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DR. GERÓNIMO FRANCISCO URIBE BRAVO
INSTITUTO DE MATEMÁTICAS, UNAM
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Chapter 1

Introduction

Stable processes are ubiquitous in the theory of stochastic processes as they belong to the wider
classes of Lévy, Markov, and self-similar processes. Brownian motion is by far the most famous and
studied example of a stable process; furthermore, it is the only one with continuous paths. Other
well-known examples correspond to stable subordinators, the Cauchy process and symmetric stable
processes.

The objective of this thesis is to study stable processes whose infinitesimal generator can be re-
lated to some adequate fractional derivatives, in order to establish new results via fractional calculus.

Symmetric stable processes have been the main focus of the existing literature. Perhaps, this
could be due to the resemblance to the Brownian motion or the significant number of applications
they have in physics. Moreover, many properties get messier when we consider asymmetric stable
processes and the standard techniques seem to fail in many cases. Our approach, using fractional cal-
culus, considers the infinitesimal generator as a linear combination of fractional derivatives, which
allows us to generalize the fractional Laplacian (the infinitesimal generator of a symmetric stable
process) in such a way that it accounts for possible asymmetry of the associated stable process.

Even in the study of fractional calculus there has been a bias toward completely asymmetric and
symmetric combinations of fractional operators, so that the general asymmetric case has not been
sufficiently developed. We focus on this gap to prove some interesting results which later will be
useful in the study of stable processes.

Let us briefly explain the main contributions of this work in the following sections.

1.1 Fractional operators
Fractional operators have been studied through many points of view: operator theory, fractional cal-
culus or their relation to the infinitesimal generator of stable processes. In most of these approaches,
they only describe completely asymmetric (only left or right fractional operators) or symmetric frac-
tional operators (fractional Laplacian and Riez potential). The main reason for this is that general
linear combinations of right and left operators (cf. Definition 3.2.1) are more complicated to work
when we consider their compositions. Another reason, which is stressed throughout this work, is
that an adequate domain of definition for these operators is necessary in order to even define their
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CHAPTER 1. INTRODUCTION 4

compositions.

As we will see in Chapter 3, the natural domain of definition is the Schwartz space of rapidly
decreasing functions. However, this space is not invariant for fractional operators; this means that
once we apply a fractional operator to functions in this space, we can no longer assure the result
stays in the Schwartz space.

The way we address this problem is by considering a subspace of Schwartz which remains in-
variant under fractional operators action, namely the Lizorkin space (cf. Definition 3.3.1). In this
space we can consider the composition of two (or any finite number) fractional operators, since they
stay in Lizorkin space. This will lead us to our first problem:

Problem 1. How to compute a crossed (right/left with left/right) composition of fractional opera-
tors?

This problem arises when we try to compute the composition of linear combinations of fractional
operators. First, we can argue that the composition of the same side (left/right) fractional operators
of order α and β in an invariant space are well-defined and are the fractional operators of order
α +β . Nevertheless, the compositions of left/right with right/left, at least well defined in Lizorkin
space, are not a common calculation in the standard literature. We compute this in full generality,
that is, for the case of fractional derivatives, integrals, or mixed compositions. This result is stated
in Proposition 4.2.2.

Given that we compute these kinds of compositions, it remains to compute the crossed composi-
tion of derivatives and integrals of the same order. The Definition 3.2.1 suggests that the composition
of fractional derivatives and integrals of the same side gives us the identity operator. However, the
crossed case is not well defined as it diverges when the sum of the orders is zero (cf. Proposition
4.2.2).

Problem 2. How to compute the crossed compositions of fractional derivatives and integrals of
the same order?

Through an adequate limit, we were able to compute the sum of compositions of crossed frac-
tional derivatives and integrals of the same order and found an interesting result, which is stated
in Lemma 4.2.1. This result gives us the key ingredient to compute the inverse operator of the
infinitesimal generator of a stable process.

Problem 3. What is the inverse operator of the infinitesimal generator of a stable process?

It is known that the infinitesimal generator of a stable process can be identified with a linear com-
bination of Riemann-Liouville fractional derivatives, with the same order as the stability index of the
underlying process. The solution for this question uses the solution of problem 2. As a consequence,
we were able to prove that the inverse corresponds to a linear combination of Riemann-Liouville
fractional integrals with the same index of stability (cf. Theorem 4.2.1). The constants that appear in
this linear combination of integrals are explicitly shown in terms of those appearing in the infinites-
imal generator.

These three problems constitute our contribution in terms of fractional calculus. They are in-
teresting not only for the stable processes study’s sake, but also in the realm of fractional calculus.
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These results can be stated for all non-integer orders α ∈R, not only the intervals α ∈ (0,2)\{1} as
the stable process requires. Moreover, with the adequate definition of multidimensional Riemann-
Liouville fractional operators (cf. [MS12]), n-dimensional results could be tackled having in mind
the methods used for the one-dimensional case in this work.

1.2 Stable processes via fractional calculus
The solutions to problems 1, 2 and 3 provide the right tools to state and solve the following problems
related to stable processes.

Problem 4. Which kind of functions are appropriate for an occupational Meyer-Itô theorem for
stable processes?

In the case of Brownian motion, or even continuous semimartingales, the biggest class which
remains invariant through the Itô-Meyer theorem is the class of (differences of) convex functions.
This class can be obtained by noticing that the fundamental solution of the Laplacian is the absolute
value function. In a similar fashion, we find the fundamental solution of the infinitesimal generator
of a stable process by using the inverse operator of Problem 3.

This class is defined in Definition 4.3.1. Since stable processes have poorer integrability condi-
tions than Brownian motion, functions in this class have some additional constraints in order to be
well-defined.

Problem 5. How can we define an occupational Meyer-Itô theorem?

Meyer-Itô theorem for stable processes was already stated, for example in [Pro04]. However, the
local time that appears in this formulation is the semimartingale local time, which is defined through
the quadratic variation, and since we are working with pure jump processes this local time is zero.

However, for the recurrent stable processes (α ∈ (1,2)) there exists an occupational local time,
defined by the classic occupation formula. So this Problem refers to finding a Meyer-Itô theorem
where an occupational local time appears. In Theorem 4.3.1 we provide some conditions on func-
tions belonging to the class of Problem 4 in order to have this occupational version of Meyer-Itô
theorem.

Finally, we provide some applications of this theorem. For instance, the Tanaka formula comes
as a particular case; and we are able to generalize a result from Engelbert and Kurenok [EK19]
regarding a submartingale decomposition of power functions of symmetric stable process. We find
that in the general, asymmetric, case this decomposition is not always a submartingale and we state
the conditions where you have it.

Problem 6. Is it possible to extend these results to solutions of a driftless stochastic differential
equation driven by stable processes?

Given the result by Rosı́nski and Woyczy [RW86], and Kallenberg [Kal92], we can identify the
solution to these kind of SDEs as a time-changed stable process, allowing us to extend the previous
results from the stable case to stochastic integrals with respect to a stable process.
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1.3 Summary of results
In Chapters 2 and 3 we give the preliminary definitions and some results concerning stable processes
and fractional calculus respectively, which allow us to prove the main results of this work in Chap-
ters 4 and 5. The results given in Chapters 2, 3 and 4 are part of the article “A Meyer-Itô formula for
stable processes via fractional calculus” [SU23]. The results of Chapter 5 are part of a working paper.

The results obtained in this work can be summarized by:

• Crossed composition of fractional operators (cf. Proposition 4.2.2).

• Crossed composition of fractional derivatives and integrals of the same order (cf. Lemma
4.2.1).

• Inverse of the infinitesimal generator (cf. Theorem 4.2.1).

• Definition of Class C α,c−,c+ (cf. Definition 4.3.1).

• Meyer-Itô theorem with occupational local time (cf. Theorem 4.3.1).

• Semimartingale or Doob-Meyer decomposition of the process |Xt − x|γ (cf. Theorem 4.4.1).

• Extension of the previous results from stable processes to solutions of stochastic differential
equations driven by stable processes via change of time (cf. Section 5.3).

The main idea is to use the natural relationship between fractional calculus and infinitesimal
generators of stable processes, prove new results on the fractional calculus domain and use them in
the stable processes realm.
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In the next diagram, we briefly show the path we have followed throughout this work.

Stable processes Fractional calculus

Infinitesimal Generator Fractional derivatives

Inverse of Infinitesimal Generator Fractional integrals

Class C α,c−,c+

Occupational Meyer-Itô theorem

Tanaka formula SDEs driven by stable processes

Power decomposition of |Xt − x|γ



Chapter 2

Stable processes

In this chapter, we will state definitions and results concerning stable processes that we use to prove
the main results of this work. The main references are: Bertoin [Ber98], Sato [Sat99], Applebaum
[App09].

2.1 Definition and characterization of stable processes
There are many ways to define stable processes, since they belong to more general classes of stochas-
tic processes. We will take the Lévy process definition as our base and defer the other ones as prop-
erties for later on.

Lévy processes are characterized by the distribution of the processes at a given time, in fact, their
distributions belong to the class of infinitely divisible distributions. Let us start with the definition
of a strictly stable random variable as a member of the infinitely divisible distributions.

Definition 2.1.1 (Strictly stable random variable). We will say that a real valued random variable Y
is strictly stable with index of stability α ∈ (0,2] if for any n ≥ 1 we have:

Y d
=

Y1 + · · ·+Yn

n1/α
,

where Y1, . . . ,Yn are i.i.d. copies of Y .

The strictly part means that we do not need to add an extra constant (or shift) to the RHS in order
to achieve the distribution equality. On the sequel, we omit the term strictly when we talk about
stable random variables or processes.

The cases where α is 1 and 2, which correspond to Cauchy and Gaussian random variables re-
spectively, are the most well-known examples of stable r.v. Nevertheless, the fractional calculus tech-
nique we will emphasize later, exclude both cases. So, hereafter we will assume that α ∈ (0,2)\{1}.

Before we define a stable process, let us recall the definition of a Lévy process.

Definition 2.1.2 (Lévy Process). Let {Xt}t≥0 be a continuous time stochastic process defined in a
probability space (Ω,F ,P). We will say it is a Lévy process if the following conditions hold:

8
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• X0 = 0 P-a.s.

• X has independent and stationary increments.

• X has P-a.s. càdlàg paths.

The fundamental examples of Lévy processes are the Compound Poisson process and the Brow-
nian motion. In fact, they play a central role in characterizing Lévy processes as we could see in
the following theorems. Following Applebaum [App09] (Theorem 1.2.14 and 2.4.16), we state the
Lévy-Khintchine formula and the Lévy-Itô decomposition for Lévy processes.

Theorem 2.1.1 (Lévy-Khintchine). Let b∈R, σ ∈R and ν a measure concentrated in R0 :=R\{0}
such that

∫
R0
(1∧ x2)ν(dx)< ∞. Given (b,σ ,ν), for each u ∈ R define

φ(u) = ibu+
1
2

σ
2u2 +

∫
R0

(
1− eiux + iux1l|x|<1

)
ν(dx).

Then, there exists a probability space (Ω,F ,P), on which a Lévy process {Xt}t≥0, such that E
(
eiuXt

)
=

e−tφ(u), is defined.

The function φ is called the characteristic exponent of X and the vector (b,σ ,ν) is its character-
istic triplet. Furthermore, the term b is called the drift component, σ the Gaussian component and ν

is the measure of the jumps of X since for any A ∈ B(R0):

ν(A) = E [#{t ∈ [0,1] : Xt −Xt− ∈ A}] .

Despite the fact that (b,σ ,ν) is unique for a given Lévy process, one may find in the literature
other representations (bg,σ ,ν) where they use a regularizing function g(x), and the characteristic
exponent takes the form:

φ(u) = ibgu+
1
2

σ
2u2 +

∫
R0

(
1− eiux + iug(x)

)
ν(dx),

the drift bg component depends on the function g(x).

These name conventions can be well understood in sight of the following theorem.

Theorem 2.1.2 (Lévy-Itô decomposition). Let {Xt}t≥0 a Lévy process with characteristic triplet
given by (b,σ ,ν). Then, for each t ≥ 0 we have the following decomposition:

Xt = bt +σBt +
∫ t

0

∫
|x|<1

xÑ(ds,dx)+
∫ t

0

∫
|x|>1

xN(ds,dx),

where B is a standard Brownian motion and N an independent Poisson random measure1 defined in
R+×R0, whose intensity is dsν(dx), and Ñ is the compensated Poisson random measure given by

Ñ(ds,dx) := N(ds,dx)−dsν(dx).
1See appendix C for its definition and main properties.
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We are ready to define a stable process as a Lévy process, state its characteristic triplet and its
Lévy-Itô decomposition. The form that the characteristic exponent takes, depends on α being in
(0,1) or (1,2). For the first case, since ν is integrable near zero, we could take the regularizing

function g(h) = 0 and this implies that b =−
∫
|h|≤1

hν(dh). For the second case, since ν integrates

h2 near zero, we could take g(h) = h and the drift becomes b =
∫
|h|>1

hν(dh).

Definition 2.1.3 (Strictly stable process). A Lévy process {Xt}t≥0 with characteristic triplet (bα ,0,ν),
is called a strictly stable process with index of stability α ∈ (0,2)\{1} if

bα =


−
∫
|h|≤1

hν(dh) α ∈ (0,1),

∫
|h|>1

hν(dh) α ∈ (1,2),

and

ν (dh) =
(
c− 1l{h<0}+c+ 1l{h>0}

) dh

|h|α+1 ,

where c−,c+ ≥ 0 not both zero.

In fact, for each t ≥ 0 we have that Xt = t1/αX1, and X1 is an α-stable random variable. We will
write X ∼ Sα (c−,c+) when we refer to a strictly stable process with such parameters.

Let us give the Lévy-Khintchine formula and Lévy-Itô decomposition as a corollary from the
general Lévy case and considering the drift b that depends on α as mentioned above.

Corollary 2.1.1 (of Lévy-Khintchine). Let X ∼ Sα (c−,c+), if α ∈ (0,1), then the characteristic
exponent can be written as

φ(u) =
∫
R0

(
1− eiuh

)
ν(dh),

and if α ∈ (1,2),

φ(u) =
∫
R0

(
1− eiuh + iuh

)
ν(dh).

Moreover, it can be proved (cf. Applebaum [App09] Theorem 1.2.21) that in the case α ∈
(0,2)\{1} the characteristic exponent of a stable process X of index α is equal to:

φ(u) = exp
[
−σ |u|α

(
1− iβ sgn(u) tan

(
πα

2

))]
. (2.1)

Here we have another parametrization of a stable process in terms of the skewness β and scale σ .
In this case the stable process is denoted by X ∼ Sα (β ,σ). We can recover the (c−,c+) parametriza-
tion solving:

β =
c+− c−
c++ c−

, σ =−(c++ c−)Γ(−α)cos
(

πα

2

)
.

There are many equivalent parametrizations for stable processes, as shown by Zolotarev in
[Zol86]. Besides the ones mentioned before, we can consider the positivity parameter, denoted
by ρ = P(Xt ≥ 0). It can be proved that

ρ =
1+θ

2
, where θ =

{
β if α ∈ (0,1),
β
(

α−2
α

)
if α ∈ (1,2).
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The values that θ and ρ can take are in [−1,1] and [0,1] when α ∈ (0,1). In the other case, where
α ∈ (1,2), we get αρ ≤ 1, α(1−ρ)≤ 1 and θ ≤ 2/α −1. For instance, it is quite common to find
c± in terms of α , ρ and ρ̂ := 1−ρ in the following way:

c− =
Γ(α +1)

Γ(αρ̂)Γ(1−αρ̂)
and c+ =

Γ(α +1)
Γ(αρ)Γ(1−αρ)

.

With this parametrization, we will say that a stable process X has parameters α and ρ and we denote
it by X ∼ S(α,ρ).

Remark 2.1.1. The characteristic exponent of a stable process is intrinsically related to the Fourier
transform of the Riemann-Liouville fractional derivatives (cf. Remark 3.3.1).

Corollary 2.1.2 (of Levy-Itô decomposition). Let X ∼ Sα (c−,c+). If α ∈ (0,1), there are no finite
moments, hence no martingale representation, but the Levy-Itô decomposition can be written as:

Xt = X0 +
∫ t

0

∫
R0

hN(ds,dh).

If α ∈ (1,2), it has finite first moment, and the Lévy-Itô decomposition can be written as:

Xt = X0 +
∫ t

0

∫
R0

hÑ(ds,dh).

Where N is a Poisson random measure with intensity dsν(dh) and Ñ is the compensated Poisson
random measure. In fact, note that in the recurrent case, α ∈ (1,2), we get an integrable martingale.

Example 2.1.1 (Stable subordinator).
Let α = 0.95 and β = 1. Consider the process X ∼ S(α = 0.95,ρ = 1), then an example of a sample
path of X and the jumps associated to this path are:

Figure 2.1: Stable subordinator and its associated jumps.
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2.2 Some properties of stable processes
The behavior and further properties of the process X differ substantially whether α is in (0,1) or
(1,2) as we have seen in the Lévy-Khintchine and Lévy-Itô theorems. For instance, we may consider
the transient/recurrent dichotomy, the polar/non-polar character of zero, or the bounded/unbounded
variation of the sample paths.

A useful characterization of transience and recurrence is given by the finiteness or divergence of
the so-called potential measures. Following [Ber98] we consider the family of linear operators Uq

for q > 0 called the q-resolvents. These operators are given for every measurable positive function
f by

Uq f (x) = Ex

(∫
∞

0
e−qt f (Xt)dt

)
.

