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Ciencias Matemáticas permitieron la conclusión de mis estudios de posgrado, maestŕıa
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Introducción

La geometŕıa riemanniana genera el marco ideal para estudiar la topoloǵıa de
variedades usando toda la maquinaria diferenciable, métrica y algebraica. Con esta
forma de pensar nos aventuramos a estudiar espacios métricos con una noción de
curvatura introducida en los años 50 por A. D. Aleksandrov en el art́ıculo [Ale57].
Dicha noción está inspirada por el teorema de Toponogov (ver Teorema 12.2.2, [Pet16])
y define cuándo un espacio métrico tiene curvatura acotada inferior o superiormente
en términos de comparación de triángulos geodésicos. Además, en ese mismo trabajo
Aleksandrov estudió propiedades de dichos espacios en cada caso.

Más tarde se empezó a estudiar el caso en el que se tienen ambas cotas de curvatura,
surgiendo aśı los espacios con curvatura acotada (“spaces with bounded curvature”),
una combinación de espacios de Alexandrov (cota inferior) y espacios CAT (cota
superior). Estos espacios siguen siendo objeto de estudio en geometŕıa métrica (ver
por ejemplo [Pla92, KL21]) y ocurren, por ejemplo, como espacios CAT con una cota
inferior en la curvatura de Ricci en el sentido de Lott–Sturm–Villani (ver [KK20]).

En 1975, V. N. Berestovskii demostró en [Ber76] que las cotas son muy restrictivas
en la estructura topológica de los espacios con curvatura acotada:

Teorema A (Berestovskii, 1975). Un espacio con curvatura acotada M es una
variedad riemanniana con estructura diferenciable de clase C1 y metrica riemanniana
continua.

Posteriormente, en 1983, I. G. Nikolaev, en [Nik83a] y [Nik83b], mejoró la
regularidad de la estructura diferenciable y de la métrica riemanniana:

Teorema B (Nikolaev, 1983). SeaM un espacio con curvatura acotada. Entonces,
en una vecindad de cada punto p ∈ M podemos introducir un sistema de coordenadas
armónicas. Las componentes gij del tensor métrico en cualquier sistema de coordenadas

armónicas M son funciones continuas de clase W 2,q(Ω) para cualquier q > 1, donde
Ω ⊂ Rn es un dominio donde las coordenadas armónicas están definidas. Los
sistemas de coordenadas armónicas enM forman un atlas de clase C3,α para cualquier
0 < α < 1.

1



2 INTRODUCCIÓN

Finalmente, en 1991 Nikolaev demostró en [Nik91] que podemos aproximar un
espacio con curvatura acotada con variedades riemannianas suaves teniendo un control
de las curvaturas:

Teorema C (Nikolaev, 1991). Sea (M, d(g0)) un espacio con curvatura acotada.
Entonces, en la variedad suave M con atlas C∞ que contiene el atlas armónico h,
podemos definir una sucesión de métricas riemannianas suaves {gm}∞m=1 que tiene
las siguientes propiedades:

(1) Los espacios métricos (M, d(gm)) convergen en el sentido de Lipschitz al
espacio métrico (M, d(g0)).

(2) Las siguientes estimaciones se satisfacen para los limites de curvatura:

lim sup
m→∞

k̄m(M) ≤ k̄0(M) y lim inf
m→∞ ¯

km(M) ≥
¯
k0(M),

donde k̄l(M) y
¯
kl(M) denotan los ĺımites superior e inferior de la curvatura

seccional de las variedades (M, gl), l = 0, 1, · · · .

A partir de este teorema, con una visión “equivariante”, y tomando en cuenta
que el grupo de isometŕıas de un espacio de curvatura acotada es un grupo de Lie
(ver [MS39, FY94]) que es compacto si el espacio es compacto (ver [DW28]), nos
preguntamos:

Si (M, d) es compacto y tiene una acción isométrica de un grupo de Lie compacto
G, ¿es posible aproximar g mediante métricas gi que también tienen una acción de G
(quizás una restricción o extensión de él)?

En esta tesis, damos respuesta a a esta pregunta en el siguiente teorema:

Teorema D. Sean (M, d(g0)) un espacio con curvatura acotada compacto y G un
grupo de Lie compacto actuando por isometŕıas. Entonces, en la variedad suave M
con atlas de clase C∞ que contiene el atlas armónico h podemos definir una sucesión
de métricas riemannianas suaves {gk}∞k=1 que tiene las siguientes propiedades:

(1) El grupo de Lie G actúa en (M, d(gk)) por isometŕıas.
(2) Los espacios métricos (M, d(gk)) convergen en el sentido de Lipschitz al

espacio métrico (M, d(g0)).
(3) Las siguientes estimaciones se satisfacen para los ĺımites de curvatura:

lim sup
k→∞

k̄k(M) ≤ k̄0(M) y lim inf
k→∞ ¯

kk(M) ≥
¯
k0(M),

donde k̄r(M) y
¯
kr(M) denotan los ĺımites superior e inferior de la curvatura

de las variedades (M, gr), r = 0, 1, . . ..

Para demostrar este resultado exploramos la teoŕıa de corrientes y un teorema de
aproximación de corrientes que De Rham estableció en [de 84]:
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Teorema E (De Rham, 1955). En una variedad diferenciable M podemos
construir un operador lineal Z, que depende de parámetros positivos ε1, ε2, . . . que
pueden ser una cantidad finita o infinita de acuerdo a si M es compacto o no y que
tiene las siguientes propiedades:

(a) Si T es una m-corriente en M , entonces ZT es una m-corriente.
(b) El soporte de ZT está contenido en cualquier vecindad dada del soporte de T si

tomamos los parámetros εi suficientemente pequeños.
(c) ZT es C∞.
(d) Si cada εi tiende a cero, ZT converge débilmente a T .

En el estudio de la demostración de este resultado nos preguntamos por una
versión equivariante y obtuvimos:

Teorema F. Sea G un grupo de Lie compacto actuando en la variedad diferenciable
M y sea T una m-corriente en M. Si T es G-invariante, podemos construir un
operador ZG que depende de un parámetro ε > 0 tal que ZGT tiene las siguientes
propiedades:.

(a) ZGT es una m-corriente de clase C∞.
(b) ZGT es una corriente G-invariante.
(c) Si ε tiende a cero, ZGT converge débilmente a T .

Esta tesis tiene dos objetivos principales: el primero es hacer una recapitulación
lo más clara y moderna posible de los fundamentos de la teoŕıa de espacios con
curvatura acotada, desde su definición y propiedades básicas, pasando por el trabajo
de Berestovskii y Nikolaev, hasta el teorema de aproximacón de Nikolaev. A la fecha,
este material es de dif́ıcil acceso en la literatura y la primera parte de esta tesis busca
remediar esta situación (ver, por ejemplo, [KL21, Problema 1.12]).

El segundo objetivo es mostrar las versiones equivariantes de los teoremas de
aproximación de Nikolaev (Teorema D) y de aproximación de De Rham (Teorema F).

La tesis está estructurada en 3 partes como sigue. La primera parte la forman
los caṕıtulos 1 al 4, donde se aborda la teoŕıa de los espacios con curvatura acotada.
En el caṕıtulo 1 se introducen las definiciones y resultados básicos necesarios para
entender la definición de nuestros espacios. En el segundo caṕıtulo definimos los
espacios con curvatura acotada y demostramos que son variedades riemannianas de
baja regularidad estudiando el trabajo de V. Berestovskii. Continúa el caṕıtulo 3
donde constrúımos un transporte paralelo a lo largo de segmentos geodésicos y a lo
largo de curvas rectificables. La primera parte concluye con el caṕıtulo 4, en el que se
mejora la regularidad de las variedades riemannianas con las que estamos trabajando
usando el transporte paralelo que nos da una conexión y que nos permite calcular la
curvatura seccional de ellas. En los caṕıtulos 3 y 4 exponemos trabajo hecho por I.
Nikolaev.
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Sigue la segunda parte con el caṕıtulo 5; en él hacemos una introducción a la
teoŕıa de corrientes y presentamos el proceso de regularización de corrientes. Al final,
incluimos el Teorema E, y como sigue el mismo esquema de demostración, el Teorema
C.

Finalmente, la tercera parte incluye el caṕıtulo 6, donde damos una introducción
a la teoŕıa de acciones de grupos de Lie y el Teorema D y el Teorema F.



Part 1

Spaces with Bounded Curvature





CHAPTER 1

Basic Concepts

In this chapter, we collect the concepts and establish the notation we will use
throughout the present work. The basic references of the material presented here are
[BBI01] and [BH99].

1. Length spaces and comparison triangles

The space form M2
k is the complete and simply connected Riemannian manifold

of dimension 2 with constant curvature k ∈ R. The diameter of M2
k is denoted by Dk.

A curve in a metric space (X, d) is continuous map α : [a, b]→ X, where [a, b] ⊂ R
is an interval. The space of curves from [a, b] to X is denoted by C([a, b];X). A
metric space induces a length functional

Ld : C([a, b];X)→ R

given by

Ld(γ) = sup

{
n∑
i=1

d(γ(ti−1), γ(ti))

}
,

where we take the supremum over

{P = {a = t0 ≤ t1 ≤ · · · ≤ tn = b}} .

This functional induces a metric d̂ on X given by

d̂(x, y) = inf {Ld(γ) | γ ∈ C([a, b];X), γ(a) = x y γ(b) = y} .

A length space is a metric space such that d̂ = d.

Remark 1. A length space is not necesarily complete, for example R2 r {0} is
an incomplete length space.

A (geodesic) segment (or a minimizing curve) is a curve γ : [a, b]→ X such that
if β is another curve joining γ(a) with γ(b), then Ld(γ) ≤ Ld(β). A segment joining x
with y on X is denoted by [x, y]. The image of [x, y] is also called a geodesic segment.

7



8 1. BASIC CONCEPTS

Any curve γ : [a, b]→ X can be reparameterized over the interval [0, 1] using the
function ρ(t) = tb+(1− t)a. A rectifiable curve (a finite length curve) has a constant
speed parameterization if γ : [0, 1] → X and Ld(γ, 0, t) := Ld(γ |[0,t]) = Ld(γ) t.

Moreover, we say that it is a parameterization by arc length if γ : [0, Ld(γ)] → X
and Ld(γ, 0, t) = t. Unless we explicitly state the opposite, every geodesic segment
is parameterized by arc length. A geodesic is a curve γ : I → X such that for every
t ∈ I there is an interval [a, b] containing t, [a, b] ⊂ I, and γ |[a,b] is a minimizing
segment.

A (geodesic) triangle in X consists of three distinct points p, q, r ∈ X and three
geodesic segments [p, q], [q, r] and [r, p], these could be colineal. We denote such
triangle by 4(p, q, r) or 4([p, q], [q, r], [r, p]). A comparison triangle for 4(p, q, r)
is a triangle in M2

k with vertices p̃, q̃ and r̃ such that d(p, q) = d(p̃, q̃), d(q, r) =
d(q̃, r̃) and d(r, p) = d(r̃, p̃). We denote this triangle by 4k(p, q, r), 4(p̃, q̃, r̃) or
4([p̃, q̃], [q̃, r̃], [r̃, p̃]). We illustrate these concepts in Figure 1. A comparison point
for x ∈ [p, q] is a point x̄ ∈ [p̄, q̄] with d(p, x) = d(x̄, p̄). The angle of 4(p̄, q̄, r̄) at
p̄ is called a comparison angle between [p, q] and [p, r] at p and it is denoted by
^k(q, p, r). In particular, for the angle in the Euclidean plane, we use the notation
^0(q, p, r) = ¯̂(q, p, r).

p

q
r

p

r
q

X M 2
k

(p,q,r) (p,q,r)

ˉ

ˉ
ˉ

ˉ ˉ ˉ

Figure 1. Comparison triangles

Remark 2. Instead of denoting differently the metrics we distiguish the metric
spaces involved taking notice which set the points belong to.

Remark 3. In general comparison triangles exist and are unique up to isometry
if the perimeter is less than 2Dk (see [BH99]). Thus for k > 0 comparison triangles
always exist.
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2. Known Facts

Law of cosines in M2
k . Given a triangle in M2

k with length sizes a, b and c, and
angle γ at the vertex opposite to the side of length c as in Figure 2, the following
identities hold:

For k = 0,

c2 = a2 + b2 − 2ab cos(γ).

For k > 0,

cos(
√
kc) = cos(

√
ka) cos(

√
kb) + sin(

√
ka) sin(

√
kb) cos(γ).

For k < 0,

cosh(
√
−kc) = cosh(

√
−ka) cosh(

√
−kb)− sinh(

√
−ka) sinh(

√
−kb) cos(γ).

a

b

c

M 2
k

�

Figure 2. Model triangle in M2
k

Alexandrov’s lemma. Let p, q, r, x be four points in M2
k such that for the triangles

4(p, x, q) and 4(p, x, r) the points q and y lie on opposite sides of a fixed segment
joining p and x. If k > 0 we assume that

d(p, q) + d(q, x) + d(x, r) + d(r, p) < 2Dk.

Let 4(p′, q′, r′) be a triangle in M2
k such that

d(p′, q′) = d(p, q), d(p′, r′) = d(p, r) y d(q′, r′) = d(q, x) + d(x, r).

and let x′ be a point in [q′, r′] such that d(q, x) = d(q′, x′).

(i) ^k(q, x, p)+^k(p, x, r) < π if and only if d(p′, x′) < d(p, x). In this case illustrated
in Figure 3, we have that ^k(p′, q′, x′) < ^k(p, q, x) and ^k(p′, r′, x′) < ^k(p, r, x).
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p

rq

M 2
k

x = x'

p'

q' r'

Figure 3

(ii) ^k(q, x, p)+^k(p, x, r) > π if and only if d(p′, x′) > d(p, x). In this case illustrated
in Figure 4, we have that ^k(p′, q′, x′) > ^k(p, q, x) and ^k(p′, r′, x′) > ^k(p, r, x).

p

r
q

M 2
k

x = x'

p'

q' r'

Figure 4

For a proof, see Lemma 4.3.3, page 115, [BBI01].

3. Angles

Let X be a metric space and let c : [0, a] → X and c′ : [0, a′] → X be two
minimizing curves with c(0) = c′(0). Given t ∈ (0, a] and t′ ∈ (0, a′], we consider the
comparison triangle 4̄(c(0), c(t), c′(t′)) and the comparison angle ¯̂ (c(t), c(0), c′(t′))
in the plane. The Alexandrov angle or upper angle between the segments c and c′ is
the number ^(c, c′) ∈ [0, π] defined by:

^(c, c′) = lim sup
t,t′→0

¯̂ (c(t), c(0), c′(t′)) = lim
ε→0

sup
0<t,t′<ε

¯̂ (c(t), c(0), c′(t′)).

If the limit
lim
t,t′→0

¯̂ (c(t), c(0), c′(t′))

exists, we say that the angle exists in the strict sense and we simply call it angle. We
denote the angle between the segments [p, q] and [p, r] by ^(q, p, r).

Remark 4. We can express ^(c, c′) purely in terms of the distance by noting that

cos( ¯̂ (c(t), c(0), c′(t′)) =
t2 + t′2 − (d(c(t), c′(t′)))2

2tt′
.
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Remark 5. By the infinitesimal character of the definition of the Alexandrov
angle, we have, on the one hand that the angle only depends on the germs of the
segments, i.e., if c′′ : [0, l]→ X is any other segment for which there exists ε > 0 such
that c′′

∣∣
[0,ε] = c′

∣∣
[0,ε] , then the angle between c and c′′ is the same as that between c

and c′. On the other hand, we can carry out the measurement or comparison of the
angle in M2

k instead of the plane (Proposition I.2.9, page 22, [BH99]).

Remark 6. If c : [a, b] → X is a segment with a < 0 < b and we define the
segments c′ : [0,−a]→ X and c′′ : [0, b]→ X by c′(t) = c(−t) and c′′(t) = c(t), then
^(c′, c′′) = π.

Proposition 1.1 (Triangle inequality). Let X be a metric space and let c, c′ and
c′′ three minimizing curves in X starting from the same point. Then

^(c′, c′′) ≤ ^(c′, c) + ^(c, c′′).

Proof. We proceed by contradiction. We take δ > 0 such that

^(c′, c′′) > ^(c′, c) + ^(c, c′′) + 3δ. (1.3.1)

By definition of limit superior we can find ε > 0 in such a way that the following
inequalities hold:

i) ¯̂ (c(t), p, c′(t′)) < ^(c, c′) + δ ∀t, t′ < ε,
ii) ¯̂ (c(t), p, c′′(t′′)) < ^(c, c′′) + δ ∀t, t′′ < ε,
iii) ¯̂ (c′(t′), p, c′′(t′′)) > ^(c′, c′′)− δ ∀t′, t′′ < ε.

Let t′ y t′′ be like in iii). Consider in R2 the triangle with vertices 0̄, x′ and x′′

such that d(0̄, x′) = t′, d(0̄, x′′) = t′′ and the angle α at the vertex 0̄ satisfy

¯̂ (c′(t′), p, c′′(t′′))
(∗)
> α

(∗∗)
> ^(c′, c′′)− δ.

In particular, π > α and the triangle 4(0̄, x′, x′′) is non-degenerate.

Inequality (∗) implies that d(x′, x′′) < d(c′(t′), c′′(t′′)), while
inequalities (∗∗) and (1.3.1) imply that α > ^(c, c′) + ^(c′, c′′) + 2δ.

Using the last inequality we can choose a point x ∈ [x′, x′′] such that the angle α′

between [0̄, x] and [0̄, x′] is greater than ^(c, c′) + δ and the angle α′′ between [0̄, x]
and [0̄, x′′] is bigger than ^(c, c′′) + δ. Let be t = d(0̄, x) ≤ max{t′, t′′} < ε. Then

inequality i) implies that ¯̂ (c(t), p, c′(t′)) < ^(c, c′) + δ < α′, and
inequality ii) implies that ¯̂ (c(t), p, c′′(t′′)) < ^(c, c′′) + δ < α′′.

From these two inequalities we have

d(c(t), c′(t′)) > d(x, x′) and d(c(t), c′′(t′′)) < d(x, x′′),
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respectively. Then we have

d(c′(t′), c′′(t′′)) > d(x′, x′′) = d(x′, x) + d(x, x′′) > d(c′(t′), c(t)) + d(c(t), c′′(t′′)),

which contradicts the triangle inequality in X. Q. E. D.

4. CAT(k) Spaces

Given k ∈ R a CAT space or domain Ck is a metric space X such that for every
two points that are Dk-close, i.e. their distance is less than Dk, there exists a geodesic
segment which joins them and such that one of the following statements holds (every
triangle under consideration has perimeter less than 2Dk):

(A) Every triangle 4(p, q, r) ⊂ X and every pair of points x, y ∈ 4(p, q, r) satisfy
that d(x, y) ≤ d(x̄, ȳ) with x̄, ȳ ∈M2

k comparison points.
(B) For every triangle4([p, q], [q, r], [r, p]) inX and x ∈ [q, r], we have d(p, x) ≤ d(p̄, x̄)

for the comparison point x̄ ∈ [q̄, r̄] ⊂ 4̄(p, q, r) ⊂M2
k .

(C) If 4([p, q], [q, r], [r, p]) is a triangle in X, x ∈ [p, q] and y ∈ [p, r] with p 6= x
and p 6= y, then the angles at the vertices corresponding to p in the comparison
triangles 4̄(p, q, r) and 4̄(p, x, y) in M2

k satisfy ^k(x, p, y) ≤ ^k(q, p, r).
(D) The Alexandrov angles between the sides of a triangle in X with different vertices

are not greater than the corresponding angles of a comparison triangle in M2
k .

(E) For every triangle 4([p, q], [q, r], [r, p]) in X with p 6= q and p 6= r, if γ denotes
the Alexandrov angle at p and 4(p̃, q̃, r̃) ⊂M2

k is a triangle with d(p̃, q̃) = d(p, q),
d(p̃, r̃) = d(p, r) and ^k(q̃, p̃, r̃) = γ, then d(q, r) ≥ d(q̃, r̃).

The first thing to do after these definitions is to prove that they are equivalent.

Proposition 1.2. Conditions (A)-(E) are equivalent.

Proof. The scheme of the proof is the following:

(A) → (B)
l ↙ ↑

(C) → (D) ↔ (E).

(A)⇒(B). This implication is clear because in (A) we can take y to be the vertex
p of the triangle.

(D)⇒(E). Consider a comparison triangle4(p̄, q̄, r̄) in M2
k for the triangle4(p, q, r)

in X. By (D), if γk is the angle at p̄, then γ ≤ γk and, therefore,

cos(γ) ≥ cos(γk). (1.4.1)

Using the law of cosines in M2
k in the triangles 4(p̄, q̄, r̄) and 4(p̃, q̃, r̃), we obtain

three cases.
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Case k = 0:

d(q̃, r̃)2 = d(p̃, q̃)2 + d(p̃, r̃)2 − 2d(p̃, q̃) · d(p̃, r̃) cos(γ),

d(q̄, r̄)2 = d(p̄, q̄)2 + d(p̄, r̄)2 − 2d(p̄, q̄) · d(p̄, r̄) cos(γk).

By the preceding equalities for distances, and inequality (1.4.1), we have d(q̄, r̄)2 =
d(q̃, r̃)2. Hence we get d(q, r) = d(q̄, r̄) ≥ d(q̃, r̃).

Case k > 0:

cos(
√
k d(q̃, r̃)) = cos(

√
k d(p̃, q̃)) cos(

√
k d(p̃, r̃))

+ sin(
√
k d(p̃, q̃)) sin(

√
k d(p̃, r̃)) cos(γ),

cos(
√
k d(q̄, r̄)) = cos(

√
k d(p̄, q̄)) cos(

√
k d(p̄, r̄))

+ sin(
√
k d(p̄, q̄)) sin(

√
k d(p̄, r̄) cos(γk).

Again, as a consequence of the equalities for distances, of (1.4.1), and of the
monotonicity of the function cosinea and the points q̃ and r̃ lie in the sphere with
sectional curvature k,

cos(
√
k d(q̃, r̃)) ≥ cos(

√
k d(q̄, r̄)).

Thus, d(q̃, r̃) ≤ d(q̄, r̄) = d(q, r).

Case k < 0:

cosh(
√
−k d(q̃, r̃)) = cosh(

√
−k d(p̃, q̃)) cosh(

√
−k d(p̃, r̃))

− sinh(
√
−k d(p̃, q̃)) sinh(

√
−k d(p̃, r̃)) cos(γ),

cosh(
√
−k d(q̄, r̄)) = cosh(

√
−k d(p̄, q̄)) cosh(

√
−k d(p̄, r̄))

− sinh(
√
−k d(p̄, q̄)) sinh(

√
−k d(p̄, r̄) cos(γk).

Using the same arguments as before,

cosh(
√
−k d(q̃, r̃)) ≤ cosh(

√
−k d(q̄, r̄)).

And, finally, d(q̃, r̃) ≤ d(q̄, r̄) = d(q, r).

(E)⇒(D). Proceeding in a similar way to the previous implication, but now with
an inequality of distances instead of angles, the result follows as a consequence of the
law of cosines.

(A)⇔(C). Let 4([p, q], [q, r], [r, p]) be a triangle in X and consider x ∈ [p, q] and
y ∈ [p, r] with x 6= p and y 6= p. Consider the comparison triangles 4̄(p, q, r) and
4̄(p, x, y) in M2

k . We denote by z̄ the comparison points in 4̄(p, q, r) and by z̄′ the
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comparison points in 4̄(p, x, y). We have illustrated this in Figure 5. Consider also
the angles ᾱ = ^k(q, p, r) and ᾱ′ = ^k(x, p, y) in p̄ and p̄′, respectively. Using the
laws of cosines as below, we have d(x̄, ȳ) ≥ d(x, y) = d(x̄′, ȳ′) if and only if ᾱ ≥ ᾱ′.

q

p̄

ˉ

r̄

(p,q,r)ˉ

M 2
k

p'̄

x'̄

y'̄
(p,x,y)ˉ

p

q

r

X

(p,q,r)

x

y

Figure 5

(B)⇒(C). We use the same notation as in the last part. Let 4(p̄′′, x̄′′, r̄′′) be a
comparison triangle for 4(p, x, r) and ᾱ′′ be the angle at p̄′′. By (B) we have that
d(x, y) ≤ d(x̄′′, ȳ′′), where ȳ′′ ∈ 4(p̄′′, q̄′′, r̄′′) is the comparison point of y. We have

d(x̄′, ȳ′) = d(x, y) ≤ d(x̄′′, ȳ′′)

and, therefore, ᾱ′ ≤ ᾱ′′. Also by (B), the inequality d(x̄′′, r̄′′) = d(x, r) ≤ d(x̄, r̄) is
satisfied and then ᾱ′′ ≤ ᾱ. Finally, ^k(x, p, y) = ᾱ′ ≤ ᾱ = ^k(r, p, q).

(D)⇒(B). Let 4([p, q], [q, r], [r, p]) be a triangle in X and let x ∈ [q, r] be different
from q and r. Consider a segment [p, x] in X. Let γ be the Alexandrov angle between
[p, x] and [x, q] ⊂ [r, q], γ′ the Alexandrov angle between [p, x], and [r, x] ⊂ [q, r] and
β the Alexandrov angle between [p, q] and [q, r]. Now consider a comparison triangle
4(p̄, q̄, r̄) for 4(p, q, r) in M2

k and β̄ the angle of this triangle at q̄. Consider also the
comparison triangles4(p̃, q̃, x̃) and4(p̃, r̃, x̃) for4(p, q, x) and4(p, r, x), respectively.
These last two are choosen such that the side [p̃, x̃] common for both and q̃ and r̃ lie
on the opposite sides of the line joining p̃ and x̃. Let be ^(q̃, x̃, p̃) = γ̃, ^(p̃, x̃, r̃) = γ̃′

and ^(p̃, q̃, x̃) = β̃. By Remark 6 and Proposition 1.1, γ + γ′ ≥ π. Alexandrov’s

lemma implies that β̃ ≤ β̄ and, using the laws of cosines, d(p, x) = d(p̃, x̃) ≤ d(p̄, x̄).
Q. E. D.
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Remark 7. Another way of statting (C) is that the function

θk(s, t) = ^k(x(s), p, y(t))

is monotone non-decreasing with s or t fixed, where x(s) is the parameterization by
arc length of the segment [p, q] and y(t) is the parameterization by arc length of [p, r].

Remark 8. By the monotonicity of θk, we have that for a CAT(k) the Alexandrov
angles exist in the strict sense.

Properties of CAT(k) spaces:

Property 1. There is a unique geodesic segment joining any two points which
are Dk-close and this segment varies continuously with its endpoints.

Proof. Let p, q ∈ X be such that d(p, q) < Dk. Let [p, q] and [p, q]′ be two
segments joining p and q. Let r ∈ [p, q] and r′ ∈ [p, q]′ be points satisfying that
d(p, r) = d(p, r′). Consider [p, r] and [r, q] segments whose concatenation is [p, q]. Let
4(p̄, q̄, r̄) be a comparison triangle for 4([p, r], [r, q], [p, q]′). By Definition (B),

d(r, r′) ≤ d(r̄, r̄′),

where r̄′ is comparison point of r′. By Remark 6 the angle ^(p, r, q) = π and by
(C) the comparison angle ^k(p, q, r) ≥ ^(p, r, q) = π. Thus, ^k(p, r, q) = π and the
triangle 4(p, r, q) is degenerate. From this we have that d(r̄, r̄′) = 0 because the
triangle 4(p̄, q̄, r̄) must be degenerate by the assumed concatenation. Therefore,
d(r, r′) = 0.

Now we prove the continuous variation of the geodesic segments. Let l < Dk.
Let c, c′ : [0, 1]→M2

k be two minimizing curves parameterized with constant speed,
length less than l, and starting from the same point, i.e., c(0) = c′(0). Then there
exists C = C(l, k) such that

d(c(t), c′(t)) ≤ C · d(c(1), c′(1))

for t ∈ [0, 1]. Let {pn}n∈N and {qn}n∈N be sequences of points such that pn → p
and qn → q. Suppose that d(pn, qn) and d(p, qn) are smaller than l < Dk. Let
c, cn, c

′
n : [0, 1]→ X be parameterizations with constant speed of [p, q], [pn, qn] and

[p, qn], respectively. Applying Definition (A), we get

d(c(t), cn(t)) ≤ d(c(t), c′n(t)) + d(c′n(t), cn(t))

≤ d(c̄(t), c̄′n(t)) + d(c̄′n(t), c̄n(t))

≤ C(d(q̄, q̄n) + d(p̄n, p̄))

= C(d(q, qn) + d(pn, p)).

The convergence of the sequences gives us the result. Q. E. D.

Property 2. Open balls with radius less than Dk/2 are convex.
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Proof. Let x ∈ X, 0 < δ < Dk/2, and p, q ∈ B(x, δ). Then the triangle4(p, q, x)
has perimeter less than 2Dk. In particular, by Proposition 1, [p, q] is unique. Now we
need to prove that [p, q] ⊂ B(x, δ). We take a comparison triangle 4(p̄, q̄, x̄) in M2

k .
Let r ∈ [p, q] and let r̄ ∈ [p̄, q̄] be the comparison point. By Definition (B), it follows
that d(x̄, r̄) ≥ d(x, r). On the other hand, d(x̄, r̄) < δ because the balls in M2

k of
radius less than Dk/2 are convex. Hence d(x, r) < δ and [p, q] ⊂ B(x, δ). Q. E. D.

Property 3. Let p be a point in X. The function (x, y) 7→ ^(x, p, y) is continuous
in the ball B(p,Dk).

Proof. Let {xn}n∈N and {yn}n∈N be sequences of points converging to x and
y, respectively. Let c, c′, cn and c′n be parametrizations with constant speed of
the geodesic segments [p, x], [p, y], [p, xn] and [p, yn], respectively. For t ∈ (0, 1],
let α(t) = ^k(c(t), p, c′(t)) and αn(t) = ^k(cn(t), p, c′n(t)). By Remark 7, these are
non-decreasing functions of t. By Remark 8,

α := ^(x, p, y) = lim
t→0

α(t) and αn := ^(xn, p, yn) = lim
t→0

αn(t).

Using the Definition (D) of CAT(k) spaces:

βn := ^(x, p, xn) ≤ ¯̂ (x, p, xn)→ 0 as n→∞,

γn := ^(y, p, yn) ≤ ¯̂ (y, p, yn)→ 0 as n→∞.
From Proposition 1.1, we get

|α− αn| ≤ βn + γn.

Hence,

lim
n→∞

αn = α.

Q. E. D.

5. Domains Ck′,k
A domain Ck′,k is a metric space X such that, for every pair of points which are

Dk-close, there exists a minimizing curve joining them and every triangle 4(p, q, r)
with perimeter less than 2Dk satisfies

^k′(q, p, r) =: αk′ ≤ α ≤ αk := ^k(q, p, r),
^k′(p, q, r) =: βk′ ≤ β ≤ βk := ^k(p, q, r),
^k′(q, r, p) =: γk′ ≤ γ ≤ γk := ^k(q, r, p),

where α, β and γ are the Alexandrov angles of the triangle at p, q and r, respectively.
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Remark 9. Something important to notice about the definition is that having
only the lower inequalities we can prove several equivalencies as in the CAT(k) case.
A couple of them are included as Properties 4 and 5 and their proofs are very similar
to what we have done before.

