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Introducción

La conexión entre cadenas de nacimiento y muerte y polinomios ortogonales es ampliamente conocida
en la comunidad matemática. Pioneros en este campo como D. G. Kendall [43], W. Ledermann y
G. E. H. Reuter [45], y S. Karlin y J. McGregor [39, 40, 41], realizaron contribuciones fundamentales
al encontrar representaciones espectrales de cadenas de nacimiento y muerte en la década de 1950.
Dicha conexión se basa en el hecho de que la matriz de transición de probabilidades a un paso P de
una cadena de nacimiento y muerte a tiempo discreto {Xt : t = 0, 1, . . . } con espacio de estados en
Z≥0 = {0, 1, 2, . . . } es una matriz tridiagonal, estocástica y semi-infinita, lo que permite aplicar el
teorema espectral para encontrar la correspondiente medida espectral asociada al proceso. En este
contexto, con la fórmula de representación integral de Karlin-McGregor se calculan las probabilidades
de transición a n pasos P (n)

ij = P(Xn = j|X0 = i) en términos de una medida espectral y la familia de
polinomios ortogonales correspondiente. Además, esta fórmula proporciona información valiosa para
comprender varios aspectos probabilísticos importantes de las cadenas de nacimiento y muerte como
recurrencia, absorción o propiedades límite. A partir de los trabajos de S. Karlin y J. McGregor,
numerosos autores como M. E. H. Ismail, D. Masson, G. Valent, E. A. van Doorn, H. Dette o P.
Flajolet, por mencionar algunos, han contribuido a ampliar la conexión entre la teoría de polinomios
ortogonales y las cadenas de nacimiento y muerte (veáse [5, 6, 9, 10, 16, 36, 44]). Referencias que
contienen estos y otros resultados se pueden encontrar, por ejemplo, en [8, 47].

Esta tesis se centra en explorar diferentes tipos de factorizaciones estocásticas de la matriz de
transición de probabilidades P de una cadena de nacimiento y muerte. El estudio de factorizaciones
de matrices de transición de probabilidades u operadores infinitesimales de cadenas de Markov no es
algo nuevo. Autores como W. K. Grassman [17], D. P. Heyman [29] o V. Vigon [49], han explorado
cadenas de Markov bajo diversas condiciones y descomposiciones en factores, incluyendo factorizaciones
triangulares o diagonales, y la relación con la factorización de Wiener-Hopf. La presente tesis se enfoca
en factorizaciones estocásticas de tipo UL y LU de cadenas de nacimiento y muerte y se basa en los
fundamentos establecidos por F.A. Grünbaum y M. D. de la Iglesia en [24]. La principal característica
de las factorizaciones estocásticas de tipo UL y LU radica en la manera en que se descompone a la
matriz de transición de probabilidades P en el producto de dos matrices estocásticas: PU , una matriz
bidiagonal superior, y PL, una matriz bidiagonal inferior. Desde un punto de vista probabilístico,
esta factorización se puede interpretar como la composición de dos cadenas de nacimiento y muerte:
primero, un proceso de nacimiento puro asociado a PU , seguido por un proceso de muerte puro asociado
a PL, o viceversa. Este enfoque fue usado en [24] para cadenas de nacimiento y muerte con espacio de
estados en los enteros no negativos Z≥0, donde los autores también exploraron la transformación de
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Darboux discreta, que consiste en invertir el orden de multiplicación de los factores. En el caso UL, es
decir, P = PUPL, la transformación de Darboux conduce a una nueva matriz estocástica tridiagonal
que se denota por P̃ = PLPU y que describe una familia completa de cadenas de nacimiento y muerte
que dependen de un parámetro libre. La medida espectral asociada a P y la medida espectral asociada
a P̃ están relacionadas a través de lo que se conoce como una transformación de Geronimus, que, en
esta situación, consiste en dividir por x la medida espectral original y añadir una delta de Dirac en el
punto x = 0. Por otro lado, la factorización LU, P = P̃LP̃U , es única. La medida espectral de P y
la medida espectral de la transformación de Darboux P̂ = P̃U P̃L están relacionadas a través de una
transformación de Christoffel, que, en esta situación, consiste en multiplicar por x la medida espectral
original.

El objetivo principal de esta tesis es analizar diferentes tipos de factorizaciones estocásticas y
transformaciones de Darboux de cadenas de nacimiento y muerte a tiempo discreto con espacio de
estados en todos los números enteros Z = {. . . ,−1, 0, 1, . . . }, así como en otros espacios de estados
como el grafo araña. Como se explicará a continuación, las principales contribuciones consistirán en
obtener condiciones bajo las cuales es posible asegurar diferentes tipos de factorizaciones estocásticas
para después poder explorar la relación entre las medidas espectrales de los procesos originales y las
transformaciones de Darboux correspondientes. Una contribución significativa de esta investigación es
la obtención de la expresión explícita de la matriz espectral en varios ejemplos. Este logro permite
calcular la matriz de transición de probabilidades a n pasos de la cadena de nacimiento y muerte
correspondiente utilizando la fórmula de representación integral de Karlin-McGregor. Además, se
describen otras propiedades importantes como la recurrencia y la medida invariante para algunos
casos específicos.

El Capítulo 1 comienza con una breve introducción a la teoría de polinomios ortogonales y abarca
algunas relaciones muy útiles relacionadas con la transformada de Stieltjes, que resulta ser una
herramienta muy poderosa para calcular las medidas espectrales en ejemplos posteriores. Además,
se proporciona una breve introducción a la teoría de cadenas de Markov, incluido el análisis espectral
de cadenas de nacimiento y muerte a tiempo discreto en Z≥0 y en Z. También se introduce el concepto
de procesos cuasi de nacimiento y muerte, que son procesos que actúan en el espacio de estados de
dos dimensiones Z≥0 × {1, 2, . . . , N} para N ∈ Z≥1, cuyas transiciones solo son posibles entre estados
adyacentes de la primera componente. El análisis espectral de estos procesos se consideró en [7, 18] y
está muy relacionado con la teoría de polinomios ortogonales matriciales de tamaño N ×N . Hacia el
final del capítulo, se presenta una revisión de los resultados presentados en [24] sobre las factorizaciones
estocásticas de tipo UL y LU y las transformaciones de Darboux para cadenas de nacimiento y muerte
a tiempo discreto con espacio de estados en Z≥0.

En el Capítulo 2, se extienden los resultados de [24] al cambiar el espacio de estados de Z≥0 a Z.
Resulta interesante observar que, en este caso, tanto las factorizaciones estocásticas de tipo UL como
LU dependen de un parámetro libre. En ambos casos, se puede asegurar la existencia de la factorización
estocástica si el parámetro libre está acotado por arriba y por abajo por ciertas fracciones continuas.
En el análisis espectral, se requiere una ligera modificación ya que una matriz estocástica doblemente
infinita P da lugar a tres medidas espectrales soportadas en el intervalo [−1, 1], denotadas por ψα,β
con α, β = 1, 2. Resulta que ψ11(x) es una medida de probabilidad, ψ22(x) es una medida positiva y
ψ12 es una medida signada (ψ12 = ψ21 debido a la simetría). Para capturar esta información, se define



la matriz espectral asociada a P de la siguiente manera:

Ψ(x) =

(
ψ11(x) ψ12(x)
ψ12(x) ψ22(x)

)
.

Las matrices espectrales asociadas a las transformaciones de Darboux P̃ y P̂ son de la forma:

Ψ̃(x) = S0(x)ΨS(x)S∗0(x), y Ψ̂(x) = T0(x)ΨT (x)T ∗0 (x),

respectivamente, donde ΨS(x) y ΨT (x) son transformaciones de Geronimus de la matriz espectral
original Ψ(x) asociada a P , S0(x) y T0(x) son ciertos polinomios matriciales de grado 1 y S∗0(x) y
T ∗0 (x) denotan a las matrices transpuestas conjugadas correspondientes. Los resultados de este capítulo
se publicaron en [32] y fueron la base para la tesis de maestría [38].

En el Capítulo 3 se investigan diferentes tipos de factorizaciones estocásticas. Específicamente, se
examina una factorización en la que un factor representa una cadena de nacimiento y muerte en Z
reflectante desde el estado 0, y el otro factor representa una cadena de nacimiento y muerte en Z
absorbente hacia el estado 0. Esta factorización se denota por P = PRPA, y se conoce como una
factorización reflectante-absorbente (RA). En este caso, para que este tipo de factorización sea posible,
habrá dos parámetros libres que deberán estar acotados por abajo por ciertas fracciones continuas.
De este análisis se derivan dos puntos importantes. Primero, en este caso, es necesario considerar a
la cadena de nacimiento y muerte con espacio de estados en Z descrita por P como un proceso cuasi
de nacimiento y muerte a tiempo discreto con espacio de estados en Z≥0 × {1, 2}. Esto se logra al
reetiquetar los estados para obtener una matriz tridiagonal por bloques de tamaño 2× 2 denotada por
P . Después de este nuevo etiquetado, la factorización RA se convierte en una factorización UL por
bloques de la forma P = PRPA. Esto nos permite extender algunos resultados utilizando técnicas
de la teoría de polinomios ortogonales matriciales. Segundo, después de aplicar la transformación de
Darboux, se obtiene una matriz tridiagonal por bloques de tamaño 2 × 2, P̃ = PAPR, cuyo proceso
visto como cadena de Markov en Z es “casi” una cadena de nacimiento y muerte, es decir, es una
cadena de nacimiento y muerte regular pero además añadiendo probabilidades de transición entre los
estados 1 y -1. Posteriormente, se encuentra que la relación entre las matrices espectrales de P y P̃
está dada por

Ψ̃(x) = S0ΨU (x)S∗0 , (1)

donde ΨU (x) es una transformación de Geronimus de la matriz espectral original Ψ(x) y S0 es la
matriz constante no singular de tamaño 2 × 2 que corresponde con la entrada por bloques (0, 0) de
la matrix PR. En la Sección 3.3, se exploran las factorizaciones de tipo absorbente-reflectante (AR).
Para aplicar la factorización AR, es necesario comenzar con una “casi” cadena de nacimiento y muerte
con espacio de estados en Z como la descrita anteriormente. A pesar de que P no es tridiagonal, la
matriz equivalente P , después del reetiquetado, se convierte en una matriz tridiagonal por bloques,
y la factorización correspondiente, denotada por P = P̃AP̃R, es una factorización LU por bloques.
Después de la transformación de Darboux, se obtiene una matriz tridiagonal por bloques P̂ = P̃RP̃A,
cuya matriz doblemente infinita P̂ equivalente representa ahora una cadena de nacimiento y muerte
regular en Z. Las matrices espectrales correspondientes estarán relacionadas por una transformación
de Christoffel de la forma

Ψ̂(x) = xS̃−10 Ψ(x)S̃−∗0 ,

donde S̃0 es la matriz constante no singular de tamaño 2 × 2 que corresponde con la entrada por
bloques (0, 0) de la matrix P̃R. En ambos casos (factorizaciones RA y AR), se aplican los resultados



a cadenas de nacimiento y muerte con probabilidades de transición constantes. Los resultados del
Capítulo 3 están incluidos en [33].

En el Capítulo 4, se analiza una cadena de nacimiento y muerte no trivial con espacio de estados
en Z, generada por los polinomios de Jacobi asociados. Estos polinomios pueden construirse a partir
de la relación de recurrencia a tres términos que satisface la familia clásica de polinomios de Jacobi,
reemplazando n por n+ t, con t ∈ R y n ∈ Z. Es importante destacar que en 1999, F. A. Grünbaum
y L. Haine [23] calcularon la expresión explícita de la matriz espectral para los polinomios de Jacobi
asociados con soporte en el intervalo [0, 1] para ciertos valores de los parámetros involucrados. Con
base en estos resultados, se establecen condiciones bajo las cuales la familia de polinomios de Jacobi
asociados genera una matriz estocástica tridiagonal doblemente infinita P . De hecho, la matriz P
será estocástica si se elige t dentro de cierta unión numerable de intervalos reales que dependen de los
parámetros de la familia clásica de polinomios de Jacobi, α y β. En este contexto, se investigan todas
las posibles factorizaciones estocásticas, junto con las transformaciones de Darboux discretas y las
matrices espectrales correspondientes. En este caso, las factorizaciones estocásticas de tipo UL y LU
resultan únicas, mientras que la factorización estocástica RA no será posible. Aplicando los resultados
del Capítulo 2, se encuentra que la matriz espectral de la transformación de Darboux Ψ̃(x) para el
caso UL es la misma que la matriz espectral original Ψ(x), pero reemplazando el parámetro α por
α− 1. En cuanto al caso LU, se tiene que la matriz espectral de la transformación de Darboux Ψ̂(x)
es de la forma

Ψ̂(x) = T0(x)
Ψ(x)

x
T ∗0 (x),

donde T0(x) es cierto polinomio matricial de grado 1. Para concluir el capítulo, se aplican los resultados
al estudio de un modelo de urnas en los enteros, correspondiente a la familia de polinomios de Jacobi
asociados. Los resultados de este capítulo se encuentran publicados en [35].

Finalmente, en el Capítulo 5, se exploran las cadenas de nacimiento y muerte en una estructura
conocida como grafo araña, que es un grafo compuesto por N líneas rectas en el plano, llamadas
piernas, unidas en el origen, denominado cuerpo de la araña. Este proceso puede ser identificado como
un proceso cuasi de nacimiento y muerte a tiempo discreto en el espacio de estados Z≥0×{1, 2, . . . , N},
representado por una matriz de transición de probabilidades tridiagonal por bloques P . Se demuestra
que para este proceso siempre existe una matriz espectral Ψ(x) de tamaño N × N soportada en el
intervalo [−1, 1] asociada a P , junto con algunos resultados para calcular la transformada de Stieltjes
correspondiente. Luego, se examinan las condiciones bajo las cuales es posible obtener una factorización
estocástica de tipo RA. Esta factorización puede ser vista como una factorización estocástica de tipo
UL por bloques de la matriz P . Dada la estructura de P , se tienen N parámetros libres, cada uno
de los cuales deberá estar acotado por debajo por cierta fracción continua. Además, se investiga la
transformación de Darboux discreta, que produce nuevas familias de “casi” cadenas de nacimiento
y muerte en el grafo araña, lo que implica que habrá nuevas probabilidades de transición entre los
primeros estados de cada pierna. La matriz espectral asociada a la transformación de Darboux será
una transformación de Geronimus de la matriz espectral original como la de que aparece en (1). Al final
del capítulo, se aplican los resultados al estudio de la caminata aleatoria en el grafo araña, asumiendo
probabilidades de transición constantes. Los resultados del Capítulo 5 se encuentran publicados en
[34].



Introduction

The connection between birth-death chains and orthogonal polynomials is widely acknowledged in the
mathematical community. Early pioneers in this field such as D. G. Kendall [43], W. Ledermann and
G. E. H. Reuter [45], and S. Karlin and J. McGregor [39, 40, 41], made groundbreaking contributions
by finding spectral representations of birth-death chains in the 1950s. The fundamental connection is
based on the fact that the one-step transition probability matrix P of a discrete-time birth-death chain
{Xt : t = 0, 1, . . . } on Z≥0 = {0, 1, 2, . . . }, is a semi-infinite tridiagonal stochastic matrix, allowing us
to apply the spectral theorem to find the corresponding spectral measure associated with the process.
In this context, the Karlin-McGregor integral representation formula computes the n-step transition
probabilities P (n)

ij = P(Xn = j|X0 = i) in terms of a spectral measure and the corresponding family of
orthogonal polynomials. It also provides valuable insights into the understanding of several important
probability aspects of birth-death chains such as recurrence, absorption or limiting properties. Since
the seminal works of S. Karlin and J. McGregor, numerous authors like M. E. H. Ismail, D. Masson,
G. Valent, E. A. van Doorn, H. Dette or P. Flajolet, to mention a few, have contributed to expanding
the connection between orthogonal polynomials and birth-death chains (see [5, 6, 9, 10, 16, 36, 44]).
A couple of references containing these and other results can be found, for instance, in [8, 47].

This thesis focuses on exploring different types of stochastic factorizations of the one-step transition
probability matrix P of a birth-death chain. The study of factorizations of transition probability
matrices or infinitesimal operators of Markov chains is not new. Previous authors, like W. K. Grassman
[17], D. P. Heyman [29], or V. Vigon [49], have explored Markov chains under different conditions and
decompositions into factors, including triangular or diagonal factorizations and the relation with the
Wiener-Hopf factorization. In this thesis, we focus on the UL and LU stochastic factorizations of
birth-death chains. Our work builds upon the foundations laid by F.A. Grünbaum and M. D. de la
Iglesia in [24]. The key distinction in UL and LU stochastic factorizations lies in their specific approach
to decompose the matrix P into the product of two stochastic matrices: PU , an upper bidiagonal
matrix, and PL, a lower bidiagonal matrix. From a probabilistic point of view, this factorization can
be interpreted as the composition of two birth-death chains: first, a pure-birth process associated with
PU , followed by a pure-death process associated with PL, or viceversa. This approach was used in [24]
for birth-death chains with state space on the nonnegative integers Z≥0, where the authors also explored
the discrete Darboux transformation, which involves inverting the order of multiplication of the factors.
For the UL case, i.e. P = PUPL, this Darboux transformation leads to a new tridiagonal stochastic
matrix denoted by P̃ = PLPU , which describes a whole family of birth-death chains depending on one
free parameter. The spectral measure associated with P and the spectral measure associated with P̃
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are related through what is known as a Geronimus transformation, which, in this situation, consists
of dividing by x the original spectral measure and adding a Dirac delta at the point x = 0. On the
other hand, the LU factorization P = P̃LP̃U is unique. Additionally, the spectral measure of P and
the Darboux transformation P̂ = P̃U P̃L are related through a Christoffel transformation, which, in
this situation, consists of multiplying by x the original spectral measure.

The main goal of this thesis is to analyze different types of stochastic factorizations and Darboux
transformations of discrete-time birth-death chains on the whole set of integers Z = {. . . ,−1, 0, 1, . . . },
as well as other state spaces like the spider graph. As we will explain below, our main contributions will
consist of obtaining conditions under which we can ensure different types of stochastic factorizations,
and after that, exploring the relation between the spectral measures of the original processes with the
corresponding Darboux transformations. A significant contribution of our research is the derivation
of the explicit expression of the spectral matrix in several examples. This achievement enables us
to compute the n-step transition probability matrix of the corresponding birth-death chain using the
Karlin-McGregor integral representation formula. Additionally, we are able to describe other important
properties such as recurrence and the invariant measure for some specific cases.

Chapter 1 begins with a concise introduction to the theory of orthogonal polynomials and covers
some very useful relations concerning the Stieltjes transform, which proves to be a very powerful tool for
computing the spectral measures in subsequent examples. Furthermore, we provide a brief introduction
to the theory of Markov chains, including the spectral analysis of discrete-time birth-death chains on
Z≥0 and on Z. We also introduce the concept of quasi-birth-and-death processes which are processes
acting on the two-dimensional state space Z≥0 × {1, 2, . . . , N} for N ∈ Z≥1, and transitions are only
possible between adjacent states of the first component. The spectral analysis of these processes was
considered in [7, 18] and are very closed related to the theory of matrix-valued orthogonal polynomials
of size N × N . Towards the end of the chapter, we present a review of the results appearing in [24]
about UL and LU stochastic factorizations and Darboux transformations for discrete-time birth-death
chains on Z≥0.

In Chapter 2 we extend the results of [24] by changing the state space from Z≥0 to Z. It is interesting
to observe that, in this case, both UL and LU stochastic factorizations depend on one free parameter. In
both cases, the existence of the stochastic factorization can be ensured if the free parameter is bounded
from above and from below by certain continued fractions. In the spectral analysis, a slight modification
is necessary since a doubly infinite stochastic matrix P gives rise to three spectral measures supported
on the interval [−1, 1], denoted by ψα,β with α, β = 1, 2. Here, ψ11(x) is a probability measure, ψ22(x)
is a positive measure, and ψ12 is a signed measure (ψ12 = ψ21 due to the symmetry). To capture this
information, we define the spectral matrix associated with P as follows:

Ψ(x) =

(
ψ11(x) ψ12(x)
ψ12(x) ψ22(x)

)
.

The spectral matrices associated with the Darboux transformations P̃ and P̂ are of the form

Ψ̃(x) = S0(x)ΨS(x)S∗0(x), and Ψ̂(x) = T0(x)ΨT (x)T ∗0 (x),

respectively, where ΨS(x) and ΨT (x) are Geronimus transformations of the original spectral matrix
Ψ(x) associated with P , S0(x) and T0(x) are certain matrix polynomials of degree 1 and S∗0(x) and
T ∗0 (x) denote the corresponding Hermitian transposes. The results of this chapter are published in



[32] and were the basis of the master’s thesis [38].

In Chapter 3 we investigate different types of stochastic factorizations. Specifically, we examine a
factorization where one factor represents a reflecting birth-death chain on Z from the state 0, and
the other factor represents an absorbing birth-death chain on Z to the state 0. This factorization is
denoted by P = PRPA, known as a reflecting-absorbing (RA) factorization. In this case, in order
to have this kind of factorization, there will be two free parameters which need to be bounded from
below by certain continued fractions. Two crucial points arise from this analysis. First, we need to
consider the birth-death chain on Z described by P as a discrete-time quasi-birth-and-death process
on Z≥0 × {1, 2}. This is achieved by relabeling the states to obtain a 2 × 2 block tridiagonal matrix
denoted by P . After this relabeling, the RA factorization becomes a UL block matrix factorization
of the form P = PRPA. This allows us to extend some results using techniques from the theory of
matrix-valued orthogonal polynomials. Second, after applying the Darboux transformation, we obtain
a 2×2 block tridiagonal matrix P̃ = PAPR, which process seen as a Markov chain on Z is an “almost”
birth-death chain, i.e., a regular birth-death chain but introducing additional probability transitions
between states 1 and -1. Following our procedure, we discover that the relation between the spectral
matrices of P and P̃ is given by

Ψ̃(x) = S0ΨU (x)S∗0 , (1)

where ΨU (x) is a Geronimus transformation of the original spectral matrix Ψ(x) and S0 is the 2 ×
2 nonsingular constant matrix located at the block entry (0, 0) of PR. In Section 3.3, we explore
absorbing-reflecting (AR) factorizations. Here, in order to apply this AR factorization, we need to
start with an “almost” birth-death chain on Z as the one described above. Despite P not being
tridiagonal, the equivalent matrix P after relabeling becomes a block tridiagonal matrix, and the
corresponding matrix factorization, denoted by P = P̃AP̃R, an LU block matrix factorization. After
the Darboux transformation, we arrive at a block tridiagonal matrix P̂ = P̃RP̃A, which equivalent
doubly infinite matrix P̂ represents now a regular birth-death chain on Z. The corresponding spectral
matrices will be related by a Christoffel transformation of the form

Ψ̂(x) = xS̃−10 Ψ(x)S̃−∗0 ,

where S̃0 is the 2 × 2 nonsingular constant matrix located at the block entry (0, 0) of P̃R. In both
cases, RA and AR factorizations, we apply our results to birth-death chains with constant transition
probabilities. The results from Chapter 3 are included in our work [33].

In Chapter 4 we analyze a nontrivial birth-death chain on Z generated by the associated Jacobi
polynomials. These polynomials can be constructed from the three-term recurrence relation satisfied
by the classical family of Jacobi polynomials, but replacing n by n+ t, with t ∈ R and n ∈ Z. Notably,
in 1999, F. A. Grünbaum and L. Haine [23] computed the explicit expression for the spectral matrix
of the associated Jacobi polynomials supported on the interval [0, 1] for certain special choice of the
parameters. Building upon these results we establish conditions under which the family of associated
Jacobi polynomials gives rise to a doubly infinite tridiagonal stochastic matrix P . In fact, we will
see that the matrix P is stochastic if we choose t inside a certain countable union of real intervals
depending on the parameters of the classical family of Jacobi polynomials, α and β. In this context, we
investigate all the possible stochastic factorizations, along with the discrete Darboux transformations
and the corresponding spectral matrices. In this case, the UL and LU stochastic factorizations will be
unique while the RA stochastic factorization will not be possible. Applying the results of Chapter 2
we find that the spectral matrix of the Darboux transformation Ψ̃(x) for the UL case is the same as



the original spectral matrix Ψ(x) but replacing the parameter α by α− 1. As for the LU case we have
that the spectral matrix of the Darboux transformation Ψ̂(x) is of the form

Ψ̂(x) = T0(x)
Ψ(x)

x
T ∗0 (x),

where T0(x) is certain matrix polynomial of degree 1. To conclude the chapter we apply our results
to the study of an urn model on the integers corresponding with the family of associated Jacobi
polynomials. The results of this chapter are published in [35].

Finally, in Chapter 5, we explore birth-death chains on a spider, which is a graph consisting of
N discrete half lines on the plane, called legs, joined at the origin, called body of the spider. This
process can be identified with a discrete-time quasi-birth-and-death process on the state space Z≥0 ×
{1, 2, . . . , N}, represented by a block tridiagonal transition probability matrix P . We prove that for this
process there always exists an N×N spectral matrix Ψ(x) supported on the interval [−1, 1] associated
with P along with some results to compute the corresponding Stieltjes transform. After that, we
examine the conditions under which we can get an RA stochastic factorization. This factorization can
be seen as a UL block stochastic factorization of the matrix P . Given the structure of P , we will
have N free parameters, each of which must be bounded from below by certain continued fraction.
Additionally, we investigate the Darboux transformation, which yields to new families of “almost”
birth-death chains on a spider, meaning that there will be new transition probabilities between the
first states of each leg. The spectral matrix associated with the Darboux transformation will be a
Geronimus transformation of the original spectral matrix of the form (1). At the end of the chapter
we apply our results to the random walk on a spider, assuming constant transition probabilities. The
outcomes of Chapter 5 are presented in our publication [34].



CHAPTER 1

Preliminaries

In this preliminary chapter we introduce essential notions of the theory of orthogonal polynomials
related to the study of discrete-time birth-death chains. Our goal is to provide a general context for
the existing results in this theory and prepare the reader with the necessary tools to understand the
generalizations developed in the subsequent chapters. The primary motivation for approaching the
study of discrete-time birth-death chains from the perspective of spectral theory is the fact that the
tridiagonal structure of the one-step transition probability matrix gives rise to a family of orthogonal
polynomials in a very natural way. These polynomials will be orthogonal with respect to a specific
measure known as the spectral measure. Once we obtain the spectral measure, it is possible to analyze
the corresponding chain and to describe important probabilistic properties such as recurrence or the
invariant measure.

We begin Section 1.1 by providing essential definitions about orthogonal polynomials. Additionally,
we establish the connections between the spectral measure and the Stieltjes transform. Moving on
to Section 1.2, we introduce the concept of a Markov chain and explore some of its properties. In
Section 1.3, we establish the relation between discrete-time birth-death chains with state space on
Z≥0 and orthogonal polynomials. In this scenario, the matrix P takes the form of a semi-infinite
tridiagonal stochastic matrix. By usign this structure, we not only derive some probabilistic properties
of the process but also compute the n-step transition probabilities using the Karlin-McGregor integral
representation formula, first introduced in [41]. We extend this analysis to birth-death chains with
state space on Z in Section 1.4, and we study their connection with quasi-birth-and-death processes in
Section 1.5 . Finally, in Section 1.6, we review the UL and LU stochastic factorizations of birth-death
chains with state space on Z≥0 and explore the example of the birth-death chain generated by the
classical family of Jacobi polynomials.

1.1 Orthogonal polynomials
In this section we give some important concepts and properties about orthogonal polynomials with
the intention to introduce the reader to the main tool to perform the spectral analysis of birth-death
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chains. We will focus on the results that will play an important role during the analysis of the different
examples presented along this thesis. The theory of orthogonal polynomials has been widely studied
and the bibliography on this topic is extensive. This section is mainly based on [8, Chapter 1].

Let us start by defining the concept of orthogonal polynomials. For that, we consider ψ a positive
Borel measure with support on S ⊂ R and assume that the moments

µn =

∫
S
xndψ(x), n ≥ 0,

exist and are finite. Typically we normalize the measure such that µ0 = 1, i.e., ψ is a probability
measure. Consider the Hilbert space L2

ψ(S) of all measurable functions f such that ||f ||2ψ < ∞ with
the inner product

(f, g)ψ =

∫
S
f(x)g(x)dψ(x).

If S is a countable set, we denote the Hilbert space as `2ψ(S).

Definition 1.1.1. A sequence (pn(x))n≥0 is a sequence of polynomials if each element is a polynomial
of degree n in the variable x.

Definition 1.1.2. A sequence of polynomials (pn(x))n≥0 is orthogonal with respect to the measure ψ
if

(pn(x), pm(x))ψ =

∫
S
pn(x)pm(x)dψ(x) = c2nδnm,

where c2n > 0, cn = ||pn||ψ is the norm of the polynomial pn and δnm is the Kronecker delta.

If the norm is always equal to 1, we say that the polynomials are orthonormal. For this section we
will denote this family as (Pn)n≥0. It is very well known that every family of orthogonal polynomials
satisfies a tree-term recurrence relation of the form

p−1 = 0, p0 = 1, xpn(x) = anpn+1(x) + bnpn(x) + cnpn−1(x), n ≥ 1,

where
an =

(xpn, pn+1)ψ
(pn+1, pn+1)ψ

, bn =
(xpn, pn)ψ
(pn, pn)ψ

, cn =
(xpn, pn−1)ψ
(pn−1, pn−1)ψ

.

The orthonormal polynomials satisfy the three-term recurrence relation

P−1 = 0, P0 = 1, xPn(x) = anPn+1(x) + bnPn(x) + an−1Pn−1(x), n ≥ 1,

with an > 0 and bn ∈ R. The three-term recurrence relation is one of the main characteristics
of the orthogonal polynomials and it is possible to write it in matrix form. If we define P (x) =
(P0(x), P1(x), . . . )T and

J =


b0 a0 0 0 . . .
a1 b1 a1 0 . . .
0 a2 b2 a2 . . .
...

...
. . . . . . . . .

 ,

then we have that
xP (x) = JP (x).



Note that the matrix J is a semi-infinite tridiagonal symmetric matrix also known as Jacobi matrix.
Observe that the structure of this matrix is similar to the one-step transition probability matrix of a
discrete-time birth-death chain (see Section 1.2 below). We will precisely take advantage of this fact
to develop the spectral analysis of this type of Markov chains.

There is a direct relation between the Jacobi matrix J and the measure ψ. Indeed, since we have
that xnP (x) = JnP (x), then multiplying by P (x)T on the right and integrating over S with respect
to the measure ψ, it is easy to see that∫

S
xnPi(x)Pj(x)dψ(x) =

∑
k

∫
S
JnikPk(x)Pj(x)dψ(x) = Jnij .

This relation gives an integral representation of the (i, j) entry of the powers of J in terms of the
corresponding orthogonal polynomials. In particular, it is possible to compute the moment µn of the
measure ψ by taking Jn00. This identity can be extended to any analytic function defined on S of the
form f(x) =

∑
n≥0 cnx

n as∫
S
f(x)Pi(x)Pj(x)dψ(x) =

∑
n≥0

∫
S
cnx

nPk(x)Pj(x)dψ(x) =
∑
n≥0

cnJ
n
ij = f(J)ij . (1.1.1)

As we will see below, it is possible to obtain more relations between these two objects.

Definition 1.1.3. The Stieltjes transform of a measure ψ is defined by

B(z;ψ) =

∫
R

dψ(x)

x− z
, z ∈ C \ R.

This transform is related to the generating function of the moments of the measure since we have
that

B(z;ψ) = −1

z

∫
R

1

1− x/z
dψ(x) = −1

z

∞∑
n=0

∫
R

xn

zn
dψ(x) = −

∞∑
n=0

µn
zn+1

.

There is a formula which allows us to calculate the measure ψ from its Stieltjes transform.

Proposition 1.1.4. Let ψ be a probability measure with finite moments and B(z;ψ) its Stieltjes
transform. Then ∫ b

a

dψ(x) +
1

2
ψ({a}) +

1

2
ψ({b}) =

1

π
lim
ε↓0

∫ b

a

ImB(x+ iε;ψ)dx, (1.1.2)

where ψ({a}) ≥ 0 is the magnitude or size of the mass at an isolated point a. If the measure is
absolutely continuous with respect to the Lebesgue measure at a then ψ({a}) = 0.

A proof of this proposition can be found in [8, Proposition 1.1]. Equation (1.1.2) is known as the
Perron-Stieltjes inversion formula. When the measure is absolutely continuous with respect to the
Lebesgue measure, i.e., dψ(x) = ψ(x)dx, we have

ψ(x) =
1

π
lim
ε↓0

ImB(x+ iε;ψ) = lim
ε↓0

B(x+ iε;ψ)−B(x− iε;ψ)

2πi
.

For measures with an absolutely continuous part and a discrete part, we can compute the isolated
points a such that ψ({a}) > 0 since they satisfy

lim
ε↓0

ImB(a+ iε;ψ) =∞,



and the size of the jump at x = a as follows

ψ({a}) = lim
ε↓0

εImB(a+ iε;ψ) ≥ 0. (1.1.3)

Another important concept is the n-th associated polynomials generated by the matrix resulting from
removing the first n + 1 columns and rows from J . For the case where n = 0 we have the following
important results.

If we consider the function f(x) = (1 − zx)−1 with z ∈ C \ S, from (1.1.1) we have the following
relation between the matrix J and the generating function of the measure ψ:

(I − Jz)−100 =

∫
R

P 2
0 (x)

1− xz
dψ(x) =

∫
R

dψ(x)

1− xz
=
∑
n≥0

µnz
n.

where I is the identity matrix. In terms of the Stieltjes transform of ψ and J we have that

(I − zJ)−100 = −1

z
B

(
1

z
;ψ

)
.

Theorem 1.1.5. Let J (0) be the matrix built by removing the first column and row from J . Then we
have

(I − zJ)−100 =
1

1− b0z − a20z2(I − zJ (0))−100

.

The proof of this theorem can be found in [8, Theorem 1.5]. If we assume that ψ is positive and
there is a positive measure ψ(0) associated to J (0) then, from the previous theorem, we have∫

R

dψ(x)

1− xz
=

1

1− b0z − a20z2
∫
R

dψ(0)(x)

1− xz

,

which relates the generating functions of the moments of the measures ψ and ψ(0). Using the definition
of the Stieltjes transform, we have

B(z;ψ) =
1

z − b0 + a20B(z;ψ(0))
. (1.1.4)

Another way to generate the 0-th associated polynomials is by taking the sequence (Pn(x))n≥0 and
changing the initial conditions to

P
(0)
0 (x) = 0, P

(0)
1 = 1/a0.

Note that this change makes the degree of the polynomial P (0)
n equal to n − 1. This family has the

following integral representation

P (0)
n (x) =

∫
R

Pn(x)− Pn(y)

x− y
dψ(y), n ≥ 0.

Finally for this section we state the spectral theorem. The spectral theorem is a very well known
result specially in the areas of linear algebra and functional analysis. There are different versions of
this theorem but the general idea is to identify a class of linear operators that can be modeled by



multiplication operators. In a finite-dimensional vector space, every linear operator can be represented
by a matrix. This is why in linear algebra the spectral theorem gives us conditions under which a
matrix can be diagonalized, i.e., it can be represented as a diagonal matrix in some basis. In this case
it is essentially enough to analyze the eigenvalues of the matrix also known as the spectrum.

In the infinite dimensional case the situation is more complicated. We will focus on the version for
Hilbert spaces with an inner product where we can apply the spectral theorem to self-adjoint operators
and find a representation in terms of projection operators. Let us consider a self-adjoint operator A
defined on a Hilbert space H. There is a measure ψ on a measurable space S and a unitary operator
U : H → L2

ψ(S) such that
(UAU−1f)(x) = F (x)f(x),

for some measurable and bounded real function F on S. In the context of orthogonal polynomials,
this result is known as Favard’s theorem.

Theorem 1.1.6. Let J be a bounded Jacobi operator. Denote by (en)n≥0 the orthonormal canonical
basis for `2(Z≥0). Then there exists a unique probability measure ψ supported on a real compact interval
such that for every polynomial P , the map U : P (J)e0 → P extends to a unitary operator `2(Z≥0)→ L2

ψ

such that UJ = MU , where M : L2
ψ → L2

ψ is the multiplication operator (Mf)(x) = xf(x). Moreover,
the sequence Pn = Uen is a set of orthonormal polynomials with respect to ψ. Therefore, the operator
J can be diagonalized in the following way:

(UJU−1f)(x) = (Mf)(x) = xf(x), f ∈ L2
ψ.

If we start from the symmetric tridiagonal Jacobi matrix J which is self-adjoint in the Hilbert
space `2(Z≥0), the previous theorem provides us with a measure ψ and a complete orthonormal basis
in L2

ψ(S) formed by the sequence of orthonormal polynomials Pn. Two different ways to prove the
spectral theorem can be found in [8, Section 1.3].

1.2 Discrete-time Markov chains
Let (Ω,F ,P) be a probability space and let us consider a discrete-time stochastic process {Xn :
n = 0, 1, . . . } with state space S satisfying the following property for all n ≥ 0 and any states
i0, i1, . . . , in−1, i, j ∈ S

P(Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i) = P(Xn+1 = j|Xn = i) = Pn,n+1
ij .

This last relation is known as the Markov property and Pn,n+1
ij for i, j ∈ S are the one-step transition

probabilities. A stochastic process with the previous property is called a discrete-time Markov chain
or simply a Markov chain. The state space S can be a finite collection of discrete points, the space of
nonnegative integers Z≥0 or the whole set of integers Z. We will assume S = Z≥0 in this section.

In general, there is no restriction for the transition probabilities. However, in this thesis we will
work with homogeneous Markov chains, i.e., the one-step transition probabilities does not depend on
n and can be written simply as Pij . Note that there is a one-step transition probability for each pair
of states in S, so it is usual to represent these probabilities as the following matrix:

P =


P00 P01 P02 . . .
P10 P11 P12 . . .
P20 P21 P22 . . .
...

...
...

. . .

 ,



also known as the one-step transition probability matrix of the Markov chain and it is a stochastic
matrix, i.e., it satisfies the following properties

Pij ≥ 0, for all i, j ∈ S and
∞∑
j=0

Pij = 1, for all i ∈ S.

Definition 1.2.1. We say that the state i is absorbing if once the Markov chain reaches it, it becomes
impossible to transition to any other state, i.e., Pii = 1 and Pij = 0 for all j 6= i.

A Markov chain is characterized by a state space, a transition probability matrix and an initial
distribution across the state space. We also can define the n-step transition probabilities as

P
(n)
i,j = P(Xn = j|X0 = i), for all i, j ∈ S.

These probabilities form the following matrix

P (n) =


P

(n)
00 P

(n)
01 P

(n)
02 . . .

P
(n)
10 P

(n)
11 P

(n)
12 . . .

P
(n)
20 P

(n)
21 P

(n)
22 . . .

...
...

...
. . .

 ,

called the n-step transition probability matrix. For each pair of states, we can compute the n-step
transition probabilities using the Chapman-Kolmogorov equations:

P
(n)
ij =

∑
k∈S

P
(r)
ik P

(n−r)
kj , i, j ∈ S, 0 ≤ r ≤ n.

As a consequence of the last equation we have that

P (n) = Pn.

Therefore, the n-step transition probability matrix satisfies the following property:

P 0 = I, P (1) = P, P (n+1) = P (n)P = PP (n).

