
!"#$%&'#()(*")+#,")-*)!./",0)*(%*012#+,
!"#$"%&%'()'&%)*+",%'-'(#.+#"%(#')/'0/$)/0)",%

'1.%&!#'.#/#.0&0)/+#2'3'1.%&!#'(0*.0!40/%"0#2

1+,+54#'()4'+"%6%7#2

+)*0*
85)'!%"%'#!+%"'!#"')4'$"%(#'()9

(#.+#"')/'0/$)/0)",%

!")*)/+%9
1/#&6")'()4'%45&/#2

+5+#"'1)*2'!"0/.0!%41)*2
/#&6"):'%!)440(#:'%!)440(#:'%(*."0!.0;/

.#&0+<'+5+#"'
/#&6"):'%!)440(#:'%!)440(#:'%(*."0!.0;/
/#&6"):'%!)440(#:'%!)440(#:'%(*."0!.0;/

&<=0.#:'(>'?>'1&)*')/'85)'*)'")%40@;')4')=%&)/2'ABCD'

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
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A mi esposo Saúl, por todo el amor que me da.

A mi madre por todo su apoyo.





Agradecimientos

A la Universidad Nacional Autónoma de México, especialmente al Instituto de Enerǵıas
Renovables por el apoyo brindado durante mis estudios de Posgrado.

A CONAHCyT (Consejo Nacional de Humanidades, Ciencias y Tecnoloǵıas), por brindarme
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Resumen

En este trabajo se presenta un estudio teórico-experimental del patrón de vórtices en una
delgada capa de metal ĺıquido vertida en un contenedor rectangular, donde el movimiento
del fluido es generado por la interacción de una corriente eléctrica directa y un campo
magnético no uniforme producido por un imán permanente de forma cuadrada, y cuyo
tamaño es mucho menor que el contenedor. Mientras una configuración similar orig-
ina un vórtice dipolar clásico cuando el fluido de trabajo es un electrolito de baja con-
ductividad, los experimentos muestran que en una capa de metal ĺıquido se forma una
estructura más compleja. En un fluido de alta conductividad, las observaciones mues-
tran un vórtice dipolar anidado con una región de cuasi-estancamiento en la zona donde
el campo magnético es más intenso. Dos recirculaciones externas encierran el vórtice
dipolar interior. El patrón de cuatro vórtices resulta de la superposición de varias fuerzas
electromagnéticas producidas por la interacción de las corrientes aplicadas e inducidas con
el campo magnético de orientación norte, que presenta una distribución Gaussiana, con
valores de campo positivos en las regiones cercanas al imán, y valores negativos en regiones
más alejadas, cuya magnitud tiende a cero suficientemente lejos. El método de generación
electromagnética de vórtices en metales ĺıquidos bajo campos magnéticos no-uniformes
localizados no ha sido muy explorado, a pesar de ser una herramienta fundamental en el
procesamiento electromagnético de materiales. La principal motivación de este estudio
es generar conocimiento del mezclado producido por fuerzas electromagnéticas de man-
era no-intrusiva en fluidos de alta conductividad que pueda ser aplicado para mejorar
diversas aplicaciones industriales. Para ello, el flujo es visualizado a través de burbujas
trazadoras, generadas por una reacción qúımica del metal ĺıquido y el ácido cloh́ıdrico.
Los experimentos realizados para distintas corrientes eléctricas se cuantifican utilizando
dos técnicas de medición. Los perfiles de velocidad se obtienen a lo largo de un eje en
distintos puntos con la técnica de Velocimetŕıa Doppler Ultrasónica. Además los cam-
pos de velocidades en todo el dominio experimental se obtienen mediante la técnica de
Velocimetŕıa por Imágenes de Part́ıculas, utilizando las burbujas generadas en la superfi-
cie superior del metal ĺıquido como trazadores. La parte teórica se divide en un estudio
anaĺıtico y un análisis numérico. Para el estudio teórico se presentan las ecuaciones de la
magnetohidrodinámica para un fluido incompresible, viscoso y eléctricamente conductor
bajo un campo magnético aplicado, suponiendo que el número de Reynolds magnético
es pequeño. En el caso anaĺıtico se obtiene una solución puramente bidimensional re-
solviendo las ecuaciones fundamentales mediante dos expansiones asintóticas. El modelo
anaĺıtico muestra una buena comparación cualitativa con los resultados experimentales.
En el estudio numérico, se desarrolla un modelo numérico cuasi-bidimensional que toma
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4 Resumen

en cuenta los efectos de la capa ĺımite adherida a la pared del fondo, la fricción de Hart-
mann y los efectos inducidos. Las soluciones numéricas muestran buenas comparaciones
cualitativas y cuantitativas con los resultados experimentales. Además, utilizando el mod-
elo numérico puramente bidimendional se predice la formación de vórtices anidados para
campos magnéticos muy intensos.



Abstract

In this work, we present an experimental and theoretical study of the vortex pattern in
a thin liquid metal layer contained in a rectangular box, in which the fluid motion is
generated by the interaction of a uniform direct current and a non-uniform magnetic field
produced by square-shaped permanent magnet much smaller than the container. While
a similar configuration originates a classical vortex dipole when the working fluid is a
low conductivity electrolyte, experiments show that in a liquid metal layer, a more com-
plex pattern is formed. The observations in the high conductivity fluid show a vortex
dipole nested with a quasi-stagnation region in the zone of strongest magnetic field. Two
external recirculations circle around the inner dipolar vortex. The four vortex pattern
results from the superposition of several electromagnetic forces produced by the inter-
action of the applied and induced currents with the magnetic field of north orientation,
which presents a Gaussian distribution with positive field values in the regions near the
magnet and negative values in more remote regions, the magnitude of which tends to
zero far enough away. The method of electromagnetic generation of vortices in liquid
metals under localized non-uniform magnetic field has remained largely unexplored, in
spite of being a fundamental tool for the electromagnetic processing of materials. The
main motivation of this study is to generate basic knowledge of the mixing produced by
electromagnetic forces in a non-intrusive way in a high conductivity fluid that can be ap-
plied to improve diverse industrial applications. The flow is visualized by tracking bubbles
generated by the chemical reaction of the liquid metal and the hydrochloric acid layer on
top of it. The experiments performed for different electrical currents are quantified using
two measurement techniques. Velocity profiles are measured along an axis in different
positions using the Ultrasonic Doppler Velocimetry technique. The velocity fields in the
whole experimental area are obtained through the Particle Image Velocimetry technique
using as tracers the bubbles generated in the top surface of the liquid metal. The analysis
of the flow includes an analytical study and a numerical analysis. For the theoretical
study, the fundamental equations of magnetohydrodynamics for a incompressible, viscous
and electrically conducting fluid under an applied magnetic field are presented assuming
the low magnetic Reynolds number approximation. In the analytical case, a purely two-
dimensional solution is obtained by solving the governing equations using two asymptotic
two expansions. The analytical model shows a satisfactory qualitative agreement with the
experimental results. In the numerical study, a quasi-two-dimensional numerical model
that takes into account the effect of the boundary layers adhered to the bottom wall, the
Hartmann friction and the induced effects, is developed. Numerical simulations show a
satisfactory qualitative and quantitative agreement with the experimental results. Fur-
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ther, using the purely two-dimensional numerical model six nested vortices are predicted
when the magnetic field strength is increased.



Introduction

The study of vortex dynamics is a very important topic in fluid mechanics since it is
relevant in a large number of natural phenomena and many technological applications.
For instance, to a large extent the evolution of atmospheric and oceanic phenomena are
determined by the motion of vortices such as whirlwinds, tornadoes, hurricanes and ocean
gyres. In fact, several laboratory-scale studies have been carried out to mimic ocean flows
using non-intrusive electromagnetic methods that are capable of generating vortex mo-
tions in electrically conducting fluids such as electrolytes. In turn, electromagnetic forces
have also been used to produce stirring and mixing in liquid metals in technological ap-
plications related to materials processing.

Although most metals become liquid at high temperatures, some of them are liquid at
room temperature. Typical examples of this kind of liquid metals (LM) are mercury (Hg),
and gallium alloys, the latter being commonly used in laboratory applications in different
eutectic alloys (e.g. GaIn and GaInSn) due to its stability and nontoxicity. In recent years,
the rapid development of Additive Manufacturing (AM) technology, in combination with
the use of liquid metals, has opened the door to fabricate small-sized devices for different
applications, such as tunning components for radio frequency and microwave applications
(McClung et al., 2018; Liu et al., 2020), strain sensors for medical applications (Otake
and Konishi, 2018; Li et al., 2019), pressure sensors (?), flexible electronics (Kim et al.,
2017), soft robots (?), wearable devices (?), and thermal management (?). A review on
liquid metal-based devices, their properties and applications can be found in Dong et al.
(2021). To improve and optimize any of these applications, the behavior of the LM inside
the used devices must be understood in detail. To that end, in many studies the dynamics
of the flow is analyzed using analytical, experimental and numerical techniques.

The use of a static magnetic field for the production of vortex flow in conducting flu-
ids has been widely investigated since the pioneering studies of magnetohydrodynamics
(MHD), many of which were developed in the former Soviet Union, with the aim of under-
standing atmospheric phenomena (Bondarenko and Gak, 1978; Bondarenko et al., 1979;
Dovzhenko et al., 1979; Ponomarev, 1980; Dovzhenko et al., 1981; Krymov, 1989; Manin,
1989; Batchaev and Ponomarev, 1989; Dolzhanskii et al., 1990, 1992). The assumption
that the magnetic field is uniform and homogeneous underlies most of the analyzed situa-
tions, many of them related with technological applications. For instance, recently, Rivero
et al. (2022) analyzed a LM vortex generator using an analytical model and numerical
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simulations, both of which were partially validated using experimental data obtained us-
ing a laboratory prototype. By varying the size of the external electrode, the authors
assessed the efficiency of the generator, which has a potential use in energy harvesting
applications. The study of MHD flows has been an active area of research, as evidenced
by the large body of recent literature devoted to the analysis this kind of flows for diverse
applications such as fusion reactors (Klüber et al., 2020; Bühler et al., 2020; Mistrangelo
et al., 2021), heat transfer (Singh and Gohil, 2019; Alzabut et al., 2023; Hickie-Bentzen
et al., 2023), energy harvesting (?) and even biomedicine (Cherkaoui et al., 2022).

A liquid metal flow under a strong uniform magnetic field, for which the low magnetic
Reynolds number approximation holds (Davidson, 2001), presents two important well-
known features. On the one hand, the anisotropy introduced by a uniform field is mani-
fested by the elongation of flow structures in the direction parallel to the field (Alemany
et al., 1979). On the other hand, the motion of the conducting liquid across the field
lines induces electric currents that lead to Joule dissipation and, consequently, to the
damping of the flow (Davidson, 1995). The evolution of vortices under these conditions
has been investigated both experimentally and theoretically in the past, see for instance
Mück et al. (2000); Sreenivasan and Alboussière (2000, 2002); Hamid et al. (2015) and
references therein.

Uniform magnetic fields have also been used for the generation of vortices in thin liquid
metals layers, with Lorentz forces created by the interaction of injected electric currents
with the applied field. Relevant studies have used this methodology, for instance, Somme-
ria analyzed isolated vortex dynamics (Sommeria, 1988) as well as steady two-dimensional
vortex couples (Nguyen Duc and Sommeria, 1988) in a thin layer of mercury. This author
also provided experimental evidence of the inverse energy cascade characteristic of quasi-
two-dimensional turbulence (Sommeria, 1986). The energy transfer towards large scales
that arises in this kind of turbulence, was also explored by Messadek and Moreau (2002)
in a quasi-two-dimensional turbulent shear flow by enforcing a mercury layer by the action
of a steady vertical magnetic field and a radial horizontal electric current in a cylindrical
container. These studies confirm that the quasi-two-dimensional flow behaviour prevails
in thin liquid metal layers under strong uniform magnetic fields where the key dissipa-
tion mechanism is the Hartmann layer friction. Nevertheless, more recent studies have
examined the limit of the quasi-two-dimensionality assumption and showed evidence of
a transition between quasi-two-dimensional and three-dimensional flows in liquid metal
MHD flows, see for instance Ref. (Klein et al., 2009).

Although some interesting investigations of MHD vortices generated using alternative
procedures as the one mentioned above have been reported (v. e. Kolesnichenko et al.
(2005)), it appears that electrically driven vortices in liquid metals under non-uniform
magnetic fields have remained largely unexplored. This is not the case for electrolyte
flows since in many experimental works one or several small magnets interacting with
applied currents have been used to generate vortical flows. In fact, it is well known that
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in a thin layer of electrolyte the interaction of a uniform DC current with a permanent
magnetic dipole results in a vortex dipole (Lara, 2013; Salas et al., 2001; Figueroa et al.,
2009). If a current pulse is applied, a travelling vortex dipole is created by the localized
Lorentz force (Afanasyev and Korabel, 2004). Since electrolytes are low conductivity liq-
uids, electric currents induced by the fluid motion across the applied magnetic field, are
completely negligible. The question then arises as to how is the flow structure modified
in this simple experiment if the thin layer is a liquid metal instead of an electrolyte. It is
worth mentioning that very interesting vortex patterns have been observed when a mag-
net is dragged underneath a liquid metal layer (Samsami et al., 2014; Prinz et al., 2016).
In fact, a sequence of vortices can be generated by varying the magnet velocity although
in this case Lorentz forces are only produced by induced currents.

In this work, we present an experimental and numerical study of electrically driven vor-
tices in a thin liquid metal layer (GaInSn) contained in a rectangular box under a dipolar
magnetic field created by a permanent magnet of small size compared with the container.
It is shown that the action of a uniform DC current with the localized magnetic field re-
sults in a vortex dipole with a central zone of reduced velocity nested inside two external
vortices. Apparently, this flow structure has not been previously reported experimentally
although a similar structure was found by Cuevas et al. (2006) in numerical simulations
of a pressure driven creeping flow past a magnetic obstacle (see also ?). In the present
contribution, velocity profiles along the symmetry axis of the flow were obtained through
Ultrasonic Doppler Velocimetry (UDV). In addition, velocity fields were captured in the
liquid metal surface by Particle Image Velocimetry (PIV), using as tracers the bubbles
generated in the acid layer on top of the liquid metal. The analysis is complemented
with finite volume numerical simulations based on a quasi-two-dimensional model which
approximates the MHD flow in the thin liquid metal layer. We carry out a comparison of
numerical results with experimental data obtained with both techniques and discuss the
formation of the flow structure taking into account the applied and induced forces as well
the non-uniformity of the magnetic field.

This thesis is structured as follows. In Chapter 1, we present the experimental setup used
to carry out a laboratory study of electrically driven vortices in a thin liquid metal layer
(GaInSn) contained in a rectangular box under a dipolar magnetic field generated by a
permanent magnet of small size compared with the container. The experimental results
show that the action of a uniform DC current with the localized magnetic field results
in a vortex dipole with a central zone of reduced velocity nested inside two external vor-
tices. The flow dynamics is explored by means of two experimental techniques of velocity
measurement. First, velocity profiles along the symmetry x−axis of the flow and parallel
to it were obtained through Ultrasonic Doppler Velocimetry (UDV) in the liquid metal
bulk. Secondly, velocity fields were captured in the liquid metal surface by Particle Image
Velocimetry (PIV), using as tracers the bubbles generated in the acid layer on top of the
liquid metal. The distribution of the magnetic field is measured experimentally at the
two heights in which the velocity measurements are taken. Then, the magnetic field is
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reproduced with the analytic formula provided by (McCaig, 1977) using two magnetized
plates. Experimental results are presented and analysed.

Chapter 2 is focused on the analytical model of the flow pattern produced by electro-
magnetic forces in a high conductivity fluid. Here, a summary of the fluid dynamics and
Maxwell’s equations is presented. Under certain assumptions, the fundamental Magne-
toHydroDynamic (MHD) equations were established by implementing a formulation that
uses the induced magnetic field as the electromagnetic dependent variable. The flow be-
havior is analyzed mathematically using a purely two-dimensional model. The analytical
solution was found through the expansion in Reynolds (Re) and Hartmann (Ha) parame-
ters, considering that ReHa ≪ 1. Despite the fact that there is a singularity in the origin
due to the equation used to model the magnetic field, the analytical results show the
symmetric formation of two nested dipolar vortices.