Properties of domains Ck′,k:

Property 1. A domain Ck′,k is a CAT(k) space.

Property 2. For every three segments issuing from the same point, the sum of
the angles between pairs of them is not greater than 2π.

Proof. Let [x, p], [x, q] and [x, r] be three minimizing curves issuing from the
point x and sufficiently short to construct comparison triangles. Let p(s), q(s) and
r(s) be parametrizations by arc length of the segments. Let s′ ∈ (0, d(x, p)) and
x′ = p(s′). Using the lower inequalities of the definition for the triangles 4(x, p, q),
4(x, p, r) and 4(x, q, r), we have

^k′(p, x′, q) + ^k′(p, x′, r) + ^k′(r, x′, q) ≤ ^([x′, p], [x′, q]) + ^([x′, p], [x′, r])

+^([x′, r], [x′, q])
(∗)
≤ ^([x′, p], [x′, q]) + ^([x′, p], [x′, r])

+^([x′, r], [x′, x]) + ^([x′, x], [x′, q])

= ^([x′, p], [x′, q]) + ^([x′, q], [x′, x])

+^([x′, r], [x′, x]) + ^([x′, p], [x′, r])
(∗∗)
= 2π.

Inequality (*) is given by Proposition 1.1 and equality (**) is given by Remark 6.
Letting s′ → 0, by the continuity of the angles in M2

k , we have

^k′(p(s), x, q(s)) + ^k′(p(s), x, r(s)) + ^k′(r(s), x, q(s)) ≤ 2π.

Finally, taking the limit over s, we obtain the result. Q. E. D.

Property 3. The sum of adjacent angles is equal to π.

Proof. From Proposition 1.1 we have that the sum of adjacent angles is not
bigger than π and from the previous property the sum is smaller than π. Q. E. D.

Property 4. The function θk′(s, t) is monotone non-increasing if s or t are fixed.

Property 5. Let be 4(p, q, r) a triangle in X, x ∈ [p, q] and y ∈ [p, r]. Consider
a comparison triangle 4(p̄′, q̄′, r̄′) in M2

k′ , x̄
′ ∈ [p̄′, q̄′] and ȳ′ ∈ [p̄′, r̄′]. Then

d(x, y) ≥ d(x̄′, ȳ′).



18 1. BASIC CONCEPTS

Property 6. If [p, q] ⊂ [p, r] and [p, q] ⊂ [p, x], then [p, r] ⊂ [p, x] or [p, x] ⊂ [p, r].
This property is called non-branching condition of segments.

Proof. Without loss of generality we assume that d(p, x) < d(p, r) and proceding
by contradiction we suppose that [p, x] * [p, r]. Let x′ ∈ [p, r] be a point such that
d(p, x) = d(p, x′). Then d(x, x′) 6= 0. Consider a comparison triangle 4(p̄, x̄, x̄′) of
4(p, x, x′) in M2

k′ . This comparison tirangle is isosceles and non-degenerate. But
if q̄ and q̄′ are comparison points of q in [p, x] and [p, x′], using Property 5 we have
d(q, q) ≥ d(q̄, q̄′) > 0, which is a contradiction to the definition of the metric. Q. E. D.

Property 7. If [p, q] and [p, r] are segments in X such that α = ^([p, q], [p, r]) = 0,
then one of the segments is contained in the other.

Proof. Without loss of generality we assume that the segments are sufficiently
short to construct comparison triangles and also that d(p, q) < d(p, r). Consider
a comparison triangle 4(p̄, q̄, r̄) of 4(p, q, r) in M2

k′ . By definition we have that
0 = α ≥ ^k′(q, p, r), which implies that 4(p̄, q̄, r̄) is degenerate. From this,

d(p, r) = d(p, q) + d(q, r)

and q ∈ [p, r]. Q. E. D.

Property 8. With the same notation as the definition we have∣∣α− ^0(q, p, r)
∣∣ ≤ µ · Area(4(p̃, q̃, r̃))

where 4(p̃, q̃, r̃) is a comparison triangle of 4(p, q, r) in the plane and µ is a positive
constant which depends on k′ and k.

Proof. From the definition we have∣∣α− ^0(q, p, r)
∣∣ ≤ max

{∣∣^k(q, p, r)− ^0(q, p, r)
∣∣ , ∣∣∣^k′(q, p, r)− ^0(q, p, r)

∣∣∣} .
If 4(p̄, q̄, r̄) is a comparison triangle of 4(p, q, r) in M2

k ,∣∣^k(q, p, r)− ^0(q, p, r)
∣∣ ≤ ∣∣^k(q, p, r)− ^0(q, p, r)

∣∣+
∣∣^k(p, q, r)− ^0(p, q, r)

∣∣
+
∣∣^k(q, r, p)− ^0(q, r, p)

∣∣
= |k| · Area(4(p̄, q̄, r̄))

= |k| · Area(4(p̃, q̃, r̃)) · A(4(p̄, q̄, r̄)),

where A(4(p̄, q̄, r̄))→ 1 if the lengths of the sides of 4(p, q, r) tend to zero. Similarly
for |^k′(q, p, r)− ^0(q, p, r)|. Then we can take

µ = max{|k|, |k′|}+ ε.

Q. E. D.
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Remark 10. Notice that we will use the upper and the lower bounds of the
curvature every time we apply this last property. Esentially it tells us that our angles
are not too far away from comparison angles in the plane.





CHAPTER 2

Spaces with Bounded Curvature: Riemannian Structure

1. Introduction to Spaces with Bounded Curvature

A space with bounded curvature is a locally compact length space M in which
the following axioms are satisfied:

• For every point p ∈ M, there exists ρp > 0 such that in the open ball B(p, ρp)
the condition of extendibility of segments holds: every geodesic segment
[x, y] with endpoints x and y in B(p, ρp) can be extended to a segment [x′, y′]
in M for which x and y are internal points.
• Every p ∈ M is contained in a neighborhood U that is a domain Ck′,k for

some k′, k ∈ R (k′ ≤ k) that depend on U .

Examples. Some examples of spaces with bounded curvature:

(1) Every smooth Riemannian manifold.
(2) The surface obtained by glueing two semispheres on the caps of a cylinder.

We illustrate this example in Figure 6.

Figure 6

This surface has curvature equal to 0 on the cylinder and a positive
constant on the semispheres. Thus, the curvature is between 0 and a constant.

21
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The first goal in the treatment of spaces with bounded curvature (SBC) is to
prove that these are topological manifolds. With that in mind, we need the next
lemmas.

Lemma 2.1. Let M be a space with bounded curvature and let us consider geodesic
segments c1 : [0, Ld(c1)]→M, c2 : [0, Ld(c2)]→M and c3 : [0, Ld(c3)]→M issuing
from the point x, i.e., x = c1(0) = c2(0) = c3(0). Suppose that ^(ci, cj) > 0 for i 6= j
and ^(c1, c2) < π. The length of these segments is denoted by ai. We assume that
ai < ρx and that B(x, ρx) is a Ck′,k domain. For every t ∈ [0, 1], let wt denote the
midpoint of [c1(a1t), c2(a2t)]. Then, in the Euclidean space R3, there exist w̃, x̃ and
x̃i, i = 1, 2, 3, such that d(x̃, x̃i) = ai and

w̃ − x̃ =
1

2
((x̃1 − x̃) + (x̃2 − x̃)), (2.1.1)

^(ci, cj) = ^(x̃i, x̃, x̃j), i, j = 1, 2, 3, (2.1.2)

^(w̃, x̃, x̃i) = lim
t→0

¯̂ (wt, x, ci(t)) i = 1, 2, 3. (2.1.3)

Proof. From Proposition 1.1 and Property 2 of domains Ck′,k, we can find x̃ and
x̃i, i = 1, 2, 3 such that (2.1.2) is satisfied and d(x̃i, x̃) = ai. We can construct these
points using spherical geometry. Now we take w̃ to be the point that satisfies (2.1.1).
To prove (2.1.3) we are going to calculate several limits in order to use the law of
cosines in the plane.

First of all

lim
t→0

d(ci(ait), x)

t
= lim

t→0

ait

t
= ai = d(x̃, x̃i) (2.1.4)

and

lim
t→0

d(ci(ait), cj(ajt))

t
= lim

t→0

√
d(x, ci(ait))

2 + d(x, cj(ajt))
2

−2d(x, ci(ait))d(x, cj(ajt)) cos( ¯̂ (ci(ait), x, cj(ajt)))

t

= lim
t→0

√
(ait)2 + (ajt)2 − 2aiajt2 cos( ¯̂ (ci(ait), x, cj(ajt)))

t2

=
√
a2
i + a2

j − 2aiaj cos(lim
t→0

¯̂ (ci(ait), x, cj(ajt)))

=
√
a2
i + a2

j − 2aiaj cos(^(ci, cj)) = d(x̃i, x̃j). (2.1.5)

From this last limit and the definition of wt, we get

lim
t→0

d(wt, ci(ait))

t
= d(w̃, x̃i) i = 1, 2. (2.1.6)
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Moreover, we have

^(c2, c1, c3) := lim
t→0

¯̂ (c2(a2t), c1(a1t), c3(a3t)) = ¯̂(x̃2, x̃1, x̃3).

This last angle is estimated using the law of cosines in R2 and the limits given by
(2.1.5). From this fact and Property 8 of domains Ck′,k we have the following:

lim
t→0
| ¯̂ (c2(a2t), c1(a1t), c3(a3t))− ¯̂ (wt, c1(a1t), c3(a3t))|

≤ lim
t→0

µ Area(4̄(c1(a1t), c2(a2t), c3(a3t))) = 0.

Therefore,

lim
t→0

¯̂ (wt, c1(a1t), c3(a3t)) = ¯̂(w̃, x̃1, x̃3). (2.1.7)

Now, thanks to (2.1.5), (2.1.6) and (2.1.7)

lim
t→0

d(wt, c3(t))

t
= lim

t→0

√√√√ d(c1(a1t), wt)
2 + d(c1(a1t), c3(a3t))

2

−2d(c1(a1t), wt) d(c1(a1t), c3(a3t))·
· cos( ¯̂ (wt, c1(a1t), c3(a3t)))

t

=
√
d(x̃1, w̃)2 + d(x̃1, x̃3)2 − 2d(x̃1, w̃) d(x̃1, x̃3) cos( ¯̂ (x̃3, x̃, w̃))

= d(x̃3, w̃). (2.1.8)

Using the same argument, we obtain

lim
t→0

d(wt, x)

t
= d(x̃, w̃). (2.1.9)

Finally, by (2.1.5), (2.1.6), (2.1.8) and (2.1.9),

lim
t→0

cos( ¯̂ (wt, x, ci(ait))) = lim
t→0

d(wt, x)2 + d(x, ci(ait))
2 − d(wt, ci(ait))

2

2d(wt, x) d(x, ci(ait))

=
d(w̃, x̃)2 + d(x̃, x̃i)

2 − d(w̃, x̃i)
2

2d(w̃, x̃) d(x̃, x̃i)

= cos( ¯̂ (w̃, x̃, x̃i)).

Q. E. D.

Let δ be a positive number such that B(x, δ) is a domain Ck′,k where the condition
of extensibility of segments holds. Assume the same hypotheses of Lemma 2.1, but
now with the segments inside the ball. For every t ∈ (0, 1] let ct be the segment of
length δ that starts at x, passes through wt and ends at xt. By the local compactness
of M, we can assume that B(x, δ) is precompact and then there exist a point u and
a sequence {tn}n∈N, 0 < tn with tn → 0, such that xtn → u. Let c be the segment
joining x with u. The next lemma describes this last segment in more detail.
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Lemma 2.2. With the same hypotheses of Lemma 2.1, we have

^(c, ci) = ^(w̃, x̃, x̃i), i = 1, 2, 3.

Furthermore, if ^(c3, ci) = ^(c, ci), i = 1, 2, then ^(c3, c) = 0.

Proof. By virtue of Property 8 of domains Ck′,k, for t sufficiently small,

| ¯̂ (wt, x, ci(ait))− ^(ci, ct)| ≤ µ Area(ci(ait), x̃, w̃t), i = 1, 2, 3.

Using this inequality and (2.1.3), we have

lim
n→∞

^(ctn , ci) = ¯̂(w̃, x̃, x̃i), i = 1, 2, 3.

From Property 3 of CAT(k) spaces since for s fixed ctn(s) goes to c(s) as n→∞ it
follows that

lim
n→∞

^(ctn , c) = 0.

So, ^(ci, c) = ¯̂(w̃, x̃, x̃i), i = 1, 2, 3. Finally, if ^(c3, ci) = ^(c, ci), i = 1, 2, using
Lemma 2.1 we have

¯̂ (w̃, x̃, x̃1) = ^(c, c1) = ¯̂(x̃3, x̃, x̃1),

¯̂ (w̃, x̃, x̃2) = ^(c, c2) = ¯̂(x̃3, x̃, x̃2).

This forces x̃3 to be in the same line as w̃ and ^(c3, c) = ¯̂(w̃, x̃, x̃3) = 0. Q. E. D.

Remark 11. The importance of these lemmas lies in the construction of the
segment c whose angles with c1 and c2 have the same relationship of the diagonal in
a parallelogram with the sides.

2. A Tangent Space to M

Let M be a space with bounded curvature and x ∈ M. Let δ > 0 and B(x, δ)
as before, i.e. B(x, δ) is a precompact domain Ck′,k and the local extensibility of
segments holds. We consider the set of segments joining x with y ∈ B(x, δ)r {x} and
we say that two of these segments are related if the angle between them is zero. This
is clearly an equivalence relation, by the infinitesimal nature of Alexandrov angles. A
equivalence class of segments is called a direction and the set Σx is the completion of
the space of equivalence classes using the angles between directions as metric and is
called space of directions at x. Finally, we consider the topological cone

TxM = Σx × R≥0

/
Σx × {0}

with metric
d([c, t], [c′, s]) =

√
t2 + s2 − 2ts cos(^(c, c′)).

The metric space is called tangent space to M at x.
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Remark 12. By the local extendibility condition, Properties 1 and 3 of CAT(k)
spaces, and local compactness, Σx is compact.

Remark 13. As a corolary to the last remark, we have that the tangent space is
locally compact.

Now we define a vector space structure on TxM. The zero element is the vertex
of the cone [c, 0]. Let [c, t] and [c′, t′] be two elements of TxM. Their sum is defined
by cases as follows:

(i) If t is zero, we let

[c, 0] + [c′, t′] = [c′, t′] + [c, 0] := [c′, t′]

and viceversa if t′ = 0.
(ii) If t, t′ > 0 and c = c′, we let

[c, t] + [c′, t′] = [c′, t′] + [c, t] := [c, t+ t′] = [c′, t+ t′].

(iii) If t, t′ > 0 and ^(c, c′) = π, we let

[c, t] + [c′, t′] = [c′, t′] + [c, t] :=

{
[c, t− t′] if t > t′,
[c′, t′ − t] if t < t′.

(iv) If t, t′ > 0 and ^(c, c′) ∈ (0, π), we let

[c, t] + [c′, t′] = [c′, t′] + [c, t] := [c′′, t′′],

where [c′′, t′′] is given by the following construction:
1. First, we take N ∈ N sufficiently large so that t/N + t′/N < δ.
2. Then we choose the geodesic segments σ and σ′ representing c and c′

such that Ld(σ) = t/N and Ld(σ
′) = t′/N .

3. Using Lemmas 2.1 and 2.2 with the segments σ and σ′ we get the
segment σ′′ with

Ld(σ
′′) =

√
(t)2 + (t′)2 + 2tt′ cos(^(σ, σ′))

N
=
t′′

N
,

t′′ sin(^(σ′′, σ)) = t′ sin(^(σ, σ′)),

t′′ sin(^(σ′′, σ′)) = t sin(^(σ, σ′)).

4. We take the class c′′ of σ′′ in Σx.

Also, from the local extendability, if [c, t] is a element of TxM, we can choose
a unique direction −c such that ^(c,−c) = π. Then the inverse is defined by
−[c, t] := [−c, t].
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The product [c, t] ∈ TxM by a real number is given by

α[c, t] :=

 [c, αt] if α ≥ 0,

−[c,−αt] if α ≤ 0.

Theorem 2.3. The tangent space TxM with these operations and with scalar
product

〈[c, t], [c′, t′])〉 :=

{
tt′ cos(^(c, c′)) if t, t′ > 0,

0 otherwise,

is a vector space.

Proof. First, we prove the properties of the scalar product:

(I) 〈[c, t], [c′, t′]〉 = 〈[c′, t′], [c, t]〉;
(II) 〈α[c, t], [c′, t′]〉 = α〈[c, t], [c′, t′]〉;

(III) 〈[c, t] + [c′, t′], [c′′, t′′]〉 = 〈[c, t], [c′′, t′′]〉+ 〈[c′, t′], [c′′, t′′]〉;
(IV) 〈[c, t], [c, t]〉 ≥ 0 and 〈[c, t], [c, t]〉 = 0 if and if only t = 0;
(V) 〈[c, t], [c′, t′]〉 ≤ tt′; if 〈[c, t], [c′, t′]〉 = tt′ and t > 0, then for some α ≥ 0,

[c′, t′] = α[c, t].

Properties (I), (IV) and (V) follow directly from the definition.
Property (II): If t = 0 or t′ = 0 or α = 0, the result follows clearly. Suppose none

of t, t′ oo α is zero. Then

〈α[c, t], [c′, t′]〉 =

{
〈[c, αt], [c′, t′]〉 if α ≥ 0
〈−[c,−αt], [c′, t′]〉 if α ≤ 0

=

{
αtt′ cos(^(c, c′)) if α ≥ 0

(−αt)t′ cos(^(−c, c′)) if α ≤ 0

=

{
αtt′ cos(^(c, c′)) if α ≥ 0

(−αt)t′ cos(π − ^(c, c′)) if α ≤ 0

= αtt′ cos(^(c, c′))

= α〈[c, t], [c′, t′]〉.

Property (III): If t′′ = 0, the result holds. If t′′ > 0, we have four cases:

(i) t′ = 0. Then

〈[c, t] + [c′, t′], [c′′, t′′]〉 = 〈[c, t], [c′′, t′′]〉 = 〈[c, t], [c′′, t′′]〉+ 〈[c′, t′], [c′′, t′′]〉.
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(ii) t, t′ > 0 and ^(c, c′) = 0. Then c = c′ and thus

〈[c, t] + [c′, t′], [c′′, t′′]〉 = 〈[c, t+ t′], [c′′, t′′]〉
= (t+ t′)t′′ cos(^(c, c′′))

= tt′′ cos(^(c, c′′)) + t′t′′ cos(^(c′, c′′))

= 〈[c, t], [c′′, t′′]〉+ 〈[c′, t′], [c′′, t′′]〉.

(iii) t, t′ > 0 and ^(c, c′) = π. Then

〈[c, t] + [c′, t′], [c′′, t′′]〉 =

{
〈[c, t− t′], [c′′, t′′]〉 if t > t′

〈[c′, t′ − t], [c′′, t′′]〉 if t′ > t

=

{
(t− t′)t′′ cos(^(c, c′′)) if t > t′

(t′ − t)t′′ cos(^(c′, c′′)) if t′ > t

=

{
〈[c, t], [c′′, t′′]〉 − t′t′′ cos(π − ^(c′, c′′)) if t > t′

〈[c′, t′], [c′′, t′′]〉 − tt′′ cos(π − ^(c, c′′)) if t′ > t

= 〈[c, t], [c′′, t′′]〉+ 〈[c′, t′], [c′′, t′′]〉.

(iv) t, t′ > 0 and ^(c, c′) ∈ (0, π). Using Lemmas 2.1 and 2.2, taking representatives
σ, σ′ and σ′′ of length t/N, t′/N, t′′/N < δ, respectively, with N ∈ N, there exist
x̃, x̃1, x̃2, x̃3 and w̃ points in R3 such that the following equalities hold:

d(x̃, x̃1) = t/N,

d(x̃, x̃2) = t′/N,

d(x̃, x̃3) = t′′/N,

d(x̃, w̃) =

√
t2 + t′2 + 2tt′ cos(^(p[t], q[t′]))

N
,

¯̂ (x̃1, x̃, x̃3) = ^(c, c′′),

¯̂ (x̃2, x̃, x̃3) = ^(c′, c′′]),

¯̂ (w̃, x̃, x̃3) = ^([c, t] + [c′, t′], [c′′, t′′]).

Notice that we can take w̃ such that w̃− x̃ = (x̃1 − x̃) + (x̃2 − x̃). Then we have

〈[c, t] + [c′, t′], [c′′, t′′]〉/N2 = 〈[c, t/N ] + [c′, t′/N ], [c′′, t′′/N ]〉
= 〈w̃ − x̃, x̃3 − x̃〉R3

= 〈(x̃1 − x̃) + (x̃2 − x̃), x̃3 − x̃〉R3

= 〈x̃1 − x̃, x̃3 − x̃〉R3 + 〈x̃2 − x̃, x̃3 − x̃〉R3

= 〈[c, t/N ], [c′′, t′′/N ]〉+ 〈[c′, t′/N ], [c′′, t′′/N ]〉
= (〈[c, t], [c′′, t′′]〉+ 〈[c′, t′], [c′′, t′′]〉)/N2.



28 2. SPACES WITH BOUNDED CURVATURE: RIEMANNIAN STRUCTURE

It remains to show that TxM is a vector space with the operations defined above.
We prove the associativity of addition. The other properties are proven in a similar
way. Let [f, s] be an element of TxM. Using Property (III), we get

〈[f, s], ([c, t] + [c′, t′]) + [c′′, t′′]〉 = 〈[f, s], [c, t] + [c′, t′]〉+ 〈[f, s], [c′′, t′′]〉
= 〈[f, s], [c, t]〉+ 〈[f, s], [c′, t′]〉+ 〈[f, s], [c′′, t′′]〉
= 〈[f, s], [c, t]〉+ 〈[f, s], [c′, t′] + [c′′, t′′]〉
= 〈[f, s], [c, t] + ([c′, t′] + [c′′, t′′])〉.

Substituting [f, s] = ([c, t] + [c′, t′]) + [c′′, t′′] and [f ′, s′] = [c, t] + ([c′, t′] + [c′′, t′′]), and
using Property (V), we have

s2 = 〈[f, s], [f, s]〉 = 〈[f, s], [f ′, s′]〉 ≥ ss′

and
(s′)2 = 〈[f ′, s′], [f ′, s′]〉 = 〈[f, s], [f ′, s′]〉 ≥ ss′.

This means that s = s′. Again, by Property (V), we obtain that [f, s] = [f ′, s′].
As mentionated above, the remaining properties of a vector are proven following

a similar argument, and hence we omit the proof. Q. E. D.

Theorem 2.4. The map

exp−1
x : B(x, δ) −→ B([c, 0], δ),

p 7−→ [c, t],

where c represents the unique segment joining x and p, is a homeomorphism.

Proof. By Property 1 of CAT(k) spaces, this map is bijective and continuous,
and by local compactness, it is a closed map since B([c, 0], δ) is Hausdorff. Therefore,
it is a homeomorphism. Q. E. D.

Theorem 2.5. Every space TxM is finite-dimensional and they are all mutually
homeomorphic.

Proof. By the last theorem, TxM is locally compact and thus finite dimensional
for every x ∈M. In addition, M is path-connected because it is a length space.

Let x and z be points in M and let c : [0, 1]→M be a curve joining these points
and parameterized with constant speed. For every c(t) = yt we consider the ball
B(yt, δ(yt)) where we have the homeomorphism with B([c, 0], δ(t)). These balls form
an open cover for c([0, 1]) and, by the compactness of this set, we get a finite subcover.
Let {x = y1, y2, . . . , yn = z} be the centers of these balls. If B(yi) and B(yi+1) are
two consecutive balls, then their intersection is non-empty and is homeomorphic to
open sets of Euclidean spaces of finite dimension, TyiM and Tyi+1

M. Since open sets
of Euclidean spaces of different dimensions are not homeomorphic, then TxM and
TzM have the same dimension. Q. E. D.
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Corolary 2.6. The space M is a topological manifold.

Proof. The only thing missing is to say why M is second-countable. This is a
consequence of local compactness, the metric structure and Theorem 2.4. (For more
details, see Appendix A, page 459, [Spi99], Vol. 1). Q. E. D.

3. Riemannian Structure

In this section, we are going to introduce a Riemannian structure on spaces with
bounded curvature. In order to do that we need the following lemmas.

Lemma 2.7. Let 4(x̃, ỹ, z̃) be a triangle in R2. Then

Area(4(x̃, ỹ, z̃)) =
d(ỹ, z̃) d(ỹ, x̃) sin( ¯̂ (x̃, ỹ, z̃))

2
≤ d(ỹ, z̃) d(ỹ, x̃) ¯̂ (x̃, ỹ, z̃)

2
.

Lemma 2.8. Let x be a point in M and let δ(x) be a positive number as in
Theorem 2.4. Let y, x1 ∈ B(x, δ(x)) and 0 < d(y, x1) < δ(y). Let x2 ∈ B(y, δ(y)).
Then

d(x1, x2) = d(y, x1)− d(y, x2) cos(^(exp−1
y (x1), exp−1

y (x2))) +O((d(y, x2))2).

Proof. We denote exp−1
y (xi) by ki, i = 1, 2. Using the law of cosines, we get

(d(x1, x2))2 = (d(y, x1))2 + (d(y, x2))2 − 2 d(y, x1) d(y, x2) cos( ¯̂ (x1, y, x2)).

Then

(d(x1, x2))2 − (d(y, x1)− d(y, x2) cos(^(k1, k2)))2

= (d(y, x1))2 + (d(y, x2))2 − 2 d(y, x1) d(y, x2) cos( ¯̂ (x1, y, x2))

−(d(y, x1))2 + 2 d(y, x1) d(y, x2) cos(^(k1, k2))− (d(y, x2))2 cos2(^(k1, k2))

= (d(y, x2))2(1−cos2(^(k1, k2)))+2 d(y, x1) d(y, x2)(cos(^(k1, k2))−cos( ¯̂ (x1, y, x2))).

Taking absolute value we obtain

|d(x1, x2)− (d(y, x1)− d(y, x2) cos(^(k1, k2)))|
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≤ (d(y, x2))2(1− cos2(^(k1, k2)))

|d(x1, x2) + d(y, x1)− d(y, x2) cos(^(k1, k2))|

+
2 d(y, x1) d(y, x2)|cos(^(k1, k2))− cos( ¯̂ (x1, y, x2))|
|d(x1, x2) + d(y, x1)− d(y, x2) cos(^(k1, k2))|

≤ (d(y, x2))2 + 2 d(y, x1) d(y, x2)|cos(^(k1, k2))− cos( ¯̂ (x1, y, x2))|
|d(x1, x2) + d(y, x1)− d(y, x2) cos(^(k1, k2))|

(∗)
≤ (d(y, x2))2 + 2 d(y, x1) d(y, x2)|^(k1, k2)− ¯̂ (x1, y, x2)|

|d(x1, x2) + d(y, x1)− d(y, x2) cos(^(k1, k2))|
(∗∗)
≤ (d(y, x2))2 + (d(y, x1))2 (d(y, x2))2µ(y) ¯̂ (x1, y, x2)

|d(x1, x2) + d(y, x1)− d(y, x2) cos(^(k1, k2))|
.

The inequality (∗) is satisfied because |cos(x)− cos(y)| < |x− y| and inequality (∗∗)
follows combining Property 8 of Ck′k and Lemma 2.7. The last inequality proves this
lemma because we multiply both sides of the inequality by

|d(x1, x2) + d(y, x1)− d(y, x2) cos(^(k1, k2))|.

Q. E. D.

Theorem 2.9. A space with bounded curvature M is a Riemannian manifold
with a differentiable structure of class C1 and a continuous Riemannian metric.

Proof. Let p be a point in M. By Corolary 2.6, M is a topological manifold of
dimension n. Let r be a positive number such that we have the homeomorphism of
Theorem 2.4 over B(p, r). Let {[ci, δ]}ni=1 be an orthogonal basis of TpM with respect
to the inner product defined in Theorem 2.3 and δ < r.

For i = 1, . . . , n, we define the functions

ui : M −→ R,
y 7−→ d(y, Ci),

with Ci = expp([ci, δ]). First, we claim that u = (u1, · · · , un) is a coordinate chart of
M over a neightborhood of p. To verify this claim, we define the following elements
in TyM with y ∈ B(p, r) which we are going to them vector fields on B(p, r):

Xi(y) = exp−1
y (Ci).

By Properties 1 and 3 of CAT spaces, the functions fi,j(y) = 〈Xi(y), Xj(y)〉 are
continuous. Thanks to the way the vectors [ci, δ] were chosen and the continuity of
fi,j(y) with respect to y and the fact fi,j(p) = δi,j, there exist δ1 > 0 and 0 < r1 < δ
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such that, if d(p, y) < r1, then

det

 〈X1(y), X1(y)〉 · · · 〈X1(y), Xn(y)〉
...

. . .
...

〈Xn(y), X1(y)〉 · · · 〈Xn(y), Xn(y)〉

 > δ1.

From this, there exists δ2 > 0 such that, if d(p, y) < r1 and [f, s] ∈ TyM with s > 0,
then

max
i∈{1,...,n}

|^([f, s], Xi(y))− π

2
| > δ2, (2.3.1)

i.e. the vector [f, s] is close enough to one axis.
By Property 8 of domains Ck′,k and Lemma 2.7, we can choose r1 ≥ r2 > 0

sufficiently small, such that, if d(p, xi) < r2, i = 1, 2, x1 6= x2, then:

|^(exp−1
x1

(x2), exp−1
x1

(Ci)− ¯̂ (x2, x1, Ci)| ≤ µ(p) Area(4(x̃2, x̃1, C̃i))

≤ µ(x) d(x1, Ci) d(x1, x2) ¯̂ (x2, x1, Ci) ≤
δ2

2
, i ∈ {1, . . . , n}.

By inequality (2.3.1), there exists i0 ∈ {0, · · · , n} such that

|^(exp−1
x1

(x2), Xi0(x1))− π

2
| > δ2.

From the last two inequalities we get that | ¯̂ (x2, x1, Ci0)− π/2| > δ2/2 because
otherwise we would obtain

|^(exp−1
x1

(x2), Xi0(x1))− π

2
| ≤ |^(exp−1

x1
(x2), Xi0(x1))− ¯̂x1(x2, Ci)|

+| ¯̂ (x2, x1, Ci)−
π

2
| ≤ δ2

2
+
δ2

2
= δ2,

which is a contradiction. So, we have the following two cases:

(1) If ¯̂ (x2, x1, Ci0) > π/2, then ui0(x2) = d(x2, Ci0) > d(x1, Ci0) = ui0(x1).
(2) If ¯̂ (x2, x1, Ci0) < π/2, then ¯̂ (x2, x1, Ci0) < π/2 − δ2/2. We notice that,

if y ∈ B(p, r2), u
i0(y) = d(y, Ci0) > δ − r2 > 0. Putting these inequalities

together we get that, if d(x1, x2) < 2(δ − r2) cos(π/2− δ2/2),

2d(x1, Ci0) cos( ¯̂ (x2, x1, Ci0)) > 2(δ − r2) cos( ¯̂ (x2, x1, Ci0))

> 2(δ − r2) cos(π/2− δ2/2) > d(x1, x2).