The family of finite measures (Uq(x,dy)) for any x ∈ R such that

Uq f (x) =
∫

∞

−∞

f (y)Uq (x,dy) ,

is known as the resolvent kernel.

The potential measures U(x, ·) for any x∈R correspond to the limit case of the q-resolvent kernel
as q → 0. That is, for every x ∈ R and A ∈ B(R)

U(x,A) = Ex

(∫
∞

0
1lXt∈A dt

)
=

∫
∞

0
Px(Xt ∈ A)dt.

The definition of transience and recurrence in terms of the potential measures is as follows.

Definition 2.2.1. A Lévy process is transient if the potential measures satisfy that for any compact
set K, we have that U(x,K) < ∞ for any x ∈ R. On the contrary, we say that a Lévy process is
recurrent if U(0,B) = ∞ for every open ball B centered at the origin.

According to this definition, it can be proved that for α ∈ (0,1) a stable process is transient and
for α ∈ (1,2) it is recurrent.

Another important property of a stable process is whether or not the process reaches single points.
According to [RY13] we have the following definition.

Definition 2.2.2. Consider a Markov process {Xt}t≥0 with state space R, a set A ∈ B(R) is called
polar if

Px (Xt ∈ A for some t > 0) = 0, for any x ∈ R.

If the set A consists of a single point, say a, a polar process X does not reach the point a. Other-
wise, this probability is 1 and it is said that the process is non-polar.

In the case of stable processes, it can be proved that for α ∈ (0,1) a stable process is polar, and
for α ∈ (1,2) it is non-polar.
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In terms of the sample paths, there is also an important characterization. Since there is no Gaus-
sian component in the characteristic triplet of our stable processes, the bounded or unbounded vari-
ation of the sample paths is completely described by the finiteness or divergence of the sum of the
absolute value of the jumps.

We have that ∑0≤s≤t |∆Xs| converges for every t > 0 a.s. if and only if
∫
R0
(1∧|x|)ν(dx)< ∞. In

this case, we say that X has bounded variation and unbounded variation otherwise.

Since ν(dx) is of the order |x|−1−α we have that for α ∈ (0,1) a stable process has bounded
variation sample paths; whereas for α ∈ (1,2) it has unbounded variation sample paths.

The following result concerns the finiteness of moments for stable processes. Since they have
poorer integrability conditions than Brownian motion, we will have to be careful when we consider
Itô formula, for each component to be integrable. For the first part, the proof can be consulted in
[Tsu19] and the second one in [Ber98].

Proposition 2.2.1. Let α ∈ (0,2) \ {1}, c−,c+ ≥ 0, not both zero, and consider a strictly stable
process X ∼ Sα (c−,c+). Then, the following bounds are satisfied:
1. For all t > 0, x ∈ R and 0 < γ < 1,

E
[
|Xt − x|−γ

]
≤ S(α,γ)t−γ/α ,

where S(α,γ) is a constant which depends on α and γ . Note that this bound does not depend on x.
2. For all t > 0 and 0 < γ < α ,

E [|Xt |γ ]< ∞,

and if γ ≥ α it is infinite.

2.3 Some stochastic calculus results for stable processes
Stochastic calculus is a very useful set of techniques that allows us to study more properties of the
stochastic processes involved. Stochastic calculus for Brownian motion is by far the most used and
well-known, and it has been successfully extended to the case of continuous semimartingales and
even to Lévy processes. We are considering strictly stable processes, which are pure jump processes;
however, as they belong to the Lévy processes class we also have in hand a lot of results, which we
will use accordingly.

One of the most important results in stochastic calculus is the Itô formula, which gives us the
dynamics of the process f (Xt) for any f ∈C2 and Xt a Lévy process, in terms of a stochastic differ-
ential equation (SDE). The main feature of this result is the fact that if X is a semimartingale, then
f (X) is also a semimartingale.

In order to define the infinitesimal generator of a stable process we state Itô’s formula for stable
processes. The following proposition is a version of Itô’s formula (termed predictable in [SY05])
for stable processes. The statement, and the useful notation C2

1+,b for the functional space of twice
continuously differentiable functions whose derivatives or order greater than 1 are bounded, are taken
from [Tsu19]. In contrast to the standard Itô’s formula, the semimartingale decomposition of f (X)
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in this version clearly features the infinitesimal generator and big and small jumps are compensated.
Hence the need to restrict the class of C2 functions to C2

1+,b.

Proposition 2.3.1 (Itô’s formula). Let X ∼ Sα (c−,c+) with c−,c+ ≥ 0, not both zero and f ∈C2
1+,b.

If α ∈ (0,1), then for any t ≥ 0, with probability 1 we have

f (Xt) = f (X0)+
∫ t

0

∫
R0

[ f (Xs−+h)− f (Xs−)] Ñ(ds,dh)

+
∫ t

0

∫
R0

[ f (Xs−+h)− f (Xs−)]ν(dh)ds.

If α ∈ (1,2), then for any t ≥ 0, with probability 1 we have

f (Xt) = f (X0)+
∫ t

0

∫
R0

[ f (Xs−+h)− f (Xs−)] Ñ(ds,dh)

+
∫ t

0

∫
R0

[
f (Xs−+h)− f (Xs−)−h f ′ (Xs−)

]
ν(dh)ds.

The infinitesimal generator L for a Feller process X can be defined as the time derivative at zero
of the semigroup associated with the process. For instance, let f ∈S , the Schwartz space of rapidly
decreasing functions, then we have:

L f (x) :=
∂

∂ t
Ex ( f (Xt))

∣∣∣∣
t=0

,

in other words, the infinitesimal generator describes the change of Xt in an infinitesimal period of
time.

Following the book of Sato [Sat99], we are going to use the following equivalent expression of
the infinitesimal generator associated with a stable process.

Definition 2.3.1 (Infinitesimal generator). Let X ∼ Sα (c−,c+), then its infinitesimal generator L is
the operator defined by

L f (x) =


∫
R0

[ f (x+h)− f (x)]ν (dh) , if α ∈ (0,1)∫
R0

[
f (x+h)− f (x)−h f ′ (x)

]
ν (dh) , if α ∈ (1,2),

for f ∈ S (R), the Schwartz space of rapidly decreasing functions on R.

Considering the stable process X as a semimartingale, Itô theorem implies that the family of
functions C2 is an invariant transformation in the class of semimartingales. In fact, there is a well-
known extension of this result, called the Meyer-Itô theorem. Following [Pro04](Theorem 70) we
have the following theorem.

Theorem 2.3.1. Let f be the difference of two convex functions, let f ′ be its left derivative, and let
µ be the signed measure (when restricted to compacts) which is the second derivative of f in the
generalized function sense. Then the following equation holds:

f (Xt) = f (X0)+
∫ t

0
f ′(Xs−)dXs + ∑

0<s≤t

[
f (Xs)− f (Xs−)− f ′(Xs−)∆Xs

]
+

1
2

∫
∞

−∞

La
t (X)µ(da),

where X is a semimartingale and La
t is its semimartingale local time at a up to time t.
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Figure 2.2: Brownian motion sample path and its local time surface.

The semimartingale local time of X satisfies the following property (cf. [Pro04] Corollary 1).

Proposition 2.3.2. Let X be a semimartingale with semimartingale local time (La(X))a∈R. Let g be
a bounded Borel measurable function. Then a.s.∫ t

0
g(Xs)d[X ,X ]cs =

∫
∞

−∞

g(a)La
t (X)da,

where [X ,X ]c denotes the path by path continuous part of the quadratic variation, with [X ,X ]c0 = 0.

In the case of Brownian motion, since it is a continuous semimartingale, this local time is not
zero since d[B,B]cs = ds. Unfortunately, our stable process has no continuous martingale part. Then,
for a stable process X we have that the semimartingale local time is identically equal to zero.

Local times can be defined in several ways, for example: semimartingle, Markov or occupational
local times. The latter is more convenient in our case. Recall that in the case of recurrent stable
processes, that is for α ∈ (1,2), it is non-polar for every Borel set, in particular for any single point
set. The definition of an occupational local time is as follows.

Definition 2.3.2 (Occupational local time). Consider a family of random variables with two indices,
{La

t (X) : a ∈ R, t ≥ 0}. We will call it an occupational local time of a process X if, the occupation
time formula is satisfied for any positive Borel measurable function f : R→ [0,∞):∫ t

0
f (Xs)ds =

∫
∞

−∞

f (a)La
t (X)da a.s.

The fact that this local time exists for recurrent stable processes, as well as being jointly contin-
uous in time and space, was studied by Boylan [Boy64] and Barlow [Bar88]. From now on, when
we talk about a local time for stable processes, we will refer to the occupational one.
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Figure 2.3: Symmetric stable process sample path and its local time surface.

In the case of Brownian motion, the local time appears in the Doob-Meyer decomposition of the
process |Bt | as the increasing process part. This decomposition is well known as the Tanaka formula
for Brownian motion; given any x ∈ R we have that:

|Bt − x|= |B0 − x|+
∫ t

0
sgn(Bs − x)dBs +Lx

t (B). (2.2)

Given that we can define a local time for stable processes, one natural question is if we can also
achieve its corresponding Tanaka formula. An affirmative answer was given by Tsukada in [Tsu19].

The following definition corresponds to the function that appears in [Tsu19], but within our
notation.

Definition 2.3.3. For every fixed α ∈ (1,2), c−,c+ ≥ 0, not both zero, we define the function:

Fα,c−,c+ (x) := K (α,c−,c+)
(

1−
(

c+− c−
c++ c−

)
sgn(x)

)
|x|α−1, (2.3)

where
K (α,c−,c+) =

c−+ c+
2Γ(−α)Γ(α)

(
c2
−+ c2

++2c−c+ cos(πα)
)

By means of Fourier and stochastic calculus arguments, Tsukada proved in [Tsu19] that Fα,c−,c+ (x)
satisfies the Tanaka formula for the stable process X ∼ Sα (c−,c+). Given any a ∈ R we have:

Fα,c−,c+ (Xt −a) = Fα,c−,c+ (X0 −a)+Ma
t (X)+La

t (X),

where La
t (X) is the occupational local time at a up to time t of X and Ma

t (X) is a martingale given by

Ma
t (X) =

∫ t

0

∫
R0

[Fα,c−,c+ (Xs−−a+h)−Fα,c−,c+ (Xs−−a)] Ñ(ds,dh).

Finally, we will be interested in stochastic differential equations driven by stable processes; that
is, for any X ∼ Sα (c−,c+) and some measurable functions b and σ we will consider the following
SDE:

dZt = b(Zt)dt +σ(Zs−)dXt .
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The existence and uniqueness of solutions for this type of equation (considering asymmetric sta-
ble processes) have been studied by Fournier in [Fou13]. He provided some properties on b and σ

such that the solution Zt is pathwise unique.

After defining an occupational local time for stochastic integrals with respect to stable processes,
we could follow the method Le Gall stated in [LG83] for the Brownian motion, to prove pathwise
uniqueness of driftless SDEs driven by stable processes. In a nutshell, Le Gall uses the Meyer-Itô
theorem for continuous semimartingales and give conditions to ensure the pathwise uniqueness of
solutions to the following SDE:

dZt = b(Zt)dt +σ(Zs)dBt , (2.4)

where B is a Brownian motion and b, σ some measurable functions. Given the Tanaka formula (2.2)
the classic Itô formula for continuous semimartingales can be extended from C2 functions to the
family of the difference of convex functions. If f is the difference of convex functions then:

f (Zt) = f (Z0)+
∫ t

0
f ′(Zs)dZs +

∫
∞

−∞

La
t (Z) f ′′(da), (2.5)

and the local time La
t (Z) satisfies the occupational time formula for any positive Borel measurable

function g : R→ [0,∞): ∫ t

0
g(Xs)d < Z >s=

∫
∞

−∞

g(a)La
t (Z)da a.s.,

where < Z >t stands for the quadratic variation of Z at time t.

If we take b to be Lipschitz and σ such that there exists an increasing function ρ : [0,∞)→ [0,∞)
such that ∫

0+

du
ρ(u)

= +∞ and (σ(x)−σ(y))2 ≤ ρ(|x− y|) ∀x,y.

Then, if we consider two solutions, Z1 and Z2, for the SDE (2.4) with the same initial value, we have
that:

∀t ≥ 0, L0
t (Z

1 −Z2) = 0.

Then by the Meyer-Itô formula (2.5) applied to Z1 −Z2 with the function f (x) = |x|, we have that:

|Z1
t −Z2

t |=
∫ t

0
sgn(Z1

s −Z2
s )
(
b(Z1

s )−b(Z2
s )
)

ds+
∫ t

0
sgn(Z1

s −Z2
s )
(
σ(Z1

s )−σ(Z2
s )
)

dBs+L0
t (Z

1−Z2).

Since L0
t (Z

1 −Z2) = 0 and b is Lipschitz, taking expectations in both sides, by Gronwall lemma we
have:

E
(
|Z1

t −Z2
t |
)
≤ E

(∫ t

0

∣∣b(Z1
s )−b(Z2

s )
∣∣ds

)
≤ K

∫ t

0
E
(∣∣Z1

s −Z2
s
∣∣)ds.

where K is the Lipschitz constant for b. So we have that ∀t ≥ 0, E
(
|Z1

t −Z2
t |
)
= 0 and we get path-

wise uniqueness of the solution to the SDE (2.4).

Note that the key property is that L0
t (Z

1−Z2) = 0 for all t ≥ 0. The work of Le Gall [LG83] gives
us the condition on σ in order to achieve this property, as well as the condition on b to conclude the
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pathwise uniqueness.

Following the same reasoning, we could prove pathwise uniqueness for driftless SDEs driven by
strictly stable processes; however, this problem is out of the scope of this work, because the local
time we will define in the last chapter does not consider the case where σ can take both signs.



Chapter 3

Fractional calculus

Fractional calculus has been studied almost since the invention of calculus. One of the most fa-
mous applications is the solution to the tautochrone problem by Abel (cf. [PMT17]). Even though
many mathematicians have contributed to the formalization of the field; it was Marcel Riesz who
systematized several results in terms of non-local operator theory. The book of Samko, Kilbas and
Marichev [SKM93] will be our main reference for the theory of fractional calculus in what follows.
We will focus on the results that will be useful to prove the inversion theorem 4.2.1; as we will see,
the connection between fractional calculus and stable processes will appear very natural by means
of their infinitesimal generator.

3.1 Brief introduction to fractional calculus
The simplest way to introduce fractional operators is through fractional integrals. First, recalling the
Cauchy formula for the n-fold integral (right and left) of an integrable function in the interval [a,b].
If f ∈ L1(a,b), then for any a ≤ x ≤ b we have:

In
a+ f (x) :=

∫ x

a

∫ x1

a
· · ·

∫ xn−1

a
f (xn)dxn · · ·dx2dx1 =

1
(n−1)!

∫ x

a
(x− t)n−1 f (t)dt,

In
b− f (x) :=

∫ b

x

∫ b

x1

· · ·
∫ b

xn−1

f (xn)dxn · · ·dx2dx1 =
1

(n−1)!

∫ b

x
(t − x)n−1 f (t)dt,

Given these representations, the generalization for any α > 0 is straightforward. Using the fact that
Γ(n) = (n−1)! we can write the left and right fractional integral as:

Iα
a+ f (x) :=

1
Γ(α)

∫ x

a
(x− t)α−1 f (t)dt,

Iα
b− f (x) :=

1
Γ(α)

∫ b

x
(t − x)α−1 f (t)dt.

The heuristic of how these operators can be considered as nice interpolations between the cor-
responding n-fold integration formulas is quite simple. However, this is not the case for fractional
derivatives. There are several properties of derivatives that their fractional counterparts will preserve
or lose, depending on the definition we adopt. Let us present the two most common definitions of
fractional derivatives, the Riemann-Liouville and the Caputo definitions.

19
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If n−1 < α ≤ n, the Riemann-Liouville fractional derivatives are defined by:

Dα
a+ f (x) :=

(
d
dx

)n

In−α
a+ f (x) =

1
Γ(n−α)

(
d
dx

)n ∫ x

a
(x− t)n−α−1 f (t)dt,

Dα
b− f (x) :=

(
− d

dx

)n

In−α

b− f (x) =
1

Γ(n−α)

(
− d

dx

)n ∫ b

x
(t − x)n−α−1 f (t)dt.

These definitions seem convenient, since for any α = n ∈ N we have that

Dn
a+ f (x) =

(
d
dx

)n

f (x) and Dn
b− f (x) = (−1)n

(
d
dx

)n

f (x),

so that, in other words, these fractional derivatives also nicely interpolate the standard derivatives.
To make our point, on where these definitions could cause troubles, let us calculate the fractional
derivative of a power function.

Example 3.1.1. Let p > 0 and consider the function f (x) = xp 1lx≥0. Let us calculate the right
fractional derivative of f (x) of order 0 < α < 1:

Dα
0+xp =

1
Γ(1−α)

d
dx

[∫ x

0
(x− t)−αt pdt

]
=

1
Γ(1−α)

d
dx

[
Γ(p+1)Γ(1−α)

Γ(p+2−α)
xp+1−α

]
=

Γ(p+1)
Γ(p+1−α)

xp−α .

As p → 0 we have that f (x)→ 1 if x ≥ 0, but the fractional derivative Dα
0+xp → x−α

Γ(1−α) , which
is not zero as we would like it to be. In other words, the Riemann-Liouville fractional derivatives of
a constant are not necessarily zero, which is an important property of standard derivatives.

