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Atarse a algo.
A una huerta, un bosque, una planta, una palabra.

Atarse a algo que tenga raı́z, anudarse para no perderse
en el viento que sopla sobre la pampa y llama.

Los Llanos, Federico Falco
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Abstract

Several modifications to the standard theory of General Relativity (GR) have been proposed to
explain the currently observed accelerated expansion of the Universe, which is a major challenge
to cosmology. In this thesis, we study f (R) gravity which is a class of metric theories of gravity
that offers viable models for dark energy. In particular we focus on the proposed models by
Hu-Sawicki and Starobinsky. These theories, apart from the extra scalar degree of freedom with
respect to GR, necessarily contain a built in scale of the order of the observed cosmological
constant. Thus, they suffer from an inherent contrast problem due to the abysmal difference of
curvature scales when confronted in scenarios such as the solar system and neutron stars. These
models claim to pass both the solar system and the laboratory tests by means of an a priori
assumptions about mechanisms that screen their effects in high density environments. For this
regard, we explore numerically the solution space of static and spherical symmetric spacetimes
by taking into account the modified f (R) equations for stellar structure.

We start by calibrating our code by reproducing the well known results of hydrostatic equilib-
rium in GR through an incompressible fluid and a variety of polytropic equations of state (EoSs).
Thereafter we analyze and check the solutions for constant density objects within the f (R) field
equations without resorting to the usual scalar-tensor transformation. To deal in the best manner
possible with the curvature scale difference, which translates itself into a numerical contrast, we
implement arbitrary precision arithmetic and higher order Runge-Kutta methods with adaptive
size. Although some stellar configurations can be constructed, we argue that is not possible to
find solutions for any of the f (R) gravity models considered that have the density and pressure
of the Sun. Our results thus rais serious doubts about the non-linear studies of f (R) gravity with
respect the solar system tests.

Finally, we elaborate on R-squared f (R) model which does not suffer from the numerical con-
trast since it is not a cosmological motivated model. We perform the same analysis and find
mass-radius diagrams for static neutron star models. However, although is not as difficult to ob-
tain solutions as in the cosmological motivated f (R) models, we advocate that the built in scale
assumed in this f (R) models is rather artificial and presumably selected in an ad-hoc manner in
order to avoid the contrast problem alluded above. Moreover, it is not clear that this quadratic
f (R) models pass the solar system tests or other tests.



Resumen

Se han propuesto múltiples modificaciones a la teorı́a estándar de la Relatividad General (RG)
con el objetivo de explicar la expansión acelerado del Universo, la cual representa un gran
desafı́o para la cosmologı́a actual. En esta tesis se analiza la teorı́a f (R) que es una teorı́a mod-
ificada de la gravedad métrica. Dicha teorı́a provee un modelo alternativo para explicar a la
energı́a oscura. En particular, se analizan los modelos propuestos por Hu-Sawicki y Starobin-
sky. Estas teorı́as, además de contar con grado escalar extra de libertad con respecto a RG,
necesariamente contienen una escala de curvatura intrı́nseca que es del orden de la constante
cosmológica observada. Por lo tanto, sufren de un inherente problema de contraste debido a la
diferencia abismal entre las escalas de curvatura cuando se confrontan en escenarios como el
sistema solar y las estrellas de neutrones. Estos modelos pretenden pasar las pruebas tanto del
sistema solar como de laboratorio por medio de mecanismos que ocultan sus efectos en entornos
de alta densidad estelar. Para este propósito, se explora numéricamente el espacio de soluciones
de espacios-tiempo estáticos y simétricamente esféricos para estos modelos teniendo en cuenta
las ecuaciones modificadas de la teorı́a f (R) para la estructura estelar.

Para calibrar el código numérico desarrollado se reproducen los resultados bien conocidos del
equilibrio hidrostático en RG a través de un fluido incompresible y una variedad de ecuaciones
de estado politrópicas. Posteriormente se analizan y verifican las soluciones para objetos con
densidad constante dentro de las ecuaciones de campo de los modelos f (R) sin recurrir a la
transformación escalar-tensorial habitual. Para tratar de la mejor manera posible con la diferen-
cia de la escala de curvatura, que se traduce en un contraste numérico, se implementa aritmética
de precisión arbitraria y métodos de Runge-Kutta de orden superior con paso adaptativo. Si bien
es posible construir algunas configuraciones estelares, no es posible encontrar soluciones para
ninguno de los modelos de gravedad f (R) considerados que tengan la densidad y la presión del
Sol. Los resultados plantean serias dudas sobre los estudios no lineales de la gravedad f (R) en
el contexto de las pruebas del sistema solar.

Finalmente, se elabora sobre el modelo de gravedad R-squared f (R) que no sufre del contraste
numérico antes mencionado ya que no es un modelo motivado por la cosmologı́a. Se realiza el
mismo análisis y además se obtienen las curvas radio-masa para modelos estáticos de estrellas de
neutrones. Sin embargo, aunque no es tan difı́cil obtener soluciones como en los modelos f (R)
motivados cosmológicamente, se concluye que la escala incorporada asumida en estos modelos
f (R) es más bien artificial, presumiblemente seleccionada de manera ad-hoc. Con lo anterior, no
es posible esclarecer como estos modelos cuadráticos f (R) pasan las pruebas del sistema solar
u otras pruebas de escalas similares.
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Chapter 1

Introduction

Since the discovery of the accelerated expansion of the universe by several independent obser-
vations [3, 111, 120, 149] a plethora of studies in cosmology have been devoted to understand
and explain this late-time acceleration era.1 The current paradigm appeals to the existence of
a cosmological constant Λ, better known as the dark energy component, along with the intro-
duction of the so called dark matter. Both account for the dark sector of the universe which has
been thoroughly modeled by many proposals [46, 131] and has been measured to a tremendous
accuracy. In particular, if General Relativity (GR), which is widely accepted as the fundamental
theory of gravity [148], is assumed, a flawed picture of the universe emerges. The dark sector
accounts for approximately the 96% of its material content, 70% given by the dark energy fluid
of negative pressure, whose origin is currently unable to be explained, and the rest by cold dark
matter (CDM), whose origin is also unclear. The resulting description has become known as the
concordance ΛCDM Model [15]. Although this candidate matches cosmological observations
well it is plagued by several theoretical and epistemological issues including the well known
fine-tuning problem related to the vacuum energy scale [38].

In rough terms, there are two main lines of thought to explain the accelerated expansion aiming
to avoid the need of dark components. The first one being looking for possible candidates in the
realm of particle physics, those that encompasses cosmic fluids with exotic equations of state.
On the other hand, if one assumes that GR cannot describe in a suitable manner the universe at
large scales without resorting to Λ, then it is always permissible to propose new theories purely
in the gravitational sector.

Within the vast realm of modifications to GR, f (R) gravity stands as one of the simplest and
most extensively studied metric theories, which is a particular class of higher derivative gravity
theories where the Einstein-Hilbert action is replaced by an a priori arbitrary function of the
curvature scalar, while the matter part of the action is left unchanged, at least the part of the
matter sector aimed to explain the dark energy (see e.g. [32, 35, 50, 52, 104, 134] for extensive
reviews). Such theories have some important cosmological implications [75, 79, 137, 140]. For
instance, several of these theories naturally admit a phase of late-time accelerated expansion.

1Not to mention the other phase of cosmic acceleration which is believed to have occurred prior to the radiation
domination era, i.e., during the stages of evolution of the universe also known as the inflation epoch (see [93] and
references therein).
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Therefore, it can be thought that dark energy has a geometric origin. Indeed, it has been shown
that for many choices of the function f (R), acceptable cosmological solutions appear. Also,
many of these f (R) models show several interesting observational signatures such as the modifi-
cation to the spectra of galaxy clustering, gravitational weak lensing, CMB, etc [31, 60, 74, 81,
98, 106, 131, 132].

In this way, f (R) provides a nontrivial alternative to the ΛCDM and more specifically an al-
ternative to dark energy or the cosmological constant. However, it turns out that to construct
a self-consistent theory that is not only compatible with the cosmological observation but also
with the laboratory and astrophysical local system tests (e.g. solar-system tests, binary pulsar
phenomenology) is not an easy task. That is, a consistent theory of gravity should be equally
applicable to all gravity regimes. Notwithstanding, many of the early f (R) models were ruled
out by observational evidence and some theoretical arguments (e.g. presence of ghosts and ta-
chions). After several detours, it has been clear that for a viable f (R), certain conditions and
constraints must be satisfied in order to preserve stability and feasibility under a variety of the-
oretical and experimental tests. A handful of models which we focus on this thesis have been
carefully constructed to meet these requirements [75, 96, 137].

The obvious difficulty of explaining the dark sector relying on modifications of GR, such as f (R)
gravity, lies precisely in the tremendous agreement between local observables and GR, including
the recent detection of gravitational waves [19, 81, 151]. In this way, testing f (R) models
in our local environment while leaving the large scale behavior unaffected, besides helping to
constraint viable theories beyond Einstenian gravity in this regime, leads to investigate whether
the GR stringent local bounds (solar system tests) are sufficient to rule out modified gravity
scenerios, since there is no a priori fundamental principle to single out a particular model.

As argued by Weinberg [150], modifications to GR necessarily introduces additional degrees
of freedom. However, introducing these dynamical quantities to drive modifications to gravity
at cosmological scales without any consequences in dramatically different curvature scales has
proven a subtle issue. In this context, it is well known that the entire class of f (R) models are
dynamically equivalent to a specific kind of scalar-tensor theory (see e.g. [30, 134, 146] for a
review). Thus, f (R) gravity has an extra single scalar degree of freedom with respect to GR.
In this vein, most of the analysis has followed at least three distinct, but equivalent, approaches
under the metric formalism.2 Among these, two of them consist of recasting the f (R) action into
a Brans-Dicke (BD) theory with BD parameter, ω = 0. One can discuss the theory in terms of
the original metric gab or alternatively makes use of a conformal transformation to reveal a scalar
field coupled nonminimally to matter via a Weyl rescaling of the metric. The former viewpoint
is known as the Jordan Frame (JF) and the latter as the Einstein Frame (EF). However, several
misconceptions have arisen in the past regarding the transformations used to redefine the fields.
Recently, a third more robust approach has been proposed by Jaime et al. [78] which consists in
leaving the original f (R) action functional as it is, without mapping it to their BD counterpart,
maintaining the Ricci scalar R as the independent degree of freedom. The advantages respect
to JF and EF viewpoints are that the third approach is a more straightforward and cleaner way
to perform calculations and draw numerical conclusions avoiding the common complications of
going back and forth between different schemes. In this thesis we follow this approach.

2Equivalent at least under certain conditions. We will expand on this subject in Chapter 3 and briefly mention the
Palatini formalism of f (R) gravity which is at some point a completely different theory.
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Notwithstanding, in all the aforementioned approaches, the scalar degree of freedom has a non-
linear potential that depends on the form of the f (R) model considered and whose effective mass
depends on the local matter density through the trace of the energy-momentum tensor. It is pre-
cisely this nontrivial potential responsible for possible deviations to GR in high density regions,
such as Milky way or our sun. Indeed, the metric around stars such as the Sun might be different
in this class of theories.

As emphasized by some authors [61, 78], the failure to find a unique exterior solution for a stellar
object that matches an asymptotic Schwarzschild-de Sitter spacetime could be a decisive factor
to rule out f (R) models that are cosmologically viable. As we will explain later in further detail,
studies of the physics of these theories are hampered by the complexity of the field equations,
making it difficult to obtain exact and numerical solutions, even in highly symmetric spacetimes.

In fact, since the beginning of the study of f (R) theories, the existence of the scalar degree of
freedom has been a subject of debate. On the earlier controversial studies regarding the existence
of relativistic extended objects within f (R) gravity the analysis done by Kobayashi and Maeda
[88] stands because of his main conclusions. It was claimed that relativistic stars are unable
to exist in the f (R) model proposed by Starobinsky [137]. They point to a cuvature singularity
developed within the object3 which is the same anticipated by Frolov [66]. However, subsequent
works showed explicitly that this claim does not hold [12, 78, 145] and was unphysical due to
numerical instabilities. As shown by [78, 79], the singular behavior is not intrinsic to the theory,
but mainly due to specific formulations of f (R) gravity. Moreover, the viability of f (R) models
regarding solar system constraints has been unclear, to the extent that some authors simply
thought it as dependent on the point of view [41, 64]. More specifically, as we mentioned before,
when mapping f (R) gravity to a BD theory, ω = 0 while the observations lead to a value where
ω ∼ 40000. Therefore, apparently f (R) gravity fails four orders of magnitude. Nonetheless, the
caveat is an argument when one does not consider the scalar potential associated with the f (R)
theory.

When trying to obtain stellar like solutions numerically, the main difficulty encountered lies
on the fact that two completely different density (or curvature) scales are involved. Indeed,
the central density of our Sun (ρ� ∼ 103kg/m3) is enormously bigger compared to the density
associated with the cosmological constant (ρΛ ∼ 10−27kg/m3). The situation is even more
dramatic when neutron stars are considered (ρNS ∼ 1014kg/m3). In the past, the numerical
challenges were usually overcomed by restricting the central densities to that of unrealistic stars
with ρc ∼ 102ρΛ, which are far from sun like densities ρ� ∼ 1030ρΛ and way off typical neutron
star densities ρc ∼ 43ρΛ [12, 77, 78, 88, 145].

Given this density difference, one usually resort to a mechanism to suppress its potential signa-
ture on observable parameters. To this end, several theories of gravity that introduce an extra
scalar degree of freedom rely on precisely on screening mechanisms which act like suppressors
to deviations from GR (for a detailed review see Refs. [19, 82]) in order to be able to pass solar
system tests. However, as Negrelli et al. [103] point out, screening effects depend crucially on
the shape of the scalar-field potential, which directly depends on the f (R) model at hand and not
the approach taken to specify the additional scalar degree of freedom. Moreover, those screen-
ing effects are independent of the chosen frame and therefore one can use the robust approach

3A similar singularity is found in a cosmological setting [66] associated with an ill-defined potential.



4

put forwarded by Jaime et al. [78]. Thus, the metric obtained after numerical integration of the
hydrostatic equilibrium equations in f (R) gravity with realistic central densities must reflect this
condition. However, no such full numerical solutions are found anywhere in literature, as far as
the author is concerned.

The goal of this thesis is to analyze numerically the full non-linear equations of f (R) gravity
with realistic central densities, using novel numerical integrators and high-precision numerical
arithmetic, and explore the viability of these theories with a handful of the most studied f (R)
models presented in literature. The thesis layout is as follows. In Chapter 2, we review stellar
solutions under GR. We also obtain numerical solutions of neutron stars given polytropic equa-
tions of state. In Chapter 3, the formalism of f (R) gravity is presented, we briefly expand and
elaborate on its cosmological implications. In Chapter 4, the spherical and symmetrical solu-
tions in f (R) gravity are derived and integrated numerically, and we discuss and compare our
results with other studies. Finally, in Chapter 5 we elaborate on the R-squared f (R) model and
draw some conclusions.

Notations and Conventions

Throughout this thesis, units where c = 1 are assumed unless specified otherwise. We follow
the conventions and notation of Wald [148]. In particular, the metric signature is (−,+,+,+) and
the Einstein summation convention is used given the abstract index notation (latin characters
a, b, c, · · · ). The spacetime is represented by a 4-dimensional manifold M with lorentzian metric
gab associated with the covariant derivative ∇a (i.e., ∇agbc = 0).



Chapter 2

Stars in General Relativity

In this chapter we review the most relevant aspects of GR for stellar applications. We refer the
reader to Refs. [112, 129, 139] for more detailed treatments. We obtain numerical solutions
for the equations of stellar structure for an incompressible fluid and polytropic models for the
Sun and neutron stars. The goal of this preliminary study is to calibrate the code that is later
generalized for f (R) gravity.

2.1 Spherical bodies in hydrostatic equilibrium

A non-rotating spherical star is considered a self-gravitating fluid configuration in hydrostatic
equilibrium. It is assumed as an isolated body which consist of a fluid-filled interior region and a
vacuum exterior region. Both regions are solution of the Einstein field equations1 and therefore
satisfy the conservation of rest mass, energy and momentum

Rab −
1
2

gabR = κTab, (2.1a)

∇aT ab = 0, (2.1b)

where Tab is the energy-momentum tensor for a perfect fluid given by

Tab = (p + ρ)uaub + gab p. (2.2)

We recall that ρ, p and ua are the total mass-energy density, the pressure and the fluid four-
velocity, respectively. The exterior solution is already known and is provided by Birkhoff’s
Theorem: The only vacuum, spherically symmetric gravitational field is static and is called the
Schwarzschild metric [148], given in area coordinates by

ds2 = −

(
1 −

Rs

r

)
dt2 +

(
1 −

Rs

r

)−1
dr2 + r2dΩ2, (2.3)

1We use units where c = 1 so κ = 8πG.
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with rs being the Schwarzschild radius

Rs :=
2GM

c2 ≈ 3
(

M
M�

)
km. (2.4)

where M� is the mass of the Sun and M is the mass of the source. Thus, the Schwarzschild
metric applies everywhere outside a spherical star, right up to its surface. Let us briefly mention
the weak field limit of the Schwarzschild solution. The transformation

r = riso

(
1 +

Rs

4riso

)
, (2.5)

takes the Schwarzschild metric (2.3) into isotropic coordinates

ds2 = −

(
1 − Rs/4riso

1 + Rs/4riso

)2

dt2 +

(
1 +

Rs

4riso

)4 [
dr2

iso + r2
isodΩ2

]
. (2.6)

We note that the spatial part of Eq. (2.6) is conformal to an euclidean metric. Knowing that the
gravitational potential generated by our Sun is small U ∼ GM�/r (for r ≥ r�) the metric can be
expanded in powers of U, since riso is large compared to the Schwarzschild Rs. The components
take the form

g00 = −1 +
Rs

riso
−

1
2

(
Rs

riso

)2

+ · · · = −1 + 2U − 2U2 + · · · (2.7)

g jk = δ jk

1 +
Rs

riso
+

3
8

(
Rs

riso

)2

+ · · ·

 = δ jk(1 + 2U + · · · ). (2.8)

As we will discuss later, in the case of solar system tests, deviations from GR account for
departures from the metric (2.6) and can be parametrized as follows

g00 = −1 + 2U − 2βU2 + · · · (2.9)

g jk = δ jk(1 + 2γU + · · · ), (2.10)

where γ = β = 1 are the only two non-zero post-Newtonian parameters in GR and are in
very good agreement with current experimental bounds [112, 151]. For instance, the current
measured γ value is found to be [20],

|γ − 1| . 2.3 × 10−5. (2.11)

2.1.1 Equations of stellar structure

We turn our attention to the properties of hydrostatic equilibrium inside the star. The interior
metric needs to be determined from Eqs. (2.1). Because of hydrostatic equilibrium, the interior
of the metric is time-independent. Also, since it is sphericallly symmetric, we already know that
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such spacetime is of the same form as (2.3) 2, specifically

ds2 = −e2Φdt2 + e2λdr2 + r2dΩ2 (2.12)

where Φ and λ are functions of r. Following the treatment given by Rezzolla and Zanotti [119],
we take the operator hab = gab+uaub, which projects any tensor onto the hypersurface orthogonal
to the fluid four-velocity, on Eq. (2.1b), keeping Tab as in given previously in Eq. (2.2). Thus,

(ρ + p)ua∇aub = −hc
b∂c p, (2.13)

which are the general-relativistic Euler equations. Finally, if the conditions of staticity and
spherical symmetry are imposed, Eqs. (2.13) reduces to

dp
dr

= −(ρ + p)
dΦ

dr
. (2.14)

On the other hand, inserting the metric (2.12) in the GR field equations (2.1a), we obtain, for
the tt- component

1
r2

d
dr

(r(1 − e2λ)) = 8πρ, (2.15)

from where it follows

e2λ =

[
1 −

2Gµ(r)
r

]−1

, (2.16)

where

µ(r) := 4π
∫ r

0
ρ(r′)r′2dr′. (2.17)

Recalling that outside a star the solution needs to match the Schwarzschild metric (2.3), µ(r)
represents the gravitational mass-energy inside a sphere of radius r. On the other hand, the
remaining components of the Einstein field equations lead to

dΦ

dr
=
µ(r) + 4πr3 p
r(r − 2Gµ(r))

. (2.18)

Eqs. (2.15), (2.18), (2.14) together with an equation of state (EoS)3 completely determine the
entire structure of a compact star and are called the Tolman Oppenheimer-Volkoff (TOV) equa-
tions. Written in this form, it is straightforward to see that in the Newtonian limit, that is when
r3P � µ(r) and Gµ(r) � r, Eq. (2.18) reduces to dΦ/dr ≈ µ(r)/r2, which is of the same form
as the equation for the Newtonian gravitational potential. Thus, Φ is a general relativistic analog
of the Newtonian potential. For a given EoS p = p(ρ), the TOV equations can be integrated
outward from the center with the boundary conditions, µ(0) = 0 after specifying central density
ρ(0) = ρc, to the stellar surface at a some radius R defined where the pressure vanishes. As a
further consequence, we see that, for vanishing pressure the TOV solution is indeed given by

2Indeed, one can show that the most general spherically symmetric metric dse = −Adt2 + Bdr2 + Cdtdr + DdΩ2

reduce to Eq. (2.12) [129, 148].
3In general, an EoS relates the pressure of the object to its density, temperature, and chemical composition.

However, if the EoS does not depend on the temperature, the hydrostatic equilibrium equations decouple from energy
transport equations and can be solved separately [112].
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the Schwarzschild solution with the following boundary conditions at the surface

e−2λ(R) = 1 −
Rs

R
, e2Φ(R) =1 −

Rs

R
, (2.19a)

µ(R) = M, p(R) =0. (2.19b)

in order to have a smooth transition to the Schwarzschild metric for r > R.

The TOV equations must typically be integrated numerically. In order to do so, we shall
parametrize the metric (2.12) in the following form:

ds2 = −n(r)dt2 + m(r)dr2 + r2dΩ2. (2.20)

Thus, the following useful relations hold

Φ =
1
2

ln n, λ = −
1
2

ln m. (2.21)

With this variables, the TOV equations take a more symmetric form

dm
dr

=
m
r

[
(1 − m) − mr2κρ

]
, (2.22a)

dn
dr

=
n
r

[
mr2κp + (m − 1)

]
, (2.22b)

dp
dr

= −(p + ρ)
1

2n
dn
dr
. (2.22c)

For the following sections of this chapter we will keep the parametrization given by Eqs. (2.22b)
and (2.22c) but leave the mass µ(r) as a variable instead of m(r). Therefore the set of the stellar
structure equations can be written as

dµ
dr

= 4πρr2, (2.23a)

dn
dr

=
2nG
c2

[
4πc−2r3 p + µ

r(r − 2Gµc−2)

]
, (2.23b)

dp
dr

= −

( p
c2 + ρ

) c2

2n
dn
dr
. (2.23c)

where we have restored the c’s. On the other hand, for comparison purposes, it is useful to define
the PPN γ parameter

γ =
∣∣∣∣1 − m(r)
1 − n(r)

∣∣∣∣. (2.24)

However, due to numerical systematic errors in the direct implementation of the above expres-
sion in GR due to the division of small numbers (n and m are expected to be of the order ∼ 10−6),
it is easier to simplify (2.24).4 Using n = m−1 the γ parameter becomes

γ = |n−1|, (2.25)

4Strictly speaking, in GR the γ parameter is exactly one, that is the reason Eq. (2.24) fails to be evaluated
numerically. The definition (2.24) is more suitable to measure deviations from GR that are expected in alternatives
theories of gravity such as f (R) theories.
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so in the limit r → ∞, γ → 1.

