

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS BIOLÓGICAS

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA SISTEMATICA

SISTEMATICA FILOGENETICA DEL COMPLEJO ELAPHOGLOSSUM PETIOLATUM

(DRYOPTERIDACEAE)

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR(A) EN CIENCIAS

PRESENTA:

ANA GABRIELA MARTINEZ BECERRIL

TUTOR(A) PRINCIPAL DE TESIS: DR. ELOY SOLANO CAMACHO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA, UNAM COMITÉ TUTOR: DRA. TERESA. M. TERRAZAS SALGADO INSTITUTO DE BIOLOGIA, UNAM DR. DAVID SEBASTIAN GERNANDT INSTITUTO DE BIOLOGIA, UNAM

CIUDAD DE MÉXICO

ENERO 2023

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

COORDINACIÓN DEL POSGRADO EN CIENCIAS BIOLÓGICAS

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

OFICIO CPCB/1091/2022

ASUNTO: Oficio de Jurado

M. en C. Ivonne Ramírez Wence Directora General de Administración Escolar, UNAM P r e s e n t e

Me permito informar a usted que en la reunión ordinaria del Comité Académico del Posgrado en Ciencias Biológicas, celebrada el día **19 de septiembre de 2022** se aprobó el siguiente jurado para el examen de grado de **DOCTORA EN CIENCIAS** de la estudiante **MARTÍNEZ BECERRIL ANA GABRIELA** con número de cuenta **303286383** con la tesis titulada "**SISTEMÁTICA FILOGENÉTICA DEL COMPLEJO ELAPHOGLOSSUM PETIOLATUM (DRYOPTERIDACEAE)**", realizada bajo la dirección del **DR. ELOY SOLANO CAMACHO**, quedando integrado de la siguiente manera:

Presidente:	DR. ALFONSO OCTAVIO DELGADO SALINAS
Vocal:	DR. JOSÉ DANIEL TEJERO DIEZ
Vocal:	DR. DAVID SEBASTIAN GERNANDT
Vocal:	DRA. NATALIA IVALÚ CACHO GONZÁLEZ
Secretario:	DRA. ROSALINDA TAPIA LÓPEZ

Sin otro particular, me es grato enviarle un cordial saludo.

A T E N T A M E N T E "POR MI RAZA HABLARÁ EL ESPÍRITU" Ciudad Universitaria, Cd. Mx., a 24 de noviembre de 2022

COORDINADOR DEL PROGRAMA

DR. ADOLFO GERARDO NÁVARRO SIGÜENZA

AGRADECIMIENTOS INSTITUCIONALES

- -Agradezco al Posgrado en Ciencias Biológicas (PCB) de la Universidad Nacional Autónoma de México (UNAM) y a la Facultad de Estudios Superiores Zaragoza (FESZ), por permitirme realizar mi investigación doctoral.
- -Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por el apoyo económico brindado a través de la beca número: 508729 durante el tiempo que cursé el programa de estudios de Doctorado (2018-2022).
- -Al programa de apoyo a los estudios de posgrado (PAEP) del PCB, UNAM, por el apoyo financiero otorgado para mi participación en los cursos: "Bodega Applied Phylogenetics Workshop" en Bodega Bay, California, EUA (2019) y "Redacción Científica" Organización para Estudios Tropicales, Costa Rica (on line, 2020).
- -A la *American Society of Plant Taxonomist* (ASPT) por el financiamiento para la realización de trabajo de campo (2018).
- -A la International Association for Plant Taxonomy (IAPT) por los recursos otorgados para cubrir los gastos de la investigación de herbario (2020).
- -A la *American Fern Society* (AFS) y a la *Pteridological Section* de la *Botanical Society of America* (BSA) por el premio otorgado durante el congreso *Botany* 2021.
- -Al *Botanical Research Institute of Texas* (BRIT) por las facilidades que me dieron para avanzar en mi investigación durante la contingencia sanitaria.

- -A mi tutor, Dr. Eloy Solano Camacho (1955-2021), quien dejó un enorme legado en esta Universidad, por acercarme al mundo de las plantas, por permitirme ser se parte de su proyecto docente y por aceptar dirigir este trabajo.
- -A los miembros de mi comité tutoral: Dra. Teresa Terrazas y Dr. David Gernandt por su orientación y respaldo durante la realización de este trabajo.
- -A la Dra. Alejandra Vasco del BRIT, experta en el género de helechos que trabajé, por su infinito y valioso acompañamiento durante todo mi Doctorado.
- -A los miembros del jurado, por el tiempo que invirtieron revisando este escrito y por sus acertadas sugerencias y comentarios.

AGRADECIMIENTOS PERSONALES

Hasta este momento de mi vida nada me había resultado tan complicado y agradable como la realización de esta investigación. El proceso estuvo lleno de retos y fue un constante ejercicio de crecimiento y aprendizaje académico y personal. Debo reconocer que la culminación de este trabajo representa la conjunción y materialización del gran apoyo que me brindaron asesores, colegas y colaboradores alrededor del mundo y por supuesto, mi querida familia y mis amigos. No podía ser de otro modo.

Por ello, considero un deber honrar y agradecer a quienes, con su disposición y buena voluntad, hicieron de este proyecto una valiosa contribución a la pteridoflora neotropical y transformaron esta etapa de mi vida en una de las más felices y satisfactorias.

- Quiero comenzar agradeciendo a la Dra. Alejandra Vasco o "Alita", experta en el género de helechos que trabajé, quien a pesar de no formar parte del comité tutoral oficial por cuestiones burocráticas, llevó a cabo la supervisión de cada paso de la investigación con la mejor actitud e infinita paciencia. Invirtió incontables días en la revisión y corrección del manuscrito final, las propuestas de becas, los artículos científicos y las versiones previas de cada uno (las cuales, siendo honesta, en su momento parecían no tener fin). Su acompañamiento y apoyo fue crucial en el desarrollo de este trabajo y en la búsqueda y obtención de los recursos financieros que cubrieron los gastos de salidas a campo y secuenciación de ADN. Agradezco su generosidad, calidez y empatía, pero, sobre todo, agradezco la confianza que depositó en mí. Fue ella quien me abrió las puertas de la pteridología a nivel internacional y además, me permitió entrar en su vida y en la de su familia. Gracias al apoyo que me brindaron ella y su esposo, David Hernández, puede realizar el trabajo de herbario que me permitió concluir en tiempo y forma este proyecto. Trabajar a la distancia fue uno de los recos más grandes que enfrentamos, pero gracias a su

compromiso y dedicación como científica y maestra, encontramos el ritmo y jamás lo perdimos, ni siquiera cuando llegó la pandemia. Aunque confieso que jamás le pude igualar el paso, aprendimos a avanzar juntas. ¡Gracias por tanto, Alita!

-Al Dr. Eloy Solano Camacho, "el Doc" (1955-2021), quien aceptó dirigir este proyecto doctoral en estrecha colaboración con la Dra. Alejandra. A él, agradezco su acompañamiento durante todas las etapas de mi vida académica y la motivación que siempre me brindó para continuar en el camino de la botánica. El Universo nos sorprendió y no hubo tiempo para despedirnos ni para que viera este trabajo terminado, pero espero que donde quiera que esté se sienta orgulloso de las contribuciones que dejó esta investigación en el conocimiento de la diversidad de pteridofitas de México y el Neotrópico.

-A Robbin Moran (*The New York Botanical Garden*), uno de los mejores pteridólogos de todos los tiempos, agradezco su calidez y disposición para compartir conmigo sus saberes y la manera en que me ha hecho sentir parte del mejor equipo de pteridólogos del mundo. Sus acertados comentarios permitieron perfeccionar este trabajo y su ayuda con la nomenclatura de las especies y con la latinización del nombre de la especie nueva fue fundamental. Además, participar en el curso de helechos y licofitas que impartía en Costa Rica ha sido una de mis mejores experiencias académicas y de vida.

-Este trabajo no hubiera sido posible sin la ayuda de los curadores de las colecciones de los herbarios nacionales y extranjeros: B, BRIT, CHAPA, IEB, F, K, MEXU, MO, NY, P, STR, UC, UCR, US, VT, quienes nos facilitaron los préstamos de ejemplares y nos asistieron en la búsqueda y localización de algunas colecciones perdidas. En especial, agradezco a Tiana Rehman (BRIT) por la ayuda con el envío internacional de ejemplares y por todas las facilidades brindadas durante mi paso por el BRIT; a Germinal Rouhan (P), Robert Vogt, Katharina Rabe y Brigitte Zimmer (B), Edie Burns (K), Marion Martinez (STR) y María del Rosario García Peña (MEXU) por escanear los ejemplares y enviarnos las imágenes en alta resolución que necesitábamos.

-Berenit Garfias (IBUNAM) y Marsha Stripes (BRIT) fueron las encargadas de tomar las increíbles fotografías de esporas en el microscopio electrónico de barrido. Cristóbal Sánchez, el autor del dibujo de la especie nueva, agradezco su divertida amistad y su entusiasmo para colaborar. A Magdalena Ayala y al maestro Ramiro Ríos de la FES Zaragoza y al Dr. Daniel Tejero y sus alumnos de la FES Iztacala les agradezco haberme acompañado a campo. Gracias a Weston Testo (The Field Museum Chicago) por el soporte técnico, las clases de bioinformática y por compartirnos sus scripts. A Josmaily Lóriga (Ludwig-Maximilians-University of Munich) por enviarnos los datos sobre E. petiolatum de Cuba. A Claudine Mynnsen (Instituto de Pesquisas Jardim Botânico do Rio de Janeiro) por su disposición para consultar ejemplares y referencias brasileñas. A Jefferson Prado (Instituto de Pesquisas Ambientais São Paulo, Brazil) por ayudarnos a entender la nomenclatura e historia taxonómica de las especies. A Peter Fristch (BRIT) por la traducción de los protólogos en latín y por apoyar mi visita de trabajo en el BRIT. A Fernando Matos por sus sensatos comentarios que nos ayudaron a mejorar este trabajo y por compartirnos algunos scripts que facilitaron la elaboración de gráficos. A Laura Calvillo (IBUNAM), por su amistad y por llenarme de buenas vibras siempre. Al maestro Faustino Barrera por el apoyo que me brindó después de la partida del Doc.

-Gracias a los integrantes de la Colección Nacional de Ácaros del IBUNAM, por adoptarme, hacerme un espacio en su laboratorio y siempre compartirme café, galletas, amaranto y dulces. -A mi tribu, mis amig@s que tanto admiro y adoro: Bren, Ere, Viri, Yikal, Edgar y Miguel Vargas, quienes siguen a mi lado a pesar de los años y de la distancia kilométrica o la que nuestras infinitas actividades han provocado.

-A Sophi y Rick quienes me apoyan infinitamente y quienes durante el desarrollo de este proyecto aprendieron, o al menos se resignaron, a prescindir de mi presencia en muchas ocasiones. Sobre todo, durante los larguísimos meses que estuvimos separados mientras trataba de terminar este trabajo en E.U.A. A ellos todo mi amor y gratitud con un poco de inevitable culpa.

-A mi mamá, Alejandra Becerril, por absolutamente TODO. Mi amor infinito y eterna admiración.

-A mi abuelita Tere, por su apoyo incondicional.

-A mi papá, José Arturo, quien se resignó a tener una hija "rebelde" que nunca está en casa.

-A toda mi familia, porque existen y me hacen muy feliz.

-A los que ya no están, pero siguen en mí: mis abuelitos Ana, Ángel y José. A Dany, Juan y Chabela porque a diario pienso en ustedes.

-Finalmente agradezco y me disculpo con aquellas personas que, de manera involuntaria, pude haber omitido en esta lista. En ocasiones mi naturaleza distraída supera mi buena voluntad, pero siempre es sin querer.

DEDICATORIA

a todas las MUJERES.

a quienes aman la vida y además la estudian.

a quienes por causa o destino están leyendo esto.

ÍNDICE

•	Resumen pág. 1
•	Abstract pág. 3
•	Introducción general pág. 5
•	Capítulo I. Systematics of the <i>Elaphoglossum petiolatum</i> complex pág.17
•	Capítulo II. Spore morphology of the Mexican species of the <i>Elaphoglossum petiolatum</i>
	complex pág. 59
•	Capítulo III. Taxonomic revision of the <i>Elaphoglossum petiolatum</i> clade pág. 73
•	Capítulo IV. Elaphoglossum auralolitae, a new species of Elaphoglossum sect.
	Lepidoglossa from Guatemala pág. 138
•	Discusión general pág. 158
•	Conclusiones pág. 164
•	Literatura pág. 165

RESUMEN

Elaphoglossum (Sw.) Urb. es un género de helechos considerado megadiverso debido a su riqueza calculada en 600 especies aproximadamente. El género se distingue fácilmente de otros helechos por sus láminas simples, rara vez divididas, con dimorfismo entre hojas estériles y fértiles, venas libres y soros acrosticoides.

La clasificación infragenérica de *Elaphoglossum* reconoce siete clados principales o secciones (sec.), de las cuales una de las que presenta mayor riqueza es la sec. *Lepidoglossa* con cerca de 200 especies. Dentro de esta sección, se ubica un grupo de 11 especies con morfología similar, denominado complejo de *Elaphoglossum petiolatum*. Las especies de este grupo comparten características como escamas del rizoma obscuras con márgenes enteros, escamas de la porción proximal de los pecíolos con ápice oscuro, escamas de la lámina planas o estrelladas y puntos resinosos en la parte inferior de las láminas. La taxonomía y delimitación de las especies del complejo no está bien definida debido a que existen pocos caracteres diagnósticos, hay una gran variación en los caracteres morfológicos y no existen trabajos filogenéticos moleculares sobre el grupo.

Algunas filogenias moleculares previas que no incluyeron todas las especies del complejo sugieren que éste no es un grupo monofilético, sin embargo, las especies mexicanas que hacen parte de él se recuperan en el mismo clado. No obstante, la representación de especies mexicanas en la filogenia es escasa.

El presente estudio tuvo como objetivos principales: I) probar la monofilia del complejo de *Elaphoglossum petiolatum* incrementando el muestreo de sus especies y de los representantes mexicanos en la filogenia general de *Elaphoglossum*, II) conocer las relaciones entre las especies del complejo y III) elaborar la monografía del grupo monofilético que resultará de los análisis moleculares. Para ello, se realizaron dos análisis

1

filogenéticos utilizando secuencias de marcadores de cloroplasto, $atp\beta$ -rbcL, rps4-trnSytrnL-trnF, y se analizó la morfología de las especies involucradas, incluida la de las esporas. Los resultados de esta investigación están divididos en cuatro capítulos:

Capítulo I. Systematics of the *Elaphoglossum petiolatum* complex (Dryopteridaceae). Este capítulo se enfocó en poner a prueba la monofilia del complejo de *E. petiolatum* utilizando las secuencias de ADN del cloroplasto e incrementando la representación tanto de las especies del complejo como de los representantes mexicanos del género en la filogenia general. Los resultados confirman que el complejo no es un grupo natural, pero se recuperó un grupo monofilético que incluye las especies mexicanas. Este clado, nombrado aquí "clado de *E. petiolatum*", representa el objeto de estudio en los siguientes capítulos.

Capítulo II. Spore morphology of the Mexican species of the *Elaphoglossum petiolatum* complex (Dryopteridaceae). En este capítulo se analizó la morfología de las esporas de las especies que integran el "clado de *E. petiolatum*". Se encontraron caracteres morfológicos con valor taxonómico que ayudan a reconocer algunas especies del clado.

Capítulo III. Taxonomic revision of the *Elaphoglossum petiolatum* clade (Dryopteridaceae). Este capítulo corresponde con el tratamiento taxonómico de las especies que integran clado de *E. petiolatum* definido con base en la evidencia molecular del primer capítulo. Este trabajo provee una clave dicotómica, descripciones ilustradas, sinonimia, mapas de distribución y notas nomenclaturales para todas las especies del clado.

Capitulo IV. *Elaphoglossum auralolitae*, a new species of *Elaphoglossum* sect. *Lepidoglossa* (Dryopteridaceae) from Guatemala. Se describe una nueva especie de *Elaphoglossum* endémica de Guatemala que pertenece al "clado de *E. petiolatum*".

ABSTRACT

Elaphoglossum (Sw.) Urb. is a fern genus considered megadiverse due to its richness estimated at ca. 600 species. The genus is easily distinguished from other ferns by its simple, rarely divided laminae, with dimorphism between sterile and fertile leaves, free veins, and acrostichoid sori.

The infrageneric classification of *Elaphoglossum* recognizes seven main clades or sections (sect.), one of those with more richness is sect. *Lepidoglossa* with about 200 species. Within this section, there is a group of 11 species with similar morphology, called the *Elaphoglossum petiolatum* complex. Species belonging to this group share characteristics such as dark rhizome scales with entire margins, proximal petiole scales with dark apex, flat or stellate blade scales, and resinous dots on the abaxial laminar surface. The taxonomy and delimitation of the species that are part of the complex are not well defined due to there being few diagnostic characters, there is a great variation in the morphological characters and there are no molecular phylogenetic works on this complex.

Previous molecular phylogenies that do not include all the species of this complex suggest it is not a monophyletic group but, the Mexican species that belong to the complex were recovered in the same clade. Nevertheless, Mexican species are not well represented in the phylogenies of the genus.

The main aims of this study were: I) to test the monophyly of the *Elaphoglossum petiolatum* complex by increasing the sample of its species and the Mexican representants in the global phylogeny of *Elaphoglossum*, II) to know the phylogenetic relationships among the species of the *E. petiolatum* complex and III) to carry out the monograph of the monophyletic group resulting of the molecular analyses. To reach all these aims, we carried out two phylogenetic analyses using sequences of chloroplast markers, *atpβ-rbcL*, *rps4-trnS*

3

and *trnL-trnF*, and we analyzed the morphology of the species involved and its spores. The results of this research are divided into four chapters:

Chapter I. Systematics of the *Elaphoglossum petiolatum* complex

(Dryopteridaceae). This chapter focused on testing the monophyly of the *E. petiolatum* complex using chloroplast DNA sequences and increasing the representants of both the complex species and the Mexican species of the genus in the overall phylogeny. The results show that the complex is not a natural group, but a monophyletic group that includes the Mexican species was recovered. This clade named here "*E. petiolatum* clade", is the object of study in the following chapters.

Chapter II. Spore morphology of the Mexican species of the *Elaphoglossum petiolatum* complex (Dryopteridaceae). In this chapter, we analyze the morphology of the spores of the species belonging to the "*E. petiolatum* clade". We found some morphological characters with a taxonomic value that helped distinguish some species of the clade.

Chapter III. Taxonomic revision of the *Elaphoglossum petiolatum* clade (Dryopteridaceae). This chapter corresponds to the taxonomic treatment of the species belonging to the "*E*. petiolatum clade", the monophyletic group defined based on the molecular evidence of the first chapter. This work provides a dichotomous key, illustrated descriptions, synonymy, distribution maps, and nomenclatural notes for all the species of the clade.

Chapter IV. *Elaphoglossum auralolitae*, a new species of *Elaphoglossum* sect. *Lepidoglossa* (Dryopteridaceae) from Guatemala. We describe a new species of *Elaphoglossum* endemic to Guatemala that belongs to the "*E. petiolatum* clade".

INTRODUCCIÓN GENERAL

Los helechos son el segundo grupo de plantas vasculares con mayor riqueza en el mundo tan solo detrás las plantas con semilla, las cuales también representan su grupo hermano (Pryer et al., 2001; Barker y Wolf, 2010; Moran, 2018). Se conocen aproximadamente 12,000 especies de helechos distribuidas en todos los ecosistemas del mundo, pero con mayor representación en los trópicos.

Entre los géneros de helechos con mayor riqueza se encuentra *Elaphoglossum* (Sw.) Urb. con al menos 600 especies aceptadas, pero con más de 1000 descritas (Moran, 2018; PPG I, 2016; Rouhan, 2020). Las especies de este género se distribuyen en las zonas tropicales de todo el mundo, pero al menos ³/₄ del total de especies conocidas se encuentra en los trópicos de América (Fig.1) (Mickel, 1995; Moran, 2018; Moran et al., 2010). *Elaphoglossum* se distingue fácilmente de otros helechos por sus láminas simples, rara vez divididas (sólo seis especies presentan láminas divididas), con dimorfismo entre hojas estériles y fértiles, venas libres y soros acrosticoides (Fig. 2). La mayoría son epífitas, pero también las hay terrestres y rupícolas (Mickel y Atehortúa, 1980; Moran 2018; Moran et al., 2007; Moran et al., 2010; Vasco et al., 2009a; Vasco et al., 2013; Rouhan et al., 2020).

Las primeras especies de *Elaphoglossum* se describieron como parte de *Acrostichum* L., un género que agrupaba especies con soros acrosticoides. En1834 Heinrich Wilhelm Schott reconoció por primera vez el género *Elaphoglossum*, sin embargo, no elaboró una descripción lo que dificultó que el nombre fuera fácilmente aceptado. Por lo anterior, en muchas especies y en los primeros tratamientos taxonómicos que se elaboraron para el género se siguió utilizando el nombre de *Acrostichum*. (Mickel y Atehortúa, 1980).

Figura 1. Distribución general de las especies de Elaphoglossum.

La descripción formal de *Elaphoglossum* la realizó John Smith en 1841, quien transfirió a este género seis especies de *Acrostichum* que diferían morfológicamente del tipo (*Acrostichum aureum* L.) (Mickel y Atehortúa, 1980). El primer tratamiento taxonómico conocido para *Elaphoglossum* fue preparado por Fée (1845) aunque este se realizó aún bajo el nombre de *Acrostichum*. En este trabajo, Fée reconoció dos grupos infragenéricos principales: *Oligolepideae* y *Polylepideae*, mismos que subdividió con base en el tamaño de la hoja. Posteriormente, Fée (1852) decidió reordenar al género y utilizar cuatro grupos sin subdivisiones: *Oligolepideae, Polylepideae, Pilosellae* y *Chromatolepideae* (Mickel y Atehortúa, 1980).

Las combinaciones posteriores las realizó Moore (1857 a,b,c; 1862) quien separó al género en dos grupos, *Oligolepidum* y *Polylepidum*, de acuerdo con la cantidad de escamas de la lámina. A esta clasificación le sucedieron la de Sodiro (1897) y la de Diels (1899). Sodiro (1897) reconoció ocho subgrupos dentro del género, pero también siguió tratándolo como *Acrostichum*, y Diels (1899) nombró dos secciones: *Eu-Elaphoglossum* y

Hymenodium en las que acomodó la mayoría de los grupos propuestos por Sodiro, a los que asignó la categoría de subsecciones.

Figura 2. Representación de la morfología de las especies de *Elaphoglossum. A. E. lanceum* Mickel (Sundue 3472). B. *E. macrophyllum* (Mett. ex Kuhn) Christ (Nathan Smith 255_0296). C. *E. potosianum* Christ (Martínez-Becerril 399). A y B tomadas de www.fernsoftheworld.org.

En 1899 el abogado y botánico alemán Hermann Christ llevó a cabo el único trabajo monográfico para *Elaphoglossum* que abarcó todas las especies descritas hasta entonces. El trabajo incluyó el estudio minucioso de las 142 especies conocidas en ese momento y su clasificación en 32 grupos de acuerdo con características morfológicas como el tipo de venación, tipo de escamas de la lámina, tamaño de la hoja y el hábito del rizoma. Aunque estos grupos eran diagnosticables y fácilmente reconocibles, el trabajo no incluyó una clave de identificación para cada uno.

Posterior a la monografía de Christ, los trabajos sobre el género se limitaron a la descripción de nuevas especies, hasta que en 1980 Mickel y Atehortúa publicaron una nueva clasificación infragenérica. En esta clasificación, dividieron a *Elaphoglossum* en grupos con base en características morfológicas como el hábito del rizoma, el tipo y color

de las escamas del rizoma y la lámina, la textura y forma de la hoja, la presencia o ausencia de hidátodos y filopodios y la micromorfología de las esporas. De esta manera, los autores reconocieron nueve secciones y 21 subsecciones dentro del género, algunas de las cuales ya habían sido propuestas previamente por Christ (1899).

En las últimas dos décadas nuestra comprensión sobre la diversidad y las relaciones evolutivas dentro *Elaphoglossum* ha cambiado debido a la evidencia que han aportado los datos moleculares (Rouhan et al., 2004; Skog et al., 2004; Liu et al., 2007; Vasco et al., 2009b; Lóriga et al., 2014). Es así como la monofilia de *Elaphoglossum* y su posición como grupo hermano del género *Mickelia* R. C. Moran, Labiak & Sundue y dentro el clado bolbitidoide, subfamilia *Elaphoglossoideae* (Pic. Serm.) Crabbe, familia Dryopteridaceae están fuertemente respaldadas y dentro de su división infragenérica se reconocen siete secciones (sec.) monofiléticas: 1) *Elaphoglossum* sec. *Amygdalifolia* (Christ) Mickel y Atehortúa; 2) sec. *Wrightiana* J. Lóriga, A. Vasco, L. Regalado, Heinrichs y R.C. Moran; 3) sec. *Elaphoglossum*, 4) sec. *Squamipedia* Mickel y Atehortúa; 5) sec. *Polytrichia* Christ; 6) sec. *Setosa* (Christ) Mickel y Atehortúa; y 7) sec. *Lepidoglossa* Christ (Fig. 3) (Skog et al., 2004; Rouhan et al., 2004; Lóriga et al., 2014).

Seis de estos clados se corresponden con las secciones propuestas previamente por Mickel y Atehortúa (1980) y el séptimo fue descrito en 2014 como una sección monotípica (Rouhan et al., 2004; Skog et al., 2004; Moran et al., 2010; Lóriga et al., 2014; Liu et al., 2016; PPGI, 2016).

Figura 3. Representación gráfica de la clasificación infragenérica del género *Elaphoglossum* en siete secciones. El tamaño de los triángulos es proporcional a la riqueza de especies dentro de cada sección.

El conocimiento geográfico y taxonómico sobre el género se ha incrementado en los últimos 30 años debido a revisiones para floras locales, por ejemplo, en Sudáfrica (Roux, 1982), Perú (Mickel, 1991), Mesoamérica (Mickel, 1995a), Venezuela (Mickel, 1985, 1995b), México (Mickel y Smith, 2004), África Oriental Tropical (Mickel, 2002), Hawái (Palmer, 2003), Islas Mascareñas (Lorence y Rouhan, 2004), Polinesia Francesa (Rouhan et al., 2008), África, Macronesia, y las Islas del Atlántico medio y el sureste del océano Índico (Roux, 2011) y Bolivia (Kessler et al., 2018); y a revisiones taxonómicas que se han centrado en pequeños grupos monofiléticos o algunas secciones (Matos y Mickel, 2014, 2018, 2019; Vasco, 2011; Vasco, et al., 2009a; Vasco, et al., 2013). No obstante, estas monografías han tratado menos del 10% de las especies descritas para *Elaphoglossum*, por lo que el trabajo taxonómico del género aún está lejos de ser completado.

Una de las secciones con mayor número de especies dentro del género es la sec. *Lepidoglossa*, con aproximadamente 200 especies (Vasco, 2011). Las especies de esta sección se caracterizan por tener escamas del rizoma y la lámina con dientes marginales aciculares, por presentar escamas planas y/o estrelladas (no subuladas) y en ocasiones, puntos resinosos en las láminas y pecíolos (Kessler et al., 2018). Esta subsección fue dividida por Mickel y Atehortúa (1980) en seis subsecciones (subsec.): subsec. *Muscosa* Mickel y Atehortúa, subsec. *Polylepidea* Christ, subsec. *Microlepidea* Christ, subsec. *Petiolosa* Christ, subsec. *Pilosa* Christ y subsec. *Huacsaro* Mickel y Atehortúa, las cuales se diferencian principalmente, por la forma y la densidad de las escamas de las hojas y los rizomas, el ápice de las láminas y la micromorfología de las esporas.

Dentro de la subsec. *Pilosa*, Mickel y Atehortúa (1980) agruparon especies con rizomas rastreros compactos, generalmente con escamas oscuras con márgenes enteros o con largas proyecciones, láminas con puntos resinosos, escamosas a subglabras y esporas con surcos y crestas (Mickel y Atehortúa 1980). Las escamas de la lámina pueden ser lanceoladas con márgenes con proyecciones cortas, estrelladas, subestrelladas o, a veces, tan reducidas que parecen pelos estrellados. Como parte del trabajo taxonómico sobre el género *Elaphoglossum* en México, y con base en caracteres morfológicos, Mickel (2001) describió un grupo de especies dentro de la subsec. *Pilosa*, al que denominó el complejo de *Elaphoglossum petiolatum*. Este grupo incluyó 11 especies distribuidas en los trópicos, tres de ellas endémicas de México, (Cuadro 1), las cuales se caracterizan por presentar escamas del rizoma obscuras con márgenes enteros, escamas de la porción proximal de los pecíolos con ápice oscuro, escamas de la lámina planas o estrelladas y puntos resinosos en la parte inferior de las láminas (Fig. 4) (Mickel 2001, Mickel y Smith 2004). No obstante, la delimitación de las especies de este complejo no es clara debido a la gran variación de los caracteres morfológicos, a los pocos caracteres diagnósticos que existen para diferenciar a las especies -principalmente se utilizan la presencia, tamaño, tipo y densidad de las escamas que se encuentran mezcladas con los puntos resinosos- y a las diferencias en la densidad y el tamaño de los puntos resinosos (Mickel, 2001).

Si bien hasta ahora no existen trabajos sobre la sistemática del complejo de *Elaphoglossum petiolatum*, análisis filogenéticos moleculares previos, que incluyeron algunas de las especies de este complejo, sugirieron que este grupo no era monofilético (Rouhan et al. 2004, Vasco et al. 2009b, Lóriga et al. 2014). Los taxones pertenecientes al complejo incluidos en estos análisis fueron recuperados en tres clados diferentes que a su vez incluían otras especies fuera del complejo: el "grupo *Elaphoglossum ciliatum*", el "clado mexicano de *E. petiolatum*" – el cual incluye las especies mexicanas del clado-, y un tercer clado sin nombre que incluía dos especímenes de Ecuador determinados como *E. aff. petiolatum* (Vasco et al., 2009b).

11

Figura 4. Morfología general de las especies que integran el complejo de *Elaphoglossum petiolatum.* A. Hábito y acercamiento a los puntos resionos de las láminas. B. Escama plana de la lámina (escala= 500µm). C Escama del rizoma (escala= 1µm). D. porción proximal de los pecíolos con ápice oscuro. Fotos A y C por Ana Gabriela Martínez; B y D por A. Vasco.

Cuadro 1. Especies que integran el complejo de *Elaphoglossum petiolatum* sensu Mickel (2001).

Especies	Distribución
Elaphoglossum petiolatum (Sw.) Urban	De México a Perú y Las Antillas
<i>E. salicifolium</i> (Willd. ex Kaulf.) Alston (ahora <i>E. lancifolium</i> (Desv.) C.V. Morton)	Bioko, Camerún, Comoros, Congo, Gaba, Guinea, La Reunión, Liberia, Islas Mauricio, Madagascar, Malawi, Mozambique, Ruanda, Sierra Leona, Seychelles, Tanzania, Zambia, Zimbabwe
E. nervosum (Bory) H. Christ	Isla de Santa Helena (Reino Unido)
E. dimorphum (Hook. & Grev.) T. Moore	Isla de Santa Helena (Reino Unido)
E. bifurcatum (Jacq.) Mickel	Isla de Santa Helena (Reino Unido)
<i>E. stelligerum</i> (Wall. ex Baker) T. Moore ex Alston & Bonner	India
E. yunnanense (Baker) C. Chr.	China, India, Malasia, Vietnam
E. blumeanum (Fee) J. Smith	Archipielago de Bismark, Borneo, China, Indonesia, Filipinas, Malasia, Islas Salomón, Sumatra.
E. rzedowskii Mickel	México
E. pringlei (Davenp.) C. Chr.	México
E. trichomidiatum Mickel (ahora E. potosianum Christ)	México

Por lo anterior, el presente estudio tuvo como objetivos principales: I) ampliar la representación de las especies del complejo y de las especies mexicanas de *Elaphoglossum* en la filogenia global del género para poner a prueba la hipótesis de monofilia del complejo de *E. petiolatum*, II) conocer las relaciones entre las especies del complejo y III) elaborar la monografía del grupo monofilético que resulte de los análisis moleculares. Las preguntas específicas que se buscaron responder fueron (1) ¿El complejo de *E. petiolatum* es monofilético cuando se incluye una muestra más amplia de sus especies? De ser así, ¿cuántas y cuáles son las especies que pertenecen al complejo? Si no lo es, ¿dónde se recuperan las especies del complejo? (2) ¿Existe evidencia morfológica que sustente la posición filogenética de las especies pertenecientes al complejo? y (3) ¿Se sigue recuperando el "clado mexicano" cuando se incluyen otras especies distribuidas en México, especialmente aquellas especies que son morfológicamente similares a las recuperadas en este clado?

Para responder a estas preguntas, se realizaron dos análisis filogenéticos utilizando secuencias de tres marcadores de cloroplasto, $atp\beta$ -rbcL, rps4-trnS y trnL-trnF, y se analizó la morfología de las especies involucradas, incluida la de las esporas, en busca de caracteres morfológicos que aporten información taxonómica que ayuden a la diferenciación de las especies. Los resultados completos de esta investigación están divididos en los siguientes capítulos:

Capítulo I. Systematics of the *Elaphoglossum petiolatum* complex (Dryopteridaceae). Este capítulo se enfocó en poner a prueba la monofilia del complejo de *E. petiolatum* utilizando secuencias de ADN de los marcadores del cloroplasto $atp\beta$ -rbcL, rps4-trnS y trnL-trnF. En este trabajo se incrementó la representación de las especies del complejo y de los representantes mexicanos del género en la filogenia general de *Elaphoglossum*. Los resultados comprueban que el complejo de *E. petiolatum* no es un grupo monofilético pues las especies que lo integran se recuperan en tres clados que no son hermanos, denominados aquí como "el clado de *E. ciliatum*", "el clado de *E. lancifolium*" y "el clado de *E. petiolatum*". Este último clado recuperó el representante de *E. petiolatum* de Jamaica, localidad tipo de este taxón, las especies mexicanas consideradas previamente parte del complejo original, más *E. schiedei* y *E. schmitzii*, especies que con base en la evidencia de este trabajo, fueron sacadas de la sinonimia de *E. petiolatum*.

Las especies que pertenecen al "clado de *Elaphoglossum petiolatum*" se distribuyen exclusivamente en el continente americano, de México a Costa Rica incluyendo Las Antillas, y al menos cuatro de ellas son endémicas de México (Mickel y Smith, 2004; Vasco et al., 2009; Martínez-Becerril et al., 2021). Su morfología se caracteriza por la presencia de escamas del rizoma con ápices agudos a filiformes con el margen generalmente más obscuro que el resto de la escama (excepto en *E. petiolatum*, que presenta escamas del rizoma concoloras), láminas escamosas en ambas superficies (en diferentes grados) con escamas planas, en ocasiones estrelladas, y con puntos resinosos pegajosos y/o secos (en diferente densidad), y esporas con perisporas espinosas, con espinas que miden menos de 1µm (excepto *E. petiolatum* que presenta depósitos irregulares en lugar de espinas).

Capítulo II. Spore morphology of the Mexican species of the *Elaphoglossum petiolatum* complex (Dryopteridaceae). El capítulo corresponde al análisis morfológico de las esporas de las especies que integran el "clado de *E. petiolatum*". Las esporas se observaron, fotografiaron y midieron utilizando microscopía electrónica de barrido y los resultados mostraron diferencias en la ornamentación y en el tamaño de las esporas. Estas diferencias son útiles para distinguir algunas especies de este grupo. La variación encontrada en el tamaño de las esporas sugiere la posibilidad de que existan especies poliploides dentro de este clado.

Capítulo III. Taxonomic revision of the *Elaphoglossum petiolatum* clade (Dryopteridaceae). Este capítulo corresponde con el tratamiento taxonómico de las especies que integran el grupo monofilético definido con base en la evidencia molecular del primer capítulo, donde se integra el representante de Jamaica de *E. petiolatum* y varias especies endémicas de México. Este trabajo constituye una herramienta para la delimitación taxonómica de la especie *E. petiolatum* y para la identificación de todas las especies del "clado de *E. petiolatum*" ya que provee una clave dicotómica, descripciones ilustradas, sinonimia, mapas de distribución y notas nomenclaturales para cada especie.

Capitulo IV. *Elaphoglossum auralolitae*, a new species of *Elaphoglossum* sect. *Lepidoglossa* (Dryopteridaceae) from Guatemala. Se describe una nueva especie de *Elaphoglossum*, endémica de Guatemala que presenta como características distintivas la abundante densidad de escamas blanquecinas, con margen ciliado en la superficie adaxial de la lámina; la presencia de puntos resinosos en la cara abaxial de la lámina y esporas con una perispora espinosa. Aunque esta especie no se incluyó en los análisis filogenéticos, la morfología sugiere que pertenece al "clado de *E. petiolatum*".

Capítulo I

Systematics of the *Elaphoglossum petiolatum* complex (Dryopteridaceae)

Este artículo se someterá a Systematic Botany

1	
2	
3	
4	
5	SYSTEMATICS OF THE ELAPHOGLOSSUM PETIOLATUM COMPLEX
6	(DRYOPTERIDACEAE)
7	
8	
9	Ana Gabriela Martínez-Becerril ^{1,2} and Alejandra Vasco ³
10	
11	¹ Facultad de Estudios Superiores Zaragoza, Unidad de Investigación en Sistemática Vegetal y Suelo,
12	Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Ejército de Oriente, Iztapalapa, C.P.
13	09230, Ciudad de México, México; e-mail: anagabsmtz@gmail.com
14	² Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México,
15	México
16	³ Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107-3400, USA; e-
17	mail: <u>avascog@gmail.com</u>
18	^{1,3} Corresponding authors
19	
20	
21	

22 *Abstract*- This work is an approach to the study of a group of 11 species informally called the 23 *Elaphoglossum petiolatum* complex. The species belonging to this complex are characterized by the presence of resinous dots on the abaxial lamina surface, black rhizome scales and spiny perispores. 24 25 Previous molecular phylogenetic studies suggested that the complex was polyphyletic, but the Mexican 26 species considered as a part of this complex were recovered in the same clade. However, these studies did 27 not include all species in the complex or samples of *E. petiolatum* from Jamaica, the type locality for this 28 species. The objectives of our study were to test the monophyly of this complex including sequences of E. 29 *petiolatum* from Jamaica and a better representation of the species of the complex as well as the species 30 reported for Mexico. Our analyses included sequences of three chloroplast markers from 194 species, including 9 of the 11 species in the complex. Our topologies support the non-monophyly of the E. 31 32 petiolatum complex recovering its species in three separate clades: the "clade of E. ciliatum", the "clade 33 of E. lancifolium" and the "clade of E. petiolatum", however, they do not show good resolution of the 34 relationships among the species.

35

Keywords- Elaphoglossum, endemic, ferns, Mexico, monophyletic, taxonomy, tropics.

36

Elaphoglossum (Sw.) Urb. is one of the largest fern genera in the world, as it includes at least 600
taxonomically accepted species (Moran 2018, PPG I 2016, Rouhan 2020). According to molecular and
morphological evidence, *Elaphoglossum* belongs to the bolbitidoid clade of the subfamily
Elaphoglossoideae (Pic. Serm.) Crabbe, of the family Dryopteridaceae Herter, and represents the sister
group of the genus *Mickelia* R. C. Moran, Labiak & Sundue (Liu et al. 2016, Moran et al. 2010, Moran
2018 Rouhan et al. 2004, Skog et al. 2004, PPGI 2016).

Elaphoglossum species are easily distinguished from other ferns by their simple, rarely divided
laminae (only four species have divided laminae), dimorphic sterile and fertile leaves, free veins, and
acrostichoid sori (Mickel and Atehortúa 1980, Moran et al. 2007, Vasco et al. 2009a, Rouhan et al. 2020).
At least 60% of the species are epiphytes, but they can also be terrestrial or epipetric (Moran 2018, Moran

et al. 2010, Zots et al. 2021). The genus is present in tropical areas around the world with its greatest
diversity in the American tropics, where approximately 450 species have been recorded (Mickel 1995,
Moran 2018, Moran et al. 2010).

The most recent infrageneric classification of *Elaphoglossum* was based on morphological characters and represents the most solid base in the taxonomic study of this very challenging genus, mainly because it provides clear hypotheses about important characters for *Elaphoglossum* taxonomy and taxonomic keys to the proposed sections and subsections (Mickel and Atehortúa 1980). This classification focuses on spore and sporophyte characters, such as spore ornamentation, rhizome shape and color, petiole and lamina scales shape, size and density, and laminae shape, size, and texture (Mickel and Atehortúa 1980).

