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San Agust́ın

Quisiera comenzar este agradecimiento dando gracias a Dios, por fortalecerme en los
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Introduction - Motivations

A mathematical model is a description of a system using mathematical concepts and

language. The process of developing a mathematical model is termed mathematical

modeling. Mathematical modeling has proven to be a key tool in many areas of science.

It has helped us understanding a big variety of phenomena in our world. Mathematical

models are used in the natural sciences (such as physics, biology, earth science, chemistry)

and engineering disciplines (such as computer science, electrical engineering), as well

as in non-physical systems such as the social sciences (such as economics, psychology,

geography).

Some models are based on rates of change due to physical laws. Mathematically, many

of them are written as partial differential equations (PDEs). In this thesis, we will derive

and analyze two new models in two different scenarios. Part I of this thesis is related to

the first model where we will analyze blood flows passing through arteries, and Part II

is devoted to deriving simplified model to understand certain physical processes involved

in the time evolution of atmospheric phenomena.

Although both circumstances can be analyzed with PDE-based models, their nature is

somewhat different. In this thesis, we describe the properties of the model and propose

robust and precise numerical schemes to approximate the solutions to such models.
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Introduction 2

Part I: A new two-dimensional blood flow model with arbitrary cross-section

Cardiovascular diseases are a class of illness that involves the heart or blood vessels. The

underlying mechanisms vary depending on the disease. It is estimated that dietary risk

factors are associated with 53% of related deaths. It includes coronary artery diseases such

as angina and myocardial infarctions, strokes, heart failures, hypertensive heart diseases,

rheumatic heart diseases, cardiomyopathies, abnormal heart rhythms, congenital heart

diseases, valvular heart diseases, carditis, aortic aneurysms, peripheral artery diseases,

thromboembolic diseases, and venous thrombosis among others.

Coronary artery disease, stroke, and peripheral artery disease involve atherosclerosis.

This may be caused by high blood pressure, smoking, diabetes mellitus, lack of exercise,

obesity, high blood cholesterol, poor diet, excessive alcohol consumption, and poor sleep,

among other things. It is estimated that up to 90% of cardiovascular diseases may be

preventable. Prevention of such diseases involves improving risk factors through: healthy

eating, exercise, avoidance of tobacco smoke and limiting alcohol intake.

Cardiovascular diseases are the leading cause of death worldwide except Africa [1]. Their

impact in our lives has motivated the development of different models for blood flows. In

[2], a review of recent contributions towards the modeling of vascular flows is provided.

A review of contributions regarding the mathematical modeling of the cardiovascular

system is presented in [3]. In particular, the challenges in the mathematical modeling

both for the arterial circulation and the hearth function are discussed. See also the notes

in [4] for more on mathematical modeling and numerical simulation of the cardiovascular

system. In [5], an open-source software framework for cardiovascular integrated modeling

and simulation (CRIMSON) is described, which is a tool to perform three-dimensional

and reduced-order computational haemodynamics studies for real world problems.

Three dimensional (3D) models provide very detailed information of the fluid’s evolution.

In [6], fluid velocities were measured by laser Doppler velocimetry under conditions of

pulsatile flow and such measurements were compared to those given by steady flow con-

ditions. In [7], anatomic and physiologic models are obtained with the aid of 3D imaging

techniques for patient-specific modeling. However, 3D simulations are computationally
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expensive and often not a practical tool for a timely evaluation before a surgical treat-

ment. This has motivated the development of 1D models which reasonably well describe

the propagation of pressure waves in arteries [8]. A 1D hyperbolic model for compliant

axi-symmetric idealized vessels is derived in [9] and the properties of the model are dis-

cussed. The analysis of the blood flow after an endovascular repair is studied in [10], in

which case the PDE based model has discontinuous coefficients. Furthermore, effects of

viscous dissipation, viscosity of the fluid and other two dimensional effects were incorpo-

rated in a ‘one-and-a-half dimensional’ model in [11], where it is not necessary to prescribe

an axial velocity profile a priori. In [12], a coupled model that describes the interaction

between a shell and a mesh-like structure is derived. The structure consists of 3D mesh-

like elastic objects and the model embodies a 2D shell model and a 1D network model.

Well-balanced high-order numerical schemes for one-dimensional (1D) blood flow models

are constructed in [13] using the Generalized Hydrostatic Reconstruction technique. Ar-

bitrary Accuracy Derivative (ADER) finite volume methods for hyperbolic balance laws

with stiff terms are extended to solve one-dimensional blood flows for viscoelastic vessels

in [14], and such technique is applied to analyze the treatment of viscoelastic effects at

junctions in [15]. The effects of variations of the mechanical properties of arteries due to

diseases such as stenosis or aneurysms have also being studied using 1D models [16–18].

It has also been noted in [19] that 1D models are able to describe the fluid’s evolution

after arteriovenous fistula (AVF) surgeries in 6 out of 10 patients and selected the same

AVF location as an experienced surgeon in 9 out of 10 patients. Although 1D models have

shown to be a reasonably good approximation in many situations, there exist limitations

due in part to simplifications such as axial symmetry. The cross section is assumed to be

a circle, which impacts the results.

The contributions listed above consider the two extreme cases where the models are either

3D or 1D, and some interactions between them. In this thesis, we derive an intermediate

two-dimensional (2D) model where any shape of the cross section can be considered

while maintaining a still much lower computational cost compared to 3D simulations.

The 2D models are a good balance that provides more realistic results compared to its

1D counterparts and it has the advantage of a low computational cost when compared to

the 3D models. The derivation and implementation of a model in two dimensions is one
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of our main contributions. The model is derived using asymptotic analysis that follows

certain physical considerations. The velocity and vessel’s radius here depend on the cross

section’s angle and axial position, while the 1D counterpart considers a uniform radius

that varies only in the axial direction. Our model can handle perturbations and variations

in the wall’s elasticity affecting any specific area of the vessel while 1D simulations can only

consider perturbations affecting entire cross sections. This is relevant in simulations of

diseases such as aneurysms and stenosis that involve vessels with walls that have damaged

areas, not necessarily entire cross sections. Furthermore, we present the properties of the

model, construct a well-balanced central-upwind scheme and include numerical tests that

show its merits.
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Part II: Generalized Quasi-Geostrophy for Moist Spatially Anisotropic

Atmospheric Flows with Phase Changes

Atmospheric science studies the Earth’s atmosphere and its various inner-working physi-

cal processes. Atmospheric science has been extended to the field of planetary science and

the study of the atmospheres of the planets and natural satellites of the Solar System.

On the other hand, atmospheric dynamics studies the motion systems of meteorologi-

cal importance. It does it by integrating observations at different locations and times

and with the aid of complex theories. Common topics studied include a big variety of

phenomena which includes thunderstorms, tornadoes, gravity waves, tropical cyclones,

extratropical cyclones, jet streams, and global-scale circulations. The goal of dynamical

studies is to explain the observed circulations on the basis of fundamental principles from

physics, using mathematical modeling in some cases to understand it. The objectives of

such studies incorporate improving weather forecasting, developing methods for predict-

ing seasonal and interannual climate fluctuations, and understanding the implications of

human-induced perturbations (e.g., increased carbon dioxide concentrations or depletion

of the ozone layer) on the global climate [20].

Weather forecasting is the application of science and technology to predict the conditions

of the atmosphere for a given location and time. People have attempted to predict the

weather informally for millennia and formally since the 19th century. Weather forecasts

are made by collecting quantitative data about the current state of the atmosphere, land,

and ocean and using meteorology to project how the atmosphere will change at a given

place.

Once calculated manually based mainly upon changes in barometric pressure, current

weather conditions, and sky condition or cloud cover, weather forecasting now relies

on computer-based models that take many atmospheric factors into account [21]. Hu-

man input is still required to pick the best possible forecast model to base the forecast

upon, which involves pattern recognition skills, teleconnections, knowledge of model per-

formance, and knowledge of model biases. The inaccuracy of forecasting is due to the

chaotic nature of the atmosphere, the massive computational power required to solve the

equations that describe the atmosphere, the land, and the ocean, the error involved in
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measuring the initial conditions, and an incomplete understanding of atmospheric and

related processes. Hence, forecasts become less accurate as the difference between cur-

rent time and the time for which the forecast is being made (the range of the forecast)

increases. The use of ensembles and model consensus help narrow the error and provide

confidence level in the forecast.

It was not until the 20th century that advances in the understanding of atmospheric

physics led to the foundation of modern numerical weather prediction. In 1922, English

scientist Lewis Fry Richardson published ”Weather Prediction By Numerical Process”

[22] after finding notes and derivations he worked on as an ambulance driver in World

War I. He described therein how small terms in the prognostic fluid dynamics equations

governing atmospheric flow could be neglected, and a finite differencing scheme in time

and space could be devised, to allow numerical prediction solutions to be found.

Despite the progress in predicting atmospheric flows, there are still many physical pro-

cesses involved that are not understood. For instance, in one fluid’s evolution there can be

several waves interacting among them and influencing the formation of coherent structures

and the corresponding trajectories. In that direction, the celebrated quasi-geostrophic

equations have shown to be very useful. This system considers a balance between pres-

sure gradients and Coriolis forces [23]. It has lead a decomposition of balanced (low

frequency) and unbalanced (high frequency) components. Slow balanced components are

associated, for instance, to the vortices observed in the ocean and in the atmosphere.

They evolve on a slow timescale and persist over time (months) as a coherent structure.

On the other hand, the fast unbalanced components are associated to intertia-gravity

waves and move much faster. The study of such decomposition of the flow have received

a lot of attention and a vast amount of literature exists out there regarding this phe-

nomenon, including the spontaneous generation of inertia-gravity waves and the study of

slow manifolds where flows evolve in time near balance. See [24] for a review. It has also

been of interest the study of the effect of both slow and fast modes in the formation and

evolution of coherent structure. In that direction, interactions between vortical and wave

components in the Boussinesq and shallow water equations have been studied in [25–27].
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The slow and fast modes have been mainly studied in the Boussinesq and rotating shallow

water equations. In the case of the atmosphere, that corresponds to the dry case where no

moist is considered at all. Very recently, a huge effort has been dedicated to developing

the concept of low and high frequency components in the presence of moist. In [28],[29],

the precipitating Quasi-geostrophic equations (PQG) are derived and implemented. In

[29], the PQG model was analyzed in both scenarios: with saturated and unsaturated

atmosphere. Although this work has been very successful, the implementation of the

model is very challenging because the moist potential vorticity involves stiff terms and

the PV-inversion is very complicated.

In [30], quasi-geostrophy was generalized for anisotropic rotating flows in the dry case.

The model was derived using asymptotic analysis in terms of the Rossby number and

assuming certain assumptions to be discussed in this thesis. In this work, we extend that

approach by taking moist into consideration. Our contribution here is the derivation of

a new model that encompasses a concept of balanced and unbalanced components in the

moist case. We generalize quasi-geostrophy to the moist case in a different way compared

to the one described above. Our limiting equations are in the opposite side since we

assume a large vertical scale with non-vanishing leading vertical velocity. One advantage

here is that no PV-inversion is required. The resulting model is multi-scale where the

averaged moist and equivalent potential temperature evolve over a slow timescale and the

fluctuations evolving on a fast timescale. The setting here allows us to analyze cyclogen-

esis and heat transport when vortical towers interact before forming a pre-hurricane.
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Chapter 1

Introduction to Hyperbolic

Conservation Laws

The impact of cardiovascular diseases in our lives has motivated the development of differ-

ent models for blood flows. See for instance [2] and [3] for a review of recent contributions

towards the modeling of vascular flows and the cardiovascular system. Also, in [4], a dis-

cussion about mathematical modeling and numerical simulation of the cardiovascular

system is provided.

A variety of physical phenomena can be analyzed by PDE-based models. For instance,

models associated to the evolution of flows in gas or geophysical fluid dynamics fall within

the class of Hyperbolic Balance Laws. Such systems have specific theoretical challenges

that have been analyzed and reported in an extensive literature. See [31] for an extensive

discussion on the main aspect of such type of PDEs. On the other hand, there has

been an increased interest in the community to construct stable and efficient numerical

schemes. Among the desirable properties, the numerical scheme must have a high order

of approximation in smooth regions while computing jump discontinuities properly near

shock waves.

Blood flows can be considered a Newtonian fluid in the case of large arteries in the large

circulation system. Models can be derived by taking the Navier-Stokes equations and ap-

ply an averaging process in each cross section at a given axial position. Surprisingly, the

11
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resulting models usually form hyperbolic systems of conservation laws. See for instance,

the models considered in [9, 13]. The advantage of interpreting the models with their

hyperbolic properties is the knowledge available in the literature about such systems. A

lot is known about the behavior of hyperbolic systems both theoretically in terms of exis-

tence of weak solutions as well as the construction of a variety of high resolution numerical

schemes that are robust and efficient in approximating solutions to the aforementioned

PDEs. In this chapter, we present a brief introduction to the topic of hyperbolic conser-

vation laws. We will discuss the main theoretical and numerical challenges we may found

when solving such systems, either when defining exact weak (discontinuous) solutions or

when approximating them numerically. More details can be found in [31] and [32].

1.1 Classification of equations

This section is based on the material found in [32].

Physical problems can be classified in general as: equilibrium, eigenvalue and transport

problems. Those physical problems can be described by the structure the equations may

have and the qualitative behavior its solutions may describe. In particular, one can use

the concept of characteristics to derive one such classification.

Although the following analysis can be carried out for a linear system of PDEs that

depend on two independent variables, we focus here on the specific case of interest to us.

Let us consider the following second-order quasi-linear equation given by

auxx + buxy + cuyy = f.

The above system is sufficiently general to represent a variety of scientific problems in

physics and engineering, where the mathematical models are second-order.

Suppose the solution is known from the initial state at some curve Γ (and below it). For

some P on the boundary ∂Γ, we know the derivatives of u and its directional derivatives

in the direction of this curve. We require that knowing u, ux and uy at Γ are sufficient to

determine the unique value of uxx, uxy and uyy. If the directional derivatives of ux and
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uy are known, we have

dux = uxxdx+ uxydy,

duy = uxydx+ uyydy.

Then, we get 
a b c

dx dy 0

0 dx dy




uxx

uxy

uyy

 =


f

dux

duy

 .

A unique solution for uxx, uxy and uyy exists and is unique unless the determinant of the

3× 3 - matrix is zero. That is,

a

(
dy

dx

)2

− bdy
dx

+ c = 0. (1.1)

In the case the determinant is zero, multiple solutions may exist. As a result, the partial

derivatives are not unique and thus, discontinuities in the partial derivatives are expected

at Γ.

The curves given by the solutions to equation (1.1) are known as characteristics. The

direction of the characteristic curves are related to the solutions of the equation ax2 −

bx + c = 0, and them can be real and different, coincide or be complex, depending on

wheter the value of the discriminant b2 − 4ac is positive, zero or negative, respectively.

We then say that the equation

auxx + buxy + cuyy = f

is:

• hyperbolic if b2 − 4ac > 0.

• parabollic if b2 − 4ac = 0.

• elliptic if b2 − 4ac < 0.
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Specifically, in the case hyperbolic case, real-valued characteristic curves in phase space

and discontinuities might propagate through those curves.

1.2 The wave equation

Let consider the wave equation

uxx − a2uyy = 0,

where a is constant. Then, the characteristic curves y(x) satisfy

(
dy

dx

)2

− a2 = 0,

with closed-expression given by

y = β ± ax,

for a constant β.

As we can see, the wave equation is hyperbolic. For the rest of this chapter, we will focus

on hyperbolic problems and extend the concept to non-linear systems.

The conservation laws to be analyzed later in this chapter fall in the class of hyperbolic

PDEs. This kind of equations arise in transport problems such as gas dynamics and

wave mechanics among many other areas. In order to explain the main properties of such

equations, let us consider the wave equation:

utt − a2uxx = 0.

with initial conditions

u(x, 0) = F (x),

ut(x, 0) = G(x),
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The solution of this equation can be directly calculated by the D’Alambert method.

Skipping the details, the solution is computed as

u(x, t) =
F (x+ at) + F (x− at)

2a
+

1

2a

∫ x+at

x−at
G (η) dη

We note that the solution is decomposed into the sum of two solutions to the transport

equation propagating at speeds ±a. Below, we will take the transport equation as a base

to extend the notion of hyperbolic balance laws in the non linear limit.

1.3 Hyperbolic conservation laws

The rest of the chapter will be focused in hyperbolic conservation laws. This type of

equations arise in transport problems in areas such as wave mechanics, gas and fluid

dynamics among many others. Our purpose here is to present the basic aspects of hyper-

bolic conservation laws. The information presented in this chapter is not comprehensive

and it is not intended to present all the interesting details behind. The interested reader

may find a detailed analysis in [31, 33, 34, 34–37] and references therein. We explain the

main aspects of the above equations and the corresponding solutions by considering first

scalar conservation laws but we will later on extend such concepts to systems.

1.3.1 The scalar conservation law

A scalar conservation law in one spatial-dimension is a first-order partial differential

equation (PDE) of the form

ut + (f(u))x = 0.

When solved in the entire real line, the associated initial value problem is written as ut + (f(u))x = 0, −∞ < x <∞,

u (x, t = 0) = uo (x) .
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If the problem is solved in a bounded domain, associated boundary conditions (Neumann,

Dirichlet, etc) must be included in order to properly solve the initial boundary value

problem (IBVP).

Equations of this type often describe transport phenomena. Here, u (x, t) is known as the

conserved quantity (as density, linear momentum, mass, etc) and f(u) is known as the

flux function. As one will see later, the flux must be a convex function of the conserved

quantity u. This is motivated by the fact that after integrating over the interval [xo, x1],

we get

0 =

∫ x1

xo

utdx+f(u(x1, t))−f(u(xo, t)) = ∂t

(∫ x1

xo

udx

)
+f(u(x1, t))−f(u(xo, t)), (1.2)

which implies

∂t

(∫ x1

xo

udx

)
= f(u(xo, t))− f(u(x1, t)).

It means that the ratio of change of the total amount u contained inside any given interval

[xo, x1] is given by the flux at the boundary points. For instance, when the flux vanishes

or balances at the boundary, the total amount remains constant.

1.3.2 Weak solutions

Conservation laws are distinguished by the propagation of information across character-

istic curves. It is well-known that solutions to hyperbolic problems may develop shock

waves in finite time even if the initial conditions are smooth. Weak solutions are to be

defined in such cases. For that end, one needs to find the integral formulation of the

conservation law as follows. We will not repeat the information that can be found in

many textbooks. Instead, we summarize the basic aspects of the hyperbolic conservation

laws in the next few sections.

Consider the scalar conservation law

ut + (f(u))x = 0.
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A simple integration over an arbitrary rectangle [xo, x1]× [to, t1] gives us the integral form

of the conservation law:

0 =

∫ x1

xo

∫ t1

to

[ut + (f(u))x]dtdx

=

∫ x1

xo

[u(x, t1)− u(x, to)]dx+

∫ t1

to

[f(u(x1, t))− f(u(xo, t))]dt.

An integrable function u is considered a weak solution provided it satisfies the above

equation for all x0, x1, to, t1 in the domain. We now present an alternative condition to

determine weak solutions.

Let us assume that a solution exists with a discontinuity along a given curve (xshock(t), t)

in phase space. So, the solution which is piece-wise smooth may be split into two smooth

solutions u`(x, t) and ur(x, t) which are defined and smooth on the left and right sides

of the shockwave respectively. Integrating over a rectangle close to the shockwave curve

and using the integral form of the conservation law, one arrives at the so-called Rankine-

Hugoniot jump conditions

∆f = s∆u,

where ∆u = ur(xshock(t), t) − u`(xshock(t), t), ∆f = f(ur(xshock(t), t)) − f(u`(xshock(t), t))

are the jumps in the solution and the flux across the shockwave, and

s =
dxschok

dt

is the shockwave’s speed of propagation.

It is well-known that a weak solution is said to satisfy the entropy condition if

f ′ (u`) ≥ s ≥ f ′ (ur)

Weak solutions satisfying the Rankine-Hugoniot jump conditions are not unique. How-

ever, the entropy condition is helpful in finding the physically relevant weak solutions.

The next section explains the Riemann problem and its relation to the entropy condition

must become clear.
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1.3.3 The Riemann problem

The Riemann problem is often taken into consideration when developing numerical schemes

because exact solutions for the non-linear problem can be found in this case. We include it

in this chapter because it is also useful in understanding the entropy conditions discussed

in the previous section.

The Riemann problem is an initial-valued problem where the PDE is a conservation law

and the initial condition consists of a piecewise constant initial data which has a jump in

the domain of interest. It may be written as
ut + (f(u))x = 0

u(x, 0) =

 u` if x ≤ 0

ur if 0 < x

The jump condition in the scalar case is simply s =
f(ur)− f(u`)

ur − u`
. Although this shows

that a Riemann problem has at least one weak solution given by a shockwave, not all of

them are physically relevant and we must discard them. For that end, notice that the

characteristic curves are straight lines given by

x(t) =

 xo + f ′(u`)t if xo ≤ 0,

xo + f ′(ur)t if 0 < xo,

with f ′(u) =
df

du
(u).

Let us first suppose that f ′(u`) > f ′(ur). In this case, the characteristic curves merge

into the shockwave. We obtain a jump discontinuity. Furthermore, we notice that in this

case the entropy condition is automatically satisfied

f ′(u`) ≥
f(ur)− f(u`)

ur − u`
≥ f ′(ur)

provided that f(u) is a convex function of u.
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The shockwave solution is simply

u(x, t) =

 u` if x ≤ st

ur if st < x

Let us now assume the opposite case where f ′(ur) > f ′(u`). One can easily show by

smoothing out the initial condition (so perturbing it) that a small change on it will create

a very different solution where the characteristics expand in a rarefaction fan. This means

that the shockwave proposed in the previous case is unstable to small perturbations in the

initial condition. As a result, we consider it not to be a physically relevant weak solution.

In addition to it, it does not satisfy the entropy condition. The discontinuous solution

in this case would have characteristic curves emanating from the shockwave instead of

being originated from the initial condition at t = 0. The physically relevant solution in

this case is a rarefaction wave. It has a smooth transition from the left to the right

state, and it is given by

u(x, t) =


u` if

x

t
< f ′(u`)

v
(x
t

)
if f ′(u`) ≤

x

t
≤ f ′(ur)

ur if f ′(ur) <
x

t

where v (η) is the solution of f ′ (v (η)) = η. The above solution requires f ′(u) to be an

invertible function of u. One then needs the flux to be a convex function of u, which is

gain needed to fulfill the entropy conditions.

1.3.4 System of conservation laws

Let U (x, t) : Rn × R → Rm be a m-dimensional vector and Fi (U) : Rm → Rm, i =

1, 2, . . . , n a vector-valued function that satisfies

∂U

∂t
+

n∑
i=1

∂Fi (U)

∂xi
= S (U) . (1.3)
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for a specific source term vector S (U). In many applications all the independent variables

xi have the same units (length in shallow water flows for instance). We include appli-

cations where one direction refers to length (axial) while a second variable describes the

angular direction (radians). One then needs to non-dimensionalize the system in order to

define its hyperbolic properties. For that end, let αi be the characteristic scale of Ui, T

be the timescale, and Li the characteristic scale in the xi-direction. Then, system (1.3)

may be rewritten as

∂Ũ

∂t̃
+

n∑
i=1

∂F̃i

(
Ũ
)

∂x̃i
= S̃

(
Ũ
)
. (1.4)

where (̃·) denotes the non-dimensional quantities and satisfy, x̃i = xi/Li,

Ũ =


U1/α1

U2/α2

...

Um/αm

 , F̃i =


(Fi)1 /(α1Li/T )

(Fi)2 /(α2Li/T )
...

(Fi)m /(αmLi/T )


We now define the non-dimensional Jacobian simply by JŨ(F̃i) = ∂F̃i/∂Ũ. The PDE

(1.3) is said to be a hyperbolic system of conservation laws provided that for any unitary

vector (η − 1, . . . , ηm), the linear combination of the dimensionless Jacobians JŨ(F̃i)

η1J
(
F̃1

)
+ η2J

(
F̃2

)
+ · · ·+ ηnJ

(
F̃n

)
has real eigenvalues and a complete set of m linear independent eigenvectors.

Changing the characteristic scales would result in a rescaling of the η coefficients. There-

fore, the above definition of hyperbolicity is independent of the non-dimensionalization.

