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Abstract

The main goal of this thesis is to study boundary value problems for monogenic, polymono-
genic, and inframonogenic functions in Clifford analysis on domains with fractal boundaries,
using as the main tool the Marcinkiewicz exponent and its generalizations. Firstly, this work
aims to study the jump problem for monogenic functions, in the paravectorial approach, in
fractal hypersurfaces of Euclidean spaces. The notion of the Marcinkiewicz exponent has
been taken into consideration. A new solvability condition is obtained on the basis of specific
properties of the Teodorescu transform in Clifford analysis. It is shown that this condition
improves those involving the Minkowski dimension. Secondly, this work deals with a reduc-
tion procedure for the Riemann Boundary value problem. This is applied to the Riemann
problem in lower dimensions. The solutions are explicitly given, and concrete examples are
presented to illustrate the results. In addition, using the reduction procedure, the solvability
condition is deduced in the vectorial approach through the condition in the paravectorial.
This method has proved to be better than directly studying the problem in the vectorial
setting. Finally, we solve some boundary value problems for iterated operators, namely poly-
monogenic and inframonogenic functions. In addition, generalizations of the concept of the
Marcinkiewicz exponent are presented, the refined Marcinkiewicz exponent, h-Marcinkiewicz
exponent, and h-Marcinkiewicz convergence. They are effectively used to solve boundary
value problems for generalized classes of data functions.

Keywords: Clifford analysis, Boundary value problem, Cauchy–Riemann operator, Dirac
operator, Fractal dimensions.

Mathematics Subject Classification: 30G35, 30G30, 28A80.



Introduction

The Riemann boundary value problem (RBVP for short) in Complex Analysis is widely used
in many branches of Mathematics and Physics. This can be defined as follows. Let γ be
a Jordan curve, which divides the complex plane in an interior domain Ω+ and an exterior
domain Ω−, see Figure 1.
Given the complex valued functions g and G belonging to the space of Lipschitz functions

Ω+
Ω−

γ

Figure 1: Visualization of the curve γ and domains Ω+ and Ω−.

with exponent ν, Lip(γ, ν), that we will define below. We would like to find a function ϕ
analytic on C \ γ continuously extendable from Ω± to γ such that its boundary values ϕ± on
γ satisfy the relation,

ϕ+(t) −G(t)ϕ−(t) = g(t), t ∈ γ,

with ϕ(∞) = 0 and G(t) ̸= 0.
If G(t) ≡ 1 then the boundary condition becomes:

ϕ+(t) − ϕ−(t) = g(t), t ∈ γ,

and it is called the jump problem. The classical references here are [20, 27, 33]. In the
solution to the Riemann boundary value problem, the Cauchy type integral

(Cγu)(z) = 1
2πi

∫
γ

u(τ)
τ − z

dτ, (0.0.1)

is used as the main mathematical apparatus. It is well known that for every Hölder contin-
uous function u with exponent ν > 1

2 , (Cγu)(z) has continuous limit values on a rectifiable
closed Jordan curve γ; hence, the jump problem is solvable. For a thorough description of
old and recent results concerning the geometric conditions on a Jordan curve in the plane

vi
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that imply the boundedness of the Cauchy type integral boundary behavior, the reader is
referred to [4].
However, in the context of non-rectifiable curves, the Cauchy type integral (0.0.1) has no
sense. In contrast, the Riemann boundary value problem is still completely valid. In the
early eighties, a complete treatment of this topic was given by B. A. Kats in [24]. It is shown
that under the condition ν > dimM (γ)

2 , the Riemann problem is solvable. Here dimM(γ) is
the upper Minkowski dimension of the curve γ, and ν is the Hölder exponent of a function u
associated with the problem.
In [25, 26], the Marcinkiewicz exponent is introduced. Using this, there is obtained, once
more in the context of Complex Analysis, a solvability condition that improves the conditions
mentioned above.
Clifford Analysis provides a natural generalization of Complex Analysis to higher dimensions.
One of its main approaches studies functions defined at Rn+1 and valued in the Clifford Al-
gebras Cℓ(n), mainly those that nullify the cliffordian Cauchy-Riemann operator. We follow
[42], calling this approach paravectorial Clifford analysis. On the other hand, we will call
vectorial Clifford analysis the approach that studies functions defined at Rn with values in
Cℓ(n) that nullify the Dirac operator. The reader is referred to [15, 21, 22, 31] for a standard
account of the theory.
Significant obstacles exist when giving a complete treatment to the Riemann boundary value
problem for monogenic functions, as seen in [35, pp 22, 24]. These are a direct consequence of
the fact that the product of two monogenic functions is not necessarily a monogenic function
due to the lack of commutativity in the cliffordian product. This fact explains why an explicit
solution to the Riemann boundary value problems has been found only for the jump problem
and some slight modifications, where the problematic of the cliffordian multiplication can be
essentially avoided, see [2, 12]. In this sense, it is worth pointing out the recent article [14].
There, a class of compound boundary value problems for the homogeneous Dirac equation in
two and three dimensions was studied when one of the two boundary conditions is loaded. It
is shown how the lack of commutativity, paradoxically relaxes the conditions that guarantee
the solvability of considered problems.
In the context of Clifford Analysis, the research about the solvability of the Riemann problem
over fractal domains is focused on the particular case of the jump problem. In this sense,
the current results on the plane involving the Minkowski dimension have been generalized to
higher dimensions in [5, 7, 8]. Besides, there exist conditions that involve the approximate
dimension and the d-summability; see the article [3] and its references. Unfortunately, the
condition of the d-summability does not improve the previous results. However, it has its
advantages at the moment of dealing with it. At the same time, the approximate dimension
is rather complicated in computations.
This problem has been studied in [1] for polymonogenic functions, which are the null solu-
tions of the Cauchy-Riemann operator applied more than once on the same side, for further
investigation of these functions see the work [10, 13, 16, 17]. In this direction there are also
inframonogenic functions, which are the null solutions of the Dirac operator applied on both
sides. The study of this class of functions is quite recent. They were defined in [28] and have
been analyzed in works such as [9, 32] where its important properties and applications were
shown. Furthermore, in [6] the jump problem with data in the class of generalized Hölder
functions is studied with the help of the concept of h-summability.



viii Introduction

Nevertheless, to the best of the author’s knowledge, there is no research leading to study, in
higher dimensions, the relations between the Marcinkiewicz exponent and boundary value
problems on fractal domains.
The main goal of this thesis is precisely this, to obtain solvability conditions involving the
Marcinkiewicz exponent, and some generalizations, for boundary value problems in Clifford
analysis. Besides, to show that these conditions improve those involving the Minkowski di-
mension. Also, an example in dimension three is constructed, illustrating that for every
value of the Minkowski dimension, there exists a non-numerable class of surfaces where the
inequality relating the Marcinkiewicz exponent and the Minkowski dimension is strict.
This thesis is organized as follows: Chapter 1 is devoted to basic preliminaries that will be
used through the document. Basic principles and properties of Clifford algebras and mono-
genic functions, fractal dimensions, function classes, and Whitney-type extension theorems
are outlined.
In Chapter 2, the Marcinkiewicz exponent in Rn+1 is defined. There is proved a lemma that
is essential to extend to higher dimensions the inequality involving the Minkowski dimension
and the Marcinkiewicz exponent, which is also proved there. Section 2.2 is devoted to con-
structing a class of surfaces. One of the key results of this chapter is to show, using these
surfaces, that for any possible value of the Minkowski dimension between two and three,
there is a non-numerable amount of surfaces where the inequality relating these two metric
characteristics is exact. The other main achievement of this chapter is shown in Section
2.3, where we get conditions for solvability and unicity in a class for the jump problem that
improves those conditions involving the Minkowski dimension.
Chapter 3 is concerned with a reduction procedure for the Riemann boundary value problem
in the vectorial approach to a system in the paravectorial approach. There are shown some
applications to domains with smooth and fractal boundaries proving that this method can
provide better results than the standards techniques. In Section 3.1 the reduction procedure
is developed. In Section 3.2 this technique is used in domains with smooth boundaries. It
is obtained a decomposition of the Cauchy type integral in vectorial Clifford Analysis as
the sum, through isomorphism, of two Cauchy type integrals in the paravectorial approach.
In lower dimensions, it is studied the Riemann problem for suitable variable coefficient and
it is completely analyzed the case for constant coefficients. Particularly, it is shown that
the homogeneous Riemann boundary value problem with constants coefficients can have an
infinite number of linearly independent solutions, which vanishes at infinity. In Section 3.3,
the method is applied to domains with fractal boundaries. It is obtained the homologous
solvability and unicity conditions for the jump problem in the vectorial approach, using the
results in the previous chapter. This method has proven to be more effective in the sense
that there are more ways to compute the solutions than the one obtained when the problem
is studied directly in the vectorial approach. The Riemann problem in lower dimensions is
also studied for some variable coefficients.
Chapter 4 presents some boundary value problems for iterated operators as well as gener-
alizations of the concept of the Marcinkiewicz exponent. In Section 4.1, a boundary value
problem for polymonogenic functions is solved using the Marcinkiewicz exponent. Section
4.2 defines the refined Marcinkiewicz exponent, and using this, some boundary value prob-
lems for inframonogenic functions are solved. In Section 4.3 have been defined the concepts
of h-Marcinkiewicz exponent and h-Marcinkiewicz convergence, and it is shown that it is
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possible to use it to solve the jump problem for monogenic functions with data in the class
of generalized Lipschitz functions.



Chapter 1

Preliminaries and Notations

This chapter presents the essential background needed to develop the results in the subsequent
chapters. It is divided into three sections, each devoted to a fundamental component of this
thesis. The first section is dedicated to Clifford Analysis, where functions and operators are
defined. The second section deals with dimensions of fractal sets that will be the boundary
of our problems. Finally, here have been defined the classes to which the data functions in
our problems belong. Also, some Whitney-type extension theorems are presented that are a
cornerstone in the methods developed through the document.

1.1 Clifford Algebras and Monogenic Functions
This section has compiled some basic facts concerning Clifford Algebras and Clifford Analysis.
For a discussion of this topic, as mentioned before, the reader is referred to [15, 21, 22, 31].

1.1.1 Clifford Algebras
Clifford algebras can be expressed for any vector space. Here we will be restricted to the one
related to Rn. This concept generalizes in a natural way complex numbers and quaternions.

Definition 1.1.1. The Clifford algebra associated with Rn, endowed with the usual Eu-
clidean metric, is the extension of Rn to a unitary associative algebra Cℓ(n) over the reals,
which is generated as an algebra by Rn. It is not generated by any proper subspace of Rn

and satisfies

x2 = −|x|2,

for any x ∈ Rn.

It thus follows that if {ej}n
j=1 is the standard orthonormal basis of Rn then we must have

eiej + ejei = −2δij,

with δij the Kronecker delta. So, one denotes an arbitrary a ∈ Cℓ(n) by a = ∑
A⊆N

aAeA,

N = {1, . . . , n}, aA ∈ R where e∅ = e0 = 1, e{j} = ej and eA = eβ1 · · · eβk
for A = {β1, . . . , βk}

1



2 Preliminaries and Notations

where βj ∈ {1, . . . , n} and β1 < . . . < βk. Conjugation in Cℓ(n) is defined as the anti-
involution a 7→ a := ∑

A aAeA for which

eA := (−1)keβk
· · · eβ2eβ1 .

An algebra norm is defined on Cℓ(n) through |a| = (∑A a
2
A)

1
2 . This makes Cℓ(n) a Euclidean

space. We define Cℓ(n)(k) = spanR(eA : |A| = k). Then clearly Cℓ(n)(k) is a subspace of Cℓ(n)
(the k-vectors in this class) and

Cℓ(n) =
n⊕

k=0
Cℓ(n)(k).

The projection operator of Cℓ(n) on Cℓ(n)(k) is denoted by [•]k and R and Rn will be identified
with Cℓ(n)(0) and Cℓ(n)(1), respectively.
Let us highlight the important fact that Cℓ(n) = Cℓ(n)+ ⊕ e1Cℓ(n)+, where

Cℓ(n)+ :=
⊕

k−even

Cℓ(n)(k).

Then, if a ∈ Cℓ(n) we have the decomposition

a = a0 + e1a1, (1.1.1)

where a0, a1 will be referred to as its even and odd parts, respectively.
An important subspace of the real Clifford algebra Cℓ(n) is the so-called space of par-
avectors Cℓ(n)(0) ⊕ Cℓ(n)(1), being the sum of scalars and vectors. Notice that for each
x = (x0, x1, . . . , xn) ∈ Rn+1 will be identified with

x = x0 +
n∑

j=1
xjej ∈ Cℓ(n)(0) ⊕ Cℓ(n)(1),

there should hold that
xx = xx = |x|2.

1.1.2 Clifford Analysis
Classical Clifford analysis consists of setting up a function theory defined on a Euclidean
space and taking values in a real Clifford algebra. This function theory concentrates on
the notion of monogenic functions belonging to the kernel of a generalized Cauchy-Riemann
operator (paravectorial Clifford analysis) or to that of its vectorial part, that is, the Dirac
operator (vectorial Clifford analysis). In this way, Clifford analysis may be considered both as
a generalization to a higher dimension of the theory of holomorphic functions in the complex
plane and as a refinement of classical harmonic analysis due to the fact that these differential
operators factorize the Laplacian.
We start with the paravectorial Clifford analysis case. The considered functions u are defined
in Ω ⊆ Rn+1 and take values in (a subspace of) the real Clifford algebra Cℓ(n). These functions
may be written as

u(x) =
∑
A

uA(x)eA,
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where uA are R-valued functions.
From now on, unless the opposite is specified, all functions will be considered Clifford-valued.
We say that u belongs to some classical class of functions on Ω if each component uA belongs
to that class.
The theory of paravectorial monogenic functions with values in Clifford algebras generalizes
in a natural way the theory of holomorphic functions of one complex variable to the (n +
1)-dimensional Euclidean space. Monogenic functions are null solutions of the generalized
Cauchy-Riemann operator in Rn+1 defined by

Dn :=
n∑

j=0
ej

∂

∂xj

.

We shall use only the symbol D when no confusion arises. The left (right) fundamental
solution of this first-order elliptic operator is given by

En(x) = 1
σn+1

x

|x|n+1 , x ∈ Rn+1 \ {0}

where σn+1 is the area of the unit sphere in Rn+1.
Let Ω ⊆ Rn+1 be an open set and u ∈ C1(Ω) then u will be called left (respectively right)
monogenic in Ω if Dnu = 0 (respectively, uDn = 0) in Ω. Furthermore, for a non-open Ω, we
will call u monogenic in Ω if it is monogenic in some open neighborhood of Ω. Clearly, En is
both left and right monogenic in Rn+1 \ {0}.
A powerful tool to obtain basic examples of left monogenic functions is the left Cliffordian
Cauchy type integral. Let Ω ⊆ Rn+1 a simply connected bounded domain with a smooth
boundary S. Let dν denote the surface measure on S. For each u ∈ C(S) its left Cliffordian
Cauchy type integral is defined by

(CSu)(x) :=
∫
S

En(y − x)κ(y)u(y)dν(y), x /∈ S,

and its singular version, the singular Cauchy type integral (also called the Hilbert transform)
on S to be

(HSu)(x) := 2
∫
S

En(y − x)κ(y)(u(y) − u(x))dν(y) + u(x), x ∈ S.

Hereby, κ(y) denotes the outward pointing unit normal to S at y ∈ S and the integral in HS
is evaluated in the sense of the Cauchy principal value.
On the other hand, basic examples of right monogenic functions are obtained by means of
the right Cliffordian Cauchy type integral,

(uCS)(x) :=
∫
S

u(y)κ(y)En(y − x)dν(y), x /∈ S.

We will take up the definition and some basic properties of the Teodorescu transform, which
will play an essential role in the method developed below, see [22] for more details.



4 Preliminaries and Notations

Definition 1.1.2. Let Ω ⊆ Rn+1 be a domain and let u ∈ C1(Ω), the operator defined by
TΩ

(TΩu)(x) = −
∫
Ω

En(y − x)u(y)dV (y), x ∈ Rn+1,

where dV (y) is the volume element, is called the Teodorescu transform.

The next theorem gives us sufficient conditions for the Hölder continuity of the Teodorescu
transform.

Theorem 1.1.3. For p > n+ 1 and Ω a domain in Rn+1, let u ∈ Lp(Ω) then
(i) The integral (TΩu)(x) exists in the entire Rn+1 and tends to zero for |x| → ∞. Besides,
TΩu is a monogenic function in Rn+1 \ Ω. Additionally, for a bounded domain Ω, we get

∥TΩu∥p ⩽ C1(Ω, p, n)∥u∥p.

(ii) For x, y ∈ Rn+1, and x ̸= y, we have the inequality

|(TΩu)(x) − (TGu)(y)| ⩽ C2(Ω, p, n)∥u∥p|x− y|
p−n−1

p .

The following theorem provides conditions for the derivability of the operator TΩu over
the domain Ω.

Theorem 1.1.4. Let Ω be a domain and let u be a continuously differentiable function in Ω.
Then TΩu is also a differentiable function for every x ∈ Ω with

∂

∂xj

(TΩu)(x) = −
∫
Ω

∂

∂xj

[En(y − x)]u(y)dV (y) + ej
u(x)
n+ 1 .

Particularly, we have the identity

D(TΩu)(x) = u(x), x ∈ Ω.

We can now be led to the vectorial Clifford analysis situation. Here, x = (x1, . . . , xn) ∈ Rn

will be identified with
x =

n∑
j=1

xjej ∈ Cℓ(n)(1).

Monogenic functions in this context mean solutions of the Dirac operator in Rn

∂n :=
n∑

j=1
ej

∂

∂xj
.