In Chapter 3, the flow pattern obtained experimentally is modeled numerically using a
quasi-two-dimensional approximation as proposed by Figueroa et al. (2009). This aver-
aged numerical model takes into account the main features that affect the vortical flow,
namely, the Hartmann and bottom frictions, the decay of the non-uniform magnetic field
in the direction normal to the liquid metal layer and the induced currents generated in the
applied magnetic field region. The numerical simulations were performed in two different
planes of the fluid layer in order to compare with the velocity measurements taken with
the two techniques used. The numerical comparison of the velocity field shows a good
qualitative agreement with the field obtained by means of the PIV technique. In turn, the
velocity profiles obtained from the simulations show a good quantitative agreement with
the experimental profiles obtained with the UDV technique. In addition, in this chapter a
purely two-dimensional model to carry out an idealized numerical analysis of the shallow
flow generated by an applied electrical current and a localized magnetic field produced by
a very strong permanent magnet, is explored. Unlike the quasi-two-dimensional simula-
tions, in this model is only taken into account the applied and induced Lorentz force and
the magnetic field distribution. With this model, a flow pattern composed by three nested
dipolar vortices is found. Even though the formation of a greater number of vortices is
obatined with the ideal model in absence of bottom friction, in the experiments we can
observe some evidence of the same vortex pattern. A similar pattern was reported by ?
in a numerical study of the creeping flow past a magnetic obstacle. At the end of the
chapter, a numerical comparison with the two experimental techniques is discussed.

Finally, the main conclusions of this thesis are summarized and some topics for future
work are presented.



Chapter 1

Experimental vortex patterns

In this chapter, the experimental device used for the study of flow patterns generated
by non-uniform electromagnetic forces acting on highly electrically conducting fluids, is
presented. Since the magnetic field produced by the permanent magnet is an important
factor in the fluid motion, measurements of the magnetic field distribution were per-
formed. In order to analyze the flow dynamics, optical visualizations and experimental
measurements were carried out. The Ultrasound Doppler Velocimetry (UDV) and Parti-
cle Image Velocimetry (PIV) techniques were used to measure the velocities of the liquid
metal. Some results are presented in the last section.

1.1 Experimental setup

The experimental setup consists of a rectangular box with inner measurements of 27 cm
long, 25 cm wide and 4 cm high. The device frame is made of plexiglass glued to a glass
plate of thickness 0.3 cm. An acrylic base, with a square cavity in the central region, is
placed underneath the glass bottom wall in order to support the weight of the working
fluid. Two copper electrodes of rectangular cross-section with length, width, and height
of 25 cm, 1 cm and 0.5 cm, respectively, are placed parallel to the width of the container.
The container is filled up with a liquid metal layer composed of an eutectic Gallium,
Indium, and Tin (GaInSn) alloy that is in liquid state at room temperature, and whose
properties, namely, mass density (ρ = 6360 kg/m3), kinematic viscosity (ν = 3.4×10−7

m2/s), electrical conductivity (σ = 3.46×106 S/m), surface tension (γ = 0.533 N/m),
speed of sound (νι = 2725 m/s) and magnetic permeability (µ = 4π×10−7 N/A2), are
considered as constant (Morley et al., 2008). A secondary layer, with thickness of 0.3 cm
of a hydrochloric acid solution at 3% by weight, is poured on top of the liquid metal in
order to reduce its oxidation. The depth of the liquid metal layer is 0.55 cm. In this way,
the copper electrodes are completely submerged in the liquid metal, avoiding its contact
with the hydrochloric acid layer, thus preventing electrochemical reactions that produce
noise in the experiments. A square-shaped Neodymium-Iron-Boron permanent magnet,
with a length-side of 2.54 cm and height of 1.27 cm, is placed in the cavity of the acrylic
base, touching the lower surface of the glass plate. The center of the magnet coincides with
the geometric center of the container. The magnet, with north orientation, is magnetized
along the normal direction of the free surface of the fluid and has a maximum strength of
0.33 T at its center.

11



12 Chapter 1. Experimental vortex patterns

An adjustable DC voltage source is connected to the electrodes to produce a uniform
electric current along the positive direction of the x axis through the fluid. The applied
electric current was varied from 0.25 A up to 2 A. The origin of the coordinate system is
fixed at the geometric center of the container, at the top wall of the glass plate, with the
x− and y−axes parallel to the applied current, and to the longest side of the electrodes,
respectively. The z−direction points in the same direction as the normal component of
the glass plate. The open container is placed on three supports so that the system can
be leveled to obtain a liquid metal layer with a uniform height. Figure 1.1a) shows a
sketch of the top view of the experimental device. We can observe that the power supply
is connected in the central part of the electrodes by means of an electrical conductor,
while Figure 1.1b) shows the lateral view of the setup, where the confined fluid, the
magnetic field lines, and the electrodes immersed in the liquid metal, can be observed.
Once the DC voltage source is switched on, an approximately uniform electric current
interacts with the magnetic field producing Lorentz forces that originates motion within
the liquid metal. Despite considerably high electrical currents are applied throughout the
liquid metal, temperature changes within the fluid are negligible due to its high electrical
conductivity.

b)	


Liquid Metal	


Hydrochloric Acid	


x
z

Free Surface	
j0	


V	


a)	


x

y

Plexiglass	


Video Camera	
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Figure 1.1: Schematic representation of the experimental device used to study the vortex
dynamics produced by localized Lorentz forces in a liquid metal layer; a) plane view and
b) lateral view along the x−axis.

1.1.1 Magnetic field characterization

In order to understand in detail the phenomenon under study, it is necessary to charac-
terize the applied magnetic field responsible for the fluid motion. For this purpose, the
magnetic field was measured on two fixed planes at different heights in the z−direction.
The selected heights were chosen to be the same at which the experimental measurements
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of the velocities were carried out. The magnetic field was measured along the x and y
symmetry axes. The experimental measurements of the magnetic field, as functions of the
distance along the axes, for two different heights (3.5 mm and 5.5 mm), are plotted with
points in Figures 1.2a) and 1.2b). Taking into account that the normal magnetic field
component is dominant, and that the transversal components are very small (Figueroa
et al., 2009; Alboussière, 2004), the dimensionless magnetic field, along the z−direction, of
a dipolar magnet can be reproduced using the analytical expression presented by Figueroa
et al. (2009):

B0
z(x, y, z) = B0

z(x, y)g(z), (1.1)

where the term B0
z(x, y) reproduces the variation of the magnetic field in the (x − y)

plane using the analytical expression given by McCaig (1977) for a uniformly magnetized
rectangular surface (Figueroa et al., 2009; Beltrán, 2010; Cuevas et al., 2006). The term
g(z) represents the variation of the magnetic field (measured experimentally) in the normal
direction (z−axis) given by

g(z) = exp(−γεz), (1.2)

in which γ = 2.05 is an empirical constant; ε = h/L, h and L being the depth of the
liquid layer, and the characteristic length, respectively, and z is normalized by h (Figueroa,
2010).

The experimental measurements show a magnetic field distribution with positive and
negative values. This behavior can be reproduced by the superposition of two parallel
magnetized square surfaces of length L, separated by a distance c, with opposite polarity,
so that both external surfaces act as the north and south poles of the magnet. The
dimensions L and c were fixed so that the distribution of the magnetic field coincides
with the experimentally measured magnetic field distribution. The explicit expression by
McCaig (1977) for the magnetic field is

B0
zi
(x, y) = ξ

{
arctan

(
(x+ a)(y + b)

z0i [(x+ a)2 + (y + b)2 + z20i]
1/2

)

+arctan

(
(x− a)(y − b)

z0i [(x− a)2 + (y − b)2 + z20i]
1/2

)

− arctan

(
(x+ a)(y − b)

z0i [(x+ a)2 + (y − b)2 + z20i]
1/2

)

− arctan

(
(x− a)(y + b)

z0i [(x− a)2 + (y + b)2 + z20i]
1/2

)}
, (1.3)

where ξ is a normalization constant. The dimensions of the magnetized surface are x0 = 2a
and y0 = 2b, where 2a = 2b = L. Subscript i takes values of 1 and 2, which correspond
to the magnetic fields produced by the two square surfaces, normalized by the maximum
magnetic field (Bmax), measured at the geometrical center of the magnetized surface. The
total magnetic field distribution B0

z(x, y) in the (x− y) plane is the superposition of the
fields calculated as

B0
z(x, y) = B0

z1
− B0

z2
. (1.4)



14 Chapter 1. Experimental vortex patterns

Figures 1.2a) and 1.2b) show the comparison between the experimental results and the
magnetic field calculated with McCaig (1977) equation for the planes at z = 3.5 mm and
z = 5.5 mm, respectively. In these, the measured profiles of the normalized z−component
of the magnetic field, along the x and y symmetry axes, are very similar to each other,
for the two selected heights, thus demonstrating the uniformity of the magnetization and
the symmetry of the magnetic field. In addition, the analytical magnetic field profiles
of the normalized z−component are in good qualitative and quantitative agreement with
the experimentally measured profiles for the two heights.
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Figure 1.2: Experimental and analytical profiles of the normalized z−component of the
magnetic field as functions of x and y for two heights within the liquid metal layer at a)
3.5 mm and b) 5.5 mm. The red and blue symbols represent the z−component of the
magnetic field measured experimentally along the x and y symmetry axes, respectively,
while the solid black line is the magnetic field calculated with the expression given by
McCaig (1977).

The maximum magnetic field strength (B0
z,m) measured at z = 3.5 mm is 0.218 T, whereas,

at z = 5.5 mm is 0.181 T. With these values of magnetic field, it is possible to obtain
the ratio between the Lorentz forces and viscous forces by means of the dimensionless
parameter called the Hartmann number (Ha):

Ha = B0
z,mL

√
σ

ρν
. (1.5)

The Hartmann number calculated with the maximum magnetic field of 0.218 T is Ha =
221, whereas, this parameter takes the value Ha = 184 for the maximum strength of
0.181 T.
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1.1.2 Experimental visualizations

The experimental visualizations are performed using the bubbles generated at the interface
between the liquid metal and the hydrochloric acid layers which allowed to observe the
motion of the liquid metal surface. Initially, the gas bubbles are produced due to the
chemical reaction between the liquid metal and the acid. However, bubble production
increases when the electrodes, hydrochloric acid, and liquid metal are in contact with
one another, even before the DC current is present. Bubble generation is intensified once
the electric current is applied, and the electrodes remain in contact with both the liquid
metal and the acid, until the liquid metal completely permeates the electrodes with a thin
coating. Due to surface tension effects, bubbles stick at the interface and are dragged away
when the liquid metal is set into motion. The schematic representation of the location
of the gas bubbles between the interface of the liquid metal, and the hydrochloric acid is
shown in Figure 1.3a). The white dots observed in Figure 1.3b) are the bubbles used as
tracers that help to track the dynamics of the flow optically. In addition, Figure 1.3b)
shows a picture of the full experimental flow domain when a DC current of 500 mA
is applied in the thin liquid metal layer. The arrows are superimposed to indicate the
recirculation of the flow, sketching the flow patterns and giving an idea of the size of the
different regions. Visualization reveals the formation of a symmetrical structure relative
to y−axis, consisting of two external recirculation zones (highlighted with white arrows)
flowing in counter-clockwise and clockwise directions on the left and right sides of the
domain, respectively. Nested within these recirculation zones, a steady vortex dipole is
found (red arrows) which presents opposite sense of circulation with respect to the external
vortices. This structure originates two stagnation points (represented by white crosses in
Figure 1.3b) located on the symmetry axis. Furthermore, near the center of the vortex
dipole, a low velocity zone is formed in the region of maximum magnetic field strength
(green square).

HCl 
GaInSn 
Gas Bubbles 

a) b)

Figure 1.3: a) Localization of gas bubbles at the interface of liquid metal and hydrochloric
acid. b) Experimental picture of the flow domain in a thin liquid metal layer driven by
a non-uniform Lorentz force. Arrows indicate the global flow circulation, and the green
square denotes the position of the permanent magnet that lies underneath.
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The optical visualizations were repeated for different experimental conditions, noting the
same qualitative behavior of the flow, only with different elongation and internal vortex
size. The experimental visualizations were recorded with a high definition Sony DSC-
WX80 camera, with a resolution of 1920×1080 at 30 fps and “Optical SteadyShot” image
stabilization, placed in the center of the container, normal to the fluid plane (see Figure
1.1b). As can be seen from the experimental measurements that will be discussed below,
the analysed flow presents very low velocities, characteristic of the creeping flow regime.

1.2 Measurement techniques

The experimental measurements of the velocities produced by Lorentz forces in the liquid
metal layer were carried out using two different techniques. Since the working fluid is
opaque, the Ultrasound Doppler Velocimetry (UDV) technique was used to measure the
bulk velocity profiles at 3.5 mm height of the liquid metal layer. At this height, the
measurement errors produced by the bubbles in the top surface of the liquid metal, and
the notch formed between the acrylic wall of the container and the liquid metal, are
reduced. In addition, velocity measurements on the upper surface of the liquid metal
(at 5.5 mm height) were performed with the Particle Image Velocimetry (PIV) technique
using the bubbles as tracers.

1.2.1 UDV technique

UDV technique is a measurement method used in the areas of physics and engineering.
In basic science, the method is employed in the analysis of various problems of fluid
dynamics with opaque liquids (Takeda, 1986, 1991, 1995). The UDV technique has been
used both to measure the flow velocity of liquid gallium contained in a rotating cylinder
(Brito et al., 2001) and to reconstruct the velocity fields of a flow pattern produced
by magnetic forces in a liquid metal at room temperature (Nauber et al., 2013). This
measurement method has the advantage that can be used in an invasive (see Andreev
et al. (2009)) or non-invasive way, as in the research presented by Cramer et al. (2004).
For this study, the UDV method uses a transducer that functions as an emitter and
receiver of information, sending a cone-shaped ultrasonic beam through the working fluid
and continuously collecting echoes emitted from the targets, in this case the oxidized
particles of liquid metal. With the emitting frequency of each ultrasonic wave and the
delay time of each one, it is possible to calculate a velocity component of all of the targets
that are present in the path of the beam. The calculated velocity component is always
parallel to the beam emitted by the ultrasonic transducer (Signal Processing, 2015). In
the experiments, the velocity profiles along the y−axis for several fixed positions in the
x−axis (that run perpendicular to the applied electric current), are obtained through the
DOP3010 ultrasonic doppler velocimeter connected to a TR0405LS transducer that has
an emitting frequency of 4 MHz, and an acoustic active diameter of 5 mm. The transducer
is placed outside the acrylic container, perpendicular to the walls (see Fig. 1.4). In order
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to get a good contact between the transducer and the wall, an ultrasonic gel is placed
between them in order to improve their contact and guarantee path for the ultrasonic
waves. The ultrasonic beam emitted by the transducer measures along a 600 mm length,
and its opening angle is 2.21◦ (Signal Processing, 2015). The important features used in
the DOP3000 program for post-processing were: a pulse repetition frequency PRF = 15
MHz to measure maximum velocities of vmax = 11.2 mm/s, and a depth of d = 328 mm
that allows to observe the echo produced by the second container wall.

x

y

 UDV	
Transducer	

A1	


A2	


B1	


B2	


D1	


D2	


E1	


E2	


C1	


C2	


Figure 1.4: The sketch indicates the positions in which the transducer is alternately placed
to take the different velocity profile measurements for five values of x.

The center of the transducer was always placed at a fixed height of z = 3.5 mm from
the bottom of the liquid metal layer, while the length of the transducer was located
perpendicular to the wall. Taking into account the origin of the geometric coordinates
and the thickness of the acrylic walls of 1.2 cm, the positions x and y, in centimeters,
at which the transducer is placed are shown in Table (1.1). Measuring the same velocity
profile in opposite walls guarantees reliable measurements of the velocity component, in
spite of the divergence of the acoustic beam.

The velocity readings are taken positive when the fluid moves away from the transducer,
and negative if it is moving towards the transducer. It is important to mention that the
velocity profile measurements were performed alternately; first, the velocity measurement
was done by placing the transducer in position A1, and then in position A2 (see Fig. 1.4).
In both cases, the measurements start from a fluid at rest, and the beginning and end
time of the recorded data does not vary. This same procedure was carried out for the
measurements of profiles B, C, D and E. Moreover, velocity measurements, over time
along the y-axis for a fixed x-value, can also be obtained with the UDV technique.