2.1.2 Numerical considerations

Before proceeding to specific solutions of the TOV equations, it is worth to introduce a dimen-
sionless form of the Eqs. (2.23). One can define the following dimensionless quantities

µ̄ =
µ

M?
, r̄ =

r
r?
, ρ̄ =

ρ

ρ?
, p̄ =

p
p?
, (2.26)

in order to measure the mass, the radius and the energy-density, respectively, which are carefully
selected within each further astrophysical object considered. For instance, when treating with
neutron stars or the Sun, we choose ρ? as the nuclear density ρn = 1.66 × 1017kg m−3 or as
ρ� = 1408 kg m−3, respectively. In terms of these quantities, the system (2.23) becomes

dµ̄
dr̄

= αρ̄r̄2, (2.27a)

dn
dr̄

= βn
[
αbr̄3 p̄ + µ̄

r̄(r̄ − βµ̄)

]
, (2.27b)

dp̄
dr̄

= − ( p̄ + ρ̄)
1
2n

dn
dr̄
, (2.27c)

where the dimensionless factors are defined as

α =
4πr3

?ρ?

M?
, b =

p?
ρ?c2 , β =

2GM?

c2r?
. (2.28)

We use G = 6.670 10−11 m3kg−1s−2, c = 3.0 108ms−1, M� = 2.0 1030kg. Notice that for
each choice of ? variables, the parameters of Eq. (2.28) will change. In this way, the system
of differential equations takes the form of dyi/dr = F i(r̄, yi), where yi = (µ, n, p). To solve the
system, boundary conditions must be supplied. Above we mentioned the conditions that are met
at the surface of the star (Eq. (2.19)). The local flatness condition implies that we could choose
n(0) = 1 and µ̄(0) = 0, i.e. m(0) = 1.5 Taking ρ̄(0) = ρ̄c, the dimensionless pressure p̄ is fixed
with help of the EoS p̄ = p̄(ρ̄). The integration proceeds up until the dimensionless pressure
vanishes at some r̄ = R, which defines the stellar radius, where the following conditions are
verified

n(R) = −
1
2

ln
(
1 −

Rs

R

)
, ρ(R) =0, (2.29a)

µ(R) = M, p(R) =0. (2.29b)

Aided by the considerations above, we can now compute numerical solutions using a robust
integration method such as the RK4 routine [114].6 We analyze three different kind of solutions
for the TOV equations in GR.

5At the end of the numerical integration the variable is normalized by dividing over max n.
6In GR, there is no crucial drawback regarding numerical systematics as happens in f (R) gravity (cf. chapter 4).
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2.2 The Sun

The Sun is considered a main sequence star,7 which indicates that is assumed to be in hydrostatic
equilibrium and powered mainly by the fusion of H (∼ 75%) into He (∼ 23%). Due to its
proximity it has been the most analyzed star so far. The most precise and complex model
that describes the Sun’s interior and fits the observables with high accuracy is known as the
Standard Solar Model (SSM) [14], which uses input parameters such as nuclear paramaters,
solar luminosity, solar age, elemental abundances, radiative opacity, etc., to construct a very
complex EoS for the Sun. However, one can obtain a good representation for the Sun, by using
an incompressible fluid or a polytropic EoS.

2.2.1 Incompressible Fluid

The simplest stellar configuration in hydrostatic equilibrium is given by a spherically symmetric
star with uniform density ρ0. For this case, an analytic integration is permitted. Such an object
is defined by

ρ =

ρ0 for 0 ≤ r ≤ R

0 for r > R
(2.30)

where R is the star radius. The mass function is easily computed performing the integral (2.17),
giving M = 4πρ0R3/3. It is straightforward to show that the metric functions for this case are

m(r) =


(
1 − 2GMr2

R3

)−1
for 0 ≤ r ≤ R(

1 − 2GM
r

)−1
for r ≥ R

(2.31)

and

n(r) =


1
4

[
3
(
1 − 2GM

R

)1/2
−

(
1 − 2GMr2

R3

)]2
for 0 ≤ r ≤ R(

1 − 2GM
r

)
for r ≥ R.

(2.32)

Although the density is constant thorough the stellar interior, the pressure equation (2.23c) is
easily integrated to give

p(r) = ρ0

[
(1 − 2GMr2/R3)1/2 − (1 − 2GM/R)1/2

3(1 − 2GM/R)1/2 − (1 − 2GMr2/R3)1/2

]
. (2.33)

We note that the pressure function (2.33) decreases with r; its largest value is at the center of the
star,

pc := p(0) = ρ0

[
(1 − (1 − 2GM/R)1/2

3(1 − 2GM/R)1/2 − 1

]
. (2.34)

This equation tells us that, for a fixed density, the central pressure increases with the ratio M/R,
that is, the body becomes increasingly compact if the stellar compactness is defined as C :=
GM/R). Note that the central pressure becomes infinite when R = 9/4GM, or alternatively,
when the critical compactness Ccrit := 4/9 is reached. In other words, to support compact star
against its own weight more pressure is required. Above the critical compactness threshold, the

7According to the Hertzsprung–Russell diagram which shows the relationship between mass, luminosity and
radius [40].
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body will collapse to produce a black hole. This result is also known as the Buchdahl’s limit
[148]. Although it was deduced from a constant density star, it holds for any EoS. For instance,
in a neutron star, C ∼ 0.3 while for a star like the Sun, C ∼ 10−6.

As a final remark, let us solve numerically the TOV system (2.27) for an incompressible fluid
that mimics the Sun, to calibrate our code. We choose ρ? = ρ�, so the dimensionless parameters
(2.28) of the system (2.27) become

α ≈ 0.0088 b = 1 β ≈ 2.9 × 10−5. (2.35)

Notice that we took the pressure in units of the Sun density, p? = ρ�c2. Since strictly speaking
for a constant density star no EoS is supplied, we need to fix the central pressure a priori.
Fortunately, we can use Eq. (2.34) using the known Sun mass and radius, which gives the value
pc/ρc ≈ 1.06028 × 10−6 and check if our code gives the correct mass and radius.

Fig. 2.1 depicts the decreasing behavior of the pressure for the star and the constant density
profile in the same units. Numerically, the radius is found to be r� ≈ 6.9581959×105km, which
coincides with the actual Sun radius [148]. Meanwhile, Fig. 2.2 shows the mass profile which
increases up until the constant value of one solar mass M�. In both cases, the largest gradients
of p(r) and µ(r) occur near the surface of the star.

0.0 2.5 5.0 7.5 10.0

ln(1 + r[105km])

0.0

0.2

0.4

0.6

0.8

1.0

×10−6

p

ρ

Figure 2.1: Pressure function p(r) (blue solid line) for an incompressible fluid that mimics the
Sun in units of the Sun density ρ� = 1408 kg/m3 (yellow dashed line). The radial coordinate is

given in units of 105 km and the red star represents the radius of the Sun.

Fig. 2.3 depicts the behavior of the metric functions (left panel) and the gamma parameter
(right panel) defined by Eq. (2.24). Notice that m and n are close to one inside and outside
the star which indicates that the sun is not a compact star. Contrary to the solution for n(r),
there is a discontinuity in m(r) which implies that is non-differentiable. This can be understood
by looking at Eq. (2.23a), which, when integrated, implies µ(r) = 4π/3ρr3. The discontinuity
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appears in both µ(r) and m(r) due to their implicit dependence on the density which happens to
be a discontinuous at the radius r�. Hence, the product n(r)m(r) reaches (abruptly) the value one
at the star surface. This non-differentiable behavior does not occur when a continuous EoS is
considered (cf. section 2.2.2). Finally, note that the deviations of the γ parameter remain small
as log10 |γ − 1| . −5, which is in agreement with the experimental bound of Eq. (2.11).
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Figure 2.2: Mass function µ(r) for an incompressible fluid that mimics the Sun in units of M�.
The radial coordinate is in units of 105 km.
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Figure 2.3: Metric functions m(r) and n(r) for an incompressible fluid that mimics the Sun
(right panel). The red star is the Sun radius. γ parameter as function of the radial coordinate

measured in r� units as defined in Eq (2.25) outside the Sun (right panel).

2.2.2 Non-relativistic polytrope

Let us improve now the consideration of a constant density star by taking into account the case
where the EoS for the Sun is a smooth function given by a polytrope. The main characteristic of
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this kind of EoS is that the pressure p and the density ρ are related through a power law:

p = KρΓ, Γ =
N + 1

N
, (2.36)

where K is the adiabatic constant and N is the adiabatic index. Usually, the selected value N
accounts for the description of the stellar model. In particular, main-sequence stars like our Sun
are well modeled by N = 3 (Γ = 4/3). This choice was first introduced by Eddington (see e.g.
[40]). However, Hendry [72] introduced a more refined choice for the adiabatic index, N = 3.35
(Γ = 1.2985). We shall compare both cases (see Table 2.1).

Before getting started with the integration of the equations of hydrostatic equilibrium, Eqs.
(2.27), it is useful to introduce the parametric form of the polytrope (2.36) as

ρ = ρcθ
N , p =pcθ

N+1. (2.37)

with ρc the central density and pc := KρΓ
c , the central pressure. Notice that we have adopted θ

as the dimensionless function for the density.

As in the case of a constant density star, we introduce a set of suitable scales for Eq. (2.26),
ρ? = ρc, p? = pc, M? = 4πρcr0, and r2

0 = (n + 1)pc/(4πGρ2
c). Hence, the quantities of Eq.

(2.28) for the polytropic case are given by

α = 1, b =
pc

ρcc2 , β =2(N + 1)b. (2.38)

At this point, it is worth noting that b measures how relativistic the object is, i.e., when b � 1,
the star is in the non-relativistic regime, and when b > 1 is considered relativistic. By using Eq.
(2.38) and (2.37), the differential equation for the pressure, Eq. (2.27c), can be recasted in terms
of θ as

dθ
dr̄

= −

(
µ̄

r̄2 + br̄θN+1
) 1 + θb

1 − βµ̄/r̄
. (2.39)

In this parametric form, Eq (2.39), together with the differential equation for the mass, are known
as the relativistic Lane-Emden equations of stellar structure.8 Thus, the system of equations to
solve numerically takes the form dyi/dr = F i(r̄, yi), where yi = (µ, n, θ).

Finally, let us return to the polytropic paramaters for the Sun. Table 2.1 shows the parameters
for two polytropic EoS that represents a star of 1M� and 1r�. However, notice that the central
values differ among the two EoSs when compared to the SSM values for the central pressure
and density in the last row. This tell us that, even when two different polytropic EoSs match the
desired boundary conditions at the surface, the satisfactory model is the one that has realistic
values at the center that accurately math the observations. Nevertheless, we obtain solutions to
the stellar evolution equations for both polytropes.

The right panel of Fig. 2.4 shows the pressure and density profiles according to Eq. (2.37)
for the parameters given in Table 2.1. The dashed and solid lines correspond to N = 3 and
N = 3.35, respectively. Contrary to the case of the incompressible fluid (cf. Fig. 2.1), in which
the density is a step function, we see that in the case of the polytrope the density is a smooth

8Indeed, taking b → 0, Eq. (2.39) takes the form dθ/dr̄ = −µ̄/r̄2 together with the mass equation dµ̄/r̄ = r̄2θN ,
which are the equations of hydrostatic equilibrium in Newtonian gravity [112].
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N Γ ρc[kgm−3] pc[Nm−2]
3 4/3 7.646 × 104 1.2461 × 1016

3.35 1.2985 1.53 × 105 3.00 × 1016

SSM values 1.48 × 105 2.29 × 1016

Table 2.1: Parameters for two polytropic models representing a star with of 1M� and 1r�. The
first and second columns list the the polytropic index N and Γ = 1 + 1/N, respectively. The
third column lists the central density ρc. The fourth column lists the central pressure. For each
polytropic EoS K is calculated through K = pc/ρ

Γ
c . The last row corresponds to the standard

central values for the density and the pressure taken from the SSM [14].

function. The radius for both models is found to be r� ≈ 6.9825442017601 × 105 km, which
coincides with the actual Sun’s radius [14]. The mass profiles are shown in the left panel of
Fig. 2.4. Notice that, indeed, the achieved constant mass outside of the object is that of the Sun
(M� = 1.988409870698051 × 1030).
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Figure 2.4: Metric components as a function of the radial coordinate for the polytropic EoSs of
Table 2.1 that represent a star of 1M� and 1r� (left panel). Gamma parameter outside the star

(right panel). The radial coordinate is given in units of 105 km.

The left panel of Fig. 2.5 exhibits the behavior of the metric components which smoothly
transition from the center outwards. Meanwhile, the right panel shows the γ parameter as a
function of the radial coordinate. As in the incompressible fluid for the Sun presented in Section
2.2.1, the variation of the γ parameter remains under the reported bounds (|γ − 1| < 10−5) for
both polytropic models. Notice that immediately outside the star, the product m(r)n(r) = 1 as
r → ∞ meaning that the exterior metric is Schwarzschild.
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Figure 2.5: Metric components as a function of the radial coordinate of a polytrope that mimics
the Sun (left panel). Gamma parameter outside the Sun (right panel). The radial coordinate is

given in units of 105 km.

Most interestingly, the two polytropes match the requirements of a star with the mass and radius
of the Sun. In order to discern between the two models we have to look for the assumed values
at the center. In this way, the polytrope with N = 3.35 is a satisfactory solar model. As a final
remark, it is worth to mention that, all the profiles for the polytropes (Fig. 2.4 and Fig. 2.5) are
smooth. This can be contrasted with the incompressible fluid case where the discontinuity of
the density function reflects the non-differentiable character of p(r), m(r) and µ(r).

With the introduction of the polytropic EoS we can expand the analysis to study solutions for
more relativistic objects such as neutron stars.

2.3 Neutron stars

Neutron stars (NS) are compact stars which are known to contain matter under extreme physical
conditions [1, 70, 90]. Their internal structure ranges from a few ∼ g/cm3 on the surface to
∼ 1015g/cm3 at the center. They typically have radii R ∼ 10 km and masses M ∼ 1.4M�−2.0M�.
Thus, they differ vastly from a main sequence star like the Sun. Accordingly, the composition of
a NS depends heavily on its density which, at the moment, cannot be constrained by terrestrial
experiments. Despite the continuous efforts of modern astrophysical observations, they can only
look for the macroscopic properties of NSs such as the radius or the mass. In consequence, the
true EoS inside NS is uncertain at densities beyond nuclear saturation ρn = 2.8 ×14 g/cm3.9

The constituent particles within the different layers of a NS are assumed to be formed mainly
by neutrons, protons, electrons and other baryons and leptons. Several candidates for a realistic
EoSs have been proposed in literature and involve large numbers of fundamental parameters,
which are interpolated [117]. However, it has been shown that, although its simplicity, poly-
tropic EoSs can give a very good description of the properties of a NS.

9It can be said also that due to the lack of knowledge of the strong nuclear interactions, the EoS for the liquid
interior (ρ > ρn) is uncertain [122].
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2.3.1 Relativistic polytrope

A clever way to model the internal structure of a NS with one polytrope was introduced by
Bonazzola et al. [22] (see also [47, 54, 122]). In the same way as Eq. (2.37), the polytrope is
parametrized by the baryon density nb:

p(nb)
c2 = Kmbn0

(
nb

n0

)Γ

, (2.40)

ρ(nb) = mbnb +
p

c2Γ − 1
, (2.41)

where mb = 1.66 × 1027 kg is the mean baryon mass and n0 = 0.1 fm−3. The above equations
represent a two parameter family of a stiff or soft EoSs given different values of K and Γ which
can be seen as

ρ =

( p
K

)1/Γ
+

p
Γ − 1

. (2.42)

The lower the value of the polytropic index Γ, the stiffer the EoS becomes.10 Following [47,
122] we consider two pairs of parameters (Γ,K) that mimic two different NS models. The
model DIAZII corresponds to Γ = 2.34 and K = 0.0195 to fit the EoS II of Ref. [55], and the
model ARNA corresponds to Γ = 2.46 and K = 0.00936 to fit the EoS A of Ref. [9].

Using dimensionless variables the EoS takes the form

p̄ = Kn̄Γ
b , ρ̄ =n̄b +

Kn̄Γ
b

Γ − 1
. (2.43)

Also, instead of p̄ as the third dynamical variable, we write it in terms of n̄b using

dn̄b

dr̄
=

n̄b

p̄Γ

dp̄
dr̄
. (2.44)

Then, the system of equations to implement in the code is

dµ̄
dr̄

= αρ̄r̄2 (2.45a)

dn
dr̄

= βn
[
αr̄3 p̄ + µ̄

r̄(r̄ − βµ̄)

]
(2.45b)

dn̄b

dr̄
= −

n̄b

p̄Γ
( p̄ + ρ̄)

1
2n

dn
dr̄

(2.45c)

where the dimensionless factors α and β are defined as in Eq. (2.28). We choose to measure the
density, mass, and radius in units of the nuclear density ρ? = ρn := mbn0, solar mass M? = M�
and one kilometer r? = 1km, respectively. This choice gives rise to the following values

α ≈ 0.00105, β ≈ 2.954. (2.46)

10A stiffer EoS usually means that for a given change in density, the pressure increases a lot more, contrary to the
softer EoS where a small change in pressure happens.
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Another quantity of physical interest is the baryonic mass of the star

µA(r) = 4πmb

∫ r

0
nb(r′)r′2

(
1 −

2Gµ(r′)
c2r0

)−1/2

dr′, (2.47)

which can be written as a differential equation independent from the system (2.45) as

dµ̄A

dr̄
= α

µ�
mb

n̄br̄2
(
1 −

βµ̄

r̄

)−1/2
, (2.48)

where the adimensional baryonic mass µ̄A = µA/mb was defined. In this way, the solutions of
the TOV equations ((2.45) and (2.48)) form a single-parameter family, where the free parameter
labeling the different solutions is commonly set by the central density ρc.

Representative sequences of equilibrium models of neutron stars are plotted in Figure 2.6 which
shows different mass profiles as a function of ρc, the density at the center of the star. Each choice
of ρc generates a pair of (µ,R) where µ is its gravitational mass and R is the radius of the star.
The variation of this parameter gives us a mass-radius relation for every EoS.
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Figure 2.6: Neutron star mass (in M�) as a function of the central value of the (mass) density for
a range of equilibrium configurations for DIAZII (dashed line) and ARNA (solid line) models.

The red star indicates the maximal configuration in each model.

In Fig. 2.7, the mass-radius relation is plotted. We see that the maximal mass (red stars) for
the DIAZII and ARNA EoS are about 1.927M� and 1.6M�, respectively. The maximal masses
obtained are consistent with those reported in previous analyses [122].
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Figure 2.7: Neutron star mass (in M� ) as a function of the radius (in km) for a range of
equilibrium configurations for DIAZII (blue line) and ARNA (yellow line) models. The red

stars indicates the maximal configurations of each model.

In particular, the solutions for the DIAZII and ARNA maximal masses configurations are shown
in Figures 2.8-2.10. For instance, Fig. 2.8 depicts the behavior of the metric functions of both
EoSs for these particular configurations. We observe a smooth profile in the same way as in the
polytopic EoS for the Sun. Fig. 2.9 shows the total baryon mass and the total gravitational mass
for both configurations. Finally, in Fig. 2.10 we see the decreasing of pressure function as the
star surface is approached.
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Figure 2.8: Metric functions m(r), n(r) and their product (dotted lines) for the two models,
DIAZII (blue lines) and ARNA (red lines). The black star indicates the value where the pressure
and density vanish (i.e., the surface of the star). The radial coordinate is given in units of 105

km.
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Figure 2.9: Baryonic mass µA(r) and gravitational mass µ(r) measured in solar mass units M�
for the two models, DIAZII (dashed line) and ARNA (solid line). The black star indicates the
surface of the star R. Notice that µA and µ converges to the total baryon mass and the total

gravitational mass respectively.
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Figure 2.10: Pressure function p(r) for the two models considered, DIAZII (dashed line) and
ARNA (solid line).The units are given in terms of the nuclear density ρn = 1.66 × 1017 kg/m3.

2.3.2 Piecewise polytrope

As we stated before, the EoS of a NS is uncertain. Strictly speaking, the whole density range of a
NS cannot be accurately approximated with only one polytrope, but only a specific range. To this
regard, a few more complex parametrizations than that of the prior section have been proposed
in the literature to accurately reproduce feature of realistic EoS. The one we are interested in is
based on a Piecewise Polytropic (PP) EoS with three free parameters, developed by Read et al.
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[117].11 This parametrization consists of stitching together polytropic EoSs (as in Eq. (2.36))
with different fixed adiabatic index Γ and K, for a different range of densities. It has been shown
that this form of EoS is able to reproduce macroscopic observables for a wide range of candidate
EoSs [118]. It has also been used extensively in gravitational-wave parameter estimation and
NS in alternative theories of gravity. In particular, in the R-squared f (R) model (cf. chapter 5).

In this approach, the energy density that appears in the energy-momentum tensor is decomposed
as ρc2 + ε, i.e., the proper rest-mass density ρ plus the proper internal (thermodynamic) energy
density ε [117, 118]. For a set of dividing densities ρi−1 ≤ ρ ≤ ρi, the polytropic relation is
satisfied

p(ρ) = Kiρ
Γi , (2.49)

where i labels each segment of the polytrope. To obtain an expression for ε in terms of the rest-
mass density ρ we use the first law of thermodynamics, which implies the following relation

d
(
ε

ρ

)
= −pdρ−1, (2.50)

where it follows, after integration, that

ε(ρ) = (1 + αi)ρ +
Ki

Γi − 1
ρΓi , αi =

ε(ρi−1)
ρi−1

− 1 −
Ki

Γi − 1
ρΓi−1

i−1 . (2.51)

The rest mass density zero limit, limρ→0 ε/ρ = 1, ensures that ε = ρ thus, Eq. (2.42) is recovered.
Each polytropic segment is specified by the initial density ρi−1, the coefficient Ki, and the adia-
batic index Γi. However, if another EoS is supplied at lower densities than that of the segment,
continuity implies that at the fixed matching density ρi, p(ρi) = p(ρi+1), thus Ki+i = p(ρi)/ρ

Γi+1
i .

Following [118], a PP EoS is divided in two density regimes linked by a density ρ0. Three
individual polytropes in the high-density (ρ ≥ ρ0) portion of the EoS are anchored to a fixed
low-density EoS (ρ < ρ0).