The vector-valued functions Fi with j-th component (Fi)j are called the flux function in

the xi-direction for the conserved quantity Uj.

Some examples of physical phenomena that can be modeled by hyperbolic conservation

laws are the Euler equations, the shallow water equations over an arbitrary topography

and the (1D) axisymmetric blood flow model [9].
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1.4 Finite volume methods for hyperbolic conserva-

tion laws.

In one space dimension, a finite volume method is based on subdividing the spatial domain

into intervals, so-called finite volumes or grid cells, and keeping track of an approximation

to the integral of the conserved quantity u in each cell. In each time step, we update

these values using approximations to the flux through the cells’ interfaces.

Denote the j-th grid cell by Ij =
[
xj− 1

2
, xj+ 1

2

]
as shown. Let us denote by U

(n)
j the

approximation to the average value over the j-th cell at time t(n):

U
(n)
j ≈ 1

∆xj

∫
Ij

u
(
x, t(n)

)
dx,

where ∆xj = xj+ 1
2
− xj− 1

2
is the length of the cell. For simplicity, we assume an uniform

grid, that is, xj = (j − 1) ∆x for a fixed ∆x.

When deriving a numerical scheme, we would like to achieve desirable properties that can

make the numerical approximation robust and accurate. In particular, conservation at

a discrete level is crucial when calculating flows near shockwaves. The Riemann sum

N∑
j=1

U
(n)
j ∆x

approximates the integral of u over the entire interval [a, b]. Conservative numerical

schemes can preserve that quantity constant over time at a discrete level in the absence

of source terms.

At a continuous level, conservation reads

d

dt

∫
Ij

u (x, t) dx = f
(
u
(
xj+ 1

2
, t
))
− f

(
u
(
xj− 1

2
, t
))

.
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By the second fundamental theorem of calculus, the integration of the above expression

over the time-step
[
t(n), t(n+1)

]
yields

∫
Ij

u
(
x, t(n+1)

)
dx−

∫
Ij

u
(
x, t(n)

)
dx =

∫ t(n+1)

t(n)
f
(
u
(
xj+ 1

2
, t
))

dt−
∫ t(n+1)

t(n)
f
(
u
(
xj− 1

2
, t
))

dt.

Rearranging the last expression and dividing by ∆x gives

1

∆x

∫
Ij

u
(
x, t(n+1)

)
dx =

1

∆x

∫
Ij

u
(
x, t(n)

)
dx

− 1

∆x

[∫ t(n+1)

t(n)
f
(
u
(
xj+ 1

2
, t
))

dt−
∫ t(n+1)

t(n)
f
(
u
(
xj− 1

2
, t
))

dt

]
.

This explains to us how exactly the cell average of u should be updated in one time step.

However, we cannot evaluate the time integrals on the right-hand side of the equation

exactly. This suggests the use of numerical methods of the form

U
(n+1)
j = U

(n)
j −

∆t

∆x

[
F

(n)

j+ 1
2

− F (n)

j− 1
2

]
where F

(n)

j− 1
2

is an appropriate approximation of the average flux across the interface x =

xj− 1
2
,

F
(n)

j− 1
2

≈ 1

∆t

∫ t(n+1)

t(n)
f
(
u
(
xj− 1

2
, t
))

dt.

It sounds reasonable to suppose the value of F
(n)

j− 1
2

only depends of the cell averages U
(n)
j−1

and U
(n)
j of this interfaces, because the information propagates at finite time in hyperbolic

problems. We might need to extrapolate that information to approximate the data at

the interface. So, we may use a formula of the form

F
(n)

j− 1
2

= F
(
U

(n)
j−1, U

(n)
j

)
(1.5)

where F is so-called the numerical flux function. Now, we have

U
(n+1)
j = U

(n)
j −

∆t

∆x

[
F
(
U

(n)
j , U

(n)
j+1

)
−F

(
U

(n)
j−1, U

(n)
j

)]
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Although this specific type of numerical method depends of the particular choice of F ,

the above method is well-known as a explicit three-point stencil method. Some of

this particular choices are:

• One-sided left scheme:

F
(
U

(n)
j−1, U

(n)
j

)
= f

(
U

(n)
j−1

)
,

U
(n+1)
j = U

(n)
j −

∆t

∆x

[
f
(
U

(n)
j

)
− f

(
U

(n)
j−1

)]
.

Figure 1.1: One-sided left scheme.

• One-sided right scheme:

F
(
U

(n)
j−1, U

(n)
j

)
= f

(
U

(n)
j

)
,

U
(n+1)
j = U

(n)
j −

∆t

∆x

[
f
(
U

(n)
j+1

)
− f

(
U

(n)
j

)]
.

Figure 1.2: One-sided right scheme.

• Forward Euler scheme:

F
(
U

(n)
j−1, U

(n)
j

)
=
f
(
U

(n)
j−1

)
+ f

(
U

(n)
j

)
2

,
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U
(n+1)
j = U

(n)
j −

∆t

2∆x

[
f
(
U

(n)
j+1

)
− f

(
U

(n)
j−1

)]
.

Figure 1.3: Forward Euler scheme.

• Lax-Friedrich scheme:

F
(
U

(n)
j−1, U

(n)
j

)
=
f
(
U

(n)
j−1

)
+ f

(
U

(n)
j

)
− ∆x

∆t

[
U

(n)
j − U

(n)
j−1

]
2

,

U
(n+1)
j =

U
(n)
j−1 + U

(n)
j+1

2
− ∆t

2∆x

[
f
(
U

(n)
j+1

)
− f

(
U

(n)
j−1

)]
.

Figure 1.4: Lax-Friedrich scheme

1.4.1 The Central-Upwind method

The central-upwind method is based on the idea of taking the difference between each

cell-volume average. The procedure of this method is done by a reconstruction of the

cell-volume average at the interfaces of the grid cells Cj.
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The solution U is approximated by a piecewise polynomial reconstruction pj (x). This

reconstruction must be conservative, second-order accurate and non-oscillatory,

Ũ (x, t) =
∑
Cj

pj (x, t) ICj (x) , where ICj (x) =

 1 xj ≤ x < xj+1,

0 otherwise.

The second-order accurate needs a piecewise linear reconstruction, as

Ũ (x, t) = U
(n)
j + (Ux)j (x− xj)

where xj is the center of each grid-cell. The non-oscillatory property must be obtained

via a nonlinear limiter, for example, the minmod limiter

(Ux)j = minmod

(
θ
U

(n)
j − U

(n)
j−1

∆x
,
U

(n)
j+1 − U

(n)
j−1

2∆x
, θ
U

(n)
j+1 − U

(n)
j

∆x

)
, θ ∈ [1, 2]

where

minmod (a, b, c) =


minj{zj} if zj > 0 ∀j,

maxj{zj} if zj < 0 ∀j,

0 otherwise.

After this step, we reconstruct U at the interface x = xj+ 1
2

as

U−
j+ 1

2

= U
(n)
j +

∆x

2
(Ux)j ,

U+
j+ 1

2

= U
(n)
j+1 −

∆x

2
(Ux)j+1 .

The discontinuities that appears at the reconstruction step in the interfaces propagates

at finite speed, estimated by

a+
j+ 1

2

= max
{
f ′
(
U−
j+ 1

2

)
, f ′
(
U+
j+ 1

2

)
, 0
}
,

a−
j+ 1

2

= min
{
f ′
(
U−
j+ 1

2

)
, f ′
(
U+
j+ 1

2

)
, 0
}
.
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In the case of higher dimensions, with U a vector of N dimensions and F also a vector

of N dimensions,

a+
j+ 1

2

= min
{
λN

(
JÛ (F)

(
U−
j+ 1

2

))
, λN

(
JÛ (F)

(
U+
j+ 1

2

))
, 0
}
,

a−
j+ 1

2

= min
{
λ1

(
JÛ (F)

(
U−
j+ 1

2

))
, λ1

(
JÛ (F)

(
U+
j+ 1

2

))
, 0
}
,

where λ1 < λ2 < · · · < λN are the eigenvalues of the Jacobian J (F) at U . Then, the

numerical flux is calculated by

F
(
U

(n)
j−1, U

(n)
j

)
=
a+
j+ 1

2

f
(
U−
j+ 1

2

)
− a−

j+ 1
2

f
(
U+
j+ 1

2

)
a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

− U−
j+ 1

2

]



Chapter 2

Derivation of the blood flow model

2.1 The geometry of the vessel

We consider the dynamics of a blood flow passing through an artery, which is mathemat-

ically interpreted as a cylindrical-shape domain with a flow moving mainly in its axial

direction. Considering the 3D flow given by the Navier-Stokes equations can give impor-

tant details of the flow but it can be computationally very expensive. As an alternative,

reduced models can provide enough details to analyze specific features in the vessel, such

as pressure waves. Following that idea, 1D models have been derived in the past few

years by taking the Navier-Stokes equations in cylindrical coordinates and averaging over

each cross section. Such models need to assume axi-symmetry, which is an important

restriction. In this thesis, we consider a 2D model that falls between the two extremes.

That is, we only take a radial average in each cross section, allowing for variations in

the angular direction. As a result, we obtain a model that has a better balance between

computational cost and complexity.

Although it can be easily generalized, let us assume for simplicity that the vessel is

aligned in the x − z plane and that it extends along a curve that passes through each

cross section. The parametrization of such curve is assumed to be known and its location

is then represented by its arclength’s position s and coordinates (xo(s), yo = 0, zo(s)).

Each cross section is identified with the arclength position s of the curve intersecting

27
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it. Any position in each cross section is located with the angle θ formed between the

displacement from the intersection and a reference vector. The variables and parameters

are functions of the axial position s and angle θ. As a result, the model allows for arbitrary

cross sections and variations in each angle θ, resulting in a 2D model.

The above parametrization is done such that s = 0 corresponds to the left end of the

vessel, while s = sL is related to the right end. For each s, the cross-section denoted by

C(s) is contained in a plane passing through (xo(s), yo = 0, zo(s)) and perpendicular to the

unit tangent vector T(s) = (cos (α (s)) , 0, sin (α (s))). Here α (s) is the angle of the curve

with respect to the horizontal axis x. Furthermore, for a point (x, y, z) in the cross-section

C(s), let θ be the angle between the normal vector (− sin (α (s)) , 0, cos (α (s))) and the

displacement (x, y, z)− (xo(s), 0, zo(s)). This gives the following change of variables:

x (r, s, θ) = xo (s)− r sin (α (s)) sin (θ) ,

y (r, s, θ) = r cos (θ) , (2.1)

z (r, s, θ) = zo (s) + r cos (α (s)) sin (θ) ,

where r is the norm of the displacement. A sufficient condition for the change of variables

to be valid is that the radius r for any point in the cross section does not exceed the radius

of curvature of the parametrization. That is,

r ≤ R(s) =
1

κ(s)
,

where κ(s) = |α′(s)| is the vessel’s curvature and R is the radius of curvature.

Figure 2.1 shows the schematic of the model to be derived below. The vessel’s radius may

vary as a function of angle, axial position and time, R = R(θ, s, t). As a result, the vessel

may have any cross-sectional shape. On the contrary, one-dimensional models assume a

uniform radius, independent of θ, restricting the cross section to be axi-symmetric. The

derivation of the model requires rewriting the Navier-Stokes equations [38] combined with
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Figure 2.1: Schematic of model for blood flows passing through a compliant vessel.
Here, R, u and ω are the vessel’s cross-sectional radius, the radially-averaged axial

velocity and the radially-averaged angular velocity, respectively. See section 2.2.

the incompressibility condition given by

D
Dt
ρ = 0,

D
Dt

(ρVx) = −∂x P + ν∆ Vx,

D
Dt

(ρVy) = −∂y P + ν∆ Vy,

D
Dt

(ρVz) = −∂z P + ν∆ Vz − ρg,

∇ ·V = 0.

(2.2)

in cylindrical coordinates (2.1) (subsection 2.1.1) and carry out an asymptotic analysis

to determine the leading order contribution under the following assumptions (subsection

2.1.2).

2.1.1 The equations in cylindrical coordinates

The derivation of the model requires the description of equations (2.2) in the coordinate

system (s, r, θ). These equations, in compact form with e3 = (0, 0, 1)T , are

D

Dt
(ρ) = 0,

D

Dt
(ρV) = −∇ (P ) + ν∆ (V)− ρge3

∇ ·V = 0.



Chapter 2. Derivation of the model 30

We describe here the material derivative D
Dt

, the gradient ∇ and the Laplacian ∆ in the

variables (s, r, θ)-coordinate system. Let us note that the gradient in cartesian coordinates

∇ = (∂x, ∂y, ∂z) and the gradient in (s, r, θ)-coordinates ∇c = (∂s, ∂r, ∂θ) are related by

∂s = |J |
r

{
cos (α (s)) ∂x + sin (α (s)) ∂z

}
∂r = − sin (α (s)) sin (θ) ∂x + cos (θ) ∂y + cos (α (s)) sin (θ) ∂z

∂θ = r
{
− sin (α (s)) cos (θ) ∂x − sin (θ) ∂y + cos (α (s)) cos (θ) ∂z

}
.

(2.3)

Also, the velocity field in cartesian coordinates V = (Vx, Vy, Vz) and the velocity field in

the (s, r, θ)-coordinates Vc = (Vs, Vr, Vθ) are related by

Vs = r
|J |

{
cos (α (s))Vx + sin (α (s))Vz

}
,

Vr = − sin (α (s)) sin (θ)Vx + cos (θ)Vy + cos (α (s)) sin (θ)Vz,

Vθ = 1
r

{
− sin (α (s)) cos (θ)Vx − sin (θ)Vy + cos (α (s)) cos (θ)Vz

}
.

(2.4)

Equations (2.3) and (2.4) can be reformulated by

Vc = J−1V, ∇c = JT∇,

where

J =



(1− r sin (θ)α′ (s)) cos (α (s)) − sin (θ) sin (α (s)) −r cos (θ) sin (α (s))

0 cos (θ) −r sin (θ)

(1− r sin (θ)α′ (s)) sin (α (s)) sin (θ) cos (α (s)) r cos (θ) cos (α (s))


(2.5)

is the jacobian of the change of variable (2.1). The corresponding determinant of the

Jacobian is given by

|J |= r (1− r sin (θ)α′ (s)) .

The jacobian can be rewrite as

J =

(
|J |
r

Js Jr rJθ

)
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with

Js =



cos (α (s))

0

sin (α (s))


, Jr =



− sin (θ) sin (α (s))

cos (θ)

sin (θ) cos (α (s))


, and

Jθ =



− cos (θ) sin (α (s))

− sin (θ)

cos (θ) cos (α (s))


. (2.6)

The above vectors are orthonormal, and also satisfies

(
J⊥s
)T · Jr = sin (θ) ,

(
J⊥s
)T · Jθ = cos (θ)

Moreover, the expresion for J−1 is

J−1 =
(
JTJ

)−1
JT =



r
|J |J

T
s

JTr

1
r
JTθ


,

JTJ =



(
|J |
r

)2

0 0

0 1 0

0 0 r2


,
(
JTJ

)−1
=



(
r
|J |

)2

0 0

0 1 0

0 0 1
r2


.

The divergence operator, in the (s, r, θ)-coordinates is

∇ · (F1, F2, F3) =
1

|J |
∇c ·

[
|J |J−1 (F1, F2, F3)

]
. (2.7)
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In the case of (F1, F2, F3) = V, we get that

∇ ·V =
1

|J |
∇c · (|J |Vc) ,

and for any function f ,

∇ · (fV) =
1

|J |
∇c · (|J |fVc) .

The above expression helps us to rewrite the material derivative in the (s, r, θ)-coordinates

as
Df

Dt
= ∂t (f) + V · ∇ (f)

= ∂t (f) +∇ · (fV)− f∇ ·V

= ∂t (f) +
1

|J |
∇c · (|J |fVc)−

f

|J |
∇c · (|J |Vc)

=
1

|J |

{
∂t (|J |f) +∇c · (|J |fVc)− f∇c · (|J |Vc)

}
.

(2.8)

In the case of incompressible fluids, the last term vanishes and we obtain

Df

Dt
=

1

|J |

{
∂t (|J |f) +∇c · (|J |fVc)

}
=

1

|J |

{
∂t (|J |f) + ∂s (|J |fVs) + ∂r (|J |fVr) + ∂θ (|J |fVθ)

}
.

(2.9)

Furthermore, the Laplacian can be expressed as

∆ (f) =
1

|J |
∂s

(
r2

|J |
∂s f

)
+

1

|J |
∂r

(
|J |∂r f

)
+

1

|J |
∂θ

(
|J |
r2
∂θ f

)
.

The Lapacian, by definition, is

∆ (f) ≡ ∇ · ∇ (f) .
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In (s, r, θ)-coordinates, we have

∆ (f) =
1

|J |
∇c ·

(
|J |
(
JTJ

)−1∇c (f)
)

=
1

|J |
∂s

(
r2

|J |
∂s (f)

)
+

1

|J |
∂r (|J |∂r (f)) +

1

|J |
∂θ

(
|J |
r2
∂θ (f)

)
=

(
r

|J |

)2

∂ss (f) +
1

|J |
∂s

(
r2

|J |

)
∂s (f) + ∂rr (f) +

1

|J |
∂r (|J |) ∂r (f)

+
1

r2
∂θθ (f) +

1

|J |
∂θ

(
|J |
r2

)
∂θ (f)

=
((
JTJ

)−1∇c

)
· ∇c (f) +

1

|J |
∇c

(
|J |diag

((
JTJ

)−1
))
· ∇c (f)

One important property of our laplacian is

∆ (fg) = f∆ (g) + 2∇ (f) · ∇ (g) + g∆ (f)

for any functions f, g. In (s, r, θ)-coordinates,

∆ (fg) = f∆ (g) + 2
((
JTJ

)−1∇c

)
(f) · ∇c (g) + g∆ (f) .

Now, we have

D

Dt
(ρVc) =

D

Dt

(
ρJ−1V

)
=

D

Dt

(
J−1
)
ρV + J−1 D

Dt
(ρV)

=
D

Dt

(
J−1
)
JρVc + J−1

[
−∇ (P ) + ν∆ (V)− ρge3

]
=

D

Dt

(
J−1
)
JρVc − J−1

(
JT
)−1∇c (P )− ρgJ−1e3 + νJ−1∆ (V)

=
D

Dt

(
J−1
)
JρVc −

(
JTJ

)−1∇c (P )− ρgJ−1e3

+νJ−1

[
J∆ (Vc) +

2r2

|J |2
∂s (J) ∂s (Vc) + 2∂r (J) ∂r (Vc)

+
2

r2
∂θ (J) ∂θ (Vc) +

1

|J |
∂s

(
r2

|J |

)
∂s (J) Vc +

1

|J |
∂r (|J |) ∂r (J) Vc

+
1

|J |
∂θ

(
|J |
r2

)
∂θ (J) Vc +

r2

|J |2
∂ss (J) Vc + ∂rr (J) Vc +

1

r2
∂θθ (J) Vc

]
.
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In order to summarize the calculations, we present the following list.

• D
Dt

(J−1) J .

D

Dt

(
J−1
)

=



−
(

r
|J |

)2 (
∇c

(
|J |
r

)
·Vc

)
JTs + α′ (s) r

|J |VsJ
⊥T
s

∂r

(
|J |
r

)
VsJ

T
s + ṽJTθ

1
r2
∂θ

(
|J |
r

)
VsJ

T
s − 1

r
ṽJTr − 1

r2
VrJ

T
θ



D

Dt

(
J−1
)
J =



− r
|J |∇c

(
|J |
r

)
·Vc − r

|J |∂r

(
|J |
r

)
Vs − r

|J |∂θ

(
|J |
r

)
Vs

|J |
r
∂r

(
|J |
r

)
Vs 0 rVθ

1
r2
|J |
r
∂θ

(
|J |
r

)
Vs −1

r
Vθ −1

r
Vr



• J−1∂s (J).

∂s (J) =

(
∂s

(
|J |
r

)
Js + α′ (s) |J |

r
J⊥s ∂r

(
|J |
r

)
Js ∂θ

(
|J |
r

)
Js

)

J−1∂s (J) =



r
|J |∂s

(
|J |
r

)
r
|J |∂r

(
|J |
r

)
r
|J |∂θ

(
|J |
r

)

− |J |
r
∂r

(
|J |
r

)
0 0

− 1
r2
|J |
r
∂θ

(
|J |
r

)
0 0


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• J−1∂r (J).

∂r (J) =

(
∂r

(
|J |
r

)
Js 0 Jθ

)

J−1∂r (J) =



r
|J |∂r

(
|J |
r

)
0 0

0 0 0

0 0 1
r


• J−1∂θ (J).

∂θ (J) =

(
∂θ

(
|J |
r

)
Js Jθ −rJr

)

J−1∂θ (J) =



r
|J |∂θ

(
|J |
r

)
0 0

0 0 −r

0 1
r

0


• J−1∂ss (J).

∂ss (J)

= [
∂ss

(
|J|
r

)
− (α′ (s))

2 |J|
r

]
Js+ ∂sr

(
|J|
r

)
Js+ ∂sθ

(
|J|
r

)
Js+[

α′ (s) ∂s

(
|J|
r

)
+ ∂s

(
α′ (s) |J|r

)]
J⊥s α′ (s) ∂r

(
|J|
r

)
J⊥s α′ (s) ∂θ

(
|J|
r

)
J⊥s



J−1∂ss (J)

=

r
|J|

[
∂ss

(
|J|
r

)
− (α′ (s))

2 |J|
r

]
r
|J|∂sr

(
|J|
r

)
r
|J|∂sθ

(
|J|
r

)

−∂s
(
|J|
r

)
∂r

(
|J|
r

)
− ∂s

(
|J|
r ∂r

(
|J|
r

))
−
[
∂r

(
|J|
r

)]2
−∂r

(
|J|
r

)
∂θ

(
|J|
r

)

− 1
r2

[
∂s

(
|J|
r

)
∂θ

(
|J|
r

)
+ ∂s

(
|J|
r ∂θ

(
|J|
r

))]
− 1
r2 ∂r

(
|J|
r

)
∂θ

(
|J|
r

)
− 1
r2

[
∂θ

(
|J|
r

)]2


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• J−1∂rr (J).

∂rr (J) =

(
0 0 0

)

J−1∂θ (J) =



0 0 0

0 0 0

0 0 0


• J−1∂θθ (J).

∂θθ (J) =

(
∂θθ

(
|J |
r

)
Js −Jr −rJθ

)

J−1∂θ (J) =



r
|J |∂θθ

(
|J |
r

)
0 0

0 −1 0

0 0 −1


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Now, let expand the matrix

D
Dt

(ρVc) =

− r
|J|∇c

(
|J|
r

)
·Vc − r

|J|∂r
(
|J|
r

)
Vs − r

|J|∂θ

(
|J|
r

)
Vs

|J|
r
∂r
(
|J|
r

)
Vs 0 rVθ

1
r2
|J|
r
∂θ

(
|J|
r

)
Vs − 1

r
Vθ − 1

r
Vr


ρVc −



(
r
|J|

)2
0 0

0 1 0

0 0 1
r2


∇c (P )

−ρg



r
|J|J

T
s

JTr

1
r
JTθ


e3 + ν

{
∆ (Vc) + 2



r
|J|∂r

(
|J|
r

)
0 0

0 0 0

0 0 1
r


∂r (Vc) + 2

r2



r
|J|∂θ

(
|J|
r

)
0 0

0 0 −r

0 1
r

0


∂θ (Vc)

+ 2r2

|J|2



r
|J|∂s

(
|J|
r

)
r
|J|∂r

(
|J|
r

)
r
|J|∂θ

(
|J|
r

)

− |J|
r
∂r
(
|J|
r

)
0 0

− 1
r2
|J|
r
∂θ

(
|J|
r

)
0 0


∂s (Vc) + 1

|J|∂r (|J |)



r
|J|∂r

(
|J|
r

)
0 0

0 0 0

0 0 1
r


Vc

+ 1
|J|∂θ

(
|J|
r2

)


r
|J|∂θ

(
|J|
r

)
0 0

0 0 −r

0 1
r

0


Vc + 1

|J|∂s
(
r2

|J|

)


r
|J|∂s

(
|J|
r

)
r
|J|∂r

(
|J|
r

)
r
|J|∂θ

(
|J|
r

)

− |J|
r
∂r
(
|J|
r

)
0 0

− 1
r2
|J|
r
∂θ

(
|J|
r

)
0 0


Vc

+
(
r
|J|

)2


r
|J|

[
∂ss
(
|J|
r

)
− (α′ (s))2 |J|

r

]
r
|J|∂sr

(
|J|
r

)
r
|J|∂sθ

(
|J|
r

)

−∂s
(
|J|
r

)
∂r
(
|J|
r

)
− ∂s

(
|J|
r
∂r
(
|J|
r

))
−
[
∂r
(
|J|
r

)]2
−∂r

(
|J|
r

)
∂θ

(
|J|
r

)

− 1
r2

[
∂s
(
|J|
r

)
∂θ

(
|J|
r

)
+ ∂s

(
|J|
r
∂θ

(
|J|
r

))]
− 1
r2
∂r
(
|J|
r

)
∂θ

(
|J|
r

)
− 1
r2

[
∂θ

(
|J|
r

)]2


Vc

+ 1
r2



r
|J|∂θθ

(
|J|
r

)
0 0

0 −1 0

0 0 −1


Vc

}

.