Using this, the law of cosines implies that

ui0(x2) = d(x2, Ci0) < d(x1, Ci0) = ui0(x1),

because

d(x2, Ci0)
2 = d(x1, Ci0)

2 + d(x1, x2)(d(x1, x2)− 2d(x1, Ci0) cos( ¯̂ (x2, x1, Ci0))).
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Thus, if r3 = (δ − r2) cos(π/2− δ2/2), then the function

u : B(p, r3) −→ u(B(p, r3)) ⊂ Rn,

y 7−→ (u1(y), · · · , un(y)),

is bijective because ui0(x2) < ui0(x1).
Since B(p, r3) is open, u is continuous and injective, using Brouwer’s Invariance

of Domain Theorem (see [Bro12]), u is a homeomorphism and u(B(p, r3)) is open.
This proves that u is a coordinate chart and we the coordinates given by u are called
distance coordinates.

Now, let u = (u1, · · · , un) and v = (v1, · · · , vn) be two systems of distance
coordinates over two overlapping open sets. Now we will prove that vi◦u−1(u1, · · · , un),
i ∈ {1, . . . , n}, are continuously differentiable. For y ∈ B(x, r3) we define

exp−1
y (z) =

n∑
i=1

uiy(z)
Xi(y)

|Xi(y)|
, (2.3.2)

i.e. uiy are coordinates of exp−1
y (z) in TyM. Clearly we have that uiy(y) = 0 for every

i. We show that u ◦ u−1
y is differentiable at (0, · · · , 0) and its Jacobian is invertible,

where uy : B(p, r3) ⊂M→ Rn given by uy(z) = (u1
y(z), · · · , uny (z)). We have that

ui(u−1
y (u1, · · · , un))− ui(u−1

y (0, · · · , 0))

= d

(
Ci, expy

(
n∑
j=1

ujyXj(y)

))
− d(Ci, y).

Since ‖(u1, · · · , un)‖ is a small quantity of the first order in

β = d

(
y, expy

(
n∑
j=1

ujyXj(y)

))
,

it follows from Lemma 2.8 and the previous equation that, up to small quantities of
second order in ‖(u1, · · · , un)‖,

ui(u−1
y (u1, · · · , un))− ui(u−1

y (0, · · · , 0))
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= −d

(
y, expy

(
n∑
j=1

ujyXj(y)

))
cos(^(Xi(y),

n∑
j=1

ujyXj(y))) +O(β2)

= −‖
n∑
j=1

ujyXj(y)‖

( ∑n
j=1 u

j
y〈Xi(y), Xj(y)〉

‖
∑n

j=1 u
j
yXj(y)‖‖Xi(y)‖

)
+O(β2)

= −
n∑
j=1

ujy

〈
Xi(y)

‖Xi(y)‖
, Xj(y)

〉
+O(β2).

Therefore, taking limits, u ◦ u−1
y is differentiable at (0, · · · , 0) and its Jacobian is

A(y) =


〈

X1(y)
‖X1(y)‖ , X1(y)

〉
· · ·

〈
X1(y)
‖X1(y)‖ , Xn(y)

〉
...

. . .
...〈

Xn(y)
‖Xn(y)‖ , X1(y)

〉
· · ·

〈
Xn(y)
‖Xn(y)‖ , Xn(y)

〉
 . (2.3.3)

This matrix is invertible because y ∈ B(p, r3) and the way r3 was chosen. Since u◦u−1
y

is a homeomorphism and has a differential at (0, · · · , 0), the mapping uy ◦ u−1 has a
differential at (u1(y), · · · , un(y)) with Jacobian A−1(y) due to the inverse function
theorem.

Let {Zj}nj=1 be the corresponding vector fields to v, vjy be the coordinates of TyM
corresponding to v and B(y) be the Jacobian matrix of vy ◦ v−1. If y belongs to the
intersection of the domains of the distance systems u and v, then

v ◦ u−1 = (v ◦ v−1
y ) ◦ (vy ◦ u−1

y ) ◦ (uy ◦ u−1),

where vy ◦ u−1
y is linear since it is a change of basis on TyM. Thus, v ◦ u−1 has

a differential at (u1(y), . . . , un(y)) with Jacobian D(y) = B(y)C(y)A−1(y) where
C(y) is the associated matrix to vy ◦ u−1

y . Since the scalar product is continuous,

D(y) depends continuously on y. Therefore, vi ◦ u−1 are continuously differentiable
functions of u1, . . . , un. This gives a C1-atlas for M.

It remains to introduce the Riemannian metric. Let α1 : (−ε, ε) → M and
α2 : (−ε, ε) → M be two curves such that have tangent vectors V1 = α′1(0) and
V2 = α′2(0), respectively, and α1(0) = α2(0) = x. Then the paths exp−1

x (α1(t)) and
exp−1

x (α2(t)) are differentiable at t = 0 and the Riemannian metric is defined by

〈V1, V2〉 :=
〈(

exp−1
x ◦α1

)′
(0),

(
exp−1

x ◦α2

)′
(0)
〉
.
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Thanks to this definition and (2.3.3), the matrix of components of the Riemannian
metric at y with distance coordinates u = (u1, · · · , un) is given by

G(y) = (A−1(y))T

 〈X1(y), X1(y)〉 · · · 〈X1(y), Xn(y)〉
...

. . .
...

〈Xn(y), X1(y)〉 · · · 〈Xn(y), Xn(y)〉

A−1(y).

Multiplying the matrices, we get

G(y) =

 cos(X1(y), X1(y)) · · · cos(X1(y), Xn(y))
...

. . .
...

cos(Xn(y), X1(y)) · · · cos(Xn(y), Xn(y))

−1

.

Hence, the Riemannian metric is continuous. Q. E. D.

Remark 14. We call the ball B(x, r3) in the preceding theorem a normal ball.
Note that this ball has distance coordinates and is the domain of the homeomorphism
in Theorem 2.4. It is important to notice that each normal ball has its curvature
bounds k′ and k with k′ < k. We denote the normal ball centered at x with radius δ
and curvature bounds k′ and k by B(x, δ, k′, k).

Remark 15. Using standard methods, a continuously differentiable curve

α : [a, b]→M
is rectifiable and its length is given by

L(α) =

∫ b

a

‖α̇(t)‖G dt.



CHAPTER 3

Spaces with Bounded Curvature: Parallel Transport

Through this chapter we can find the results about parallel transport defined by
Nikolaev in [Nik83a] and inspired by the point of view of E. Cartan on the riemannian
parallel transport. In the first section we introduce the parallel transport along
geodesic segments and some estimates for this. And in the second section we extend
it to rectifiable curves.

1. Parallel Transport along Geodesic Segments

Let x be a point of M and B = B(x, δ, k′, k) be a normal ball around x. A
symmetry with respect to a point o ∈ B is a map

So : B −→ M,

p 7−→ p′,

where p′ lies on the extension of [p, o] beyond o so that d(p, o) = d(o, p′).
Now we consider a geodesic segment [p, q] in B and construct the map

Pp,q : B([c, 0], ε) ⊂ TpM −→ B([c, 0], ε) ⊂ TqM,

ξ 7−→ exp−1
q (So(expp(ξ))),

where ε > 0 and the length h of [p, q] are sufficiently small so that the three maps are
defined inside B and o is the middle point of the segment [p, q].

Let [p, q] be an arbitrary segment in B. Let us subdivide it into 2m equal segments
by points p = p0, p1, . . . , pi, . . . , p2m = q. We denote the map Ppi,pi+1

by Pi,i+1 and set
hm = d(p, q)/2m. We define a map Pm : TpM→ TqM as follows. Let ξ be a vector in
TpM and set ξ′ = hmξ/|ξ|. Consider the map

P ′m(ξ) = P2m−1,2m ◦ · · · ◦ P1,2 ◦ P0,1(ξ′),

which is well defined if m is sufficiently large. Then we take

Pm(ξ) =

{
|ξ|P ′m(ξ) for m ≥ 1,
−|ξ|P ′m(ξ) for m = 0.

We will prove that {Pm(ξ)} is convergent for every ξ ∈ TpM and the limit will be
denoted by P (ξ). We call the resulting map P : TpM→ TqM a parallel transport
along the geodesic segment [p, q]. After this, we will prove that we can define this

35
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parallel transport along rectifiable curves in B and then along arbitrary rectifiable
curves. As the classical parallel transport, this one will be an isometry between the
tangent spaces. In order to prove all these facts, we need to make some estimates.

1.1. Estimates for the parallel transport.

Lemma 3.1. Let p, q, o ∈ B and let p′ = So(p) and q′ = So(q), as it is illustrated
in Figure 7. Then

|d(p, q)2 − d(p′, q′)2| ≤ c(k′, k) max{(d(p, o))4, (d(q, o))4}.

q

o

p

p'

q'

� �'

Figure 7

Proof. Consider the triangles4(p, o, q) and4(p′, o, q′) inB and the corresponding
comparison triangles in the plane 4(p̃, õ, q̃) and 4(p̃′, õ, q̃′). Let α = ^(p, o, q) and
α′ = ^(p′, o, q′). Then by Property 8 of domains Ck′,k:

|^0(p, o, q)− ^0(p′, o, q′)| ≤ µ(k′, k) [Area(4(p̃, õ, q̃)) + Area(4(p̃′, õ, q̃′))] ,

≤ µ(k′, k) · (max{d(o, p), d(o, q)})2.

The last inequality is satisfied by Lemma 2.7. On the othe hand, using the law of
cosine we get

(d(p, q))2 − (d(p′, q′))2 = 2 d(p, q) d(p′, q′)
(
cos(^0(p, o, q))− cos(^0(p′, o, q′))

)

= −4 d(p, q) d(p′, q′) sin

(
^0(p, o, q)− ^0(p′, o, q′)

2

)
sin

(
^0(p, o, q) + ^0(p′, o, q′)

2

)
.
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Thus

|(d(p, q))2 − (d(p′, q′))2| ≤ 4|^0(p, o, q)− ^0(p′, o, q′)|

·
d(p, q) d(p′, q′) sin

(
^0(p,o,q)+^0(p′,o,q′)

2

)
2

≤ µ(k′, k)(max{d(o, p), d(o, q)})2

·
d(p, q) d(p′, q′) sin

(
^0(p,o,q)+^0(p′,o,q′)

2

)
2

≤ c(k′, k)(max{d(o, p), d(o, q)})4.

The last inequality is given by the fact that the fractional number is the area of
a triangle and which is between Area(4(p̃, õ, q̃)) and Area(4(p̃′, õ, q̃′)) and using
Lemma 2.7 as in the first inequality of the proof. Q. E. D.

Lemma 3.2. Let a, o ∈ B with a 6= o and a′ = So(a), as it is illustrated in Figure
8. Then using the same notation as the previous lemma

|cos(^(p, a, q))− cos(^(p′, a′, q′))| ≤ c′(k′, k)M2

[
1 +

(
M

m

)2

+

(
M

m

)4
]
,

where M = max{d(a, o), d(a, p), d(a, q)} and m = min{d(a, p), d(a, q), d(a′, p′), d(a′, q′)}.

a
�

p

q

a'

p'

q'

�'o

x

y

z
x'

y'

z'

Figure 8

Proof. We consider the triangles 4(p, a, q) and 4(p′, a′, q′) and their comparison
triangles 4(p̃, ã, q̃) and 4(p̃′, ã′, q̃). We introduce the following notation: x = d(a, p),
y = d(a, q), z = d(p, q), x′ = d(a′, p′), y′ = d(a′, q′), z′ = d(p′, q′), β = ^(p, a, q) and
β′ = ^(p′, a′, q′).

By Property 8 of domains Ck′,k and Lemma 2.7 we have

|^0(p, a, q)− β|, |^0(p′, a′, q′)− β′| ≤ µ̃(k′, k)M2. (3.1.1)
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Using the law of cosines on the comparison triangles we get

cos(^0(p, a, q))− cos(^0(p′, a′, q′)) =
x2 + y2 − z2

2xy
− (x′)2 + (y′)2 − (z′)2

2x′y′

=
x2 + y2 − z2

2xy
− (x′)2 + (y′)2 − (z′)2

2x′y′

+
(x′)2 + (y′)2 − (z′)2

2xy
− (x′)2 + (y′)2 − (z′)2

2xy

=
(x2 − (x′)2) + (y2 − (y′)2)− (z2 − (z′)2)

2xy

+((x′)2 + (y′)2 − (z′)2)

(
1

2xy
− 1

2x′y′

)
.

The first summand of the last equation is bounded using Lemma 3.1 by

3

2
c(k′, k)

M4

m2
.

For the second summand we observe that

((x′)2 + (y′)2 − (z′)2)

(
1

2xy
− 1

2x′y′

)
=

= ((x′)2 + (y′)2 − (z′)2)
x′y′ − xy
2x′yxy′

= ((x′)2 + (y′)2 − (z′)2)
1

2x′y

[
x′y′ − xy
xy′

]
= ((x′)2 + (y′)2 − (z′)2)

1

2x′y

[
x′y′ − xy′ + xy′ − xy

xy′

]
= ((x′)2 + (y′)2 − (z′)2)

1

2x′y

[
x′ − x
x

+
y′ − y
y′

]
= ((x′)2 + (y′)2 − (z′)2)

1

2x′y

[
(x′)2 − x2

(x′ + x)x
+

(y′)2 − y2

(y′ + y)y′

]
= ((x′)2 + (y′)2 − (z′)2) ·

[
(x′)2 − x2

2(x′)2xy + 2x′yx2
+

(y′)2 − y2

2x′y(y′)2 + 2x′y2y′

]
and using again Lemma 3.1, it is bounded by

3c(k′, k)
M6

m4
.
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Finally, from these two bounds and inequality (3.1.1), we have

|cos(β)− cos(β′)| = |cos(β)− cos(^0(p, a, q)) + cos(^0(p, a, q))

− cos(^0(p′, a′, q′)) + cos(^0(p′, a′, q′))− cos(β′)|
≤ |cos(β)− cos(^0(p, a, q))|

+|cos(^0(p, a, q))− cos(^0(p′, a′, q′))|
+|cos(^0(p′, a′, q′))− cos(β′)|

≤ |β − ^0(p, a, q)|+ |cos(^0(p, a, q))− cos(^0(p′, a′, q′))|
+|^0(p′, a′, q′)− β′|

≤ µ̃(k′, k)M2 +
3

2
c(k′, k)

M4

m2
+ 3c(k′, k)

M6

m4
+ µ̃(k′, k)M2

= c′(k′, k)M2

[
1 +

(
M

m

)2

+

(
M

m

)4
]
.

Q. E. D.

Lemma 3.3. Let 4(a, b, c) be a triangle in B and let o be the middle point of the
side [b, c]. We illustrate this configuration in Figure 9. Then

|(d(a, b))2+(d(a, c))2−(2(d(a, o))2+2(d(b, o))2)| ≤ c′′(k′, k) max{(d(a, b))4, (d(a, c))4}.

a

b
c

o

x
y z

w

Figure 9

Proof. We consider the comparison triangles in the plane 4(ã, b̃, c̃) and 4(ã, b̃, õ)
of the triangles 4(a, b, c) and 4(a, b, o), respectively. We introduce the notation:
w = d(b, c), x = d(a, c), y = d(a, b) and z = d(a, o). Let M = max{b, c}. By Property
8 of domains Ck′,k, we have

|^0(a, b, o)− ^0(a, b, c)| ≤ µ(k′, k) (Area(4(a, b, o)) + Area(4(a, b, c))) = O(M2).
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Using the law of cosines on the comparison triangles we get

cos(^0(a, b, o)) =
y2 + w2

4
− z2

wy
,

x2 = w2 + y2 − 2wy cos(^0(a, b, c)).

By the previous inequality we have that

2wx cos(^0(a, b, c)) = 2wx cos(^0(a, b, o)) +O(M4)

and thus,

x2 = w2 + y2 − 2wy cos(^0(a, b, o)) +O(M4)

= w2 + y2 − 2

(
y2 +

w2

4
− z2

)
+O(M4)

=
1

2
w2 − y2 + 2z2 +O(M4),

(d(a, c))2 = 2(d(b, o))2 − (d(a, b))2 + 2(d(a, o))2 +O(M4).

Q. E. D.

Lemma 3.4. Let λ′ and λ (0 < λ′ ≤ λ) be constants. Consider p, q, a and a′

distinct points in B such that

λ′ ≤ d(a, p)

d(a, a′)
,
d(a, q)

d(a, a′)
≤ λ. (3.1.2)

Let o be the midpoint of the segment [a, a′] and let o1 and o′1 be the midpoints of
the segments [o, a] and [o, a′], respectively. Set p′ = So(p), q′ = So1(q) and q′′ = So′1.
We illustrate this configuration in Figure 10.

Then

|cos(^(q, a, p)) + cos(^(p′, a′, q′′))| ≤ C(k′, k, λ′, λ) · (d(a, a′))2.

a
�

p

q

a'

p'

q'

oo1
o1'

q''

x

y

Figure 10
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Proof. Let us consider x = d(a, p), y = d(a, q), h = d(a, a′), α = ^(p, a, o),
β = ^(q, a, o) and γ = ^(p, a, q).

Using the law of cosines and Property 8 of domains Ck′,k as in the proof of Lemma
3.3 on the triangles 4(a, p, o), 4(p, a, q) and 4(q, a, o) along with their comparison
ones we get

(d(p, o))2 = x2 +
h2

4
− hx cos(α) +O(h4),

(d(p, q))2 = x2 + y2 − 2xy cos(γ) +O(h4),

(d(q, o))2 = y2 +
h2

4
− hy cos(β) +O(h4).

With these equations and applying Lemma 3.3 to the triangle 4(q, p, p′) with o the
midpoint of the side [p, p′], we get

(d(p′, q))2 = 2((d(q, o))2 + (d(p, o))2)− (d(p, q))2 +O(M4)

= x2 + y2 + h2 + 2xy cos(γ)− 2xh cos(α)− 2yh cos(β) +O(h4), (3.1.3)

with M = max{d(p, q), d(p′, q)}. The last equation is satisfied by inequality (3.1.2).

By the law of cosines and Propery 8 of domains Ck′,k as before applied to the
triangle 4(p, o1, a), we have

(d(p, o1))2 =
h2

16
+ x2 − hx cos(α)

2
+O(h4). (3.1.4)

By Lemma 3.3 applied on the triangle 4(p′, p, o1) with o the midpoint of the side
[p, p′], the last equation and inequality (3.1.2):

(d(p′, o1))2 = 2((d(p, o))2 + (d(o, o1))2)− (d(p, o1))2 +O((M ′)4),

= x2 +
9h2

16
− 3xh cos(α)

2
+O(h4), (3.1.5)

where M ′ = max{d(o1, p), d(o1, p
′)}.

Again, by the law of cosines and Property 8 of domains Ck′,k applied to the triangle
4(q, o1, a), we have

(d(q, o1))2 = y2 +
h2

16
− hy cos(β)

2
+O(h4). (3.1.6)
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By Lemma 3.3 applied to the triangle 4(p′, q′, q), where o1 is the midpoint of the side
[q, q′], inequality (3.1.2), and equations (3.1.3), (3.1.6) and (3.1.5):

(d(p′, q′))2 = 2((d(p′, o1))2 + (d(q, o1))2)− (d(p′, q))2 +O((M ′′)2)

= x2 + y2 +
h2

4
− 2xy cos(γ) + hy cos(β)− hx cos(α) +O(h4),

where M ′′ = max{d(p′, q′), d(p′, q′′)}. By Lemma 3.1,

(d(o, q′))2 = y2 +O(h4). (3.1.7)

Since the angles ^(a, o, q′) = ^(q′, o, o′1) are adjacent, we have

cos(^(q′, o, o′1)) = − cos(^(a, o, q′)).

Using Lemma 3.2 with a, q, o = So1(a), q′ = So1(q), and Property 8 of domains Ck′,k,
we get

cos(β)− cos(^(a, o, q′)) = O(h2).

Thus,

cos(^(q′, o, o′1)) = − cos(β) +O(h2).

By equation (3.1.7) and the law of cosines on the triangle 4(q′, o, o′1), we get

(d(q′, o1))2 = y2 +
h2

16
+
hy cos(β)

2
+O(h4).

By Lemma 3.1 and equation (3.1.4),

(d(p′, o′1))2 = (d(p, o1))2 +O(h4) =
h2

16
+ x2 − hx cos(α)

2
+O(h4). (3.1.8)

Using Lemma 3.3 as before on the triangle 4(p′, q′, q′′), with o′1 the middle point of
the side [q′, q′′], we get

(d(p′, q′′))2 = 2((d(q′, o′1))2 + (d(p′, o′1))2) +O((M ′′)4)

= x2 + y2 + 2xy cos(γ) +O(h4). (3.1.9)

Again, by Lemma 3.1,

d(p′, a′) = x+O(h3) (3.1.10)

and

d(a′, q′′) = y +O(h3). (3.1.11)

Finally, using Property 8 of domains Ck′,k, and equations (3.1.9), (3.1.10) and (3.1.11),
we conclude that

cos(^(p′, a′, q′′)) =
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=
(d(p′, a′))2 + (d(a′, q′′))2 − (d(p′, q′′))2

2d(p′, a′) d(a′, q′′)
+O(h2),

=
(x+O(h3))2 + (y +O(h3))2 − (x2 + y2 + 2xy cos(γ) +O(h4))

2(x+O(h3)) (y +O(h3))
+O(h2),

= − cos(γ) +O(h2)

and
|cos(^(p′, a′, q′′)) + cos(γ)| = O(h2).

Q. E. D.

Lemma 3.5. Following the same notation of the beginning of this section, let

ξl = Pl−1,l ◦ · · · ◦ P1,2 ◦ P0,1(ξ′), l = 1, . . . , 2m.

Then
||ξl| − hm| ≤ c(k′, k)h2

m, l = 1, . . . ,m.

Proof. By Lemma 3.1, using the definition of hm and ξ′, we have

||ξl|2 − |ξl−1|2| ≤ c(k′, k)h2
m,

and then

||ξl|2 − h2
m| ≤ ||ξl|2 − |ξl−1|2|+ ||ξl−1|2 − |ξl−2|2|+ · · ·+ ||ξ1|2 − |ξ′|2|
≤ l c(k′, k)h2

m. (3.1.12)

Since l ∈ {1, . . . , 2m}, the last term is bounded above by

c(k′k)h3
m.

Thus,

||ξl| − hm| ≤
c(k′, k)h3

m

|ξl|+ hm
≤ c(k′, k)h2

m.

Q. E. D.

Lemma 3.6. Let ξ, ζ ∈ Rn \ {0} and ε > 0. If, for each η ∈ Rn \ {0}
|cos(^(η, ξ))− cos(^(η, ζ))| < ε,

then

^(ξ, ζ) ≤ π ε

2
.

Proof. Since the angles between ξ, ζ and η are the same as the normalized ones,
we can suppose that |ξ| = |ζ| = 1. We set

η =
(ξ − ζ)

‖ξ − ζ‖
.
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Then, using the law of cosines on the plane, we have

|cos(^(η, ξ))− cos(^(η, ζ))| = |〈η, ξ − ζ〉| = |ξ − ζ|
=

√
2− 2 cos(^(ξ, ζ))

= 2 sin

(
^(ξ, ζ)

2

)
< ε.

Since we know that
sin(α) >

α

π
,

if α ∈ [0, π/2]. Thus we get using both inequalities, that

^(ξ, ζ) ≤ π ε

2
.

Q. E. D.

Lemma 3.7. Under the same hypothesis of Lemma 3.2, we get that

|^(p, a, q)− ^(p′, a′, q′)| ≤ c̃

(
k′, k,

M

m

)
M2.

Proof. Let

ξ = exp−1
a (p), ζ = exp−1

a (q), ξ′ = exp−1
a′ (p′), ζ ′ = exp−1

a′ (q′)

and

ξ1 =
ξ

|ξ|
, ζ1 =

ζ

|ζ|
, ξ′1 =

ξ′

|ξ′|
, ζ1 =

ζ

|ζ|
,

η = ξ1 − ζ1, η′ = ξ′1 − ζ ′1, h = d(a, a′).

Now we consider an onthonormal basis {Xi} i = 1, . . . , n, in TaM and the basis
{X ′i = −P0(Xi)}, i = 1, . . . , n in Ta′M which is almost orthonormal up to O(h2)
thanks to Lemma 3.2. That is, for g′ij = 〈X ′i, X ′j〉, we have

g′ij − δij = O(h2).

Also, by Lemma 3.2, we get

〈ξ1, Xi〉 − 〈ξ′1, X ′i〉 = O(h2), 〈ζ1, Xi〉 − 〈ζ ′1, X ′i〉 = O(h2).

Thus,
〈η,Xi〉 = 〈η′, X ′i〉 = O(h2).

Let η = ηkXk and η′ = η′kX ′k using the Einstein summation notation. Then

〈η,Xi〉 = ηi, 〈η′, X ′i〉 = η′kg′ik = η′kδik +O(h2) = η′i +O(h2),

and
ηi − η′i = O(h2).
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This last estimate implies that

||η| − |η′|| ≤ |η − η′| = O(h2).

Noticing that the exponential map is an isometry at the origin we have that
^(p, a, q) is equal to the corresponding angle in a Euclidean triangle with the lengths
of sides 1, 1 and |η| and ^(p′, a′, q′) is equal to the corresponding angle in a Euclidean
triangle with the lengths of sides 1, 1 and |η′| (the proof of this fact is analogous to
the proof of Corolary II.1A.7, page 173, [BH99]). Thus, the last inequality ensures
that

^(p, a, q)− ^(p′, a′, q′) = O(h2).

Q. E. D.

1.2. Existence of parallel transport.

Lemma 3.8. Following the same notation in the beginning of this section,

^(Pm(ξ), Pm+1(ξ)) ≤ C̃(k′, k)
(d(p, q))2

2m
.

Proof. Let p = p0, p1, . . . , p2m = q be the points dividing the geodesic segment
[p, q] evently into 2m segments [pl, pl+1]. We denote by p(l+1)/2 the midpoint of the
geodesic segment [pl, pl+1], l = 0, 1, 2, . . . , 2m − 1. Also, we introduce the following
notation:

Φl = −Ppl,pl+1
, Ψl = Pp(l+1)/2,pl+1

◦ Ppl,p(l+1)/2
.

The proof is separated into two parts.

(1) Let ξ be a vector tangent to M at pl such that

hm
2
≤ |ξ| ≤ 2hm. (3.1.13)

Claim:
^(Φl(ξ),Ψl(ξ)) ≤ C ′(k′, k)h2

m.

Let η be a vector tangent to M at pl+1 satisfying inequality (3.1.13). By
Lemma 3.2,

cos(^(Φ−1
l (η), ξ))− cos(^(η,Φl(ξ))) = O(h2

m).

By Lemma 3.1, for sufficiently large m, the vector Φ−1
l (η) also satisfies

inequality (3.1.13). Therefore, using Lemma 3.4 with λ′ = 1/2 and λ = 2,
we get

cos(^(Φ−1
l (η), ξ))− cos(^(η,Ψl(ξ))) = O(h2

m).

Thus,
|cos(^(η,Φl(ξ)))− cos(^(η,Ψl(ξ)))| = O(h2

m).
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Using Lemma 3.6 and the last inequality, we obtain

^(Φl(ξ),Ψl(ξ)) ≤ C ′(k′, k)h2
m.

(2) Let

ξ′m = hm
ξ

|ξ|
.

We define vectors ξ
(k)
m , ζ

(k)
m ∈ TpkM, k = 0, 1, 2 . . . , 2m, as follows. Let

ξ(0)
m = ζ(0)

m = ξ′m.

Then the vectors ξ
(k+1)
m and ζ

(k+1)
m are defined recursively by letting

ξ(k+1)
m = −Ppk,pk+1

(ξ(k)
m ); ζ(k+1)

m = Pp(k+1)/2,pk+1
◦ Ppk,p(k+1)/2

(ζ(k)
m ).

By Lemma 3.5, for m suficiently large, the condition (3.1.13) is satified for

the vectors ξ
(k)
m and ζ

(k)
m . Hence, we can apply the previous claim and Lemma

3.7 to these vectors. We denote the corresponding constant c̃
(
k′, k, M

m

)
(m = hm/2 and M = 2hm) from Lemma 3.7 by C ′′(k′, k).

Claim:

^(ξ(k)
m , ζ(k)

m ) ≤ C(k′, k)
d(p, q) d(p, pk)

2m
, k = 0, 1, 2, . . . , 2m, (3.1.14)

where C(k′, k) = max{C ′(k′, k), 2C ′′(k, k′)}. We proceed by induction.
Inequality (3.1.14) is obvious for k = 0. Suppose it holds for k = 0, 1, . . . , l.
Let

ξ̄(l+1)
m = Pp(l+1)/2,pl+1

(ξ(l)
m ).

By the triangle inequality,

^(ξ(l+1)
m , ζ(l+1)

m ) ≤ ^(ξ̄(l+1)
m , ξ(l+1)

m ) + ^(ξ̄(l+1)
m , ζ(l+1)

m ).

By the previous claim,

^(ξ̄(l+1)
m , ξ(l+1)

m ) ≤ C ′(k′, k)h2
m.

Applying Lemma 3.7 twice to the maps Ppl,p(l+1)/2
and Pp(l+1)/2,pl+1

; we get∣∣^(ξ̄(l+1)
m , ζ(l+1)

m )− ^(ξ(l)
m , ζ

(l)
m )
∣∣ ≤ 2C ′′(k′, k)h2

m.

By the induction hypothesis for k = l

^(ξ(l)
m , ζ

(l)
m ) ≤ C(k′, k)

d(p, q) d(p, pl)

2m
.
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Putting all together, we have

^(ξ(l+1)
m , ζ(l+1)

m ) ≤ C ′(k′, k)h2
m + 2C ′′(k′, k)h2

m + C(k′, k)
d(p, q) d(p, pl)

2m

≤ C(k′, k)

(
h2
m +

d(p, q) d(p, pl)

2m

)
= C(k′, k)(h2

m + d(p, pl)hm)

= C(k′, k)(d(p, pl) + hm)hm

= C(k′, k)
d(p, pl+1) d(p, q)

2m
,

which proves this claim.

We finish the proof of the lemma by observing that, by definition,

ξ(2m)
m = P ′m(ξ), ζ(2m)

m = P ′m+1(ξ)

and

^
(
ξ(2m)
m , ζ(2m)

m

)
= ^(Pm(ξ), Pm+1(ξ)).

Thus, (3.1.14) for k = 2m proves this lemma. Q. E. D.

Proposition 3.9. For any ξ ∈ TpM, the limit of Pm(ξ) in TqM exists, is denoted
by P (ξ), and

^(P (ξ), Pm(ξ)) ≤ C(k′, k)
(d(p, q)2)

2m
.

Proof. By Lemma 3.8, we get that

^(Pm(ξ), Pm+k(ξ)) ≤
m+k−1∑
i=m

^(Pi(ξ), Pi+1(ξ))

≤ C(k′, k) (d(p, q))2

k−1∑
i=0

1

2m+i

≤ C(k′, k)
(d(p, q))

2m
.

Therefore, {Pm(ξ)} is a Cauchy sequence and, since TqM is complete (it is a finite
dimension vector space), there exists the limit

P (ξ) = lim
m→∞

Pm(ξ).

As k →∞ in the previous inequality we obtain the required estimate. Q. E. D.
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We defined the parallel transport along sufficiently short geodesic segments. Let
γ be an arbitrary geodesic segment in M. We divide γ into short geodesic segments
and define the parallel transport along γ as the composition of the parallel transport
on every piece. It is clear that the definition of the parallel transport is independent
of the choice of the partition of γ.