The fundamental solution of the Dirac operator is given by

ϑn(x) = 1
σn

x

|x|n
, x ∈ Rn \ {0}
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where σn is the area of the unit sphere in Rn. If Ω is open in Rn and u ∈ C1(Ω) then u is
said to be left (respectively right) monogenic in Ω if ∂nu = 0 (resp. u∂n = 0) in Ω.
The corresponding Cliffordian Cauchy type integrals in the vectorial Clifford analysis setting
occur analogously with ϑn(x) in place of En(x).
It can be defined other function classes nullifying iterated versions of the operators D and ∂n.
Among these are polymonogenic and inframonogenic functions. Even though both classes
of functions can be presented using any of the above differential operators, here we will
define and work with polymonogenic and inframonogenic functions in the paravectorial and
vectorial approaches, respectively.
The following definition of polymonogenic functions can be found in [1, 10].

Definition 1.1.5. Functions f ∈ Ck(Ω) satisfying the equation

Dkf = 0,

in Ω ⊆ Rn+1, are called polymonogenic functions of order k.

We follow [28, 32], in the statement of the definition of an inframonogenic function.

Definition 1.1.6. Functions f ∈ C2(Ω) satisfying the “sandwich” equation

∂nf∂n = 0,

in Ω ⊆ Rn, are called inframonogenic functions.

1.2 Fractal Dimensions
In order to deal with domains with fractal boundaries, we should refresh some basic notions
about fractal dimensions. The books [19, 29, 30] are recommended as references on this topic.
We shall present the notions of Minkowski and Hausdorff dimensions, which are essential tools
in this theory.

1.2.1 Hausdorff Dimension
Now, the concept of the Hausdorff dimension will be introduced. To do that, we need some
previous definitions. Let E be an arbitrary non-empty set in Rn+1. For any δ > 0 and s ⩾ 0,
Hs

δ(E) is defined as

Hs
δ(E) := inf{

∞∑
i=1

diam(Ui)s : {Ui} is a δ − covering of E},

where diam(U) is the diameter of the set U . Here, the infimum is taken over all countable
δ-coverings Ui of E with open or closed balls. With this value we can define the Hausdorff
measure.

Definition 1.2.1. The s-dimensional Hausdorff measure is defined by the limit

Hs(E) := lim
δ→0

Hs
δ(E).
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When s = n + 1, there is a relation between the (n + 1)-dimensional Lebesgue and
Hausdorff measure, as we can see in the next theorem. See, for instance, [19, pp 28].

Theorem 1.2.2. If E ⊆ Rn+1 is a Borel set, then

Hn+1(E) = 1
ρn+1

Ln+1(E),

where ρn+1 is the volume of a (n+ 1)-dimensional ball of diameter one.

It can be shown that the s-dimensional Hausdorff measure of a set E is almost always 0
or ∞. Actually, there is only one value of s where the measure change between these two
values. Therefore, it seems natural to define the Hausdorff dimension as this value.

Definition 1.2.3. The Hausdorff dimension of E is defined as

dimH E := inf{s ⩾ 0 : Hs(E) = 0} = sup{s ⩾ 0 : Hs(E) = ∞}.

In Figure 1.1, is represented Hs(E) as a function of s for a given set E.

sdimH E n+ 1

Hs(E)

∞

Figure 1.1: s-dimensional Hausdorff Measure

1.2.2 Minkowski Dimension
The Minkowski dimension is widely used when working with fractals. That is due to the fact
that computations are easier than with other fractals dimensions. Here, we restrict ourselves
to the definition of the upper Minkowski dimension.

Definition 1.2.4. (Upper Minkowski dimension) Let E be a non-empty bounded subset
of Rn+1 and let Nδ(E) be the smallest number of sets of diameter at most δ, covering E. The
upper Minkowski dimension of E is defined as

dimME := lim sup
δ→0

logNδ(E)
− log δ .
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The upper Minkowski dimension can also easily be seen to be determined with cubes in
a grid; see [19]. Suppose M0 denotes a grid covering Rn+1 consisting of (n+ 1)-dimensional
cubes with sides of length one and vertices with integer coordinates. The grid Mk is obtained
from M0 by dividing each of the cubes in M0 into 2(n+1)k different cubes with side lengths
2−k. Denote by Nk(E) the number in cubes of the grid Mk that intersect E. Then

dimME = lim sup
k→∞

logNk(E)
k log(2) . (1.2.1)

In [30, pp 77] is given the next theorem relating the Hausdorff and Minkowski dimensions.
Theorem 1.2.5. For the bounded set E ⊆ Rn+1 with topological dimension n, we have

n ⩽ dimH E ⩽ dimME ⩽ n+ 1.
There exist many examples that illustrate the equality holds. One of these examples

is the Koch snowflake; see Figure 1.2. It can be shown that dimH E = dimM E = log 4
log 3 ,

where E denote the Koch snowflake. This is also a fractal closed Jordan curve. At the
same time, there can be found easy examples where inequality is strict. For example, the set
F = {0, 1, 1

2 ,
1
3 , . . . ,

1
n
, . . .}. It can be shown that dimM F = 1

2 and due to the fact that F is a
countable set then dimH F = 0.

Figure 1.2: Koch snowflake

We are now in a position to define a fractal set. The following definition was given in
[29], where the term fractal was coined.
Definition 1.2.6. If an arbitrary set E ⊆ Rn+1 with topological dimension n has dimH E >
n, then E is called a fractal set in the sense of Mandelbrot.

From Definitions 1.2.3 and 1.2.6, we know that a fractal set in the sense of Mandelbrot E
satisfies that Hn(E) = ∞. In addition, we should note that a bounded set E with dimH E = n
can have Hn(E) = ∞, as shown in [19]. However, classical methods cannot be applied to
this kind of set. The ideas developed in this thesis are intended to also deal with these sets
and fractals from Definition 1.2.6.
It is worth noting that throughout this thesis, the expression ’fractal domain’ always refers
to a domain with a fractal boundary.

1.3 Function Classes and Whitney Type Theorems
In order to present our problems accurately, we first need to define the appropriate classes
where the data functions will be defined. These function spaces are Lipschitz classes. Then,
using these classes, some Whitney-type extension theorems will be presented, which play a
crucial role in the methods developed in the following chapters.



8 Preliminaries and Notations

1.3.1 Function Classes
An important class of functions that will be widely used hereafter is the class of p-integrable
functions. Here we follow the books [22, 34].

Definition 1.3.1. Let Ω ⊆ Rn be a domain, the function u : Ω 7→ Cℓ(n), and 0 < p < ∞,
let be

∥u∥p :=
∫

U

|u|pdV

 1
p

,

Lp(Ω) denotes the space of all equivalence classes of Lebesgue measurable functions equals
almost everywhere, such that

∥u∥p < ∞.

The Lipschitz class of functions and its generalizations will play a significant role through
this thesis. The data functions of the boundary value problems that we will study in the
coming chapters belong to these classes. Now, we follow [38] to define Lipschitz functions..

Definition 1.3.2. Let be E ⊆ Rn and 0 < ν ⩽ 1, a function f : E 7→ R satisfying

|f(x)| ⩽M, |f(x) − f(y)| ⩽M |x− y|ν ; x, y ∈ E,

is called Lipschitz function with exponent ν.

The space of all these functions is named Lipschitz spaces. Again, we will follow [38]
denoting it as Lip(E, ν). These functions are also called bounded Hölder continuous. In
general, for our purposes, condition |f(x)| ⩽ M can be left out. However, we maintain it
here to align this definition with its generalizations. Let us present the definition of modulus
of continuity, which is the basis for defining a generalization of Lipschitz classes.

Definition 1.3.3. Let ω(t), 0 < t < ∞ be a positive increasing continuous function of t,
assume that it is regular in the sense that:

(1) lim
t→0+

ω(t)
t

= ∞.

(2) ω(t)
t

is a decreasing function of t.

(3) ω(2t) ⩽ cω(t).

This definition of modulus of continuity is a bit stronger than the one given in [38, pag.

175]. There, the first assumption is replaced for the weaker one: ω(t)
t

is increasing as t → 0.

Both these assumptions imply that ω(t)
t

is a decreasing function of t in a neighborhood of
zero. The second presumption, which is not included in [38, pag. 175], extend that property
to the whole domain of definition of ω. The idea of using limits in this definition has also
been presented in [41]. We denote by W(a, b) the set of all modulus of continuity ω in the
segment (a, b).
Now we will define the gauge functions that are used to construct generalized metric charac-
teristics of sets; see for instance [6, 19].
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Definition 1.3.4. Let h : (0,∞) 7→ (0,∞) be non-decreasing continuous function with
lim

t→0+
h(t) = 0, then h is called gauge function.

We denote by G(a, b) the set of all gauge functions h in the segment (a, b). With the help
of W(a, b), a natural generalization of the Lipschitz classes in terms of modulus of continuity
may be considered; see [38].

Definition 1.3.5. Let be E ⊆ Rn y ω ∈ W(0,∞), a function f : E 7→ R satisfying

|f(x)| ⩽M, |f(x) − f(y)| ⩽Mω(|x− y|); x, y ∈ E,

is called a generalized Lipschitz function with a modulus of continuity ω. The space of all
these functions is named the generalized Lipschitz space and is denoted by Lip(E, ω).

Let E be a closed subset of Rn, n ⩾ 1. We write j = (j1, · · · , jn) a n-dimensional multi-
index of order |j| = j1 + · · · + jn, where j1, . . . , jn are non-negative integers. In addition, we
have j! = j1!j2! · · · jn! and xj = xj1

1 x
j2
2 · · ·xjn

n .
Now let us define the so-called higher order Lipschitz classes, which are another generalization
of Definition 1.3.2.

Definition 1.3.6. Let 0 < ν ⩽ 1. We shall say that a real-valued function f , defined in E,
belongs to Lip(E, k+ν) if there exist real-valued bounded functions f (j), 0 < |j| ≤ k, defined
on E, with f (0) = f , and so that

f (j)(x) =
∑

|j+l|≤k

f (j+l)(y)
l! (x− y)l +Rj(x, y), x, y ∈ E, (1.3.1)

where
|f (j)(x)| ≤ M, |Rj(x, y)| ≤ M |x− y|k+ν−|j|, x, y ∈ E, |j| ≤ k, (1.3.2)

being M a positive constant.

The norm in Lip(E, k + ν) is defined as the smallest M satisfying (1.3.2). In [41] was
shown that Lip(E, k+ ν) endowed with this norm is a Banach space. Also in [41], conditions
for continuous and compact embeddings of generalized higher-order Lipschitz classes on a
compact subset of n-dimensional real Euclidean spaces were obtained, showing that these
spaces are not only a generalization but also a refinement of the classical Lipschitz classes.
In general, an element of Lip(E, k + ν) should be interpreted as a collection

{f (j) : E 7→ R, |j| ≤ k}.

1.3.2 Whitney Type Extension Theorems
In [7] can be found the Whitney extension theorem for Clifford valued functions. It is based
on the result [38, pp 174] for real-valued functions, which was stated originally by H. Whitney.
This result is of great importance in this research.
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Theorem 1.3.7. Let E ⊆ Rn+1 be a compact set and let u ∈ Lip(E, ν), with 0 < ν ⩽ 1.
Then, there exists a function ũ ∈ Lip(Rn+1, ν), named the Whitney extension operator of u,
that satisfies
(i) ũ|E = u,
(ii) ũ ∈ C∞(Rn+1 \ E),
(iii) |Dũ(x)| ⩽ Cdist(x,E)ν−1 for x ∈ Rn+1 \ E.

As was stated in [38, pag. 175], see also [6], the next theorem is proved analogously to
Theorem 1.3.7, taking into account the definition of modulus of continuity.

Theorem 1.3.8. Let E ⊆ Rn+1 be a compact set and let u ∈ Lip(E, ω), with ω ∈ W(0,∞).
Then, there exists a function ũ ∈ Lip(Rn+1, ω), named the Whitney extension operator of u,
that satisfies
(i) ũ|E = u,
(ii) ũ ∈ C∞(Rn+1 \ E),

(iii) |Dũ(x)| ⩽ C
ω[dist(x,E)]

dist(x,E) for x ∈ Rn+1 \ E.

In order to present the suitable Whitney type extension theorems for polymonogenic and
inframonogenic functions, we will first state the theorem for real value functions. We also
use the symbol

∂(j) := ∂|j|

∂xj1
1 ∂x

j2
2 · · · ∂xjk

k

,

for the higher-order partial derivatives. The following is a very deep theorem in real analysis
due to H. Whitney, see [38, pag. 177], and the proof there.

Theorem 1.3.9. Let E ⊆ Rn+1 be a closed set, and let f ∈ Lip(E, k + ν) have values in R.
Then, there exists a R-valued function f̃ ∈ Lip(Rn+1, k + ν) satisfying
(i) ∂(j)f̃ |E = f (j),
(ii) f̃ ∈ C∞(Rn+1 \ E),
(iii) |∂(j)f̃(x)| ⩽ Cdist(x,E)ν−1 for |j| = k + 1 and x ∈ Rn+1 \ E.

Let f ∈ Lip(S, k − 1 + ν) be a Cℓ(n)-valued function, interpreted as a collection {f (j) :
S 7→ Cℓ(n), |j| ≤ k−1} with f (0) = f satisfying 1.3.1 and 1.3.2. In order to present a suitable
version of Whitney extension theorem for Cℓ(n)-valued function, in [1] are constructed the
following functions.

f (i) =
n∑

r1,··· ,ri=0
er1 · · · eri

f1r1 +···+1ri , i = 0, 1, . . . , k − 1. (1.3.3)

Here 1r1 denotes the special multi-index (j0, j1, · · · , jn) with

jp =
{

1, p = rj

0, p ̸= rj.
(1.3.4)

We should note that the functions f (i) are an appropriate arrangement of every function f (j)

with |j| = i. In addition, f (0) = f (0) = f .
The following theorem can be directly deduced from Theorem 1.3.9. This can be found in
[1].
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Theorem 1.3.10. Let E ⊆ Rn+1 be a closed set and let f ∈ Lip(E, k− 1 + ν) with values in
Cℓ(n). Then, there exists a Cℓ(n)-valued function f̃ ∈ Lip(Rn+1, k − 1 + ν) satisfying
(i) Dif̃ |E = f (i), i = 0, 1, · · · k − 1
(ii) f̃ ∈ C∞(Rn+1 \ E),
(iii) |Dkf̃(x)| ⩽ Cdist(x,E)ν−1 for x ∈ Rn+1 \ E.

Inspired in (1.3.3) we will define new functions, to be able to state a proper version of
the Whitney extension Theorem for inframonogenic functions. Let f ∈ Lip(S, 1 + ν), with
values in Cℓ(n).

f (0,1) =
n∑

i=1
f1iei, (1.3.5)

f (1,0) =
n∑

i=1
eif

1i , (1.3.6)

Here 1i denotes the special multi-index (j1, j2, · · · , jn) given by (1.3.4). Again, functions
f (0,1) and f (1,0) are arranged in a way that include in a specific form every function f (j) with
|j| = 1.

From Theorem 1.3.9, we directly obtain the following theorem,

Theorem 1.3.11. Let E ⊆ Rn be a closed set and let f ∈ Lip(E, 1+ν) with values in Cℓ(n).
Then, there exists a Cℓ(n)-valued function f̃ ∈ Lip(Rn, 1 + ν) satisfying
(i) f̃ |E = f , f̃∂n|E = f (0,1), ∂nf̃ |E = f (1,0)

(ii) f̃ ∈ C∞(Rn+1 \ E),
(iii) |∂nf̃∂n(x)| ⩽ Cdist(x,E)ν−1 for x ∈ Rn \ E.

The following theorem is a corollary of a more general result called the Dolzhenko theorem.
For the proof, we refer the reader to [8].

Theorem 1.3.12. Let Ω be a domain in Rn+1 and E ⊆ Ω be a compact set. Let be Hn+µ(E) =
0 where 0 < µ ⩽ 1. If u ∈ Lip(Ω, µ), and it is monogenic in Ω \ E, then u is also monogenic
in Ω.



Chapter 2

Marcinkiewicz Exponent and Jump
Problem on Fractal Domains

This chapter studies the jump problem for monogenic Cℓ(n)-valued functions in domains with
fractal boundaries. The primary tool used to obtain solvability and unicity conditions and the
solution itself for this problem is the Marcinkiewicz exponent. Here is presented the relation
between this metric characteristic of a fractal set and the Minkowski dimension. It is shown
that these new conditions improve the existing ones involving the Minkowski dimension. The
main results of this chapter were announced in [39]. This chapter constitutes the foundation
of most of the subsequent results.

2.1 Marcinkiewicz Exponent
In this section, we define the Marcinkiewicz exponent and prove an inequality relating it and
the Minkowski dimension. From now on, let S be a topologically compact surface, which
is the boundary of a Jordan domain in Rn+1 that divides it into two domains, the bounded
component Ω+ and the unbounded component Ω−, respectively. Let Ω ⊆ Rn+1 be a bounded
set, which does not intersect the surface S, fractal in general. We define the integral

Ip(Ω) =
∫
Ω

dV (x)
distp(x,S) . (2.1.1)

When p = 0, this integral is the volume of Ω. However, when p is large enough, the integral
could diverge.
We define the domain Ω∗ := Ω−⋂{x : |x| < r}, where r is selected such that S is wholly
contained inside the ball of radius r. The inner and outer Marcinkiewicz exponents are
defined as follows.
Definition 2.1.1. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1. We define the inner and outer Marcinkiewicz exponent of S, respectively,
as

m+(S) := sup{p : Ip(Ω+) < ∞}, m−(S) := sup{p : Ip(Ω∗) < ∞},
and the (absolute) Marcinkiewicz exponent of S as,

m(S) := max{m+(S),m−(S)}.