Straightforward but long calculations gives the Navier-Stokes equations combined with

the incompressibility conditions (2.2) in cylindrical coordinates (2.1). The new system is
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given by

D
Dt

(ρ) = 0,

D
Dt

(
ρ
[
|J |
r

]2

Vs

)
= −∂sP2 + |J |

r
∂s

(
|J |
r

)
ρV 2

s − sin (α (s)) ρg,

+ν

{
∆

([
|J |
r

]2

Vs

)
−∆

([
|J |
r

]2
)
Vs + 2 r

|J |∂r

[
|J |
r

]
∂s (Vr)

+2 r
|J |∂θ

(
|J |
r

)
∂s (Vθ) +∇c

(
r
|J |∂s

(
|J |
r

))
·Vc

}
,

D
Dt

(ρVr) = −∂r (P2) + |J |
r
∂r

(
|J |
r

)
ρV 2

s + rρV 2
θ

+ν
{

∆ (Vr)− 2 r
|J |∂r

(
|J |
r

)
∂s (Vs)− 2

r
∂θ (Vθ)

−
(

r
|J |

)2

∂s

(
|J |
r
∂r

(
|J |
r

))
Vs

− 1
|J |2

[(
|J |
r

)2

+
(
|J |
r
− 1
)2
]
Vr − ∂r(|J |)∂θ(|J |)

|J |2 Vθ

}
,

D
Dt

(ρr2Vθ) = −∂θ (P2) + |J |
r
∂θ

(
|J |
r

)
ρV 2

s

+ν

{
∆ (r2Vθ)− 2 r

|J |∂θ

(
|J |
r

)
∂s (Vs)

+2
r
∂θ (Vr)− 2

|J |∂r (|J |rVθ)−
[
r
|J |

]2

∂s

(
|J |
r
∂θ

(
|J |
r

))
Vs

+ r
|J |2∂θ

(
|J |
r

)
Vr −

[
r
|J |∂θ

(
|J |
r

)]2

Vθ

}
,

∇c · (|J |Vc) = 0,

(2.10)

where P2 = P + r cos(α(s)) sin(θ)ρg is the transmural pressure.

2.1.2 The dimensionless equations

We carry out an asymptotic analysis to remove small terms in the equations that do

not add a significant contribution in the budget and allows us to simplify the model.

Following [9], we define Vs,0, Vr,0, and Vθ,0 be the characteristic radial, axial and angular

velocities. Let also λ and R0 be the characteristic axial and radial lengthscales. Each

quantity is non-dimensionalized as r = R0r̃, s = λs̃, t = λ
V0
t̃, Vs = Vs,0Ṽs, Vr = Vr,0Ṽr,

Vθ = Vθ,0Ṽθ, P = ρV 2
0 P̃ .
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The dimensionless version of (2.10) is given by

D̃
Dt

(ρ̃) = 0

D̃
Dt

(
ρ̃
[

˜|J |
r̃

]2

Ṽs

)
= − [P ]

ρ0V 2
s,0
∂̃s P̃2 − gT

Vs,0
sin (α (s)) ρ̃+

˜|J |
r̃
∂̃s

(
˜|J |
r̃

)
ρ̃Ṽs

2

+ νT
ρ0R2

0

{(
R0

λ

)2 1
˜|J |
∂̃s

(
r̃2

˜|J |
∂̃s

([
˜|J |
r̃

]2

Ṽs

))
+ 1

˜|J |
∂̃r

(
˜|J |∂̃r

([
˜|J |
r̃

]2

Ṽs

))
+ 1

˜|J |
∂̃θ

(
˜|J |
r̃2
∂̃θ

([
˜|J |
r̃

]2

Ṽs

))
+2 r̃

˜|J |
∂̃r

(
˜|J |
r̃

)
∂̃s

(
Ṽr

)
+ 2 r̃

˜|J |
∂̃θ

(
˜|J |
r̃

)
∂̃s

(
Ṽθ

)
+
(
R0

λ

)2∇̃c

(
r̃
˜|J |
∂̃s

(
˜|J |
r̃

))
· Ṽc

−
(
R0

λ

)2 1
˜|J |
∂̃s

(
r̃2

˜|J |
∂̃s

([
˜|J |
r̃

]2
))

Ṽs

− 1
˜|J |
∂̃r

(
˜|J |∂̃r

([
˜|J |
r̃

]2
))

Ṽs − 1
˜|J |
∂̃θ

(
˜|J |
r̃2
∂̃θ

([
˜|J |
r̃

]2
))

Ṽs

}

D̃
Dt

(
ρ̃Ṽr

)
= − [P ]

ρ0V 2
r,0
∂̃r P̃2 +

(
Vs,0
Vr,0

)2 ˜|J |
r̃
∂̃r

(
˜|J |
r̃

)
ρ̃Ṽs

2
+ ρ̃r̃Ṽθ

2

+ νT
ρ0R2

0

{(
R0

λ

)2 1
˜|J |
∂̃s

(
r̃2

˜|J |
∂̃s

(
Ṽr

))
+ 1

˜|J |
∂̃r

(
˜|J |∂̃r

(
Ṽr

))
+ 1

˜|J |
∂̃θ

(
˜|J |
r̃2
∂̃θ

(
Ṽr

))
− 2 r̃

˜|J |
∂̃r

(
˜|J |
r̃

)
∂̃s

(
Ṽs

)
− 2

r̃
∂̃θ

(
Ṽθ

)
−
(

r̃
˜|J |

)2

∂̃r

(
˜|J |
r̃

)
∇̃c

(
˜|J |
r̃

)
· Ṽc

− r̃
˜|J |
∂̃s∂̃r

(
˜|J |
r̃

)
Ṽs − 1

r̃2
Ṽr − 1

˜|J |
∂̃θ

(
˜|J |
r̃

)
Ṽθ

}
(2.11)

D̃
Dt

(
ρ̃ (r̃)2 Ṽθ

)
= − [P ]

ρ0R2
0V

2
θ,0
∂̃θ P̃2 +

(
Vs,0
R0Vθ,0

)2 ˜|J |
r̃
∂̃θ

(
˜|J |
r̃

)
ρ̃Ṽs

2

+ νT
ρ0R2

0

{(
R0

λ

)2 1
˜|J |
∂̃s

(
r̃2

˜|J |
∂̃s

(
(r̃)2 Ṽθ

))
+ 1

˜|J |
∂̃r

(
˜|J |∂̃r

(
(r̃)2 Ṽθ

))
+ 1

˜|J |
∂̃θ

(
˜|J |
r̃2
∂̃θ

(
(r̃)2 Ṽθ

))
− 2r̃

˜|J |
∂̃θ

(
˜|J |
r̃

)
∂̃s

(
Ṽs

)
+ 2

r̃
∂̃θ

(
Ṽr

)
− 2

˜|J |
∂̃r

(
˜|J |r̃Ṽθ

)
−
[
r̃
˜|J |

]2

∂̃s

(
˜|J |
r̃
∂̃θ

(
˜|J |
r̃

))
Ṽs

− r̃
˜|J |2
∂̃θ

(
˜|J |
r̃

)
Ṽr −

[
r̃
˜|J |
∂̃θ

(
˜|J |
r̃

)]2

Ṽθ

}

∇̃c ·
(

˜|J |Ṽc

)
= 0.
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The small parameter in this expansion is the ratio between radial and axial lengthscales

ε :=
Ro

λ
=
Vr,o
Vs,o

. (2.12)

Typical values in the aorta between the renal and the iliac arteries gives ε ≈ 10−2 [9].

Furthermore, we assume that the gravity g, the scales of pressure ([P ]), radius (Ro), time

(T ), axial and linear angular velocities (Vs,o, Vθ,o) satisfy

[P ]

ρoV 2
s,o

= O(1),
Vs,o
RoVθ,o

= O(1),
gT

Vs,o
= O(1). (2.13)

Under these assumptions, the acceleration of gravity is comparable to the characteristic

acceleration of the system in the axial direction. This is reasonable for typical velocities of

order O(1 ms−1) and a timescale of T = 0.1 s. On the other hand, the change of variables

is valid provided r|α′(s)|< 1. As a stronger assumption, we assume that rα′(s) is small,

which implies that the artery’s radius of curvature is large compared to its cross-sectional

radius. On the other hand, an approximate value for blood viscosity in arteries can be

taken as a constant ν = 4 cP = 4 × 10−2 g (s cm)−1 [18]. Using ρo = 1050 kg m−3, and

Ro = 0.82 cm, it gives us νT
ρoR2

o
= 0.56× 10−2. Based on this estimation, we assume

Ro |α′(s)| = O (ε) , and
νT

ρoR2
o

= O (ε) . (2.14)

There is just one leading order term in the momentum equation in the radial direction

that is found as follows. The first term in the right-hand side has a factor of

[P ]

ρoV 2
r,o

=
[P ]

ρoV 2
s,o

V 2
s,o

V 2
r,o

= O(ε−2).

The second term has a factor of order O(ε−2). However, we ignore that term because

∂r(|J |/r) = − sin(θ)α′(s)Ro = O(ε).
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The viscosity terms are all order O(ε) or higher, and the left-hand side is O(1). Thus,

taking the leading order term, we obtain

∂r̃

(
P̃2

)
= 0,

which implies that P̃2 is independent of r̃. In the equation of balance for the angular

momentum, we will exclude only terms that are order O(ε) or higher to keep the contri-

bution of the artery’s curvature on the flow. The first term in the right-hand side has a

factor
[P ]

ρo(RoVθ,o)2
=

[P ]

ρoV 2
s,o

V 2
s,o

(RoVθ,o)2
= O(1),

and we keep it. As discussed above, the non-dimensional parameter involving the viscosity

term is order O(ε). For the terms inside the brackets, we assume that rVθ, Vr and |J |/r

depend all weakly on θ, which is consistent with the fact that the blood flow moves mainly

in the axial direction. As a result, only two terms in front of the viscosity coefficient have

a leading contribution, as specified below in equation (2.15).

Similarly, we only exclude terms in the momentum equation that are order O(ε) or higher.

All the terms before the viscosity coefficient are order O(1) or O(ε). Only one viscosity

term inside the brackets has a leading contribution. The other terms have either a factor

of order O(ε), or can be neglected due to the weak dependance on θ.
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The averaged leading order equations

After removing terms of order O(ε2) in the dimensionaless equations (2.11), we obtain

˜|J | D̃
Dt

(ρ̃) = 0, (2.15a)

˜|J | D̃
Dt

ρ̃[ ˜|J |
r̃

]2
Ṽs

 = r̃

(
˜|J |
r̃

)2

∂̃s

(
˜|J |
r̃

)
ρ̃Ṽs

2 − [P ]

ρ0V 2
s,0

˜|J |∂̃s
(
P̃2

)

− gT

Vs,0
sin (α (s)) ˜|J |ρ̃+

νT

ρ0R2
0

∂̃r

 ˜|J |∂̃r

[ ˜|J |
r̃

]2
Ṽs

 , (2.15b)

˜|J | D̃
Dt

(
ρ̃ (r̃)

2
Ṽθ

)
= r̃

(
˜|J |
r̃

)2

∂̃θ

(
˜|J |
r̃

)
ρ̃Ṽs

2 − [P ]

ρ0V 2
s,0

˜|J |∂̃θ
(
P̃2

)
+

νT

ρ0R2
0

∂̃r

(
˜|J |
[
∂̃r

(
(r̃)

2
Ṽθ

)
− 2r̃Ṽθ

])
, (2.15c)

∇̃c ·
(

˜|J |Ṽc

)
= 0. (2.15d)

Going back with units, we have that

|J | D
Dt

(ρ) = 0

|J | D
Dt

(
ρ

[
|J |
r

]2

Vs

)
= r

[
|J |
r

]2

∂s

(
|J |
r

)
ρV 2

s − |J |∂s (P2)− |J |sin (α (s)) ρg

+ν∂r

(
|J |∂r

([
|J |
r

]2

Vs

))

|J | D
Dt

(
ρr2Vθ

)
= r

[
|J |
r

]2

∂θ

(
|J |
r

)
ρV 2

s − |J |∂θ (P2)

+ν∂r
(
|J |
[
∂r
(
r2Vθ

)
− 2rVθ

])
∇c · (|J |Vc) = 0.

Although our system has 5 variables (Vs, Vr, Vθ, P2 and ρ) and 4 equations, we will provide

a closed-form of the pressure in terms of the radially-integrated Jacobian, as presented in

the next section. This closed-forms brings us a way to get a system of 3 equations with

3 variables which are conservation laws without non-conservative terms.
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2.2 The main system

Let R (s, θ, t) denote the vessel’s cross-sectional radius at each position s, angle θ and

time t. Using (2.9), the incompressibility equation (2.15d) and the Leibniz integral rule,

we have

∫ R

o

|J |Df
Dt

dr = ∂t

(∫ R

o

f |J |dr
)

+ ∂s

(∫ R

o

fVs|J |dr
)

+ ∂θ

(∫ R

o

fVθ|J |dr
)

+
[
f |J |

]
r=R

{
[Vr]r=R − ∂t (R)− [Vs]r=R ∂s (R)− [Vθ]r=R .∂θ (R)

}

After an integration in the radial direction of (2.15a)-(2.15c) assuming a streamline con-

dition

[Vr]r=R = ∂t (R) + [Vs]r=R ∂s (R) + [Vθ]r=R ∂θ (R)

at the artery’s wall and a slowly varying density, which is approximated by a constant

value respect to r, we obtain

∂t

(∫ R
0
|J |dr

)
+ ∂s

(∫ R
0
Vs|J |dr

)
+ ∂θ

(∫ R
0
Vθ|J |dr

)
= 0

∂t

(∫ R
0

[
|J|
r

]2
Vs|J |dr

)
+ ∂s

(∫ R
0

[
|J|
r

]2
V 2
s |J |dr

)
+ ∂θ

(∫ R
0

[
|J|
r

]2
VsVθ|J |dr

)
=

∫ R
0
r
[
|J|
r

]2
∂s

(
|J|
r

)
V 2
s dr − ∂s

(
P2

ρ

)∫ R
0
|J |dr

− sin (α (s)) g
∫ R
0
|J |dr +

ν

ρ

[
|J |∂r

([
|J|
r

]2
Vs

)]
r=R

∂t

(∫ R
0
r2Vθ|J |dr

)
+ ∂s

(∫ R
0
r2VsVθ|J |dr

)
+ ∂θ

(∫ R
0
r2V 2

θ |J |dr
)

=
∫ R
0
r
[
|J|
r

]2
∂θ

(
|J|
r

)
V 2
s dr − ∂θ

(
P2

ρ

)∫ R
0
|J |dr

+
ν

ρ

[
|J |
(
∂r
(
r2Vθ

)
− 2rVθ

)]
r=R

.

Let us define

A (R, s, θ, t) =

∫ R

0

|J |dr, u (s, θ, t) =
1

A

∫ R

0

Vs|J |dr, ω (s, θ, t) =
1

A

∫ R

o

Vθ|J |dr, (2.16)

where

A = A(R, s, θ) =
R2

2
− R3

3
sin(θ)α′(s)

is the radially integrated Jacobian. On the other hand, u and ω are the radially-averaged
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axial velocity and angular velocity, respectively. The radially-averaged angular momen-

tum L is defined as

L = Aθω, Aθ =

∫ R
o
r2Vθ|J |dr∫ R

o
Vθ|J |dr

.

Under the new variables, the model is

∂t (A) + ∂s (A u) + ∂θ (A ω) = 0,

∂t (ψs,oAu) + ∂s (ψs,1Au
2) + ∂θ (ψs,2Auω) = −A∂s

(
p
ρ

)
− gA sin(α(s))

+
∫ R
o
r
[
|J |
r

]2

∂s

(
|J |
r

)
V 2
s dr

+ν
ρ

(
|J |∂r

([
|J |
r

]2

Vs

)) ∣∣R
o ,

∂t (AL) + ∂s (ψθ,1ALu) + ∂θ (ψθ,2ALω) = −A∂θ
(
p
ρ

)
+
∫ R
o
r
[
|J |
r

]2

∂θ

(
|J |
r

)
V 2
s dr

+ν
ρ

(|J |[∂r(r2Vθ)− 2rVθ])
∣∣R
o ,

(2.17)

where ψs,o, ψs,1, ψs,2, ψθ,1 and ψθ,2 are Coriolis terms satisfying

ψs,oAu =
∫ R
o
|J |
[
|J |
r

]2

Vsdr,

ψs,1Au
2 =

∫ R
o
|J |
[
|J |
r

]2

V 2
s dr, ψθ,1A

2uω =
∫ R
o
|J |r2VθVsdr,

ψs,2Auω =
∫ R
o
|J |
[
|J |
r

]2

VsVθdr, ψθ,2A
2ω2 =

∫ R
o
|J |r2V 2

θ dr.

(2.18)

The integral of the Jacobian in the radial direction A is one of our conserved variables.

This variable A satisfies that
∫ s1
s0

∫ 2π

0
Adθds is the volume in the corresponding artery’s

region. In the case of a circular cross section, the integral with respect to θ gives us the

cross-sectional area. The balance of axial and angular momenta determines the other two

conserved quantities, given by

Q1 = ψs,oAu, Q2 = AL, (2.19)
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where ψs,o takes into account the effect of curvature in the artery, and ψs,o = 1 for

horizontal vessels. One still needs to determine a profile for the axial and angular velocities

Vs and Vθ as functions of r to close the system. For a given profile, the non-dimensional

Coriolis terms ψs,o, ψs,1, ψs,2, ψθ,1 and ψθ,2 are all explicit functions of A, s and θ. In fact,

those parameters are explicit functions of R sin(θ)α′(s) for the profiles considered in this

work, and are therefore constant parameters for vessels with zero curvature. See section

3.2 for more details.

Transmural pressure

The transmural pressure, which is the pressure difference between the two sides of the

artery’s wall is denoted by P2. The elasticity properties of the vessel are determined by a

relationship between P2, the area A and possibly the variables s and θ due to non-uniform

properties in the artery (explicit dependence on parameters). That is, we assume that

the transmural pressure is an explicit function

P2 = P2(A, s, θ).

Furthermore, we assume that the transmural pressure vanishes at a given state at rest

Ao = Ao(s, θ) = R2
o

2
− R3

o

3
sin(θ)α′(s) with Ro = Ro(s, θ) such that

P2(Ao(s, θ), s, θ) = 0.

Some properties such as the hyperbolicity of the system are shown independently of the

profiles, and we take equation (2.17) as the most general form of the system. This closes

the system since everything is given in terms of the conserved quantities A,Q1 and Q2,

and s, θ due to the presence of varying parameters.

Conservation form

The model can be written in conservation form. For that end, we need to introduce the

following notation. The transmural pressure and other parameters such as the Coriolis

terms are explicit functions q = q(A, s, θ) of A, s and θ. On the other hand, model

parameters such as Ro and Ao depend explicitly on (s, θ). We will denote by ∂1, ∂2, ∂3
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the derivatives with respect to A, s and θ, keeping the other terms fixed. Thus

∂s(P2(A(s, θ, t), s, θ)) = ∂1P2 ∂sA+ ∂2P2,

∂θ(P2(A(s, θ, t), s, θ)) = ∂1P2 ∂θA+ ∂3P2.

We distinguish them from ∂s and ∂θ, which take into account the variations of the con-

served variables with respect to s and θ over time.

In order to get the conservation form, we define the splitting of the transmural pressure

as

P2 = p̂+ p,

where

p̂ (A, s, θ) =
1

A

∫ A

Ao

A∂1 (P2 (A, s, θ)) dA,

which satisfy

A∂s (P2) = ∂s (Ap̂) + A∂2p, and

A∂θ (P2) = ∂θ (Ap̂) + A∂3p.

The 2D model for blood flows in arteries with arbitrary cross sections is written as a

hyperbolic system of balance as

∂tU + ∂s F (U) + ∂θ G (U) = S (U) , (2.20)

U =


A

ψs,oAu

AL

 , F (U) =


Au

ψs,1Au
2 + 1

ρ
Ap̂

ψθ,1AuL

 , and

G (U) =


Aω

ψs,2Auω

ψθ,2ALω + 1
ρ
Ap̂


(2.21)
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are the vectors of conserved variables and the fluxes in the axial and angular directions,

respectively. The vector of source terms is

S (U) =



0

−A
ρ
∂2p− A sin (α (s)) g +

∫ R
o
|J |
r
∂s

(
|J |
r

)
V 2
s |J |dr

+ν
ρ

[
|J |∂r

([
|J |
r

]2

Vs

)]
r=R

−A
ρ
∂3p+

∫ R
o
|J |
r
∂θ

(
|J |
r

)
V 2
s |J |dr

+ν
ρ

[|J |∂r (r2Vθ)− 2r|J |Vθ]r=R


. (2.22)

We note that none of the source terms are non-conservative products. The source terms

only involve derivatives of the model parameters with respect to the explicit dependance

on (s, θ) and no derivates of the solution itself are present. This prevents both theoretical

and numerical complications when shockwaves arise. Below we show explicit expressions

of the source and Coriolis terms for a particular choice of profiles for the transmural

pressure, axial and angular velocities. As we will see, the expressions are very simple in

the case of horizontal arteries (α′ (s) = 0).





Chapter 3

Properties of the model

3.1 Hiperbolicity of the model

The conservation form in equation (2.20) is crucial because it allows us to formulate the

Rankine-Hugoniot conditions for weak solutions in the presence of shock-waves. We can

apply the theory of weak solutions provided the model is hyperbolic. The hyperbolic

properties of system (2.20) can be studied through its quasilinear formulation.

In equation (2.19), we present the conserved variables of the model, as A, Q1 = ψs,oAu

and Q2 = AL. The flux in the axial and angular direction, in term of the conserved

quantities, are given by

F (U) =



Q1

ψs,o

ψs,1Q
2
1

ψ2
s,oA

+
1

ρ
Ap̂

ψθ,1Q1Q2

ψs,oA


, G (U) =



Q2

Aθ

ψs,2Q1Q2

ψs,oAAθ

ψθ,2Q
2
2

AAθ
+

1

ρ
Ap̂


.