Proposition 3.10. Let [p, q] be a geodesic segment. The parallel transport
P : TpM→ TqM is an isometry.

Proof. We assume that [p, q] is a sufficiently short geodesic segment and then
the procedure is the same as before. Let ξ, ζ ∈ TpM. First, we prove the following
estimate:

|^(ξ, ζ)− ^(Pm(ξ), Pm(ζ))| ≤ C(k′, k)
(d(p, q))2

2m
. (3.1.15)

Let

ξ′ =
ξ

|ξ|
hm, ζ ′ =

ζ

|ζ|
hm

and

Λi = Pi−1,i ◦ . . . ◦ P1,2 ◦ P0,1, i = 1, . . . , 2m.

We have, by definition, that

^(Pm(ξ), Pm(ζ)) = ^(Λm(ξ),Λm(ζ)).

By Lemmas 3.5 and 3.7,

|^(Λi−1(ξ′),Λi−1(ζ ′))− ^(Λi(ξ
′),Λi(ζ

′))| ≤ C(k′, k)h2
m.

Therefore,

|^(ξ, ζ)− ^(Pm(ξ), Pm(ζ))| = |^(Λ0(ξ′),Λ0(ζ ′))− ^(Λm(ξ′),Λm(ζ ′))|

≤
m∑
i=0

|^(Λi−1(ξ′),Λi−1(ζ ′))− ^(Λi(ξ
′),Λi(ζ

′))|

≤ 2mC(k′, k)h2
m

= C(k′, k)
(d(p, q))2

2m
,

which proves inequality (3.1.15). Finally, since

|^(ξ, ζ)− ^(P (ξ), P (ζ))| = lim
m→∞

|^(ξ, ζ)− ^(Pm(ξ), Pm(ζ))| = 0,

P preserves angles and by definition of P , it preserves lengths. Thus, P is an
isometry. Q. E. D.
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2. Parallel Transport along Rectifiable Curves

Let 0 < δ < π/2. A triangle 4(o, b, c) in B is called δ-regular if each one of its
angles lies between δ and π − δ.

Let a, p ∈ B such that d(a, b) = d(b, o) and d(b, p) = d(o, c). Let o1, o2 and o3 be
the midpoints of the geodesic segments [o, b], [b, c] and [o, c]. We set

a′ = So1(a), p′ = So1(p), a′′ = So2(a),

p′′ = So2(p), a′′′ = So3(a′′), p′′′ = So3(p′′).
We illustrate this configuration in Figure 11.

b

a

p

p'

o

a'

p''

a''

c

p'''

a'''

o1

o2

o3

Figure 11
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In order to prove the following lemma, we introduce the following procedure
applied on the triangle 4(a, b, c). The first step is using Property 8 of domains Ck′,k
as follows:

|cos(^0(a, b, c))− cos(^(a, b, c))| ≤ |^0(a, b, c)− ^(a, b, c)|
≤ 4µ(k′, k) Area(40(a, b, c))

=
4µ d(a, b) d(b, c) sin(^0(a, b, c))

2
≤ 2µ d(a, b) d(b, c) ≤ 2µh2.

For the second step, we use the previous step and the law of cosines:

(d(a, c))2 = l2 + t2 − 2lt cos(^0(a, b, c)) = l2 + t2 − 2lt cos(^(a, b, c)) +O(h4).

We call this the CP procedure and say that we apply (CP) on the triangle 4(a, b, c).

Lemma 3.11. If diam(B) is sufficiently small in such a way that the whole
construction lies on a normal ball, then

|cos(^(a, b, p)) + cos(^(p′, o, a′′′))| ≤ C(k′, k, δ) Area(4(o, b, c)).

Proof. We introduce the following notation:

l = d(b, o), t = d(b, c), h = max{l, t, d(o, c)},
α = ^(a, b, o), β = ^(c, b, p) γ = ^(a, b, p),

θ = ^(o, b, p), ν = ^(a, b, c), ε = ^(o, b, c).

We apply (CP) on the triangle 4(o, b, c) and get

(d(o, c))2 = l2 + t2 − 2lt cos(^0(o, b, c)) = l2 + t2 − 2lt cos(^(o, b, c)) +O(h4).

By (CP) on 4(a, b, o2), we get

(d(a, o2))2 = (d(a, b))2 + (d(b, o2))2 − 2d(a, b) d(b, o2) cos(^0(a, b, o2))

= l2 +

(
t

2

)2

− lt cos(ν) +O(h4).

By (CP) on 4(a, b, o), we get

(d(a, o))2 = (d(a, b))2 + (d(b, o))2 − 2d(a, b) d(b, o) cos(^0(a, b, o))

= 2l2 − 2l2 cos(α) +O(h4).

By (CP) on 4(o, b, o2), we get

d(o, o2)2 = l2 +

(
t

2

)2

− lt cos(^0(o, b, c))

= l2 +

(
t

2

)2

− lt cos(ε) +O(h4).
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Using Lemma 3.3 applied to 4(o, a, a′′) and the midpoint o2 of the segment [a, a′′],
we obtain

(d(o, a′′))2 = 2(d(a, o2))2 + 2(d(o, o2))2 − (d(o, a))2 +O(h4)

= 2l2 +
t2

2
− 2lt cos(ν) + 2l2 +

t2

2
− 2lt cos(ε)

−2l2 + 2l2 cos(α) +O(h4)

= 2l2 + t2 − 2lt cos(ν)− 2lt cos(ε) + 2l2 cos(α) +O(h4).

By Lemma 3.1,

(d(a′′, c))2 = (d(a, b))2 +O(h4) = l2 +O(h4).

Using Lemma 3.3 applied to 4(a′′, o, c) and the midpoint o3 of the segment [o, c],
we obtain

(d(a′′, o3)) =
(d(o, a′′))2

2
+

(d(a′′, c))2

2
− (d(o, c))2

4
+O(h4)

= l2 +
t2

2
− lt cos(ν)− lt cos(ε) + l2 cos(α)

+
l2

2
− l2

4
− t2

4
+
lt cos(ε)

2
+O(h4)

= l2 +
l2

4
+
t2

4
− lt cos(ν)− lt cos(ε)

2
+ l2 cos(α) +O(h4).

By (CP) on 4(o, b, p) and 4(b, p, o2), we get

(d(o, p))2 = l2 + t2 − 2lt cos(^0(o, b, p))

= l2 + t2 − 2lt cos(θ) +O(h4)

and

(d(o2, p))
2 =

(
t

2

)2

+ t2 − t2 cos(^0(c, b, p))

=
t2

4
+ t2 − t2 cos(β) +O(h4).

Using Lemma 3.3 applied to 4(o, p, p′′) and the midpoint o2 of the segment [p, p′′],
we obtain

(d(o, p′′))2 = 2(d(o, o2))2 + 2(d(p, o2))2 − (d(o, p))2 +O(h4)

= 2

(
l2 +

t2

4
− lt cos(ε)

)
+ 2

(
t2

4
+ t2 − t2 cos(β)

)
−(l2 + t2 − 2lt cos(θ)) +O(h4)

= l2 + 2t2 − 2lt cos(ε)− 2t2 cos(β) + 2lt cos(θ) +O(h4).
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By Lemma 3.1,

(d(p′′, c))2 = (d(b, p))2 +O(h4) = t2 +O(h4).

Using Lemma 3.3 applied to 4(p′′, c, o) and the midpoint o3 of the segment [c, o],
we obtain

(d(p′′, o3))2 =
(d(p′′, c))2

2
+

(d(p′′, o))2

2
− (d(o, c))2

4
+O(h4)

=
t2

2
+
l2

2
+ t2 − lt cos(ε)− t2 cos(β)

+lt cos(θ)− l2 + t2 − 2lt cos(ε)

4
+O(h4)

= t2 +
t2 + l2

4
− lt cos(ε)

2
− t2 cos(β) + lt cos(θ) +O(h4).

By (CP) on 4(a, b, p), we get

(d(a, p))2 = l2 + t2 − 2lt cos(^0(a, b, p)) = l2 + t2 − 2lt cos(γ) +O(h4).

Using Lemma 3.3 applied to 4(p, a, a′′) and the midpoint o2 of the segment [a, a′′],
we obtain

(d(p, a′′))2 = 2(d(a, o2))2 + 2(d(p, o2))2 − (d(p, a))2 +O(h4)

= 2

(
l2 +

(
t

2

)2

− lt cos(ν)

)
+ 2

(
t2

4
+ t2 − t2 cos(β)

)
−
(
l2 + t2 − 2lt cos(γ)

)
+O(h4)

= l2 + 2t2 − 2lt cos(ν)− 2t2 cos(β) + 2lt cos(γ) +O(h4).

By (CP) on 4(o1, b, o2) and 4(a, b, o2), we get

(d(o1, o2))2 =
l2

4
+
t2

4
− lt

2
cos(^0(o, b, c)) =

l2

4
+
t2

4
− lt

2
cos(ε) +O(h4)

and

(d(a, o1))2 = l2 +
l2

4
− l2 cos(^0(a, b, o)) = l2 +

l2

4
− l2 cos(α) +O(h4).
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Using Lemma 3.3 applied to 4(o1, a, a
′′) and the midpoint o2 of the segment

[a, a′′], we obtain

(d(o1, a
′′))2 = 2(d(o1, o2))2 + 2(d(a, o2))2 − (d(o1, a))2 +O(h4)

= 2

(
l2

4
+
t2

4
− lt

2
cos(ε)

)
+ 2

(
l2 +

(
t

2

)2

− lt cos(ν)

)

−
(
l2 +

l2

4
− l2 cos(α)

)
= l2 +

l2

4
+ t2 − lt cos(ε)− 2lt cos(ν) + l2 cos(α) +O(h4).

By (CP) on 4(o1, b, p), we get

(d(p, o1))2 =
l2

4
+ t2 − lt cos(^0(o, b, p)) =

l2

4
+ t2 − lt cos(θ) +O(h4).

Using Lemma 3.3 applied to 4(a′′, p′, p) and the midpoint o1 of the segment [p′, p],
we obtain

(d(p′, a′′))2 = 2(d(a′′, o1))2 + 2(d(p′, o1))2 − (d(a′′, p))2 +O(h4)

= 2

(
l2 +

l2

4
+ t2 − lt cos(ε)− 2lt cos(ν) + l2 cos(α)

)
+2

(
l2

4
+ t2 − lt cos(θ)

)
−
(
l2 + 2t2 − 2lt cos(ν)− 2t2 cos(β) + 2lt cos(γ)

)
= 2l2 + 2t2 − 2lt cos(ε) + 2l2 cos(α)− 2lt cos(θ)

+2t2 cos(β)− 2lt cos(γ)− 2lt cos(ν) +O(h4).

By (CP) on 4(o2, c, o3) and 4(o, b, c), we get

(d(o2, o3))2 =
(d(o, c))2 + t2

4
− d(o, c) t

2
cos(^0(o2, c, o3))

=
(d(o, c))2 + t2

4
− d(o, c )t

2
cos(^(o, c, b)) +O(h4)

and

l2 = (d(o, c))2 + t2 − 2d(o, c) t cos(^0(o, c, b))

= (d(o, c))2 + t2 − 2d(o, c) t cos(^(o, c, b)) +O(h4).

These two equations imply that (d(o2, o3))2 = l2/4 +O(h4).
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Using Lemma 3.3 applied to 4(o3, p, p
′′) and the midpoint o2 of the segment [p, p′′],

we obtain

(d(p, o3))2 = 2(d(o2, o3))2 + 2(d(o2, p))
2 − (d(o3, p

′′))2 +O(h4)

= 2

(
l2

4

)
+ 2

(
t2

4
+ t2 − t2 cos(β)

)
−
(
t2 +

t2 + l2

4
− lt cos(ε)

2
− t2 cos(β) + lt cos(θ)

)
=

l2 + t2

4
+ t2 − t2 cos(β) +

tl

2
cos(ε)− lt cos(θ) +O(h4).

By (CP) on 4(o1, o, o3) and 4(o, b, c), we get

(d(o1, o3))2 =
(d(o, c))2 + l2

4
− d(o, c) l

2
cos(^0(o1, o, o3))

=
(d(o, c))2 + l2

4
− d(o, c )l

2
cos(^(b, o, c)) +O(h4)

and

t2 = (d(o, c))2 + l2 − 2d(o, c) l cos(^0(c, o, b))

= (d(o, c))2 + l2 − 2d(o, c) l cos(^(c, o, b)) +O(h4).

These two equations imply that (d(o1, o3))2 = t2/4 +O(h4).
Using Lemma 3.3 on 4(o3, p, p

′) and the midpoint o1 of the segment [p, p′], we
obtain

(d(p′, o3))2 = 2(d(o1, o3))2 + 2(d(p, o1))2 − (d(o3, p))
2 +O(h4)

=
t2

2
+ 2

(
l2

4
+ t2 − lt cos(θ)

)
−
(
l2 + t2

4
+ t2 − t2 cos(β) +

tl

2
cos(ε)− lt cos(θ)

)
+O(h4)

= t2 +
t2 + l2

4
− lt cos(θ) + t2 cos(β)− lt

2
cos(ε) +O(h4).
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Using Lemma 3.3 on 4(p′, a′′, a′′′) and the midpoint o3 of the segment [a′′, a′′′],
we obtain

(d(p′, a′′′))2 = 2(d(p′, o3))2 + 2(d(a′′, o3))2 − (d(p′, a′′))2 +O(h4)

= 2

(
t2 +

t2 + l2

4
− lt cos(θ) + t2 cos(β)− lt

2
cos(ε)

)
+2

(
l2 +

l2

4
+
t2

4
− lt cos(ν)− lt cos(ε)

2
+ l2 cos(α)

)
−
(
2l2 + 2t2 − 2lt cos(ε) + 2l2 cos(α)− 2lt cos(θ)

+2t2 cos(β)− 2lt cos(γ)− 2lt cos(ν)
)

+O(h4)

= t2 + l2 + 2lt cos(γ) +O(h4). (3.2.1)

By Lemma 3.1,

(d(p′, o))2 = (d(b, p))2 +O(h4) = t2 +O(h4)

and

(d(a′′′, o))2 = (d(a′′, c))2 +O(h4) = (d(a, b))2 +O(h4) = t2 +O(h4).

Since the triangle 4(o, b, c) is δ-regular, we have that

|d(p′, o)− t|, |d(a′′′, o)− l| ≤ C(k′, k, δ)h3.

Applying (CP) on 4(o, p′, a′′′) we get

(d(p′, a′′′))2 = (d(o, a′′′))2 + (d(o, p′))2 − 2d(o, a′′′) d(o, p′) cos(^(p′, o, a′′′)) +O(h4)

= l2 + t2 − 2d(o, a′′′) d(o, p′) cos(^(p′, o, a′′′)) +O(h4).

Thus, with equation (3.2.1) we obtain

2ly cos(γ) + 2d(o, a′′′) d(o, p′) cos(^(p′, o, a′′′)) = O(h4).

And finally,

|cos(γ) + cos(^(p′, o, a′′′))| ≤ C ′(k′, k, δ)h2 ≤ C ′′(k′, k, δ) Area(40(o, b, c)).

Q. E. D.

Corolary 3.12. For a δ-regular triangle T = 4(o, b, c) ⊂ B, the increment ∆ξ
of a vector ξ ∈ ToM under parallel translation along T , i.e., the difference of the
vectors in TbM obtained under parallel displacement along the segment [o, b] and
along the polygonal line [o, c] ∪ [c, b], satisfies the following estimate:

|∆ξ| ≤ C(k′, k) Area(40(o, b, c)) |ξ|.
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Proof. Let ξ, η ∈ ToM be non-zero vectors. Let the directions of the vectors ξ
and η be given by the geodesic segments [o, a′] and [o, p′], respectively, as in Lemma
3.11. Let Pob, Pbc, Pco, Pcb and Poc be the parallel translation along the geodesic
segments [o, b], [b, c], [c, o], [c, b] and [o, c], respectively. Let h = diam(T ). By Lemma
3.2,

cos(^(ξ, η))− cos(^(−Pob(ξ),−Pob(η))) = O(h2).

Since the directions of [b, a] and [b, p] are given by Pob(ξ) and Φob(η), Lemma 3.11
implies that

cos(^(−Pob(ξ),−Pob(η)))− cos(^(−Pco ◦ Pbc ◦ Pob(ξ), η)) = O(h2).

Therefore,

cos(^(ξ, η))− cos(^(−Pco ◦ Pbc ◦ Pob(ξ), η)) = O(h2).

By Lemma 3.6 and the last estimate, we obtain

^(ξ,−Pco ◦ Pbc ◦ Pob(ξ)) = O(h2).

By the last estimate and Proposition 3.10 we get

^(Pcb ◦ Poc(ξ),−Pob(ξ) = O(h2).

Since the triangle 4(b, o, c) is δ-regular,

h2 ≤ C̃(δ) Area(40(b, o, c)).

From this and the previous estimate, the proof is complete. Q. E. D.

2.1. Partition into Regular Triangles. Let T = 4(o, b, c) be an arbitrary triangle
in B and fix m ∈ N. We partition evenly the geodesic segment [b, c] into 2m parts by
the points

b = b0, b1, b2, . . . b2m−1, b2m = c.

and consider the triangles Ti = 4(o, bi, bi+1), i = 0, 1, . . . , 2m − 1 as in Figure 12.
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b=b0

o

c=b2

b1
b2

b2   -1

bibi-1

bi+1

T0

mm

T1

Ti-1
Ti

Figure 12

For each i, we take Ti. Suppose that d(o, bi) ≤ d(o, bi+1). Let b′i+1 ∈ [o, bi+1] such
that d(o, bi) = d(o, b′i+1) and consider the triangle T ′ = 4(o, bi, bi+1). We construct
the following sequences of points pi,l ∈ [o, bi] and pi+1,l ∈ [o, bi+1] as follows. First
we set pi,0 = bi and pi+1,0 = b′i+1, then suppose that the points pi,j ∈ [o, bi] and
pi+1,j ∈ [o, bi+1], j = 1, . . . , l, have already been constructed. Finally, the points pi,l+1

and pi+1,l+1 are defined by

pi,l+1 ∈ [o, bi], pi+1,l+1 ∈ [o, bi+1] and d(pi,l+1, pi,l) = d(pi,l, pi+1,l) = d(pi+1,l, pi+1,l+1).

It is clear that

lim
l→∞

d(o, pi,l) = lim
l→∞

d(pi,l, pi+1,l) = 0.

Let Ti,l = 4(pi,l, pi+1,l, pi+1,l+1) and T ′i,l = 4(pi,l, pi,l+1, pi+1,l+1). We illustrate this
construction in Figure 13.
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o

pi,0=bi

bi+1

Ti
b'i+1=pi+1,0

pi,1 pi+1,1

pi,2 pi+1,2

pi,l pi+1,l
pi+1,l+1pi,l+1

pi,n pi+1,n

pi+1,l

pi+1,l+1

pi,l

pi,l+1

�i,l
�'i,l

�'i,l �'i,l

�i,l

�i,l

Ti,l

T'i,l

Figure 13

Let n be a natural number such that d(o, pi,n) ≤ d(bi, bi+1). We consider the
triangles Ti,j and T ′i,j for j = 0, 1, . . . , n. Let δ = π/6. We will prove that these
triangles are δ-regular if m is sufficiently large.

Let

αi,l = ^(pi,l, pi+1,l, pi+1,l+1), βi,l = ^(pi+1,l, pi+1,l+1, pi,l), γi,l = ^(pi+1,l+1, pi,l, pi+1,l)

and

α′i,l = ^(pi,l, pi,l+1, pi+1,l+1), β′i,l = ^(pi,l+1, pi+1,l+1, pi,l), γ
′
i,l = ^(pi,l+1, pi,l, pi+1,l+1).

We observe that the angle ^(bi, o, bi+1) can be made as small as we wish for m
large. Since the triangle 4(pi,l, o, pi+1,l) is isosceles and by Property 8 of domains
Ck′,k, αi,l is close to π/2 for m sufficiently large. Also, since the triangle Ti,l is isosceles
and Property 8 of domains Ck′,k the angles βi,l and γi,l are close to π/4 for m large.
Thus, the triangles Ti,l are at least π/6-regular.

On the other side, the limit of the angle ^(o, pi,l+1, pi+1,l+1) as m goes to infinity
is π/2. Since α′i,l = π−^(o, pi,l+1, pi+1,l+1), then α′i,l is close to π/2 if m is sufficiently
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large. We notice too that

lim
m→∞

^(pi,l+1, pi,l, pi+1,l) =
π

2

and, by the triangle inequality,

|γ′i,l − γi,l| ≤ ^(pi,l+1, pi,l, pi+1,l),

whence for sufficiently large m,

π

6
≤ γ′i,l ≤

5π

6
.

Analogously, we obtain that
π

6
≤ β′i,l ≤

5π

6

and T ′i,l is δ-regular.
Thus, we partitioned the original triangle into π/6-regular triangles Ti,l and T ′i,l, and

the triangles T ′′i = 4(bi, bi+1, b
′
i+1) and T ′′′i = 4(o, pi,n, pi+1,n), i = 0, 1, 2, . . . , 2m − 1,

l = 0, 1, 2, . . . , n. Clearly, for m sufficiently large m,

diam(T ′′i ), diam(T ′′′i ) ≤ d(b, c)

2m
. (3.2.2)

2.2. Additivity. For points a, b, c, d, . . . in B we denote by Pa,b,c,d,... the parallel
translation along the polygonal line [a, b] ∪ [b, c] ∪ [c, d] ∪ . . . .

Let ξ ∈ ToM be an arbitrary vector. We set ξo = ξ and define the vectors
ξi ∈ ToM, for i = 1, 2, . . . , 2m, as follows:

ξi = Po,bi−1,bi,o(ξi−1).

It is immediate that

ξ2m = Po,b,c,o.

Then the increment

∆ξ = Po,b,c,o(ξ)− ξ
of the vector ξ under the parallel translation along [o, b] ∪ [b, c] ∪ [c, o] is given by

∆ξ =
2m−1∑
j=0

∆j,

where

∆j = ξj+1 − ξj.
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The next step is to represent this increment as the sum of parallel translations
along the triangles Ti,l, T

′
i,l, T

′′
i and T ′′′i , i = 0, 1, 2, . . . , 2m − 1, l = 0, 1, 2, . . . , n. In

order to do this, we set

ξi,0 = ξi,

ξi,1 = PLi,1(ξi,0) with Li,1 = [o, pi,n] ∪ [pi,n, pi+1,n] ∪ [pi+1,n, o],

ξ′i,1 = PL′i,1(ξi,1) with L′i,1 = [o, pi+1,n],

ξi,2 = PLi,2(ξ
′
i,1) with Li,2 = [pi+1,n, pi,n] ∪ [pi,n, pi,n−1] ∪

∪[pi,n−1, pi+1,n−1] ∪ [pi+1,n−1, pi+1,n],

ξ′i,2 = PL′i,2(ξi,2) with L′i,2 = [pi+1,n, pi+1,n−1].

We have illustrated the configuration of the curves in Figure 14. Suppose that,
for 0 ≤ j ≤ l, the vectors ξi,j ∈ Tpi+1,n−j+2

M and ξ′i,j ∈ Tpi+1,n−j+1
M have been

constructed with l ≤ n. Then we define the vectors ξi,l+1 ∈ Tpi+1,n−l+1
M and

ξ′i,l+1 ∈ Tpi+1,n−lM by

ξi,l+1 = PLi,l+1
(ξ′i,l)

with

Li,l+1 = [pi+1,n−l+1, pi,n−l+1] ∪ [pi,n−l+1, pi,n−l] ∪ [pi,n−l, pi+1,n−l] ∪ [pi+1,n−l, pi+1,n−l+1]

illustrated in Figure 14 and

ξ′i,l+1 = PL′i,l+1
(ξi,l+1) with L′i,l+1 = [pi+1,n−l+1, pi+1,n−l].

It remains to consider the translation of the vector ξ′i,n+1 along the triangle T ′′i :

ξi,n+2 = ξ′i,n+2 = PLi,n+1
(ξi,n+1) with Li,n+1 = [pi+1,0, pi,0] ∪ [pi,0, bi+1] ∪ [bi+1, pi+1,0],

illustrated also in Figure 14. Finally, we also set

ξ′′i,0 = ξi,0 = ξi, ξ
′′
i,1 = ξi,1, ξ

′′
i,l = PL′′i,l(ξi,l)

with

L′′i,l = [pi+1,n−l+2, o], l = 2, 3, 4 . . . , n+ 1,

and

ξ′′n+2 = PL′′i,n+2
(ξi,n+2) with L′′i,n+2 = [b′i+1, o].

We can represent ∆i in the following form:

∆i =
n∑
l=0

∆i,l,
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where ∆i,l = ξ′′i,l+1 − ξ′′i,l. Thus,

∆ξ =
2m−1∑
i=0

n+1∑
l=0

∆i,l. (3.2.3)

o

pi,0=bi

bi+1

b'i+1=pi+1,0

pi,n-1 pi+1,n-1

pi,n pi+1,n

pi+1,n-l-1

pi+1,n-l

pi,n-l-1

pi,n-l

Figure 14

2.3. Estimates.

Lemma 3.13.

|∆i,0|, |∆i,n+1| ≤ C(k′, k)
(d(b, c))2

4m
. (3.2.4)

Proof. We know that the angle αi,0 is arbritrarily close to π/2 for large m. Since

^(bi, b
′
i+1, bi+1) = π − αi,0,

the angle ^(bi, b
′
i+1, bi+1) is arbitrarily close to π/2 for m large.

Thus, for m large,

π

6
≤ ^(bi+1, b

′
i+1, bi) ≤

5π

6
.

There are two cases: ^(b′i+1, bi, bi+1) ≥ π/6 or ^(b′i+1, bi, bi+1) < π/6. First, suppose
that ^(b′i+1, bi, bi+1) < π/6. Let q = pi+1,1. We already know that for m large the
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angles βi,0 and γi,0 are close to π/4. Thus,

π

12
− εm =

π

4
− π

6
− εm

≤ γi,0 − ^(b′i+1, bi, bi+1)

≤ ^(q, bi, bi+1)

≤ γi,0 + ^(b′i+1, bi, bi+1)

≤ π

4
+
π

6
+ εm

=
5π

12
+ εm.

For m sufficiently large we can make εm = π/24 and

π

24
≤ ^(q, bi, bi+1) ≤ 23π

24
.

Therefore, the triangles 4(q, b′i+1, bi) and 4(q, bi, bi+1) are π/24-regular. From the
fact that ^(b′i+1, bi, bi+1) < π/6, we obtain that

^(bi, bi+1, b
′
i+1) ≥ π −

(π
2

+
π

6

)
− εm =

π

3
− π

24
=

7π

24
≤ π

24

for sufficiently large m.
Let ζi,n = Pb′i+1,bi,bi+1,b′i+1

(ξi,n+1) and observe that ξi,n+2 can be written as

ξi,n+2 = Pb′i+1,bi,q,b
′
i+1
◦ Pb′i+1,q,bi,bi+1,b′i+1

(ξi,n+1).

Since
|ξi,n+2 − ξ′i,n+1| ≤ |ξi,n+2 − ζi,n|+ |ζi,n − ξ′i,n+1|,

applying Corollary 3.12 and Proposition 3.10, we obtain the estimate (3.2.4) for
|∆i,n+1|.

Now we suppose that ^(b′i+1, bi, bi+1) ≥ π/6. Using Property 8 of Domains Ck′,k
we get

^(bi, bi+1, b
′
i+1) ≤ π − (^(bi+1, bi, b

′
i+1) + ^(bi, b

′
i+1, bi+1)) + λm,

where λm is a positive constant that tends to zero as m grows. Thus,

^(bi, bi+1, b
′
i+1) ≤ π

2
− π

6
=
π

3
.

We extend the geodesic segment [bi, b
′
i+1] to the geodesic segment [bi, x] such that

d(bi, x) = d(bi+1, b
′
i+1). Then, for sufficiently large m, the angles ^(b′i+1, x, bi+1),

^(b′i+1, bi+1, x) and ^(q, b′i+1, bi+1) are arbitrarily close to π/4, π/4 and π/2, respectively.
By the triangle inequality,

^(bi, bi+1, b
′
i+1)− ^(b′i+1, bi+1, x) ≤ ^(bi, bi+1, x) ≤ ^(bi, bi+1, b

′
i+1) + ^(b′i+1, bi+1, q).
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Thus, for m large,

π

24
=
π

3
− π

4
− π

24
≤ ^(bi, bi+1, x) ≤ π

3
+
π

4
+

π

24
=

5π

8
≤ 23π

24
.

Therefore, the triangles 4(bi, x, bi+1) and 4(b′i+1, x, bi+1) are π/24-regular. Similarly
to the previous case, this implies (3.2.4) for |∆i,n+1|.

Similar arguments can be applied to the triangle 4(o, pi,n, pi+1,n). Assuming
that the diameter of this triangle is sufficiently small, extend the geodesic segment
[pi,n, pi+1,n] beyond pi+1,n to the geodesic segment [pi,n, y], so that the triangles
4(pi,n, o, y) and 4(pi+1,n, o, y) are π/6-regular. In a similar way, we represent the
parallel translation of the vector ξi,0 as the parallel traslation along the last two π/6-
regular triangles and apply (3.2.2), Corolary 3.12 and Proposition 3.10. Q. E. D.

Theorem 3.14. For a triangle T = 4(o, b, c) ⊂ B, the increment ∆ξ of a vector
ξ ∈ ToM under parallel translation along T , i.e., the difference of the vectors in TbM
obtained under parallel displacement along the segment [o, b] and along the polygonal
line [o, c] ∪ [c, b], satisfies the following estimate:

|∆ξ| ≤ C(k′, k) Area(40(o, b, c)) |ξ|.

Proof. We have represented the parallel transport along the triangle 4(o, b, c)
in B as the succesive parallel translations along the triangles Ti,l, T

′
i,l, T

′
i , T

′′
i and T ′′′i .

Thus, by Corolary (3.12) applied to the triangles Ti,l and T ′i,l, and (3.2.4) applied to
the triangles T ′′i and T ′′′i combined with Proposition 3.10, we obtain

|∆ξ| ≤ C(k′, k)

[
2m−1∑
i=0

n−1∑
l=0

(
Area(T 0

i,l) + Area(T ′0i,l)
)

+
(d(b, c))2

2m−2

]
. (3.2.5)

Let k+ = max{0, k}. Let T k
+

i,l , T ′k
+

i,l , T ′′k
+

i and T ′′′k
+

i be comparison triangles in

M2
k+ for the triangles Ti,l, T

′
i,l, T

′′
i and T ′′′i . We glue the comparison triangles in the

same order as the original ones. Thus, we obtain a polygon P in M2
k+ . By the angle

comparison we know by the fact that B is a CAT(k+) space, the angles at the vertices
pi,l and pi+1,l are greater than π. Thus, by rectifying the corresponding polygonal
lines we arrive at the triangle Ti. Since

2m−1∑
i=0

n−1∑
l=0

(
Area(T 0

i,l) + Area(T ′0i,l)
)
≤

2m−1∑
i=0

n−1∑
l=0

(
Area(T k

+

i,l ) + Area(T ′k
+

i,l )
)
≤ Area(P).

Alexandrov’s lemma yields

2m−1∑
i=0

n−1∑
l=0

(
Area(T 0

i,l) + Area(T ′0i,l)
)
≤ Area(T k

+

i ).
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In a similar way,
2m−1∑
i=0

Area(T k
+

i ) ≤ Area(4k+(o, b, c)).

