

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE CIENCIAS

CUADERNO DE TRABAJO PARA EL CURSO DE MATEMÁTICAS IV

REPORTE DE ACTIVIDAD DOCENTE

QUE PARA OBTENER EL TÍTULO DE:

ACTUARIA

P R E S E N T A:

GRACIELA ESPINOSA VÁZQUEZ

TUTORA: M. EN C. ELENA DE OTEYZA DE OTEYZA 2017

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Hojas de Datos del Jurado 1. Datos del alumno Espinosa Vázquez Graciela 52 77 21 02 Universidad Nacional Autónoma de México Facultad de Ciencias Actuaría 096369625 2. Datos del tutor M. en C. Elena De Oteyza De Oteyza 3. Datos del Sinodal 1 M. en C. Emma Lam Osnaya 4. Datos del Sinodal 2 M. en C. Esteban Rubén Hurtado Cruz 5. Datos del Sinodal 3 M. en C. Agustín Ontiveros Pineda 6. Datos del Sinodal 4 Act. Rosario Santillán Baltazar

7. Datos del trabajo escrito

Cuaderno de Trabajo para el Curso de Matemáticas IV

159 p

2017

ÍNDICE GENERAL

INTRODUC	CCION	1
OBJETIVO	S	2
METODOL	OGÍA	3
CAPÍTULO	1: CONJUNTOS	
1.1	Idea intuitiva de un conjunto	5
1.2	Cardinalidad	7
1.3	Conjuntos: universal, vacío, iguales, equivalentes, ajenos	9
1.4	Operaciones, diagrama de Venn - Euler	11
1.5	Producto cartesiano de dos conjuntos. Plano cartesiano	16
1.6	Gráfica	18
CAPÍTULO	2: SISTEMAS DE NUMERACIÓN	
2. 1	Breve reseña histórica	19
2. 2	Sistemas de numeración	20
2. 3	Sistema decimal	21
2. 4	Sistemas de diferentes bases	23
2. 5	Sistema de base 2	25
2. 6	Operaciones en distintas bases	27
CAPÍTULO	3: EL CAMPO DE LOS NÚMEROS REALES	
3. 1	Naturales	33
3. 2	Algoritmo de Euclides	37
3. 3	Enteros	38
3. 4	Racionales	40
3. 5	Irracionales	50
3. 6	Reales	51
3. 7	Imaginarios	53
3. 8	Complejos	54
3. 9	Valor absoluto de un número real	56
3. 1	0 Intervalo	58
3. 1	1 Propiedades de los exponentes	60
3. 1	2 Notación científica	61
3. 1	3 Logaritmos	62

CAPITULO 2	4. OPERACIONES CON MONOMIOS Y POLINOMIOS EN UNA VARIA	1DL
4. 1	Monomio	67
4. 2	Polinomio	68
4. 3	Adición de monomios y polinomios	69
4. 4	Multiplicación de monomios y polinomios	. 72
4. 5	Factor común	75
4. 6	División de monomios y polinomios	. 77
4. 7	Valor de un polinomio	. 80
4. 8	Polinomio como $f(x)$. 81
CAPÍTULO S	5: PRODUCTOS NOTABLES Y FACTORIZACIÓN	
5. 1	Factor común	85
5. 2	Cuadrado de un binomio	87
5. 3	Factorización de un trinomio cuadrado perfecto	89
5. 4	Cubo de un binomio. Factorización de un cubo perfecto	91
5. 5	Producto de dos binomios con un término común	95
5. 6	Descomposición en factores un trinomio de segundo	
	grado de la forma de $x^2 + px + q$	96
5. 7	Producto de dos binomios conjugados. Descomposición	
	en factores de una diferencia de cuadrados	97
5. 8	Factorización por agrupación de términos	99
5. 9	Descomposición en factores de la suma o diferencia	
	de dos potencias iguales	100
5. 10	Mínimo Común Múltiplo de dos o más polinomios	101
5. 11	Otras factorizaciones	102
5. 12	Fórmula del binomio de Newton	103
CAPÍTULO 6	3: OPERACIONES CON FRACCIONES ALGEBRÁICAS Y RADICALE	s
6. 1	Teoremas del residuo y del factor	105
6. 2	•	108
6. 3	•	110
CAPÍTULO 7	7: ECUACIONES Y DESIGUALDADES	
7. 1	Ecuaciones de primer grado en una variable	115
7. 2	Ecuación de segundo grado. Resolución de una	
	ecuación de segundo grado	118
7. 3	Desigualdad de primer grado en una variable y	
	sus propiedades	127
7. 4	Desigualdad de segundo grado. Resolución de	
	una desigualdad de segundo grado	131

CAPÍTULO 8: SISTEMAS DE ECUACIONES Y DE DESIGUALDADES

8. 1	Sistemas de dos ecuaciones lineales con dos variables.	
	Métodos de solución	135
8. 2	Solución de un sistema de dos desigualdades de	
	primer grado en dos variables	142
8. 3	Resolución de un sistema de tres ecuaciones lineales	144
8. 4	Resolución de un sistema de dos ecuaciones con dos variables	
	formado por una de primer grado y la otra de segundo	148
ANEXOS		
A.1	Tabla de Potencias	153
A.2	Tabla de Logaritmos	155
A.3	Tabla de Antilogaritmos	157
BIBLIOGRAF	ÍA	159

INTRODUCCIÓN

Este cuaderno de trabajo es el producto de varios años de trabajo impartiendo la materia de Matemáticas IV en el Plan 1996 de la Universidad Nacional Autónoma de México para preparatorias del Sistema Incorporado a la UNAM. En el que he creado y seleccionado ejercicios y problemas que cubren la totalidad del Programa Indicativo de esta Institución.

El grado de dificultad es medio alto y con el complemento de tareas, exámenes por tema o unidad, y exámenes parciales; su implementación deberá verse reflejada en que los estudiantes tengan un nivel matemático medio alto o alto, de acuerdo a los dos exámenes obligatorios realizados por la Dirección General de Incorporación y Revalidación de Estudios de la UNAM. Así como en el examen anual de CENEVAL realizado en algunas instituciones de forma opcional.

La dosificación de ejercicios va de la mano con las ciento cincuenta horas clase que consta el Programa Indicativo de cincuenta minutos cada clase, y creo que esa es la parte más valiosa de este cuaderno de trabajo, ya que existen muchos libros de álgebra que son adecuados para este curso, pero ninguno cuenta con los temas divididos de acuerdo al Plan de Estudios por unidad y por tema.

OBJETIVOS

Empecé a dar clases a nivel preparatoria hace varios años y he tenido la oportunidad de trabajar con varios profesores de diferentes formaciones como contadores, administradores, ingenieros ambientales, ingenieros civiles, etcétera. Y considero que es precisamente esta diversificación de formaciones académicas, la que genera tantas diferencias en la impartición del mismo curso hasta en las mismas escuelas. A pesar de que el Programa Indicativo de la UNAM sugiere el nivel de dificultad, no cuenta con una escala de ponderación para los contenidos más importantes.

El objetivo general de este cuaderno de trabajo es unificar esos niveles de dificultad y señalar a los compañeros que no cuenten con una formación matemática abstracta, cuáles son las directrices del curso y los temas a los que debemos poner mayor atención y enseñar con más énfasis para que el estudiante cuente con los conocimientos necesarios para enfrentar los cursos posteriores no sólo de matemáticas, sino de cualquier materia con la que se pueda vincular el conocimiento.

En términos generales, los estudiantes que ingresan a preparatoria tienen diferentes formaciones debido a que provienen de diferentes escuelas, por lo que su nivel académico es muy variado y hay muchos conceptos que no vieron con detenimiento o ni siquiera conocen. Durante los primeros meses de clase, la principal función del cuaderno será homologar el nivel de los alumnos y hacerlos trabajar con muchas repeticiones y acostumbrarlos a vincular el conocimiento con otras materias o áreas de trabajo, utilizando el método que cada profesor considere adecuado, como inducción de cada tema nuevo; lluvia de ideas; preguntas guía; cuadros sinópticos; diagramas; mapas semánticos, cognitivos o mentales; resúmenes; síntesis; analogías; estrategias grupales e inclusive comics o historietas. Todo puede ser utilizado de acuerdo a la inventiva de cada profesor y a cada tema.

Para la mitad del curso y hasta el final, el alumno deberá ser capaz de conocer la notación matemática requerida, vincular los conocimientos adquiridos con su entorno y principalmente, poder desarrollar todos los ejercicios propuestos en el tiempo destinado en clase para resolverlos, es decir, el estudiante se habituará al trabajo de resolución inmediata y deberá optimizar su tiempo de respuesta en menos de dos minutos por ejercio en los casos de productos, factorizaciones, resolución de ecuaciones y de desigualdades. En pocas palabras, el alumno debe identificar de manera automática el método de solución requerido para cada ejercicio y contará con la práctica suficiente para lograrlo.

METODOLOGÍA

El cuaderno de trabajo comienza en la primera clase del curso y desde ese momento, se solicitará al estudiante realizar todas las operaciones aritméticas a mano o de forma mental. El único recurso externo con que podrá contar el alumno será la tabla de potencias incluída en el anexo 1. Este material no está diseñado para ser resuelto con la ayuda de calculadoras o cualquier otro medio electrónico.

Se recomienda hacer exámenes cortos y sorpresa al terminar los temas más importantes del curso o tantos como considere el profesor que son necesarios. Bastan cinco preguntas de respuesta corta para cada tema o par de temas. Con la finalidad de que el estudiante reconozca si está entendiendo y desarrollando bien los temas o si se necesita repasar, explicar detalles o inclusive que el docente vuelva a dar el tema.

La dosificación de los temas es la adecuada para que el alumno termine sus ejercicios en el salón de clase sin llevarse tarea a casa. Por tanto, las tareas largas deberán incluir ejercicios de varias secciones y planearse de los libros que el maestro elija en su bibliografía básica del Programa Operativo.

Sugiero realizar los exámenes parciales del mismo nivel de dificultad visto en el cuaderno de trabajo, exámenes cortos y tareas largas. Y los exámenes finales y extraordinarios tomando como base los parciales.

La calificación de cada periodo varia de acuerdo a los lineamientos establecidos en cada escuela, pero se sugiere que el examen cuente al menos el cincuenta por ciento de la calificación, y el otro cincuenta por ciento sea el trabajo diario, incluyendo exámenes cortos y tareas largas.

CAPÍTULO 1: CONJUNTOS

1.1 Idea intuitiva de un conjunto

La noción de conjunto es suficientemente simple para que pueda captarse intuitivamente, sin necesidad de referirla a conceptos básicos más sencillos. Entonces, el significado de la palabra "conjunto" se intuye a partir de la experiencia que poseemos del mundo real y conceptual.

Por tanto en este material definiremos "conjunto" como una colección bien definida de objetos. Donde ningún objeto se debe contar más de una vez y no importa el orden en que se enumeren éstos.

Convencionalmente suelen denotarse los conjuntos con letras mayúsculas, y a sus elementos con minúsculas, separándolos con comas y encerrados por corchetes.

Un conjunto

Por la forma en la que escribimos a los conjuntos, éstos pueden expresarse por comprensión o por extensión. Un conjunto se expresa por extensión cuando escribimos todos los elementos que lo componen. Un conjunto se expresa por comprensión cuando sólo se enuncia la idea del conjunto.

- Exprese los siguientes conjuntos por el método de extensión
- 1) A = {Los nombres de los meses de año}
- 2) B = {Los números que dividen a 36}
- 3) C = {Los números pares entre 1 y 15}
- 4) $D = \{2 < x < 14 \text{ y } x \text{ es impar}\}$
- 5) E = {Las estaciones del año}
- 6) F = {Los equipos de fútbol de primera división, que juegan en la Ciudad de México}
- 7) $G = \{x < 15 \text{ y } x \text{ es primo}\}$
- 8) H = {Las letras de la palabra matemáticas}
- 9) I = {Las formas de expresar un conjunto}

10)
$$J = \{x^2 - 16 = 0\}$$

- II. Exprese los siguientes conjuntos por el método de comprensión
- 11) K = {México, Guatemala, Brasil, Colombia, Ecuador, Argentina, Bolivia, Perú}
- 12) L = {Up, gol, jetta, cross fox, beetle, vento}
- 13) M = {África, América, Asia, Europa, Oceanía}
- 14) N = {Arsenal, Chelsea, Manchester United, Liverpool, Aston Villa, Totenham}
- 15) O = {Ottawa, Montreal, Quebec, Vancouver, Toronto, Edmonton}
- 16) P = {Cu, Fe, H, Xe, Cl, Au}
- 17) Q = {Barcelona, Atlético de Madrid, Villareal, Sevilla, Real Madrid, Valencia}
- 18) R = {fútbol, basketball, golf, box, natación}
- 19) $S = \{100, 102, 104, 106\}$
- 20) $T = \{53, 59, 61, 67, 71, 73, 79, 83, 89, 97\}$

Se coloca el símbolo \in (pertenece) para referirse a un elemento en particular, que sí forma parte del conjunto. El símbolo \notin (no pertenece) indica que ese elemento no es parte de dicho conjunto.

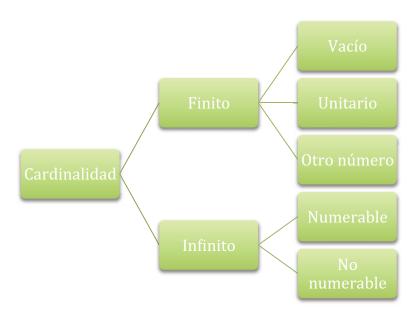
- III. Coloque un $\in o \notin \text{cuando corresponda}$
- 21) Perú _____ {Países de Europa}
- 22) $x = \{o, p, q, y\}$
- 23) Amazonas _____ {Ríos de América}
- 24) $\frac{5}{4}$ _____{{A}} {Racionales}
- 25) Wolverine _____ {Los cuatro fantásticos}
- 26) 29 {8, 9, 11, 14, 18, 23}
- 27) Azalia {verduras}
- 28) Betabel _____{{Leguminosas}}
- 29) 27 _____ $\{x > 27 \text{ y } x \text{ es entero}\}$
- 30) -4.45 _____ {-4 < x < 4}

1.2 Cardinalidad

Los conjuntos pueden ser finitos o infinitos. Intuitivamente, un conjunto es finito si consta de un cierto número de elementos distintos, es decir, si al seleccionar los diferentes elementos del conjunto, el proceso de contar termina. Si no el conjunto es infinito, es decir, el proceso de contar nunca terminará.

- Vacío: se denota con el símbolo Ø y significa que no hay ningún elemento en ese conjunto.
- Unitario: existe un solo elemento en ese conjunto.
- Otro número: para 2, 3 o más elementos, siempre y cuando se especifique la cantidad.
- Numerable: cuando se puede establecer un orden en los elementos de un conjunto aún siendo infinitos.
- No numerable: cuando todos los elementos estan revueltos y no podemos ordenarlos.

Ejemplo de conjunto finito



La Cardinalidad de un conjunto se denota con el símbolo # y significa el número de elementos del conjunto determinado.

- IV. Determine si los siguientes conjuntos son finitos o infinitos.
- 1) A = {Los reales positivos}
- 2) B = {Los presidentes de Estados Unidos}
- 3) $C = \{1, 3, 5, 7, 9, ...\}$
- 4) D = {vocales de la palabra vals}
- 5) E = {Pilotos de Fórmula 1}
- 6) F = {números naturales}
- 7) G = {Los radios que se pueden trazar en un círculo}
- 8) H = {Películas de ciencia ficción}
- 9) I = {El número total de cabellos de los habitantes de la Ciudad de México}
- 10) J = {Las gotas de agua que caen durante una tormenta}
- V. Determine la Cardinalidad de los siguientes conjuntos.
- 11) $A = \{2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30\}$
- 12) K = { fox, Warner, sony, E!, espn, MTV}
- 13) $G = \{a, e, i, o, u\}$
- 14) $\tilde{N} = \{Abedul, Abeto blanco, Acacia australiana, Ahuehuete, Álamo blanco\}$
- 15) Q = {zafiro, esmeralda, diamante}
- 16) R = {Tommy Hilfiger, Calvin Klein, Ralph Lauren, Náutica, Buffalo, Springfield}
- 17) Z = {mitocondria, aparato de golgi, ribosoma, nucleólo, membrana celular, lisosoma, citoplasma, núcleo, centriolos, retículo endoplasmático}
- 18) W = {Nilo, Sena, Amazonas, Bravo}
- 19) $Y = \{-4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$
- 20) $S = \{\bot, \bowtie, \sqcup, \odot, \boxtimes, \ddagger, \star, \wr, \triangleright\}$

- 1.3 Conjuntos: universal, vacío, iguales, equivalentes, ajenos.
- Universal: es aquel que contiene a todos los elementos y lo denotamos como U.
- Vacío: no contiene ningún elemento y lo denotamos como Ø.
- Subconjuntos: se dice que un conjunto S es subconjunto de un conjunto T si todos los elementos de S lo son también de T.
- Iguales: dos conjuntos A y B son iguales si tienen los mismos elementos.
- Disjuntos o ajenos: cuando no existe ningún elemento en común en dos conjuntos
- Equivalentes: cuando dos conjuntos se pueden poner en correspondencia uno a uno entre si. Si *A* es equivalente a *B* se escribe A~B.

Dos conjuntos

- VI. Determine el conjunto universal a partir de los siguientes datos:
- 1) $L = \{Urólogos, gastroenterólogos, dermatólogos, pediatras y cirujanos\}$
- 2) $M = \{Miguel Hidalgo, Vicente Guerrero, Ignacio Allende, Josefa Ortiz\}$
- 3) $N = \{\text{IPod nano, IPod video classic, IPod shuffle, IPod touch}\}$
- 4) $O = \{\text{manzana}, \text{plátano}, \text{pera}, \text{guayaba}, \text{tuna}\}$
- 5) $P = \{\text{guitarra, piano, tambor, arpa}\}$
- VII. Determine si los siguientes conjuntos son vacíos:
- 6) $A = \{Personas de más de 200 años de edad\}$
- 7) $B = \{Océanos de agua salada\}$
- 8) $C = \{\text{Números reales mayores que 5 y menores que 6}\}$
- 9) $D = \{ \text{Ser viviente con 6 narices } \}$
- 10) $E = \emptyset$

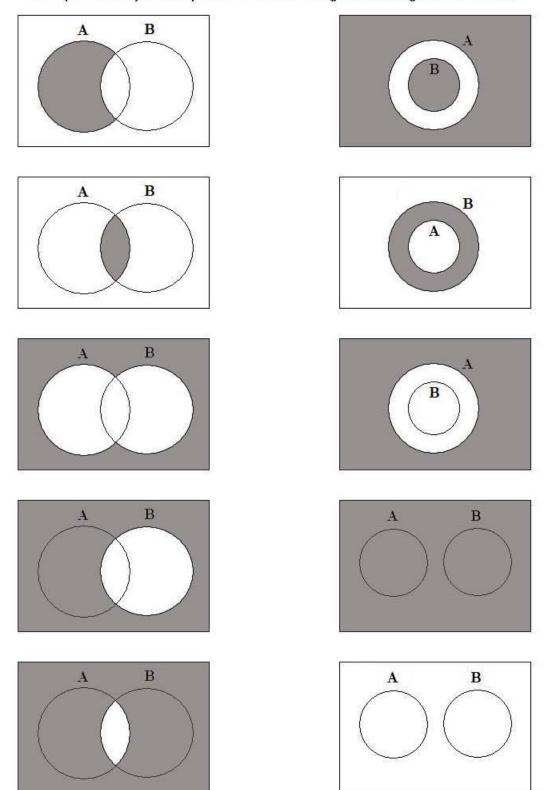
- VIII. Sean los siguientes conjuntos: $P = \{r, s, t, u, v, w\}, Q = \{u, v, w, x, y, z\},$ $R = \{s, u, y, z\}, S = \{u, v\}, T = \{s, u\}, V = \{s\}, Z = \emptyset$. Determine cuál de estos mismos conjuntos:
- 11) Es subconjunto de *P* y de *Q* únicamente
- 12) Es subconjunto de R pero no de Q
- 13) No es subconjunto de P ni de R
- 14) No es subconjunto de R pero sí de Q
- 15) Es subconjunto de todos los demás
- IX. Determine si los siguientes pares de conjuntos son iguales, equivalentes y/o disjuntos:
- 16) $R = \{\text{números pares}\}\$, $S = \{\text{números impares}\}\$
- 17) $W = \{ rosa, margarita, girasol \}, T = \{ rosa, margarita, girasol \}$
- 18) $D = \{a, b, c, d\}, F = \{a, b, c, f\}$
- 19) $Y = \{José López, Efrén Ramírez\}, Z = \{José Hernández, Efrén Fernández\}$
- 20) $G = \{t, u, v, w, x, y, z\}, H = \{w, x, y, z\}$
- X. Sean $A = \{1,2,3\}$ $B = \{1,3,5,6\}$ y $C = \{1,2,3,4,5,6\}$. Complete las siguientes afirmaciones poniendo el símbolo adecuado en el espacio correspondiente
- 21) ∈ o ∉

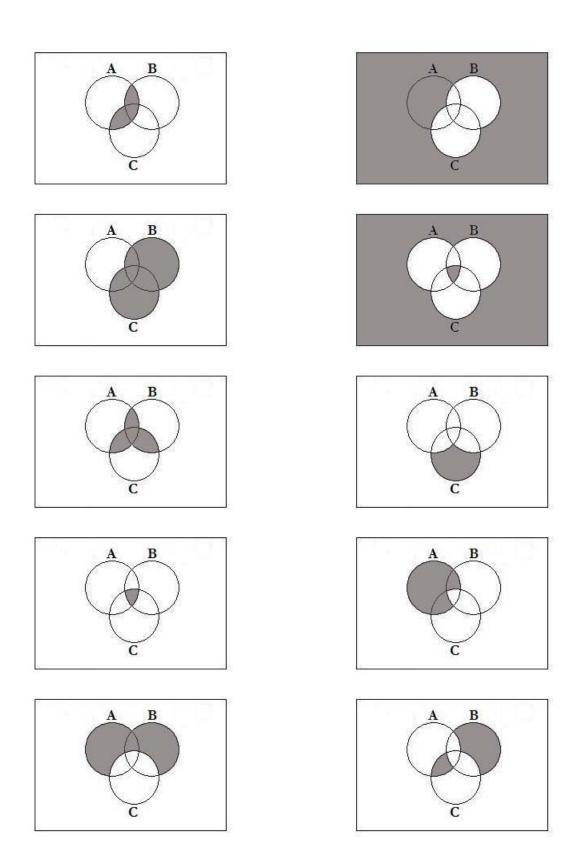
1.4 Operaciones, diagrama de Venn-Euler

- Unión: obtenemos los elementos en común de dos o más conjuntos. Símbolo U
- Intersección: son los elementos que se repiten de dos o más conjuntos. Se denota como ∩
- Diferencia: al conjunto A le quitamos los elementos que se repiten con el conjunto B, siempre y cuando la operación sea A-B
- Complemento: se expresa al complemento de un conjunto A de la forma A^c y su resultado serán aquellos elementos que no están en A y si están en el universo
- XI. Dados $U=\{ {
 m rojo, naranja, amarillo, verde, azul, índigo, violeta} , $A=\{ {
 m verde, naranja, índigo, rojo, azul, amarillo} , $B=\{ {
 m violeta, azul, rojo, índigo, amarillo} , $C=\{ {
 m violeta, azul, amarillo, rojo} , {
 m conteste las siguientes preguntas:} $$
- 1) $\lambda A \cup B = U$?
- 2) $(A \cup B)^c \neq U$?
- 3) $\lambda A \cap B \cap C$ colores primarios?
- 4) $\mathcal{E}^C \neq U$?
- 5) El color índigo $\in A \cap C$?
- 6) El color amarillo $\in B \cap A$?
- 7) $(A \cup B) \cap C$?
- 8) $\mathcal{L}(C \cap B) \cup A$?
- 9) $\geq A B$?
- 10) $\dot{b} B A$?
- 11) : C B?
- 12) $\mathcal{L}C A$?
- 13) $C (A \cup C)^{C}$?
- 14) \dot{c} $(A B) \cap (B A)$?
- 15) \geq (C B) \cup (C A)?
- 16) ¿B^C?
- 17) ¿ C ^c?
- 18); A^{C} ?
- 19) $\lambda(A \cup B)^C \neq A^C \cap B^C$?
- $20)_{\dot{c}}(A\cap B)^{c}=A^{c}\cup B^{c}?$

- XII. Dados $U = \{1,2,3,4,5,6,7,8\}$, $A = \{1,3,6\}$, $B = \{3,4,5,6\}$, $C = \{2,4,5\}$ y $D = \{2,3\}$ efectúe las siguientes operaciones:
- 1) $A \cup B$
- 2) $C \cup D$
- 3) $B \cap C$
- 4) $A \cap C$
- 5) $A \cap B \cap D$
- 6) $B \cup C \cup D$
- 7) $(A \cup D) \cap C$
- 8) $(C \cap D) \cup A$
- 9) A B
- 10) A C
- 11) D C
- 12) ($C \cup A$) B
- 13) $D (A \cap C)$
- 14) $(A D) \cap (C B)$
- 15) $(B A) \cup (D C)$
- 16) B^C
- 17) C^C
- 18) $A^C \cup D$
- 19) $B^C \cap D$
- 20) (C A) C
- **21)** ($D \cup B$) C
- **22)** $A^{C} D$

XIII. Identifique los conjuntos representados en los siguientes diagramas de Venn





XIV. Resuelva los siguientes problemas:

a) Al realizar una encuesta a 150 personas, residentes de la Ciudad de México, se obtuvo que 81 de ellas leen el diario Reforma, 62 leen La Jornada y 39 leen de los 2 tipos. ¿Cuántas personas no leen ningún diario?, ¿cuántos leen sólo el Reforma?, ¿cuántos sólo leen La Jornada? Represente lo anterior en un diagrama de Venn.

b) Una encuesta de 100 alumnos sobre idiomas extranjeros, arrojó el siguiente resultado: 52 pueden leer Inglés, 40 pueden leer Francés, 24 pueden leer Alemán, 19 pueden leer Inglés y Francés, 12 pueden leer Francés y Alemán, y 6 pueden leer los 3 idiomas. ¿Cuántos pueden leer solamente Inglés?, ¿cuántos no pueden leer ninguno de los 3 idiomas?, ¿cuántos pueden leer sólo un idioma? Resuelva representando los conjuntos en un diagrama de Venn.

- c) Un jefe de publicidad ha entrevistado a 2000 personas para apreciar los efectos de tres programas radiales. Al tabular los resultados de la muestra ha concluido que: 580 personas escuchaban el programa A; 840 el B; 920 el C; 260 el A y B; 220 el A y C; 300 el B y C, y 100 personas escuchaban el programa A, B y C. Se pregunta:
 - i. ¿Cuántas personas escuchaban sólo el programa A?, ¿sólo el programa B?, ¿sólo el programa C?
 - ii. ¿Cuántas personas escuchaban sólo los programas A y B?; ¿sólo los programas A y C?; ¿sólo los programas B y C?
 - iii. ¿Cuántas personas escuchaban el programa B, el C o ambos?
 - iv. ¿Cuántas personas escuchaban al menos uno de los tres programas?
 - v. ¿Cuántas personas no escuchaban ninguno de los tres programas?

1.5 Producto cartesiano de dos conjuntos. Plano cartesiano

XV. Dados los conjuntos $A = \{ \blacklozenge, \lor, \clubsuit, \blacktriangle \}$ y $B = \{ \blacklozenge, \lor, \clubsuit, \blacktriangle \}$, entonces ¿quién es $A \times B$ y su cardinalidad? Complete la siguiente tabla:

		♦			Y			*			^	
•	(,)	(,)	(,)	(,)
*	(,)	(,)	(,)	(,)
*	(,)	(,)	(,)	(,)
^	(,)	(,)	(,)	(,)

XVI. Sean $A = \{\text{blusa, jersey, camisa}\}\ y\ B = \{\text{short, jeans, pescadores, falda}\},$ encuentre $A \times B$ y la $\#(A \times B)$ completando la siguiente tabla:

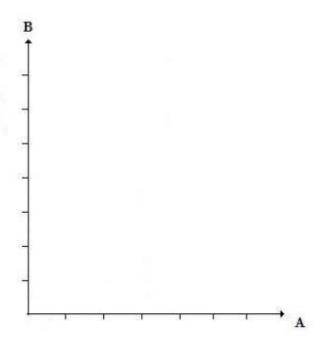
	BI	usa	(b)	Je	rsey	' (j)	Car	nisa	(c)
Short (s)	(,)	(,)	(,)
Jeans (js)	(,)	(,)	(,)
Pescadores (p)	(,)	(,)	(,)
Falda (f)	(,)	(,)	(,)

XVII. Dados los siguientes conjuntos $A = \{\alpha, \beta, \gamma, \delta, \epsilon, \phi\}$ y $B = \{\leftrightarrow, \leftarrow, \uparrow, \rightarrow, \downarrow\}$. Complete la siguiente tabla colocando $\in o \notin$.

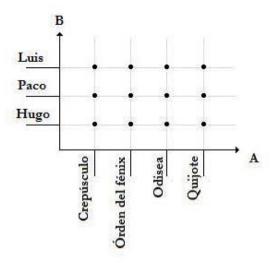
	$A \times B$	$B \times A$	$B \times B$
(α, \rightarrow)			
(ε,φ)			
(↔ , ↑)			
(δ,↓)			
(←, β)			
(γ,γ)			

1.6 Gráfica

XVIII. Trace la gráfica del producto cartesiano $A \times B$ formado por los conjuntos $A = \{2, 6, 0\}, B = \{3, 7\}.$

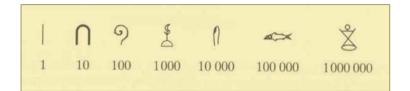


XIX. A través de la gráfica presentada, obtenga el conjunto $A \times B$ y los respectivos conjuntos $A \times B$.

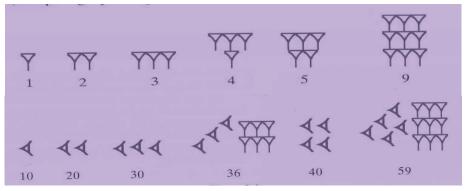


CAPÍTULO 2: SISTEMAS DE NUMERACIÓN

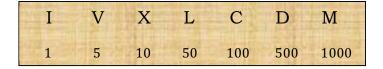
- 2. 1 Breve reseña histórica
- Describa brevemente cuáles son las características principales en los sistemas de numeración de las siguientes culturas, así como sus rasgos principales.
 - a) Cultura egipcia



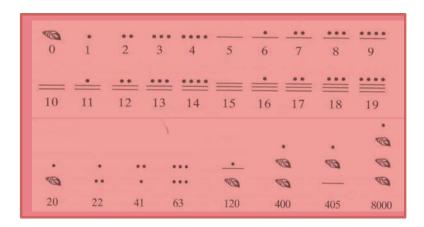
b) Cultura babilónica



c) Cultura romana



d) Cultura maya



2. 2 Sistemas de numeración

- II. Convierta los siguientes números indo arábigos a numeración romana.
- 1) 8648
- 2) 16956
- 3) 726 452
- 4) 845 325
- 5) 12 693 916
- III. Complete la siguiente tabla realizando las conversiones necesarias entre los sistemas de numeración indicados.

DECIMAL	EGIPCIO	BABILÓNICO	ROMANO	MAYA
179				
1 359				
10 035				
132 479				

2. 3 Sistema decimal

IV. Exprese los siguientes números como suma de potencias de diez

EJEMPLO:

$$13.436 = (1 \times 10^{1}) + (3 \times 10^{0}) + (4 \times 10^{-1}) + (3 \times 10^{-2}) + (6 \times 10^{-3})$$

- 1) 17.567
- 2) 0.5
- 3) 815.23
- 4) 3148.79
- 5) 35.043012
- 6) 26.7819782
- 7) 1506.82528035
- 8) 316,158.73006
- 9) 1543.147842
- 10) 13,290 518.067891
- V. Escriba en forma ordinaria los siguientes números expresados como potencias de diez.

EJEMPLO:

$$(9\times10^5)$$
 + (6×10^4) + (7×10^3) + (1×10^2) + (0×10^1) + (8×10^0) + (3×10^{-1}) + (5×10^{-2}) =

= 967 108.31

11)
$$(7 \times 10^5)$$
 + (9×10^4) + (9×10^3) + (1×10^2) + (3×10^1) + (4×10^0) + (6×10^{-1}) + (8×10^{-2})

12)
$$(5 \times 10^7) + (9 \times 10^4) + (9 \times 10^3) + (5 \times 10^1) + (3 \times 10^0) + (2 \times 10^{-3})$$

13)
$$(8 \times 10^6) + (5 \times 10^3) + (7 \times 10^1) + (4 \times 10^{-1}) + (6 \times 10^{-4})$$

14)
$$(6 \times 10^3) + (4 \times 10^2) + (9 \times 10^1) + (3 \times 10^0) + (5 \times 10^{-1}) + (7 \times 10^{-2}) + + (1 \times 10^{-3}) + + (3 \times 10^{-5})$$

15)
$$(7 \times 10^5) + (9 \times 10^{-5})$$

16)
$$(3\times10^4) + (8\times10^3) + (7\times10^0) + (5\times10^{-2}) + (9\times10^{-4})$$

17)
$$(9 \times 10^{9}) + (7 \times 10^{8}) + (8 \times 10^{7}) + (9 \times 10^{6}) + (5 \times 10^{-1}) + (1 \times 10^{-2})$$

18)
$$(1 \times 10^3) + (7 \times 10^1) + (4 \times 10^0) + (4 \times 10^{-1}) + (7 \times 10^{-2}) + (1 \times 10^{-4})$$

19)
$$(3\times10^{0}) + (1\times10^{-1}) + (4\times10^{-2}) + (1\times10^{-3}) + (5\times10^{-4}) + (9\times10^{-5}) + (2\times10^{-6}) + (6\times10^{-7}) + (5\times10^{-8}) + (4\times10^{-9})$$

20)
$$(2 \times 10^{0}) + (7 \times 10^{-1}) + (1 \times 10^{-2}) + (8 \times 10^{-3}) + (2 \times 10^{-4}) + (8 \times 10^{-5}) + (1 \times 10^{-6}) + (8 \times 10^{-7}) + (2 \times 10^{-8})$$

2. 4 Sistemas de diferentes bases

VI. Convierta a base 4, 6, 7 y 13 los números escritos en base diez

EJEMPLO: 2009 base 6

Dividimos el número 2009 entre la base a la que deseamos convertirlo, después dividimos el cociente entre la base y así sucesivamente, poniendo especial atención en los residuos, ya que ellos indicarán la forma de escribirlo.

$$2009 \div 6 = 334 \ residuo 5$$

 $334 \div 6 = 55 \ residuo 4$
 $55 \div 6 = 9 \ residuo 1$
 $9 \div 6 = 1 \ residuo 3$

1) 46 326

Base 4 Base 7

Base 6 Base 13

2) 512 352

Base 3 Base 7

Base 5 Base 12

3) 125 350

Base 4 Base 8

Base 7 Base 14

4) 845 325

Base 3 Base 9 Base 7 Base 11

5) 1 528 426

Base 7 Base 9
Base 8 Base 13

VII. Convierta a base diez, los números escritos en la base indicada.

EJEMPLO: Escriba el número 103045116 a base 10.