12
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It is worth pointing out that the value of m−(S) is independent of the choice of the radius
r in the construction of Ω∗, due to the fact that the points that are away from S for a fixed
value do not influence the convergence of the integral (2.1.1).
The following lemma plays a significant role in proving the relationship between the Minkowski
dimension and the Marcinkiewicz exponent. Here, we shall use the Whitney extension de-
composition; see [38].

Lemma 2.1.2. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1. Let wk be the number of cubes with edges equal to 2−k in the Whitney
extension decomposition of Rn+1 \ S, then

wk ⩽ C2kd

for each k ⩾ md for md large enough, where d ∈ (dimM(S), n+ 1], and C is a constant that
only depends on n+ 1.

Proof. Denote by wk the number of cubes in the grid Mk, appearing in the Whitney extension
decomposition F (see [38]). We need to remember that

F =
⋃
k

{Q ∈ Mk : Q ∩ Ωk ̸= ∅, Q is maximal}, (2.1.2)

where Ωk is defined as follows

Ωk = {x : C02−k ⩽ dist(x,S) ⩽ C02−k+1},

here C0 = 2
√
n+ 1. Let mk(Ωk) be the number of cubes of the grid Mk, which intersect Ωk,

and thus wk ⩽ mk(Ωk). Suppose that x ∈ Ωk, then we can find a point x′ ∈ S separated
from x by a distance not greater than C02−k+1.
If Q is a cube of Mk, containing x, and Q′ is a cube of the same grid containing x′. Then
Q intersects a sphere of radius C02−k+1 with the center in Q′. Cubes of Mk intersecting
with such spheres lie inside the cube Q̃′ with edges large enough. Indeed, if we take the cube
Q′′ = (1 + C02−k+1)[Q′ − y′] + y′, where y′ is the center of Q′, we obtain a cube Q′′ thicker
than Q′ by C02−k+1. Hence Q′′ contains all the spheres centered in a point x′ in Q′ and the
radius equal to 4(

√
n+ 1)2−k.

Let us notice that when x′ is in the boundary of Q′, the ball with the center in x′, and the
radius equal to C02−k+1, touches the boundary of Q′′. Therefore, we need to make Q̃′ a bit
thicker than Q′′ in order to get all the balls completely contained in Q̃′. See Figure 2.1.
It is convenient to have a value in the form m2−k, where m is an integer number, in order

to get only complete cubes inside Q̃′. We can choose Q̃′ = (1 + 4(n + 1)2−k)[Q′ − y′] + y′.
Now, let us compute the length of the edges of Q̃′. It is the side of Q′ plus twice 4(n+ 1)2−k

because it is expanded in both directions, i.e. [8(n+ 1) + 1]2−k.
Consequently, cubes of Mk intersecting with a sphere of radius equals to C02−k+1 with the
center in Q′ stay inside the cube Q̃′ with edges of length [8(n + 1) + 1]2−k, and the center
coincides with the center of Q′. This fact means that for every cube of Mk intersecting S,
there exists at most [8(n+ 1) + 1]n+1 cubes of Mk intersecting Ωk. Then

wk ⩽ mk(Ωk) ⩽ [8(n+ 1) + 1]n+1mk(S).
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Q′

x′

Q′′

Q̃′

4(
√

n + 1)2−k

4(n + 1)2−k

Figure 2.1: Two dimensional representation of the cubes Q′, Q′′, and Q̃′.

From (1.2.1) we get that there exists a N0 such that for all k > N0 we have

2dk > mk(S),

where d ∈ (dimM(S), n+ 1] is fixed. Consequently,

wk ⩽ mk(Ωk) ⩽ [8(n+ 1) + 1]n+1mk(S) < C2dk,

where C = [8(n+ 1) + 1]n+1. ■

In [25, Lemma 1], it is shown, using other tools, a more general result which particularly
implies the next theorem when we restrict ourselves to Lebesgue measure over Rn+1. Here it
is shown in a direct way using Lemma 2.1.2.

Theorem 2.1.3. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1, then m(S) ⩾ n+ 1 − dimM(S).

Proof. Let us again consider the Whitney extension decomposition (2.1.2). We know from
[38] that the cubes Q satisfy the inequality

diam(Q) ⩽ dist(Q,S) ⩽ 4diam(Q), (2.1.3)

where diam(Q) is the diameter of Q. These cubes have edges with lengths equal to 2−k where
k ∈ Z in general. For a fixed cube Q with edge of length 2−k in this decomposition, we infer,
from (2.1.3) and since diam(Q) =

√
n+ 1· 2−k, that

1
distp(x,S) ⩽

1
[diam(Q)]p <

1
2−kp

.

Hence ∫
Q

dV

distp(x,S) < 2k[p−(n+1)].

We define the values w′
k as follows
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w
′

k :=
{
wk, if ∃Qk ∈ Mk such that Qk ∩ Ω+ ̸= ∅,
0, otherwise,

where wk is the number of cubes with edges equal to 2−k in the Whitney extension decom-
position.
Then we have∫

Ω+

dV

distp(x,S) ⩽
∑

Q∈F , Q∩Ω+ ̸=∅

∫
Q

dV

distp(x,S) ⩽
∞∑

k=−∞
w

′

k

∫
Q

dV

distp(x,S) .

However, there is only a finite number of cubes with edges of length 2−k such as k ⩽ 0.
Indeed, if k ⩽ 0, then 2−k ⩾ 1, and if there are infinitely many cubes with an edge more
than or equal to 1, then the (n+ 1)-dimensional Lebesgue measure of Ω+ would be infinite.
In contradiction with the fact that Ω+ is a bounded set in Rn+1.
Therefore, ∫

Ω+

dV

distp(x,S) ⩽ C +
∞∑

k=1
w

′

k

∫
Q

dV

distp(x,S) < C +
∞∑

k=1
wk2k[p−(n+1)].

Let d ∈ (dimM(S), n+ 1], and then from Lemma 2.1.2, we have that

wk ⩽ B2kd,

for all k ⩾ md, with md large enough, and the constant B only depends on n+ 1. Hence we
have ∞∑

k=md

wk2k[p−(n+1)] ⩽ B
∞∑

k=md

2k[p−(n+1)+d].

Therefore, if the series on the right hand converges, the series on the left side converge. That
occurs when is fulfilled the condition

p < (n+ 1) − d < (n+ 1) − dimM(S).

Consequently,
(n+ 1) − dimM(S) ⩽ m+(S).

An analogous analysis can be done with Ω∗ and m−(S). ■

2.2 A Class of Surfaces in Three Dimensions
In this section, we construct a class of surfaces in R3. For every possible value of the
Minkowski dimension in the segment (2, 3), it is shown that there is an uncountable class
of surfaces with that dimension and such that inequality in Theorem 2.1.3 is strict. That is
presented in the following result.

Theorem 2.2.1. Let α ⩾ 1 and β ⩾ 2. For each value d ∈ (2, 3), there exists an uncountable
class of topologically compact surfaces Sα,β, which are the boundary of a Jordan domain in
R3 such that d = dimM(Sα,β) and m(Sα,β) > 3 − d for suitable values of α and β.
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This construction is similar in spirit to a two-dimensional curve developed in [26]. That
idea on the complex plane goes back as far as [24]. The construction follows the simple idea
of adding infinitely many three-dimensional rectangles with suitable dimensions to a three-
dimensional cube. This begins with a cube Q = [0, 1] × [−1, 0] × [−1, 0]. Let us fix α ⩾ 1
and β ⩾ 2. First, we look at the segment [0, 1] in the x1 axis. We divide it into infinitely
many segments of the form [2−n, 2−n+1] for each n ∈ N. Then, for each n ∈ N, we divide the
segments [2−n, 2−n+1] into 2[nβ] equally spaced segments where [nβ] is the integer part of nβ.
We denote by xnj, where j = 1, 2, ..., 2[nβ], the points determined at the right side of these
segments. See Figure 2.2.

x11x21x31· · · x12x13x14

0 11
2

1
4

3
4

5
8

7
8

Figure 2.2: Distribution of some xnj in the x1 axes for β = 2.1.

Let an be the distance between xnj and xn(j+1), i.e. an = 2−n−[nβ] and Cn = 1
2a

α
n. Then

let Rnj be the following three-dimensional rectangles:

Rnj = [xnj − Cn, xnj] × [−2−n+1, 0] × [0, 2−n].

We define the set

Tα,β = Q
⋃

(
∞⋃

n=1

2[nβ]⋃
j=1

Rnj).

We take the surface Sα,β = ∂Tα,β. See Figure 2.3, which was generated using MATLAB,
as an illustration. We should note here that the parameter β only affects the number of
rectangles Rnj for each n ∈ N, while α only affects the width of the rectangles Rnj.

2.2.1 Minkowski Dimension of the Surfaces Sα,β

Now, let us compute the Minkowski dimension of Sα,β. In order to do that, we shall use the
grid Mk defined in Section 1.2. Many straightforward steps are omitted in order to reduce
the exposition. We need to find a lower and an upper bound such that they are equal. To
calculate the lower bound, we shall construct a set Aβ such that Aβ ⊆ Sα,β and therefore,
dimM(Aβ) ⩽ dimM(Sα,β).
Let Pnj be the two-dimensional rectangles defined as:

Pnj = {xnj} × [−2−n+1, 0] × [0, 2−n],

and the set Aβ is defined as the union

Aβ =
∞⋃

n=1

2[nβ]⋃
j=1

Pnj,
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Figure 2.3: The surface Sα,β for β = 2.1, α = 1.3

see Figure 2.4. This was created with the software MATLAB.
From construction, we know that Aβ ⊆ Sα,β. We are going to find a lower bound for

dimM(Aβ). In order to do that we will use the equation (1.2.1) and therefore, the grid Mk

defined in the Subsection 1.2.2. First, let us focus on the distance between Pnj and Pnj+1. It
is equal to an = 2−n−[nβ]. If k > n, and an > 2−k, a cube in Mk cannot touch two of these
rectangles. The quantity of cubes in Mk that cover a single two-dimensional rectangle Pnj is
2(2−n

2−k )2 because these two-dimensional rectangles have lengths of 2−n+1 and widths of 2−n.
There are 2[nβ] rectangles Pnj for a fixed n. Therefore, 2[nβ]+1(2−n

2−k )2 cubes are needed to cover
all the Pnj for a fixed n. Then we have

Nk(Aβ) ⩾ 2·
∑

an>2−k, k>n

2[nβ]+2k−2n,

where Nk(Aβ) is the minimal number of cubes of the grid Mk which cover Aβ.
Denote by Bk the integer defined by the condition

k

1 + β
− 1 ⩽ Bk <

k

1 + β
. (2.2.1)

It is not difficult to show that the condition an > 2−k is fulfilled if and only if n = 1, 2, ..., Bk.
Next, we get

∑
an>2−k, k>n

2[nβ]+2k−2n = 22k
Bk∑

n=1
2[nβ]−2n ⩾ 22k−1

Bk∑
n=1

2n(β−2) ⩾ C2
3kβ
β+1 ,

where C does not depend on k. Therefore

dimM(Sα,β) ⩾ dimM(Aβ) ⩾ 3β
β + 1 .
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Figure 2.4: Set Aβ into the surface Sα,β for β = 2.1, α = 1.3

We need to find an accurate upper bound for dimM(Sα,β). In order to do that, we define the

sets Λn :=
2[nβ]⋃
j=1

[∂Rnj \ (∂Rnj)|x3=0] and Λ :=
∞⋃

n=1
Λn. Defining Q̂ := ∂Q \ [

∞⋃
n=1

2[nβ]⋃
j=1

(∂Rnj)|x3=0],

we can observe that Sα,β = Q̂ ∪ Λ. We shall focus first on Λ.
We are going to consider three cases. The first one is when n ⩾ k, the second one will be if
n < k and Cn > 2−k, and the last one will be if n < k and Cn ⩽ 2−k. From construction,
the surfaces Λn, with n > k, are covered by one cube of the grid Mk. While the surface Λk

is covered by two of these cubes. As above, if n < k and Cn > 2−k, then 2[nβ]+2(2−n

2−k )2 cubes
are needed to cover the sides of the Rnj parallel to x1 = 0, in Λn.
No more than 2(2−n

2−k )2 cubes are needed to cover the two-dimensional rectangles in Λn parallel
to the coordinate plane x2 = 0. In addition, 2(2−n

2−k )2 cubes are enough to cover the two-
dimensional rectangles in Λn parallels to x3 = 0.
If n < k and Cn ⩽ 2−k, let us analyze two more cases; when an−Cn ⩽ 2−k and an−Cn > 2−k.
Following the same idea, we get that if Cn ⩽ 2−k, k > n, and an − Cn ⩽ 2−k, then 2(2−n

2−k )3

cubes in Mk are enough to cover Λn.
If Cn ⩽ 2−k, k > n, and an −Cn > 2−k, then no more than 2[nβ]+2(2−n

2−k )2 cubes are needed to
cover the faces of Rnj’s parallel to x1 = 0 in Λn. No more than 2(2−n

2−k )2 cubes are needed to
cover the two-dimensional rectangles in Λn parallel to the coordinate plane x2 = 0. Besides,
(2−n

2−k )2 cubes are enough to cover the two-dimensional rectangles in Λn parallels to x3 = 0.
Finally, with 6( 1

2−k )2 cubes of Mk, we can cover Q̂. As a consequence, we get

Nk(Sα,β) ⩽ 3 + 6· 22k + 4
∑

Cn>2−k, k>n

2[nβ]+2k−2n + 4
∑

Cn>2−k, k>n

22k−2n+

+2
∑

Cn⩽2−k, an−Cn⩽2−k, k>n

23k−3n + 4
∑

Cn⩽2−k<an−Cn, k>n

2[nβ]+2k−2n+

+4
∑

Cn⩽2−k<an−Cn k>n

22k−2n.
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Using the conditions on the sums, it is possible to get estimates greater than those ob-
tained before and then

Nk(Sα,β) ⩽ 3 + 6· 22k + 8
∑

2−k<an, k>n

2[nβ]+2k−2n + 8
∑

2−k<an, k>n

22k−2n+

+2
∑

an
2 ⩽2−k, k>n

23k−3n.

Using Bk defined in (2.2.1) for those sums under the conditions 2−k < an, k > n; and the
integer Hk defined

k − 1
1 + β

− 1 ⩽ Hk <
k − 1
1 + β

,

for the sum under the conditions an

2 ⩽ 2−k, k > n, we can obtain through simple estimates
the next inequality

Nk(Sα,β) ⩽ D(k)2
3kβ
β+1 ,

where D(k) = ak + c; here a and c only depend on β. Hence

dimM(Sα,β) ⩽ 3β
β + 1 .

Consequently,
dimM(Sα,β) = 3β

β + 1 .

2.2.2 Marcinkiewicz Exponent of the Surfaces Sα,β

Here, we shall compute the Marcinkiewicz exponent. Again many straightforward steps are
omitted to shorten the exposition. In order to do that, we divide Tα,β into regions where we
can express the function dist(x,Sα,β) in terms of elementary functions. In Q, we can draw
the planes which bisect the dihedral angle between two adjacent faces of Q. All these planes
intersect each other at the point A = (1

2 ,−
1
2 ,−

1
2). In that way, we divide Q into six different

right square pyramids with vertex at A.
We call Ω+

1 and Ω+
2 to the pyramids with base {0} × [−1, 0] × [−1, 0] and its parallel face,

respectively. Similarly, Ω+
3 and Ω+

5 have bases [0, 1]×{−1}×[−1, 0] and [0, 1]×[−1, 0]×{−1}
while the bases of Ω+

4 and Ω+
6 are its parallel faces, respectively. Finally, let be Ω+

7 =
∞⋃

n=1

2[nβ]⋃
j=1

Rnj. Hence we have Ω+ =
7⋃

i=1
Ω+

i . Due to the fact that the faces of the right square
pyramids bisect the dihedral angles between adjacent faces of the cube Q, we get

distp(x,Sα,β)|Ω+
1

= xp
1, distp(x,Sα,β)|Ω+

2
= (1 − x1)p,

distp(x,Sα,β)|Ω+
4

= |x2|p, distp(x,Sα,β)|Ω+
3

= | − 1 − x2|p,
distp(x,Sα,β)|Ω+

6
⩾ |x3|p, distp(x,Sα,β)|Ω+

5
= | − 1 − x3|p.

Since the faces of the pyramids have null volume, we get that∫
Ω+

dV

distp(x,Sα,β) =
7∑

i=1

∫
Ω+

i

dV

distp(x,Sα,β) .
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Furthermore, because distp(x,Sα,β) is a positive function, the integral in the left hand con-
verges if and only if the seven integrals in the sum in the right hand converge.
It is possible to show through direct computations that∫

Ω+
1

dV

xp
1
< ∞,

if and only if p < 1. Hence we only need to analyze these values of p in the following integrals.
Analogous computations can be done to obtain that the integrals over the regions Ω+

i , where
i = 2, ..., 6 converge when p < 1.
On the other hand, for the integral over the region Ω+

7 , we have that
∫

Ω+
7

dV

distp(x,Sα,β) =
∞∑

n=1

2[nβ]∑
j=1

∫
Rnj

dV

distp(x,Sα,β) .

In order to compute the integral over Rnj, we divide that region in the same way that in the
cube Q. By drawing the planes that bisect the dihedral angles at the edges, we get regions
where the function distp(x,Sα,β) can be represented through elementary functions.
After doing the tedious calculations, we can reduce the convergence of the integral over Ω+

7
when p < 1 to the convergence of the series

∞∑
n=1

2[nβ]−2n
(
Cn

2

)1−p

,

which converges if and only if converges the series
∞∑

n=1
2nβ−2n−(1−p)α(n+nβ).