If diam(4(o, b, c)) is sufficiently small, then

Area(4k+(o, b, c)) ≤ 2Area(40(o, b, c))

This inequality combined with (3.2.5) completes the proof. Q. E. D.

2.4. Existence. Let L ⊂ B be an arbitrary rectifiable curve with endpoints a and
b. Partition L evently into 2m arcs aiai+1

_, i = 0, 1, 2, . . . , 2m − 1. Let Lm be the
polygonal line [a, a1]∪ [a1, a2],∪ · · · ∪ [a2m−1, b]. Denote by Pm the parallel translation
along Lm.

We write PL(ξ) = limm→∞ Pm(ξ) ∈ TbM for each vetor ξ ∈ TaM and say that the
map is the parallel translation along L. We define the parallel transport along an
arbitrary rectifiable curve L in (M, d) as the result of succesive parallel translations
along small arcs of equal length dividing L.

Proposition 3.15. The limit limm→∞ Pm(ξ) exists for each vector ξ ∈ TaM.

Proof. Let ai+1/2 be the midpoint of the aiai+1
_. Let Pα,β denote the parallel

translation along the geodesic segment [aα, aβ]. We observe that

Pm = P2m−1,2m ◦ P2m−2,2m−1 ◦ · · · ◦ P0,1.

Let Φi,i+1 = Pi+1/2,i+1 ◦ Pi,i+1/2 and observe that

Pm+1 = Φ2m−1,2m ◦ Φ2m−2,2m−1 ◦ · · · ◦ Φ0,1.

Let

hm =
L(L)

2m
.

By Theorem 3.14, for each non-zero vector ξ ∈ TaiM we have

^(Pi,i+1(ξ),Φi,i+1(ξ)) ≤ C(k′, k)h2
m. (3.2.6)

Define the vectors ξ
(l)
m and ζ

(l)
m for l = 0, 1, 2, . . . , 2m as follows. Set

ξ(0)
m = ζ(0)

m = ξ.

Suppose that the vectors ξ
(l)
m and ζ

(l)
m have been already defined and set

ξ(l+1)
m = Pl,l+1(ξ(l)

m ) and ζ(l+1)
m = Φl,l+1(ζ(l)

m ).

We claim that
^(ξ(l)

m , ζ
(l)
m ) ≤ C(k′, k)Llhm, (3.2.7)

where Ll is the length of the arc aal
_ of the curve L.
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Clearly inequality (3.2.7) holds for l = 0. Suppose that (3.2.7) holds for l. Let

ξ̄(l+1)
m = Φl,l+1(ξ(l)

m ).

By the triangle inequality,

^(ξ(l+1)
m , ζ(l+1)

m ) ≤ ^(ξ(l+1)
m , ξ̄(l+1)

m ) + ^(ξ̄(l+1)
m , ζ(l+1)

m ).

By inequality (3.2.6),
^(ξ(l+1)

m , ξ̄(l+1)
m ) ≤ C(k′, k)h2

m.

Since Φl,l+1 is an isometry,

^(ξ̄(l+1)
m , ζ(l+1)

m ) = ^(ξ(l)
m , ζ

(l)
m )

and, by inequality (3.2.7), for l we have

^(ξ̄(l+1)
m , ζ(l+1)

m ) ≤ C(k′, k)Llhm.

Thus,
^(ξ(l+1)

m , ζ(l+1)
m ) ≤ C(k′, k)(hm + L(l))hm = C(k′, k)L(l + 1)hm.

Observe that (3.2.7) for l = 2m yields

^(Pm(ξ), Pm+1(ξ)) ≤ C(k′, k)
(L(L))2

2m
.

This last inequality implies that

^(Pm(ξ), Pm+s(ξ)) ≤ C(k′, k)
(L(L))2

2m
, (3.2.8)

i.e., {Pm(ξ)}m∈N is a Cauchy sequence and the proof is completed as in Proposition
3.9. Q. E. D.

Corolary 3.16.

^(Pm(ξ), PL(ξ)) ≤ C(k′, k)
(L(L))2

2m
.

Proof. In the inequality (3.2.8) we take the limit with respecto to s. Q. E. D.

Corolary 3.17. PL : TaM→ TbM is an isometry.

Proof. By Proposition 3.10 Pm is an isometry. Since for each ξ, ζ ∈ TaM,

Pm(ξ)→ PL(ξ) and Pm(ζ)→ PL(ζ),

PL is an isometry. Q. E. D.





CHAPTER 4

Spaces with Bounded Curvature: Connection and Curvature

Once we have the parallel transport in our spaces with bounded curvature, in this
chapter we can define a covariant derivative and define harmonic coordinates. These
coordintes allow us to improve the regularity of the spaces with bounded curvature.
At the end of the chapter we compare the synthetic curvature and the sectional
curvature in our spaces. This is a work done by Nikolaev in [Nik83b] and [Nik91].

1. Harmonic Coordinates

In order to define the harmonic coordinates and prove their properties, we need
to introduce some concepts beforehand.

Let Ω be an nonempty connected open subset of Rn. We denote by Lp(Ω), p ≥ 1,
the normed space of all p-integrable functions on Ω with norm

‖f‖p =

(∫
Ω

|f |p
) 1

p

.

We define the Sobolev space W l,p(Ω), p ≥ 1 and l ∈ {1, 2, · · · }, as the space
of functions of Lp(Ω) that have in Ω all the weak derivatives with respect to xi,
i ∈ {1, . . . , n}, up to order l inclusive, and are p-integrable. The norm in this space is

‖f‖l,p =

∫
Ω

|f |p +
l∑
|s|=1

|D(s)f |p
 1

p

,

where s = (s1, · · · , sn), si ≥ 0 are natural numbers, |s| = s1 + · · ·+ sn, and

D(s)f =
∂|s|f

(∂x1)s1 · · · (∂xn)sn
.

We denote by W 1,p
o (Ω), p ≥ 1, the closure in the previous norm of C∞c (Ω), the set

of all smooth functions with compact support in Ω.
We denote by Cr,α(Ω) the class of functions which are r times continuously

differentiable in Ω, all of whose r-th partial derivatives satisfy a Hölder condition
with exponent α:

|D(r)f(x)−D(r)f(y)| ≤ C|x− y|α,
67
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where r ≥ 0 is an integer and 0 < α < 1.

1.1. Covariant Differentiation. Let S be an arbitrary subset ofM , J an interval
and γ : J → M. A vector field X on S is a map that associates p ∈ S with a
vector of TpM and a vector field Y along γ is a map that associates t ∈ J with a
vector Tγ(t)M. We denote the set of vector fields on S by X(S) and the set of vector
fields along γ by X(γ). Finally, γ̇ denotes the vector field of tangent vectors of a
differentiable curve γ.

Let γ : J →M be a differentiable curve and X ∈ X(γ). We denote by (X)tt0 the
result of applying the parallel transport P to the vector X(t) along γ at the point
γ(t0). We call the limit

lim
t→t0

(X)tt0 −X(t0)

t− t0
,

if it exists, the covariant derivative of the vector field X at the point γ(t0) along γ
and denote it by DtX(t0) or ∇γX(t0).

Proposition 4.1. Let γ : J →M be a differentiable curve, t0 ∈ J and X,Y ∈
X(γ). The operation of covariant diferentiation Dt has the following properties:

a) If DtX(t0) and DtY (t0) exist, then Dt(X + Y )(t0) also exists and

Dt(X + Y )(t0) = DtX(t0) + DtY (t0).

b) If ϕ : J → R is differentiable at t0 and DtX(t0) exists, then the covariant derivative
Dt(ϕX)(t0) also exists and

Dt(ϕX)(t0) = ϕ(t0) DtX(t0) +
∂ϕ

∂t
(t0)X(t0).

c) If DtX(t0) and DtY (t0) exist, then the function t 7→ 〈X(t), Y (t)〉 is differentiable
at t0 and

d

dt
〈X, Y 〉|t0 = 〈DtX(t0), Y (t0)〉+ 〈X(t0),DtY (t0)〉.

Proof. The proof is exactly the same as in the Riemannian case using the fact
that the parallel transport is an isometry. Q. E. D.

Let B be a normal neighborhood sufficiently small such that the parallel transport
can be defined there for every geodesic segment. Let b ∈ B be a fixed point and let
Xb denotes the vector field defined as follows: Xb(q), q ∈ B \ {b}, is the vector in
TqM whose length is d(q, b) and whose direction coincides with that of the geodesic
segment [q, b].

Lemma 4.2. Consider in B a triangle 4(a, b, c) and a geodesic segment [p, p′]
that intersects [a, c] in the common middle point o. Set the angles ^(b, c, p) = γ and
^(p′, a, b) = γ′, and let d(a, c) = h, d(c, p) = e(h) and d(b, c), d(b, a) ≥ δ > 0, where
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e = e(h) denotes an infinitesimal quantity equivalent to h, i.e., a quantity such that
L1 ≤ e(h)/h ≤ L2 for certain positive constants L1 and L2. Then

cos(γ) + cos(γ′) = O(h) · C(δ),

with C(δ) is a constant that depends on δ.

Proof. We consider a triangle 4(ã, b̃, c̃) in the plane such that d(ã, c̃) = d(a, c),

d(b̃, c̃) = d(b, c) and ^(b̃, c̃, ã) = ^(b, c, a) = β, and take a geodesic segment [p̃, p̃′]

such that it and [ã, c̃] bisect one another at õ, d(c̃, p̃) = d(c, p), ^(b̃, c̃, p̃) = γ and
^(p̃, c̃, ã) = ^(p, c, a) = α.

Using the law of cosines we obtain:

(d(b̃, p̃))2 = (d(c̃, p̃))2 + (d(b̃, c̃))2 − 2 d(c̃, p̃) d(b̃, c̃) cos(γ),

(d(õ, p̃))2 = e2 +

(
h

2

)2

− ah cos(α),

cos(^(c̃, ã, p̃)) =
h2

4
+ (d(õ, p̃))2 − e2

h d(õ, p̃)
,

d(ã, p̃) = e,

(d(b̃, õ))2 =

(
h

2

)2

+ (d(b̃, c̃))2 − h d(b̃, c̃) cos(β),

cos(^(b̃, p̃, õ)) =
(d(b̃, p̃))2 + (d(p̃, õ))2 − (d(b̃, õ))2

2d(p̃, b̃) d(p̃, õ)
,

(d(p̃′, b̃))2 = (d(p̃, b̃))2 + (2d(p̃, õ))2 − 4 d(b̃, p̃) d(p̃, õ) cos 8^(b̃, p̃, õ),

(d(ã, b̃))2 = h2 + e2 − 2eh cos(β),

cos(^(b̃, ã, p̃′)) =
(d(ã, b̃))2 + e2 − (d(b̃, p̃′))2

2 d(ã, b̃)e
.

We set ε = ^(c̃, ã, b̃) and θ = ^(ã, b̃, c̃). Since α + γ + ε+ θ = π and using again
the law of cosines to find θ, we get that

^(b̃, c̃, p̃) + ^(b̃, ã, p̃′) = π + C(δ) ·O(h).

From the previous equations and the Property 8 of domains Ck′,k we obtain the
result. Q. E. D.

Lemma 4.3. Let γ : J → B be a differentiable curve and b a fixed point of B such
that d(γ(t), b) ≥ δ > 0 for any t ∈ J and some δ. Then, for any t, t0 ∈ J , we get

|(Xb)
t
t0
−Xb(t0)| ≤ C(δ)L(γ; t, t0),
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where L(γ; t, t0) is the length of the arc of γ corresponding to the values between t
and t0 and C(δ) is a constant depending on δ.

Proof. Suppose that t0 ≤ t. We put a = γ(t0), c = γ(t) and let η ∈ TaM be an
arbitrary nonzero vector.

By Proposition 3.9 and Lemma 4.2, we obtain

cos(^(Xb(a), η))− cos((Xb)
t
t0
, η) ≤ C ′(δ) d(a, c),

where C ′(δ) is a constant depending on δ.
From the last inequality and Lemma 3.6, we get

^(Xb(a), (Xb)
t
t0

) ≤ C ′′(δ) d(a, c),

where C ′′(δ) is a constant depending on δ.
Since d(a, c) ≤ L(γ; t, t0) and the fact that γ is in an annulus we obtain the

result. Q. E. D.

Lemma 4.4. The scalar product ϕ(y) = 〈Xb(y), Xa(y)〉 satisfies a Lipschitz
condition in the distance chart (u,B) with the Lipschitz constant depending on δ,
where d(a,B), d(b, B) ≥ δ > 0 and V = u(B) ⊂ Rn is a convex domain.

Proof. We have to prove that

|ϕ ◦ u−1(v)− ϕ ◦ u−1(v0)| ≤ C(δ) |v − v0|,
where C(δ) is a constant depending on δ and v, v0 ∈ V . We can represent ϕ ◦ u−1

in the form (ϕ ◦ u−1
y ) ◦ (uy ◦ u−1) in any sufficiently small neighborhood of vy ∈ V ,

where uy are the coordinates introduced in the proof of Theorem 2.9. Let x ∈ Rn be
a sufficiently small vector in order to apply u−1

y . We put z = u−1
y (x), and join z and y

by the geodesic segment γ0 in B. We denote by (Xb)
z
y and (Xa)

z
y the vectors resulting

from applying the parrallel transport of the vectors Xb(z) and Xa(z) at y along γ0.
Since parallel translation is an isometry, we obtain that

ϕ(z)− ϕ(y) = 〈Xb(z), Xa(z)〉 − 〈Xb(y), Xa(y)〉,
= 〈(Xb)

z
y, (Xa)

z
y〉 − 〈Xb(y), Xa(y)〉 − 〈(Xa)

z
y, Xb(y)〉+ 〈(Xa)

z
y, Xb(y)〉,

= 〈(Xa)
z
y, (Xb)

z
y −Xb(y)〉+ 〈(Xa)

z
y −Xa(y), Xb(y)〉.

From the last equality, the Cauchy-Schwarz inequality, and Lemma 4.3, we obtain

|ϕ ◦ u−1
y (x)− ϕ ◦ u−1

y (0̄)| ≤ C ′(δ) |x|,
where C ′(δ) is a constant depending on δ. From the last inequality and equation
(2.3.3) we obtain the desired inequality for v − v0 sufficiently small. For arbitrary
vectors v, v0 ∈ V , the result follows using the previous local estimate, the convexity of
V , and the compactness of the segments (the constant can be taken to be the same,
taking the maximum on V ). Q. E. D.
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Proposition 4.5. The components of the metric tensor in distance coordinates
satisfy a Lipschitz condition on a sufficiently small neighborhood U ⊂ B.

Proof. We apply the previous lemma to the fields {Xi}, i ∈ {1, . . . , n}, used to
construct the distance coordinates in M. Q. E. D.

Lemma 4.6. Let γ1, γ2 : J → B be differentiable curves with γ1(t0) = γ2(t0) and
γ̇1(t0) = γ̇2(t0), t0 ∈ J . If ∇γ1Xi(t0) exists, then ∇γ2Xi(t0) exists and

∇γ1Xi(t0) = ∇γ2Xi(t0), i ∈ {1, . . . , n}.

Proof. Let γ1 and γ2 be rectifiable curves parametrized by arc length issuing
from the point p = γ1(0) = γ2(0) and let α(x) be the angle in the plane triangle with
sides x, x and d(γ1(x), γ2(x)) opposite to the last side.

Using the law of cosines and the series expansion of cosine, we get that d(γ1(x), γ2(x))
has order α(x) · x. We denote by γ3 the geodesic segment joining the points a = γ1(x)
and b = γ2(x). The vector (Xi)

b
a is the result of the parallel translation of Xi(b) along

γ3 from b to a. By Lemma 4.3,

(Xi)
b
a −Xi(a) = O(α(x) · x).

By Theorem 3.14,
((Xi)

b
a)
a
p − (Xi)

b
p = O(x2),

where ((Xi)
b
a)
a
p is the result of applying the parallel transport of (Xi)

b
a along γ1 from

a to p and (Xi)
b
p is the result of applying the parallel transport of Xi(b) along γ2 from

b to p. Since the parallel transport is an isometry,

((Xi)
b
a)
a
p − (Xi)

a
p = O(α(x) · x),

where (Xi)
a
p and ((Xi)

b
a)
a
p are the result of parallel translation of the vectors Xi(a)

and (Xi)
b
a along γ1 at p. If we take the difference of the last two equations we get

|(Xi)
a
p − (Xi)

b
p| =

∣∣[(Xi)
a
p −Xi(p)

]
−
[
(Xi)

b
p −Xi(p)

]∣∣ ≤ C · α(x) · x, (4.1.1)

where C is a constant.
If γ̇1(t0) = γ̇2(t0), then α(x) and x tend to zero. Thus we obtained the result.

Q. E. D.

Let Q ⊂ u(B) be a non empty bounded connected open set. We say that
X ∈ X(u−1(Q)) belongs to X′(Q) if the coordinates of X with respect to the basis Ui,
i ∈ {1, . . . , n}, of coordinate vectors in the distance coordinates have total differential
almost everywhere in Q. Similarly, we say that X ∈ X(γ) belongs to X′(γ) if the
coordinates of X with respect to the basis Xi, i ∈ {1, . . . , n}, of coordinate vectors in
the distance coordinates have differential almost everywhere in J .

Let b ∈ B, let Q(η) ⊂ Rn be a non empty convex connected open set such that
d(b, Vη) ≥ η > 0, where Vη = u−1(Q(η)), and Q is an arbitrary non empty convex
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connected open set of u(B). From Lemma 4.4 and Proposition 4.5 we obtain the
following result,

Lemma 4.7. For every η > 0, Xb ∈ X′(Q(η)) and all the first partial derivatives
of the coordinates αib of the vectors Xb with respect to the basis {Ui} are bounded by a
constant depending on on η. Moreover, Xj ∈ X′(Q) and all the first partial derivatives
of the coordinates αij of the vectors Xj with the basis {Ui} are bounded by a constant.

Lemma 4.8. For any differentiable curve γ : J → V = u−1(Q) and any X ∈ X′(γ),
∇γX exists for almost all t ∈ J .

Proof. Let t0 ∈ J . We consider f : J → Rn given by f(t) = (X)tt0 , i.e., it is
equal to the result of displacing X(t) at γ(t0) along γ. If X = Xi, then, by Lemma 4.3
and Rademacher’s theorem (see Theorem 2.14, page 47, [AFP00]), f is differentiable
almost everywhere. Since ∇γX coincides with df/ dt, then the lemma is proved for
X = Xi. Since the coordinates βij of the basis vectors Ui of the distance coordinates
satisfy a Lipschitz condition, by Lemma 4.4 and equation (2.3.3), the lemma is true
for Ui, by a) and b) of Proposition 4.1. The assertion of the lemma follows again from
a) and b) of Proposition 4.1 and the definition of X′(γ). Q. E. D.

1.2. Lie Bracket. Let X and Y be vector fields on B whose coordinates Φi and
Ψj, with i, j = 1, . . . , n, in distance coordinates satisfy a Lipschitz condition with
constant C. A curve γ : J → B is called an integral curve of a vector field X ∈ X(B)
if it is differentiable and γ̇(t) = X(γ(t)).

Everywhere in this section mappings of domains (i.e., non empty connected open
sets) of B into domains of b will be assumed to be described in distance coordinates
and denoted by the same symbols, i.e, if f maps a domain of B into B, we shall
denote the map u◦f ◦u−1of the corresponding domains of Rn by f and its coordinates
by f i, i = 1, . . . , n.

From the definition of the integral curve γ of X that passes through x, we observe
that γ is a solution of the equation

γi = xi +

∫ t

0

Φi(γ(s)) ds. (4.1.2)

Since the Φi satisfy a Lipschitz condition, a solution of equation (4.1.2) always
exists and is unique, so we denote the integral curve of X passing through x by ϕt(x),
where t lies in a small neighborhood J of zero. As a consequence of the uniqueness of
the solution, we obtain

ϕs ◦ ϕt(x) = ϕs+t(x) (4.1.3)

for small s and t. Thus, for small t, the ϕt are homeomorphisms (since ϕ0(x) = x)
and we have

ϕ−1
t (x) = ϕ−t(x). (4.1.4)
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In this way equation (4.1.2) becomes

ϕit(x) = xi +

∫ t

0

Φi(ϕs(x)) ds. (4.1.5)

In a similar way, ψt(x) will denote an integral curve of Y and

ψit(x) = xi +

∫ t

0

Ψi(ψs(x)) ds.

Lemma 4.9. The maps ϕt satisfy a Lipschitz condition with a constant independent
of t for sufficiently small t.

Proof. From equation (4.1.5) we obtain

ϕit(x)− ϕit(x0) = xi − xi0 +

∫ t

0

(
Φi(ϕs(x))− Φi(ϕs(x0))

)
ds.

If |t| < 1/2
√
nC, then

|ϕit(x)− ϕit(x0)| ≤ |xi − xi0|+ C|t| sup
s
|ϕs(x)− ϕs(x0)|

≤ |xi − xi0|+ C|t|
√
n sup
s;i=1,...,n

|ϕis(x)− ϕis(x0)|.

From this inequality, we get(
1− C |t|

√
n
)

sup
s;i=1,...,n

|ϕis(x)− ϕis(x0)| ≤ |xi − xi0| ≤ max
i∈{1,...,n}

|xi − xi0| ≤ |x− x0|.

Thus,
1

2
|ϕis(x)− ϕis(x0)| ≤ 1

2
sup

s;i=1,...,n
|ϕis(x)− ϕis(x0)| ≤ |x− x0|. (4.1.6)

Q. E. D.

The map ϕ : Q ⊂ Rn → Rn has the N -property (N−1-property) if the image
(resp. inverse image) of a set of measure zero is a set of measure zero.

Lemma 4.10. The maps ϕt have the N - and N−1-properties for suffieciently small
t. The degree of ϕt is equal to 1.

Proof. From equations (4.1.4) and (4.1.6) we know that ϕt and ϕ−1
t satisfy a

Lipshitz condition for small t and ϕt satisfies the N - and N−1-properties. Since ϕt is
homotopic to the identity for small t, then the degree of ϕt is 1. Q. E. D.

Lemma 4.11. If f : V → Rn, V = u(B), satisfies a Lipschitz condition, then for
almost all t in a sufficiently small neighborhood of zero J ⊂ R, the function f has a
total differential at points ϕt(x) for almost all x ∈ V .
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Proof. By Rademacher’s theorem, the map f has total differential almost
everywhere on V . Then the set O′ ⊂ V of points at which f is not differentiable
is of zero measure. The map ϕt is Lipschitz and, therefore, the set O′′t of non-
differentiability is of zero measure. Since ϕt has the N−1-property, for each t ∈ [−δ, δ]
the set O′′′t = ϕ−1

t (O′) is also of zero measure. Thus, the function gt = f ◦ ϕt is
differentiable at every point of V \Ot, where Ot = O′′t ∪O′′′t .

Let A = {(t, x) | t ∈ [−δ, δ], x ∈ Ot} and χA(t, x) be the characteristic function of
the set A. This function is integrable with respect to x and, for each t ∈ [−δ, δ],

Measure(Ot) =

∫
V

χA(t, x) dx = 0.

By the Fubini–Tonelli theorem

0 =

∫ δ

−δ
dt

∫
V

χA(t, x) dx =

∫∫
[−δ,δ]×V

χA(t, x) dt dx =

∫
V

dx

∫ δ

−δ
χA(t, x) dt.

Since χA(t, x) ≥ 0, for almost all x ∈ V , we have

χA(t, x) = 0.

Q. E. D.

Lemma 4.12. For sufficiently small t and almost all x ∈ V = u(B),
∂ϕit
∂xj

(x) exists
and satisfies the equation

∂ϕit
∂xj

(x) = δij +

∫ t

0

∂Φi

∂um
(ϕs(x)) · ∂ϕ

m
s

∂xj
(x) ds, (4.1.7)

where δij is the Kronecker symbol and i, j = 1, . . . , n.

Proof. From equation (4.1.6) and Rademacher’s theorem, it follows that, for

sufficiently small t and almost all x ∈ V ,
∂ϕit
∂xj

(x) exists and is also a generalized
derivative (i.e. the partial derivative exists for almost every x). Let g : V → R be
an arbitrary function of class C1 with compact support in V whose integral over V
is equal to 1. From equation (4.1.5), Fubini–Tonelli theorem and the definition of a
generalized derivative, we obtain∫

V

∂ϕit
∂xj

(x) · g(x) dx = δij −
∫ t

0

∫
V

Φi(ϕs(x)) · ∂g
∂xj

(x) dx ds. (4.1.8)

By Lemma 4.11, for almost all s ∈ J and almost all x ∈ V , we have

∂

∂xj
(
Φi(ϕs(x))

)
=
∂Φi

∂um
(ϕs(x)) · ∂ϕ

m
s

∂xj
(x).
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Hence, from equations (4.1.5) and (4.1.8), the Fubini-Tonelli theorem, and the
definition of a generalized derivative, we obtain∫

V

∂ϕit
∂xj

(x) · g(x) dx = δij +

∫
V

g(x)

∫ t

0

∂Φi

∂um
(ϕs(x)) · ∂ϕ

m
s

∂xj
(x) ds dx,

and hence, since g is arbitrary, we get (4.1.7). Q. E. D.

Corolary 4.13. For almost all x ∈ V , the
∂ϕit
∂xj

(x) and
∂(ϕ−1

t )i

∂xj
(x) satisfy a

Lipschitz condition in a small neighborhood of zero with a constant independent of x.

Let V1, V2 and V0 be balls in Rn concentric with the ball V (which can be assumed
to be a ball in Rn), whose radii are equal to half, a quarter, and an eight of the radius
of V , respectively. If t and s are sufficiently small, we always have

ϕs ◦ ψt(V2), ψs ◦ ϕt(V2) ⊂ V1 and ϕs ◦ ψt(V ), ψs ◦ ϕt(V ) ⊃ V1. (4.1.9)

We shall assume that J , a small neighborhood of 0, is sufficiently small such that
conditions (4.1.9) and Lemmas 4.9–4.12 are satisfied for all s, t ∈ J .

We denote by ω an infinitely differentiable function in Rn whose integral over Rn

is equal to 1 and whose support is contained in a ball centered at zero and radius ρ
smaller than the radius of V0. We observe that, by (4.1.9),{

v ∈ Rn | |x− (ψs ◦ ϕt)−1(v)| ≤ ρ, |x− (ϕt ◦ ψs)−1(v)| ≤ ρ, x ∈ V0

}
⊂ V1

( ϕt ◦ ψs(V ), ψs ◦ ϕt(V ), V,

for s, t ∈ J .
We will denote by J(x, f) the Jacobian of f at the point x ∈ V , where f : V → Rn

is a once differentiable map.

Lemma 4.14. For all x ∈ V0, t, h ∈ J the function

f(t) =

∫ h

0

∫
V

ω(x− u)Φl(ϕs(ψt(u))) du ds

is twice continuously differentiable in J .

Proof. Using Lemma 4.11 on Φl, Φ ◦ ϕs, and Φ, we get the existence of their
total differential. Using Lemmas 4.9 and 4.10 we obtain the existence of

∂

∂t
(Φl ◦ ϕs ◦ ψt(u))

for almost all s, t ∈ J and u ∈ V . And we have

∂

∂t
(Φl ◦ ϕs ◦ ψt(u)) =

∂Φl

∂uq
(ϕs(ψt(u))) · ∂ϕ

q
s

∂ui
(ψt(u)) · ∂ψ

i
t

∂t
(u).
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From this equation and the fact that Φl ◦ ϕs ◦ ψt(u) satisfies a Lipschitz condition in
t with a constant independent of u, it follows that

df

dt
(t)

exists for almost all t ∈ J :

df

dt
(t) =

∫ h

0

∫
V

ω(x− u) · ∂Φl

∂uq
(ϕs(ψt(u))) · ∂ϕ

q
s

∂ui
(ψt(u)) ·Ψi(ψt(u)) du ds.

This previous expresion is defined for all t. We make a change of variable v = ψt(u)
and obtain

df

dt
(t) =

∫ h

0

∫
ψt(V )

ω(x− ψ−1
t (v)) · ∂Φl

∂uq
(ϕs(v)) · ∂ϕ

q
s

∂ui
(v) ·Ψi(v)J(v, ψ−1

t ) dv ds.

Let ε be a small number. We denote by A the expression analogous to

df

dt
(t+ ε),

except that instead of J(v, ψ−1
t+ε) we substitute J(v, ψ−1

t ). By (4.1.9) and that the fact
that ω has compact support, we have:

df

dt
(t+ε) =

∫ h

0

∫
Rn
χψt+ε(V ) ·ω(x−ψ−1

t+ε(v))· ∂Φl

∂uq
(ϕs(v))· ∂ϕ

q
s

∂ui
(v)·Ψi(v)J(v, ψ−1

t+ε) dv ds

and

A =

∫ h

0

∫
Rn
χψt(V ) · ω(x− ψ−1

t+ε(v)) · ∂Φl

∂uq
(ϕs(v)) · ∂ϕ

q
s

∂ui
(v) ·Ψi(v)J(v, ψ−1

t ) dv ds.

The functions under the integral sign are defined to be zero outside their domain
of definition and the domain of integration of A has been changed. Since all the
functions under the integral sign of the previous two expressions are bounded in
absolute value by a constant M , we get∣∣∣∣ dfdt (t+ ε)−A

∣∣∣∣ ≤M

∣∣∣∣∫
Rn
χψt+ε(V ) · J(v, ψ−1

t+ε) dv −
∫
Rn
χψt(V ) · J(v, ψ−1

t )

∣∣∣∣ .
The two integrals of the last inequality are equal by the change of variables formula.
Thus,

df

dt
(t+ ε)−A = 0.
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Using this equation, we get

df

dt
(t+ ε)− df

dt
(t) = ε

∫ h

0

∫
ψt(V )

∂ω

∂ui
(x− ψ−1

t (v)) · ∂ψ
−1
t

∂t
(v) · ∂Φl

∂uq
(ϕs(v))

·∂ϕ
q
s

∂ui
(v) ·Ψi(v)J(v, ψ−1

t ) dv ds+O(ε).

From the last expression f is twice differentiable and

d2f

dt2
(t) =

∫ h

0

∫
ψ(V )

∂ω

∂ui
(x− ψ−1

t (v))
∂ψ−1

t

∂t
(v)

∂Φl

∂uq
(ϕs(v))

∂ϕqs
∂ui

(v)Ψi(v)J(v, ψ−1
t ) dv ds.

(4.1.10)
From Corollary 4.13 we get that this function is continuous in t. Q. E. D.

Lemma 4.15. For all x ∈ V0 and t ∈ J the function

f(t) =

∫
V

ω(x− u) · Φl(ϕt(ψt(u))) du

is differentiable with respect to t and its derivative satisfies a Lipshitz condition.

Proof. As in the previous lemma, we see that

∂

∂t
(Φl ◦ ϕt ◦ ψt(u))

exists for almost u ∈ V and t ∈ J and

∂

∂t
(Φl ◦ ϕs ◦ ψt(u)) =

∂Φl

∂uq
(ϕt(ψt(u)))

[
∂ϕqt
∂t

(ψt(u)) +
∂ϕqt
∂ui

(ψt(u)) · ∂ψ
i
t

∂t
(u)

]
.

