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Introduction

0.1 Introduction

Leonhard Euler (1707-1783) was a Swiss mathematician who made numerous contribu-
tions to mathematics, physics, and engineering. He is considered one of the greatest
mathematicians of all time, and his work has had a profound impact on many areas of

science and technology.

Throughout his life, Euler made important contributions to many areas of mathematics,
including calculus, geometry, number theory, and mechanics. In the field of fluid dynam-
ics, he is best known for his work on the Euler equations, which he derived as a set of
differential equations that govern the motion of an inviscid fluid. The equations are based
on the principles of mass conservation, momentum conservation, and energy conservation

and describe the motion of a fluid in terms of its velocity, pressure, and density.

The Euler equations consist of a fundamental set of equations in fluid dynamics that
describe their motion. Despite the fact that the Euler equations describe the motion of
an inviscid fluid, they have important applications in many areas of physics, including
aerodynamics, hydrodynamics, and astrophysics. Because of their complexity, the Euler
equations are notoriously difficult to solve analytically and many numerical methods have

been developed to approximate their solutions.

Over the centuries, the Euler equations have been the subject of extensive research, and
many researchers have made important contributions to the field of fluid dynamics by

working on the equations. Today, the Euler equations remain an active area of study
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in modern mathematics and physics, and they continue to play a central role in our

understanding of fluid dynamics.

One of the most common applications of the Euler’s equations is the calculation of the
velocity and pressure of a flow at different points along a duct. The Euler’s equations
allow us to describe how the pressure and velocity of this change as air moves through the
duct. This is especially important in situations where it is necessary to control the speed

and pressure of the flow, such as in heating, ventilation, and air conditioning systems.

Another important aspect of using the Euler’s equations of motion for describe the gas and
air flows through ducts is the ability to predict the occurrence of turbulence. Turbulence
can cause a decrease in flow velocity and pressure loss, which can negatively impact
system performance. With the Euler’s equations, it is possible to calculate the probability
of turbulence occurring in different parts of the duct and take measures to minimize its
impact. It is also possible to use the Euler’s equations of motion to model the behavior
of gas and air flow in extreme situations, such as in ventilation systems in fire conditions.
In these cases, it is important to understand how the airflow affects the spread of fire and

how ducts can be used to minimize its impact.

The use of numerical methods for solving the Euler equations has had a profound impact
on the field of fluid dynamics. Numerical simulations have enabled researchers to study
fluid flow problems that were previously intractable, such as the formation of shock waves
and turbulent flow. They have also been used to design and optimize engineering systems
such as aircraft and automobiles. The earliest numerical methods for solving differential
equations were finite difference methods, which involved discretizing the equations on a
grid and approximating the derivatives using finite differences. In the 1960s, finite element
methods were developed, which allowed for more flexible discretization of the equations.
In the 1970s, spectral methods were developed, which used a basis of orthogonal functions
to approximate the solution. Some of the most important numerical methods used for
approximating solutions to the Euler equations also include finite volume, spectral, and
discontinuous Galerkin methods. These methods have been used in a wide range of
applications, from simulating the flow of blood in arteries to predicting the behavior of

atmospheric winds.
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Despite the tremendous advances in numerical methods for solving the Euler equations,
challenges still remain. The complexity and computational cost of these methods can
be high, and researchers continue to develop new techniques to improve their accuracy
and efficiency. Nevertheless, the development of numerical methods for solving the Euler
equations has revolutionized the study of fluid dynamics and has led to many important

discoveries and technological advancements.

The present work is focused in develop a model for Gas-liquid flow in pipes, starting from
Euler equations and making a generalization for the pipe; usually for this kind of models
it is usually assumed that the pipe is completely horizontal with a circular cross section,
for simplicity. In contrasts with that, here we are going to work with a non-circular pipe
with some «(s) inclination, giving us a more realistic model but certain more complicated,

mathematically speaking.

The model that was derived in this thesis falls within the category of hyperbolic balance
laws. Such class has been studied extensively over the last few decades. See for instance
[1-4] and references therein. The theory behind hyperbolic balance laws has grown a lot
recently. We know for instance that the information travels through characteristic curves
at finite speed. Shockwaves can arise in finite time, even if the initial conditions are
smooth. This has important implications as discontinuities require the development of a
theory for weak solutions. From the numerical point of view, special care must be taken
in the presence of jump discontinuities. Otherwise, strong spurious oscillations can arise
near shockwaves. This is because monotone numerical methods are at most first order
accurate. See theorem 15.6 in [3]. A standard technique is the construction of numerical
schemes that are high order accurate in smooth regions, while reducing to a first order
accuracy near jump discontinuities. This is done in practice with the use of flux or slope
limiters. Such constructions are known as high resolution numerical schemes. In this
thesis, we do not focus on the details of hyperbolic conservation laws in general. Instead,
the reader is directed to the aforementioned references. We focus on the derivation of the
model for the gas-liquid flow in pipes, and use a central-upwind numerical scheme that
is known to be robust for this type of PDEs. Although we explain the central-upwind

scheme in Section 3.4, more details can be found in [5].
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In the Chapter 1, we describe all the pipe’s geometry, the operators and coordinates to
use and the develop of the model starting off the Euler equations and using cylindrical
coordinates. In Chapter 2 we obtain the quasi lineal form of the model with the hyper-
bolic properties. Finally in Chapter 3 we present a central-upwind numerical scheme to
approximate the solutions, showing the discretization of the domain and corresponding
approximations, and analyze a variety of numerical examples to exhibit the merits of the

model and numerical scheme.



Chapter 1

The Model

We start this chapter by proving details of the model for the two-layer fluid, consisting
of liquid in the bottom layer and gas in the top part of the pipe. The derivation of the
model is based on the work [6], extending it to general cross sections. That is, the pipe can
have any shape, not just circular (axi-symmetric) or having constant width (rectangular).

Furthermore, we also assume the pipe be tilted, having gravity playing an important role.

1.1 Parametrization of the pipe’s geometry

Our goal in this thesis is to model the fluid’s evolution within a pipe, where a liquid
phase is transported below gas. Two-layer or multi-layer shallow water systems have
been extensively analyzed. See for instance [7] and references therein. However, such
flows involve liquid phases with distinct densities only, having heavier fluid sitting at the
bottom. Here, our goal is to assume that the top layer’s phase is gas. As a result, one
can assume ideal gas laws on the top layer, and a hydrostatic pressure assumption at
the bottom one. Furthermore, the two-layer fluid is transported in a closed pipe which a
general geometry (arbitrary cross section). This way, the top layer can be expanded or
compressed according to such laws, exchanging momentum with the bottom liquid phase.

See Figure 1.1 for an schematic.
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FIGURE 1.1: Pipe’s geometry. The axial position is denoted by s. The angle formed
with the horizontal axis is denoted by «(s).

The fluid’s domain consists of a pipe that extends along a curve in the x — z plane. That
is, a curve passes through the center of the pipe and determines the pipe’s axial direction.

We assume that such curve is known, and can be parametrized by arclength, given by

r(s) = (2o(5),y = 0, 2(5)),

with s being the arclength position. That means that the parametrization satisfies

Hd%r(S)H: H% (0(s),0,20(8)) ||= \/%(5)2 (s =1.

Let a = a(s) be the angle between the pipe’s center and the horizontal axis. Therefore:

(z0(s), 20(s)) = (cos (a(s)) ,sin (a(s)))

On the other hand, let us denote by C the cross section, which passes through the center
(20(5),0,20(s)) and is perpendicular to the tangential direction (cos («(s)),sin (a(s))).

Let also (z,y, z) be any point in the cross section Cj.
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We would like to derive a parametrization of the cross section in polar-like coordinates.
We denote by 6 the angle between the displacement (z,y,2) — (z,(s),0, 2,(s)) and the

reference vector (— sin(a(s), 0, cos(a(s)), which is perpendicular to the axial direction.

Since the displacement (x,y, z2) — (2,(s), 0, 2,(s)) is perpendicular to the axial direction,

it satisfies:

(x — xo,y,2 — 20) = (—Zsin(a(s)), Y, Z cos(a(s))) .

for some scalars Y and Z. Let us denote by r the radius (displacement’s norm). The

vector (Y, Z) can be obtained by rotating the vertical position by 6 degree:

0 cos(f) —sin(6) 0 —sin(0)r Y
r f—r = =
1 sin(f)  cos(0) 1 cos(0)r Z

Substituting the above relations, one obtains the cylindrical coordinates in terms of

(r,0;s):

x=x(r,0;s) = —rsin(a(s)) cos(d) + zo(s),
y = y(r,0;s) = —rsin(6), (1.1)

z=2(r,0;s) = rcos(a(s)) cos(f) + zo(s),

with 0 < 0 <27 and 0 < r < R(6;s), where r = R(0; s) describes the pipe’s wall.
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The Jacobian of this transformation must have no null determinant. For that, we need

8:17 833 ax . . . ’ /
5 90 Bs —sin(a)cosf rsinasing  —rcos(a)d/(s) cosf + xj,
dy Jy Oy .

|J| = 3 30 Bs|= sin 6 r cos 0 0
9z 0z 0z cosacosf  —rcosasingd —rsin(a)d/(s)cosf + z|
or 00 O0s

= —sinacosf(—rcosf) (—rsin(a)d/(s) cosd + z(s))
+rsin(a) sin(6) sin(8) (—rsin(a)a’ cos(f) + zy(s))
+ (—r cos(a)/(s) cos 6 + x{(s)) (r cos(a) sin® 6 + r cos(a)cos?(6))

= rsin(a) [—rsin(a)a’ cos(8) + z{(s)] + rcos(a) [ cos(a)a’ cos(0)xy(s)]

= r—1r?d/(s)cos(f) = r (1 —ra’(s) cosf) # 0.

That is, for the parametrization be 1 —1 we need that 1 —ra/(s)cos(6) be strictly positive,

which is satisfied if:

1 — Rl (s)|> 0 < R(6;s) < o) =R(s)

where R(s) is the radius of curvature of the pipe’s axis.

Let us now define the vector r,(r, #; s) that parameterized our pipe’s cross sections (for a

fixed arclength position s):

r,(r,0;s) = (—rsinacosf + zo(s), —rsinf, rcosacosf + z(s)) .

One could compute normal vectors, which it will be relevant later on when we derive our

reduced model. For that end, it is easy see that:

O,rp = (—sinacosf, —sin b, cosacosb) ,

Oprp, = (rsinasing, —rcosf, —rcosasinf) , (1.2)
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with cross product given by

O,y X Ogrp, = —sinacosf) —sinf cos acos 0 ,
rsinasing —rcosf —rcosasinf

= i(rcosasin®f + rcosacos?f)
—j (rsinacosacosfsin @ — rsin a cos o cos 0 sin 6)
+k (r sin av cos? @ + 7 sin a sin® 9) ,

= (rcosa,0,rsina).

We can conclude that:

S |0vr, X Opry||= T (1.3)

This results will be relevant for “The Reynold’s transport theorem”, which will seen on

the next section.

1.2 The Reynold’s transport theorem

Theorem 1.1. The Reynold’s transport theorem (named after Osborne Reynolds) is a
three-dimensional generalization of the Leibniz integral rule for time and space; it estip-

ulates that:

0, (/ fdA) :/ o.f dA+/ (f\r:RI atrp“:RI) -ny, dl,
Qp Qp oQy,

0, (/ fdA> — | o, dA+/ <f|T:RI Oty ) ny dl,
o o G !

(1.4)
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Furthermore, for both time and space and taking k = 1,2 for liquid and gas on )y, the

last term can be written as follows:

/ <f|r=R1 atrp‘r=R1> * Ny dl = / f‘T:RI R]atR[ do
8Qk —T

(1.5)

/ (f‘rzRI 85rP|T:RI) ‘1 dl = / f’r:RI RIaSRI do
0 -7

Proof. First, we recall that a generalization of the fundamental theorem of calculus says

that

d (" " 0f(x,y) db da
- dy | = AL YA av da
du ( a(z) ) y) /a(l-) 0w Y+ flymb) dr Fly=ata) dz’

(1.6)

d b(t) b(t) af(t,y) b i
E ( a() f(t7 y) dy) = /a(t) 8t dy + f‘y:b(t) % - f|y:a(t) E)

and we define the radius for the gas phase (k = 2):

R(Q,S), if —9[ S 0 S Q[

R; = .
1 — o(s) sina(s) + zo(s) COSO‘(3>’ it 16]> 6,
cos
and for the liquid phase (k = 1):
nr — xo(s) sina(s) + 20(s) COSO‘(S), if —0; <6<6y,

R; cos 0
R(6;5) — nr — zo(s) sina(s) + zo(s) cos a(s)
cos

, if |6|> 0;.
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Without loss of generality, we take 0, ( fﬂk f dA) and using (1.6) and (1.3) with polar

coordinates, we get:

™ R1(0,t;s)
at(/fdA):at(// ffdw),
Qk —T 0
T R1(0,t;s)
:/ 8t</ frdr) de,
- 0

T R1(0,t;s) T
= / / Ouf r drdf + / [(fr)|T:RI ORr— frl._, 6150} de,
—x Jo -7

- atf dA —f- f|7":R1 R[@tR[ d@
Qp —7

On the other hand, we are now going to compute the normal vector n;. For that end, we
need to find a vector I' perpendicular to the pipe’s axis and to 9, ry|,_p 44 Taking

the parametrization over the boundary as

rplr:RI,s:s,O:G = (—Rrsinacos + xo(s), —Rysin 0, Ry cos acosf + zy(s)),
(1.7)

= Op Tpl,_p, s—s g9 = (—sinady (Rrcosf),dy (—Rysinb) , cos ady (Rrcosf + z(s))) -
(1.8)

Assuming that T’ = (a, b, ¢), it must be satisfied that

I' - (cosa(s),0,sina(s)) =0, = a = —fFsina(s),c= fcosa(s), with g € R.