Since the publication of the infrageneric classification (Mickel and Atehortúa 1980), knowledge 57 58 about *Elaphoglossum* has increased substantially. In the last four decades several local floras for the 59 genus have been published, for example, in South Africa (Roux 1982), Peru (Mickel 1991), Mesoamerica (Mickel 1995a), Venezuela (Mickel 1985, 1995b), Mexico (Mickel and Smith 2004), Tropical East Africa 60 61 (Mickel 2002), Hawaii (Palmer 2003), Mascarene Islands (Lorence and Rouhan 2004, 2008), French 62 Polynesia (Rouhan et al. 2008), in Africa, Macaronesia, the mid-Atlantic, and southern Indian Ocean 63 Islands (Roux 2011), Bolivia (Kessler et al. 2018), Brazil (Matos and Mickel 2014, 2018, 2019), and 64 Madagascar (Rouhan 2020). In addition, molecular phylogenetic studies have provided a robust phylogenetic framework (Rouhan et al. 2004, Skog et al. 2004, Liu et al. 2007, Vasco et al. 2009b, Lóriga 65 66 et al. 2014), and have promoted the elaboration of taxonomic treatments for small clades within the genus 67 (Matos et al. 2019, Vasco 2011, Vasco, et al. 2009a, Vasco et al. 2013). 68 Phylogenetic studies with chloroplast markers have recovered seven major clades within 69 *Elaphoglossum*, six of which largely correspond to the sections (sect.) recognized by Mickel and 70 Atehortúa (1980) based on morphology (Rouhan et al. 2004, Skog et al. 2004, Liu et al. 2007, Schuettpelz 71 and Pryer 2007), and a seventh one recently described (Lóriga et al. 2014). That is how currently seven

72 sections are recognized within the genus: sect. Amvgdalifolia (Christ) Mickel & Atehortúa, sect.

20

73	Lepidoglossa Christ., sect. Elaphoglossum, sect. Polytrichia Christ, sect. Setosa (Christ) Mickel &
74	Atehortúa, sect. Squamipedia Mickel & Atehortúa, and sect. Wrightiana J. Lóriga, A. Vasco, L.
75	Regalado, Heinrichs & R.C. Moran (Mickel and Atehortúa 1980, Rouhan et al. 2004, Skog et al. 2004,
76	Liu et al. 2007, Schuettpelz and Pryer 2007, Lóriga et al. 2014).
77	With more than 200 species, sec. Lepidoglossa is the most specious section within
78	Elaphoglossum (Vasco 2011). Species in the section are characterized by laminae generally and
79	notoriously scaly, rhizome and blade scales typically stellate or flat (not subulate) and with unicellular
80	acicular marginal projections (these marginal processes in other sections end in a slightly swollen bulbous
81	cell); sometimes the laminae and petioles have resinous dots (Mickel and Atehortúa 1980, Vasco 2009a,
82	Kessler et al. 2018). The section was subdivided into six subsections (subsect.) by Mickel and Atehortúa
83	(1980), differing mainly by leaf and rhizome scale shape and density, laminae apex, and spore
84	micromorphology. These were named subsec. Muscosa Mickel and Atehortúa, subsec. Polylepidea
85	Christ, subsec. Microlepidea Christ, subsec. Petiolosa Christ, subsec. Pilosa Christ, and subsec. Huacsaro
86	Mickel and Atehortúa.
87	Within subsec. Pilosa, Mickel and Atehortúa (1980) grouped species with short creeping
88	rhizomes, usually with dark scales with entire margins or with long projections, lamina with resinous
89	dots, scaly to subglabrous, and spores with grooves and ridges (Mickel and Atehortúa 1980). The lamina
90	scales can be lanceolate with margins with short projections, substellate, or sometimes so reduced that
91	they look like stellate hairs.
92	As part of his taxonomic work on the genus <i>Elaphoglossum</i> in Mexico, and based on
93	morphological characters, Mickel (2001) described a group within subsec. Pilosa, the Elaphoglossum
94	petiolatum complex. Species within this complex are characterized by black rhizome scales with entire
95	margins, scales of the proximal portion of the petioles with a dark apex, and resinous dots on the lower
96	side of the laminae (Mickel 2001, Mickel and Smith 2004). Within this complex Mickel grouped 11
97	species distributed across the tropics, three of them endemic to Mexico (Table 1) (Mickel, 2001).
98	Previous molecular phylogenetic analyses with three chloroplast markers (<i>atpβ-rbcL</i> , <i>rps4-trnS</i> , and trnL-

99 *trnF*), which did not include all the species in the *Elaphoglossum petiolatum* complex, suggested that the 100 complex was not monophyletic (Rouhan et al. 2004, Vasco et al. 2009b, Lóriga et al. 2014). The taxa 101 belonging to the complex and that were included in these analyses were recovered in three different 102 clades that in turn included other species outside the complex: the "*Elaphoglossum ciliatum* group", the 103 "Mexican clade of *E. petiolatum*", and a third unnamed clade that included two specimens from Ecuador 104 determined as *E.* aff. *petiolatum* (Vasco et al., 2009b).

105 The present study focused on the E. petiolatum complex and aimed to test its monophyly and the 106 relationships among its species. We wanted to answer three questions (1) Is the *E. petiolatum* complex 107 monophyletic when a broader sampling of its species is included? If so, how many and which are the species that belong to the complex? If not, where are the species of the complex recovered? (2) Is there 108 morphological evidence that supports the phylogenetic position of the species belonging to the complex?, 109 110 and (3) Which species belong to the "Mexican clade" when other species distributed in Mexico are 111 included, particularly those that are morphologically similar to the species already recovered in this clade. To answer these questions, we performed phylogenetic analyses using sequences of three 112 chloroplast markers, $atp\beta$ -rbcL, rps4-trnS, and trnL-trnF. We assembled a matrix that included the most 113 114 comprehensive sampling of the species belonging to the *E. petiolatum* complex to date –including a 115 sequence of *E. petiolatum* from Jamaica, the country where the nomenclatural type of this species comes 116 from (Swartz, 1778, Proctor 1985), species morphologically similar to those of the complex, and various species of *Elaphoglossum* from Mexico. Our sampling includes many new sequences of Mexican 117 118 Elaphoglossum.

Our results corroborate the previous hypothesis that the *Elaphoglossum petiolatum* complex is not a monophyletic group and that the species originally described as part of the complex are recovered in three non-sister clades, all of them including other species of *Elaphoglossum* besides those of the complex. Here we informally name these clades as "*E. ciliatum* clade", "*E. lancifolium* clade", and "*E. petiolatum* clade". The *E. petiolatum* clade recovers the endemic Mexican species originally described as part of the complex, as well as a sequence of a specimen of *E. petiolatum* from Jamaica, and sequences of

125	other two species endemic to Mexico – E. schiedel and E. schmitzii. Elaphoglossum gratum, a species
126	distributed in Mexico that is morphologically similar to some of the species of the <i>E. petiolatum</i> complex,
127	does not belong to any of the three clades. A description and discussion of each clade and a dichotomous
128	key to differentiate them are presented.
129	

130	Table 1. Species belonging to the Elaphoglossum petiolatum complex sensu Mickel (2001). (*)
131	indicates the species included in this analysis.

Species	Distribution
*Elaphoglossum petiolatum (Sw.) Urban	From Mexico to Peru and the West Indies
* <i>E. salicifolium</i> (Willd. ex Kaulf.) Alston (ahora <i>E. lancifolium</i> (Desv.) C.V. Morton)	Bioko, Cameroon, Comoros, Congo, Gaba, Guinea, La Reunion, Liberia, Mauritius Island, Madagascar, Malawi, Mozambique, Rwanda, Sierra Leone, Seychelles, Tanzania, Zambia, Zimbabwe
*E. nervosum (Bory) H. Christ	St. Helena Island
*E. dimorphum (Hook. & Grev.) T. Moore	St. Helena Island
*E. bifurcatum (Jacq.) Mickel	St. Helena Island
<i>E. stelligerum</i> (Wall. ex Baker) T. Moore ex Alston & Bonner	India
E. yunnanense (Baker) C. Chr.	China, India, Malaysia, Vietnam
*E. blumeanum (Fee) J. Smith	Bismark Archipielago, Borneo, China, Indonesia, Philippines, Malasyia, Salomon Islands, Sumatra.
*E. rzedowskii Mickel	Mexico
*E. pringlei (Davenp.) C. Chr.	Mexico
*E. trichomidiatum Mickel (ahora E. potosianum Christ)	Mexico

METHODS

134	Sampling The matrix analyzed included 187 new sequences here generated, and sequences generated in
135	previous works available in GenBank (Skog et al. 2004, Rouhan et al. 2004, Vasco et al. 2009b, Moran et
136	al. 2010, Lóriga et al. 2014, https://www.ncbi.nlm.nih.gov/genbank/). Information on the samples used in
137	the analyses is in Appendix I. All new sequences will be submitted to GenBank.
138	We used DNA sequences of three chloroplast markers, <i>atpβ-rbcL</i> , <i>rps4-trnS</i> , and <i>trnL-trnF</i> , from
139	213 individuals. We included several individuals for the species belonging to the <i>E. petiolatum</i> complex
140	when it was possible. Sequences of two genera closely related to <i>Elaphoglossum</i> were selected as
141	outgroups: Bolbitis serratifolia (Mertens) Schott, and Mickelia nicotianifolia (Sw.) R.C. Moran, Labiak &
142	Sundue (Rouhan et al. 2004, Moran et al. 2010).
143	DNA extraction, amplification and alignment Chloroplast DNA was extracted from leaf tissue
144	collected in the field and dried in silica gel or from herbarium specimens. Extraction was performed at the
145	Molecular Systematics Laboratory of the Institute of Biology, UNAM, using the DNeasy Plant Mini Kit
146	(Qiagen®, Hilden, Germany) following the manufacturer's protocol. To obtain better quality DNA from
147	herbarium samples, we added 30 μ L of β -mercaptoethanol to each sample, in addition to the extraction
148	buffer (step two of the original protocol), and incubated for 24 h at 42°C (Vasco et al. al. 2009b). The
149	quality of the DNA obtained was evaluated visually with electrophoresis in a 1% agarose gel.
150	The non-coding regions of chloroplast DNA: $atp\beta$ -rbcL (which includes a fragment of the $atp\beta$
151	gene), rps4-trnS, and trnL-trnF, were amplified by means of the polymerase chain reaction (PCR), using
152	the same primers as in Rouhan et al. (2004, 2007). The details of each PCR run are detailed in Table 2.
153	For each sample, the success of the reaction was evaluated by electrophoresis in a 1% agarose gel.
154	Successful amplifications were sent to the Laboratory of Molecular Biology of Biodiversity and Health of
155	the UNAM Institute of Biology or to the High-Throughput Genomics Unit, Department of Genome
156	Sciences, University of Washington, for purification and bidirectional sequencing. New forward and
157	reverse sequences were assembled and edited manually with the Geneious® program, version 6.01
158	(https://www.geneious.com). We generated a single matrix for each marker.

Table 2. Details of the number of cycles, temperature, time, and primers used per marker for
 each step in the polymerase chain reaction (PCR). °C= Celsius degrees; '= minutes; "= seconds.
 The direction of primers' sequences is 5'-3'

	atpB-rbcl	rps4-trnS	trnL-trnF
Cycles	35	30	30
Step 1	97°C / 50"	94°C / 5'	94°C / 5'
Step 2	97°C / 50"	94°C / 30"	94°C / 30"
Step 3	53°C / 45"	50°C / 1'	50°C / 1'
Step 4	72°C / 1:15'	72°C / 1'	72°C / 1'
Step 5	72°C / 7'	72°C / 7'	72°C / 7'
Primer F	ACACTWAGAGGRGCTCCCG TATCAA	AGTTGTTAGTTGTTGAGTA T	GGTTCAAGTCCCTCTATCC C
Primer R	CACCAGCTTTGAATCCAAC ACTTGC	TACCGAGGGTTCGAATC	ATTTGAACTGGTGACACGA G

162

163 Each matrix was individually aligned using the MAFFT online version with the preset parameters 164 (https://www.ebi.ac.uk/Tools/msa/mafft/) and then adjusted manually using Mesquite version 3.51 165 (Maddison and Maddison 2019). For the alignment of the $atp\beta$ gene fragment, the first, second, and third 166 position of the nucleotides within each amino acid were considered.

167 Phylogenetic analyses. – Matrices of each marker were analyzed independently with maximum 168 parsimony (MP) using the TNT software v.1.5 (Goloboff et al. 2008) with the "New Technology" search 169 option with 1000 replicates, and maximum retention of 1200 trees (topologies not included here). The 170 resulting topologies were compared to test the null hypothesis that the three markers were congruent in 171 their phylogenetic information, and to identify potential lab errors or conflicts. Because no incongruence 172 was found between the strict consensus trees from each of the three plastid regions, they were combined 173 into a single alignment.

To study the phylogenetic relationships among the species and to evaluate the monophyly of the
 Elaphoglossum petiolatum complex, we performed two analyses with the concatenated matrix. Maximum
176 likelihood (ML) analyses using IQ-Tree v.2.1.2 (Nguyen et al. 2015) and Bayesian inference (BI)

analyses with Mr. Bayes 3.2.7 (Ronquist and Huelsenbeck 2003).

We carried out a maximum likelihood (ML) analysis with the dataset divided into six partitions 178 previously estimated by the ModelFinder option implemented in IQ-Tree (Kalyaanamoorthy et al. 2017), 179 180 on the digital platform from Cipres (https://www.phylo.org/portal2/home.action, Miller et al. 2010)1). These partitions were: $atp\beta$ -rbcL (K3P+F+G4), 2) the first position of the $atp\beta$ gene fragment (K2P+G4), 181 182 3) the second position of the *atp* β gene fragment (TVMe+G4), 4) the third position of the *atp* β gene 183 fragment (K2P+G4), 5) rps4-trnS (TVM+F+G4), and 6) trnL-trnF (TPM2+F+G4). The search for the 184 best-scoring ML tree was conducted in a single run using IQ-Tree in the Cipres platform, and we choose a fast bootstrap analysis (ultrafast bootstrap) with 1000 replicates (Nguyen et al. 2015, Hoang et al. 2018). 185 Bayesian inference analyses were conducted using MrBayes 3.2.7 (Ronquist and Huelsenbeck 186 187 2003), with the dataset partitioned into three parts as estimated by the Bayesian information criterion 188 (BIC) implemented in PartitionFinder (Lanfear et al. 2012). The three partitions were: 1) $atp\beta$ -rbcL, the third position of the *atp* β gene fragment, and *rps4-trnS* (GTR+G), 2) first and second position of the *atp* β 189 190 gene fragment (SYM+G), and 3) trnL-trnF (GTR+G). The analyses were run for 10 million generations 191 with four Markov Chains (three heated and one cold) and sampling the posterior probability distribution 192 every 1000th generation. Samples corresponding to the initial phase of the Markov chains (20%) were 193 discarded as burn-in, after visualizing in Tracer v.1.7 (Rambaut et. al., 2018). Post burn-in trees were 194 combined to obtain a single majority consensus tree and the respective node posterior probabilites. The 195 topologies obtained from the ML and BI analyses were viewed and edited with FigTree v. 1.4.4 (Rambaut 196 2010) and Adobe Illustrator (Adobe Inc., 2019). Morphological analyses. - To better understand the morphological characteristics of the species 197 of the three clades in which the original species belonging to the *E. petiolatum* complex are recovered, we 198

200 website pteridoprtal.org, taxonomic literature (Vasco et al. 2009a, Rouhan et al. 2020), and spores images

studied herbarium specimens (BRIT, MEXU, MO, NY, P, US, and VT), digital images available on the

199

201 made by us or available on plantsystematics.org. After that, a dichotomous taxonomic key for the three202 clades was completed.

203

RESULTS

- 204 The final matrix comprised 171 species of *Elaphoglossum*, including nine of the 11 species of the *E*.
- 205 *petiolatum* complex, and 42 species reported from Mexico, including two taxa we quit of the synonymy

of *E. petiolatum* and considered as independent species, and two specimens we could not identify. This

represents 81% of the species of the *E. petiolatum* complex, 59% of the species of the genus known for

208 Mexico, and 28.5% of all the species recognized for *Elaphoglossum*.

209 The concatenated alignment included 1704 characters, of which 748 are constant, 393 autapomorphic, and

210 563 informative (Table 3). The topologies obtained from the ML and BI analyses of the concatenated

211 matrix are very similar and recovered the seven major clades previously recognized for *Elaphoglossum*

212 (Figs. 1 and 2). Although there are minor topological differences between the topologies, mainly in the

arrangement of a few species, we decided to describe the species' relationships based on the ML topology

214 (Fig. 1). The 42 *Elaphoglossum* species from Mexico are recovered within five of these large clades and,

- in general, their position is consistent with the morphological characteristics that define each section.
- 216

Table 3. Constant and informative sites for the matrices of the three chloroplast markers used in this study.

Matrix/ marker	atpB-rbcL	rps4-trnS	trnL-trnF	Total
Number of bases (% of the total)	876 (51.4)	441 (25.8)	387 (22.7)	1704
Constant (%)	447 (59.7)	174 (23.2)	127 (16.9)	748
Single (%)	195 (39.5)	108 (21.9)	90 (38.5)	393
Parsimony informatives characters (%)	234 (41.5)	159 (28.2)	170 (30.1)	563

219

220 The nine species originally described as part of the *Elaphoglossum petiolatum* complex included

in this study (Table 1), are all recovered in three clades that are not sister to each other, within the sec.

222 Lepidoglossa (Figs. 1 and 2). The "E. ciliatum clade" (BS=81, PP=1) recovers three of these nine

species: E. bifurcatum, E. dimorphum, and E. nervosum; the "E. lancifolium clade" (BS= 84, PP= 1),

recovers two of the nine species: *E. blumeanum* and *E. lancifolium;* and the "*E. petiolatum* clade"

225 (BS=100, PP=1), recovers the sequences of the remaining four species: *E. petiolatum*, *E. potosianum*, *E.*

226 *pringlei*, and *E. rzedowskii* (Figs. 1 and 2, Table 4).

This latter clade was previously called the "Mexican clade of *E. petiolatum*" by Vasco et al. (2009b) but we renamed it here because the *E. petiolatum* sequence from the type locality of this species was recovered here. None of the other Mexican species of *Elaphoglossum* included in this study is recovered in any of the three clades mentioned above, not even *E. gratum*, a species with very similar morphology to that of the species of the *E. petiolatum* complex. Next, we briefly describe the topologies of these three clades.

233 The "Elaphoglossum ciliatum clade"- was previously monographed by Vasco et al. (2009a) with 234 nine species recognized. In this study, we found that E. palmeri Underw. & Maxon, species from Cuba and the Dominican Republic, was recovered as part of this clade (Table 4). The E. ciliatum clade has a 235 polytomy that includes three branches, the first corresponds to a sequence of *E. huacsaro*, the second 236 237 corresponds to a clade (BS=100, PP=1) recovering the sequences of E. ciliatum and E. nigrescens, and 238 the third is a clade (BS=85, PP=1) with two subclades: one recovering sequences of *E. gramineum*, *E.* 239 dusii, and E. palmeri, and the other recovers sequences of E. bifurcatum, E. burchellii, E. dimorphum, and E. nervosum (Figs. 1 and 2). 240

The "*Elaphoglossum lancifolium* clade" has a polytomy that includes three branches. The first is a clade (BS=90, PP=1) where sequences from *E. tenuiculum* and *E. viscidum* are recovered. The second corresponds to a sequence of *E. ipshookense* from Mexico. The third branch is a clade (BS=75 PP=--) that includes two subclades: the first (BS= 92, PP=--) groups two sequences, one from Colombia and another from Ecuador, of a specimen that has not been identified so far, plus *E. blumeanum* and *E. welwitschii,* both species from the paleotropics. The second subclade (BS=75, PP=--), recovers an *E. caricifolium* sequence as sister to a clade (BS=100, PP=--) that includes sequences from *E. lancifolium* from La 248 Reunion and Mauritius Islands, *E. yungense* from Bolivia, and a specimen from Brazil identified as *E.*

249 *viscidum* (Figs. 1 and 2, Table 4).

250

Table 4. Species belonging to the three clades mentioned in this study. Species in bold
 correspond with those part of the original *Elaphoglossum petiolatum* complex sensu Mickel
 (2001).

Species	Distribution	Clade
E. bifurcatum (Jacq.) Mickel	St. Helena Island,	
<i>E. burchelli</i> (Baker) C. Chr.	Costa Rica, Panama, Dominican Republic, Colombia, Venezuela, Ecuador, Peru, Brazil, Bolivia, Paraguay	
E. ciliatum (C. Presl) T. Moore	Costa Rica, Panamá, Colombia, Ecuador, Perú	
<i>E. dimorphum</i> (Hook. & Grev.) T. Moore	St. Helena Island	
E. dusii Underw. & Maxon	Puerto Rico, Montserrat, San Cristóbal Island, Guadeloupe, Dominica, Martinica, St. Vincent, Grenada	E. ciliatum
<i>E. gramineum</i> (Jenman) Urb.	Honduras, Jamaica, Cuba, Dominican Republic	clade
E. huacsaro (Ruiz) Christ.	Mexico, Guatemala, Costa	
	Rica, Jamaica, Haiti, Dominican Republic Colombia, Venezuela, Ecuador, Peru, Brazil, Bolivia	
E. nervosum (Bory) Christ	St. Helena Island	
<i>E. nigrecsens</i> (Hook.) T. Moore ex Diels	Nicaragua, Costa Rica, Panama, Colombia, Venezuela, Guyana,	
	Ecuador, Peru, Brazil, Bolivia	
E. palmeri Underw. & Maxon	Cuba and Dominican Republic	

E. petiolatum (Sw.) Urban	Jamaica, Dominican Republic, Costa Rica, Panama, Honduras,			
	Nicaragua, Guatemala and Mexico.			
<i>E. pringlei</i> (Davenp.) C. Chr.	Mexico	E. petiolatum		
<i>E. potosianum</i> Chris	Mexico	clade		
E. rzedowskii Mickel	Mexico			
E. schiedei (Kunze) T. Moore.	Mexico and Guatemala			
<i>E. schmitzii</i> (Mett. ex Khun) Martínez-Becerril, A. Vasco.	Mexico			
E. blumeanum (Fee) J. Smith	China, Philippines, Indonesia, Java, Papua New Guinea			
E. caricifolium Mickel	Costa Rica, Panama			
E. ipshookense Mickel	Mexico			
<i>E. lancifolium</i> (Willd. ex Kaulf.) Alston	Bioko, Cameroon, Comoros, Congo, Gaba, Guinea, La Reunion, Liberia, Mauritius Islands, Madagascar, Malawi, Mozambique, Ruanda, Sierra Leone, Seychelles, Tanzania, Zambia, Zimbawe	E. lancifolium clade		
<i>E. tenuiculum</i> (Fée) T. Moore ex C. Chr.	Mexico, Guatemala, El Salvador, Honduras, Colombia, Costa Rica, Venezuela, Ecuador, Peru, Brazil, Bolivia			
E. viscidum	Brazil			
E. welwitschii (Baker) C. Chr.	Angola, Malawi, Tanzania, Zambia, Zimbawe			
E. yungense de la Sota	Peru, Bolivia, NE of Argentina			

The "*Elaphoglossum petiolatum* clade" (BS=100, PP=1) comprises two subclades. The first subclade (BS=82, PP=0.97) includes sequences of *E. pringlei*, *E. schiedei*, a sequence of *E. petiolatum* from Jamaica, and sequences of a Mexican specimen that has not been identified. The second subclade

- 258 (BS=82, PP=--) includes sequences of the Mexican endemics *E. rzedowskii*, *E. schmitzii*, and *E.*
- 259 *potosianum* (Figs. 1 and 2, Table 4).

Figure 1. Maximum likelihood topology for the concatenated matrix with the three chloroplast markers
 atpB-rbcL, *rps4-trnS*, and *trnL-trnF*. Numbers on the branches indicate the bootstrap support (%). The

263 names of the terminals including the collection numbers.

Figure 2. Bayesian Inference topology for the concatenated matrix with the three chloroplast markers
 atpB-rbcL, *rps4-trnS*, and *trnL-trnF*. Numbers on the branches indicate the posterior probability support

268 (%). The names of the terminals including the collection numbers.

DISCUSSION

270 The *Elaphoglossum petiolatum* complex was defined as a group within subsec. *Pilosa*, based on morphological characters (Mickel 2001). Previous molecular phylogenetic studies suggested that neither 271 the subsection nor the complex were monophyletic (Rouhan et al. 2004; Vasco et al., 2009b). These 272 273 studies did not include all the species of the complex, but of those included, only the Mexican species 274 were recovered in a clade, called "the Mexican clade of *E. petiolatum*" by Vasco et al. (2009b). The phylogenetic analyses presented here, which included the best representation of the species of the 275 276 complex so far, including half of the *Elaphoglossum* species recorded for Mexico, and other species of the 277 genus, agree with the previous analyses recovering subsec. *Pilosa* and the *E. petiolatum* complex as polyphyletic, and, in addition, recovering a well-supported clade of mostly Mexican species, that 278 279 coincides with the previously reported "Mexican clade of *E. petiolatum*". 280 In our analyses, the species originally placed in the *Elaphoglossum petiolatum* complex (Mickel 281 2001) are recovered in three non-sister clades within sec. *Lepidoglossa*, referred to herein as the "E. ciliatum clade", "E. lancifolium clade" and "E. petiolatum clade" (= "Mexican E. petiolatum clade"). 282 283 These three clades include other species not previously considered as part of the *E. petiolatum* complex. 284 Species of these three clades have flat and/or stellate scales on the laminae and spores with spiny 285 perispores, some taxa also have resinous dots on the abaxial surface of the laminae (Fig. 4). Laminar flat 286 and/or stellate scales are present in most species of sec. Lepidoglossa (Mickel 1985, Mickel and Atchortúa 1980, Kessler et al. 2018) and spiny perispores are an independently evolved character 287 288 distinctive to at least five subclades in this section (Moran et al. 2007, Vasco et al., 2009a, Martínez-289 Becerril et al., 2021, pers. obs.). On the other hand, resinous dots were important in the definition of the Huacsaro, Petiolosa, and Pilosa subsections, and in the E. petiolatum complex (Mickel and Atehortúa 290 1980, Mickel 2001). 291

The presence of these characters in multiple clades suggests that the *E. petiolatum* complex was defined based on plesiomorphic characters, meaning characters that have evolved several times during the evolutionary history of the section. 295 In the genus *Elaphoglossum*, resinous dots have been interpreted as the bases of reduced scales that remain embedded in the epidermis of the laminae (Vasco et al. 2009a). Although these dots are not 296 present in all the species of the three clades in which the species originally described as part of the E. 297 petiolatum complex were recovered, all the *Elaphoglossum* species that have laminar resinous dots are 298 299 part of sec. *Lepidoglossa* and were recovered in one of these three clades. There is one exception: E. petiolosum (Desv.) T. Moore, which has resinous dots on the laminae, but it is recovered in a different 300 301 clade within sec. Lepidoglossa and was not considered part of the E. petiolatum complex. Elaphoglossum 302 petiolosum has, in addition to resinous dots on its abaxial lamina, tiny glandular trichomes on the petiole 303 and costa, an unusual feature in species of sec. Lepidoglossa (Mickel and Atehortúa 1980). Our results suggest that the presence of resinous dots evolved independently on at least four occasions during the 304 305 evolutionary history of sec. Lepidoglossa.

Although spiny perispores are present in other subclades of sec. *Lepidoglossa* (Moran et al. 2007, Martínez-Becerril et al. 2021), in this work we detected a variation in the size and density of the spore spines that is useful to differentiate our three clades. The species of the "*E. ciliatum* clade" have dense spines that are generally $\geq 1 \mu m$ (Fig. 4A-C), while in the species of the "*E. lancifolium*" and the "*E. petiolatum*" clades the spines are scattered and $\leq 1 \mu m$ (Fig. 4D-L). To better understand the variation and evolution of the spines in sect. *Lepidoglossa*, comparative morphological and anatomic analyses are necessary to corroborate whether these structures are homologous between the clades.

In addition to the size and density of the spines in the spores, there are other characteristics that differentiate the clades in which the species of the *E. petiolatum* complex were recovered. For example, the presence and density of stem and lamina scales, the shape of lamina apices, and the geographic distribution of the taxa (see key at end of discussion). Next, we make a brief discussion of each of these clades.

318 *"Elaphoglossum ciliatum* Clade"– It has ten species, three of which, *E. bifurcatum*, *E.*319 *dimorphum* and *E. nervosum*, were part of the original complex of *E. petiolatum* (Mickel, 2001). Nine of

320 the species of this clade were previously treated in a monograph (Vasco et al. 2009a). This work 321 confirmed that E. palmeri, a species present in Cuba and the Dominican Republic, is also part of this clade (Lóriga et al. 2014). Elaphoglossum palmeri has been commonly compared with E. petiolatum, but 322 it differs from it mainly by the absence of resinous dots, by its stem scales with long projections, and by 323 324 the presence and density of stellate scales on the lamina (Maxon 1908, Lóriga et al. 2014) (Table 4). 325 Besides having resinous dots, species in the "E. ciliatum clade" are distinguished by their 326 blackish stems with a shiny exudate similar to lacquer when dry, and by spores that are mostly equinate, 327 that is, with dense spines $\geq 1 \mu m$ in high (Fig. 4A -C) (Vasco et al. 2009a). Some species such as E. 328 *dimorphum*, *E. dusii*, *E. nigrescens*, and *E. palmeri* can have spines $\leq 1 \mu m \log$ (pers. obs.). The clade 329 distribution includes the American tropics, from Mexico and the Antilles to southeastern Brazil and the 330 volcanic island of Santa Helena in the Atlantic Ocean (Fig. 3, Table 4) (Vasco et al. 2009a). According to 331 the age of diversification estimated for this clade, between 5.36–10.35 mya (Lóriga et al. 2014b), the presence of some of its species on the island of Santa Elena can be explained by long-distance dispersal, a 332 successful and common phenomenon among ferns that has allowed them to colonize island ecosystems 333 334 thanks to the ease with which the spores can travel long distances (Janssen et al. 2007, Ranker et al. 335 2004). For more information on the phylogenetic relationships, description, and distribution of this group, 336 see the studies by Vasco et al. (2009a,b).

337 "Elaphoglossum lancifolium Clade"- It is perhaps the clade with the most species of the three discussed here and its taxonomy requires further study. We named it *E. lancifolium* because this is the 338 339 oldest described species of the clade (Desvaux 1811). The clade contains at least eight species of which two, E. blumenaum and E. lancifolium (formerly E. salicifolium), were previously recognized as members 340 of the *E. petiolatum* complex by Mickel (2001). In general, the species of this clade are characterized by 341 resinous dots (except E. tenuiculum and E. ipshookense), attenuated to long attenuated lamina apices, 342 343 whitish and abundant scales on the adaxial surface of the laminae, and spores with scattered spines $\leq 1 \mu m$ in height (Fig. 4D-F) (Moran et al. 2007; www.plantsystematics.org). 344

345 The "Elaphoglossum lancifolium clade" is the only one of the three that has a pantropical distribution, 346 with species distributed in the Paleotropics (Africa, Madagascar, and Southeast Asia, including India) and species distributed in the Neotropics (Mexico, Central, and South America) (Fig. 3, Table 4). Although 347 not all the species included in this study were considered, the age of diversification of this clade was 348 349 calculated between 2.96–7.47 mya (Lóriga et al. 2014b), which suggests that long-distance dispersal, and 350 not vicariance, is the most likely explanation for understanding the distribution of species because when 351 the diversification of the group began, the tropics of America, Africa, and Asia were already geographically isolated (Barrington 1993, Janssen et al. 2007, Lóriga et al 2014b, Moran and Smith 2001, 352 353 Smith 1993, Tryon 1970, 1986, Perrie et al 2010).

354

Figure 3. General distribution of the three clades that were described in this study. The dotted line
indicates the distribution for the "*E. ciliatum* clade", the interrupted line indicates the distribution for the

357 *"E. lancifolium* clade", and the continuous line indicates the distribution of the *"E. petiolatum* clade".

358

359 It has been shown that the Africa-Madagascar region functions as a contact point for the floras of 360 America, Africa, and Asia, and that could explain why tropical America and Africa-Madagascar share more than 10% of their fern species (Moran and Smith 2001, Janssen et al. 2007, Ranker et al. 2004). A 361 list of "species pairs", where from two morphologically and phylogenetically related species, one occurs 362 363 in the American tropics and the other in Africa or Madagascar (Moran and Smith 2001), indicates the pair 364 of E. lancifolium (Africa) and E. yungense (South America). Our topologies show that these species are closely related, however, a sister group relationship between them cannot be established, because E. 365 366 viscidum is recovered in the same subclade. Our study also suggests that there might be another species 367 pair between E. blumeanum, from Southeast Asia, and E. welwitschii distributed in different African countries, and an unidentified species from Colombia and Ecuador (Figs. 1 and 2, Table 4). 368 In the molecular work of Rouhan et al. (2004), the phylogenetic closeness between E. killipii 369 370 Mickel (South America), E. lancifolium (Africa), and E. tectum (Humb. & Bonpl. ex Willd.) T. Moore 371 (from Mexico to South America) is mentioned. In this study, we corroborate the identifications of the specimens used in those analyses and find that the collections determined as E. killipii Mickel (M. Sundue 372 373 581, LPB, NY, USZ) and E. tectum (J. Prado 1126, NY) correspond to E. yungense and E. viscidum, 374 respectively. Interestingly E. viscidum from Prado 1126 is not recovered with the rest of the sequences of 375 the same species in our topologies, so what we have called *E. viscidum* likely corresponds to several taxa. 376 Our study did not include sequences of E. killipii or E. tectum; however, based on their distribution and morphology, we think they could be part of the "E. lancifolium clade". Elaphoglossum 377 378 killipii is endemic to Peru, it has abundant stellate scales and resinous dots on the abaxial surface of the 379 lamina, and its spores have scattered spines $\leq 1 \mu m$ high (Mickel 1991, Mickel and Smith 2004, 380 plantsystematics.org). Elaphoglossum tectum lacks resinous dots, and the morphology of its spores is 381 unknown, however, it occurs from Mexico to Brazil and has abundant whitish scales with long acuminate apices (Mickel and Smith 2004). 382 383 Besides these two species, there are others, of which there are no sequences, but their morphology

384 (presence of resinous dots and/or laminae with attenuated to largely attenuated apices) suggests they

might belong to the "*E. lancifolium* clade"; for example, *E. ballivianii* Rosenst. and *E. stenophyllum*

386 (Sodiro) Diels from South America and *E. ambrense* Rouhan, *E. anjanaharibense* Rouhan, *E.*

387 gladiifolium Rouhan, E. patriceanum Rouhan, E. subglabricaule Rouhan, E. stelligerum (Wall. ex Baker)

388 T. Moore ex Alston & Bonner, and E. yunnanense from Madagascar (Baker) C. Chr., (Mickel 2001,

389 Rouhan 2020).

390 The "*Elaphoglossum lancifolium* clade" is an ideal candidate for future phylogenetic studies and 391 for an in-depth taxonomic revision because, although the group can be delimited morphologically (see 392 key), many of its species are poorly defined and frequently confused.

393 *"Elaphoglossum petiolatum* clade"– This was the original "Mexican clade of *E. petiolatum*"

proposed by Vasco et al. (2009b), but we rename it because we found that the sequence of the specimen

of *E. petiolatum* from Jamaica (*Christenhusz 3226*, NY), the type locality of the species (Swartz 1778,

Proctor 1985) is recovered here. Seven species were recovered as part of this clade, four of which -E.

397 *petiolatum, E. potosianum, E. pringlei,* and *E. rzedowskii* were considered part of the complex described

by Mickel (2001). The other three species are *E. schiedei*, *E. schmitzii*, and a third, from the Mexican state

of Querétaro (Carranza 2036 MEXU, IEB) which was initially determined to be *E. potosianum*, but our

400 molecular analyses and morphology suggests it is probably an undescribed species.

401 Most of the species of this clade are endemic to Mexico, except for *E. schiedei*, which is present 402 in Mexico and Guatemala, and for *E. petiolatum*, which occurs from Mexico to Panama and in the

403 Antilles (Table 4) (Mickel and Smith 2004, Chapter IV). The current distribution of the *E. petiolatum*

404 clade and the diversification age of a similar clade, calculated between 0.42–3.49 million years ago

405 (Lóriga et al. 2014b), suggests that the Mexican territory was its center of diversification.

406 In general, the species of the *Elaphoglossum petiolatum* clade are distinguished, by resinous dots 407 on the lamina, bicolorous stem scales (with the margin generally darker than the rest of the scale) with 408 acute to filiform apices, and spores with scattered spines $\leq 1 \mu m$ high (except *E. petiolatum* which has

409 concolorous scales and spores with irregular deposits) (Fig.4G-I) (Mickel and Smith 2004, Vasco et al.

410 2009a, Martínez-Becerril et al 2021).

411	Apart from the endemic species, from E. schiedei, and from the probable new species from Querétaro, no
412	other species of <i>Elaphoglossum</i> from Mexico is recovered within the <i>E. petiolatum</i> clade, not even <i>E.</i>
413	gratum, which has been misidentified as E. petiolatum because its stem scales can sometimes be entire; or
414	as E. pringlei because of its scaly laminae (Mickel and Smith 2004) (Figs. 1 and 2). Elaphoglossum
415	gratum differs from species in the E. petiolatum clade because its laminar scales are very large (1-
416	1.5mm) compared to the lamina scales of <i>E. petiolatum</i> and <i>E. pringlei</i> (up to 1mm), the absence of
417	laminar resinous dots, and the presence of perispores with dense spines $\ge 1 \mu m$ in height (vs. spores with
418	scattered spines $\leq 1 \mu m$ in height in <i>E. pringlei</i> and spores without spines in <i>E. petiolatum</i>).
419	The original sampling of this study included sequences of Elaphoglossum petiolatum from
420	Mexico and Central America and of E. muelleri, another species with similar morphology to the species
421	of this clade. However, the herbarium work for the taxonomic revision of this clade allowed a better
422	determination of the specimens and resulted in the non-inclusion of representatives of these two species.
423	After analyzing the morphology of the plants and the spores, we conclude that it is very likely that the
424	Mexican and Central American specimens of E. petiolatum and E. muelleri are part of this clade
425	(Martínez-Becerril et al. 2021, Martínez-Becerril et al., in prep.). On one hand, the morphology of the
426	Central American specimens of <i>E. petiolatum</i> , including that of spores with irregular deposits instead of
427	spines coincides with the morphology of the Antillean specimens of this species (Fig.4L). On the other
428	hand, Elaphoglossum muelleri is similar to E. potosianum as it has resinous dots and trichomidia on the
429	abaxial surface of the laminae and spores with scattered spines $\leq 1 \mu m$ high (Fig. 4I). <i>Elaphoglossum</i>
430	muelleri is distinguished from E. potosianum by its abundant stellate laminar scales and its orange stem
431	scales.
432	The "clade of E. petiolatum" is divided into two moderately well-supported subclades within
433	which interspecific relationships are not fully resolved. This low resolution has been reported in other
434	works of the genus using the same molecular markers or a subset of them (Skog et al. 2004, Rouhan et al.

435 2004, Vasco 2009b, 2011, Lóriga 2014b), and is probably due to the exclusive use of plastid DNA as this

436 type of data is not always suitable for work at the species level in groups of plants that have reticulate or 437 recent evolutionary histories, such as ferns (Voegel et al. 1998; Stein and Barrington 1990; Guillon and Raquin 2000). In this sense, phylogenetic estimates from chloroplast genes can produce misleading 438 439 inferences because plastid genomes are uniparentally inherited, so evolutionary events such as 440 hybridization and polyploidy are often overlooked (Lovis 1978). Furthermore, unlike nuclear genomes, 441 plastid genomes do not undergo extensive recombination, so inferences are also susceptible to events such 442 as deep coalescence. To fully unravel the relationships in many fern groups requires the development of 443 unlinked markers that clearly reflect hybridization events, e.g., nuclear markers or genomes (Roethfels et al 2013). 444

Despite the low resolution at the species level, all sequences from the same species were 445 recovered only in one of the two subclades of the "E. petiolatum clade" and are morphologically 446 447 diagnosable. For example, E. pringlei and E. rzedowskii had been considered variations of the same 448 species (Mickel and Smith 2004), however in this study, they are recovered in different subclades and our 449 morphological analyses show that they have different characteristics such as the size of their spores 450 (larger in *E. pringlei* than in *E. rzedowskii*) (Martínez-Becerril et al. 2021), the apex of the stem scales 451 (long attenuated to filiform-tortuous in E. pringlei vs. acuminate, sometimes attenuated in E. rzedowskii) 452 and the density of the lamina scales (sparse to dense, non-imbricate in E. pringlei vs. dense, sometimes 453 imbricate in E. rzedowskii). Something similar happens with E. schiedei, and E. schmitzii, which were 454 considered synonyms of E. petiolatum (Mickel and Smith 2004), but which are recovered in different subclades within the "E. petiolatum clade" (E. schmitzii in one and E. schiedei plus E. petiolatum in 455 456 another).

