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Introduction

Ramsey’s theorem [54] from 1930 states that, no matter how we color the edges of a large
enough complete graph, a monochromatic copy of a fixed graph is unavoidable. On the other
hand, Turán’s theorem from 1941 says that, there is minimum edge density such that any
graph that satisfies it contains a copy of a fixed subgraph H. Both theorems set the start for
Ramsey theory and extremal theory, correspondingly, in combinatorics.

In the last 20 years, the study of unavoidable patterns in colorings of a base structure has
shown an increasing interest among the community in combinatorics. By Ramsey’s theorem,
an arbitrary 2-edge coloring of a large enough complete graph contains an unavoidable pattern:
a monochromatic copy of some previously fixed graph G. If we tweak the problem a bit and
consider 2-edge colorings with sufficient edges in each color, what patterns are we bound to
find?

Sometime before 2007, Bollobás conjectured that, given an edge proportion, there is a
large enough complete graph where any 2-edge coloring with at least this edge proportion
in each color guarantees the existence of one of two unavoidable patterns [19]. Given a
positive integer t, the first pattern consists of a complete graph on 2t vertices where one of
the colors makes a complete graph on t vertices. The second pattern is also a complete graph
on 2t vertices except that now one of the colors makes two disjoint complete graphs on t
vertices each. This conjecture set the start of a series of research problems on unavoidable
patterns and other natural concepts that derived in the way. The conjecture by Bollobás was
confirmed by Cutler and Montágh [19] in 2007 and provided a bound on the size of the base
graph. In 2019, Caro, Hansberg and Montejano [13] stated a Turán version of this result.
They proved that, if one has a large enough complete graph, then there is a least amount
of edges one can ask for in each color so that every 2-edge coloring of the complete graph
guarantees one of the patterns defined above. If at least one of these patterns always appears
in any 2-edge coloring with sufficient edges in each color, then any colored graph contained
in both patterns will also appear. One type of colored graphs we will study in this context
are the balanceable graphs. A 2-edge coloring of G contains a balanced copy of a graph H if
there is a copy of H with half of its edges in each color (or with exactly the integral part
of half of its edges in one color). If there is an integer k such that every 2-edge coloring of
Kn with at least k edges in each color contains a balanced copy of H, then we say that H is
balanceable.

Notice that if there is a graph H which is a subgraph of both of the above patterns in a
way that it is balanced, then this graph is balanceable. Determining balanceability and the
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least amount of edges (the balancing number) one requires to have in any 2-edge coloring
to guarantee the existence of a balanced copy of a fixed graph is one of the problems we
approach in this thesis. Several open problems were stated and solved in previous research,
such as the balanceability of some graph classes like complete graphs with even edge number,
some cycles and all trees. However, many open problems are yet to be solved.

The objective of this dissertation work is to study and contribute to the area of unavoidable
patterns in 2-edge colorings. This involves determining the balanceability of some graph
classes for which balanceability is not known, and to find the balancing number of graphs
known to be balanceable. For graphs that are not balanceable, we define an extension of the
balancing number that allows us to measure to some extent the degree of "unbalanceability"
of such graphs. We study a family of graphs called amoebas which contains a subfamily of
balanceable graphs, called global amoebas. Amoeba graphs are catalogued as local and/or
global amoebas. We also work with local amoebas and give a recursive construction of
certain families of local amoebas. We also explore unavoidable patterns in 2-edge colorings,
balanceability and omnitonality in the complete bipartite graph. This work has contributed
two research papers so far, one [22] of which has been published in the journal Discrete
Applied Mathematics and the other [20] has been accepted in the Electronic Journal of
Combinatorics. There is also some work still in progress [21, 29,46] and some open problems
which will be mentioned in Section 5.1. We proceed to give an outline of the contents of this
thesis work.

In Chapter 1, we present the preliminaries. We begin in Section 1.1 by stating basic
definitions from graph theory that are used throughout this work, making special emphasis
on edge coloring concepts which concern most of the open problems we solve. In Section 1.2,
we give a brief state-of-the-art on Ramsey theory and extremal theory, paying close attention
to the problem of forbidding a bipartite graph which has great relevance in Chapter 4. In
Section 1.3, we discuss thoroughly the origin of the main problem and provide the proofs of
the most important results. In Section 1.4, results concerning unavoidable patterns are stated.
The concepts of omnitonality and balanceability are stated in terms of results concerning
unavoidable patterns and are discussed in Section 1.4.1 and Section 1.4.2 correspondingly.
Here we also investigate the balancing number and the omnitonality number of different graph
families. In Section 1.5, we speak of some graph families that are balanceable, omnitonal or
both. One of these is the family of amoebas which is defined in Section 1.5.1 and afterwards
we explore stars and paths in 1.5.2. We end the chapter with the definition of the generalized
balancing number in Section 1.6.

In Chapter 2, we discuss results on balanceability and the balancing number. Sections
2.1 and 2.3 include results published in the first research paper [22] and a few additional
results [21]. Sections 2.4 and 2.5 contain results from the second research paper [20]. Section 2.1
contains different results concerning the sufficient conditions for balanceability of a graph. In
Section 2.2, we discuss a necessary condition for balanceability. In Section 2.3, we discuss the
balanceability of some graph families such as complete graphs with an odd number of edges,
two disjoint copies of a complete graph, the d-cube, a special class of circulant graphs and
grids. In Section 2.4, we study the balancing number of some graphs classes. We define the
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generalized balancing number as an extension of the balancing number in Section 2.5 and
provide the balancing number and generalized balancing number of cycles in Section 2.5.1.
Section 2.5.2 contains results about the generalized balancing number of K5. Finally, in
Section 2.6 we list some open problems related to this chapter.

Chapter 3 deals with the graph family of amoebas. It includes the definition of amoebas
using algebraic tools and some preliminary results on local and global amoebas. In Section 3.1,
we provide a construction method that serves as a practical tool to construct families of
local amoebas recursively. In Section 3.1.1 and Section 3.1.2 we present two such types of
constructions. In Section 3.3 we expose some open problems that are relevant to the topic of
amoeba graphs.

In Chapter 4, we explore the complete bipartite graph as a base graph for finding
unavoidable patterns in 2-edge colorings. In Section 4.1, we study which are the unavoidable
patterns that can be found in 2-edge colorings of a large enough complete bipartite graph with
sufficient edges in each color. Section 4.2 includes results concerning bipartite omnitonality.
In Section 4.3, we go over some results on bipartite balanceability and the bipartite balancing
number of paths and stars. In Section 4.4 we provide a list of open problems that remain for
future work in the context of Kn,n.

In Chapter 5, we present the conclusions of this work, we state or recall some open
problems left for future work, and we describe some research lines that could be also pursued.
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Chapter 1

Preliminaries

1.1 Definitions
In this chapter we include basic definitions and some graph theory notation that will be used
throughout this thesis work. Definitions and notation used only in a particular chapter is be
stated within the corresponding chapter.

If k be a positive integer, let [k] = {1, 2, · · · , k − 1, k}. We work with simple finite graphs
G = (V, E), where V , or V (G), is the vertex set and E, or E(G), is the edge set. Given
a graph G, let n(G) or |V (G)| denote the number of vertices (or order) of G and e(G) or
|E(G)| denote the number of edges in G. If u and v are distinct vertices joined by an edge in
a graph G, we say that u is a neighbor of v and uv ∈ E(G). If v ∈ V (G), let d(v) denote the
degree of v in G, which is the number of neighbors of v in G. If v ∈ V (G), let NG(v) be the
set of neighbors of v in the graph G. If no specification on the graph is needed we only write
N(v). If U ⊆ V (G), let N(U) (or NG(U)) be the union of neighbors of each vertex in U ,
namely N(U) = ∪v∈UN(v). If X and Y are disjoint subsets of V (G), we denote e(X, Y ) as
the number of edges in G with one end in X and the other in Y . Given a graph G and a
subset W of V (G), let G[W ] be the graph induced by the set W and let e(W ) be the number
of edges induced by W . If X is a set, we say that a t-subset of X is a subset of X with t
elements. We say that a graph G is H-free if it does not contain the graph H as a subgraph.

We say that two graphs G and H are isomorphic, denoted as G ∼= H, if there is a
bijection f between V (G) and V (H) such that any two vertices u and v of G are adjacent in
G if and only if f(u) and f(v) are adjacent in H. A walk is a graph which consists of a finite
or infinite sequence of edges which joins a sequence of vertices. A trail is a walk in which all
edges are distinct. A path Pk is a trail which consists of a finite sequence of k edges that
join a sequence of k + 1 distinct vertices and can be expressed as Pk = v1v2 · · · vkvk+1. Let
vv1Pk (Pkvk+1u respectively) be the path vv1v2 · · · vkvk+1 (v1v2 · · · vkvk+1u respectively). If
vi, vj ∈ V (Pk) with i < j, let viPkvj be the path vivi+1 · · · vj−1vj and let vjPkvi be the path
vjvj−1 · · · vi+1vi. A cycle Ck on k vertices is a non-empty trail in which only the first and
last vertices coincide. The complete graph Kn is a graph on n vertices where every pair of
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distinct vertices is connected by an edge. The complete bipartite graph Kn,m is a graph
whose vertices can be partitioned into two subsets X and Y , called partition sets, where
|X| = n and |Y | = m such that no edge has both endpoints in the same subset and every
possible edge that could connect vertices in different subsets is part of the graph. Hence all
n · m possible edges are present. If G is a graph and k a positive integer, we denote as kG as
the graph made of the disjoint union of k copies of G. Hence, the graph 2Kn is the graph
constructed by the disjoint union of two complete graphs Kn, where n is a positive integer.

1.1.1 Edge colorings
A 2-edge coloring (or simply 2-coloring) of E(G) is a function f : E(G) → {r, b} which
associates each edge to one of two colors, r or b. Once the edges of a graph G have been
colored by some 2-coloring f , we simply say that G is colored if no specification on the
coloring is needed. Notice that we can associate every 2-coloring of the edges of Kn to a
partition E(Kn) = R ⊔ B, where we can define R (respectively B) as the chromatic class, or
edge set, that contains edges e such that f(e) = r (respectively f(e) = b). We call the edges
in R red and the edges in B blue, and both notions of a 2-coloring will be used. We call the
graph induced by the set R (respectively B) the red graph (respectively the blue graph). We
call the number of red (respectively blue) edges incident to a vertex v the red neighborhood
of v (respectively blue neighborhood of v) and denote it as degR(v) (respectively degB(v)).

The following definitions employ a graph G = (V, E) of order n and a 2-edge coloring f
which can also be seen as a partition E(G) = R ⊔ B.

• We say that a set Y is monochromatic under the coloring f if f(y) = c for all y ∈ Y ,
for some color c.

• If Y is a monochromatic set where all y ∈ Y is assigned the color red, for instance, then
we say that Y is red.

• We say that a 2-edge coloring of G has edge density ε if there are at least ε
(

n
2

)
edges in

each color.

• We say there is an (r, b)-colored copy of H if there is a copy of H with exactly r red
edges and b blue edges, where e(H) = r + b.

• We say that a 2-coloring of a graph H contains a balanced copy of G if we can find a
copy of G in the colored H such that E can be partitioned into two sets (E1, E2) with
E1 ⊆ R, E2 ⊆ B and such that ||E1| − |E2|| ≤ 1.

The symmetric group Sn is the set of all permutations of a set of n elements with the operation
of composition. The stabilizer group of a group H for an element i is the group generated
by elements of H that fix i and is denoted as StabH(i). All further definitions regarding the
algebraic setting will be stated in each relevant section.
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1.2 Preliminaries in Ramsey theory and extremal graph
theory

Ramsey theory and extremal graph theory are two areas that have become important pillars
in combinatorics. Many of the problems solved in this thesis work and in other related texts
make use of powerful tools found in these two important branches of combinatorics. In the
following sections, relevant results to this work in each area are discussed. In Section 1.2.1
we state classic results in Ramsey theory and in Section 1.2.2 we state classic results in the
area of extremal combinatorics.

1.2.1 Ramsey theory: Complete chaos is impossible
Ramsey theory is an important and well-established area in combinatorics. For a deep insight
into Ramsey theory, see [36, 58] Even though it is named after Frank Plumpton Ramsey,
who established the finite and infinite versions of the famous Ramsey’s theorem in 1930 [54],
problems of this nature were solved as far as 1892 with Hilbert’s cube lemma [48]. But what
is Ramsey theory? In words of the mathematician Veselin Jungic,

"If mathematics is a science of patterns, then Ramsey theory
is a science of the stubbornness of patterns."

In other words, Ramsey theory studies the existence of ordered substructures in arbitrarily
ordered structures. We define R(s, t) as the minimum n such that any 2-edge coloring of
Kn with colors red and blue must contain either a red Ks or a blue Kt as a subgraph. We
can simply write R(s) instead of R(s, t) if s = t. R(s) is also called the diagonal Ramsey
number. The well known value of R(3, 3) is 6, because any 2-edge coloring of K6 contains
a monochromatic triangle and there exists a 2-edge coloring of K5, consisting of a red C5
and a blue C5, which does not contain a monochromatic K3 as a subgraph. The number
R(n1, n2, · · · , nr) is the minimum number N such that any r-edge coloring of KN contains
an i-colored Kni

as a subgraph, for some i ∈ {1, 2, · · · , r}. R(n1, n2, · · · , nr) is called the
Ramsey number for r colors or simply the Ramsey number. Ramsey’s theorem states that
R(n1, n2, · · · , nr) is finite [53]. To prove this result we make use of the following less general
case.

Theorem 1.1 (Ramsey’s theorem for two colors [53]). The Ramsey number R(s, t) is finite
for all s, t ≥ 2.

Proof. We use induction on s + t. Let s + t = 4. Because any 2-edge coloring of K2 contains
a monochromatic edge and this does not hold for K1, we have that R(2, 2) = 2.

Suppose that R(s, t) is finite when s + t = n − 1. It is sufficient to show that

R(s, t) ≤ R(s − 1, t) + R(s, t − 1)
when s + t = n to achieve the result. Let N = R(s − 1, t) + R(s, t − 1). We prove that

any 2-edge coloring of KN contains a red Ks or a blue Kt.
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Take any 2-edge coloring of KN . Let v be any vertex of KN and focus on its neighboring
vertices. Let A be the set of vertices adjacent to v via red edges and let B be the set of
vertices adjacent to v via blue edges. Notice that

|A| + |B| = R(s − 1, t) + R(s, t − 1) − 1
so one of the following must hold: either |A| ≥ R(s − 1, t) or |B| ≥ R(s, t − 1).

If |A| ≥ R(s − 1, t) then there is a red Ks−1 within A such that along with v would make
a red Ks, or there is a blue Kt within A. In either case, we achieve the result. The arguments
are analogous if |B| ≥ R(s, t − 1).

Very few values of Ramsey numbers are known. The exact values up to date are
R(3, 3) = 6 [43], R(3, 4) = 9 [43], R(3, 5) = 14 [43], R(3, 6) = 18 [42], R(3, 7) = 23 [32],
R(3, 8) = 28 [44], R(3, 9) = 36 [44], R(4, 4) = 18 [43], R(4, 5) = 25 [51]. A classical result [28]
of Erdős and Szekeres states that

R(s) ≤ (1 + o(1)) 4s−1
√

πs
.

Another well-known result which is an exponential lower bound by Erdős [24] is

R(s) ≥ (1 + o(1)) s√
2e

2s/2.

The best known bounds for diagonal Ramsey numbers are

(1 + o(1))
√

2s

e
2s/2 ≤ R(s) ≤ s−(c log s)/(log log s)4s

and they are due to Spencer [59] and Conlon [17] respectively.
We now state and prove a more general variant of Ramsey’s theorem using r colors.

Theorem 1.2 (Ramsey’s theorem 1930 [53]). For every positive integer r, there is some
integer N = R(n1, n2, · · · , nr) such that if the edges of KN are colored with r colors, then
there is always a monochromatic Kni

as a subgraph in color i, for some i ∈ {1, 2, · · · , r}.

Proof. We proceed by induction on the number of colors r. The fact that R(n1, n2) is finite
is given by Theorem 1.1.

The induction hypothesis states that R(n1, n2, · · · , nr−1) is finite. Therefore, showing that

R(n1, n2, · · · , nr−1, nr) ≤ R(n1, n2, · · · , nr−2, R(nr−1, nr))
is sufficient to prove the theorem’s result. Let T = R(n1, n2, · · · , nr−2, R(nr−1, nr)). We

prove that any r-edge coloring of KT contains a monochromatic Kni
as a subgraph in color i,

for some i ∈ {1, 2, · · · , r}.
Take any r-edge coloring of KT . Suppose that the color r − 1 is light blue and the color r

is dark blue. If we look at all the light blue and dark blue edges as being in the same color
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class, we have an (r − 1)-edge coloring of KT which, by the induction hypothesis, means
that there is a monochromatic Kt as a subgraph with t ∈ {n1, · · · , nr−2, R(nr−1, nr)}. If
t ∈ {n1, · · · , nr−2} the inequality clearly holds. If t = R(nr−1, nr), then we can re-distinguish
between light blue and dark blue edges, and by the induction hypothesis there is a light blue
Knr−1 or a dark blue Knr as a subgraph of KT and the inequality holds.

Ramsey-type theorems state typically that any coloring of a large enough structure
contains a monochromatic fixed substructure.

One of the first results in Ramsey theory is Schur’s theorem.

Theorem 1.3 (Schur 1916, finitary version [56]). For every positive integer r, there exists a
positive integer s = s(r) such that any coloring of [s] with r colors contains a monochromatic
solution to the equation x + y = z with x, y, z ∈ [s].

Proof. Let r be a positive integer and let N be the Ramsey number for r colors R(3, 3, · · · , 3).
Consider and arbitrary r-coloring χ : [N ] → [r]. Color the edges of the complete graph
KN+1 by assigning the edge {i, j}, with i < j, the color χ(j − i). By Ramsey’s theorem
(Theorem 1.2) there is a monochromatic triangle on some vertices, say i < j < k. Therefore,
χ(j − i) = χ(k − j) = χ(k − i). If x = j − i, y = k − j and z = k − i, then x+y = z holds.

Schur’s theorem in its finitary version allows us to ask how big does N(r) have to be as a
function of r. This is a typical Ramsey theory question and as for most questions of this
type, there is no concrete answer, except for a few values. The first three Schur numbers
are s(1) = 1, s(2) = 5 and s(3) = 14, which can be deduced manually. The following two
Schur numbers are s(4) = 45 [1, 40] and s(5) = 161 [47]. For instance, s(r) is only known
for r ≤ 5 Schur’s theorem is one of the first results in the area of additive combinatorics.
Another fundamental Ramsey-type theorem which was also an important development in
additive combinatorics is Van der Waerden’s theorem, which is stated as follows.

Theorem 1.4 (Van der Waerden 1927 [62]). For every r ∈ N there exists a positive integer
N(r) = N such that any coloring of [N ] with r colors contains a monochromatic solution to
the equation x + y = 2z.

In some sense, Ramsey theory can be seen as the area that studies the unavoidability of
highly regular patterns (such as a monochromatic triangle or a monochromatic solution to
an equation) in arbitrarily ordered structures. Results of this kind date back to 1892 and
it is a very active research area. In this work we will use Ramsey theory to look for other
unavoidable colored patterns which will be discussed in further chapters.

1.2.2 Extremal graph theory
The origins of extremal graph theory date back to 1907 with a theorem due to Willem
Mantel [50], a Dutch mathematician who wondered about how many edges a graph could
have with the property of being triangle-free.

Theorem 1.5 (Mantel). A triangle-free graph on n vertices has at most ⌊n2

4 ⌋ edges.
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We provide the latest proof of Mantel’s theorem by Aharoni, De Vos, González, Montejano
and Šámal from 2020. It was obtained as a byproduct by the authors when working on a
rainbow version of Mantel’s theorem.

We begin by proving the following Lemma.

Lemma 1.6 ([2]). Let G be a graph and let P be the set of pairs of distinct vertices
{x, y} ⊆ V (G) such that N(x) ∩ N(y) ̸= ∅. If M is a maximal matching in G, then
|P | ≥ |E(G)| − |M |.

Proof. Let M = {e1, e2, · · · , ek} be a maximal matching of G. Because M is maximal, we
know that every edge e ∈ E(G) has at least one endpoint in common with an edge in M .
Let s(e) be the minimum integer such that e ∩ es(e) ̸= ∅. Let f : E(G) \ M → P with
f(e) = e △ es(e). It is easy to see that f is an injective function, and so the result follows.

Proof of Theorem 1.5 [2]. Let G be a triangle-free graph and M a maximum matching of G.
Because G has no triangles we can sum over every element in P and every edge to get the
following inequality.

|P | + |E(G)| ≤
(

n

2

)
.

By Lemma 1.6, we have |E(G)|− 1
2n ≤ |E(G)|−|M | ≤ |P |. If we combine both inequalities,

we get 2|E(G)| ≤
(

n
2

)
+ 1

2n and so |E(G)| ≤ 1
4n2.

There is a particular example of a triangle-free graph on n vertices with exactly ⌊n2

4 ⌋
edges and that is the complete bipartite graph with ⌊n

2 ⌋ vertices in one part and ⌈n
2 ⌉ in the

other. This is called an extremal graph for Mantel’s theorem.
The area of extremal theory is also commonly called Turán theory as its main iniciator is

considered to be Pál Turán, who proved the generalization of Mantel’s theorem for Kr+1-free
graphs (see Theorem 1.7). Extremal theory asks questions such as “How many edges can a
graph on n vertices have in order to avoid a fixed graph H as a subgraph?” or the equivalent
question ”What is the least amount of edges m that guarantees that any graph on n vertices
and more than m edges will contain a fixed graph H?” Turán’s theorem [60] dates back to
1941. Before we state it, we describe the extremal graph called the Turán graph.

The Turán graph Tn,r is the complete r-partite graph on n vertices with parts of sizes ⌊n
r
⌋

or ⌈n
r
⌉. Consider n = qr + s for a positive integer s with 0 ≤ s ≤ r, then Tn,r is the complete

r-partite graph with s parts of q + 1 vertices and the remaining r − s parts with q vertices.
Hence, the exact number of edges in Tn,r is

(
1 − 1

r

)
n2 − s2

2 +
(

s

2

)
.

We proceed to state Turan’s theorem along with a short proof that employs the probabilistic
method.
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Theorem 1.7 (Turán 1941 [60]). If G is an n vertex Kr+1-free graph, then it has at most
e(Tn,r) edges.

Proof. We fix r and proceed by induction on n, with n > r or else the result is trivial. Assume
that Turán’s theorem holds for all graphs on fewer than n vertices. Let G be a Kr+1-free
graph with the maximum number of edges possible. Observe that G must contain Kr as a
subgraph or else we could add an edge and G could remain Kr+1-free. Let A be the set of
vertices of the subgraph Kr and let B = V (G) \ A. Because G is Kr+1-free, every vertex
v ∈ B can have at most r − 1 neighbors in A. Therefore

e(G) ≤
(

r

2

)
+ |B|(r − 1) + e(B) ≤

(
r

2

)
+ (n − r)(r − 1) + e(Tn−r,r) = e(Tn,r)

The first inequality follows from the number of edges in A, the maximum number of
edges going from B to A and the number of edges in B. The second inequality employs
the cardinality of B and the induction hypothesis. Finally, the third inequality follows from
the observation that removing one vertex from each of the r parts in Tn,r would remove(

r
2

)
+ (n − r)(r − 1) + e(Tn−r,r) edges.

Let H be a graph, we say that ex(n, H) is the maximum number of edges an H-free graph
on n vertices can have. Another well-studied parameter in graph theory is the chromatic
number. Let H be a graph and let c : V (H) → {1, 2, · · · , k} be a coloring of V (H) such that
c(v) ̸= c(u) if uv ∈ E(H). We call c a proper coloring of V (H). The chromatic number χ(H)
is the minimum number t such that there is a proper coloring of V (H) with t colors. Finally,
we state an important theorem in the area which establishes a direct connection between the
extremal number and its chromatic number.

Theorem 1.8 (Erdős-Stone 1946 [27], Erdős-Simonovits 1966 [26]). For a fixed graph H,
ex(n, H) = (1 − 1

χ(H)−1 + o(1))n2

2 .

If we know the chromatic number of H, we know a lot of information about the growth
rate of the function ex(n, H). As long as χ(H) ≥ 3, we know the first order asymptotics
from the Erdős-Stone-Simonovits theorem. But what do we know for bipartite graphs, i.e.
for graphs H with χ(H) = 2?

1.2.3 Forbidding a bipartite graph
If H is bipartite, the Erdős-Stone-Simonovits theorem only tells us that ex(n, H) = o(n2),
but we will shortly see that this can be improved. Nevertheless, there are many open
problems concerning the growth rate of the function ex(n, H) when H is a bipartite graph.
Another interesting aspect is to find the largest number of edges z(m, n; s, t) (known as the
Zarankiewicz number) in a bipartite graph, where one part has m vertices and the other has
n vertices, with no copies of the complete bipartite graph Ks,t. If G is a bipartite graph and
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n = m, the Zarankiewicz number can also be denoted as z(n, G) and it refer to the maximum
number of edges in a bipartite graph with n vertices in each part, having no copies of G.
Determining z(m, n; s, t) is a famous open problem called the Zarankiewicz problem.
Problem 1.9. (Zarankiewicz problem) For integers m, n, s, t such that m ≥ s ≥ 2 and
n ≥ t ≥ 2, determine the maximum number of edges a bipartite graph, with m and n vertices
in each part respectively, can have without Ks,t as a subgraph.

Now we state and prove an important result in this area: the Kővári-Sós-Turán theorem.
Theorem 1.10 (Kővári-Sós-Turán 1954 [34]). For integers m, n, s, t such that n ≥ s ≥ 2 and
m ≥ t ≥ 2,

z(m, n; s, t) ≤
(
(t − 1) 1

s (n − s + 1)m1− 1
s + (s − 1)m

)
.

The Zarankiewicz number and the extremal number of a graph G are closely related as
we can see in the following proposition.
Proposition 1.11. Let G be a bipartite graph, then 2 ex(n, G) ≤ z(n, G).
Proof. Let H be a graph on n vertices, namely {v1, · · · , vn}, with ex(n, G) edges that does
not contain G as a subgraph. Let V1 = {u1, · · · , un} and V2 = {w1, · · · , wn} be two disjoint
copies of V (H) where ui and wi are copies of vi for 1 ≤ i ≤ n. We construct a bipartite graph
H ′ with partition sets V1 and V2, and uiwj ∈ E(H ′) if and only if vivj ∈ E(H). Therefore if H
does not contain G as a subgraph, then neither does H ′. Because e(H ′) = 2e(H) = 2 ex(n, H),
then the inequality 2 ex(n, G) ≤ z(n, G) holds.

Because every bipartite graph H with bipartition V (H) = A ∪ B is a subgraph of some
K|A|,|B|, then a natural lower bound can be given

ex(n, H) ≤ ex(n, K|A|,|B|).

The following theorem is a consequence of Theorem 1.10 and Proposition 1.11. However,
we present it here with a proof. Now we state a theorem that gives an upper bound of
ex(n, Ks,t).
Theorem 1.12 (Kővári-Sós-Turán 1954 [34]). For every pair of integers 1 ≤ s, t with s ≤ t,

ex(n, Ks,t) ≤ 1
2

(
(t − 1) 1

s n2− 1
s + 1

2(s − 1)n
)

.

Proof. We use a double counting argument. Let G be a graph on n vertices and m edges
that is Ks,t-free, with s and t fixed. Let k be the number of stars K1,s in G.

For the upper bound of k, we know that every set of s vertices has at most t − 1 common
neighbors because G is Ks,t-free. Hence

k ≤
(

n

s

)
(t − 1).

To give a lower bound on k, we go over every vertex and count the K1,s’s it can make and
use an argument of convexity in the first inequality to obtain the following.
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k = ∑
v∈V (G)

(
d(v)

s

)
≥ n

( 1
n

∑
v∈V (G) d(v)

s

)
= n

( 2m
n
s

)
.

We put both bounds together keeping in mind that s and t are fixed. The point is to see
how m and n depend on each other as they get large.

n

(2m
n

s

)
≤
(

n

s

)
(t − 1).

Since
(

n
s

)
= (1 + o(1))ns

s! asymptotically for a fixed s. We now apply the identity on both
sides and reach the desired result.

n
(2m

n

)s

≤ (1 + o(1))ns(t − 1)

m ≤ 1
2(1 + o(1)) 1

s (t − 1) 1
s n2− 1

s .

Hence, for a fixed s and t, the upper bound on ex(n, Ks,t) grows like n2− 1
s . We state the

explicit upper bound for ex(n, Kt,t) as it will be used in Chapter 4.

Corollary 1.13 (Kövári-Sós-Turán 1954 [34]). For every positive integer t,

ex(n, Kt,t) <
1
2

(
(t − 1)1/tn2−1/t + 1

2(t − 1)n
)

.

The most natural question one can ask is if Corollary 1.13 is tight and in fact it is a major
conjecture in extremal graph theory. Only a small number of values is known. There are
some values of s and t for which we do know this theorem is tight, for example s = t = 2,
s = t = 3, and s and t when t is sufficiently large compared to s. This means that there are
constructions of graphs that are Ks,t-free according to these parameters and whose numbers
of edges match the previous upper bound up to a constant factor. We state three important
results, along with a brief description of the techniques employed or proof sketches that
corroborate the conjecture for certain values of s and t. The conjecture remains open for all
remaining values of s and t.

Theorem 1.14 (Erdős-Rényi-Sós 1966 [25]). ex(n, K2,2) ≥ (1
2 − o(1))n3/2.

This result employs an algebraic construction of a K2,2-free graph with many edges. Taking
n = p2 − 1 with p prime, the authors consider the polarity graph G where the vertex set is
F2

p \ {0, 0} and two vertices (x, y) and (a, b) form an edge if ax + by = 1 in Fp. Notice that for
two distinct vertices (a, b) and (a′, b′), there is at most one common neighbor (x, y) ∈ V (G)
satisfying both ax + by = 1 and a′x + b′y = 1, making G a K2,2-free graph. Because every
vertex has degree p or p − 1,

e(G) =
(1

2 − o(1)
)

p3 =
(1

2 − o(1)
)

n
3
2 .
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Notice that if n is not p2 − 1 for any prime p then we use the largest prime p such that
p2 − 1 ≤ n and construct the polarity graph on p2 − 1 vertices and add n − p2 + 1 isolated
vertices.

For the next theorem, we discuss a construction for K3,3-free graphs, which follows a
similar idea as the previous construction.

Theorem 1.15 (Brown 1966 [7]). ex(n, K3,3) ≥ (1
2 − o(1))n5/3.

This proof takes n to be p3 where p is a prime. The authors build the graph G with
vertex set F3

p and edge set {(x, y, z)(a, b, c) | (a − x)2 + (b − y)2 + (c − z)2 = u in Fp} where
u is some fixed non-zero element that was carefully chosen in Fp. The element u needs to
be chosen so that the graph G is indeed K3,3-free. If we had considered points in R3, the
property of being K3,3-free is equivalent to the statement that three unit spheres have at
most two common points. This statement can be proved using algebraic tools that are similar
to those employed to algebraically manipulate Fp and verify that G is K3,3-free.

In G each vertex has degree around p2 due to the distribution of (a−x)2 +(b−y)2 +(c−z)2

is almost uniform across Fp as (x, y, z) varies randomly over F3
p. Hence a 1

p
fraction of (x, y, z)

is expected to satisfy (a − x)2 + (b − y)2 + (c − z)2 = u. This is meant to give only an intuitive
idea of the proof.

The cases of K2,2 and K3,3 are fully solved but the case of K4,4 remains a central open
problem in extremal graph theory.

Problem 1.16. What is the growth rate of ex(n, K4,4)? Does it match the upper bound
in Theorem 1.10?

So far we have matched the Kővári-Sós-Turán bound up to a constant factor for K2,2 and
K3,3, but many cases remain open. The next theorem presents a construction that matches
the Kővári-Sós-Turán bound for Ks,t when s and t are sufficiently far apart.

Theorem 1.17 (Kollár, Rónyai, Szabó 1996 [33], Alon, Rónyai, Szabó 1999 [4]). If t ≥
(s − 1)! + 1 then ex(n, Ks,t) = Θ(n2− 1

s ).

The proof of this theorem is substantially more elaborate. We aim to provide the main
idea of the overall proof by stating the propositions that lead to the main result.

The authors begin by proving a weaker version for t ≥ s! + 1 which is later adjusted to
achieve the desired bound. Let n = ps where p is a prime and s ≥ 2. Consider the norm map
N : Fps → Fp defined by

N(x) = x · xp · xp2 · xps−1 = x
ps−1
p−1 .

They define the NormGraphp,s = (V, E) as follows

V = Fps

and
E = {ab | a ̸= b, N(a + b) = 1}.
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In a series of propositions, the authors prove that |E| ≥ 1
2n2− 1

s via counting arguments,
and that the NormGraphp,s is Ks,s!+1-free by bounding from above the number of common
neighbors to a set of s vertices and using results that employ algebraic geometry. They make
an adjustment to achieve the bound t ≥ (s − 1)! + 1 in Theorem 1.17 by defining the graph
ProjNormGraphp,s = (V, EP ) with

V = Fps−1 × F×
p

for s ≥ 3. Taking n = (p − 1)ps−1, they define the edge relations as

(X, x) ∼ (Y, y)

if and only if
N(X + Y ) = xy.

By proving that |EP | = (1
2 − o(1))n2− 1

s , we know ProjNormGraphp,s has suffient edges
and finally the authors prove that it is Ks,(s−1)!+1-free using algebraic geometry and the result
is achieved.

If H is a bipartite graph, then it is always contained in Ks,t for some s and t sufficiently
large. Therefore, the Kővári-Sós-Turán theorem gives us an immediate upper bound for
ex(n, H). Nevertheless, if H is sparse, then this bound can be quite bad. We will explore
a powerful technique that gives us a better upper bound on ex(n, H) when H is a sparse
bipartite graph.