For the sake of simplicity, we take = 1. Now we just need to obtain an expression for

b. So, notice that

r- 89 rp|r:R1,s:s,0:9 = O’

<= sin® a(s)9 (R; cos ) + by (— Ry sin 0) + cos® a(s)dy (R; cosf) = 0,

g (Rjcos0)

=b=—71—>=.
Oy (Rysin )
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Finally, we can write I as:

a Oy (Rycos0)
I'= ( sin a(s), m,cos a(s)) ,

or:

I' = (—sina(s)0p (Rrsinf) , 0y (Rycos ), cos as)0p (Rrsinb)) ,

and

T = \/ (cos 0Rs)* + 0 (sin Oy’

R? + (0pRy)*.

After normalizing, we get the following expression for ny:

r sma RISIHQ) Op (Rycos®)  cosa(s)dy (Rysind)
||

\/R2 (89R;)* \/R2 (89R;)* \//R’2 (8pR;)?

nk = — =
Using (1.2), we see that:

O, <rp|T:RI> = (—sinacos 00, Ry, — sin 00, Ry, cos acos 0, Ry) ,

100 ply _p, 1| = A/ (@0 (cos OR,))? + (D (sin OR)))?

R% + (89R1>27
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and then:

cos 00, R;0p (R sin ) — sin 00, R0y (Ry cos )
R? + (0sR;)

O (rp|r=R1> ‘g =

_ OiRr(cos (cosOR; +sin00yR;) — sin ) (— sin Ry + cos 00y Ry))
R? + (09 Ry)?

R;O.R;
R2 4 (9gR;)?

Finally:

" RiOR
[ (om0, ) ot = [ 51, i,y 10
0y, i R% + (89R1)

:/ f|’r‘:R1 R10:R; db,

as desired.

1.2.1 Cylindrical coordinates

The first step in the model’s derivation is to write the system in cylindrical coordinates

(r,6;s). Using the transformation in (1.1), we define
f(z,y,z;t) = f(—rsin(a) cos(f) + xo(s), —rsin(0), r cos(a) cos(8) + zo(s),t) =: f(r, 0,s;t),

where f denotes the function expressed in the new coordinates. The gradient after the

change of coordinates is expressed in the following proposition.
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Proposition 1.2. The gradient operators both in Cartesian and cylindrical coordinates

satisfy the following relations

0, = —sin(a)cos(6)0, — sin(0)0, + cos(a)cos(6)0;,
Oy = rsin(a)sin(8)0, — rcos(#)0, — r cos(a)sin(0)0;, (1.10)
05 = cos(a) [1 — rd/(s)cos(0)] 0, + sin(a) [1 — ra’(s)cos(0)] 0.

Proof. Applying the chain rule to f , we get:

O f = 0. [f(r,0, s;t)] = =0, fsin(a)cosh — 0, fsin() + 0. fcos(a)cos(),
O f = O, frsin(a)sin(0) — 0, frcos(d) — 0. fr cos(a)sin(f),

Oof = O, f [—r cos(a)d/(s)cos(B) + cos(a)] + 8. f [—rsin(a)a/(s)cos(h) + sin(a)] ,
which concludes the proof. O

Proposition 1.3. The inverted relations are computed as

cos(a)
1 —ra/(s)cos(0) ™

9, = —sin(9) — cos(@)%ag, (1.11)

0, = — cos(#)sin(a)d, + sin(0) sin(a)%@e +

sin(a 9
1 —ra/(s)cos(6) °

1
0, = cos(f)cos(a)0, — sin(f)cos(a)—0y +
r
Proof. We are goint to invert the operators to get V., .) in terms of V.4 5); we can note:

7 sin 00, + cos 00y = —r sin asin @ cos 09, + r sin av cos 0 sin 09, + 0 — r sin? 60, —r cos? 60,

= —10,,

giving

1
0y = —sin 00, — cos H—0y.
r
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On the other hand,

rcos 00, — sin 00y = —r sin acos? 9, — r cos O sin 00, + rcosa cos? 60,
— rsinasin? 00, + r cos  sin 00, + rcosa sin? 00,

= —rsinad, + r cos ad,.

=  rcosf0, —sinfdy = —rsin ad, + r cos ad,, (1.12)
However,
ds = cos(a)(1 — ra'(s) cos )0, + sin(a)(1 — ra’(s) cos 0)d,, (1.13)
and taking
eq.(1.12) [sin(a)(1 — ra/(s) cos §)] — eq.(1.13) [r cos(a)],
we obtain

rcosfsin(a)(1 —ra'(s) cos )0, — sinfsin a1l — ra’(s) cos 0)dy — r cos ads

= —rsin®(a)(1 — ra/(s) cos 0)0, — rcos(a)(1 — ra’(s) cos 0)0,.
Therefore
—r(1=rd’(s) cos0)d, = r cosfsin a(1—a/(s) cos 0)d,—sin O sin a(1—ra’(s) cos 0)9p—r cos ads.

As a result,

COs ¢

1
0, = —cosfsinad, + sinfsin a—0y + ;.
r 1 —ra/(s)cosd

Now, taking:

rcos ad, = r cos 00, — sin A0y + r sin a0,

T COS (v SIn «

= rcos 00, — sin 0y — r cosOsin® a d, + sin @ sin® a Iy + A
1 —ra/(s)cosd

T COS (v SIn «
1 —7ra/(s)cosf

= rcosf cos® a0, — sin 0 cos® ady +
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we get
1 .
0, = cosbfcosa 0, —sinb cosa—0y + Sma .
r 1 —ra/(s)cosd
Finally, we get
. . 1 cos o
0, = —cosfsinad, + sinfsina—0y + 3
r 1 —ra/(s)cost
1
0y = —sin 60, — cos -0y (1.14)
r
] .
0, = cos 0 cos a0, — sinf cos a—0p + M s
r 1 —ra/(s)cosd
which concludes the proof. O

Remark: We note that, if & = 0 then
) 1 1
O0s = 0y, 0y = —sinb0, —cos0—-0y, 0, = cost0, —sint—0p,
r r

corresponding to the case of a horizontal pipe.

In the new coordinate system it is necessary to write the radial, angular and axial veloci-
ties instead of the usual zonal, meridional and vertical ones. Furthermore, one also needs
to derive the relations between the velocities in each coordinate system. For that end,
we consider Lagrangian coordinates where a fluid particle moves around the domain with
position described by a curves (z(t),y(t), z2(t)) as a function of time, or equivalently, as

(r(t),0(t); s(t)) in the cylindrical coordinates.

Definition 1.4. In Lagrangian coordinates, we define:

dx dy dz

U= —1v=—_w-=

dt’ dt’ dt’
(1.15)

dr do ds

‘/;“ — %7‘/9 - E;‘/s - E

as the velocities both in Cartesian and cylindrical coordinates.

The relation between velocities in each coordinate system is given in the following propo-

sition.
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Proposition 1.5. The fluid’s velocity can be transformed from Cartesian to cylindrical

coordinates via the following relations

V. = —sin(«) cos()u — sin(f)v + cos(«) cos(6)w,

Vo = %Sin(a) sin(f)u — Coi(e)v - %COS(@) sin(f)w, (1.16)
V, = ! [cos(a)u + sin +(a)w] .

1 —ra/(s) cos(0)

Proof. Substituting the parametrization (1.1) into the definition (1.15), we obtain:

d d .
u= %(x) =7 [—7rsin(a) cos(0) + zo(s)] , 6
dr . ,, . ds ) : d , . \ds
= sin(a) cos(f) — r cos(a)a (3)% cos(f) + rsin(«) 8111(6’)% + xO(S)E’
= —sin(a) cos(0)V; + rsin(a) sin(0)Vp + (1 — ra/(s)cos(9)) cos(a) V. (1.17)
Similarly,
v = —sin(0)V, — rcos(0)Vp, (1.18)
w = cos(a) cos()V, — rcos(a) sin(0)Vy + [1 — ra’(s) cos(8)] sin(a) Vi, (1.19)

and using equations (1.17), (1.18) & (1.19) we can solve for V,., Vy & Vi to get equation
(1.16).

1.3 Divergence

One also needs to transform important operators that we will need to rewrite the equations
in the new coordinate system. One such operator is the divergence, which is described in

the new coordinate system as follows.

Theorem 1.6. The diwvergence in cylindrical coordinates can be written as:

|J|V(z,y,z) : (F17F27F3) = V(T,O,s) : <F17F27F3> )
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where

Fl = |J|<—cosé’sinozﬁ’1 —sineﬁ’g +cos€cosaﬁ’3>,

. 1 ~ ~ -
Fy, = \J|(sinﬁsinaF1 —cos 0 Fy —siHQCosaFg),

r
Fy = r(cos a(s) Fy + sin afs) ﬁg).

Proof. We take a vector function:

ﬁ - (F1($,yyz)»F2($,y72>,FS(%%Z)) - (F1<7”,9; S)aFQ(T70;8)7F3<T70; 3)) .

Using the operators (1.10), we obtain the divergence as:

V- (Fy, Fy, Fs) =0, I + 0,F5 + 0,F%

cos ~
OsF
1—ra/(s)cosf ° '

_ 1 .
= — cosfsinad, F; + sin@sin a—0p F} +
r

~ 1 ~
— 8in 00, Fy — cos 0—0y F)
r

sin «

83F3,

N 1 -
+ cos 6 cos a0, F3 — sin 6 cos a—0g F3 +
r 1 —ra/(s)cosd

and recalling that |J|=r(1 — rd/(s) cos ), we write
||V - (F1, Fy, F3) =|J|0.Fy + | |0y Fo + | J|0,F3
3 1 - 3
= — |J|cos O sin a0, Fy + | J|sin 0 sin a—0y Fy + 1 cos ads F (1.20)
r

8 1. -~
— | J|sin 00, Fy — | J|cos 0—0y F (1.21)
r

~ 1 ~ ~
+ |J|cos 0 cos ad, F3 — |J|sin 0 cos =g F3 + rsin ads F5.  (1.22)
r
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First we work on the terms in equation (1.20). Using the chain rule, we get

3 1 . 3
|J|0.F1 = — |J|cos 0 sin ad, Fy + | J|sin @ sin a—0p Fy + r cos ads Fy
r

=0, <—|J]cos€sin a(s)F1> + (1 —2rd/(s) cos (6)) sin (0) sin (a (s)) %atﬁl

+ 0y <\J!sin (0)sin (a (s)) %]51) — 0 [(1 — ra/(s) cos (0)) sin (6) sin (a (s))] Fy

+ 0 (r cos (a(s)) Fl) —r(—sin(a(s)))d(s)Fy

=0, <—|J|cos€sin a(s)E) + Oy <|J|sin (0) sin (a () ]51) + 0, (r cos (a (s)) ﬁl)

+ (1 —2ra/(s) cos (6)) sin (9) sin (a (s)) %8,5151

—ra’(s)sin® (a(s))Fy — (1 —ra/(s) cos (A)) cos (/) sin (a (s)) Fy

+rsin (a(s)) o' (s)Fi

— 9, (—|J|cos€sinoz(s)ﬁ’1> + O (|J|sin (6) sin ( (s)) 1131) +0, (r cos (a (s)) Fl) .