The distribution of *E. schmitzii*, *E. schiedei* and *E. petiolatum* overlaps in the state of Oaxaca while that of *E. schiedei* and *E. petiolatum* also overlaps in Chiapas and Guatemala. These species can be distinguished by many morphological characters, including spore ornamentation (spiny in *E. shiedei* and *E. schimitzii* and with irregular deposits in *E. petiolatum*) (Fig. 4J–L) (Martínez-Becerril in prep.). The review of herbarium specimens for this study and for the monographic study of this clade showed that
many of the Mexican specimens determined as *E. petiolatum* correspond to *E. schiedei* or *E. schiedei*.

- **Figure 4.** Spores of the species belonging to the three clades described in this work. Scale= 10μm.
- 464 *"Elaphoglossum ciliatum* clade" (A–C), *"E. lancifolium* clade" (D–F), and *"E. petiolatum* clade" (G–L).
- A. E. ciliatum (Neill 9648, MO). B. E. burchelli (Dusen 7225, NY). C. E. gramineum (Valeur 634, NY).
- 466 D. E. killipii (Buchtein 4239). E. E. lancifolium (Rouhan & Grangaud 201, P). F. E. yungense (Kessler
- 467 6444, NY). G. E. pringlei (Anderson 4778, MEXU). H. E. rzedowskii (Martinez-Becerril 405, MEXU). I.

468 *E. muelleri (Anderson 13211, MEXU), J. E. schmitzii (McVaugh 23885, MEXU), K. E. schiedei*469 (*Gallardo Hernández 836, MEXU*), L. *E. petiolatum (Proctor 5297, MO*).

470

471 This confusion in the identification explains the differences in the micromorphology of the spores

472 indicated by Martínez-Becerril et. al. (2021) between the Mexican specimens of *E. petiolatum* with

473 respect to the Central American and Antillean ones.

Notes on the application of the name Elaphoglossum petiolatum. –For a long time, the name E. 474 475 petiolatum was used interchangeably to identify specimens of *Elaphoglossum* throughout the world with 476 dark rhizome scales and resinous dots on the laminar abaxial surfaces (Mickel 2001). In an attempt to understand and clarify the morphological variation of this species, the name E. petiolatum was restricted 477 478 to the specimens from the American tropics, from Mexico and the Antilles to Peru and Brazil, while to 479 accommodate those from southeast Asia, Africa, and India, names such as E. blumeanum, E. yunnanense, *E. salicifolium*= *E. lancifolium*, and *E. stelligerum*, respectively, were used (Proctor 1985, Mickel 1995, 480 481 2001, Mickel and Smith 2004). In this work, we corroborate that *E. petiolatum* is not present in South 482 America and that its distribution is restricted to Antilles, Mexico, and Central America. South American specimens identified as *E. petiolatum* belong to the "*E. lancifolium* clade" and need to be renamed. For 483 this, there are at least five published names that could be applied: E. killipii (Peru), E. ballivianii 484 485 (Bolivia), E. stenophyllum (Colombia and Venezuela), E. viscidum (Brazil), and E. vungense (from Peru 486 to Argentina). These species are similar to *E. petiolatum* because of the presence of resinous dots on the 487 laminae, however, they differ from it in several aspects, such as the density of the lamina scales (generally dense vs. glabrous or scattered to dense in *E. petiolatum*) and the shape of the laminae apex (attenuated to 488 largely attenuated vs. acute to acuminate in *E. petiolatum*) (de la Sota 1973, Tryon 1991). 489 490 In addition to helping resolve the phylogenetic relationships of the *E. petiolatum complex*, the 491 present study defines the distribution of *E. petiolatum* and allowed the recognition of two new monophyletic groups - the E. lancifolium and E. petiolatum clades, with a manageable number of species 492

493 to carry out detailed taxonomic revisions.

494	Key to identify the different clades in which the species of the Elaphoglossum petiolatum complex
495	sensu Mickel (2001) were segregated
496	1. Stems black with a shiny, lacquer-like exudate when dried, spores with dense spines $\ge 1 \mu m$ high
497	clade of <i>E. ciliatum</i>
498	1. Stems brown, without shiny exudate, spores with scattered spines $\leq 1 \mu m$ high or without spines
499	2. Laminae apices attenuate to largely attenuate, spores with spines $\leq 1 \mu m$ high
500	clade of <i>E. lancifolium</i>
501	2. Laminae apices acute or acuminate, spores with spines $\leq 1 \mu m$ high or with irregular deposits
502	clade of <i>E. petiolatum</i>
503	ACKNOWLEDGMENTS
504	This paper is part of the doctoral research of the first author in the Posgrado en Ciencias Biológicas (PCB)
505	of the Universidad Nacional Autónoma de México (UNAM), supported by the Consejo Nacional de

506 Ciencia y Tecnología (CONACyT) with a Ph.D. fellowship (508729). This work was done under the

507 supervision of Dr. Alejandra Vasco together with Dr. Eloy Solano (UNAM), who unfortunately passed

away in December 2021. We thank the dissertation committee members Dr. Teresa Terrazas and David S.

509 Gernandt. Important funding for this paper was given by the American Society for Plant Taxonomists

510 (ASPT) (Research Grants for Graduate Students 2018), International Association for Plant Taxonomists

511 (IAPT) (Research Grant 2020), and the American Fern Society (AFS) and the Pteridological Section of

512 Botanical Society of America (BSA) (Edgar T. Wherry Award 2021). The authors also acknowledge the

513 curatorial staff of the following herbaria for making their material available for this study: B, BRIT,

514 CHAPA, F, IEB, MEXU, MO, NY, UCR, P, US, VT. Thank you so much to Marsha Stripe (BRIT), and

515 Berenit Mendoza Garfías (Instituto de Biología, UNAM) for their valuable help taking SEM images of

516 spores. We also thank Robbin Moran for all the comments to get better this research.

LITERATURE CITED

518	Gastony, G.J., &Yatskievych G. (1992). Maternal inheritance of the chloroplast and mitochondrial
519	genomes in cheilanthoid ferns. American Journal of Botany 79,716–722.
520	Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis.
521	Cladistics, 24(5), 774-786.
522	Guillon, J.M., Raquin C. (2000). Maternal inheritance of chloroplasts in the horsetail Equisetum
523	variegatum (Schleich.). Current Genetics 37, 53–56.
524	Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., & Jermiin, L.S. (2017) ModelFinder:
525	Fast model selection for accurate phylogenetic estimates. NatURE Methods, 14, 587-589.
526	Kessler, M., Moran, R. C., Mickel, J. T., Matos, F. B., & Smith, A. R. 2018. Prodromus of a fern flora for
527	Bolivia. XXXV. Dryopteridaceae. Phytotaxa, 353(1), 1.
528	Lanfear, R., Calcott, B., Y. W. Ho, & S., Guindon, G. (2012). PartitionFinder: Combined Selection of
529	Partitioning Schemes and Substitution Models for Phylogenetic Analyses, Molecular Biology and
530	Evolution, 29 (6), 1695–170
531	Lovis J (1978). Evolutionary patterns and processes in ferns. Advances in Botanical Research 4, 229–415.
532	Liu, HM., Zhang, XC., Wang, W., Qiu, YL., & Chen, ZD. (2007). Molecular Phylogeny of the Fern
533	Family Dryopteridaceae Inferred from Chloroplast rbcL and atpB Genes. Internaional Journal of
534	Plant Science, 168(9), 1311–1323.
535	Lorence, D. H., & Rouhan, G. (2004). A Revision of the Mascarene Species of Elaphoglossum
536	(Elaphoglossaceae). Annals of the Missouri Botanical Garden. 91(4).

537	Lóriga, J., Vasco, A., Regalado, L., Heinrichs, J., & Moran, R. C. (2014). Phylogeny and classification of
538	the Cuban species of Elaphoglossum (Dryopteridaceae), with description of Elaphoglossum sect.
539	Wrightiana sect. nov. Plant Systematics and Evolution, 300(5), 937–951.
540	Maddison, W. P. & D.R. Maddison. (2019). Mesquite: a modular system for
541	evolutionary analysis. Version 3.51. http://www.mesquiteproject.org
542	Martínez-Becerril, A., Vasco, A., & Solano, E. (2021). Spore morphology of the Mexican species of the
543	Elaphoglossum petiolatum complex (Dryopteridaceae). Brittonia, 73(2)1-12.
544	Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference
545	of large phylogenetic trees. In 2010 gateway computing environments workshop (GCE) 1–8.
546	Mickel, J. T. (1991). Elaphoglossum and Peltapteris. In: R. M. Tryon & R. G. Stolze (eds.), Pteridophyta
547	of Peru, Part IV, 17. Dryopteridaceae. Fieldiana Bot., n.s. 27: 111–170.
548	Mickel, J. T. (1995a). Elaphoglossum. In R. C. Moran y R. Riba (Eds.), Flora Mesoamericana 1.
549	Psilotaceae to Salviniaceae Part IV. Fieldiana, 27, 247–283. Missouri Botanical Garden Press.
550	Mickel, J. T. (1995b). Elaphoglossum. In R. C. Moran y R. Riba (Eds.), Flora Mesoamericana 1.
551	Psilotaceae to Salviniaceae Part IV. Fieldiana, 27: 247–283. Missouri Botanical Garden Press.
552	Mickel, J. T. (2001). A new species in the Elaphoglossum petiolatum Complex (Elaphoglossaceae) from
553	Mexico. Brittonia, 53(4), 487–489.
554	Mickel, J. T, & Atehortúa, L. (1980). Subdivision of the genus Elaphoglossum. American Fern Journal,
555	70(2), 47–68.
556	Mickel, J. T., & Smith, A. R. (2004). The pteridophytes of Mexico. Memoirs of the New York Botanical
557	Garden, 88, 1–1055.

- Moran, R. C. (2018). American Genera of Ferns and Lycophytes. The New York Botanical Garden Press.
 New York.
- Moran, R. C., Hanks, J. G., & Rouhan, G. (2007). Spore Morphology in Relation to Phylogeny in the
 Fern Genus Elaphoglossum (Dryopteridaceae). International Journal of Plant Sciences, 168(6),
 905–929.
- Moran, R. C., Hanks, J. G., Labiak, P., & Sundue, M. (2010). Perispore morphology of bolbitidoid ferns
 (Dryopteridaceae) in relation to phylogeny. International Journal of Plant Sciences, 171(8), 872–
 881.
- Nguyen, L.-T., Schmidt H.A., von Haeseler, & A., Minh, B.Q. (2015) IQ-TREE: A fast and effective
 stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and
 Evolution, 32, 268-274.
- 569 PPG I. (2016). A community-derived classification for extant lycophytes and ferns. Journal of
 570 Systematics and Evolution, 54, 560–603.
- 571 Proctor, G. R. (1985). *Ferns of Jamaica*. British museum of Natural History. London.
- 572 Rambaut, A. (2010). FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh,
 573 Edinburgh.
- Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in
 Bayesian phylogenetics using Tracer 1.7. Systematic Biology. syy032.
- 576 Ronquist, F. & J. P. Huelsenbeck. (2003). MRBAYES 3: Bayesian phylogenetic
- 577 inference under mixed models. Bioinformatics 19,1572-1574.
- 578 Rouhan, G. (2020). Synoptic revision of the fern genus Elaphoglossum Schott ex J.Sm. (Dryopteridaceae)
- 579 in Madagascar, with the description of 23 new taxa, all but one endemic. PeerJ, 8.

580	Rouhan, G., Dubuisson, J. Y., Rakotondrainibe, F., Motley, T. J., Mickel, J. T., Labat, J. N., & Moran, R
581	C. (2004). Molecular phylogeny of the fern genus Elaphoglossum (Elaphoglossaceae) based on
582	chloroplast non-coding DNA sequences: Contributions of species from the Indian Ocean area.
583	Molecular Phylogenetics and Evolution, 33(3), 745–763.
584	Rouhan, G., Rakotondrainibe, F. & Moran, R.C. 2007. Elaphoglossum nidusoides (Dryopteridaceae), a
585	new species of fern from Madagascar with an unusual phylogenetic position in the Squamipedia

586 group. Systematics Botany 32, 227–235.

- Rouhan, G., Lorence, D. H., Motley, T. J., Hanks, J. G., & Moran, R. C. (2008). Systematic revision of
 Elaphoglossum (Dryopteridaceae) in French Polynesia, with the description of three new species.
 Botanical Journal of the Linnean Society, 309–331.
- Roux, J. P. (1982). The fern genus Elaphoglossum Schott (Filicales) in South Africa. Journal of South
 African Botany, 48, 481–526.
- Roux, J. (2011). The fern genus Elaphoglossum section Lepidoglossa (Dryopteridaceae) in Africa,
 Macaronesia, the mid-Atlantic and southern Indian Ocean Islands. Botanical Journal of the
 Linnean Society, 165, 20–63.
- Schuettpelz, E. & Pryer, K.M. 2007. Fern phylogeny inferred from 400 leptosporangiate species and three
 plastid genes. Taxon 56,1037–1050.
- 597 Skog, J. E., Mickel, J. T., Moran, R. C., Zimmer, E. A., & Volovsek, M. (2004). Molecular studies of

representative species in the fern genus Elaphoglossum (Dryopteridaceae) based on cpDNA

- sequences rbcL, trnL-F, and rps4-trnS. International Journal of Plant Sciences, 165(6), 1063–
- **600** 1075.

598

- Stein, D.B., Barrington D.S. (1990). Recurring hybrid formation in a population of Polystichum x potteri:
 Evidence from chloroplast DNA comparisons. Annals of the Missouri Botanical Garden 77,334–
 339.
- 604 Swartz, O. (1778). Nova genera et species plantarum seu prodromus. Bibliopoliis Acad. M. Swederi.
- 605 Vasco, A. (2011). Taxonomic revision of Elaphoglossum subsection Muscosa (Dryopteridaceae).
 606 Blumea, 2, 165–202.
- Vasco, A., Mickel, J. T., & Moran, R. C. (2013). Taxonomic revision of the neotropical species of
 Elaphoglossum sect. Squamipedia (Dryopteridaceae). Annals of the Missouri Botanical Garden,
 99(2), 244–286.
- 610 Vasco, A., Moran, R., & Ruhan, G. (2009a). Monograph of the Elaphoglossum ciliatum group
 611 (Dryopteridaceae). Brittonia, 61(3), 241–272.
- Vasco, A., Moran, R. C., & Rouhan, G. (2009b). Circumscription and phylogeny of the Elaphoglossum
 ciliatum group (E. sect. Lepidoglossa, Dryopteridaceae) based on cpDNA sequences. Taxon,
 58(3), 825–834.
- Vogel, J.C., Russell S.J., Rumsey F.J., Barrett J.A., & Gibby M. (1998). Evidence for the maternal
 transmission of chloroplast DNA in the genus Asplenium (Aspleniaceae, Pteridophyta). Acta
 Botánica Mexicana 111, 247–249.
- 618 Zotz, G., P. Weigelt, M. Kessler, H. Kreft, & A. Taylor. (2021). EpiList 1.0: a global checklist of vascular
 619 epiphytes. Ecology 102(6):e03326.

Appendix I. Voucher information for sequences used in this study and their GenBank accession numbers. X= indicates the new sequences generated for this study). (*) indicates the species considered as a part of the *Elaphoglossum petiolatum* complex sensu Mickel (2001).

Genus	Species	Collection and herbarium	Section	Country	atpB	rps4	trnL-F
Bolbitis	<i>B. serratifolia</i> (Mert. ex Kaulf.) Schott	Matos 2244, NY	Outgroup	Brazil	MG600314	MG600344	MG600372
Mickelia	<i>M. nicotianifolia</i> (Sw.) R. C. Moran, Labiak & Sundue	Sundue 1452, NY	Outgroup	Costa Rica		GU376666	GU376519
Elaphoglossum	<i>E. achroalepis</i> (Baker) C. Chr.	Rakotondrainibe 6485, P	Lepidoglossa	Madagascar	EF040636	AY540225	AY536288
	<i>E. acrostichoides</i> (Hook. & Grev.) Schelpe	Rouhan 229, P	Elaphoglossum	La Reunion	EF040654	EF040628	EF040614
	E. aemulun (Kaulf.) Brack	Lorence 8514, P	Elaphoglossum	Hawaii		AY540227	AY536290
	<i>E. affine</i> (M. Martens & Galeotti) T. Moore	Vasco 895, MEXU	Elaphoglossum	Mexico	X	X	Х
	E. alansmithii Mickel	Vasco 996, MEXU	Elaphoglossum	Mexico	X	X	Х
	E. albescens (Sodiro) Christ	Vasco 739, HUA, NY	Subulata	Colombia	X	GU376678	GU376532
	E. albomarginatum A. R. Sm.	Breedlove 31629, CAS, MEXU, NY	Subulata	Mexico	MG600320	MG600350	MG600378
	E. alismaefolium (Fée) T. Moore	Loriga 159, HAC	Elaphoglossum	Cuba	KF212374	KF212425	KF212399
	E. alvaradoanum A. Rojas	Trusty 120, NY	Subulata	Costa Rica	EF040651	EF040625	EF040611
	<i>E. amygdalifolium</i> (Mett. ex Kuhn) Christ	Herrera 2063, CR, INB, NY, USJ	Amygdalifoila	Costa Rica		AY536173	AY534845
		Moran 6952, NY			KJ528036		
	<i>E. andreanum</i> Christ	Lehnert 1460, GOET, QCA, NY, UC	Squamipedia	Ecuador	KJ528044	KJ528131	KJ528167
	E. angulatum (Blume) T. Moore	Rouhan 220, NY, P	Elaphoglossum	La Reunion	EF040655	AY540230	AY536293
	<i>E. anthracinum</i> A. Vasco, Mickel & R. C. Moran	Luteyn 11002, NY	Squamipedia	Ecuador	KJ528017	KJ528116	KJ528172
	E. asterolepis (Baker) C. Chr.	Kessler 12751, P	Lepidoglossa	Madagascar	EF040642	AY540231	AY536294
	E. aubertii (Desv.) T.Moore	Rouhan 110, P	Subulata	Comoros	EF040647	EF040622	EF040608

	<i>E. auricomum</i> (Kunze) T. Moore	MartinezBecerril 410, BRIT, FEZA, MEXU (aun no está)	Lepidoglossa	Mexico	X	Х	Х
-	<i>E. auripilum</i> Christ	Moran 6377, NY	Polytrichia	Costa Rica	EF040652	EF040626	EF040612
-	<i>E. austromarquesense</i> Rouhan & Lorence	Lorence 9011, PTBG	Lepidoglossa	Marquesas Islands		AY540292	AY536355
	E. avaratense Rakotondr.	Rakotondrainibe 1456, P	Lepidoglossa	Madagascar	EU907660	AY540233	AY536296
-	E. backhouseanum T. Moore	Moran 6321, NY	Polytrichia	Costa Rica		AY540234	AY536297
-	<i>E. bellermannianum</i> (Klotzsch) T. Moore	Vasco 484, HUA, NY	Lepidoglossa	Colombia	KJ528040	KJ528161	KJ528173
-	E. bifurcatum (Jacq.) Mickel	Eastwood 215, E	Lepidoglossa	Sta. Helena Island	EU907661	EU907737	AY194070
-	<i>E. biolleyi</i> Christ	Boyle 6397, NY	Elaphoglossum	Costa Rica		AY540235	AY536298
-	<i>E. blepharis</i> A. Vasco, Mickel & R. C. Moran	Harling 18092, AAU	Squamipedia	Ecuador	KJ528030	KJ528146	KJ528174
-	*E. blumeanum (Fée) J. Sm.	Sundue 3083, NY	Lepidoglossa	Philippines	Х	Х	X
-	E. boryanum (Fée) T. Moore	Meier 6768, NY	Setosa	Venezuela		AY536133	AY534804
-	E. burchellii (Baker) C. Chr.	Jimenez 2460, NY	Lepidoglossa	Bolivia	EU907663	EU907738	EU907803
-	E. cardenasii W. H. Wagner	Stahl 5665, NY	Setosa	Bolivia	EF040648		
		Beck 21894, NY				AY536131	AY534802
	<i>E. cardiophyllum</i> (Hook) T.Moore	Holm-Nielsen 17480, NY	Elaphoglossum	Ecuador		AY536171	AY534842
-	E. caricifolium Mickel	Halley 7, NY	Lepidoglossa	Costa Rica		AY536143	AY534814
	E. ciliatum (C. Presl) T. Moore	Gonzalez 12, CR, INB, UCR	Lepidoglossa	Costa Rica	EU907665	EU907740	EU907805
	E. cismense Rosenst.	VanEe 327, NY	Elaphoglossum	Costa Rica		AY540237	AY536300
	E. concinnum Mickel	Cotton 1546A, NY	Squamipedia	Ecuador	KJ528019	KJ528151	KJ528179
-	E. conspersum Christ	Moran 6343, NY	Elaphoglossum	Costa Rica		AY540238	AY536301
	E. coriaceum Bonap.	Rouhan 145, P	Elaphoglossum	Seychelles	EF040653	EF040627	EF040613
	<i>E. costaricense</i> Christ	Williams sn, NY	Setosa	Costa Rica		AY536128	AY534799
	E. coursii Tardieu	Rouhan 127, P	Elaphoglossum	Comoros		AY540240	AY536303
	E. crinitum (L.) Christ	Loriga 258, HAC	Polytrichia	Cuba	KF212377	KF212428	KF212403

E. croatii Mickel	Moran 6378, NY	Elaphoglossum	Costa Rica		AY540241	AY536304
<i>E. cubense</i> (Mett. ex Kuhn) C. Chr.	Loriga 155, HAC	Polytrichia	Cuba	KF212378	KF212429	KF212404
E. cuspidatum (Wild.) T. Moore	Jimenez 754	Lepidoglossa	Bolivia	EU907675	EU907750	EU907815
E. davidsei Mickel	Moran 6366, NY	Setosa	Costa Rica		AY540242	AY536305
<i>E. decaryanum</i> Tardieu	Rakotondrainibe 6326, P	Elaphoglossum	Madagascar	EF040658	AY540243	AY536306
E. deckenii (Kuhn) C. Chr.	Rouhan 105, CNDRS, NY, P, PTBG	Lepidoglossa	Comoros		AY540244	AY536307
E. decoratum (Kunze) T. Moore	Labiak 4074, NY	Subulata	Brazil	KJ528071	KJ528165	KJ528181
E. deltoideum (Sodiro) Christ	Moran 6783, NY	Squamipedia	Ecuador	KJ528031	KJ528148	KJ528240
E. dendricola (Baker) Christ	Moran 6853	Lepidoglossa	Ecuador	EU907676	EU907751	EU907816
<i>E. dimorphum</i> (Hook. & Grev.) T. Moore	Eastwood 719	Lepidoglossa	Sta. Helena Island	EU907678	EU907753	EU907817
E. dissitifrons Mickel	Testo 822, MEXU	Elaphoglossum	Mexico		Х	Х
E. dussii Underw. ex Maxon	Sanchez 138, NY	Lepidoglossa	Puerto Rico	EU907681	EU907755	EU907819
E. eggersii (Baker) Christ	Loriga 157, HAC	Lepidoglossa	Cuba	KF212381	KF212431	KF212406
E. ellipticifolium A. Rojas	Vasco 933, MEXU	Elaphoglossum	Mexico	Х	Х	Х
E. engelii (H. Karst.) Christ	Lyonnet 1413, US	Lepidoglossa	Mexico	Х	Х	Х
E. erinaceum (Fée) T. Moore	Vasco 990A, MEXU	Subulata	Mexico	Х	Х	Х
E. eximium (Mett.) Christ	Moraga 485, NY	Setosa	Costa Rica		AY536132	AY534803
E. feei (Bory ex Fée) T. Moore	Proctor 20311, US	Squamipedia	Guadeloupe	KJ528029	KJ528123	KJ528187
E. firmum (Mett. ex. Kuhn) Urb.	Loriga 74, HAC	Elaphoglossum	Cuba	KF212382	KF212433	KF212408
<i>E. flaccidum</i> (Fée) T. Moore	Mori 25578, NY	Elaphoglossum	French Guiana	EF040657	AY540246	AY536309
E. forsythii-majoris Christ	Kessler 12678, P	Lepidoglossa	Madagascar	EF040644	EF040620	EF040606
E. fournierianum L.D. Gómez	Moran 6336, NY	Setosa	Costa Rica		AY540248	AY536311
<i>E. glabellum</i> J. Sm.	Prado 1129, NY	Elaphoglossum	Brazil		AY536167	AY534839
<i>E. glaucum</i> T. Moore	Vasco 906, MEXU		Mexico		Х	Х
E. gramineum (Jenman) Urb.	Loriga 331, HAC	Lepidoglossa	Cuba	KF212383	KF212434	KF212409
E. gratum (Fée) T. Moore	CamposSalas 28, MEXU	Lepidoglossa	Mexico	X	X	X

	E. grayumii Mickel	Moran 6329, NY	Elaphoglossum	Costa Rica		AY540250	AY536313
-	<i>E. guatemalense</i> (Klotzsch) T.	Vasco 1008, MEXU	Elaphoglossum	Mexico	Х	Х	Х
-	Moore						
	<i>E. herminieri</i> (Bory & Fée) T.	Loriga 77, HAC	Elaphoglossum	Cuba	KF212384	KF212435	KF212410
-	Moore	D 1 177 D	T . 1 1		FLIDORCOD		
-	<i>E. heterolepis</i> (Fee) T. Moore	Rouhan 177, P	Lepidoglossa	Mauritius	EU907683	AY540251	AY536314
	<i>E. hoffmanii</i> (Mett. ex Kuhn)	Moran 6365, NY	Elaphoglossum	Costa Rica		AY540252	AY536315
-	Christ	D 1 176 NU		G 1 11			
-	E. hornei C. Chr.	Rouhan 156, NY	Elaphoglossum	Seychelles		AY540253	AY536316
-	<i>E. huacsaro</i> (Ruiz) Christ	Reden 1028A, NY	Lepidoglossa	Costa Rica	EU907688	EU907763	EU907826
	<i>E. humbertii</i> C. Chr.	Rouhan 466, P	Lepidoglossa	Madagascar	EU907696	EU907771	EU907834
	E. hybridum (Bory) Brack.	Rouhan 250, P	Subulata	La Reunion	EU907697	EU907772	EU907835
	E. ipshookense Mickel	Mickel 4748, NY	Lepidoglossa	Mexico	EU907698	EU907773	EU907836
-	E. lanatum (Bojer ex Baker)	Rouhan 194, MAU,	Lepidoglossa	Mauritius		AY540258	AY536321
-	Lorence	NY, P, PTBG					
	* <i>E. lancifolium</i> (Desv.) C. V.	Rouhan 201, P		La Reunion	EU907699	AY540259	AY536322
	Morton	Rouhan 187, P	Lepidoglossa	Mauritius	EF040640	EF040619	EF040605
-	E. latifolium_aff	Moran 6324, NY	Elaphoglossum	Costa Rica		AY540245	AY536308
-	E. laxisquama Mickel	Lehnert 1457, NY	Lepidoglossa	Ecuador	X	Х	X
-	E. lepervanchii (Bory & Fée) T.	Rouhan 162, P	Elaphoglossum	Seychelles		AY540260	AY536323
-	Moore			-			
	E. leucolepis (Baker) Krajina ex	Rakotondrainibe	Lepidoglossa	Madagascar	EF040638	AY540261	AY536324
-	Tardieu	6339, P					
-	<i>E. lingua</i> (C. Presl) Brack.	Moran 6380, NY	Elaphoglossum	Costa Rica		AY540262	AY536325
	E. lloense (Hook.) T. Moore	Vasco 845, HUA,	Squamipedia	Venezuela	KJ528066	KJ528127	KJ528201
-		MER, NY, VEN		-			
-	<i>E. lonchophyllum</i> (Fée) T. Moore	Vasco 952, MEXU	Setosa	Mexico	X	X	X
	E. longifolium_aff	Loriga 151, HAC	Elaphoglossum	Cuba	KF212375	KF212426	KF212401
-	E. luridum (Fée) Christ	living_collection_NY	Elaphoglossum	Peru		AY540263	AY536326
-		BG 2001-052, NY					
	<i>E. macropodium</i> (Fée) T. Moore	Rouhan 202, P	Elaphoglossum	La Reunion		AY540264	AY536327
	E. malgassicum C. Chr.	Kessler 12725, NY	Elaphoglossum	Madagascar	EF040659	AY540265	AY536328

E. marojejyense Tardieu	Rakotondrainibe 6429, P	Squamipedia	Madagascar	EF040630	AY540266	AY536329
E. marquisearum Bonap.	Lorence 8937, PTGB	Lepidoglossa	Marquesas Islands		AY540267	AY536330
E. martinicense (Desv.) T. Moore	Loriga 366, HAC	Elaphoglossum	Cuba	KF212387	KF212437	KF212412
<i>E. maxonii</i> Underw. ex C.V. Morton	Loriga 341, HAC	Elaphoglossum	Cuba	KF212388	KF212438	KF212413
E. mcvaughii Mickel	CamposSalas 123, MEXU		Mexico		X	
E. metallicum Mickel	living_collection_NY BG 2790/95, NY	Elaphoglossum	Peru		AY536160	AY534832
E. meyeri Rouhan	Motley 2875, NY	Setosa	Rapa		AY540287	AY536350
E. micropogon Mickel	Moran 6353, NY	Lepidoglossa	Costa Rica	EF040643	AY540268	AY536331
<i>E. minutissimum</i> R.C. Moran & J.T. Mickel	Moran 6344, NY	Setosa	Costa Rica		AY540293	AY536356
<i>E. minutum</i> (Pohl ex Fée) T. Moore	<u>Krömer</u> 2873, NY	Squamipedia	Mexico	KJ528073	KJ528099	KJ528206
<i>E. mitorrhizum</i> Mickel	Boyle 6410, CR, INB, NY, USJ	Elaphoglossum	Costa Rica	EF040656	AY540269	AY536332
E. moorei (Britton) Christ	Jimenez 701, NY	Squamipedia	Bolivia	KJ528024	KJ528156	KJ528210
<i>E. muscosum</i> (Sw.) T. Moore	Mickel 1246, NY	Lepidoglossa	Mexico	X	X	X
E. nervosum (Bory) Christ	Eastwood 358, E	Lepidoglossa	Sta. Helena Island	EU907700	EU907774	AY194069
<i>E. nidusoides</i> Rouhan & Rakotondr.	Rouhan 387, P	Squamipedia	Madagascar	EF040634	EF040618	EF040604
<i>E. nigrescens</i> (Hook.) T. Moore ex Diels	Moran 7627, NY	Lepidoglossa	Ecuador	EU907709	EU907782	EU907844
<i>E. oblanceolatum</i> C. Chr.	Gomez 2100, NY	Setosa	Costa Rica		AY540271	AY536334
E. ocoense C. Chr.	Jones 1120, NY	Setosa	Dominican Republic		KF212441	KF212414
<i>E. orbignyanum</i> (Fée) T. Moore	Bach 1773	Lepidoglossa	Bolivia	EU907710	EU907783	EU907845
<i>E. ovalilimbatum</i> Bonap.	Humbert 24895, P	Elaphoglossum	Madagascar		AY540272	AY536335
<i>E. ovatum</i> (Hook. & Grev.) T. Moore	Smith 2872, UC	Lepidoglossa	Ecuador	EF040641	AY540273	AY536336

	<i>E. paleaceum</i> (Hook. & Grev.) Sledge	Vasco 886, MEXU	Lepidoglossa	Mexico	X	X	X
_	<i>E. pallidum</i> (Baker ex Jenman) C. Chr.	Vasco 882, MEXU	Subulata	Mexico	X	X	X
	E. palmeri Underw. & Maxon	Loriga 67, HAC	Lepidoglossa	Cuba	KF212391	KF212442	KF212415
	E. papillosum (Baker) Christ	Boyle 5816, NY	Setosa	Costa Rica		AY536129	AY534800
	E. parduei Mickel	Vasco 1009, MEXU	Elaphoglossum	Mexico	X	X	Х
	<i>E. peltatum_peltatum</i> (Sw.) Urb.	Testo 826, MEXU	Squamipedia	Mexico	X	X	Х
_	<i>E. peltatum_flabellatum</i> (Humb. & Bonpl. Ex Willd.) Mickel	Rojas 2618, NY	Squamipedia	Costa Rica	KJ528043	KJ528110	KJ528217
	<i>E. peltatum_peltatum</i> (Sw.)Urb.	Daly 13117, NY	Squamipedia	Mexico	KJ528055	KJ528100	KJ528218
	<i>E. peltatum_standleyi</i> (Maxon) Mickel	Moran 6446, NY	Squamipedia	Costa Rica	KJ528045	KJ528111	KJ528229
	* <i>E. petiolatum</i> (Sw.) Urb.	Christenhusz 3226, NY	Lepidoglossa	Jamaica			Х
	E. petiolosum (Desv.) T.Moore	Vasco 762, HUA, NY	Lepidoglossa	Colombia	KJ528052	KJ528160	KJ528230
	<i>E. phanerophlebium</i> C. Chr.	Rakotondrainibe 6430, P	Setosa	Madagascar	EF040646	AY540276	AY536339
	<i>E. piloselloides</i> (C. Presl) T. Moore	Howard 9038, NY	Setosa	Dominican Republic		KF212445	KF212418
	E. pilosius Mickel	Vasco 889, MEXU		Mexico	X	X	Х
	E. poolii (Baker) Christ	Kessler 12702, NY	Lepidoglossa	Madagascar	EF040639	AY540278	AY536341
	* <i>E. potosianum</i> Christ	MartinezBecerril 399, BRIT, FEZA, MEXU	Lepidoglossa	Mexico		X	Х
		Dyer 11, MEXU		X	Х	X	Х
		CornejoTenorio 61438, MEXU			X	X	Х
		Salazar 5905, MEXU				X	Х
		TorresColin 14657, MEXU				X	X
	E. prestonii J. Sm.	Prado 1117, NY	Polytrichia	Brazil		AY536139	AY534810
		Campos 2650, NY			EU907716	EU907787	EU907850

* <i>E. pringlei</i> (Davenp.) C. Chr.		Manzanero 1010, NY				X	Х
		AcevedoHernandez			X	X	Х
		117, NY	Lepidoglossa	Mexico			
		Anderson 4679, MEXU			X	X	Х
	Vasco 890, MEXU			X	X	X	
		Vasco, 928, MEXU	-		X	X	X
		JuarezGarcia 514, MEXU	-		X	X	Х
		TorresColin 17671, NY			X	X	Х
	<i>E. proximum_</i> aff	Zamora 3340, INB	Elaphoglossum	Costa Rica		AY540236	AY536299
	<i>E. pteropus</i> C. Chr.	Mori 25579, NY	Elaphoglossum	French Guiana		AY540280	AY536343
	<i>E. pusillum</i> (Mett. ex Kuhn) C. Chr.	Loriga 325, NY	Setosa	Cuba	KF212394	HG428762	KF212420
	<i>E. pygmaeum</i> (Mett. ex Kuhn) Christ	Smith 2826, UC	Setosa	Ecuador		AY540281	AY536344
	<i>E. randii</i> Alston and Schelpe	Huntley 2072, P	Lepidoglossa	Mariana Islands		AY540282	AY536345
	E. rapense Rapel.	Motley 2677	Setosa	French Polynesia		AY540283	AY536346
	E. richardii (Bory & Fée) Christ	Rouhan 205, P	Lepidoglossa		EF040645	EF040621	EF040607
	E. rufescens (Liebm.) T. Moore	Rojas 5387, MEXU	Lepidoglossa	Mexico	X	X	X
	<i>E. rufidulum</i> (Willd. ex Kuhn) C. Chr.	Rakotondrainibe 6396, P	Lepidoglossa	Madagascar		AY540285	AY536348
	E. russelliae Mickel	Moran 6360, NY	Setosa	Costa Rica		AY540286	AY536349
		MartinezBecerril 406, BRIT, FEZA, MEXU			X	X	Х
	*E. rzedowskii Mickel	MartinezBecerril 407, BRIT, FEZA, MEXU	Lepidoglossa	Mexico	X	X	X

		MartinezBecerril 405, BRIT, FEZA, MEXU			X	X	X
		Reina 96-183, MEXU				X	Х
		Rzedowskii 26161, NY	-			Х	Х
		MartinezBecerril 408, BRIT, FEZA, MEXU	-			Х	Х
	E. sartorii (Fée) T. Moore	MartinezBecerril 411, BRIT, FEZA, MEXU	Elaphoglossum	Mexico	X	X	X
		Vasco 900, MEXU	-		X	Х	X
	E. schiedei	Vasco 995, MEXU	Lepidoglossa Mexico	Mexico	Х	Х	Х
		Kromer 3080, MEXU	-		X	X	Х
	E. schmitzii	Alvarez 13618, MO	Lepidoglossa	Mexico	X	X	Х
		Carranza 4179, MEXU	-		X	X	X
		CamposSalas 130, MEXU			X	X	X
		Lopez 1514, CHAPA			X	Х	Х
	E. scolopendriforme Tardieu	Rakotondrainibe 6426, P	Lepidoglossa	Madagascar	EU907719	AY540288	AY536351
	E. seminudum Mickel	Vasco 888, MEXU	Elaphoglosusm	Mexico	X	X	Х
		Vasco 887, MEXU	Setosa	Mexico	X	Х	X
	<i>E. setigerum</i> (Sodiro) Diels	Vasco 931, MEXU			X	X	X
		VanEe 328, NY		Costa Rica		AY540289	AY536352
	E. setosum (Liebm.) T. Moore	Vasco 964, MEXU	Setosa	Mexico	Х	Х	X
	<i>E. sieberi</i> (Hook. & Grev.) T. Moore	Rouhan 169, P	Elaphoglossum	Mauritius	EU907720	AY540290	AY536353
	<i>E. siliquoides</i> (Jenman) C. Chr.	Smith 2631, UC	Setosa	Costa Rica		AY536127	AY534798
	E. smithii (Baker) Christ	Boyle 6409, NY	Setosa	Costa Rica		AY540291	AY536354