Separamos cada número y se expresará multiplicado por la base (que estará elevada a la posición que ocupa cada número, contando desde cero y de derecha a izquierda). El resultado se obtendrá de sumar cada operación indicada.

$$1(6^{7}) + 0(6^{6}) + 3(6^{5}) + 0(6^{4}) + 4(6^{3}) + 5(6^{2}) + 1(6^{1}) + 1(6^{0}) =$$

$$1(279936) + 0(46656) + 3(7776) + 0(1296) + 4(216) + 5(36) + 1(6) + 1(1) =$$

$$279936 + 0 + 23328 + 0 + 864 + 180 + 6 + 1 =$$

10304511₆ = 304 315

6) 121012 ₃	11) A487 ₁₁
------------------------	------------------------

2. 5 Sistema de base 2

El sistema binario o de base 2 es sumamente importante en la actualidad, ya que las computadoras utilizan este sistema para operar. La razón es porque su memoria consiste en una colección de puntos que pueden imantarse o desimantarse; de esta manera pueden representar unos y ceros de una manera muy natural.

VIII. Escriba en notación decimal cada número escrito en base binaria.

- 1) 100 0012
- 2) 1 111 111₂
- 3) 101 011 0112
- 4) 111 011 110 0012
- 5) 111 011 100 1112
- IX. Convierta los números decimales a base dos
- 6) 36
- 7) 389
- 8) 1793
- 9) 7831
- 10) 10 217

X. Escriba los números expresados en distintas bases, a base binaria.

EJEMPLO: 3142415 a base dos

Primero convertiremos el número a base decimal, para posteriormente convertir el número de base 10 a base 2.

$$3(5^5) + 1(5^4) + 4(5^3) + 2(5^2) + 4(5^1) + 1(5^0) =$$

$$3(3125) + 1(625) + 4(125) + 2(25) + 4(5) + 1(1) =$$

$$9375 + 625 + 500 + 50 + 20 + 1 = 10571$$

 $10\,571 \div 2 = 5285 \ residuo \ 1$ $5\,285 \div 2 = 2642 \ residuo \ 1$ $2\,642 \div 2 = 1321 \ residuo \ 0$ $1\,321 \div 2 = 660 \ residuo \ 1$ $660 \div 2 = 330 \ residuo \ 0$ $330 \div 2 = 165 \ residuo \ 0$ $165 \div 2 = 82 \ residuo \ 1$ $82 \div 2 = 41 \ residuo \ 0$ $41 \div 2 = 20 \ residuo \ 1$ $20 \div 2 = 10 \ residuo \ 0$ $10 \div 2 = 5 \ residuo \ 0$ $5 \div 2 = 2 \ residuo \ 1$ $2 \div 2 = 1 \ residuo \ 0$

314241₅ = 10100101001011₂

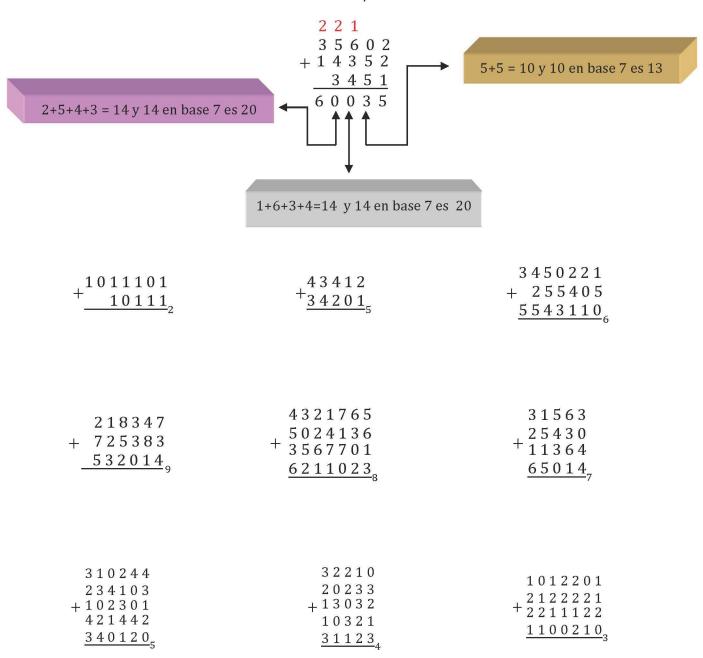
- 11) 2305₆
- 12) 567₈
- 13) AB1₁₃
- 14) 31240₅

2. 6 Operaciones en distintas bases

XI. Realice las siguientes sumas en las bases indicadas

EJEMPLO: Efectúe la siguiente operación en base siete.

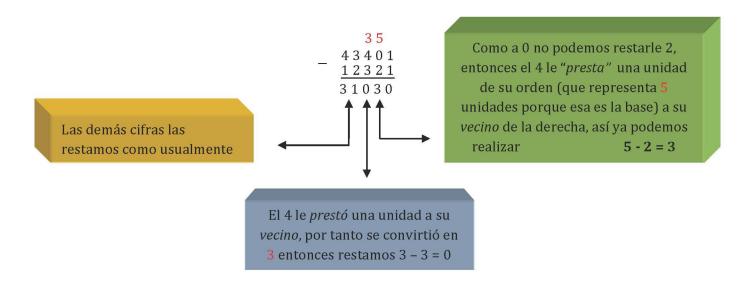
Las sumas en diferentes bases debemos realizarlas de la misma manera en que las hacemos en base decimal, es decir, cada vez que llegamos a la base indicada aumentamos una unidad del orden inmediato superior.



$887051 \\ 243567 \\ 785534 \\ + 356427 \\ 174047 \\ 357264_{9}$	$\begin{array}{c} 11100\\ 10000\\ +\ 10101\\ +\ 11010\\ 11100\\ \underline{\qquad 1111}_2 \end{array}$	500123 433201 $+255525$ 103425 330413_{6}
775431 134577 $+656463$ 300113 257346 ₈	50325 43442 $+40104$ 33442 50325_{6}	$\begin{array}{r} 887701 \\ 121453 \\ +700154 \\ 281805 \\ \hline 760626_{9} \end{array}$
$\begin{array}{c} 1\ 0\ 1\ 2\ 0 \\ 2\ 2\ 1\ 2\ 2 \\ +\ 1\ 2\ 0\ 0\ 2 \\ 2\ 2\ 1\ 0\ 1 \\ \underline{1\ 1\ 2\ 1\ 0}_{3} \end{array}$	56643 23640 $+14526$ 30130 24365 ₇	$\begin{array}{c} 30123 \\ 11233 \\ +23320 \\ 31213 \\ \underline{10001}_{4} \end{array}$
70152 13645 + 52302 42667 65477 ₈	$\begin{array}{r} 46525 \\ 15662 \\ +34356 \\ 50124 \\ \underline{63013}_{7} \end{array}$	

XII. Realice las siguientes restas en las bases indicadas.

Ejemplo: Efectúe la siguiente resta en base 5. De igual forma que realizamos las restas en sistema decimal, lo haremos en la base indicada.



$$-\frac{64213}{37216_8} \qquad -\frac{562562}{426645_7} \qquad -\frac{893A}{1277_B} \qquad -\frac{233305}{154441_6}$$

$$-\frac{3210113}{\underline{1110322}_{4}} \qquad -\frac{312310}{\underline{303213}_{4}} \qquad -\frac{3572562}{\underline{2427745}_{8}} \qquad -\frac{C7A58}{\underline{B5968}_{13}}$$

$$-\frac{201221012112}{121001211011_3} \qquad -\frac{1011101110101}{1001110111010_2}$$

XIII. Efectúe las siguientes multiplicaciones.

Ejemplo: Realice la siguiente multiplicación en base 5.

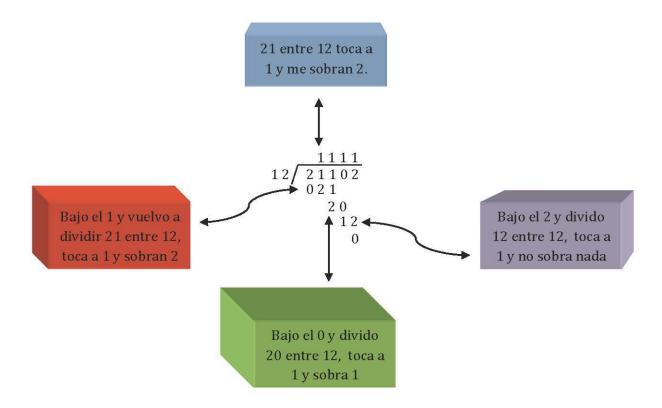
Las multiplicaciones debemos hacerlas convirtiendo cada resultado obtenido a la base indicada, es decir, si multiplicamos en base 5, 2 por 3 obtendremos 11. Y serán éstas las que indicaremos en cada renglón para posteriormente sumarlos respetando a la base.

$$\begin{array}{r} 41324 \\ \times 241 \\ \hline 41324 \\ 32111 \\ \hline 133203 \\ \hline 14233234 \\ \end{array}$$

1	=	1
2	=	2
3	=	10
4	=	11
5	=	12
6	=	20
7	=	21
8	=	22
9	=	100

XIV. Realice las siguientes divisiones en las bases indicadas.

Ejemplo: Utilizaremos lenguaje coloquial para explicar el procedimiento a seguir paso a paso.



Para saber a qué número "toca" debemos hacer la multiplicación correspondiente, entonces cuando sepamos el resultado de esa multiplicación hacemos la resta correspondiente y obtenemos el residuo, es decir, 12 es 5 en sistema decimal y 21 es 7, entonces 7 entre 5 toca a 1 y sobran 2, o lo que es lo mismo 12 entre 21 toca a 1 y sobran 2. Bajamos el siguiente número al lado del residuo y así sucesivamente hasta terminar la división.

$$102_3 \sqrt{2110211_3}$$

 $132_{4} / 1321233123211_{4}$

$$26_{8}\sqrt{74123621_{8}}$$

 $42_6 \sqrt{34545011_6}$

$$41_{13}$$
 $\sqrt{41A21564012_{13}}$

CAPÍTULO 3: EL CAMPO DE LOS NÚMEROS REALES

3. 1 Naturales

Los primeros números que surgieron históricamente son los naturales y sirven para contar. Denotaremos a este conjunto por \mathbb{N} .

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, 7, \dots\}$$

Además sirven para ordenar, es decir, para posicionar objetos entonces los números reciben otro nombre:

 1^0 primero 2^0 segundo tercero 4^0 cuarto 5^{0} quinto 6^{0} sexto 7^0 séptimo 8^{0} octavo 9^0 noveno 10^{0} décimo

Las propiedades de los números naturales se dividen de acuerdo a la función que deberán realizar, entonces, para cualesquiera números naturales a, b, c se cumple:

- Conmutatividad para la suma: a + b = b + a
- Asociatividad para la suma: (a + b) + c = a + (b + c)
- Conmutatividad para el producto: ab = ba
- Asociatividad para el producto: (ab)c = a(bc)
- Distributividad: (a + b)c = ac + bc

Criterios de divisibilidad:

- Para 2: Un número es divisible entre 2, si termina en un número par o en cero.
- Para 3: Si la suma de los dígitos de un número es 3 o un múltiplo de 3.
- Para 4: Si las dos últimas cifras del número es un múltiplo de cuatro.
- Para 5: Si el número termina en cero o en cinco.
- Para 6: Si el número es divisible entre 2 y entre 3, también es divisible entre 6.
- Para 7: Separando la primera cifra de la derecha y multiplicándola por 2, restando éste producto de lo que queda a la izquierda y sucesivamente, da cero o múltiplo de 7.
- Para 8: Si los tres últimos dígitos son cero o el número formado por éstos es múltiplo de 8
- Para 9: Si al sumar los dígitos el resultado es nueve o un múltiplo de nueve.

Ejemplo: 1980 es divisible entre

- 2 porque termina en cero
- 3 porque 1+9+8+0=18 y 18 es múltiplo de 3
- 4 porque sus dos últimas cifras 80 es múltiplo de 4
- 5 porque termina en cero
- 6 porque es divisible entre 2 y 3, por tanto es divisible entre 6
- 9 porque 1 + 9 + 8 + 0 = 18 y 18 es múltiplo de 9
- I. Determine entre que números se pueden dividir las siguientes cifras.
- 1) 5 637

6) 93 833

2) 4579

7) 15 645

3) 23 817

8) 112 866

4) 67 954

9) 110 000

5) 823

10) 193 000

<u>Definición:</u> los números primos son aquellos que solamente pueden ser divisibles entre ellos mismos y uno. El uno no es primo.

II. Encuentre los números primos desde 1 hasta 150 y escríbalos debajo de la tabla. Utilizando el procedimiento conocido como *Criba de Eratóstenes*, el cual consiste en dado un número primo, tachar todos sus múltiplos. Por ejemplo, al comenzar con el 2, tacharemos todos los números pares, ya que todos son múltiplos de dos. El siguiente primo es el 3, por tanto tachamos todos los múltiplos de 3; y así sucesivamente quedarán sólo los primos desde 1 hasta 150.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100
101	102	103	104	105	106	107	108	109	110
111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130
131	132	133	134	135	136	137	138	139	140
141	142	143	144	145	146	147	148	149	150

Los números primos obtenidos son:

Descomponer un número en sus factores primos es dividirlo utilizando únicamente números primos tantas veces como sea necesario.

Ejemplo: Descomponga 204 en sus factores primos.

Dividiremos al número 204 entre los primeros primos, en este caso 204 es divisible entre 2, y el resultado 102 lo volvemos a dividir entre 2, ahora el cociente 51 ya no es divisible entre 2, por tanto buscamos al siguiente primo que lo pueda dividir, que es el 3. El nuevo resultado es 17, quien al ser primo, solamente es divisible entre el mismo, por tanto nos queda 1 como cociente. El proceso termina cuando el último número del lado izquierdo es 1.

$$207 = 2 \cdot 2 \cdot 3 \cdot 17$$

 $207 = 2 \cdot 2 \cdot 3 \cdot 17$ Los factores primos de 204 son 2, 3 y 17

III. Descomponga en sus factores primos los siguientes números

a) 12 740

b) 13690

c) 15700

d) 20677

e) 21 901

f) 47 601

g) 48 763

h) 208 537

i) 327 701

j) 496 947

Para encontrar el máximo común divisor *MCD* de dos números, debemos encontrar sus factores primos y multiplicar aquellos que se repitan en ambos números. Si el número primo se obtiene en más de una ocasión repetido en ambos números, se de be multiplicar tantas veces como se halla encontrado.

Ejemplo: Encuentre el máximo común divisor de 120 y 84.

De manera individual encontraremos a sus factores primos.

$$\begin{bmatrix}
 2 \\
 60 \\
 30 \\
 15 \\
 5 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 2 \\
 3 \\
 5 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 3 \\
 7 \\
 1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 3 \\
 7 \\
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 3 \\
 \end{bmatrix}
 \begin{bmatrix}
 3 \\
 4 \\
 \end{bmatrix}
 \begin{bmatrix}
 3 \\
 \end{bmatrix}
 \begin{bmatrix}
 4 \\
 \end{bmatrix}
 \begin{bmatrix}
 3 \\
 \end{bmatrix}
 \begin{bmatrix}
 4 \\$$

Por tanto 12 es el MCD de 120 y 84

Los números primos que se repiten en 120 y 84 son 2, 2 y 3. Al multiplicarlos el resultado es el Máximo Común Divisor.

IV. Encuentre el m\u00e1ximo com\u00fan divisor de los siguientes n\u00eameros.

c) 345 y 850

f) 425, 800 y 950

i) 840, 960, 7260 y 9135

j) 2738, 9583, 15059, 3367 y 12691

3. 2 Algoritmo de Euclides

Mediante el algoritmo de Euclides, encontraremos el Máximo Común Divisor MCD de dos números a y b.

Paso 1: se divide el número mayor entre el menor.

Paso 2: El residuo se convierte en el nuevo divisor, y el dividendo será el antiguo divisor; esto sucede si y sólo si en la primera división el residuo es diferente de cero.

Paso 3: Se realiza el mismo procedimiento hasta que el residuo sea cero.

Paso 4: El Máximo Común Divisor es el penúltimo residuo, es decir, aquel residuo diferente de cero.

Ejemplo 1: utilizando el algoritmo de Euclides, encuentre el MCD de 120 y 84.

Por tanto 12 es el MCD de 120 y 84

Ejemplo 2: utilizando el Algoritmo de Euclides, encuentre el MCD de 60 y 25.

Por tanto el MCD de 60 y 25 es 5

V. Utilizando el algoritmo de Euclides, encuentre el Máximo Común Divisor de los siguientes números

a) 8 y 9

b) 14 y 21

c) 15 y 45

d) 45 y 90

e) 12 y 40

f) 108 y 45

g) 320 y 848

- h) 930 y 3100
- i) 7856 y 9293

j) 9504 y 14688

- k) 10108 y 15162
- l) 0 y -1

m) El MCD de dos números es 2 y el MCM 16. Halle el producto de los números

n) El MCD de dos números es 115 y el MCM 230. ¿Cuál es el producto de los dos números?

o) El MCM de dos números es 450 y el MCD 3. Si uno de los números es 18 ¿cuál es el otro?

37

3. 3 Enteros

Para poder restar cualquier par de naturales es necesario introducir los números enteros negativos que junto con el cero y los naturales, constituyen el conjunto de los números enteros.

$$\mathbb{Z} = \{...-4, -3, -2, -1, 0, 1, 2, 3, 4, ...\}$$

Las propiedades que poseen son: si *a*, *b* y *c* son tres números enteros, entonces

- Cerradura en suma: $a + b \in \mathbb{Z}$
- Propiedad conmutativa en suma: a + b = b + a
- Propiedad asociativa en suma: (a + b) + c = a + (b + c)
- Existencia del neutro aditivo en suma: a + 0 = a
- Existencia del opuesto, inverso aditivo ó simétrico: a + (-a) = 0
- Cerradura en producto: $a \cdot b \in \mathbb{Z}$
- Propiedad conmutativa para producto: ab = ba
- Propiedad asociativa: $(a \cdot b)c = a(b \cdot c)$
- Existencia del neutro multiplicativo: $a \cdot 1 = a$
- Distributiva: (a + b)c = ac + bc

El orden de los enteros.

Dados dos números enteros a y b, decimos que a es menor que b si al colocarlos en la recta numérica a queda a la izquierda de b, y escribimos a < b que se lee "a es menor que b". Otra manera de escribirlo es b > a en cuyo caso leemos "b es mayor que a".

Escribimos $a \le b$ para indicar que a < b, o bien a = b y leemos "a es menor o igual que b".

Las propiedades que cumplen son:

 Tricotomía: dados dos enteros a y b se cumple exactamente una de las siguientes propiedades

$$a < b$$
 $a > b$ $a = b$

• Transitividad: Si a está a la izquierda de b y b está a la izquierda de c, entonces a está a la izquierda de c.

Si
$$a < b$$
 y $b < c$, entonces $a < c$

- Relación con la suma: Si a < b y c es cualquier entero, entonces a + c < b + c
- Multiplicación por un número positivo: Si a < b y c es cualquier entero positivo, entonces ac < bc, es decir, no se altera el sentido de la desigualdad.
- Multiplicación por un número negativo: Si a < b y c < 0, entonces ac > bc, es decir, se invierte el sentido de la desigualdad.

VI. Coloque en el cuadro < , > o = para que cada afirmación sea cierta

- a) 3 _____5
- b) -5 _____-6
- c) 1 ______ -1
- d) -34 _____-34
- e) 67 _____ -67
- f) 0 _____ -12
- g) -21 ____-20
- h) 8 _____ 25
- i) -2 _____0
- j) -12 _____ -13

VII. En cada inciso, ordene los números de menor a mayor.

- 11)0, -3, 4, -1
- **12)** 1, -1, 2, -2
- 13) -54, -56, -61, -51
- 14)3, -3, 7, -7
- 15) 0, -18, 18, 34, -32, -33, 33

3.4 Racionales

Son los números que pueden escribirse como cociente de dos enteros, de la forma $\frac{p}{q}$, en donde $q\neq 0$. Denotaremos al conjunto de los números racionales con la letra \mathbb{Q} .

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$$

Un número racional puede llamarse también fracción o quebrado, donde p es el numerador y q el denominador.

Para determinar si dos racionales son iguales, podemos convertirlos a fracciones con el mismo denominador, multiplicando a p y a q por el mismo entero.

Ejemplo: Determine si $\frac{21}{28}$ y $\frac{15}{20}$ son fracciones equivalentes.

Multiplicaremos $\frac{21}{28}$ por $\frac{20}{20}$ y obtenemos $\frac{21\cdot20}{28\cdot20} = \frac{420}{560}$

Ahora $\frac{15}{20}$ por $\frac{28}{28}$, lo que resulta $\frac{15 \cdot 28}{20 \cdot 28} = \frac{420}{560}$

Por tanto, podemos concluir que $\frac{21}{28}$ y $\frac{15}{20}$ son fracciones equivalentes.

VIII. Determine si los siguientes pares de fracciones son equivalentes o no.

- 1) $\frac{4}{12}$ y $\frac{5}{15}$
- 2) $\frac{2}{10}$ y $\frac{4}{15}$
- 3) $\frac{3}{12}$ y $\frac{18}{72}$
- 4) $\frac{101}{210}$ y $\frac{10}{21}$
- 5) $\frac{498}{1494}$ y $\frac{13}{39}$

El proceso inverso, es la reducción de fracciones, la cual obtendremos al dividir entre el mismo número al numerador y al denominador, hasta llegar a su mínima expresión, es decir, el proceso termina cuando ya no tienen factores comunes.

Ejemplo: reduzca a su mínima expresión $\frac{72}{144}$

Utilizando los criterios de divisibilidad, utilizaremos los números primos.

$$\frac{72 \div 2}{144 \div 2} = \frac{36}{72}$$

$$\frac{36 \div 2}{72 \div 2} = \frac{18}{36}$$

$$\frac{18 \div 2}{36 \div 2} = \frac{9}{18}$$

$$\frac{9 \div 3}{18 \div 3} = \frac{3}{6}$$

$$\frac{3 \div 3}{6 \div 3} = \frac{1}{2}$$

Por lo tanto
$$\frac{72}{144} = \frac{1}{2}$$

IX. Reduzca las siguientes fracciones a su mínima expresión.

6)
$$\frac{539}{833}$$

11)
$$\frac{1470}{4200}$$

16)
$$\frac{2016}{3584}$$

7)
$$\frac{260}{286}$$

12)
$$\frac{7854}{9922}$$

$$17)\frac{1598}{1786}$$

8)
$$\frac{2004}{3006}$$

13)
$$\frac{4459}{4802}$$

18)
$$\frac{4235}{25410}$$

9)
$$\frac{1955}{3910}$$

14)
$$\frac{1798}{4495}$$

$$19)\frac{1573}{11011}$$

10)
$$\frac{286}{1859}$$

15)
$$\frac{1690}{3549}$$

41

$$20)\frac{2535}{20280}$$

Podemos escribir cualquier racional en su forma decimal, para encontrar la expresión basta con efectuar la división correspondiente

Ejemplo: Encuentre la expresión decimal de $\frac{5}{4}$

$$\begin{array}{c|cccc}
 & 1.25 & & \\
 & 5 & & \\
 & 10 & & \\
 & 20 & & \\
 & & 0 & & \\
\end{array}$$
Por tanto $\frac{5}{4} = 1.25$

- X. Encuentre la expresión decimal de los siguientes racionales. En caso de ser negativa la fracción, omita el signo, divida y al escribir el resultado escriba el signo.
- a) $\frac{28}{36}$
- b) $-\frac{54}{96}$
- c) $\frac{84}{144}$
- d) $-\frac{121}{143}$
- e) $\frac{105}{98}$

Para sumar dos fracciones, deben tener el mismo denominador, de no ser así, las convertiremos a fracciones equivalentes para poder sumarlas.

Ejemplo:

$$\frac{4}{5} + \frac{3}{8} = \frac{4 \cdot 8}{5 \cdot 8} + \frac{3 \cdot 5}{8 \cdot 5} = \frac{32}{40} + \frac{15}{40} = \frac{47}{40}$$

Entonces
$$\frac{4}{5} + \frac{3}{8} = \frac{47}{40}$$

1)
$$\frac{2}{3} + \frac{5}{6}$$

2)
$$\frac{5}{12} + \frac{7}{24}$$

3)
$$\frac{5}{8} + \frac{11}{64}$$

4)
$$\frac{7}{24} + \frac{11}{30}$$

5)
$$\frac{8}{26} + \frac{15}{39}$$

6)
$$\frac{5}{4} + \frac{7}{8} + \frac{1}{16}$$

7)
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8}$$

8)
$$\frac{7}{5} + \frac{8}{15} + \frac{11}{60}$$

9)
$$\frac{2}{3} + \frac{5}{6} - \frac{1}{12}$$

$$10)\frac{3}{4} - \frac{5}{8} + \frac{7}{12}$$

11)
$$\frac{7}{12} + \frac{5}{9} - \frac{4}{24}$$

$$12)\frac{11}{15} - \frac{7}{30} + \frac{3}{10}$$

$$13)\frac{6}{9} - \frac{1}{90} + \frac{4}{7}$$

$$14)\frac{4}{41} + \frac{7}{82} - \frac{1}{6}$$

15)
$$\frac{11}{26} + \frac{9}{91} - \frac{3}{39}$$

16)
$$\frac{31}{108} + \frac{43}{120} + \frac{59}{150}$$

$$17)\frac{111}{200} + \frac{113}{300} - \frac{117}{400}$$

18)
$$3 + \frac{3}{5} - \frac{1}{8}$$

19)
$$6+1\frac{1}{3}-\frac{2}{5}$$

20)
$$9 - 5\frac{1}{6} + 4\frac{1}{12}$$

21)
$$35 - \frac{1}{8} - \frac{3}{24}$$

22)
$$80 - 3\frac{3}{5} - 4\frac{3}{10}$$

23)
$$6\frac{1}{15} - 4\frac{1}{30} + \frac{7}{25}$$

24)
$$\frac{7}{20} + 3\frac{1}{16} - 2\frac{1}{5}$$

25)
$$9\frac{2}{3} + 5\frac{7}{48} - \frac{1}{60}$$

26)
$$-8 + 11$$

27)
$$(-32) + (-71)$$

28)
$$(-4.6) + 5.3 + (-8.7) + (-1.2)$$

29)
$$0.5 + 0.25 + \left(-\frac{1}{2}\right) + 0.75$$

30)
$$(-3.6) + (-2.4) + (-5.1) + (-6.12)$$

32)
$$0.5 + 0.02 + \frac{1}{2}$$

33)
$$4\frac{1}{5} + 0.16 - 0.666$$

34)
$$-2\frac{7}{10} + 3.196 - \frac{1}{2}$$

36)
$$31 + 14.76 + 17 - 8.35 - 0.03 + \frac{3}{4} - \frac{2}{5}$$

37)
$$8 - \frac{3}{10} + \frac{25}{5} - 0.16 - \frac{90}{30} + 14.324$$

38)
$$15 + 18\frac{36}{100} - 71 + 80.1987 - 0.000132$$

39)
$$\frac{12}{40}$$
 + 0.05 - 0.170 + $3\frac{39}{156}$

40)
$$1\frac{11}{52} + 7\frac{7}{26} - 0.8 - 0.125 + 16.6$$

Para multiplicar dos o más fracciones, se multiplican entre sí los denominadores que será el denominador del resultado; el producto de los numeradores será el numerador del resultado, es decir, se multiplican en línea recta.

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

Ejemplo: Realice el producto de $\frac{4}{3} \cdot \frac{5}{8}$ y reduzca el resultado a su mínima expresión. Recuerde que podemos simplificar las fracciones como se hizo en los ejercicios IX antes de realizar el producto o al finalizar.

$$\frac{4}{3} \cdot \frac{5}{8} = \frac{20}{24} = \frac{5}{6}$$

XII. Efectúe las siguientes multiplicaciones y reduzca el resultado a su mínima expresión.

a)
$$\frac{4}{5} \cdot \frac{10}{9}$$

b)
$$\frac{52}{24} \cdot \frac{4}{13}$$

c)
$$\frac{18}{15} \cdot \frac{90}{36}$$

d)
$$\frac{13}{4} \cdot \frac{72}{39}$$

e)
$$\frac{24}{102} \cdot \frac{51}{72}$$

$$f) \quad \frac{2}{3} \cdot \frac{6}{7} \cdot \frac{1}{4}$$

g)
$$\frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6}$$

h)
$$\frac{6}{7} \cdot \frac{7}{8} \cdot \frac{8}{9}$$

i)
$$\frac{7}{19} \cdot \frac{19}{13} \cdot \frac{26}{21}$$

j)
$$\frac{23}{34} \cdot \frac{17}{28} \cdot \frac{7}{69}$$

o)
$$\left(2\frac{1}{2}\right)(-3.7172)$$

p)
$$(-3.141592)\left(\frac{19}{21}\right)$$

q)
$$\left(\frac{29}{80}\right)(-2.717)\left(3\frac{1}{10}\right)$$

r)
$$12(-7.00171)\left(\frac{39}{17}\right)$$

s)
$$16.64 \left(8 \frac{512}{1000}\right)$$
 (3)

t)
$$(9.374)(380)(-193.50783)\left(\frac{2}{100}\right)$$

Para dividir dos fracciones, se multiplica el numerador de la primera fracción, por el denominador de la segunda fracción y el resultado es el numerador de la división y se multiplica el denominador de la primera fracción por el numerador de la segunda y el resultado es el denominador de la división, es decir, se multiplican cruzados.

$$\frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$$

Ejemplo: Realice la división de $\frac{4}{3} \div \frac{5}{8}$ y, de ser posible, reduzca el resultado a su mínima expresión.

$$\frac{4}{3} \div \frac{5}{8} = \frac{32}{15}$$

XIII. Efectúe las siguientes divisiones y, de ser posible, reduzca el resultado a su mínima expresión.

a)
$$\frac{3}{5} \div \frac{7}{10}$$

b)
$$\frac{5}{12} \div \frac{3}{4}$$

c)
$$\frac{11}{14} \div \frac{7}{22}$$

d)
$$\frac{19}{21} \div \frac{38}{7}$$

e)
$$\frac{21}{30} \div \frac{6}{7}$$

f)
$$8 \div \frac{1}{2}$$

g)
$$9 \div \frac{2}{3}$$

h)
$$52 \div \frac{14}{65}$$

i)
$$\frac{3}{8} \div 5$$

j)
$$\frac{81}{97} \div 18$$

k)
$$3\frac{12}{31} \div 2\frac{13}{31}$$

$$1) \quad 1\frac{8}{109} \div 1\frac{133}{218}$$

m)
$$4\frac{1}{50} \div 24\frac{3}{25}$$

n)
$$1\frac{11}{52} \div 7\frac{7}{26}$$

o)
$$1\frac{99}{716} \div 9\frac{19}{179}$$

p)
$$0.729 \div 0.009$$

s)
$$19.14 \div 175$$

XIV. Simplifique las siguientes expresiones y, de ser posible, reduzca a su mínima expresión cada resultado.

1)
$$\frac{\frac{1}{3} + \frac{2}{5} + \frac{1}{30}}{23/30}$$

$$2) \ \frac{\frac{1}{1/3} - \frac{1}{1/2}}{\frac{2}{1/5} + \frac{4}{1/10}}$$

3)
$$\left(\frac{\frac{1+\frac{1}{2}+\frac{1-\frac{1}{3}}{2}}{\frac{2}{2}-\frac{1}{3}}}{\frac{2\frac{1}{2}-\frac{1}{3}}{5/6}}\right) \left(23\frac{1}{2} \div \frac{47}{12}\right)$$

4)
$$\frac{(0.03+0.456+8)6}{25.458}$$

5)
$$\frac{(8.006+0.452+0.15)\div0.1}{(8-0.1+0.32)\cdot4}$$

6)
$$(1 \div 7) + (1 \div 3)$$

Una razón es el cociente de dos números. Podemos representarla por medio de una fracción, utilizar el símbolo de división o separar las cantidades por medio de dos puntos.

Ejemplos:

- La razón 8 es a 5 la escribimos como: $\frac{8}{5}$ o $8 \div 5$ o $8 \div 5$
- Escribir una razón para comparar 45 minutos con 2 horas. Primero recordemos que

2 horas = 120 minutos.

Entonces escribimos la razón y simplificamos

$$\frac{45 \text{ minutos}}{120 \text{ minutos}} = \frac{45}{120} = \frac{3}{8}$$

La razón es $\frac{3}{8}$

• ¿Cuál es la razón de la altura de una casa de 10 metros y la altura de su maqueta de 20 centímetros?

