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Abstract

In this thesis the importance of the Mass-to-light ratio and the dynamical mass in calculating

the theoretical mass and fitting it to observational data within the MOND limit to a fourth

order perturbation is presented. It discusses the study of dark matter in galaxy clusters

through X-rays, gravitational lensing, and rotation curves. It then moves on to discuss the

history of our understanding of gravity, from Descartes’ notion of occult fluids to Einstein’s

theory of general relativity. The use of the metric tensor and the principle of least action to

calculate the geodesic trajectory of a test particle in a curved spacetime is used, as well as the

use of clusters of galaxies to calibrate a relativistic modified Newtonian dynamics (MOND)

model. The importance of clusters of galaxies in this calibration method is highlited and

describes how the missing component in the cluster mass distribution can be determined by

analyzing the temperature and gas profiles. Finally, a sample of clusters is used to calculate

the theoretical mass and it shows how the baryonic mass needed can be calculated from

observations by analyzing the baryonic density of gas in each cluster.





Chapter 1

Resumen

El uso de la relación masa-luz y la luminosidad total se utilizaron para inferir la masa de las

galaxias. La relación masa-luz está relacionada con la edad de las poblaciones de estrellas

dentro de una galaxia y su luz visible, y la relación aumenta a medida que la curva de rotación

se aplana, proporcionando evidencia de materia oscura. El concepto de masa dinámica y masa

total de un sistema es presentado. El estudio de la materia oscura en los cúmulos de galaxias se

puede realizar a través de rayos X, lentes gravitacionales y curvas de rotación. El método más

antiguo, que utiliza curvas de rotación, implica analizar la masa de los cúmulos observando

la velocidad de los objetos en diferentes radios.

Se discute brevemente la evolución de la comprensión de la gravedad en la historia de

la ciencia, que comienza con la noción de fluidos ocultos de Descartes en el siglo XVII, que

asumı́a que el espacio no estaba vaćıo y teńıa que contener algún tipo de fluido para explicar

el movimiento planetario. Luego pasa a las leyes del movimiento planetario de Kepler y su

tercera ley, que establece que el peŕıodo de la órbita de un planeta al cuadrado es proporcional

al cubo de su distancia al sol. Newton se basó en las leyes de Kepler para desarrollar sus

propias leyes de movimiento y su ley de gravedad, que establece que la fuerza de gravedad

entre dos objetos es proporcional al producto de sus masas e inversamente proporcional al

cuadrado de la distancia entre ellos. El descubrimiento de Neptuno por LeVerrier y Adams

en el siglo XIX debido a anomaĺıas en la órbita de Urano condujo a un mayor refinamiento de

nuestra comprensión de la gravedad. Finalmente, se analiza la teoŕıa general de la relatividad

de Einstein a principios del siglo XX, que reemplazó las leyes de Newton con una nueva teoŕıa

que describe la gravedad como la curvatura del espacio-tiempo causada por la presencia de

masa y enerǵıa.

En el tercer caṕıtulo se introduce el principio de equivalencia y el uso del tensor métrico

para calcular la trayectoria geodésica de una part́ıcula de prueba en un espacio-tiempo curvo.

El principio de acción mı́nima se usa para determinar las variaciones nulas de la acción fun-

cional que determina el movimiento de la part́ıcula de prueba. La acción es un escalar, una

cantidad invariante que se expresa como un funcional del tensor métrico gαβ. Se define el

Lagrangiano de una part́ıcula libre y se utiliza una expansión de Taylor para reescribirlo con

el fin de obtener correcciones relativistas. En el ĺımite de aproximación del campo débil,

el potencial escalar gravitacional φ se suma al Lagrangiano para tener en cuenta los efectos

gravitatorios. Se introduce un espacio esféricamente simétrico e isotrópico y se obtiene una
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métrica de espacio-tiempo simplificada implementando el radio de Schwarzschild. Finalmente,

se introduce una constante de escala para asegurar que ambos términos en la ecuación métrica

tengan las mismas dimensiones.

En el cuarto caṕıtulo se describe el uso de cúmulos de galaxias para calibrar un modelo de

dinámica newtoniana modificada relativista (MOND). Destaca la importancia de los cúmulos

de galaxias como método de calibración debido a su simetŕıa, estructura y tamaño, lo que

facilita su análisis. Los cúmulos de galaxias tienen un medio intracúmulo (ICM) compuesto

principalmente por hidrógeno ionizado y helio, que emite radiación principalmente en el es-

pectro de rayos X. Con esto, el componente que falta en la distribución de masa del grupo

se puede determinar mediante el análisis de los perfiles de temperatura y gas. Se describe la

aceleración del radio del cúmulo en relación con la temperatura y el potencial gravitacional

para un sistema en equilibrio gravitatorio. Finalmente, se muestra que las part́ıculas de masa

de los cúmulos de galaxias se pueden explicar usando solo su masa bariónica y los resultados

del cuarto orden de perturbación de MOND del caṕıtulo anterior.



Chapter 2

Introduction

The use of mass-to-light ratio and total luminosity were used to infer the mass of galaxies.

Mass-to-light ratio is related to the age of star populations within a galaxy and its visible light,

and the ratio increases as the rotation curve flattens, providing evidence for dark matter.The

concept of dynamical mass and total mass of a system is presented. The study of dark matter

in galaxy clusters can be done through X-rays, gravitational lensing, and rotation curves. The

oldest method, using rotation curves, involves analyzing the mass of clusters by observing the

velocity of objects at different radii.

§2.1 Mass to light ratio and total L to infer mass

The colors of galaxies provide much of the information there is about their age, elements and

luminosity. The luminosity of a galaxy is an extremely important aspect as it has been proven

to be very useful when calculating the mass of galaxies using the ratio between them. This

mass-to-light ratio Υ is refered to the values of the Sun in the Solar System∗ and is related to

the age of the populations of stars within the galaxy and its visible light. This can be directly

related to the H-R diagram where the lower main sequence stars evolve as the mass-to-light

ratio increases.

Mass-to-light ratios gained a lot of popularity with the development of rotation curves of

spiral galaxies in the 1960’s and 1970’s. These rotation curves were showing a steep rise at the

inner parts of a galaxy, reaching a maximum, continuing with a brief descending Keplerian

pattern and then reaching quite flat profiles on the external parts. This was fully demonstrated

by Burbidge et al. (1961), with the observations of the full rotation curve and mass of the

galaxy NGC157, where further distance measurements were impossible at that time due to

the low brightness at a larger radius. It was broadly assumed that the rotation curve would

follow a Keplerian fall, but it was not until HI spectral line observations at 21 cm wavelength

showed that these rotation curves did not descend but rather, flattened.

Under the assumption of a spherical mass distribution for galaxies, the local mass-to-light

ratio would increase as the rotation curve flattens and so, this comparison gave this ratio its

major role since at first sight this provides evidence for an “undetected” mass, or dark matter.

∗The mass-to-light ratio of the sun Υ� = 5133kg/W. As mentioned in the text, in astronomy units are
chosen such that γ� = 1.
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For pressure supported systems, such as galaxy clusters, the mass-to-light ratio M/L

changes very rapidly towards the central part of the systems, i.e. when the radial distance

r → 0 as shown by the early observations of the Virgo Cluster by Smith (1936).

§2.2 Dynamical mass

Under the assumption of spherical symmetry, the mass M(r) contained within a sphere of

radius r is given by:

M(r) = 4π

∫ r

0
r′2ρ(r′) dr′ . (2.1)

For a circular orbit, Kepler’s third law implies that the centripetal acceleration a, is given by:

a =
v2

r
, (2.2)

where v represents the orbital velocity of a test particle at radius r. In gravitational equilib-

rium, the centripetal acceleration is balanced with the gravitational one and so:

Mdyn(r) = −v
2r

G
, (2.3)

where G is Newton’s gravitational constant and Mdyn(r) represents the dynamical mass within

r of the system under study.

The total mass MT of the system is given by the sum of the gas Mgas, the mass of stars

Mstars and the dark matter component MDM (cf. §2.4):

MT = Mgas(r) +Mstars(r) +MDM(r). (2.4)

§2.3 Dark matter in clusters of galaxies

Zwicky (1933) tried to find an explanation of the problems with the inferred mass and the big

dispersion of velocities in dense clusters of galaxies. He analyzed the dispersion of velocities

in the Coma cluster, with differences of about 1500 – 2000 km/s. He was able to deduce that

in order to account for such difference, the average density of the Coma cluster would have

to be 400 times greater than the luminous matter seen in the observations if the system was

to be considered stationary (Zwicky, 1933).