This geometric series converges if and only if the condition

p < 1 − β − 2
α(β + 1) ,

is fulfilled. Thus, we have that the inner Marcinkiewicz exponent is

m+(Sα,β) := sup{p > 0 : Ip(Ω+) < ∞} = 1 − β − 2
α(β + 1) .

Also, we obtain that the absolute Marcinkiewicz exponent satisfy

m(Sα,β) := max{m+(Sα,β),m−(Sα,β)} ⩾ m+(Sα,β) = 1 − β − 2
α(β + 1) .

2.2.3 Remarks about the Surfaces Sα,β

Now we are able to prove Theorem 2.2.1, by using the computations developed in Sections
2.2.1 and 2.2.2.
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Proof of Theorem 2.2.1. If α > 1 and β > 2 then

m(Sα,β) ⩾ m+(Sα,β) = 1 − β − 2
α(β + 1) > 1 − β − 2

β + 1 = 3 − 3β
β + 1 = 3 − dimM(Sα,β).

For each d ∈ (2, 3), let be β = d
3−d

then dimM(Sα,β) = d for each α > 1, i.e. an uncountable
family. ■

On the other hand, as a trivial conclusion we see that when α = 1 or β = 2 we have that
m+(Sα,β) = 3 − dimM(Sα,β). Thus, the equality could also occur.
We can also note that when β = 2 then 2 ⩽ dimH(Sα,2) ⩽ dimM(Sα,2) = 2 and consequently
dimH(Sα,2) = 2. However, the 2-Hausdorff measure is H2(Sα,2) = ∞, because H2(Sα,2) ⩾
H2(A2) and from Theorem 1.2.2 we have that H2(A2) = ∞ . Therefore, Sα,2 is not a fractal
in the sense of Mandelbrot. However, classical methods cannot be applied to it, even those
developed for non-smooth surfaces that are not fractals.
Even though it is impossible to draw a hypersurface like this example in dimensions higher
than three, we are able to describe it analytically. Indeed, let Q = [0, 1] × [0, 1] × [0, 1] ×
· · · × [−1, 0] be a (n+ 1)-dimensional cube. Additionally, let Rmj be the (n+ 1)-dimensional
rectangles given by

Rmj = [xmj − Cm, xmj] × [0, 2−m] × · · · × [0, 2−m],

a product of (n+ 1) segments. Then we analogously define

T n+1
α,β = Q

⋃ ∞⋃
m=1

2[mβ]⋃
j=1

Rmj

 ,
where the hypersurface Sn+1

α,β = ∂T n+1
α,β . We should note that for n + 1 = 3 this surface is

pretty similar to the one in the Figure 2.3.

2.3 Jump Problem on Fractal Domains
In this section, we study the jump problem on domains with fractal boundaries for monogenic
functions. From the results of the previous sections, the conditions obtained here are better
than those involving the Minkowski dimension.
Throughout this section, the following temporary notation will be used. Let S be a topo-
logically compact surface that is the boundary of a Jordan domain Ω+ ⊆ Rn+1, and let be
Ω− := (Rn+1⋃{∞}) \ (Ω+⋃S). The Jump Problem in Clifford Analysis is stated as follows:
Given a Cℓ(n)−valued function f belonging to Lip(S, ν). We want to find a function Φ
monogenic on Rn \ S continuously extendable from Ω± to S such that its boundary values
Φ± on S fulfill the following relation,

Φ+(x) − Φ−(x) = f(x), x ∈ S, (2.3.1)

with Φ(∞) = 0. If S is a fractal surface, it is impossible to use the cliffordian Cauchy
type integral to solve the problem (2.3.1). In the context of Clifford Analysis, we have the
following result, which generalizes [26, Theorem 2] to higher dimensions.
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Theorem 2.3.1. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1, and let f ∈ Lip(S, ν). If

ν > 1 − m(S)
n+ 1 , (2.3.2)

then the jump problem (2.3.1) is solvable.

Proof. First, we consider the inner Marcinkiewicz exponent m+(S). We look for sufficient
conditions such that the Whitney extension f̃ of f satisfies that Df̃ ∈ Lp(Ω+) with p > n+1.
Indeed, from Theorem 1.3.7, we have∫

Ω+

|Df̃(x)|pdV (x) ⩽ C
∫

Ω+

dV (x)
dist(x,S)p(1−ν) .

From Definition 2.1.1, we have that the above right-hand integral converges for p < m+(S)
1−ν

.
Then we need that n+ 1 < m+(S)

1−ν
, or equivalently

ν > 1 − m+(S)
n+ 1 .

Note that this is a sufficient condition for Df̃ ∈ Lp(Ω+) with p > n + 1. Next, let us
consider the function

Φ(x) = f̃(x)χ(x) − (TΩ+Df̃)(x), x ∈ Rn+1, (2.3.3)

where χ(x) is the characteristic function of Ω+. We shall show that, under condition (2.3.2),
function (2.3.3) is a solution to the jump problem.
Indeed, we have that

Φ−(x) = −(TΩ+Df̃)(x), x ∈ Ω−.

From Theorem 1.1.3, we get that Φ−(x) is a monogenic function over Ω−, vanishes at infinity,
and also Φ−(x) ∈ Lip(Ω−, α), with α = p−n−1

p
. Consequently, Φ− is a continuous function

over Ω−.
On the other hand,

Φ+(x) = f̃(x) − (TΩ+Df̃)(x), x ∈ Ω+,

from Theorem 1.1.3 we know that (TΩ+Df̃)(x) ∈ Lip(Ω+, α) with α = p−n−1
p

. Moreover, we
know that f̃ ∈ Lip(Rn+1, ν) thus Φ+(x) is a continuous function over Ω+. From Theorem
1.1.4, we get DΦ+(x) = 0 over Ω+. We can verify directly that the function Φ(x) satisfies
the boundary condition over S.
For the outer Marcinkiewicz exponent m−(S), we suppose that S is entirely contained inside
the ball K1 = {x : |x| < r1}. Let be r > r1, and K = {z : |x| < r}. Besides, let ρ(x) be a real
valued function in C∞(Rn+1) equal to 1 over K1, equal to 0 outside of K, and 0 ⩽ ρ(x) ⩽ 1.
Let be Ω∗ = Ω−⋂K and f ∗ = f̃ρ, we can observe that |Df ∗| ⩽ C

(dist(x,S))1−ν . In a similar
way, we get that under the condition ν > 1 − m−(S)

n+1 , the function

Φ(x) = −f ∗(x)χ∗(x) + (TΩ∗Df ∗)(x),

where χ∗ is the characteristic function of Ω∗, is a solution to the jump problem. ■
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From Theorem 2.1.3, it follows that Theorem 2.3.1 improves the existing conditions for
the solvability of the jump problem. Additionally, using Theorem 1.3.12 and the Liouville
theorem, we obtain the following unicity conditions.

Theorem 2.3.2. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1, and let f ∈ Lip(S, ν), with ν > 1 − m(S)

n+ 1 and

dimH S − n < µ < 1 − (n+ 1)(1 − ν)
m(S) . (2.3.4)

Then the solution to the jump problem (2.3.1) is unique in the classes Lip(Ω+, µ) and
Lip(Ω−, µ).

The unicity in Theorem 2.3.2 is assumed when there exists a value of µ such that condition
(2.3.4) is fulfilled.



Chapter 3

Reduction Procedure for the Riemann
Boundary Value Problem and
Applications

In this chapter, we develop a procedure to reduce the Riemann boundary value problem for
monogenic Clifford-valued functions in the vectorial approach into a system in the paravec-
torial approach. Later, this method is applied to study the Riemann problem for domains
with smooth and fractal boundaries.
In the first section, we develop the procedure. Then in the second section, it is applied to
analyze the Riemann problem in smooth domains. There is shown how, in the vectorial
approach, the non-commutative product induces substantial differences in the number of
solutions. An example of a homogeneous Riemann boundary value problem with constant
coefficients is provided with an infinite number of linearly independent solutions. When the
method is applied to domains with fractal boundaries, the homologous solvability and unic-
ity conditions for the jump problem are obtained in the vectorial approach, using the results
in the paravectorial approach involving the Marcinkiewicz exponent. In this setting, this
method has proven to be more effective in the sense that there are more ways to compute
the solutions than the ones obtained when the problem is studied directly in the vectorial
approach. The Riemann problem in lower dimensions is also studied for some variable coef-
ficients. The results of Sections 3.1 and 3.2 were announced in [42]. While the main results
of Section 3.3 are included in [44].

3.1 Reduction Procedure for the Riemann Boundary
Value Problem

Let S be a topologically compact surface that is the boundary of a Jordan domain Ω ⊆ Rn.
We use the temporary notation Ω+ := Ω, Ω− := Rn \ {Ω ∪ S}. The Riemann boundary value
problem for monogenic functions in vectorial Clifford analysis may be described as follows:
Let two Cℓ(n)−valued functions G, g belonging to Lip(S, ν). Find a function Φ monogenic
on Rn \ S continuously extendable from Ω± to S such that the following condition of their

24
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boundary values Φ± on S holds

Φ+(x) −G(x)Φ−(x) = g(x), x ∈ S. (3.1.1)

with G(x) ̸= 0.In general we will assume Φ(∞) = c, with c a constant.
For further use, we shall be considering the one-to-one mapping

α : Cℓ(n− 1)(0) ⊕ Cℓ(n− 1)(1) → Cℓ(n)(1)

x1 +∑n−1
i=1 x

i+1ei → ∑n
i=1 x

iei,

as well as the isomorphism

β : Cℓ(n)+ → Cℓ(n− 1)
e1ei+1 → ei.

In what follows, for a given function

u : Cℓ(n)(1) → Cℓ(n)+,

we define
û : Cℓ(n− 1)(0) ⊕ Cℓ(n− 1)(1) → Cℓ(n− 1),

by û(x) := β ◦ u ◦ α(x) = β(u(α(x))), and x = α(x).
After using the decomposition (1.1.1), we have

Φ+(x) = Φ+
0 (x) + e1Φ+

1 (x)
Φ−(x) = Φ−

0 (x) + e1Φ−
1 (x)

G(x) = G0(x) + e1G1(x)
g(x) = g0(x) + e1g1(x).

(3.1.2)

Substituting (3.1.2) into (3.1.1) yields

[Φ+
0 (x) − (G0(x)Φ−

0 (x) −G∗
1(x)Φ−

1 (x))] + e1[Φ+
1 (x) − (G∗

0(x)Φ−
1 (x) +G1(x)Φ−

0 (x))] =

= g0(x) + e1g1(x),
where G∗

j(x) = −e1Gj(x)e1, j = 0, 1.
So that we arrive at the system{ Φ+

0 (x) − (G0(x)Φ−
0 (x) −G∗

1(x)Φ−
1 (x)) = g0(x),

Φ+
1 (x) − (G1(x)Φ−

0 (x) +G∗
0(x)Φ−

1 (x)) = g1(x). (3.1.3)

The system (3.1.3) becomes
{ Φ̂+

0 (x) − (Ĝ0(x)Φ̂−
0 (x) − Ĝ∗

1(x)Φ̂−
1 (x)) = ĝ0(x),

Φ̂+
1 (x) − (Ĝ1(x)Φ̂−

0 (x) + Ĝ∗
0(x)Φ̂−

1 (x)) = ĝ1(x),

which is equivalent to saying that(
Φ̂+

0 (x)
Φ̂+

1 (x)

)
−

(
Ĝ0(x) −Ĝ∗

1(x)
Ĝ1(x) Ĝ∗

0(x)

)(
Φ̂−

0 (x)
Φ̂−

1 (x)

)
=

(
ĝ0(x)
ĝ1(x)

)
. (3.1.4)
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Rewritten the Dirac operator ∂n in the form

∂n :=
n∑

i=1
ei
∂

∂xi
= e1(

∂

∂x1 −
n∑

i=2
e1ei

∂

∂xi
) =: e1D

′
n−1

∂n :=
n∑

i=1
ei
∂

∂xi
= ( ∂

∂x1 +
n∑

i=2
e1ei

∂

∂xi
)e1 =: D′

n−1e1.

we see
∂nΦ = e1D

′
n−1(Φ0) − D′

n−1(Φ1) = −D′

n−1(Φ1) + e1D
′
n−1(Φ0).

Furthermore, the following are equivalent

∂nΦ = 0 ⇔
{ D′

n−1(Φ1) = 0
D′

n−1(Φ0) = 0. (3.1.5)

Besides this equivalence, we have

Dn−1 = β(D′

n−1) = ∂

∂x1 +
n−1∑
i=1

ei
∂

∂xi+1 = ∂1 + ∂n−1,

and
Dn−1 = β(D′

n−1) = ∂

∂x1 −
n−1∑
i=1

ei
∂

∂xi+1 = ∂1 − ∂n−1,

so that system (3.1.5) becomes { Dn−1(Φ̂1) = 0
Dn−1(Φ̂0) = 0.

Summarizing, we have that Φ̂0(x) and Φ̂1(x) are antimonogenic and monogenic functions,
respectively.

Theorem 3.1.1. A function is monogenic in the vectorial sense if and only if its even
and odd parts are, through isomorphism, antimonogenic and monogenic, respectively, in the
paravectorial sense, and the following decomposition holds

Φ(x) = β−1(Φ̂0(x)) + e1β
−1(Φ̂1(x)),

where x = α−1(x).

This decomposition bears a striking similarity to that of analytic functions in complex
analysis through two conjugate harmonic functions.
Since Φ̂0(x) is left antimonogenic, then Υ0(x) := Φ̂0(x) is a right monogenic ones. For
similarity we let Υ1 = Φ̂1. Therefore, problem (3.1.4) reduces to find(

Υ0(x)
Υ1(x)

)
,

such that on Rn \ S { (Υ0)Dn−1 = 0
Dn−1(Υ1) = 0,
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meanwhile on S the boundary condition(
Υ+

0 (x)
Υ+

1 (x)

)
−

(
Ĝ0(x) −Ĝ∗

1(x)
Ĝ1(x) Ĝ∗

0(x)

)(
Υ−

0 (x)
Υ−

1 (x)

)
=

(
ĝ0(x)
ĝ1(x)

)
(3.1.6)

holds.
If this problem is solvable then so it is (3.1.1) and an explicit solution is given by

Φ(x) = β−1 ◦ Υ0 ◦ α−1(x) + e1β
−1 ◦ Υ1 ◦ α−1(x) =

= β−1(Υ0(x)) + e1β
−1(Υ1(x)), (3.1.7)

where
x = α−1(x).

When we use the decomposition Cℓ(n) = Cℓ(n)+⊕ enCℓ(n)+, analogous result can be ob-
tained. We have

∂n :=
n∑

i=1
ei
∂

∂xi

= ( ∂

∂xn

−
n−1∑
i=1

eien
∂

∂xi

)en =: D′′
n−1en,

∂n :=
n∑

i=1
ei
∂

∂xi

= en( ∂

∂xn

+
n−1∑
i=1

eien
∂

∂xi

) =: enD′′

n−1.

and thus
∂nΦ = 0 ⇔

{ D′′
n−1(Φ0) = 0

D′′
n−1(Φ1) = 0.

Being now
β : Cℓ(n)+ → Cℓ(n− 1)

eien → ei

Dn−1 = β(D′′
n−1) = ∂

∂xn

+
n−1∑
i=1

ei
∂

∂xi

= ∂1 + ∂n−1,

and
Dn−1 = β(D′′

n−1) = ∂

∂xn

−
n−1∑
i=1

ei
∂

∂xi

= ∂1 − ∂n−1,

we have {
Dn−1(Φ̂0) = 0
Dn−1(Φ̂1) = 0.

Therefore, we have obtained another decomposition of a monogenic function in the vectorial
approach. It is stated in the next theorem.

Theorem 3.1.2. A function is monogenic in the vectorial sense if and only if its even
and odd parts are, through isomorphism, monogenic and antimonogenic, respectively, in the
paravectorial sense. And the following decomposition holds

Φ(x) = β−1(Φ̂0(x)) + enβ
−1(Φ̂1(x)),

where x = α−1(x).
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3.2 Applications on Smooth Boundaries
Throughout this section we will consider the surface S to be a smooth boundary. We will
apply the method developed in section 3.1 to this framework.

3.2.1 Cauchy Type Integral Decomposition in Vectorial Clifford
Analysis

It has long been known that the RBVP theory in vectorial Clifford analysis is based on the
use of the Cauchy-type integral.

Φ(x) =
∫
S

ϑn(y − x)κ(y)g(y)dν(y).

In particular, for a smooth surface S, this integral, whose density g satisfies a Lipschitz
condition with exponent ν, gives a unique solution to the simplest case of the RBVP (3.1.1),
namely, the jump problem, where the boundary condition is the following

Φ+(x) − Φ−(x) = g(x), x ∈ S,

with Φ(∞) = 0.
For what problem (3.1.6) becomes

{ Υ+
0 (x) − Υ−

0 (x) = ĝ0(x)
Υ+

1 (x) − Υ−
1 (x) = ĝ1(x),

with Υ0(∞) = 0 and Υ1(∞) = 0. The unique solution to this problem is

Υ0(x) =
∫
S

ĝ0(y)κ(y)En−1(y − x)dν(y),

Υ1(x) =
∫
S

En−1(y − x)κ(y)ĝ1(y)dν(y).

Therefore, from (3.1.7), we obtain the following theorem connecting Cauchy transforms in
vectorial and paravectorial approaches.

Theorem 3.2.1. The even part of the Cauchy type integral in the vector Clifford analysis is
the conjugate of a right Cauchy type integral in the paravector Clifford analysis, and its odd
part is a left Cauchy type integral in paravector Clifford analysis both through isomorphism.