Convirtiendo a las mismas unidades ambas cantidades tenemos que 10 metros = 1 000 centímetros,

entonces escribimos la razón y simplificamos.

$$\frac{1000 \text{ cm}}{20 \text{ cm}} = \frac{1000}{20} = \frac{50}{1}$$

La razón es $\frac{50}{1}$.

Una proporción es una igualdad que establece que dos razones son iguales, de la forma:

$$\frac{a}{b} = \frac{c}{d} \quad b \neq 0, d \neq 0$$

Propiedad de la proporción: Para cualesquiera números enteros a,b,c y d, donde $b \neq 0, d \neq 0$: si $\frac{a}{b} = \frac{c}{d}$ entonces ad = bc

47

Ejemplos:

• Cuatro hombres realizan un trabajo en doce días. ¿Cuántos días tardarán en realizar el trabajo nueve hombres?

Planteamos el problema como una proporción

$$\frac{4 \ hombres}{9 \ hombres} = \frac{12 \ días}{x}$$

Como el planteamiento del problema indica que a mayor cantidad de trabajadores menor será el tiempo empleado, decimos que se trata de una regla simple de tres inversa, que se resuelve al multiplicar los numeradores y dividir el resultado entre el denominador.

$$\frac{4(12)}{9} = 5.\overline{3}$$

Que es el equivalente a 5 días y ocho horas.

 Una inversión de \$3324 produce \$277 de rédito en un año, ¿cuánto producirán \$3780 a la misma tasa de interés?

Llamaremos x al rédito producido por la segunda inversión. La razón del capital a los réditos en el primer caso es: $\frac{3\,324}{277}$ y en el segundo caso es: $\frac{3\,780}{x}$

Como la tasa de interés es la misma, igualamos las razones y resolvemos la ecuación

$$\frac{3324}{277} = \frac{3780}{x}$$

$$3324 x = 3780 \cdot 277$$

$$x = \frac{3780 \cdot 277}{3324} = 315$$

Por tanto el rédito generado por \$3 780 es \$315.

- XV. Resuelva los siguientes problemas de razones y proporciones.
 - 1) Dos números están en razón $\frac{3}{7}$. Si el menor de ellos es 189, ¿cuál es el otro?
 - 2) Dos obreros trabajan en una fábrica empacando calcetines, pero mientras uno empaca 3 cajas, el otro empaca 7. Si el más hábil ha empacado 91 cajas ¿cuántas ha empacado el otro?
 - 3) Dos números se encuentran en razón $\frac{1}{4}$. Si se sabe que uno es tres unidades mayor que el otro, ¿cuáles son los números?
 - 4) Si al comer 90 gramos de cereal se consumen 360 calorías, ¿qué cantidad de cereal debe comerse para consumir solamente 80 calorías?
 - 5) Dos ángulos están en razón 6 a 7. Si el menor mide 30°, ¿cuánto mide el otro?
 - 6) En un triángulo isósceles, el lado desigual está en razón $\frac{1}{3}$ a los dos lados iguales. Si el lado mayor mide 1.8 cm, ¿cuál es el perímetro del triángulo?
 - 7) En la República de Haití en 1970, la razón entre el número km² de superficie y el número de habitantes era de 1 a 175. Si en ese momento había 4 856 250 habitantes, ¿qué superficie tiene Haití?
 - 8) Las velocidades máximas de una mariposa y un avestruz están en razón $\frac{2}{3}$. Si la mariposa, que es la que alcanza la menor velocidad puede recorrer 48 km en una hora, ¿cuántos kilómetros recorrerá el avestruz en el mismo tiempo?
 - 9) Se estima que uno de cada 25 bebés hijos de madres que contrajeron rubeola durante el cuarto mes de embarazo sufre alguna anomalía congénita. ¿Qué número de bebés afectados habrá en 25 575 niños, hijos de madres que contrajeron la enfermedad?
 - 10) En 1974, la razón entre las especies de insectos descritos hasta entonces y el total de ellos era $\frac{19}{60}$. Si entonces se tenía la descripción de 950 000 especies, ¿cuál era el total de especies de insectos?
 - 11) 8 hombres han cavado una zanja de 50 metros de largo, 4 metros de ancho y 2 metros de profundidad en 20 días. ¿Cuánto habrían tardado en realizar el mismo trabajo 2 hombres?
 - 12) 10 hombres trabajando en la construcción de un puente hacen $\frac{3}{5}$ del trabajo en 8 días. Si retiran a 8 hombres, ¿cuánto tiempo tardarán en terminar el puente?

3.5 Irracionales

Desde el siglo V antes de nuestra era, los pitagóricos se dieron cuenta que no se puede medir con un número racional la hipotenusa de un triángulo rectángulo cuyos catetos miden 1; es decir, el número $\sqrt{2}$ no se puede escribir como cociente de dos enteros $\frac{p}{q}$, lo cual llegó a causarles problemas teológicos, pues llegaron a pensar que se debía a un error de los dioses, por lo que guardaron en secreto este descubrimiento. Entonces se crea el conjunto que conocemos como los irracionales, conjunto que denotaremos como \mathbb{I} .

Algunos ejemplos de números irracionales son:

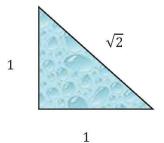
$$\pi = 3.14159265 \dots$$

 $e = 2.71828182 \dots$

 $\varphi = 1.6180339...$

$$\sqrt{2} = 1.414213 \dots$$

$$\sqrt{3} = 1.732050 \dots$$



Los irracionales cumplen todas las propiedades de los enteros, excepto las de neutro aditivo, neutro multiplicativo y cerradura, ya que en algunos casos, cuando multiplicamos dos irracionales, no siempre da como resultado un irracional. Por ejemplo:

$$\sqrt{2} \cdot \sqrt{2} = 2$$

Y sabemos que $\sqrt{2} \in \mathbb{I}$ pero $2 \in \mathbb{Z}$, por tanto los irracionales no cumplen con la propiedad de cerradura en la multiplicación.

3.6 Reales

La colección de números formada por los números racionales y los números irracionales se llama el conjunto de los *números reales*.

$$\mathbb{R} = \{\mathbb{Q}\} \cup \{\mathbb{I}\}$$

Propiedades:

- Cerradura de la suma: Si a y b son números reales, entonces a + b es un número real.
- Conmutatividad de la suma: Si a y b son números reales, entonces a + b = b + a
- Asociativa de la suma: Si a,b y c son números reales, entonces (a+b)+c=a+(b+c)
- Existencia del neutro aditivo: El número 0 satisface la igualdad a + 0 = a para cualquier número real a.
- Existencia del opuesto o inverso aditivo: Si a es un número real cualquiera, existe un único número real al que llamamos a que satisface la igualdad: a + (-a) = 0
- Propiedad de cerradura del producto: Si a y b son números reales, entonces $a \cdot b$ es un número real.
- Conmutatividad del producto: Si $a \mathbf{y} b$ son números reales, entonces $a \cdot b = b \cdot a$
- Asociativa del producto: Si a, b y c son números reales, entonces $(a \cdot b)c = a(b \cdot c)$
- Existencia del neutro para el producto: El número 1 satisface la igualdad $a \cdot 1 = a$ para cualquier número real a.
- Existencia del recíproco o inverso multiplicativo: Si a es un número real distinto de cero, existe un único número real denotado como a^{-1} o $\frac{1}{a}$, que satisface la igualdad: $a \cdot (a^{-1}) = 1$
- Distributividad: Si a, b y c son números reales, entonces a(b+c) = ab + ac

Propiedades de orden:

 Tricotomía: dados dos reales a y b se cumple exactamente una de las siguientes propiedades

$$a < b$$
 $a > b$ $a = b$

Transitividad: Si a está a la izquierda de b y b está a la izquierda de c, entonces a está a la izquierda de c.

Si
$$a < b$$
 y $b < c$, entonces $a < c$

- Relación con la suma: Si a < b y c es cualquier real, entonces a + c < b + c
- Multiplicación por un número positivo: Si a < b y c es cualquier real positivo, entonces ac < bc, es decir, no se altera el sentido de la desigualdad.
- Multiplicación por un número negativo: Si a < b y c < 0, entonces ac > bc, es decir, se invierte el sentido de la desigualdad.

XVI. Trace dos rectas numéricas y localice los siguientes números.

- a) 3
- b) $\sqrt{2}$
- c) $\frac{2}{7}$
 - d) -1.72
- e) π

- f) $-\frac{11}{8}$ g) $\frac{3\pi}{4}$
- h) 2.005
 - i) *e*
- j) $-\frac{3}{4}$

XVII. Resuelva los siguientes problemas.

- a) ¿Qué número al ser multiplicado por sí mismo da como resultado -1?
- b) Un comprador, al ver los documentos que certifican la propiedad de un terreno cuadrado, descubre que el área de éste es de -400 metros, ¿cuánto mide de cada lado el terreno?

3.7 Imaginarios

Los números imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas como: $x^2+1=0$ es decir $x^2=-1$

Entonces, al no existir algún número que satisfaga esta expresión, se crea el campo de los complejos. Un número complejo es un par ordenado de números reales; si z = (a, b) es un número complejo, se dice entonces que a es la parte real de z, y que b es la parte imaginaria de z.

Cuando la parte real de un número complejo es cero, decimos que el número complejo es puramente imaginario.

Definimos

$$i = \sqrt{-1}$$
 por lo tanto $i^2 = -1$

Entonces podemos definir a un número complejo como un real más un imaginario.

Ejemplo: escriba un ejemplo de algún número imaginario utilizando en la parte real un número irracional.

$$2\sqrt{3} + 7i$$

Donde $\sqrt{3}$ es un número irracional.

XVIII. Escriba ejemplos de números imaginarios utilizando como parte real lo que se pida:

- a) Un número natural
- b) Un número entero
- c) Un número racional
- d) Un número irracional
- e) Cualquier número real

3.8 Complejos

Como ya vimos, un número complejo es un par ordenado de números reales; si z=(a,b) es un número complejo, se dice entonces que a es la parte real de z, y que b es la parte imaginaria de z. Entonces podemos escribir a z=(a,b) como z=a+bi. El conjunto de todos los números complejos es designado por la letra \mathbb{C} .

Sabemos que dos pares ordenados de números reales (a, b) y (c, d) son iguales si a = c y si además b = d. De aquí surge la definición de igualdad para números complejos.

Para cada $z_1, z_2 \in \mathbb{C}$, si $z_1 = (a, b)$ y $z_2 = (c, d)$ entonces $z_1 = z_2$ si y sólo si a = c y b = d.

Si $z_1, z_2 \in \mathbb{C}$, y $z_1 = (a, b)$ y $z_2 = (c, d)$ entonces:

Suma de complejos:
$$z_1 + z_2 = (a,b) + (c,d) = (a+c,b+d)$$
 Multiplicación de complejos:
$$z_1 \cdot z_2 = (a,b) \cdot (c,d) = (ac-bd,ad+bc)$$

El + y el \cdot que aparecen a la izquierda son símbolos nuevos que se están definiendo, mientras que el + y el \cdot que aparecen a la derecha representan la suma y la multiplicación conocidas en los números reales.

Ejemplo: efectúe las siguientes operaciones con números complejos

$$(1,0) + (3,0) = (1+3,0+0) = (4,0) = 4+0i$$

$$(2,3) + (-4,1) = (2 + (-4), 3 + 1) = (-2,4) = -2 + 4i$$

$$(3,0)\cdot(5,0)=(3\cdot 5-0\cdot 0,3\cdot 0+0\cdot 5)=(15-0,0+0)=(15,0)=15+0i$$

$$(1,2)\cdot(1,2)=(1\cdot 1-2\cdot 2,\ 1\cdot 2+2\cdot 1)=(1-4,2+2)=(-3,4)=-3+4i$$

XIX. Efectúe las siguientes operaciones con números complejos.

1)
$$(2\sqrt{3} + 7i) + (5 + i\sqrt{2})$$

2)
$$-6i + 15i$$

3)
$$(8+3i)+(9+3i)$$

4)
$$(12-i)+(12+i)$$

5)
$$(2,6) + (-4,-10)$$

7)
$$(8 + \sqrt{2}i) + (3 - 3\sqrt{2}i)$$

8)
$$7 + (5 - \sqrt{3}i)$$

9)
$$(5\sqrt{3}-i)+(i+5\sqrt{3})$$

10)
$$(-5 + i4\sqrt{5}) + (-5 - i4\sqrt{5})$$

15)
$$(-10-7i) \cdot (-5-12i)$$

16)
$$(-7 - i) \cdot (-i)$$

17)
$$(11-5i) \cdot (9-13i)$$

18)
$$(-15 - 8i) \cdot (1 + 15i)$$

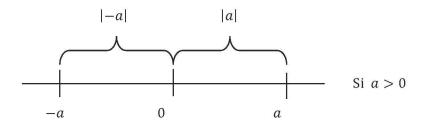
19)
$$(11-6i) \cdot (11-6i)$$

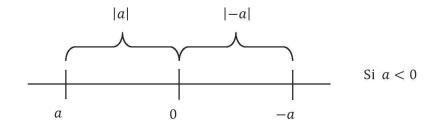
20)
$$\left(\frac{2}{3} + \frac{3}{2}i\right) \cdot \left(\frac{5}{6} + \frac{7}{2}i\right)$$

3. 9 Valor absoluto de un número real

Podemos definir el valor absoluto de un número real como su distancia al cero, sin importar si es negativo o positivo, únicamente importa su magnitud. Para referirnos al valor absoluto de un número, lo escribiremos entre líneas verticales, y dada la definición, podemos decir que:

$$|a| = \begin{cases} a & \text{si } a > 0 \\ 0 & \text{si } a = 0 \\ -a & \text{si } a < 0 \end{cases}$$





La letra a representa un número que puede ser positivo, negativo o cero. Por consiguiente, -a no representa necesariamente un número negativo, y podremos decidirlo hasta que sepamos qué número representa a.

Si
$$a = \frac{3}{4}$$
, entonces $-a = -\frac{3}{4}$. Análogamente, si $a = -1.6$ entonces $-a = 1.6$

Propiedades del valor absoluto.

- |-a| = |a|
- $|a|^2 = a^2$
- $|a| = \sqrt{a^2}$
- |ab| = |a||b|
- $\bullet \quad \left| \frac{a}{b} \right| = \frac{|a|}{|b|}$

- XX. Utilizando las propiedades anteriores, simplifique los siguientes valores absolutos.
- a) |-19|
- b) -|48|
- c) |0.63|
- d) $\left| \frac{0}{14} \right|$
- e) $\left| -\frac{21}{13} \right|$
- f) $\left| -\frac{1}{5} \right|$
- g) $\left|-\sqrt{3}\right|$
- h) $-\left|-\sqrt{6}\right|$
- i) $-\left|-\sqrt{2}\right|$
- j) -|37.95|

- k) |-π|
- l) -|-**(**-1.28**)**|
- m) |-0.25|
- n) |0.58|
- o) |-**(**-9**)**|
- p) -|68|
- q) -|-1.3|
- r) |-76.05|
- s) $|5\frac{3}{4}|$
- t) $-\left|-3\frac{7}{12}\right|$

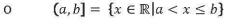
3. 10 Intervalo

Una de las formas de denotar a los intervalos es utilizando conjuntos. Hay diversos tipos de intervalos, entonces analizaremos la notación correspondiente para cada tipo.

Si a < b, el conjunto $(a,b) = \{x \in \mathbb{R} | a < x < b\}$, se llama intervalo abierto y se representa gráficamente:

Si a y b están incluidos en el conjunto, es decir, $[a,b] = \{x \in \mathbb{R} | a \le x \le b\}$, se llama intervalo cerrado y se representa gráficamente:

Un intervalo es semiabierto si contiene sólo uno de los dos extremos, es decir $[a,b) = \{x \in \mathbb{R} | a \le x < b\}$



Utilizamos el símbolo ∞ para hablar de intervalos de longitud infinita, el ∞ no es un número real y no satisface las reglas de la suma y el producto de los números reales. Si $a \in \mathbb{R}$ denotamos:

$$(a, \infty) = \{x \in \mathbb{R} | x > a\}$$

$$0 \qquad (-\infty, a) = \{x \in \mathbb{R} | x < a\}$$

Análogamente si deseamos incluir a a como elemento del intervalo, solamente debemos cambiar el paréntesis circular por uno cuadrado.

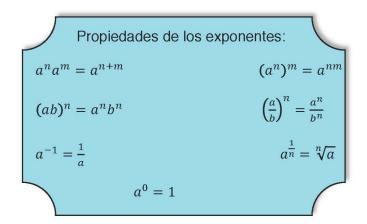
XXI. Escriba usando notación de intervalos.

- 1) $\{x \in \mathbb{R} | -4 < x < 4\}$
- $2) \ \left\{ z \in \mathbb{R} | \frac{3}{4} < z \le 9 \right\}$
- 3) $\left\{b \in \mathbb{R} | b < \frac{1}{2}\right\}$
- 4) $\{w \in \mathbb{R} | -21 \le w < -7\}$
- 5) ${a \in \mathbb{R} | -8.74 \le a}$
- 6) $(-2,5) \cup [1,7]$
- 7) $\{x \in \mathbb{R} | -2 < x < 5\} \cup \{x \in \mathbb{R} | -1 < x\}$
- 8) **(**−8,5**)** ∩ [−3,6]
- 9) **(**5,9**)** ∪ **(**−2,8**)**
- 10) (7, ∞) \cap ($-\infty$, -1)
- $11)\left(-\infty,-4\right]\cup\left(0,\frac{12}{7}\right]$
- 12) $\left(-\infty, -\frac{11}{5}\right) \cap \left(-2, \infty\right)$

3. 11 Propiedades de los exponentes

Si a es un número real y n un entero no negativo, definimos a^n como:

$$a^n = \underbrace{a \cdot a \cdot a \cdots a}_{n \text{ veces}}$$



Ejemplo: utilizando las leyes de los exponentes, simplifique la expresión $8^{-\frac{1}{3}}$

$$8^{-\frac{1}{3}} = \left(8^{\frac{1}{3}}\right)^{-1} = \frac{1}{\frac{1}{8^{\frac{1}{3}}}} = \frac{1}{\sqrt[3]{8}} = \frac{1}{2}$$

XXII. Utilizando las leyes de los exponentes, simplifique las siguientes expresiones.

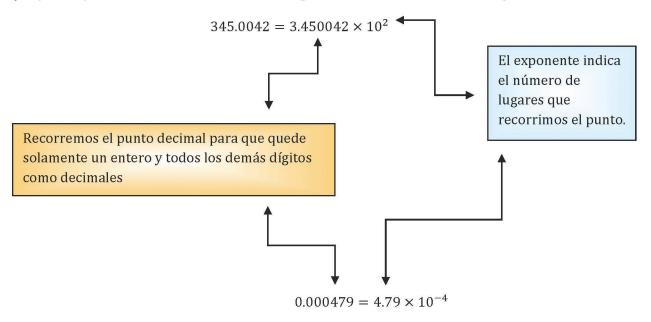
1)
$$5^{7} \cdot 5^{3}$$

2) $(8^{9})^{3}$
3) $(2 \cdot 6)^{15}$
4) $\left(\frac{1}{20}\right)^{4}$
5) $(-2)^{2}(-2)^{5}$
6) $(7)^{3}(7)^{8}(7)^{4}$
7) $(2^{8})^{7}$
8) $(-8)^{12}(-8)^{6}$
9) $-1.5(4^{5})^{2}$
10) $7(5)\left(\frac{5^{11}}{14}\right)6(5^{2})$
11) $8(-3(-9))\left(\frac{5}{18}(-9)\right)\left(\frac{(-9)^{17}}{10}\right)$
12) $\left(\frac{1}{3}\right)^{6}\left(-12\left(\frac{1}{3}\right)^{9}\right)\left(\frac{1}{3}\right)^{4}$
13) $4\left(\frac{2}{7}\right)^{8}\left(3\left(\frac{2}{7}\right)^{7}\right)^{4}$
14) $-7\left(\frac{3}{5}\right)^{4}\left(\left(\frac{5}{6}\right)^{6}\right)^{3}\left(\frac{2}{3}\right)^{2}$
15) $\left((0.5)\left(\frac{3}{2}\right)^{4}\right)^{5}$
16) $\left(3^{\frac{1}{4}}\right)^{-1}$
17) $2(4^{-2})$
18) $5\left(125^{\frac{1}{3}}\right)$
19) $(-3.7)^{-\frac{4}{3}}$
20) $6(2 \cdot 3)^{-1}$

3. 12 Notación científica

Para escribir cifras demasiado grandes o pequeñas, utilizamos la notación científica, la cual consiste en utilizar potencias de 10 y escribir los números como decimales con un solo entero.

Ejemplo: Exprese en notación científica las siguientes cantidades 345.0042 y 0.000479



Si recorremos el punto decimal a la izquierda, entonces el exponente será positivo. Si el punto lo movemos a la derecha, entonces el exponente será negativo.

XXIII. Exprese en notación científica las siguientes cifras.

- 1) 0.009876
- 2) 12 745 300 000 100
- 3) 0.0000001230001
- 4) 2,905 198,000 000
- 5) 0.0000008

XXIV. Exprese en notación decimal los siguientes números expresados en notación científica.

- 6) $8(4.5 \times 10^3)$
- 7) $5.3(2.1 \times 10^{-8})$
- 8) $(3.2 \times 10^4)(1.5 \times 10^5)$

9)
$$\frac{(7.2 \times 10^{-3})(8.1 \times 10^2)}{(4.3 \times 10^5)}$$

$$10)\frac{(4.1\times10^3)(5.8\times10^{-9})}{(5.2\times10^4)}$$

3. 13 Logaritmos

Si N y b son números positivos y si $b \neq 1$, entonces

 $\log_b N = L \text{ si, y solo si } N = b^L$

Observaciones:

- $\log_a 1 = 0$ ya que $a^0 = 1$
- $\log_a a = 1$ ya que $a^1 = a$
- $\log_a a^n = n$ ya que $a^n = a^n$

XXV. Utilizando la definición de logaritmo, cambie de la forma exponencial a la logarítmica.

1) $5^4 = 625$

4) $3^{-5} = \frac{1}{243}$

2) $25^{\frac{1}{2}} = 5$

- 5) $6^1 = 6$
- 3) $10^{-4} = 0.0001$

XXVI. Utilizando la definición de logaritmo, cambie de la forma logarítmica a la exponencial.

6) $\log_3 9 = 2$

- 8) $\log_{\frac{1}{5}} 125 = -3$
 - 10) $\log_{0.1} 100 = -2$

- 7) $\log_{10} 1000 = 3$
- 9) $\log_{49} 7 = \frac{1}{2}$

Propiedades:

- $1) \log_a MN = \log_a M + \log_a N$
- $2) \log_a \frac{M}{N} = \log_a M \log_a N$
- 3) $\log_{\alpha} M^k = k \log_{\alpha} M$

Ejemplo: Utilice las propiedades de logaritmos para encontrar una expresión equivalente.

$$\log_7 \frac{(30)^2(40)}{17}$$

Note que hay dos números que se multiplican y dividen a un tercer número, lo cual significa que la expresión log_7 también aparecerá en tres ocasiones.

De acuerdo a las propiedades 1) y 2): $log_7 \frac{(30)^2(40)}{17} = log_7(30)^2 + log_7(40) - log_7 17$

Finalmente utilizamos la propiedad 3) en el primer sumando para obtener $log_7 \frac{(30)^2(40)}{17} = 2log_7 30 + log_7 (40) - log_7 17$

XXVII. Ejercicio: Utilizando las propiedades de logaritmos, escriba la expresión equivalente.

12)
$$\log_{10} \frac{75}{15}$$

13)
$$\log_{20}(408)^{\frac{1}{2}}$$

14)
$$\log_5\left(\frac{1}{2}\right)\left(\frac{5}{3}\right)$$

15)
$$\log_{\frac{1}{2}} \frac{.40}{3.21}$$

16)
$$\log_{10} \frac{(20)(30)^2}{15^{\frac{1}{2}}}$$

17)
$$\log_{10}(93)^{\frac{1}{2}}(18)$$

18)
$$\log_{10} \frac{(100)^2 (36.8)^{\frac{1}{3}}}{(45)^{\frac{3}{2}}}$$

XXVIII. En los siguientes ejercicios, exprese como un solo logaritmo las expresiones.

19)
$$\log_5 20 + \log_5 100 - \log_5 30$$

21)
$$\frac{1}{2}\log_{20} 300 - 2\log_{20} 500$$

20)
$$5\log_{10} 200$$

22)
$$\log_{10} 100 - 4(\log_{10} 20 - \log_{10} 60)$$

Si el logaritmo de un número es la potencia a que se tiene que elevar la base para obtener el número, cualquier base positiva diferente de 1 servirá para construir un sistema de logaritmos. El más usado es el de base 10, y se les denomina logaritmos comunes o de Briggs en honor de Henry Briggs que fue quien los uso por primera vez. El otro sistema que también tiene muchas aplicaciones es el de base e $(e = 2.71828 \cdots)$.

Logaritmos en base 10:

$$\log_{10} 0.0001 = -4$$
 $\therefore 10^{-4} = 0.0001$

$$\log_{10} 0.001 = -3 \qquad \therefore \quad 10^{-3} = 0.001$$

$$\log_{10} 0.01 = -2 \qquad \therefore \quad 10^{-2} = 0.01$$

$$\log_{10} 0.1 = -1 \qquad \therefore \quad 10^{-1} = 0.1$$

$$\log_{10} 1 = 0$$
 \therefore $10^0 = 1$

$$\log_{10} 10 = 1 \qquad \quad \therefore \quad 10^1 = 10$$

$$\log_{10} 100 = 2 \qquad \therefore \quad 10^2 = 100$$

$$\log_{10} 1000 = 3 \qquad \therefore \quad 10^3 = 1000$$

$$\log_{10} 10000 = 4 \qquad \qquad \therefore \quad 10^4 = 10000$$

El logaritmo de cualquier número tiene dos partes, la característica (positiva, negativa o cero) y la mantisa (fracción decimal positiva mayor que cero y menor que uno).

Para encontrar la característica de un número, solamente debemos ubicarlo encima del logaritmo que le corresponde, por ejemplo, si deseo encontrar la característica de 5, el resultado es 0 porque $\log_{10}1=0$ y 5 es mayor que 1 y menor que 10. Si deseo encontrar la característica de 849, el resultado es 2 porque $\log_{10}100=2$ y 849 es mayor que 100 y menor que 1000. Si la característica es negativa, se escribe el signo menos arriba del número.

Normalmente para referirnos al logaritmo en base 10, solamente utilizamos log y cuando deseemos hacerlo en otra base, lo indicaremos como en los casos anteriores.

XXIX. Encuentre la característica de los siguientes logaritmos

23) I	og 311	27)	log 80.9

USO DE TABLA PARA OBTENER LA MANTISA DEL LOGARITMO DE UN NÚMERO.

Las tablas II y III a las que se hace referencia en los siguientes párrafos, se encuentran en los anexos, donde la tabla II es la tabla de logaritmos y la tabla III es la tabla de antilogaritmos, en las páginas 155 a 158.

En la primera columna de la tabla II se encuentran los números del 10 al 99. La parte superior tiene 10 columnas marcadas del 0 al 9 y por último 9 columnas más que se llaman partes proporcionales y se abrevian como pp.

Para encontrar la mantisa de un número, nos movemos hacia abajo en la primera columna y después nos movemos hacia la derecha hasta encontrar en la parte superior el número buscado entonces el número donde se intersectan la columna y el renglón es la mantisa buscada.

Ejemplo: encuentre utilizando la tabla II el log 193.8

En la primera columna ubicamos el 19, ahora nos movemos a la derecha hasta llegar al número 3 y leemos el número 2856, ahora nos movemos en ese mismo renglón a la sección de partes proporcionales hasta el 8 y el número indicado es 18 y sumamos ambas cantidades, es decir 2856 + 18 = 2874

Finalmente agregamos la característica, como $\log 193.8$ es mayor que $\log_{10} 100 = 2$ el resultado es:

$$\log 193.8 = 2.2874$$

XXX. Utilizando la tabla II, encuentre los siguientes logaritmos.

- 31) log 28.6
- 32) log 324
- 33) log 8.194
- 34) log 56.71
- 35) log 3824
- 36) log 0.179
- 37) log 0.004621
- 38) log 0.0972
- 39) log 0.0006718
- 40) log 0.3085

Encontrar el antilogaritmo de un número a significa elevar 10 a la potencia a. Esta operación es la inversa del logaritmo, para encontrar el logaritmo de un número si tenemos el resultado, es decir,

log 2858 = 3.456 esto implica que antilog 3.456 = 2858

De igual forma que buscamos en tablas los valores del logaritmo, buscaremos los del antilogaritmo, pero en la tabla III.

XXXI. Utilizando la tabla III, encuentre los siguientes antilogaritmos.

- 41) antilog 5.201
- 42) antilog 2.335
- 43) antilog 1.896
- 44) antilog 4.7219
- 45) antilog 0.781

CAPÍTULO 4: OPERACIONES CON MONOMIOS Y POLINOMIOS EN UNA VARIABLE

4.1 Monomio

Los monomios son los polinomios más sencillos, consisten en un número, una variable o el producto de una o más variables. La parte numérica se llama coeficiente y la otra parte variable, incógnita o literal.

El grado de un monomio es la suma de los grados de todas sus variables. Si el monomio es una constante, entonces su grado es cero.

I. Complete la siguiente tabla:

Monomio	Coeficiente	Variables	Grado
2s ²			
	-40	$x^{3}y^{4}$	
$\frac{8}{11}uvw$			
	-0.2	m	
$\frac{a^6c^4}{b^{11}d^3}$			
	6.62	x ⁰	
w ⁻⁹			
	1	$rs^{1000}t^{-3}$	
$-\frac{45}{7}x^3yz^3$			
	-5×10 ²³	$\frac{1}{h}$	

4.2 Polinomio

Un polinomio es la suma de uno o más monomios. Algunos polinomios reciben nombres especiales, de acuerdo con el número de sumandos que tienen: monomio (un término), binomio (dos términos), trinomio (tres términos).

El grado de un polinomio es el mayor de los grados de sus términos, después de haber simplificado.

- II. Encuentre el grado de cada uno de los siguientes polinomios:
- 1) 11 + 8x 4(10 3x)
- 2) $-y^2 + 6y 15$
- 3) $23w^5 5w + 8w^7 10w^2 + 9$
- 4) $2z^4 3z^2 + 7z^2 3(8z^4 + 2z^3)$
- 5) $20x^7 + 14(3x^5 2x^7) 9(2x^5 + 3x^4) + 16(-3x^5 2x^3) + 12$
- III. Ordene los siguientes polinomios en orden ascendente de acuerdo a la variable que se indique:
- 6) $45a^6b^4 121a^5b^8 7abc + 7a^4b^2c$ (con respecto a b)
- 7) $16xy^2z^5 + 2x^4y + 3x^2y^7z 11x^5y^2 3y^6x^3 8x^7y^5z^4 + 81$ (con respecto a x)
- 8) $18z^5w + 4w^3z^2 + 7w^2(z^7 + z + 2) 6(z^{14}w z^{11}w^3 + z^7w^4)$ (con respecto a z)
- 9) $x^4v^2 + 7xv^3 11x^5v 6x^3w^6 18x^2w^5$ (con respecto a v)
- 10) $6xy^7 + 7xy^2 + 30x^3y 2x^2y^3 x^4y^5$ (con respecto a y)
- IV. Construya el polinomio que se indica:
- 11) Un monomio de grado 3 con dos variables.
- 12) Un monomio de grado 1 con una variable.
- 13) Un binomio de grado 8 con tres variables.
- 14) Un binomio de grado 6 con dos variables.
- 15) Un trinomio de grado 5 con una variable.
- 16) Un trinomio de grado 4 con tres variables.
- 17) Un polinomio de grado 2 con una variable y seis términos.
- 18) Un polinomio de grado 10 con tres variables y cinco términos.

4.3 Adición y sustracción de monomios y polinomios

V. Calcule la suma de las siguientes expresiones algebraicas:

1)
$$2a^3 - 2a^2b + 2b^3$$
, $3a^2b - 4ab^2 - 4b^3$, $2ab^2 - a^3$

2)
$$4m^2 - 3mn + 2n^2$$
, $6mn - 2n^2 + 5$, $3n^2 - 3 - 2m^2$

3)
$$x^2 - 4xy + 3y^2$$
, $2x^2 + 2xy - 2y^2$, $2xy - y^2 - x^2$

4)
$$3x^3 - 8x^2 + 9x$$
, $-x^3 + 3x^2 - 8$, $2x^3 - 2x^2 - 7x + 5$

5)
$$c^2 + 2cd - 2d$$
, $3c - 3cd - 2d^2$, $c^2 + 4d - 2c + 2d^2$

VI. Calcule la resta de las siguientes expresiones algebraicas:

6)
$$3a-2b+4c-d$$
, $2a+b-3c-d$

7)
$$x^3 - 4x^2 + 2x - 5 - x^3 + 2x^2 - 3x - 3$$

8)
$$a^3 - 3a^2b + 3ab^2 - b^3$$
, $a^3 - 4a^2b + 2ab^2 + b^3$

9)
$$2a + 4by - 2cy^2 + dy^3$$
, $2dy^3 - 2by - a + 3cy^2$

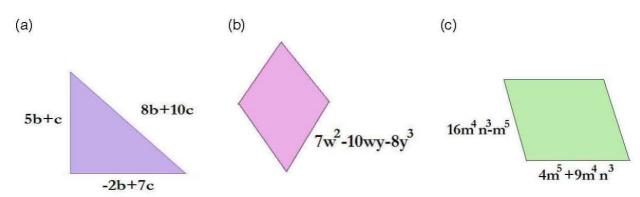
10)
$$m^4 + 6m^3 - 7m^2 + 8m - 9$$
, $2m^3 + 3m^2 - 4m - 3$

VII. En los siguientes ejercicios conteste lo que se pide:

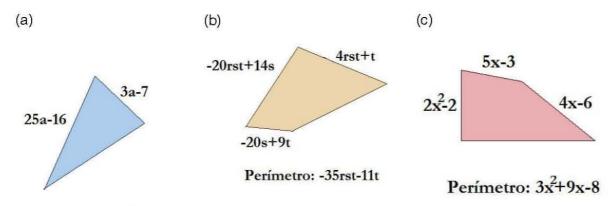
- 11) Halle la expresión que debe sumarse a 3a 2b + 4c para obtener 2a + 3b 2c.
- 12) Encuentre la expresión que debe restarse de 4x + 2y 7 para que la diferencia sea igual a 3x y + 5.
- 13) Encuentre la expresión que debe disminuirse en 2m 2n + 3p para obtener una diferencia igual a 4m + n 2p.
- 14) El minuendo es $2a^2 + 2ab b^2$; la diferencia es $a^2 + 3ab 2b^2$. Encontrar el sustraendo.