Given that current observations of spiral galaxies do not present a Keplerian fall on their

rotation curve, and since the rotational velocity is proportional to the 1/4th power of their

mass, the solution to this discrepancy and the relationship between the M/L ratios was to

add some sort of “missing” mass or “dark matter”.

Galaxy clusters are quite important when it comes to the study of dark matter because

their mass can be calculated in several ways:

• X-rays: Clusters have a large amount of galaxies with ∼ 1010 stars within each of them.

This allows astronomers to see the hot gas in between each of these galaxies as X-rays
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cooling flows (Fabian et al., 1987). The X-ray observations yield density, pressure and

mass profiles (e.g. Paterno-Mahler et al., 2017).

• Gravitational lensing: When a ray of light approaches a massive object, a bending on

the ray’s trayectory occurs. This phenomenon allows the mass distribution of clusters to

be determined. Weak gravitational lensing is specially important as it allows numerical

simulations to be linked with the information from baryonic mass tracers (e.g. Hoekstra

et al., 2013).

• Rotation curve: Finally, the oldest method and the one discussed in Section §2.1 con-

sists on the determination of the mass of clusters of galaxies by analyzing the rotational

velocities, through their mass profiles, using their mass-to-light ratio M/L.

The infered mass between various methods yield a very accurate determination of the

missing dark matter in different astrophysical scenarios.

§2.4 Dark matter in spiral galaxies

Spiral galaxies are a “special” type of galaxies as they are the most symmetrical ones, since

everything in them, and mainly within the disk, is moving on a nearly circular orbit about its

center, and are in rotational equilibrium acording to equations (2.2) and (2.3). Due to their

symmetry, the mass of spherical galaxies give a good and direct approximation when it comes

to their rotation curve.

As already mentioned in Section §2.1, the rotation curve is a direct approximation of the

velocity following Kepler’s 3rd law (v2 ∝M/r). When measuring the galaxy’s mass (M) using

the 21-cm H line, the flattening of the resulting curve can be mostly completely accounted for

with the “missing” matter. Hence, a dark halo model was developed by using this missing or

“dark” matter and distributing it throughout the galaxy’s model, so that, the contribution to

the total rotation curve is given by the disk, the stars, gas and dark matter halo (Salucci &

Persic, 1997).

§2.5 Dark matter in spiral galaxies: the Tully-Fisher relation

The dark matter halo model mentioned in the previous section has a catch: it does not follow

Kepler’s 3rd law. The relation between the rotational velocity v and the baryonic mass of the

system is given by:

v4 ∝M, (2.5)

and is commonly called the Tully-Fisher relation (see Section §3.5):

The relationship between the amount of mass and the velocity can be interpreted in such a

way that there most be some type of undetected dark matter around the spiral galaxy in order

to keep the velocity at a constant rate such that the rotation curves flattens at sufficiently

large distances away from the center.
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§2.6 Dark matter in cosmology

When thinking about physics and the universe, it is common to apply Einstein’s theory of

General Relativity (GR). The concordance ΛCDM (Cold Dark Matter) cosmological model

of the universe (Melia, 2022) uses GR field equations given by:

Gµν + Λgµν = κTµν , (2.6)

Gµν = Rµν −
1

2
gµνR = 8πGTµν , (2.7)

where R is Ricci’s scalar, Tµν the stress energy tensor, gµν the metric tensor and Λ the

cosmological constant.

An homogeneous and isotropic universe is described by the Friedmann, Lemâıtre, Robert-

son and Walker (FLRW) metric given by:

ds2 = dt2 − a2(t) dl2 , (2.8)

where dl2 describes the geometry of space with respect to a value κ that describes the curvature

of the 3-space and a(t) is a dimensionless scale factor, normalized to a present day value of

a0 = 1.

The curvature of space κ yields three different dynamical models when no dark matter

nor dark energy are introduced: (a) an open universe if κ = −1, (b) a flat universe if κ = 0

and (c) a closed universe if κ = 1. The first two cases correspond to expanding models and

the third is a re-collapsing one. The concordance model corresponds to a measured value

κ = 0. The rate of expansion of the universe at the present epoch H(t0) := ȧ(t0) is the first

cosmographical parameter (Capozziello & De Laurentis, 2011) with a value of ∼ 70km/sMpc.

The Cosmic Microwave Background Radiation (CMBR) has been one of the most impor-

tant tools used in Cosmology since its discovery, being the oldest light in the universe, it

provides important information about the early universe. Its temperature is not the same

all throughout space and fluctuates slightly from place to place. These small fluctuations

are referred to as the temperature anisotropy of the CMBR and are the footprints of density

fluctuations that eventually collapsed to form the structure of our universe (Tkachev, 2018).

Observations showed temperature fluctuations of the order of 10−5 and did not match the

expected measurements of a fully baryonic matter universe (which correspond to values of

the order of 10−3) as these fluctuations would not have been able to evolve into the structure

of the universe we observe at the present epoch. Using a prominently dark matter universe

allows for the complete formation and evolution of these structures which are consistent with

the observations. These theoretical models use non-relativistic or “cold” non baryonic dark

matter particles and represent the basis for the concordance cosmological model.

The ΛCDM cosmological model introduces a cosmological constant Λ term on the field

equations of general relativity that introduce an accelerated expansion, since observations of

SNIa and CMBR require such term in order to be explained (Puget, 2021; Durrer, 2020).

Dark energy was theorized from the fact that a matter dominated universe did not predict

the correct Hubble constant, and neither predict the age of the universe. But it was not
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until Supernova observations (Perlmutter et al., 2003) and their nearly uniform luminosities,

which in turn, showed that the universe was not decelerating, but in fact it was accelerating.

The simplest idea was to assumme that a scalar energy field, the cosmological constant, was

responsable of this expansion.





Chapter 3

Extending gravity

The evolution of the understanding of gravity in the history of science is briefly discussed, it

starts with Descartes’ notion of occult fluids in the 17th century, which assumed that space

was not empty and had to contain some sort of fluid to explain planetary motion. It then

moves on to Kepler’s laws of planetary motion and his third law, which states that the period

of a planet’s orbit squared is proportional to the cube of its distance from the sun. Newton

built on Kepler’s laws to develop his own laws of motion and his law of gravity, which states

that the force of gravity between two objects is proportional to the product of their masses and

inversely proportional to the square of the distance between them. The discovery of Neptune

by LeVerrier and Adams in the 19th century due to anomalies in Uranus’ orbit led to the

further refinement of our understanding of gravity. Finally, the chapter discusses Einstein’s

theory of general relativity in the early 20th century, which replaced Newton’s laws with a

new theory that describes gravity as the curvature of spacetime caused by the presence of

mass and energy.

§3.1 Descartes and occult fluids

In 1644, Philosopher and Mathematician Rene Descartes started introducing the notion of

occult fluids in his published manuscript Principles of Philosophy (see e.g. Miller, 1984). In

this manuscript he explained that the existence of empty space is impossible and he assumes

space as being similar to a body, i.e. empty space has to contain something and not be

“empty”. Given this statement, the Universe most be filled with some sort of fluid. In other

words, vacuum is described as an undetected matter flow, moving through space. He was able

to explain the motion of the planets about the sun, using the idea that the planets rotate

because of vorticity produced by this occult fluid. The moons of the different planets rotate

about them since other vortices attached to the planets produce circular motions of these

satellites (Spratt, 2016).
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§3.2 Newton’s Principia, Kepler 3rd law and the theory of

gravity

In the 1620s, Johannes Keppler published the book Harmonices Mundi Libri IV. This book

was very important at the time as he acknowledges the Sun as the source of movement for

the planets. Here, taking the driving force of the Sun as 1/r and using the patterns in the

amount and volume of the matter seen in his Messekunst Archimedis (1616), the volume is

then taken as a function of r.

Using the planetary data in his Messekunst Archimedis (1616) he approximates that the

ratio between the amount of matter in a planet and it volume (density) was proportional

to 1/
√
r The amount of matter can also be described as being proportional to

√
r and he

introduces the first idea:

Period =
Length of path

strength of driving force
× density =

r

1/r
× 1√

r
, (3.1)

so that,

P ∝ Period× density =
r

1/r

√
r

r
= r3/2, (3.2)

where the distance of a planet from the Sun had to be proportional to the size of the planet,

its surface or its volume.