One can describe different properties of the Markov chain through the transition probabilities. For
example, there is a classification of the states depending on the possible transitions. We say that the
state j ∈ S is accesible from state i ∈ S if there is an n ∈ Z≥0 such that P (n)

ij > 0. We denote this
property as i → j. If we have that i → j and j → i, then we say that i and j are communicated
and we denote this as i ↔ j. The property of communication is, in fact, an equivalence relation that
induces a partition of the state space S which equivalence clases are called communication clases. We
denote the communication class of i ∈ S by C(i). Therefore, i↔ j if and only if C(i) = C(j).

Definition 1.2.2. A Markov chain is irreducible if the equivalence relation induces only a single
communication class, i.e., C(i) = S for all i ∈ S. This means that all states in S communicate with
each other.

Definition 1.2.3. The period of a state i, denoted by d(i) is defined as the greatest common divisor
of all positive integers such that P (n)

ii > 0, that is,

d(i) = gcd{n ≥ 1 : P
(n)
ii > 0}.



If d(i) = 1 then we say that the state i is aperiodic. If d(i) = k ≥ 2, we say that the state i has
period k. If all the states of a Markov chain are aperiodic, i.e., d(i) = 1 for all i ∈ S, we say that the
Markov chain is aperiodic.

Definition 1.2.4. The first passage time probability f
(n)
ij is the probability that, starting in state i,

the Markov chain reaches the state j for the first time in exactly n steps, that is

f
(n)
ij = P(Xn = j,Xm 6= i,m = 1, 2, . . . , n− 1|X0 = i).

Note that f (n)ii denotes the probability of returning to the state i for the first time. We can compute
the probability of an eventual visit from the state i to the state j as

fij =

∞∑
n=1

f
(n)
ij .

Definition 1.2.5. The state i ∈ S is recurrent if fii = 1. The state i ∈ S is transient if fii < 1.

Definition 1.2.6. The first passage time to the state j is given by

Tj = min{n ≥ 1|Xn = j}.

Then the first passage time probability and the first passage time are related by f
(n)
ij = P(Tj =

n|X0 = i), and these probabilities are related to the probabilities P (n)
ij by the formula

P
(n)
ij =

n∑
k=1

f
(k)
ij P

(n−k)
jj , n ≥ 1.

Definition 1.2.7. The generating functions associated with P (n)
ij and f (n)ij are given by

Pij(s) =

∞∑
n=0

P
(n)
ij sn, Fij(s) =

∞∑
n=0

f
(n)
ij sn, |s| < 1.

These generating functions are related by

Pij(s) = Fij(s)Pjj(s), i 6= j,

Pii(s) = 1 + Fii(s)Pii(s).

Therefore, from the previous relations we can also say that the state i is recurrent if and only if∑∞
n=1 P

(n)
ii = ∞ and transient otherwise. Note that if i is recurrent and i ↔ j, then j is recurrent.

The same occurs with the transience property.

Definition 1.2.8. The first passage time from the state i to the state j is given by

Tij = min{n ≥ 0|Xn = j,X0 = i},

while the mean recurrence time is given by

µij = E[Tij ].



If i = j, then we simply write µi.

Definition 1.2.9. If µi = ∞, the state i is called null recurrent. If µi < ∞, the state i is called
positive recurrent or ergodic.

To state some limiting properties of the Markov chains, we need the following definition.

Definition 1.2.10. The vector π = (πi)i∈S is an invariant or stationary vector for the Markov chain
if

πi ≥ 0, for all i ∈ S and πP = π.

If we can normalize this vector in such a way that it is a probability distribution, i.e.,
∑
i∈S πi = 1,

then we call it an invariant or stationary distribution.

Finally, we are going to state two very well known results on the convergence of Markov chains.

Theorem 1.2.11. If a Markov chain is irreducible and aperiodic, then the invariant distribution exists
and it is given by

lim
n→∞

P
(n)
ij = πj , for all i, j ∈ S.

Theorem 1.2.12. If a Markov chain is irreducible, positive recurrent and aperiodic, then the invariant
distribution exists and it is given by

πj = lim
n→∞

P
(n)
ij =

1

µj
,

and it is the only solution to the system πP = π subject to
∑
i∈S πi = 1 and πi ≥ 0 for all i ∈ S.

The theory of Markov chains has been widely developed for both, discrete and continuous time as
well as for countable and continuous or general state spaces. For more results on this topic we refer
the reader to [42, 46].

1.3 Discrete-time birth-death chains on Z≥0

In the following chapters we are going to study a special case of discrete-time Markov chains called
birth-death chains or random walks. Therefore, in this section we will state some general results about
this particular process. These results will prove to be very useful later. From now on we will use
the term discrete-time birth-death chain, or simply birth-death chain, since random walks are usually
understood as discrete-time birth-death chains with constant transition probabilities.

Roughly speaking, a discrete-time birth-death chain is a Markov chain with countable state space
S that at each step can move +1 or −1, i.e., the process can move from state i to state j only if
|i − j| ≤ 1. Let us consider {Xt : t = 0, 1, . . . } an irreducible birth-death chain with the state space
on Z≥0

. Then the transition probability matrix P is given by the following semi-infinite tridiagonal
matrix

P =


b0 a0 0 0 · · ·
c1 b1 a1 0 · · ·
0 c2 b2 a2 · · ·
...

...
. . . . . . . . .

 , (1.3.1)



where a0 + b0 = 1 and an + bn + cn = 1 for all n ≥ 1 and an, cn+1 > 0, bn ≥ 0 for all n ∈ Z≥0.
Observe that P is a tridiagonal or Jacobi matrix (see Section 1.1). A diagram of the birth-death chain
described by P is given in Figure 1.1.

Figure 1.1: Diagram for a discrete-time birth-death chain with state space on Z≥0.

Definition 1.3.1. Let (πn)n≥0 be a solution of the symmetry equation πP = π for P defined in
(1.3.1). Then (πn)n≥0 is called the sequence of potential coefficients of P and it is given by

π0 = 1, πn =
a0a1 · · · an−1
c1c2 · · · cn

, n ≥ 1.

Notice that (πn)n≥0 is an invariant vector of the birth-death chain and it will be a distribution if∑∞
n=0 πn <∞.
Now, there is an important representation formula concerning the spectral measure associated to

P . To derive it, we need to define the polynomials Q(x) = (Q0(x), Q1(x), . . . )T as a solution of the
eigenvalue equation xQ(x) = PQ(x). This polynomial family is given by

Q0(x) =1, Q−1(x) = 0,

xQ0(x) =a0Q1(x) + b0Q0(x),

xQn(x) =anQn+1(x) + bnQn(x) + cnQn−1(x), n ≥ 1.

(1.3.2)

If we consider the matrix P as an operator acting in the Hilbert space `2π(Z≥0) = {(αn)n∈Z≥0
:∑∞

n=0 |αn|2πn <∞}, as follows:

(Pf)n = anfn+1 + bnfn + cnfn−1, f ∈ `2π(Z≥0),

where the sequence (πn)n≥0 is given by Definition 1.3.1, then, P gives rise to a self-adjoint operator
of norm ≤ 1 that we are going to call also P (see [8, Lemma 2.4]). Note that in the following four
equations we are abusing the notation since P represents a self-adjoint operator. Let us define the
vector e(i), i ≥ 0, as the vector with entries e(i)j = δij/πi, where δij is the Kronecker delta. Then we
have

Pe(i) = 1/πi(0, . . . , ai−1, bi, ci+1, 0, . . . )
T and Pne(j) =

1

πj
(Pn0j , P

n
1j , . . . ), n > 1.

Then

(Pne(j), e(i))π =
1

πj

∞∑
k=0

Pnkj
δik
πi
πk =

1

πj
P

(n)
ij . (1.3.3)

Also, using the three-term recurrence formula (1.3.2) and induction, it is possible to prove that
Qn(P )e(0) = e(n). Therefore we have

P
(n)
ij = πj(P

ne(j), e(i))π = πj(P
nQj(P )e(0), Qi(P )e(0))π = πj(P

nQj(P )Qi(P )e(0), e(0))π.



Using the spectral theorem (Theorem 1.1.6) we know that there exists a probability measure ψ
supported on the interval [−1, 1] such that∫ 1

−1
f(x)dψ(x) = (f(P )e(0), e(0))π.

The support of ψ is a consequence of the Perron-Frobenius theorem (see [30, Theorem 8.4.4]) since P
is self-adjoint in `2π(Z≥0) and all eigenvalues of P are contained inside the unit circle.

Therefore we obtain the so-called Karlin–McGregor representation formula for birth-death chains
on Z≥0

:

P
(n)
ij = πj

∫ 1

−1
xnQi(x)Qj(x)dψ(x). (1.3.4)

Let us highlight that if we take n = 0 in the previous equation we get∫ 1

−1
Qi(x)Qj(x)dψ(x) =

δij
πj
, (1.3.5)

where δij is the Kronecker delta.
Therefore, the polynomials defined by (1.3.2) are orthogonal with respect to the measure ψ. We

know the family (Qn(x))n≥0 as the family of orthogonal polynomials associated with P and ψ as the
spectral measure associated with P . For more details on this topic see [8, Section 2.2].

As a matter of fact, in the 1950s, S. Karlin and J. McGregor [39, 40, 41] studied continuous-time
birth-death processes and subsequently, the case of discrete-time birth-death chains. This series of
papers represented the beginning of the study of the relation between orthogonal polynomials and
stochastic processes. S. Karlin and J. McGregor derived equation (1.3.4) for the n-step transition
probabilities in [41] and showed its usefulness in the study of properties such as recurrence and
transience in the following theorem.

Theorem 1.3.2. Consider {Xt : t = 0, 1, . . . } a discrete-time birth-death chain with one-step transition
probability matrix P given by (1.3.1) where a0 +b0 = 1 (i.e., 0 is a reflecting state). Then the following
are equivalent:

• The birth-death chain is recurrent.

•
∫ 1

−1

dψ(x)

1− x
=∞.

•
∞∑
n=0

1

anπn
=∞.

In addition, the following are equivalent

• The birth-death chain is positive recurrent.

• The measure ψ has a finite jump at x = 1 of size

( ∞∑
n=0

πn

)−1
.



•
∞∑
n=0

πn <∞.

Remark 1.3.3. In a similar way to the context of orthonormal polynomials, in the context of birth-death
chains we have the concept of the k-th discrete-time birth-death chain which transition probability
matrix is generated by eliminating the first k + 1 rows and columns of P given by (1.3.1). The case
with k = 0 is particularly useful as it will help us to compute the spectral measure for later examples.
Let us denote ψ(0) the spectral measure associated with the 0-th birth-death chain. Then we have

B(z;ψ) = − 1

z − b0 + a0c1B(z;ψ(0))
.

Note that this equation is very similar to (1.1.4) with the difference that P here is not necessarily a
symmetric matrix.

1.4 Discrete-time birth-death chains on Z
In this section we will describe a discrete-time birth-death chain in a similar way that in the previous
section but now considering as state space the whole set of integers Z. These processes are also known
as bilateral birth-death chains. We will follow the last section of [8, Chapter 2] and [41]. Note that in
this section we are going to use the same notation for the same concepts as in the previous section but
with indices in Z instead of Z≥0.

Let us consider {Xt : t = 0, 1, . . .} an irreducible discrete-time birth-death chain with state space on
the integers Z with transition probability matrix P given by

P =



. . . . . . . . .
c−1 b−1 a−1

c0 b0 a0
c1 b1 a1

. . . . . . . . .

 . (1.4.1)

Note that, for this case, the matrix P is a doubly infinite tridiagonal stochastic matrix. Then all
entries are nonnegative and

cn + bn + an = 1, n ∈ Z.

Since the process is irreducible, then we have that 0 < an, cn < 1, n ∈ Z. A diagram of the birth-death
chain described by P is given by Figure 1.2

Figure 1.2: Diagram for a discrete-time bilateral birth-death chain.

The behavior of this birth-death chain is characterized by the potential coefficients.



Definition 1.4.1. Let (πn)n∈Z be a solution of the symmetry equation πP = π for P defined in
(1.4.1). Therefore (πn)n∈Z is called the sequence of potential coefficients of P and it is given by

π0 = 1, πn =
a0a1 · · · an−1
c1c2 · · · cn

, π−n =
c0c−1 · · · c−n+1

a−1a−2 · · · a−n
, n ≥ 1.

In other words, (πn)n∈Z is an invariant vector of P . Now we consider the eigenvalue equation

xQ(x) = PQ(x),

where Q(x) = (. . . , Q−1(x), Q0(x), Q1(x), . . . )T . It turns out that for each x real or complex there are
two polynomial families of linearly independent solutions, so we have Qαn(x) for α = 1, 2, n ∈ Z. Each
of the solutions depends on the initial values at n = −1 and n = 0 and they are given by

Q1
0(x) = 1, Q2

0(x) = 0,

Q1
−1(x) = 0, Q2

−1(x) = 1,

xQαn(x) = anQ
α
n+1(x) + bnQ

α
n(x) + cnQ

α
n−1(x), n ∈ Z, α = 1, 2.

(1.4.2)

It is easy to see that the degree of the previous polynomials depends on n as follows

deg(Q1
n(x)) = n, n ≥ 0, deg(Q2

n(x)) = n− 1, n ≥ 1,

deg(Q1
−n−1(x)) = n− 1, n ≥ 1, deg(Q2

−n−1(x)) = n, n ≥ 0.

Also, it is possible to compute the leading coefficients of the polynomials (Qαn(x))n∈Z, α = 1, 2. First,
from the three-term recurrence relation (1.4.2) we have

Qαn+1(x) =
x− bn
an

Qαn(x)− cn
an
Qαn−1(x),

Qαn−1(x) =
x− bn
cn

Qαn(x)− an
cn
Qαn+1(x).

Now we define R1
n and L1

n as the leading coefficient of Q1
n(x) and Q1

−n−1(x), respectively. Then we get

R1
0 = 1, R1

n =
1

a0a1 · · · an−1
, n ≥ 1,

L1
−1 = 0, L1

n−1 = − a−1
c−1c−2 · · · c−n

, n ≥ 1.

In the same way, if R2
n and L2

n are the leading coefficients of Q2
n(x) and Q2

−n−1(x), respectively, we
get

L2
0 = 1, L2

n−1 =
L2
n−2
c−n

=
1

c−1c−2 · · · c−n
, n ≥ 1,

R2
−1 = 0, R2

n−1 =
R2
n−2
an−1

= − c0
a0a1 · · · an−1

, n ≥ 1.

Then, for n ≥ 1, it is possible to get an expression of the two polynomial families using the leading
coefficients as follows

Q1
n(x) = R1

nx
n +O(xn−1), (1.4.3)

Q1
−n−1(x) = L1

n−1x
n−1 +O(xn−2),



and

Q2
n(x) = R2

n−1x
n−1 +O(xn−2),

Q2
−n−1(x) = L2

nx
n +O(xn−1). (1.4.4)

Let us consider the Hilbert space `2π(Z) = {(αn)n∈Z :
∑
n∈Z |αn|2πn <∞}. Here the matrix P gives

rise to a self-adjoint operator of norm ≤ 1, which we will also denote by P . In this space, if we define
the vectors e(i) with entries e(i)j =

δij
πj

, we obtain the same expression as in equation (1.3.3). Now, the
main difference is that we have two linearly independent polynomial families. Then, using the three
term recurrence relation (1.4.2) and induction, we can prove that

Q1
i (P )e(0) +Q2

i (P )e(−1) = e(i), i ∈ Z.

Therefore

P
(n)
ij = πj(P

ne(j), e(i))π = πj(P
n[Q1

j (P )e(0) +Q2
j (P )e(−1)], Q1

i (P )e(0) +Q2
i (P )e(−1))π

= πj [(P
nQ1

j (P )Q1
i (P )e(0), e(0))π + (PnQ1

j (P )Q2
i (P )e(0), e(−1))π

+ (PnQ2
j (P )Q1

i (P )e(−1), e(0))π + (PnQ2
j (P )Q2

i (P )e(−1), e(−1))π].

Here, we can apply the spectral theorem three times from where we get the existence of three unique
measures ψ11(x), ψ22(x) and ψ12(x) supported on the interval [−1, 1] such that∫ 1

−1
f(x)ψ11(x)dx = (f(P )e(0), e(0))π,∫ 1

−1
f(x)ψ12(x)dx = (f(P )e(0), e(−1))π,∫ 1

−1
f(x)ψ22(x)dx = (f(P )e(−1), e(−1))π,

where f is a real bounded function on the interval [−1, 1]. Note that, in fact, there are four measures
but we have ψ12(x) = ψ21(x) as a consequence of P being self-adjoint and the symmetry of the inner
product. Then we have the Karlin-McGregor integral representation formula for birth-death chains
with state space on Z as follows

P
(n)
ij = πj

∫ 1

−1
xn

2∑
α,β=1

Qαi (x)Qβj (x)dψαβ(x), i, j ∈ Z.

If we take n = 0 in the previous equation, together with equations (1.4.2) for i, j = 0, we have

P 0
00 = π0

∫ 1

−1
Q1

0(x)Q1
0(x)dψ11(x) =

∫ 1

−1
dψ11(x),

but it is clear that P 0
00 = 1. Therefore ψ11 is a probability measure. If we take i, j = −1 we have

P 0
−1−1 = π−1

∫ 1

−1
Q2
−1(x)Q2

−1(x)dψ22(x) = π−1

∫ 1

−1
dψ22(x).



Therefore π−1ψ22 is a probability measure. If we take i = −1 and j = 0 we have

P 0
−11 = π0

∫ 1

−1
Q2
−1(x)Q1

0(x)dψ12(x) =

∫ 1

−1
dψ12(x).

Therefore ψ12 is a signed measure satisfying
∫ 1

−1 dψ12(x) = 0. Taking n = 0, for any i, j in the state
space, we also get the following orthogonality relation

2∑
α,β=1

∫ 1

−1
Qαi (x)Qβj (x)dψαβ(x) =

δij
πj
, i, j ∈ Z, (1.4.5)

with δij the Kronecker delta. For simplicity let us assume that the three measures are continuously
differentiable with respect to the Lebesgue measure, i.e., abusing the notation we have dψαβ(x) =
ψαβ(x)dx, α, β = 1, 2. Now, let us define the spectral matrix associated with P as

Ψ(x) =

(
ψ11(x) ψ12(x)
ψ12(x) ψ22(x)

)
. (1.4.6)

Then the orthogonality relations (1.4.5) can be written in matrix form as∫ 1

−1

(
Q1
i (x), Q2

i (x)
)
Ψ(x)

(
Q1
j (x)

Q2
j (x)

)
dx =

δij
πj
, i, j ∈ Z, (1.4.7)

where δij is the Kronecker delta and the Karlin-McGregor integral representation formula can be
written as follows

P
(n)
ij = πj

∫ 1

−1
xn
(
Q1
i (x), Q2

i (x)
)
Ψ(x)

(
Q1
j (x)

Q2
j (x)

)
dx, i, j ∈ Z. (1.4.8)

Remark 1.4.2. Observe that the invariant measure of P is given by the potential coefficients given in
(1.4.1), which can also be computed using the inverse of the norms of the corresponding orthogonal
polynomials (see (1.4.7)). This invariant measure will be a probability distribution if and only if the
process is positive recurrent, or, in other words, if

∑
n∈Z πn <∞.

In general, the computation of the spectral matrix for birth-death chains on Z is not an easy subject.
If we consider the irreducible birth-death chain {Xt : t = 0, 1, . . . } with transition probability matrix
P given by (1.4.1), we can reduce the computation of the spectral matrix Ψ(x) to the study of two
birth-death chains corresponding to the two directions to infinity. Let ψ+ be the measure associated
with the birth-death chain with state space {0, 1, 2, . . . } whose probability transition matrix P+ is
given by P+

ij = Pij , i, j ≥ 0, i.e.

P+ =


b0 a0 0 0 · · ·
c1 b1 a1 0 · · ·
0 c2 b2 a2 · · ·
...

...
. . . . . . . . .

 , (1.4.9)

with probability of absorption to the state −1 given by c0 > 0. And let ψ− be the measure associated
with the birth-death chain with state space {−1,−2, . . . } whose probability transition matrix P− is



given by P−ij = Pij , i, j ≤ −1, i.e.

P− =


b−1 c−1 0 0 · · ·
a−2 b−2 c−2 0 · · ·
0 a−3 b−3 c−3 · · ·
...

...
. . . . . . . . .

 , (1.4.10)

with probability of absorption to the state 0 given by a−1 > 0. Then, using the corresponding
generating functions and the definition of the Stieltjes transform of both birth-death chains, it is
possible to compute the Stieltjes transforms of ψα,β , α, β = 1, 2 given in (1.4.6) with the following
relations:

B(z;ψ11) =
B(z;ψ+)

1− a−1c0B(z;ψ+)B(z;ψ−)
,

c0
a−1

B(z;ψ22) =
B(z;ψ−)

1− a−1c0B(z;ψ+)B(z;ψ−)
,

B(z;ψ12) =
−a−1B(z;ψ+)B(z;ψ−)

1− a−1c0B(z;ψ+)B(z;ψ−)
.

(1.4.11)

For details about the derivation of these relations we refer the reader to [41] (see also [8, Section 2.6]).
Finally, to get the spectral matrix associated with P , we can use the Perron-Stieltjes inversion formula
given by (1.1.2).

In a similar way to the spectral measure of the previous section, the computation of the spectral
matrix for birth-death chains on Z is very useful when we want to study recurrence or the invariant
measure of the process described by P . Following [8, Section 2.6], we have that the birth-death chain
is recurrent if and only if∫ 1

−1

ψ11(x)

1− x
dx =∞ or π−1

∫ 1

−1

ψ22(x)

1− x
dx =∞,

and it is positive recurrent if and only if ψ11(x) and/or π−1ψ22(x) has a jump at the point 1.

1.5 Quasi-birth-and-death processes
Let us consider the homogeneous discrete-time Markov chain {Zt : t = 0, 1, . . . } with two-dimensional
state space given by Z≥0×{1, 2, . . . N}, where N ∈ Z≥1. The process is called a quasi-birth-and-death
process if it satisfies the following property:

P[Z1 = (i, j)|Z0 = (i0, j0)] = 0, if |i− i0| > 1. (1.5.1)

This means that the one-step transition probability matrix of the process can be given by a block
tridiagonal matrix of the form

P =


B0 A0

C1 B1 A1

C2 B2 A2

. . . . . . . . .

 , (1.5.2)



where An, Bn, and Cn, are N ×N matrices containing the probabilities of the one-step transitions.
Note that if N = 1 we go back to a regular discrete-time birth-death chain. In general, the first

component of the state space is called level while the second is the phase. Given the property (1.5.1),
the main characteristic of these processes is that they allow transitions between all adjacent levels and
all phases. The matrices Cn represent the probabilities of all the different ways of moving down 1
level while going from any phase to any other phase, starting at level n. We can interpret An and
Bn similarly with the probabilities of moving up 1 level and staying at the same level, respectively. A
diagram of a quasi-birth-and-death process with 2 phases is represented in Figure 1.3.

Figure 1.3: Diagram for the discrete-time quasi-birth-and-death process described by P with N = 2.

There are some interesting results about quasi-birth-and-death processes concerning the spectral
analysis of the one-step transition probability matrix P (1.5.2). For instance, in [7] (see also [18]), the
authors study the spectral matrix associated to quasi-birth-and-death processes. With this in mind,
let us define the sequence of N × N matrix-valued polynomials (Qn(x))n≥0 satisfying the following
three-term recurrence relation

xQ0(x) = A0Q1(x) +B0Q0(x), Q0(x) = IN ,

xQn(x) = AnQn+1(x) +BnQn(x) + CnQn−1(x), n ≥ 1,
(1.5.3)

where IN denotes the N × N identity matrix. Then, it is possible to characterize the existence of
a spectral matrix Ψ such that the polynomials (Qn(x))n≥0 are orthogonal with respect to dΨ(x) in
terms of the matrix-valued inner product∫

R
Qi(x)dΨ(x)Q∗j (x) = 0N , for all i 6= j,

where 0N is the null matrix of size N ×N and A∗ is the Hermitian transpose of a matrix A.
Then, in [7, Section 2] we can find the following results.

Theorem 1.5.1. Assume that the matrices An and Cn in the one step block tridiagonal transition
matrix (1.5.2) are nonsingular. There exists a N ×N spectral matrix Ψ(x) supported on the real line
such that the polynomials (Qn)n≥0 defined by (1.5.3) are orthogonal with respect to dΨ(x) if and only if
there exists a sequence of nonsingular matrices (Rn)n≥0 such that the following relations are satisfied:

RnBnR
−1
n is Hermitian for all n ≥ 0,



R∗nRn = (C∗1 · · ·C∗n)−1(R∗0R0)A0 · · ·An−1, n ≥ 1.

Theorem 1.5.2. Assume that the conditions of Theorem 1.5.1 are satisfied and define the block
diagonal matrix R = diag(R0, R1, R2, . . . ). If the matrix R is Hermitian and the matrix R∗PR−1
has nonnegative entries, then the spectral matrix Ψ corresponding to the polynomials given by (1.5.3)
is supported on the interval [−1, 1].

Therefore we have the Karlin-McGregor representation formula for quasi-birth-and-death processes.

Theorem 1.5.3. If the assumptions of Theorems 1.5.1 and 1.5.2 are satisfied, then the (i, j) block P n
ij

of the n-step block transition probability matrix P n can be represented by

P n
ij =

(∫ 1

−1
xnQi(x)dΨ(x)Q∗j (x)

)
Πj ,

where Ψ is the spectral matrix associated with the one step block transition probability matrix P (1.5.2)
and

Πj = (||Qj(x)||2Ψ)−1 =

(∫ 1

−1
Qj(x)dΨ(x)Q∗j (x)

)−1
.

Using the matrix notation we have an alternative way of writing Πn as follows (see [31])

Πn = (C∗1 · · ·C∗n)−1Π0A0 · · ·An−1, n ≥ 1. (1.5.4)

Besides, if we assume conditions of Theorem 1.5.1 and that the spectral matrix is supported on the
interval [−1, 1], we have the concept of recurrence for quasi-birth-and-death processes. Let us denote
by eTk = (0, . . . , 0, 1, 0, . . . , 0)T the k-th canonical vector in RN . If the quasi-birth-and-death process
is irreducible, it is recurrent if and only if the condition

eTj

(∫ 1

−1

dΨ(x)

1− x

)
Π−10 ej =∞, (1.5.5)

is satisfied for some j ∈ {1, . . . , N}. The quasi-birth-and-death process is positive recurrent if and only
if one of the measures

eTj dΨ(x)Π−10 ej , j ∈ {1, . . . , N}, (1.5.6)

has a jump at the point x = 1. For more details on this topic we refer the reader to [7, Section 4.1]
and [18].

Now, let us present some results similar to those given in Section 1.1 for a scalar measure to relate
the Jacobi matrix, the spectral matrix and the corresponding Stieltjes transform. These results can be
found in [4] where the author shows a generalization of the Karlin-McGregor representation formula
for quasi-birth-and-death processes.

Let us consider the Jacobi matrix P given by (1.5.2). Here, the 0-th associated process is generated
by removing the first block column and the first block row, that is

P0 =


B1 A1

C2 B2 A2

C3 B3 A3

. . . . . . . . .

 .



The matrix-valued Stieltjes transform is given by

B(z; Ψ) =

∫
R

dΨ(x)

x− z
, z ∈ C \ R. (1.5.7)

The relation between the matrix-valued Stieltjes transforms associated to P and P0 is given by

B(z; Ψ)ΠΨ = [zIN −B0 −A0B(z; Ψ0)ΠΨ0C1]
−1
, (1.5.8)

where ΠΨ = (
∫
R dΨ(x))−1 and ΠΨ0 = (

∫
R dΨ0(x))−1.

Remark 1.5.4. In [4], the definition of the matrix-valued Stieltjes transform and ΠΨ depends on the
value of Q0(x) that, in this case, is the identity matrix.

To end this section, we will highlight the important observation that a birth-death chain on Z can
be interpreted as a quasi-birth-death chain with 2 phases. Indeed, by relabeling the states in Z in the
following way

{0, 1, 2, . . .} → {0, 2, 4, . . .}, and {−1,−2,−3, . . .} → {1, 3, 5, . . .}, (1.5.9)

we have that the doubly infinite tridiagonal matrix P given in (1.4.1) is equivalent to the semi-infinite
block tridiagonal matrix P given in (1.5.2) whith blocks given by

B0 =

(
b0 c0
a−1 b−1

)
, Bn =

(
bn 0
0 b−n−1

)
, n ≥ 1,

An =

(
an 0
0 c−n−1

)
, n ≥ 0, Cn =

(
cn 0
0 a−n−1

)
, n ≥ 1.

The matrix-valued polynomials associated to P are given by

Qn(x) =

(
Q1
n(x) Q2

n(x)
Q1
−n−1(x) Q2

−n−1(x)

)
, n ≥ 0, (1.5.10)

where (Qαn)n∈Z, α = 1, 2 are given by (1.4.2). A diagram of this process looks like Figure 1.4.
Note that by equations (1.4.3) and (1.4.4), deg(Qn) = n and the leading coefficient is a nonsingular

matrix. Using Theorem 1.5.1 with the sequence of nonsingular matrices given by

Rn =

(√
πn 0
0

√
π−n−1

)
, n ≥ 0,

we can ensure the existence of the spectral matrix Ψ and we can write the orthogonality relation
defined in terms of the matrix-valued inner product∫ 1

−1
Qn(x)Ψ(x)Q∗m(x)dx = Πnδnm, (1.5.11)

where δnm is the Kronecker delta and

Πn =

(
πn 0
0 π−n−1

)
, n ≥ 0, (1.5.12)

and π = (πn)n∈Z are given by Definition 1.4.1.



Figure 1.4: Diagram for the discrete-time quasi-birth-and-death process described by P equivalent to
the discrete-time birth-death chain described by P on the integers.

In this form, the Karlin-McGregor integral representation formula for the 2× 2 block entry (i, j) is
given by

P
(n)
ij =

(∫ 1

−1
xnQi(x)Ψ(x)Q∗j (x)dx

)
Πj , i, j ∈ Z≥0, (1.5.13)

where Ψ(x) is given by (1.4.6).

Remark 1.5.5. In the same lines as mentioned in Remark 1.4.2 we have that the invariant measure of
the quasi-birth-and-death process generated by P , using (1.5.12) and [31, Theorem 3.1], is given by
the vector

π = (π0, π−1;π1, π−2; · · · ) ,

and clearly, this invariant measure will be a probability distribution if and only if the process is positive
recurrent, or, in other words, if

∑
n∈Z πn <∞.

1.6 Stochastic UL and LU factorizations on Z≥0 and Darboux
transformations

The main goal of this section is to describe the UL and LU stochastic factorizations and the Darboux
transformation of the one-step transition probability matrix P associated with a discrete-time birth-death
chain with state space on the nonnegative integers Z≥0. This section is based on [24] (see also [38,
Chapter 1]).

Let us consider {Xt : t = 0, 1, . . . } an irreducible discrete-time birth-death chain with state space
on Z≥0 with transition probability matrix P given by (1.3.1). The UL stochastic factorization is given
by

P =


y0 x0 0 0 . . .
0 y1 x1 0 . . .
0 0 y2 x2 . . .
...

...
...

. . . . . .



s0 0 0 0 . . .
r1 s1 0 0 . . .
0 r2 s2 0 . . .
...

. . . . . . . . . . . .

 = PUPL,



where PU and PL are also stochastic matrices. Note that PU is an upper bidiagonal semi-infinite
matrix describing a pure-birth process while PL is a lower bidiagonal semi-infinite matrix describing a
pure-death process. This means that

xn + yn =1, n ≥ 0,

s0 = 1, rn + sn =1, n ≥ 1,

0 ≤ xn, yn ≤ 1 for all n ≥ 0 and 0 ≤ rn, sn ≤ 1 for all n ≥ 1. The system of equations generated
by the UL factorization has one free parameter, say y0. This means that we have a whole family of
factorizations depending on the choice of the free parameter 0 ≤ y0 < 1.

On the other hand, the LU stochastic factorization is given by

P =


s̃0 0 0 0 . . .
r̃1 s̃1 0 0 . . .
0 r̃2 s̃2 0 . . .
...

. . . . . . . . . . . .



ỹ0 x̃0 0 0 . . .
0 ỹ1 x̃1 0 . . .
0 0 ỹ2 x̃2 . . .
...

...
...

. . . . . .

 = P̃LP̃U ,

where P̃L and P̃U are also stochastic matrices, i.e., all entries are nonnegative and

x̃n + ỹn =1, n ≥ 0,

s̃0 = 1, r̃n + s̃n =1, n ≥ 1.

In this case there is no free parameter. This means that, if it exists, the stochastic factorization will
be unique.

From a probabilistic point of view, these factorizations involve dividing the probabilistic model
associated with the birth-death chain into two different and simpler experiments, and then combine
them together to obtain a simpler description of the original probabilistic model. Note that although we
can solve the equation system for the respective factorizations, nothing ensures that the two matrices
are stochastic. For that reason we have to introduce some basic elements of the theory of continued
fractions.

Let us define H as the continued fraction generated by alternatively choosing an and cn as follows

H = 1−
a0

1−
c1

1−
a1

1− . . .

. (1.6.1)

The sequence a0, c1, a1, c2, . . . is called the sequence of partial numerators of the continued fraction H.
A different notation for H is the following:

H = 1− a0
1
− c1

1
− a1

1
− c2
· · · .

Now let us consider the sequence of convergents (hn)n≥0 given by

h2n =1− a0
1
− c1

1
− a1

1
− . . . cn

1
, h2n+1 = 1− a0

1
− c1

1
− a1

1
− . . . an

1
,



for n ≥ 0. An important property of the convergents is that we can write them as the following
quotients

hn =
Nn
Dn

, n ≥ 0,

where the sequences (Nn)n≥0 and (Dn)n≥0 can be computed recursively. For basic concepts on the
theory of continued fractions we refer the reader to [3, 50].

Theorem 1.6.1. Let H be the continued fraction defined by (1.6.1) with convergents (hn)n≥0. If we
assume that

0 < Nn < Dn, n ≥ 1,

then H is convergent. Moreover PU and PL are stochastic matrices if and only if

0 ≤ y0 ≤ H.

The complete proof of this theorem can be found in [24] where we can also find the following
equivalent theorem for the LU stochastic factorization.

Theorem 1.6.2. Consider the continued fraction

H̃ = 1− c1
1
− a1

1
− c2

1
− . . . ,

with convergents h̃n = Ñn/D̃n. If we have

0 < Ñn < D̃n, for all n ≥ 1,

then H̃ is convergent. Moreover, for the LU factorization we have that both matrices P̃L and P̃U are
stochastic if and only if

0 ≤ a0 ≤ H̃.

Once one can ensure that the UL and LU stochastic factorizations are possible, the authors of
[24] proceed to study the so-called discrete Darboux transformation which implies to invert the order
of multiplication of the factors. In the context of urn models, with the stochastic factorization, it
is possible to interpret the birth-death chain described by P as the consecutive performance of two
simpler experiments, A and B. The Darboux transformation can be interpreted as exchanging the
order of the two experiments, i.e., perform experiment B first and then experiment A.

Note that, as both matrices are stochastic, the product is again stochastic. In fact, this new matrix
describes a birth-death chain which intuitively, in some way, must be related to the original one. This
relation will be studied through the spectrum of both processes.

For the UL case we denote the Darboux transformation by P̃ = PLPU . The matrix P̃ describes a
new birth-death chain and it generates a family of polynomials (Q̃(x))n≥0 defined by

Q̃ = PLQ, (1.6.2)

so that it satisfies the eigenvalue equation xQ̃ = P̃ Q̃, with initial condition Q̃0 = 1 and deg(Q̃n) = n.
The relation between the process described by P̃ and the original process described by P is given in
the following theorem.



Theorem 1.6.3. Consider the family of polynomials (Qn)n≥0, defined by (1.3.2), associated to P =

PUPL which are orthogonal with respect to ψ in the sense of equation (1.3.5). Let (Q̃n)n≥0 be the family
of polynomials associated to P̃ = PLPU and generated by (1.6.2) and the Geronimus transformation
of ψ given by

ψ̃(x) = y0
ψ(x)

x
+Mδ0, M = 1− y0µ−1,

where y0 is the free parameter for the stochastic factorization, δ0(x) is the Dirac delta and µ−1 =∫ 1

−1 x
−1dψ(x) is well defined. Then ∫ 1

−1
Q̃i(x)Q̃j(x)dψ̃(x) =

δij
π̃j
,

where δij is the Kronecker delta and (π̃n)n≥0 is the sequence of potential coefficients of P̃ given by

π̃0 = 1, π̃n =
ã0, . . . , ãn−1
c̃1, . . . , c̃n

, n ≥ 1.

On the other hand, for the Darboux transformation of the LU stochastic factorization P̂ = P̃U P̃L,
following the same idea, we can define the family of polynomials

Q̄ = P̃UQ.

However this family does not satisfy the same initial conditions, so we have to make a slight adjustment
by defining the family (Q̂n)n≥0 through the equation

Q̄n(x) = xQ̂n(x),

that satisfies Q̂0(x) = 1 and deg(Q̂n) = n. In [38, Lemma 1.5] we can find the proof that this family
is indeed a family of polynomials and the following results as part of [38, Theorem 1.6].

Theorem 1.6.4. Let (Q̂n)n≥0 be the family of polynomials associated to P̂ = P̃U P̃L and consider the
Christoffel transformation of ψ given by

ψ̂(x) =
xψ(x)

ỹ0
.

Therefore ∫ 1

−1
Q̂i(x)Q̂j(x)dψ̂(x) =

δij
π̂j
,

where δij is the Kronecker delta and (π̂n)n≥0 is the sequence of potential coefficients of P̂ given by

π̂0 = 1, π̂n =
â0, . . . , ân−1
ĉ1, . . . , ĉn

, n ≥ 1.

Now, let us highlight the importance of having the spectral measures of the processes described in
the previous paragraphs. In addition to being able to describe some probabilistic properties of the
associated process and having the relationship between P and P̃ or P̂ , we have the Karlin-McGregor
integral representation formula for the n-step transition probabilities as the one given for P in (1.3.4).



1.6.1 Birth-death chain generated by the Jacobi polynomials
The family of Jacobi polynomials is one of the classical families of orthogonal polynomials of a
continuous variable (see [3, 48]). In a general context, this family depends on two parameters α and β,
and is orthogonal with respect to ω(x) = (1− x)α(1 + x)β , with α, β > −1 in the interval S = (−1, 1).
These polynomials, denoted by P (α,β)

n (x), can be generated through the following three-term recurrence
relation

P
(α,β)
−1 (x) = 0, P

(α,β)
0 (x) = 1,

xP (α,β)
n (x) =

2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
P

(α,β)
n−1 (x)

+
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
P (α,β)
n (x)

+
2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
P

(α,β)
n+1 (x), n ≥ 0,

and it is possible to see that

||P (α,β)
n ||2ω =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

n!(2n+ α+ β + 1)Γ(n+ α+ β + 1)
, n ≥ 0.

The simplicity of this family has made it one of the best known and used in different contexts. There
are some special cases of Jacobi polynomials for which formulas simplify considerably. For instance,
for α = β = 0 we get the Legendre polynomials

Pn(x) = P (0,0)
n (x), n ≥ 0.

For α = β = −1/2 we get the Chebychev polynomials of the first kind

Tn(x) = 22n
(

2n

n

)−1
P (−1/2,−1/2)
n (x), n ≥ 0.