- VIII. Traduzca cada problema algebraico. Después simplifique la expresión algebraica que obtuvo.
- a) Cuatro veces la diferencia de 11 menos 2z, menos el triple de la resta de 10 menos z.
- b) El triple de la suma de 5 y x, más el doble de la diferencia de 3x menos 4.
- c) El cuádruple de la suma de 17 mas w, menos el triple de la suma de 2w y 5.
- d) Un número de cuatro dígitos satisface lo siguiente: si al dígito de las decenas menos el de las unidades se le agrega la suma del dígito de las centenas más el de los millares más el de las unidades, a lo obtenido se le resta la diferencia del dígito de las decenas menos el de los millares y finalmente se resta la diferencia del dígito de las centenas menos el de las decenas, el resultado es 8.

IX. Encuentre el perímetro de las siguientes figuras:



X. Dado del perímetro de cada figura, encuentre el valor del lado faltante:



4.4 Multiplicación de monomios y polinomios

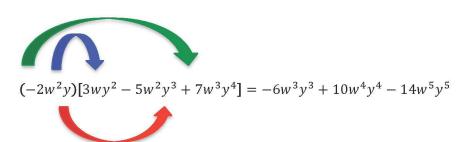
La multiplicación de monomios o polinomios se indica por medio de paréntesis, corchetes, llaves o utilizando el símbolo \cdot . Ya no usamos " \times " porque se podría confundir con la variable x.

Eiemplos:

 $(4x^4)^3 \cdot (5x^2)^2 = (64x^{12})(25x^4)$ $= 1600x^{16}$

Primero se eleva a la potencia indicada, cada componente del monomio

El monomio debe multiplicar a cada término del polinomio, siguiendo las reglas del ejemplo anterior Ya que los monomios no tienen exponentes, se multiplican los signos, después los coeficientes y por último las variables



El producto de un binomio por otro binomio o trinomio, se hace también término a término, y en caso de ser posible, se reducen términos semejantes al final

$$(a+5)(a-3) = a^2 - 3a + 5a - 15$$

= $a^2 + 2a - 15$

Recuerda que se pueden hacer multiplicaciones horizontales (recomendadas para binomios) y multiplicaciones verticales (se recomienda su uso para polinomios por polinomios)

$$\begin{array}{r}
 a + 5 \\
 \times a - 3 \\
\hline
 a^2 + 5a \\
 -3a - 15 \\
\hline
 a^2 + 2a - 15
\end{array}$$

XI. Efectúe los siguientes productos:

a)
$$(2y)^3(2x^3)^2$$

b)
$$(5x^2y)^4(4zyx^2)^3$$

c)
$$(2x^2y^3)(-3xy^2)$$

d)
$$(-4x^2y^3)(-3x^5y^2)$$

e)
$$a(10-3b)$$

f)
$$-6b(b^3 - 4b)$$

g)
$$\frac{2}{3}m(8m^5-4m^4-16)$$

h)
$$2xy^2(3x^2 + 5xy^2 + 6xy + x - y)$$

i)
$$\frac{4}{5}a^4b^3\left(\frac{15}{4}a^8b^6 - \frac{5}{8}a^4b^3 + \frac{1}{6}a^5\right)$$

j)
$$(3x + 2y)(2x - 3y)$$

k)
$$2x^2y(3y-2x)-3xy^2(2x-y)$$

l)
$$(4x + 1)(3x^2 + 4x - 1)$$

m)
$$(5x^2 + 2x - 3)(x^2 - 3x - 3)$$

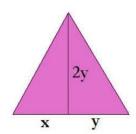
n)
$$(2x^2 + 3xy - 3y^2)(3x^2 - xy - 2y^2)$$

XII. Resuelva los siguientes problemas:

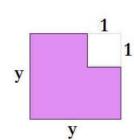
- e) El cuadrado de la suma de tres números es igual a la suma de los cuadrados de los tres números más el doble producto del primero por el segundo, más el doble producto del primero por el tercero, más el doble producto del segundo por el tercero.
- p) La suma de los cubos de dos números es igual al producto de la suma de los números por el cuadrado del primero menos el producto de dos números más el cuadrado del segundo.
- q) La diferencia de los cuadrados de dos enteros consecutivos impares es -32. Encuentre dichos números.
- r) Tres números enteros consecutivos satisfacen la siguiente condición: 8 veces el primero más el cubo del segundo, menos el cubo del primero es igual al cubo del tercero menos el cubo del segundo. Encuentre dichos números.

- s) Cuatro números enteros consecutivos satisfacen que el producto de los tres primeros es igual al producto de los tres últimos menos tres veces el cuadrado del primero, menos 51. Encuentre dichos números.
- XIII. Obtenga el área de las figuras sombreadas:

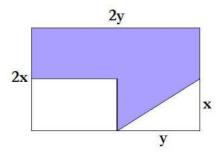
(a)



(b)



(c)

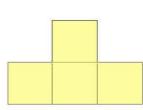


XIV. Dada el área de las siguientes figuras, encuentre el lado o los lados faltantes:

(a)

Área: $(5a+8)^2$

(b)



Área: 16x²

(c)

Área: x^2+5x

4.5 Factor común

El factor común de un polinomio se obtiene con los siguientes pasos

MCD de los coeficientes

Busque la o las incógnitas que aparezca o aparezcan en todos los términos

Escriba la incógnita con el menor exponente de la o las elegidas en el paso anterior

Escriba tus respuestas como un monomio

Ejemplos:

$$12a^8 - 6a^7b + 18a^6b^2 - 24a^4b^2c$$

- MCD es 6
- La única variable que aparece en todos los términos es a
- La a del menor exponente es a⁴
- El factor común es: 6a4

$$125x^3yz^3 - 75x^2y^2z^2 + 200xy^3z^2$$

- MCD es 25
- Las variables que aparecen en todos los términos son: xyz
- Las del menor exponente: xyz^2
- El factor común es: 25xyz²

$$2m + 4n^2p - 7mnp$$

- MCD es 1
- Ninguna variable aparece en todos los términos
- No hay variable que aparezca en todos los términos
- El factor común es 1, por tanto no necesito escribirlo como monomio

XV. Obtenga el factor común de los siguientes polinomios:

1)
$$a^2 + ab$$

2)
$$b + b^2$$

3)
$$5m^2 + 15m^3$$

4)
$$ab - bc$$

5)
$$2a^2x + 6ax^2$$

6)
$$abc + abc^2$$

7)
$$15y^3 + 20y^2 - 5y$$

8)
$$14x^2y^2 - 28x^3 + 56x^4$$

9)
$$34ax^2 + 51a^2y - 68ay^2$$

$$10)96 - 48mn^2 + 144n^3$$

$$11)\,93a^3x^2y - 62a^2x^3y^2 - 124a^2x$$

12)
$$2x^2 - 6x^3 + 8x^4 - 10x^5$$

$$13)\,25x^7 - 10x^5 + 15x^3 - 5x^2$$

14)
$$16x^3y^2 - 8x^2y - 24x^4y^2 - 40x^2y^3$$

$$15) 4x^3y^7z^6 + 16x^{12}y^3z^8 - 36x^9z^6y^4$$

16)
$$36x^2y^7z^5 - 45x^3y^6z^6 - 1$$

17)
$$12x^7y^6z^{10} + 24x^6y^3z^8 - 8x^4y^2z^{12} + 36x^6y^{12}z^{18}$$

$$18)\frac{3}{2}x^4y^7z^{10} - \frac{5}{8}x^7y^{12}z^{15} + \frac{3}{4}x^9y^7z^{16}$$

19)
$$5x^{12}y^{14}z^{10} - 14x^2y^9z^{15} + 19x^7y^6z^{12} + 12x^2y^9z^{15}$$

20)
$$a(x + 1) + b(x + 1)$$

4.6 División de polinomios

Para esta sección realizaremos dos casos, el más fácil de ellos es el de un monomio entre otro monomio, ya que se dividen los coeficientes y para las variables se siguen las propiedades de los exponentes. En caso de que el dividendo sea un polinomio, se debe realizar el mismo procedimiento, tantas veces como sea necesario

Ejemplos:

$$\frac{12x^4y^3}{6x^2y} = 2x^2y^2$$

$$\frac{25a^4 - 15a^3}{5a^2} = 5a^2 - 3a$$

$$\frac{6m^2n - 24mn^4}{12mn^3} = \frac{1}{2}mn^{-2} - 2n$$

Recuerda que el término $n^{-2} = \frac{1}{n^2} \quad \text{así}$ que úsalo indistintamente

XVI. Efectúe la división indicada y compruebe el resultado:

1)
$$\frac{8x^3y^2z^6}{48x^2v^7z^{10}}$$

$$2) \quad \frac{12x^7y^3z^{12}}{4x^2y^8z^5}$$

$$3) \quad \left(\frac{15x^8y^3z^{16}}{5x^3y^9z^{12}}\right)^2$$

4)
$$\left(\frac{12x^6y^8z^{10}}{18x^3y^5z^2}\right)^{-3}$$

5)
$$\left(\frac{6x^5y^7z^9}{24x^3y^{10}z^{12}}\right)^{-3/2}$$

6)
$$\frac{8x^4y^3z^2}{-4x^2y^2z}$$

$$7) \ \frac{4abx^3 - 8b^2x^2y}{2bx^2}$$

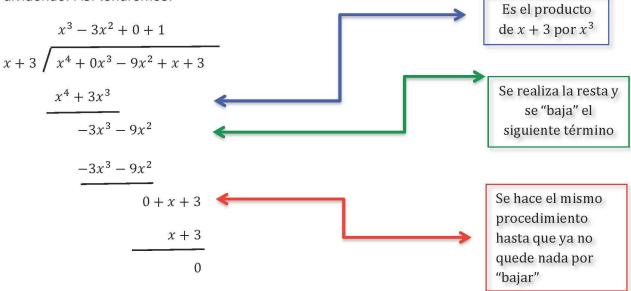
8)
$$\frac{16v^4w^6 - 8v^3w^7 + 24v^2w^8x}{4v^3w^5x}$$

El caso complicado de la división de polinomios es cuando tenemos a un polinomio en el divisor y a otro en el dividendo. El procedimiento consiste en hacer la división de manera similar al método que se usa en una división numérica.

Ejemplos:

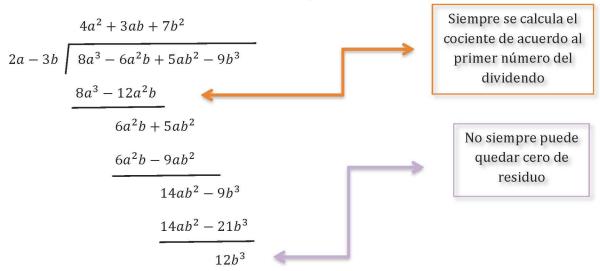
a) Divida
$$x^4 + 3 + x - 9x^2$$
 entre $x + 3$

Primero debemos acomodar los términos y considerar aquellos que no están en el dividendo. Así tendremos:



b) Divida
$$8a^3 - 9b^3 - 6a^2b + 5ab^2$$
 entre $2a - 3b$

Primero agrupamos los términos de acuerdo a la variable con el mayor exponente y procedemos a realizar la división como en el ejemplo anterior.



XVII. Realice las siguientes divisiones entre polinomios.

9)
$$\frac{m^4 - n^4}{m + n}$$

18)
$$\frac{x^4-1}{x^2+2x}$$

$$10) \frac{3x^3 - 5x^2y - 8xy^2 - 2y^3}{3x + y}$$

19)
$$\frac{2x^2-11x+5}{x-3}$$

11)
$$\frac{a^5 - 4a^4 + 3a^3 + 3a^2 - 3a + 2}{a^2 - a - 2}$$

$$20) \, \frac{x^2 - 8x + 7}{x - 2}$$

$$12) \frac{x^3 - 3x^2 + x + 2}{x - 2}$$

$$21) \, \frac{5x^2 + 6x - 9}{x + 3}$$

$$13) \, \frac{x^3 + 2x^2 - x + 6}{x^2 - x + 2}$$

22)
$$\frac{12x^3 + 4x^2 - 15x + 5}{x + \frac{1}{3}}$$

$$14) \frac{a^4 + a^3b - ab^3 - b^4}{a^2 + ab + b^2}$$

$$23) \frac{5x^3 - 4x - 12}{x - 2}$$

15)
$$\frac{x^4 + 2x^3 + 1}{x^3 + x^2 - x + 1}$$

24)
$$\frac{x^4-64}{x+4}$$

$$16) \frac{2x^2 + 3xy - 2y^2 - 2x - 14y - 12}{x + 2y + 2}$$

$$25) \frac{6x^3 - 3x^2 - 8x - 4}{x - \frac{1}{2}}$$

$$17) \, \frac{y^2 + 2}{y^2 + 1}$$

26)
$$\frac{6t^2-23t+15}{3t-4}$$

4.7 Valor de un polinomio

El valor de un polinomio se obtiene al sustituir para ciertos valores de las variables, los valores numéricos indicados para cada variable; se realizan las operaciones correspondientes y se obtiene el resultado.

Ejemplos:

a) Obtenga el valor del polinomio: $a^2 + 2ab + b^2$ cuando a = 3 y b = -1

$$(3)^2 + 2(3)(-1) + (-1)^2 =$$

= 9 - 6 + 1
= 4

b) Obtenga el valor del polinomio: $12a - 24a^2 + 6a^3$ cuando a = -2

$$12(-2) - 24(-2)^{2} + 6(-2)^{3} = 24 - 96 - 48$$
$$= -120$$

XVIII. Obtenga el valor de los siguientes polinomios en los valores indicados de las variables.

1)
$$3a^4 + 15a + 4 - 16a^2 + 2a^2 + 5a$$
 cuando $a = 1$ y $a = -1$

2)
$$3b^3 - \frac{5}{2}b + 4$$
 cuando $b = 2$ y $b = -2$

3)
$$6c - 3cd + 9cd^2 + 3c + 4cd - 9c^2d$$
 cuando $c = 4$ y $d = -2$

4)
$$e^2 - 3f^2 - \frac{1}{3}e^3f$$
 cuando $e = 3$ y $f = -1$

5)
$$\frac{-60g^3h^7j^4}{12h^3j}$$
 cuando $g = -1$, $h = 1$ y $j = 3$

6)
$$\frac{12k^2l-6kl^2}{2kl}$$
 cuando $k=4$ y $l=-1$

7)
$$\frac{m^2-4n^2}{m+2n}$$
 cuando $m=3$ y $n=2$

8)
$$\frac{p^3-q^3r^3}{p-qr}$$
 cuando $p=1$, $q=-1$ y $r=-2$

4.8 Polinomio como f(x)

Una función es una relación en la que a cada elemento del dominio (le llamaremos x o variable independiente) le corresponde una y sólo una imagen (le llamaremos y o variable dependiente). Esto significa que cada vez que sustituya un valor determinado de x en un polinomio, me debe dar un resultado.

Existen diversas clasificaciones de las funciones, como si fueran las cualidades de una persona, pero en este curso solamente nos concentraremos en las funciones polinomiales de acuerdo a su grado y a sus respectivas gráficas.

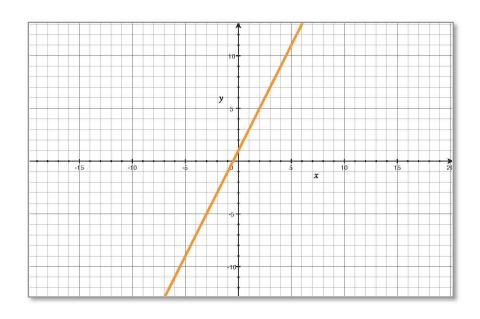
✓ Lineales: grado 1

Ejemplos:

1) Grafique la función f(x) = 2x + 1

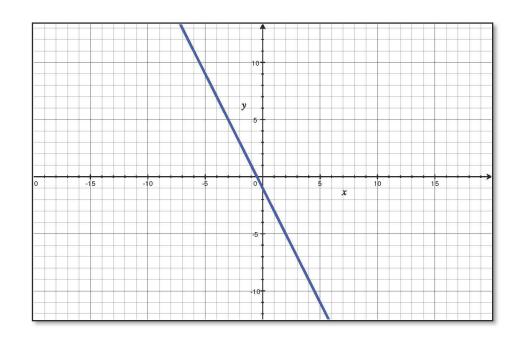
Asigno los valores de x que yo desee y realizo las operaciones indicadas

Х	f(x)
-3	-5
-2	-3
-1	-1
0	1
1	3
2	5
3	7



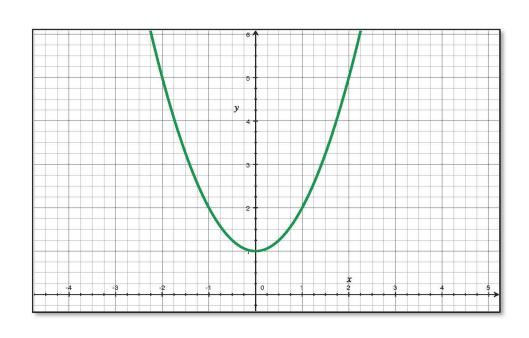
2) Grafique la función f(x) = -2x - 1

Х	f(x)
-3	5
-2	3
-1	1
0	-1
1	-3
2	-5
3	-7



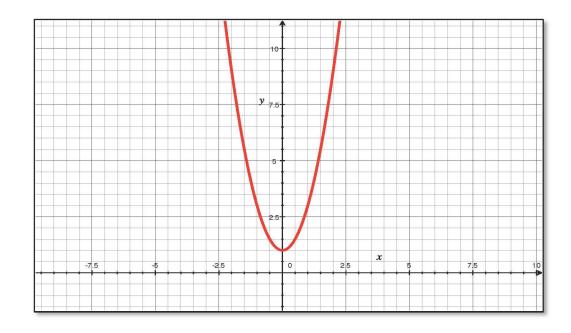
- ✓ Cuadráticas: grado 2
 - 3) Grafique la función $f(x) = x^2 + 1$

Х	f(x)
-2	5
-1	2
-0.5	1.25
0	1
0.5	1.25
1	2
2	5



4) Grafique la función: $f(x) = 2x^2 + 1$

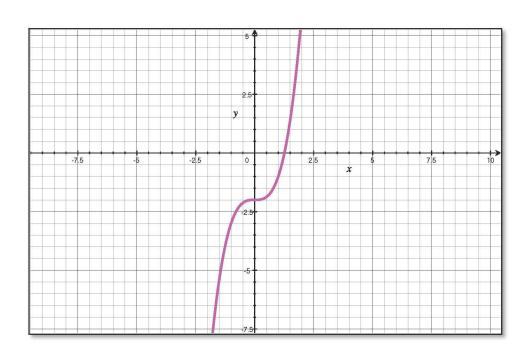
X	f(x)
-2	9
-1	3
-0.5	1.5
0	1
0.5	1.5
1	3
2	9



✓ Cúbicas: grado 3

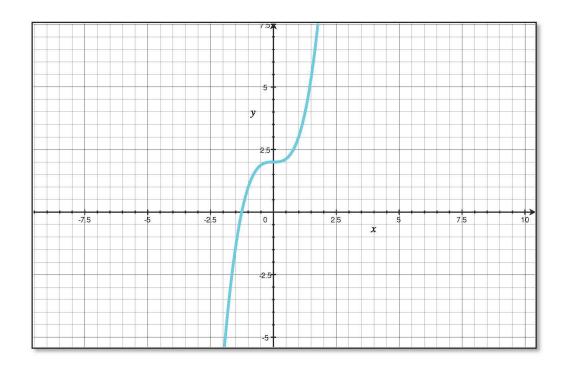
5) Grafique la función: $f(x) = x^3 - 2$

X	f(x)
-2	-10
-1.5	-5.375
-1	-3
-0.5	-2.125
0	-2
0.5	-1.875
1	-1
1.5	1.375
2	6



6) Grafique la función: $f(x) = x^3 + 2$

X	f(x)
-2	-6
-1.5	-1.375
-1	1
-0.5	1.875
0	2
0.5	2.125
1	3
1.5	5.375
2	10



XIX. Grafique las siguientes funciones

$$1) \quad f(x) = x$$

$$2) \quad f(x) = -x$$

3)
$$f(x) = 3x$$

4)
$$f(x) = 3x + 2$$

5)
$$f(x) = 3x - 2$$

6)
$$g(x) = -3x^2$$

7)
$$g(x) = -2x^2$$

$$8) \quad g(x) = x^2$$

9)
$$g(x) = 2x^2$$

10)
$$g(x) = 3x^2$$

$$11) h(x) = 2x^3 - 2$$

12)
$$h(x) = 2x^3$$

13)
$$h(x) = 2x^3 + 2$$

14)
$$h(x) = -x^3 + 1$$

15)
$$h(x) = x^3 + 1$$

CAPÍTULO 5: PRODUCTOS NOTABLES Y FACTORIZACIÓN

5. 1 Factor común

En el capítulo anterior aprendimos a multiplicar polinomios y a expresarlos como un único polinomio. El proceso que denominamos factorización es la operación inversa de la multiplicación. Entonces podemos definir al proceso de factorizar una expresión algebraica como encontrar los factores que, al multiplicarlos nos den como resultado aquella expresión que deseábamos factorizar.

Ejemplo:

Realice la siguiente operación: $(x + 2)(x + 3) = x^2 + 5x + 6$

Entonces si ahora queremos factorizar la expresión $x^2 + x + 6$ debemos encontrar aquellos factores que al multiplicarlos me darán como resultado la expresión anterior.

Por lo tanto, la factorización de $x^2 + x + 6 = (x + 2)(x + 3)$

De los diferentes casos de factorización, retomaremos el visto en la sección 4.5 con el mismo procedimiento.

MCD de los coeficientes

Busca la o las incógnitas que aparezca en todos los términos

Escribe la incógnita con el menor exponente de la o las elegidas en el paso anterior

Escribe tus respuestas como un producto

Calcula los términos faltantes para que el producto sea el polinomio original

I. Realice las siguientes factorizaciones.

1)
$$a^2 + ab$$

2)
$$b + b^2$$

3)
$$3a^3 - a^2$$

4)
$$x^3 - 4x^4$$

5)
$$5m^2 + 15m^3$$

6)
$$ab - bc$$

$$7) \qquad x^2y + x^2z$$

$$8) \qquad 2a^2x + 6ax^2$$

9)
$$15c^3d^2 + 60c^2d^3$$

10)
$$abc + abc^2$$

11)
$$a + a^2 + a^3$$

12)
$$4x^2 - 8x + 2$$

13)
$$15y^3 + 20y^2 - 5y$$

14)
$$x^3 + x^5 + x^7$$

15)
$$14x^2y^2 - 28x^3 + 56x^4$$

16)
$$a^2b^2c^2 - a^2c^2x^2 + a^2c^2y^2$$

17)
$$55m^2n^3x + 110m^2n^3x^2 - 220m^2y^3$$

18)
$$25x^7 - 10x^5 - 5x^2$$

19)
$$9a^2 - 12ab + 15a^3b^2 - 24ab^3$$

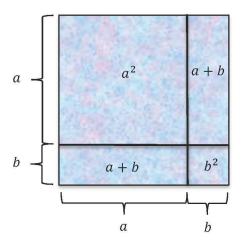
20)
$$100a^2b^3c - 150ab^2c^2 + 50ab^3c^3 -$$
$$+200abc^2$$

5. 2 Cuadrado de un binomio

Definimos anteriormente un binomio como aquella expresión algebraica que consta de dos términos. Entonces elevar un binomio al cuadrado es multiplicar el binomo por sí mismo.

Ejemplo:
$$(a + b)^2 = (a + b)(a + b)$$

Graficamente tenemos:



Podemos escribir una regla que nos permita recordar siempre que el cuadrado de un binomio es:

El cuadrado del primero El doble producto del primero por el segundo El cuadrado del segundo

Recuerde que los signos del primero y del tercer términos siempre serán positivos. El signo del segundo término depende del signo del segundo monomio.

Ejemplo:

a) Encuentre $(x + 3)^2$

Aplicando la regla anterior, tendríamos que:

$$(x+3)^2 = x^2 + 2(x)(3) + 3^2$$

realizando las operaciones indicadas llegamos a

$$(x+3)^2 = x^2 + 6x + 9$$

b) Obtenga $(h - 5)^2$

Aplicando la regla anterior, tendríamos que:

$$(h-5)^2 = h^2 - 2(h)(5) + 5^2$$

realizando las operaciones indicadas llegamos a

$$(h-5)^2 = h^2 - 10h + 25$$

Observe que en éste trinomio el signo del término central es negativo, ya que el segundo término del binomio era negativo.

II. Efectúe los productos indicados.

1)
$$(x + y)^2$$

2)
$$(5+g)^2$$

3)
$$(a-7)^2$$

4)
$$(d+k)^2$$

5)
$$(t-9)^2$$

6)
$$(6-p)^2$$

7)
$$(x-y)^2$$

8)
$$(ab+1)^2$$

9)
$$(2q-10)^2$$

10)
$$(7 + 3k)^2$$

11)
$$(2x^2 + 3)^2$$

12)
$$(f^7 - 5)^2$$

13)
$$(r^4 + 6t^3)^2$$

14)
$$(10 - a^{1/2})^{2}$$

$$15) \Big(6g^{1/4} + 4h^8\Big)^2$$

16)
$$(12w^8 - 10z^4)^2$$

$$17)\left(\frac{x}{2} + \frac{1}{3}\right)^2$$

$$18)\left(\frac{2g}{9} - \frac{1}{8}\right)^2$$

$$19) \left(\frac{a}{4} - \frac{5}{b}\right)^2$$

$$(20)\left(\frac{2w^2}{5} + \frac{3y^3}{z^4}\right)^2$$

5. 3 Factorización de un trinomio cuadrado perfecto

Cuando elevamos un binomio al cuadrado obtenemos como resultado un trinomio cuadrado perfecto, entonces el factorizar un trinomio cuadrado perfecto es en efecto, el proceso inverso de elevar un binomio al cuadrado, es decir, ahora tendremos un trinomio y lo primero que debemos hacer es verificar que sea cuadrado perfecto, de esta forma al factorizarlo, solamente debemos escribir un binomio elevado al cuadrado.

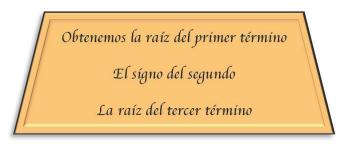
¿Cómo saber si un trinomio es cuadrado perfecto?

Recordamos la regla para obtener un trinomio cuadrado perfecto

El cuadrado del primero
El doble producto del primero por el segundo
El cuadrado del segundo

Entonces si el trinomio que tenemos cumple con esta regla es un trinomio cuadrado perfecto. Recuerde que el primer y el tercer término deberán ser siempre positivos.

Por tanto, para factorizar un trinomio cuadrado perfecto, ya que lo identificamos como tal, solamente debemos escribir el binomio que lo produce.



Ejemplo: Factorice los siguientes trinomios

c)
$$x^2 + 26x + 169$$

Primero identifico al trinomio:

- ¿El primer término está elevado al cuadrado? Sí porque es $x \cdot x = x^2$
- ¿El segundo término está escrito como el doble producto del primero por algún otro número? Sí porque 26 es el doble de 13 y además x es la incógnita del primer término.
- ¿El segundo término está elevado al cuadrado? Sí porque 13 · 13 = 169

Por tanto podemos concluir que se trata de un trinomio cuadrado perfecto, entonces seguimos las reglas para factorizarlo:

$$x^2 + 26x + 169 = (x + 13)^2$$

III. Realice las siguientes factorizaciones y compruebe sus resultados multiplicando.

1)
$$a^2 - 2ab + b^2$$

2)
$$a^2 + 2ab + b^2$$

3)
$$y^4 + 2y^2 + 1$$

4)
$$a^2 - 10a + 25$$

5)
$$w^2 + w + \frac{1}{4}$$

6)
$$m^4 + 36 + 12m^2$$

7)
$$1 - 2a^3 + a^6$$

8)
$$a^8 + 18a^4 + 81$$

9)
$$b^6 - 2b^3c^3 + c^6$$

$$10)\,4x^4 - 12xy + 9y^2$$

$$11)9b^2 - 30a^2b^2 + 25a^4$$

$$12)\frac{a^2}{4} - ab + b^2$$

13)
$$1 + \frac{2b}{3} + \frac{b^2}{9}$$

14)
$$g^4 - g^2 h^2 + \frac{h^4}{4}$$

$$15)\frac{1}{25} + \frac{25x^4}{36} - \frac{x^2}{3}$$

$$16)\,16j^6 - 2j^3k^2 + \frac{k^4}{16}$$

$$17)\frac{n^2}{9} + 2mn + 9m^2$$

$$18) - 4p + 4 + p^2$$

19)
$$q^2 - 7q + 9$$

$$20)r^2 + 16r + 64$$

$$21)\,900 + s^2 + 60s$$

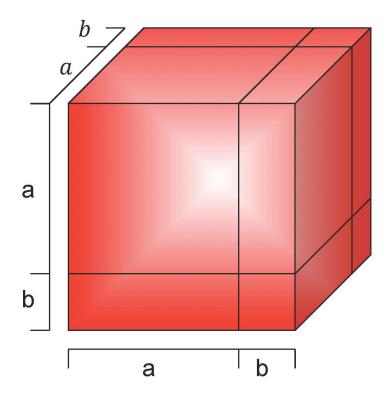
22)
$$t^2 - 22t + 121$$

23)
$$u^8 + 14u^4 - 49$$

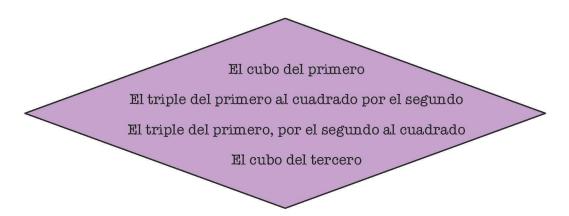
$$24) v^2 w^2 + 2v w + 1$$

$$25)\frac{1}{16}x^2 - \frac{1}{10}x + \frac{1}{25}$$

5. 4 Cubo de un binomio. Factorización de un cubo perfecto



El cubo de un binomio se forma al multiplicar el binomio por si mismo en tres ocasiones, entonces para formar: $(a+b)^3 = (a+b)(a+b)(a+b)$ debemos seguir las reglas de multiplicación de binomios o seguir la siguiente regla:



De ésta forma: $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$

Ejemplo: Obtenga el desarrollo de
$$(a + 2)^3 =$$

= $a^3 + 3a^2(2) + 3a(2)^2 + 2^3$
= $a^3 + 6a^2 + 12a + 8$

Ejemplo: Realice el desarrollo de
$$(a-3)^3 =$$

= $a^3 - 3a^2(3) + 3a(3)^2 - (3)^3$
= $a^3 - 9a^2 + 27a - 27$

IV. Obtenga los siguientes desarrollos

1)
$$(a+2)^3$$

2)
$$(y-4)^3$$

3)
$$(g+5)^3$$

4)
$$(h-1)^3$$

5)
$$(a+b)^3$$

6)
$$(2x+2)^3$$

7)
$$(3w-1)^3$$

8)
$$(2-b)^3$$

9)
$$\left(f + \frac{1}{2}\right)^3$$

10)
$$\left(\frac{1}{2} - f\right)^3$$

11)
$$\left(2x + \frac{2}{3}\right)^3$$

12)
$$(3k-4)^3$$

13)
$$(2h-3j)^3$$

14)
$$(5t-u)^3$$

15)
$$(10x - 11y)^3$$

$$16) \qquad \left(\frac{2}{3}c - \frac{1}{2}d\right)^3$$

17)
$$(xy + w)^3$$

18)
$$(2ab-1)^3$$

$$19) \qquad \left(\frac{1}{2}fg + 4h\right)^3$$

$$20) \qquad \left(\frac{1}{2}wx - \frac{3}{5}yz\right)^3$$

Factorización de cubos perfectos

Para factorizar un cubo perfecto, es decir, una expresión algebraica de la forma $a^3 \pm b^3$ debemos recordar las multiplicaciones directas de:

$$(a+b)(a^2 - ab + b^2) = a^3 + b^3$$

$$(a-b)(a^2 + ab + b^2) = a^3 - b^3$$

Producen como resultados cubos perfectos, entonces para factorizarlos debemos seguir los modelos de las multiplicaciones expresadas anteriormente.