Therefore, his now known 3rd law of planetary motion is given by:

T 2 ∝ a3, (3.3)

where T is the period and a the length of the semi-major axis distance of the orbit (Gingerich,

1975).

According to Kepler’s 1st law of planetary motion, test particles or planets follow an ellip-

tical orbit. For many astronomical purposes (the planets on the solar system), the assumption

of a circular orbit is coherent and so, using Kepler’s 2nd law of planetary motion (test parti-

cles sweep equal areas in equal times), the velocity of a test particle is v = const and so, the

period T ∝ 2πr/v. In other words:

v ∝
√
M

r
. (3.4)

It was Isaac Newton, who took advantage of the previous information in his Philosophia

Naturalis Principia Mathematica (1687). He Assumed that gravity was a force and to put

things simple for the purpose of this work, under the assumption of a circular motion of a

planet about the Sun, the centripetal acceleration a = v/r and so, using Kepler’s third law

(3.3) it then follows that:

a =
v2

r
= −GM

r2
, (3.5)

where Newton’s constant of Gravity G is a proportionality constant that is calibrated with

the motion of planets and the minus sign represents the attractive force of gravity. As a side

note, Newton actually found Descartes’ idea of a fluid problematic, since its existence would
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not allow planets to move freely through space due to the fluid’s resistance (Spratt, 2016).

§3.3 LeVerrier, Adams and Neptune. LeVerrier and Vulcan

Alexis Bouvard (1821) showed with his Tables astronomiques (see e.g. Jarrell, 2007) that the

motion of Uranus (discovered in 1781) was irregular since it sometimes fell behind and some

others appear forward from the predictions of Newton’s theory of gravity. He hypothesized

that this discrepancy of the planet’s orbit could be due to (a) its great distance to the Sun,

where Newton’s gravitation theory could fail, (b) by some perturbation felt by Uranus from

another body (maybe an 8th planet) or (c) by observational errors.

Independently, in 1845, Urbain LeVerrier and Adams predicted that the anomaly in

Uranus’ orbit had to be due to the presence of an undetected planet beyond it. LeVer-

rier gave these calculations and predictions to the Astronomer Joham Galle in Berlin and this

was when and how Neptune was able to be observed. Independenly, Mathematician John

Adams had already started looking into the motion of Uranus as early as 1841. It was also

in 1845 that he gave James Challis, in Cambridge, the calculation to the location of this new

planet beyond Uranus. Unfortunately, it was not until LeVerrier’s discovery in Berlin, that

Adam’s calculations of Neptune were able to be recognized. This is how they both came to

be known as the discoverers of Neptune (see Smart, 1947, for more information).

Later on, in 1855, LeVerrier, also intrigued by the precession in Mercury’s orbit, which

was also not explained with Newton’s theory, hypothesized that either a small planet or a

cluster of small planets had to be inside Mercury’s orbit in order to account for its residue

value∗. In 1859, amateur Astronomer Lescarbault watched a small black dot crossing the

Solar disc –which resembled the transit of a planet about the Solar disc. He sent LeVerrier

his findings, whom he met later and concluded that he had detected the 9th planet of the

Solar System (Fontenrose, 1973).

This planet was given the name Vulcan and up to now has never been found. It wasn

until 1914 when Einstein was able to explain Mercury’s movement with his theory of General

Relativity.

§3.4 Extending Newtonian gravity towards a relativistic regime:

General Relativity

Albert Einstein completed his theory of Special relativity in 1905, but it was not until 1915,

that he completed his, now famous, theory of General Relativity (GR). As mentioned in

section §2.6 Einstein’s field equations were able to perfectly match the observations of the

precession in Mercury’s orbit. This discovery did not cancel out Newton’s gravity but only

limited its applications. For example, in the weak field limit of GR, equation (2.7) can be

reduced to Newton’s equations.

∗All planets in the solar system show precession of their perihelium about the Sun. When the influence
of all planets on a particular one are taken away (so that the planet’s motion interacts only with the Sun’s
gravitational force) then, this perihelium precession vanishes, except for Mercury. This is why Le Verrier’s
hypothesis of a possible inner planet(s) beyond Mercury’s orbit is coherent.
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Einstein’s theory of gravitation takes space and time to be within the same structure called

“space-time” with a local inertial reference frame containing local flat coordinates which follow

the straightest paths in curved spaces called geodesics (Capozziello & De Laurentis, 2011).

The symmetric Energy-momentum tensor Tµν shown in equation (2.7) is of extreme impor-

tance as it gives information about the matter and pressure content (energy and momentum)

across all space-time (see e.g. Landau & Lifshitz (1976); Mendoza & Silva (2021)).

The line element ds in space-time is given by:

ds2 = gµν dxµ dxν , (3.6)

where gµν is the metric tensor and in what follows we assumme a metric signature (+,−,−,−)

For the case of an empty flat Minkowski space-time, the interval in Cartesian (ct, x, y, z)

and spherical coordinates (ct, r, θ, φ) is given by:

ds2 = c2 dt2 − dl2 = c2 dt2 − dr2 − r2 dθ2 − r2 sin2 θ dφ2 , (3.7)

where dl :=
√

dx2 + dy2 + dz2 is the Cartesian space-line element.

In order to use the field equations and compare them to astrophysical observations, cor-

rections have to be made to the metric. These corrections or perturbations are very small.

Taking the fact that the metric tensor gµν is the same as the Minkowski metric ηµν in the

weak field limit of approximation, the correction hµν is made for |hµν | � |ηµν |. These per-

turbations are estimated to an O(4) in a later section. Here and in what follows O(n) refers

to O(1/cn). Therefore, when looking for the metric components at perturbation order O(0),

O(2), O(4) and O(6) it means corrections at O
(
1/c0

)
, O
(
1/c2

)
, O
(
1/c4

)
and O

(
1/c6

)
(for

more information about this, see Bernal et al., 2019a, and Section §4.5).

§3.5 Tully-Fisher law and path to MOND

As mentioned in section §2.5 the external parts of, galaxy rotation curves do not follow Kepler’s

law, Tully & Fisher (1977) derived the distance to the Virgo and Ursa Major clusters using HI

(21-cm) line observations and the known distances to two nearby groups: M81 and M101 as

comparison. They were able to find a relationship between the spiral galaxy’s magnitude and

its rotational velocity to calculate the distance to them with their luminosity being dependent

on the wavelength band that was being measured from. The relationship fitted the known

information of spiral galaxies well (Tully & Fisher, 1977).

This relation was used for many decades, but McGaugh et al. (2000) rewrote that rela-

tionship in terms of the rotational velocity of stars and the baryoinic mass of disk galaxies,

finding:

M ∝ v4. (3.8)

Under the assumption that gravity deviates from its Newtonian expression at those Tully

Fisher scales observed in spiral galaxies, where rotation curves flatten, it can be stated that

the Tully Fisher relation is a replacement to Kepler’s third law. In other words, the Tully
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Fisher expression is an extended Kepler’s third law at sufficiently large scales. At small scales

such as the one associated to the solar system, or the central parts of a spiral galaxy, Keper’s

third law holds. Under these assumptions, the Tully-Fisher law for a circular orbit, where the

centripetal acceleration a = v2/r yields (Mendoza, 2015b):

a = −GM
M1/2

r
(3.9)

where the modified gravitational constant GM = 8.94× 10−11 m2 s−2 kg−1/2 is calibrated using

rotation curves of spiral galaxies.

Milgrom (1983) considered a very simple form of modification to Newton’s 2nd law, by

allowing a proportionality between inertia and acceleration with the use of an interpolation

function µ(x):

F = µ

(
a

a0

)
ma, µ =

{
1, |x| � 1 (Newton’s limit),

x, |x| � 1 (Tully-fisher limit),
(3.10)

where x := a/a0 and m is the mass of a particular test particle. He introduced the acceleration

constant a0 as a turning point between the two limits. For accelerations much greater than

a0, Newton’s dynamics and Kepler’s third law hold. However, for accelerations much smaller

than a0, T-F dynamics are obtained.