Again, this theorem bears a close resemblance to a result that can be found in [20] in
which it is shown that the real and imaginary parts of the Cauchy transform in complex
analysis are a double layer logarithmic potential and a single layer logarithmic potential,
respectively.
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3.2.2 Riemann Boundary Value Problem for Monogenic Functions
in Lower Dimensions

The lower dimensional non-commutative Clifford analysis focuses on functions f : R2 →
Cℓ(2). Using

α : C → Cℓ(2)(1)

x1 + x2i → x1e1 + x2e2,

and
β : Cℓ(2)+ → C

e1e2 → i,

we can identify the correspondent paravector calculus with standard complex analysis. In
fact

f̂ : C → C,
z := α(x) → β(f(α(x))).

Now, we can represent the Cauchy-Riemann operator and its conjugate as

∂z = 1
2β(D′

1) = 1
2( ∂

∂x1
+ i

∂

∂x2
)

∂z = 1
2β(D′

1) = 1
2( ∂

∂x1
− i

∂

∂x2
).

As a matter of fact, Ĝ∗
j(x) = Ĝj(x), j = 0, 1. Then (3.1.6) becomes(

Υ+
0 (x)

Υ+
1 (x)

)
−

Ĝ0(x) −Ĝ1(x)
Ĝ1(x) Ĝ0(x)

(Υ−
0 (x)

Υ−
1 (x)

)
=

(
ĝ0(x)
ĝ1(x)

)
. (3.2.1)

Case of null odd part

We have G1 ≡ 0 and hence G = G0 ̸= 0. Consequently, (3.2.1) becomes{ Υ+
0 (x) − Ĝ0(x)Υ−

0 (x) = ĝ0(x)
Υ+

1 (x) − Ĝ0(x)Υ−
1 (x) = ĝ1(x),

which will lead to { Υ+
0 (x) − Ĝ0(x)Υ−

0 (x) = ĝ0(x)
Υ+

1 (x) − Ĝ0(x)Υ−
1 (x) = ĝ1(x).

These are two independent RBVPs in complex analysis with the same coefficient. We have
Ĝ0(x) ̸= 0 since G(x) ̸= 0.

We define Ind(G) := Ind(Ĝ0) = ℵ, which yields Ind(Ĝ0) = −ℵ. Following the standard
techniques of the RBVP theory, see, for instance [20], we have

X+(z) = eΓ (z), X−(z) = zℵeΓ (z),

where

Γ (z) = 1
2πi

∫
L

ln[τℵĜ0(τ)]
τ − z

dτ,
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and
Ψ0(z) = 1

2πi

∫
L

ĝ0(τ)
X+(τ)

dτ

τ − z
,

Ψ1(z) = 1
2πi

∫
L

ĝ1(τ)
X+(τ)

dτ

τ − z
.

Then the theorem can be stated as follows.

Theorem 3.2.2. If ℵ ⩽ 1, the solution Φ(x) is obtained by (3.1.7) where

Υ0(z) = X(z)[Ψ0(z) + P 0
−ℵ(z)],

Υ1(z) = X(z)[Ψ1(z) + P 1
−ℵ(z)].

Here P 0
−ℵ(z), P 1

−ℵ(z) are two polynomials of degree −ℵ. For ℵ = 1 we put P 0
−1(z) ≡ 0, P 1

−1(z) ≡
0.

If ℵ > 1, when the following 2(ℵ − 1) solvability conditions

∫
L

ĝ0(τ)
X+(τ)τ

k−1dτ = 0, k = 1, 2, . . . ,ℵ − 1

∫
L

ĝ1(τ)
X+(τ)τ

k−1dτ = 0, k = 1, 2, . . . ,ℵ − 1

are fulfilled, then (3.1.7) is the solution, where P 0
−ℵ(z) ≡ 0, P 1

−ℵ(z) ≡ 0.

Under the condition Φ−(∞) = 0, our theorem gets a more symmetrical form.

Theorem 3.2.3. Under the condition Φ−(∞) = 0, if ℵ ⩽ 0, the solution Φ(x) is given by
(3.1.7), where

Υ0(z) = X(z)[Ψ0(z) + P 0
−ℵ−1(z)],

Υ1(z) = X(z)[Ψ1(z) + P 1
−ℵ−1(z)].

Here P 0
−ℵ−1(z), P 1

−ℵ−1(z) are two polynomials of degree −ℵ − 1. For ℵ = 0 we put P 0
−1(z) ≡

0, P 1
−1(z) ≡ 0, and the solution depends on −4ℵ real constants.
If ℵ > 0, when the following 2ℵ solvability conditions

∫
S

ĝ0(τ)
X+(τ)τ

k−1dτ = 0, k = 1, 2, . . . ,ℵ

∫
S

ĝ1(τ)
X+(τ)τ

k−1dτ = 0, k = 1, 2, . . . ,ℵ

are fulfilled, thus (3.1.7) is the solution, where P 0
−ℵ−1(z) ≡ 0, P 1

−ℵ−1(z) ≡ 0.

The subsequent example illustrates the theorem.
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Example 3.2.1. To find a function Φ, vanishing at infinity, monogenic in R2\S continuously
extendable from Ω± to S such that the following condition of their boundary values Φ± on
S holds

Φ+(x) − (−e1x)[(−e1x)2 − 1]−1Φ−(x) = [−e1x− 1]−1 + e1[−xe1 + 1]−1, x ∈ S,

where S is an arbitrary smooth curve assuming additional conditions to be divided in four
cases.
a) S contains inside the point z = 0 and z = 1, z = −1 are outside.
b) S contains inside the points z = 0, z = 1 and z = −1 lies outside.
c) S contains inside the point z = −1 and z = 0, z = 1 are outside.
d) S contains inside the point z = −1 and z = 0, z = 1 are outside.
In this example, the problem reduces to the complex Riemann problems:

{ Υ+
0 (t) − t

t2 − 1Υ+
0 (t) = 1

t− 1
Υ+

1 (t) − t

t2 − 1Υ−
1 (t) = 1

t+ 1

Case a) Due to the fact that Ω+ contains the point z = 0 , while z = 1, z = −1 are in Ω−,
then ℵ = Ind(G) = −Ind(Ĝ0(x)) = −1, so that

X+(z) = 1
z2 − 1 , X−(z) = 1

z
,

Ψ+
0 (z) = z + 1, Ψ−

0 (z) = 0,
Ψ+

1 (z) = z − 1, Ψ−
1 (z) = 0.

We have
Υ+

0 (z) = 1
z2 − 1(z + 1 + c1), Υ−

0 (z) = c1

z
,

Υ+
1 (z) = 1

z2 − 1(z − 1 + c2), Υ−
1 (z) = c2

z
,

and thus

Φ+(x) = [−e1x− 1]−1 + (c0
1 + e1e2c

1
1)[(−e1x)2 − 1]−1 + e1[−xe1 + 1]−1+

+(e1c
0
2 − e2c

1
2)[(−xe1)2 − 1]−1,

Φ−(z) = (c0
1 + e1e2c

1
1)[−e1x]−1 + (e1c

0
2 − e2c

1
2)[−xe1]−1.

Case b) Because Ω+ contains the points z = 0, z = 1 and z = −1 belongs to Ω−, thus
ℵ = Ind(G) = −Ind(Ĝ0(x)) = 0, so that

X+(z) = 1
z + 1 , X−(z) = z − 1

z
,

Ψ+
0 (z) = 1, Ψ−

0 (z) = − 2
z − 1 ,

Ψ+
1 (z) = 1, Ψ−

1 (z) = 0.

We have
Υ+

0 (z) = 1
z + 1 , Υ−

0 (z) = −2
z
,
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Υ+
1 (z) = 1

z + 1 , Υ−
0 (z) = 0,

and
Φ+(x) = [−e1x+ 1]−1 + e1[−xe1 + 1]−1, Φ−(z) = −2[−e1x]−1.

Case c) As a result of the fact that the point z = −1 is in Ω+ and Ω+ contains z = 0, z = 1,
we get that ℵ = Ind(G) = −Ind(Ĝ0(x)) = 1. Then the solvability conditions∫

S

1
τ
dτ = 0,

∫
S

τ − 1
τ(τ + 1)dτ = 0,

must be satisfied. Nevertheless,∫
S

τ − 1
τ(τ + 1)dτ =

∫
S

1
τ + 1dτ −

∫
S

1
τ

τ + 1dτ = 4πi.

So the problem has no solution.
Notice that, in this case, the first complex problem has a solution, but it is not enough to
solve the original problem.
Case d) By virtue of the fact that Ω+ contains the point z = −1 and z = 0, z = 1 are in Ω−,
then ℵ = Ind(G) = −Ind(Ĝ0(x)) = 1, but in this case the function g(x) should be taken
quite differently.

g(x) = [−e1x− 1]−1 + e1[−xe1]−1.

Checking the solvability conditions, we have∫
S

1
τ
dτ = 0,

∫
S

τ − 1
τ 2 dτ =

∫
S

1
τ
dτ −

∫
S

1
τ 2dτ = 0.

Therefore, there exists a solution

X+(z) = z

z − 1 , X−(z) = z + 1,

Ψ+
0 (z) = 1

z
, Ψ−

0 (z) = 0,

Ψ+
1 (z) = z − 1

z2 , Ψ−
1 (z) = 0.

We have
Υ+

0 (z) = 1
z − 1 , Υ−

0 (z) = 0,

Υ+
1 (z) = 1

z
, Υ−

0 (z) = 0.

Thus, the only solution is

Φ+ = [−e1x− 1]−1 + e1[−xe1]−1, Φ− = 0.
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3.2.3 Case of Constant Coefficients
For this case, the theory of conformal mappings will be used. Let S denote a simple closed
and smooth contour with a tangent that forms a certain angle with a constant direction that
satisfies a Hölder condition. This idea has previously been used in [18, 33].

Reduction to a circle case

Let us denote by η = θ+(z) (η = θ−(z)) a conformal mapping from Ω+ (Ω−) to the inside
(outside) of the unit circle C. We shall write z = φ+(η) (z = φ−(η)) the respective inverses.
As stated in [33], from the theory of conformal mappings, it is known that under the adopted
conditions referred to the contour S not only the functions θ+(z), θ−(z), φ+(η), φ−(η), but
also its first derivatives are continuously prolonged over S and C, respectively, and satisfy a
Hölder condition.
Introducing the new functions

Ψ+
j (η) = Υ+

j [φ+(η)], Ψ−
j (η) = Υ−

j [φ−(η)], j = 0, 1,

The boundary condition takes the form,(
Ψ+

0 (ζ)
Ψ+

1 (ζ)

)
−

G̃0(ζ) −G̃1(ζ)
G̃1(ζ) G̃0(ζ)

(Ψ−
0 (ζ)

Ψ−
1 (ζ)

)
=

(
g̃0(ζ)
g̃1(ζ)

)
. (3.2.2)

where g̃j(ζ) = ĝj(φ−(ζ)), G̃j(ζ) = Ĝj(φ−(ζ)), j = 0, 1.
The functions G̃j and g̃j defined on C satisfy a Lipschitz condition with exponent ν, when it
is fulfilled by Ĝj, ĝj. So the problem (3.1.6) becomes at (3.2.2) considered on the unit circle
with center at the origin.

Solution over the unit circle

Let S be a unit circle with center at the origin. Doing in (3.1.6) the change of variables

Λ+(z) = Υ−
0 (1
z

),

Λ−(z) = Υ+
0 (1
z

),

note that Υ−
0 (∞) = Λ+(0). If we have the condition Φ(∞) = 0, then for (3.1.7) we have that

Λ+(0) = 0. So, over S we have

Λ+(x) = Υ−
0 (1
t
) = Υ−

0 (x),

Λ−(x) = Υ+
0 (1
t
) = Υ+

0 (x).

next the system (3.1.6) becomes(
Λ−(x)
Υ+

1 (x)

)
−

Ĝ0(x) −Ĝ1(x)
Ĝ1(x) Ĝ0(x)

(Λ+(x)
Υ−

1 (x)

)
=

(
ĝ0(x)
ĝ1(x)

)
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where the function Λ is monogenic on C \ S.
Now if we consider the case of constant coefficients, we have Ĝ0(x) ≡ a and Ĝ1(x) ≡ b

where the constants a, b ∈ C and then we obtain(
Λ−(x)
Υ+

1 (x)

)
−

(
a −b
b a

)(
Λ+(x)
Υ−

1 (x)

)
=

(
ĝ0(x)
ĝ1(x)

)

that is
Λ−(x) − aΛ+(x) + bΥ−

1 (x) = ĝ0(x), (3.2.3)

Υ+
1 (x) − bΛ+(x) − aΥ−

1 (x) = ĝ1(x). (3.2.4)

Since in (3.1.1) we have G(x) ̸= 0 then at least a ̸= or b ̸= 0. We will consider three cases.
Case a)We will analyze first the case in which a ̸= 0 and b ̸= 0. Here, we have for (3.2.3)

Λ+(x) − 1
a

Λ−(x) − b

a
Υ−

1 (x) = −1
a
ĝ0(x),

and we put
Ψ+

0 (z) = Λ+(z) Ψ−
0 (z) = 1

a
Λ−(z) + b

a
Υ−

1 (z)
the problem becomes in

Ψ+
0 (x) − Ψ−

0 (x) = −1
a
ĝ0(x),

with Ψ+
0 (0) = 0. The solution to this problem is

Ψ0(z) = 1
2πi

∫
S

− 1
a
ĝ0(τ)

τ − z
− 1

2πi

∫
S

− 1
a
ĝ0(τ)
τ

.

Substituting in (3.2.4)
Υ+

1 (x) − aΥ−
1 (x) = ĝ1(x) + bΨ+

0 (x).

and defining
Ψ+

1 (z) = Υ+
1 (z) Ψ−

1 (z) = aΥ−
1 (z)

the problem becomes in
Ψ+

1 (x) − Ψ−
1 (x) = ĝ1(x) + bΨ+

0 (x).

with Ψ−
1 (∞) = 0. The solution to this problem is

Ψ1(z) = 1
2πi

∫
S

ĝ1(τ) + bΨ+
0 (τ)

τ − z
.

Therefore, we obtain

Λ+(z) = Ψ+
0 (z) Λ−(z) = aΨ−

0 (z) − b
a
Ψ−

1 (z)
Υ+

1 (z) = Ψ+
1 (z) Υ−

1 (z) = 1
a
Ψ−

1 (z).

The next example illustrates the method for this case.
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Example 3.2.2. Find a function Φ, that vanishes at infinity, is monogenic in R2 \ S and its
boundary values Φ± from the domains Ω± satisfy:

Φ+(x) − (1 − e1)Φ−(x) = [−xe1]−1 + e1[−xe1 − 2]−1, x ∈ S.

where S is the unit circle with the center in the origin.
In this case, we have

Λ−(x) − Λ+(x) + Υ−
1 (x) = 1

t
,

Υ+
1 (x) − Λ+(x) − Υ−

1 (x) = 1
t− 2 .

Thus
Ψ+

0 (z) ≡ 0 Ψ−
0 (z) = 1

z

Ψ+
1 (z) = 1

z − 2 Ψ−
1 (z) ≡ 0.

then we have
Λ+(z) ≡ 0 Λ−(z) ≡ 1

z

Υ+
1 (z) = 1

z − 2 Υ−
1 (z) ≡ 0.

Next,
Υ−

0 (z) = Λ+(1
z

) ≡ 0,

Υ+
0 (z) = Λ−(1

z
) = z,

therefore, the solution is

Φ+(x) = (−e1x) + e1[−xe1 − 2]−1 Φ−(x) = 0.

Case b) a ̸= 0 and b = 0, this can be handled in much the same way. In fact, we have

Λ+(z) = Ψ+
0 (z) Λ−(z) = aΨ−

0 (z)
Υ+

1 (z) = Ψ+
1 (z) Υ−

1 (z) = 1
a
Ψ−

1 (z).

where
Ψ0(z) = 1

2πi

∫
S

− 1
a
ĝ0(τ)

τ − z
− 1

2πi

∫
S

− 1
a
ĝ0(τ)
τ

.

Ψ1(z) = 1
2πi

∫
S

ĝ1(τ)
τ − z

.

Case c) a = 0 and b ̸= 0, here we have

Λ−(x) + bΥ−
1 (x) = ĝ0(x),

Υ+
1 (x) − bΛ+(x) = ĝ1(x).
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A necessary and sufficient condition for solving this problem is that ĝ0(x) admits a monogenic
extension to Ω− and ĝ1(x) admits a monogenic extension to Ω+. If these are satisfied, we
can choose one of these functions, for example, Λ(z) being monogenic in C \ S and Λ(0) = 0.
In particular, we can choose Λ+(z) = zn and Λ−(z) = 1

zn
and then we have

Υ+
1 (z) = 1

2πi

∫
S

ĝ1(τ) + bτn

τ − z
,

Υ−
1 (z) = − 1

2bπi

∫
S

ĝ0(τ) − 1
τn

τ − z
.

Next, in the three cases doing
Υ−

0 (z) = Λ+(1
z

),

Υ+
0 (z) = Λ−(1

z
),

and applying the reverse mappings through (3.1.7) we have the solution. We have obtained
the following theorem.
Theorem 3.2.4. If the even part of the Riemann boundary value problem with constant
coefficients is not null, then the problem has a unique solution. If not, the following solvability
conditions must be satisfied

1
2 ĝ0(x) + 1

2πi

∫
S

ĝ0(τ)
τ − t

= 0,

−1
2 ĝ1(x) + 1

2πi

∫
S

ĝ1(τ)
τ − t

= 0,

if both are satisfied, then the problem has an infinite number of linearly independent solutions
that vanish at infinity.