In order to proceed as in the previous lemma, we needed to use the fact that ϕqt (x)
satifies a Lipschitz condition in J × V . From the last equation we see that

df

dt
(t)

exists for almost all t ∈ J and

df

dt
(t) =

∫
V

ω(x− u) · ∂Φl

∂uq
(ϕt(ψt(u)))

[
Φq(ϕt(ψt(u))) +

∂ϕqt
∂ui

(ψt(u)) ·Ψi(ψt(u))

]
du.

We make the change of variable v = ψt(u) and obtain

df

dt
(t) =

∫
ψt(V )

ω(x−ψ−1
t (v)) · ∂Φl

∂uq
(ϕt(v))

[
Φq(ϕt(v)) +

∂ϕqt
∂ui

(v) ·Ψi(v)

]
J(v, ψ−1

t ) dv.

Let ε be a small number. Let A1 denote the analogous expression to

df

dt
(t+ ε),
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except that for J(v, ψ−1
t+ε) we have substituted J(v, ψ−1

t ). We put

A2 =

∫
ψt+ε(V )

ω(x−ψ−1
t (v))·∂Φl

∂uq
(ϕt+ε(v))

[
Φq(ϕt(v)) +

∂ϕqt
∂ui

(v) ·Ψi(v)

]
J(v, ψ−1

t ) dv.

As in the previous lemma, we see that

A1 =
df

dt
(t+ ε).

Moreover, |A1−A2| is bounded by a constant depending on the modulus of continuity
of ω, ϕ−1

t and Φq ◦ ϕt, and the maximum values of∣∣∣∣∂(ψ−1
t )j

∂vi

∣∣∣∣ , ∣∣∣∣∂Φl

∂ui

∣∣∣∣ ,
q, i, j, l ∈ {1, . . . , n}. Thus, A1 − A2 is O(ε). By (4.1.9) and the fact that ω has
compact support, the domain of integration of A2 for x ∈ V0 can be replaced by
ψt(V ). Since all the functions under consideration are bounded, we have∣∣∣∣A2 −

df

dt
(t)

∣∣∣∣ = L
n∑
q=1

∣∣∣∣∫
ψt(V )

ω(x− ψ−1
t (v)) · ∂Φl

∂uq
(ϕt+ε(v)) dv

−
∫
ψt(V )

ω(x− ψ−1
t (v)) · ∂Φl

∂uq
(ϕt(v)) dv

∣∣∣∣ ,
where L is a constant. We denote the expression under the summation sign by Hq(ε).
We make a change of variable z = ϕt+ε(v) in the first integral and z′ = ϕt(v) in the
second integral in Hq(ε). Then

Hq(ε) =

∣∣∣∣∫
ϕt+ε◦ψt(V )

ω(x− ψ−1
t (ϕ−1

t+ε(z))) · ∂Φl

∂uq
(z) · J(z, ϕ−1

t+ε) dz

−
∫
ϕt◦ψt(V )

ω(x− ψ−1
t (ϕ−1

t (z′))) · ∂Φl

∂uq
(z′) · J(z′, ϕ−1

t ) dz′
∣∣∣∣ .

By (4.1.9) and the fact that ω has compact support, the domain of integration in
both integrals can be replaced by V if x ∈ V0, without changing their values. Finally,
by Corollary 4.13, Hq(ε) is O(|ε|) and this completes the proof using the triangle
inequality. Q. E. D.

Lemma 4.16. If x ∈ V0 and t ∈ J , then the function

f(t) =

∫
V

ω(x− u) ·Ψl(ψt(u)) du

is differentiable with respect to t and its derivative satisfies a Lipschitz condition.

Proof. We just apply the previous lemma with ϕt = Id. Q. E. D.
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We put r(t, x) = ψt ◦ ϕt(x) − ϕt ◦ ψt(x). We recall that the Lie bracket in the
coordinates u is written as

[X, Y ] =

(
Φq ∂Ψl

∂xq
−Ψq ∂Φl

∂xq

)
Ul, (4.1.11)

where the Ul are the basis fields of the distance coordinates.

Proposition 4.17. If the limit of r(t, x)/t2 as t tends to 0 exists for almost all
x ∈ V0 and there is a neighborhood of zero on the line such that, for all t in this
neighborhood and x ∈ V0,

|r(t, x)| ≤ C t2, (4.1.12)

where C is a constant, then, for almost all x ∈ V0,

lim
t→0

r(t, x)

t2
= [X, Y ]x .

Proof. We set h1(t, u) = ϕlt(ψt(u)) and consider, using the Fubini–Tonelli
Theorem,

hε1(t, x) =
1

εn

∫
V

ω

(
x− u
ε

)
ul du+

∫ t

0

1

εn

∫
V

ω

(
x− u
ε

)
Ψl(ψs(u)) du

+

∫ t

0

1

εn

∫
V

ω

(
x− u
ε

)
Φl(ϕs(ψt(u))) du, (4.1.13)

where ε > 0 and ω is an infinitely differentiable radial function whose integral over
Rn is 1 and with support in the ball B(0̄, ε) ⊂ Rn. This function hε1 is infinitely
differentiable and is called the Sobolev ε-average of h1 (see Section 1.4, Chapter
1, [Nik77]). We observe that

ψ0(x) = ϕ0(x) = x, (4.1.14)

and

hε1(0, x) =
1

εn

∫
V

ω

(
x− u
ε

)
ul du. (4.1.15)

Differentiating, we obtain

∂hε1
∂t

(t, x) =
1

εn

∫
V

Ψl(ψt(u))ω

(
x− u
ε

)
du

+
1

εn

∫
V

ω

(
x− u
ε

)
Φl(ϕt(ψt(u))) du

+

∫ t

0

1

εn

∫
V

ω

(
x− u
ε

)
∂Φl

∂uq
(ϕs(ψt(u)))

·∂ϕ
q
s

∂ui
(ψt(u))Ψi(ψt(u)) du ds. (4.1.16)
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In the last term of the previous expression we have used Lemma 4.14, for sufficiently
small ε. We observe that equations (4.1.14) and (4.1.16) imply that

∂hε1
∂t

(0, x) = Ψl,ε(x) + Φl,ε(x),

where Ψl,ε and Φl,ε are the Sobolev ε-averages of Ψl and Φl, respecively. Using
equation (4.1.14) and differentiating (4.1.16) with respect to t and evaluating at t = 0,
we get

∂2hε1
∂t2

(0, x) =
1

εn

∫
V

ω

(
x− u
ε

)[
∂Ψl

∂ui
(u)Ψi(u)

+
∂Φl

∂ui
(u)Φi(u) +

∂Φl

∂ui
(u)Ψi(u)

]
du. (4.1.17)

In order to do the last calculation we have used Lemmas 4.12, 4.14, 4.15 and 4.16.
We set h2(t, u) = ψlt ◦ ϕt(u) and let hε2(t, x) be its Sobolev ε-average. For this last
function we obtain analogous formulas to (4.1.15), (4.1.16) and (4.1.17). From this, it
follows that

rl,ε(0, x) = 0,
∂rl,ε

∂t
(0, t) = 0

and

∂2rl,ε

∂t2
(0, x) =

2

εn

∫
V

ω

(
x− u
ε

)[
Φq(u)

∂Ψl

∂xq
(u)−Ψq(u)

∂Φl

∂xq
(u)

]
du, (4.1.18)

where rl,e = hl,ε2 − h
l,ε
1 . Let

r(x) = lim
t→0

r(t, x)

t2
.

From the approximation properties of the Sobolev ε-average (see Section 1.4, Chapter
1, [Nik77]), we get∥∥∥∥rl,ε(t, x)

t2
− rε(x)

∥∥∥∥
L2(V0)

≤
∥∥∥∥rl,ε(t, x)

t2
− r(x)

∥∥∥∥
L2(V0)

, (4.1.19)

where rε(x) is the Sobolev average of r(x). From equations (4.1.12), (4.1.19) and
Lebesgue’s Theorem (on taking the limit under the integral sign), it follows that

rε(x) = lim
t→0

rl,ε(x, t)

t2

for almost all x ∈ V0. From equation (4.1.18) and L’Hôpital’s rule, it follows that

rε(x) =
1

2

∂2rε

∂t2
(0, x).

Making ε tend to zero and using (4.1.11), we obtain the result.
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Q. E. D.

1.3. Simmetry of the Connection. We consider Q ⊂ u(B) ⊂ Rn a bounded
convex domain and V = u−1(Q), where u are distance coordinates. We shall assume
that vector fields of X(Q) are defined at points u−1(x) for almost all x ∈ Q. Let
X,Y ∈ X(V ), p ∈ V and X = ϕiXi. We say that the covariant derivative ∇YX|p
exists at a point p if there is a differentiable curve γ such that γ(t0) = p, γ̇(t0) = Y (p),
and ∇γXi|t0 and d

dt
(ϕi ◦ γ)(t0) exist. We put

∇YX|p = ∇γX|t0 .

This expression is well defined thanks to Proposition 4.1 and Lemma 4.6.
In order to prove the symmetry of the connection, we have to prove some lemmas.

Also, we introduce the following configuration. Let x ∈ Q, a = u−1(x) and b, c ∈ B
such that d(b, V ), d(c, V ) > 0. We consider the vector fields

Yb(p) =
Xb(p)

|Xb(p)|
and Yc(p) =

Xc(p)

|Xc(p)|
.

Let ϕt and ψt be the integral flows of these vector fields, respectively. The applications
t 7→ ϕt(a) and t 7→ ψt(a) are arc-length parametrizations of the geodesic segments
joining a with ϕt(a) and ψt(a), respectively. Finally, we set

b1 = b1(t) = ϕt(a), b2 = b2(t) = ψt(a),

c1 = c1(t) = ψt(b1), c2 = c2(t) = ϕt(b2),

ξ1 = ξ1(t) = exp−1
a (c1), ξ2 = ξ2(t) = exp−1

a (c2).

We illustrate this configuration in the following figure.

BV=u-1(Q)

a

b1

b

b2

c
c2

c1
��

��

Figure 15



82 4. SPACES WITH BOUNDED CURVATURE: CONNECTION AND CURVATURE

Lemma 4.18. Let {ξl1(t)}nl=1 and {ξl2(t)}nl=1 be the coordinates of the vector fields
ξ1(t) and ξ2(t) with respect to the system of distance coordinates. Suppose that, for
each l = 1, . . . , n, the limit

lim
t→0+

ξl1(t)− ξl2(t)

t2
(4.1.20)

exists. Then the limit

lim
t→0+

rl(t, a)

t2

exists and both limits coincide.

Proof. Let ξc2 be the system of coordinates at the point c2 given in the proof of
Theorem 2.9, in equation (2.3.2). Let

ul1 = ψlt ◦ ϕt(a) and ul2 = ϕlt ◦ ψt(a),

l = 1, . . . , n, be the distance coordinates of the points c1 and c2, respectively. Finally,
let ηl, l = 1, . . . , n, be the coordinates of the point c1 with respect to the coordinate
chart ξc2 . From the definition of these coordinates, we have that the coordinates
ξ1 − ξ2 are η = (η1, . . . , ηn).

Let J(u ◦ ξ−1
c2
, 0) denote the Jacobi matrix of the map u ◦ ξ−1

c2
at the point 0. We

observe that

(ξ1
1 , . . . , ξ

n
1 )− (ξ1

2 , . . . , ξ
n
2 ) = (η1, . . . , ηn) · J(u ◦ ξ−1

c2
, 0).

By equation (2.3.3), we get

(u1
1, . . . , u

n
1 )− (u1

2, . . . , u
n
2 ) = u ◦ ξ−1

c2
(η)− u ◦ ξ−1

c2
(0),

= (η1, . . . , ηn) · J(u ◦ ξ−1
c2
, 0) + o(|η|).

Thus,

(ξ1
1 , . . . , ξ

n
1 )− (ξ1

2 , . . . , ξ
n
2 ) = (u1

1, . . . , u
n
1 )− (u1

2, . . . , u
n
2 ) + o(|η|). (4.1.21)

Since the limit (4.1.20) exists,

o(|η|) = o

√√√√ n∑
l=1

(ξl1 − ξl2)2

 = o(t2).

Finally, from this equation and (4.1.21), we obtain that

lim
t→0+

rl(t, a)

t2
= lim

t→0+

ul1 − ul2
t2

= lim
t→0+

ξl1 − ξl2
t2

.

Q. E. D.
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Lemma 4.19. With the same notation, let (Yc)
b1
a and (Yb)

b2
a be the result of the

parallel translations of the vectors Yc(b1) and Yb(b2) along the geodesic segments [b1, a]
and [b2, a], respectively. Then

^(t · (Yc)b1a , ξ1 − t · Yb(a)) = O(t2),

^(t · (Yb)b2a , ξ2 − t · Yc(a)) = O(t2).

Proof. Let ζ ∈ TaM be a unitary vector, q = expa(t · ζ), o the midpoint of
the geodesic segment [a, b1] and q′ = So(q). We illustrate this configuration in the
following figure.

a

b1 c1

o
q'

q

Figure 16

We introduce the following notation:

y = d(a, c1),

α = ^(b1, a, c1) = ^(Yb(a), ξ1),

β = ^(q, a, c1) = ^(ξ1, ζ),

γ = ^(q, a, b1) = ^(Yb(a), ζ).

Let δ = ^(ζ, ξ1 − t · Yb(a)). We observe that

〈ξ1 − t · Yb(a), ζ〉 = 〈ξ1, ζ〉 − t〈Yb(a), ζ〉
= y cos(β)− t cos(γ)

and

|ξ1 − t · Yb(a)| =
√
t2 + y2 − 2ty cos(α).

Thus,

cos(δ) =
y cos(β)− t cos(γ)√
t2 + y2 − 2ty cos(α)

.

Also we observe that y = O(t). We are going to compute ^(q′, b1, c1). We use the
CP procedure introduced before Lemma 3.11 on the triangles 4(q, a, c1), 4(q, a, o)
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and 4(a, o, c1) to obtain the following equalities:

(d(q, c1))2 = t2 + y2 − 2ty cos(β) +O(t4),

(d(q, o))2 = t2 +

(
t

2

)2

− t2 cos(γ) +O(t4),

(d(o, c1))2 =

(
t

2

)2

+ y2 − ty cos(α) +O(t4).

Using Lemma 3.3 applied to 4(c1, q, q
′) and the midpoint o of the segment [q, q′]:

(d(q′, c1))2 = 2t2 + y2 − 2ty cos(α)− 2t2 cos(γ) + 2ty cos(β) +O(t4).

By Lemma 3.1

(d(q′, b1))2 = (d(q, a))2 +O(t4) = t2 +O(t4).

By (CP) applied on 4(b1, c1, a):

(d(b1, c1))2 = t2 + y2 − 2ty cos(α) +O(t4).

Thus,

(d(q′, c1))2 = (y2 + t2 − 2ty cos(α)) + t2 − (2t2 cos(γ)− 2ty cos(β)) +O(t4),

= (d(b1, c1))2 + (d(q′, b1))2 − (2t2 cos(γ)− 2ty cos(β)).

By (CP) applied to the triangle 4(q′, b1, c1) and the previous equation:

cos(^(q′, b1, c1)) =
(d(b1, c1))2 + (d(b1, q

′))2 − (d(q′, c1))2

2 d(b1, c1) d(b1, q′)
,

=
−2ty cos(β) + 2t2 cos(γ) +O(t4)

2t · d(b1, c1)

=
−y cos(β) + t cos(γ)√
t2 + y2 − 2ty cos(α)

+O(t2),

= − cos(δ) +O(t2). (4.1.22)

On the other hand, we know by Lemma 3.2 and (3.1.15) for m = 1 that

cos(^(q′, b1, c1)) + cos(^((Yc)
b1
a , ζ)) = O(t2).

Combining this equation with (4.1.22), we have

|cos(^(ζ, t · (Yc)b1a ))− cos(^(ζ, ξ1 − t · Yb(a)))| ≤ Ct2.

Finally, using Lemma 3.6 we get that

^(t · (Yc)b1a , ξ1 − t · Yb(a)) = O(t2).

The proof of the second claim is symmetric and totally similar. Q. E. D.
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Lemma 4.20. For almost all x ∈ Q

∇XbXc, ∇XcXb and [Xb, Xc]

exist at the point a = u−1(x), where b, c ∈ B, d(b, V ), d(c, V ) > 0. And

∇XbXc −∇XcXb = [Xb, Xc]. (4.1.23)

Proof. We have from Lemma 4.7 and the definition of the Lie Bracket that
[Xb, Xc] exists at a = u−1(x) for almost all x ∈ Q. From Lemmas 4.7 and 4.8 it
follows that

∇XbXc and ∇XcXb

exist at a = u−1(x) for almost all x ∈ Q.
We have

ξ1 = tYb(a) + (ξ1 − tYb(a)),

ξ2 = tYc(a) + (ξ2 − tYc(a)).

Since |ξi(t)| = O(t), i = 1, 2, Lemma 4.19 implies

ξ1(t) = t · Yb(a) + t · (Yc)b1a +O(t3),

ξ2(t) = t · Yc(a) + t · (Yb)b2a +O(t3).

Thus,

ξ1 − ξ2

t2
=

(Yc)
b1
a − Yc(a)

t
− (Yb)

b2
a − Yb(a)

t
+O(t2). (4.1.24)

Since ∇XbXc and ∇XcXb exist almost everywhere, the limit of the right-hand side of
the last equality exists almost everywhere and

lim
t→0+

(Yc)
b1
a − Yc(a)

t
− (Yb)

b2
a − Yb(a)

t
= ∇XbXc −∇XcXb.

Thus, the limit

lim
t→0+

ξl1 − ξl2
t2

exists almost everywhere. By Lemma 4.18

lim
t→0+

ξl1 − ξl2
t2

= lim
t→0+

rl(t, a)

t2
.

By (4.1.24) ∣∣∣∣ξl1 − ξl2t2

∣∣∣∣ ≤ C,
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where C is a constant, for sufficiently small positive t. From the proof of Lemma 4.18∣∣∣∣rl(t, a)

t2

∣∣∣∣ ≤ C.

We now apply Proposition 4.17 which implies that

lim
t→0+

rl(t, a)

t2
= [Yb, Yc]

l
a

almost everywhere. Thus, almost everywhere in V

∇YbYc −∇YcYb = [Yb, Yc].

Since Xb(p) = d(b, p)Yb(p), Xc(p) = d(c, p)Yc(p), Lemma 4.6, Proposition 4.1 and
standard properties of the Lie bracket imply that almost everywhere in Q

∇XbXc −∇XcXb = [Xb, Xc].

Q. E. D.

We denote by X′′(Q) those fields X ∈ X′(Q) for which ∇XXl, l ∈ {1, . . . , n}, exist
at u−1(x) for almost all x ∈ Q. We observe that X′′(Q) 6= ∅, since, by Lemma 4.7
and Lemma 4.20, Xl, Xb ∈ X′′(Q) if d(b, V ) > 0.

Lemma 4.21. Let X = αiXi ∈ X′′(Q). Then at points u−1(x) we have

∇XXl = αi∇XiXl, l ∈ {1, . . . , n},
for almost all x ∈ Q.

Proof. We consider domains Q1 ⊂ Q2 ⊂ u(B) ⊂ Rn satisfying the following two
properties: Q ⊂ Q1 ⊂ Q2 and Q′ = Q2 rQ1 6= ∅. On Q×Q′ we consider the function
χ(x, y) to be equal to zero when

∇Xu−1(y)
Xl|u−1(x), ∇XlXu−1(y)|u−1(x) and

[
Xl, Xu−1(y)

]
|x

exist and (4.1.23) is satisfied, and χ(x, y) = 1 othewise, l ∈ {1, . . . , n}. By Fubini’s
theorem, χ(x, y) = 0 for almost all fixed x ∈ Q and almost y ∈ Q′. In order to reduce
the notation, we put Xu−1(y) = Xy. Then for almost all x ∈ Q there is a sequence
{ys}s∈N ⊂ Q′ such that χ(x, ys) = 0 and

lim
s→∞

Xys(a) = X(a), a = u−1(x). (4.1.25)

From (4.1.23), Proposition 4.1 and the usual properties of the Lie bracket we see that

∇XysXl = αis∇XlXi + αis[Xl, Xi]

for almost all x ∈ Q at points u−1(x), where αis are the coordinates of Xys in distance
coordinates. Again from (4.1.23) we have

∇XysXl = αis∇XiXl (4.1.26)
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at points u−1(x) for almost all x ∈ Q. From (4.1.1) we obtain

lim
s→∞
∇XysXl|u−1(x) = ∇XXl|u−1(x) (4.1.27)

for almost all x ∈ Q. The assertion of the lemma follows from (4.1.25), (4.1.26) and
(4.1.27). Q. E. D.

Theorem 4.22. Let v be a coordinate system in M such that the transition
applications u ◦ v−1 from v to the distance coordinates u belong to the class W 2,q(Ω),
where Ω ⊂ Rn is some domain, q > n. Then on almost all the i-th coordinate curves
of v, i ∈ {1, . . . , n}, the parallel displacement P is given by the usual formulas of
Riemannian geometry with the help of the metric tensor.

Proof. Let Vi be the basis fields of the coordinates v; since

V i =
∂(u ◦ v−1)l

∂vi
Ul (4.1.28)

and u◦v−1 ∈ W 2,q(Ω), by [VGR79], Chapter 1, Theorem 3.2, we have that Vi ∈ X′(Q)
for some Q ⊂ Rn. From Lemma 4.8 it follows that Vi ∈ X′′(Q). Applying Lemma
4.20 to Vi, we see that

0 = T (Vi, Vj) := ∇ViVj −∇VjVi − [Vi, Vj]

almost everywhere, where T is the torsion tensor defined by ∇. From this and
Proposition 4.1, repeating verbatim the arguments in the case of classical Riemannian
geometry, we see that

∇ViVj = ΓlijVl,

where Γlij are the Christoffel symbols defined almost everywhere, expressed by the
usual rules of Riemannian geometry in terms of the components of the metric tensor.

Let Hi be the hyperplane in Rn passing through a point of Q′ and perpendicular
to Vi, and let H ′i = Hi ∩Q′. Since u ◦ v−1 ∈ W 2,q, using Fubini’s theorem, we have

‖Γlsj ◦ vix‖Lq(I(vix)) <∞ (4.1.29)

for almost all x ∈ H ′i, where I(vix) is the closed domain of variation of the parameter
of the i-th coordinate curve vix passing through x. We set a vector field ξ ∈ X(vix)
whose coordinates are given by the formula

ξr(t) = ξr0 −
n∑
l=1

∫ t

0

Γril(v
i
x(s))ξ

l(s) ds, (4.1.30)

for r ∈ {1, . . . , n}. Thanks to (4.1.29), a solution of (4.1.30) under the condition
ξr(0) = ξr0 exists and is unique (see [Cla15]).
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Now we fix t0 ∈ I(vix) and set the map

f : I(vix) → Tvix(t0)M,

t 7→ P (ξ(t)), (4.1.31)

where P (ξ(t)) is the parallel transport applied to the vector ξ(t) at t0 along vix. Then
df(t)/ dt is equal to the result of applying the parallel displacement to ∇vix

ξ|t at t0
along vix. From (4.1.30) and the previous lemmas, we get

∇vix
ξ|t =

n∑
r=1

∇vix
ξrVr

=
n∑
r=1

ξ̇rVr + ξr∇vix
Vr

=
n∑

r,l=1

ξl · Γrij(vix) · Vr + ξr∇vix
Vr

=
n∑

r,l=1

ξl · Γrij(vix) · Vr + ξrΓlir(v
i
x)Vl

= 0.

All these equalities are satisfied for almost all t ∈ I(vix). Hence df(t)/ dt = 0 for
almost all t ∈ I(vix).

It follows from Lemma 4.3 that the map f constructed for Xl in the same way
satisfies a Lipschitz condition, and so the same is true for f constructed for Uj . From
(4.1.28) and the conditions of Theorem 4.22 it follows that f constructed for Vj is
absolutely continuous. From this and (4.1.30) it follows that the original map f is
absolutely continuous.

It follows that f is constant, which implies that P is specified on vix by (4.1.30).
Q. E. D.

1.4. Harmonic Coordinates. Let (u,B) be a distance chart and Q = u(B), gij
the components of the metric tensor in distance coordinates and Γkij the Christoffel
symbols, i, j, k ∈ {1, . . . , n}.

The Laplace operator in distance coordinates has the form

∆ f =
n∑

i,j=1

gij
∂2f

∂ui∂uj
−

n∑
i,j,k=1

gij Γkij
∂f

∂uk
.



1. HARMONIC COORDINATES 89

We want to find coordinate functions ξl(u1, . . . , un) that satisfy the following
system of elliptic partial differential equations:

n∑
i,j=1

gij
∂2ξl

∂ui∂uj
−

n∑
i,j,k=1

gij Γkij
∂ξl

∂uk
= 0, (4.1.32)

l ∈ {1, . . . , n}, with the condition that

∂ξl

∂ui
(x0) = δij, x0 ∈ Q, i, l ∈ {1, . . . , n}. (4.1.33)

By Proposition 4.5, gij are Lipschitz continuous and Γkij are bounded almost everywhere,
i, j, k ∈ {1, . . . , n}. By Theorem 2 of [BJS79], Chapter 5, page 230 (the assertion of
this theorem remains true when we require not continuity but merely the boundedness
of the lowest coefficients of (4.1.32) (in deriving the inequality (5.28) of Lemma C
in [BJS79], Chapter 5, page 227, we only use the boundeness of the lowest coefficients,
and in the remainder of the proof the continuity of the lowest coefficients is not used)),
there is always a solution ξl on W 2,q(Ω0), where Ω0 ⊂ Q is a neighborhood of x0 and
q ≥ 1 is an arbitrary number, of the equation (4.1.32) that satisfies (4.1.33).

Since ξl is continuously differenciable (also by Theorem 2 of [BJS79], Chapter 5,
page 230), in a sufficiently small neighborhood Ω ⊂ Ω0 of x0 a coordinate system is
specified and is called harmonic coordinates.

From now on we work on harmonic coordinates (ξ1, . . . , ξn) with Ω ⊂ Rn its
domain of definition. gij and Γkij denote the components of the metric tensor in

harmonic coordinates and the Christoffel symbols. Since ξl ∈ W 2,q(Ω) for any q ≥ 1,
we have

gij ∈ W 1,q(Ω) and Γkij,Γij,k ∈ Lq(Ω), (4.1.34)

where

Γij,k = gilΓ
l
jk.

We observe that (4.1.32) that the equality

gklΓikl = 0, i ∈ {1, . . . , n},

is satified in harmonic coordinates for almost all x ∈ Ω. The last equality can be
rewritten as

gklΓkl,i = 0, i ∈ {1, . . . , n}. (4.1.35)

We are going to use the notation

Di =
∂

∂ξi
and Dij =

∂2

∂ξi∂ξj
.
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Let η ∈ W 1,2
0 and we introduce the following generalized functions:

(Rij, η) = −1

2

∫
Ω

gkl
(
DjgklDiη −DkgilDjη +DlgijDkη −DlgkjDiη

)
dξ, (4.1.36)

for i, j ∈ {1, . . . , n}. We observe that the right-hand side of (4.1.36) is, up to first
derivatives of the metric tensor in the case of smooth Riemannian manifolds, the
integral of the Ricci curvature over Ω in the direction of the i-th and j-th coordinate
vectors.

If we now substitute for the Γkl,j in (4.1.35) their expressions in terms of the gij
and take the generalized derivative of the resulting identity with respect to ξs, we
obtain ∫

Ω

1

2
gkl(Dlgjk +Dkgjl −Djgkl)Dsη dξ = 0.

We denote this expression by (Tsj). If we now add Rij, Rji, Tij and Tji, we get∫
Ω

gklDlgijDkη dξ = −(Rij +Rji, η). (4.1.37)

We observe that if the generalized function (Rij, η) is represented in the form

(Rij, η) =

∫
Ω

Rij(ξ)η(ξ) dξ, (4.1.38)

then gij is a generalized solution of the equation

∂

∂ξk

(
gkl
∂gij
∂ξl

)
= Rij, (4.1.39)

(see [LU68], Chapter 3, Sec. 4).

Lemma 4.23. Let Ω0 be a convex domain lying strictly inside the domain of
definition Ω of the harmonic coordinates. We take the Sobolev average of the metric
gij. Then for the resulting metric gεij we have∥∥∥∥∂Γεjl,k

∂xi
−
∂Γεil,k
∂xj

∥∥∥∥
Lq(Ω0)

≤ C(q), q ≥ 1, (4.1.40)

where Γεil,k are the Christoffel symbols of the average metric and C(q) is a constant
depending on q and Ω.

Proof. We consider a square in Ω whose sides are parallel to the i-th and j-th
basis vectors {Ξl} in Ω and have lengh h > 0, and the vertex x ∈ Ω0 of the square
with least i-th and j-th coordinates We denote by Rh,x,i,j the curve in M whose
harmonic coordinates form the previous square in Ω as it is illustrated in Figure 17.
We suppose thet Rh,x,i,j is parametrized by the length of a side of the square, so
that under a change of parameter it is first displaced along the j-th coordinate curve.



1. HARMONIC COORDINATES 91

There is a small number h0 > 0 such that Rh,x,i,j ⊂ ξ−1(Ω), for 0 < h ≤ h0, x ∈ Ω0,
i, j ∈ {1, . . . , n}.

Rh,x,i,j
h

�

i

j

x

��

�

�������

�l

a

Figure 17

We construct a ∆r
h,ijl(x) for x ∈ Ω0 as follows: we apply the parallel transport

along Rh,x,i,j to the vector Ξl. Then ∆r
h,ijl(x) is the r-th coordinate of the increment

of Ξl(x). We put
∆h,ijl,s(x) = grs(x)∆r

h,ijl(x) (4.1.41)

for i, j, l, s ∈ {1, . . . , n}. We notice that by Theorem 4.22 the parallel displacement P
along Rh,x,i,j is specified for almost all x ∈ Ω0 by the usual formulas of Riemannian
geometry, and by (4.1.32) we get∥∥∥∥∂gij∂ξm

◦ γ
∥∥∥∥
Lq([0,h0])

,
∥∥Γrij ◦ γ

∥∥
Lq([0,h0])

, ‖Γij,s ◦ γ‖Lq([0,h0]) ≤ C(q), q ≥ 1, (4.1.42)

where γ is an arbitrary part of Rh,x,i,j, and C(q) is a constant depending only on q
and Ω. Lea a ∈ M be the point corresponding to x, and b, c, d, the points on Rh,x,i,j
corresponding to the other vertices. We denote Rh,x,i,j by abcda and the arc of this

curve with its ends a, b by ab. We fix the indices i, j, l, s and denote ∆h,ijl,s by ∆h.
We denote by Ξm

x (λ), λ ∈ [0, 4h], the coordinates of the field Ξx of parallel vectors
obtained as a result of parallel transport of Ξl along abcda. In harmonic coordinates
abcda is written:

on the part ab : (x1, . . . , xi, . . . , xj + λ, . . . , xn),

on the part bc : (x1, . . . , xi + λ, . . . , xj + h, . . . , xn),

on the part cd : (x1, . . . , xi + h, . . . , xj + h− λ, . . . , xn),

on the part da : (x1, . . . , xi + h− λ, . . . , xj, . . . , xn),
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where λ ∈ [0, h]. By (4.1.41), ∆h is written:

∆h(x) = gsr(x)

[
−
∫ h

0

Γrjm(x1, . . . , xi, . . . , xj + λ, . . . , xn) Ξm
x (λ) dλ (4.1.43)

−
∫ h

0

Γrjm(x1, . . . , xi + λ, . . . , xj + h, . . . , xn) Ξm
x (h+ λ) dλ

+

∫ h

0

Γrjm(x1, . . . , xi + h, . . . , xj + λ, . . . , xn) Ξm
x (3h− λ) dλ

−
∫ h

0

Γrjm(x1, . . . , xi + λ, . . . , xj, . . . , xn) Ξm
x (4h− λ) dλ

]
.