The quasilinear formulation, which is given by

∂tU +Ms (U) ∂sU +Mθ (U) ∂θU = S̃ (U) , (3.1)

49
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where the coefficient matrix are

Ms (U) =



∂1

(
1

ψs,o

)
Q1

1

ψs,o
0

∂1

(
1

ρ
Ap̂

)
+ ∂1

(
ψs,1
ψ2
s,oA

)
Q2

1

2ψs,1Q1

ψ2
s,oA

0

∂1

(
ψθ,1
ψs,oAθ

)
Q1Q2

ψθ,1Q2

ψs,oAθ

ψθ,1Q1

ψs,oAθ


, (3.2)

and

Mθ (U) =



∂1

(
1

ψθ,oA

)
Q2 0

1

Aθ

∂1

(
ψs,2

ψs,oAAθ

)
Q1Q2

ψs,2Q2

ψs,oAAθ

ψs,2Q1

ψs,oAAθ

∂1

(
1

ρ
Ap̂

)
+ ∂1

(
ψθ,2
A2
θ

)
Q2

2 0
2ψθ,2Q2

A2
θ


. (3.3)

The vector of source terms of the quasi-linear formulation is

S̃ (U) = S (U)−



∂2

(
1

ψs,o

)
Q1 + ∂3

(
1

Aθ

)
Q2

∂2

(
1

ρ
Ap̂

)
+ ∂2

(
ψs,1
ψ2
s,oA

)
Q2

1 + ∂3

(
ψs,2

ψs,oAAθ

)
Q1Q2

∂3

(
1

ρ
Ap̂

)
+ ∂2

(
ψθ,1
ψs,oAθ

)
Q1Q2 + ∂3

(
ψθ,2
A2
θ

)
Q2

2


. (3.4)

In terms of A, u, ω and L, the matrices are

Ms (U) =


− A

ψs,o
∂1 (ψs,o)u

1

ψs,o
0

1

ρ
∂1 (Ap̂)−

(
ψs,1
ψs,o

)2

∂1

(
ψ2
s,oA

ψs,1

)
u2 2

ψs,1
ψs,o

u 0

−
ψ2
θ,1

ψs,o
∂1

(
ψs,oA

ψθ,1

)
uL

ψθ,1
ψs,o

L ψθ,1u

 , (3.5)
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and

Mθ (U) =


− A

Aθ
∂1 (Aθ)ω 0

1

Aθ

−
ψ2
s,2

ψs,oAθ
∂1

(
ψs,oAAθ
ψs,2

)
uω

ψs,2
ψs,o

ω
ψs,2
Aθ

u

1

ρ
∂1 (Ap̂)− ψ2

θ,2∂1

(
AAθ
ψθ,2

)
ω2 0 2ψθ,2ω

 . (3.6)

The vector of source terms of the quasi-linear formulation is

S̃ (U) = S (U) +



A

ψs,o
∂2 (ψs,o)u+

A

Aθ
∂3 (Aθ)ω

−1

ρ
∂2 (Ap̂) +

(
ψs,1
ψs,o

)2

∂2

(
ψ2
s,oA

ψs,1

)
u2 +

ψ2
s,2

ψs,oAθ
∂3

(
ψs,oAAθ
ψs,2

)
uω

−1

ρ
∂3 (Ap̂) +

ψ2
θ,1

ψs,o
∂2

(
ψs,oA

ψθ,1

)
uL+ ψ2

θ,2∂3

(
AAθ
ψθ,2

)
ω2

 .

(3.7)

The matrices Ms and Mθ have two null entries in one column and their eigenvalues have

explicit expressions given by

λso =
ψθ,1
ψθ,o

u, λs± =
2ψs,1 − A∂1 (ψs,o)

2ψs,o
u ±

√
1
ρ
∂1 (Ap̂)

ψs,o
+ Υ1u2, (3.8)

for Ms, and

λθo =
ψs,2
ψs,o

ω, λθ± =
2ψθ,2Aθ − A∂1 (Aθ)

2Aθ
ω ±

√
1
ρ
∂1 (Ap̂)

Aθ
+ Υ2ω2 (3.9)

for Mθ, respectively. Here,

Υ1 = 1
ψ2
s,o

[
ψs,1 − 1

2
A∂1 (ψs,o)

]2
+ 1

ψs,o
[A∂1 (ψs,1)− ψs,1] , and

Υ2 = 1
A2
θ

[
ψθ,2Aθ − 1

2
A∂1 (Aθ)

]2
+ 1

Aθ
[A∂1 (ψθ,2Aθ)− ψθ,2Aθ]

(3.10)

are all non-dimensional quantities.

Below we specify the profiles for the axial and angular velocities. For those specific

profiles, we show that Υ1 = Υ1(Γ) and Υ2 = Υ2(Γ) are explicit rational functions of Γ,

where

Γ = R sin(θ)α′(s). (3.11)
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Such functions satisfy Υ1(Γ = 0) =
ψs,1
ψs,o

(
ψs,1
ψs,o
− 1

)
and Υ2(Γ = 0) =

(
ψθ,2 −

1

2

)2

. The

special case Γ = 0 corresponds to a horizontal vessel.

Proposition 3.1. Let us assume that p is strictly increasing with respect A, with positive

partial derivative, except possibly at A = 0 where the vessel collapses. The coefficient

matrices Ms and Mθ given by (3.5) and (3.6) have real eigenvalues and a complete set of

eigenvectors, subject to the conditions 0 < R < 1
|α′(s)| , and Υ1,Υ2 ≥ 0.

The condition 0 < R < 1
|α′(s)| indicates that the artery’s radius must not exceed the

artery’s radius of curvature and it is required for the change of variables to cylindrical

coordinates to be valid. This implies that the non-dimensional parameter Γ satisfies

|Γ|≤ 1. For specific profiles used in this paper for the axial and angular velocities, Υ1

and Υ2 are in fact non-negative for Γ ∈ [−1, 1].

Proof. Under the above hypothesis, and the fact that

∂1(Ap̂) = A∂1p ≥ 0,

the expressions inside the square roots in equations (3.8) and (3.9) are non-negative. As

a result, all the eigenvalues are real. The expressions inside the square roots could only

vanish if A = 0 (or equivalently R = 0). It would also require that u = 0 or ω = 0

if Υ1 = 0 or Υ2 = 0 respectively. This could happen for certain parameter choices,

specially in horizontal vessels. In any case, the condition R > 0 is sufficient to guarantee

that λs+ 6= λs− and λθ+ 6= λθ−. However, the eigenvalue λso may still have multiplicity 2 if it

coincides with λs+ or λs−. And the same applies for the matrix Mθ.

In the case when the eigenvalues for Ms are different and writing Ms = (aij), the eigen-

vectors form a basis and are given by

vso =


0

0

1

 , vs± =


a12

λs± − a11

(a11−λs±)a32−a12a31
a33−λs±

 .



Chapter 3. Properties of the model 53

If λso = λs−, the eigenvectors are given by

vso =


0

0

1

 , vs− =


a12

λs− − a11

0

 , vs+ =


a12

λs+ − a11

(a11−λs+)a32−a12a31
a33−λs+

 .

Since λs+ 6= λs−, one can easily check that the eigenvectors form a complete basis because

a12 = 1
ψs,o

> 0. The case λso = λs+ and the analysis for Mθ are analogous.

The hyperbolicity of the model requires that nsMs + nθRoMθ has real eigenvalues and

a complete set of eigenvectors for all ns, nθ ∈ R such that n2
s + n2

θ = 1. Here Ro is a

constant in units of length that appears due to the fact that s and θ have different units.

For the general case, the matrix nsMs + nθRoMθ has not a simple form. However, one

can easily analyze the special case of a horizontal vessel (α′(s) = 0) and ω = 0. In such

case, ψs,o, ψs,1, ψs,2, ψθ,1 are all constant, and the characteristic polynomial is

P (λ) = −λ3 + c2λ
2 + c1λ+ co,

where

c2 = (2ψs,1 + ψθ,1)uns,

c1 = 1
ρ
∂1 (Ap̂)

(
n2
s + R2

o

Aθ
n2
θ

)
+ (−ψs,1 − 2ψs,1ψθ,1) u2 n2

s,

co =
[
−1
ρ
∂1 (Ap̂) + ψs,1u

2
]
ψθ,1 n

3
s u

+1
ρ
∂1 (Ap̂) R2

o

Aθ
(−2ψs,1 + ψs,2) n2

θ u ns.
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Using Cardano’s approach, we know the characteristic polynomial has three distinct real

eigenvalues if

0 < −27c2
o − 18c2c1co + 4c3

1 − 4c3
2co + c2

2c
2
1

= 4
(

1
ρ
∂1(Ap̂) + ψs,1(ψs,1 − 1)u2

) [
1
ρ
∂1(Ap̂) + (2ψs,1ψθ,1 − ψs,1 − ψ2

θ,1)u2
]2

n6
s

+12
( 1
ρ
∂1(Ap̂))

3
R2
o

Aθ
n4
sn

2
θ

+4
( 1
ρ
∂1(Ap̂))

2
R2
ou

2

Aθ

(
20ψ2

s,1 + ψθ,1(9ψs,2 + 5ψθ,1)− ψs,1(6 + 9ψs,2 + 19ψθ,1)
)
n4
sn

2
θ

+4
1
ρ
∂1(Ap̂)R2

ou
4

Aθ

[
16ψ4

s,1 − ψs,2ψ3
θ,1 − 4ψ3

s,1(5 + 2ψs,2 + 4ψθ,1)

+ψs,1ψθ,1 [3ψs,2(−3 + ψθ,1) + (−5 + ψθ,1)ψθ,1]

+ψ2
s,1(3 + ψθ,1(19 + 2ψθ,1) + ψs,2(9 + 6ψθ,1))

]
n4
sn

2
θ

+12
( 1
ρ
∂1(Ap̂))

3
R4
o

A2
θ

n2
sn

4
θ

+
( 1
ρ
∂1(Ap̂))

2
R4
o

A2
θ

u2
[
−32ψ2

s,1 − 27ψ2
s,2 − 18ψs,2ψθ,1 + ψ2

θ,1

+4ψs,1(−3 + 18ψs,2 + 4ψθ,1)
]
n2
sn

4
θ

+4
( 1
ρ
∂1(Ap̂))

3
R6
o

A3
θ

n6
θ.

A sufficient condition for hyperbolicity is then

ψs,1 > 1,

20ψ2
s,1 + ψθ,1(9ψs,2 + 5ψθ,1)− ψs,1(6 + 9ψs,2 + 19ψθ,1) > 0,

16ψ4
s,1 − ψs,2ψ3

θ,1 − 4ψ3
s,1(5 + 2ψs,2 + 4ψθ,1)

+ψs,1ψθ,1 [3ψs,2(−3 + ψθ,1) + (−5 + ψθ,1)ψθ,1]

+ψ2
s,1(3 + ψθ,1(19 + 2ψθ,1) + ψs,2(9 + 6ψθ,1)) > 0,

−32ψ2
s,1 − 27ψ2

s,2 − 18ψs,2ψθ,1 + ψ2
θ,1 + 4ψs,1(−3 + 18ψs,2 + 4ψθ,1) > 0.

We have verified that such condition is met when we use the specific profiles and parameter

values in Section 3.2. Although the hyperbolicity has been proved for the special case of

horizontal vessels with vanishing angular velocity, we believe this property is satisfied in

a much more general context because Proposition 3.1 shows that each coefficient matrix

can be diagonalized.
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3.2 Specific profiles of pressure, axial and radial ve-

locities

We present specific profiles for axial and angular velocity, which are linear functions of

the radially-axial velocity u and angular velocity ω, respectively. Also, these profiles must

catch information about the curvature of the vessel, which is represented by coefficients

es and eθ, respectively. Following [9], a Hagen-Poiseuille profile is assumed for the axial

velocity:

Vs = esV
?
s u, V

?
s =

r

|J |

[
1−

( r
R

)γs]
, (3.12)

where

es (A, s, θ) =
A∫ R

o
V ?
s (r, R) |J |dr

.

This profile vanishes at the artery’s wall and it is strongest at the center. The exponent

γs controls the transition from the center to the walls. Taking γs = 9, we get the effect of

a Newtonian fluid [39]. On the other hand, we use a similar profile for the angular velocity,

Vθ = eθV
?
θ ω, V

?
θ =

[
1− γθ

γθ + 1

r

R

]( r
R

)γθ−1

, (3.13)

where

eθ (A, s, θ) =
A∫ R

o
V ?
θ (r, R) |J |dr

.

In the numerical simulations we take γθ = 2. It satisfies that the linear velocity rVθ

vanishes at the center and ∂r(rVθ) = 0 at r = R. In terms of the above profiles

ψs,o =
es
A

∫ R
o

[
|J |
r

]2

V ?
s |J |dr,

ψs,1 =
e2
s

A

∫ R
o

[
|J |
r

]2

(V ?
s )2 |J |dr, ψθ,1 =

eseθ
A2

∫ R
o
r2V ?

θ V
?
s |J |dr,

ψs,2 =
eseθ
A

∫ R
o

[
|J |
r

]2

V ?
s V

?
θ |J |dr, ψθ,2 =

e2
θ

A2

∫ R
o
r2 (V ?

θ )2 |J |dr,

(3.14)
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where it can be found that each one of the above terms are functions of Γ, and, in the

case of α′ (s) = 0, these terms are constants. These gives:

ψs,o = 1− 4 (γs + 2)

3 (γs + 3)
Γ +

γs + 2

2 (γs + 4)
Γ2,

ψs,1 =
γs + 2

γs + 1

[
1− 2

3
Γ

] [
1− 2 (2γs + 2) (γs + 2)

3 (2γs + 3) (γs + 3)
Γ

]
,

ψs,2 =
γs + 2

γs

[
1− (γθ + 2) (2γθ + γs + 2)

2 (γθ + γs + 1) (γθ + γs + 2)

]
1− 2

3
Γ

1− 2γθ+3
2(γθ+3)

Γ
×[

1− 2 (γθ + γs + 1) (3γ2
θ + 2γθγs + 11γθ + 3γs + 9)

(γθ + 3) (γθ + γs + 3) (3γθ + 2γs + 4)
Γ

+
(γθ + 2) (γθ + γs + 1) (γθ + γs + 2) (3γ2

θ + 2γsγθ + 15γθ + 4γs + 16)

(γθ + 3) (γθ + 4) (γθ + γs + 3) (γθ + γs + 4) (3γθ + 2γs + 4)
Γ2

]
,

ψθ,1 =
γs + 2

γs

[
1− (γθ + 3) (γθ + 4) (2γθ + γs + 4)

2 (γθ + 2) (γθ + γs + 3) (γθ + γs + 4)

]
1− 2

3
Γ

1− (γθ+3)(2γθ+5)
2(γθ+2)(γθ+5)

Γ
,

ψθ,2 =
(γθ + 3) (γθ + 4) (5γθ + 6)

16 (γθ + 2) (2γθ + 3)

[
1− 2

3
Γ
] [

1− 2(5γ2θ+14γθ+10)
(2γθ+5)(5γθ+6)

Γ

]
[
1− 2γθ+3

2(γθ+3)
Γ
] [

1− (γθ+3)(2γθ+5)
2(γθ+2)(γθ+5)

Γ
] , and

Aθ =
(γθ + 2)2

(γθ + 3) (γθ + 4)

[
1− (γθ+3)(2γθ+5)

2(γθ+2)(γθ+5)
Γ

1− 2γθ+3
2(γθ+3)

Γ

]
R2.

Transmural pressure

The elasticity properties of the vessel can be described by the dependence of the trans-

mural pressure on the radius A, and it must be an increasing function of A in order to

maintain hyperbolicity. As discussed in [40], the elastic properties of the vessel’s wall may

be impacted by the contraction of surrounding muscles or pathologies such as aneurysms,

among others. Although deriving an explicit dependence p = p(A, s, θ) is complicated,

valid expressions can be found in [4, 13, 40]. Following [9], the numerical tests use the

following expression of the transmural pressure,

p (A, s, θ) = Go (s, θ)

((
A

Ao (s, θ)

)β/2
− 1

)
, (3.15)

where Ao as defined above. This includes the effect of the wall’s thickness and the stress-

strain response. Here, Go is the elasticity coefficient. Shear stress is ignored, and it is
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assumed that the transmural pressure of the fluid is the only force exerted on the vessel’s

wall. The parameter β > 1 corresponds to a non-linear stress-strain response. The value

β = 2 provides a good approximation for experimental data [9]. The dependence of Go

and Ro on s and θ allows us to explore the change in elasticity properties of the vessel’s

wall, or to explore the influence of vessel tapering on shock formation [8, 10]. Here we

adopt the parametrization of the elasticity parameter in terms of the Young’s modulus

and wall’s thickness given by [41]

Go(s, θ) =
4

3
EY

hd
rd
, (3.16)

where EY is the Young’s modulus, rd (s, θ) is the radius at diastolic pressure and hd (s, θ)

is the wall’s thickness. In this thesis, we take that rd = Ro and hd will keep constant.

The explicit expressions of the transmural pressure decomposition that appears in model

(2.20) that correspond to the transmural pressure relation (3.15) are

p̂ (A, s, θ) =
β

β + 2
p− β

β + 2
Go
Ao − A
A

, p (A, s, θ) =
2

β + 2
p+

β

β + 2
Go
Ao − A
A

.

The transmural pressure terms in the source can be written in terms of the derivative of

the parameters as

∂2p =
p

Go

∂2Go −
p̂

Ao
∂2Ao, ∂3p =

p

Go

∂3Go −
p̂

Ao
∂3Ao. (3.17)

Furthermore, the needed expressions to compute the source terms are given by

∫ R

o

r∂s

(
|J |
r

)[
|J |
r
Vs

]2
dr = − 8 (γs + 2)

2

(γs + 3) (2γs + 3)

(
A

R

)2

R sin (θ)α′′ (s)u2,∫ R

o

r∂θ

(
|J |
r

)[
|J |
r
Vs

]2
dr = − 8 (γs + 2)

2

(γs + 3) (2γs + 3)

(
A

R

)2

R cos (θ)α′ (s)u2,[
|J |∂r

([
|J |
r

]2
Vs

)]
r=R

= − (γs + 2) [1− Γ]
2 2A

R2
u,

[
|J |∂r

(
r2Vθ

)
− 2|J |rVθ

]
r=R

= − (γθ + 1) (γθ + 3) (γθ + 4)

4 (γθ + 2)

×

 1− Γ

1− (γθ+3)(2γθ+5)
2(γθ+2)(γθ+5)Γ

 2A

R2
L.
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3.3 Steady-States

Although transient flows provide a more complete description of pulsatile blood flows, it

has been shown that under certain circumstances, steady states (i.e., those independent

of time) provide enough information for clinical assessment. In [42], a 5% difference was

found in the time-averaged wall shear stress between transient and steady states. There

are, however, other clinical situations where transient flows are necessary for an accurate

description of the pulsatile blood flow. In any case, our numerical scheme is constructed

to accurately compute transient flows, including those near steady states.

The 2D model (2.20) admits a large class of steady states that arise when a delicate

balance between flux gradients and source terms occurs. Here, we characterize those

steady states for vessels with zero curvature (α′ (s) = 0, or α = αo constant), zero

viscosity (ν = 0) for fluids moving in the axial direction (ω = 0). In those cases, equation

(2.17) becomes

∂s (A u) = 0,

∂s (ψs,1Au
2) = −A∂s

(
p
ρ

)
− gA sin(αo),

0 = −A∂θ
(
p
ρ

)
,

which implies Au = Q1(θ) is independent of s. The parameter ψs,1 is constant in vessels

with zero curvature with the profiles in Section 3.2. The second equation for the balance

of momentum can be re-written as

A∂s

(
ψs,1

u2

2
+
p

ρ
+ gzo(s)

)
= 0,

where

zo(s) = sin(αo) s

is the artery’s elevation above a reference height. As a result, smooth steady states for

vessels with zero curvature, zero viscosity and vanishing angular velocity satisfy that the

discharge Q1 = Au and the energy E = ψs,1
u2

2
+ p

ρ
+ gzo(s) are independent of s, whereas

the transmural pressure p is independent of θ. In particular, one could have constant
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discharge and energy. The steady states at rest correspond to the special case

u = 0, ω = 0, R = Ro(s, θ), α(s) = 0. (3.18)

Below we construct a numerical scheme that respects those steady states at rest for

arteries with arbitrary cross sections.





Chapter 4

Central-upwind Numerical Scheme

In this work, we use a central-upwind scheme, whose semi-discrete formulation is obtained

after integrating equation (2.20) over each cell Cj,k :=
[
sj− 1

2
, sj+ 1

2

]
×
[
θk− 1

2
, θk+ 1

2

]
, with

center at (sj, θk), sj± 1
2

= sj ±∆s/2 and θk± 1
2

= θk ±∆θ/2. The cell averages Uj,k (t)

Uj,k (t) =
1

∆s∆θ

∫
Cj,k

∫
U (s, θ, t) dsdθ

are approximated by solving the semi-discrete formulation

d

dt
Uj,k (t) = −

HF
j+ 1

2
,k

(t)−HF
j− 1

2
,k

(t)

∆s
−

HG
j,k+ 1

2

(t)−HG
j,k− 1

2

(t)

∆θ
+ Sj,k (t) , (4.1)

with numerical fluxes HF and HG given by [43],

HF
j+ 1

2
,k

(t) =
a+
j+ 1

2
,k
F
(
U−
j+ 1

2
,k

)
− a−

j+ 1
2
,k
F
(
U+
j+ 1

2
,k

)
a+
j+ 1

2
,k
− a−

j+ 1
2
,k

+
a+
j+ 1

2
,k
a−
j+ 1

2
,k

a+
j+ 1

2
,k
− a−

j+ 1
2
,k

[
U+
j+ 1

2
,k
−U−

j+ 1
2
,k

]

HG
j,k+ 1

2

(t) =
b+
j,k+ 1

2

G
(
U−
j,k+ 1

2

)
− b−

j,k+ 1
2

G
(
U+
j,k+ 1

2

)
b+
j,k+ 1

2

− b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

[
U+
j,k+ 1

2

−U−
j,k+ 1

2

]
.

(4.2)

61
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For any quantity of interest q = q(U), the corresponding interface values are obtained

via the following piece-wise linear reconstruction

q−
j+ 1

2
,k

= qj,k + ∆s
2

(qs)j,k ,

q+
j− 1

2
,k

= qj,k − ∆s
2

(qs)j,k ,

q−
j,k+ 1

2

= qj,k + ∆θ
2

(qθ)j,k ,

q+
j,k− 1

2

= qj,k − ∆θ
2

(qθ)j,k ,

(4.3)

where the slopes (qs)j,k and (qθ)j,k are calculated using the generalized minmod limiter

(qs)j,k = minmod

(
φ
qj,k − qj−1,k

∆s
,
qj+1,k − qj−1,k

2∆s
, φ
qj+1,k − qj,k

∆s

)
, (4.4)

(qθ)j,k = minmod

(
φ
qj,k − qj,k−1

∆θ
,
qj,k+1 − qj,k−1

2∆θ
, φ
qj,k+1 − qj,k

∆θ

)
, (4.5)

where

minmod (z1, z2, · · ·) =


minj{zj} if zj > 0 ∀j,

maxj{zj} if zj < 0 ∀j,

0 otherwise.

Here, the parameter φ is used to control the amount of numerical viscosity present in the

resulting scheme.

The discretization of the averaged source terms

Sj,k (t) =
1

∆s∆θ

∫
Cj,k

∫
S (U) (s, θ, t) dsdθ

is carried out so as to satisfy the well-balanced property. This is explained in more detail

in Section 4.1.

The one-sided local speeds in the s− and θ−directions, a±
j+ 1

2
,k

and b±
j,k+ 1

2

, are obtained
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from the largest and the smallest eigenvalues of the Jacobians ∂F (U)
∂U

and ∂G(U)
∂U

, respec-

tively. Using (3.8) and (3.9), it follows that:

a+
j+ 1

2
,k

= max
{

(λso)
−
j+ 1

2
,k
,
(
λs+
)−
j+ 1

2
,k
, u−

j+ 1
2
,k
, (λso)

+
j+ 1

2
,k
,
(
λs+
)+

j+ 1
2
,k
, u+

j+ 1
2
,k
, 0
}
, (4.6a)

a−
j+ 1

2
,k

= min
{

(λso)
−
j+ 1

2
,k
,
(
λs−
)−
j+ 1

2
,k
, u−

j+ 1
2
,k
, (λso)

+
j+ 1

2
,k
,
(
λs−
)+

j+ 1
2
,k
, u+

j+ 1
2
,k
, 0
}
, (4.6b)

b+
j,k+ 1

2

= max
{(

λθo
)−
j,k+ 1

2

,
(
λθ+
)−
j,k+ 1

2

, ω−
j,k+ 1

2

,
(
λθo
)+

j,k+ 1
2

,
(
λθ+
)+

j,k+ 1
2

, ω+
j,k+ 1

2

, 0
}
, (4.6c)

b−
j,k+ 1

2

= min
{(

λθo
)−
j,k+ 1

2

,
(
λθ−
)−
j,k+ 1

2

, ω−
j,k+ 1

2

,
(
λθo
)+

j,k+ 1
2

,
(
λθ−
)+

j,k+ 1
2

, ω+
j,k+ 1

2

, 0
}
. (4.6d)

The time integration of the ODE system (4.1) is done using the second-order strong

stability preserving Runge-Kutta scheme [44]

U(1) =U(t) + ∆tC[U(t)], (4.7a)

U(2) =
1

2
U +

1

2

(
U(1) + ∆tC[U(1)]

)
, (4.7b)

U(t+ ∆t) := U(2), (4.7c)

with

C[U(t)]j,k = −
HF
j+ 1

2
,k

(t)−HF
j− 1

2
,k

(t)

∆s
−

HG
j,k+ 1

2

(t)−HG
j,k− 1

2

(t)

∆θ
+ Sj,k (t) .