”
Now taking equation (1.21), we see that:

1710, Fy = — (1 —ra’(s) cos 0) sin 6 0, Fy — (1 — ra’(s) cos ) cos 18915’2
r

=0, (=r(1 — rd/(s) cos ) sin OF,) + (1 — 2ra’(s) cos 6) sin O F

1~ - -
Og(—|J|cos 0= F3) — sin OF, + 2ra’(s) sin 0 cos O Fy
T

- 1 -
=0, (—|J|sin F3) + Op(—|J|cos H;FZ),
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and finally equation (1.22) to get

1~ - -

|J|0.F3 = 0,(—|J|sin 0 cos a=F3) + (ra’(s) sinf) sinf cos a F5 — (1 — ra/(s) cos 0) cos 0 cos o F
r

+ Oy(rsina Fy) — 7 cos a/ (s) F

3 1 -~ .
=0, (|J|cos 0 cos a F3) + Oy(—|J|sin 6 cos Oé;Fg) + Os(rsin aF)

— cos B cos a 5 + 2ra/(s) cos® 0 cos o Fy + 10/ () sin? 0 cos v F

+ cosf cosa Fy — 7/ (s) cos? 0 cos o Fiy — 1 cos(a)al (s) F

_ 1 - .
=0,(—|J|cos O cos a F3) + Op(—|J|sin 6 cos a F3) + Os(rsina F3).

|J|V - (Fy, Fy, F3)
. 1 - _ 8
=0, (—|J|cos@sina Fy) + 39(|J|sinﬁsinoz;F1) + Os(rcosa(s) Fy) + 0, (—|J|sin 6 F3)

1~ - 1 -~ -
+ Og(—|J|cos GFFQ) + 0,(—|J|cos 0 cos a F5) + Op(—|J|sin 0 cos a F3) + O4(rsina F3)

:8,,[— |J|(cos€sinaﬁ1 +sinf F — cos@cosaﬁ’gﬂ
1 . ~ -
—i—@g[— \J|—< —sinfsina Fy + cos 0 Fy —i—sin@cosong)}
r
+ 0, [r(cosa(s) Fy 4 sina(s) Fgﬂ
:V(T’,&S) (FIJ F27 F3) )
where
= |J|(— cosfsina F, — sin 0 Fy +cos@cosocﬁ’3>
1 . ) ~ ~ . ~
= —|J]<sm@smocF1 —cos O Fy — sm@cosozF;;)
r

F; = T(COS a(s) Fy +sinaf(s) Fg)
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The following theorem will be useful in writing the equations of motion in conservation

form in the new coordintaes.

Theorem 1.7. Let @ = (u,v,w) be the velocity field. Then
[JIV - (fd) = Ve - (1] (Vi Ve, Vi)
Furthermore, the material derivative in conservation form can be written as
(IO + V- (@f)) = 0 (1) + V- (f (Vi,, Vo, Vi) -
Proof. If we expand the term f|J| V - (uf), we get

|J|V - (uf) =0, (|J|(—cosOsinauf +sinfuvf + cosf cosawf))

1
+ ;89 (|J]|(sinfsinwuf + cosfvf — sinf cos awf))

+ 0s (—r(cosauf +sinawf))

/]

=0, (|J|(—cosfsina f[—sinacos OV, + rsinasin OV, g — — cos aVy 4]
r
+sin 0 f[sin OV}, + r cos OV} ¢]
]|

+ cos @ cos a flcos acos OV, . — rcosasin OV g — . sin aV )

+ %89(|J\ [sin@sin v f[—sinacos OVy . + rsinasin OV g — |7’i| cos aVj ]
+ cos O f[sin OV, . + 7 cos OV} ¢]

—sinf cos a flcos acos Vi, — rcosasin@Vy g — @ sin aV s]])

/1

+ 0s(—rcosa f[—sinacosOVy g + rsinasin OVy, g — — cos aVj 4]
r

/]

—rsina flcosacos OV, — rcosasinfVy g — — sina'Vj 4])
r
1
=0:(| Vi £) + ~0o(1|rVieo f) + O(1J Vi ).

|J|V ' (fU) = v(r,@;s) : (|J|f(vk,r) Vk,07 Vk,s))'
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We know that:
IV - (fu) = [J]0:(fu) + | |0y (fv) + [J]0:(fw),

and

(‘J’f(vk,ra Vk‘,@a ‘/;C,S)) = ar(‘J’ka,r) + 89(’J|f‘/k,0) + as(‘J’ka,s)7

which implies

[J10f +V - (uf)) = (| J1) + V- (f View Vio, Vis)).

1.4 Euler isentropic equations

Definition 1.8. For a vector u = (ug,vg, wy) and a density p, the Euler isentropic

equations can be written as:
dipr. +V - (up) = My
O (pruk) + V- (wpguy) = =05 (Pi(pr)) + D
O (prvk) + V - (uprvy) = —0y (Pr(pr)) + Do
O (prwr) + V- (uppwi) = =0 (Pi(pr)) — pg + D,
or in extended form as
Opr + Ox (prur) + 9y (prvr) + 0 (prwy) = M
Oy (prug) + O, (pkui) + 0y (prurve) + 0, (prugwy) = —0y (Pe(pr)) + D1
O (prvr) + O (prurvr) + 0y (prvi) + 0. (prvrwy) = —0y (Pe(pr)) + Doy

0; (prwy) + 0o (prugwy) + 0y (progwy) + 0: (prwiy) = =02 (Prpr)) — pg + Da,
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where M}, is the mass interchange term, ¢ is the gravity and D, g, Dy g and Dsy, are

momentum exchange source terms.

1.4.1 Equations of motion in cylindrical coordinates

Now that we have the velocity in the new coordinates, the next step is to write the

equations for balance of momentum in the radial, angular and axial directions.

In our assumptions to derive the model, we assume that both the axial and angular
velocities are small. As a result, we do not write the equations of motion for those
variables. All the equations are described in the following proposition, where bottom

layer (liquid phase) is associated to k = 1 while the top (gas phase) corresponds to k = 2.

Proposition 1.9. The isentropic Fuler equations in cylindrical coordinates imply the
following equations for conservation of mass and balance of momentum in the azial, radial

and angular directions.

3 (1/1px) + Ve (17101 V) = M,

0uprVics )+ Ve (|101Vir V) = =110(Pulon)) + 1| wr Vi

— |J|pxVis cos 0 (s) (1 — ra’(s) cos 0) Vi s + | J| Dy

J J .
O (peViolJ|) + Ve (|TpkVio V) = —2|7|pkvk,rvk,9 + ypko/(s) sinf(1 — ra'(s) cos H)V,is
J J
~laup s W cos (@ () sin (9) g + 171D
2 2
O(pVis| ) + Ve (|]pVis V) = _masp - mDs + priV2a(s) cos(f)

+2rd/(s)pV; (cos(0) V. — sin(0)rVp) — gpsin (a (s)),

where V' = (‘/T‘,ka‘/@,k7VS,k>7 VC = <8T789788)7 and Pk = Pk(pk)
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Proof. Expanding the derivatives and using the theorem 1.7 and the definition 1.8, we

get:
O (| 7|p) = [J10rpk = =|JIV - (prug) = =V - (|| pr (Vi Vo, Vo)) + M.

2O (o) + Ve - ([ ox (Ve Vo, Vi) = My

Now, for the angular, radial and axial momentum equation, we use the velocities from

1.16 to define

Vir = —sin(a) cos(@)uy, — sin(0)vy + cos(a) cos(8)wy,
Vio = lSin(oz) sin(6)uy, — COS(Q)vk - 1cos(oz) sin(6)wy,
r r

1
‘/;4:,5 =

1 —ra/(s)cos(f) [cos(a)u + sin(ar)wy]

Another expansion gives

Ot(prVier|J|) = — sinaccos 00, (pug|J|) — sin 6 0y (pvg|.J|) + cos a cos 00, (pwi|J|)

= —sinacosb|J|(=V - (prugu) — 0, Py + D1 i)
—sin@|J|(—=V - (prvgu) — Oy Py + D)

+ cosacos | J|(—=V - (prwru) — 0, Py + D3 )

=sinacos OV, - (|J|prur V) + sin 0V, - (|J|prvr V) — cos acos V.. - (|J|prwi V)

1
+ sinaccos 0| J| (— cos 0 sin a 0, P, 4 sin 0 sin a—0y Py,
T

cos «
1 —ra/(s)

1
+ sin 0| J| (— sin 00, Py.(px) — cos 0;89Pk(pk))

+

— gaspk) (1.23)

1
+ cosaccos 0] J| (— cos 0 cos a0, Py (py) + sin 0 cos a—0y Py,
r

sin «

ast(Pk))

1 —ra/(s)cosf

—sinacos 0|.J| Dy — sin@|J| Do, + cos a cos 0| J| D .
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Here

|J| Dy = —sinacos8|J| Dy, — sin0|J| Dy + cos acos 0]J| D i,
Now, we reduce the expression for 0;(piVi,-|J|) by making the next calculations
sinacos OV, - (|J|prur V) = sin COSQ(@T(|J|pkuka77«) + Op(|J | prewur Vi o) + 85(|J|pkuka75)>

— ar(’t]|pk SinOdCOS eukaJ") + a9<|‘]|SinC(COS Q'U/ka,G)
+ Os(|J | pr sin v cos Ouy Vi 5)

+ sin asin 0]J | prug Vi g — cos o o (s) cos 0] J | prug Vi s

= V.- (|J]|prug sinacos 0V) (1.24)

+ sin asin 0] J | prug Vi g — cos acd'(s) cos 0| J | prug Vi s.

Analogously:

sin (0) VC . (|J|pkka) = VC : (|J’Sll’l kaka) — COS 9|J|pkkak,9, (125)

and finally:

—cosacost - (|J|prwi V) = =V - (|J]|cos a cos Oprwi V)
+ cos a(—sin0)|J|prwi Vi (1.26)

+ (—sina)d/(s) cos 0].J | prwy Vi s.
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Substituting the relations (1.24), (1.25) and (1.26) in (1.23) we obtain

O (pVir|J|) = Ve - <|J|pkuk sin av cos 9V>
+ sin asin 0] J | prug Vig — cos ad'(s) cos 0| | prur Vi s
V.- <SiIl ka|J|UkV> — cos 0|J | prvkVie
- V.- (COS o cOS 6’|J|pkka) + cos a(—sin0)|J|prwi Vi
+ (—sin ad/(s))|J|cos O prwy Vi s
= [J10:Pe(pr) + [T Dy
=-V.- <|J|kak,rV> + prVio|J|[ sin asin 6 — cos Qv — cos o sin Gwy]

— peVis|J|cos 0a/ (s)(cos auy, + sin awy) — 0, Py (px) + |J| Dy .

So, we get

O pVis 1) + Ve (11nVis V) = = 1710, (Pu(pi)) + [T losr Ve,

— |J|prVi,s cos ' (s)(1 — ra/(s) cos 0) Vi s + |J| Dy
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Expanding again we get

0 1
O (prViolJ|) = | 7|0k (— sin asin 6 pruy, — cos PrUE — — COS a sin kawk)
r r

_ M

r

J
- ’_7“| cos (—=V - (vgpu) — 0, P, + D>)
J
- y cosasind (—V - (wgpu) — 0, P, — pg + Ds)

sinasinf (—=V - (ugpu) — 0, P, + D)

cosf

1
= sinasin @ V. (|J|ugpr V) + Ve (|J|vkpr V)

1
+ —cosasinf V. - (|J|wgpr V)
.