Figure 1.5 shows the contour map of the velocities in y−axis obtained along time when
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Position x (cm) y (cm)
A1 -8.35 -13.7
A2 -8.35 13.7
B1 -4.15 -13.7
B2 -4.15 13.7
C1 0 -13.7
C2 0 13.7
D1 4.15 -13.7
D2 4.15 13.7
E1 8.35 -13.7
E2 8.35 13.7

Table 1.1: Positions of the transducer to take the measurements of the velocity profiles.

the flow pattern reached a steady state for an experiment with the configuration shown
in Figure 1.1 where a direct current of 350 mA was applied. For this map, values near to
the wall were deleted owing to the generation of noise produced by the difference in the
speed of sound of the acrylic walls and the liquid metal at the start and end of the pro-
files. Initially, this figure shows small values that are increasing positively until reaching
a maximum value approximately between y = 80 and y = 100. It immediately begins to
decrease until obtaining maximum negative values. Finally, positive values of the velocity
are observed in the right region. This contour map can be better analyzed by looking at
Figure 1.6, here, the v−component velocity profiles are shown along the entire y−axis of
the container with the transducer placed in the center of the container (x = 0). For each
one of the profiles of Figure 1.6, 100 steady state profiles were averaged taken the readings
with the transducer located in C1. Green and red line are two different experiments taken
the profiles at the same time with the transducer placed in the same position. The blue
profile is the average of the two velocity measurements. Based on the average profile,
at the ends of the profile closest to the walls and for approximate values between -7.5
and -2.7 in the y−axis the velocities are positive. Velocities close to the y = 0 axis take
negative values until y is close to 23. Then, the velocities are positive again. Nearby
to the walls the noise produced by the different speeds of sound between the wall and
the liquid metal, is observed. The velocity measurements shown in Figure 1.6 were only
taken with the transducer placed in one position, since the profiles take more accurate
values close to the transducer, but not when the targets are further away from it, so for
the central profiles it was decided to place the transducer in C1-position.
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Figure 1.5: Contour map shows the velocity along y direction as a function of time. Color
bar is the magnitude of the velocity in mm/s. I = 350 mA.
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Figure 1.6: Velocity profiles of the v-component along y. Green and red lines were taken
with a transducer placed in C1. Both profiles show different measurements in a same time
interval. Blue line is the average of the two measurements. I = 350 mA.
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The measurements of the velocity profiles off the central axis x = 0 were averaged to
reduce the experimental error that is generated by the conical shape of the beam emitted
by the transducer. The greater the distance between the beam emission and the targets
from which velocity readings will be received, the greater the number of targets whose
velocity is averaged. In the case of the central profile, only one of the readings was taken
into account because by averaging the readings from C1 and C2, the changes in the di-
rection of velocity in the central part were no longer observed.

Velocity profiles B and D can be observed in Figure 1.7. Red line is the average of veloc-
ity measurements with the transducer placed in B1 and B2, each one of this profiles were
obtained by averaging 100 profiles. The measurements shown in the blue velocity profile
are obtained similarly to the red profile. In both profiles, the velocities are qualitatively
similar along y−axis and the maximum velocity is in the middle. For values from y ≈ 50
to y ≈ 100, red profile exhibits a non-expected qualitative behavior since the velocities
close to the wall should be decreasing as shows the blue profile. This can be considered
a measurement error due to the experimental technique.
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Figure 1.7: Velocity profiles of the v-component along y. Red and blue lines are the
average of the measurements taken alternately with a transducer placed in B1 and B2 and
D1 and D2, respectively.

In Figure 1.8 the velocity profiles A (red color) and E (blue color) can be observed. The
values were obtained similarly to the profiles of Fig. 1.7 and it shows that the maximum
value is in the center y ≈ 0. Both Fig. 1.7 and 1.8 present more noise near to the walls,



1.2. Measurement techniques 21

but the comparison of two figures shows a quasi-symmetric flow pattern, with velocity
measurements very close to each other. In addition, in this figure is clear that the velocity
decay in regions close to the walls.
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Figure 1.8: Velocity profiles of the v-component along y. Red and blue lines are the
average of the measurements taken alternately with a transducer placed in A1 and A2

and E1 and E2, respectively.

Figures 1.6, 1.7 and 1.8 can be observed that the velocity direction corresponds to the
orientation of flow behavior shown in Figure 1.3, in which both B and D and A and E
profiles represents direction of the external vortex, and the central profile the variation of
the velocity direction along y in x = 0.

1.2.2 PIV technique

The second method allows the measurement of the velocity field in the surface of the liquid
metal through Particle Image Velocimetry, which has been recently used for the stream-
line visualization of the magnetohydrodynamic flow in a thin liquid metal layer driven
by a moving permanent magnet (Samsami et al., 2014; Prinz et al., 2016). Similarly to
this work, here we take the small gas bubbles (of size about 0.5 mm) produced at the
interface between the liquid metal and the hydrochloric acid as tracers, by using a camera
fixed on top and normal to the experimental device, as shown in Figure 1.1b). First, the
video-camera was placed at a height of about z = 50 cm to record the complete surface
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of the working fluid and analyse the entire flow pattern produced inside the container by
a Lorentz force. Second, the central part of the fluid surface was captured to perform
a more detailed analysis of the flow behavior in the quasi-stagnation zone mentioned in
Section 1.1.2. For those experiments the camera was located at an approximate height of
z = 30 cm. Both experiments can be visualized at certain time and quantified using the
PIV technique.

For the analysis of the flow behavior, we used the experimental configuration mentioned
in Figure 1.1 and the following characteristics in PIVLab program (Thielicke and Son-
ntag, 2021): square interrogation areas of 64 pixels with 50% overlap in the plane x − y
and a standard correlation. For the results presented below, 100 steady-state data were
averaged.

The PIV experimental results shown in Figure 1.9 correspond an uniformly applied direct
current of 350 mA between the graphite electrodes. In Figure 1.9a), the velocity fields
observed over the whole free-surface of the liquid metal, shows the formation of two ex-
ternal vortices that travel along the y-axis positively within values close to x = 0, while
for values near to x = −125 and x = 125 (values where the electrodes are placed), the
fluid recirculates along the y-axis in the negative direction. A internal dipole vortex is
observed in the central part of this velocity fields with opposite direction of rotation with
respect to the external vortex pattern. Further, a quasi-stagnation zone is observed at
values around x = 0 and about values between y ≈ 0 and y ≈ −20. In fact, additional
experiments were carried out in the region of the inner vortex to further analyze the flow
behavior in quasi-stagnation zone (experimental results shown on the right-side of Fig.
1.9. The velocity field of the internal vortex can be observed in Figure 1.9d), in which
both the stagnation points where there is a change of direction in the velocities, as well as
the small velocities in the quasi-stagnation zone are observed. The streamlines shows in
Figures 1.9b) and 1.9e) were obtained from the velocity fields shown in 1.9a) and 1.9d),
respectively. In both Figures it can be observed the formation of the internal and external
vortices. Although in Figure 1.9b), an asymmetrical flow is observed, when an analysis
closer to the central zone (Fig. 1.9e) is performed, it is found that the flow pattern is
mostly symmetrical about the x−axis.

The vorticity of the whole experimental region is shown in Figure 1.9c), where visual-
ization reveals a symmetrical structure relative on the y−axis. In this picture, the most
intense positive and negative vorticity is observed over the region where the magnet is
placed. Here, the central zone shows the formation of nested dipole vortex whose mag-
nitude of vorticity is similar to that of the external vortex. Finally, Figure 1.9f) shows
the fluid vorticity on the central region, where we can appreciate the formation of three
nested dipole vortices, that is, the external vortex on the edges of the magnet and the
internal dipole vortices inside the magnet region. Specifically, the nested internal dipole
is produced in the area with the strongest magnetic field and the elongation is on negative
y−axis.
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Figure 1.9: Experimental results, produced with a permanent magnet and a direct
current of 350 mA, obtained with PIV technique for the whole domain (figures a, b and
c) and the central zone with an area of 50 x 50 mm (figures d, e and f).
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The experiments in the central domain (right-hand side of Fig. 1.9) were specifically
performed to observe and analyze the flow behavior in the quasi-stagnation zone, so that
the formation of two internal vortices that surround this region, is well defined. However,
in the results where 100 data were averaged, only very small velocities were observed,
i. e., no difference compared to the whole domain analysis was revealed. Nevertheless,
when velocity fields were analyzed in this region at different instants of time, it was ob-
served that the fluid motion not only had a reduction in the magnitude of the velocity,
but also in this zone the velocities change the direction as shown in Figure 1.10, where
velocity fields of four instant of time are shown. First, in Figure 1.10a) we can observe
that the quasi-stagnation zone shows velocities with a positive tendency about to the
y−axis. Second, in Figure 1.10b) it can be appreciated parallel velocities with respect
to the x−axis. Third, the formation of two asymmetric nested vortices between internal
vortices appears (see Fig. 1.10c). Four, in Figure 1.10d) the formation of a nested dipo-
lar vortex inside the inner dipole vortex, is completely defined. This results reveals that
flow pattern is composed of three nested dipole vortices. These are an external dipolar
vortex, an internal dipolar vortex and a nested internal dipolar vortex as shown in Fig-
ure 1.10c). While, the left-hand side both of the external vortex and the nested-internal
vortex rotate in counter-clockwise direction, the right-hand side of both vortices rotate in
clockwise direction. The internal dipolar vortex rotate in opposite direction to the exter-
nal dipolar vortex. More details of the formation of this vortices will be given in Chapter 3.

In order to compare the flow behavior of the quasi-stagnation region observed in the pre-
vious results, two more experiments where carried out, where we can visualize the results
for an applied direct current of 650 mA in Figure 1.11 and for an applied direct current
of 750 mA in Figure 1.12. The results at different instants of time of the experiment
applying I =650 mA can be observed in Figure 1.11a). First, the velocities inside the
quasi-stagnation zone have positive tendency about y−axis. Then, the velocities are al-
most parallel respect to the x−axis (see Fig. 1.11b)). Figure 1.11c) showing a reduction
of velocities in the quasi-stagnation region, while Figure 1.11d) shows the formation of a
symmetric internal nested dipolar vortex. In the same picture, the velocity fields reveal
an elongation of the internal vortices in positive y-direction. A similar elongation of the
internal vortices appears in the experimental results where we applied a current of 750
mA. In this visualizations, first, a reduction of velocities is observed in Figure 1.12a).
Then in the quasi-stagnation zone of Figure 1.12b), positive y−direction velocities ap-
pear. Finally, in Figures 1.12c) and 1.12d), a symmetric internal nested dipolar vortex
appear.

From the previous experimental results we can conclude that the motion of the liquid
metal produced by Lorentz forces present a flow pattern formed by six vortices, two
external vortices, two internal vortices and a nested internal dipolar vortex. In fact, the
results presented in Figure 1.6 where we can observe five direction changes of velocity, in
agreement with the observations shown in the PIV measurements.
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Figure 1.10: Four subsequent time instants of the PIV central experiment to analyze the
quasi-stagnation zone. Applied electric direct current of 350 mA.
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Figure 1.11: Four subsequent time instants of the PIV central experiment. Applied
direct electric current of 650 mA.
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Figure 1.12: Four subsequent time instants of the PIV central experiment. Applied
direct electric current of 750 mA.





Chapter 2

Two-dimensional analytical model

In this chapter, we establish the basic MHD equations from the coupling of the fluid me-
chanics with electromagnetic field equations. Particularly, we present the non-dimensional
MHD equations in a purely two-dimensional approach. From this set of equations, an an-
alytical solution is found for small Reynolds and Hartmann numbers of order 10. The
results from this analytical solution are presented.

2.1 Background

The governing equations that describe the flow of an incompressible, electrically con-
ducting fluid under the influence of magnetic fields involve the fundamental equations of
fluid dynamics, as the continuity and Navier-Stokes equations, coupled with the Maxwell
equations, Ohm’s law and the equation for the Lorentz force. The fundamental MHD
equations can be established in the so-called ϕ−formulation, which implements the elec-
tric potential as electromagnetic variable; j− formulation, based on the induced electric
current density, proposed by Smolentsev et al. (2010), or B−formulation, based on the
induced magnetic field, which is used in the present work.

2.1.1 Equations of fluid mechanics

From the fluid mechanics point of view, the most important physical quantities that
define a fluid flow in space and time, are the density, viscosity, pressure, velocity and,
temperature (Gary Leal, 2007). In several practical applications, both gases and liquids
can be considered as incompressible fluids, which means that their density is constant.
In particular, the eutectic GaInSn alloy used in the experimental conditions presented in
this work can be assumed as incompressible. Thus, the mass conservation equation can
be expressed as:

∇ · u = 0, (2.1)

where u is the velocity field. On the other hand, the liquid metal is a Newtonian fluid
whose motion can be described by the Navier-Stokes equation, namely,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + η∇2u+ f, (2.2)

29
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where ρ, η, P , f are the mass density and dynamic viscosity of the fluid, pressure and
external body forces, respectively. In the present case the external force for an electrically
conducting fluid interacting with an electromagnetic field, is the so-called Lorentz force,
expressed by f = j × B, where j is the electric current density, and B is the applied
magnetic field. Then, the Navier-Stokes equation is rewritten as

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + η∇2u+ j×B. (2.3)

Additionally, energy conservation equation for a Newtonian fluid with electromagnetic
interactions, takes the form:

ρCP

(
∂T

∂t
+ (u · ∇)T

)
= ∇ · (k∇T ) + j2

σ
+ Φν , (2.4)

where CP is the heat capacity at constant pressure, T the temperature, k the thermal
conductivity, σ the electric conductivity of the medium, and Φν the viscous dissipation
function. The second term of the right-hand side of Equation (2.4) is the Joule dissipation
owing to the electric currents circulating in the fluid. Since the density is considered
constant, the Equation (2.4) is decoupled from the Equations (2.1) and (2.3), hence, the
energy conservation equation (2.4) is not considered in this work. Evidently, Lorentz
force appears in the Navier-Stokes equation, and introduces additional electromagnetic
variables. For completing the system of equations, we have to consider the Maxwell
equations and the Ohm’s law which will be described in the next Subsection.

2.1.2 Maxwell equations

The laws of electromagnetism that describe the electromagnetic fields in different me-
dia can be mathematically expressed through the so-called Maxwell equations. These
equations, together with the Lorentz force equation, establish the interactions of electro-
magnetic fields. In a homogeneous, isotropic and linear medium, the macroscopic Maxwell
equations are written in differential form as

∇ · E =
ρe
ϵ
, (2.5)

∇ ·B = 0, (2.6)

∇× E = −∂B
∂t
, (2.7)

∇×B = µj+ µϵ
∂E

∂t
, (2.8)
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where Equation (2.5) is known as Gauss’ law and relates the electric field, E, to the total
electric charge density, ρe, and ϵ, the electric permittivity of the medium. Gauss’ law
for magnetism (Eq. 2.6) expresses the non-existence of magnetic monopoles or isolated
magnetic charges, where B is the magnetic induction. Faraday’s induction law (Eq. 2.7)
establishes the possibility of generating electric fields from temporal variations of the
magnetic field. Ampère-Maxwell law (Eq. 2.8) states that magnetic fields can be pro-
duced by means of electric currents and time variations of the electric fields. The original
Ampère’s law only contemplates the first right-hand side term of the Equation (2.8), while
the second term represents the displacement current, known as the Maxwell correction
term, fundamental in the description of radiative phenomena. In this equation, µ is the
magnetic permeability of the medium, and, for the case of liquid metals, a very good ap-
proximation is done by setting µ = µ0, where µ0 is the vacuum permeability (Davidson,
2001).

In addition to Maxwell equations, we obtain the conservation equation for the electric
current density applying the divergence operator to the Ampère-Maxwell law (Eq. 2.8)
and using Equation (2.5) to yield:

∇ · j+ ∂ρe
∂t

= 0. (2.9)

Additionally, we have to use Ohm’s law, which is a constitutive equation that relates the
electric current density with both, the electric and magnetic fields present in the medium,
namely, in the liquid metal layer. In the laboratory frame of reference with respect to
which the fluid moves with a velocity u, Ohm’s law is expressed as

j = σ(E+ u×B) + ρeu, (2.10)

where the term ρeu is called convection current.

Finally, the Lorentz force f in a conductive fluid medium under the presence of the electric
and magnetic fields is expressed as

f = ρeE+ j×B. (2.11)

2.1.3 MHD approximation

In order to couple the fluid dynamics equations (no relativistic and invariant to Galilean
transformations) with the electromagnetic field equations (relativistic and invariant to
Lorentz transformations), we make use of the MHD approximation to make them com-
patible. In summary, the MHD approximation is based on the following assumptions
(Shercliff, 1965):
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1. Fluid velocity is much smaller than the velocity of light |u| ≪ c2, i.e., relativistic
phenomena are not considered.

2. Electric fields are of the order of magnitude of induced effects by the fluid motion,
namely, u×B.

3. The phenomena considered involve only variations at low frequencies, hence the
displacement current (the last term in the Equation 2.8) is negligible compared to
the conduction current density j in Ampère-Maxwell law. Electromagnetic radiation
phenomena is not considered.

Under the MHD approximation, a magnetic field invariance is established in the different
reference systems. Further, the term ρeu in the Ohm’s law (Eq. 2.10), the Maxwell
displacement current in Ampère-Maxwell law and the electric term in the Lorentz force
are negligible as a result of the assumptions. The electromagnetic field equations under
the MHD approximation take the form

∇ ·B = 0, (2.12)

∇× E = −∂B
∂t
, (2.13)

∇×B = µ0j, (2.14)

j = σ(E+ u×B). (2.15)

This set of equations is well known as the electromagnetic field equations in the quasi-static
approximation (Hughes and Young, 1966). Under the MHD approximation, Equation
(2.9) simplifies to

∇ · j = 0, (2.16)

which establishes the conservation of the electric charge (Davidson, 2001). The equations
for electromagnetic field (2.12 - 2.15) and the fluid mechanics Equations (2.1) and (2.3)
form a complete system that can be solved for describing the behavior of an electrically
conductive fluid under the presence of a magnetic field, providing suitable initial and
boundary conditions are given.