Figure 3.1: Fractional derivatives of order α = 0.85 of the function f (x) = xp.
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If n−1 < α ≤ n, the Caputo fractional derivatives are defined by:

Dα
a+∗ f (x) := In−α

a+

(
dn

dxn f (x)
)
=

1
Γ(n−α)

∫ x

a
(x− t)n−α−1 dn

dtn f (t)dt,

Dα
b−∗ f (x) := In−α

b−

(
dn

dxn f (x)
)
=

1
Γ(n−α)

∫ b

x
(t − x)n−α−1 dn

dtn f (t)dt.

It can be shown that these definitions also lead to the standard derivatives when α = n ∈ N. The
main difference is that in the Caputo case, we have that the fractional derivative of a constant is zero.
From this property, is immediate that the operators dn

dxn and In−α do not commute. In fact, we can
express one in terms of the other; since we are focusing on the cases α ∈ (0,1) and α ∈ (1,2), let us
write the relationship between both definitions (c.f. [Kol15]).

Proposition 3.1.1. Let α ∈ (0,1), then for any a < x we have:

Dα
a+∗ f (x) = Dα

a+ f (x)− f (a)
Γ(1−α)(x−a)α

.

Let α ∈ (1,2), then for any a < x we have:

Dα
a+∗ f (x) = Dα

a+ f (x)− f (a)
Γ(1−α)(x−a)α

− f ′(a)
Γ(2−α)(x−a)α−1 .

We can see that the difference between the fractional derivatives comes from the initial condi-
tions in the extreme point a. There is an analogous relation between Dα

b−∗ and Dα
b−.

3.2 Riemann-Liouville fractional operators
The fractional operators we will use are the Riemann-Liouville’s, with a = −∞ and b = ∞, for the
left and right operators respectively.1 These definitions and further properties can be consulted in
[SKM93](Section 2.3). In the sequel we will denote by S (R) the Schwartz space of real rapidly
decreasing functions (see Appendix B).

Definition 3.2.1 (Riemann-Liouville fractional operators). Let α ≥ 0 and ϕ ∈ S (R). Then, the left
and right Riemann-Liouville fractional operators of order α applied to ϕ are defined in three cases:

• For α = 0 we get the identity operator

W α
− ϕ (x) =W α

+ ϕ (x) := ϕ (x) .

• For α > 0, the Riemann-Liouville fractional integrals are given by

W α
− ϕ (x) :=

1
Γ(α)

∫ x

−∞

(x− t)α−1
ϕ (t)dt,

W α
+ ϕ (x) :=

1
Γ(α)

∫
∞

x
(t − x)α−1

ϕ (t)dt.

1In fact, in this case, the R-L derivatives coincide with the Caputo’s, since the initial conditions will be zero in the
extreme points.
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• For n−1 < α < n, with n ∈ N, the Riemann-Liouville fractional derivatives are given by

W−α
− ϕ (x) :=

1
Γ(n−α)

dn

dxn

∫ x

−∞

(x− t)n−α−1
ϕ (t)dt,

W−α
+ ϕ (x) :=

(−1)n

Γ(n−α)

dn

dxn

∫
∞

x
(t − x)n−α−1

ϕ (t)dt.

Remark 3.2.1.

• Fractional operators can be defined for absolutely continuous functions with some differen-
tiability conditions, but we stick with the Schwartz space so that their Fourier transforms are
well-defined.

• If α > 0, we will use the following notation for the fractional integrals and derivatives:

Iα
∓ := W α

∓ ,

Dα
∓ := W−α

∓ .

• If α ∈ N, then the left fractional operators Iα
− and Dα

−, are the iterated integral and classical
differential operators of order α .

• On an adequate domain (the so-called Lizorkin space, to be introduced), they satisfy the group
property for α,β ∈ R:

W α
− ◦W β

− = W α+β

− ,

W α
+ ◦W β

+ = W α+β

+ .

• On Schwartz space of rapidly decreasing smooth functions, fractional derivatives satisfy the
semigroup property Dα

± ◦Dβ

± = Dα+β

± for α,β ≥ 0.

In the next proposition, we rewrite the definition of fractional derivative depending on the index
α , this representation is called the generator form. The fact that they are equivalent can be found in
the book of Meerschaert and Sikorskii [MS12] and the article of Kolokoltsov [Kol15].

Proposition 3.2.1 (Generator form). Let f ∈ S (R) and α ∈ (0,2) \ {1}. Then the generator form
of the left and right fractional derivatives are as follows:

Dα
− f (x) =


1

Γ(−α)

∫
∞

0

f (x−h)− f (x)
h1+α

dh, if α ∈ (0,1)

1
Γ(−α)

∫
∞

0

f (x−h)− f (x)+h f ′ (x)
h1+α

dh, if α ∈ (1,2)

Dα
+ f (x) =


1

Γ(−α)

∫
∞

0

f (x+h)− f (x)
h1+α

dh, if α ∈ (0,1)

1
Γ(−α)

∫
∞

0

f (x+h)− f (x)−h f ′ (x)
h1+α

dh, if α ∈ (1,2)

This generator form will be the key ingredient to state the fractional derivative weighted sum
representation for the infinitesimal generator of strictly stable processes. Now we will focus on the
further properties of the fractional operators that will lead us to the proof of the inversion theorem.
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3.3 Lizorkin space
The main problem working in the fractional calculus framework is the domain of definition of
these operators; Schwartz space is not invariant under fractional operators (cf. Samko, Kilbas and
Marichev [SKM93], section 8.2). Since we are seeking for the inverse of the infinitesimal generator,
it would be useful to have a space that remains invariant under the action of the Riemann-Liouville
fractional operators. This kind of space has been thoroughly studied by Lizorkin [Liz68, Liz71],
Samko, Kilbas and Marichev [SKM93] and Rubin [Rub96, Rub15].

The Lizorkin space of test functions Φ (which is a subspace of the Schwartz space of rapidly
decreasing functions), is a space that remains invariant with respect to fractional integration and
differentiation. The intuition behind this relies on the Fourier transform of these operators.

Proposition 3.3.1 (Fourier transform of fractional operators). Let f ∈ Φ and α ≥ 0, then the Fourier
transforms of the Riemann-Liouville fractional operators of index α , considering the principal
branch of the logarithm, satisfy the following identities:

F
[
Dα
− f

]
(u) = (−iu)α F [ f ] (u),

F
[
Dα
+ f

]
(u) = (iu)α F [ f ] (u),

F
[
Iα
− f

]
(u) = (−iu)−α F [ f ] (u),

F
[
Iα
+ f

]
(u) = (iu)−α F [ f ] (u).

Where the Fourier transform of an element f ∈ S is defined by:

F [ f ] (u) =
∫
R

f (x)eiuxdx.

The proof of this proposition can be found in the book of Samko, Kilbas and Marichev [SKM93]
Lemma 8.1.

Remark 3.3.1. If we take the principal branch of the logarithm, we have

(±iu)α = |u|αe±isgn(u)απ/2

= |u|α
(

cos
(

απ

2

)
± isgn(u)sin

(
απ

2

))
,

for all u,α ∈ R. These are precisely the characteristic functions of the one-sided stable processes,
see equation (2.1) with σ = 1 and β =±1.

Thus, we have to consider functions in S , such that their Fourier transform is well-behaved in
the singularity of the multiplier.

Definition 3.3.1 (Lizorkin space). Consider the space of functions that vanish at zero together with
all their derivatives:

Ψ =
{

ψ ∈ S (R)
∣∣∣ψ( j)(0) = 0, j ∈ {0,1,2, . . .}

}
.

Then, the space of functions whose Fourier transforms are in Ψ is called the Lizorkin space and is
defined by

Φ = {φ ∈ S (R) |F [φ ] ∈ Ψ} .
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In the article [Liz71], Lizorkin defines the fractional derivatives of functions in Lp(R), p > 1,
using functions in the Lizorkin space in the weak and strong sense. Considering the following
function

κ̃β (u) = e−β 2
(

u2+ 1
u2

)
, β > 0,

it can be proved that κ̃β ∈ Ψ. Since it is an odd function its Fourier transform can be written as

κβ (x) =
1√
2π

∫
∞

−∞

e−β 2
(

u2+ 1
u2

)
cos(ux)du.

So that κβ ∈ Φ. Since κ̃β → 1 as β → 0, we would expect that κβ/
√

2π converge to the Dirac delta
distribution in zero as β → 0 as well. The proofs of these properties of κβ and its Fourier transform
can be consulted in [Liz71, Ch. II§3].

Given a function f ∈ Lp(R), p> 1, Lizorkin defines infinite differentiable approximations, called
completely balanced averages of f , by means of the κβ so that as β → 0 we have:

1√
2π

∫
∞

−∞

κβ (x− y) f (y)dy
Lp(R)−−−→ f (x).

It allows us to characterize the fractional differentiation of f through its completely balanced aver-
ages in the limit and provide the required tools to prove Lemma 4.3.2.

(a) κ̃1(u) (b) κ1(x)

Figure 3.2

By definition of these spaces, we have that for any k ∈ N0:

0 =
dk

duk F [φ ]

∣∣∣∣
u=0

=
∫

∞

−∞

xkei·0·x
φ(x)dx.

So that the Lizorkin space can be characterized as the subspace of S whose elements are or-
thogonal to all polynomials, since: ∫

∞

−∞

xk
φ(x)dx = 0, k ∈ N0.
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This property implies that Lizorkin space does not contain any infinitely differentiable function of
compact support other than the zero function. In order to extend results from Φ to more general
space functions such as Lp or C∞

0 , we could not rely on the classic denseness of, for example, C∞
0 in

S or Lp; and here is where the completely balanced averages come in handy.

Another interesting property is that Φ does not contain real valued functions everywhere different
from zero, since if φ ∈ Φ, it must satisfy ∫

∞

−∞

φ(x)dx = 0.

Space Φ may be considered as a topological vector space with the topology of the space S . The
latter is generated by the countable family of seminorms

sup
x

(
1+ x2)m

2
∣∣∣φ (k)(x)

∣∣∣ ,
which are finite for any k ∈ N0. Moreover, the spaces Φ and Ψ are closed in S .

One may define a topology in Ψ which embraces the behavior of functions ψ(x) not only at
infinity, but for x → 0 as well, namely by means of a countable number of seminorms

sup
x

(
1+ x2)m

2 |x|−p
∣∣∣φ (k)(x)

∣∣∣ ,
which are finite for any k ∈ N0. In fact, this topology coincides with that of S for functions ψ ∈ Ψ

(cf. [Rub96] Chapter 1.3).

The space of linear continuous functionals2 on Φ will be denoted by Φ′ as is usual. Let us
compare Φ′ with S ′ by comparing first Ψ′ with S ′. Since Ψ is closed in S , we may identify Ψ′

with the quotient space of the Schwartzian space S ′ modulo the subspace Ψ′
0 of functionals in S ′

having Ψ as a null space, i.e.
Ψ

′ = S ′/Ψ
′
0,

where Ψ′
0 = { f ∈ S ′ |( f ,ψ) = 0,ψ ∈ Ψ}.

This is a particular case of the following more general result: if M is a closed subspace in a linear
topological space E, then M′ = E ′/M⊥, where M⊥ is the space of all functionals in E ′, which are
orthogonal to M.

In our case, the space Ψ consists of functions that vanish at zero together with all their derivatives,
so that Ψ′

0 consist of functions that are concentrated at the point x = 0, and these are the linear
combinations of delta distributions and their derivatives. Moreover, it is known that δ (k)(u) is the
Fourier transform of the power function, that is

F [(−ix)k](u) = 2πδ
(k)(u),

the Fourier transform is understood in the sense of generalized functions as:

(F [ f ],φ) = ( f ,F [φ ]),

2See Appendix B for an elementary compilation of results on distribution theory.
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where φ ∈ S or φ ∈ Φ. Consequently, we have the representation

Φ
′ = S ′/Φ

′
0,

where Φ′
0 = { f ∈ S ′ |( f ,φ) = 0,φ ∈ Φ}, consisting of polynomials.

In other words, Φ′ can be obtained from S ′ in a way such that whenever an element is of the
form f +P ∈ S ′ with P a polynomial, we eliminate the P part, i.e., two functionals in S ′ differing
by a polynomial are indistinguishable as elements of Φ′.

If we consider two locally integrable functions f and g which coincide in the Φ′ sense, i.e.
( f ,ϕ) = (g,ϕ) for all ϕ ∈ Φ. Then, we could ask ourselves, when does f (x) = g(x) pointwise for
almost all x ∈ R. The following results are sufficient conditions to achieve the latter.

Consider the following function, which characterizes the “size” of | f (x)|:

λ f (γ) = Leb({x ∈ R : | f (x)|> γ}) , γ > 0.

Note that λ f (γ) is a non-increasing function.

Lemma 3.3.1. Let f ,g ∈ L1
loc ∩S ′ which coincide in the Φ′ sense. If the corresponding λ f (γ) and

λg(γ) are finite for all γ > 0, then f (x) = g(x) a.e. in R.

Proof. Since f ,g ∈ S ′ and f = g in Φ′ sense, then f (x) = g(x)+P(x), where P(x) is a polynomial.
Then, we have λP(2γ)≤ λ f (γ)+λg(γ)< ∞ for all γ > 0, but this is possible only if P(x) = 0.

The fact that λ f (γ) < ∞ means that the function f is bounded, but most examples of distribu-
tions in Φ′ are (slowly) increasing. In order to conclude the a.e. equality of functions with these
characteristics, we have the following corollary.

Corollary 3.3.1. Let f ∈ Lr, 1 ≤ r < ∞, and f ∈ Lp, 1 ≤ p < ∞. If f = g in Φ′ sense, then f = g a.e.
in R.

Proof. For all γ > 0 we have that

∥ f∥r
r ≥

∫
| f (x)|≥γ

| f (x)|rdx ≥ γ
r
λ f (γ),

so that λ f (γ)≤ ∥ f∥r
r /γr < ∞. Similarly for g, we have that λg(γ)≤ ∥g∥p

p /γ p < ∞. Then by lemma
3.3.1, f = g a.e. in R.

It will be useful to define the fractional operators for distributions in Φ′. One way to do this is
by duality in Φ. Let α ∈ R, then (

W α
± f ,φ

)
=
(

f ,W α
∓ φ

)
, φ ∈ Φ. (3.1)

Moreover, if we consider the following identity(
f ,W α

∓ φ
)
=
(
F [ f ] ,F

[
W α

∓ φ
])

=
(
F [ f ] ,(∓iu)−αF [φ ] (u)

)
,

and since F [φ ] (u) ∈ Ψ and multiplication by (∓iu)−α is a continuous operation in Ψ, we have that(
f ,W α

∓ φ
)

is a continuous functional on Φ.
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Remark 3.3.2. Equation 3.1 may serve as a definition of the fractional integral for a function f (x)∈
Lp(R) with p ≥ 1/α when integrals W α

± f do not exist in the usual sense, being divergent at infinity.
In this case W α

± f is a generalized function.

The same results can be obtained if we define fractional integrals and derivatives of distributions
f ∈ Φ′ not by duality, but by using the notion of convolution. The latter approach coincides with the
former, but on many occasions it is preferable.

Let α > 0, consider

hα
± =

xα−1
±

Γ(α)
, xα−1

± =

{
|x|α−1 if ± x > 0,
0 if ± x < 0

.

The functions hα
± can be regarded as Φ′ distributions and if we take ϕ ∈ Φ, their convolution

coincides with the corresponding fractional integrals, that is(
hα
± ∗ϕ

)
(x) = Iα

±ϕ(x).

In a similar way, fractional derivatives are defined for α < 0 by(
hα
± ∗ϕ

)
(x) = D−α

± ϕ(x).

In the Lizorkin space, compositions of fractional operators are well-defined. In fact, we will
recall in the following section that in this space left (right) fractional derivative and left (right) frac-
tional integral are inverses of each other. But, there is one more issue, the case of a crossed compo-
sition is not immediate, in fact, it is not even mentioned in the literature. We defer this discussion to
the next chapter.



Chapter 4

Stable processes via fractional calculus

4.1 Introduction
The connection between fractional calculus and stable processes has not been completely developed,
even though it is common knowledge that fractional Laplacians are related to the infinitesimal gener-
ator of symmetric stable processes (cf. [MS12, LPGea20] with Remark 4.2.1). The oldest references
that relate fractional calculus and stable random variables, are the seminal work of Feller [Fel52],
which uses fractional calculus to compute a series for stable densities, and the articles of Gorenflo
and Mainardi (cf. [GM98, MPG07]), which identify a correspondence between stable characteristic
function and the Fourier transform of fractional derivatives. More recent references are the book of
Meerschaert and Sikorskii [MS12] and the article of Kolokoltsov [Kol15], where they identify the
infinitesimal generator of a stable process with fractional derivatives.

This chapter contains new results concerning both fractional calculus and stable processes. The
main goal is to unveil new connections between both areas and to prove interesting results for the
less studied case of asymmetric stable processes.

Considering a space of functions that remains invariant under fractional operators’ action, we
identify fractional integrals as inverses of fractional derivatives. Nevertheless, for a general one-
dimensional strictly stable process, the generator corresponds to a linear combination of left and
right fractional derivatives, which requires a consideration of crossed compositions of left and right
fractional derivatives and integrals.

4.2 Infinitesimal generator of stable processes
After some algebraic manipulations, the infinitesimal generator of a strictly stable process can be
written in terms of the Riemann-Liouville fractional derivatives of order α . For a detailed proof see
for example the article of Kolokoltsov [Kol15] or the book of Meerschaert and Sikorskii [MS12].