The transition acceleration a0, or Milgrom’s acceleration constant, was able to be deduced

by Mendoza & Olmo (2015) by comparing equations (3.5) and (3.9), yielding:

a0 =
G2
M

GN
. (3.11)

Therefore, the acceleration of a rotating system in terms of a0 allowed for a deep MOdified

Newtonian Dynamics (MOND) regime, i.e. a << a0:

a =
(a0GM)1/2

r
, (3.12)

with the Tully-Fisher law given by:

v = G
1/2
M M1/4. (3.13)

§3.6 AQUAL

Unfortunately, MOND is not a physical theory. Milgrom tried to use observational data to

confirm this theory but found issues when e.g., momentum was not conserved when applied

to N-body systems and when calculating the center of mass of a star, since the acceleration

would follow MOND but the galaxy where the star is in would follow Newtonian dynamics.

He could not find an explanation as to why these two would be different if one comes from

the other. Additionally, MOND is not able to explain the gravitational lensing explained by

GR since it is a non-relativistic proposal (Milgrom, 1983).
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Bekenstein & Milgrom (1984) tried tackling these issues using the gravitational Poisson

equation and its properties for massive objects and their density ρ:

∇2ϕ = 4πGρ, (3.14)

where ϕ is the Newtonian gravitational potential. Equation (3.14) is obtained by the null

variations of the field φ of the following Newtonian gravitational action (Mendoza, 2015a):

SN = −
∫

d3x

[
1

8πG
(∇ϕ)2 + ρϕ

]
=

∫
d3xLN(ϕ,ϕ,k ;xk), (3.15)

The modification at the action level appeared through the introduction of an AQUAdratic

Lagrangian (AQUAL) L where the gravitational Lagrangian density LN is a function of the

field ϕ and its derivatives ϕ,k with respect to the spatial coordinates xk. In order to make

a small modification to it and still have a potential ϕ from which the acceleration can be

derived, they used F (x2) as an arbitrary function of itself with a0 as a scaling constant for

the acceleration needed for any non-Newtonian case:

LAQUAL = − a2
0

8πG
F

(
|∇ϕ|2

a2
0

)
− ρΦ. (3.16)

This was the first non-relativistic approach to MOND for small accelerations with the

condition that |∇ϕ| → 0 as the radius r →∞ so that the acceleration a of a test particle can

be given by

|a| = |∇ϕ|. (3.17)

A relativistic AQUAL (RAQUAL) was then approached but it encountered that at small

perturbations, the gravitational waves would start propagating at superluminal speeds, cre-

ating a gravitational potential that not only does not explain the light deflection previously

explained with GR, but showing that the potential is affecting the bending of the light as

well (Bekenstein & Milgrom, 1984; Bekenstein, 2005).

§3.6.1 TeVeS (Tensor-Vector-Scalar)

With the intention of building a relativistic theory of MOND, Bekenstein (2005) introduced

TeVeS building an extended gravitational action (see Section §4.1) to keep all of the conser-

vation laws intact. This construction uses the standard metric Tensor a timelike Vector field

uµ, a dynamical scalar field φ, a non dynamical Scalar field σ (TeVeS ) for the gravitational

Lagrangian. This proposal was able to explain gravitational lensing at low accelerations.

Although TeVes was proven useful, it was also proven to be inconsistent when it comes to

systems under hydrostatic equilibrium such as stars, since they became very unstable. It is

also inconsistent with cosmic microwave background radiation acoustic peaks, lensing in the

bullet cluster and LIGO’s measurement of gravitational waves (Lars et al., 2019).
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§3.7 Non-relativistic extended gravity. Mendoza et al. (2011)

Mendoza et al. (2011) generalized equation (3.12) using dimensional analysis and concluding

that a general statement can be made about the acceleration force for gravitational systems:

a

a0
= f(x)→

{
x2, for Newton’s gravitational acceleration,

x, for MOND’s acceleration,
(3.18)

where x := lM/r and lM := (GM/a0)1/2. By taking these two acceleration limits of f(x) and

expanding them as geometric series, they were able to propose a transition function from the

MONDian limit to the Newtonian one:(
a

a0

)
±

= f(x) = x
1± xn+1

1± xn
. (3.19)

The free parameter n was calibrated using the rotation curve of our galaxy (Famaey & Binney,

2005) and concluded that the best fit ocurred for n ≈ 3 with negative signs used in (3.19).

Now, using Poisson’s equation (3.14) and Green’s theorem for very symmetric systems,

one can rewrite the acceleration vector with its unit vector as follows:(
a

a0

)(
x2

f(x)

)
= x2ea = −G

a0

∫
(r − r′)

|r − r′|3
ρ(r′) dV ′ . (3.20)





Chapter 4

Post MONDian parametrization

The principle of equivalence and the use of the metric tensor for calculating the geodesic

trajectory of a test particle in a curved spacetime is introduced in this chapter. The principle

of least action is used to determine the null variations of the functional action that determines

the motion of the test particle. The action is a scalar, an invariant quantity that is expressed

as a functional of the metric tensor gαβ. The Lagrangian of a free particle is defined and a

Taylor expansion is used to rewrite it in order to obtain relativistic corrections. In the weak

field limit of approximation, the gravitational scalar potential φ is added to the Lagrangian

to account for gravitational effects. A spherically symmetric and isotropic space is introduced

and a simplified spacetime metric is obtained by implementing the Schwarzschild radius.

Finally, a scaling constant is introduced to ensure that both terms in the metric equation

have the same dimensions.

§4.1 Principle of equivalence

Mentioned for the first time by Newton (1729) in his Philosophiæ Naturalis Principia Math-

ematica, Newton’s second law F = ma combined with the gravitational law F = mg im-

pliedthat “mass is proportional to its weight”.

It was Einstein who, centuries later, proposed the example of an observer inside a free

falling elevator and explained that the observer would see all bodies in its same gravitational

field as falling at the same acceleration and thus feeling no acceleration at all. This compli-

mented Newton’s idea that the inertial and gravitational mass of bodies would be the same

during free fall. This could in principle be extended to all laws of physics in what is referred

to as the Weak Equivalence Principle(WEP).

Taking all of this into account Einstein made a postulate stating that as long as the WEP

is valid, the outcome of any experiment would be independent from its place or time in the

universe. Regardless of its composition, its structure or even its velocity. Counting on its

inhomogeneities to be sufficiently small to be ignored in a free falling frame. This is what is

now called the Einstein Equivalence Principle (EEP). Accordingly, one can assign a metric

to the space-time, geodesics to the straight lines of that space-time manifold and a Lorentz

Invariance to the physical laws following special relativity, which are the same for different

observers (Will, 2018).
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§4.2 Metric O(2) in g00 using the gravitational action for a free

massive particle

The interval ds between two infinitesimal points in a curved space-time is given by:

ds2 = gαβdxαdxβ, (4.1)

for a metric tensor gαβ. In here and in what follows, Greek indices have values of 0,1,2,3 and

Latin ones have values of 1,2,3. Also, an Einstein summation convention over repeated indices

is used throughout the text.

The principle of least action yields the equations of motion of a test particle between

two points in a system. The geodesic trajectory of such particle is described by requiring a

functional action S to reach a minimum value. In practice it is the null variations δS = 0, i.e.

the extremum of the functional S, that determines such motion. The action is a scalar and

as such it is invariant (Mendoza, 2015a) given by (Landau, 2013):

S = −mc
∫ b

a
ds =

∫ b

a

(
gαβdxαdxβ

)1/2
=

∫ t2

t1

Ldt, (4.2)

where L is the Lagrangian of the system. For a free particle in a flat Minkowski space-time,

the Lagrangian is given by L = −mc2
√

1− v2/c2. The non-relativistic action is obtained

in the limit where c → ∞ and as such, in order to obtain relativistic corrections to this

non-relativistic limit, a Taylor expansion is used to rewrite the Lagrangian as:

L = −mc2

[
1− 1

2

v2

c2
− 1

8

(
v2

c2

)2

− 1

16

(
v2

c2

)3
]

+O(4) (4.3)

Substitution of equation (4.3) into (4.2) yields:

ds =

(
c− v2

2c

)
dt ,

and since v dt = dr it turns out that:

ds2 = c2

(
1 +

v4

4c4

)
dt2 − dr2 . (4.4)

at O(4) of approximation.