The Courant-Friedrichs-Lewy (CFL) condition that determines the time step ∆t is

∆t ≤ 1

4
min

{
∆s

a
,
∆θ

b

}
, (4.8)

where

a = max
j,k

{
max

(
a+
j+ 1

2
,k
,−a−

j+ 1
2
,k

)}
, and b = max

j,k

{
max

(
b+
j,k+ 1

2

,−b−
j,k+ 1

2

)}
.
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4.1 Steady states at rest and positivity of the cross-

sectional radius

The quantities of interest to compute the numerical flux in equation (4.2) are recon-

structed at the interfaces via equation (4.3) using the minmod limiter given by equation

(4.4). However, the reconstructed values need to be implemented carefully in order to

guarantee the well-balance property. For that end, we assume that the radius at rest

Ro (s, θ) is defined at the interfaces
(
sj, θk± 1

2

)
and at

(
sj± 1

2
, θk

)
, and we define it at the

center of each cell as

Ro,j,k :=
1

4

[
Ro

(
sj− 1

2
, θk

)
+Ro

(
sj+ 1

2
, θk

)
+Ro

(
sj, θk− 1

2

)
+Ro

(
sj, θk+ 1

2

)]
. (4.9)

On the other hand, the angle α(s) is defined at each interface point sj+ 1
2
. The deriva-

tives both at the center of each cell and at the interfaces are approximated via centered

differences as

α′(sj) ≈
α

(
s
j+1

2

)
−α
(
s
j− 1

2

)
∆s

, α(sj) ≈
α

(
s
j+1

2

)
+α

(
s
j− 1

2

)
2

,

α′(sj+ 1
2
) ≈ α(sj+1)−α(sj)

∆s
,

(4.10)

which gives

Ao,j+ 1
2
,k =

R2

o,j+1
2 ,k

2
−

R3

o,j+1
2 ,k

3
sin(θk)α

′
(
sj+ 1

2

)
,

Ao,j,k+ 1
2

=
R2

o,j,k+1
2

2
−

R3

o,j,k+1
2

3
sin(θk+ 1

2
)α′ (sj) .

In order to reconstruct A at the interfaces, we define A = A/Ao and reconstruct the

values A±
j+ 1

2
,k

and A±
j,k+ 1

2

at the cell interfaces using equation (4.3). The cross-sectional

area at the cell interfaces are then given by

A±
j+ 1

2
,k

= A±
j+ 1

2
,k
Ao,j+ 1

2
,k, A±

j,k+ 1
2

= A±
j,k+ 1

2

Ao,j,k+ 1
2
. (4.11)

This way, if R = Ro or equivalently A = Ao at the center of each cell (as it occurs for

steady states at rest), the same equality holds at the cell interfaces. Once the variable A



Chapter 4. Central-upwind Numerical Scheme 65

is reconstructed, this gives the reconstruction for R by inverting it in terms of A. One

also obtains the reconstruction for the parameter Γ via the relation

Γ±
j+ 1

2
,k

= R±
j+ 1

2
,k

sin(θk)
±α′(sj+ 1

2
), Γ±

j,k+ 1
2

= R±
j,k+ 1

2

sin(θk+ 1
2
)α′(sj). (4.12)

This immediately defines all the parameter functions ψs,o, ψs,1, ψs,2, ψθ,1, ψθ,2 and Aθ at

the interfaces. The conserved variables Q1 = ψs,oAu and Q2 = AL are reconstructed

directly via equation (4.3), from which we can recover the reconstructed values for u =

Q1

ψs,oA
, L = Q2

A
, and ω = L

Aθ
.

The source terms in equation (2.22) do not involve derivatives of the solution itself and

one can use the cell averages to discretize them. The partial derivatives ∂2p̄ and ∂3p̄ are

with respect to the explicit dependance of the fixed parameters involved in the definition

of the transmural pressure. For instance, the transmural pressure p given by equation

(3.15) involves the radius at rest Ro(s, θ) and the parameter Go(s, θ). The parameter

Go (s, θ) is defined at the interfaces
(
sj, θk± 1

2

)
and

(
sj± 1

2
, θk

)
, and we define it at the

center of each cell as

Go,j,k :=
1

4

[
Go

(
sj− 1

2
, θk

)
+Go

(
sj+ 1

2
, θk

)
+Go

(
sj, θk− 1

2

)
+Go

(
sj, θk+ 1

2

)]
. (4.13)

The terms ∂2p̄ and ∂3p̄ are given explicitly by equation (3.17). In that case, one only

needs partial derivatives of Go and Ao which are approximated as

∂2Go(sj, θk) ≈
Go(sj+1

2 ,k
)−Go(sj− 1

2 ,k
)

∆s
,

∂3Go(sj, θk) ≈
Go(sj,k+1

2
)−Go(sj,k− 1

2
)

∆θ
,

(4.14)

∂2Ao(sj, θk) ≈
Ao(sj+1

2 ,k
)−Ao(sj− 1

2 ,k
)

∆s
,

∂3Ao(sj, θk) ≈
Ao(sj,k+1

2
)−Ao(sj,k− 1

2
)

∆θ
.

(4.15)

In a steady state at rest given by equation (3.18), the reconstructed values of u and ω

are zero, and the equality R = Ro holds at the interfaces. As a result, all the numerical
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fluxes HF
j+ 1

2
,k
,HG

j,k+ 1
2

and the source terms Sj,k vanish. We have proved the following

proposition.

Proposition 4.1. Consider system (2.20), (2.21) and (2.22) with transmural pressure

given by (3.15). Then, the numerical scheme (4.2)-(4.8) with the discretizations given by

(4.9)-(4.15) is well-balanced, i.e., U(t+ ∆t) = U(t) for steady states at rest.

The following proposition shows that the CFL condition (4.8) guarantees the positivity of

A when the solution is computed with the Runge-Kutta method (4.7) and a slight mod-

ification is applied to the reconstruction at the interfaces. This is particularly important

in situations where the cross section is small. This is not a relevant case from the medical

point of view. However, we present it here for the sake of completeness and it would be

useful for applications involving collapsed tubes.

Since we have reconstructed A = A/Ao at the interfaces,

Aj,k =
1

4

[
A+
j− 1

2
,k

+ A−
j+ 1

2
,k

+ A−
j,k+ 1

2

+ A+
j,k− 1

2

]
(4.16)

does not necessarily hold unless Ao is constant. In the cases where one decides to im-

plement the positivity-preserving property, a modification in the reconstruction must be

implemented. Namely,

A−
j+ 1

2
,k

=Aj,k +
∆s

2
(As)j,k (4.17a)

A−
j+ 1

2
,k

= min
(

max{A−
j+ 1

2
,k
Ao,j+ 1

2
,k, Ath}, 2Āj,k

)
(4.17b)

A+
j− 1

2
,k

= 2Āj,k − A−j+ 1
2
,k

(4.17c)

with the analogous procedure for A±
j,k± 1

2

. Here Ath is a threshold value needed to maintain

positivity in the reconstruction of the interface values. The threshold value can be chosen

empirically. This has been done in different contexts and it has shown to be useful in

achieving the positivity-preserving property. See for instance [45], where a scheme with

this property was derived for the shallow water equations. The threshold will be used

only when the corresponding variable (cross sectional area in our case) is small and there

is a risk of getting negative unphysical values. Despite the fact that the threshold is
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obtained empirically, it does not affect the performance of the numerical scheme and the

alternative of not using it could result in unphysical situations. In this work, we did not

include numerical tests where a threshold is needed but it could be used in a future work.

Proposition 4.2. Consider the scheme with the reconstruction algorithm described in

section 4.1. If the cell averages Aj,k (t) are such that

Aj,k (t) ≥ 0 ∀ j, k,

then the cell averages Aj,k (t+ ∆t) computed with the Runge-Kutta method (4.7) for all

j, k, under the CFL limitation (4.8), will yield

Aj,k (t+ ∆t) ≥ 0 ∀ j, k,

Proof. Since our Runge-Kutta numerical scheme can be written as a convex combination

of Euler steps, one only needs to prove it for just one forward Euler step. The first

component in equation (4.1) can be written as

Aj,k (t+ ∆t) = Aj,k (t)− ∆t
∆s

[(
HF
j+ 1

2
,k

)(1)

−
(
HF
j− 1

2
,k

)(1)
]

−∆t
∆θ

[(
HG
j,k+ 1

2

)(1)

−
(
HG
j,k− 1

2

)(1)
]
.

Using (4.2), we can rewrite it as

Aj,k (t+ ∆t) =

[
1

4
− ∆t

∆s
a+
j+ 1

2 ,k

u−
j+ 1

2 ,k
− a−

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

]
A−
j+ 1

2 ,k
+

[
1

4
+

∆t

∆s
a−
j− 1

2 ,k

a+
j− 1

2 ,k
− u+

j− 1
2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

]
A+
j− 1

2 ,k

+

[
1

4
− ∆t

∆θ
b+
j,k+ 1

2

ω−
j,k+ 1

2

− b−
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

]
A−
j,k+ 1

2

+

[
1

4
+

∆t

∆θ
b−
j,k− 1

2

b+
j,k− 1

2

− ω+
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

]
A+
j,k− 1

2

−∆t

∆s
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
− u+

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

A+
j+ 1

2 ,k
+

∆t

∆s
a+
j− 1

2 ,k

u−
j− 1

2 ,k
− a−

j− 1
2 ,k

a+
j− 1

2 ,k
− a−

j− 1
2 ,k

A−
j− 1

2 ,k

−∆t

∆θ
b−
j,k+ 1

2

b+
j,k+ 1

2

− ω+
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

A+
j,k+ 1

2

+
∆t

∆θ
b+
j,k− 1

2

ω−
j,k− 1

2

− b−
j,k− 1

2

b+
j,k− 1

2

− b−
j,k− 1

2

A−
j,k− 1

2

+Aj,k −
1

4

[
A+
j− 1

2 ,k
+A−

j+ 1
2 ,k

+A−
j,k+ 1

2

+A+
j,k− 1

2

]
.
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The first four terms in the above equation will be non negative under the CFL restriction

(4.8). Also, since a−
j+ 1

2
,k
≤ 0, b−

j,k+ 1
2

≤ 0, a+
j− 1

2
,k
≥ 0 and b+

j,k− 1
2

≥ 0, the following four

terms in the above equation are also non negative, which concludes the proof.



Chapter 5

Numerical Experiments

Different numerical experiments are presented to show the merits of the numerical scheme

and the dynamics of the flow given by the model derived in this work. One can analyze

situations where vessels exhibit non-uniform elasticity properties and the corresponding

effect on the dynamics of the flow.

The velocity field in 3D views of the artery is computed as follows. First, we need to

compute the curvature radius, which is given by

Rc =
(R2 +R2

θ)
3
2

R2 + 2R2
θ −RRθθ

=
R
(

1 +
(
Rθ
R

)2
) 3

2

1 + 2
(
Rθ
R

)2 − Rθθ
R

,

and we also define

Rθ = ∂θR, Rθθ = ∂2
θθR.

The total velocity at each point

(
x(s, θ), y(s, θ), z(s, θ)

)
=

(
−R sin (α (s)) sin (θ) + xo (s) , R cos (θ) , R cos (α (s)) sin (θ) + zo (s)

)
is given by

V (s, θ) = uJs +
Rc√

R2 +R2
θ

UTang

(
Jθ +

Rθ

R
Jr

)
, (5.1)

69
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where

UTang =
1

A

∫ R

o

rVθ|J |dr =
eθ
A

(∫ R

o

rV ?
θ |J |dr

)
ω. (5.2)

For convenience and easy of notation, we define the strain R = R/Ro at the center of

each cell.

In all cases, we apply periodic boundary conditions in θ. The boundary conditions in the

axial directions are specified in each numerical test. Also, the parameters used for these

numerical experiments are: blood density ρ = 1050 kg m−3, blood viscosity ν = 4 cP,

β = 2, γs = 9, γθ = 2, Young modulus EY = 400 kPa and hd = 0.5 mm. Finally, we take

rd = Ro.

5.1 Horizontal vessel with tapering: evolution of per-

turbation

In this first numerical test, we consider the simple case of a horizontal vessel (α (s) = 0)

with tapering. That is, Ao is given by

Ao (s, θ) = A?o (1− sTp) , Ro (s, θ) =
√

2Ao (s, θ) ,

where Tp = 0.005 cm−1 is the tapering factor and A?o = (0.82 cm)2. The initial vessel’s

radius consist of a perturbation from a steady state. The perturbation is located in the

middle of the artery. Specifically, the center is at s? = 25 cm and θ? = π
4

rad. The initial

radius is then given by

R (0, s, θ) = R (0, s, θ)Ro (s, θ) , where

R (0, s, θ) =


1 if d(s,θ)

Ro(s?,θ?)
> 1,

1 + 1
5

sin
([

1− d(s,θ)
Ro(s?,θ?)

]
π
2

)
if d(s,θ)

Ro(s?,θ?)
≤ 1,
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and

d (s, θ) =

√
1

4
[x (s?, θ?)− x (s, θ)]2 + [y (s?, θ?)− y (s, θ)]2 + [z (s?, θ?)− z (s, θ)]2.

Neumann boundary conditions are imposed at both ends (s = 0, sL) with sL = 50 cm.

Figure 5.1: A 3D view of the vessel. The arrows near the wall indicate the velocity
field given by equation (5.1). The color bar indicates the strain at time t (R(t ; s, θ)).
The initial conditions, which consists of a radius perturbation near s? = 25 cm and
θ? = π/4 rad is shown in (a), where the entire artery is visualized. The rest of the
panels show a section 15 cm ≤ s ≤ 35 cm where the perturbation evolves at times
t = 0.0005 s (b), t = 0.001 s (c), t = 0.0045 s (d), t = 0.005 s (e) and t = 0.1 s (f). The

arrows indicate the 3D velocity field given by equation (5.1).

In this first numerical test, the initial conditions consist of a radius perturbation from a

steady state. That is, the transmural pressure is zero everywhere in the artery, except in

an area near (s?, θ?) where the radius is above the steady state one and the transmural

pressure becomes positive. Figure 5.1 shows a 3D view of the artery with the above initial

conditions in panel (a). This generates a displacement that consist of a radial expansion

at early times, and it can be observed in panels (b) and (c). The color bar indicates the

ratio of the vessel radius at time t and its initial value (R(t ; s, θ)/Ro(s, θ)), which can

help us identify the evolution of the perturbation. The initial perturbation covers only a

partial side of the artery’s wall and the displacement goes in both the axial and angular

directions. At later times in panels (d) and (e), the displacement has already reached the
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Segment Length Left radius Right radius
cm cm cm

I 7.0357 1.52 1.39
II 0.8 1.39 1.37
III 0.9 1.37 1.35
IV 6.4737 1.35 1.23
V 15.2 1.23 0.99
VI 1.8 0.99 0.97
VII 0.7 0.97 0.962
VIII 0.7 0.962 0.955
IX 4.3 0.955 0.907
X 4.3 0.907 0.86

Table 5.1: Description of aorta’s geometry and dimensions. The segments, their
lengths, left and right radii are shown in the first four columns. Such values were

obtained from [41, Table IV].

opposite side of the wall and it has come back to the initial location by periodicity in

the angular direction. The last panel (f) shows the solution at time t = 0.1 s where the

displacement has already propagated in the axial direction outside the visualized region.

As a result, the artery has recovered its initial unperturbed steady state.

5.2 Aorta vessel with discharge

The previous case showed that the model and the numerical scheme produces good results

for perturbations to steady states in horizontal vessels. For the rest of the numerical tests,

we will consider geometries similar to an idealized aorta without branches.

Let R?
o (s) be the piecewise linear function of s obtained according to the radius at diastolic

pressure shown in [41, Table IV], which we present in table 5.1 for the convenience of

the reader. The initial conditions for the artery’s geometry is described by cross sections

given by

Ro (s, θ) = R?
o (s)h (θ) ,

where h(θ) is a function that determines the type of cross section that we may have.

We note that we obtain circular cross sections when h (θ) is constant. As it is reported

in [46], however, we may observe cross sections that have an elliptical-like shape in the
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Figure 5.2: Blood flow simulation passing through the full aorta. Left panel: 3D
view of the aorta. Top right: Velocity at the left boundary in a cardiac cycle as a
function of time. Middle right: Profile of Ro as a function of arc-length s for different

angles. Bottom right: Profile of Go as function of arc-length s.

aorta. We then choose

h (θ) =

√
1− ξ2 sin (θ)2

1− ξ2
,

where ξ is the eccentricity and ξ ∈ [0, 1). Graphs of Ro as a function of axial position s

for different values of θ are displayed in the middle right panel of Figure 5.2 .

The parameter G?
o (s) is given by equation (3.16). A graph of Go is displayed in the

bottom right panel of Figure 5.2. As an approximation to the aorta’s curvature, the
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angle α (s) is given by

α (s) =


[
1− s

12.63 cm
]
π
2

if 0 ≤ s ≤ 12.63 cm,

−π
2

if s > 12.63 cm.

That is, the vessel is straight up at the upstream boundary α(0 cm) = π/2 and points

down at s = 12.63 cm, where α(12.63 cm) = −π/2. Figure 5.2 (left panel) shows a 3D

view of the tapered vessel at time t = 0 s. Here, we use 200 grid points in the axial

direction and 180 grid points in the angular direction. The initial condition is given by

A = Ao, u = 0 and L = 0 in a tilted vessel with elliptical geometric shape (ξ = 0.4),

which would have corresponded to a steady state if the vessel was horizontal.

At the left boundary (s = 0), we impose a velocity that corresponds to a cardiac cycle

(to be specified below) and Dirichlet boundary conditions for the radius R = Ro and

ω = 0. The discharge at the left boundary breaks the balance and induces a moving

state. Neumann boundary conditions are imposed at the right boundary. The time series

for the velocity at the left boundary was obtained from [10], and it was approximated

using the first 15 elements of its Fourier decomposition. Initially, the velocity at the left

boundary increases up to speeds above 1 ms−1. A graph of the inlet velocity as a function

of time can be found in the top right panel of Figure 5.2 .

In Figure 5.3, we show the evolution of four variables, radius R, axial velocity u, pressure

p and tangential velocity UTang, over 2 seconds at s = 21.10 cm. Here, the vessel’s radius

R is increased due to the influence of the inlet velocity given by the cardiac cycle. On

the hand, the transmural pressure reaches its maximum of approximately 7.1 kPa near

t = 0.2 seconds, followed by a decay. Here, the transmural pressure profile is similar for

each θ. In the top right panel we observe the evolution of the axial velocity. Since the

initial condition is u = 0, the profile starts with an increment to 0.61 ms−1, followed by

a decay to −0.1 ms−1, and by an increment to 0.44 ms−1 reached at 0.52 s. After this

time, the profiles given by different θ values diverge from each other. At θ = π/2 rad the

velocity reached a maximum of approximately 0.69 ms−1 at t = 0.70 seconds, while the
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Figure 5.3: Profiles as a function of time at s = 21.10 cm. Top left: Radius R at
different angles. Top right: Axial velocity u. Bottom left: Pressure p. Bottom right:

Tangential velocity UTang.

other profiles show a decay to 0.31 ms−1 at the same time. After that, the profiles evolve

in a quasi-periodic way.

Finally, the tangential velocity profiles are shown in the bottom right panel of Figure 5.3.

Here, we observe that the value is much lower than the axial velocity. One can observe

that the tangential velocities are much weaker at angles θ = π/2 and θ = 3π/2 rad, while

the other two (θ = 0 and θ = π rad) are approximately opposite in sign.

5.3 Idealized aorta vessel with a bulge

Non-uniform elasticity properties in a vessel may be caused by diseases such as stenosis

and aneurysms. In this numerical test, we analyze possible changes in the flow dynamics

when the parameters Go and Ro are non-uniform in a localized regions in the artery’s

wall. In particular, Go is reduced at (s = s? = 21 cm, θ = θ? = 3π/2) and Ro is increased

near that point, when compared to the previous case. Such changes in the parameters
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Figure 5.4: Parameters for an artery with a bulge in a localized region where the
wall is less rigid. In black solid line, profiles of Go (panel (a)) and Ro (panel (b)) at
θ = 3π/2 rad are shown, while the red dotted lines correspond to the base case with no
bulging. The profiles are given by equations (5.3) and (5.4). Panel (c): 3D visualization
of an idealized aorta where the color bar denotes Go values. Panel (d): same a in middle

panel with Ro values in the color bar.

are aimed at simulating an artery with a bulge in a localized region where the artery is

also less rigid.

The parameters Go and Ro are given by

Go (s, θ) =



G?
o (s) if d (s, θ) > h (θ)R?

o (s) ,

[
1− 1

2
sin
([

1− d(s,θ)
h(θ)R?o(s)

]
π
2

)]
G?
o (s) if d (s, θ) ≤ h (θ)R?

o (s) ,

(5.3)



Chapter 5. Numerical Experiments 77

and

Ro (s, θ) =



h (θ)R?
o (s) if d (s, θ) > h (θ)R?

o (s) ,

[
1 + 1

5
sin
([

1− d(s,θ)
h(θ)R?o(s)

]
π
2

)]
h (θ)R?

o (s) if d (s, θ) ≤ h (θ)R?
o (s) ,

(5.4)

where

d (s, θ) =

√
1

4
[x (s?, θ?)− x (s, θ)]2 + [y (s?, θ?)− y (s, θ)]2 + [z (s?, θ?)− z (s, θ)]2.

A graph of the parameters at θ = 3π/2 rad as a function of s is shown in panels (a) and

(b) in Figure 5.4 . A 3D visualization of the aorta using Ro (c) and Go (d) in the color

bar are displayed to localize the region where the elasticity properties of the artery vary.

Figure 5.5: Panels (a) and (b): 3D view of the artery with color bar computed based
on R = R/Ro at times t = 0.2 s and t = 0.3 s respectively. Panels (c) and (d): Same

as in (a) and (b) with a color bar computed based on u.

As initial conditions, we set

R (0, s, θ) = Ro (s, θ) , u (0, s, θ) = 0 and L (0, s, θ) = 0.
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Figure 5.5 shows the effect of the bulge with non-uniform elasticity parameters in the

flow dynamics. For instance, panels (a) and (b) shows a 3D view of the artery near

the bulge where the color bar indicates the ratio R/Ro at times t = 0.2 s and t = 0.3 s

respectively. Such ratio indicates how much the artery’s radius has been deformed from

the initial conditions. One can observe a stronger deviation from the initial conditions

(about 10%) near the bulge at t = 0.2 s, when compared to the rest of the artery. Such

deviation is reduced at t = 0.3 s. On the other hand, a color bar computed based on the

axial velocity is displayed in panels (c) and (d). We observe a negative displacement in

the upper side of the bulge and a positive displacement in the lower side of the bulge at

t = 0.3 s. However, the axial velocity becomes positive everywhere at later times (not

shown) due to gravity and the fluid discharge in the upstream boundary.

Figure 5.6: Axial velocity profiles as a function of time at s = 21 cm. Panel (a):
Profiles at θ = π/2 rad. Panel (b): Profiles at θ = 3π/2 rad. Panel (c): Profile
differences for θ = π/2 rad (ocher dashed line) and θ = 3π/2 rad (purple dotted line).

Figure 5.6 exhibits a quantification of the observations discussed in Figure 5.5. Specif-

ically, the axial velocity as a function of time at s = s?, θ = π/2 and θ = 3π/2 rad

are displayed in panels (a) and (b) respectively. For comparison, we include a graph

corresponding to the base case in Section 5.2 . The bulge is at θ = 3π/2 rad (panel (b)),

where the velocity is decreasing near it. The differences could be up to about 1 ms−1, as

we see it in panel (c). Panel (a) shows the axial velocities experienced by the fluid on the

opposite side of the wall, where the impact of the bulge does not seem to be significant

in the time window considered here.
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5.4 Vortex-like structure in aorta vessel with a bulge

Figure 5.7: Parameters Ro and Go given by equations (5.5) and (5.6) as a function
of s at θ = π rad are shown in panels (a) and (b) respectively (red dotted lines). The
black solid lines correspond to the base case in Section 5.2. Panel (c): 3D view with

color bar denoting Ro. Panel (d): same as in (c) with Go values in the color bar.