For α = β = 1/2 we get the Chebychev polynomials of the second kind

Un(x) = 22n
(

2n+ 1

n+ 1

)−1
P (1/2,1/2)
n (x), n ≥ 0.

For α = β we get the Gegenbauer polynomials also known as ultraspherical polynomials

P (λ)
n (x) =

(
2α

α

)−1(
n+ 2α

α

)
P (α,α)
n (x), n ≥ 0,

with α = λ− 1/2 6= −1/2. In fact some of these polynomials appeared chronologically before than the
Jacobi polynomials (see [3] and [8, Section 1.4]).

Jacobi polynomials are usually defined on the interval (−1, 1), but in fact, they can always be defined
on any other interval (a, b) by the change of variables y = a+b

2 + x b−a2 . In particular in this thesis, we
will use the Jacobi polynomials (Q

(α,β)
n )n≥0 defined on the interval (0, 1) by the three-term recurrence

relation

Q
(α,β)
−1 (x) = 0, Q

(α,β)
0 (x) = 1,

xQ(α,β)
n (x) = anQ

(α,β)
n+1 (x) + bnQ

(α,β)
n (x) + cnQ

(α,β)
n−1 (x), n ≥ 0,

(1.6.3)



with

an =
(n+ β + 1)(n+ α+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
, n ≥ 0,

bn =
(n+ β + 1)(n+ 1)

(2n+ α+ β + 1)(2n+ α+ β + 2)
+

(n+ α)(n+ α+ β)

(2n+ α+ β + 1)(2n+ α+ β)
, n ≥ 0,

cn =
n(n+ α)

(2n+ α+ β + 1)(2n+ α+ β)
, n ≥ 1,

(1.6.4)

and are orthogonal with respect to the normalized weight

ψ(x) =
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
xα(1− x)β , x ∈ [0, 1].

Observe that an > 0, n ≥ 0, bn ≥ 0, n ≥ 0, cn > 0, n ≥ 1, and a0 + b0 = 1, an + bn + cn = 1,
n ≥ 1. Therefore the Jacobi matrix generated by these coefficients is stochastic. To verify if the UL
and LU stochastic factorizations are possible, we have to compute the continued fractions H and H̃
from Theorems 1.6.1 and 1.6.2 respectively. In general, this is not an easy matter but, in this case, as
it was done in [24], we can use some results related to chain sequences.

Definition 1.6.5. A sequence (ni)i≥1 is a chain sequence if there is a sequence (mj)j≥0 such that
0 ≤ m0 < 1, 0 < mj < 1 for all j ≥ 1 and we can write

ni = (1−mi−1)mi, i ≥ 1.

We call (mj)j≥0 the parameter sequence and m0 the initial parameter.

We have the following result related to the convergence of continued fractions.

Theorem 1.6.6. Consider the continued fraction

C = 1− n1
1
− n2

1
− n3

1
− . . . .

Assume that (ni)i≥1 is a chain sequence. Then

C = m0 +
1−m0

1 + L
,

where (mj)j≥0 is the the parameter sequence of (ni)i≥1 and

L =

∞∑
j=1

m1m1 · · ·mj

(1−m1)(1−m2) · · · (1−mj)
.

Moreover, if (Nn)n≥0 and (Dn)n≥0 are the convergents of C, we have

Nn =

n∏
k=1

(1−mk) +m0

(
n−1∑
k=1

m1 · · ·mk(1−mk+1) · · · (1−mn) +

n∏
k=1

mk

)
,

Dn =

n∏
k=1

(1−mk) +

n−1∑
k=1

m1 · · ·mk(1−mk+1) · · · (1−mn) +

n∏
k=1

mk.

Therefore 0 < Nn < Dn, for all n ≥ 1.



The previous result and more about chain sequences can be found in [3].
Going back to the example of the birth-death chain generated by the Jacobi polynomials that appears

in [24], we can obtain the conditions under which the stochastic factorizations exist. For the family
of polynomials defined by (1.6.3) and the continued fraction H, the sequence of partial numerators
a0, c1, a1, c2, . . . is a chain sequence with parameter sequence given by

m2n+1 =
n+ β + 1

2n+ α+ β + 2
, m2n =

n

2n+ α+ β + 1
, n ≥ 0.

Note that m0 = 0. Then H converges to 1
1+L with L = β+1

α . Therefore, following Theorem 1.6.1, if
we take

0 ≤ y0 ≤
α

α+ β + 1
,

the UL stochastic factorization is possible.
On the other hand, for the continued fraction H̃, the sequence of partial numerators c1, a1, c2, . . . is

a chain sequence with parameter sequence given by

m2n+1 =
n+ 1

2n+ α+ β + 3
, m2n =

n+ β + 1

2n+ α+ β + 2
, n ≥ 0.

Then H̃ converges to m0 + 1−m0

1+L with L = 1
α . Therefore H̃ converges to α+β+1

α+β+2 .
Recall that for this case there is no free parameter, but it is clear that

β + 1

α+ β + 2
= a0 ≤ H̃ =

α+ β + 1

α+ β + 2
,

where the first equality follows directly from equation (1.6.4). Therefore, following Theorem 1.6.2, the
LU stochastic factorization is always possible.

About the Darboux transformation, the first step we need is to get the moment µ−1. For this case
it is easy to see that

µ−1 =

∫ 1

0

ψ(x)

x
dx =

Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

∫ 1

0

xα−1(1− x)βdx

=
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)

(
Γ(α)Γ(β + 1)

Γ(α+ β + 1)

)
=
α+ β + 1

α
.

Therefore, following Theorem 1.6.3 the spectral measure associated to the Darboux transformation
P̃ = PLPU is given by

ψ̃(x) = y0
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
xα−1(1− x)β +

(
1− y0

α+ β + 1

α

)
δ0(x), x ∈ [0, 1].

We have to be careful with some details here. The measure ψ̃ is integrable as long as α > 0 and
β > −1. Also, if y0 is in the range for the existence of the stochastic factorization, the mass at 0 is
always nonnegative, and vanishes if y0 = α

α+β+1 . The case y0 = 0 gives us a degenerate measure since
ψ̃(x) = δ0(x) (see [24, Remark 3.1]).

On the other hand, following Theorem 1.6.4, the spectral measure associated to the Darboux
transformation P̂ = P̃U P̃L is given by

ψ̂(x) =
Γ(α+ β + 3)

Γ(α+ 2)Γ(β + 1)
xα+1(1− x)β , x ∈ [0, 1].



Finally, following Theorem 1.3.2, we can see that if −1 < β ≤ 0 the integral
∫ 1

−1
ψ(x)
1−x dx is equal to

∞. Therefore the birth-death chain will be null recurrent since there is no mass at x = 1. If β > 0
the birth-death chain will be transient. This example can be found in [24, Section 5] along with a
probability interpretation through an urn model (see also [21]).



CHAPTER 2

Stochastic UL factorizations on Z

In this chapter we extend the results given in [24] but applied to bilateral birth-death chains. We
start Section 2.1 with the structure of the UL (LU) factorization that we are going to consider. Recall
that, from a probabilistic point of view, these factorizations involve dividing the birth-death chain
into two separate and simpler experiments. The first experiment is a pure-birth chain, described by
PU , followed by a pure-death chain, described by PL. The main result of this section will consist of
getting the necessary conditions for the existence of the UL and LU stochastic factorizations. We will
see that in both cases the condition is given in terms of continued fractions. An important difference
with birth-death chains on Z≥0 is that now, for the LU factorization, we also have one free parameter.

In Section 2.2 we study the Darboux transformation which implies reversing the order of multiplication
of the factors. The main motivation of Section 2.2 is to derive an explicit relation between the original
process and the one resulting from the Darboux transformation. This relation will be given by a
Geronimus transformation for both UL and LU stochastic factorizations. This situation is different from
the case of birth-death chains on Z≥0 where the spectral measure associated with the LU factorization
is given by a Christoffel transformation.

Towards the end of this chapter, we apply our results to a couple of examples. The first one has
constant transition probabilities for all the states and the second one has also constant transition
probabilities but inverted probabilities for the negative states. All the results presented in this chapter
were published in [32] which was the basis of the master’s thesis [38].

2.1 Stochastic UL and LU factorizations on the integers
Let us consider {Xt : t = 0, 1, . . . } an irreducible discrete-time birth-death chain with state space on
the integers Z with transition probability matrix P given by (1.4.1) in Section 1.4. Following the same

27



idea of [24], the UL factorization of P is given by

P =



. . . . . .
0 y−1 x−1

0 y0 x0
0 y1 x1

. . . . . .





. . . . . .
r−1 s−1 0

r0 s0 0
r1 s1 0

. . . . . .

 = PUPL, (2.1.1)

with the condition that PU and PL are also stochastic matrices. Notice that it is important to have
the zero state as a reference so that the structure of these two doubly bidiagonal matrices is clear. In
probabilistic terms, this factorization gives us a decomposition of the Markov chain described by P
into two independent processes: The first one is a pure-birth chain described by PU illustrated in Fig.
2.1, while the second one is a pure-death chain described by PL illustrated in Fig. 2.2, both with state
space in Z.

Figure 2.1: Diagram for the pure-birth process described by PU .

Figure 2.2: Diagram for the pure-death process described by PL.

Since the factorization is stochastic, all entries of PU and PL are nonnegative and the sums of all
rows are equal to one, that is

xn + yn = 1, sn + rn = 1, n ∈ Z. (2.1.2)

Equation (2.1.1) is equivalent to

an = xnsn+1,

bn = xnrn+1 + ynsn, n ∈ Z, (2.1.3)
cn = ynrn.

Also, as a direct consequence of the irreducibility conditions of P , we have that

0 < xn, yn, sn, rn < 1, n ∈ Z.

Notice that, if we fix x0 or y0, it is possible to compute all entries of PU and PL recursively. For y0
fixed and nonnegative values of the indices we can compute x0, s1, r1, y1, x1, s2, r2, y2, . . . recursively



using (2.1.2) and (2.1.3). Similarly, for negative values of the indices we can compute r0, s0, x−1, y−1,
r−1, s−1, x−2, y−2,. . . recursively using again (2.1.2) and (2.1.3). This property of UL factorization is
similar to the case of birth-death chains on Z≥0 where the UL factorization gives rise to an entire family
of factorizations of the original transition probability matrix P depending on the choice of y0 (see [24]).
Although the previous procedure describes how to obtain the coefficients of the UL factorization it
remains to obtain a formal proof to ensure that this factorization is possible.

Lemma 2.1.1. Let {Xt : t = 0, 1, 2, . . . } be an irreducible birth-death chain with state space on Z
and transition probability matrix P given by (1.4.1) and let PU and PL be the factors in (2.1.1) with
0 < y0 < 1 fixed. Then xn + yn = 1 for all n ∈ Z if and only if sn + rn = 1 for all n ∈ Z.

Proof. Let P be the stochastic matrix given by (1.4.1) and let us assume that xn + yn = 1 for all
n ∈ Z. Using equations (2.1.3), if s0 + y0 = 1, we have

s1 + r1 =
a0
x0

+
b0 − y0s0

x0
=

1− c0 − y0(1− r0)

x0
=
x0
x0

= 1.

Now, if we assume that sn + rn = 1 then, using equations (2.1.3) we have

sn+1 + rn+1 =
an
xn

+
bn − rnsn

xn
=

1− cn − yn(1− rn)

xn
=
xn
xn

= 1.

The proof for the negative indices is similar. Now, let us assume that xn + yn = 1 for all n ∈ Z and
s0 + r0 = 1, then

s−1 + r−1 =
b−1 − r0x−1

y−1
+
c−1
y−1

=
1− a−1 − x−1(1− s0)

y−1
=

1− a−1 + a−1 − x−1
y−1

= 1.

Then, if we assume that s−n + r−n = 1, we have

s−n−1 + r−n−1 =
b−n−1 − r−nx−n−1

y−n−1
+
c−n−1
y−n−1

=
1− a−n−1 − x−n−1(1− s−n)

y−n−1
=

1− a−n−1 + a−n−1 − x−n−1
y−n−1

= 1.

Therefore we can conclude that sn+rn = 1 for all n ∈ Z. For the second part of the proof if we assume
that sn + rn = 1, using the relations (2.1.3), we have

bn =ynsn + rn+1xn = yn(1− rn) + xn(1− sn+1)

=yn − ynrn + xn − sn+1xn = yn − cn + xn − an.

This means that xn + yn = an + bn + cn = 1 for all n ∈ Z since P is stochastic.

Before introducing the main theorem of this section, let us highlight the fact that (2.1.2) does not
imply that PU and PL are stochastic matrices. It remains to prove that all coefficients are positive. To
this end, the proof of Theorem 2.1 of [24] for birth-death chains on Z≥0 provides the main keys for the
case of birth-death chains on Z. There, the authors showed that matrices PU and PL are stochastic
if and only if 0 ≤ y0 ≤ H, where H is the continued fraction (2.1.4) below (see Section 1.6). The
difference now is that the free parameter y0 will be also bounded from below by another continued
fraction H ′. A somewhat rough argument of why this happens is that here the birth-death chain is



bilateral, i.e., it has positive and also negative states, so in addition to the upper bound we must have
a lower bound generated by the probabilities of the negative states of the birth-death chain.

A first key for the proof is to realize that we can compute all coefficients (yn)n∈Z and (sn)n∈Z by
using the following equations

yn =
cn

1− sn
, sn+1 =

an
1− yn

, n ∈ Z,

and then use equation (2.1.2) to compute all coefficients (xn)n∈Z and (rn)n∈Z. A second important
key is to define H and H ′ as the continued fractions generated by alternatively choosing an and cn in
different directions, that is

H = 1−
a0

1−
c1

1−
a1

1−
c2

1− . . .

and H ′ =
c0

1−
a−1

1−
c−1

1−
a−2

1− . . .

. (2.1.4)

The sequence a0, c1, a1, c2, . . . is the sequence of partial numerators of the continued fraction H while
the sequence c0, a−1, c−1, a−2, . . . is the sequence of partial numerators for H ′. Alternatively H and
H ′ can be denoted by

H = 1− a0
1
− c1

1
− a1

1
− c2
· · · and H ′ =

c0
1
− a−1

1
− c−1

1
− a−2
· · · .

For H consider the sequence of convergents (hn)n≥0 given by

h2n =1− a0
1
− c1

1
− a1

1
− . . . cn

1
, h2n+1 = 1− a0

1
− c1

1
− a1

1
− . . . an

1
,

for n ≥ 0, while for H ′ consider the sequence of convergents (h′−n)n≥0 given by

h′−2n =
c0
1
− a−1

1
− . . . a−n

1
, h′−2n−1 =

c0
1
− a−1

1
− . . . c−n

1
.

An important property of these continued fractions is that we can write them as the following quotients

hn =
Nn
Dn

and h′−n =
N ′−n
D′−n

, for all n ≥ 0, (2.1.5)

where the sequences (Nn)n≥0, (Dn)n≥0, (N ′−n)n≥0 and (D′−n)n≥0 can be computed from the following
system of equations

N2n = N2n−1 − cnN2n−2, n ≥ 1, N2n+1 = N2n − anN2n−1, n ≥ 0, N−1 = 1, N0 = 1,
(2.1.6)

D2n = D2n−1 − cnD2n−2, n ≥ 1, D2n+1 = D2n − anD2n−1, n ≥ 0, D−1 = 0, D0 = 1,

for the positive indices and

N ′−2n = N ′−2n+1 − a−nN ′−2n+2, n ≥ 1, N ′−2n−1 = N ′−2n − c−nN ′−2n+1, n ≥ 0, N ′1 = −1, N ′0 = 0,

D′−2n = D′−2n+1 − a−nD′−2n+2, n ≥ 1, D′−2n−1 = D′−2n − c−nD′−2n+1, n ≥ 0, D′1 = 0, D′0 = 1,



for the negative indices. For basic concepts on the theory of continued fractions we refer the reader to
[3, 50].

Based on the above system of equations for (Nn)n≥0 and (Dn)n≥0 with the corresponding initial
conditions, it is easy to see that

N1D0 −D1N0 = −a1,
N2D1 −D2N1 = −a1c1.

Let us assume that for n ∈ Z≥0 we have that

N2n−2D2n−3 −N2n−3D2n−2 = −a0c1a1c2 · · · an−2cn−1,
N2n−1D2n−2 −N2n−2D2n−2 = −a0c1 · · · cn−1an−1.

Using (2.1.6) for n = n+ 1 we get

N2nD2n−1 −N2n−1D2n = [N2n−1 − cnN2n−2]D2n−1 −N2n−1[D2n−1 − cnD2n−2]

= N2n−1D2n−1 − cnN2n−2D2n−1 −N2n−1D2n−1 + cnN2n−1D2n−2

= cn[N2n−1D2n−2 −N2n−2D2n−1] = −a0c1 · · · cn−1an−1cn.

Then we have

N2n+1D2n −N2nD2n+1 = [N2n − anN2n−1]D2n −N2n[D2n − anD2n−1]

= N2nD2n − anN2n−1D2n +N2nD2n + anN2nD2n−1

= an[N2nD2n−1 −N2n−1D2n] = −a0c1 · · · an−1cnan.

Therefore we obtain

N2nD2n−1 −N2n−1D2n = −aoc1a1c2 · · · an−1cn, n ≥ 1,

N2n+1D2n −N2nD2n+1 = −a0c1a1 · · · cnan, n ≥ 0.

Following a similar procedure for negative indices, it can also be proved that

N ′−2nD
′
−2n−1 −N ′−2n−1D′−2n = −c0a−1c−1 · · · a−nc−n, n ≥ 0,

N ′−2n−1D
′
−2n−2 −N ′−2n−2D′−2n−1 = −c0a−1c−1 · · · c−na−n−1, n ≥ 0.

(2.1.7)

With the previous considerations we can state the main theorem of this section.

Theorem 2.1.2. Let H and H ′ be the continued fractions defined by (2.1.4) and the corresponding
convergents (hn)n≥0 and (h−n)n≥0 defined by (2.1.5). Assume that

0 < Nn < Dn, and 0 < N ′−n < D′−n, n ≥ 1. (2.1.8)

Then both H and H ′ are convergent. Moreover, let P = PUPL be as in (2.1.1). Assume that H ′ ≤ H.
Then, both PU and PL are stochastic matrices if and only if we choose y0 in the following range

H ′ ≤ y0 ≤ H. (2.1.9)



Proof. The proof of the convergence of H and the upper bound for y0 can be found in [24, Theorem
2.1]. For the convergence of H ′ and the lower bound for y0, if we consider equation (2.1.7) and using
the assumptions (2.1.8) we have that

h′−2n−2 − h′−2n−1 =
N ′−2n−2
D′−2n−2

−
N ′−2n−1
D′−2n−1

=
c0a−1c−1 · · · c−na−n−1

D′−2n−1D
′
−2n−2

> 0, n ≥ 0,

h′−2n−1 − h′−2n =
N ′−2n−1
D′−2n−1

−
N ′−2n
D′−2n

=
c0a−1c−1 · · · a−nc−n

D′−2nD
′
−2n−1

> 0, n ≥ 0.

Therefore we have the inequalities

0 = h′0 < h′−1 < h′−2 < · · · < h′−2n < h′−2n−1 < h′−2n−2 < · · · < 1,

that is, (h′−n)n≥0 is a strictly increasing and bounded sequence, so it is convergent to H ′.
For the lower bound for y0, assume first that both PU and PL are stochastic matrices, so that

0 < xn, yn, sn, rn < 1, n ∈ Z. Then we have, using (2.1.3), that

s0 =1− c0
y0

> 0⇔ c0
y0

< 1⇔ c0 < y0 ⇔ h′−1 < y0,

and

y−1 =1− a−1
s0

> 0⇔ a−1
s0

< 1⇔ a−1 < s0 ⇔ a−1 < 1− c0
y0

⇔ 1− a−1 >
c0
y0
⇔ 1

1− a−1
<
y0
c0
⇔ c0

1− a−1
< y0 ⇔ h′−2 < y0.

Following the same argument we have

y−n = 1− a−n
s−n+1

> 0⇔ a−n < s−n+1 ⇔ 1− a−n >
c−n+1

y−n+1
⇔ c−n+1

1− a−n
< y−n+1

⇔ c−n+1

1− a−n
< 1− a−n+1

s−n+2
⇔ a−n+1

1− c−n+1

1− a−n

< s−n+2

· · · ⇔ a−n+n−1
1

− c−1
1
− a−2

1
· · · − a−n

1
< s−n+n

⇔ a−1
1
− c−1

1
− a−2

1
· · · − a−n

1
< 1− c0

y0

⇔
c0

1
− a−1

1
− c−1

1
− a−2

1
· · · − a−n

1
< y0

⇔ h′−2n < y0.

Therefore, for all n ≥ 0, we have
0 = h′0 < h′−n < H ′ ≤ y0,

and we get the lower bound for y0. On the contrary, if (2.1.9) holds, in particular we have that
h−n < H ′ ≤ y0 ≤ H < hn for every n ≥ 0. Following [24, Theorem 2.1] and the same steps as before
together with an argument of strong induction, we can conclude that both PU and PL are stochastic
matrices with the conditions that 0 < xn, yn, sn, rn < 1, n ∈ Z.



For the rest of this section we focus our attention on the LU factorization. Here we consider the
same discrete-time birth-death chain with state space on Z described by P given in (1.4.1) but now we
are interested in the study of a LU factorization of the form P = P̃LP̃U where P̃L is a lower bidiagonal
matrix describing a pure-death process and P̃U is an upper bidiagonal matrix describing a pure-birth
process. Notice that we use a tilde to differentiate the matrices of this factorization from the UL case.
The LU factorization of the stochastic matrix P can be written as

P =



. . . . . .
r̃−1 s̃−1 0

r̃0 s̃0 0
r̃1 s̃1 0

. . . . . .





. . . . . .
0 ỹ−1 x̃−1

0 ỹ0 x̃0
0 ỹ1 x̃1

. . . . . .

 = P̃LP̃U , (2.1.10)

where again we have the condition that P̃L and P̃U are stochastic matrices, i.e., all entries of P̃L and
P̃U are nonnegative and the sum of all rows is equal to 1, that is

r̃n + s̃n = 1, ỹn + x̃n = 1, n ∈ Z. (2.1.11)

Now, (2.1.10) is equivalent to the system of equations

an = s̃nx̃n,

bn = r̃nx̃n−1 + s̃nỹn, n ∈ Z, (2.1.12)
cn = r̃nỹn−1.

Thanks to the irreducibility condition we have that 0 < r̃n, s̃n, ỹn, x̃n < 1, n ∈ Z. Again we can
choose s̃0 or r̃0 in certain interval and compute all entries of P̃L and P̃U recursively. Let us consider
r̃0 as free parameter. For the nonnegative values of the indices we can compute s̃0, x̃0, ỹ0, r̃1, s̃1, x̃1,
ỹ1, r̃2, . . . recursively from (2.1.11) and (2.1.12), while for the negative values of the indices we can
compute ỹ−1, x̃−1, s̃−1, r̃−1, ỹ−2, x̃−2, s̃−2, r̃−2, . . . recursively again from (2.1.11) and (2.1.12).

Before moving on, let us highlight that there is an important difference between LU factorizations
when we consider a birth-death chain on Z≥0 and the case where the state space is Z. The first case
was studied in [24] where if the stochastic factorization exists, then it is unique. However, for the case
on Z, as we saw in the previous paragraph, the solution depends on a free parameter within a certain
range, which means that if the stochastic factorization exists, then there will be a one-parameter family
of LU factorizations. Next we study the existence of the stochastic factorization.

Lemma 2.1.3. Let {Xt : t = 0, 1, 2, . . . } be an irreducible birth-death chain with state space in Z and
transition probability matrix P given by (1.4.1) and let P̃L and P̃U be the factors described in (2.1.10)
with 0 < r̃0 < 1 fixed. Then r̃n + s̃n = 1 for all n ∈ Z if and only if ỹn + x̃n = 1 for all n ∈ Z.

Proof. The proof of this Lemma follows the same steps as the proof of [24, Lemma 2.1] (see also Lemma
2.1.1).

Before stating the final result of this section, note that we can compute all coefficients of (r̃n)n∈Z
and (x̃n)n∈Z by using the following equations

r̃n =
cn

1− x̃n−1
, x̃n =

an
1− r̃n

, n ∈ Z,



together with equation (2.1.11).
At this point, we can compute all coefficients r̃n, s̃n, ỹn and x̃n in terms of one free parameter r̃0.

Nevertheless, we can not infer anything about the positivity of these coefficients yet. A natural way
to study this factorization is with a similar argument as in Theorem 2.1.2 but now taking the free
parameter r̃0 and, surprisingly, the same continued fractions as upper and lower bounds.

Theorem 2.1.4. Let H and H ′ be the continued fractions given by (2.1.4) and the corresponding
convergents (hn)n≥0 and (h′−n)n≥0 defined by (2.1.5) and assume conditions (2.1.8). Then both H and
H ′ are convergent. Moreover, let P = P̃LP̃U be as in (2.1.10). Assume that H ′ ≤ H. Then, both P̃L
and P̃U are stochastic matrices if and only if we choose r̃0 in the following range

H ′ ≤ r̃0 ≤ H.

Proof. The proof is similar to the proof of Theorem 2.1.2 but using (2.1.12) instead of (2.1.3).

Now that we know the conditions under which we have UL and LU stochastic factorizations for
the transition probability matrix P given by (1.4.1), let us continue to the next point of interest, the
discrete Darboux transformation and the relation between the corresponding spectral matrices.

2.2 Stochastic Darboux transformations and spectral matrices
This section is devoted to the study of the discrete Darboux transformation and is closely related to
[24, Section 3]. If we consider the tridiagonal stochastic matrix P as in (1.4.1) and the UL factorization
described in (2.1.1) then, in our context, the discrete Darboux transformation consists of inverting the
order of multiplication of the factors so we have P̃ = PLPU . The importance of this transformation is
clear when we note that the Darboux transformation P̃ will be again a stochastic matrix. One of the
most important contributions of this section is that we get a relation between the spectral matrix of
P and the spectral matrix of P̃ and with this, a way to study certain probabilistic properties of the
process described by P and the process described by the Darboux transformation P̃ . Of course, we
can perform this transformation in both UL and LU stochastic factorizations.

We begin by considering P = PUPL as in (2.1.1). Then, by inverting the order of multiplication of
the factors, we obtain another tridiagonal matrix of the form

P̃ = PLPU =



. . . . . .
r−1 s−1 0

r0 s0 0
r1 s1 0

. . . . . .





. . . . . .
0 y−1 x−1

0 y0 x0
0 y1 x1

. . . . . .

 (2.2.1)

=



. . . . . .
0 c̃−1 b̃−1 ã−1

0 c̃0 b̃0 ã0
0 c̃1 b̃1 ã1

. . . . . . . . .

 .



From this, it is clear that the new coefficients of the matrix P̃ are given by

ãn = snxn,

b̃n = rnxn−1 + snyn, n ∈ Z, (2.2.2)
c̃n = rnyn−1.

If we assume that the factorization is stochastic, then the matrix P̃ is again stochastic since the product
of stochastic matrices is again stochastic. Now, as the factorization depends on the free parameter
y0, the Darboux transformation gives rise to an entire family of new discrete-time birth-death chains
{X̃t : t = 0, 1, . . .} on the integers Z with coefficients (ãn)n∈Z, (b̃n)n∈Z and (c̃n)n∈Z depending on y0.

On the other hand, we can do the same for the LU factorization (2.1.10) of the form P = P̃LP̃U .
For this case, after the Darboux transformation, the new tridiagonal matrix is given by

P̂ = P̃U P̃L =



. . . . . .
0 ỹ−1 x̃−1

0 ỹ0 x̃0
0 ỹ1 x̃1

. . . . . .





. . . . . .
r̃−1 s̃−1 0

r̃0 s̃0 0
r̃1 s̃1 0

. . . . . .

 (2.2.3)

=



. . . . . .
0 ĉ−1 b̂−1 â−1

0 ĉ0 b̂0 â0
0 ĉ1 b̂1 â1

. . . . . . . . .


, (2.2.4)

where the new coefficients are given by

ân = x̃ns̃n+1,

b̂n = x̃nr̃n+1 + ỹns̃n, n ∈ Z,
ĉn = ỹnr̃n.

(2.2.5)

In the previous section we saw that the stochastic LU factorization is not unique, so again, the matrix
P̂ is stochastic and it gives rise to an entire one-parameter family of new discrete-time birth-death
chains {X̂t : t = 0, 1, . . .} on the integers Z with coefficients (ân)n∈Z, (b̂n)n∈Z and (ĉn)n∈Z depending
on one free parameter r̃0.

So far in this section we are assuming that all factors of the UL and LU factorizations are stochastic
matrices. Therefore, the corresponding Darboux transformations are also stochastic matrices and they
describe new processes. From a probabilistic perspective, we can think of the birth-death chain P as
a model driven by urn experiments. In this context, both factorizations may be thought as two urn
experiments, Experiment 1 and Experiment 2, respectively. We first perform the Experiment 1 and
with the result we immediately perform the Experiment 2. The model for the Darboux transformation
will be reversing the order of both experiments. Some examples of urn models of this type can found
in [24, 25]. In this thesis we will also see an urn model for the example in Chapter 4.

In Chapter 1 we saw that the eigenvalue equation for the matrix P generates two families of linearly
independent polynomials (Qαn)n∈Z, α = 1, 2. Through the use of the spectral theorem, we ensured



the existence of three spectral measures that, in matrix form, we called the spectral matrix Ψ(x)
associated with P . An important characteristic of the spectral matrix is that it allows us to write the
orthogonality relation in matrix form as in (1.4.7).

In this section we will return to these concepts since our goal is to give an explicit expression for
the relation between the spectral matrix associated with P and the spectral matrix associated with
the corresponding Darboux transformation. With this in mind, we present the following result that
provides us with a characterization of the orthogonality for the vector-valued polynomials (Q1

n(x), Q2
n(x))

associated with P in terms of monomials. This result will simplify some computations later in the
main theorem of this section.

Lemma 2.2.1. Let (Qαn)n∈Z be the polynomials defined by (1.4.2). Then the vector-valued polynomials(
Q1
n(x), Q2

n(x)
)
, n ∈ Z, are orthogonal in the sense of (1.4.7) if and only if for n ≥ 0 we have∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)xjdx =

{
(0, 0), for j = 0, 1, . . . , n− 1,

(αn, 0), αn 6= 0, for j = n,
(2.2.6)

and ∫ 1

−1

(
Q1
−n−1(x), Q2

−n−1(x)
)
Ψ(x)xjdx =

{
(0, 0), for j = 0, 1, . . . , n− 1,

(0, βn), βn 6= 0, for j = n.
(2.2.7)

Moreover α0 = 1, αn = c1 · · · cn, n ≥ 1 and βn = c−10 a−1 · · · a−n−1, n ≥ 0.

Proof. First of all, it is clear that the orthogonality conditions (1.4.7) are equivalent to the matrix
orthogonality (1.5.11). Since Qn(x) in (1.5.10) is a matrix-valued polynomial of degree n with
nonsingular leading coefficient, the orthogonality is equivalent to∫ 1

−1
Qn(x)Ψ(x)xjdx = 02 for j = 0, 1, . . . , n− 1,

where 02 denotes the 2×2 null matrix, and
∫ 1

−1Qn(x)Ψ(x)xndx is a nonsingular and diagonal matrix.
The rows of this expression are the same as equations (2.2.6) and (2.2.7), so it only remains to compute
the values of αn and βn using (1.4.7) as follows

1

πn
=

∫ 1

−1
(Q1

n(x), Q2
n(x))Ψ(x)

(
Q1
n(x)

Q2
n(x)

)
dx

=

∫ 1

−1
(Q1

n(x), Q2
n(x))Ψ(x)

(
R1
nx

n +O(xn−1)
R2
n−1x

n−1 +O(xn−2)

)
dx

=

∫ 1

−1
(Q1

n(x), Q2
n(x))Ψ(x)

(
R1
nx

n

R2
n−1x

n−1

)
dx

= R1
n

∫ 1

−1
(Q1

n(x), Q2
n(x))Ψ(x)

(
xn

0

)
dx,

so we have the value of αn as follows∫ 1

−1
(Q1

n(x), Q2
n(x))Ψ(x)

(
xn

0

)
dx =

R1
n

πn
= c1c2 · · · cn.



Following the same steps we can compute the value of βn as∫ 1

−1
(Q1
−n−1(x), Q2

−n−1(x))Ψ(x)

(
xn

0

)
dx =

a−1a−2 · · · a−n−1
c0

.

The previous result will be very useful whenever one tries to prove orthogonality results on polynomials
related to (Qαn(x))n∈Z, α = 1, 2. We will see an application of this lemma in the next two subsections.

2.2.1 Darboux transformation for the UL case
Now it is time to study the spectral matrix associated with the Darboux transformation for the UL
factorization of the matrix P given in (1.4.1). Let us consider the discrete Darboux transformation
P̃ described in (2.2.1) with probability coefficients (ãn)n∈Z, (b̃n)n∈Z and (c̃n)n∈Z given by (2.2.2). In
order to study the spectral matrix associated with P̃ we have to find the family of polynomials that
solves the eigenvalue equation. With this in mind, let us introduce an auxiliary family of polynomials
Sαn (x) given by the relation

sα(x) = PLq
α(x),

where qα(x) = (· · · , Qα−1(x), Qα0 (x), Qα1 (x), · · · )T , and sα(x) = (· · · , Sα−1(x), Sα0 (x), Sα1 (x), · · · )T , for
α = 1, 2. Using the coefficients of PL we have

Sαn (x) = snQ
α
n(x) + rnQ

α
n−1(x), n ∈ Z, (2.2.8)

for α = 1, 2. From the expression of the UL factorization we also have

PUs
α(x) = PUPLq

α(x) = Pqα(x) = xqα(x),

so we get
xQαn(x) = xnS

α
n+1(x) + ynS

α
n (x), n ∈ Z, α = 1, 2. (2.2.9)

Evaluating (2.2.9) at x = 0 and after some computations we get

Sαn (0) = (−1)n
y0 . . . yn−1
x0 . . . xn−1

Sα0 (0), n ≥ 1,

Sα−n−1(0) = (−1)n+1x−1 . . . x−n−1
y−1 . . . y−n−1

Sα0 (0), n ≥ 0,
(2.2.10)

where

Sα0 (0) =

{
s0, if α = 1,

r0, if α = 2.

This last equation establishes a direct relation between the polynomials (Sαn )n∈Z for α = 1, 2, given by

s0S
2
n(0) = r0S

1
n(0), n ∈ Z. (2.2.11)



Another relation that eventually will prove to be very useful arises from equations (2.2.9) and (2.2.10)
which gives the polynomials (Sαn )n∈Z in terms of (Qαn)n∈Z. Indeed, for n ≥ 0,

Sαn+1(x) =
x

xn
Qαn(x)− yn

xn
Sαn (x) =

x

xn
Qαn(x) +

Sαn+1(0)

Sαn (0)

[
x

xn−1
Qαn−1(x) +

Sαn (0)

Sαn−1(0)
Sαn−1(x)

]
= x

[
Qαn(x)

xn
+
Sαn+1(0)

Sαn (0)

Qαn−1(x)

xn−1

]
+
Sαn+1(0)

Sαn−1(0)
Sαn−1(x) = · · ·

= x

n∑
j=0

Sαn+1(0)

Sαj+1(0)

Qαj (x)

xj
+ Sαn+1(0),

since Sα0 (x) is constant. Therefore

Sαn (x) = Sαn (0)

1 + x

n−1∑
j=0

Qαj (x)

Sαj+1(0)xj

 , n ≥ 1. (2.2.12)

Following the same steps as before, we have

Sα−n−1(x) = Sα−n−1(0)

1 + x

n∑
j=0

Qα−j−1(x)

Sα−j−1(0)y−j−1

 , n ≥ 0. (2.2.13)

Observe that this auxiliary family (Sαn )n∈Z does not satisfy the same initial conditions as the family
(Qαn)n∈Z since by (2.2.8) we have

S1
0(x) =s0, S2

0(x) = r0,

S1
−1(x) =− x−1s0

y−1
, S2

−1(x) =
x− x−1r0

y−1
.

Also, the degrees of the polynomials (Sαn )n∈Z are not the same as the degrees of the polynomials
(Qαn)n∈Z, since

deg(S1
n) = n, n ≥ 0, deg(S2

n) = n, n ≥ 0,

deg(S1
−n−1) = n, n ≥ 0, deg(S2

−n−1) = n+ 1, n ≥ 0.
(2.2.14)

In order to obtain the family of orthogonal polynomials associated with P̃ , we need a polynomial
family satisfying the same initial conditions and degrees as (Qαn)n∈Z. In matrix form these conditions
are given by Q0(x) = I2 and deg(Qn(x))=n. It is possible to obtain this family of matrix-valued
polynomials by taking

Sn(x) =

(
S1
n(x) S2

n(x)
S1
−n−1(x) S2

−n−1(x)

)
, n ≥ 0,

which has degree n+ 1 and singular leading coefficient and defining

Q̃n(x) = Sn(x)S−10 (x), n ≥ 0, (2.2.15)

where

S0(x) =

 s0 r0

−x−1s0
y−1

x− x−1r0
y−1

 . (2.2.16)

Following the same representation as in (1.5.10) we can define the functions (Q̃αn)n∈Z, α = 1, 2, but
first we have to show that we are dealing with polynomials.



Proposition 2.2.2. Let (Q̃n(x))n≥0, be the sequence of matrix functions defined by (2.2.15). Then,
for n ≥ 0, Q̃n(x) is a matrix polynomial of degree exactly n with nonsingular leading coefficient and
Q̃0(x) = I2.

Proof. First we compute the inverse of S0(x), given by

S−10 (x) =
1

x

(x− x−1r0
s0

−y−1r0
s0

x−1 y−1

)
.

Observe that |S0(x)| = xs0
y−1

, so the inverse is not well-defined at x = 0. We will show that we can
avoid this problem using the properties of the polynomials (Sαn )n∈Z. Indeed, from (2.2.15), we have

Q̃1
n(x) =

S1
n(x)

s0
+
x−1
xs0

(
s0S

2
n(x)− r0S1

n(x)
)
, n ∈ Z,

Q̃2
n(x) =

y−1
xs0

(
s0S

2
n(x)− r0S1

n(x)
)
, n ∈ Z.

A straightforward computation using (2.2.12), (2.2.13) and (2.2.11) gives

s0S
2
0(x)− r0S1

0(x) = 0,

s0S
2
n(x)− r0S1

n(x) = x

n−1∑
j=0

1

xj

(
s0
S2
n(0)Q2

j (x)

S2
j+1(0)

− r0
S1
n(0)Q1

j (x)

S1
j+1(0)

)
, n ≥ 1,

s0S
2
−n−1(x)− r0S1

−n−1(x) = x

n∑
j=0

1

y−j−1

(
s0
S2
−n−1(0)Q2

−j−1(x)

S2
−j−1(0)

− r0
S1
−n−1(0)Q1

−j−1(x)

S1
−j−1(0)

)
, n ≥ 0.

Therefore from these relations we can see that (Q̃αn)n∈Z, α = 1, 2 are indeed polynomials. Also, from
equation (2.2.14) we have

deg
(
(s0S

2
n(x)− r0S1

n(x))/x
)

= n− 1, for n ≥ 1, and

deg
(
(s0S

2
−n−1(x)− r0S1

−n−1(x))/x
)

= n, for n ≥ 0.