Thus, for the case of a Minkowski space-time and comparing equation (4.4) with equation

(3.7), the terms smaller thanO(2) are neglected and so, the non-null metric tensor components

are given by:

g00 = 1, and g11 = −1. (4.5)

In the general case, when gravitational effects are taken into account, particles do not only

move in a straight lines due to the curvature of space. To account for gravitational effects in

the weak field limit of approximation, one can add the gravitational scalar potential φ to the

Lagrangian L. In other words, for the case of a general curved space-time in the weak field
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limit of approximation, the Lagrangian L at O(4) is given by:

L ≈ −m
[
c2 − v2

2
+ φ+ · · ·

]
, (4.6)

and so:

ds2 =

[
c2 − v2 + 2φ+

1

c2

(
φ2 − φv2 + v4

)]
dt2 = (c2 + 2φ) dt2 − dr2, (4.7)

i.e. at O(2) of approximation is follows that:

g00 = 1 +
2φ

c2
. (4.8)

§4.3 Schwarzschild space-time

A spherically symmetric and isotropic space is then introduced with the interval ds as a change

in distance from a particular origin. Coordinates can then be described as (x0, x1, x2, x3) =

(ct, r, θ, φ), where r is the radial coordinate and θ and φ represent the polar and azimuthal

angles, with an angular displacement defined as dΩ2 = dθ2 + sin2 θ dφ2

Schwarzschild (Landau, 2013) implemented the constant of length named gravitational

radius or Schwarzschild radius

rg =
2GM

c2
, (4.9)

to yield a simplified spacetime metric adequate for a point mass sourceM , which in Schwarzschild

coordinates, is relevant for an observer at rest at infinity, yields:

ds2 =
(

1− rg
r

)
c2 dt2 −

(
1− rg

r

)
dr2 − r2 dΩ2 . (4.10)

By means of Birkhoffs theorem. the external Schwarzschild solution can be extended to

any sperical mass distribution M(r) (Townsend, 1997).

§4.4 PPN parameters

The null variations of the action (4.2) yield the equation of motion for a test particle on a

curved space-time:

d2xα

ds2
+ Γα

βλ
dxβ

ds

dxλ

ds
= 0, (4.11)

where the Christoffel symbols Γαβη are given by:

Γβ
λµ =

1

2

(
∂gµβ
∂xλ

+
∂gµλ
∂xβ

−
∂gβλ
∂xµ

)
, (4.12)

At O(4) of approximation, the Ricci scalar is given by:

R =��
�*0

(0)R+(2) R+(4) R+O(6). (4.13)
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Note that the first O(0) term on the right-hand side of the previous equation is zero in

accordance with a flat space-time at the lowest perturbation order.

The traditional idea of building a relativistic theory of gravity is that its WFL of approx-

imation is Newtonian gravity, i.e. the WFL of approximation should converge to Poisson’s

equation (3.14), as it can be seen from the results of Section §4.2 at perturbation order O(2).

The terms to order O(4) or higher must be taken into account when dealing with relativistic

corrections to the Newtonian limit. With this, a higher order Lagangian can be constructed

(Will, 2018):

L = c2

(
1− 2φ

c2
− v2

c2
− g00[O(4)]− 2g0j [O(3)]

vj

c
− gjk[O(2)]

vj

c

vk

c

)1/2

. (4.14)

The first three terms represent the Lagrangian function of a free particle to order O(2)

and the following terms are the post-Newtonian terms to order O(4).

In other words, the PPN approximation requires knowledge of the metric components in

the following way:

g00 up to O(4),

g0j up to O(3),

gjk up to O(2). (4.15)

Assuming that the system is a perfect fluid the restrictions to be taken into account when

deriving the above terms are (Will, 2018):

• Metric components should be dimensionless quantities and should converge to their

Minkowskian values at large distances since space-time is asymptotically flat.

• There is not a unique reference frame to be chosen. Initial conditions, i.e. initial points

on the space-time manifold, can be arbitrary.

• Correction terms to the metric should transform with the same rules as scalars, vectors

and tensors under spatial rotations, following the rules of coordinate transformations.

Taking all of these restrictions into account, the possible terms in the metric are introduced

in the following way (Will, 2018):

1. g00 to O(2): Equation (4.8) defines a new Newtonian potential :

U(t, r) :=

∫
ρ∗(t, r)

|r − r′|
d3r′, (4.16)

where the conserved system’s density ρ∗ = ρ
√
−g u0 satisfies Euler’s continuity equation

with u0 as the time component of the four velocity. This potential satisfies a Poisson

equation given by: ∇2U = −4πρ∗.
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2. gjk to O(2): Since gik is a 3D tensor, it is expected that generalized potentials of the

form:

Ujk(t, r) :=

∫
ρ(t, r)

(r − r′)j(r − r′)k
|r − r′|3

d3r′, (4.17)

must appear at O(2) in the expansion of gik.

3. g0j to O(4): The only potentials that these components allow are of the form Vj and

Wj which are 3D vectors given by:

Vj :=

∫
ρ∗(t, r)

v′j
|r − r′|

d3r′, with: ∇2Vj = −4πρ∗vj .

Wj :=

∫
ρ∗(t, r)

v′ · (r − r′)(r − r′)j
(|r − r′|)3

d3r′, (4.18)

Note that these two vectors are related to each other through the superpotential X

defined by:

X(t, r) :=

∫
ρ∗(t, r)

∣∣r − r′
∣∣d3r′. (4.19)

in the following manner:

X,0j = Wj − Vj . (4.20)

4. g00 to O(4): In this case the metric behaves as a scalar space, its components trans-

form as scalars in any coordinate system and under any rotations. Taking all this into

consideration, the following potentials are defined:

Φ1 :=

∫
ρ∗′

v′2

|r − r′|
d3r′, with ∇2Φ1 = −4πρ∗v2, (4.21)

Φ2 :=

∫
ρ∗′

U ′

|r − r′|
d3r′, with ∇2Φ2 = −4πρ∗U, (4.22)

Φ3 :=

∫
ρ∗′

Π′

|r − r′|
d3r′, with ∇2Φ3 = −4πρ∗Π,

Φ4 :=

∫
p′

|r − r′|
d3r′, with ∇2Φ4 = −4πp,

Φ5 :=

∫
ρ∗′∇′U ′ · (r − r′)

|r − r′|
d3r′,

Φ6 :=

∫
ρ∗′

[v′ · (r − r′)]2

|r − r′|3
d3r′,

ΦW :=

∫ ∫
ρ∗′ρ∗′′

(r − r′)

|r − r′|3
·
[

(r′ − r′′)

|r − r′′|
− (r − r′′)

|r′ − r′′|

]
d3r′d3r′′, (4.23)
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These potentials are related to each other by the following relations:

∇2X = 2U,

X,jk = Uδjk − Ujk,

X,0j = Wj − Vj ,

X,00 = Φ1 + 2Φ4 − Φ5 − Φ6,

ΦW = −U2 − Φ2 −∇U · ∇X +∇ ·
∫

ρ∗′

|r′ − r′′|
∇′X ′d3r′,

Vj,j = −U,0. (4.24)

The inclusion of the above potentials into the metric perturbation to order O(4) will

introduce unknown proportionality parameters. In order to fix them in a unique way, a

specific gauge is chosen by performing an infinitesimal coordinates transformation:

xµ̄ = xµ + ξµ(xµ), (4.25)

and so, the metric ḡµ̄ν̄(xγ̄ in these new coordinates is given by:

ḡµ̄ν̄(xγ̄) =
∂xµ̄

∂xα

∂ν̄

∂xβ
gαβ = gµν(xγ)− (ξµ,ν + ξν,µ) +O

(
ξ2
)
. (4.26)

Since the general relativistic effects in higher perturbation orders converge to the New-

tonian limit when v/c → 0, the post-Newtonian approximation must obey the following

statements:

1. The quantity ξµ,ν + ξν,µ must be a post-Newtonian approximation and so, it should

vanish in the limit v/c→ 0.

2. ξµ,ν + ξν,µ and |ξµ|/|xµ| must vanish as r →∞.

The gradient of the superpotential is the only quantity that satisfies the above statements,

i.e.:

ξ0 = λ1χ,0, ξj = λ2χ,j , (4.27)

where λ1,2 are constants of proportionality.