2.2 Fundamental MHD equations

Equations (2.12 - 2.15) can be combined to obtain the induction equation for the magnetic
field that describes the transport of magnetic field by convection and diffusion (Müller
and Bühler, 2001). First, we substitute the electric field E obtained from Ohm’s law (Eq.
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2.15) into the Equation (2.13); Faraday’s law (Eq. 2.14) is used to eliminate the electric
current density j, considering Equation (2.12) and that the fluid is incompressible (Eq.
2.1). The resulting expression of the transport of magnetic field is

∂B

∂t
+ (u · ∇)B = λ∇2B+ (B · ∇)u, (2.17)

where λ = 1/µ0σ is the magnetic diffusivity, which is a property of the conducting
medium. In order to solve the system of equations for the experimental conditions pre-
sented in the Chapter 1, we will express in dimensionless form the Equations (2.1) and
(2.3). Particularly, in Equation (2.3), the Lorentz force generates fluid motion as a result
of the interaction of the electric current with the magnetic field in the liquid metal. Ac-
cording to Faraday’s induction law, when the eutectic liquid metal has a relative motion
with respect to the applied magnetic field, an electromotive force, that induces the circu-
lation of an electric current in the liquid metal, is generated. Therefore, in the GaInSn
alloy layer there is a total electric current density, which is the applied current plus the
induced current

j = j0 + ji, (2.18)

where j0 and ji are the applied and induced electric currents, respectively. In accordance
with Ampère’s law, these currents generate magnetic fields, therefore, the total magnetic
field is the applied one (B0) plus the field induced by the current circulating in the fluid
(b), that is,

B = B0 + b. (2.19)

The induced currents ji produce electromagnetic induced forces that act in the opposite
direction to the Lorentz force produced by the interaction of applied magnetic field and
electric current. Therefore, while applied forces drive the motion of the fluid, induced
forces act to brake it.

In order to present the dimensionless form of the governing equations, we follow the di-
mensionless procedure presented by Figueroa et al. (2009), which consider the parameters
that can be controlled externally, such as the magnetic field strength and the applied
current density, in addition to the properties of the liquid metal such as density, kine-
matic viscosity, magnetic permeability and electrical conductivity. Taking into account
the above properties, we can present the following dimensionless variables, denoted with
an asterisk:

u∗ =
u

u0
, P ∗ =

P

ρu20
,

j∗ =
j

j0
, B0∗ =

B0

Bm

,
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b∗ =
b

RmBm

, x∗ =
x

L
,

t∗ =
t

L2/ν
, u∗0 =

ν

L
,

where L is the side length of the magnet, which is the characteristic length; u0 = ν/L is the
viscous velocity; Rm = µ0σLU0 is the dimensionless parameter called magnetic Reynolds
number, where U0 = j0BmL

2/ρν is the characteristic velocity; and Bm is the maximum
magnetic field strength. When we use all these variables, the continuity, Navier-Stokes
and magnetic induction equations can be expressed in dimensionless form as

∇ · u = 0, (2.20)

∂u

∂t
+ (u · ∇)u = −∇P +∇2u+Re(j×B0) +ReRm(j× b), (2.21)

Rm
∂b

∂t
= ∇2b+ (B0 · ∇)u− (u · ∇)B0 +Rm(b · ∇)u−Rm(u · ∇)b, (2.22)

where

Re =
U0L

ν
, (2.23)

represents the Reynolds number Re, that relates the inertial forces and viscous forces, in
turn, the magnetic Reynolds number Rm, gives an estimation of the ratio of the magnetic
field induced by the fluid motion and the applied external field B0. In most liquid metals
flows Rm is very small, i.e., Rm is much less than unity, which means that the magnetic
field induced by the fluid motion is much smaller than the applied magnetic field. This
assumption reduces Equations (2.21) and (2.22) so that the governing equations that
describe the motion of a viscous, incompressible and electrically conductive fluid under
the presence of a magnetic field are

∇ · u = 0, (2.24)

∂u

∂t
+ (u · ∇)u = −∇P +∇2u+Re(j×B0), (2.25)

∇2b = (u · ∇)B0 − (B0 · ∇)u (2.26)

∇ · b = 0, ∇× b =
1

N
ji, (2.27)
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∇ ·B0 = 0, ∇×B0 = 0, (2.28)

where N is the interaction parameter or Stuart number, which estimates the ratio of
Lorentz forces to inertial forces, and is given by

N =
σLB02

ρU0

. (2.29)

This parameter can also be expressed as N = Ha2/Re. Equations (2.27) and (2.28) are
the result of the substitution of Equations (2.18) and (2.19) into Gauss’ law and Ampère’s
law.

2.3 Two-dimensional approximation

In fluid dynamics, several flow situations can be analyzed using two-dimensional approxi-
mations, when the variations in the direction normal to the plane of motion is very small.
For instance, a fluid flow that is confined in a Hele-shaw cell can be experimentally an-
alyzed using a two-dimensional approach, since the separation between the two plates of
the cell is very small compared to the length and width of the cell(Klaasen et al., 2014).
Also, in fluid motion generated by electromagnetic forces under strong magnetic fields,
the velocity component in the same direction in which the magnetic field is applied can be
neglected, since it is almost suppressed due to magnetic effects (Sommeria, 1988, 1986).
On the other hand, the geometric confinement of fluids in very thin layers, in which the
height of the fluid layer is much smaller than the other dimensions of the container, pro-
motes the damping of fluid motion in the normal direction to the layer. Therefore, this
assumption allows modeling the fluid behavior using a quasi-two-dimensional approach.
In Afanasyev and Korabel (2006), the authors mentioned that, although the quasi-two-
dimensional model is a simplification, the results of the approximation are in very good
agreement with those obtained experimentally. In previous investigations, theoretical
and experimental studies of flows produced by electromagnetic forces in thin layers of
electrolytes and liquid metals have been performed. The behavior of electromagnetically
driven flows can be modeled analytically or numerically in two-dimensions (Salas et al.,
2001; Cuevas et al., 2002) or quasi-two-dimensionally (Figueroa et al., 2009, 2011; Lara
et al., 2017). Since the results of these approximations are in good agreement with the ex-
perimental observations, in this chapter, a two-dimensional model is developed and solved
analytically for the case of a flow produced by electromagnetic forces under a non-uniform
magnetic field in a thin liquid metal layer. In Chapter 3, we use a quasi-two-dimensional
approximation to obtain numerical solutions that can describe more features of the flow
under different conditions (Lara et al., 2017). In order to obtain a purely two-dimensional
approximation, the dependence on the z−coordinate is neglected, so that the velocity
field is
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u = [u(x, y, t), v(x, y, t), 0]. (2.30)

In this approximation, we consider only the component of the magnetic field normal to
the (x − y) plane. Therefore, the applied and induced magnetic fields are, respectively,
represented by

B0 = [0, 0, B0
z (x, y)], (2.31)

b = [0, 0, bz(x, y)]. (2.32)

From Ampère’s law and the Equation (2.27b), we can calculate the induced currents in
the same plane of the flow. So that the total current density (applied plus induced) is
expressed in dimensionless terms as

j = [1 + jix(x, y, t), j
i
y(x, y, t), 0], (2.33)

where the unit term in the x−component represents the applied current density, nor-
malized with its magnitude. From these assumptions, the two-dimensional model that
represents the flow of a liquid metal layer due to the interaction of an applied current and
a localized magnetic field can be reduced to (Figueroa, 2006):

∂u

∂x
+
∂v

∂y
= 0, (2.34)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+
∂2u

∂x2
+
∂2u

∂y2
+RejiyB

0
z , (2.35)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+
∂2v

∂x2
+
∂2v

∂y2
−ReB0

z −RejixB
0
z , (2.36)

∂2bz
∂x2

+
∂2bz
∂y2

− u
∂B0

z

∂x
− v

∂B0
z

∂y
= 0. (2.37)

Once bz is determined, from Ampère’s law (Eq. 2.27b) the components of the induced
current can be calculated by

jix = N
∂bz
∂y

, jiy = −N ∂bz
∂x

. (2.38)

The closed system of Equations (2.34 - 2.38) will now be solved analytically. In the
following section, the procedure for obtaining the analytical solution is presented, and
later the numerical strategy to solve the model is also described.
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2.4 Analytical model

Analytical models are a basic tool in fluid mechanics, since they allow reproducing, under
certain conditions, different physical features of the flows. Under two-dimensional ap-
proximations, Moffatt and Toomre (1967) and Cuevas et al. (2002) studied analytically
the magnetic braking in electrically conducting fluids. The authors studied the effect of
a transverse magnetic field on the development of a jet, and on steady streaming vortices
generated by oscillatory viscous flow over a wavy wall, respectively. In both cases, it was
found that the magnetic field tends to annihilate the fluid motion. Another example in
which an analytical solution is developed for a boundary layer flow under an applied mag-
netic field was presented by Cuevas and Ramos (1997). The authors demonstrated that,
if the magnetic field is very intense, the fluid motion is damped until being completely
annihilated. On the other hand, analytical models have also been used as fundamental
tools for understanding the flow dynamics generated in liquid metals (Pothérat et al.,
2000) and electrolytes (Pérez-Barrera et al., 2016) by means of electromagnetic forces.
In all these studies, the mathematical treatments are directed to analyze specific flow
characteristics since, as it is well known, applicability of analytical solutions is limited
to simplified situations of the fluid dynamics and electromagnetic equations, thus, they
do not allow to explore completely the flow behavior. Nevertheless, they are a valuable
tools for the understanding of the basic physics of different phenomena, as well as a val-
idation tool for more complex solutions, such as those provided by numerical codes. In
this project, we developed an analytical model in two dimensions for describing the flow
generated in a liquid metal layer by the interaction of a direct electric current and the
magnetic field produced by a single permanent magnet. The governing equations (Eqs.
2.34 - 2.38) are solved through the perturbation method; first, for it is required to rewrite
the Equations (2.35) and (2.36) using the definition of vorticity:

ωz =
∂v

∂x
− ∂u

∂y
, (2.39)

where ωz is the z−component of the vorticity. In this way, the momentum equation can
be written as the vorticity transport equation, namely,

∂ωz

∂t
+ u

∂ωz

∂x
+ v

∂ωz

∂y
=
∂2ωz

∂x2
+
∂2ωz

∂y2
−Re

∂B0
z

∂x
−Re

∂(jixB
0
z )

∂x
−Re

∂(jiyB
0
z )

∂y
. (2.40)

Applying the electric charge conservation ∇ · ji = 0, in Equation (2.40), the expression
takes the form

∂ωz

∂t
+ u

∂ωz

∂x
+ v

∂ωz

∂y
=
∂2ωz

∂x2
+
∂2ωz

∂y2
−Re

∂B0
z

∂x
−Re

(
jix
∂B0

z

∂x
+ jiy

∂B0
z

∂y

)
. (2.41)

In the last term of Equation (2.41), the induced currents are replaced by Equations (2.38),
so that the vorticity equation is given by
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∂ωz

∂t
+ u

∂ωz

∂x
+ v

∂ωz

∂y
=
∂2ωz

∂x2
+
∂2ωz

∂y2
−Re

∂B0
z

∂x
−Ha2

(
∂bz
∂y

∂B0
z

∂x
− ∂bz
∂x

∂B0
z

∂y

)
. (2.42)

On the right-hand side term of this equation, the third term represents the applied Lorentz
force that produces the fluid motion, while the terms in parenthesis represent the induced
electromagnetic forces acting in the opposite direction of the produced motion.

2.4.1 Applied magnetic field

In Equation (2.42), the magnetic field is modeled using the equation provided by Good
and Nelson (1971), which describes the field produced by a point magnetic dipole located
at the origin of the reference system. Since a two-dimensional model is considered, we
only take into account the dominant contribution of the magnetic field produced by the
ideal dipole in the normal direction to the x− y plane, in which the fluid layer is located.
Then, the two-dimensional point magnetic dipole can be expressed in dimensional form
as

B0
z(x, y) =

µ0

2π

m

x2 + y2
+ µ0mδ(x)δ(y), (2.43)

where B0
z is the z−component of the magnetic field, µ0 is the magnetic permeability and

m denotes the dipole moment pointing in the z−direction. The first right-hand side term
in Equation (2.43) represents the contribution of the magnetic field outside the origin
where the dipole is located, while the second term considers the value of the field at the
origin. The Dirac delta function takes into account the singularity of the dipole field. The
magnetic field B0

z written in dimensionless form is normalized by Bm = µ0m/L
2, where

L is a characteristic length. For practical purposes, we assume that is Bm = 1 so that
the characteristic length is chosen as L =

√
µ0m (Cuevas et al., 2006). Therefore, the

dimensionless magnetic field for a point dipole at the origin is

B0
z(x, y) =

1

2π

1

x2 + y2
+ δ(x)δ(y). (2.44)

In Equation (2.44) only the second right-hand side term gives a non-zero contribution
to the magnetic field value. On the other hand, note that this equation does not fulfill
the curl-free condition (Eq. 2.28b), since it only considers the normal component of the
magnetic field. However, Equation (2.44) provides a good description of the field for a
finite magnetic dipole.

2.4.2 Boundary and initial conditions

Physically, the working fluid is contained in a rectangular box. Nevertheless, we assume
that the fluid is in an infinite domain to simplify the mathematical problem. This as-
sumption allows us to consider that far away from the origin, the magnetic field produced



2.4. Analytical model 39

by the dipole is negligible, therefore, there is no electromagnetic force to produce motion,
and then the fluid remains static. Under this assumption, we consider that far away from
the origin, the induced magnetic field is zero. Then at infinity:

u→ 0, v → 0, P → constant, bz → 0 as x, y → ±∞. (2.45)

On the other hand, the magnetic field has a finite value at the point where the ideal
dipole is located. Hence, the velocity, pressure and induced magnetic field are also finite,
namely,

u→ finite, v → finite, P → finite, bz → finite as x, y → 0. (2.46)

Initially, the fluid is at rest. Therefore, the initial condition is

u = v = 0, P = constant, bz = 0 at t = 0. (2.47)

2.4.3 Analytical solution

For the analytical solution, Equation (2.42) is solved using the expansions of the variables
in terms of Reynolds and Hartmann parameters. Considering that the Reynolds number
is very small (Re ≪ 1) and the product of Reynolds times Hartmann is small, we can
carry out the expansion of variables as

ξg = ξ(0)g +ReHa0ξ(1,0)g +ReHa2ξ(1,2)g +O(Re2Ha2), (2.48)

where ξg can be replaced by the velocity components (u, v), vorticity (ωz), induced mag-
netic field (bz) or pressure (P ), and the superscript represents the order of approximation
in each parameter. For instance, the expansion for vorticity is expressed as

ωz = ω(0)
z +ReHa0ω(1,0)

z +ReHa2ω(1,2)
z +O(Re2Ha2). (2.49)

In Equation (2.49), the terms at O(Re2Ha2) or greater can be neglected, since their
contribution is very small. Therefore, we only solve for the first three terms of the series.

A. Zero-order solution

At zero-order, the vorticity satisfies

∂ω
(0)
z

∂t
+ u(0)

∂ω
(0)
z

∂x
+ v(0)

∂ω
(0)
z

∂y
=
∂2ω

(0)
z

∂x2
+
∂2ω

(0)
z

∂y2
. (2.50)

In this case, it does not exist a source term that promotes motion of the fluid, so that it
is kept at rest. Consequently, the solution at this order is
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ω(0)
z = 0, u(0) = 0, v(0) = 0. (2.51)

At O(Re0Ha0) the solution of the pressure is a constant; and the induced magnetic field
and induced currents are

b(0)z = 0, ji(0)x = 0, ji(0)y = 0. (2.52)

B. First-order solution

The vorticity equation at O(ReHa0) is given by

∂ω(1,0)

∂t
=
∂2ω

(1,0)
z

∂x2
+
∂2ω

(1,0)
z

∂y2
+
∂B0

z

∂x
, (2.53)

where the last right-hand side term is a source that produces motion in the fluid. The
positive sign in the derivative of the applied electromagnetic term is the result of imposing
a negative magnetic field in order to reproduce an applied field with a positive and negative
distribution, similar to that measured experimentally. Taking into account that only the
delta function term in Equation (2.44) gives a non-zero contribution in the z−component
of the magnetic field, we solve Equation (2.53) through the Green’s function method in
an infinite domain (−∞ < x < ∞ and −∞ < y < ∞) for t > 0, using as the initial

condition w
(1,0)
z = 0 at t = 0 (Özişik, 1993). Then, the solution of Equation (2.44) is:

ω(1,0)
z = − 1

2π

x

x2 + y2
e−

x2+y2

4t . (2.54)

A similar solution is presented in Salas et al. (2001). The steady-state solution can be
computed from Equation (2.54) when t→ ∞, which is expressed by

ω(1,0)
z = − 1

2π

x

x2 + y2
. (2.55)

Both the solution for unsteady and steady-state vorticity have a singularity at the origin
that does not allow to satisfy the boundary condition shown in Equation (2.46), this
feature is a consequence of the point dipole magnetic field used for the solution of Equation
(2.53). Nevertheless, in the corresponding results for this section, it will be shown that,
although the solution has a singularity at the origin, the analytical and experimental
comparisons are in good qualitative agreement. Once the vorticity is known, we can
obtain the stream function at O(ReHa0) by solving the equation

∂2ψ(1,0)

∂x2
+
∂2ψ(1,0)

∂y2
= −ω(1,0)

z . (2.56)

Applying the boundary conditions (Eqs. 2.45−2.46), the solution for Equation (2.56) is
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ψ(1,0) = − x

8π

[
1− ln(x2 + y2)

]
. (2.57)

Further, we can use the stream function definition

u =
∂ψ

∂y
, v = −∂ψ

∂x
, (2.58)

for obtaining the velocity components

u(1,0) =
1

4π

xy

x2 + y2
, (2.59)

v(1,0) =
1

8π

[
1− ln(x2 + y2)− 2x2

x2 + y2

]
. (2.60)

These expressions do not satisfy all the boundary conditions, since they present the same
singularity at the origin derived from the applied magnetic field used for the solution of
Equation (2.53). On the other hand, the condition at infinity is not satisfied due to a
problem intrinsic to the approximation Re ≪ 1 (Figueroa, 2006). For the problem we
are analyzing, it is difficult to specify the region of study in which the solution is valid,
and to be able to define it requires a more detailed analysis. Despite the limitations of
this analytical solution, the results obtained with this approach are interesting to analyze.

