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Compendio de la tesis:

“Quantum Information Aspects in
Holography”

Resumen

Durante las últimas décadas, la correspondencia AdS/CFT ha demostrado ser una
excelente herramienta para obtener resultados de teorías cuánticas de campo (TCC)
fuertemente acopladas en términos de cálculos gravitacionales. El diccionario holográfico
relaciona observables en una TCC con entidades gravitacionales significativas abarcando
un amplio espectro de aplicaciones. De esta gama de aplicaciones, un elemento
destacado es la conexión entre la teoría de la información cuántica y la gravedad. En esta
tesis se presenta una serie de trabajos que exploran la relación entre los conceptos de
información cuántica y cantidades geométricas en el bulto gravitacional. En esencia,
nuestro trabajo se ocupa de tres de ellos: la entropía de entrelazamiento, la complejidad y
la matriz de densidad reducida, que están relacionadas con los subespacios de
codimensión dos, uno y cero en el bulto gravitacional, respectivamente.

Contenido de la tesis:

Capítulo 1: Introducción breve a la correspondencia holográfica. En este capítulo se
pretende presentar de manera didáctica las herramientas matemáticas y físicas
necesarias para comprender el origen de la correspondencia holográfica.

Capítulo 2: En este capítulo se pretende presentar los conceptos fundamentales de
la teoría de la información cuántica haciendo énfasis en su traducción holográfica. Se
presentan todos los conceptos utilizados en los artículos de investigación listados.

Capítulo 3: Se presenta una exposición breve de todos los artículos publicados
durante el curso del doctorado. En particular, se explica cómo las herramientas del
capítulo 2 ayudaron al desarrollo de cada investigación. Adicionalmente, se incluyen las
conclusiones correspondientes.
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Abstract

During the past decades, the AdS/CFT correspondence has proved to be an excellent tool for
obtaining results from strongly coupled QFTs in terms of gravitational calculations. The holo-
graphic dictionary relates QFT observables with meaningful gravitational entities in an enormous
range of applications. From that range of applications, a prominent item is the connection between
Quantum Information Theory and Gravity. This thesis presents a series of papers exploring the
relationship between quantum information concepts and geometrical quantities in the gravitational
bulk. In essence, our work deals with three of them: entanglement entropy, complexity, and the
reduced density matrix, which are related to codimension two, one and zero subspaces of the bulk,
respectively.
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Chapter 1

Introduction to the Holographic
Correspondence

Nowadays, humanity possesses at least two physical theories (theoretical frameworks) that describe
perfectly some of the phenomena around us. Essentially, it is possible to separate an enormous
diversity of phenomena into two categories: the physics of massive, gravitating objects, and the
physics of the microscopic world. The latter is known as particle physics, where it is possible to use
the Standard Model to describe the basic building blocks of matter and their interactions. This
framework has demonstrated a lot of success over the last decades. Even though the Standard
Model can predict many phenomena, it has some limitations. The most notable is that it cannot
describe gravity at the microscopic level. On the other hand, in the world of massive, macroscopic
objects, the Theory of General Relativity emphasizes that gravity is a manifestation of spacetime
curvature, massive objects curve spacetime, and curved spacetime tells the objects how to move.

1.1 A Brief Review of String Theory

This section includes a review of all the essential ingredients in String Theory needed to understand
the holographic correspondence. For efficiency, the intention is not to present all the topics in a
formal framework; instead, this chapter should be taken as a practical guide.

The knowledge of the fundamental constituents of matter has always been a central question
in Physics. Since the beginning, it has been answered up to a certain level, first by postulating
the existence of atoms and eventually by the discovery of all the fundamental particles and their
interactions. The central hypothesis in String Theory is that all matter is made of strings. Those
strings can vibrate in different frequencies depending on their energy, giving rise to all known
fundamental particles.

1.1.1 Worldsheet formulation of String Theory

The first approach to tackle String Theory is to consider a bosonic string moving in spacetime.
The aforementioned string is relativistically described by the Nambu-Goto action, which is a non-
quadratic expression in the embedding functions Xµ(τ, σ) which describe the path of the string
through spacetime, with (τ, σ) parameters labeling points on the string worldsheet. Quantizing
the Nambu-Goto action is challenging, so the traditional path is to work with the Polyakov action,
which gives the same equations of motion, but can be expressed as a quadratic expression.

Bosonic String Theory is not the whole history. It contains at least three features that makes
this theory incompatible with nature:

• The existence of a tachyon.

• The theory needs 26 spacetime dimensions to be mathematically consistent.

• The absence of fermionic states.

8



It is known that nature contains fermions. One way to induce the appearance of spacetime
fermionic states in the Hilbert space of the theory is by including worldsheet fermionic degrees of
freedom in the Polyakov action. This can be expressed in the following way:

S [X,Ψ] = − 1

2π

∫
d2σ

[
1

2α′ ∂
aXµ∂aXµ − iΨµγa∂aΨµ

]
, (1.1)

with α′ ≡ l2s , and ls is a parameter known as the string lenght. The previous formula is commonly
known as the Ramond-Neveu-Schwarz action, where Ψµ represents a set of D Majorana spinors.
The equations of motion obtained from the previous action are

∂a∂aX
µ = 0, (1.2)

γa∂aΨ
µ = 0, (1.3)

whose solutions can be expressed in terms of X(τ + σ) (left) and X(τ − σ) (right) components
and for the bosonic field and Ψ(τ + σ) (left) and Ψ(τ + σ) (right) for the fermionic field. In the
case of the bosonic fields, the only set of compatible boundary conditions demand the fields to be
periodic. The fermions boundary conditions in the case of closed strings are either of the following:

Ψµ(σ + 2π, τ) = Ψµ(σ, τ) Ramond, (1.4)
Ψµ(σ + 2π, τ) = −Ψµ(σ, τ) Neveu-Schwarz. (1.5)

The combinations of periodic and anti-periodic boundary conditions for the left- and right-
moving fermionic modes allows the creation of different sectors in the case of a closed string:

• R-R sector

• R-NS sector

• NS-R sector

• NS-NS sector

In the case of an open string, a right-moving mode can be converted into a left-moving mode
and vice-versa. Then, the allowed sectors for this case are

• R sector

• NS sector

The identification of the possible boundary conditions for each case (open and closed string)
allows the decomposition of the fields in the following form:

Ψµ(z) =
∑

r∈Z+∆

Ψµ
r

zr+
1
2

, (1.6)

Ψ̃µ(z) =
∑

r∈Z+∆̃

Ψ̃µ
r

zr+
1
2

, (1.7)

where z = ei(σ−τ), while Ψµ
r and Ψ̃µ

r refer to the left and right field modes respectively. As a
consequence of the OPE, the previously mentioned operator modes satisfy

{Ψµ
r ,Ψ

ν
s} = ηµνδr,−s, (1.8)

{Ψ̃µ
r , Ψ̃

ν
s} = ηµνδr,−s. (1.9)

This field decomposition allows in turn the construction of the full Hilbert Space of each sector.
In the case of the Neveu-Schwarz sector all the states are bosons, while in the Ramond sector the
states are spacetime fermions. Among all the states thus constructed in the Hilbert Space, only a
small subset represent physical states compatible with the constraints of the theory.
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1.1.2 Open String Spectrum
The open string spectrum refers to the physical states inside the previously described Hilbert
Space. Those states must satisfy the following physical constraints imposed at the quantum level:

LX,Ψ
n>0 |physical⟩ = 0, (1.10)(

LX,Ψ
0 −AX,Ψ

∆ +Atotal
∆

)
|physical⟩ = 0, (1.11)

Gn⩾0 |physical⟩ = 0, (1.12)

where Ln and Gn are respectively the Fourier (or Laurent) modes of the worldsheet stress-energy
tensor and supercurrent. The first and the second condition arise from imposing Tab = 0 at the
quantum level, meaning that small changes in the fixed metric cannot change physical amplitudes.
While the third, arises from imposing the nullification of the supercurrent, that is, Ja = 0.

Taking into account the previous quantum conditions, it is possible to identify the physical
states in the Neveu-Schwarz and Ramond sectors. Starting with the NS sector, eq.(1.11) gives rise
to the on-shell mass condition

m2 =
N − 1

2

α′ where N = 0,
1

2
, 1,

3

2
, · · · (1.13)

Therefore, it is possible to clasify all the states depending on the mass obtained at each level.
In the case of N = 0, the on-shell mass conditions gives rise to a tachyonic state. The second case
of study involves N = 1/2, at this level only one oscillator mode acting on the ground state is
possible. Therefore, the mass condition gives rise to a massless state that can be identified with a
gauge vector boson. Application of (1.12) gives rise to the transverse polarization and the gauge
transformation properties of the state. Continuous application of the on-shell mass formula to
higher levels gives rise to more massive states.

In the Ramond sector, the on-shell mass formula gives the following expression

m2 =
N

α′ where N = 0, 1, 2, · · · . (1.14)

Given the fact that in this sector all the states are fermions, at N = 0 a state is found describing
a Dirac fermion (satifies the Dirac equation) with zero mass. Such a state is named Gaugino
emphasizing the supersymmetry relation with the gauge boson found in the NS sector.

1.1.3 Closed String Spectrum
In the case of the closed string, an additional condition is needed for the physical states. This
conditon arises from the reparametrization invariance under contant shift of the spatial string
coordinate. At the quantum level, this condition can be expresed as(

Ltotal
0 − L̃total

0

)
|physical⟩ = 0. (1.15)

The previous relation can be translated to

m2 =
4

α′ (N −∆) =
4

α′ (Ñ − ∆̃). (1.16)

Hence, all the closed string states must be balanced tensor products of left-movers and right-movers.
The NS sector can be divided into two components NS− and NS+. Each sector is characterized
by the eigenvalue obtained when applying (−1)F over the physical states, where F is the fermion
number operator. Therefore, the level matching condition (1.15) can be applied only if the sectors
(NS−,NS−) or (NS+,NS+) are paired. The main characteristic of the (NS−,NS−) sector is that,
at N = 0, it contains a tachyonic state. While the (NS+,NS+) sector contains the

ϵµνψ
µψ̃ν |0, 0, k⟩ , (1.17)

which describes the massless Supergravity bosonic fields, gµν , Bµν and ϕ.
In the same manner, the Ramond sector can be divided into two components depending on the
eigenvalue obtained when applying the fermionic number operator over the state, R− and R+. The
following list contains all possible pairings, together with the physical states in each sector:
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• (R+, R+). Contains states describing antisymetric tensor fields C(x), Cµν(x) and C+
µνλρ(x).

• (R−, R−). Contains states describing Ĉ(x), Ĉµν(x) and C−
µνλρ(x).

• (R+, R−). Contains states describing Cµ(x) and Cµνλ(x).

• (R−, R+). Contains states describing Ĉµ(x) and Ĉµνλ(x).

All the fields previous listed are known as Ramond-Ramond fields. Those fields systematically
emerge from decomposing the most general Ramond-Ramond state into a direct sum of anti-
symmetric tensors.

The last set of possible combinations corresponds to pairing the NS and Ramond sectors in the
following way:

• (NS+, R+).

• (R+, NS+).

• (NS+, R−).

• (R−, NS+).

All the previous sectors contain states describing dilatino and gravitino fields, only differing in the
fermionic number eigenvalue of each state. The null states generated in this sectors lead to an
equivalence relation between the states. This relation can be translated to spacetime supersym-
metry. Up to this point, we have constructed the string spectrum first by acting with the creation
and annihilation operators obtained in the NS and Ramond expansions. Then, we imposed the
constraints at the quantum level leaving only those elements representing physical states. Now,
it is essential to emphasize that consistency at one loop (modular invariance) requires a further
truncation of the previously obtained string spectrum. This truncation, known as GSO projection,
gives rise to the various string theories that exist.
Essentially, the GSO projection reduces the whole physical Hilbert space by selecting those ele-
ments with a specific eigenvalue for the fermionic number operator. This truncation is defined by
the following operation

|physical⟩NS −→ PGSO |physical⟩NS , (1.18)

where
PGSO =

1

2

[
1± (−1)F

]
(1.19)

where the sign is chosen differently for the right-moving modes on the type IIA or IIB string
theories. The definition of the GSO projection operator is the same in the NS and Ramond
sectors; the only difference is the definition of the fermionic number operator.

1.1.4 Type IIB String Theory and low energy limit
All the previous sections were devoted to an introduction of the main ingredients needed to establish
the various types of string theories that exist. In particular, this thesis will focus on a specific string
theory known as Type IIB string theory. This theory, after the GSO projection, has the following
states divided into the previously defined sectors:

• ϕ(x) dilaton field

• hMN (x) graviton field

• BMN (x) Kalb-Ramond field

• C(x) axion field

11



• CMN (x) Ramond-Ramond 2-form

• C+
MNLP (X) Ramond-Ramond 4-form

• λs(x) first dilatino field

• λ′s(x) second dilatino field

• χMs(x) first gravitino field

• χ′
Ms(x) second gravitino field

Notice here that, since the massless spectrum contains two gravitino fields, the metric field can be
connected to these states via two different supersymmetry transformations, as inferred from the
theory’s name. Type IIB string theory aims to be a candidate theory to correctly describe the
interactions of the fundamental constituents of matter, strings. As such, it represents a theory
that can be seen as the UV completion of the actual theories that describe the quantum nature of
matter and their interactions. Hence, to make contact with those theories, it is important to study
its low energy limit, meaning that we have to explore energies E ≪ 1

ls
. In this limit, the effective

action is expected to take the following form:

SIIB,eff = SSUGRA + Sα′ , (1.20)
In the previous expression, Ssugra,IIB refers to the Type IIB Supergravity action in ten dimensions
and Sα′ the corrections coming from String Theory that can be omitted in the low energy limit.
The explicit form of the bosonic part of the action takes the following form:

Ssugra,IIB = SNS + SR + SCS, (1.21)

where

SNS =
1

2κ210

∫
d10x

√
−Ge−2Φ

(
R+ 4∂µΦ∂

µΦ− 1

2
|H3|2

)
, (1.22)

SR = − 1

4κ210

∫
d10x

√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (1.23)

SCS =
1

4κ210

∫
C4 ∧H3 ∧ F3. (1.24)

where H and F denote the field strengths of B and C fields, respectively. Notice that, in the
previous expression the fields with a tilde above should be taken as the specific combinations:

F̃3 = F3 − C0 ∧H3, (1.25)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3 (1.26)

A supersymmetric field theory is characterized by a set of transformations that relate bosons
with fermions and vice versa. The parameter used in these transformations is fermionic, i.e., it is
a constant non-commutative number. Promoting the global supersymmetry to a local symmetry
gives the fermionic parameter spacetime dependence. Therefore, adding gauge fields is necessary
to keep the theory’s invariance under such transformations. The resulting theory, is known as
Supergravity or in the specific case of this theory: Type IIB Supergravity described by (1.21).
Supersymmetric field theories have a high degree of symmetry. Therefore, they have a lot of re-
strictions over their parameters. In d dimensions, imposing a particle spectrum of d ≤ at most
spin two generates a condition over the dimension of the spacetime. It restricts its value to 10 or
11. In the case of d = 10, any supersymmetric theory admits a maximum of two sypersymmetric
charges, i.e., N = 2. The solution to the equations of motion given by (1.21) represents coherent
states of the associated particles (which are in turn particular modes of oscillation of the string),
such as background profiles where the string can propagate consistently.
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1.2 The AdS/CFT correspondence
A solution to the Type IIB supergravity equations of motion was found by Horowitz and Strominger
in 1991 [12]. The explicit solution describes an extended object with a horizon surrounding it. The
detailed background profiles for the fields are given by

ds2 =
1√
H(r)

[
−f(r)dt2 + dx21 + · · ·+ dx2p

]
+
√
H(r)

[
dr2

f(r)
+ r2dΩ2

8−p

]
(metric), (1.27)

eϕ = gcH(r)
3−p
4 (dilaton), (1.28)

C01...p =
1

ζgc

[
1− 1

H(r)

]
(RR field), (1.29)

where

H(r) = 1 + ζ

(
L

r

)7−p

, (1.30)

f(r) = 1−
(rh
r

)7−p

, (1.31)

L7−p = r7−p
h

(
ζ

1− ζ2

)
. (1.32)

In the previous expressions, rh refers to the location of the horizon of the given solution and ζ
to the non-extremality parameter. It is straightforward to calculate the RR-charge of the given
object by just integrating over a closed surface containing it. Such calculation gives the following
result:

q =
(7− p)Ω8−p

(2π)7−pgc

(
L

lc

)7−p

. (1.33)

Therefore, it is possible to understand L as a parameter that controls the charge of the extended
object. Given the similarities with black holes this object was named black p-brane. In the extremal
case, with p = 3, and taking rh → 0, ζ → 1 con L7−p fixed, the given solution acquires the following
form:

ds2 =
1√
H(r)

[
−dt2 + dx2 + dy2 + dz2

]
+
√
H(r)

[
dr2 + r2dΩ2

5

]
, (1.34)

eϕ = gc, (1.35)

C0123 =
1

gc

[
1− 1

H(r)

]
, (1.36)

where,

H(r) = 1 +

(
L

r

)4

, (1.37)

L4 = cpgcNl
4
c . (1.38)

In such a case, the mass and the charge are given by

M =
NVp

(2π)pgcl
p+1
c

y q = N. (1.39)

Analyzing the low-energy limit, i.e., E << 1
lc
, 1
L , the form of the metric simplifies drastically,

giving the following expression:

ds2 =
r2

L2

(
−dt2 + dx2 + dy2 + dz2

)
+
L2

r2
dr2 + L2dΩ2

5. (1.40)

The resulting metric can be trivially identified with the AdS5×S5 metric in Poincaré coordinates.
The AdSd+1 is a maximally symmetric solution to Einstein’s equations with a negative cosmological
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constant, Λ = −d(d−1)
2L2 . The previous statement implies that the curvature tensor can be trivially

expressed in terms of the metric, gµν , giving the following expression:

Rµνρσ = − 1

L2
(gµρgνσ − gµσgνρ) . (1.41)

This spacetime contains the maximum number of Killing vectors that generate its isometries.
In other words,

dim [Iso(AdSd+1)] =
(d+ 1)(d+ 2)

2
. (1.42)

In fact, the AdSd+1 isometry group is isomorphic to the conformal group in (d + 1) dim,
SO(d, 2), to be discussed below. The AdSd+1 spacetime can be understood as a submanifold of
co-dimension one in a Minkowski space with (2, d) signature. The following relation determines
such embedding:

−X2
−1 −X2

0 +

d∑
i=1

Xi = −L2. (1.43)

In the previous relation, Xi are the Minkowski space coordinates with (2, d) signature. Different
embedding solutions represent different coordinate systems that describe the AdSd+1 spacetime.