For the high-density, part each density interval ρi−1 ≤ ρ ≤ ρi, is joined by a polytrope. In this
way, the model requires four parameters {log(p1),Γ1,Γ2,Γ3}. The first polytrope with adiabatic
index Γ1 is anchored at pressure p1 = p(ρ1) and a fixed matching density ρ1 = 1014.7 g/cm3.
A second polytrope follows with adiabatic index Γ2 is defined from (p1, ρ1) to the second fixed
density ρ2 = 1015.0 g/cm3. Finally, the third polytrope with adiabatic index Γ3 is joined at
(p2, ρ2). In particular, the diagram for this parametrization in the high-density part is shown in
Fig. 2.11 for the model MPA1. Similar profiles are obtained for the other models considered in
Table 2.2.

11Other parametric models include the spectral and a direct pamaretrization of the speed of sound (see e.g. [91]).
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Figure 2.11: High-density region part of the PP EoS (ρ > ρ0) for the MPA1 model given by
three joined polytropes parametrized by the adiabatic indexes {Γ1,Γ2,Γ3} and the pressure p1.

On the other hand, since NS observables, such as the mass, are not very sensitive below nuclear
saturation density for the low-density part (ρ < ρ0), we adopt the SLy analytic representation
[69], which was approximated by four polytropic pieces by Read et al. [117]. In the same
notation described above, Table 2.3 shows the values {Γi,Ki, ρi} for each piece. Both density
regions are connected by equating the first polytrope of the high-density region with the last
polytrope of the low-density SLy EoS.

For simplicity, we consider four distinct EoS for the high-density part which are widely studied
in literature. These are: APR4, SLy, H4 and MPA1 (see section II of [117] for the origin of each
EoS).
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EoS log P1(dyne/cm2) Γ1 Γ2 Γ3 Approach
APR4 34.269 2.830 3.445 3.348 Variational-method
SLy 34.348 3.005 2.988 2.851 Effective-one-body potential
H4 34.669 2.909 2.246 2.144 Relativistic mean field

MPA1 34.495 3.446 3.572 2.887 BruecknerHartree-Fock method

Table 2.2: Parameters of high-density part for the APR4, SLy, H4 and MPA1 PP EoS. The
maximal mass of spherical neutron stars, Mmax, for each EOS obtained. Composition means
strongly interacting components (n=neutron, p=proton, H=hyperon, Q=quark, π0=pion) and

SLy, H4 include leptonic components.
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Figure 2.12: Density profile for the four EoS of Table 2.2. The vertical dotted blue lines
corresponds to the dividing densities for the low-density region given in Table 2.3.

Fig. 2.12 shows the pressure profile as a function of the density for the EoS of Table 2.2. Both
density regions are plotted. Because of the construction of this parametrization all EoS coincide
in the low-density regime by the SLy PP EoS of Table 2.3.

Ki Γi ρi

6.80110e-09 1.58425 2.44034e+07
1.06186e-06 1.28733 3.78358e+11
5.32697e+01 0.62223 2.62780e+12
3.99874e-08 1.35692 –

Table 2.3: Parameters for the SLy EoS below nuclear density which is given by four polytropes
specified by Γi, ρi (in g/cm3) and Ki (in cgs units) The corresponding value of p is in units of
dyne/cm2. The values are taken from Appendix 1 of [117]. The last dividing density which
does not appear in the table is the density where the low density EoS matches the high density
EoS and depends on the parameters p1 and Γ1 of the high density EoS for each model listed in

Table 2.2.
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After specifying the PP EoS, we solved numerically the system (2.27) choosing units such that

r? = rg ρ? =M�/r3
g p? = M�c2/r3

g (2.52)

where we set rg = GM�/c2 ≈ 1.47473 km, that is the sun’s half Schwarzschild radius. Thus,
the coefficients (4.31) are set to α = 8π and β = 1. The dimensionless factors (2.28) are α = 4π,
β = 1 and b = 1.

The mass as a function of the stellar radius is shown in Figure 2.13 for the four EoSs of Table
2.2. The maximal mass configurations are highlighted by the red stars. These masses, which are
shown in Table 2.4, were obtained numerically and coincide with the reported masses in [117].
In Fig. 2.14, we plot the mass as a function of the central density for the same PP EoSs. The
differences between the maximal masses that occur roughly at the same density are due solely
to the EoS. All the masses are above ∼ 2M�, contrary to the EoS used in Section 2.3.1.
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Figure 2.13: Neutron star mass (in M�) as a function of the radius (in km) for a range of
equilibrium configurations for the models depicted in Table 2.2. The red stars indicates the

maximal configurations of each model.
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Figure 2.14: Neutron star mass (in M�) as a function of the central value of the (mass) density
for a range of equilibrium configurations for the models depicted in Table 2.2. The red stars

correspond to the maximal mass configurations.

EoS Mmax(M�)
APR4 2.213
SLy 2.049
H4 2.032

MPA1 2.461

Table 2.4: Maximal masses obtained for the four different PP EoSs specified in Table 2.2.

As a closing remark for this chapter, the analysis of previous sections makes it clear that the
implemented numerical code functions fairly well for a variety of well-known EoSs, including
the case of a constant density object that mimics the Sun. We have managed to reproduce the
Sun within two different models. We have also found solutions for NS within GR. With this in
hand, in the next chapter, the f (R) metric theories of gravity will be introduced.



Chapter 3

f (R) Theories

In the previous chapter we have established the fact that equilibrium of spherically symmetric
stars in General Relativity (GR) is governed by the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions. We now turn to consider the case of star-like objects in f (R) theory. For that, we review
the metric f (R) theories.

Among the countless (inequivalent) ways to modify GR, f (R) gravity stands as one of the sim-
plest and most straightforward paths to circumvent the Lovelock’s theorem by adding an extra
degree of freedom.1 They are part of a more general class of gravity theories based on modifi-
cations of the Einstein-Hilbert Lagrangian which have a long history of development (see [50,
134] for detailed reviews). However, a natural question arises: why is the f (R) function chosen
as a function of only the Ricci Scalar instead of high-order curvature invariants such as RabRab,
RabcdRabcd, RabcdRabRcd . . . , or combinations of those such as the Gauss-Bonnet invariant.2 The
fact is that f (R) theories are one of the theories which can prevent the Ostrogradsky instability
[152]. Hereafter, we will focus our attention in f (R) gravity models as functions only of the
Ricci Scalar R.

As widely discussed in Chapter 1, the existence of two eras of accelerated expansion of the
universe boosted the interest in these kind of theories. The earlier phase of expansion being the
cosmic inflation which was addressed by the original Starobinsky model of inflation [136]. On
the other hand, the observed phenomenon of late time cosmic acceleration, which is considered
the puzzle of the millennium [15, 82, 95, 123, 149], has also stimulated the idea of dark energy
models based on f (R) theories [4, 98, 105, 131]. One of the advantages of f (R) models in the
cosmological regime is the property of a potentially disappearing cosmological constant.3 It was
thought as a natural step trying to explain the late time expansion by the same mechanism (at
much lower energies than in the earlier universe). Earlier f (R) models were proved wrong since
they were plagued by matter instabilities and were unable to produce the late time acceleration

1Lovelock’s theorem says the following: In four spacetime dimensions the only divergence-free symmetric rank-
2 tensor constructed solely from the metric gab and its derivatives up to second differential order, and preserving
diffeomorphism invariance, is the Einstein tensor plus a cosmological term [19, 43].

2In this regard recall that the Gauss-Bonnet invariant is defined by G = R2 − 4RabRab + RabcdRabcd and itself is an
object of study known as Gauss-Bonet gravity (see e.g. section 12 of [50]).

3Not all f (R) have this property, see for e.g. [77].
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together with a viable cosmic expansion. In this way, the main interest was shifted to construct
cosmological viable f (R) models.

In this Chapter we review the general properties of f (R) gravity, derive its field equations and
analyze its experimental and theoretical constraints. Several approaches to treat the field equa-
tions have been proposed. In section 3.1 we review those approaches to formulate metric f (R)
gravity. In section 3.3 the TOV equations for f (R) gravity are discussed. Section 3.4 addresses
the constraints that f (R) is subject to. For completeness the discussion in Section 3.2 is briefly
dedicated to the actual status of cosmology in f (R) gravity.

3.1 Metric f (R) gravity formulations

As in GR, the field equations from f (R) gravity can be extracted from a variation principle.
However, we must point out that there are actually two main formalism for deriving the field
equations. The first is the standard metric formalism where variation to the action respect to the
metric tensor gab leads to the field equations. The second is the Palatini formalism [26] in which
the affine connection Γa

cd is allowed to be a variable independent of the metric (see [17, 18,
83, 84, 108] for the application of this formalism to spherical symmetric solutions). These two
formalism are not equivalent unless f (R) = R. We shall focus on the theory obtained through
the metric formalism and discuss below its different formulations.4

3.1.1 JPS formalism

In this section we present the robust approach to f (R) gravity developed by Jaime, Patiño and
Salgado (JPS) [78]. The general action for an f (R) theory of gravity in a 4-dimensional manifold
is given by

S [gab,Ψ] =

∫
f (R)
2κ
√
−gd4x + S M[gab,Ψ], (3.1)

where κ = 8πG0/c4. Varying the action with respect to the metric gives

fRRab −
1
2

f gab − (∇a∇b − gab�) fR = κTab, (3.2)

where fR := ∂R f and � := gab∇a∇b and, as usual,

Tab =
−2
√
−g

δS M

δgab , (3.3)

is the energy-momentum tensor of matter. Is straightforward to write Eq. (3.2) in the following
way

fRGab − fRR∇a∇bR− fRRR(∇aR)(∇bR)

+ gab

[
1
2

(R fR − f ) + fRR�R + fRRR(∇R)2
]

= κTab,
(3.4)

4There is actually a third version of f (R) gravity: metric-affine f (R) gravity. In this case, matter depends explicitly
on the connection Γ and the Palatini variation is used. The interested reader is referred to [32, 135].
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where Gab = Rab − gabR/2 is the Einstein tensor, (∇R)2 := gab(∇aR)(∇bR), fRR := ∂2
R f and

fRRR := ∂3
R f . Since Eq. (3.4) contains the second derivative of R the field equations are fourth

order in the metric, but avoid Ostrogradsky instabilities because the theory is equivalent to a
Scalar-Tensor Theory with second order equations of motion, as we will see in Section 3.1.2.
Moreover, the trace of Eq. (3.4) yields

�R =
1

3 fRR

[
κT − 3 fRRR(∇R)2 + 2 f − R fR

]
, (3.5)

where T := T a
a. Thus, we have explicitly obtained a scalar equation for R. Furthermore, using

Eq (3.5) in Eq. (3.4) we obtain

Gab =
1
fR

[
fRR∇a∇bR + fRRR(∇aR)(∇bR) −

gab

6
(R fR + f + 2κT ) + κTab

]
, (3.6)

which tell us the clear modifications to GR. Eqs. (3.6) and (3.5) are the fundamental equations of
the robust approach to f (R) gravity. In this way, f (R) gravity can be written as two second order
equations. One for the metric (3.6) and one for the Ricci Scalar (3.5). Viewed in this approach
the theory has an extra scalar degree of freedom represented by the Ricci Scalar itself. Unlike
GR, where R and T are algebraically constrained by R = κT , in f (R) gravity exists a dynamical,
differential relation between the matter sources and R itself given by Eq. (3.5). Notice that if
f (R) = R − 2Λ, GR with Λ is recovered. In the latter form, the field equations allow us to treat
f (R) gravity in a more cleaner way instead of transforming them as a Scalar-Tensor Theory.

One very important implication of Eq. (3.5) comes from a suggestive reading of its right-hand
side. An effective potential can be defined from part of the trace of the field equations in such a
way that it can be calculated as an integral. Lets discuss in more detail the algebraic structure of
this potential.

First thing to note is that, aside from the GR case, one is to look for monotonically growing and
convex f (R) functions, such that fRR, fR > 0. Second, when the energy-momentum tensor is
traceless (T ≡ 0), Eq. (3.5) admits R = R1 = const as a particular solution provided R1 is an
algebraic root of the implicitly defined potentialVJPS(R) via its derivative

dVJPS(R)
dR

:=
2 f − R fR

3 fRR
. (3.7)

In general,5 if fRR(R1) , 0, R1 is a root of the alternative potential (the factor 1/3 is kept for
convention),

dV(R)JPS

dR
:=

2 f − R fR
3

. (3.8)

Once an f (R) model is provided, the explicit expression either V(R)JPS orV(R)JPS can be com-
puted as follows

V(R)JPS = −
R f (R)

3
+

∫ R
f (x)dx. (3.9)

On the other hand, when the energy-momentum tensor trace does not vanish, the potentials are
redefined. The effective potentials Veff

JPS(R,T ) and its counterpart Veff
JPS(R,T ) inside the stellar

5There are some exceptional cases where where both the numerator 2 f − R fR and the denominator vanish at R1,
e.g. the Rn model [80], which has been disproved as a cosmological viable model.
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object are as follows,

dVeff
JPS(R,T )

dR
:=

κT + 2 f − R fR
3 fRR

,
dVeff

JPS(R,T )

dR
:=

κT + 2 f − R fR
3

. (3.10)

Thus, Eq. (3.5) is rewritten as a standalone scalar equation with an effective potential,

�R +
fRRR

fRR
(∇R)2 =

dVeff
JPS(R,T )

dR
. (3.11)

The effective potential Veff
JPS(R,T ) has an extremum at

2 f − R fR
∣∣∣∣
Rmin

= −κT. (3.12)

This relies upon the specific value Rmin which is constant and it is related to the effective cos-
mological constant associated with the assigned value that comes from the f (R) cosmology. At
such minimum value, that is where Eq. (3.10) vanishes, the effective mass associated with R is
defined as

m2
eff :=

d2Veff

dR2

∣∣∣∣∣
Rmin

=

[
fR − R fRR

3 fRR
−

fRRR

fRR

dVeff

dR

]∣∣∣∣∣
Rmin

=
fR − R fRR

3 fRR

∣∣∣∣∣
Rmin

. (3.13)

As pointed out by Jaime et al. [78], the potential V(R)JPS is well defined as far as f (R) is. The
usefulness of introducing this potential is that it reveals the possible critical points that R can
reach asymptotically (in time and space). Other than that, this potential has no fundamental
meaning whatsoever. As we will see in the following section, the behavior of the associated
scalar potential in the Scalar-Tensor formulation does not enable the insight that the JPS formal-
ism naturally provides. It raises questions of ill defined mappings and pathological features. It
leads to rather questionable results and conclusions.

3.1.2 Scalar-Tensor Formalism of f (R) Theory

In the previous subsection we have written down the field equations of f (R) gravity and seen
that the new propagating degree of freedom is encompassed in the R equation. In this section we
further show the two alternative approaches that have been used to analyze stars in f (R) gravity,
exploiting the equivalence between f (R) theory and a Scalar-Tensor theory.

Jordan-Frame

Among many authors there is the widespread idea that one should always recast f (R) gravity
as a chameleon theory [86]. This procedure starts by considering the theory as a Brans-Dicke
(BD) theory which belongs to the Scalar-Tensor class. In the context of sphericallly symmetric
spacetimes, this approach was used by Kobayashi and Maeda (KM) [88], and later on by Upad-
hye and Hu [145] (UH) (and many other authors [66, 68, 96]). The analysis of both groups will
play an interesting role in the following sections. Hereafter, KM is going to be used as subscript
for this formulation.
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Note that one can rewrite the action (3.1) by introducing a new auxiliary field χ (a Lagrange
multiplier). Let us consider the action

S =
1
2κ

∫
d4x
√
−g[ f (χ) + fχ(χ)(R − χ)] + S M[gab,Ψ], (3.14)

where f is an arbitrary function of the auxiliary field χ. Varying the action with respect to fχ = φ

gives the constraint condition fχχ(χ)(R − χ) = 0. Hence, χ = R, provided fχχ(χ) , 0. Thus the
action (3.14) is dynamically equivalent to (3.1). Redefining the field χ by

φ := fχ(χ) = fR(R), (3.15)

the action (3.14) becomes

S JF =

∫
d4x
√
−g

[
1
2κ
φR − U(φ)

]
+ S M[gab,Ψ], (3.16)

where the potential U(φ) is given by

U(φ) =
χ(φ)φ − f (χ(φ))

2κ
. (3.17)

Note that, in order for transformation (3.15) to be regular (invertible), we need the condition
that fχχ(χ) , 0, which is already satisfied by the assumption. Consider the original BD gravity
action in the Jordan frame given by [146],

SBD
JF =

∫
d4x
√
−g

[
φR + ωBD

1
φ
∇aφ∇

aφ

]
. (3.18)

We see that the action (3.16) is equivalent to a BD with the parameter ωBD = 06 where the
quantity φ is taken as a single field with no kinetic term. However, it must be pointed out that
such an equivalence holds partially since the action (3.18) has no scalar field potential. Thus
f (R) gravity is equivalent to a BD theory with parameter ωBD = 0 with the presence of a non-
trivial self-interaction potential [33, 107, 141]. Such subtle consideration is crucial since such a
value for ωBD in these theories gives rise to a post-Newtonian (PPN) parameter γ = 1/2 which
vastly differs from the value γ ∼ 1 required by Solar System tests. Whether this was concluded
directly from the action or from the equations of motion themselves makes no difference. As
we shall see in Section 3.4.2 only by virtue of the proper equivalence between f (R) gravity and
BD theory the correct PPN limit is achieved. This limit is professedly enforced thanks to the
chameleon mechanism [86].

Inverting the relation (3.15), the Ricci scalar can be expressed in terms of φ. In practice, it is not
obvious to invert the scalar degree of freedom explicitly (φ = fR(R)). So a parametric form is

6Note that the f (R) theory in the Palatini formalism is equivalent to the case ωBD = −3/2 [84].
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used.7 Varying the action (3.16) respect to the metric and the scalar field φ leads to

Gab =
κ

φ
(Tab − gabU(φ)) +

1
φ

(∇a∇bφ − gab�φ) , (3.19a)

R = 2κ
dU(φ)

dφ
. (3.19b)

The right hand side of Eq. (3.19a) can now be seen as the source terms for the metric. It is also
important to mention that these equations could have been derived directly from Eq. (3.2). We
recognize in Eq. (3.19b) the expression that the scalar curvature satisfies, which is just the trivial
identity χ = R. As in the JPS formalism we take the trace of Eq. (3.19a) in order to replace R.
Hence, we obtain the relation Rφ = 3�φ − κ(T − 4U(φ)) which, using Eq. (3.19b), yields

3�φ + 2κ
(
U(φ) − φ

dU(φ)
dφ

)
= κT. (3.20)

This makes strikingly clear that it is indeed a BD theory with null kinetic term and with a
non-trivial potential V(φ). One can rewrite the equations using an alternative notation for the
potential which leaves the equations of motion as (3.16):

φRab −
1
2

f gab − (∇a∇b − gab�)φ = κTab, (3.21a)

�φ =
1
3

[
κT + 2 f − R fR

]
:=

κT
3

+
dVKM

dφ
, (3.21b)

where VKM := R fR − f (i.e. a re-scaled version of Eq. (3.17)) and f is now function of R(φ). As
is evident, we can assign to the scalar field a mass. An examination of Eq. (3.20) tells us that
the dynamics of φ are regulated by the combination U(φ) − φdU(φ)

dφ . In fact, one may go even
further and realize that the mass considered in the classic STT is given by the second derivative
of VKM(φ). So we have,

dVKM

dφ
=

1
3

(2 f (R(φ)) − φR(φ)), m2
KM :=

d2VKM

dφ2

∣∣∣∣∣∣
φ=φmin

=
1
3

(
φ

fRR(R(φ))
− R(φ)

)
. (3.22)

This result has been derived from a variety of analysis such as perturbations to a de-Sitter back-
ground and studies of stability [30, 62]. Eqs. (3.21) are the field equations written in the so
called Jordan-frame, a reminiscent terminology of the standard STT (see e.g. [19, 104]). It is
interesting to see that φ now contains the Ricci scalar R degree of freedom.

Einstein Frame

By means of a conformal transformation, the action (3.16) can be transformed into the so called
Einstein frame, in which a redefined field Φ ∼ ln φ has a canonical kinetic term and is minimally
coupled to the Ricci scalar. This approach was used by Babichev and Langlois (BL) in the
context of compact stars [12] (see also [23, 36, 42, 64, 85, 94] for works which use the same
formulation and [50, 104, 133, 134] for detailed analysis).

7For example, given a arbitrary function g of φ it can be written as dV
dR = dV

dφ
dφ
dR .
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Under the conformal transformation g̃ab = Ω2gab we get the following relation for the Ricci
scalars R and R̃ [148],

R = Ω2(R̃ + 6�̃ω − 6g̃ab∂aω∂bω), (3.23)

where a tilde represents quantities in the Einstein frame and

ω = ln Ω, �̃ω =
1
√
−g̃

∂a(
√
−g̃g̃ab∂bω). (3.24)

We can rewrite the action (3.1) as

S [gab,Ψ] =

∫
√
−gd4x

(FR
2κ
− U(R)

)
+ S M[gab,Ψ], (3.25)

where we have defined U = (FR − f (R))/2κ and set F := fR to keep the distinction from Eq.
(3.16), although they are essentially the same action. By using Eq. (3.23), this action can be
more easily transformed in to

S [gab,Ψ] =

∫ √
−g̃d4x

[
1
2κ

FΩ−2(R̃ + 6�̃ω − 6g̃ab∂aω∂bω) − UΩ−4
]

+ S M[Ω−2g̃ab,Ψ],

(3.26)
where we have used

√
−g = Ω−4 √−g̃. Since we are looking for a linear action in R̃ we observe

that the choice F = Ω2 gives us R̃ in the first term inside the square brackets. On the other hand,
to change the kinetic term in to a standard form, that is, to satisfy the following relation

3
κ

g̃ab∂aω∂bω =
1
2

g̃ab∂aΦ∂bΦ, (3.27)

we see that ω =
√
κΦ/
√

6 and by looking at Eq. (3.24) we note that the new scalar field Φ

satisfies

Φ :=

√
3
2κ

ln F. (3.28)

Hence, by choosing the new scalar field as in (3.28) the action in the Einstein frame is

S E =

∫
d4x

√
−g̃

[
R̃
2κ
−

1
2

g̃ab∂aΦ∂bΦ − VBL(Φ)
]

+ S M[Ω−2g̃ab,Ψ], (3.29)

with the potential

VBL :=
U
F2 =

R(Φ) fR(Φ) − f (Φ)
2κ f 2

R (Φ)
, (3.30)

where we have make use of the fact that the integral
∫

d4x
√
−g̃�̃ω in the Eq. (3.26) vanishes

on account of the Gauss’s theorem. We stress that the conformal factor Ω2 = F = fR is field
dependent and is related to R, as fR(R) = exp

√
2κ/3Φ, i.e., an implicit function of Φ. It is useful

to introduce a coupling function8 defined by A(Φ) := Ω−1(Φ) = fR(R)−1/2 which further on can

8It is rather confusing the introduction of this function in the literature. In most of the derivations of this equiva-
lence, the reduced Planck mass M2

PL = κ−1 is used. It is this approach that allows a more direct comparison with the
original chameleon theory [86].
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be related to a conformal coupling parameter Q as9

A(Φ) = exp Q
√
κΦ, (3.31)

by setting Q := −
√

1/6. It is, however, extremely important to interpret the quantities in the
action (3.29) correctly. Under this formalism it is commonly said that the field Φ is directly
coupled to all matter fields with constant Q and is uniquely determined in all f (R) theories. In
order to see it more explicitly, by varying the transformed action (3.29), we are left with the
subsequent set of equations

G̃ab = k−1
[
T̃ab + ∂aΦ∂bΦ −

1
2

g̃ab∂
cΦ∂cΦ − g̃abVBL

]
, (3.32a)

�̃Φ =
dVBL

dΦ
−

1
√
−g̃

∂LM

∂Φ
, (3.32b)

where �̃ = g̃ab∇̃a∇̃b and the covariant derivative ∇̃a obeys ∇̃ag̃ab = 0. T̃ab is the energy-
momentum tensor of matter in the Einstein frame which is given by

T̃ab = −
2
√
−g̃

δLM

δg̃ab =
Tab

F
. (3.33)

The derivative of the Lagrangian matter density L with respect to Φ is

∂LM

∂Φ
=
∂LM

∂gab

∂gab

∂Φ
= −

√
−g̃

1
2F

dF
dΦ

T̃ (3.34)

where the T̃ = T̃abg̃ab is the trace of the transformed energy-momentum tensor. We can proceed
by further defining the function α(Φ) as

α(Φ) :=
d ln A(Φ)

dΦ
= −

1
2F

dF
dΦ

= Q
√
κ, (3.35)

which gives us the strength of the coupling between the scalar field and the matter/energy source
since the scalar equation (3.32b) is rewritten as

�̃Φ =
dVBL

dΦ
− α(Φ)T̃ . (3.36)

As we will see in the next section, the motivation for this definition starts with the conviction
that f (R) gravity is a chameleon theory. There is, of course, one caveat in the Einstein frame
formulation. The transformed energy-momentum T̃ab tensor is not conserved, the contracted
Bianchi identities give the following conservation law for the Einstein frame energy-momentum
tensor

∇̃aT̃ a
b = QT̃ ∇̃bΦ, (3.37)

which tells us that conformal matter moves on geodesics of gab implying that test particles do

9The reason for this redefinition can be traced back to equate alternative notations where the Jordan frame metric
gJ

ab and the Einstein frame metric gE
ab are related through gJ

ab = A2(Φ)gE
ab [12, 23].
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not moves on geodesics of g̃ab.10 It is in the Jordan frame that ∇aT a
b = 0 is satisfied. This

implies that matter will feel a fifth force purely due to the gradients in Φ. A subtle conclusion,
is that, when written as a Scalar-Tensor theory, gravity is essentially GR with modifications due
to the effective contribution of the field Φ.