Then, from (2.2.14) we get

deg(Q̃1
n) = n, n ≥ 0 deg(Q̃2

n) = n− 1, n ≥ 1,

deg(Q̃2
−n−1) = n, n ≥ 0.

Finally, Q̃1
−n−1 is in principle a polynomial of degree n, but if we call Λn the coefficient of xn in

Q̃1
−n−1, then, using (1.4.3), (1.4.4), (2.2.8) and (2.1.3), we have

Λn =
1

s0

(
− a−1r−n−1
c−1 · · · c−n−1

+
x−1s0

y−n−1c−1 · · · c−n

)
=

1

s0c−1 · · · c−n

(
−a−1r−n−1

c−n−1
+
x−1s0
y−n−1

)
= 0.

Therefore deg(Q̃1
−n−1) = n− 1, n ≥ 1. The fact that Q̃0(x) = I2 comes from the definition.



Now, we know that (Q̃αn)n∈Z, α = 1, 2, is a family of polynomials satisfying the same initial and
degree conditions than the original polynomials (Qαn)n∈Z, α = 1, 2. They also satisfy the three-term
recurrence relation

Q̃1
0(x) = 1, Q̃2

0(x) = 0,

Q̃1
−1(x) = 0, Q̃2

−1(x) = 1,

xQ̃αn(x) = ãnQ̃
α
n+1(x) + b̃nQ̃

α
n(x) + c̃nQ̃

α
n−1(x), n ∈ Z, α = 1, 2,

(2.2.17)

where the coefficients (ãn)n∈Z, (b̃n)n∈Z and (c̃n)n∈Z are defined by (2.2.2).
We will continue with the main result of this section that establishes a relation between the spectral

matrix associated with the Darboux transformation P̃ and the one associated with P . We will also
prove that (Q̃αn)n∈Z, α = 1, 2, are the corresponding orthogonal polynomials associated with P̃ . For
that, let us define the potential coefficients associated with P̃ in a similar way as for P , i.e.,

π̃0 = 1, π̃n =
ã0 · · · ãn−1
c̃1 · · · c̃n

, π̃−n =
c̃0 · · · c̃−n+1

ã−1 · · · ã−n
, n ≥ 1. (2.2.18)

Theorem 2.2.3. Let {Xt : t = 0, 1, . . . } be the bilateral birth-death chain on Z with transition
probability matrix P given by (1.4.1) and {X̃t : t = 0, 1, . . . } the bilateral birth-death chain on Z
with transition probability matrix P̃ given by (2.2.1). Assume that

M−1 =

∫ 1

−1

Ψ(x)

x
dx (2.2.19)

is well-defined entry by entry, where Ψ(x) is the original spectral matrix given by (1.4.6). Then the
polynomials (Q̃αn)n∈Z, α = 1, 2, defined by (2.2.17) are orthogonal with respect to the following spectral
matrix

Ψ̃(x) = S0(x)ΨS(x)S∗0(x), (2.2.20)

where S0(x) is defined by (2.2.16) and

ΨS(x) =
y0
s0

Ψ(x)

x
+

[(
1/s0 0

0 1/r0

)
− y0
s0
M−1

]
δ0(x), (2.2.21)

with δ0(x) the Dirac delta at x = 0. Moreover, we have∫ 1

−1
Q̃n(x)Ψ̃(x)Q̃∗m(x)dx =

(
1/π̃n 0

0 1/π̃−n−1

)
δnm, (2.2.22)

where δnm is the Kronecker delta and (π̃n)n∈Z are the potential coefficients defined by (2.2.18).

Proof. Let (Qαn)n∈Z, α = 1, 2, be the polynomials defined by (1.4.2), which are orthogonal with respect
to the original spectral matrix Ψ(x). By Lemma 2.2.1 we have the orthogonality conditions (2.2.6) and
(2.2.7). Since (Q̃αn)n∈Z, α = 1, 2, satisfies the same initial and degree conditions than (Qαn)n∈Z, α = 1, 2,

we will use Lemma 2.2.1 to prove that (Q̃αn)n∈Z, α = 1, 2, are orthogonal with respect to Ψ̃(x) in
(2.2.20).



Assume first that n ≥ 1. Then we have, using (2.2.20), (2.2.15) and (2.2.21), that∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)

Ψ̃(x)xjdx =

∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)
xΨ̃(x)xj−1dx

=

∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)
S0(x)xΨS(x)S∗0(x)xj−1dx

=
y0
s0

∫ 1

−1

(
S1
n(x), S2

n(x)
)
S−10 (x)S0(x)Ψ(x)S∗0(x)xj−1dx

=
y0
s0

∫ 1

−1

(
S1
n(x), S2

n(x)
)
Ψ(x)S∗0(x)xj−1dx.

Now, using (2.2.8), the above expression can be written as∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)

Ψ̃(x)xjdx =
sny0
s0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)S∗0(x)xj−1dx

+
rny0
s0

∫ 1

−1

(
Q1
n−1(x), Q2

n−1(x)
)
Ψ(x)S∗0(x)xj−1dx.

Writing S0(x) = A+ xB, where A and B are given by

A =

(
s0 r0

−x−1s0
y−1

−x−1r0
y−1

)
, B =

0 0

0
1

y−1

 , (2.2.23)

the above expression can be written as∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)

Ψ̃(x)xjdx =

sny0
s0

[∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)A∗xj−1dx+

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)B∗xjdx

]
+
rny0
s0

[∫ 1

−1

(
Q1
n−1(x), Q2

n−1(x)
)
Ψ(x)A∗xj−1dx+

∫ 1

−1

(
Q1
n−1(x), Q2

n−1(x)
)
Ψ(x)B∗xjdx

]
.

Using (2.2.6) we have that the first term of the sum vanishes for j = 1, . . . , n, the second term vanishes
for j = 0, . . . , n − 1, the third term vanishes for j = 1, . . . , n − 1 and the fourth term vanishes for
j = 0, . . . , n− 2. Therefore the above expression vanishes for j = 1, . . . , n− 2. For j = n− 1 the only
term that does not vanish is the fourth one. But in this case we have, using (2.2.6) and (2.2.23), that∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)

Ψ̃(x)xn−1dx =
rny0
s0

∫ 1

−1

(
Q1
n−1(x), Q2

n−1(x)
)
Ψ(x)B∗xn−1dx

=
rny0
s0

(αn−1, 0)

0 0

0
1

y−1

 = (0, 0).

(2.2.24)



For j = 0 we have, using (2.2.15) and (2.2.20), that∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)

Ψ̃(x)dx =

∫ 1

−1

(
S1
n(x), S2

n(x)
)
S−10 (x)S0(x)ΨS(x)S∗0(x)dx

=

[∫ 1

−1

(
S1
n(x), S2

n(x)
)
ΨS(x)dx

]
A∗ +

[∫ 1

−1

(
S1
n(x), S2

n(x)
)
xΨS(x)dx

]
B∗.

The second term of the sum of the above expression vanishes as a consequence of (2.2.21), (2.2.8) and
(2.2.6). Indeed, for n ≥ 2, we have[∫ 1

−1

(
S1
n(x), S2

n(x)
)
xΨS(x)dx

]
B∗ =

[
y0
s0

∫ 1

−1

(
S1
n(x), S2

n(x)
)
Ψ(x)dx

]
B∗

=

[
sny0
s0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)dx+

rny0
s0

∫ 1

−1

(
Q1
n−1(x), Q2

n−1(x)
)
Ψ(x)dx

]
B∗ = (0, 0).

For n = 1 we can use the same argument as in (2.2.24) and get again (0, 0). Now, using (2.2.12), we
can write

(
S1
n(x), S2

n(x)
)

= x

n−1∑
j=0

1

xj

(
S1
n(0)

S1
j+1(0)

Q1
j (x),

S2
n(0)

S2
j+1(0)

Q2
j (x)

)
+
(
S1
n(0), S2

n(0)
)
.

Substituting this in the remaining integral we get∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)
Ψ̃(x)dx =

[∫ 1

−1

(
S1
n(x), S2

n(x)
)
ΨS(x)dx

]
A∗

=
(
S1
n(0), S2

n(0)
) [(1/s0 0

0 1/r0

)
− y0
s0
M−1

]
A∗

+
y0
s0

n−1∑
j=0

1

xj

∫ 1

−1

(
S1
n(0)

S1
j+1(0)

Q1
j (x),

S2
n(0)

S2
j+1(0)

Q2
j (x)

)
Ψ(x)A∗dx+

y0
s0

(
S1
n(0), S2

n(0)
)
M−1A

∗

=
(
S1
n(0), S2

n(0)
)(1/s0 0

0 1/r0

)
A∗ +

y0
s0x0

S1
n(0)

S1
1(0)

∫ 1

−1

(
Q1

0(x), Q2
0(x)

)
Ψ(x)A∗dx.

The third step is a consequence of
S1
n(0)

S1
j+1(0)

=
S2
n(0)

S2
j+1(0)

using (2.2.11) and the orthogonality properties.

Since
∫ 1

−1

(
Q1

0(x), Q2
0(x)

)
Ψ(x)dx = (1, 0), S1

1(0) = −s0y0/x0, and A is given by (2.2.23) then we have

∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)

Ψ̃(x)dx =
(
S1
n(0), S2

n(0)
)(1/s0 0

0 1/r0

)
A∗ − 1

s20

(
S1
n(0), 0

)
A∗

=

(
(1− 1/s0)

S1
n(0)

s0
,
S2
n(0)

r0

)s0 −x−1s0
y−1

r0 −x−1r0
y−1


=

(
(−r0/s0)S1

n(0) + S2
n(0),−x−1

y−1

(
(−r0/s0)S1

n(0) + S2
n(0)

))
= (0, 0),



as a consequence of (2.2.11).
For n ≤ −1 the proof is similar but now using (2.2.7) and (2.2.13). Therefore we have proved (2.2.22)

for n 6= m. Observe that this implies in particular that the family of vector-valued polynomials(
S1
n(x), S2

n(x)
)
, n ∈ Z, is also orthogonal for n 6= m, with respect to the weight matrix ΨS(x) in

(2.2.21). For n = m, using this fact and (2.2.15), (2.2.9), (2.2.8), (2.2.20) and (2.2.21), we have that∫ 1

−1

(
Q̃1
n(x), Q̃2

n(x)
)

Ψ̃(x)
(
Q̃1
n(x), Q̃2

n(x)
)∗
dx =

∫ 1

−1

(
S1
n(x), S2

n(x)
)
ΨS(x)

(
S1
n(x), S2

n(x)
)∗
dx

=

∫ 1

−1

[
x

yn

(
Q1
n(x), Q2

n(x)
)
− xn
yn

(
S1
n+1(x), S2

n+1(x)
)]

ΨS(x)
(
S1
n(x), S2

n(x)
)∗
dx

=
1

yn

∫ 1

−1
x
(
Q1
n(x), Q2

n(x)
)
ΨS(x)

(
S1
n(x), S2

n(x)
)∗
dx− xn

yn

∫ 1

−1

(
S1
n+1(x), S2

n+1(x)
)
ΨS(x)

(
S1
n(x), S2

n(x)
)∗
dx

=
y0
yns0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)

[
sn
(
Q1
n(x), Q2

n(x)
)∗

+ rn
(
Q1
n−1(x), Q2

n−1(x)
)∗]

=
sny0
yns0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)

(
Q1
n(x), Q2

n(x)
)∗
dx+

rny0
yns0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)

(
Q1
n−1(x), Q2

n−1(x)
)∗
dx

=
sny0
yns0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)

(
Q1
n(x), Q2

n(x)
)∗
dx =

sny0
yns0

1

πn
=

1

π̃n
.

The last step follows using (2.1.3), (2.2.2) and πn given in Definition 1.4.1 and π̃n given in (2.2.18).

Remark 2.2.4. The assumption of M−1 being well-defined entry by entry in (2.2.19) is actually too
restrictive. It is enough to assume the weaker condition that S0(0)M−1S

∗
0(0) is well defined entry by

entry in order to have the same result.

Notice that the spectral matrix Ψ̃(x) associated with the Darboux transformation given in the
previous theorem is a conjugation by a matrix-valued polynomial S0(x) of degree 1 of a Geronimus
transformation of the original spectral matrix Ψ(x). This behavior is consistent, except for the
conjugation, with the case of the Darboux transformation of transition probability matrices on Z≥0
for the UL factorization appearing in [24] (see also Theorem 1.6.3).

2.2.2 Darboux transformation for the LU case
Now we turn our attention to the LU case. For this, we will follow the same procedure as the last
subsection. Consider now the discrete Darboux transformation P̂ in (2.2.3) with probability coefficients
(ân)n∈Z, (b̂n)n∈Z and (ĉn)n∈Z given by (2.2.5). Since the main results are similar to the ones in the
previous subsection, we will only give the important and necessary formulas for the proofs.

First we need to introduce the auxiliary family of polynomials (Tαn (x))n∈Z, α, β = 1, 2, given by the
relation

tα(x) = P̃Uq
α(x),

where qα(x) = (· · · , Qα−1(x), Qα0 (x), Qα1 (x), · · · )T , and tα(x) = (· · · , Tα−1(x), Tα0 (x), Tα1 (x), · · · )T for
α = 1, 2. Using the coefficients of P̃U we get

Tαn (x) = ỹnQ
α
n(x) + x̃nQ

α
n+1(x), n ∈ Z, α = 1, 2. (2.2.25)



From the LU factorization we also have P̃Ltα(x) = xqα(x), that is

xQαn(x) = r̃nT
α
n−1(x) + s̃nT

α
n (x), n ∈ Z, α = 1, 2. (2.2.26)

Evaluating (2.2.26) at x = 0 we get recursively

Tαn (0) = (−1)n+1 r̃0 . . . r̃n
s̃0 . . . s̃n

Tα−1(0), n ≥ 1,

Tα−n−1(0) = (−1)n
s̃−1 . . . s̃−n
r̃−1 . . . r̃−n

Tα−1(0), n ≥ 0,

(2.2.27)

where

Tα−1(0) =

{
x̃−1, if α = 1,

ỹ−1, if α = 2.

The equations (2.2.27) establish a direct relation between the polynomials (Tαn )n∈Z, α = 1, 2, given by

x̃−1T
2
n(0) = ỹ−1T

1
n(0), n ∈ Z. (2.2.28)

Again, the polynomials (Tαn )n∈Z can be written in terms of the polynomials (Qαn)n∈Z with the following
computations

Tαn (x) =
x

s̃n
Qαn(x)− r̃n

s̃n
Tαn−1(x)

=
x

s̃n
Qαn(x) +

Tαn (0)

Tαn−1(0)

[
x

s̃n−1
Qαn−1(x) +

Tαn−1(0)

Tαn−2(0)
Tαn−2(x)

]
= x

[
Qαn(x)

s̃n
+
Tαn (0)Qαn−1(x)

Tαn−1(0)s̃n−1

]
+

Tαn (0)

Tαn−2(0)
Tαn−2(x)

= · · · = x

n∑
j=0

Tαn (0)

Tαj (0)s̃j
Qαj (x) + Tαn (0),

so we have

Tαn (x) = Tαn (0)

1 + x
n∑
j=0

Qαj (x)

Tαj (0)s̃j

 , n ≥ 1. (2.2.29)

In the same way as before, we have

Tα−n−1(x) = Tα−n−1(0)

1 + x

n−1∑
j=0

Qα−j−1(x)

Tα−j−2(0)r̃−j−1

 , n ≥ 0.

This auxiliary family (Tαn )n∈Z does not satisfy the same initial conditions as the family (Qαn)n∈Z. In
fact we have

T 1
0 (x) =

x− r̃0x̃−1
s̃0

, T 2
0 (x) = − r̃0ỹ−1

s̃0
,

T 1
−1(x) = x̃−1, T 2

−1(x) = ỹ−1.



The degrees of the polynomials (Tαn )n∈Z are

deg(T 1
n) = n+ 1, n ≥ 0, deg(T 2

n) = n, n ≥ 0,

deg(T 1
−n−1) = n− 1, n ≥ 0, deg(T 2

−n−1) = n, n ≥ 0.

Again, it is possible to obtain a family of polynomials that satisfy the same initial conditions as
(Qαn(x))n∈Z. In matrix form, we take

Tn(x) =

(
T 1
n(x) T 2

n(x)
T 1
−n−1(x) T 2

−n−1(x)

)
, n ≥ 0,

that has degree n+ 1 and singular leading coefficient. Now we will define a new family of polynomials
which will turn out to be the associated family of the Darboux transformation P̂ . For n ≥ 0 define

Q̂n(x) = Tn(x)T−10 (x), n ≥ 0, (2.2.30)

where

T0(x) =

x− r̃0x̃−1s̃0
− r̃0ỹ−1

s̃0
x̃−1 ỹ−1

 . (2.2.31)

Following the same representation as in (1.5.10) we can define the functions (Q̂αn)n∈Z, α = 1, 2, which
turn out to be polynomials, as the following proposition shows.

Proposition 2.2.5. Let (Q̂n(x))n≥0, be the sequence of matrix functions defined by (2.2.30). Then,
for n ≥ 0, Q̂n(x) is a matrix polynomial of degree exactly n with nonsingular leading coefficient and
Q̂0(x) = I2.

Proof. Now, since

T−10 (x) =
1

x

 s̃0 r̃0

− s̃0x̃−1
ỹ−1

x− r̃0x̃−1
ỹ−1

 ,

we have from (2.2.30)

Q̂1
n(x) =

s̃0
xỹ−1

(
ỹ−1T

1
n(x)− x̃−1T 2

n(x)
)
, n ∈ Z,

Q̂2
n(x) =

T 2
n(x)

ỹ−1
+

r̃0
xỹ−1

(
ỹ−1T

1
n(x)− x̃−1T 2

n(x)
)
, n ∈ Z.

From here the proof follows the same lines as the proof of Proposition 2.2.2 but now using (2.2.28)
and (2.2.29).

Now, let us prove the analogue of Theorem 2.2.3 for the spectral matrix for the polynomials
(Q̂αn)n∈Z, α = 1, 2. We define first the potential coefficients associated with P̂ given by

π̂0 = 1, π̂n =
â0 · · · ân−1
ĉ1 · · · ĉn

, π̂−n =
ĉ0 · · · ĉ−n+1

â−1 · · · â−n
, n ≥ 1. (2.2.32)



Theorem 2.2.6. Let {Xt : t = 0, 1, . . . } be the bilateral birth-death chain on Z with transition
probability matrix P given by (1.4.1) and {X̂t : t = 0, 1, . . . } the bilateral birth-death chain on Z
with transition probability matrix P̂ given by (2.2.3). Assume that

M−1 =

∫ 1

−1

Ψ(x)

x
dx

is well-defined entry by entry, where Ψ(x) is the original spectral matrix given by (1.4.6). Then the
polynomials (Q̂αn)n∈Z, α = 1, 2, defined by (2.2.30) are orthogonal with respect to the following spectral
matrix

Ψ̂(x) = T0(x)ΨT (x)T ∗0 (x), (2.2.33)

where T0(x) is defined by (2.2.31) and

ΨT (x) =
s̃0
ỹ0

Ψ(x)

x
+

[
â−1
ĉ0

(
1/x̃−1 0

0 1/ỹ−1

)
− s̃0
ỹ0
M−1

]
δ0(x), (2.2.34)

with δ0(x) the Dirac delta at x = 0. Moreover, we have∫ 1

−1
Q̂n(x)Ψ̂(x)Q̂∗m(x)dx =

(
1/π̂n 0

0 1/π̂−n−1

)
δnm,

where δnm is the Kronecker delta and (π̂n)n∈Z are the potential coefficients defined by (2.2.32).

Proof. The proof follows the same lines as the proof of Theorem 2.2.3. For n ≥ 1 and j = 1, . . . , n− 1
we have, using (2.2.33), (2.2.30), (2.2.34) and (2.2.25), that∫ 1

−1

(
Q̂1
n(x), Q̂2

n(x)
)
Ψ̂(x)xjdx =

ỹns̃0
ỹ0

[∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)A∗xj−1dx+

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)B∗xjdx

]
+
x̃ns̃0
ỹ0

[∫ 1

−1

(
Q1
n+1(x), Q2

n+1(x)
)
Ψ(x)A∗xj−1dx+

∫ 1

−1

(
Q1
n+1(x), Q2

n+1(x)
)
Ψ(x)B∗xjdx

]
,

where A and B, from T0(x) = A+ xB, are given now by

A =

− r̃0x̃−1s̃0
− r̃0ỹ−1

s̃0
x̃−1 ỹ−1

 , B =

 1

s̃0
0

0 0

 . (2.2.35)

Using (2.2.6) we have that the first term of the sum vanishes for j = 1, . . . , n, the second term vanishes
for j = 0, . . . , n − 1, the third term vanishes for j = 1, . . . , n + 1 and the fourth term vanishes for
j = 0, . . . , n. Therefore the above expression vanishes for j = 1, . . . , n− 1.

For j = 0 we have, using (2.2.30) and (2.2.33), that∫ 1

−1

(
Q̂1
n(x), Q̂2

n(x)
)

Ψ̂(x)dx =

∫ 1

−1

(
T 1
n(x), T 2

n(x)
)
T−10 (x)T0(x)ΨT (x)T ∗0 (x)dx

=

[∫ 1

−1

(
T 1
n(x), T 2

n(x)
)
ΨT (x)dx

]
A∗ +

[∫ 1

−1

(
T 1
n(x), T 2

n(x)
)
xΨT (x)dx

]
B∗.



As before, the second term of the sum of the above expression vanishes as a consequence of (2.2.34),
(2.2.25) and (2.2.6). Now, using (2.2.29), we can write

(
T 1
n(x), T 2

n(x)
)

= x

n∑
j=0

1

s̃j

(
T 1
n(0)

T 1
j (0)

Q1
j (x),

T 2
n(0)

T 2
j (0)

Q2
j (x)

)
+
(
T 1
n(0), T 2

n(0)
)
.

Substituting this in the remaining integral we get∫ 1

−1

(
Q̂1
n(x), Q̂2

n(x)
)
Ψ̂(x)dx =

[∫ 1

−1

(
T 1
n(x), T 2

n(x)
)
ΨT (x)dx

]
A∗

=
(
T 1
n(0), T 2

n(0)
) [ â−1

ĉ0

(
1/x̃−1 0

0 1/ỹ−1

)
− s̃0
ỹ0
M−1

]
A∗

+
s̃0
ỹ0

n∑
j=0

1

s̃j

∫ 1

−1

(
T 1
n(0)

T 1
j (0)

Q1
j (x),

T 2
n(0)

T 2
j (0)

Q2
j (x)

)
Ψ(x)A∗dx+

s̃0
ỹ0

(
T 1
n(0), T 2

n(0)
)
M−1A

∗

=
â−1
ĉ0

(
T 1
n(0), T 2

n(0)
)(1/x̃−1 0

0 1/ỹ−1

)
A∗ +

1

ỹ0

T 1
n(0)

T 1
0 (0)

∫ 1

−1

(
Q1

0(x), Q2
0(x)

)
Ψ(x)A∗dx.

The third step is a consequence of
T 1
n(0)

T 1
j (0)

=
T 2
n(0)

T 2
j (0)

using (2.2.28) and the orthogonality properties.

Since
∫ 1

−1

(
Q1

0(x), Q2
0(x)

)
Ψ(x)dx = (1, 0), T 1

0 (0) = −r̃0x̃−1/s̃0, â−1/ĉ0 = x̃−1s̃0/ỹ0r̃0 and A is given

by (2.2.35) then we have∫ 1

−1

(
Q̂1
n(x), Q̂2

n(x)
)

Ψ̂(x)dx =
x̃−1s̃0
ỹ0r̃0

(
T 1
n(0), T 2

n(0)
)(1/x̃−1 0

0 1/ỹ−1

)
A∗ − s̃0

ỹ0r̃0x̃−1

(
T 1
n(0), 0

)
A∗

=

(
s̃0
ỹ0r̃0

(1− 1/x̃−1)T 1
n(0),

x̃−1s̃0
r̃0ỹ0ỹ−1

T 2
n(0)

)− r̃0x̃−1s̃0
x̃−1

− r̃0ỹ−1
s̃0

ỹ−1


=

(
1

ỹ0
(ỹ−1T

1
n(0)− x̃−1T 2

n(0)),− s̃0
ỹ0r̃0

(ỹ−1T
1
n(0)− x̃−1T 2

n(0))

)
= (0, 0),

as a consequence of (2.2.28). For n ≤ −1 the proof is similar but now using (2.2.7) and (2.2.29).



Finally, using (2.2.30), (2.2.26), (2.2.25), (2.2.33) and (2.2.34), we have that∫ 1

−1

(
Q̂1
n(x), Q̂2

n(x)
)

Ψ̂(x)
(
Q̂1
n(x), Q̂2

n(x)
)∗
dx =

∫ 1

−1

(
T 1
n(x), T 2

n(x)
)
ΨT (x)

(
T 1
n(x), T 2

n(x)
)∗
dx

=

∫ 1

−1

[
x

s̃n

(
Q1
n(x), Q2

n(x)
)
− r̃n
s̃n

(
T 1
n−1(x), T 2

n−1(x)
)]

ΨT (x)
(
T 1
n(x), T 2

n(x)
)∗
dx

=
1

s̃n

∫ 1

−1
x
(
Q1
n(x), Q2

n(x)
)
ΨT (x)

(
T 1
n(x), T 2

n(x)
)∗
dx

=
s̃0
s̃nỹ0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)

[
ỹn
(
Q1
n(x), Q2

n(x)
)∗

+ x̃n
(
Q1
n+1(x), Q2

n+1(x)
)∗]

=
ỹns̃0
s̃nỹ0

∫ 1

−1

(
Q1
n(x), Q2

n(x)
)
Ψ(x)

(
Q1
n(x), Q2

n(x)
)∗
dx

=
ỹns̃0
s̃nỹ0

1

πn

=
1

π̂n
.

The last step follows using (2.1.3), (2.2.5) and the definition of πn and π̂n in (1.4.1) and (2.2.32),
respectively.

Remark 2.2.7. As before (see Remark 2.2.4), it is enough to assume that T0(0)M−1T
∗
0 (0) is well-defined

entry by entry in order to obtain the same results as in Theorem 2.2.6.

As a final remark, we will mention that the spectral matrix Ψ̂(x) associated with the Darboux
transformation given in the previous theorem is, again, a conjugation by a matrix polynomial T0(x)
of degree 1 of a Geronimus transformation of the original spectral matrix Ψ(x). This phenomenon
is different from a Darboux transformation of a transition probability matrix on Z≥0 for the LU
factorization studied in [24] (see also Theorem 1.6.4), where the associated spectral measure is given
by a Christoffel transformation, i.e., multiplying the original measure by the polynomial x.

2.3 Examples
In this section we will apply all the results shown in this chapter to two examples. The first one is
the bilateral birth-death chain with constant transition probabilities, also known as random walk on
Z, and the second one has also constant transition probabilities but inverted probabilities for negative
states.

2.3.1 Random walk on Z
For this example we will consider a discrete-time birth-death chain with one-step transition probability
matrix P as in (1.4.1) with constant coefficients given by

an = a, bn = b, cn = c, n ∈ Z, a+ b+ c = 1, a, c > 0, b ≥ 0.

The first step is to analyze the existence of UL and LU stochastic factorizations. With this in mind,
we have to analyze the continued fractions given by (2.1.4). It is easy to see that both H and H ′ can



be computed explicitly as follows. For H we have

H = 1− a
1
− c

1
− a

1
− · · · = 1− a

1
− c

H
.

Then H must solve the following equation

H2 +H(a− c− 1) + c = 0.

Indeed, we have that

H =
1

2

(
1 + c− a+

√
(1 + c− a)2 − 4c

)
, (2.3.1)

with a ≤ (1−
√
c)2 to ensure convergence. Also we have

H ′ =
c

H
,

therefore the value for H ′ is given by

H ′ =
1

2

(
1 + c− a−

√
(1 + c− a)2 − 4c

)
.

It is also possible to see, under the conditions on the parameters, that 0 ≤ H ≤ H ′ ≤ 1. Then, by
Theorem 2.1.2, if we choose H ′ ≤ y0 ≤ H we have a stochastic UL factorization where both factors are
stochastic matrices. On the other hand, following Theorem 2.1.4, we have a stochastic LU factorization
if and only if we choose the free parameter r̃0 in the range H ′ ≤ r̃0 ≤ H.

The next step is to perform a discrete Darboux transformation and to analyze the relation between
the spectrum of the respective matrices. A great advantage of this example is that, thanks to its
simplicity, we can compute the explicit expression of the spectral matrix associated with P . This
spectral matrix appeared for the first time in the last section of [41] for the case of b = 0, together
with the method to compute the spectral matrix using Stieltjes transforms and the spectral measures
associated with the positive and negative states given in Section 1.4.

For this case, let ψ+ be the spectral measure associated with the birth-death chain on Z≥0 with
transition probability matrix P+ given by (1.4.9), with probability of absorption to the state -1 given by
c. Also, let ψ− be the spectral measure associated with the birth-death chain on Z≤−1 and transition
probability matrix P− given by (1.4.10) with probability of absorption to state 0 given by a. The
relations between the Stieltjes transforms given in (1.4.11) are the following:

B(z;ψ11) =
B(x;ψ+)

1− acB(z;ψ+)B(z;ψ−)
,

c

a
B(z;ψ22) =

B(x;ψ−)

1− acB(z;ψ+)B(z;ψ−)
,

B(z;ψ12) =
−aB(x;ψ−)B(x;ψ+)

1− acB(z;ψ+)B(z;ψ−)
.

(2.3.2)

Note that if we remove the first row and the first column of P+ we get the same matrix. Then, following
Remark 1.3.3, the Stieltjes transform B(z;ψ+) associated with ψ+ satisfy the following equation

acB(z;ψ+) + (z − b)B(z;ψ+) + 1 = 0.



Therefore we have the expression

B(z;ψ+) =
b− z ±

√
(z − σ−)(z − σ+)

2ac
, σ± = 1− (

√
a∓
√
c)2,

from which we choose the positive solution so that B(z;ψ+) is bounded when z → ∞. Given
the structure of P− it is easy to see that B(z;ψ+) = B(z;ψ−). Then, using (2.3.2), after some
computations we have

B(z;ψ11) =
B(z;ψ+)

1− acB(z;ψ+)2
=

B(z;ψ+)

2 + (z − b)B(z;ψ+)
= − 1√

(z − σ−)(z − σ+)
, σ± = 1− (

√
a∓
√
c)2.

Using the Perron–Stieltjes inversion formula (1.1.2) we have

ψ11(x) =
1

π
lim
ε→0+

ImB(x+ iε;ψ11) =
1

π
√

(x− σ−)(σ+ − x)
, σ± = 1− (

√
a∓
√
c)2.

Following the same procedure we can compute ψ22 and ψ12. Therefore the spectral matrix of the
discrete-time birth-death chain described by P is given by

Ψ(x) =
1

π
√

(x− σ−)(σ+ − x)

 1
x− b

2c
x− b

2c
a/c

 , x ∈ [σ−, σ+], σ± = 1−
(√
a∓
√
c
)2
. (2.3.3)

Remark 2.3.1. Another way to identify the spectral measure without using the Stieltjes transform is
to identify the polynomials generated from te recursion formula xQ(x) = PQ(x) which in this case is
given by

Q1
0(x) = 1, Q2

0(x) = 0,

Q1
−1(x) = 0, Q2

−1(x) = 1,

xQαn(x) = cQαn−1(x) + bQαn(x) + aQαn+1(x), n ∈ Z, α = 1, 2.

It is possible to see that these families of polynomials can be written in terms of the Chebyshev
polynomials of the second kind (Un)n≥0 (defined at the end of Section 1.6) as follows:

Q1
n(x) =

( c
a

)n/2
Un

(
x− b
2
√
ac

)
, n ≥ 0, Q1

−n−1(x) = −
(a
c

)(n+1)/2

Un−1

(
x− b
2
√
ac

)
, n ≥ 1,

and

Q2
n(x) = −

( c
a

)(n+1)/2

Un−1

(
x− b
2
√
ac

)
, n ≥ 1, Q2

−n−1(x) =
(a
c

)n/2
Un

(
x− b
2
√
ac

)
, n ≥ 0.

If we analyze this spectral measure, following Theorem 1.3.2, it is easy to see that the process is
always transient except for the case a = c. The birth-death chain is never positive recurrent since the
spectral matrix does not have a jump at the point 1, then for the case a = c the random walk is null
recurrent, as expected. The moment M−1 of Ψ(x) is given by following expression

M−1 =


1

√
σ−σ+

1

2c

(
1− b
√
σ−σ+

)
1

2c

(
1− b
√
σ−σ+

)
a

c
√
σ−σ+

 . (2.3.4)



In order for M−1 to be well-defined we need to assume that σ− > 0, i.e.
√
a+
√
c < 1, or equivalent,

a < (1−
√
c)2, which is also the condition for convergence of the continued fractions H and H ′.

Regarding the Darboux transformations, for the UL factorization we are interested in the spectral
matrix associated with P̃ = PLPU . Using Theorem 2.2.3, the spectral matrix is given by

Ψ̃(x) = S0(x)ΨS(x)S∗0(x),

where

S0(x) =

 s0 r0

−x−1s0
y−1

x− x−1r0
y−1

 =


y0 − c
y0

c

y0

− a(y0 − c)
y0(1− a)− c

x(y0 − c)− ac
y0(1− a)− c

 ,

ΨS(x) =
y0

y0 − c

(
y0

Ψ(x)

x
+

[(
1 0

0
y0 − c
c

)
− y0M−1

]
δ0(x)

)
,

where δ0(x) is the Dirac delta at x = 0, Ψ(x) andM−1 are defined by (2.3.3) and (2.3.4), respectively,
and y0 is the free parameter. With these equations we can compute explicitly the spectral matrix

Ψ̃(x) =
1

πx
√

(x− σ−)(σ+ − x)

[
Ã+ B̃x+ C̃x2

]
+ M̃δ0(x),

where

Ã =
(H ′ − y0)(H − y0)

s0y0

(
1 −x−1/y−1

−x−1/y−1 (x−1/y−1)2

)
,

B̃ =

 1 − by0
2cy−1

− by0
2cy−1

(y0b− c(1− c))x2−1
acy2−1

 , C̃ =
y0

2cy−1

(
0 1
1 0

)
,

M̃ =
(y0 −H ′)(H − y0)

s0y0
√
σ−σ+

(
1 −x−1/y−1

−x−1/y−1 (x−1/y−1)2

)
.

So we can conclude that if we choose the free parameter y0 in the range H ′ ≤ y0 ≤ H, then M̃ is a
positive semidefinite matrix, so Ψ̃(x) is a proper weight matrix.

If we observe the last expressions, we see some interesting cases. When we choose either y0 = H or
y0 = H ′, some elements of Ψ̃(x) vanishes. In fact, we have

Ã = 02, M̃ = 02, B̃ =

 1 − b

2c

− b

2c
a/c

 , C̃ =
1

2c

(
0 1
1 0

)
.

With all simplifications we recover the original weight matrix (2.3.3), i.e., the Darboux transformation
is invariant. This phenomenon is not possible for Darboux transformations of Jacobi matrices on Z≥0.
Finally, as we already know, from the spectral matrix Ψ̃(x) we get the Karlin-McGregor formula for
the n-step transition probabilities of P̃ using equation (1.4.8) and, thanks to the properties of the
Geronimus transformation, recurrence of the process is not affected by the transformation.



On the other hand, for the LU case, using Theorem 2.2.6 and after some computations, we can
also compute the explicit expression for the spectral matrix associated to the Darboux transformation
P̂ = P̃U P̃L as follows

Ψ̂(x) =
1

πx
√

(x− σ−)(σ+ − x)

[
Â+ B̂x+ Ĉx2

]
+ M̂δ0(x),

where δ0(x) is the Dirac delta at x = 0 and

Â =
r̃0(H ′ − r̃0)(H − r̃0)

x̃−1s̃20

(
1 −s̃0/r̃0

−s̃0/r̃0 (s̃0/r̃0)2

)
,

B̂ =
r̃0ỹ0
x̃−1s̃0

 1 − b

2ỹ0r̃0

− b

2ỹ0r̃0

s̃0 x̃−1
ỹ0r̃0

 , Ĉ =
1

2s̃0x̃−1

(
0 1
1 0

)
,

M̂ =
r̃0(r̃0 −H ′)(H − r̃0)

s̃20x̃−1
√
σ−σ+

(
1 −s̃0/r̃0

−s̃0/r̃0 (s̃0/r̃0)2

)
.

Again we clearly see that if we choose r̃0 in the range H ′ ≤ r̃0 ≤ H, then M̂ is a positive semidefinite
matrix, so Ψ̂(x) is a proper weight matrix.

For this spectral matrix we can also observe some special cases. If we choose either r̃0 = H or
r̃0 = H ′, then we recover the original weight matrix (2.3.3). In addition, from the spectral matrix
Ψ̂(x) we get the Karlin-McGregor formula (1.4.8) for the n-step transition probabilities of the process
described by P̂ and the recurrence is not affected by the transformation.

2.3.2 Birth-death chain on Z with constant attractive or repulsive forces
The second example is very similar to the Example 2.3.1 but in this case we exchange probabilities
a and c for the negative states. The effect of this change is that if a < c, we have a discrete-time
birth-death chain where the origin is an attractive state. On the contrary, if a > c, then the origin is
a repulsive state. Then, let us consider P as in (1.4.1) with

an = a, cn = c, n ≥ 0, a−n = c, c−n = a, n ≥ 1, bn = b, n ∈ Z,

and, as before, a+ b+ c = 1, a, c > 0, b ≥ 0. Diagram for this example looks like follows

Figure 2.3: Diagram for Example 2.3.1.

Since the probabilities are constants, the continued fractions given in (2.1.4) can be computed
explicitly. As the positive states are the same as in Example 2.3.1, then H has the same value, i.e.

H =
1

2

(
1 + c− a+

√
(1 + c− a)2 − 4c

)
, (2.3.5)



as long as a ≤ (1−
√
c)2, so H is convergent. On the other hand, we have

H ′ =
c

1− c

H

,

and rationalizing we get
H ′ =

c

2a

(
1 + a− c−

√
(1 + c− a)2 − 4c

)
. (2.3.6)

Here we have that H ′ > 0 if and only if a > 0, but we have to be very careful because now it is not
true that H ′ ≤ H for all values of the parameters a and c such that a ≤ (1 −

√
c)2. The analysis of

the inequality H ′ ≤ H shows that a must be in the following range0 < a ≤ (1−
√
c)2, if 0 < c ≤ 1/4,

0 < a ≤ 1− 2c

2
, if 1/4 ≤ c < 1.

Here there is a graph of the range of the previous equations.

Figure 2.4: Range where H ′ ≤ H in blue.

As before, by Theorem 2.1.2, if we choose H ′ ≤ y0 ≤ H we have a stochastic UL factorization where
both factors are stochastic matrices. On the other hand, following Theorem 2.1.4, we have a stochastic
LU factorization if and only if we choose the free parameter r̃0 in the range H ′ ≤ r̃0 ≤ H.

The spectral matrix associated with this example appeared for the first time in Section 6 of [19]
for the case of b = 0. We will use the same procedure that we used in previous example described in
Section 1.4. Note that, for this case, the matrices P+ and P− given in (1.4.9) and (1.4.10), associated
with the birth-death chains on Z≥0 and on Z≤−1 respectively, are the same. Therefore ψ+ = ψ− and



B(z;ψ+) = B(z;ψ−) = B(z) and equations (1.4.11) simplify to

B(z;ψ11) = B(z;ψ22) =
B(z)

1− c2B(z)2
,

B(z;ψ12) =
−cB(z)2

1− c2B(z)2
.