J J
_| |8P —|—| |cos(a(s))sin(ﬁ)pkg+|J|D9

1
=-V.- (|J|; sinasin&ukka) <—|J|(Cosgvk)ka>
1 . 1. .
- V.- <—|J|— cosasm@wkka) + | J |ugpr Vier (——2 sin av sin 0)
r r

1 1
— | J|vkpr Vi (_ﬁ COS 9) — | J|wgpr Vi r (_7"_2 cosasin@)

1 ino
+ | J|ugpr Vio (; sin ar cos 9) — [ |vepr Vo (_81: )
1
— | J|wepiVio (— COS (¥ COS 0)
r

1 1
+ |k pre Vi s (— cos a + o/ (s) sin 9) — | J|wipr Vi s (—— sinaa’(s) sin 9>
r r

J J
_| |8 P, + |r_| cos (a (s)) sin (0) prg + |J| Do

=~V (|J|pVreV) — QQka,TVk,g + |Ti|pko/(s) sin 6 (1 — ra’(s) cos0) V2,
U|

J
—5 0P + u cos (a (s)) sin (@) prg + |J| Di.p-

Thus

|J|kakTng + Iilpka (s)sin@(1 — ra/(s) cos )V,

IJI

O(piViolJ]) + Ve - (|]pxVio V) =

J
V19, + Ucos (cr(5))sin (6) prg + |7 Dy,
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where:

Dy = 1
-

sinasin 0D —

J J
|—| cos Dy — |—| cos asin 0 Ds.
,

Now we expand once more and obtain

O(pVi.sl J])

_ms

V.,

+ || puVir

+ || puVi s

Ve ([J]puV) —

-
/]

- (rcosa puV) —

o,
o,

7 Sin «

PG, (]pwV)
7

Dy —rsin(a(s)) pg

Ve

COS v

- (rsinapwV)

) + |J|pqu,989 (

)

COs &

)

—ra/(s) cosf 1 —ra/(s)cosd

COSs v

—ra’(s) cosf

sin « sin «

Iﬂmwm&<1

) + |J|pwVi,600 (1

)

—ra/(s) cosf —ra/(s) cosf

sin o
J| pwVy, 405
+ |JlpwVi, <1 —ra/(s) cos 9)
2 2
— o.p— D,
]| ]|

Furthermore, direct computations gives us

cos o
1—ra/(s) cos 6

o (rtiomn)

COS &

1—ra/(s) cos 6

cosa
1—ra/(s) cos 6

0s

sin a
1—ra’(s) cosf

Oy

o2

1— ) cos 6

sma
1—ra/(s) cos @

s

% (stiemn)
(tsaen)
(=)
(temn)
(tems)

COS & /
A—ra’(s)cos )2 ¢ (s) cos b,

cosa
(1—ra’(s) cos 0)2 ra

'(s)sin@,

sina a/(s)
1—ra’(s) cosf

cos a
1—ra’(s) cosf

+7 )27“@”(5) cos 0,

sin o
(1—ra’(s) cos 0)2 @

'(s) cos b,

—sino ! :
(1—ra’(s) cos 0)? ra (S> Sin 9’

sin a

cosaa’(s)
+ (1-ra (s)cos@)QrOé

1—ra/(s) cos @

'(s) cos .
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So the equation of motion for the axial momentum is then computed as

2 2
O(pVislJ|) = =V - (rp(l —rd/(s) cos0)V; s V) — masP — mDS
o/(s) cos —ra/(s)sinf
J|pViesr Vies + | J]pVi .
11V, 1 —ra/(s)cosf ks 110 kﬂl—ro/(s)cos@ "
o/(s) .
+ |J|PVk,sl ol (s) COS6(— sin w4 cos fw)
ra’(s) cosf
1PV 1 —ra/(s)cost s
. (UpViaV) — Sop— p
= Ve (|J]pVksV) = 750.P — — D,
] /]

+ rpVi, 0/ (s) cos OV s + 1pVig (—ra/(s) sin @) Vi
+ rpVi s (s)(—sinau 4 cos w) 4+ rpVi s (ra’(s) cos 0) Vi

7"2 7‘2
~_9,P— —
/] 7]

+ 2rd/(s)pVs (cos(0)V, — sin(6)rVy) — gpsin (a (s)),

= V. (|J]|pVisV) — D, + pr*V2a(s) cos(6)

giving us

7,2 TQ

9P —
/] |/

+ 2ra(8)pVs (cos(0)V, — sin(0)rVy) — gpsin (a (s)) .

Ou(pVis 1) + Ve - (11pVis V) = D, + prV2a’"(s) cos(9)

1.4.2 Euler Equations

The reduced model is obtained by cross averaging the isentropic Euler equations in each
cross section U, both in the angular and radial directions. Therefore, the angular and
radial velocities will not appear in the reduced model, as they are assumed to be small.
The relevant equations are then the equations for conservation of mass and balance of

momentum in the axial directions. In each layer, such equations are given respectively
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by
O ([ 7lpk) + Ve - ([ 7|px V) = M,
r? r?
O (|11peVsk) + Ve (|J]pxVsV) —|—J|85Pk — |_J|D5 + pr2V2a(s) cos()
+2rd/(s)pVs (cos(8)V, — sin(0)rVy) — gpsin (a (s)),

(1.27)
for pipe’s layer k (1 for the liquid and 2 for the gas), py is the density, Py is the pressure

and Dsj, is the momentum exchange.

For the derivation of the model, we assume that the radial and angular velocities are

much smaller compared to the axial velocity
Vo, Vi, K V.
As a result, the leading order contributions from equations (1.27) satisfy

([ Jpk) + Os(| | paVi,s) = My,
=

(17| peVar) + 0s(I7|peVid,) = —ﬁ(“)sP — %DS + pr?V2,a(s) cos§ — gpsin (a (s)).
(1.28)

1.5 Cross section averages

Once the leading order terms are obtained, the next step in the derivation is the cross
sectional averaging process. For that end, we need to determine the cross-sectional average

of any quantity.

Definition 1.10. For the bottom layer, the cross-sectional integrated Jacobian is defined

27‘(’—9[71 Re,l
A = / / T drdf. (1.29)
011

Ro,1

as
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On the other hand, for any given a function f(r,6;s,t), we defined the cross sectional

average as

2r—0r1  pRe f|J‘
1(s,t) =1 / f(r,0;s,t)|J|drdf = — / ——dA. (1.30)
1

01,1 Ro,1

Note: In the case of a straight pipe (« = constant, J/r = 1 and the cross-sectional

average is given in terms of the regular integral.

Analogously, for the top layer the integrated Jacobian is:

01,2 Re o
Ay = / / T drdf, (1.31)

01,2 Y Ro2

and the average for the top layer (denoted with double over lines) are

01,2 f‘J’
(s,t) =1 / f r,0;s,t)|J|drdf = / dA. (1.32)
2

01,2 J Ro2

1.6 Mass conservation equation

Now, we are going to integrate the equations in each layer. For that, the Reynold’s
theorem 1.4 will be very useful. In this section, we state it and include some special cases

in its proof for illustration.
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For the mass conservation equation (1.28) (over the top layer), we have:

B 01,2 Re 2
AQMQZ/ M2|J|d7“d0
—0r2 J Ro2

01,2 R
/ / 0, (1T1p1) + 0y (| |p1 V)] dr b

012 J Roz2

br2 Rz dR, dRy
= 9] / Jlprdr | —|J|p1],— J|p1l,—
/[(H ) 191, S+ il

or2 Rz dR. dR
+/ [as </ | J|p1 Vs dT) — [ p1Vil,—g, ds + [ p1Vil,—g, d—SO

—01,2 Ro,2

do

de

fie do; [ —db;
_é?t( / |J|p1 drd@ /RO |J|p1dr‘ —IE+/}20 |J|p1dr‘9__91 o

91
.

—0;

01

/.

2<—|J| ‘ ¢ dRO d0+8 / / 17| Vdrd@
2 1 r=Re dt r=Rp dt 1

dR, dR,
+ [ (= 1emvs T:REEHJ!/)IV‘_ o £X0) e

= / / || p1 d’r’dﬁ + 8 / / | J1p1Vs drd@
d@; d@; Re d@]
- /Ro <|J|p1|9 91( dt + V 0=0; ds >)d - /0 <|J|p1|9:_91 (E + ‘/;

—/allJlm L e(dR +V; - (ﬁ

dR or
°)do J
dt ) +/91| LR
We can proceed in an analogous way for the bottom layer. Finally, we get the motion

0=0; %) > dr

dRy
db.
r=Ry dS )

+ Vs

r=R. ds

equations for the top and bottom layers:

O(A1pr) + as(z‘hﬁl‘/:,l) = A, M,
(1.33)
0 (Aapa) + as(A2ﬁ2‘7s,2> = Ay M,

where the total mass exchange A;M; + A3 M, = 0 vanishes.
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1.7 Momentum conservation equation

As the Jacobian was integrated to obtain conservation of mass, we are also going to

integrate the left side from the momentum conservation equation (1.28):

2 2

T .
at(|‘]|pk‘/s,k) +a$(|‘]|pk‘/k2,s) = _masp |J|D +pr2vvks ( )COSQ—gpSlIl (Oé (S>>7

for the bottom and top layer. Without loss of generality, we will only proceed for the
bottom layer. The integration of the right side will be seen on next sections, and also
in the next chapters with the quasi-lineal and conservative form. So, integrating the left

side for k = 2 we get:

01,1 R 1
/ / 01 T101Ver) + 8.(1T iV drde

9[1 Rcl
dR,
— 0 J|p1Visdr — | J|p1 Vi s Vis|  ——|db
/ [ t/ | |p1 ksl | |P1 b r=R. dt o r=Ro dt]
dR dR
2 _ ) e 2 _0
/ / Vs = V2| T V| S as

—db;
0=—0; dt

do;
— —i—/ || p1 Vi sdr

Re
( / / o1 Vies drd@) _ / TlpaVisdr]
\RO =01 d

-~ -~

(1 2)

01 dR dRy
_ . ¢ J 0 =2 de
/9[ |:\ |J|p1Vk’ =1fte dt ‘/;C7 r=Rp dt ]
@) )

Re do; —db;
+ 0, (/ / ]J\p1Vk%Sdr) —/RO !J|p1Vk2,sdr‘ —zd_+/ |J\p1Vder0 o s

-~ -~

1) (1)

dR,
J|p V2 —
o Vis| ds

- -

®3) (

| a6.

N
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If we factor out (1), (2), (3) y (4), we get the “streamline condition”, which is:

R R,
e del de_[ ¢ d(91 de
J Vsd‘ — J|p V2 d‘ ———/ J|p1 Vi s + Vis— ’ dr=20
/RO | |p1 k,sQT —0, dt / | |p1 k,s r 0=0; ds Ro | |p1 k, < dt F ds ) 0=0; "

so we finally get:

011
/ / [D0(1710Vi) + 111V drdd = 0,4, V) + 0, (A V)
911 Re,

The above is after assuming that p, Vi ~ 5,V and p;V2 ~ p,V2. We left the integral of
the right side in its general expression (explicit expressions to be described in the next

chapter). So

2

r -
O (p2AaVi0) + 05 (pQAQ‘/;%Q) = —|—J|65P |J\ D + prQV,fs "(s) cos — gpsin (a (s)).
(1.34)
Analogously for the bottom layer:
r2 .
O (p1A1Vs1) + 05 (01A1Vs2,1) = _|—J|85P |J| D + PTQVkQS "(s)cos — gpsin (a (s)).

(1.35)

1.7.1 Integration of gravity term

Proposition 1.11. For the integration of the gravity term on the momentum equation,

one gets:

gpsin (a (s)) ~ sin (o (s)) gApr <|T7|)
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Proof. Expanding out the expressions we get
gpsin (a(s)) = / rsin (a(s)) prg dA
Qp

:/ Lsin(a(s))pkgu] dA
o ||

~ sin (a (s)) gApr (ﬁ) (1.36)

1.7.2 Hydrostatic Pressure
Definition 1.12. The hydrostatic pressure is defined as:
VP = —gpz,

where Z is the canonical vector (0,0, 1), ¢ is the gravity, P is the pressure and p is the
density. For our model, we have two pressures, one for the liquid phase (k = 1) and the

other for the gas phase (k = 2). Each one is given by:

~ p2 2
P2:P2,Tef< > = P = Pi(p2),
P2,ref

Py = Py — gpz.

We are going to project over the direction § = 7. So

(—rsin(a) cos @ + xo(s), —rsin @, r cos(a) cos O + z(s)) — (zo(s),0, 20(s))

=(rsina,0, —rcosa) ~ (sina, 0, —cosa) L (cosa, 0, sin a).

We take the dot product and see that:

VP (sina,0,—cosa) = (Pr — gpz) - (sina, 0, — cosa) = Py + gpcos «,
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(Cos a, 0,Sina)

N

(Sina, 0,Cos a)

FIGURE 1.2: Pressure’s projection

but also
oP

a_n7

VP - (sina,0,—cosa) =sinad, —cosad,p =
where
n = (sina, 0, — cos ).

Therefore, the hydrostatic pressure in the liquid phase depends only in the projection:

(—rsinacos, —rsinf,rcosacosf) - (sina, 0, — cos a) = —rsin® a cos § — r cos” o cos

= —rcosd.

Therefore, the pressure over the projection is:

P = P(rcosf).

Now we remember from (1.14) that

COS v

1
0, = —cosfsinad, +sinfsina -0y + .,
r 1 —ra/(s)cosd

1
0y = —sinf 0, — cos 00y,
r

sin «

1
0, = cosfcosa 0, —sinf cosa—0y + .
T 1 —ra/(s)cosf
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So

g—P = sin a9, (P(r cos ) — cos ad.(P(r cos 0))
n

. 1-
= sin a(— cos @ sin a P’ cos 0 + sin 6 sin a— P’ (—rsin §))
r

3 1-
— cos a(cos @ cos a P’ cos § — sin § cos a—P'(—r sin 0))
r

= sina(—sina P') — cosacosa P’

=_P.