It is important to point out that there is a longstanding debate on the issue of conformal trans-
formations. From an early stage many questions arised of which frame should be regarded as
physical. One of the driving reasons to write f (R) gravity in the Einstein frame was that the
equations were much easy to handle. That is strictly speaking not true at all and can lead to con-
fusing statements. The equations are more difficult to threat numerically due to multiple field
redefinitions. How can we be sure that f (R) theory and STT in the Einstein Frame are indeed
the same theory in a different representation is a question that remains out of the scope of this
thesis. The reader is encouraged to follow the discussion in some recent works [63, 115, 130].

The final concept we introduce for the Scalar-Tensor formalism is that of the mass of the scalar
field Φ. There are multiple ways to make this precise [62]. Looking at the right-hand side of Eq.
(3.36), a possible definition of mass emerges as the second derivative of the potential m̃2(Φ) :=
d2VBL/dΦ2

∣∣∣
Φmin

which is true in the absence of matter. Corresponding to this transformation,
one can express the derivative of the Einstein frame potential in terms of R, φ and Φ by noticing,
that

dVBL

dΦ
=

dVBL

dR
dR
dφ

dφ
dΦ

. (3.38)

Let us perform the first and second derivatives of the potential (3.30)

dVBL

dΦ
=

√
2
3κ

2 f − R fR
2 f 2

R

,
d2VBL

dΦ2 =
1

3 fRR

1 +
R fRR

fR
−

4 f fRR

f 2
R

 . (3.39)

The reader who is encountering the apparatus for making the transition from R to Φ may be
aghast at the seeming complexity. We have no comfort to offer. Nevertheless, in what follows
we will simply forge ahead under the JPS formalism not before explaining the stark differences
between both formalisms.

3.1.3 Scalar Tensor vs JPS formulation

A striking issue pointed out by Jaime et al. [78] in the context of static and spherically symmetric
spacetimes is that the scalar field potential under the STT approach might be multi-valued. This
is true, for example, for the Starobinsky f (R) model proposed to explain the late accelerated
expansion [137] (see section 4.1.2). The transformation to the Jordan frame requires fRR(R) , 0,
so, if it vanishes at some point R0, then the scalar field cannot be inverted and the potential
becomes multivalued. As a result, we may need to choose among different sets of solutions of

10Indeed, the conservation equation for the stress energy tensor is not conformally invariant. For a symmetric
tensor T ab = T ba we have [148],

∇̃a(ΩsT ab) = Ωs∇aT ab + (s + n + 2)Ωs−1T ab∇aΩ −Ωs−1gbaT∇aΩ,

where s is the conformal weight and n is the dimension of the manifold. In this case n = 4 and since T̃ab = Ω−2Tab,
then T̃ ab = Ω−6T ab and s = −6. Thus, it follows that ∇̃a(ΩsT ab) = −Ω−7Tgba∇aΩ = −Ω−5Tg̃ba∇aΩ = −Ω−1T̃ ∇̃bΩ.
Recall that Ω = exp

{
−Q
√
κΦ

}
thus the conservation law of Eq. (3.37) is recovered.
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R( fR) = R(φ) which, implies that R(φ) is not unique [29]. This is a prime requirement for the
construction of V(φ). If there is not a one-to-one relation between φ and R, there is no guarantee
that the potential has no pathological features. Single valueness is a requirement to construct
well-behaved potentials.

These patologies present in the potential might be the route of some curvature singularities
reported in [66]. Miranda et al. [96] proposed a f (R) model that is free of such pathologies
and is well-behaved during cosmological evolution and the construction of compact (see section
4.1.1).

One of the main advantages of the JPS formalism is that it does not resort on the usual mapping
to STT, and therefore, does not deal with this kind pathological behavior.

3.2 Cosmology in f (R) gravity

Although f (R) cosmology is out of scope of this thesis we stress again that many f (R) models
have been proposed in the context of cosmic acceleration (see e.g. [131]). Let us recall that the
main interest of studying f (R) gravity lies in its potential to explain cosmological observations
without the introduction of the dark sector. To be more explicit, the main property of f (R)
models is the natural introduction of an effective cosmological constant. When the matter terms
are negible or sufficiently small (Tab ≈ 0), e.g. at the late universe, the JPS equations (3.5) admit
the solution R = RdS = const which is a zero of the derivative potential dV(R)/dR (see Eq (3.8)).
In this way, Eq. (3.6) reads Gab = −Λeffgab, where

Λeff =
RdS

4
(3.40)

which gives rise to the de Sitter type of solutions, where the asymptotic value RdS of the Ricci
scalar mimics the role of the cosmological constant. For instance, in the context of the previous
section the metric functions behave far away from the star as follows

n(r) = m(r)−1 = 1 − Λeff

r2

3
. (3.41)

In turn, it becomes mandatory to ensure the existence of the trivial solution of Eq. (3.5) provided
by Eq. (3.40) in various f (R) models, like the ones presented in Chapter 4, in order to produce
a late time expansion. The above remarks indicate that a local minimum of the potential (3.9)
is in fact the asymptotic value of the Ricci scalar towards the universe will evolve to. Hence, as
we will further explain in section 4.1 this local minimum strongly depends on the value of the
chosen parameters for each f (R) model. For a more detailed review of f (R) cosmology we refer
to the reader to [50, 79, 104].

3.3 Static and spherically symmetric spacetimes

Let us consider the fields equations for stars in static equilibrium in the framework of f (R) mod-
els when given an EoS to describe its matter content. So far, static and spherical configurations
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in f (R) gravity have been studied in Refs. [2, 48, 49, 56, 67, 73, 83, 99–102, 127, 145, 154]. A
more detailed review on this studies is presented in Section 4.3.

Cosmology was usually the prime subject of f (R) gravity, since the first inflationary model
f (R) = R + αR2 proposed by Starobinsky [136] and then, as models of accelerated expansion.
Many decades after examining modifications of GR have also motivated their confrontation with
other experimental tests. Renewed interest in f (R) models was brought because they were once
again thought as viable candidates for the weak field gravity in light of the chameleon mecha-
nism [27, 86]. In fact, solar system observations offer a essential laboratory by comparing the
parametrized post-Newtonian (PPN) parameters with observations. For that, it is first necessary
to obtain the metric outside of a star like the Sun.

Hereafter, we follow the JPS formalism presented in Section 3.1.1. The starting point is to obtain
the field equations for a spherically symmetric and static matter distribution. Such an object is
given by the line element

ds2 = −n(r)dt2 + m(r)dr2 + r2dΩ2, (3.42)

where dΩ2 = dθ2 + sin θdϕ2. Plugin the metric (3.42) in Eq. (3.5) yields

R′′ =
1

3 fRR

[
m(κT + 2 f − R fR) − 3 fRRRR′2

]
+

(
m′

2m
−

n′

2n
−

2
r

)
R′, (3.43)

where ′ = d/dr. From the t − t, r − r and θ − θ components of Eq. (3.6) and using Eq. (3.43) we
obtain [78]

m′ =
m

r(2 fR + rR′ fRR)

{
2 fR(1 − m) − 2mr2κT t

t +
mr2

3
(R fR + f + 2κT ) , (3.44a)

+
rR′ fRR

fR

[
mr2

3
(2R fR − f + 2κT ) − κmr2(T t

t + T r
r ) + 2(1 − m) fR + 2rR′ fRR

] }
,

n′ =
n

r(2 fR + rR′ fRR)

[
mr2( f − R fR + 2κT r

r ) + 2 fR(m − 1) − 4rR′ fRR
]
, (3.44b)

n′′ =
2nm

fR

[
κT θ

θ −
1
6

(R fR + f + 2κT ) +
R′ fRR

m

]
+

n
2r

[
2
(
m′

m
−

n′

n

)
+

n′r
n

(
m′

m
+

n′

n

)]
. (3.44c)

Note that Eqs. (3.44b) and (3.44c) are not independent. One has the freedom to choose any of
the two and then use the remaining one to check the solutions. In order to close the system a
fluid EoS, ρ = ρ(p) is required. If we set f (R) = R in Eqs. (3.44) they reduce to Eqs. (2.22)
which ensure the correct limit to GR. On the other hand, the matter variables are governed by
∇aT ab = 0. For a perfect fluid Tab = (ρ + p)uaub + gab p it follows that

p′ = −(ρ + p)
n′

2n
, (3.45)

where it is important to note that n′ is given explicitly by the right-hand side of Eq. (3.44b).
Therefor, this is the modified TOV equation of hydrostatic equilibrium for f (R) gravity in the
JPS formalism. To solve the system of differential equations, we should impose boundary con-
ditions. We will comeback to these equations later on Chapter 4. For now, let us continue with
the general constraints an f (R) theory should satisfy.
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3.4 Viability of f (R) gravity

Given the apparent freedom on the form of the f (R) function, it has become evident that, to
propose a model consistent with observational data, specific constraints should be imposed.
However, so far it is not clear that there exists a single f (R) model capable of passing all avail-
able cosmological and astrophysical tests. Below, we consider the observational and theoretical
constraints imposed on any metric f (R) gravity in cosmological scale and in the solar system.

In short, despite the primary role that astrophysical and cosmological observations play, not all
f (R) models have been able to account for every energy or time scale.

3.4.1 Cosmological Constraints

In order to satisfy the observational tests on cosmological scales, a viable f (R) model should
mimic the ΛCDM model, at late times. As pointed out in Eq. (3.40), we need that the value Λeff

is close to the observed cosmological constant Λ. Amendola et al. [5] have derived the condi-
tions regarding the cosmological viability of f (R) models in order to recover the cosmological
eras dominated by radiation, then by matter, and finally by acceleration. These conditions are as
follows

m(r ≈ −1) ≈ 0
dm
dr

(r ≈ −1) > −10 < m (r ≈ −2) ≤ 1 (3.46)

m :=
R fRR(R)

fR
r :=

R fR(R)
f (R)

. (3.47)

We urge the reader not to confuse these variables with the metric function m(r) and the radial
coordinate r but we have kept the notation used by Amendola et al. [5]. In addition to the afore-
mentioned constraints, a generic f (R) model should be described by monotonically growing and
convex functions in order to avoid the presence of ghosts and instabilities,

fR(R) > 0 fRR(R) >0. (3.48)

Moreover, the condition 0 < fRR(RdS) < ∞ is usually imposed to avoid exponentially growing
modes when perturbing around the value R = RdS [29].

3.4.2 Local gravity constraints

It has been shown that many choices of the f (R) function widely agree with cosmological ob-
servations. But to make such f (R) satisfy the bounds on the existence of extra scalar degrees of
freedom at the same time as describing the dark energy, has been subject of controversy [41, 57,
61].

Since highly accurate solar system tests, including orbital precession, gravitational Doppler ef-
fect and light bending, among others, they account for the extraordinary success of GR and so a
viable cosmological f (R) theory is expected to pass as well all the current tests that GR has suc-
cessfully passed. In this regime we can safely assume that the gravitational field is weak and the
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velocity of the planets is slow compared with c. Thus, it is natural to consider the PPN formalism
to solar system tests. It took some time before a significant consensus regarding the weak-field
limit in f (R) gravity was displayed. As mentioned briefly in section 3.1.2, the value ωBD = 0
was used wrongly to conclude that f (R) theories were ruled out since this led to γ = 1/2 [41] for
this PPN parameter as opposed to the value γ = 1 that it is found by light deflection in the so-
lar system experiments. This wrong conclusion was derived from the assumption that standard
BD theory has no scalar field potential. Nevertheless, this γ parameter depends crucially on the
presence of such scalar field potential. Studies against the γ ≈ 1 are shown in for example [103,
125]. In particular, careful analysis of solar system tests (at the non-linear level) in f (R) theories
are found to be in [36, 41, 42, 51, 64, 68, 94, 103, 155].

For completeness it is enlightening to provide the incorrect naive perturbative analysis that
was used in the past to claim that γ = 1/2. We follow [103], in the sense that the scalar degree
of freedom is the Ricci scalar as in the JPS formulation instead of the auxiliary redefinition in
terms of φ. As a first step, let us consider Eq.(3.43) with a Minkoswki background near the Sun,
meaning that the metric functions n and m are close to one, this yields

R′′ +
2R′

r
=

1
3 fRR

(
κT + 2 f − R fR − 3 fRRRR′2

)
. (3.49)

Eq. (3.49) has a similar structure to that of the original chameleon model [86, 87]. In section
3.5 we give further details. We emphasize that in most treatments [61, 68] Eq. (3.49) is written
in terms of φ which corresponds to

φ′′ +
2φ′

r
=

1
3

(κT + 2 f − Rφ) . (3.50)

Nevertheless, as Negrelli et al. [103] pointed out the main disadvantage of using Eq. (3.50) is the
necessity of inverting all R dependent quantities in terms of φ. Considering the metric around
the Sun very close to a flat background we define

n(r) = 1 − 2Ξ(r), m(r) = 1 + 2ψ(r), (3.51)

where |Ξ(r)| � 1 and |ψ(r)| � 1. If we linearize the Ricci scalar around the minimum value R0

of the scalar field potential, that is, R = R0 + R̃, and drop second order terms in R̃, Eq. (3.49)
takes the form

R̃′′ +
2R̃
r
≈

κT
3 fRR0

+ m2
eff,0R̃, (3.52)

where the effective mass is given as in (3.13), except that is evaluated at the minimum R0,

m2
eff,0 =

2 f0 − R2
0 fRR0

3R0 fRR0

. (3.53)

The quantities with the subscript 0 are evaluated at R0. At this point, let us remind that the
minimum is of the order of cosmological density, R0 ∼ H2

0 . Thus, m2
eff,0 � 1 in the solar system.

Thus, Eq. (3.52) reduces to

R̃′′ +
2R̃′

r
≈

κT
fRR0

. (3.54)
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This is the key equation that led to the wrong value γ = 1/2, since the GR limit cannot be
recover from Eq. (3.54) as we will see next. Under the assumption that the interior of the Sun is
described by a non-relativistic incompressible fluid T ≈ −ρ� the solution of Eq. (3.54) outside
the Sun is given by11

R̃ =
κM�

12π fRR0

1
r
. (3.55)

Using the above solution in the linearized versions of Eq. (3.44a) and (4.30d) yields [103]

ψ ≈
κM�

12π fR0

1
r

Ξ =
κM�
6π fR0

1
r
. (3.56)

According to this solution which turns to be independent of a particular f (R) model, the PPN γ

parameter is given by

γ = ψ/Ξ ≈
1
2
, (3.57)

which clearly violates the strict experimental bound on the γ parameter (|γ − 1| � 10−5 [20]).
This is, of course, a consequence of the flawed analysis since the assumptions taken from the
beginning were incorrect. Similar analyses have been carried out in literature [64, 68]. At the
end, as Negrelli et al. [103] conclude, the naive results arise because essentially they do not take
into account the screening effects associated with the scalar degree of freedom which emerge
due to the non-linearities of the theory.

In light of the discussion presented above, we can now summarize the properties that a viable
dark energy f (R) model should satisfy.In summary, for a f (R) model to be viable it must:

• Be free from instabilities and ghosts.

• Be able to generate an accelerated expansion of the Universe (without an explicitly cos-
mological constant).

• Have a correct weak field limit: pass all the available solar system.

3.5 Chameleon mechanism and f (R) gravity

A construction of a cosmological relevant f (R) theory is expected to have long-range type forces,
also known as a fifth force, with an effective mass of meff . H0. Since the dimensionless strength
of this additional scalar fifth force is of order unity, it means that matter feels an additional
force as strong as gravity itself. Therefore, realistic modifications of gravity must contain a
mechanism to suppress scalar interactions at smaller scales, but deviate from GR at one curvature
scale. Several screening mechanism have been proposed in the literature [23, 24] since they are
relatively a generic prediction in modified gravity theories. Generally, they arise through the
non-linear dynamics to effectively decouple cosmological and solar system or large structure

11We only write the solution outside the Sun, but in principle a full solution, like the one given in [103] is possible
if using the matching conditions at the Sun radius.
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scales. Although it is out of the scope of this thesis, a brief review of this class of mechanisms
and its relationship with f (R) gravity is worth considering.

The nature and significance of a screening mechanism takes into account the abysmal scale
difference of two separate densities. In fact, there are 29 orders of magnitude separating the
cosmological and solar densities. Furthermore, at the level of the action two main screening
mechanisms classes can be elucidated. The first one is of the Vainshtein type [24, 121], whose
main function is to suppress the scalar field gradient in the vicinity of the object. The other
one is the Chameleon type [86], where the scalar field effective mass changes depending on the
environment density. It is precisely this variation in the mass that favors the screening in the
vicinity of the Sun.

The chameleon type screening mechanism has a standard kinetic term and a non-linear effective
potential which depends on the local matter density. In this kind of models the scalar field value
minimizing the effective potential depends on the local matter density. Hence, the scalaron
mass naturally acquires density dependence. It is important to note that this mechanism was
highlighted first under the Scalar-tensor formulation of f (R) since its origin was based on this
class of theories [23, 27, 86, 87, 142].

The classical picture of a chameleon field begins by introducing the action for gravity, matter,
and the chameleon field φ. Then, the equation of motion for the scalar field can be written down
in terms of a bare quintessence-type potential V and a contribution of the matter fields. It is
precisely this effective potential that gives rise to a local relationship between the mass of the
chameleon field and the density of matter [27, 86]. A chameleon theory is essentially a STT in
which the potential is constrained to have certain features. Thus, let us come back to Section
3.1.2. The scalar field equation (3.36) can be rewritten as follows:

�̃Φ =
dVe f f

BL

dΦ
:=

dVBL

dΦ
− α(Φ)T̃ . (3.58)

For non-relativistic matter governed by a perfect fluid energy-momentum tensor, −ρ̃ ≈ T̃ . Since
the two energy-momentum tensors are related through a conformal factor (3.34), then the as-
sumption T ≈ −ρ ≈ −ρ̃ ≈ T̃ holds12. Thus, the effective potential in the Einstein frame takes
the form

Ve f f
BL = V(Φ) + ρ ln A(Φ), (3.59)

and thus, depends on the local matter distribution. Let us now consider a spherically symmetric
body with radius r̃c in the Einstein frame. It follows accordingly that Eq. (3.58) becomes

d2Φ

dr̃2 +
2
r̃

dΦ

dr̃
−

dVe f f
BL

dΦ
= 0. (3.60)

Then, if we assume two regions that differ in density, that is, the case where inside the object
ρ = ρa (r̃ < r̃c) and ρ = ρb outside the body (r̃ > r̃c). Then, the effective potential has two
minima at the field values

dVBL(Φ)
dΦ

+ κQ exp
[
Q
√
κΦ

]
ρ
∣∣∣∣
ρ=ρa=ρb

= 0, (3.61)

12The traces in both frames are related by T̃ = g̃abT̃ab = A2gabT̃ab = A4gabTab = A4T .
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where we have used Q = −
√

1/6. This indicates that the effective mass of the scalar field Φ

changes dramatically from inner to outer density region. In other words, the denser the environ-
ment, the more massive is the chameleon field Φ which decreases the range of the fifth force. In
this way, the mass field might acquire a sufficiently large value near a massive object (Sun) to
hide the local tests. This region is known as the thin-shell gap. The field Φ in this region has a
characteristic profile interpolating between two equilibrium values Φa and Φb. Qualitatively, if
at r̃ = 0 the scalar field value is close to Φa, it stays close to Φa up until some radius r̃1. For a
spherically symmetric body it is found that, to develop a thin-shell region, the condition

∆r̃c

r̃c
∼ h

(
ρa

ρb

)
� 1 (3.62)

should be satisfied [50, 102, 142], where h is a function that depends on the selected f (R) model
and ∆r̃c = r̃c − r̃1. Eq. 3.62 tells us that the thickness ∆r̃c of the region where the field has
an interpolating profile, should be very small or, in other words, r̃1 has to be close to the body
radius r̃c. Moreover, for sufficient massive bodies (such as the Sun), Eq. 3.62 coincides with the
thin-shell parameter εth [86, 87], which, as in the case of the γ parameter, is heavily constrained
by experiments. In particular, Equivalence Principle (EP) experiments such torsion-balance
measurements [151], place bounds on εth. Using the experimental bound of the Eötvos ratio
ηET for the difference of two accelerations (free fall accelerations of the Earth and the Moon
towards the Sun), ηET < 10−13 [151], provided that Earth, Sun, and Moon have thin-shells
(satisfy condition 3.62), the thin-shell parameter is bounded by [36, 94, 144]

εth =
∆r̃⊕
r̃⊕

< 2.2 × 106, (3.63)

where the subscript ⊕ refers to the Earth radius. This bound provides a tight constraint on a f (R)
model seeking to satisfy local gravity constraints.