In this numerical example, we consider a situation where the Go parameter has a negative

perturbation in a localized lateral section of the artery near the upstream boundary and

Ro is also increased in the same sector, as specified below (see Figure 5.7). This situation

is associated with an idealized thoracic aortic aneurysm [47], where the artery’s wall is

less rigid in a localized zone. The two parameters Go and Ro are given by

Go (s, θ) =



G?
o (s) if d (s, θ) > h (θ)R?

o (s) ,

[
1− 1

2
sin
([

1− d(s,θ)
h(θ)R?o(s)

]
π
2

)]
G?
o (s) if d (s, θ) ≤ h (θ)R?

o (s) ,

(5.5)
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Figure 5.8: Circulation pattern in an idealized aorta vessel with a bulge. Three
dimensional views of the artery with the velocity field at t = 0.2 s (a) and t = 0.4 s
(b) are shown where the parameters Go and Ro are given by equations (5.5) and (5.6).

The arrows indicate the 3D velocity field given by equation (5.1).

and

Ro (s, θ) =



h (θ)R?
o (s) if d (s, θ) > h (θ)R?

o (s) ,

[
1 + 3

4
sin
([

1− d(s,θ)
h(θ)R?o(s)

]
π
2

)]
h (θ)R?

o (s) if d (s, θ) ≤ h (θ)R?
o (s) ,

(5.6)

where

d (s, θ) =

√
[x (s?, θ?)− x (s, θ)]2 + [y (s?, θ?)− y (s, θ)]2 + [z (s?, θ?)− z (s, θ)]2,

s? = 5 cm, θ? = π rad.

A 3D view of the artery at time t = 0.4 s can be found in panels (a) and (b) of Figure

5.8, respectively. In each panel, the velocity field is shown to analyze the change in the

dynamic. The color bar shows the axial velocity contours. Panel (a) shows a section

of the artery near the perturbation. The bulge induces a vortex-like structure at time

t = 0.4 s in the lower region of the bulge but the flow moves in the downstream direction

after it passes that region where the artery is less rigid, that is shown at panel (b).
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The circulation pattern has been extended to a larger region, where the axial velocity is

negative in the right side of the artery (π/2 ≤ θ ≤ 3π/2) near the bulge and positive

on the opposite side. Circulation patterns can be found on other simulations. See for

instance [48].

5.5 A discussion about parameter regimes and the

numerical results

The numerical tests presented above focused on evaluating different aspects of the model

and the scheme. Regarding the model, the main purpose is to show the higher level of

details that it can provide when angular variations are allowed in a non-uniform general

cross section. One-dimensional models with axi-symmetry have shown to be in good

agreement with 3D models and with experimental data, as explained for instance in [19].

The 2D model derived in this work reduces to the 1D counterpart when the vessel’s cross

sections are axi-symmetric. Even in that case, they can be in good agreement with exper-

imental data. The interested reader can see more details about such comparisons in [19].

Despite the fact that in our setting we are only focusing in idealized aorta simulations,

the profiles for the pressure as a function of time is similar to the profiles obtained in this

work. The additional attributes in this model that accounts for variations in the angular

directions were obtained by assuming very reasonable assumptions. It allows us to obtain

more detailed features of the vessel when the cross sections are irregular. It can provide

useful information in situations where experimental data could not be available.

Finding detailed experimental data is not an easy task. When available, one can use such

data to estimate the model’s parameters. For instance, a relation between stress and

strain in a dog’s artery is shown in [49]. In this context, the strain R is the ratio between

the midwall radius R =
RE +RI

2
and the non-stressed midwall radius Ro, R =

R

Ro

. The

outer (RE) and inner (RI) vessel’s radii be defined as RE = R + 1
2
hd, RI = R − 1

2
hd,
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Figure 5.9: Relation between strain and stress in dog’s arteries. Experimental data
from [49] (bottom panel of Figure 1) in star symbols and the corresponding curves for
different midwall radii R, and fixing the wall thickness hd = 0.5 mm and the po = 9
kPa. Furthemore, the pressure p was calculated using β = 2 and Go is as (3.16), with

EY = 250 kPa.

where hd is the wall’s thickness. The stress σ is given by

σ =
2 [po + p](

R
RI

)2

−
(

R
RE

)2 ,

where p is transmural pressure (3.15),(3.16). The relation Strain-Stress relates how much

an object is deformed respects its initial state and the force that is required to deform

it. Figure 5.9 shows the experimental data in [49] for the strain-stress relation together

with different midwall radii R, and fixing the wall thickness hd = 0.5 mm and the po = 9

kPa. Furthermore, the pressure p was calculated using β = 2 and Go is as (3.16), with

EY = 250 kPa. As we can see, the model’s parameters can satisfactorily approximate

experimental data when chosen properly. Of course, the parameter values used in our

numerical tests are different because they are meant for idealized aorta simulations in

humans.



Conclusions

Three dimensional blood flow models provide detailed information of the fluid’s evolution,

giving accurate and realistic results. However, they involve a high computational cost

and are not always a practical tool. As an alternative, one dimensional models have been

derived in the literature. Those models consist of limiting equations that assume the

cross sections to be circular with a small radius when compared to the artery’s length.

Of course, those models involve a low computational cost but they are limited by the

conditions used to derive them. Although they have shown to be useful to simulate

pressure waves, one loses detailed information of the artery’s evolution.

In the fisrt part of the thesis, we have presented a new intermediate two-dimensional

model that allows for arbitrary cross sections. The limiting model is valid for small

cross-sectional ratios and other reasonable assumptions. We present this model as an

alternative with a better balance between realism and computational cost. The resulting

system is conditionally hyperbolic and the spectral properties are described. We have also

provided a well-balanced positivity-resulting central-upwind scheme to obtain numerical

results. We tested it in idealized aorta models with damaged areas among other scenarios.

In [13], a different expression for the transmural pressure given in (3.15) is offered in order

to consider blood flows in veins. It is also possible to do it in this context as long as the

fluid is Newtonian. Furthermore, in such situations one could also consider veins with

twists. In the present model, the axis passing through the center of the vessel is assumed

to be aligned in the (x, z) plane for simplicity. However, it can be easily generalized to

any curve as along as the radius curvature does not exceed the vessel radius. The above

research directions will be considered in a future work.
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Chapter 6

Introduction: Generalized

Quasi-Geostrophy

A great variety of geophysical phenomena both occurring in the ocean and the atmosphere

have a direct impact in the society. Mathematical models based on Partial Differential

Equations (PDEs) have demonstrated to be very useful in predicting their evolution. Such

models play an important role in the area of atmospheric sciences. Due to the complexity

of the phenomena under consideration, it is desirable to have at our disposal simplified

models that disentangle some of the processes involved in the formation of coherent

structures and their evolution as well as the triggering of atmospheric instabilities.

Among the simplified models referred to above, one of the most successful models is the

celebrated quasi-geostrophic (QG) equations, which considers a balance between pressure

gradients and Coriolis forces [23]. The success of the QG equations is due in part due to its

practical simplicity. Only one equation of motion is necessary for the potential vorticity

(PV) and the velocity and density can be diagnosed from it. From the theoretical point of

view, the QG equations lead a decomposition of balance (low frequency) and unbalanced

(high frequency) components. Slow balanced components are associated, for instance,

to the vortices observed in the ocean and in the atmosphere. They evolve on a slow

timescale and persist over time (months) as a coherent structure. On the other hand,

the fast unbalanced components are associated to intertia-gravity waves and move much

87
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faster. The study of such decomposition of the flow have received a lot of attention and

a vast amount of literature exists out there regarding this phenomenon, including the

spontaneous generation of inertia-gravity waves and the study of slow manifolds where

flows evolve in time near balance. See [24] for a review. It has also been of interest the

study of the effect of both slow and fast modes in the formation and evolution of coherent

structure. In that direction, interactions between vortical and wave components in the

Boussinesq and shallow water equations have been studied in [25–27].

The slow and fast modes have been mainly studied in the Boussinesq and rotating shallow

water equations. In the case of the atmosphere, that corresponds to the dry case where no

moist is considered at all. Very recently, a huge effort has been dedicated to developing

the concept of low and high frequency components in the presence of moist. In [28],[29],

the precipitating Quasi-geostrophic equations (PQG) are derived and implemented. In

[29], the PQG model was analyzed in both scenarios: with saturated and unsaturated

atmosphere. Although this work has been very successful, the implementation of the

model is very challenging because the moist potential vorticity involves stiff terms and

the the PV-inversion is very complicated.

In [30], quasi-geostrophy was generalized for anisotropic rotating flows in the dry case.

The model was derived using asymptotic analysis in terms of the Rossby number and

assuming certain assumptions for the characteristical scales. One notes that the asymp-

totic limit in this setting is different than the regular QG assumptions described above.

In particular, in [30] the vertical extend is considered large compared to the horizontal

lengthscale. The leading vertical velocity does not vanish, as opposed to the regular QG

equations. In this work, we extend that approach taking moist into consideration. One

contribution in this thesis is the derivation of a new model that encompasses a concept of

balance and unbalance components in the moist case. We generalize quasi-geostrophy to

the moist case in a parameter regime typical of those considered in [30]. One aside advan-

tage here is that no PV-inversion is required. The resulting model is multi-scale where

the averaged moist and equivalent potential temperature evolve over a slow timescale and

the fluctuations evolving on a fast timescale.
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6.1 The Boussinesq approximation for a minimal model

with moisture, phase changes, turbulence and

precipitation

The starting point to derive our model is the system of Boussinesq equations valid for

flows in which the depth of fluid motions is small compared to the density scale height [50].

Such system can be derived from the Navier-Stokes equations [51], and are particularly

helpful in this context because it filters acoustic waves and nicely decomposes inertia-

gravity waves from vortex solutions. In this section we provide more details about this

system.

We follow [52] for the derivation of the virtual- and equivalent- potential temperature

variables in the description below. The arguments for conservation of mass and balance

of momentum can be found in [38].

Conservation of mass

We begin by considering the equation for conservation of mass, which states that the

mass rate of change of a parcel in a volume V is equal to the rate at which mass crosses

through the boundary of the volume per unit are per unit of time. Letting m be the mass

and ρ the density, the rate of change of the mass in the volume V is given by

d

dt
m(V, t) =

d

dt

∫
V

ρ(x, t)dV =

∫
V

∂

∂t
ρ(x, t)dV.

Let u(x, t) denote the velocity field and n the outer normal vector at the boundary ∂V .

The mass passing through the boundary can be computed by projecting the velocity field

in the normal direction and taking the overall contribution over the boundary. The above

statement together with the divergence’s theorem we get

d

dt

∫
v

ρ(x, t)dV = −
∫
∂V

ρv · ndA = −
∫
V

∇ · (ρu)dV.
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Since the above relations holds for an arbitrary volume, conservation of mass is finally

stated as
∂ρ

∂t
+∇ · (ρu) = 0. (6.1)

An incompressible fluid further satisfies that the velocity is divergence free:

∂xu+ ∂yv + ∂zw = 0.

See [38] for more details.

Balance of momentum

Lagrangian coordinates help us find the equations of motion of the velocity field by

describing the movement of a parcel with trajectories influenced by the internal and

external forces acting on the fluid. Let x(t) denote the particle’s position at time t. The

acceleration of the particle is then given by the so called material invariant

d

dt
u(x(t), t)) = ∂tu + u · ∇u =:

Du

Dt

Let us first consider surface forces acting on the fluid. In this work we first consider

normal forces given by the pressure p(x, t) exerted per unit area over the surface ∂V .

The overall contribution over the boundary is

S∂V = −
∫
∂V

pndA = −
∫
V

∇pdV.

On the other hand, letting b denote the body forces per unit of mass, the balance of

momentum reads

ρ
Du

Dt
= −∇p+ ρb.

In the Boussinesq approximation, the body forces represent the effects of gravity in the

density fluctuations, and are taken to be

b = −gρ
′

ρ
k,
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where the density is decomposed into background density plus density fluctuation ρ =

ρo + b̄(z) + ρ′, and k = (0, 0, 1) is the direction of gravity. One can rewrite the ideal gas

law in terms of this decomposition, giving

ρ′

ρ
=
P ′

Po
− T ′

To
,

where T is the temperature, To a reference value and the primes represent deviations from

the average value. A scaling analysis for ideal gases shows that the contributions from

pressure towards buoyancy is small when u2
o/c

2 << T ′/To. See [52] for details. Here uo

is a velocity scale and c is the isentropic speed of sound. One can then approximate the

buoyancy of a parcel in terms of temperature fluctuations

b ≈ g
T ′

To
k.

The previous approximation is a good approximation but we need one more appropriate

one for a parcel that is composed of different phases such as a moist fluid. In [52], the

virtual liquid potential temperature θrv is proposed to measure the temperature of an

ideal gas in a hetereogenus system composed of dry air, water vapour and liquid water.

It is given by

θrv = θv

(
1− qr

1 + qr

)(
1− qr

ε+ qt

)χ−1(
1− qr

qt

)−γ
exp

[
−Lvqr

(cpd + qtcpv)T

]
, (6.2)

and it is the temperature a parcel would have when experiencing volume changes during

adiabatic processes but also phase changes between water vapour and liquid water due

to saturation. In (6.2), the virtual potential temperature θv is given by

θv = Tv

(
Po
P

)χ
,

where Tv is the virtual temperature

Tv =
T

1− e
Pd

(1− ε)
,
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and

ε =
Rv

Rd

, γ =
qtRv

cpd + qtc–pv
, χ =

Rd + qtRv

cpd + qtcpv
.

Furthermore, q is the mixing ratio in g kg−1 for water vapor (qv), rainwater (qr) and

the total contribution qt = qv + qr. The gas constants for water vapor and dry air are

respectively Rv and Rd. The environmental and water vapor pressure are given by p

and e respectively. Finally, the latent heat release is given by L and the specific heat at

constant pressure for water vapor and dry air are cpv and cpd respectively.

The thermodynamic variables are derived so that they are preserved under adiabatic

processes, and in the presence of moisture it involves complicated relations. However, such

variables can be simplified under a reasonable assumption: qr
qt
<< 1 in which the amount

of rain formed is considerably much smaller than the total moisture in the atmosphere as

it typically happens in reality. It implies 1 + qr ≈ 1, and the rainwater virtual potential

temperature is reduced to

θrv ≈ θv(1− qr) exp

(
−Lvqr
cpdT

)
.

After taking a linearization θv around the static state of rest, we get

θv ≈ θ + θ
e

P
(1− ε) ≈ θ + θ

εe(1− ε)
Pε

,

qv =
εe

P
, εo =

1− ε
ε

.

Substituting the above relations, we get

θv ≈ θ + θqvε0.

Our goal is to linearize the buoyancy term with the leading order terms. In that regard,

the exponential term will be ignored due to the fact that qr is assumed to be small. The

linearized rain-water potential temperature is then given by

θrv ≈ θv(1− qr) ≈ θ + θoqvεo − θoqr.
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We must take into account that the variables associated to potential temperature and

water vapor can be decomposed intro background and fluctuation. Following the Boussi-

nesq assumptions, we assume here that the background states are explicit functions of

height. As a result, the background states in the buoyancy can be absorbed into the

pressure gradient. The background state for rain is zero in the absence of it. So, the

buoyancy term can be expressed as

b = kg

(
θ − θ̃(z)

θo
+ (qv − q̃v(z))εo − qr

)
, (6.3)

where θ̃(z) and q̃v(z) are the background states for potential temperature and water vapor

respectively.

Balance of momentum is then expressed as

Du

Dt
= −∇φ+ kg

[
θ − θ̃(z)

θo
+ (qv − q̃v(z))εo − qr

]
, (6.4)

where φ = p/ρo is the effective pressure.

Time evolution of potential temperature

The potential temperature (θ) is the temperature that an ideal gas would have if it is

expanded or compressed adiabatically between two pressure levels. It is a very convenient

quantity to consider because it is invariant under dry adiabatic processes. A parcel rising

in the atmosphere is assumed to be under an adiabatic process when it does not exchange

heat with its environment while its internal energy changes due to the work done by

expansion or compression. Mathematically, the potential temperature is given by

θ = T

(
po
p

)Rd
cp

,

where po is a reference pressure (at sea surface), p is the pressure, T the dry air pressure,

Rd is the gas constant for dry air and cp the specific heat capacity at constant pressure

for dry air. It follows after differentiation that

cpd ln θ = cpd lnT −Rdd ln p.
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In reversible processes, changes in the specific entropy are given by

dS = cp
dT

T
−Rd

dp

p
,

which gives

dS = cpd ln θ.

As a result, the specific entropy is given by the logarithmic term of the potential temper-

ature, which is conserved under adiabatic processes.

Based on the above calculations, the potential temperature satisfies

ρcp
θ

Dθ

Dt
=
Q

T
,

where Q is the heat production per unit of volume. In this model, this quantity is given in

terms of the latent heat release that arises during phase changes but also on condensation

(C) and evaporation (E) processes:

Q = ρ(LC − LE),

which leads to the approximation

Dθ

Dt
=
Lθ̃(z)

cpT̃ (z)
(C − E). (6.5)

The above equation indicates that changes in potential temperature in a moist parcel

are due to the latent heat release that happens during phase changes from water vapor

to liquid water (condensation) and viceversa (evaporation). During condensation, the

potential temperature increases and can direct energy the parcel in order to be transported

to higher altitudes where condensation and precipitation are enhanced. On the opposite

case, the potential temperature decreases during evaporation and the system requires

heat while possibly inhibiting the parcel’s vertical ascent.
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Time evolution of moisture

In this model, one is assuming that moisture in the atmosphere can only exist in gas

phase (water vapor) or in liquid phase that is obtained after condensation when the

atmosphere is saturated. Any excess of water from saturation levels is considered rain

and falls at a constant rainfall velocity VT (for simplicity). That is, one assumes that the

auto-conversion process where the small droplets collide and form bigger ones is fast as

compared to the other processes. As a result, no cloud water suspended in air is present

and the only two components of moisture are water vapor and rainwater. Under the

above considerations, moisture obeys the conservation law

Dqv
Dt

= −C + E

Dqr
Dt
− VT∂zqr = C − E,

which indicates that condensation (C) converts water vapor into liquid water while evap-

oration acts in the opposite way. One still needs to parametrize the condensation and

evaporation processes. See for instance [53], where the parametrizations involve timescales

in which such phase changes occur. Following [54], one also assumes that the timescales

associated both to condensation and evaporation are fast. As a consequence, any rain-

water that falls into an unsaturated region is instantaneously evaporated until either all

rainwater is transformed into water vapor or saturation is reached. Under those assump-

tions, condensation and evaporation must be whatever it has to be to ensure instantaneous

condensation and evaporation in the fast timescale limit. However, we note that one can

rewrite the equations in the above limit where the condensation and evaporation terms

do not appear explicitly. For instance, adding potential temperature and a water vapor

term we get
Dθe
Dt

= 0,

where θr = θ+ L
cp
qv is the equivalent potential temperature. Analogously, the total water

qt = q − v + qr satisfies
Dqt
Dt
− Vt∂qr = 0.
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Under the fast auto-conversion and evaporation assumptions, water vapor and rainwater

can be obtained diagnostically from total water by

qv = min(qt, qvs(z)), qr = max(qt − qvs(z), 0),

where qvs(z) is the water vapor at saturation.

Together with the incompressibility condition, the inviscid version of the FARE model

described in [54] is given by

Du
Dt

= −∇φ+ kg
[
θ−θ̃(z)
θo

+ (qv − q̃v(z))εo − qr
]
,

Dθe
Dt

= 0,

Dqt
Dt
− Vt∂qr = 0,

∂xu+ ∂yv + ∂zw = 0.

(6.6)

The model in (6.6) is taken as the starting point. It is a simplified model that has

shown to qualitatively capture observations made in nature in atmospheric flows with

phase changes, precipitation and turbulence. For instance, in the presence or absence

of wind shear at low altitudes, the model was shown to be able to form squall lines.

This model has filtered acoustic waves but allow for slow (vortical) modes but allows for

fast inertia-gravity waves. The purpose of this work is to derive new models that filter

fast inertia-gravity waves in the limit when the vertical extend is large compared to the

horizontal lengthscale. Such scenario is relevant in the presence of vortical hot towers,

which are present in the formation of hurricanes among other phenomena.
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The model

As we will see below, the model that we derive here is obtained with a multi-scale ap-

proach. Each quantity is decomposed into a background state that depends only on

a large vertical scale (Z) and a low time scale (T ) and a fluctuation that depends on

(x, y, Z) and a fast timescale (t). Both the background states and the fluctuations form

a coupled system where certain inertia-gravity waves are filtered out and the fluctuations

obey a QG-type evolution.

Our multi-scale model is described by equations involving small timescale for vertical

vorticity and fluctuations of the vertical velocity, equivalent potential temperature, and

total water. On the long timescale, the background states evolve according to turbulent

fluxes given by the fluctuations while the fluctuations are linearly advected by the vertical

derivatives of the background states, providing a two-way feedback. The model is given

97
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by 



∂t (∇2
⊥ψ
′) + J [ψ′,∇2

⊥ψ
′] − f∂Zw

′ = ν∇2
⊥ζ
′,

∂tw
′ + J [ψ′, w′] + f∂Zψ

′ = b′ + ν∇2
⊥w
′,

∂tθ
′
e + J [ψ′, θ′e] + w′∂Zθe = κe∇2

⊥θ
′
e,

∂tq
′
t + J [ψ′, q′t] + w′∂Zqt − VT∂Zq′r = κq∇2

⊥q
′
t,


∂T θe + ∂Zθ′ew

′ = κe∂
2
ZZθe

∂T qt + ∂Zq′tw
′ = κq∂

2
ZZqt.

(7.1)

Here, ψ′ is a stream function that defines the horizontal velocity field uh = (u′, v′) =

(−∂yψ′, ∂xψ′). The Jacobian is given by J(A,B) = −∂yA ∂xB+∂xA ∂yB. The horizontal

Laplacian gives the vertical vorticity ζ = ∂xv − ∂yu = ∇2
⊥ψ
′. Furthermore, w′ is the

vertical velocity, θ′e is the fluctuating equivalent potential temperature, and q′t, q
′
r the

fluctuating total water and rain water mixing ratio. The rainfall speed is VT and it

is assumed to be constant for simplicity. The horizontally averaged equivalent potential

temperature and total water mixing ratios are given by θ̄e and q̄t respectively. The vertical

coordinate is written in capital letter Z to denote that it is in long scale. The buoyancy

fluctuation is given by

b′ = g

[
θ′e
θo
−
(

L

cpθo
−Rvd

)
q′t +

(
L

cpθo
−Rvd − 1

)
q′r

]
.

In the above equation, all the horizontally averaged quantities are denoted with bars

(·), while the fluctuations are identified with primes. The validation of the model is

constrained to the condition Ro = ε << 1, where Ro = U
fL

is the Rossby number, f, U

and L are the Coriolis coefficient, characteristic velocity and lengthscale. All the averaged

quantities θ̄e, q̄t but also the velocity fluctuation (u′, v′, w′) are O(1) quantities. On the

other hand, fluctuations θ′e, q
′
t, q
′
r are O(Ro).
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As opposed to the standard quasi-geostrophic equations, the leading order vertical velocity

does not vanish. The incompressibility of the fluid is reflected in a solvability equation

where the balance occurs between the leading order vertical velocity and the order O(Ro)

horizontal component of the velocity. This gives the vertical vorticity equation. The

streamfunction and the pressure fluctuation are related by ψ′ = p′/f . The vertical velocity

equation involves a horizontal material derivative in balance with the pressure gradient.

The equations for θ′e involves a horizontal material derivative with stratification given

by the brackground averaged profile. A similar expression can be observed for the q′t-

equation, where precipitation is also included with rainfall speed VT . The background

quantities θ̄e and q̄t evolve according to the turbulent fluxes θ′ew
′ and q′tw

′ respectively.

7.1 Derivation of the multi-scale reduced model

7.1.1 The starting point: a minimal CRM model

This section is devoted to the derivation of the multi-scale reduced system. We first

consider the FARE model [54], which is a minimal model for precipitating turbulent

convection. It uses a Boussinesq approximation for the momentum and equivalent po-

tential temperature equations. The derivation of the model assumes no supersaturation.

That is, any excess of water from the water vapor at saturation is considered rain water.

Furthermore, any rainwater that falls in unsaturated regions will immediately evaporate

until the region saturates or all rain is transformed into water vapor in that region. The

resulting model consists of the simplest conservation laws that includes both precipitation

and turbulence, and are given by

Dtu + f ẑ× u = −∇ p+ b (θe, qt, z) ẑ + ν∇2u,

Dtθe = κe∇2θe,

Dtqt − VT∂zqr = κq∇2qt,

∇ · u = 0.