Ejemplo: Factorice $x^3 - 27$

$$x^3 - 27 = (x - 3)(x^2 + 3x + 9)$$

Ejemplo: Factorice completamente $8y^3 + 1$

$$8y^3 + 1 = (2y + 1)((2y)^2 - (2y)(1) + (1)^2)$$

= (2y + 1)(4y^2 - 2y + 1)

V. Realice la factorización completa de los siguientes cubos perfectos

1)
$$x^3 - a^3$$

9)
$$z^9 + 1$$

2)
$$x^3 + a^3$$

10)
$$216x^3y^3 - 1$$

3)
$$8b^3 + 1$$

11)
$$1331a^6b^3 + 64c^3$$

4)
$$(x-a)^3 + b^3$$

$$12)\frac{1}{27}k^9 - \frac{27}{512}l^{12}$$

5)
$$x^6 - y^6$$

13)
$$1000x^{15} - 1$$

6)
$$g^3 + 125$$

$$(14)\frac{1}{216}m^6 - \frac{8}{343}n^6$$

7)
$$8t^3 - \frac{1}{8}$$

15)
$$729 - 8x^9$$

8)
$$s^6 + \frac{8}{27}$$

Para polinomios de grado mayor

Realizamos el mismo procedimiento que en los ejercicios anteriores, pero con:

$$a^{4} - b^{4} = (a - b)(a^{3} + a^{2}b + ab^{2} + b^{3})$$

$$a^{4} - b^{4} = (a + b)(a^{3} - a^{2}b + ab^{2} - b^{3})$$

$$a^{5} + b^{5} = (a + b)(a^{4} - a^{3}b + a^{2}b^{2} - ab^{3} + b^{4})$$

$$a^{5} - b^{5} = (a - b)(a^{4} + a^{3}b + a^{2}b^{2} + ab^{3} + b^{4})$$

Observación: Note que para $a^4 - b^4$ existen dos fórmulas que se pueden utilizar indistintamente, y no hay fórmula para $a^4 + b^4$

- VI. Factorice completamente los siguientes polinomios de grado mayor.
 - 16) $a^{10} b^{10}$
 - 17) $x^4 16$
 - 18) $y^8 264$
 - 19) $w^{15} + 243$
 - **20)** $a^5b^5 + 3125c^5$

5.5 Producto de dos binomios con un término común

Para multiplicar dos binomios con un término en común, se eleva al cuadrado la parte en común, se suman las partes diferentes y se les agrega como producto el término común, y finalmente se multiplican las partes diferentes.

Ejemplos: i) $(x-2)(x+4) = x^2 + (-2+4)x + (-2)(4) = x^2 + 2x - 8$

ii)
$$(2x + 3)(2x + 5) = (2x)^2 + (3 + 5)(2x) + (3)(5) = 4x^2 + 16x + 15$$

iii)
$$\left(\frac{y^2}{2} + \frac{1}{4}\right) \left(\frac{y^2}{2} - \frac{2}{3}\right) = \left(\frac{y^2}{2}\right)^2 + \left(\frac{1}{4} - \frac{2}{3}\right) \left(\frac{y^2}{2}\right) + \left(\frac{1}{4}\right) \left(-\frac{2}{3}\right) = \frac{y^4}{4} - \frac{5y^2}{24} - \frac{1}{6}$$

VII. Resuelva los siguientes ejercicios de acuerdo a las reglas mencionadas.

a.
$$(a+1)(a+2)$$

b.
$$(b+2)(b+4)$$

c.
$$(c+5)(c-2)$$

d.
$$(d-6)(d-5)$$

e.
$$(e+7)(e-3)$$

f.
$$(f+2)(f-1)$$

g.
$$(g-3)(g-1)$$

h.
$$(h-5)(h+4)$$

i.
$$(i-11)(i+10)$$

j.
$$(j-19)(j+10)$$

k.
$$(k^2+5)(k^2-9)$$

I.
$$(l^5-2)(l^5+7)$$

m.
$$(m^x - 3)(m^x + 8)$$

n.
$$(2n+3)(2n-7)$$

0.
$$(3p+6)(3p-4)$$

p.
$$(4q-1)(4q+2)$$

q.
$$\left(\frac{r}{2} + \frac{1}{3}\right) \left(\frac{r}{2} - \frac{3}{4}\right)$$

r.
$$\left(\frac{s}{5} - \frac{3}{7}\right) \left(\frac{s}{5} - \frac{1}{2}\right)$$

s.
$$\left(\frac{t}{4} - \frac{1}{2}\right) \left(\frac{t}{4} - \frac{3}{5}\right)$$

t.
$$\left(\frac{2u}{3} - \frac{4}{v^2}\right) \left(\frac{3u}{4} - \frac{4}{v^2}\right)$$

5.6 Descomposición en factores de un trinomio de segundo grado de la forma $x^2 + px + q$

Un trinomio de la forma $x^2+px+q\,$ en algunas ocasiones se descompone en dos factores binomiales cuyo primer término es x, es decir, la raíz cuadrada del primer término sin considerar su valor absoluto. En el primer factor, después de x se escribe el signo del segundo término del trinomio, y en el segundo factor después de x se escribe el signo que resulta de multiplicar el signo del segundo término del trinomio por el signo del tercer término del trinomio.

Si los signos de p y q son iguales, entonces se buscan dos números cuya suma sea el coeficiente del término central de trinomio y cuyo producto sea el último término.

Si los signos de p y q son diferentes, entonces se buscan dos números cuya diferencia sea el coeficiente del término central del trinomio y cuyo producto sea el último término.

Ejemplos:

i)
$$x^2 + 5x + 6 = (x + 3)(x + 2)$$

ii)
$$x^2 - 7x + 12 = (x - 3)(x - 4)$$

iii)
$$x^2 + 2x - 15 = (x + 5)(x - 3)$$

VIII. Factorice los siguientes trinomios

1)
$$x^2 + 7x + 10$$

2)
$$x^2 - 5x + 6$$

3)
$$x^2 + 3x - 10$$

4)
$$x^2 + x - 2$$

5)
$$a^2 + 4a + 3$$

6)
$$m^2 + 5m - 14$$

7)
$$y^2 - 9y + 20$$

8)
$$x^2 - 6 - x$$

9)
$$x^2 - 9x + 8$$

10)
$$c^2 + 5c - 24$$

11)
$$x^2 - 3x + 2$$

12)
$$a^2 + 7a + 6$$

13)
$$v^2 - 4v + 3$$

14)
$$12 - 8n + n^2$$

15)
$$x^2 + 10x + 21$$

16)
$$a^2 + 7a - 18$$

17)
$$m^2 - 12m + 11$$

18)
$$x^2 - 7x - 30$$

19)
$$n^2 - 6n - 16$$

20)
$$20 + a^2 - 11a$$

21)
$$y^2 + y - 30$$

22)
$$28 + a^2 - 11a$$

23)
$$n^2 - 6n - 40$$

24)
$$x^2 - 5x - 36$$

25)
$$a^2 - 2a - 35$$

26)
$$x^2 + 14x + 13$$

27)
$$a^2 - 2a + 35$$

28)
$$x^2 - 14x + 13$$

29)
$$c^2 - 13c - 14$$

30)
$$x^2 + 15x + 54$$

31)
$$a^2 + 7a - 60$$

32)
$$x^2 - 17x - 60$$

33)
$$x^2 - 15x + 56$$

34)
$$x^2 + 8x - 180$$

35)
$$m^2 - 20m - 300$$

36)
$$x^2 + x - 132$$

37)
$$m^2 - 2m - 168$$

38)
$$c^2 + 24c + 135$$

39)
$$m^2 - 41m + 400$$

40)
$$a^2 + a - 380$$

5.7 Producto de dos binomios conjugados. Descomposición en factores de una diferencia de cuadrados

Se llaman binomios conjugados a aquellos que son prácticamente iguales, salvo por un signo. Su producto se convierte en el cuadrado del primero y el segundo elementos siendo siempre los términos resultantes uno positivo y el otro negativo.

Ejemplos:

i)
$$(x+2)(x-2) = x^2 - 4$$

ii)
$$(2a^2 + 3)(2a^2 - 3) = 4a^2 - 9$$

iii)
$$\left(\frac{3}{w} + \frac{y^3}{7}\right) \left(\frac{3}{w} - \frac{y^3}{7}\right) = \frac{9}{w^2} - \frac{y^6}{49}$$

IX. Realice los siguientes productos de binomios conjugados

1.
$$(a + 2)(a - 2)$$

$$2.(b+10)(b-10)$$

$$3.(c-4)(c+4)$$

4.
$$(d+7)(d-7)$$

5.
$$(e + 9)(e - 9)$$

6.
$$(f^2+1)(f^2-1)$$

7.
$$(a^3 + 2)(a^3 - 2)$$

8.
$$(h^4 + 5)(h^4 - 5)$$

9.
$$(2i + 3)(2i - 3)$$

10.
$$(3j^2 + 11)(3j^2 - 11)$$

11.
$$(4k^2 + 2l)(4k^2 - 2i)$$

12.
$$(3m^3 + 4n^2)(3m^3 - 4n^2)$$

 $13. \left(\frac{7}{p} + 2\right) \left(\frac{7}{p} - 2\right)$

14.
$$\left(5 - \frac{q^2}{3}\right) \left(5 + \frac{q^2}{3}\right)$$

15.
$$\left(\frac{r}{2} + \frac{3}{s}\right) \left(-\frac{r}{2} + \frac{3}{s}\right)$$

16.
$$\left(\frac{1}{t^2} + \frac{u^3}{2}\right) \left(\frac{1}{t^2} - \frac{u^3}{2}\right)$$

17.
$$\left(\frac{1}{3}v+4\right)\left(\frac{1}{3}v-4\right)$$

18.
$$(2w^2x^3 + 3)(2w^2x^3 - 3)$$

19.
$$(2y^a + 1)(2y^a - 1)$$

20.
$$(3z^{x+1} + 10a)(3z^{x+1} - 10a)$$

La descomposición en factores de los binomios conjugados consta de dos pares de paréntesis en los cuales se escribe exactamente lo mismo, salvo por un signo. Y cada término de la factorización, es la raíz cuadrada del binomio.

Ejemplos:

i)
$$1 - a^2 = (1 - a)(1 + a)$$

ii)
$$16x^2 - 25y^4 = (4x - 5y^2)(4x + 5y^2)$$

iii)
$$49x^2y^6z^{10} - a^{12} = (7xy^3z^5 - a^6)(7xy^3z^5 + a^6)$$

iv)
$$\frac{a^2}{4} - \frac{b^4}{9} = \left(\frac{a}{2} - \frac{b^2}{3}\right) \left(\frac{a}{2} + \frac{b^2}{3}\right)$$

X. Factorice las siguientes diferencias de cuadrados

1.
$$x^2 - y^2$$

2.
$$a^2 - 1$$

3.
$$a^2 - 4$$

4.
$$9 - b^2$$

5.
$$1-4m^2$$

6.
$$16 - n^2$$

7.
$$a^2 - 25$$

8.
$$25 - 36x^4$$

9.
$$64 - 49a^2b^2$$

10.
$$4x^2 - 81y^4$$

11.
$$a^2b^8 - c^2$$

12.
$$100 - x^2y^6$$

13.
$$a^{10} - 49b^{12}$$

14.
$$25x^2y^4 - 121$$

15.
$$144m^4n^2 - 169x^8$$

16.
$$a^2m^4n^6 - 100$$

17.
$$4x^{2n} - \frac{4}{16}$$

18.
$$a^{6n} - 225b^8$$

19.
$$25x^{2m} - \frac{y^{4n}}{64}$$

$$20.\,\frac{49a^{10x}}{9b^{4m}} - \frac{25c^{6y}}{81d^{6n}}$$

5.8 Factorización por agrupación de términos

Para este tipo de factorización se requiere observar aquellos términos que tengan algo en común y asociarlos en pares o de tres en tres o como convenga. Se realiza el mismo procedimiento con aquellos términos que aún no estén asociados, y finalmente (en la mayoría de los casos) se podrán reescribir agrupándolos en dos paréntesis que se multiplican.

Ejemplo: i)
$$ax + bx + ay + by = x(a + b) + y(a + b) = (x + y)(a + b)$$

ii) $3m^2 - 6mn + 4m - 8n = 3m(m - 2n) + 4(m - 2n) = (3m + 4)(m - 2n)$
iii) $2x^2 - 3xy - 4x + 6y = x(2x - 3y) - 2(x - 3y) = (x - 2)(2x - 3y)$

XI. Realice las siguientes factorizaciones

1)
$$a^2 + ab + ax + bx$$

$$2)am - bm + an - bn$$

$$3)ax - 2bx - 2ay + 4by$$

$$4)a^2x^2 - 3bx^2 + a^2y^2 - 3by^2$$

$$5)3m - 2n - 2nx^4 + 3mx^4$$

6)
$$x^2 - a^2 + x - a^2x$$

$$7)4a^3 - 1 - a^2 + 4a$$

8)
$$x + x^2 - xy^2 - y^2$$

9)
$$3abx^2 - 2y^2 - 2x^2 + 3aby^2$$

10)
$$3a - b^2 + 2b^2x - 6ax$$

11)
$$4a^3x - 4a^2b + 3bm - 3amx$$

12)
$$6ax + 3a + 1 + 2x$$

13)
$$3x^3 - 9ax^2 - x + 3a$$

14)
$$2a^2x - 5a^2y + 15by - 6bx$$

15)
$$2x^2y + 2xz^2 + y^2z^2 + xy^3$$

16)
$$6m - 9n + 21nx - 14mx$$

17)
$$n^2x - 5a^2y^2 - n^2y^2 + 5a^2x$$

18)
$$1 + a + 3ab + 3b$$

19)
$$4am^3 - 12amn - m^2 + 3n$$

5.9 Descomposición en factores de la suma o diferencia de dos potencias iguales

De acuerdo al Teorema del Residuo (que analizaremos en el capítulo 6) podemos establecer que:

 $a^n - b^n$ es divisible entre a - b siendo n par o impar $a^n - b^n$ es divisible entre a + b cuando n es par $a^n + b^n$ es divisible entre a + b siendo n impar $a^n + b^n$ nunca es divisible entre a + b ni entre a - b cuando n es un número par

Ejemplos: i) Factorice $m^5 + n^5$

Dividiendo entre m + n tenemos:

$$\frac{m^5 + n^5}{m + n} = m^4 - m^3 n + m^2 n^2 - m n^3 + n^4$$
 Entonces $m^5 + n^5 = (m + n)(m^4 - m^3 n + m^2 n^2 - m n^3 + n^4)$

ii) Factorice $x^5 + 32$ Dividiendo entre x + 2 tenemos: $\frac{x^5 + 32}{x + 2} = x^4 - x^3(2) + x^2(2)^2 - x(2)^3 + (2)^4$ Entonces $x^5 + 32 = (x + 2)(x^4 - 2x^3 + 4x^2 - 8x + 16)$

iii) Factorice $x^7 - 1$ Dividiendo entre x - 1 tenemos: $\frac{x^7 - 1}{x - 1} = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ Entonces: $x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$

XII. Factorice las siguientes expresiones

$$1.a^5 + 1$$

$$6.243 - 32b^5$$

2.
$$a^5 - 1$$

$$7.h^5 + j^5k^5$$

$$3 a^7 + h^7$$

$$8.1 + x^7$$

$$4.q^5 + 243$$

$$9.m^7 + 2187$$

5.
$$x^7 + 128$$

10.
$$x^{10} + 32y^5$$

5.10 Mínimo Común Múltiplo de dos o más polinomios

El Mínimo Común Múltiplo de monomios consiste en obtener el MCM de los coeficientes, posteriormente se eligen aquellas variables que cuenten con el exponente mayor, así MCM de $4x^4y^3z$ y de $3xy^2z^3$ es el mínimo común múltiplo de 4 y 3, es decir, 12 y las variables con sus respectivos exponentes, de mayor valor. De ésta forma el MCM de $4x^4y^3z$ y de $3xy^2z^3$ es $12x^4y^3z^3$

Hallar el MCM de $15x^2$, $10x^2 + 5x$, $45x^3$

Si observamos bien los términos, notaremos que el primero es un factor del último término $45x^3 = 3x(15x^2)$ entonces podemos trabajar con el segundo y el tercer término.

Factorizamos el segundo término: Obtenemos los factores primos del tercer término

$$10x^{2} + 5x = 5x(2x + 1)$$
$$45x^{3} = 3^{2} \cdot 5 \cdot x^{3}$$

Ahora seleccionamos los coeficientes y variables de exponente mayor, así como los factores no comunes.

$$3^2 \cdot 5x^3(2x + 1)$$
, de donde, la respuesta es: $45x^3(2x + 1)$

XIII. Obtenga el Mínimo Común Múltiplo de los siguientes polinomios.

1)
$$2a.4x - 8$$

2)
$$x^2y$$
, $x^2y + xy^2$

3)
$$6a^2b_13a^2b^2 + 6ab^3$$

4)
$$9m, 6mn^2 - 12mn$$

5)
$$10.5 - 15b$$

6)
$$12xy^2$$
, $2ax^2y^3 + 5x^2y^3$

7)
$$2a^2$$
, $6ab$, $3a^2 - 6ab$

8)
$$9a^2$$
, $18b^3$, $27a^4b + 81a^3b^2$

9)
$$4x$$
, $x^3 + x^2 - 2x$, $x^2 + 4x + 4$

10)
$$2a^2b^2$$
. $3ax + 3a$. $6x - 18$

11)
$$6ab_1x^2 - 4xy + 4y^2$$
, $9a^2x - 18a^2y$

12)
$$a^2x^2 \cdot 4x^3 - 12x^2y + 9xy^2 \cdot 2x^4 - 3x^3y$$

13)
$$an^3$$
, $2n$, $n^2x^2 + n^2y^2$, $nx^2 + 2nxy + ny^2$

14)
$$3x + 3.6x - 6$$

15)
$$x^3 + 2x^2y$$
, $x^2 - 4y^2$

16)
$$4a^2 - 9b^2$$
. $4a^2 - 12ab + 9b^2$

17)
$$3ax + 12a, 2bx^2 + 6bx - 8b$$

18)
$$(x-1)^2$$
, x^2-1

19)
$$x^3 + y^3 (x + y)^3$$

20)
$$2a^2 + 2a \cdot 3a^2 - 3a \cdot a^4 - a^2$$

5.11 Otras factorizaciones

 \triangleright Polinomios tipo $ax^2 + bx + c$

Para un polinomio del tipo $ax^2 + bx + c$ con $c \neq 0$, intentaremos que el término central bx sea descompuesto como la suma de dos números, que renombraremos como r y s, tales que: r + s = b y sustituimos en la ecuación, para posteriormente factorizar por agrupación de términos.

i. Factorice:
$$5x^2 - 14x - 3$$

Entonces: $r \cdot s = 5(-3) = -15$ y r + s = -14 por lo tanto, los números que cumplen dichas condiciones son r = -15 y s = 1. Y ya podemos reescribir el trinomio original, con estos coeficientes reemplazando el valor de b.

$$5x^{2} - 14x - 3 = 5x^{2} - 15x + 1x - 3$$
$$= 5x(x - 3) + x - 3$$
$$= (5x + 1)(x - 3)$$

ii.Factorice:
$$2x^2 + 3x - 2$$

Entonces $r \cdot s = 2(-2) = -4$ y r + s = 3 por lo tanto, los números que cumplen dichas condiciones son r = 4 y s = -1. Con estos coeficientes reescribimos la ecuación original, factorizamos y agrupamos términos semejantes.

$$2x^{2} + 3x - 2 = 2x^{2} + 4x - 1x - 2$$

$$= 2x(x + 2) - 1(x + 2)$$

$$= (2x - 1)(x + 2)$$

XIV. Factorice los siguientes trinomios.

1)
$$3x^2 - 13x + 4$$

2)
$$6a^2 - 20a - 16$$

3)
$$9x^2 - 11x + 2$$

4)
$$14y^2 - 19y - 3$$

5)
$$-6h^2 - 26h - 8$$

6)
$$4i^2 - 8i - 5$$

7)
$$24k^2 + 22k - 35$$

8)
$$3 + 11m - 20m^2$$

9)
$$2n^2 - 17n + 21$$

10)
$$3v^2 - 5v - 2$$

11)
$$12q^2 - 13q - 35$$

12)
$$20r^2 - 7r - 40$$

13)
$$7s^2 - 33s - 10$$

14)
$$5t^2 + 13t - 6$$

15)
$$20u^2 - 9u - 20$$

16)
$$30v^2 + 13v - 10$$

17)
$$12w^2 - w - 6$$

18)
$$15x^2 - 8x - 12$$

19)
$$14v^2 - 45v - 14$$

20)
$$12z^2 - 7z - 10$$

5.12 Fórmula del binomio de Newton

La fórmula del binomio de Newton sirve para encontrar las variables con sus respectivos exponentes, cuando elevamos un binomio a cualquier potencia grande.

$$(a+b)^n = a^n + a^{n-1}b + a^{n-2}b^2 + \dots + a^2b^{n-2} + ab^{n-1} + b^n$$

Observaciones:

- Para el desarrollo de $(a + b)^n$ se obtienen n + 1 términos.
- En cada término del desarrollo, la suma de los exponentes debe ser igual a n.
- Los exponentes son simétricos, mientras el de a disminuye, el de b aumenta.

Triángulo de Pascal

Observaciones:

- Todos los renglones comienzan y terminan con 1.
- El segundo número de cada renglón, coincide con la potencia del desarrollo.
- El triángulo es simétrico.
- Los coeficientes del binomio se obtienen al sumar del renglón superior aquellos dos que estén a la izquierda y a la derecha del valor que se desea obtener.
- i. Obtenga el desarrollo de $(x + y)^8$

Utilizando la fórmula del binomio de Newton para n=8 y el triángulo de Pascal con el renglón donde el segundo número es 8, obtenemos:

$$(x + y)^8 = x^8 + 8x^7y + 28x^6y^2 + 56x^5y^3 + 70x^4y^4 + 56x^3y^5 + 28x^2y^6 + 8xy^7 + y^8$$

ii. Obtenga el desarrollo de $(a-2)^5$

Cuando uno de los términos del binomio es negativo, los signos de los términos se alternan. Escribiré el desarrollo indicando las operaciones, y posteriormente, se harán las multiplicaciones correspondientes para llegar al resultado deseado.

$$(a-2)^5 = a^5 - 5a^4(2) + 10a^3(2)^2 - 10a^2(2)^3 + 5a(2)^4 - (2)^5$$

= $a^5 - 10a^4 + 40a^3 - 80a^2 + 80a - 32$

- XV. Obtenga el desarrollo completo de los siguientes binomios
 - 1) $(a-3)^7$
 - 2) $(2b+1)^6$
 - 3) $(5-c)^9$
 - 4) $(4d + 2e)^8$
 - 5) $\left(\frac{1}{2} f\right)^{10}$
 - 6) $\left(\frac{g}{2} + \frac{3}{h}\right)^5$
 - 7) $\left(\frac{1}{x^2} y^2\right)^{11}$

CAPÍTULO 6: OPERACIONES CON FRACCIONES ALGEBRAICAS Y RADICALES

6.1 Teoremas del residuo y del factor.

División sintética

Una forma más práctica de realizar una división entre un binomio y un polinomio, es la división sintética. En este método únicamente utilizamos los coeficientes en un acomodo entre columnas y realizamos las operaciones correspondientes.

- i. Realice la división de $(2x^3 + 8x^2 + 15x + 9) \div (x + 1)$
 - Se toma el número opuesto del término independiente del divisor, en este caso usaremos -1. Obtenido de x + 1 = 0.
 - Acomodamos los coeficientes del dividendo.
 - Bajamos intacto el primer coeficiente.
 - o Multiplicamos ese número por el opuesto el término independiente del divisor, y se coloca en la columna derecha debajo del coeficiente de segundo orden.
 - Se realiza la suma correspondiente para obtener un nuevo resultado y se vuelve a multiplicar, y así sucesivamente.

El último número es el residuo de la división. Los demás números, son los que formarán el cociente. Por tanto $(2x^3 + 8x^2 + 15x + 9) \div (x + 1) = 2x^2 + 6x + 9$

ii. Divida
$$(x^4 + 7x + 5) \div (x + 2)$$

Cuando el residuo es diferente de cero, expresamos el resultado como una fracción en la que el numerador es el valor obtenido y el denominador es el divisor. De esta forma:

$$(x^4 + 7x + 5) \div (x + 2) = x^3 - 2x^2 + 4x - 1 + \frac{7}{x+2}$$

- I. Utilice la división sintética para encontrar el cociente y el residuo de los siguientes polinomios.
- 1) $(5x^2 7x) \div (x 3)$
- 2) $(4x^3 4x^2 + 4x 9) \div (x 4)$ 7) $(y^3 + 1) \div (y + 1)$ 3) $(8x^5 6x^3 + x 8) \div (x + 2)$ 8) $(3x^3 + 7x^2 13x + 4)$ 4) $(x^4 + 5x) \div (x + 5)$ 9) $(x^3 + 6x^2 x 30)$
- 4) $(x^4 + 5x) \div (x + 5)$
- 5) $(x^3 2x^2 + 5x 4) \div (x + 2)$

- 6) $(9x^3 15x^2 + 4x) \div (x 3)$
- 8) $(3x^3 + 7x^2 13x + 10) \div (x + 2)$
- 9) $(x^3 + 6x^2 x 30) \div (x 2)$
- 10) $(x^3 27) \div (x 3)$

Teorema del Residuo

Sea P(x) un polinomio cualquiera y a un número real. De la división de P(x) entre x - a obtiene la descomposición P(x) = Q(x)(x - a) + R donde Q(x) es el cociente y R es el residuo. Si x = a entonces P(a) = R, por lo tanto

El valor de P(a) es el residuo obtenido al dividir P(x) entre x-a

iii. Sin efectuar la división, calcule el residuo de $(x^3 - 2x^2 + 2x + 5) \div (x - 1)$

Al igual que en la división sintética, tomamos el signo opuesto del término independiente del divisor. Lo sustituimos en el dividendo y realizamos las operaciones indicadas.

$$P(1) = (1)^3 - 2(1)^2 + 2(1) + 5$$

= 1 - 2 + 2 + 5
= 6

Por tanto, el residuo es 6

iv. Sin efectuar la división, calcule el residuo de $(2x^3 + 7x^2 - 3) \div (x + 3)$

$$P(-3) = 2(-3)^3 + 7(-3)^2 - 3$$

= 2(-27) + 7(9) - 3
= -54 + 63 - 3
= 6

II. Sin efectuar la división, calcule el residuo de las siguientes divisiones.

1)
$$(x^2 - 2x + 3) \div (x - 1)$$

2)
$$(x^3 - 3x^2 + 2x - 2) \div (x + 1)$$

3)
$$(x^4 - x^3 + 5) \div (x - 2)$$

4)
$$(a^4 - 5a^3 + 2a^2 - 6) \div (a + 3)$$

5)
$$(m^4 + m^3 - m^2 + 5) \div (m - 4)$$

6)
$$(x^5 + 3x^4 - 2x^3 + 4x^2 - 2x + 2) \div (x + 3)$$

7)
$$(a^5 - 2a^3 + 2a - 4) \div (a - 5)$$

8)
$$(6x^3 + x^2 + 3x + 5) \div (2x + 1)$$

9)
$$(n^4 - 5n^3 + 4n - 48) \div (n+2)$$

10)
$$(x^4 - 3x + 5) \div (x - 1)$$

11)
$$(x^5 + x^4 - 12x^3 - x^2 - 4x - 2) \div (x + 4)$$

12)
$$(a^5 - 3a^3 + 4a - 6) \div (a - 2)$$

13)
$$(x^5 - 208x^2 + 2076) \div (x - 5)$$

14)
$$(x^6 - 3x^5 + 4x^4 - 3x^3 - x^2 + 2) \div (x + 3)$$

15)
$$\left(x^6 - x^4 + \frac{15}{8}x^3 + x^2 - 1\right) \div (2x + 3)$$

Teorema del factor

Sea P(x) un polinomio cualquiera y a un número real, entonces (x - a) es factor de P(x) si, y sólo si P(a) = 0

v. Determine si x + 2 es un factor de $P(x) = x^5 - 4x^3 + 5x^2 + 4x - 12$

De x + 2 = 0 obtenemos x = -2 y evaluaremos en 2.

$$P(-2) = (-2)^{5} - 4(-2)^{3} + 5(-2)^{2} + 4(-2) - 12$$

$$= -32 - 4(-8) + 5(4) + 4(-2) - 12$$

$$= -32 + 32 + 20 - 8 - 12$$

$$= 0$$

Como el residuo es cero, entonces podemos concluir que x + 2 sí es un factor de $P(x) = x^5 - 4x^3 + 5x^2 + 4x - 12$

vi. Determine si x - 3 es un factor de $x^3 - 7x^2 + 17x - 6$

De x - 3 = 0 obtenemos x = 3 y evaluamos en el polinomio:

$$P(3) = (3)^3 - 7(3)^2 + 17(3) - 6$$

= 27 - 63 + 51 - 6
= 9

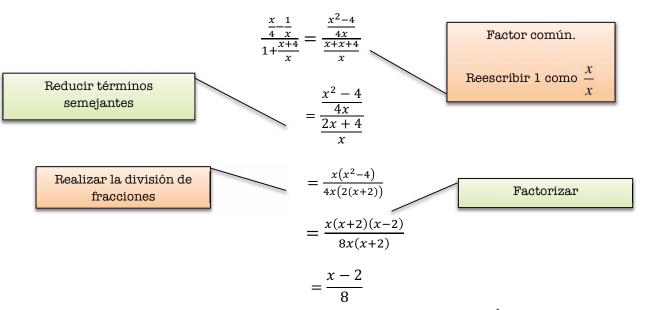
Dado que el **residuo es diferente de cero**, solamente podemos decir que: x - 3 **no es factor** de $x^3 - 7x^2 + 17x - 6$

- III. Determine si el binomio de la forma x a e factor del polinomio P(x) dado.
 - 1) a+1; a^3-2a^2+2a+5
 - 2) x-5; $x^5-6x^4+6x^3-5x^2+2x-10$
 - 3) 4x-3; $4x^4-7x^3+7x^2-7x+3$
 - 4) 3n+2; $3n^5+2n^4-3n^3-2n^2+6n+7$
 - 5) a+2; $2a^3-2a^2-4a+16$
 - 6) a+1; a^4-a^2+2a+2
 - 7) x-1; x^4+5x-6
 - 8) x-6; $x^6-39x^4+26x^3-52x^2+29x-30$
 - 9) x-4; $x^6-4x^5-x^4+4x^3+x^2-8x+25$
 - 10) 4x 1; $16x^4 24x^3 + 37x^2 24x + 4$
 - 11) 3a + 5; $15a^5 + 25a^4 18a^3 18a^2 + 17a 11$
 - 12) 2x 1; $2x^3 3x^2 + 7x 5$
 - 13) 3x + 2; $3x^3 4x^2 + 5x + 6$
 - 14) 3x 1; $3x^4 4x^3 + 4x^2 10x + 8$
 - 15) 5x 2; $5x^4 12x^3 + 9x^2 22x + 21$

6.2 Operaciones con fracciones algebraicas.

Las fracciones algebraicas se deben ir simplificando paulatinamente, hasta llegar a expresiones que sean fáciles de expresar, ya sea como producto de binomios, o como una división de fracciones.

vii. Resuelva la siguiente fracción algebraica $\frac{\frac{x}{4} - \frac{1}{x}}{1 + \frac{x+4}{x}}$



viii. Determine un valor equivalente de la siguiente fracción algebraica $\frac{1}{x + \frac{1}{x + \frac{1}{x + 1}}}$

$$\frac{1}{x + \frac{1}{x + \frac{1}{x + 1}}} = \frac{1}{x + \frac{1}{x(\frac{x+1}{x+1}) + \frac{1}{x+1}}} = \frac{1}{x + \frac{1}{\frac{x^2 + x + 1}{x+1}}} = \frac{1}{x + \frac{x+1}{x^2 + x + 1}}$$

$$= \frac{1}{x\left(\frac{x^2 + x + 1}{x^2 + x + 1}\right) + \frac{x+1}{x^2 + x + 1}} = \frac{1}{\frac{x^3 + x^2 + x + x + 1}{x^2 + x + 1}} = \frac{1}{\frac{x^3 + x^2 + 2x + 1}{x^2 + x + 1}}$$

$$= \frac{x^2 + x + 1}{x^3 + x^2 + 2x + 1}$$

IV. Realice los siguientes ejercicios:

$$1) \frac{\frac{2}{a} + \frac{1}{2a}}{a + \frac{a}{2}}$$

2)
$$\frac{3-\frac{1}{y}}{2-\frac{1}{y}}$$

3)
$$\frac{\frac{1}{m} + \frac{9}{m^2}}{2 + \frac{1}{m^2}}$$

4)
$$\frac{1 + \frac{x}{x+1}}{\frac{2x+1}{x-1}}$$

$$5) \ \frac{\frac{2}{x-1} + 2}{\frac{2}{x+1} - 2}$$

$$6) \ \frac{\frac{a+1}{a-1} - \frac{a-1}{a+1}}{\frac{a+1}{a-1} - \frac{a-1}{a+1}}$$

7)
$$\frac{\frac{5}{5-x} + \frac{6}{x-5}}{\frac{3}{x} + \frac{2}{x-5}}$$

$$8) \quad \frac{\frac{2}{m} + \frac{1}{m^2} + \frac{3}{m-1}}{\frac{6}{m-1}}$$

9)
$$\frac{\frac{2}{x^2 + x - 20} + \frac{3}{x^2 - 6x + 8}}{\frac{2}{x^2 + 3x - 10} + \frac{3}{x^2 + 2x - 24}}$$

$$10)\frac{\frac{n}{n-4} - \frac{3}{n+3}}{\frac{1}{n} + \frac{2}{n-4}}$$

$$11)\frac{2+x-\frac{3}{x-1}}{\frac{2}{x-1}+x-1}$$

$$12)\frac{k - \frac{1}{1 + \frac{1}{k}}}{k + \frac{1}{k - \frac{1}{k}}}$$

13)
$$\frac{1}{1+\frac{1}{x}}$$

$$14)\frac{1}{1+\frac{1}{1-\frac{1}{x}}}$$

15)
$$1 - \frac{1}{2 + \frac{1}{\frac{x}{3} - 1}}$$

$$16) x + \frac{x}{1 + \frac{x}{1 + \frac{x}{x+1}}}$$

17)
$$W + \frac{1}{w + \frac{1}{w + \frac{1}{w + \frac{1}{2w}}}}$$

$$18) \frac{2}{1 + \frac{2}{1 + \frac{2}{x}}}$$

$$19)\frac{1}{x - \frac{x}{x - \frac{x^2}{x+1}}}$$

$$20) \frac{x-1}{x+2 - \frac{x^2+2}{x - \frac{x-2}{x+1}}}$$

6.3 Radicales.

Propiedades:

i.
$$\sqrt[2]{a^2} = |a|$$

ii.
$$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$$

iii.
$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$$

iv.
$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$

$$V. \quad \sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}$$

Donde n y m son números enteros positivos

Si n es par, entonces estas propiedades se cumplen cuando a y b son números reales positivos. Y se pueden utilizar indistintamente, dependiendo del propósito para el que se usen.