In the following example, we will consider a meaningful case where the solvability condi-
tions are satisfied, the homogeneous problem.
Example 3.2.3. Find a function Φ, which vanishes at infinity, is monogenic in R2 \ S and
satisfy:

Φ+(x) − e1Φ−(x) = 0, x ∈ S.
where S is the unit circle with the center in the origin.
In this case, we have

Λ−(x) + Υ−
1 (x) = 0,

Υ+
1 (x) − Λ+(x) = 0,

where Λ+(0) = 0 and Υ−
1 (∞) = 0.

Obviously, the solvability conditions are satisfied, then we can choose Λ+(z) = 0 and Λ−(z) =
1
zm
,m ∈ N and then we have

Υ+
0 (z) = zm, Υ−

0 (z) = 0,
Υ+

1 (z) = 0, Υ−
1 (z) = − 1

zm
,m ∈ N.



Applications on Fractal Boundaries 37

Therefore, we obtain

Φ+(x) = (−e1x)m, Φ−(x) = −e1[(−xe1)m]−1,m ∈ N.

By decreasing induction on m, we can verify that these functions satisfy the conditions of
the problem.

The significance of this Example 3.2.3 is captured by the following corollary, which is
consistent with the earlier results on the Fredholmness of the left linear Riemann operator
reported in [11, 36, 37].

Corollary 3.2.5. The homogeneous Riemann boundary value problem with constant coeffi-
cients can have an infinite number of linearly independent solutions that vanish at infinity.

3.3 Applications on Fractal Boundaries
In this section, we will apply the method developed in Section 3.1 to domains with fractal
boundaries.

3.3.1 Conditions in the Vectorial Approach through the Paravec-
torial Approach

The results obtained in Chapter 2 are also valid in the context of vectorial Clifford analysis.
Using the properties of the Teodorescu transform written in the vectorial sense that can be
found in [8, 23], it can be developed an analogous reasoning to the one in the previous chapter.
However, in this section, we shall use the reduction procedure for the RBVP to obtain the
solvability and unicity conditions in the vectorial approach through the paravectorial one.
This method has proven to be more effective in the sense that we get four expressions for
the solutions to the problem instead of only two. In the specific case of the jump problem
G(x) ≡ 1, therefore, (3.1.1) becomes

Φ+(x) − Φ−(x) = g(x), x ∈ S. (3.3.1)

Consequently, (3.1.6) turns into{ Υ+
0 (x) − Υ−

0 (x) = ĝ0(x)
Υ+

1 (x) − Υ−
1 (x) = ĝ1(x),

which is equivalent to { Υ+
0 (x) − Υ−

0 (x) = ĝ0(x)
Υ+

1 (x) − Υ−
1 (x) = ĝ1(x). (3.3.2)

These are two independent jump problems in paravectorial Clifford analysis, and problem
(3.3.1) is solvable if and only if both problems in the system (3.3.2) are solvable.
It is immediate that if a function g belongs to some Lipschitz class, then its even and odd
parts also belong to some Lipschitz class, and that is enough for applications to domains with
smooth boundaries. However, for applications to fractal domains, it is required to establish
a relation between the Lipschitz exponent of g and the one of its even and odd parts. The
upcoming theorem does exactly that.
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Theorem 3.3.1. The function g(x) ∈ Lip(S, ν), with ν maximum, if and only if its even
and odd parts ĝ0(x) ∈ Lip(S, ν0) and ĝ1(x) ∈ Lip(S, ν1), with ν0, ν1 maximums, respectively,
and ν = min {ν0, ν1}.

Proof. First we shall show that if ĝ0(x) ∈ Lip(S, ν0) and ĝ1(x) ∈ Lip(S, ν1), with ν0, ν1
maximums, respectively, and ν = min {ν0, ν1} then g(x) ∈ Lip(S, ν). Indeed, we have

|g(x) − g(y)|=|g0(x) + e1g1(x) − g0(y) + e1g1(y)|=
|
[
g0(x) − g0(y)

]
+ e1

[
g1(x) − g1(y)

]
|⩽

|
[
g0(x) − g0(y)

]
|+|

[
g1(x) − g1(y)

]
|⩽

C0|x− y|ν0+C1|x− y|ν1⩽ C|x− y|ν .

(3.3.3)

Let us now show that if g(x) ∈ Lip(S, ν), with ν maximum, then ĝ0(x) ∈ Lip(S, ν0) and
ĝ1(x) ∈ Lip(S, ν1), with ν0, ν1 maximums, respectively, and ν = min {ν0, ν1}. Thus, we
obtain

C|x− y|ν⩾|g(x) − g(y)|=
∑

A⊆N

[gA(x) − gA(y)]
 1

2

⩾

 ∑
|A| even

[gA(x) − gA(y)]
 1

2

=|g0(x) − g0(y)|

We have proved that if g(x) ∈ Lip(S, ν) then ĝ0(x) ∈ Lip(S, ν). However, it could also
happen that ĝ0(x) ∈ Lip(S, ν) ⊆ Lip(S, ν0) with ν ⩽ ν0. An analogous reasoning can be
done with ĝ1(x) and ν ⩽ ν1. We are going to show that ν = min {ν0, ν1}. Assume that
ν < min {ν0, ν1}. Using a similar analysis to that in (3.3.3), we get

|g(x) − g(y)|⩽ C|x− y|min{ν0,ν1}

that contradict that ν is maximum; therefore, the supposition is false and ν = min {ν0, ν1}.
This completes the proof. ■

Now, we are going to prove a sufficient solvability condition for the jump problem in the
vectorial approach by applying the reduction procedure for the Riemann Boundary Value
Problem.

Theorem 3.3.2. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn, and let f ∈ Lip(S, ν). If

ν > 1 − m(S)
n

, (3.3.4)

then the jump problem (3.3.1) is solvable.

Proof. If ĝ0(x) ∈ Lip(S, ν0) and ĝ1(x) ∈ Lip(S, ν1) then from Chapter 2 we know that the
system (3.3.2) is solvable if

ν0 > 1 − m(S)
(n− 1) + 1 = 1 − m(S)

n
, (3.3.5)
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and
ν1 > 1 − m(S)

(n− 1) + 1 = 1 − m(S)
n

. (3.3.6)

Without loss of generality, we may assume that ν0 ⩽ ν1. We can proceed analogously if the
opposite is supposed. Hence the condition (3.3.5) implies (3.3.6). Because ν = min {ν0, ν1} =
ν0 conditions (3.3.5) and (3.3.4) are the same. Therefore, the problem (3.3.1) is solvable if
condition (3.3.4) is satisfied and the proof is complete. ■

We should note that in this case, we actually have four solvability conditions that can be
written as

νj > 1 − m±(S)
n

, j = 1, 2.

When all these conditions are fulfilled, then we have the four solutions given by (3.1.7) where

Υl
j(x) = ϕl

j +
∫
Rn

En−1(y − x)Dn−1ϕ
l
j(y)dV (y), j, l = 0, 1;

here ϕ0
j(z) = uj(z)χ+(z) and ϕ1

j(z) = uj(z)χ−(z)ρ(z), where for j = 0, 1; uj(z) is a Whitney
extension of ĝ0(x) and ĝ1(x), respectively, to the entire space Rn, χ+(z) is the characteristic
function of Ω+, χ−(z) = −χ∗(z), χ∗(z) is the characteristic function of Ω∗ and ρ(z) is the real
valued smooth function with compact support that was defined in the proof of the Theorem
2.3.1. Here each of the two functions Υl

0(x) can be combined in (3.1.7) with each of the two
possible values of Υl

1(x). Here, we employ a compact notation to write down the solutions
of the jump problem obtained in Chapter 2
In contrast, if in the vectorial approach, we repeat the method developed in Chapter 2 to
solve the jump problem in the paravectorial setting, we only obtain at most two ways to
calculate the solutions.
Analogously, we can prove the condition of unicity in a class.

Theorem 3.3.3. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn, and let f ∈ Lip(S, ν), with ν > 1 − m(S)

n
and

dimH S − (n− 1) < µ < 1 − n(1 − ν)
m(S) . (3.3.7)

Then the solution to the jump problem (3.3.1) is unique in the classes Lip(Ω+, µ) and
Lip(Ω−, µ).

In the same manner as in Theorem 2.3.2, the unicity in Theorem 3.3.3 is assumed when
there exists a value of µ such that condition (3.3.7) is fulfilled.

Proof. Working in the same way for unicity conditions, we have that the solution is unique
in the classes Lip(Ω+, µ) and Lip(Ω−, µ) where µ must satisfy the next inequalities,

dimH S − (n− 1) < µ < 1 − n(1 − ν0)
m(S) , (3.3.8)
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and
dimH S − (n− 1) < µ < 1 − n(1 − ν1)

m(S) , (3.3.9)

Again, without loss of generality, we can assume that ν0 ⩽ ν1. Hence, we have

1 − n(1 − ν0)
m(S) ⩽ 1 − n(1 − ν1)

m(S) .

Consequently, condition (3.3.9) is satisfied when condition (3.3.8) is met. Accordingly, the
solution to the jump problem (3.3.1) is unique in the classes Lip(Ω±, µ), where

dimH S − (n− 1) < µ < 1 − n(1 − ν)
m(S) ,

and the proof is complete. ■

3.3.2 Case of Null Odd Part in Lower Dimensions
In Subsection 3.2.2, it is shown that when G1 ≡ 0 (3.2.1) turns into two independent RBVPs
in complex analysis with the same coefficient Ĝ0(x).

{ Υ+
0 (x) − Ĝ0(x)Υ−

0 (x) = ĝ0(x)
Υ+

1 (x) − Ĝ0(x)Υ−
1 (x) = ĝ1(x).

(3.3.10)

We have Ĝ0(x) ̸= 0 since G(x) ̸= 0. We define Ind(G) := Ind(Ĝ0) = ℵ, which yields
Ind(Ĝ0) = −ℵ. Following the standard techniques of the RBVP theory, we are able to reduce
the solvability of this problem to the solvability of the Jump problem. In [26], this was made
for the RBVP in Complex Analysis.

X+(z) = eΓ (z), X−(z) = zℵeΓ (z),

where Γ (z) is the solution of the problem

Γ+(t) − Γ−(t) = log[tℵĜ0(t)], t ∈ S,

i.e.
Γ (t) = f − 1

2πi

∫∫
C

∂f

∂ζ

dζdζ

(ζ − z) (3.3.11)

in which f is either u(z)χ+(z) or u(z)χ−(z)ρ(z), u is a Whitney extension of log[tℵĜ0(t)] to
the whole complex plane. Again, χ+(z) is the characteristic function of Ω+, χ−(z) = −χ∗(z),
χ∗ is the characteristic function of Ω∗ and ρ(z) is the smooth function with compact support
defined in the proof of Theorem 2.3.1.
The functions X± are commonly called canonical functions, see [20, 27, 33], and they fulfill
the following relation,

X+(t)
X−(t) = Ĝ0(t).
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Therefore, the problem (3.3.10) can be rewrote as,
Υ+

0 (x)
X+(t) − Υ−

0 (x)
X−(t) = ĝ0(x)

X+(t)
Υ+

1 (x)
X+(t) − Υ−

1 (x)
X−(t) = ĝ1(x)

X+(t)

.

Let the functions Φ0
i be

Φ0
i = ϕi − 1

2πi

∫∫
C

∂ϕi

∂ζ

dζdζ

ζ − z
i = 0, 1 (3.3.12)

here ϕi(z) is either ui(z)χ+(z) or ui(z)χ−(z)ρ(z), where ui(z) are a Whitney extension of
ĝ0(x)
X+(t) and ĝ1(x)

X+(t) , respectively, to the entire complex plane, and other functions involved

are the same as in (3.3.11).
Therefore, we have the next theorem.

Theorem 3.3.4. Suppose that, in problem (3.1.1), the functions G(x) and g(x) are Lipschitz
continuous with exponent ν satisfying the condition ν > 1 − 1

2m(S) and G(x) is non-zero. If
a solution is sought in the class of Lipschitz continuous functions with exponent µ in Ω+ and
Ω− and µ satisfies (2.3.4) then for ℵ ⩽ 1 the general solution is obtained by (3.1.7) where

Υ0(z) = X(z)[Φ0
0(z) + P0(z)],

Υ1(z) = X(z)[Φ0
1(z) + P1(z)],

here P0 and P1 are two polynomials of degree at most −ℵ;
for ℵ = 1 we put P0 ≡ 0, P1 ≡ 0;
for ℵ > 1 the problem has 2(ℵ − 1) solvability conditions.

Again, here we do not write explicitly the solvability conditions, which can be obtained
by expanding the integrals of (3.3.12) in a power series at ∞.



Chapter 4

Boundary Value Problems for Iterated
Operators on Fractal Domains and
Generalizations of the Marcinkiewicz
Exponent

Here, we present boundary value problems for polymonogenic and inframonogenic functions.
In addition, the refined Marcinkiewicz exponent and the concepts of ω-Marcinkiewicz ex-
ponent and ω-Marcinkiewicz convergence are defined. We use this to study the proposed
problems with data in generalizations of the class Lipschitz functions with exponent ν. Some
ideas developed in this chapter are contained in [40, 43].

4.1 Boundary Value Problems for Polymonogenic Func-
tions

Here, we deal with boundary value problems for polymonogenic functions in fractal domains
using the absolute Marcinkiewicz exponent. We are interested in the following boundary
value problem.
Let f ∈ Lip(S, k − 1 + ν) be a Cℓ(n)−valued function. We want to find a polymonogenic
function Φ, that is, DkΦ = 0 on Rn+1 \ S continuously extendable from Ω± to S such that
its boundary values Φ± on S satisfy the following conditions,

(DiΦ(x))+ − (DiΦ(x))− = f (i) x ∈ S 0 ⩽ i ⩽ k − 1
(DiΦ(∞))− = 0 0 ⩽ i ⩽ k − 1, (4.1.1)

where the functions f(i) were defined in (1.3.3).
It is evident that problem (4.1.1) generalizes problem (2.3.1). We will see that its solution
is also a generalization to the one in Chapter 2. In order to solve this problem by adapting
the ideas developed in Chapter 2, we will need a Teodorescu transform for polymonogenic
functions. First, we will present a function that will play the role of the kernel in this

42
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transform, see [13, 16, 17].

Ek(x) = 1
σn+1

x(x+ x)k−1

2k−1(k − 1)!|x|n+1 .

We should note that when k = 1 then,

E1(x) = E(x) := En(x),

this kernel becomes the fundamental solution of the Cauchy-Riemann operator in Clifford
Analysis as was presented in (1.1.2). Applying the derivability properties, from [1], of this
kernel as was defined there, we directly obtain,

DEk(x) = Ek−1(x).

In consequence, by decreasing induction,

DkEk(x) = DE1(x) = 0, x ∈ Rn+1 \ {0}.

Hence, as we can see from [1, 10], the Teodorescu transform is defined as follows.

Definition 4.1.1. Let Ω ⊆ Rn+1 be bounded, and u ∈ L1(Ω). Then for k ∈ N

T k
Ωu(x) := (−1)k

∫
Ω

Ek(y − x)u(y)dV (y),

where dV (y) is the volume element, will be called the k-polymonogenic Teodorescu transform.

Again, when k = 1, this definition coincides with Definition 1.1.2. By applying derivability
properties of T k

Ωu(x), in [10] it is stated the following equality, see also [1].

DT k
Ωu = T k−1

Ω u, k ⩾ 2.

Therefore, by decreasing induction and applying Theorems 1.1.3 and 1.1.4 it can be concluded
that

DkT k
Ωu = DT 1

Ωu =
{
u, in Ω
0, in Rn+1 \ Ω. (4.1.2)

The following lemma was proved in [1] and will be used in the proof of the upcoming theorem.

Lemma 4.1.2. Let Ω be a bounded domain of Rn+1 and let g ∈ Lp(Ω) with p > n+ 1. Then,

DiT k
Ωg ∈ Lip(Rn+1, α), i = 0, 1, · · · , k − 1;

with 0 < α ⩽ p−n−1
p

.

We will present a sufficient solvability condition for the problem (4.1.1). The following
theorem is a generalization of Theorem 2.3.1 and may be proved in much the same way.
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Theorem 4.1.3. If f ∈ Lip(S, k − 1 + ν), with

ν > 1 − m(S)
n+ 1 , (4.1.3)

and k < n+ 1, then the problem (4.1.1) is solvable.

Proof. This proof is similar in spirit to the proof of Theorem 2.3.1. However, here we need
to prove that the solution is given by

Φ(x) = f̃(x)χ+(x) − (T k
Ω+Dkf̃)(x), x ∈ Rn+1, (4.1.4)

when we are contemplating the inner Marcinkiewicz exponent m+(S), or by

Φ(x) = −f ∗(x)χ∗(x) + (T k
Ω∗Dkf ∗)(x), x ∈ Rn+1, (4.1.5)

when we are examining the outer Marcinkiewicz exponent m−(S). Here, the functions in-
volved are the same as those defined in the proof of Theorem 2.3.1. We should note that
when k = 1 the function Φ is the same that was presented in Chapter 2 as the solution of the
jump problem (2.3.1).Taking into account that the proof for m+(S) and m−(S) is similar, we
only need to consider the first case. In order to achieve that, we want to show that Dkf̃ ∈
Lp(Ω+) with p > n+ 1, being f̃ the Whitney extension of f . Indeed, by Theorem 1.3.10, we
have the following. ∫

Ω+

|Dkf̃(x)|pdV (x) ⩽ C
∫

Ω+

dV (x)
dist(x,S)p(1−ν) .

From Definition 2.1.1, we get that the above right-hand integral converges for p < m+(S)
1−ν

.
Then we require that

ν > 1 − m+(S)
n+ 1 .