= —P' =gpcosa.

nmax > 0

(xp(s), 0, 20 (s))

*

Interfase n-

7

o(n) /

(x(r.8,s).y(r.8,5),2(r.8,5))

Nmin < 0

FIGURE 1.3: Pipe’s geometry described in terms of displacement from the center (7)
and width (o(n))

Most integrals can be better expressed in terms of the displacements from the center. On
the one hand, let n be the distance from the center line (z,(s),0,2,(s)) and any point
under (or above) the interface line in layers 1 (or 2) at (z(r,0;s),y(r,0;s),z(r,0;s)).
Geometrically, a constant 71 corresponds to a layer parallel to the pipe’s axis. On one
other hand, 7; is the distance between the center of the pipe to the interface. See Figure

1.3 for more details.
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In absolute value, the distance from the axis to the point in the cross section is given by

\/(xo(s) —2)° + (20(s) — 2)° = Vr2sin® acos? 6 + r2 cos? o cos? ) = r|cos |,

and taking the sign into consideration, 7 is positive/negative above/below the axis. So,
we get

n = rcos(6). (1.37)

Therefore, since

n =rcosf = P(n) = —gp(n) cos a.
We assume that p ~ p, which is the liquid phase average, so

P = P;+ pg(n; —n) cosa

o P = Pr +gcosap(nr —n).

1.7.2.1 Pressure integration for the conservation form

For the Pressure integration we need to proove the next proposition.

Proposition 1.13. The Pressure term of the momentum equation can be expressed as

T2 ~ ro o~ r ~ —
eb - 5 o) ) B, dA, — 0, (AP

Proof. 1t’s easy to see that:
. - "o "
o= [ Soman= [ [o.(2R) o (1) h]u
T Ja 1T Jo PN )
—/a LB a4 —/a L) BodA,. (1.38)

Using the Reynold’s Theorem 1.4 we note:

o~ r o~ T~
O, /—PdA):/ 88(—P)dA +/ — P
(Qk Fi SN/ i T

R aS (rP‘r:R) - Ny,
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SO

r—R 65 (rP|'r:R) - Ny,

ro o~ r o~ r o o~
as(_p)dA :as</ _pdA)_/ T p
/ﬂk 177 F) o [ Jaa I
7’ ~

—o () - [ R

substituting (1.39) in (1.38)

0s (rp‘T:R) Ty, (1.39)

r=R

r=R

r ~
0. () B,

9 () o |

r2 - — roo~
0P = 0. (AT - / B,
/] o o

o ||
therefore

T .
|| oo 1]

r

85 (I‘p‘T:R) - Nk +/ 83 ( ) pk dAk — 85 (Ak?k)
r=R Qe ‘J’

If we substituted this last relation with the gravity term integration in the momentum
conservation equations (1.35), (1.34) we obtain the final expression for the momentum

conservation equations

r2
0s (I'P\T:R) Nk — ka,s

T ~

Py

O (prAkVs k) + 0s <pkAk:V;27k + Akpk) :/ —
oo ||

+/ Os (L) P, dA;, + pr2V2 o' (s) cos
Qy, ]| ’

— sin ( () gAwpr <ﬁ) . (1.40)

r=R

1.7.2.2 Pressure integration for the quasi-lineal form

We now proceed to compute the pressure integration coming from the momentum equa-

tion. For this end, we first need to prove the next proposition.
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Proposition 1.14. The area of each layer can be re-written as:

Jﬁz/mu—w@mdmwn

Nmin

@:/WWuw%dem

ni

Moreover, the function average can be re-written as

_ N1
fi= / a(n)fi(n;s,t), dn

Nmin

B Nmaz
ﬁ:/ o(n)fo (5 5,8) di.

N1

Proof. Without loss of generality, we prove the result for phase 1. Recalling definition

27‘(‘791’1 Re,l
A = / / \J| dr db.
01,1 Ro,1

1.10, we get

We also note that

|J|=7r (1 —rad/(s) cos (0)) = |ri| =1—rd(s)cos(8) =1—a'(s)n.

So

27r—01,1 Re,l ‘J’
/ / |J]d7°cl9:/ —rdrdf
01,1 Ro,1 r

:/(1—0/(3)77)7'dA

1951

- [ - demotan

nr
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On the other hand:

- L[ flJ]
fi(s,t) = — [ ——dA
141(!v r

— Ail/f (r,0;s,t) (1 —a'(s)n) dA
Q1

1 nr

= (1 —d/(s)n) o(n) dn.

Thmin

This is an important result. We have not only changed the limits of integration but
we have also proved that the integration depends only in the depth of the layer. In
other words, it only depends on 7. Now we can integrate the pressure term of the

momentum equation. This is, for phase 1 we obtain

2r=0r1  pRs )2 B r B
— 0, P, drdf :/ —0,P dA
/9 / Bl o 1]

0 1 _
B / 0= oy Do dn

- /n:I 1 —Uc(:()S)n

+ gp10sm1 cos(a(s)) — gpi(nr — n) Sin(a(S))O/(S)] dn

oPr . . -
p “0.f2 + g0upr (01 — ) cos(a(s))
2

_ (") or, . .

Fgeosta(®) [ T - o (L4

~gsin(a(s)a/ (9 [ o = )

We can calculate the deviating density for the liquid phase as

- Aipy - 0s(A1, p1) A1 — Ai1p1 0, A4 -
aspl_as( Al >_ A%
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1

Ala (Alpl)_A_1 (1 Oé( )77[)0-(7]])8577[+/n1 —CM”(S)T}O’(T]) dn_(1_a,(s)nmin)U(nmin)asnmin] .

" (1.42)

Analogously, we get

1
Ospa = A—Zas(Azm) - Z_ZaSAQ =
1 , Nmax " ,
——05(Agpa)——= | —(1=a'(s)nr)a(n1)dsn1 — / a”(s)no(n) dn+(1—a'()Nmax) 0 (Mmaz) Osmaz | -
A A2 nr

(1.43)

Substituting this last expression (1.42) and (1.43) in (1.41), we obtain:

2m—0r11
Ospr drdf
/9'[‘1 /Ro 1 |J‘

" ‘7(77) 0P,
= d
[;m<1—awﬂn>77@b

/128 (Aap2) = 51_22< — (L= a'(s)nr)o(nr)dsinr

. /nmaz O//(S) 77 0—(0‘) dn + (1 — a/(s)nmam)a(nmam) 8snmam>]

+ gp1 cos(a(s)) /771 %dn Osnr

1
A_las(Alpl)

+ g cos(a(s)) /n:; %(m —n)dn

(ffl (1= (s)nr)o(nr)dsnr — / ! o (s)no(n)dn — (1 — al(5>nmin)0<nmin>as7]min>]

Tmin

" a(n)

—gﬁda@»w@m3/ (=),

Nmin

and finally:

Atliﬁ)M@Z&amMmma<»£;;%%%m—mmi@mM>

(1= (s)nr)o(nr)

/ " o(n) dn OPr py
1-— O/( ) 8p2 A2

+ gp1 cos(a(s)) /m %dn] Onr + Sy,

Thmin
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where S,, are the source terms:

nr 0.(77) aP] P2 n1 " )
+/ 1 — o/(s)ndn 8p2 A_2 < - / «Q (3)770(0)d77 + (1 - (S)Hmamg(nmaxas’)nmax))

Nmin Tmin

+geos(ats) [ 3;£€§%;;5<n[—7ndn+-(oﬂcﬂno<n>dn+—(1—-a%swwmﬂyvununyxnmm)

Nmin

— gl [ Iy~ i

Tmin - O/(S)n

Now for the phase 2, we have

/912/&2 " obards— [ Lopaa= [ —2N 5 B
P, drdf = P d / — U 9. Pyo(n)dn,
—9[2 Ro 2 g Qo ‘J| ! nr 1 - O{,( ) ?
and then
tmexg(n) | 0P, _ / Tmer g (n) opPy . _
— Osp|dn = 0s
/m 1—a(s)y | 9pz " n 1—a(s) ps "

/ﬁmaz o) 0P
L L= op

- /nmaz 04"(8)770(77)d77 + (1 - O/(s)nmax)a(nmax)asnmax>] .

uhs

0 (Aapa) — 22 (= (1= @)oo

Substituting the partial derivatives in (1.42) and (1.43) we see that

Nmaz o ) aP]
d
/m T—a'(s)n" Ops

—/%MM@WWM+H—4@%md%m&%@]

1

Nmazx O-(,r]) 8P]
— d 0s(A
/m 1—a'(s)y n@pgAz (Aap2)

NMmaz ( ) ap] p2 /
- /m — s)nd77 Dps A, (1 —=a(s)nr)o(nr)osnr

(
mar g(p) OP; P Tmes /
" /771 —Q (S) e 8/02 A2 (/ @ (S)Tld(n)dn - (1 —a (S)Wmam)ff(??max)asnmm> .

0 (Aapa) = 22 (= (1 = @)oo
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1.7.2.3 Interface evolution

We must now derive the time evolution equation for the interface. In fact, it appears as a
boundary condition. For that end, let us parametrize the interface in the new coordinates

as

(s,7(5,1))-

The normal vector is proportional to

(—8577, 1)'

The interface propagates with time velocity (0,0;n). The boundary condition requires
that the velocity (U, W; — 0yn) is tangent to the interface. That is, the surface is a

streamline that offers no resistance to its surroundings. That is, we have

0= (va WI - 87577) ’ (_887]7 1)7

which reduces to

81577 + U]aST] = Wry. (144)

Furthermore, we assume that the axial velocity of the interface is dominated by the liquid

phase, so

Ur=Vs1.
On the other hand, we also require that n always satisfies
Thmin S n S Tlmax-

The above inequalities hold when both 1 — ny,, and 7.« — 1 are positive. One can easily

see that such quantities satisfy the equations

6t(n - 7flrnin) + Ufas<n - nmin) = WI - Ulasnmin(s)u
8t(77max - 77) + Ulas (nmax - 77) - Ulasnmax(s) —n.
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So, the next expression satisfy the above equations:

W asn‘/s,l Zf V:e,lasnmm S ‘/s,lasn S ‘/s,lasnmam
I g

0 otherwise.

1.7.3 The final model

Putting all of the identities from the previous sections, and adding a relaxation term to

the interface evolution, the model in its final form is summarized as

O0y(Aipr) + as(A1,51‘/:,1) = A M, (1.45)
O (p1A1Vs) + 05 <p1A1V2 + A1P1> :/ B O (rp ) m— T—2D1 s
’ > ooy [J] " lr=r T |

+/ 0s (L) Py dA; + pr2V2,a" (s) cos 0
Q1 |J| ’

r

— sin(a (s)) g (m) (1.46)

O (Aapa) + 5’3(142/72‘/;,2) = Ay Ms, (1.47)

as (rP|r:R) e ]

~ roo~
0 (p2A2Vs2) + O <02A2V52,2 + A2P2) :/

— P
o0 | ]| r=R

+/ s (ﬁ) Py dAy + pr2V2 o/ (s) cos 6
Qo

r

— sin (@ (s)) gAspn (m) (1.43)

@77 + Ulagn = W[ + lL(Pl - pl,ref)/pl,refa (149)
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where:

A1M1 —f- AQMQ = O

Ay + Ay = Total pipe's area

~ P2 72
P2:P2,ref( > = P = Pi(p2)

P2ref
P, = P+ pg (n1(s,t) —n) cos (afs))
Uy = Vi

8877‘/;,1 Zf ‘/s,lasnmin S ‘/5,18877 S ‘/;,lasnmax
1=
0 otherwise.

Here, pirer and pa e are densities reference values, and P, is a pressure reference value,

for this work, one can use the perfect gas law.



Chapter 2

Model properties

The model that we present here falls within the class of hyperbolic balance laws. For
Partial Differential Equations in that class, there are several theoretical and numerical
challenges. One of them is the presence of shockwaves, even when the initial conditions
are smooth. Such waves propagate at a finite speed. A theory of weak solutions has
been developed in the last decades. See for instance [3] and references therein. Weak
solutions admit discontinuities and entropy inequalities have been helpful in choosing
physically relevant solutions, achieving uniqueness. Correctly approximating solutions in
the presence of shockwaves require a careful analysis of the PDEs’ discretizations. There
exists a variety of numerical schemes that are robust and precise when approximating
such solutions. In particular, here we implement central-upwind schemes, which have
several desirable properties, as it will be discussed below. As a first step, in this chapter
we show the hyperbolic properties of the model by writing the equations in quasi-linear

form and analyzing the coefficient matrix.

47
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2.1

Quasi-linear formulation

Definition 2.1. We define the vector W  as:

where

W - <W17 W27 W37 W47 W5)T )

Wy = Aips,
Wy = Alplvs,h
W3 = Aaps,
Wy = Azpzvs,%
W5 =n.

The following theorem rewrites the conservation law in quasi-linear form. The resulting

coefficient matrix must have real eigenvalues and a complete set of eigenvectors in order

to show that the model is of hyperbolic type.

