselves
can be considered and studied as aggregates of dimensions at different levels of abstraction and
that, as a consequence, the activity of designing could be considered an exercise of extension and
restriction of the same space as a result of the execution of the different design operations.

We consider that if the system developed as a proof of concept had been built solely from the
perspective of computational creativity (definition, evaluation, and exploration of a conceptual
space), the resulting system would not have captured the tasks and responsibilities of the agents
concerning the design process, with a more accentuated focus on the generation of objects that
could be considered creative without emphasizing the requirements and constraints oriented na-
ture of the activity of designing. On the contrary, if the system had been modeled only from the
FBS perspective (and without its extensions), in principle, it would not have been possible to take
as a basis the MDA model of video game design since FBS considers only the function, behavior,
and structure levels. However, even omitting this limitation, it would not have been possible to
clearly identify and group the concrete design operations that can potentially promote or directly
trigger behaviors possibly deemed as creative (not limited to synthesis or generation), and per-
haps, it would not have been possible to propose a flexible design space (or spaces), capable of
contraction and expansion within other larger spaces (universes).

During the second part of this research work, we incrementally modeled and built a PoC
consisting of a collaborative (human-computer) CCDS for designing puzzle-type video games for
the PuzzleScript platform. Also, to illustrate the CCDSF’s versatility, we created a second PoC in
the same domain, this time as a small autonomous CCDS «Secondary objective 2».

When formulating the CCDSF and building the collaborative CCDS, we identified aspects
inherent to the environment (also computational) where two agents, human and computational,
would collaborate to some degree to produce designs. In this sense, although this work was
carried out within the computational creativity and artificial intelligence fields, we addressed and
applied, albeit minimally and superficially, aspects related to the design and assessment of the
user interface, user experience, and interaction «Secondary sub-objectives 2.2 and 2.4». These
elements are not usually considered relevant because traditionally, in the artificial intelligence

Jesús Pérez Romero 172



field, algorithms and systems are built with minimal or no interaction with the user (since the
purpose is usually the execution of an ’intelligent’ task as effectively and efficiently as possible),
but in our case, interactivity acquires greater relevance as it is essential to enable collaborative
systems (of any type) and as an element that may foster creativity in the human agent.

To provide the GUI our PoC required to enable interaction between the assistant and the
human designer, we applied, with the help of a professional user interface and user experience
designer, the ten Nielsen interface usability heuristics, both for the conception of the interface
and for its evaluation from the user’s perspective. From these guidelines and as detailed in the
chapters where PoC is developed, we conceptualized, in a user-story-like style, the GUI through
mockups while outlining the applicable rulesets and their underlying strategies according to our
framework.

The notions of collaborative agent and environment necessarily led us to develop the frame-
work for systems and not just agents, which implies that, at least for a collaborative CCDS, the
system will require not only the performance of an ’intelligent’ task but an orchestration of several
of them (and others perhaps not considered as ’intelligent’ but still essential in designing), some
even simultaneous or interdependent. Due to this reason and to demonstrate the features of our
framework through the PoC, the efforts to model and build it were focused on completeness, that
is, covering as many design operations as possible at as many levels as possible, and with the
greatest possible positive impact on the human agent and not on the degree of ’intelligence’ that
they proved to have (traditional criteria in artificial intelligence).

A criterion we followed to implement the rulesets and underlying strategies of the computa-
tional agent «Secondary sub-objective 2.3» was to select algorithms and mechanisms that were
relatively straightforward to implement and integrate with the PuzzleScript platform. The second
important criterion was to maintain a balance between the effectiveness of the algorithms and
the speed of their execution in order not to hinder the fluidity of the user experience, something
that is crucial in an interactive tool; for example, in the first version, the computational agent
played the human-lead designed games (to analyze them) simulating the behavior of 4 different
players, however, when the computational agent incorporated synthesis strategies, it was neces-
sary to review the four algorithms utilized and select the one that offered the best balance since
now the agent would require an analysis strategy for its own productions, in addition to testing
the game design led by the human. It was due to these balancing needs that we had to estab-
lish some restrictions, particularly on the size of the games and the number of dimensions used
to design the games at the lowest level of game mechanics. Identifying, integrating, adapting,
and implementing these specific computational mechanisms and artificial intelligence techniques
helped to demonstrate one of the key elements of our framework, which is that a variety of in-
terchangeable strategies instrument the capabilities of an agent and characterize its behavior.
Although this modular-architecture-like feature is treated in various software engineering mod-
els and techniques, in our case, it is the one that occurs at the level of the rulesets and fundamental
processes for designing, regardless of actual software engineering and coding techniques.

The reason for selecting the video game design field for our verification products was the
multifaceted nature of this field (a wide variety of design concepts are produced), a feature that
seemed ideal but challenging for building a PoC. Even though different types of design objects are
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involved in this domain, we attempted to cover the domain as holistically as possible to produce
at least designs (games) fully playable by both computational and human players. To this end,
we identified and studied theoretical elements of this domain «Secondary sub-objective 2.1»,
discovering with some ease a clear correspondence between specific elements of this domain
with the components of our framework, a situation that may support the validity of the design-
related aspects of our framework and count as further evidence of the generalization power of
FBS/sFBS.

In essence, a puzzle-type video game presents the player with the challenge of finding a
solution by means of one or more mechanisms such as logical reasoning, a dominant strategy,
quick response movements, and maze-like environments, which in general may require the player
to stop and think for a moment to deduce a sequence of movements (anticipate) in order to
solve the situation. Based on the video game design model MDA, it is possible to approach the
design process of this type of video game through three levels: (a) game mechanics (e.g., game
objects and characters, movement rules, completion conditions, topologies of game boards or
game spaces, level maps) that enable a player to ”play” a video game, (b) game dynamics that
emerge from both the particular composition of mechanics and the player’s interaction with the
game, and (c) the game (or playful) experience that the player experiences as a result of the
emerged game dynamics.