Now we define Rh for almost all x ∈ Ω0 as follows:

Rh(x) =

∫ h

0

(
Γjl,s(x

1, . . . , xi + h, . . . , xj + λ, . . . , xn) (4.1.44)

−Γjl,s(x
1, . . . , xi, . . . , xj + λ, . . . , xn)

)
dλ

−
∫ h

0

(
Γjl,s(x

1, . . . , xi + λ, . . . , xj + h, . . . , xn)

−Γjl,s(x
1, . . . , xi + λ, . . . , xj, . . . , xn)

)
dλ.

From the definition of Ξmx and the fact that the metric is positive definite it follows
that

|Ξm
x | ≤

|Ξx|√
ν

=
|Ξl|√
ν

=

√
gll
ν
,

ν > 0 costant. From the formula for parallel transport we see that for almost all
x ∈ Ω0

|Ξm
x (3h− λ)− Ξm

l | ≤
(gll
ν

)1/2
n∑

r,s=1

∫ λ

0

|Γmrs(x1, . . . , xi + h, . . . , xj + t, . . . , xn)| dt.

From this inequality, the generalized Minkowski inequality and (4.1.34) we obtain

‖Ξm
x (3h− λ)− Ξm

l (x)‖L2q(Ω0) ≤ C(q) · λ,

From the generalized Minkowski inequality, the previous inequality, a special case of
Hölder’s inequality (‖f · g‖q ≤ ‖f‖2q · ‖g‖2q with q ≥ 1) and (4.1.34) we obtain∥∥∥∥grs(x)

(∫ h

0

Γrjm(x1, . . . , xi + h, . . . , xj, . . . , xn)Ξm
x (3h− λ) dλ (4.1.45)

−
∫ h

0

Γrjm(x1, . . . , xi + h, . . . , xj, . . . , xn) dλ

)∥∥∥∥
Lq(Ω0)

≤ C(q)h2.
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We observe that because gij is absolutely continuous (gij ∈ W 1,q(Ω0)) and Ω0 is
convex, we have for almost all x ∈ Ω0

grs(x
′)− grs(x) = h

∫ 1

0

∂grs
∂xi

(tx′ + (1− t)x) dt+ λ

∫ 1

0

∂grs
∂xj

(tx′ + (1− t)x) dt,

with x′ = (x1, . . . , xi + h, . . . , xj + λ, . . . , xn). From this equality, the generalized
Minkowski inequality, (4.1.34) and (4.1.42) we obtain

‖grs(x′)− grs(x)‖L2q(Ω0) ≤ C(q) · h2,

From the generalized Minkowsi inequality, the special case of Hölder’s inequality
metioned above, the last inequality and (4.1.34) we obtain∥∥(Γjl,s(x′)− grs(x)Γrjl(x

′)
)
dλ
∥∥
Lq(Ω0)

≤ C(q) · h2, (4.1.46)

From the triangle inequality, (4.1.45) and (4.1.46) we get∥∥∥∥∫ h

0

(
Γjl,s(x

′)− gsr(x)Γrjm(x′)Ξm
x (3h− λ)

)
dλ

∥∥∥∥
Lq(Ω0)

≤ C(q) · h2.

Estimating the remaining differences of integrals of Rh and ∆h in exactly the same
way, we obtain

‖∆h −Rh‖Lq(Ω0) ≤ C̃(q) · h2, q ≥ 1, (4.1.47)

with C̃(q) is a constant depending on q and Ω.
We consider the averaged metric gεij in Ω0. From the usual properties of averages

and expressions for the Christoffel symbols it follows that

Γεjl,s =

∫
Rn
ω

(
x− u
ε

)
Γjl,s(u) du, (4.1.48)

where ω is the averaging kernel. We now prove that if we calculate Rε
h for the metric

gεij by (4.1.44), then

Rε
h(x) =

1

εn

∫
Rn
ω

(
x− u
ε

)
Rh(u) du, (4.1.49)

where Rh is defined to be zero outside Ω0. Consider the first integral of Rh:

I(u) =

∫ h

0

Γjl,s(u
1, . . . , ui + h, . . . , uj + λ, . . . , un) dλ.

If we average I(u), we obtain by Fubini’s theorem

Iε(x) =
1

εn

∫ h

0

∫
Rn
ω

(
x− u
ε

)
Γjl,s(u

1, . . . , ui + h, . . . , uj + λ, . . . , un) du.
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If we make the change of variables

x− u = v and u = (x1 − v1, . . . , xi + h− vi, . . . , xj + λ− vj, . . . , xn − vn),

we have

Iε(x) =
1

εn

∫ h

0

∫
Ω0

ω

(
x′ − u
ε

)
Γjl,s(u) du.

From (4.1.48) and the last equality we have the first term proving (4.1.49), and the
other terms are proven in the same way. By properties of Sobolev average (see [Nik77])
we have

‖Rε
h‖Lq(Ω0) ≤ ‖Rh‖Lq(Ω0) , q ≥ 1. (4.1.50)

We observe that from Theorem 3.14 applied on the triangles 4(a, b, c) and 4(a, c, d)
and (4.1.41) it follows that for almost all h ∈ (0, h0]

|∆h,ijl,s(x)| ≤ C ′ · h2, x ∈ Ω0, i, j, l, s ∈ {1, . . . , n}, (4.1.51)

where C ′ is a constant. From (4.1.47), (4.1.50) and (4.1.51) we obtain∥∥∥∥Rε
h

h2

∥∥∥∥ ≤ C ′′(q)

for almost all h ∈ (0, h0], where C ′′(q) is a constant depending on q and Ω. Proceeding
to the limit with respect to h in the last inequality, by Fatou’s lemma and the
definition of Rε

h we obtain (4.1.40). Q. E. D.

Lemma 4.24. The generalized function (Rij , η), η ∈ W 1,2
0 (Ω0), can be represented

in the form (4.1.38) and Rij(x) ∈ Lq(Ω0) for q ≥ 1 and i, j ∈ {1, . . . , n}.

Proof. We consider the expression for the Ricci curvature of the average metric:

Rε
ij =

1

2
gε,pl

(
Dijg

ε
pl −Dpjg

ε
li +Dplg

ε
ij −Dilg

ε
pj

)
+ gε,plgrs

(
Γε,rpl Γε,sij − Γε,ril Γε,spj

)
(4.1.52)

Integrating by parts, we obtain

−
∫

Ω0

gε,plDjg
ε
plDiη dx =

∫
Ω0

gε,plDijg
ε
plη dx+

∫
Ω0

Dig
ε,plDjg

ε
plη dx.

We denote this expression by (Sijpl) and the numbering is with respect to the first
term of the right-hand side. We add the equalities (Sijpl), (Spjli) (Splij) and (Silpj),
multiplying both sides of the equality by -1 if there is a minus sign in front of the
corresponding term in (4.1.52). We obtain

− (Rε
ij, η) =

∫
Ω0

Rε
ij(x)η(x) dx+

∫
Ω0

f εij(x)η(x) dx, (4.1.53)

where the f εij are expressed in terms of the metric gεrs and its first derivatives, and
(Rε

ij , η) the generalized function given by (4.1.36). By the previous lemma, all Rε
ij are
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bounded in Lq(Ω0), q ≥ 1, by a constant depending only on q and Ω. Hence Rε
ij(x) is

also bounded. Proceeding to the limit in (4.1.53) with respect to some subsequence
{εm} that tends to zero, we obtain the assertion of the lemma. Q. E. D.

Theorem 4.25. LetM be a space with bounded curvature. Then in a neighborhood
of each point p ∈ M we can introduce a harmonic coordinate system. The components
gij of the metric tensor in any harmonic coordinate system in M are continuous

functions of class W 2,q(Ω) for any q > 1, where Ω ⊂ Rn is a domain in which
harmonic coordinates are defined. Harmonic systems of coordinates on M form an
atlas of class C3,α for any 0 < α < 1.

Proof. By Lemma 4.24, the components gij of the metic tensor in harmonic
coordinates satisfy (4.1.39), where Rij ∈ Lq(Ω0) for every q ≥ 1. By [LU68], Chapter
3, Theorem 15.1, gij ∈W 2,q(Ω0) ∩ C1,α(Ω0), α = 1− n/q and q > n is an arbitrary
number, i, j ∈ {1, . . . , n}. The proof is complete using Theorem 1 of [SS76]. Q. E. D.

Remark 16. From the embedding theorems of Sobolev it follows that in harmonic
coordinates gij ∈ C1,α(Ω) for any 0 < α < 1.

Remark 17. From Theorem 4.25 it follows that in harmonic coordinates gij has
an ordinary second differential almost everywhere in Ω (see [VGR79], Chapter 1,
Theorem 3.2).

2. Curvature

In this section we are going to calculate the sectional curvature of a space with
bounded curvature. To do this we need to give a totally analogous definition of a
space with bounded curvature.

Given a triangle T = 4(p, q, r) in a metric space X, we define the excess of T as
δ(T ) := α+ β + γ − π, where α, β and γ are the upper angles at the vertices p, q and
r, respectively.

We define the upper mean curvature of the triangle:

k̄(T ) :=


δ(T )
σ(T )

for σ(T ) 6= 0,

+∞ σ(T ) = 0 and δ(T ) ≥ 0,
−∞ σ(T ) = 0 and δ(T ) < 0,

where σ(T ) denotes the area of a comparison triangle on the plane. Analogously, the
lower mean curvature of the triangle:

¯
k(T ) :=


δ(T )
σ(T )

for σ(T ) 6= 0,

+∞ σ(T ) = 0 and δ(T ) > 0,
−∞ σ(T ) = 0 and δ(T ) ≤ 0.



96 4. SPACES WITH BOUNDED CURVATURE: CONNECTION AND CURVATURE

The upper curvature at the point p ∈ X is defined as:

k̄X(p) := lim sup
T→p

δ(T )

σ(T )
.

And analogously the lower curvature at p is defined as:

¯
kX(p) := lim inf

T→p

δ(T )

σ(T )
.

Both limits are taken on triangles contracting arbitrarily to the pont p. Finally the
upper limit of curvature of X is

k̄(X) = sup
p∈X
{k̄X(p)},

analogously, the lower limit of curvature of X is

¯
k(X) = inf

p∈X
{
¯
kX(p)}

Remark 18. For k̄(X) and
¯
k(X) infinite values are admitted.

Remark 19. For a Riemannian manifold (M, g), we have that k̄(M) coincides
with sup{secg(M)} and

¯
k(M) with inf{secg(M)} considered over all p ∈ M and all

two-dimensional sections σ ⊂ TpM.

Once we have these definitions, equivalently a space with bounded curvature is
a locally compact length space M in which the following axioms are satisfied:

• For every point p ∈ M there exists ρp > 0 such that in the open ball B(p, ρp)
the condition of extendability of segments holds: every geodesic segment
[x, y] with endpoints x and y in B(p, ρp) can be extended to a segment [x′, y′]
in M for which x and y are internal points.
• Every p ∈ M is contained in a neighborhood U such that for every point
p ∈ U :

¯
kM(p) > −∞ and k̄M(p) < +∞.

Having this new definition we need a special way of triangle convergence to
calculate the sectional curvature. We say that the sequence {Tm = 4(p, qm, rm)}
of triangles of M contracts to the point p with respect to the pair {u, v}, where
u, v ∈ TpM are non-collinear unit vectors, if unit vectors um, vm ∈ TpM tangent to
segments [p, qm] and [p, rm] converge to u and v, respectively, and qm → p and rm → p
as m→∞. We denote this convergence by

Tm = 4(p, qm, rm)
u,v−→ p

We shall denote by O ⊂M the set of points of two-fold differentiability of the
metric tensor.
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Theorem 4.26. Let (M, d) be a space with bounded curvature. Then there exists
a set O1 (O ⊂ O1 ⊂ M) of zero n-dimensional Hausdorff measure such that the
following condition holds at each point p ∈MrO1:

• for arbitrary pairs of noncollinear unit vectors u, v ∈ TpM one can find a
sequence of triangles {Tm = 4(p, qm, rm)} which

Tm
u,v−→ p

such that the following limit exists:

lim
m→∞

δ(Tm)

σ(Tm)

and it is equal to the sectional curvature of M calculated formally at the
point p with respect to the plane section σ ⊂ TpM generated by {u, v}.

The previous theorem gives us a way to compute the curvature in a space with
bounded curvature and tell us how “metric” curvature coincides with the sectional
curvature. The proof of the last theorem can be found in [Nik91].





Part 2

Aproximation Theorems





CHAPTER 5

Currents

In this chapter we will introduce some tools in the theory of currents that are
used later in the proof of Nikolaev’s Approximation Theorem. Our main references
are [de 84, Fed96, Sim83, Mor16].

1. Differential Forms

The results on differential forms in this section are standard and may be found in
[de 84, Lee13]

Let U ⊂ Rn and m ≥ 0. The space of smooth differential m-forms in U is
denoted by

Em(U) = Γ(ΛmT ∗U),

the sections of the bundle of alternating covariant m-tensors on U .
The support of ω ∈ Em(U) is

spt(ω) = {x ∈ U : ω(x) 6= 0} ∩ U
and we say that ω is compactly supported if its support is compact. The space of
compactly supported smooth differential m-forms in U is denoted by

Dm(U) ⊂ Em(U).

Notice that D0(U) = C∞c (U) are the space of compactly supported smooth
functions in U .

If {e1, . . . , en} is the standard basis of Rn and { dx1, . . . , dxn} is its dual basis,
every form ω ∈ Dm(U) can be uniquely written as

ω =
∑
|I|=m

ωI dx
I ,

where I = (i1, . . . , im) is a multi-index such that 1 ≤ i1 < . . . < im ≤ n, |I| := m,
dxI := dxi1 ∧ . . . ∧ dxim , and ωI are C∞c (U) functions, functions in C∞(U) with
compact support.

The exterior derivative of ω ∈ Em(U) is the form dω ∈ Em+1(U) defined by

dω :=
∑
|I|=m

n∑
i=1

∂ωI
∂xIi

dxi ∧ dxI .

101
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We have the following properties.

Proposition 5.1. If ω ∈ Em(U) and ν ∈ Ek(U), then:

(1) d( dω) = 0 and
(2) d(ω ∧ ν) = ( dω) ∧ ν + (−1)mω ∧ ( dν).

Let U ⊂ Rn and V ∈ Rd be open sets and let ϕ : U → V be a smooth map. The
pullback of ω ∈ Em(V ) under ϕ is the differential form ϕ∗ω ∈ Em(U) defined by

(ϕ∗ω)(x)(v1, . . . , vm) := ω(ϕ(x))( dϕx(v1), . . . , dϕx(vm)).

We recall the following properties of the pullback of a form.

Proposition 5.2. If ω ∈ Em(V ) and ν ∈ Ek(V ), then:

(1) ϕ∗(ω ∧ ν) = (ϕ∗ω) ∧ (ϕ∗ν),
(2) d(ϕ∗ω) = ϕ∗( dω).

2. Currents

Let U ⊂ Rn be an open set and m ≥ 0. An m-current on U is a continuous linear
functional on Dm(U), which is a topological vector space. The space of m-currents
on U is denoted by Dm(U).

The topology on Dm is given as follows: we say that

ωk =
∑
|I|=m

ωk,I dx
I

converges to

ω =
∑
|I|=m

ωI dx
I

if there exists a compact set K ⊂ U such that spt(ωk,I) ⊂ K for every k, i1, . . . , im,
spt(ωI) ⊂ K, and

lim
k→∞

Dβωk,I = DβωI ,

using uniform convergence of functions and with β also a multi-index. We denote
this convergence by ωk → ω.

Examples. Some examples of currents:

(1) If x0 ∈ Rn, then the functional

[[x0]](f) := f(x0)

defines a 0-current on Rn.
(2) If we have an interval [a, b], then we define a 1-current on R by setting

[[a, b]](f dx) :=

∫ b

a

f(x) dx.
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(3) If ψ ∈ Dn−m(U), we get a m-current by letting

ψ(ω) :=

∫
U

ψ ∧ ω.

We say that T is a m-current of class Cr with 0 ≤ r ≤ ∞ on the open set U if
there is a (n−m)-form ψ of class Cr on U such that

T (φ) =

∫
U

ψ ∧ φ

for every φ ∈ Dm(U).
The support of T ∈ Dm(U) is defined by

spt(T ) = U r

(⋃
i

Vi

)
,

where the sets Vi are open sets such that T (ω) = 0 for every ω ∈ Dm(U) with
spt(ω) ⊂ Vi.

The boundary of T ∈ Dm(U) is the (m− 1)-current defined by

(∂T )(ω) = T ( dω)

if m ≥ 1 and ∂T = 0 if m = 0.
Now, let us consider ϕ : U → V a smooth map between open sets of Rn and Rl,

respectively, and let T ∈ Dm(U). Assume that ϕ is proper on the support of T , that
is, (

ϕ|spt(T )

)−1

(K) = ϕ−1(K) ∩ spt(T )

is compact whenever K ⊂ V is compact. We define the pushforward ϕ∗(T ) of T by
ϕ by

ϕ∗(T )(ω) := T (ρ · ϕ∗(ω))

for ω ∈ Dm(V ), where ρ ∈ C∞c (U) is any function which equals 1 on a neighborhood
of the compact set (

ϕ|spt(T )

)−1

(spt(ω)) = spt(T ) ∩ ϕ−1(spt(ω)).

We observe that this definition does not depend on the funtion ρ and also that
∂(ϕ∗T ) = ϕ∗(∂T ).

We also define the mass of T ∈ Dm(U) by

M(T ) = sup
|ω|≤1, ω∈Dm(U)

T (ω),

where
|ω| = sup

x∈U

√
ω(x) · ω(x),
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working with the inner product naturally induced from Rn. More generally, for any
open set W ⊂ U , we define

MW (T ) = sup
|ω|≤1, ω∈Dm(U), spt(ω)⊂W

T (ω).

In [Sim83, Lemma 2.29, Section 2, Chapter 6] we see the following two properties
using the previous notation

sptϕ∗T ⊂ ϕ(spt(T ))

and

MW (ϕ∗T ) ≤ ( sup
ϕ−1(W )

|Dϕ|)mMϕ−1(W )(T ) (5.2.1)

for every W ⊂⊂ V , i.e. W is compactly embedded in V , which means that W ⊂
W̄ ⊂ V and W̄ is compact.

3. Regularization

For a point y in Rn we consider the translation τy : Rn → Rn given by τy(x) = x+y
and the homotopy τ : [0, 1]× Rn → Rn given by τ(t, x) := τty(x) = x+ ty.

Now we choose the function ψ : R→ R given by

ψ(t) =

{
1
λn

exp( t2

t2−1
), 0 ≤ |t| < 1,

0, 1 ≤ |t|,

where the constant λn is chosen so that∫
R
ψ(t) dt =

∫ 1

−1

ψ(t) dt = 1.

For ε > 0, we take fε : Rn → R given by

fε(x) =
1

εn
ψ

(
‖x‖
ε

)
.

This is a radial nonnegative C∞ function whose support is contained in B(0, ε), the
ball with center 0 and radius ε, and∫

Rn
fε(x) dx = 1.
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3.1. Representation and convolution of currents. Let T be a current in Dm+q(U)
and ψ be a form in Dq(U). We define the wedge product of T and ψ as the q-current
given by

(T ∧ ψ)(ω) = T (ψ ∧ ω) for ω ∈ Dq(U).

Proposition 5.3. If T ∈ Dn−m(U), then

T =
∑
|I|=m

TI ∧ dxI

with TI = Ti1,...,im ∈ Dn(U).

Proof. We simply define these n-currents as follows:

Ti1,...,im(a dxi1∧. . .∧ dxim∧ dxj1∧. . .∧ dxjn−m) = δ1,...,n
i1,...,im,j1,...,jn−m

T (a dxj1∧. . .∧ dxjn−m),

where

δ1,...,n
i1,...,im,j1,...,jn−m

=

 1 if there exists a permutation between
{i1, . . . , im, j1, . . . , jn−m} and {1, . . . , n},

0 otherwise.

Q. E. D.

Remark 20. We have a bijection between 0-currents and n-currents, given by

D0(U) → Dn(U),
T 7→ T ′

where T ′(f dx1∧ . . .∧ dxn) = T (f). This correspondence and the previous proposition
allow us to consider currents as forms whose coefficients are distributions (0-currents).
Using this we write an m-current as

T =
∑
|I|=m

TI dx
I (5.3.1)

with TI ∈ D0(U).

Now, if T ∈ D0(Rn) and ϕ ∈ C∞c (Rn), the formula

(T ∗ ϕ)(x) := T (ϕ(x− ·))

defines a function of class C∞, called the convolution of T and ϕ. This operation has
the following properties (see Chapter 7 of [Sal16]):

(i) The convolution conmutes with derivatives, i.e.,

∂

∂xj
(T ∗ ϕ) =

(
∂T

∂xj

)
∗ ϕ = T ∗

(
∂ϕ

∂xj

)
,
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where the i-th partial derivative of the distribution T is defined by

∂T

∂xi
(ϕ) := −T

(
∂ϕ

∂xi

)
.

(ii) The support satisfies

spt(T ∗ ϕ) ⊂ spt(T ) + spt(ϕ).

(iii) Using the function fε, then T ∗fε → T and spt(T ∗fε)→ spt(T ) in the Hausdorff
sense as ε→ 0.

Finally, if T ∈ Dn−m(Rn) is written as in (5.3.1) and ϕ ∈ C∞c (Rn), the convolution
of T and ϕ is given by

T ∗ ϕ =
∑
|I|=m

(TI ∗ ϕ) dxI .

3.2. Smoothing operator. Putting everything together we can define an operator
Z : Dm(Rn)→ Dm(Rn) as follows:

ZT (ω) :=

∫
Rn
fε(y) · (τy)∗(T )(ω) dy.

Proposition 5.4. The linear operator Z has the following properties:

a) If T is an m-dimensional current in Rn, then ZT is an m-dimensional current.
b) ZT is C∞.
c) The support of ZT is contained in the ε-neighborhood of the support of T .
d) If ε tends to zero, ZT converges weakly to T , i.e., ZT (ω) → T (ω) for every

ω ∈ Dm(Rn).

Proof. The first thing we have to do is to see that the operator is well-defined,
that is, to prove a). We observe first that clearly ZT is acting on m-forms by definition
and, if ω is a m-form given by

ω =
∑

i1<...<im

ωi1,...,ip dx
i1 ∧ . . . ∧ dxim ,

then

τ ∗y (ω) =
∑

i1<...<im

ωi1,...,im ◦ τy dxi1 ∧ . . . ∧ dxim . (5.3.2)

This means that ZT is continuous from equality (5.3.2) and the definition.
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To prove b) we note that the operator can be expressed in a different way, namely,

(T ∗ fε)(ω) =
∑

|I|=n−m

(TI ∗ fε) dxI(ω)

=
∑

|I|=n−m

(TI ∗ fε) dxI
∑
|J |=m

ωJ dx
J


=

∫
Rn

∑
|I|=n−m

∑
|J |=m

(TI ∗ fε)(x) · ωJ(x)
(
dxI ∧ dxJ

)
=

∑
|I|=n−m

∑
|J |=m

∫
Rn
TI(fε(x− y)) · ωJ(x)

(
dxI ∧ dxJ

)
=

∑
|I|=n−m

∑
|J |=m

∫
Rn
TI(ωJ(x) · fε(x− y))

(
dxI ∧ dxJ

)
=

∑
|I|=n−m

∑
|J |=m

∫
Rn
TI(ωJ(x+ y) · fε(x))

(
dxI ∧ dxJ

)
=

∑
|I|=n−m

∑
|J |=m

∫
Rn
fε(x) · TI(ωJ(x+ y))

(
dxI ∧ dxJ

)
=

∫
Rn

∑
|I|=n−m

∑
|J |=m

fε(x) · TI(ωJ(τy(x)))
(
dxI ∧ dxJ

)

=

∫
Rn
fε(x)

∑
|I|=n−m

TI

∑
|J |=m

ωJ(τy(x))

( dxI ∧ dxJ
)

=

∫
Rn
fε(x)

∑
|I|=n−m

TI
(
τ ∗y (ω)

) (
dxI ∧ dxJ

)
=

∫
Rn
fε(x) · ((τy)∗T ) (ω) dx

= ZT (ω).

This equation allows us to use all the properties of the convolution of a distribution
with a function. In particular, since the convolution is a C∞ function, then ZT is a
current of class C∞.

Finally, c) and d) follow from the previous equation and properties ii) and iii) of
the convolution. Q. E. D.
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3.3. De Rham’s Approximation Theorem. The next step is to define a smoothing
operator and to prove the analogous result to Proposition 5.4 in the case of manifolds.
We need to transform the operator defined on Rn and this is going to be done with
the aid of a homeomorphism h : Rn → Bn, where Bn denotes the unit open ball with
center in the origin in Rn.

Let g : (0, 1)→ R be a function given by

g(r) =


r r ∈ (0, 1/3] ,
g̃(r) r ∈ [1/3, 2/3] ,

exp
(

1
(1−r)2

)
r ∈ [2/3, 1) ,

where g̃ : [1/3, 2/3]→ [1/3, exp(9)] is such that g is C∞ and g′(r) > 0. This function
g is bijective and we denote by g−1 : R→ (0, 1) its inverse. Thanks to it, we define
h : Rn → Bn as follows

h(x) =

{
g−1(‖x‖)
‖x‖ x x 6= 0,

limx→ 0̄g
−1(‖x‖)
‖x‖ x x = 0,

which is a C∞ diffeomorphism. Then we have the diffeomorphism sy : Rn → Rn of
class C∞ given by

sy(x) =

{
h ◦ τy ◦ h−1(x) x ∈ Bn,

x x ∈ Rn r Bn. (5.3.3)

This function allow us to define an operator Z̃ : Dm(Rn)→ Dm(Rn) as follows

Z̃T (ω) :=

∫
Rn
fε(y) · (sy)∗(T )(ω) dy.

Proposition 5.5. The linear operator Z̃ has the following properties:

a) If T is an m-dimensional current in Rn, then Z̃T is an m-dimensional current.

b) The support of Z̃T is contained in the set

E(T, ε) =
⋃

y∈Rn, |y|<ε

(sy)∗T.

c) If ε tends to zero, Z̃T converges weakly to T .

d) Z̃T is C∞ on Bn and Z̃T = T in Rn r B̄n. If T is Cr in a neighborhood of a

boundary point of Bn, then Z̃T is also Cr on a neighborhood of this point.

Proof. First, we observe that a) follows from the fact that sy is a function of

class C∞, T is a current and how the operator Z̃ is defined.
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Now, let be ω ∈ Dm(Rn) and let

F =
⋃

y∈Rn, |y|<ε

(sy)
∗ω

Using the definition of the operator Z̃, we notice that Z̃T (ω) = 0 if the support of T
does not meet F , which is the same as saying that the support of ω does not meet
E(T, ε). This means that the supprts of Z̃T is contained in E(T, ε), proving b).

We observe that if {ωk} ⊂ Dm(Rn) such that ωk → ω, then

s∗y ωk − ωk
|y|

→
s∗y ω − ω
|y|

.

Thus, ∫
Rn fε(y) · (s∗y ωk) dy − ωk

ε
→
∫
Rn fε(y) · (s∗y ω) dy − ω

ε
,

which proves c).

The proof that Z̃T is C∞ in Bn is totally analogous to the way in which the
smoothing process of convolution is proven using that sy is C∞ and over Bn operatess
as a translation like τy.

Clearly, from the definition of Z̃, we have that Z̃T = T in Rn r Bn.
If T is Cr on a neighborhood of a boundary point x0 of Bn, we can decompose T

using bump functions into the sum T = T1 + T2 of currents where T1 is Cr on Rn and
where T2 vanishes in a neighborhood of x0. Thus, Z̃T1 is Cr in Rn and Z̃T2 vanishes
in a neighborhood of x0, so that Z̃T is Cr in a neighborhood f x0. This proves d).

Q. E. D.

Remark 21. We can express property d) by saying that Z̃ is regularizing over
Bn and is nowhere deregularizing.

Remark 22. Thanks to the continuity of the currents and the linearity of the
integration operator, the previous operators can be expressed as follows

ZT (ω) = T (Z′ω) and Z̃T (ω) = T (Z̃′ω)

where

Z′ω =

∫
Rn
fε(y) · (τy)∗(ω) dy and Z̃′ω =

∫
Rn
fε(y) · (sy)∗(ω) dy.

Theorem 5.6 (De Rham’s Approximation Theorem, Theorem 12 of [de 84]). On
a manifold M , we can construct a linear operator Z, depending on positive parameters
ε1, ε2, . . . which are finite or infinite in number according as M is compact or not,
which have the following properties:

(a) If T is an m dimesional current in M , then ZT is an m dimensional current.
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(b) The support of ZT is contained in any given neighborhood of the support of T
provided that the parameters εi are sufficiently small.

(c) ZT is C∞.
(d) If each εi tends to zero, ZT converges weakly to T .

Proof. Since M is paracompact, we can find a locally finite covering {Ui} of M
such that Ui is diffeomorphic to the ball Bn via a diffeomorphism hi which is C∞ and
which can be extended to neighborhoods of Ūi and B̄n. Using these diffeomorphisms,
the operator Z̃ defined on Rn can be transported to M . Let f be a non-negative C∞

function which has its support in the neighborhood Vi of Ūi given by the extension of
hi and which is equal to 1 on another smaller neighborhood of Ūi. If T is a current in
M , then T ′ = fT is a current which has its support contained in Vi and (hi)∗T

′ is a
current which has its support contained in hi(Vi). The support of T ′′ = T − T ′ does

not intersect Ūi. By replacing the parameter ε occuring in Z̃ and putting

ZiT = (h−1
i )∗Z̃(hi)∗T

′ + T ′′,

we define operators Zi which possess properties in V corresponding exactly to those
of the operator Z̃ in Rn. Here, Ui plays the role of Bn and εi replaces ε.

Put
Z(l) = Zl ◦ . . . ◦ Z2 ◦ Z1.

In the neighborhood of each compact set K, the operators Z(h) reduce to the
identity whenever h is sufficiently large because Ūh does not meet K thanks to
paracompacness. It follows that

Z = lim
h→∞
Z(h)

is well defined, and there exists an integer l0 depending only on the compact set K
such that

ZT (ω) = Z(l)T (ω)

for l ≥ l0 and for all currents T and all forms ω with support in K. This implies that
ZT is a well defined current, proving a).

Property b) follows form the corresponding properties of each Zi. If the support
of T is contained in an open set U , we can successively determine bounds for each of
the parameters εi so that, as long as these bounds are not exceeded, the support of
Z(l)T remains in U .

The fact that ZT is C∞ follows since Z(l)T is C∞ in ∪ij=1Uj for l ≥ i. By
Proposition 5.5, Zi regularizes in Ui and is not deregularizing anywhere.

To show d), we note that we have

ZT (ω)− T (ω) =
∞∑
l=1

(Z(l) −Z(l−1))T (ω).
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If ωk → ω, there exists an integer l0 which depends only on the set L, where the
convergence is given such that

ZT (ω)− T (ω) =

l0∑
l=1

(Z(l) −Z(l−1))T (ω).

