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Abstract

In this work, we calculate the electronic and vibrational properties of amorphous Cu𝑥Zr1−𝑥 alloys using

ab initioDensity Functional Theory. The amorphous character of the structures is simulated with a linear

heating and cooling techinque known as the undermelt-quench approach, and the partial PairDistribution

Functions are computed to analyse their structural properties. The electronic and vibrational densities of

state are obtained and used to estimate the known superconducting transition temperatures 𝑇𝑐 from these

parameters only.

We also investigate the case of the crystalline CuZr2 intermetallic compound which, to the extent of the

author’s knowledge, has not been observed to be superconducting at any temperature above 0.3K, in con-

trast to its amorphous counterpart that boasts a 𝑇𝑐 of 2.25 K. We report an upper bound for the 𝑇𝑐 of the
crystalline phase of 47.9mK, consistent with the lack of experimental results.
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Introduction

The crux of condensed matter physics, how the observable properties of the objects around us are deter-

mined by their basic constituents, has captivated humanity for millennia. From the purely philosophical

musings of Aristotle, who alleged that matter inherited its properties from the balance of elements present

in it, to our modern scientific techniques that allow us to detect and ascertain the presence of the true

constituents of matter, and measure how they interact with one another. One of the most fascinating phe-

nomena in this field is that of condensation, where the macroscopic state of an object displays quantum

properties that would normally be confined only to the microscopic scale where one could observe the in-

dividual constituents. The particles that condensate are said to occupy one coherent quantum state. In

superconductors, the electrons form one such condensate, but this case is particularly mystifying as the

electrons, that conventional wisdom would have them repelling each other, instead bind together and coa-

lesce into a state where they move together without budging. Somehow in the whole mess of interactions,

common knowledge is overturned and electrons end up effectively attracting each other as a result of how

they interact with the environment in which they move.

The theory of amorphous materials trails behind that of crystals, in a fashion analogous to their belated

adoption in human history compared to crystalline ceramics and metals. In the theoretical case, this delay

can be attributed to the difficulty in describing the non-repeating structures that retain some degree of or-

der at short range. The prevalence of disorder and defects in these materials pose an intriguing question

regarding the existence, and sometimes even superiority of amorphous superconductors over their crys-

talline counterparts. The phenomenon of Anderson localisation, where the otherwise extended electronic

states in crystals get localised around a defect, would appear antithetical to the macroscopically coherent

superconducting state, but in an almost paradoxical turn of events, amorphous superconductors do exist

and some even persist at temperatures higher than their crystal analogues.

In this work we present some of the basic theory needed to describe amorphous superconductors and the

methods used to calculate their properties relevant to superconductivity, and apply them to Cu𝑥Zr1−𝑥 al-

loys, which partake in the apparent paradox described above. In Chapter 1 we introduce the concept of

amorphous material along with some techniques used to compute their structural properties. In Chapter

2 we derive the equations of the interactions that give rise to this phase of matter at the microscopic scale,
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as well as the groundbreaking theory of Bardeen, Cooper, and Schrieffer. In Chapters 3 and 4we introduce

the basis of the methods employed to solve the quantummechanical equations of motion of the system. In

Chapter 5 we delve into some of the technical details that are essential to make the above solutionmethods

work, aswell as themethodology used to evaluate the superconducting properties of the system. InChapter

6 we present our findings and discuss their implications.

2



1 Amorphous Materials

In which we introduce the basic concepts and tools that

characterize amorphous materials.

Amorphous materials are conventionally introduced for what they are not, doing away with the trans-

lational and orientational order that the Bloch framework underlying much of the theory of Solid State

Physics requires. Such absence has often led to them being construed as topologically disordered1 crystals

[25]. Instead, we emphasise that the premise of long-range order required by Bloch’s theorem (see Sec-

tion 7.1 of H. Ibach and H. Lüth’s book [44]) is a pragmatic restriction imposed to facilitate the solution

of the Schrödinger equation in crystals, where the atoms are already arranged in such fashion. When the

Hamiltonian𝐻 commuteswith the translation operators {𝑇a}, the diagonalisation of𝐻 is simplified, as the

solutions of the Schrödinger equation are always eigenstates of 𝑇a (i.e., the states 𝑇a |k⟩ = 𝑒𝑖k⋅a |k⟩). The

more general case, where the premise of Bloch’s theorem is violated and the corresponding simplifications

are invalid, belongs to what can be broadly defined as amorphous materials, which are translationally and

orientationally disordered. With this inmind, it is clear that crystals merely represent a subset of all possible

structural configurations, which are generally amorphous, and not the other way around.

Bloch’s premise of perfect periodicity is far too restrictive for any real-worldmaterial to satisfy it. The nuclei

in real crystals are displaced by lattice vibrations, while the lattice itselfmay have a plethora of defects such as

vacancies, substitutions, dislocations, etc. Despite these imperfections, the idealisedmodel is a good predic-

tor of the electronic structure of the real crystal. Let us emphasise: At any instant, the real crystal is, stricto

sensu, topologically disordered, but this does not mean that it is amorphous. The fact that Bloch’s theory

works so well suggests that the disorder acts as a small perturbation of an otherwise periodic structure. On

the other hand, we are interested in materials wherein the absence of order is the (metastable) equilibrium

configuration and not merely a perturbation. Therefore, we must unravel the distinction between amor-

phous and crystalline materials further.

In his seminal paper on the theory of phase transitions [51], Lev D. Landau suggested that the analysis of

crystalline phases is made difficult by using an idealised model of a perfect crystal. Instead, he advocates

1As StephenR. Elliott explains [24], topological disorder refers to configurations in which there is no translational periodicity.
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1 AmorphousMaterials

modelling the crystal by a probability distribution 𝜌(r), where 𝜌(r)d3𝑟 determines the probability of find-

ing an atom in the volume element centred at r. In this picture, theperfect crystalwouldhave its distribution

given as a sum of Dirac deltas, one for every lattice position, and the thermal motion of the nuclei in the

real crystal would manifest in a broadening of these peaks without changing the underlying symmetry of

𝜌. Furthermore, since the crystal is homogeneous, defects have no reason to present preferentially in some

sites more than any others. Thus, these defects can be regarded as a small homogeneous perturbation on

the distribution 𝜌, which does not change the underlying symmetry either. In this sense, we can think of

amorphous materials as those that appear disordered even when averaging over the atomic positions and

defects: their probability distribution 𝜌 need not have an underlying symmetry.

As with anything pertaining to symmetry, there is a dichotomy between symmetric and non-symmetric

objects. Zbigniew H. Stachurski illustrates this distinction in Chapter 1 (Fig. 1.2) of his book [84], where

he portrays a clear separation between the two classes of materials. There, he conceptualises a spectrum

of materials ranging from the ideal amorphous solid2 to the ideal crystalline solid, the in-between states

resulting from perturbations of the ideal configurations (and he graphs it along “an undefined, somewhat

arbitrary variable”). Although it is clearly not a rigourous notion, this picture is useful in establishing the

demarcation between the crystalline and amorphous phases, which we suggest must be the presence or

absence of symmetry in the loose way outlined above, inspired by Landau’s ideas.

1.1 Short-Range Order

The absence of translational symmetry, outlined above, can be reinterpreted as the atoms not correlating

their positions with each other at long distances. That is to say, knowledge of the position of one atom does

not aid in the prediction of the location of another if they are distant3. At short range, however, matters

are quite different.

As Stanford R. Ovshinsky [66] explains, the short-range arrangement of atoms in an amorphous solid is

not random, but depends strongly on the chemistry of the elements involved. Of particular importance

is the coordination number, namely, the number of atoms in the nearest-neighbour coordination shell4.

However, unlike their crystalline counterparts, the bond angles and lengths in amorphousmaterials are not

fixed. This variation is expected because atoms at different positions will have varying environments due to

the disorder.

2Stachurski defines this ideal amorphous solid in Section 1.5 of the same book, with a set of complicated rules of sphere packing.
3As we shall see, the precise meaning of “distant” may be observed in the flattening of the PDF curve (cf. Section 1.2.1). In our

Cu-Zr alloys this happens around the distance to the fourth peak in the PDF, roughly 10Å.
4For covalent and ionic amorphous solids, this number is generally determined by the number of bonds between the elements,

which depends on the chemistry of the components. For metals, matters might not be so simple because the electrons don’t
have specific bonding states to occupy.
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1.2 Essentials of the Structural Characterisation of AmorphousMaterials

The concept of short-range order lends itself to the discussionof the distinctionbetween “amorphousmate-

rials” and “glasses”. AsOvshinsky [66] and Elliott [25] point out, thesematerials are structurally equivalent,

but they differ in the methods in which they are produced. Simply put, we call glasses those that can be ob-

tained by quenching amelt, the traditional glass-making process that has existed for thousands of years. On

the other hand, non-glassy amorphous materials need to be produced by other means, such as gas deposi-

tion5. Ovshinsky [66] suggests that the main distinction between the two lies in the fact that the liquids

that can quench into glasses have atoms with the same coordination as they would in the solid, whereas

non-glassy materials have different coordination numbers. Because of the difference in coordination, the

non-glassy material is unable to form a low-energy amorphous state and instead crystallises if one tries to

quench it from the melt.

1.2 Essentials of the Structural Characterisation of Amorphous

Materials

The subject of the structure of non-crystalline materials is a vast topic. We will attempt to convey some of

the basic facts in this section, basing our discussion on the work by YoshioWaseda [93],without intending

to be thorough.

As outlined above, despite lacking long-range correlations between the atomic positions, amorphousmate-

rials do have a short- and medium-range order that is primarily dependent on the electronic structure (i.e.,

the chemical properties) of the material. When talking about the structure of these materials we are refer-

ring to the details of how other atoms arrange their positions around an atom of interest. When dealing

with alloys it is necessary to specify the structure centred around each distinct species of atom, but note that

two atoms of the same species are assumed to have on average6 the same structure around them as they are

identical.

Unlike crystals, the structure of amorphous materials cannot be described by simply specifying a lattice

and a basis. Despite their added complexity, the same diffraction techniques that are used to determine

the structures of a crystals can be adapted to obtain the structural properties of amorphous materials. The

5The book by A. M. Glezer and N. A. Shurygina [32] covers in more detail some of the processing methods for amorphous
materials, as well as their mechanical properties.

6This will only be true on average, because despite being identical, these atoms all have differences in their environments due
to the absence of order. This makes them have distinct local electronic densities (cf., Chapter 3 of Adrian P. Sutton’s book
[86]) and correspondingly different arrangements.
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1 AmorphousMaterials

more directly measurable quantity that can be obtained from this sort of experiment is the structure factor

𝑆(Q) (see Section 1-2 of [93]), defined as

𝑆(Q) = 1
𝑁⟨∑

𝑗,𝑘
𝑒−𝑖Q⋅(R𝑗−R𝑘)⟩ (1.1)

where Q = qsc − qin represents the difference in wavevector between the scattered and incident beams

(these beams are typically, but not necessarily, x-rays). The two sums are each evaluated over the𝑁 atomic

positions R𝑙. Finally, the angled brackets ⟨⟩ represent a statistical average. As Waseda [93] explains, for

amorphous materials, the structure factor thus defined can be determined directly from the diffraction

data through (see eq. (1.2.5) of [93])

𝑆(𝑄) =
𝐼coh(𝑄)
𝑁𝑓2(𝑄)

(1.2)

where 𝐼coh(𝑄) is the coherent scattering intensity, and 𝑓(𝑄) is the (average) atomic scattering factor. Note

that 𝑄 = |Q| is taken as a scalar because the amorphous materials have no preferential directions, the

scattering should therefore be isotropic. Experimentally, one can change the value of𝑄 bymodifying either

the angle of incidence 𝜃 or the wavelength 𝜆 of the incident beam, in particular

𝑄 = 4𝜋
𝜆 sin 𝜃 (1.3)

Eq. (1.3) follows from elementary diffraction considerations7. As Ibach and Lüth [44] point out, there is

one final complication in an experimental setting; particularly, one cannot discern a forward scattered parti-

cle fromone native to the incident beam. AsWaseda notes (p. 8 of [93]), we can overcome this complication

by removing the forward scattering terms from 𝑆(𝑄). Namely, 𝑆(𝑄) should be replaced with

𝑆̃(𝑄) = 1
𝑁⟨∑

𝑗,𝑘
𝑒−𝑖Q⋅(R𝑗−R𝑘)⟩ − 𝑁𝛿𝑄,0 (1.4)

it is precisely this quantity 𝑆̃(𝑄)which can be determined unequivocally from diffraction experiments via

eqs. (1.2) and (1.3). However, despite the relative ease of measurement, we will not be interested in the

structure factor to determine the structure of our amorphous materials, because its direct physical inter-

7Note that eq. (1.3) is stated as fact by Waseda (cf., eq. (1.2.1) of [93]). The explicit expression can be inferred, for example,
by combining the relation 𝑞in = 2𝜋/𝜆, of the incident beam, with eqs. (6.10) and (6.11) of N. W. Aschroft’s and N. D.
Mermin’s book [5].
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1.2 Essentials of the Structural Characterisation of AmorphousMaterials

pretation is somewhat convoluted and only appropriate in crystals8. Furthermore, as Waseda [93] explains,

there is no univocal way to generalise 𝑆(𝑄) in multi-element alloys, existing instead many distinct conven-

tions. Because of these reasons, we will divert our focus to the pair distribution function (PDF) 𝑔(𝑟),
which is related to 𝑆̃(𝑄) by a Fourier transform

𝑆̃(𝑄) = 1 + 𝑛̄∫ d3𝑟 𝑒−𝑖Q⋅r[𝑔(𝑟) − 1] (1.5)

where 𝑛̄ is the average number density (see, eq. (1.2.14) of [93]). We wish to stress that, as pointed out by

Ibach and Lüth [44], the argument of the Fourier transform in eq. (1.5) is 𝑔(𝑟)−1 because we are excluding

the forward scattering terms from 𝑆(𝑄), but had we included those, the argument would just be 𝑔(𝑟). The

following section will be devoted to the definition and interpretation of the pair distribution function,

which will be our characterisation function of choice for the remainder of this work.

1.2.1 Pair Distribution Function

In essence, the pair distribution function 𝑔(𝑟) provides a measure of how likely it is to find an atom inside a

spherical shell of radius 𝑟 and thicknessd𝑟 centred on an arbitrary site. If thematerial ismonoelemental (i.e.,

all the atoms in the material are of the same species), then the nuclear sites can be considered equivalent.

In this case, 𝑔(𝑟) is taken as the statistical average of the distribution around every atom. The expression of

𝑔(𝑟) is given byWaseda (cf., eq. (1.2.7) of [93]) in a slightly different form from ours, which is

𝑔(𝑟) = 𝑉
𝑁2 ⟨∑

𝑗≠𝑘
𝛿(3)[r − (R𝑗 −R𝑘)]⟩ (1.6)

where 𝛿(3) is aDirac delta function. An alternative interpretation of 𝑔 is that it is a dimensionless formof the

radial density function 𝑛 = 𝑛̄𝑔 that measures the number density inside the spherical shell-shaped volume

between 𝑟 and 𝑟+ d𝑟. In amorphousmaterials, the property 𝑔(𝑟) −−−−→𝑟→∞ 1 embodies the fact that there is no

long-range order, as it represents a lack of correlation between the atomic positions at long distances.

8Ashcroft and Mermin [5] define the geometrical structure factor as 𝑠Q = ∑𝑗 𝑒
𝑖Q⋅R𝑗 , which is related to the 𝑆(Q) that we are

using (we are following the same convention as, e.g., Waseda [93], and Ibach and Lüth [44]) by

|𝑠Q|
2 = 𝑆(Q)

Ashcroft and Mermin [5] intepret the geometric structure factor as the “attenuation” of the Bragg peak at the reciprocal
lattice pointQ due to the interference of the scattered waves (it should be the “amplification” of said peak instead, because
its height is proportional to |𝑠Q|

2). This interpretation is unsatisfactory on the account that it requires to be based on a
crystalline material, while not giving us any explicit information on the topology of the material.

7



1 AmorphousMaterials

As mentioned above, the chemistry of the constituents fundamentally determines how the short-range or-

dermanifests, which implies that the structures observed around different atomic speciesmay differ. There-

fore, in multi-element materials, we require the partial pair distribution functions 𝑔𝛼𝛽 to characterise

the topology9. The indices 𝛼 and 𝛽 denote the distinct constituent elements of the material, and 𝑔𝛼𝛽 mea-

sures the average distribution of 𝛽-type atoms around atoms of 𝛼-type. We can specify the atomic positions

of 𝛼 atoms by introducing the index sets 𝐼𝛼 = {𝑗|R𝑗 is the position of an 𝛼-type atom}, which allows us to

define the partial pair distribution functions as

𝑔𝛼𝛽(𝑟) =
𝑉
𝑁2 ⟨ ∑

𝑗∈𝛪𝛼, 𝑘∈𝛪𝛽
𝑗≠𝑘

𝛿(3)[r − (R𝑗 −R𝑘)]⟩ (1.7)

Note that our definition of 𝑔𝛼𝛽 differs from the one presented byWaseda by a normalisation factor (cf., eqs.

(AL-9)–(AL-11) in p. 10 ofWaseda’s book [93]). As defined here, the partials in amorphous materials have

the limit 𝑔𝛼𝛽(𝑟) −−−−→𝑟→∞ 𝑐𝛼𝑐𝛽 ≡ 𝑁𝛼𝑁𝛽/𝑁
2, where 𝑁𝛼 is the total number of atoms of 𝛼-type and 𝑐𝛼 is their

atomic fraction10. This choice leads to the desirable property that the complete PDF is equal to the sum of

the partials, namely

𝑔(𝑟) = ∑
𝛼,𝛽

𝑔𝛼𝛽(𝑟) (1.8)

An additional property that can be observed in eq. (1.7) is the symmetry of the partials 𝑔𝛼𝛽 = 𝑔𝛽𝛼. They

both contribute equally to the complete PDF. For that reason, when we report the structures of our alloys

in Chapter 6, combine both contributions as 𝑔mixed = 𝑔Cu,Zr + 𝑔Zr,Cu = 2𝑔Cu,Zr.

9See the subsections at the end of Section 1-2 of [93] for a more thorough discussion of this topic.
10The normalisation chosen by Waseda [93] is related to ours through 𝑔Waseda

𝛼𝛽 = (𝑐𝛼𝑐𝛽)
−1𝑔𝛼𝛽(𝑟), which instead leads to

𝑔Waseda
𝛼𝛽 (𝑟) −−−−→𝑟→∞ 1.
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2 Microscopic Theories of Superconductivity

In which we outline the fundamentals of superconductiv-

ity at an atomistic scale and how the superconducting state

arises as a condensate of Cooper pairs held together by the

electron-phonon interaction.

The first successful theoretical description of superconductors at amicroscopic scalewas developed 46 years

after Kamerlingh-Onnes’ experimental discovery, by Bardeen, Cooper, and Schrieffer in 1957 [8]. The de-

velopment of this theorywas spurred by the idea, put forward by LeonN.Cooper [15], that a bound state is

formed by a single interacting pair in a sea of otherwise free electrons if there is a net attractive interaction of

any magnitude between them. The energy of the bound state always lower than the continuous spectrum

of the free electrons by an amount Δ, the gap parameter (see eq. (2.50)). This state is known as a Cooper

pair, and it is one of the fundamental building blocks of the BCS theory.

As we will see in Section 2.2, these Cooper pairs are precisely the ones which condense into a macroscopic

wavefunction in BCS theory. In this theory, the coupling that brings about the net electronic attraction

required to form a condensate is the electron-phonon interaction. The quantitative description of this

interaction used in the BCS theory was first provided by Fröhlich and is known as the Frölich Hamilto-

nian [29]. This Hamiltonian can be recast by means of a similarity transformation which culminates in

an effective electron-electron interaction, simultaneously uncoupling them from the phononic dynamics.

Physically, the effective attraction between electrons works because a passing electron attracts the nuclei,

which creates a net positive charge (after the original electron is gone) that is felt by other electrons in the

solid. The mathematical transformation that encapsulates this interaction was also first demonstrated by

Frölich in a later article [28]. In the following, we will derive the Fröhlich Hamiltonian and show how the

similarity transformation approach is used to obtain an effective electron-electron interaction.
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2 Microscopic Theories of Superconductivity

2.1 Preliminaries

2.1.1 The Frölich Hamiltonian

The derivation in this section is partly based on lectures given by Prof. Gerardo García Naumis in his Ad-

vanced Solid State course. The lecture notes for this course are currently unavailable, but a similar derivation

is performed in Chapter 8 of Ulrich Rössler’s book [79].

All the influence that phonons exert on electrons is by means of the periodic distortion they cause in

the underlying material’s structure. Such a distortion is equivalently described by displacements in the

equilibrium positions of the nuclei, which in turn alter the potential felt by the electrons. The differ-

ence between the unperturbed and distorted potentials can be interpreted heuristically as the effect of the

electron-phonon interaction. Furthermore, the displacements are necessarily small, with a maximum am-

plitude occurring at the solid-liquid transition and bounded by Fredrick A. Lindemann’s melting law [54]

to Δ𝑟rms,max ∼ 0.1𝑑, with 𝑑 the nearest neighbour distance1. At lower temperatures the amplitudes are

reasonably expected to be significantly smaller, allowing us to treat the distortion as a perturbation of the

equilibrium configuration.

For simplicity’s sake, we assume that the material’s structure is homonuclear (i.e., all the nuclei are of the

same element) so that each nucleus2 produces the same potential 𝑤. If we denote the equilibrium position

of the 𝑛th nucleus byR𝑛 and its displacement from this position by 𝜹𝑛, the total potential that the structure
exerts on an electron located at r can be expressed as

H𝑒−𝛮 = ∑
𝑛
𝑤(r −R𝑛 + 𝜹𝑛) (2.1)

Taking the previous discussion of Lindemann’s criterion into consideration, we can expand eq. (2.1) in a

Taylor series by noting that 𝜹𝑛 should be small. That is

H𝑒−𝛮 = ∑
𝑛
𝑤(r −R𝑛)⏟⏟⏟

H0

+ ∑
𝑛
𝜹𝑛 ⋅ 𝛁𝑤(r −R𝑛)⏟⏟⏟⏟⏟

Hint

(2.2)

1More precisely, Lindemann’s melting law relates the melting temperature and the melting volume of a material. The relation
between the maximum root-mean-square displacement and the nearest neighbour distance was the premise in Lindemann’s
argument. The exact relation is Δ𝑟rms,max = 𝜂𝐿𝑑, where 0.05 ≲ 𝜂𝐿 ≲ 0.2 is a phenomenological coefficient. A derivation of
this law using statistical mechanics can be found in [78].

2In this context it is common to replace the word ‘nucleus’ by ‘ion’, because only the electrons in the valence shell are affected
by the change in the nearby charge distribution, while the core electrons at deeper energy levels remain mostly unperturbed.
As we shall see in Chapter 4, this is the fundamental picture underlying the pseudopotential approach that greatly reduces
the calculations required for heavier elements.
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2.1 Preliminaries

where we have denoted by H0 the energy generated by the static nuclei, while Hint gives the interaction

energy produced by the nuclear motion. Hint is in essence, the electron-phonon interaction. Wewould like

to second-quantise this interaction to apply it to many-body systems, and we note that in eq. (2.2) Hint acts

as a single-particle operator. As T. Lancaster and S. J. Blundell elucidate in Chapter 4 of their book [50],

this kind of operator is second-quantised as

𝐻int = ∑
𝑛,𝑛′,𝜎,𝜎′

𝑐†𝑛,𝜎⟨𝑛, 𝜎 ∣Hint ∣ 𝑛
′, 𝜎′⟩𝑐𝑛′,𝜎′ = ∑

𝑛,𝑛′,𝜎
⟨𝑛 ∣Hint ∣ 𝑛

′⟩𝑐†𝑛,𝜎𝑐𝑛′,𝜎 (2.3)

where |𝑛, 𝜎⟩ is a basis of the one particle Hilbert space ℋ. To get the second equality, we have used the

facts that Hint does not involve the spins and that the bra-ket is simply a complex number that commutes

with the operators. In principle |𝑛⟩ can be any complete basis of the non-spinorial component ofℋ (i.e.,

|𝑛⟩ corresponds to a set of wavefunctions 𝜓𝑛(r)). However, since Hint depends only on the position of the

electron it is convenient to have its matrix elements in the position basis, as they are diagonal. That is

𝐻int = ∑
𝜎
∫
𝑉
d3𝑟∫

𝑉
d3𝑟′ ⟨r ∣Hint ∣ r

′⟩Ψ†
𝜎 (r)Ψ𝜎(r

′) = ∑
𝜎
∫ d3𝑟 [∑

𝑛
𝜹𝑛 ⋅ 𝛁𝑤(r −R𝑛)]Ψ

†
𝜎 (r)Ψ𝜎(r)

(2.4)

whereΨ†
𝜎 (r) is the field operator, that creates an electron at position r with spin 𝜎. The second equality is

obtained from the fact thatHint is diagonal in |r⟩. To find an explicit expression, we note that for a complete

set of wavefunctions {𝜓𝛼(r)} the field operators can be taken as

Ψ𝜎(r) = ∑
𝛼
𝜓𝛼(r)𝑐𝛼,𝜎 (2.5)

substituting this into eq. (2.4) yields

𝐻int = ∑
𝑛,𝛼,𝛽,𝜎

𝑐†𝛼,𝜎𝑐𝛽,𝜎∫
𝑉
d3𝑟 𝜹𝑛 ⋅ 𝛁𝑤(r −R𝑛) 𝜓

∗
𝛼 (r)𝜓𝛽(r) (2.6)

We can also change the variable onto which the gradient acts by taking a continuum approximation

Hint = ∑
𝑛
𝜹𝑛 ⋅ 𝛁𝑤(r −R𝑛) →

𝑁
𝑉 ∫

𝑉
d3𝑅 𝜹(R) ⋅ 𝛁r𝑤(r −R) = −𝑁𝑉 ∫

𝑉
d3𝑅 𝜹(R) ⋅ 𝛁R𝑤(r −R) (2.7)

11



2 Microscopic Theories of Superconductivity

Note that in passing from the discrete sum to the continuous integral we have assumed that the material

is homogeneous, which allows us to bring𝑁/𝑉 outside of the integral as a constant3. Recalling that 𝛁R ⋅
(𝜹𝑤) = 𝑤𝛁R ⋅ 𝜹 + 𝜹 ⋅ 𝛁R𝑤, we obtain

Hint = −𝑁𝑉 ∫
𝜕𝑉

d3𝑅 𝛁 ⋅ [𝜹(R)𝑤(r −R)] + 𝑁
𝑉 ∫

𝑉
d3𝑅 𝑤(r −R)𝛁R ⋅ 𝜹(R) (2.8)

We can apply Gauss’s theorem to the first term in eq. (2.8) to transform the volume integral into a surface

integral, namely

Hint = −𝑁𝑉 ∫
𝜕𝑉

d2𝑅𝑠 n𝑠 ⋅ 𝜹(R)𝑤(r −R) +
𝑁
𝑉 ∫

𝑉
d3𝑅 𝑤(r −R)𝛁R ⋅ 𝜹(R) (2.9)

The boundary term vanishes if we choose a surface lying outside the material. We return to expressing Hint

as a sum in order to maintain a clear picture that 𝑤(r −R𝑛) represents the potential centred on an nucleus

atR𝑛 and introduce the preceding result in the interaction to find

𝐻int = ∑
𝑛,𝛼,𝛽,𝜎

𝑐†𝛼,𝜎𝑐𝛽,𝜎∫
𝑉
d3𝑟 (𝛁R𝑛

⋅ 𝜹𝑛)𝑤(r −R𝑛) 𝜓
∗
𝛼 (r)𝜓𝛽(r) (2.10)

Notice that, thus far, we have not needed to introduce any periodicity in the treatment of this problem and

we have avoided to frame it in terms of ‘lattices’ or ‘crystals’, so that up to this point with eq. (2.10) onemay

inprinciple derive an expression for electron-phonon interaction in an amorphousmaterial. Unfortunately,

here we will need to introduce a crystalline structure with its corresponding Brillouin zone to express the

displacements 𝜹𝑛 in terms of the phonon spectra in a simple way. From Bloch theory (see, e.g., Chapter 8

of [5]), electrons in a crystal have energy (and translation operator) eigenstates 𝜓𝑚k(r) = 𝑒𝑖k⋅r𝑢𝑚k(r), with

𝑚 being the band index, k the crystal–wave vector, and 𝑢𝑚k having the same periodicity as the lattice, we

find

𝐻int = ∑
𝑛,𝑚k,𝑚′k′,𝜎

𝑐†𝑚,k,𝜎𝑐𝑚′,k′,𝜎∫
𝑉
d3𝑟 𝑒𝑖(k

′−k)⋅r𝑢∗𝑚k(r)𝑢𝑚′k′(r) 𝑤(r −R𝑛)𝛁R𝑛
⋅ 𝜹𝑛 (2.11)

Now we are finally in a position to properly turn eq. (2.11) into an interaction between particles by quan-

tizing the displacement field 𝜹𝑛 in terms of phonons, putting the lattice degrees of freedom on the same

3In this step we have essentially disregarded the details of the exact nuclear distribution, taking a coarse-grain approach to
transform the Hamiltonian into a more suitable form.
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2.1 Preliminaries

footing as the electronic ones. As shown by Gerald D. Mahan in Chapter 1 of his book [56], 𝜹𝑛 can be

expressed in terms of the phonon operators {𝑎q,𝑠, 𝑎
†
q,𝑠} as

𝜹𝑛 = ∑
q,𝑠

√ ℏ
2𝑀𝑁Ωq,𝑠

(𝑎q,𝑠 + 𝑎
†
−q,𝑠)𝑒

𝑖q⋅R𝑛 𝝐𝑠 (2.12)

where we have omitted the time dependence in the operators because 𝜹𝑛 is being regarded as a displacement

and not an oscillation (cf., eq. (1.85) of [56])4, this simplification can be done because the nuclei move very

slowly compared to the time scales relevant for the electron dynamics5. In eq. (2.12) q is the wave vector,

𝑠 is the band index (i.e., it refers to whether the phonon band is longitudinal or transverse and acoustic or

optical),𝑀 is the mass of the nuclei,Ωq,𝑠 is the phonon’s frequency, and 𝝐𝑠 is the polarisation vector. The

divergence of this displacement is evaluated to yield simply

𝛁R𝑛
⋅ 𝜹𝑛 = 𝑖∑

q,𝑠
√ ℏ
2𝑀𝑁Ωq,𝑠

(𝑎q,𝑠 + 𝑎
†
−q,𝑠)𝑒

𝑖q⋅R𝑛 q ⋅ 𝝐𝑠 (2.13)

In eq. (2.13), we can see explicitly a fact mentioned in passing by Frölich in his 1950 article [29], that only

longitudinal waves interact with the electrons. Since longitudinal waves have a polarisation parallel to the

wavevector (𝝐𝑠,long = q/|q|), while in transverse waves, the polarisation is orthogonal to q (𝝐𝑠,trans ⟂ q),

we confirm Frölich’s statement by noticing that the integrand of the interaction vanishes for transverse

phonons. We can therefore ignore the transverse phonons and focus exclusively on the longitudinal ones.