Simplificación de radicales

Utilizando las propiedades anteriores, podemos hacer expresiones más maniobrables con radicales y más fáciles de entender.

ix. Simplifique

a.
$$\sqrt[15]{(2h)^5} = (2h)^{\frac{5}{15}} = (2h)^{\frac{1}{3}} = \sqrt[3]{2h}$$

b.
$$(\sqrt[4]{a^2b^3c})^{20} = (a^2b^3c)^{\frac{20}{4}} = (a^2b^3c)^5 = a^{10}b^{15}c^5$$

c.
$$\sqrt[4]{\sqrt[3]{a^{24}}} = \sqrt[12]{a^{24}} = a^{\frac{24}{12}} = a^2$$

d.
$$5\sqrt{24} + \sqrt{54} = 5\sqrt{4}\sqrt{6} + \sqrt{9}\sqrt{6} = 5 \cdot 2 \cdot \sqrt{6} + 3\sqrt{6} = 10\sqrt{6} + 3\sqrt{6} = 13\sqrt{6}$$

e.
$$\sqrt[3]{27} + \sqrt[3]{81} - 7\sqrt[3]{3} = 3 + \sqrt[3]{27}\sqrt[3]{3} - 7\sqrt[3]{3} = 3 + 3\sqrt[3]{3} - 7\sqrt[3]{3} = 3 - 4\sqrt[3]{3}$$

f.
$$\sqrt{6x^3}\sqrt{8x^6} = \sqrt{6x^3 \cdot 8x^6} = \sqrt{48x^9} = \sqrt{16x^8}\sqrt{3x} = 4x^4\sqrt{3x}$$

g.
$$\sqrt{3x^2 - 30x + 75} = \sqrt{3(x^2 - 10x + 25)} = \sqrt{3(x - 5)^2} = \sqrt{3}|x - 5|$$

V. Simplifique los siguientes radicales

1)
$$2\sqrt{3} - 4\sqrt{3} - 2\sqrt{3} + 5$$

2)
$$2\sqrt[4]{y} - 11\sqrt[4]{y}$$

3)
$$5\sqrt{x} - 8\sqrt{y} + 3\sqrt{x} + 2\sqrt{y} - \sqrt{x}$$

4)
$$\sqrt{75} + \sqrt{108}$$

5)
$$2\sqrt{5x} - 3\sqrt{20x} - 4\sqrt{45x}$$

6)
$$3\sqrt[3]{16} + \sqrt[3]{54}$$

7)
$$2\sqrt[3]{a^4b^2} + 4a\sqrt[3]{ab^2}$$

8)
$$x\sqrt[3]{27x^5y^2} - x^2\sqrt[3]{x^2y^2} + 4\sqrt[3]{x^8y^2}$$

9)
$$\sqrt{3}\sqrt{27}$$

10)
$$\sqrt[3]{3}\sqrt[3]{54}$$

11)
$$\sqrt[3]{9x^7y^{10}}\sqrt[3]{6x^4y^3}$$

12)
$$\sqrt{5}(\sqrt{5}-\sqrt{3})$$

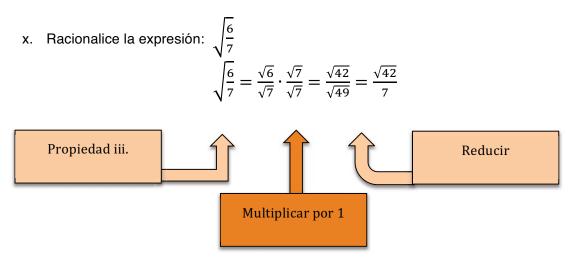
13)
$$\sqrt{9m^3n^7}\sqrt{3mn^4}$$

14)
$$\sqrt[4]{3x^9y^{12}}\sqrt[4]{54x^4y^7}$$

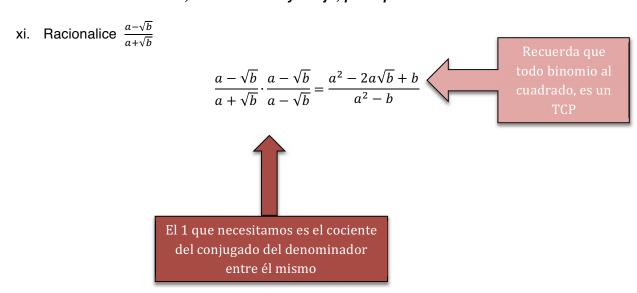
15)
$$\left(\sqrt[3]{2x^3y^4}\right)^2$$

Racionalización.

La racionalización de expresiones con radicales significa quitar las raíces del denominador, es decir, reescribirlas de forma que en caso de haber radicales, ninguno de ellos esté en el denominador, para emplearlas de manera más sencilla.



El paso importante en la racionalización surge de multiplicar por 1, el 1 que convenga a cada expresión y que será conformado por el denominador de lo que se desee racionalizar, escrito arriba y abajo, para que su división sea 1.



- VI. Racionalice las siguientes expresiones.
 - 1) $\frac{1}{\sqrt{3}}$

 $13)\frac{3}{6+\sqrt{x}}$

2) $\frac{6}{\sqrt{6}}$

 $14)\frac{4\sqrt{5}}{\sqrt{a}-3}$

3) $\frac{1}{\sqrt{z}}$

 $15)\frac{4\sqrt{x}}{\sqrt{x}-y}$

4) $\frac{6\sqrt{3}}{\sqrt{6}}$

 $16)\frac{\sqrt{8x}}{x+\sqrt{y}}$

 $5) \ \frac{15x}{\sqrt{x}}$

 $17)\frac{\sqrt{2}-2\sqrt{3}}{\sqrt{2}+4\sqrt{3}}$

6) $\sqrt{\frac{5m}{8}}$

 $18)\frac{\sqrt{c}-\sqrt{2d}}{\sqrt{c}-\sqrt{d}}$

7) $\frac{9\sqrt{3}}{\sqrt{y^3}}$

 $19) \frac{2\sqrt{xy} - \sqrt{xy}}{\sqrt{x} + \sqrt{y}}$

 $8) \ \frac{2n}{\sqrt{18n}}$

 $20)\frac{4}{\sqrt{x+2}-3}$

9) $\sqrt{\frac{120x}{4y^3}}$

21) $\frac{8}{\sqrt{y-3}+6}$

 $10)\sqrt{\frac{18x^4y^3}{2z^3}}$

 $22)\frac{y}{\sqrt{2}x+\sqrt{x}}$

11) $\frac{3}{\sqrt{3}+1}$

 $23)\frac{2a}{\sqrt{x-1}+\sqrt{x+2}}$

12) $\frac{1}{2+\sqrt{3}}$

- $24)\tfrac{2\sqrt{a}+\sqrt{a+2}}{\sqrt{a}-\sqrt{a+2}}$
- $25)\frac{\sqrt{a+b}-\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}$

Ecuaciones con radicales

xii. Resuelva la ecuación: $\sqrt{4x^2 - 15} - 2x = -1$

$$\sqrt{4x^{2} - 15} = 2x - 1$$

$$(\sqrt{4x^{2} - 15})^{2} = (2x - 1)^{2}$$

$$4x^{2} - 15 = 4x^{2} - 4x + 1$$

$$4x^{2} - 4x^{2} + 4x = 1 + 15$$

$$4x = 16$$

$$x = 4$$

Reducir

xiii. Resuelva la ecuación: $\sqrt{x+4} + \sqrt{x-1} = 5$

$$\sqrt{x+4} = 5 - \sqrt{x-1}$$

$$(\sqrt{x+4})^2 = (5 - \sqrt{x-1})^2$$

$$x+4 = 5^2 - 2(5)(\sqrt{x-1}) + (\sqrt{x-1})^2$$

$$x+4 = 25 - 10\sqrt{x-1} + x - 1$$

$$x-x+4-25+1 = -10\sqrt{x-1}$$

$$-20 = -10\sqrt{x-1}$$

$$2 = \sqrt{x-1}$$

$$2^2 = (\sqrt{x-1})^2$$

$$4 = x-1$$

$$x = 5$$

El procedimiento es el mismo que en el ejemplo anterior, pero al tener 2 raíces, se debe elevar al cuadrado en 2 ocasiones, hasta obtener una expresión sencilla.

xiv. Resuelva la ecuación: $\sqrt{x+4} - \sqrt{x-1} = \frac{2}{\sqrt{x-1}}$

$$(\sqrt{x+4})(\sqrt{x-1}) - (\sqrt{x-1})(\sqrt{x-1}) = \left(\frac{2}{\sqrt{x-1}}\right)(\sqrt{x-1})$$

$$\sqrt{(x+4)(x-1)} - (x-1) = 2$$

$$\sqrt{x^2 + 3x - 4} = x + 1$$

$$\left(\sqrt{x^2 + 3x - 4}\right)^2 = (x + 1)^2$$
$$x^2 + 3x - 4 = x^2 + 2x + 1$$
$$x^2 - x^2 + 3x - 2x = 1 + 4$$
$$x = 5$$

Nuevamente, al tener más de una raíz, debemos elevar al cuadrado en 2 ocasiones, en 3 o las que sean necesarias hasta despejar la variable.

VII. Resuelva las siguientes ecuaciones

1)
$$\sqrt{x-8} = 2$$

2)
$$5 - \sqrt{3x + 1} = 0$$

3)
$$7 + \sqrt{5x - 2} = 9$$

4)
$$\sqrt{9x^2-5}-3x=-1$$

5)
$$\sqrt{x^2 - 2x + 1} = 9 - x$$

6)
$$15 - \sqrt{7x - 1} = 12$$

7)
$$\sqrt{x} + \sqrt{x+7} = 7$$

8)
$$\sqrt{3x-5} + \sqrt{3x-14} = 9$$

9)
$$\sqrt{x+10} - \sqrt{x+19} = -1$$

$$10)\sqrt{4x - 11} = 7\sqrt{2x - 29}$$

$$11)\sqrt{5x - 19} - \sqrt{5x} = 1$$

$$12)\sqrt{9x - 14} = 3\sqrt{x + 10} - 4$$

$$13)\sqrt{x-16} - \sqrt{x+8} = -4$$

14)
$$\sqrt{5x-1} + 3 = \sqrt{5x+26}$$

15)
$$13 - \sqrt{13 + 4x} = 2\sqrt{x}$$

16)
$$\sqrt{x-2} + 5 = \sqrt{x+53}$$

17)
$$\sqrt{x-4} + \sqrt{x+4} = 2\sqrt{x-1}$$

18)
$$\sqrt{9x+7} - \sqrt{x} - \sqrt{16x-7} = 0$$

$$19)\sqrt{x} + \sqrt{x+5} = \frac{10}{\sqrt{x}}$$

$$20)\sqrt{4x-11}+2\sqrt{x}=\frac{55}{\sqrt{4x-11}}$$

$$21)\sqrt{x} - \sqrt{x-7} = \frac{4}{\sqrt{x}}$$

$$22)\frac{\sqrt{x}-2}{\sqrt{x}+4} = \frac{\sqrt{x}+1}{\sqrt{x}+13}$$

$$23)\frac{6}{\sqrt{x+8}} = \sqrt{x+8} - \sqrt{x}$$

24)
$$\sqrt{x+3} + \frac{8}{\sqrt{x+9}} = \sqrt{x+9}$$

$$25)\frac{\sqrt{x}-2}{\sqrt{x}+2} = \frac{2\sqrt{x}-5}{2\sqrt{x}-1}$$

CAPÍTULO 7: ECUACIONES Y DESIGUALDADES

Ecuaciones de primer grado en una variable.

Definición: una ecuación es una igualdad en la que hay una o varias cantidades desconocidas llamadas incógnitas y que sólo se verifica o es verdadera para determinados valores de las incógnitas.

Las incógnitas se representan con letras del abecedario.

<u>Definición:</u> una identidad es una igualdad que se verifica para cualesquiera de los valores de las letras que intervienen en su expresión. El signo de identidad es ≡ y se lee: idéntico a.

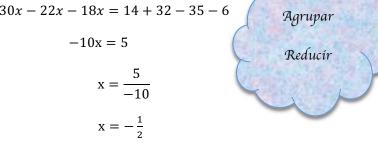
Axioma fundamental de las ecuaciones:

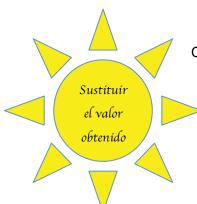
Sí con cantidades iguales se verifican operaciones iguales, los resultados serán iguales

i. Obtenga la raíz de la siguiente ecuación: 35 - 22x + 6 - 18x = 14 - 30x + 32

Observación: se llama raíz o solución de una ecuación, al número que hace cierta la expresión, es decir, obtener el resultado.

$$35 - 22x + 6 - 18x = 14 - 30x + 32$$
$$30x - 22x - 18x = 14 + 32 - 35 - 6$$
$$-10x = 5$$
$$x = \frac{5}{-10}$$





Comprobación:
$$35 - 22x + 6 - 18x = 14 - 30x + 32$$

$$35 - 22\left(-\frac{1}{2}\right) + 6 - 18\left(-\frac{1}{2}\right) = 14 - 30\left(-\frac{1}{2}\right) + 32$$
$$35 + 11 + 6 + 9 = 14 + 15 + 32$$
$$61 \equiv 61$$

ii. Obtenga la raíz de la ecuación:
$$4x - (2x + 3)(3x - 5) = 49 - (6x - 1)(x - 2)$$

 $4x - (6x^2 - x - 15) = 49 - (6x^2 - 13x + 2)$
 $4x - 6x^2 + x + 15 = 49 - 6x^2 + 13x - 2$
 $6x^2 - 6x^2 + 4x + x - 13x = 49 - 2 - 15$
 $-8x = 32$
 $x = -4$
Comprobación: $4(-4) - (2(-4) + 3)(3(-4) - 5) = 49 - (6(-4) - 1)(-4 - 2)$
 $-16 - (-5)(-17) = 49 - (-25)(-6)$
 $-16 - 85 = 49 - 150$

iii. Resuelva la siguiente ecuación $3(2x+1)(-x+3) - (2x+5)^2$

$$3(2x+1)(-x+3) - (2x+5)^{2} = -[-\{-3(x+5)\} + 10x^{2}]$$

$$3(-2x^{2} + 5x + 3) - (4x^{2} + 20x + 25) = -[-\{-3x - 15\} + 10x^{2}]$$

$$-6x^{2} + 15x + 9 - 4x^{2} - 20x - 25 = -[3x + 15 + 10x^{2}]$$

$$-10x^{2} - 5x - 16 = -3x - 15 - 10x^{2}$$

$$10x^{2} - 10x^{2} - 5x + 3x = 16 - 15$$

$$-2x = 1$$

$$x = -\frac{1}{2}$$

 $-101 \equiv -101$

Comprobación:

$$3\left(2\left(-\frac{1}{2}\right)+1\right)\left(-\left(-\frac{1}{2}\right)+3\right)-\left(2\left(-\frac{1}{2}\right)+5\right)^{2} = -\left[-\left\{-3\left(-\frac{1}{2}+5\right)\right\}+10\left(-\frac{1}{2}\right)^{2}\right]$$

$$3\left(-1+1\right)\left(\frac{7}{2}\right)-\left(-1+5\right)^{2} = -\left[-\left\{-3\left(\frac{9}{2}\right)\right\}+10\left(\frac{1}{4}\right)\right]$$

$$3\left(0\right)\left(\frac{7}{2}\right)-\left(16\right) = -\left[-\left\{-\frac{27}{2}\right\}+\frac{10}{4}\right]$$

$$-16 = -\left[\frac{27}{2}+\frac{5}{2}\right]$$

$$-16 = -\frac{32}{2}$$

$$-16 = -16$$

 Obtenga las raíces de las siguientes ecuaciones y realice las comprobaciones de cada una.

1)
$$9y - 11 = -10 + 12y$$

2)
$$8x - 4 + 3x = 7x + x + 14$$

3)
$$3x + 101 - 4x - 33 = 108 - 16x - 100$$

4)
$$x - (2x + 1) = 8 - (3x + 3)$$

5)
$$(5-3x)-(-4x+6)=(8x+11)-(3x-6)$$

6)
$$15x + (-6x + 5) - 2 - (-x + 3) = -(7x + 23) - x + (3 - 2x)$$

7)
$$16x - [3x - (6 - 9x)] = 30x + [-(3x + 2) - (x + 3)]$$

8)
$$9x - (5x + 1) - \{2 + 8x - (7x - 5)\} + 9x = 0$$

9)
$$-{3x+8-[-15+6x-(-3x+2)-(5x+4)]-29} = -5$$

10)
$$x + 3(x - 1) = 6 - 4(2x + 3)$$

11)
$$5(x-1) + 16(2x+3) = 3(2x-7) - x$$

12)
$$2(3x + 3) - 4(5x - 3) = x(x - 3) - x(x + 5)$$

13)
$$7(18-x)-6(3-5x)=-(7x+9)-3(2x+5)-12$$

14)
$$3x(x-3) + 5(x+7) - x(x+1) - 2(x^2+7) + 4 = 0$$

15)
$$-3(2x+7) + (-5x+6) - 8(1-2x) - (x-3) = 0$$

16)
$$(3x-4)(4x-3) = (6x-4)(2x-5)$$

17)
$$14x - (3x - 2) - [5x + 2 - (x - 1)] = 0$$

18)
$$(3x-7)^2 - 5(2x+1)(x-2) = x^2 - [-(3x+1)]$$

19)
$$6x - (2x + 1) = -\{-5x + [-(-2x - 1)]\}$$

20)
$$2x + 3(-x^2 - 1) = -\{3x^2 + 2(x - 1) - 3(x + 2)\}$$

7.2 Ecuación de segundo grado. Resolución de una ecuación de segundo grado.

<u>Definición</u>: una ecuación cuadrática con una incógnita en su forma canónica se define como $ax^2 + bx + c = 0$ donde a, b y c son constantes y $a \ne 0$.

Una ecuación cuadrática tiene 2 raíces, las cuales pueden ser 2 números reales diferentes, el mismo número real o puede tener ambas raíces cuyos valores sean números imaginarios, en cuyo caso solamente escribiríamos que esa ecuación, no tiene solución en el campo de los reales; aunque sabemos que si existe la solución.

Factorización

Este método es el más práctico y fácil de desarrollar, siempre y cuando exista la factorización de la ecuación. Se factoriza el trinomio igualado a cero y se obtienen sus raíces al igualar cada factor a cero.

iv. Resuelva la ecuación:
$$x^2 - 3x + 2 = 0$$

Factorizamos $(x - 1)(x - 2) = 0$

De x-1=0 o de x-2=0 tenemos las 2 respuestas que necesitamos

$$x_1 = 1$$
 y la otra raíz es $x_2 = 2$

Comprobación: $x^2 - 3x + 2 = 0$ en la ecuación original sustituimos las raíces

Para
$$x_1 = 1$$
 Para $x_2 = 2$
 $(1)^2 - 3(1) + 2 = 0$ $(2)^2 - 3(2) + 2 = 0$
 $1 - 3 + 2 = 0$ $4 - 6 + 2 = 0$
 $0 = 0$ $0 = 0$

v. Factorice para obtener las raíces de la ecuación: $x^2 - x - 12 = 0$ Factorizamos (x-4)(x+3) = 0 e igualamos cada producto a cero. Entonces de x-4=0 y de x+3=0 tenemos las raíces $x_1=4$ y $x_2=-3$

Comprobación: en la ecuación original sustituimos ambos resultados

Para
$$x_1 = 4$$
 Para $x_2 = -3$
 $(4)^2 - (4) - 12 = 0$ $(-3)^2 - (-3) - 12 = 0$
 $16 - 4 - 12 = 0$ $9 + 3 - 12 = 0$
 $0 \equiv 0$ $0 \equiv 0$

vi. Obtenga las raíces de: $2(x+1)^2 - x = 4$

Primero debemos realizar las operaciones indicadas para tener un polinomio de la forma $ax^2 + bx + c = 0$ y resolverlo factorizando. Entonces

$$2(x^{2} + 2x + 1) - x - 4 = 0$$
$$2x^{2} + 4x + 2 - x - 4 = 0$$
$$2x^{2} + 3x - 2 = 0$$
$$(2x - 1)(x + 2) = 0$$

De 2x - 1 = 0 tenemos $x_1 = \frac{1}{2}$ y de x + 2 = 0 obtenemos $x_2 = -2$

Comprobación:

Para
$$x_1 = \frac{1}{2}$$

$$2\left(\frac{1}{2}+1\right)^2 - \frac{1}{2} = 4$$

$$2\left(\frac{3}{2}\right)^2 - \frac{1}{2} = 4$$

$$2\left(\frac{9}{4}\right) - \frac{1}{2} = 4$$

$$2\left(\frac{9}{4}\right) - \frac{1}{2} = 4$$

$$2(1) + 2 = 4$$

$$2 + 2 = 4$$

$$4 = 4$$

II. Obtenga las raíces de las siguientes ecuaciones, por el método de factorización.

1)
$$3y^2 + 2y - 1 = 0$$

2) $6z^2 + z - 2 = 0$
3) $(x - 2)^2 + 2 = x$
4) $2(x + 1)^2 - 4 = x(x + 3)$
5) $(x - 3)(x + 2) = 6$
6) $(y - 1)^2 - 3(y + 1) = 4$
7) $\frac{x - 1}{x + 3} + \frac{x - 2}{x + 1} = 1$
8) $\frac{3x - 5}{x + 1} = \frac{2(x + 4)}{2x - 3}$
13) $x(x - 2) = 15$
14) $x^2 - 12 = x$
15) $9y^2 = 25$
16) $4y^2 + 4y + 1 = 0$
17) $25x^2 + 4 = 20x$
18) $(z - 4)^2 = -25$
19) $4x^2 - 8x = 0$
20) $x^2 - 19 = -7x^2 - 3$

9)
$$x^2 - 2x - 1 = 0$$

10) $2x^2 + 5x + 2 = 0$
11) $x^2 - 4 = 0$
22) $x^2 + 12x + 20 = 0$
23) $x^2 - 3x = 18$

$$24) x^{2} - 9x + 20 = 0$$

$$12) x^{2} + 3x - 10 = 0$$

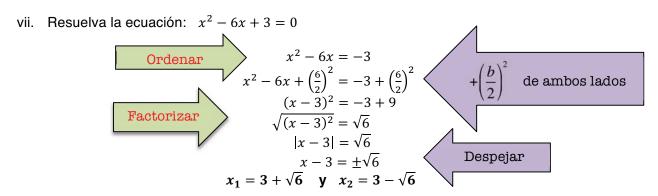
$$25) 7x^{2} - 35x - 42 = 0$$

Completar el cuadrado

Como ya vimos, una ecuación de segundo grado en su forma canónica es del tipo $ax^2 + bx + c = 0$ y las ecuaciones de segundo grado no siempre pueden factorizarse, por ejemplo $x^2 - 6x + 3 = 0$ ya que no existen números enteros tales que al multiplicarse den como resultado 3 y al sumarse -6. Entonces debemos emplear otro método que nos sirva para ecuaciones de este tipo.

El método de completar cuadrados funciona para cualquier ecuación y surge de la ecuación canónica $ax^2 + bx + c = 0$ en la que utilizaremos los términos que contengan a la variable para formar un trinomio cuadrado perfecto. El término c debe ir del otro lado de la igualdad y se complementará con "lo que le falte" para ser un trinomio cuadrado perfecto.

"Lo que le falte" para ser un trinomio cuadrado perfecto se obtiene al dividir entre 2 al coeficiente b y elevarlo al cuadrado, entonces por contrucción tenemos un trinomio cuadrado perfecto. Pero no debemos olvidar, que el término $+\left(\frac{b}{2}\right)^2$ que acabamos de sumar de un lado, debemos sumarlo del otro lado también, para no afectar nuestra ecuación original. El proceso sigue al factorizar, despejar la variable y reducir términos semejantes.



Comprobación:

Para
$$x_1 = 3 + \sqrt{6}$$

 $(3 + \sqrt{6})^2 - 6(3 + \sqrt{6}) + 3 = 0$
 $(3 - \sqrt{6})^2 - 6(3 - \sqrt{6}) + 3 = 0$
 $(3^2 + 2 \cdot 3 \cdot \sqrt{6} + \sqrt{6}^2) - 6 \cdot 3 - 6 \cdot \sqrt{6} + 3$
 $= 0$
 $(3^2 - 2 \cdot 3 \cdot \sqrt{6} + \sqrt{6}^2) - 6 \cdot 3 + 6 \cdot \sqrt{6} + 3$
 $= 0$
 $9 + 6\sqrt{6} + 6 - 18 - 6\sqrt{6} + 3 = 0$
 $0 = 0$
 $0 = 0$

viii. Complete el cuadrado para resolver la ecuación $x^2 + 6x + 5 = 0$ $x^2 + 6x = -5$

$$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = -5 + \left(\frac{6}{2}\right)^{2}$$
$$(x+3)^{2} = -5 + 9$$
$$\sqrt{(x+3)^{2}} = \sqrt{4}$$
$$|x+3| = 2$$
$$x+3 = \pm 2$$
$$x_{1} = -1 \quad y \quad x_{2} = -5$$

Comprobación:

Para
$$x_1 = -1$$
 Para $x_2 = -5$

$$(-1)^2 + 6(-1) + 5 = 0$$

$$1 - 6 + 5 = 0$$

$$0 \equiv 0$$
Para $x_2 = -5$

$$(-5)^2 + 6(-5) + 5 = 0$$

$$25 - 30 + 5 = 0$$

$$0 \equiv 0$$

ix. Resuelva la ecuación: $2x^2 - x = -5$

$$x^{2} - \frac{1}{2}x = -\frac{5}{2}$$

$$x^{2} - \frac{1}{2}x + \left(\frac{\frac{1}{2}}{2}\right)^{2} = -\frac{5}{2} + \left(\frac{\frac{1}{2}}{2}\right)^{2}$$

$$\left(x - \frac{1}{4}\right)^{2} = -\frac{5}{2} + \frac{1}{16}$$

$$\sqrt{\left(x - \frac{1}{4}\right)^{2}} = \sqrt{-\frac{39}{16}}$$

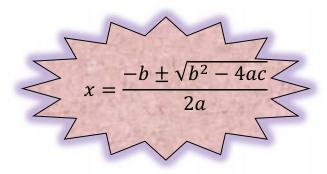
$$\left|x - \frac{1}{4}\right| = \sqrt{-\frac{39}{16}}$$

Como tenemos la raíz de un número negativo, podemos concluir que esta ecuación no tiene solución en el campo de los números reales.

- III. Resuelva las siguientes ecuaciones utilizando el método de completar el cuadrado.
 - 1) $x^2 + 3x 4 = 0$
 - 2) $x^2 + 8x + 15 = 0$
 - 3) $x^2 + 6x + 8 = 0$
 - 4) $x^2 7x + 6 = 0$
 - $5) \quad x^2 + 9x + 18 = 0$
 - 6) $2x^2 + x 1 = 0$
 - 7) $3c^2 4c 4 = 0$
 - 8) $2x^2 7x 4 = 0$
 - 9) $4w^2 + 9w = 9$
 - 10) $y^2 13y + 40 = 0$
 - 11) $x^2 + x 12 = 0$
 - 12) $-x^2 + 6x + 7 = 0$
 - 13) $-z^2 5z + 14 = 0$
 - 14) $-a^2 + 9a 20 = 0$
 - 15) $-b^2 4b + 12 = 0$
 - 16) $w^2 = 3w + 28$
 - 17) $-x^2 = 6x 27$
 - 18) $y^2 + 10y = 11$
 - 19) $-z^2 + 40 = -3z$
 - 20) $a^2 4a 10 = 0$
 - 21) $b^2 6b + 2 = 0$
 - 22) $c^2 + 8c + 5 = 0$
 - 23) $q^2 + 4q 8 = 0$
 - 24) $r^2 r 3 = 0$
 - 25) $t^2 5t = 4$

Fórmula general

A partir de la ecuación canónica $ax^2 + bx + c = 0$, utilizando el método de completar el cuadrado, se despeja x y llegamos a la fórmula:



x. Resuelva la ecuación $3x^2 - 7x + 2 = 0$

Note que en la fórmula general, solamente sustituimos los valores de los coeficientes, jamás utilizamos variables. Siendo así $a=3,\ b=-7$ y c=2

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(2)}}{2(3)}$$

$$x = \frac{7 \pm \sqrt{49 - 24}}{6}$$

$$x = \frac{7 \pm \sqrt{25}}{6}$$

$$x = \frac{7 \pm 5}{6}$$

$$x_1 = 2 \quad y \quad x_2 = \frac{1}{3}$$

Comprobación:

Para
$$x_1 = 2$$

$$3(2)^2 - 7(2) + 2 = 0$$

$$3(4) - 14 + 2 = 0$$

$$12 - 14 + 2 = 0$$

$$0 = 0$$

$$3\left(\frac{1}{3}\right)^2 - 7\left(\frac{1}{3}\right) + 2 = 0$$

$$3\left(\frac{1}{9}\right) - \frac{7}{3} + 2 = 0$$

$$0 = 0$$

xi. Utilizando la fórmula general, obtenga las raíces de $a^2 - 6a + 9 = 0$ a = 1, b = -6 y c = 9

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(9)}}{2(1)}$$

$$x = \frac{6 \pm \sqrt{36 - 36}}{2}$$

$$x = \frac{6 \pm 0}{2}$$

$$x_1=x_2=3$$

Comprobación: $x_1 = x_2 = 3$

$$3^2 - 6(3) + 9 = 0$$

$$9 - 18 + 9 = 0$$

$$0 \equiv 0$$

xii. Obtenga las raíces de la ecuación: $(x + 4)^2 = 2x(5x - 1) - 7(x - 2)$

Primero debemos realizar las operaciones indicadas

$$x^2 + 8x + 16 = 10x^2 - 2x - 7x + 14$$

$$10x^2 - x^2 - 8x - 2x - 7x + 14 - 16 = 0$$

$$9x^2 - 17x - 2 = 0$$

Entonces a = 9, b = -17 y c = -2

$$x = \frac{-(-17) \pm \sqrt{(-17)^2 - 4(9)(-2)}}{2(9)}$$

$$x = \frac{17 \pm \sqrt{289 + 72}}{18}$$

$$x = \frac{17 \pm \sqrt{361}}{18}$$

$$x = \frac{17 \pm 19}{18}$$

$$x_1 = 2$$
 y $x_2 = -\frac{1}{9}$

Comprobación:

Para
$$x_1 = 2$$

 $(2+4)^2 = 2(2)(5(2) - 1) - 7(2-2)$
 $6^2 = 4(9) - 7(0)$
 $36 \equiv 36$

Para
$$x_2 = -\frac{1}{9}$$

$$\left(-\frac{1}{9} + 4\right)^2 = 2\left(-\frac{1}{9}\right)\left(5\left(-\frac{1}{9}\right) - 1\right) - 7\left(-\frac{1}{9} - 2\right)$$

$$\left(\frac{35}{9}\right)^2 = -\frac{2}{9}\left(-\frac{14}{9}\right) - 7\left(-\frac{19}{9}\right)$$

$$\frac{1225}{81} = \frac{28}{81} + \frac{133}{9}$$

$$\frac{1225}{81} = \frac{28}{81} + \frac{1197}{81}$$

$$\frac{1225}{81} \equiv \frac{1225}{81}$$

IV. Utilizando la fórmula general, resuelva las siguientes ecuaciones.

1)
$$x^2 - 5x + 6 = 0$$

2)
$$y^2 - 5y - 14 = 0$$

3)
$$z^2 + z - 20 = 0$$

4)
$$a^2 + 3a - 4 = 0$$

5)
$$b^2 - 2b - 24 = 0$$

6)
$$c^2 - 7c - 18 = 0$$

7)
$$d^2 - 7d + 10 = 0$$

8)
$$3m^2 + m - 10 = 0$$

9)
$$2n^2 - n - 21 = 0$$

10)
$$2p^2 - 11p + 15 = 0$$

11)
$$3q^2 - 24q + 45 = 0$$

12)
$$3r^2 + 5r + 1 = 0$$

13)
$$4u^2 - 6u + 11 = 0$$

14)
$$2v^2 - 8v + 3 = 0$$

15)
$$6w^2 - 17w + 10 = 0$$

16)
$$x(x+3) = 5x + 3$$

17)
$$9y + 1 = 3(y^2 - 5) - (y - 3)(y + 2)$$

18)
$$25(z+2)^2 = (z-7)^2 - 81$$

19)
$$3a(a-2) - (a-6) = 23(a-3)$$

20)
$$(b-2)(b+2) - 7(b-1) = 21$$

$$21)\frac{c^2}{5} - \frac{c}{2} = \frac{3}{10}$$

$$22)\frac{5}{d} - \frac{1}{d+2} = 1$$

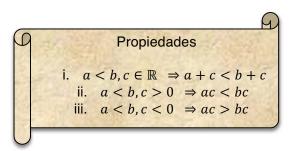
$$23)\frac{e-13}{e} = 5 - \frac{10(5e+3)}{e^2}$$

$$24)\frac{4w-1}{2w+3} = \frac{2w+1}{6w+5}$$

$$25)\frac{3x+2}{4} = 5 - \frac{9x+14}{12x}$$

7.3 Desigualdad de primer grado en una variable y sus propiedades.

Como ya habíamos visto en la unidad 3 en el tema de reales, las propiedades de orden entre los enteros, establecen también las propiedades que utilizaremos en las desigualdades, también conocidas como inecuaciones, y su principal característica es que a diferencia de las ecuaciones lineales que tienen una sola raíz, las inecuaciones constan de una infinidad de resultados posibles, contenidos en uno o en varios intervalos (vistos en la unidad 3 sección 3.10).