The orchestration of puzzle video game mechanics can be thought of as a type of rule-based
system that is executed when the player plays the video game (from a given game state and a
movement or input of the player, the applicable rules are executed, and a new game state is
obtained). Due to this feature, we took advantage of the existence of the Puzzlescript platform,
which provides both a language for the specification of puzzle-like video game mechanics and an
engine for their execution.

In the third stage of developing the collaborative CCDS, the computational agent was equipped
with its first synthesis capabilities, and a brainstorming-like session was enabled between the
two participant agents. A user interface designer and puzzle video game enthusiast conducted
a formative and summative qualitative evaluation of this collaborative scenario «Secondary sub-
objective 2.4». The evaluation results may suggest that the human designer could have benefited
technically and creatively after participating in collaborative design sessions with the computa-
tional assistant. Some of the ideas provided by the assistant and the “techniques” displayed by
it helped the human designer to identify and break certain design fixations and preconceived
ideas that limited her creative potential. In addition to these benefits, the interaction with the
computational agent helped the human designer improve her technical performance by making
conscious of some aspects and design decisions that she usually managed automatically or un-
consciously. Observing the computational agent’s performance and attempting to understand its
behavior indirectly caused the human designer to notice inaccuracies in defining requirement-like
concepts. Besides the synthesis skills of the computational agent, the designer also recognized the
advantage of having the assistance of an agent in tasks that, although they are not usually given
a creative connotation, are essential in a creative system, such as the analysis and evaluation of
the designs. Having this information available relatively immediately allowed her to experiment
with more ideas.
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10.1. Summary of contributions

After having developed the present research work and according to the results documented
in the previous chapters, we can consider that our research hypothesis happens to be sustained
since, through the formulated framework, we were able not only to describe an existing com-
putational design system from the mixed perspective of the design process and computational
creativity but to comprehensively and accurately model (also from the mixed design-creativity
perspective) and incrementally build a collaborative computational design system in which the
participating agents (human and computational) perform various tasks of the particular design
domain and the computational agent (in particular) exhibits (incrementally) diverse levels of cre-
ative responsibility whether by the direct output of its tasks or by the impact of its tasks output
on the human agent creative performance.

10.1 Summary of contributions

• We formally and comprehensively formulate and published the computational creative design
systems framework (CCDSF), which we consider our main contribution.

• We built through the CCDSF a complete and robust collaborative (human-computer) CCDS as
well as a small autonomous CCDS as PoCs in the field of puzzle-type video game design.

• We demonstrated the importance of interactivity and user experience design and evaluation
as essential elements in building a human-computer collaborative CCDS.

• We showed that the collaborative CCDS we built as PoC could help a human designer to pro-
duce viable designs and improve her own technical and creative performance in different ways.

• When formulating the CCDSF, some collateral findings and ideas emerged that, although they
do not directly respond to a research objective, they do represent, in our opinion, useful con-
tributions:

– We extended elements of the reference models to gain flexibility and greater generalization
power (e.g., levels, designer’s universe vs. universe, shared vs. individual rulesets).

– We formulated a structural recursive construction that formally explains how a design space
(or a conceptual space in its broadest sense) is constructed with base and composite dimen-
sions and how multiple conceptual levels may be embedded, from base dimensions to the
notion of universe.

• The effort to unify design with computational creativity in a formal model may contribute
to dispelling the widespread notion of tightly relating computational creativity systems and
sometimes even the general idea of creativity with the sphere of art.
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10.2. Limitations

10.2 Limitations

• Because we built the collaborative CCDS entirely from scratch, we could not develop the com-
putational agent to the point where it could be deemed a colleague of the human designer,
nor an environment that could be considered fully co-creative. Nevertheless, we believe we
came to develop a creative support agent that collaborates (to some extent) with the human
designer in a collaborative alternating-mode environment.

• Although no professional game designers were involved in this research, we had a valuable
contribution from a professional user experience and interaction designer who was also a puz-
zle video game enthusiast.

• After completing the implementation of the second version of the collaborative computational
agent (apprentice-assistant), we ran into the limitation of having a dataset too minimal to be
exploited by the ML-based synthesis-oriented strategies, forcing us to adjust the direction (in
terms of concrete strategies’ underlying techniques) of the next version of the agent.

• Since we focused on implementing as many operations as possible in the collaborative com-
putational agent, it was not possible to introduce more complex interpretation strategies that
would allow us to simulate different forms of “perception.”

10.3 Future work

• To employ the CCDSF for modeling and building systems in diverse design domains and to
incorporate new strategies into an existing CCDS.

• When crafting the CCDSF, we proposed that the dimension- and concept-based representa-
tion system could be utilized to describe design concepts and potentially other types, such as
interaction-related ones; further work could look into this potential in more detail.

• To make the necessary adjustments to the collaborative CCDS software product so that it can
be released and perhaps used as a research platform (e.g., test different interpretation strate-
gies to simulate complex cognitive processes, test synthesis strategies based on state-of-the-art
generative techniques, test new analysis strategies) with the advantage that the rest of the
strategies would already be implemented (there would be a base functional platform), in a
way similar to working with cognitive architectures.

• We suggest building a relatively large dataset to useML-based synthesis-related strategies, such
as variational autoencoders. However, we know that the task is not easy when considering that
our system defines three levels of design for each game. The PuzzleScript platform maintains
a repository with more than 100 playable games (some with multiple game levels) designed by
enthusiasts (and maybe some professionals). However, this data only accounts for the game
mechanics level, so at least one more level (game dynamics) would have to be built to set the
synthesis relationship.
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