Proposition 4.2.1 (Infinitesimal generator). Let α ∈ (0,2) \ {1}, c−,c+ ≥ 0, not both zero. If X ∼
Sα (c−,c+) and ϕ ∈ S (R), then, its infinitesimal generator L takes the following form

L ϕ (x) = c−Γ(−α)Dα
−ϕ (x)+ c+Γ(−α)Dα

+ϕ (x)
= M−Dα

−ϕ (x)+M+Dα
+ϕ (x) ,

28
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where M± = c±Γ(−α).

Remark 4.2.1. This representation is consistent in the case α = 2 and c− = c+, which corresponds
to the Brownian motion, and its infinitesimal generator is the Laplacian ∆. In the case α ∈ (0,2)\
{1} and c− = c+, corresponding to a symmetric strictly α-stable process, the infinitesimal generator
is given by the fractional Laplacian −(−∆)α/2.

In the Lizorkin space, left (right) fractional derivative and left (right) fractional integral are in-
verses of each other. However, the crossed compositions are not immediate.

Our first result concerns a characterization of crossed compositions as a linear combination of
right and left fractional operators. The result is stated without proof for fractional integrals in the
article of Feller [Fel52].

Proposition 4.2.2. Let λ ,µ ∈ R with λ + µ /∈ Z and φ ∈ Φ, then the crossed composition of
Riemann-Liouville operators satisfy:

W λ
+W µ

−φ (x) =
sin(µπ)

sin((λ +µ)π)
W λ+µ

− φ (x)+
sin(λπ)

sin((λ +µ)π)
W λ+µ

+ φ (x) . (4.1)

Proof. Since the Fourier transform characterizes a function φ ∈ Φ, we will prove that the Fourier
transforms of both sides of the statement are the same. First, using the Fourier transform of fractional
operators with polar representation of the multipliers we have for the LHS:

F
[
W λ

+W µ

−φ

]
(u) = |u|λ ei π

2 sgn(u)λ |u|µe−i π

2 sgn(u)µF [φ ] (u)

= |u|λ+µei π

2 sgn(u)(λ−µ)F [φ ] (u) .

For the RHS we have

sin(µπ)

sin((λ +µ)π)
F

[
W λ+µ

− φ

]
(u)+

sin(λπ)

sin((λ +µ)π)
F

[
W λ+µ

+ φ

]
(u)

=
sin(µπ)

sin((λ +µ)π)
|u|λ+µe−i π

2 sgn(u)(λ+µ)F [φ ] (u)

+
sin(λπ)

sin((λ +µ)π)
|u|λ+µei π

2 sgn(u)(λ+µ)F [φ ] (u) .

After canceling out the common factors, it suffices to prove that:

ei π

2 sgn(u)(λ−µ) =
sin(µπ)

sin((λ +µ)π)
e−i π

2 sgn(u)(λ+µ)+
sin(λπ)

sin((λ +µ)π)
ei π

2 sgn(u)(λ+µ).

This is equivalent to the real and imaginary parts agreeing. We refer to the lemma A.0.1 in
Appendix A, which gives us:

cos
(
(λ −µ)

π

2

)
=

cos
(
(λ +µ)π

2

)
[sin(µπ)+ sin(λπ)]

cos((λ +µ)π)
,

sin
(
(λ −µ)sgn(u)

π

2

)
=

sin
(
(λ +µ)sgn(u)π

2

)
[sin(λπ)− sin(µπ)]

sin((λ +µ)π)
,

finishing the proof.
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Iα
−ϕ (x) Iα

+ϕ (x)

Dα
−ϕ (x) Dα

+ϕ (x)

inverse

dual

inverse?

dual

Figure 4.1: Relationships between Riemann-Liouville fractional operators.

Before the proof of the Inversion Theorem 4.2.1, we will prove one more lemma regarding the
composition of fractional derivatives and integrals. Since we are taking functions in the Lizorkin
space, these compositions are well-defined.

In figure 4.1 we show how the Riemann-Liouville integrals and derivatives relate to each other.
For any φ1,φ2 ∈ Φ the right/left and left/right integrals satisfy:∫

∞

−∞

Iα
± (φ1(x))φ2(x)dx =

∫
∞

−∞

φ1(x)Iα
∓ (φ2(x))dx,

that is, they are dual operators acting on Φ, seen as a Hilbert space with inner product given by
(φ1,φ2) =

∫
φ1(x)φ2(x)dx for any φ1,φ2 ∈ Φ.

On the other hand, if we consider the right/left operators, we have that for any φ ∈ Φ:

Iα
±Dα

± (φ(x)) = φ(x),

that is, they are inverse operators.

Finally, it remains to see how the crossed compositions are defined. Note that we can’t just evalu-
ate λ =−α and µ =α in equation (4.1) since in that case λ +µ = 0∈Z and the crossed composition
becomes indeterminate. The next result gives us a way to understand the crossed compositions in a
useful manner.

Lemma 4.2.1 (Fractional compositions). Let φ ∈ Φ and α > 0 with α /∈ N, then the compositions
of fractional derivatives and integrals of order α satisfy:

Dα
−Iα

−φ (x) = φ (x) ,
Dα
+Iα

+φ (x) = φ (x) ,
Dα
−Iα

+φ (x)+Dα
+Iα

−φ (x) = 2cos(απ)φ(x).
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Proof. The first two equations as well as the fact that all the compositions of fractional operators
commute follow from Proposition 3.3.1. For the last equation, we use Proposition 4.2.2 with λ = α

and µ →−α , to get the result. This last limit can be taken since the semigroup associated is strongly
continuous in the parameter µ ([SKM93] Section 2.7).

Using equation (4.1) twice1 to obtain both crosses we have:

W λ
−W µ

+φ (x) + W λ
+W µ

−φ (x)

=
sin(λπ)

sin((λ +µ)π)
W λ+µ

− φ (x)+
sin(µπ)

sin((λ +µ)π)
W λ+µ

+ φ (x)

+
sin(µπ)

sin((λ +µ)π)
W λ+µ

− φ (x)+
sin(λπ)

sin((λ +µ)π)
W λ+µ

+ φ (x)

=

[
sin(λπ)

sin((λ +µ)π)
+

sin(µπ)

sin((λ +µ)π)

]
W λ+µ

− φ (x)

+

[
sin(µπ)

sin((λ +µ)π)
+

sin(λπ)

sin((λ +µ)π)

]
W λ+µ

+ φ (x) . (4.2)

Moreover, we have that the following limit is indeterminate, so using L’Hôspital’s rule we have:

lim
µ→−α

(
sin(µπ)+ sin(απ)

sin((α +µ)π)

)
= lim

µ→−α

(
π cos(µπ)

π cos((α +µ)π)

)
= cos(απ).

Finally, with λ = α and taking the limit µ →−α in equation (4.2) we have:

Dα
−Iα

+φ (x) + Dα
+Iα

−φ (x)
= lim

µ→−α
W α

−W µ

+φ (x)+W α
+W µ

−φ (x)

= lim
µ→−α

[
sin(απ)

sin((α +µ)π)
+

sin(µπ)

sin((α +µ)π)

]
W α+µ

− φ (x)

+ lim
µ→−α

[
sin(µπ)

sin((α +µ)π)
+

sin(απ)

sin((α +µ)π)

]
W α+µ

+ φ (x)

= 2cos(απ)φ (x) .

Where we used that W 0 is the identity operator as in Definition 3.2.1.

Working in the Lizorkin space and using the last result we can compute the inverse of the in-
finitesimal generator and prove our main theorem.

Theorem 4.2.1 (Inverse of the Infinitesimal Generator). Let α ∈ (0,2) \ {1}, c−,c+ ≥ 0, not both
zero. Consider X ∼ Sα (c−,c+) with infinitesimal generator L . Then, L is invertible in Φ and for
every φ ∈ Φ

L −1
φ (x) = K−Iα

−φ (x)+K+Iα
+φ (x) ,

where
K± =

M±
M2

−+M2
++2M−M+ cos(πα)

,

and the constants M± as defined in Proposition 4.2.1.
1Note that W λ

−W µ

+ =W µ

+W λ
− since W± commute for functions in Lizorkin space.
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Proof. Define the operator G as

G φ (x) = K−Iα
−φ (x)+K+Iα

+φ (x) ,

we will prove that G (L φ) = L (G φ) = φ , so that L is invertible and L −1 = G . By our definition
of G , we have:

G (L φ (x)) = G
(
M−Dα

−φ (x)+M+Dα
+φ (x)

)
= K−M−Iα

−
(
Dα
−φ (x)

)
+K−M+Iα

−
(
Dα
+φ (x)

)
+ K+M−Iα

+

(
Dα
−φ (x)

)
+K+M+Iα

+

(
Dα
+φ (x)

)
Substituting the values of K− and K+, and defining M =M2

−+M2
++2M−M+ cos(απ) to temporarily

ease notation, and using Lemma 4.2.1, we get

G (L φ (x)) =
M2

−
M

φ (x)+
M2

+

M
φ (x)+

M−M+

M
Iα
−Dα

+φ (x)+
M+M−

M
Iα
+Dα

−φ (x)

=
M2

−+M2
++2M−M+ cos(απ)

M
φ (x)

= φ (x) .

We conclude that (G ◦L )φ = φ and analogous computations prove that (L ◦G )φ = φ .

We will be interested in the distributions that are generated by the space of Lizorkin test func-
tions. For the definition of the action of Riemann-Liouville operators on distributions we refer to
[SKM93](Section 8.1).

Remark 4.2.2. We are going to define the fractional operators for distributions taken in the Li-
zorkin’s dual space Φ′ by duality, in the same way the Fourier transform are defined for distributions
using test functions in the Schwartz space.

For instance, let f ∈ Φ′ and consider the Riemann-Liouville operators W α
− and W α

+ , then for any
φ ∈ Φ we define the distributions W α

− f and W α
+ f by means of:(

W α
− f ,φ

)
=

(
f ,W α

+ φ
)
,(

W α
+ f ,φ

)
=

(
f ,W α

− φ
)
,

where the (·, ·) is the inner product with Lebesgue measure.
Note that, if we consider the infinitesimal generator L of X ∼ Sα (c−,c+), then its dual L̃ is

the infinitesimal generator of X̃ ∼ Sα(c+,c−), the dual process of X. This corresponds to the notion
that the left Riemann-Liouville operator is dual to the right one.

The main theorem 4.2.1 provides a stronger link between fractional calculus, stable processes and
potential theory. The following known results can be recovered as an application of this theorem:

1. For the case α ∈ (0,1), the Lévy process X is transient. Therefore, its potential corresponds
to the inverse of the negative of the infinitesimal generator, (−L )−1. The above theorem can
recover the expression given by Sato [Sat72].
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2. For the case α ∈ (1,2), the Lévy process X is recurrent and its classical potential is infinite.
Nevertheless, Port [Por67] defined the recurrent potential for stable processes (by an appro-
priate compensated kernel) and computed it explicitly. As Sato [Sat72] notes, for a wide class
of Lévy processes, including the stable processes, (−L )−1 corresponds to a potential and
coincides with that defined by Port. Since we have explicitly this inverse, Port’s computation
can be recovered with the aid of the above theorem.

3. It provides an heuristic explanation of the function involved in the Tanaka formula for strictly
stable processes given by Tsukada in [Tsu19]: it corresponds to applying the inverse of the
infinitesimal generator to the Dirac δ distribution. Note that the Itô formula for Lévy processes
tells us that for any Schwartz function f , writing g = L f , we have

f (x+Xt) = f (x)+M f
t +

∫ t

0
g(x+Xs)ds,

where M f is a martingale whose explicit expression is only needed later. Formally, if g equals
the Dirac δ distribution, the last term equals the time that X spends at x on [0, t], which is
one guiding principle behind the construction of the local time of X at x. Hence, if L F = δ

then the local time should equal F(x+X)−MF . Our formula for L −1 allows us to guess the
solution to L F = δ in terms of K∓xα−1

± , which can be combined to obtain Tsukada’s formula.
That K− ̸= K+ in general is a manifestation of the asymmetry in the jumps of X .

4.3 Class C α,c−,c+ and the Meyer-Itô formula for stable processes
The objective of this section is to prove the occupational Meyer-Itô theorem, with a non-zero local
time component, for stable processes. The special class of functions which satisfy this theorem will
be defined through the inverse of the infinitesimal generator. The preliminary results we will prove
before, mainly concern how to pass from Lizorkin space to a more general space which allows us to
generalize the Tanaka formula given by Tsukada [Tsu19].

Recalling Definition 2.3.3, the function that appears in the Tanaka formula for a stable process
X ∼ Sα (c−,c+), with α ∈ (1,2), c−,c+ ≥ 0, not both zero, given by Tsukada in [Tsu19] is:

Fα,c−,c+ (x) := K (α,c−,c+)
(

1−
(

c+− c−
c++ c−

)
sgn(x)

)
|x|α−1, (4.3)

where
K (α,c−,c+) =

c−+ c+
2Γ(−α)Γ(α)

(
c2
−+ c2

++2c−c+ cos(πα)
)

As we have remarked and will prove in Lemma 4.3.1, Fα,c+,c− = L −1δ in the sense of distribu-
tions. This is useful to define a class of functions f such that L −1 f coincides with a Radon measure
(in the sense of distributions).

Definition 4.3.1. For every fixed α ∈ (1,2), c−,c+ ≥ 0, not both zero, we define the class of real
functions

C α,c−,c+ =

{
f = Fα,c−,c+ ∗µ

∣∣∣∣µ is a signed Radon measure such that
∫

|x|α−1
µ(dx)< ∞

}
.
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The condition on the (α − 1)-moment is to ensure the convolution is well defined. In the sym-
metric case with α = 2 (i.e. Brownian motion), such class corresponds to the difference of convex
functions (cf. [RY13] discussion before Theorem VI.1.5).

Considering the following generalized functions in the dual space Φ′, we will prove an important
relationship between the Dirac delta distribution and the power functions, which are strongly related
to the strictly stable processes. Moreover, the following lemma could be regarded as the key result
to obtain Tanaka formula.

Lemma 4.3.1. If λ > 0, then, the (generalized) functions f λ
+(x) := xλ 1l{x>0} and f λ

−(x) := |x|λ 1l{x<0}
belong to Φ′ and

f λ
+(x) = Γ(λ +1)Iλ+1

− δ (x) ,

f λ
−(x) = Γ(λ +1)Iλ+1

+ δ (x) .

Therefore,

L −1(δ ) = Fα,c−,c+.

Proof. Since the Dirac delta distribution is a linear functional contained in Φ′, and using the duality
that was pointed out in equation 3.1, we have:(

Iλ+1
− δ ,φ

)
=

(
δ , Iλ+1

+ φ

)
=

(
Iλ+1
+ φ

)∣∣∣
x=0

=
1

Γ(λ +1)

∫
∞

0
tλ

φ (t)dt

=

(
1

Γ(λ +1)
tλ 1l{t≥0},φ

)
=

(
1

Γ(λ +1)
f λ
+,φ

)
.

We can proceed similarly to prove the second identity in the lemma.

Finally, it follows from equation (3.1), the Inversion Theorem 4.2.1 that:

L −1(δ ) = K−Iα
−δ (x)+K+Iα

+δ (x)

=
K−

Γ(α)
f α−1
+ (x)+

K+

Γ(α)
f α−1
− (x).

If we substitute the values of K− and K+ in terms of α,c− and c+ we will get that L −1(δ )=Fα,c−,c+

in the sense of Φ′ distributions.

Thus, the Inverse Theorem 4.2.1 provides an insight to the function that satisfies the Tanaka for-
mula.

The class of convolutions f = Fα,c−,c+ ∗ µ in Definition 4.3.1, is defined in such a way that the
distribution induced by the measure µ coincides with L f , in the sense of Φ′ distributions. As a
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consequence, µ can be considered as the extension of L f from the Lizorkin space to the class Cc of
continuous functions with compact support. A precise version of this is contained in the following
lemma. It is here that the completely balanced averages of Lizorkin play a fundamental rôle: they
constitute a way to approximate δ and other distributions from within Lizorkin space.

Lemma 4.3.2. Let f ∈ C α,c−,c+ be given by f = Fα,c−,c+ ∗µ . Then, L f = µ in the Φ′ sense; that
is, for every φ ∈ Φ:

(L f ,φ) = (µ,φ) .

Finally, if µ is a finite measure with compact support, then φ 7→ (L f ,φ) extends by continuity to
φ 7→ (µ,φ) from Φ to Cc with the topology of uniform convergence.

Proof. Let φ ∈ Φ. Since α −1 ∈ (0,1), then x 7→ xα−1 is subadditive on [0,∞). Hence,∫
| f (x)φ(x)|dx ≤

∫ ∫
[|x|α−1 + |a|α−1]|φ(x)| |µ|(da)dx

≤ |µ|(R)
∫

|x|α−1|φ(x)|dx+∥φ∥1

∫
|a|α−1|µ|(da)< ∞.

From equation (3.1) and Fubini’s theorem:

(L f ,φ) =
∫

∞

−∞

f (x)L̃ φ(x)dx =
∫

∞

−∞

∫
∞

−∞

Fα,c−,c+(x−a)µ(da)L̃ φ(x)dx

=
∫

∞

−∞

∫
∞

−∞

Fα,c−,c+(x−a)L̃ φ(x)dxµ(da) =
∫

∞

−∞

(
L −1

δa,L̃ φ
)

µ(da)

=
∫

∞

−∞

(
δa, ˜L −1L̃ φ

)
µ(da) =

∫
∞

−∞

(δa,φ)µ(da) =
∫

∞

−∞

φ(a)µ(da),

where the operator L̃ φ is the dual operator of L (cf. Remark 4.2.2); yielding that L f = µ on Φ′.