Also, we have that acB(z)2 − (z − b)B(z) + 1 = 0. Then it is easy to see that

c2B(z)2 = c
z − b
a

B(z)− c

a
.

After some computations we have that

B(z;ψ11) =
aB(z)

a+ c+ c(z − b)B(z)
=

(c− a)(z − b) + (1− b)
√

(z − σ−)(z − σ+))

2c [(1− z)(z − 2b+ 1)]
, σ± = 1−(

√
a∓
√
c)2.

Using the Perron–Stieltjes inversion formula (1.1.2) we have

ψ11(x) =
1

π
lim
ε→0+

ImB(x+ iε;ψ11) =
(a+ c)

√
(x− σ−)(σ+ − x)

2πc(1− x)(x− 2b+ 1)
, σ± = 1− (

√
a∓
√
c)2.

Observe that the Stieltjes transform has two isolated poles at z = 1 and z = 2b − 1. Therefore there
will be two jumps at those points for certain values of a. We have that the size of the jump at x = 1
(see (1.1.3)) is given by

ψ11({1}) = lim
ε→0+

εImB(x+ iε;ψ11) =
c− a+ |c− a|

4c
=

(
c− a

2c

)
χ{c>a},

where χ{A} is the indicator function. Following the same procedure we can compute the size of the
jump at x = 2b− 1 and ψ12 with its respective jumps. This means that the spectral matrix associated
to P is given by an absolutely continuous Ψc(x) and a discrete part Ψd(x). We can write the spectral
matrix as Ψ(x) = Ψc(x) + Ψd(x) where the absolutely continuous part is given by

Ψc(x) =
(a+ c)

√
(x− σ−)(σ+ − x)

2πc(1− x)(x− 2b+ 1)

 1
x− b
a+ c

x− b
a+ c

1

 , x ∈ [σ−, σ+],

where σ± = 1− (
√
a∓
√
c)2 and the discrete part is given by

Ψd(x) =
c− a

2c

[(
1 −1
−1 1

)
δ2b−1(x) +

(
1 1
1 1

)
δ1(x)

]
χ{c>a},

where δw(x) is the Dirac delta at x = w. With this expression and the Karlin-McGregor formula
(1.4.8) we can get the n-step transition probabilities of the process associated with P and we know
that this birth-death chain is always recurrent, in particular it is positive recurrent if c > a since for
that case the spectral matrix has a jump at the point 1.



Remark 2.3.2. Following Remark 2.3.1, it is possible to see that the families of polynomials generated
by P can be written in terms of the Chebyshev polynomials of the second kind (Un)n≥0 (see Section
1.6) as follows:

Q1
n(x) =

( c
a

)n/2
Un

(
x− b
2
√
ac

)
, n ≥ 0, Q1

−n−1(x) = −
( c
a

)(n+1)/2

Un−1

(
x− b
2
√
ac

)
, n ≥ 1,

and

Q2
n(x) = −

( c
a

)(n+1)/2

Un−1

(
x− b
2
√
ac

)
, n ≥ 1, Q2

−n−1(x) =
( c
a

)n/2
Un

(
x− b
2
√
ac

)
, n ≥ 0.

Now the computation of the momentM−1 of Ψ(x) is more complicated since there is an absolutely
continuous and a discrete part. Also one of the Dirac deltas of the discrete part can be located at
x = 0 if b = 1/2, so that M−1 may have a different expression in that case. Nevertheless, after some
computations, we obtain

M−1 =

 µ−1
γ − bµ−1
a+ c

γ − bµ−1
a+ c

µ−1

+
c− a

c(2b− 1)

(
b −(a+ c)

−(a+ c) b

)
χ{c>a},

where

µ−1 =
1

2c(2b− 1)

(
(a+ c)

√
σ−σ+ − b|a− c|

)
, γ =

{
1, if c ≤ a,
a/c, if c > a.

In order forM−1 to be well-defined we need to assume that σ− > 0, i.e.
√
a+
√
c < 1, or equivalently,

a < (1−
√
c)2. For the case of b = 1/2 we obtain

M−1 =


4a

|4a− 1|
2

(
γ − 2a

|4a− 1|

)
2

(
γ − 2a

|4a− 1|

)
4a

|4a− 1|

+
1− 4a

1− 2a

(
1 1
1 1

)
χ{a<1/4}. (2.3.7)

Now we proceed to compute the spectral matrix for the Darboux transformation for the UL case.
Using Theorem 2.2.3 and after some computations we get the following expression

Ψ̃(x) =

√
(x− σ−)(σ+ − x)

2πcx(1− x)(x− 2b+ 1)

[
Ã+ B̃x+ C̃x2

]
+ M̃0δ0(x) + M̃2b−1δ2b−1(x) + M̃1δ1(x),

where

Ã =
(a+ c)(α+ − y0)(α− − y0)

s0y0

(
1 −x−1/y−1

−x−1/y−1 (x−1/y−1)2

)
, α± =

c

a+ c

(
1±
√

1− 2a− 2c
)
,

B̃ =

 2c
(c(1− 2c)− by0)x−1

cy−1
(c(1− 2c)− by0)x−1

cy−1

2(by0 − c(1− c))x2−1
cy2−1

 , C̃ =
y0s0x−1
cy−1

0 1

1
(a− c)x−1

cy−1

 ,

M̃0 =
a(H̄ ′ − H̄)(y0 −H ′)(H − y0)

c(2b− 1)s0y0

(
1 −x−1/y−1

−x−1/y−1 (x−1/y−1)2

)
,

M̃2b−1 =
c− a

2c(2b− 1)

(
(s0 − r0)2 −(s0 − r0)(s−1 − r−1)

−(s0 − r0)(s−1 − r−1) (s−1 − r−1)2

)
χ{c>a}, M̃1 =

c− a
2c

(
1 1
1 1

)
χ{c>a}.



Notice that we are implicitly assuming that b 6= 1/2. If we analyze this expression, we get some special
cases. For the case where b = 1/2, the Geronimus transformation is not well-defined for the Dirac
delta at x = 0. However, it is possible to define the spectral matrix in terms of the derivative of the
Dirac delta at x = 0. Therefore, the spectral matrix for the Darboux transformation is given by

Ψ̃(x) =

√
(x− σ−)(σ+ − x)

2πcx2(1− x)

[
Ã+ B̃x+ C̃x2

]
+ M̃0δ0(x)− M̃ ′

0δ
′
0(x) + M̃1δ1(x), (2.3.8)

where Ã, B̃, C̃ and M̃1 are the same as before writing b = 1/2 and c = 1/2− a and

M̃ ′
0 = lim

b→1/2
(2b− 1)M̃2b−1,

M̃0 = η
(y0 −H ′)(H − y0)

s0y0

(
1 −x−1/y−1

−x−1/y−1 (x−1/y−1)2

)
, η =


1

2(1− 2a)(1− 4a)
, if a < 1/4,

a

4a− 1
, if a > 1/4.

For the case where a = 1/4 then the moment (2.3.7) is not well-defined, but in this case we are in
the situation of the previous example and, from the spectral matrix Ψ̃(x) we get the Karlin-McGregor
formula (1.4.8) for the n-step transition probabilities and we know that the recurrence of the Darboux
transformation is not affected.

If we fix y0 = H, we have a similar behavior to the previous example since we observe that the
positive states of the original process remain invariant under the Darboux transformation (2.2.2),
while if y0 = H ′, then the negative states of the original random walk remain invariant.

Finally, we proceed to analyze the LU case. Using Theorem 2.2.6 and after some computations, the
expression for the spectral matrix of P̂ = P̃U P̃L is the following

Ψ̂(x) =

√
(x− σ−)(σ+ − x)

2πcx(1− x)(x− 2b+ 1)

[
Â+ B̂x+ Ĉx2

]
+ M̂0δ0(x) + M̂2b−1δ2b−1(x) + M̂1δ1(x),

where

Â =
(a+ c)(β+ − s̃0)(β− − s̃0)

s̃0ỹ0

(
1 −s̃0/r̃0

−s̃0/r̃0 (s̃0/r̃0)2

)
, β± =

a+ c
√

2b− 1

a+ c
,

B̂ =
1

ỹ0r̃0

 2r̃0
s̃0

(c(1− c)− pr̃0) (a− c)r̃0 − c(1− 2c)

(a− c)r̃0 − c(1− 2c) 2cs̃0x̃−1

 , Ĉ =
ỹ−1
ỹ0

a− cỹ−1
1

1 0

 ,

M̃0 =
a(H̄ ′ − H̄)(r̃0 −H ′)(H − r̃0)

c(2b− 1)s̃0ỹ0

(
1 −s̃0/r̃0

−s̃0/r̃0 (s̃0/r̃0)2

)
, M̂1 =

c− a
2c

(
1 1
1 1

)
χ{c>a},

M̂2b−1 =
c− a

2c(2b− 1)

(
(x̃0 − ỹ0)2 −(x̃0 − ỹ0)(x̃−1 − ỹ−1)

−(x̃0 − ỹ0)(x̃−1 − ỹ−1) (x̃−1 − ỹ−1)2

)
χ{c>a}.

As before, from the spectral matrix Ψ̂(x) we get the Karlin-McGregor formula (1.4.8) for the n-step
transition probabilities and the recurrence of the Darboux transformation is not affected. We have a
similar behavior if we assume either r̃0 = H or r̃0 = H ′ for the factorization.

Before finishing this section we would like to comment on some special cases that occur in both
factorizations, UL and LU. First, if we assume a = c then we recover the previous example and the
Darboux transformation is invariant if we choose the free parameter y0 = H = 1

2 (1 +
√

1− 4a) or
y0 = H ′ = 1

2 (1−
√

1− 4a).



Aditionally, there are some values of the parameters where the Darboux transformation is almost
invariant. For instance, for 0 < a < 1/2 consider c = 1/2 − a, then b = 1/2 and the values of the
continued fractions (2.3.5) and (2.3.6) depend on the value of a. We have two situations:

• If 0 < a ≤ 1/4, then H = H ′ = 1 − 2a. Therefore the only choice of the parameter y0 in order
to have a stochastic factorization is y0 = 1− 2a. For this value we always have

yn = 1− 2a, n ≥ 0, y−n = 2a, n ≥ 1,

sn = rn = 1/2, xn = 1− yn, n ∈ Z.
(2.3.9)

Therefore the transition probabilities of the Darboux transformation are exactly the same as the
original case except for the state 0, where we have

c̃0 = a, ã0 = a, b̃0 = 1− 2a. (2.3.10)

The birth-death chain generated by P̃ is almost the same as the original one except for the state
0. The spectral matrix is given in this case by

Ψ̃(x) =

√
(x− σ−)(σ+ − x)

2πcx(1− x)

[
B̃ + C̃x

]
+ M̃1δ1(x), σ± = 1/2±

√
2a(1− 2a), (2.3.11)

where

B̃ = (1− 2a)

 1 −1− 2a

2a

−1− 2a

2a

(1− 2a)2

4a2

 , C̃ =
1− 2a

2a

(
0 1

1 −1− 4a

2a

)
, M̃1 =

1− 4a

2(1− 2a)

(
1 1
1 1

)
.

Similar results hold for the LU case.

• If 1/4 < a < 1/2, then H = 1/2 and H ′ = (1 − 2a)/4a. Therefore the parameter y0 can be
chosen in the range

(1− 2a)/4a ≤ y0 ≤ 1/2.

In particular, if take y0 = 1 − 2a, then we are in the same situation of the previous case, i.e.
we have (2.3.9) for the sequences xn, yn, sn, rn and the transition probabilities of the Darboux
transformation are exactly the same as the original case except for the state 0, where we have
again (2.3.10). The spectral matrix is then given by (2.3.11). If y0 = 1/2 then we get invariance
on the positive states of the Darboux transformation but not on the negative states nor state 0.
On the contrary, if y0 = (1−2a)/4a, then we get invariance on the negative states of the Darboux
transformation but not on the nonnegative states. The spectral matrix can be computed from
(2.3.8). Similar results hold for the LU case.

Finally, let us highlight that, despite the fact that both examples are considered simple since all
probabilities are constant, both processes were considered by previous authors (at least for the case
b = 0). Besides, considerable effort was necessary to get the explicit expression of the spectral matrices
and our analysis led to very interesting results such as the cases where there is an invariance property
or an “almost” invariance property. For these reasons, we will return to these examples in the next
chapters. Nonetheless we will also study a nontrivial example in Chapter 4, given by the so-called
associated Jacobi polynomials.



CHAPTER 3

Stochastic Absorbing-Reflecting factorizations

In Chapter 2, we explored UL and LU stochastic factorizations of the one-step transition probability
matrix P , which describes an irreducible birth-death chain on Z. These factorizations represent either
pure-birth or pure-death chains. Given that our study goes around the one-step transition probability
matrix P and begins with a stochastic factorization, we seek decompositions that are meaningful and
interesting from a theoretical point of view. In this context, examining absorbing-reflecting (AR)
factorizations presents a promising path for further investigation. The RA factorization consists of
treating the first factor, PR, as a reflecting birth-death chain on Z from the state 0, and the second
factor, PA, as an absorbing birth-death chain on Z to the state 0. While there is no difference between
UL (LU) stochastic factorizations and RA (AR) factorizations on Z≥0, these factorizations represent
different chains when the state space is Z.

The first part of this chapter is dedicated to the RA factorization. Section 3.1 provides the
fundamental definitions and necessary conditions for the existence of a stochastic RA factorization.
These conditions are expressed in terms of the continued fractions presented in Chapter 2 (see (2.1.4)).
In Section 3.2, we perform the discrete Darboux transformation and conduct the spectral analysis.
In this case, after the Darboux transformation we get an “almost” birth-death chain on Z since the
resulting matrix P̃ has transition probabilities between states 1 and -1. To achieve this, we use
the relabeling method given by (1.5.9) to obtain an equivalent representation of P̃ as a 2 × 2 block
tridiagonal matrix, denoted by P̃ (see (1.5.2)). This block structure proves to be very useful in certain
proofs, as it allows us to apply techniques from the theory of matrix-valued orthogonal polynomials.
This analysis offers crucial insights that will also be employed in Chapter 5. The reason for not using
the 2×2 block structure in Chapter 2 was that it did not preserve the UL or LU block structure of the
original factorization of P . Following the main result, we revisit Example 2.3.1 and apply our results
concerning the RA factorization.

The second part of this chapter explores AR factorizations. In Section 3.3, we explain why considering
P as in (1.4.1) is not particularly interesting. Instead, we introduce the simplest process applicable
to this factorization: An “almost” birth-death chain similar to the one described by P̃ , i.e., we add
transition probabilities between states 1 and -1. We then provide conditions under which the stochastic
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AR factorization exists. Following the same steps as before, Section 3.4 investigates the Darboux
transformation and the relation between the corresponding spectral matrices. It is interesting to see
that, after the Darboux transformation, we recover the tridiagonal structure of an usual birth-death
chain. This chapter concludes with an example, closely resembling Example 2.3.1, but with the
modifications described in Section 3.3. All results presented in this chapter are included in [33].

3.1 Stochastic RA factorization on the integers
Let {Xt : t = 0, 1, . . .} be an irreducible discrete-time birth-death chain on the integers Z with transition
probability matrix P given by (1.4.1). First, we are going to study the RA factorization, that is,
P = PRPA where PR represents a reflecting birth-death chain on Z from the state 0 (lower bidiagonal
for the negative states and upper bidiagonal for the positive states) and PA represents an absorbing
birth-death chain on Z to the state 0 (upper bidiagonal for the negative states and lower bidiagonal
for the positive states). In other words

PR =



. . . . . . . . .
x−2 y−2 0

x−1 y−1 0
α y0 x0

0 y1 x1
. . . . . . . . .


, (3.1.1)

and

PA =



. . . . . . . . .
0 s−2 r−2

0 s−1 r−1
0 1 0

r1 s1 0
. . . . . . . . .


. (3.1.2)

Here we have to make two important observations. First, in PR we have to add a probability α of
going from state 0 to −1 in order to connect the chain from positive to negative states. Second, the
state 0 of PA is an absorbing state. Therefore s0 = 1 and r0 = 0. Below we show diagrams for these
two processes.

Figure 3.1: Diagram for the discrete-time bilateral birth-death chain described by PR.



Figure 3.2: Diagram for the discrete-time bilateral birth-death chain described by PA.

Since we are looking for a stochastic factorization we have the following conditions:

α+ x0 + y0 = 1, xn + yn = 1, sn + rn = 1, n ∈ Z \ {0}. (3.1.3)

Now, using equation P = PRPA entry by entry, it is easy to see that

an = xnsn+1, n ≥ 0, a−n = y−nr−n, n ≥ 1, (3.1.4)
bn = ynsn + xnrn+1, n ≥ 1, b0 = y0 + x0r1 + αr−1, b−n = y−ns−n + x−nr−n−1, n ≥ 1,

cn = ynrn, n ≥ 1, c0 = αs−1, c−n = x−ns−n−1, n ≥ 1. (3.1.5)

We are going to use this system of equations for the first part of our analysis to derive conditions for
the existence of the stochastic RA factorization. As in the previous chapter, we have a free parameter
α from which we can compute s−1, r−1, y−1, x−1, s−2, . . . recursively using (3.1.5), (3.1.3) and (3.1.4).
In this case, for positive values of the indices, we need to fix a second parameter x0, in order to obtain
recursively s1, r1, y1, x1, s2, . . . using again (3.1.4), (3.1.3) and (3.1.5). Therefore we have two free
parameters.

Proposition 3.1.1. Let H and H ′ be the continued fractions defined by (2.1.4) with condition (2.1.8).
Then both H and H ′ are convergent. Moreover, let P = PRPA and assume that H ′ ≤ H. Then, both
PR and PA are stochastic matrices if and only if we choose α and x0 in the following ranges

α ≥ H ′, x0 ≥ 1−H. (3.1.6)

Proof. The first part of the theorem was proved in Theorem 2.1.2. For the second part, assumeH ′ ≤ H,
PR and PA stochastic matrices and let (hn)n≥0 and (h′−n)n≥0 be the sequences of convergents for H
and H ′ respectively. Then it is clear that

x0 > 0 = 1− h0,

and then
s1 =

a0
x0

< 1⇔ x0 > a0 = 1− h1.

Similarly

y1 =
c1
r1
⇔ c1 < r1 ⇔ s1 < 1− c1 ⇔

a0
x0

< 1− c1 ⇔ x0 >
a0

1− c1
=

a0
1
− c1

1
= 1− h2.



Using the same argument recursively, for even indices we have

yn+1 =
cn+1

rn+1
< 1⇔ sn+1 < 1− cn+1 ⇔

an
xn

< 1− cn+1 ⇔ 1− yn >
an

1− cn+1

⇔ yn < 1− an
1
− cn+1

1
⇔ · · · ⇔ y1 < 1− c1

1
− a1

1
− c2

1
− · · · − cn+1

1

⇔a0
x0

< 1− c1
1
− a1

1
− c2

1
− · · · − cn+1

1

⇔x0 >
a0
1
− c1

1
− a1

1
− c2

1
− · · · − cn+1

1
= 1− h2n+2,

while for odd indices, we have

sn+1 =
an
xn

< 1⇔ yn < 1− an ⇔
cn
rn

< 1− an ⇔ 1− sn >
cn

1− an

⇔ sn < 1− cn
1
− an

1
⇔ · · · ⇔ s1 < 1− c1

1
− a1

1
− c2

1
− · · · − an

1

⇔a0
x0

< 1− c1
1
− a1

1
− c2

1
− · · · − an

1

⇔x0 >
a0
1
− c1

1
− a1

1
− c2

1
− · · · − an

1
= 1− h2n+1.

Therefore, since in Theorem 2.1.2 we proved that (hn)n≥0 is a decreasing sequence, we have

0 = 1− h0 < 1− hn < 1−H ≤ x0.

Following the same lines as before for (h′−n)n≥0 we get

0 = h′0 < h′−n < H ′ ≤ α.

On the contrary, if (3.1.6) holds, in particular we have that 1− hn < 1−H ≤ x0 and h′−n < H ′ ≤ α
for every n ≥ 0. Following the same steps as before, using an argument of strong induction, will lead
us to the fact that both PR and PL are stochastic matrices.

Next we will proceed to the study of the discrete Darboux transformation which consists of inverting
the order of multiplication of the matrices in the stochastic factorization of the previous theorem, as
well as the spectral analysis.

3.2 Stochastic Darboux transformations and spectral matrices
for the RA case

Now it is time to turn our attention to the discrete Darboux transformation. As we know, if we invert
the order of multiplication of the factors in the stochastic factorization P = PRPA, we obtain a new
stochastic matrix, say P̃ = PAPR. This matrix P̃ is not tridiagonal but pentadiagonal, so we do not
obtain again a birth-death chain on Z, as in the case of UL (or LU) factorization in Chapter 2. However
we obtain a two-parameter family of new Markov chains on Z, which we denote by {X̃t : t = 0, 1, . . . },



which is “almost” a birth-death chain. The only difference is that we have new transition probabilities
between the state 1 to the state -1 and vice versa. The tridiagonal coefficients of P̃ are given by

ãn = snxn, ã−n−1 = y−nr−n−1, n ≥ 0,

b̃0 = y0, b̃−1 = r−1α+ s−1y−1, b̃n = rnxn−1 + snyn, b̃−n = r−nx−n+1 + s−ny−n, n ≥ 1,

c̃0 = α, c̃n = rnyn−1, c̃−n = s−nx−n, n ≥ 1,

(3.2.1)

while the probability transitions between the states 1 and −1 are given by

d̃1 = P(X̃1 = −1|X̃0 = 1) = r1α, d̃−1 = P(X̃1 = 1|X̃0 = −1) = r−1x0. (3.2.2)

A diagram for this process looks as follows

Figure 3.3: Diagram for the Markov chain generated by the Darboux transformation P̃ .

As we anticipated, we will consider the equivalent discrete-time quasi-birth-and-death process described
by P as in (1.5.2). In this context we have to look for the same structure on the factors PR and PA.
This will be very convenient in our computations and also for the spectral analysis that we will see
later in this chapter. If we perform the relabeling (1.5.9), we get the following 2× 2 block matrices

PR =


y0 α x0 0
0 y−1 0 x−1

y1 0 x1 0
0 y−2 0 x−2

. . . . . .

 ,

PA =


1 0
r−1 s−1
r1 0 s1 0
0 r−2 0 s−2

. . . . . .

 .

Observe that PR is a semi-infinite 2 × 2 upper block matrix while PA is a semi-infinite 2 × 2 lower
block matrix. If we call

Y0 =

(
y0 α
0 y−1

)
, Yn =

(
yn 0
0 y−n−1

)
, n ≥ 1, Xn =

(
xn 0
0 x−n−1

)
, n ≥ 0,

S0 =

(
1 0
r−1 s−1

)
, Sn =

(
sn 0
0 s−n−1

)
, n ≥ 1, Rn =

(
rn 0
0 r−n−1

)
, n ≥ 0,

(3.2.3)



then PR and PA can be written as

PR =


Y0 X0

Y1 X1

Y2 X2

. . . . . .

 , PA =


S0

R1 S1

R2 S2

. . . . . .

 .

With this notation, a direct computation from P = PRPA shows that

An = XnSn+1, n ≥ 0,

Bn = YnSn +XnRn+1, n ≥ 0,

Cn = YnRn, n ≥ 1.

(3.2.4)

This change plays a very important role in this case because although P = PRPA is not a UL
factorization, the block matrix factorization P = PRPA is a UL block matrix factorization similar to
the one we studied in Chapter 2. Now, if we perform a discrete Darboux transformation we get the
equivalent family of discrete-time quasi-birth-and-death processes P̃ as follows

P̃ =


B̃0 Ã0

C̃1 B̃1 Ã1

C̃2 B̃2 Ã2

. . . . . . . . .

 =


S0

R1 S1

R2 S2

. . . . . .



Y0 X0

Y1 X1

Y2 X2

. . . . . .

 . (3.2.5)

And the relations (3.2.1) are equivalent to the matrix relations

Ãn = SnXn, n ≥ 0,

B̃0 = S0Y0, B̃n = RnXn−1 + SnYn, n ≥ 1,

C̃n = RnYn−1, n ≥ 0.

(3.2.6)

To continue with our analysis, let us consider the spectral matrix given by (1.4.6) associated with P
and the corresponding matrix-valued orthogonal polynomials in (1.5.10). Notice that the orthogonality
relation is given by (1.5.11), the Karlin-McGregor representation formula is given by (1.5.13) and we
can compute the invariant measure following Remark 1.5.5.

For the main result of this section we will follow similar steps as in Chapter 2. Let us consider the
family of matrix-valued polynomials generated by U = PAQ with U = (UT

0 ,U
T
1 , · · · )T . This family

is given by

U0(x) = S0Q0(x) = S0,

Un(x) = RnQn−1(x) + SnQn(x), n ≥ 1,
(3.2.7)

where (Sn)n≥0 and (Rn)n≥1 defined in (3.2.3). Using the RA factorization of P , we have

PRU = PRPAQ = PQ = xQ,

or, in other words,
xQn(x) = YnUn(x) +XnUn+1(x), n ≥ 0. (3.2.8)



If we evaluate the last equation at x = 0, it is easy to see that

Un(0) = (−1)nX−1n−1Yn−1 · · ·X
−1
0 Y0S0, (3.2.9)

and we also have

Un(0)U−1n−k(0) =
[
(−1)nX−1n−1Yn−1 · · ·X

−1
0 Y0S0

] [
(−1)n−kX−1n−k−1Yn−k−1X

−1
n−k−2Yn−k−2 · · ·X

−1
0 Y0S0

]−1
= (−1)kX−1n−1Yn−1 · · ·X

−1
n−kYn−k, k = 1, . . . , n. (3.2.10)

This last equation is very useful when we try to solve (3.2.8) recursively, because we have

Un(x) =X−1n−1 (xQn−1(x)− Yn−1Un−1(x))

=xX−1n−1Qn−1(x)−X−1n−1Yn−1Un−1(x)

=xX−1n−1Qn−1(x)−X−1n−1Yn−1
[
X−1n−2 (xQn−2(x)− Yn−2Un−2(x))

]
.

Here, using (3.2.10) we can write

Un(x) = Un(0)

[
I2 + x

n−1∑
k=0

U−1k+1(0)X−1k Qk(x)

]
. (3.2.11)

As a matter of fact, through the Darboux transformation we have

P̃U = PAPRPAQ = xPAQ = xU .

Hence the family of matrix-valued polynomials Un(x) solves the eigenvalue equation for P̃ and from
(3.2.7) we have that deg(Un(x)) = n, n ≥ 0. Unfortunately this family does not satisfy the initial
conditions since U0(x) = S0 6= I2. In view of this fact, we will be interested in a new family of
matrix-valued polynomials (Q̃n)n≥0 where Q̃0 = I2. Since S0 is a nonsingular constant matrix, this
new family can be defined as

Q̃n(x) = Un(x)S−10 . (3.2.12)

Before the main result, let us define the matrix-valued potential coefficients (Π̃n)n≥0 as the solution
of the symmetry equations for P̃ , given by

Π̃n = (C̃T1 · · · C̃Tn )−1Π̃0Ã0 · · · Ãn−1, n ≥ 1.

Then, using (3.2.4), (3.2.6) and the previous equation, we get

Π̃n = (RnYn−1)−T (Rn−1Yn−2)−T · · · (R2Y1)−T (R1Y0)−T Π̃0(S0X0)(S1X1) · · · (Sn−1Xn−1)

= R−Tn Y −Tn−1R
−T
n−1Y

−T
n−2 · · ·R

−T
2 Y −T1 R−T1 Y −T0 Π̃0S0X0S1X1 · · ·Sn−1Xn−1

= Y −Tn R−Tn Y −Tn−1R
−T
n−1Y

−T
n−2 · · ·R

−T
2 Y −T1 R−T1 Y −T0 Π̃0S0X0S1X1 · · ·Sn−1Xn−1S

−1
n

= Y −Tn (CT1 C
T
2 · · ·CTn )−1Y −T0 Π̃0S0A0 · · ·An−1S−1n .

Then, if Π̃0 = Y T0 Π0S
−1
0 we obtain

Π̃n = Y Tn ΠnS
−1
n , n ≥ 0. (3.2.13)



Computing Π̃0 using (3.1.4) and (3.1.5), we get

Π̃0 =

(
y0 0
0 α/r−1

)
.

And, of course, (Π̃n)n≥0 are always diagonal matrices. We are now ready to state the main result of
this section.

Theorem 3.2.1. Let {Xt : t = 0, 1, . . . } be the birth-death chain on Z with transition probability
matrix P given by (1.4.1) and {X̃t : t = 0, 1, . . . } be the Markov chain generated by the Darboux
transformation of P = PRPA with transition probabilities given by (3.2.1) and (3.2.2). Assume that

M−1 =

∫ 1

−1
x−1Ψ(x)dx

is well-defined entry by entry, where Ψ(x) is the original spectral matrix (1.4.6). Then the matrix-valued
polynomials (Q̃n)n≥0 defined by (3.2.12) are orthogonal with respect to the following spectral matrix

Ψ̃(x) = S0ΨU (x)ST0 , (3.2.14)

where the constant matrix S0 is defined by (3.2.3) and

ΨU (x) =
Ψ(x)

x
+

[
1

y0

(
1 −r−1/s−1

−r−1/s−1 (r−1/s−1)2 + y0r−1/αs
2
−1

)
−M−1

]
δ0(x), (3.2.15)

where δ0(x) is the Dirac delta at x = 0. Moreover, we have∫ 1

−1
Q̃n(x)Ψ̃(x)Q̃T

m(x)dx = Π̃−1n δnm,

where δnm is the Kronecker delta and (Π̃n)n≥0 are defined by (3.2.13).

Proof. For n ≥ 1 and j = 1, . . . , n− 1, we have∫ 1

−1
Q̃n(x)Ψ̃(x)xjdx =

∫ 1

−1
Un(x)ΨU (x)xjST0 dx =

∫ 1

−1
[RnQn−1(x) + SnQn(x)]Ψ(x)xj−1ST0 dx

=

∫ 1

−1
RnQn−1(x)Ψ(x)xj−1ST0 dx+

∫ 1

−1
SnQn(x)Ψ(x)xj−1ST0 dx = 02,

where for the first equality we have used (3.2.12) and (3.2.14), for the second equality we have used
(3.2.7) and (3.2.15), and finally we have used the orthogonality of the family (Qn)n≥0. Now, for n ≥ 1,
we have, using (3.2.11), that∫ 1

−1
Q̃n(x)Ψ̃(x)dx =

∫ 1

−1
Un(x)ΨU (x)ST0 dx =

∫ 1

−1
Un(0)

[
I2 + x

n−1∑
k=0

U−1k+1(0)X−1k Qk(x)

]
ΨU (x)ST0 dx

= Un(0)

[∫ 1

−1
ΨU (x)dx+

n−1∑
k=0

U−1k+1(0)X−1k

∫ 1

−1
Qk(x)Ψ(x)dx

]
ST0 .



The second part of the previous sum vanishes for k = 1, . . . , n − 1. Therefore the only nonzero term
is for k = 0, i.e., U−11 (0)X−10

∫ 1

−1 Ψ(x)dx = U−11 (0)X−10 Π−10 . A direct computation using (3.2.9),
(3.2.3), (1.5.12) and Definition 1.4.1 shows that

U−11 (0)X−10 Π−10 = −S−10 Y −10 Π−10 = − 1

y0

(
1 −r−1/s−1

−r−1/s−1 (r−1/s−1)2 + y0r−1/αs
2
−1

)
.

From the definition of ΨU (x) in (3.2.15) we obtain that
∫ 1

−1 Q̃n(x)Ψ̃(x)dx = 02.
Finally, for n ≥ 0, and using (3.2.12), (3.2.14), (3.2.8), (3.2.7) and the orthogonality properties, we

have ∫ 1

−1
Q̃n(x)Ψ̃(x)Q̃T

n (x)dx =

∫ 1

−1
Un(x)S−10 S0ΨU (x)ST0 S

−T
0 UT

n (x)dx

=

∫ 1

−1
Y −1n [xQn(x)−XnUn+1(x)] ΨU (x)UT

n (x)dx

= Y −1n

∫ 1

−1
xQn(x)ΨU (x)UT

n (x)dx

= Y −1n

∫ 1

−1
Qn(x)Ψ(x) [RnQn−1(x) + SnQn(x)]

T
dx

= Y −1n

[∫ 1

−1
Qn(x)Ψ(x)QT

n (x)dx

]
STn

= Y −1n Π−1n STn = (S−Tn ΠnYn)−1 = Π̃−Tn = Π̃−1n ,

where in the last steps we have used the formula (3.2.13) and the fact that (Π̃n)n≥0 are diagonal
matrices.

Let us highlight that the previous theorem states that the spectral matrix associated with the
Darboux transformation P̃ considering the stochastic factorization P = PRPA is a Geronimus
transformation of the original spectral matrix Ψ(x). More notably, the result is not restricted to
2 × 2 block tridiagonal matrices. We can follow the same steps for any block tridiagonal matrix P
with N × N blocks, if we are able to find a factorization of the form P = PRPA where PR and PA
are N × N block bidiagonal matrices as in (3.2). The spectral matrix associated with the Darboux
transformation P̃ = PAPR will be given by

Ψ̃(x) = S0

(
Ψ(x)

x
+
[
(Π0Y0S0)−1 −M−1

]
δ0(x)

)
ST0 . (3.2.16)

as long as M−1 =
∫ 1

−1 x
−1Ψ(x)dx is well-defined entry by entry and we can compute the spectral

matrix Ψ(x). This last condition is perhaps the most difficult to fulfill because in this case is not
always possible. This idea opens the door to the study of more general structures, as we will see in
Chapter 5.

Certainly, talking about bilateral birth-death chains, one of the most important consequences of
this result is related to the probabilistic properties of the process described by P̃ . As the spectral
matrix after the discrete Darboux transformation Ψ̃(x) is a Geronimus transformation of the original
spectral matrix, the recurrence properties will be preserved for any values of the free parameters α
and x0 satisfying the conditions (3.1.6) in view of the fact that the Geronimus transformation does



not affect the behavior of the transformed spectral matrix at the point 1. Actually, the Geronimus
transformation affects only the point 0, since it consists of dividing by x and adding a Dirac delta at
0. This means that the original process is recurrent if and only if the transformed process is recurrent.
The same can be inferred for null or positive recurrence or transience properties. Finally, the invariant
measure of the transformed process can be computed through the invariant measure of the original
process as follows

π̃ =

(
y0,

α

r−1
;
y1π1
s1

,
y−2π−2
s−2

;
y2π2
s2

,
y−3π−3
s−3

; · · ·
)
. (3.2.17)

Note that this expression comes from the fact that the invariant measure is given by the diagonal
entries of Π̃n and it corresponds to an invariant measure of a quasi-birth-and-death process.

3.2.1 RA study of the random walk on Z
Let {Xt : t = 0, 1, . . . } be an irreducible birth-death chain on Z with transition probability matrix P
as in (1.4.1) with constant transition probabilities, say,

an = a, bn = b, cn = c, n ∈ Z, a+ b+ c = 1, a, c > 0, b ≥ 0.

Then, we can compute explicitly the continued fractions as in Example 2.3.1. These fractions are given
by

H =
1

2

(
1 + c− 1 +

√
(1 + c− 1)2 − 4c

)
and H ′ =

1

2

(
1 + c− 1−

√
(1 + c− 1)2 − 4c

)
.

Following condition (3.1.6) we have that the RA stochastic factorization is possible if and only if we
take α ≥ H ′ and x0 ≥ 1−H, with α+ x0 ≤ 1.

Again, we have some interesting cases. If we choose α = H ′ and x0 = 1 − H, then, using (3.1.5),
(2.3.1), (3.1.3) and (3.1.4) we get

s−1 =
c

H ′
=

2c

1 + c− a−
√

(1 + c− a)2 − 4c
=

2c(1 + c− a+
√

(1 + c− a)2 − 4c)

(1 + c− a)2 − (1 + c− a)2 + 4c

=
1

2

(
1 + c− a+

√
(1 + c− a)2 − 4c

)
= H.

Then r−1 = 1−H and

y−1 =
a

1−H
= 1−H ′.

Note that this last equality holds using the expressions of H and H ′ and that H = 1− a
1−H′ . Therefore

x−1 = H ′. Following similar steps for the other indices, we have

s−n = H, r−n = 1−H, y−n = 1−H ′, x−n = H ′, n ≥ 1,

sn = 1−H ′, rn = H ′, yn = H, xn = 1−H, n ≥ 1,
(3.2.18)

and y0 = H−H ′, s0 = 1 and r0 = 0. Now, if we compute the coefficients of the Darboux transformation



using equations (3.2.1), we get

ã−1 = (H −H ′)(1−H), ã0 = 1−H, ãn = 1, n ∈ Z \ {−1, 0},
b̃−1 = b̃1 = H ′(1−H) +H(1−H ′), b̃0 = H −H ′, b̃n = b, n ∈ Z \ {−1, 0, 1},
c̃0 = H ′, c̃1 = H ′(H −H ′), c̃n = c, n ∈ Z \ {0, 1},

d̃−1 = (1−H)2, d̃1 = (H ′)2.

This means that the coefficients of the Darboux transformation remain “almost” invariant.

From (2.3.3) we have an explicit expression of the weight matrix Ψ(x) associated with P . The
moment M−1 of Ψ(x) is given by (2.3.4) where we assume that a < (1 −

√
c)2, which is the same

condition for the convergence of the continued fractions H and H ′. With this information it is possible
to compute the spectral matrix associated with the Darboux transformation P̃ = PAPR, which we
recall it is an “almost” birth-death chain except for the states 1 and −1 and two free parameters, α
and x0. In this case we have, by equation (3.2.3), that

S0 =

(
1 0

1− c/α c/α

)
.

Now, following Theorem 3.2.1, to get the spectral matrix associated with P̃ we have to perform a series
of simple computations. First, for the absolutely continuous part we have

S0

(
Ψ(x)

x

)
ST0 =

1

πx
√

(x− σ−)(σ+ − x)

(
1 0

1− c/α c/α

) 1
x− b

2c
x− b

2c
a/c

(1 1− c/α
0 c/α

)

=
1

πx
√

(x− σ−)(σ+ − x)

 1 1− x− b− c
2α

1− x− b− c
2α

1 +
x− b− 2c

α
+
c(x+ a− b) + c2

α2

 .

Using the fact that we can write a = (1−H)(1−H ′) and c = HH ′ we have

S0

(
Ψ(x)

x

)
ST0 =

1

πx
√

(x− σ−)(σ+ − x)

 1
2α−H −H ′ + x

2α
2α−H −H ′ + x

2α

(α−H)(α−H ′) + x(α−HH ′)
α2

 .

For the value at point 0, which will lead us to calculate M̃−1 =
∫ 1

−1 x
−1Ψ̃(x), first we note that

√
σ−σ+ =

√
(H +H ′ − 2HH ′)2 − 4(1−H)(1−H ′)HH ′ = H −H ′.

Then we have to compute

S0


1

y0
− 1

H −H ′
c− α
y0c

− 1

2c

(
1− b

H −H ′

)
c− α
y0c

− 1

2c

(
1− b

H −H ′

)
(α− c)2 − y0(α− c)

y0c2
− a

c(H −H ′)

ST0 .



Using the expression of a and c we get

M̃−1 =


H −H ′ − y0
y0(H −H ′)

H ′ − α
α(H −H ′)

H ′ − α
α(H −H ′)

(α−H ′)(H − α)

α2(H −H ′)

 .