The equation for pressure at O(ReHa0) is given by

∂2P (1,0)

∂x2
+
∂2P (1,0)

∂y2
=
∂B0

z

∂y
. (2.61)

This expression is solved analogously to Equation (2.53), resulting in

P (1,0) =
1

2π

y

x2 + y2
. (2.62)

Once the velocity components are calculated, the induced magnetic field can be deter-
mined from

∂2b
(1,0)
z

∂x2
+
∂2b

(1,0)
z

∂y2
= u(1,0)

∂B0
z

∂x
+ v(1,0)

∂B0
z

∂y
. (2.63)

Here, for simplicity, we use a Gaussian distribution for approximating the z−component
of the applied magnetic field through the equation

B0
z(x, y) =

n

π
e−n(x2+y2) for n > 0, (2.64)
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since this is a good approximation of the product of the Dirac delta functions presented
in Equation (2.44). Besides, Equations (2.44 and 2.64) have a similar distribution around
the origin, and the integration of both expressions into the infinite domain is equal to 1.
Hence, taking into account a negative magnetic field, the solution for Equation (2.63) is

b(1,0)z = − y

16π2(x2 + y2)

{[
1− n(x2 + y2)

]
Ei
[
− n(x2 + y2)

]

−e−n(x2+y2) ln(x2 + y2)
}
, (2.65)

where the Ei function is defined as

Ei = −
∫ ∞

−Γ

e−t

t
dt, for Γ > 0. (2.66)

The induced magnetic field (Eq. 2.65) has a good behavior at infinity, but diverges
at the origin, similar to the solutions of the other variables. From the solution of the
induced field, and using Ampère’s law (Eq. 2.38), we can calculate the induced currents
at O(ReHa0) as

ji(1,0)x = − Ne−n(x2+y2)

16π2(x2 + y2)2

{[
y2 + 2ny2(x2 + y2)− x2

]
ln(x2 + y2)

−en(x2+y2)Ei
[
− n(x2 + y2)

][
y2 + n(x2 + y2)2 − x2

]

−2ny2(x2 + y2)
}
, (2.67)

ji(1,0)y = −Nxye
−n(x2+y2)

8π2(x2 + y2)2

{
n(x2 + y2) + en(x

2+y2)Ei
[
− n(x2 + y2)

]

−
[
1 + n(x2 + y2)

]
ln(x2 + y2)

}
. (2.68)

The expressions obtained for the induced current density (Eqs. 2.67−2.68) do not satisfy
the boundary condition at the origin, since its solution is derived from the induced mag-
netic field. However, the results for the induced current that we will be shown later, are
a good qualitative representation of the phenomena at hand.

C. Second-order solution

The second part of the analytical model consists of solving Equation (2.42), considering
the induced electric currents at O(ReHa0). Therefore, the contribution of the vorticity
at O(ReHa2) is obtained through Equation (2.42), reduced to



2.4. Analytical model 43

∂2ω
(1,2)
z

∂x2
+
∂2ω

(1,2)
z

∂y2
=
∂b

(1,0)
z

∂y

∂B0
z

∂x
− ∂b

(1,0)
z

∂x

∂B0
z

∂y
, (2.69)

where the fluid motion is produced by the induced magnetic field at O(ReHa0) (Eq.

2.65). However, to solve Equation (2.69), the value of b
(1,0)
z is only replaced by

b(1,0)z =
y

16π2(x2 + y2)
, (2.70)

because the second right-hand side term of Equation (2.65) is negligible with respect to
the first right-hand side term of the induced magnetic field. However, the negative sign of
the second term is considered in this solution. The applied magnetic field is replaced by
Equation (2.64). Applying the boundary conditions (Eqs. 2.45−2.46) and the computed
expressions for the applied and induced magnetic fields, the solution for the vorticity at
O(ReHa2) is

ω(1,2)
z = − nx

32π3

{
1

x2 + y2
e−n(x2+y2) + nEi

[
− n(x2 + y2)

]}
. (2.71)

From Equation (2.71), we can obtain the stream function at O(ReHa2)

∂2ψ(1,2)

∂x2
+
∂2ψ(1,2)

∂y2
= −ω(1,2)

z . (2.72)

Applying the boundary conditions (Eqs. 2.45−2.46), the solution is given by

ψ(1,2) =
xe−n(x2+y2)

256π3(x2 + y2)

{
1 + n(x2 + y2)

+n(x2 + y2)
[
n(x2 + y2) + 2

]
en(x

2+y2)Ei
[
− n(x2 + y2)

]}
. (2.73)

Once the stream function is known, we can calculate the velocity components so that

u(1,2) =
xye−n(x2+y2)

128π3(x2 + y2)2

{
− 1 + n(x2 + y2)

+en(x
2+y2)n2(x2 + y2)2Ei

[
− n(x2 + y2)

]}
, (2.74)

v(1,2) = − e−n(x2+y2)

256π3(x2 + y2)2

{
3nx4 + y2 + ny4 + x2(−1 + 4ny2)

+en(x
2+y2)n(x2 + y2)2

[
2 + n(3x2 + y2)

]
Ei
[
− n(x2 + y2)

]}
. (2.75)



44 Chapter 2. Two-dimensional analytical model

On the other hand, the induced magnetic field at O(ReHa2) satisfies the equation

∂2b
(1,2)
z

∂x2
+
∂2b

(1,2)
z

∂y2
= u(1,2)

∂B0
z

∂x
+ v(1,2)

∂B0
z

∂y
, (2.76)

where the applied magnetic field is replaced by Equation (2.64). The solution for Equation
(2.76) is

b(1,2)z =
nye−2n(x2+y2)

512π4(x2 + y2)

{
3 + 4e2n(x

2+y2)
[
− 1 + n(x2 + y2)

]
Ei
[
− 2n(x2 + y2)

]

+en(x
2+y2)

[
4 + n(x2 + y2)

]
Ei
[
− n(x2 + y2)

]}
. (2.77)

Once the induced magnetic field is known, the induced current density can be calculated
from Equation (2.38), resulting in

ji(1,2)x =
nNe−n(x2+y2)(2+x2+y2)

512π4(x2 + y2)2

{
3x2en(x

2+y2)2 + 16y2en(x
2+y2) − 11y2en(x

2+y2)2

+4nx2y2en(x
2+y2) − 4nx2y2en(x

2+y2)2 + 4ny4en(x
2+y2) − 4ny4en(x

2+y2)2

+4en(x
2+y2)(2+x2+y2)

[
nx4 + y2 + ny4 + x2(−1 + 2ny2)

]
Ei
[
− 2n(x2 + y2)

]

−en(x2+y2)(1+x2+y2)
[
nx4(−1 + 2ny2) + y2(4 + 7ny2 + 2n2y4)

+x2(−4 + 6ny2 + 4n2y4)
]
Ei
[
− n(x2 + y2)2

]}
, (2.78)

ji(1,2)y =
nNxye−n(x2+y2)(2+x2+y2)

256π4(x2 + y2)2

{
− 8en(x

2+y2) + 7en(x
2+y2)2 − 2nx2en(x

2+y2)

+2nx2en(x
2+y2)2 − 2ny2en(x

2+y2) + 2ny2en(x
2+y2)2

−4en(x
2+y2)(2+x2+y2)Ei

[
− 2n(x2 + y2)

]

+en(x
2+y2)(1+x2+y2)

[
2 + n(x2 + y2)

]2
Ei
[
− n(x2 + y2)2

]}
. (2.79)

The pressure equation can be known once the induced current density is found. However,
the pressure at O(ReHa2) is not solved due to its high complexity.

D. Superposition of the solutions

Finally, the flow patterns produced by the interaction of the applied and induced Lorentz
forces and the localized magnetic field is obtained by the superposition of the previous
solutions (Eqs. 2.57 and 2.73), that is
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ψ = Reψ(1,0) +ReHa2ψ(1,2), (2.80)

Then, the total stream function is expressed by

ψ = Re
x

8π

{
− 1 + ln(x2 + y2) +Ha2

e−n(x2+y2)

32π2(x2 + y2)

{
1 + n(x2 + y2)

+n(x2 + y2)
[
n(x2 + y2) + 2

]
en(x

2+y2)Ei
[
− n(x2 + y2)

]}
}
. (2.81)

Equation (2.81) can be used for computing the flow streamlines produced by electromag-
netic forces, both in liquid metals and electrolytes. For liquid metals, we consider the
total stream function (Eq. 2.81), while, for electrolytes we only consider the first order
term of Equation (2.80), since in a low conductivity fluid the Hartmann number is very
small, and induced currents can be neglected.

2.4.4 Results

The solutions at O(ReHa0) and O(ReHa2), and their superposition, are presented below
in order to compare and analyze the flow patterns for the different orders of approximation.
The parameters used in the analytical expressions were Re = 0.1 and Ha = 15. The
domain presented in the graphs is the square −2 ≤ (x, y) ≤ 2, although, in some cases, a
close-up is performed in the geometric center to improve the visualization of the flow.

A. At O(ReHa0)

The analytical expressions for the variables presented at O(ReHa0) can reproduce some
features of the flow behavior generated by an electromagnetic force interacting with a
negative point magnetic dipole in low conductivity fluids, for instance, in an electrolyte.
The velocity field calculated with the velocity Equations (2.59) and (2.60) is shown in
Figure 2.1a), in which a dipolar vortex is clearly observed, i.e., a pair of vortices rotat-
ing in opposite direction, the left-vortex rotates counterclockwise, and the right-vortex
rotates clockwise. The point magnetic field is located at the geometric center, where the
velocity magnitude is maximum since the Lorentz force is concentrated at this point, and
is directed in the positive y−direction. The streamlines for the flow field can be observed
in Figure 2.1b), in which it is shown that the vortices are symmetrical in both x− and
y−axes. In this flow, convective effects are negligible, and it is dominated completely by
the diffusive effects for a Re≪ 1.
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Figure 2.1: Analytical solution at O(ReHa0) of the fluid motion generated by a uni-
form current in the x−direction interacting with a point magnetic dipole located at the
origin. a) Velocity vector field and b) Streamlines produced by a Lorentz force in a low
conductivity fluid. Re = 0.1.
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Figure 2.2: Velocity profiles at O(ReHa0). a) u−component and b) v−component of
the velocity as functions of y, for fixed x. Re = 0.1.

Figure 2.2a) shows the velocity profiles of the u−component as a function of the vertical
y−coordinate, for two fixed x values. For x = 0.05, the change in the sign of the velocity
is because the right vortex rotates clockwise and, as a consequence, the velocity profile
shows negative values for negative y values. Then, it crosses the geometric center and
acquires positive values for positive y values. It is worth noting that the larger absolute
values for this component are located near the origin, and then vanish as |y| tends to
zero. The profile x = −0.05 shows the inverse behavior as its x = 0.05 counterpart,
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because it describes the behavior of the u−component of the left vortex, which rotates
counterclockwise.

The velocity profiles of v−component as a function of the y−coordinate, for two different
fixed x values are shown in Figure 2.2b). For both profiles, the velocity tends to decrease
as we move away from the point magnetic field, and increases its magnitude until reaching
a maximum at the geometric center. In the corresponding profile for x = 0.05, we can
observe a local maximum at y = 0, owing to the changes in the velocity direction when
crossing to the right vortex. For higher x values, the profile behavior is similar to the
profile of x = 0.05. Unlike the u−component profiles, these profiles have the same behavior
for equal distances in the corresponding negative x−direction.

B. At O(ReHa2)

At O(ReHa2), the analytical solution can reproduce the flow behavior produced by in-
duced electromagnetic forces in high conductivity fluids, such as liquid metals. At this
order, the velocity Equations (2.74) and (2.75) are used for obtaining the velocity field
shown in Figure 2.3a), in which counter-rotating vortices are observed. The left vortex ro-
tates clockwise, whereas the right vortex rotates counterclockwise. In the geometric center
there is a singularity, as the one that exists in the applied magnetic field. The induced
Lorentz force takes negative values on the y−direction due to the induced electric currents
that travel in the opposite directions to the applied currents. The streamlines are shown in
Figure 2.3b), where a symmetrical vortex, in both the x−axis and the y−axis, is observed.

The velocity profiles of the u−component as a function of the y−axis, for two fixed x
values, are shown in Figure 2.4a). Along the y−axis, the profile x = 0.05 becomes larger
as x approaches zero, then it crosses the geometric center, and decreases to negative
values. The change in the velocity direction of the profile is owing to right-vortex rotating
counterclockwise. The profile x = −0.05 is inverse to the profile x = 0.05 because it
describes the behavior of left-vortex, which rotates clockwise. The profiles shown in
Figures 2.2a) and 2.4a), for the u−components of the velocity are inverse for the same
x value because the Lorentz forces that generate the motion of the vortices shown in
Figures 2.1a) and 2.3a), are opposite. In Figure 2.4b) it is shown the v−component of the
velocity as a function of y, for constant x values. Here, both profiles present a symmetry
on the y−axis, reaching a maximum velocity for y = 0. Near the origin, the velocity takes
negative values. The velocity tends to zero as we move away from the point magnetic
field.
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Figure 2.3: Analytical solution at O(ReHa2) of the fluid motion generated by a uniform
current in the x−direction interacting with a point magnetic dipole located at the origin.
a) Velocity vector field and b) Streamlines produced by an induced Lorentz force in a
high conductivity fluid. Re = 0.1, Ha = 15.
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Figure 2.4: Velocity profiles at O(ReHa2). a) u−component and b) v−component of
the velocity as functions of y, for fixed x. Re = 0.1, Ha = 15.

C. Superposition of the solutions

The superposition of the solutions at O(ReHa0) and O(ReHa2) are the analytical result
that describes the flow pattern generated by both, applied and induced electromagnetic
forces in a high conductivity fluid, namely, a liquid metal. The velocity field is calculated
through the superposition of analytical Equations (2.59) and (2.7) for the u−component of
the velocity, and Equations (2.60) and (2.75) for the v−component of the velocity. Unlike
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the simple dipole produced by a localized Lorentz force in a low-conductivity fluid, a more
complex structure is generated in a high-conductivity fluid. In Figure 2.5a) the velocity
field is shown, it can be observed the formation of four vortices, two counter-rotating
external vortices directed in positive y−direction, and a nested counter-rotating internal
dipole. The external left-vortex rotates counterclockwise, and the external right-vortex
rotates clockwise. The internal vortices rotate in opposite direction to the external ones.
The streamlines computed from the velocity field are shown in Figure 2.5b), in which a
pair of nested dipoles are shown. Nested dipolar vortices present a symmetry in both x
and y axes, since in the analytical model, the diffusive effects completely dominate the
flow.
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Figure 2.5: Analytical solution of the flow pattern generated in a high conductivity flow by
electromagnetic forces under a point magnetic dipole. a) Velocity field and b) Streamlines.
Re = 0.1, Ha = 15.

From the results at O(ReHa0) and O(ReHa2), we can conclude that the induced Lorentz
force travels in the opposite direction to the applied Lorentz force, i.e., it opposes to the
motion of the fluid. Therefore, while the external dipole is generated by the applied elec-
tromagnetic force, resulting from the interaction of the applied current with a negative
point magnetic dipole; the internal dipole is produced by the induced Lorentz force gen-
erated by the interaction of the induced currents with the applied magnetic field.