Analyzing another string theory system is convenient at this point: a stack of coincident N
D3-branes. Dp-branes are solitonic objects where the strings can end. Such a condition is imposed
by applying Dirichlet boundary conditions over the ends of the string in a specific subset of the
spacetime coordinates,{xk}9k=p+1. The massless open string theory spectrum contains states that
describe particles related to a scalar, spinorial, and vector fields. Additionally, Dp-branes are
charged over RR fields. Therefore, type IIB string theory can only sustain stable Dp-branes with
p = −1, 1, 3, 5, 7, 9. The bosonic part of the Dp-brane action, in a supergravity background, can
be described by

SDp = SDBI + SWZ , (1.44)

where, at the lowest order in the derivatives we obtain

SDBI = − 1

gs(2π)pl
p+1
s

∫
dp+1xe−Φ

√
−detP [Gαβ + (2πFαβ +Bαβ)], (1.45)

SWZ = − 1

(2π)plp+1
s

∫
P exp (2πF2 +B2) ∧ ⊕nCn. (1.46)

In the previous expression, P refers to the pull-back of the metric to the Dp-brane worldvolume.
It is possible to generalize the aforementioned action to the case where the system contains N
coincident Dp-branes. In the low-energy limit and taking p = 3, we obtain

SDBINA ≈ NTD3V3 +
1

4πgs

∫
d4xTr

[
F 2 + (DΦ)2 + [Φ,Φ]

2
+ · · ·

]
. (1.47)

This action matches precisely with the action that describes the Super-Yang-Mills theory with
N = 4 supersymmetry and U(N) as gauge group, if the identification g2YM = (2π)gs is performed.
This supersymmetric theory is also a conformal field theory; in other words, its β function equals
zero. Hence, it is a fixed point in the renormalization group flow.

At this time, it is convenient to emphasize some fundamental properties of the conformal
field theories. A conformal field theory, CFT, is a subclass of quantum field theory in which the
Poincaré symmetry group is extended to include the conformal group. In simple terms, a conformal
transformation is a change of coordinates that leaves invariant the form of the metric up to a scale
factor, i.e.,

g′µν(x
′) = Ω(x)gµν(x). (1.48)
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Rewriting this expression in terms of an infinitesimal change of the coordinates, x′µ = xµ + ϵµ, eq.
(1.48) imposes a condition over the parameters of the transformation

∂µϵν + ∂νϵµ =
2

d
(∂ · ϵ)ηµν . (1.49)

The set of parameters giving a solution to the previous equation characterizes the different confor-
mal transformations. Such transformations are classified in the following way:

• ϵµ = aµ translations

• ϵµ = ωµνx
ν rotations and boosts.

• ϵµ = λxµ scale transformation.

• ϵµ = bµx2 − 2xµ(b · x) special conformal transformation.

This set of coordinates gives rise to the conformal transformation which are elements of the SO(2, d)
group.

As previously explained, Dp-branes are charged with respect to RR fields. Consequently, a
stack of N Dp-branes has a total charge that is the sum of the individual elements, i.e., q = N .
Furthermore, in the case of p = 3, the configuration has the following mass:

M =
NV3

(2π)3gsl4s
. (1.50)

Considering the previous arguments, it is possible to imagine a relationship between the black 3-
brane and the stack of coincident N D3-branes. Such a relationship is motivated by the fact that
both objects have the same RR charge and mass. The conclusion is that both things are different
incarnations of the same physical object. The formalism in terms of Supergravity is under control
only in the regime where gsN >> 1, while the description in terms of the stack of D3-branes is safe
in the opposite regime, i.e., gsN << 1. In the low-energy limit, the black 3-brane describes two
decoupled systems: the throat and its exterior. In the external system, the effective description
is free supergravity fields. On the other hand, in the system described by the stack of D3-branes,
closed strings decouple from the branes, generating a description in terms of free supergravity
fields. Therefore, it is straightforward to equate that component in both subsystems. Identifying
the remaining systems, it is possible to conclude the following:

Type IIB String Theory on AdS5 × S5 N = 4 SYM with SU(N) gauge group
with ≡ on

N units of RR-flux through S5 Minkowski 3 + 1

Maldacena discovered this astounding equivalence in 1997 [2]. It is important to emphasize that
both objects are different, i.e., on the left side is a string theory, while on the right side is a
conformal field theory without gravity. This is not the only difference; on the string theory side
is a formalism with more dimensions than on the right. The holographic correspondence has been
investigated through the years, finding many different examples of it. In the following list it is
possible to see some examples of Maldacena’s correspondence:

1. AdS3×S2×χ4 dual to SCFT2. Here SCFT2 is a superconformal field theory that lives on the
world volume generated by the D1/D5 system, which has Q1 D1-branes and Q5 D5-branes
wrapped throught the χ4 factor of the metric.
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2. NAdS2 dual to NCFT1. The SYK model is a quantum mechanical system with N Majorana
fermions interacting randomly [23]. In the IR regime, the model develops an approximate
conformal symmetry. This theory is equivalent to the Jackiw-Teitelboim model, a two-
dimensional gravitational model containing a scalar field (dilaton field) [24].

3. TT deformation dual to AdS with a radial cutoff. The TT models comprise a broad class of
deformations of a CFT2 that is possible to solve exactly [25]. On the gravitational side, the
coupling, µ, acts as an IR cutoff that removes the asymptotic part of the AdS [26].

4. N = 4 SYM deformed by a θ term at finite temperature is dual to an anisotropic Schwarzschild-
AdS black hole.

A more general statement about the correspondence goes as follows:

Statement Any CFT defined on R×Sd−1 is totally equivalent to a quantum gravity theory defined
on a asymptotically AdSd+1 ×M spacetime, where M is a compact manifold, see figure (1.1).

Figure 1.1: Graphical representation of the holographic correspondence. On the left side, the
geometry in which the CFT is defined, and on the right side, the geometry, including the interior,
in which the gravitational theory is defined.

The dictionary that translates observables between both sides can be described by the following
bijective map:

ϕ : HQG → HCFT . (1.51)

As a consequence of this map, any CFT observable must have an image on the gravity side. This
does not mean that the mapping must be trivial, i.e., objects described easily in one language can
be described on the other side by a very complex structure.

1.3 Anisotropic Black Branes: the Mateos-Trancanelli model

The Mateos-Trancanelli model (MT model) is a IIB supergravity solution whose effective action
in five dimensions is

S =
1

16πGN

∫
M
d5x

√
−g
[
R+

12

L2
− 1

2
(∂ϕ)

2 1

2
e2ϕ (∂χ)

2

]
+ SGH , (1.52)
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where ϕ, χ and gµν are the dilaton field, the axion field and the metric respectively. The Newton
constant involved, GN , refers to its five-dimensional version. Additionally, the Gibbons-Hawking
term has been added considering the presence of a smooth space-like or time-like boundary. A
solution of the equations of motion derived from the action (1.52) takes the form

ds2 = L2e−ϕ(r)/2

[
−r2F(r)B(r)dt2 + dr2

r2F(r)
+ r2

(
dx2 + dy2 +H(r)dz2

)]
, (1.53)

where
χ = az, ϕ = ϕ(r), H = e−ϕ, (1.54)

the 4-tuple (t, x, y, z) refers to the coordinates in a Minkowski spacetime assigned to the boundary
gauge theory, r is the radial coordinate of AdS, and L is identified as its radius of curvature. The
above solution contains an event horizon located at rh such that F(rh) and satisfies that it is
asymptotically AdS5. For values other than zero, the parameter a generates an anisotropic direc-
tion on both sides of the duality. At the same time, for a = 0, the contributions of the axion and
dilaton fields are extinguished, thus recovering the isotropic solution. The dual boundary theory
corresponds to N = 4 SYM with gauge group SU(N), deformed by a θ term dependent on the
anisotropic coordinate. In the case a = 0 the boundary theory reduces to N = 4 SYM with a
SU(N) gauge group without θ term. The functions F , B, H and the dilaton value ϕ can be deter-
mined analytically for small values of a. In this thesis, we will only consider terms up to quadratic
order in a to avoid technical complications in a first analysis. The explicit form of these functions is

F = 1− r4h
r4

+
a2

24r4r2h

[
8r2r2h − 2r2h(4 + 5 log 2) + (3r4 + 7r4h) log

(
1 +

r2h
r2

)]
+O(a4), (1.55)

B = 1− a2

24r2h

[
10r2h
r2 + r2h

+ log

(
1 +

r2h
r2

)]
+O(a4), (1.56)

ϕ = − a2

4r2h
log

(
1 +

r2h
r2

)
+O(a4) . (1.57)

Imposing regularity on the horizon in the Euclidean solution, the temperature is found to be

T =
rh
π

+
(5 log 2− 2)

48π

a2

rh
+O(a4) . (1.58)

The Bekenstein-Hawking entropy can be found by calculating the area of the horizon, obtaining

S =
r3h

4GN

(
1 +

5a2

16r2h

)
V3 +O(a4) . (1.59)

where V3 is the spatial volume in the gauge theory. Using standard holographic renormalization
techniques [27], the following expression is obtained for the energy-momentum tensor [188, 29]

Tij = diag(E,Pxy, Pxy, Pz) , (1.60)

where

E =
3π2N2T 4

8
+
N2T 2

32
a2 +O(a4) (1.61)

is the black brane energy density and

Pxy =
π2N2T 4

8
+
N2T 2

32
a2 +O(a4) , (1.62)

Pz =
π2N2T 4

8
− N2T 2

32
a2 +O(a4) (1.63)
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are the pressures along the transverse and longitudinal directions to the anisotropic direction. So,
the mass of the black brane turns out to be

M = E V3 =

(
3π2N2T 4

8
+
N2T 2

32
a2
)
V3 +O(a4) , (1.64)

It can be seen that the mass of the isotropic solution increases due to the presence of anisotropy
maintaining the same temperature, in other words, we have

M(a) =M(0) +
V3
2

(Pxy − Pz) +O(a4) . (1.65)

1.4 Magnetic Black Branes: the D’Hoker-Kraus model
The D’Hoker-Kraus model [30] (DK) is a magnetic black brane solution of Einstein-Maxwell gravity
in five dimensions. The action for this model is

S =
1

16πGN

∫
d5x

√
−g
(
R+ 12− FMNF

MN
)
. (1.66)

For very large values of the electromagnetic field (B/T 2 >> 1) the solution takes the form

ds2 = −3(r2 − r2H)dt2 +
dr2

3(r2 − r2H)
− B√

3

(
dx2 + dy2

)
+ 3r2dz2 . (1.67)

With field strength F = B dx ∧ dy. The Hawking temperature and Bekenstein-Hawking entropy
corresponding to the black brane solution are

T =
3rH
2π

, S =
3V3B

2

4GN
. (1.68)

In this expression V3 is the volume in 3 dimensions. The mass of the solution is

MB =

∫
TdS =

V3
16πGN

× 3B2 . (1.69)
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Chapter 2

Quantum Information Theory and
Holography

2.1 Entanglement Entropy
A property that clearly distinguishes quantum from classical mechanics is quantum entanglement.
In simple terms, quantum entanglement can be characterized as the degree of uncertainty that the
components of a given quantum system share. Concretely, given |Ψ⟩ ∈ H1 ⊗H2, we say that the
state is entangled if it is not possible to write it in the following way:

|Ψ⟩ = |Ψ1⟩ ⊗ |Ψ2⟩ , (2.1)

where |Ψi⟩ ∈ Hi with i = 1, 2. In order to understand better the previous scenario it is convenient
to consider a simple case where Hi is the Hilbert space of a two-level system. In this case, a
complete basis for the Hilbert space is given by {|0⟩⊗ |0⟩ , |0⟩⊗ |1⟩ , |1⟩⊗ |0⟩ , |1⟩⊗ |1⟩}. Therefore,
an example of a non-entangled state is

|Ψ⟩ = 1

2
(|0⟩+ |1⟩)⊗ (|0⟩ − |1⟩) , (2.2)

while an entangled state is for instance

|Ψ⟩EPR =
1√
2
(|1⟩ ⊗ |0⟩ − |0⟩ ⊗ |1⟩) . (2.3)

The previous state is known as EPR state [1]. It is possible to generalize the concept of an entangled
state to the case where the quantum system admits a decomposition of the following form:

H = H1 ⊗ · · · ⊗ HN , (2.4)

where N represents the number of components the system has. This last generalization is suitable
when defining entangled and non-entangled states in the context of a CFT or more generally, a
QFT.

Consider a CFT placed on a lattice, so assigning a Hilbert space to every point on it is possible.
Therefore, the full Hilbert space is given by

H = ⊗αHα, (2.5)

where α runs in such a way that it enumerates all the points on the lattice. A state will be entangled
if it is impossible to write it as a product of states. From this perspective, is possible to consider
a division of the degrees of freedom into two subsets: A and Ac. These subsets share a boundary
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denoted by ∂A, see figure (2.1). The total Hilbert space can be expressed in the following way:

H = HA ⊗HAc . (2.6)

At this stage, it is suitable to eliminate the UV cutoff and consider the CFT as a continuum theory.

Figure 2.1: Spatial separation of the degrees of freedom in a lattice QFT. Both subsets, A and Ac,
share the same boundary ∂A.

Within this limit we take the system to be described by a pure state |Ψ⟩ ∈ H. Additionally, we
consider an observer who can perform measures in the subset denoted by A. As a consequence
of the fact that the total Hilbert space is factorized according to eq. (2.6), |Ψ⟩ admits a Schmidt
decomposition, i.e.,

|Ψ⟩ =
∑
k

√
pk |k⟩A ⊗ |k⟩Ac , (2.7)

where pk are non-negative numbers that satisfy
∑
pk = 1 and {|k⟩A,Ac} is an orthonormal basis

for each component. That the observer only has access to A means that they can only act with
operators within that region. Such operations have the following form:

O(x) = OA(x)⊗ I, with x ∈ A. (2.8)

Therefore, the expectation value of the previous operator can be expressed in the following form:

⟨O(x)⟩ =
∑
k

pk ⟨k| OA(x) |k⟩A

= TrHA
[ρAOA(x)] , (2.9)

where,

ρA = TrAc |Ψ⟩ ⟨Ψ| (2.10)

=
∑
k

pk |k⟩A ⟨k|A . (2.11)

Due to the lack of knowledge that the observer has over Ac, in general the previous density matrix
describes a mixed state. Accordingly, all the {pk} allow determining the degree of uncertainty over
the subsystem. The von Neumann entropy gives a good measure of this uncertainty, which uses
these coefficients to return a number. The explicit expression is

S(A) = −TrHA
(ρA log ρA)

= −
∑
k

pk log pk. (2.12)
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This function gives a good measure also of the entanglement between the degrees of freedoom
localized inside A from those in Ac. In particular, if

|Ψ⟩ = |ΨA⟩ |ΨAc⟩ (No entanglement) (2.13)

then
S(A) = 0. (2.14)

2.2 Euclidean Formalism
The previously presented formula to calculate the EE is suitable in a system with a finite number
of degrees of freedom. Nevertheless, in a CFT the number of degrees of freedom turns out to be
infinite, making calculation with the standard definition intractable. The Feynman path integral
is a handy tool established in the context of a QFT. Thus, it is useful to establish a path integral
definition of the EE.

Calculating the expression given by eq. (2.12) can be a challenging task. However, a much
simpler task is to calculate

Sn(A) =
1

1− n
log TrA (ρnA) . (2.15)

These functions are known as Rényi entropies, and one can capitalize on them to calculate the EE
by taking the following limit:

S(A) = lim
n→1

Sn(A)

= − lim
n→1

∂n log TrA (ρnA) . (2.16)

where to obtain the second equality from the first, it was necessary to use the L´Hôpital rule.
Thus, all the difficulty is translated into finding a path integral expression for the Rényi entropies.