3.6 Discussion

We should point out that the estimations in the last sections were done by doing the transforma-
tion of f (R) to STT followed by a series of approximations. However, to study the behaviour of
the chameleon mechanism in a more quantitative way, the full non-linear system of equations
should be solved. Although the chameleon effect seems to be generic to f (R) theories [23, 36,
64, 103, 142], there are no numerical studies supporting it.

Up to this point we have summarized the general properties of f (R) theories, its theoretical and
experimental constraints and its different formulations. We have also outlined the framework
for the analysis of static and spherically spacetimes by deriving its field equations in Section
3.3. These are precisely the equations that we are going to solve numerically in the following
chapter.

As we emphasized in the sections above, it is advantageous to work in the JPS formalism to
avoid the back and forth between the Einstein and Jordan frames. If the chameleon mechanism
is independent on the f (R) formulation, it should be noticed at the level of the full non-linear
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system. However, as we will see, on the basis of our analysis it is not clear that this effect takes
part.





Chapter 4

Stars in f (R) gravity

In the previous chapter we examined the general properties of f (R) gravity and laid down the
theoretical framework for the analysis of the hydrostatic equilibrium of stellar structure. We are
now in a position to perform such analysis on specific f (R) functions. In this chapter we discuss
some cosmologically viable f (R) models and obtain numerical solutions for some equilibrium
configurations. We focus only on constant density stars, as we did for the Sun in section 4.1.1,
since they represent the most simple scenario to study the behavior of solutions at different
scales.1 It is important to stress that we will use the JPS formalism as opposed to the STT ap-
proach (see Appendix A), which has been used extensively in the past because for our purposes
it is not only unnecessary but in many cases it turns to be ill-defined in several circumstances
(namely when fRR ≥ 0).

4.1 f (R) models

As explained thoroughly in section 3.4, one of the motivations to study f (R) gravity is that it
can account for the late accelerated cosmic expansion. In that section we also mentioned the
conditions that f (R) should satisfy in order to obtain a consistent cosmological evolution. In
this section we shall review first some of the most successful f (R) models used to mimic dark
energy. All these models have the feature that they do not include an explicit cosmological
constant ( f (0) = 0), in contrast to what happens in GR ( fGR(R) = R− 2Λ) where fGR(0) = −2Λ.
In the past, several types of f (R) models have been proposed as dark energy models. However
most of them are either not cosmologically viable or, in practice, they cannot be differentiated
from ΛCDM. For instance, models of the kind f (R) = R − α/Rn (α > 0 n > 0), which were
one of the first analyzed [4, 39, 57], failed because of the negativity of the second derivative
which violates the condition fRR > 0 and led to instabilities. Here we focus on models which, in
general, can be easily seen as the usual Ricci scalar R term of GR plus some function of R that
has a built-in scale R∗ ∼ H2

0 in order to produce the correct cosmological history. These models

1Originally we consider the study of a compressible object such as a polytrope model for the sun, however, as we
will see, we were incapable to do so, even for the constant density stars. Therefore the compressible model analysis
seemed unnecessary at this point.
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have the generic form

f (R) = R + R∗F1

(
R
R∗

)
. (4.1)

Taking z = R/R∗, the derivatives of Eq. (4.1) take the form

fR = 1 +
1

R∗

dF1

dz
, fRR =

1
R∗

d2F1

dz2 . (4.2)

Some of the f (R) models presented in the following section were supposed to satisfy the solar
system experiments, and as we mentioned above, they have the capability to be cosmological
successful. However, as we will see in this thesis, it is not obvious that in such models solar
system tests can be recovered (at least at the full non-linear level). They have also been exten-
sively studied under different astrophysical scenarios. In particular, such selection of models
have been thoroughly analyzed under the JPS formalism (cf. section 3.1.1) by Jaime et al. [79]
and Negrelli et al. [103].

4.1.1 MJWQ f (R) model

The f (R) logarithmic model was proposed by Miranda et al. [96]:

f (R)MJWQ = R − αMR∗ ln
(
1 +

R
R∗

)
, (4.3)

where R∗ and αM are free positive parameters. It is straightforward to write the derivatives2 of
f (R)MJWQ as

fR = 1 − αM

(
1 +

R
R∗

)−1

, fRR =
αM

R∗

(
1 +

R
R∗

)−2

, fRRR = −
2αM

R2
∗

(
1 +

R
R∗

)−3

. (4.4)

In this way, we associate to this f (R) function the following scalar potential

V(R)MJWQ =
R2
∗

6

[(
1 +

R
R∗

) (
R
R∗

+ 6αM − 1
)
− 2αM

(
3 + 2

R
R∗

)
ln

(
1 +

R
R∗

)]
. (4.5)

Recall that we remain in the original variables and no transformation to STT whatsoever has
been made. Eq. (4.5) is obtained from Eq. (3.8) under the JPS formalism. Figure 4.1 depicts the
behavior of the potential (4.5) and its derivative for different values of αM. From that figure, we
observe clearly the minimum value (purple stars), which corresponds to R1 > 0, and is the one
that should be reached asymptotically (in space, for stellar objects and in time, for cosmology)
by a non-trivial solution for R in regions where matter becomes essentially absent and gives rise
to the effective cosmological constant Λeff = R1/4.3

Note that Eqs. (4.4) still depend on the parameter αM. We shall consider two values for αM.
For the first choice we follow [79] and set αM = 2 and R∗ = σ∗H2

0 , where H2
0 is the Hubble

constant today and σ∗ is a dimensionless parameter which is chosen to be σ∗ = 1. This choice

2We omit the superscripts referring to each f (R) model in its derivatives since the notation becomes convoluted.
3In the STT this is the only f (R) model where the resulting scalar field potential is single valued, see Appendix

A.
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of αM was proved to reproduce correctly the cosmological evolution history [79], however, such
a model seems to be inconsistent with the power matter spectrum and with the solar system tests
[21, 51, 97, 103]. The second choice is αM = 1.2 and was considered in [78, 96]. Here we used
this value in order to check the dependence of this model on the initial parameters, such as the
central pressure and density.

In this f (R) model, the condition fRR > 0 holds in all the domain where the model is defined
(R/R∗ > −1, see bottom panel of Fig. 4.4), and thus, is free from tachyons and free from ghosts
( fR > 0, cf. Section 3.4.1). Using the notation of Eq. (4.2), it follows that limR→∞ F1/R = 0 and
limR→∞ dF1/dR = 0, hence GR is recovered at early times.
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Figure 4.1: The scalar potential V(R)MJWQ (left panel) and its derivative (right panel) for the
MJWQ model. The purple star represents the local minimum for each choice of the αM param-

eter. The dotted line corresponds to dV/dR (cf. Eq.(3.7) ).

4.1.2 Starobinsky f (R) model

We now turn our attention to the f (R) model proposed by Starobinsky [137] given by

f (R)S = R + λRS

1 +
R2

R2
S

−q

− 1
 , (4.6)

with q and λ positive parameters and RS a natural cosmological scale given by RS = σS H2
0c−2,

where σS is a dimensionless parameter. Computing the derivatives of Eq. (4.6) is straightfor-
ward,

fR = 1 −
2Rλq

(
R2

R2
S

)−q

RS

(
R2

R2
S

+ 1
) , fRR =

2RS λq
(

R2+R2
S

R2
S

)−q (
2R2 (q + 1) − R2 − R2

S

)
(
R2 + R2

S

)2 , (4.7)

fRRR =

4RRS λq
(

R2+R2
S

R2
S

)−q (
−2R2

(
q2 + 3q + 2

)
+ 3

(
R2 + R2

S

)
(q + 1)

)
(
R2 + R2

S

)3 . (4.8)
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The explicit expression of the scalar potential is not very enlightening for an arbitrary value of
q, thus we omit it. However, for the case of q = 2, the potential simplifies to

V(R)STBS =
R2
∗

3

 R
2R∗

[
R
R∗
− 4λ − 2λ

(
1 +

R
R∗

)]−1

+ 3λ arctan
(

R
R∗

) . (4.9)

A variety of choices can be made regarding the parameters of the Starobinsky model. Fig. 4.2
depicts the scalar potential and its derivatives for the values of λ, q and σs presented in Table
4.1.

For instance, with the values used by Kobayashi and Maeda [88] (KM1 and KM2 from Table
4.1), it is not clear that one can produce a correct cosmological history. Another choice of
parameters, that indeed is able to produce an adequate matter epoch prior to the accelerated era,
is the one analyzed in Refs. [79, 98] (JM from Table 4.1). Static and spherically symmetric
configurations in this model have been studied numerically and non-perturbatively in Refs. [12,
13, 145] using the STT approach; a non-linear approach to stellar configurations is presented in
[103].

λ q σs

KM1 1.827 2 1
KM2 2.088 1 1

JS 1 2 4.17

Table 4.1: Values for the parameters of the Starobinsky f (R) model (Eq. 4.9). The choices
KM1 and KM2 are from Refs. [88], whereas the JS is taken from [79].

The properties Starobinksy f (R) model can be summarized as follows. In the high-curvature
regime, |R| � RS , the model yields f (R) = R − 2Λ(∞) where the high-curvature value of
the effective cosmological constant is Λ(∞) = λR0/2. On the other hand, fRR = 0 at R =

±RS /
√

2q + 1, thus, fRR is not positive definite (bottom left panel of Fig. ??) and leads to ill-
defined potentials when transformed to the STT, rising serious doubts when this approach is
used (see Appendix A and [29]).
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Figure 4.2: Same as Fig. 4.1 but for the Starobinksy f (R) model with the parameters listed on
Table 4.1.
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4.1.3 Hu-Sawicki f (R) model

The Hu- Sawicki [75] model is given by the following f (R) function

f (R)HS = R −
c1m2

(
R

m2

)n

c2
(

R
m2

)n
+ 1

, (4.10)

where m2, c1, c2 and n > 0 are its parameters. Following Jaime et al. [78], we assume the
parameters m2 = 0.24H2

0c−2, c1 = 1.25×10−3, c2 = 6.56×10−5 and n = 4, in order to reproduce
the observed cosmological constant. The derivatives of Eq. (4.10) are

fR = 1 +
c1c2m2n

(
R

m2

)2n

R
(
c2

(
R

m2

)n
+ 1

)2 −
c1m2n

(
R

m2

)n

R
(
c2

(
R

m2

)n
+ 1

) (4.11a)

fRR =

c1m2n
(

R
m2

)n

− 2c2
2n

(
R

m2

)2n

(
c2

(
R

m2

)n
+1

)2 +
3c2n

(
R

m2

)n

c2

(
R

m2

)n
+1
−

c2

(
R

m2

)n

c2

(
R

m2

)n
+1
− n + 1


R2

(
c2

(
R

m2

)n
+ 1

) (4.11b)

fRRR =
c1m2n

R3
(
c2

(
R

m2

)n
+ 1

) ( R
m2

)n
 6c3

2n2
(

R
m2

)3n

(
c2

(
R

m2

)n
+ 1

)3 −
12c2

2n2
(

R
m2

)2n

(
c2

(
R

m2

)n
+ 1

)2 (4.11c)

+
6c2

2n
(

R
m2

)2n

(
c2

(
R

m2

)n
+ 1

)2 +
7c2n2

(
R

m2

)n

c2
(

R
m2

)n
+ 1
−

9c2n
(

R
m2

)n

c2
(

R
m2

)n
+ 1

+
2c2

(
R

m2

)n

c2
(

R
m2

)n
+ 1
− n2 + 3n − 2

 (4.11d)

The analytical expression for the potential V(R) is rather involved and we do not include it
explicitly, but its expression is similar to the Starobinsky scalar potential. Fig. 4.3 shows the
scalar potential (left panel) and its derivative (right panel). In this model, the global minimum
sits at R1 ≈ 8.931R∗. Thus, Λeff = R1/4 ≈ 2.23R∗. One thing to notice is that the Hu-Sawicki
model with n = 2 model is equivalent to the Starobinsky model with q = 2, modulo a redefinition
of their parameters (cf. Section 4.2).
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Figure 4.3: Same as Fig. 4.1 but for the Hu-Sawicki f (R) model with the cosmological param-
eters as in [79].



48

It is important to remark that the Hu-Sawicki model was carefully constructed to pass the solar
system tests via the Chameleon mechanism [75]. We will elaborate more about this in Section
4.3. The Hu-Sawicki together with the Starobinsky f (R) model, have been the most analyzed
models in the past [36, 53, 103, 143].

Finally, Figure 4.4 depicts the behavior of the f (R) function and its derivatives for all the f (R)
models considered in this work. Specifically, in the top left and right panels we plot f (R) and
fR, respectively. We also show fGR(R) = R − 2Λ and GR without cosmological constant. The
bottom panel shows the second derivative fRR (left), and third derivative fRRR (right). Clearly,
fRR = 0 near R ∼ 2R∗ for the Starobinsky and the Hu-Sawicki models. This implies that fRR

is not positive definite, and thus, the R equation 3.43 will blow up. We restrict ourselves to the
domain where fRR > 0 to avoid such calamities. As it turns out, in the limit where R � R∗,
fR → 1, whereas fRRR, fRR → 0, in the same limit. This behavior already introduces a numerical
difficulty since, for an f (R) theory to not deviate from GR in the regime where R ∼ κρ, the
second and third derivative will be close to zero and both quantities appear explicitly in the field
equations (3.44).
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Figure 4.4: Top panels: f (R) function for all models considered (left panel). Specifically, the
JM values (cf. Table 4.1) for the Starobinsky model and αM = 2 for the MJWQ model. For
reference, the GR case ( f (R)GR = R) and GR + Λ are depicted. Note that, as R/R∗ increases,
all the f (R) models tend to the form f (R) ∼ R ≈ 2Λeff. The first derivative fR(R) for the same
three f (R) models is shown in right panel. Bottom panel: Second derivative fRR (left panel) and
third derivative fRRR (right panel). R is in units of R∗. Notice that fRR is not positive definite for

the Starobinsky and Hu-Sawicki functions. We restrict the solutions space to R > 0.
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4.2 Curvature regimes

The discussion in previous chapters has been limited to an arbitrary f (R) function. In this section
we focus, for concreteness, in the f (R) models introduced in previous section. Within the context
of equilibrium stars like the Sun, roughly two curvature regions can be identified. First we name
the high-curvature regime as the region where a non-trivial solution R(r) satisfies R � R∗ (see
Eq. (3.43)). Second, a low-curvature region is such that R ∼ R∗. This will, in general be true
provided that the high-curvature regime happens inside the object where the curvature is of the
order of the central density (R ∼ κρc) and is much higher than the cosmological value R∗. On
the other hand, the low-curvature region will generally happen outside the stellar object.

Given these two regions, we can consider for each f (R) function a separation of the following
manner

f (R) = R + ∆, fR =1 + ∆R, fRR =∆RR, fRRR = ∆RRR, (4.12)

which isolates the correction to the linear term R. We observe that ∆ = R∗F(z) from Eq. (4.1).
For instance, in the Starobinsky model these functions read

∆S ≈λRS

( R
RS

)−2q

− 1

 , ∆S
R = −

2Rλq
(

R2

R2
S

)−q

RS

(
R2

R2
S

+ 1
) ≈ −2λq

(RS

R

)2q+1
, (4.13)

∆S
RR '

2λq(2q + 1)
RS

(
R

RS

)−2q−2

, (4.14)

where RS /κ is of the same order of magnitude as the cosmological density (ρΛ ∼ 10−29g/cm3).
Thus, we observe that ∆S � R and ∆S

R � 1, when R � RS .

On the other hand, for the Hu-Sawicki model, something similar happens. If we redefine its
parameters (see Eq. (4.10)) as λ = c1/c2, RS = m2 and n = 2q, the Hu-Sawicki function (4.10)
becomes

f (R)HS = R − λRc
(R/Rc)2q

(R/Rc)2q + 1
, (4.15)

where

∆HS ≈λRS

( R
RS

)−2q

− 1

 , (4.16)

∆HS
R = +

2λq (R/RS )2q−1[
(R/RS )2q + 1

]2 ≈ −2λq
(RS

R

)2q+1
, (4.17)

∆HS
RR =2qλRS

(
R

RS

)2q
 (R/RS )2q + 2q

[
(R/RS )2q − 1

]
+ 1

R2 [
(R/RS )2q + 1

]3

 ' 2λq(2q + 1)
RS

(
R

RS

)−2q−2

, (4.18)

which proves that, in the high-curvature regime, the Hu-Sawicki behaves similarly, if not iden-
tically, to the Starobisnky model or viceversa. This is not surprising since both models can be
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traced back to a function of the form [96, 143]

∆G = λβRS

(1 +

(
R

RS

)n)−1/β

− 1

 . (4.19)

In this way, if we choose β = 1 and n = 2q, we obtain the Hu-Sawicki function (4.15). On the
other hand, the choice n = 2 and 0 < β ≤ 1 corresponds to the Starobinsky parametrization of
Eq. (4.6). Moreover, in the case of β → ∞ and n = 1, the MJW (4.3) is recovered.4 Notice that
in the high-curvature regime Eq. (4.19) takes the form

∆G ≈ λβRS

( R
RS

)−n/β

− 1

 ∆G
R ≈ −λn

(
R

RS

)−(n/β+1)

. (4.20)

where it follows that ∆G
R � 1 when R � RS . We are now in a position to be more specific about

how the local constraints and the chameleon mechanism play a role.

Recall that the scalar potential in the JPS formalism VJPS (R) is given by Eq. (3.9). Using (4.20)
in the potential we obtain the high-curvature regime approximation

VJPS (R) = −
1
3

(R2 + R∆G) +

∫ R
x + ∆G(x)dx ≈ R3

S

(
R

RS

)n/β+4

, (4.21)

We stress that the introduction of this potential is useful to identify the critical points and it is
not used in the main numerical computations.

At the minima Rmin inside the object, where is expected that R ∼ κρc, the effective chameleon
mass m2

eff
, defined in Eq. (3.13) as the second derivative of VJPS (R) evaluated at Rmin, can be

approximated as

m2
eff =

1
3

[
fR
fRR
− R

] ∣∣∣∣∣∣
Rmin

=
1
3

 1
∆G

RR

+
∆G

R

∆G
RR

− R
 ∣∣∣∣∣∣

Rmin

≈
1

3∆G
RR

∣∣∣∣∣∣
Rmin

=
RS

3n/βλ + 1

(
R

RS

)n/β+2 ∣∣∣∣∣∣
Rmin

.

(4.22)
On the other hand, the extremum of the effective potential Veff

JPS(R,T ) (cf. Eq. (3.12)) is

2 f − R fR
∣∣∣∣
Rmin
≈ Rmin = −κT. (4.23)

Assuming T = κ(3pc − ρc), where pc and ρc are the central density and pressure respectively of
a stellar object, the mass in the high-curvature regime (4.22) is of the order of

meff ≈

(
RS

3n/βλ + 1

)1/2 (
−κ(3pc − ρc)

RS

)n/2β+1

, (4.24)

where RS ∼ κρΛ. It should be noticed that in general, the Ricci scalar can vary in distance scales
of its Compton wavelength λR := m−1

e f f . As we will discuss below, this wavelength turns to be
very small compared to the radius of the object in the high-density regime. Thus, it becomes
crucial to calculate the ratio between the curvature length scale (i.e. the radius of the star r∗)
and the scalar field Compton wavelength r∗/λR, which will be proportional to the number of

4Also, if we let β = −1, which violates the cosmological viability conditions of Eq. (3.46), the model f (R) =

R − λRS (R/RS )n is recovered [39].
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integration steps in a brute force implementation. For that, recall from GR that r2
∗ = 12pc/(κρ2

c),
and using the non-relativistic approximation ρc � pc in (4.24), we obtain

r∗/λR ∼

(
ρc

ρΛ

)n/2β+1

, (4.25)

Thus, the size of r∗/λR depends on the density contrast, which happens to be absurdly large for
the actual densities of stellar objects, meaning that the number of steps needed for the integration
in the stellar interior is extremely large. As we will see in the next section this stark fact has
been the main difficulty so far to obtain numerical solutions for the stellar equilibrium in f (R)
theories.

4.3 Review of stellar configurations in f (R) gravity

Before proceeding to perform any calculation, it is worth considering the numerical status of
star-like object in this class of theories. As stressed in Chapter 3, in vacuum, cosmologically
viable f (R) naturally produce a de Sitter spacetime rather than the usual Minkwoski solution
of GR. This means that, to find a unique exterior solution for the stellar object, the interior
solution is matched to a de Sitter metric with an effective cosmological constant. In other words,
a complete solution of the field equations of f (R) gravity involves a fortiori two completely
different densities (or curvature scales). Indeed, as reflected in Section 4.1 each f (R) model is
characterized by a curvature scale R∗ := H2

0/c
2 which can be used to introduce an associated

density

ρ∗ :=
c4

8πG0

R∗
c2 ≈ 3.008 × 10−27kgm−3. (4.26)

If we take the density of the Sun as ρ� = 1408kg/m3, or worst of a neutron star density
ρNS w 1017kg m−3, then the density contrast between both scales becomes huge. This contrast
is shown in Table 4.2, the ratio between the solar density ρ� and the characteristic cosmological
density ρ∗ is of the order of ρ�/ρ∗ ∼ 1029 and only becomes worse when neutrons stars are con-
sidered (ρNS/ρ∗ ∼ 1044). This ratio appears naturally in the field equations as seen from their
dimensionless form (4.30) and the dimensionless parameters (4.31), and it is also intrinsically
responsible for the chameleon effect to take part (see Eq. (4.25)). This large disparity in density
scales has been a technical issue that one faces when integrating stellar objects embedded in a
realistic de Sitter background.

ρ[ kg/m3] ρ/ρ� ρ/ρ∗

ρ� 1408 1 4.6808 × 1029

ρ∗ 3.008 × 10−27 2.1363 × 10−30 1
ρNS 1017 ∼ 1014 ∼ 1044

Table 4.2: Density contrast depicted as the ratio between the involved characteristic densities.

So far, this technical problem has been present in all of the studies regarding stellar objects and,
in order to circumvent it, the majority of authors have considered objects far from representing
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real stars embedded in a realistic cosmological background. It is one of the main objectives of
this work to try to obtain numerical solutions for realistic objects.

In these studies there are basically two points of view. In one, the authors are not worried at
all of taking f (R) as a dark energy model, but simply, they use this class of theories as a proof
of concept for stellar configurations. This viewpoint encompasses studies of relativistic stars in
models such as f (R) = R + αR2 (analyzed briefly in the last chapter) [8, 10, 11, 37, 45, 67, 109,
153] f (R) = R + αR2 + β ln(R/µ2) [2, 6], or other even more complex f (R) functions [7, 10, 28,
73, 83, 85, 124]. This f (R) models are not cosmologically motivated and they are often treated
only in the strong field regime of gravity. In fact, from a perspective of curvature scales, one can
further see that the characteristic scales appearing in this models satisfy α, β · · · � R∗.

The other point of view, which is the one we are considering in this work, is to take the f (R)
theories as a universal model of nature that should be valid at all scales. Thus, we are essentially
dealing with viable dark energy f (R) models and trying to prove its validity in other gravity
sectors such as their stellar counterpart. Following this trend, stable star configurations have
been found in [6, 12, 13, 78, 88, 96]. In particular, the Newtonian limit of f (R) theories provides
further understanding of these models [28, 33, 34, 99, 100], together with solar systems tests
[36, 42, 61, 68, 94, 103]. Treating f (R) gravity as a chameleon theory also falls in this category
[23, 25, 48].