The use of the above PPN gauge means that the metric components have the following

values (Chandrasekhar, 1965):

ḡ0̄0̄ = g00 − 2λ1(Φ1 + 2Φ4 − Φ5 − Φ6) + 2λ2(U2 + Φ2 + ΦW ),

ḡ0̄j̄ = g0j − (λ1 + λ2)χ,0j ,

ḡj̄k̄ = gjk − 2λ2χ,jk,

which can be further reduced by using Chandrasekhar (1965) “standard post-Newtonian

gauge”, which takes the spatial terms of the metric as diagonal and isotropic for simplic-

ity. The final result yields:
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g00 = −1 + 2λU + 2(Ψ)− βU2 +O(6),

g0j = −1

2
[4(1 + γ) + α1]Vj −

1

2
[1 + α2 − ζ1 + 2ξ]X,0j +O(5),

gjk = (1 + 2γU)δjk +O(4),

with:

Ψ =
1

2
(2γ+1+α3+ζ1−2ξ)Φ1−(2β−1−ζ2−ξ)Φ2+(1+ζ3)Φ3+(3γ+3ζ4−2ξ)Φ4−

1

2
(ζ1−2ξ)Φ6−ξΦW .

The PPN parameters γ, β, β1, β2, β3, β4, ξ, η,∆1 and ∆2 as well as their Solar system values

are shown in Figure (4.1)

Figure 4.1: Description of each of the ten PPN parameters and their corresponding
values for general relativity and two extended theories of gravity: Dicke-Brans-Jordan
theory and Ni’s theory (Table taken from: Misner et al., 1973).
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§4.5 MONDian parametrization in spherical symmetry

A Tully-Fisher approach with relativity was the next step towards explaining the anomalies

in the rotation curves of clusters of galaxies, given that the velocity dispersion in the outer

regions of such are as small as 10−4c, an approximation up to O(4) post-MONDian corrections

is suitable for this model (Bernal et al., 2019a)∗. To find the MONDian metric at O(2) of

approximation, Mendoza & Olmo (2015) assumed the Einstein Equivalence Principle to hold

and took the corresponding Tully-Fisher equation defined in Section §3.5.

The metric component g00 is obtained directly from the Tully-Fisher law for the motion

of massive particles, whereas g11 is determined by the motion of massless particles i.e. pho-

tons (Bernal et al., 2019a). In order to show how this can be achived note that the metric

components in spherical symmetry are given by:

g00 =(0) g00 +(2) g00 +(4) g00 +O(6) = 1 + 2φ/c2 +(4) g00 +O(6),

g11 =(0) g11 +(2) g11 +O(4) = −1 +(2) g11 +O(4),

g22 = −r2,

g33 = −r2 sin2 θ, (4.28)

where φ = −U is the non-relativistic gravitational potential. Note that at O(0) of approxi-

mation, space-time is flat Minkowski and so the metric components (0)g00 and (0)g11 are given

by the results of equation (4.5).

Using the results of equations (4.28) it follows that the acceleration a at perturbation

order O(4) is given by (see appendix §5.4):

1

c2
a =

1

c2

d2r

dt2
=

1

2

[
d(2)g00

dr
+ (2)g11

d(2)g00

dr
+

d(4)g00

dr

]
. (4.29)

We now describe how to obtain the metric components up to the required perturbation

orders.

At O(2) of approximation, the PPN MONDian corrections were obtained by Bernal et al.

(2019a); Mendoza & Olmo (2015); Mendoza (2015b, 2023) in the following manner:

g00 = 1 +
2φ

c2
= 1− 2

c2

(√
GMa0 ln(r/r∗)

)
, (4.30)

g11 = 1 +
2r

c2

dφ

dr
= 1− 2

c2

√
GMa0. (4.31)

With these results, the acceleration (4.29) at O(2) of approximation is given by:

a =
d(2)g00

dr
= −
√
GMa0

r
. (4.32)

∗At first sight, the fact that 10−4c is indeed a small quantity to be taken into account, it is important to
mention the following fact. The planet Mercury, rotates about the Sun at a speed of ∼ 1.6 × 10−4c and its
general relativistic corrections of its Newtonian description at O(4) of approximation yield the rotation of its
perihelium (see e.g. Landau, 2013; Will, 2018). It is thus expected that the that relativistic corrections to
MONDian dynamics are needed to explain the dynamics of clusters of galaxies.
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.

When dealing with a spherical mass distribution M(r), Mendoza et al. (2011) showed from

very general dimensional arguments that the previous equation is valid also by the substitution

M →M(r)†.

Now, since the metric component (2)g11 is dimensionless, then by Buckingham’s Π-theorem

of dimensional analysis, its more general form should be given by:

(2)g11 = −
√
Ga0

c2
× µ(r)1/2,

where the function µ(r) is a function that has dimensions of mass. When dealing with a point

mass M particle, equation (4.31) shows that
√
µ(r) = 2

√
M . It is natural to expect then that

µ(r) ∝M(r) for a spherical distribution of matter, i.e.:

(2)g11 = −α1

c2

√
GM(r)a0, (4.34)

where α is a dimensionless quantity.

Substitution of equation (4.34) and (4.32) into (4.29) yields:

a = −
√
GM(r)a0

r
+
α1

c2

GM(r)a0

r
+ c2 d(4)g00

dr
(4.35)

In principle, we expect α1 to be constant, but since it comes from dimensional groundings

one should also consider:

α1 = a+B ln(r/r?) = A+B ln(r), (4.36)

where A = a−B ln(r?), B and r? are constant, so that

a = −
√
M(r)a0

r
+ (A+B ln(r))

GM(r)a0

r
+

d(4)φ

dr
(4.37)

where (4)φ := (4)g00c
2. Once again, from dimensional goundings (4)φ should be:

φ = −Gµa0

c2
(λ1 + λ2 ln(r)). (4.38)

Since this particular form is basically expressed in the second term of the right-hand side

of equation (4.37), then we can think of a further generalisation using the following argument.

The PPN approach is essentially a linearisation of the potential fields. By allowing this to be

†Using Buckingham’s Π-theorem of dimensional analysis, Mendoza et al. (2011) showed that if the dimen-
sional constant a0 is introduced into a non-relativistic description of gravity, then the acceleration a experienced
by a test particle at a distance r from the origin is given by:

a = a0f(x), where: x := lM/r, and lM :=
√
GM/a0. (4.33)

As such, Newton’s gravity is recovered when the function f(x) = x2 and MOND’s one when f(x) = x.
In order to see that the massM can be substituted forM(r) and so, it validates Newton’s theorems (Mendoza,

2015a) suppose that a ∝ xp with p an integer number and assume that a test particle is located at position
r inside a spherically symmetric distribution contained within a radius R. If we trace a cone with solid angle
δΩ and vertex at the test particle, the shell is intersected at two opposite points r1 and r2. The masses δM1

and δM2 contained within the solid angle δΩ at these points are such that δM2/δM1 = (r2/r1)2. This relation
means that (δM1/r

2
1)p/2 = (δM2/r

2
2)p/2, and so δxp(r1) = δxp(r2).
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true, even at the fourth orther of approximation as expressed in the previous equation, then

the general potential at this O(4) perturbation order is obtained by the convolution:

φ = −λGa0

c2

∫
ρ′ dV ′

|~r − ~r′|
− λ2Ga0

c2

∫
ρ′ dV ′ ln(|~r − ~r′|)

|~r − ~r′|
. (4.39)

And so:

dφ

dr
= −λ1Ga0

c2
dr

[∫ r

0
+

∫ R

r

][∫ π

0

ρ′r2 dr dθ 2π√
r2 + r′2 + rr′ cos(θ)

]
(4.40)

− λ2Ga0

c2

d

dr

[∫ r

0
+

∫ R

r

][∫ π

0

ρ′r2 dr dθ 2π ln(|~r − ~r′|)√
r2 + r′2 + rr′ cos(θ)

]
,

which yields:

a = −
√
GM(r)a0

r
+ (A? +B? ln(r))

GM(r)a0

c2r
, (4.41)

where A? and B? are dimensionless constants.



Chapter 5

Clusters of galaxies as probes for a

relativistic MOND

The use of clusters of galaxies to calibrate a relativistic modified Newtonian dynamics (MOND)

model is described in this chapter. It highlights the importance of clusters of galaxies as a

calibration method because of their symmetry, structure, and size, which makes them easy

to analyze. Clusters of galaxies have an intracluster medium (ICM) mainly made up of ion-

ized hydrogen and helium, which emits radiation mostly in the X-ray spectrum. With this,

the missing component in the cluster mass distribution can be determined by analyzing the

temperature and gas profiles. The acceleration of the cluster radius concerning temperature

and gravitational potential for a system in gravitational equilibrium is described. Finally, it

is shown that mass particles of clusters of galaxies can be explained using only their baryonic

mass and the MOND’s fourth perturbation order results of the previous chapter.