To motivate the origin of the path integral expression for the Rényi entropies, it is convenient
first to consider a simple system instead of a CFT. This system is a quantum mechanical system
that describes the state of a particle. The amplitude for finding a particle in |xf , tf ⟩ starting from
|xi, ti⟩ is given by

⟨xf , tf |xi, ti⟩ = ⟨xf | e−iĤ(tf−ti) |xi⟩ , (2.17)

where Ĥ is the Hamiltonian of the system. The path integral expression for the previous quantity
is

⟨xf , tf |xi, ti⟩ =
∫ x(tf )=xf

x(ti)=xi

Dx(t) exp
[
i

∫ tf

ti

dtL(x, ẋ)

]
. (2.18)

where L(x, ẋ) is the Lagrangian of the system. On the other hand, eq. (2.17) can be rephrased by
taking the time interval to be [T, 0] and the spatial points y and x, giving the following:

⟨x, 0|y, T ⟩ = ⟨x| eiĤT |y⟩ (2.19)

=
∑
n

ψn(x)ψ
∗
n(y)e

iEnT , (2.20)

Notice that to reach the second line from the first, it was necessary to insert an identity matrix
expressed as a sum over an entire basis. In eq. (2.19) ψn(x) = ⟨x|n⟩. Thus, after doing a Wick
rotation by taking T = −iτ and τ → −∞, we obtain

⟨x, 0|y,−∞⟩ = lim
τ→−∞

ψ0(x)ψ
∗
0(y)e

E0τ . (2.21)
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From this expression it is clear that is possible to express ψ0(x) in the following way:

Ψ(x) =

∫ x(0)=x

Dx(τ)e−IE . (2.22)

by absorbing the factors in front ψ0(x) in a normalization constant and using eq. (2.18). Notice
that in the previous expression we have changed ψ0(x) → Ψ(x).

A similar procedure gives a conjugated ground state wave function; the expression is

Ψ∗(x) =

∫
x(0)=x

Dx(τ)e−IE . (2.23)

Notice from this expression that it is mandatory to sum over all the positions in the distant future.
To be able to discuss a reduced density matrix, consider a system with only two degrees of freedom
associated with two particles whose positions are xA y xB respectively. Additionally, suppose that
the state to consider is the ground state, |Ω⟩. Thus, given a state in the total system, |xA, xB⟩,
the matrix elements of the reduced density matrix are given by

⟨xA| ρA |x′A⟩ =
∫
dxB ⟨xA, xB |Ω⟩ ⟨Ω|x′A, xB⟩ . (2.24)

Substituting the ground state wave function in the previous expression, it is straightforward to
obtain

⟨xA| ρA |x′A⟩ =
1

Z

∫
dxB

∫
M+

ϵ ∪M−
ϵ

DyA(τ)DyB(τ)e−IE(yA,yB), (2.25)

where M+
ϵ and M−

ϵ refer to the regularized upper and lower half-line respectively, i.e.,

M+
ϵ = {τ ∈ R|ϵ ≤ τ}, (2.26)

M−
ϵ = {τ ∈ R|τ ≤ −ϵ}, (2.27)

and Z is a normalization factor.

The boundary conditions on region are

yA(ϵ) = x′A, yB(ϵ) = xB on ∂M+
ϵ , (2.28)

yA(−ϵ) = xA, yB(−ϵ) = xB on ∂M−
ϵ . (2.29)

Thus, performing the integral over xB and taking ϵ→ 0, we obtain

⟨xA| ρA |x′A⟩ =
1

Z

∫
DyA(τ)DyB(τ)e−IE(yA,yB)δ

(
yA(0

+)− x′A
)
δ
(
yA(0

−)− xA
)
. (2.30)

In the previous expression, the Dirac delta functions fix the desired boundary conditions. Notice
that the notation 0± = limϵ→0 ±ϵ has been implemented. The relation observed in eq. (2.30)
is the path integral representation for the matrix elements of the reduced density matrix. The
procedure to obtain a parallel expression in the case of a continuum CFT is morally similar and
does not contribute to a new physical feature. Hence, to generalize eqs. (??), (2.23) and (2.30)
the following substitution is needed:

x̂→ ϕ̂(x⃗), (2.31)
|x⟩ → |ϕ(x⃗)⟩ , (2.32)

Ψ(x) → Ψ[ϕ(x⃗)]. (2.33)
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With this replacement, the formula to compute the ground state wave function acquires the fol-
lowing form:

Ψ[ϕ(x⃗)] = ⟨ϕ(x⃗)|Ω⟩ (2.34)

=

∫ ϕ(−ϵ,x⃗)=ϕ(x⃗)

(t,x⃗)∈M−
ϵ

Dϕ(t, x⃗)e−IE(ϕ). (2.35)

In the same way, conjugate expression is

Ψ∗[ϕ′(x⃗)] = ⟨Ω|ϕ′(x⃗)⟩ (2.36)

=

∫ (t,x⃗)∈M+
ϵ

ϕ(ϵ,x⃗)=ϕ′(x⃗)

Dϕ(t, x⃗)e−IE(ϕ). (2.37)

The QFT generalization requires a modification of the aforementioned boundary conditions over
M+

ϵ and M−
ϵ . Thus,

M+
ϵ = {(τ, x⃗) ∈ Rd+1|ϵ ≤ τ, x ∈ Rd}, (2.38)

M−
ϵ = {(τ, x⃗) ∈ Rd+1|τ ≤ −ϵ, x ∈ Rd}. (2.39)

Additionally, with the replacement given by eqs. (2.31),(2.32) and (2.33) the reduced density
matrix acquires the following form:

ρA[ϕ
A
a (x⃗), ϕ

A
b (x⃗)] =

1

Z

∫
Dϕ(t, x⃗)e−IE(ϕ)

∏
x⃗∈A

δ
(
ϕ(0+, x⃗)− ϕAa (x⃗)

)
δ
(
ϕ(0−, x⃗)− ϕAb (x⃗)

)
. (2.40)

In this formula, Z refers to the CFT partition function. Also, from eq. (2.40) it is feasible to
obtain TrA ρ

n
A by multiplying in a specific form n ρA factors. Schematically, the objective is to

obtain an expression for

ρnA = ρA · · · ρA︸ ︷︷ ︸
n times

(2.41)

Concretely, the multiplication of two factors is performed by identifying the upper boundary con-
dition of the first factor with the lower boundary condition of the second factor and summing over
this repeated index. The specific way to do this is by integrating over this boundary condition.
Repeating the previous step N times and then taking the trace, we obtain

TrA ρ
n
A =

1

Z1

∫
(t,x⃗)∈Rn

Dϕ(t, x⃗)e−IE(ϕ) ≡ Zn

Zn
1

, (2.42)

where Rn refers to the replica manifold obtained from the gluing of the boundary conditions. No-
tice that the previous formula includes a definition for the partition function in the replica space,
Zn. This notation is convenient because it emphasizes a correct normalization for the case n = 1,
i.e., the relevant case for ρA. Thus, calculating the EE has become a task of calculating a path
integral expression given by eq. (2.42). The cases where this is impossible are minimal, knowing
exact results only in the context of a 1 + 1 CFT.

2.3 Holographic Entanglement Entropy
The entanglement entropy is an essential quantity in any quantum theory because it has a wide
range of applications, for example, as an order parameter to diagnose phase transitions related
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to the confinement in a gauge theory [147]. For this reason, it is extremely valuable to have a
holographic description for it in terms of a geometrical quantity in a gravitational theory.

Ryu and Takayanagi proposed a recipe to calculate EE [148] using a geometric measure in a
static gravitational theory. Subsequently, Hubeny, Rangamani, and again Takayanagi generalized
the prescription to include time-dependent gravitational dynamics. To describe their recipe, first
it is convenient to introduce a group of definitions.

Definition. Let R be a spatial region located in the boundary of an asymptotically AdS space.
A Hubeny-Rangamani-Takayanagi (HRT) surface for R is a codimension two bulk spatial subman-
ifold with boundary, γR, with the following properties:

• γR and R have the same boundary, i.e., ∂γR = ∂R.

• The area of γR is extremal under small variations of its location in the spacetime, provided
the variations respect ∂γR = ∂R.

• γR is homologous to R, i.e., a codimension-one submanifold must exist, such that ∂HR =
γR ∪R.

• There is no other surface of strictly smaller area obeying the above three properties.

Definition Let R be a spatial region located in the boundary of an asymptotically AdS ge-
ometry. The domain of dependence related to R, D[R], is defined as the set of events located in
the boundary such that every inextensible causal curve that passes through them also intercepts R.

Definition Let R be a spatial region located in the boundary of an asymptotically AdS geom-
etry. The entanglement wedge of R, W [R], is defined as the domain of dependence of D[HR], see
figure (2.3).

Considering the previous definitions, it is important to emphasize that the causal wedge and
the entanglement wedge, in general, are not the same object. In [31], it was demonstrated that for
manifolds that obey the null-energy condition, it is fulfilled that

Figure 2.2: Entanglement wedge associated to a boundary spatial region (red).

C[R] ⊂W [R], (2.43)

namely, the entanglement wedge reaches dipper into the gravitational bulk. Once all the tools have
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been established, it is straightforward to state the holographic prescription to compute the EE.

RT/HRT/Engelhardt-Wall formula. Let ρ be a CFT state. The von Neumann entropy
associated to the state reduced to the spatial region R, ρR, satisfies

S(ρR) =

〈
Ârea(γR)

〉
4GN

+ S(ρHR
). (2.44)

In this formula, S(ρHR
) is the contribution to the EE given by the quantized fields on the ho-

mology surface HR and
〈
Ârea(γR)

〉
is the area expectation value. The expression (2.44) is also

known as generalized entropy. At this point, it is suitable to emphasize the relevance of each
term. The first term arose as the first proposal to holographically calculate EE in the classical
approximation [10, 11]. In the case of a static spacetime, there exists a preferred foliation in time;
therefore, the extremality condition automatically translates to the statement of finding the sur-
face with minimal area. This contribution is dominant in the regime of a big number of colors
O(N2) in the CFT, which corresponds to small GN in the bulk. The second term represents the
first quantum corrections which are of order O(N0) and were first calculated in [17]. In general,
formula (2.44) is expected to be valid at any N [86], as long as γR satisfy the extremality condition.

2.3.1 Entanglement Entropy of an Interval in a two-dimensional CFT

The validity of the RT formula has been verified a significant number of times; see review papers
[80, 32, 33]. As an example, this section is concerned with reviewing the EE calculation for a
spatial interval in a two-dimensional CFT using both approaches.

See [34] for an introduction to the topic. In a CFT2, there is not much freedom for selecting
spatial regions because, in this case, the intervals and their union are the only spatial regions that
can exist. Thus, for this example, we selected an interval defined on t = 0. For simplicity, it is
considered that the interval is centered at the origin of the spatial coordinate and that the total
state is the vacuum, |Ω⟩. Therefore, the interval to consider is

I = {z = x+ it ∈ C| − l

2
≤ Re z ≤ l

2
, Im z = 0}, (2.45)

where l refers to the total interval length. In order to regularize the UV divergences we use the
following regularized version of the interval with an auxiliary parameter ϵ, namely,

Iϵ = {z = x+ it ∈ C| − l

2
+ ϵ ≤ Re z ≤ l

2
− ϵ, Im z = 0}. (2.46)

Using the conformal transformation

ξ =
z + l

2

z − l
2

, (2.47)

it is possible to map the interval Iϵ to the semi-real negative axis in the new coordinates. Addi-
tionally, performing the transformation

ω ≡ τ + iφ =
1

2π
log ξ, (2.48)

all the points in the complex plane with coordinates ξ such that 0 ≤ Re ξ, are mapped to the
cylinder with radius equal to one and length equal to 1

π log
(
l
ϵ

)
. Hence, the real positive axis with

coordinates ξ is mapped to the line at φ = 0. In the ω coordinates, it is easy to build a replica
space. For example, for n = 2, the upper opening of the first cylinder and the lower opening of
the second cylinder build together a big cylinder with two times the original circumference. Thus,
gluing together n copies will generate a cylinder with n times the original circumference. The
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partition function in Mn is mapped to the cylinder partition function, namely,

Z[Mn] = ⟨Ω| e−βĤ |Ω⟩ , (2.49)

where β = 1
π log

(
l
ϵ

)
is the cylinder’s regularized length and Ĥ Hamiltonian of the system that

generates translation in τ .

Ĥ =
2π

n

(
L0 + L0 −

c

12

)
, (2.50)

where L0 + L0 is the dilatation transformation in the complex plane. Thus, using the fact that
both L0 and L0 annihilate the vacuum, it is possible to simplify (2.49). The result obtained from
this procedure is

logZ[Mn] =
c

6n
log

(
l

ϵ

)
. (2.51)

Using (2.42) and (2.16),

S(Iϵ) =
c

3
log

(
l

ϵ

)
. (2.52)

The final result for the EE of an interval has a simple form fixed by the symmetries of the theory. It
is important to emphasize that since the result is too simple, it does not contain specific information
about the theory. It only contains the CFT central charge, which counts the total number of degrees
of freedom. In this sense, the result obtained is considered a universal feature of the theory.

2.3.2 Entanglement Entropy of an Interval using the RT/HRT prescrip-
tion

This section contains the gravitational calculation to obtain the EE of a spatial interval in a two-
dimensional CFT, using holography. The point is to compare with the calculation explained in
the previous section using CFT methods. To achieve this, we use the same configuration for the
interval; namely, its length is l, it is centered on the origin, and the t = 0 slice contains all the
points included in the interval. Since the CFT state is the vacuum, the following bulk metric will
be used:

ds2 =
L2

z2
(
−dt2 + dz2 + dx2

)
, (2.53)

describing pure AdS. Notice that the scenario is time-independent. Thus, the gravitational com-
putation only involves the t = 0 slice. In this case, the metric simplifies giving

ds2 =
L2

z2
(
dz2 + dx2

)
. (2.54)

For large N , following the RT/HRT prescription, it is desired to find a codimension-two surface,
namely, a curve. This curve must share its boundary with the interval, i.e., the curve must be
anchored on the interval endings. The last desired property involves finding the curve with minimal
area. In this case, the functional area takes the following form:

L[γI ] =

∫
ds

L

z(s)

√
z′2(s) + x′2(s). (2.55)

A geodesic is a curve that minimizes the area functional with the specified boundary conditions.
A convenient parametrization of this curve is the following:

x(s) =
l

2
cos s, (2.56)

z(s) =
l

2
sin s, (2.57)
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where s ∈ [ 2ϵl , π−
2ϵ
l ]. Notice that the parameter ϵ regularizes the curve’s length. A straighforward

calculation reveals that

L[γI ] = L

∫ π− 2ϵ
l

2ϵ
l

ds

sin s
(2.58)

= 2L log

(
l

ϵ

)
. (2.59)

Thus, the EE is

S(Iϵ) =
c

3
log

(
l

ϵ

)
. (2.60)

To arrive at the previous expression, we used the famous relation between the central charge of a
given CFT and the AdS curvature radius, c = 3L

2GN
. This result coincides exactly with the result

obtained using CFT methods.

2.4 Differential Entropy, Kinematic Space and Integral Ge-
ometry

This section will be focused on the basic concepts needed to introduce the reader to the field of in-
tegral geometry in the context of the AdS3/CFT2 correspondence. As explained before, AdS/CFT
can relate geometrical quantities with quantum information measures. Thus, it is reasonable to
make progress on finding a complete dictionary to connect both sides of the holographic duality.
Given a boundary state and a spatial region, the reduced density matrix of this region contains
all the information needed to know every physical aspect inside the entanglement wedge [35, 36].
By definition, the RT/HRT surface contains IR gravitational information. The IR/UV connection
establishes that IR effects in the bulk are directly connected to UV information in the CFT [39, 37].
A closed spatial curve in the bulk is a geometric object that can be defined without the need of a
regularization parameter meaning that is related to the UV bulk information. From this perspec-
tive and taking into consideration the holographic correspondence as a primary guide, it is natural
to ask: what type of CFT information is encoded in a closed curve in the bulk?. Additionally:
does this information have a clear interpretation? The differential entropy formula provides the
answer to these questions. The first implementation of the differential entropy formula was given
in [38].

Given an ordered1 periodic family of spatial intervals, {Ii}Ni=1, en la CFT2, its differential en-
tropy is defined as

E =

N∑
k=1

[S (Ik)− S (Ik ∩ Ik+1)] . (2.61)

In this formula, S(Ik) refers to the EE of each interval Ik. It turns out that there is a convenient
way to interpret the previous formula using a closed spatial curve in the bulk. A bulk closed
spatial curve naturally defines a geodesic family whose endings reach the AdS boundary, therefore,
defining a family of intervals in the boundary, see figure (2.4). To elaborate on this statement,
take a closed spatial curve and consider an imaginary division into small segments. Each segment
is characterized by an initial and final point inside the curve, those points are also used to show
the division. Now, consider a geodesic tangent son each segment. Such geodesic automatically
defines an interval in the boundary. Thus, the previously mentioned procedure defines an infinite
family of intervals. It is straightforward to generalize the previous approach to the continuum by

1The term "ordered" refers to the ending points of each interval, namely, the initial goes before the final ending.
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making the segments infinitesimally small. The expression of the differential entropy formula in
the continuum limit is

E = −
∮
dλ
∂S (γI(λ

′), γD(λ))

∂λ

∣∣∣∣
λ=λ′

, (2.62)

where I(λ) = [γI(λ), γD(λ)] is the family of intervals defined by the geodesics. In [14] it was shown
that E = A

4GN
, namely, the differential entropy of a family of intervals is equal to the gravitational

entropy of the hole delimitated by the family of geodesics, see section [14]. As a result, this new
dictionary entry was known as hole-ography.