From (4.1.2) it follows that Φ is a polymonogenic function of order k on Rn+1 \S. Combining
Lemma 4.1.2 with the fact that f̃ ∈ Lip(Rn+1, k − 1 + ν) we obtain that the functions DiΦ,
i = 0, 1, . . . , k − 1; are continuous functions on Ω+ and Ω−. We can verify directly, by using
Lemma 4.1.2 and Theorem 1.3.10, that the function Φ(x) satisfies the boundary condition
over S. Finally, as was stated in [1] when k < n+ 1, we have that DiΦ− vanishes at infinity
for every i = 0, 1, · · · , k − 1. This completes the proof.

■

We can also proof a sufficient condition for unicity. The next theorem is a generalization
of Theorem 2.3.2.

Theorem 4.1.4. Let be f ∈ Lip(S, k − 1 + ν) with ν > 1 − m(S)
n+ 1 and k < n+ 1, let

dimH S − n < µ < 1 − (n+ 1)(1 − ν)
m(S) .

then there is a unique solution Φ of the problem (4.1.1), such that DiΦ belongs to the classes
Lip(Ω+, µ) and Lip(Ω−, µ), for i = 0, 1, · · · , k − 1.
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Proof. From Lemma 4.1.2 and the proof of Theorem 4.1.3 we deduce that the solution Φ to
the problem (4.1.1), defined by (4.1.4) or (4.1.5), belongs to Lip(Ω+, µ) and Lip(Ω−, µ) for
µ < 1 − (n+1)(1−ν)

m(S) , similarly to solutions to the problem (2.3.1). Now, we will suppose that
there exist two functions Φ1 and Φ2 that are solutions to the problem (4.1.1), and we will
define Φ := Φ2 − Φ1. This function satisfies the homogeneous problem

(DiΦ(x))+ − (DiΦ(x))− = 0 x ∈ S 0 ⩽ i ⩽ k − 1
(DiΦ(∞))− = 0 0 ⩽ i ⩽ k − 1. (4.1.6)

We shall prove that Φ ≡ 0 is the only solution to this problem such that DiΦ belongs to the
classes Lip(Ω+, µ) and Lip(Ω−, µ), for i = 0, 1, · · · , k − 1. The proof of this will be carried
out by induction on k, by repeatedly applying Theorem 2.3.2. This idea was used in [1] for
conditions involving the Minkowski dimension of the boundary. If k = 1, it is true from
Theorem 2.3.2.
Now we assume that (4.1.1) has the unique solution Φ ≡ 0 such that DiΦ belongs to the
classes Lip(Ω+, µ) and Lip(Ω−, µ) for i = 0, 1, · · · , k − 1; for k = l, and let us consider the
problem for k = l + 1

(DiΦ(x))+ − (DiΦ(x))− = 0 x ∈ S 0 ⩽ i ⩽ l
(DiΦ(∞))− = 0 0 ⩽ i ⩽ l.

(4.1.7)

Let Φ be a solution of (4.1.7). If we denote Ψ := DΦ, then DlΨ := Dl+1Φ = 0 in Rn+1 \ S
and

(DiΨ(x))+ − (DiΨ(x))− = 0 x ∈ S 0 ⩽ i ⩽ l − 1
(DiΨ(∞))− = 0 0 ⩽ i ⩽ l − 1.

Consequently, Ψ represents a solution of (4.1.6) with k = l. Then, by the induction hypoth-
esis, Ψ ≡ 0 is the only solution in this class. As a result DΦ = 0 in Rn+1 \ S, and

Φ(x)+ − Φ(x)− = 0 x ∈ S
Φ(∞)− = 0 .

Therefore, from Theorem 2.3.2, Φ ≡ 0 in Rn+1, and the proof is complete. ■

4.2 Refined Marcinkiewicz Exponent and Boundary Value
Problems for Inframonogenic Functions

This section analyzes boundary value problems for inframonogenic functions on fractal do-
mains. To the best of the author’s knowledge, a problem of this kind has been analyzed
only in [9]. Conditions involving the Minkowski dimension are obtained. Here, we present
the definition of the refined Marcinkiewicz exponent, which is used as the primary tool to
study the problem. It is shown that this metric characteristic is greater than or equal to
the absolute Marcinkiewicz exponent, which was shown, in Chapter 2, to be better than the
Minkowski dimension for the analysis of these problems.
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4.2.1 Teodorescu Transform for Inframonogenic Functions

Here, we will present the Teodorescu transform. This can be found in [9, 32]. We will recall
the definition of inframonogenic function. Functions f ∈ C2(Ω) satisfying in Ω ⊆ Rn, the
“sandwich” equation

∂nf∂n = 0,

are called inframonogenic functions. For the purposes of this section, we consider n > 2.
In order to define the Teodorescu transform, we need some additional results and definitions.
We will denote by

ϑ0(x) = ϑn(x) = − 1
σn

x

|x|n
, x ̸= 0,

the fundamental solution of the Dirac operator, and

ϑ1(x) = 1
(n− 2)σn|x|n−2 , x ̸= 0,

to the fundamental solution of the Laplace operator. It is well known, see for instance [21, 32],
that they satisfy the relation

ϑ0 = ∂nϑ
1.

First, we need to define the following integral operator. Let Ω ⊆ Rn bounded and u ∈ L1(Ω),

(T (0)
Ω u)(x) = −

∫
Ω

ϑ0(y − x)u(y)(y − x)dV (y), x ∈ Rn,

(T (1)
Ω u)(x) = −

n∑
i=1

ei

∫
Ω

ϑ1(y − x)u(y)dV (y)ei, x ∈ Rn.

We are now in a condition to define the Teodorescu transform for inframonogenic functions.
This can be found in [32].

Definition 4.2.1. Let Ω ⊆ Rn bounded and u ∈ L1(Ω), then

(T infra
Ω u)(x) = 1

2[(T (0)
Ω u)(x) + (T (1)

Ω u)(x)],

will be called the inframonogenic Teodorescu transform.

Also, in [32], it has been proven that this transform satisfies the following property,

∂n(T infra
Ω u)(x)∂n = u(x), x ∈ Ω.
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4.2.2 Refined Marcinkiewicz Exponent
The refined Marcinkiewicz exponent was first presented in [25]. Most of the definitions
mentioned below required to define it are taken from there with some necessary adaptations
to fit our purposes.
Let the compact set E be a subset of a fixed simply connected and bounded domain Ω ⊆ Rn+1.
We define the integral

I
′

p(E) =
∫

Ω\E

dV (x)
distp(x,E) .

Definition 4.2.2. The global Marcinkiewicz exponent of the compact set E is the least
upper bound of the set {p : I ′

p(E) < ∞}. We denote it by mg(E).

In [25] has been presented a definition of the inner and outer Marcinkiewicz exponent for
the case where the set E is a close curve in the complex plane. We can define analogous metric
characteristics when the set E is a topologically compact surface S that is the boundary of
a Jordan domain.
If E is a compact surface S that is the boundary of a Jordan domain, we can define

I+
p (S) =

∫
(Ω\S)∩Ω+

dV (x)
distp(x,S) ,

and
I−

p (S) =
∫

(Ω\S)∩Ω∗

dV (x)
distp(x,S) .

where Ω+ and Ω∗ were defined in Chapter 2.

Definition 4.2.3. The inner and outer global Marcinkiewicz exponents of a topologically
compact surface S that is the boundary of a Jordan domain are defined, respectively, as
mg+(S) = sup{p : I+

p (S) < ∞} and mg−(S) = sup{p : I−
p (S) < ∞}.

The upcoming theorem relates the global Marcinkiewicz exponent of a topologically com-
pact surface, which is the boundary of a Jordan domain and its inner and outer analogous,
with the inner and outer absolute Marcinkiewicz exponent defined in Chapter 2.

Theorem 4.2.4. Let E = S be a topologically compact surface that is the boundary of
a Jordan domain in Rn then we have the next relations between the global Marcinkiewicz
exponent and the inner and outer Marcinkiewicz exponents, mg±(S) = m±(S), and mg(S) =
min {m+(S),m−(S)}.

Proof. Clearly, in this case, mg(S) is the least of inner and outer global Marcinkiewicz ex-
ponents. In fact, we have

I
′

p(S) =
∫

(Ω\S)∩Ω+

dV (x)
distp(x,S) +

∫
(Ω\S)∩Ω∗

dV (x)
distp(x,S) +

∫
(Ω\S)\(Ω∗∪Ω+)

dV (x)
distp(x,S) .
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It is immediate that ∫
(Ω\S)\(Ω∗∪Ω+)

dV (x)
distp(x,S) < ∞,

due to the fact that the points in (Ω \ S) \ (Ω∗ ∪ Ω+) are not close to the boundary S. As a
result, I ′

p(S) < ∞ if and only if both of the remaining integrals converge, i.e.

I+
p (S) =

∫
(Ω\S)∩Ω+

dV (x)
distp(x,S) < ∞ and I−

p (S) =
∫

(Ω\S)∩Ω∗

dV (x)
distp(x,S) < ∞.

Hence, mg(S) = min {mg+(S),mg−(S)}. For the next step of the proof, we use the integrals
Ip(Ω+) and Ip(Ω∗) defined in Section 2.1. Taking into account that S is the boundary of Ω+

then Ω+ ⊆ (Ω \ S), and therefore, Ip(Ω+) = I+
p (S). This implies that mg+(S) = m+(S).

In the case of the inner Marcinkiewicz exponent, we can perform the same analysis when
Ω∗ ⊆ Ω for some r > 0. If on the other hand Ω∗ ⊈ Ω for any r > 0, then having into account
that in this case ∫

Ω∗

dV (x)
distp(x,S) =

∫
(Ω\S)∩Ω∗

dV (x)
distp(x,S) +

∫
Ω∗\(Ω\S)

dV (x)
distp(x,S) ,

similarly to before, the second integral in the right hand converges for any value of p > 0.
Consequently, Ip(Ω∗) converges if and only if I−

p (S) converges, and therefore mg−(S) =
m−(S), and the proof is complete. ■

A direct consequence of Theorem 4.2.4 is that the absolute Marcinkiewicz exponent is
greater than or equal to the global Marcinkiewicz exponent, that is, m(S) ⩾ mg(S). However,
it is still worth having the Definition 4.2.2 due to the fact that we can study a broader class
of sets with the global Marcinkiewicz exponent.
We will also introduce a local version of these values. We define

Ip(E, t, r) =
∫

B(t,r)\E

dV (x)
distp(x,E) ,

where B(t, r) is the ball of radius r with center t ∈ E. Analogously, we define

I+
p (S, t, r) =

∫
(B(t,r)\S)∩Ω+

dV (x)
distp(x,S) ,

and
I−

p (S, t, r) =
∫

(B(t,r)\S)∩Ω∗

dV (x)
distp(x,S) .

Definition 4.2.5. The local Marcinkiewicz exponent of the set E is the least upper bound
of the set {p : lim

r→0
Ip(E, t, r) < ∞}. We denote it m(E, t).

Definition 4.2.6. If E is a compact surface S that is the boundary of a Jordan do-
main, then we define its inner and outer local Marcinkiewicz exponents as m+(S, t) = {p :
lim
r→0

I+
p (S, t, r) < ∞} and m−(S, t) = {p : lim

r→0
I−

p (S, t, r) < ∞}, respectively.
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The following theorem connects the concepts of the local Marcinkiewicz exponent with
the global Marcinkiewicz exponent and the inner and outer absolute Marcinkiewicz exponent
from Section 2.1.

Theorem 4.2.7. If the set E is compact, then mg(E) = inf{m(E, t), t ∈ E}. For a compact
surface S that is the boundary of a Jordan domain we have m+(S) = inf{m+(S, t), t ∈ S}
and m−(S) = inf{m−(S, t), t ∈ S}.

Proof. In [25, Lemma 2] have been proved that mg(E) = inf{m(E, t), t ∈ E}. It is a matter
of repenting that proof for the values mg+(S) and mg−(S) defined here, to obtain mg±(S) =
inf{m±(S, t), t ∈ S}. Thus, applying the Theorem 4.2.4, we obtain the desired result. ■

Now, we have all the definitions and results required to present the definition of the refined
Marcinkiewicz exponent.

Definition 4.2.8. Let S be a compact surface that is the boundary of a Jordan domain. We
call the value

m∗(S) := inf{max{m+(S, t),m−(S, t)}, t ∈ S}

refined Marcinkiewicz exponent.

In [25], an example in the complex plane is shown where m∗(S) > m(S) for a specific
closed curve S. This example motivated the statement of the following theorem.

Theorem 4.2.9. Let S be a compact surface that is the boundary of a Jordan domain in Rn,
then m∗(S) ⩾ m(S) ⩾ mg(S) ⩾ n− dimM(S).

Proof. As mentioned above, the inequality m(S) ⩾ mg(S) is a direct consequence of Theorem
4.2.4. From Theorem 2.1.3 we know that m±(S) ⩾ n − dimM(S). Thus the inequality
mg(S) ⩾ n − dimM(S) follows immediately from Theorem 4.2.4. For the first inequality,
combining Theorem 4.2.7 with Definition 2.1.1 we obtain that

m(S) := max{inf{m+(S, t), t ∈ S}, inf{m−(S, t), t ∈ S}}.

We have that max{m+(S, t),m−(S, t)} ⩾ m±(S, t) for every t ∈ S and consequently

inf{max{m+(S, t),m−(S, t)}, t ∈ S} ⩾ inf{m±(S, t), t ∈ S}.

Therefore,

inf{max{m+(S, t),m−(S, t)}, t ∈ S} ⩾ max{inf{m+(S, t), t ∈ S}, inf{m−(S, t), t ∈ S}}.

i.e. m∗(S) ⩾ m(S), which is our claim. ■
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4.2.3 Boundary Value Problems for Inframonogenic Functions
We will analyze the following boundary value problem: Let f ∈ Lip(S, 1+ν) be a Cℓ(n)−valued
function. We want to find an inframonogenic function Φ i.e. ∂nΦ∂n = 0 on Rn \ S contin-
uously extendable from Ω± to S such that its boundary values Φ± on S fulfill the following
conditions,

Φ(x)+ − Φ(x)− = f x ∈ S,
(Φ(x)∂n)+ − (Φ(x)∂n)− = f (0,1)(x) x ∈ S,

Φ(∞)− = (Φ(∞)∂n)− = 0,
(4.2.1)

where the functions f (0,1) were defined in (1.3.5).
The next theorem states a sufficient condition for the solvability of this problem involving
the refined Marcinkiewicz exponent.

Theorem 4.2.10. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn, and let f ∈ Lip(S, 1 + ν). If

ν > 1 − m∗(S)
n

, (4.2.2)

then the problem (4.2.1) is solvable.

Proof. Let us fix a value m < m∗(S) such that ν > 1 − m

n
. By definition of the refined

Marcinkiewicz exponent for any x ∈ S there exists a radius r = r(x) > 0 such that
either I+

m(S, x, r) < ∞ or I−
m(S, x, r) < ∞. The family of balls {B(x, r) : x ∈ S} cov-

ers S. Due to the compactness of the set S, this family contains a finite sub-covering{
Bj = B(xj, r(xj)) : j = 1, 2, · · · , k

}
. From it, we will construct a disjoint sub-covering{

B
′
j

}k

j=1
by defining,

B
′

1 = B1, B
′
j = Bj \

(
j−1⋃
i=1

B
′
i

)
.

Let ψj ∈ C∞
0 (Rn) be a real valued non-negative function with compact support B′

j, j =
1, 2, · · · , k. Then the restriction σ(x) of the sum ∑k

j=1 ψj to the surface S is positive and
σ(x) ∈ Lip(S, 1). We set

fj(x) = f(x)ψj(x)σ−1(x), f (0,1)
j (x) = f (0,1)(x)ψj(x)σ−1(x), x ∈ S.

Obviously fσ−1, f (0,1)σ−1 ∈ Lip(S, 1). If I+
m(S, t, r) < ∞ then we define φj = f̃σ−1ψjχ

+

and if I−
m(S, t, r) < ∞ then φj = f̃σ−1ψjχ

−ρ, where, as before, χ+(z) is the characteristic
function of Ω+, χ−(z) = −χ∗(z), χ∗(z) is the characteristic function of Ω∗ and ρ(z) is the
real valued smooth function with compact support defined in the proof of Theorem 2.3.1.
We will show that in both cases the function

Φj(x) = φj(x) − T infra
Rn [∂nφj∂n](x),
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solves the following problem,

Φ(x)+ − Φ(x)− = fj x ∈ S,
(Φ(x)∂n)+ − (Φ(x)∂n)− = f (0,1)

j (x) x ∈ S,
Φ(∞)− = (Φ(∞)∂n)− = 0.

(4.2.3)

We should note that when φj = f̃σ−1ψjχ
+ then T infra

Rn [∂nφj∂n](x) = T infra
Ω+ [∂nφj∂n](x). On

the other hand, when φj = f̃σ−1ψjχ
−ρ then T infra

Rn [∂nφj∂n](x) = T infra
Ω∗ [∂nφj∂n](x). Initially,

we will focus on T infra
Ω+ [∂nφj∂n](x). We shall look for sufficient conditions such that φj satisfies

that ∂nφj∂n ∈ Lp(Ω+) with p > n. Indeed, by Theorem 1.3.11, we have

∫
Ω+

|∂nφj∂n(x)|pdV (x) ⩽ C
∫

[Bj\S]∩Ω+

dV (x)
dist(x,S)p(1−ν) .

From Definition 4.2.8, we have that the above right-hand integral converges for p < m
1−ν

.
Then we need that n < m

1−ν
, or equivalently,

ν > 1 − m

n
.

Besides, from [9, 32], we know that

∂n[(T infra
Ω+ [∂nφj∂n])(x)]∂n =

{
∂nφj∂n, in Ω+,

0, in Ω−.