Theorem 1.18 (Fűredi 1991 [37]. Alon, Krivelevich and Sudakov 2003 [3]). Let H be a
bipartite graph whose vertex set is A ∪ B where every vertex in A has degree at most r. Then
there exists a constant C = C(H) such that

ex(n, H) ≤ Cn2− 1
r .

This bound is tight due to Theorem 1.17 by taking H = Kr,t for some t ≤ (r − 1)! + 1.
We discuss the proof of Theorem 1.18 as it makes use of a powerful probabilistic technique

called dependent random choice which is also used further along in this thesis work. Broadly
stated, the result, that is enounced in the following theorem, says the following:

If G has many edges, then there exists a large subset U of V (G) such that every small
subset in U has a large common neighborhood.

Before stating the theorem, we make use of some basic probability notation. Let P (A)
denote the probability that an event A can occur. Consider a random variable X with a
finite list x1, · · · , xk of possible outcomes, where each xi has probability pi of occurring,
for 1 ≤ i ≤ k. Let k ∈ Z+ and [k] = {1, 2, · · · , k}. The expected value of X is defined as
E(X) = ∑

i∈[k] xipi.

Theorem 1.19 (Dependent random choice. Alon, Krivelevich and Sudakov 2003 [3]). Let
u, n, r, m, t ∈ N and α > 0 satisfy the following inequality
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nαt −
(

n

r

)(
m

n

)t

≥ u.

Then every graph G of order n and at least αn2/2 edges contains a subset U of vertices
with size at least u such that every subset of r elements S in U has at least m common
neighbors.

Proof. Let T be a list of t vertices chosen uniformly at random from V (G) allowing repetition.
Let A be the common neighborhood of T . We wish to know how large A can be, therefore
the expected value of |A| is

E|A| =
∑
v∈V

P(v ∈ A) (1.1)

=
∑
v∈V

P(T ⊆ N(v)) (1.2)

=
∑
v∈V

(
d(v)

n

)t

(1.3)

≥ n

(
1
n

∑
v∈V

d(v)
n

)t

(1.4)

≥ nαt (1.5)
(1.6)

Eguality 1.3 is straight forward. The probability that each vertex in T is in N(v) is
precisely d(v)

n
. Because T has t elements, the product of these t probabilities gives us the

desired equality 1.4. The inequality 1.5 is given by convexity (Jensen’s inequality) which
states that the sum of the t powered average degrees is at least n times the t powered average
degree. Hence, ∑v∈V (d(v)

n
)t ≥ n

(
1
n

∑
v∈V

d(v)
n

)t
. The last equality is given by the hand-shake

lemma and the hypothesis on the number of edges in G.

For every subset S of V with r elements, the event of A containing S holds if and only
if T is contained in the common neighborhood of S. The probability of this event is

(
c
n

)t

where c is the number of common neighbors.

We say S is a bad set if it has less than m common neighbors. This implies that each bad
set with r elements S ⊂ V is contained in A with probability less than (m

n
)t. By linearity of

expectation and letting b be the number of bad subsets of A with r elements,

E[b] <

(
n

r

)(
m

n

)t

.
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We are interested in not having any bad subsets, therefore we can eliminate one element
in each bad subset. The number of remaining elements is at least |A| − b, whose expected
value is at least

nαt −
(

n

r

)(
m

n

)t

≥ u.

Therefore, there exists a set T such that there are at least u elements in A after destroying
all the bad subsets. The set U with the remaining u elements satisfies the theorem’s
properties.

We now state a consequence of the dependent random choice theorem which will be useful
in the proof of Theorem 4.3.

Corollary 1.20 (Consequence of dependent random choice). For every m, t ∈ Z+ there is
a constant C = C(m, t) > 0 such that every graph G on n vertices with e(G) ≥ C(n2− 1

t )
contains a set U ⊂ V (G) with m vertices such that every t-subset of U has at least m common
neighbors.

Proof. By Theorem 1.19 with α = Cn− 1
t , u = m and r = t, we can rewrite the inequality

from Theorem 1.19 to obtain

n(Cn− 1
t )t −

(
n

t

)(
m

n

)t

≥ m.

Now we have to find a constant C so that this inequality is true. Notice that the first
term evaluates to Ct and the second term is θ(1). Therefore, we can easily find a big enough
constant C to make the inequality hold.

1.3 Unavoidable patterns: Ramsey-type approach
Given a positive integer t, the family Ft contains all 2-edge colored copies of K2t where
either one color forms a copy of Kt or one color forms two disjoint copies of Kt. Bollobás
conjectured that for every ε > 0 and positive integer t, there is a positive integer n(t, ε) such
that every 2-edge coloring of Kn with n > n(t, ε) with at least ε

(
n
2

)
edges in each color class

contains an element of Ft (see [19]). The notion of the family Ft is also defined in [19] as
copies of type A and type B, where a 2-edge-coloring of K2t is a type-A if the edges of one
of the colors induce a complete graph Kt and it is a type-B if the edges of one of the colors
induce two disjoint Kt’s (or equivalently one Kt,t).

This Ramsey-type conjecture was proved by Cutler and Montágh in 2007 [19] where they
showed that n(t, ϵ) < 4 t

ε .
In 2008, Fox and Sudakov [35] provided a much simpler proof of the conjecture and

determined that n(t, ε) = ε−ct for some constant c. The bound is tight up to the constant
factor in the exponent for all t and ε. We provide the proof of the better bound which makes
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use of two lemmas, one of which uses the probabilistic technique dependent random choice,
given in Theorem 1.19.

Theorem 1.21 (Fox, Sudakov 2008 [35]). If n ≥ (16/ε)2t+1, then every 2-edge coloring of
Kn with at least ε

(
n
2

)
edges in each color contains a member of Ft.

We prove two lemmas that are used in the proof of Theorem 1.21. The first lemma shows
that any 2-edge coloring with edge density at least ε in each color has a large set of vertices
with many common neighbors in both colors.

Lemma 1.22. In every 2-edge coloring of Kn (n ≥ 4) in which there are at least ε
(

n
2

)
edges

in each color, there is a subset S ⊂ V (Kn) of cardinality at least ε
2n and whose vertices have

degree at least ε
4 in both colors.

Proof. We proceed by contradiction assuming that |S| < ε
2n. Observe that ε ≤ 1/2 by the

hypothesis on the density of each color class. Let R be the set of vertices in Kn with blue
degree less than ε

4n and let B be those vertices with red degree less than ε
4n. Then S ∪ R ∪ B

is a partition of V (Kn). Without loss of generality assume that |R| ≥ |B|, then

|R| ≥ 1
2(n − |S|) >

1
2n(1 − ε

2) ≥ 3
8n.

The number of red edges between R and B is less than ε
4n|B| because each vertex in B

has red degree less than ε
4n. This same number is also greater than |R|(|B| − ε

4n) because
every vertex in R has blue degree less than ε

4n. Hence,

ε

4n|B| > |R|(|B| − ε

4n) >
3
8(|B| − ε

4n).

Using the fact that ε ≤ 1/2 and rearranging the terms, we get

ε

4n · 3
8n > |B|(3

8n − 3
4n) > |B|n4

3
8εn > |B|

Now we give an upper bound on the total number of blue edges. Observe that the vertices
in R participate in at most ε

4n|R| blue edges. The remaining edges are those in B ∪ S which
are a total of

(
|B|+|S|

2

)
. Notice that |B| + |S| < (3

8 + 1
2)εn < εn. Let x = |B| + |S|. The

number of blue edges is at most
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ε

4n|R| +
(

|B| + |S|
2

)
= ε

4n(n − x) +
(

x

2

)

<
ε

4n2 +
(

x

2

)

<
ε

4n2 +
(

εn

2

)

<
ε

4n2 + ε2n2

2

≤ ε

(
n

2

)

which contradicts that the number of blue edges is at least ε
(

n
2

)
.

The next lemma uses the technique of dependent random choice.

Lemma 1.23. For a 2-edge coloring of Kn, let S denote the vertex subset such that every
vertex in S has degree at least αn in each color, and s = |S|. If β ≤ s−t/h, then there is
a subset T ⊂ S with |T | ≥ 1

2αh(1 − α)hs − 2 such that every t-tuple in T has at least βn
common neighbors in each color.

Proof. Let α ≤ 1
2 and n ≥ 4h+1, otherwise taking T as the empty set works. Let U1 =

{x1, · · · , xh}, U2 = {y1, · · · , yh} be two sets of h vertices taken uniformly at random with
repetitions from V (Kn). Let W be the set of vertices of S that are adjacent in red to every
vertex in U1 and adjacent in blue to every vertex in U2. Hence

W = NR(U1) ∩ NB(U2) ∩ S.

Because every vertex in S has degree at least αn in each color and the inequality α ≤ 1/2
implies that 1 − α − 1/n ≥ 1 − α − 2/n + 2α/n, then observe that

|NR(v)||NB(v)| ≥ αn((1 − α)n − 1) ≥ α(1 − α)(1 − 2
n

)n2

for each v ∈ S. Now we take the expected value of |W | using that n ≥ 4h+1.

E[|W |] =
∑
v∈S

Pr(v ∈ NR(U1))Pr(v ∈ NB(U2)) =
∑
v∈S

(
|NR(v)|

n

)h ( |NB(v)|
n

)h

≥ αh(1 − α)h(1 − 2/n)hs

≥ 1
2αh(1 − α)hs.

The second inequality is given because the probability that v ∈ NR(U1) equals the
probability that v is a red neighbor to every member of U1. The probability that a given set
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D ⊂ S of vertices is adjacent to U1 by red edges is
(

|NR(D)|
n

)h
. Let Z denote the number of

t-tuples in W with less than βn common red neighbors.

E[Z] =
∑

D⊂S,|D|=t,|NR(D)|<βn

Pr(D ⊂ NR(U1)) ≤
(

s

t

)
βh ≤ stβh ≤ 1.

We similarly obtain that the expected number, denoted as Z ′, of t-tuples in W with less
than βn common blue neighbors is at most 1. Due to linearity, the expectation of |W |−Z −Z ′

is at least 1
2αh(1 − α)hs − 2 and this means that there are choices for U1 and U2 such that

the corresponding value of |W | − Z − Z ′ is at least 1
2αh(1 − α)hs − 2. We now delete a vertex

from every t-tuple D ⊂ W with less than βn red common neighbors or with less than βn
blue common neighbors. Let T be the resulting set and notice that it satisfies the desired
properties.

We can now prove Theorem 1.21. Recall that the Ramsey number R(t) is the least positive
integer n such that every 2-edge coloring of the complete graph Kn contains a monochromatic
Kt. We use the bound R(t) < 4t mentioned in Section 1.2.1.

Proof of Theorem 1.21. We take a 2-edge coloring of Kn with n ≥ (16/ε)2t+1 in which both
colors have denisity at least ε. By Lemma 1.22 there is a set S with at least ε

2n vertices
in which every vertex has at least ε

4n neighbors in each color. We apply Lemma 1.23 with
α = ε

4 , β = R(t)
n

, h = 2t, and s = |S| ≥ ε
2n because

β = R(t)
n

< 4t/n < n−1/2 ≤ s−t/h.

There is a set T ⊂ S with

|T | ≥ 1
2(α(1 − α))2ts − 2 ≥

(
ε

8

)2t+1
n ≥ 4t ≥ R(t)

and so, every t-tuple D in T has at least βn = R(t) common neighbors in each color, and
because |T | ≥ R(t), there is a monochromatic t-clique D in T . If the color of this t-clique is
red, we know that |NB(D)| ≥ βn = R(t) so there is a monochromatic t-clique X in NB(D).
This gives us an element from Ft because the t-clique D is red, the edges between D and X
are blue, and X is monochromatic.

As mentioned before, the bound in Theorem 1.21 is tight up to the constant factor in the
exponent. We omit the proof of this result.

Proposition 1.24 (Fox, Sudakov 2008 [35]). If ε ≤ 1/2 and k ≥ 2, then n(k, ε) > ε−(k−1)/2.
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1.4 Unavoidable patterns: Turán-type approach
In 2019, without awareness of Bollobás conjecture, which me mentioned at the beginning of
Section 1.3, Yair Caro, Adriana Hansberg and Amanda Montejano considered maximizing
the number of edges in the smallest color class in any 2-edge coloring of Kn which does
not contain an element from Ft, giving the problem a Turán taste. They proved that, for
all sufficiently large n and any positive integer t, there exists a positive integer m = m(t)
and a number φ(n, t) = O(n2− 1

m ) such that any 2-edge coloring of Kn with at least φ(n, t)
edges in each color class contains an element from Ft [13]. Later, Girão and Narayanan [39]
showed that φ(n, t) = Ω(n2− 1

t ) and, conditional on the Kővari-Sós-Turán conjecture for the
Turán number for complete bipartite graphs, they showed that the bound is sharp up to the
involved constants. In [6], a much simpler proof of this result is given using the structure of
the proof by Caro, Hansberg and Montejano and the dependent random choice technique.
Bowen, Hansberg, Montejano and Müyesser [6] extend the result to an arbitrary number of
colors, although the bound is not tight.

Recall that the family Ft, defined in Section 1.3, which contains all 2-edge colored copies
of K2t where either one color forms a Kt or one color forms two disjoint copies of Kt. In [14],
the authors view the elements of the family Ft as monochromatic induced copies of Kt,t or
St,t (the split graph, which is made of a set of s vertices that induce a clique, another set of
t indepenent vertices and all possible st edges between both sets). They also give a more
general definition of this family which is used in 1.26. Let s, t be positive integers with s ≤ t
and let F ′

s,t = {Ks,t, Ss,t}. When s = t, we write F ′
t instead of F ′

t,t. For a positive integer n
and a family of graphs F not containing complete graphs, let ex2(Kn, F) be the minimum
integer m (if it exists) such that, every 2-edge coloring of Kn having more than m edges in
each color contains a member of F as an induced monochromatic subgraph. If there is no
such m, we set ex2(Kn, F) = ∞.

We state and prove Theorem 1.26 using the following variant of Corollary 1.20.

Lemma 1.25. For all K, s ∈ N, there exists a constant C = C(K, s) such that any graph
with at least Cn2−1/s edges contains a set S of K vertices in which each subset X ⊆ S with s
vertices has a common neighborhood of size at least K.

We also use the 2-color Ramsey number R(k) and the bipartite Ramsey number BR(t),
which is the smallest integer for which every 2-edge coloring of Kn,n, with n ≥ BR(t), contains
a monochromatic Kt,t.

Theorem 1.26 ([14]). For every pair of positive integers s and t with 1 ≤ s ≤ t, there is a
constant C = C(s, t) such that, if n is large enough, then every 2-edge coloring E(Kn) = R⊔B

with at least Cn2− 1
s edges in each color contains an induced monochromatic member from

F ′
s,t.

Proof. Given s and t, positive integers with s ≤ t, let C be the constant given by 1.25 for s and
K = R(BR(t)) + 1. For every n large enough, any 2-edge coloring of Kn with Cn2−1/s edges
in each color, we can find K-sets of vertices SR and SB with the property that each s-subset
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X ⊂ SR (respectively, each s-subset X ⊆ SB) has a common red-neighborhood (respectively,
a common blue neighborhood) of size at least K. Since K = R(BR(t)) ≥ R(s) + 1, there
are sets of vertices X1 ⊂ SR and X2 ⊂ SB inducing both monochromatic complete graphs
of order s, and satisfying that |NR(X1)| ≥ K and |NB(X2)| ≥ K. Moreover, there are sets
Y1 ⊂ NR(X1) and Y2 ⊂ NB(X2) inducing monochromatic complete graphs of order BR(t). In
summary, we have both a red and a blue complete bipartite graph Ks,BR(t) where both parts
of the bipartition are monochromatic cliques. It remains to analyze all cases concerning the
colors of those cliques. If Y1 is blue, depending on the color of X1, we get either an induced
red copy of Ks,t, or an induced red copy of Ss,t. Thus, we can assume that Y1 is red and, with
similar arguments, that Y2 is blue. Recall now that both Y1 and Y2 have BR(t) + 1 vertices
and, because they are monochromatic cliques of different colors, they can intersect in at most
one vertex. Thus, neglecting the intersection, if necessary, we can find a monochromatic copy
of Kt,t between Y1 and Y2. That is, there are t-sets of vertices Z1 and Z2 contained in Y1 and
Y2 respectively, that induce a monochromatic complete bipartite graph. If such complete
bipartite graph is blue, take any subset of s vertices in Z2 to get an induced blue copy of
Ss,t. In the other case, just take a subset of vertices in Z1 to have an induced red copy of Ss,t.
The proof is complete.

Theorem 1.26 proves that ex2(Kn, F ′
s,t) ≤ Cn2− 1

s where c is the constant in Theorem 1.26.
The next theorem states that the above bound is tight for infinite values of s and t. Its proof
relies strongly on Theorem 1.17.

Theorem 1.27 ([14]). For every n sufficiently large, and integers s, t such that either
1 ≤ s ≤ 3 ≤ t, or s ≥ 3 and t ≥ (s − 1)! + 1, we have ex2(Kn, F ′

s,t) = Θ(n2−1/s).

In [14], the authors note that taking s = 1 in Theorem 1.26, i.e. considering a linear
amount (on n) of edges in each color, forces the existence of an induced monochromatic star
K1,t. The following is an immediate corollary of Theorem 1.26.

Theorem 1.28 ([14]). For every positive integer t, there is a constant C = C(t) such that,
if n is large enough, then every 2-edge coloring E(Kn) = R ⊔ B with at least Cn edges in
each color contains an induced monochromatic star K1,t.

Finally, they worked with edge colorings that required only a constant amount of edges in
each color.

Theorem 1.29 ([14]). For any integer t ≥ 1, there is a constant C = C(t) such that, for n
sufficiently large, every 2-edge coloring of Kn with at least C edges in each color and without
a monochromatic induced tK2 contains an induced monochromatic star K1,t.

1.4.1 Omnitonality
Omnitonal graphs are those graphs that appear in all possible tonal variations of two colors
in every 2-edge coloring of a large enough complete graph with sufficient edges in each color.
Formally, we state the following definition.
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Definition 1.30. For a given graph G, let ot(n, G) be the minimum integer, if it exists, such
that any 2-edge coloring E(Kn) = R ⊔ B with more than ot(n, G) edges in each color contains
an (r, b)-colored copy of G for any r ≥ 0 and b ≥ 0 such that r + b = e(G). If ot(n, G) exists
for every sufficiently large n, we say that G is omnitonal.

This concept was introduced in [13] where the authors were interested in finding omnitonal
graphs and determining or approximating their number ot(n, G), if possible. To prove that a
graph G is not omnitonal, one has to exhibit infinitely many values of n for which there is
a 2-edge coloring of Kn with the same number of red and blue edges (or differing by one)
without an (r, b)-colored copy of G for some r ≥ 0 and b ≥ 0 such that r + b = e(G).

Recall that Ramsey’s theorem guarantees that, for a large enough n and a given graph G,
there is a (0, e(G))-colored copy or a (e(G), 0)-colored copy of G in every 2-edge coloring of
Kn. To force the existence of other patterns, there must be enough edges in each color. The
following definition provides the parameter we need to assure the existence of copies of G in
other tonal proportions.

Definition 1.31. Let G be a graph and r an integer with 0 < r ≤ ⌊e(G)/2⌋. Let balr(n, G)
be the minimum integer, if it exists, such that every 2-edge coloring E(Kn) = R ⊔ B with
more than balr(n, G) edges in each color contains either an (r, e(G) − r)-colored copy of G,
or an (e(G) − r, r)-colored copy of G. If balr(n, G) exists for every n sufficiently large, we
say that G is r-tonal.

Note that if balr(n, G) exists, then balr(n, G) ≤ 1
2

(
n
2

)
. This also holds for ot(n, G) ≤ 1

2

(
n
2

)
.

In [13], Theorem 1.26 is used to give a characterization of r-tonal graphs and omnitonal
graphs. They use the following lemma that follows directly from Lemmas 3.1 and 3.2 given
in [10].

Lemma 1.32 ([10]). For infinitely many positive integers n, we can choose t = t(n) in a
way that the 2-edge coloring of Kn where one color forms a Kt has exactly ⌊1

2

(
n
2

)
⌋ edges of

one color. Also, for infinitely many positive integers n, we can choose t = t(n) in a way that
the 2-edge coloring of Kn where one color forms two disjoint Kt’s has exactly ⌊1

2

(
n
2

)
⌋ edges

of one color.

Theorem 1.33 ([13]). Let G be a graph and let r be an integer with 0 < r ≤ ⌊e(G)/2⌋. The
graph G is r-tonal if and only if G has both a partition V (G) = X ⊔ Y and a set of vertices
W ⊆ V (G) such that e(X, Y ), e(G[W ]) ∈ {r, e(G) − r}.

Lemma 1.32 and Theorem 1.33 are strongly used in the proof of the characterization of
omnitonal graphs which is stated as follows.

Theorem 1.34 ([13]). A graph G is omnitonal if and only if, for every integer r with
0 ≤ r ≤ e(G), G has both a partition V (G) = X ⊔ Y and a set of vertices W ⊆ V (G) such
that e(X, Y ) = e(G[W ]) = r.
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In [13], the authors conclude that omnitonal graphs are bipartite, which is a consequence
of Theorem 1.26. A result relevant to this thesis work states that all trees are omnitonal
graphs. In Chapter 4, we present a corresponding theorem in the setting of 2-colorings of a
complete bipartite graph Kn,n (see Theorem 4.10).

Theorem 1.35 ([13]). Every tree is omnitonal.

Proof. Let T be a tree. We employ the characterization given by 1.34, therefore we verify
that for every integer r with 0 ≤ r ≤ e(T ), T has both a partition V (T ) = X ⊔ Y and a
set of vertices W ⊆ V (T ) such that e(X, Y ) = e(G[W ]) = r. We use induction on e(T ). If
e(T ) = 1, both conditions are satisfied for r = 0, 1. Let T be a tree with e(T ) = m and let
v ∈ V (T ) be a leaf where u is the only vertex of T adjacent to v. By the induction hypothesis,
the tree T ′ = T − {v} satisfies that for every 0 ≤ r ≤ m − 1 = e(T ′), there is a partition
V (T ′) = X ′ ⊔Y ′ and a set of vertices W ⊆ V (T ′) ⊆ V (T ) such that e(X ′, Y ′) = e(T ′[W ]) = r.
Note that for every 0 ≤ r ≤ m − 1 the subset W ⊆ V (T ′) ⊆ V (T ) satisfies e(T [W ]) = r.
In the same way, for every 0 ≤ r ≤ m − 1 we can obtain a partition V (T ) = X ⊔ Y with
e(X, Y ) = r by taking X = X ′ ∪ {v} and Y = Y ′ if u ∈ X ′, or X = X ′ and Y = Y ′ ∪ {v}
if u ∈ Y ′. To show that there are both a partition V (T ) = X ⊔ Y and a set of vertices
W ⊆ V (T ) such that e(X, Y ) = e(T [W ]) = m = e(T ) is trivial.

It is a simple matter to see that the disjoint union of two omnitonal graphs is again an
omnitonal graph. Hence, we can conclude with Theorem 1.35.

1.4.2 Balanceability
The concept of balanceability was introduced in [13]. In an informal setting, we ask the
following question.

How many blue and red edges must there be in a 2-edge coloring of a large complete graph in
order to assure a copy of a fixed graph H with exactly half of its edges colored blue and the

rest red?

Caro, Hansberg and Montejano considered and studied this problem in [13].
The existence of a balanced copy of a graph G in any 2-edge coloring, even having as

many edges as possible in each color, is not true in general for any graph G. Evidently, we
need at least ⌊ e(G)

2 ⌋ edges in each color class. The following concept will help us characterize
the graphs of our interest.

Definition 1.36. If there exists an integer k = k(n) such that, for n large enough, every
2-edge coloring R ⊔B of the edges of Kn with more than k edges in each color class contains a
balanced copy of G, then we say G is balanceable. The smallest such k is called the balancing
number of G and it is denoted as bal(n, G). For a balanceable graph G, let Bal(n, G) be the
family of graphs with exactly bal(n, G) edges such that a 2-edge coloring E(Kn) = R ⊔ B with
exactly bal(n, G) edges in one color contains no balanced copy of G if and only if the graph
induced by the red edges or by the blue edges is isomorphic to some H ∈ Bal(n, G).
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The two base questions in balanceability are:

i) Given a graph G, is G balanceable? (Does said k exist?)

ii) In the case of an affirmative answer to the first question, how small can k be? In other
words, how big can k be such that we can explicitly show an edge coloring without
balanced copies of G?

A very simple example of a balanceable graph is the path on 2 edges, P2. Clearly, if
we use at least one edge of each color in a 2-edge coloring of Kn with n large enough, the
balanced path will always be obtained. There are graphs for which it is easy to determine if
they are balanceable or not, but this is not the case in general. Observe that all omnitonal
graphs are balanceable. A structural characterization [13] of balanceable graphs was given by
Caro, Hansberg and Montejano.

Theorem 1.37 ([13]). A graph G(V, E) is balanceable if and only if G has a partition
of its vertices V = X ⊔ Y and a set of vertices W ⊆ V such that e(X, Y ), e(G[W ]) ∈
{⌊1

2e(G)⌋, ⌈1
2e(G)⌉}.

In other words, a graph is balanceable if and only if there is an edge-cut of ⌊1
2e(G)⌋ or

⌈1
2e(G)⌉ edges and an induced subgraph with ⌊1

2e(G)⌋ or ⌈1
2e(G)⌉ of the edges. This theorem

was proved by showing that, for every integer t and n sufficiently large, there exists an integer
m = m(n, t) such that any 2-coloring of Kn with more than m edges in each color class
contains an element of Ft. These copies can be used to find a balanced copy of a graph G or
else to show that no balanced copy of G exists.

Beyond the computational question of deciding whether a given graph is balanceable or
not, there is also the theoretical problem of providing exact values or good bounds for the
Turán-type parameter bal(n, G). Observe that bal(n, G) can also be seen as the maximum
number k(n) such that there is a 2-edge coloring of Kn with one of the colors having precisely
k(n) edges, and such that there is no balanced copy of G. The family of such colorings would
be the extremal configurations of this Turán-type parameter. The problem of determining
the balancing number of certain families of graphs has been tackled in [8, 12,13,20].

1.5 Balanceable and omnitonal graphs
In this section, we discuss some graph families that are balanceable, omnitonal or both. We
also determine or bound the numbers bal(n, G) and ot(n, G) of certain graph families. Some
of the results stated in this section will be recalled and discussed in further chapters. We
prove only those results which are relevant to our work.

1.5.1 Amoebas
As part of the work in [13], the authors describe a class of graphs which they called amoebas.
They grew interest in this family because they are balanceable and contain a large family of
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omnitonal graphs. The definition they give in [13] for global amoebas evolved into a more
algebraic definition in a later work [12] which we discuss profoundly in Chapter 3. In fact,
the authors referred to these global amoebas, just as amoebas in [13]. This is due to the
fact that amoebas were categorized as global amoebas and local amoebas until later in [12].
Because the results in this section can be argued in a purely combinatorial setting, we keep
the first definition of amoebas and discuss the algebraic approach in Chapter 3.

Given a graph G of order n(G) embedded in a complete graph Kn, where n ≥ n(G), we
say that H (also embedded in Kn) is obtained from G by a feasible edge-replacement, if for
some e1 ∈ E(G) and e2 ∈ E(Kn) \ E(G), E(H) = (E(G) \ {e1}) ∪ {e2}. We consider only
graphs with no isolated vertices.

Definition 1.38. A graph H is a local amoeba if for any two isomorphic copies, H ′ and H ′′,
of H on the same vertex set V = V (H), there is a chain H ′ = H1, H2, · · · , Hr = H ′′, such
that for every 1 ≤ i ≤ r, Hi

∼= H and Hi is obtained from Hi−1 by a feasible edge-replacement.
A graph G is a global amoeba if there is t0 ≥ 0 such that G ∪ tK1 is a local amoeba for every
t ≥ t0

As a simple example, one can convince oneself (even though it is not that simple to prove)
that the path Pk is a global amoeba for every k ≥ 1, and that a cycle Ck with k ≥ 3 is not a
global amoeba.

The following proposition provides an important property of local amoebas with minimum
degree 0 or 1.

Proposition 1.39 ([12]). Let G be a local amoeba of order n and minimum degree 0 or 1,
then G ∪ K1 is a local amoeba, and therefore G is a global amoeba.

Two important aspects of global amoebas is that all bipartite global amoebas are omnitonal
and that all global amoebas are balanceable. We state and prove both statements.

We state a basic interpolation lemma for amoebas and a remark before proving the main
statement.

Lemma 1.40 ([13]). Let G be a global amoeba and consider a 2-edge coloring E(Kn) = R⊔B
where n ≥ n0(G). Let α, β, α′, β′ be integers such that α + β = α′ + β′ = e(G) and 0 ≤ α ≤ α′

and 0 ≤ β ≤ β′. If there is an (α, β)-colored copy of G as well as an (α′, β′)-colored copy of
G, then there is an (r, b)-colored copy of G for all integers r and b such that r + b = e(G),
α ≤ r ≤ α′ and β′ ≤ b ≤ β.

Remark 1.41. From the Kővari-Sós-Turán theorem, stated in Theorem 1.10, it follows
that ex(n, G) = o(n2) for any bipartite graph G. This implies that, for large enough n, the
inequality

2(ex(n, G) + 1) ≤
(

n

2

)
holds. This means that we can consider 2-edge colorings E(Kn) = R ⊔ B with at least
ex(n, G) + 1 edges in each color given that n is large enough.
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Lemma 1.40 states that, for a given global amoeba G on n0 vertices and a given a
2-edge coloring E(Kn) = R ⊔ B, where n ≥ n0, if there is a (0, e(G))-colored copy and a
(e(G), 0)-colored copy of G, then the colored Kn contains the a copy of G in every possible
(r, b)-color pattern for r and b with r + b = e(G), with 0 ≤ r ≤ e(G) and 0 ≤ b ≤ e(G). Using
Lemma 1.40 and Remark 1.41, we can prove the following theorem.

Theorem 1.42 ([13]). Every bipartite global amoeba G is omnitonal with ot(n, G) = ex(n, G),
provided n is large enough to fulfill

(
n
2

)
≥ 2 ex(n, G) + 1 and n ≥ n0(G).

Proof. Let G be a bipartite global amoeba. By Remark 1.41 we can consider, for sufficiently
large n, 2-edge colorings of E(Kn) with n ≥ n0(G) and at least ex(n, G) + 1 edges in each
color. Notice that any 2-edge coloring E(Kn) = R ⊔ B with at least ex(n, G) + 1 edges in
each color contains a (0, e(G))-colored copy of G and an (e(G), 0)-colored copy of G, and by
1.40, there is an (r, b)-colored copy of G for all integers r and b such that 0 ≤ r, b ≤ e(G)
and r + b = e(G). Therefore, G is omnitonal and ot(n, G) ≤ ex(n, G). In order to see that
ex(n, G) ≤ ot(n, G), notice that we can give a 2-edge coloring of E(Kn) with at least ex(n, G)
edges in each color such that there are no (e(G), 0)-colored copies of G and so G cannot be
omnitonal.

Because the balanceable property is not as restrictive as the omnitonal property, Caro,
Hansberg and Montejano showed that the bipartite condition can be dropped to prove that
every global amoeba is balanceable.

Theorem 1.43 ([13]). Every global amoeba is balanceable.

Proof. Let G be a global amoeba. We make use of an old argument of Erdős which states that
every graph G has a bipartition V (G) = X ⊔ Y such that e(X, Y ) ≥ ⌈ e(G)

2 ⌉ (see Lemma 2.14
in [38]). Therefore, we may consider a bipartite subgraph B of G with exactly e(B) = ⌈ e(G)

2 ⌉
edges. Let E(Kn) = R ⊔ B be a 2-edge coloring with at least ex(n, B) + 1 edges in each color.
This is possible for n large enough by Remark 1.41. Therefore, Kn contains a (0, e(B))-colored
copy of B and a (e(B), 0)-colored copy of B. We proceed to arbitrarily complete these copies
of B into copies of G to get an (α, β)-colored copy of G, and an (α′, β′)-colored copy of G with
⌈e(G)/2⌉ ≤ β and ⌈e(G)/2⌉ ≤ α′. Since α+β = α′+β′ = e(G) this implies that α ≤ ⌊e(G)/2⌋
and β′ ≤ ⌊e(G)/2⌋. Bringing the bounds together, we get α ≤ ⌊e(G)/2⌋ ≤ ⌈e(G)/2⌉ ≤ α′

and β′ ≤ ⌊e(G)/2⌋ ≤ ⌈e(G)/2⌉ ≤ β. By Lemma 1.40, we conclude that Kn contains a
(⌊e(G)/2⌋, ⌈e(G)/2⌉)-copy and a (⌈e(G)/2⌉, ⌊e(G)/2⌋)-copy of G.

1.5.2 Stars and Paths
We know from Theorem 1.35 that trees are omnitonal and therefore balanceable. We describe
the work in [13] where the authors determine bal(n, G) and Bal(n, G) for the cases where G
is a star or a path with an even number of edges. For the general case when G is a tree, the
best upper bound they obtained emerged as a corollary from the bound for ot(n, G). Recall
that a split graph Ss,t, or the (s, t)-split graph, is made of a set of s vertices that induce a
clique, another set of t indepenent vertices and all possible st edges between both sets.
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Theorem 1.44 ([13]). Let k and n be integers with k ≥ 2 even and such that n ≥ max{3, k2

4 +
1}. Then bal(n, K1,k) = (k−2

2 )n − k2

8 + k
4 and Bal(n, K1,k) contains only one graph, namely

the complete (k−2
2 , n − k−2

2 )-split graph.

Proof. Let

h(n, k) =
(

k − 2
2

)
n − k2

8 + k

4 .