Thus, it is sufficient to prove that, as εl → 0,

(Z(l) −Z(l−1))T (ωk)→ 0

in L and uniformly with respect to ei (i < l) which we also suppose bounded. Now,
we have

(Z(l) −Z(l−1))T (ω) = (ZhT − T )(Z(h−1)′ω),

where
Z(l)′(ω) = Z ′l ◦ Z ′l−1 ◦ . . . ◦ Z ′1(ω)

and Z ′i is given in same way as the previous operators. Here we used Remark 22.
Since

Z ′l ◦ Z ′l−1 ◦ . . . ◦ Z ′1(ωk)→ Z ′l ◦ Z ′l−1 ◦ . . . ◦ Z ′1(ω),

property d) follows from property c) of Proposition 5.5. Q. E. D.

3.4. Nikolaev’s Approximation Theorem. Before presenting the approximation
theorem, we need to discuss how the spaces will converge.

If X and Y are two metric spaces, the dilatation of a Lipschitz map f : X → Y
is defined by

dil(f) = sup
x,x′∈X

dY (f(x), f(x′))

dX(x, x′)
,

where dX and dY are the metrics of X and Y , respectively. A homeomorphism
f : X → Y is called bi-Lipschitz if both f and f−1 are Lipschitz maps.

The Lipschitz distance dL between two metric spaces X and Y is defined by

dL(X, Y ) = inf
f :X→Y

log
(
max

{
dil(f), dil(f−1)

})
,

where the infimum is taken over all bi-Lipschitz homeomorphisms f : X → Y .
A sequence {Xl}∞l=1 of metric spaces converges in the Lipschitz sense to a metric

space X if dL(Xl, X)→ 0 as l→∞.

Remark 23. Let (M, d(g0)) be a space with bounded curvature, where d is
the metric, g0 is the Riemannian metric, and T is the C3,α-smooth structure on M
containing the harmonic atlas h0 given by Theorem 4.25. By virtue of Whitney’s
theorem [Whi36] or [Hir76, Theorem 2.9] in T one can choose a C∞-smooth atlas h,
i.e, any chart of h is a chart of T.

Now we can state the approximation result due to I. Nikolaev in [Nik91].
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Theorem 5.7 (Nikolaev’s Aproximation Theorem). Let (M, d(g0)) be a space
with bounded curvature. Then, on the differentiable manifold M with atlas h, one
can define a sequence of infinitely differentiable Riemannian metrics {gm}∞m=1 having
the following properties:

(1) The metric spaces (M, d(gm)) converge in the Lipschitz sense to the metric
space (M, d(g0)).

(2) The following estimates hold for the limits of curvature:

lim sup
m→∞

k̄m(M) ≤ k̄0(M) and lim inf
m→∞ ¯

km(M) ≥
¯
k0(M),

where k̄l(M) and
¯
kl(M) denote the upper and lower limits of sectional

curvature of the spaces (M, gl), l = 0, 1, · · · .

Corolary 5.8. If (M, d(g0)) is a complete metric space, then there exists m0 ∈ N
such that (M, d(gm)) is complete for m ≥ m0.

Remark 24. In the proof of the previous theorem the curvature is computed
using Theorem 4.26.

Remark 25. Although we do not include the proof of Theorem 5.7, the construction
of the metrics gm is analogous to the construction of the current ZT in Theorem 5.6.
For the proof of Theorem 6.11 we provide a construction of such a metric.
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CHAPTER 6

Equivariant Approximation Theorem

We present in this chapter the original work of this thesis. In the first section of
this chapter we recall some basic results from Lie group theory we will need such as
the Tubular Neighborhood Theorem and Haar measure. For further information on
group actions, see [AB15] or [Bre72].

After that, in section 2 we construct a special cover to define an equivariant
regularization operator on the space of currents of a riemmanian manifold with a Lie
group acting on it. With this operator we prove an equivariant version of de Rham’s
Approximation Theorem.

As in the case of currents we also define an equivariant regularization operator on
the space of riemannian metrics in a compact metric space with bounded curvature
with a Lie group acting on it. Using it we prove an equivariant version of Nikolaev’s
Approximation Theorem.

We point out that every metric isometry of a space of bounded curvature is a
Riemannian isometry (i.e., a diffeomorphism preserving the Riemannian metric) (see
[MS39, Theorem 2]) and that the isometry group of a compact space with bounded
curvature is a compact Lie group (see [MS39, FY94, GGG13, DW28]).

At the end of the chapter we get an equivariant sphere theorem.

1. Lie groups

In the following discussion, we consider a compact smooth Riemannian manifold
(M, g) and a compact Lie group G. A (left) action of G on M, or a (left) G-action
on M, is a smooth map α : G ×M→M satisfying:

(i) α(e, x) = x, for all x ∈M and e is the identity element of the group;
(ii) α(g1, α(g2, x)) = α(g1g2, x), for all g1, g2 ∈ G and x ∈M.

Whenever α is implicit, we denote the left action as G yM. The manifold M is
called a G-manifold, and it is common to denote α(g, x) by g · x or gx. We can define
a right action in an analogous way. Although we are only considering left actions, we
remark that all processes can be done in an analogous way for right actions. Given
an action of G on M and a point x ∈M, the subgroup

Gx := {g ∈ G : α(g, x) = x} ⊂ G
115
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is the isotropy group of x ∈M, and

G(x) := {α(g, x) : g ∈ G} ⊂M
is called the orbit of x ∈M.

If Gx = {e} for all x ∈M, the action is said to be free.
Given an action, g ∈ G and x ∈M, we can define two auxiliary maps:

αg : M → M
x 7→ α(g, x),

αx : G → M
g 7→ α(g, x).

Since α is smooth, the transformation αg : M → M is a diffeomorphism, and
hence αG := {αg : g ∈ G} can be identified with a subgroup of the diffeomorphism
group Diff(M). An orbit G(x) consists of all posible images αg(x) for g ∈ G and the
isotropy group Gx consist of all g ∈ G that fix x, i.e. αg(x) = x. An action on (M, g)
is said to be by isometries, if αg is an isometry of (M, g) for all g ∈ G. In this case,
the metric g is said to be G-invariant, and αG can be identified with a subgroup of
Isom(M, g).

Now we consider G-actions α1 : G ×M1 →M1 and α2 : G ×M2 →M2. A map
f : M1 →M2 is called G-equivariant if α2(g, f(x)) = f(α1(g, x)) for all x ∈ M1 and
g ∈ G.

If two orbits G(x) and G(y) have nontrivial intersection, then they coincide. This
means that orbits of a G-action onM form a partition ofM. Hence, we can consider
the set of equivalence classes

M/G := {G(x) : x ∈M} ,
called the orbit space of the G-action on M. The natural projection π : M→M/G
given by π(x) := G(x), is called projection map, and the topology on M/G is
determined by declaring that U ⊂M/G is open if its preimage π−1(U) ⊂M is open.
This implies that π is continuous and open.

An action α : G ×M→M is proper if the map

G ×M 3 (g, x) 7→ (α(g, x), x) ∈M×M
is proper.

Proposition 6.1 (Proposition 3.19 of [AB15]). All actions by compact Lie groups
are proper.

The next two results give us a description of the orbits and the orbit space.

Theorem 6.2 (Theorem 3.34 of [AB15]). Let α : M×G →M be a free proper
right action. Then the orbit space M/G admits a smooth structure such that G →
M→M/G is a principal G-bundle, where the bundle projection map ρ : M→M/G
is the projection map.
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Remark 26. The smooth structure on M/G is such that ρ is smooth, and a map
h : M/G → N is smooth if and only if h ◦ ρ is smooth. These properties uniquely
characterize the smooth structure of M/G.

Proposition 6.3 (Proposition 3.41 of [AB15]). Let α : G ×M →M be a left
action and define α̃x : G/Gx → M by α̃x ◦ ρ = αx for some point x ∈ M and
ρ : G → G/Gx is the quotient map, i.e we have that Diagram (6.1.1) conmutes. Then
α̃x is a G-equivariant injective immersion, with image G(x). In particular, G(x) is an
immersed submanifold of M whose tangent space at x ∈ M is TxG(x) = d(αx)e(TeG).
In addition, if the action is proper, then α̃x is an embedding and G(x) is an embedded
submanifold of M.

G
αx

""

ρ

��

G/Gx
α̃x

//M

(6.1.1)

With the basic definitions in hand, we now discuss two fundamental results in
the theory of G-manifolds. If α : G ×M→M is an action, a slice at x0 ∈M is an
embedded submanifold Sx0 containing x0 and satisfying the following properties:

(i) Tx0M = dαx0(TeG)⊕ Tx0Sx0 and TxM = dαx(TeG) + TxSx0 , for all x ∈ Sx0 ;
(ii) Sx0 is invariant under Gx0 , i.e., if x ∈ Sx0 and g ∈ Gx0 , then α(g, x) ∈ Sx0 ;
(iii) If x ∈ Sx0 and g ∈ G are such that α(g, x) ∈ Sx0 , then g ∈ Gx0 .

Theorem 6.4 (Slice Theorem, Theorem 3.49 of [AB15]). Let α : G ×M→M be
a proper action and x0 ∈M. Then there exists a slice Sx0 at x0.

Let α be a proper G-action on M. Given x0 ∈ M, let Sx0 be a slice at x0. We
define a tubular neighborhood of the orbit G(x0) as the image of Sx0 under the
G-action, that is,

Tub(G(x0)) := α(G, Sx0).

Theorem 6.5 (Tubular Neighborhood Theorem, Theorem 3.57 of [AB15]). Let
α be a proper action of G on M. For every x0 ∈ M, there exists a G-equivariant
diffeomorphism between Tub(G(x0)) and the total space of the associated bundle with
fiber Sx0,

Sx0 → G ×Gx0 Sx0 → G/Gx0 ,
to the principal Gx0-bundle Gx0 → G → G/Gx0.

We define a method to produce G-invariant functions. We begin by considering a
function f : G → R. For h ∈ G, we define the functions Rhf and Lhf by Rhf(g) =
f(gh) and Lhf(g) = f(h−1g).
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Theorem 6.6 (Theorem 3.1 of [Bre72]). Let G be a compact group. Then there
is a unique function I : C0(G,R) → R, called the Haar measure, defined for
continuous funtions f : G → R, such that

(a) I(f1 + f2) = I(f1) + I(f2).
(b) I(cf) = cI(f), where c ∈ R.
(c) If f(g) ≥ 0 for all g ∈ G, then I(f) ≥ 0.
(d) If f(g) = 1 for every g, then I(f) = 1.
(e) If f(g) ≥ 0 and is not identically zero for all g ∈ G, then I(f) > 0.
(f) I(Id) = 1.
(g) I(Rhf) = I(f) = I(Lhf) for all h ∈ G.
(h) I(f(g)) = I(f(g−1))

We use the notation ∫
G
f(g) dg

for I(f). We call it integral of the function f over the group G.
We have the next property.

Proposition 6.7 (Proposition 3.2 of [Bre72]). Let f : G × A→ R be continuous,
where A is any topological space and G is a compact group. Then the funcion
F : A→ R defined by

F (a) =

∫
G
f(g, a) dg

is continuous.

2. De Rham’s Equivariant Approximation Theorem

We say that an m-current T on M is G-invariant if (αg)∗T = T for all g ∈ G,
where G is a compact Lie group acting on M by diffeomorphisms.

Almost as a remark we consider the special case when the manifold is Rn itself.

Proposition 6.8. Let G be a compact Lie group acting on Rn and let T be a
m-current. The operators Z and Z̃ defined in Subsections 3.2 and 3.3 are G-invariant.
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Proof. This result is obtained observing that the following equations are satisfied
for both operators:

(αg)∗ZT (ω) = ZT (ρ(αg)∗ω) =

∫
Rn
fε(y) · (τy)∗(T )(ρ(αg)∗ω) dy,

=

∫
Rn
fε(y) · (τy)∗ (αg)∗(T )(ω) dy,

=

∫
Rn
fε(y) · (τy)∗(T )(ω) dy,

= ZT (ω),

where ρ is a C∞c function that is 1 in a neighborhood of the compact set(
αg|spt(ZT )

)−1

(spt(ω)).

Q. E. D.

Before we consider the case of a manifold, we have the following property about
invariant currents.

Proposition 6.9. Let G be a compact Lie group acting on a manifold M and let
T be a G-invariant m-current on M. Then

|(αg)∗ T (ω)| ≤ C |T (ω)|

for every ω ∈ Dm(M).

Proof. We take ω ∈ Dm(M). Then

|(αg)∗ T (ω)| = |T (ρ (αg)∗ ω)| ≤ |T (ρ (αg0)∗ ω)| ≤ C |T (ω)| .

The first inequality works because the action is continuous and G is compact for some
g0 ∈ G. Q. E. D.

Theorem 6.10 (Equivariant De Rham’s Approximation Theorem). Let G be a
compact Lie group acting on a manifold M and let T be an m-current on M. If T is
G-invariant, then we can construct an operator ZG such that ZGT has the following
properties:

(a) ZGT is an m-current of class C∞.
(b) ZGT is a G-invariant current.
(c) If ε tends to zero, ZGT converges weakly to T .

Proof. Let α be the action of G on M. The first thing we have to do is to build
a special cover since we are going to use the operator Z defined in Theorem 5.6 which
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actually depends on the cover. Thanks to Theorem 6.5, given a point p ∈ M and its
orbit G(p), the tubular neighborhood of this orbit can be seen as

Tub(G(p)) =
⋃
g∈G

α(g, V ) =
⋃
g∈G

gV

where V is a neighborhood of p and it is a unit regular coordinate ball, i.e., V is a
smooth coordinate domain whose image under a smooth coordinate map ϕ is Bn ⊂ Rn

such that for some r < 1 and Ū ⊂ V :

ϕ(U) = Br(0), ϕ(Ū) = B̄r(0) and ϕ(V ) = Bn.

We say that such tubular neighborhood⋃
g∈G

gV

is generated by V . Finally, we get our special tubular cover built by the previous
process: {⋃

g∈G

gVi

}
i∈N

.

Now we want to apply the operator Z on one of these sets gVi. We use the
corresponding coordinate chart ϕi : Vi → Rn and a nonnegative function hi of class
C∞ with support in Vi that is equal to 1 in a neighborhood of Ūi contained in Vi. If
T ∈ Dm(M), then we set T ′ = hiT and T ′′ = T −T ′. We note that T ′ is an m-current
that is equal to T in Ūi and its support is contained in Vi. Then

Z|gVi T (ω) :=
(
αg ◦ ϕ−1

i

)
∗ Z̃
(
ϕi ◦ (αg)−1)

∗ (αg)∗ hiT (ω) + (αg)∗ T
′′(ω)

=
(
αg ◦ ϕ−1

i

)
∗ Z̃
(
ϕi ◦ (αg)−1)

∗

(
hi ◦ (αg)−1) (αg)∗ T (ω) + (αg)∗ T

′′(ω)

=
(
αg ◦ ϕ−1

i

)
∗ Z̃
(
hi ◦ (αg)−1) (ϕi ◦ (αg)−1)−1 (

ϕi ◦ (αg)−1)
∗ (αg)∗ T (ω)

+ (αg)∗ T
′′(ω)

= (αg)∗
(
ϕ−1
i

)
∗ Z̃
(
hi ◦ ϕ−1

i

)
(ϕi)∗ T (ω) + (αg)∗ T

′′(ω)

= (αg)∗
(
ϕ−1
i

)
∗ Z̃ (ϕi)∗ hiT (ω) + (αg)∗ T

′′(ω)

= (αg)∗ Z|Vi T (ω), (6.2.1)

for every ω ∈ Dm(M) and thanks to the following equation

T = (αg)∗T = (αg)∗(T
′ + T ′′) = (αg)∗T

′ + (αg)∗T
′′

and noticing that (αg)∗T
′ is an m-current that is equal to T in gŪi and its support is

contained in gVi by construction.
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After all the calculations in (6.2.1) we can define an operator on the tube
⋃
g∈G gVi

using Theorem 6.6 as follows:

ZGi T (ω) =
1

|G|

∫
G

(αg)∗ Z|Vi T (ω) dg,

where |G| denotes the volume of G. Finally, in the same way as in the proof of de
Rham’s approximation theorem we can define the operator ZG : Dm(M)→ Dm(M):

ZGT (ω) = lim
l→∞
ZGl ◦ · · · Z

G
2 ◦ ZG1 T (ω).

Thanks to Proposition 6.7 the limit exists and it is invariant because of the way
we constructed it.

Since the Haar integral satisfies the usual properties of theory of integration, the
compactness of G and Proposition 6.7, we get that ZGT is a current of class C∞.

Finally, ZG weakly converges because it does on every step of the construction
and we use the properties of the integral and Proposition 6.9:

|ZGi T (ωk)| =

∣∣∣∣ 1

|G|

∫
G

(αg)∗ Z|Vi T (ωk) dg

∣∣∣∣ ≤ 1

|G|

∫
G

∣∣(αg)∗ Z|Vi T (ωk)
∣∣ dg

≤ C
∣∣Z|Vi T (ωk)

∣∣→ C |T (ω)| as k →∞.
Q. E. D.

3. Equivariant Approximation on Spaces with Bounded Curvature

We introduce some basic notation and definitions in preparation to prove the
equivariant version of Nikolaev’s Theorem. Our proof is based (or generalizes)
Nikolaev’s proof in [Nik91].

If U ⊂ Rn, we denote by M2,p(U) the space of Riemannian metrics

g(x) =
(
gij(x)

)
i,j=1,...,n

which are twice continuously differentiable almost everywhere on the domain U with
1 ≤ p ≤ ∞ for which the following norm is finite:

|g|M2,p(U) = max
i,j

{
|gij|W 2,p(U)

}
.

Let M be a differentiable manifold with fixed C∞-atlas h = {(Ui, ϕi)}i∈N. By

M2,p
h (M) we denote the set of continuous Riemannian metrics g on M for which the

following seminorms are finite:

|g|M2,p
h (M),i =

∣∣(ϕ−1
i

)∗
g
∣∣
M2,p(Vi)

, Vi = ϕi(Ui), i ∈ N.

One defines spaces Mr,α
h (M), r ∈ N, 0 < α < 1, with seminorms |g|Mr,α

h (M),i

analogously using Cr,α(U) instead of W 2,p(U).
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We denote by M∞
h (M) the set of smooth Riemannian metrics on M which are

infinitely differentiable with respect to the atlas h.
Let g ∈M2,p

h (M). Then at almost each point p ∈M and section σ ⊂ TpM we
can formally calculate the sectional curvature Kσ(p) with respect to the Riemannian
metric g, by using the Christoffel symbols and the fact that our metrc has second
derivatives almost everywhere. By

¯
Kg,µ, K̄g,µ, we denote the essential infimum and

essential supremum, respectively, of Kσ(p) for every point p ∈M and every section
σ ⊂ TpM.

Theorem 6.11 (Equivariant Nikolaev’s Aproximation Theorem). Let (M, d(g0))
be a compact space with bounded curvature and a compact Lie group G acting on it
by isometries. Then on the differentiable manifold M with atlas h one can define a
sequence of infinitely differentiable Riemannian metrics {gk}∞k=1 having the following
properties:

(1) The Lie group G acts on (M, d(gk)) by isometries.
(2) The metric spaces (M, d(gk)) converge in the Lipschitz sense to the metric

space (M, d(g0)).
(3) The following estimates hold for the limits of the curvature:

lim sup
k→∞

k̄k(M) ≤ k̄0(M) and lim inf
k→∞ ¯

kk(M) ≥
¯
k0(M),

where k̄r(M) and
¯
kr(M) denote the upper and lower limits of curvature of

the spaces (M, gr), r = 0, 1, . . .

Proof. We will use the same cover constructed in the proof of Theorem 6.10:{⋃
g∈G

gVi

}
i∈N

.

As before, we want to define the regularization operator of metrics H in gVi. To
do this, we use the corresponding coordinate chart ϕi : Vi → Rn and a nonnegative
function hi of class C∞ with support in Vi that is equal to 1 on a neighborhood of Ūi
contained in Vi. Then we decompose g0 into two smooth metric tensors g0 = g′i + g′′i ,
where g′i = hi g0 and g′′i = g0 − g′i. We let

He,i(g0) =
(
αe ◦ ϕ−1

i

)∗
H̃ε

(
ϕi ◦ (αe)−1)∗ (αe)∗ hi g0 + (αe)∗ g′′i ,

where

H̃ε(g) =

∫
Rn
fε(y) · (sy)∗(g) dy

for a Riemannian metric g on Rn and e ∈ G is the identity element. We note that

ge,i(x) := He,i(g0)|x = g0(x)
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for x ∈Mr Vi and it follows from the last two equations that gg,i is a Riemannian
metric on M. It is the regularization process of the metric on Vi and if we want to
do it on gVi, we take the decomposition g0 = (αg)∗ g0 = (αg)∗ g′i + (αg)∗ g′′i and then

Hg,i(g0) :=
(
αg ◦ ϕ−1

i

)∗
H̃ε

(
ϕi ◦ (αg)−1)∗ (αg)∗ hi g0 + (αg)∗ g′′i

= (αg)∗He,i(g0).

As in the proof of Theorem 6.10, we define a metric on the tube⋃
g∈G

gVi

using Theorem 6.6 by letting

HGi (g0) =
1

|G|

∫
G

(αg)∗He,i(g0) dg.

Finally, also as in the proof of Theorem 6.10, we define the operator

HG : M2,p
h (M)→M∞

h (M)

by setting:

HG(g0) = lim
s→∞
HGs ◦ · · · ◦ HG2 ◦ HG1 (g0),

where h is the atlas defined above. SinceM is compact, the limit exists, i.e. we finish
the regularization process and defines a G-invariant Riemannian metric on M. To
see this fact we take coordinates ϕi in gVi for some i ∈ N and g ∈ G, and coordinate
vector fields {∂j}nj=1, then

HG(g0)(∂l, ∂m) = HG(g0)l m = HGs′i ◦ · · · ◦ H
G
si

(g0)l m = He,i(g0)l m = (g0)l m

Also we notice that∣∣HGi (g0)l m
∣∣ =

∣∣∣∣∫
G

(αg)∗He,i(g0)l m dg

∣∣∣∣ ≤ ∫
G
|(αg)∗He,i(g0)l m| dg

and since G is compact there exists g̃ ∈ G such that∫
G
|(αg)∗He,i(g0)l m| dg ≤

∫
G

∣∣(αg̃)∗He,i(g0)l m
∣∣ dg.

Now, since M is compact, we get a constant C such that∫
G

∣∣(αg̃)∗He,i(g0)l m
∣∣ dg ≤ C

∫
G
|He,i(g0)l m| dg.

Therefore, ∣∣HGi (g0)l m
∣∣ ≤ C |G| |He,i(g0)l m| . (6.3.1)
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To continue with the proof we need the following couple of estimates. The first
one is exactly the same as Lemma 3.1 of [Nik91]. The second one is similar to Lemma
3.2 also from [Nik91].

Lemma 6.12 (Lemma 3.1 of [Nik91]). Let U ⊂ Rn be a domain. The operator H̃ε

maps M2,p(U) into M2,p(U) for any 1 ≤ p ≤ ∞ while for each positive number δ > 0
we can find a νδ,p > 0 such that for all 0 < ε < νδ,p we have:

(1) For 1 ≤ p ≤ ∞ we have the estimate∣∣∣H̃ε(g)− g
∣∣∣
M2,p(U)

≤ δ. (6.3.2)

(2) Let Kσ(x), Kε
σ(x) be the sectional curvatures calculated from the metrics

g ∈M2,p(U) and gε = H̃ε(g), respectively, where x ∈ U and σ ⊂ TxU is a
section (i.e. a 2-dimensional subspace). Then if

−∞ < K̄σ(U) = ess supx∈U{Kσ(x)} <∞,
−∞ <

¯
Kσ(U) = ess infx∈U{Kσ(x)} <∞,

then under the condition that p > n the same thing is true for the corresponding
quantities K̄ε

σ(U),
¯
Kε
σ calculated from the metric gε and for each case the

following holds:∣∣K̄σ(U)− K̄ε
σ(U)

∣∣ , |
¯
Kσ(U)−

¯
Kε
σ| < δ. (6.3.3)

The proof of the previous lemma is based in an estimate of the application sy
defined in (5.3.3):

|syε − IdU |C3(U) ≤ cU(ε),

where |y| ≤ 1 and cU(ε) → 0 as ε → 0, which follows from the fact that sy is a
diffeomorphism equal to 1 outside of the unitary ball and the usual way of computing
the sectional curvature.

Lemma 6.13 (Lemma 3.2 of [Nik91]). Let M be a differentiable manifold, h be a
C∞-differentiable locally finite countable atlas on M with the help of the operator HG
constructed before. The the following assertions hold:

(1) For an arbitrary uniformly bounded sequence of numbers εi, i = 1, 2, . . ., the
operator HG maps M2,p

h (M) into M∞
h (M).

(2) For each natural number k and arbitrary sequence of positive numbers aν,
ν = 1, 2 . . ., there exists a uniformly bounded subsequence of positive numbers
εki, i, k = 1, 2, . . ., such that for ν = 1, 2, . . ., g ∈ M2,p

h (M) the following
estimate holds: ∣∣HG(g)− g

∣∣
M2,p

h (M),ν
≤ aν

k
, (6.3.4)
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now if p > n then in addition we can assert the existence of an estimate for
α = 1− n/p ∣∣HG(g)− g

∣∣
M1,α

h (M),ν
≤ aν

k
(6.3.5)

and the following relations hold:

∣∣K̄gk,µ
− K̄g,µ

∣∣ ≤ 1

k
if K̄g,µ <∞, (6.3.6)

K̄gk,µ
= +∞ if K̄g,µ = +∞, (6.3.7)

where gk = H(g) calculated with this sequence, and∣∣
¯
Kgk,µ

−
¯
Kg,µ

∣∣ ≤ 1

k
if

¯
Kg,µ > −∞, (6.3.8)

¯
Kgk,µ

= −∞ if
¯
Kg,µ = −∞. (6.3.9)

The proof of this lemma follows the same structure as in the original paper. Using
the construction of the operator HG , the inequality (6.3.1) and (6.3.2) of Lemma 6.12
we get (6.3.4). To obtain (6.3.5) we use Rellich-Kondrashov theorem. Finally, the
estimates about the curvature are the result of using (6.3.4), the convergence “almost
everywhere” of the second derivative of the pullback metric on a domain in Rn and
the estimates for the curvature of Lemma 6.12.

We continue with the proof of our theorem introducing the following notation:
ḡν0 = (αg ◦ ϕ−1

ν )∗g0|gVν and ḡν0(x) = ((ḡν0)ij(x)), i, j = 1, . . . , n, x ∈ Bn, and we define

a sequence of positive numbers {aν} with the help of the following equations:

aν = inf
x∈B̄n

{
min

|ξ|6=0, ξ∈Rn

{
(ḡν0)ij(x)ξiξj

δijξiξj

}}
(6.3.10)

By gk = HG(g0) we denote the sequence of Riemannian metrics onM constructed
in 6.13 for the sequence {aν} given by equation (6.3.10).

We also introduce the following notation: dk = d(gk), d0 = d(g0) and

ιk : (M, d0)→ (M, dk)

is a map for which ιk(p) = p, p ∈ M and k = 1, . . . . By ((ḡνk)ij(x)), i, j = 1, . . . , n
and x ∈ Bn, we denote the components of the metric tensor by

ḡνk(x) = (αg ◦ ϕ−1
ν )∗HG(g0)

∣∣
gVν

(x).

Let γ : [0, l0]→M be an arbitrary differentiable curve with respect to the atlas h
and parametrized by arc length in (M, d0). Its length in (M, dk) will be denoted by
lk.
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We divide γ into a finite number of arcs γu each of which is contained in some

guVνu for u = 1, . . . , N . We denote the length of γu in (M, d0) by l
(u)
0 and its length

in (M, dk) by l
(u)
k . Then∣∣∣l(u)

k − l
(u)
0

∣∣∣ ≤ ∫ l
(u)
0

0

|(ḡνuk )mq − (ḡνu0 )mq| |γ̇mu γ̇qu| ds. (6.3.11)

From the expression for aν it follows that

max
m,q=1,2,...,n

0≤s≤l(u)0

{|γ̇mu (s) · γ̇qu(s)|} ≤ max
m,q=1,2,...,n

0≤s≤l(u)0

{|δmqγ̇mu (s) · γ̇qu(s)|} ≤ a−1
νu

If follows from the las inequality, inequality (6.3.11) and inequality (6.3.5) of
Lemma 6.13 that ∣∣∣l(u)

k − l
(u)
0

∣∣∣ ≤ l
(u)
0

k
.

Adding the last inequalities for u = 1, . . . N , we get

|lk − l0| ≤
l0
k
.

From this inequality, we obtain∣∣∣∣dk(p, p′)d0(p, p′)
− 1

∣∣∣∣ ≤ 1

k
(6.3.12)

It follows from inequality (6.3.12) that

lim
k→∞

dil ιk = lim
k→∞

dil ι−1
k = 1.

Therefore, we have assertion (2).
To prove assertion (3) we remember that for g ∈M2,p

h we have introduced
¯
Kg,µ(M)

and K̄g,µ(M). We denote the corresponding quantities for the Riemannian metrics
gk, k = 1, 2 . . . , by

¯
Kk,µ(M) and K̄k,µ(M), respectively. We note that since gk

is an infinitely differentiable metric on M we have that
¯
Kk,µ(M) =

¯
kk(M) and

K̄k,µ(M) = k̄k(M). Considering inequalities (6.3.6)-(6.3.9) of Lemma 6.13, to prove
assertion (3) it remains to note that we have:

K̄0,µ(M) ≤ k̄0(M) and
¯
K0,µ(M) ≥

¯
k0(M)

which follow directly from Theorem 4.26 because such theorem give us a way to
compute sectional curvature.

Q. E. D.
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4. A Corollary of the Equivariant Nikolaev’s Aproximation Theorem

A consequence of Theorem 6.11 is the following result.

Theorem 6.14 (Equivariant Sphere Theorem). Let (M, d) be a compact, simply
connected space with bounded curvature of dimension n ≥ 4 such that

1

4
<

¯
K(M) ≤ K̄(M) ≤ 1.

Assume that G is a compact Lie group and there exists a group homomorphism
ρ : G → Isom(M), i.e. G acts by isometries on M. Then there exists a group
homomorphism σ : G → O(n + 1) and a diffeomorphism F : M → Sn which is
equivariant; i.e. F ◦ ρ(g) = σ(g) ◦ F for all g ∈ G.

Proof. From Theorem 6.11 we get that for each ε > 0 we can find a Riemannian
manifold (M, gε) of class C∞ that is dL-close to the original metric space whose
sectional curvatures for all point p ∈M and section π ⊂ TpM satisfy

¯
K(M)− ε ≤ Kπ(p) ≤ 1 + ε.

Also we have that G acts by isometries on (M, gε).
We choose ε in such a way that

¯
K(M)− ε

1 + ε
>

1

4
.

Multiplying gε by a constant we can assume that

1

4
< c ≤ Kπ(p) ≤ 1,

where

c = ¯
K(M)− ε

1 + ε
.

Therefore, by virtue of the smooth Equivariant Sphere Theorem (Theorem 2 of
[BS09]), we obtain the result. Q. E. D.
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