To reduce the notation somewhat, wewill proceed by identifying the indices (𝑚, k) → k and (𝑠, q)|𝑠,long →
q, taking for granted that index k implicitly includes an electronic band index, and that q carries a longitu-

dinal phonon band index. Under these considerations, the interaction Hamiltonian reduces to

𝐻int = 𝑖 ∑
𝑛,k,k′,𝜎,q

𝑞√ ℏ
2𝑀𝑁Ωq

𝑐†
k,𝜎𝑐k′,𝜎(𝑎q + 𝑎

†
−q)∫

𝑉
d3𝑟 𝑒𝑖[(k

′−k)⋅r+q⋅R𝑛]𝑢∗k(r)𝑢k′(r) 𝑤(r −R𝑛) (2.14)

Moreover, we note that the integrand of eq. (2.14) is composed of two parts: the Bloch states times the

potential 𝑢∗k𝑢k′𝑤 which has the same period as the lattice, and a modulation by a plane wave that has a

4If the reader compares eq. (2.12) with Mahan’s [56] eq. (1.85), they would notice some small discrepancies, including a
factor of 𝑖 that we have not kept. This particular edition ofMahan’s book seems to have small mistakes in that section (such
as missing imaginary units in the exponent), and such factor of 𝑖 is also incorrect: The phonon displacement plays a role
analogous to the position in the harmonic oscillator, and as such it must be proportional to the real part of the annihilation
operator. Lancaster and Blundell treat the one-dimensional case in detail in their Chapter 2 of their book [50], and the
reader can examine such small details there.

5Wewill discuss this difference in characteristic time scales in more detail when we introduce the Born-Oppenheimer approxi-
mation in Chapter 3.
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2 Microscopic Theories of Superconductivity

much longer period for all but the phonons with the highest momentum. This allows us to apply the long-

wavelength approximation

∫
𝑉
d3𝑟 𝑒𝑖[(k

′−k)⋅r+q⋅R𝑛]𝑢∗k(r)𝑢k′(r) 𝑤(r −R𝑛)

≈ ∫
𝑉
d3𝑟 𝑒𝑖[(k

′−k)⋅r+q⋅R𝑛][ 𝑁𝜈𝑉 ∫
𝑉u.c.

d3𝑟′𝑢∗k(r
′)𝑢k′(r

′) 𝑉(r′)]
(2.15)

where we have denoted by 𝑉u.c. the volume of one unit cell of the crystal, 𝜈 the number of atoms per unit

cell (i.e.,𝑁/𝜈 is the total number of unit cells), and𝑉(r′) the (periodic) net potential that the static nuclei
arrangement exerts on the electrons (i.e., the sum of the 𝑤s). Note that we have to divide the factor in

brackets by the total volume to get the units of “energy per unit volume” that is dimensionally correct in an

integrand for𝐻int. What eq. (2.15) suggests is that the modulating wave is varying slowly enough that on

the scale of a single unit cell it can be treated as a constant6.

At this juncture we take the continuum approximation for the sum over 𝑛 again, but now considering

the details of the nuclear distribution. That is ∑𝑛 → ∫𝑉 d
3𝑅 𝑛nuc, where the nuclear density must be

of the form 𝑛nuc = 𝛿(3)(r − R) because R is a stand-in for the nuclear positions, this expression for the

density implies that the nuclei are localised atR. Additionally, upon summation (or here, integration) Hint

must result only in a function only of the electronic position r, which is achieved with the Dirac delta.

Combining this with eqs. (2.14), (2.15), we find

𝐻int = 𝑖 ∑
k,k′,𝜎,q

𝑞√
ℏ𝑁

2𝑀𝜈2Ωq

𝑐†
k,𝜎𝑐k′,𝜎(𝑎q + 𝑎

†
−q)∫

𝑉
d3𝑟 𝑒

𝑖(k′−k+q)⋅r

𝑉 [∫
𝑉u.c.

d3𝑟′𝑢∗k(r
′)𝑢k′(r

′) 𝑉(r′)] (2.16)

It is simple to evaluate the integral∫𝑉 d
3𝑟 𝑒𝑖(k

′−k+q)⋅r = 𝑉𝛿k′−k+q,G = 𝑉𝛿k′+q,k+G, where we get a Kronecker

delta and not a Dirac delta because the integral is taken over a finite volume 𝑉 and also because k, k′, and

q are discrete. The appearance of the reciprocal lattice vector G in the Kronecker delta follows from the

fact that two k-points are equivalent if they differ by G. If G is nonzero then the interaction would be

describingUmklapp-type scattering, but asAshcroft andMerminpoint out inChapter 25 of their book [5],

this process occurs at higher temperatures comparable with the Debye temperatureΘ𝐷. The temperatures

relevant to superconductors describedbyFrölich’s interaction ismuch lower thanΘ𝐷, allowingus toneglect

G. Finally,

𝐻int = 𝑖 ∑
k,q,𝜎

𝐷k,q 𝑐
†
k+q,𝜎𝑐k,𝜎(𝑎q + 𝑎

†
−q) (2.17)

6We will see next that q gets directly incorporated into the same exponent as the ks by taking the continuum approximation,
and furthermore that conservation of momentum is given as k = k′ + q (in the absence of Umklapp scattering). In that
situation the modulation does not vary at all, justifying further the long-wavelength approximation.
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2.1 Preliminaries

where we have dropped the unnecessary prime from the k′, and have defined

𝐷k,q = √
ℏ𝑁𝑞2

2𝑀𝜈2Ωq

∫
𝑉u.c.

d3𝑟 𝑢∗k+q(r)𝑢k(r) 𝑉(r) (2.18)

Eq. (2.17) is The Fröhlich Hamiltonian which describes the electron-phonon interaction, forming the

foundation of our discussion on the theory of superconductivity. ThisHamiltonianwas first introduced by

Frölich in his 1950 article [29],where he advanced the idea that superconductivity is caused by the electron-

phonon interaction7. Frölich presented this equation in a slightly more simplified case with free electrons

(Fermi liquid quasiparticles in a metal with constant effective mass) and acoustic phonon in the linear dis-

persion range. It’s worth noting that eq. (2.17) can be represented as a set of Feynman diagram vertices,

namely

k

k + q

q

𝑒−

𝑒−

𝜙 = 𝑖𝐷k,q 𝑐
†
k+q,𝜎𝑐k,𝜎𝑎q

k

k + q

−q

𝑒−

𝑒−

𝜙 = 𝑖𝐷k,q 𝑐
†
k+q,𝜎𝑐k,𝜎𝑎

†
−q

Figure 2.1: Vertices of the electron-phonon interaction given by the Frölich Hamiltonian. The left diagram depicts

the absorption of a phonon of momentum q by an electron of momentum 𝑘, while the diagram on the

right represents the analogous emission of a phonon of momentum −q.

where we have denoted by the phonons by 𝜙. The left diagram represents the interaction in which an elec-

tron with initial momentum k (and spin 𝜎, which was omitted because it is not involved in the interaction)

absorbs a phonon of momentum q. Analogously, the diagram on the right represents the emission of a

phonon of momentum −q by the electron. Hence, the total interaction can be interpreted as the sum over

all the valid electron and phonon states involved in the interaction8.

Our subject of study being superconductivity, we are interested in having only the electronic dynamics

explicitly, as it is the electronic structure (i.e., the condensation) that gives rise to the vanishingDCresistivity,

theMeissner effect, and the thermodynamic properties of the superconductor (i.e., the gap and continuous

phase transition). Furthermore, we will see in Section 2.2 that even after we dismiss the phonon states from

appearing explicitly in theHamiltonian, the isotope effect is preserved implicitly in the effective interaction

through the appearance of the (renormalised) phonon frequencies𝜔q. In the upcoming section, wewill see

how the Frölich Hamiltonian is transformed into an effective electron-electron interaction.

7Remarkably, Frölich submitted this work just one day after the independent results ofMaxwell [60] and Reynolds et al. [74]
on the isotope effect were published.

8The final state of the electron is uniquely determined by its initial spin andmomentum and the momentum of the emitted or
absorbed phonon.
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2 Microscopic Theories of Superconductivity

2.1.2 Effective Phonon-Mediated Electron-Electron Interaction

At this point, it is conducive to reintroduce the non-interacting Hamiltonians, which we will refer to col-

lectively as𝐻0 in this section. However, note that we will not take the Coulomb interaction into account

until we uncouple the electron and phonon dynamics.

𝐻 = ∑
k,𝜎

𝜖k𝑐
†
k,𝜎𝑐k,𝜎 +∑

q

ℏΩq(𝑎
†
q𝑎q +

1
2) + ∑

k,q,𝜎
𝑀q 𝑐

†
k+q,𝜎𝑐k,𝜎(𝑎q + 𝑎

†
−q) = 𝐻0 + 𝐻1 (2.19)

the first two terms are identified as𝐻0, the Hamiltonian of the free electrons and phonons. The last term

is denoted as 𝐻1 which was previously denoted by 𝐻int in Section 2.1.1. Note that the coupling factors

have been replaced according to 𝑖𝐷k,q ≈ 𝑀q, which are usually taken to depend only on the phonon

momentum. It is customary9 to transform theHamiltonian of the free electrons by changing the reference

of the energy to the Fermi level 𝜖𝐹 (viz., the energy of the highest-energy state occupied at 0 K), namely,

𝜖k → 𝜖′k = 𝜖k − 𝜖𝐹, as well as transforming the ladder operators per the replacement

(𝑐†
k,𝜎)

′ = 𝜃(𝜖k − 𝜖𝐹)𝑐
†
k,𝜎 + 𝜃(𝜖𝐹 − 𝜖k)𝑐k,𝜎, (𝑐k,𝜎)

′ = 𝜃(𝜖k − 𝜖𝐹)𝑐k,𝜎 + 𝜃(𝜖𝐹 − 𝜖k)𝑐
†
k,𝜎 (2.20)

where 𝜃(𝑥) is the Heaviside step function. In other words, the new ladder operators act identically to the

original oneswhen creating or annihilating states above the Fermi level, but their actions transpose for lower

energies. Note that the anticommutation relations of these new operators remain unaltered. In terms of

these changes, the free electron Hamiltonian is

𝐻0,el = ∑
𝜖k>𝜖𝐹,𝜎

𝜖k𝑐
†
k,𝜎𝑐k,𝜎 + ∑

𝜖k<𝜖𝐹,𝜎
𝜖k𝑐k,𝜎𝑐

†
k,𝜎 = ∑

𝜖k>𝜖𝐹,𝜎
𝜖k𝑛k,𝜎 + ∑

𝜖k<𝜖𝐹,𝜎
|𝜖k|(1 − 𝑛k,𝜎) (2.21)

where we have omitted the primes from the new operators and energies. We have also introduced the num-

ber operators 𝑛k,𝜎 = 𝑐†
k,𝜎𝑐k,𝜎, and the second term on the right-hand side is obtained by use of the anticom-

mutation relation. To prevent the coming calculations from being cumbersome we will not immediately

employ𝐻0 in the form provided by eq. (2.21). We will instead use the uncluttered form from eq. (2.19),

and only apply the replacement supplied by eq. (2.21) at the end of the calculation. Regardless, the reader

can rest assured that the result does not depend on this choice because the transformation preserves the

commutation relations [𝐻0, (𝑐k,𝜎)
′] = ([𝐻0, 𝑐k,𝜎])

′ and [𝐻0, (𝑐
†
k,𝜎)

′] = ([𝐻0, 𝑐
†
k,𝜎])

′.

9See, for instance, Section 2.2s of Altland’s and Simons’s book [1]. As discussed there, the Hamiltonian written in terms of
these quantities makes more physical sense, as the operators create elementary excitations from the ground state |Ω⟩ (the
“vacuum”) where the Fermi sea is full. These excitations are the so-called conduction electrons (which are not electrons but
collective excitations of the Fermi liquid that behave analogously) and valence holes (which behave like positive particles).
Both types of excitation behave like pointlike particles but arise from an imbalance in the collective local charge distribution
(an excess of electrons for “conduction electrons” and a scarcity of them for “valence holes”).
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2.1 Preliminaries

To proceed, a similarity transformation through an operator 𝑆 is performed on the Hamiltonian by means

of

𝐻′ = 𝑒−𝑆𝐻𝑒𝑆 = (1 − 𝑆 + 𝑆2

2 + O(𝑆3))𝐻(1 + 𝑆 + 𝑆2

2 + O(𝑆3))

= 𝐻 + 𝐻𝑆 + 𝐻𝑆2

2 − 𝑆𝐻 − 𝑆𝐻𝑆 + 𝑆2

2 + O(𝑆3)

= 𝐻 + [𝐻, 𝑆] + 1
2[[𝐻, 𝑆], 𝑆] + O(𝑆3)

(2.22)

Note that to be able to truncate the series to second order, as we have done, 𝑆must be small. In terms of

the free and interaction parts, the transformed Hamiltonian is

𝐻′ = 𝐻0 + 𝐻1 + [𝐻0, 𝑆] + [𝐻1, 𝑆] +
1
2[[𝐻0, 𝑆], 𝑆] +

1
2[[𝐻1, 𝑆], 𝑆] + O(𝑆3) (2.23)

A convenient choice of 𝑆 that simplifies eq. (2.23) is one such that

𝐻1 + [𝐻0, 𝑆] = 0 (2.24)

in which case 𝑆 ∼ 𝐻1/𝐻0 ≪ 1, satisfying the requirement to truncate the exponentials. Moreover,

[[𝐻1, 𝑆], 𝑆] ∼ 𝑆3 relative to the magnitude of 𝐻0, allowing us to discard that term as well. Then, to or-

der 𝑆2, the transformed Hamiltonian is simply

𝐻′ = 𝐻0 +
1
2[𝐻1, 𝑆] (2.25)

One way of proceeding is to guess the form of 𝑆, in particular the following ansatz is adequate

𝑆 = ∑
𝜎,k,k′,q

𝑀q(𝐴𝑎
†
−q + 𝐵𝑎q)𝑐

†
k𝜎𝑐k′𝜎 (2.26)

And we use the relations

[𝐻0, 𝑐k𝜎] = −𝜖k𝑐k𝜎, [𝐻0, 𝑐
†
k𝜎] = 𝜖k𝑐

†
k𝜎, [𝐻0, 𝑎q] = −ℏΩq𝑎q, [𝐻0, 𝑎

†
q] = ℏΩq𝑎

†
q (2.27)

to evaluate the commutator

[𝐻0, 𝑆] = [𝐻0, ∑
𝜎,k,k′,q

(𝐴𝑎†−q + 𝐵𝑎q)𝑀q𝑐
†
k𝜎𝑐k′𝜎] = ∑

𝜎,k,k′,q
𝑀q[𝐻0, (𝐴𝑎

†
−𝑞 + 𝐵𝑎𝑞)𝑐

†
𝜎𝑘𝑐𝜎𝑘′] (2.28)
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2 Microscopic Theories of Superconductivity

Explicitly,

[𝐻0, 𝑆] = ∑
𝜎,k,k′,q

𝑀q{(𝐴𝑎
†
−q + 𝐵𝑎q)[𝐻0, 𝑐

†
k,𝜎𝑐k′,𝜎] + [𝐻0, (𝐴𝑎

†
−q + 𝐵𝑎q)]𝑐

†
k𝜎𝑐k′𝜎}

= ∑
𝜎,k,k′,q

𝑀q{(𝐴𝑎
†
−q + 𝐵𝑎q)(−𝜖k′ + 𝜖k)𝑐

†
k,𝜎𝑐k′,𝜎 + ℏ(𝐴Ω−q𝑎

†
−q − 𝐵Ωq𝑎q)𝑐

†
k,𝜎𝑐k′,𝜎}

= − ∑
𝜎,k,k′,q

𝑀q{𝐴(𝜖k′ − 𝜖k − ℏΩq)𝑎
†
−q𝑐

†
k,𝜎𝑐k′,𝜎 + 𝐵(𝜖𝑘′ − 𝜖𝑘 + ℏΩq)𝑎q𝑐

†
k+q,𝜎𝑐k′,𝜎}

(2.29)

where we used the distributive property of the commutator10 (i.e., [𝑎, 𝑏𝑐𝑑] = [𝑎, 𝑏]𝑐𝑑+𝑏[𝑎, 𝑐]𝑑+𝑏𝑐[𝑎, 𝑑]).
We also made use of the fact thatΩ−q = Ωq. Comparing the right-hand side of eq. (2.29) with the form of

𝐻1 in eq. (2.19), we see that the generator 𝑆 defined by eq. (2.25) must be

𝑆 = ∑
k,q,𝜎

𝑀q(
𝑎†−q

𝜖k − 𝜖k+q − ℏΩq

+
𝑎q

𝜖k − 𝜖k+q + ℏΩq

)𝑐†
k+q,𝜎𝑐k,𝜎 (2.30)

We omit the explicit calculation of [𝐻1, 𝑆] that appears in𝐻
′, but note that it is easily (if a bit tediously) per-

formed by applying the distributive property of the commutator and using the canonical commutation/an-

ticommutation relation of the ladder operators. Doing this and simplifying the resulting expression, one

finds

[𝐻1, 𝑆] = ∑
𝜎,𝜎′,k,k′,q

𝑀q𝑀−q(𝐴k′,−q − 𝐵k′,−q)𝑐
†
k′−q,𝜎′𝑐k′,𝜎′𝑐

†
k+q,𝜎𝑐k,𝜎 + 2𝐻𝑒−2𝑝ℎ (2.31)

where we have denoted by𝐴k,q and 𝐵k,q the coefficients of the phonon operators that appear in the gener-

ator 𝑆 (cf., eqs. (2.26) and (2.30)). The second term in eq. (2.31) represents an interaction of an electron

and two phonons at a single vertex, and can be expressed as

𝐻𝑒−2𝑝ℎ =
1
2 ∑
𝜎,k,q,q′

𝑀q𝑀q′[(𝐴k,q + 𝐴k+q,q′)𝑎
†
−q𝑎

†
−q′ + (𝐴k,q + 𝐴k+q′,q + 𝐵k,q′ + 𝐵k+q,q′)𝑎

†
−q𝑎q′

+ (𝐵k,q + 𝐵k+q,q′)𝑎q𝑎q′]𝑐
†
k+q+q′𝑐k

(2.32)

This two-phonon interaction is not usually taken explicitly, because it involves a single electron whereas we

are interested in the effective interaction between two of them. Some authors may discard it outright (cf.,

Chapter 8 of Rössler’s [79] or Chapter 11 of Philip Phillips’s book [71]) because for it to contribute to the

10More specifically, we used the fact that the set of linear endomorphisms of Fock space 𝐿 ∶ ℱ → ℱ (e.g., the operators
𝛨0, 𝑎, 𝑎

†, 𝑐, 𝑐†, etc.) equipped with addition form a vector space over the field of complex numbers ℂ. If this vector field is
further bestowed with a commutator [., .], it forms an algebra overℂ. Recall that an algebra is distributive by definition.
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2.2 The Bardeen-Cooper-Schrieffer Approach

electron-electron interaction it requires at least a fourth order term11 in the coupling parameter𝑀q. It is

more accurate, however, to say that this term instead renormalises the phonon dispersionΩq → 𝜔q. This

was first shown by Frölich in his 1952 article [28], where he showed that in the linear range of the acoustic

band the dispersion is renormalised asΩ𝑞 = ℏ𝑞𝑠 → 𝜔𝑞 = ℏ𝑞𝑠′, where 𝑠 represents the speed of sound. We

will not perform such renormalisation here, but we will make it apparent by changing the notation of the

phonon frequency. The electron Hamiltonian is thus reduced to

𝐻 = ∑
𝜎,k

𝜖k𝑐
†
k,𝜎𝑐k,𝜎 + ∑

𝜎,𝜎′,k,k′,q

|𝑀q|
2ℏ𝜔q

(𝜖k − 𝜖k+q)2 − ℏ2𝜔2q
𝑐†
k+q,𝜎𝑐k,𝜎𝑐

†
k′−q,𝜎′𝑐k′,𝜎′ + 𝐻𝐶 (2.33)

where we have relabelled the indices k ↔ k′ and q → −q to more closely match the expression presented

in the BCS article [8]. We also introduced theCoulomb interaction at this juncture which has been labelled

as𝐻𝐶. Eq. (2.33) represents the total Hamiltonian experienced by the electrons. To arrive at the final form

of the electronHamiltonian we employ the free electronHamiltonian𝐻0,el relative to the Fermi level of eq.

(2.21), resulting in

𝐻 = ∑
𝜖k>𝜖𝐹,𝜎

𝜖k𝑛k,𝜎 + ∑
𝜖k<𝜖𝐹,𝜎

|𝜖k|(1−𝑛k,𝜎) + ∑
𝜎,𝜎′,k,k′,q

[
|𝑀q|

2ℏ𝜔q
(𝜖k − 𝜖k+q)2 − ℏ2𝜔2q

+ 𝑉C
q ]𝑐

†
k+q,𝜎𝑐k,𝜎𝑐

†
k′−q,𝜎′𝑐k′,𝜎′ (2.34)

where 𝑉C
q is qth component of the Fourier transform of the (screened) Coulomb potential. Note that

whenever Δ𝜖 < ℏ𝜔, the phonon-mediated interaction is attractive. The Hamiltonian expanded in (2.34)

will be our startingpoint todiscuss the theorydevelopedbyBardeen,Cooper, andSchrieffer in their seminal

article [8].

2.2 The Bardeen-Cooper-Schrieffer Approach

As mentioned above, it was Cooper’s insight—that an attractive potential of any magnitude gives rise to

a bound state in a pair of electrons—which kickstarted the development of the microscopic theory. We

would like to discuss this result in more detail.

11This term must be fourth order because each vertex arising from the𝛨𝑒−2𝑝ℎ interaction is quadratic in𝛭q. This just means
that every vertex of this interaction involves two phonons (either incoming or outgoing), all the single phonon vertices have
been absorbed in the effective interaction term.
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2 Microscopic Theories of Superconductivity

2.2.1 Cooper pairs

A reading of Cooper’s article reveals that his result follows from considering a single pair of interacting

electrons with an individual particle spectrum corresponding to conduction electrons in an isotropicmetal

with constant effective mass. In other words, the electrons’ dispersion is taken as

𝜖k =
ℏ2

2𝑚∗ 𝑘
2 (2.35)

This simplification is supported by the qualitative similarity in the superconducting transition that occurs

in various materials. Then, the energy eigenfunction of the interacting electrons is expanded with respect

to the momentum basis

𝜓(r1, r2) = ∑
k1,k2

𝑎k1,k2𝜑k1,k2(r1, r2) =
1
𝑉 ∑

k1,k2

𝑎k1,k2𝑒
𝑖(k1⋅r1+k2⋅r2) (2.36)

Cooper then proceeds with a change of coordinates to the centre of mass frame (see, e.g., Section 2.4 of

Weinberg’s book [94] and the equations therein)

r = r2 − r1, R =
𝑚1r1 + 𝑚2r2
𝑚1 + 𝑚2

=
r1 + r2
2 , k = 𝜇(

k2
𝑚2

−
k1
𝑚1

) =
k2 − k1

2 , K = k1 + k2 (2.37)

where𝑚𝑖 = 𝑚∗ are the masses of the electrons and 𝜇 = 𝑚1𝑚2/(𝑚1 + 𝑚2) = 𝑚∗/2 is the reduced mass of

the two-particle system. With this change of variables, the wavefunction becomes

𝜓(r,R) = 1
𝑉∑

k,K
𝑎k,K𝑒

𝑖(k⋅r+K⋅R) (2.38)

Recall that the interaction between the electrons (i.e., the third term in eq. (2.34)) conserves the total mo-

mentum of the system, which is synonymous with saying that the interaction is translationally invariant.

Consequently, the energy eigenfunction may also be an eigenfunction of the total momentum12 K. With

this in mind the wavefunction reduces to

𝜓(r,R) = 𝑒K⋅R

𝑉 ∑
k

𝑎k𝑒
𝑖k⋅r (2.39)

12Recall that for an operator that is not explicitly time-dependent, Heisenberg’s equation of motion dictates that d
d𝑡𝛢 =

𝑖
ℏ [𝛨,𝛢]. Therefore, the fact that K is conserved implies that it commutes with the Hamiltonian and that its basis is ap-
propriate to diagonalise𝛨.
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2.2 The Bardeen-Cooper-Schrieffer Approach

The Schrödinger equation then becomes an equation that determines the coefficients of the expansion 𝑎k
by projecting it to the momentum basis. Explicitly

∫
𝑉×𝑉

d3𝑟d3𝑅 𝜑∗k,K(r,R)(𝐻 − 𝐸)𝜓(r,R) = 0 (2.40)

Expanding the 𝜓 according to (2.39), replacing 𝜑∗k,K by its definition, and expanding the Hamiltonian in

non-interacting and interacting parts𝐻 = 𝐻0 + 𝐻1, we find

1
𝑉2 ∑

k′
𝑎k′ ∫

𝑉×𝑉
d3𝑟d3𝑅 {(ℰK′ + 𝜀k′ − 𝐸)𝑒

𝑖[(k′−k)⋅r+(K′−K)⋅R] + 𝑒𝑖(K
′−K)⋅R[𝑒−𝑖k⋅r𝐻1𝑒

𝑖k′⋅r]} = 0 (2.41)

where we have evaluated the individual particle Hamiltonian using 𝐻0 |k,K⟩ = (ℰK + 𝜀k) |k,K⟩, with

ℰK = ℏ2𝐾2/4𝑚∗ and 𝜀k = ℏ2𝑘2/𝑚∗ (i.e., the mass associated with the absolute position is the total mass

𝑚𝛵 = 2𝑚∗, while the one associated with the relative position is the reduced mass 𝜇 = 𝑚∗/2). Now we use

the identity∫Ω d𝑛𝑥 𝑒𝑖𝑢⋅𝑥 = |Ω|𝛿𝑢,0 to find

(ℰK + 𝜀k − 𝐸)𝛿K,K′𝑎k + 𝛿K,K′ ∑
k′
𝑎k′[

1
𝑉 ∫

𝑉
d3𝑟 𝑒−𝑖k⋅r𝐻1𝑒

𝑖k′⋅r] = 0 (2.42)

the term in square brackets represents thematrix elements of the interaction ⟨k|𝐻1|k
′⟩. Cooper introduces

the following expression to approximate this term

⟨k|𝐻1|k
′⟩ = {

−|𝐹|, if 𝑘, 𝑘′ ∈ [𝑘0, 𝑘𝑚]
0, otherwise

(2.43)

where 𝐹 is a constant, and the wavevectors 𝑘0 and 𝑘𝑚 are introduced as a demarcation of where the phonon

mediated interaction of eq. (2.34) is attractive. In particular, if one considers the typical phonon frequency

to be commensurate with the Debye frequency 𝜔q ≈ 𝜔𝐷, then the range wherein the interaction remains

attractive13 is given byΔ𝜖 ≲ ℏ𝜔𝐷. The range of momenta is then constrained by

Δ𝜀 = ℏ2

𝑚∗ (𝑘
2
𝑚 − 𝑘20) ≈ 2ℏ𝜔𝐷 ≲ 0.4 eV (2.44)

The upper bound is approximated from theDebye temperature of diamondΘdiamond
𝐷 ≈ 2240K (see, Tohei

et al. [88]) which corresponds to an energy of ∼ 0.19 eV, but most materials have Debye temperatures that

are an order of magnitude smaller than this, including the Cu𝑥Zr1−𝑥 alloy. The approximation given by

13More accurately, this is the range where the interaction is attractive on average.
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2 Microscopic Theories of Superconductivity

eq. (2.43) conceptually amounts to removing all the details of the interaction, accounting for it only in

an average sense. As we will see, a similar approximation is performed in the original formulation of BCS

theory. With this simplification, the equations for the coefficients become

(𝐸 − 𝜀k − ℰK)𝑎k = −|𝐹|∑
k′
𝑎k′ , with 𝑘, 𝑘′ ∈ [𝑘0, 𝑘𝑚]; andK = K′ (2.45)

The last expression in eq. (2.45) is simply the statement of conservation of momentum. In his original

article [15],Cooper employs a “trick” that simplifies the coefficients 𝑎k away from the computation, which

is demonstrated by Schrieffer in Section 2.2 of his book [81]. It is performed by introducing the constant

𝐶 = ∑
𝑘0≤𝑘≤𝑘𝑚

𝑎k (2.46)

with which the equation for the coefficients can be written as

𝑎k = −|𝐹| 𝐶
𝐸 − 𝜀k − ℰK

(2.47)

this expression for the 𝑎ks is substituted back in eq. (2.46). Cancelling the factors of𝐶 on both sides of the

equation we find

1 = −|𝐹| ∑
𝑘0≤𝑘≤𝑘𝑚

1
𝐸 − 𝜀k − ℰK

= −|𝐹|
𝜀𝑚

∫
𝜀0

d𝜀 𝑁(𝜀,K)
𝐸 − 𝜀 − ℰK

(2.48)

where𝑁(𝜀,K) is the two-electron density of states14 with relative energy 𝜀 and total momentumK. Here

Cooper approximates𝑁(𝜀,K) ≈ 𝑁(𝜀0,K), allowing us to effortlessly obtain

1 = |𝐹|𝑁(𝜀0,K) ln(
𝐸 − 𝜀𝑚 − ℰK

𝐸 − 𝜀0 − ℰK
) (2.49)

Solving for 𝐸 and simplifying we find

𝐸 = ℰK + 𝜀0 −
𝜀𝑚 − 𝜀0

𝑒1/|𝐹|𝛮(𝜀0,K) − 1
≡ ℰK + 𝜀0 − Δ (2.50)

14More concretely,𝛮(𝜀,K) is thenumber of states |k,K⟩ in thephase-space volumedΩ(𝜀,K) = {|k′,K′⟩ | 𝜀 ≤ 𝜀k′ ≤ 𝜀+d𝜀,K′ =
K} per unit of 𝜀. Namely,

𝛮(𝜀,K) ≡ dΩ(𝜀,K)
d𝜀

In this sense𝛮(𝜀,K) can be regarded as a “conditional” density of states: 𝛮(𝜀|K) ↔ the number of two-electron states per
unit energy with energy 𝜀, restricted to a fixed total momentum K. This is roughly analogous to a conditional probability
distribution function (see, for instance, Chapter 2 of the book byMehranKardar [46]), but without necessarily normalising
it to 1.