Lizorkin, in [Liz71] (cf. after Definition 3.3.1), gives an approximation of δ in Φ′ by means
of a collection of functions κβ ∈ Φ with the following property. If φ ∈ Cc, then φβ := κβ ∗φ → φ

uniformly on compact sets; note that φβ ∈ Φ. Indeed, Lizorkin writes κβ = κ1
β
−κ2

β
where κ1

β
is a

centered Gaussian density of variance 2β 2. Hence κ1
β
∗ φ → φ uniformly if φ ∈ Cc. On the other

hand, the proof of Theorem 1 [Liz71, Ch. II§4] tells us that κ2
β
∗φ → 0 uniformly on compact sets

since φ is integrable. Hence, Φ is dense in Cc. If µ is finite and of compact support then it also has a
finite moment of order α −1 and so, by the previous paragraph, L (F ∗µ) = µ in Φ′. The bounded
linear functional φ 7→ (µ,φ) on Cc coincides with φ 7→ (L f ,φ) on L , so that, by denseness, the
latter extends uniquely by continuity to Cc.

An important example of the result in Lemma 4.3.2, is the Brownian motion case, where L f (x)=
1
2∆ f (x), so that µ is the second derivative of f in the sense of distributions and in fact, the class C 2,c,c

corresponds to the class of difference of convex functions.

Recall that the Meyer-Itô theorem for semimartingales, for example from [Pro04](Theorem 70),
gives a semimartingale decomposition for |X | which contains a semimartingale local time term.
However, the latter is zero for a strictly stable process. For functions in the class C α,c−,c+ we prove
the following occupational Meyer-Itô theorem, with a non-zero local time term.
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Theorem 4.3.1 (Occupational Meyer-Itô formula). Let α ∈ (1,2), c−,c+ ≥ 0, not both zero, and
consider a strictly stable process X ∼ Sα (c−,c+). Let f = F ∗µ ∈C α,c−,c+ and furthermore assume
that µ is finite and compactly supported. Then,

f (Xt) = f (X0)+Mt +
∫

∞

−∞

La
t (X)µ (da) , (4.4)

where
Mt =

∫ t

0

∫
R0

[ f (Xs−+h)− f (Xs−)] Ñ (ds,dh) ,

is a martingale and La
t (X) is the occupational local time at a up to time t of X.

Remark 4.3.1.

• In the limit case α = 2, we can recover F(x) = 1
2 |x| and the corresponding class C can be

identified with the convex functions as in Revuz-Yor [RY13].

• For recurrent symmetric stable process, that is α ∈ (1,2) and c− = c+ = c > 0, we have
Fα,c,c(x) = Kα,c|x|α−1 for some constant Kα,c. This particular case was obtained by Salminen
and Yor in [SY05].

• The Tanaka formula of Tsukada [Tsu19], corresponds to the case µ = δ .

• The compact support hypothesis of µ is sufficient to ensure the integrability of all the terms
in (4.4). Since strictly stable processes have finite κ-moments for κ ∈ (−1,α), we have to be
careful with the growth of f = F ∗µ .

The novel part of this result is the representation of the semimartingale in terms of an occupa-
tional local time. Before we prove this theorem let us state some lemmas which will be useful in the
proof.

The following results are inspired by the work of Tsukada [Tsu19], which we will generalize
relying on a well-known procedure to construct approximations of a function, smoothing it with
mollifiers (cf. [KS91], Theorem 6.22), allowing us to use Itô formula (2.3.1).

A positive real function ρ ∈C∞
c , with support in [−1,1] and integral equal to one, is said to be a

mollifier. Then, if we consider a sequence of functions given by ρn(x) = nρ(nx) for all n ∈ N, this
sequence converges weakly to the Dirac delta distribution in the sense of Schwartz distributions, that
is ∣∣∣∣∫ ∞

−∞

ρn(x)φ(x)dx−φ(0)
∣∣∣∣−→ 0, as n → ∞,

for all φ ∈ S .

Let C∞
1+,b be the family of infinitely differentiable continuous functions with bounded derivatives

of any order greater than or equal to one. We are going to use some bounds for the function Fα,c−,c+

as well as of its increments, for a proof of the following results we refer to [Tsu19](Theorem 3.1
and Lemma 3.1). For fixed α,c− and c+, to ease the notation, we are going to write F instead of
Fα,c−,c+ when there is no confusion with the parameters.
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Lemma 4.3.3. Let α ∈ (1,2), c−,c+ ≥ 0, not both zero, and consider a strictly stable process
X ∼ Sα (c−,c+). Consider the function F = Fα,c−,c+ in equation (2.3), then the following results are
satisfied:
1. Let (ρn)n≥1 as above, then Fn := Fα,c−,c+ ∗ρn ∈ C∞

1+,b for all n ∈ N and Fn → F, uniformly in
compact sets as n → ∞.
2. Let |h| ≤ 1, a ∈ R, s > 0 and ε0 ≤ (α −1)∧ (2−α), then we have:

E
[∣∣F(Xs− −a+h)−F(Xs− −a)

∣∣2] ≤ c1S(α,2+ ε0 −α)s(α−2−ε0)/α |h|α+ε0,

where c1 = 20K(α,c−,c+)2 and the constant S(·, ·) as in Proposition 2.2.1, and the same bound
holds if we replace F by Fn.
Moreover, this bound satisfies:∫ t

0

∫
|h|≤1

s(α−2−ε0)/α |h|α+ε0ν(dh)ds =

(
c++ c−

ε0

)(
α

2α − ε0 −2

)
t(2α−ε0−2)/α < ∞.

3. Let |h|> 1, a ∈ R and s > 0, then we have:

E [|F(Xs −a+h)−F(Xs −a)|] ≤ c2|h|α−1,

where c2 = 4K(α,c−,c+) and the same bound holds if we replace F by Fn.
Moreover, this bound satisfies:∫ t

0

∫
|h|>1

|h|α−1
ν(dh)ds = (c++ c−) t < ∞.

In the proof of Meyer-Itô we will need the same kind of bounds, but for f (x) = (F ∗ µ)(x). In
order to prove these bounds, we will rely on a result similar to Jensen’s inequality. In general finite
measure spaces this inequality does not hold; however, for the special case f (x) = x2, we are able to
get a similar result.

Lemma 4.3.4. Let µ be a compactly supported Radon measure, with support in K and mass µ(K)<
∞, and g : R→ R. Then, the following inequality holds:(∫

K
g(x)µ(dx)

)2

≤ µ(K)
∫

K
g2(x)µ(dx).

Proof. Define µp(dx) = µ(dx)/µ(K), so that µp is a probability measure, then by using Jensen
inequality we have: (∫

K
g(x)µ(dx)

)2

=

(∫
K

g(x)µ(K)
µ(dx)
µ(K)

)2

= (µ(K))2
(∫

K
g(x)µp(dx)

)2

≤ (µ(K))2
∫

K
g2(x)µp(dx)

= µ(K)
∫

K
g2(x)µ(dx).
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The following result is a corollary of Lemma 4.3.3 and it will be useful in several steps of the
Meyer-Itô theorem’s proof.

Corollary 4.3.1. Under the assumptions of Lemma 4.3.3, let f ∈ C α,c−,c+ , such that f = F ∗µ with
µ a finite Radon measure and consider fn = f ∗ρn for n ∈ N. Then we have:

E
[∣∣ f (Xs− +h)− f (Xs−)

∣∣2]≤ (µ(R))2c1S(α,2+ ε0 −α)s(α−2−ε0)/α |h|α+ε0, |h| ≤ 1,

E
[∣∣ f (Xs− +h)− f (Xs−)

∣∣]≤ µ(R)c2|h|α−1, |h|> 1,

and the same bounds are satisfied if we replace f with fn.
These bounds are elements of L1 ((0, t)×A,B((0, t)×A),λ ⊗ν)), with A = [−1,1] \ {0} and A =
[−1,1]c respectively.

These results follow from the Lemma 4.3.3 and Lemma 4.3.4.

The proof of the Occupational Meyer-Itô theorem essentially consists in smoothing the function
f using mollifiers, enabling the use of Itô’s formula. Then, provided that all its terms are well defined
as elements of L1(P) we have to prove that they converge to the desired result.

Proof. (Occupational Meyer-Itô 4.3.1)
Without loss of generality, we assume that µ is actually a positive measure, which was assumed to
be finite with compact support and, therefore, with moments of order α and 2(α − 1). Then, we
have the representation:

f (x) =
∫

∞

−∞

F (x−a)µ (da) .

Consider the sequences Fn = F ∗ρn and fn = f ∗ρn = F ∗ρn ∗ µ as the infinitely differentiable
approximations of F and f by the sequence {ρn}n≥0, with n ∈N, and we have that fn → f uniformly
on compact sets ([EG15] Theorem 4.1: Properties of mollifiers).

Since fn ∈C∞
1+,b ⊂C2, using Itô’s formula (Proposition 2.3.1) we have:

fn(Xt) = fn(X0)+Mn
t +V n

t , (4.5)

where the last two terms are

Mn
t =

∫ t

0

∫
R0

[ fn (Xs−+h)− fn (Xs−)] Ñ(ds,dh),

V n
t =

∫ t

0
L fn(Xs)ds.

Moreover, since the behavior of Mn
t is different depending on the size of the jumps, we will consider

Mn
t = M1,n

t +M2,n
t , where

M1,n
t =

∫ t

0

∫
h≤1

[ fn (Xs−+h)− fn (Xs−)] Ñ(ds,dh),

M2,n
t =

∫ t

0

∫
h>1

[ fn (Xs−+h)− fn (Xs−)] Ñ(ds,dh).

In a similar fashion, we define Mt = M1
t +M2

t , by replacing fn with f .

The proof consists in establishing the following steps:
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Step 1 f (Xt) and fn(Xt) are in L1(P) and fn(Xt)→ f (Xt) in L1.

Step 2 M1 and M1,n are square integrable martingales and M1,n
t → M1

t in L2.

Step 3 M2 and M2,n are integrable martingales and M2,n
t → M2

t in L1.

Step 4 V n
t →

∫
La

t µ(da) in L1.

Let us begin with Step 1. First, we provide a bound for f (x) and fn(x) in terms of x and which
does not depend on n. Using that α −1 ∈ (0,1), we have that x 7→ xα−1 is subadditive on [0,∞), so
that

0 ≤ fn(x) =
∫

∞

−∞

f (x− y)ρn(y)dy

=
∫

∞

−∞

∫
∞

−∞

F(x−a− y)ρn(y)dy µ(da)

≤
∫

∞

−∞

∫ 1/n

−1/n
2K(|x|α−1 + |a|α−1 + |y|α−1)ρn(y)dy µ(da)

≤ 2K
∫

∞

−∞

(|x|α−1 + |a|α−1 +1)µ(da),

which is finite for any x ∈ R by the assumptions on µ and does not depend on n.

By similar arguments, we have that

0 ≤ f (x)≤ 2K
∫

∞

−∞

(|x|α−1 + |a|α−1)µ(da). (4.6)

For the squared difference, using a Jensen-like inequality for finite measures, we have,

| fn(x)− f (x)|2 ≤ 2| fn(x)|2 +2| f (x)|2

≤ 16K2
(∫

∞

−∞

(|x|α−1 + |a|α−1 +1)µ(da)
)2

≤ 16K2
µ(R)

∫
∞

−∞

(
(|x|α−1 + |a|α−1 +1)

)2
µ(da)

≤ 48K2
µ(R)

∫
∞

−∞

(|x|2α−2 + |a|2α−2 +1)µ(da) (4.7)

Then, similar arguments give

| fn(Xt)|2 ≤ 12K2
µ(R)

∫
∞

−∞

(|Xt |2α−2 + |a|2α−2 +1)µ(da) and

| f (Xt)|2 ≤ 8K2
µ(R)

∫
∞

−∞

(|Xt |2α−2 + |a|2α−2)µ(da),

and these bounds are independent of n and belong to L1(P) since 0 < 2α − 2 < α and µ is a finite
measure with a moment of order 2α − 2. We can conclude that fn(Xt) and f (Xt) are elements of
L2(P). Moreover, by dominated convergence, we get

lim
n→∞

E
[
| fn(Xt)− f (Xt)|2

]
= E

[
lim
n→∞

| fn(Xt)− f (Xt)|2
]
= 0, (4.8)
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so that fn(Xt)→ f (Xt) in L2(P), which implies Step 1’s assertions.

Let us move to Step 2. In this case, we are considering the jumps smaller than one, i.e. h ≤ 1. To
prove that M1,n is a square integrable martingale, according to Ikeda and Watanabe ([IW89] section
II.3), we need to show that:

m1,n
t := E

[∫ t

0

∫
|h|≤1

| fn (Xs−+h)− fn (Xs−)|2 ν(dh)ds
]
< ∞.

Since the integrand is positive and (X ,B(X ))-measurable with X = (Ω× [−1,1] \ {0}×
[0, t]), by the Fubini theorem (cf. [Kal02] Theorem 1.27), it suffices to prove the finiteness in any
order of integration. Then, using the bound in Corollary 4.3.1 for |h| ≤ 1 and Lemma 4.3.3, we have:

m1,n
t =

∫ t

0

∫
|h|≤1

E
[
| fn (Xs−+h)− fn (Xs−)|2

]
ν(dh)ds

≤
∫ t

0

∫
|h|≤1

(µ(R))2c1S(α,2+ ε0 −α)s(α−2−ε0)/α |h|α+ε0ν(dh)ds

≤ (µ(R))2c1S(α,2+ ε0 −α)
∫ t

0

∫
|h|≤1

s(α−2−ε0)/α |h|α+ε0ν(dh)ds

< ∞.

The result for m1
t follows from Corollary 4.3.1 in a similar fashion. Hence, M1 is also a square

integrable martingale.

In order to prove the convergence of M1,n
t → M1

t in L2(P), first note that according to Corollary
4.3.1 we have

M 1
n := E

[
| fn (Xs−+h)− fn (Xs−)− ( f (Xs−+h)+ f (Xs−))|2

]
≤ 2E

[
| fn (Xs−+h)− fn (Xs−)|2

]
+2E

[
| f (Xs−+h)− f (Xs−)|2

]
≤ 4(µ(R))2c1S(α,2+ ε0 −α)s(α−2−ε0)/α |h|α+ε0,

Thus, (M 1
n )n≥1 is dominated in L1 ((0, t)× [−1,1]\{0},B((0, t)× [−1,1]\{0}),Leb⊗ν)).

We know that (M1,n
t −M1

t ) is a square integrable martingale for any n ∈ N, then using Itô’s
isometry ([App09] p. 223) and dominated convergence theorem for the sequence (M 1

n )n≥1 we have:

lim
n→∞

E
[∣∣∣M1,n

t −M1
t

∣∣∣2]
= lim

n→∞

∫ t

0

∫
|h|≤1

E
[
| fn (Xs−+h)− fn (Xs−)− ( f (Xs−+h)− f (Xs−))|2

]
ν(dh)ds

=
∫ t

0

∫
|h|≤1

lim
n→∞

E
[
| fn (Xs−+h)− fn (Xs−)− ( f (Xs−+h)− f (Xs−))|2

]
ν(dh)ds

= 0.

The convergence to zero of the last equation is a consequence of equation (4.8) in Step 1. So that
M1,n

t → M1
t in L2(P), ending with Step 2.
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For Step 3, we are considering the jumps greater than one, i.e. h > 1. To prove that M2,n
t is a

martingale, following Ikeda and Watanabe ([IW89] section II.3) we must show:

m2,n
t := E

[∫ t

0

∫
|h|>1

| fn (Xs−+h)− fn (Xs−)|ν(dh)ds
]
< ∞.

Since the integrand is positive and (X ,B(X ))-measurable with X = (Ω× [−1,1]c× [0, t]), by the
Fubini theorem it suffices to prove the finiteness in any order of integration. Then, using the bound
in Corollary 4.3.1 for |h|> 1 and Lemma 4.3.3, we have:

m2,n
t =

∫ t

0

∫
|h|>1

E [| fn (Xs−+h)− fn (Xs−)|]ν(dh)ds

≤ µ(R)
∫ t

0

∫
|h|>1

c2|h|α−1
ν(dh)ds

< ∞.

The result for m2
t follows by the same bounds in Corollary 4.3.1, so that M2

t is also a martingale. As
in the previous step, to prove the convergence of M2,n → M2 in L1(P), first note that according to
Corollary 4.3.1 we have

M 2
n := E [| fn (Xs−+h)− fn (Xs−)− ( f (Xs−+h)+ f (Xs−))|]

≤ E [| fn (Xs−+h)− fn (Xs−)|]+E [| f (Xs−+h)− f (Xs−)|]
≤ 2µ(R)c2|h|α−1.

Thus, (M 2
n )n≥1 is dominated in L1 ((0, t)× [−1,1]c,B((0, t)× [−1,1]c),Leb⊗ν)).

We know that (M2,n
t −M2

t ) is a stochastic integral with respect to a Poisson random measure
for any n ∈ N, then using Campbell’s theorem ([Kin93] section 3.2) and dominated convergence
theorem for the sequence (M 2

n )n≥1 we have:

lim
n→∞

E
[∣∣∣M2,n

t −M2
t

∣∣∣]≤∫ t

0

∫
|h|>1

lim
n→∞

E [| fn (Xs−+h)− fn (Xs−)− ( f (Xs−+h)− f (Xs−))|]ν(dh)ds.