To better understand the previous construction, consider an interval member of the previously
described family I(λ) = [γI(λ), γD(λ)]. This interval was generated by shooting a tangent geodesic
from a point on the closed spatial curve. It is possible to associate a causal diamond, D[I(λ0)], to
the such interval. Hence, it is natural to conclude that the local information of the closed curve
in the bulk is associated with in the corresponding causal diamond in the CFT. To exemplify this
interpretation, take in the bulk a circumference with radius R0 and located in the t = 0 slice.
All the causal diamonds generated from the family of tangent geodesics draw a strip whose width
is equal to 2T0, where T0 is the time that a ray takes to reach the boundary after being shot
radially from any point in the circumference. The local observers in the CFT cannot access the IR
information whose characteristic length is greater than 2T0, given that such information is causally
restricted.

P1

P2

P3P4

P5

P6

P7

P8

P9 P10

P11

P12

Figure 2.3: A convex closed curve in the bulk defines a family of intervals whose endpoints are
connected to tangent geodesics in the bulk.

2.4.1 Equality between Differential Entropy and Gravitational Entropy
Hole-ography is based on the equality between the differential entropy formula and the gravita-
tional entropy. Thus, this section will be concerned with the derivation of such a relation. The
starting point is to consider the family of geodesics as objects that extremize the functional area.
From this perspective, it is possible to use the usual tools coming from classical mechanics to justify
equality.

Let γµB(λ) be a closed spatial curve in the bulk with generalized planar symmetry2 and Γµ(λ, s)
the set of tangent geodesics to γµB(λ) at each λ. As explained before, this family of geodesics

2Given an asymptotically AdS spacetime in d + 2 dimensions, a codimension-two surface, γµ
B , will have planar

symmetry if it is possible to find a parametrization of the following form:

γµ
B(λ, σa) = {qi(λ, σa), ya(λ, σa)} = {qi(λ), σa},
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generates a set of boundary intervals denoted by (ΓI(λ),ΓD(λ)). Now, consider the following
action:

S =

∫ sf

si

dsL(γ, ∂sγ). (2.63)

In this expression, L is the Lagrangian of a particular classical system. This Lagrangian depends
on the coordinates γµ and their derivatives ∂sγµ. The specific form of the Lagrangian is not rele-
vant for the rest of the section. All that we need is for it to satisfy the following properties:

1. The action defined by (2.63) is invariant under reparametrizations in s.

2. L is a homogeneous functions of degree one in its second argument, namely, L(γ, α∂sγ) =
αL(γ, ∂sγ).

3. It is possible to write the Lagrangian as L(γ, ∂sγ) = ∂sγ
µpµ, where, pµ = ∂L

∂(∂γµ) . Hence, pµ

is a homogeneous function of zero degree.

Additionally, if a family of solutions Γ̃µ(λ, s) exist, from the equation of motion it is possible to
demonstrate that

R(s) ≡
∮
dλ
[
∂λΓ̃

µ(λ, s)
]
pµ, (2.64)

is conserved, namely, ∂sR = 0. Now, with all the ingredients at hand it is elementary to establish
the desired result by identifying

γ → γI , (2.65)
∂sγ → γD, (2.66)∫ sf

si

dsL(γ, ∂sγ) → S(γI , γD). (2.67)

Therefore, let Γ(s, λ) be a continuous family of solutions to the equation of motion where the
endings are denoted by γI,D(λ) = Γ(sI,D, λ). From these observations it follows that

E =

∮
dλ
∂S (γI(λ), γD(λ′))

∂λ′

∣∣∣∣
λ=λ′

, (2.68)

=

∮
dλ

∂γµD
∂λ′

∣∣∣∣
λ=λ′︸ ︷︷ ︸

∂λ′ Γ̃µ

∂S(γI , γD)

∂γµD

∣∣∣∣
λ︸ ︷︷ ︸

pµ

∣∣
sD

, (2.69)

= R(sD). (2.70)

The previous calculation reveals that the differential entropy and R(s) are the same. Now, suppose
that there exists a curve in the bulk, γB(λ), such that it is tangent to every element in the family
of solutions, Γ(s, λ), at a given point, s = sB(λ). From this, it is possible to obtain the following
conditions:

Γµ(sB(λ), λ) = γµB(λ), (2.71)

∂sΓ
µ(sB(λ), λ) = α(λ)γ′µB (λ). (2.72)

where, {qi, ya} refers to a set of AdSd+2 coordinates with qi = {t, x, z} and ya = {y1, ..., yd−1}. Also,
{λ, σ1, ..., σd−1} is used as a particular parametrization of γB . An aAdS spacetime will be said to have planar
symmetry if all codimension-two surfaces have planar symmetry.
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In the previous expression α(λ) is a positive function. Therefore, the following result is obtained
when R(sB) is evaluated

R(sB) =

∮
dλ∂λΓ

µ(sB , λ)pµ(Γ
µ(sB , λ), ∂sΓ

µ(sB , λ)) (2.73)

=

∮
dλγ′µB (λ)pµ(γB , γ

′
B) (2.74)

=

∮
L(γB , γ′B) (2.75)

where the reparametrization invariance was essential to obtain the final result. Additionally, to
get the second line from the first, it was necessary to consider that pµ is a homogeneous function
of zero degree in its second variable. From the second to the third line, it was considered that
L(γ, ∂sγ) = ∂sγ

µpµ, where pµ = ∂L
∂(∂γµ) . This set of statements conclude the desired derivation. It

is also possible to relax conditions (2.71) and (2.72) with the objective of considering more general
alignment conditions.

To visualize the generalized alignment conditions, let us consider the following Lagrangian:

L(Γ, Γ̇) =
√
gµν(Γ)Γ̇µΓ̇ν . (2.76)

Therefore, the momentum is given by

pµ =
gµν Γ̇

ν

|Γ̇|
. (2.77)

With the help of the previous expression is possible to evaluate R(s) explicitly. The result is

R(s) =

∮
γ′B · Γ̇
|Γ̇|

. (2.78)

Thus, substituting the alignment condition it is possible to appreciate that the differential entropy
and the gravitational entropy are going to be equal as long as the following condition is met

γ′B · Γ̇ = |γ′B ||Γ̇|. (2.79)

Notice that this condition is preserved if

Γ̇ = αγ′B + n, (2.80)

where n is a null vector orthogonal to γ′B . With the previous result it is possible to conclude that
it is not mandatory for the geodesics to be tangent to reconstruct a given curve in the bulk, it is
also possible to use geodesics that satisfy (2.80). In the rest of the text we will refer to this by the
term null vector alignment or NVA.

2.4.2 Kinematic Space, Crofton formula and Integral Geometry.

According to the definition given by the expression (2.12), the entanglement entropy is a function
that goes from all possible spatial regions to the real numbers. This means that seen as a function
of the shape of a set, it is a highly complex object to work with, obtaining explicit results only
when the considered region has a high degree of symmetry. An example of the above can be found
in spherical spatial regions. As already emphasized above, analyzing a QFT using entanglement is
critical to understanding the emergence of space-time via the holographic correspondence. In this
series of ideas, it is convenient to focus on the entanglement entropy behavior of spherical regions.
For the case of a CFT2, the analysis is quite simplified because, in general, a spatial region can be
seen as the union of spatial intervals. Then, "kinematic space" is defined as the set of all spherical
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spatial regions or, when working in two dimensions, the set of all possible intervals [202]. Note that
due to the holographic dictionary, the kinematic space can also be defined as the set of geodesics
connecting two points on the boundary. This space inherits a Lorentzian structure and can be
built naturally in each CFT without resorting to the holographic correspondence. The remainder
of this section will focus on the context of the AdS3/CFT2 mapping.

It is convenient first to analyze the case at constant time since the geometry in the bulk is
represented by the hyperbolic plane. The metric of the hyperbolic plane is given by

ds2 = dρ2 + sinh2 ρdθ2. (2.81)

In this expression, it can be seen that the boundary of the hyperbolic plane is found when ρ→ ∞.
In this coordinate system, the geodesics anchored on the boundary satisfy the following implicit
equation:

tanh2 ρ cos (θ − ϕ) = cosα, (2.82)

where ϕ is the angle at the geodesic’s deepest point, and α is half the opening angle that the geodesic
subtends on the border. These two parameters characterize each geodesic, so the kinematic space,
K, in this case, is two-dimensional and can be represented using ϕ and α. A result in integral
geometry applied to the hyperbolic plane case states that the length of a closed curve γ is given
by [202]

L[γ] =
1

4

∫
K

ω(α, ϕ)nγ(α, ϕ). (2.83)

In this expression, ω(α, ϕ) is a 2-form defined in kinematic space called the Crofton form, and
nγ(α, ϕ) is the number of intersections that each geodesic has with the curve γ. In the case of the
hyperbolic plane, the Crofton form is given by [202]

ω(α, ϕ) = − 1

sin2 α
dα ∧ dϕ. (2.84)

The Crofton form gives an appropriate measure in the space of geodesics, which, combined with
nγ , encodes the density of geodesics that traverse the curve. Two parameters characterize each
geodesic, so a change of variables can be made so that the parameters in the kinematic space are
the initial and final endpoints of the geodesic, that is, u and v. Using the formula for differential
entropy (2.62), it is possible to find the relationship between Crofton’s formula and entanglement
entropy. Then the differential entropy can be rewritten as follows:

L[γ] = −
∫ 2π

0

du
∂S (u, v)

∂u

∣∣∣∣
v=v(u)

= −
∫ 2π

0

du

[
∂S (u, v)

∂u

∣∣∣∣
v=v(u)

− ∂S (u, v)

∂u

∣∣∣∣
v=u+π

]

=
2

4

∫ 2π

0

du

∫ u+π

v(u)

dv2× ∂2S(u, v)

∂u∂v
. (2.85)

To go from the first equality to the second, a term has been added with differential entropy equal
to zero, that is, that of a point (see below). To go from the second to the third equality, one more
integral has been implemented, which through an extra derivative in v reproduces the previous
terms. The first factor of 2 counts the number of intersections of the geodesic with the curve,
while the second factor of 2 counts the two orientations of each geodesic. The advantage of this
representation is that everything is expressed in terms of kinematic space variables, and therefore
it is immediate to identify the corresponding Crofton form given by [202]

ω(u, v) =
∂2S(u, v)

∂u∂v
du ∧ dv. (2.86)
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Thus, it has been shown that the differential entropy formula provides a way to identify the
corresponding Crofton form as the double derivative of the entanglement entropy. Because of this,
given the intervals

A = (u− du, u), B = (u, v) y C = (v, v + dv), (2.87)

it is possible to use a fundamental property of entanglement entropy, strong subadditivity, which
states

SAB + SBC − SB − SABC ≥ 0, (2.88)

to show that

S(u− du, u) + S(u, v + dv)− S(u, v)− S(u− du, v + dv) ≈ ∂2S(u, v)

∂u∂v
dudv ≥ 0. (2.89)

Crofton’s formula is a fundamental piece from which other geometric elements and concepts
can be derived. Given a convex curve in the bulk, the Crofton form integrates over a subregion of
the kinematic space of codimension-zero, since it takes into account all the geodesics that intersect
the curve. However, it is possible to think of a continuous transformation that turns the original
curve into a point. In this way, the length of the curve is reduced until it reaches zero, which
is equivalent in kinematic space to the reduction of the integration region until it collapses to a
subregion of co-dimension one. It should be emphasized that the contraction of the aforementioned
curve is always possible in the present context since there are no topological restrictions. Due to
the previous construction, the geometric interpretation is clear and, at the same time, surprising.
A point is identified in kinematic space as the curve that defines the set of geodesics that intersect
the point; this curve is known as a point curve. All these geodesics are anchored throughout the
boundary. Consequently, the definition of a point on the bulk translates into non-local information
at the boundary.

Another important concept in geometry is the distance between points. To identify the region
in kinematic space that correctly computes the distance between two points A and B, consider that
they are infinitesimally far apart. The previous argument determines how each point corresponds
to its respective point curve. Assuming that the separation between the points is zero, it is
consistently held that the point curves coincide and therefore, the volume in the kinematic space
will have measure zero. As A and B move apart, a region of co-dimension zero bounded by
the point curves is generated; this is precisely the correct integration region that reproduces the
distance between A and B. Each point within this region represents a geodesic that intersects the
geodesic segment that joins the two points. This region between the curve points pA and pB will
be denoted as pA △ pB . Then the kinematic formula for the distance between A and B is

l(A,B)

4GN
=

1

4

∫
pA△pB

ω. (2.90)

The last kinematic space formula involves the calculation of the interior volume Q whose boundary
is a convex closed curve. In [149],the authors justified the following formula:

V (Q)

4GN
=

1

2π

∫
G⊂K

λGω. (2.91)

In this expression, G is the subset of the kinematic space of geodesics that traverse region Q and
λG is the length of the geodesic segment that remains within region Q.

2.5 Entanglement of Purification
In section 5.3, it was detailed how a density matrix representing a pure state generates a density
matrix representing a mixed state for some subsystem. In the field theory context, this was achieved
by restricting an observer’s measurements to a specific region of space, R. The entanglement
entropy was used as a measure of the quantum correlations that the observer region has with
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their surroundings. For a non-entangled state, this quantity turns out to be identically zero since
there is complete separability between the state that describes the subregion and the state that
describes the rest. Thinking the other way around, given a mixed state with a bipartition, ρAB ,
it is interesting to consider the possibility of purifying the state by allowing access to additional
degrees of freedom. Then, a state |ψ⟩ ∈ HAA′ ⊗HBB′ is said to purify the density matrix ρAB if
the following happens:

ρAB = TrA′B′ (|ψ⟩ ⟨ψ|) . (2.92)

The purifying state, |ψ⟩, is an element of a larger Hilbert space since, in addition to containing the
original degrees of freedom, AB, it contains additional information encoded in the bipartition A′B′.
Due to the nature of the construction, there are an infinite number of possible purifications, so from
a preliminary point of view, the concept of purification seems of little use. However, entanglement
is an essential resource in protocols applicable to quantum computing; it is the currency that allows
processes that are classically impossible to be carried out. From this perspective, one can choose
from the infinite number of purifications one that involves the least possible entanglement. Then,
the entanglement of purification [?] is defined by

EP (ρAB) = minρAB
S(ρBB′). (2.93)

In this expression, ρBB′ = TrAA′ (|ψ⟩ ⟨ψ|) and the minimization process is performed with respect
to all states |ψ⟩ that satisfy the relation (2.92) and also with respect to all bipartitions A′B′. The
entanglement of purification is a quantum information measure in which classical and quantum
correlations are treated at the same level. Properties that relate entanglement of purification to
mutual information and entanglement entropy are known; these are:

1

2
I(A : B) ≤ EP (ρAB) ≤ min [S(ρA), S(ρB)] (2.94)

EP (ρA(BC)) ≥ EP (ρAB) (2.95)

EP (ρA(BC)) ≥
1

2
I(A : B) +

1

2
I(A : C) (2.96)

On the gravitational side of the holographic correspondence, there is a geometric object that
fulfills the same equalities listed above: the entanglement wedge cross-section. Specifically, suppose
we have two non-overlapping subsystems, A and B, at the boundary of a d-dimensional, static,
and asymptotically AdS space-time. Consider the constant-time slice of the entanglement wedge
associated with the union of these regions, MAB . The entanglement wedge boundary can be
decomposed as follows:

∂MAB = A ∪B ∪ Γmin
AB , (2.97)

where Γmin
AB is the RT surface associated to the union between A y B. Additionally, Γmin

AB can be
separated as

Γmin
AB = Γ

(A)
AB ∪ Γ

(B)
AB . (2.98)

Then, the entanglement wedge cross-section, Σmin
AB , is defined as the minimal-area surface anchored

to Γmin
AB that separates the regions A and B. The cross-sectional area is given by

EW (ρAB) =
A(Σmin

AB )

4GN
. (2.99)

This object correctly reproduces the inequalities (2.94), (2.95), and (2.96). In [152, 153] it was
recently proposed that

EP (ρAB) = EW (ρAB). (2.100)
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2.6 Computational Complexity

Entanglement entropy plays a fundamental role in the emergence of classical spacetime from the
holographic point of view. This can be appreciated in the Poincaré disk. In this geometry, it is
possible to foliate the entire space using geodesics anchored on the boundary. Those geodesics have
a specific regularized length whose value computes the entanglement entropies of the associated
intervals. From this perspective, when calculating the entanglement entropies, a list of data is
created, which has to be reproduced by the length of the corresponding geodesics. However, in
general, it is unrealistic to expect that from a list of data produced by the entanglement entropies
of different regions, a geometry can be found such that its extreme surfaces match all the data. The
existence of entanglement shadows [150] and black hole interiors, in static situations [151], elimi-
nates the possibility of reconstructing the complete geometry from the extremal surfaces because
these cannot penetrate those regions. So, it is important to find other measures of information
that allow us to probe regions where the entanglement entropy does not help us.

Computational complexity or circuit complexity is a concept in quantum computing that has
the purpose of measuring the degree of difficulty of performing a specific task. Specifically, given
two states |ψR⟩, |ψT ⟩ ∈ H and a set of elementary operations acting on a small number of qubits
at the same time, the computational complexity is defined as the minimum number of elementary
operations that build a unitary operator U that satisfies

|ψT ⟩ = U |ψR⟩ . (2.101)

In the case of a system of n qubits, U is a unitary matrix of 2n × 2n, and the set of elementary
operations consists of operators that only act on two qubits at a time, that is, operators of the
form

On−1,n = I ⊗ · · · ⊗ I ⊗G︸ ︷︷ ︸
n factors

. (2.102)

This operator, known as a gate, only acts on qubits n−1 and n. By restricting the number of gates
that can be used to implement a unitary U operator, you limit the different types of operators
that can be constructed. Therefore, the set of gates must meet a sufficiency criterion that allows
you to build any type of operator available. The following definition characterizes this property:

Definition (Set of universal gates.) Let G be a finite set of gates. G is said to be universal
or G-universal if it is possible to use a subset of its elements to construct any unitary operator U
to any given degree of precision.