22



2.2 The Bardeen-Cooper-Schrieffer Approach

As Cooper points out [15], this is the lowest energy eigenvalue, and it is a bound state with binding energy

Δ. Schrieffer presents a similar but more general treatment of the one-pair problem, and in far more detail,

in Chapter 2 of his book [81]. A striking feature observed in eq. (2.50) is that the binding energy is finite

for any value of the attractive potential |𝐹|, however small.

2.2.2 The BCSHamiltonian

Nowwe return to the analysis of themany-electron system described by eq. (2.34). One point that requires

further attention is the Coulomb interaction, which has not yet been laid out explicitly. For free electrons,

thematrix element is𝑉𝐶
q = 4𝜋𝑒/𝑞2, which has an infrared (long-wavelength) divergence at 𝑞 = 0. Thewor-

ries about this divergence should, however, be assuaged by the fact that the long-wavelength behaviour of

the electrons is described primarily by their collective motion as plasma oscillations (plasmons), and the in-

dividual particle picture becomes relevant only at wavelengths lower than the corresponding Debye length.

This observation was put forth by D. Pines andD. Bohm in their pioneering work on plasmon theory [72].

One of the key propositions of Bardeen, Cooper, and Schrieffer [8] is that, in a manner analogous to the

Cooper one-pair problem, a net attractive interaction is sufficient for the electrons to form a bound state,

which is, in this case, a condensate. Consequently, they suggest the following criterion for superconductiv-

ity

−𝑉 ≡ ⟨−
2|𝑀q|

2

ℏ𝜔q
+ 4𝜋𝑒2

𝑞2
⟩ < 0 (2.51)

where the phonon term of the interaction was simplified from its expression in eq. (2.34) by taking Δ𝜖 =
𝜖k − 𝜖k+q ≪ ℏ𝜔q ∼ ℏ𝜔𝐷, under the consideration that the states accessible to electrons follow Fermi-Dirac

statistics. In particular, the difference in Bloch energies must be commensurate with the corresponding

thermal energy, which, in the temperature range relevant to superconductivity, implies thatΔ𝜖 ∼ 𝑘𝛣𝑇𝑐. For
many superconductors, especially those known in 1957, their critical temperatures are indeed much lower

than the Debye temperature 𝑇𝑐 ≪ Θ𝐷 = ℏ𝜔𝐷/𝑘𝛣. However, such simplification should not be considered

as general today as it was in 1957 when BCS introduced it. Note that the average in eq. (2.51) is taken over

the states that are relevant to the superconducting wavefunction (i.e., 𝜖 ≲ 𝑘𝛣𝑇𝑐)

At this juncture, the Hamiltonian is simplified by means of the observation that, due to the fermionic

statistics of the electrons, many of the contributions to its matrix elements alternate in sign, cancelling out.

Based on this observation, Bardeen, Cooper, and Schrieffer [8] introduce an effective Hamiltonian which

accounts only for the interactions between electrons in pairs, namely

𝐻BCS = 2∑
𝜖k>𝜖𝐹

𝜖k𝑏
†
k
𝑏k + 2∑

𝜖k<𝜖𝐹
|𝜖k|𝑏k𝑏

†
k
−∑

k,k′
𝑉k,k′𝑏

†
k′
𝑏k (2.52)
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2 Microscopic Theories of Superconductivity

This is the BCS Hamiltonian. The new ladder operators 𝑏k and 𝑏
†
k
are defined as

𝑏†
k
= 𝑐†

k↑𝑐
†
−k↓, 𝑏k = (𝑏†

k
)† = 𝑐−k↓𝑐k↑ (2.53)

which create and annihilate electrons in pairs of net-zero momentum and spin (i.e., Cooper pairs), respec-

tively. The matrix elements𝑉k,k′ comprise the combined effect of the electron-phonon interaction and the

screened Coulomb interaction of eq. (2.33) that acts between the pairs and are predominantly positive in

the superconductor15. In Appendix A of their article [8],BCS show, employing a perturbation theory anal-

ysis, that the effective Hamiltonian (2.52) accounts for approximately 99.9% of the ground state energy.

These operators can be shown to obey the relations

[𝑏k, 𝑏k′] = 0, [𝑏k, 𝑏
†
k′
] = 𝛿k,k′(1 − 𝑛k↑ − 𝑛−k↓), {𝑏k, 𝑏k′} = 2𝑏k𝑏k′(1 − 𝛿k,k′) (2.54)

2.2.3 Ground State

The BCS ground state is approximated by the variational method using the trial function given by

|Ψ⟩ = ∏
k

[(1 − ℎk)
1
2 + ℎ

1
2
k
𝑏†
k
] |Ω⟩ (2.55)

where the ℎk ∈ ℝ are the variational parameters which, in this case, represent the probability of there being

a pair (k ↑, −k ↓). Since each k-pair has a parameter independent of the other wavevectors (i.e., ℎk is a

function only of 𝑘), it is said that |Ψ⟩ defined in this way has the Hartree property16. This approximation

to the ground state lends itself to an effortless evaluation of the interaction termbymeans of the orthogonal

decomposition

|Ψ⟩ = ℎ
1
2
k
|𝜑1⟩ + (1 − ℎk)

1
2 |𝜑0⟩ (2.56)

where |𝜑1⟩ = 𝑏†
k
|𝜑0⟩ represents the component in which the pair state (k ↑, −k ↓) is certainly occupied,

and |𝜑0⟩ = ∏
k′≠k[(1 − ℎk)

1
2 + ℎ

1
2
k
𝑏†
k
] |Ω⟩ represents the component in which the pair state is certainly

15We have heavily emphasised the role of the electron-phonon interaction in the current treatment of superconductivity, how-
ever, it is fascinating to note that the BCS model is not necessarily affixed to this interaction. Indeed, any physical system
with an effective attraction capable of overcoming the Coulomb repulsion may be modelled to some extent by the BCS
Hamiltonian.

16Recall that the Hartree approximation (cf., Section 4.5 of Weinberg’s book [94]) consists in taking the many-particle wave-
function as a product of otherwise independent single-particle wavefunctions Ψ(r1, r2, … ) = 𝜓1(r1)𝜓2(r2) ⋯. However,
a substantial difference with the present case is that the operators 𝑐†𝛼 create adequately antisymmetrised states, unlike the
“naïve” Hartree wavefunction, which has no a priori symmetry.
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2.2 The Bardeen-Cooper-Schrieffer Approach

unoccupied. We can show their orthogonality explicitly by considering that k is the𝑚th quantum number

labelled in the occupation-number representation and expanding the states in this representation

⟨𝜑1 ∣ 𝜑0⟩ = ∑
{𝑖𝛼}𝛼≠𝑚
{𝑗𝛽}𝛽≠𝑚

𝑎∗𝑖1,…,𝑖𝑚−1,𝑖𝑚+1,…𝑏𝑗1,…,𝑗𝑚−1,𝑗𝑚+1,…⟨𝑖1, … , 𝑖𝑚−1, 1, 𝑖𝑚+1, … ∣ 𝑗1, … , 𝑗𝑚−1, 0, 𝑗𝑚+1, …⟩ ≡ 0 (2.57)

where 𝑖𝛼 = 0, 1 (resp. 𝑗𝛽 = 0, 1) is the occupation of the 𝛼th (resp. 𝛽th) quantum number in the expansion

of |𝜑1⟩ (resp. |𝜑0⟩) with the expansion coefficient 𝑎𝑖1,…,𝑖𝑚−1,𝑖𝑚+1,… (resp. 𝑏𝑗1,…,𝑗𝑚−1,𝑗𝑚+1,…). All the inner products

inside the sumare zero because the𝑚th quantumnumber of the two factors is always different. The ground

state |Ψ⟩ is then further decomposed in an analogous manner with respect to a different wavevector k′,

giving

|Ψ⟩ = ℎ
1
2
k
(ℎ

1
2
k′
|𝜑11⟩ + (1 − ℎk′)

1
2 |𝜑10⟩) + (1 − ℎk)

1
2 (ℎ

1
2
k′
|𝜑01⟩ + (1 − ℎk′)

1
2 |𝜑00⟩)

= ℎ
1
2
k
ℎ

1
2
k′
|𝜑11⟩ + ℎ

1
2
k
(1 − ℎk′)

1
2 |𝜑10⟩ + (1 − ℎk)

1
2ℎ

1
2
k′
|𝜑01⟩ + (1 − ℎk)

1
2 (1 − ℎk′)

1
2 |𝜑00⟩

(2.58)

where, in a manner analogous to eq. (2.56), the components of the decomposition |𝜑𝑖𝑗⟩ correspond to

states where the pair k (viz., (k ↑, −k ↓)) has an occupation of 𝑖, and the pair k′ (viz., (k′ ↑, −k′ ↓)) has an
occupation of 𝑗. These states are all orthogonal, which can be seen by expanding their inner products in

the same way as performed in eq. (2.57). We can now evaluate the interaction simply by taking the matrix

elements of the third term of eq. (2.52) in terms of the decomposition of eq. (2.58), in particular

⟨Ψ ∣ 𝑏†
k′
𝑏k ∣ Ψ⟩ = ⟨Ψ| 𝑏†

k′
[ℎ

1
2
k
ℎ

1
2
k′
|𝜑01⟩ + ℎ

1
2
k
(1 − ℎk′)

1
2 |𝜑00⟩] = ℎ

1
2
k
(1 − ℎk′)

1
2 ⟨Ψ ∣ 𝜑01⟩ (2.59)

which, recalling that the ℎs are assumed to be real variational parameters, yields the following ground state

matrix elements

⟨Ψ ∣ 𝑏†
k′
𝑏k ∣ Ψ⟩ = [ℎkℎk′(1 − ℎk)(1 − ℎk′)]

1
2 (2.60)

The Bloch contribution to the energy is straightforward: The occupation of a k pair is ℎk, and the same is

individually true for its constituent electrons, so that

⟨Ψ ∣ 𝑏†
k
𝑏k ∣ Ψ⟩ = ℎk, ⟨Ψ ∣ 𝑏k𝑏

†
k
∣ Ψ⟩ = ⟨Ψ ∣ (𝑏†

k
𝑏k + 1 − 𝑛k↑ − 𝑛−k↓) ∣Ψ⟩ = 1 − ℎk (2.61)
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2 Microscopic Theories of Superconductivity

where we have applied the second commutation relation of eq. (2.54). Combining eqs. (2.52), (2.60), and

(2.61), we find the ground state’s energy

𝐸0 = ⟨Ψ |𝐻BCS | Ψ⟩ = 2 ∑
𝜖k>𝜖𝐹

𝜖kℎk + 2∑
𝜖k<𝜖𝐹

|𝜖k|(1 − ℎk) −∑
k,k′

𝑉k,k′[ℎkℎk′(1 − ℎk)(1 − ℎk′)]
1
2 (2.62)

As we know, thanks to the variational principle17, the best approximation to the ground state is given by

the set of parameters {ℎk} that minimise 𝐸0. A necessary condition is then

𝜕𝐸0
𝜕ℎ𝜿

= 2𝜖𝜿𝜃(𝜖𝜿 − 𝜖𝐹) − 2|𝜖𝜿|𝜃(𝜖𝐹 − 𝜖𝜿) − 2(
−2ℎ𝜿 + 1

2[ℎ𝜿(1 − ℎ𝜿)]
1
2
)∑

k′
𝑉𝜿,k′[ℎk′(1 − ℎk′)]

1
2 = 0 (2.63)

where the last termwas obtained by considering the symmetry of the interaction term𝑉k′,k = 𝑉k,k′ , result-

ing in a factor of 2 after reindexing the sum. The Heaviside step functions of eq. (2.63) cover complemen-

tary intervals of the Bloch energies, and their coefficients are actually the same because−|𝜖k| = 𝜖k if 𝜖k < 𝜖𝐹.
Therefore, the equation for the coefficients is simplified to

[ℎk(1 − ℎk)]
1
2

1 − 2ℎk
=
∑

k′
𝑉k,k′[ℎk′(1 − ℎk′)]

1
2

2𝜖k
(2.64)

Here, Bardeen, Cooper, and Schrieffer introduce the average matrix element of the interaction to simplify

the calculation of the variational parameters

𝑉 = ⟨𝑉k,k′⟩∣−ℏ𝜔<𝜖k,𝜖k′<ℏ𝜔𝐷
(2.65)

wherewehave specified that the averagingof the interaction is performedover the stateswhere it is attractive.

In phase space (i.e., k-space) this corresponds to the volume contained within the surfaces 𝜖k = 𝜖𝐹 ± ℏ𝜔𝐷
around the Fermi surface. This approximation leads to a potential of the form

𝑉k,k′ = {
𝑉, if |𝜖k| < ℏ𝜔𝐷
0, otherwise

(2.66)

17See Section 5.5 of Weinberg’s book [94] for a brief introduction to the variational method. Alternatively, Chapter 10 of K.
Koishi’s and G. Paffuti’s book [48] provides a more comprehensive survey of the topic.
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2.2 The Bardeen-Cooper-Schrieffer Approach

Note that eq. (2.66) is very similar in spirit to Cooper’s approximation to the interaction in the one-pair

problem, which was introduced in eq. (2.43). Introducing eq. (2.66) into eq. (2.64) yields

[ℎk(1 − ℎk)]
1
2

1 − 2ℎk
=

𝜖0
2𝜖k

(2.67)

where 𝜖0 ≡ 𝑉∑
k′
[ℎk′(1−ℎk′)]

1
2 is a new parameter that, as we will see, plays the role of (half of) the energy

gap. Eq. (2.67) can be easily transformed into a quadratic equations and solved for ℎk, resulting in

ℎk =
1
2(1 −

𝜖k
√𝜖2

k
+ 𝜖20

) (2.68)

Note that the second term inside the brackets in eq. (2.68), as is standard in the solution of a quadratic

equation, could in principle have either “+” or “−” sign in front of it. However, in the normal state there

are no Cooper pairs, and thus all of the ℎk must vanish, which makes 𝜖0 zero as well. In eq. (2.68), only the

“−” sign is consistent with this requirement, otherwise the ℎk would be finite when 𝜖0 = 0. We also write

explicitly

1 − ℎk =
1
2(1 +

𝜖k
√𝜖2

k
+ 𝜖20

) (2.69)

which immediately suggests the property 1 − ℎ(−𝜖) = ℎ(𝜖), an electron-hole symmetry. We can evaluate 𝜖0
using these quantities

𝜖0 = 𝑉∑
k

[ℎk(1 − ℎk)]
1
2 = 𝑉

2 ∑
k

(1 −
𝜖2k

𝜖2
k
+ 𝜖20

)

1
2

=
𝑉𝜖0
2 ∑

k

1
√𝜖2

k
+ 𝜖20

(2.70)

which can be rearranged into

1
𝑉 = ∑

k

1
2√𝜖2

k
+ 𝜖20

= ∫
ℏ𝜔𝐷

−ℏ𝜔𝐷

𝑁(𝜖)d𝜖

2√𝜖2 + 𝜖20
(2.71)

where we have replaced the sum over k by the an integral over the energies weighted using the density of

states𝑁(𝜖) of a single spin18. Noting that ℏ𝜔 ∼ 10 − 100meV, whereas 𝜖𝐹 ∼ 1 − 10 eV (see, for instance,

18More specifically, we are not considering that each wavevector k can accomodate states with either spin. The total electronic
density of states considering the duplicity of the spin component is 2𝛮(𝜖).
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2 Microscopic Theories of Superconductivity

Table 2.1 of [5]) and assuming that 𝑁(𝜖) is sufficiently smooth, we can replace 𝑁(𝜖) with 𝑁0 ≡ 𝑁(𝜖𝐹).
With this, the integrand becomes symmetric and we have

1
𝑁0𝑉

≈ ∫
ℏ𝜔𝐷

0

d𝜖
√𝜖2 + 𝜖20

= sinh−1(
ℏ𝜔𝐷
𝜖0

) (2.72)

This tells us that the gap parameter (at 0K) is

𝜖0 =
ℏ𝜔𝐷

sinh( 1
𝛮0𝑉

)
(2.73)

With the above quantities, we can write the ground state energy𝐸0 from eq. (2.62) of the superconducting

state relative to that of the normal phase as

𝐸0 = 2∫
ℏ𝜔𝐷

0
𝑁(𝜖)d𝜖 𝜖ℎ(𝜖) + 2∫

0

−ℏ𝜔𝐷
𝑁(𝜖)d𝜖 |𝜖|[1 − ℎ(𝜖)] −

𝑉2∑
k
[ℎk(1 − ℎk)]

1
2 ∑

k′
[ℎk′(1 − ℎk′)]

1
2

𝑉
(2.74)

Additionally, we can exploit the electron-hole symmetry of the occupations ℎ(𝜖) as well as the definition of

𝜖0 to find

𝐸0 ≈ 4𝑁0∫
ℏ𝜔𝐷

0
d𝜖 𝜖ℎ(𝜖) −

𝜖20
𝑉 = 2𝑁0∫

ℏ𝜔𝐷

0
d𝜖 (𝜖 − 𝜖2

√𝜖2 + 𝜖20
) −

𝜖20
𝑉 (2.75)

where we have employed eq. (2.68) to arrive to the last expression. Performing the integration (see eq.

202.01 of [23] and the note mentioned beneath) we find

𝐸0 = 𝑁0[𝜖
2 − 𝜖√𝜖2 + 𝜖20 + 𝜖

2
0 sinh

−1( 𝜖𝜖0
)]

ℏ𝜔𝐷

0
−
𝜖20
𝑉

= 𝑁0ℏ
2𝜔2𝐷(1 − √1 +

𝜖20
ℏ2𝜔2𝐷

) + 𝜖20 [𝑁0 sinh
−1(

ℏ𝜔𝐷
𝜖0

) − 1
𝑉]

(2.76)

Once we evaluate 𝜖0 using eq. (2.73) the terms inside the brackets cancel out, and 𝐸0 simplifies to

𝐸0 = 𝑁0ℏ
2𝜔2𝐷[1 − √1 +

1
sinh2( 1

𝛮0𝑉
)
] = 𝑁0ℏ

2𝜔2𝐷[1 − coth( 1
𝑁0𝑉

)] = −
2𝑁0ℏ

2𝜔2𝐷
𝑒2/𝛮0𝑉 − 1

(2.77)
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2.2 The Bardeen-Cooper-Schrieffer Approach

2.2.4 Excited States

The next step in the development of this theory is determining the elementary excitations from the ground

state and how they generate general excited states. The BCS article [8] contemplates two distinct types of

excitation of |Ψ⟩.

The first kind of excited state occurs when a ground state pair is broken and one of the electrons (or holes)

transitions from the states k′ ↑, −k′ ↓ that are occupied with a probability ℎk to the new states k′′ ↑, −k′ ↓,
that are definitely known to be occupied. In the excited configuration, the complementary states −k′′ ↓
, k′ ↑ are definitely known to be unoccupied. In the language of second quantisation this is expressed as

|Ψ𝑠
exc⟩ = ∏

k≠k′,k′′
[(1 − ℎk)

1
2 + ℎ

1
2
k
𝑏†
k
]𝑐†−k′↓𝑐

†
−k′′↑ |Ω⟩ (2.78)

These states are clearly orthogonal to the ground state |Ψ⟩ since, in the excited states, the wavevectors k′ ↑
and −k′ ↓ are unoccupied and occupied, respectively, whereas the latter state can be decomposed (eq.

(2.56)) into a component where both wavevectors are occupied and another component where they are

both unoccupied. The difference in energy between the ground state and |Ψ𝑠
exc⟩ can be obtained by sub-

stracting the part of the energy in eq. (2.62) associated with the pairs (k′ ↑, −k′ ↓) and (k′′ ↑, −k′′ ↓) that
do not exist in the excited state from the single-particle energies. Recall that the single-particle energies are

|𝜖k|, namely +𝜖k for electrons with 𝜖k > 𝜖𝐹 and −𝜖k for holes with 𝜖k < 𝜖𝐹. Keeping this in mind, we have

𝐸𝑠
exc − 𝐸0 =|𝜖k′| + |𝜖k′′| − 2|𝜖k′|[ℎk′𝜃(𝜖k′) − (1 − ℎk′)𝜃(−𝜖k′)] − 2|𝜖k′′|[ℎk′′𝜃(𝜖k′′)

−(1 − ℎk′′)𝜃(−𝜖k′′)] + 𝑉 ∑
(k1,k2)∈𝛫

[ℎk1ℎk2(1 − ℎk1)(1 − ℎk2)]
1
2 (2.79)

where we used the index set 𝐾 = {(k1, k2)|(k1, k2 = k′) ∨ (k1, k2 = k′′)} that consists of all the pairs
of wavenumbers that include either k′ or k′′. A Heaviside step function 𝜃 was also used to distinguish the

cases of electrons and holes. The terms corresponding to the Bloch energies simplify significantly when we

analyse the two cases separately, if 𝜖 > 𝜖𝐹 = 0 we have |𝜖| − 2|𝜖|ℎ = 𝜖(1 − 2ℎ), whereas if 𝜖 < 𝜖𝐹 we get

|𝜖| − 2|𝜖|(1 − ℎ) = −𝜖 + 2𝜖(1 − ℎ) = 𝜖(1 − 2ℎ), an identical result. This results in an excitation energy of

𝐸𝑠
exc−𝐸0 = 𝜖k′(1−2ℎk′)+𝜖k′′(1−2ℎk′′)+2𝑉∑

k

[ℎk(1 − ℎk)]
1
2 {[ℎk′(1 − ℎk′)]

1
2 + [ℎk′′(1 − ℎk′′)]

1
2 } (2.80)
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where we have used the symmetry of the double sum to simplify it to a single sum19. From eq. (2.68) we see

that1−2ℎ = 𝜖/√𝜖2 + 𝜖20 , and combining this resultwith eq. (2.67)we also have [ℎ(1 − ℎ)]
1
2 = 𝜖0/2√𝜖2 + 𝜖20 .

These expressionsmotivate the introduction of a new dispersion for the particle-like excitations given by

Ek = √𝜖2
k
+ 𝜖20 (2.81)

in terms of which the excitation energy results

𝐸𝑠
exc − 𝐸0 =

𝜖2k′
Ek′

+
𝜖2k′′
Ek′′

+ 𝜖20(
1

Ek′
+ 1

Ek′′
) = Ek′ + Ek′′ (2.82)

In addition to single-particle excitations, Bardeen, Cooper, and Schrieffer also introduce pair excitations.

These are derived abstractly, justified by the facts that excited states are always orthogonal to the ground

state and by observing that any state 𝛼 |𝜓1⟩+𝛽 |𝜓2⟩ is orthogonal to 𝛼
∗ |𝜓2⟩−𝛽

∗ |𝜓1⟩whenever ⟨𝜓1|𝜓2⟩ = 0.
A state with a pair excitation is thus written as

|Ψ𝑝
exc⟩ = ∏

k≠k′
[(1 − ℎk)

1
2 + ℎ

1
2
k
𝑏†
k
][(1 − ℎk′)

1
2 𝑏†

k′
− ℎ

1
2
k′
] |Ω⟩ (2.83)

We can evaluate the excitation energy in this case by noting that |Ψ𝑝
exc⟩ can be decomposed orthogonally in

the same way as we did with |Ψ⟩ in eqs. (2.56) and (2.58), but this time using the wavevector of the excited

pair k′ as one of the components. Specifically

|Ψ𝑝
exc⟩ = (1 − ℎk′)

1
2 |𝜑𝑝1 ⟩ − ℎ

1
2
k′
|𝜑𝑝0 ⟩

= ℎ
1
2
k
(1 − ℎk′)

1
2 |𝜑𝑝11⟩ + (1 − ℎk)

1
2 (1 − ℎk′)

1
2 |𝜑𝑝01⟩ − ℎ

1
2
k
ℎ

1
2
k′
|𝜑𝑝10⟩ − (1 − ℎk)

1
2 ℎ

1
2
k′
|𝜑𝑝00⟩

(2.84)

From these expansions, we see that when k′ denotes the excited pair, and k is any other wavevector different

from k′, the matrix elements of the wavefunction are

⟨Ψ𝑝
exc ∣ 𝑏†k′𝑏k′ ∣ Ψ

𝑝
exc⟩ = 1 − ℎk′ , ⟨Ψ𝑝

exc ∣ 𝑏k′𝑏
†
k′
∣ Ψ𝑝

exc⟩ = ℎk′ , and

⟨Ψ𝑝
exc ∣ 𝑏†k′𝑏k ∣ Ψ

𝑝
exc⟩ = ⟨Ψ𝑝

exc ∣ 𝑏†k𝑏k′ ∣ Ψ
𝑝
exc⟩ = −[ℎkℎk′(1 − ℎk)(1 − ℎk′)]

1
2

(2.85)

And all of the other terms that do not involve the wavevector of the excited pair are identical to the ones in

the ground state. Note that the transition amplitude is of equal magnitude as the one in the ground state

19We have simplified the sum in eq. (2.79) to match the result presented in the BCS article (eq. (2.48) of [8]). But the reader
should note that eqs. (2.79) and (2.80) are not exactly equal, the latter is counting the terms where k = k′ or k = k′′ twice
and formally we would have to substract them. However, this difference of 4 terms can be neglected since the total number
of k states in the sum is very large.
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2.2 The Bardeen-Cooper-Schrieffer Approach

but with opposite sign, therefore if a ground state pair minimises the intearaction energy, an excited pair

maximises it. With the expressions in eq. (2.85), the excitation energy becomes

𝐸𝑝
exc − 𝐸0 = 2𝜖k′(1 − 2ℎk′) + 4𝑉∑

k

[ℎk(1 − ℎk)]
1
2 [ℎk′(1 − ℎk′)]

1
2 (2.86)

where we have again used the fact that the Bloch energies in the cases of electrons and holes have identical

expressions, and combined the sum over a symmetric restricted set of indices as a single sum20. Using the

expressions in the paragraph below eq. (2.80) as well as the new dispersion in eq. (2.81), we find

𝐸𝑝
exc − 𝐸0 = 2

𝜖2k′
Ek′

+ 2
𝜖20

Ek′
= 2Ek′ (2.87)

In both types of excitation, the energy difference approaches 2𝜖0 as the Bloch energies approach 0, which

verifies our earlier claim that 𝜖0 represents half of the energy gap. We note, as is pointed out in the BCS

article [8], that the excitation energy turns out to be independent of whether the particles in question are

the two individual particles in eq. (2.82), or two members of an excited pair in eq. (2.87).

Combining these two types of elementary excitation,we arrive at the expression for a general excited states

|Ψexc⟩ = ∏
k∈G

[(1 − ℎk)
1
2 + ℎ

1
2
k
𝑏†
k
] ∏
k′∈P

[(1 − ℎk′)
1
2 𝑏†

k′
− ℎ

1
2
k′
] ∏
k′′∈S

𝑐†
sign(𝜎k′′)k′′,𝜎k′′

|Ω⟩ (2.88)

where G , P , and S are sets of wavevectors that contain the ground state pairs, the excited pairs, and the

individual particles, respectively. The single-particle excitations are generated by 𝑐†
sign(𝜎k′′)k′′,𝜎k′′

to represent

that only one of the states k′′ ↑ or −k′′ ↓ is occupied, but not both. This is a consequence of the fact

that the excited pairs are formed by breaking a ground pair, with one of the corresponding ±k, ±𝜎 being

definitely occupied while the other is definitely unoccupied. The energy of an individual state in the form

of eq. (2.88) is simply

𝐸exc = 𝐸0 + 2∑
k′∈P

Ek′ + ∑
k′′∈S

Ek′′ (2.89)

20We are again erroneously double-counting the term k = k′, but neglecting the small discrepancy this introduces, as we did
before (see fn. 19).
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2.2.5 BCS Superconductor at Finite Temperature

To simplify the analysis we return to representing the Bloch energies in the Hamiltonian in terms of the

single-particle instead of the pair operators, namely

𝐻BCS = ∑
𝜖k>𝜖𝐹,𝜎

𝜖k𝑛k,𝜎 + ∑
𝜖k<𝜖𝐹,𝜎

|𝜖k|(1 − 𝑛k,𝜎) − 𝑉∑
k,k′

𝑏†
k′
𝑏k (2.90)

The states in the form of eq. (2.88) represent the microstates of the system, each of which has an occupa-

tion probability given by an ensemble. The equilibrium configuration of the system can be determined by

minimising the (Helmholtz) free energy

𝐹 = 𝐸 − 𝑇𝑆 (2.91)

with 𝐸 the ensemble average of the energies in eq. (2.89). We proceed by partitioning the k-space into cells

Δ3𝑘 small enough that the BCSoccupation parametersℎk, as well as the thermal occupation probabilities of

ground state and excited pairs, and of single-particle excitations can be taken as constant inside each cell. If

the total number of available pair states inside the volumeΔ3𝑘 isNk, and the numbers of single-particle and

pair excitations inside the same volume are 𝑆k and𝑃k, respecitvely. Then, the probability of a wavevector k

insideΔ3𝑘 being occupied by a single-particle excitation is 𝑠k = 𝑆k/Nk, by a pair excitation is 𝑝k = 𝑃k/Nk,

and the remaining fraction1−𝑠k−𝑝k is available to be occupied by groundpairs. Evidently, we are interested
in the case where 𝑠k and 𝑝k represent the excitation probabilites given by an ensemble average. In the case

outlined above, the expectation value of 𝑛k,𝜎 that appears in the Bloch energy of the conduction electrons

(𝜖 > 𝜖𝐹) is given by

⟨𝑛k,𝜎⟩ =
1
2𝑠k + 𝑝k(1 − ℎk) + (1 − 𝑠k − 𝑝k)ℎk =

1
2𝑠k + 𝑝k + (1 − 𝑠k − 2𝑝k)ℎk (2.92)

The factor of½ in the single excitation comes from the fact that, for a single excitation (eq. (2.88)), only one

of the pair states k ↑ or −k ↓ is definitely occupied, while the other is unoccupied. Since the system has no

preference for either spin, the average occupation of either state must be ½. On the other hand, the factors

of 1−ℎk and ℎk accompanying the factors of the excited and ground pairs, respectively, are the occupations

of each type of pair21, and had already been obtained in eqs. (2.85) and (2.61). Similarly, for the valence

holes (𝜖 < 𝜖𝐹) we find
⟨1 − 𝑛k,𝜎⟩ =

1
2𝑠k + 𝑝kℎk + (1 − 𝑠k − 𝑝k)(1 − ℎk) (2.93)

21If a ground state pair occupies a given pair state k ↑, −k ↓, it does so with an occupancy of ℎk. Therefore, the occupancy of
the constituent electrons (or holes) in either of the single particle states is also ℎk.
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2.2 The Bardeen-Cooper-Schrieffer Approach

But recall that in Section 2.2.3 we found that the variational parameters ℎk have an electron-hole symmetry

1 − ℎ(−𝜖) = ℎ(𝜖), so that the entire Bloch contribution to the energy may be written as

⟨ ∑
𝜖k>𝜖𝐹,𝜎

𝜖k𝑛k,𝜎 + ∑
𝜖k<𝜖𝐹,𝜎

|𝜖k|(1 − 𝑛k,𝜎)⟩ = ∑
k

|𝜖k|[𝑠k + 2𝑝k + 2(1 − 𝑠k − 2𝑝k)ℎ(|𝜖k|)] (2.94)

Now, for the interaction energy we see that each term inside the last sum in eq. (2.90) corresponds to a

transition amplitude given by ⟨Ψexc ∣ 𝑏
†
k′
𝑏k ∣ Ψexc⟩multiplied by the Cooper pairing potential 𝑉. We have

already evaluated said amplitude between two ground pairs in eq. (2.60), and between excited and ground

pairs in eq. (2.85). It only remains to evaluate the amplitude between two excited pairs, which we can do

as in the previous cases by performing the orthogonal decomposition of |Ψexc⟩with respect to two excited

pair states labelled by k and k′, this results in

|Ψexc⟩ = (1 − ℎk)
1
2 (1 − ℎk′)

1
2 |𝜑2𝑝11 ⟩ − ℎ

1
2
k
(1 − ℎk′)

1
2 |𝜑2𝑝01 ⟩ − (1 − ℎk)

1
2 ℎ

1
2
k′
|𝜑2𝑝10 ⟩ + ℎ

1
2
k
ℎ

1
2
k′
|𝜑2𝑝00 ⟩ (2.95)

where we have included the superscript 2𝑝 in the states of the decomposition to emphasise that it is per-

formed between two excited pairs, in contrast to the single 𝑝 superscript used when we analysed the case

of a single excited pair, and no superscript for the case of two ground pairs. As in the previous cases, the

transition amplitude is simply the product of the coefficients of the two middle terms in eq. (2.95)

⟨Ψexc ∣ 𝑏
†
k′
𝑏k ∣ Ψexc⟩ = [ℎkℎk′(1 − ℎk)(1 − ℎk′)]

1
2 (2.96)

which turns out to be identical to the case of two ground pairs. We notice that the interaction between

pairs always has the same magnitude, being attractive if the two pairs are of the same kind and repulsive if

they are different22. With this, we find the average transition amplitude between two cellsΔ3𝑘 andΔ3𝑘′ as
the sum between all four possilbe transitions (G → G , P → P , G → P , and P → G ), weighted by their

probabilities23. Consequently,

⟨𝑏†
k′
𝑏k⟩ = [ℎkℎk′(1 − ℎk)(1 − ℎk′)]

1
2 [(1 − 𝑠k − 𝑝k)(1 − 𝑠k′ − 𝑝k′) + 𝑝k𝑝k′ − (1 − 𝑠k − 𝑝k)𝑝k′

− 𝑝k(1 − 𝑠k′ − 𝑝k′)]

= [ℎkℎk′(1 − ℎk)(1 − ℎk′)]
1
2 (1 − 𝑠k − 2𝑝k)(1 − 𝑠k′ − 2𝑝k′)

(2.97)

22In light of this observation one may question why, if the pairs have this sort of symmetrical interaction, we can say one type
belong to the ground state while relegating the others to the excited states. The answer is, of course, that the occupations of
the ground pairs have been established as ℎk from the outset when the BCS approximation to the ground state was presented.