First observe that a 2-edge coloring E(Kn) = R ⊔ B with more than h(n, k) edges in
each color is satisfiable. We need to prove that e(Kn) = n(n−1)

2 ≥ 2h(n, k) + 2 holds true
for all n ≥ max{3, k2

4 + 1}. If k = 2, then h(n, k) = 0 and the condition is satisfied for
n ≥ 3. If k ≥ 4, we have to verify the mentioned inequality. Notice that 2h(n, k) + 2 =
n(k − 2) − k2

4 + k
2 + 2 ≤ n(n−1)

2 if and only if n2 − (2k − 3)n + k2

2 − k − 4 ≥ 0 which is indeed
the case for n ≥ k2

4 + 1 and k ≥ 4.
Let H be the complete (k−2

2 , n − k−2
2 )-split graph. Note that H has exactly h(n, k) edges:

e(H) = 1
2

(
k − 2

2

)(
k − 2

2 − 1
)

+
(

k − 2
2

)(
n − k − 2

2

)

=
(

k − 2
2

)
n +

(
k − 2

2

)(
k − 2

4 − 1
2 − k − 2

2

)

=
(

k − 2
2

)
n +

(
k

2 − 1
)(

k

4 − k

2

)

=
(

k − 2
2

)
n − k2

8 + k

4 .

Observe that any 2-edge coloring E(Kn) = R ⊔ B where the red graph or the blue graph
is isomorphic to H contains no balanced copy of K1,k, because in this coloring there are two
types of vertices v ∈ V (Kn), the ones for which {degR(v), degB(v)} = {0, n − 1} and the
ones for which {degR(v), degB(v)} = {k

2 − 1, n − k
2}. In any case, there is no way to have a

balanced K1,k.
We have proved that bal(n, K1,k) ≥ h(n, k) and that H ∈ Bal(n, K1,k). To prove that

bal(n, K1,k) ≤ h(n, k) and that Bal(n, K1,k) = {H} we will show that any coloring E(Kn) =
R ⊔ B with at least h(n, k) edges in each color and where neither the red nor the blue graph
is isomorphic to H contains a balanced copy of K1,k. We define the following sets

VR =
{

v ∈ V (Kn) | degR(v) ≥ k

2

}
,

and

VB =
{

v ∈ V (Kn) | degB(v) ≥ k

2

}
.
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Let E(Kn) = R ⊔ B be a 2-edge coloring with at least h(n, k) edges in each color and such
that the red graph nor the blue graph is isomorphic to H. If there is a vertex v ∈ VR ∩ VB

then we are done as there would be a balanced K1,k. So we may assume that VR ∩ VB = ∅.
Note that, since every vertex in Kn has degree n − 1 ≥ k then V (Kn) = VR ⊔ VB, hence
|VR| + |VB| = n. Assume without loss of generality that |VR| ≤ |VB|.

Case 1: Suppose |VR| ≤ k
2 − 1. Thus,

2e(G) =
∑

v∈V (Kn)
degR(v) =

∑
v∈VR

degR(v) +
∑

v∈VB

degR(v)

≤ |VR|(n − 1) + |VB|(k − 2
2 )

= |VR|(n − 1) + (n − |VR|)(k − 2
2 )

≤ (k

2 − 1)(n − 1) + (n − k

2 + 1)(k − 2
2 )

= 2(k − 2
2 )n − k2

4 + k

2 = 2h(n, k)

Consequently, the number of red edges is at most h(n, k). By the assumption on the
number of edges in each color we know that the number of red edges must be exactly
h(n, k). By the inequalities before mentioned |VR| = (k

2 − 1) and the red graph is
isomorphic to H, which is a contradiction to the original assumption.

Case 2: Suppose now that |VR| ≥ k
2 . Denote by e′(R) the number of red edges between VR and

VB. Since a vertex v ∈ VR satisfies degB(v) < k
2 then each vertex in VR contributes to

e′(R) with at least |VB| − k
2 + 1 edges, thus

e′(R) ≥ |VR|(|VB| − k

2 + 1) ≥ k

2(|VB| − k

2 + 1).

Now note that each vertex in VB contributes to e′(R) with no more than k
2 edges, and

so

e′(R) ≤ (k

2 − 1)|VB|.

Joining both inequalities, we obtain

k

2(|VB| − k

2 + 1) ≤ (k

2 − 1)|VB|,

from which by the fact that |VR| + |VB| = n and that |VR| ≥ k
2 , it follows that
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−k2

4 + k

2 ≤ −|VB| = |VR| − n ≤ k

2 − n.

This yields n ≤ k2

4 , a contradiction to the hypothesis.

The balancing number of paths bal(n, Pk) and Bal(n, Pk) has also been determined by
the authors of [13] for k ≥ 2 even and n sufficiently large.

Theorem 1.45 ([13]). Let k ≥ 2 and n be integers with k even and such that n ≥ 9
32k2+ 1

4k+1.
Then

bal(n, Pk) =
(k−2

4 )n − k2

32 + 1
8 , for k ≡ 2 (mod 4),

(k−4
4 )n − k2

32 + k
8 + 1, for k ≡ 0 (mod 4),

and Bal(n, Pk) contains only one graph, namely the complete (k−2
4 , n − k−2

4 )-split graph, if
k ≡ 2 (mod 4), and the complete (k−4

4 , n − k−4
4 )-split graph plus one edge, if k ≡ 0 (mod 4).

1.6 Generalized balancing number
Although the question of the existence of the balancing number is still open for many graph
classes, we are also interested in gauging how we may obtain balanceable copies of a non-
balanceable graph, under a relaxation of the 2-edge coloring. In this work, we also generalize
the notion of balancing number by extending the class of colorings under consideration to
edge coverings. In this case, each edge receives a nonempty list of colors, and we may choose
one among them as needed in order to construct a balanced copy of a graph G.

More formally, a 2-edge covering of Kn is a function L : E(Kn) → {{r}, {b}, {r, b}}, that
induces two sets R and B, called its color classes, which are defined as follows: R = {e ∈
E(Kn) | r ∈ L(e)} and B = {e ∈ E(Kn) | b ∈ L(e)}. As we can see, R ∪ B = E(Kn), but
the two color classes do not necessarily form a partition of the edges of Kn. The edges in
R ∩ B are called bicolored edges, in the sense that we can choose their color as needed when
looking for a balanced copy of a graph. This leads to a new definition of a balanced copy of a
graph, which is a generalization of the previous one:

Definition 1.46. Let L : E(Kn) → {{r}, {b}, {r, b}} be a 2-edge covering of Kn inducing
color classes R and B. For a given graph G(V, E), a balanced copy of G is a copy of G whose
edge-set has a partition E = E1 ⊔ E2 such that E1 ⊆ R, E2 ⊆ B and ||E1| − |E2|| ≤ 1.

Note that some of the edges in the copy of G may be in R ∩ B; for example, if e ∈ E1
and e ∈ R ∩ B then we say that we choose color r for the bicolored edge e, if we want the
color red to be counted for this edge.

Furthermore, for every finite graph G(V, E), if n ≥ |V (G)|, then Kn has a 2-edge covering
where we may find a balanced copy of G. Indeed, consider the 2-edge covering L of Kn such
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that L(e) = {r, b} for every edge e. Observe that, in any copy of G, we may choose the
color r for half its edges and the color b for the rest. This allows us to define the generalized
balancing number of a graph, as follows:

Definition 1.47. Let G(V, E) be a finite, simple graph. For n ≥ |V (G)|, the generalized
balancing number of G, denoted by bal*(n, G), is the smallest integer k such that every 2-edge
covering L of Kn inducing the color classes R and B with |R|, |B| > k contains a balanced
copy of G.

As we can see, the generalized balancing number is a natural extension of the balancing
number. Indeed, every 2-coloring, represented by a partition E(Kn) = R ⊔ B, corresponds
to a 2-covering where every list L(e) has exactly one element. It is important to observe
that this extension does not add more complexity to the problem when bal(n, G) exists, and
in which case satisfies bal(n, G) = bal*(n, G) < 1

2

(
n
2

)
(for details, see Proposition 2.26 in

Section 2.5).
The main interest of the generalized balancing number is the study of non-balanceable

graphs, where we interpret having bal*(n, G) close to 1
2

(
n
2

)
as G being close to balanceable,

in the sense that a few more than 1
2

(
n
2

)
edges from each color (implying that there must

be a few bicolored edges) are sufficient to guarantee a balanced copy of G. We refer to the
needed number of edges that exceeds 1

2

(
n
2

)
in each color as the color excess of edges in each

color. For example, we prove in Section 2.5.1, that, for cycles C4k+2 of length congruent to 2
modulo 4, which are not balanceable, a color excess of just 1 edge in each color is sufficient
to guarantee a balanced copy of C4k+2. In other words, we show that bal*(n, C4k+2) = 1

2

(
n
2

)
,

which is the smallest possible value for the generalized balancing number of a non-balanceable
graph. On the other hand, there are graphs for which a much larger color excess in each color
is necessary to guarantee a balanced copy of them. Such is the case of K5 where the color
excess is of order Θ(n 3

2 ); see Theorem 2.37.
In Chapter 2, we identify the balanceability of some graph classes, find the balancing

number of balanceable cycles and define the generalized balancing number as an extension of
the balancing number. In Chapter 3, we also work with a special type of balanceable graphs
called amoebas and provide a way to recursively generate them using group theory tools. In
Chapter 4, we seek to translate these problems to a Kn,n setting where we use the complete
bipartite graph as our base graph. The final chapter of this dissertation work is Chapter 5,
where we state a conclusion statement and mention our ambition to continue working on the
solution of other relevant problems as a project for future work in Section 5.1.
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Chapter 2

Balanceability and balancing number
in a Kn setting

2.1 Balanceability
The problem of determining whether a graph is balanceable or not has been studied by several
authors [10, 13–15]. In this section, we discuss some results concerning balanceability and
the graph families whose balanceability or non-balanceability has been established up to
date. Then we define the balancing number and generalized balancing number in order to
establish a connection between them. Recall Bollobás’s patterns. Given a positive integer t,
the first pattern consists of a complete graph on 2t vertices where one of the colors makes
a complete graph on t vertices. The second pattern is also a complete graph on 2t vertices
except that now one of the colors makes two disjoint complete graphs on t vertices each.
In the Introduction, we noted that if there is a graph H which is a subgraph of both of
Bollobás’s patterns in a way that it is balanced, then this graph is balanceable. This turns
out to be a characterization of balanceable graphs which we discuss in the next section.

2.1.1 Sufficient conditions for balanceability
Balanceability aims to answer the two important questions mentioned in Chapter 1. In this
section, we will focus on answering the first one, namely: Given a graph G, is it balanceable?

In the process of studying the characterization from Theorem 1.37, various results arose
about sufficient or necessary conditions that a graph can satisfy in order to be balanceable.
We intend to expose them briefly in this section. The first result states that the existence of
an independent set with just enough neighbors implies that the graph is indeed balanceable.

Proposition 2.1. Let G(V, E) be a graph. If there exists a subset I ⊂ V of independent
vertices such that ∑v∈I d(v) =

⌊
|E|
2

⌋
, then G is balanceable.
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Proof. Let X = I and Y = W = V \ I. Due to the condition on I, we have

e(X, Y ) =
⌊

|E|
2

⌋
= e(G[W ])

and thus, by Theorem 1.37, G is balanceable.

Using this proposition, one can easily prove balanceability for many graphs. For example,
it yields easily that cycles C4k for k ≥ 1 are balanceable.

Corollary 2.2. Let ℓ be a positive integer. The cycle C4ℓ is balanceable.

Proof. We denote the vertices of C4ℓ by u0, u1, . . . , u4ℓ−1. By setting I = {u4i | 1 ≤ i ≤ ℓ− 1},
we can apply Proposition 2.1 and get the result.

Furthermore, we can set I to be a singleton, in which case we obtain the following:

Proposition 2.3. Let G(V, E) be a graph. If there is a vertex v ∈ V with d(v) =
⌊

|E|
2

⌋
, then

G is balanceable.

Proof. Let I be the singleton containing the vertex v with d(v) =
⌊

|E|
2

⌋
and apply

Proposition 2.1.

In addition, this proposition proves that the wheel graphs are balanceable by taking the
vertex of degree n − 1 as the only member of the independent set. Recall that the wheel
graphs Wn of order n are made up of a cycle on n − 1 vertices and a vertex that is adjacent
to all other vertices.

Corollary 2.4. Wheels are balanceable.

Proof. The wheel Wn contains 2n edges, and the center of Wn has degree n, hence
Proposition 2.3 applies.

Finally, we state the following property about the balanceability of some bipartite regular
graphs:

Proposition 2.5. Let d be a positive integer. If G is a bipartite, d-regular graph on 4n
vertices, then G is balanceable.

Proof. Let G be a bipartite, d-regular graph of order 4n, and let A ∪ B be its bipartition.
Since G is regular, |A| = |B| = 2n, and |E(G)| = 2nd.

Let I be a subset of n vertices in A. Clearly, I is an independent set, and by regularity∑
v∈I d(v) = nd = |E(G)|

2 . Thus, by Proposition 2.1, G is balanceable.
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2.2 A necessary condition for balanceability
We now focus on more global properties, such as regularity or whether the graph is eulerian
or not, to state a necessary condition for balanceability. Afterwards, we expose some graph
families that satisfy the condition. Recall that a connected graph is eulerian if all its vertices
have even degree.

Proposition 2.6. Let G(V, E) be an eulerian graph with even number of edges. If G is
balanceable, then |E|

2 is even.

Proof. Let G be balanceable and assume by contradiction that |E|
2 is odd. Then, using

Theorem 1.37, there is a partition of V in two sets X and Y = V \ X such that half the
edges are between X and Y . Let us denote by Xodd the set of vertices of X that have an
odd number of neighbours in Y . The fact that |E|

2 is odd implies that |Xodd| is odd. This in
turn implies that the vertices of Xodd have odd degree in G[X], since they have even degree
in G. Thus, G[X] has an odd number of vertices with odd degree, which is impossible. This
contradiction yields the result.

Even though being eulerian is not a common characteristic, they constitute a wide and
interesting family of graphs that are characterized as those connected graphs whose vertices
have all even degree. By means of the previous proposition, one can prove that C4k+2 is
not balanceable for k ≥ 1 and that Kn is also not balanceable if n ≡ 5 (mod 8). While
these propositions may seem simple, they played a predominant role in determining the
balanceability of some infinite graph families.

Corollary 2.7. Let ℓ be a positive integer. The cycle C4ℓ+2 is not balanceable.

Proof. The cycle C4ℓ+2 is eulerian, and has 4ℓ + 2 edges, so |E(C4ℓ+2)|
2 = 2ℓ + 1 is odd and we

can apply Proposition 2.6.

We also study the balanceability of some specific regular graphs. First, Proposition 2.6
allows us to prove that some regular graphs are not balanceable:

Corollary 2.8. Let d be an even positive integer, and let G be a d-regular graph of order n
with an even number of edges. G is not balanceable in the following cases:

1. If d, n ≡ 2 mod 4;

2. If d = 4a with a odd, and n ≡ 1, 3 mod 4.

Note that this is a sufficient condition for non-balanceability, so a regular graph that
verifies neither conditions may still be non-balanceable.

Proof. If G is d-regular of order n and size e, then e = dn
2 . Furthermore, since d is even, G is

eulerian. We will study the two cases:

1. Given d = 4a + 2 and n = 4b + 2, then e
2 = (4a+2)(4b+2)

4 = 4ab + 2a + 2b + 1 is odd.
Hence, Proposition 2.6 implies that G is not balanceable.
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2. Given d = 4a and n = 4b + c with a odd and c ∈ {1, 3}, then, e
2 = 4a(4b+c)

4 = 4ab + ac.
Since c ∈ {1, 3}, this has the same parity than a, hence it is odd and Proposition 2.6
implies that G is not balanceable.

Note that Corollary 2.8 easily implies that complete graphs such as K8k+5 are not
balanceable. In [13], the authors determined which complete graphs with even edge number
are balanceable. We state this result in the next section (Theorem 2.9).

In the next section, we will exhibit balanceability results of several graph families.

2.3 Interesting graph families
There are several graph families for which balanceability has been determined. Table 2.1
includes some of these graph families. Further results concerning balanceability will be
discussed in this section in detail.

Graph family Balanceability

K4 balanceable [11]
K5 not balanceable [10]

Km with m > 2 and m ̸= 4, m ≡ 0, 1 (mod 4) not balanceable [11]
Trees balanceable [13]

Complete bipartite graphs Kt,t balanceable [8]
Specific circulant graphs Ck,ℓ with k even balanceable [22]
Specific circulant graphs Ck,ℓ with k odd not balanceable [22]

Rectangular grids Gk,ℓ with k and ℓ having the same parity balanceable [22]
Triangular grids Th with h (mod 8) ∈ {0, 1} balanceable [22]

Amoebas balanceable [13]

Table 2.1: Known graph balanceability.

Caro, Hansberg and Montejano proved in [11] by means of number theory tools that the
only nontrivial balanceable complete graph of even size (edge number) is K4. We cite the
equivalent theorem that appears in [10] because it employs more relevant notation and jargon.

Theorem 2.9 ([10]). (i) For any positive integer m ≥ 2, m ̸= 4, m ∼= 0, 1 (mod 4) the
complete graph Km is not balanceable.
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(ii) The complete graph K4 is balanceable with bal(n, K4) = n, if n ∼= 0 (mod 4),
and bal(n, K4) = n − 1, else. Moreover, Bal(n, K4) = {J ∪ ⋃q

i=1 C4}, where
J ∈ {∅, K1, K2, P2}, depending on the residue of n (mod 4), and q = ⌊n

4 ⌋.

The balanceability of K5 is easily determined by using Theorem 1.37.

Proposition 2.10 ([10]). The complete graph on 5 vertices K5 is not balanceable.

Dailly, Hansberg, Talon and Ventura proved in [21] that the complete graphs on n vertices
where n ∈ {2, 3, 7, 11, 14, 38, 62, 79, 359, 43262} with an odd edge number are balanceable.
The problem of determining if these are the only values of n (including 1 and 4) for which Kn is
balanceable is still an open problem. We proceed to state our result and its computer-assisted
proof.

Proposition 2.11. Let n be a positive integer such that n ≡ 2, 3 mod 4 and
n ≤ 2, 303, 999, 904, 000, 003. The graph Kn is balanceable if and only if n ∈
{2, 3, 7, 11, 14, 38, 62, 79, 359, 43262}.

Proof. The proof is computer-assisted. By Theorem 1.37, in order for Kn to be balanceable,
it must have a partition of its vertices V (Kn) = X ⊔ Y and a set of vertices W ⊆ V such
that e(X, Y ), e(G[W ]) ∈ {⌊1

2e(G)⌋, ⌈1
2e(G)⌉}. For this to happen Kn needs to verify two

equations.

x(x − 1)
2 = n(n − 1)

4 ± 1
2

and

a(n − a) = n(n − 1)
4 ± 1

2
with a and x two positive integers.

The first equation implies 2x2 − n2 − 2x + n ± 2 = 0. This has two possible forms, which
have solutions constructed recursively.

The first form is 2x2 − n2 − 2x + n − 2 = 0, which has the following recursive systems for
solutions: xk+1 = 3xk + 2nk − 2

nk+1 = 4xk + 3nk − 3xk+1 = 3xk − 2nk

nk+1 = −4xk + 3nk + 1

Each of those systems can be started with those two pairs of initial values: (x0, n0) = (2, 2)
and (x0, n0) = (−1, −1). Let S−

x be the set of n’s that are constructed from those systems.
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The second form is 2x2 − n2 − 2x + n + 2 = 0, which has the following recursive systems
for solutions: xk+1 = 3xk + 2nk − 2

nk+1 = 4xk + 3nk − 3xk+1 = 3xk − 2nk

nk+1 = −4xk + 3nk + 1

Each of those systems can be started with those four pairs of initial values: (x0, n0) = (1, 2),
(x0, n0) = (0, 2), (x0, n0) = (0, −1) and (x0, n0) = (1, −1). Let S+

x be the set of n’s that are
constructed from those systems.

Let Sx = S−
x ∪ S+

x . The set Sx is the set of all values of n that are solutions of the first
equation.

The second equation implies 4a2 − 4an + n2 − n ± 2. This has two possible forms, which
have explicit solutions.

The first form is 4a2 − 4an + n2 − n − 2, which has the following explicit solutions, for
every nonnegative integer k: a = 8k2 + 2k − 1

n = 16k2 − 2a = 8k2 + 6k

n = 16k2 + 8k − 1a = 8k2 + 10k + 2
n = 16k2 + 16k + 2a = 8k2 + 14k + 5
n = 16k2 + 24k + 7

Let S−
a be the set of n’s that are obtained from those systems.

The second form is 4a2 − 4an + n2 − n + 2, which has the following explicit solutions, for
every nonnegative integer k: a = 8k2 + 2k + 1

n = 16k2 + 2a = 8k2 + 6k + 2
n = 16k2 + 8k + 3
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a = 8k2 + 10k + 4
n = 16k2 + 16k + 6a = 8k2 + 14k + 7
n = 16k2 + 24k + 11

Let S+
a be the set of n’s that are obtained from those systems.

Let Sa = S−
a ∪ S+

a . The set Sa is the set of all values of n that are solutions of the second
equation.

Now, let S = Sa ∩ Sx. The set S is the set of all values of n that are solutions of both
equations. Hence, Kn is balanceable if and only if n ∈ S. Hence, we implemented a generic
two integer variable equation solver program [31] to construct the solutions, which gave us
the result in the statement of Proposition 2.11.

We also worked on the balanceability of the graph made of two disjoint copies of Kn

where n is any positive integer.
Theorem 2.12. Let n be a positive integer. The graph 2Kn is balanceable if and only if there
are two nonnegative integers a and b such that n = a2 + b2.

The sum of two squares theorem by Dudley [61] implies the following:
Corollary 2.13. Let n be a positive integer. The graph 2Kn is balanceable if and only the
prime decomposition of n contains no factor pk where prime p ≡ 3 mod 4 and k is odd.

Proof of Theorem 2.12. We use Theorem 1.37. First, note that 2Kn trivially has an induced
subgraph containing half of its edges: Kn. Hence, we are looking for the existence of a cut
of 2Kn containing half of its edges. Such a cut can only be of the form, without loss of
generality, (Kk ∪ Kℓ, Kn−k ∪ Kn−ℓ), with k, ℓ ∈ {0, . . . , n} and k(n − k) + ℓ(n − ℓ) = n(n−1)

2 .
This equation yields:

n = 1
2

√
8kℓ − 4k2 − 4ℓ2 + 4k + 4ℓ + 1 + k + ℓ + 1

2
Since n is a positive integer, the quantity under the square root has to be a square: there

is an x such that 8kℓ − 4k2 − 4ℓ2 + 4k + 4ℓ + 1 = x2. Let us reformulate the equation, and
by denoting b = k − ℓ:

x2 = 8kℓ − 4k2 − 4ℓ2 + 4k + 4ℓ + 1
= −4(k − ℓ)2 + 4(k − ℓ) + 1
= −4(k − ℓ)2 + 4(k − ℓ) + 8ℓ + 1
= −4b2 + 4b + 8ℓ + 1
= −(2b − 1)2 + 8ℓ + 2
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Hence, 8ℓ + 2 = x2 + (2b − 1)2. Since 8ℓ + 2 is even, x and 2b − 1 have to be of the same
parity, and thus they are both odd integers. Let us denote x = 2a − 1. Note that we have
ℓ = (2a−1)2+(2b−1)2−2

8 . Thus, we have:

x2 = −(2b − 1)2 + 8ℓ + 2
= −(2b − 1)2 + (2a − 1)2 + (2b − 1)2 − 2 + 2
= (2a − 1)2

By going back to the definition of n, we have:

n =
√

x2

2 + k + ℓ + 1
2

= 2a − 1
2 + (b + ℓ) + ℓ + 1

2
= a + b + 2ℓ

= a + b + (2a − 1)2 + (2b − 1)2 − 2
4

= a + b + 4a2 − 4a + 1 + 4b2 − 4b + 1 − 2
4

= a + b + a2 − a + b2 − b

= a2 + b2

This proves the statement of the theorem.

The graph Qd, better known as the d-cube or cube, has the 2d d-dimensional binary vectors
(vectors with only 0s and 1s in their coordinates) as its vertex set and two vertices are adjacent
if they differ in exactly one coordinate. Notice that |V (Qd)| = 2d and |E(Qd)| = d2d−1.

Theorem 2.14. The d-cube Qd is balanceable for d ≥ 1.

Proof. By proposition 2.1, it is sufficient to find an independent set of vertices U such that∑
u∈U deg(u) = d2d−2. Because of the regularity of Qd, the set U must have 2d−2 vertices.

Let A be the set of vertices with an even number of 1s in their coordinates and let B be
the rest of the vertices in Qd. Notice that A and B are each independent sets because of
how the edge set is defined in Qd. One of the sets A or B has at least |V |

2 = 2d−1 vertices.
Therefore we can take 2d−2 vertices from that set and define the set U to conclude that Qd is
balanceable.

In the next two subsections, we will characterize the balanceability of other graph classes,
starting with a special class of circulant graphs.
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2.3.1 Balanceability of a special class of circulant graphs
Circulant graphs are defined as Cayley graphs of cyclic groups. The balanceability of some
subfamilies of such graphs has already been mentioned, such is the case of cycles and complete
graphs. We discuss the balanceability of a specific class of circulant graphs with even number
of edges. We can define this class as graphs Ck,ℓ that are made up of a cycle Ck of order k
with vertices u0, · · · , uk−1 where the chords uiui+ℓ (addition modulo k) are part of the edge
set, taking k and ℓ as positive integers. This family includes the antiprisms and Möbius
ladders.

The following statement fully characterizes which of the graphs of the form Ck,ℓ are
balanceable:

Theorem 2.15. Let k and ℓ be two integers such that k > 3 and ℓ ∈ {2, . . . , k − 2}. The
graph Ck,ℓ is balanceable if and only if k is even and (k, ℓ) ̸= (6, 2).

Due to the many cases we have to consider, the proof of Theorem 2.15 will be divided
into several lemmas. The statement of Theorem 2.15 and the different cases and lemmas that
prove them are summarized in Table 2.2. For the remainder of this section, we will assume
that ℓ ≤ k

2 , since if this is not the case then we can apply the same reasoning with ℓ′ = k − ℓ.

k

ℓ k
2

< k
2

odd 2 even, > 2
odd Not balanceable (Lemma 2.18)

≡ 0 mod 4 Balanceable
(Lemma 2.16)

Balanceable
(Lemma 2.19) Balanceable (Lemma 2.20)

≡ 2 mod 4 Balanceable
(Lemma 2.17)

Balanceable
(Lemma 2.21)

Balanceable
except C6,2

(Lemma 2.22)

Balanceable
(Lemma 2.23)

Table 2.2: The balanceability of the graph Ck,ℓ. If ℓ > k
2 , then refer to Ck,k−ℓ.

First, we consider the case of Ck, k
2
, which only exist if k is even. For k ≥ 6, those graphs

are exactly the Möbius ladders. We will distinguish two cases according to the parity of the
edge number of Ck, k

2
, which happens to be even for k ≡ 0 mod 4, and odd for k ≡ 2 mod 4.

Lemma 2.16. Let k be a multiple of 4. The graph Ck, k
2

is balanceable.

Proof. Let k = 4a with a > 1. Note that, in Ck, k
2
, every vertex has degree 3. Furthermore,

let e be the number of edges in Ck, k
2
, then e = 3k

2 = 6a, which implies that e
2 = 3a. Denote

the vertices of Ck, k
2

by u0, u1, u2, . . . , uk−1, and let I = {u0, u2, . . . , u2a−2}. It is easy to see
that I is an independent set of size a, and thus ∑v∈I d(v) = 3a = e

2 . Thus, by Proposition 2.1,
Ck, k

2
is balanceable.

Lemma 2.17. Let k be an integer such that k ≡ 2 mod 4. The graph Ck, k
2

is balanceable.
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Proof. Let k = 4a + 2 with a ≥ 1.
Let e be the number of edges in C4a+2,2a+1, then e = 6a + 3 and thus ⌊ e

2⌋ = 3a + 1 and
⌈ e

2⌉ = 3a + 2. Note also that all vertices have degree 3.
We will begin by proving that we can partition the vertices of C4a+2,2a+1 in two sets X and

Y such that e(X, Y ) = 3a + 1. First, let X1 = {u0, u2, . . . , u2a−4} (if a = 1 then X1 is empty).
Then, let X2 = {u2a−2, u2a−1}. Now, let X = X1 ∪ X2 and Y = V (C4a+2,2a+1) \ X. Clearly,
the vertices in X1 are an independent set, and are independent from the vertices in X2. Thus,
each vertex in X1 has three neighbors in Y , and each vertex in X2 has two neighbors in Y
(since they are adjacent). This implies that we have e(X, Y ) = 3(a − 1) + 4 = 3a + 1.

Now, we will prove that there is a subset of vertices W such that e(G[W ]) ∈ {3a+1, 3a+2}.
The idea will be to take vertices along the cycle, thus taking a path and some chords within
G[W ]. There are two cases to consider:

• If a is even, then we set W := {u0, u1, . . . , u2a+ a
2 +1}. The edges within G[W ] are of two

sorts: there are 2a + a
2 + 1 along the cycle, and there are a

2 + 1 chords (from u0u2a+1 to
ua

2
u2a+ a

2 +1). Adding those, we have e(G[W ]) = 2a + a
2 + 1 + a

2 + 1 = 3a + 2.

• If a is odd, then we set W := {u0, u1, . . . , u2a+ a−1
2 +1}. The edges within G[W ] are of two

sorts: there are 2a + a−1
2 + 1 along the cycle, and there are a−1

2 + 1 chords (from u0u2a+1
to ua−1

2
u2a+ a−1

2 +1). Adding those, we have e(G[W ]) = 2a + a−1
2 + 1 + a−1

2 + 1 = 3a + 1.

Those two cases allow us to conclude that C4a+2,2a+1 verifies the conditions of Theorem 1.37,
and thus C4a+2,2a+1 is balanceable.

In all future cases, we assume ℓ < k
2 , thus every vertex of Ck,ℓ has degree 4. Furthermore,

let e be the number of edges in Ck,ℓ, then e = 2k. We will also denote the vertices of Ck,ℓ by
u0, u1, u2, . . . , uk−1.

Lemma 2.18. Let k be an odd integer. The graph Ck,ℓ is not balanceable.

Proof. Since k is odd, e
2 = 2k

2 = k is odd. Since Ck,ℓ is eulerian, Proposition 2.6 implies that
Ck,ℓ is not balanceable.

Lemma 2.19. Let k be an integer such that k ≡ 0 mod 4, and let ℓ be an odd integer. The
graph Ck,ℓ is balanceable.

Proof. It is easy to see that Ck,ℓ is bipartite (the vertices with an even index being one part,
and the vertices with an odd index being the other part). Furthermore, it has order 4a and
is 4-regular. Thus, by Proposition 2.5, Ck,ℓ is balanceable.

Lemma 2.20. Let k be an integer such that k ≡ 0 mod 4, and let ℓ be an even integer. The
graph Ck,ℓ is balanceable.

Proof. We denote k = 4a and ℓ = 2b. The idea is to select an independent set I of size a,
allowing us to invoke Proposition 2.1. We start by adding to I the vertices u0, u2, . . . , u2b−2,
thus a set of b independent vertices. However, we cannot add u2b because of the edge u0u2b.
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Instead, we can add to I the vertices u2b+1, u2b+3, . . . , u4b−1, thus a set of b new vertices that
are independent from each other as well as from the first ones. Again, we have to jump the
vertex u4b+1 and start from u4b+2. By applying this, we will select ⌊a

b
⌋ such sets of b vertices,

and then we can apply the same construction and add the a − ⌊a
b
⌋b last vertices we need to

have |I| = a (those last vertices will be called leftover vertices in the remainder of the proof).
This is depicted in Figure 2.1.

We now need to prove that I is an independent set. Note that the only thing that we
need to prove is that the index of the second-biggest-index neighbour of u0 is greater than
the index of the last vertex that we selected. Indeed, we selected the sets in such a way that
all vertices are independent from each other going forward.

The last vertex that is selected in I with our construction will have index:

imax =
⌊

a

b

⌋
2b +

⌊
a

b

⌋
+ 2

(
a −

⌊
a

b

⌋
b
)

− 1 − 1 − r

with r = 1 if ⌊a
b
⌋ = a

b
and r = 0 otherwise.

The ⌊a
b
⌋2b are the vertices selected in the ⌊a

b
⌋ sets that are themselves separated from

each other by one supplementary vertex (thus the ⌊a
b
⌋); then the 2(a − ⌊a

b
⌋b) are the leftover

vertices; and then we have to subtract 1 for the last vertex (which does not count) and again
substract 1 for the fact that the indices start at 0. Finally, if ⌊a

b
⌋ = a

b
, then there are no

leftover vertices and thus we can substract 1 from the total.
Thus, we have imax = 2a+ a

b
−2−r ≤ 2a+ a

b
−2. We only have to prove that imax < 4a−2b

since this would prove that the last vertex that we selected has an index smaller than the
second-biggest-index neighbour of u0. There are two cases to consider:

1. If 2b ≥ a, then we have a
b

≤ 2. Since ⌊a
b
⌋ ≤ a

b
, we have imax ≤ 2a + ⌊a

b
⌋ − 2 ≤

2a + 2 − 2 = 2a. Furthermore, since 2b < k
2 = 2a we have 4a − 2b > 2a. This implies

that imax < 4a − 2b, proving that I is an independent set.

2. If 2b < a, then imax ≤ 3a − 2 since ⌊a
b
⌋ ≤ a. Furthermore, 4a − 2b > 4a − a = 3a, and

thus imax < 4a − 2b, proving that I is an independent set.

Thus, I is an independent set of size a, and since every vertex has degree 4 we have∑
v∈I d(v) = 4a = e

2 , and Proposition 2.1 implies that Ck,ℓ is balanceable.