<i>E. sp.</i>	MartinezBecerril 413, FEZA	Elaphoglossum	Mexico		X	
<i>E. sp.</i>	Vasco 585, HUA, MO, NY	Lepidoglossa	Colombia	EU907713		EU907847
<i>E. sp.</i>	Moran 7573, NY	Lepidoglossa	Ecuador	EU907714	EU907785	EU907848
E. sp.	Carranza 2036, NY	Lepidoglossa	Mexico	X	X	Х
<i>E. spatulatum</i> (Bory) T. Moore	Rakotondrainibe 6125, P	Setosa	Madagascar	EF040649	EF040623	EF040609
<i>E. splendens</i> (Bory ex Willd.) Brack.	Rouhan 247, P	Lepidoglossa	La Reunion	EU907721	AY540296	AY536359
E. squamipes (Hook.) T. Moore	Sundue 1688, INB, NY	Squamipedia	Costa Rica	KJ528067	KJ528119	KJ528235
<i>E. squarrosum</i> (Klotzsch) T. Moore	Vasco 883, MEXU	Squamipedia	Mexico	X	X	X
<i>E. stipitatum</i> (Bory ex Fée) T. Moore	Rouhan 212, NY, P, PTBG	Lepidoglossa	La Reunion		AY540297	AY536360
<i>E. subsessile</i> (Baker) C. Chr.	Rakotondrainibe 6332, P	Elaphoglossum	Madagascar	EF040660	AY540298	AY536361
<i>E. succisaefolium</i> (Thouars) T. Moore	Marthel-Thoumian 1A, P	Lepidoglossa	Amsterdam Island	KJ528047	AY540299	AY536362
	Vasco 558, NY	Lepidoglossa Colo Vene	Colombia	EU907722		EU907852
<i>E. tenuiculum</i> (Fée) T. Moore ex	Vasco 755, HUA, NY		Colombia	X	X	Х
	Vasco 824, HUA, MER, NY, VEN		Venezuela	X	X	Х
	Huaylla 1076, HSB		Bolivia	X	X	Х
E. tenuifolium (Liebm.) T. Moore	Vasco 897, MEXU	Lepidoglossa	Mexico	X	X	Х
	Vasco 892, MEXU			Х	X	Х
<i>E. terrestre</i> A. Rojas	Moran 6368, NY	Elaphoglossum	Costa Rica		AY540294	AY536357
<i>E. tomentosum</i> (Bory ex Willd.) Christ	Rouhan 174, P	Lepidoglossa	Mauritius	EU907723	AY540300	AY536363
<i>E. tripartitum</i> (Hook ex Grev.) Mickel	Vasco 867, QCA, NY	Squamipedia	Ecuador	KJ528078	KJ528140	KJ528242
	Matos 2478, NY	Lepidoglossa	Mexico	X	X	X
	 E. sp. E. sp. E. sp. E. sp. E. spatulatum (Bory) T. Moore E. splendens (Bory ex Willd.) Brack. E. squamipes (Hook.) T. Moore E. squarrosum (Klotzsch) T. Moore E. stipitatum (Bory ex Fée) T. Moore E. subsessile (Baker) C. Chr. E. subsessile (Baker) C. Chr. E. succisaefolium (Thouars) T. Moore E. tenuiculum (Fée) T. Moore ex E. tenuiculum (Fée) T. Moore ex E. tenuifolium (Liebm.) T. Moore E. terrestre A. Rojas E. tomentosum (Bory ex Willd.) Christ E. tripartitum (Hook ex Grev.) Mickel 	E. sp.MartinezBecerril 413, FEZAE. sp.Vasco 585, HUA, MO, NYE. sp.Moran 7573, NYE. sp.Carranza 2036, NYE. sp.Carranza 2036, NYE. spatulatum (Bory) T. MooreRakotondrainibe 6125, PE. splendens (Bory ex Willd.) Brack.Rouhan 247, PBrack.Sundue 1688, INB, NYE. squarrosum (Klotzsch) T. MooreVasco 883, MEXUMoorePTBGE. stipitatum (Bory ex Fée) T. MooreRouhan 212, NY, P, PTBGE. subsessile (Baker) C. Chr. MooreRakotondrainibe 6332, PE. succisaefolium (Thouars) T. MooreMarthel-Thoumian 1A, PE. tenuiculum (Fée) T. Moore ex Vasco 558, NYVasco 558, NY Vasco 755, HUA, NYE. tenuifolium (Liebm.) T. MooreVasco 897, MEXU Vasco 892, MEXUE. terrestre A. RojasMoran 6368, NYE. tomentosum (Bory ex Willd.) ChristRouhan 174, PE. tripartitum (Hook ex Grev.) MickelVasco 867, QCA, NY	E. sp.MartinezBecerril 413, FEZAElaphoglossumE. sp.Vasco 585, HUA, MO, NYLepidoglossaE. sp.Moran 7573, NYLepidoglossaE. sp.Carranza 2036, NYLepidoglossaE. sp.Carranza 2036, NYLepidoglossaE. sp.Carranza 2036, NYLepidoglossaE. sp.Carranza 2036, NYLepidoglossaE. sp.Rakotondrainibe 6125, PSetosaE. splendens (Bory ex Willd.) Brack.Rouhan 247, PLepidoglossaE. squarrosum (Klotzsch) T. MooreVasco 883, MEXUSquamipediaMooreNYSquamipediaE. stpitatum (Bory ex Fée) T. MooreRouhan 212, NY, P, PTBGLepidoglossaE. subsessile (Baker) C. Chr. Subsessile (Baker) C. Chr.Rakotondrainibe 6332, PElaphoglossaE. succisaefolium (Thouars) T. 	E. sp.MartinezBecerril 413, FEZAElaphoglossum LepidoglossaMexicoE. sp.Vasco 585, HUA, MO, NYLepidoglossaColombiaE. sp.Moran 7573, NYLepidoglossaEcuadorE. sp.Carranza 2036, NYLepidoglossaMexicoE. sp.Carranza 2036, NYLepidoglossaMexicoE. splendens (Bory ex Willd.) Brack.Rouhan 247, PLepidoglossaLa ReunionBrack.Rouhan 247, PLepidoglossaLa ReunionE. squamipes (Hook.) T. MooreSundue 1688, INB, NYSquamipediaCosta RicaE. squarrosum (Klotzsch) T. MooreVasco 883, MEXUSquamipediaMexicoMoorePTBGRouhan 212, NY, P, PTBGLepidoglossaLa ReunionE. subsessile (Baker) C. Chr. MooreRakotondrainibe (432, P)ElaphoglossaAmsterdam IslandE. succisaefolium (Thouars) T. MooreMarthel-Thoumian 1A, PLepidoglossaAmsterdam IslandE. tenuiculum (Fée) T. Moore and Vasco 755, HUA, MUAVasco 558, NYColombiaColombiaE. tenuifolium (Liebm.) T. MooreVasco 897, MEXU Vasco 892, MEXULepidoglossaMexicoE. terrestre A. RojasMoran 6368, NYElaphoglossaMacicoE. tiripartitum (Hook ex Grev.) MickelVasco 867, QCA, NYSquamipediaCosta RicaKato 2478, NYLepidoglossaMauritiusKato 2478, NYLepidoglossaMauritius	E. sp. MartinezBecerril 413, FEZA Elaphoglossum Mexico E. sp. Vasco 585, HUA, MO, NY Lepidoglossa Colombia EU907713 E. sp. Moran 7573, NY Lepidoglossa Ecuador EU907714 E. sp. Carranza 2036, NY Lepidoglossa Mexico X E. sp. Carranza 2036, NY Lepidoglossa Mexico X E. splendens (Bory ex Willd.) Rouhan 247, P Lepidoglossa La Reunion EU907721 Brack. Rouhan 247, P Lepidoglossa Costa Rica KJ528067 E. squarnosum (Klotzsch) T. Vasco 883, MEXU Squamipedia Mexico X Moore PTBG Rouhan 212, NY, P, Lepidoglossa La Reunion X Moore PTBG Rakotondrainibe 6332, P Elaphoglossa Madagascar EF040660 E. subsessile (Baker) C. Chr. Rakotondrainibe 6332, P Elaphoglossa Matagascar EF040660 E. succisaefolium (Thouars) T. Marthel-Thoumian 1A, P Lepidoglossa Amsterdam Island KJ528047 Vasco 555, HUA, NY Vasco 557, HUA, NY Vasco 897, MEXU Lepidogloss	E. sp. MartinezBecerril 413, FEZA Elaphoglossum Mexico X E. sp. Vasco 585, HUA, MO, NY Lepidoglossa Colombia EU907713 EU907713 E. sp. Moran 7573, NY Lepidoglossa Ecuador EU907714 EU907785 E. sp. Carranza 2036, NY Lepidoglossa Mexico X X E. spl. Carranza 2036, NY Lepidoglossa Mexico X X E. spl. Rakotondrainibe 6125, P Setosa Madagascar EF040649 EF040623 E. splendens (Bory ex Willd.) Rouhan 247, P Lepidoglossa La Reunion EU907721 AY540296 Brack. Squamipedia Costa Rica KJ528067 KJ528119 K. sipilatum (Bory ex Fée) T. Rouhan 212, NY, P, PTBG Lepidoglossa La Reunion AY540297 Moore PTBG Rakotondrainibe 6332, P Elaphoglossa La Reunion AY540297 Koore Vasco 558, NY Lepidoglossa Madagascar EF040660 AY540298 K. superspleitum (Thouars) T. Marthel-Thoumian 1A, P Lepidoglossa Amsterdam Island KJ528047

<i>E. vestitum</i> (Schltdl. & Cham.) T. Moore	Moran 6342, NY	Lepidoglossa	Costa Rica	EF040637	AY540270	AY536333
E. vieillardii (Mett.) T. Moore	Muntzinger 1740, P	Elaphoglossum	New Caledonia		AY540301	AY536364
<i>E. viride</i> Christ	MartinezBecerril 409, BRIT, FEZA, MEXU	Lepidoglossa	Mexico	Х	Х	Х
	Vasco 973, MEXU			Х	Х	X
	Matos 2055, NY			Х	Х	X
E. viscidum (Fée) Christ	Prado 1126, NY	Lepidoglossa	Brazil		AY536142	AY534813
	Matos, 2214, NY			Х	Х	X
E. vulcanicum Christ	Moran 7586, NY	Lepidoglossa	Ecuador	EU907728	EU907793	EU907856
E. wawrae (Luerss.) C. Chr.	Lorence 8511, PTBG	Elaphoglossum	Hawaii		AY540302	AY536365
*E. welwitschii (Baker) C. Chr.	Taylor 9099, P	Lepidoglossa	Tanzania		AY540303	AY536366
E. wrightii (Mett.) T. Moore	Loriga 242, NY	Squamipedia	Cuba	KF212396	KF212446	KF212422
E. xanthopodum Mickel	Vasco 1007, MEXU		Mexico	Х	Х	Х
E. yourkeorum Mickel	Testo 838, MEXU		Mexico	Х	Х	X
	Jimenez 2487, NY	_	EU90773 EU90773	EU907731	EU907796	EU907859
	Jimenez 2498, NY			EU907732	EU907797	EU907860
	Jimenez 2676, NY	T . 1 1	D 1' '	EU907733	EU907798	EU907861
* <i>E. yungense</i> de la Sota	Labiak 2808,	Lepidoglossa	Bolivia EU EU EU	EU907736	EU907801	EU907864
	Labiak 2790	-		EU907734	EU907799	EU907862
	Labiak 2804			EU907735	EU907800	EU907863
	Sundue 581, LPB, NY, USZ				AY540257	AY536320

Capítulo II

Spore morphology of the Mexican species of the *Elaphoglossum petiolatum* complex (Dryopteridaceae)

Artículo publicado en Brittonia:

Martínez-Becerril, A., Vasco, A., & Solano, E. 2021. Spore morphology of the Mexican species of the Elaphoglossum petiolatum complex (Dryopteridaceae). Brittonia, 73(2)1–12.

Spore morphology of the Mexican species of the *Elaphoglossum petiolatum* complex (Dryopteridaceae)

Ana Gabriela Martínez-Becerril^{1,2}, Eloy Solano¹, and Alejandra Vasco³

¹ Facultad de Estudios Superiores Zaragoza, Unidad de Investigación en Sistemática Vegetal y Suelo, Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, México; e-mail: anagabsmtz@gmail.com; e-mail: solacael@yahoo.com.mx

² Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México

³ Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107-3400, USA; e-mail: avascog@gmail.com

Abstract. Elaphoglossum is a taxonomically challenging fern genus with about 600 species. The present study concerns a group of five *Elaphoglossum* species mainly distributed in Mexico, four of which were recovered as monophyletic and are here called the Mexicanpetiolatum clade (E. petiolatum, E. potosianum, E. pringlei, and E. rzedowskii). The fifth species, E. muelleri, is distributed in Central America and Mexico and is morphologically similar to species of the Mexican-petiolatum clade. This study investigates the spores of these five species and has three objectives: first, to describe and compare their spore ornamentation; second, to analyze the variation in spore size among the species and within the widely distributed species E. petiolatum; and third, to assess whether perine ornamentation and exine size are useful to recognize species of the Mexican-petiolatum clade and/or for species delimitation. We studied 26 herbarium specimens of the five species and used scanning electron microscopy and statistical analyses to examine, measure, and analyze 133 spores. All the spores examined have uniform primary ornamentation (broad and discontinuous folds), but the secondary ornamentation is variable. Spores from Mexican specimens, regardless of their species, have small spines with narrow bases; spores of E. petiolatum from Central America have spines with wider bases; and spores of *E. petiolatum* from the West Indies have verrucae. Statistical analyses revealed that there are significant differences in spore size among all the studied species and within specimens identified as E. petiolatum. Within E. petiolatum, spores from the Dominican Republic are larger than those from the other countries. The results support our hypothesis that E. muelleri is part of the Mexican-petiolatum clade and suggest that E. petiolatum in Mexico, Central America, and the West Indies likely represent different taxa. Spore size differences help distinguish closely related species in the group such as E. pringlei and E. rzedowskii and indicate that there might be polyploid species within the Mexican-petiolatum clade.

Keywords: Comparative morphology, ferns, Mexico, polyploidy, species complex, spores, taxonomy.

Resumen. *Elaphoglossum* es un género de helechos taxonómicamente desafiante con alrededor de 600 especies. El presente estudio se enfocó en un grupo de cinco especies pertenecientes al género *Elaphoglossum*, distribuidas principalmente en México. De éstas, cuatro se recuperaron en un grupo monofilético denominado aquí como el clado mexicano de *E. petiolatum (E. petiolatum, E. potosianum, E. pringlei y E. rzedowskii)*. La quinta especie, *E. muelleri*, se distribuye en América Central y México y es morfológicamente similar a las especies del clado mexicano de *E. petiolatum*. Este estudio investiga las esporas de estas cinco especies y tiene tres objetivos: primero, describir y comparar la ornamentación de las esporas; segundo, analizar la variación en el tamaño de las esporas entre las especies y dentro de la especie ampliamente distribuida *E. petiolatum*; y tercero, evaluar si la ornamentación de la

BRITTONIA

perina y el tamaño de la exina son útiles para reconocer y/o delimitar estas especies. Examinamos, medimos y analizamos 133 esporas de 26 especímenes de herbario pertenecientes a las cinco especies, mediante microscopía electrónica de barrido y análisis estadísticos. Todas las esporas examinadas tienen ornamentación primaria uniforme (pliegues anchos y discontinuos), pero la ornamentación secundaria es variable. Las esporas de especímenes mexicanos, independientemente de su especie, tienen espinas pequeñas con bases estrechas; las esporas de E. petiolatum de América Central tienen espinas con bases más anchas; y las esporas de E. petiolatum de las Antillas tienen verrugas. Los análisis estadísticos revelaron que existen diferencias significativas en el tamaño de las esporas entre todas las especies estudiadas y dentro de los especímenes identificados como E. petiolatum. Dentro de E. petiolatum, las esporas de República Dominicana son más grandes que las de los demás países. Los resultados obtenidos apoyan nuestra hipótesis de que E. muelleri es parte del clado mexicano de E. petiolatum y sugieren que E. petiolatum de México, América Central y las Antillas, probablemente representan taxones diferentes. Las diferencias en el tamaño de las esporas ayudan a distinguir especies estrechamente relacionadas como E. pringlei y E. rzedowskii, e indican que puede haber especies poliploides dentro del clado mexicano de E. petiolatum.

Elaphoglossum Schott ex J. Sm. is a monophyletic fern genus belonging to the bolbitidoid clade of Dryopteridaceae (Skog et al., 2004; Rouhan et al., 2004; Vasco et al., 2009; Lóriga et al., 2014; Liu et al., 2015; PPG I, 2016). The genus has about 600 species and a pantropical distribution, with ca. 80% of the species occurring in the Neotropics (Moran et al., 2007). *Elaphoglossum* species are similar morphologically and usually characterized by simple laminae, entire margin, dimorphic leaves, acrostichoid sori, phyllopodia, free veins, and monolete spores (Moran et al., 2007, 2010). A large number of species and the similarity among them make the taxonomy of *Elaphoglossum* challenging.

Efforts to understand the taxonomy of Elaphoglossum include an infrageneric classification based on sporophyte morphology and spore ornamentation (Mickel & Atehortúa, 1980), and several molecular phylogenetic studies (Skog et al., 2004; Rouhan et al., 2004; Lóriga et al., 2014). Phylogenetic studies have largely recovered as monophyletic most of the large sections proposed in the morphological classification of Mickel and Atehortúa (1980). These are in seven wellsupported clades: Elaphoglossum sect. Wrigthiana J. Lóriga, A. Vasco, L. Regalado, Heinrichs & R.C. Moran, sect. Amygdalifolia (Christ) Mickel & Atehortúa, sect. Elaphoglossum, sect. Squamipedia Mickel & Atehortúa, sect. Polytrichia Christ, sect. Setosa (Christ) Mickel & Atehortúa, and sect. Lepidoglossa Christ (Skog et al., 2004; Rouhan et al., 2004; Lóriga et al., 2014).

Spore morphology has been useful to define some of the unnamed large clades, proposed sections and subsections, and unnamed species groups (Mickel & Atehortúa, 1980; Skog et al., 2004; Rouhan et al., 2004; Lóriga et al., 2014). The main studies of Elaphoglossum spore morphology are that of Mickel and Atehortúa (1980), which included SEM spore images of 163 species, and that of Moran et al. (2007), which was the first study to assess perine morphology in a phylogenetic context and included spore SEM images of 221 species. Both studies showed that the perine morphology of Elaphoglossum displays considerable diversity and is mainly uniform within species. Moran et al. (2007) also showed that, although perine characters can show considerable homoplasy, they provide some synapomorphies for most of the large clades and for some smaller clades within Elaphoglossum (Moran et al., 2007). Other studies in Elaphoglossum have used perine morphology to define several small groups and distinguish closely related and morphologically similar species (Mickel, 1985; Rouhan et al., 2004; Vasco et al., 2009, 2013; Vasco, 2011; Matos et al., 2018).

The present study concerns a group of five species of *Elaphoglossum* sect. *Lepidoglossa*, four of which were recovered as monophyletic in a previous molecular phylogeny (Vasco et al., 2009). *Elaphoglossum* sect. *Lepidoglossa* Christ, a section of about 200 species, was originally based on morphology and has been subsequently recovered as a well-supported clade by molecular
phylogenetic studies (Mickel & Atehortúa, 1980; Skog et al., 2004; Rouhan et al., 2004). Species of sect. *Lepidoglossa* are usually characterized by phyllopodia, scaly laminae, and scales with acicular marginal cells (Mickel & Atehortúa, 1980; Vasco et al., 2009). Spores of sect. *Lepidoglossa* species are generally characterized by broad and continuous folds, nonperforated perines, and absence of spines (Moran et al., 2007). Spines, however, appear to have originated several times and are a synapomorphy for smaller clades within the section (Moran et al., 2007).

The four species of sect. Lepidoglossa that were previously recovered as monophyletic are Elaphoglossum petiolatum (Sw.) Urb., E. potosianum Christ, E. pringlei (Davenp.) C. Chr., and E. rzedowskii Mickel (Vasco et al., 2009). These four species were traditionally considered part of the E. petiolatum complex, a worldwide group of about 12 species (Mickel, 2001). Species in the complex are distinguished by resinous dots on the abaxial lamina surface, black rhizome scales, and scales of the proximal portions of the petiole with dark apices and entire margins (Mickel, 2001; Mickel & Smith, 2004). Molecular phylogenetic studies suggested that, as traditionally defined, the E. petiolatum complex is not monophyletic and that only the Mexican species, including specimens of E. petiolatum from Mexico, form a monophyletic group named the Mexicanpetiolatum clade (Vasco et al., 2009). The three species of the latter clade (E. potosianum, E. pringlei, and E. rzedowskii) are endemic to Mexico (Mickel & Smith, 2004). The fourth species, E. petiolatum, had been considered to be widely distributed from Mexico to South America, including the West Indies (Mickel & Smith, 2004). Previous molecular phylogenetic analyses, however, have shown that what has been called E. petiolatum in South America, belongs to a different clade than the Mexican-petiolatum clade (Vasco et al., 2009).

In the present study, we investigate perine morphology and exine size in the four species of the Mexican-petiolatum clade. We include specimens of *E. petiolatum* from its entire geographical distribution: Jamaica (where the type of *E. petiolatum* was collected), the Dominican Republic, Mexico, and Central America. Also, we studied the spores of *E. muelleri* (E. Fourn.) C. Chr., a species morphologically similar to those of the Mexicanpetiolatum clade. We had three objectives: first, to describe and compare the ornamentation of species of the Mexican-petiolatum clade and *E. muelleri*; second, to analyze the variation in spore size among species of the Mexican-petiolatum clade and within *E. petiolatum*; and third, to assess if spore ornamentation and spore size are useful to recognize species that belong to the Mexican-petiolatum clade and/or for species delimitation.

Material and methods

Taxonomic sampling.— We studied specimens representing the four species belonging to the Mexican-petiolatum clade (*Elaphoglossum petiolatum*, *E. pringlei*, *E. potosianum*, and *E. rzedowskii*), and *E. muelleri*, a species distributed in Mexico and Central America and morphologically similar to the other species of the Mexican-petiolatum clade. To evaluate spore ornamentation and size variation within *E. petiolatum*, we analyzed specimens from its entire distribution range (Costa Rica, the Dominican Republic, Jamaica, Mexico, and Panama). We identified the specimens using taxonomic keys (Proctor, 1985; Mickel, 1995; Mickel & Smith, 2004) and specimens or images of types.

Spore ornamentation and size.— We took spore samples from specimens at FEZA, MEXU, MO, and NY. The number of spores sampled per species varied depending on the number of fertile specimens found for each species. For each specimen, we transferred three closed sporangia to an aluminum stub covered with adhesive carbon tape. We opened the sporangia with a dissection needle and scattered the spores on the stub surface. Stubs were coated with a gold layer using a metallizer QUORUM (Q150R ES) for two minutes at 20 mA. We imaged the spores using a HITACHI SU1510 scanning electron microscope (SEM) with an accelerating voltage of 10 or 15 kV. Image background and brightness were edited with Corel PHOTO-PAINT X7 and Adobe Photoshop. Also, we used some spore microphotographs publicly available at Plantsystematics. org posted by R. C. Moran.

We examined the spore images to describe the laesura type and the primary and secondary ornamentation. A laesura is the scar formed on the proximal faces of a spore where it was in contact with the three other spores in the tetrad (Erdman, 1943; Punt et al., 2007). Primary ornamentation describes the overall sculpture of the spore surface (e.g., broad folds, crests, large spines), whereas secondary ornamentation describes microstructures smaller than 1 μ m (Olejnik et al., 2018). For spore descriptions, we followed the terminology of Punt et al. (2007). To describe the secondary ornamentation, we use the terms spines and verrucae. In palynology, the definition of spines refers to long and tapering pointed elements (Erdman, 1952; Punt et al., 2007), whereas verrucae describe elements more than 1 μ m wide, wider than tall, and not constricted at the base (Iversen & Troels-Smith, 1950; Punt et al., 2007).

Equatorial and polar diameters were measured using the software ImageJ (Schneider et al., 2012). The equatorial diameter (ED) refers to the line lying in the spore equatorial plane and passing through it (Erdman, 1943; Punt et al., 2007). The polar diameter (PD) is the straight line between the spore distal and proximal poles, and it is perpendicular to the equatorial axis (Wodehouse, 1935; Punt et al., 2007).

Statistical analyses.— We conducted all statistical analyses in R (R Core Team, 2014) using the "car" package (Weisberg, 2019). To assess if there are significant differences in spores ED and PD means among all the studied species, we conducted a Welch's test of variance for samples with unequal variance, because the number of spores measured per species is different (function "oneway.test" in R) (Table 1). To assess the differences between all possible pairs of species, we used the Fishers Least Significant Difference (LSD) test. To assess if there are significant differences in ED and PD in the spores of *E. petiolatum* among the different countries where this species is distributed, we conducted a traditional ANOVA (function "aov" in R) followed by a Tukey Honest Significant Differences (THSD) post-hoc test to assess the differences between all possible pairs of countries.

Results

We measured 133 spores from 26 different collections belonging to the four species of the Mexican-petiolatum clade and *Elaphoglossum muelleri* (Table 1, Appendix 1). Most of the collections included in this study came from Mexico, but for *E. petiolatum*, we examined spores from Costa Rica, the Dominican Republic, Jamaica, Mexico, and Panama (Appendix 1). We found that spores were often collapsed, for the measurements we used only well-shaped spores. For the statistical analyses, the sample size was 131 spores because we excluded the atypical values (outliers). Spores of *E. muelleri, E. potosianum*, and *E. rzedowskii* are imaged and described here for the first time.

Spore ornamentation.— Spores of the five species studied are similar in shape and primary ornamentation. All the species have rounded and monolete spores, and nonperforated perines with broad discontinuous folds as primary ornamentation (Figs. 1 and 2). All specimens from Mexico, regardless of the species they belong to, have

TABLE 1. NUMBER OF SPORES SAMPLED AND SPORE SIZE OF ALL THE *ELAPHOGLOSSUM* SPECIES INCLUDED IN THIS STUDY. *ELAPHOGLOSSUM* PETIOLATUM SPECIMENS ARE DIVIDED IN THREE GROUPS

Species	Sample size	Equatorial diameter (μ m) min ^a -(χ) ^b -max ^c	sd ^d	Polar diameter (μm) min–(χ)–max	sd	Fig.
E. muelleri	11	29.5– (37.5) –44.1	5.9	(23.9*–)28.1– (30.5) –33.7 (–36*)	1.8	1A, B
E. petiolatum "Mexican group"	7	29.4–(34.4)–38.6	3.4	24.8-(27.4)-30.1	2	1I, 2A
E. petiolatum "Central American group"	15	29.3– (33.5) –38.4	3.1	22.5- (25.2) -28.9	2	2В-Е
E. petiolatum "West Indian group"	28	31.3 (38.1) 46.7	4.4	(20.7*–)22.8– (28.9)–34.6	2.7	2F–I
E. potosianum	20	(33.1*–)35– (39.4) –43.1 (–69.5*)	2.2	24.7- (31.1) -38.3(-43.1*)	3.6	1C, D
E. pringlei	28	30-(40.4)-64.3(-68.2*)	8.3	20-(31.6)-46.3(-51.5*)	6.5	1E, F
E. rzedowskii	24	28.5- (34.6) -43.5	3.6	21.8–(27.9)–35.7	3.2	1G, H

^a Minimum size, ^b size mean, ^c maximum size, ^d standard deviation; *atypical value not considered in the mean calculation.

2021]

FIG. 1. Scanning electron microscopy images of spores from five species of *Elaphoglossum*. A, B. E. muelleri. C, D. E. potosianum. E, F. E. pringlei. G, H. E. rzedowskii. I. E. petiolatum "Mexican group". Scale bars = 10µm. (A–I from Mexico, A, McVaugh 23,885, MEXU; B, Anderson 13,211, MEXU; C, Martínez-Becerril 399, FEZA, MEXU; D, Carranza 5140, MEXU; E, Martínez-Becerril 405, FEZA, MEXU; F, Anderson 4778, MEXU; G, Cornejo-Tenorio 1438, MEXU; H, Martínez-Becerril 408, FEZA, MEXU; I, Gallardo-Hernández 836, MEXU.)

spines as secondary ornamentation (Figs. 1 and 2a). These spines are less than 1 μ m tall and have a base less than 0.3 µm (Fig. 3a). Specimens of Elaphoglossum petiolatum from Central America also have small spines less than 1.2 µm tall, but these have a wider base (0.7–1.2 μ m) than the spines found in Mexican specimens (Figs. 2b-e and 3b). Specimens of E. petiolatum from Jamaica and the Dominican Republic have verrucae instead of spines (Figs. 2f-i and 3c). Because of the consistent and considerable differences that we found in spore secondary ornamentation among Mexican, Central American (Costa Rica and Panama), and West Indian (Jamaica and the Dominican Republic) specimens of E. petiolatum, we described their spores and analyzed them as three different groups (Tables 1 and 2).

Spore Size. In the five species studied, ED varies between 28.5 and 69.5 μ m and PD between 20 and 51.5 μ m (Table 1, Appendix 1). Of all the species studied, *Elaphoglossum pringlei* and *E. potosianum* have the largest spores, whereas *E. rzedowskii* and the Central American group of *E. petiolatum* have the smallest spores (Figs. 4 and 5; Table 1). Within *E. petiolatum* (considering the specimens from all countries), ED varies between 29.3 and 46.7 μ m and PD between 20.7 and 34.6 μ m (Table 2, Appendix 1). In average, spores from the Dominican Republic are the biggest and the ones from Costa Rica the smallest (Figs. 6 and 7, Table 2).

FIG. 2. Scanning electron microscopy images of *Elaphoglossum petiolatum* spores from five countries. A. Mexico. B–E. Central America. F–I. West Indies. Scale bars = 10µm. (A from Mexico, *Gallardo-Hernández 836*, MEXU; B, C from Costa Rica, *Lloyd 4134*, NY; D, E from Panama, *Croat 26,996*, NY; F, G from Dominican Republic, *García 958*, NY; H, I from Jamaica, H, *Underwood 3141*, NY; I, *Underwood 3214*, NY.)

The Welch's test to assess differences in spore size among the studied species, showed that there are significant differences in the means of the spores ED (p=0.000005, Fig. 4) and PD (p=0.000001, Fig. 5). The LSD test revealed there

are differences in the spores ED and PD between many of the species pairs (Suppl. Material 1). The ANOVA to assess differences in the spore size of *Elaphoglossum petiolatum* among countries, showed that there are significant differences in

FIG. 3. Types of secondary ornamentation found in the perine of the five species of *Elaphoglossum* studied. A. Spines with narrow base, *Gallardo-Hernandez 836*, MEXU. B. Spines with wider base, *Lloyd 4134*, NY. C. Verrucae, *Underwood 545*, NY. Scale bars = $1\mu m$.

Country	Sample size	Equatorial diameter (μ m) min ^a -(χ) ^b -max ^c	sd ^d	Polar diameter (μm) min–(χ)–max	sd
Costa Rica	8	29.3-(32.5)-38	3	22.5-(25.1)-28.7	2.1
Dominican Republic	8	36.5-(42.5)-46.7	3.2	28.1-(30.6)-34.6	2.2
Jamaica	20	31.3-(36.3)-43.5	3.4	(20.7*-)22.8-(28.1)-33.1	2.6
Mexico	7	29.4-(34.4)-38.6	3.4	24.8-(27.4)-30.1	2
Panama	7	30.1-(34.6)-38.4	3.2	22.9– (25.4) –28.9	2

TABLE 2. NUMBER OF SPORES SAMPLED AND SPORE SIZE OF *ELAPHOGLOSSUM PETIOLATUM* BY COUNTRY.

^a Minimum size, ^b size mean, ^c maximum size, ^d standard deviation, ^{*} atypical value not considered in the mean calculation.

the mean spores ED (p=0.000005, Fig. 6) and PD (p=0.0006, Fig. 7). The posterior comparisons using the THDS test revealed there were significant differences in spore ED between the spores from the Dominican Republic and: Costa Rica, Jamaica, Mexico, and Panama (Fig. 6; Suppl. Material 1). Spore PD displayed significant differences between the Dominican Republic and: Costa Rica and Panama (Fig. 7; Suppl. Material 1).

Discussion

All the spores we examined have uniform primary ornamentation consisting of nonperforated perines with discontinuous and broad folds. Although these results match previous reports for spores of species belonging to *Elaphoglossum* sect. *Lepidoglossa* (Mickel & Atehortúa, 1980; Tryon & Lugardon, 1991; Moran et al., 2007), nonperforated spores with discontinuous and broad folds have been shown to be plesiomorphic for *Elaphoglossum*, thus many species belonging

to other sections of *Elaphoglossum*, such as sect. Elaphoglossum and sect. Polytrichia, can have similar spore primary ornamentation (Moran et al., 2007). On the other hand, the spore secondary ornamentation of our studied species presents differences (Fig. 3). All spores from Mexican specimens, regardless of their species, have small spines with narrow bases (Figs. 1, 2a and 3a). These include E. muelleri and all the species recovered as part of the Mexican-petiolatum clade (Vasco et al., 2009). Spores of E. petiolatum from Central America also have small spines but those have wider bases and thus are different from the spines found in Mexican specimens (Figs. 2b-e and 3b). Spores of *E. petiolatum* from the West Indies differ from the rest by the presence of verrucae (Fig. 2f-i, 3c). Although closely related species can have different spore ornamentation, the fact that all Mexican specimens studied have the same ornamentation, supports our hypothesis that E. muelleri is part of the Mexicanpetiolatum clade.

FIG. 4. Boxplot showing the variation of the spore equatorial diameter of the five species of *Elaphoglossum* included in this study. Lower and upper portions of boxes correspond with the first and third quartile respectively. The thick line inside boxes corresponds to the median. Lower and upper whiskers indicate the minimum and maximum values of spore equatorial diameter.

BRITTONIA

FIG. 5. Boxplot showing the variation of the spore polar diameter of the five species of *Elaphoglossum* included in this study. Lower and upper portions of boxes correspond with the first and third quartile respectively. The thick line inside boxes corresponds to the median. Lower and upper whiskers indicate the minimum and maximum values of spore polar diameter.

Previous studies on spore morphology of *Elaphoglossum* have suggested that spore ornamentation and size are constant within species (Mickel, 1980, 1985; Mickel & Atehortúa, 1980; Tryon & Tryon, 1982; Tryon & Lugardon, 1991; Moran et al., 2007; Rouhan et al., 2008; Vasco et al., 2015; Matos et al., 2018; Barrington et al., 2020). The differences in spore ornamentation and size within *E. petiolatum* (Figs. 2f-i and 3c, Table 2) suggest this species might consist of several different ones. *Elaphoglossum petiolatum* is the only species in the Mexican-petiolatum clade that has been reported to have a wide distribution, occurring from Mexico to South America, and in the West Indies (Mickel & Smith, 2004). A previous

FIG. 6. Boxplot showing the variation of the spore equatorial diameter in five of the countries where *Elaphoglossum petiolatum* is distributed. Lower and upper portions of boxes correspond with the first and third quartile respectively. The thick line inside boxes corresponds to the median. Lower and upper whiskers indicate the minimum and maximum values of spore equatorial diameter.

FIG. 7. Boxplot showing the variation of the spore polar diameter in five of the countries where *Elaphoglossum petiolatum* is distributed. Lower and upper portions of boxes correspond with the first and third quartile respectively. The thick line inside boxes corresponds to the median. Lower and upper whiskers indicate the minimum and maximum values of spore polar diameter.

molecular phylogeny has shown that what had been considered E. petiolatum in South America belongs to a different clade (Vasco et al., 2009). Central America and West Indies specimens of E. petiolatum, however, have not been included in molecular phylogenies; thus, it is not clear if specimens from those countries constitute part of the Mexican-petiolatum clade. Previous studies and ours show that there is considerable variation within E. petiolatum in the density of scales and of resinous dots, especially on the abaxial leaf surfaces (Mickel & Smith, 2004). This variation does not correlate with geographical distribution as does the variation in spore ornamentation and size reported here. Based on these differences, we suspect that E. petiolatum consists of at least three different species (Mexican, Central American, and West Indian), and that E. petiolatum from West Indies is probably not part of the Mexicanpetiolatum clade. Further studies of the morphology and the size of rhizome and petiole scales, resinous dots, and molecular phylogenetic studies that include specimens from Central America and the West Indies, are necessary to confirm our hypothesis. If our hypothesis is corroborated, the name E. petiolatum would apply to specimens from the West Indies because the type of that

name was collected in Jamaica (Swartz, 1788). For the Mexican specimens, two names are available: *E. schiedei* Kunze and *E. schmitzii* Mett. ex Kuhn. Both have been previously put in the synonymy of *E. petiolatum* (Mickel & Smith, 2004; Mickel & Velázquez-Montes, 2009).

We also found significant differences in spore size among the species studied (Suppl. Material 1). The most important taxonomically was between Elaphoglossum pringlei and E. rzedowskii. The former species had the biggest spores and E. rzedowskii had the smallest. Spores of E. pringlei are on average 5.8 µm (ED) and 3.7 µm (PD) larger than E. rzedowskii (Table 1). These two species are very similar morphologically. Both have linear-lanceolate, dark brown, lustrous rhizome scales, adaxial blade surfaces with lanceolate deeply toothed or stellate scales, and abaxial surfaces densely scaly with overlapping ciliolate or substellate scales. Mickel & Smith (2004) suggested that E. pringlei and E. rzedowskii could be conspecific and represent regional variations of a single taxon. Our results show that spore size is an important taxonomic character to separate them.

Size differences between closely related species may result from polyploidy, which is the condition of possessing more than two complete sets of chromosomes in a cell (Stebbins, 1950; Wagner, 1974; Barrington et al., 1986, 2020; Farrar, 2006). In this study, polyploidy could explain the larger size of Elaphoglossum pringlei spores, compared to those of the morphologically closely related species E. rzedowskii, or the larger size of E. petiolatum spores from the West Indies compared to those of other countries. Specimens of E. petiolatum from the West Indies have larger spores than those from Central America and Mexico (Figs. 6 and 7, Table 2). Particularly, spores from the Dominican Republic are significantly larger than those from the other countries, including Jamaica (ED=6.2-10 µm bigger on average, Fig. 6 and Table 2). Chromosome counts and isoenzymes have shown that polyploidy occurs in at least five species of Elaphoglossum (Walker, 1973, 1985; Ghatak, 1977; Tsai & Shieh, 1985; Manton et al., 1986; Bhavanandan & Ammal, 1992; Irudayaraj & Manickam, 1992; Eastwood et al., 2004; Tindale & Roy, 2002). This is less than 1% of the 600 Elaphoglossum species. Chromosome counts, flow cytometry data, and nuclear phylogenetic studies are necessary to further test the hypothesis that the larger spores in our studied species indicate polyploidy and to better understand how polyploids shape the diversity of the Mexican-petiolatum clade.

Adaptative mechanisms for dispersal and different environmental parameters have also been proposed to explain the larger size of some fern spores (Wagner, 1961; Carlquist, 1966; Cox & Hickey, 1984; Barrington et al., 1986, 2020). It has been proposed that spores of fern species from discontinuous, drier habitats or islands are larger when compared to their counterparts in continuous, wet, and mainland habitats, without necessarily being polyploids (Carlquist, 1966; Barrington et al., 2020). Species with larger spores from discontinuous habitats or islands could avoid dispersal to unfavorable surrounding habitats, for example the sea (Carlquist, 1966; Barrington et al., 2020). This could be an explanation for the significant differences in spore size we found between West Indian and continental E. petiolatum (Table 2).

Conclusions

Here we report the ornamentation and size of spores of five species of *Elaphoglossum* that likely belong to the Mexican-petiolatum clade. Spore ornamentation and size within this clade was useful to distinguish closely related species. The differences in spore size between some of the species suggest that polyploidy occurs within the group. We demonstrate that careful studies of spore morphology are useful in *Elaphoglossum* taxonomy and systematics.

Supplementary Information The online version contains supplementary material available at https://doi.org/10. 1007/s12228-020-09643-8.

Acknowledgments

This work is part of the Ph. D thesis of the first author at the Posgrado en Ciencias Biológicas (PCB) of the Universidad Nacional Autónoma de México (UNAM), supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) with a Ph.D. fellowship (508729), under the advice of A. Vasco and E. Solano. This study was supported in part by "Programa de Apoyo a Provectos de Investigación e Innovación Tecnológica" (PAPIIT), Universidad Nacional Autónoma de México (IA201416 to A.Vasco). Fieldwork was partially funded by a "Research Grant for Graduate Students" from the American Society of Plant Taxonomists (ASPT, 2018 to A.G. Martínez-Bercerril). We are grateful to the curators and collection managers of the herbaria FEZA, MEXU (especially Laura Calvillo-Canadell, Angélica Ramírez Roa, and María del Rosario García Peña), NY, and MO for specimen loans and for allowing us to sample spores for SEM imaging. We thank all the people who accompanied us to collect specimens and to the communities that allowed us to collect in their lands. We are grateful to Berenit Mendoza Garfias from the Microscopy and Biodiversity Photograph Laboratory (Instituto de Biología UNAM) for help with taking spore SEM images. We appreciate the discussions and advise of Drs. Teresa M. Terrazas, David S. Gernandt, and Daniel Tejero Diez. Special thanks to Robbin Moran (New York Botanical Garden) for his reviews and for letting us use his SEM images posted on plantsystematics. org. We appreciate the comments and careful reviews from two anonymous reviewers.

Literature cited

Barrington, D. S., C. Paris & T. A. Ranker. 1986. Systematic inferences from spore and stomate size in the ferns. American Fern Journal 76: 149–159, https://doi.org/10. 2307/1547723.