23We assume that all the states in the starting cellΔ3𝑘 and target cellΔ3𝑘′ are equally likely to be chosen, and that these choices
are independent.
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We observe in eqs. (2.94) and (2.97) that the total energy does not depend separately on the probability

of single-particle excitations 𝑠k and if pair excitations 𝑝k. Instead, we can identify an overall excitation oc-

cupancy 𝑓k = 𝑠k/2 + 𝑝k that can be interpreted as the likelihood that an idividual particle state (electron

or hole) k ↑ is occupied by an excited particle, without distinguishing sinlge-particle from pair excitations,

the other half of the pair state −k ↓ has the same overall occupancy 𝑓k. A single particle excitation can be

formed from either of the two possibilities in which k ↑ is definitely occupied and −k ↓ is unoccupied, or
vice-versa. On the other hand, a pair excitation requires both states to be occupied, therefore

𝑠k = 2𝑓k(1 − 𝑓k), and 𝑝k = 𝑓2k (2.98)

where we verify that 𝑓k = 𝑠k/2 + 𝑝k, as suggested. Combining eqs. (2.90), (2.94), (2.97), and the overall

excitation probabilities 𝑓k, we obtain the ensemble average of the energy as

𝐸 = 2∑
k

|𝜖k|[𝑓k + 2(1 − 2𝑓k)ℎ(|𝜖k|)] − 𝑉∑
k,k′

[ℎkℎk′(1 − ℎk)(1 − ℎk′)]
1
2 (1 − 2𝑓k)(1 − 2𝑓k′) (2.99)

Finally, to evaluate the entropyof the systemwenote that ourpartitionof thek-space into cellsΔ3𝑘 results in
the overall excitation occupancies 𝑓k being independent parameters, so that the total entropy is the sum of

the individual terms associated to each of the one-particle states, each with its own 𝑓k (these are duplicated
due to the spin). Now, we imagine a systemmade up of a large number of boxes, say𝑁, each of which may

contain an excited particle with probability 𝑓. We know that the entropy of such system is given by

𝑆 = 𝑘𝛣 ln(Ω) (2.100)

whereΩ in this case represents the number of possible configurations of this system. Since there are a total

of 𝑓𝑁 excited particles then there areΩ = ( 𝛮𝑓𝛮) different ways to arrange them inside the boxes, giving

𝑆 = 𝑘𝛣 ln (
𝑁
𝑓𝑁) = 𝑘𝛣 ln(

𝑁!
(𝑓𝑁)!(𝑁 − 𝑓𝑁)!)

≈ 𝑘𝛣{[𝑁 ln(𝑁) − 𝑁] − [𝑓𝑁 ln(𝑓𝑁) − 𝑓𝑁] − [(𝑁 − 𝑓𝑁) ln(𝑁 − 𝑓𝑁) − 𝑁 + 𝑓𝑁]}
(2.101)

where we used the Stirling approximation to obtain the last line. This gives an entropy per box of

𝑠
𝑘𝛣

≈ [𝑓 + (1 − 𝑓)] ln(𝑁) − 𝑓 ln(𝑓𝑁) − (1 − 𝑓) ln(𝑁 − 𝑓𝑁) = −𝑓 ln(𝑓) − (1 − 𝑓) ln(1 − 𝑓) (2.102)
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Applying this expression for the entropy to each of the one-particle states with overall excitation probabili-

ties of 𝑓 = 𝑓k we find

𝑇𝑆 = −𝑘𝛣𝑇∑
k,𝜎
[𝑓k ln(𝑓k) + (1 − 𝑓k) ln(1 − 𝑓k)] = −2𝑘𝛣𝑇∑

k

[𝑓k ln(𝑓k) + (1 − 𝑓k) ln(1 − 𝑓k)]

(2.103)

Which results in a free energy for the BCS superconductor of

𝐹 =2∑
k

|𝜖k|[𝑓k + 2(1 − 2𝑓k)ℎ(|𝜖k|)] − 𝑉∑
k,k′

[ℎkℎk′(1 − ℎk)(1 − ℎk′)]
1
2 (1 − 2𝑓k)(1 − 2𝑓k′)

+ 2𝑘𝛣𝑇∑
k

[𝑓k ln(𝑓k) + (1 − 𝑓k) ln(1 − 𝑓k)]
(2.104)

To achieve thermal equilibrium 𝐹must be minimised, a necessary condition is that its derivatives with re-

spect to ℎk vanish. Note that this is the generalisation to finite temperature of our result in eq. (2.63). We

have

𝜕𝐹
𝜕ℎ𝜿

= 2𝜖𝜿(1 − 2𝑓𝜿) −
1 − 2ℎ𝜿

[ℎ𝜿(1 − ℎ𝜿)]
1
2
𝑉∑

k′
[ℎk′(1 − ℎk′)]

1
2 (1 − 2𝑓𝜿)(1 − 2𝑓k′) = 0 (2.105)

where we have used the fact that ℎ(−𝜖) = 1 − ℎ(𝜖)which implies that 𝜕ℎ(|𝜖k|)/𝜕ℎk = sign(𝜖k), simplifying

the first term in eq. (2.105). We can change the labels in eq. (2.105) and simplify it to

[ℎk(1 − ℎk)]
1
2

1 − 2ℎk
=
𝑉∑

k′
[ℎk′(1 − ℎk′)]

1
2 (1 − 2𝑓k′)

2𝜖k
=

𝜖0
2𝜖k

(2.106)

where we introduced the finite temperature variant of the gap parameter

𝜖0 = 𝑉∑
k

[ℎk(1 − ℎk)]
1
2 (1 − 2𝑓k) (2.107)

we see that eq. (2.106) is formally identical to the equation for the occupations found for the ground state,

eq. (2.67). However, in this case the gap parameter depends on the temperature 𝜖0 = 𝜖0(𝑇), since it involves
the excitation probability 𝑓k. We can also minimise the free energy with respect to 𝑓k, which results in

𝜕𝐹
𝜕𝑓𝜿

=2|𝜖𝜿|[1 − 2ℎ(|𝜖𝜿|)] + 2{2𝑉∑
k′
[ℎk′(1 − ℎk′)]

1
2 (1 − 2𝑓k′)[ℎ𝜿(1 − ℎ𝜿)]

1
2 }

+ 2𝑘𝛣𝑇[1 + ln(𝑓𝜿) − 1 − ln(1 − 𝑓𝜿)] = 0
(2.108)
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We can rewrite eq. (2.108) in terms of the finite temperature version of the gap parameter 𝜖0, as well as the

excitation dispersion Ek = √𝜖2
k
+ 𝜖20 first introduced in eq. (2.81) (but also using the new 𝜖0). This results

in

𝑘𝛣𝑇 ln(
1 − 𝑓k
𝑓k

) = 𝜖k(1 − 2ℎk) + 2𝜖0[ℎk(1 − ℎk)]
1
2 (2.109)

where we used the electron hole symmetry ℎ(−𝜖) = 1−ℎ(𝜖) once again to simplify the term associated with

the Bloch energy. Since eq. (2.106) is formally identical to eq. (2.67), we can use here all of the expressions

obtained for ℎk in the case of the ground state without change, specifically eqs. (2.68), (2.69), and the two

expressions derived in the paragraph below eq. (2.80). This allows us to simplify eq. (2.109) into

ln(
1 − 𝑓k
𝑓k

) = 1
𝑘𝛣𝑇

(
𝜖2k
Ek

+
𝜖20
Ek

) =
Ek

𝑘𝛣𝑇
(2.110)

And solving for 𝑓k we find

𝑓k =
1

𝑒𝛽Ek + 1
(2.111)

In eq. (2.111) we appreciate that the 𝑓k behave like a Fermi-Dirac distribution for particle-like excitations

with a dispersionEk = √𝜖2
k
+ 𝜖20 . As Bardeen, Cooper, and Schrieffer elucidate [8], the excitations described

by eq. (2.111) represent the electrons and holes of the normal phase.

Finally, we end this section by obtaining an equation for𝑇𝑐, following the same reasoning done by Bardeen,

Cooper, and Schrieffer [8]. We start from eq. (2.107) and substitute the newfound expression (2.111) for

𝑓k as well as the recurring [ℎk(1 − ℎk)]
1
2 factor, which results in

𝜖0 = 𝑉∑
k

𝜖0
2Ek

(1 − 2
𝑒𝛽Ek + 1

) = 𝑉∑
k

𝜖0
2Ek

𝑒𝛽Ek − 1
𝑒𝛽Ek + 1

(2.112)

Now we divide both sides of eq. (2.112) by 𝜖0, and express the last quotient on the right hand side as a

hyperbollic function (𝑒𝑥 − 1)/(𝑒𝑥 + 1) = (𝑒𝑥/2 − 𝑒−𝑥/2)/(𝑒𝑥/2 − 𝑒−𝑥/2) = tanh(𝑥2), lastly we also convert the

sum into an integral, using the same approximation employed in eq. (2.72). All these considerations result

in

1
𝑁0𝑉

≈ ∫
ℏ𝜔𝐷

0

d𝜖 tanh[𝛽2√𝜖2 + 𝜖
2
0 ]

√𝜖2 + 𝜖20
(2.113)

where we have expressed E(𝜖) = √𝜖2 + 𝜖20 . Eq. (2.113) can be regarded as an implicit equation for 𝜖0, but
as Bardeen, Cooper, and Schrieffer note [8], the gap 2𝜖0 has to be real and positive for the superconducting
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phase to appear, and the threshold where those solutions cease to exist is 𝜖0 = 0. The the temperature that

solves eq. (2.113) in that case must be 𝑇𝑐, so we get

1
𝑁0𝑉

= ∫
ℏ𝜔𝐷

0

d𝜖
𝜖 tanh[ 𝜖

2𝑘𝛣𝑇𝑐
] (2.114)

This equation cannot be solved analytically, but for the weak coupling range (𝑁0𝑉 < 1) [8], where 𝑘𝛣𝑇𝑐 ≪
ℏ𝜔𝐷, it can be shown that it leads to

𝑇𝑐 = 1.13Θ𝐷 exp(− 1
𝑁0𝑉

) (2.115)

TheBCSarticle [8] later proceeds to evaluate additional thermal and electrodynamicproperties arising from

this theory, but we will not delve into such details, since we require only to use eq. (2.115).
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3 Molecular Dynamics Calculations from the

General Hamiltonian

In which we review the equations of motion that govern

the behaviour ofmatter in terms of its constituent particles

and introduce some of the simplifications that allow their

computational evaluation.

Virtually all thematter encountered in human activities is atomicmatter: positive nuclei composed of neu-

trons and protons, surrounded by electrons. Furthermore, within the scale and energy range of interest in

condensed matter, of the four fundamental forces only the electromagnetic interaction is relevant and it

does not require Quantum Field Theoretical corrections. The Hamiltonian of this class of systems can be

expressed generally as

𝐻 = −∑
𝑖

ℏ2

2𝑚𝑒
∇2
r𝑖
−∑

𝛪

ℏ2

2𝑀𝛪
∇2
R𝛪
+∑

𝑗>𝑖

𝑒2

|r𝑖 − r𝑗|
−∑

𝑖,𝛪

𝑒2𝑍𝛪
|r𝑖 −R𝛪|

+∑
𝐽>𝛪

𝑍𝛪𝑍𝐽𝑒
2

|R𝛪 −R𝐽|
(3.1)

where corrections on the order of relativistic effects have been neglected1. In eq. (3.1), we use lowercase

letters (𝑖, 𝑗, r) to denote the electron indices and positions, whereas the nuclear variables are specified by

uppercase letters (𝐼, 𝐽,R, 𝑍).

1The neglected terms are of the same or higher order as relativistic corrections to the kinetic energy, which include the spin-
orbit and Darwin terms that appear in the fine structure of hydrogen-like atoms (see Section 21.5 of [48]). Notice, in eq.
(3.1), that the electromagnetic interaction is taken simply as a Coulomb potential, without reference to the magnetic fields
generated by the moving charges. This is because the divergency from the Coulomb interaction is also a relativistic effect, as
illustrated in Section 14.1 of John D. Jackson’s book [45], particularly eq. (14.8) for the Liénard-Wiechert potentials

𝜙(r, 𝑡) =
𝑞

|r − r𝑞(𝑡ret)| − [r − r𝑞(𝑡ret)] ⋅
v𝑞(𝑡ret)

𝑐

, A(r, 𝑡) =
v𝑞(𝑡ret)

𝑐 𝜙(r, 𝑡), with 𝑡ret = 𝑡 −
|r − r𝑞(𝑡ret)|

𝑐

where in the non-relativistic limit 𝑡ret → 𝑡, 𝜙 → 𝜙Coulomb, andA→ 0. Konishi and Paffuti derive themany-electronHamil-
tonian with these corrections for a single nucleus in Section 22.5 of their book [48]. Those terms would apply analogously
here, except for the mass correction which we do not require because the nuclear kinetic energy is written explicitly in eq.
(3.1).
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The atomic matter Hamiltonian𝐻 of eq. (3.1) describes the behaviour of the entire system of nuclei and

electrons from a quantummechanical viewpoint. It is worth noting that if we denote by𝑁𝑒 the number of

electrons and by𝑁𝑛 the number of nuclei, then𝐻 has a total of𝑁𝑒 +𝑁𝑛 +𝑁𝑒(𝑁𝑒 −1)/2+𝑁𝑒𝑁𝑛 +𝑁𝑛(𝑁𝑛 −
1)/2 = (𝑁𝑒 + 𝑁𝑛)(𝑁𝑒 + 𝑁𝑛 + 1)/2 terms. In principle, one could define a wavefunction Ψ(r𝑖,R𝛪) that
contains all the properties of the system and which would satisfy

𝑖ℏ 𝜕𝜕𝑡 |Ψ⟩ = 𝐻 |Ψ⟩ (3.2)

However these equations are very complex to solve, and it is conventional to simplify them into a form that

is simpler to solve. The first such approximation we will review is the Born-Oppenheimer approximation,

which will be outlined hereafter.

3.1 Born-Oppenheimer Approximation

In this section, we introduce an approximation originally introduced by M. Born and J. R. Oppenheimer

in their pivotal 1927 article [12] (in German). We will roughly follow some of the derivations presented by

D. Marx and J. Hutter in Chapter 2 of their book [58], specifically those leading up to the so-called Born-

OppenheimerMolecular Dynamics, which will be our method of choice to solve the many-body problem.

The derivation follows from an ansatz (cf. Appendix VIII of the book by Born and K. Huang [11]), where

it is suggested that if the stationary solutions to the Schrödinger equation for the systemwith a fixed nuclear

configuration {R𝛪}

[𝐻𝑒 − 𝐸𝑛(R𝛪)]𝜙𝑛(r𝑖;R𝛪) = 0, with 𝐻𝑒 = −∑
𝑖

ℏ2∇2
r𝑖

2𝑚𝑒
+∑

𝑗>𝑖

𝑒2

𝑟𝑖,𝑗
−∑

𝑖,𝛪

𝑒2𝑍𝛪
𝑟𝑖,𝛪

+∑
𝐽>𝛪

𝑍𝛪𝑍𝐽𝑒
2

𝑟𝛪,𝐽
(3.3)

The set {𝜙𝑛} form an (orthonormal) basis of the Hilbert space defined by 𝐻𝑒. The semicolon is used to

denote thatR𝛪 are interpreted as parameters of the Hamiltonian rather than variables of the Hilbert space.

Then, one may write the solution to the whole problem as an expansion in terms of these simplified solu-

tions:

Ψ(r𝑖,R𝛪, 𝑡) = ∑
𝑛
𝜒𝑛(R𝛪, 𝑡)𝜙𝑛(r𝑖;R𝛪) (3.4)

Eqs. (3.3) and (3.4) essentially amount to an adiabatic approximation (see, e.g., Section 12.3 of Konishi’s

and Paffuti’s book [48]): the nuclei move very slowly compared to the electrons so that one may assume

them to be fixed when solving for the electronic degrees of freedom. The expansion coefficients 𝜒𝑛 may be

interpreted as the nuclear part of the wavefunction (cf., the comments by Marx and Hutter in Section 2.1

40



3.1 Born-Oppenheimer Approximation

of their book [58]) and can be determined from the projections of the Schrödinger equation forΨ (i.e., eq.

(3.2)) onto the electronic components of basis 𝜙𝑛, explicitly

𝑖ℏ∫(∏
𝑖
d3𝑟𝑖)𝜙

∗
𝑘
𝜕
𝜕𝑡 ∑𝑛

𝜒𝑛𝜙𝑛 = ∫(∏
𝑖
d3𝑟𝑖)𝜙

∗
𝑘(𝐻𝑒 −∑

𝛪

ℏ2∇2
R𝛪

2𝑀𝛪
)∑

𝑛
𝜒𝑛𝜙𝑛 (3.5)

Note that because 𝜒𝑛 does not depend on r𝑖, it commutes with the Hamiltonian𝐻𝑒𝜒𝑛𝜙𝑛 = 𝜒𝑛𝐻𝑒𝜙𝑛. Here

we also use the fact that {𝜙𝑛} do not depend explicitly on time and substitute eq. (3.3) to find

0 = ∑
𝑛
∫ d3𝛮𝑒𝑟 𝜙∗𝑘(𝐻𝑒𝜒𝑛 −∑

𝛪

ℏ2∇2
R𝛪

2𝑀𝛪
− 𝑖ℏ

𝜕𝜒𝑛
𝜕𝑡 )𝜙𝑛

= ∑
𝑛
∫ d3𝛮𝑒𝑟 [𝜙∗𝑘𝜙𝑛(𝐸𝑛𝜒𝑛 − 𝑖ℏ

𝜕𝜒𝑛
𝜕𝑡 ) − 𝜙

∗
𝑘 ∑

𝛪
(𝜙𝑛

ℏ2∇2
R𝛪

2𝑀𝛪
𝜒𝑛 + 𝜒𝑛

ℏ2∇2
R𝛪

2𝑀𝛪
𝜙𝑛)]

= ∑
𝑛
𝛿𝑘𝑛(𝐸𝑛𝜒𝑛 − 𝑖ℏ

𝜕𝜒𝑛
𝜕𝑡 −∑

𝛪

ℏ2∇2
R𝛪

2𝑀𝛪
𝜒𝑛) −∑

𝑛
[∫ d3𝛮𝑒𝑟 𝜙∗𝑘 ∑

𝛪

ℏ2∇2
R𝛪

2𝑀𝛪
𝜙𝑛]𝜒𝑛

(3.6)

wherewe have introduced the notation d3𝛮𝑒𝑟 ≡ (∏𝑖 d
3𝑟𝑖) for brevity. To get to the last equality in eq. (3.6),

we have used the orthonormality of {𝜙𝑛}. We notice that eq. (3.6) can be recast as a Schrödinger equation

for the nuclear wavefunctions 𝜒𝑘, namely

𝑖ℏ
𝜕𝜒𝑘
𝜕𝑡 = [−∑

𝛪

ℏ2

2𝑀𝛪
∇2
R𝛪
+ 𝐸𝑘(R𝛪)]𝜒𝑘 +∑

𝑛
𝐶𝑘,𝑛𝜒𝑛, with 𝐶𝑘,𝑛 = −∫ d3𝛮𝑒𝑟 𝜙∗𝑘 ∑

𝛪

ℏ2∇2
R𝛪

2𝑀𝛪
𝜙𝑛 (3.7)

In this Schrödinger equation, we recognize that the two terms inside the square brackets represent the total

kinetic energy of the nuclei and a potential 𝐸𝑘(R𝛪) induced by the electrons2. On the other hand, the last

term of the first equality of eq. (3.7) can be understood as a kinetic energy correction term: The second

equality shows that𝐶𝑘,𝑛 are the matrix elements of the nuclear kinetic energy with respect to the wavefunc-

tions where they are static. These elements introduce correlations between the different adiabatic states

𝜙𝑛 (except for 𝐶𝑘,𝑘, which can be regarded as a first-order perturbative correction of 𝐸𝑛). The final step in

the Born-Oppenheimer approximation is to discard these factors 𝐶𝑘,𝑛 → 0, thus making the electronic

2As functions of the positionsR𝛪, the𝛦𝑘 give the total energy of the system for that fixed configuration of nuclei. In that sense,
the 𝛦𝑘(R𝛪) are wholly analogous to the notion of potential used in elementary quantum mechanics, but with the added
complexity that they are complicated functions of the electronic degrees of freedom.
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3 Molecular Dynamics Calculations from the General Hamiltonian

wavefunctions 𝜙𝑛 truly depend solely on the static nuclear arrangement, without any dependence on their

motion. Consequently, the equations of the Born-Oppenheimer approximation may be summarised as

Ψ(r𝑖,R𝛪, 𝑡) = ∑
𝑛
𝜒𝑛(R𝛪, 𝑡)𝜙𝑛(r𝑖;R𝛪), 𝐻𝑒𝜙𝑘 = 𝐸𝑘𝜙𝑘, and 𝑖ℏ

𝜕𝜒𝑘
𝜕𝑡 = (−∑

𝛪

ℏ2∇2
R𝛪

2𝑀𝛪
+ 𝐸𝑘)𝜒𝑘 (3.8)

3.2 Classical Nuclei Approximation

The next step in this ladder of approximations that are required to arrive at our destination of Born-

Oppenheimer Molecular Dynamics is a semiclassical approach. The goal is to simplify the motion of the

nuclei from the quantum mechanical description provided by the Scrhödinger equation (i.e., the third

relation in eq. (3.8)) and treat them instead as classical point-like particles. This simplification is justified

by the fact that, relative to the Bohr radius 𝑟𝛣 ≈ 5 × 10−9 cm, which embodies the length-scale relevant to

atoms, the nuclei can be regarded as localised point-like particles because their radii are much smaller, on

the order of ∼ 1 × 10−13 cm, depending on the mass number of the nucleus3.

The procedure that transforms the equation for 𝜒𝑘 into a classical picture is fundamentally a generalisa-

tion of Bohm’s calculations in his famous pilot-wave interpretation paper [10]. This transformation is per-

formed first by decomposing the wavefunction into a product of an amplitude and a phase, namely

𝜒𝑘(R𝛪, 𝑡) = 𝐴𝑘(R𝛪, 𝑡)𝑒
𝑖𝑆𝑘(R𝛪,𝑡)/ℏ (3.9)

where𝐴𝑘 and 𝑆𝑘 are real functions. Introducing eq. (3.9) into the Schrödinger equation for 𝜒𝑘 we find

𝑖ℏ
𝜕𝐴𝑘
𝜕𝑡 −

𝜕𝑆𝑘
𝜕𝑡 𝐴𝑘 = 𝐸𝑘𝐴𝑘 − ℏ

2∑
𝛪

∇2
R𝛪
𝐴𝑘 + 2

𝑖
ℏ𝛁R𝛪

𝐴𝑘 ⋅ 𝛁R𝛪
𝑆𝑘 + 𝐴𝑘(−

1
ℏ2 |𝛁R𝛪

𝑆𝑘|
2 + 𝑖

ℏ∇
2
R𝛪
𝑆𝑘)

2𝑀𝛪
(3.10)

where we have used a few vectorial identities to evaluate the Laplacian on the right-hand side4. We have

also cancelled out the global phase 𝑒𝑖𝑆𝑘/ℏ from both sides of eq. (3.10). Since this equation is an equality

3This value is taken from the formulae (4.3) of Carlos A. Bertulani’s book [9], particularly 𝑅𝑠 = (1.128 fm)𝛢
1
3 . Note that,

just as is the case with atomic sizes and the Bohr radius, 𝑅𝑠 is only an approximate length scale, and the radius of a specific
nucleus may differ up to an order of magnitude from this value (especially the heavier ones).

4In particular, we occupied the generalised Leibniz rule ∇2(𝛢𝛣) = 𝛣∇2𝛢 + 2𝛁𝛢 ⋅ 𝛁𝛣 + 𝛢∇2𝛣, along with the gradient and
Laplacian of a composition

𝛁𝑓(𝑔(r)) = 𝑓′(𝑔(r))𝛁𝑔(r), ∇2𝑓(𝑔(r)) = 𝛁 ⋅ [𝑓′(𝑔(r))𝛁𝑔(r)] = 𝑓′′(𝑔(r))𝛁𝑔(r) ⋅ 𝛁𝑔(r) + 𝑓′(𝑔(r))∇2𝑔(r)
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3.2 Classical Nuclei Approximation

between complex numbers, it must be independently satisfied by the real and imaginary parts. Therefore,

we have the two real-valued equations

−𝐴𝑘
𝜕𝑆𝑘
𝜕𝑡 = 𝐸𝑘𝐴𝑘 −∑

𝛪

ℏ2∇2
R𝛪
𝐴𝑘 − 𝐴𝑘|𝛁R𝛪

𝑆𝑘|
2

2𝑀𝛪

ℏ
𝜕𝐴𝑘
𝜕𝑡 = −ℏ∑

𝛪

2𝛁R𝛪
𝐴𝑘 ⋅ 𝛁R𝛪

𝑆𝑘 + 𝐴𝑘∇
2
R𝛪
𝑆𝑘

2𝑀𝛪

(3.11)

The second equality in eq. (3.11) can be rewritten to let the nuclear probability density 𝜌𝑘 = 𝐴2
𝑘 ≡ |𝜒𝑘|

2

appear by multiplying both sides by 2𝐴𝑘 and applying the Leibniz rule for the divergence backwards. In

particular
𝜕𝜌𝑘
𝜕𝑡 +∑

𝛪
𝛁R𝛪

⋅ (𝜌𝑘
𝛁R𝛪

𝑆𝑘
𝑀𝛪

) = 0 (3.12)

This is a continuity equation, which tells us that there is a probability current density J𝑘,𝛪 = 𝑀−1
𝛪 𝜌𝑘𝛁R𝛪

𝑆𝑘
associated with the “flow” of the 𝐼th nucleus. As Bohm [10] points out, if the nuclei are interpreted as

classical particles described by an ensemble in which 𝜌𝑘(R1,R2, … ) is the probability of finding nuclei “1”
inside the volume element d3𝑅1 centred onR1, and nuclei “2” inside the volume element d3𝑅2 centred on

R2, and so forth for every index nuclear 1 ≤ 𝐼 ≤ 𝑁𝑒, then 𝛁R𝛪
𝑆𝑘 represents the momentum of the 𝐼th

nucleus5. Therefore, we must analyse the equation for 𝑆𝑘 to determine the effective equation of motion of

the “classical” nuclei. The first equality of eq. (3.11) can be simplified and rearranged into

𝜕𝑆𝑘
𝜕𝑡 +∑

𝛪

|𝛁R𝛪
𝑆𝑘|

2

2𝑀𝛪
+ 𝐸𝑘(R𝛪) = ℏ2∑

𝛪

∇2
R𝛪
𝐴𝑘

2𝑀𝛪𝐴𝑘
→ 0 (3.13)

The classical limit is taken symbolically as ℏ → 0, reducing the right-hand side of eq. (3.13) to zero6.