For the next three lemmas, we cannot construct an independent set I such that∑v∈I d(v) =
e
2 , since all the degrees are 4 and e

2 is not a multiple of 4. We will instead prove that the
vertices of Ck,ℓ can be partitioned in such a way that we can apply Theorem 1.37.

Lemma 2.21. Let k be an integer such that k ≡ 2 mod 4, and let ℓ be an odd integer with
ℓ < k

2 . The graph Ck,ℓ is balanceable.

Proof. Let k = 4a + 2 and ℓ be an odd integer. We have two cases to consider.
First, we will prove that we can partition the vertices of Ck,ℓ in two sets X and Y such

that e(X, Y ) = e
2 = 4a + 2. We begin by setting X := {u0, u1}, which puts 6 edges between

X and Y as long as no neighbour of u0 or u1 is in Y . We now select a − 1 independent
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Figure 2.1: A depiction of the proof of Lemma 2.20 on C40,8. The vertices that we selected in
I are in black, and the out-edges of I are bolded.

vertices that are not neighbours of u0 and u1 and put them in X. Note that there are 4a − 6
vertices not neighbours of u0 and u1: 2a − 3 with an even index and 2a − 3 with an odd
index. Thus, we can select a − 1 vertices of even index (without loss of generality), which
is always possible. Indeed, assume by contradiction that a − 1 > 2a − 3; then a < 2, i.e.
k < 10, i.e. k = 6, which is a contradiction since ℓ is odd, but ℓ > 1 and ℓ < k

2 = 3 so this
case cannot occur. Since the a − 1 vertices we just added to X are independent, we have
e(X, Y ) = 6 + 4(a − 1) = 4a + 2. This construction is depicted in Figure 2.2.

Now, denote Ck,ℓ by G, its vertex-set by V and its edge-set by E. We will prove that
we can partition V in two sets W and V \ W such that e(G[W ]) = e

2 = 4a + 2. Note that
two adjacent vertices in V \ W independent from all other vertices in V \ W put 7 edges in
E \E(G[W ]). We will construct V \W by selecting two pairs of adjacent vertices independent
from each other, and a − 3 independent vertices that will not be neighbours of the four
vertices previously selected. Thus, we will have e − e(G[W ]) = 2 × 7 + 4(a − 3) = 4a + 2, and
thus e(G[W ]) = 4a + 2. There are three cases to consider.

First, assume that k = 10, the only graph to consider is C10,3. In this case, we cannot
construct the sets as explained above (since 2 × 7 = 14 > 10 = e

2). However, by setting
W = {u0, u1, u2, u3, u4, u5, u6}, there are 10 edges in G[W ], so this case is covered.

Then, assume that ℓ = 3 and k > 10. We put u0, u1, u5 and u6 in V \ W . There are
k − 13 = 4a − 11 vertices that are neither those nor neighbours of those: 2a − 5 with an even
index and 2a − 6 with an odd index. Thus, we can select a − 3 independent vertices with an
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even index, which is always possible since a − 3 > 2a − 5 if and only if a < 2, i.e. k < 10,
which cannot occur as discussed previously. This implies that we have e − e(G[W ]) = 4a + 2.
This construction is depicted on the left-hand side of Figure 2.3.

Finally, assume that ℓ > 3 and k > 10. We put u0, u1, u3 and u4 in V \ W . There are
k − 15 = 4a − 13 vertices that are neither those nor neighbours of those: 2a − 6 with an even
index and 2a − 7 with an odd index. Thus, we can select a − 3 independent vertices with an
even index, which is always possible. Indeed, assume by contradiction that a − 3 > 2a − 6,
then a < 3, i.e. k < 14; the case k = 6 has been discussed previously, and the case k = 10
cannot occur either since this would imply ℓ = 5 = k

2 , a contradiction. This implies that we
have e − e(G[W ]) = 4a + 2. This construction is depicted on the right-hand side of Figure 2.3.

Altogether, this allows us to invoke Theorem 1.37, and thus to conclude that the circulant
graph C4a+2,ℓ is balanceable when ℓ is odd and ℓ < 2a + 1.
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Figure 2.2: A depiction of the first case of the proof of Lemma 2.21 on C38,9. The vertices
that we selected in X are in black, and the edges between X and Y are bolded.

Lemma 2.22. Let k be an integer such that k ≡ 2 mod 4. The graph Ck,2 is balanceable if
and only if k ̸= 6.

Proof. This proof contains two parts: first, we will prove that C6,2 is not balanceable; then,
we will prove that C4a+2,2 is balanceable when a > 1.

First, assume that k = 6. We will prove that there is no subset of vertices W such that
e(G[W ]) = 6. First, note that W cannot possibly be empty or all the vertices. Taking this
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Figure 2.3: A depiction of the second case of the proof of Lemma 2.21 on C38,3 and C38,9. The
vertices that we selected in V \ W are in black, and the edges outside of G[W ] are bolded.

into account, Table 2.3 shows possible sets for different sizes of W as well as e(G[W ]) in
each case (the possible sets are up to renaming vertices). Since no set W gives e(G[W ]) = 6,
Theorem 1.37 implies that C6,2 is not balanceable.

|W | 1 2 3 4 5
Possible

vertices in W
→ e(G[W ])

u0 → 0
u0, u1 → 1
u0, u2 → 1
u0, u3 → 0

u0, u1, u2 → 3
u0, u1, u3 → 2
u0, u2, u4 → 3

u0, u1, u2, u3 → 5
u0, u1, u2, u4 → 5
u0, u1, u3, u4 → 4

u0, . . . , u4 → 8

Table 2.3: Possible sets W of vertices of C6,2 (up to renaming the vertices) and the value of
e(G[W ]) for each of them.

Now, assume that a > 1, we will prove that C4a+2,2 is balanceable. The proof is similar
to the proof of Lemma 2.21.

First, we will prove that we can partition the vertices of C4a+2,2 in two sets X and Y such
that e(X, Y ) = 4a + 2. For this, we set X1 = {u0, u3, . . . , u3(a−2)}, X2 = {u4a−1, u4a}, and
X = X1 ∪ X2. It is easy to see that X1 is an independent set and that no vertex in X2 is
adjacent to a vertex in X1 (since we have a > 1 ⇒ 4a − 3 > 3a − 2 > 3(a − 2)). Thus, we
have e(X, Y ) = e(X1, Y ) + e(X2, Y ) = 4(a − 1) + 6 = 4a + 2.

Then, as in the proof of Lemma 2.21, assume that a = 2, i.e. k = 10. If we set
W = {u0, u1, u2, u3, u4, u6, u8}, then we have e(G[W ]) = 10. This, with the previous point
(that applies if a = 2), proves that C10,2 is balanceable. Assume now that a > 2. Let
V1 = {u0, u3, . . . , u3(a−4)} (if a = 3 then we set V1 = ∅), V2 = {u4a−6, u4a−5} and V3 =
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{u4a−2, u4a−1}; then set W = V \ (V1 ∪ V2 ∪ V3). It is easy to see that V1 is an independent set
and that no vertex in V2 (resp. V3) is adjacent to a vertex in V1 or V3 (resp. V1 or V2), since
we have a > 2 ⇒ 4a−8 > 3a−6 > 3(a−4). Thus, we have e−e(W ) = 4(a−3)+14 = 4a+2,
which implies e(G[W ]) = 4a + 2.

The above constructions allow us to invoke Theorem 1.37, which implies that C4a+2,2 is
balanceable.

Lemma 2.23. Let k be an integer such that k ≡ 2 mod 4, and let ℓ be an even integer such
that ℓ > 2. The graph Ck,ℓ is balanceable.

Proof. Let k = 4a + 2 and ℓ = 2b. The proof for this lemma is a mix of the proofs for
Lemmas 2.20 and 2.22: we will use the structure we constructed in the proof for Lemma 2.20
and add either one or two independent edges to it, modifying the structure to keep everything
independent from each other.

First, we construct X in two steps. We begin by creating a set X1 by applying the same
construction than in the proof of Lemma 2.20 (so several sets of ℓ

2 vertices at distance 2 along
the outer cycle from each other, each set being separated from the others by another vertex):
a total of a − 1 such vertices are added to X1. Then, let X2 := {u4a−1, u4a}. Now, we need
X1 and X2 to be independent from each other, so if a vertex in X1 is adjacent to a vertex in
X2 (this can happen to at most one vertex), we remove it from X1 and add to this set the
next vertex in the construction described in the proof of Lemma 2.20 (we may start a new
set this way). This is depicted on the left-hand side of Figure 2.4. The last vertex that is
selected in X1 with our construction will have index:

imax ≤ 2a +
⌊

a

b

⌋
− 2 + 3 − 2.

That is, the same maximum index than in the proof of Lemma 2.20, but with two corrections:
+3 may happen since we could start a new set by shifting the neighbour of either u4a−1 or
u4a (this gives us +2, and may give us an additional +1 if the vertex we shift creates a new
set), and −2 since we only need a − 1 vertices in X1 (instead of the a from the proof of
Lemma 2.20). Now, we need to prove that this last index is less than 4a − 1 − ℓ.

If ℓ ≥ a, then we can check that we will always have imax = 2a − 3 < 2a − 2 < 4a − 1 − ℓ
since ℓ < k

2 = 2a + 1. Indeed, we will put in X1 first the b − 1 vertices u0, u2, . . . , uℓ−4, then
the a − b vertices uℓ−1, uℓ+1, . . . , uℓ+2(a−b)−3 (which is always possible since ℓ ≥ a). The last
index will thus always be ℓ + 2(a − b) − 3 = 2a − 3.

Assume now that ℓ < a. Since ℓ > 2, we have b ≥ 2 and thus ⌊a
b
⌋ ≤ ⌊a

2⌋ ≤ a
2 + 1. Thus,

imax ≤ 2a + ⌊a
b
⌋ − 1 ≤ 2a + a

2 + 1 − 1 = 5a
2 < 3a ≤ 4a − 1 − ℓ.

Hence, in this construction, X1 and X2 are independent from each other, and by setting
X = X1 ∪ X2 we have e(X, Y ) = 6 + 4(a − 1) = 4a + 2.

Now, as in the proof of Lemma 2.21, we have to deal with the case of C10,4. In this case,
by setting W := {u0, u1, u2, u4, u5, u6, u8}, we have e(G[W ]) = 10.

Finally, for k ≥ 14, we construct V \ W by applying the same construction than in the
proof of Lemma 2.20. Let V1 be a set of a − 3 vertices constructed this way, then let either
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V2 = {u4a−4,4a−3} (if ℓ > 4) or V2 = {u4a−7, u4a−6} (if ℓ = 4), and V3 = {u4a−1, u4a}. Again,
we shift the potential vertices in V1 adjacent to a vertex in V2 or V3 (at most 2 such vertices),
and thus the highest index we can reach is:

imax ≤ 2a +
⌊

a

b

⌋
− 2 + 6 − 6.

The +6 comes from the two potential shifts, and the −6 from the fact that we select a − 3
vertices instead of a. We now need to verify that imax < 4a − i − ℓ for i ∈ {4, 7} (depending
on the value of ℓ). We have three cases to check:

1. If ℓ = 4, then imax ≤ 2a + ⌊a
2⌋ − 2; and 4a − 7 − ℓ = 4a − 11. Now, if a > 6 then since

⌊a
2⌋ ≤ a

2 it is easy to check that imax ≤ 2a + a
2 − 2 < 4a − 11. We need to check that

imax < 4a − 11 in the remaining cases:

(a) If a = 3, then we have V1 = ∅ so no contradiction arises;
(b) If a = 4, then we have imax = 0 and 4a − 11 = 5 so no contradiction arises;
(c) If a = 5, then we have imax = 3 and 4a − 11 = 9 so no contradiction arises;
(d) If a = 6, then we have imax = 5 and 4a − 11 = 13 so no contradiction arises.

Thus, if ℓ = 4, then imax < 4a − 7 − ℓ.

2. If ℓ ≥ a, then we can check that we will always have imax = 2a−5 and 4a−4−ℓ ≥ 2a−4
since ℓ < k

2 = 2a + 1. Indeed, we will put in V1 first the b − 3 vertices u0, u2, . . . , uℓ−8
as well as uℓ−4, then the a − b − 1 vertices uℓ−1, uℓ+1, . . . , uℓ+2(a−b)−5 (which is always
possible since ℓ ≥ a). The last index will thus always be ℓ + 2(a − b) − 5 = 2a − 5.

3. If ℓ > 4 (thus b > 2) and ℓ < a, then since ⌊a
b
⌋ < a

2 we have imax ≤ 2a+⌊a
b
⌋−2 < 5a

2 −2;
and 4a − 4 − ℓ > 3a − 4. Now, we know that a > ℓ > 4, so it is easy to check that
5a
2 − 2 < 3a − 4, and thus, that imax < 4a − 4 − ℓ.

All those cases prove that V2 and V3 are independent from V1. By setting V \W = V1 ∪V2 ∪V3,
we have e − e(G[W ]) = 14 + 4(a − 3) = 4a + 2, and thus e(G[W ]) = 4a + 2.

Those two constructions, depicted in Figure 2.4, allow us to invoke Theorem 1.37, which
implies that C4a+2,ℓ is balanceable when ℓ is even and ℓ > 2.

Together, Lemmas 2.16 to 2.23 prove the validity of Theorem 2.15, which fully characterizes,
among this special class of circulant graphs, which are balanceable and which are not. In
particular, note that every Möbius ladder is balanceable (by Lemmas 2.16 and 2.17) and that
the 3-antiprism graph is the only non-balanceable antiprism graph (by Lemma 2.22 and a
special case of Lemma 2.20).

With this special class of circulant graphs, we get one step closer towards a full classification
of the balanceability of circulant graphs, which had been informally started by the study of
complete graphs and cycles. This full classification is an interesting open problem for future
studies.
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Figure 2.4: A depiction of the proof of Lemma 2.23 on C38,8. On the left-hand side, the
vertices in X are bolded, as well as the edges between X and Y . On the right-hand side, the
vertices in V \ W are bolded, as well as the edges outside G[W ].

2.3.2 Balanceability of grids
In this section, we study the balanceability of grid graphs with an even edge number.
Particularly, we consider rectangular and triangular grids.

Rectangular grids

Let Gk,ℓ be the rectangular grid graph with k vertices per row and ℓ vertices per column. It
is easy to see that Gk,ℓ has k(ℓ − 1) + (k − 1)ℓ = 2kℓ − (k + ℓ) edges, and this number is even
if and only if k and ℓ have the same parity.

Theorem 2.24. Let k and ℓ be two integers such that k, ℓ > 1. If k and ℓ have the same
parity, then Gk,ℓ is balanceable.

Proof. In the grid graph Gk,ℓ with vertex-set V and edge-set E, vertices can have degree two,
three or four. The repartition is as follows:

• 4 vertices of degree two (the corners);

• 2(k − 2) + 2(ℓ − 2) = 2(k + ℓ) − 8 vertices of degree three (the sides);

• kℓ − 2(k + ℓ) + 4 vertices of degree four (the inside).
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It is well-known that ∑v∈V d(v) = 2|E|. We want to find an independent set of vertices I

such that ∑v∈I d(v) = |E|
2 . To do this, we can select one fourth of the vertices in every degree

set. There are several cases.

Case 1: If k and ℓ are even, then we can select 1 vertex of degree two, k+ℓ
2 − 2 vertices of

degree three, and kℓ
4 − k+ℓ

2 + 1 vertex of degree four. An example is depicted on Figure 2.5.
It is always possible to select those vertices such that they induce an independent set,
since there is an independent set containing half the vertices of Gk,ℓ, and in particular half
the corners, half of the sides and half of the inside. By applying Proposition 2.1, Gk,ℓ is
balanceable.

Figure 2.5: The independent set I such that ∑v∈I d(v) = |E(G)|
2 for G4,8. Vertices in I are

bolded, as well as the out-edges of I.

Case 2: If k and ℓ are odd, and k + ℓ is not a multiple of 4, then we can select 1 vertex
of degree two, k+ℓ

2 − 3 vertices of degree three, and kℓ+7
4 − k+ℓ

2 vertices of degree four. An
example is depicted on Figure 2.6. Again, it is always possible to select those vertices
such that they induce an independent set (by the same argument than the previous case).
Furthermore, kℓ + 7 is a multiple of 4: by noting k = 2a + 1 and ℓ = 2b + 1, we have
kℓ + 7 = 4ab + 2a + 2b + 1 + 7 = 4ab + 8 + (2a + 2b) = 4ab + 8 + (k + ℓ − 2), and the fact
that k + ℓ is not a multiple of 4 implies that (k + ℓ − 2) is. We will thus have:

∑
v∈I

d(v) = 2 + 3
(

k + ℓ

2 − 3
)

+ 4
(

kℓ + 7
4 − k + ℓ

2

)

= 2 + 3k + ℓ

2 − 9 + kℓ + 7 − 4k + ℓ

2
= kℓ − k + ℓ

2

= |E|
2

Proposition 2.1 then implies that Gk,ℓ is balanceable.
Case 3: If k and ℓ are odd, and k + ℓ is a multiple of 4, then we can select 2 vertices
of degree two, k+ℓ

2 − 3 vertices of degree three, and kℓ+5
4 − k+ℓ

2 vertices of degree four. An
example is depicted on Figure 2.7. Again, it is always possible to select those vertices
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Figure 2.6: The independent set I such that ∑v∈I d(v) = |E(G)|
2 for G3,7. Vertices in I are

bolded, as well as the out-edges of I.

such that they induce an independent set (by the same argument than the previous case).
Furthermore, kℓ + 5 is a multiple of 4: by noting k = 2a + 1 and ℓ = 2b + 1, we have
kℓ + 5 = 4ab + 2a + 2b + 1 + 5 = 4ab + (2a + 2b + 6) = 4ab + (k + ℓ + 4). We will thus have:

∑
v∈I

d(v) = 4 + 3
(

k + ℓ

2 − 3
)

+ 4
(

kℓ + 5
4 − k + ℓ

2

)

= 4 + 3k + ℓ

2 − 9 + kℓ + 5 − 4k + ℓ

2
= kℓ − k + ℓ

2

= |E|
2

Proposition 2.1 then implies that Gk,ℓ is balanceable.

Figure 2.7: The independent set I such that ∑v∈I d(v) = |E(G)|
2 for G5,7. Vertices in I are

bolded, as well as the out-edges of I.

All possible cases have been covered, and thus if k and ℓ have the same parity, then the
rectangular grid Gk,ℓ is balanceable.

Triangular grids

Let Th be the (equilateral) triangular grid with h vertices on each side. It is easy to see that
Th has 3(h−1)h

2 edges, and that this is even if and only if h mod 8 ∈ {0, 1, 4, 5}. We will prove
that some triangular grids are not balanceable, while others are.
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Theorem 2.25. Let h be a positive integer such that h mod 8 ∈ {0, 1, 4, 5}. The triangular
grid Th is balanceable if and only if h mod 8 ∈ {0, 1}.

Proof. We prove two statements here: the non-balanceability of T8k+4 and T8k+5; as well as
the balanceability of T8k and T8k+1.

We will consider the vertices of Th row by row, starting from a single vertex at the top of
the grid. The vertex uj

i will be the ith vertex (starting from the left) in the jth row (starting
from the top), so the top vertex is u1

1, the second row contains u2
1 and u2

2, and so on. Note
that the three corner vertices have degree 2, the vertices on the sides of the grid have degree 4,
and the vertices in the middle have degree 6; thus Th is eulerian.

First, assume that h = 8k + 4. Then, |E(G)|
2 = 3(8k+3)(8k+4)

4 = 48k2 + 42k + 9 and thus is
odd. Since Th is eulerian, Proposition 2.6 implies that it is not balanceable. The reasoning is
the same with h = 8k + 5, with |E(G)|

2 = 48k2 + 54k + 15.
Now, assume that h ∈ {8k, 8k + 1}. We will prove that there is an independent set I

such that ∑v∈I d(v) = |E(G)|
2 , and apply Proposition 2.1 to complete the proof. We define, for

every row except the first, second and last ones, two kinds of independent sets: we call A-set
of the ith row the independent set containing all vertices ui

2j+1 for j ≥ 0; and we call B-set
of the ith row the independent set containing all vertices ui

2j for j ≥ 1. Note that, if i is odd,
then the A-set of the ith row contains two vertices of degree 4 and i−3

2 vertices of degree 6;
and the B-set of the ith row contains i−1

2 vertices of degree 6. In the following, we will call
degree of an A-set (resp. B-set) the sum of the degrees of the vertices it contains.

Case 1: h = 8k. Note that in this case, |E(G)|
2 = 48k2 − 6k. We take the following vertices in

I:

1. u1
1:

2. B-sets on rows 3 + 2i for i ∈ {0, . . . , k − 1};

3. A-sets on rows 3 + 2k, 3 + 2k + 2, . . . , h − 1.

This is depicted on the left-hand side of Figure 2.8.
Thus, I contains u1

1 which has degree 2, k B-sets which have degree 6(i + 1) for i ∈
{0, . . . , k − 1}, and 3k − 1 A-sets which have degree 8 + 6i for i ∈ {k, . . . , 4k − 2}. Thus, we
have:

∑
v∈I

d(v) = 2 +
k−1∑
i=0

6(i + 1) +
4k−2∑
i=k

(8 + 6i)

= 2 + 6k(k + 1)
2 + 8(4k − 2) + 6(4k − 2)(4k − 1)

2 − 8(k − 1) − 6(k − 1)k
2

= 48k2 − 6k

Case 2: h = 8k + 1. Note that in this case, |E(G)|
2 = 48k2 + 6k. If h = 1 then the result

trivially holds since G is the trivial graph. Otherwise, we take the following vertices in I:
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1. u1
1;

2. A-sets on rows 3, 5, . . . , h−2, from which we remove k vertices of degree 6 (this is always
possible since those A-sets will contain ∑4k−2

i=0 i = 8k2 − 6k + 1 vertices of degree 6, and
k ≥ 1 ⇒ 8k2 − 6k + 1 > k);

3. uh
1 , uh

3 , . . . , uh
h.

This is depicted on the right-hand side of Figure 2.8.
Thus, I contains u1

1 which has degree 2, 4k − 1 A-sets which have degree 8 + 6i for
i ∈ {0, . . . , 4k − 2}, from which we remove k vertices of degree 6 thus removing 6k, and the
vertices selected on the last row (4k − 1 of degree 4 and two of degree 2). Thus, we have:

∑
v∈I

d(v) = 2 +
4k−2∑
i=0

(8 + 6i) − 6k + 4(k − 1) + 2 + 2

= 2 + 8(4k − 1) + 6(4k − 2)(4k − 1)
2 − 6k + 16k

= 48k2 + 6k

Thus, we have proved that if h mod 8 ∈ {0, 1}, then Th is balanceable; and that if
h mod 8 ∈ {4, 5}, then Th is not balanceable. This completes the proof of Theorem 2.25.

Figure 2.8: The independent set I such that ∑v∈I d(v) = |E(G)|
2 for T8 (on the left) and T9

(on the right). Vertices in I are bolded, as well as the out-edges of I.

To summarize the results exposed in this section, the table 2.1 contains all of the known
balanceable and non-balanceable graph families up to date (amoeba graphs are defined
in Chapter 3). The results previously presented were published in [22] that was sent to the
journal Discrete Applied Mathematics and was accepted in September of 2020.
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2.4 Balancing Number
Recall that, if a graph G is balanceable with parameters as in Definition 1.36, then the
smallest such k is called the balancing number of G and is denoted as bal(n, G). Even though
the concept is quite new, there has been some work done in order to find or improve bounds
for the balancing number of certain graphs. For example, Caro, Lauri and Zarb [15] studied
the balancing number of graphs of at most four edges. In [6], colorings using arbitrary many
colors are studied and the 3-balancing number for paths is determined up to a constant factor.
Caro, Hansberg and Montejano determined all graphs with constant balancing number in [14].
In table 2.4, we can see the exact results and bounds for the balancing number of certain
graph families. The balancing number of paths and stars was discussed in 1.5.2 which will
serve as a comparison to analogous results in a Kn,n setting in 4. In this section we determine
exact values of bal(n, G) for C4k±1 and tight (up to the first term) lower and upper bounds
for C4k, which are all balanceable cycles.

Graph G
Balancing number
bal(n, G)

K4
n if n ≡ 0 (mod 4) and n−1
in any other case [11]

Trees T on k edges ≤ (k − 1)n [13]

Paths Pk

(k−2
4 )n − k2

32 + k
8 if k ≡ 2

(mod 4) and (k−2
4 )n − k2

32 +
k
8 + 1 if k ≡ 0 (mod 4) [13]

Stars K1,k
(k−2

2 )n − k2

8 + k
4 ≤ (k − 1)n

[13]
Paths P4k+α−1
with α ∈ {−1, 1} (k−1)n−1

2(k2−k−1−α) [13]

Cycles C4k+α

with α ∈ {−1, 1} (k−1)n−1
2(k2−k−1−α) [20]

Cycles C4k

(k − 1)n − (k − 1)2 ≤
bal(n, C4k) < (k − 1)n +
12k2 + 3k [20]

Table 2.4: Balancing numbers bal(n, G) of relevant graphs.

2.5 Generalized balancing number
The problem of determining the balancing number is still open for many graph classes. It
is clear that, if a graph is balanceable, then determining its balancing number is a relevant
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problem, yet not necessarily a simple one. On the other hand, if a graph G is not balanceable,
we manage to obtain balanced copies of G by allowing a relaxation of the 2-coloring. In this
research work, we extend the notion of balancing number by considering edge coverings. In
an edge covering, each edge receives a nonempty set of colors. Hence, if an edge has more
than one color in its set, then we may consider the color we wish in order to find the balanced
copy of the graph in question.

In this section, we provide general bounds for the generalized balancing number, which are
relevant for graphs where the balancing number does not exist. In particular, Proposition 2.28
says that looking at the number of bicolored edges suffices to get upper bounds; which,
in turn, leads to consider the Turán number for a particular class of graphs described in
Theorem 2.29. Before proceeding to these results, we provide a proof of the fact mentioned
in the introduction: if bal(n, G) exists for a graph G, then bal*(n, G) = bal(n, G).

Proposition 2.26. Let G be a graph and n be an integer. If bal(n, G) exists, then bal(n, G) =
bal*(n, G) < 1

2

(
n
2

)
.

Proof. Consider a graph G(V, E) and n for which bal(n, G) exists; in particular, n ≥ |V |. As
we previously discussed, the class considered for bal*(n, G) extends the class of 2-colorings;
this implies that bal(n, G) ≤ bal*(n, G). On the other hand, it is clear by definition that
bal(n, G) < 1

2

(
n
2

)
.

To establish the equality we prove that every 2-edge covering E(Kn) = R ∪ B satisfying
|R|, |B| > bal(n, G) has a balanced copy of G. Suppose that there is a 2-coloring E(Kn) =
R′ ∪ B′ with R′ ⊂ R, B′ ⊂ B and |R′|, |B′| > bal(n, G), then a balanced copy of G under
the 2-coloring R′ ∪ B′ also corresponds to a balanced copy of G under the 2-edge covering
R ∪ B. Hence, it remains to show that we may construct a coloring R′ ∪ B′ with such
properties. If |R \ B| > bal(n, G), then we simply let R′ = R \ B and B′ = B. Otherwise,
let R′ ⊂ R be an arbitrary subset such that R \ R′ ⊂ B and |R′| = bal(n, G) + 1, then let
B′ = B \ R′. In either case we have R′ ⊂ R and B′ ⊂ B. The constraint on the size of R′ and
B′ is clearly satisfied also; for B′ in the latter case, observe that bal(n, G) < 1

2

(
n
2

)
implies

|B′| =
(

n
2

)
− |R′| ≥ bal(n, G) completing the proof that bal(n, G) = bal*(n, G). Hence, every

2-edge covering E(Kn) = R ∪ B satisfying |R|, |B| > bal(n, G) has a balanced copy of G.

Proposition 2.26 immediately implies the following statement:

Corollary 2.27. Let G(V, E) be a graph and n ≥ |V | be an integer. If bal(n, G) does not
exist, then 1

2

(
n
2

)
≤ bal*(n, G) <

(
n
2

)
.

The next result, which is the key for the main theorem of the section, uses a simple
relation between the sizes of the color classes and the necessary number of bicolored edges.

Proposition 2.28. Let G be a graph and let b be a positive integer. If every 2-list edge coloring
with at least b bicolored edges has a balanced copy of G then bal*(n, G) ≤ 1

2

(
n
2

)
+
⌈

b
2

⌉
− 1.
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Proof. First, observe that an inclusion-exclusion argument gives that if R ∪ B are the color
classes of a 2-edge covering of Kn satisfying |R| = |B| = 1

2

(
n
2

)
+ m, then there are exactly

2m bicolored edges. Consequently, for any 2-edge covering inducing color classes R and B
with |R|, |B| ≥ 1

2

(
n
2

)
+
⌈

b
2

⌉
, there are at least b bicolored edges, and so, by hypothesis, there

is a balanced copy of G.

In the remainder of the paper we say that a 2-edge covering has a color excess of b edges,
referring to the number of edges in each color by which 1

2

(
n
2

)
is at least surpassed. More

precisely, we say that a 2-edge covering E(Kn) = R ∪ B has a color excess of b edges, if
|R|, |B| ≥ 1

2

(
n
2

)
+ b. In such a case, since |R ∩B| = |R| + |B|− |R ∪B| = |R| + |B|−

(
n
2

)
≥ 2b,

it clearly follows that there have to be at least 2b bicolored edges.
The following theorem uses the idea of exploiting the flexibility of bicolored edges. Once

we have a copy of G we have to choose the color of the bicolored edges, and we do so according
to the edges which have a unique color. In particular, if more than half the edges of such a
copy are bicolored, then we may distribute these between the two color classes to balance
the copy, regardless of the color of the rest of the edges. With this perspective, a general
bound on the generalized balancing number may be reduced to guaranteeing that the 2-edge
coverings have enough bicolored edges. To this aim, we need to consider for a graph G, the
family of all its subgraphs H ≤ G, where the graph H satisfies that V (H) ⊆ V (G) and
E(H) ⊆ E(G), having half of the edges,

H(G) =
{

H : H ≤ G, e(H) =
⌊

e(G)
2

⌋
, H has no isolated vertices

}
;

recall that an isolated vertex is a vertex of degree 0. We note at this point that this family
was already used in [9] to gain a similar insight in studying the existence of balanced copies
of spanning subgraphs of a 2-colored Kn.

Theorem 2.29. Let G(V, E) be a graph and n ≥ |V | be an integer. Then we have

bal*(n, G) ≤ 1
2

(
n

2

)
+
⌈

ex(n, H(G))
2

⌉
.

Proof. Let G(V, E) be a graph, and let R and B be the color classes induced by a 2-edge
covering of Kn with |R|, |B| > 1

2

(
n
2

)
+ ⌈ ex(n,H(G))

2 ⌉. This implies that there are at least
ex(n, H(G)) + 1 bicolored edges. In particular, since Kn is of order n, the subgraph of Kn

induced by the bicolored edges contains a graph in H(G), say H. Starting from H, we can
complete with other edges to construct a copy of G. This copy has at least half its edges
that are bicolored, and thus we can make it balanced. Hence, we can find a balanced copy of
G, proving the upper bound on bal*(n, G).

Theorem 2.29 gives a general upper bound on the generalized balancing number of graphs
which, by Proposition 2.26, is only relevant when the balancing number does not exist. This
fairly general bound may be tight (up to the order of the second term ex(n, H(G))), as is the
case of K5. In Section 2.5.2, we will use this result to give an upper bound on the generalized
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balancing number of K5, which will be matched with a lower bound of the same order up
to a relevant term. However this general upper bound can also be far from the exact value
of the generalized balancing number, as can be noticed already in Section 2.5.1, where we
determine the generalized balancing number of the unbalanceable cycles.

2.5.1 The balancing number and generalized balancing number of
cycles

In Corollaries 2.2 and 2.7, it was proved that the cycle C4k is balanceable while the cycle
C4k+2 is not. We note here that all odd cycles are also balanceable, and provide exact values
for their balancing number. Moreover, we give tight bounds, up to the first order term, for
the balancing number of cycles of length 4k, for k ≥ 1. Finally, we determine the generalized
balancing number of C4k+2, for k ≥ 1.

Balanceable cycles

We now explore the family of balanceable cycles. Their balanceability has been discussed in
Section 2.1. Theorem 2.31 provides the balancing number for odd size-cycles. We can observe
this result to be a direct consequence of the balanceability of paths of even length. We denote
the path on ℓ edges by Pℓ; the exact values of bal(n, Pℓ) are found in [13, Theorem 3.7].

Theorem 2.30. [13] Let k ≥ 2 and n be integers with k even and such that n ≥ 9
32k2+ 1

4k+1.
Then

bal(n, Pk+1) = bal(n, Pk) =
(k−2

4 )n − k2

32 + 1
8 , for k ≡ 2 (mod 4),

(k−4
4 )n − k2

32 + k
8 + 1, for k ≡ 0 (mod 4),

Theorem 2.31 states the exact values of bal(n, C4k+α) as a direct consequence of the
previous theorem.

Theorem 2.31. Let k be a positive integer, let n ≥ 9
2k2 + 13

4 k + 49
32 , and let α ∈ {−1, 1}. We

have the following:

bal*(n, C4k+α) = bal(n, C4k+α) = bal(n, P4k+α−1) = (k − 1)n − 1
2(k2 − k − 1 − α).

Proof. Let k be a positive integer. We first prove that the balancing number of odd cycles is
equal to the balancing number of paths with one edge less, proving at the same time that
odd cycles are balanceable. We will demonstrate the result only for C4k+1 (i.e for α = 1)
since the exact same arguments can be made for C4k−1.