(7.2)
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Here Dtf ≡ ∂tf + u · ∇f , u = (u, v, w) is the velocity, p the relative pressure (re-

sclaed by density), θe the equivalent potential temperature, qt = qv + qr the total water,

qv = min(qt, qvs) the water vapor, qr = max(qt−qvs, 0) the rain water, qvs the water vapor

at saturation (a known function of height), VT the rainfall velocity, and b the buoyancy

acceleration. Also, ν represents the kinematic viscocity and κe,κq means the thermal

diffusivity of the equivalent potential temperature and the total mixing ratio water. See

Chapter 6 for a derivation of the model.

In general, the buoyancy b = b(θe, qv, qr, z) is an explicit function of equivalent potential

temperature, moist and height. It takes into account the latent heat release across phase

changes and rain acts as a sink of energy. The dependance on height takes into account

background states of θe and qv such that only the fluctuations can generate a change in

buoyancy.

b (θe, qt, z) = g

[
θe
θo

+

(
Rvd −

Lv
cpθo

)
qt +

(
Lv
cpθo
−Rvd − 1

)
qr

]

For the moment, we will not choose a specific form of the buoyancy and will assume a

general function b = b (θe, qt, z).

In order to derive our reduced model, we need to introduce the aspect ratio AZ , which

here is assumed to be large (AZ � 1). This gives rise to a new large height scale Z

such that [Z] = AZ [z]. The background states in FARE are here described by averaged

quantities varying on a slow time scale T such [T ] = AT [t], with AT � 1 to be determined

later.

As usual, the vertical and time derivatives are expanded as

Substitution

∂z −→ ∂z + ∂Z ,

∂t −→ ∂t + ∂T ,

with a new extension of the material derivative Dt given by

Dt + ∂T + w∂Z .
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The rescaled expanded equations are

Dtu + [∂T + w∂Z ] u + f ẑ× u +∇p+ = (b− ∂Zp) ẑ + ν (∇+ ∂Z ẑ)2 u,

Dtθe + [∂T + w∂Z ] θe = κe (∇+ ∂Z ẑ)2 θe,

Dtqt + [∂T + w∂Z ] qt − VT [∂z + ∂Z ] qr = κq (∇+ ∂Z ẑ)2 qt,

∇ · u + ∂Z (w) = 0.

(7.3)

7.1.2 The non-dimensional equations

One of the main contributions of this work is the derivation of an asymptotically reduced

system assuming a large vertical scale compared to its horizontal counterpart. This is

relevant for vortical hot towers and tall plume structures. The model allows us to study

balanced components of the flow, heat and moist transport, and study phase changes in

Taylor columns. The dry case was already derived in [55]. Here we generalize it to the

moist case.

Let To, Uo, Wo, Lo, Ho, Po, Bo, Θo and Qo be the characteristic time, horizontal velocity,

vertical velocity, horizontal lenght, vertical lenght, re-scaled pressure, bouyancy force,

temperature and total mixing-ratio scales. Taking account that

Uo
Lo

=
Wo

Ho

=
1

To

we get the non-dimensional version of (7.3):

D̃tũ +
[

1
AT
∂T̃ + 1

AZ
w̃∂Z̃

]
ũ = −E∇̃ p̃− 1

Ro
ẑ× ũ +

[
Γb̃− E

AZ
∂Z̃ p̃
]

ẑ

+ 1
Re

(
∇̃+ 1

AZ
∂Z̃ ẑ

)2

ũ,

D̃tθ̃e +
[

1
AT
∂T̃ + 1

AZ
w̃∂Z̃

]
θ̃e = 1

Peθ

(
∇̃+ 1

AZ
∂Z̃ ẑ

)2

θ̃e,

D̃tq̃t +
[

1
AT
∂T̃ + 1

AZ
w̃∂Z̃

]
q̃t = Vr

[
∂z̃ + 1

AZ
∂Z̃

]
q̃r + 1

Peq

(
∇̃+ 1

AZ
∂Z̃ ẑ

)2

q̃t,

∇̃ · ũ + 1
AZ
∂Z̃ (w̃) = 0.

(7.4)
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Here D̃tf̃ ≡ ∂t̃f̃ + ũ · ∇̃f̃ , ũ = (ũ, ṽ, w̃). The parameters are known numbers: E = Po
U2
o

is the Euler number, Ro = 1
fTo

is the Rossby number, Γ = BoTo
Wo

is the bouyancy scale,

Vr = VTTo
Ho

is the re-scaled rainfall velocity, Re = LoUo
ν

is the Reynolds number, Peθ = LoUo
κe

is the Peclet number of the equivalent potential temperature and Peq = LoUo
κq

is the Peclet

number of the total mixing ratio water.

We now proceed to derive a closed set of reduced equations. For that end, let us decom-

pose the variables ṽ =
(
ũ, p̃, θ̃e, q̃t, q̃r

)
as

ṽ
(
x̃, Z̃, t̃, T̃

)
= ṽ

(
Z̃, T̃

)
+ ṽ′

(
x̃, Z̃, t̃, T̃

)
,

where the overbar denotes the averages over the small and fast scales

ṽ
(
Z̃, T̃

)
= lim

τ,V→∞

1

τV

∫
τ,V

ṽ
(
x̃, Z̃, t̃, T̃

)
dx̃dt̃,

and ṽ′ is its fluctuation from its average.

We take the average of equation (7.3) over small and fast scales to obtain equations for the

averaged quantities and fluctuations. In particular, the slow evolving averaged quantities

are given by

1
AT
∂T̃ ũ + 1

AZ
∂Z̃ w̃ũ = − 1

Ro
ẑ× ũ +

[
Γb̃− E

AZ
∂Z̃ p̃

]
ẑ + 1

ReA2
Z
∂2
Z̃Z̃

ũ,

1
AT
∂T̃ θ̃e + 1

AZ
∂Z̃ w̃θ̃e = 1

PeθA2
Z
∂2
Z̃Z̃
θ̃e,

1
AT
∂T̃ q̃t + 1

AZ
∂Z̃ w̃q̃t = Vr

AZ
∂Z̃ q̃r + 1

PeqA2
Z
∂2
Z̃Z̃
q̃t,

1
AZ
∂Z̃ w̃ = 0.

(7.5)
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The non-dimensional fluctuating equations are

D̃tũ
′ +

[
1
AT
∂T̃ + 1

AZ
w̃∂Z̃

]
ũ′

+ 1
AZ
w̃′∂Z̃ũ − 1

AZ
∂Z̃w̃

′ũ′ = −E∇̃ p̃′ − 1
Ro

ẑ× ũ′ +
(

Γb̃′ − E
AZ
∂Z̃ p̃

′
)

ẑ

+ 1
Re

(
∇̃+ 1

AZ
∂Z̃ ẑ

)2

ũ′,

D̃tθ̃e
′

+
[

1
AT
∂T̃ + 1

AZ
w̃∂Z̃

]
θ̃e
′

+ 1
AZ
w̃′∂Z̃ θ̃e − 1

AZ
∂Z̃ θ̃e

′
w̃′ = 1

Peθ

(
∇̃+ 1

AZ
∂Z̃ ẑ

)2

θ̃e
′
,

D̃tq̃t
′ +

[
1
AT
∂T̃ + 1

AZ
w̃∂Z̃

]
q̃t
′

+ 1
AZ
w̃′∂Z̃ q̃t − 1

AZ
∂Z̃ q̃t

′w̃′ = Vr

[
∂z̃ + 1

AZ
∂Z̃

]
q̃r
′ + 1

Peq

(
∇̃+ 1

AZ
∂Z̃ ẑ

)2

q̃t
′,

∇̃ · ũ′ + 1
AZ
∂Z̃ w̃

′ = 0.

(7.6)

We note that the above equations are non-dimensional with coefficients in terms of phys-

ically meaningful parameters. We will assume that some of those parameters are small

in certain situations in order to derive simplified models. The section is devoted to that

with the use of asymptotic expansions.

7.1.3 The asymptotic expansion

The multi-scale model can be derived from an asymptotic expansion with small parameter

ε := Ro. For the system’s closure, we also need the following assumptions

AZ = ε−1, AT = ε−2, Γ = ε−1Γ∗, Γ∗ = O(1), Vr = ε−1V ∗r , V
∗
r = O(1),

Re = O(1), P eθ = O(1), P eθ = O(1).
(7.7)

That is, the aspect ratio AZ , the buoyancy force and the rainfall speed are large and

inversely proportional to the Rossby number, and AT is one order or magnitude larger.
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Let us expand the dependent quantities v in terms of the small parameter as

ṽ = ṽ0 + εṽ1 + ε2ṽ2 +O
(
ε3
)
.

Momentum equation relations

The relations obtained by the momentum equations are similar to those given in [55]

in the dry case but we recall it here for completeness. Our contribution relies on the

extension to the moist case done below.

In order to get hydrostatic balance at the leading order, we assume that E = ε−2, giving

∂Z̃
(
p̃0

)
= Γ∗b̃0.

Examination of the leading-order terms for the averaged horizontal velocities, we find

that

ũ0 = ṽ0 = 0.

The averaged continuity equation implies that w̃ = 0, deducing ũ0 = 0. On other hand,

at O (ε−2), the fluctuating momentum equations yields

∇̃ p̃′0 = 0,

implying that p̃′0 = 0. At O (ε−1), the same equation implies

∇̃ p̃′1 =
(
ṽ′0,−ũ′0,Γ∗b̃′0

)
(7.8)

and, at O (1),

D̃0
t̃ (ũ′0) = −∇̃ (p̃′2)− z× ũ′1 +

(
Γ∗b̃′1 − ∂Z̃ (p̃′1)

)
z +

1

Re
∇̃2 (ũ′0) .

where D̃0
t̃

= ∂t̃ + ũ′0 · ∇̃.
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The fluctuating continuity at O (1) and O (ε) are given by

∇̃ · ũ′0 = 0, and ∇̃ · ũ′1 + ∂Z̃ (w′0) = 0, (7.9)

respectively. We recall that the divergence is done with respect to the small scales (x, y, z)

and leaves out the large scale Z̃. Equation (7.8) immediately implies

∂z̃w̃
′
0 = 0.

Thermodynamic and moist dynamic relations

Since w̃ = 0, we get q̃w̃ = q̃′w̃′ for any quantity q̃. The leading-order term in the mean

buoyancy equation is given by

∂Z̃

(
θ̃′e,0w̃

′
0

)
= 0,

which implies that θ̃′e,0w̃
′
0 = 0. We would take the sufficient condition θ̃′e,0 = 0. That is,

we assume that the equivalent potential temperature fluctuations are at least order O (ε).

Thus, at O (ε), the averaged and fluctuating buoyancy equations become

∂T̃

(
θ̃e,0

)
+ ∂Z̃

(
θ̃′e,1w̃

′
0

)
=

1

Peθ
∂2
Z̃Z̃

(
θ̃e,0

)
,

D̃0
t̃

(
θ̃′e,1

)
+ w̃′0∂Z̃

(
θ̃e,0

)
=

1

Peθ
∇̃2
(
θ̃′e,1

)
.

Using the fact that Vr = O(ε−1), the leading order term in the equation for the averaged

moisture equation gives

∂Z̃
(
q̃r,0
)

= 0.

We will assume that q̃r,0, which implies that the averaged rain is order O(ε). This is a

reasonable assumption since rain is usually much smaller than water vapor. The leading-

order term of the averaging mixing ratio equation yields

∂Z̃
(
q̃′t,0w̃

′
0

)
− V ∗r ∂Z̃ q̃r,1 = 0.

We will use the solvability condition q̃′t,o = 0, which implies that the total water fluctu-

ations are order O(ε), and consequently q̃r,1 = 0. This together with q̃r,0 = 0 implies
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that the only leading order moisture term is q̃t,0. Finally, the terms of order O(ε2) in

the averaged moisture equation, the solvability condition q̃r,2 = 0, and the terms of order

O(ε) in the fluctuating moisture equations are given by

∂T̃
(
q̃t,0
)

+ ∂Z̃
(
q̃′t,1w̃

′
0

)
=

1

Peq
∂2
Z̃Z̃

(
q̃t,0
)
,

D̃0
t̃

(
q̃′t,1
)

+ w̃′0∂Z̃
(
q̃t,0
)

= V ∗r

(
∂z̃
(
q̃′r,2
)

+ ∂Z̃
(
q′r,1
) )

+
1

Peq
∇̃2
(
q̃′t,1
)
.

The Taylor-Proudman constraints and a streamfunction formulation

Following [55], our next step is to find the Taylor-Proudman constraints. These relations

express that the forces leading-order motion on small spatial scales are invariant in the

direction of the rotation axis, e.g., f satisfies a Taylor-Proudman constraint if

(
ẑ · ∇̃

)(
f̃
)

= 0.

The equation ∇̃ (p̃′1) =
(
ṽ′0,−ũ′0,Γ∗b̃′0

)
shows that the leading-order flow is in geostrophic

balance. As ∂̃z (w̃′0) = 0 from the continuity equation at O (1) and assuming that b̃′0 = 0,

we find that (
ẑ · ∇̃

)
(ũ′0) = 0.

Also, b̃′0 = 0 implies that
(
ẑ · ∇̃

)
(p̃′1) = 0. Applying

(
ẑ · ∇̃

)
to D̃0

t̃

(
θ̃′e,1

)
we obtain

(
ẑ · ∇̃

)(
θ̃′e,1

)
= 0.

These three relations show that ũ′0, p̃′1 and θ̃′e,1 depend only on the large scale Z̃ in

height. We still need to define the solvability equations, that allows us to find the other

constraints and the reduced system of equations. These solvability equations are

∂x̃ (ũ′1) + ∂ỹ (ṽ′1) + ∂Z̃ (w̃′0) = 0,

D̃0
t̃ (w̃′0) = Γ∗b̃′1 − ∂Z̃ (p̃′1) +

1

Re
∇̃2
⊥ (w̃′0) ,
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and

D̃0
t̃

(
q̃′t,1
)

+ w̃′0∂Z̃
(
q̃t,0
)

= V ∗r ∂Z̃
(
q̃′r,1
)

+
1

Peq
∇̃2
⊥
(
q̃′t,1
)
,

and each one provides a Taylor-Proudman constraint:

(
ẑ · ∇̃

)
(w̃′1) = 0,

(
ẑ · ∇̃

)
(p̃′2) = 0,

(
ẑ · ∇̃

) (
q̃′r,2
)

= 0,

respectively. Finally, by the fluctuating horizontal momentum equation, the first equation

of the above system is transformed into

∂t̃

(
∇̃2
⊥p̃
′
1

)
+ u′0∂x̃

(
∇̃2
⊥p̃
′
1

)
+ v′0∂ỹ

(
∇̃2
⊥p̃
′
1

)
− ∂Z̃ (w̃′0) =

1

Re
∇̃2
⊥

(
∇̃2
⊥p̃
′
1

)
.

To summarize, the reduced system of equations is given by

∂t̃

(
∇̃2
⊥p̃
′
1

)
+ ũ′0∂x̃

(
∇̃2
⊥p̃
′
1

)
+ ṽ′0∂ỹ

(
∇̃2
⊥p̃
′
1

)
− ∂Z̃ (w̃′0) = 1

Re
∇̃2
⊥

(
∇̃2
⊥p̃
′
1

)
,

∂t̃ (w̃′0) + ũ′0∂x̃ (w̃′0) + ṽ′0∂ỹ (w̃′0) + ∂Z̃ (p̃′1) = Γ∗b̃′1 + 1
Re
∇̃2
⊥ (w̃′0) ,

∂t̃

(
θ̃′e,1

)
+ ũ′0∂x̃

(
θ̃′e,1

)
+ ṽ′0∂ỹ

(
θ̃′e,1

)
+ ∂Z̃

(
θ̃e,0

)
w̃′0 = 1

Peθ
∇̃2
⊥

(
θ̃′e,1

)
,

∂t̃
(
q̃′t,1
)

+ ũ′0∂x̃
(
q̃′t,1
)

+ ṽ′0∂ỹ
(
q̃′t,1
)

+ ∂Z̃
(
q̃t,0
)
w̃′0 = V ∗r ∂Z̃

(
q̃′r,1
)

+ 1
Peq
∇̃2
⊥
(
q̃′t,1
)
,

∂T̃

(
θ̃e,0

)
+ ∂Z̃

(
θ̃′e,1w̃

′
0

)
= 1

Peθ
∂2
Z̃Z̃

(
θ̃e,0

)
,

∂T̃
(
q̃t,0
)

+ ∂Z̃
(
q̃′t,1w̃

′
0

)
= 1

Peq
∂2
Z̃Z̃

(
q̃t,0
)
.

(7.10)

By [56], our reduced system of equations can be adapted at a streamfunction formulation

defined by

ũ′ = −∇̃ × ψ̃ẑ− ∇̃ × ∇̃ × φ̃ẑ.

The above constraints helps us to find that

ũ′0 =
(
−∂ỹψ̃0, ∂x̃ψ̃0, ∇̃2

⊥φ̃0

)T
,

ũ′1 =
(
−∂2

x̃Z̃
φ̃0,−∂2

ỹZ̃
φ̃0, 0

)T
+
(
−∂ỹψ̃1, ∂x̃ψ̃1, ∇̃2

⊥φ̃1

)T
.
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If we choose as p̃′1 = ψ̃0, w̃′ = ∇̃2
⊥φ̃ and define J̃

[
f̃ , g̃
]

:= ∂x̃f̃∂ỹg̃ − ∂ỹf̃∂x̃g̃, the reduced

system of equations is

∂t̃

(
∇̃2
⊥ψ̃0

)
+ J̃

[
ψ̃0, ∇̃2

⊥ψ̃0

]
− ∂Z̃

(
∇̃2
⊥φ̃0

)
= 1

Re
∇̃2
⊥

(
∇̃2
⊥ψ̃0

)
,

∂t̃

(
∇̃2
⊥φ̃0

)
+ J̃

[
ψ̃0, ∇̃2

⊥φ̃0

]
+ ∂Z̃

(
ψ̃0

)
= Γ∗b̃′1 + 1

Re
∇̃2
⊥

(
∇̃2
⊥φ̃0

)
,

∂t̃

(
θ̃′e,1

)
+ J̃

[
ψ̃0, θ̃

′
e,1

]
+ ∇̃2

⊥φ̃0∂Z̃

(
θ̃e,0

)
= 1

Peθ
∇̃2
⊥

(
θ̃′e,1

)
,

∂t̃
(
q̃′t,1
)

+ J̃
[
ψ̃0, q̃

′
t,1

]
+ ∇̃2

⊥φ̃0∂Z̃
(
q̃t,0
)

= V ∗r ∂Z̃
(
q̃′r,1
)

+ 1
Peq
∇̃2
⊥
(
q̃′t,1
)
,

∂T̃

(
θ̃e,0

)
+ ∂Z̃

(
θ̃′e,1w̃

′
0

)
= 1

Peθ
∂2
Z̃Z̃

(
θ̃e,0

)
,

∂T̃
(
q̃t,0
)

+ ∂Z̃
(
q̃′t,1w̃

′
0

)
= 1

Peq
∂2
Z̃Z̃

(
q̃t,0
)
.

(7.11)

The reduced system is closed, because

b̃′1 = b̃′1

(
θ̃′e,1, q̃

′
t,1, Z̃

)
, q̃′r,1 = q̃′r,1

(
q̃′t,1, Z̃

)
are linear functions of their corresponding inputs.

7.1.4 The final system in dimensional form

We recall that the scales are related by [Z] = ε−1[z], and [T ] = ε−2[t]. In dimensional

form, we need to obtain the equations for ψo, wo, εθ
′
e,1, εq

′
t,1, εq

′
r,1, εb

′
1, θ̄e,o, and q̄t,o, which

are the terms appearing in the asymptotic expansion. For simplicity, we will redefine

them by ψ,w, θ′e, q
′
t, q
′
r, b
′, θ̄e, and q̄t respectively.

In dimensional form, the following relations hold

ψ′ = p′/f, u′ = −∂yψ′, v′ = ∂xψ
′, ∇2

⊥ψ
′ = ∂xv

′ − ∂yu′.
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Defining the vertical vorticity by ζ ′ = ∂xv
′ − ∂yu

′, and the Jacobian by J [A,B] =

−∂yA∂xB + ∂xA∂yB, we get

∂tζ
′ + J [ψ′, ζ ′] − f∂Z w

′ = ν∇2
⊥ζ
′,

∂tw
′ + J [ψ′, w′] + f∂Z ψ

′ = b′ + ν∇2
⊥w
′,

∂tθ
′
e + J [ψ′, θ′e] + w′∂Z θe = κe∇2

⊥θ
′
e,

∂tq
′
t + J [ψ′, q′t] + w′∂Z qt = VT∂Zq

′
r + κq∇2

⊥q
′
t,

∂T θe + ∂Z θ′ew
′ = κe∂

2
ZZθe,

∂T qt + ∂Z q′tw
′ = κq∂

2
ZZqt.

(7.12)

It can also be written in the more conventional form, given by



Dh
t ζ
′ − f∂Z w

′ = ν∇2
⊥ζ
′,

Dh
t w

′ + f∂Z ψ
′ = b′ + ν∇2

⊥w
′,

Dh
t θ
′
e + w′∂Z θe = κe∇2

⊥θ
′
e,

Dh
t q
′
t + w′∂Z qt = VT∂Z q

′
r + κq∇2

⊥q
′
t,


∂T θe + ∂Z θ′ew

′ = κe∂
2
ZZθe,

∂T qt + ∂Z q′tw
′ = κq∂

2
ZZqt.

(7.13)

where Dh
t = ∂t + u′h · ∇h is the horizontal material derivative, u′h = (u′, v′) and ∇h =

(∂x, ∂y). As one can see, the buoyancy fluctuation b′ can be any function of θ′e, q
′
t, z. Here
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we take it as in [54], which is

b′ = g

[
θ′e
θo
−
(

L

cpθo
−Rvd

)
q′t +

(
L

cpθo
−Rvd − 1

)
q′r

]
,

where Lv = 2.5 × 106 J kg−1 is the latent heat factor, Rv
Rd

= Rvd + 1 is a ratio of gas

constants for water vapor Rv = 462 J kg−1 K−1 and dry air Rd = 287 J kg−1 K−1, Rvd ≈

0.6, cp = 103 J kg−1 K−1 is the specific heat at constant pressure, θo = 300 K is a

potential temperature reference at sea surface, and g = 9.81 m s−2 is the acceleration

due to gravity. We note that the fluctuating rain q′r is obtained from the full moisture

variable, and it is given by

q′r = max(qt + q′t − qvs(Z), 0).

That is, rain is any excess of water from the water vapor at saturation qvs(Z), which is

assumed to be a given function of height.

The first set of equations corresponds to the variables evolving on a fast timescale t,

which are fluctuations from the averages. The background states given by the horizontal

averages evolve on the slow timescale T . The first term involving Coriolis effects appears

there from the continuity and the Taylor-Proudman constraints. The other term with the

Coriolis parameter appears due to the balance of the material derivative of the vertical

velocity and the pressure gradient. The averaged quantities in the equations evolving

on a slow timescale affect the fluctuations by linear advection. On the other hand, the

fluctuations cause changes in the background states through turbulent fluxes.

We note that one needs to recover ũ′, v′ from the relation ∇2
⊥ψ
′ = ∂xv

′− ∂yũ′. Assuming

horizontal periodic boundary conditions, the horizontal Laplacian can be inverted, except

for the wavenumber kh = (kx, ky) = 0, which correspond to the horizontal average.

However, since ũ′, v′ are fluctuations and we are assuming they do not depend on the

small scale z, the horizontal averages are zero. As a result, the horizontal Laplacian can

be inverted, subject to the above conditions.



Chapter 8

Linear (in)stability of the model

The FARE model was proposed as a simplification of the moist dynamics, and it is that

simplicity that we want to exploit to provide a mathematical framework for convective in-

stabilities. In [57], a linearized FARE model was proposed and used to explore conditional

instabilities depending on the moisture and potential temperature profiles.

Here, we propose a linearized GQG FARE model to be analyzed. Due to the complexity

of phase changes, we analyze the linear model in two separate scenarios: unsaturated vs

saturad conditions. The buoyancy has two different expressions in both cases, which are

given by

b′ =


g

θo
θ′e − g

(
Lv
cpθo
−Rvd

)
q′t in the unsaturated case.

g

θo
θ′e − gq′t in the saturated case.