We have seen that 𝛁R𝛪
𝑆𝑘 may be interpreted as the momentum of nucleus 𝐼 and the second term in eq.

(3.13) has the form of a kinetic energy. Therefore it is easy to recognise the Hamilton-Jacobi equation

5A heuristic argument that yields an identical result is that, by analogy to fluid mechanics, the continuity equation is 𝜌̇ =
𝛁 ⋅ (𝜌v), with v the velocity of the fluid (cf., eq. (2.27) presented by J. D. Anderson and J. F. Wendt (Eds.) [4]). Comparing
this with eq. (3.12) and noting that the coordinatesR𝛪 correspond to the position of the 𝛪th nucleus, we see that𝛁R𝛪

𝑆𝑘 must

be the particle’s momentum since𝛭−1
𝛪 𝛁R𝛪

𝑆𝑘 would be its velocity.
6This is equivalent to disregarding the quantum effects entirely. Here we diverge from Bohm’s analysis, in which he tries to

make sense of the right-hand side of eq. (3.13) in terms of classical mechanics. He calls this term the “quantum-mechanical
potential”.
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3 Molecular Dynamics Calculations from the General Hamiltonian

(see, e.g., Chapter 10 of Herbert Goldstein’s, John L. Safko’s, and Charles P. Poole’s book [34]) where the

Hamiltonian is seen to be

𝐻(R𝛪,P𝛪) = ∑
𝛪

𝑃2
𝛪

2𝑀𝛪
+ 𝐸𝑘(R𝛪), with P𝛪 ≡ 𝛁R𝛪

𝑆𝑘 (3.14)

where we readily identify 𝐸𝑘 as the potential energy. Eq. (3.14) will be valid for any electronic configura-

tion 𝜙𝑘. Recall that the premise of this approximation was that these configurations are adiabatic: if the

electrons start in the eigenstate of energy 𝐸 = 𝐸𝑘(R𝛪), they will remain in that same state throughout

the system’s evolution. The exact method to determine the electronic configuration differs, but thanks to

the variational theorem, the state most readily available to be calculated is the ground state. As such, the

Born-OppenheimerMolecularDynamicsmethod is regarded as a “ground statemethod”, and one needs to

minimise the electronic energy at every step in order to obtain the correct forces on the nuclei. Therefore,

if we denote byΨ0 the electronic ground state, then the system is described by

𝐻𝑒Ψ0 = 𝐸(R𝛪)Ψ0, and
dP𝛪
d𝑡 = −𝛁R𝛪

⟨Ψ0|𝐻𝑒|Ψ0⟩ (3.15)

where𝐻𝑒 has been defined in eq. (3.3). The set of equations in (3.15) prescribes the computational problem

we need to solve7. However, as we will see shortly, the quantum-mechanical electronic part of eq. (3.15) is

impossible to be solved exactly. We will devote the following chapter to presenting the Density Functional

Theory method used to obtain an approximate solution to the quantum problem.

7Note that a more general version of eq. (3.15) is also given byMarx andHutter [58],where the Schrödinger equation is time-
dependent instead of stationary. It follows from an alternative ansatz that uses a single wavefunction in place of the one used
here.
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4 Density Functional Theory

In which we provide a cursory introduction to the theory

on how the many-electron problem is transformed into a

variational problem to facilitate its solution.

In the previous chapter, we have laid out the equations of motion for the electrons and nuclei that com-

prise what we have termed “atomic matter”. The approximations presented there result in a separation of

the electronic and nuclear variables, wherein the nuclei act on the electrons as a potential source that de-

termines the state of the latter, a state whose energy, in turn, operates as the potential felt by the former.

Thanks to the semiclassical approximation, the equations of motion of the nuclei can be solved easily by

using any Ordinary Differential Equation integration method1, of which the most popular for Molecular

Dynamics simulations is the velocity Verlet algorithm, to be presented in Section 5.2. On the other hand,

the electrons retain all the complexities of quantum mechanics, and the solution is far more involved. In

fact, even representing the wavefunction, let alone performing any calculations, over a modest numerical

grid is an impossible feat:𝑁 electrons in 3Dwith a 100×100×100 grid using single-precision floating-point

complex numbers would require 32 × 2𝛮 × 106𝛮 bits (i.e., 4 × 10(6+log10 2)𝛮 ≈ 4 × 106.3 𝛮 bytes) becauseΨ0
is a function of every possible position and spin of every electron. To put this into perspective, the wave-

function of only the four electrons in a Beryllium atomwould require 64 YB (i.e., 6.4 × 1025 bytes), a figure
already beyond the global data storage capacity2. Density Functional Theory (DFT) provides an alternative

viewpoint that directly addresses this problem.

Wewill present some of themost essential aspects of this theory covering the basics of theHohenberg-Kohn

and Kohn-Sham formulations of DFT, and the exchange-correlation functional. However, for the sake of

brevity, many technical details (e.g., 𝑣- and𝑁-representability, finite temperature, degeneracy, etc.) will be

omitted.

1See Chapter 8 of the book by Landau, Páez, and Bordeianu [52] for a general review on such methods.
2According to an IDC white paper [73], the global “datasphere” (the aggregation of all data from databases, infrastructure,

and personal devices) is estimated to reach 175 ZB (i.e., 1.75 × 1023 bytes) by 2025. This number is more than 360 times less
than we would require to store the Beryllium wavefunction.
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4 Density Functional Theory

4.1 Hohenberg-Kohn Theorems

DFT represents a paradigm shift in the solution of the quantum many-body problem. Conceptually, it is

justified by the simple yet elegant observation that in a many-body problem with identical quantum parti-

cles, we donot need to track the state of every individual particle in the system; instead, the collective particle

distribution determines the state of the system. This is thanks to the (anti)symmetry of |Ψ⟩which dictates

that if one of the particles occupies a single-particle state |𝜓𝑖⟩, then every other particle must also occupy

it3 (perhaps in a different term of |Ψ⟩). This intuitive idea was proved rigorously by P. Hohenberg andW.

Kohn in their monumental 1964 article [43] for the case in which |Ψ⟩ is the ground state of the system.

InHohenberg’s andKohn’s formulation, the electronic number density becomes the fundamental variable

of the problem. In terms of field operators, the density of electrons with spin 𝜎 in a many-particle state |Φ⟩
may be written as

𝑛𝜎(r) = ⟨Φ ∣Ψ†
𝜎 (r)Ψ𝜎(r) ∣ Φ⟩ (4.1)

where Ψ𝜎 are the field operators defined in eq. (2.5)4. The total (spin-independent) electronic density is

naturally written as

𝑛(r) = ∑
𝜎
𝑛𝜎(r)

electrons−−−−−−→ 𝑛↑(r) + 𝑛↓(r) (4.2)

Alternatively, the densitymay also be expressed in “first quantised” form in terms of the one-particle density

matrix

𝑛𝜎(r) = 𝜌(r𝜎, r𝜎) (4.3)

with the density matrix given by

𝜌(r𝜎, r′𝜎′) ≡ ∑
{𝜎𝑖}1≤𝑖≤𝛮−1

∫(
𝛮−1
∏
𝑗=1

d3𝑟𝑗)Φ
∗(r𝜎, r1𝜎1, … , r𝛮−1𝜎𝛮−1)Φ(r

′𝜎′, r1𝜎1, … , r𝛮−1𝜎𝛮−1) (4.4)

3Recall that the states ofmany-body quantum systems are described by Fock space (cf. Section 4.2 of Lancaster’s and Blundell’s
book [50])

ℱ = ⨁
𝑛∈ℕ

ℋ𝑛, where ℋ𝑛 ≡ ℋ ⊗ ⋯ ⊗ℋ⏟
𝑛 times

ℋ𝑛 is the space consisting of𝑛 copies of the single-particleHilbert space. In non-relativistic quantummechanics, the number
of elementary particles is fixed, and therefore, in an𝛮-electron system, wewould limit ourselves to states in theℋ𝛮 subspace
of Fock space.

4Incidentally, these operators satisfy their own set of canonical anticommutation relations:

{Ψ𝜎(r), Ψ𝜎′(r
′)} = 0, and {Ψ𝜎(r), Ψ

†
𝜎′(r

′)} = 𝛿(3)(r − r′)𝛿𝜎,𝜎′
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4.1 Hohenberg-Kohn Theorems

where we have chosen the first variable of Φ and Φ∗ to remain as the “free indices”, but thanks to the

(anti)symmetry, swapping them for any of the other positions would yield an identical result. Recalling

that the wavefunction is nothing else than a probability amplitude, eq. (4.4) shows that 𝑛𝜎(r) is but the
unconditional probability distribution of the first—and by symmetry, every— particle (see, e.g., Chapter 2

of [46]).

The terms of the Hamiltonian acting on the system of particles may be distinguished into three separate

contributions: The kinetic energy 𝑇, the interaction between the particles 𝑈, and the external potential

𝑉. These energy operators may be expressed in either first- or second-quantised form, and these two forms

can be exchanged at convenience. Firstly, the kinetic energy operator can be expressed in second-quantised

form as

𝑇 = −
𝛮
∑
𝑖

ℏ2∇2
𝑖

2𝑚⏟
First-Quantised

= ∑
𝜎,𝜎′

∫ d3𝑟d3𝑟′ Ψ†
𝜎 (r)⟨r𝜎 ∣

𝑝2
2𝑚 ∣ r′𝜎′⟩Ψ𝜎′(r′) = −∑

𝜎
∫ d3𝑟 Ψ†

𝜎 (r)
ℏ2∇2

2𝑚 Ψ𝜎(r)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Second-Quantised

(4.5)

where we have used the fact that the momentum operator acts as −𝑖ℏ𝛁 on the position basis, while not

affecting the spin part of the state vector whatsoever. Note that the above second-quantised expression is

analogous to eq. (2.3) that we used in the Frölich interaction. The external potential, is also associated

to a single particle operator 𝑣ext(r) (i.e., it acts individually on each of the particles). Its expressions are as

follows

𝑉 =
𝛮
∑
𝑖
𝑣ext(r𝑖)

⏟
First-Quantised

= ∑
𝜎,𝜎′

∫ d3𝑟d3𝑟′ Ψ†
𝜎 (r)⟨r𝜎 | 𝑣ext(r) | r′𝜎′⟩Ψ𝜎′(r′) = ∫ d3𝑟 𝑣ext(r)𝑛̂(r)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Second-Quantised

(4.6)

where we have introduced the density operator 𝑛̂(r) ≡ ∑𝜎Ψ
†
𝜎 (r)Ψ𝜎(r), with a circumflex to distinguish

this operator from the numerical density of eq. (4.2). Finally, the interaction term is associated with a two-

particle operator 𝑢int(r, r
′) which is second-quantised with a double integral (cf., eq. (4.52) of Lancaster’s

and Blundell’s book [50])

𝑈 = 1
2∑𝑖≠𝑗

𝑢int(r𝑖, r𝑗)
⏟⏟⏟⏟⏟

First-Quantised

= 1
2 ∑𝜎,𝜎′

∫ d3𝑟d3𝑟′ Ψ†
𝜎 (r)Ψ†

𝜎′(r
′)𝑢int(r, r′)Ψ𝜎′(r′)Ψ𝜎(r)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Second-Quantised

(4.7)

It is worth noting that although the second-quantised expressions appear more daunting than their first-

quantised analogues, they have forgone the problemof needing to keep track of the individual particles, and

depend instead only on one or two spatial coordinates. In our system of interest, the electronHamiltonian
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4 Density Functional Theory

𝐻𝑒 of eq. (3.3), we identify the first term as 𝑇, the second term as 𝑈, and the last two terms as 𝑉, in their

first-quantised forms.

The first Hohenberg-Kohn theorem is stated by R. G. Parr and W. Yang [67] as “The external potential

𝑣ext(r) is determined, within a trivial additive constant, by the electron density 𝑛(r)”. Although the original

formulation of the theorem was constrained to nondegenerate ground states (see Section I of [43]), it can

be shown to be valid for degenerate ground states as well, as illustrated by Parr and Yang in Section 3.4 of

their book [67]5. AsHohenberg andKohn show [43], the proof for the nondegenerate case is performed by

reductio ad absurdum6. In particular, if we have two Hamiltonians,𝐻 and𝐻′, with ground state energies

𝐸 and𝐸′, such that 𝑣′ext(r) ≠ 𝑣ext(r)+ 𝑘 for any constant 𝑘, then their respective ground states |Φ⟩ and |Φ′⟩
are necessarily different because they satisfy disparate Schrödinger equations. However, if we assume that

𝑛′(r) = 𝑛(r), then we have that

𝐸′ < ⟨Φ|𝐻′|Φ⟩ = 𝐸 + ⟨Φ|𝐻′ − 𝐻|Φ⟩ = 𝐸 + ⟨Φ|𝑉′ − 𝑉|Φ⟩ = 𝐸 +∫ d3𝑟[𝑣′ext(r) − 𝑣ext(r)]𝑛(r) (4.8)

where, to get the fourth expression, we have used the fact that the kinetic 𝑇 and interaction𝑈 terms of the

Hamiltonians remain unchanged (in their second-quantised versions) as they are intrinsic to the particles,

and to get the last expression, we have combined eqs. (4.6), (4.1), and (4.2). However, we can switch the

primes and repeat the same argument to find

𝐸 < 𝐸′ +∫ d3𝑟[𝑣ext(r) − 𝑣
′
ext(r)]𝑛(r) (4.9)

If we add both inequalities in eqs. (4.8) and (4.9), the integrals cancel out, and we arrive at the contradic-

tion

𝐸′ + 𝐸 < 𝐸 + 𝐸′ (4.10)

which implies that the starting assumption 𝑛′ = 𝑛 was false. As Parr and Yang point out [67], the fact that

𝑛(r) determines 𝑣ext(r) (as well as the number of electrons𝑁 by simple integration of 𝑛) means that it also

determines the ground state |Φ⟩ and with it, all the properties of the system. This is perhaps Hohenberg’s

5This section of their book introduces the Levy constrained-search formulation of DFT, which in principle also resolves the
issue of 𝑣-representability (i.e., the requirement that the density arises froman antisymmetric ground state of a system realised
by some external potential 𝑣ext).

6More specifically, one employs reductio ad absurdum to prove the contrapositive of the theorem instead of performing a direct
proof since both statements are logically equivalent: Let 𝑘 ∈ ℝ, then ∃𝑘(𝑛′ = 𝑛 ⇒ 𝑣′ext = 𝑣ext + 𝑘) ⇔ ∀𝑘(𝑣′ext ≠ 𝑣ext + 𝑘 ⇒
𝑛′ ≠ 𝑛).
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4.1 Hohenberg-Kohn Theorems

and Kohn’s most fundamental observation because it allows us to interpret |Φ⟩ = |Φ[𝑛]⟩ as a functional
of the density. Therefore, the energy of the systemmay also be expressed in terms of 𝑛

𝐸[𝑛] = 𝐹HK[𝑛] + ∫ d3𝑟 𝑣ext(r)𝑛(r) (4.11)

The first term of eq. (4.11) is the Hohenberg-Kohn universal functional. 𝐹HK must be the same re-

gardless of the number of particles𝑁 and the external potential 𝑣ext, hence the appellative ‘universal’: it can
easily account for𝑁 as this number is just the integral of 𝑛, a very simple functional, whereas it is indepen-

dent of 𝑣ext as the only point of entry of the potential is𝑉which is entirely accounted for in the second term

of eq. (4.11). Note that, by definition (see eq. (9) of [43]), the universal functional is expressed as

𝐹HK[𝑛] = ⟨Φ|𝑇 + 𝑈|Φ⟩ (4.12)

This last relation allows us to introduce the secondHohenberg-Kohn theorem. Paraphrasing the statement

of the theorem by Parr and Yang [67]: For any trial density 𝑛̃(r), satisfying 𝑛̃(r) ≥ 0 and ∫ d3𝑟 𝑛̃(r) = 𝑁,

then 𝐸[𝑛] < 𝐸[𝑛̃], where 𝑛 is the ground state density. The proof follows from the fact that, via the first

theorem, 𝑛̃ determines a trial wavefunction7 |Φ̃⟩ that must differ from the ground state |Φ⟩. Therefore,

⟨Φ|𝐻|Φ⟩ < ⟨Φ̃|𝐻|Φ̃⟩ = ⟨Φ̃|𝑇 + 𝑈|Φ̃⟩ + ⟨Φ̃|𝑉|Φ̃⟩ = 𝐹HK[𝑛̃] + ∫ d3𝑟 𝑣ext(r)𝑛̃(r) (4.13)

where the last expression follows from the definition of 𝐹HK in eq. (4.12). We recognize the first and last

terms of eq. (4.12) as the energy functionals of the ground state and the trial densities, establishing the

theorem.

It is conventional to split the energy functional into its separate contributions:

𝐸[𝑛] = 𝑇[𝑛] + 𝐸H[𝑛] + 𝐸ext + 𝐸
(HK)
xc (4.14)

where 𝑇[𝑛] = ⟨Φ|𝑇|Φ⟩ is the kinetic energy, 𝐸ext = ⟨Φ|𝑉|Φ⟩ is the energy coupling the system to the

external potential, 𝐸H is the classical interaction energy

𝐸H[𝑛] =
1
2 ∫ d3𝑟d3𝑟′ 𝑛(r)𝑢int(r, r

′)𝑛(r′), (4.15)

7Strictly speaking, this is contingent on the 𝑣-representability being satisfied, but asmentioned in footnote 5, this issue is solved
theoretically by introducing the Levy constrained-search.
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4 Density Functional Theory

also known as the Hartree term, and 𝐸(𝛨𝛫)
xc is the so-called exchange-correlation functional, which absorbs

the complicated many-body effects not included in 𝐸H. Note that we have written the superindex HK in

the exchange-correlation functional 𝐸(𝛨𝛫)
xc [𝑛] ≡ ⟨Φ|𝑈|Φ⟩ − 𝐸𝛨[𝑛] to distinguish it from the Kohn-Sham

version of this functional that also includes many-body effects of the kinetic energy (see, e.g., Chapters 2

and 3 of the book by E. Engel and R. M. Dreizler [26])8.

The second Hohenberg-Kohn theorem ensures that, if we knew the exact expression of 𝐹HK, the ground

state density and energy could be determined byminimising the functional. Additionally, the first theorem

would guarantee that all the properties of the ground state are also determined by such density. Unfortu-

nately, this functional has no simple algebraic expression and can only be approximated in practice9.

4.2 Kohn-ShamDensity Functional Theory

Despite the elegance and simplicity of the Hohenberg-Kohn formulation, the lack of a useful exact ex-

pression for 𝐹HK limits the method’s accuracy. In particular, the traditional models for the kinetic energy

functional10 suffer from low accuracy. On the other hand, if the wavefunction is expressed in the form of

a Slater determinant, its kinetic energy is straightforward to compute. Furthermore, if the Hamiltonian of

the system does not have an interaction term, then the solution can always be expressed as such a determi-

nant (assuming the particles are Fermions). This fact is used to introduce a hybrid method—developed by

Kohn and L. J. Sham in 1965 [47]—where one solves an auxiliary system of noninteracting particles using

a Hartree-Fock–like approach.

8Note that, as Engel and Dreizler point out in Chapter 4 of their book [26], there is a third definition of the exchange-
correlation energy that differs from the ones used in DFT and is used mainly by quantum chemists.

9It is worth noting that, in fact, there exist well-known explicit formulas to compute the functional that are exact both in
principle and in practice, as P. W. Ayers and Parr point out [6]. However, they are not useful for practical calculations, as
they are more computationally expensive than solving the Schrödinger equation using a specified basis [6]. For any practical
purpose, we may claim that an exact universal functional does not exist.

10The first kinetic energy functional appears in the Thomas-Fermi model, a philosophical predecessor of DFT. The Thomas-

Fermi functional can bewritten as𝛵TF[𝑛] =
ℏ2
𝑚

35/3𝜋4/3
10 ∫ d3𝑟 𝑛5/3(r), which is a Local Density approximation. Inhomogene-

ity effects can be introduced by corrections such as the one given byWeizsacker (cf. eq. (6.7.1) of [67]) as well as the fourth
order gradient correction by Hodge (cf. eqs. (6.7.22) and (6.7.23) of [67]). However, as Parr and Yang [67] point out, even
up to this order, the approximation is still poor—only describing the average behaviour of the electrons— whereas higher
order corrections diverge.
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4.2 Kohn-ShamDensity Functional Theory

The justification for this method comes from the same Hohenberg-Kohn theorems presented in the pre-

ceding Section. Specifically, one considers the auxiliary system with a ground state

Φ𝑠(r1𝜎1, r2𝜎2, … , , r𝛮𝜎𝛮) =
1

√𝑁!
∣

𝜙1(r1𝜎1) 𝜙2(r1𝜎1) ⋯ 𝜙𝛮(r1𝜎1)
𝜙1(r2𝜎2) 𝜙2(r2𝜎2) ⋯ 𝜙𝛮(r2𝜎2)

⋮ ⋮ ⋱ ⋮
𝜙1(r𝛮𝜎𝛮) 𝜙2(r𝛮𝜎𝛮) ⋯ 𝜙𝛮(r𝛮𝜎𝛮)

∣ (4.16)

whose density 𝑛𝑠(r) matches that of the ground state of the original interacting system 𝑛(𝑠). The first

Hohenberg-Kohn theorem ensures that the external potential 𝑣𝑠(r) of the auxiliary system is determined

by 𝑛𝑠 = 𝑛. Note, however, that 𝑣𝑠 ≠ 𝑣ext. In particular, we may write (cf., eq. (3.23) of [26])

𝑛(r) ≡ 𝑛𝑠(r) = ∑
𝜎,𝑖

Θ𝑖|𝜙𝑖(r𝜎)|
2 (4.17)

where Θ𝑖 is the occupation of the orbitals 𝜙𝑖(r𝜎). At 0 K we can write Θ𝑖 = 𝜃(𝜖𝐹 − 𝜖𝑖) with 𝜖𝑖 the energy
of the 𝑖th orbital (see below) and 𝜖𝐹 the Fermi energy (the orbital with the𝑁th lowest energy). As Engel

and Dreizler point out [26], we can generalise these occupations to the finite temperature case by taking

Θ𝑖 = {1 + exp[𝛽(𝜖𝑖 − 𝜇)]}
−1. The Hamiltonian of the auxiliary system is then simply

𝐻 = 𝑇 + 𝑉𝑠 (4.18)

where

𝑉𝑠 = ∫ d3𝑟 𝑣𝑠(r)𝑛̂(r) (4.19)

On the other hand, the energy of the interacting system can be decomposed in a form similar to the one in

the Hohenberg-Kohn approach

𝐸[𝑛] = 𝑇𝑠[𝑛] + 𝐸ext[𝑛] + 𝐸H[𝑛] + 𝐸xc[𝑛] (4.20)

this is analogous to the decomposition of eq. (4.14), but the kinetic energy is that of the non-interacting

system 𝑇𝑠[𝑛] = ⟨Φ𝑠|𝑇|Φ𝑠⟩. In this case, the exchange-correlation functional can be defined by

𝐸xc[𝑛] ≡ ⟨Φ|𝑇 + 𝑈|Φ⟩ − 𝑇𝑠[𝑛] − 𝐸H[𝑛] (4.21)
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4 Density Functional Theory

and it includes themany-body effects that arise in the kinetic energy and interaction terms. As noted in [26],

𝑇𝑠[𝑛] ≤ 𝑇[𝑛], so that 𝐸xc ≥ 𝐸(HK)
xc . Furthermore, 𝐸xc is also a universal functional, because it is a function

of quantities that are universal functionals (i.e., |Φ[𝑛]⟩, 𝑇𝑠[𝑛], and 𝐸H[𝑛]).

We omit the explicit calculations, which may be consulted in Chapter 3.1 of Engel’s and Dreizler’s book

[26],whereby taking the functional derivative of eq. (4.20) one finds the auxiliary potential to be

𝑣𝑠(r) = 𝑣ext(r) + ∫ d3𝑟′ 𝑢(r, r′)𝑛(r′) +
𝛿𝐸xc[𝑛]
𝛿𝑛(r) ≡ 𝑣ext(r) + 𝑣H(r) + 𝑣xc(r) (4.22)

This expression requires some knowledge of the exchange-correlation functional 𝐸xc which in practice is

approximated with one of a variety of expressions, in particular this work will use the PBEsol functional

which will be presented in Section 5.1.1. The explicit expression of 𝑣𝑠 can be introduced in the Hartree-

Fock equations of the noninteracting auxiliary system, which read

[−ℏ
2∇2

2𝑚 + 𝑣ext(r) + 𝑣H(r) + 𝑣xc(r)]𝜙𝑖(r𝜎) = 𝜖𝑖𝜙𝑖(r𝜎) (4.23)

This are the famous Kohn-Sham equations. Note that the equations in (4.23) are different from the

conventional Hartree-Fock equations for a system of non-interacting particles because the potentials 𝑣H
and 𝑣xc depend implicitly on the orbitals. Correspondingly, they require a self-consistent field approach

to be solved in practice which will be presented in Section 5.1.2. In what follows, we will call the term in

brackets on the left-hand side of eq. (4.23) theKohn-ShamHamiltonian.

Finally, we note that the “energies” 𝜖𝑖 that appear in theKohn-Sham equations are the same ones that appear

in the occupationsΘ𝑖 of eq. (4.17). However, as Engel and Dreizler point out [26], the orbitals 𝜙𝑖 have no
physical significance as they are purely mathematical constructs used to reproduce the density.
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In which we lay out the approximations, techniques, and

numerical algorithms required to model the dynamics of

the system, obtain amorphous structures computationally

and optimise them, and evaluate some of their supercon-

ducting properties.

The remainder of this Part is dedicated to elaborating, at a high level of abstraction, the procedures required

to perform the ab initio simulations of the system and the extraction of superconducting properties from

those results based on the theoretical framework presented thus far. The topics are presented roughly in a

“bottom-up” approach. It should be noted that some of themethods presented here are not unique, having

alternatives with varying degrees of success (i.e., accuracy, efficiency, simplicity, etc.). We focus solely on the

algorithms we have occupied in our simulations, presenting alternatives only where they are essential to

understand our method of choice.

5.1 Solutions to the Kohn-Sham equations

Chapter 4 culminated in the Kohn-Sham equations of DFT, one of the most ubiquitous approaches to

solving the quantum problem in nuclear, atomic, molecular, and condensed matter physics. However,

the solution of this coupled system of equations still poses some technical difficulties, which we discuss

below.

5.1.1 The Perdew-Burke-Ernzerhof Functional Revised for Solids (PBEsol)

Throughout the course of Chapter 4, we have expressed the exchange-correlation functional 𝐸xc and its

functional derivative 𝑣xc = 𝛿𝐸xc/𝛿𝑛 only symbolically. Furthermore, as mentioned previously, there does

not exist any analytic expression for this functional. On the contrary, there is a panoply of approximations

to 𝐸xc employed in the literature.
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The approximations to 𝐸xc are classified into several broad categories (an extensive review of which can be

found in Chapter 4 of [26]), such as Local Density Approximation (LDA), Generalised Gradient Approx-

imation (GGA), Meta-GGA, LDA+U,Weighted Density Approximation (WDA), etc.

The most basic approximation is LDA, in which the exchange-correlation energy density 𝑒xc of the inho-
mogeneous electrons with density 𝑛(r) is approximated to be equal to that of a homogeneous electron gas

with a matching density (see Section 4.3 of [26]). That is

𝐸LSDA
xc [𝑛↑, 𝑛↓] = ∫ d3𝑟 𝑒homxc (𝑛↑, 𝑛↓) (5.1)

Where we have introduced the slightly more general Local Spin-Density Approximation (LSDA) that al-

lows for a nonzero spin polarisation 𝜁 = (𝑛↑ − 𝑛↓)/𝑛. It is common for this energy to be separated in

correlation 𝐸c and exchange 𝐸x terms as they each satisfy different limiting behaviours (at low and high

density, polarisation, or in the case of GGA, variation) that are used to adjust the parameters in the approx-

imations.

The LSDA approach can be improved by taking into account the inhomogeneity of 𝑛 in the energy density

𝑒xc. As Engel and Dreizler explain [26], the strategy used in practice is to introduce gradient terms into the

energy integrand. In this sense, it can be regarded as a semi-local approximation because the gradient is

taken at the same point in space1. The first expression of this type is called the gradient expansion (GE) and

was provided by Hohenberg and Kohn themselves in their seminal article [43]. However, up to second-

order corrections (i.e., the so-called GE2), GE does not yield satisfactory results or even an improvement

over LSDA [26]. This complication gave rise toGGAmethods, which systematically generalise GEwithout

suffering the same drawbacks. Wewill use precisely one of these functionals, in particular the one developed

by Perdew, Burke, and Ernzerhof in 1996 [68], whose parameters were later revised for Solids by Perdew et

al. in 2008 [69],which is better known under the acronym PBEsol.