§5.1 Theoretical mass

For astrophysical environments, the results of the previous Chapter can be immediately ap-

plied to sufficiently spherical clusters of galaxies in order to calibrate the unknown free pa-

rameters A? and B? of equation (4.41). Individual, groups and clusters of galaxies were all

formed during a gravitational collapse from where gas clouds arose and cooled at different

rates, allowing these massive bodies to form thanks to hydrostatic equilibrium. Clusters of

galaxies have hot gas within them at temperatures T ∼ 107 − 108 K, and are mainly made

of an intracluster medium (ICM) of ionized hydrogen HII and helium He, which emits ra-

diation mostly in the X-ray spectrum due to Bremsstrahlung (free-free) radiation (Sparke &

Gallagher III, 2007).

Using X-ray telescopes, such as e.g. the Chandra observatory, mapping of the ICM tem-

perature and mass profiles has been done to a very high accuracy on relaxed clusters that

have almost reached their dynamical equilibrium (Vikhlinin et al., 2006). As seen in equation

(4.41), the missing component is the M(r) mass distribution and in Bernal et al. (2019a),

the 11 clusters’ temperature and gas profiles seen in Vikhlinin et al. (2006) were used to find

this mass profile distribution and the parameter A, where, given the hydrostatic equilibrium

and their weak dynamical activity, hence relaxed, an isotropic and very spherically symmetric
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system is assumed.

Given all of the properties and composition of the ICM in clusters of galaxies, the ideal gas

law and Boltzmann’s equation, it is possible to describe the acceleration along their radius

with respect to their temperature T (r) and the gravitational potential Φ for a system in

gravitational equilibrium as (Bernal et al., 2019a):

|a(r)| =
∣∣∣∣dΦ(r)

dr

∣∣∣∣ =
kBT (r)

µmp

[
d ln(ρg(r))

d ln(r)
+

d ln(T (r))

d ln(r)

]
, (5.1)

where µ is the He abundance’s molecular mass per particle, mp is the proton’s mass and kB

represents Boltzmann’s constant.

The mass of this system can then be defined by taking equation (2.4) and the total mass

then compared to the theoretical mass Mth(r) given by the acceleration in equation (4.41).

Since this model aims to account for the dark matter discrepancy then Mth(r) = Mdyn(r).

Note that the dark matter term MDM was put aside in order to properly compare these two

masses. Therefore, by taking the dynamical mass equation (2.3) and putting it in terms of

the centripetal acceleration ac:

Mdyn(r) = −r
2ac(r)

G
= −v

2r

G
. (5.2)

For the observations, the acceleration ac(r) is given by the value derived in equation (5.1),

which yields a dynamical mass of:

Mdyn(r) =
−r
G

kBT (r)

µmp

[
d ln(ρg(r))

d ln(r)
+

d ln(T (r))

d ln(r)

]
, (5.3)

and for the theoretical mass the acceleration value of equation (4.41) yields:

Mth(r) = r
(M(r)a0)1/2

G1/2
− rM(r)a0

c2
(A? +B? ln(r)), (5.4)

where M(r) = Mgas(r) + Mstars(r) is the baryonic mass Mb(r) of the cluster. Which is

composed of a gas-mass component Mgas plus a star-mass component Mstars

§5.2 Sample of clusters

The baryonic mass Mb(r) needed can be calculated from the observations by analyzing the

baryonic density ρg(r) of the gas in each cluster. This in turn is dependent on the entire gas

density distribution and so, it is a function of the temperature profiles T (r) as well. These

temperature profiles were taken from 11 clusters of galaxies with primordial He abundance

at a low red-shift z=0.01−0.2 with a median of z = 0.06 in order to exclude the effects of the

universe’s expansion. These were also taken at around 0.75r500, from where Vikhlinin et al.

(2006) then measured the surface brightness of the clusters at the 0.7 − 2 keV energy band

with a projected metallicity of Z = 0.2Z�.

Starting with the gas density distribution, a β probability distribution model was used

with a small modification, which in the case of these types of clusters, must be led by a power

law with respect to the radius. A second β parameter was added to the model in order to add
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detail and accuracy within a small radius near the center (Vikhlinin et al., 2006). Finally, the

emission profile was fitted to the 11 clusters using:

npne =
n2

0(r/rc)
−α

(1 + r2/r2
c )

3β−α/2(1 + rγ/rγs )ε/γ
+

n2
02

(1 + r2/r2
c2)3β2

, (5.5)

which yielded the values for the parameters n0, rc, rs, α, β, ε, n02, rc2, β2, γ = 3 in the equation.

For these types of clusters with the composition described above, the gas density can be

defined by:

ρg = 1.624mp(npne)
1/2. (5.6)

For the temperature profile, Vikhlinin et al. (2006) showed a decrease in temperature

towards the center of the clusters and therefore, derived an analytical three dimensional

solution for this change in temperatures T (r) = Toc(r) Tcool(r) T0. Outside of the region with

the decrease of temperature (assumed to be radiation cooling) the temperature was defined

by

Toc(r) =
(r/rt)

−a

[1 + (r/rt)b]c/b
, (5.7)

where rt is the point in which the temperature transitions from one state to the other.

Inside of the cooling region, the following relation was derived:

Tcool(r) =
[(r/rcool)

acool + Tmin/T0]

[(r/rcool)acool + 1]
, (5.8)

Finally, the 3D temperature profile was calibrated using the equation:

T (r) = T0
(r/rt)

−a

[1 + (r/rt)b]c/b
[(r/rcool)

acool + Tmin/T0]

[(r/rcool)acool + 1]
, (5.9)

Vikhlinin et al. (2006) were also able to find these parameters a, b, c, rt, T0, Tmin, rcool, acool.

Having all the needed values and formulas in order to calculate the baryonic and theoretical

masses, Bernal et al. (2019a) used the empirical relationship between the total mass of the

system at r500 and the stellar mass given by:

Mstars

1012M�
= (1.8± 0.1)

(
M500

1014M�

)0.71±0.04

. (5.10)

Given the previous information, the stellar mass of the galaxy clusters is more or less 1%

of the total mass and therefore can be neglected, allowing the dynamical mass of the gas

component to be the baryonic mass. The dynamical mass Mdyn was calculated for each of

the radial points given for each of the clusters by using equation (5.3) and the values for the

constants:
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kB = 1.380 648 52× 1023 kg s−2 K−1,

mp = 1.672 621 89× 10−27 kg,

G = 6.674× 10−11 m3 kg−1 s−2,

µ = 0.609.

Bernal et al. (2019b) used the data provided by Alexey Vikhlinin to fit their model.

This same data was used in this work. The data given was set up for each of the 11

galaxy clusters in the same way: radius, density, gas mass, temperature, dynamical mass and

pressure, and with their corresponding uncertainties.

The given data was converted by a script in order to have it in units of megaparsecs for

distances, and normalized to 1014M�.

§5.3 Statistical Fit

§5.3.1 Parameters A? and B?

In order to fit the parameters A? and B? to their best approximation using the theoretical

mass equation Mth(r), the “fit” GNUplot (Williams & Kelley, 2020) fitting function was used,

which uses a nonlinear least-squares (NLLS) Marquardt-Levenberg algorithm. This algorithm

combines the gradient descent method, which minimizes errors using a steep descent direction

for solutions far from optimization and the Gauss-Newton method, which minimized errors

by finding the minimum assuming a locally quadratic least squares function for solutions close

to optimization (Gavin, 2019).

§5.4 Results

Table §5.4 shows the best fitting values of the parameters using the routine described in the

previous section. The values rmin and rmax represent the lower and upper values of the radius

used for the fitting in equation (5.4).

The following figures show the corresponding fits made for each of the clusters with dis-

tance in units of megaparsecs, and mass in units of and 1014M�.

The figures on the right show the fit made for the gas mass with the Mg from the obser-

vations in red and the mass fit M(r) for the clusters in blue.