- Inferring the impacts of evolutionary history and ecological constraints on spore size and shape in the ferns. Applications in Plant Sciences 8: 1–10.
- Bhavanandan, K. V. & L. S. Ammal. 1992. Cytological investigations on family Aspidiaceae (sensu Copeland) from south India. Indian Fern Journal 8: 78–86.
- **Carlquist, S.** 1966. The biota of long-distance dispersal. III. Loss of dispersibility in the Hawaiian flora. Brittonia 18: 310–335.
- Cox, P. A. & R. J. Hickey. 1984. Convergent megaspore evolution and *Isoëtes*. American Naturalist 124: 437–441, https://doi.org/10.1086/284285.
- Eastwood, A., J. C. Vogel, M. Gibby & Q. C. B. Cronk. 2004. Relationships and genetic diversity of endemic Elaphoglossum from St Helena. Plant Systematics and Evolution 245: 10–118. https://doi.org/10.1007/s00606-003-0115-x.
- Erdman, G. 1943. An introduction to pollen analysis. Chronica Botanica Company, Waltham, Massachussets.
- Erdman, G. 1952. Pollen morphology and plant taxonomy. Angiosperms. Almqvist and Wiksell, Stockholm.
- Farrar, D. R. 2006. Systematics of moonworts *Botrychium* subgenus *Botrychium*.
- Ghatak, J. 1977. Biosystematic survey of the pteridophytes from Shevaroy Hills, South India. Nucleus 20: 105–108.
- Irudayaraj, V. & V. S. Manickam. 1992. Cytology of an endemic fern *Elaphoglossum beddomei* Sledge from south India. Indian Fern Journal 8: 93–94.
- Iversen, J. & J. Troels-Smith. 1950. Pollen morphologische Definitonen und Typen. Danmarks Geolgiske Undersøgelse. 43: 1–54.
- Liu, H. M., X. C. Zhang, M. P. Wang, H. Shang, S. L. Zhou, Y. H. Yan, X. P. Wei, W. Bin Xu & H. Schneider. 2015. Phylogenetic placement of the enigmatic fern genus *Trichoneuron* informs on the infra-familial relationship of Dryopteridaceae. Plant Systematics and Evolution 302: 319–332.
- Lóriga, J., A. Vasco, L. Regalado, J. Heinrichs & R. C. Moran. 2014. Phylogeny and classification of the Cuban species of *Elaphoglossum* (Dryopteridaceae), with description of *Elaphoglossum* sect. *Wrightiana* sect. nov. Plant Systematics and Evolution 300: 937–951, https://doi. org/10.1007/s00606-013-0933-4.
- Manton, I., J. D. Lovis, G. Vida & M. Gibby. 1986. Cytology of the fern flora of Madeira. Bulletin of the British Museum (Natural History) 15: 123–161.
- Matos, F. B., A. Vasco & R. C. Moran. 2018. Elaphoglossum doanense and Elaphoglossum tonduzii: new members of Elaphoglossum sect. Squamipedia (Dryopteridaceae) and their significance for inferring the evolution of rhizome habit and nest-forming leaves within the genus. International Journal of Plant Sciences 179: 296–313, https://doi.org/10.1086/696687.
- Mickel, J. T. 1980. Relationships of the dissected Elaphoglossoid ferns. Brittonia 32: 109–117.
- Mickel, J. T. 1985. The proliferous species of *Elaphoglossum* (Elaphoglossaceae) and their relatives. Brittonia 37: 261, https://doi.org/10.2307/2806073.
- Mickel, J. T. 1995. Elaphoglossum and Peltapteris. Pp. 250– 283. In: R. C. Moran, R. Ribba, G. Davidse, M. Sousa & S. Knapp (eds), Flora Mesoamericana, vol 1. Universidad Nacional Autónoma de México, Mexico City.

- Mickel, J. T. 2001. A new species in the *Elaphoglossum petiolatum* complex (Elaphoglossaceae) from Mexico. Brittonia 53: 487–489, https://doi.org/10.1007/ BF02809648.
- Mickel, J. T. & L. Atehortúa. 1980. Subdivision of the genus *Elaphoglossum*. American Fern Journal 70: 47–68, https:// doi.org/10.2307/1546218.
- Mickel, J. T. & A. R. Smith. 2004. The pteridophytes of Mexico. Memoirs of the New York Botanical Garden 88: 1–1055.
- Mickel, J. T. & E. Velázquez-Montes. 2009. Elaphoglossum (Dryopteridaceae, Pteridophyta). In: N. Diego-Pérez & R.M. Fonserca (eds.), Flora deGuerrero, vol 37. Universidad Nacional Autónoma de México, Facultad de Ciencias. Mexico City.
- Moran, R. C., J. G. G. Hanks & G. Rouhan. 2007. Spore morphology in relation to phylogeny in the fern genus *Elaphoglossum* (Dryopteridaceae). International Journal of Plant Sciences 168: 905–929, https://doi.org/10.1086/ 518269.
- Moran, R. C., P. H. Labiak & M. Sundue. 2010. Phylogeny and character evolution of the bolbitidoid ferns (Dryopteridaceae). International Journal of Plant Sciences 171: 547–559, https://doi.org/10.1086/652191.
- Olejnik, N., Z. Celka, P. Szkudlarz & M. V. Shevera. 2018. Taxonomic significance of morphological characters of spores in the family *Ophioglossaceae* (Psilotopsida). Review of Palaeobotany and Palynology 252: 77–85, https:// doi.org/10.1016/j.revpalbo.2018.02.007.
- **PPG I.** 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54: 560–603.
- **Proctor, G. R.** 1985. Ferns of Jamaica. British Museum (Natural History), London.
- Punt, W., P. P. Hoen, S. Blackmore, S. Nilsson & A. Le Thomas. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143: 1–81, https://doi.org/10.1016/j.revpalbo.2006.06.008.
- **R Core Team.** 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
- Rouhan, G., J.-Y. Y. Dubuisson, F. Rakotondrainibe, T. J. Motley, J. T. Mickel, J.-N. N. Labat & R. C. Moran. 2004. Molecular phylogeny of the fern genus *Elaphoglossum* (Elaphoglossaceae) based on chloroplast non-coding DNA sequences: contributions of species from the Indian Ocean area. Molecular Phylogenetics and Evolution 33: 745–763, https://doi.org/10.1016/j.ympev.2004. 08.006.
- Rouhan, G., D. H. Lorence, T. J.Motley, J. G. Hanks & R. C. Moran. 2008. Systematic revision of *Elaphoglossum* (Dryopteridaceae) in French Polynesia, with the description of three new species. Botanical Journal of the Linnean Society 158: 309–331.
- Schneider, C., W. Rasband & K. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675, https://doi.org/10.1038/nmeth.2089.
- Skog, J. E., J. T. Mickel, R. C. Moran, E. A. Zimmer & M. Volovsek. 2004. Molecular studies of representative species in the fern genus *Elaphoglossum* (Dryopteridaceae) based on cpDNA sequences *rbcL*, *trnL-F*, and *rps4-trnS*. International Journal of Plant Sciences 165: 1063–1075, https://doi.org/10.1086/423877.

Stebbins, G. L. 1950. Variation and Evolution in Plants. Columbia University Press, New York.

Swartz, O. 1788. Nova genera et species plantarum seu prodromus. Bibliopoliis Acad. M. Swederi. Stockholm, Uppsala, and Abo.

Tindale, M. D. & S. K. Roy. 2002. A cytotaxonomic survey of the pteridophyta of Australia. Australian Systematic Botany 15: 839–937, https://doi.org/10.1071/SB00034.

Tryon, A. F. & B. Lugardon. 1991. Spores of the pteridophyta: surface, wall structure, and diversity based on electron microscope studies. Springer, New York.

Tryon, R. M. & A. F. Tryon. 1982. Ferns and allied plants. Springer, Berlin

- Tsai, J. L. & W. C. Shieh. 1985. A cytotaxonomic survey of the fern family Aspidiaceae (sensu Copeland) in Taiwan. Journal of Science and Engineering 22: 121–144.
- Vasco, A. 2011. Taxonomic revision of *Elaphoglossum* subsection *Muscosa* (Dryopteridaceae). Blumea 56: 165–202, https://doi.org/10.3767/000651911X592722.
- Vasco, A., J. Lóriga, G. Rouhan, B. A. Ambrose & R. C. Moran. 2015. Divided leaves in the genus *Elaphoglossum* (Dryopteridaceae): a phylogeny of *Elaphoglossum* section *Squamipedia*. Systematic Botany 40: 46–55, https://doi. org/10.1600/036364415X686323.
- Vasco, A., J. T. Mickel & R. C. Moran. 2013. Taxonomic revision of the neotropical species of *Elaphoglossum* sect. *Squamipedia* (Dryopteridaceae). Annals of the Missouri Botanical Garden 99: 244–286, https://doi.org/10.3417/ 2012038.
- Vasco, A., R. C. Moran & G. Rouhan. 2009. Circumscription and phylogeny of the *Elaphoglossum ciliatum* group (sect. Lepidoglossa, Dryopteridaceae) based on cpDNA sequences. Taxon 58: 825–834, https://doi.org/10.1002/ tax.583011.

Wagner, W. H. 1961. Problems in the classification of ferns. Recent Advances in Botany 1: 841–844.

Wagner, W. H. 1974. Structure of spores in relation to fern phylogeny. Annals of the Missouri Botanical Garden 61: 332–353, https://doi.org/10.2307/2395061.

- Walker, T. G. 1973. Additional cytogenetic notes on the pteridophytes of Jamaica. Transactions of the Royal Society of Edinburgh 69: 109–135, https://doi.org/10.1017/ S0080456800015027.
- Walker, T. G. 1985. Cytotaxonomic studies of the ferns of Trinidad 2. The cytology and taxonomic implications. Bulletin of the British Museum (Natural History) 131: 149–249.

Weisberg, F. J. 2019. An R Companion to Applied Regression. Sage Publications, Inc., Thousand Oaks, California.

Wodehouse, R. P. 1935. Pollen grains. Their structure, identification and significance in Science and Medicine. McGraw-Hill, New York.

Appendix 1. Voucher information for all *Elaphoglossum* spores included in the analyses. Stars indicate spore images taken from Plantsystematics.org

Elaphoglossum muelleri (E. Fourn.) C. Chr. MEXICO. Anderson 13,211 (MEXU); McVaugh 23,885 (MEXU). Elaphoglossum petiolatum (Sw.) Urb. COSTA RICA. Lloyd 4134 (NY); Moran 3079* (NY). DOMINICAN REPUBLIC. Garcia 958 (NY); Lloyd 753* (NY). MEXICO. Gallardo-Hernandez 836 (MEXU); Reveal & Atwood 3572* (NY). JAMAICA. Proctor 5297 (MO); Underwood 545, 3141*, 3214 (NY). PANAMA. Croat 26,996 (NY). Elaphoglossum potosianum Christ. MEXICO. Carranza 5140 (MEXU, NY*), 2036 (MEXU); Martínez-Becerril 399 (FEZA, MEXU); Parry & Palmer 1007* (NY). Elaphoglossum pringlei (Davenp.) C. Chr. MEXI-CO. Anderson 4778 (MEXU); Ernest 2371 (MEXU); Martínez-Becerril 405, 407 (FEZA, MEXU); Mickel 4463* (NY). Elaphoglossum rzedowskii Mickel. MEXICO. Cornejo-Tenorio 1438 (MEXU); Martínez-Becerril 406, 408 (FEZA, MEXU); Rzedowski 26032* (NY).

FE DE ERRATAS

Capítulo II: "Spore morphology of the Mexican species of the *Elaphoglossum petiolatum* complex (Dryopteridaceae)"

- La ornamentación de las perisporas de *Elaphoglossum petiolatum* que en este
 Capítulo/artículo se describe como "con verrugas" equivale a lo que en los capítulos
 subsecuentes describimos como "con microestructuras dispersas e irregulares". El cambio
 se da después de analizar mayor cantidad de esporas de diferentes ejemplares durante la
 elaboración de la monografía de las especies del clado de *E. petiolatum*.
- El país de origen de la colección *Lloyd 753* (NY) debería decir Dominica en lugar de República Dominicana.

Capítulo III

Taxonomic revision of the *Elaphoglossum petiolatum* clade (Dryopteridaceae)

Este artículo será sometido a Annals of the Missouri Botanical Garden

1 2	
3	
4	
5	
6	
7	TAXONOMIC REVISION OF THE NEOTROPICAL FERN CLADE
8	ELAPHOGLOSSUM PETIOLATUM (DRYOPTERIDACEAE)
9	
10	Ana Gabriela Martínez-Becerril ^{1,2} and Alejandra Vasco ³
11	
12	¹ Facultad de Estudios Superiores Zaragoza, Unidad de Investigación en Sistemática Vegetal y
13	Suelo, Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Ejército de Oriente,
14	Iztapalapa, C.P. 09230, Ciudad de México, México; e-mail: anagabsmtz@gmail.com
15	² Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de
16	México, México
17	³ Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107-3400,
18	USA; e-mail: <u>avascog@gmail.com</u>
19	^{1,3} Corresponding authors
20	
21	
22	
23	

24 **Resumen**–Se presenta una monografía del clado de *Elaphoglossum petiolatum* (sección 25 Lepidoglossa), un grupo recuperado a partir de análisis filogenéticos moleculares con ADN del 26 cloroplasto. La monografía incluye una clave de identificación, sinonimia completa, 27 descripciones detalladas, especímenes representativos examinados, índice de colectores y 28 números de colección, ilustraciones, imágenes de esporas al microscopio electrónico y mapas de 29 distribución para todas las especies. Morfológicamente, las especies de este clado se reconocen 30 por escamas del rizoma con ápice agudo a filiforme-tortuoso, escamas de la porción proximal del 31 peciolo con ápice obscuro, láminas con puntos resinosos y escamas planas y/o estrelladas, y 32 perisporas con crestas y espinas pequeñas, menores a 1µm (excepto E. petiolatum que presenta 33 microestructuras dispersas e irregulares). Se reconocen ochos especies sin subespecies o 34 variedades. Todas las especies de este clado se distribuyen en el continente americano, desde 35 México hasta Panamá, con una especie en Las Antillas Mayores. La mayoría ocurre entre los 36 1000–2500 msnm en bosques de pino-encino y bosques mesófilos de México. En este trabajo se 37 lleva a cabo la combinación nomenclatural para E. schmitzii, se designan lectotipos para E. 38 potosianum y E. schmitzii y un probable holotipo para Acrostichum intermedium y se realiza una 39 lectotipificación en segundo grado para E. pringlei.

40 *Palabras clave*- florística, helechos, México, morfología, nomenclatura, pteridofitas,
41 puntos resinosos, taxonomía, trópicos.

42

Abstract-The present paper provides a monograph of the *Petiolatum* Clade of *Elaphoglossum*,
section *Lepidoglossa*. This group was recovered as a monophyletic in molecular phylogenetic
analyses with chloroplast DNA. Morphologically, this clade is recognized by rhizome scales
with acute to filiform-tortuous apex, scales on the proximal portion of the petiole with a dark

47 apex, blades with resinous dots and flat and/or stellate scales, and spores with ridges and spines 48 less than 1µm (except *E. petiolatum*, which has sparsely irregular surface microstructures). Eight 49 species are recognized without subspecies or varieties. All the species of this clade are 50 distributed in the American continent, from Mexico to Panama, with one species in the Greater 51 Antilles. Most of the species occur between 1000–2500 m in pine-oak forests and cloud forests 52 of Mexico. Presented here are an identification key, full synonymy, detailed descriptions, 53 representative specimens examined, an index to collectors and numbers, illustrations, spore 54 microphotographs, and distribution maps for all species. A new nomenclatural combination is 55 made for E. schmitzii, lectotypes are designated for E. potosianum and E. schmitzii, a probable 56 holotype is designated for *Acrostichum intermedium* and a second step lectotypification is made 57 for *E. pringlei*.

58 Keywords.— floristics, ferns, lectotype, Mexico, morphology, nomenclature,
59 pteridophytes, resinous dots, taxonomy, tropics.

60

Elaphoglossum Schott ex J.Sm. (Dryopteridaceae) is a genus of tropical ferns with more
than 600 generally accepted species out of the more than 1000 that have been described (Rouhan
2020). The genus is mainly distributed in wet forests and cloud forests throughout the tropics,
but it is most diverse in the American tropics, from Mexico to Argentina and in the Antilles,
where approximately 75% of the species occur (Mickel and Atehortúa 1980, Mickel 1991,
Moran 2018, Moran et al. 2007, PPG I 2016, IPNI 2022, Rouhan 2020).

Elaphoglossum is distinguished from other ferns by laminae that are almost always
simple (six of the 600 species have divided laminae), dimorphic sterile, and fertile leaves, free
veins, and acrostichoid sori. Most species are epiphytes, but terrestrial, hemiepiphytic, and

70	epipetric are also known (Lagomarsino et al. 2012, Mickel 1995, Moran et al. 2010, Rouhan et
71	al. 2008, Vasco et al. 2013, Rouhan 2020, Zots et al. 2021).
72	Phylogenetic molecular analyses have recovered <i>Elaphoglossum</i> sister to <i>Mickelia</i> R.C.
73	Moran, Labiak & Sundue. Both generabelong to the Bolbitidoid clade of subfamily
74	Elaphoglossoideae (Pic.Serm.) Crabbe of Dryopteridaceae, one of the largest fern families in the
75	world, harboring about 1700 species (Hasebe et al. 1995, Rouhan et al. 2004, Skog et al. 2004,
76	Liu et al. 2007, 2016, Schuettpelz and Pryer 2008, Moran et al. 2010a, Vasco et al. 2009b,
77	Lóriga et al. 2014, PPGI 2016, Moran 2018). Within Elaphoglossum, seven main and major
78	clades, which have been ranked as sections, are currently recognized: 1) Elaphoglossum sect.
79	Amygdalifolia (Christ) Mickel and Atehortúa, 2) sect. Wrigthiana J.Lóriga, A.Vasco,
80	L.Regalado, J.Heinrichs and R.C.Moran, 3) sect. Elaphoglossum, 4) sect. Squamipedia Mickel
81	and Atehortúa, 5) sect. Polytrichia Christ, 6) sect. Setosa (Christ) Mickel and Atehortúa, and 7)
82	sect. Lepidoglossa Christ, (Skog et al 2004, Rouhan et al. 2004, Lóriga et al. 2014).
83	Of these sections, the sect. Lepidoglossa is by far the most species-rich, containing more
84	than 200 species (Vasco 2011). The section is characterized by laminae obviously scaly, stem
85	and blade scales typically flat (not subulate), and scale margins with unicellular, acicular, non-
86	glandular marginal cells (Mickel and Atehortúa 1980, Vasco 2009, Kessler et al. 2018). Based on
87	morphology, the section was subdivided into six subsections differing mainly by the shape and
88	density of scales, the shape of the lamina apices, and spore morphology (Mickel and Atehortúa,
89	1980). The subsections (subsect.) of Lepidoglossa are subsect. Huacsaro Mickel and Atehortúa,
90	subsect. Muscosa Mickel and Atehortúa, subsect. Microlepidea Christ, subsect. Petiolosa Christ,
91	subsect. Pilosa Christ, and subsect. Polylepidea Christ.

92	As part of his floristic work on <i>Elaphoglossum</i> in Mexico, Mickel (2001) described a group of
93	about 11 species called the "Elaphoglossum petiolatum complex". Due to the species which
94	gives the name to the complex, Elaphoglossum petiolatum (Sw.) Urb., was assigned by Mickel
95	and Atehortúa (1980) to subsect. Pilosa is considered the whole complex belonging to this
96	subsection. Subsection Pilosa was defined as having short-creeping stems, usually dark, entire,
97	or with long projections rhizome scales, laminae with resinous dots or scaly to subglabrous, and
98	spores with low ridges (Christ 1899, Mickel and Atehortúa 1980, Moran et al., 2007).
99	Defined as such, the <i>Elaphoglossum petiolatum</i> complex was considered pantropical,
100	with three of the species endemic to Mexico (Table 1; Mickel, 2001). Previous molecular
101	phylogenetic analyses, which did not include all the species in the Elaphoglossum petiolatum
102	complex, suggested that the complex was not monophyletic (Rouhan et al. 2004, Vasco et al.
103	2009, Lóriga et al. 2014). Nevertheless, the Mexican species of the complex were recovered in a
104	single clade, called the "Mexican-petiolatum clade" by Vasco et al. (2009).
105	Our molecular phylogenetic work (Martínez-Becerril et al., in press) tested the
106	monophyly of this complex including a better representation of taxa belonging to the complex
107	and increasing the sampling of Mexican species of the genus. That study corroborated that the E.
108	petiolatum complex is not monophyletic and that the species originally described as part of the
109	complex belonged to three non-sister clades. Those three are the <i>E</i> . <i>ciliatum</i> clade, the <i>E</i> .
110	lancifolium clade, and the E. petiolatum clade (Martínez-Becerril et al., in press).
111	These three clades include other species not previously considered part of the E .
112	petiolatum complex, and surprisingly, all the species of Elaphoglossum with resinous dots in
113	their laminae and petiole were recovered in any of these clades. Resinous dots have been
114	interpreted as the bases of reduced scales that remain embedded in the epidermis of the laminae

115	(Vasco et al., 2009a). These resinous dots are atypical within the sect. <i>Lepidoglossa</i> , however,
116	they evolved independently multiple times during the evolutionary history of this section
117	(Martínez-Becerril et al., in press.).
118	
119	Table 1. Species belonging to the <i>Elaphoglossum petiolatum</i> complex <i>sensu</i> Mickel (2001). (*)

Bing to the 2ndpine grossian performance compress	
indicates the species included in this analysis.	

Species	Distribution
*Elaphoglossum petiolatum (Sw.) Urban	From Mexico to Peru and
	the West Indies
*E. salicifolium (Willd. ex Kaulf.) Alston (ahora E.	Bioko, Cameroon, Comoros,
lancifolium (Desv.) C.V. Morton)	Congo, Gaba, Guinea, La
	Reunion, Liberia, Mauritius
	Island, Madagascar, Malawi,
	Mozambique, Rwanda,
	Sierra Leone, Seychelles,
	Tanzania, Zambia,
	Zimbabwe
*E. nervosum (Bory) H. Christ	St. Helena Island
*E. dimorphum (Hook. & Grev.) T. Moore	St. Helena Island
*E. bifurcatum (Jacq.) Mickel	St. Helena Island
E. stelligerum (Wall. ex Baker) T. Moore ex Alston &	India
Bonner	
E. yunnanense (Baker) C. Chr.	China, India, Malaysia,
	Vietnam
*E. blumeanum (Fee) J. Smith	Bismark Archipielago,
	Borneo, China, Indonesia,
	Philippines, Malasyia,
	Salomon Islands, Sumatra.
*E. rzedowskii Mickel	Mexico
* <i>E. pringlei</i> (Davenp.) C. Chr.	Mexico
*E. trichomidiatum Mickel (ahora E. potosianum Christ)	Mexico

¹²¹

Here we present the monograph of the *Elaphoglossum petiolatum* clade (hereafter *Petiolatum*Clade), which was called earlier the "Mexican-*petiolatum* clade" (Vasco et al. 2009). We rename
it here because our analyses (Martínez-Becerril et al., in press) show that some species outside of

125 Mexico are also part of this clade; and importantly the namesake species of the clade, *E*.

126 *petiolatum* has its type from Jamaica (Swartz 1778, Proctor 1985). We recognize and monograph

127 eight species within this clade. Six of these species are included in the clade based on cpDNA

128 sequence evidence (Martínez-Becerril et al., in press) and the other two were considered as a part

129 of this group based on the morphology of the sporophyte and the spores.

130 Morphologically the species of the Petiolatum Clade have, besides resinous dots, stem scales 131 with acute to filiform apices and the margins generally darker than the rest of the scale; echinate 132 perispores with short spines less than 1µm high (except *E. petiolatum* which has concolorous 133 stem scales and perispores broadly folded with sparsely irregular surface microstructures); and 134 sometimes, petioles seem to develop from the ventral side of the rhizome (Mickel and Smith 135 2004, Vasco et al. 2009, Martínez-Becerril et al. 2021). Defined as such, the clade is distributed 136 from Mexico to Panama, and in the Greater Antilles. Seven out of the eight species in the clade 137 occur in Mexico, and four of them are endemic to that country (Table 2).

- 138
- 139

 Table 2. Species belonging to the Elaphoglossum petiolatum clade.

Species	Distribution
Elaphoglossum auralolitae Martínez-Becerril & A. Vasco	Guatemala
E. muelleri (E. Fourn.) C. Chr.	From Mexico to Honduras
<i>E. petiolatum</i> (Sw.) Urban	Jamaica, Dominican
	Republic, Costa Rica,
	Panama, Honduras,
	Nicaragua, Guatemala and
	Mexico.
E. pringlei (Davenp.) C. Chr.	Mexico
E. potosianum Christ	Mexico
E. rzedowskii Mickel	Mexico
E. schiedei (Kunze) T. Moore	Mexico and Guatemala
E. schmitzii (Mett. ex Khun) Martínez-Becerril & A. Vasco	Mexico

MATERIALS AND METHODS

This study is based on examination of over 2000 herbarium sheets representing about 809 gatherings deposited in 13 herbaria (Table 3). Also, digital specimens from virtual herbaria were examined (Table 3). The protologues and types of all the species of this group and their synonyms were checked, and all relevant literature was consulted (e.g., Mickel 1981, Proctor 1985, Mickel and Smith 2004).

147 For the descriptions and the key, the terminology of Lellinger (2002) was mainly used. 148 Measurements, colors, and characteristics described are based on the herbarium specimens that 149 were examined. The scales located in the middle of the stems, petioles, and laminae were the 150 ones measured and used in the descriptions and key. The measurements of the plants, including 151 the length and width of the laminae and the proportion of the petiole, were taken from a 152 representative sample of approximately 20 dry individuals per species that reflected the 153 intraspecific morphological variation. Once selected, the largest leaf of each specimen was the 154 one measured. The stem scales describe here are those located in the middle of the stem; those 155 that are found at the apex can be larger, which could confuse the reader in determining the 156 specimens. The term "small projection" used to describe the scale's margins, refers to projections 157 that size less than half of the scale width whereas the "long projections" size more than half of 158 the scale width. The term trichomidia used to describe the indument mixed with the abaxial 159 laminar scales, refers to small, reduced hairs found mainly on the petiole and lamina (Lellinger, 160 2002). The term "short spines" used to describe the persipore morphology, refers to those long 161 and tapering pointed elements that size $\geq 1 \mu m$.

For most of the specimens, geographic coordinates were estimated using Google Earth
 (<u>https://www.google.com/earth/)</u> because this information was often not provided on the labels.

81

These coordinates were used to make dot distribution maps for the species and are given in brackets for the herbarium specimens cited below. Distribution maps (Fig. 1) were made using the Rstudio program (Racine 2012) after converting the coordinates from degrees to decimals. To show the elevation intervals of the species, a box-and-whisker plot (Fig. 2) was produced in RStudio using the elevation of all collections recorded in meters.

169 Illustrations and spore microphotographs (Fig. 3). were prepared from herbarium 170 specimens for all species. Illustrations consist of plates made using photographs taken with a 171 camera coupled to a LEICAM165C® microscope. Spores were examined and photographed 172 following the methodology described by Moran et al. (2007) and using scanning electron 173 microscopes (HITACHI SU1510 and HITACHI SU3600) at the Microscopy and Biodiversity 174 Photograph Laboratory of the Biology Institute, UNAM, and in the Microscopy Laboratory of 175 the Botanical Research Institute of Texas (BRIT), respectively. Fieldwork was carried out in the 176 Mexican states of Aguascalientes, Chihuahua, Jalisco, Puebla, and San Luis Potosí. 177 For the designation of the lectotypes, and according to the International Code of 178 Nomenclature for algae, fungi, and plants, were given priority those specimens from the original 179 material that were cited in the protologues or that were part of the herbarium of the species' 180 author. In the cases where these were not found, the specimens considered original material and 181 that were in the best condition were chosen, that is, specimens that preserved and showed all the 182 structures, and where the specimen labels coincided with the data stated in the protologues, for 183 example, collector, collection-number, locality, and date of collection. Collections with a single 184 gathering were assigned as holotypes (Turland et al., 2018, Chapter II, Section 2, Article 9).

- 185
- 186

- **Table 3.** Acronym, institution, and country of all herbaria that were consulted in this study. (*)

indicates those from which we examined specimens.

Acronym	Institution	Country
ASU	Arizona State University	U.S.A., Arizona
В	Botanischer Garten und Botanisches Museum	Germany, Berlin
	Berlin, Zentraleinrichtung der Freien	
	Univeristät Berlin	
BIGU	Universidad de San Carlos de Guatemala	Guatemala, Guatemala City
BRIT*	Botanical Research Institute of Texas	U.S.A., Texas
CHAPA*	Colegio de Postgraduados	Mexico, State of México
CR	Museo Nacional de Costa Rica	Costa Rica, San José
ENCB*	Escuela Nacional de Ciencias Biológicas, IPN	Mexico, Mexico City
F*	Field Museum of Natural History	U.S.A., Chicago
GH	Harvard University	U.S.A., Massachusetts
Н	University of Helsinki	Finland, Helsinki
	Jardín Botánico Nacional, Universidad de La	
ПАЈВ	Habana	Cuba, La Habana.
HAL	Martin-Luther-Universität	Germany, Halle
HUMO*	Universidad Autónoma del Estado de Morelos	Mexico, Morelos
IEB*	Instituto de Ecología A.C.	Mexico, Pátzcuaro
IND	Indiana University	U.S.A., Indiana
Κ	Royal Botanic Gardens	UK, England
LE	Komarov Botanical Institute of RAS	Russia, St. Petersburg
LP	Museo de La Plata	Argentina, Buenos Aires
MEXU*	Herbario Nacional de México, UNAM	Mexico, Mexico City
MICH	University of Michigan	U.S.A., Michigan
MO*	Missouri Botanical Garden	U.S.A., Missouri, Saint Louis
NCU	University of North Carolina at Chapel Hill	U.S.A., North Carolina
NY*	The New York Botanical Garden	U.S.A., New York
P*	Muséum National d'Histoire Naturelle	France, Paris
PMA	Universidad de Panamá	Panama, Panama
RB	Jardim Botânico do Rio de Janeiro	Brazil, Rio de Janeiro
S	Swedish Museum of Natural History	Sweden, Stokholm
SERBO	Sociedad para el Estudio de los Recursos	Mexico, Oaxaca
	Bióticos de Oaxaca, A. C.	
TEFH	Universidad Nacional Autónoma de Honduras	Honduras, Tegucigalpa

UCR*	University of California, Riverside	U.S.A., California
US*	Smithsonian Institution	U.S.A., Columbia
VT*	University of Vermont	U.S.A., Vermont
WIS	University of Wisconsin	U.S.A., Wisconsin
WTU	University of Washington	U.S.A., Washington
YPM-YU	Yale University	U.S.A., Connecticut. New Haven
Y	Yale University	U.S.A., Connecticut. New Haven

- 191
- 192
- 193

RESULTS

- 194 Eight species from Mexico to Central America and the West Indies are recognized in this
- 195 treatment as a part of the *Petiolatum* Clade (Fig. 1). Four of these are endemic to Mexico. Most
- 196 of the species occur between 1000–2500 m in pine-oak forests and mesophilic forests of Mexico.

197 (Fig. 2). Two lectotypes and a probable holotype are designated for species in the group or their

- 198 synonyms. No infraspecific taxa are recognized. A synopsis of the species distributions is given
- 199 in Table 2. A list of collectors and their numbers for all examined specimens is given in
- 200 Appendix I.
- 201

Figure 1. Distribution maps of all species in the *Elaphoglossum petiolatum* clade. A. *E.*

auralolitae, B. E. muelleri, C. E. petiolatum, D. E. potosianum, E. E. pringlei, F. E. rzedowskii,
G. E. schiedei, H. E. schmitzii.

231	KEY TO THE SPECIES OF THE PETIOLATUM CLADE
232	1. Rhizome scales scattered, appressed, 0.7–1.2(–1.5) mm long, concolorous, oblanceolate,
233	sclerotic, lustrous
234	1. Rhizome scales dense, spreading, 1.4–5 mm long, bicolorous or concolorous, linear to
235	lanceolate, no sclerotic, dull or lustrous.
236	2. Rhizome scales concolorous
237	3. Trichomidia absent on the abaxial laminar surface (use magnification)
238	4. Adaxial laminar scales absent or scattered to dense, not imbricate, when present ≤ 1 mm long,
239	with occasional short or long projections and attenuate apices; phyllopodia clearly
240	visible; petiole scales scattered or dense mainly at the base; perispores broadly folded
241	with sparsely irregular surface microstructures; plants epiphytic or terrestrial
242	
243	4. Adaxial laminar scales dense, usually imbricate, 0.5–1.4 mm long, with numerous long
244	projections and long-attenuate to filiform apices; phyllopodia usually obscured by the
245	rhizome scales; petiole scales dense throughout; echinate perispores; plants terrestrial
246	
247	3. Trichomidia present on the abaxial laminar surface (use magnification)
248	5. Abaxial laminar scales usually dense (only occasionally scattered), usually stellate or
249	occasionally irregular; abaxial laminar trichomidia scattered (hard to see, even under a
250	stereoscope); laminae narrowly elliptic 2. E. muelleri
251	5. Abaxial laminar scales absent or scattered, irregular; abaxial laminar trichomidia dense (easy
252	to see under a stereoscope); laminae linear-lanceolate to narrowly elliptic
253	4. E. potosianum

petiolatum clade.

277 Figure 3. Spores of species of the *Elaphoglossum petiolatum* clade. A. E. auralolitae (Standley

278 58933, F). B. E. muelleri (Anderson 13211, MEXU), C. E. potosianum (Martínez-Becerril 399,

279 FEZA), D. E. petiolatum (Hellwig 440, NY), E. E. pringlei (Anderson 4778, MEXU), F. E.

280 rzedowskii (Martínez-Becerril 408, FEZA), G. E. schiedei (Gallardo-Hernandez 836, MEXU),

281 H. E. schmitzii (McVaugh 23885, MEXU). Scale bar= 10μm.

TAXONOMIC TREATMENT

283 1. Elaphoglossum auralolitae Martínez-Becerril & A. Vasco. Here would be the

284 **publication cite.** Type: Guatemala. San Marcos: San Pedro Sac. [Sacatepéquez], 2300m,

285 [14°57'22.22"N, 91°48'54.27"W], 19 Aug 1992, *M. Véliz 92.2319* (holotype: MEXU

286 903674, isotypes: BIGU 0030067).

287 Plants Terrestrial. Rhizomes 3–3.5 mm wide, short creeping; rhizome scales 2.5–4 mm 288 long, dense, spreading, linear-lanceolate to lanceolate, entire or with occasional short 289 projections (shorter than the width of the scale), concolorous, dark-reddish brown to dark 290 brown, lustrous, base round, apex attenuate to filiform-tortuouse. Sterile leaves 13.5–39.5(– 291 45) cm long, approximate; phyllopodia present, usually obscured by the rhizome scales, 5– 292 10 mm long; petiole 5-15.5(-18) cm long, 1/3-2/5 the length of the sterile leaves; larger 293 petiole scales to 3.5(-4) mm long, dense, usually imbricate, spreading to appressed, linear-294 lanceolate to ovate, with occasional short projections, stramineous to brown, usually darker 295 at the apex, base round, apex attenuate to filiform-tortuouse; smaller petiole scales to 0.3 296 mm long (difficult to see), dense, appressed, irregular or lanceolate, with numerous long 297 projections (as long or longer than the width of the scale) or with occasional short 298 projections, stramineous, base auriculate, apex attenuate, usually with a long projection close 299 to the apex; **laminae** $8.5-24(-27) \times 1.2-2.4$ cm, linear-elliptic to elliptic, chartaceous, base 300 cuneate, apex acute to acuminate; adaxial laminar scales 0.5–1.4 mm long, dense, usually 301 imbricate, lanceolate, with numerous long projections, stramineous to whitish, darker at the 302 point of attachment, base auriculate, apex long-attenuate to filiform, adaxial resinous dots 303 absent; abaxial laminar scales to 0.5 mm long, scattered to dense, not imbricated, irregular 304 to lanceolate, when lanceolate, with numerous long projections, stramineous to light brown,

305 base auriculate, apex attenuate; abaxial resinous dots present; abaxial costal scales 0.8-2(-306 3) mm long, dense, usually imbricate, lanceolate with occasional short projections, 307 stramineous, base round with long projections, apex long-attenuate to filiform; marginal 308 scales 0.5–0.8(–1) mm long, dense, not imbricate, lanceolate or irregular, when lanceolate, 309 margin with numerous long projections, stramineous, base truncate with long projections, 310 apex attenuate to filiform-tortuouse. Fertile leaves similar or sometimes longer, than the 311 sterile; petiole 1/3-3/5 the length of the fertile leaves; laminae $28.9-36.2 \times 0.9-1$ cm, linear-312 elliptic to elliptic, base cuneate, apex acute, apiculate; petiole scales 2.0–3.1 mm long, 313 scattered to dense, not imbricated, deciduous, lanceolate to oblanceolate, with numerous long 314 projections or with occasional short projections, stramineous, base round with long 315 projections or truncate, apex long-attenuate to filiform; adaxial scales 1–1.5 mm long, dense, 316 usually imbricate, lanceolate with numerous long projections, stramineous, base auriculate, 317 apex long-attenuate to filiform; abaxial costal scales 0.5–1.5 mm long, scattered to dense, not imbricate, deciduous, lanceolate to ovate-lanceolate or irregular, with numerous long 318 319 projections, yellowish, base truncate with long projections, apex long-attenuate to filiform; 320 intersporangial scales not visible. Perispores broadly folded, echinate with short spines. 321 Figures 3A and 4.

322 *Distribution.*—Known only from the Sierra Madre in Guatemala, departments of
 323 Chimaltenago, Quetzaltenango, Quiché, San Marcos, Sacatepéquez, Sololá and Totonicapán.
 324 Figure 1A.

325 *Elevation*—1950–2900 m (Fig. 2)

Etymology.—This species is named for Aura Lolita Chávez Ixcaquic (1972–), indigenous
 feminist from the K'iche' region and community in Guatemala, who is the leader of the "Council

of K'iche's People for the Defense of Life, Nature, Land, and Territory of Guatemala". She was
nominated for the "Sájarov for Freedom and Conscience Award" by the European Parliament
and the winner of the "Ignacio Ellacuría Award" by the Vasque Agency for Development

331 Cooperation (<u>https://mujeresbacanas.com/aura-lolita-chavez-ixcaquic-1972/</u>).

332 Notes—Elaphoglossum auralolitae resembles E. petiolatum by linear-lanceolate to 333 lanceolate, concolorous, dark-reddish brown to dark brown rhizome scales with filiform-tortuose 334 apices and resinous dots on the laminae abaxially; however, they differ in several important 335 respects. The sterile leaves of *E. auralolitae* have adaxial laminar scales that are 0.5–1.4 mm 336 long, dense, usually imbricate with many long projections along the margin, and with long-337 attenuate to filiform apices. The smallest scales on the costae abaxially are 0.8 mm long, dense, 338 usually imbricate, and lanceolate. In contrast, in the sterile leaves of *E. petiolatum* the adaxial 339 laminar scales are not always present, but when present, they are $\leq 1 \text{ mm long}$, scattered to 340 dense, not imbricate, with occasional short or long projections along the margin, and attenuate 341 apices. Also, its smallest scales on the costae abaxially are 0.5 mm long, scattered to dense, not 342 imbricate, and lanceolate, substellate, or irregular. There are also differences among the fertile 343 leaves of these two species: in *E. auralolitae*, the petiole scales are 2–3.3 mm long, lanceolate to 344 oblanceolate, and with numerous long projections along the margin. The adaxial laminar scales 345 are 1–1.5 mm long, dense, and usually imbricate; and the costal abaxial scales are up to 1.5 mm 346 long with long attenuate to filiform apex. In contrast, the fertile leaves of *E. petiolatum* have 347 petiole scales $\leq 1 \text{ mm}$ long, substellate or linear to linear-lanceolate, and with occasional short 348 projections along the margin when the scales are lanceolate; the adaxial laminar scales are ≤ 0.7 349 mm long, scattered to dense, and not imbricated; and the costal abaxial scales are up to 0.8 mm 350 long with acuminate to attenuate apex. Finally, E. auralolitae has echinate perispores with spines

351	$\leq 1 \mu m$ long, whereas <i>E. petiolatum</i> has perispores with broadly folded with sparsely irregular
352	surface microstructures (Fig. 3A). Both species overlap in the distribution range of E .
353	auralolitae, and some specimens of E. petiolatum from Guatemala are exceptionally scaly and
354	could be easily confused with E. auralolitae. However, the characters above are sufficient to
355	distinguished both species.
356	Elaphoglossum auralolitae also resembles E. rubescens Christ, a species that also occurs
357	in Guatemala and has a scaly laminae but does not belong to the Petiolatum Clade.
358	Elaphoglossum auralolitae differs by the presence of resinous dots in the abaxial laminar
359	surface, by the dense, usually imbricated petiole scales, and by adaxial laminar scales that are
360	dense and usually imbricate, lanceolate, and with numerous long projections. In contrast, E.
361	rubescens lacks resinous dots on the abaxial laminar surface, has scattered petiole scales, and has
362	adaxial laminar scales absent or dense, not imbricated, round to subdeltate, and with short
363	projections. The shape and color of the abaxial laminar scales also differ between the two
364	species, being irregular to lanceolate and stramineous to light brown in <i>E. auralolitae</i> and narrow
365	to deltate and orange in E. rubescens.
366	
367	
368	
369	

- 370
- 371

372 **Figure 4.** *Elaphoglossum auralolitae*. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina

- 373 surface. D. Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale.
- 374 G. Marginal scale. H. Midvein scale. I. Petiole. J. Rhizome scale. (A from Véliz 92.2319,
- 375 MEXU; B–J from *Molina 30311*, MO).