Both the PBE and PBEsol functionals have the same form. They are parametrised in terms of a handful

of constants and, more importantly, two “free” parameters 𝜇 and 𝛽, that can be chosen to satisfy relevant

constraints. The functionals are expressed by Perdew, Burke, and Ernzerhof [68] as

𝐸PBE(sol)
c = ∫ d3𝑟 [𝜖homc (𝑟𝑠, 𝜁) + 𝐻(𝑟𝑠, 𝜁, 𝑡)]𝑛, 𝐸PBE(sol)

x = ∫ d3𝑟 𝜖homx (𝑛)𝐹x(𝑠)𝑛 (5.2)

Note that the energy densities of the homogeneous parts in eq. (5.2) are given per particle, hence the ad-

ditional factor of 𝑛 in both integrals. Before discussing the gradient corrections, we will first clarify the

1On the other hand, the competing method of complete linear response accounts for the inhomogeneity in a fully non-local
manner. However, it suffers from technical problems for having an ill-defined density in the integrand’s kernel, and it is not
used in practice [26].
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notation and the expressions of the LSDA terms that are also non-trivial. The variables used by Perdew,

Burke, and Ernzerhof [68, 69] to parametrise these functionals are all functions of the density and its gra-

dient that have been chosen for convenience or physical clarity: (i) 𝑟𝑠(𝑛) is the local Seitz radius which also

determines the local Fermi wavevector of the free electronmodel 𝑘𝐹(𝑛) according to 𝑛 = 3/4𝜋𝑟3𝑠 ≡ 𝑘3𝐹/3𝜋
2,

(ii) the spin polarisation 𝜁 was introduced above, and (iii) the two dimensionless density gradients 𝑡 and 𝑠
are given by

𝑡 = |𝛁𝑛|
2𝜙𝑘𝑠𝑛

, 𝑠 = |𝛁𝑛|
2𝑘𝐹𝑛

; with 𝜙 ≡ (1 + 𝜁)2/3 + (1 − 𝜁)2/3

2 , and 𝑘𝑠 ≡ √4𝑘𝐹
𝜋𝑎0

(5.3)

The two new variables 𝜙 and 𝑘𝑠 appearing in the dimensionless density gradient 𝑡 are, respectively, a spin-
scaling factor2 and the Thomas-Fermi screening wavevector. In the definition of the latter, 𝑎0 is the Bohr
radius given by 𝑎0 = ℏ2/2𝑚𝑒𝑒

2. The exchange energy density per particle of the homogeneous gas 𝜖homx has

a simple expression given in [68] as

𝜖homx (𝑛) = −
3𝑒2𝑘𝐹
4𝜋 ≡ 34/3𝑒2𝑛1/3

4𝜋1/3
(5.4)

However, the correlation energy density of the homogeneous gas is more complicated. The PBE article

[68] cites an earlier paper by Perdew and Y. Wang [70] for the expression for 𝜖homc (the PW, or sometimes

PWC, functional), which they express using an alternative parametrisation of a spin-interpolation formula

that was introduced earlier by Vosko,Wilk, andNusair [92] in 1980 for the development of the eponymous

VWN functional3. This formula is

𝜖homc (𝑟𝑠, 𝜁) =𝜖
hom
c (𝑟𝑠, 0) + 𝛼c(𝑟𝑠)

𝑓(𝜁)
𝑓′′(0)(1 − 𝜁

4) + [𝜖homc (𝑟𝑠, 1) − 𝜖
hom
c (𝑟𝑠, 0)]𝑓(𝜁)𝜁

4,

with 𝑓 ≡ (1 + 𝜁)4/3 + (1 − 𝜁)4/3 − 2
24/3 − 2

(5.5)

The distinction between the PW andVWN functionals is in how they parametrise the three functions of 𝑟𝑠,
which are the correlation energy densities in the unpolarised 𝜖homc (𝑟𝑠, 0) and the totally polarised 𝜖homc (𝑟𝑠, 1)

2Note that the spin-scaling factor 𝜙 can also be written in terms of the density as 𝜙 = (𝑛2/3↑ + 𝑛2/3↓ )/21/3𝑛2/3
3Note that other parametrisations of LSDA yield equally good results, including VWN. Perdew and Wang acknowledge this

point but propose a different parametrisation to “avoid someminor problems” of alternative expressions [70]. We adhere to
the PW functional, but different parametrisations should pose no problem as they yield remarkably similar results (see, e.g.,
Figs. 4.2 and 4.3 of [26] comparing several LDAs, including PW and VWN).
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cases, and the correlation contribution to the spin stiffness4 𝛼c. Perdew and Wang use the same analytic

expression to represent these three functions, namely

𝐺(𝑟𝑠; 𝐴, 𝛼1, 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝑝) = −2𝐴(1 + 𝛼1𝑟𝑠) ln[1 +
1

2𝐴(𝛽1𝑟
1/2
𝑠 + 𝛽2𝑟𝑠 + 𝛽3𝑟

3/2
𝑠 + 𝛽4𝑟

𝑝
𝑠 )

] (5.6)

The numerical values of these parameters for each of the three functions are given in Table I of Perdew’s

and Wang’s article [70] (the ones relevant to our discussion correspond to the last three columns). We can

finally discuss the gradient corrections, which in the PBE(sol) functional [68] are given by

𝐻(𝑟𝑠, 𝜁, 𝑡) =
𝑒2𝛾𝜙3

𝑎0
ln[1 +

𝛽
𝛾(

1 + 𝛼𝑡2

1 + 𝛼𝑡2 + 𝛼2𝑡4
)], with 𝛼 =

𝛽
𝛾[exp(−𝑎0𝜖

hom
c /𝑒2𝛾𝜙3) − 1]

−1
(5.7)

where 𝛾 ≈ (1 − ln 2)/𝜋2 is a weak function of the spin polarisation that is approximated as a constant. On

the other hand, the exchange correction is [68]

𝐹x(𝑠) = 1 + 𝜅 − 𝜅2

𝜅 + 𝜇𝑠2
(5.8)

where 𝜅 = 0.804 is an empirical coefficient. In the original formulation of PBE [68], the values of 𝛽 and 𝜇
are determined to match two targets in the slowly-varying limit (𝑡, 𝑠 → 0): 𝛽 is taken to match the gradient

expansion (GE2) of the correlation energy (𝛽PBE = 𝛽𝐺𝛦), while 𝜇 was selected so that the second order

gradient correction to the exchange energy cancels out with the correlation correction (𝜇PBE = 𝜋2𝛽PBE/3 ≈
2𝜇𝐺𝛦). This choicewasbasedon theobservation thatLSDAyields better results in this limit than thePW91-

GGAfunctional5. On the other hand, thePBEsol functional [69] sacrifices some accuracy in thedescription

of free neutral atoms, as well as the exact cancellation of the gradients in the slow-varying limit in order to

restore the GE2 exchange (𝜇PBEsol = 𝜇𝐺𝛦) and improve the energy calculations of surfaces6. These choices

ultimately result in systematically better results in solids modelled with PBEsol when compared with PBE7

[69].

4Vosko, Wilk, and Nusair [92] define the spin stiffness as 𝛼c = 𝜕2𝜖homc /𝜕𝜁2∣
𝜁=0

. This relation is readily verified by explicitly

evaluating the derivative of eq. (5.5).
5Formore context, the PBE functional was designed as an improvement over PW91 by having a simpler expression (in practice,

this helps in the construction of pseudopotentials) and better results in the slowly varying limit [68].
6Perdew et al. [69] do this by fitting 𝛽 to get better results of jellium cluster surface energies (according to the TPSSmeta-GGA

functional which is taken as a possible lower bound for the surface energy).
7Perdew et al. also show a systematic improvement against TPSS, as well as massive improvements against LSDA in every type

of solid except semiconductors [69].
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5.1 Solutions to the Kohn-Sham equations

5.1.2 Self-Consistent Field Solution of the Kohn-Sham Equations

With the introduction of an explicit expression for the exchange-correlation functional, we can readily cal-

culate theKohn-ShamHamiltonian operator that appears in eqs. (4.23). However, how exactly these equa-

tions are solved remains to be seen, as they are a set of𝑁 nonlinear, coupled integro-differential equations.

Undoubtedly, the most popular approach is the Self-Consistent Field (SCF) method, which is started by

introducing a set of trial orbitals [𝜙𝑖(r𝜎)]
0 as the generators of 𝑣H and 𝑣xc. Following their evaluation, the

potentials are fixed at their calculated values for the remainder of the iteration. Solving the resulting Kohn-

Sham equations that yield a new set of orbitals [𝜙𝑖(r𝜎)]
1. This approach is an iterative method that can be

summarised with the following equation

{−ℏ
2∇2

2𝑚 + 𝑣ext(r) + [𝑣H(r) + 𝑣xc(r)]
𝜙𝑖=[𝜙𝑖]𝑛

}[𝜙𝑖(r𝜎)]
𝑛+1 ≡ 𝐻𝑛

KS[𝜙𝑖(r𝜎)]
𝑛+1 = 𝜖𝑛+1𝑖 [𝜙𝑖(r𝜎)]

𝑛+1 (5.9)

where we have introduced the notation𝐻𝑛
KS to denote the Kohn-ShamHamiltonian evaluated at the orb-

tials of the 𝑛-th step. In general, the new orbitals [𝜙𝑖]
𝑛+1 will differ from the ones obtained in the previous

step [𝜙𝑖]
𝑛. Only when the correct orbitals are inserted into the interaction potentials will both sets of or-

bitals coincide, and theKohn-Shamequation canbe assumed to be solved, which iswhy themethod is called

self-consistent. In practice, the two sets of orbitals are not expected to match exactly but are only expected

to be approximately equal within some margin of error. A reasonable stopping criterion is when the new

step yields a “negligible” change in the density and the total energy simultaneously.

The SCFmethod is assumed tominimise the energybecause theKohn-Shamequations are equivalent to the

Euler-Lagrange equations of theHohenberg-Kohn energy but represented in terms of the auxiliary system.

This means that once the orbitals are self-consistent, they become a valid representation of the ground state

density according to eq. (4.17).

Roothaan-Hall Equations for a Specified Basis

A particularly convenient and efficient approach to solving eq. (5.9) is to expand the wavefunctions of the

auxiliary system in some basis, which turns the SCF recursive formula into a matrix eigenvalue equation.

Such a decomposition can be written in the following general form

|𝜙𝑖⟩ = ∑
𝛼
𝑎𝛼 |𝛼⟩ (5.10)
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5 Methodology

The set of states {|𝛼⟩} in which we expand the orbitals is called a basis set. Some popular choices for {|𝛼⟩}
are plane waves, localised orbitals (atomic or Gaussian), and generalisedWannier functions8. We will focus

on the case of an atomic-orbital basis set occupied by the DMol3 code that we will use. In such case, the

expansion

𝜙𝑖(r𝜎) = ∑
R𝛪,𝑛,𝑙,𝑚

𝐶𝑛,𝑙,𝑚 𝜓
𝑚
𝑛𝑙 (r −R𝛪)𝜒𝜎 (5.11)

is called a Linear Combination of Atomic Orbitals, or LCAO for short. Note that the sum is also taken

over the nuclear positionsR𝛪, around which the atomic orbitals are assumed to be centred9. If we were to

represent an arbitrary wavefunction, we would need a basis set that spans the entirety of the Hilbert space

(which is, of course, impossible since it is infinite-dimensional). However, because we want to obtain the

ground state configuration of the system, then the energy of the individual basis states cannot be too large.

As a general guideline, since the kinetic energy operator is proportional to the Laplacian, states with more

“wiggles” are more energetic. Thus, one need only include them up to some appropriate cutoff10.

Once the issue of a basis set has been settled, the Kohn-Sham equations can be recast in terms of the matrix

elements of the Kohn-Sham Hamiltonian. This procedure of expanding the orbitals in a fixed basis to

retrieve a matrix equation was derived independently by Clemens C. J. Roothaan [77] and George G. Hall

[36] in 1951 for the solution of the Hartree-Fock equations, predating the advent of DFT. Since, as we

have pointed out in Section 4.2, the Kohn-Sham equations share the structure of the Hartree-Fock ones,

the equations derived by Roothaan and Hall can be applied identically to solve the Kohn-Sham auxiliary

system. The Roothaan-Hall equations for the SCF method in this case are:

∑
𝛽
𝐹𝛼𝛽(𝑐

𝑛
𝑖,𝜇)𝑐

𝑛+1
𝑖,𝛽 = 𝜖𝑛+1𝑖 ∑

𝛽
𝑆𝛼𝛽𝑐

𝑛+1
𝑖,𝛽 (5.12)

where

𝑐𝑛𝑖,𝜇 ≡ ⟨𝜇|[𝜙𝑖]
𝑛⟩ , 𝐹𝛼𝛽({𝑐

𝑛
𝑖,𝜇}) ≡ ⟨𝛼|𝐻𝑛

KS|𝛽⟩ , and 𝑆𝛼𝛽 ≡ ⟨𝛼|𝛽⟩ (5.13)

8For example, CASTEP andQuantumExpresso use plane waves, DMol3 uses atomic orbitals, Gaussian orbitals are used in the
eponymous Gaussian code, and ONETEP uses generalisedWannier functions.

9With this sum overR𝛪, we are over-specifying the one-particle Hilbert spaceℋ. The orbitals of a single atom at an arbitrary
R are enough to form a basis ofℋ, but to represent states far away from R we would require orbitals of very high energy,
which is not desirable.

10The “energy” of a basis state is used only as a benchmark of when onemay reasonably truncate the expansion, but in a general
case, it will not match the actual energy of the KS orbitals. In the case of plane waves, this “energy” is naturally ℏ2𝑘2/2𝑚,
and for LCAO, the energy of the isolated atomic states may be used.
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5.1 Solutions to the Kohn-Sham equations

The factor 𝑆𝛼𝛽 is called the overlap matrix, and it accounts for the fact that the basis set may not be or-

thonormal. If one uses an orthonormal basis set, Swould be just the identity matrix. Amore compact way

to express eq. (5.12) is to write it as a matrix equation

S−1 ⋅ F(c𝑛) ⋅ c𝑛+1𝑖 = 𝜖𝑛+1𝑖 c𝑛+1𝑖 , with c ≡ ∏
𝑖
c𝑖 (5.14)

Note that the overlap matrix S need only be computed once at the beginning of the SCF procedure, and

it just needs to be stored to be referenced in the following steps. Afterwards, the solution is reduced to

computing F and obtaining the𝑁 lowest eigenvalues and eigenvectors of S−1F at every step until the new

orbitals match the old ones within an acceptable margin.

The only remaining point to address is how these calculations are performed with high computational ef-

ficiency. A thorough discussion of this point is beyond the scope of this work, but in the following subsec-

tion, we discuss one of the most crucial methods used for this purpose, the pseudopotential technique.

5.1.3 Pseudopotential Approach to the Core Electrons

A substantial simplification can be performed by relying upon the well-known fact that electrons involved

in the bonding and interactions between atoms are only the more mobile ones on higher energy levels, the

so-called valence shell. In contrast, the electrons in lower energy levels remain nearly unperturbed even if

the surroundings of the atom change significantly. This approach affords us twofold benefits that greatly

reduce the computation time of the Kohn-ShamDFT calculation: (i) this calculation scales as ∼ 𝑁3, with

𝑁 the number of electrons, or more precisely,𝑁 is the number of orbitals in the basis set11. By bundling

the electrons in the lower energy levels—denominated as core electrons— with the nuclei into an ion, we

directly reduce the number of electrons in the computation. (ii), as RichardM.Martin points out [57], the

pseudopotentials are smoother andweaker than the original nuclear potential, resulting in smoother pseud-

ofunctions (“pseudised” wavefunctions, see below) that require smaller basis sets to be represented12.

From a practical standpoint, we may regard the pseudopotential approach as a computational tool that

reduces the number of electrons needed to be explicitly taken into account by transforming the nuclear

potential𝑉ext into an effective potential that also encapsulates the effects of the implicit core electrons.

11S. Goedecker and G. E. Scuseria [33] explain how this O(𝛮3) scaling comes to be in KS-DFT and compare it with other
popular methods in this respect.

12This issue is predominant in plane wave basis sets because the original potential becomes very strong approaching the nucleus,
giving rise to short wavelength oscillations. Volker Heine [38] illustrates this point by noting that, for aluminium, a plane
wave calculation of the secular energy equation would require ∼ 106 modes to converge, in contrast to ∼ 20 if one uses
pseudopotential methods.
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In this picture, the single-particle wavefunctions of the electrons can be separated into valence and core

states, with the distinction demarcating the energy below which the electrons can be considered as un-

perturbed by a change in the atomic environment. Following the notation of Martin [57], we write the

valence and core states as |𝜓v
𝑖 ⟩ and |𝜓

c
𝑖 ⟩, respectively. In particular, the valence wavefunctions satisfy the

Schrödinger equation

𝐻|𝜓v
𝑖 ⟩ = ( 𝑃

2

2𝑚 + 𝑣) |𝜓v
𝑖 ⟩ = 𝜖v𝑖 |𝜓

v
𝑖 ⟩ (5.15)

With this, we can introduce the pseudopotential 𝑣̃ formally as a transformation of the strong13 poten-

tial14 𝑣 that simultaneously transforms the wavefunctions into smoother functions 𝜓̃v
𝑖 —called pseudo-

functions—while preserving the spectrum of the original valence wavefunctions 𝜖v𝑖 . This new operator 𝑣̃
is usually non-local15, in contrast to the original potential which is local. Eq. (5.15) is thus formally con-

verted into

𝐻̃ |𝜓̃v
𝑖 ⟩ = ( 𝑃

2

2𝑚 + 𝑣̃) |𝜓̃v
𝑖 ⟩ = 𝜖v𝑖 |𝜓̃

v
𝑖 ⟩ (5.16)

which has a structure identical to the original Schrödinger equation but replaces the potential and wave-

functions with their pseudised counterparts16. One of the universal concepts in pseudopotential theory

is the core radius 𝑅c: it is only inside the sphere of radius 𝑅c that the pseudopotential and pseudofunc-

tions differ from their original counterparts but outside of it, they match the quantities of the original

Schrödinger equation (5.15). Explicitly:

𝑣̃(𝑟 > 𝑅c) = 𝑣(𝑟), and 𝜓̃v
𝑖 (𝑟 > 𝑅c, 𝜃, 𝜙) = 𝜓v

𝑖 (𝑟, 𝜃, 𝜙) (5.17)

The underlying reason why the pseudofunctions are smoother than the original wavefunctions 𝜓̃v
𝑖 , is that

the pseudopotential is weaker than 𝑣, but this only happenswhen the orbital angularmomentumquantum

number 𝑙 of the valence state has already been occupied by core states [14]. This fact follows from the so-

called “cancellation theorem”, which was stated by M. L. Cohen and Heine [14] as the fact that, if there are

any core states for a given 𝑙 (viz., ∃𝑖 such that 𝐿2 |𝜓c
𝑖 ⟩ = ℏ2𝑙(𝑙 + 1) |𝜓c

𝑖 ⟩), then 𝑣̃(𝑟 < 𝑅c) is almost zero17.

13As Heine [38] points out, the most useful definition of a “strong” potential is one that has at least one bound state.
14Note that we are using a lowercase 𝑣 in these single-particle potentials to distinguish them from the total 𝑉ext that acts on all

of the electrons.
15A non-local operator𝛰 can be written as𝛰 = ∑𝑖,𝑗 |𝑖⟩ 𝛰𝑖𝑗 ⟨𝑗|.
16The simplest pseudopotential corresponds to theOrthogonalised PlaneWave (OPW)model of ConyersHerring [39],whose

expression in the form of eq. (5.16) can be found in Section 11.2 of Martin’s book [57]. Alternatively, in Section III of
[38],Heine introduces the matrix elements of 𝑣̃ in a plane wave basis for both the OPWmodel and Slater’s [82] earlier but
more complicated Augmented Plane Wave (APW) model. OPW and APW may be regarded as the precursors of modern
pseudpotential methods.

17It should be noted that this “cancellation theorem” is not a theorem in the mathematical sense. As Cohen and Heine [14]
clarify, it is a conclusion derived from empirical evidence and theoretical arguments.
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5.1 Solutions to the Kohn-Sham equations

A fundamental aspect of these pseudopotentials is that theymay be described equivalently in terms of their

scattering properties18 as they are in terms of the spectrum 𝜖v𝑖 that they need tomatch [14]. This gives ample

freedom in the choice of pseudopotential functions, which are by no means uniquely determined by these

conditions. Consequently, there exist multiple families of pseudopotentials that may appear as 𝑣̃ in eq.

(5.16) that give rise to the same energy spectrum approximately or exactly and they can be chosen to have

properties that are convenient to us. In particular, we are interested in BernardDelley’sdensity functional

semicore pseudopotential (DSPP) [21] thatwas implemented in theDMol3 software, whichwe have used

in all of our DFT calculations.

Delley’s DSPP is a semilocal pseudopotential that aims at satisfying (or closely approaching) the norm-

conserving condition inmultiple configurations bymeans of an optimisation19 procedure [21]. The semilo-

cal class of pseudopotentials consists of operators whose non-locality depends only on the angular variables

of the wavefunction. They can be expressed generically (cf., eq. (11.15) of [57]) as

𝑣̃ = 𝑣loc + 𝑣SL = 𝑣loc(𝑟) +∑
𝑙,𝑚

|𝑙𝑚⟩ [𝑣𝑙(𝑟) − 𝑣loc(𝑟)] ⟨𝑙𝑚| (5.18)

where 𝑣loc is the local part of the potential and the second term comprises the semilocal terms. Note that

eq. (5.18) implies that valence electronswith different orbital angularmomentumwavenumbers experience

different effective potentials. Additionally, asMartin points out [57],we can express 𝑣loc and 𝑣𝑙 as functions
only of the scalar 𝑟 thanks to the fact that the ion is assumed to have a spherically symmetric potential, which

also makes it possible to deal with every component of the angular momentum individually20.

The action of a semilocal potential on a wavefunction expressed in the position basis is evaluated as

𝑣SL 𝜑(𝑟,Ω) = ∑
𝑙,𝑚

𝑌𝑚𝑙 (Ω)[𝑣𝑙(𝑟) − 𝑣loc(𝑟)]∫ dΩ′ 𝑌𝑚𝑙 (Ω′)𝜑(𝑟,Ω′) (5.19)

whereΩ is the solid angle.

18In particular, as Cohen and Heine [14] point out, the pseudopotential must match 𝑣(r) identically in the interstitial region
(i.e., outside the core spheres of radius𝑅c), and the wavefunctions𝜓(r) = 𝑅𝑙(𝑟; 𝛦)𝑌

𝑚
𝑙 (𝜃, 𝜙)must have the same logarithmic

derivatives at 𝑅c, namely

1
𝑅̃𝑙(𝑅c; 𝛦)

d𝑅̃𝑙
d𝑟 (𝑅c; 𝛦) =

1
𝑅𝑙(𝑅c; 𝛦)

d𝑅𝑙
d𝑟 (𝑅c; 𝛦)

19The optimisation is made by minimising the sum root-mean-squared errors in both the valence eigenvalues and the norm-
conservation, with their magnitudes weighed by expressing them in atomic units, along with some penalties to give the pseu-
dopotential the desired shape [21].

20This is because eigenfunctions of𝛨 in a central potential can simultaneously be eigenfunctions of 𝐿2 and one component of
L [94].
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The primary target of DSPP, the norm-conservation, means that the pseudopotential is ab initio: its pa-

rameters are not determined experimentally. Instead, they are fitted tomatchDFT results from all-electron

calculations [57]. In addition to the aforementioned general properties stated above (i.e., matching spec-

trum, equivalence to non-pseudised wavefunction in the interstitial region, and agreement of logarithmic

derivatives), this family of pseudpotentials also satisfies the norm conservation condition:

∫
𝑅c

0
𝑟2d𝑟 |𝑅̃𝑙(𝑟)|

2 = ∫
𝑅c

0
𝑟2d𝑟 |𝑅𝑙(𝑟)|

2 (5.20)

which means that the charge held inside the core sphere in the pseudofunction matches the one in the

originalwavefunction. Aparticularly convenient consequence of this condition is that the pseudofunctions

satisfy the usual orthonormality conditions (see Section 11.4 of [57])

⟨𝜓̃v
𝑖,𝜎 ∣ 𝜓̃

v
𝑗,𝜎′⟩ = 𝛿𝑖𝑗𝛿𝜎𝜎′ (5.21)

a relationwhichmakes the Kohn-Sham equations (4.23) preserve their form even after the pseudopotential

transformation is performed [57].

In the particular case of DSPP, Delley [21] has chosen to fit the pseudopotential to the PBE and PW func-

tionals simultaneously21. Delley also decides to include the semicore states22 in addition to the valence

states to increase the accuracy and portability of the method [21]. This addition is suited for local orbital

and not plane wave basis sets, as Delley explains [21]. One final technicality to be addressed is that when

one performs the DFT calculation to fit the free parameters in the pseudopotential, one does not find the

effective potential of just the “bare” ion. The calculation also includes the screening effects caused by the

other valence electrons [57], including Hartree-like and exchange-correlation contributions. It is necessary

to unscreen these effects to obtain the bare-ion pseudopotential (see Section 11.6 of [57]). A problem that

arises in this procedure is that the pseudopotential approach aims to eliminate all the electronic degrees of

freedom of the core, but these electrons also appear in the exchange-correlation energy in an explicitly non-

linear fashion [55], and if onewere to unscreen the pseudopotential considering only the valence density the

final productwould depend on the valence configuration, instead of just on the orbital angularmomentum

𝑙. Louie, Froyen, and Cohen [55] address this issue by including the core density 𝑛c(r) as part of the energy
needed to unscreen, namely (cf., eq. (11.36) of [57] and eq. (9) of [55])

𝑣𝑙(𝑟) = 𝑣𝑙,total(r) − 𝑣H[𝑛̃v](r) − 𝑣xc[𝑛̃v + 𝑛c](r) (5.22)

21He notes that the errors are kept “roughly at the same low level” as when fitting for a single functional [21].
22Wemay regard the semicore states as those with lower energies than the valence states: low enough not to have much electron

mobility or to get involved directly in bonding, but not so low that they are unaffected by perturbations in the immediate
neighbourhood of the atom.
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5.1 Solutions to the Kohn-Sham equations

where 𝑛̃v is the density calculated from the pseudised states. The nonlinear effect of the core density in the

exchange-correlation energy of the valence electrons is only relevantwhen 𝑛̃v and𝑛c are of similarmagnitude

and does not matter near the nucleus, where most of the charge is concentrated [55]. This situation allows

one to represent the core density inside a sphere of radius 𝑟d (note that 𝑟d < 𝑅c) in a smoother, more

convenient form (similar to the general trendwithpseudopotentials), only requiring an exact representation

for 𝑟 > 𝑟d [55]. Delley [21] applies this method by introducing

ln[𝑛c(𝑟)] =
𝑛
∑
𝑖=1

𝑐𝑖(
𝑟
𝑟d
)
2−𝑖
, 𝑟 > 𝑟d (5.23)

where the expansion coefficients 𝑐𝑖 are determined by fitting them to the all-electron calculation. And the

density in the “unimportant” region 𝑟 < 𝑟d is taken as an even polynomial

𝑛c(𝑟) =
𝑚
∑
𝑖=0

𝑏𝑖𝑟
2𝑖, 𝑟 < 𝑟d (5.24)

with the coefficients 𝑏𝑖 determined bymatching 𝑛c(𝑟d) as calculated by eq. (5.23) up to the third derivative

(and also maintaining the total core charge) [21]. Finally, the DSPP expression for the potentials𝑉𝑙 is given
as a sum of Legendre polynomials

𝑣𝑙(𝑟) =
𝑘
∑
𝑖=0

𝑎𝑖,𝑙𝑃2𝑖(
𝑟
𝑟c,𝑙

), 𝑟 < 𝑟c,𝑙 (5.25)

The current version of DSPP uses nine terms of the sum in eq. (5.25), the last four coefficients {𝑎𝑖,𝑙}𝑖=5,…,8
are determinedbymatching theoriginal bare-ionpotential 𝑣(𝑟 > 𝑟c,𝑙) = −𝑧ion/𝑟up to the thirdderivative

23,

signifying that there are five free coefficients {𝑎𝑖,𝑙}𝑖=0,…,4 for every partial wave used to fit the all-electron

calculation [21]24. Additionally, every partial wave has its own core radius 𝑟c,𝑙, which is also treated as a free

parameter to be optimised. The global core radius may be taken as 𝑅c = max(𝑟c,𝑙). Finally, note that the
local part of the potential introduced in eq. (5.18) is taken as 𝑣loc = 𝑣𝑙max

, the potential associated with the

highest partial wave under consideration (e.g., 𝑙max = 3 in both Cu and Zr). We have calculated† the DSPPs

of Cu and Zr in the version currently used by DMol3 and they are plotted in Fig. 5.1.

23The ionic charge 𝑧ion (also written as 𝑧∗) is the sum of the nucleus’s and the core electron’s charge. The potential being ∝ 1/𝑟
matches the fact that the charge distribution is taken as spherically symmetric, so that only the total charge appears in the
multipole expansion (see Section 4.1 of [45]).

24Or rather, the optimisation yields all nine coefficients, but the DSPP files report only the first five of them, since the others
would be redundant as they may be determined using the constraints.

†I wish to expressmy gratitude to Prof. BernardDelley for helpingme understand theDSPP files as well as the pseudopotential
method in general.
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Figure 5.1: Pseudopotentials for Cu (left) and Zr (right) computed using eq. (5.25), with the data from version

s_01d21 of DSPP retrieved from the DMol3 installation directory.

In Fig. 5.1 we observe that Cu has a notably smaller core radius 𝑅𝑐. This reflects the fact that the DSPP

for Cu has only 10 electrons in the ion, with the remaining 19 having to be treated explicitly, resulting in a

small core. In contrast, the Zr pseudopotential has 28 electrons in the ion, leaving 12 to be treated explicitly,

this results in a higher degree of screening which we observe in the shallower potentials as well as a larger

core radius. Physically, this difference demonstrates the fact that the electronic structure of Cu is more

susceptible to changes in its immediate environment. We also observe the aforementioned “cancellation

theorem” of Cohen and Heine [14] to some extent, where in Cu 𝑣0 and 𝑣1 are close(er) to zero because

those angular momenta are occupied by electrons (of the s and p shells) in the core. In Zr we also see that

𝑣0, 𝑣1, and 𝑣2 are close to zero as we would expect from the non-theorem, however it is interesting that even

the local term 𝑣3 = 𝑣loc appears to follow this pattern.
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5.2 Classical Nuclear Dynamics

5.2 Classical Nuclear Dynamics

As we saw in Chapter 3, the nuclei may be treated within a good approximation as classical, with their mo-

tion given by an electron-generated potential resulting from the energy expectation value of the electronic

state (viz., their energy eigenvalue, since we are considering the ground state)

𝑉𝛮(R𝛪) = ⟨Ψ0|𝐻𝑒|Ψ0⟩ (5.26)

withwhich the nuclear equations ofmotion are nothing butNewton’s second law applied to this potential,

namely, the second equality in eq. (3.15). We can recast that equation in terms of just the position, that

is
d2R𝛪
d𝑡2

= −
𝛁R𝛪

𝑉𝛮
𝑀𝛪

≡ A𝛪 (5.27)

where we have introduced the 𝐼th nucleus’s accelerationA𝛪 = R̈𝛪. Our method of choice, which has been

implemented in the DMol3 software, is the velocity Verlet algorithm. As Landau, Páez, and Bordeianu

[52] note, this method is performed by updating both the positionR𝛪 and velocityV𝛪 = Ṙ of the particles

from a reference time 𝑡 to their new state at time 𝑡 + Δ𝑡 according to

R𝛪(𝑡 + Δ𝑡) = R𝛪(𝑡) + Δ𝑡V𝛪(𝑡) +
1
2Δ𝑡

2A𝛪(𝑡)

V𝛪(𝑡 + Δ𝑡) = V𝛪(𝑡) + Δ𝑡Ā𝛪, with Ā𝛪 =
A𝛪(𝑡 + Δ𝑡) + A𝛪(𝑡)

2

(5.28)

This method is a Symplectic integrator which makes it preserve the energy25 of the system with a bounded

error even over long times [22]. Eqs. (5.28) can be solved using a fully explicit scheme by:

1. Specifying the initial positions26 R0
𝛪 and velocitiesV0

𝛪

2. Calculating the initial accelerationsA0
𝛪 according to eq. (5.27)

3. Udating the positionsR𝑛+1
𝛪 using the previously obtainedR𝑛

𝛪 ,V
𝑛
𝛪 , andA

𝑛
𝛪 .