= 0.

The convergence to zero of the last equation is a consequence of equation (4.8) in Step 1. So that
M2,n

t → M2
t in L1(P), ending with Step 3.

By Step 2 and Step 3 we conclude that Mn and M in equation (4.5) are martingales and Mn
t → Mt

in L1.

Finally, for Step 4, we have from equation (4.5) that:

V n
t = fn(Xt)− fn(X0)−Mn

t
L1(P)−→ f (Xt)− f (X0)−Mt ,

as n → ∞, so that the limit limn→∞V n
t (Xt) ∈ L1(P). We just need to verify that this limit coincides

with the one stated in the theorem.
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We know that fn = F ∗ (ρn ∗µ) ∈C∞
1+,b ∩Cα,c−,c+ is positive and measurable and that ρn ∗µ is a

finite measure with compact support.

Then L fn is well-defined, positive and measurable as well. So, by the occupation formula, we
have:

V n
t =

∫ t

0
L fn(Xs)ds =

∫
∞

−∞

La
t L fn(a)da.

Since La
t (ω) ∈Cc for almost all ω ∈ Ω, Lemma 4.3.2 tells us that

V n
t =

∫
∞

−∞

La
t (µ ∗ρn)(da),

and since ρn → δ weakly as n → ∞, then (µ ∗ρn)→ µ weakly as n → ∞ as well. Hence,∣∣∣∣∫ ∞

−∞

La
t (µ ∗ρn)(da)−

∫
∞

−∞

La
t µ(da)

∣∣∣∣→ 0, as n → ∞.

Steps 1-4 finish the proof of Theorem 4.3.1.

For the first application, we have the Tanaka formula for asymmetric strictly stable processes.

Corollary 4.3.2 (Tanaka formula). Let α ∈ (1,2), c−,c+ ≥ 0, not both zero, and consider a strictly
stable process X ∼ Sα (c−,c+). Then, the Tanaka formula is satisfied:

Fα,c−,c+ (Xt −a) = Fα,c−,c+ (X0 −a)+Ma
t (X)+La

t (X), (4.9)

where La
t (X) is the occupational local time at a up to time t of X and Ma

t (X) is a square integrable
martingale given by

Ma
t (X) =

∫ t

0

∫
R0

[Fα,c−,c+ (Xs−−a+h)−Fα,c−,c+ (Xs−−a)] Ñ(ds,dh).

Proof. Consider the unitary measure concentrated in a, that is δa(E) = 1 if a∈E and zero otherwise,
with f (x)= (Fα,c−,c+ ∗δa)(x)=Fα,c−,c+(x−a), using the occupational Meyer-Itô theorem we have:

Fα,c−,c+(Xt −a) = Fα,c−,c+ (X0 −a)

+
∫ t

0

∫
R0

[Fα,c−,c+ (Xs−−a+h)−Fα,c−,c+ (Xs−−a)] Ñ (ds,dh)

+
∫

∞

−∞

Lx
t (X)δa (dx) ,

= Fα,c−,c+ (X0 −a)+Ma
t +La

t (X) .

Even though the subclass of functions C α,c−,c+ is enough to prove important results such as as the
Meyer-Itô and the Tanaka formula, we are limited to functions with a compactly supported measure
in their decomposition. However, in the next section we are going to combine these techniques
and the fact that we can find explicitly the infinitesimal generator of power functions to give a
decomposition of power functions of the type |Xt − x|γ .
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4.4 Power decomposition of |Xt − x|γ

The objective of this section is to generalize the work of Salminen and Yor [SY05] and of Engelbert
and Kurenok [EK19], regarding the Doob-Meyer decomposition of absolute powers of symmetric
stable processes to the asymmetric case.

Our first step will be to explicitly compute the infinitesimal generator of the power functions in
Lemma 4.3.1. Let α ∈ (1,2), c−,c+ ≥ 0 not both zero and α −1 < γ < α . From Lemma 4.3.1 we
know that f γ

± belong to Φ′ and can be identified with the following fractional integrals:

f γ

+(x) = Γ(γ +1)Iγ+1
− δ (x) ,

f γ

−(x) = Γ(γ +1)Iγ+1
+ δ (x) .

Consider the infinitesimal generator evaluated at f γ

+(x): with the constants M± as defined in Propo-
sition 4.2.1, we have

L f γ

+ (x) = M−Dα
− f γ

+ (x)+M+Dα
+ f γ

+ (x)

= Γ(γ +1)M−Dα
−Iγ+1

− δ (x)+Γ(γ +1)M+Dα
+Iγ+1

− δ (x)

Using the fractional composition formulas in Lemma 4.2.1, we get

L f γ

+ (x) = Γ(γ +1)M−Iγ−α+1
− δ (x)+Γ(γ +1)M+

sin((γ +1)π)
sin((γ −α +1)π)

Iγ−α+1
− δ (x)

+Γ(γ +1)M+
sin(−απ)

sin((γ −α +1)π)
Iγ−α+1
+ δ (x)

=
Γ(γ +1)M−
Γ(γ −α +1)

f γ−α

+ (x)+
Γ(γ +1)M+

Γ(γ −α +1)
sin((γ +1)π)

sin((γ −α +1)π)
f γ−α

+ (x)

+
Γ(γ +1)M+

Γ(γ −α +1)
sin(−απ)

sin((γ −α +1)π)
f γ−α

− (x).

For the function f γ

−(x), we can proceed similarly to get

L f γ

− (x) = Γ(γ +1)M−
sin(−απ)

sin((γ −α +1)π)
Iγ−α+1
− δ (x)

+Γ(γ +1)M−
sin((γ +1)π)

sin((γ −α +1)π)
Iγ−α+1
+ δ (x)+Γ(γ +1)M+Iγ−α+1

+ δ (x)

=
Γ(γ +1)M−
Γ(γ −α +1)

sin(−απ)

sin((γ −α +1)π)
f γ−α

+ (x)

+
Γ(γ +1)M−
Γ(γ −α +1)

sin((γ +1)π)
sin((γ −α +1)π)

f γ−α

− (x)+
Γ(γ +1)M+

Γ(γ −α +1)
f γ−α

− (x).

Before we prove Theorem 4.4.1, we need to understand the constants k± (α,γ,c−,c+) that are used
there. They play an important role in the bounded variation part of the power decomposition (4.10),
because in order to be an increasing process, both need to be positive. The following lemma states
the critical exponent γ from which both k± (α,γ,c−,c+) are positive. Recall the definition of c in
Corollary 4.4.1.
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Lemma 4.4.1. Let α ∈ (1,2), γ ∈ (α −1,α) and k± (α,γ,c−,c+) as in Theorem 4.4.1. Define

β (a,c) :=
1
π

arccos
(

c2(1−a2)− (1+ac)2

c2(1−a2)+(1+ac)2

)
∈ (α −1,1),

where a = cos(απ) and c = min(c−,c+)
max(c−,c+)

. Then, if c− < c+ we have that k− (α,γ,c−,c+) is posi-
tive for all γ ∈ (α −1,α) while k+ (α,γ,c−,c+) is negative if γ ∈ (α −1,β (a,c)) and positive if γ ∈
(β (a,c),1). The same conclusion follows for c+< c− after switching the roles of the k± (α,γ,c−,c+).

Proof. Assume that c− < c+. First, we prove k− (α,γ,c−,c+)> 0 for all γ ∈ (α −1,α). Note that:

k− (α,γ,c−,c+) =
Γ(γ +1)

Γ(γ −α +1)

[
M+

sin(−απ)

sin((γ −α +1)π)
+M−

sin((γ +1)π)
sin((γ −α +1)π)

+M+

]
=

Γ(γ +1)M+

Γ(γ −α +1)sin((γ −α +1)π)
[sin(−απ)+ csin((γ +1)π)+ sin((γ −α +1)π)]

=
Γ(γ +1)c+Γ(−α)

Γ(γ −α +1)sin((γ −α +1)π)
[sin(−απ)− csin(γπ)− sin((γ −α)π)] .

Since we have
Γ(γ +1)c+Γ(−α)

Γ(γ −α +1)sin((γ −α +1)π)
> 0,

for all α ∈ (1,2) and γ ∈ (α −1,α), then k− (α,γ,c−,c+)> 0 is equivalent to:

h−(γ) := sin(−απ)− csin(γπ)− sin((γ −α)π)> 0,

for all γ ∈ (α −1,α). Lemma A.0.2 tells us that h± are 2-periodic. Moreover, we have that:

h−(0) = sin(−απ)− sin(−απ) = 0,
h−(α −1) = sin(−απ)− csin((α −1)π)

= sin(−απ)(1− c)
> 0,

because c < 1 and α ∈ (1,2). This means that h−(γ) has just one zero in (0,2) and it is before α −1,
so that h(γ)> 0 for all γ ∈ (α −1,α), as well as k− (α,γ,c−,c+)> 0 in the same interval.

We will prove in a similar way the change of signs of k+ (α,γ,c−,c+). Note that, as in the
previous case, we just need to analyze the change of signs of the function:

h+(γ) := csin(−απ)− sin(γπ)− csin((γ −α)π) .

Since
h+(0) := csin(−απ)− csin(−απ) = 0,

there must be just one zero in (0,2π), this zero is precisely γ = β (a,c) ([Fou13] Lemma 9). But, by
definition β (a,c) ∈ (α −1,1), this means that:

h+(γ) < 0, if γ ∈ (α −1,β (a,c)) and
h+(γ) ≥ 0, if γ ∈ [β (a,c),1).

Finally, when c+ < c−, just note that since k+ (α,γ,c−,c+) = k− (α,γ,c+,c−) we can use the same
proof.



CHAPTER 4. STABLE PROCESSES VIA FRACTIONAL CALCULUS 45

We are ready to prove the power decomposition theorem. These results are a generalization
of the works of Salminen and Yor [SY05] and of Engelbert and Kurenok [EK19]. The proof of
the decomposition uses the Tanaka formula for asymmetric stable processes (4.9) and relies on the
representation of the infinitesimal generator of a power function given in Lemma 4.3.1. Note that
in [SY05] it was easy to find the measure which could recover the power decomposition in the
symmetric case and for the generalization we made direct use of fractional calculus to find the
relevant measure needed for the asymmetric case.

Theorem 4.4.1 (Power decomposition). Let α ∈ (1,2) and c−,c+ ≥ 0, not both zero, and consider
a strictly stable process X ∼ Sα (c−,c+). Then for all x ∈ R and γ ∈ (α −1,α) we have the decom-
position

|Xt − x|γ = |X0 − x|γ +
∫ t

0

∫
R0

[
|Xs−− x+h|γ −|Xs−− x|γ

]
Ñ(ds,dh)

+
∫ t

0
|Xs − x|γ−α

[
k− 1l{Xs>x}+k+ 1l{Xs<x}

]
ds, (4.10)

where k± := k± (α,γ,c−,c+) are given by

k− =
Γ(γ +1)

Γ(γ −α +1)

[
M+

sin(−απ)

sin((γ −α +1)π)
+M−

sin((γ +1)π)
sin((γ −α +1)π)

+M+

]
and

k+ =
Γ(γ +1)

Γ(γ −α +1)

[
M−

sin(−απ)

sin((γ −α +1)π)
+M+

sin((γ +1)π)
sin((γ −α +1)π)

+M−

]
.

Note that the last integral in (4.10) could be written in terms of the local time as∫
∞

−∞

|a− x|γ−α
[
k− 1l{a>x}+k+ 1l{a<x}

]
La

t da.

The main result of Engelbert and Kurenok [EK19] is that this decomposition corresponds to a sub-
martingale, thus providing the Doob-Meyer decomposition for |Xt − x|γ , when X is a symmetric
stable process. However, if asymmetry in the jumps of the stable process is allowed, this decompo-
sition will not be in general a submartingale. By direct inspection, the last term of the decomposition
will correspond to an increasing process if and only if k± ≥ 0.

The constants k± have been found and used by Fournier [Fou13] by other means and in a differ-
ent context. Fournier proved pathwise uniqueness for SDEs driven by an asymmetric strictly stable
process and, in order to use the Gronwall inequality, he defined a constant β (a,c)∈ (α−1,1), where
a = cos(πα) and c = c−/c+, assuming 0 < c− < c+. Then, he proved that k+ = 0 for γ = β (a,c).

We will prove in Lemma 4.4.1 that, in fact, both k± are nonnegative for all γ ≥ β (a,c) and
otherwise one of them is negative.

Proof. ( of Theorem 4.4.1) Recall that from Lemma 4.3.1 we know that for f (y) = |y|γ , the infinites-
imal generator associated to f is given by:

µ(dy) =
(
k− |y|γ−α 1l{y>0}+k+ |y|γ−α 1l{0<y}

)
dy.

Taking the Tanaka formula (4.9) at the level a and integrating both sides by µx(da) (the measure µ

translated by x) we have:∫
∞

−∞

F (Xt −a)µ
x(da) =

∫
∞

−∞

F (X0 −a)µ
x(da)+

∫
∞

−∞

Ma
t (X)µx(da)+

∫
∞

−∞

La
t (X)µx(da).
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Note that the representation of f as a member of the Class C α,c−,c+ is precisely F ∗ µ . We will
now use a version of Fubini’s theorem for compensated Poisson random measures and apply it to
the small jumps of Ma(X) above. See [MR15, Lemma A.1.2]. We need to verify some integrability
assumptions to apply it, which are (4.11) and (4.12) below. Applying the Fubini theorem, we get

|Xt − x|γ = |X0 − x|γ +
∫ t

0

∫
R0

[
|Xs−− x+h|γ −|Xs−− x|γ

]
Ñ(ds,dh)

+
∫

∞

−∞

|a− x|γ−α
[
k− 1l{a>x}+k+ 1l{a<x}

]
La

t da.

Using the occupational formula for the local time, the last integral is equivalent to∫ t

0
|Xs − x|γ−α

[
k− 1l{Xs>x}+k+ 1l{Xs<x}

]
ds.

This finishes the proof modulo showing that the first integral is a martingale and the applicability
of Fubini’s theorem. The proof of the martingale character will follow the ideas of [EK19, Section
3]. Incidentally, the same argument will justify the application of Fubini’s theorem above. We can
identify two cases depending on the size of the jump:

Mγ

t =
∫ t

0

∫
R0

[
|Xs−− x+h|γ −|Xs−− x|γ

]
Ñ(ds,dh)

= Mγ,1
t +Mγ,2

t

:=
∫ t

0

∫
|h|≤|Xs−−x|

[
|Xs−− x+h|γ −|Xs−− x|γ

]
Ñ(ds,dh)

+
∫ t

0

∫
|h|>|Xs−−x|

[
|Xs−− x+h|γ −|Xs−− x|γ

]
Ñ(ds,dh).

In order to prove that M1,γ is a square integrable martingale, according to Ikeda and Watanabe
([IW89] section II.3) we need to show that:

m1,γ
t := E

[∫ t

0

∫
|h|≤|Xs−−x|

∣∣|Xs−− x+h|γ −|Xs−− x|γ
∣∣2 ν(dh)ds

]
< ∞. (4.11)

Take c = c− ∨ c+, then the intensity measure νc(dh) = c|h|−α−1dh is greater than the intensity
measure ν(dh), corresponding to Xt , and if we consider the change of variable h = (Xs−− x)u we
have:

m1,γ
t ≤ E

[∫ t

0

∫
|(Xs−−x)u|≤|Xs−−x|

c
∣∣|Xs−− x+(Xs−− x)u|γ −|Xs−− x|γ

∣∣2
|Xs−− x|α |u|α+1 duds

]

= E
[∫ t

0

∫
|u|≤1

|Xs−− x|2γ
(
|1+u|γ −1

)2 c
|Xs−− x|α |u|α+1 duds

]
= E

[∫ t

0
|Xs−− x|2γ−αds

]∫
|u|≤1

(
|1+u|γ −1

)2 c
|u|α+1 du.

Since −1<α−2< 2γ−α <α , the integral E
[∫ t

0
|Xs−− x|2γ−αds

]
is finite for all t ≥ 0. It remains

to check that the second integral is finite. Consider the auxiliary function g(u) = |1+u|γ , and note
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that for any u ∈ (−1,1) we have that g(u) = (1+ u)γ , which is differentiable. By the mean value
theorem we can choose u∗ ∈ (−1,0) and u∗ ∈ (0,1) such that:

f (u)− f (0) =

{
f ′(u∗)u −1 < u < 0,
f ′(u∗)u 0 < u < 1,

This corresponds to:

(1+u)γ −1 =

{
γ(1+u∗)γ−1u −1 < u < 0,
γ(1+u∗)γ−1u 0 < u < 1.

We get the following bound for any u ∈ (−1,1):

|(1+u)γ −1| ≤ γc1(γ)|u|,

where c1(γ) = max((1+u∗)γ−1,(1+u∗)γ−1). Then, we have that∫
|u|≤1

(
|1+u|γ −1

)2 c
|u|α+1 du ≤ γ

2c2
1(γ)

∫
|u|≤1

c|u|1−αdu

≤ γ
2c2

1(γ)
2c

2−α

< ∞.

So that m1,γ
t for any t ≥ 0 and M1,γ is a square integrable martingale.