Consequently, working with a discrete set of gates or elementary operations requires the imple-
mentation of a tolerance ϵ that measures the degree of precision with which the objective state is
obtained, that is, Eq. (2.101) is replaced by

|| |ψT ⟩ − U |ψR⟩ || < ϵ, (2.103)

for some notion of distance between states. An example of a G-universal set contains the following
gates:

1. The Toffoli gate, which maps |x, y, z⟩ to |x, y, z
⊕
xy⟩, where x, y, z ∈ {0, 1} and

⊕
represent

modulo 2 addition.

2. The Hadamard gate, this gate maps |0⟩ → |+⟩ and |1⟩ → |−⟩.

3. The phase gate, which maps |0⟩ → |0⟩ and |1⟩ → i |1⟩.
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In the CFT , it is possible to consider the thermal state, given by the following density matrix:

ρ =
1

Z

∑
i

e−βEi |Ei⟩ ⟨Ei| . (2.104)

In this expression, {|Ei⟩}i is a basis of energy eigenstates, and Z is the canonical partition function
of the system. The state described by (2.104) is, due to its thermal nature, mixed. Then, it is
possible to consider different states that purify the system. The most widely used purification in
the literature for this state is known as the double thermofield state or TFD, and is given by the
following expression:

|TFD⟩ = 1√
Z

∑
i

e−βEi/2 |Ei⟩ |Ei⟩ . (2.105)

In this case, the auxiliary degrees of freedom, which serve to purify, area a second copy of the same
system. The holographic dual of this state is the system described by an eternal black hole [?].
This gravitational dual is constituted by two asymptotic regions connected by a smooth geometry.
At a given instant of time, the two asymptotic regions are connected by a spatial region known as
a wormhole or Einstein-Rosen bridge. The time evolution of the TFD state is given by

|TDF (tI , tD)⟩ = 1√
Z

∑
i

e−βEi/2e−iEi(tI+tD) |Ei⟩ |Ei⟩ , (2.106)

where tI,D represent a notion of time in the asymptotic regions. For a notion of time evolution in
which tI → tI +∆t and tD → tD−∆t, the state remains invariant. On the bulk side, it is therefore
observed that the wormhole does not grow under this notion of time. However, if the time flow is
chosen to be determined by tI + tD, the state will evolve non-trivially in time: the interior of the
wormhole grows larger as time goes on. Classically, the interior grows without limit; therefore, it
is valid to ask: what is the dual in the CFT of the growth of the wormhole? Entanglement entropy
or some combination of it cannot be the answer because its growth saturates after relatively short
times [199]. In order to specifically answer the previously posed question, it is worth emphasizing
other properties of the wormhole. Since entanglement is not a good candidate for measuring the
growth of a wormhole interior, it is a bad idea to use the area directly or complicated combinations
of it to measure growth. So, it is natural to consider the volume of the spatial region as a measure
of the growth of the interior. In analogy with the RT formula, the temporal foliation given by
spatial slices that satisfy the property that they have maximum volume is chosen. Calculations of
the gravitational side reveal that the volume grows for very long times, reproducing the expected
behavior. On the CFT side, the computational complexity of the state |TDF (tI , tD)⟩ is a property
that does not saturate for short times; even after the system has thermalized, it continues to grow.
Because of this, in [?] Susskind proposed the following conjecture:

C(|TFD(tI , tD)⟩) = max
[
V(tI , tD)

GN l

]
. (2.107)

That is, the complexity of the TFD state is calculated by determining the maximum volume of
the wormhole. In the previous expression, l represents the characteristic length of the system.
This prescription for calculating complexity holographically is known as "complexity=volume" or
CV. An interesting aspect of this proposal is that for very long times, the time derivative of the
complexity, the computation speed, has the following value:

lim
tI+tD→∞

dCV

d(tI + tD)
=

8πM

d− 1
, (2.108)

where d is the dimension of spacetime and M is the mass of the black hole. This result inter-
prets the mass of the system as the parameter that measures how high its computation speed is.
However, this result was also found by Lloyd when considering the maximum computing speed of
a system with energy E. Consequently, it can be inferred that black holes saturate the so-called
Lloyd’s bound and therefore are the systems that represent the fastest computers in the universe.
Although the CV prescription satisfactorily reproduces the known complexity behavior, it has cer-
tain associated disadvantages. The first involves the foliation of spacetime into slices of maximum
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volume; from a fundamental point of view, the reason for this choice is unclear. The second is the
appearance of the characteristic scale l, which can change depending on the context. Emphasizing
these observations, a new prescription was constructed where

C(|TFD(tI , tD)⟩) = IWdW (tI , tD)

π
. (2.109)

Here IWdW (tI , tD) refers to the action evaluated in the region encompassed by the Wheeler-DeWitt
patch, which in turn is defined as the domain of dependence of a spatial slice that is anchored on
times tI and tD at the boundary. This prescription is known as "complexity=action" or CA. The
Lloyd limit associated with this prescription is given by

lim
tI+tD→∞

dCA

d(tI + tD)
=

2M

π
. (2.110)

Both prescriptions reproduce known behaviors of computational complexity, so there is not yet a
definitive criterion that selects one (There is in fact a much larger set of options [200]). This is
largely due to the technical difficulty involved in the CFT calculations and the lack of a single
formalism to deal with the problem. In recent years, much progress has been made in this regard
by implementing Nielsen’s geometric formalism in which the problem of finding the optimal circuit
is translated to computing a certain geodesic in a metric space [201].

Figure 2.4: WdW patch geometry.

2.7 Manual for the use of the Action
The Wheeler-DeWitt patch is the spacetime region corresponding to the domain of dependence
associated with a given spatial slice. The elements that compose its boundary in spacetime are
spatial segments, temporal segments, null segments, and all kinds of unions between them; see
figure (2.4). The gravitational action in the presence of cosmological constant Λ, from which Ein-
stein’s equations are derived, is given by

I =
1

16πGN

∫
M
dd+1x

√
−g(R− 2Λ). (2.111)

However, when considering a spacetime, M, with boundary ∂M, additional terms associated with
the latter have to be considered. The simple variation of the action (2.104) without considering the
additional terms generates an ill-defined variational problem due to the appearance of variations in
the derivatives of the metric. A detailed analysis reveals the kind of terms that need to be included
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Figure 2.5: WdW patch configuration for times greater than the critical time.

to cancel out unwanted variations [190]. The most general gravitational action that gives rise to
Einstein’s equations and also has a well-defined variational principle is

I =
1

16πGN

∫
M
ddx

√
−g(R− 2Λ)

+
1

8πGN

[∑
Ti

∫
∂MTi

ddx
√
−hK +

∑
Si

sgn(Si)

∫
∂MSi

ddx
√
hK −

∑
Ni

sgn(Ni)

∫
∂MNi

dλdd−1θ
√
γκ

]

+
1

8πGN

∑
ji

sgn(ji)
∫
dd−1x

√
σηji +

∑
mi

sgn(mi)

∫
dd−1x

√
σami

 . (2.112)

In the first line of the previous expression, we have the usual Einstein-Hilbert term with cosmo-
logical constant evaluated in the bulk. The terms in the second row must be added due to the
presence of a boundary. The boundary can be spatial (Si), temporal (Ti) or null (Ni). For spatial
and temporal surfaces, the term to consider is the Gibbons-Hawking action, while in the case
of a null surface, a term is added that is the integral on the surface over on affine parameter κ
[?, ?]. The sign with which each integral contributes is determined by its orientation. For spatial
surfaces, it will be the positive sign if its normal vector points to the future and the minus sign
otherwise. Similarly, for null surfaces, the positive sign will be taken if the volume of the region
to be integrated is in the future of the null segment and the minus sign is taken otherwise. In the
third line, the terms come into play due to the presence of joints between segments. The following
list covers all possible cases:

1. Union between space-like segments (S∧S). Let nα1,2 be the normal vector pointing into
the future on each surface and pα1,2 be the tangent vector on each surface. Then, the factor
ηji is determined by

ηji = ln |(n1 + p1) · n2|. (2.113)

2. Union between time-like segments (T ∧ T ). Let sα1,2 be the spatial unit normal to
each surface. Also, let pα1,2 be the tangent vector to each surface. Then, the factor ηji is
determined by

ηji = ln |(s1 + p1) · s2|. (2.114)
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3. Union between time-like and space-like segments (T ∧ S). Using the previous defini-
tions of the normal and tangent vectors, we have the following expression

ηji = ln |(n+ p) · s|. (2.115)

For the cases (S ∧ S) and (T ∧ S), the sign of the integral will be positive if the normal vector,
nα1 , points out of the volume of interest, and negative in the opposite case. In the case (T ∧ T ),
a positive sign is always obtained. For null segments, there are also three cases that derive from
considering the possible unions between surfaces in which one of them is null. The following list
summarizes the set of rules to consider for each integral:

1. Union between null and space-like segments (N ∧ S). Let kα be the tangent vector
pointing to the future of the null surface. Then, the corresponding integral contains the
following factor

a = ln |k · n|. (2.116)

2. Union between null and time-like segments (N ∧ T ). Let kα be the tangent vector
pointing to the future of the null surface. Then, the corresponding integral contains the
following factor

a = ln |k · s|. (2.117)

3. Union between null segments (N ∧N). Let kα1,2 be the tangent vector pointing into the
future of each null surface. Then, the corresponding integral contains the following factor

a = ln |k1 · k2|. (2.118)

In the case of a Lovelock theory of gravity, a generalization of this manual can be found in
[154].
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Chapter 3

PhD projects (Objectives, Methods
and Results)

The specific objectives outlined before resulted in the following research articles:

• arXiv:1808.00067 [185]. Holographic complexity of anisotropic black branes. Published in
Physical Review D in collaboration with Seyed Ali Hosseini Mansoori, Viktor Jahnke and
Mohammad M. Qaemmaqami.

• arXiv:1905.07413 [186]. Holographic integral geometry with time dependence. Published in
JHEP in collaboration with Bartlomiej Czech and Zi-zhi Wang.

• arXiv:2104.12796 [194] Insensitivity of the complexity rate of change to the conformal anomaly
and Lloyd’s bound as a possible renormalization condition. Published in Physical Review D
in collaboration with Daniel Ávila, César Díaz and Leonardo Patiño.

• arXiv:2201.01786 [187] Holographic Coarse-Graining: Correlators from the Entanglement
Wedge and Other Reduced Geometries. Published in JHEP in collaboration with Alberto
Güijosa and Juan F. Pedraza.

This section summarizes the results obtained in the previously cited articles.

3.1 Holographic Complexity of Anisotropic Black Branes
Abstract. We use the complexity = action (CA) conjecture to study the full-time dependence
of holographic complexity in anisotropic black branes. We find that the time behaviour of holo-
graphic complexity of anisotropic systems shares a lot of similarities with the behaviour observed
in isotropic systems. In particular, the holographic complexity remains constant for some initial
period, and then it starts to change so that the complexity growth rate violates the Lloyd’s bound
at initial times, and approaches this bound from above at later times. Compared with isotropic
systems at the same temperature, the anisotropy reduces the initial period in which the complexity
is constant and increases the rate of change of complexity. At late times the difference between
the isotropic and anisotropic results is proportional to the pressure difference in the transverse and
longitudinal directions.

3.1.1 General aspects of the on-shell action and the WdW patch
The gravitational solution described by the MT model [188] can be extended to an eternal black
brane solution. The extended solution is dual to the state |TFD⟩, which is a possible purification
resulting from considering the entanglement of two copies of the original theory. The prescription
implemented to calculate the complexity involved the evaluation of the on-shell action in the WdW
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Figure 3.1: Penrose diagram and the WDW patch (blue region) for the two-sided black brane we
consider. (a) Configuration at initial times (t ≤ tc) in which the WDW patch intersects both the
future and the past singularity. (b) Configuration at later times (t > tc) when the WDW patch no
longer intersects the past singularity. The dashed lines represent the cutoff surfaces at r = rmax.

patch. The WdW patch corresponding to this geometry can be seen in figure (3.1). The notion of
time on the boundary is taken to be such that tI = tD = t/2; therefore, the WdW patch is a square
figure. The region near the boundaries is regularized using the parameter rmax and the regions
near the singularities are regularized with the parameter ϵ. The on-shell action has the following
form:

S =
1

16πGN

∫
V
dV (R− 2Λ) +

1

8πGN

∫
∂V
dSK, (3.1)

where R is the Ricci scalar evaluated in V, Λ is the cosmological constant and K the extrinsic cur-
vature of ∂V. In order to perform the calculations in the most general way possible, the following
form of the metric is assumed:

ds2 = −Gtt(r)dt
2 +Grr(r)dr

2 +Gij(r)dx
idxj , (3.2)
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where r is the AdS radial coordinate and (t, xi) are the gauge theory coordinates with i =
1, 2, ..., d − 1. The boundary is located at r → ∞ and a horizon is assumed to exist at r = rH ,
where Gtt becomes zero and Grr has a simple pole. We denote the determinant of Gij as G.

In complexity calculations, it is convenient to use coordinates that smoothly cover both sides
of the geometry. In this sense, the Eddington-Finkelstein coordinates are used, which are defined as

u = t− r∗(r) , v = t+ r∗(r) , (3.3)

where the tortoise coordinate is defined as

r∗(r) = sgn(Gtt(r))

∫ r

dr′

√
Grr(r′)

Gtt(r′)
. (3.4)

The CA prescription [189] states that the computational complexity of the state |TFD⟩ is given
by the gravitational action evaluated in the Wheeler-DeWitt (WdW) patch, in other words,

CA =
IWDW

π
. (3.5)

Due to the presence of a boundary, IWDW must be evaluated considering the terms corresponding
to each part of the boundary; namely,

IWDW = Ibulk + Isurface + Ijoint , (3.6)

where

Ibulk =
1

16πGN

∫
V
dV (R− 2Λ) (3.7)

is the bulk gravitational action and Isurface, Ijoint correspond to the surface and joint terms, re-
spectively. The inclusion of these boundary terms is essential for the correct definition of the
gravitational variational principle [190]. The explicit form of the surface and joint terms is given
by Eq. (2.112).

The WdW patch boundary is composed of null segments that are shot from the asymptotic
boundary at tI = tD = t/2, timelike segments generated by the presence of the factor rmax that
regularizes the action, and spatial segments present by the regularization of the singularity with the
parameter ϵ. Additionally, there are joints between segments, which make the border not smooth.
Conveniently, an affine parameterization of the null surfaces can be used, which makes these terms
vanish completely.

The presence of null boundaries and the symmetric configuration of the WdW patch makes it
necessary to consider the time range in two stages characterized by a critical time tc. For times
t < tc the WdW patch overlaps with the past and future singularities because the Penrose diagram
does not represent a completely square region [193]. For times tc ≤ t, the bottom of the WdW
patch is completely separated from the past singularity, so the configuration is now not symmetric.
The critical time can be calculated by determining the locus where null geodesics thrown from the
boundary toward the past intersect. Then, tc satisfies the following relation:

tc = 2 (r∗∞ − r∗(0)) , r∗∞ = lim
r→∞

r∗(r). (3.8)

Figure 3.2 shows the behavior of the critical time as a function of a/T , fixing the temperature.
It can be seen that the anisotropy causes a minimal reduction in the critical time. In the following
sections, the results of the on-shell action in the aforementioned configurations will be presented.
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Figure 3.2: Critical time (normalized by isotropic result) versus a/T . We consider increasing
values of a, but we choose them rh in such a way as to keep the temperature fixed as T = 1

π .

3.1.2 Behavior at initial times: 0 ≤ t < tc

For t ∈ [0, tC), the upper and lower corners of the WdW patch are absent due to past and future
singularities. The contributions for IWdW , in this case, include the bulk term, two GHY terms
for the timelike boundaries at r = rmax close to the asymptotic regions, two GHY terms for the
spacelike boundaries at r = ϵ that regularize the region close to the singularities, and the joint
terms that correspond to the intersection of the ones mentioned above. Due to the symmetry of
the WdW patch configuration, it is possible only to calculate the contributions corresponding to
one-half, since the total contribution will be double. Taking this observation into account, the bulk
term can be broken down into three parts corresponding to the subregions on the right-hand side.
That is

Ibulk(t ≤ tc) = 2
(
IIbulk + IIIbulk + IIIIbulk

)
, (3.9)

To define regions I, II, and III, reference is made to figure 2.4. The result of adding the three
contributions is

Ibulk =
1

2πGN

∫ rmax

ϵ0

dr
√
−gL(r)

(
r∗∞ − r∗(r)

)
. (3.10)

It is observed that the result does not depend on time due to the symmetry of the configuration:
as time progresses, the region that disappears in the future singularity emerges from the past sin-
gularity.