Therefore the final expression for the spectral matrix is given by

Ψ̃(x) =
1

πx
√

(x− σ−)(σ+ − x)
[Ã+ B̃x] + M̃−1δ0,

where

Ã =

 1
2α−H −H ′

2α

2α−H −H ′

2α

(α−H ′)(α−H)

α2

 , B̃ =
1

2α

(
0 1

1
2(α−HH ′)

α

)
,

and δ0(x) the Dirac delta at x = 0. About the probabilistic properties, as we mentioned in Example
2.3.1, it is easy to see that the original random walk is always transient, except for a = c, where it
is null recurrent. The transformed process will have the same recurrent behavior. In addition, the
invariant measure of the original process is given by the following simple expression

π =

(
1,
c

a
;
a

c
,
c2

a2
;
a2

c2
,
c3

a3
; · · ·

)
, (3.2.19)

while the invariant measure of the transformed process will be a complicated two-parameter family
of vectors. Nevertheless, for the special choice of α = H ′ and x0 = H we have, using (3.2.17) and
(3.2.18), that the invariant measure is given by following vector

π̃ =

(
H −H ′, H ′

1−H
;

aH

c(1−H ′)
,
c2(1−H ′)

a2H
;

a2H

c2(1−H ′)
,
c3(1−H ′)

a3H
; · · ·

)
.

3.3 Stochastic AR factorization on the integers
Now it is time to study the second case, where we are looking for an absorbing-reflecting (AR)
factorization. First of all note that if we start from a birth-death chain P as in equation (1.4.1)
and consider an AR factorization of the form P = P̃AP̃R, we will end with both P̃A and P̃R two
separated birth-death chains at the state 0, i.e., there will not be a probability that connects positive
and negative indexes. To fix this detail, we notice that the multiplication of matrices of the form
P̃AP̃R, with P̃A as in (3.1.2) and P̃R as in (3.1.1), gives rise to a Markov chain which is “almost” a
birth-death chain, except for the states 1 and −1. Therefore, for our purposes, it will make more sense
to start with an irreducible Markov chain {Xt : t = 0, 1, . . .} on Z with transition probability matrix
given by

P =



. . . . . . . . .
c−2 b−2 a−2

c−1 b−1 a−1 d−1
c0 b0 a0
d1 c1 b1 a1

c2 b2 a2
. . . . . . . . .


, (3.3.1)



similar to the one illustrated in Figure 3.3.
As before, to simplify some computations, we will work with the equivalent quasi-birth-and-death

process. After the relabeling (1.5.9) we get the following semi-infinite 2× 2 block tridiagonal matrix

P =



b0 c0 a0 0
a−1 b−1 d−1 c−1
c1 d1 b1 0 a1 0
0 a−2 0 b−2 0 c−2

c2 0 b2 0 a2 0
0 a−3 0 b−3 0 c−3

. . . . . . . . .


, (3.3.2)

where the only difference with the coefficients in (1.5.2) is the triangular shape of the blocks A0 and
C1, now given by

A0 =

(
a0 0
d−1 c−1

)
, C1 =

(
c1 d1
0 a−2

)
.

Observe that the block matrix factorization P = P̃AP̃R corresponds to an LU 2 × 2 block matrix
factorization. A direct computation shows that

An = S̃nX̃n, n ≥ 0,

Bn = S̃nỸn + R̃nX̃n−1, n ≥ 1, B0 = S̃0Ỹ0,

Cn = R̃nỸn−1, n ≥ 1,

(3.3.3)

or equivalently, using P = P̃AP̃R, we obtain

an = x̃ns̃n, n ≥ 1, a0 = x̃0, a−n = ỹ−n+1r̃−n, n ≥ 1, (3.3.4)
bn = ỹns̃n + x̃n−1r̃n, n ≥ 1, b0 = ỹ0, b−n = ỹ−ns̃−n + x̃−n+1r̃−n, n ≥ 1, (3.3.5)
cn = ỹn−1r̃n, n ≥ 1, c0 = α̃, c−n = x̃−ns̃−n, n ≥ 1, (3.3.6)
d−1 = r̃−1x̃0, d1 = r̃1α̃, (3.3.7)

with P̃A and P̃R stochastic matrices, i.e., all entries are nonnegative and

α̃+ x̃0 + ỹ0 = 1, x̃n + ỹn = 1, s̃n + r̃n = 1, n ∈ Z \ {0}. (3.3.8)

Observe that, from (3.3.4) - (3.3.7), the values of the probability transitions between states 1 and −1
are given by

d−1 =
a−1a0
b0

, d1 =
c0c1
b0

. (3.3.9)

This means that the factorization is restricted to condition (3.3.9). Additionally we need to have that
0 < d−1, d1 < 1, so these coefficients are probabilities. Using again equation (3.3.9), we have to assume
that

b0 > max{a−1a0, c0c1}.

With the previous restrictions it is possible to get the coefficients ỹ0, r̃1, s̃1, x̃1, ỹ1, . . . recursively using
(3.3.5), (3.3.6) and (3.3.8) in that order. We also can get ỹ0, r̃−1, s̃−1, x̃−1, ỹ−1, r̃−2, . . . recursively
using (3.3.5), (3.3.4) and (3.3.8) in that order. This means that there is no free parameter and the
factorization is unique.



Now, we proceed to analyze conditions under which the factorization is stochastic. As we have a
slightly different expression of P , for this case, the continued fractions H̃ and H̃ ′ are given by

H̃ =
c1
1
− a1

1
− c2

1
− a2

1
− · · · , H̃ ′ =

a−1
1
− c−1

1
− a−2

1
− c−2

1
− · · · . (3.3.10)

For each continued fraction, consider the corresponding sequence of convergents (h̃n)n≥0 and (h̃′−n)n≥0,
given by

h̃n =
Ñn

D̃n

, h̃′−n =
Ñ ′−n

D̃′−n
. (3.3.11)

With these fractions and the convergents defined we are ready to establish conditions for the existence
of the stochastic factorization as follows.

Proposition 3.3.1. Let H̃ and H̃ ′ be the continued fractions given by (3.3.10) and the corresponding
convergents (h̃n)n≥0 and (h̃′−n)n≥0 defined by (3.3.11). Assume that

0 < Ñn < D̃n, and 0 < Ñ ′−n < D̃′−n, n ≥ 1.

Then both H̃ and H̃ ′ are convergent. Moreover, let P = P̃AP̃R. Then, both P̃A and P̃R are stochastic
matrices if and only if

b0 ≥ max{H̃, H̃ ′}. (3.3.12)

Proof. Following exactly the same lines as the proof of Proposition 3.1.1, replacing the formulas by
the tilde notation, one can prove that (h̃n)n≥0 and (h̃′−n)n≥0 converge to H̃ and H̃ ′, respectively.
After that, using a similar argument about equivalences as in Proposition 3.1.1, one can prove that
0 = h̃0 < h̃n < H̃ ≤ ỹ0, and 0 = h̃′0 < h̃′−n < H̃ ′ ≤ ỹ0. Therefore we get (3.3.12) taking in mind that
ỹ0 = b0 in this case (see (3.3.5)).

Observe that if b0 ≥ H̃, then in particular b0 > c1 and since we know that 0 < c0 < 1, then
we have b0 > c1 > c0c1. In the same way, if b0 ≥ H̃ ′, in particular we have b0 > a−1 and since
0 < a0 < 1, then we get b0 > a−1 > a0a−1. Therefore it can be concluded that if b0 ≥ max{H̃, H̃ ′},
then b0 > max{a−1a0, c0c1} from which we conclude that 0 < d1, d−1 < 1. Observe that this does not
mean that the factorization is always possible since we need to have (3.3.9).

3.4 Stochastic Darboux transformations and spectral matrices
for the AR case

Now that we have P = P̃AP̃R, or equivalently P = P̃AP̃R, we can perform a discrete Darboux
transformation, which we will denote by a hat superscript, P̂ = P̃RP̃A or equivalently P̂ = P̃RP̃A. In
block matrix form we have

P̂ =


B̂0 Â0

Ĉ1 B̂1 Â1

Ĉ2 B̂2 Â2

. . . . . . . . .

 =


Ỹ0 X̃0

Ỹ1 X̃1

Ỹ2 X̃2

. . . . . .



S̃0

R̃1 S̃1

R̃2 S̃2

. . . . . .

 . (3.4.1)



A direct computation shows

Ân = X̃nS̃n+1, n ≥ 0,

B̂n = X̃nR̃n+1 + ỸnS̃n, n ≥ 0,

Ĉn = ỸnR̃n, n ≥ 1.

(3.4.2)

Here, after the Darboux transformation, we get that P̂ is now a tridiagonal matrix, i.e., it describes a
discrete-time birth-death chain on Z.

An important difference now is that we can not guarantee the existence of a weight matrix associated
with P . But we know, following Theorem 1.5.1, that there exists a spectral matrix Ψ(x) such that the
polynomials (Qn)n≥0 defined by the three-term recurrence relation (1.5.3) are orthogonal with respect
to the spectral matrix dΨ(x). The sequence of nonsingular matrices (Rn)n≥0 in that theorem is given
by

Rn =

(√
πn 0
0

√
π−n−1

)
, n ≥ 0,

where π = (πn)n∈Z are the potential coefficients given by Definition 1.4.1. Using (3.3.9) we can see
that RnBnR−1n , n ≥ 0, are always symmetric matrices and that

RTnRn = (CT1 · · ·CTn )−1RT0 R0A0 · · ·An−1, n ≥ 1.

Therefore we have RTnRn = Πn where Πn is defined by (1.5.12).
Now we have to define the matrix-valued polynomials that we are going to use for the main theorem

of this section. As in Chapter 2, we have an auxiliary family that satisfies the eigenvalue equation but
not the initial conditions. First remember that, in this case, P is almost tridiagonal, so the family
of matrix-valued polynomials we are looking for is very similar to the family given in (1.5.3). Let us
consider the polynomial vector Q̄ = (Q̄T

0 , Q̄
T
1 , · · · )T where entries are given by Q̄ = P̃RQ. Therefore

this family can be generated by

Q̄n(x) = ỸnQn(x) + X̃nQn+1(x), n ≥ 0,

where (Ỹn)n≥0 and (X̃n)n≥0 are defined by equation (3.2.3). Now, from the AR factorization of P , we
get

P̃AQ̄ = P̃AP̃RQ = PQ = xQ,

or the equivalent system

xQ0(x) = S̃0Q̄0(x),

xQn(x) = R̃nQ̄n−1(x) + S̃nQ̄n(x), n ≥ 1.

From the previous equation we have that

Q̄0(x) = xS̃−10 Q0(x) = xS̃−10 ,

and Q̄n(x) = xTn(x), where (Tn)n≥0 is a family of matrix-valued polynomials with deg(Tn(x)) =
n, n ≥ 0, and nonsingular leading coefficient. We can rewrite the previous two formulas in terms of
the polynomials (Tn)n≥0. Indeed,

xTn(x) = ỸnQn(x) + X̃nQn+1(x), n ≥ 0, (3.4.3)



and in terms of the polynomials (Qn)n≥0 as follows

Q0(x) = S̃0T0(x),

Qn(x) = R̃nTn−1(x) + S̃nTn(x), n ≥ 1.
(3.4.4)

As expected, we have T0(x) = S̃−10 6= I2, so we have to define a new family (Q̂n)n≥0 that satisfies the
initial condition Q̂0 = I2. In this case it is easy to see that this family is given by

Q̂n(x) = Tn(x)S̃0. (3.4.5)

Finally, the last element we need to define is the sequence of potential coefficients given by the solution
of the symmetry equations for P̂ in (3.4.1). Therefore the potential coefficients are given by

Π̂n = (ĈT1 · · · ĈTn )−1Π̂0Â0 · · · Ân−1, n ≥ 1,

where, using (3.3.4) and (3.3.6), we have

Π̂0 =
1

ỹ0

(
1 0

0 α̃s̃−1

ỹ−1r̃−1

)
.

Note that using equations (3.3.3), (3.4.2) and the previous equation, we get

Π̂n = Ỹ −Tn ΠnS̃n, n ≥ 0. (3.4.6)

This means that, as in the RA factorization, (Π̂n)n≥0 are always diagonal matrices.

Theorem 3.4.1. Let {Xt : t = 0, 1, . . . } be the Markov chain on Z with transition probability matrix P
given by (3.3.1) and {X̃t : t = 0, 1, . . . } the birth-death chain generated by the Darboux transformation
of P = P̃AP̃R. Then the matrix-valued polynomials (Q̂n)n≥0 defined by (3.4.5) are orthogonal with
respect to the following spectral matrix

Ψ̂(x) = xS̃−10 Ψ(x)S̃−T0 , (3.4.7)

where the constant matrix S̃0 is defined by (3.2.3) and Ψ(x) is the original spectral matrix associated
with P . Moreover, we have ∫ 1

−1
Q̂n(x)Ψ̂(x)Q̂T

m(x)dx = Π̂−1n δnm,

where δnm is the Kronecker delta and (Π̂n)n≥0 are defined by (3.4.6).

Proof. For n ≥ 1 and j = 0, . . . , n− 1, we have∫ 1

−1
Q̂n(x)Ψ̂(x)xjdx =

∫ 1

−1
xTn(x)Ψ(x)xjS̃−T0 dx

=

∫ 1

−1
[ỸnQn(x) + X̃nQn+1(x)]Ψ(x)xjS̃−T0 dx

= Ỹn

∫ 1

−1
Qn(x)Ψ(x)xjS̃−T0 dx+ X̃n

∫ 1

−1
Qn+1(x)Ψ(x)xjS̃−T0 dx

= 02,



where for the first equality we have used (3.4.5) and (3.4.7), for the second equality we have used
(3.4.3), and finally we have used the orthogonality of the family (Qn)n≥0. Finally, for n ≥ 0, and using
(3.4.3), (3.4.4), (3.4.6) and the orthogonality properties, we have∫ 1

−1
Q̂n(x)Ψ̂(x)Q̂T

n (x)dx =

∫ 1

−1
Tn(x)xΨ(x)T Tn (x)dx

=

∫ 1

−1
[ỸnQn(x) + X̃nQn+1(x)]Ψ(x)T Tn (x)dx

= Ỹn

∫ 1

−1
Qn(x)Ψ(x)T Tn (x)dx

= Ỹn

∫ 1

−1
Qn(x)Ψ(x)[S̃−1n Qn(x)− S̃−1n R̃nTn−1(x)]T dx

= Ỹn

∫ 1

−1
Qn(x)Ψ(x)QT

n (x)S̃−Tn dx

= ỸnΠ−1n S̃−Tn = (S̃TnΠnỸ
−1
n )−1 = Π̂−Tn = Π̂−1n ,

where in the final step we have used the fact that (Π̂n)n≥0 are diagonal matrices.

With this final result, let us comment that, after the Darboux transformation, we get a Christoffel
transformation of the original spectral matrix, i.e., there is a multiplication by x. Equally important,
we can conclude that the transformed process is unique. Although we have an explicit expression of the
n-step transition probability matrix P̂ (n)

ij using the Karlin-McGregor formula (1.5.13) and, since Ψ̂(x)
is a Christoffel transformation of the original spectral matrix, we have that the recurrence properties
will always be preserved. Finally, we know that the invariant measure of the transformed process is
given by the diagonal entries of the matrices Π̂n in (3.4.6). Therefore we have the explicit expression
as follows

π̂ =

(
1

ỹ0
,
s̃−1π̃−1
ỹ−1

;
s̃1π1
ỹ1

,
s̃−2π−2
ỹ−2

;
s̃2π2
ỹ2

,
s̃−3π−3
ỹ−3

; · · ·
)
.

We finish this section with some brief remarks about the connection between RA and AR factorization.
Now that we understand what RA and AR factorizations are about, we can infer that we are in the
presence of dual problems just as the UL and LU factorizations. It is clear that if we start with an RA
factorization of P as in (1.4.1), i.e., P = PRPA and consider the Darboux transformation P̃ = PAPR,
then, if we consider P̃ with an AR factorization and perform the Darboux transformation, we will
get the original matrix P . Although this fact is clear from the structure of the one step transition
probability matrices, one can also explore this fact through the spectral matrices as follows. First note
that, after the second Darboux transformation we will have the spectral matrix given in (3.4.7) where
the matrix S̃0 appears. Second, note that if we apply the AR factorization to P̃ we have that S̃0 = S0,
where S0 is the matrix in (3.2.14). Hence the final spectral matrix turns out to be the following

Ψ̂(x) = xS̃−10 Ψ̃(x)S̃−T0 = xS̃−10 S0ΨU (x)ST0 S̃
−T
0 = x

[
Ψ(x)

x
+ Cδ0(x)

]
= Ψ(x),

where C is the constant 2 × 2 matrix appearing in front of the Dirac delta δ0(x) in (3.2.15). It is
possible to follow the same argument for the case where we start with an AR factorization of P as in
(3.3.1).

To finish this section we will revisit Example 2.3.1 with a small change to meet the conditions
required by the AR factorization.



3.4.1 AR study of the random walk on Z with transitions between the
states 1 and -1

As an example for this section we will analyze the random walk with constant transition probabilities as
in Examples 2.3.1 and 3.2.1, but we will make a small change to have transition probabilities between
the states 1 and −1. Note that, by equation (3.3.9), there is one way to choose these transition
probabilities so that the factorization is possible. Let us consider an irreducible Markov chain on Z
with transition probability matrix P as in (3.3.1) where

an = a, n ∈ Z \ {−1}, bn = b, n ∈ Z, cn = c, n ∈ Z \ {1},

and as usual a+ b+ c = 1, a, c > 0, b ≥ 0. From (3.3.9) the values of a−1, d−1, c1, d1 must be given in
terms of a, b, c. Indeed,

a−1 =
ab

1− c
, d−1 =

a2

1− c
, c1 =

bc

1− a
, d1 =

c2

1− a
.

Since 1− c > 0 and 1− a > 0, this implies that a−1, d−1, c1, d1 > 0. Now, observe that a+ c ≤ 1 and
ab < a since 0 ≤ b < 1. Then we have ab+ c < a+ c ≤ 1, which implies that ab < 1− c and therefore
a−1 < 1. In the same way but using a2 < a, bc < c and c2 < c we get d−1 < 1, c1 < 1 and d1 < 1,
respectively. Therefore, independently of the choice of a, b and c, P is always a stochastic matrix. A
diagram of this process looks like Figure 3.4.

Figure 3.4: Diagram for the Markov chain of Example 3.4.1.

In this case, the continued fractions in (3.3.10) can be explicitly computed as follows. First notice
that

H̃ =
c1
J

=
bc

J(1− a)
, H̃ ′ =

a−1
J ′

=
ab

J ′(1− c)
,

where
J = 1− a

1− c

J

, J ′ = 1− c

1− a

J

,

or in other words, J and J ′ are solutions of the quadratic equations

J2 + J(−1− c+ a) + c = 0, J ′2 + J ′(−1 + c− 1) + a = 0,

respectively. Using the fact that (1 + a− c)2 − 4a = (1 + c− a)2 − 4c and after rationalizing, we have
the following expressions for the continued fractions

H̃ =
b

2(1− a)

(
1 + c− a+

√
(1 + c− a)2 − 4c

)
, H̃ ′ =

b

2(1− c)

(
1 + a− c+

√
(1 + c− a)2 − 4c

)
,



with a ≤ (1−
√
c)2. It is clear that with this condition we have that b > H̃, b > H̃ ′ and then

b > max{H̃, H̃ ′}.

Therefore, according to Proposition 3.3.1, we have that the AR stochastic factorization of P is always
possible.

Now that P is not tridiagonal and we do not have a birth-death chain on the integers Z, we can not
apply the same methodology as we did in the Chapter 2. However we can consider the block tridiagonal
structure of P given by P in (3.3.2) and use the theory of matrix-valued orthogonal polynomials to
compute the spectral matrix Ψ(x). This procedure is similar to the one used in Example 2.3.1 where
we used the relation between the Stieltjes transform of the original process described by P in (1.4.1)
and the Stieltjes transform of the 0-th associated process constructed by removing the first row and
column of P . In this example we use the same results but with the block matrices. To start, after
relabeling (1.5.9), we get that P is given by

P =



b c a 0
ab
1−c b a2

1−c c
bc

1−a
c2

1−a b 0 a 0

0 a 0 b 0 c
c 0 b 0 a 0
0 a 0 b 0 c

. . . . . . . . .


.

Then, we study the relation between the Stieltjes transform of the spectral matrix Ψ(x) and the
Stieltjes transform of the spectral matrix Ψ0(x) of the 0-th associated process P0 defined in Remark
1.3.3.

Using equation (1.5.7) we can compute the corresponding Stieltjes transform B(z; Ψ0), given by

B(z; Ψ0) =

z − b±
√

(z − σ+)(z − σ−)

2ac
0

0
z − b±

√
(z − σ+)(z − σ−)

2c2

 , z ∈ C \ [σ−, σ+],

where σ± = 1− (
√
a∓
√
c)2. Now using equation (1.5.8) we have that the Stieltjes transform B(z; Ψ)

of P satisfies the algebraic equation

B(z; Ψ)ΠΨ [zI2 −B0 −A0B(z; Ψ0)ΠΨ0C1] = I2, (3.4.8)

where

A0 =

 a 0
a2

1− c
c

 , B0 =

 b c
ab

1− c
b

 , C1 =

 bc

1− a
c2

1− a
0 a

 ,

and ΠΨ and ΠΨ0
are given in this case by

ΠΨ =

(
1 0

0
c(1− c)
ab

)
, ΠΨ0 =

(
1 0
0 c/a

)
.



Solving (3.4.8) and after some straightforward computations we get

B(z;ψij) =
pij(z) + qij(z)

√
(z − σ+)(z − σ−)

rij(z)
, z ∈ C \ [σ−, σ+],

where pij(z), qij(z), rij(z) are polynomials given by

p11(z) = 2(1− a)(1− c)z3 − 4b(1− a)(1− c)z2 + γ11z − b2((a− c)2 − a− c),
q11(z) = b [−2(1− a)(1− c)z − a(1− a)− c(1− c)] ,
r11(z) = 2(1− a)(1− c)z4 − 4b(1− a)(1− c)z3 + (γ11 − b2(2ac− a− c))z2 + 4ab2cz − 2ab2c,

p12(z) = b
[
−(1− a)(1− c)z3 + b(1− a)(2− 3c)z2 + γ12z − bc((1− c)2 − a(1 + c))

]
q12(z) = b

[
−(1− a)(1− c)z2 + (1− a)(1 + 2c2 − a− 3c)z + bc(1− c)

]
(3.4.9)

r12(z) = cr11(z),

p22(z) = b2
[
−(1− a)z3 + (1− a)(b+ 2(1− c))z2 + γ22z − b(ac− c2 + a+ 2c− 1)

]
q22(z) = b

[
−(1− a)(1− c+ a)z2 + 2b(1− a)(1− c)z − b2(1− c)

]
r22(z) = cr11(z),

where

γ11 = 2(1− a)3 + 2(1− c)3 − 2 + 2ac(2 + a+ c− 4ac) + b2(2ac− a− c),
γ12 = a3 + a2(2c2 + 2c− 3) + a(1− c)(2c2 − 4c+ 3)− (1− c)2(1− 3c),

γ22 = −2a2(1 + c) + a(2c2 − 5c+ 5)− 3(1− c)2.

Therefore the Stieltjes transform B(z; Ψ) can be written as

B(z; Ψ) =

√
(z − σ+)(z − σ−)

cr11(z)

(
cq11(z) q12(z)
q12(z) q22(z)

)
+

1

cr11(z)

(
cp11(z) p12(z)
p12(z) p22(z)

)
.

We can see that r11(z) is a polynomial of degree 4, so we know that the Stieltjes transform may have
at most 4 real poles. Nevertheless, we have not been able to compute an explicit expression of these
zeros. Instead we will assume that c = a and get a significant simplification.

If c = a, then b = 1− 2a and the polynomial r11(z) has now a simpler expression:

r11(z) = 2(1− z)(z(1− a) + a)[(a− 1)z2 + b2z − ab2].

The zeros of r11(z) are given by

1, − a

1− a
,

b(b±
√

2b2 − 1)

1 + b
. (3.4.10)

If
√

2/2 < b < 1, i.e., 0 < a < (2 −
√

2)/4, there can be at most 4 different real zeros. This
means that the spectral matrix will consist of an absolutely continuous density plus possibly some
Dirac delta masses located at these zeros with certain weights. Let us write the spectral matrix
as Ψ(x) = Ψc(x) + Ψd(x). Using the Stieltjes-Perron inversion formula (see Proposition 1.1.4) the
continuous part of the spectral matrix is given by

Ψc(x) =

√
(σ+ − x)(x− σ−)

cπr11(x)

(
cq11(x) q12(x)
q12(x) q22(x)

)
, x ∈ [σ−, σ+] = [1− 4a, 1], (3.4.11)



where

q11(x) = −2(1− 2a)(1− a)(x(1− a) + a),

q12(x) = −(1− 2a)(1− a)(x(1− a) + a)(x− 1 + 2a),

q22(x) = −(1− 2a)(1− a)(x2 − 2(1− a)(1− 2a)x+ (1− 2a)2).

The discrete masses come from the residues at the simple poles of B(z; Ψ), given by (3.4.10). After
some computations it is possible to see that all discrete masses are identically 02. Therefore the
spectral matrix only have an absolutely continuous part given by (3.4.11).

Now that we have an explicit expression for the spectral matrix, let us consider the discrete Darboux
transformation. In block matrix form, the Darboux transformation is given by P̂ which equivalent
matrix P̂ is now a discrete-time birth-death chain on Z. Using (3.4.2) together with the following
continued fraction

J =
c
1
− a

1
− c

1
− a

1
− · · ·

and the corresponding convergents
jn =

αn
βn
, n ≥ 0,

it is possible to find an expression for the entries of P̂ . The sequences (αn)n≥0 and (βn)n≥0 of the
convergents (jn)n≥0 can be computed recursively using the following relations:

α2n = α2n−1 − aα2n−2, n ≥ 1, α2n+1 = α2n − cα2n−1, n ≥ 0, α−1 = 1, α0 = 1,

β2n = β2n−1 − aβ2n−2, n ≥ 1, β2n+1 = β2n − cβ2n−1, n ≥ 0, β−1 = 0, β0 = 1.

The first few convergents are given by

j0 = 0, j1 = c, j2 =
c

1− a
, j3 =

c(1− c)
b

, j4 =
cb

b− a(1− a)
, j5 =

c(b− c(1− c))
b(1− c)− a(1− a)

, . . . .

First note that using (3.3.4) and (3.3.6) shows that the coefficients x̃n, ỹn, r̃n, s̃n, n ∈ Z, can be written
in terms of the convergents jn as follows

α̃ = c, x̃n =
a

1− j2n
, n ≥ 0, x̃−n = j2n+1, n ≥ 1,

ỹ0 = b, ỹn = 1− x̃n, ỹ−n = 1− j2n+1, n ≥ 1,

r̃n = j2n, n ≥ 0, r̃−n =
a

1− j2n−1
, n ≥ 1,

s̃n = 1− j2n, n ≥ 0, s̃−n = 1− r̃−n, n ≥ 1.

(3.4.12)

Therefore, the coefficients ân, b̂n, ĉn, n ∈ Z, of the birth-death chain P̂ are given by

ân =
a(1− j2n+2)

1− j2n
, n ≥ 0, â−n =

a(1− j2n+1)

1− j2n−1
, n ≥ 1,

ĉn =
j2n(1− a− j2n)

1− j2n
, n ≥ 0, ĉ−n =

j2n+1(1− a− j2n+1)

1− j2n+3
, n ≥ 1,

b̂n =1− ân − ĉn, n ∈ Z.



To finish the example, it is possible to compute the spectral matrix Ψ̂(x) of the birth-death chain P̂
using Theorem 3.2.1. Indeed, the spectral matrix is given by

Ψ̂(x) = xS̃−10 Ψ(x)S̃−T0 ,

where Ψ(x) is given by (3.4.11) and

S̃−10 =

(
1 0
−a/b (1− c)/b

)
.

After some computations we get

Ψ̂(x) =
x
√

(σ+ − x)(x− σ−)

cπr11(x)

(
cq11(x) −acb q11(x) + 1−c

b q12(x)

−acb q11(x) + 1−c
b q12(x) a2c

b2 q11(x)− 2a(1−c)
b2 q12(x) + (1−c)2

b2 q22(x)

)
,

where qij(x) are given by (3.4.9).
Finally, it is possible to see that the original random walk is always transient, except for a = c,

where it is null recurrent. Therefore, as we mentioned before, the transformed process will have the
same recurrent behavior. The invariant measure of the original process is given by (3.2.19). Using
(3.4) and (3.4.12), we have that the invariant measure of the transformed process is given by

π̂ =

(
1

b
,

c

a− c(1− c)
;

ab2

c(1− a)((1− a)2 − c)
,

c2((1− a)2 + (1− c)2 − 1 + ac)2

a2((1− c)2 + a)((1− c)3 + (1− a)2 − 1 + 2ac)
; · · ·

)
.

The rest of the coefficients can be computed using the convergents (jn)n≥0.



CHAPTER 4

An example of a nontrivial birth-death chain on Z: the associated Jacobi
polynomials

In previous chapters, the main object of study was the one-step transition probability matrix P given
in (1.4.1) which is a doubly infinite tridiagonal stochastic matrix. In each chapter, we considered
a different type of stochastic factorization, some of them subject to free parameters. Then we gave
conditions in terms of certain continued fractions such that the stochastic factorization is always
possible. Afterwards, performing a Darboux factorization, we got new families of birth-death chains
on the integers. We identified the spectral matrices associated with these Darboux transformations
which, in general, are conjugations of a Geronimus or a Christoffel transformation of the original
spectral matrix. At the end of the analysis, in each chapter, we presented an example in which it
is possible to perform the stochastic factorization and apply our results. However, as we already
emphasized, the methods for obtaining the spectral matrices are not so simple, even for the simplest
variations of random walks on Z. We also used as an example a version of the birth-death chain
with constant transition probabilities but adding transitions between states 1 and -1 in which case we
managed to compute the spectral matrix using methods from the theory of matrix-valued orthogonal
polynomials.

The main motivation of this chapter is to study a nontrivial example of birth-death chain on Z, given
by the so-called associated Jacobi polynomials. The transition probabilities will be given by rational
functions depending on the state of the process instead of constants. In Section 1.6 we studied the
example of the birth-death chain corresponding with the classical family of Jacobi polynomials. For
our purposes, we considered the family restricted to the interval [0, 1] and the coefficients an, bn and
cn in such a way that the Jacobi matrix is stochastic. In Section 4.1 we will provide a general context
about the families of associated polynomials, with a specific focus on the family of associated Jacobi
polynomials. We will explore some of its key characteristics, such as the Jacobi matrix and the spectral
matrix. Moving on to Section 4.2, we will derive conditions under which the Jacobi matrix associated
to this polynomial family is a stochastic matrix. This will allow us to interpret this matrix as the
one-step transition probability matrix of a non-trivial birth-death chain on Z, enabling us to study the
UL and LU stochastic factorizations by the end of this section. Continuing our investigation, we will
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explore Darboux transformations in Section 4.3, and finally, we will conclude with the study of an urn
model corresponding to the family of associated Jacobi polynomials in Section 4.4.

4.1 Associated Jacobi polynomials
The associated orthogonal polynomials have been widely studied before. As far as we know, the
concept of associated polynomials was considered in [2] and then in a paper by D. Askey and J. Wimp
[1], where the spectral measures for associated Laguerre and Hermite polynomials were computed.
The case of associated Jacobi polynomials was considered later by many authors as in [52, 37]. These
references are a great precedent in our subject since we are interested in spectral measures and, as we
know, there are only a handful of cases where the spectral matrix has been explicitly computed.

The families of associated polynomials are generated by considering polynomials satisfying the
three-term recurrence relation for the classical families of Hermite, Laguerre, Jacobi or Bessel polynomials,
but replacing n by n + t, where t is an arbitrary real parameter. F.A. Grünbaum and L. Haine in
[22], extended this idea to the whole set of integers n ∈ Z, in which case we have a doubly infinite
tridiagonal matrix. The authors gave a solution of the bispectral problem, also called, Bochner’s
problem, for the doubly infinite tridiagonal matrices corresponding to the associated Hermite, Laguerre,
Jacobi and Bessel polynomials, and the corresponding differential operator has order two. Although a
complete classification of the bispectral problem for this extension of the Bochner’s problem was given
in [22], very little is known about the spectral matrices for these associated polynomials. However,
in [23, Theorem 1], F.A. Grünbaum and L. Haine managed to compute the explicit expression of the
spectral matrix for the associated Jacobi polynomials supported on [0, 1] for some special choice of the
parameters involved. The main purpose of this section is to present the associated Jacobi polynomials
on Z and the expression for the corresponding spectral matrix.

First, for every n ∈ Z let

dn =
(n+ t)(n+ t+ α)(n+ t+ β)(n+ t+ α+ β)

(2n+ 2t+ α+ β − 1)(2n+ 2t+ α+ β)2(2n+ 2t+ α+ β + 1)
,

en =
1

2

(
1 +

α2 − β2

(2n+ 2t+ α+ β − 2)(2n+ 2t+ α+ β)

)
,

(4.1.1)

with dn > 0 for all n ∈ Z. Let us define J as the doubly infinite matrix given by

J =



. . . . . . . . .√
d−2 e−1

√
d−1√

d−1 e0
√
d0√

d0 e1
√
d1√

d1 e2
√
d2

. . . . . . . . .


, (4.1.2)

and we consider the eigenvalue equation xP (x) = JP (x), with the vector of polynomials P (x) =
(· · · , P−1(x), P0(x), P1(x), · · · )T . In fact, we have two linearly independent solutions depending on the
initial conditions. These solutions define two families of linearly independent polynomials (P ηn )n∈Z, η =



1, 2, satisfying the following three-term recurrence relation

P 1
0 (x) = 1, P 2

0 (x) = 0,

P 1
−1(x) = 0, P 2

−1(x) = 1,

xP ηn (x) =
√
dn+1P

η
n+1(x) + en+1P

η
n (x) +

√
dnP

η
n−1(x), n ∈ Z, η = 1, 2.

Now, the coefficients of the three-term recurrence relation for the classical Jacobi orthonormal polynomials
on the interval [0, 1] are given by

ãn =
n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β − 1)(2n+ α+ β)2(2n+ α+ β + 1)
,

b̃n =
1

2

(
β2 − α2

(2n+ α+ β − 2)(2n+ α+ β)
+ 1

)
,

for n ≥ 1. Therefore there is a simple equivalence with coefficients in equation (4.1.1) given by

dn = ãn+t,

en = b̃n+t,

for n ∈ Z. Consequently we call (P ηn )n∈Z the associated Jacobi polynomials and J is the associated
Jacobi matrix. In [23], the authors specify that if we assume that α and β are inside the square
−1 < α, β < 1, then it is possible to find some t such that dn > 0, n ∈ Z. Outside of this square it is
possible to see that there is no value of t that makes all dn positive.

The polynomials (P ηn )n∈Z, η = 1, 2 are orthonormal in the classical sense with respect to certain
spectral matrix W supported on the interval [0, 1]. Additionally, if the coefficients dn are all positive,
the spectral matrix has only an absolutely continuous part given by the following expression

W (x) = xα(1− x)β
(

Σ11(x) Σ12(x)
Σ12(x) Σ22(x)

)
, x ∈ [0, 1], (4.1.3)

where

Σ11(x) = γL
(
G2

1(x)− µK2x−2αG2
2(x)

)
,

Σ12(x) = −L
(
G1(x)G3(x)− µνK2x−2αG2(x)G4(x)

)
,

Σ22(x) =
L

γ

(
G2

3(x)− µν2K2x−2αG2
4(x)

)
,

(4.1.4)

and

G1(x) = 2F1 (α+ β + t+ 1,−t;α+ 1;x) , G2(x) = 2F1 (β + t+ 1,−α− t; 1− α;x) ,

G3(x) = 2F1 (α+ β + t, 1− t;α+ 1;x) , G4(x) = 2F1 (β + t, 1− t− α; 1− α;x) ,

µ =
sin(πt) sin(π(β + t))

sin(π(α+ β + t)) sin(π(α+ t))
, ν =

(α+ t)(α+ β + t)

t(β + t)
,

K = −Γ(α)Γ(α+ 1)Γ(t+ 1)Γ(−α− β − t) sin(πα) sin(π(α+ β + t))

πΓ(α+ t+ 1)Γ(−β − t) sin(π(β + t))
,

L =
t(β + t) sin(πα)

π
√
d0(α+ β + 2t)α(µ− 1)K

, γ =
(α+ t)(α+ β + t)√

d0(α+ β + 2t− 1)(α+ β + 2t)
,



where 2F1 denotes the standard Gauss hypergeometric function.
Now, with the relabeling given in (1.5.9), we transform the doubly infinite Jacobi matrix given in

equation (4.1.2) into the following semi-infinite 2× 2 block Jacobi matrix

J =


E1 D1

D1 E2 D2

D2 E3 D3

. . . . . . . . .

 ,

where

E1 =

(
e1

√
d0√

d0 e0

)
, En+1 =

(
en+1 0

0 e−n

)
, n ≥ 1, Dn+1 =

(√
dn+1 0

0
√
d−n−1

)
, n ≥ 0,

and we define the matrix-valued polynomials

Pn(x) =

(
P 1
n(x) P 2

n(x)
P 1
−n−1(x) P 2

−n−1(x)

)
, n ≥ 0. (4.1.5)

These matrix-valued polynomials satisfy the following three-term recurrence relation

xP0(x) = D1P1(x) + E1P0(x), P0(x) = I2,

xPn(x) = Dn+1Pn+1(x) + En+1Pn(x) +DnPn−1(x), n ≥ 1,

where I2 denotes the 2 × 2 identity matrix. Therefore the orthonormality is defined in terms of the
following entry by entry integral ∫ 1

0

Pn(x)W (x)P T
m(x)dx = I2δnm,

where δnm is the Kronecker delta.
All these results were developed in [23] with the difference that the authors used parameters a, b, c,

according to the standard notation of the Gauss hypergeometric equation. For this chapter we decided
to use a notation more related with the classical Jacobi polynomials. Our notation and the one used
in [23] are related by

a = α+ β + t+ 1,

b = −t,
c = α+ 1.

Remark 4.1.1. Observe that in [23] the authors use a different representation of the matrix-valued
orthonormal polynomials (Pn(x))n≥0 given in (4.1.5). It is easy to see that both notations are
connected by a conjugation of the σ1 Pauli matrix (of size 2× 2). Thus, the spectral matrix given in
(4.1.3) has been modified according to our notation.

Remark 4.1.2. In [23] the authors gave a complete solution of the discrete-continuous version of the
following bispectral problem: Describe all families of functions fn(z), n ∈ Z, z ∈ C, that satisfy

(Jf)n(z) = zfn(z), and Efn(z) = λnfn(z), for all z and n,



where J is a doubly infinite matrix like in (4.1.2) and E is a second-order differential operator with
coefficients independent of n. In the case of associated Jacobi polynomials the functions fn(z) can be
given in terms of an arbitrary solution of Gauss’ hypergeometric equation (see (2.1)–(2.6) of [23]). The
corresponding second order differential operator E and eigenvalue λn are given by

E = z(1− z) d
2

dz2
+ (α+ 1 + (α+ β + 2)z)

d

dz
, λn = −(n+ t)(n+ t+ α+ β + 1).