In Figure 2.6, it is shown the u−component of the velocity as a function of x and y, respec-
tively. Both components show equal maximum values for the same values of x and y. If we
observe the profile for y = −0.05 or x = −0.05, the profiles exhibit null values away from
the point magnetic field, and near the origin, the velocity takes negative maximum values
in the third quadrant, then it crosses the geometric center and takes positive maximum
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Figure 2.6: Velocity profiles of the flow pattern generated in a liquid metal. a)
u−component of the velocity as a function of x for two fixed y values. b) u−component
of the velocity as a function of y for constant x values. Re = 0.1, Ha = 15.

values in the first quadrant. Likewise, we can observe that, in the two Figures, the ve-
locity profiles are inverse for the same value of either x or y, but with a negative direction.

The v−component of the velocity as a function of x and y is shown in Figures 2.7a) and
2.7b), respectively. Figure 2.7a) shows the profile v(x) for two fixed y values, in which
the velocity component is almost zero far away from the point magnetic field. Near the
origin, the velocity is positive. For x = 0 the v−component of the velocity takes its
maximum value. The profile v(y) (Fig. 2.7b) takes negative values in the region of the
magnetic field. For y = 0 the velocity component has its maximum positive value for
both x = 0.03 and x = 0.05. For describing the velocity behavior at values of y ≤ 0.35
and y ≥ 0.35, we perform a close-up (Fig. 2.7c) to the center of Figure 2.7b). Positive
velocities can be observed for those values of y. The velocity profile observed in Figure
2.7b) presents a similar change in direction and behavior such as the experimental profile
v(y) obtained with the UDV method. For y = 0, the qualitative behavior of the analytical
and experimental profiles is different, owing to the singularity present at the geometric
center in the analytical solution.
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Figure 2.7: Velocity profiles of the flow pattern generated in a liquid metal. a)
v−component of the velocity as a function of x for two fixed y values. b) v−component
of the velocity as a function of y for constant x values. c) Close-up to the central region
of b). Re = 0.1, Ha = 15.
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Figure 2.8 shows isolines of vorticity of the flow obtained by means of the superposition
of Equations (2.55) and (2.71), in which we can observe symmetry in both x and y axes,
since as it was commented before at these orders of solution the diffusive effects dominate
the flow.
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Figure 2.8: Isolines of vorticity obtained from the analytical solution. Re = 0.1, Ha = 15.
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Figure 2.9: a) Vorticity as a function of x for two constant y values. b) Vorticity as a
function of y for two fixed x values. Re = 0.1, Ha = 15.

In Figure 2.9a) we can observe the vorticity ωz as a function of x for fixed y values. For
y = 0.05, the vorticity passes from positive to negative values as the geometric center is
crossed. The change of direction in the vorticity is produced by the direction of the vortex
rotation. The profile for the same magnitude, but with opposite direction follows the same
trajectory. Figure 2.9b) shows the vorticity as a function of y for two different x values.
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In y = 0, the vorticity achieves the maximum magnitude. The profiles for x = −0.05 and
x = 0.05 are inverse, since they refer to the left and right vortices, respectively.
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Figure 2.10: Analytical solution for isolines of the induced magnetic field on the x − y
plane. Re = 0.1, Ha = 15.
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Figure 2.11: a) Variation of induced magnetic field, bz as a function of x for y =constant,
and b) bz as function of y for x =constant. Re = 0.1, Ha = 15.

The isolines of the induced magnetic field on the x − y plane are shown in Figure 2.10,
where we observe the nested formation of four closed current trajectories. Figures 2.11a)
and 2.11b) show the induced field, bz, profiles as a function of x or y, respectively. In both
Figures, we observe that the induced magnetic field present the maximum magnitude in
the periphery of the origin. In addition, bz is symmetric on the x−axis; for equal, but
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opposite y values, the profile is inverse. In Figure 2.11b) the profiles are symmetrically
inverse with respect to the y−axis.

The vector field of induced currents obtained with the superposition of Equations (2.67)
and (2.68), for jx, and Equations (2.78) and (2.79), for jy, is shown in Figure 2.12. Here,
the upper external trajectory rotates counterclockwise, while the lower external trajectory
rotates clockwise. The internal trajectories rotate in opposite direction to the external
ones since the direction of current rotation depends on both, the orientation of the applied
magnetic field and the applied electric current. In this case, we imposed a negative and
positive magnetic field in the solution at first and second order, respectively. So that the
positive direction of the external dipole rotation is due to the interaction of the negative
magnetic field and the fluid motion (produced by the interaction between the applied
electric current and the negative magnetic field). The negative direction of the current
rotation in the central dipole is due to the interaction of the positive magnetic field and
the fluid motion (produced by the interaction between the applied electric current and
the positive magnetic field). The induced currents produce induced Lorentz forces that
oppose to the applied ones. In fact, induced Lorentz forces can generate a magnetic
braking that is very noticeable in the region where the applied magnetic field is more
intense.
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Figure 2.12: Vector field of the induced current density. Re = 0.1, Ha = 15.



Chapter 3

Quasi-two-dimensional numerical
model

In Chapter 2, we presented analytic solutions describing the flows generated electro-
magnetically for very small Reynolds numbers. Although the analytical results showed
reasonable qualitative agreement with the experiments, the model presents severe limi-
tations when dealing with larger Reynolds numbers. On the other hand, the analytical
solution also has a singularity at the origin, and the region of application is limited to a
radius R. In order to overcome these limitations, in this Chapter, a quasi-two-dimensional
numerical model, which avoids these types of problems, is proposed. This increases the
range of Reynolds numbers that can be analyzed, so that qualitative and quantitative
comparisons between theoretical and experimental results are improved. In addition to
taking into account the convective term in the quasi-two-dimensional model, the friction
caused by the bottom wall of the container is also considered. From the numerical re-
sults for the velocity field, the Lagrangian trajectories are calculated, which are compared
qualitatively with the experimental visualizations, finding a reasonable agreement.

3.1 Quasi-two-dimensional approximation

Quasi-two-dimensional (Q2D) models for shallow fluid layers have been successfully ap-
plied to study the vortex dynamics in both hydrodynamic (Satijn et al., 2001; ?) and
magnetohydrodynamic flows (Sommeria, 1988; Figueroa et al., 2009, 2014; Lara et al.,
2017; Figueroa et al., 2017). We are particularly interested in simulating the motion in
a thin liquid metal layer driven by electromagnetic forces under non-uniform magnetic
fields, in such a way that a Q2D model is appropriate for flows whose fluid depth is very
small compared to the characteristic lateral dimensions. In these models, governing equa-
tions are integrated in the vertical direction, namely, along the applied magnetic field lines
(Bühler, 1996; Smolentsev, 1997), where the friction effects due to the boundary layer at
the bottom of the container are considered through a linear term in the momentum bal-
ance equations (see Eqs. 3.5 - 3.6). The present model is based on the averaging approach
presented by Figueroa et al. (2009), in which many experimental characteristics, such as
a uniform free surface, the Hartmann and viscous boundary layers, and both the depen-
dence on the z−coordinate, and the accurate distribution of magnetic field produced by
a square permanent magnet, are considered. In this model, the dimensionless dominant
contribution of the magnetic field (Figueroa et al., 2009) is given by
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B0
z(x, y, z) = B0

z(x, y)g(z). (3.1)

As it was previously mentioned, Equation (3.1) reproduces the variation of the magnetic
field B0

z(x, y) in the x − y plane, uniformly polarized in the normal direction (McCaig,
1977). The term g(z) = exp(−γεz), obtained experimentally, models the variation of the
magnetic field in the normal direction (see more details in Subsection 1.1.1).

On the other hand, we assume that the transport of momentum is mainly driven by
diffusion in the normal direction, so that the dimensionless velocity components, and the
induced electric current present in the phenomenon of study, can be expressed as

u(x, y, z, t) = [u(x, y, t)f̂ , v(x, y, t)f̂ , 0], (3.2)

ji(x, y, z, t) = [jix(x, y, t)f̂ , j
i
y(x, y, t)f̂ , 0], (3.3)

where u and v are the mean velocity components in the x − y plane, jix and jiy are the

mean induced currents in the same plane, while f̂ is a function that depends on x, y
and z, and reproduces the variation of the velocity profile and vorticity through the layer
thickness.

Substituting Equations (3.1 – 3.3) into Equations (2.24 – 2.26), considering that the
induced magnetic field is purely two-dimensional (Eq. 2.32) to satisfy the condition
∇ · b = 0, and averaging along the height of the fluid layer, the governing equations, in
the Q2D approximation, are found to be (Figueroa, 2010)
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+∇2u+

u

τ
+ αRe∗jiyB

0
z , (3.5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+∇2v +

v

τ
− αRe∗B0

z − αRe∗jixB
0
z , (3.6)

∂2bz
∂x2

+
∂2bz
∂y2
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(
u
∂B0

z

∂x
+ v

∂B0
z

∂y

)
= 0, (3.7)

where the overline on top of the velocity components was dropped for simplicity. The
pressure P is normalized by ρu20 (see Section 2.2). For numerical purposes, the Reynolds
number in Equations (3.5) and (3.6) is defined as Re∗ = U0L/ν, where the characteristic
velocity U0 = j0BmL

2/ρν comes from a balance between viscous and Lorentz forces, L is
the characteristic side length of the magnet, j0 is the applied current density, and Bm is
the maximum magnetic field strength measured on the surface of the permanent magnet.
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In Equations (3.5) and (3.6) there is a linear friction term that accounts for the effects
generated both by the Hartmann boundary layer within the zone of the magnetic field, and
by the viscous boundary layer where the magnetic field is negligible. The dimensionless
time scale, τ , involves the decay of vorticity due to Hartmann and viscous effects, and its
inverse is given by

τ−1 =
γ(1− e−γε2)

1
γ
(1− e−γε2) + γε4

2
e−γε2 − ε2

. (3.8)

The factor, α, in Equations (3.5 – 3.7) is calculated as

α =
1

γε
(1− e−γε2), (3.9)

and represents the attenuation of the magnetic field in the normal direction. On the other
hand, Equations (3.5) and (3.6) are complemented with the induction equation (Eq. 3.7)
under a quasi-static approximation for the only induced magnetic field component, bz.
Equation (3.7) is normalized by RmBm, where the magnetic Reynolds number is defined
as Rm = µ0σU0L, and µ0 is the magnetic permeability of free space. After determining
bz, the induced currents are obtained through Ampère’s law:

jix =
Ha2

Re∗
∂bz
∂y

, jiy = −Ha
2

Re∗
∂bz
∂x

. (3.10)

As it was previously stated, the Hartmann number is defined as Ha = BmL
√

σ
ρν
. The

system of Equations (3.4 – 3.10) was used to analyze numerically the electromagnetically
driven flow at different depths in the shallow liquid metal layer. In the following Section,
we present the numerical method used to solve this model.

3.2 Boundary conditions and numerical implementa-

tion

The rectangular domain used in the numerical simulations has the same dimensions as
the experimental equipment into which the liquid metal is poured (see Section 1.1). The
walls of the container, which are in contact with the shallow layer, are represented as four
Dirichlet boundaries with non-slip conditions, namely, the velocity components vanish at
the walls, that is, u = 0 and v = 0. As initial condition, the fluid is at rest. Furthermore,
we assume that the induced magnetic field is equal to zero at a long enough finite dis-
tance from the permanent square magnet, therefore we assume that bz = 0 at the walls.
In numerical solutions, the origin (0, 0) is located at the geometric center of the container,
so that the coordinates at a height of 3.5 mm are within the range −12.5 < x < −12.5
and −12.5 < y < 12.5, which represents the entire area where the liquid metal layer is
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confined between the electrodes (see Fig. 1.1b).

Once the boundary conditions were established, the set of Equations (3.4 – 3.10), along
the magnetic field distribution given by the analytic expression by McCaig (1977), were
solved numerically using the finite volume method as described by ?, and extended to
consider MHD flows. A second-order spatial discretization for a staggered grid, as the
one shown in Figure 3.1, was used in the computations. Here, the velocity components
u and v, the induced magnetic field, and the induced electric currents were defined at
the face of the control volumes (solid black lines), while the applied magnetic field and
pressure, were calculated at the center of the control volumes. With this type of grid, the
nonphysical oscillations arising when calculating the pressure and velocity components at
the same spatial position (checkerboard effect) are solved.
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involves the decay of vorticity due to Hartmann and viscous effects and its inverse is given
by

τ−1 =
γ(1 − e−γε2)

1
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2
e−γε2 − ε2

. (3.8)

The factor, α, in Equations (3.5)-(3.7) is calculated as

α =
1

γε
(1 − e−γε2), (3.9)

and represents the attenuation of the magnetic field in the normal direction. On the other
hand, the Equations (3.5) and (3.6) are complemented with the induction equation (Eq.
3.7) under an quasi-static approximation for the only induced magnetic field component
bz. Equation (3.7) is normalized by RmBm, where the magnetic Reynolds number is
defined as Rm = µ0σU0L and µ0 is the magnetic permeability. After, bz is determined,
the induced currents are obtained through the Ampère’s law:
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The Hartmann number was defined as Ha = BmL
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in section (1.1.1). The system of

equations (3.4)-(3.10) was used to analyze numerically the electromagnetically driven flow
at different depths in the shallow liquid metal layer. In the following section we present
the numerical method used to solve this model.

3.2 Boundary conditions and numerical implementa-

tion

The rectangular domain used in the numerical simulations has the same dimensions of the
experimental equipment where the liquid metal is poured (see section 1.1). The walls of
the container, that are in contact with the shallow layer, are represented as four Dirichlet
boundary with non-slip conditions, namely, the velocity field is u = 0 and v = 0. As
initial condition the fluid is at rest. Further, we assume that the induced magnetic field
is equal to zero at a long enough finite distance from the permanent square magnet, this
is, bz = 0 at the walls. In numerical solutions, the origin (0, 0) is located in the geometric
center of the container, so that the coordinates at a height of 3.5 mm are within the range
−12.5 < x < −12.5 and −12.5 < y < 12.5 wich represents the entire area where the liquid
metal layer is confined between the electrodes (see Fig. 1.1b).

Once the boundary conditions were established, the set of equations (3.4)-(3.10) based
on friction model presented by Figueroa et al. (2009) and the magnetic field distribution
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mensionless dominant contribution of the magnetic field (Figueroa et al., 2009) is given
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z(x, y)g(z). (3.1)

As it was previously mentioned, Equation (3.1) reproduces the variation of the magnetic
field B0

z(x, y) in the x − y plane, uniformly polarized in the normal direction (McCaig,
1977). The term g(z) = exp(−γεz) obtained experimentally, models the variation of the
magnetic field in the normal direction (see more details in section 1.1.1).
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where u and v are the mean velocity components in the x − y plane, ji
x and ji

y are the

mean induced currents in the same plane, while f̂ depends on x, y and z and reproduces
the variation of velocity profile and the vorticity in the layer thickness. Substituting
Equations (3.1)-(3.3) in Equations (2.24)-(2.26) considering that the induced magnetic
field is purely two-dimensional (Eq. 2.32) to satisfy the condition ∇ ·b = 0 and averaging
along the height of the fluid layer, the governing equations in the Q2D approximation are
found to be ?)
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where the overline in the velocity components was dropped. The pressure P is normalized
by ρu2

0 (see section 2.2). For numerical purposes the Reynolds number in Equations (3.5)
and (3.6) is defined as Re∗ = U0L/ν, where the characteristic velocity U0 = j0BmL2/ρν
comes from a balance between viscous and Lorentz forces, L is the characteristic side
length of the magnet, j0 is the applied current density and Bm is the maximum magnetic
field strenght measured on the surface of the permanent magnet. In Equations (3.5)
and (3.6) appears a linear friction term that takes account the effects generated both by
the Hartmann boundary layer within the zone of the magnetic field and by the viscous
boundary layer where the magnetic field is negligible. The dimensionless time scale, τ ,
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involves the decay of vorticity due to Hartmann and viscous effects and its inverse is given
by

τ−1 =
γ(1 − e−γε2)

1
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2
e−γε2 − ε2

. (3.8)

The factor, α, in Equations (3.5)-(3.7) is calculated as

α =
1

γε
(1 − e−γε2), (3.9)

and represents the attenuation of the magnetic field in the normal direction. On the other
hand, the Equations (3.5) and (3.6) are complemented with the induction equation (Eq.
3.7) under an quasi-static approximation for the only induced magnetic field component
bz. Equation (3.7) is normalized by RmBm, where the magnetic Reynolds number is
defined as Rm = µ0σU0L and µ0 is the magnetic permeability. After, bz is determined,
the induced currents are obtained through the Ampère’s law:
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The Hartmann number was defined as Ha = BmL
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in section (1.1.1). The system of

equations (3.4)-(3.10) was used to analyze numerically the electromagnetically driven flow
at different depths in the shallow liquid metal layer. In the following section we present
the numerical method used to solve this model.