The boundary contribution to the WdW patch shares the exact symmetry as the bulk term;
therefore, it is possible to consider the total contribution by only assuming one side and then
doubling the result. So, we have

Isurface(t ≤ tc) = I future
surface + Ipast

surface + I frontera
boundary. (3.11)

After adding the explicit form of the contributions, the following expression is obtained:

Isup(t ≤ tc) =
Vd−1

4πGN
G(r) (r∗∞ − r∗(r))

∣∣∣
r=ϵ0

+
Vd−1

8πGN
G(r) (r∗∞ − r∗(r))

∣∣∣
r=rmax

,

where

G(r) =
√
GttG

Grr

[
G′

tt

Gtt
+
G′

G

]
. (3.12)

Like the bulk result, the contribution to the action from the boundary region is not time-
dependent. Finally, we address the term included in the action due to the presence of non-smooth
joints between the boundaries. The type of unions considered corresponds to the intersection of
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null boundaries with spacelike boundaries and null with timelike boundaries. The contribution
from the joints takes the form

Ijoint = Ising
joint + Iboundary

joint , (3.13)

A detailed analysis reveals that this contribution, like the others, is not time-dependent. In con-
clusion, the sum of the terms Ibulk, Isurface and Ijoin does not depend on time, that is

dIWDW

dt
= 0 , when 0 ≤ t < tc . (3.14)

3.1.3 Behavior at late times: tc ≤ t

For t = tc, the lower corner of the WdW patch makes contact with the surface r = ϵ that regularizes
the singularity. For later times the lower corner is completely visible in the Penrose diagram, and
therefore we have a configuration that breaks the symmetry of the previous case. On the other
hand, the WdW patch is still symmetric about the vertical axis located in the central part of the
Penrose diagram. Then, the bulk term and the surface and union terms can be separated in the
same way as in the previous case. Then the contribution of the bulk term is

Ibulk(t ≥ tc) = 2
(
II
bulk + III

bulk + IIII
bulk
)
, (3.15)

whose explicit form turns out to be

Ibulk(t ≥ tc) = Ibulk(t < tc) +
Vd−1

8πGN

∫ rm

ϵ0

dr
√
−gL(r)

(
t

2
− r∗∞ + r∗(r)

)
.

In this expression, it can be seen that the term in the action corresponding to the bulk can be
separated into two contributions: the contribution of the bulk for early times and a contribution
that depends directly on time. The parameter rm refers to the radial location of the lower corner
of the WdW patch, which is also time-dependent and satisfies the following relationship:

t

2
− r∗∞ + r∗(rm) = 0 . (3.16)

The contribution of the surface terms shares the same structure, in other words, we have

Isurface(t ≥ tc) = Isurface(t < tc) + I future
surface , (3.17)

where,

I future
surface =

Vd−1

8πGN
G(r)

(
t

2
+ r∗∞ − r∗(r)

) ∣∣∣
r=ϵ

. (3.18)

This last term corresponds to the contribution of the surface with r = ϵ.
For late times, the WdW patch contains joints between null and spatial surfaces, as well as joints
between null surfaces. Adding all the contributions due to unions gives

Ijoints(t ≥ tc) = Ijoints(t < tc)−
Vd−1

8πGN

√
G(rm) log

∣∣∣∣Gtt(rm)

α2

∣∣∣∣ . (3.19)

The second term represents the WdW patch lower joint contribution in the above expression.

Adding all the terms that contribute to the action and differentiating with respect to time, we
finally obtain

dIWDW

dt
=

Vd−1

16πGN

[∫ rm

ϵ0

dr
√
−gL(r) + G(r)

∣∣∣
r=ϵ

+

(
1

2

√
Gtt

GrrG
G′ log

∣∣∣∣Gtt

α2

∣∣∣∣+√ G

GrrGtt
G′

tt

)∣∣∣
r=rm

]
.

(3.20)
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Figure 3.3: rm
rh

versus δt for the MT model (blue curve) and for the DK model (black curve).
Here, for the MT model, we have fixed rh = 1 and a/T = 0.314. For the DK model we fixed B = 3
and rh = 1. The curves obtained for other values of these parameters are indistinguishable from
the above results.

Then, the time derivative of the complexity is obtained simply by using

dCA
dt

=
1

π

dIWDW

dt
. (3.21)

This expression allows calculating the behavior in the complexity growth rate for any time value. In
figure (3.1.4), it can be seen that initially, the computation speed remains equal to zero, reflecting
that the state does not become more complex. Once the critical time is exceeded, the computation
speed increases until it reaches a maximum and then decreases asymptotically to a specific value
that coincides with the corresponding Lloyd limit. The behavior is qualitatively similar to the
isotropic case.

3.1.4 Late time behavior: t → ∞
The expression for the action evaluated on the on-shell action simplifies dramatically in the limit
t → ∞. In this time scale, most of the WdW patch has disappeared due to the presence of the
singularity. Consequently, the region’s lower joint asymptotically approaches the horizon’s radius,
that is, rm → rH . In figure (3.5) you can see the ratio rm/rH as a function of t−tc. The expression
that results from taking this limit is

dIWDW

dt
=

Vd−1

16πGN

[∫
ϵ

dr
√
−gL(r) +

√
G

GrrGtt
G′

tt

∣∣∣
r=rh

+

√
GttG

Grr

(
G′

tt

Gtt
+
G′

G

) ∣∣∣
r=ϵ

]
. (3.22)

By substituting the component functions of the metric that characterize the solution of the MT
model, the following result is obtained for the computation speed:

dCA

dt
=

V3
16π2GN

(
64 +

2a2

2
(5 log(2)− 1)

)
=

2M(a)

π
. (3.23)

The result shows that the computation speed saturates the Lloyd bound for very long times. It is
important to highlight that the anisotropy, characterized by a/T , modifies the mass of the isotropic
solution to the same extent that it modifies the corresponding computation speed.
In the same way, substituting the functions of the metric that characterize the solution of the DK
model, we obtain

dCA
dt

=
1

π

dIWDW

dt
=

V3
16π2GN

× 6B 2 =
2MB

π
. (3.24)
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From the above expression it can be seen that the DK model also satisfies the corresponding Lloyd’s
bound.

3.1.5 Conclusions

This work considers two models that break the SO(3) symmetry in the coordinates (x, y, z). In
a perturbative analysis of the anisotropy parameter, the MT model showed a change in its com-
putation speed with respect to the isotropic case. However, the qualitative characteristics of the
isotropic case were preserved even in the presence of anisotropy. The computation speed is zero
for times below the critical time; it stops being zero from there. The computation speed increases
to a maximum value, then decreases and asymptotically saturates the corresponding Lloyd bound.
Furthermore, it was found that the maximum value of the computation speed increases as the
anisotropy increases, keeping a in the range of validity of the approximation. In the DK model, it
was found that the corresponding Lloyd’s bound is equally satisfied. The behavior of the complex-
ity shows that it does change in models with broken symmetry under rotations; however, it does
so in such a way that the universal characteristics of complexity are not changed.

3.2 Holographic Integral Geometry with Time Dependence

Abstract. We write down Crofton formulas—expressions that compute lengths of spacelike curves
in asymptotically AdS3 geometries as integrals over kinematic space—which apply when the curve
and/or the background spacetime is time-dependent. Relative to their static predecessor, the time-
dependent Crofton formulas display several new features, whose origin is the local null rotation
symmetry of the bulk geometry. In pure AdS3 where null rotations are global symmetries, the
Crofton formulas simplify and become integrals over the null planes, which intersect the bulk
curve.

3.2.1 Null alignment condition and local null rotations

The null vector alignment condition, NVA, reviewed in section (2.4.1), states that the differential
entropy formula is not only valid using geodesics tangent to the space curve. It is also possible
to reproduce the length of the curve using reoriented geodesics using a null vector orthogonal
to the vector tangent to the curve. For each point on the spatial curve, a differently reoriented
geodesic can be taken; therefore, this additional freedom is local. Because of this, the emergence
of a submanifold of codimension one that directly takes this into account is inevitable. The family
of all geodesics forms this hypersurface at a given point on the curve. Due to the existence of two
null normals at each point on the curve, there are two hypersurfaces tangent to the curve. These
tangent hypersurfaces are nothing more than null leaves that emanate tangentially from the point
of the curve. Locally, these geodesics are related to each other by implementing a null rotation,
which has the property of fixing a null vector.

3.2.2 Crofton formula

The differential entropy formula correctly calculates the length of a closed curve in the bulk using
NVA geodesics to the curve. This calculation employs a one-dimensional integral to sum all the
NVA geodesic in the curve. In the static case, this formula was promoted to a double integral using
Stokes’ theorem, giving rise to Crofton’s formula and the correct identification of the Crofton form
as the double derivative of the entanglement entropy [?]. The previous statement allowed us to
identify the space where the double integral is performed as the kinematic space [186]. For closed
space curves with non-trivial dependence on time, in general, the set of tangent or NVA geodesics
will have endpoints described by the coordinates xµL = (τL, θL) and xµR = (τR, θR). Then, the
differential entropy formula takes the form

L[γ] =

∫
MNVA

dxµR
∂S(xµL, x

µ
R)

∂xµR
. (3.25)
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In this expression MNVA is the set of all NVA geodesics that define the curve in the bulk. On the
other hand, using Stokes’ theorem, we get∫

K
dxνL ∧ dxµR

∂2S(xµL, x
µ
R)

∂xνL∂x
µ
R

=

∫
K
d

(
∂S(xµL, x

µ
R)

∂xµR
dxµR

)
=

∫
∂K
dxµR

∂S(xµL, x
µ
R)

∂xµR
, (3.26)

where for consistency with the differential entropy formula MNVA = ∂K is identified. Therefore,
the integration region K in the kinematic space must have a boundary in which all points are NVA
geodesics. The previous argument allows us to identify Crofton’s formula for the covariant case,

L[γ]

4G
=

1

4

∫
K

ω × n, (3.27)

where

ω =
∂2S

∂xµL∂x
µ
R

dxµL ∧ dxνR

=
∂2S

∂θL∂θR
dθL ∧ dθR +

∂2S

∂θL∂τR
dθL ∧ dτR +

∂2S

∂τL∂θR
dτL ∧ dθR +

∂2S

∂τL∂τR
dτL ∧ dτR (3.28)

and n represents the intersection number of the null plane with the spatial curve. For a con-
vex curve, this factor is 2. As a consistency check for this formula, the case of spatial curves in
AdS3 was analyzed [186]. The first curve considered is a circumference of radius R centered at
the origin of AdS3. This curve has no time dependence; however, its use is justified as an exam-
ple of consistency. The Crofton form was found to reproduce the length of this curve correctly.
As a second example, the same circumference was used, now with a slight temporary oscillatory
disturbance, so it does not alter its causal structure. The parameterization of this curve is given by

R(θ) = R0, (3.29)

τ(θ) =
R0

2
√

1 +R2
0

ϵ sin (2θ) . (3.30)

Using Crofton’s formula Eq. (3.27) was found to exactly reproduce the gravitational result.

3.2.3 Conclusions
The differential entropy formula applied in the covariant context allowed Crofton’s formula to be
generalized to the same scenario. The crucial step in the correct definition of the formula and
identification of the Crofton form was the application of Stokes’ theorem. This procedure also
allowed us to identify the corresponding region in the kinematic space: the set of all points whose
boundary can be understood as the NVA geodesics of the spatial curve in the bulk. The NVA
condition allowed us to identify the geometric object, the tangent null sheet, which encodes the
extra degree of freedom that exists when choosing the geodesics that reproduce the length of the
curve in the differential entropy formula. Because all NVA geodesics are related to each other by a
null rotation that keeps them on the same null sheet, this object provides us with a tool in which
a single geometric entity describes an infinite number of possibilities when choosing NVA geodesics.

3.3 Insensitivity of the complexity rate of change to the con-
formal anomaly and Lloyd’s bound as a possible renor-
malization condition

Abstract. We determine the effect on the computational complexity of a conformal anomaly using
the Complexity=Action prescription of the gauge/gravity correspondence. To allow the involve-
ment of said anomaly, we extend previous studies to include arbitrary values for the anisotropic
parameter and the magnetic field respectively on the Mateos-Trancanelli and the D’Hoker-Kraus
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holographic models. Our main result is that the rate of change of the computational complexity is
independent of the conformal anomaly in both cases. In addition, this allows us to also show that,
if so desired, the saturation of Lloyd’s bound at infinite time can be used as a renormalization
condition.

3.3.1 Conformal anomaly in the Mateos-Trancanelli and D’Hoker-Kraus
models

The traditional treatment of quantum field theories implies starting with a classical action de-
scribed in terms of classical fields. Later, those classical fields go through a standard procedure
called "quantization" to obtain a quantum description of the classical system. The classical system
sometimes possesses symmetries that must be preserved after quantization. This consideration ap-
plies especially in the case of a gauge symmetry. A gauge symmetry is an over-description of the
system in which more than one possible field configuration exists for the same physical description.
It is not a property of Nature but rather a property of how we choose to describe Nature. This
type of symmetry must survive the quantization procedure in the sense that the symmetry must
be also a symmetry of the quantum system. Otherwise, the quantum system might become math-
ematically inconsistent. On the other hand, global symmetries are actual symmetries, intrinsic to
the system and with real physical consequences. They can sometimes be lost upon quantization,
without inconsistency. Generically, the absence in a quantum theory of a symmetry that was
present classically is known as an ’anomaly’.

The conformal anomaly is a particular case of interest that can be present in a CFT. As
explained before, CFTs are quantum theories with an infinite number of degrees of freedom which
have the conformal group as a symmetry group. In particular, they are invariant under a local
rescaling of the metric that is

δgαβ = ϵ(x)gαβ , (3.31)

where ϵ(x) is an infinitesimal parameter controlling the transformation. Under this transformation,
the action changes as follows:

δS =

∫
dDx

δS

δgαβ
δgαβ . (3.32)

It is possible to express the previous formula in a way that looks more familiar. This step involves
the identification of δS

δgαβ
as the energy-momentum tensor, omitting some proportionality factors

involving the metric. The result of this identification is

Tα
α = 0, (3.33)

namely, the trace of the energy-momentum tensor must be equal to zero if the theory respects the
symmetry at the classical level. At the quantum level, the story can be very different. Hence, a
conformal anomaly will exist if

⟨Tα
α ⟩ ≠ 0. (3.34)

Holographically, it is conceivable to compute the exact form of the previous relation. Given a
holographic pair of theories, gravitational theory on AdS and a CFT, it is possible to calculate
the CFT energy-momentum tensor from a gravitational calculation using the GKPW prescription
and the holographic renormalization procedure. The holographic dictionary states that operators
in the bulk are into one-to-one correspondence with local gauge invariant operators in the CFT.
Specifically, the CFT energy-momentum tensor is related to the metric in the gravitational theory.
Most of the time, integrating quantities on AdS involves dealing with IR divergencies. Therefore,
a renormalization procedure in the bulk is needed in which the action is regularized to obtain
finite quantities of physical meaning. Taking into account the previous statement, the holographic
dictionary states that to compute the CFT energy-momentum, one must perform the following
calculation:

⟨Tij(x)⟩ =
2√

g(0)(x)

δSren

δg(0)(x)
, (3.35)
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where Sren is the renormalized action and g(0)(x) is the boundary condition for the metric. In the
case of the MT model, explicit calculation reveals

〈
T i
i

〉
=

Vx
96πG5

a4, (3.36)

where Vx denotes the spatial volume and a measures the amount of anisotropy in the system. In
the case of the DK model, the same procedure reveals

〈
T i
i

〉
= − Vx

8πG5
b2, (3.37)

where b measures the magnetic field present in the system. Notice the role of the anisotropy and
the magnetic field in the previous two expressions. They can be seen as parameters that break the
conformal symmetry. In both cases, the parameters a, b, and T characterize a specific theory giving
rise to a family of solutions. For the MT model, the dimensionless parameter is a/T , whereas for
the DK model, it is b/T 2. Therefore, if the conformal symmetry is preserved, it is expected that
every dimensionless physical quantity is a function of the dimensionless parameters. Otherwise,
the conformal anomaly would be present.

As stated before, both models, MT and DK, exhibit a conformal anomaly introduced by the
anisotropy and the magnetic field, respectively. The trace of the energy-momentum tensor depends,
in both cases, on a specific power of the symmetry breaking parameter, a, and b. In the case of
the MT model, the trace is proportional to a4, whereas, in the DK model, it is proportional to b2.
In [185] the late-time rate of computation was determined up to second order in the anisotropy.
This result was equal to the expected Lloyd’s bound at the corresponding order, 2M/π. Neverthe-
less, the final result did not reflect the conformal anomaly of the system, because this effect was
expected to be present in the next order of perturbation theory, O(a4). That is why, in out work
it was important to calculate the late-time rate of computation in both models to all orders in the
parameters a and b.

3.3.2 Computational Speed

Counterterms and the renormalization scheme

From (3.20), we can see that all the terms that diverge in the rmax → ∞ limit were eliminated by
the time derivative, rendering dIWDW

dt finite. This is because the rmax surfaces only undergo a time
translation, and given that both families of solutions are static, any boundary integral evaluated
at this surface will be time-independent. This is true for the counterterm actions, so they were
omitted in the evaluation of IWdW. It should be noted, though, that IWdW itself is a divergent
quantity. The counterterms necessary to remove said divergences were computed in [191] and later
applied in [192] for a BTZ black hole. These counterterms do not modify the late time behavior
of the complexity rate of change; thus, we omitted them from the previous computation.

Usually, when computing thermodynamic quantities such as the state’s free energy, the gravi-
tational action is evaluated in the exterior region. The boundary of this region is constituted by
the surfaces at r = rmax and r = rh, but the counterterms vanish when evaluated at the horizon.
However, as the WdW patch boundary includes the r = rmin surfaces, the counterterms also need
to be evaluated there. In our work, it was explicitly checked numerically that, for any solution in
both models, the contribution from this vanishes when the limit rmax → rs is taken. This means
that IWdW, and the complexity of the TFD state, is independent of the finite term determined by
Csch, namely, the renomalization constant.