Now, to prove that M2,γ is a martingale, according to Ikeda and Watanabe ([IW89] section II.3)
we need to show that:

m2,γ
t := E

[∫ t

0

∫
|h|>|Xs−−x|

∣∣|Xs−− x+h|γ −|Xs−− x|γ
∣∣ν(dh)ds

]
< ∞. (4.12)

Similarly, we have:

m2,γ
t ≤ E

[∫ t

0

∫
|(Xs−−x)u|>|Xs−−x|

c
∣∣|Xs−− x+(Xs−− x)u|γ −|Xs−− x|γ

∣∣
|Xs−− x|α |u|α+1 duds

]

= E
[∫ t

0

∫
|u|>1

|Xs−− x|γ
∣∣|1+u|γ −1

∣∣ c
|Xs−− x|α |u|α+1 duds

]
= E

[∫ t

0
|Xs−− x|γ−αds

]∫
|u|>1

∣∣|1+u|γ −1
∣∣ c
|u|α+1 du

< ∞,

since γ −α ∈ (−1,0) and this moment of Xt is finite for any t ≥ 0, the expectation is finite. To see
the last integral is finite, just note that

∣∣|1+u|γ −1
∣∣ behaves like |u|γ as |u| → ∞. Then, we have that

m2,γ
t is finite for any t ≥ 0 and we can conclude that M2,γ is a martingale. This allow us to conclude

that Mγ = M1,γ +M2,γ is a martingale.

Finally, we state when this power decomposition is a submartingale or just a semimartingale.

Corollary 4.4.1. Let a = cos(πα) and c = (c− ∧ c+)/(c− ∨ c+). Then the power decomposition
in Theorem 4.4.1 for the process |Xt − x|γ is a submartingale if γ ∈ [β (a,c),α); whereas, for γ ∈
(α −1,β (a,c)) it is a semimartingale, whose finite variation part is not monotone.
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Proof. From the Lemma 4.4.1 and Theorem 4.4.1 the last integral is a non decreasing process if and
only if γ ∈ [β (a,c),α), by Lemma 4.4.1, so that we get a Doob-Meyer decomposition for |Xt − x|γ .
In the other case, γ ∈ (α−1,β (a,c)), this results in a semimartingale instead of a submartingale. D 



Chapter 5

SDEs driven by stable processes

The results given for strictly stable processes can be extended to driftless stochastic differential
equations driven by strictly stable processes. This extension is more or less straightforward due to
a beautiful result of Kallenberg in [Kal92], which states conditions in order to identify a stochastic
integral with respect to a stable process as a time-changed stable process. In the case of symmetric
stable processes, this result is due to Rosinski and Woyczynski [RW86].

In this sense, by appropriately changing the time we will be able to prove the analogous results
for driftless SDEs driven by stable processes. In the case where the integrand is non-negative, we
provide a definition of an occupational local time for the corresponding stochastic integral with re-
spect to a stable process; moreover, we provide a proof for the Tanaka, Meyer-Itô and the power
decomposition for these integrals.

Finally, we provide some insights for the case where the integrand can take positive and negative
values; and how it could be helpful to prove pathwise uniqueness of solutions to driftless SDEs
driven by stable process.

5.1 Stochastic integrals with respect to stable processes
As we have pointed out before, the case of Brownian motion is the most studied stable process.
For instance, we have the Dambis-Dubins-Schwarz theorem, which asserts that a continuous lo-
cal martingale M can be written as a Brownian motion in a suitable random time change. In fact,
M = B◦ [M] a.s., where [M] is the quadratic variation of M, with M0 = 0 and B a Brownian motion
possibly defined in some extension of the original probability space.

A similar result is proved in the case of Poisson processes. If {Xt}t≥0 is a non-homogeneous
Poisson process with parameter λ (t) and intensity function given by Λ(t)=

∫ t
0 λ (s)ds. If we consider

the function
Λ
−1(t) = inf{u ≥ 0|Λ(u) = t}.

Then the process
{

XΛ−1(t)

}
t≥0

is an homogeneous Poisson process with parameter λ = 1.

In a more general setting, Papangelou [Pap72] and Meyer [Mey71] proved that any simple and
quasi-left continuous point Process N becomes a Poisson point process after using the compensator

49
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of N as a time change. That is, considering N with compensator Ñ, there exists a Poisson point
process π such that N = π ◦ Ñ a.s.

Finally, in the case of stable processes, Kallenberg showed in [Kal92] that stochastic integration
followed by a suitable random time change transform the marked point process of jump times and
sizes for the original stable process into a Poisson point process on the new time scale with the same
distribution and concluding that time-changed integral processes are again stable processes.

Through all the following sections we are considering a strictly stable process X ∼ Sα (c−,c+)
with α ∈ (1,2) and some c−,c+ ≥ 0 not both zero. Moreover, taking a strictly positive bounded
measurable function σ , then we can consider the process Z given by:

Zt =
∫ t

0
σ(Zs−)dXs, t ≥ 0.

Given these conditions, following Kallenberg [Kal92] (who works in the more general setting of
predictable integrands), there exists a X ′ d

= X such that with the following random change of time

At =
∫ t

0
σ

α(Zu−)du,

provided this integral is meaningful, i.e. σ ◦Z− is locally Lα -integrable, we have that a.s.∫ t

0
σ(Zs−)dXs = X ′

At
, t ≥ 0. (5.1)

This is a remarkable result, since through this random time change we will be able to extend our
principal results from strictly stable processes to stochastic integrals driven by them in a simple way.
Namely, we can state a Tanaka Formula, Occupational Meyer-Itô and the power decomposition we
previously proved. Note that the integrability condition will be satisfied trivially if σ is bounded.

We can see this as an extension of the self-similarity property, if we consider X ∼ Sα (c−,c+)

and c > 0 then cXt
d
= Xcα t .

5.2 Driftless SDEs driven by stable processes
We are going to consider the following SDE:

Zt = z0 +
∫ t

0
σ(Zs−)dXs. (5.2)

A priori, the above equation makes sense whenever σ ◦Z− is locally in Lα . However, a negative σ

will change the signs of the jumps of Z requiring two stable processes in Kallenberg’s time-change
representation of stochastic integrals. It will therefore be more convenient to consider only non-
negative functions σ . In the symmetric case, such considerations are unnecessary.

In the case of continuous martingales, i.e. when X is a Brownian motion, the notion of the lo-
cal time of Brownian stochastic integrals is well defined through their quadratic variation d⟨Z⟩t =
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σ2(Zs)ds. Nevertheless, since a stochastic integral with respect to a stable process has zero contin-
uous component, the semimartingale local time is zero. Instead, we will provide an occupational
local time for stochastic integrals of the form:

Zt = z0 +
∫ t

0
HsdXs, (5.3)

where Hs is a predictable strictly positive process, whose paths lie locally in Lα a.s.

Definition 5.2.1. The family of random variables {La
t (Z)} for a ∈ R and t ≥ 0 will be called the

occupational local time of (5.3) if for any bounded Borel measurable function f : R → [0,∞) and
t ≥ 0 and z0 ∈ R, the following occupation formula is satisfied:∫ t

0
f (Zs)Hα

s ds =
∫

∞

−∞

f (a)La+z0
t (Z)da.

As a matter of fact, due to Kallenberg’s identification of stochastic integrals driven by stable
processes as a time-changed stable process, we can prove this occupational local time for Z is well
defined and satisfies all the nice properties of the local time for X .

Proposition 5.2.1. Consider the process Z as in equation (5.3), where H is predictable, strictly
positive and with paths locally in Lα . Then, Z admits a jointly continuous occupational local time.

Proof. First, let us consider the case z0 = 0 and recall Kallenberg’s random time change is given by
At :=

∫ t
0 Hα

s ds, which gives us Z = X ′ ◦A, where X ′ d
= X . We can consider the (right-continuous)

inverse (Ts)s≥0 of A. Since H(u)> 0, then ATs = s and TAt = t; moreover, we have dAt = Hα
t dt.

Using the random time change equivalence between Z and X , and the occupational formula for
the local time of X ′ we have: ∫ t

0
f (Zs)Hα

s ds =
∫ t

0
f (X ′

As
)dAs

=
∫ At

0
f (X ′

u)du

=
∫

∞

−∞

f (a)La
At
(X ′)da.

This means that La
At
(X ′) satisfies the occupational formula for Z, so that defining La

t (Z) by means of

La
t (Z) = La

At
(X ′), a.s.,

we obtain a jointly continuous version of the occupational local time of Z, since La
t (X) is jointly

continuous (cf. Boylan [Boy64] and Barlow [Bar88]). Moreover, its straightforward to check that
when z0 ̸= 0 we have that La+z0

t (Z) = La
At
(X ′).

Note that when α → 2, the definition of the local time L(Z) is consistent with the local time of a
stochastic integral with respect to a Brownian motion. Also, if we take H ≡ σ , a constant function,
we recover the definition of the local time of a stable process times this constant.
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5.3 Tanaka formula, power decomposition and Meyer-Itô for-
mula

In this section we will generalize Tanaka formula, the power decomposition and the Meyer-Itô for-
mula from the stable case to the SDE driven by a stable process given by (5.2). We leave the precise
description of the local martingale component in such formulae to future work. The description we
are looking for would generalize that obtained for the stable process.

Theorem 5.3.1. Let α ∈ (1,2), c−,c+ ≥ 0, not both zero, consider X ∼ Sα (c−,c+) and let F(x)
as in equation (4.3). Consider the process Z as equation (5.2) with σ a strictly positive bounded
measurable function. Then

F(Zt −a) = F(z0 −a)+MF
t +La

t (Z), (5.4)

where MF
t is a martingale and La

t (Z) is the local time of Z at level a up to time t.

Proof. Consider X ′ d
= X given in the stochastic integral representation of Z as in equation (5.1).

The proof relies on the Tanaka formula for X ′ at level x = a− z0 after an evaluation at time At =∫ t
0 σα(Zs−)ds. First, by the Tanaka formula, we have:

F(X ′
t − (a− z0)) = F(X ′

0 − (a− z0))

+
∫ t

0

∫
R0

[
F(X ′

u−− (a− z0)+w)−F(X ′
u−− (a− z0))

]
Ñ′(du,dw)

+La−z0
t (X ′),

where Ñ′(du,dw) = N′(du,dw)−ν(dw)du is the compensated Poisson random measure associated
to X ′.

Now, by evaluating at time At :

F(X ′
At
− (a− z0)) = F(X ′

A0
− (a− z0))

+
∫ At

0

∫
R0

[
F(X ′

u−− (a− z0)+w)−F(X ′
u−− (a− z0))

]
Ñ′(du,dw)

+La−z0
At

(X ′).

Finally, using the equivalence between X ′ and Z after the change of time we have:

F(Zt −a) = F(z0 −a)+MF
t +La

t (Z),

where

MF
t :=

∫ At

0

∫
R0

[
F(X ′

u−− (a− z0)+w)−F(X ′
u−− (a− z0))

]
Ñ′(du,dw)

In order to proof that MF
t is a martingale, note that it is an integral with respect to a Poisson random

measure and by Ikeda and Watanabe [IW89] we just need to show that:

E
[∫ At

0

∫
|w|>1

∣∣F(X ′
u−+ z0 −a+w)−F(X ′

u−+ z0 −a)
∣∣ν(dw)du

]
< ∞, and

E
[∫ At

0

∫
|w|≤1

∣∣F(X ′
u−+ z0 −a+w)−F(X ′

u−+ z0 −a)
∣∣2 ν(dw)du

]
< ∞.
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Since σ is bounded, we have that At ≤∥σ∥
∞

t and from the bounds in Lemma 4.3.3 we get the result.

Following the same ideas we are going to state a power decomposition for the process Z given
by equation (5.2).

Theorem 5.3.2. Let α ∈ (1,2), c−,c+≥ 0, not both zero, consider X ∼ Sα (c−,c+). Let the process Z
as equation (5.2) with σ a strictly positive bounded measurable function. Then for all γ ∈ (α −1,α)
and x ∈ R we have the decomposition:

|Zt − x|γ = |z0 − x|γ +Mγ

t (5.5)

+
∫ t

0
|Zs − x|γ−α

[
k− 1l{Zs>x}+k+ 1l{Zs<x}

]
σ

α(Zs−)ds, (5.6)

where k± := k± (α,γ,c−,c+) are given in Theorem 4.4.1. Note that the last integral can be expressed
in terms of the local time of Z as:∫

∞

−∞

|a− x|γ−α
[
k− 1l{a>x}+k+ 1l{a<x}

]
La

t (Z)da.

Proof. Consider X ′ d
= X given in the stochastic integral representation of Z as in equation (5.1).

The proof uses the power decomposition of |X − (x− z0)|γ at level x− z0 after an evaluation at time
At =

∫ t
0 σα(Zs−)ds. Then, by the power decomposition, we have:

|X ′
t − (x− z0)|γ = |z0 − x|γ

+
∫ t

0

∫
R0

[∣∣X ′
u−− (x− z0)+w

∣∣γ − ∣∣X ′
u−− (x− z0)

∣∣γ] Ñ′(du,dw)

+
∫ t

0

∣∣X ′
u − (x− z0)

∣∣γ−α [
k− 1l{X ′

u+z0>x}+k+ 1l{X ′
u+z0<x}

]
du,

where Ñ′(du,dw) = N′(du,dw)−ν(dw)du is the compensated Poisson random measure associated
to X ′.

Now, by evaluating at time At :

|X ′
At
+ z0 − x|γ = |X ′

A0
+ z0 − x|γ

+
∫ At

0

∫
R0

[
|X ′

u−+ z0 − x+w|γ −|X ′
u−+ z0 − x|γ

]
Ñ′(du,dw)

+
∫ At

0

∣∣X ′
u + z0 − x

∣∣γ−α [
k− 1l{X ′

u+z0>x}+k+ 1l{X ′
u+z0<x}

]
ds.

Using the equivalence between X ′ and Z after the change of time we have:

|Zt − x|γ = |z0 − x|γ

+
∫ At

0

∫
R0

[
|X ′

u−+ z0 − x+w|γ −|X ′
u−+ z0 − x|γ

]
Ñ′(du,dw)

+
∫ At

0

∣∣X ′
u + z0 − x

∣∣γ−α [
k− 1l{X ′

u+z0>x}+k+ 1l{X ′
u+z0<x}

]
ds.
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To get the same representation as in equation (5.6) in the theorem, let us consider the following
calculations. Let us define the double integral as

Mγ

t :=
∫ At

0

∫
R0

[
|X ′

u−+ z0 − x+w|γ −|X ′
u−+ z0 − x|γ

]
Ñ′(du,dw).

As in Tanaka formula, to prove that Mγ

t is a martingale, we just need to show that:

E
[∫ At

0

∫
|w|>1

∣∣|X ′
u−+ z0 − x+w|γ −|X ′

u−+ z0 − x|γ
∣∣ν(dw)du

]
< ∞, and

E
[∫ At

0

∫
|w|≤1

∣∣|X ′
u−+ z0 − x+w|γ −|X ′

u−+ z0 − x|γ
∣∣2 ν(dw)du

]
< ∞.

Since σ is bounded, we have that At ≤∥σ∥
∞

t and the result follows from the proof of Theorem 4.4.1.

For the last term, using the change of variable u = As and changing XAs + z0 by Zs, we have:∫ At

0

∣∣X ′
u + z0 − x

∣∣γ−α [
k− 1l{X ′

u+z0>x}+k+ 1l{X ′
u+z0<x}

]
du

=
∫ t

0
|Zs − x|γ−α

[
k− 1l{Zs>x}+k+ 1l{Zs<x}

]
σ

α(Zs−)ds

As it was noted at the end of the theorem, we can use the occupational formula for Z from Definition
5.2.1 to write this last integral as:∫

∞

−∞

|a− x|γ−α
[
k− 1l{a>x}+k+ 1l{a<x}

]
La

t (Z)da.

Finishing the proof.

Given the proof techniques for the Tanaka and Power decomposition for the solutions of the SDE
(5.2) we can also provide a generalization of the Meyer-Itô formula in this context.

Theorem 5.3.3 (Occupational Meyer-Itô formula). Let α ∈ (1,2), c−,c+ ≥ 0, not both zero, and
consider a strictly stable process X ∼ Sα (c−,c+). Let the process Z as equation (5.2) with σ a
strictly positive bounded measurable function. Let f = F ∗ µ ∈ C α,c−,c+ and furthermore assume
that µ is finite and compactly supported. Then,

f (Zt) = f (Z0)+M f
t +

∫
∞

−∞

La
t (Z)µ (da) , (5.7)

where M f
t is a martingale and La

t (Z) is the occupational local time at a up to time t of Z.

Proof. Consider X ′ d
= X given in the stochastic integral representation of Z as in equation (5.1). The

proof is an application of the Occupational Meyer-Itô theorem for X ′ after an evaluation at time
At =

∫ t
0 σα(Zs−)ds. By the Occupational Meyer-Itô theorem, we have:

f
(
X ′

t + z0
)

= f
(
X ′

0 + z0
)

+
∫ t

0

∫
R0

[
f (X ′

u−+ z0 +w)− f (X ′
u−+ z0)

]
Ñ′(du,dw)

+
∫

∞

−∞

La
t
(
X ′)

µ (da) .
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Now, by evaluating at time At :

f (X ′
At
+ z0) = f (X ′

A0
+ z0)

+
∫ At

0

∫
R0

[
f (X ′

u−+ z0 +w)− f (X ′
u−+ z0)

]
Ñ′(du,dw)

+
∫

∞

−∞

La+z0
At

(
X ′)

µ (da) ,

where Ñ′(du,dw) = N′(du,dw)−ν(dw)du is the compensated Poisson random measure associated
to X ′.

Using the equivalence between X ′ and Z after the change of time we have:

f (Zt) = f (z0)+M f
t +La

t (Z),

where

M f
t :=

∫ At

0

∫
R0

[
f (X ′

u−+ z0 +w)− f (X ′
u−+ z0)

]
Ñ′(du,dw).