From these distinct points of view we can draw some preliminary conclusions about the status
of stars in f (R). It is immediately apparent that the choice of the parameters of the f (R) model
far from the characteristic cosmological scales permits to consider realistic central densities at
the sake of keeping a cosmological non-viable f (R) model. On the other hand, assuming f (R)
as a real alternative to the current ΛCDM paradigm, and as serious alternative theory of gravity,
leads to the technical difficulties presented at the beginning of this section. Let us highlight
some studies within this viewpoint.

Not so long after Frolov [66] pointed out that f (R) models generically suffer from the problem of
curvature singularities (later proved to be as a consequence of using the STT approach by Jaime
et al. [78]), Kobayashi and Maeda [88] considered the study of relativistic stars using incom-
pressible objects with relatively low central densities (ρc ∼ 106ρΛ) under the STT formalism in
the JF, and concluded that such objects cannot exist in the f (R) Starobinsky model due to the
same singularity encountered by Frolov [66]. They solved numerically the TOV equations pre-
sented in Appendix A. Given these circumstances multiple authors embarked on addressing the
existence of compact objects in cosmological viable f (R) models. Babichev and Langlois [12,
13] found numerical solutions corresponding to static star configurations with a strong gravita-
tional potential (Uc := GM∗/r∗ . 0.3) in the Starobinsky model. They used the STT conformal
transformation in the EF both for constant energy-density configurations and also for a poly-
tropic equation of state. Then in a different study again Kobayashi and Maeda [89] proceeded to
add a high-curvature correction ∼ Rm/µ2m−1 to remedy the nonexistence controversy. It seems
that such controversy was settled down by Upadhye and Hu [145] where, again, numerical solu-
tions were found but this time using the JF variables for constant density stars under wide range
of central pressures but keeping a extremely low central density ρc = 100ρΛ. One of the main
conclusions reached by Upadhye and Hu [145] was that such singularities encountered before
were due to numerical instabilities. Indeed, as we will see in the following sections, the scalar



53

field (R in the JPS approach rather than φ or Φ in the STT approach) value inside a compact
object can be very close to the value where the derivative of effective scalar potential becomes
very large. Another important remark made by Upadhye and Hu [145] was that the chameleon
screening effect is unrelated to strong gravitational field and thus can appear in non-relativistic
stars (like our sun U� ∼ 10−6). At roughly the same time, Miranda et al. [96] also made an
analysis on relativistic stars considering low central densities using their proposed model (cf
section 4.1.1) that was specifically designed to circumvent the divergences also mentioned in
[88]. Jaime et al. [78] also made a brief numerical analysis of practically the same kind of
stellar models alluded above but this time using the JPS formalism (cf. section 3.1.1).

For our purposes, it is important to acknowledged some works regarding solar system tests in
f (R) gravity. The analysis done by Guo [68] provides some solutions that might suggests that
the MJWQ is ruled out. As the works mentioned above, the author uses the JF as well and solve
numerically an approximated form of the equation for the scalar field φ = fR (specifically Eq.
(3.50)) for the Hu-Sawicki and the MJWQ f (R) models using a non-homogeneous density model
for the sun. According to the author, the chameleon screening effects can alleviate the theoretical
and the observed value of the PPN γ parameter. However, Guo does not use the cosmological
values for the model parameters. Even if one were to choose another set of parameters, it
is not clear that Guo’s numerical solutions (for the approximated version of the equation for
fR) can be used as an argument against the models themselves. In this way, Guo’s analysis is
fairly inconclusive since the author do not specify a clear relation between γ parameter and the
solutions that are reported.

Another worth mentioning analysis was given by Negrelli et al. [103]. Contrary to the afore-
mentioned works, they perform a novel non-standard linear perturbation approach in the JPS
formalism using the Ricci scalar itself as the fundamental variable. They manage to obtain so-
lutions for both the metric and the Ricci scalar for the same models considered in this work5

and conclude that the MJWQ was incompatible with γ = 1 leaving the Starobinsky and the
Hu-Sawicki f (R) models as the only ones that satisfy the experimental bounds on γ. They con-
sider the solar system as a model of three constant density layers (the sun, its corona and the
interstellar medium). In this way, they effectively manage to work with realistic densities for
the Sun an its surrounding medium. An important aspect arising from their solutions, is that the
Ricci scalar profile follows the density function as the field changes in the radial coordinate r.

Closing this section we comment on the paper by Hu and Sawicki [75] where they introduced
their model (cf. section 4.1.3) and confront it with the available solar system constraints. They
consider an inhomogeneous model for the Sun and claimed to solve numerically (the perturbed)
the field equations written in the ST way in the JF.6 We must point out that their work appears to
be the only one in the literature that presents a specific profile of the Ricci scalar for the case of
the Sun as a result of solving numerical the TOV modified equations in f (R) gravity. However,
it is unclear how they managed to circumvent the density problem that we discuss before.

In summary, numerical solutions of stellar objects in viable f (R) models are plagued with contra-
dictory and controversial claims. How to understand the status and significance of real physical
solutions clearly presents serious challenge that we will explore in the following sections.

5They consider an additional f (R) model: the exponential model given by f (R) = R − βR∗(1 − exp−R/R∗) [44].
6According to our notation of Eq. (4.12) ∆(R) = fHS (R) where fHS (R) is the function that they used.
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4.4 Numerical strategy

The numerical method chosen to solve the modified TOV equations in f (R) gravity is based
in a higher-order adaptive size Runge-Kutta method that implements a shooting technique (cf.
Section 4.4.2). This is a widely used tecnhique to solve boundary value problems for differential
equations, which we discuss in more detail below. In order to implement that method, the first
step is to write the set of differential equations of Section 3.3 in a suitable way. For this purpose
we introduce the following rescaled dimensionless variables

r = r̂r?, R = R̂R?, ρ = ρ̂ρ?, p = p̂p?, f̂Rl = Rl−1
? fRl , (4.27)

where the index l indicates the order of the derivative respect R. From Eq. (4.1), we observe that
the f (R) function intrinsically contains the numerical contrast η,

f̂ (R̂) :=
f (R̂)
R?

= R̂ + ηF1

(
R̂
η

)
, (4.28)

where η := R∗/R? is the ratio between the cosmological scale R∗ and the units chosen to measure
R. Since we are considering a perfect fluid, it follows from Eq. (4.27) that the dimensionless
trace of the energy-momentum tensor is given by

T̂ =
T
p?

=

(
−
ρ̂

b
+ 3 p̂

)
, (4.29)

where, as in GR, b = p?/ρ?c2. Note that, if we choose to measure the pressure in density
units, then b = 1. Therefore, using the above rescaling (4.27) we write the set of equations
(3.43)-(3.44) in dimensionless form:

R̂′′ =
1

3 f̂RR

[
m(αT̂ + β(2 f̂ − R̂ f̂R)) − 3 f̂RRRR̂′2

]
+

(
m′

2m
−

n′

2n
−

2
r̂

)
R̂′ (4.30a)

m′ =
m

r̂(2 f̂R + rR′ f̂RR)

{
2 f̂R(1 − m) − 2αmr̂2T̂ t

t +
mr̂2

3

[
β(R f̂R + f̂ ) + 2αT̂

]
(4.30b)

+
r̂R′ f̂RR

f̂R

[
mr2

3
[β(2R f̂R − f̂ ) + αT̂ ] − αmr̂2(T t

t + T r
r ) + 2(1 − m) f̂R + 2r̂R′ f̂RR

] }
n′ =

n

r̂(2 f̂R + r̂R′ f̂RR)

[
mr̂2[β( f̂ − R̂ f̂R) + 2αT̂ r

r ] + 2 f̂R(m − 1) − 4r̂R′ f̂RR
]

(4.30c)

n′′ =
2nm

f̂R

[
αT θ

θ −
1
6

[β(R̂ f̂R + f̂ ) + 2αT ] +
R′ f̂RR

m

]
+

n
2r̂

[
2
(
m′

m
−

n′

n

)
+

n′r
n

(
m′

m
+

n′

n

)]
(4.30d)

The two dimensionless parameters, α and β, that appear in the above equations have been defined
as:

α =
8πG
c4 r2

?p?, β =R?r2
?, (4.31)

which together with b and η encode the chosen units. Hereafter, we choose to measure the
pressure in density units (p? = ρ?c2), thus b = 1. Given these considerations, we could,
in principle, select a set of units to deal in the best possible manner the numerical contrast
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discussed in previous sections. We can consider three different but equivalent approaches to
reach gradually the density of the Sun ρ� ≈ 1029ρ∗.

For instance, we consider the case where the Ricci scalar is measured in units of the cosmologi-
cal scale R? = R∗, implying that η = 1, and the radial coordinate in units of r? = (R∗)−1/2, thus
β = 1. Furthermore, if we set the units of the density as that of the cosmological value ρ? = ρ∗,
we obtain

α = 1, β = 1, η = 1. (4.32)

Then, we gradually increase the density of the object until the value ρ� is approached. For
instance, we could start with an non-realistic object characterized by a constant density ρc =

102ρ∗, that is 27 orders of magnitude away from the Sun’s density. Another choice is to keep the
Ricci scalar and the radial coordinate measured in terms of R∗ (thus β = η = 1) but to measure
the density in terms of the central density of the object, ρ? = ρc. Then,

α =
Rc

R∗
, β = 1, η = 1, (4.33)

where Rc := 8πG/c2ρc. In this case, α acts as a parameter that measures the ratio between the
cosmological density and the central density of the object (which, in this units, is set always
to 1). Eventually, when Rc = R�, α will become extremely large (α ∼ 1029). Finally, another
possibility is to measure both the Ricci scalar and the radial coordinate in terms of the stellar
curvature Rc (implying β = 1) and the density in units of ρc (meaning α = 1). The set of
dimensionless parameters becomes

α = 1, β = 1, η =
R∗
Rc
. (4.34)

In this case, we observe that as the density of the star ρc increases gradually up to the Sun’s den-
sity ρ�, we will eventually have to deal with the scale R∗/R� ∼ 10−30 inside the f (R) function,
encoded in the η parameter (see Eq. (4.28)).

In view of the above discussion, we conclude that there is not a simple set of units that allows
us to avoid the numerical contrast at the level of the equations. The numerical contrast will be
present in on one way or another. We have tested each of the three strategies without finding an
apparent numerical advantages in any of them.

In addition to the dimensionless implementation, we write the system (4.30) as a system of first
order differential equations. By the substitution R′ = Q Eq. (4.30a), transforms in two first
order differential equations, in this way the full set of equations (4.30) can be expressed as the
following system

R̂′ = F1(r̂, R̂,Q,m, n, p̂) (4.35a)

Q′ = F2(r̂, R̂,Q,m, n, p̂) (4.35b)

m′ = F3(r̂, R̂,Q,m, n, p̂) (4.35c)

n′ = F4(r̂, R̂,Q,m, n, p̂) (4.35d)

p̂′ = F5(r̂, R̂,Q,m, n, p̂). (4.35e)
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In order to close the system, an EoS for the matter inside the star is needed, which as we state
before, it is given by an incompressible fluid. Finally, to obtain numerical solutions for the
system (4.35) we need to supply boundary conditions that we discuss below.

4.4.1 Boundary and regularity conditions

The requirement of asymptotic de Sitter implies that R̂ → R̂dS as r̂ → ∞. The boundary value
problem (BVP) can be tackled as an initial value problem (IVP) by imposing the conditions at
the center of the star (r̂ = 0), with aid of a shooting procedure in such a way that the correct
asymptotic behavior is obtained.

Near the center of the object, the regularity condition (smoothness) implies the following ex-
pansion θ(0) = θ0 + θ1r2/2 + O(r4) where θ stands for R,m, n. This implies R̂′ = m′ = n′ = 0
at r̂ = 0. We set m(0) = 1 (local flatness condition) and n(0) = 1. At the end of the integration
n(r) is re-escalated a posteriori by dividing it with its maximum value. The coefficients θ0 and
θ1 are related to each other. For the pressure, the condition is simply p̂(0) = p̂c. Since we are
considering a constant density object, p̂c is fixed by hand to some value, because we are not
imposing an EoS.

A crucial aspect to obtain numerical solutions with the desired asymptotic behavior concerns
the value of the Ricci scalar at the center R̂0 := R̂(0). In the classical version of the shooting
method the boundaries are fixed, and thus, a root searching algorithm can be used to find the
correct initial condition at the center. However, in our case one boundary remains strictly at
infinity, thus, for some initial guess of R̂0 slightly smaller or slightly larger than the right one,
the function R̂(r̂) at some distance r̂ > r̂crit will eventually go to −∞ or +∞, respectively, leading
to unphysical solutions. We thus determine the correct value of R̂0 up to some distance r̂crit

limited the numerical accuracy such that R approaches RdS are r goes to infinity.

One important feature that needs to be clarified is that the numerical integration proceeds in two
stages. Given a density ρ̂c and the central values of the pressure p̂c and the Ricci scalar R̂0, we
integrate the system (4.35) numerically from the center r̂ to the surface of the star r̂�, defined
through the pressure as p̂(r̂�) = 0. Then, imposing continuity for all the functions at the stellar
surface, we integrate outwards the same system (4.35) but we set ρ̂ = p̂ = 0 up to r̂crit.

4.4.2 High-precision arithmetic

Given the high numerical contrast present in the field equations the standard 64-bit IEEE float-
ing point is not sufficient for the demanded resolution. Therefore, we need to implement high
precision floating-point arithmetic. All our algorithms were implemented in JULIA using the
BigFloat package library for arbitrary-precision floating-point arithmetic based on GMPY2,
which supports integer and rational arithmetic via the GMP library and real and complex arith-
metic by the MPFR and MPC libraries Bailey et al. [16].

In general, the number of decimal digits from a given number of bits b is:

d = log10(2b) (4.36)
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For a quadruple precision binary-floating point the significant precision is 113 bits which give
roughly d ≈ 34 [16]. Therefore, we will have up until 34 decimal places of precision. We
generally set the precision above the quadruple precision.

Given the high accuracy needed for the numerical solutions, the well known classic Runge-Kutta
(RK) of order 4 is not recommended. Thus, a more suitable integrator is needed. A good start up
is the DOP853 method [71], which is a high-order RK embedded method. To illustrate briefly
how these class methods works, lets take the notation of Eq. 4.35. Thus, a solution for the
system y′i = Fi(r, yi), is given by yi. Numerically, at each time step n, two approximations to the
solution, yi

n and ỹi
n, are made and compared. Usually, different order RK methods are used for

each approximation to obtain a more accurate solution. An estimate of the error in this class of
methods is controlled by

|yi
n − ỹi

n| < Rtol + max(yi
0, y

i
1)Atol, (4.37)

where Rtol and Atol are known as the relative and absolute tolerance, respectively. This values
are prescribed by us and we choose them as Rtol ≈ 10−26 and Atol ≈ 10−34 (we refer the reader
to [71, 76, 128, 147] to know more about this class of methods). We use the DiffEq Julia
package [116], which provides a handful of high-order RK embedded methods with variable
time step.

4.5 Numerical results

We present now the main numerical results of this work. In Section 4.5.1, we consider con-
stant density stars with the same central pressure and density that have been used in the works
alluded in Section 4.3. We focus on the MJWQ and Starobinksy f (R), where the parameters
of each f (R) model slightly differ from the ones that successfully give rise to the cosmolog-
ical evolution history. Our aim is to provide further analysis on those configurations and, in
the meantime, calibrate our numerical code after reproducing their results. Meanwhile, in Sec-
tion 4.5.2 we obtain solutions for the Starobinksy f (R) model with cosmological parameters,
whereas in Section 4.5.3 we do the same but for the Hu-Sawicki f (R) model.

It is important to stress again that we are solving the system of differential equations (4.35). The
central pressure pc and density are a priori fixed. Then, we perform a shooting procedure to find
the Ricci scalar at the center Rc := R(0). Hereafter, the units are chosen so that R is measured in
units of R∗, thus the coefficients from Eq. (4.31), are α = β = η = 1.

4.5.1 Non-realistic compact object solutions

The configurations that follows are non-realistic in the sense that their mass and density do
not correspond to an actual star. For the MJWQ f (R) model we take the central parameters
introduced in Miranda et al. [97], whereas for the Starobisnky f (R) model, the configurations
analyzed in [78, 88].
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MJWQ

The first configuration is, as given in [78, 96], a constant density star with

ρ0 = 5 × 107R1c2/G ≈ 5.3 × 10−18kgm−3 ≈ 1.76 × 109ρ∗, (4.38a)

pc = 0.3ρ0c2 ≈ 4.6 × 1025Nm−2, (4.38b)

where R1 is the asymptotic de Sitter value for the Ricci scalar which, as discussed in Section
3.1.1, corresponds to a non-trivial algebraic solution of dVJPS /dR = 0. In this case, we set
αM = 1.2. To find R1, we solve dVJPS /dR = 0 for the scalar potential (4.5). The value is found
numerically,

R1 = 1.40538297R∗. (4.39)

We show in Fig. 4.5 all the solutions. In particular, the top left panel depicts the solution for the
Ricci scalar as function of the radial coordinate r. Note that the solution smoothly interpolates
from the central value Rc ≈ 1.93R∗ to the cosmological value R1 ≈ 1.4R∗. The location of the
star radius (red star) is confined to a region where the largest gradients R(r) occur. However, we
see that the central value Rc is of the same order as R1. Such value is extremely far from the GR
value RGR ∼ κρ0 � Rc. This can be understood as low-curvature solution (cf. Section 4.2), i.e.,
where the Ricci scalar remains at the order of magnitude of the cosmological value R(r) ∼ R∗
through the radial evolution inside the star. Finally, notice that the Ricci scalar is a differentiable
function, even though the density is not. In GR, the Ricci scalar is a constant, reminiscence of
behavior of the density function. In f (R) gravity, the Ricci scalar is not zero immediately outside
the star, but asymptotically tends to R1 at a sufficient distance from the surface of the star.

The top right panel of Fig. 4.5 shows the metric functions (bold lines) and its product (dashed
lines). Contrary to GR (cf. Section 2.2.1), immediately outside the star, the product m(r)n(r)
is not equal to one. This can be explained by the contribution that the Ricci scalar makes to
the exterior region. Notice also that after reaching a flat region, where the product is one,
the metric functions change its behavior; m grows as r2, while n decreases and tends to the
cosmological horizon (n = 0). Eventually, if we continue the integration up to infinity, n → 0
and m→ ∞. Finally, we see the non-differentiable character of the m(r) function. This is due to
the discontinuity of the density function in the same way as in GR.

Let us now look at the bottom panel of Fig. 4.5. The right panel shows the pressure function
p(r). In particular, we observe how the surface of the star is reached exactly where the pressure
vanishes. The left panel shows the mass function µ(r). We clearly observe that we are dealing
with a non-realistic star. Indeed, the asymptotic mass (just before blows up to infinity due to
m → ∞), settles at µ0 ∼ 0.4 × 1018M�, while the radius of the star ∼ 3.01742 × 1021 km,
extremely close to the cosmological horizon R−1/2

∗ ∼ 1026 km. Furthermore, if we compute its
compactness, we obtain C ∼ 0.208. This implies that the object we are dealing with, has nothing
to do with a star like the Sun and is far from resemble GR.
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Figure 4.5: Top panels: Ricci scalar profile with Rc = 1.93704R∗ (left panel). Metric functions
m(r), n(r) and its product m(r)n(r) (right panel). Bottom panels: Mass functions in units of M�
(left panel). Pressure profile in units of ρ0c2 (right panel). The red stars indicate the surface of
object. Except for the mass plot, the radial coordinate is measured in units of r[R∗]−1/2. For
comparison we plot µADM which is defined as µADM = rc2

2G

(
1 − m−1 − R1r2/12

)
, where R1 is the

de Sitter value of the f (R) function [29]. The extra term r2 ensures the non-divergence which
happens in µ0.

To investigate how more generally the Ricci scalar depends on the density and central pressure
value, we subsequently performed a set of runs with a set of values spanning several orders of
magnitude. First we consider how the Ricci scalar at the center and the metric potentials depend
on the central pressure, but keeping the central density fixed as in (4.38a).

The left panel of Fig. 4.6 depicts the radial profiles for the Ricci scalar for increasing central
pressures. As the central pressure increases, a characteristic pattern emerges: R(r) becomes
stepper with higher central pressures. We also notice on the right panel of Fig. 4.6, how the
Ricci scalar at the origin, Rc, increases until some value close to pc = 0.3ρ0, and then decreases.
However, despite this increase in Rc, is very far from the GR value RGR ∼ κρ0.
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Figure 4.6: Radial profiles for the Ricci scalar (left panel). Ricci scalar at the center as function
of the central pressure (right panel). Colors from green to violet indicate increasing central
pressures. The solutions belong to the MJWQ model with α = 1.2 and fixed density ρ0 =

107R1c2/G

Next we check the dependence of the MJWQ model on the value of the density. Left panel of
Fig 4.7 shows multiple R radial profiles with increasing density (ρ0/(5R1c2/G) = 104 − 1010),
whereas the right panel depicts the central value Rc as a function of the density. We notice a
change in the star radius as the density increases but the Rc stays almost at the same value on all
the configurations. Thus, we can conclude
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Figure 4.7: Radial profiles for the Ricci scalar (left panel). Ricci scalar at the center as function
of the density (right panel). Colors from green to violet indicate increasing densities. The

solutions belong to the MJWQ model with α = 1.2 and fixed central pressure pc = 0.3ρ0.

The same aforementioned features can be said about the solutions presented from Fig. 4.8 to
Fig. 4.16, where we have carried out numerical calculations varying the value of the parameter
αM keeping fixed the density and central pressure of Eq. (4.38a). We display in Table 4.3 the
central values Rc that give rise to a desired asymptotic behavior R1 and the respective value of
αM. Figure 4.17 shows how these values are related. We observe a slight increase of the central
value as αM reaches the values 2. Neither of these values is sufficient to obtain a high-curvature
solution.
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Figure 4.8: Ricci scalar (αM = 1.3).
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Figure 4.9: Ricci scalar (αM = 1.4).
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Figure 4.10: Ricci scalar (αM = 1.5).
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Figure 4.11: Ricci scalar (αM = 1.6).
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Figure 4.12: Ricci scalar (αM = 1.7).
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Figure 4.13: Ricci scalar (αM = 1.8).
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Figure 4.14: Ricci scalar (αM = 1.9).
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Figure 4.15: Ricci scalar (αM = 2.0).
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Figure 4.16: Ricci scalar (αM = 2).
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Figure 4.17: Central values of the Ricci
scalar as function of (αM).