Behavior at initial times: 0 ≤ t < tc

In [185] were found general expressions for the computational speed, namely, the time derivative
of the complexity. As previously explained, the holographic calculation in the CA prescription
involves the evaluation of the action in the region known as the WdW patch. As the boundary
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Figure 3.4: Rate of change of the complexity dC/dτ in units of NT 4 as a function of τ for the MT
model. Each curve corresponds to a different value for the anisotropic parameter, being a/T =
19.57, 41.14, 85.46 from bottom to top respectively. The horizontal dashed lines correspond to the
late time behavior of each curve, with the precise values being dC/dτ∞ = 329.42, 419.58, 533.99,
respectively. For all cases we fixed lnull = L = 1.

time passes, the interior of the WdW patch changes. For this reason, separating the calculation
into three stages is suitable. The first stage involves a configuration of the WdW patch in which
the lower corner is hidden behind the past singularity. The second stage involves a configuration
in which some of the interior of the WdW patch desappears behind the future singularity. Finally,
the third stage consists of a configuration in which the lower corner gets too close to the future
singularity. For the first stage, the computational rate is zero in general, reflecting the fact that
initially, the state keeps its complexity constant.

Behavior at later times: tc ≤ t

For the case of the MT model, it is possible to evaluate eq. (3.20) numerically, which allows the
computation of the rate of change of the complexity of the TFD state as a function of time for
any value of the anisotropic parameter. The result of the evaluation is presented in Fig. (3.3.2)
for lnull = L = 1 and the three values of the anisotropy a/T = 19.57, 41.14, 85.46, displayed from
bottom to top. This shows that the general effect of the anisotropy is to increase the value of
dC/dt for any given t. It is also possible to see that, for any a/T , at t shortly after tc the rate of
change of the complexity decreases as time passes, reaches a minimum, and then it increases to a
constant value, that we will denote as dCt∞

dt , for late times.

The dashed horizontal lines in Fig. (3.3.2) mark the asymptotic values and are plotted as a
continuous function of a/T displayed as a red line in Fig. (3.3.2). While the early-time behavior
can be modified by changing lnull, the late time behavior is independent of this arbitrary constant.
It is also important to note that, for a given t, the rate of change of the complexity only depends
on the dimensionless parameter a/T . A check was done numerically by varying a and T inde-
pendently. The conclusion from this is that dCt∞

dt is independent of the energy scale and thus is
unaffected by the conformal anomaly.

For the case of the DK model, it was possible also to employ a numerical analysis. The result
of the evaluation is presented in Fig. (3.3.2) for lnull = L = 1 with three different values of the
magnetic field intensity being, from bottom to top, b/T 2 = 40.59, 47.56, 56.62 respectively. As in
the case of the MT model, in this system, the magnetic field tends to increase the value of dC/dt
for any given t. In general, the same behavior was found for the computational speed at any
magnetic field strength value. For later times, the computational speed increases by passing the
corresponding Lloyd’s bound. Then, it reaches a maximum and goes down again, decreasing its
value asymptotically, reaching the expected Lloyd’s bound.
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Figure 3.5: Rate of change of the complexity dC/dτ in units of NT 4 as a function of τ for the DK
model. Each curve corresponds to a different magnetic intensity, being a/T = 19.57, 41.14, 85.46
from bottom to top respectively. The horizontal dashed lines correspond to the late time behavior
of each curve, with the precise values being dC/dτ∞ = 329.42, 419.58, 533.99, respectively. For
all cases we fixed lnull = L = 1.

3.3.3 Conclusions

The results presented in this paper coincide with the previous results obtained via a perturbative
analysis. In the process, it was possible to get novel features from the studied models. The main
result demonstrates that the time derivative of the complexity is unaffected by the presence of a
conformal anomaly. The first of two reasons why this is the case is that (1/T 4)dC/dt, which is
a dimensionless quantity, only depends on a and T through the dimensionless ratio a/T , proving
that such derivative is independent of the energy scale, which was fixed to unity throughout this
paper. The second reason is that the counterterm action, which contains the scheme dependent
coefficient Csch, does not contribute to the derivative with respect to t, as the integral over the
boundary regulator is constant and the integral near the singularity vanishes as the regulator is
removed.

The other main result is in regards to Lloyd’s bound. It is expected, when using the CA
prescription, that Lloyd’s bound will be violated for any finite time, only to be saturated when an
infinite amount of time has passed. Knowing that this was the case for a = 0 and b = 0, the validity
of this result was studied for arbitrary values of the anisotropic parameter and the magnetic field.
The energy of the system, which appears on the right-hand side of Lloyd’s bound, depends on
both the energy scale and the coefficient Csch. However, as just stated, dC/dt does not depend
on any of these quantities. While at first sight, this could be interpreted as an inconsistency for
Lloyd’s bound when a conformal anomaly is present, that is not what it is. The role of Csch is to
keep the physical quantities scheme-independent, and in particular, for the energy, this means to
absorb any modification that it could suffer when the value of the energy scale is changed, once, of
course, a renormalization condition has been imposed. Thus, the results above demonstrate that,
if so desired, the saturation of Lloyd’s bound at an infinite time can be used as a renormalization
condition and let Csch be adjusted to satisfy it for any given , a, T or , b, T , depending on the model.

3.4 Holographic Coarse-Graining: Correlators from the En-
tanglement Wedge and Other Reduced Geometries

Abstract. There is some tension between two well-known ideas in holography. On the one hand,
subregion duality asserts that the reduced density matrix associated with a limited region of the
boundary theory is dual to a correspondingly limited region in the bulk, known as the entanglement
wedge. On the other hand, correlators that in the boundary theory can be computed solely with
that density matrix are calculated in the bulk via the GKPW or BDHM prescriptions, which require

50



input from beyond the entanglement wedge. We show that this tension is resolved by recognizing
that the reduced state is only fully identified when the entanglement wedge is supplemented with
a specific infrared boundary action, associated with an end-of-the-world brane. This action is
obtained by coarse-graining through a variant of Wilsonian integration, a procedure that we call
holographic rememorization, which can also be applied to define other reduced density or transition
matrices, as well as more general reduced partition functions. We find an interesting connection
with AdS/BCFT, and, in this context, we are led to a simple example of an equivalence between an
ensemble of theories and a single theory, as discussed in recent studies of the black hole information
problem.

3.4.1 Subregion duality and bulk reconstruction

The RT surface played a prominent role in (2.44) that eventually led to the proposal of subregion
duality. In more detail, the seminal works [21, 22, 40] conjectured that the reduced density matrix
ρ is dual to the entanglement wedge of A, denoted E and defined as the domain of dependence of
any codimension-one bulk spacelike region extending between A and Γ.

The bulk-to-boundary translation is known as ‘bulk reconstruction’, and seeks to identify the
region in the bulk that can be fully reconstructed with the information in ρ. Building on important
insights gained over the years in [41, 42, 43, 44, 21, 22, 45, 46, 40], this question was definitively
answered in [47, 48, 49, 50, 51, 52, 53], which showed that, indeed, all local bulk operators in E are
fully reconstructible within A. Crucial for this achievement was the realization that holography
works as a special type of code for quantum error correction (QEC) [54, 55, 56], and bulk recon-
struction is meaningful only within a ‘code subspace’ of the QFT, where bulk effective field theory
is approximately valid.

A crucial property of ρ is the fact that it allows the correct determination of all correlators of
local or extended operators Oi placed within A:

trA(ρO1 · · · On) = ⟨Ψ| O1 · · · On |Ψ⟩ . (3.38)

On the flip side, ρ would not know about correlators of operators that are inserted outside of
A. From the subsystem perspective, the insertion of such operators amounts to a change of the
reduced state, and would require recomputation of ρ.

The starting point for this project is the observation that the GKPW prescription seemingly
contradicts (3.38), because even when the sources Jl(x) are turned off in Ac, so that operator
insertions are purely within A, ZGrav[Jl] still requires information from Ec, the bulk region beyond
the entanglement wedge. This is true even for basic two-point functions of simple operators, well
within the confines of the relevant code subspace in the QFT. This contradiction reveals that, by
itself, the identification of E is not equivalent to a complete specification of ρ.

What we need then is a reformulation of the bulk recipe for correlators in A, that makes
reference only to the entanglement wedge. Given that the issue is tracing out some of the degrees
of freedom contributing to the (bulk or boundary) path integral, the natural tool at our disposal
is Wilsonian integration, whose holographic implementation was developed in [70, 71, 72]. For our
purposes, we will seek to apply it in a nonstandard manner: instead of tracing over a UV region,
as is done in standard Wilsonian renormalization, we will trace over the bulk region Ec, which
includes the IR region as well as what amounts to the UV in Ac.

The net result of this approach will be a boundary action IIR defined at the IR end of the
entanglement wedge, whose inclusion guarantees that correlators within A are correctly reproduced.
Its presence is analogous to the counterterm action IUV prescribed by holographic renormalization,
but whereas the latter serves to cancel the divergences in Ibulk, the former is needed to keep the
memory of the portion of the state encoded by Ec. For this reason, we refer to our procedure as
holographic rememorization.

Conceptually, the issue is that the reduced density matrix ρ specifies not only the subset A
of degrees of freedom that remain untraced, but also their state. In the bulk, the identification
of E goes along with the choice of A, but the specification of the state is not complete until the
boundary action IIR is provided. The full association is therefore not ρ↔ E , but ρ↔ (E , IIR).

In completing the statement of subregion duality, the results stated here also relate to a puz-
zle raised recently in [82]. It was noted there that in some situations the bulk metric can be
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reconstructed far beyond the entanglement wedge, by applying the prescription of [83] to two-
dimensional minimal surfaces that reach outside E despite being anchored within A. These sur-
faces can be spanned by string worldsheets that, according to the standard holographic dictionary
[84, 85], compute expectation values of Wilson loops that are certainly encoded in ρ. The authors
of [82] inferred from this that either there exist data in ρ that determine the metric parametrically
far outside E , conflicting with the standard intuition about subregion duality, or the information of
such surfaces is not contained in ρ, indicating that there is something wrong with the holographic
recipe for Wilson loops. Our perspective is more in line with the first option: by definition, ρ does
contain data about the state in Ac, and therefore Ec. However, it does not fully and uniquely deter-
mine that state. In particular, many states lead to the same reduced density matrix ρ and, hence,
the same infrared action IIR.1 Wilson loops whose dual worldsheets exit E are directly analogous
to the correlators of local operators considered throughout this paper, which are likewise inferred
from field profiles that lie partly beyond E .

The results presented here show that the boundary term IIR, which is needed to fully specify ρ,
encodes the external portions of the field profiles, and of the worldsheets relevant to [82], thereby
resolving the tension with subregion duality.

3.4.2 Holographic rememorization
In a Poincaré-invariant d-dimensional QFT with spacetime coordinates xµ ≡ (t, x⃗) and fields Φ(x),
the standard Wilsonian effective action at floating cutoff Λ, IΛQFT , is obtained [137] by integrating
out the Fourier modes Φ(p) with momentum p > Λ,

exp
(
iIΛQFT[Φp<Λ]

)
≡
∫

DΦp>Λ exp (iIQFT[Φ]) , (3.39)

so that the partition function can be reexpressed as

ZQFT =

∫
DΦexp (iIQFT[Φ]) =

∫
DΦp≤Λ exp

(
iIΛQFT[Φp≤Λ]

)
. (3.40)

Let us now briefly review the holographic implementation of Wilsonian integration [70, 71, 72].
For simplicity, we consider a bulk scalar field ϕ on a fixed (d+1)-dimensional asymptotically AdS
geometry. In Poincaré coordinates (x, z) ≡ (t, x⃗, z), the pure AdS metric is

ds2 =
L2

z2
(
−dt2 + dx⃗2 + dz2

)
, (3.41)

so we have in mind a geometry that approaches (3.41) as z → 0, possibly with non-normalizable
falloff. Extensions can be made to any locally asymptotically AdS geometry, possibly tensored or
warped with an accompanying compact manifold, as well as to other types of bulk fields (including
the metric itself), with or without interactions. The limit GN → 0 where backreaction is suppressed
corresponds to considering large central charge at the UV fixed point of the QFT, c→ ∞.

The well-known UV-IR connection [138, 140] relates the bulk radial direction z to an energy
scale 1/z in the QFT. This is naturally taken to refer to a resolution scale in the sense of the
renormalization group (RG) [141, 142, 143, 117, 118], and attempts have been made to derive
holography directly from this connection [144, 145, 146, 155]. For the specific case of the Wilsonian
RG, the floating UV cutoff Λ is translated into a radial position zΛ ≡ 1/Λ in the bulk, and the
dual description of (3.40) then involves integrating out the UV region of the geometry, z < zΛ
[70, 71].2 In more detail, the path integral that computes the partition function on the gravity
side is separated in the following form:

ZGrav[ϕ] =

∫
Dϕ exp

(
i(Ibulk[ϕ] + IUV[ϕ])

)
=

∫
Dϕz<zΛDϕ̄Dϕz>zΛ exp

(
i(Ibulk[ϕz<zΛ ] + IUV[ϕ])

)
exp (iIbulk[ϕz>zΛ ])

≡
∫

Dϕ̄Dϕz>zΛ exp
(
i(Ibulk[ϕz>zΛ ] + IzΛUV[ϕ̄, ϕ])

)
. (3.42)

1Put the other way around, given a reduced state ρ, there are infinitely many ways to purify it. Adding to this,
one may even consider global states that are mixed to begin with.

2More precisely, a bulk radial cutoff zΛ corresponds not to a sharp cutoff in momentum space, but to a smooth
cutoff akin to [156].

52



Since we are using the Lorentzian version of the correspondence [157, 158], the path integral
includes a specification of the initial and final states, which are left implicit for now. In the first
line of (3.42), we have taken into account the usual UV counterterms IUV needed for holographic
renormalization [65, 66, 67, 68, 69], which are defined at the original cutoff surface z = ϵ. It is
implicitly understood that for the time being we are working with the standard boundary condition
ϕ(x, z) → zd−∆ϕ(x) as z → 0, where ϕ(x) is to be equated with the QFT source J(x) that couples
linearly to the local operator O(x) of interest, and ∆ is the scaling dimension of O. In the second
line of (3.42), ϕ̄ denotes the value of the field at the floating cutoff surface z = zΛ. In the final
line, the new boundary term IzΛUV has been generated by the UV integration.

Contemplating the split path integral in the second line of (3.42), it is evident that we can
exchange the roles of the UV and IR, so that we instead choose to integrate out the IR region,
z > zΛ. Upon doing so, we arrive at

ZGrav[ϕ] =

∫
Dϕ̄Dϕz<zΛ exp

(
i(Ibulk[ϕz<zΛ ] + IIR[ϕ̄] + IUV[ϕ])

)
, (3.43)

where we now have an infrared boundary term IIR. Evidently, the QFT interpretation is that we
are now defining an upward Wilsonian RG flow, integrating out the field modes with p < Λ.3 In
(3.43) we have no longer labeled IUV with the location z = ϵ of the UV cutoff surface, which is
now held fixed. For the same reason, in the remainder of the paper we will omit the label in all
mention of the UV counterterms.

In both (3.42) and (3.43), we are carrying out the path integral up to a constant radial depth
z = zΛ. This cutoff surface can be turned into a more general timelike surface via an x-dependent
reparametrization of z, which is known to correspond to a Weyl transformation in the QFT [159].
So if we carry out the path integral up to an x-dependent depth, z = z̄(x), we will be considering
a spacetime-dependent RG flow, as in [160, 161].

Reducing to the entanglement wedge

The preceding observation suggests a natural way to address the challenge described in the In-
troduction. To obtain a generalization of the GKPW recipe that is defined purely within the
entanglement wedge E associated with a spatial region A in the QFT, we ought to integrate out
the entire complementary region Ec.

To spell this out, let D refer to the causal diamond of A in the QFT, and denote the profile
of the source in D as JD(x), with JDc(x) standing then for the source in the complement Dc. All
correlators within D in a given global state |Ψ⟩ are encoded in ZQFT[JD, JDc=0], so in the bulk we
are interested in ZGrav[ϕD, ϕDc=0].4 These boundary conditions are implicitly understood to hold
in the expressions below. We will define

exp
(
i(IIR[ϕ̄])

)
≡
∫

DϕEc exp (i(Ibulk[ϕEc ])) , (3.44)

where ϕ̄(x) ≡ ϕ(x, z̄(x)) is the value of the bulk field on E , the interface between E and Ec. Notice
that the counterterm action IUV[ϕDc ] drops out, since we have turned off the source in that region,
and the subleading behaviour ϕ ∝ z∆ is the normalizable mode that leads to a finite bulk action.
The source within D, ϕD = JD, plays no role in the right-hand side of (3.44), so by construction
IIR is independent of it.