Putting the two previous values together into the figures on the left, the dynamical mass

Mdyn(r) calculated in (5.3) is in red and the theoretical mass Mth fit calculated in (5.4) is

shown in blue.
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Figure 5.1: On the left, the theoretical mass fits between the observational data (in
red) with its corresponding error bars and the derived expressions for the galaxy
clusters A133, A262, A383 and A478 (in blue) are seen from top to bottom in that
order. On the right Gas mass fit in blue fits perfectly with respect to the radius and
the observational mass in red.
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Figure 5.2: On the left, the theoretical mass fits between the observational data (in
red) with its corresponding error bars and the derived expressions for the galaxy
clusters A907, A1413, A1795 and A1991 (in blue) are seen from top to bottom in
that order. On the right Gas mass fit in blue fits perfectly with respect to the radius
and the observational mass in red.
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Figure 5.3: On the left, the theoretical mass fits between the observational data (in
red) with its corresponding error bars and the derived expressions for the galaxy
clusters MKW4, A2029 and A2390 (in blue) are seen from top to bottom in that
order. On the right Gas mass fit in blue fits perfectly with respect to the radius and
the observational mass in red.
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Cluster rmin rmax A? B?

(Mpc) (Mpc)

A133 0.3148 12.8370 2.6231e-10 -6.7228e-11
A262 0.5654 10.0581 4.5893e-10 -1.3908e-10
A383 0.1246 11.6436 1.8966e-10 -4.2748e-11
A478 0.5128 14.8605 1.1131e-10 -2.0622e-11
A907 0.6233 14.8605 1.6873e-10 -3.8959e-11
A1413 0.4429 14.8605 1.3989e-10 -3.1178e-11
A1795 1.0154 14.8605 1.3992e-10 -2.7829e-11
A1991 0.2720 12.8370 3.5922e-10 -9.7040e-11
MKW4 0.4018 9.5792 5.4701e-10 -1.5547e-10
A2029 0.4884 13.4789 1.1863e-10 -2.4104e-11
A2390 0.3645 14.8605 1.2346e-10 -2.9941e-11

Average 2.3810e-10 -6.1291e-11
Avg. std. error 2.64e-12 1.495e-12

Table 5.1: Parameters shown in this table are taken from the fits of equation (5.4)
to the observational data of the 11 clusters of galaxies as described in the text. The
average value and the average standard error for the parameters A? and B? are also
shown.



Conclusions

The concept of mass-to-light ratio has been very useful in calculating the mass of galaxies.

This ratio is related to the age of the populations of stars within the galaxy and its visible

light, and is used to determine the amount of ”undetected” mass or dark matter within a

galaxy. The development of rotation curves of spiral galaxies in the 1960s and 1970s was

critical in establishing the role of the mass-to-light ratio, and the discovery of dark matter.

The mass of clusters of galaxies can be determined by analyzing their rotational velocities, as

well as through X-ray observations and gravitational lensing. Understanding the distribution

of mass within galaxies and clusters is essential to understanding the structure and evolution

of the universe.

This thesis discusses the evolution of gravity-related concepts from the 17th to the 19th

century. Descartes introduced the idea of occult fluids in 1644 to explain that empty space

could not exist and space must contain something similar to a body. Newton built on these

ideas and formulated the idea of gravity as a force in his Principia. Kepler’s Harmonices

Mundi Libri IV provided important information on the patterns of planetary motion, which

led to the third law of planetary motion, T 2 ∝ a3. LeVerrier and Adams predicted Neptune’s

existence, and their calculations led to its discovery beyond Uranus in 1845. These discoveries

and theories paved the way for modern concepts of gravity, including Einstein’s General

Relativity.

This thesis also discusses the Einstein Equivalence Principle (EEP), which states that the

outcome of any experiment would be independent of its place or time in the universe as long

as the Weak Equivalence Principle (WEP) is valid. The WEP implies that the inertial and

gravitational mass of bodies would be the same during free fall, and this principle could be

extended to all laws of physics. The principle of least action is also introduced, which yields

the equations of motion of a test particle in a system, and the geodesic trajectory of such a

particle is described by requiring a functional action to reach a minimum value. The author

also discusses the Lagrangian of the system and the metric tensor, which is used to describe

the interval between two infinitesimal points in a curved space-time. Additionally, the author

introduces the concept of PPN parameters, which are used to parameterize deviations from

general relativity.

In conclusion, galaxy clusters can be used as a calibration method to study dark matter

and modified gravity theories. X-ray telescopes like the Chandra observatory have provided

high-accuracy mapping of the intracluster medium (ICM) temperature and mass profiles of

relaxed clusters of galaxies, which are assumed to be isotropic and spherically symmetric. By

taking into account the properties and composition of ICM and using the ideal gas law and
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Boltzmann’s equation, it is possible to describe the acceleration of the system in gravitational

equilibrium with respect to its temperature and gravitational potential. Using the dynamical

mass equation, the baryonic mass of the cluster can be calculated from the observations of the

baryonic density and temperature profiles of the gas in each cluster. A β probability distri-

bution model with a power law and a second β parameter was used to fit the emission profile

of the 11 clusters studied. The resulting data was used to find the mass profile distribution

and the parameters A? and B?, which accounts for the dark matter discrepancy.

As seen in each of the figures in chapter 5 the calculated theoretical mass Mth was fitted

to the best of the possibilities to the observational data within the MOND limit to a fourth

order perturbation in order to seek better accuracy and to show that a Tully-Fisher based

MOND theory works well with the aforementioned observational data.

Theoretical gas density and gas mass were fitted well into the observations and are within

the limits of each of these values’ uncertainties.

As with the Mth, the fits are for the most part within the uncertainties of the observational

calculated values and their uncertainties. Therefore, one can conclude that the approximations

of the model seen in this work are a good match. One can see that when a higher order

perturbation is taken, a small value for the free unknown parameters A? and B? seen in table

§5.4 are different to model clusters of galaxies mass profiles.



Appendix

Using the geodesic equation:

d2xα

dτ2
+ T αβζ

dxβ

dτ

dxζ

dτ
= 0, (11)

where α = 1 = r, r̈ = 0, ṙ = 0 and θ̇ = 0 therefore

c2T 1
00ṫ

2 + 2T 1
03ṫϕ̇+ T 1

33ϕ̇
2 = 0. (12)

Taking each T αβζ term on their own:

T 1
00 =

1

2
g1λ

[
∂g0λ

∂x0
+
∂g0λ

∂x0
− ∂g00

∂xλ

]
,

=
1

2
g11

(
−∂g00

∂r

)
, (13)

T 1
03 =

1

2
g1λ

[
∂g0λ

∂x3
+
∂g3λ

∂x0
− ∂g03

∂xλ

]
,

=
1

2
g11 (0) = 0, (14)

T 1
33 =

1

2
g1λ

[
∂g3λ

∂x3
+
∂g3λ

∂x3
− ∂g33

∂xλ

]
,

=
1

2
g11

(
−∂g33

∂x1

)
=

1

2
(2r), (15)

Substituting equations (13), (14), (15) into equation (12) yields:

−∂g00

∂r
ṫ2c2 + 2eϕ̇2 = 0 (16)

Now, taking

c2 =
ds2

dτ2
= c2 dt2

dτ2
g00 + g11

dr2

dτ2
− r2 dϕ2

dτ2
,

= c2ṫ2g00 + g11ṙ
2 − r2ϕ̇2,
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since ṙ = 0 the second term disappears and the previous equation is then

ṫ2 =
1

c2
(c2 + r2ϕ2). (17)

Substituting equation (17) into equation (16) and using v = rϕ̇ yields:

−c2g00,r

c2g00

(
c2 + r2ϕ̇2

)
+ 2rϕ̇2 = 0,

=
−g00,r

g00

(
c2 + v2

)
+ 2

v2

r
= 0,

=
−c2g00,r

g00
+
v2

r

[
2− −rg00,r

g00

]
,

v2

r
=
−c2g00,r

2g00

1

1− −rg00,r2g00

, (18)

and in the observer’s frame:

v2

r
=
−c2g00,r

2

1

1− −rg00,r2g00

. (19)

Using

g00 = 1 + (2)g00 + (4)g00, (20)

and

g00,r = (2)g00,r + (4)g00,r, (21)

the following equation can be derived:

r
g00,r

g00
= r((2)g00,r + (4)g00,r)(1− (2)g00 − (4)g00),

= r(2)g00,r
(2)g00 + r(4)g00,r. (22)

Finally, the substitution of this last result into equation (18) yields:

v2

r
=
c2

2

[
(2)g00,r + (4)g00,r +

1

2
(2)g00,r

(2)g00,rr

]
. (23)
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