4. Calculating the updated accelerationsA𝑛+1
𝛪 at the new positionsR𝑛+1

𝛪 .

5. Updating the velocitiesV𝑛+1
𝛪 using the previously obtainedV𝑛

𝛪 ,A
𝑛
𝛪 , andA

𝑛+1
𝛪 .

6. Repeating steps 3–5 as needed.

25This is a consequence of the more general fact that these methods preserve the symplectic structure (i.e., the Poisson Bracket
{⋅, ⋅}) of phase space [22]. This property is expected, as thesemethods were designed forHamiltonian systems (see [19, 80]).

26For brevity, we are using the reduced notation𝛸𝑛 ≡ 𝛸(𝑡0 + 𝑛Δ𝑡), where 𝑡0 is the initial time of the simulation and 𝑛 ∈ ℕ.
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The crux of the problem in Molecular Dynamics simulations is the calculation of the nuclear forces and

accelerations that are performed in steps 2 and 4, above. In particular, we need to calculate the gradient

𝛁R𝛪
⟨Ψ0|𝐻𝑒|Ψ0⟩ (5.29)

to obtain the nuclear forces. This can be performed using theHellmann-Feynman theorem (see Section

3.1.4 of [48] or Section 5.6 of [94]), which may be stated as

𝜕𝐸𝑛
𝜕𝑔 =

𝜕 ⟨𝜓𝑛|𝐻|𝜓𝑛⟩
𝜕𝑔 = ⟨𝜓𝑛 ∣

𝜕𝐻
𝜕𝑔 ∣ 𝜓𝑛⟩ (5.30)

for a systemwith aHamiltonian𝐻whose potential𝑉 depends parametrically27 on some variable 𝑔, namely

𝐻 = 𝑝2/2𝑚+𝑉(r; 𝑔). This theorem can be applied directly in our case to obtain the nuclear forces required

in steps 2 and 4, above. Namely,

A𝑛
𝛪 = ⟨Ψ0 ∣ 𝛁R𝛪

𝐻𝑒(R
𝑛
𝛪) ∣Ψ0⟩ (5.31)

One should note that corrections due to an incomplete basis set and an imperfect self-consistencymay apply

as well in eq. (5.31), as Marx and Hutter elaborate [58]. However, such details are beyond the scope of this

dissertation.

5.3 Geometry Optimisations: Broyden-Fletcher-Goldfarb-Shanno

Algorithm

In addition to describing the nuclear motion, we often also require to obtain an equilibrium structure of

thematerial. This canbe performedbyminimising the nuclear potential𝑉𝛮(R𝛪)with respect to the nuclei’s

positionsR𝛪.

Recall that for functions of a single variable 𝑓 = 𝑓(𝑥), the Newton-Raphson method is one of the most

popularminimisation algorithms thanks to the fact that it converges exponentially to the correct extremum

when the starting point is close to it28. Its simple expression for obtaining minima is

𝑥𝑘+1 = 𝑥𝑘 −
𝑓′(𝑥𝑘)

𝑓′′(𝑥𝑘)
(5.32)

27Compare our own eq. (5.30) with eq. (3.6) of Konishi’s and Pafutti’s book [48]. They take the derivate only of the potential
𝑉, but since the kinetic energy is independent of 𝑔, we can exchange it with all of𝛨.

28More precisely, it is a second-order iterativemethod, whichmeans that the error in the approximate value of the trueminimum

at the (𝑘 + 1)th step scales as 𝜀𝑘+1 ∼ (𝜀𝑘)2. See Section 10.11 of [40] for more details.
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Eq. (5.32) can be readily generalised to the case of multiple variables 𝑓 = 𝑓(x), as Roger Fletcher presents

in Section 3.1 of his book [27], by writing

x𝑘+1 = x𝑘 −H−1
𝑓 (x𝑘) ⋅ 𝛁𝑓(x𝑘) (5.33)

where H𝑓 is the Hessian matrix of function 𝑓. However, as Fletcher points out (see Section 3.2 of [27]),

a problem with eq. (5.33) is that it requires knowledge of the analytical expression ofH𝑓, which may not

be available or may be impractical to compute. In particular, as we saw in Section 5.2, the gradient 𝛁𝑉𝛮
is already complicated to compute and requires the usage of the Hellmann-Feynman theorem, whereas

no such convenient expression is known for H𝑉𝛮 . To circumvent these issues, the class of quasi-Newton

methodsmaybeused, one ofwhich is theBroyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm thatwe

are interested in. As Fletcher points out (p. 56 of [27]), BFGS is possibly the best quasi-Newtonmethod.

In the quasi-Newtonmethods, the inverse of theHessianmatrix is approximated in the initial step and then

corrected during every iteration [27]. We write29 this approximation as S𝑘 ≈ H−1
𝑓 (x𝑘). The BFGS formula

for this quantity is

S𝑘+1 = S𝑘 + (1 +
𝜸𝑘 ⋅ S𝑘 ⋅ 𝜸𝑘

𝜹𝑘 ⋅ 𝜸𝑘
) 𝜹𝑘𝜹𝑘

𝜹𝑘 ⋅ 𝜸𝑘
−
𝜹𝑘𝜸𝑘 ⋅ S𝑘 + S𝑘 ⋅ 𝜸𝑘𝜹𝑘

𝜹𝑘 ⋅ 𝜸𝑘
(5.34)

where 𝜹𝑘 = x𝑘+1 − x𝑘 is the change in coordinates and 𝜸𝑘 = 𝛁𝑓(x𝑘+1) − 𝛁𝑓(x𝑘) is the change in the

gradient, both evaluated from step 𝑘 to 𝑘 + 1. A notable point of this method is that, as Fletcher notes [27],

the initial matrix S0 can be any positive definite matrix. Therefore, we do not need to calculateH𝑓 exactly

or approximately at any point in the implementation. When applied to our atomic structures, we only need

to calculate 𝛁𝑉𝛮 using the Hellmann-Feynman theorem30 presented in Section 5.2.

5.4 Undermelt-Quench Approach to Amorphisation

As mentioned in Chapter 1, amorphous materials are characterised by short-range order that depends on

the atoms’ chemistry. Data given by the PDFs 𝑔𝛼𝛽(𝑟), BADs, or the structure factor only account for the

average structural properties and are insufficient todetermine aunique structure. Furthermore, an arbitrary

randomdistribution of atomswill not reproduce the correct structural properties. To address this problem,

29Fletcher [27]uses a different notation fromours. He denotes theHessian byG(𝑘) and its approximate inverse byH(𝑘). Instead,
we reserve the letter H for the Hessian matrix since that is its standard notation.

30Note that here we mean the gradient with respect to all the nuclear coordinates 𝛁 = 𝛁R1
+ 𝛁R2

+ ⋯.
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Ariel A. Valladares, our group’s principal investigator, developed a first-principles technique to accurately

produce the structures encountered in amorphous solids [90], the undermelt-quenchmethod.

This procedure begins by generating of a cell with the correct material composition and density, typically

with a few hundred atoms, that is arranged in a structure known to be unstable for that givenmaterial31. A

Molecular Dynamics (MD) simulation (see Section 5.2) is performed on the initial structure, whereby it is

heated with a constant temperature slope up to just below its melting (solidus) temperature𝑇m and is then

cooled down at the same rate until its temperature approaches 0 K. In this method, one neither reaches

𝑇m nor 0K exactly because the Nosé-Hoover thermostat does not produce a consistent temperature slope

at every step. Instead, a buffer of ∼ 10 K is used at both extremes to prevent the material from melting

or reaching an unphysical negative temperature. This process is similar to the quenching used to harden

steel, and we reach temperatures just below the melting point, hence the name undermelt-quench. A visual

representation of this part of the process is shown in Fig. 5.2.

Figure 5.2: Generic schematic representing theMD process of Valladares’s [90] undermelt-quenchmethod. We have

included the units of ps in the time axis as a reference to the typical order of magnitude that the process

takes32. Note that after the MD process finishes, indicated by the dot in the figure, a Geometry Optimi-

sation is still required to reach a stable structure.

31For instance, in the Cu𝑥Zr1−𝑥 system, the intermetallic compoundCuZr2 is a tetragonal crystal with a C11b structure. When
we perform the undermelt-quench approach, it is necessary to use a sufficiently different structure so that no domain of our
sample crystallises during the process.

32The entire MD process usually takes a time roughly on the order of ∼ 1 ps. There are usually a few hundred steps, and
depending on the elements in question (lighter atoms require shorter time-steps to capture their motion), eachmay occur in
about 1–20 fs.
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5.5 Vibrational Density of States

The underlying idea behind this process is that, by starting with a structure far removed from the equi-

librium crystal, the atoms are unable to rearrange into such a crystal. Instead, the resulting structure ap-

proaches a local minimum, which is likely amorphous since the starting point does not have the symmetry

of the crystal. Unlike the quenching process performed on steels, where microcrystals are formed whose

structure is a perturbation of the equilibrium configuration33, here we expect amorphous structures be-

cause the cooling rates are much higher than what is achievable experimentally, and there is no time for a

crystal to form.

Since 0 K is not achieved in the MD process, we do not expect the resulting structure to match the

(metastable) equilibrium structure of the amorphous material. Therefore, in the undermelt-quench

method, a geometry optimisation process (see Section 5.3) is performed on the final MD structure to

reach the actual equilibrium configuration.

5.5 Vibrational Density of States

The last type of calculation that we need to perform with DFT is the phonon spectrum of the classical

nuclei, or more specifically, the vibrational density of states (vDoS). The background of this topic may

be reviewed in Chapter 4 of Ibach’s and Lüth’s book [44]. As introduced there, phonons appear in the

Taylor expansion of the nuclear potential 𝑉𝛮 around the equilibrium configuration as the harmonic term.

Namely,

𝑉𝛮(𝑅𝛪,𝑖 + 𝑢𝛪,𝑖) = 𝑉𝛮(𝑅𝛪,𝑖) +
1
2 ∑
𝐽,𝛫,𝑗,𝑘

𝜕2𝑉𝛮
𝜕𝑅𝐽,𝑗𝜕𝑅𝛫,𝑘

𝑢𝐽,𝑗𝑢𝛫,𝑘 + 𝑂(𝑢
3) (5.35)

where 𝑅𝛪,𝑖 denotes the 𝑖th cartesian component of the positionR𝛪 of the 𝐼th nucleus, and 𝑢𝛪,𝑖 denotes its
respective displacement from the equilibrium position. With this equation, Ibach and Lüth [44] proceed

to show that the equations of motion for the nuclei may be written as

𝑀𝛪𝑢̈𝐽,𝑗 +∑
𝛫,𝑘

(
𝜕2𝑉𝛮

𝜕𝑅𝐽,𝑗𝜕𝑅𝛫,𝑘
)𝑢𝛫,𝑘 = 0 (5.36)

which is the equation for a harmonic oscillator in 3𝑁nuc = 𝑁𝑝ℎ dimensions, with 𝑁nuc the number of

nuclei under consideration. The conventional way to solve this is introducing the ansatz of a plane wave

solution (cf., eq. (4.5) of [44])

𝑢𝐽,𝑗 =
1

√𝑀𝐽
𝑢̃𝐽,𝑗(q)𝑒

𝑖(q⋅R𝐽−𝜔q𝑡) (5.37)

33Themartensite formedwhen quenching steel has a body-centred tetragonal structure instead of the body-centred cubic struc-
ture of ferrite, which globally minimises the energy. In the words of Verdeja González, Fernández-González, and Verdeja
González [91], “[The structure of martensite] is like a ferrite cell deformed preferentially [along] the c axis.”
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which transforms the equations of motion into

−𝜔2q𝑢̃𝐽,𝑗(q) +∑
𝛫,𝑘

1
√𝑀𝐽𝑀𝛫

(
𝜕2𝑉𝛮

𝜕𝑅𝐽,𝑗𝜕𝑅𝛫,𝑘
)𝑒𝑖q⋅(R𝛫−R𝐽)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐷𝐽𝑗,𝛫𝑘

𝑢̃𝛫,𝑘(q) = 0 (5.38)

where we have identified the dynamical matrix𝐷𝐽𝑗,𝛫𝑘 inside the summation in the right-hand side. In this

classical picture, the phonons are regarded as the normal modes of the oscillator, the eigenvectors of𝐷𝐽𝑗,𝛫𝑘.

We can see from eq. (5.38) that the eigenvalues are precisely the 𝜔2q. This equation has 3𝑁nuc solutions

for every value of q. Note that we did not need to specify if the atoms were arranged in a crystal or an

amorphous solid.

Thedifficulty inperforming the vDoScalculation is that in this case, weneed to explicitly obtain theHessian

matrix

(H𝑉𝛮) =
𝜕2𝑉𝛮

𝜕𝑅𝐽,𝑗𝜕𝑅𝛫,𝑘
(5.39)

which wewere able to bypass previously when performing the geometry optimisation thanks to a clever ap-

proximation. More specifically, we can calculate 𝛁𝑉𝛮 for every configuration with the Hellmann-Feynman

theorem, and we need to take the second derivative of each of the components of this vector to obtainH𝑉𝛮 .

One of the ways to perform this calculation, which is the one used in the DMol3 code, is the finite dis-

placement method, where the derivative is evaluated explicitly by changing every atomic coordinate by a

small but finite amount 𝜀. Mathematically,

𝜕2𝑉𝛮
𝜕𝑅𝐽,𝑗𝜕𝑅𝛫,𝑘

=
𝜕𝑉𝛮
𝜕𝑅𝛫,𝑘

(R1,R2, … ,R𝐽 + 𝜀ê𝑗, … ) − 𝜕𝑉𝛮
𝜕𝑅𝛫,𝑘

(R1,R2, … ,R𝐽, … )

𝜀 (5.40)

where ê𝑗 is the 𝑗th cartesian basis vector. The derivatives in the numerator on the right-hand side of eq.

(5.40) are, asmentioned before, evaluatedwith theHellmann-Feynman theorem, but this calculation needs

to be performed at the equilibrium configuration and at each of the𝑁𝑝ℎ perturbed configurations. There-

fore, this method requires𝑁𝑝ℎ + 1 or 3𝑁nuc + 1DFT cycles in total.

The solutions of eq. (5.38), i.e., the set of eigenvalues and eigenvectors, comprise the phonon spectrum.

The vDoS encapsulates this spectrum as a function of the phonon frequency 𝜔. We can express it formally

as

𝐹(𝜔) = 𝑉
(2𝜋)3𝑁nuc

∑
𝜔q

∫
𝑉
d3𝑞 𝛿(𝜔 − 𝜔q) (5.41)
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This expression is provided byGöranGrimvall inChapter 6 of his book [35] (eq. (6.5)), and it is normalised

to yield the conventional value of 3. With the vDoS we are able to calculate the Debye frequency 𝜔𝐷 that

appears (in the form ofΘ𝐷 = ℏ𝜔𝐷/𝑘𝛣) in the formula for 𝑇𝑐. As Grimvall shows (cf. eqs. (6.22) and (6.34)

of [35]), 𝜔𝐷 is given by

𝜔𝐷 = exp[13 +
∫𝜔max

0 d𝜔 ln(𝜔)𝐹(𝜔)

∫𝜔max

0 d𝜔 𝐹(𝜔)
] (5.42)

where 𝜔max is the maximum frequency of the vDoS.

5.6 Mata-Valladares Approach to the 𝑇𝑐 Calculation

As we have seen in Chapter 2, the BCS theory of superconductivity is based on the electron-phonon in-

teraction. This means that to compute either the Cooper pairing potential 𝑉, we need knowledge of

the electronic properties close to the Fermi surface, the phonon spectrum, and information about the

electron-phonon interaction itself. Ab initio computations of the electron-phonon interactionmay in prin-

ciple be performed within the DFT framework to obtain the function 𝛼2(𝜔) which is an average of the

electron-phonon interaction appearing in the more generalized theory of superconductivity of Gerasim

M. Eliashberg [61]. One can combine 𝛼2(𝜔) with the vDoS 𝐹(𝜔) to obtain a dimensionless coupling

constant 𝜆 (see eq. (5) of [61]) that gives a measure of the strength of the electron–phonon interaction.

The difference of 𝜆 and theMorel–Anderson pseudopotential 𝜇∗, which is a dimensionless measure of the

Coulomb interaction strength, plays the role of the 𝑁0𝑉 of BCS theory in the weak coupling range [61]

(i.e., 𝜆 − 𝜇∗ 𝜆≪1−−−→ 𝑁0𝑉).

The most efficient approach for the calculation of 𝜆 is the linear response method34, the implementation

of which can be found in Rolf Heid’s notes [37]. Unfortunately, as it can be seen in Heid’s notes (cf. eqs.

(104) and (105) of [37]), this calculation requires obtaining the phonon spectrum, and then calculating

a matrix element for every one of the𝑁𝑝ℎ phonons and𝑁𝑒 electronic states. Since the phonon spectrum

in DMol3 is calculated using the finite displacement method, one DFT calculation is required for each of

the𝑁𝑝ℎ modes. If we denote the number of electrons by𝑁, with𝑁𝑒 ∼ 𝑁𝑝ℎ ∼ 𝑁 scaling proportionally

as more atoms (with a fixed composition) are added, then the calculation of DFT energy scales as 𝑂(𝑁3),
the phonon spectrum as 𝑂(𝑁4), and the electron-phonon interaction as presented by Heid [37] scales as

𝑂(𝑁5). Because of this high computational complexity, it is impossible to directly calculate the electron-

phonon interaction in amorphous materials, where one inherently requires large cells with many atoms to

portray the disorder.

34An alternative method uses finite differences, it has the advantage of being more versatile (it can use any electronic structure
method, not only DFT), and can obtain higher-order terms in the electron phonon interaction (anharmonic terms), as Bar-
tomeuMonserrat explains [62]. These advantages, however, come with a higher computational cost [62].
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To circumvent this problem, Mata-Pinzón et al. [59], members of our group, have put forward another

method that can be applied to amorphous materials, unlike the explicit calculation introduced above. In

essence, one assumes that theCooper pairing potential𝑉 is not affected drastically if thematerial’s structure

changes [76], this allows us to approximate𝑉 as invariant, and in turn, if𝑇𝑐 is known in one of thematerial’s

structure, we can extrapolate its value to a different structure. This method has been employed successfully

by our group in an number of previous publications [41, 42, 59, 76, 89], and we will outline this method in

what follows.

Recall that BCS theory predicts a critical temperature of the superconducting transition 𝑇𝑐 given by

𝑇𝑐 = 1.13Θ𝐷 exp(− 1
𝑁0𝑉

)

where Θ𝐷 is the Debye temperature, 𝑁0 is the electronic density of states at the Fermi level, and 𝑉 is the

Cooper pairing potential, we derived this result as eq. (2.115) in Section 2.2.5. We can introduce a super-

script to label the quantities according to which structure they correspond to, in particular, we use “𝑘” and
“𝑢” to label the phases where𝑇𝑐 is known and unknown, respectively. Then, as outlined by Rodríguez et al.

[76], the BCS equation may be transformed into

(𝑇(𝑘)
𝑐 )

𝛮(𝑘)
0 /𝛮(𝑢)

0 = (1.13Θ𝑘
𝐷)

𝛮(𝑘)
0 /𝛮(𝑢)

0 exp(− 1
𝑁(𝑢)
0 𝑉

) (5.43)

where, in the right-hand side, we have matched the exponential to what should appear in the equation for

𝑇(𝑢)
𝑐 . If the quotient of densities at the Fermi level is denoted by 𝜂 ≡ 𝑁(𝑢)

0 /𝑁(𝑘)
0 , then the equation for 𝑇(𝑢)

𝑐

can be expressed as

𝑇(𝑢)
𝑐 = 1.13Θ(𝑢)

𝐷 (𝑇(𝑘)
𝑐 )

1/𝜂
(1.13Θ(𝑘)

𝐷 )
−1/𝜂

(5.44)

In eq. (5.44) we see that the explicit dependence on the Cooper pairing potential has disappeared, and

the only quantities involved are the Debye temperatures and the densities at the Fermi level, forgoing the

necessity of an electron-phonon calculation. Eq. (5.44) can be simplified a bit further by introducing the

quotient of Debye temperatures 𝛿 ≡ Θ(𝑢)
𝐷 /Θ(𝑘)

𝐷 , in summary

𝑇(𝑢)
𝑐 = 𝛿(𝑇(𝑘)

𝑐 )
1/𝜂
(1.13Θ(𝑘)

𝐷 )
(𝜂−1)/𝜂

, where 𝜂 =
𝑁(𝑢)
0

𝑁(𝑘)
0

, 𝛿 =
Θ(𝑢)
𝐷

Θ(𝑘)
𝐷

(5.45)

which depends only on the electronic and vibrational properties of the “known” structure, and the quo-

tients 𝜂, 𝛿.

In practice, to apply this approach to the 𝑇𝑐 calculation we need to:

72



5.7 Software

1. Prepare the computational amorphous samples thatwill represent “𝑘” and “𝑢”. This is typically done

using the undermelt-quench approach35 outlined in Section 5.4.

2. ADFT calculation is performed on each of the amorphous samples to obtain the eDoS at the Fermi

level,𝑁0.

3. The Debye Temperature,Θ𝐷, of every sample is obtained following the method outlined in Section

5.5.

4. The𝑇𝑐 of oneof the samples (“𝑢”) is estimatedwith eq. (5.45) using thedata calculated in theprevious

steps as well as the known 𝑇𝑐 of the other sample (“𝑘”).

5.7 Software

All of the DFT calculations were performed with the DMol3 code [20]within the User Interface provided

by theMaterials Studio suite fromDassault SystèmesBioviaCorp. [18]. This includes the electronic (eDoS)

and vibrational (vDoS) densities of state.

All of the structural properties of the amorphous cells were computed using the Correlation software by

Rodriguez et al. [75]. The graphical displays of thematerials’ structures were generated using theDiscovery

Studio Visualizer fromDassault Systèmes Biovia Corp. [17].

All of the plots in this work have been generated using standalone programs developed by the author in

Python 3.10.6. To graph discrete data in continuous plots, a (Gaussian) kernel smoothing has been per-

formed where required. A representative selection of these programs is shown in Appendix A.

35Note that the Mata-Valladares approach to the 𝛵𝑐 calculation is not restricted in terms of which method is used to generate
an amorphous sample. One could feasibly apply it to samples generated with, e.g., the sphere packing methods presented by
Stachurski [84]. However, we use the undermelt-quench amorphisation because it yields true first principles results, from
the intitial structure to the properties of the system.
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6 Results

Wherewe showcase anddiscuss the findings obtained from

our simulations.

We have obtained amorphous samples of six distinct alloys in the Cu𝑥Zr1−𝑥 system using the Undermelt

quench approach (see Section 5.4), namely, for 𝑥 = 0.25, 0.33, 0.45, 0.5, 0.55, and 0.6. Their cell sizes

have been chosen tomatch the experimental densities presented by Z. Altounian and J.O. Strom-Olsen [3],

which complement those of their earlier work together with Guo-hua [2] as well as the more recent results

by Li et al. [53] for the concentration 𝑥 = 0.5 that is missing in the former articles1. In the amorphisation

procedure we have used the solidus temperatures provided in the phase diagram byHiroaki Okamoto [65],

reproduced here in Fig. 6.1.

The values relevant to our alloys are summarised in Tab. 6.1.

Table 6.1: Mass densities and solidus temperatures of the amorphous Cu𝑥Zr1−𝑥 alloys that have been used in this

work. Retrieved from the data in [2, 3, 16, 53] and Fig. 1 of [65].

Cu0.25Zr0.75 Cu0.33Zr0.67 Cu0.45Zr0.55 Cu0.5Zr0.5 Cu0.55Zr0.45 Cu0.6Zr0.4

𝜌 ( g

cm3 ) 6.85 6.95 7.14 7.30 7.34 7.37

𝑇m (K) 1268 1275 1195 1208 1193 1206

We have obtained the eDoS of all these structures, but the vDoS have been computed only for 𝑥 = 0.25,
0.33, and 0.5 due to computational constraints. We will present our results in the upcoming sections.

1Article [3] does include a value of 𝜌 for 𝑥 = 0.5, but it is only interpolated. Also, note that Li et al. [53] do not directly report
the numerical value of the density and instead use a plot. We use the value retrieved from said plot by Cui et al. [16].
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6 Results

Figure 6.1: Phase diagram of the Cu-Zr system. Reproduced fromOkamoto’s work [65].

6.1 Amorphous Structures

We have successfully generated the amorphous structures of the six alloys using the undermelt-quench

approach described in Section 5.4. The molecular dynamics process was performed using a time step of

10.70 fs, which was determined using the following rule of thumb

𝑡𝑠 = 𝛼√𝑀min, with 𝛼 = 3
√5

fs ⋅Da−1/2 (6.1)

where 𝑡𝑠 is the time step and 𝑀min is the lesser of the atomic masses in the simulation. All of the amor-

phous cells were obtained using an initial 216-atom diamond supercell with random substitution tomatch

the appropriate concentration, and whose size was chosen to match the mass densities in Tab. 6.1. Note

that the diamond structure with a coordination number of 4 is very suitable as an unstable configuration

in Cu𝑥Zr1−𝑥 alloys, since the structure of pure Cu and Zr are FCC and HCP, respectively, both with a co-

ordination number of 12. Furthermore, the only stable intermetallic crystal in the range analysed is CuZr2

(see the low temperature range in Fig. 6.1), which has a C11b structure (see [13]) where both elements have
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6.1 Amorphous Structures

a coordination of 8 (the nearest neighbours of any Cu atom are 8 Zr atoms, and the converse is also true).

The temperatures of our samples are plotted in Fig. 6.2.

Figure 6.2: Temperatures during the Molecular Dynamics process of the Undermelt-quench amorphisation proce-

dure for the six selected alloys. Note that the heating and cooling rates are close to ∼ 1015 K/s. The

heating is performed from ambient temperature (≈ 300 K) in 100 steps, and the cooling is performed at

an equal rate until a temperature below 10K is achieved.

If we compare the schematic presented in Fig. 5.2 with our results here in Fig. 6.2, we can see that the

latter does not follow the shape of the ramp exactly; instead, a small dip at the start of the up-ramp and

some oscillations in the down-ramp are observed. This difference may be attributed to the fact that the

temperature is regulated using a Nosé-Hoover NVT thermostat (see, e.g., [95]), which couples the atoms

to additional heat bath variables. The variations represent the thermostat “attempting” to equilibrate the

current atomic temperature with the target temperature.

After the dynamics had finished, the resulting structures were examined, showing they did not present un-

desirable crystallisation. These structures were subsequently optimised using the method described in Sec-

tion 5.3. The final configuration of each alloy is displayed in Fig. 6.3. Note that throughout this document,

all Cu atoms are displayed in orange while the Zr atoms are coloured teal.

At a glance, we can see in Fig. 6.3 that the structures are amorphous, however, we need an objective property

to quantify the structural properties. Namely, the PairDistribution Functions (PDFs). These are plotted in

Fig. 6.4. Note that in Fig. 6.4 we have denoted the combined contribution ofmixed partial PDFs as 𝑔Cu, Zr,
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6 Results

although if we were to be consistent with the notation in Chapter 1, we would need to write 𝑔Cu, Zr +
𝑔Zr, Cu.

An interesting detail to note is that Figs. 6.4 (a) and (b), corresponding to the concentrations in the

Cu𝑥Zr1−𝑥 system that are not within the glass forming range, there is a fourth peak apparent in the 𝑔(𝑟),
whereas in the other four alloys that are inside the range, this feature is a lot less prominent, and may be

closer to a fluctuation around the limit value of 1. This appears to suggest that in the absence of a fourth

peak, the amorphous phase is more likely to appear. To support this claim, we may argue that pronounced

peaks at longer distance are evidence that the nuclear positions are correlated more strongly, making it

harder to form an energetically disadvantageous amorphous phase. However, a more extensive study is

necessary to determine whether this is either an artefact of our limited number of samples, a phenomenon

exhibited only in the Cu𝑥Zr1−𝑥 system, or a general characteristic of bulk metallic glasses.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.3: Optimised structures of the amorphous alloys in the Cu𝑥Zr1−𝑥, with (a) 𝑥 = 0.25, (b) 𝑥 = 0.33, (c)
𝑥 = 0.45, (d) 𝑥 = 0.5, (e) 𝑥 = 0.55, and (f) 𝑥 = 0.6.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Partial and total PDFs of the Cu𝑥Zr1−𝑥 cells displayed in Fig. 6.3. (a) 𝑥 = 0.25, (b) 𝑥 = 0.33, (c) 𝑥 = 0.45,
(d) 𝑥 = 0.5, (e) 𝑥 = 0.55, and (f) 𝑥 = 0.6.
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6.2 Electronic Properties

6.2 Electronic Properties

After having determined the equilibrium amorphous structure of every alloy of interest in Section 6.1, we

obtained the electronic density of states (eDoS) for each of the cells shown. The partial (for each band) and

total eDoS calculated for the cells in Fig. 6.3 are displayed in Fig.

We see in Fig. 6.5 that the most prominent contribution is the d band, with its first peak around −3 eV
becoming wider and higher as the concentration of Cu increases. On the other hand, the plateau on this

same band around 𝜀𝐹 becomes shorter as 𝑥 increases. This tells us that themain contributor to the first peak

is Cu, and that the effect of adding Zr is to increase the eDoS at the Fermi level. This last point is of utmost

importance to us, because the superconducting 𝑇𝑐 depends strongly on𝑁0 = 𝑁(𝜀𝐹), as we saw in Section

2.2. The values of𝑁0 are shown in Tab. 6.2.

Table 6.2: Densities of states at the Fermi level𝑁0, obtained from the eDoS in Fig. 6.5. We see a systematic decrease

in𝑁0 as the copper content increases.

Cu0.25Zr0.75 Cu0.33Zr0.67 Cu0.45Zr0.55 Cu0.5Zr0.5 Cu0.55Zr0.45 Cu0.6Zr0.4

𝑁0 (
st

eV⋅at) 1.131 1.065 0.953 0.922 0.887 0.853
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Partial and total eDoS of our amorphous Cu𝑥Zr1−𝑥 cells. (a) 𝑥 = 0.25, (b) 𝑥 = 0.33, (c) 𝑥 = 0.45, (d)
𝑥 = 0.5, (e) 𝑥 = 0.55, and (f) 𝑥 = 0.6. The dotted vertical line represents the Fermi level 𝜀𝐹.
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6.3 Vibrational Properties

6.3 Vibrational Properties

We have computed the vibrational densities of state (vDoS) for three concentrations of our alloys, namely,

for 𝑥 = 0.25, 0.33, and 0.5. Due to computational constraints, it was not possible to calculate the vDoS of

the other three alloys. These spectra are shown in Fig. 6.6.