First, we prove that bal(n, C4k+1) ≤ bal(n, P4k). Assume that we have a 2-coloring R ⊔ B
of the edges of Kn with |R|, |B| > bal(n, P4k). This implies that there is a balanced copy of
P4k; that is, a path with an equal number of edges in R and in B. Regardless of the color of
the edge connecting the endpoints of the path, the addition of this edge to the path creates a
balanced cycle. Hence, we obtain the claimed upper bound on bal(n, C4k+1).
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Now, we prove that bal(n, P4k) ≤ bal(n, C4k+1). Assume that we have a 2-coloring R ⊔ B
of the edges of Kn with |R|, |B| > bal(n, C4k+1). This implies that there is a balanced copy
of C4k+1; without loss of generality, assume that this cycle contains 2k red edges and 2k + 1
blue edges. The path obtained from the cycle by deleting one of the blue edges is a balanced
path of length 4k, completing the proof that bal(n, C4k+1) = bal(n, P4k).

Finally, since we just proved C4k+α is balanceable, the equality bal*(n, C4k+α) =
bal(n, C4k+α) is clear from Proposition 2.26.

The problem of finding the exact value of the balancing number of cycles of length 4k
is more challenging; Theorem 2.32 below gives an upper and a lower bound for bal(n, C4k)
which are tight up to the first term, (k − 1)n; note that, contrary to the case of odd-length
cycles, we need additional edges in each color class (of the order of k2) in order to give an
upper bound of bal(n, C4k) and therefore guarantee a balanced copy of C4k.

Theorem 2.32. Let k be a positive integer. For n ≥ 9
2k2 + 13

4 k + 49
32 , we have the following:

(k − 1)n − (k − 1)2 ≤ bal*(n, C4k) = bal(n, C4k) < (k − 1)n + 12k2 + 3k.

The next two lemmas directly prove the bounds of Theorem 2.32 for bal(n, C4k). Those
bounds show that the cycles C4k are balanceable, which, in turn, allows us to invoke
Proposition 2.26 in order to have the equality bal*(n, C4k) = bal(n, C4k).

First, we show that there is a natural 2-coloring avoiding any balanced cycle of length 4k
which provides us with a lower bound for bal(n, C4k).

Lemma 2.33. For any n ≥ 4k, we have bal(n, C4k) ≥ (k − 1)n − (k − 1)2.

Proof. We will give a 2-coloring R⊔B of the edges of Kn with |B| ≥ |R| = (k −1)n− (k −1)2

and without a balanced copy of C4k. To this aim, let V (Kn) = V1 ⊔ V2, where |V1| = k − 1
and |V2| = n − k + 1, and we color the edges in E(V1, V2) with red, and the remaining edges
get the color blue. This coloring satisfies |R| = (k − 1)(n − k + 1) = (k − 1)n − (k − 1)2,
and it is not difficult to verify that |B| ≥ |R| for any k ≥ 1 and n ≥ 4k. Furthermore,
any 4k-cycle in this coloring can have at most k − 1 vertices in V1 and thus have at most
2k − 2 red edges. It follows that we cannot get a balanced copy of C4k, which implies that
bal(n, C4k) ≥ (k − 1)(n − k + 1).

Similar to the proof idea of Theorem 2.31, an upper bound for bal(n, C4k) can be given by
constructing a balanced copy of C4k from a balanced copy of C4k−1. We will show that, if this
construction is not possible, then some structure for the 2-coloring of the edges of Kn is forced,
in which case we are able to find, in turn, a balanced 4k-cycle by means of a long red path
that is glued together with a long blue path, together with some extra edges that close the
cycle. To guarantee the existence of the long red path, we make use of the extremal number
for paths. Note that the additional edges (namely (k − 1)n + 12k2 + 3k − bal(n, C4k−1)) are
necessary to guarantee this extremal number is exceeded.

Lemma 2.34. For n ≥ 9
2k2 + 13

4 k + 49
32 , we have bal(n, C4k) ≤ (k − 1)n + 12k2 + 3k.
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Proof. For k ≥ 1 we have that 9
2k2 + 13

4 k + 49
32 ≥ 10k − 1; thus we may assume that we can

apply Theorem 2.31 and that n ≥ 10k − 1, which is a sufficient assumption on n for all
forthcoming arguments.

We first verify that the condition min{|R|, |B|} ≥ (k − 1)n + 12k2 + 3k is satisfiable;
this is

(
n
2

)
≥ 2(k − 1)n + 24k2 + 6k. Rearranging the terms, it suffices to verify that

n(n − 4k + 3) ≥ 48k2 + 12k. Indeed, since n ≥ 10k − 1 we have,

n(n − 4k + 3) ≥ (10k − 1)(6k + 2) = 60k2 + 14k − 2 ≥ 48k2 + 12k;

so we may consider any 2-coloring of the edges of Kn with |R|, |B| > (k − 1)n + 12k2 + 3k.
We now prove the lemma by contradiction. Let R ⊔ B be a 2-coloring of the edges of Kn

with |R|, |B| ≥ (k − 1)n + 12k2 + 3k. Assume that this coloring has no copy of a balanced
4k-cycle. By Theorem 2.31 there is a balanced copy C of C4k−1 in this coloring. Without
loss of generality, we may assume that C consists of a cycle with 2k blue edges and 2k − 1
red edges. This implies that C has, at some place, a red edge followed by two blue edges: say
C has consecutive vertices u0, u1, u2, u3 where u0u1 ∈ R and u1u2, u2u3 ∈ B.

Let V = V (Kn) and W = V (C). In what follows we will infer a structure among the
vertices in V \ W which will lead to a contradiction to the initial assumption that there is no
balanced 4k-cycle. The next three claims stem from the fact that some specific structure
outside of C would give a balanced 4k-cycle. Let X (resp. Y ) correspond to the sets of
vertices v ∈ V \ W such that u1v ∈ R (resp. u1v ∈ B). Note that V \ W = X ∪ Y , though
either X or Y may be empty. We will now strengthen the structure with three claims.
Claim 1. For each v ∈ Y , uiv ∈ B for all 1 ≤ i ≤ 3.
Proof of Claim 1. Let v be a vertex in Y . By definition u1v ∈ B. If u2v ∈ R, then we may
extend C by replacing the edge u1u2 with the path u1vu2 to obtain a balanced 4k-cycle, a
contradiction (see Figure 2.9a). It follows that u2v ∈ B. Now, applying a similar argument
(replacing u2u3 with the path u2vu3), we can conclude that u3v ∈ B. �

Claim 2. For each v ∈ X, u0v ∈ B and u2v ∈ R.
Proof of Claim 2. Let v be a vertex in X. By definition, u1v ∈ R. The same argument than
in the proof of Claim 1 gives that u2v ∈ R. Now, assume by contradiction that u0v ∈ R.
Then, we may extend C by replacing the edge u0u1 with the path u0vu1, and thus obtain a
balanced 4k-cycle, a contradiction (see Figure 2.9b). �

We now have a more constrained structure, which is depicted on Figure 2.10.
Claim 3. We have E(X, Y ) ⊆ R, and E(X) ∪ E(Y ) ⊆ B.
Proof of Claim 3. First, assume by contradiction that there are v, v′ ∈ X such that vv′ ∈ R.
By Claim 2, the path u0vv′u2 consists of two red edges and one blue edge; thus we may extend
C by replacing u0u1u2 with the path u0vv′u2 to obtain a balanced 4k-cycle, a contradiction
(see Figure 2.11a). It follows that vv′ ∈ B for all v, v′ ∈ X.

Next, assume by contradiction that there are v, v′ ∈ Y such that vv′ ∈ R. By Claim 1,
the path u1vv′u3 consists of two blue edges and one red edge; thus we may extend C by
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u0

u1

u2

u3

C Y

(a) The proof of Claim 1: if, for any v ∈ Y ,
u2v ∈ R, then we can alter C to construct a
balanced 4k-cycle.

u0

u1

u2

u3

C X

(b) The proof of Claim 2: if, for any v ∈ X,
u0v ∈ R, then we can alter C to construct a
balanced 4k-cycle.

Figure 2.9: Strengthening the structure: Claims 1 and 2.

u0

u1

u2

u3

C

X

Y

Figure 2.10: The structure after Claims 1 and 2. All the edges from the uis to vertices in X
and Y follow this structure.

replacing u1u2u3 with the path u1vv′u3 to obtain a balanced 4k-cycle, a contradiction (see
Figure 2.11b). It follows that vv′ ∈ B for all v, v′ ∈ Y .

Finally, assume by contradiction that there are v ∈ X and v′ ∈ Y such that vv′ ∈ B.
Since u1v ∈ R (by definition) and u3v

′ ∈ B (by Claim 1), we can replace the path u1u2u3
by the path u1vv′u3, and obtain a balanced 4k-cycle, a contradiction (see Figure 2.11c). It
follows that for each v ∈ X and v′ ∈ Y , vv′ ∈ R. �

We now use the structure we found in Claim 3 to find a contradiction. Recall that
n ≥ 10k−1 which implies that |X∪Y | = |V \W | ≥ n−4k+1 ≥ 6k and so max{|X|, |Y |} ≥ 3k.

For the remainder of the proof, we have two possibilities: either |X| ≤ |Y | or |X| > |Y |.
However, note that those two cases are symmetrical since we will not care about the specific
colors of the edges between the vertices u0, u1, u2, u3 and X ∪ Y , but rather more in general
within and between the sets W, X, and Y .

Hence, without loss of generality, we assume that |X| ≤ |Y |. This condition will imply
|X| < k. Indeed, assume by contradiction that |X| ≥ k. Then, we can obtain a balanced
4k-cycle by taking a blue path of length k within Y , and then a red path of length k closing
the cycle by going back and forth 2k times between X and Y (which is possible since |Y | ≥ 3k
and |X| ≥ k). This contradiction implies that |X| < k.
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u0

u1

u2

u3

C

X

Y

(a) There are no red edges in
X.

u0

u1

u2

u3

C

X

Y

(b) There are no red edges in
Y .

u0

u1

u2

u3

C

X

Y

(c) There are no blue edges
between X and Y .

Figure 2.11: Strengthening the structure: Claim 3. In every case, we can use C to get a
balanced 4k-cycle, a contradiction.

Thus, we have a partition V = Y ⊔ (W ∪ X) where all the edges within Y are blue and
|Y | ≥ n − 5k + 2 (since |X ∪ Y | = n − 4k + 1 and |X| ≤ k − 1). We will now study the
number of red edges in E(Y, W ∪ X). Let H be the bipartite graph induced by the set of red
edges contained in E(Y, W ∪ X). We start by giving a lower bound on the number of edges
in H, which is the number of red edges in Kn minus the number of red edges in E(W ∪ X);
recall that E(X) ∪ E(Y ) ⊆ B by Claim 3. Hence, we have:

|E(W ∪ X) ∩ R| ≤ e(W ) + e(W, X) <

(
4k − 1

2

)
+ k(4k − 1) = (4k − 1)(3k − 1)

and so, we have:

e(H) = |R| − |E(W ∪ X) ∩ R| ≥ (k − 1)n + 12k2 + 3k − (4k − 1)(3k − 1)
≥ (k − 1)n + 10k − 1.

However, ex(n, P2k−1) ≤ (k − 1)n (see Theorem 5.5 in [38]), which means that, in a graph
with n vertices and at least (k − 1)n edges, there is a path on 2k − 1 edges. As a consequence,
there is a path P of length 2k − 1 edges in H. Since P has an even number of vertices, we
may assume that P = v1w1v2 . . . wk−1vkwk with all vi ∈ Y and all wi ∈ W ∪ X.

Let H ′ = (Y ′, X ′) be the subgraph of H induced by Y ′ = Y \ {v1, . . . , vk} and X ′ =
(W ∪ X) \ {w1, . . . , wk−1}. Observe that |X ′| = |W ∪ X| − (k − 1) ≤ 4k − 1 and using the
lower bound on e(H), we get

e(H ′) = e(H) − e(Y, {w1, . . . , wk−1}) − e(W ∪ X, {v1, . . . , vk})
≥ e(H) − (n − 5k + 2)(k − 1) − (4k − 1)k
= e(H) − (k − 1)n + k2 − 6k + 2
≥ (k − 1)n + 10k − 1 − (k − 1)n + k2 − 6k + 2
> 4k.
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It follows that e(H ′) > |X ′| and, by the pigeonhole principle, there is a vertex w ∈ X ′ that
has two neighbors v and v′ in Y ′.

However, this allows us to construct a balanced 4k-cycle. Indeed, start from v1 and take
the path P all the way to vk (this gives us 2k − 2 red edges, then go to v and take the path
vwv′ (this gives one blue edge and two red edges), and finally take a path of 2k − 1 blue
edges that ends back in v1 and using vertices x1, . . . , x2k−2 in Y ′. Note that we can select
the xi’s as distinct from the vi’s and from v and v′, since |Y | ≥ 3k. This cycle, shown on
Figure 2.12, has 2k edges in each color class, thus we have a contradiction.

W ∪ X Y

X ′ Y ′

w1 ...
wk−1

wk

v1

...
vk

v

v′

w

x1

xℓ

Figure 2.12: Constructing a balanced 4k-cycle by using the structure between W ∪ X and Y
(we have ℓ = 2k − 2).

This contradiction proves the lemma.

Non-balanceable cycles

In this section, we obtain the exact value of the generalized balancing number for C4k+2,
for k ≥ 1, which represents the class of non-balanceable cycles. This case is remarkable
because it suffices that each color class covers at least half the edges in Kn plus one additional
edge (i.e., the coloring has a color excess of 1), which implies the existence of at least two
bicolored edges regardless of the coloring. Moreover, the construction of the balanced cycle
in Theorem 2.36 uses the existence of at most one bicolored edge, justifying the heuristic
that the generalized balancing number (when it is at least 1

2

(
n
2

)
) provides a measure of how

close the graph is to being balanceable.
We note that the general upper bound from Theorem 2.29 gives us a sufficient condition

for the existence of 1
2

(
n
2

)
+ kn

2 + O(1) bicolored edges to guarantee a balanced C4k+2. Indeed,
consider H = H(C4k+2), that is, the family of linear forests (i.e. unions of disjoint paths) on
2k+1 edges. Noting that ex(n, H) is equal to the extremal number of the family containing all
linear forests on n vertices and 2k + 1 edges, Theorem 1.5 in [52] states that, for n sufficiently
large:
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ex(n, H) =
(

n

2

)
−
(

n − k

2

)
= kn − k(k + 1)

2
Hence, Theorem 2.29 yields

bal*(n, C4k+2) ≤ 1
2

(
n

2

)
+
⌈

kn

2 − k(k + 1)
4

⌉
= 1

2

(
n

2

)
+ kn

2 + O(1).

We base the construction of the balanced cycle on the existence of one of two substructures
called unavoidable patterns, which were discussed in Section 1.4, particularly in Theorem 1.26.
They are also closely related to the characterization of balanceable graphs; see [13,
Theorem 2.4]. In fact, one of these substructures, if it is large enough, naturally contains a
balanced C4k+2; that is, the color of the bicolored edges may be established before looking for
the balanced cycle. However, for the second substructure, the construction of the balanced
cycle uses a bicolored edge to leverage the fact that C4k+2 is not balanceable; that is, in such
case the balanced copy always includes a bicolored edge.

Theorem 2.35. [13] Let t be a positive integer. For n sufficiently large, there exists a
positive integer m = m(t) such that

φ(n, t) = O(n2− 1
m ).

Recall that Ft is the family of all 2-edge colored copies of K2t where either one color
class induces a copy of Kt or one color class induces two disjoint copies of Kt. Also recall
that a 2-edge-coloring of K2t is a type-A if the edges of one of the colors induces a complete
graph Kt and it is a type-B if the edges of one of the colors induces two disjoint Kt’s (or
equivalently one Kt,t).

Theorem 2.36. Let k be a positive integer. For n sufficiently large, we have bal*(n, C4k+2) =
1
2

(
n
2

)
.

Proof. Since C4k+2 is not balanceable, by Corollary 2.27, we have bal*(n, C4k+2) ≥ 1
2

(
n
2

)
. To

prove the equality, we simply have to consider a 2-edge covering of Kn inducing color classes
R and B where |R|, |B| ≥ 1

2

(
n
2

)
+ 1 and find a balanced copy of C4k+2. Note that there are

at least 2 bicolored edges in the 2-edge covering. Let t be an integer verifying t ≥ 3k + 1.
For the first step, let us ignore the fact that we have bicolored edges: every bicolored edge

is set to a fixed color, making sure that both color classes remain balanced and thus contain
half (±1) the edges of Kn. This allows us to apply Theorem 2.35, which ensures that, within
Kn, there is a copy H of K2t such that there is a partition of its vertex set V (H) = X ⊔ Y
such that |X| = |Y | = t, and one of the following hold:

• H is of type-A: E(X) ⊆ R, and E(Y ) ∪ E(X, Y ) ⊆ B (or vice-versa).

• H is of type-B: E(X) ∪ E(Y ) ⊆ R, and E(X, Y ) ⊆ B (or vice-versa).
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Now, let e ∈ R ∩ B be one of the bicolored edges (the other one will not be needed at all).
We prove that whichever type of copy of K2t exists and wherever the bicolored edge e is in
Kn, we can find a balanced copy of C4k+2. There are four cases to consider.

Case 1: H is of type-A. In this case, it is possible to construct the following balanced
(4k + 2)-cycle: follow a red path of length 2k + 1 in X, then go to Y through a blue edge,
follow a blue path of length 2k − 1 in Y , and finally close the cycle by going back to the first
vertex that we used in X (using another blue edge). Note that we did not make use of any
bicolored edge in this case.

Case 2: H is of type-B and e ∈ E(H). Then either e ∈ E(X) (or e ∈ E(Y ), but this is
symmetric), or e ∈ E(X, Y ). Let e = uv. Both subcases are depicted on Figure 2.13.

• Subcase 2.1: The bicolored edge e ∈ E(X). Let y ∈ Y . We construct a cycle of length
4k + 2 starting with the path uvy, following with a red path of length 2k + 1 with all
its vertices in Y , and then we alternate between Y and X passing through 2k − 1 blue
edges and closing the cycle in u. This cycle has 2k blue edges, 2k + 1 red edges, as well
as the bicolored edge e. By considering the bicolored edge as being blue, we have a
balanced copy of C4k+2. This is depicted on Figure 2.13a.

• Subcase 2.2: The bicolored edge e ∈ E(X, Y ). Say u ∈ X and v ∈ Y . We construct the
following cycle: starting from vertex u, we go to v through the bicolored edge, then
alternate between Y and X following a blue path of length 2k + 1, and complete the
cycle with a red path of length 2k inside Y that ends in u. This cycle has 2k + 1 blue
edges, 2k red edges, and the bicolored edge e. By considering the bicolored edge as
being red, we have a balanced copy of C4k+2. This is depicted on Figure 2.13b.

u
v y

...
... ...X YP2k+1

P2k−1

(a) Subcase 2.1: we consider the bicolored
edge uv as having the color b.

u v

... ...
...X Y

P2k+1

P2k

(b) Subcase 2.2: we consider the bicolored
edge uv as having the color r.

Figure 2.13: Illustration of Case 2 of the proof. The bicolored edge is depicted thick and
with both colors.

Case 3: H is of type-B, and e = uv with u ∈ V (H) and v ∈ V \ V (H). Assume, without
loss of generality, that u ∈ X. We construct the following path of length 4k: starting from u,
take a red path of length 2k in X, and complete it with a blue path of length 2k alternating
vertices between X and Y . Let w ∈ X be the last vertex of this path, we close the cycle with
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the path wvu. Now, if vw ∈ R (resp. vw ∈ B), then we consider the bicolored edge as being
in B (resp. in R). The cycle we constructed has 2k + 1 edges of each color class, and thus it
is a balanced copy of C4k+2.

Case 4: H is of type-B, and e = uv with u, v ∈ V \ V (H). There are two possible subcases
to study. Both subcases are depicted on Figure 2.14.

• Subcase 4.1: There is a red edge ux (or vx) for some x ∈ X. We construct the following
cycle: for any vertex w ∈ X \ {x}, take the 3-path wvux, then follow with a red path
of length 2k − 1 in X, and, alternating between X and Y , close with a blue path of
length 2k that ends in w.
This cycle has 2k red edges and 2k blue edges between that are different from uv and
vw. If vw is red (resp. blue), then we consider uv as being blue (resp. red) and have a
balanced copy of C4k+2. This is depicted on Figure 2.14a.

• Subcase 4.2: All edges ux and vx are blue for every x ∈ X. For any two vertices
x, w ∈ X, we construct the following cycle: take the 3-path wvux, continue with a red
path of length 2k + 1 in X, then alternate vertices between X and Y building a blue
path of length 2k − 2 that finishes in w and closes the cycle (if k = 1, just take w as
the last vertex of the red path).
This cycle has 2k + 1 red edges, 2k blue edges and the bicolored edge e, that can be
considered as being blue. Hence, we have a balanced copy of C4k+2. This is depicted
on Figure 2.14b.

u v

x w

... ...
...X YP2k−1

P2k

(a) Subcase 4.1: we consider the bicolored
edge uv as being in a color class different
from wv.

u v

x w

... ...
...X YP2k+1

P2k−2

(b) Subcase 4.2: we consider the bicolored
edge uv as having the color b.

Figure 2.14: Illustration of Case 4 of the proof on C14. The bicolored edge is depicted thick
and with both colors.

All the cases have been covered: if there is a bicolored edge in Kn and there is a copy H
of K2t of type A or B, then we can find a balanced copy of C4k+2, which proves the result.
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2.5.2 The generalized balancing number of K5

Using the characterization of balanceable graphs, it was proved that K5 is not balanceable
in Proposition 2.10. In this section, we provide lower and upper bounds for the generalized
balancing number of K5; surprisingly, these bounds are matching up to the relevant term. To
clarify, trivially, bal*(n, K5) ≥ 1

2

(
n
2

)
and the estimates we obtain in the next theorem have

an additional term of order ex(n, {C3, C4, C5}) = Θ(n 3
2 ). This implies that guaranteeing a

balanced copy of K5 requires a remarkably high color excess, implying that we always need a
very high amount of bicolored edges.

Theorem 2.37. Let c = 2
(√

2−1
2
√

2

) 5
2 . For any ε > 0 and n sufficiently large, we have

1
2

(
n

2

)
+ (1 − ε)cn

3
2 ≤ bal*(n, K5) ≤ 1

2

(
n

2

)
+ (1 + ε) 1

4
√

2
n

3
2 .

Observe that c ≈ 0.016 while 1
4
√

2 ≈ 0.177. The proof of Theorem 2.37 follows directly
from Corollary 2.40 and Lemma 2.41 that we state and prove below. For both arguments
we focus on the structure of the graph induced by the bicolored edges, where we take into
account the girth and the edge number. Recall that, for a graph G, the length of a smallest
cycle in G is called the girth and is denoted by g(G); if G has no cycles, then its girth is
defined to be infinity. Throughout this section we rely on ex(n, {C3, C4, C5}), the extremal
number for graphs of girth at least 6; more precisely, we exploit that ex(n, {C3, C4, C5}) is
strictly increasing on n and that

ex(n, {C3, C4, C5}) = (1 + o(1)) 1
2
√

2
n

3
2 , (2.1)

where the asymptotic expression is given in Theorem 4.5 of [38] also stated in the following
theorem.

Theorem 2.38. [38] For k = 2, 3 and 5 as n → ∞ we have

ex({C3, C4, . . . , C2k+1}) = (1 + o(1)) 1
21+(1/k) n1+(1/k).

To verify that ex(n, {C3, C4, C5}) is strictly increasing on n, let mn = ex(n, {C3, C4, C5}),
and take a graph G on n − 1 vertices and mn−1 − 1 edges with girth at least 6. Then we may
construct a graph G′ on n vertices and mn−1 edges with girth at least 6 by just adding to G a
new vertex connected by an edge to any of the vertices in G. This proves that mn−1 +1 ≤ mn.

By iteratively applying this argument, it follows more generally that ex(n −
k, {C3, C4, C5}) ≤ ex(n, {C3, C4, C5}) − k (mn−k ≤ mn − k).

For the upper bound in Theorem 2.37, we use Theorem 2.29, which boils down to analysing
ex(n, H(K5)); this is done in the following theorem,

where we show that ex(n, H(K5)) = ex(n, {C3, C4, C5}).

Theorem 2.39. For n ≥ 5, we have ex(n, H(K5)) = ex(n, {C3, C4, C5}).
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Proof. Let H = H(K5), that is, the family of subgraphs of K5 that have 5 edges and no
isolates. Observe that H contains precisely six graphs; namely, the 5-cycle, the 4-pan1 (also
called P , or the banner), its complementary P , the bull, the cricket and the diamond. Those
are depicted in Figure 2.15.

C5 4-pan = P P bull cricket diamond

Figure 2.15: The family H(K5).

Observe that every graph from H has either a C3, a C4, or a C5. Hence, the class of
graphs of order n having girth at least 6 is contained in the class of the H-free graphs of
order n. This implies directly that ex(n, H(K5)) ≥ ex(n, {C3, C4, C5}).

We will prove now the other inequality, that is, that every graph on n vertices and more
than ex(n, {C3, C4, C5}) edges contains a subgraph from H.

We use an induction argument. First, let us observe that m5 = 4, m6 = 6, m7 = 7 and
m8 = 9 since the maximal graphs on n vertices of girth at least 6 are, respectively: spanning
trees (n = 5), C6 (n = 6), C7 and the 6-pan (n = 7), and finally, the graph that consists of
vertices a, b, c, d, e, f, e′, f ′ that are arranged in two cycles abcdefa and abcde′f ′a (n = 8).

Consider n ≥ 5 and any graph F on n vertices and with at least mn + 1 edges; that is, F
has girth at most 5. We will prove that it contains a subgraph in H. We start with the base
cases n ∈ {5, 6, 7, 8}. Let F ′ be a subgraph of F on exactly mn + 1 edges. We will prove that
F ′, which has girth at most 5, contains a subgraph in H (and hence F does):

1. If n = 5, then F ′ has 5 edges, and so must have a subgraph in H.

2. If n = 6, then F ′ has 7 edges. Suppose every set of 5 vertices in F ′ induces a graph of
at most 4 edges. Since e(F ′) = 7, the vertex not contained in a given 5-set has to have
degree at least 3. But this happens to every set of 5 vertices. Hence, 2e(F ′) ≥ 6 · 3 = 18,
implying that e(F ′) ≥ 9, a contradiction. Hence, there is a 5-vertex set inducing a
graph on at least 5 edges in F ′ and thus F ′ contains a subgraph from H.

3. If n = 7, then F ′ has 8 edges and contains at least an induced cycle of length at
most 5. If F ′ contains an induced C5, then it trivially contains a subgraph from H.
If F ′ contains an induced C4, then since there are at least four remaining edges and
only three remaining vertices, this implies that at least one vertex from the 4-cycle has
a neighbour among the other three vertices, which in turn implies that F ′ contains a
4-pan, which is in H. If F ′ contains a triangle, then there are three cases: first, there
are at least two edges between the triangle and the remaining vertices, and F ′ contains

1The n-pan is an n-cycle with a pendant edge attached to a vertex of the cycle.

70



a bull, a cricket, or a diamond, which are in H; second, there is no edge between the
triangle and the 4 remaining vertices, which implies that they must induce a diamond,
which is in H; finally, if there is exactly one edge between the triangle and one of the
remaining vertices, say u, then u has to have a neighbour in the other remaining vertices
(since otherwise there would be four edges among three vertices, which is impossible),
and F ′ contains the complement of a 4-pan, which is in H.

4. If n = 8, then F ′ has 10 edges and contains an induced cycle of length at most 5. If F
contains an induced C5, then it trivially contains a subgraph from H. If F ′ contains
an induced C4, then there are two cases: either there is at least one edge between the
4-cycle and the remaining vertices, and thus F ′ contains a 4-pan, which is in H; or
the four remaining vertices have to induce a diamond, which is in H. If F ′ contains a
triangle, then there are two cases: either there are at least 2 edges between the triangle
and the remaining vertices, and thus F ′ contains either a bull or a cricket, which are in
H; or the five remaining vertices have at least 6 edges, and by the argument in the case
n = 5 implies that F ′ contains a subgraph in H.

For the induction step, we will use the following general argument. Suppose that F is a
graph on n vertices and at least mn + 1 edges; if F ′ may be constructed from F by removing
k vertices and k edges, then F ′ has (also) girth at most 5 since it has at least mn − k ≥ mn−k

edges (recall that mn = ex(n, {C3, C4, C5}) is strictly increasing).
If n ≥ 9 and k ≤ 4 we may apply the induction hypothesis and infer that F ′ contains a

subgraph in H (and so does F ). In what follows we refer to this argument as the removal
induction hypothesis.

Now, assume that n ≥ 9. First, if F contains a vertex of degree 1, then we can remove it
and apply the removal induction hypothesis. Thus, we may assume that F has minimum
degree at least 2. Recall that F has girth at most 5. There are three cases to consider:
Case 1: F has girth 5. Naturally, F contains a subgraph in H; namely, C5.
Case 2: F has girth 4. We may consider a C4 in F . If all four vertices have degree 2, then
we can remove them from F and apply the removal induction hypothesis. Otherwise, at least
one of them has a third neighbour; the cycle together with such neighbor forms a 4-pan, that
is F contains a subgraph of H.
Case 3: F has girth 3. We may consider a C3 in F . If all three vertices have degree 2, then
likewise we can apply the removal induction hypothesis. Otherwise, at least one of them has
a third neighbour u. However, u has degree at least 2, so u itself has another neighbour; we
then obtain either the diamond or the complement of the 4-pan as a subgraph, both of which
are in H.

This proves that F contains a subgraph in H whenever it has more than mn =
ex(n, {C3, C4, C5}) edges. Hence ex(n, H) ≤ ex(n, {C3, C4, C5}).

By combining Theorems 2.29 and 2.39, we obtain the desired upper bound on bal*(n, K5).
Corollary 2.40. For any ε > 0 and n sufficiently large,

bal*(n, K5) ≤ 1
2

(
n

2

)
+ (1 + ε) 1

4
√

2
n

3
2 .
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Proof. Let ε > 0. For n sufficiently large, we have with Theorem 2.29, Theorem 2.39 and
(2.1) that

bal*(n, K5) ≤ 1
2

(
n

2

)
+
⌈1

2 ex(n, H(K5))
⌉

= 1
2

(
n

2

)
+
⌈1

2 ex(n, {C3, C4, C5})
⌉

≤ 1
2

(
n

2

)
+ (1 + ε) 1

4
√

2
n

3
2 .

We will now obtain a lower bound for the generalized balancing number of K5. In
Lemma 2.41, we provide a 2-edge covering of Kn where the subgraph induced by the bicolored
edges is of girth at least 6. By analyzing all possible overlaps of a copy of K5 and the bicolored
edges, we prove that this 2-edge covering does not contain a balanced copy of K5.

Lemma 2.41. Let c = 2
(√

2−1
2
√

2

) 5
2 . For any ε > 0 and n sufficiently large,

bal*(n, K5) ≥ 1
2

(
n

2

)
+ (1 − ε)cn

3
2 .

Proof. Suppose that there are integers k, k′ and m such that k ≤ k′ ≤ n and that there exists
a graph H on k vertices, m edges and girth at least 6. The precise values for these integers
will be specified, in terms of n and ε > 0 further on. First, using the assumptions above, we
construct a 2-edge covering of Kn and prove that it does not contain a balanced copy of K5.

Let us partition the vertices of Kn in two parts X and Y such that |Y | = k′ (and thus
|X| = n − k′); assign the list {r} to every edge within X; assign the list {r, b} to m edges in
Y inducing a copy of H; and finally assign the list {b} to every other edge within Y and to
every edge between X and Y .

We claim that no copy of K5 can be balanced in this covering. First, any copy of K5 with
all its vertices in X has no blue edges and, thus, it cannot be balanced. Now, let G be a
copy of K5 with at least one vertex in Y and let x and y be the number of vertices of G in X
and Y , respectively; note that y ≥ 1. Recall that bicolored edges form a graph of girth at
least 6 and so G has at most y − 1 bicolored edges in G and precisely

(
x
2

)
red (non-bicolored)

edges. To conclude the proof that there is no balanced copy of K5 observe that if x ≥ 4 then
G has at most 4 blue edges, including bicolored ones. Whereas if x ≤ 3, then G has at most(

x
2

)
+ y − 1 ≤ x + y − 1 = 4 red edges, including bicolored ones; thus, G may not be balanced.
It remains to prove that, given ε > 0, we may choose k, k′ and m so that the color classes

of the covering above have size at least 1
2

(
n
2

)
+ (1 − ε)cn

3
2 ; as this would establish the lemma.

Fix ε > 0 and let α = 1 − 1√
2 , β =

(
1 − ε

2

) (
α
2

) 3
2 ; then let k = ⌈αn⌉, k′ =

⌈
αn + βn

1
2
⌉
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and m =
⌊
βn

3
2
⌋
. Observe that

m =
⌊
βn

3
2
⌋

≤
(

1 − ε

2

)(
α

2

) 3
2

n
3
2 ≤

(
1 − ε

2

)(
k

2

) 3
2

≤ ex(k, {C3, C4, C5});

where the last inequality holds for n large enough since ex(k, {C3, C4, C5}) = (1 + o(1))(k
2 ) 3

2

by Theorem 2.38. This establishes the existence of a graph H with girth at least 6, as
desired. Moreover, we have clearly k ≤ k′ ≤ n. Next, we will show that max{|R|, |B|} >
n2

4 +
(
1 − ε

2

)
αβn

3
2 .