4.2 The stochastic associated Jacobi matrix
In this section we consider a normalization of the associated Jacobi polynomials in such a way that we
get a stochastic Jacobi matrix. For all n ∈ Z, let us define

an =
(n+ t+ β + 1)(n+ t+ α+ β + 1)

(2n+ 2t+ α+ β + 1)(2n+ 2t+ α+ β + 2)
,

bn =
(n+ t+ β + 1)(n+ t+ 1)

(2n+ 2t+ α+ β + 1)(2n+ 2t+ α+ β + 2)
+

(n+ t+ α)(n+ t+ α+ β)

(2n+ 2t+ α+ β)(2n+ 2t+ α+ β + 1)
,

cn =
(n+ t)(n+ t+ α)

(2n+ 2t+ α+ β)(2n+ 2t+ α+ β + 1)
.

(4.2.1)

Observe that
an + bn + cn = 1, n ∈ Z.

Again, there is a relation between these coefficients and the classical family of Jacobi polynomials.
If we denote by ãn, b̃n, c̃n the coefficients of the three-term recurrence relation for the classical Jacobi
polynomials on [0, 1] such that the corresponding Jacobi matrix is stochastic given by (1.6.4), then we
have

an = ãn+t,

bn = b̃n+t,

cn = c̃n+t,

for n ∈ Z. The corresponding doubly infinite Jacobi matrix associated with the coefficients (4.2.1)
can be written as P in equation (1.4.1). If we compute explicitly the sequence of potential coefficients
given by Definition 1.4.1, we get the following expression

πn =
(α+ β + t+ 1)n(−t)−n(2n+ 2t+ α+ β + 1)

(α+ t+ 1)n(−β − t)−n(2t+ α+ β + 1)
, n ∈ Z, (4.2.2)

where (a)n denotes the Pochhammer symbol, i.e.,

(a)0 = 1, (a)n = a(a+ 1) · · · (a+ n− 1), n ≥ 1,

and
(a)−n =

1

(a− n)n
, n ≥ 1.



Now, let us define

Π =



. . . . . . . . .
√
π−1 √

π0 √
π1
. . . . . . . . .

 = diag
(
· · · ,√π−1,

√
π0,
√
π1, · · ·

)
.

Then, the relation between the Jacobi matrices J and P given by (4.1.2) and (1.4.1), respectively, is

JΠ = ΠP.

Under the conditions described above, we know that the sum of all rows of the matrix P is always
equal to one. To ensure that P is stochastic it is also necessary that all entries are positive. With
this in mind, let us state the following proposition. Recall from the previous section that α and β are
inside the square −1 < α, β < 1.

Proposition 4.2.1. If 0 ≤ β < 1 then it is not possible to find t such that an, bn, cn > 0 for all n ∈ Z.
Therefore assume that −1 < α < 1 and −1 < β < 0. Then the coefficients an, bn, cn defined by (4.2.1)
are all positive if we choose t according to one of the following 8 regions (see Figure 4.1):

A1= {β − α+ 1 > 0, α > −β, β < 0}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n, n− β) ∪ (n− α, n− α− β). (4.2.3)

A2= {β − α+ 1 > 0, α < −β, α > 0}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n− α, n) ∪ (n− α− β, n− β).

B1= {β − α+ 1 < 0, α > −β, α < 1}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n, n− α+ 1) ∪ (n− β, n− α− β + 1).

B2= {β − α+ 1 < 0, α < −β, β > −1}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n− β − 1, n) ∪ (n− α− β, n− α+ 1).

C1= {β + α+ 1 > 0, α > β, α < 0}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n, n− α) ∪ (n− β, n− α− β).

C2= {β + α+ 1 > 0, α < β, β < 0}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n, n− β) ∪ (n− α, n− α− β).



D1= {β + α+ 1 < 0, α > β, β > −1}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n− β − 1, n) ∪ (n− α− β, n− α+ 1).

D2= {β + α+ 1 < 0, α < β, α > −1}. Then t must be chosen in the following real set:

t ∈
⋃
n∈Z

(n− α− 1, n) ∪ (n− α− β, n− β + 1).

Figure 4.1: Representation of the regions in Proposition 4.2.1.

Proof. We will prove first that in region 0 ≤ β < 1 there is no t such that all coefficients an, bn, cn > 0.
Let us write the coefficients given in (4.2.1) as follows

an = xnsn+1, bn = xnrn+1 + ynsn, cn = rnyn, n ∈ Z, (4.2.4)

where

xn =
n+ t+ β + 1

2n+ 2t+ α+ β + 1
, yn =

n+ t+ α

2n+ 2t+ α+ β + 1
, sn =

n+ t+ α+ β

2n+ 2t+ α+ β
, rn =

n+ t

2n+ 2t+ α+ β
.

(4.2.5)
This representation is inspired by the coefficients of the UL factorization of the doubly infinite matrix
P . We will prove the first part of the proposition in the region R = {α > β ≥ 0, β < 1 − α}. The
rest of cases are similar. In the region R, if we take n+ t as a variable, the values of the zeros of each
factor in (4.2.5) are located as follows

−2 < −1−α−β < −1−α+ β

2
< −1−β < −1 < −α+ β + 1

2
< −α−β < −α < −α+ β

2
< 0. (4.2.6)

For the proof, it is enough to see what happens in the interval [−1, 0], since n + t can be moved to
any other interval of this size for some integer n. Now, we are going to analyze the sign of an, bn, cn
in (4.2.4) through the sign of xn, yn, sn, rn in (4.2.5). According to the position of n+ t, we have the
following possibilities:



1. If −1 < n+ t < −α+β+1
2 , then we have

xn =
Sign(+)

Sign(−)
and sn+1 =

Sign(+)

Sign(+)
.

Therefore an = xnsn+1 < 0.

2. If −α+β+1
2 < n+ t < −α, then we have

rn =
Sign(−)

Sign(−)
and yn =

Sign(−)

Sign(+)
.

Therefore cn = rnyn < 0.

3. If −α < n+ t < −α+β2 , then we have

yn =
Sign(+)

Sign(+)
and sn =

Sign(+)

Sign(−)
.

Therefore ynsn < 0 and the second summand in bn of (4.2.4) is negative.

4. If −α+β2 < n+ t < 0, then we have

rn =
Sign(−)

Sign(+)
and yn =

Sign(+)

Sign(+)
.

Therefore cn = rnyn < 0.

In all the above cases it is not possible to find t such that an, bn, cn > 0 for all n ∈ Z. Finally there
are another two possibilities:

5. If n+ t > 0 then all xn, yn, sn, rn are positive and an, bn, cn > 0 for all n ∈ Z. This means that
we have to choose t such that t > −n. As |n| → ∞ it will not be possible to find a finite t such
that an, bn, cn > 0 for all n ∈ Z.

6. If n + t < −1 − α − β, then all xn, yn, sn, rn are negative and an, bn, cn > 0 for all n ∈ Z. But
then we have to choose t such that t < −1−α−β−n. Again, as |n| → ∞ it will not be possible
to find a finite t such that an, bn, cn > 0 for all n ∈ Z.

The rectangle −1 < α < 1, 0 ≤ β < 1 can be divided in a similar way as in Figure 4.1. The region R is
just one of these triangles. The proof for the rest of the regions is similar, only changing the position
of the values of the zeros in equation (4.2.6).

For the second part of the proposition we will focus on the region A1. The rest of the cases are
similar. As before, we have that the values of the zeros of each of the factors in (4.2.5), for n+ t as a
variable, are located as follows

−2 < −1−α−β < −1−α+ β

2
< −1 < −1−β < −α+ β + 1

2
< −α < −α−β < −α+ β

2
< 0, (4.2.7)

so it is enough to see what happens in the interval [−1, 0]. We have the following possibilities according
to the position of n+ t:



1. If −1 < n+ t < −1− β, then we have

xn =
Sign(−)

Sign(−)
, sn+1 =

Sign(+)

Sign(+)
, rn+1 =

Sign(+)

Sign(+)
, yn =

Sign(−)

Sign(−)
, sn =

Sign(−)

Sign(−)
and rn =

Sign(−)

Sign(−)
.

Therefore an, bn, cn > 0 for all n ∈ Z.

2. If −1− β < n+ t < −α+β+1
2 , then we have

xn =
Sign(+)

Sign(−)
and sn+1 =

Sign(+)

Sign(+)
.

Therefore an = xnsn+1 < 0.

3. If −α+β+1
2 < n+ t < −α, then we have

rn =
Sign(−)

Sign(−)
and yn =

Sign(−)

Sign(+)
.

Therefore cn = rnyn < 0.

4. If −α < n+ t < −α− β, then we have

xn =
Sign(+)

Sign(+)
, sn+1 =

Sign(+)

Sign(+)
, rn+1 =

Sign(+)

Sign(+)
, yn =

Sign(+)

Sign(+)
, sn =

Sign(−)

Sign(−)
and rn =

Sign(−)

Sign(−)
.

Therefore an, bn, cn > 0 for all n ∈ Z.

5. If −α− β < n+ t < −α+β2 , then we have

yn =
Sign(−)

Sign(−)
and sn =

Sign(+)

Sign(−)
.

Therefore ynsn < 0 and the second summand in bn of (4.2.4) is negative.

6. If −α+β2 < n+ t < 0, then we have

rn =
Sign(−)

Sign(+)
and yn =

Sign(+)

Sign(+)
.

Therefore cn = rnyn < 0.

Cases (1) and (4) correspond to what we wanted to prove in (4.2.3) for region A1. The proof for the
rest of the regions is similar, only changing the position of the values in equation (4.2.7).

As a consequence of the previous proposition we can ensure that the Jacobi matrix P in (1.4.1) with
coefficients (4.2.1) is stochastic. Therefore it can be interpreted as the one-step transition probability
matrix of a nontrivial bilateral birth-death chain {Zt : t = 0, 1, . . .} on Z depending on three parameters
α, β and t.

Let us consider (Qαn(x))n∈Z, α = 1, 2, the two sets of linearly independent polynomials associated to
P which are generated by the eigenvalue equation. In a similar way to what we have done before, we
proceed to perform the relabeling (1.5.9), procedure that allows us to collect all the information of P in



a semi-infinite 2× 2 block tridiagonal matrix given by (1.5.2) which describes a quasi-birth-and-death
process. If we define the matrix-valued polynomials as in (1.5.10),

Qn(x) =

(
Q1
n(x) Q2

n(x)
Q1
−n−1(x) Q2

−n−1(x)

)
, n ≥ 0,

the three-term recurrence relation is given by (1.5.3) and the orthogonality relation is given by∫ 1

0

Qn(x)Ψ(x)Q∗m(x)dx =

(
1/πn 0

0 1/π−n−1

)
δnm,

with δnm the Kronecker delta.
Notice that this relation is equivalent to equation (1.5.11) but with the difference that here the

interval is restricted to [0, 1]. In this case, the spectral measure is given by

Ψ(x) =

(
1 0
0 1/

√
π−1

)
W (x)

(
1 0
0 1/

√
π−1

)
= xα(1−x)β

 Σ11(x)
1
√
π−1

Σ12(x)

1
√
π−1

Σ12(x)
1

π−1
Σ22(x)

 , x ∈ [0, 1],

(4.2.8)
where Σij are given by (4.1.4). The n-step transition probabilities of the bilateral birth-death chain
can be computed using the Karlin-McGregor integral representation formula (1.5.13).

Finally, it is possible to see that, under the conditions of Proposition 5.1.1, the functions inside the
matrix in the expression of Ψ(x) are bounded at the point x = 1. Therefore the divergence of the
integral ∫ 1

0

Ψ(x)

1− x
dx,

only depends on the part (1− x)β from the spectral measure. Besides, in Proposition 4.2.1 we stated
that −1 < β < 0, thus we always have that all entries of the integral are divergent. Therefore the
bilateral birth-death chain is always recurrent. To complete the description, since the spectral measure
has only an absolutely continuous part, there are no jumps at the point 1. Then the birth-death chain
is always null recurrent.

Now we turn our attention to the study of UL and LU stochastic factorizations described in Chapter
2. We divide this analysis into two brief subsections below.
Remark 4.2.2. The matrix-valued orthogonal polynomials (Qn)n≥0 are bispectral. Not only they are
eigenfuntions of the block tridiagonal Jacobi operator P like in (1.5.2), but they are also eigenfunctions
of the following matrix-valued second-order differential operator:

B = x(1− x)
d2

dx2
+ (C − xU)

d

dx
, (4.2.9)

that is, Qn(x)B = ΛnQn(x), where

C =

(
α+ 1 + 2t(β+t)

α+β+2t 2t− 2t(β+t)
α+β+2t

−2(β + t) + 2t(α+t)
α+β+2t 1− α− 2t(β+t)

α+β+2t

)
, U =

(
α+ β + 2t+ 2 0

0 −α− β − 2t+ 2

)
,

V =

(
−α− β − 2t 0

0 0

)
, Λn =

(
−(n+ 1)(n+ α+ β + 2t) 0

0 −n(n− α− β − 2t+ 1)

)
, n ≥ 0.

(4.2.10)



Observe that the coefficients of B, independent of n, are multiplied on the right while the eigenvalue
Λn is multiplied on the left. This is consistent with the theory of matrix-valued orthogonal polynomials
satisfying second-order differential equations initiated by A. J. Durán, F.A. Grünbaum, I. Pacharoni,
and J.A. Tirao (see [11, 27]). In terms of the two linearly independent families of polynomials
(Qηn(x))n∈Z, η = 1, 2, we have two coupled second-order differential equations of the form

x(1− x)(Qηn(x))′′ +

(
1 + ε

(
α+

2t(β + t)

α+ β + 2t

)
− x(2 + ε(α+ β + 2t))

)
(Qηn(x))′

+

(
−β(1 + ε) + 2εt

(
−1 +

β + t

α+ β + 2t

))
(Qη+εn (x))′

− 1

2
(1 + ε)(α+ β + 2t)Qηn(x)

= λ±nQ
η
n(x), n ∈ Z,

where

ε =

{
1, if η = 1

−1, if η = 2
, λ±n =

{
−(n+ 1)(n+ α+ β + 2t), if n ≥ 0

−n(n− α− β − 2t+ 1), if n < 0
.

As a final comment J. Wimp [52] found a fourth-order differential equation with coefficients depending
on n for the family of polynomials (Q1

n(x))n≥0.

4.2.1 Stochastic UL factorization
According to Proposition 2.1.2, the UL stochastic factorization is possible if and only if we choose y0
in the following range

H ′ ≤ y0 ≤ H,

where H and H ′ are the continued fractions given by (2.1.4).

Theorem 4.2.3. Assume that α > 0. Then we have that

H = H ′ =
α+ t

α+ β + 2t+ 1
. (4.2.11)

Therefore there exists only one value of the parameter y0 (y0 = H) such that we obtain a stochastic
UL factorization of the form (2.1.1) and the coefficients of each of the factors PU and PL are given by

yn =
n+ t+ α

2n+ 2t+ α+ β + 1
, xn =

n+ t+ β + 1

2n+ 2t+ α+ β + 1
,

sn =
n+ t+ α+ β

2n+ 2t+ α+ β
, rn =

n+ t

2n+ 2t+ α+ β
,

n ∈ Z. (4.2.12)

Proof. We will follow the same ideas as the proof of [24, Proposition 5.1]. First, for H, we have that
the sequence of alternating numbers a0, c1, a1, c2, . . . is a chain sequence (see Definition 1.6.5). Let us
call (αn)n≥1, the sequence of partial numerators. Then αn = (1−mn−1)mn, with parameter sequence
given by

m2n =
n+ t

2n+ 2t+ α+ β + 1
, m2n+1 =

n+ t+ β + 1

2n+ 2t+ α+ β + 2
.



According to Theorem 1.6.6, we have that

H = m0 +
1−m0

1 + L
, L =

∞∑
n=1

n∏
k=1

mk

1−mk
.

It is possible to show that L is convergent as long as α > 0, in which case we have

L =
β + t+ 1

α
.

Using the previous considerations and the value of m0 we have

H =
α+m0(β + t+ 1)

α+ β + t+ 1
=
α(2t+ α+ β + 1) + t(β + t+ 1)

(2t+ α+ β + 1)(α+ β + t+ 1)
=

α+ t

2t+ α+ β + 1
.

On the other hand, for H ′, we have again that the sequence α′n = (1−m′n−1)m′n, n ≥ 1 of alternating
numbers c0, a−1, c−1, a−2, . . . is a chain sequence where

m′2n =
−n+ t+ α+ β + 1

−2n+ 2t+ α+ β + 1
, m′2n+1 =

−n+ t+ α

−2n+ 2t+ α+ β
.

Therefore

1−H ′ = m′0 +
1−m′0
1 + L′

, L′ =

∞∑
n=1

n∏
k=1

m′k
1−m′k

.

It is possible to show that L′ is convergent as long as α > 0, in which case we have

L′ = −α+ t

α
.

Therefore

H ′ =
α+ t−m0(α+ t)

t
=

(α+ t)(2t+ α+ β + 1)− (α+ t)(t+ α+ β + 1)

t(2t+ α+ β + 1)
=

α+ t

2t+ α+ β + 1
.

Finally, a direct computation using (4.2.12) and (2.1.3) gives the coefficients (4.2.1).

4.2.2 Stochastic LU factorization
Let us now consider the LU stochastic factorization of the matrix P . Now, we have to apply Proposition
2.1.4 which establishes that we need to take the free parameter r̃0 in following range

H ′ ≤ r̃0 ≤ H,

in order to have a stochastic LU factorization, where H and H ′ are defined by (2.1.4).
As before, there is only one value that satisfies the condition and we have following theorem.

Theorem 4.2.4. Assume that α > 0. Then H = H ′ is convergent to (4.2.11) and there exists only
one value of the parameter r̃0 (r̃0 = H) such that we obtain a stochastic LU factorization of the form
(2.1.10) and the coefficients of each of the factors P̃L and P̃U are given by

ỹn = rn+1, x̃n = sn+1, s̃n = xn, r̃n = yn n ∈ Z, (4.2.13)

where xn, yn, sn, rn are defined by (4.2.12).



Proof. Identical to the proof of Theorem 5.2.1 but using (2.1.12).

Theorems 4.2.3 and 4.2.4 prove that there is a unique UL, or LU, stochastic factorization. Nonetheless,
following Proposition 4.2.1, the factorization depends on our choice of t. For the regions A1,A2,B1

andB2 we always have that 0 < H < 1 and a stochastic UL or LU factorization will always be possible.
In contrast, in regions C1,C2,D1,D2 it is not possible to give a stochastic UL or LU factorization
since α < 0 and the convergence of H and/or H ′ is not guaranteed.

Following our procedure, next we perform the discrete Darboux transformation.

4.3 Stochastic Darboux transformations and the associated spectral
matrices

First, for the UL factorization, we have that the Darboux transformation is given by P̃ = PLPU . In
fact, using (4.2.12), we have that ãn, b̃n, and c̃n are the coefficients an, bn, and cn in (4.2.1) replacing
α by α− 1. In other words,

ãn = an|α=α−1 , b̃n = bn|α=α−1 , c̃n = cn|α=α−1 .

Therefore the new discrete-time birth-death chain {Z̃t : t = 0, 1, . . .} on the integers Z with coefficients
(ãn)n∈Z, (b̃n)n∈Z and (c̃n)n∈Z is the same as the original birth-death chain Zt but replacing the
parameter α by α− 1. The spectral matrix Ψ̃(x) associated with P̃ is then given by

Ψ̃(x) = Ψ(x)|α=α−1 ,

where Ψ(x) is the spectral matrix (4.2.8). Since we are assuming that α > 0, we have that Ψ̃(x) is
well-defined on [0, 1]. Also Ψ̃(x) does not have a discrete part, just as Ψ(x). We can also derive the
expression for Ψ̃(x) from Theorem 2.2.3, given in terms of a Geronimus transformation of the spectral
matrix Ψ(x). This representation is given by equation (2.2.20) where

S0(x) =

 s0 r0

−x−1s0
y−1

x− x−1r0
y−1



=


t+ α+ β

2t+ α+ β

t

2t+ α+ β

− (t+ β)(t+ α+ β)

(2t+ α+ β)(t+ α− 1)

2t+ α+ β − 1

t+ α− 1
x− t(t+ β)

(2t+ α+ β)(t+ α− 1)

 ,

and
ΨS(x) =

y0
s0

Ψ(x)

x
+

[(
1/s0 0

0 1/r0

)
− y0
s0
M−1

]
δ0(x),

where δ0(x) is the Dirac delta at x = 0 and M−1 =
∫ 1

0
x−1Ψ(x)dx. We know that Ψ̃(x) does not

have discrete spectrum. That means that the matrix in front of δ0(x) should be the null matrix.
In Proposition 2.2.3 it is assumed that M−1 is well-defined entry by entry, but for α > 0 it is not.
According to Remark 2.2.4, this assumption is too restrictive. However it is enough to assume that
S0(0)M−1S

∗
0(0) is well-defined. S0(0) is a singular matrix and after simplifications it turns out that



the integral of x−1S0(0)Ψ(x)S∗0(0) over [0, 1] is always well-defined. In fact we have, after a simple
computation that

y0
s0
S0(0)M−1S

∗
0(0) =

 1 − t+ β

t+ α− 1

− t+ β

t+ α− 1

(
t+ β

t+ α− 1

)2

 = S0(0)

(
1/s0 0

0 1/r0

)
S∗0(0),

so we have that the matrix in front of δ0(x) in Ψ̃(x) is the null matrix. Therefore we can conclude
that a second representation of the spectral matrix Ψ̃(x) is given by

Ψ̃(x) =
y0
s0
S0(x)

Ψ(x)

x
S∗0(x).

Finally, if we construct the matrix-valued polynomials (Q̃n)n≥0, associated to P , we have that∫ 1

0

Q̃n(x)Ψ̃(x)Q̃∗m(x)dx =

(
1/π̃n 0

0 1/π̃−n−1

)
δnm,

where (π̃n)n∈Z are the potential coefficients defined by (4.2.2) replacing α by α − 1 and δnm is the
Kronecker delta. The bilateral birth-death chain {Z̃t : t = 0, 1, . . .} associated with P̃ is always null
recurrent as the original one.

On the other hand, for the LU factorization given in equation (2.1.10) of the form P = P̃LP̃U , the
Darboux transformation is given by P̂ = P̃U P̃L. As before, a simple computation, using (4.2.13) and
(4.2.12), gives

ân = an+1|α=α−1 , b̂n = bn+1|α=α−1 , ĉn = cn+1|α=α−1 .

The previous shifted coefficients give a spectral matrix which is not as easily identifiable as the case
of the UL factorization. However we can still apply Theorem 2.2.6 to compute Ψ̂(x) in terms of a
Geronimus transformation of the original spectral matrix Ψ(x). The new spectral matrix is given by

Ψ̂(x) = T0(x)ΨT (x)T ∗0 (x),

where

T0(x) =

(x− s0y0
x0

−y0r0
x0

s0 r0

)

=


2t+ α+ β + 1

t+ β + 1
x− (t+ α)(t+ α+ β)

(2t+ α+ β)(t+ β + 1)
− t(t+ α)

(2t+ α+ β)(t+ β + 1)
t+ α+ β

2t+ α+ β

t

2t+ α+ β

 ,

and
ΨT (x) =

x0
r1

Ψ(x)

x
+

[
x0
y0r1

(
1 0
0 s0/r0

)
− x0
r1
M−1

]
δ0(x).

The spectrum of P̂ is the same as the spectrum of P , since we are only shifting the coefficients one
step forward and replacing α by α− 1. Therefore we should expect, as in the case of UL factorization,



that the matrix in front of δ0(x) in Ψ̂(x) is the null matrix. Proceeding as before we have

x0
r1
T0(0)M−1T

∗
0 (0) =

(2t+ α+ β + 2)(t+ α+ β)(t+ α)

(t+ 1)(2t+ α+ β)(t+ β + 1)

 1 − t+ β + 1

t+ α

− t+ β + 1

t+ α

(
t+ β + 1

t+ α

)2

 ,

which is the same matrix as
x0
y0t1

T0(0)

(
1 0
0 s0/t0

)
T ∗0 (0).

Therefore the matrix in front of δ0(x) in Ψ̂(x) is the null matrix. As a consequence we have that the
spectral matrix Ψ̂(x) is given by

Ψ̂(x) =
x0
r1
T0(x)

Ψ(x)

x
T ∗0 (x).

Finally, if we construct the matrix-valued polynomials associated to P̂ , we have that∫ 1

0

Q̂n(x)Ψ̂(x)Q̂∗m(x)dx =

(
1/π̂n 0

0 1/π̂−n−1

)
δnm,

where now
π̂n =

(α+ β + t+ 1)n(−t− 1)−n(2n+ 2t+ α+ β + 2)

(α+ t+ 1)n(−β − t− 1)−n(2t+ α+ β + 2)
, n ∈ Z.

The birth-death chain {Ẑt : t = 0, 1, . . .} associated with P̂ will have a similar Karlin-McGregor
representation formula as in (1.5.13) and again it is always null recurrent.

As a final remark for this section, we would like to explain the reason why we do not consider an
RA stochastic factorization. Recall that in that case there will be 2 free parameters, namely α and
x0. As we stated in equation (3.1.6), to guarantee a stochastic RA factorization we need α ≥ H ′ and
x0 ≥ 1−H. But since in this case α+ x0 = 1, then y0 = 1, so the RA stochastic factorization will not
be possible.
Remark 4.3.1. The families of matrix-valued orthogonal polynomials (Q̃n)n≥0 and (Q̂n)n≥0 constructed
from the UL and LU Darboux transformations are also eigenfunctions of a matrix-valued second-order
differential operator of the form (4.2.9). The coefficients and eigenvalues of the differential operator
for the first family (Q̃n)n≥0 are given by (4.2.10) replacing α by α − 1. On the other hand, the
coefficients and eigenvalues of the differential operator for the second family (Q̂n)n≥0 are given by
(4.2.10) replacing α by α − 1 and t by t + 1. In particular both families are bispectral. In the scalar
case, and choosing special values of the parameters involved, the order of the differential operator after
a Darboux transformation is always higher than 2. In the matrix case we have that after one step
of the Darboux transformation, the order of the differential operator can be the same as the original
one. This phenomenon is not new and appeared for the first time in [12] using a method different
than the Darboux transformation. For other examples of the bispectral property following a Darboux
transformation see [25].

4.4 An urn model for the associated Jacobi polynomials
Finally we give an urn model for the associated Jacobi polynomials. For simplicity, we will restrict the
parameters α and β to the region A1 = {β − α + 1 > 0, α > −β, β < 0} given in Proposition 5.1.1.



For the rest of regions we can proceed in a similar way. In order to have a stochastic matrix P , we
need to choose the parameter t in the real set (4.2.3). Since −1 < α < 1,−1 < β < 0 and t is a real
parameter, in order to find an urn model including numbers of nonnegative blue or red balls, in this
section we will assume that

α =
1

A
, β = − 1

B
, t =

1

T
+K, A,B, T ∈ Z≥2, K ∈ Z≥0. (4.4.1)

On one side, the restriction on the region A1 is equivalent to AB > A+B and A < B. On the other
side, the restriction (4.2.3) gives two possibilities:

• n < t < n − β, n ∈ Z. Substituting (4.4.1) in the previous inequalities we get that we need
n < 1/T +K < n+ 1/B, n ∈ Z. It turns out that, since A,B, T ≥ 2 and K ≥ 0 are nonnegative
integers, the only choice of n ∈ Z such that the previous both inequalities hold is for n = K, in
which case we need that T > B. If n < K then the first inequality is not possible and if n > K
then the second inequality does not hold.

• n − α < t < n − α − β, n ∈ Z. Substituting (4.4.1) in the previous inequalities we get that we
need n−1/A < 1/T +K < n−1/A+1/B, n ∈ Z. Again, it turns out that, since A,B, T ≥ 2 and
K ≥ 0 are nonnegative integers, the only choice of n ∈ Z such that the previous both inequalities
hold is for n = K, in which case we need that B < AT/(A+T ). If n < K then the first inequality
is not possible and if n > K then the second inequality does not hold.

We will choose T according to the first possibility (for the second we can proceed in a similar way).
In summary, our nonnegative parameters A,B, T,K will be restricted to

A,B, T ≥ 2, K ≥ 0, AB > A+B, and A < B < T. (4.4.2)

We focus now on the case of the UL stochastic factorization P = PUPL with coefficients xn, yn, sn, rn, n ∈
Z given by (4.2.12). Substituting (4.4.1) in these coefficients we obtain

yn =
B(AT (n+K) +A+ T )

ABT (2n+ 2K + 1) + 2AB + T (B −A)
, xn =

A(BT (n+K + 1) +B − T )

ABT (2n+ 2K + 1) + 2AB + T (B −A)
,

sn =
ABT (n+K) +AB + T (B −A)

2ABT (n+K) + 2AB + T (B −A)
, rn =

AB(T (n+K) + 1)

2ABT (n+K) + 2AB + T (B −A)
,

n ∈ Z.

(4.4.3)

To simplify the notation, let us call

Yn = B(AT (n+K) +A+ T ), Xn = A(BT (n+K + 1) +B − T ),

Sn = ABT (n+K) +AB + T (B −A), Rn = AB(T (n+K) + 1),
n ∈ Z, (4.4.4)

so that we have

yn =
Yn

Xn + Yn
, xn =

Xn

Xn + Yn
, sn =

Sn
Sn +Rn

, rn =
Rn

Sn +Rn
, n ∈ Z.

Lemma 4.4.1. Assume that we have that A,B, T,K are nonnegative integers satisfying (4.4.2). If
n + K ≥ 0 then Yn, Xn, Sn, Rn ≥ 0 for all n ∈ Z and if n + K < 0 then Yn, Xn, Sn, Rn < 0 for all
n ∈ Z.



Proof. From (4.4.4) we have that Yn, Xn, Sn, Rn ≥ 0 if

n+K ≥



− 1

T
− 1

A
, for Yn,

−1− 1

T
+

1

B
, for Xn,

− 1

T
− 1

A
+

1

B
, for Sn,

− 1

T
for Rn.

A straightforward computation using (4.4.2) shows that

−1 < −1− 1

T
+

1

B
< − 1

T
− 1

A
+

1

B
< − 1

T
− 1

A
< − 1

T
< 0.

From the previous inequalities it is now easy to see that if n + K ≥ 0 then Yn, Xn, Sn, Rn ≥ 0, while
if n+K < 0 then Yn, Xn, Sn, Rn < 0 for all n ∈ Z.

Let {Zt : t = 0, 1, . . .} be the bilateral birth-death chain associated with the transition probability
matrix P . Consider the UL stochastic factorization P = PUPL. We have that each one of the matrices
PU and PL will give rise to an experiment in terms of an urn model, which we call Experiment 1 and
Experiment 2, respectively. Let us call {Z(i)

t : t = 0, 1, . . .}, i = 1, 2, the chains associated with PU and
PL, respectively. At times t = 0, 1, . . . , the state n ∈ Z in each of these chains will be given by the
number of blue balls minus the number of red balls. Therefore we may have nonnegative and negative
integer states. We finally assume that the urn sits in a bath consisting of an infinite number of blue
and red balls.

At the beginning of every experiment for t = 0, 1, . . . , we have to decide how many blue and red
balls are going to be in the urn. This will depend on the state n ∈ Z according to the following rule:

1. If the initial state n satisfies n ≥ −K, then we initially put in the urn n + K blue balls and K
red balls.

2. If the initial state n satisfies n < −K, then we initially put in the urn K blue balls and −n+K
red balls.

Experiment 1, for PU , will give a pure-birth chain on Z. Initially, Z(1)
0 = n. On one hand, if n ≥ −K,

then we place n+K blue balls and K red balls in the urn. After that, we add or remove balls until we
have Xn blue balls and Yn red balls. Note that both are nonnegative integers by Lemma 4.4.1. Draw
one ball from the urn at random with the uniform distribution. We have two possibilities:

• If we get a blue ball (with probability xn in (4.4.3)) then we remove/add balls until we have
n+K + 1 blue balls and K red balls in the urn and start over. Then we have Z(1)

1 = n+ 1.

• If we get a red ball (with probability yn in (4.4.3)) then we remove/add balls until we have n+K

blue balls and K red balls in the urn and start over. Then we have Z(1)
1 = n.



On the other hand, if n < −K, then we place K blue balls and −n+K red balls in the urn. After that,
we add or remove balls until we have −Xn blue balls and −Yn red balls. Again, both are nonnegative
integers by Lemma 4.4.1. Draw one ball from the urn at random with the uniform distribution. We
have two possibilities:

• If we get a blue ball (with probability xn in (4.4.3)) then we remove/add balls until we have
K + 1 blue balls and −n+K red balls in the urn and start over. Then we have Z(1)

1 = n+ 1.

• If we get a red ball (with probability yn in (4.4.3)) then we remove/add balls until we have K
blue balls and −n+K red balls in the urn and start over. Then we have Z(1)

1 = n.

Experiment 2 (for PL) will give a pure-death chain on Z. Initially, Z(2)
0 = n. On one hand, if

n ≥ −K, then we place n + K blue balls and K red balls in the urn. After that, we add or remove
balls until we have Sn blue balls and Rn red balls. Both are nonnegative integers by Lemma 4.4.1.
Draw one ball from the urn at random with the uniform distribution. We have two possibilities:

• If we get a blue ball (with probability sn in (4.4.3)) then we remove/add balls until we have
n+K blue balls and K red balls in the urn and start over. Then we have Z(2)

1 = n.

• If we get a red ball (with probability rn in (4.4.3)) then we remove/add balls until we have n+K

blue balls and K + 1 red balls in the urn and start over. Then we have Z(2)
1 = n− 1.

On the other hand, if n < −K, then we place K blue balls and −n+K red balls in the urn. After that,
we add or remove balls until we have −Sn blue balls and −Rn red balls. Again, both are nonnegative
integers by Lemma 4.4.1. Draw one ball from the urn at random with the uniform distribution. We
have two possibilities:

• If we get a blue ball (with probability sn in (4.4.3)) then we remove/add balls until we have K
blue balls and −n+K red balls in the urn and start over. Then we have Z(2)

1 = n.

• If we get a red ball (with probability rn in (4.4.3)) then we remove/add balls until we have K
blue balls and −n+K + 1 red balls in the urn and start over. Then we have Z(2)

1 = n− 1.

The urn model for P with state space on Z is obtained by repeatedly alternating Experiments 1
and 2 in that order. The following figures explain the 3 possible situations that we can find, given the
value of the initial state n ∈ Z. Figures 4.2 and 4.3 are the diagrams for the cases where n ≥ −K and
n < −K − 1, respectively, where the number of blue and red balls at the beginning of Experiment 2
does not change. Figure 4.4, for n = −K − 1 is the only case where at the beginning of Experiment
2, when the state is −K, we need to place a different number of blue and red balls. In the figures,
the boxed regions represent the number of blue balls Bb and red balls Rr contained within the urn, so
that the state of the system is n = b− r. The event that a ball is drawn from an urn is indicated by
BDraw

1 or RDraw
1 .



Figure 4.2: Experiments 1 and 2 when n ≥ −K.

Figure 4.3: Experiments 1 and 2 when n < −K − 1.



Figure 4.4: Experiments 1 and 2 when n = −K − 1.

Similar urn models can be derived for the LU factorization with small modifications.



CHAPTER 5

Birth-death chains on a spider

So far we have studied different types of stochastic factorizations for bilateral birth-death chains
and we have performed a detailed and thorough analysis of the relation between the spectral matrix
associated to the different processes. The main object to perform this study is the doubly infinite
tridiagonal matrix P describing the process. In Chapter 3 we emphasized that the use of the theory of
matrix-valued orthogonal polynomials through the quasi-birth-and-death processes allowed us to have
more general results in the sense that we can extrapolate some ideas for tridiagonal block matrices of
size N ×N .

This chapter is dedicated to the study of stochastic factorizations and the spectral analysis of
processes with a more general structure than a simple birth-death chain. In particular we consider
discrete-time birth-death chains on a spider which is a graph consisting of N discrete half lines on the
plane, called legs, that are joined at the origin, called the body of the spider. This chain behaves like a
regular discrete-time birth-death chain in each of the legs, but once it reaches the body of the spider
it continues towards any of the N legs with a given probability. This process can be identified with a
discrete-time quasi-birth-and-death process on the state space Z≥0 × {1, 2, . . . , N}, represented by a
block tridiagonal transition probability matrix, precisely, with blocks of size N ×N .

In Section 5.1 we give a definition of this process and perform the spectral analysis to derive the
corresponding spectral matrix. In Section 5.2 we consider a reflecting-absorbing (RA) stochastic
factorization of the birth-death chain on a spider. The difference with our results in Chapter 3 is that
now we will have N free parameters, one for each leg, and we will show that each of these parameters
must be bounded from below by certain continued fraction built from the transition probabilities of
each leg. After that, we consider a discrete Darboux transformation which describes an “almost”
birth-death chain on a spider (now there will be extra transition probabilities between the first states
of each leg). Finally, in Section 5.3, we apply our results to the birth-death chain on a spider with
constant transition probabilities (or random walk on a spider). This example was considered in [7,
Example 3.5] where an explicit expression of the corresponding spectral matrix Ψ was computed, and
it was improved later by F. A. Grünbaum in [20]. We derive another simplified explicit expression of
the spectral matrix Ψ (as a 2× 2 block matrix), which is different from the ones given in [7, 20]. The
content of this chapter has been published in [34].
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5.1 Spectral analysis of birth-death chains on a spider
The study of the so-called Walsh’s spider dates back to 1978 when J. B. Walsh [51] characterized a
Brownian motion with excursions around zero in random directions on the plane which takes values
in [0, 2π). More recently S. N. Evans and R. B. Sowers [14] considered the same construction but with
different methods and used the name Walsh’s spider. Roughly speaking, the process behaves like a
regular Brownian motion on each leg and once it reaches the origin it continues on any of the N legs
with a given probability. If we replace the Brownian motions with simple symmetric random walks
on the legs we get a discrete version of the Walsh’s spider, also called random walk on a spider. H.
Hajri [28] studied this discrete version as an approximation of the Walsh’s spider. In fact, the author
studied the solutions to the Tanaka’s differential equation related to the Walsh’s spider (called Walsh
Brownian motion) as limits of discrete models.

define an extension of the Tanaka’s equation called Tanaka’s stochastic differential equation related
to the skew brownian motion and there are only one Wiener solution and only one flow of mappings
solving this equation.

The main purpose of this section is to give the definition of the process that we will study together
with the one-step transition probability matrix that describes it. We also perform the spectral analysis
to derive the sequence of orthogonal polynomials and the spectral matrix that we need.

For N ∈ N consider the spider graph given by

SN := {vN (k,m), k ∈ N0, m = 1, . . . , N},

where
vN (k,m) = k exp

(
2πi(m− 1)

N

)
, i =

√
−1.

The number N is the number of legs of the spider SN . If N = 1 then we go back to regular birth-death
chains on Z≥0, while if N = 2 we have a birth-death chain on Z or a bilateral birth-death chain. The
point vN (0) := vN (0,m),m = 1, . . . , N, will be called the body of the spider.