3.2 Boundary conditions and numerical implementa-

tion

The rectangular domain used in the numerical simulations has the same dimensions of the
experimental equipment where the liquid metal is poured (see section 1.1). The walls of
the container, that are in contact with the shallow layer, are represented as four Dirichlet
boundary with non-slip conditions, namely, the velocity field is u = 0 and v = 0. As
initial condition the fluid is at rest. Further, we assume that the induced magnetic field
is equal to zero at a long enough finite distance from the permanent square magnet, this
is, bz = 0 at the walls. In numerical solutions, the origin (0, 0) is located in the geometric
center of the container, so that the coordinates at a height of 3.5 mm are within the range
−12.5 < x < −12.5 and −12.5 < y < 12.5 wich represents the entire area where the liquid
metal layer is confined between the electrodes (see Fig. 1.1b).

Once the boundary conditions were established, the set of equations (3.4)-(3.10) based
on friction model presented by Figueroa et al. (2009) and the magnetic field distribution
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initial condition the fluid is at rest. Further, we assume that the induced magnetic field
is equal to zero at a long enough finite distance from the permanent square magnet, this
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center of the container, so that the coordinates at a height of 3.5 mm are within the range
−12.5 < x < −12.5 and −12.5 < y < 12.5 wich represents the entire area where the liquid
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3.7) under an quasi-static approximation for the only induced magnetic field component
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the container, that are in contact with the shallow layer, are represented as four Dirichlet
boundary with non-slip conditions, namely, the velocity field is u = 0 and v = 0. As
initial condition the fluid is at rest. Further, we assume that the induced magnetic field
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Figure 3.1: Sketch of the staggered grid used in the computations. It shows the mesh used
to calculate the scalar variables. Notice that the u and v velocity components (as well
as the electric currents) are displaced half a control volume in the x− and y−directions,
respectively.

The non-linear part of the equations, namely, the convective terms, are calculated on the
faces of the volumes using a central average value. The discretization of the diffusive term
was done by central differences. The Euler method was used for time discretization. Over-
all, spatial terms were second-order accurate, whereas the temporal scheme provides first
order approximation. This type of discretization is the simplest, and requires less com-
putational effort to obtain converged solutions than higher-order approximations. The
numerical solution satisfies the boundary conditions and the initial condition in t = 0,
u = v = 0 and P = 0.

In order to decouple the pressure and velocity fields in the system of Equations (3.4 – 3.6),
a SIMPLEC method, as it is described by ?, is carried out. Since the numerical results are
to be compared (both qualitatively and quantitatively) with experimental observations
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and measurements, vector fields, streamlines and velocity profiles will be presented and
discussed.

3.3 Numerical results

The experimental and analytical results presented in previous Chapters allow to under-
stand the general behavior of the flow, that is, the formation of two pairs of nested vortices,
showing a region of quasi-stagnation in the central part. One of the main ingredients of
the studied phenomena is that the fluid motion is generated by electromagnetic forces
produced by the interaction of the applied magnetic field with the injected electric cur-
rent. In addition, it is known that induced electric currents interacting with the applied
magnetic field produce Lorentz forces that oppose the fluid motion. In a general way,
with these ingredients it is possible to have a reasonable physical understanding of the
flow pattern. Nevertheless, in order to have a deeper understanding of the flow and to be
able to consider more realistic conditions close to the experiments carried out, numerical
simulation results are required.

The numerical simulations were performed by varying the applied electric current in the
range from 250 mA to 1 A, for two applied maximum magnetic field values of B0

z,m = 0.218
T and B0

z,m = 0.181 T. By combining both parameters, simulations were obtained at two
different heights of the liquid metal layer. These numerical results can be compared with
the experiments obtained using the two measurement techniques. As already mentioned
in Chapter 1, the UDV technique allowed to one velocity component of the flow in the
bulk of the fluid layer, at a height of 3.5 mm. In turn, the PIV technique allowed to
obtain the velocity field on the surface of the liquid metal layer, at a height of 5.5 mm.
The numerical solutions will be presented with the set of dimensionless parameters Re
and Ha, where the Reynolds number is calculated as Re = UmaxL/ν; here, Umax is the
resulting maximum velocity of the numerical solution. In addition, the applied electric
current, I, will also be reported in the numerical results. The selected mesh for all sim-
ulations was nx = 201 and ny = 201, whereas the time-step chosen was ∆t = 6.5x10−7.
In this way, all residual quantities were kept very small.

Figure 3.2 shows two visualizations of the numerical solution of the flow motion for an
applied electric current of 350 mA and a magnetic field strength of B0

z,m = 0.218. Figures
3.2a) and 3.2b) show the vector velocity field and streamlines, respectively. In both
results, the formation of a pair of symmetric dipole vortices with respect to the y−axis,
with a quasi-stagnation zone in the center of the inner dipolar vortex, are observed. In the
velocity field, we can observe that the rotation of the right external vortex is clockwise,
while the left external vortex rotates counterclockwise. The pair of internal vortices rotate
in the opposite direction to the external ones. In this picture, we can also observe that the
maximum magnitude of the velocity is located in the outer part of the internal vortices,
while the lowest velocities are located in the quasi-stagnation region. On the walls, the
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velocity vanishes due to the imposed non-slip condition. Both the formation of the four
recirculations and their core can be clearly seen in the streamlines shown in Figure 3.2b).
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Figure 3.2: a) Velocity vector field and b) streamlines of fluid motion driven by electro-
magnetic forces obtained numerically. I = 350 mA, z = 3.5 mm, B0

z,m = 0.218, Re = 112,
Ha = 221 and N = 436.

The central velocity profiles obtained from the velocity vector field (Fig. 3.2a) are shown
in Figure 3.3. The v−component velocity profile as a function of x position, for y = 0,
is presented in Figure 3.3a), in which we can observe a perfectly symmetrical profile
that satisfies no-slip condition at the walls. The curve reaches a local negative minimum
near x ≈ ±120 mm, increases and crosses by zero at x ≈ ±55 mm until reaching global
maximum velocities at x ≈ ±30 mm, then it decreases and vanishes at x ≈ ±20, continues
to decrease reaching a global minimum value at x ≈ ±13 and it increases again reaching
a local maximum value at x = 0. The changes of direction of the v−component velocity
profile are due to the direction of rotation of the four vortices. Further, the curve shows
that the highest velocity magnitudes are found in the boundary between the internal
vortices and the external ones.

Figure 3.3b) shows the v−component velocity profile as a function of the y position for
x = 0. Here, the velocity at the walls vanishes owing to the boundary condition men-
tioned in Section 3.2. From bottom to top, the curve has positive values in a range from
y = −125 mm to y ≈ −28 mm, reaching a local maximum at y ≈ −45 mm, then it de-
creases until a minimum local value at y ≈ −14 mm. In the central part of the container,
the magnitude of the velocity is reduced until a local maximum is reached at y ≈ 5 mm.
The velocity decreases, reaching a global minimum value at y ≈ 15 mm, increases its
value and crosses zero at y ≈ 23 mm, then it reaches a global maximum value at y ≈ 50.
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Figure 3.3: v−component velocity profiles a) along x for y = 0 and b) along y for x = 0,
z = 3.5 mm; I = 350 mA, Re = 112, Ha = 221 and N = 436.

Unlike the velocity of the v component along the x−axis, this velocity profile does not
show symmetry along the y coordinate since both, the applied electromagnetic force and
the induced Lorentz force of higher magnitude are included in the equation for this veloc-
ity component, causing a preferential flow direction and, thus, the observed asymmetry
along the y−axis.

Both, Figure 3.3a) and 3.3b) show a velocity reduction in the central part of the container,
where the magnetic field is stronger. This decrease in velocity is also observed experi-
mentally, as shown in the experimental section of the present document, and it is caused
by the interaction between the fluid in motion (produced by the applied electromagnetic
forces) and the induced electric currents that interact with the applied magnetic field,
and produce induced Lorentz forces that are oppose the applied electromagnetic force.

In order to understand the phenomenon under study in more detail, two particular quasi-
two-dimensional numerical simulations of the flow, separating the distribution of the mag-
netic field produced by a square-shaped permanent magnet (see Subsection 1.1.1) were
carried out1. Namely, in the first simulation, only the positive orientation of the field was
applied, while, for the second one, a negative magnetic field distribution was taken into
account. The results are presented in Figure 3.4, on the left-hand side, the numerical
results in which a positive magnetic field and an applied electrical current of 350 mA
interact, are shown. On the right-hand side, the results obtained for the same applied
current, but with a purely negative field distribution, are shown.

1These simulations were suggested by Dr. Aldo Figueroa.
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Figure 3.4: Numerical results of the flow pattern produced by electromagnetic forces
generated by a separated magnetic field distribution. (Top row) a) Positive and b) neg-
ative part of the magnetic field distribution. (Middle row) Flow patterns generated by
Lorentz forces produced by the c) positive and d) negative magnetic field. (Bottom row)
v−component velocity profiles along y for x = 0 extracted from the flow patterns produced
by the e) positive and f) negative magnetic field distributions. I = 350 mA, Ha = 221.
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Figure 3.4a) shows the cross-section of the positive magnetic field distribution in dimen-
sional parameters. Notice that the maximum intensity of the magnetic field (B0

z = 0.218
T ) is located in the center of the container, at x = 0, and moving away from this point
the field decays quickly, both for positive and negative x values, until becoming zero ap-
proximately at x = ±19 mm. In Figure 3.4b), the negative magnetic field distribution in
the cross-section is shown; here, we can observe that the profile has two minimum values
(B0

z = −0.0095 T) approximately at x = ±27 mm, as |x| increases, the curve decreases
quickly and takes very small values at the walls of the container. Since only negative
values for the magnetic field are considered in this case, a zero value was assigned in
the central region of the plot. In this way, the profile presented in Figure 3.4b) is the
complement of the magnetic field curve presented in Figure 3.4a). Both Figures 3.4a) and
3.4b), added together, are the reproduction of the magnetic field distribution produced
by a permanent square magnet. Figure 3.4c) shows the numerically obtained streamlines
for the behavior of a flow generated in a layer of liquid metal due to the interaction of
a direct electric current (applied from left to right) with the distribution of a positive
magnetic field (Figure 3.4a). In this simulation, the formation of a dipolar vortex, with
higher velocities in the central part of the container (around x = 0), is observed. The
interaction of the electric current and magnetic field produces a Lorentz force in the neg-
ative y direction which, in turn, elongates the vortices in this direction (arrows indicate
the direction of fluid motion). It is well known that, if a fluid of high electrical conduc-
tivity moves in the presence of a magnetic field, induced electromagnetic forces (opposite
to the applied electromagnetic forces) are produced. In the case of the motion in the
liquid metal layer, the induced Lorentz forces are present in the system, and oppose the
fluid motion, thus reducing the velocities and, due to the mass conservation, the fluid
recirculates to the region where the fluid motion is driven, that is, where the magnetic
field is stronger and the applied electromagnetic forces are produced. The motion of the
liquid metal layer under a negative magnetic field distribution (see Fig. 3.4b), generates
two vortices with a reduction of the velocity around x = 0 and the values about y ≈ 5
mm and y ≈ 40 mm as it is observed in Figure 3.4d) where the vortices travel in positive
y-direction in the central part and in negative y-direction near to the walls as the arrows
on the picture indicate. Figures 3.4e) and 3.4f) show the v−component velocity profile
as a function of y for x = 0. The maximum velocity is located at y ≈ −13 mm where
the motion is generated with the positive magnetic field, whereas the maximum velocity
value is observed at y ≈ −28 mm for the flow produced with the negative magnetic field.
Notice that the positive magnetic field produces velocities two orders of magnitude higher
than its negative counterpart.

The direction of the applied and induced Lorentz forces are shown in Figure 3.5. In the
top part, the magnetic field distribution B0

z along x can be observed. Here, the circles
shows the negative and positive distributions existing in a magnet with north orientation
in the central zone.
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a) āx = 3.5m/s2
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Figure 3.5: Diagram of the direction of applied and induced Lorentz force produced
in the different magnetic field distributions. Blue arrows represent the applied Lorentz
forces, while Red arrows are the induced electromagnetic forces.

3.4 Two-dimensional idealized numerical model

Quasi-two-dimensional approximations are a set of equations that, under certain consider-
ations, allow us to understand characteristics of the flow behavior produced under strong
magnetic fields (?), or in shallow fluid layers (Figueroa et al., 2014), while two-dimensional
approximations can be used to study the vortex dynamics in some cases in the oceans and
in the atmosphere, because the existing motions in these phenomena are predominantly
horizontal (Cruz-Gómez et al., 2013). The two-dimensional approximation can also be
used to analyze some experiments performed in laboratory neglecting the effect of the
bottom friction. For the present numerical study, we employ a purely two-dimensional
approximation that solves the mass conservation equation, and the momentum conser-
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vation equation plus an external Lorentz force, to understand the fluid flow driven by
electromagnetic forces under a non-uniform magnetic field in a liquid metal layer. Equa-
tions (2.34 – 2.36), obtained and presented in Chapter 2, are rewritten below for the
simplified two-dimensional case

∂u

∂x
+
∂v

∂y
= 0, (3.11)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+
∂2u

∂x2
+
∂2u

∂y2
+RejiyB

0
z(x, y), (3.12)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+
∂2v

∂x2
+
∂2v

∂y2
−ReB0

z −RejixB
0
z(x, y). (3.13)

Similarly to the quasi-two-dimensional model, the dominant magnetic field component
(B0

z(x, y)) along the normal z−direction is the only one considered. The expressions that
describe the non-homogeneous distribution of a single permanent magnet were shown in
Equations (1.3 – 1.4) in Chapter 1. To complete the system of equations we must solve
the induction equation

∂2bz
∂x2

+
∂2bz
∂y2

− u
∂B0

z

∂x
− v

∂B0
z

∂y
= 0, (3.14)

and, in turn, from Ampère’s law (Eq. 2.27b), the components of the induced currents
present in Equations (3.12 – 3.13) are

jix = N
∂bz
∂y

, jiy = −N ∂bz
∂x

, (3.15)

where the Stuart number is expressed as N = Ha2/Re, as in Chapter 2. The system of
Equations (3.11 – 3.14) is solved numerically under the same conditions as the quasi-two-
dimensional numerical model exposed in the Section 3.1 in a square domain corresponding
to the dimensions of the experimental device. The 2D magnetic field distribution is mod-
eled from the analytic expression by McCaig (1977). The governing equations were solved
using a Finite Volume Method and a SIMPLEC algorithm (?), with no-slip boundary con-
ditions at the walls of the square frame, and a fluid at rest as initial condition.

3.5 Two-dimensional numerical results

As it was previously mentioned, the purely two-dimensional numerical model is used in
order to analyze the flow pattern produced by strong electromagnetic forces in a shallow
liquid metal layer in an idealized way, that is, neglecting the bottom friction effects. Due to
the dimensionality used to obtain the equations of the model, we can intensify or decrease
the Lorentz forces by adjusting the Reynolds (Re) and Hartmann (Ha) numbers present
in Equations (3.12 – 3.13). The two-dimensional numerical simulations were carried out
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using Re = 50 and Ha = 250. For these values, the flow behavior is shown in Figure
3.6, where we can observe the velocity vector field (Figs. 3.6a and 3.6b) and streamlines
(Figs. 3.6c and 3.6d) for the full domain (left column) and central region (right column)
of the container.
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Figure 3.6: Velocity vector field (top row) and streamlines (bottom row) of the six vortex
pattern predicted by the two-dimensional numerical model with Re = 50 and Ha = 250.
The left column shows the full domain of the container, while the right column is the
amplification of the flow region of the nested internal dipolar vortex.

Figure 3.6c) shows the formation of three nested dipolar vortices. This pattern is the re-
sult of the changes of the velocity direction shown in the Figure 3.6a), where the rotation
of the external vortices points in y−direction, that is, the external right-vortex rotates
clockwise, while its left counterpart rotates counter-clockwise. The rotation of the pair
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of internal vortices is opposite to the rotation of the external vortices. The rotation of
the pair of the innermost internal central vortices is on the same direction as the external
vortices. The flow pattern of the nested internal and central vortices is clearly shown in
Figure 3.6d).

In Figure 3.7 the central velocity profile for both coordinate axes is shown. Figure 3.7a)
shows the v−component velocity profiles along x−axis for y = 0, in which, we can observe
zero velocities at x = ±125 mm, because the non-slip condition imposed at the walls of
the container. From left to right, first the velocity profile takes negative values reaching
a minimum value at x ≈ −98 mm, then increases, vanishes at x ≈ −64 mm and reaches
a positive maximum velocity at x ≈ −34 mm. For the following values of x the curve
decreases, crosses zero at x ≈ −13 mm and continues decreasing until reaching a local
minimum value at x ≈ −10 mm, after this point, the velocity increases again, crosses
zero at x ≈ −4 mm and, at x = 0, the curve reaches a local maximum value. It can be
observed that the v−component velocity profile is symmetric along of the x−axis. The
v−component velocity profiles along y−axis for x = 0 are shown in Figure 3.7b), where
the velocity at the walls is also zero due to the previously mentioned no-slip condition.
From bottom to top, the profile takes positive values until reaching a maximum value
at x ≈ −54 mm, then decreases, crosses zero at x ≈ −16 mm, continues decreasing and
reaches x ≈ −12.5 mm, where it presents a local minimum, from this point forward, the
curve increases again, crosses zero at x ≈ 7 mm and reaches another maximum local
value at x = 0. This figure also shows that the v−component of the velocity is symmetric
along the y−axis. Both, Figure 3.7a) and Figure 3.7b), show the change of the velocity
direction according to the rotation of the six-vortex pattern shown in Figure 3.6.