Theorem 2.2. The final model can be written in quasi lineal form as:

where

W, + M(W)W, =8,

1 0 0 0
21}571 M273 0 0
0 0 1 0

_AlMl_
S
A2M2
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and
nr O—(,r]) aP[ p2 /nmazt
S:/ d e - O/,S o d+1—01/3 maz )0 maa:asmaa:
2= T (s s A s (s)no(m)dn + (1 = & (8)1hmaz )0 (Thnaz ) 0571
+gCOS(Oé(S))/m L7,7)(771 —n)dn
Nmin 1 -« (3)77
nr
+/ O/,<S)no-(n)dn+ (]- - a/(8>nmin)0—(nmin>asnmin
Nmin
: s [T o)
— gsin(a(s))a'(s —_— —n)dn.
gsinlo(s)a'()p [ 7R~
A D Ay "(s) cos § — sin(a(s))gAipr | —
1’J|2 s,1 1P1‘J| s7la §) CO8S SI{a(s))gAa1p1 ’J‘ )
fmaz U('f?) apf P2 /nmax " /
- L) (1 —
So= [ e e (] o = (1 (5 )

r2 r2 ‘ 7\
+ A2wD572 + A1p2|7|‘/32a”(3) cos ) — sin(a(s))gAzpz (m)

Proof. We have already defined the vector W for the conserved variables. Let us construct

the matrix M. We define the M matrix as:

My Mo Mg Miy Mg M,
May My Maz May Mas M,
M = M3,1 M3,2 M3,3 M3,4 Mss | = | M3 |, (2-1)
Myy Myp Myz Myy Mys M,
Msy Msa Mss Msgq Mss M5

where M, ; and M, are the entries and rows of the matrix M respectively, for 4,7,k =

1,2,...,5 . Now we are going to construct row by row the matrix.

First row M;: We need a row (M1, My o, My 3, My 4, M, 5) that satisty:

Aipy
A1P1Vs,1
(My, Myg, My 3, Mg, Mis) | Agps = 0s(A1p1Vi1).

Aspo Vs,z

Ui
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In order for that to happen, the M ; entries (with ¢ =1,2,...,5) must be

My =0,M=1M3=M 4= M;=0.

So, the first row is M; = (0,1,0,0,0).

Second row Ms: We need a row (Mo 1, My o, M s, Ms 4, My 5) to satisfy

Aipy
A1Plvs,1
M A a(A V2)+28(A )_‘_(/n’ﬁlam 0’() daPIl)a(A )
= Us s C105 ; 1o s y
2 2P2 1P1Vs1 1 101 L 1—a/(s)n Wapz A2 202
AQPQV;,Q
L 77 d 0.
where
o gcos(a(s)) / maza(n)
== 7’ _ —n)d 2.2
€ A, - 1 —O/(S)ﬁ(nl 77) U ( )

and ¢; is the speed of sound. Here we note that we need to express V| in terms of the

conservative variables. For that end, notice that

Aip1Viq)?
Os(A1p1V2)) = O, (%) = —V210,(A1p1) + 2V, 10,(A1p2Vi ).
1M1

So, we can see now that the entries for the second row must be

_ gceos(a(s)) /nm” a(n) B U2 2 2
My, = A . 1— /(s &,(S)U(m n)dn Vs,1 =Cy Vs,l

Mo =2V,

fmaz g (n) oP; 1
Moy = dn St =
23 /m 1 —a/(s)n n@pg A?

giving us

M2: C2_V2 72‘/517M237070 .
1 s,1 » s
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Third row Ms: We need a row (M1, M3o, Ms s, Ms 4, M3 5) that satisfy:

A1Pl
Alprs,l
(M3, Mso, M3 3, Mss, Mss) | Agps = 05(A2p1Vs2).

A2P2Vs,2

N P

In order for that to happen, the M3, entries (with ¢ = 1,2,...5) must be

Mgy = M3y = Mzz=0,Ms4=1,M;z5=0.

So, the third row is M3 = (0,0,0,1,0).

Fourth row M42 We need a row <M471, M472, M4’3, M4,4, M4’5) that S&tiSfy:

Aipr
A1p1Via
My | Asp, :33(A2p2‘@%2) + c305(Azpy)
AzpaVi 2

B U da,

Nmax O( ) 8PI o ,
i (/ T o (5 oy Ay L C <S>m>0<m>) ds(nr),

where
Nmax
2 O'( ) aP[ 1
pr— d QE—
@ /m 1—a(s)n 778/)2 A2’

and ¢y is the speed of sound for the top layer. Once again, we need to express VS%Q in

(2.3)

terms of the conservative variables. We note that

(A2,02Vs,2)2

2\
88(A2/02Vs,2) = 0, ( Aops

) = —V20:(Asp2) + 2V 20,(A2p2 Vs 2).
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So, we can see now that the entries must be
My =My =0
fhmaz g () 0P 1
M — / d il ‘/32 — 02 - ‘/52
4,3 o 1 — O{,(S)T] nap2 A2 2 2 ,2
My =2V,
Nmazx 0-( ) 8PI p2
M= | dns L P2 (1 — o ()r)o (o).
r 1—a/(s)n "0py As
The fourth row is then
M4 = (07 07 022 - Vs%Qa 2‘/:9,27 M4,5)~
Fifth row Ms: For the last row, we need that (M1, Ms o, M55, Ms 4, M5 5) satisfy:
Aipy
A1,01Vs,1
(Ms,1, M52, M5 3, M54, Ms5) | Ayp, = Urog.
A2p2Vs,2
L n 1o,
In order for that to happen, it is easy to see that the M;; entries (with i = 1,2,...,5)

must be:

Msy = Mso = Ms3=Ms,=0,Mss="Uj.

So, the fifth and last row is M5 = (0,0,0,0,U;). Therefore, the quasilineal system reads

W, + M(W)W, =S,
where ) } ) } } }
Aipy O (A1p1) 05 (A1p1)
A1p1Vi Oy (A1p1 Vi) 0s (A1p1Vsn)
W=1 Ay | We=1 0,(Asp2) |+ Ws=| 0s(Asp2) |-
AzpaVis2 0y (A2p2Vs 2) 05 (A2paVi2)
o] L O() o)
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0 1 0 0 0 —Sl_

- Ug’l 2051 M3 0 0 S

M = 0 0 0 1 0 |,5=15;
0 0 & —vly 2v5 Mys Sy

0 0 0 0 U |55 ]

Here, S is the vector of source terms, and each entry is

Sl - AlMl.

Nmin nr

B nr 0-(77> aP[ p2 /’ﬂmaa: " )
S2 = / 1 — O/(S)ndn dps As " (s)no(n)dn + (1 — &' (5)Mmaz) 0 (Mmaz ) OsNmaz

rgeostale) [ = o)

+ / ’ o (s)no(n)dn + (1 — &/ (8)min)o (Mmin) OsTmin

Tmin

~gsinfa()a($)p [ s~ )

72 72 , r
+ AlWDS,l + A1 m‘/ﬁla”(s) cos 6 — sin(a(s))gAip1 (m) :

53 - AQMQ.

- Tmax 0'(’]’]) aPI P2 Nmazx " )
54 a /77[ 1- O/(S>77dn 802 AQ / @ (5>770'<77)d7] - (1 —a (S)nmax)a(nmax)asnmax

N1

r? 7 ) r
+ AQWDS’Q + ApoWVfQO/’(S) cos f — sin(a(s))gAsps (m) )

S5IW[ D



Model properties 54

2.2 Hyperbolic properties

Once we have the quasi-linear form of the PDE, one can analyze the eigensystem to show

the hyperbolic properties of the model, as described in the following theorem.

Theorem 2.3. The coefficient matriz M associate to the quasi-lineal form has real eigen-

values and a complete set of eigenvectors provided that
a1 #0,Vio = Vi1 # (ot 1), Vi1 = Ur # %1, Vo — Up # Feo. (2.4)

As a result, the model (1.45)-(1.49) is conditionally hyperbolic.

We note that condition (2.4) guarantees that the eigenvalues are different, which implies
that the eigenvectors form a basis. The (very) special cases where the eigenvalues coincide
could still lead to hyperbolicity. A deeper analysis including those special cases will be

treated in a future work.
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Proof. Let us calculate the characteristic polynomial, as follows.
A -1 0 0 0
—C% + ‘/;271 A — 2‘/571 —M273 0 0
det(\N — M) = 0 0 A -1 0
0 0 —3+ V2 AN=2Viy —Mys
0 0 0 0 A—=U;
B -1 0 0 0 |
—ci + V7
0 A—2Viq+ — . 2L My, 0 0
= {0 0 A -1 0
2 _ 2
&) 5,2
0 0 0 A—2Vio — 3 —My5
10 0 0 0 A—Ur]
—c2+V? c2— V2
= (A- 2w+ T o (A2 - 202 ) - o)
= (N =2V A+ =+ V2) (VP = 2Viod = & = V) (A= U))
= ()\ —C1 — V571) ()\ — C1 + Vts,l) ()\ — Cy — ‘/572) ()\ — Cy + ‘/;,2) ()\ — U[)
So the eigenvalues are
M=Vii—c, a=Vsi+c, Ms=Via—ca, \Ma=Vio+co, As=Up. (2.5)

]






Chapter 3

Numerical results

We recall that the model can be written in conservation form as

Oi(A1pr) + 0s(A1p1Vsa) = AM,

H(AipiVin) + Os(Aip Vi +Aip1) = [oq, 5P1r=r0s (tpl,_g) - m1dl
+ Jo, 05 (5) prdA + Ay 55 D
—i—Alplg‘/Zla”(s) cos§ — sin(a(s))gAip1 %

0y(Azp2) +  0s(A2paVs2) = A M,

Op(AapaVia) + 05(AspaViy + Aspa) = [y, 5P2r=r0s (tpl,_p) 1126%
+ fQQ 0s (5) p2dA + AQ%D&?

—I—Agpgg‘/an”(s) cos ) — sin(a(s))gAgpQ?

onr + 0s(Urm) = —n0Ur + Wi+ p(p1 — piret)/ p1ret-
(3.1)

Here A, A; are the Jacobian integrated in each cross section, which coincides with the
cross sectional area in horizontal pipes where Jacobian reduces to the identity. Further-

more, Vs 1, V; o are the corresponding velocities in the axial directions, 7 is the interface

57
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displacement, U; and W; are the axial and vertical velocities at the interface, and py, po
are the corresponding pressures in each layer. The term p(p1 — p1ref)/p1ref determines

the interface displacement due to density deviations from reference values.

We note that the total integral A; + Ay = A = A(s) is known and depends only on the
pipe’s geometry, that does not change in time. On the other hand, the pressures in each

layer are given by

P = Pr+pig(n —n)cos(a(s)),

P1 = D1,
(3.2)
V2
P = P2,ref <;&> = Pr,
2,ref
p2 = Po
The vertical velocity at the interface is computed as
‘/s,lasnl if ‘/s,lasnmin S ‘/s,lasn[ S ‘/;,lasnmax
Wi = (3.3)

0 otherwise.

3.1 Convenient cross sections’ descriptions and

corresponding averages

We recall that any function f is averaged in each cross section as

- A%fszl %f dA,
- AL2 fm %f dA,

|l =

which in cylindrical-type or polar coordinates (for a fixed cross section) can also be written

as
= A% fm %f rdrdd,

= A% fm %f rdrdf,

||
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with the limits in r and 6 as specified in previous chapters. This is not always the most
practical way of computing averages. A more convenient description of each cross section
is through the variables

n = rcos(d), n* = rsin(f), (3.4)

where 7 is the displacement from the point in the cross section to the equator line pass-
ing through the center at constant angle § = 7/2, and n' is the displacement from the
point in the cross section to the line passing through the center from the center at con-
stant angle § = 7. This way, 7 is negative/positive below/above the center, and n*

negative/positive to the left /right of the pipe’s center.

The pipe’s geometry determines a minimum and maximum displacements 7min (5), Mmax($S)
that can vary in the axial direction. At each depth 7, one can assume the pipe has a
with given by o(n). In the case where the pipe is symmetric across the vertical line, the

variables 1, n* have the following limits

aln)
2

a(n)

<<

nmin(s) S n S nmax(8)7 -

Using Fubini’s theorem, the averages are computed in each layer as

F o= 3 e I i 71 i,
T = 1 e S)f 0'(7]) rfdlrlj_dn

As we will see below, all of the flux and source terms are functions independent of 7. In
that case, the cross section averages are conveniently computed as

f= %[0 omifdn,

min (8)

(3.5)

Il
I

& o= o)L dn.
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3.2 Explicit expressions of flux and source terms

The areas A; and A, are given by

A= [o, ZdA = [ (L —a'(s)n)a(n)dn, and

TImin
Ay = [y, 2dA= nnjm"(s)(l —a'(s)n)a(n)dn.