αM R(0)[R∗]
1.2 1.88617354
1.3 2.75303442
1.4 3.67199171
1.5 4.6571184
1.6 5.71093358
1.7 6.83439925
1.8 8.02778131
1.9 9.29100258
2. 10.62380923

Table 4.3: Ricci scalar values at the center for the MJWQ model found using the shooting
technique. These values are computed with 128 bit precision but for the sake brevity we only

display 8 figures .
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Kobayashi-Maeda

As we thoroughly discussed in Section 4.3 the numerical analysis presented by Kobayashi and
Maeda [88] about their solutions is flawed. To be more specific, they solved the field equations
(in the form of Appendix A) but their solutions for the scalar field never reach the desired
cosmological value and seem to blow up. We follow the choice of the Starobinsky model (4.6)
and consider the configurations presented below [88]. First, setting λ = 2.088, q = 1 (KM2 of
Table 4.1) and the values of density and pressure as

ρ0 =106c2R1(16πG)−1 ≈ 5.4138 × 10−21[ kg/m3] ≈ 1.7994 × 106ρ∗ (4.40a)

p(0) := p1 = 0.05ρ0c2 ≈ 2.4328 × 10−5Nm−2 (4.40b)

p(0) := p2 = 10−4ρ0c2, (4.40c)

respectively. Contrary to the claim of KM [88], we find that stellar solutions exist. We obtain
the profile for the Ricci scalar R that is shown in Figs. 4.18 (p2) and 4.19 (p1). We notice
that for both choices of pressure, a non-zero value for R asymptotically is obtained as a result
of the shooting method. This value coincides with the cosmological minimum R1 of the scalar
potential V(R)JPS (Eq. (3.9)) given the choice of parameters λ and q. We also notice that these
two solutions can be classified as low-curvature solutions (Rc � κρ) since the resulting value of
the Ricci scalar at the center of the star is in fact very close to R1. It should be noted that this
behaviour is against the natural expected solutions which would track the density profile. That
is, the value at the center of the star should be of the order of R ∼ κρ0, which happens to be the
minimum of the effective potential specified in Eq. (4.23), and then interpolate to the value R1

in the absence of matter.
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Figure 4.18: Ricci scalar taking λ =

2.088 and q = 1 with ρ0 =

106c2R1(16πG−1 and p(0) = 10−4ρ0c2

with R1/R∗ ≈ 3.59880517. The value at
the center is tunned to be Rc = 3.602R∗.
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Figure 4.19: Ricci scalar taking λ =

2.088 and q = 1 with ρ0 =

106c2R1(16πG−1 and p(0) = 0.05ρ0c2

with R1/R∗ ≈ 3.59880517, The value
at the center is tunned to be Rc =

6.2502R∗.
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For comparison purposes, we have also considered computations for the parameter choice λ =

1.827, q = 2 (KM1 of Table 4.1) with the following density and central pressures

ρ0 =106c2R1(16πG)−1 ≈ 5.4138 × 10−21[ kg/m3] ≈ 1.7994 × 106ρ∗ (4.41a)

p(0) := p3 = 5 × 10−4ρ0c2 ≈ 2.4339e × 10−7Nm−2 (4.41b)

p(0) := p4 = 10−2ρ0c2. (4.41c)

Figs. 4.20 and 4.21 show the numerical solution which is asymptotically de Sitter. As one can
see, the choice p3 results in a low-curvature solution, but p4 gives an interesting high-curvature
solution which, indeed, interpolates between the two minima. This property is somehow re-
markable as it provides us with insight on how to obtain the desired solution in the STBS model.
Thus, in one way or another the pressure at the center is required to be of the order of the average
density of the star in order to obtain the desired high-curvature solution.
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Figure 4.20: Ricci scalar taking λ =

1.827 and q = 2 with ρ0 =

106c2R1(16πG)−1 and p(0) = 5 ×
10−4ρ0c2 with R1/R∗ ≈ 3.60118507.
The value at the center is tunned to be

Rc = 3.602R∗.
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Figure 4.21: Ricci scalar taking λ =

1.827 and q = 2 with ρ0 =

106c2R1(16πG)−1 and p(0) = 10−2ρ0c2

with R1/R∗ ≈ 1.746227 × 106, The
value at the center is tunned to be Rc =

6.2502R∗.

4.5.2 Starobinsky solutions with cosmological parameters

In this section we set the parameters for the Starobinsky model that fits the cosmological scenario
[79]. These are q = 2, λ = 1 and RS = 4.17. We then proceed to gradually increase the density
to see the behavior of the solutions.
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Figure 4.22: Shooting procedure for the Ricci scalar taking λ = 1 and q = 2 and RS = 4.17
with ρ0 = 102c2R1(16πG)−1 and p(0) = 0.26ρ0c2 with R1/R∗ ≈ 6.82795191. The value at the

center is tunned to be Rc ∼ Rmin. The vertical dotted line indicates the star radius.

Fig. 4.22 depicts how the shooting procedure takes place. The colored solutions are either un-
dershoot or overshoot solutions depending on their divergence towards the end of the integration.
In this case, the choice of the central density and the central pressure are ρc = 102c2R1(16πG)−1,
p(0) = 0.26ρ0c2, respectively. In this regime, the obtained interior solution appears to be of the
order of Rc ∼ −κT . In Fig. 4.22, the minimum of the effective potential is Rmin = 83.44R∗,
which is the upper dashed black horizontal line. We observe clearly the so called screneed so-
lutions first described by [145]. These solutions have the characteristic of having an interval of
a small width respect to the star radius for which the Ricci scalar will increase and then turn
around.
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Figure 4.23: Zoom for shooting procedure for the Ricci scalar taking λ = 1 and q = 2 and
RS = 4.17 with ρ0 = 102c2R1(16πG)−1 and p(0) = 0.26ρ0c2 with R1/R∗ ≈ 6.82795191. The

value at the center is tunned to be Rc ∼ Rmin.
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Fig. 4.23 shows multiple undershoot and overshoot solutions. We can safely conclude that a
solution with the desired boundary conditions exists.

Next, we check the dependence of the solutions on the choice of central pressure. As we see in
Fig. 4.24, keeping the same central value Rc, a change in the central pressure reduces the star
radius (indicated by the dotted vertical line), which is expected since the pressure itself takes
less time7 to vanish.
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Figure 4.24: Lowering the pressure for λ = 1, q = 2 and RS = 4.17 with ρ0 = 102c2R1(16πG)−1

and p(0)/ρ0c2 = (0.26, 0.25, 0.2, 0.1, 0.01, 0.001), with R1/R∗ ≈ 6.82795191. The value of the
Ricci at the center is fixed to Rc/R∗ ≈ 83.532263123.

On the other hand, if we perform the shooting procedure to find the correct Rc value for each
central pressure, we obtain the three corresponding configurations of Fig. 4.25. It should be
noticed that a change in the pressure implies immediately a change of the value of the minimum
of the effective scalar potential.

7If we make a crude analogy of the radial coordinate r as a time coordinate.
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Figure 4.25: Undershoot solutions for λ = 1, q = 2 and RS = 4.17 with ρ0 = 102c2R1(16πG)−1

and p(0)/ρ0c2 = (0.26, 0.25, 0.24) with R1/R∗ ≈ 6.82795191. As expected, Rc changes for
each choice of central pressure.

Fig. 4.26 shows the numerical solution for a central density of ρ0 = 2 × 102c2R1(16πG)−1,
whereas Fig. 4.27 shows the case for ρ0 = 5× 102c2R1(16πG)−1. We observe that as the density
increases, it becomes more and more difficult to find a set of overshoot and undershoot solutions.
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Figure 4.26: Undershoot solutions for λ = 1, q = 2 and RS = 4.17 with ρ0 = 2 ×
102c2R1(16πG)−1 and p(0)/ρ0c2 = 0.24 with R1/R∗ ≈ 6.82795191.
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Figure 4.27: Undershoot solutions for λ = 1, q = 2 and RS = 4.17 with ρ0 = 5 ×
102c2R1(16πG)−1 and p(0)/ρ0c2 = 0.24 with R1/R∗ ≈ 6.82795191.

In Fig. 4.28, we slightly decrease the pressure but keep the same parameters of the above
configurations. We observe, by the aid of the zoom of Fig. 4.29 for the same configuration, that
both an overshoot and undershoot solution exist.
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Figure 4.28: Undershoot and overshoot solutions for λ = 1, q = 2 and RS = 4.17 with
ρ0 = 5 × 102c2R1(16πG)−1 for two central pressures p(0)/ρ0c2, (0.159, 0.161) with R1/R∗ ≈

6.82795191.
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Figure 4.29: Zoom for undershoot and overshoot solutions for the same configuration of Figure
4.28.
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Figure 4.30: Shooting procedure for the Ricci scalar taking λ = 1 and q = 2 and RS = 4.17
with ρ0 = 103c2R1(16πG)−1 and p(0) = 0.26ρ0c2 with R1/R∗ ≈ 6.82795191. The value at the

center is tunned to be Rc ∼ Rmin.
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Fig. 4.30 shows undershoot and overshoot solutions for the central density ρ0 = 103c2R1(16πG)−1,
whereas Fig. 4.31 depicts the same but for ρ0 = 104c2R1(16πG)−1. At this order of magnitude
of the density, overshoot solutions cannot be found.
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Figure 4.31: Shooting procedure for the Ricci scalar taking λ = 1 and q = 2 and RS = 4.17
with ρ0 = 104c2R1(16πG)−1 and p(0) = 0.26ρ0c2 with R1/R∗ ≈ 6.82795191. The value at the

center is tunned to be Rc ∼ Rmin.

Although we have managed to find the desired high-curvature solution for low densities, it was
at the cost of keeping high central pressures. We can conclude from the aforementioned figures
that for the Starobinsky f (R) model apparently is not possible to increase the density in such a
way that a solution which interpolates between the effective minimum Rmin and the vacuum R1

exist. We recall that such high-curvature solution is what one would expect from a theory that
closely resembles GR.

4.5.3 Hu- Sawicki solutions

In this section we explore the solution space of the Hu-Sawicki model following the same pro-
cedure as in the Starobinksy model. We start by considering relative low densities. Fig. 4.32
depicts the solution for the Ricci scalar for a start of density ρ0 = 102c2R1(16πG)−1 but chang-
ing the pressure slightly. We clearly observe how little variations in the central pressure imply
bigger changes on the Ricci scalar at the center.
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Figure 4.32: Ricci scalar for the Hu-Sawicki model keeping a fixed central density ρ0 =

102c2R1(16πG)−1 an varying the pressure with R1/R∗ ≈ 8.931080. Little changes in the pres-
sure reflects enormous changes in the Ricci at the center.

Then, if we keep the pressure fixed. Fig. 4.33 shows both the undershoot and overshoot solution,
as well as a third solution between both. As in the case of the Starobinsky model, we observe a
screened behavior. Hereafter, we will gradually increase the density and look for high-curvature
solutions. Recall that the average density of the Sun in this units is ρ� ≈ 1029c2R1(16πG)−1.
And, therefore, we are still very far from this realistic values.
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Figure 4.33: Undershoot and overshoot solutions of scalar for the Hu-Sawicki model keeping
a fixed central density ρ0 = 10c2R1(16πG)−1 an keeping a pressure of p(0) = 0.1ρ0c2 with

R1/R∗ ≈ 8.931080.

In Fig. 4.34 we observe an undershoot solution for the Hu-Sawicki model with the central
density ρ0 = 102c2R1(16πG)−1. The pressure is set to p(0) = 0.1ρ0c2, which is far from repre-
senting a non-relativistic object such as the Sun. Fig. 4.34 also shows a decreasing behavior in
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the region where the Ricci scalar remains close to the value κρ0. As we will see in the following
figures, this regions shrinks as the density increases.
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Figure 4.34: Undershoot solutions of scalar for the Hu-Sawicki model keeping a fixed cen-
tral density ρ0 = 102c2R1(16πG)−1 an keeping a pressure of p(0) = 0.1ρ0c2 with R1/R∗ ≈

8.931080.

Figs. 4.34, 4.35, 4.36 show solutions for different central densities varying from 102 to 104 in
ρ0(16πG)/(c2R1) units. Note that, as the central density increases, we keep the central pressure
fixed in order to obtain the desirable solutions. We point out that Fig. 4.36 represents the last
values of the density for which we could obtain a numerical solution.
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Figure 4.35: Undershoot solutions of scalar for the Hu-Sawicki model keeping a fixed cen-
tral density ρ0 = 103c2R1(16πG)−1 an keeping a pressure of p(0) = 0.1ρ0c2 with R1/R∗ ≈

8.931080.
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Figure 4.36: Undershoot solutions of scalar for the Hu-Sawicki model keeping a fixed cen-
tral density ρ0 = 104c2R1(16πG)−1 an keeping a pressure of p(0) = 0.12ρ0c2 with R1/R∗ ≈

8.931080.

We thus conclude that in the Hu-Sawicki f (R) model the desired density of the Sun cannot be
achieved within our framework. As in the case of the Starobinky f (R) model to obtain a high-
curvature solution a high pressure is necessary. Moreover, even if the pressure remained large
we could not find solution for higher densities than ρ0 = 104c2R1(16πG)−1.

4.6 Simplified approach

Since, in the previous section we saw that we were unable to solve the full system for the
actual parameters of the Sun, here we try to simplify the problem to find the potential technical
problems that are responsible of inability to obtain the desired solutions. In order to do so, we
provide further insight on the differential equation for the Ricci scalar alone for the Hu-Sawicki
f (R) model. We opt to solve only the Ricci scalar equation in the high-curvature limit where the
condition 2 f (R) − R fR ≈ R holds (cf. Section 4.2). This extremely simplified version can be
specified by the following system

R′′ =


1

3 fRR
(−κρ + R) − 2

r R′ if r < r?
1

3 fRR
(−RHS + R) − 2

r R′ if r > r?
(4.42)

where RHS ≈ 6.8279 is the de Sitter minimum and r? is the radius of the star. Considering a
density of ρ0 = 20c2R1(16πG)−1 first, the Ricci scalar at the center must be fixed and then, a
shooting is performed to find the star radius which matches the asymptotic conditions, since the
differential equation for the pressure is not present at all in this simplified approach. Fig. 4.37
depicts the behavior of some solutions keeping the above considerations. We observe that as Rc

approaches to the value Rmin = κρ0, the stepper the solution becomes.
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Figure 4.37: Multiple Ricci scalar profiles for ρ0 = 2×101c2R1(16πG)−1. The shooting param-
eter is the star radius (vertical black dashed lines). The upper dotted horizontal line represents

the value Rmin = κρ0 and the inferior dotted horizontal line is the value RHS .

Furthermore, we found more solutions than that depicted in Fig. 4.37. As we see in Fig. 4.38,
the star radius decreases as we increment the curvature at the center of the star. Each one of the
configurations derives from a shooting procedure with the radius as the shooting parameter.
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Figure 4.38: Ricci scalar at the center as function of the star radius for multiple configurations
(blue stars) keeping the density fixed as ρ0 = 2 × 101c2R1(16πG)−1.

Fig. 4.39 show the same approximation for ρ0 = 50c2R1(16πG)−1 and Fig. 4.40 shows the
same but for a higher density ρ0 = 100c2R1(16πG)−1. From both figures we observe the same
behavior. One stark difference of the approximation (4.42), relative to the full system explored
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before, is that for values of Rc closer to Rmin the radius of the star is confined to a thin region.
This resembles the thin-shell solution from the original chameleon model [41].
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Figure 4.39: Similar as Fig. 4.37 using ρ0 = 5 × 101c2R1(16πG)−1.
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Figure 4.40: Multiple solutions for ρ0 = 100c2R1(16πG)−1 and making a shooting method
varying the star radius.

The main drawback of the system (4.42) is that is only valid in the high-curvature regime. As we
will see in the following examples, this shortcoming reflects itself as objects of higher density
are considered. For this regard, we can explore several better approximations by including more
terms in order to see its effects appearing in the full R equation. These further approximations
are:

R′′ =


1

3 fRR
(−κρ + (2 f − fRR)) − 2

r R′ if r < r?
1

3 fRR
(−κρ + (2 f − fRR) − 3 fRRRR′2) − 2

r R′ if r < r?
(4.43)
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where, in the region r > r?, the minimum of the approximated derivative of the scalar potential
sets the asymptotic value, contrary to Eq. (4.42), where was supplied by hand. In the following
we discuss the solutions for the Ricci scalar under the three aforementioned approximations for
a different range of densities. We pay particular attention on the impact of different values of ρ0

have on the solutions were the Ricci scalar at the center is close to κρ0.

In the left panels of Figs. 4.41, 4.42, 4.43 we observe solutions under three different approxima-
tions for the decoupled Ricci differential equation. Given a fixed Ricci at the center, a shooting
method is performed to find the radius that matches the de Sitter solution in vacuum. The
three figures correspond roughly to three different curvature regimes in respect to the de Sitter
minimum R∗. As Fig. 4.41 shows, in the regime where Rc . R∗, the three approximations
are virtually indistinguishable. The same cannot be said for the medium-cuvature regime (Fig
4.42) and the high-curvature regime (Fig 4.43). The former and the latter show stark differences
between the three approximations.

On the other hand, the right panels of the same figures depict the behavior of the derivative of
the Ricci scalar. The appearance of a smooth peak indicates the change of sign of the second
derivative itself. Within the low-curvature solution (right panel of Fig. 4.41), we note that the
radius of the star coincides where the first derivative is maximal. However, for the medium and
high-curvature solutions (right panels of Figures 4.42 and 4.43), the radius does not coincide at
the same value.
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Figure 4.41: Ricci scalar a low-curvature solution ρ0 = 20c2R1(16πG)−1 fixing the Ricci at the
center at Rc/R∗ ≈ 9.5. The colored stars represent the star surface.
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Figure 4.42: Solutions for a low-curvature solution ρ0 = 20c2R1(16πG)−1 fixing the Ricci at
the center at Rc/R∗ ≈ 80.3797223. The colored stars represent the star surface.

It is observed for the third approximation (second part of Eq. (4.43)) that, as we transitioned
to a high-curvature solution (see right panels of Figures 4.42 and 4.43), the radius of the star
dramatically changes to a value where the Ricci scalar is close to the cosmological value R1.
This can be interpreted as the necessity of choice of high central pressure, if it was considered.
In other words, the term − fRRR/ fRRR′2 introduces this property in the solutions. A term that is
usually dropped in the linear approaches (cf. Section 3.5).

−6 −5 −4 −3 −2 −1

log10(r[R
−1/2
∗ ])

20

40

60

80

R
[R
∗]

−6 −5 −4 −3 −2 −1

log10(r[R
−1/2
∗ ])

−80000

−60000

−40000

−20000

0

R
′ [
R
∗/
r ∗

]

1/fRR(−ρ+R)

1/fRR(−ρ+ (2f − fRR))

1/fRR(−ρ+ (2f − fRR)− 3fRRRR
′2)

Figure 4.43: Solutions for a low-curvature solution ρ0 = 20c2R1(16πG)−1 fixing the Ricci at
the center at Rc/R∗ ≈ 89.31080262. The colored stars represents the star surface.

Through Fig. 4.44 to Fig.4.49, high-curvature solutions that have a gradually increased density
are shown. As discussed before, the three approximations considered differ partially. From
Figure 4.47, which display the solution for ρ0 = 5 × 103c2R1(16πG)−1, notice that the three
solutions are stepper; this fact can be related to the increase of density. As we further increase
the density ρ0, we reach the larger achievable density ρ0 = 7.3 × 103c2R1(16πG)−1 in Fig. 4.48.
Solutions of Fig. 4.49 start to blow up.
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Figure 4.44: Solutions for a low-curvature solution ρ0 = 1 × 102c2R1(16πG)−1 fixing the Ricci
at the center at Rc/R∗ = 446.55401323660863118. The colored stars represents the star surface.
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Figure 4.45: Solutions for a low-curvature solution ρ0 = 5 × 102c2R1(16πG)−1 fixing the Ricci
at the center at Rc/R∗ = 2232.77006618304315592142416. The colored stars represents the

star surface.
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Figure 4.46: Solutions for a low-curvature solution ρ0 = 1 × 103c2R1(16πG)−1 fixing the Ricci
at the center at Rc/R∗ = 4465.540132366086311842848330. The colored stars represents the

star surface.
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Figure 4.47: Solutions for a low-curvature solution ρ0 = 5×103c2R1(16πG)−1 fixing the Ricci at
the center at Rc/R∗ = 22327.70066183043155921424165369662. The colored stars represents

the star surface.



80

−15 −10 −5 0

log10(r[R
−1/2
∗ ])

0

10000

20000

30000

R
[R
∗]

−15 −10 −5 0

log10(r[R
−1/2
∗ ])

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

R
′ [
R
∗/
r ∗

]

×1016

1/fRR(−ρ+R)

1/fRR(−ρ+ (2f − fRR))

1/fRR(−ρ+ (2f − fRR)− 3fRRRR
′2)

Figure 4.48: Solutions for a low-curvature solution ρ0 = 7 × 103c2R1(16πG)−1 fixing the
Ricci at the center at Rc/R∗ = 31258.780926562604182899938315175278. The colored stars

represents the star surface.
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Figure 4.49: Solutions for a low-curvature solution ρ0 = 7.2 × 103c2R1(16πG)−1 fixing the
Ricci at the center at Rc/R∗ = 32151.88895303582144526850798132314323. The colored

stars represents the star surface.

4.7 Discussion

Throughout this chapter we have shown that objects that resemble constant density stars can be
constructed numerically within the JPS formalism. Two main conclusions can be drawn from
our results regarding the Starobinsky and Hu-Sawicki f (R) models.

First, the objects that we found are far from representing a star like the Sun, namely these are
low density objects with relative large central pressures. Moreover, in order to obtain solutions
within the shooting technique, the central pressure must be supplied. As we have said, the
differential equation system forces us to increase the central pressure in order to obtain the
expected high-curvature solutions, which are the ones that closely resemble GR. This means
that, solutions for R depend strongly on the central pressure choice. This is, at first sight, a
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seemingly contradictory conclusion since, from looking at the f (R) field equations, the pressure
function appears to have a somewhat irrelevant role. So, although we tried to find solutions
resorting to multiple strategies, we could not find a suitable solution where the Ricci scalar
tracks the density for any of the f (R) models. For instance, in the work by Hu and Sawicki [75]
the role of the pressure was overlooked and was deprecated. In the work by Negrelli et al. [103],
the radius was fixed by hand, so in that study, the role of the pressure is not clear.

Another point is that we believe that all these problems and difficulties are not merely due to
numerical systematics. We performed numerous tests for the code using a variety of integrators
and the inability to found a desired solution persisted. It is a fact that using arbitrary precision
arithmetic opened the door to manage large numbers, present in the numerical contrast regarding
the difference of curvature scales, and therefore we manage to reach better results from the
shooting procedure. However, at this point we are not sure how further increasing the precision
could alleviate the encountered difficulties.

These analysis show up to what extent it is difficult to treat a theory with a cosmological scale
embedded in its action. As we will see in the last chapter, this is not the case if we take an
unmotivated cosmological f (R) theory, where the numerical contrast problem is absent.





Chapter 5

Neutron stars in non-cosmological
motivated f (R) models

In this chapter we review some numerical solutions for Neutron Stars (NS) in the f (R) = R +

αR2 model. The main purpose of this chapter is to show that the main difficulty to obtain
solutions to the f (R) modified TOV equations, lies precisely in the numerical contrast between
the characteristic curvature scales. We also present an argument against studies about neutrons
stars in such f (R) model.