Our prescription for computing correlators within subregion duality is to employ the partition
function

ZGrav[ϕ] =

∫
Dϕ̄DϕE exp

(
i(Ibulk[ϕE ] + IIR[ϕ̄] + IUV[ϕ])

)
, (3.45)

where it is understood from now on that ϕ refers solely to a source within D. Eq. (3.45) is thus
the generating functional for correlators within D. The presence here of the IR boundary action
is absolutely crucial to comply with (3.38), which is a defining property of the reduced density

3See the previous footnote.
4Nothing stops us from turning on the sources JDc , but that calculation would amount to having an adjustable

reduced state, and the infrared action (3.44) would naturally be a functional of JDc . We would then be able to
compute all correlators, independently of whether the operators are inserted in D or Dc. That is not the case when
we only have access to a specific reduced density matrix ρ describing the state on D, which is situation of main
interest in this paper.
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matrix. We thus see that the information encoded in ρ is dual not merely to the entanglement
wedge, but to E equipped with the specific IR boundary term IIR.5 Physically, the point is that,
after tracing over Ec, the IR boundary of the entanglement wedge, E , becomes an actual edge of
spacetime, with very specific dynamics for the end-of-the-world (EOW) brane that resides there.
This point will become clearer towards the end of the following section.

The preceding construction has been formulated for simplicity in terms of a single bulk scalar
field ϕ(x, z), which is what we need if we restrict attention solely to correlators of its dual scalar
operator O(x). The same reduction can be performed singly or jointly on other bulk fields, including
the metric itself (dealing appropriately with the associated diffeomorphism invariance, see, e.g.,
[127, 128, 129, 130, 131, 132, 133, 134]). A combined analysis of our scalar field and the metric
is necessary if we are not working in the limit of strictly infinite central charge, and need then to
consider how ϕ backreacts on the geometry.

3.5 Rememorization of generic scalar correlators
A standard scenario where we can illustrate our general rememorization procedure is in the com-
putation of correlators of a single scalar operator O(x) in a large-c CFTd on Minkowski spacetime,
which is dual to a free scalar field ϕ(x, z) on Poincaré AdSd+1, Eq. (3.41). As recalled in the
Introduction, the GKPW recipe [3, 4] equates the partition functions on both sides as in (3.45),
identifying the external source J(x) of O(x) in the CFT with the asymptotic boundary condition
ϕ(x) of the dual field.

Working in Euclidean signature, the bulk partition function is given by

ZGrav[ϕ] =

∫
ϕ(x,ϵ)=ϵd−∆ϕ(x)

Dϕ exp
(
−Ibulk[ϕ]− IUV[ϕ]

)
, (3.46)

where z = ϵ is the UV radial cutoff, and ∆ denotes the scaling dimension of O(x). The bulk action
is

Ibulk[ϕ] =
1

2

∫
dd+1x

√
g
[
gmn∂mϕ∂nϕ+M2ϕ2

]
, (3.47)

withM2L2 = ∆(∆−d). As always, IUV[ϕ] denotes the counterterm boundary action for holographic
renormalization [68, 69], whose explicit form will not be needed here.

3.5.1 A simple example: wall at constant z

The most obvious way to separate the bulk spacetime is by means of a wall at z = z̄. The regions
below and above the wall correspond respectively to the UV and IR of the CFT. Contrary to the
standard Wilsonian elimination of the UV region, here we want to integrate out the IR component.
This reduction will generate a contribution to the effective action of the remaining geometry that
encodes the information of the IR.

Specifically, in analogy with (3.44) we need to calculate

exp
(
−IIR[ϕ̄]

)
=

∫
ϕ(x,z̄)=ϕ̄(x)

Dϕz>z̄ exp (−Ibulk[ϕ]) , (3.48)

where ϕ̄(x) is the boundary condition for the fields on the resulting EOW brane at z̄. Since the
path integral is quadratic, the saddle-point approximation is exact. For the on-shell evaluation
of (3.48), we need the classical solution of the KG equation in the (Wick-rotated version of the)
metric (3.41),

zd+1∂z

(
∂zϕ

zd−1

)
+ z2δµν∂µϕ∂νϕ−M2L2ϕ = 0 . (3.49)

As usual, due to translational symmetry, it is useful to decompose into Fourier modes, ϕ(x, z) =∫
ddp
(2π)d

ϕ̃(p, z)eip·x. The general solution is then found to be [3, 4]

ϕ̃(p, z) = z
d
2

(
C1(p)I∆− d

2
(pz) + C2(p)K∆− d

2
(pz)

)
. (3.50)

5In the partition function (3.45) or the correlators it encodes, one has the reduced density matrix inside a trace,
as in (3.38). To obtain ρ directly, one must cut open the path integral across the time slice t = t0 on which A
resides. Strictly speaking, this will only yield a density matrix if the configuration is symmetric under time reversal
about t0.
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The coefficients C1(p) and C2(p) take specific forms depending on the boundary conditions imposed.
For the standard time-ordered correlators, we impose regularity as z → ∞, which sets C1(p) =
0 ∀ p. At the wall, we must enforce the Dirichlet condition

ϕ(p, z̄) = ˜̄ϕ(p) , with ˜̄ϕ(p) ≡
∫
ddx ϕ̄(x)e−ip·x . (3.51)

This determines C2(p), singling out the momentum-space solution

ϕ̃cl(p, z) =
(z
z̄

) d
2 K∆− d

2
(pz)

K∆− d
2
(pz̄)

˜̄ϕ(p) . (3.52)

With this solution, we can evaluate the on-shell action. The result can be expressed as a surface
term at z = z̄,

IIR[ϕ̄] =
1

2

∫
∂R

ddx
√
hnmϕcl∂mϕ

cl , (3.53)

with h the induced metric and n the outward unit normal. In momentum space, this is

IIR[ϕ̄] = − Ld−1

2z̄d−1

∫
ddp

(2π)d
ϕ̃cl(−p, z)∂zϕ̃cl(p, z)

∣∣∣
z=z̄

. (3.54)

The derivative in the integrand can be evaluated explicitly, obtaining

∂zϕ̃
cl
∣∣∣
z=z̄

= ∂z

((z
z̄

) d
2 K∆− d

2
(pz)

K∆− d
2
(pz̄)

)∣∣∣∣∣
z=z̄

˜̄ϕ(p) . (3.55)

At this point, it is convenient to define

Ŵϕ̄(x) ≡ − z̄

L

∫
ddp

(2π)d
∂z

((z
z̄

) d
2 K∆− d

2
(pz)

K∆− d
2
(pz̄)

)∣∣∣∣∣
z=z̄

˜̄ϕ(p)eip·x . (3.56)

Using this in (3.53), we are left with

IIR[ϕ̄] =
1

2

∫
z=z̄

ddx
√
h ϕ̄(x)Ŵϕ̄(x) . (3.57)

Note that this is a nonlocal expression, because, as seen in (3.56), the operator Ŵ acts on ϕ̄(x)
with an infinite series of spacetime derivatives.

The boundary term (3.57) encodes the information of the classical profile of the scalar field
in the IR region of the bulk, z > z̄. As explained in the previous section, this term supplements
the action in the UV region, and determines the suitable boundary condition for the field ϕ at
z = z̄. This guarantees the coincidence between correlators computed with the reduced geometry
and those obtained from the complete spacetime.

To see this explicitly, notice that variation of the effective action for the UV region, Ieff ≡
Ibulk[ϕ] + IIR[ϕ̄] + IUV[ϕ], yields the following boundary terms at z = z̄:

δIeff ⊃
∫
z=z̄

ddx
√
hnm∂mϕδϕ+

1

2

∫
z=z̄

ddx
√
hδϕŴϕ+

1

2

∫
z=z̄

ddx
√
hϕŴδϕ . (3.58)

We then need to integrate by parts the final term, but the nonlocal nature of the operator Ŵ
makes this a bit nontrivial in the position-space representation. We will return to this point
in the next subsection. Here, it is simplest to change to the momentum-space representation,
ϕ(x, z) =

∫
ddp
(2π)d

ϕ̃(p, z)eip·x. Using (3.56), we see then that the vanishing of (3.58) implies that
one of the following two boundary conditions must hold:

Dirichlet (IR) ϕ̃(p, z)|z=z̄ = ˜̄ϕ(p) , (3.59)

Neumann (IR) ∂zϕ̃(p, z)
∣∣∣
z=z̄

= ∂z

((z
z̄

) d
2 K∆− d

2
(pz)

K∆− d
2
(pz̄)

)∣∣∣∣∣
z=z̄

ϕ̃(p, z̄) . (3.60)
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These two alternatives are appropriate before and after performing the Dϕ̄ path integral, re-
spectively. Since one can exchance the order of the integrals, one find an equivalence between the
Dirichlet and Neumann approaches for the case of a free bulk scalar field on a general background.
In our pure AdSd+1 analysis here, we will focus on illustrating the Neumann approach, which is
the more efficient of the two. Our task is then to enforce (3.60) at the wall, together with the
standard Dirichlet condition at the AdS boundary,

Dirichlet (UV) ϕ̃(p, z)|z=ϵ = ϵd−∆ϕ̃(p) . (3.61)

A general momentum-space solution to (3.49) is given by (3.50). Applying it in conjunction
with (3.60) and (3.61), we deduce that

ϕ(x, z) =

∫
ddp

(2π)d

(z
ϵ

) d
2 K∆− d

2
(pz)

K∆− d
2
(pϵ)

ϕ̃(p)eip·x , (3.62)

which as expected, is exactly equal to the solution in the entire spacetime with the same boundary
condition at z = ϵ and the regularity condition at the Poincaré horizon. This result confirms that
the role of the boundary term, obtained via the Wilsonian reduction of the IR, is to keep the
memory of the information of that region, by supplying the correct boundary conditions at the
interface.

3.5.2 General recipe
In the preceding subsection, we performed a reduction to a region of the spacetime delimited
by a wall at z = z̄ (which becomes then the location of the EOW brane that arises from the
reduction). In that example, translational symmetry greatly simplifies the task of finding an explicit
solution of the Klein-Gordon equation with the prescribed boundary conditions. Nevertheless, our
rememorization procedure can be applied to more general regions in the bulk. The example that
was the initial motivation for this work is the entanglement wedge E associated with a spatial
region A in the CFT, described in Section 3.4.2. In that context, the reduction is performed over
the exterior of the entanglement wedge, Ec.

In the most general case, one reduces to some spacetime region R in the bulk of an asymp-
totically locally AdS spacetime, which delineates some spacetime region R in the boundary. At
large c, the saddle point evaluation translates into a linear PDE problem with arbitrary Dirichlet
boundary conditions on the specified interface.

In more detail, within Rc we ought to solve(
□−M2

)
ϕ(xm) = 0 , (3.63)

with boundary condition

ϕ(x, z) = ϕ̄(x) if (x, z) ∈ ∂R , (3.64)

where R denotes the interface between R and Rc (the eventual location of the EOW brane), and
ϕ̄ is a specific but arbitrary profile. If the boundary of Rc has other components aside from R,
appropriate boundary conditions must be specified there as well. For instance, if R = E is the
entanglement wedge in Poincaré AdS associated with a causal diamond D in the CFT, then we
must turn off the source J(x) in Dc, and pick boundary conditions at the Poincaré horizon (e.g.,
regularity in the Euclidean description, which is appropriate if we wish to compute the time-ordered
correlators).

We can obtain a general solution to the problem if we first tackle the problem of finding the
associated Green’s function(

□−M2
)
G(xm, x′m) =

1√
|g|
δ(xm − x′m) , (3.65)

with the requirement that

G(xm, x′m) = 0 if xm ∈ ∂(Rc) . (3.66)

In the following, we will specify the prescription to compute ϕ(xm) given G(xm, x′m).
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With the help of Green’s identities, we can prove the following modification that incorporates
the Klein-Gordon operator [215]:∫

M
dDx′

√
|g|
{
v
(
□−M2

)
u− u

(
□−M2

)
v
}
=∫
∂M

dD−1x′
√
|h| (vnm∂mu− unm∂mv) , (3.67)

where u and v are two smooth functions defined in M, hab is the induced metric on the boundary
∂M and nm is the outward-pointing normal to ∂M. The previous expression is stated in general
notation, but for our purposes, we identify M with Rc, and set the dimension to d + 1. If we
replace u = ϕ and v = G, then Eq. (3.67) simplifies enormously. The first term in the left-hand
side gives zero contribution since ϕ is assumed to be a solution to (3.63), while the second term
gives the value of the field at x′. In the right-hand side, the boundary conditions of the Green’s
function make the first term vanish. Therefore, we obtain6

ϕ(xm) =

∫
R
ddx′

√
h(x′) ϕ̄(x′)nm∂mG(x

′, x) . (3.68)

This expression is convenient, since its dependence on the boundary condition is manifest, and the
evaluation of the Green’s function can at least be carried out numerically.

Substitution of (3.68) in (3.53) gives

IIR[ϕ̄] =

∫
R
ddxddx′

√
h(x)

√
h(x′)nl(x)nm(x′)∂l∂mG(x, x

′)ϕ̄(x)ϕ̄(x′). (3.69)

Note here that the crucial information of the region that has been integrated out, Rc, is encoded
in the Green’s function G, because the profile ϕ̄ is arbitrary. The resulting effective action in R is
thus

IReff = Ibulk[ϕR] + IIR[ϕ̄] + IUV[ϕ] . (3.70)

Consider now the variational principle based on IReff . As usual, variation of the bulk term gives
rise to a term that is proportional to the EOM and a term that is related to the normal derivative
of the field at the interface. Variation of IIR gives

δIIR[ϕ̄] =

∫
R
ddxddx′

√
h(x)

√
h(x′)nl(x)nm(x′) [∂l∂mG(x, x

′)

+∂l∂mG(x
′, x)] ϕ̄(x′)δϕ̄(x) . (3.71)

Based on the form of this expression, it is convenient to define the nonlocal operator

Ŵϕ(x) ≡
∫
R
ddx′

√
h(x′)nl(x)nm(x′) [∂l∂mG(x, x

′) + ∂l∂mG(x
′, x)]ϕ(x′) . (3.72)

Using this, we can rewrite the variation of the infrared action as

δIIR[ϕ̄] =

∫
∂EA

ddx
√
hŴϕ̄δϕ̄ . (3.73)

The boundary variation (3.73), supplemented with the variation of the bulk term, gives rise
again to (3.58), now with a more general definition for the operator Ŵ. From this line of reasoning,
we see then that Ŵ is a key piece of information of the reduction. In the end, we deduce the
following two alternative boundary conditions for the field:

Dirichlet (IR) ϕ(x)|R = ϕ̄(x) , (3.74)

Neumann (IR) nmmϕ(x)|R = Ŵϕ(x) . (3.75)

The former is called for prior to carrying out the Dϕ̄ path integral, and the latter is enforced
as a result of that integral. Eq. (3.75) it shows that through (3.72), the determination of the

6For brevity, we assume here that ϕ is meant to have vanishing boundary conditions on (Rc) \R. Were this not
the case, there would be an additional, ϕ̄-independent term in (3.68). This would not change anything essential in
what follows.
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appropriate Neumann boundary condition and the resulting IR action for general R has been
reduced to finding the Green’s function G satisfying (3.66). The compact form of our notation
should not obscure the fact that (3.75) is a nonlocal boundary condition, because Ŵ denotes the
convolution (3.72).

The geometric interpretation of (3.75) is as follows. In the saddle-point approximation, the
full partition function (3.46) is entirely determined by the solution ϕcl that interpolates between
the prescribed UV boundary condition ϕ(x) and the appropriate IR condition (e.g., in Euclidean
AdS, regularity at what would have been the Poincaré horizon). After rememorizing, the role of
IIR is to pick out the same solution ϕcl purely within R. Across R, this solution is continuous, and
its normal derivative is also continuous. But when we split the path integral into the portions on
R and Rc, and prior to carrying out the integral over ϕ̄, the normal derivatives of the inner and
outer saddles do not match. The net result of the Dϕ̄ integral is to enforce the boundary condition
(3.75), which is precisely the statement that the two normal derivatives match. This ensures that
we have found ϕcl. Since this solution was originally picked out by standard boundary conditions
at the IR and UV ends of the full geometry, it naturally does not satisfy any simple requirement
on the intermediate surface R. This explains the nonlocal nature of (3.75): the correct normal
derivative at any given point depends on the value of ϕ̄ all over ∂R.

3.5.3 Conclusions
In this project, we dive into the problem of finding the correct prescription for computing holo-
graphically CFT correlators using the gravitational information inside the entanglement wedge.
We emphasized that the GKPW prescription is insufficient to calculate those correlators because
the path integral required for that computation involves the sum over field configuration whose
domain is outside the entanglement wedge. Therefore, it was necessary to implement the Wilso-
nian renormalization technique in a non-standard way to replace the previously mentioned path
integral with an equivalent calculation considering the sum of field configurations supported inside
the desired region. The result of applying this procedure generates a boundary term, IIR, that
keeps the memory of whatever is included in the entanglement wedge complement. This opens the
possibility of interpreting IIR as the remnant of a possible purification.

Our application of the Wilsonian renormalization technique involved the computation of the
path integral for fields supported in the complement of the desired region. At first for simplicity,
we considered the Wilsonian reduction for computing CFT correlators considering a wall at z = z̄.
This type of reduction can be understood as a density matrix reduction in momentum space given
the fact that z = z̄ is related to the energy cutoff in the CFT [140]. Additionally, in [187] we
analyzed the two-point function for operators with large conformal dimensions, namely ∆ ≫ d.
Holographically, it is possible to calculate the two-point function using the length of a geodesic in
the bulk that has both of its endpoints located on the AdS boundary. The two-point function can
be calculated by exponentiating the length of that geodesic. Our now ’rememorization’ technique
has much wider applicability than what was observed in [187]. In particular, it would be interesting
to apply it in the context of black hole geometries, to obtain an effective description of the exterior
region in the spirit of the membrane paradigm [139].
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