376	2. Elaphoglossum muelleri (E. Fourn.) C. Chr., Index Filic. p. 311. 1905. Acrostichum
377	muelleri E. Fourn., Mexic. Pl. 1: 68. 1872. Type: México. Veracruz: Mpio. Orizaba
378	Uluapa, [1560 m], [18°51'44.62"N, 97° 5'12.70"W], 3 Aug 1853, F. Müller 41 quinter
379	(holotype: P 00603618 [image!]).
380	Acrostichum intermedium Feé, Mém. Foug. 8: 69. 1857, non Elaphoglossum intermedium
381	Brack., 1854. Type: México. Veracruz: prope Huatuzco, Cordova en terre [in protologue:
382	sur la terre], [1370 m], [19° 6'18.97"N, 96°59'39.68"W], Jul 1854, W. Schaffner 22
383	(probable holotype: RB 00543157 [image!]).
384	Elaphoglossum araneosum (D.C. Eaton) C. Chr. Index Filic. p. 303. 1905. Acrostichum
385	araneosum D.C. Eaton, Proc. Amer. Acad. Arts 22: 461. 1887. Type: México. Jalisco:
386	Río Blanco: in wet shady spots in ravines, Jun-Oct [in the protologue: Aug], [1530 m],
387	[20°46'43.15"N, 103°23'46.16"W], 1886, E. Palmer 333 (lectotype inadvertently
388	designated by Mickel and Beitel, 1988: YU YU.000790 [image!], isolectotypes: GH
389	00102874 [image!], NY 00149579!, 00149581!, US 00067262!, 01100828!).
390	Plants terrestrial. Rhizomes 4–5(–10) mm wide, short creeping; rhizome scales (2–) 3–5 mm
391	long, dense, spreading, lanceolate, with occasional short projections (shorter than the width of
392	the scale), concolorous, orange to light brown, darker at the point of attachment, dull, base
393	round, apex long-attenuate. Sterile leaves (7.5-) 14-31 (-40) cm long, approximate;
394	phyllopodia present, usually obscured by the rhizome scales, ca. 5 (-15) mm long; petioles (2–)
395	4–10.5 (–15.5) cm long, $1/5-1/3$ (–1/2) the length of the sterile leaves; larger petiole scales to 4
396	mm long, scattered to dense, not imbricate, spreading to appressed, linear-lanceolate to
397	lanceolate, with numerous long projections (as long or longer than the width of the scale),
398	stramineous, base truncate, apex attenuate to filiform; smaller petiole scales to 1.5 mm long,

399 dense, not imbricate, mostly appressed, irregular, substellate or lanceolate, when lanceolate, 400 margin with occasional long projections, stramineous, base auriculate, apex attenuate to filiform; laminae (3.5-) 6-21 x (0.7-) 1-2 cm; narrowly elliptic, papyraceous, base cuneate to decurrent, 401 402 apex obtuse or acute, sometimes apiculate; adaxial laminar scales to 1mm long, dense, not 403 imbricate, deciduous, linear-lanceolate, with numerous long projections, whitish to stramineous, 404 darker at the point of attachment, base auriculate, apex long-filiform; adaxial resinous dots 405 absent; abaxial laminar scales mixed with 2(-3) armed reddish trichomidia ca. 0.1 mm long, 406 the scales to 0.7 mm long, scattered to dense, not imbricate, deciduous, stellate to irregular, 407 whitish to stramineous; abaxial resinous dots usually present; abaxial costal scales 0.5–1 mm 408 long, dense, not imbricate, lanceolate with numerous long projections, stramineous, darker at the 409 point of attachment, base auriculate, apex acuminate to filiform; marginal scales (0.5)-1 mm 410 long, dense, usually imbricate, lanceolate to ovate-lanceolate, with numerous long projections, 411 stramineous to yellowish, base truncate with long projections, apex long-attenuate to filiform, 412 sometimes with a long projection close to the apex. Fertile leaves longer than the sterile; 413 petioles 1/2 - 2/3 the length of the fertile leaves; laminae (5-) 10-15.5 (-18) x 0.7-0.9 (-1.2) 414 cm, linear-elliptic, papyraceous, base long-cuneate, apex round or acute, sometimes apiculate; 415 petiole scales 0.5–2 mm long, scattered to dense, not imbricate, linear-lanceolate to lanceolate, 416 with numerous long projections, stramineous, base truncate, apex attenuate to filiform; adaxial 417 indument not seen; abaxial costal scales to 2 mm long, scattered to dense, not imbricate, 418 deciduous, linear-lanceolate, with numerous long projections, whitish to stramineous, darker at 419 the point of attachment, apex attenuate or filiform; intersporangial scales not visible. 420 **Perispores** broadly folded, echinate with short spines and ridges. Figure 3B and 5.

421 Distribution-Mexico (Chis, CDMX, Col, Dgo, Edo. Mex., Gro, Jal, Mich, Nay, Oax, 422 Pue, Sin, Ver), El Salvador, Guatemala, Honduras, and Nicaragua (Fig. 1B). Although E. 423 muelleri was reported by Mickel and Smith (2004) for the Mexican states of Guanajuato and San 424 Luis Potosí, as well as for Costa Rica and Panama, we did not find collections of this species 425 from these areas. Mexican collections Ventura & López 7446 (MEXU) and Schaffner sn (NY) 426 from Guanajuato and San Luis Potosí, respectively, correspond to *E. potosianum*. 427 *Elevation*—(960–) 1300–2600 m (Fis. 2). 428 *Etymology*—This species was named in honor of Fritz Müller [Johan Friederich Theodor] 429 (1822–1897). German zoologist and botanist who also studied medicine, and that was appointed 430 as a "traveling naturalist" by the Brazilian government. His collections are at B, G, K, and NY 431 (TL-2). 432 Notes-Elaphoglossum muelleri can be distinguished from all the other species in the 433 Petiolatum Clade by the largest rhizome scales 3–5 mm long, scalier lamina margins (the 434 marginal scales sometimes deciduous), and by the presence of trichomidia on the abaxial laminar 435 surface. 436 Elaphoglossum muelleri can be confused with E. potosianum because both have 437 trichomidia on the abaxial laminar surfaces and tend to have orange to light-brown lamina scales 438 (some specimens of *E. potosianum* can have dark brown scales). These two species can be 439 distinguished by the rhizome scales, the abaxial laminar scales, and trichomidia length. In E. 440 *muelleri* the rhizome scales are (2-)3-5 mm long, and always orange to light brown; the abaxial 441 laminar scales are scattered to dense, not imbricate, deciduous, stellate to irregular; and the 442 trichomidia ca. 0.1 mm and inconspicuous even with a stereomicroscope. In contrast, in E.

443 *potosianum* the rhizome scales are 2–3.5 mm long, orange or light brown to dark brown; the

abaxial laminar scales are absent or scattered and irregular; and the trichomidia are 0.2–0.3 mm
and easy to see with a magnifying glass or stereomicroscope.

Some collections were not considered for the description because they show small 446 447 variations outside of our typical concept of E. muelleri. For example: Goldsmith 41 (F, MO, NY, 448 US) from Colima (Mexico) has brown rather than typical orange to light-brown rhizome scales; 449 Rzedowskii 24310 (NY) from the State of Mexico (Mexico) does not present stellate scales on 450 the abaxial lamina surface, some leaves just present a few substellate scales; Croat 46092 (MO) 451 from Oaxaca (Mexico) has longer leaves than those typical of this species; Seiler 31 (F) from El 452 Salvador has rhizome scales with long projections instead of short projections; Hernández 99 453 (MO) from Honduras is the only specimen collected below 1000 m (all the other specimens have 454 been collected at 1000 m or above), Martin 61 (MO) and Berrios 97 (MO) also from Honduras, 455 are smaller than typical *E. muelleri*. Both specimens are sterile specimens and thus probably not 456 yet fully grown.

Müller 41 quinter is considered a holotype because there are no duplicates (Turland et al.,
2018, Chapter II, Section 2, Article 9). *Müller 41* ex parte NY (003231439!) is not considered an
isolectotype of *E. muelleri*, despite it has the same collector and collection number, because the
locality and date on the label do not correspond to those in the protologue. We neither consider *Müller 41* ex parte, NY (03231440!) as a part of the original material because this specimen
represents *E. schiedei*, and the specimen label suggests it was collected in 1855 and not in 1853
as the original material of *E. muelleri*.

464 *Pringle 2590* (B) has an anonymous note stating it is an isotype of *Acrostichum* 465 *araneosum*, however, the collectors, collection date, and locality are different from those
466 mentioned in the protologue. Therefore, it could not be an isotype or an isolectotype for this467 name (https://www.jacq.org/detail.php?ID=938981).

468	Lectotypification for Acrostichum intermedium was made inadvertently by Mickel and
469	Beitel (1988) who cited Schaffner 22 from P. However, we did not find this specimen among the
470	material we examined, nor did Dr. Germinal Rouhan (pers. comm.) find it at P. There is,
471	however, a specimen of <i>Schaffner 22</i> at P (P00255156) and it belongs to <i>Kyllinga pumila</i> Michx.
472	(Cyperaceae). We also asked for the specimen Schaffner 22 at STR thinking it could be there
473	because Antonie Laurent Apollinaire Fée, the author of this species, deposited his types at BR, P,
474	and STR (TL-II). Nevertheless, it is not there either. We have been able to find the only
475	specimen from Schaffner 22 in BR, for that reason, we cited this as the probable holotype.
476	There is no combination of Acrostichum intermedium Feé for Elaphoglossum, and we
477	could not make one with the same epithet, because there is already a valid species from Brazil
478	with that name -Elaphoglossum intermedium Brack (Brackenridge, 1854). Because we are
479	considering A. intermedium a synonym of E. muelleri we are not making any combination for
480	this name (Turland et al., 2018, Chapter II, Section 3, Article 11).
481	
482	
483	

485 **Figure 5.** *Elaphoglossum muelleri*. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina surface. D.

486 Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale. G. Marginal scale.

488 NY; C–E, J from *Müller 41*, NY; I from *Pringle 2590*, NY).

⁴⁸⁷ H. Midvein scale. I. Petiole. J. Rhizome scale. (A from *Mickel 1164*, NY; B, F–H from *Breedlove 17056*,

489	3. Elaphoglossum petiolatum (Sw.) Urb., Symb. Antill. 4: 61. 1903. Acrostichum petiolatum
490	Sw. Prodr. 128. 1788. Acrostichum viscosum Sw., Syn. Fil. 10: 193. 1806.
491	Elaphoglossum viscosum (Sw.) J. Sm., J. Bot. (Hooker) 4: 61. 1842 [1841]. Type:
492	Jamaica. In 1778, Swartz s.n. (lectotype, inadvertently designated by Proctor, 1985: S,
493	No. S-R-73 [image!], isolectotype: BM 000592488 [image!]).
494	Plants Terrestrial or epiphyte. Rhizomes 2–5 mm wide, short creeping; rhizome scales 1.5–3.7
495	(-5) mm long, dense, spreading, linear to lanceolate, with occasional short projections (shorter
496	than the width of the scale), concolorous, dark-reddish brown to dark brown, dull, base truncate,
497	apex filiform-tortuouse, oftentimes broken. Sterile leaves (9.5-) 10-36.5 (-43.5) cm long,
498	approximate; phyllopodia present, clearly visible, 5–18 mm long; petioles 3–15 cm long, (1/6–)
499	1/4-1/3 (-2/5) the length of the sterile leaves; larger petiole scales to 3.5 mm long, scattered,
500	denser at the base, not imbricate, spreading to appressed, linear to linear-lanceolate, entire or
501	with occasional short projections, stramineous, sometimes darker at the apex, base round, apex
502	long-attenuate to filiform-tortuouse, sometimes longer than the scale body; smaller petiole
503	scales to 1 mm long, scattered to dense, usually imbricate, mostly appressed, irregular,
504	substellate or lanceolate, when lanceolate, margin with occasional short or long projections (as
505	long or longer than the width of the scale), stramineous, base round or auriculate, sometimes
506	resinous at the point of attachment, apex acuminate; laminae 6.5–30 x (0.6–) 0.8–2 (–2.3) cm;
507	elliptic, chartaceous, base cuneate, apex acute to acuminate, usually apiculate; adaxial laminar
508	scales when present to 1mm long, absent or scattered to dense, not imbricate, lanceolate, with
509	occasional short or long projections, whitish to yellowish, sometimes darker at the point of
510	attachment, base auriculate, apex attenuate; adaxial resinous dots sometimes present; abaxial
511	laminar scales when present to 1 mm long, usually absent, when present scattered, lanceolate,

512 with numerous long projections, yellowish, base truncate with long projections, apex attenuate to 513 long-attenuate; abaxial resinous dots present; abaxial costal scales 0.5–1.5 mm long, scattered 514 to dense, not imbricate, lanceolate, substellate, or irregular when lanceolate, margin with 515 occasional short and/or long projections, stramineous, base, when lanceolate, truncate or 516 auriculate, apex acuminate to attenuate; marginal scales to 0.8 mm long, absent or scattered to 517 dense, not imbricate, irregular or lanceolate, when lanceolate, margin with numerous long 518 projections and occasionally also with short projections, whitish to yellowish, when lanceolate, 519 base auriculate, apex long-attenuate, sometimes with a long projection close to the apex. Fertile 520 leaves slightly shorter to longer than the sterile; petioles (2/5-) 3/5-1/2 the length of the fertile 521 leaves; laminae (8.5-) 10-16.5 (-20.5) x 0.6-1 cm, elliptic, chartaceous, base cuneate to 522 decurrent, apex acute or obtuse; petiole scales to 1mm long, scattered to dense, not imbricate, 523 linear to linear-lanceolate or substellate, when linear to linear-lanceolate, margin with occasional 524 short projections, yellowish to light brown, darker towards the apex, base round, apex long-525 attenuate to filiform-tortuouse; adaxial scales to 0.7 mm long, scattered to dense, not imbricate, 526 linear-lanceolate to lanceolate or substellate when linear-lanceolate to lanceolate, margin with 527 numerous long projections or with occasional short projections, whitish to light brown, base 528 truncate, apex attenuate to long-attenuate; abaxial costal scales to 0.8 mm long, scattered, linear 529 to lanceolate or substellate, when linear or lanceolate, margin with occasional short projections, 530 yellowish, base auriculate, apex acuminate to attenuate; intersporangial scales not visible. 531 **Perispores** broadly folded with sparsely irregular surface microstructures. Figures 3C and 6. 532 Distribution—Mexico (Chis, Gro, Oax, Ver), Costa Rica, Cuba, El Salvador, Guatemala, 533 Haiti, Honduras, Jamaica, Nicaragua, Panama, and Dominican Republic (Fig. 1C). Although E. 534 petiolatum has been reported for Cuba (Eaton 1860, Mickel and Smith 2004), we were able to

find only one collection of this species (*Sánchez C. y Morejón R. s.n.*, HAJB). Most of the other
reports of *E. petiolatum* from Cuba are based on misidentified specimens that mostly correspond
to *E. dussii* Underw. & Maxon. and *E. palmerii* Underw. & Maxon (Lóriga, com. pers).

538 *Elaphoglossum petiolatum* was reported as occurring widely from Mexico to Venezuela (Mickel

and Smith, 2004); however, most of the Mexican collections cited correspond to other species of

540 the. Petiolatum Clade. As defined here, E. petiolatum is absent from South America, (Martínez-

541 Becerril et al., in press, and see below).

542 *Elevation*- (847-) 900-2600 m (Fig. 2).

543 *Etymology*—The specific epithet apparently refers to the long and conspicuous petioles of 544 the type.

545 *Notes—Elaphoglossum petiolatum* has been the most commonly used name specimens 546 with resinous dots and dark rhizome scales in Mexico and Central America. This is the only 547 species in the clade that can have both terrestrial or epiphytic habit and spores with perispores 548 broadly folded with sparsely irregular surface microstructures. All other species of the 549 Petiolatum Clade are always terrestrial and have echinate spores with small spines (Fig. 3). 550 Another characteristic that distinguishes *E. petiolatum* from most species of the clade is the 551 presence of non-shiny resinous dots on the abaxial laminar surface. In all other species with 552 resinous dots, the dots are shiny. These non-shiny dots can sometimes be mixed with the typical 553 shiny ones and are most common in specimens from Central America. The non-shiny resinous 554 dots look dull in herbarium specimens and can easily be mistaken for peltate scales if not viewed 555 under a stereoscope or light microscope. They tend to come off easily if touched with a needle, 556 unlike shiny dots that remain attached.

557	Elaphoglossum petiolatum can be confused with E. auralolitae, E. pringlei, E. schiedei, and E.
558	schmitzii, mainly because of their overlapping distributions and presence of resinous dots on the
559	abaxial laminar surfaces, however, rhizome scales and the presence or absence of resinous dots
560	on the adaxial laminar surface help distinguish them. Elaphoglossum petiolatum can be
561	distinguished from <i>E. pringlei</i> by rhizome scales 1.5–3.7 (–5) mm long that are concolorous and
562	dark-reddish brown to dark brown. In contrast, <i>E. pringlei</i> has rhizome scales 1.4–2.5 (–3.5) mm
563	long that are bicolorous, light brown, and darker at the point of attachment. Also, E. petiolatum
564	often has resinous dots on the adaxial laminar surface, whereas E. pringlei does not.
565	Elaphoglossum petiolatum can be distinguished from E. schiedei, by its longer rhizome
566	scales 1.5–3.7 (–5) mm, which are dense, spreading, linear to lanceolate, dull, not sclerotic, and
567	with a filiform-tortuouse apex. In contrast, E. schiedei has rhizome scales 0.7–1.2 (–1.5) mm,
568	which are scattered, appressed, oblanceolate, reddish-brown to dark brown, lustrous, sclerotic,
569	and with an acute to short-filiform apex. Also, E. petiolatum often has resinous dots on the
570	adaxial laminar surface, whereas E. schiedei does not.
571	Elaphoglossum petiolatum and E. schmitzii are alike by the presence of resinous dots on
572	the laminae adaxially, but they can be distinguished by their rhizome scales. In E. petiolatum,
573	these are concolorous, dark-reddish brown to dark brown, and with a filiform-tortuouse apex. In
574	contrast, E. schmitzii they are bicolorous, light brown only darker at the point of attachment and
575	towards the apex, and with an attenuate to filiform apex.
576	See <i>Elaphoglossum auralolitae</i> for a comparison with that species.
577	Elaphoglossum petiolatum has the greatest intraspecific morphological variation of all the

578 species of the *Petiolatum* Clade. It varies in habit, leaf size, shape and color of the rhizome

579 scales, density of the laminar scales, and density and type (shiny and non-shiny) of the laminar

resinous dots. For example, many collections from Guatemala have lighter or bicolorous rhizome scales with darker margins and apex, and their petioles, laminae, and costae tend to be more scaly on the adaxial surface than the typical *E. petiolatum*. Those can be confused with *E. auralolitae*, but see this species for comparison. Most of the Central American specimens are epiphytes with ascending rhizomes and, in general, are smaller compared to the Mexican and the Antillean representatives. Specimens from Jamaica and the Dominican Republic usually have resinous dots on both laminar surfaces.

587 Another variation is represented by Mickel 9677 (NY) from Oaxaca. It has glabrescent 588 rhizomes; however, unlike *E. schiedei* which also has glabrescent rhizomes, the few scales on the 589 rhizome and petioles have the typical filiform-tortuous apex characteristic of *E. petiolatum*. 590 Another variation is represented by Molina 26627 (MO) from Guatemala, which has larger, 591 ovate costal scales up to 2 mm long (vs. lanceolate, substellar, or irregular, 0.5–1.5 mm costal 592 scales in most specimens). Further variation is found in Seiler 698 (NY) from El Salvador has 593 substellate and lanceolate scales with short projections on the abaxial laminar surface, in addition 594 to the typical resinous dots. A specimen from Nicaragua (Standley 10011, F) varies by lighter 595 rhizome scales that are quite unlike the typical dark-reddish brown to dark brown. 596 Elaphoglossum petiolatum is considered to have extensive morphological variation and 597 be widely distributed in tropical America, Asia, and Africa (Mickel, 2001). A study of this

variation (Mickel, 2001) concluded that the name *E. petiolatum* should be used only for

599 specimens from the American tropics, and specimens from Southeast Asia, Africa, and India

600 should be assigned to, respectively, E. blumeanum (Fée) J. Sm., E. yunnanense (Baker) C. Chr.,

601 E. lancifolium (Desv.) C.V. Morton (antes E. salicifolium (Willd. ex Kaulf.) Alston), and E.

602 *stelligerum* (Wall. ex Baker in Hook. & Baker) T. Moore ex Alston & Bonner (Mickel, 2001).

603	Two varietal names were described in part to represent the variation within Elaphoglossum
604	petiolatum: E. petiolatum (Sw.) Urb. var. dussii (Underw. ex Maxon) Proctor and E. petiolatum
605	var. salicifolium (Willd. ex Kaulf.) C. Chr., (Cristensen 1932, Proctor 1977). Morphological and
606	phylogenetic analyses have shown that neither <i>E. petiolatum</i> var. <i>dussii</i> (= <i>E. dussii</i> Underw. &
607	Maxon) nor <i>E. petiolatum</i> var. <i>salicifolium</i> (= <i>E. lancifolium</i>) are part of the <i>Petiolatum</i> Clade but
608	they are part to the E. ciliatum and E. lancifolium clades respectively (Vasco et al 2009b,
609	Martínez-Becerril et al., in press). The name of <i>E. petiolatum</i> only applies to specimens from
610	Mexico (Oaxaca and Chiapas), Central America (from Guatemala to Panama), and the Greater
611	Antilles (Cuba and Jamaica) (Martínez-Becerril et al., in press).
612	To reassign the South American specimens that have been misidentified as
613	Elaphoglossum petiolatum, further morphological and taxonomic revisions are needed. For these
614	specimens, there are several names available (e.g., E. ballivianii Rosenst., E. killipii Mickel, E.
615	stenophyllum (Sodiro) Diels, E. viscidum (Feé) Christ, and E. yungense de la Sota) and some of
616	the entities in the group might be undescribed.
617	The name Acrostichum viscosum and its combination with Elaphoglossum correspond to
618	a nomen superflua because this species was described in 1806 using the same type used for E .
619	petiolatum (A. petiolatum) in 1778, so it lacks taxonomic validity (Turland et al. 2018, Chapter
620	VII, Article 52).
621	
622	

Figure 6. Elaphoglossum petiolatum. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina

- surface. D. Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale.
- G. Marginal scale. H. Midvein scale. I. Petiole. J. Rhizome scale. (A from Clute 312, NY; B-E,H
- from Maxon 2648, NY; F,I from Mickel 8447, NY; G from Evans 2702, MO; J from Stern 1112,
- MO; K from Moran 5646, NY).

650 **4. Elaphoglossum potosianum Christ**, Neue Denkschr. Allg. Schweiz. Ges. Gesammten

- Naturwiss. 36: 119. 1899. Type: México. San Luis Potosí: San Migualito [Miguelito]: in
 montibus [according to the specimen at P, not in the protologue], [1890 m],
- 653 [22°10'46.51"N, 101°0'26.09"W], 1877, W. Schaffner 77 (lectotype, designated here: P
- 654 00249860 [image!], isolectotype: P 00249859 [image!]).
- *Elaphoglossum trichomidiatum* Mickel, Brittonia 53: 488. 2001[2002]. Type: México. San Luis
 Potosí: in the region of San Luis Potosí, 6000–8000 feet [1828–2438 m], [22° 4'46.09"N,
- 657 100°59'58.72"W], 1878, *Parry y Palmer 1007* (holotype: NY 03231441!; isotypes: F

658 C0620656F!, MO 1867264!, US 01564938!, VT UVMVT212789!).

659 Plants Terrestrial. Rhizomes 2–4 mm wide, short creeping; rhizome scales 2–3.5 mm long,

dense, spreading, linear-lanceolate, with occasional short projections (shorter than the width of

the scale), concolorous, orange or light brown to dark brown, darker at the point of attachment,

dull, base truncate, apex attenuate to long-attenuate. Sterile leaves 12–26 (-46) cm long,

approximate; **phyllopodia** present, sometimes obscured by the petiole scales, 2–4 (–40) mm

long; petioles 2–12 (–29) cm long, (1/5-) 1/3-1/2 (–3/5) the length of the sterile leaves; larger

665 petiole scales to 3 mm long, scattered to dense, not imbricate, spreading to appressed, linear-

lanceolate to lanceolate, with occasional short projections and usually with occasional long

667 projections (as long or longer than the width of the scale) located mostly towards the base,

668 stramineous, sometimes darker at the apex, base truncate, apex attenuate to filiform; smaller

669 **petiole scales** to 1mm long, dense, not imbricate, mostly appressed, lanceolate, with occasional

670 long projections, stramineous, base truncate, apex acute; laminae 7.5–23 (–31.5) x 1.4–3.3 (–4)

671 cm; linear-lanceolate to narrowly elliptic, chartaceous, base cuneate, apex acute, sometimes

apiculate; adaxial laminar scales to 1mm long, scattered to dense, not imbricate, deciduous,

673 irregular, substellate or lanceolate, when lanceolate, margin with numerous long projections, 674 stramineous, darker at the point of attachment, base auriculate, apex acuminate; adaxial 675 resinous dots absent; abaxial laminar scales mixed with (2–) 3 armed reddish trichomidia 0.2– 676 0.3 mm long, the scales ca. 0.5 mm long, absent or scattered, irregular, with numerous long 677 projections, stramineous, sometimes darker at the point of attachment; abaxial resinous dots 678 present; abaxial costal scales 1–1.2 mm long, scattered to dense, not imbricate, lanceolate with 679 occasional long projections, stramineous to yellowish, base truncate, apex acuminate; marginal 680 scales to 0.5 mm long, dense, not imbricate, lanceolate, with occasional long projections, 681 stramineous, darker at the point of attachment, base auriculate, apex long-acuminate. Fertile 682 leaves longer than the sterile; petiole 3/5–2/3 the length of the fertile leaves; laminae (8.2–) 10– 683 11.5 x 0.6–1 cm, linear, chartaceous, base attenuate to long-attenuate, apex acute or obtuse; 684 petiole scales to 2.5 mm long, scattered to dense, not imbricate, linear-lanceolate to lanceolate, 685 with occasional long projections, stramineous, sometimes with darker apex, base round or 686 truncate, apex attenuate or filiform; adaxial scales lanceolate or substellate, when lanceolate, 687 margin with numerous long projections, yellowish, apex acuminate to attenuate; abaxial costal 688 scales to 1 mm long, scattered to dense, not imbricate, lanceolate, with occasional long 689 projections, stramineous, base auriculate, apex acute; intersporangial scales not visible. 690 **Perispores** broadly folded, echinate with short spines and ridges. Figures 3D and 7... 691 Distribution.—Endemic to Mexico. CDMX, Edo. de Mex., Gto, Gro, Hgo, Jal, Mich, 692 Nay, Nvo. León, Oax, Qro, S.L.P, Sin, Tamps (Fig. 1D). Besides the states by Mickel y Smith (2004), E. potosianum has been collected in Estado de México, Guerrero, Jalisco, Michoacan, 693 694 Nayarit, Oaxaca, and Queretaro.

695 *Elevation.*—(480–) 1500–2500 (–3000) m (Fig. 2).

Etymology.—The specific epithet *potosiaunum* refers to San Luis Potosí, the Mexican
state where the holotype was collected.

698 Notes—Elaphoglossum potosianum differs from all other species of the Petiolatum Clade 699 by its concolorous rhizome scales, which are orange or light brown to dark brown, darker at the 700 point of attachment, and dull. Also distinctive is the presence of trichomidia mixed with resinous 701 dots on the abaxial laminar surface. The larger specimens of *E. potosianum* have phylopodia up 702 to 4 cm and highly conspicuous .

703 *Elaphoglossum potosianum* resembles *E. muelleri*, see *E, muelleri* for comparison.

704 Within *E. potosianum*, the density of the laminar scales, trichomidia, and resinous dots is

variable. In some specimens, it is easier to observe these structures than in others. Usually,

trichomidia can be most easily detected by observing the specimen in profile.

According to the protologue of *E. potosianum*, a specimen was at HB (currently the Berlin Herbarium B) (Christ, 1899). However, we were not able to locate it, and therefore we designate *Schaffner* 77, P (P00249860) as the lectotype.

710

711

712

713

714

- 748
- 749 Figure 7. *Elaphoglossum potosianum*. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina
- 750 surface. D. Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale.
- 751 G. Marginal scale. H. Midvein scale. I. Petiole. J. Rhizome scale. (A from
- 752 Parry & Palmer 1007, VT; B–H, J from Schaffner 92, NY; I from Schaffner 77, P).

753	Elaphoglossum pringlei (Davenp.) C. Chr., Index Filic. 313. 1905. Acrostichum pringlei
754	Davenp. Bot. Gaz. 21 (5): 253. 1896. Type: México. Oaxaca: Sierra de San Felipe,
755	10,000 feet [3048 m], [17°25'46.28"N, 96°28'5.90"W], 25 Sep 1894, C. G. Pringle 5605
756	(first-step lectotype inadvertently designated by Mickel & Beitel, 1988: GH; second-step
757	lectotype designated here: GH 00020353 [image!]; isolectotypes F V0075926F!, GH
758	00102873 and 00102874 [images!], K 000994450 and 000994451 [image!], US
759	01564931!, VT UVMVT001435 [images!]).

760 Plants Terrestrial. Rhizomes 2–2.5 (-4.5) mm wide, short creeping; rhizome scales 1.4–2.5 (-761 3.5) mm long, dense, spreading, linear to lanceolate, with occasional short projections (shorter 762 than the width of the scale), bicolorous, light brown becoming dark brown with age, darker at the 763 point of attachment, dull, base round, apex long-attenuate to filiform-tortuouse, oftentimes 764 broken. Sterile leaves 7–38 cm long, approximate; phyllopodia present, clearly visible, 5–20 (– 765 30) mm long; **petioles** (1.3–) 3.5-13 (–20) cm long, (1/4–) 3/8-3/7 (–3/5) the length of the sterile 766 leaves; larger petiole scales to 2.5 mm long, scattered to dense, not imbricate, spreading to 767 appressed, linear-lanceolate to lanceolate, with occasionally short projections or with long 768 projections (as long or longer than the width of the scale), stramineous, sometimes darker at the 769 apex, base round or auriculate, apex acuminate to long-attenuate; smaller petiole scales to 1 mm 770 long, dense, not imbricate, deciduous, mostly appressed, irregular, substellate or lanceolate, 771 when lanceolate, margin with occasional short or long projections, stramineous, sometimes 772 darker at the apex, base round or auriculate, apex acuminate to long-attenuate; laminae 4-22.5 x 773 (0.5–) 1–2.5 (–3) cm; elliptic to lanceolate, chartaceous, base decurrent, apex obtuse or acute, 774 sometimes apiculate; adaxial laminar indument consisting of scales to 1 mm long, dense or 775 sometimes scattered, not imbricate, irregular, substellate or lanceolate, when lanceolate, margin

776 with numerous long projections, whitish to yellowish, darker at the point of attachment, base 777 auriculate, apex long-attenuate; adaxial resinous dots absent; abaxial laminar indument 778 consisting of scales to 1mm long, dense, not imbricate, substellate, irregular, or lanceolate, when 779 lanceolate, with numerous long projections, stramineous to yellowish, sometimes darker at the 780 point of attachment, base when lanceolate, auriculate, apex long-attenuate to filiform; abaxial 781 resinous dots present or absent; abaxial costal scales 0.5–1 mm long, dense, not imbricate, 782 lanceolate, substellate, or irregular, when lanceolate, margin with numerous long projections or 783 with occasional short projections, stramineous, base, when lanceolate, auriculate, apex long-784 attenuate; marginal scales to 0.5 mm long, dense, not imbricate, lanceolate, with numerous long 785 projections, stramineous to yellowish, base truncate, apex long-attenuate, sometimes with a long 786 projection close to the apex. Fertile leaves longer than the sterile; petioles (2/3-) 3/5-5/7 the 787 length of the fertile leaves; **laminae** $4-15.5 \times 0.5-1.2 \text{ cm}$, elliptic to lanceolate, chartaceous, base 788 long-cuneate, apex round or acute; petiole scales to 1 mm long, scattered, linear-lanceolate to 789 lanceolate or irregular, when linear to linear-lanceolate, margin with occasional short projections, 790 stramineous, sometimes with darker margin, base round or auriculate, apex acuminate to long-791 attenuate; adaxial indument consisting of scales lanceolate or substellate, when lanceolate, 792 margin with numerous long projections, whitish to yellowish, apex attenuate to long-attenuate; 793 abaxial costal scales to 1 mm long, scattered, linear-lanceolate to lanceolate or irregular, when 794 linear-lanceolate or lanceolate, with numerous long projections, stramineous to yellowish, base 795 auriculate, apex acuminate to long-attenuate; intersporangial scales not visible. Perispores 796 broadly folded, echinate with short spines and ridges. Figures 3E and 8.

797 Distribution.—Endemic to Mexico. Chis, Gro, Hgo, Jal, Mich, Oax, Ver. Most of the 798 collections of *Elaphoglossum pringlei* examined in this study, and those cited by Mickel and 799 Smith (2004) are from Oaxaca (Fig. 1E). 800 *Elevation.*—(1280–)1500–3050 m (Fig. 2). 801 Etymology.—The specific epithet honors Cyrus Guernsey Pringle (1838-1911), an 802 American botanist who collected between 1880 and 1909 in the Pacific Coast states of the 803 United States, and in Mexico. In 1902, Pringle funded the herbarium of the University of 804 Vermont, and currently, that herbarium carries out his name as The Pringle Herbarium (VT) (TL-805 2). 806 Notes.-Elaphoglossum pringlei has the largest spores of any species the Petiolatum 807 Clade, suggesting it is polyploid (Martinez-Becerril et al., 2021). The spores average 40.4 µm in 808 equatorial diameter and 31.6 µm in polar diameter. In contrast, the other species in the clade 809 average 31.2 µm and 28.5 µm, respectively. 810 Elaphoglossum pringlei is often misidentified as E. petiolatum because of its similar 811 linear to lanceolate rhizome scales and lamina shape . Mickel and Smith (2004) suggested that 812 one of the main differences was that *E. pringlei* lacked resinous dots on the laminae, and that the 813 scales were substellate abaxially. However, we found that at least half of the specimens of E. 814 pringlei had resinous dots on the laminae abaxially, and some specimens of E. petiolatum had 815 substellate scales on the abaxial surface of the laminae. 816 *Elaphoglossum pringlei* and *E. petiolatum* can be distinguished by rhizome-scale color, 817 presence and kind of resinous dots on the laminae, spore morphology and geographic 818 distribution. Elaphoglossum pringlei has bicolorous and light brown rhizome scales with a 819 darker point of attachment, and long-attenuate apices ending in a thin hair; laminae without

resinous dots on the adaxial surface and, when present, shiny resinous dots on the abaxial surface; and echinate perispores. In contrast, *E. petiolatum* has concolorous, dark-reddish brown to dark brown rhizome scales with a filiform to tortuouse apex (very long, but wider that a thin hair); laminae sometimes with resinous dots on the adaxial surface and always with shiny and/or non-shiny resinous dots on the abaxial surface; and perispores with broadly folded with sparsely irregular surface microstructures.

Mickel and Smith (2004) suggested that *Elaphoglossum pringlei* was related to *E. rzedowskii*, and that these two represented morphological variations of the same species. Our molecular phylogenetic analyses recover them in two separate clades (Martínez-Becerril et al., in press), and the differences found in their spore morphology (Martínez-Becerril et al., 2021) and the plants show they are two separate species.

831 Elaphoglossum rzedowskii differs from E. pringlei by rhizome scales with acuminate to 832 long-attenuate apices, linear to elliptic laminae with dense scales, sometimes imbricated, 833 deciduous, and resinous dots on the adaxial laminar surface. In contrast, E. pringlei has long-834 attenuate to filiform-tortuouse, oftentimes broken, elliptic to lanceolate laminae with dense 835 scales, not imbricate, and absence of adaxial resinous dots. The average size of the spores is also 836 a good character to distinguish these species; in *E. pringlei* they measure 40.4 µm and 31.6 µm, 837 whereas in E. rzedowskii they measure 34.6 µm and 27.9 µm, in equatorial diameter and in polar 838 diameter respectively.

839 Within *Elaphoglossum pringlei* there is a gradient of shapes and colors of the rhizome 840 scales, from linear to lanceolate and different tones of brown, because they tend to darken with 841 age. The laminar scales and resinous dots, some specimens have very scattered scales, while 842 others can have dense scales, and some specimens do not have any resinous dots on the laminae.

843

844 **Figure 8.** *Elaphoglossum pringlei*. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina surface. D.

847 from *Mickel 3866*, NY; G–H from *Pringle 5605*, F; I–J from *Mickel 3866*, NY).

Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale. G. Marginal scale.

⁸⁴⁶ H. Midvein scale. I. Petiole. J. Rhizome scale. (A from *Pringle 5605*, US; B-E from *Mickel 4778*, NY; F

6. Elaphoglossum rzedowskii Mickel, Brittonia 32: 337. 1980. Typo: México. Jalisco: Mpio.
San Martín de Bolaños, Las Vidrieras, 10 km NW of El Platanar, 2450 m,
[20°28'56.01"N, 103° 4'41.83"W], 1 Sep 1968, *J. Rzedowski 26161* (holotype: MICH
1287073! [image!]; isotype: NY 00149704!).

852 Plants Terrestrial. Rhizomes 2.5–4 mm wide, short creeping; rhizome scales (1–) 1.5–2 (–3) 853 mm long, dense, spreading, linear-lanceolate, with occasional short projections (shorter than the 854 width of the scale), bicolorous, stramineous to brown, darker at the point of attachment and 855 towards the margin and the apex, dull, base round, apex acuminate to long-attenuate. Sterile 856 leaves (8–) 16–25 cm long, approximate; **phyllopodia** present, usually obscured by the rhizome 857 scales, ca. 5 mm long; petiole 3-6.5 (-11.5) cm long, 1/6-1/4 (-1/2) the length of the sterile 858 leaves; larger petiole scales to 3 mm long, dense, usually imbricate, spreading to appressed, 859 linear-lanceolate to lanceolate, with occasional short projections, stramineous, sometimes darker 860 towards the apex, base truncate, apex attenuate to filiform; smaller petiole scales to 1mm long, 861 dense, usually imbricated at the petiole base, mostly appressed, irregular, substellate or 862 lanceolate, when lanceolate, margin with occasional long projections (as long or longer than the 863 width of the scale), stramineous, darker at the point of attachment, base auriculate, apex acute; 864 **laminae** 9.5–18.5 x (0.7–) 1–1.5 (–2) cm; linear to elliptic, chartaceous, base decurrent, apex 865 acute to acuminate, sometimes apiculate; adaxial laminar indument consisting of scales to 866 1mm long, dense, not imbricate, deciduous, linear-lanceolate, with numerous long projections (as 867 long or longer than the width of the scale), stramineous, darker at the point of attachment, base 868 auriculate, apex long-filiform, adaxial resinous dots present, sometimes not visible due to the 869 density of the laminar scales; abaxial laminar indument consisting of scales, the scales to 0.7 870 mm long, dense, sometimes imbricate, lanceolate, with numerous long projections, stramineous,

871 darker at the point of attachment, base auriculate, apex long-filiform; abaxial resinous dots 872 present, sometimes not visible due to the laminar scale density; abaxial costal scales 1–2 mm 873 long, dense, usually imbricate, linear-lanceolate with occasional short and/or long projections, 874 stramineous, sometimes whitish, base auriculate, apex long-filiform; marginal scales to 1mm 875 long, dense, usually imbricate, lanceolate, with numerous long projections, stramineous, base 876 truncate with long projections, apex long-attenuate, sometimes with a long projection close to the 877 apex. Fertile leaves similar or slightly longer than the sterile; petiole 3/7-1/2 the length of the 878 fertile leaves; laminae 11–13.5 x 0.9–1.1 cm, linear-elliptic, chartaceous, base long-cuneate, 879 sometimes unequal, apex acute to acuminate; petiole scales (1.5-) 2.5 (-3) mm long, dense, 880 usually imbricate, linear-lanceolate to lanceolate or irregular, when linear to linear-lanceolate, 881 margin with occasional short or long projections, stramineous, sometimes with darker apex, base 882 round or truncate, apex attenuate to filiform; adaxial indument consisting of scales linear-883 lanceolate to lanceolate, when linear-lanceolate to lanceolate, margin with numerous long 884 projections, yellowish, apex long-attenuate to filiform; abaxial costal scales to 2 mm long, 885 dense, usually imbricate, linear-lanceolate, with occasional short and/or long projections, 886 stramineous, base auriculate, apex long-filiform; intersporangial scales not visible. Perispores 887 broadly folded, echinate with short spines and ridges. Figures 3F and 9. 888 Distribution-Endemic to Mexico. Ags, Chih, Dgo, Gro, Jal, Nay, Sin, Son (Fig. 1F). 889 This species was also reported by Mickel and Smith (2004) for the states of Guanajuato, 890 Michoacán, and Zacatecas, however, we did not find specimens belonging to this species in these 891 states.