Figure 6.6: Vibrational densities of state of the amorphousCu𝑥Zr1−𝑥 alloys corresponding to 𝑥 = 0.25, 0.33, and 0.5.

With the data in Fig. 6.6 we have computed the Debye frequencies 𝜔𝐷 of the three alloys using Grimvall’s

[35] expression, eq. (5.42) presented in Section5.5. The resulting values of𝜔𝐷 and the correspondingDebye

temperaturesΘ𝐷 are displayed in Tab. 6.3.

Table 6.3: Debye frequencies and temperatures of our amorphous alloys, obtained from the vDoS in Fig. 6.6.

Cu0.25Zr0.75 Cu0.33Zr0.67 Cu0.5Zr0.5

ℏ𝜔𝐷 (meV) 20.98 21.19 22.14

Θ𝐷 (K) 243.5 245.9 256.9

An important note regarding the plots and data in Fig. 6.6 and Tab. 6.3 is that they were obtained using a

Gaussian Kernel Smoothing method. The bandwidth was chosen using the Sheather–Jones criterion (see,

e.g., Section 10.2 of [31]). The Debye frequencies ℏ𝜔 as functions of the Gaussian bandwidth 𝑏 used for

the smoothing are displayed Fig. 6.7
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6 Results

(a) (b)

(c)

Figure 6.7: The variation of the Debye frequencies ℏ𝜔with the change in smoothing bandwidth 𝑏 for a Gaussian ker-

nel𝐾(𝑧; 𝑏) = (2𝜋𝑏2)−1/2𝑒−𝑧
2/2𝑏2 . The final bandwidth was chosen to satisfy the Sheather–Jones criterion

(see eq. (10.28) of [31]), and is indicated with the dotted vertical line. (a) 𝑥 = 0.25with 𝑏SJ = 2.318meV,

(b) 𝑥 = 0.33with 𝑏SJ = 2.293meV, (c) 𝑥 = 0.5with 𝑏SJ = 2.403meV.

Note that the domain of (0, 5]meV for 𝑏was chosen arbitrarily. Within this domain, the variation of ℏ𝜔𝐷
with the smoothing is less than 3.5% of the final value for all three sets of data.
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6.4 Estimation of 𝑇𝑐

6.4 Estimation of 𝑇𝑐

With the data presented in Sections 6.2 and 6.3 we can apply the Mata-Valladares approach to the 𝑇𝑐 calcu-
lation, particularly eq. (5.45). Recall that in Section 5.6, we considered two similar but distinct materials

where one of the values of 𝑇𝑐 is known, whereas the other one is not. We found that, assuming that the

Cooper pairing potential 𝑉 is equal in both samples, we can estimate the critical temperature of a sample

𝑇(𝑢)
𝑐 (“𝑢” for unknown) using the known value 𝑇(𝑘)

𝑐 (“𝑘” for known) of the other. Our 𝑇𝑐 calculations are
summarised in Fig. 6.8, where we use the notation 𝑥(𝑘) to denote the Cu concentration of the “𝑘” alloy.

We only report two values of 𝑇(𝑢)
𝑐 for each 𝑥(𝑘) because when both samples are the same, eq. (5.45) reduces

trivially to 𝑇(𝑢)
𝑐 = 𝑇(𝑘)

𝑐 since in that case 𝜂 = 𝛿 = 1.

Figure 6.8: 𝑇𝑐 calculations obtained from the Mata-Valladares approach. The experimental values of 𝑇𝑐, employed as

𝑇(𝑘)𝑐 in eq. (5.45), were obtained by Altounian and Strom-Olsen [3] and are indicated in green. We have

included a line of best fit for each set of estimated or experimental 𝑇𝑐.

Additionally, we can solve for the Cooper pairing potential in the BCS equation for 𝑇𝑐 in each of the con-

centrations, namely𝑉 = [𝑁0 ln(1.13Θ𝐷/𝑇𝑐)]
−1, the results of which are summarised in Tab. 6.4

Table 6.4: Cooper pairing potentials for the amorphous alloys. Computed from the data in Tabs. 6.2, 6.3, and the

experimental results in [3].

Cu0.25Zr0.75 Cu0.33Zr0.67 Cu0.5Zr0.5

𝑉 ( eV⋅atst ) 0.198 0.197 0.188
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6 Results

6.5 The Crystalline CuZr2 Intermetallic Compound

In addition to the amorphous alloys mentioned in the preceding section, we also analysed the CuZr2 crys-

tal, which is the only stable crystalline phase occurring in the range of concentrations (𝑥 ∈ [0.25, 0.6])
considered in this work, as is clearly seen in Fig. 6.1.

(a) (b)

Figure 6.9: C11b crystalline structure of the CuZr2 inter-

metallic compound. According to the results

of Chebotnikov and Molokanov [13], 𝑎 =
3.218 Å, 𝑐 = 11.18 Å, and 𝑧 = 0.3468. In

(a) the standard tetragonal cell is displayedwith

its structural parameters indicated and in (b)we

show the octahedral unit cell.

The CuZr2 crystal has a tetragonal C11b (Si2Mo-

type) structure, described by M. V. Nevitt and J.

W. Downey [63]. More recent structural parame-

ters are provided by V. N. Chebotnikov and V. V.

Molokanov [13]. The corresponding structure, in-

cluding the numerical values of the parameters, is

shown in Fig. 6.9.

All of the atoms in the structure in Fig. 6.9 lie on

parallel vertical lines (viz., in the [001] direction)
that pass through the vertical edges and the center-

line. In this type of structure, the cell is symmet-

ric under reflections about the plane that bisects the

vertical axis perpendicularly (viz., the (002) plane).
However, the position of the Zr atoms along the

vertical axes is not uniquely determined, instead de-

pending on the parameter 𝑧 which differs between

compounds (see [63]). Note that the Cu atoms

make abody centered tetragonal cell, where the cen-

tral site is equivalent to any of the corners. The four atoms at the base together with the central one form

a square pyramid whose base edges are of length 𝑎 and with height 𝑐/2. A Zr atom is located inside the

pyramid along the vertical axis at a distance 𝑧𝑐 from the apex. More generally, every Zr atom is located in-

side a pyramid of identical proportions that is formed from four Cu atoms in one of the horizontal planes

together with a single Cu in an adjacent plane. In Fig. 6.9 (b) we show how one of these pyramids may be

joined with its mirror image with respect to the (001) plane to form an octahedron that has Cu atoms as

vertices and two Zr atoms along its major diagonal (i.e., the green line in Fig. 6.9 (b)).

Starting from the structure described above, we generated a 216-atom supercell (4×3×3 of the one depicted
in Fig. 6.9 (a)), whichwas later passed through an undermelt-quench procedure before calculating its eDoS

and vDoS. The reasons for this specific procedure are twofold: to yield results that are as comparable to
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6.5 The Crystalline CuZr2 Intermetallic Compound

the amorphous sample as possible, and to eliminate the presence of negative phonon energies from the

spectrum2. The PDFs before and after the undermelt-quench process are shown in Fig. 6.10

(a) (b)

Figure 6.10: Pair distribution functions 𝑔(𝑟) of the of theCuZr2 crystalline intermetallic compound. (a) The original

structure reportedbyChebotnikov andMolokanov [13], (b)The structure obtainedwith theundermelt-

quenchmethod. Note the vertical scale here, which differs from the one in Section 6.1 by a factor of ∼ 8.

A clearer picture of the distinction between the structures is seen by taking the difference between their

PDFs, as shown in Fig. 6.11.

(a)

Figure 6.11: Change in the crystalline 𝑔(𝑟) produced by the undermelt-quench procedure.

In Fig. 6.11 we see spikes inΔ𝑔(𝑟) that appear to mostly come in pairs of opposite sign (i.e., a positive spike

followed by one of equalmagnitude but negative, or vice versa), this suggests that themost important differ-

2The author wishes to thank his colleagues David Hinojosa-Romero and Gerardo A. Martínez for suggesting this procedure.
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6 Results

ence between the PDF before and after the undermelt-quench procedure is the splitting of some peaks into

pairs of adjacent peaks. The existence of these differences may be partly attributed to the fact that Density-

Functional approximations do not reproduce the experimental structures exactly, particularly PBEsol for

transition metals has been observed to produce a mean absolute relative error of 0.9% in its predictions of

crystal lattice constant, according to Zhang et al. [96].

Afterwards, we calculated the eDoS and vDoS for the resulting structure, as well as the variation of ℏ𝜔𝐷 as

a function of the smoothing. These are shown in Fig. 6.12.

(a) (b)

(c)

Figure 6.12: Electronic and vibrational spectra of the CuZr2 crystalline intermetallic compound. (a) Partial and total

eDoS with the Fermi level indicated by the dotted line, (b) the vDoS of the crystal (solid line) compared

with the one of the amorphous sample (dotted line) obtained in Section 6.3, and (c) the variation of

ℏ𝜔𝐷 as a function of the smoothing bandwidth. The optimal bandwidth according the Sheather-Jones

criterion is 1.107meV and its indicated by the dotted line.
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6.6 Comparison with Experimental Densities of State

From the spectra in Fig. 6.12, we obtained a density at the Fermi level of 𝑁0 = 0.587 st/eV ⋅ at, as well
as a Debye frequency of ℏ𝜔𝐷 = 20.55 meV which corresponds to a Debye temperature Θ𝐷 = 238.5 K.

Combining these values with the ones of the corresponding amorphous phase (i.e., 𝑥 = 0.33) into eq.

(5.45), we predict a critical temperature for the crystalline phase given by:

𝑇x-CuZr2
𝑐 ≈ 0.0479K = 47.9mK (6.2)

This valuemay be regarded, as was done in the work byMata et al., as an upper bound for the experimental

value of 𝑇𝑐 in the crystalline phase.

6.6 Comparison with Experimental Densities of State

In this section we present a comparison of our computational results of electronic and vibrational spectra

with the corresponding data available in the literature.

We compare our eDoS with the experimental results obtained by Oelhafen, Hauser, and Güntherodt [64]

through ultraviolet–photoemission spectroscopy (UPS), as well as the more recent result by Y. Takahara

andN.Narita [87]. These comparisons are shown in Fig. 6.13, whichwe have split tomake the comparison

between the similar compositions easier and to avoid clutter.

In Fig. 6.13 we observe a relatively good match between our results and the experimental data, particularly

two trends are clearly mirrored: firstly, the peak around −3 eV, which is associated with the d-shell of Cu

broadens as 𝑥 increases, whereas the plateau around the Fermi level which is associatedwith the d-shell of Zr

decreases instead. Note that the experimental spectra drop off quickly above 𝜀𝐹, this can be easily explained

by the fact that the photoemission process underlying the UPS and XPSmethods rely on the photoelectric

effect, which requires the presence of electrons on the relevant states to be measured. An elementary com-

putation shows that at room temperature 𝑘𝛣𝑇 ∼ 0.026 eV, and therefore states with energies higher than

∼ 0.1 eV remain unoccupied, and unmeasurable by either UPS orXPS.On the other hand, we observe that

before the aforementioned drop-off, the eDoS close to the Fermi level in the experimental data is higher

than our calculated value for comparable compositions. The explanation for this phenomenon is described

by Bardeen in [7],where he notes that the electron-phonon interaction renormalises𝑁0 by a factor of 1+𝜆,
where 𝜆 is a dimensionless coupling constant that measures the strength of this interaction. Our eDoS cal-

culations were performed with static nuclei, and are therefore unable to account for this renormalisation

of vibrational origin.

For the vDoS, there are unfortunately few experimental results available for comparison, they are close only

to our 𝑥 = 0.5 alloy. In Fig. 6.14, we compare our results with the inelastic neutron scattering data obtained
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6 Results

(a)

(b)

Figure 6.13: Comparisons between our calculations and experimental data [64, 87] for the eDoS of the Cu𝑥Zr1−𝑥 in

the ranges: (a) 0.25 ≤ 𝑥 ≤ 0.39, and (b) 0.40 ≤ 𝑥 ≤ 0.60. All the spectra have been normalised to 1 for

ease of comparison.
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6.7 Conclusions

by Suck et al. [85], and the angular range chopper neutron spectrometer (ARCS) results of Smith et al.

[83].

Figure 6.14: Comparisons betweenour calculations and experimental data [83, 85] for the vDoS.Note that the results

of Smith et al. [83] (cyan dotted line) are not directly comparable to ours because they were obtained at

a higher temperature (571 K), but they provide an interesting comparison. All the spectra have been

normalised to 1 for ease of comparison.

We observe in Fig. 6.14 that our results compare reasonably well with those of Suck et al. [85], whereas

the vDoS obtained by Smith et al. [83] is the one that differs the most from all the others. This might be

because the latter experiment was performed at higher temperatures (between 571 and 700 K) to observe

the variation of the vibrational spectrum through the cristallisation transition at 692 K. Here we have

digitised only the lowest temperature result of Smith et al. [83] at 571K, but it is reasonable to assume that

the structure at that temperature will differ from the (metastable) equilibrium structure that we sought to

obtain here.

6.7 Conclusions

We observe a systematic trend wherein the alloys with a higher critical temperature overestimate the corre-

spoding value in alloys with a lower 𝑇𝑐, and conversely, the alloys with a lower 𝑇𝑐 underestimate their higher

counterparts. This points towards the fact that our approximation of constant Cooper pairing potential𝑉
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6 Results

is not satisfied exactly, but it is instead a function of the concentration 𝑥 and the material’s structure. This

is expected since we are dealing with a broad range of the Cu-Zr phase diagram, and it is seen in our results

in Tab. 6.4, where𝑉 is seen to increase with the concentration. However, in this entire range,𝑉 varies only

about 5.3%, which is remarkable given all of the complexities involved in the determination of the exact

value of this coupling. Unfortunately, this error is amplified considerably in the estimation of 𝑇𝑐 due to the

high sensitivity of this quantity to variations in𝑉 in the weak coupling range (𝑁0𝑉 < 1) [8],which is where

our samples reside.

Our estimation of 𝑇𝑐 for the crystalline phase is in line with the experimental results of P. Garoche and J.

J. Veyssie [30] who explored the superconductivity in both the amorphous and crystalline CuZr2 down to

0.3 K, finding 𝑇𝑐 = 2.27 K for the former, but not observing any transition in the latter. We suggest, based

on our results, that future studies will indeed find superconductivity in the crystalline CuZr2 compound if

lower temperatures are achieved, with the value of 47.9mK as an upper bound.

Our results seem to support the idea put forward by Mata et al. [59] that the density of states at the Fermi

level is the most important factor in the determination of 𝑇𝑐, although the assumption of constant 𝑉 has

clear limitations. Nonetheless, we find that even between very distinct alloys, with 𝑥 = 0.25 and 0.5, which

are separated by a whole quarter of the phase diagram, the results are still predictive of the correct order of

magnitude of the transition temperature. As Bardeen indicates [7], the fundamental reason for the pairing

in superconductors is not actually the Bose-Einstein statistics of the pairs, but rather that pairing is the

most efficient way for the electrons to use the accesible states in the vicinity of the Fermi surface to form a

coherent low energy ground state. The number of accessible states is directly increased by raising the eDoS

at the Fermi level, increasing in turn the ability of the electrons to pair up, increasing the stability of the

superconducting phase at higher temeratures. This trend is observed systematically in our results.

In essence, our results in Section 6.4 have tested the limits of the assumption in the Mata-Valladares ap-

proach [59] of constant Cooper pairing potential 𝑉. Alternatively, this may be seen as a study of the vari-

ation of 𝑉 as the composition and structure of the material is modified. Future research on this avenue

might be to obtain systematic results for a more extensive section of the Cu𝑥Zr1−𝑥 phase diagram and gen-

eralisation to other alloys. A different direction for future work that has been contemplated is amorphous

hydrogenated Cu-Zr alloys, the starting point of which could be the Python script presented in Section

A.3.
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A Appendix: Code

In this Appendix, we include the Python scripts used for plotting and smoothing the graphs presented in

this document, as well as a simple program that randomly introduces interstitial atoms to any structure in

a .car format, which we could use if we decide to extend our work to hydrogenated Cu-Zr alloys.

A custom Python script was made for every figure presented, making them redundant. Therefore, we do

not include all of them but only the one used for plotting the DSPPs in Section 5.1.3, and the one for the

vDoS and variation of ℏ𝜔 with the smoothing in Section 6.3. All the other graphing programs are simpler

than these two, and may be constructed by adapting blocks of code from them.

A.1 Code for plotting the DSPP

    import numpy as np

    import matplotlib.pyplot as plt

    from matplotlib.ticker import FormatStrFormatter

    Ha2eV = 27.2114e-3  # How many *keV* in 1 Ha

    au2Ang = 0.529177249  # How many Angstroms per a. u. (i.e. Bohr radii)

    lw = 2 # Linewidth

    font = "EB Garamond"

    line_colors = ["#000c7c", "#5a0fa0", "#c80083", "#ff4d62", "#ffac28",

        "#fff123"]

    rc = {"font.family" : "serif",

          "mathtext.fontset" : "custom"}

    plt.rcParams.update(rc)

    plt.rcParams["font.sans-serif"] = [font] + plt.rcParams["font.serif"]
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    def nCk(n, k):

        return np.math.factorial(n)/(np.math.factorial(k)*np.math.factorial(n-k))

    def LegPoly(x, l):

        return 2**(-l)*np.sum([nCk(l, k)**2*(x-1)**(l-k)*(x+1)**k

            for k in range(l+1)], axis=0)

    def DSPP(x, r_c, a_i, z):

        return np.where(x < r_c, np.sum([a_i[i]*LegPoly(x/r_c, 2*i)

            for i in range(9)], axis=0), corePot(x, z))

    def mth_deriv(f, x, m, *args):

        dx = 1e-4

        if m == 1:

            return (f(x+dx, *args)-f(x-dx, *args))/(2*dx)

        if m == 0:

            return f(x, *args)

        if m < 0:

            print("Error: There can't be negative derivatives")

            return None

        return (mth_deriv(f, x+dx, m-1, *args)

            -mth_deriv(f, x-dx, m-1, *args))/(2*dx)

    def corePot(x, z):

        return -z/np.abs(x)

    elem = 'Zr'

    filen = f'{elem}-params.txt'

    ''' File formed from a snippet of the dspp_s_01d21 file, for example:

    _  29 19  3  5   0.586  Cu   4.05E-04   0.00E+00   4.05E-04  0 0 0  0 1 1 0

        0.582287  -73.665516   59.608637  -21.283123    0.830049    3.558364

        0.585582   -3.579659  -59.476665   40.038219  -10.333632    1.522534

        0.511054  -12.683232  -46.813416   23.492868    0.542987   -0.635989

        0.573714  -70.395706   55.100762  -21.171123    1.076816    4.037596

      5   0.2820   -4.868563    8.639610    6.279978   -7.035533    2.511330

    '''
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A.1 Code for plotting the DSPP

    header = np.genfromtxt(filen, max_rows=1, encoding=None)

    z = header[2]

    DSPP_params = np.genfromtxt(filen, skip_header=1, max_rows=4, encoding=None)

    R_c = 0

    for i in range(4):

        r_c_l = DSPP_params[i][0]

        R_c = max(R_c, r_c_l)

    fig, ax = plt.subplots(figsize=(4.5, 5))

    x = np.linspace(0, 0.9/au2Ang, 400)

    V_loc = corePot(x, z)*Ha2eV

    ax.plot(x*au2Ang, V_loc, linestyle='--', label=

        '$-\\dfrac{z_{\\mathrm{ion}}}{r}$', color=line_colors[0], linewidth=lw)

    num = [3, 0, 1, 2] # Rearranging because the DSPP file starts with l=3, (the

    # "local" part) then 0, 1, and 2.

    for l in [1, 2, 3, 0]:

        r_c_l, a_i_l = DSPP_params[l][0], DSPP_params[l][1:]

        R_c = max(R_c, r_c_l)

        Mat = np.array([[mth_deriv(LegPoly, 1, m, 2*i)*(1/r_c_l)**m

            for i in range(5, 9)] for m in range(4)])

        vec = np.array([mth_deriv(corePot, r_c_l, m, z)-np.sum([a_i_l[i]

            *mth_deriv(LegPoly, 1, m, 2*i)*(1/r_c_l)**m for i in range(5)])

            for m in range(4)])

        a_i_l_ext = np.linalg.solve(Mat, vec)

        a_i_l = np.concatenate((a_i_l, a_i_l_ext))

        DSPP(x, r_c_l, a_i_l, z)*Ha2eV

        ax.plot(x*au2Ang, V_l, label=r'$v_{:d}$'.format(num[l]), color

            =line_colors[num[l]+1], linewidth=lw)
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    ax.vlines(R_c*au2Ang, ymin=-3.2, ymax=1.3, linestyle='--', color='k',

        linewidth=lw)

    ax.set_ylim(ymin=-3.2, ymax=1.3)

    ax.set_xlim(xmin=0, xmax=0.9)

    plt.legend(loc="upper right", fontsize=16, framealpha=0.9)

    plt.xlabel("$r~(\\mathrm{Å})$", fontsize=18)

    plt.ylabel("$v~(\\mathrm{keV})$", fontsize=18)

    ax.tick_params(axis='both', which='major', labelsize=12)

    plt.text(R_c*au2Ang*0.98, -3, "$R_{\\mathrm{c}}$", fontsize=18, bbox=

        {"boxstyle": "Round, pad=0.05", "edgecolor": "w", "facecolor": "w"})

    ax.set_xticks(np.arange(0, 0.9, 0.2))

    ax.xaxis.set_major_formatter(FormatStrFormatter('%.2f'))

    ax.yaxis.set_major_formatter(FormatStrFormatter('%.1f'))

    # General plot setup

    plt.grid(visible=True, which='major', linestyle=':')

    ax.hlines(0, xmin=-1, xmax=2, linestyle='-', color='k', linewidth=0.75)

    ax.minorticks_on()

    plt.tight_layout()

    plt.savefig(f"DSPP_{elem}.png", dpi=400)

A.2 Code for smoothing and plotting the vDoS

For the code in this section we used the Kernel Density Estimation technique (see section 10.2 of [31]).

The method chosen for bandwidth selection was the Sheather–Jones (SJ) method because “[it] generally

performs extremely well. [...] Some [alternative plug-in] approaches give bandwidths that asymptotically

converge more quickly to the optimal bandwidth than does the Sheather–Jones method [...]. However, none

of these offer substantially easier practical implementation or broadly better performance than the Sheather–

Jones approach.” [31]. In particular, we used the implementation of the SJ method from Steven Laan’s

pythonABC repository [49].

Our code is:
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    import numpy as np

    import matplotlib.pyplot as plt

    from matplotlib.ticker import FormatStrFormatter

    import matplotlib._mathtext as mthtxt

    from hselect import hsj  # SJ method from the pythonABC repository

    font = "EB Garamond"

    line_colors = ["#000c7c", "#5a0fa0", "#c80083", "#ff4d62", "#ffac28",

        "#fff123"]

    rc = {"font.family" : "serif",

          "mathtext.fontset" : "custom"}

    plt.rcParams.update(rc)

    plt.rcParams["font.sans-serif"] = [font] + plt.rcParams["font.serif"]

    mthtxt.SHRINK_FACTOR = 0.55

    lw = 2 # Linewidth

    def ker_g(z):  # Gaussian function kernel

        return np.exp(-z**2/2)/np.sqrt(2*np.pi)

    def est(z, kernel, h, data): # Estimator

        return (1/(data.size*h))*sum(kernel((z-x_i)/h) for x_i in data)

    def omega_D(X, kernel, h, data):

        vDoS = 3*est(X, kernel, h, data)

        ind = np.argwhere(X>0).flatten()  # Points x<0 are smoothing artefacts

        X, vDoS = X[ind], vDoS[ind]

        ln_F = np.nan_to_num(np.log(X)*vDoS)  # function replacing nan with zero

        denom = np.trapz(vDoS, X)  # Denominator of the faction

        numer = np.trapz(ln_F, X)  # Numerator of the fraction

        return np.exp(1/3+numer/denom)
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    fnames = ['Cu25Zr75-vDoS', 'Cu33Zr67-vDoS', 'Cu50Zr50-vDoS']

    d_p = 1500  # Number of data points to graph

    ker = ker_g

    bandw = np.linspace(0.1, 5, 250)  # Array for bandwidths

    b_set = [0, 0, 0]  # Set of optimal bandwidths

    evals = []

    for i in range(3):

        fname = fnames[i]

        dat = np.loadtxt(fname + '.txt')  # Loading data

        mx, mn = dat.max(), dat.min()

        Debye_freqs = np.zeros_like(bandw)

        for k in range(bandw.size) :  # Steps of 0.02

            b = bandw[k]

            x_c = 5*b # cutoff distance

            xx = np.linspace(mn-x_c, mx+x_c, d_p)

            Debye_freqs[k] = omega_D(xx, ker, b, dat)

        b_set[i] = hsj(dat)  # Optimal bandwidth according to SJ

        evals.append(Debye_freqs)

    fig, ax = plt.subplots(figsize=(8.1, 5))

    for i in range(3):

        fname = fnames[i]

        dat = np.loadtxt(fname + '.txt')

        mx, mn = dat.max(), dat.min()

        x_c = 5*b_set[i]  # cutoff distance for the Gaussian

        xx = np.linspace(mn-x_c, mx+x_c, d_p)

        vDoS = 3*est(xx, ker, b_set[i], dat)  # The estimated function
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        Deb_freq = omega_D(xx, ker, b_set[i], dat)

        Cu_f = 0.25 if i == 0 else 0.33 if i == 1 else 0.5  # Cu fraction

        ax.plot(xx, vDoS, color=line_colors[i], label=

            '$\\mathrm{Cu}_{%.2f}\\mathrm{Zr}_{%.2f}$' % (Cu_f, 1-Cu_f),

            linewidth=lw)

    ax.set_ylim(ymin=0, ymax=0.2)

    ax.set_xlim(xmin=0, xmax=45)

    plt.legend(loc="upper right", fontsize=16, framealpha=0.9)

    plt.xlabel("$\\hbar\\omega~(\\mathrm{meV})$", fontsize=18)

    plt.ylabel("$F(\\omega)$", fontsize=18)

    ax.tick_params(axis='both', which='major', labelsize=12)

    ax.xaxis.set_major_formatter(FormatStrFormatter('%d'))

    ax.yaxis.set_major_formatter(FormatStrFormatter('%.3f'))

    plt.grid(visible=True, which='major', linestyle=':')

    ax.minorticks_on()

    plt.tight_layout()

    plt.savefig("vDoS.png", dpi=400)

    plt.close()

    for i in range(3):

        fig, ax = plt.subplots(figsize=(5, 4))

        plt.xlabel("$b~(\\mathrm{meV})$", fontsize=18)

        ax.set_ylabel("$\\hbar\\omega_D~(\\mathrm{meV})$", fontsize=18)

        ax.tick_params(axis='both', which='major', labelsize=12)

        ax.set_ylim(ymin=19.5, ymax=23)

        ax.xaxis.set_major_formatter(FormatStrFormatter('%.1f'))

        ax.yaxis.set_major_formatter(FormatStrFormatter('%.1f'))

        ax.minorticks_on()
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        ax.plot(bandw, evals[i], color=line_colors[0], linewidth=lw)

        ax.axvline(b_set[i], linestyle='--', color='k')

        plt.grid(visible=True, which='major', linestyle=':')

        ax.set_xlim(xmin=0, xmax=5)

        plt.tight_layout()

        plt.savefig("Eval_{}.png".format(i+1), dpi=400)

        plt.close()

A.3 Random Interstitial Alloys

This script was created to assist other members of our group in the creation of amorphous alloys with

interstitial hydrogenation, and has already been employed successfully to this end. As mentioned at the

end of Chapter 6, a possible extension to the work in this document is amorphous hydrogenated Cu-Zr

alloys. Those may be obtained by applying the code in this section to the unstable crystalline structure

before the MD step of the undermelt-quench method.

    import numpy as np

    fname = 'Cu25Zr75' # The structure file's name, it should be in .CAR format.

    dest_file = 'Alloyed.car'

    N = 200 # Number of interstitial atoms to add

    elem = 'H' # Element of the interstitial atoms

    hard_core = True # If True there's no fitness function evaluation, the atom

    # is immediately placed if its distance to others is beyond a threshold.

    hc_thresh = 0.3  # Threshold distance for the "hard core" alloying mode

    k_B = 8.617333262145e-5  # Boltzmann's constant (in eV/K)

    ats = np.genfromtxt(fname=fname, skip_header=5, skip_footer=2, usecols=

        (1, 2, 3, 7), dtype=None, encoding=None)  # atoms

    lat = np.genfromtxt(fname=fname, skip_header=4, max_rows=1, usecols=

        (1, 2, 3, 4, 5, 6))  # lattice
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    ats = ats.tolist()  # Cast to list so we can append.

    for n in range(N):

        attempt = 1

        while True:

            nxt = True  # Generates trial positions while variable is False

            trial_pos = np.random.uniform(high=lat[0]), np.random.uniform(high=

            lat[1]), np.random.uniform(high=lat[2])

            if hard_core:

                for at in ats:

                    at_pos = np.mod(at[0], lat[0]), np.mod(at[1], lat[1]), \

                        np.mod(at[2], lat[2])

                    r = np.sqrt((trial_pos[0]-at_pos[0])**2+(trial_pos[1]-

                        at_pos[1])**2+(trial_pos[2]-at_pos[2])**2)

                    if r <= hc_thresh:

                        nxt = False

                        print(f"Failed to place interstitial atom {n} in attempt

{attempt}, retrying...")

                        attempt += 1

                        continue

            if nxt:

                interst = (trial_pos[0], trial_pos[1], trial_pos[2], elem)

                ats.append(interst)

                break

    with open(dest_file, 'w') as outfile, open(fname, 'r',

        encoding='utf-8') as infile:

        header = 1

        for line in infile:

            outfile.write(line)

            header += 1

            if header > 5:

                break

        count = 1
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        for at in ats:

            tag = f'{at[3]}{count}'

            x = f'{at[0]:.9f}'

            y = f'{at[1]:.9f}'

            z = f'{at[2]:.9f}'

            el = f'{at[3]}'

            outfile.write(f'{tag:<5}{x:>15}{y:>15}{z:>15} XXXX 1'+

                f' xx {el:<2} 0.000\n')

            count += 1

        outfile.write('end\nend')
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