5.1 Starobinsky R-squared model

Contrary to the f (R) models presented in Chapter 4, the R-squared f (R) Starobinsky model was
first proposed as a model of inflation for the early universe in order to obtain a quasi-de Sitter
solution [136]. It is given by

f (R) = R + aR2, (5.1)

where a > 0. This model is part of a wider class of f (R) models where f (R) = R + αRn

(a > 0 and n > 0) [50]. Additionally, other similar higher order models such as f (R) = R +

αR2 + βR3 or f (R) = R + αR2(1 + γ ln R) can also be encompassed as a subclass. Although
these models emerged to achieve inflation, many authors have related them to the presence of
strong gravitational fields, which are naturally found in NS, hoping that deviations from GR
in this regime can be used obtain constraints for the model parameters [8, 11, 37, 45]. In this
way, the dimensionful parameters contained in the f (R) function on these models determine
not a cosmological scale, but typical scale for a compact stellar object. For instance, the R-
squared model Eq. (5.1) introduces a new scale through the value of the parameter a which
have dimensions of km−2, in order to observe its effects in strong gravitational fields. This scale
already reveals a stark difference in respect to the characteristic curvature scale R∗ of viable dark
energy f (R) models analyzed in the previous chapter, since R∗ � a.

It has been shown that such f (R) models, with quadratic and cubic terms, can give rise to NS
with larger maximum masses with respect to GR considering the same equations of state (EoS)
[6, 10, 11, 37, 45, 85, 153]. Thus, the main goal of works regarding the R-squared and other
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similar models lies on the possible signatures in NS which are reflected in the mass-radius
relation given an EoS.

So again, the argument of considering R-squared models as a higher-order is to use NS as a
natural laboratory where high curvature phenomena is expected to happen. Let us now compute
the derivative of the R-squared model (5.1). It is straightforward to show that

fR = 1 + 2aR, fRR = 2a, fRRR = 0. (5.2)

Following the previous chapters, we consider the JPS formalism and analyze the properties
for this model. Substituting the above expression in the derivative potential (3.8), gives us
dV(R)JPS/dR = R/3. Furthermore, let us take a look at the equation for the Ricci scalar from
(3.43) in this model. Using Eqs. 5.2 we obtain

R′′ =
1

6a
[m(κT + R)] +

(
m′

2m
−

n′

2n
−

2
r

)
R′. (5.3)

As we observe, for the R-squared model the Ricci scalar equation reduces to one of the approx-
imations presented in the previous chapter. In contrast to the previous f (R) models considered,
it is clear there is only one global minimum at R = 0 and consequently, the late cosmological
expansion cosmological era could not be recovered. Given such minima of the scalar potential
V(R)JPS this implies that an interior solution for the Ricci scalar must interpolate to the asymp-
totic flat value R = 0.

5.1.1 Neutron stars in R-squared gravity

We now consider in more detail NS in the R-squared f (R) model. Roughly the analysis of such
objects has been divided into two approaches, the first one being a perturbative method and the
other one considers the solution of the complete set of differential equations of f (R) gravity.

Cooney et al. [45] showed the existence of NS in the R-squared model by means of a perturbative
approach. Arapoglu et al. [8] and Orellana et al. [109] have also employed the same method to
obtain mass-radius curves to constraint the value of a for a sample of various EoS. One of the
obvious limitations of perturbative solutions lies precisely on the inability of comparing them
with the unknown exact solutions. This indicate that possible effects deviating from GR are the
dominant and the GR limit cannot be considered as the leading contribution to the pertubative
solutions as one expects. Thus, this considerations motivated the need to solve the exact high-
order differential equations.

Yazadjiev et al. [153] followed a non-perturbative method by resorting to the usual STT trans-
formation of f (R) gravity in order solve numerically the conformally transformed set of differ-
ential equations for four realistic EoS. They argued about the inconsistency of the perturbative
approach. Similarly, Kase and Tsujikawa [85] presented numerical solutions using the STT
in the JF. More specifically they report the SLy [59] and FPS EoS mass-radius curves. Other
relevant studies of NS in R-squared gravity that use the STT transformation are [58, 138].

On the other hand, Capozziello et al. [37] obtained the mass-radius relationship by solving
directly the full modified field equations, without resorting to the usual STT transformation in a
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similar philosophy to the JPS formalism. They considered, aside from the R-squared model, the
f (R) = R + αR2(1 + γR) and f (R) = R1+ε models. They used the analytical representations of
the so called BSkX EoS [110, 113] and the Sly EoS. Within this approach other studies explored
the possibility of other EoS [10, 11, 65].

One of the main features is the consideration of realistic EoS, which are motivated by micro-
physics and differ from one parameter polytropic EoS. Due to the existence of stable higher
mass configurations of NS in the R-squared model, some EoS, which are in principle ruled out
by observational constraints in GR, can lead to interesting solutions and eventually reconcile
with NS observations of higher masses O(2.2M�).

5.2 Numerical Results

In this model the scale is given by the parameter a. We choose units such that (see Section 4.4)

r? = rg ρ? =M�/r3
g p? = M�c2/r3

g R? = r−2
g , (5.4)

where we set rg = GM�/c2 ≈ 1.47473 km, that is the Sun’s half Schwarzschild radius. Thus, the
coefficients (4.31) are set to be α = 8π and β = 1. Moreover, the parameter a is given in units of
r−2
? . In this way, the field equations (4.30) for the R-squared model (5.2) are solved numerically

using the same procedure described in Section 4.4 following the JPS formalism. The boundary
conditions at spatial infinity are met by the requirement to obtain an exterior asymptotically flat
solution. Thus as r → ∞,

R→ 0, n,m→ 1. (5.5)

We define the ADM mass of the star as the asymptotic limit of the mass function µ(r),

M := lim
r→∞

µ(r) =
rc2

2G

(
1 −

1
m

)
(5.6)

and again, the star radius rs is determined by the condition p(rs) = 0. To this regard, Sbisà et al.
[126] addressed the issue of nonequivalent definitions of gravitational mass in R-squared gravity
since one can, in principle, identify diverse quantities as the mass in the context of R-squared
gravity. In particular, one can distinguish between the mass inside the star surface (Ms = µ(rs))
and the gravitational mass measured by a distant observer given by Eq. (5.6). Contrary to
GR, for which the two masses coincides, in R-squared gravity they differ partially, due to the
contribution of R outside the star.

5.2.1 Mass-radius relations

We choose the Sly EoS presented in Chapter 2, which is a Piecewise Polytropic Parametric
(PPP) EoS. We generate the mass-radius relations and also the density-mass relation for different
values of the paramater a/r2

g between 0 and 100. Results are depicted in Figures 5.1 and 5.2.
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As seen from Fig. 5.1, which presents the results for the EoS SLy, the smaller the value a the
smaller is the difference with respect to GR. This is often interpreted a the GR limit, however
we must stress that if we enforce smaller values for a the system then suffer from the same
density scale contrast problems encountered in the cosmological motivated f (R) models studied
in previous sections.

Each point of Fig. 5.1 represents a NS configuration, which has been computed by means of a
shooting technique to obtain the correct asymptotic behavior.
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Figure 5.1: The density-radius relation for EOS SLy (left panel) and its mass-radius curve(right
panel) for the R-squared model. For comparison the prediction from GR is shown in solid black.
The dotted lines are configurations where T < 0, meaning the adjusted Ricci scalar at the center

is R(0) < 0.

The central density increases monotonically along the mass-radius curves. Figure 5.2 shows the
radial profile for the Ricci scalar and the metric functions after performing the shooting method
for multiple central densities. The color code tells us that for lower densities (violet colors) the
Ricci profile appears flatter and thus unscreened, in the sense that a screened solution will go
up and down in a narrow radial region. Most interestingly is the emergence of solutions with
negative curvature at the center of the NS.
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Figure 5.2: Ricci scalar versus the radial coordinate (left panel) and the metric components
as functions of the radial coordinate (right panel) for the R-squared model with a/r−2

g = 100.
Colors from violet to green indicate increasing central densities. For comparison the prediction

from GR is shown in solid black.
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As far as we know the solutions presented above are novel in the sense that we are solving
the exact high-order f (R) equations without resorting to the usual STT using instead the JPS
formalism. The difference with the results from Capozziello et al. [37] and ours, is that they
consider other EoS and deprecated the region where R < 0.

5.2.2 Incompressible fluid

We can ask now what happens when an incompressible object is considered in this class of f (R)
theories. Let us keep the units of (5.4), but now consider an incompressible fluid with constant
density and central pressure. Left panel of Fig. 5.3 depicts multiple solutions with decreasing
central pressure (colors violet to green). The right panel of the same figure displays the Ricci
scalar at the center of the object as a function of the central pressure. The three peak black
marker represents the value of the trace of the energy-momentum tensor that belongs to the
exact value in GR (R = κT ). We observe how for large central pressure choices, both values
remain roughly of the same order. As the central pressure decreases, they dramatically star to
differ.
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Figure 5.3: The value of the Ricci scalar versus the radial coordinate (left panel) and the Ricci
scalar at the center as a function of the central pressure (right panel) for the R-squared model
with a = 1. Colors from violet to green indicate decreasing central pressures. The dotted
horizontal lines (left panel) indicate the values κTc where Tc is the value of the trace of the

energy momentum tensor at the center.

Fig. 5.4 (left panel) shows the mass function for the same configurations displayed in Fig. 5.3.
The right panel depicts how the mass at the surface relates to variations in pressure. We observe
almost a linear relation between both quantities.
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Figure 5.4: The value of the mass as a function of the radial coordinate (left panel) and the
asymptotic mass as a function of the central pressure (right panel) for the R-squared model
with a = 1. Colors from violet to green indicate decreasing central pressures. The dotted
horizontal lines (left panel) indicate the values κTc where Tc is the value of the trace of the

energy-momentum tensor at the center.

Finally, we present results obtained by setting a lower central pressure for a constant density
object of ρ = 1014ρ�. The units are the same of the previous plots. In Fig. 5.5 we observe
the value scalar curvature R for this configuration. The choice of the scale of R indicates that it
is seven order of magnitude below the value κρ. So again, this seems to be same phenomenon
encountered in the cosmological viable f (R) models. But the situation is actually a bit more
subtle here. It is true that scalar R at the center is near the vacuum minimum value R = 0,
however the object is smaller and the metric functions (right panel) do not depict a cosmological
horizon.
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Figure 5.5: Solutions for constant density object with ρ = 1014ρ� pc = 10−6ρc. The left panel
depicts the Ricci scalar. The right panel shows the metric functions.

Figure 5.6 (left panel) shows that the object, although is extremely dense, has a small mass.
Just for the sake of completeness we can ask what happens to the γ parameter in this scenario,
although the object is far from representing a star like the Sun where the bounds of γ are given.
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We set

γneg =

∣∣∣∣∣∣1 − m
1 − n

∣∣∣∣∣∣, γHM =

∣∣∣∣∣∣mn − m
1 − m

∣∣∣∣∣∣. (5.7)

In the right panel of Fig. 5.6 we observe how neither of these two equivalent definitions of the γ
manage to give the correct value one.
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Figure 5.6: Solutions for constant density object with ρ = 1014ρ� pc = 10−6ρc. The left panel
depicts the mass function. The right panel shows the gamma parameters as defined in Eqs.

5.7.The horizontal dashed black line corresponds to γ = 1/2.

5.3 An argument against stars in R-squared gravity

In this chapter we have shown, that it is possible to obtain numerical solutions using the JPS
formalism for static and spherically symmetric configurations such as NS in the context of R-
squared gravity. The numerical difficulties mentioned along Chapter 4 do not appear here since
the characteristic curvature scales are manageable.

As mentioned in the introduction of this chapter, several models of the same nature have been
proposed. We stress that such f (R) models, in particular the R-squared model, seem to not pass
the solar system tests at the level of the action because the quadratic or even cubic terms, will
naturally appear at the Solar System Scale deviating immediately from the expected GR value
for the Ricci scalar ( R ∼ κρ�). A preliminary analysis, not included in this thesis, shows that
it is not possible to reach the solar densities with that scale of a. Many authors try to argue
about this flaw by saying that at solar system scales a is very small and conclude naively that
a is unconstrained by such tests but, at the same time, they consider values of a of the order of
the Schwarzschild of the Sun r�s ∼ 3 km, a ∼ (r�s )−2 (see for e.g. [6, 37] for such an argument).
Others authors, go so far as to assume that the R-squared function (5.1) is an approximation
from a more general f (R) in the strong gravitational regime such as inside NS. But those authors
argue that such an approximation is not valid in the weak field limit [124]. It is not clear why
the R-squared gravity models can be taken as effective corrections to GR which only appear in
curvature scales characteristic of NS.
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However, if one chooses to consider solar system constraints on the parameter a, it results that
a should bounded by a < 10−17 km−2 (see section V of [67]). Thus, from this point of view, the
values of a considered so far in the literature are unrealistic.

After reviewing a large amount of NS literature in f (R) gravity, all that we can do now is main-
tain a clear statement in what we oppose. Beneath the surfaces of aesthetic mass-radius plots,
the use of non cosmological viable f (R) models, continues produce a series of works that do not
contribute to any significant arguments for ruling out f (R) models. It is common to read the use
of up-to-date nuclear equations of state as a justification to obtain mass-radius plots keeping al-
ways unrealistic values of the parameters contained in the f (R) function. Note that our analysis
has kept the values of these parameters (specifically a) in order to reproduce their results using
the JPS formalism. Although the immediate conclusion can be understood as the existence of
NS with larger masses than that of their Einsteinian (GR) counterparts, it can only be said that
the R-squared f (R) theory, in fact, deviates from GR and that its differences are considerable.
However, even though the deviations are large there is intrinsic uncertainty by the realistic EoS
used which needs to be confronted with observations before the R-squared model itself [153].
Thus, the goal of constraining the parameter a of the R-squared in the aforementioned studies
lacks support.

We emphasize that if one is to take any f (R) model seriously, meaning, to take in consideration
that f (R) gravity can be used as an alternative to GR in all gravity regimes, then any realistic as-
trophysical scenario should be part of the domain of applicability of the f (R) model in question.
Hence, the solar system tests are needed to be taken in to consideration.



Chapter 6

Conclusions

Solar system tests have a main role in any gravity theory for several reasons. They represent
our most tested gravitational environment for which GR passes all its constraints. Also, they
place strong bounds on any alternative theory of gravity. Although f (R) gravity has been exten-
sively studied to explain the late accelerating expansion of the universe, in this thesis, we have
investigated its effects at the solar systems scale.

Even if our aim was to find numeric solutions for stars in f (R) that properly entail realistic
densities, we found that in f (R) gravity, the system of differential equations of stellar structure
is more involved than in GR, and thus, we were forced to implement more robust numerical
methods to obtain solutions. Contrary to other works in the literature we did not resort to the
usual STT conformal transformation to obtain our results.

After giving a brief review on stars in GR on Chapter 2 and on the general properties of f (R)
theories in Chapter 3, we have analyzed in detail a handful of cosmological viable f (R) models
through Chapter 4. It turns out that the JPS approach to solve the equations derived from f (R)
gravity gave us solutions equivalent to those previously encountered by some authors within
different contexts.

Concerning the local solar system tests, we could not reach the desired density due to the nu-
merical difficulties, even after we resorted to arbitrary numerical precision. However, one of our
key findings is that, in order to obtain the desired numerical solutions where the Ricci Scalar,
R(r), follows the density of the star as r changes (similar to what happens in GR) in some f (R)
models, is to enforce a high central pressure. This is clearly in contrast to GR, where in the case
for non-relativistic stars like the Sun, modeled as constant density objects, the central pressure
is negligible and yet R ∼ κρ� inside the body.

As concerning the chameleon mechanism not so much can be said. It is well known that this
effect has been invoked along the literature to justify the success of the solar system tests in
some cosmological motivated f (R) theories. However, the results obtained show that is not
completely clear where this effect leaves its signatures at the full non-linear level.

The review done on literature shows that almost in all numerical studies of f (R) gravity, approx-
imations have been made to try to argue that solar system bounds are satisfied. However, one
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cannot rule out yet this pertubative studies. As our study shows, taking into account the com-
plete set of non-linear differential equations, it appears that it is technically difficult to reproduce
the successes of the pertubative case. One may hope to start seeing some effects of the at some
high density scale, but the results does not support this behavior. To this end, it turns out to be
rather paradoxical that the chameleon mechanism, which is defined and thought as a result of
the non-linear dynamics of the extra scalar degree of freedom, has to be assumed a priori in the
pertubative case, but fails to be isolated from the numerical analysis.

In addition, in Chapter 5 we obtained some mass-radius relations for the R-squared f (R) grav-
ity model which is not cosmological motivated. This confirms that the JPS formalism can be
used to obtain solutions within the aforementioned context. As we manifestly declared, these
kind of f (R) models are not physically motivated since the characteristic curvature scale differs
abysmally from that of a cosmological viable f (R) model, not to mention that they might not be
pass successfully the solar system tests.

Regarding work for the future, introducing for example a more detailed model for the Sun and its
environments might alleviate the technical difficulties that we discussed in Chapter 4. However,
it is not clear that such amendments will solve those drawbacks since in GR one does not have
to resort to complex solar models to obtain its observed mass and radius.

As a final comment let us mention that, from the plethora of alternative theories of gravity, not
even one has managed to correctly describe all gravity regimes that GR successfully entails
without resorting to gimmicky ways to suppress some unwanted effects which emerge in these
theories when they are confronted with tests such as the ones given by the solar system. The
underlying idea of replacing the cosmological constant by an alternative theory seems unfea-
sible unless a robust observational motivation to discard the ΛCDM paradigm appears. This
means that models, as the cosmological viable f (R) functions, presented through the first part
of this thesis, which are built in an engineering way as trial and error, might not have particular
relevance at all. The forthcoming dark energy experiments, like DESI [92], might reveal if the
cosmological constant is dynamic or not. If the outcome is positive, these types of alternatives
theories might have the chance to be taken more seriously.

In conclusion, what emerges from this analysis, is that to reconcile an alternative gravity theory
with the stringent constraints placed by observations, without having any good physical moti-
vation is perhaps, not the most efficient way to discover new physics. We need to look for new
physical principles or thought experiments, like the ones that gave rise to GR at the beginning
of the 20th century, to be able to enhance our understanding of the universe.



Appendix A

STT equations for spherical static
symmetry

It is possible to transform the Eqs. (3.44) to the Scalar-Tensor formulation. In fact, we can use
the same line element from Eq. (3.42) and substitute it in Eq.(3.21) to obtain

φ′′ =
1
3

[
m(κT + 2 f − φR)

]
+

(
m′

2m
−

n′

2n
−

2
r

)
φ′ (A.1a)

n′ =
n

r(2φ + rφ′)

[
mr2( f − Rφ + 2κT r

r ) + 2φ(m − 1) − 4rφ′
]

(A.1b)

m′ =
m

r(2φ + rφ′)

[
−mr2( f − φR + 2κT t

t ) + 2φ(1 − m) + 4mrφ′ + 2r2φ′′
]

(A.1c)

Notice that eq. (A.1c) can be rewritten in a more suitable way as

m′ =
m

r(2φ + rφ′)

{
2φ(1 − m) − 2mr2κT t

t +
mr2

3
(Rφ + f + 2κT ) (A.2)

+
rφ′

φ

[
mr2

3
(2Rφ − f + κT ) − κmr2(T t

t + T r
r ) + 2φ(1 − m)

] }
,

where R(φ) and f (R(φ)), i.e., explicit functions of φ. Eq. (A.2) resembles that of Eq. (3.44a)
from the JPS formalism. We further point out that Eqs. (A.1) can be shown to be derived from
(3.44) by noting that

φ′ = fRRR′ φ′′ = fRRRR′2 + fRRR′′ (A.3)

Under this mapping the Ricci scalar behaves as R ∼ 1/(φ−φ0). For instance, for the Starobinsky
model [137] we obtain the scalar field φ in the JF as

φ(R) = 1 −
2Rλq

(
R2

R2
S

+ 1
)−q

RS

(
R2

R2
S

+ 1
) (A.4)

which is not possible to be inverted analytically.
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A.1 High-curvature regime in STT

In this regime assuming the high-cruvature regime R � R∗ it is possible to invert the relation
between the scalar field φ and R to obtain an explicit formula expressing R as a function of φ.
Thus, we have

R(φ) ≈ RS

(
2λq

1 − φ

)1/(2q+1)

(A.5)

One sees as φ→ 1 then R→ ∞. With relation (A.5) then f (R) can be written in terms of φ as

f (R(φ))S ≈ R(φ) + λRS

[(
2λq

1 − φ

−2q/(2q+1))
− 1]

]
(A.6)

It remains to link the notion of the high-curvature regime in the JPS formalism detailed above
with the STT formalism. According to the definitions introduced in section 3.1.2, in the high
curvature regime we have the following relations

φ = exp 2
√
κ/6Φ = 1 − ∆G

R ≈ 1 − λn
(

R
RS

)−(n/β+1)

, (A.7)

With the aid of this relation the conformally transformed scalar potential in the EF defined by
Eq. (3.30) can be expressed in the high curvature regime as

VBL(Φ) ≈
λRS

2
√
κφ2

1 − (n/β + 1)
(
1 − φ
n/βλ

) n/β
n/β+1

 , (A.8)

where one should keep in mind that φ = φ(Φ). From the relation (A.7), we observe that small
values for Φ imply high curvature (R � RS ). Thus, in this regime we have Φ � 1 which allows
us obtain the expansion φ ≈ 1 + 2

√
κ/6Φ, meaning 1 − φ ≈ −2

√
κ/6Φ. Using this fact in Eq.

(A.8), leads to

VBL(Φ) ≈
λRS

2
√
κ

e−4
√
κ/6Φ

1 − (n/β + 1)
 −2
√
κΦ

√
6n/βλ

 n/β
n/β+1

 . (A.9)

In the limit that R→ ∞we have φ→ 1 and Φ→ 0 implying a constant potential VBL(Φ)→ λRS
2
√
κ

which corresponds to a singularity since dVBL(Φ)/dΦ→ ∞ as highlighted by Frolov [66]. 1

Recall that the expression for the field Φ is given by Eq. (3.28), which implies the following

Φ =

√
3
2κ

ln (1 + ∆R) ≈

√
3
2κ

∆R, (A.10)

with aid of Eq. (3.61) the minimum of the effective potential can be estimated as

dVe f f
BL (Φ)
dΦ

=

√
2
3κ

R(1 − ∆R) + 2∆

2(1 + ∆R)2 +
√
κQ exp

[
Q
√
κΦ

]
ρc = 0. (A.11)

1One can check that Eq. (A.8) is the same as Eq. 5.20 from [50] with a slightly different notation.
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Notice that if we assume the approximation ∆R � 1 and ∆ � R the first term of Eq. (A.11)
approximates to −QR/

√
κ. An thus, taking into account Eq. (A.9) the minimum of the effective

potential in the EF has a value of

Φmin = −
√

6/κn/(2β)λ
(

RS

κρc

)n/β+1

. (A.12)

Thus, the effective mass about the minimum of the effective potential is of the order

me f f (Φmin) ∼
(
kρc

RS

)n/2β+1

(A.13)

which coincides with the mass obtained in the JPS picture of Eq. (4.24).
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