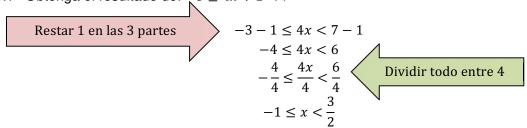


La tercera propiedad es en la que debemos poner más atención al resolver los ejercicios, ya que al multiplicar por un número negativo, el sentido de la desigualdad se invierte, y cambia el sentido del resultado.

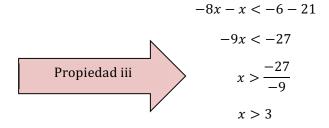
xiii. Resuelva:
$$2x - 5 \le x + 1$$

$$2x - x \le 1 + 5$$
$$x \le 6$$

xiv. Obtenga el resultado de: $-3 \le 4x + 1 < 7$



xv. Determine el resultado de: -8x + 21 < x - 6



xvi. Resuelva: $-\frac{x}{4} + \frac{x}{6} < \frac{x-3}{6}$

MCM de 4 y 6
$$(12)\left(-\frac{x}{4}\right) + (12)\left(\frac{x}{6}\right) < (12)\left(\frac{x-3}{6}\right)$$

$$-3x + 2x < 2x - 6$$

$$-3x + 2x - 2x < -6$$

$$-3x < -6$$

$$x > \frac{-6}{-3}$$
Propiedad iii

V. Resuelva las siguientes desigualdades

1)
$$x - 9 > -6$$

2)
$$3 - x < -4$$

3)
$$12a - 5 \le 8a + 7$$

4)
$$4(b+2) \le 5b+10$$

5)
$$5c - 6 \ge 3(c + 3) + 2c$$

6)
$$-6(d+2) < -9d + 3(d-1)$$

7)
$$2e - 6e + 8 \le 2(-2e + 9)$$

8)
$$\frac{f}{2} + \frac{4}{5} \le 3$$

9)
$$4 + \frac{4g}{3} < 6$$

10)
$$4 - 3h < 5 + 2h + 17$$

$$11)^{\frac{j-5}{3}} - j \ge -3(j-1)$$

$$12)^{\frac{k}{2} - \frac{5}{6}} < \frac{7}{8} + k$$

$$13)\frac{m}{3} - m + 7 \le -\frac{4m}{3} + 8$$

14)
$$\frac{6(n-2)}{5} > \frac{10(2-n)}{3}$$

15)
$$-3p + 1 < 3[(p+2) - 2p] - 1$$

16)
$$4[q - (3q - 2)] > 3(q + 5) - 15$$

17)
$$-2 \le r + 3 < 4$$

18)
$$-7 < s - 6 \le -5$$

19)
$$-15 < -3t < 12$$

20)
$$-16 < 5 - 3u < 13$$

21)
$$4 \le 2v - 4 < 7$$

22)
$$-12 < 3w - 5 \le -1$$

23)
$$14 \le 2 - 3x < 15$$

24)
$$\frac{1}{2} < 3y + 4 < 13$$

25)
$$5 \le \frac{3z+1}{2} \le 11$$

Desigualdades lineales con valor absoluto

De acuerdo con la definición de valor absoluto que estudiamos en la unidad 3, debemos considerar el caso positivo y el caso negativo. En las desigualdades resolveremos de manera análoga, es decir, considerando ambos casos.

xvii. Resuelva la siguiente desigualdad: $|2x + 1| \le 9$

Cuando el valor absoluto es "menor que" un número real, es decir, sin variables del otro lado del valor absoluto, podemos reescribir la desigualdad como una desigualdad doble, de la forma $-9 \le 2x + 1 \le 9$ ya que en la misma inecuación consideramos el caso negativo y el caso positivo. Entonces:

$$-9 \le 2x + 1 \le 9$$

$$-9 - 1 \le 2x \le 9 - 1$$

$$-\frac{10}{2} \le x \le \frac{8}{2}$$

$$-5 \le x \le 8$$

xviii. Resuelva la desigualdad: |2x + 3| > 5

Cuando el valor absoluto es "mayor que" el otro miembro, ya sea con o sin variables, debemos realizar dos desigualdades por separado, una considerando el caso positivo, donde sólo quitamos la indicación de valor absoluto; y el caso negativo, donde al quitar el signo de valor absoluto, debemos escribir entre paréntesis y con signo negativo, aquello que estaba considerado en el interior del valor absoluto. De esta forma:

$$|2x + 3| > 5$$

+) $2x + 3 > 5$
 $2x > 5 - 3$
 $x > \frac{2}{2}$
 $x > 1$
-) $-(2x + 3) > 5$
 $-2x - 3 > 5$
 $-2x > 5 + 3$
 $x < \frac{8}{-2}$
 $x < -4$

Entonces tenemos dos resultados que se pueden escribir como intervalos, de la forma $x \in (-\infty, -4) \cup (1, \infty)$ y son igualmente válidos.

xix. Determine el resultado de: |6w - 5| < 4w + 7

Cuando el valor absoluto es "menor que" el segundo miembro que cuenta con variables, no podemos resolver utilizando una desigualdad doble (como en el primer ejemplo de esta sección). Debemos realizar dos desigualdades por separado, considerando el caso positivo y el caso negativo. Y procedemos como en el ejemplo anterior.

+)
$$6w - 5 < 4w + 7$$

 $6w - 4w < 7 + 5$
 $2w < 12$
 $w < 6$

-) $-(6w - 5) < 4w + 7$
 $-6w + 5 < 4w + 7$
 $-6w - 4w < 7 - 5$
 $-10w < 2$
 $w > -\frac{1}{5}$

Nuevamente tenemos dos resultados que se pueden escribir como un solo intervalo que cumple ambas respuestas de manera simultánea $x \in \left(-\frac{1}{5}, 6\right)$.

<u>Observación</u>: Utilizamos un solo intervalo cuando ambos resultados son incluyentes, es decir, los números que satisfacen una desigualdad igualmente pueden satisfacer la otra. Cuando no hay ningún intervalo de números que satisfagan ambas desigualdades al mismo tiempo, expresamos el resultado mediante la unión de ambos intervalos.

VI. Resuelva las siguientes desigualdades

1)
$$|x-5| < 6$$

2)
$$|2 - y| < 7$$

3)
$$|a+2| \le 3$$

4)
$$|2b-3| < -(-5)$$

5)
$$\left| \frac{2}{3}c - \frac{1}{4} \right| \le \frac{5}{8}$$

6)
$$|5d - 1| > 9$$

7)
$$|3e + 2| \ge 8$$

8)
$$|1-4f| > 13$$

9)
$$|3g - 1| \ge 2$$

10)
$$|6h - 11| \ge 5$$

11)
$$|3 - i| \ge 2i + 1$$

12)
$$|3k + 5| > 2k - 3$$

13)
$$|6m - 10m| \le 2 - 5m$$

14)
$$|2n + 9| \ge n + 3$$

15)
$$\left| \frac{4}{10}p - 1 \right| < \frac{10}{2}p$$

7.4 Desigualdad de segundo grado. Resolución de una desigualdad de segundo grado.

El objetivo de resolver una desigualdad de segundo grado, es obtener las raíces de la inecuación (por cualquier método), y verificar en la ecuación original, que parte es la que hace la desigualdad válida.

xx. Resuelva la inecuación: $3x^2 + 5x \le x^2 + x + 22$

Reducimos términos semejantes
$$3x^2 - x^2 + 5x - x \le 22$$

$$2x^2 + 4x \le 22$$

Dividimos todos los términos entre 2
$$x^2 + 2x \le 11$$

Completamos el cuadrado
$$x^2 + 2x + \left(\frac{2}{2}\right)^2 \le 11 + \left(\frac{2}{2}\right)^2$$

Factorizamos lado izquierdo y reducimos lado derecho
$$(x + 1)^2 \le 12$$

Obtenemos la raíz cuadrada de ambos lados
$$\sqrt{(x+1)^2} \le \sqrt{12}$$

Resolvemos la desigualdad lineal con valor absoluto
$$|x+1| \le \sqrt{12}$$

$$-\sqrt{12} \le x + 1 \le \sqrt{12}$$

$$-1-\sqrt{12} \le x \le \sqrt{12}-1$$

xxi. Determine para qué intervalo es cierta la desigualdad: $y^2 < 121$

Realizamos el despeje de la variable
$$\sqrt{y^2} < \sqrt{121}$$

$$|y| < 11$$

$$-11 < y < 11$$

Por lo tanto, la desigualdad es cierta cuando $y \in (-11, 11)$

xxii. Resuelva la desigualdad:
$$3z^3 - 3z^2 - 6z \ge 0$$
 $3z(z^2 - z - 2) \ge 0$ $3z(z - 2)(z + 1) \ge 0$

Entonces tenemos tres opciones que debemos considerar para que la desigualdad sea igual a cero, ya que cero por cualquier número es cero, entonces basta con que alguna de nuestras opciones sea cero para que se cumpla la condición: 3z = 0, z - 2 = 0 o z + 1 = 0 de donde $z_1 = -1$, $z_2 = 0$ y $z_3 = 2$

Formamos cuatro intervalos de prueba para asignar valores en dichos intervalos y determinar si cumplen con la condición

$$-3 \in (-\infty, -1)$$
: $3(-3)^3 - 3(-3)^2 - 6(-3) \ge 0$ resultado $-90 \not \ge 0$ no funciona $-\frac{1}{2} \in (-1,0)$: $3\left(-\frac{1}{2}\right)^3 - 3\left(-\frac{1}{2}\right)^2 - 6\left(-\frac{1}{2}\right) \ge 0$ resultado $\frac{15}{8} \ge 0$ sí funciona $1 \in (0,2)$: $3(1)^3 - 3(1)^2 - 6(1) \ge 0$ resultado $-6 \not \ge 0$ no funciona $4 \in (2,\infty)$: $3(4)^3 - 3(4)^2 - 6(4) \ge 0$ resultado $120 \ge 0$ sí funciona

Entonces podemos concluir que $3z^3 - 3z^2 - 6z \ge 0$ cuando $z \in (-1,0) \cup (2,\infty)$

xxiii. ¿Cuándo es válida la desigualdad:
$$\frac{(w-1)(w+4)}{w+1} > 0$$
?

Debemos evitar que el denominador sea cero para que la inecuación tenga sentido. Por lo tanto, el primer valor a considerar será $w_1 = -1$ Obtenido al igualar el denominador a cero. Y en este caso, la desigualdad ya está factorizada, entonces sabemos que $w_2 = 1$ y $w_3 = -4$.

Al analizar los intervalos formados, de manera análoga al ejemplo anterior, concluimos que $\frac{(w-1)(w+4)}{w+1} > 0$ cuando $w \in (-4,-1) \cup (3,\infty)$

VII. Resuelva las siguientes desigualdades

1)
$$w^2 - 2w - 8 \ge 0$$

2)
$$x^2 - 2x - 9 < 0$$

3)
$$y^2 + 7y + 6 > 0$$

4)
$$z^2 + 8z + 7 < 0$$

5)
$$a^2 - 6a + 9 \le 0$$

6)
$$b^2 - 8b \le 0$$

7)
$$c^2 - 16 < 0$$

8)
$$d^2 - 5d > 0$$

9)
$$2e^2 + 5e - 3 \le 0$$

10)
$$3f^2 - 7f \le 6$$

11)
$$5g^2 \le -6g + 8$$

12)
$$5h - 3 \le -3h^2$$

13)
$$2j^2 + 9 \le 12j$$

$$14)\,5k^2+4\leq -20k$$

15)
$$l^3 - 9l \le 0$$

$$16)^{\frac{m^2-5m-6}{m+3}} < 0$$

$$17)\frac{n^2+n-6}{n-5} > 0$$

$$18) \frac{p^2 - 8p + 7}{p + 2} \ge 0$$

$$19)\frac{q-5}{q^2-3q-54} \ge 0$$

$$20)\,\frac{2r^2-r-15}{r-4}\geq 0$$

$$21)\frac{s+9}{s^2+2s-8} > 0$$

$$22)\frac{3}{t+2} < 2t - 1$$

$$23)\frac{-3u}{u^2-9} > 0$$

$$24)\,\frac{v}{v+1} < \frac{v-1}{v+2}$$

$$25)\frac{w^2-4}{1-w^2} > 2$$

CAPÍTULO 8: SISTEMAS DE ECUACIONES Y DE DESIGUALDADES

8.1 Sistemas de dos ecuaciones lineales con dos variables. Métodos de solución.

<u>Definición:</u> Dos o más ecuaciones con dos o más incógnitas son simultáneas cuando los mismos valores satisfacen las mismas ecuaciones.

<u>Definición:</u> Las ecuaciones equivalentes son aquellas donde una es múltiplo de la otra. Por ejemplo: 4x + 4y = 4 es un múltiplo de x + y = 1. Y tienen una infinidad de representaciones.

<u>Definición:</u> Las ecuaciones independientes son las que no se obtienen una de otra.

Método de solución: Igualación

- 1. Despejar la misma variable de ambas ecuaciones
- 2. Igualar los despejes y reducir términos semejantes
- 3. Sustituir el valor encontrado en alguna de las ecuaciones originales
- 4. Comprobar ambos valores en ambas ecuaciones
- i. Resuelva el siguiente sistema de ecuaciones por el método de igualación

$$\begin{cases} 7x + 4y = 13 & \dots & \dots & \dots & 1 \\ 5x - 2y = 19 & \dots & \dots & \dots & 2 \end{cases}$$

Paso 1: Despejamos x de ambas ecuaciones

De 1:
$$x = \frac{13-4y}{7}$$

De 2:
$$x = \frac{19+2y}{5}$$

Paso 2: Igualar y reducir términos: $\frac{13-4y}{7} = \frac{19+2y}{5}$

$$5(13 - 4y) = 7(19 + 2y)$$
$$65 - 20y = 133 + 14y$$
$$-14y - 20y = 133 - 65$$
$$-34y = 68$$

$$y = -2$$

Paso 3: Sustituir en alguna ecuación: en 1 sustituyo y = -2: 7x + 4(-2) = 13

$$7x = 13 + 8$$

$$x = 3$$

Paso 4: Comprobar

En 1:
$$7(3) + 4(-2) = 13$$

 $21 - 8 = 13$
 $13 = 13$
En 2: $5(3) - 2(-2) = 19$
 $15 + 4 = 19$
 $19 = 19$

ii. Utilizando el método de igualación, resuelva el sistema:

$$\begin{cases} x + 6y = 27 & \dots & \dots & \dots & 1 \\ 7x - 3y = 9 & \dots & \dots & \dots & 2 \end{cases}$$

Paso 1: Despejamos x de ambas ecuaciones

De 1:
$$x = 27 - 6y$$

De 2:
$$x = \frac{9+3y}{7}$$

Paso 2: Igualar y reducir términos

$$27 - 6y = \frac{9 + 3y}{7}$$

$$7(27 - 6y) = 9 + 3y$$

$$189 - 9 = 3y + 42y$$

$$y = 4$$

Paso 3: Sustituir en alguna ecuación: en 1 sustituyo y = 4

$$x + 6(4) = 27$$

$$x = 27 - 24$$

$$x = 3$$

Paso 4:Comprobar con x = 3 y y = 4

En 1:
$$3 + 6(4) = 27$$

En 2:
$$7(3) - 3(4) = 9$$

$$3 + 24 = 27$$

$$21 - 12 = 9$$

$$27 \equiv 27$$

$$9 \equiv 9$$

I. Resuelva los siguientes sistemas de ecuaciones por el método de igualación

$$(3x - y = 19)$$

7)
$$\begin{cases} x - 3 \\ 3x + 4 \end{cases}$$

$$5x = 2$$

8)
$$\begin{cases} 2x + 3y = 1 \\ 5x + 7y = 6 \end{cases}$$

$$\begin{cases} 3x + 4y = 0 \\ 5x - y = 7 \end{cases}$$

$$\int \frac{x+y}{3} + \frac{x-y}{4} = 1$$

$$(3x - 4y + 6 = 0)$$

s por el metodo de igua
7)
$$\begin{cases} x - 3y + 6 = 0\\ 3x + 18 = 9y \end{cases}$$
8)
$$\begin{cases} 2x + 3y = 1\\ 5x + 7y = 6 \end{cases}$$
9)
$$\begin{cases} \frac{x+y}{3} + \frac{x-y}{4} = 10\\ \frac{x+y}{2} - \frac{x-y}{8} = 11\\ \frac{3y+2x}{5} + \frac{y+6}{7} = 2\\ \frac{2x-5y}{3} + \frac{x+7}{4} = 1 \end{cases}$$

4)
$$\begin{cases} y = 10 - 2x \end{cases}$$

$$10) \begin{cases} \frac{3y+2x}{5} + \frac{y+6}{7} = 2 \\ 2x-5y & x+7 \end{cases}$$

Resuelva los siguient

1)
$$\begin{cases} 3x - y = 19 \\ 3x + y = 29 \end{cases}$$
2)
$$\begin{cases} 5x = 2 \\ 3x + 4y = 6 \end{cases}$$
3)
$$\begin{cases} 5x - y = 7 \\ 3x - 4y + 6 = 0 \end{cases}$$
4)
$$\begin{cases} 2x - y = 0 \\ y = 10 - 2x \end{cases}$$
5)
$$\begin{cases} 2x + y + 1 = 0 \\ x - 4y = 13 \end{cases}$$
6)
$$\begin{cases} 3x - 2y = 6 \\ 4y = 6x + 9 \end{cases}$$

10)
$$\left\{ \frac{5}{2x-5y} + \frac{x}{3} \right\}$$

6)
$$\begin{cases} 3x - 2y = 6 \\ 4y = 6x + 9 \end{cases}$$

Método de solución: sustitución

- 1. Despejar alguna variable de cualquier ecuación
- 2. Sustituir el despeje en la ecuación donde no se despejó, reducir términos semejantes y resolver la ecuación.
- 3. Sustituir el valor encontrado en alguna de las ecuaciones originales
- 4. Comprobar

iii. Utilizando el método de sustitución, resuelva el siguiente sistema de ecuaciones $\{2x+5y=3 \dots \dots \dots 1 \\ x+2y=1 \dots \dots 2$

Paso 1: de 2 despejamos x: x = 1 - 2y

Paso 2: sustituimos el despeje en 1: 2(1-2y) + 5y = 3

$$2 - 4y + 5y = 3$$

$$y = 1$$

Paso 3: sustituimos y = 1 en la ecuación 2: x + 2(1) = 1

$$x + 2 = 1 \Rightarrow x = -1$$

Paso 4: Con x = -1 y y = 1:

En 1:
$$2(-1) + 5(1) = 3$$

 $-2 + 5 = 3$
 $3 \equiv 3$
En 2: $(-1) + 2(1) = 1$
 $-1 + 2 = 1$
 $1 \equiv 1$

iv. Para qué valores de a y b es válido el siguiente sistema de ecuaciones $\{2a+b=-1 \dots \dots \dots 1 \ a-4b=13 \dots \dots \dots 2$

Paso 1: De 1 despejamos b: b = -2a - 1

Paso 2: Sustituimos el despeje en 2: a - 4(-2a - 1) = 13

$$a + 8a + 4 = 13$$

$$9a = 9$$

$$a = 1$$

Paso 3: sustituimos a = 1 en la ecuación 1: 2(1) + b = -1 de donde b = -3

Paso 4: con a = 1 y b = -3:

En 1:
$$2(1) + (-3) = -1$$

 $2 - 3 = -1$
 $-1 \equiv -1$
En 2: $1 - 4(-3) = 13$
 $1 + 12 = 13$
 $13 \equiv 13$

II. Resuelva los siguientes ejercicios por el método de sustitución

1)
$$\begin{cases} x + y = 5 \\ 3x + y = 9 \end{cases}$$
2)
$$\begin{cases} x + 2y = 4 \\ x - 2y = 0 \end{cases}$$
3)
$$\begin{cases} x + 1 = y + 3 \\ x - 3 = 3y - 7 \end{cases}$$
4)
$$\begin{cases} 2x + y = 6 \\ 2x - 3y = -10 \end{cases}$$
5)
$$\begin{cases} 5x + 2y = -3 \\ 6x - 2y = 14 \end{cases}$$
6)
$$\begin{cases} 2x - 4y = 12 \\ 3x - 2y = 6 \end{cases}$$
7)
$$\begin{cases} 3x + 2y = -12 \\ 8x - 2y = -54 \end{cases}$$
8)
$$\begin{cases} 15a - 4b = -46 \\ a - 2b = -10 \end{cases}$$
9)
$$\begin{cases} x - 3y = 13 \\ 4x - 5y = 24 \end{cases}$$
10)
$$\begin{cases} 4m - 3n = -14 \\ 3m + 5n = 4 \end{cases}$$

Método de solución: eliminación (suma y resta)

- Igualar los coeficientes de ambas ecuaciones, pero con signos diferentes mediante la multiplicación o división de la ecuación completa. Y reducir términos semejantes y resolver la ecuación.
- 2. Sustituir el valor encontrado en alguna de las ecuaciones originales.
- 3. Comprobar.
- v. Resuelva el sistema por el método de eliminación $\begin{cases} 2x 5y = 20 \\ -4x + 5y = -40 \end{cases}$

Paso 1: Los coeficientes de *y* son iguales pero de signos opuestos, por lo tanto procedemos a sumar en forma vertical ambas ecuaciones

$$2x - 5y = 20$$

$$-4x + 5y = -40$$

$$-2x = -20$$

$$x = \frac{-20}{-2}$$

$$x = 10$$

Paso 2: En la ecuación 1, sustituimos x = 10

$$2(10) - 5y = 20$$
$$20 - 5y = 20$$
$$-5y = 0$$
$$y = 0$$

Paso 3: Con
$$x = 10$$
 y $y = 0$

En 1:
$$2(10) - 5(0) = 20$$
 En 2: $-4(10) + 5(0) = -40$

$$20 - 0 = 20$$

$$-40 + 0 = -40$$

$$20 = 20$$

$$-40 = -40$$

vi. Encuentre los valores de cada variable por el método de suma y resta $\begin{cases} x-2y=9 & \dots & 1 \\ -2x+3y=10 & \dots & 2 \end{cases}$

Paso 1: Multiplicamos la ecuación 1 por 2 y sumamos de forma vertical para obtener el valor de \boldsymbol{y}

$$2x - 4y = 18$$

$$-2x + 3y = 10$$

$$-y = 28$$

$$y = -28$$

Paso 2: Sustituimos el valor obtenido en la ecuación 1

$$x - 2(-28) = 9$$

$$x + 56 = 9$$

$$x = -47$$

Paso 3: Con x = -47 y y = -28

En 1:
$$(-47) - 2(-28) = 9$$

$$-47 + 56 = 9$$

$$9 \equiv 9$$

En 2:
$$-2(-47) + 3(-28) = 10$$

$$94 - 84 = 10$$

$$10 \equiv 10$$

III. Utilizando el método de eliminación, resuelva los siguientes sistemas de ecuaciones

1)
$$\begin{cases} 2x + y = 1 \\ 2x - 3y = 13 \end{cases}$$

2)
$$\begin{cases} 2a - b - 3 = 0 \\ a - 2b + 3 = 0 \end{cases}$$

3)
$$\begin{cases} 8c + 5d = 65 \\ 7c + 6d = 65 \end{cases}$$

4)
$$\begin{cases} e - 2f = 2 \\ 3e + f = 13 \end{cases}$$

5)
$$\begin{cases} 2g - 3h = 28 \\ 3g + 2h = 16 \end{cases}$$

6)
$$\begin{cases} 2j - 4k = -10 \\ 3j - 2k = 25 \end{cases}$$

7)
$$\begin{cases} 5m + 2n = 74 \\ 6m - 2n = 36 \end{cases}$$

8)
$$\begin{cases} 10x + 30y = 90 \\ 35x - 10y = -30 \end{cases}$$

9)
$$\begin{cases} x - 1 = 2(y + 6) \\ x + 6 = 3(1 - 2y) \end{cases}$$

10)
$$\begin{cases} \frac{3x}{2} + y = 11\\ x + \frac{y}{2} = 7 \end{cases}$$

Método de solución: determinantes

Un determinante es un arreglo de columnas en los que solamente se incluyen números y se obtiene su valor al multiplicar sus diagonales y restar una de la otra.

Para un sistema de ecuaciones de la forma: $\begin{cases} ax + by = r \\ cx + dy = s \end{cases}$ el determinante es:

 $\Delta_s = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$ conocido como el determinante del sistema

 $\Delta_x = \begin{vmatrix} r & b \\ s & d \end{vmatrix} = rd - bs$ es el determinante de x, en el que no aparecen los coeficientes asociados a x sino los términos independientes.

 $\Delta_y = \begin{vmatrix} a & r \\ c & s \end{vmatrix} = as - rc$ es el determinante de y, en el que no aparecen los coeficientes asociados a y sino los términos independientes.

Obtenemos los valores de las variables de la forma $x = \frac{\Delta_x}{\Delta_s}$ y $y = \frac{\Delta_y}{\Delta_s}$

vii. Utilizando el método de determinantes resuelva el siguiente sistema $\begin{cases} 5x+2y=-15 \\ 7x-3y=37 \end{cases}$

Calculamos el valor de los tres determinantes

$$\Delta_s = \begin{vmatrix} 5 & 2 \\ 7 & -3 \end{vmatrix} = (5)(-3) - (2)(7) = -15 - 14 = -29$$

$$\Delta_{x} = \begin{vmatrix} -15 & 2 \\ 37 & -3 \end{vmatrix} = (-15)(-3) - (2)(37) = 45 - 74 = -29$$

$$\Delta_y = \begin{vmatrix} 5 & -15 \\ 7 & 37 \end{vmatrix} = (5)(37) - (-15)(7) = 185 + 105 = 290$$

Entonces los valores de las incógnitas son:

$$x = \frac{\Delta_x}{\Delta_s} = \frac{-29}{-29} = 1$$
 $y = \frac{\Delta_y}{\Delta_s} = \frac{290}{-29} = -10$

Comprobación: para x = 1 y y = -10

En 1:
$$5(1) + 2(-10) = -15$$

 $5 - 20 = -15$
 $-15 = -15$
En 2: $7(1) - 3(-10) = 37$
 $7 + 30 = 37$
 $37 = 37$

viii. Resuelva el siguiente sistema utilizando determinantes $\begin{cases} 6x - 5y = 1 \\ 4x - 7 \end{cases}$

$$\begin{cases} 4x + 7y = 2 \end{cases}$$

Calculamos los determinantes

$$\Delta_{s} = \begin{vmatrix} 6 & -5 \\ 4 & 7 \end{vmatrix} = (6)(7) - (-5)(4) = 42 + 20 = 62$$

$$\Delta_{x} = \begin{vmatrix} 1 & -5 \\ 2 & 7 \end{vmatrix} = (1)(7) - (-5)(2) = 7 + 10 = 17$$

$$\Delta_{y} = \begin{vmatrix} 6 & 1 \\ 4 & 2 \end{vmatrix} = (6)(2) - (1)(4) = 12 - 4 = 8$$

Entonces los valores de las incógnitas son:

$$x = \frac{\Delta_x}{\Delta_s} = \frac{17}{62}$$

$$y = \frac{\Delta_y}{\Delta_s} = \frac{8}{62}$$

Comprobación para $x = \frac{17}{62}$ y $y = \frac{8}{62}$

En 1:
$$6\left(\frac{17}{62}\right) - 5\left(\frac{8}{62}\right) = 1$$
 En 2: $4\left(\frac{17}{62}\right) + 7\left(\frac{8}{62}\right) = 2$
$$\frac{102}{62} - \frac{40}{62} = 1$$

$$\frac{68}{62} + \frac{56}{62} = 2$$

$$2 \equiv 2$$

IV. Resuelva los siguientes sistemas de ecuaciones utilizando determinantes.

1)
$$\begin{cases} 3x - 5y = -15 \\ 2x + y = 16 \end{cases}$$

2)
$$\begin{cases} 7a + 8b = -5 \\ -a + 9b = 21 \end{cases}$$

3)
$$\begin{cases} 6c - 5d = 28 \\ 4c + 9d = -6 \end{cases}$$

4)
$$\begin{cases} 8e - 5f = -4 \\ 2e - 3f = -8 \end{cases}$$

5)
$$\begin{cases} 2g - h = 6 \\ g - 2h = -9 \end{cases}$$

6)
$$\begin{cases} -j - 9k = 11 \\ 7i - 15k = 1 \end{cases}$$

7)
$$\begin{cases} 6m - 5n = 28 \\ 4m + 9n = -6 \end{cases}$$

8)
$$\begin{cases} 3v + 2w = 2 \\ -2v + w = 8 \end{cases}$$

9)
$$\begin{cases} \frac{5x}{12} - y = 9\\ x - \frac{3y}{4} = 15 \end{cases}$$

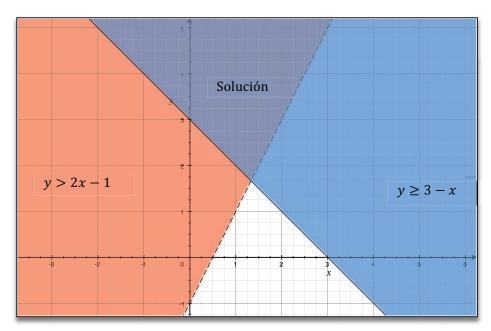
10)
$$\begin{cases} x = -\frac{3y+3}{4} \\ y = -\frac{1+5x}{4} \end{cases}$$

8.2 Solución de un sistema de dos desigualdades de primer grado en dos variables.

Para graficar las desigualdades en el plano, debemos despejar y y posteriormente, seleccionar mediante una evaluación numérica, la región que cumple con la desigualdad. Por conveniencia y para distinguir si la desigualdad es estricta o no, se suele utilizar una línea punteada para < o >; y una línea continua para \le o \ge .

ix. Grafique el conjunto solución del sistema
$$\begin{cases} 2x-y < 1 \\ x+y \geq 3 \end{cases}$$

Despejamos y de ambas desigualdades: $\begin{cases} y > 2x - 1 \\ y \ge 3 - x \end{cases}$



Por lo tanto, cualquier punto que se encuentre en el interior de la región de solución, satisface las condiciones establecidas.

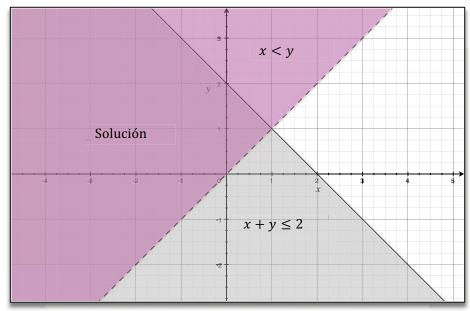
Comprobemos con el punto (1,3) donde x = 1 y y = 3

$$2(1) - 3 < 1$$
 $1 + 3 \ge 3$ $-1 < 1$ $4 \ge 3$

Como se cumplen ambas desigualdades, podemos concluir que nuestra región solución es la correcta.

x. Grafique el conjunto solución del sistema $\begin{cases} x + y \le 2 \\ x < y \end{cases}$

Despejamos y de ambas desigualdades y resulta



Comprobemos con el punto (-1,2) donde x = -1 y y = 2

$$(-1) + 2 \le 2$$

-1 < 2

Como se cumplen ambas desigualdades, podemos concluir que nuestra región solución es la correcta.