892 *Elevation.*—(800–) 1400–2700 (–3050) m (Fig. 2).

Etymology.—The specific epithet honors Jerzy Rzedowski Rotter (1926-), a Polish
botanist, professor, and emeritus researcher who has dedicated his career to studying Mexican
plants. (González 2009).

896 Notes.—Among the species of the Petiolatum Clade, *E. rzedowskii* has the northernmost 897 distribution, occurring even in the Mexican states of Chihuahua and Sonora. Also, it is the only 898 species of the clade with the scales of the laminae sometimes imbricated and so dense that they 899 obscure the surface beneath Because of this, the resinous dots on the abaxial surface are difficult 890 to observe; however, those on the adaxial surface are evident in most of the specimens.

Elaphoglossum rzedowskii and *E. pringlei* were hypothesized to represent regional
 morphological variations of the same species (Mickel and Smith 2004). See *E. pringlei* for a
 comparison and discussion of differences with this species.

Compared to other species in the *Petiolatum* Clade, *Elaphoglossum rzedowskii* has the
fewest collections, and only a few are fertile. These were collected during August and
September.

907 In general, specimens from Durango and Guerrero have fewer laminar scales than the 908 rest, and the only collection recorded above 2700 m is *Gentry 18160* (NY) from Durango. 909 The holotype of *Elaphoglossum rzedowskii* is mixed. Two plants are mounted on the sheet that 910 houses the holotype of this species *Rzedowski 26161* (MICH). In order to differentiate the two 911 plants, someone marked them directly on the sheet with the letters a and b, and later they were 912 assigned different barcodes: plant "a" (MICH 1287073) and plant "b" (MICH 1259599). In the 913 original description of this species, Mickel (1980), explained that the holotype of E. rzedowskii is 914 plant "a", and plant "b" is E. gratum (Fée) T. Moore. The current annotation labels on the 915 specimen at MICH indicates that in 1988 Mickel identified specimen "b" as E. rzedowskii

- 916 (determination corroborated in 2008 by R. K. Rabeler). We believe that the initial determination
- 917 by Mickel (1980) is correct: the holotype of *E. rzedowskii* is plant "a," and plant "b" is *E*.
- 918 gratum.
- 919

941 Figure 9. Elaphoglossum rzedowskii. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina

942 surface. D. Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale.

943 G. Marginal scale. H. Midvein scale. I. Petiole. J. Rhizome scale. (A-B, D-F, I from Rzedowski

944 26161, NY; C, E, G–H, from Correl & Gentry 22972, MO; J from Reina 96-183, MO).

945 7. Elaphoglossum schiedei (Kunze) T. Moore, Acrostichum schiedei Kunze, Analecta

- 946 Pteridogr. 10. 1837. Type: México. Veracruz: Mpio. Jalapa: ad ladera montimum prope
- 947 El Molino de Pedreguera conf, [1430m], [19°33'7.02"N, 96°56'23.47"W], Junio 1829, *W*.
- 948 Schiede s.n. (lectotype inadvertently designated by Mickel & Beitel, 1988: B (B 20
- 949 0071835) [image!], isolectotypes: BR 00000697192 [image!], HAL 0137800 [image!],
- 950 LE 00008871 [image!], P 00603624 [image!]).

951 **Plants** Terrestrial. **Rhizomes** 2–10 mm wide, short creeping; **rhizome scales** 0.7–1.2 (–1.5) mm 952 long, scattered, appressed, oblanceolate, with occasional short projections (shorter than the width 953 of the scale), concolorous, reddish-brown to dark brown, sometimes lighter at the point of 954 attachment, sclerotic, lustrous, base round or truncate, apex acute to short-filiform. Sterile leaves 955 17–45.5 (–75) cm long, approximate; **phyllopodia** present, clearly visible, 5–15 (–19) mm long; 956 petioles 7–12 (–18) cm long, $\frac{1}{3}-\frac{3}{5}$ (–3/4) the length of the sterile leaves; larger petiole scales 957 to 2 mm long, sacttered to dense, not imbricate, spreading to appressed, linear-lanceolate to 958 lanceolate, with occasional short projections, stramineous, sometimes reddish-brown towards the 959 apex, base round or truncate, apex acuminate to filiform; smaller petiole scales to 1 mm long, 960 sacttered to dense, not imbricate, mostly appressed, lanceolate, with short or long projections (as 961 long or longer than the width of the scale), stramineous, base truncate or round, apex attenuate; 962 **laminae** 10-25 (-57) x 1.5-2.8 (-3.2) cm; elliptic, papyraceous, base acute, apex acute to 963 acuminate; adaxial laminar indument consisting of scales to 1 mm long, scattered to dense, not 964 imbricate, deciduous, substellate or lanceolate, when lanceolate, margin with numerous long 965 projections, whitish to yellowish, darker at the point of attachment, base auriculate, apex 966 attenuate, adaxial resinous dots absent; abaxial laminar indument consisting of scales to 0.7 967 mm long, absent or scattered to dense, not imbricated, stellate to irregular, yellowish, sometimes

968 darker at the point of attachment; abaxial resinous dots present; abaxial costal scales 0.7-1.2 (-969 1.5) mm long, sacttered to dense, not imbricate, ovate to lanceolate with occasional short 970 projections, stramineous to light brown, base truncate, apex acute to attenuate; marginal scales 971 to 0.6 mm long, scattered to dense, not imbricate, deciduous, linear-lanceolate or substellate, 972 when linear-lanceolate, margin with numerous long projections, yellowish, base when linear-973 lanceolate, truncate, apex when lanceolate, long-attenuate. Fertile leaves longer than the sterile; 974 petiole $\frac{1}{3}-\frac{2}{3}(-\frac{3}{4})$ the length of the fertile leaves; laminae (7.5-) $10-18 \times (0.3-) 0.7-1.3 \text{ cm}$, 975 elliptic, papyraceous, base cuneate, apex acute or obtuse, sometimes apiculate; petiole scales to 976 2 mm long, scattered to dense, not imbricate, lanceolate or substellate, when lanceolate, margin 977 with short projections, stramineous to light brown, with darker apex, base round or truncate, apex 978 acuminate or filiform; adaxial indument consisting of scales to 0.5 mm long, dense, not 979 imbricate, lanceolate or substellate, when lanceolate, margin with numerous long projections or 980 with occasional short projections, yellowish, base truncate, apex attenuate; abaxial costal scales 981 to 0.7 (-1.8) mm long, scattered to dense, not imbricate, lanceolate to oblanceolate or substellate, 982 when lanceolate or oblanceolate, with occasional long projections, yellowish, base auriculate, 983 apex acute to short-filiform; intersporangial scales not visible. Perispores broadly folded, 984 echinate with short spines and ridges. Figures 3G and 10. 985 Distribution.-Mexico (Chis, CDMX, Hgo, Oax, Pue, Qro, Ver) and northwest 986 Guatemala (Fig. 1G)

987 *Elevation.*—(274–) 740–3050 m (Fig. 2).

Etymology.— The specific epithet honors Christian Julius Wilhelm Schiede (1798–1836),
German botanist, gardener, traveler, and plant collector who arrived in Mexico in 1828 and spent

the rest of his life exploring the states of Veracruz (Jalapa and Orizaba) and Morelos (Cuautla
and Cuernavaca) (https://www.sil.si.edu/DigitalCollections/tl-2/browse.cfm?vol=5#page/160).

992 *Notes.—Elaphoglossum schiedei* is the only species in the *Petiolatum* Clade with 993 glabrescent rhizomes and sclerotic (hard) appressed rhizome scales. Furthermore, the rhizome 994 scales are the smallest (0.7-1.2 (-1.5) mm long) and the only ones in the clade which are wider 995 than long. Sometimes the bases of the petioles and their scales densely cover the rhizomes, 996 making it difficult to find the rhizome scales.

997 *Elaphoglossum schiedei* was considered a synonym of *E. petiolatum* (Proctor 1985,

998 Mickel and Beitel 1988, Mickel and Smith 2004), morphological and molecular evidence,

999 however, supports its recognition as a different species. *Elaphoglossum schiedei* has 0.7–1.2(–

1000 1.5), scattered, appressed, oblanceolate rhizome scales with an acute to short filiform apex;

1001 lamina with a papyraceous consistency; stellate to irregular scales on the abaxial laminar surface;

1002 and echinate perispore ornamentation. In contrast, *E. petiolatum* has 1.5–3.7 (–5), dense,

1003 spreading, linear to lanceolate rhizome scales with a filiform-tortuouse apex, oftentimes broken;

1004 lamina with a chartaceous consistency; lanceolate scales on the abaxial laminar surface; and

1005 perispore ornamentation with broadly folded with sparsely irregular surface microstructures.

Mickel 4706, 4843, and *4857* (all NY) from Oaxaca, Mexico, are unusual because they
have rhizome scales longer than the other species (up to 1.5 mm), resinous dots non-shiny, and
substellate scales on the laminae abaxially. However, they agree with our concept of *E. schiedei*by having glabrescent rhizomes, and rhizome scales with the shape and color typical of this
species. *Standley 92203* (F), from Guatemala, is atypical in having been collected as an epiphyte.
According to our interpretation of the protologue, it is possible that the original material
of this species was given "in goodwill" to Schlechtendal and represented the same species that

1013 Karwinski previously reported for Mexico as A. salicifolium. Following our interpretation of the

1014 protologue, it is probable that Karwinski prepared a list of the material deposited in his

1015 herbarium where he clarified that what he called *A. salicifolium* was the same as *A. schiedei*.

1016 However, we currently know that A. salicifolium (=E. lancifolium) represents a different species,

1017 one that is distributed only in the Old World. This species belongs to the *E. lancifolium* clade,

1018 not the *Petiolatum* Clade (Martínez-Becerril et al., in press).

1019 Mickel and Beitel (1988) inadvertently lectotypified *Elaphoglossum schiedei* when they 1020 cited a type specimen of it from B (B 20 0071835). We do not consider as original material the 1021 specimens from NY 00149705 and 00334944, both specimens are anonymously annotated as 1022 "cotypes" of *E. schiedei*, because, although they come from the same locality indicated in the 1023 protologue (Jalapa), the collection and collection year shown on the labels do not coincide with 1024 the one in the protologue (Schiede s.n., in 1829). Schlechtendal 736a (NY 00149705) lacks a 1025 collection date, whereas a duplicate (NY 00334944) lacks both the collector and collection date. 1026 The term "cotype" was previously used to refer to what we now know as syntype and sometimes, 1027 and erroneously, to refer to an isotype and/or a paratype, however, this term is not used today 1028 (Hawksworth 2010).

BR 00000697171 is *Elaphoglossum schiedei*, but it cannot be determined whether it is a syntype because it does not indicate the date or the precise location. This specimen has a note by Gustav Kunze, the author of *A. schiedei*, mentioning that the specimen resembles *A. schiedei* but does not correspond to that species ("*Acrostichum schiedei* simili. Frondes stes. ad comparant. México Schiede" [similar to *Acrostichum schiedei*, fronds sterile, purchased from Mexico Schiede]). MO (MO-255729) marked as an isotype cannot be confirmed as original material due to lack of locality data and collector.

1036 Figure 10. *Elaphoglossum schiedei*. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina

- 1037 surface. D. Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale.
- 1038 G. Marginal scale. H. Midvein scale. I. Petiole. J. Rhizome scale. (A from *Pringle 13292*, VT;
- 1039 B–I Castillo Campos 19132, CHAPA; J from Christ s.n., P).

1040 8. Elaphoglossum schmitzii (Mett. ex Kuhn) Martínez-Becerril & A. Vasco, Acrostichum 1041 schmitzii Mett. ex Khun, Linnaea 36: 51. 1869. Syntypes: México. México: Schmitz 3 (ex 1042 parte), Karwinski s.n., Schaffner s.n. (lectotype here designated: Schaffner s.n. B 20 1043 0071856 [image!], isolectotypes: B 20 0071857 and, B 20 0071858 [images!]). 1044 Plants Terrestrial. Rhizomes 1.5–3.5 mm wide, short creeping; rhizome scales 2–4 mm 1045 long, dense, spreading, linear to lanceolate, entire or with occasional short projections 1046 (shorter than the width of the scale), bicolorous, light brown becoming brown with age, 1047 darker at the point of attachment and towards the apex, dull, base round, apex attenuate to 1048 filiform. Sterile leaves (11-) 14-34 (-61) cm long, approximate; phyllopodia present, 1049 clearly visible, 5–10 mm long; **petioles** (3.5-) 4–17.5 cm long, (1/5-) 1/4–1/2 the length 1050 of the sterile leaves; larger petiole scales to 2.5 mm long, sacttered to dense, not 1051 imbricate, spreading, linear-lanceolate to lanceolate, with occasional short projections, 1052 stramineous, sometimes darker at the apex, base round with long projections (longer than 1053 the width of the scale), apex long-attenuate to filiform; smaller petiole scales to 1 mm 1054 long, scattered to dense, not imbricate, mostly appressed, substellate, stramineous; 1055 **laminae** (7.7-) 11–25.5 $(-57) \times 0.9-1.5 (-2)$ cm; narrowly elliptic, papyraceous or 1056 chartaceous, base cuneate, apex acute to acuminate; adaxial laminar indument 1057 consisting of scales to 0.8 mm long, dense, not imbricate, sometimes scattered, 1058 substellate, linear-lanceolate to lanceolate, when linear-lanceolate or lanceolate, margin 1059 with numerous long projections (as long or longer than the width of the scale), 1060 stramineous, darker at the point of attachment, base truncate with long projections, apex 1061 long-attenuate to filiform, adaxial resinous dots sometimes present; abaxial laminar 1062 indument consisting of scales to 1 mm long, absent or scattered to dense, not imbricated,

1063 linear-lanceolate, with numerous long projections, yellowish, sometimes darker at the 1064 point of attachment, base truncate with long projections, apex long-attenuate; abaxial 1065 resinous dots present; abaxial costal scales 0.7 (-1.5) mm long, scattered, lanceolate 1066 with occasional short projections, stramineous, base truncate, apex acuminate to filiform; 1067 marginal scales 0.7 (-1.2) mm long, usually dense, not imbricate, deciduous, 1068 oblanceolate or substellate, when oblanceolate, margin with numerous long projections, 1069 yellowish, base round or truncate, apex attenuate. Fertile leaves longer than the sterile; petiole 1/2- 2/3 (-5/7) the length of the fertile leaves; laminae (5.5-) 9-15 x (0.5-) 0.8-1070 1071 1.1 cm, narrowly elliptic, papyraceous or chartaceous, base cuneate to attenuate, apex acute or obtuse; petiole scales to 2.5 mm long, dense, not imbricate, deciduous, linear-1072 1073 laceolate to lanceolate or substellate, when linear to linear-lanceolate, margin with 1074 numerous long projections or with occasional short projections, stramineous, sometimes 1075 reddish-brown towards the apex, base round with long projections or truncate, apex long-1076 attenuate to filiform; adaxial indument consisting of scales to 0.7 mm long, scattered to 1077 dense, not imbricate, lanceolate or substellate when lanceolate, margin with numerous 1078 long projections, yellowish, base truncate with long projections, apex long-attenuate to 1079 filiform; abaxial costal scales to 1 mm long, scattered to dense, not imbricate, deciduous, 1080 linear to lanceolate or stellate, when linear or lanceolate, with numerous long projections 1081 or with occasional short projections, yellowish, base truncate with long projections, apex 1082 attenuate; intersporangial scales not visible. Perispores broadly folded, echinate with 1083 short spines and ridges. Figures 3H and 11. 1084 Distribution.-Endemic to Mexico (CDMX, Edo. de Mex., Gto, Gro, Hgo, Jal, Mich,

1085 Mor, Oax, Pue, Qro, Ver) (F1g. 1 H).

1086

Elevation.—(609–) 1015–2800 m (Fig. 2).

Etymology.—The specific epithet honors Albert Schmitz (fl. 1870s) who collected in
Mexico (Clifford and Bostock, 2007). We could not find any additional information about this
collector.

1090Notes.—Elaphoglossum schmitzii is distinguished from the rest of the species of the clade1091by having lamina margins thinner and lighter than the rest of the lamina. Also the marginal

1092 scales of the laminae are 0.7 (-1.2) mm long, dense but not imbricate, substellate or

1093 oblanceolate, with long projections, and yellowish.

1094 Elaphoglossum schmitzii was considered a synonym of E. petiolatum (Proctor 1985,

1095 Mickel and Beitel 1988, Mickel and Smith 2004); Molecular evidence also shows that these

1096 species belong to two different clades within the *E. petiolatum* group (Martínez-Becerril et al., in

1097 press.). Morphologically, *E. schmitzii* differs from *E. petiolatum* by the size, color, and apex

shape of the rhizome scales and the ornamentation of the perispore. See *E. petiolatum* forcomparison.

Elaphoglossum schmitzii can also be distinguished from *E. schiedei*, other species
considered a synonym of *E. petiolatum* (Proctor 1985, Mickel and Beitel 1988, Mickel and
Smith, 2004), by rhizome scales 2–4 mm long, dense, spreading, linear to lanceolate, bicolorous,
light brown, not sclerotic, and dull. In contrast, *E. schiedei* has rhizome scales 0.7–1.2(–1.5) mm
long, scattered, appressed, oblanceolate, concolorous, reddish-brown to dark brown, sclerotic,
and lustrous.

Elaphoglossum schmitzii varies greatly in the density of the laminar and petiole scales
and resinous dots. Also, some specimens present petioles that seem to develop from the ventral
side of the rhizome and thus, surround the rhizome; that is, the leaves are polystichously

1109 (radially) arranged. In other specimens, the rhizome scales are concolorous (apices and margins 1110 both brown), and the laminae have persistent bases of deciduous scales rather than resinous dots. 1111 Persistent deciduous scale bases fall off easily when touched with a dissecting needle. The non-1112 shiny resinous dots do the same, but unlike the scales, their bases are flat. 1113 Some other atypical specimens are the following: Cochrine 12559 (NY) from Jalisco (Mexico) is 1114 a large specimen with leaves to 54 cm long, laminae 38 cm long, and petioles to 16 cm long. 1115 Rose 7256 (US) from Morelos (Mexico) has the smallest sterile leaf recorded for this species: 4.4 1116 cm long. Leaves of most *E. schmitzii* specimens are 14{34 cm long, and although the 1117 aforementioned collections were not incorporated in the descriptions, they were identified as E. 1118 schmitzii because the scales of the rhizome, petiole, and lamina (including those of the margin) 1119 correspond to those described for this species. Breedlove 18691 (NY) from Michoacan (Mexico), 1120 is the only registered collection below 1015 m. 1121 The syntypes of this species, were probably part of Georg Heinrich Mettenius's personal 1122 collection of ferns, which was deposited at LZ where he was director from 1851–1866 1123 (https://www.sil.si.edu/DigitalCollections/tl-2/browse.cfm?vol=3#page/448). The LZ herbarium 1124 was destroyed in 1943 during World War II, and although many of its fern collections 1125 (exclusively) were acquired previously (between 1870–1875) by B and W, we were unable to 1126 find syntypes of *E. schmitzii* at these herbaria. We did, however, find three syntypes of *Schaffner* 1127 s.n. at B. We chose B 20 0071856 as the lectotype because a syntypes it was annotated by 1128 Mettenius as A. schmitzii and is in good condition. 1129 We do not consider Schmitz s.n. (B 20 0071855), which was annotated as a type, is as a 1130 syntype because the location on its label differs from the one mentioned in the protologue.

1131 Schmitz s.n. (NY 00149707), Schmitz 56a (NY 00149706), and Schaffner s.n. P (P00249994)

1132	were annotated by someone previously as probable syntypes. We do not consider them to be
1133	syntypes. The first two specimens are incomplete specimens and therefore it is impossible to
1134	identify them. The second sheet has a collection number not cited in the protologue, and the third
1135	sheet comes from a locality not indicated in the protologue (Veracruz. Orizaba. Sierra de
1136	Christobal pr. Eugenio).
1137	
1138	
1139	
1140	

1142 **Figure 11**. *Elaphoglossum schmitzii*. A. Habit. B. Abaxial lamina surface. C. Adaxial lamina

- 1143 surface. D. Abaxial lamina scales close-up. E. Adaxial lamina surface close-up. F. Petiole scale.
- 1144 G. Marginal scale. H. Midvein scale. I. Petiole. J. Rhizome scale. (A from *Brunch 2751*, NY; B–
- 1145 E, G–H from *Garcia 3984*, IEB; F,I from *Rzedowskii 46967*, IEB; J from *Arsene 8469*, P).

1146

ACKNOWLEDGMENTS

1147 This paper is part of the doctoral research of the first author at the Posgrado en Ciencias 1148 Biológicas (PCB) of the Universidad Nacional Autónoma de México (UNAM), supported by the 1149 Consejo Nacional de Ciencia y Tecnología (CONACyT) with a Ph.D. fellowship (508729). This 1150 work was done under the advisement of Dr. Alejandra Vasco together with Dr. Eloy Solano 1151 (UNAM), who unfortunately passed away in December 2021. We thank the dissertation 1152 committee members Dr. Teresa Terrazas and David S. Gernandt. Important funding for this 1153 paper was given by the American Society for Plant Taxonomists (ASPT) (Research Grants for Graduate Students 2018), International Association for Plant Taxonomists (IAPT) (Research 1154 1155 Grant 2020), and the American Fern Society (AFS) and the Pteridological Section of Botanical 1156 Society of America (BSA) (Edgar T. Wherry Award 2021). The authors also acknowledge the 1157 curatorial staff of the following herbaria for making their material available for this study: B, 1158 BRIT, CHAPA, F, IEB, MEXU, MO, NY, UCR, P, US, VT. Special thanks to the herbarium 1159 staff of the Botanical Research Institute of Texas, especially Peter Fritsch and Tiana Franklin, for 1160 providing me with a place and all the tools and support within your institution. Thank you so 1161 much to Marsha Stripe (BRIT), and Berenit Mendoza Garfías (Instituto de Biología, UNAM) for 1162 their valuable help taking SEM spore images. We also thank Weston Testo who helped to make 1163 the maps and who sent us important images of a specimen from K; Robbin Moran advised us 1164 with the nomenclature of species and commented on the manuscript; and Jefferson Prado from 1165 the Instituto de Pesquisas Ambientais (IPA), for help translating and interpreting of some 1166 protologues.

1167

1169 LITERATURE CITED 1170 Christ, H. 1899. Monographie des Genus Elaphoglossum. Neue Denkschr. Allg. Schweiz. Ges. 1171 Gesammten Naturwiss. 36: 1–159. 1172 Clifford, H. T. & Bostock, Peter D. 2007. Etymological dictionary of grasses. Berlin: 1173 Springer, http://www.loc.gov/catdir/toc/fy0707/2006931396.html 1174 Eaton, D. C. 1860. Filices Wrightianaeae et Fendlerianae. American Journal of Science and Arts 1175 27: 197-201. 1176 Hasebe, M., Wolf, P. G., Pryer, K. M., Ueda, K., Ito, M., Sano, R., Gastony, G. J., Yokoyama, J., 1177 Manhart, J. R., Murakami, N., Crane, E. H., Haufler, C. H., & Hauk, W. D. 1995. Fern 1178 phylogeny based on rbcL nucleotide sequences. American Fern Journal, 85(4), 134–181. 1179 International Association for Plant Taxonomy. 1976. Taxonomic Literature Standard. IUBS 1180 Commission for Plant Taxonomic Databases (TDWG) 1181 http://www.tdwg.org/standards/111 1182 IPNI. 2020. International plant names index. The Royal Botanic Gardens, Kew, Harvard 1183 University. Herbaria & Libraries and Australian National Botanic Gardens. Available at 1184 http://www.ipni.org. 1185 Kessler, M., Moran, R. C., Mickel, J. T., Matos, F. B., & Smith, A. R. 2018. Prodromus of a fern 1186 flora for Bolivia. XXXV. Dryopteridaceae. Phytotaxa, 353(1), 1–114. 1187 Lagomarsino, L. P., A. L. Grusz & R. C. Moran. 2012. Primary hemiepiphytism and 1188 gametophyte morphology in *Elaphoglossum amygdalifolium* (Dryopteridaceae). Brittonia 1189 64: 226–235. 1190 Lellinger, D.B. 2002. A modern multilingual glossary for taxonomic Pteridology. Pteridologia 1191 3:1-263.
1192	Liu, HM., Zhang, XC., Wang, W., Qiu, YL., & Chen, ZD. 2007. Molecular phylogeny of		
1193	the fern family Dryopteridaceae inferred from chloroplast <i>rbcL</i> and <i>atpB</i> genes.		
1194	Internaional Journal of Plant Science, 168(9), 1311-1323.		
1195	Lóriga, J., Vasco, A., Regalado, L., Heinrichs, J., & Moran, R. C. 2014. Phylogeny and		
1196	classification of the Cuban species of <i>Elaphoglossum</i> (Dryopteridaceae), with description		
1197	of Elaphoglossum sect. Wrightiana sect. nov. Plant Systematics and Evolution, 300(5),		
1198	937–951.		
1199	Martínez-Becerril, A., Vasco, A., & Solano, E. 2021. Spore morphology of the Mexican species		
1200	of the <i>Elaphoglossum petiolatum</i> complex (Dryopteridaceae). Brittonia, 73(2), 1–12.		
1201	Mickel, J. T. (1991). Elaphoglossum and Peltapteris. In: R. M. Tryon & R. G. Stolze (eds.),		
1202	Pteridophyta of Peru, Part IV, 17. Dryopteridaceae. Fieldiana, Bot., n.s. 27: 111-170.		
1203	Mickel, J. T. 1995. Elaphoglossum. Pp. 250–283. In R. C. Moran y R. Riba (Eds.), Flora		
1204	Mesoamericana, volumen 1. Psilotaceae to Salviniaceae. Missouri Botanical Garden		
1205	Press.		
1206	Mickel, J. T. 2001. A new species in the <i>Elaphoglossum petiolatum</i> Complex (Elaphoglossaceae)		

- 1207 from Mexico. Brittonia, 53(4), 487–489.
- Mickel, J. T, & Atehortúa, L. 1980. Subdivision of the genus *Elaphoglossum*. American Fern
 Journal, 70(2), 47–68.
- Mickel, J. T., & Beitel, J. M. 1988. Pteridophyte flora of Oaxaca. Memoirs of the New York
 Botanical Garden, 46, 1–568.
- Mickel, J. T., & Smith, A. R. 2004. The pteridophytes of Mexico. Memoirs of the New York
 Botanical Garden, 88, 1–1055.

- Moran, R. C. 2018. American genera of ferns and lycophytes. The New York Botanical Garden
 Press. New York. [Unpublished manual.]
- 1216 Moran, R. C., Hanks, J. G., & Rouhan, G. 2007. Spore morphology in relation to phylogeny in
- 1217 the fern genus *Elaphoglossum* (Dryopteridaceae). International Journal of Plant Sciences,
- 1218 168(6), 905–929.
- Moran, R. C., Hanks, J. G., Labiak, P., & Sundue, M. 2010. Perispore morphology of bolbitidoid
 ferns (Dryopteridaceae) in relation to phylogeny. International Journal of Plant Sciences,
- 1221 171(8), 872–881.
- 1222 PPG I. 2016. A community-derived classification for extant lycophytes and ferns. Journal of
- 1223 Systematics and Evolution, 54, 560–603.
- 1224 Proctor, G. R. 1985. Ferns of Jamaica. British museum of Natural History. London.
- Racine, J.S. 2012. RStudio: A Platform-Independent IDE for R and Sweave. Journal of Applied
 Econometrics, 27, 167–172.
- 1227 Rouhan, G. 2020. Synoptic revision of the fern genus *Elaphoglossum* Schott ex J.Sm.
- 1228 (Dryopteridaceae) in Madagascar, with the description of 23 new taxa, all but one
- 1229 endemic. PeerJ, 8:e10484, 1–85.
- 1230 Rouhan, G., Dubuisson, J. Y., Rakotondrainibe, F., Motley, T. J., Mickel, J. T., Labat, J. N., &
- 1231 Moran, R. C. 2004. Molecular phylogeny of the fern genus *Elaphoglossum*
- 1232 (Elaphoglossaceae) based on chloroplast non-coding DNA sequences: Contributions of
- species from the Indian Ocean area. Molecular Phylogenetics and Evolution, 33(3), 745–
- 1234 763.

- 1235 Rouhan, G., Lorence, D. H., Motley, T. J., Hanks, J. G., & Moran, R. C. 2008. Systematic
- revision of *Elaphoglossum* (Dryopteridaceae) in French Polynesia, with the description of
 three new species. Botanical Journal of the Linnean Society, 158, 309–331.
- Schuettpelz, Eric & Pryer, Kathleen. 2007. Fern phylogeny inferred from 400 leptosporangiate
 species and three plastid genes. Taxon, 56, 1037–1050.
- 1240 Skog, J. E., Mickel, J. T., Moran, R. C., Zimmer, E. A., & Volovsek, M. 2004. Molecular studies
- 1241 of representative species in the fern genus *Elaphoglossum* (Dryopteridaceae) based on
- 1242 cpDNA sequences rbcL, trnL-F, and rps4-trnS. International Journal of Plant Sciences,
- 1243 165(6), 1063–1075.
- Swartz, O. 1778. Nova genera et species plantarum seu prodromus. Bibliopoliis Acad. M.
 Swederi.
- 1246 Turland, N. J., Wiersema, J. H., Barrie, F. R., Greuter, W., Hawksworth, D. L., Herendeen, P. S.,
- 1247 Knapp, S., Kusber, W.-H., Li, D.-Z., Marhold, K., May, T. W., McNeill, J., Monro, A.
- 1248 M., Prado, J., Price, M. J. & Smith, G. F. (eds.) 2018: International Code of
- 1249 Nomenclature for algae, fungi, and plants (Shenzhen Code) adopted by the Nineteenth
- 1250 International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile 159.
- 1251 Glashütten: Koeltz Botanical Books.
- 1252 Vasco, A. 2011. Taxonomic revision of *Elaphoglossum* subsection *Muscosa* (Dryopteridaceae).
 1253 Blumea, 2, 165–202.
- 1254 Vasco, A., Mickel, J. T., & Moran, R. C. 2013. Taxonomic revision of the neotropical species of
- 1255 Elaphoglossum Sect. Squamipedia (Dryopteridaceae). Annals of the Missouri Botanical
- 1256 Garden, 99(2), 244–286.

1257	Vasco, A., Moran, R. C., & Rouhan, G. 2009. Circumscription and phylogeny of the			
1258	Elaphoglossum ciliatum group (E. sect. Lepidoglossa, Dryopteridaceae) based on cpDNA			
1259	sequences. Taxon, 58(3), 825–834.			
1260	Zotz, G., P. Weigelt, M. Kessler, H. Kreft, & A. Taylor. 2021. EpiList 1.0: a global checklist of			
1261	vascular epiphytes. Ecology 102(6): e03326.			
1262				
1263				
1264				
1265				
1266				
1267				
1268				
1269				
1270				
1271				
1272				
1273				
1274				
1275				
1276				
1277				
1278				

Capítulo IV

Elaphoglossum auralolitae, a new species of *Elaphoglossum* (sect. *Lepidoglossa*) from Guatemala

Artículo aceptado en American Fern Journal

ELAPHOGLOSSUM AURALOLITAE, A NEW SPECIES OF *ELAPHOGLOSSUM* SECT. *LEPIDOGLOSSA* (DRYOPTERIDACEAE) FROM GUATEMALA

ANA GABRIELA MARTÍNEZ-BECERRIL^{1,2}

¹ Facultad de Estudios Superiores Zaragoza, Unidad de Investigación en Sistemática Vegetal y Suelo, Universidad Nacional Autónoma de México, Batalla 5 de mayo s/n, Ejército de Oriente, Iztapalapa, C.P. 09230, Ciudad de México, México; e-mail: <u>anagabsmtz@gmail.com</u>

² Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México

ALEJANDRA VASCO³

³ Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107-3400,

USA; e-mail: avascog@gmail.com

¹ Author for correspondence

ABSTRACT.— We describe *Elaphoglossum auralolitae*, a new species from Southwestern Guatemala. The new species belongs to the *Elaphoglossum petiolatum* complex, in the *Elaphoglossum* section *Lepidoglossa*, one of the largest sections within the genus. *Elaphoglossum auralolitae* is characterized by the presence of resinous dots, petioles, and laminae densely scaly with notoriously big scales (including those of costae and margins), and spores with spiny perispores. There are only a dozen collections known of this species all of them from the Sierra Madre mountains, in southwestern Guatemala. The first collection of this species was made in 1938 and the most recent was in 1992. We provide a description, taxonomic and ecological comments, geographic distribution, phenology, and illustrations for this new species.

KEY WORDS.— *Elaphoglossum petiolatum* complex, ferns, resinous dots, Sierra Madre, speciesrichness, spiny perispore, taxonomy.

MARTINEZ-BECERRIL AND VASCO: NEW SPECIES OF ELAPHOGLOSSUM

During our ongoing research on the systematics of the *Elaphoglossum petiolatum* complex, a morphological group belonging to *Elaphoglossum* section *Lepidoglossa* (Mickel, 2001), we found some specimens from southwestern Guatemala that did not conform with any of the species in the complex described so far.

Elaphoglossum (Dryopteridaceae) is a very species-rich fern genus in the American tropics, where ca. 450 species occur (Mickel and Atehortúa, 1980; Mickel 1991,1995; Moran *et al.*, 2010; PPGI, 2016; Moran, 2018; IPNI, 2022). The genus can be easily distinguished from other fern genera by its simple leaves (only six species have divided leaves), free veins, dimorphic sterile and fertile leaves, and acrostichoid sori (Rouhan *et al.*, 2004; Moran *et al.*, 2010; Vasco *et al.*, 2013). Within *Elaphoglossum*, seven main and major clades, which have been ranked as sections, are currently recognized: 1) *Elaphoglossum* sect. *Amygdalifolia* (Christ) Mickel and Atehortúa, 2) sect. *Wrigthiana* J.Lóriga, A.Vasco, L.Regalado, J.Heinrichs and R.C.Moran, 3) sect. *Elaphoglossum*, 4) sect. *Squamipedia* Mickel and Atehortúa, 5) sect. *Polytrichia* Christ, 6) sect. *Setosa* (Christ) Mickel and Atehortúa, and 7) sect. *Lepidoglossa* Christ, (Skog *et al.*, 2004; Rouhan *et al.*, 2004: Lóriga *et al.*, 2014).

One of the most species-rich sections is the sect. *Lepidoglossa*, with ca. 350 species. This section is characterized by acicular, one-celled, non-glandular projections along the scale margins, flat scales, stellate scales, and/or resinous dots on blades and/or petioles (Mickel and Atehortúa, 1980; Moran, Hanks, and Rouhan, 2007; Vasco, Moran, and Rouhan, 2009a; Kessler *et al.*, 2018; Matos and Vasco, 2022).

Mickel (2001) described a group of 11 worldwide distributed species belonging to the sect. *Lepidoglossa* and called them the *Elaphoglossum petiolatum* complex. Species within this complex are characterized by resinous dots in their laminae and/or petioles, black rhizome scales

MARTINEZ-BECERRIL AND VASCO: NEW SPECIES OF ELAPHOGLOSSUM

with entire margins, and scales of the proximal portion of the petioles with a dark apex (Mickel and Smith, 2004). Molecular phylogenetic analyses with chloroplast markers suggested that the species of the complex and most species of *Elaphoglossum* with resinous dots, were not monophyletic, because they were recovered in three different clades (Rouhan *et al.*, 2004; Vasco, Moran, and Rouhan, 2009b; Lóriga *et al.*, 2014; Martínez-Becerril *et al.*, in prep.). One of these three clades includes mainly Mexican species, mostly with spiny perispores, and was called the Mexican Clade of *E. petiolatum* (Mexican Clade, Vasco, Moran, and Rouhan, 2009b; Martinez-Becerril, Vasco, and Solano, 2021).

The morphology and geographical distribution of the new species here described, suggest it likely belongs to the Mexican Clade. What first surprised us about the dozen of gatherings of this new species was that compared to other specimens of the Mexican Clade with resinous dots, they had a higher density of scales on petioles and laminae and these scales were larger, in addition to the fact that all of them came from the Sierra Madre Mountains in southeastern Guatemala. We then decided to look at their spores under the scanning electron microscope (SEM) and found out they all have spiny perispores, a typical spore ornamentation for most species belonging to the Mexican Clade.

The specimens we cite here as belonging to the new species were previously identified with, at least, six names: *Elaphoglossum crinipes* C. Chr. (=*E. setigerum* (Sodiro) Diels), *E. gratum* (Fée) T. Moore, *E. petiolatum*, *E. pilosum* (Willd.) T.Moore, *E. rubescens* Christ, or *E. tectum* (Humb. & Bonpl. ex Willd.) T. Moore. From all these names *E. petiolatum* is the only species with resinous dots.

There are no recent treatments for *Elaphoglossum* from Guatemala and very few recent collections are available online. The published floras and the recent addition of new records in

Guatemala, report 41 species of *Elaphoglossum* for the country (Mickel, 1981, 1995a; Mickel and Smith, 2004; Jimenez and Rodas, 2013). Three of these species have resinous dots: *E. huacsaro* (Ruíz) Christ, *E. muelleri* (E. Fourn.) C. Chr., and *E. petiolatum* (Sw.) Urb. Our specimens do not belong to any of these three species, although they are very similar to *E. petiolatum*. To accommodate this morphotype , here we provide a description of this new species, along with a discussion of its morphological affinities within the genus, line drawings, spore micrographs, a distribution map, and other pertinent comments.

MATERIALS AND METHODS

Before describing the new species, we searched the protologues, descriptions, type specimens, and the available spore images of the six species mistakenly associated with the new one (*Elaphoglossum crinipes* (=*E. setigerum*), *E. gratum*, *E. petiolatum*, *E. pilosus*, *E. rubescens*, and *E. tectum*), and other similar species with resinous dots occurring in Central America and Mexico. Our description is based on the observation under a dissecting microscope of 23 specimens and three digital images, corresponding to 12 gatherings deposited at BIGU, F, MEXU, MO, NY, TEX, and US herbaria, and spore microphotographs.

For the spore examination, we selected six fertile specimens (*Jhonston J.R. 1346*, F; *Molina A. 30311*, F; *Standley 58933*, F; *Véliz M. 92.2319*, MEXU; *Williams O. 22688*, *22656*, US) and transferred three to five closed sporangia per specimen to an aluminum stub, previously covered with adhesive carbon tape, opened the sporangia, and scattered the spores on the stub surface with a dissection needle. Stubs were coated with a gold layer using a metallizer QUORUM (Q150R ES) for one minute, at 20 mA, with an accelerating voltage of 15.0kV. These

5

MARTINEZ-BECERRIL AND VASCO: NEW SPECIES OF ELAPHOGLOSSUM

samples were digitally imaged under the scanning electron microscope. The background and brightness of the images were edited with Adobe Photoshop (Fig. 1).

The line drawings were made based on *Veliiz 92.2319*, MEXU and *Molina 30311*, MO (Fig. 2). For the distribution map (Fig. 3) we convert the geocoordinates of all specimens examined into decimal degrees and generated the map with Rstudio (Racine, 2012). For those specimens lacking precise label data, geocoordinates were estimated using the Google Earth application and they are indicated in brackets.

TAXONOMIC TREATMENT

Elaphoglossum auralolitae Martínez-Becerril & A. Vasco, sp. nov. —HOLOTYPE:

GUATEMALA. San Marcos: San Pedro Sac. [Sacatepéquez], 2300 m, [14°57'22.22"N, 91°48'54.27"W], 19 Aug 1992, *M. Véliz 92.2319* (holotype: MEXU 903674!; isotype: BIGU 0030067 [image seen]).

Diagnosis.—This species resembles *Elaphoglossum petiolatum* but differs by the longer and denser sterile and fertile laminar scales, especially those of the adaxial surface and abaxial costae, and those of the fertile petiole; and by the spores with spiny perispores.