The three nested dipolar vortices pattern in the two-dimensional numerical model is
driven, initially, by applied electromagnetic forces generated through the interaction of
the applied electric current and the magnetic field produced by a square-shaped perma-
nent magnet with positive and negative distribution. The fluid in motion, generated by
the applied Lorentz forces, interacts with the applied magnetic field producing induced
electric currents. In turn, the induced currents interact with the applied magnetic field,
producing induced electromagnetic forces opposite to the applied Lorentz forces. Under
these physical foundations, and using Figure 3.5, it is possible to understand in detail
the formation and direction of the rotation of the vortices shown in Figure 3.6c), where
we can observe that the rotation of the external vortices is the results of the interaction
between the applied electric current and the negative distribution of the magnetic field
(generated at the edges of the magnet). This interaction produces applied electromagnetic
forces, (F 0−), along the y−direction. In turn, the induced electric currents (generated by
the fluid in motion and the applied magnetic field) interact with the applied magnetic
field, producing induced Lorentz forces, (F i−), opposite to the applied electromagnetic
forces, i.e., in the negative y-direction. Since in the edges the induced forces have a
small magnitude, they do not modify the fluid motion. In the area where the magnetic
field distribution is positive, a pair of dipolar vortices is observed for values of Re = 50
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Figure 3.7: v−component velocity profile a) for y = 0 as a function of x and b) for
x = 0 as a function of y obtained by a two-dimensional numerical simulation. Re = 50,
Ha = 250.

and Ha = 250. Here, the intermediate vortex is driven by the applied electromagnetic
force, (F 0+), produced by the interaction of the electric current and the positive mag-
netic field, while the central internal vortex is generated by the induced electromagnetic
force, (F i+), produced by the interaction of the induced electric current, and the applied
magnetic field. Unlike the quasi-stagnation zone located in the central part of the flow
pattern obtained from the quasi-two-dimensional model, in the two-dimensional simula-
tions the viscous or Hartmann frictions that oppose to the fluid motion are negligible.
Thus, when we apply a large Hartmann number, the induced electromagnetic forces are
larger than the applied forces, producing a change in direction of the velocity, resulting in
the generation of a central internal dipolar vortex where the magnetic field is more intense.

In previous works, flow patterns similar to those reported in this model have been found.
For instance, in the two-dimensional numerical simulations of the flow of an electrically
conductive fluid by means of electromagnetic forces produced by the interaction of induced
electric currents with a non-uniform magnetic field (Cuevas et al., 2006), we can observe
the formation of a pattern of dipolar vortices for values in the range 7 < Ha < 50, and a
pair of nested dipole vortices for values in the interval 50 ≤ Ha ≤ 100. The continuation
of the study of the creeping flow past a magnetic obstacle is presented in ?, where the
value of the Hartmann number is increased up to Ha = 125, giving as a result of the
simulation, a pattern of three nested dipolar vortices very similar to those presented in
Figure 3.6c). Although, in this project the initial motion of the fluid is not generated
in the same way as in the work presented by ?, the change of velocity direction in the
central part of the flow pattern generates a pair of internal central vortices to fulfill the
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mass conservation equation (∇ · u = 0).

The v−component velocity profiles for different values of x and y are shown in Figure
3.8. The profiles for y = ± 50 mm can be observed in Figure 3.8a), which shows that,
for both values of y, the curves are approximately equal. Both have maximum negative
values in x ≈ ±99 mm and maximum positive values in x ≈ ± 14 mm; in x = 0 the
profile decreases reaching a local minimum. The same velocity profile for y = ±100 mm
is shown in Figure 3.8b), the curve shows two negative minimum values at x ≈ ± 93
mm, and a positive maximum value at x = 0. The profile for y = 100 mm has the same
slopes as the profile for y = −100 mm, but larger absolute values in the vicinity of the
global extrema, in both the positive and negative part; this curve only shows one change
of the velocity direction, therefore we are observing only the external recirculations of the
flow pattern. Figure 3.8c) shows the v−component velocity profile as a function of y for
x = ±50 mm. Here, both curves have the same slopes and show a positive maximum
value at y = 0; the profile for x = 50 mm has slightly greater values than the curve for
x = −50 mm. The same velocity profile for x = ±100 mm is shown in Figure 3.8d), in
which both curves take a positive maximum value at y = 0. Unlike the profiles shown
in Figure 3.8c), these curves have larger magnitudes of the velocity near the walls of the
container. The shape of both profiles for x = ±100 mm is similar to that of a Poiseuille
flow. The trajectory of the curves obtained for the values x = ±50 mm and y = ±50
mm are located near the zone where the magnetohydrodynamic flow occurs, while the
profiles in Figures 3.8a) and 3.8b) show a hydrodynamic behavior. All the v−component
velocity profiles are symmetrical along the x− and y−axes passing through the origin, as
can be seen in Figures 3.8a) and 3.8 b), and 3.8c) and 3.8d), respectively. Notice that the
difference between the curves shown in the Figures 3.8b) and 3.8c) is on the closest value
to the origin of x and y.

Figure 3.9 shows isolines of vorticity for the whole domain, in which we observe three
nested dipolar vortices; the red color represents positive values of the vorticity, while
the blue color implies negative values. This observation is in qualitative agreement with
experimental results.
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Figure 3.8: v−component velocity profile along x (top row) for a) y = ±50 mm and b)
y = ±100 mm, and along y (bottom row) for c) x = ±50 mm and d) x = ±100 mm.
Re = 50, Ha = 250. Results obtained with the two-dimensional numerical simulation.
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Figure 3.9: Isolines of vorticity for the whole domain. Re = 50, Ha = 250. Results
obtained with the two-dimensional numerical simulation.
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3.6 Numerical and experimental comparison

Figure 1.3b) in Chapter 1, shows a picture of the full experimental flow domain when
a DC current of 500 mA is applied in the liquid metal layer, arrows are superimposed
to display the flow structure and give an idea of the size of different regions, the same
vortex pattern is observed when applying different direct electrical currents between 250
mA and 1A. Visualization reveals the formation of a symmetrical structure relative to
y-axis with two external recirculation zones (highlighted with white arrows) flowing in
counter-clockwise and clockwise directions on the left and right sides of the flow domain,
respectively. Nested within these recirculation zones, a steady vortex dipole is found (red
arrows) which presents opposite sense of circulation with respect to the external vortices.

This flow structure originates two stagnation points (crosses in Fig. 1.3b) located on
the symmetry axis. Further, in the center of the vortex dipole, initially a low velocity
zone is formed in the region of maximum magnetic field strength. A similar velocity field
obtained at the interface between the liquid metal and the acid using the PIV method is
displayed in Figures shown in Chapter 1, Subsection 1.2.2. For a electric direct current
of 500 mA, the maximum Hartmann number is Ha = 184 while the Reynolds number
calculated with the maximum measured velocity within the magnet zone is Re = 105.
Therefore, the interaction parameter takes a value of N = 322 which indicates the com-
plete dominance of Lorentz forces over inertia inside the magnet region.

Figures 3.10a) and 3.10b) show the streamlines at the interface between the liquid metal
and the acid layers obtained through experimental data from PIV measurements and nu-
merical simulation, respectively, for the same case shown in Figure 1.3b) (i.e. Re = 105
and N = 322). Although in general there is a qualitative agreement, numerical results
show a more symmetric structure and well defined stagnation points. Notice also that
experimental and numerical results capture the elongation of vortex structures in the pos-
itive y-direction.

In Figure 3.11, the vorticity distribution obtained from experimental and numerical re-
sults that correspond to the case of Fig. 1.3b), are shown. Experimental data reveal a
spreading of vorticity larger than numerical results as well as higher vorticity intensities
in the external vortices compared with the numerical simulation.
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Figure 3.10: Streamlines corresponding to an applied current of 500 mA at the interface
between the liquid metal and the acid layers. a) Experimental data from PIV. b) Numer-
ical simulation. Re = 105 and N = 322.
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Figure 3.11: Vorticity distribution for an applied current of 500 mA at the interface
between the liquid metal and the acid layers. a) Experimental PIV data. b) Numerical
simulation. Re = 105 and N = 322.
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Figure 3.12: Velocity profiles along the symmetry y-axis as a function of the y-coordinate.
On the left column, UDV experimental results are compared with the profile calculated
numerically for a) 250 mA (Re = 19, N = 2570) and c) 500 mA (Re = 82, N = 596).
On the right column, PIV results are compared with the numerical profiles for b) 250 mA
(Re = 49, N = 691) and d) 500 mA (Re = 105, N = 322).
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Figure 3.12 shows the comparison of the velocity profiles along the y-axis (x = 0) obtained
through both experimental methods with profiles calculated from the numerical model.
The left column compares the UDV experimental profiles with profiles calculated numer-
ically. In Figure 3.12a) the applied current is 250 mA, corresponding to Re = 19 and
N = 2570, while in Figure 3.12c) is 500 mA, that leads to Re = 82 and N = 596. In turn,
the right column compares PIV profiles for 250 mA (Re = 49, N = 691) and 500 mA
(Re = 105, N = 322) with numerical profiles (see Figs. 3.12b) and 3.12d). It is observed
that both UDV and PIV results coincide in the general trend of velocity in the central
region. Except in Fig. 3.12c), we can observe the reduction of velocity in the central zone
where the magnetic field is stronger, indicating that magnitudes of applied and induced
forces are comparable. Note that the lowest velocity is reached exactly at y = 0 and that
stagnation points predicted numerically coincide with the experimental UDV measure-
ments, while for PIV results the prediction coincides only for y < 0. Differences between
experimental profiles obtained with each method are expected since measurements are
taken at different heights from the bottom wall. On the other hand, the numerical simu-
lation reproduces the order of magnitude and main characteristics of the velocity profiles
although overestimates the velocity magnitude in some regions, particularly for y > 0.

The explanation of the flow structure must consider the superposition of diverse electro-
magnetic forces produced by the interaction of applied and induced currents with the
non-homogeneous magnetic field (see Figure 3.5). The action of the applied current with
the positive magnetic field in the center of the magnet produces a Lorentz force in the
negative y−direction that promotes the formation of the inner vortex dipole. In turn,
the applied current and the negative magnetic field strength at the edges of the magnet
produce applied Lorentz forces in the positive y−direction that originates the external
vortices. But currents induced by the fluid motion also have an effect as they interact
with the applied field giving rise to induced forces that oppose the applied ones. In fact,
induced forces, in the central region where the magnetic field is stronger, have greater
magnitude than the applied Lorentz forces which generates the formation of nested inter-
nal dipolar vortex whose velocities are very low.

This study can be further explored by comparing more experimental and numerical re-
sults, for example to analyze the results presented in Chapter 1 where the formation of
six vortices is clearly observed experimentally for an applied direct electric current of 350
mA, 650 mA or 750 mA.

As future observations, various experiments can be carried out analyzing only the region
of the nested internal dipole vortex where the lowest recorded velocities are found, in this
way what was commented in Chapter 1 could be reaffirmed and two other stagnation
points can be accurately observed, which would delimit the internal dipole vortex with
the nested internal dipole vortex. In addition, experiments to analyze the flow pattern at
the same height of layer with the UDV and PIV techniques can be implemented.
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Theoretically, the purely two-dimensional model can be compared with the quasi-two-
dimensional model. Although, within the quasi-dimensional simulation a more precise
mesh or a longer time can be simulated. Three-dimensional (3D) simulations considering
a fully 3D magnetic field could be developed to compare with the experiments in which
different direct electric currents are applied. In fact, a 3D simulation of some of the
experimental results presented in this thesis was performed by (Prinz, 2019), finding a
good agreement. This will enrich the observations made and improving the physical
understanding of this kind of flows.



Conclusions

In this thesis, we analyzed experimentally, analytically and numerically the vortex flow
in a thin liquid metal layer in a rectangular container, promoted by the interaction of a
uniform DC current with a dipolar magnetic field produced by a permanent magnet of
small size compared with the container. An experimental setup was developed in order to
study the flow and two different measurement techniques were implemented. On the one
hand, UDV technique was used for obtaining velocity profiles of one velocity component
along the container. This technique was selected since it is one of the most utilized for
measurements in non-transparent fluids. On the other hand, a PIV setup was performed
to visualize and obtain the velocity field on the free surface of the liquid metal layer on
top of which an acid layer allowed the formation of bubbles that served as tracers. A
theoretical model was developed and solved analytically in order to analyze the system
at creeping flow conditions. The analytical solution reproduces qualitatively the flow
structures found from the experimental observations. The numerical solution of the con-
servation equations in a two-dimensional and quasi-two-dimensional approximations was
implemented. It was found that the quasi-two-dimensional numerical solutions reproduce
mostly all of the features of the flow qualitatively and quantitatively when we observe
the flow pattern in the whole container. The interaction parameter of the flow is very
high (N ≫ 1) so that Lorentz forces dominate over inertia in the region over the magnet.
Unlike the flow of a low conductivity liquid, where the applied Lorentz force gives rise to a
well-known vortex dipole, in a liquid metal, applied and induced forces originate a differ-
ent vortex flow structure. It consists of two external vortices surrounding an inner vortex
dipole with a central zone where velocity is substantially reduced (quasi-stagnation zone).
The existence of nested internal dipolar vortex with low-velocities is an important feature
that distinguishes this vortex structure from classical ones where the maximum velocity
is reached precisely in the vortex dipole axis. The interplay of the applied and induced
electric currents with positive and negative field intensities in the center and edges of the
magnet, respectively, determines the flow structure. The velocity profile along the sym-
metry axis was obtained from UDV measurements, while the velocity field in the liquid
metal surface was captured by Particle Image Velocimetry (PIV). Results from quasi-two-
dimensional numerical simulation grasp the main features of the flow pattern, although
differences with experimental results were found in some regions. This could indicate
limitations of the numerical approach and the existence of three-dimensional effects not
considered in the model, although differences with PIV results may also be related to the
inaccuracy introduced by tracking the dragged bubbles in the liquid metal surface. It
should be mentioned that Prinz et al. (2016) have pointed out that the use of gas bubbles
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as tracers is insufficient to describe the flow structures in the wake of a magnetic obstacle
flow due to important three-dimensional effects.

Considering previous numerical studies of creeping flows past a magnetic obstacle (Cuevas
et al., 2006; ?), the observation of the flow patterns described in the present work could
be expected in experiments similar to those reported by Samsami et al. (2014), as long
as the proper values of Re and N are used.

Finally, many improvements can be made in the future both experimentally and numer-
ically, for example, velocity measurement comparisons for the same height of the liquid
metal layer both with UDV and PIV techniques. In addition, 3D simulations could be de-
veloped to compare different applied direct electric currents and, thus, enrich the physical
understanding of this kind of flows.
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en aguas someras, PhD thesis, UNAM.

Lara, C. G., Figueroa, A. and Cuevas, S. (2017), ‘Nested dipolar vortices driven by
electromagnetic forces in a thin liquid metal layer’, Magnetohydrodynamics. 4, 1–10.

Li, K., Turcotte, K. and Veres, T. (2019), Stretchable strain sensors based on thermo-
plastic elastomer microfluidics embedded with liquid metal, in ‘2019 IEEE SENSORS’,
pp. 1–4.

Liu, Y., Wang, Q., Jia, Y. and Zhu, P. (2020), ‘A Frequency- and Polarization-
Reconfigurable Slot Antenna Using Liquid Metal’, IEEE Transactions on Antennas
and Propagation 68(11), 7630–7635.

Manin, D. Y. (1989), ‘Stability and Supercritical Regimes of Quasi-Two-Dimensional
Flow in the Presence of External Friction (Theory)’, Izvestiya Akademii Nauk SSR,
Mekhanika Zhidkosti i Gaza No. 2, 19–26.

McCaig, M. (1977), Permanent Magnets in Theory and Practice, Wiley.

McClung, S. N., Saeedi, S. and Sigmarsson, H. H. (2018), ‘Band-Reconfigurable Filter
With Liquid Metal Actuation’, IEEE Transactions on Microwave Theory and Tech-
niques 66(6), 3073–3080.

Messadek, K. and Moreau, R. (2002), ‘An experimental investigation of quasi-two-
dimensional turbulent shear flows’, J. Fluid Mech. 456, 137–159.
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