Hence, Φj(x) is an inframonogenic function in Rn \ S. Furthermore, when condition (4.2.2)
is fulfilled then ∂nφj∂n ∈ Lp(Ω+), p > n and therefore, from [9] we have that T infra

Ω+ and
T infra

Ω+ ∂n are continuous functions in the whole space Rn, combining this fact with Theorem
1.3.11 we see that the boundary conditions are satisfied. Also, in [9] it is stated that Φ(∞)− =
(∂nΦ(∞))− = 0. The same analysis can be performed for T infra

Ω∗ [∂nφj∂n](x). Thus, Φj solves
the problem (4.2.3). Therefore, the function Φ(x) = ∑k

j=1 Φj(x) solves problem (4.2.1), which
completes the proof. ■

Similarly to the other boundary value problems that have been considered, we can state
and prove a sufficient unicity condition.

Theorem 4.2.11. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn, and let f ∈ Lip(S, 1 + ν), with ν > 1 − m∗(S)

n
and

dimH S − (n− 1) < µ < 1 − n(1 − ν)
m∗(S) .

Then Φ is the unique solution to the problem (4.2.1) such that Φ and Φ∂n belong to the
classes Lip(Ω+, µ) and Lip(Ω−, µ).
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Proof. As before, we shall assume that there are two functions Φ1 and Φ2 that are solutions
to the problem (4.2.1), such that Φ1, Φ2 and Φ1∂n, Φ1∂n belongs to the classes Lip(Ω+, µ)
and Lip(Ω−, µ). We will designate Φ := Φ2 − Φ1. This function fulfill the next problem

Φ(x)+ − Φ(x)− = 0 x ∈ S,
(Φ∂n(x))+ − (Φ∂n(x))− = 0 x ∈ S,
Φ(∞)− = (Φ∂n(∞))− = 0.

(4.2.4)

Once more, the main idea is to prove that Φ ≡ 0 is the only solution to this problem such
that Φ and Φ∂n are in the classes Lip(Ω+, µ) and Lip(Ω−, µ). To achieve this, we will reduce
this problem to analyze twice the classical jump problem.
By using a similar idea as in the proof of Theorem 4.1.4, let Φ be a solution of (4.2.4) and
we make Ψ := Φ∂n. Then ∂nΨ = 0 in Rn \ S and it is a solution of the jump problem

Ψ(x)+ − Ψ(x)− = 0 x ∈ S,
Ψ(∞)− = 0. (4.2.5)

Then, from Theorem 1.3.12 and the Liouville theorem the only solution is Ψ ≡ 0. As a
consequence, Φ∂n = 0 in Rn \ S, and also Φ satisfies (4.2.5). This is equivalent to looking for
a monogenic function Φ with the previous conditions. Therefore, again from Theorem 1.3.12
and Liouville theorem, the only solution is Φ ≡ 0 in Rn, and the proof is complete. ■

Instead of the problem (4.2.1), we would like to solve the next problem: To find an
inframonogenic function Φ, i.e., ∂nΦ∂n = 0 in Rn \ S continuously extendable from Ω± to S
such that its boundary values Φ± in S satisfy the following conditions,

Φ(x)+ − Φ(x)− = f x ∈ S,
(∂nΦ(x))+ − (∂nΦ(x))− = f(1, 0)(x) x ∈ S,

Φ(∞)− = (∂nΦ(∞))− = 0.
(4.2.6)

where the functions f (1,0) were defined in (1.3.6).
Analogously to the proofs of Theorems (4.2.10) and (4.2.11), the following theorems can be
shown.

Theorem 4.2.12. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn, and let f ∈ Lip(S, 1 + ν). If

ν > 1 − m∗(S)
n

,

then the problem (4.2.6) is solvable.

Theorem 4.2.13. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn, and let f ∈ Lip(S, 1 + ν), with ν > 1 − m∗(S)

n
and

dimH S − (n− 1) < µ < 1 − n(1 − ν)
m∗(S) .

Then Φ is the unique solution to the problem (4.2.6) such that Φ and ∂nΦ belong to the
classes Lip(Ω+, µ) and Lip(Ω−, µ).
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4.3 h-Generalizations of the Marcinkiewicz Exponent
In the fractal setting, there has been an increasing interest in generalizing certain metric
characteristics of sets using some classes of functions, such as gauge functions from Definition
1.3.4. Examples of that are the h-Hausdorff measure and h-summability; see for instance
[19, 30] and [6], respectively. An important application of these generalizations is to find
relations between the metric characteristics of the set and the generalized Lipschitz class of
functions Lip(E, ω), also called generalized Hölder functions, see [6]. Here, two generalizations
of the Marcinkiewicz exponent are presented that will allow us to study the jump problem
when the data function belongs to Lip(E, ω).

4.3.1 h-Marcinkiewicz Convergence
We will study the jump problem when the data function is in Lip(S, ω). The problem is stated
as follows. Let the Cℓ(n)−valued functions f ∈ Lip(S, ω). We want to find a function Φ
monogenic on Rn \S continuously extendable from Ω± to S such that the following condition
of their boundary values Φ± in S satisfies the relation,

Φ+(x) − Φ−(x) = f(x), x ∈ S, (4.3.1)

with Φ(∞) = 0.
Using the class of gauge functions G(0,∞), see Definition 1.3.4, we can define a h-Marcinkiewicz
convergence as follows. We define the integral

Ih(Ω) =
∫
Ω

dV (x)
h[dist(x,S)] .

We define the domain Ω∗ as above. The inner and outer h-Marcinkiewicz convergence are
defined as follows.

Definition 4.3.1. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1. We say that the surface S is inner or outer h-Marcinkiewicz convergent,
respectively, if

Ih(Ω+) < ∞, Ih(Ω∗) < ∞,

and we say that S is (absolute) h-Marcinkiewicz convergent if it is either inner or outer
h-Marcinkiewicz convergent.

Note that when h(t) = tp then the integral Ih(Ω) becomes the same as Ip(Ω) from (2.1.1).
The following lemma will be useful in proving the solvability conditions.

Lemma 4.3.2. If ω ∈ W(0,∞) then h(t) = t

ω(t) ∈ G(0,∞).

Proof. Here, we need to keep in mind Definitions 1.3.4 and 1.3.3. From the second assumption
of modulus of continuity, h(t) = t

ω(t) is an increasing function. And from the first one,

lim
t→0+

h(t) = 0. ■



54
Boundary Value Problems for Iterated Operators on Fractal Domains and

Generalizations of the Marcinkiewicz Exponent

We are now in a position to present a theorem establishing the solvability condition for
the jump problem when the data function belongs to Lip(S, ω).

Theorem 4.3.3. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1, and let ω ∈ W(0,∞) and f ∈ Lip(S, ω). If the surface S is h-Marcinkiewicz
convergent with h(t) = tp

ωp(t) with p > n+ 1, then the jump problem (4.3.1) is solvable.

Proof. From Lemma 4.3.2, it follows immediately that h(t) = tp

ωp(t) ∈ G(0,∞). As before, we
will analyze first the inner ω-Marcinkiewicz convergence. We would like to find a sufficient
condition such that Df̃ ∈ Lp(Ω+) with p > n+ 1. Indeed, from Theorem 1.3.8, we have∫

Ω+

|Df̃(x)|pdV (x) ⩽ C
∫

Ω+

dV (x)
dist(x,S)p

ω[dist(x,S)]p
.

The above right-hand integral converges from the hypothesis and Definition 4.3.1. A similar
analysis to the one in the proof of Theorem 2.3.1 shows that

Φ(x) = f̃(x)χ(x) − (TΩ+Df̃)(x), x ∈ Rn+1,

is a solution to the jump problem. Analogously if the surface S is outer h-Marcinkiewicz
convergent then the function

Φ(x) = f ∗(x)χ∗(x) − (TΩ∗Df ∗)(x),

is a solution to the jump problem. In both cases the functions involved are the same as in
the proof of Theorem 2.3.1. ■

4.3.2 h-Marcinkiewicz Exponent
In a similar way than in the definition of absolute, global and local Marcinkiewicz expo-
nent, using the class of gauge functions G(0,∞) from Definition 1.3.4, we can define a h-
Marcinkiewicz Exponent as follows. We define the integral

Ih
p (Ω) =

∫
Ω

dV (x)
h[dist(x,S)]p .

As before, we define the domain Ω∗ := Ω−⋂{x : |x| < r}, where r is selected such that S is
totally contained inside the ball of radius r. The inner and outer h-Marcinkiewicz exponent
are defined as follows.

Definition 4.3.4. Let S be a topologically compact surface which is the boundary of a
Jordan domain in Rn+1. We define the inner and outer h-Marcinkiewicz exponents of S,
respectively, as

m+
h (S) = sup{p : Ih

p (Ω+) < ∞}, m−
h (S) = sup{p : Ih

p (Ω∗) < ∞},

and the h-Marcinkiewicz exponent of S as,

mh(S) = max{m+
h (S),m−

h (S)}.
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Similarly as in Chapter 2, taking into account that points that are away from S for a
fixed value do not influence the convergence of the integral Ih

p (Ω), then the value of m−
h (S)

does not depend on the choice of the radius r in the construction of Ω∗.
We should note that when h(t) = t then Definition 4.3.4 corresponds to Definition 2.1.1.
The upcoming theorem establishes an inequality between the h-Marcinkiewicz exponents
corresponding to two different gauge functions h1 and h2.

Theorem 4.3.5. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1, and let be h1(t), h2(t) ∈ G(0,∞)

lim
t→0+

h1(t)
h2(t)

= 0

then mh1(S) ⩽ mh2(S).

Proof. From the definition of limit, we have that if we fix ε0, there exists δ0 such that

h1(t)
h2(t)

⩽

∣∣∣∣∣h1(t)
h2(t)

∣∣∣∣∣ < ε0

when |t| < δ0.
We define Gδ := {x ∈ G : dist(x,S) < δ}. Then for i = 1, 2 we have

Ihi
p (G) =

∫
G

dV (x)
hi[dist(x,S)]p =

∫
Gδ0

dV (x)
hi[dist(x,S)]p +

∫
G\Gδ0

dV (x)
hi[dist(x,S)]p .

Due to the fact that gauge functions hi are non-decreasing we have,∫
G\Gδ0

dV (x)
hi[dist(x,S)]p ⩽

∫
G\Gδ0

dV (x)
hi(δ0)p

= V (G \Gδ0)
hi(δ0)p

< ∞, i = 1, 2;

for every p > 0. Here, V (G \Gδ0) is the (n+ 1)-dimensional volume of G \Gδ0 . This means
that Ihi

p (G) converge if and only if the above integrals converge. Besides, we have∫
Gδ0

dV (x)
h2[dist(x,S)]p < ε0

∫
Gδ0

dV (x)
h1[dist(x,S)]p .

Hence, if Ih1
p (G) converges then Ih2

p (G) converges. Therefore, mh1(S) ⩽ mh2(S), which
completes the proof. ■

The following theorem gives us a sufficient solvability condition involving the h-Marcinkiewicz
exponent and the modulus of continuity ω.

Theorem 4.3.6. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1, and let ω ∈ W(0,∞) and f ∈ Lip(S, ω) if there exist γ1 > 0 and γ2 > 0
such that

lim
t→0+

ωn+1+γ2(t)hmh−γ1(t)
tn+1+γ2

= 0,

where mh is the h-Marcinkiewicz exponent of S, then the problem (4.3.1) is solvable.
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Proof. As above, we will study first the inner h-Marcinkiewicz exponent. Following the ideas
developed in Chapter 2, we need to find a sufficient condition in order to have that Df̃ ∈
Lp(Ω+) with p > n+ 1. Applying Theorem 1.3.8, we get∫

Ω+

|Df̃(x)|n+1+γ2dV (x) ⩽ C
∫

Ω+

dV (x)
dist(x,S)n+1+γ2

ω[dist(x,S)]n+1+γ2

.

From the definition of limit, we have that if we fix ε0, there exists δ0 such that

hm
+
h

−γ1(t)(
t

ω(t)

)n+1+γ2
⩽

∣∣∣∣∣∣∣
hm

+
h

−γ1(t)(
t

ω(t)

)n+1+γ2

∣∣∣∣∣∣∣ < ε0

when |t| < δ0.
Once more, we define Ω+

δ0 := {x ∈ G : dist(x,S) < δ0}. Then we have∫
Ω+

dV (x)
dist(x,S)n+1+γ2

ω[dist(x,S)]n+1+γ2

=
∫

Ω+
δ0

dV (x)
dist(x,S)n+1+γ2

ω[dist(x,S)]n+1+γ2

+
∫

Ω+\Ω+
δ0

dV (x)
dist(x,S)n+1+γ2

ω[dist(x,S)]n+1+γ2

.

The integral ∫
Ω+\Ω+

δ0

dV (x)
dist(x,S)n+1+γ2

ω[dist(x,S)]n+1+γ2

< ∞,

for every γ2 > 0. Besides, we have∫
Ω+

δ0

dV (x)
dist(x,S)n+1+γ2

ω[dist(x,S)]n+1+γ2

< ε0

∫
Ω+

δ0

dV (x)
h[dist(x,S)]m+

h
−γ1

.

From Definition 4.3.4, we have that the above right-hand integral converges. Using an anal-
ogous procedure than in the proof of Theorem 2.3.1 shows that

Φ(x) = f̃(x)χ(x) − (TΩ+Df̃)(x), x ∈ Rn+1,

is a solution to the jump problem. In the same manner if we analyze the outer h-Marcinkiewicz
exponent of the surface S, then the function

Φ(x) = f ∗(x)χ∗(x) − (TΩ∗Df ∗)(x),

is a solution to the jump problem. Once more, in both cases, the involved functions are the
same as in the proof of Theorem 2.3.1. ■

It is worth to pointing out that in the solvability condition from Theorem 4.3.3 the
expression of the gauge function h(t) is fully determined by the definition of the modulus of
continuity ω(t). For instance, when ω(t) = tν , with 0 < ν < 1, i.e Lip(S, ω) = Lip(S, ν) then
Subsection 4.3.1 tells us that if the surface S is h-Marcinkiewicz convergent with h(t) = tp(1−ν)

then the problem 4.3.1 is solvable. Something similar in some sense happens in [6] regarding
the concept of h-summability. However, in Theorem 4.3.6 the gauge function h(t) is more
independent of ω(t), as we can see in the following corollary that is directly deduced from
Theorem 4.3.6 by substituting ω(t) = tν with 0 < ν < 1.
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Corollary 4.3.7. Let S be a topologically compact surface which is the boundary of a Jordan
domain in Rn+1, and let f ∈ Lip(S, ν) with 0 < ν < 1 if there exist γ1 > 0 and γ2 > 0 such
that

lim
t→0+

hmh−γ1(t)
t(n+1+γ2)(1−ν) = 0, (4.3.2)

where mh is the h-Marcinkiewicz exponent of S, then the problem (4.3.1) is solvable.

It is clear that if h(t) = t then condition (4.3.2) is fulfilled if and only if,

m(S) − γ1 > (n+ 1 + γ2)(1 − ν),

where m(S) is the absolute Marcinkiewicz exponent from Definition 2.1.1, and γ1, γ2 > 0 are
arbitrarily small values. Consequently, we obtain that the condition is equivalent to

ν ⩾ 1 − m(S)
n+ 1 .

Therefore, Theorem 2.3.1 is also a corollary of Theorem 4.3.6.



Conclusions

In conclusion, in this thesis, we studied boundary value problems for monogenic, poly-
monogenic, and inframonogenic functions on domains with fractal boundaries, using as the
main tool the Marcinkiewicz exponent and its generalizations. The Marcinkiewicz expo-
nent in Rn+1 was defined. There was proved in higher dimensions an inequality relating the
Minkowski dimension and the Marcinkiewicz exponent. It was constructed as a class of sur-
faces. And using them, it was shown that for any possible value of the Minkowski dimension
between two and three, there is a non-numerable amount of surfaces where the inequality
relating to these two metric characteristics is exact. Additionally, we got conditions for solv-
ability and unicity in a class for the jump problem on domains with fractal boundaries that
improve those conditions involving the Minkowski dimension.
Another main achievement concerns to a reduction procedure for the Riemann boundary
value problem in the vectorial approach to a system in the paravectorial approach. When this
technique was used in domains with smooth boundaries, a decomposition of the Cauchy-type
integral in vectorial Clifford analysis was obtained as the sum, through isomorphism, of two
Cauchy-type integrals in the paravectorial approach. In lower dimensions, the Riemann prob-
lem was studied for a suitable variable coefficient, and the case for constant coefficients was
completely analyzed. In particular, it was shown that the homogeneous Riemann boundary
value problem with constant coefficients can have an infinite number of linearly independent
solutions that vanish at infinity. When the method was applied to domains with fractal
boundaries, the homologous solvability and unicity conditions for the jump problem were
obtained in the vectorial approach, using the results in the paravectorial approach involving
the Marcinkiewicz exponent. In this setting, this method has proven to be more effective in
the sense that there are more ways to compute the solutions than the ones obtained when
the problem is studied directly in the vectorial approach. The Riemann problem in lower
dimensions was also studied for some variable coefficients. These applications have proven
that sometimes this method can provide better results than standard techniques.
Finally, we presented some boundary value problems for iterated operators and generaliza-
tions of the concept of the Marcinkiewicz exponent. Using the Marcinkiewicz exponent,
boundary value problems for polymonogenic functions were solved. In addition, the re-
fined Marcinkiewicz exponent was defined and used to solve boundary value problems for
inframonogenic functions. Besides, we define the concepts of h-Marcinkiewicz exponent and
h-Marcinkiewicz convergence, and it is shown that it is possible to use it to solve the jump
problem for monogenic functions with data in the class of generalized Lipschitz functions.
Additionally, the solvability condition involving the h-Marcinkiewicz exponent has proven to
generalize the one involving the Marcinkiewicz exponent in the classical sense.
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