In the following expressions we avoid cumbersome notation by assuming that n is large
enough that we may omit rounding to integers; in particular we will simply write n − k′ =
(1 − α)n − βn

1
2 (to clarify, considering the precise expression of n − k′ would only add, to |R|

and |B|, terms of order O(n) which may be neglected).
We clearly have |R| =

(
n−k′

2

)
+ m and |B| =

(
k′

2

)
+ k(n − k′). First, we consider the size

of R; using that m = βn
3
2 , we obtain(

n − k′

2

)
+ m = 1

2
(
(1 − α)n − βn

1
2 )2 − (1 − α)n + βn

1
2
)

+ βn
3
2

= (1 − α)2n2

2 + αβn
3
2 + (β2 + α − 1)n

2 + βn
1
2

2

>
n2

4 + αβn
3
2 − n

2 ;

where in the last inequality we used 1 − α = 1√
2 and removed lower order positive terms. In

addition, we have εαβn
1
2 ≥ 1 for n large enough, and so

αβn
3
2 − n

2 =
(

1 − ε

2

)
αβn

3
2 + n

2
(
εαβn

1
2 − 1

)
>
(

1 − ε

2

)
αβn

3
2 ;

which in turn implies that |R| > n2

4 +(1− ε
2)αβn

3
2 for n sufficiently large. Similar computations

for the size of B, in particular, using that α2

2 + α(1 − α) = 1
4 , yield(

k′

2

)
+ k′(n − k′) = 1

2
(
(αn + βn

1
2 )2 − (αn + βn

1
2 )
)

+
(
αn + βn

1
2
) (

(1 − α)n − βn
1
2
)

= n2

4 + β(1 − α)n 3
2 − (β2 + α)n

2 − β

2 n
1
2 .

In this case we use that 2 − 4α = 4√
2 − 2 > 0, and so for n large enough we have

β(1 − α)n 3
2 − β2n

2 − βn
1
2 = αβn

3
2 + βn

3
2

2 (2 − 4α − (β + αβ−1)n− 1
2 − n−1) > αβn

3
2 ;

in particular, |B| > n2

4 + (1 − ε
2)αβn

3
2 . Finally, by definition of β, we have that(

1 − ε

2

)
αβ = 2

(
1 − ε

2

)2 (α

2

) 5
2

> (1 − ε)c;
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which, together with n2

4 ≥ 1
2

(
n
2

)
, yields, for n large enough,

max{|R|, |B|} >
n2

4 +
(

1 − ε

2

)
αβn

3
2 ≥ 1

2

(
n

2

)
+ (1 − ε)cn

3
2 .

2.6 Open problems
In this chapter, we stated some results concerning balanceability, balancing number and
generalized balancing number. Nevertheless, there are always problems left to solve. In this
section we state some problems that arose in relevance to the topics covered in this chapter.

1. Considering the complexity of the problem of determining whether a graph is balanceable
or not. This problem boils down to finding an edge cut with ⌊1

2e(G)⌋ or ⌈1
2e(G)⌉ edges

and an induced subgraph with ⌊1
2e(G)⌋ or ⌈1

2e(G)⌉ edges. Particularly, the problem of
finding an edge cut with half of the edges is a variant of the problem EXACT-CUT
(which studies the complexity of finding an edge cut with exactly k edges and it is
NP-complete). The other problem deals with the existence of an induced subgraph
with exactly half of the edges. We conjecture that the balancerability problem is
NP-complete.

2. Determine the balanceability of Kn for n > 2, 303, 999, 904, 000, 003 when n ≡ 2, 3
(mod 4).

3. What other graph families satisfy being balanceable? We are interested in determining
the balanceability of graphs such as planar graphs, outerplanar graphs, chordal graphs,
k-trees and other circulant graphs.

4. Study the generalized balancing number of other graphs such as Kn with n ≥ 5, 2Kn,
circulant graphs, wheel graphs and grids.
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Chapter 3

Amoebas

Amoeba graphs were first introduced in [13] by means of a graph theoretic definition. In
that work, Caro, Hansberg, and Montejano determined that all amoebas are balanceable
(see Theorem 1.43). Afterwards, in [12], the authors were able to endow these graphs with
algebraic properties in order to achieve a better handling of them. We are interested in
solving some of the open questions that the authors left in [12] and [13]. We now move on to
state the relevant concepts and notation for this chapter.

When two groups P and Q are isomorphic, we will write P ∼= Q. Let X be a finite set
and let SX be the symmetric group which consists of all permutations of elements of X.
As usual, Sn = S[n], where [n] = {1, 2, · · · , n}. The automorphism group of a graph G is
denoted as Aut(G), and so any graph G of order n satisfies that Aut(G) ∼= S for some S ⩽ Sn.

Lemma 3.1 states a useful property of a k-cycle in Sn.

Lemma 3.1 ([55]). For a k-cycle (i1i2 . . . ik) in Sn and an arbitrary σ ∈ Sn,

σ(i1i2 . . . ik)σ−1 = (σ(i1)σ(i2) . . . σ(ik)).

The next lemma on generating sets of Sn is relevant later statements results.

Lemma 3.2 ([55]). For n ≥ 2, Sn is generated by any of the following sets of transpositions:

1. {(ij) : i, j ∈ {1, 2, . . . , n}},

2. {(1j) : j ∈ {1, 2, . . . , n}},

3. {(ij) : j = i + 1, i ∈ {1, 2, . . . , n − 1}};

or any of the following pairs of transposition and cycle:

4. {(12), (12 . . . n)}},
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5. {(12), (23 . . . n)}}.

Let X be a set and let G be a group with identity e. A (left) group action is a function
θ : G × X → X such that for every g ∈ G and x ∈ X gx = θ(g, x) ∈ X and the following
group action axioms hold:

1. For every g, h ∈ G and x ∈ X, g(hx) = (gh)x

2. For every x ∈ X, ex = x.

In this case the group G is said to act on the set X (from the left). Consider a group G
acting on a set X. The orbit of an element x in X is the set of elements in X to which x can
be moved by elements of G. The orbit of x is denoted as Gx, where Gx = {gx | g ∈ G}. For
every x in X, the stabilizer subgroup Gx of G with respect to x is the set of all elements in G
that fix x. The action of G on X is called transitive if for any x, y ∈ X there is an element
g ∈ G such that gx = y.

The following lemma from group theory will be of great importance in the proof of
Lemma 3.10.

Lemma 3.3 ([55]). If x ∈ X and S ⊆ SX\{x} is a set of permutations that act transitively
on X \ {x}, and if φ ∈ SX with φ(x) ̸= x, then the set S ∪ {φ} generates SX .

The next definition involves the pasting of two functions.

Definition 3.4. Let X, Y, A, B be sets and f : X → Y and g : A → B be two functions such
that f(x) = g(x) for all x ∈ X ∩ A, then f ∪ g : X ∪ A → Y ∪ B is defined as

f ∪ g(x) =
f(x), if x ∈ X

g(x), if x ∈ A \ X.

Along this chapter, we will consider graphs G = G(V, E) equipped with a labeling on
their vertex set λ : V → X, which will always be a bijection. We define vx = λ−1(x), for each
x ∈ X, and LG = {ij | vivj ∈ E(G)} with no distinction between ij and ji. For each σ ∈ SX ,
let Gσ be the copy of G on the same vertex set V defined by E(Gσ) = {vivj | σ(i)σ(j) ∈ LG}.
Notice that each labeled copy of G on the vertex set V corresponds to a permutation σ ∈ SX

and vice versa. For every graph G′ on V isomorphic to G, there are |Aut(G)| different
copies Gσ that correspond to G′ and, furthermore, the group AG = {σ ∈ SX | Gσ = G} is
isomorphic to Aut(G).

Notice that the set of labels

LGσ = {σ(i)σ(j) | vivj ∈ E(G)}

of the edges of Gσ is the same for all σ ∈ SX . The corresponding copies of the vertices and
edges of G in Gσ are given by their labels: the copy of vertex vi of G is the vertex of Gσ
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having label i, while the copy of an edge vivj ∈ E(G) is the edge of Gσ having label ij.

Given e ∈ E(G) and e′ ∈ E(G), the graph G − e + e′ is obtained from G by performing
the edge-replacement that substitutes e by e′. If G − e + e′ is a graph isomorphic to G, we say
that the edge-replacement is feasible. We consider also the so-called neutral edge-replacement
∅ → ∅ as a feasible edge-replacement, which is given when no edge is replaced at all.

Let
RG = {rs → kl | G − vrvs + vkvl

∼= G} ∪ {∅ → ∅}

be the set of all feasible edge-replacements of G given by their labels and let R∗
G = RG\{∅ → ∅}.

We will use sometimes the notation e → e′ ∈ RG when we do not require to specify the labels
of the vertices involved in the edge-replacement. Notice that RGρ = RG for any ρ ∈ SX ,
because any e → e′ ∈ RG also represents a feasible edge-replacement of any copy Gρ with
ρ ∈ SX .

Moreover, the set FerG(e → e′) consists of all permutations of labels that correspond to the
feasible edge-replacement e → e′. More precisely, for an edge-replacement rs → kℓ ∈ R∗

G, a
permutation of the labels σ is an element of FerG(rs → kℓ) if and only if Gσ = G−vrvs +vkvℓ.
For the neutral edge-replacement, we set AG = FerG(∅ → ∅) ∼= Aut(G).

We denote by Fer(G) the group generated by the permutations associated to all feasible
edge-replacements, that is, Fer(G) is generated by the set

EG =
⋃

e→e′∈RG

FerG(e → e′).

The group Fer(G) acts on the set {Gρ | ρ ∈ SX} by (σ, Gρ) 7→ Gσρ where σ ∈ Fer(G).
Note that employing this action exhibits what happens when a series of edge-replacements,
associated to σ, is applied on a copy Gρ of G which results in Gσρ. Being able to go from any
copy Gρ to any other copy Gρ′ by following a series of feasible edge replacements means that
for any ρ, ρ′ ∈ SX , there exists σ ∈ Fer(G) such that ρ′ = σρ, meaning that Fer(G) = SX .
We also recall Proposition 1.39, which states that if G ∪ t0K1 is a local amoeba for some
t0 > 0, then G ∪ tK1 is a local amoeba for any t ≥ t0. Therefore, Definition 1.38 can also be
stated by means of the group Fer(G).

In this context, a graph G of order n is called a local amoeba if Fer(G) ∼= Sn, and a
global amoeba if Fer(G ∪ tK1) ∼= Sn+t, where t is large enough. In words, if G is a local
amoeba, then any other copy of G on the same vertex set can be reached by a chain of
feasible edge-replacements. If G is a global amoeba, then there is a large enough integer
t ≥ 1 such that any copy of G embedded on a vertex set of cardinality n + t can be reached
from any other copy on the same vertex set by a chain of feasible edge-replacements. In fact,
Theorem 3.8 states that it suffices if t is only 1.

Lemma 3.5 ([12]). Let G be a graph provided with a labeling λ : V (G) → X on its vertices.
Then Fer(G) = Fer(G).

Proof. It is sufficient to show that, for every feasible edge-replacement e → e′ ∈ RG and
σ ∈ FerG(e → e′), there is a feasible edge-replacement in G given by σ, and vice-versa. If
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e → e′ = ∅ → ∅, then it is clear that G ∼= Gσ for any σ ∈ FerG(∅ → ∅) = AG. Suppose that
rs → kl ∈ R∗

G, and σ ∈ FerG(rs → kl). Observe that

G ∼= Gσ = G − vrvs + vkvl = G − vkvl + vrvs.

This implies that σ ∈ FerG(kl → rs) and the proof is complete.

The next proposition is a direct consequence from Lemma 3.5.

Proposition 3.6 ([12]). A graph G is a local amoeba if and only if its complementary graph
G is a local amoeba.

The next proposition states a characterization of local and global amoebas when the
neutral edge-replacement is the only feasible edge-replacement of the graph in question.

Proposition 3.7 ([12]). Let G be a graph of order n ≥ 1 having the neutral edge-replacement
as its only feasible edge-replacement. Then

(i) G is a local amoeba if and only if either G = Kn, or G = Kn;

(ii) G is a global amoeba if and only if either G = n
2 K2, for even n, or G = Kn.

The following theorem provides a simpler definition for global amoeba, which will be used
from now on.

Theorem 3.8 ([12]). Let G be a non-empty graph. Let λ : V (G) → X be a labeling on its
vertices, and let Γ = Fer(G). For each x ∈ X, let vx = λ−1(x). The following statements are
equivalent:

(i) G is a global amoeba.

(ii) G ∪ K1 is a local amoeba.

(iii) For each x ∈ X, there is a y ∈ Γx such that degG(vy) = 1.

(iv) For each x ∈ X such that degG(vx) ≥ 2, there is a σ ∈ Γ such that degG(vσ(x)) =
degG(vx) − 1.

3.1 Recursive local amoebas
In [12], different ways of constructing local or global amoebas are presented. Further on,
in [45], the authors work with recursive constructions. In particular, a general method to
construct families of global amoebas is developed. Using this method, the authors give an
alternative proof of the fact that certain family of Fibonacci-like trees defined in [12] consists
of global amoebas. We will deal with this family in this section, too, and we will demonstrate
that they are local amoebas as well, solving a problem stated in [12]. Moreover, we present a
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general construction that can be used to generate families of local amoebas recursively.

For a graph G provided with a labeling λ : V (G) → X on its vertices, consider the set E i
G

of all permutations associated to edge replacements in RG that fix the label i ∈ X, that is,

E i
G = EG ∩ StabFer(G)(i).

Let Feri(G) be the subgroup of StabFer(G)(i) generated by the set E i
G.

Lemma 3.9. Let H and J be two vertex disjoint graphs provided with their corresponding
disjoint sets of labels X and Y . Consider vertices vx ∈ V (H), vy ∈ V (J) with labels x ∈ X
and y ∈ Y , respectively, and the graph G = (H ∪ J) + vxvy with the inherited set of labels
X ∪ Y . If α ∈ Ex

H , then α ∪ idFer(J) ∈ Ex
G.

Proof. Given α ∈ Ex
H , then there is a feasible edge replacement e → e′ ∈ RH such that

α ∈ FerH(e → e′). Since α(x) = x, the role vx is playing in H is the same as in Hα, and so
the edge replacement e → e′ can also be applied on G. It follows that

Gα∪idFer(J) = (Hα ∪ J) + vxvy
∼= (H ∪ J) + vxvy = G,

implying that e → e′ is a feasible edge-replacement in G and α ∪ idFer(J) ∈ Ex
G.

Figure 3.1: General diagram of Lemma 3.10.

Lemma 3.10. Let H1, J1, H2, J2 be non-empty graphs that are pairwise vertex disjoint and
such that there is an isomorphism φ : H1 → H2. Let u ∈ V (H1), v ∈ V (J1), w ∈ V (H2), y ∈
V (J2) be vertices such that φ(u) = w. We define the following graphs:

H = (H1 ∪ J1) + uv, J = (H2 ∪ J2) + wy, and G = (H ∪ J) + vw.

Let λ1 : V (H) → X1 and λ2 : V (J) → X2 be labelings of H and J , and consider λ = λ1 ∪ λ2
as the labeling of G. Let λ(u) = a, λ(v) = b, λ(w) = c, and λ(y) = d. If

Ferb(H) ∼= Sn(H)−1 and Ferc(J) ∼= Sn(J)−1,

it follows that Ferb(G) ∼= Sn(G)−1.
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Proof. Let λ(V (H1)) = A, λ(V (J1)) = B, λ(V (H2)) = C, and λ(V (J2)) = D, and X =
X1 ∪ X2 (clearly, X1 = A ∪ B, and X2 = C ∪ D). See Figure 3.1 for a general diagram of
the proof. We take a fixed element y0 ∈ B \ {b} and we will prove that (x y0) ∈ Ferb(G) for
every x ∈ X \ {b}, which would yield that Ferb(G) ∼= Sn(G)−1.

To this aim, let ω : A → C be the bijection induced by φ : H1 → H2. Then we have
ω(a) = c. Note that cd → ad is a feasible edge-replacement of G that yields the permutation
ρ = ∏

x∈A(x ω(x)) ∈ RG(cd → ad) which interchanges the elements in A and C by means of
ω and fixes everything else. In particular, ρ ∈ Ferb(G).

Because Ferb(H) ∼= Sn(H)−1, we know that (x y0) ∈ Ferb(H) for any x ∈ (A ∪ B) \ {b}.
Hence, by Lemma 3.9, (x y0) ∈ Ferb(G) for any x ∈ (A ∪ B) \ {b}.

Take now any x ∈ C and consider ω(x)−1 ∈ A. By what we showed above, the
permutations ρ and (ω−1(x) y0) are contained in Ferb(G), and thus (x y0) = ρ(ω−1(x) y0)ρ−1 ∈
Ferb(G) for any x ∈ C.

Finally, we consider an arbitrary x ∈ D. Take now a fixed x0 ∈ C \ {c}, and observe
that (x x0) ∈ Ferc(J) ∼= Sn(J)−1. By means of Lemma 3.9, we can even say that (x x0) ∈
Ferb(G). Since (x0 y0) ∈ Ferb(G) by what we showed above, we conclude that (x y0) =
(x x0)(x0 y0)(x x0) ∈ Ferb(G).

Hence, we have considered all possibilities for x ∈ X \ {b}, and we can assert that
(x y0) ∈ Ferb(G) for every x ∈ X \ {b}. Since such a set of permutations generates the
symmetric group on X \ {b}, it follows that Ferb(G) ∼= Sn(G)−1, and we are done.
Lemma 3.11. Let G be a graph with label set X. If b ∈ X is such that

Ferb(G) ∼= Sn(G)−1 and Fer(G) \ StabG(b) ̸= ∅,

then G is a local amoeba.
Proof. The statement follows from Lemma 3.3 setting x = b and S = Ferb(G).

Combining Lemmas 3.10 and 3.11, we obtain the following corollary.
Corollary 3.12. Let H and J be graphs satisfying the conditions of Lemma 3.10 and such
that Fer(G) \ StabG(b) ̸= ∅. Then the graph G = (H ∪ J) + vw is a local amoeba.
Proof. By Lemma 3.10, we know that Ferb(G) ∼= Sn(G)−1. Since we also have that Fer(G) \
StabG(b) ̸= ∅, Lemma 3.11 implies that G is a local amoeba.

Corollary 3.12 suggests that one can design recursive constructions of local amoebas via
this method. Such a construction of a family of global amoeba trees that have a Fibonacci-like
structure is given in [12]. We will show in Section 3.1.1 that these trees are in fact local
amoebas, too. Moreover, in Section 3.1.2, we will handle another recursive construction that
was defined in [30].

Observe also that the direct application of this method in a recursive manner results in
the construction of a family of quite sparse graphs as we are adding each time a single edge
connecting two smaller graphs. However, as complements of local amoebas are again local
amoebas by Lemma 3.5, it is evident that there are also families of dense local amoebas that
can be constructed recursively by these tools, too.
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3.1.1 Fibonacci-type trees
The first family we discuss is a family of global amoeba-trees originally defined in [12]. It is
constructed using a Fibonacci recursion that gives rise to an infinite family of global-amoeba
trees T = {Tk | k ≥ 1}. In this section, we prove that each Fibonacci-type tree Tk is a local
amoeba as well, for every k ∈ Z+.

The Fibonacci-type trees Tk, with k ≥ 1, are defined recursively in the following way. Let
T1 and T2 be graphs be both isomorphic to K2. For k ≥ 3, Tk is built from a copy of Tk−1
and a copy of Tk−2 by adding an edge between a pair of vertices of maximum degree in each
tree. That is, if H ∼= Tk−1, and J ∼= Tk−2, and u and v are a vertices of maximum degree in
H and J , respectively, then G = (H ∪ J) + uv ∼= Tk. Observe that, for k ≥ 4, the tree Tk

has a unique vertex of maximum degree, which is in fact u, while, for k ≤ 3, there are two
vertices of maximum degree that are similar (i.e., there is an automorphism sending the one
into the other).

Figure 3.2: The first five Fibonacci-type trees Tk for 1 ≤ k ≤ 5.

In [12], the authors proved that all Fibonacci-type trees Tk are global amoebas and
that, for 1 ≤ k ≤ 5, Tk is a local amoeba, too. They left as an open problem to prove if
they are also local amoebas for k ≥ 6. The next theorem states a solution to this problem
using Lemma 3.10 and Lemma 3.11.

Figure 3.3: A labeling of T3 and T4.

Theorem 3.13. For every k ∈ Z+, the Fibonacci-type tree Tk ∈ T is a local amoeba.

Proof. Let k ≥ 1 and let X be the set of labels for Tk. Let b ∈ X be the label of a
vertex of maximum degree in Tk. We use induction over k and Lemma 3.10 to prove that
Ferb(Tk) ∼= Sn(Tk)−1, then employ Lemma 3.11 to prove that Fer(Tk) ∼= Sn(Tk). Let vi be the
vertex of Tk with label i ∈ X. Then vb is a vertex of maximum degree. For the base of the
induction, it is easy to see that T1 and T2 are local amoebas such that Ferb(T1) and Ferb(T2)
are isomorphic to the symmetric group S1. For the cases when k = 3, 4 we proceed manually
because these trees are too small to satisfy the theorem. Notice that T3 is a path of length
3 therefore we can view the tree as T3 = v1v2v3v4 with label set {1, 2, 3, 4} (see Figure 3.3).
We use the permutations (1432) ∈ FerT3(12 → 14) and (01) ∈ FerT3(02 → 12) to generate S4.
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Now let k = 4. Let {1, 2, 3, 4, 5, 6} be the set of labels of T4 arranged as in Figure 3.3. We
use the permutations (12) ∈ FerT4(23 → 13) and (146235) ∈ FerT4(35 → 26) to generate S4.
Let now k ≥ 5. By construction, Tk consists of subtrees H ∼= Tk−1 and J ∼= Tk−2 and an edge
vbvc joining their vertices vb ∈ V (H) and vc ∈ V (J) of maximum degree. As H ∼= Tk−1, there
are subtrees H1 ∼= Tk−3 and J1 ∼= Tk−2 of H, with va and vb the vertices of maximum degree
in H1 and J1, respectively, such that H = (H1 ∪ J1) + vavb. Similarly, there are subtrees
H2 ∼= Tk−3 and J2 ∼= Tk−4 of J , with vc and vd the vertices of maximum degree in H2 and
J2, respectively, such that J = (H2 ∪ J2) + vcvd. Clearly, there is an isomorphism from H1
to H2 that sends va to vc. Moreover, by the induction hypothesis, Ferb(H) ∼= Sn(H)−1 and
Ferc(J) ∼= Sn(J)−1. Hence, all conditions of Lemma 3.10 are satisfied, and it follows that
Ferb(Tk) ∼= Sn(Tk)−1.

Now consider the feasible edge replacement ab → ac of Tk and consider the permutation
φ ∈ FerTk

(ab → ac) induced by an isomorphism from J1 ∼= Tk−2 to J ∼= Tk−2 that sends vb to
vc, i.e. we have φ(b) = c ̸= b. It follows by Lemma 3.11 that Tk is a local amoeba.

We conclude that every Fibonacci-type tree Tk ∈ T is a local amoeba for every k ∈ Z+.

The proof of Proposition 3.14 follows directly from Proposition 1.39.

Proposition 3.14. For every k ∈ Z+, the Fibonacci-type tree Tk ∈ T is a global amoeba.

3.1.2 Other recursive constructions
We define recursively two families of trees A = {Ak | k ≥ 2}, and A′ = {A′

k | k ≥ 2} the
following way. Let A1 ∼= K2 and A′

1
∼= K1. For k ≥ 2, consider a copy H of Ak−1 and a copy

J of A′
k−1. Let u be a vertex of maximum degree in H, and let v be a vertex of maximum

degree in J . Then we define Ak = (H ∪ J) + uv. To define A′
k, consider two copies of A′

k−1,
say H ′ and J ′, and let w and z be vertices of maximum degree in H ′ and J ′, respectively.
Then we define A′

k = (H ′ ∪J ′)+wz. To show that this is well defined, notice first that A1 has
two vertices of maximum degree which are similar, while A′

1 has trivially only one vertex of
maximum degree. Moreover, for k ≥ 2, Ak has, by construction, a unique vertex of maximum
degree, and A′

k has two vertices of maximum degree which are similar to each other.

Figure 3.4: The first four Ak trees for 1 ≤ k ≤ 4.

Theorem 3.15. For every k ≥ 1, Ak ∈ A and A′
k ∈ A′ are local amoebas.

Proof. Let k ≥ 1 and let X be the set of labels for Ak, and Y the set of labels for A′
k. Let

b ∈ X and b′ ∈ Y be the labels of a vertex of maximum degree in Ak and A′
k, respectively.
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Figure 3.5: The first four A′
k trees for 1 ≤ k ≤ 4.

We start by proving that Ferb(Ak) ∼= Sn(Ak)−1, and Ferb′(A′
k) ∼= Sn(A′

k
)−1. Finally, we use

Lemma 3.11 to conclude that Ak and A′
k are local amoebas for every k ≥ 2.

To prove that that Ferb(Ak) ∼= Sn(Ak)−1 and Ferb′(A′
k) ∼= Sn(A′

k
)−1, we proceed by induction

on k. For k = 1, 2, the result is given trivially.
For k = 3 we proceed manually as this case is too small to satisfy the theorem’s hypothesis.

Let A3 have a label set {1, 2, 3, 4, 5} such that it is arranged as in ??. Note that the
permutations (24)(35) ∈ FerA3(12 → 14), (45) ∈ FerA3(24 → 25) and (14) ∈ FerA3(45 → 15)
satisfy ⟨(24)(35), (45), (14)⟩ = ⟨(2435), (14)⟩ ∼= S5 by Lemma 3.2. Let now k ≥ 4 and assume
that, for every j with 1 ≤ j < k, this property is satisfied for Aj and A′

j.
We consider first A′

k. Let A′
k = (H ′ ∪ J ′) + v′w′, where both H ′ and J ′ are isomorphic

to A′
k−1, and v′ and w′ are vertices of maximum degree in H ′ and J ′, respectively. As v′

and w′ are also vertices of maximum degree in Ak, we can assume that v′ has label b′. Now
let H ′

1, J ′
1, H ′

2, J ′
2 be all graphs isomorphic to A′

k−2 and u′ ∈ V (H ′
1), x′ ∈ V (J ′

2) such that
H ′ = (H ′

1 ∪ J ′
1) + u′v′ and J ′ = (H ′

2 ∪ J ′
2) + w′x′. Let c′ be the label of w′. By induction

hypothesis, Ferb′(H ′) ∼= Sn(H′)−1, and Ferc′(J ′) ∼= Sn(J ′)−1. As the conditions of Lemma 3.10
are satisfied, we can conclude that Ferb′(A′

k) ∼= Sn(A′
k

)−1.
The proof of Ferb(Ak) ∼= Sn(Ak)−1 works similarly. Let Ak = (H ∪J)+vw, where H ∼= Ak−1

and J ∼= A′
k−1, and v and w are vertices of maximum degree in H and J , respectively. Observe

first that, by construction of Ak, there is a leaf z adjacent to v such that H − z ∼= A′
k−1.

Now consider graphs H1, J1, H2, J2 such that H1, H2 and J2 are all isomorphic to A′
k−2

and J1 ∼= Ak−2, and vertices u ∈ V (H1), x ∈ V (J2) such that H = (H1 ∪ J1) + uv and
J = (H2 ∪ J2) + wx. Let c and d be the labels of w and z, respectively. By the induction
hypothesis, Ferb(H) ∼= Sn(H)−1, and Ferc(J) ∼= Sn(J)−1. Hence, we can apply again Lemma
3.10 to deduce that Ferb(Ak) ∼= Sn(Ak)−1.

Now we show that both Ak and A′
k are local amoebas. Consider first a permutation

φ′ ∈ Fer(A′
k) that interchanges the labels among the sets V (H ′) and V (J ′) induced by an

isomorphism that sends b′ to c′. Since φ′(b′) = c′ ̸= b′, it follows by Lemma 3.11 that A′
k is a

local amoeba. Finally, notice that db → dc is a feasible edge-replacement in Ak, and take a
permutation φ ∈ Fer(Ak) induced by an isomorphism between H − z and J that takes v to
w. Hence, φ(b) = c ̸= b and by Lemma Lemma 3.11, it follows that A′

k is a local amoeba.

The proof of Proposition 3.16 follows from Proposition 1.39.

Proposition 3.16. For every k ≥ 1, Ak ∈ A and A′
k ∈ A′ are global amoebas.
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Figure 3.6: A labeling of A3.

3.2 Balancing number of global amoebas
In this section we approach the balancing number of global amoebas through the Turán
number of a class of graphs, defined before in 2.5, re-stated in (3.1), and provide a lower
bound for such number in terms of cuts defined in (3.2). We then apply these results to the
Fibonacci-type trees and the Ak-trees defined in Section 3.1.2.

Let G be a graph on m edges. Let

HG =
{

H : H ⊂ G, H has
⌊

m

2

⌋
edges and no isolated vertices

}
(3.1)

be the class of subgraphs of G that contain half the number of edges of G (rounding down
when m is odd).

For a graph G = (V, E) and partition V = S ∪ T , let

e(S, T ) = |{uv ∈ E(G) : u ∈ S, v ∈ T}|; (3.2)

we say that e(S, T ) is the size of the cut (S, T ) and we say that the cut has order min{|S|, |T |}.
The next theorem establishes the equivalence between the balancing number of a global

amoeba and the Turán number of the class HG.

Theorem 3.17. Let G be a global amoeba with m edges. Then bal(n, G) = ex(n, HG).

Proof. First we show that ex(n, HG) ≤ bal(n, G). Consider any 2-edge-coloring E(Kn) =
R ∪ B satisfying bal(n, G) < min{|R|, |B|}. By definition of balancing number, there is a
balanced copy of G, which is the union of GR and GB where each graph is monochromatic
red and blue respectively. Setting m = e(G), it follows that GR and GB have each ⌊m

2 ⌋ edges
and, thus, each of the classes R and B have a copy of a graph in HG. Since each color class in
the 2-edge coloring has more than bal(n, G) edges, we conclude that ex(n, HG) ≤ bal(n, G).

In what follows we consider a 2-edge coloring of Kn satisfying ex(n, HG) < min{|R|, |B|}.
We show that the coloring contains a balanced copy of G from which we conclude that
bal(n, G) ≤ ex(n, HG).

Since ex(n, HG) < |R|, there is a red copy HR ⊂ R of a graph in HG. Let GR ⊂ Kn be a
copy of G such that HR ⊂ GR and let ℓR be the number of red edges in GR. Similarly, we
may consider a blue copy HB ⊂ B of a graph in HG. Let GB ⊂ Kn be a copy of G such that
HB ⊂ GB and let ℓB be the number of blue edges in GB. By the definition of HG, we have
that min{ℓR, ℓB} ≥ ⌊m

2 ⌋, where m = e(G).
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By the property of global amoebas, we find a sequence of subgraphs G0 = GR, G1, . . . Gk =
GB of Kn such that, for each 1 ≤ i ≤ k, Gi may be obtained from Gi−1 by a feasible edge
replacement. Let ℓR,i be the number of red edges in Gi. Clearly, |ℓR,i − ℓR,i−1| ≤ 1; on the
other hand, ℓR,0 = ℓR ≥ ⌊m

2 ⌋ and ℓR,k = m − ℓB ≤ m − ⌊m
2 ⌋ = ⌈m

2 ⌉. It follows that there
is some 0 ≤ i ≤ k for which Gi is a balanced copy of G. Hence, bal(n, G) ≤ ex(n, HG), as
desired.

The following theorem gives a lower bound on ex(n, HG) in terms of the maximum size of
a cut of order at most ℓ.

Theorem 3.18. Let G = (V, E) be a graph of size m and let HG be defined as in (3.1). If
ℓ ∈ N satisfies

max{e(S, V \ S) : S ⊂ V, |S| ≤ ℓ} <
⌊

m

2

⌋
,

then ex(n, HG) ≥ ℓ(n − ℓ).

Proof. Let ℓ ∈ N be as stated above. We claim that the complete bipartite graph Kℓ,n−ℓ does
not contain any H ∈ HG as a subgraph and so ex(n, HG) ≥ ℓ(n − ℓ).

Suppose to the contrary that there is a copy of H ∈ HG in Kℓ(n−ℓ). It follows that H
is bipartite and, furthermore, one of its parts has order at most ℓ. Thus, there is S ′ ⊂ V
such that ⌊m

2 ⌋ = e(H) ≤ e(S ′, V \ S ′) ≤ max{e(S, V \ S) : S ⊂ V, |S| ≤ ℓ} <
⌊

m
2

⌋
; which is

a contradiction.

The following proposition states a property of global amoebas that will be used in the
proof of Corollary 3.20.

Proposition 3.19. [12] Let d1 ≥ d2 ≥ · · · ≥ dn be the degree sequence of a global amoeba G
of order n, and let D = {di | i ∈ [n]}. Then

i) D = {0} ∪ [∆], where ∆ is the maximum degree of G, and

ii) for every i ∈ [n], we have di ≤ n + 1 − i.

Corollary 3.20. Let G = (V, E) be a global amoeba with k vertices, m edges and degree
sequence d1 ≥ · · · ≥ dk. For any ℓ ≥ 1 satisfying ∑ℓ

i=1 di <
⌊

m
2

⌋
, we have bal(n, G) ≥ ℓ(n−ℓ).

In particular,

bal(n, G) ≥
⌊

m − 1
2k + 1

⌋ (
n −

⌊
m − 1
2k + 1

⌋)
.

Proof. The first statement follows from Theorems 3.17 and 3.18. Indeed, let ℓ ≥ 1 be as
stated above. Then

max{e(S, V \ S) : S ⊂ V, |S| ≤ ℓ} ≤ max
{∑

v∈S

deg(v) : S ⊂ V, |S| ≤ ℓ

}
≤

ℓ∑
i=1

di <
⌊

m

2

⌋
,
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which implies that bal(n, G) = ex(n, HG) ≥ ℓ(n − ℓ).
We now use properties of global amoebas to bound ∑ℓ

i=1 di. By Proposition 3.19, since G
is a global amoeba, di ≤ k + 1 − i for 1 ≤ i ≤ k. In particular, ∑ℓ

i=1 di ≤ ∑ℓ
i=1(k + 1 − i) =

(k + 1)ℓ − ℓ(ℓ + 1)/2. We show that for ℓ =
⌊

m−1
2k+1

⌋
, we have

(k + 1)ℓ − ℓ(ℓ + 1)
2 ≤ m − 1

2 <
⌊

m

2

⌋
. (3.3)

The solutions x ∈ R to the quadratic inequality 2(k + 1)x − x(x + 1) ≤ m − 1 satisfy
x ≤ x− or x ≥ x+, where

x± = 2k + 1
2

1 ±

√√√√1 − 4(m − 1)
(2k + 1)2

 .