Consider an homogeneous birth-death chain {Zn, n = 0, 1, . . .} on the spider SN . The transition
probabilities are given by

P [Zn+1 = vN (0) |Zn = vN (0)] = α0, P [Zn+1 = vN (1,m) |Zn = vN (0)] = αm, m = 1, . . . , N,

where
∑N
m=0 αm = 1, and

P [Zn+1 = vN (k + 1,m) |Zn = vN (k,m)] = ak,m,

P [Zn+1 = vN (k,m) |Zn = vN (k,m)] = bk,m,

P [Zn+1 = vN (k − 1,m) |Zn = vN (k,m)] = ck,m,

where ak,m + bk,m + ck,m = 1 and 0 < ak,m, ck,m < 1 for all k ≥ 1 and m = 1, . . . , N .
This whole process can be seen as a quasi-birth-and-death process on the state space Z≥0 ×

{1, 2, . . . , N}. The labeling follows putting vN (0) as the origin 0. Then the first N nodes on the
first circle as 1, . . . , N, in a counter-clock wise fashion. The second circle with N + 1, . . . , 2N, and
so on. The transition probability matrix of the birth-death chain {Zn, n = 0, 1, . . .}, seen as a
quasi-birth-and-death process, is

P =


B0 A0

C1 B1 A1

C2 B2 A2

. . . . . . . . .

 , (5.1.1)



where the blocks are given by

B0 =


α0 α1 α2 · · · αN−1
c1,1 b1,1 0 · · · 0
c1,2 0 b1,2 · · · 0
...

...
...

. . .
...

c1,N−1 0 0 · · · b1,N−1

 , A0 =


αN

a1,1
. . .

a1,N−1

 , (5.1.2)

and

An =


an,N

an+1,1

. . .
an+1,N−1

 , n ≥ 1, (5.1.3)

Bn =


bn,N

bn+1,1

. . .
bn+1,N−1

 , n ≥ 1, (5.1.4)

Cn =


cn,N

cn+1,1

. . .
cn+1,N−1

 , n ≥ 1. (5.1.5)

A diagram of the probability transitions between the states of this process is given in Figure 5.1.
In the same fashion as previous chapters, we consider the matrix-valued polynomials generated by

the three-term recurrence relation

xQn(x) = AnQn+1(x) +BnQn(x) + CnQn−1(x), n ≥ 0,

Q0(x) = IN , Q−1(x) = 0N ,

where IN and 0N denote the identity and the null matrix of dimension N × N , respectively (in this
section whenever we write 0 we will mean the null vector or matrix which dimension will be determined
by the context). This family of matrix-valued polynomials can be written as

Qn(x) =



Qn,N (x) α1Q
(0)
n,N (x) α2Q

(0)
n,N (x) · · · αN−1Q

(0)
n,N (x)

Q
(0)
n,1(x) Qn,1(x) 0 · · · 0

Q
(0)
n,2(x) 0 Qn,2(x) · · · 0
...

...
...

. . .
...

Q
(0)
n,N−1(x) 0 0 · · · Qn,N−1(x)


, n ≥ 0, (5.1.6)

where Qn,N (x) satisfies the scalar-valued three-term recurrence relation

xQn,N (x) = an,NQn+1,N (x) + bn,NQn,N (x) + cn,NQn−1,N (x), n ≥ 0,

Q0,N (x) = 1, Q−1,N (x) = 0,
(5.1.7)



Figure 5.1: Diagram for the N homogeneous birth-death chains on the Walsh’s spider.

where a0,N = αN , b0,N = α0 and Q(0)
n,N will denote the corresponding 0-th associated polynomials (see

Remark 1.3.3). These are polynomials satisfying the same three-term recurrence relation (5.1.7) but
with initial conditions

Q
(0)
0,N = 0, Q

(0)
1,N = −1/αN .

Also Qn,k(x), k = 1, . . . , N − 1, satisfy the scalar-valued three-term recurrence relations

xQn,k(x) = an+1,kQn+1,k(x) + bn+1,NQn,k(x) + cn+1,NQn−1,k(x), n ≥ 0,

Q0,k(x) = 1, Q−1,k(x) = 0,
(5.1.8)

and Q
(0)
n,k(x), k = 1, . . . , N − 1, will denote the corresponding associated polynomials with initial

conditions Q(0)
0,k = 0, Q

(0)
1,k = −c1,k/a1,k, k = 1, . . . , N − 1.

As the associated polynomials have degree n−1, the matrix-valued polynomials (Qn)n≥0 in equation
(5.1.6) satisfy deg(Qn) = n and have nonsingular leading coefficient. This means that this is the family
of orthogonal polynomials associated to P in (5.1.1).

Proposition 5.1.1. Let {Zn, n = 0, 1, . . .} be a birth-death chain on the spider SN with transition
probability matrix P (5.1.1). Then there exists a weight matrix Ψ supported on the interval [−1, 1]
such that the polynomials (Qn)n≥0 defined by (5.1.6) are orthogonal with respect to Ψ in the following
sense ∫ 1

−1
Qn(x)dΨ(x)QT

m(x) = ‖Qn‖2Ψδnm,

where ‖Qn‖2Ψ :=
∫ 1

−1Qn(x)dΨ(x)QT
n (x) is the matrix-valued norm of the polynomial Qn(x) and δnm

is the Kronecker delta.



Proof. For the existence and orthogonality we apply Theorem 1.5.1. We need to define a sequence of
nonsingular matrices (Tn)n≥0 such that

TnT
T
n Bn = BTn TnT

T
n , n ≥ 0,

TnT
T
n An = CTn+1Tn+1T

T
n+1, n ≥ 0,

where the coefficients (An)n≥0, (Bn)n≥0 and (Cn)n≥1 are defined by (5.1.2), (5.1.3), (5.1.4) and (5.1.5),
respectively. Let us define the following sequences

π0,N = 1, πn,N = αN
a1,N · · · an−1,N
c1,N · · · cn,N

, n ≥ 1,

π1,k =
αk
c1,k

, πn+1,k = αk
a1,k · · · an,k
c1,k · · · cn+1,k

, n ≥ 1, k = 1, . . . , N − 1.

Then a straightforward computation shows that the diagonal matrix

Tn =


√
πn,N √

πn+1,1

. . .
√
πn+1,N−1

 ,

satisfies the conditions (5.1). Finally the weight matrix Ψ is supported on the interval [−1, 1] as a
consequence of Theorem 1.5.2.

With the elements defined in the proof of the previous proposition we can define the sequence of
potential coefficients for the birth-death chain on the spider SN as

Πn = TnT
T
n =


πn,N

πn+1,1

. . .
πn+1,N−1

 , n ≥ 0, (5.1.9)

where

π0,N = 1, πn,N = αN
a1,N · · · an−1,N
c1,N · · · cn,N

, n ≥ 1,

π1,k =
αk
c1,k

, πn+1,k = αk
a1,k · · · an,k
c1,k · · · cn+1,k

, n ≥ 1, k = 1, . . . , N − 1,

and

Tn =


√
πn,N √

πn+1,1

. . .
√
πn+1,N−1

 .

This sequence can be identified with the inverse of the norms of the matrix-valued orthogonal polynomials
(Qn)n≥0 defined by (5.1.6), i.e.

Πn =
(
‖Qn‖2Ψ

)−1
, n ≥ 0.



Before moving on the analysis of the stochastic factorization, let us remark that the existence of
a weight matrix Ψ(x) for the birth-death chain {Zn, n = 0, 1, . . .} on the spider SN gives one way
of computing the (i, j)-block of the n-step transition probability matrix P n by the Karlin-McGregor
formula given in Theorem 1.5.3. We also can study the recurrence of the process following equations
(1.5.5) and (1.5.6).

Next we will analyze the Stieltjes transform of the birth-death chain on a spider. These series of
results will be very useful to compute the spectral matrix associated with the process. This computation
will not always be possible since, at this point, the process is much more complex than those seen in
previous chapters. However we will be able to derive this expression for the example at the end of this
chapter.

First of all, let us recall that the family of polynomials (Qn,k)n≥0, k = 1, . . . , N, and the corresponding
associated polynomials (Q

(0)
n,k)n≥0, k = 1, . . . , N, are defined in terms of regular three-term recurrence

relations. This means that we can use the spectral theorem for orthogonal polynomials (Theorem
1.1.6) and ensure the existence of spectral measures supported on the interval [−1, 1] such that each
of these two families of polynomials are orthogonal.

For k = 1, . . . , N, let us denote ωk and ω
(0)
k the spectral probability measures associated with

the polynomials (Qn,k)n≥0 and (Q
(0)
n,k)n≥0, respectively. Now we can use the well-known connection

between the Stieltjes transforms of ωk and ω(0)
k (see Section 1.1), in this case given by

B(z;ωN ) = − 1

z − α0 + αNc1,NB(z;ω
(0)
N )

,

B(z;ωk) = − 1

z − b1,k + a1,kc2,kB(z;ω
(0)
k )

, k = 1, . . . , N − 1.

(5.1.10)

From Proposition 5.1.1 we know that any birth-death chain {Zn, n = 0, 1, . . .} on the spider SN can
be identified with some weight matrix Ψ(x). It is possible to compute the Stieltjes transform of Ψ(x),
entry by entry, in terms of the Stieltjes transforms of the measures ωk, k = 1, . . . , N . For that we will
need the following notation

~α = (α1, . . . , αN−1)
T
, αD =


α1

α2

. . .
αN−1

 , (5.1.11)

~c = (c1,1, . . . , c1,N−1)
T
, cD =


c1,1

c1,2
. . .

c1,N−1

 ,

~ω(x) = (ω1(x), . . . , ωN−1(x))
T
, ωD(x) =


ω1(x)

ω2(x)
. . .

ωN−1(x)

 .

From now on, if we write B(z; ~ω) or B(z;ωD) we mean that we are taking the Stieltjes transform
on each entry or component.



Proposition 5.1.2. Let {Zn, n = 0, 1, . . .} be a birth-death chain on the spider SN with transition
probability matrix P (5.1.1). The Stieltjes transform of the weight matrix Ψ obtained in Proposition
5.1.1 can be written as

B(z; Ψ) =

(
0 0

0 −B(z;ωD)cDα
−1
D

)
+ b(z)

(
1 −~c TB(z;ωD)

−B(z;ωD)~c B(z;ωD)~c ~c TB(z;ωD)

)
, (5.1.12)

where
b(z) =

1
1

B(z;ωN )
− ~αTB(z;ωD)~c

. (5.1.13)

Proof. As we know (see (1.5.8)), the relation between the Stieltjes transform of Ψ and the Stieltjes
transform of the spectral matrix Ψ(0) of the 0-th associated process is given by

B(z; Ψ)Π0 = −
[
zIN −B0 +A0B(z; Ψ(0))Π

(0)
0 C1

]−1
,

where Π
(0)
0 = IN and

Π0 =

(
1 0

0 αDc
−1
D

)
. (5.1.14)

The rest of the proof is reduced to identify the corresponding matrices and perform the computations.
Since An, Bn, Cn+1, n ≥ 1, are diagonal matrices we have that B(z; Ψ(0)) is also a diagonal matrix
given by

B(z; Ψ(0)) =


B(z;ω

(0)
N )

B(z;ω
(0)
1 )

. . .
B(z;ω

(0)
N−1)

 .

Using the definition of B0, A0 and C1 in (5.1.2) and (5.1.5) we can write the Stieltjes transform of Ψ
in a 2× 2 block matrix expression

B(z; Ψ) = −
(
M11 M12

M21 M22

)−1(
1 0

0 cDα
−1
D

)
,

where

M11 = z − α0 + αNc1,NB(z;ω
(0)
N ) = − 1

B(z;ωN )
, M12 = −~αT , M21 = −~c,

M22 =


z − b1,1 + a1,1c2,1B(z;ω

(0)
1 )

. . .
z − b1,N−1 + a1,N−1c2,N−1B(z;ω

(0)
N−1)

 = −B(z;ωD)−1.

Using the well-known formula for the inverse of a 2× 2 block matrix(
A B
C D

)−1
=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
,

and using the fact that
~αT cDα

−1
D = ~c T ,

we get (5.1.12).



The previous proposition provides us with a very clear method for the calculation of the Stieltjes
transformation of the spectral matrix which, in turn, will allow the calculation of the spectral matrix
associated to P . The importance of this result will be clear when we analyze the example in Section
5.3. However we will also use it to obtain the spectral matrix of the Darboux transformation. With
this in mind, we proceed to study the existence of the RA stochastic factorization to later study the
Darboux transformation.

5.2 RA factorization for birth-death chains on a spider
In this section we will analyze the RA stochastic factorization of the birth-death chain {Zn, n = 0, 1, . . .}
on the spider SN described by P (5.1.1). Let us recall that this factorization is a block UL factorization.
Therefore, in block structure, we are looking for a factorization of the form P = PRPA, where

PR =


Y0 X0

Y1 X1

Y2 X2

. . . . . .

 , PA =


S0

R1 S1

R2 S2

. . . . . .

 , (5.2.1)

with blocks given by

Y0 =


β0 β1 β2 · · · βN−1
0 y1,1 0 · · · 0
0 0 y1,2 · · · 0
...

...
. . .

...
0 0 · · · y1,N−1

 , Yn =


yn,N

yn+1,1

. . .
yn+1,N−1

 , n ≥ 1, (5.2.2)

X0 =


βN 0 0 · · · 0
0 x1,1 0 · · · 0
0 0 x1,2 · · · 0
...

...
. . .

...
0 0 · · · x1,N−1

 , Xn =


xn,N

xn+1,1

. . .
xn+1,N−1

 , n ≥ 1,

S0 =


1 0 0 · · · 0
r1,1 s1,1 0 · · · 0
r1,2 0 s1,2 · · · 0
...

...
. . .

...
r1,N−1 0 · · · s1,N−1

 , Sn =


sn,N

sn+1,1

. . .
sn+1,N−1

 , n ≥ 1,

(5.2.3)

Rn =


rn,N

rn+1,1

. . .
rn+1,N−1

 , n ≥ 1, (5.2.4)



and we have to add the conditions that all these matrices are stochastic, i.e.,

N∑
k=0

βk = 1,

xn,m + yn,m = 1, n ≥ 1, m = 1, 2, . . . , N, (5.2.5)
rn,m + sn,m = 1, n ≥ 1, m = 1, 2. . . . , N. (5.2.6)

Diagrams of the possible transitions between the states of both birth-death chains are given in Figure
5.2.

Figure 5.2: Diagrams of the possible transitions between the states of the reflecting process given by
PR and the absorbing process given by PA.

The factorization gives the following relations

An = XnSn+1, n ≥ 0,

Bn = XnRn+1 + YnSn, n ≥ 0,

Cn = YnRn, n ≥ 1.

Or equivalently, entry by entry, we have

α0 = β0 +

N∑
k=1

βkr1,k,

αm = βms1,m, m = 1, 2, . . . , N, (5.2.7)
an,m = xn,msn+1,m, n ≥ 1, m = 1, 2, . . . , N, (5.2.8)
bn,m = yn,msn,m + xn,mrn+1,m, n ≥ 1, m = 1, 2, . . . , N,

cn,m = yn,mrn,m, n ≥ 1, m = 1, 2, . . . , N. (5.2.9)



As in previous cases, we can compute all the coefficients xn,m, yn,m, rn,m, sn,m, in terms of N free
parameters β1, . . . , βN , one for each leg. Indeed, if we fix βm for m = 1, 2, . . . , N , we get s1,m, for
m = 1, 2, . . . , N, from equation (5.2.7) and r1,m, for m = 1, 2, . . . , N, from equation (5.2.6). After
this we get y1,m, for m = 1, 2, . . . , N, from equation (5.2.9) and x1,m, for m = 1, 2, . . . , N, from
equation (5.2.5). Then we get s2,m, for m = 1, 2, . . . , N from equation (5.2.8) and so on using the
same equations.

In a similar way to the previous chapters, we will define the continued fractions that will be the key
to derive conditions to guarantee the stochastic RA factorization. Notice that for this case we will
have one restriction for each leg. Let

Hm =
αm
1
− c1,m

1
− a1,m

1
− c2,m

1
− · · · , m = 1, 2, . . . , N, (5.2.10)

be the continued fraction with sequence of convergents given by

hn,m =
Nn,m
Dn,m

, n ≥ 0, m = 1, . . . , N. (5.2.11)

The sequences (Nn,m)n≥0 and (Dn,m)n≥0 for every m = 1, . . . , N, can be recursively obtained using
the formulas

N2n,m = N2n−1,m − cn,mN2n−2,m, n ≥ 1, N2n+1,m = N2n,m − an,mN2n−1,m, n ≥ 0,

N−1,m = −1, N0,m = 0,

D2n,m = D2n−1,m − cn,mD2n−2,m, n ≥ 1, D2n+1,m = D2n,m − an,mD2n−1,m, n ≥ 0,

D−1,m = 0, D0,m = 1,

where a0,m = αm.

Theorem 5.2.1. Let Hm, m = 1, 2, . . . , N , be the continued fractions defined by (5.2.10) with their
corresponding sequences of convergents defined by (5.2.11). Assume that

0 < Nn,m < Dn,m, n ≥ 0, m = 1, . . . , N.

Then the continued fractions Hm, m = 1, 2, . . . , N, are all convergent. Additionally, let P = PRPA
and assume that

∑N
m=1Hm < 1. Then PR and PA are stochastic matrices if and only if

βm ≥ Hm, m = 1, 2, . . . , N. (5.2.12)

Proof. For m = 1, 2, . . . , N , following same steps as Theorem 2.1.2, it is not hard to prove that

N2n,mD2n+1,m −D2n,nN2n+1,m = −αmc1,ma1,m · · · an,m, n ≥ 0,

N2n+1,mD2n+2,m −D2n+1,mN2n+2,m = −αmc1,ma1,m · · · cn+1,m, n ≥ 0.

Therefore

h2n,m − h2n+1,m =
N2n,m

D2n,m
− N2n+1,m

D2n+1,m
= −αmc1,ma1,m · · · an,m

D2n,mD2n+1,m
< 0, n ≥ 0,

h2n+1,m − h2n+2,m =
N2n+1,m

D2n+1,m
− N2n+2,m

D2n+2,m
= −αmc1,ma1,m · · · cn+1,m

D2n+2,mD2n+1,m
< 0, n ≥ 0.



Then we have following inequality

0 = h0,m < · · · < h2n,m < h2n+1,m < h2n+2,m < · · · < 1,

and then the sequences (hn,m)n≥0 are all bounded and strictly increasing, so they converge to Hm for
every m = 1, . . . , N . Now assume that

∑N
m=1Hm < 1 and PR and PA are stochastic matrices. Then

it is clear that
βm > 0 = h0,m,

and using equation (5.2.7) we have

s1,m =
αm
βm

< 1⇔ βm > αm = h1,m.

Using now equations (5.2.9), (5.2.6) and (5.2.7) we have

y1,m =
c1,m
r1,m

⇔ 1− s1,m > c1,m ⇔ βm >
αm

1− c1,m
= h2,m,

and in general it can be shown that
βm > hn,m.

Therefore 0 = h0,m < hn,m < Hm ≤ βm.
On the contrary, if (5.2.12) holds, in particular we have that βm > hn,m for every n ≥ 0,m =

1, . . . , N . Following the same steps as before, using an argument of strong induction, will lead us to
the fact that both PR and PL are stochastic matrices.

Remark 5.2.2. The reflecting-absorbing factorization P = PRPA is just one type of a stochastic block
UL factorization of P , but there can be more possibilities. Also we could have considered a stochastic
block LU factorization of P . As it was pointed out in [25], the different stochastic block factorizations
of P may come with many degrees of freedom, and the analysis is more complicated than the case of
classical birth-death chains.

5.2.1 Stochastic Darboux transformation and the associated spectral matrix
Once we have the conditions under we can perform a stochastic RA factorization, it is possible to
compute the discrete Darboux transformation. If P = PRPA as in (5.2.1), then, by inverting the
order of multiplication of the factors, we obtain another stochastic matrix of the form P̃ = PAPR.
This new matrix preserves the block tridiagonal structure. In a very similar way that the RA stochastic
factorization studied in Chapter 3, for this case the matrix P̃ will describe a whole family, depending on
N free parameters β1, . . . , βN , of Markov chains {Z̃n, n = 0, 1, . . .} on the spider SN which is a family
of “almost” birth-death chains. The only difference is that we will have extra transitions between the
first states of each leg or, in other words, between the states 1, 2, . . . , N .

If we call B̃n, Ãn, C̃n+1, n ≥ 0, the new coefficients of the block tridiagonal matrix P̃ , a direct
computations shows

Ãn = SnXn, n ≥ 0,

B̃0 = S0Y0, B̃n = RnXn−1 + SnYn, n ≥ 1,

C̃n = RnYn−1, n ≥ 1.



If we compute values entry by entry, these relations can also be written as

α̃m = βm, m = 0, 1, . . . , N,

α̃n,m = sn,mxn,m, n ≥ 1, m = 1, . . . , N,

b̃1,m = r1,mβm + s1,my1,m, m = 1, . . . , N,

b̃n,m = rn,mxn−1,m + sn,myn,m, n ≥ 1, m = 1, . . . , N,

c̃1,m = r1,mβm, m = 0, 1, . . . , N,

c̃n,m = rn,myn−1,m, n ≥ 1, m = 1, . . . , N,

and we also have transition probabilities between the first states of each leg denoted by d̃i,j . These
probabilities are given by

d̃i,j = βjr1,i, i, j = 1, . . . , N.

A diagram of this process is similar to the one for the process described by P in Figure 5.1 but now
we have to add probabilities between the first states of each leg. For instance, for N = 4 we have the
diagram in Figure 5.3. In general we have to add N(N − 1) extra transition probabilities between the
first states of each leg.

Figure 5.3: Diagram for the Darboux transformation P̃ with N = 4.

Now, as we stated at the end of Section 3.2, the spectral matrix is given by equation (3.2.16) where



S0, Y0 are given by (5.2.3) and (5.2.2), and Π0 is given by (5.1.9). In fact, we can compute

Π0Y0S0 =



α0 + αN − βN α1 α2 · · · αN−1

α1
α2
1

β1 − α1
0 · · · 0

α2 0
α2
2

β2 − α2
· · · 0

...
...

...
. . .

...

αN−1 0 0 · · ·
α2
N−1

βN−1 − αN−1


.

If we call X = (Π0Y0S0)−1, a straightforward computation shows that the entries of X = (Xij) for
i ≤ j are given by

Xij =
1

β0



1, if i = j = 1,

1− βj−1
αj−1

, if i = 1, j > 1,(
1− βi−1

αi−1

)(
1− βj−1

αj−1

)
, if i > 1, j > i,(

1− βi−1
αi−1

)(
1− β0

αi−1
− βi−1
αi−1

)
, if i > 1, i = j.

(5.2.13)

For entries where i ≥ j we have to change i by j since X is always symmetric.
One of the main challenges here is the computation of the momentM−1. However, using Proposition

5.1.2 we may have a way to compute explicitly B(z; Ψ) and then use the fact that

M−1 = B(0; Ψ).

We will follow this procedure for the example of the next section. Finally, we can also compute the
matrix-valued orthogonal polynomials (Q̃n)n≥0 associated with Ψ̃(x) using Theorem 3.2.1. Since we
have an explicit expression of the polynomials (Qn)n≥0 in (5.1.6) and

S−10 =



1 0 0 · · · 0

−r1,1
s1,1

1

s1,1
0 · · · 0

−r1,2
s1,2

0
1

s1,2
· · · 0

...
...

. . .
...

−r1,N−1
s1,N−1

0 · · · 1

s1,N−1


, (5.2.14)

then we have that

Q̃n(x) =



Vn,N (x)
α1

s1,1
V

(0)
n,N (x)

α2

s1,2
V

(0)
n,N (x) · · · αN−1

s1,N−1
V

(0)
n,N (x)

V
(0)
n,1 (x) Vn,1(x) 0 · · · 0

V
(0)
n,2 (x) 0 Vn,2(x) · · · 0
...

...
...

. . .
...

V
(0)
n,N−1(x) 0 0 · · · Vn,N−1(x)


, n ≥ 0, (5.2.15)



where

Vn,N (x) =sn,NQn,N (x) + rn,NQn−1,N (x)−
(
sn,NQ

(0)
n,N (x) + rn,NQ

(0)
n−1,N (x)

)N−1∑
k=1

r1,kαk
s1,k

,

V
(0)
n,N (x) =sn,NQ

(0)
n,N (x) + rn,NQ

(0)
n−1,N (x),

Vn,k(x) =
1

s1,k
(sn+1,kQn,k(x) + rn+1,kQn−1,k(x)) , k = 1, . . . , N − 1,

V
(0)
n,k (x) =sn+1,kQ

(0)
n,k(x) + rn+1,kQ

(0)
n−1,k(x)− r1,k

s1,k
(sn+1,kQn,k(x) + rn+1,kQn−1,k(x)) .

As for the potential coefficients for the Markov chain on the spider generated by P̃ , we have, using
formula (3.2.13) that

Π̃n = Y Tn ΠnS
−1
n , n ≥ 0,

and together with (5.2.2), (5.2.14), (5.2.7) and (5.2.9) we have that

Π̃0 =



β0
β1
r1,1

. . .
βN−1
r1,N−1


=



β0
β2
1

β1 − α1
. . .

β2
N−1

βN−1 − αN−1


.

Therefore (Π̃n)n≥0 are always diagonal matrices. As a consequence we obtain the norms of the
matrix-valued orthogonal polynomials

Π̃n =
(
‖Q̃n‖2Ψ̃

)−1
=

(∫ 1

−1
Q̃n(x)dΨ̃(x)Q̃T

n (x)

)−1
,

and the orthogonality relations ∫ 1

−1
Q̃n(x)dΨ̃(x)Q̃T

m(x) = Π̃−1n δnm,

with δnm the Kronecker delta

5.3 Random walk on a spider
In this example we will consider a set ofN simple birth-death chains with constant transition probabilities
and state space on Z≥0 all linked in the state 0. Of course we have to add transition probabilities in
the body of this spider. Let us consider the block tridiagonal transition probability matrix (5.1.1) with
constant transition probability coefficients, i.e.,

B0 =


α0 α1 α2 · · · αN−1
c b 0 · · · 0
c 0 b · · · 0
...

...
...

. . .
...

c 0 0 · · · b

 , A0 =


αN

a
. . .

a

 ,



and
An = aIN , Bn = bIN , Cn = cIN , n ≥ 1,

where
N∑
k=0

αk = 1, a+ b+ c = 1.

The first step for this example is to derive the spectral matrix. As we anticipated, for the spectral
analysis we will use the Stieltjes transform. For ω(0)

k , k = 1, . . . , N, the Stieltjes transform does not
depend on k and it is given by

B(z;ω
(0)
k ) =

b− z +
√

(z − σ+)(z − σ−)

2ac
, σ± = 1− (

√
a∓
√
c)2. (5.3.1)

Therefore, using the second formula in (5.1.10), as b1,k = b, a1,k = a, c2,k = c, we have

B(z;ωk) = − 2

z − b+
√

(z − σ+)(z − σ−)
=
b− z +

√
(z − σ+)(z − σ−)

2ac
, k = 1, . . . , N − 1.

As a consequence

B(z;ωD) =
b− z +

√
(z − σ+)(z − σ−)

2ac
IN−1.

On the other hand, using the first formula in (5.1.10) and (5.3.1), we obtain

1

B(z;ωN )
= −

[
z − α0 + αNcB(z;ω

(0)
N )
]

= −
[
z − α0 +

αN
2a

(
b− z +

√
(z − σ+)(z − σ−)

)]
.

Using the previous two formulas in (5.1.13) we get

b(z) =
1

−
[
z − α0 +

αN
2a

(
b− z +

√
(z − σ−)(z − σ+)

)]
−

(
N−1∑
k=1

αk

)(
b− z +

√
(z − σ−)(z − σ+)

2a

) .

Since α1 + · · ·+ αN−1 = 1− α0 − αN , after some computations we have

b(z) =
1

α0 −
b(1− α0)

2a
−
(

1− 1− α0

2a

)
z − 1− α0

2a

√
(z − σ+)(z − σ−)

,

and after rationalizing we get

b(z) =
(1− 2a− α0)z − b+ α0(1 + a− c) + (1− α0)

√
(z − σ+)(z − σ−)

2(1− z) [(1− a− α0)z + c− α0(1− a+ c− α0)]
.

Therefore we have all the necessary functions to compute the Stieltjes transform of Ψ, given by (5.1.12)
of Proposition 5.1.2. After some computations we can write B(z; Ψ) as

B(z; Ψ) =

(
B11(z; Ψ) B12(z; Ψ)~e TN−1

B12(z; Ψ)~eN−1 B22(z; Ψ)

)
, (5.3.2)



where

B11(z; Ψ) = b(z),

B12(z; Ψ) =
2c− α0(1− a+ c) + (b+ α0)z − z2 + (z − α0)

√
(z − σ+)(z − σ−)

2(1− z) [(1− a− α0)z + c− α0(1− a+ c− α0)]
,

B22(z; Ψ) =
b− z +

√
(z − σ+)(z − σ−)

2a
α−1D

+
p(z) + r(z)

√
(z − σ+)(z − σ−)

2a(1− z) [(1− a− α0)z + c− α0(1− a+ c− α0)]
~eN−1~e

T
N−1,

and

p(z) = −z3 + (α0 + 2b)z2 − (α0(2− 2a− c) + b2 − 2ac− c)z − bc+ α0(b− a(1− a+ c)),

r(z) = z2 − (α0 + b)z − c+ α0(1− a).

Then, the weight matrix Ψ will consist in the addition of an absolutely continuous part Ψc and a
discrete part Ψd, i.e., Ψ = Ψc + Ψd. First, using the Perron-Stieltjes inversion formula (1.1.2), Ψc is
given by

Ψc(x) =

(
Ψ11(x) Ψ12(x)~e TN−1

Ψ12(x)~eN−1 Ψ22(x)

)
, x ∈ [σ−, σ+], (5.3.3)

where

Ψ11(x) =
(1− α0)

√
(σ+ − x)(x− σ−)

2π(1− x) [(1− a− α0)x+ c− α0(1− a+ c− α0)]
,

Ψ12(x) =
(x− α0)

√
(σ+ − x)(x− σ−)

2π(1− x) [(1− a− α0)x+ c− α0(1− a+ c− α0)]
,

Ψ22(x) =

√
(σ+ − x)(x− σ−)

2πa
α−1D +

r(x)
√

(σ+ − x)(x− σ−)

2πa(1− x) [(1− a− α0)x+ c− α0(1− a+ c− α0)]
eN−1e

T
N−1.

On the other hand, the discrete part Ψd will be given by the behavior of the Stieltjes transform B(z; Ψ)
(5.3.2) at its poles, given in this case by

z1 = 1, z2 =
α0(1− a+ c− α0)− c

1− a− α0
.

The expression for the discrete part is given by

Ψd(x) =
c− a

c− a+ 1− α0
δ1(x)~eN~e

T
Nχ{c>a} +

(1− α0 − a)2 − ac
(1− α0)(1− α0 − a+ c)

δz2(x)~uN ~u
T
Nχ{(1−α0−a)2>ac},

(5.3.4)
where χA is the indicator function and

~uN =

(
−1,

q

1− α0 − a
, . . . ,

q

1− α0 − a

)T
.

As always, one of the advantages of having an explicit expression for the spectral matrix is that we
can describe some probability properties of the process. We have three cases:



• If a > c, then we have that [σ−, σ+] ( [−1, 1]. Therefore all integrals in (1.5.5) are bounded and
the random walk on a spider is transient.

• If a = c, then we have [σ−, σ+] = [1− 4a, 1]. Therefore all integrals in (1.5.5) are divergent and
the random walk on a spider is null recurrent (since there is no jump at the point 1).

• If a < c, there will always be a jump at the point 1 (see (5.3.4)). Therefore the random walk on
a spider is positive recurrent.

Finally, it is possible to see, by looking at the three-term recurrence relations (5.1.7) and (5.1.8),
that the entries of the matrix-valued polynomials Qn(x) in (5.1.6) are given by

Qn,N (x) =
1

αN

( c
a

)n/2 [
2(αN − a)Tn

(
x− b
2
√
ac

)
+ (2a− αN )Un

(
x− b
2
√
ac

)
+

√
a

c
(b− α0)Un−1

(
x− b
2
√
ac

)]
,

Q
(0)
n,N (x) = − 1

αN

( c
a

)(n−1)/2
Un−1

(
x− b
2
√
ac

)
,

Qn,k(x) =
( c
a

)n/2
Un

(
x− b
2
√
ac

)
, Q

(0)
n,k(x) = −

( c
a

)(n+1)/2

Un−1

(
x− b
2
√
ac

)
, k = 1, . . . , N − 1,

(5.3.5)

where (Tn)n≥0 and (Un)n≥0 are the Chebychev polynomials of the first and second kind, respectively
(see Section 1.6).

Remark 5.3.1. The polynomials (Qn,N )n≥0 in (5.3.5) can be written in terms of perturbed Chebychev
polynomials (see [3, pp. 204-205]). Indeed, these perturbed Chebychev polynomials (Pn)n≥0 are
defined in terms of the three-term recurrence relation

P0(x) = 1, P1(x) = δx− γ, xPn(x) =
1

2
Pn+1(x) +

1

2
Pn−1(x), n ≥ 1, δ 6= 0.

These polynomials can also be written in terms of Chebychev polynomials of the first and second kind
(see Section 1.6). If we use the well-known relation Un−2(x) = Un(x)− 2Tn(x), we obtain

Pn(x) = (2− δ)Tn(x)− (1− δ)Un(x)− γUn−1(x), n ≥ 0.

A direct identification with the expression of the polynomials (Qn,N )n≥0 in (5.3.5) shows that we need
to choose

δ =
2a

αN
, γ =

√
a

c

α0 − b
αN

,

in order to relate (Qn,N )n≥0 with the perturbed Chebychev polynomials (Pn)n≥0. Therefore we obtain

Qn,N (x) =
( c
a

)n/2
Pn

(
x− b
2
√
ac

)
, n ≥ 0.

Let us now apply Theorem 5.2.1 and see under what conditions we can perform a stochastic RA
factorization of the form P = PRPA. As we have constant transition probabilities, the continued
fractions in (5.2.10) can be written as Hm = αm/H, where

H = 1− c
1
− a

1
− c

1
− a

1
− · · · ,



so we can compute the explicit value given by

H =
1

2

(
1 + a− c+

√
(1 + c− a)2 − 4c

)
,

as long as a ≤ (1−
√
c)2. Therefore, after rationalizing, we have

Hm =
αm
2a

(
1 + a− c−

√
(1 + c− a)2 − 4c

)
, m = 1, . . . , N.

According to Theorem 5.2.1, the stochastic reflecting-absorbing factorization will be possible if and
only if

βm ≥
αm
2a

(
1 + a− c−

√
(1 + c− a)2 − 4c

)
, m = 1, . . . , N.

As
∑N
m=1Hm < 1 we need to have

α0 >
1

2

(
1− a+ c−

√
(1 + c− a)2 − 4c

)
.

After performing the discrete Darboux transformation given by P̃ = PAPR we get a new family of
Markov chains (depending on N free parameters β1, . . . , βN ) {Z̃n, n = 0, 1, . . .} on the spider SN . As
we mentioned before, the matrix P̃ describes an “almost” birth-death chain on a spider. The new
coefficients B̃0 and Ã0, which give the extra transitions between the first states of each leg are given
by

B̃0 =



β0 β1 β2 · · · βN−1

β0

(
1− α1

β1

)
β1 − α1 +

cα1

β1 − α1
β2

(
1− α1

β1

)
· · · βN−1

(
1− α1

β1

)
β0

(
1− α2

β2

)
β1

(
1− α2

β2

)
β2 − α2 +

cα2

β2 − α2
· · · βN−1

(
1− α2

β2

)
...

...
. . .

...

β0

(
1− αN−1

βN−1

)
β1

(
1− αN−1

βN−1

)
· · · βN−1 − αN−1 +

cαN−1
βN−1 − αN−1


,

Ã0 =



βN 0 0 · · · 0

βN

(
1− α1

β1

)
α1

β1
− cα1

β1 − α1
0 · · · 0

βN

(
1− α2

β2

)
0

α2

β2
− cα2

β2 − α2
· · · 0

...
...

. . .
...

βN

(
1− αN−1

βN−1

)
0 · · · αN−1

βN−1
− cαN−1
βN−1 − αN−1


.

Finally, the weight matrix Ψ̃ associated with P̃ is given by

Ψ̃(x) = S0

(
Ψ(x)

x
+ [X −M−1] δ0(x)

)
ST0 ,



where

S0 =



1 0 0 · · · 0

1− α1

β1

α1

β1
0 · · · 0

1− α2

β2
0

α2

β2
· · · 0

...
...

. . .
...

1− αN−1
βN−1

0 · · · αN−1
βN−1


,

the weight matrix Ψ = Ψc + Ψd is given by (5.3.3) and (5.3.4), X is the symmetric matrix given by
(5.2.13) and from (5.3.2) we have

M−1 =

(
µ11 µ12~e

T
N−1

µ12~eN−1 µ22

)
,

where

µ11 =
α0(1 + a− c)− b− (1− α0)

√
σ+σ−

2 [c− α0(1− a+ c− α0)]
, µ12 =

2c− α0(1− a+ c) + α0
√
σ+σ−

2 [c− α0(1− a+ c− α0)]
,

µ22 =
b−√σ+σ−

2a
α−1D +

α0(b− a(1− a+ c))− bc− (α0(1− a)− c)√σ+σ−
2a [c− α0(1− a+ c− α0)]

~eN−1~e
T
N−1,

and αD defined by (5.1.11). With this expression we have the n-step transition probability matrix
using the Karlin-McGregor formula and the recurrence of the process is not affected by the Darboux
transformation.

The matrix-valued polynomials (Q̃n)n≥0 orthogonal with respect to Ψ̃ can be computed from (5.2.15)
and can also be written as combinations of Chebychev polynomials of the first and second kind (see
(5.3.5)).



Conclusion and final comments

This work has been dedicated to the exploration of the spectral properties of birth-death chains and
their relation with Darboux transformations. The main goal was to generalize the results published
by F. A. Grünbaum and M. D. de la Iglesia in [24], which were summarized in Section 1.6. Building
upon this seminal work, we successfully extended the study to discrete-time birth-death chains with
a state space on Z, an achievement presented in the author’s master’s thesis [38] and detailed in
Chapter 2. Chapter 3 explored different kinds of stochastic factorizations like RA or AR, different
from the ones presented in Chapter 2. Chapter 4 presented a non-trivial example related to the family
of associated Jacobi polynomials. At the end of the chapter, an urn model for the associated Jacobi
polynomials family is described, providing a valuable application of the theoretical results. In Chapter
5 we generalized our results to the discrete version of the Walsh’s spider, a more complex process. Let us
highlight that the explicit expressions for the spectral matrices and the Karlin-McGregor representation
formulas enable the computation of n-step transition probabilities and offer valuable insights into
fundamental properties of these birth-death chains. Each chapter in this thesis is directly linked to a
published paper, namely [32], [33], [34], and [35].

In summary, this work has provided novel perspectives and tools for understanding and analyzing
birth-death chains. By exploring diverse factorizations and transformations, we have expanded our
knowledge and enriched the field with new contributions. The application of the theoretical results
to the urn model for the associated Jacobi polynomials highlights the practical relevance of our
research. Looking ahead, there are several avenues for future research. For instance, the stochastic
factorization methods could be applied to other extensions of birth-death chains models related to
multiple orthogonal polynomials, orthogonal polynomials in several variables or Krall-type orthogonal
polynomials (see [13, 26, 15]). Another promising direction is the extension of our findings to continuous-time
scenarios. Exploring deeper into the physical and probabilistic interpretations of stochastic factorizations
and spectral properties may lead to new insights in different fields.
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