8.1 Unsaturated regime

In unsaturated regions of the atmosphere, q′r = 0. The bouyancy force in this regime is

defined as

b′u =
g

θo
θ′e − g

(
Lv
cpθo
−Rvd

)
q′t.

111
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The linearized model of (7.13) may be written as

∂tζ
′ − f∂Zw

′ = 0,

∂tw
′ + f∂Zψ

′ = b′u,

∂tθ
′
e + ∂Z

(
θe
)
w′ = 0,

∂tq
′
t + ∂Z (qt)w

′ = 0.

(8.1)

In order to make all variables to have te same units for purposes of eigenvector’s presen-

tation, we define

Θ′e =
g

θo

θ′e
|Γe|1/2

, Q′u = g
q′t

(Γu − Γe)
1/2
,

where

Γe =
g

θo
∂Z
(
θe
)
, Γu =

g

θo
∂Z
(
θe
)
− g

(
Lv
cpθo
−Rvd

)
∂Z (qt) .

We note that Γu − Γe is always positive but Γe may be negative in physically relevant

regimes we are interested in. In those variables, the linearized equations become

∂tζ
′ − f∂Zw

′ = 0,

∂tw
′ + f∂Zψ

′ = |Γe|1/2Θ′e − (Γu − Γe)
1/2Q′u,

∂tΘ
′
e + sign (Γe) |Γe|1/2w′ = 0,

∂tQ
′
u − (Γu − Γe)

1/2w′ = 0.

(8.2)

Periodic boundary conditions allows for plane-wave solutions of the form

(·) (x, t; k) = (̂·) (k) exp {i [k · x− σ (k) t]}

where x = (x, y, Z) is the position, k = (kx, ky, kZ) is the wavevector and kh =
√
k2
x + k2

y
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is the horizontal wavenumber. As ζ ′ = ∇2
⊥ψ
′, then ζ̂ ′ = −k2

hψ̂
′. Then, the equations

become

(−iσ)
(
−k2

h

)
ψ̂′ = f (ikZ) ŵ′,

(−iσ) ŵ′ = −f (ikZ) ψ̂′ + |Γe|1/2Θ̂′e − (Γu − Γe)
1/2 Q̂′u,

(−iσ) Θ̂′e = −sign (Γe) |Γe|1/2ŵ′,

(−iσ) Q̂′u = (Γu − Γe)
1/2 ŵ′.

If kh 6= 0, the equation for khψ̂′,ŵ′,Θ̂′e and Q̂′u can be written in matrix form as


0 fk−1h kZ 0 0

fk−1h kZ 0 i|Γe|1/2 −i (Γu − Γe)
1/2

0 −i sign (Γe) |Γe|1/2 0 0

0 i (Γu − Γe)
1/2

0 0




khψ̂′

ŵ′

Θ̂′e

Q̂′u

 = σ


khψ̂′

ŵ′

Θ̂′e

Q̂′u

 . (8.3)

The characteristic polynomial of the above matrix is given by

σ2

[
σ2 −

(
fkZ
kh

)2

− Γu

]
= 0.

The eigenvalue σ = 0 has geometrical multiplicity 2, with eigemodes the following four-

dimensional vectors
(
khψ̂′, ŵ′, Θ̂′e, Q̂

′
u

)

φ0 =


i (Γu − Γe)

1/2

0

0

fk−1
h kZ

 , and φ00 =


0

0

(Γu − Γe)
1/2

|Γe|1/2

 .

The other eigenvalues are real, subject to the condition

Γu +

(
fkZ
kh

)2

> 0.
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In this case, the other eigenvalues are:

σ± =

√
Γu +

(
fkZ
kh

)2

,

and their respectively eigenmodes
(
khψ̂′, ŵ′, Θ̂′e, Q̂

′
u

)
are

φ± =


fk−1

h kZ

σ±

−i sign (Γe) |Γe|1/2

−i (Γu − Γe)
1/2

 .

The above matrix is Hermitian provided that sign (Γe) = 1, in which case the eigenvalues

are real.

8.2 Saturated regime

In saturated regions of the atmosphere, q′v = 0. The bouyancy force in this regime is

defined as

b′s =
g

θo
θ′e − gq′t.

The linearized model of (7.13) may be written by

∂tζ
′ − f∂Zw

′ = 0,

∂tw
′ + f∂Zψ

′ = b′s,

∂tθ
′
e + ∂Z

(
θe
)
w′ = 0,

∂tq
′
t + ∂Z (qt)w

′ = VT∂Zq
′
t.

(8.4)
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In order to make all variables have te same units for purposes of eigenvector’s presentation,

we define

Θ′e =
g

θo

θ′e
|Γe|1/2

, Q′s = g
q′t

(Γs − Γe)
1/2
,

where

Γe =
g

θo
∂Z
(
θe
)
, Γs =

g

θo
∂Z
(
θe
)
− g∂Z (qt) .

We note that Γs − Γe is always positive but Γe may be negative in physically relevant

regimes we are interested in. In those variables, the linearized equations become

∂tζ
′ − f∂Zw

′ = 0,

∂tw
′ + f∂Zψ

′ = |Γe|1/2Θ′e − (Γs − Γe)
1/2Q′s,

∂tΘ
′
e + sign (Γe) |Γe|1/2w′ = 0,

∂tQ
′
s − (Γs − Γe)

1/2w′ = VT∂ZQ
′
s.

(8.5)

Allowing again for plane-wave solutions, the equations become

(−iσ)
(
−k2

h

)
ψ̂′ = f (ikZ) ŵ′,

(−iσ) ŵ′ = −f (ikZ) ψ̂′ + |Γe|1/2Θ̂′e − (Γs − Γe)
1/2 Q̂′s,

(−iσ) Θ̂′e = −sign (Γe) |Γe|1/2ŵ′,

(−iσ) Q̂′s = (Γs − Γe)
1/2 ŵ′ + VT (ikZ) Q̂′s.

If kh 6= 0, the equation for khψ̂′,ŵ′,Θ̂′e and Q̂′s can be written in matrix form as


0 fk−1h kZ 0 0

fk−1h kZ 0 i|Γe|1/2 −i (Γs − Γe)
1/2

0 −i sign (Γe) |Γe|1/2 0 0

0 i (Γs − Γe)
1/2

0 −VT kZ




khψ̂′

ŵ′

Θ̂′e

Q̂′s

 = σ


khψ̂′

ŵ′

Θ̂′e

Q̂′s

 . (8.6)
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The characteristic polynomial is a fourth order polynomial of σ,

σ

{
σ3 + VTkZσ

2 −

[(
fkZ
kh

)2

+ Γs

]
σ − VTkZ

[(
fkZ
kh

)2

+ Γe

]}
= 0. (8.7)

In the below subsections, we discuss the form of the eigenmodes associated to the eigen-

valores of the characteristic polynomial (8.7) for particular cases: kZ = 0, VT = 0 and

kZVT 6= 0.

Case kZ = 0.

In this case, the characteristic polynomial is

σ2
(
σ2 − Γs

)
= 0.

and the respectively eigenvalues are

σ0,00 = 0, σ± = ±
√

Γs

The corresponding eigenmodes for each eigenvalue are (in the case where σ± are both

real):

φ0 =


1

0

(Γs − Γe)
1/2

|Γe|1/2

 , φ00 =


0

0

(Γs − Γe)
1/2

|Γe|1/2

 , φ± =


0

σ±

−i sign (Γe) |Γe|1/2

−i (Γs − Γe)
1/2

 .

Case VT = 0.

In the absence of rainfall, where VT = 0, the characteristic polynomial is reduced to

σ2

{
σ2 −

[(
fkZ
kh

)2

+ Γs

]}
= 0.
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and the respectively eigenvalues are

σ0,00 = 0, σ± =

√(
fkZ
kh

)2

+ Γs.

The corresponding eigenmodes for each eigenvalue are (in the case where σ± are both

real):

φ0 =


i (Γs − Γe)

1/2

0

0

fk−1
h kZ

 , φ00 =


0

0

(Γs − Γe)
1/2

|Γe|1/2

 , φ± =


fk−1

h kZ

σ±

−i sign (Γe) |Γe|1/2

−i (Γs − Γe)
1/2

 .

The eigenmodes of this case are similar to the eigenmodes in the unsaturated case, swap-

ping Γu by Γs.

Case kZVT 6= 0.

The characteristic polynomial (8.6) has a root σ = 0. Its eigenmode is

φ0 =


i|Γe|1/2

0

−fk−1
h kZ

0

 .

The above matrix in equation (8.6) is Hermitian when sign (Γe) = 1, which implies all

the eigenvalues are real. Thus, the equation

σ3 + VTkZσ
2 −

[(
fkZ
kh

)2

+ Γs

]
σ − VTkZ

[(
fkZ
kh

)2

+ Γe

]
= 0 (8.8)
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has three real roots, denoted by σ1,2,3. The eigenmode for each eigenvalue is

φ1,2,3 =


fk−1

h kZ (σ1,2,3 + VTkZ)

σ1,2,3 (σ1,2,3 + VTkZ)

−i sign (Γe) |Γe|1/2(σ1,2,3 + VTkZ)

i (Γs − Γe)
1/2 σ1,2,3

 .

If sign (Γe) = −1, the existence of one real root of the polynomial (8.8) is guaranteed.

However, the other roots could be complex, which would correspond to an instability.



Chapter 9

Numerical results

9.1 Introduction

This chapter is devoted to the derivation of a robust and accurate numerical scheme

for the derived model (7.1). As usual, periodic boundary conditions are assumed in the

horizontal directions and a pseudo-spectral approach with the use of horizontal Fourier

transforms is taken. In the vertical direction, the discretization is implemented with the

use of staggered grids. However, the stability of the model using the CFL condition could

lead to very small timesteps as pointed out in [55]. We follow the approach in [58] to

derive a robust and stable numerical scheme that is more appropriate for the present

model.

9.2 Decomposition of the numerical flux

We follow the approach in [58] to derive our numerical scheme. For that purpose, we

decompose the numerical fluxes of equation (7.1) (in the right-hand side) as its linear and

non-linear components, denoted by L [U′] and N [U′] respectively. That is,

∂tU
′ = F (U′) = L [U′] +N [U′] (9.1)

119
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where U′ = (ζ ′, w′, θ′e, q
′
t),

L [U′] =


f∂Z (w′) + ν∇2

⊥ (ζ ′)

−f∂Z (ψ′) + ν∇2
⊥ (w′)

κe∇2
⊥ (θ′e)

κq∇2
⊥ (q′t)

 , and N [U′] =


−J [ψ′, ζ ′]

−J [ψ′, w′] + b′

−J [ψ′, θ′e]− ∂Z
(
θe
)
w′

−J [ψ′, q′t]− ∂Z (qt)w
′ + VT∂Z (q′r)

 .

In the horizontal direction, let assume periodic boundary conditions by a fourier transform

Û′ := Û′ (kx, ky, Z, t, T )

Based on the above, we obtain the equation

∂tÛ
′ = L̂

[
Û′
]

+ N̂
[
Û′
]
,

where

L̂
[
Û′
]

=


−νk2hζ̂ ′ + f∂Z (ŵ′)

−νk2hŵ′ − f∂Z
(
ψ̂′
)

−κek2hθ̂′e
−κqk2hq̂′t

 , and N̂
[
Û′
]

=


−ikxû′ζ ′ − iky v̂′ζ ′

−ikxû′w′ − iky v̂′w′ + b̂′

−ikxû′θ′e − iky v̂′θ′e − ∂Z
(
θe
)
ŵ′

−ikxû′q′t − iky v̂′q′t − ∂Z (qt) ŵ
′ + VT∂Z

(
q̂r
′)

 .

The implicit scheme to advance from Û′n, at time t, to Û′n+1, at time t+ ∆t(n), has three

substeps:

Û′
n+ 1

3

= Hn + β1∆t(n)L̂
[
Û′
n+ 1

3

]
,

Û′
n+ 2

3

= Hn+ 1
3

+ β2∆t(n)L̂
[
Û′
n+ 2

3

]
,

Û′n+1 = Hn+ 2
3

+ β3∆t(n)L̂
[
Û′n+1

]
,

(9.2)

where

Hn = Û′n +α1∆t(n)L̂
[
Û′n

]
+γ1∆t(n)N̂

[
Û′n

]
,

Hn+ 1
3

= Û′
n+ 1

3

+α2∆t(n)L̂
[
Û′
n+ 1

3

]
+γ2∆t(n)N̂

[
Û′
n+ 1

3

]
+η1∆t(n)N̂

[
Û′n

]
,

Hn+ 2
3

= Û′
n+ 2

3

+α3∆t(n)L̂
[
Û′
n+ 2

3

]
+γ3∆t(n)N̂

[
Û′
n+ 2

3

]
+η2∆t(n)N̂

[
Û′
n+ 1

3

]
.

(9.3)

The suggested values of α, β, γ and η are

α1 =
29

96
, α2 = − 3

40
, α3 =

1

6
,
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β1 =
37

160
, β2 =

5

24
, β3 =

1

6
,

γ1 =
8

15
, β2 =

5

12
, β3 =

3

4
,

η1 = −17

60
, β2 = − 5

12
.

For each substep k = 1, 2, 3, we rewrite the system as

[
1 + νβk∆t

(n)k2
h

]
ζ̂
′n+ k

3 − fβk∆t(n)∂Z

(
ŵ
′n+ k

3

)
= H

(1)

n+ k−1
3

,[
1 + νβk∆t

(n)k2
h

]
ŵ
′n+ k

3 + fβk∆t
(n)∂Z

(
ψ̂
′n+ k

3

)
= H

(2)

n+ k−1
3

,[
1 + κeβk∆t

(n)k2
h

]
θ̂e
′n+ k

3 = H
(3)

n+ k−1
3

,[
1 + κqβk∆t

(n)k2
h

]
q̂t
′n+ k

3 = H
(4)

n+ k−1
3

.

(9.4)

We note that θ̂e
′n+ k

3 and q̂t
′n+ k

3 can be obtained explicitly by the relations

θ̂e
′n+ k

3 =
1

1 + κeβk∆t(n)k2
h

H
(3)

n+ k−1
3

,

q̂t
′n+ k

3 =
1

1 + κqβk∆t(n)k2
h

H
(4)

n+ k−1
3

.

The solution for ζ̂
′n+ k

3 and ŵ
′n+ k

3 are done through a decomposition of the vertical axis

Z intro a staggered grid, as it will be presented in the next section.

9.3 Staggered grid for vertical integration

The vertical-integration of the model will be done introducing a sttagered grid, in order

to discretizise better the derivatives in Z-direction. Let define the sttagered grid as

Zw
j = (j − 1) ∆Z, Zu

j =

(
j − 1

2

)
∆Z,

where Zw
1 = 0 and Zw

m+1 = L. The variables u′, v′, ζ ′, θe and qt are defined in the grid

Zu
j , while the variables w′, q′t and θ′e are defined at the grid Zw

j . Let us observe that the

grid Zu
j has ghost cells (Zu

0 = −∆Z
2

and Zu
m+1 = L + ∆Z

2
). On the other hand, the grid
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Zw
j do not have ghost cells, except for the boundaries. See Figure 9.1 for a schematic of

the grid.

Figure 9.1: Schematic of the staggered grid for the model.

We have the following relations:

Zw
j =

1

2

(
Zu
j + Zu

j−1

)
, Zu

j =
1

2

(
Zw
j + Zw

j+1

)
The discretization of ∂Z (ŵ′) and ∂Z

(
ψ̂′
)

are

∂Z (ŵ′)
(
Zu
j

)
=
ŵ′
(
Zw
j+1

)
− ŵ′

(
Zw
j

)
∆Z

,

∂Z

(
ψ̂′
) (
Zw
j

)
=
ψ̂′
(
Zu
j

)
− ψ̂′

(
Zu
j−1

)
∆Z

.

Equation (9.4) is rewritten as

[
1 + νβk∆t

(n)k2
h

]
ζ̂
′n+ k

3

(
Zu
j

)
−fβk∆t

(n)

∆Z

[
ŵ
′n+ k

3

(
Zw
j+1

)
− ŵ′n+ k

3

(
Zw
j

)]
= H

(1)

n+ k−1
3

(
Zu
j

)
,

[
1 + νβk∆t

(n)k2
h

]
ŵ
′n+ k

3

(
Zw
j

)
+
fβk∆t

(n)

∆Z

[
ψ̂
′n+ k

3

(
Zu
j

)
− ψ̂′n+ k

3

(
Zu
j−1

)]
= H

(2)

n+ k−1
3

(
Zw
j

)
.

(9.5)
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The above equations can be solved using a tridiagonal system for ŵ
′n+ k

3 :



b a 0 0 . . . 0 0 0

a b a 0 . . . 0 0 0

0 a b a . . . 0 0 0

0 0 a b . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . b a 0

0 0 0 0 . . . a b a

0 0 0 0 . . . 0 a b





ŵ
′n+ k

3 (Zw
2 )

ŵ
′n+ k

3 (Zw
3 )

ŵ
′n+ k

3 (Zw
4 )

ŵ
′n+ k

3 (Zw
5 )

...

ŵ
′n+ k

3

(
Zw
m−2

)
ŵ
′n+ k

3

(
Zw
m−1

)
ŵ
′n+ k

3 (Zw
m)



=



cn,k (Zw
2 )

cn,k (Zw
3 )

cn,k (Zw
4 )

cn,k (Zw
5 )

...

cn,k
(
Zw
m−2

)
cn,k

(
Zw
m−1

)
cn,k (Zw

m)



(9.6)

with

a = −
(
fβk∆t

(n)

∆Z

)2

,

b =

[
2

(
fβk∆t

(n)

∆Z

)2

− k2
h

[
1 + νβk∆t

(n)k2
h

]2]
,

cn,k
(
Zw
j

)
= −k2

h

[
1 + νβk∆t

(n)k2
h

]
H

(2)

n+ k−1
3

(
Zw
j

)
+
fβk∆t

(n)

∆Z

[
H

(1)

n+ k−1
3

(
Zu
j

)
−H(1)

n+ k−1
3

(
Zu
j−1

)]
,

(9.7)

and the boundaries condition w (Zw
1 ) = w

(
Zw
m+1

)
= 0. After that, we solve for ζ̂

′n+ k
3

using equation (9.5).

9.4 Numerical tests

9.4.1 Dipole coherent structure

In this section, we provide numerical tests to exhibit part of the dynamics that geophys-

ical flows follows under the assumptions (7.7) of the model (7.1). A first case is based

on a dipole coherent structure. In [59], dipole coherent structures are provided and an-

alyzed. For the standard (dry) quasi-geostrophic equations, dipoles represent solutions

that propagate as a coherent structure. Here we consider a dipole coherent structure in

the presence of moisture.
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Figure 9.2: Horizontal contours of water vapour and velocity field are shown at times
T = 0 (top left panel), T = 1 h (middle left), T = 2 h (bottom left), T = 3 h (top
right), T = 4 (middle right) and T = 5 h (bottom right). The arrows indicate the

velocity field.

The initial conditions are given by a streamfunction satisfying

∆ψ = s exp

(
− (x− x0)2 + (y − a2)2 + (z − h2)2

2γ

)
− s exp

(
− (x− xo)2 + (y − a1)2 + (z − h1)2

2γ

)
,

where s = 2 is the strength’s amplitude of the dipole, γ = 0.05, xo = 64 km, a = 10 km,
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a1 = 64 km − a
2
, a2 = 64 km + a

2
, h1 = 5 km − h

2
, h2 = 5 km + h

2
, h = 0.6 km. The

solution is computed on a domain of size [0, 128 km]× [0, 128 km]× [0, 15 km].

The horizontal velocity field is initiated in terms of the streamfunction as

u = −∂yψ, v = ∂xψ, w = 0.

Following the relations for balanced flows in the dry case, here we initiate the equivalent

potential temperature as

θe =
f

N
∂zψ.

Figure 9.3: Left panel: Three dimensional slices of water vapor. Right panel: 3D
velocity field near the edge of the vapor bubble. The arrows indicate the velocity field.

The time evolution is shown in Figure 9.2. Horizontal contours of what vapor fluctuations

are shown in Figure 9.2. As expected, one can see the dipole propagates eastward as a

coherent structure. Such dipoles structures have been studied in many different contexts

because of their importance. For instance, dipole-type coherent structures can appear in

atmospheric phenomena involving deep convection [60]. Although it is an idealized dipole,

the current reduced model derived in this thesis can capture such coherent structure,

which propagates in the correct direction.

One advantage of the reduced model presented here is the ability to include moist in

the dynamics of the fluid. This is particularly important for applications involving deep

convection. In this numerical test, the water vapor has a background state that decreases

exponentially with height. See [54] for more details. Furthermore, we perturbe this states
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by adding a vapor bubble given by

qv(x, y, z, t = 0) =

=

 0.2 g kg−1 cos
(
π r
rc

)(
z−zc−1 km

km

)2 (
z−zc+1 km

km

)2

, if r ≤ rc, |z − zc|≤ 1 km,

0 otherwise.

Here,

r =
√

(x− xc)2 + (y − yc)2

is the distance from the center (xc, yc) = (64 km, 64 km), and zc = 5 km. The boundary

conditions implemented in this numerical test are as follows. In the horizontal direction,

we impose periodic boundary conditions. In the vertical direction, the vertical velocity

vanishes at the tropopause and at the surface, while the rest of the variables satisfy zero

Neumann boundary conditions.

Figure 9.3 shows a 3D plot of the moisture in the fluid at time t = 5h. In particular,

the left panel shows 3D slices of water vapor. One can observe that the initial column is

dragged by the coherent structure. Rain forms initially but is stays weak before it disap-

pears. It may indicate to use that under the present parameter regime and conditions,

rain is suppressed by the lack of fast gravity waves. In order to identify the 3D structure

of the dipole, the right panel shows the velocity field near the edge of the cloud. It is

oriented differently to identify the field. Two vortices, one cyclonic and one anti-cyclonic

can be identified.

9.4.2 Random initial conditions

The present numerical test considers random fluctuations in the potential temperature.

In this context, the variables have been non-dimensionalized by dividing by characteristic

values. Here, the Reynold and Peclet numbers are Re = 20, PEθ = 7, PEq = 1 respec-

tively. The background states are as follows. A reference potential temperature of θo = 1

is chosen at the surface. A reference value of 2 for the water vapor background is chosen

at the surface.
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Figure 9.4: Left panel: Horizontal contours of potential temperature at t = 2 units,
z = Lz/2. Right panel: the corresponding plot for the water vapor is shown. The

arrows indicate the velocity field.

Figure 9.5: Contours of potential temperature at the walls and at intermediate
heights are shown to help with the 3D visualization.

The initial potential temperature has fluctuations taken from a random uniform distribu-

tion where the maximum amplitudes is 0.5 . The left panel of Figure 9.4 shows horizontal

contours of this variable after 2 time units, at a height z = Lz/2 (in the middle of the
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domain). One can observe the formation of coherent structures. The velocity field in-

dicated by the arrows shows the formation of vortices as well. The right panel exhibits

contours of water vapor. It shows again the formation of coherent structures.

On the other hand, Figure 9.5 shows contours of potential temperature at the walls and

at intermediate heights. This 3D visualization allows us to observe the formation of

coherent structures as well as its distribution. Following [55], we choose the horizontal

domain size as Lh = 20 × 4.8154 and the vertical extent is Lz = 1. We use 1282 grid

points in the horizontal direction with 100 levels in the vertical direction. The rainfall

velocity is V ∗T = 1. In a future investigation, we will explore different parameter regimes

and its response to a variety of Reynold and Peclet numbers.



Conclusions

In the second part of the thesis, we derived a reduced model that generalizes the concept

of quasi-geostrophy, including moisture dynamics. The limiting dynamics is valid for sit-

uations where the vertical extend is large when compared to the horizontal lengthscale.

This is typical for vortical hot towers, which are a coherent structure that appears in a

hurricane embryo.

A numerical scheme was presented to compute the approximated solutions. Furthermore,

two numerical tests were considered. The first one considered a dipole coherent structure

with water vapor in it. The structure propagates in the right direction. The lack of rain

in the dynamics might indicate that the exclusion of some gravity waves could suppress

the formation of rain. The second idealized test consists of random initial conditions in

the potential temperature. It also shows the formation of coherent structures.

In a future work, a deeper numerical investigation will be conducted to explore the qual-

itative behavior of the solutions under different parameter regimes.
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