Using1 that
√

1 − y ≤ 1 − y/2 for y ∈ R, we have that ℓ satisfies (3.3) since

x− ≥ 2k + 1
2

(
2(m − 1)
(2k + 1)2

)
= m − 1

2k + 1 ≥ ℓ.

We note that x+ ≥ k > ℓ and so, using this approach, the bound obtained in Corollary 3.20
may only be improved by increasing the value of a feasible ℓ ≤ x−.

3.2.1 Fibonacci-type trees
For a non-negative integer k, let Fk denote the k-th Fibonacci number (so that F1 = F2 = 1,
F3 = 2 and so on). Recall that Tk is the k-th Fibonacci-type tree.

Theorem 3.21. We have bal(n, T4) = bal(n, A3) = 1 and bal(n, T5) = bal(n, A4) = 6.

Proof. Notice that HT4 = HA3 consists of exactly two non-isomorphic graphs: 2K2 and P2.
Thus ex(n, HT4) = 1 and by Theorem 3.17 we are done.

Similarly, we note that HT5 = HA4 . To save on words, call a graph containing no copies
of elements of HT5 “extremal”. Now observe that HT5 consists of all graphs on four edges
except C4, K3 + e (where e is an edge disjoint from K3) and K4 − P2. Thus, any extremal
graph on four or more edges must contain one of the these three. As a consequence of this
fact, it is straightforward to show, but cumbersome to write down, that the only extremal
graph on five edges is K4 minus an edge. It follows that K4 is the only extremal graph on six
edges. Similarly, any extremal graph on seven edges must contain K4. Since both the star
of four edges and the star of three edges plus a disjoint edge are elements of HT5 , no such
extremal graph exists. Hence,

bal(n, A4) = bal(n, T5) = ex(n, HT5) = 6.

1The function f(y) =
√

1 − y − 1 + y/2 is concave and its maximum is attained at f(0) = 0.
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The following theorem, which we prove in two parts, provides us with an asymptotically
tight bound on the balancing number of these Fibonacci-type trees.

Theorem 3.22. For k ≥ 6,

Fk−4(n − Fk−4) ≤ bal(n, Tk) ≤ (Fk−2 − 2)n(1 + o(1)).

The following technical lemma greatly simplifies the calculations ahead.

Lemma 3.23. For k and i, two positive integers, let us denote by V k
i the set of vertices of

Tk of degree i and tk
i := |V k

i |. Then the following holds for all k ≥ 4.

(a) tk
1 = Fk;

(b) tk
2 = Fk−1;

(c) tk
k−1 = 1, if k ≥ 5, then tk

k−2 = 1, and if k ≥ 6, then tk
k−3 = 1; and

(d) if 2 < i < k − 1, tk
i = Fk−i−1;

(e) Tk has a unique vertex of maximum degree k − 1.

Proof. We prove the lemma by a simple inductive argument. Indeed the statement is clearly
true for k ∈ {4, 5}. Furthermore, if it holds for k − 1 and k − 2, notice that for any i < k − 3,
by the construction of Tk and (e) applied to k − 2, we get that V k

i is the disjoint union of
V k−1

i and V k−2
i . Applying (a), (b) and (c) for k − 1 and k − 2, we immediately have (a) and

(b) for k:
tk
1 = Fk; tk

2 = Fk−1;
and

tk
i = tk−1

i + tk−2
i = Fk−i−1.

That (e) for k is true follows directly from the construction of Tk and the inductive hypothesis,
which incidentally implies that (d) must be true for k as well. We now focus on the case
when k ∈ {k − 2, k − 3}. Using (e) for k − 1 and k − 2, we know that Tk−1 ∪ Tk−2 has exactly
two vertices of degree k − 3, namely the vertex of maximum degree of Tk−2 and of the copy
of Tk−2 inside of Tk−1. Tk has have exactly one vertex of degree k − 3 since one of them is
joined via an edge to the only vertex of degree k − 2 in Tk−1. Again by (e), neither Tk−1 nor
Tk−2 have any vertices of degree k − 2 and so the only such vertex in Tk is produced by the
new edge (and only one of the vertices has degree k − 3). Consequently, tk−3

i = tk−2
i = 1 and

so we are done.

Lemma 3.24. For k ≥ 6, Fk−4(n − Fk−4) ≤ bal(n, Tk).
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Proof. First define, for all i < k, ti := tk
i as in Lemma 3.23. Let ℓ := Fk−4. By properties of

the Fibonacci sequence, ∑m
i=1 Fi = Fm+2 − 1, so by Lemma 3.23,

ℓ = 1 +
k−6∑
i=1

Fi =
k−1∑
i=5

ti.

Then, the sum of the first ℓ elements of the degree sequence of Tk is equal to ∑k−1
i=5 iti. In

the spirit of Corollary 3.20, we want this latter number to be smaller than
⌊

m
2

⌋
=
⌊

2Fn−1
2

⌋
.

Notice that since ∑k
i=1 iti = 2(2Fk − 1), it is enough to argue that

4∑
i=1

iti ≥ 3Fk−1.

But this computation is derived by properly expanding the terms of the Fibonacci sequence
and using the fact that 3Fk−4 + 4Fk−5 ≥ 2Fk−2 − 1.

4∑
i=1

iti = Fk + 2Fk−1 + 3Fk−4 + 4Fk−5

≥ Fk + 2Fk−1 + 2Fk−2 − 1
= 3Fk − 1.

This proves the lower bound given in the lemma’s statement. And a straightforward
calculation shows that the bound may not be improved with the same techniques, i.e. by
increasing the number of addends in the above computation.
Lemma 3.25. For k ≥ 6, bal(n, Tk) ≤ (Fk−2 − 2)n(1 + o(1)).
Proof. Similarly to the previous lemma, we show that, for any k ≥ 5, there exists a star
forest Sk on Fk−1 edges contained in Tk such that ex(n, Sk) = (Fk−2 − 2)n(1 + o(1)). Then,
applying monotonicity, Theorem 3.17 and [49][Theorem 3], we conclude the proof.

For k ∈ {5, 6}, the construction of Sk and S+
k can be seen in Figure 3.7. We construct the

subsequent forests recursively. Assume that Sk−1 and S+
k−1, and Sk−2 and S+

k−2 are star forests
in Tk−1 and Tk−2 respectively. Then, in Tk, consider Sk := S+

k−1 ∪S+
k−2 and S+

k := Sk−1 ∪S+
k−2.

Hence, Sk has Fk−1 + Fk−2 + 1 = Fk − 1 edges and, similarly, S+
k has Fk edges.

If we now let cm be the number of components of Sm, am the number of vertices of degree
4 and bm the number of vertices of degree 3, we have that, inductively,

a5 = a6 = 1 am = am−1 + am−2 = Fn−4

b5 = 0, b6 = 1 bm = bm−1 + bm−2 = Fm−5

c5 = 1, c6 = 2 cm = cm−1 + cm−2 + 1 = Fm−2 − 1

We conclude the proof by calculating ex(n, Sk). Indeed here we apply [49][Theorem 3]. In
the case that i ≤ am,

ex(n, Sk) = 2i + di − 3
2 ≤ 2am + dam − 3

2 = 2Fn−4 + 1
2 .
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Similarly, when am < i ≤ am + bm,

ex(n, Sk) = 2i + di − 3
2 ≤ 2(am + bm) + 3 − 3

2 = Fm−3.

And finally, when am + bm < i ≤ cm, we have that

ex(n, Sk) = 2i + di − 3
2 ≤ 2cm + 1 − 3

2 = Fm−2 − 2.

Finally,
bal(n, Tk) = ex(n, HTk

) ≤ ex(n, Sk) ≤ (Fk−2 − 2)n(1 + o(1)).

Figure 3.7: Star forests (in red) Sk. S+
k contains, in addition, the dotted red edges.

The following theorem states how the balancing number of Ak is related to the balancing
number of A′

k. It is proven in a series of lemmas and propositions.

Theorem 3.26. For k ≥ 5,

2k−5(n − 2k−5) ≤ bal(n, A′
k) ≤ bal(n, Ak) ≤ (2k−3 − 1)(n − 2k−4).

The following Lemma grants some the number of vertices in Ak with degree d for 1 ≤ d ≤ k.
This will be helpful when proving the analogous result for A′

k.

Lemma 3.27. For k and i, two positive integers, let us denote by V k
i the set of vertices of

Ak of degree i and tk
i := |V k

i |. Then the following holds for all k ≥ 2.

(a) n(Ak) = 2k−1 + 1 and e(Ak) = 2k−1;

(b) tk
1 = 2k−2 + 1;

(c) tk
i = 2k−i−1, if 2 ≤ i ≤ k − 2 when k ≥ 3;

(d) tk
k−1 = 1 for k ≥ 3; and
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(e) tk
k = 1;

Proof. We prove e(Ak) = 2k−1 by induction. It is clear that e(A1) = 1. By the construction
of Ak and the inductive step, we can conclude that e(Ak) = 2e(Ak−1) = 2(2k−2) = 2k−1. The
fact that n(Ak) = 2k−1 +1 is straightforward by the property that states that n(T ) = e(T )+1
for every tree T .

It is clear that t1
1 = 2 and t2

2 = 1. To prove (b) we also proceed by induction on k. The
base is clear as t2

1 = 2. For k ≥ 2 notice that Ak has double the number of vertices of degree
1 in Ak minus one. Hence, tk

1 = 2(tk−1
1 ) − 1 = 2k−2 + 1.

We continue to prove (d) and (e). By the construction of Ak, it is clear that the maximum
degree vertex is unique for k ≥ 2 and the vertex of degree k − 1 is unique for k ≥ 3.

To prove (c), we use induction on k. Note that for 2 ≤ i ≤ k − 2 the number of vertices
in Ak with degree i is double the number of vertices of degree i in Ak−1. Therefore, for each
2 ≤ i ≤ k − 2, we start with the base of the induction in Ai+2 and we calculate ti+2

i . Note
that ti+1

i = 1 by (d), therefore ti+2
i = 2ti+1

i = 2.We proceed with the induction step: and
tk
i = 2 · tk−1

i = 2 · 2k−i−2 = 2k−i−1. This concludes the proof.

The balancing number of Ak is closely related to the balancing number of A′
k, as we can

see in the following result.

Proposition 3.28. For k ≥ 2, we have that bal(n, A′
k) ≤ bal(n, Ak).

Proof. Let E(Kn) = R ⊔ B be a 2-edge coloring with at least bal(n, Ak) edges in each color.
Therefore, there is a balanced copy of Ak, which contains a balanced copy of A′

k. This
concludes the proof.

We employ the following Lemma to provide a lower bound of bal(n, A′
k).

Lemma 3.29. For k and i, two positive integers, let us denote by V k
i the set of vertices of

A′
k of degree i and tk

i := |V k
i |. Then the following holds for all k ≥ 2.

(a) n(A′
k) = 2k−1 and e(A′

k) = 2k−1 − 1;

(b) tk
i = 2k−i−1, if 1 ≤ i ≤ k − 2 for k ≥ 3;

(c) tk
k−1 = 2 for k ≥ 2.

Proof. By Lemma 3.27, note that n(A′
k) = n(Ak)−1 = 2k−1 and e(A′

k) = e(Ak)−1 = 2k−1 −1.
This proves (a). The proof of (b) is analogous to the proof of (c) from Lemma 3.27. The
proof of (c) follows from the construction of A′

k and from (d) and (e) in Lemma 3.27.

Proposition 3.30. For k ≥ 5, 2k−5(n − 2k−5) ≤ bal(n, A′
k).
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Proof. Let d1 ≥ d2 ≥ · · · ≥ d2k−1 be the degree sequence of A′
k. Let S(k, q) be the sum of

the first ℓ elements of the degree sequence of A′
k. By Lemma 3.29, S(k, q) can be expressed

in the following way.

S(k, q) = 2(k − 1) + 2(k − 2) + 22(k − 3) + · · · + 2q−1(k − q)

= 2(k − 1) +
q−1∑
i=1

2i(k − (i + 1))

Therefore, ℓ = 2 +∑q−1
i=1 2i. We wish to find the largest value q can have so that

S(k, q) <
2k−1 − 1

2 (3.4)

holds. We use the identity ∑n
i=0 ri = 1−rn+1

1−r
, for |r| < 1, and expand ∑n

i=0 2i.

n∑
i=0

2i = 2n
n∑

i=0
2i−n = 2n

n∑
i=0

(1
2

)n−i

= 2n
n∑

i=0

(1
2

)i

= 2n ·
1 −

(
1
2

)n+1

1 − 1
2

= 2n+1 − 1 (3.5)

This implies that

ℓ = 2 +
q−1∑
i=1

2i = 2 +
q−1∑

i=0
2i

− 1 = 2q.

We proceed to express S(k, q) in a simpler manner.

S(k, q) = 2(k − 1) +
q−1∑
i=1

2i(k − (i + 1))

= 2(k − 1) + (k − 1)
q−1∑
i=1

2i −
q−1∑
i=1

i · 2i

= 2(k − 1) + (k − 1)f(q) − g(q).

We work with the newly defined functions f(q) and g(q). By eq. (3.5), f(q) is expressed
as follows.

f(q) =
q−1∑
i=1

2i = 2q − 2.

We use eq. (3.5) again to find a simpler expression for g(q).
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g(q) =
q−1∑
i=1

i · 2i =
q−1∑
i=1

2i +
q−1∑
i=2

2i + · · · +
q−1∑

i=q−1
2i

=
q−1∑
j=1

q−1∑
i=j

2i =
q−1∑
j=1

2j
q−1−j∑

i=0
2i =

q−1∑
j=1

2j(2q−j − 1)

=
q−1∑
j=1

(2q − 2j)

= 2q(q − 1) − 2q + 2
= 2q(q − 2) + 2.

Therefore,

S(k, q) = 2(k − 1) + (k − 1)(2q − 2) − (2q(q − 2) + 2)
= 2q(k − q + 1) − 2.

We solve the inequality 2q(k − q + 1) − 2 < 2k−1−1
2 for q, which is equivalent to solving

2q+1(k − q + 1) − 22 < 2k−1 − 1. Note that q = k − 5 satisfies the inequality.

2k−4(6) − 4 < 2k−1 − 1
2k−4(6 − 23) < 3

−2k−3 < 3

If q = k − 4, we arrive to 2k−3 < 3, which is false for k ≥ 5. Therefore, q = k − 5 is the
highest value that satisfies eq. (3.4). By Corollary 3.20, we conclude that

2k−5(n − 2k−5) ≤ bal(n, A′
k)

for k ≥ 5.

Lemma 3.31. For k ≥ 5, bal(n, Ak) ≤ (2k−3 − 1)(n − 2k−4).

Proof. We consider vertices of degree at least 5 and use the fact that Ak has 2k−1 edges.
For the upper bound, we find, for k ≥ 4, a star forest contained in Ak with the following

properties for any such k.

1. Sk is a forest of 2k−3 stars with 2k−1 + 1 edges in total.

2. If v is a leaf of Sk, then Mkv ∈ Sk.
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3. The maximum degree of the i-th star (in descending order) is

di =


4 i = 1
3 1 < i ≤ 2k−4

1 2k−4 < i ≤ 2k−3
.

For k = 4, Sk consists of the four edges incident on Mk and the remaining disjoint edge, and
clearly the properties are satisfied. Assuming Ak−1 has such a star forest, the construction of
Ak requires two copies Ak−1 and A′

k−1, removing the edge M ′
k−1v and joining the vertices M ′

k−1
and Mk−1. Say the star forests are Sk−1 and S ′

k−1. We claim Sk := S ′
k−1 \ {Mk−1v} ∪ Sk−1

has all the sought properties. Now we apply monotonicity and [49][Theorem 3].

bal(n, Ak) ≤ ex(n, Sk) = max
1≤i≤2k−3

(i − 1)(n − i + 1) +
(

i − 1
2

)⌊
di − 1

2 (n − i + 1)
⌋

.

For large enough n, these terms are dominated by the case when i = 2k−3. Hence,

bal(n, Ak) ≤ (2k−3 − 1)(n − 2k−3 + 1) +
(

2k−3 − 1
2

)
= (2k−3 − 1)(n − 2k−4).

3.3 Open problems
We finish this chapter stating some open problems that are left for future work concerning the
topic of amoebas. It would be interesting to explore if there is a way to characterize global
and local amoebas via constructions. However, this problem seems to be quite ambitious and
maybe even impossible. The problems we state here concern constructions of amoebas that
try to go into that direction.

1. Generalize the construction of Lemma 3.10.

2. Look for other general ways of constructing global or local amoebas.

3. Characterize local amoeba trees.

4. Characterize global amoeba trees.

5. Study the balancing number of other amoeba families by using constructions.
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Chapter 4

The Kn,n setting

All concepts studied so far, like the unavoidable patters, balanceability, and omnitonality,
use the complete graph as a base graph. However, these concepts can also be explored
on any other base graph. In this chapter we employ the complete bipartite graph Kn,n as
a base graph to find unavoidable patterns and discuss the concepts of balanceability and
omnitonality.

4.1 Unavoidable patterns
In Section 1.2.3, the Zarankiewicz problem was discussed. and, Theorem 1.10 gives an upper
bound for the Zarankiewickz number z(m, n; s, t). For simplicity, we will use z(n, t) when
referring to z(n, Kt,t). The particular case of Theorem 1.10 for m = n and s = t is given
below.

Corollary 4.1 (Kővári-Sós-Turán 1954 [34]). For every positive integer t, the following is an
upper bound of the Zarankiewickz number for Kt,t,

z(n, t) < (t − 1) 1
t n2− 1

t + 1
2(t − 1)n.

The following result is deduced by the Dependent random choice lemma given in
Corollary 1.20.

Proposition 4.2 (Dependent random choice). For all m and t positive integers, there exists a
C = C(m, t) > 0 such that any graph G on 2n vertices with e(G) ≥ C(2n)2− 1

t edges contains
a set S ⊂ V (G) of m vertices where every subset X ⊂ S such that |X| = t has at least m
common neighbors.

We now state the main result of this section where we explore the base graph Kn,n for n
large enough to look for unavoidable patterns in 2-edge colorings with sufficient edges in each
color.
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Theorem 4.3. Let t be a positive integer. For all large enough n and T ≥ t, there exists a
positive integer z = z2(n, t) = O(n2− 1

t ) such that any coloring E(Kn,n) = R ⊔ B with at least
z edges in each color class contains a colored copy of KT,t+T where one color forms a graph
isomorphic to KT,T , or a copy of Kt,2T where one color forms a graph isomorphic to Kt,T .
Proof. Let Kn,n be the complete bipartite graph with partition sets A and B, n large enough
and let m and T be integers such that n > m ≥ T ≥ t and

m2

2 ≥ (T − 1) 1
T n2− 1

T + 1
2(T − 1)n ≥ (t − 1) 1

t n2− 1
t + 1

2(t − 1)n (4.1)

holds. Let z = C(2n)2− 1
t where C = C(m, t) is large enough. Let E(Kn,n) = R ⊔ B

be any 2-edge coloring with at least z edges in each color class. This is possible because
z2(n, t) = o(n2). By Proposition 4.2, the amount of blue edges guarantees that there is a
set of vertices S1 in A (without loss of generality) with |S1| = m and such that any subset
T1 ⊆ S1 of order t must have a common blue neighborhood M1 of at least m neighbors.

A similar argument can be made for the red edges. There is also a set of vertices S2 with
|S2| = m such that any subset T2 ⊆ S2 of order t must have a common red neighborhood
M2 of at least m neighbors. We will divide the proof in two cases, one being when S2 is
contained in A and the other when S2 is contained in B. Notice that S2 cannot intersect
both A and B, because that would yield the existence of edges in one of the parts A or B.

If S2 ⊂ A, take any subset T1 ⊂ S1 of order t. The set T1 has a common blue neighborhood
M1 of order m in B. Now we will use the edges induced by S2 and M1 to find a monochromatic
KT,T . By the pigeonhole principle, there are at least m2

2 edges induced by S2 and M1 in one
color class. Because of eq. (4.1), the amount of these edges is an upper bound of z(m, T ) (by
Corollary 4.1). Hence there is a monochromatic KT,T in the graph induced by S2 ∪ M1. If
this KT,T is red, then the graph induced by T1 ∪ M1 ∪ S2 is a KT,t+T , where one color forms
a graph isomorphic to KT,T . If the KT,T in the graph induced by S2 ∪ M1 is blue and has
partition sets X and Y where X ⊂ S2 and Y ⊂ M1 then we take a subset X1 ⊆ X with t
vertices and by Proposition 4.2 X1 has a red neighborhood M2 of order m in B. Notice that
the graph induced by X1 ∪ Y ∪ M2 is a Kt,2T where one color forms a graph isomorphic to
KT,T .

If S2 ⊂ B, there are at least m2

2 edges of the same color, say red, between the sets S1

and S2 by the pigeonhole principle. Because m2

2 ≥ (T − 1) 1
T n2− 1

T + 1
2(T − 1)n > z(m, T ),

there is a red KT,T contained in the graph induced by the sets S1 and S2. Let T1 and T2 be
the partition sets of the red KT,T , with T1 ⊂ S1 and T2 ⊂ S2. By Proposition 4.2 we know
that any t-subset of T1 has a blue common neighborhood M1 of order m. The graph induced
by T1 ∪ T2 ∪ M1 is a Kt,2T where one color forms a graph isomorphic to Kt,T . If the KT,T

contained in the graph induced by the sets T1 and T2 is blue, we make a similar argument
simply taking any t-subset from T2 and its red common neighborhood in A. In this case, we
also find a Kt,2T where one color forms a graph isomorphic to Kt,T .

Notice that the parameter T allows the existence of large monochromatic complete
bipartite graphs in every 2-edge coloring of E(Kn,n) with sufficient edges in each color. As a
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direct consequence, if T = t, we obtain only one colored pattern. This pattern will appear no
matter the value of T , which is the reason we rather use the following corollary throughout
this chapter.

Corollary 4.4. Let t be a positive integer. For all large enough n, there exists a positive
integer z = z2(n, t) = O(n2− 1

t ) such that any coloring E(Kn,n) = R ⊔ B with at least z2 edges
in each color class contains a colored copy of Kt,2t where one color forms a graph isomorphic
to Kt,t.

The following proposition employs Theorem 1.17 to show some values for which z2(n, t)
is tight. Note that any graph H on n vertices and ex(n, G) edges that does not contain G
as a subgraph can be used to define a bipartite graph H ′ with n vertices in each part and
z(n, G) edges with no copies of G, by the proof of Proposition 1.11. With this in mind, one
can give a 2-edge coloring of E(Kn,n) where one color, say red, forms the before mentioned
graph H ′ and as a consequence, there are no red copies of G in this coloring. This can also
be extended to a coloring of the edges of a complete bipartite graph, which is the idea of the
proof of the lower bound of z2(n, t).

Proposition 4.5. For sufficiently large n and integers s and t that satisfy 1 ≤ s ≤ 3 ≤ t or
t ≥ (s − 1)! + 1, Theorem 4.3 is tight.

Proof. Recall Theorem 1.17 which states that for a sufficiently large n and integers s and
t that satisfy 1 ≤ s ≤ 3 ≤ t or t ≥ (s − 1)! + 1, the value of ex(n, G) is tight. The authors
exhibit a graph H on at most n vertices which is Ks,t-free for the mentioned values of s and
t. By Proposition 1.11, we can extend this graph H to a bipartite graph H ′ with at most n
vertices in each part which is also Ks,t-free. We now give a 2-edge coloring E(Kn,n) = R ⊔ B
where one color, say blue, forms a copy of H ′ and the rest of the edges are red. Because
e(H ′) = O(n2− 1

s ), the edge coloring has at least O(n2− 1
s ) edges in each color. Therefore,

this coloring does not contain blue copies of Ks,t when s and t satisfy 1 ≤ s ≤ 3 ≤ t or
t ≥ (s − 1)! + 1. Note that this coloring does not contain colored copies of KT,s+T where one
color forms a graph isomorphic to Ks,T , or a copies of Ks,2T where one color forms a graph
isomorphic to Ks,T for T ≥ t and the stated values of s and t. We have reached the desired
result.

4.2 Bipartite omnitonality
We now define the concept of bipartite r-tonality and bipartite omnitonality on the base
graph Kn,n, along with a characterization for bipartite r-tonal graphs and a proof that every
tree is bipartite-omnitonal.

Definition 4.6. Let G be a bipartite graph and r an integer with 0 ≤ r ≤ ⌊ e(G)
2 ⌋. Let

bbalr(n, G) be the minimum integer, if it exists, such that every 2-edge coloring E(Kn,n) =
R ⊔ B with min{|R|, |B|} > bbalr(n, G) contains either an (r, e(G) − r)−colored copy of G,
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or an (e(G) − r, r)−colored copy of G. If bbalr(n, G) exists for every n sufficiently large, we
say that G is bipartite r-tonal.

Now we can state the definition of bipartite omnitonality.

Definition 4.7. Let G be a bipartite graph and let bot(n, G) be the minimum integer, if it
exists, such that any 2-coloring E(Kn,n) = R ⊔ B with min{|R|, |B|} > bot(n, G) contains an
(r, b)−colored copy of G for any r ≥ 0 and b ≥ 0 such that r + b = e(G). If bot(n, G) exists
for a large enough n, we say that G is bipartite-omnitonal. For a bipartite-omnitonal graph
G, let Bot(n, G) be the family of graphs H on exactly bot(n, G) edges such that there is a
coloring E(Kn,n) = R ⊔ B with |R| = bot(n, G) and with no (r, b)-colored copy of G for some
pair r, b ≥ 0 with r + b = e(G) and such that G[R] is isomorphic to H.

Observe that if G is bipartite r-tonal, then bbalr(n, G) ≤ n2

2 . The same upper bound
holds for bot(n, G) in the case of bipartite omnitonal graphs.

Theorem 4.8. Let G be a bipartite graph and let r be a positive integer with r ≤ ⌊ e(G)
2 ⌋.

Then G is bipartite r-tonal if and only if there is a set of vertices U ⊆ V (G) such that
e(U, N(U)) = r and U is contained in one of the partition sets of G.

Proof. Let G be bipartite r-tonal and n even and sufficiently large such that bbalr(n, G)
exists. Let the partition sets of Kn,n be X and Y with Y = Yr ⊔ Yb and |Yr| = n

2 . Let
E(Kn,n) = R ⊔ B be a 2-edge coloring where the red edges are all possible edges between
the sets X and Yr and the blue edges are all possible edges between X and Yb. Because G is
bipartite r-tonal and |R| = |B| = n2

2 , we can guarantee the existence of a colored copy of G
where one color class, say red, contains exactly r edges. Let U = V (G) ∩ Yr. This must be a
set of independent vertices that satisfies that eG(U, NG(U)) = r and U is clearly contained in
one of the partition sets of Kn,n, and hence, of G.

Conversely, let G be a bipartite graph that contains a set of vertices U such that
eG(U, NG(U)) = r and U is contained in one of the partition sets of G. Let t = n(G) and
let E(Kn,n) = R ⊔ B be a 2-edge coloring, where n is large enough, with more than z2(n, t)
edges in each color, just as in Theorem 4.3. By Corollary 4.4, there is a colored copy of a
Kt,2t where one color forms a Kt,t. Let X = Xb ∪ Xr and Y be the partition sets of this Kt,2t,
where |Xb| = |Xr| = |Y | = t and such that E(Xb, Y ) ⊆ B and E(Yr, X) ⊆ R.

Let XG and YG be the partition sets of V (G) such that U ⊆ XG. Now we can embed G
in this Kt,2t by placing the set U inside Xb, the set XG \ U inside Xr and the set YG inside
Y . This copy of G has exactly r blue edges. Hence, G is bipartite r-tonal.

Similarly as in Theorem 4.8, we can prove a characterization of bipartite omnitonal graphs.

Theorem 4.9. A bipartite graph G is bipartite omnitonal if and only if for every 0 ≤ r ≤ e(G)
there is a set of vertices Ur ⊆ V (G) such that eG(Ur, NG(Ur)) = r and Ur is contained in one
of the partition sets of G.
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Proof. Suppose G is bipartite omnitonal. Let n be even and large enough so that bot(n, G)
exists. Consider an edge coloring E(Kn,n) = R ⊔ B where one color forms a Kn, n

2
. Since G is

bipartite omnitonal and bot(n, G) ≤ n2

2 = |R| = |B|, there must be a copy of G in Kn,n with
r red edges for every 0 ≤ r ≤ e(G). This implies that, for every 0 ≤ r ≤ e(G), there is a set
of vertices Ur such that eG(Ur, NG(Ur)) = r and Ur is contained in one of the partition sets
of G.

Conversely, suppose that for every 0 ≤ r ≤ e(G), there is a set of vertices Ur ⊆ V (G)
such that eG(Ur, NG(Ur)) = r and Ur is contained in one of the partition sets of G. Let
E(Kn,n) = R ⊔ B be a 2-edge coloring with more than z = z2(n, t), where t = n(G) and z is
like in Corollary 4.4. Therefore, if n is sufficiently large, there is a copy of Kt,2t (with partition
sets X and Y ) where one color, say red, forms a graph isomorphic to Kt,t (with partition sets
X and Y1 ⊆ Y ). Because there is a set of vertices Ur ⊆ V (G) such that eG(Ur, NG(Ur)) = r
and Ur is contained in one of the partition sets of G, we can place Ur in Y1 to find a copy
of G with r red edges and e(G) − r blue edges for every 0 ≤ r ≤ e(G). This concludes the
proof.

As in the setting where Kn is the base graph (see Theorem 1.35) it turns out that all
trees are bipartite-omnitonal.

Theorem 4.10. Every tree T is bipartite-omnitonal.

Proof. Let T be a tree with e(T ) = k. In view of Theorem 4.8, we prove that, for every
0 ≤ r ≤ e(T ), there is a set Ur in one of the partition sets of T such that eT (Ur, NT (Ur)) = r
by induction on k.

If k = 1, we may that U0 as the empty set and U1 as a single vertex. Both sets satisfy
that eT (Ur, NT (Ur)) = r for r = 0, 1. Let v be a leaf in V (T ) and let u be its only neighbor.
By the induction hypothesis, the tree T ′ = T − v is bipartite-omnitonal, which means that,
for every 0 ≤ r ≤ k − 1, there is a set U ′

r contained in one of the partition sets of T ′ such
that eT ′(U ′

r, NT ′(U ′
r)) = r.

For each r, there are two cases that can happen. If u ∈ U ′
r, then v ∈ V (T )\U ′

r, and we may
take Ur+1 = U ′

r so that eT (Ur+1, NT (Ur+1)) = r + 1. The second case is that u ∈ V (T ) \ U ′
r.

In this case, we let Ur+1 = U ′
r ∪ {v}. Hence for every 1 ≤ r ≤ k, there is a set Ur that satisfies

the theorem. The only case missing is when r = 0. In this case we can take U0 as the empty
set because eT (U0, NT (U0)) = 0. This concludes the proof.

4.3 Bipartite balanceability and the bipartite balancing
number

The bipartite balancing number is defined on the base graph Kn,n. We provide the bipartite-
balancing number for paths and stars.
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Definition 4.11. If there exists an integer k = k(n) such that, for n large enough every
2-edge coloring R ⊔ B of E(Kn,n) with more than k edges in each color class contains a
balanced copy of G, then we say G is bipartite-balanceable. The smallest such k is called the
bipartite-balancing number of G and it is denoted as bbal(n, G). For a bipartite balanceable
graph G, let Bbal(n, G) be the family of graphs with exactly bbal(n, G) edges such that a
2-edge coloring E(Kn,n) = R ⊔ B with exactly bbal(n, G) edges in one color contains no
balanced copy of G if and only if the graph induced by the red edges or by the blue edges is
isomorphic to some H ∈ Bbal(n, G).

The following corollary follows directly from Theorem 4.10.

Corollary 4.12. Every tree T is bipartite-balanceable.

We explore the value of bbal(n, G) for some families of trees. We will start with the
bipartite-balancing number of paths. We prove the lower bound of bbal(Pk, n) by giving
an explicit 2-edge coloring of Kn,n with precisely ⌊k−2

4 ⌋n edges in one color and such that
there is no balanced copy of Pk. The upper bound of bbal(Pk, n) is proven using induction
on k. It is easy to see that applying an inductive step using one more edge trivially gives
us a balanced path because the length of the path increases by one and hence the balanced
property remains. Therefore, we will conduct the proof taking k to be even.

Theorem 4.13. Let n ≥ 2 and k ≥ 2 be integers, where k is even. If n > k−2
2

(
k
2 −

⌊
k−2

4

⌋)
,

then
bbal(n, Pk) = bbal(n, Pk+1) =

⌊
k − 2

4

⌋
n + 0α,

where α ∈ {0, 2} is such that k ≡ α (mod 4). Moreover, if s =
⌊

k−2
4

⌋
, then Bbal(n, Pk) =

Bbal(n, Pk+1) = {Ks,n}, for k ≡ 2 (mod 4), and Bbal(n, Pk) = Bbal(n, Pk+1) = {Hs,n}, for
k ≡ 0 (mod 4), where Hs,n is isomorphic to the graph Ks,n with one extra pendant vertex
adjacent to a vertex of the partite set with n vertices.