Plants terrestrial. **Rhizomes** 3–3.5 mm wide, short creeping; **rhizome scales** 2.5–4 mm long, dense, spreading, linear-lanceolate to lanceolate, entire or with occasional short projections (shorter than the width of the scale), concolorous, dark reddish-brown to dark brown, lustrous, base round, apex attenuate to filiform-tortuous. **Sterile leaves** 13.5–39.5(–45) cm long, approximate; **phyllopodia** present, usually obscured by the rhizome scales, 5–10 mm long; **petiole** 5–15.5(–18) cm long, 1/3–2/5 the length of the sterile leaves; **larger petiole scales** to

3.5(-4) mm long, dense, usually imbricate, spreading to appressed, linear-lanceolate to ovate, with occasional short projections, stramineous to brown, usually darker at the apex, base round, apex attenuate to filiform-tortuous; smaller petiole scales to 0.3 mm long (difficult to see), dense, appressed, irregular or lanceolate, with numerous long projections (as long or longer than the width of the scale) or with occasional short projections, stramineous, base auriculate, apex attenuate, usually with a long projection close to the apex; laminae 8.5–24(–27) x 1.2–2.4 cm, linear-elliptic to elliptic, chartaceous, base cuneate, apex acute to acuminate; adaxial laminar scales 0.5–1.4 mm long, dense, usually imbricate, lanceolate, with numerous long projections, stramineous to whitish, darker at the point of attachment, base auriculate, apex long-attenuate to filiform, adaxial resinous dots absent; abaxial laminar scales to 0.5 mm long, scattered to dense, not imbricate, irregular to lanceolate, when lanceolate, with numerous long projections, stramineous to light brown, base auriculate, apex attenuate; **abaxial resinous dots** present; abaxial costal scales 0.8-2(-3) mm long, dense, usually imbricate, lanceolate with occasional short projections, stramineous, base round with long projections, apex long-attenuate to filiform; **marginal scales** 0.5-0.8(-1) mm long, dense, not imbricate, lanceolate or irregular, when lanceolate, margin with numerous long projections, stramineous, base truncate with long projections, apex attenuate to filiform-tortuous. Fertile leaves similar or sometimes longer than the sterile; petiole 1/3-3/5 the length of the fertile leaves; laminae $28.9-36.2 \times 0.9-1$ cm, linearelliptic to elliptic, base cuneate, apex acute to acuminate; petiole scales 2–3.1 mm long, scattered to dense, not imbricate, deciduous, lanceolate to oblanceolate, with numerous long projections or with occasional short projections, stramineous, base round with long projections or truncate, apex long-attenuate to filiform; adaxial scales 1–1.5 mm long, dense, usually imbricate, lanceolate with numerous long projections, stramineous, base auriculate, apex long-attenuate to

filiform; adaxial costal scales 0.5-1.5 mm long, scattered to dense, not imbricate, deciduous, lanceolate to ovate-lanceolate or irregular, with numerous long projections, yellowish, base truncate with long projections, apex long-attenuate to filiform; intersporangial scales not visible. Spores monolete, with nonperforated perines, broad discontinuous folds, and spiny perispore, spines $\leq 1\mu$ m. Figures 1 and 2.

Distribution.—Known only from the Sierra Madre Mountains in Guatemala, in the departments of Chimaltenango, Quetzaltenango, Quiché, San Marcos, Sacatepéquez, Sololá, and Totonicapán (Fig. 3).

Ecology and Elevation.—1950–2900 m in cloud forest.

Etymology.—This species is named in honor of Aura Lolita Chávez Ixcaquic (1972-), an indigenous feminist from the K'iche' region and community in Guatemala, who is the leader of the "Council of K'iche's People for the Defense of Life, Nature, Land, and Territory of Guatemala". She was nominated for the "Sakharov Prize for Freedom of Thought" (better known as "Sakharov Prize") by the European Parliament and the winner of the "Ignacio Ellacuría Award" by the Basque Agency for Development Cooperation (<u>https://mujeresbacanas.com/aura-lolita-chavez-ixcaquic-1972/</u>).

Notes.—Elaphoglossum auralolitae most closely resembles *E. petiolatum*, because both species have resinous dots on the laminar surface abaxially and rhizome scales that are linear-lanceolate to lanceolate, dark-reddish brown to dark brown with filiform-tortuous apex. The two species can be distinguished by the adaxial laminae and abaxial costae scales of both sterile and fertile leaves, and by the spore ornamentation (see Table 1 for a comparison of both species). Both species occur in Guatemala and their distribution ranges overlap.

	Elaphoglossum auralolitae	Elaphoglossum petiolatum
Sterile leaves		
Adaxial laminar scales	Present, 0.5–1.4 mm long,	Sometimes present, when
	dense, usually imbricate,	present \leq 1mm long, scattered
	margin with numerous long	to dense, not imbricate, margin
	projections, apex long-attenuate	with occasional short or long
	to filiform	projections, apex attenuate
Abaxial costal scales	0.8-2(-3) mm long, dense,	0.5–1.5 mm long, scattered to
	usually imbricate, lanceolate	dense, not imbricate, lanceolate,
		substellate, or irregular
Fertile leaves		
Petiole scales	2–3.1 mm long, lanceolate to	$\leq 1 \text{ mm long}$, substellate or
	oblanceolate, margin with	linear to linear-lanceolate, when
	numerous long projections or	linear or linear-lanceolate
	with occasional short	margin with occasional short
	projections	projections
Adaxial laminar scales	1–1.5 mm long, dense, usually	$\leq 0.7 \text{ mm}$ long, scattered to
	imbricate	dense, not imbricate
Abaxial longest costal	1.5 mm long, apex long-	0.8 mm long, apex acuminate to
scales	attenuate to filiform	attenuate
Perispores	with spines ($\leq 1 \mu m$)	with irregular deposits
Distribution	Western Guatemala	southern Mexico to Panama,
		and the West Indies

TABLE 1. Main morphological differences between *Elaphoglossum auralolitae* and *E. petiolatum*.

There are five specimens of *Elaphoglossum petiolatum* from Guatemala, that are unusual for that species because they are scalier than the typical (*Steyermark 47116* F, US; *Standley 86178, 85402* F, US; *Kellerman 5592 US*; and *Williams 22175* F, US). These specimens were

not considered in Table 1 and they are very hard to distinguish from *E. auralolitae*. We identified them as *E. petiolatum* because their adaxial laminar scales are less dense than what is typical for *E. auralolitae* and because the spores of the only fertile collection (*Williams 22175* F), have irregular deposits instead of small spines, agreeing with our concept of *E. petiolatum* (Martinez-Becerril, Vasco, and Solano, 2021). The distribution of these five specimens overlaps with that of *E. auralolitae*, this and their great morphological similarity could be evidence of possible events of hybridization between these two species.

Elaphoglossum auralolitae can also be confused with *E. rufescens*, a Mexican species with abundant scales on the laminae and costae (Mickel and Smith, 2004), from which it differs by the presence of resinous dots (vs. absent in *E. rufescens*); the dense, usually imbricate petiole scales (vs. scattered, not imbricate); the lanceolate, dense, usually imbricate adaxial laminar scales (vs. round to subdeltate, scattered, not imbricate); and the irregular to lanceolate, stramineous to light brown abaxial laminar scales (vs. narrow to deltate, orange).

From the other two species with resinous dots in the flora of Guatemala, *Elaphoglossum auralolitae* differs from *E. huacsaro* because it has short-creeping rhizomes with dark-reddish brown to dark brown scales, instead of the erect or ascending rhizomes with black scales typical of *E. huacsaro* (Vasco, Moran, and Rouhan, 2009a). From *E. muelleri* the new species differs because of its dark-reddish brown to dark brown rhizome scales and irregular to lanceolate abaxial laminar scales, instead of the orange rhizome scales and stellate abaxial laminar scales of *E. muelleri* (Mickel and Smith, 2004).

Specimens of *Elaphoglossum auralolitae* have also been previously identified as *E*. *crinipes* (= *E. setigerum*), *E. gratum*, *E. pilosum*, and *E. tectum*. It is easy to distinguish all these

species from *E. auralolitae* because they do not have resinous dots in their sterile laminae abaxially.

All known collections of this new species are from Guatemala in the departments of Chimaltenango, Quetzaltenango, Quiché, San Marcos, Sacatepéquez, Sololá, and Totonicapán. These departments are part of the Sierra Madre Mountains, also called Sierra Madre of Chiapas or the Cordillera Central. This cordillera crosses Guatemala from West to East and is considered the longest mountain range in Central America ranging from southern Mexico to Honduras along 600 km (Pérez-Irungaray *et al.*, 2018).

The first collection of the new species described here (*Johnston 1346*, F) was made in 1938 by the American botanist John Robert Johnston (1880–1953), who worked at Harvard and published the Catalog of Plants from Guatemala (1938). Besides this first collection, there are only eleven known gatherings of this species to date. Fertile specimens were collected mainly during the months of December and January. The most recent record was made in 1992 by Guatemalan botanist Mario Véliz (*Véliz 92.2319*, BIGU, MEXU) and because the MEXU specimen was the first specimen we detected as a probable new species, we decided to choose it as the holotype. This specimen shows all the plant structures, including a fertile lamina.

Although we have not included *Elaphoglossum auralolitae* in any molecular phylogenetic analyses, its distribution, overall morphology, and spore's ornamentation suggest that it belongs to the Mexican *petiolatum* Clade of Vasco, Moran, and Rouhan (2009b).

Additional specimens examined. —GUATEMALA. Chimaltenango: [14.6743667°, -90.8210861°], 21 Dec 1972, *Williams 41580* (F). Pacaya, [14.4028667°, -90.6071444°], 20 Aug 1938, *Johnston 1346* (F). Quetzaltenango: [14.8317528°, -91.5001972°], 15 Jan 1941, *Standley 83423* (F); Sierra Madre Mountains, about 4 km N of Olintepeque, [14.9579111°, -

MARTINEZ-BECERRIL AND VASCO: NEW SPECIES OF ELAPHOGLOSSUM

91.5314889°], elev. 2600 m, 12 Dec 1962, Williams 22861 (F, US, TEX [image seen]). Quiché: San Tomás Chichicastenango, on moist forest bank of El Molino, 4 km from Chichicastenango, [14.9218889°, -91.2650028°], elev. 2100 m, 14 Jan 1974, Molina 30311 (F, MO). Sacatepéquez: Cuesta de las cañadas, above Antigua, [14.5881028°, -90.7383306°], elev. 1950 m, 06 Dec 1938, Standley 58933 (F). San Marcos: Comitancillo, below Comitancillo and Santa Rosa junction, Sierra Madre Mountains, [15.0650528°, -91.7698472°], elev. 2900 m, 02 Jan 1965, Williams 27065 (F, NY); San Pedro Sacatepéquez, [14.9561722°, -91.815075°], elev. 2300 m, 19 Aug 1992, Véliz 92.2319 (MEXU, BIGU [image seen]); volcán Tacaná, dry white clay slopes on ridge leading towards Volcán Iacana, but on this side of sibinal, vicinity of Sibinal [interpreted], [15.1425333°, -92.085925°], 18 Feb 1940, Stevermark 35963 (F, US). Sololá: Sololá, [14.7606694°, -91.1788194°], elev. 2400 m, 22 Apr 1974, Copeland s.n. (NY). Totonicapán: Ravine in cypress forest near Polagua, Sierra Madre Mountains, 20–25 km. north of Cristobal, [15.0133583°, -91.4976361°], 05 Dec 1962, Williams 22688 (F, US, TEX [image seen]); ravine in cypress forest near Pologuá, Sierra Madre Mountains, 20–25 km. north of Cristobal, [15.0182806°, -91.5043611°], 05 Dec 1962, Williams 22656 (F, US, TEX [image seen]).

FIG. 1. Spores of *Elaphoglossum auralolitae*. **A.** *Molina 30311*, MO. **B.** *Williams 22656*, US. **C.** *Johnston 1346*, F. **D.** *Véliz 92.2319*, MEXU. Scale bar = 10μm.

FIG. 2. *Elaphoglossum auralolitae*. A. Habit. B. Abaxial lamina detail. C. Adaxial lamina detail.
D. Margin scales close-up. E. Petiole detail. F. Rhizome scale. G. Petiole scale. H. Adaxial laminar scale. I. Costal scale (A–E Véliz 92.2319, MEXU, F–I Molina 30311, MO).

FIG. 3. Distribution map of *Elaphoglossum auralolitae*.

ACKNOWLEDGMENTS

This paper is part of the doctoral research of the first author at the Posgrado en Ciencias Biológicas (PCB) of the Universidad Nacional Autónoma de México (UNAM), supported by the Consejo Nacional de Ciencia y Tecnología (CONACyT) with a Ph.D. fellowship (508729). This work was done under the co-advice of Dr. Eloy Solano (1956-2021) from the Facultad de

MARTINEZ-BECERRIL AND VASCO: NEW SPECIES OF *ELAPHOGLOSSUM*

Estudios Superiores Zaragoza, UNAM. We thank the dissertation committee members Drs. Teresa Terrazas and David S. Gernandt. Important funding for this paper was given by the International Association for Plant Taxonomists: IAPT Research Grant 2020, and the American Fern Society, and the Pteridological Section of the Botanical Society of America through the Edgar T. Wherry Award 2021. The authors acknowledge the curatorial staff of the BRIT, F, MEXU, MO, NY, and US herbaria for making their material available for this study. Special thanks to Tiana Franklin Rehman (BRIT) for providing us with a place and all the tools to examine the collections and María del Rosario García Peña (MEXU) for taking the highresolution scan images of the holotype. Jorge Jimenez from Guatemala kindly sent images from the isotype at BIGU; Marsha Stripe (BRIT), and Berenit Mendoza Garfias (Instituto de Biología, UNAM) helped in taking SEM spore images. Weston Testo shared with us the script to make the map and helped us troubleshoot. Robbin Moran advised us on the nomenclature and the Latinization of the new species' name. Laura Calvillo-Canadell (MEXU) helped in the herbarium and advice. We especially thank Cristóbal Sánchez who made the line drawing. The research products presented in this publication were generated in part with support from the George C. and Sue W. Sumner Molecular and Structural Laboratory at the Botanical Research Institute of Texas. We thank the anonymous reviewers for their valuable comments and suggestions. Most importantly we thank all the plant collectors past and present and the local communities that work every day to preserve their territories.

LITERATURE CITED

- IPNI. 2022. International plant names index. The Royal Botanic Gardens, Kew, Harvard University Herbaria & Libraries and Australian National Botanic Gardens. Available at <u>http://www.ipni.org</u>.
- JOHNTSON, J. R. 1938. Catálogo de plantas de Guatemala. C.A. Impreso en la Tipografia Nacional.
- JIMÉNEZ, J. B. AND R. RODAS. 2013. Cuatro nuevos registros de helechos en Guatemala y otros registros de helechos en el país publicados después de la Flora Mesoamericana Volúmen 1: Psilotaceae a Salviniaceae. Revista Ciencia y Conservación 4:29–39.
- KESSLER, M., R. C. MORAN, J. T. MICKEL, F. B. MATOS, AND A. R. SMITH. 2018. Prodromus of a fern flora for Bolivia. XXXV. Dryopteridaceae. Phytotaxa 353:1–114. https://doi.org/10.11646/phytotaxa.353.1.1
- LÓRIGA, J., VASCO, A., L. REGALADO, J. HEINRICHS, AND R. C. MORAN. 2014. Phylogeny and classification of the Cuban species of *Elaphoglossum* (Dryopteridaceae), with description of *Elaphoglossum* sect. *Wrightiana* sect. nov. Plant Systematics and Evolution 300: 937– 951.
- MARTÍNEZ-BECERRIL, A., A. VASCO, AND E. SOLANO. 2021. Spore morphology of the Mexican species of the *Elaphoglossum petiolatum* complex (Dryopteridaceae). Brittonia 73:1–12.
- MATOS, F. B., AND A. VASCO. 2022. *Elaphoglossum matogrossense* (Dryopteridaceae), a new and threatened species from Chapada dos Guimarães, Mato Grosso, Brazil. Kew Bulletin 77: 721–728.
- MICKEL, J. T. 1981. *Elaphoglossum*. Pp. 210–238, *in* R. Stolze (ed.), Ferns and ferns allies of Guatemala, Part II. Fieldiana Botany New Series, 6.

- MICKEL, J. T. 1995. *Elaphoglossum*. Pp. 250–283, *in* R. C. Moran y R. Riba (eds.), Flora Mesoamericana vol. 1. Psilotaceae to Salviniaceae. Universidad Nacional Autónoma de México. Ciudad Universitaria.
- MICKEL, J. T, AND L. ATEHORTÚA. 1980. Subdivision of the genus *Elaphoglossum*. American Fern Journal 70:47–68.
- MICKEL, J. T., AND A. R. SMITH. 2004. The pteridophytes of Mexico. Memoirs of the New York Botanical Garden 88:1–1055.
- MORAN, R. C., J. G. HANKS, AND G. ROUHAN. 2007. Spore morphology in relation to phylogeny in the fern genus *Elaphoglossum* (Dryopteridaceae). International Journal of Plant Sciences 168:905–929.
- MORAN, R. C., J. G. HANKS, P. H. LABIAK, AND M. A. SUNDUE. 2010. Perispore morphology of bolbitidoid ferns (Dryopteridaceae) in relation to phylogeny. International Journal of Plant Sciences 171:872–881.
- PÉREZ IRUNGARAY, G. E., J. C. ROSITO MONZÓN, E. E. MAAS IBARRA, AND G. A. GÁNDARA CABRERA. 2018. Ecosistemas de Guatemala basado en el sistema de clasificación de zonas de vida. Instituto de Investigación y Proyección sobre Ambiente Natural y Sociedad de la Universidad Rafael Landívar. 122 Pp.

DOI: <u>10.13140/RG.2.2.25899.69927</u>

- PPG I. 2016. A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54:560–603.
- ROUHAN, G. 2020. Synoptic revision of the fern genus *Elaphoglossum* Schott ex J. Sm. (Dryopteridaceae) in Madagascar, with the description of 23 new taxa, all but one endemic. PeerJ 8:e10484.

- ROUHAN, G., J.-Y. DUBUISSON, F. RAKOTONDRAINIBE, T. J. MOTLEY, J. T. MICKEL, J. N. LABAT,
 AND R. C. MORAN. 2004. Molecular phylogeny of the fern genus *Elaphoglossum*(Elaphoglossaceae) based on chloroplast non-coding DNA sequences: Contributions of
 species from the Indian Ocean area. Molecular Phylogenetics and Evolution 33:745–763.
- VASCO, A., R. C. MORAN, AND G. ROUHAN. 2009a. Monograph of the *Elaphoglossum ciliatum* group (Dryopteridaceae). Brittonia 61:241–272.
- VASCO, A., R. C. MORAN, AND G. ROUHAN. 2009b. Circumscription and phylogeny of the *Elaphoglossum ciliatum* group (E. sect. *Lepidoglossa*, Dryopteridaceae) based on cpDNA sequences. Taxon 58:825–834.
- VASCO, A. 2011. Taxonomic revision of *Elaphoglossum* subsection *Muscosa* (Dryopteridaceae). Blumea 2:165–202.
- VASCO, A., J. T. MICKEL, AND R. C. MORAN. 2013. Taxonomic revision of the neotropical species of *Elaphoglossum* sect. *Squamipedia* (Dryopteridaceae). Annals of the Missouri Botanical Garden 99:244–286.

DISCUSIÓN GENERAL

La primera parte de esta investigación se centró en responder las siguientes preguntas: ¿el complejo de *Elaphoglossum petiolatum* es un grupo monofilético? de ser así, ¿cuántas y cuáles son las especies que pertenecen a él? y si no lo es, ¿dónde se recuperan las especies que lo integran? ¿Existe evidencia morfológica que sustente la posición filogenética de estas especies? ¿Se sigue recuperando el "clado mexicano" después de incrementar el muestreo de especies mexicanas en la filogenia? Para ello, se llevaron a cabo dos análisis filogenéticos moleculares que incluyeron 9 de las 11 especies del complejo, 59% de las especies reportadas para México y 28.5% del total de las especies reconocidas dentro del género, además de una secuencia de *E. petiolatum* (Sw.) Urb., proveniente de Jamaica, localidad tipo de la especie (Swartz, 1778; Proctor, 1985). Es así como nuestros análisis incluyen la mejor representación hasta el momento, de las especies del complejo y de las especies reportadas para México, en la filogenia general de *Elaphoglossum*.

Las topologías obtenidas recuperaron las siete secciones propuestas previamente para *Elaphoglossum* (Mickel y Atehortúa, 1980; Rouhan et al., 2004; Vasco et al., 2009; Lóriga et al., 2014) y mostraron que el complejo de *E. petiolatum* no es monofilético. Las especies que originalmente integraban este complejo se recuperaron, junto con otras especies, en tres clados no hermanos, denominados aquí como "clado de *E. ciliatum*", "clado de *E. lancifolium*" y "clado de *E. petiolatum*" (= "clado mexicano de *E. petiolatum*" por Vasco et al., 2009). Las secuencias de *E. petiolatum* de Jamaica se recuperaron como parte del clado de *E. petiolatum*, y ninguna otra de las especies mexicanas incluidas se recuperó en alguno de los tres clados aquí descritos.

Las especies que hacen parte de los clados de *E. ciliatum, E. lancifolium* y *E. petiolatum* presentan una morfología similar pues comparten características como las escamas planas y/o estrelladas en las láminas y esporas con perisporas espinosas. Además, algunos taxones presentan puntos resinosos en la superficie abaxial de las láminas. Las escamas planas y/o estrelladas en láminas son típicas en las especies de la sec. *Lepidoglossa* (Mickel, 1985; Mickel y Atehortúa, 1980; Kessler et al., 2018) y las perisporas espinosas son una característica distintiva de algunos de los subclados de esta sección (Moran et al., 2007; Vasco et al., 2009; Martínez-Becerril et al., 2021). Los puntos resinosos no están presentes en todas las especies de estos clados, sin embargo, todas las especies de *Elaphoglossum* que los presentan, conocidas hasta el momento, se recuperaron en alguno de estos tres grupos. Lo anterior revela que caracteres morfológicos utilizados en la definición del complejo, como la presencia de puntos resinosos y perisporas con espinas, son homoplásicos (Capítulo I).

En este trabajo detectamos que algunas características, como el tamaño y la densidad de las espinas de las esporas, la presencia y densidad de las escamas del rizoma y de la lámina y la forma de los ápices de la lámina, así como la distribución geográfica, son útiles para diferenciar a los tres clados aquí nombrados, lo que los convierte en grupos morfológica y geográficamente diagnosticables. A continuación, se describe brevemente cada uno:

El clado de *Elaphoglossum ciliatum* integra diez especies que se distribuyen desde México y Las Antillas, hasta el sureste de Brasil y la isla volcánica de Santa Elena en el Océano Atlántico (Vasco et al., 2009). Tres de las diez especies, *E. bifurcatum* (Jacq.) Mickel, *E. dimorphum* (Hook. & Grev.) T. Moore y *E. nervosum* (Bory) Christ, formaban parte del complejo original de *E. petiolatum* (Mickel, 2001) y nueve de éstas fueron tratadas previamente en una monografía por Vasco et al. (2009a). La presente investigación confirmó que una décima especie hace parte de este clado: *E. palmeri* Underw. & Maxon, reportada para Cuba y República Dominicana (Lóriga et al., 2014).

Este grupo de especies, además de presentar los puntos resinosos en las láminas, comparten los rizomas negros con exudado brillante semejante a la laca cuando están secos y esporas con espinas ≥1µm de alto.

El clado de *Elaphoglossum lancifolium* contiene al menos ocho especies con distribución pantropical (México, Centro y Sudamérica, África y el sureste de Asia, incluyendo India). Dos de las ocho especies de este clado, *E. blumenaum* (Fée) J. Sm. y *E. lancifolium* (Desv.) C.V. Morton (anteriormente *E. salicifolium*), fueron previamente reconocidas como miembros del complejo *E. petiolatum* por Mickel (2001).

En general, las especies de este clado se caracterizan por la presencia de puntos resinosos (excepto *E. tenuiculum* (Fée) T. Moore ex C. Chr. y *E. ipshookense* Mickel), ápices de láminas atenuadas a largas atenuadas, escamas blanquecinas y abundantes en la superficie adaxial de las láminas, y esporas con espinas dispersas de1µm de altura (Moran et al., 2007;

www.plantsystematics.org).

El clado de *Elaphoglossum petiolatum* es el grupo que Vasco et al. (2009b) denominaron como "clado mexicano de *E. petiolatum*" pero en este trabajo lo renombramos porque encontramos que la secuencia del espécimen de *E. petiolatum* de Jamaica, localidad tipo de esta especie (Christenhusz 3226, NY) se recupera en este grupo (Swartz, 1778; Proctor, 1985). El clado está integrado por siete especies que se distribuyen desde México hasta Panamá y en las Antillas, pero tres son endémicas de México (Mickel y Smith, 2004; Capítulo IV).

Las especies que fueron consideradas parte del complejo original descrito por Mickel (2001) son: *E. petiolatum, E. potosianum* Christ, *E. pringlei* (Davenp.) C. Chr. y *E. rzedowskii* Mickel. Las otras tres son *E. schiedei, E. schmitzii*, y una tercera, que inicialmente se determinó como *E. potosianum (Carranza 2036,* MEXU, IEB) pero que posteriormente, con base en nuestros análisis moleculares y en la morfología del ejemplar se determinó que pertenece a una especie no descrita.

Las especies de este grupo presentan, además de puntos resinosos en las láminas, escamas del rizoma con ápices agudos a filiformes, y esporas con espinas ≤1µm (excepto *E. petiolatum* que presenta esporas con depósitos irregulares) (Martínez-Becerril et al., 2021; Capítulo I).

Los marcadores del cloroplasto empleados en esta investigación no resuelven por completo las relaciones interespecíficas dentro de los tres clados mencionados, principalmente dentro del clado de *E. petiolatum*, no obstante, permitieron comprobar que: 1) el complejo de *Elaphoglossum petiolatum* no es un grupo natural, 2) el clado de especies mexicanas (=clado de *E. petiolatum*) se mantiene como monofilético, 3) el representante de *E. petiolatum* de Jamaica pertenece al clado de *E. petiolatum* y 4) el clado de *E. petiolatum* está integrado por dos subclados, los cuales no comparten especies (Capítulo I).

Una vez comprobada la monofilia del clado de *Elaphoglossum petiolatum*, la segunda parte de esta investigación consistió en llevar a cabo la monografía de este grupo. Si bien la evidencia molecular empleada en este trabajo no permite delimitar las especies que integran este clado, nos permitió reconocer dos subclados como parte del grupo. Estos subclados no comparten especies pues las secuencias de un mismo taxon se recuperaron sólo en uno de los dos subclados. Lo anterior, junto con la evidencia morfológica recabada a partir de la revisión de ejemplares herborizados y esporas (Capitulo II), nos permitió diferenciar y delimitar ocho taxones dentro del clado de *E. petiolatum* en lugar de los siete sugeridos con base en la filogenia molecular. Estos taxones son: *E. auralolitae* Martínez-Becerril & Vasco sp. nov. (Capítulo IV), *E. muelleri* (E. Fourn.) C. Chr., *E. petiolatum, E. potosianum, E. pringlei* (Davenp.) C. Chr., *E. rzedowskii* Mickel, *E. schiedei* (Kunze) T. Moore y *E. schmitzii* (Mett. *ex* Kuhn) Martínez-Becerril & Vasco (Capítulo III).

Elaphoglossum pringlei y *E. rzedowskii* se consideraban variaciones de una misma especie (Mickel y Smith, 2004), sin embargo, sus secuencias se recuperaron en clados diferentes y el análisis de la morfología de las esporas encontró que las esporas de *E. pringlei* son significativamente más grandes (40.4 µm en el diámetro ecuatorial y 31.6 µm en el diámetro polar que en el resto de las especies del complejo (en promedio 31.2 µm y 28.5 µm en el diámetro ecuatorial y polar, respectivamente). Lo anterior sugiere que probablemente *E. pringlei* es una especie poliploide y respalda la hipótesis molecular que indica que *E. pringlei* y *E. rzedowskii* son taxones independientes (Martínez-Becerril, et al., 2021; Capítulos I y II).

Elaphoglossum schmitzii y *E. schiedei* estaban tratados como sinónimos de *E. petiolatum*, no obstante, las secuencias de *E. schmitzii*, se recuperaron en un subclado y las de *E. schiedei* +*E. petiolatum* en otro. Las diferencias entre *E. schiedei* y *E. petiolatum* son el tamaño, la densidad, la forma y el ápice de las escamas del rizoma: de 0.7–1.2(–1.5), dispersas, adpresas, oblanceoladas con ápices agudos a cortamente filiformes (vs. escamas del rizoma de 1.5–3.7 (– 5), densas, no adpresas, linear a lanceoladas con ápices filiforme-tortuouso en *E. petiolatum*) y por la ornamentación de sus esporas (espinosa en *E. schiedei* y con depósitos irregulares en *E. petiolatum*) (Capítulo II).

Elaphoglossum auralolitae y *E. muelleri* no están incluidas en los análisis moleculares del Capítulo I, sin embargo, consideramos que también hacen parte del complejo de *E*.

petiolatum ya que la evidencia morfológica de las plantas y las esporas, y la distribución geográfica de los ejemplares respalda esta hipótesis.

La evidencia molecular y morfológica aportada en este trabajo, modifica la circunscripción del taxón *Elaphoglossum petiolatum*, pues, aunque el nombre era utilizado ampliamente para identificar ejemplares con escamas del rizoma oscuras y puntos resinosos en la superficie abaxial que habitaban los trópicos americanos, desde México y Las Antillas hasta Perú y Brasil (Mickel 2001), nuestros resultados señalan que *E. petiolatum* solo se distribuye de México a Centroamérica y en Las Antillas (Capítulos I y III). Los ejemplares sudamericanos identificados como *E. petiolatum*, además de pertenecer al clado de *E. lancifolium*, presentan esporas con espinas en lugar de depósitos irregulares, lo que sugiere que corresponden con otra especie y necesitan renombrarse.

La monografía resultante de esta investigación incluye una clave de identificación, sinonimia completa, descripciones detalladas, índice de colectores y números de colección, ilustraciones, imágenes al microscopio electrónico de esporas y mapas de distribución para todas las especies. Se designaron siete lectotipos y se llevó a cabo una combinación nomenclatural nueva.

Finalmente, la descripción de *E. auralolitae* como una especie nueva se llevó a cabo debido a que, durante la revisión de los ejemplares de herbario, identificamos 23 especímenes de Guatemala con puntos resinosos, que no se ajustaban a ninguna de las especies conocidas hasta el momento. De acuerdo con la riqueza de *Elaphoglossum* en Guatemala, calculada en 41 especies, solo tres presentan puntos resinosos en las láminas: *E. huacsaro* (Ruíz) H. Christ, *E. muelleri* y *E. petiolatum* (Mickel 1981, 1995a, Mickel y Smith 2004) y los ejemplares encontrados no corresponden con ninguna de éstas (Capítulo IV).

CONCLUSIONES GENERALES

- El complejo de *Elaphoglossum petiolatum* es polifilético.
- Las especies del complejo de *E. petiolatum* se recuperan en tres clados morfológicamente diagnosticables pero que no son hermanos: clado de *E. ciliatum*, clado de *E. lancifolium* y clado de *E. petiolatum*.
- Todas las especies de *Elaphoglossum* que presentan puntos resinosos se recuperan en alguno de los tres clados aquí descritos.
- Las secuencias del taxón *E. petiolatum* provenientes de Jamaica, la localidad tipo de esta especie, se recuperan dentro del clado de *E. petiolatum*.
- Los marcadores moleculares del cloroplasto empleados en este estudio no resuelven las relaciones interespecíficas dentro del clado de *E. petiolatum*. No obstante, la morfología, (incluida la de las esporas) permite reconocer y separar ocho especies como parte de este clado.
- *Elaphoglossum petiolatum* se distribuye exclusivamente de México a Panamá y en Las Antillas.

LITERATURA CITADA

- Barker, M. S., y Wolf, P. G. (2010). Unfurling Fern Biology in the Genomics Age. BioScience, 60, 177–185.
- Christ, H. (1899). Monographie des Genus *Elaphoglossum*. Neue Denkschr. Allg. Schweiz. Ges. Gesammten Naturwiss. 36: 1–159.
- Diels, L. (1899). Polypodiaceae. In A. Engler y K. Prantl (Eds.), Die Naturlichen Pflanzenfamilien. 4th ed., Vol. 1, 139–339.
- Fée, A. L. A. (1845). Histoire des Acrostichées. In Veuve Berger-Levrault (Ed.), Mémoires sur la famille des fougères. Deuxième mémoire. 1–114.
- Fée, A. L. A. (1852). Genera filicum. Exposition des genres de las famille des Polypodiacées (Classe des fougères). In J. B. Bailière y V. Masson (Eds.), Cinquième mémoires sur la famille des fougères. 1–387.
- Hasebe, M., Wolf, P. G., Pryer, K. M., Ueda, K., Ito, M., Sano, R., Gastony, G. J., Yokoyama, J.,
 Manhart, J. R., Murakami, N., Crane, E. H., Haufler, C. H., & Hauk, W. D. (1995). Fern
 Phylogeny Based on rbcL Nucleotide Sequences. American Fern Journal, 85(4), 134–
 181.
- IPNI. (2020). International plant names index. The Royal Botanic Gardens, Kew, Harvard University. Herbaria & Libraries and Australian National Botanic Gardens. Available at http://www.ipni.org.
- Kessler, M., Moran, R. C., Mickel, J. T., Matos, F. B., y Smith, A. R. (2018). Prodromus of a fern flora for Bolivia. XXXV. Dryopteridaceae. Phytotaxa, 353(1), 1.

- Lellinger, D.B. (2002). A modern multilingual glossary for taxonomic Pteridology. Pteridologia 3:1–263.
- Liu, H.-M., Zhang, X.-C., Wang, W., Qiu, Y.-L., y Chen, Z.-D. (2007). Molecular Phylogeny of the Fern Family Dryopteridaceae Inferred from Chloroplast rbcL and atpB Genes. Internaional Journal of Plant Science, 168(9), 1311–1323.
- Lorence, D. H., y Rouhan, G. (2004). A Revision of the Mascarene Species of Elaphoglossum (Elaphoglossaceae). Annals of the Missouri Botanical Garden. 91(4).
- Lóriga, J., Vasco, A., Regalado, L., Heinrichs, J., y Moran, R. C. (2014). Phylogeny and classification of the Cuban species of Elaphoglossum (Dryopteridaceae), with description of Elaphoglossum sect. Wrightiana sect. nov. Plant Systematics and Evolution, 300(5), 937–951.
- Matos, F. B., y Mickel, J. T. (2014). The Brazilian species of Elaphoglossum section Polytrichia (Dryopteridaceae). Brittonia, 66(4), 371–395.
- Matos, F. B., y Mickel, J. T. (2019). The Brazilian species of Elaphoglossum section Squamipedia (Dryopteridaceae). Brittonia, 71(3), 225–234.
- Martínez-Becerril, A., Vasco, A., y Solano, E. (2021). Spore morphology of the Mexican species of the Elaphoglossum petiolatum complex (Dryopteridaceae). *Brittonia*, 73(2)1–12.
- Mickel, J. T. (1985). The proliferous species of Elaphoglossum (Elaphoglossaceae) and their relatives. Brittonia, 37(3), 261.
- Mickel, J. T. (1991). *Elaphoglossum* and Peltapteris. In: R. M. Tryon & R. G. Stolze (eds.), Pteridophyta of Peru, Part IV, 17. Dryopteridaceae. Fieldiana Bot., n.s. 27: 111–170.
- Mickel, J. T. (1995a). *Elaphoglossum*. In: J. A. Steyermark, P. E. Berry & B. K. Holst (eds.), Flora of the Venezuelan Guayana. 2: 89–105. Timber Press, Portland, Oregon.

- Mickel, J. T. (1995b). Elaphoglossum. In R. C. Moran y R. Riba (Eds.), Flora Mesoamericana 1. Psilotaceae to Salviniaceae Part IV. Fieldiana, 27: 247–283. Missouri Botanical Garden Press.
- Mickel, J. T. (2001). A new species in the Elaphoglossum petiolatum Complex (Elaphoglossaceae) from Mexico. *Brittonia*, *53*(4), 487–489.
- Mickel, J. T, y Atehortúa, L. (1980). Subdivision of the genus Elaphoglossum. American Fern Journal, 70(2), 47–68.
- Mickel, J. T., y Smith, A. R. (2004). The pteridophytes of Mexico. Memoirs of the New York Botanical Garden, 88, 1–1055.
- Moore T. (1857). Index filicum: a synopsis, with characters, of the genera, and an enumeration of the species of ferns, with synonymes, references 7. Pamplin, London.
- Moore, T. (1862). Index filicum: a synopsis, with characters, of the genera, and an enumeration of the species of ferns, with synonymes, references 16. Pamplin, London.
- Moran, R. C. (2018). American Genera of Ferns and Lycophytes. The New York Botanical Garden Press. New York.
- Moran, R. C., Hanks, J. G., y Rouhan, G. (2007). Spore Morphology in Relation to Phylogeny in the Fern Genus Elaphoglossum (Dryopteridaceae). International Journal of Plant Sciences, 168(6), 905–929.
- Moran, R. C., Hanks, J. G., Labiak, P., y Sundue, M. (2010). Perispore morphology of bolbitidoid ferns (Dryopteridaceae) in relation to phylogeny. International Journal of Plant Sciences, 171(8), 872–881.
- Palmer, D. D. (2003). Hawai'i's ferns and fern allies. Honolulu: University of Hawai'i Press.

PPG I. (2016). A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54, 560–603.

Proctor, G. R. (1985). Ferns of Jamaica. British museum (Natural History).

- Pryer, K., Schneider, H., Wolf, P. G., Pryer, K. M., Schneider, H., Smith, A. R., Cran, R., Wolf,
 P. G., Hunt, J. S., y Sipes, S. D. (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature, 409, 618–622.
- Rouhan, G. (2020). Synoptic revision of the fern genus Elaphoglossum Schott ex J.Sm.(Dryopteridaceae) in Madagascar, with the description of 23 new taxa, all but one endemic. PeerJ, 8.
- Rouhan, G., Dubuisson, J. Y., Rakotondrainibe, F., Motley, T. J., Mickel, J. T., Labat, J. N., y
 Moran, R. C. (2004). Molecular phylogeny of the fern genus Elaphoglossum
 (Elaphoglossaceae) based on chloroplast non-coding DNA sequences: Contributions of
 species from the Indian Ocean area. Molecular Phylogenetics and Evolution, 33(3), 745–
 763.
- Rouhan, G., Lorence, D. H., Motley, T. J., Hanks, J. G., y Moran, R. C. (2008). Systematic revision of Elaphoglossum (Dryopteridaceae) in French Polynesia, with the description of three new species. Botanical Journal of the Linnean Society, 309–331.
- Roux, J. P. (1982). The fern genus Elaphoglossum Schott (Filicales) in South Africa. Journal of South African Botany, 48, 481–526.
- Roux, J. (2011). The fern genus Elaphoglossum section Lepidoglossa (Dryopteridaceae) in Africa, Macaronesia, the mid-Atlantic and southern Indian Ocean Islands. Botanical

Journal of the Linnean Society, 165, 20–63.

https://academic.oup.com/botlinnean/article/165/1/20/2418533

- Schuettpelz, Eric & Pryer, Kathleen. (2007). Fern Phylogeny Inferred from 400Leptosporangiate Species and Three Plastid Genes. Taxon. 56. 1037 Publisher:International Association for Plant Taxonomy.
- Skog, J. E., Mickel, J. T., Moran, R. C., Zimmer, E. A., y Volovsek, M. (2004). Molecular studies of representative species in the fern genus Elaphoglossum (Dryopteridaceae) based on cpDNA sequences rbcL, trnL-F, and rps4-trnS. International Journal of Plant Sciences, 165(6), 1063–1075.
- Sodiro, A. (1897). Cryptogamae vasculares Quitenses: adiectis specibus in aliis provinciis ditionis Ecuadorensis hactenus detectis. Typis Universitatis, Quito.
- Swartz, O. (1778). Nova genera et species plantarum seu prodromus. Bibliopoliis Acad. M. Swederi.
- Vasco, A. (2011). Taxonomic revision of Elaphoglossum subsection Muscosa (Dryopteridaceae). Blumea, 2, 165–202.
- Vasco, A., Mickel, J. T., y Moran, R. C. (2013). Taxonomic revision of the neotropical species of Elaphoglossum Sect. Squamipedia (Dryopteridaceae). Annals of the Missouri Botanical Garden, 99(2), 244–286.
- Vasco, A., Moran, R. C., y Rouhan, G. (2009). Circumscription and phylogeny of the Elaphoglossum ciliatum group (E. sect. Lepidoglossa, Dryopteridaceae) based on cpDNA sequences. Taxon, 58(3), 825–834.
- Vasco, A., Moran, R., y Ruhan, G. (2009). Monograph of the Elaphoglossum ciliatum group (Dryopteridaceae). Brittonia, 61(3), 241–272.
Zotz, G., P. Weigelt, M. Kessler, H. Kreft, and A. Taylor. 2021. EpiList 1.0: a global checklist of vascular epiphytes. Ecology 102(6):e03326