In order to proof that M f
t is a martingale, note that it is an integral with respect to a Poisson

random measure and by Ikeda and Watanabe [IW89] we just need to show that:

E
[∫ At

0

∫
|w|>1

∣∣ f (X ′
u−+ z0 −a+w)− f (X ′

u−+ z0 −a)
∣∣ν(dw)du

]
< ∞, and

E
[∫ At

0

∫
|w|≤1

∣∣ f (X ′
u−+ z0 −a+w)− f (X ′

u−+ z0 −a)
∣∣2 ν(dw)du

]
< ∞.

Since σ is bounded, we have that At ≤ ∥σ∥
∞

t and from the bounds in Lemma 4.3.3 together with
the proof of Theorem 4.3.1 we get the result.

5.4 Stochastic integral with changing signs integrand
The objective of this last section is to provide some ideas toward the definition of an occupational
local time when the integrand can change signs.

Consider a predictable process H with path locally in Lα and X an α-stable process, then:∫ t

0
HsdXs = X ′

A+
t
−X ′′

A−
t
,

where X ′ d
= X ′′ d

= X and
A+

t =
∫ t

0
H+

s dXs, A−
t =

∫ t

0
H−

s dXs.

As Kallenberg noted in [Kal92], since the positive a negative part of H have disjoint supports,
we can consider X ′ and X ′′ to be independent.
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In-between sign changes of H, we can study the stochastic integral as in the previous sections.
However, these sort of excursions of H between sign changes seem somewhat difficult to tackle di-
rectly, and a definition of an occupational local time for this process appears to be complicated.

Given the appropriate way to deal with the sign changes and the local time, it should be easy
to extend the previous results in a similar fashion. Furthermore, this could be useful to emulate
the proof of pathwise uniqueness from Le Gall [LG83]: first by proving a Tanaka formula for the
solution of this general SDE, state conditions in order to have a zero local time for these stochastic
integrals and finally combining both of them.



Appendix A

Trigonometric results

The following trigonometric result is used in the proof of the composition of crossed fractional
operators.

Lemma A.0.1. Let λ ,µ ∈ R, then the following identity holds

cos
(
(λ −µ)

π

2

)
sin

(
(λ +µ)

π

2

)
= sin

(
µ

π

2

)
cos

(
µ

π

2

)
+ sin

(
λ

π

2

)
cos

(
λ

π

2

)
.

Proof. Using the trigonometric identities for the sum of angles we start from the LHS:[
cos

(
λ

π

2

)
cos

(
µ

π

2

)
+ sin

(
λ

π

2

)
sin

(
µ

π

2

)][
sin

(
λ

π

2

)
cos

(
µ

π

2

)
+ cos

(
λ

π

2

)
sin

(
µ

π

2

)]
= cos

(
λ

π

2

)
sin

(
λ

π

2

)
cos2

(
µ

π

2

)
+ cos

(
µ

π

2

)
sin

(
µ

π

2

)
cos2

(
λ

π

2

)
+sin

(
µ

π

2

)
cos

(
µ

π

2

)
sin2

(
λ

π

2

)
+ sin

(
λ

π

2

)
cos

(
λ

π

2

)
sin2

(
µ

π

2

)
= sin

(
µ

π

2

)
cos

(
µ

π

2

)[
cos2

(
λ

π

2

)
+ sin2

(
λ

π

2

)]
+sin

(
λ

π

2

)
cos

(
λ

π

2

)[
cos2

(
µ

π

2

)
+ sin2

(
µ

π

2

)]
= sin

(
µ

π

2

)
cos

(
µ

π

2

)
+ sin

(
λ

π

2

)
cos

(
λ

π

2

)
.

The following lemma is used to analyze the constant β (α,c) in Theorem 4.4.1.

Lemma A.0.2. The functions h± of Lemma 4.4.1 have minimum period 2.

Proof. Let f±(x) = h±(x/2π), so that we now wish to prove that the minimum period of f± is 2π .
First, note that f± is a solution to f ′′+ f = 0. Second, all solutions to the above ODE are given by
acos+bsin. Finally, we assert that the minimum period of the above linear combination is 2π as
long as a and b are not both zero. Let us assume that a ̸= 0. If f̃±(x) = f±(x+ p) for some p, by
equating initial conditions at zero, we obtain

a = acos p+bsin p and b =−asin p+bcos p.

By substituting the value for b obtained in the second equation in the first and cancelling a, since it
is non-zero, we get

1− cos2 p = sin2(p) = (1− cos p)2.
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Expanding the square, we get
cos p = cos2 p

from which p = 2kπ . The case when b ̸= 0 is handled similarly. D 



Appendix B

Distribution theory

In this chapter we are going to give the relevant definitions which serve as preliminaries needed for
Lizorkin space, following [Rub96].

B.1 Distributions
Since most of this work relies on distribution theory and in particular with the Lizorkin space of test
functions, we are going to state the results which serve our purpose.

B.1.1 Schwartz space
We begin by considering the Schwartz space of test functions, S := S (R), which consists of in-
finitely differentiable real valued functions ϕ(x) such that the norms

∥ϕ∥(m) = max
x

(1+ |x|)m
m

∑
j=0

∣∣∣ϕ( j)(x)
∣∣∣ (B.1)

are finite for all m ∈N0. The space S is a locally convex topological vector space that is metrizable
and complete, equipped with its natural topology generated by the sequence of norms in (B.1).

This space has several properties which are important, for instance:

• For any j ∈ N the map ϕ 7→ ϕ( j) is continuous in the topology of S .

• If a(x) ∈C∞ increases at infinity with all derivatives no faster than a polynomial,∣∣∣a( j)(x)
∣∣∣≤ c j (1+ |x|)m j ∀ j ∈ N,

then a(x) is a multiplier in S , i.e. that the mapping ϕ(x) → ϕ(x)a(x) is continuous in the
topology of S and such that ϕ(x)a(x) ∈ S .

• The following inclusions have a dense image: C∞
c ⊂ S , S ⊂ Lp for 1 ≤ p < ∞ and S ⊂C0.

• The Fourier transform F is a topological isomorphism of S onto itself.

• If ϕ,ψ ∈ S then the convolution ϕ ∗ψ ∈ S . Moreover, F [ϕ ∗ψ](u) = F [ϕ](u)F [ψ](u).
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B.1.2 Tempered distributions
Working with special spaces of test functions leads us inevitably to consider distributions, which are
continuous linear functionals on these spaces.

For now, let us stick with the Schwartz space of test functions S . Consider a functional f on S ,
we will write ( f ,ϕ) for the value of f at a test function ϕ ∈ S . We will say that f is a distribution
if it is:

• Linear: if for any ϕ1,ϕ2 ∈ S and α1,α2 ∈ R,

( f ,α1ϕ1 +α2ϕ2) = α1 ( f ,ϕ1)+α2 ( f ,ϕ2) .

• Continuous: if for any convergent sequence ϕn(x)→ ϕ(x) in S , we have that ( f ,ϕn)→ ( f ,ϕ)
as n → ∞.

The space of all distributions will be denoted by S ′(R) := S ′. We say that a sequence fn ∈ S ′

is convergent to f ∈ S ′ if ( fn,ϕ)→ ( f ,ϕ) ∀ϕ ∈ S , and the space S ′ is complete under such con-
vergence.

Let Ω ⊂ R be an open domain and f ∈ S ′. The distribution f is equal to zero, f = 0, in Ω if
( f ,ϕ) = 0 for any ϕ ∈C∞

c (Ω). The largest open set Ωmax on which f = 0 is said to be a zero set for
f , and is complement Ωc

max is called the support of f , denoted by supp f .

Let f (x) be a locally integrable function, which also satisfies∫
R

| f (x)|
(1+ |x|)m dx < ∞,

for some m > 0, so that f (x) is a slowly increasing function. Then, a distribution f ∈ S ′ can be
identified with f (x) by the formula

( f ,ϕ) =
∫
R

f (x)ϕ(x)dx.

Distributions that can be identified with locally integrable functions are called regular distributions.
In fact, there is a one to one correspondence between regular distributions and locally integrable
slowly increasing functions. For instance, we have that Lp ⊂ S ′ for 1 ≤ p ≤ ∞.

Another class of distributions, that will be very useful in this work, which contains the regular
distributions is generated by Radon measures. We consider measures defined in B(R) such that
µ(K) is finite for every compact set K. If the measure satisfies∫

R

1
(1+ |x|)m µ(dx)< ∞,

for some m > 0, we say it is a tempered measure and we can consider a distribution in S ′ defined
by

(µ,φ);=
∫
R

ϕ(x)µ(dx), ϕ ∈ S .
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The simplest example of a distribution defined by a tempered measure is the Dirac delta distribution.
As a measure is defined by δ (E) = 1 if 0 ∈ E and zero otherwise, and as a distribution, this leads to
(δ ,ϕ) = ϕ(0). This is also an example of a distribution that is not regular, in such case, we will say
they are singular distributions.

Derivatives of distributions are defined through the space of test functions. The derivative D jF ,
j ∈ N, of the distribution f ∈ S ′ is defined by the relation(

D j f ,ϕ
)
= (−1) j ( f ,D j

ϕ
)
, ϕ ∈ S .

In this sense, distributions have derivatives of all orders and the mapping f → D jF is continuous in
S ′, with supp D j ⊂ supp f .

If f ∈ S ′ and a(x) is an infinitely differentiable slowly increasing function, then the product
a(x) f is a distribution defined by the relation (a f ,ϕ) = ( f ,aϕ) ∀ϕ ∈ S , and the mapping f → a f
is continuous in S ′. A function a(x) as above, is called a multiplier in S ′. Moreover, translations
and scaling of distributions are defined by:

• If f ∈ S ′ and x0 ∈ R, then f (x− x0) is defined by

( f (x− x0),ϕ(x)) = ( f (x),aϕ(x+ x0)) ∀ϕ ∈ S .

• If f ∈ S ′ and λ ̸= 0, then f (λx) is defined by

( f (λx),ϕ(x)) = |λ |−n( f (x),ϕ(x/λ )) ∀ϕ ∈ S .

Another useful definitions regards the convolution of a distribution f ∈ S ′ with a test function
φ ∈ S , which is defined by

( f ∗ϕ)(x) = ( f (y),ϕ(x− y)),

where ϕ(x− y) is a function of y, with x fixed. In this case, the function ( f ∗ϕ)(x) is infinitely
differentiable and slowly increasing with all its derivatives. Moreover, if f has compact support then
f ∗ϕ ∈ S and ϕ → f ∗ϕ is continuous in S .

The convolution of two distributions is defined as follows. For any f ∈ S ′ and any compactly
supported distribution g ∈ S ′, the convolution g∗ f is defined by

(g∗ f ,ϕ) = ( f ,g1 ∗ϕ), ϕ ∈ S ,

where g1 is a distribution such that (g1,ϕ) = (g,ϕ(−x)) for every ϕ ∈ S . For such f and g, the
Fourier transform of the convolution satisfies F [g∗ f ] = F [g]F [ f ].

In fact, the definition of convolution can be extended to more general classes of functions. Let
Φ := Φ(R) be a closed linear subspace of S . The space Φ can be regarded as a linear topological
space with the topology induced by that of S . If we consider its Fourier image Ψ = F [Φ], since
F is a topological isomorphism of the space S , the space Ψ is a linear topological space which
is isomorphic to Φ under the action of F . Denoting by Φ′ and Ψ′ the spaces of linear continuous
functionals on Φ and Ψ respectively, then S ′ ⊂ Φ′ and S ′ ⊂ Ψ′.

In this context, we can consider Φ and Ψ as test function spaces and Φ′ and Ψ′ as their corre-
sponding spaces of distributions. As before, if some operation is admissible and continuous in the
spaces Φ and Ψ, then a dual operation can be defined for their corresponding distributions as well.



Appendix C

Poisson random measures

Poisson random measures are an essential part of stable processes as its Levy-Itô decomposition
showed. In this chapter we are going to give the relevant definitions on this topic, following [Kyp14]
and [Kin93].

Definition C.0.1 (Poisson random measure). Let µ be a σ -finite measure on (S,S ) and (Ω,F ,P)
a probability space. Let N : Ω×S → N∪{0,∞} such that the family {N(·,A),A ∈ S } are random
variables defined on (Ω,F ,P), and for convenience the dependence on ω is usually omitted. Then
N is called a Poisson random measure on S with intensity measure µ if it satisfies that:

1. If A1, . . . ,An ∈ B(R) are mutually disjoint, the random variables N(A1), . . . ,N(An) are inde-
pendent.

2. For each A ∈ B(R), N(A)∼ Poi(µ(A)).

3. N(·) is a measure P-a.s.

Note that when µ(A) = 0, then P[N(A) = 0] = 1 and when µ(A) = ∞, then P[N(A) = ∞] = 1.

We will be interested in integral with respect to Poisson random measures, as the Lévy-Itô de-
composition of stable processes makes clear. If we consider a Poisson random measure N(·) defined
on measure space (S,S ,µ), since it is a measure P-a.s., by classical measure theory we can consider
the following kind of integrals ∫

S
f (x)N(dx),

as a well-defined random variable, for any measurable function f , such that the integral with respect
to N of either f+ or f− is finite.

The main properties of this kind of random variable consist of integrability and moments. The
following theorem and its proof can be consulted in [Kyp14] Theorem 2.7.

Theorem C.0.1. Let N(·) be a Poisson random measure defined on measure space (S,S ,µ) and
f : S → R a measurable function. Then

X =
∫

S
f (x)N(dx),
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is a.s. absolutely convergent if and only if∫
S
(1∧| f (x)|)µ(dx)< ∞.

And regarding its first two moments, we have:

E(X) =
∫

S
f (x)µ(dx), if

∫
S
| f (x)|µ(dx)< ∞

and

E(X2) =
∫

S
f 2(x)µ(dx)+

(∫
S

f (x)µ(dx)
)2

,

if ∫
S

f 2(x)µ(dx)< ∞ and
∫

S
| f (x)|µ(dx)< ∞.

In the context of this thesis, we will be interested in the case where the Poisson random measure
N is defined on ([0,∞)×R,B[0,∞)×B(R),dt ×ν(dh)), where ν is the measure concentrated in
R0 associated to a stable process, that is

ν(dh) =
(
c− 1l{h<0}+c+ 1l{h>0}

) dh

|h|α+1 ,

for some non negative constants c− and c+, not both zero. So, in this case, we are interested in
stochastic processes with the following integral form:

Xt :=
∫ t

0

∫
B

hN(ds,dh),

with B ∈ B(R).

When 0 < ν(B) < ∞ we can identify Xt with a compound Poisson process as the following
proposition states (cf. [Kyp14] Lemma 2.8).

Proposition C.0.1. Let N a Poisson random measure on ([0,∞)×R,B[0,∞)×B(R),dt ×ν(dh)),
and B ∈ B(R) such that 0 < ν(B)< ∞. Then

Xt =
∫ t

0

∫
B

hN(ds,dh), t ≥ 0,

is a compound Poisson process with arrival rate ν(B) and jump distribution ν(B)−1 ν(dh)|B.

Moreover, if we consider {Ft}t≥0 the natural filtration associated with the process {Xt}t≥0, we
have the following result (cf. [Kyp14] Lemma 2.9).

Proposition C.0.2. Let N as in the previous proposition and consider B∈B(R) such that
∫

B
|h|ν(dh)<

∞. Then,

Mt :=
∫ t

0

∫
B

hN(ds,dh)− t
∫

B
hν(dh), t ≥ 0,

is a Ft-martingale. And, if we have
∫

B
h2

ν(dh)< ∞, then it is a square integrable martingale.
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The last propositions assume that
∫

B
|h|ν(dh)< ∞; however, for our measure ν this is not always

the case. For example, if we take the set B̃ = (−ε,0)∪ (0,ε), then
∫

B̃
|h|ν(dh) = ∞ for any ε >

0; nevertheless, we have that
∫

B̃
h2

ν(dh) < ∞. Thus, we need to understand what happens to the

martingale in the last proposition, with Bε = (−1,−ε)∪ (ε,1), in the limit as ε ↓ 0. The following
result can be consulted in [Kyp14] Theorem 2.10.

Theorem C.0.2. Let N as in the previous proposition and note that
∫

Bε

h2
ν(dh) < ∞. For each

ε ∈ (0,1) define the following martingale

Mε
t =

∫ t

0

∫
Bε

hN(ds,dh)− t
∫

Bε

hν(dh), t ≥ 0.

Then there exists a Ft-martingale M = {Mt}t≥0 such that:

1. For each T > 0, there exists a non random sequence
(
εT

n
)

n∈N with εT
n ↓ 0 and such that

lim
n↑∞

sup
0≤s≤T

(
MεT

n
s −Ms

)2
= 0 a.s.

2. it is càdlàg a.s.

3. it has, at most a countable number of discontinuities on [0,T ] a.s.

4. it has stationary and independent increments.

In other words, for any fixed T > 0, the sequence of martingales (Mε
t ) converges uniformly on [0,T ]

with probability one along a subsequence in ε which may depend on T .
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Lévy processes, The Annals of Probability (1988), 1389–1427. 15, 51
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[SU23] A. Santoyo and G. Uribe, A Meyer-Itô formula for stable processes via fractional
calculus, Fract. Calc. Appl. Anal. 26 (2023), no. 2, 619–650. 6

[SY05] P. Salminen and M. Yor, Tanaka formula for symmetric Lévy processes. 13, 36, 43, 45
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