We recall that the pressures in the two layers before being averaged are given by

Y2
B o= P () =P
(3.6)

Pro= Pr+pig(ni(s,t) —n) cos(a(s)),

where we are assuming the two densities p; and py are constant. The average pressure in

the top layer is written as

Y2 nmax(s)
_ r P2 1
A :/—dA:Pre( )/ L
22 o JP2 2,ref Do et . 1— a(s)n (n)dn

The averaged pressure on the bottom layer is given by

72
A1 = Jo, 51dA = oo (522) " Lo b

Pa ref
+p1g cos(a(s)) nnr;n(s) %a(n)dn.
One of the first source terms is the line integral over the layer’s boundaries

T .
/ eyl ) -t
o0

Here r is the parametrization given by equation (1.7) and n; is the normal vector given

by (1.9).
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As it was shown in the previous chapter, we have

1
85<r1|r:R) ‘n; = WR@R

Pipe’s center (x(s),0,z(s))
°

rface n,

FIGURE 3.1: Schematic of a pipe’s cross section and boundary of the bottom layer.

The boundary of each layer consists of the interface plus the section of the wall containing
the corresponding layer. See Figure 3.1 for an schematic showing the boundary of the
bottom layer. One can compute the line integral both on the wall instead of interface.
For that, we notice that

dl = |0ty _gld6.

We also note that

10pr,] 1> = ||[(—Rysin(a) cos(f) — sinf@Rsin(«), Rpsinf + R cos 8, Ry cos(a) cos — R cos(a) sin §)|[?
= R°+R;

Therefore,

8s(r1|r:R) . l’lldé = R@SRCZQ

If we parametrize the wall by 6 — r,(R(6,s),0;s), the line integral over the wall is

computed as

2m—01 1 ~
/91 1 —a/(s)R(0, s) cos 9p1|’":R R0, Rdf.
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Now, over the interface, the parametrization is given by

Ty, = (= sin(a)nr + xo(s), nrtan 6, cos(a)nr + zo(s)),

which gives

Ogryp| = (0, nrsec? 6.0),

n="nI

and the normal vector is therefore
n; = (—sina, 0, cos a).
Furthermore,

|01, ||dO = |n;|sec? 0dO = —mdie(tan 0)df = d(—n;tanf) = dy.

On the other hand,

Ostp|,—,,, = (= cos aa’(s)n;—sin adsnr+cos a, tan 00,n;, — sin aa’(s)n; +cos adyn+sin ),

which implies
051y |

g=p, ‘1 = —cosasin ad(s)n; + sin® adyn;

— sin a cos !’ (s)nr + cos? adyn; + sin a cos a
= @57]].
The corresponding integral over the interface is then computed as
! 0
PN sNIo71,
1 _ O/(S)T][pl 771 I

where

oy = a(m) (3-7)

is the pipe’s width at the interface.
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The line integral over the boundary is then computed as
r am=br 1 1
al = D ROsRdO+——+——p;0; .
/Bﬂl Jp1|r R (rp|r R) m /01 1 — O/(S)R(e, S) COSHp1|T:R +1 _ OZI(S)n]pI nior
(3.8)
Similarly, the source term associated to the upper layer is given by
/ T ol 0s(r| ) Dadl = /GI ! 5| RORI———— 10
r n ; ——————p0snyoy.
0% Jp2 r=RTS\Plr=R) 2 9, 1 =/ (5)R(0,5) cos pP2r=r 1-— a’(s)nEpI ) ot
3.9

The source terms associated to the momentum exchange are given by

AI%DS,I = le T_Q%dADsl nzim(s) 1—o s)ndn Dy 1o
AQ;_QQDS,Q = fQ T_2;,ldAD82 nmax(s)l a/ d77 D .

The source term associated to gravity effects are given by
sinagpi A1 = gsinap o G "LdA = gsinap, f s o(m)dn,

r

sinagpeAgy = gsinap, fQQ ?]%dA = gsinap fnimax(s)a(n)dn.

The last source terms are given by

2 2 [

Amm%a"(s)cos@? = pd”(s)uy le cos@?%d/l = pa(s)uy [ () no(n)dn, and

Agpauda(s)cos 057 = paa(s)uj [, cos 0= LdA = pya”(s)ul [ e () .

nr

It is important to note that all flux and source terms were independent of nt, i.e., are

constant on each fixed depth. It allows us to write the cross sectional averages as integrals

in the n directions, with weights involving the pipe’s width o(n). In the next section, we

show how we can discretize the cross sections to make it as general as possible, approxi-

mated by piecewise trapezoidal reconstructions.
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3.3 Pipe’s discretization

One of the contributions in this thesis is the generalization of the model found in [6]
to pipes with general cross sections. In the cited work, rectangular and circular cross
sections are considered. Here, one can handle any cross section with arbitrary shape,
as long as they can be well described in cylindrical coordinates, as specified in previous

sections.

Pipe’s center (x(s),0,z(s))

rface n, !
Depth n /
rapezoid

\ )
|

Pipe’s width o(n) at depth n

FiGure 3.2: Pipe’s discretization

Let us assume that each cross section consists of M trapezoids with edges at depths and

angles

?’]k,ek,kzl,...,M.

Even though one can consider arbitrary cross sections, we still need to either compute
the involved integrals in an exact form when the geometry of the pipe is given by explicit
expressions, or one could discretize it. In any case, in real life applications one usually
does not have explicit expressions but only measurements. Having that in mind, we
discretize our cross section by assuming that it is piecewise trapezoidal. See Figure 3.2

for a schematic of it.
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All the flux and source terms that are written in terms of integrals with respect to 7,
except for the line integral. When the cross section is piecewise trapezoidal, the integrals

with respect to n are replaced by Riemann sums.

Regarding the line integrals, they are approximated by

fagl ZD1l,=gOs(tpl,_p) - mdl ~ 37 —1_nk1a/(8)251|n:,7k3(9k, $)0sR(Ok, 5)(Ok+1 — Ok)
JrTl(s)mrplasmUI,
Joa, 5D2l,—0s(tpl,_p) -medl = 37 —1,nk1a/(s)ﬁ2|n:nkR(9k, $)0s R(Ok, 5)(Ors1 — O)

1= a,(s) T P1Osnror.

3.4 Numerical scheme

In this section, we describe the central-upwind numerical scheme implemented for solving
equation (3.1) and the scheme’s properties. Let us consider a hyperbolic balance law of

the form

W, + (F(W)), = S(W,s), (3.10)
where both the flux and source may have terms that depend on the spatial variable s.

We partition the spatial domain into grid cells I; := [s 85 1,841 1], where As is the spatial
scale, s;,1 = s; £ 5 25 and s; is the center of the grid cell. Let us denote by W(t) the
computed cell average of W (s, t) over the cell I;, which is defined as

- 1 [%+%

i) =% W (s,t) ds. (3.11)

=%
Furthermore, let us consider a semi-discrete formulation of equation (3.10) given by

Ao _ Fis =¥y

Following [8], we provide the following definition to be used below.
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Our model (3.1) has conservative variables and a flux function given by
Aipr A1p1Vsa
A1p1Visa Alplvs2,1 + Aipr
W = A2,02 ) F(W) = AzPQVs,Q (3'13)
AapaVi o A2p2V52,2 + Aopo
Ul Urni
on the left hand side, and the source term is given by
AlMl
fagl gpl,r:Ras (rp‘r:R) : nldg - le as (5) pldA + AlS_QQDs,l
+A1p1 Suda’(s) cos O — sin(a(s))gAipi 5
S = A1 M, (3.14)

+A2,02 ﬁ%

fam 5P2,r=r0s (rp|r r) - Ma2dl — fQ

(%) deA + AQ%DS’Q
"(s) cos 0 — sin(a(s))gAspaT

Wi —0sUmr

3.4.1 Semi-discrete central-upwind scheme

The semi-discrete formulation for the cell averages as in (3.11) is obtained after integrating

equation (3.10) over each cell 1;, obtaining equation (3.12). The semi-discrete formulation

is approximated by

(3.15)

1
2

where H, 1 is the numerical flux at the cell interface s; +1- Typical semi-discrete central-

upwind schemes consider flux values at the interfaces obtained by non-oscillatory polyno-

mial reconstructions. Non-oscillatory behavior is usually achieved by the use of nonlinear
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limiters, as described in [9)].

The flux at the cell interfaces, F(W (s, %),t), is approximated by the numerical flux
Hji%(t) given by

- - - - - -
Hji%(t): J+3 J 2a+ > 2 +—— it3 (W,* 1(t)—W‘]Ail(zf)).
J* j

<
H_

(3.16)
The numerical flux is of HLL type, as described in [10]. The interface point-values
Wj.ﬂi% (t) are recovered from the cell averages via a non-oscillatory piecewise polynomial
reconstruction that is described in the next section. The one-sided local speeds in this

scheme are approximated using the eigenvalues of the Jacobian:

— _ . + — — + — —
2 ’ ’ 2
+  _ + - + - -
a1 = maX{V 1 +C,yﬂ:1’vl,j:t%+ jEl,V jxl —|—C7Ji1, 2’ji%+c27ji%,0}.

(3.17)

In some cases, we have increased the viscosity to maintain stability. We note that a™ jel

a’ jel > 0 is always positive unless cf ! and u* k = 1,2 all vanish in a collapsed

kj+3’

state with “no fluid motion”.

3.4.2 Non-oscillatory reconstruction

The construction of a numerical scheme that is second-order accurate in smooth regions
is one of the goals in this work. The numerical scheme becomes first-order accurate
near shock waves to achieve stability. The interface point values W, 1 (t) are calculated
from the cell averages Wj(t) via piecewise polynomial reconstruction. For that end,
the reconstruction implemented here conserves cell averages, is second-order accurate in
smooth regions, has a non-oscillatory behaviour, recognizes steady states at rest, and

preserves the positivity of the cross-sectional area A. See references [11-14] for details.

A second-order reconstruction of any quantity ¢(s, t) is chosen from its cell average g; as

+ g
qu%

=q+ =4 (3.18)
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The limited slopes ¢ are calculated according to reference [15] as

L. _ L, _ _ _
q; = Emmmod (9 (qj — qj_l) 'y (Qj+1 - Qj—1) ,0 (Qj+1 - Qj)) ) (3.19)
where 1 < 6 < 2, and

min;(r;) if r; >0Vj
minmod(ry, 72,73, ..., 7k) = { max;(r;) if 7, <0V -

0 otherwise

Unless otherwise specified, § = 1.5, thus for simplicity. We note that this minmod limiter
is commonly used in central-upwind schemes. It guarantees the local maximum principle

with respect to the cell averages [9].

3.4.3 Steady state at rest

System 3.1 admits steady state solutions when there is a balance between flux gradients
and source terms. Such balance can be in complicated conditions when the cross section
is complex and gravity and other geometrical effects come into play. From all possibilities,
it is easier to identify those steady state that are at rest. We require that the velocity
vanishes (Vi1 = Vio = 0), the pipe is placed horizontally (o = constant), no mass
exchange (M; = M, = 0), and no momentum exchange (Ds; = D;2 = 0). The balance

between flux gradients and source terms require

r

0 = 0s(Axpr) — / jﬁl,r:Ras (rpl,_p) - mydl = /

N 0 () aa

J
where the Reynold’s transport theorem has been used in the last equality. Since the pipe
is horizontal, J = 1. Now, we require for the solution to be steady that p; is constant.

For the top layer where ideal gas laws are used, we need the top density to be constant

p2 = const. For the bottom layer, the interface pressure coincides with the top one, which
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is already constant. A hydrostatic pressure component is considered, which is given by

—9/)1(77 - 771<S7 t))’

provided that p; is constant. The hydrostatic pressure component is constant provided
that n; is constant along the axial direction. We have then proved the following proposi-

tion.

Proposition 3.1. Let us consider a horizontal pipe (o« = constant), and assume that the
fluid has no mass exchange (My = My = 0), and no momentum exchange (Ds; = Do =
0). System 3.1 admits steady state solutions at rest, satisfying the following conditions

Vi1 = Vso=0,p1,p2 and n; are independent of s. (3.20)

)

Knowing that steady state solutions at rest exists, our goal is to construct a numerical
scheme that preserves such states. That is, when a solution satisfies the conditions in
equation (3.20) at time ¢ and the pipe meets the description in Proposition 3.1, we expect
the numerical solution to remain the same in the next time step ¢t + At. We say that
the numerical scheme satisfies the well-balanced property when it respects those states
in the above sense. This is important because flows in many situations can consist of
small perturbations to steady states, except for situations like hydraulic jumps. The
next section explains the correct way for the data reconstruction and the discretization

of source terms in order to achieve the well balance property.

3.4.4 Well-balanced property: Flux and source terms discretiza-

tions

An important step in achieving the well balance property is in the data reconstruction.
We apply the same non-oscillatory reconstruction as in equation (3.18). However, we
have different ways of doing it. For instance, one could reconstruct n; and integrate
in the corresponding layers to obtain A; and As. However, we could also reconstruct

Aj directly. One could also reconstruct directly the variable A;p; and divide by the
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reconstruction of A; to obtain an approximation of p;. At the continuous limit, the order
in which we do it does not matter. However, at the discrete level some ways could inherit

more advantages in comparison to others, specially in the well balance property.