Proof. Let n ≥ 2 and k ≥ 2 be integers, where k is even, and n > k−2
2

(
k
2 −

⌊
k−2

4

⌋)
. Let

p(n, k) =
⌊

k−2
4

⌋
n + 0α where α ∈ {0, 2} is such that k ≡ α (mod 4). We determine the

bipartite-balancing number of paths with an even number of edges. Once this is determined,
the odd case is straightforward, and it is discussed at the end of the proof. We begin by
proving that a 2-edge coloring E(Kn,n) = R ⊔ B with more than p(n, k) edges in each color
is satisfiable. We proceed to prove that

e(Kn,n) = n2 > 2p(n, k)

for all n > k−2
2

(
k
2 −

⌊
k−2

4

⌋)
. If k ≡ 0 (mod 4), then 2p(n, k) = 2(

⌊
k−2

4

⌋
n + 0α) =

2(k−4
4 n + 1) < n2, because n > k−4

2 + 2. If k ≡ 2 (mod 4), then 2p(n, k) = 2(
⌊

k−2
4

⌋
n + 0α) =

2(k−2
4 )n < n2, because n > k−2

2 .
We proceed now to prove, by induction on k, that any 2-coloring of Kn,n with at least

p(n, k) edges in each color has either a balanced Pk or the edges in one of the colors induce
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the graph B(k), where B(k) = Hs,n, if ≡ 0 (mod 4), or B(k) = Ks,n, if k ≡ 2 (mod 4). We
assume there is no balanced Pk in order to arrive to one of these extremal colorings, each of
which satisfies that every copy of Pk has at most k

2 − 1 edges in one color class.
When k = 2, any 2-edge coloring of Kn,n with at least one edge in each color is enough to

find a balanced P2, hence bbal(n, P2) = 0, while K0,n represents the extremal coloring which
in this case is the empty graph. Let k > 2 be even, and assume the statement of the theorem
is true for each even integer k′ with 2 ≤ k′ < k.

Suppose that E(Kn,n) = R ⊔ B is a 2-edge coloring with at least p(n, k) edges in each
color. It is a simple matter to check that the conditions for k′ = k − 2 are satisfied. If k ≡ 0
(mod 4) then p(n, k) = ⌊k−2

4 ⌋n + 1 = k−4
4 n + 1 = ⌊k−4

4 ⌋n + 1 = p(n, k′), and if k ≡ 2 (mod 4)
then p(n, k) = ⌊k−2

4 ⌋n = k−2
4 n > ⌊k−4

4 ⌋n = p(n, k′). We can assume that, by the induction
hypothesis, there is a balanced copy of Pk−2, say P = v1v2 · · · vk−1. Let Kn,n have partite
sets V and W , where VP = V ∩ V (P ) and WP = W ∩ V (P ). We will show that either there
is a balanced Pk or we will have one of two extremal colorings depending on the value of k
modulo 4.

We begin by analyzing the structure of the coloring outside of P . Note first that all of
the edges that come out of V (P ) with an endpoint in {v1, vk−1} must have the same color.
Otherwise, if v1v is red and vk−1u is blue with u, v being distinct vertices outside of V (P ),
then vv1Pvk−1u forms a balanced Pk. We assume, without loss of generality, that all such
edges are blue, that is

E({v1, vk−1}, (V ∪ W ) \ V (P )) ⊆ B. (4.2)
By a similar argument, we can conclude that

E(V \ VP , W \ WP ) ⊆ B. (4.3)

Otherwise, if xy ∈ E(V \ VP , W \ WP ) ∩ R, then xyv1Pvk−1 makes a balanced Pk.
Claim 4. Any edge with one endpoint outside of V (P ) that is incident to a blue edge in P ,
must be blue.
Proof of Claim 4. We will show now that every time there is a blue edge in P , no red edges
can come out of it. If x ∈ VP , y ∈ WP , w ∈ W \ WP , xy ∈ E(P ) ∩ B and vy ∈ R for some
v ∈ V \ VP , then xPv1wvyPvk−1 makes a balanced Pk (recall that v1w and wv are blue).
If now we take x ∈ WP , y ∈ VP , xy ∈ E(P ) ∩ B, wy ∈ R for some w ∈ W \ WP and some
w′ ∈ W \ WP with w′ ̸= w, then xPv1wyPvk−1w

′ forms a balanced Pk. �

Let V r
P be the set of vertices in VP that make at least one red edge with a vertex in

W \ WP , and let W r
P be the set of vertices in WP that make at least one red edge with a

vertex in V \ VP . Therefore, by Claim 4 all vertices in V r
P ∪ W r

P are incident to two red edges
from P . By definition,

eR(v, W \ WP ) ̸= 0, eR(u, V \ VP ) ̸= 0 (4.4)
for all v ∈ V r

P and for all u ∈ W r
P .
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Note that every blue edge in P has one endpoint in VP \ V r
P and the other endpoint in

WP \ W r
P . Also every vertex in VP \ V r

P and WP \ W r
P is either incident to some blue edge in

P , or it is incident to two red edges in P and makes only blue edges with (V \ VP ) ∪ (W \ WP )
(otherwise, it would be in V r

P ∪ W r
P ). Along with Claim 4, we can conclude that all vertices

in V r
P ∪ W r

P are incident to two red edges from P , and

E(VP \ V r
P , W \ WP ) ∪ E(WP \ W r

P , V \ VP ) ⊆ B. (4.5)
Claim 5. All red edges not in E(P ) incident to a red edge e in P must be incident to the
same endpoint in e. Therefore, every red edge in E(P ) has an endpoint with only blue incident
edges.
Proof of Claim 5. If xy ∈ E(P ) ∩ R and there are u, v ∈ (V ∪ W ) \ V (P ) such that
ux, vy ∈ R, then v1PxuvyPvk−1 forms a balanced Pk since we already know that uv ∈ B. �

Notice that |V r
P ∪ W r

P | ≤ ⌊k−2
4 ⌋ as from each vertex in V r

P ∪ W r
P there are two red

edges from P and P has k−2
2 red edges. On the other hand, if |V r

P ∪ W r
P | < ⌊k−2

4 ⌋, say
|V r

P ∪ W r
P | = |V r

P | + |W r
P | = ⌊k−2

4 ⌋ − q for some 1 ≤ q ≤
⌊

k−2
4

⌋
, then the number of red edges

would not satisfy the hypothesis as we can see in the next bound that employs previous
coloring observations.

|R| = eR(V r
P , W \ WP ) + eR(W r

P , V \ VP ) + eR(VP , WP )
≤ |V r

P | · |W \ WP | + |W r
P | · |V \ VP | + |VP | · |WP |

= |V r
P | · (n − |WP |) +

(⌊
k − 2

4

⌋
− |V r

P | − q

)
(n − |VP |) + |VP | · |WP |

≤ |V r
P | · (n − |WP |) +

(⌊
k − 2

4

⌋
− |V r

P | − q

)
(n − |WP |) + |VP | · |WP |

≤ (n − |WP |)
(

|V r
P | +

⌊
k − 2

4

⌋
− |V r

P | − q

)
+ k

2 · k − 2
2

< n

(⌊
k − 2

4

⌋
− q

)
+ k2

4

≤ n

(⌊
k − 2

4

⌋
− 1

)
+ k2

4

considering Equations (4.3) and (4.5). However, this contradicts the fact that |R| ≥ ⌊k−2
4 ⌋n

due to the fact that n > k−2
2

(
k
2 −

⌊
k−2

4

⌋)
when k ≥ 4.

Therefore,

|V r
P ∪ W r

P | =
⌊

k − 2
4

⌋
. (4.6)

We can conclude that exactly 2
⌊

k−2
4

⌋
red edges in P are incident to vertices from V r

P ∪ W r
P .

Therefore, we arrive to the following claim.
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Claim 6. Every red edge in P is incident to some vertex in V r
P ∪ W r

P , except for one edge
with endpoints in VP \ V r

P and WP \ W r
P in the case where k ≡ 0 (mod 4).

Now we can analyze the structure of the coloring within P to prove the next inclusion.

E(VP \ V r
P , WP \ W r

P ) \ E(P ) ⊆ B. (4.7)
Proof of Equation (4.7) By Claim 6, recall that every vertex v in (VP \ V r

P ) ∪ (WP \ W r
P )

is either incident to some blue edge in P or it is incident to two red edges in P .
Additionally, v makes only blue edges with (V \ VP ) ∪ (W \ WP ) by Equation (4.5). Let
vi, vj ∈ (VP ∪ WP ) \ (V r

P ∪ W r
P ) such that i < j. We go over all possible cases assuming

vivj ∈ R. In each case, we construct a balanced Pk.

Case 1: Let vivi+1, vjvj+1 ∈ B with vi ∈ V and vj ∈ W . Let x, w ∈ V \ VP and y ∈ W \ WP .
If v1, vk−1 ∈ VP , the path v1PvivjPvi+1xyvk−1Pvj+1 makes a balanced Pk. If v1, vk−1 ∈ WP ,
the path wv1PvivjPvi+1xvk−1Pvj+1 makes a balanced Pk.

This case is analogous by symmetry to the case where vi−1vi, vj−1vj ∈ B with vi ∈ W
and vj ∈ V .

Case 2: Let vi−1vi, vj−1vj ∈ B with vi ∈ V and vj ∈ W . Let x, y ∈ W \ WP and w ∈ V \ VP .
If v1, vk−1 ∈ VP , the path vi−1Pv1xvj−1PvivjPvk−1y makes a balanced Pk. If v1, vk−1 ∈ WP ,
the path vi−1Pv1wyvj−1PvivjPvk−1 makes a balanced Pk. This case is analogous by
symmetry to the case where vivi+1, vjvj+1 ∈ B with vi ∈ W and vj ∈ V .

Case 3: Let vivi+1, vj−1vj ∈ B. Let x, w ∈ V \ VP and y ∈ W \ WP . We can assume that
vi−1vi, vjvj+1 ∈ R, otherwise, see Cases 1 and 2. Without loss of generality we can assume
that, vi ∈ V and vj ∈ W . If v1, vk−1 ∈ VP , the path v1PvivjPvk−1yxvj−1Pvi+1 makes a
balanced Pk. If v1, vk−1 ∈ WP , the path wv1PvivjPvk−1xvj−1Pvi+1 makes a balanced Pk.

Case 4: Let vi−1vi, vjvj+1 ∈ B. We can assume that vivi+1, vj−1vj ∈ R, otherwise, see Cases
1 or 2. Without loss of generality, we can assume that vi ∈ V and vj ∈ W . We can suppose
vi−1vj+1 ∈ B, otherwise, see Case 3. Suppose there is an edge vtvt+1 ∈ B with i < t < j. Let
x, y ∈ W \ WP such that x ̸= y and w ∈ V \ VP .

If vt ∈ VP and v1, vk−1 ∈ VP , the path vt+1PvjviPvtxv1Pvi−1vj+1Pvk−1y makes a balanced
Pk. If vt ∈ VP and v1, vk−1 ∈ WP , the path vt+1PvjviPvtxwv1Pvi−1vj+1Pvk−1 makes a
balanced Pk.

If vt ∈ WP and v1, vk−1 ∈ WP , the path v1Pvi−1vj+1Pvk−1wxvt+1PvjviPvt makes a
balanced Pk. Therefore, all edges in P between vi and vj must be red. Because there are no
odd cycles in Kn,n, there are at least two vertices in V (P ) between vi and vj. By Claim 6,
vj−1 ∈ V r

P or vi+1 ∈ W r
P . Suppose vj−1 ∈ V r

P . There are x, y ∈ W \ WP , with x ̸= y, and
such that vj−1x ∈ R. If v1, vk−1 ∈ VP , the path vi−1Pv1xvj−1PvivjPvk−1y makes a balanced
Pk (recall v1x, vk−1y ∈ B). If v1, vk−1 ∈ WP , the path vi−1Pv1wxvj−1PvivjPvk−1 makes a
balanced Pk. The case when vi+1 ∈ W r

P is analogous by symmetry.

102



Case 5: Let vi ∈ VP \ V r
P , vj ∈ WP \ W r

P . We consider four subcases. We prove each subcase
assuming vi−1 ∈ WP \ W r

P and vi−1vi ∈ B or vi+1 ∈ WP \ W r
P and vivi+1 ∈ B, when possible.

• Subcase 5.1: Let vj−1 ∈ V r
P and vj+1 ∈ VP \ V r

P . If vi−1vi ∈ B for i ≥ 2, then
v1Pvi−1xyvj−1PvivjPvk−1 makes a balanced Pk for x ∈ V \ VP , and y ∈ W \ WP such
that vj−1y ∈ R.
If vivi+1 ∈ B for i ≥ 1 and v1, vk−1 ∈ VP , then xv1PvivjPvk−1yvj−1Pvi+1 makes
a balanced Pk for x, y ∈ W \ WP and vj−1y ∈ R. If v1, vk−1 ∈ WP , then
v1PvivjPvk−1yxvj−1Pvi+1 is a balanced Pk for x ∈ W \ WP such that vj−1x ∈ R,
and y ∈ V \ VP .

• Subcase 5.2: Let vj−1 ∈ VP \ V r
P and vj+1 ∈ V r

P . This implies that vj−2vj−1 ∈ B.
If vi−1vi ∈ B for i ≥ 2, then v1Pvi−1xvj−2Pvivjvj−1yvj+1Pvk−1 is a balanced Pk for
x ∈ V \ VP and y ∈ W \ WP such that vj+1y ∈ R.
If vivi+1 ∈ B for i ≥ 1, then v1Pvivjvj−1Pvi+1xyvj+1Pvk−1 is a balanced Pk for
x ∈ V \ VP such that vj−1x ∈ R and y ∈ W \ WP .

• Subcase 5.3: Let j = k − 1 and vj−1 = vk−2 ∈ V r
P . If vi−1vi ∈ B for i ≥ 2 and

v1, vk−1 ∈ WP , then xv1Pvi−1yvj−1Pvivj is a balanced Pk for x ∈ V \VP and y ∈ W \WP

such that vj−1y ∈ R. If v1, vk−1 ∈ VP , then v1Pvi−1wyvj−1Pvivj is a balanced Pk for
w ∈ W \ WP and y ∈ V \ VP such that vj−1y ∈ R.
If vivi+1 ∈ B, for i ≥ 1 and v1, vk−1 ∈ WP , then v1Pvivjyxvj−1Pvi+1 is a balanced
Pk, for x ∈ W \ WP such that vj−1x ∈ R, and y ∈ V \ VP . If v1, vk−1 ∈ VP , then
wv1Pvivjxvj−1Pvi+1 is a balanced Pk where w ∈ V \ VP .

• Subcase 5.4: Let i = 1, v1v2 ∈ R, and vj−1 ∈ V r
P . There are vertices x ∈ W \ WP and

y ∈ (V ∪ W ) \ V (P ) such that xvj−1 ∈ R and vk−1y ∈ B by Equation (4.2). The path
xvj−1Pv1vjPvk−1y makes a balanced Pk.
There are vertices x, y ∈ W \ WP such that xvj−2 ∈ B and vj+1y ∈ R by Equation (4.5).
The path vj−1vjv1Pvj−2xyvj+1Pvk−1 makes a balanced Pk.

�

By the previous observations, note that the edges in E(V \ V r
P , W \ W r

P ) are all blue
if k ≡ 2 (mod 4). If k ≡ 0 (mod 4), the same holds except for one red edge which is in
E(VP \ V r

P , WP \ W r
P ). Also note that, in both cases E(V r

P , W r
P ) ⊆ B. We proceed to prove

that one of the sets, V r
P or W r

P , must be empty. Recall that, |V r
P | + |W r

P | = ⌊k−2
4 ⌋. Without

loss of generality suppose that |V r
P | ≥ |W r

P |. If |W r
P | ≥ 1, the number of red edges is bounded
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as follows.

|R| = eR(V r
P , W ) + eR(W r

P , V )
≤ |V r

P |(n − |W r
P |) + |W r

P |(n − |V r
P |)

≤ |V r
P |(n − |W r

P |) + |W r
P |(n − |W r

P |)
= (|V r

P | + |W r
P |)(n − |W r

P |)

≤
⌊

k − 2
4

⌋
(n − 1)

This contradicts the fact that |R| ≥ ⌊k−2
4 ⌋n. Therefore, W r

P must be empty. Thus, we
can conclude that

i) If k ≡ 0 (mod 4) then the red edges form a Ks,n with s = ⌊k−2
4 ⌋ and an extra pendant

vertex adjacent to a vertex of the partite set with n vertices.

ii) If k ≡ 2 (mod 4) then the red edges form a Ks,n, with s = ⌊k−2
4 ⌋.

Observe that bbal(n, Pk+1) = bbal(n, Pk) for k ≥ 2 even. This holds in any 2-edge
coloring of E(Kn,n) where there is a balanced copy of Pk, because every balanced Pk can
be extended to a balanced Pk+1 by considering one more edge adjacent to one of its end
vertices. Regardless of its color, the extended path Pk+1 has

⌊
k
2

⌋
edges in one color and

⌈
k
2

⌉
in the other. The fact that Bbal(n, Pk) = Bbal(n, Pk+1) holds, because the extremal coloring
associated to Bbal(n, Pk) also avoids copies of balanced Pk+1. Hence, the bipartite-balancing
number of paths of odd length is also determined. This concludes the proof.

We now state the exact bipartite-balancing number for stars.

Theorem 4.14. Let n and k be integers with k even, k ≥ 2 and n ≥ k2

2 + k − 2, then

bbal(n, K1,k) = bbal(n, K1,k+1) = (k − 2)
(

n − k − 2
4

)

and Bbal(n, K1,k) = Bbal(n, K1,k+1) contains only one graph which is a bipartite graph H
with partition sets A and B where A = A1 ⊔ A2 and B = B1 ⊔ B2 with |A1| = |B2| = n − k−2

2
and |A2| = |B1| = k−2

2 . The edges of H are all possible edges between A1 and B1 and between
A2 and B.

Proof. Let n and k be integers with k even, k ≥ 2 and n ≥ k2

2 + k − 2. We determine the
bipartite-balancing number for stars of even number of edges. We can easily extend this result
for stars of odd number of edges. It is simple to see that bbal(n, K1,k) = bbal(n, K1,k+1) when
k ≥ 2 is even. Note that, in every 2-edge coloring of Kn,n where there is a balanced K1,k,
we can extend this copy to a balanced K1,k+1 by considering one more edge adjacent to the
vertex of maximum degree. Regardless of its color, the extended star K1,k+1 has

⌊
k
2

⌋
edges in
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one color and
⌈

k
2

⌉
in the other. The fact that Bbal(n, K1,k) = Bbal(n, K1,k+1) holds, because

the extremal coloring associated to Bbal(n, K1,k) also avoids copies of balanced K1,k+1.
Therefore, we prove the result for stars of even number of edges. Let a(n, k) := (k −

2)(n − k−2
4 ). We begin by proving that a 2-edge coloring E(Kn,n) = R ⊔ B with more than

a(n, k) edges in each color is satisfiable. We proceed to prove that

e(Kn,n) = n2 > 2a(n, k)

for all n ≥ k2

2 + k − 2. Note that n2 > 2a(n, k) = 2(k − 2)(n − k−2
4 ) is equivalent to

(n − k + 2)2 − (k−2)2

2 > 0 and this is true when n > (k − 2)(1 + 1√
2) and k ≥ 4, which holds

by the hypothesis.

Let H be the bipartite graph described in the theorem statement. Observe that H has
exactly |A1||B1| + |A2||B| = (n − k−2

2 )k−2
2 + k−2

2 n = (k − 2)(n − k−2
4 ) = a(n, k) edges.

Note that any 2-edge coloring E(Kn,n) = R ⊔ B, where the graph induced by one of the
color classes is isomorphic to H, does not contain a balanced copy of K1,k. If a vertex v in this
coloring has at least k

2 neighbors in one color, it will have less than k
2 neighbors in the other

color making the existence of a balanced K1,k impossible. Hence, bbal(n, K1,k) ≥ a(n, k) and
H ∈ Bbal(n, K1,k) is proved.

To prove the upper bound bbal(n, K1,k) ≤ a(n, k) and Bbal(n, K1,k) = {H}, we must
show that any 2-edge coloring E(Kn,n) = R ⊔ B, with at least a(n, k) edges in each color
and such that neither the red graph nor the blue graph is isomorphic to H, must contain a
balanced copy of K1,k.

Let V (Kn,n) have the bipartition V ⊔ W . We define the following sets

Vr = {v ∈ V | degR(v) ≥ k

2}, Vb = {v ∈ V | degB(v) ≥ k

2}.

Wr = {v ∈ W | degR(v) ≥ k

2}, Wb = {v ∈ W | degB(v) ≥ k

2}.

Let E(Kn,n) = R ⊔ B be a 2-edge coloring with at least a(n, k) edges in each color and
such that neither the red graph nor the blue graph is not isomorphic to H. If there is a
vertex in Vr ∩ Vb or in Wr ∩ Wb, then the graph induced by this vertex and its neighbors
contains a balanced K1,k. Therefore, we will assume that Vr ∩ Vb = ∅ and Wr ∩ Wb = ∅ and
consequently that V = Vr ⊔ Vb and W = Wr ⊔ Wb. This partition and the fact that any
vertex v ∈ VR satisfies that degB(v) ≤ k

2 − 1 imply that degR(v) ≥ n − k
2 + 1 for all v ∈ Vr.

Analogously, degB(v) ≥ n − k
2 + 1 for all v ∈ Vb, degR(w) ≥ n − k

2 + 1 for all w ∈ Wr, and
degB(w) ≥ n − k

2 + 1 for all w ∈ Wb. We separate the proof in two cases.

Case 1. One of {Vr, Vb, Wr, Wb} has at most k
2 − 1 elements. Without loss of generality,

suppose Vr to be such set, hence |Vr| ≤ k
2 − 1. Now we bound the number of red edges.
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a(k, n) ≤ |R| = eR (Vr, W ) + eR(Vb, W )

≤ |Vr| · n + |Vb|(
k

2 − 1)

= |Vr| · n + (n − |Vr|)
(

k

2 − 1
)

= n ·
(

k

2 − 1
)

+ |Vr|
(

n − k

2 + 1
)

≤ n ·
(

k

2 − 1
)

+
(

k

2 − 1
)(

n − k

2 + 1
)

= a(k, n).

Because the equality is reached, we can conclude the following:

• degR(v) = n for all v ∈ Vr, which implies that degB(v) = 0 for all v ∈ Vr;

• degR(v) = k
2 − 1 for all v ∈ Vb, which implies that degB(v) = n − k

2 + 1 for all v ∈ Vb;

• and |Vr| = k
2 − 1, which implies that |Vb| = n − k

2 + 1.

This also implies that every vertex in W is connected to every vertex in Vr by a red edge.
Note that there cannot be any red edges connecting Vb and Wb. Otherwise, if vw is a red
edge with v ∈ Vb and w ∈ Wb then the vertex w would have more than k

2 − 1 red neighbors.
Therefore, all edges connecting Vb and Wb must be blue.

If |Wr| ≤ k
2 − 1, then

a(n, k) ≤ |R| = eR(Wr, V ) + eR(Wb, V )

≤ |Wr| · n +
(

k

2 − 1
)

|Wb|

= |Wr| · n + (n − |Wr|)
(

k

2 − 1
)

= n ·
(

k

2 − 1
)

+ |Wr|
(

n − k

2 + 1
)

≤ n ·
(

k

2 − 1
)

+
(

k

2 − 1
)(

n − k

2 + 1
)

= a(n, k).

This implies that |Wr| = k
2 − 1, degR(w) = n for all w ∈ Wr and degR(w) = k

2 − 1 for
all w ∈ Wb, which means that the red graph is isomorphic to H, a contradiction to the
assumption we made at the beginning.
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Therefore we can assume that |Wr| = k
2 −1+s, for some s ≥ 1. Because degB(v) = n− k

2 +1
for all v ∈ Vb and all edges vw with v ∈ Vb and w ∈ Wb are blue, then eB(v, Wr) = s for
v ∈ Vb.

This implies that eB(Wr, Vb) = |Vb| · s = (n − k
2 + 1) · s. Recall that degB(w) ≤ k

2 − 1 for
all w ∈ Wr. We obtain the following inequality.

s

(
n − k

2 + 1
)

= eB(Wr, Vb) ≤ |Wr|
(

k

2 − 1
)

=
(

k

2 − 1 + s

)(
k

2 − 1
)

Solving for n, we obtain

n ≤
(

k

2 − 1
)2 1

s
+ 2

(
k

2 − 1
)

≤
(

k

2 − 1
)2

+ (k − 2) = k2

4 − 1.

This is a contradiction to the fact that n ≥ k2

2 + k − 2.

Case 2. Suppose that |Vr|, |Vb|, |Wr|, |Wb| ≥ k
2 . Without loss of generality, we can assume

that |Wb| = max{|Vr|, |Vb|, |Wr|, |Wb|}. This implies that |Wr| = min{|Vr|, |Vb|, |Wr|, |Wb|}.
Let |Vr| = |Wr| + t for some t ≥ 0. We use the following two bounds on |R|.

|R| = eR(Vr, W ) + eR(Vb, W ) ≥ |Vr|
(

n − k

2 + 1
)

= (|Wr| + t)
(

n − k

2 + 1
)

.

|R| = eR(Wr, V ) + er(Wb, V ) ≤ n · |Wr| +
(

k

2 − 1
)

|Wb| = n · |Wr| +
(

k

2 − 1
)

(n − |Wr|) .

Joining both bounds, we get

n

(
t − k

2 + 1
)

≤ t

(
k

2 − 1
)

.

Solving for t, we get the following.

t ≤
n
(

k
2 − 1

)
n − k

2 + 1
= k

2 − 1 +

(
k
2 − 1

)2

n − k
2 + 1

<
k

2

The last inequality holds if n − k
2 + 1 > (k

2 − 1)2, which is true due to the hypothesis that
n ≥ k2

2 + k − 2.
This means that t ≤ k

2 − 1. Note that |Vb| = n − |Vr| = n − |Wr| − t. We bound e(Vb, Wr)
by using the following.

eB(Wr, Vb) ≤ |Wr|
(

k

2 − 1
)

;

eR(Vb, Wr) ≤ |Vb|
(

k

2 − 1
)

.
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The number of edges e(Vb, Wr) is bounded as follows.

(n − |Wr| − t)|Wr| = |Vb| · |Wr|
= e(Vb, Wr)

≤ (|Vb| + |Wr|)
(

k

2 − 1
)

= (n − t)(k

2 − 1).

This is equivalent to:

n

(
|Wr| − k

2 + 1
)

≤ |Wr|2 + t · |Wr| − t · (k

2 − 1).

Using the fact that |Wr| − k
2 + 1 > 0, we arrive at the next inequality for n. We leave a

detailed discussion of the last inequality at the end of the proof.

n ≤
|WR|2 + t(|Wr| − k

2 + 1)
|Wr| − k

2 + 1
= |Wr|2

|Wr| − k
2 + 1

+ t ≤ n

2 + k2

4 − 1. (4.8)

This means that n ≤ k2

2 − 2, which is a contradiction to n ≥ k2

2 + k − 2 for k ≥ 2.
We conclude the proof by justifying the last inequality in Equation (4.8). Let x = |Wr|

and let f be the following function depending on x, f(x) = x2

x− k
2 +1 . The function f(x) can be

bounded as follows.

f(x) = x2

x − k
2 + 1

=

(
x −

(
k
2 − 1

))2
+ 2x

(
k
2 − 1

)
−
(

k
2 − 1

)2

x − k
2 + 1

= x − k

2 + 1 +

(
k
2 − 1

) (
x − k

2 + 1
)

+ x
(

k
2 − 1

)
x − k

2 + 1

= x +
(

k

2 − 1
)

x

x −
(

k
2 − 1

)
≤ n

2 +
(

k

2 − 1
)

k
2

k
2 − (k

2 − 1)

= n

2 + k2

4 − k

2 .

The last inequality is due to the fact that x ≤ n
2 and that g(x) = x

x−( k
2 −1) is a decreasing

function defined on k
2 ≤ x ≤ n

2 . Therefore, the maximum value of g(x) is reached when x = k
2 .

This bound on f(x) and the fact that t ≤ k
2 − 1 provide the last inequality in Equation (4.8).
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n ≤ |Wr|2

|Wr| − k
2 + 1

+ t ≤ n

2 + k2

4 − k

2 + k

2 − 1 = n

2 + k2

4 − 1.

4.4 Open problems
We state here some open problems left for future work that are relevant to the topics discussed
in the Kn,n setting.

1. We would like to determine a tight bound for the bipartite balancing number of trees.

2. Determine bot(n, Pk) and bot(n, K1,k).

3. Search for other graphs that are bipartite-balanceable and/or bipartite-omnitonal.

4. Determine the bipartite-balancing number and/or bipartite-omnitonal number of other
graph families.

5. Define and study amoebas in the context of Kn,n.

6. Study other base structures, such as complete multi-partite graphs, grids in different
surfaces (like the plane, the torus, the projective plane, etc.) and hypergraphs.

7. Consider the problem of determining the unavoidable patterns in different base structures
and arbitrary number of colors.
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Chapter 5

Conclusion

The research work conducted during the elaboration of this dissertation has explored recent
concepts in the area of combinatorics and graph theory in the context of unavoidable patterns.
One of the objectives of this PhD program was to study balanceability and unavoidable
patterns in 2-edge colorings of the complete graph and afterwards identify the balanceability of
some graph classes, find the balancing number of balanceable cycles, and define a more general
parameter as an extension of the balancing number. We were also able to give a recursive
construction of a family of local amoebas, determine the unavoidable patterns in 2-edge
colorings of the base graph Kn,n, characterize the balanceability and omnitonality of graphs in
Kn,n and determine (or bound) the bipartite balancing number in Kn,n of trees in general and
of paths and stars. Two research papers were produced and accepted for publication. One
of them is already published. The first research paper, called On the balanceability of some
graph classes [22], was published in the journal Discrete Applied Mathematics. The second
research paper, called The balancing number and generalized balancing number of some graph
classes [20], was recently accepted in the journal Electronic Journal of Combinatorics. There
are two more research papers in progress regarding the results in Chapter 3 and Chapter 4
which will be sent for publication in 2023. Although the objective was acquired, there are
still many questions remaining. We discuss such questions in the next section.

5.1 Future work
This section includes all of the problems stated in the Open Problems Sections of Chapters 2,
3 and 4 that remain unanswered and are left as future work. Other new problems came up in
our research concerning distinct topics in combinatorics. These problems are discussed in the
last part called Other research directions and will also be left to tackle in the future.

Problems that remain
1. Considering the complexity of the problem of determining whether a graph is balanceable

or not. This problem boils down to finding an edge cut with ⌊1
2e(G)⌋ or ⌈1

2e(G)⌉ edges
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and an induced subgraph with ⌊1
2e(G)⌋ or ⌈1

2e(G)⌉ edges. Particularly, the problem of
finding an edge cut with half of the edges is a variant of the problem EXACT-CUT
(which studies the complexity of finding an edge cut with exactly k edges and it is
NP-complete). The other problem deals with the existence of an induced subgraph
with exactly half of the edges. We conjecture that the balancerability problem is
NP-complete.

2. Determine the balanceability of Kn for n > 2, 303, 999, 904, 000, 003 when n ≡ 2, 3
(mod 4).

3. What other graph families satisfy being balanceable? We are interested in determining
the balanceability of graphs such as planar graphs, outerplanar graphs, chordal graphs,
k-trees and other circulant graphs.

4. Study the generalized balancing number of other graphs such as Kn with n ≥ 5, 2Kn,
circulant graphs, wheel graphs and grids.

5. Generalize the construction of Lemma 3.10.

6. Look for other general ways of constructing global or local amoebas.

7. Characterize local amoeba trees.

8. Characterize global amoeba trees.

9. Study the balancing number of other amoeba families by using constructions.

10. Generalize the constructions given by Lemma 3.10 and Lemma 3.11, and the ones
stated in [12].

11. Search for other characterizations of local and global amoebas by defining new recursive
constructions.

12. Determine a characterization of local and/or global amoeba trees by using constructions.

13. Study the balancing number of other amoeba families by using constructions.

14. We would like to determine a tight bound for the bipartite balancing number of trees.

15. Determine bot(n, Pk) and bot(n, K1,k).

16. Search for other graphs that are bipartite-balanceable and/or bipartite-omnitonal.

17. Determine the bipartite-balancing number and/or bipartite-omnitonal number of other
graph families.

18. Define and study amoebas in the context of Kn,n.
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19. Study other base structures, such as complete multi-partite graphs, grids in different
surfaces (like the plane, the torus, the projective plane, etc.) and hypergraphs.

20. Consider the problem of determining the unavoidable patterns in different base structures
and arbitrary number of colors.

The following is a brief description of new open problems in other research directions.

Other research directions
There are new interesting questions that arise from the initial problem like what other
unavoidable patterns can exist in different base structures. Given a base graph H, can we
guarantee the existence of unavoidable patterns in any 2-edge coloring of H with sufficient
edges in each color? Possible interesting base graphs could be simplicial complexes or complete
hypergraphs. If the answer to this question is affirmative, it would be interesting to determine
the unavoidable patterns, as well as the threshold of the amount of edges each color class
requires in order to maintain their existence. We would also like to know what properties
must the base graph H satisfy so that the existence of unavoidable patterns is assured.
One could also study how certain properties such as density, regularity, vertex transitivity,
and other structural properties on the base structure affect the existence of unavoidable
patterns. Finally, all these questions concerning 2-colorings could be extended to a setting of
an arbitrary number of colors.

5.2 Conclusion
We have achieved several results concerning the balanceability of some graph classes, as well
as sufficient conditions for a graph to be balanceable. In terms of the balancing number, we
have arrived at exact values of the balancing number of C4k−1 and C4k+1, as well as tight
bounds of the same order corresponding to bal(n, C4k). In addition, we defined the generalized
balancing number, which turned out to be an extension of the traditional balancing number.
Also, using this new concept, we were able to give some general bounds, as well as the exact
value of bal*(n, C4k+2) and bounds on the generalized balancing number of K5. We worked
with a family of graphs called local amoebas for which we described a recursive way to
construct infinite families of them. We also exposed some examples of such infinite families.
Finally, we determined the unavoidable patterns in 2-edge colorings of Kn,n and in this same
setting we defined the bipartite balancing number and the bipartite omnitonal number. We
bounded the bipartite balancing number for trees in general and we determined the bipartite
balancing number of paths and stars.
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