V. Grafique el conjunto solución de los siguientes sistemas de desigualdades.

$$1) \begin{cases} -x + 3y > 6 \\ 2x - y \le 2 \end{cases}$$

4)
$$\begin{cases} x > -2y + 4 \\ y < -\frac{1}{2}x - \frac{3}{2} \end{cases}$$

7)
$$\begin{cases} x + y < 6 \\ 4x + y \le 8 \\ x > 0 \\ y \ge 0 \end{cases}$$

2)
$$\begin{cases} 5x - 2y \le 10 \\ 3x + 2y > 6 \end{cases}$$
 5)
$$\begin{cases} x + y \le 3 \\ 2x + y \ge 4 \end{cases}$$

$$5) \begin{cases} x + y \le 3 \\ 2x + y \ge 4 \end{cases}$$

3)
$$\begin{cases} y > 2x + 3 \\ y < -x + 4 \end{cases}$$

$$\begin{cases} x + y \ge 0 \\ -2x + y \le 3 \end{cases}$$

8)
$$\begin{cases} 2x + y \le 5\\ 4x + 5y > 20\\ x \ge 0\\ y > 0 \end{cases}$$

8.3 Resolución de un sistema de tres ecuaciones lineales.

Para resolver un sistema de la forma $\begin{cases} ax + by + cz = r \\ dx + ey + fz = s \\ gx + hy + iz = t \end{cases}$ utilizaremos determinantes

Método por menores.

$$\Delta_{s} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$
$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$

Tomamos la primera letra del primer renglón y la multiplicamos por el determinante que se forma al eliminar el primer renglón y la primera columna; restamos la segunda letra, que se multiplica por el determinante formado al eliminar el primer renglón y la segunda columna; finalmente sumamos el producto de la tercera letra con el determinante formado al ignorar el primer renglón y la tercera columna. El procedimiento para resolver cada determinante pequeño, es la regla de Cramer que utilizamos en la sección 8.1 Método de solución por determinantes. Y análogamente a ese procedimiento, debemos obtener cuatro determinantes, el del sistema, el de x, y y el de z. Entonces:

$$\Delta_{s} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

$$= a(ei - fh) - b(di - fg) + c(dh - eg)$$

$$\Delta_{x} = \begin{vmatrix} r & b & c \\ s & e & f \\ t & h & i \end{vmatrix} = r \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} s & f \\ t & i \end{vmatrix} + c \begin{vmatrix} s & e \\ t & h \end{vmatrix} = r(ei - fh) - b(si - ft) + c(sh - et)$$

$$\Delta_{y} = \begin{vmatrix} a & r & c \\ d & s & f \\ g & t & i \end{vmatrix} = a \begin{vmatrix} s & f \\ t & i \end{vmatrix} - r \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & s \\ g & t \end{vmatrix} = a(si - ft) - r(di - fg) + c(dt - sg)$$

$$\Delta_{z} = \begin{vmatrix} a & b & r \\ d & e & s \\ g & h & t \end{vmatrix} = a \begin{vmatrix} e & s \\ h & t \end{vmatrix} - b \begin{vmatrix} d & s \\ g & t \end{vmatrix} + r \begin{vmatrix} d & e \\ g & h \end{vmatrix} = a(et - sh) - b(dt - sg) + r(dh - eg)$$

$$Y \text{ las soluciones son } x = \frac{\Delta_{x}}{\Delta_{s}}; \quad y = \frac{\Delta_{y}}{\Delta_{s}}; \quad z = \frac{\Delta_{z}}{\Delta_{s}}$$

xi. Resuelva el siguiente sistema de ecuaciones
$$\begin{cases} 4x - 5y - 3z = 16 \\ x - 3y + 2z = -20 \\ x - 2y - 3z = 4 \end{cases}$$

Obtenemos los determinantes

$$\begin{split} &\Delta_{s} = \begin{vmatrix} 4 & -5 & -3 \\ 1 & -3 & 2 \\ 1 & -2 & -3 \end{vmatrix} = 4 \begin{vmatrix} -3 & 2 \\ -2 & -3 \end{vmatrix} - (-5) \begin{vmatrix} 1 & 2 \\ 1 & -3 \end{vmatrix} + (-3) \begin{vmatrix} 1 & -3 \\ 1 & -2 \end{vmatrix} \\ &= 4(9 - (-4)) + 5(-3 - 2) - 3(-2 - (-3)) = 52 - 25 - 3 = 24 \\ &\Delta_{x} = \begin{vmatrix} 16 & -5 & -3 \\ -20 & -3 & 2 \\ 4 & -2 & -3 \end{vmatrix} = 16 \begin{vmatrix} -3 & 2 \\ -2 & -3 \end{vmatrix} - (-5) \begin{vmatrix} -20 & 2 \\ 4 & -3 \end{vmatrix} + (-3) \begin{vmatrix} -20 & -3 \\ 4 & -2 \end{vmatrix} \\ &= 16(9 - (-4)) - (-5)(60 - 8) + (-3)(40 - (-12)) = 208 + 260 - 156 = 312 \\ &\Delta_{y} = \begin{vmatrix} 4 & 16 & -3 \\ 1 & -20 & 2 \\ 1 & 4 & -3 \end{vmatrix} = 4 \begin{vmatrix} -20 & 2 \\ 4 & -3 \end{vmatrix} - 16 \begin{vmatrix} 1 & 2 \\ 1 & -3 \end{vmatrix} + (-3) \begin{vmatrix} 1 & -20 \\ 1 & 3 \end{vmatrix} + (-3) \begin{vmatrix} 1 & -20 \\ 1 & 4 \end{vmatrix} \\ &= 4(60 - 8) - 16(-3 - 2) + (-3)(4 - (-20)) = 208 + 80 - 72 = 216 \\ &\Delta_{z} = \begin{vmatrix} 4 & -5 & 16 \\ 1 & -3 & -20 \\ 1 & -2 & 4 \end{vmatrix} = 4 \begin{vmatrix} -3 & -20 \\ -2 & 4 \end{vmatrix} - (-5) \begin{vmatrix} 1 & -20 \\ 1 & 4 \end{vmatrix} + 16 \begin{vmatrix} 1 & -3 \\ 1 & -2 \end{vmatrix} \\ &= 4(-12 - 40) - (-5)(4 - (-20)) + 16(-2 - (-3)) = -208 + 120 + 16 = -72 \end{aligned}$$

Entonces las soluciones son

$$x = \frac{\Delta_x}{\Delta_s} = \frac{312}{24} = 13; \quad y = \frac{\Delta_y}{\Delta_s} = \frac{216}{24} = 9; \quad z = \frac{\Delta_z}{\Delta_s} = \frac{-72}{24} = -3$$

Comprobaciones:

En 1: En 2: En 3:
$$4(13) - 5(9) - 3(-3) = 16 = -20$$
$$13 - 2(9) - 3(-3) = 4$$
$$= -20$$
$$13 - 18 + 9 = 4$$
$$52 - 45 + 9 = 16 = 16$$
$$13 - 27 - 6 = -20$$
$$4 \equiv 4$$
$$16 \equiv 16 = -20 \equiv -20$$

xii. Determine las soluciones de
$$\begin{cases} 2x+y-z=-11\\ x+2y+2z=1\\ 3x-y+z=6 \end{cases}$$

Obtenemos los determinantes.

$$\Delta_{s} = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 2 & 2 \\ 3 & -1 & 1 \end{vmatrix} = 2 \begin{vmatrix} 2 & 2 \\ -1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix}$$

$$= 2(2 - (-2)) - 1(1 - 6) - 1(-1 - 6) = 8 + 5 + 7 = 20$$

$$\Delta_{x} = \begin{vmatrix} -11 & 1 & -1 \\ 1 & 2 & 2 \\ 6 & -1 & 1 \end{vmatrix} = -11 \begin{vmatrix} 2 & 2 \\ -1 & 1 \end{vmatrix} - 1 \begin{vmatrix} 1 & 2 \\ 6 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 2 \\ 6 & -1 \end{vmatrix}$$

$$= -11(2 - (-2)) - 1(1 - 12) - 1(-1 - 12) = -44 + 11 + 13 = -20$$

$$\Delta_{y} = \begin{vmatrix} 2 & -11 & -1 \\ 1 & 1 & 2 \\ 3 & 6 & 1 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 \\ 6 & 1 \end{vmatrix} - (-11) \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 1 \\ 3 & 6 \end{vmatrix}$$

$$= 2(1 - 12) + 11(1 - 6) - 1(6 - 3) = -22 - 55 - 3 = -80$$

$$\Delta_{z} = \begin{vmatrix} 2 & 1 & -11 \\ 1 & 2 & 1 \\ 3 & -1 & 6 \end{vmatrix} = 2 \begin{vmatrix} 2 & 1 \\ -1 & 6 \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ 3 & 6 \end{vmatrix} + (-11) \begin{vmatrix} 1 & 2 \\ 3 & -1 \end{vmatrix}$$

$$= 2(12 - (-1)) - 1(6 - 3) - 11(-1 - 6) = 26 - 3 + 77 = 100$$

$$= 2(12 - (-1)) - 1(6 - 3) - 11(-1 - 6) = 26 - 3 + 77 = 1$$

$$= 2(12 - (-1)) - 1(6 - 3) - 11(-1 - 6) = 26 - 3 + 77 = 100$$

Entonces las soluciones son

$$x = \frac{\Delta_x}{\Delta_s} = \frac{-20}{20} = -1; \quad y = \frac{\Delta_y}{\Delta_s} = \frac{-80}{20} = -4; \quad z = \frac{\Delta_z}{\Delta_s} = \frac{100}{20} = 5$$

Comprobaciones:

En 1: En 2: En 3:
$$2(-1) + (-4) - 5 = -11 \qquad (-1) + 2(-4) + 2(5) = 1 \qquad 3(-1) - (-4) + 5 = 6$$
$$-2 - 4 - 5 = -11 \qquad -1 - 8 + 10 = 1 \qquad -3 + 4 + 5 = 6$$
$$-11 \equiv -11 \qquad 1 \equiv 1 \qquad 6 \equiv 6$$

VI. Resuelva los siguientes sistemas de ecuaciones por el método de determinantes.

1)
$$\begin{cases} x + y + z = 4 \\ x - 2y - z = 1 \\ 2x - y - 2z = -1 \end{cases}$$

2)
$$\begin{cases} 5x + 4y + 7z = 2\\ 3x - 2y + z = 0\\ x + 5y + 8z = -2 \end{cases}$$

3)
$$\begin{cases} 2x + 5y + 2z = 5\\ 3x - 2y - 3z = -1\\ 2x + 3y + 3z = 10 \end{cases}$$

4)
$$\begin{cases} 3x - 2y - z = 3 \\ 2x - y + z = 4 \\ x - 2y + 3z = 3 \end{cases}$$

5)
$$\begin{cases} 4x - 2y + 3z = 1\\ x + 3y - 4z = -7\\ 3x + y + 2z = 5 \end{cases}$$

6)
$$\begin{cases} 4x - 2y - 3z = 8 \\ 5x + 3y - 4z = 4 \\ 6x - 4y - 5z = 12 \end{cases}$$

7)
$$\begin{cases} 2x - y + 3z = 1\\ 4x + 7y - z = 7\\ x + 4y - 2z = 3 \end{cases}$$

8)
$$\begin{cases} 5x + 2y - z = -7 \\ x - 2y + 2z = 0 \\ 3y + z = 17 \end{cases}$$

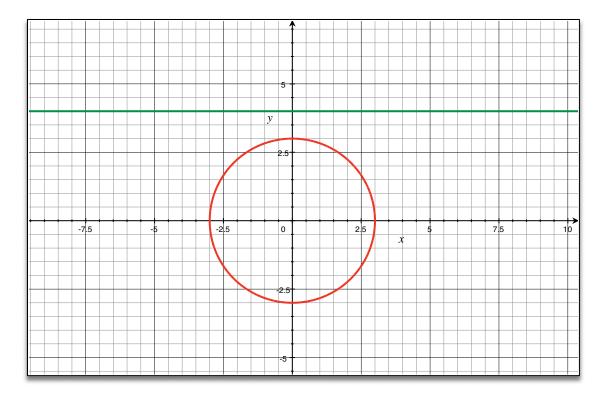
8.4 Resolución de un sistema de dos ecuaciones con dos variables formado por una de primer grado y la otra de segundo.

Al resolver un sistema conformado por una ecuación lineal y una ecuación cuadrática, tenemos 3 posibilidades: que la recta cruce a la ecuación cuadrática en dos puntos, que la cruce en un solo punto o que no la cruce, en cuyo caso decimos que el sistema es inconsistente, es decir, no tiene solución en el campo de los números reales.

Para resolver el sistema despejamos cualquiera de las dos variables de la ecuación lineal y sustituimos en la ecuación cuadrática. Este proceso nos puede dar una, dos o ninguna respuesta, tal como mencioné en el párrafo anterior. Cada respuesta va acompañada de su otra variable, es decir, si obtenemos dos valores diferentes para x, entonces tendremos dos valores diferentes para y y esto lo obtenemos al sustituir el o los valores obtenidos en la ecuación lineal.

xiii. Encuentre la intersección de la recta
$$y = 4$$
 con $x^2 + y^2 = 9$
Como $y = 4$ tenemos que $x^2 + (4)^2 = 9$

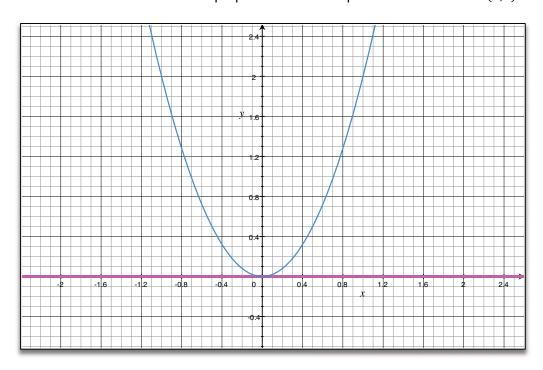
 $x^2 = -7$ y no existe ningún número real que elevado al cuadrado de como resultado un número negativo. Por lo tanto, decimos que el sistema no tiene solución en los reales.



Como vemos claramente en la gráfica, el sistema es incosistente ya que las ecuaciones no se cortan.

xiv. Determine los puntos de intersección de la recta y = 0 con $y = 2x^2$

Sabemos que y=0 entonces sutituimos en la ecuación cuadrática $y=2x^2$ de donde $0=2x^2$ entonces x=0 lo cual nos proporciona el único punto de intersección (0,0)



xv. Determine el punto de intersección de la recta x - y = -2 con la curva $y = x^2$

Despejamos: y = x + 2

Sustituimos en la ecuación cuadrática $x + 2 = x^2$

$$x^2 - x - 2 = 0$$

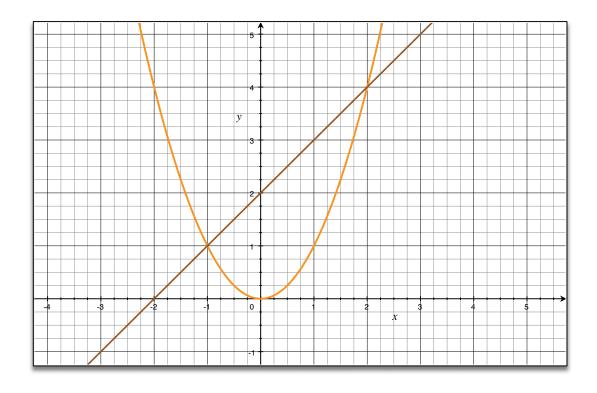
Factorizamos (x-2)(x+1) = 0

$$x_1 = 2 \text{ y } x_2 = -1.$$

Buscamos sus valores correspondientes de y en la ecuación lineal.

Con $x_1 = 2: 2 - y = -2$ entonces $y_1 = 4$, por lo tanto la solución 1 es (2,4)

Con $x_2 = -1$: -1 - y = -2 entonces $y_2 = 1$, por lo tanto la solución 2 es (-1,1)



VII. Obtenga el o los puntos solución de los siguientes sistemas de ecuaciones.

$$1) \begin{cases} 2x - y = 6 \\ y^2 = x \end{cases}$$

2)
$$\begin{cases} x + y = 2 \\ x^2 + y^2 = 4 \end{cases}$$

3)
$$\begin{cases} 2x + y = 4 \\ y^2 + 4x = 0 \end{cases}$$

4)
$$\begin{cases} x + y = 5 \\ x^2 + y^2 = 9 \end{cases}$$

5)
$$\begin{cases} x + 2y = 4 \\ x^2 + 4y^2 = 16 \end{cases}$$

6)
$$\begin{cases} x^2 - y + 2x = -1 \\ 2x - y = -2 \end{cases}$$

7)
$$\begin{cases} x + y = 4 \\ x^2 - 6x - y = -8 \end{cases}$$

8)
$$\begin{cases} 2x - y = -5 \\ x^2 - y + 2x = -1 \end{cases}$$

9)
$$\begin{cases} x + 2y = 1 \\ x + y^2 = 1 \end{cases}$$

10)
$$\begin{cases} -x + y = 4 \\ -4x^2 + y^2 = 16 \end{cases}$$

Anexos

Potencia	10	11	12	13	14	15
0	1	1	1	1	1	1
1	10	11	12	13	14	15
2	100	121	144	169	196	225
3	1000	1331	1728	2197	2744	3375
4	10000	14641	20736	28561	38416	50625
5	100000	161051	248832	371293	537824	759375
6	1000000	1771561	2985984	4826809	7529536	11390625
7	10000000	19487171	35831808	62748517	105413504	170859375
8	100000000	214358881	429981696	815730721	1475789056	2562890625
9	100000000	2357947691	5159780352	10604499373	20661046784	38443359375
10	1000000000	25937424601	61917364224	137858491849	289254654976	576650390625
11	100000000000	285311670611	743008370688	1792160394037	4049565169664	8649755859375
12	1000000000000	3138428376721	8916100448256	23298085122481	56693912375296	129746337890625
13	10000000000000	34522712143931	106993205379072	302875106592253	793714773254144	1946195068359370
14	1000000000000000	379749833583241	1283918464548860	3937376385699290	11112006825558000	29192926025390600
15	10000000000000000	4177248169415650	15407021574586400	51185893014090800	155568095557812000	437893890380859000

II. Tabla de Logaritmos

	0	1	2	3	4	5	6	7	8	9	1	2	Proportional Parts 3 4 5 6 7 8 9							
-					15 may 16		No other	and the same	1 december 2		-	_	_	-	-	-		-	_	
10	0000			0128		0212	0253				4	8		-	21			33	37	
1	0414	0453	0492	0531	0569	0607	0645	0682	0719		4	8	11	17070	19		26	30	34	
2	0792	0828	0864	0899	0934	0969	1004	1038			3	7		10000		21		28	31	
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	3	6	10			19		26	29	
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	3	6	9	12	15	18	21	24	27	
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	3	6	8	11	-	17		22	25	
6	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	3	5	8		13		18	21	24	
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	2	5	7	10	12	15	17	20	22	
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	2	5	7	9	12	14	16	19	21	
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	2	4	7	9	11	13	16	18	20	
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19	
21	3222	3243	8263	3284	3304	3324	33 5	3365	3385	3404	2	4	6	8	10	12	14	16	18	
22	3424		3464		3502	3522		3560			2	4	6	8	10	12	14	15	17	
23	3617	3636	3655	3674	3692	3711	ARM WAR	3747		3784	2	4	6	7	9	11	13	15	17	
24	3802	3820		3856	3874	3892		3927	3945		2	4	5	7	9	11	12	14	16	
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15	
26			4183		4216			4265			2	3	5	7	8	10			18	
27			4346		4378			4425			2		5	6	8	9			14	
550				4518	75 To 100 To 100	(100 pt. 6-10 pt.)		4579			2	3	5	6	8	9	177	12	14	
28		1981 Tel. 1981 A.	4654		4683		4713		4742		1	3	4	6	7	9	10	12	13	
			4800		4829			4871	4006	4000	1	3	4	6	7	9	10	11	13	
30								5011			1	3	4	6	7	8	10	11	12	
31				4955			THE PLANT				1	3	4		7	8	9	11	12	
82	5051	100000000000000000000000000000000000000	5079		5105	579, FORTICE C		5145			1475	3	4	5	6	8	9	10	12	
33			5211		5237			5276			1		4	5	6	8	9	2500		
34	5315	5328	5340	5353	5366			5403		5428	1	3	4	.54		8	9	10	11	
35				5478				5527		5551	1	2	4	5	6	7	9	10	11	
36		5575		5599	5611	5623	5635	353555	5658	5670	1	2	4	5		7	8	10	11	
37		5694		E003600060W	5729	SERVICE STATE		5763		5786	1	2	3		6	7	8	9	10	
38	5798	5809		5832	5843	5855	5866		5888	5899	1	2	3	5	6	7	8	9	10	
89	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	1	2	3	4	5	7	8	9	10	
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10	
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3				7			
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4		6	7	8		
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	5	
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8		
45	6532	6542	6551	6561	6571			6599			1	2	3	4	5	6	7	8	1	
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	1	
47				6749				6785			1	2	3	4	5	5	6	7	1	
48				6839				6875			1	2	3	4	4	5	6	7	1	
49				6928				6964			1	2	3	4	4	5	6	7	1	
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7		
51				7101				7135			ī	2	3	3	4	5	6			
52				7185				7218			î	2	2	3	4	5	6	7		
53				7267				7300			î	2	2	3	4	5	6	6		
54				7348				7380			1	2	2	3	4	5	6	6		
_		1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8		

LOGARITMOS

D.T.	1 0	-	0	2	9 4	E	c	7	0	9			Part	es P	rop	orcio	nale	s	
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
55 56 57 58 59	7482 7559 7634	7412 7490 7566 7642 7716	7497 7574 7649	7505 7582 7657	7513 7589 7664	7520 7597 7672	7528 7604 7679	7459 7536 7612 7686 7760	7543 7619 7694	7551 7627 7701	1 1 1 1 1	2 2 1 1	2 2 2 2 2	3 3 3 3	4 4 4	5 5 4 4	5 5 5 5	6 6 6	77777
60 61 62 63 64	7853 7924 7993	7789 7860 7931 8000 8069	7868 7938 8007	7875 7945 8014	7882 7952 8021	7889 7959 8028	7896 7966 8035	7832 7903 7973 8041 8109	7910 7980 8048	7917 7987 8055	1 1 1 1 1	1 1 1 1	2 2 2 2 2	3 3 3 3	4 4 3 3 3	4 4 4 4	5 5 5 5 5	6 6 5 5	6666
65 66 67 68 69	8195 8261 8325	8136 8202 8267 8331 8395	8209 8274 8338	8215 8280 8344	8222 8287 8351	8228 8293 8357	8235 8299 8363	8176 8241 8306 8370 8432	8248 8312 8376	8254 8319 8382	1 1 1 1 1	1 1 1 1	2 2 2 2 2	3 3 3 2	3 3 3 3	4 4 4 4	5 5 4 4	5 5 5 5	6
70 71 72 73 74	8513 8573 8633	8457 8519 8579 8639 8698	8525 8585 8645	8531 8591 8651	8537 8597 8657	8543 8603 8663	8549 8609 8669	8494 8555 8615 8675 8733	8561 8621 8681	8567 8627	1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	3 3 3 3	4 4 4 4	4 4 4	5 5 5 5 5	Calainia
75 76 77 78 79	8808 8865 8921	8756 8814 8871 8927 8982	8820 8876 8932	8825 8882 8938	8831 8887 8943	8837 8893 8949	8842 8899 8954	8791 8848 8904 8960 9015	8854 8910 8965	8859 8915 8971	1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4 4	5 4 4	4 4 4 4 4
80 81 82 83 84	9085 9138 9191	9036 9090 9143 9196 9248	9096 9149 9201	9101 9154 9206	9106 9159 9212	9112 9165 9217	9117 9170 9222	9069 9122 9175 9227 9279	9128 9180 9232	9133 9186 9238	1 1 1 1	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	3 3 3 3	3 3 3 3	4 4 4	4 4 4 4	
85 86 87 88 89	9345 9395 9445	9299 9350 9400 9450 9499	9355 9405 9455	9360 9410 9460	9365 9415 9465	9370 9420 9469	9375 9425 9474	9330 9380 9430 9479 9528	9385 9435 9484	9390 9440 9489	1 1 0 0 0	1 1 1 1	2 2 1 1 1	2 2 2 2 2 2	3 2 2 2	3 3 3 3	4 4 3 3 3	4 4 4 4	4
90 91 92 93 94	9590 9638 9685	9547 9595 9643 9689 97,36	9600 9647 9694	9605 9652 9699	9609 9657 9703	9614 9661 9708	9619 9666 9713	9576 9624 9671 9717 9763	9628 9675 9722	9633 9680 9727	0	1 1 1 1	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3	4 4 4	
95 96 97 98 99	9823 9868 9912		9832 9877 9921	9836 9881 9926	9841	9845 9890 9934	9850 9894 9939	9809 9854 9899 9943 9987	9859 9903 9948	9863 9908	00000	1	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	3 3 3 3 3	3 3 3 3	4 4 4 3	. 4
N	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	C

III. Tabla de Antilogaritmos

ANTILOGARITMOS

TB/F	Δ.	1	2	3	4	5	6	7	8	9			Par	tes I		orci	$\overline{}$	_	
M	0	1	4	0	*	J	U		0	J	1	2	3	4	5	6	7	8	9
.00 .01 .02 .03	1023 1047 1072	1026 1050 1074	1028 1052 1076	1007 1030 1054 1079 1104	1033 1057 1081	1035 1059 1084	1038 1062 1086	1016 1040 1064 1089 1114	1042 1067 1091	1045 1069 1094	0	0 0 0 0 1		1 1 1 1 1	1 1 1 1	1 1 1 2	2 2 2 2 2 2	2 2 2 2	2 2 2 2
.05 .06 .07 .08	1148 1175 1202	1151 1178 1205	1153 1180 1208	1130 1156 1183 1211 1239	1159 1186 1213	1161 1189 1216	1164 1191 1219	1140 1167 1194 1222 1250	1169 1197 1225	1172 1199 1227	00000	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2	2 2 3 3
.10 .11 .12 .13	1288 1318 1349	129I 1321 1352	1294 1324 1355	1268 1297 1327 1358 1390	1300 1330 1361	1303 1334 1365	1306 1337 1368	1279 1309 1340 1371 1403	1312 1343 1374	1315 1346 1377	00000	1 1 1 1	1 1 1 1	1 1 1 1 1	1 2 2 2 2 2	2 2 2 2 2	2 2 2 2 2 2	2 2 2 3 3	3 3 3 3
15 16 .17 .18	1445 1479	1449 1483 1517	1452 1486 1521	1422 1455 1489 1524 1560	1459 1493 1528	1462 1496 1531	1466 1500 1535	1435 1469 1503 1538 1574	1472 1507 1542	1476 1510 1545	00000	1 1 1 1	1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 2 2	2 2 2 2 2 3	3 3 3 3	3 3 3 3
.20 .21 .22 .23 .24	1622 1660 1698	1626 1663 1702	1629 1667 1706	1596 1633 1671 1710 1750	1637 1675 1714	1641 1679 1718	1644 1683 1722	1611 1648 1687 1726 1766	1652 1690 1730	1656 1694 1734	00000	1 1 1 1	1 1 1 1	1 2 2 2 2 2	2 2 2 2 2	2 2 2 2 2	3 3 3 3	3 3 3 3	3 3 4 4
.25 .26 .27 .28 .29	1820 1862 1905	1824 1866 1910	1828 1871 1914	1791 1832 1875 1919 1963	1837 1879 1923	1841 1884 1928	1845 1888 1932	1807 1849 1892 1936 1982	1854 1897 1941	1858 1901 1945		1 1 1 1	1 1 1 1	2 2 2 2 2 2		2 3 3 3 3	3 3 3 3	3 3 4 4	4 4 4 4
.30 .31 .32 .33 .34	2042 2089 2138	2046 2094 2143	2051 2099 2148	2009 2056 2104 2153 2203	2061 2109 2158	2065 2113 2163	2070 2118 2168	2028 2075 2123 2173 2223	2080 2128 2178	2084 2133 2183	0 0 0 0 1	1 1 1 1	1 1 1 1 2	2 2 2 2 2 2	2 2 2 2 3	33333	3 3 3 4	4 4 4 4	4 4 4 5
.35 .36 .37 .38 .39	2291 2344	2296 2350 2404	2301 2355 2410	2254 2307 2360 2415 2472	2312 2366 2421	2317 2371 2427	2323 2377 2432	2275 2328 2382 2438 2495	2333 2388 2443	2339 2393	1 1 1 1 1	1		2 2 2	3 3	33333	4	4 4 4 5	5
.40 .41 .42 .43	2570 2630 2692	2576 2636 2698	2582 2642 2704	2529 2588 2649 2710 2773	2594 2655 2716	2600 2661 2723	2606 2667 2729	2553 2612 2673 2735 2799	2618 2679 2742	2624 2685 2748	1 1 1 1 1	1 1 1 1	2 2 2 2 2	2 2 2 3 3	3 3 3 3	4 4 4 4	4 4 4 4	5 5 5 5	5 6 6 6
.45 .46 .47 .48 .49	2884 2951 3020	2891 2958 3027	2897 2965 3034	2838 2904 2972 3041 3112	2911 2979 3048	2917 2985 3055	2924 2992 3062	2864 2931 2999 3069 3141	2938 3006 3076	2944 3013 3083	1 1 1 1	1 1 1 1	2 2 2 2 2	3 3 3 3 3	3 3 4 4	4 4 4 4	5 5 5 5 5	5 5 6 6	66666
M	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

ANTILOGARITMOS

TA/F	0	1	2	3	4	5	6	7	8	9			arte	_	married to the	-			100
M	U	1	4	9	72	.0	U		0	0	1	2	3	4	5	6	7	8	9
50 51 52 53 54	3311 3388	3243 3319 3396	3177 3251 3327 3404 3483	3334 3412	3342 3420	3273 3350 3428	3281 3357 3436	3214 3289 3365 3443 3524	3373 3451	3381 3459	1 1 1 1 1 1	2 2 2	2 2 2 2 2	3 3 3 3	4 4 4 4	4 5 5 5 5	5 5 6 6	66666	Section of the last
.55 .56 .57 .58 .59	3631 3715 3802	3639 3724 3811	3565 3648 3733 3819 3908	3656 3741 3828	3664 3750 3837	3673 3758 3846	3681 3767 3855	3606 3690 3776 3864 3954	3698 3784 3873	3707 3793 3882	1 1 1 1 1	2 2 2 2 2 2	2 3 3 3	3 3 4 4	4 4 4 5	5 5 5 5	66666	7 7 7 7	17 00 00 00
.60 .61 .62 .63	4074 4169 4266	4083 4178 4276	3999 4093 4188 4285 4385	4102 4198 4295	4111 4207 4305	4121 4217 4315	4130 4227 4325	4046 4140 4236 4335 4436	4150 4246 4345	4159 4256 4355	1 1 1 1 1	2 2 2 2 2	3 3 3 3 3	4 4 4 4	5 5 5 5	6 6 6 6	67777	78888	80,000
.65 .66 .67 .68	4571 4677 4786	4581 4688 4797	4487 4592 4699 4808 4920	4603 4710 4819	4613 4721 4831	4624 4732 4842	4634 4742 4853	4539 4645 4753 4864 4977	4656 4764 4875	4667 4775 4887	1 1 1 1 1 1	2 2 2 2 2	3 3 3 3 3	4 4 4 5	5 5 6 6	6 7 7	7 7 8 8 8	9	10
.70 .71 .72 .73	5129 5248 5370	5140 5260 5383	5035 5152 5272 5395 5521	5164 5284 5408	5176 5297 5420	5188 5309 5433	5200 5321 5445	5093 5212 5333 5458 5585	5224 5346 5470	5236 5358 5483	1 1 1 1 1 1 1	2 2 2 3 3	4 4 4 4	5 5 5 5	6 6 6 6	7 7 8 8	9	9 10 10 10	1
.75 .76 .77 .78	5754 5888 6026	5768 5902 6039	5649 5781 5916 6053 6194	5794 5929 6067	5808 5943 6081	5821 5957 6095	5834 5970 6109	5715 5848 5984 6124 6266	5861 5998 6138	5875 6012 6152	1 1 1 1	3 3 3 3	4 4 4 4 4	5 5 6 6	7 7 7 7	8 8 8 8 9	9 10 10	10 11 11 11 11	12
.80 .81 .82 .83 .84	6457 6607 6761	6471 6622 6776	6339 6486 6637 6792 6950	6501 6653 6808	6516 6668 6823	6531 6683 6839	6546 6699 6855	6412 6561 6714 6871 7031	6577 6730 6887	6592 6745 6902	1 2 2 2 2 2	3 3 3 3	4 5 5 5 5	6 6 6	7 8 8 8 8	9 9 9 10	11 11 11		14
.85 .86 .87 .88	7244 7413 7586	7261 7430 7603	7112 7278 7447 7621 7798	7295 7464 7638	7311 7482 7656	7328 7499 7674	7345 7516 7691	7194 7362 7534 7709 7889	7379 7551 7727	7396	2 2 2 2 2 2	3 3 4 4	5 5 5 5 5	7 7 7 7 7	8	10 10 10 11	12 12 12	14.	16
.90 .91 .92 .93	8128 8318 8511	8147 8337 8531	7980 8166 8356 8551 8750	8185 8375 8570	8204 8395 8590	8222 8414 8610	8241 8433 8630	8072 8260 8453 8650 8851	8279 8472 8670	8299 8492 8690	2 2 2 2 2 2	4 4 4 4	6 6 6 6 6	8		12	13 13 14 14 14	15 15 16	17 17 18
.95 .96 .97 .98	9120 9333 9550	9141 9354 9572	8954 9162 9376 9594 9817	9183 9397 9616	9204 9419 9638	9226 9441 9661	9247 9462 9683	9057 9268 9484 9705 9931	9290 9506 9727	9311 9528 9750	2 2 2 2 2 2	4 4 4 5	6 7 7 7	8 9 9	10 11 11 11	13 13		17	19
M	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9

Bibliografía

- 1. Allen R, Angel; *Algebra Intermedia*; Pearson Prentice Hall; 7^a Edición (2008)
- 2. Amor, J.; *Teoría de Conjuntos para estudiantes de Ciencias*; Las Prensas de Ciencias; 2ª Edición (2005)
- 3. Carpinteyro E., et al; *Álgebra*; Grupo Editorial Patria; 3ª Edición (2012)
- 4. Cuellar, J.A.; Álgebra; McGraw Hill; 2ª Edición (2010)
- 5. Fisher R. W.; Mastering Essential *Math Skills Pre-Algebra Concepts;* Sturm Media and Communications. 1^a Edición (2009)
- 6. Jonard, N., et al; Álgebra; MacMillan; 1ª Edición (2013)
- 7. Kleiman, A.; et al; *Conjuntos Aplicaciones Matemáticas a la Administración*; Limusa; 1ª Edición (1972)
- 8. Lehmann J.: Elementary and Intermediate Algebra: Functions & Authentic applications; Pearson. 5^a Edición (2014)
- 9. Lovaglia, F., et al; Álgebra; Oxford University Press; 1ª Edición (1972)
- 10. Oteyza, E., et al; *Algebra*; Pearson, Prentice Hall; 3ª Edición (2007)
- 11. Oteyza, E., et al; Aritmética y pre álgebra; Prentice Hall (2004)
- 12. Oteyza, E., et al; *Conocimientos fundamentales de Matemáticas Algebra;* Pearson Educación; 1ª Edición (2006)
- 13. Oteyza, E., et al; *Temas Selectos de Matemáticas*; Prentice Hall; 1ª Edición (1998)
- 14. Peña, J.; Álgebra en todas partes; Fondo de Cultura Económica; 1ª Edición (1999)
- 15. Posamentier A., Salkind C.; *Challenging Problems in Algebra;* Dover Publications Inc.; 3ª Edición (1996)
- 16. Swokowski/Cole; *Álgebra*. Cengage Learning; 12^a Edición (2009)
- 17. Vargas E., et al; *Matemáticas Álgebra*; Santillana; 1ª Edición (2006)