Since Vi1 = Vs = 0, p1, p2 and 7; are constant in a steady state of rest, we propose to
reconstruct those variables first. Applying the non-oscillatory reconstruction in (3.18),
we get

Vlj;'ié - V;ji%,piji%,p;ji% and nfi,jié’
which are unchanged in steady states of rest.

Once the above variables at reconstructed at the interfaces, we proceed to reconstruct

the flux and source terms as follows.

The integrated Jacobians are reconstructed as

Af e = Yo (L=a(siy)m)o(n)An, and

INES

A2,j:ﬁ:% = Zni

Ij+3

gnk(l - O/(Sjig)nk)a(nk)ﬁnk.

The integrated pressures are given by

+ Y2
pg i+1 0'( )
+ o+ _ Jt3 Mk
AQ,ji%pQ,ji% o P27ref ( P > Z 1-— Oé,(sjil kAnk,
n 2

and

+ Y2
P, 1
_ 2,j+5 o(ng)
A* pt ., = P 2 L — ) A
1Pl Zref \ T et anSnLji% =a/(s,; . 1)k Mk

+ _
nl’ji% Tk

+
TPy 19 cos(a(s;.1)) Zwénjfji% X ERYITS o (1) Ang..

The above expressions give us the reconstructions of all flux terms. We now proceed to
handle the source terms. The first term is the line integrals in equations (3.8) and (3.9).

Assuming symmetry across the vertical line (§ = 0), those line integrals are approximated
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as
p1| R(0k,5;)0s R(0),55) Aby
T . ~ + r=R(9k,Sj)
fan Jp1|r:RaS<rp|r:R> nldg ~ 2 an < 771,]&% 1—a’(s;)R(0k,s;5) cos by,
_i_#pl .Aﬂlo-l . and
1—ao/(sj)nr ;1740 As 7500
(3.21)
. 1'52|T7R(91C o) R(0k,55)0s R(0,55) Abk,
—_— o . S — J
fan Jp2|r:RaS(rp|r:R) n2d€ ~ 2 Zn]’jgnk I—O/(Sj)R(Qk,Sj)COSQk
2

2 g Al
=/ (s;)nr ;P13 As T 130

Here Anj is a central difference in the axial direction, computed with the minmod tech-
nique from the previous section, and o7 ; is the pipe’s width at the interface, located at

axial position s = s;.

The other source terms are computed as

= ~ o(nx)
A1 Dsa R D, ooy Ak D,
Tz ~ o (k)
A2,jﬁDs,2 ~ Zm,jﬁnk ﬁAnk Ds,27
Sin(a(sj))gpl,jAng ~  gsin(a(sy))pr, angm o (k) Ang,
(3.22)
sin(a(s;))gpaiAs, s A gsin(als;)pey Yy e o)A,

Avgprg Ve (s5)cos(Oy 5 = puya(s;)ul; 3o, <, M0 (1) A, and

Az jpa Vi (s5)cos 05 = poya(s;)u3; Do, o ko (k) An.

The above discretizations are appropriate in the sense that they are consistent with the
Partial Differential Equation, it results in a robust central-upwind scheme, and they can

recognize certain steady state at rest as we will see below.
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3.4.5 Evolution in time

The time integration of the ODE system (3.15) is done using the second-order strong
stability preserving Runge-Kutta scheme [16]

WO =W 1 At C[WO) (3.23a)
W@ — %W(O) + % (WD + At c[w]) (3.23b)
W(t+ At) == W), (3.23c)
with
CW({)] = - Povg (W) A_SHj% Sl +8;(t), (3.24)

H; . (W(t)) is the vector of flux term (3.14) discretized according to equation (3.16),
reconstructions as in equation (3.18), in the way described in Section 3.4.4. Furthermore,

S;(t) is the vector of source terms (3.14) discretized according to equation (3.21) and

(3.22).

The CFL condition that determines the time step At is given bt

: (3.25)

DN | —

al\t
— <
As —

aj_i%).

where @ = max; max(a’, ,, —
J FE=

The numerical scheme presented here is based on the central-upwind approximation.
This class of numerical scheme has shown to be very robust in many applications where
the PDE-based model is hyperbolic. In particular, it has desirable properties as in the

following proposition.

Proposition 3.2. Let us consider a horizontal pipe (o = 0) with general cross section
but independent of s (uniform in the azial direction). Let us assume that there is no mass
or momentum exchange (Dgy = Dgo =0, My = My = 0). Furthermore, suppose that the
wnitial conditions consists of a steady state at rest at time t,,. That is, the velocities uy
and ug are zero, py and po, and n are constant. Then, the solution at time t, 1 = t,, + At

computed with the numerical scheme described in Sections 3.4.1, 3.4.2, and 3.4.3 coincides
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with the solution at time t,,. That is, the numerical scheme recognizes the steady states

at rest.

Proof. One needs to show a balance between flux gradients and source terms at a discrete
level. Most of the terms vanish because the velocities are zero and the densities in
each layer are constant. The only terms that are not trivial are those associated to the
pressures. The balance occurs thanks to the Reynold’s transport theorem and the fact
that the pressures (before being integrated in each cross sections) are independent of s for
steady states. That always occurs at the continuous limit. In the case where the geometry
of the pipe is independent of time, both Agps and the corresponding line integral in the
source terms are independent of time. The reconstructions at the interfaces are also

independent of s.

+ —
a a
E ES ]

One still need to make it sure the viscosity terms ——2—"—2- (W;; , (t) — W, (t)) vanish.
a a 3 3

ity i*d
This happens because each of the terms in the solution vector and the corresponding
discretizations are independent of time, so W;Ti L (t) — W (t)=0. O
2 2

3.5 Numerical results

In this section, we present a variety of numerical tests aimed at showing the merits of the
scheme in different aspects of the fluid’s dynamics. Throughout the numerical tests in
this work, we take zero mass and momentum exchange D, = Dso =0, M; = My = 0.
The ratio of gas constants at the top layer will be taken to be 75 = 1.4. The domain is

[0,5] 3 s. In all numerical tests, we will use zero Neumann boundary conditions.

In all cases, 200 grid points are used in the axial direction and 100 levels are taken in
the vertical direction in each cross section. A CFL number of 0.45 is used in order to

guarantee stability.
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FIGURE 3.3: Solution at time ¢t = 0.5 for initial conditions given by equation (3.26).

Top panel: 3D view of the pipe, showing the interface in blue. Bottom left: densities

of lower (solid line) and upper (dashed lines) layers. Bottom middle: Corresponding
velocities. Bottom right: interface.

3.5.1 Steady state at rest

In this numerical test, we consider a steady state at rest in a horizontal pipe (o = 0) with
circular cross section with constant radius R(f,s) = 1. The gravity constant is set to
g = 9.81 ms—2. The reference densities and pressures are P1ref = Poref = 1 and Py ep = 1.

The vertical velocity at the interface is W; = 0 with no interface displacement (u = 0).
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The initial conditions are given by

pr=p2=1,Ve1=Vs0=0,n=0. (3.26)

This state corresponds to a steady solution in the absence of mass and momentum ex-
change and interface displacements. According to Proposition 3.2, the proposed numerical
scheme recognizes those states, and the numerical solution remains independent of time.
This is confirmed by the numerical solution shown in Figure 3.3. The 3D view of the pipe
is displayed in the top panel. As we can see, the interface remains flat with no numerical
errors. The steady solution is then recognized exactly. This is corroborated in the bottom
panels. The densities and velocities are plotted in the bottom left and bottom middle
panels. The quantities associated to the first layer is identified with solid lines, while the

ones associated with the second layer uses dashed lines.

3.5.2 Perturbation to a steady state at rest

In this numerical test, we now introduce a perturbation to a steady state for a horizontal
pipe (o = 0) with circular cross sections with radius that grow linearly with respect to
the axial position

R(#,s) =1+0.1s.
A coefficient 1 = 10 generates an interface displacement when density variations occur.

The initial conditions are given by

e if 3<s<35
pP1 = P2 = 1,Vs,1 = Vs,2 =0,nr = (327)

0 otherwise,
with € = 1072,

The top panel shows the 3D view of the pipe at time 7" = 0.5. The rest of the panels
show the profiles at times ¢ = 0,0.25,0.5 in descending order. The densities, velocities

and interface are shown from left to right. As in the previous test, the bottom layer is
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FIGURE 3.4: Top panel: 3D view of the pipe, showing the interface in blue at time

t = 0.5 for the initial conditions (3.27). Left panels: densities of lower (solid line) and

upper (dashed lines) layers. Middle panels: Corresponding velocities. Right panels:
interface. The solutions are plotted at times ¢ = 0,0.25,0.5 in descending order.

denoted with solid lines while the top one for gas is denoted with a dashed line. The
changes in density are clearly identified. Due to the perturbation in the interface and the

geometry of the pipe, a fluid displacement to the right is observed.
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FIGURE 3.5: Top panel: 3D view of the pipe, showing the interface in blue at time

t = 0.5 for the initial conditions (3.28). Left panels: densities of lower (solid line) and

upper (dashed lines) layers. Middle panels: Corresponding velocities. Right panels:
interface. The solutions are plotted at times ¢ = 0,0.1,0.25,0.5 in descending order.
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3.5.3 Hydraulic jump 1

This numerical test considers a hydraulic jump. The pipe has radius
R(0,s) =1+0.1s,

so it opens up in the axial direction. Furthermore, it turns down with angle

7r
=—-0.1s—.
a(s) 55

In this numerical test, the pressure of the upper layer associated with gas has a lower pres-
sure reference P, s = 0.1, with density reference values pi yef = parer = 1. A momentum

exchange is given by Dy =1, Dy9 = —1, and p = 10.

The initial conditions are given by

0.3 if s<35
p1=p2 =1, Vs,l = Vs,z =0,nr = (328)

0 otherwise.

The time evolution is shown in Figure 3.5. As one can see, the interface has an initial
jump, like in a Riemann problem. In its initial evolution, a rarefaction wave seems to
show up. However, an intermediate state develops later on. Of course, here we have a
varying geometry and other parameters involved, which makes this numerical test more
complicated than a regular Riemann problem. The velocity of the liquid phase in the
lower layer is greater than that of the top one. This indicates that the flow is dominated

by the liquid layer.

3.5.4 Hydraulic jump 2

In this last numerical test, we have now increased the complexity of the flow. Initially,
the left side of the pipe is filled mostly with liquid, while the opposite occurs on the right

side. We use the same parameters as in the previous test. The initial conditions are given
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FIGURE 3.6: Top panel: 3D view of the pipe, showing the interface in blue at time

t = 0.5 for the initial conditions (3.29). Left panels: densities of lower (solid line) and

upper (dashed lines) layers. Middle panels: Corresponding velocities. Right panels:
interface. The solutions are plotted at times ¢ = 0,0.25,0.5 in descending order.

—-0.9 if s<35
pr=p2=1Ve1 =V =0,m = (3.29)

0.9 otherwise.
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The time evolution is shown in Figure 3.6. Due to gravity, the flow starts moving to the
right. A shockwave forms and starts propagating towards the right boundary. In this
case, the velocity of the liquid phase is much stronger than that of the previous test,

which could be caused by the higher jump and the higher pressure inside the pipe.



Chapter 4

Conclusions

4.1 Conclusions

As we mentioned at the beginning of this thesis, the Euler Equations are a valuable tool
that can be adapted for understanding and modeling gas and air flow through ducts.
The cylindrical coordinates played an important role for the description of the geometry
of the pipe and the variables involved. Thanks to this, we were able to transform the
Cartesian system of equations into a cylindrical-type system. In the new coordinates,
the variables are described by the pipe’s axial position, the distance from the wall to
the cylindrical center in the corresponding cross section, and the angle of a point at the
wall with a reference vector. The resulting equations may seem complicated, but can
be greatly simplified by making the assumption that V,, Vy < Vj, obtaining a reduced

model.

Reynold’s Theorem 1.4 had an important role in this work. Thanks to this theorem, the
integration of the model was able to be developed and lead to the final expressions. Here,
the cross sectional averaging process was crucial. The resulting integrals were not trivial
or easily to solve analytically, so the analysis of the numerical approach to them is an

important result of this work as well as the numerical method that we implemented.

81
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Despite the complexity of the final model, the numerical approach had some interesting
results. The central-upwind numerical scheme implemented for solving the final model al-
lowed us to apply the model to different scenarios. For instance, we studied perturbations
to steady state at rest. We observed the variations on the densities py, p2, the pressures
Pi(p1), P(p2) and how the velocities and interface evolve in time. It is important to recall
that we studied water and gas flow interacions through pipes, like it occurs in home and
city pipes that are used to supply water to citizens. However, the applications of this
model are not just limited to that. The model was described for general cross sections,

which can be applied to many realistic problems.
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