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STUDY OF PROTEIN STRUCTURE AND  
FUNCTIONAL CONFORMERS BY A  
GRAPH-THEORETICAL APPROACH 

 

Abstract 

 

A long-standing goal in biology is to understand the relationship between function, 

structure, and dynamics of proteins. Protein structure prediction for proteins without 

recognized templates requires a substantial improvement in conformational search and 

accurate model selection that nowadays is missing. Likewise, considering that protein 

function at the molecular level is understood by the ability of proteins to dynamically bind 

and transform other molecules, the limited data on protein dynamics and on protein 

structures in association with their ligands represents a major hurdle to our understanding 

of protein function at the structural level. Recent reports show that protein function can be 

linked to protein structure and dynamics through graph centrality analysis, suggesting that 

the structures of functional and basal-state conformers may be inferred computationally. In 

the present work, we study protein structure form a graph-theoretical approach in order to 

find connectivity features that facilitate the sampling of protein functional model selection. 

We found that graphs derived from proteins have non-trivial distributions of degrees, 

clustering coefficients, contact orders and motifs. We successfully used the connectivity 

information for predicting structural domains and measured the effect of local connections 

on the global connectivity. Also, a new method is described to discriminate protein 

conformations relevant to the specific recognition of a ligand. The method relies on a 

scoring system that matches critical residues with central residues for function in different 

structures of a given protein. Central residues are the most traversed residues with the same 

frequency in graphs derived from protein structures. We tested this method in a set of 24 

different proteins and more than 260,000 conformers in bounded and unbounded states. To 

illustrate the usefulness of our method in the study of the structure-dynamics-function 

relationship of proteins, we were able to predict those residues of the TATA-box binding 

protein whose mutation impairs DNA binding. Our results indicate that critical residues for 

an interaction are preferentially found as central residues of protein structures in complex 

with a ligand. Thus, our method effectively distinguishes protein conformations relevant to 

the function of interest. 
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INTRODUCTORY REVIEW 
 
 

I. The Molecular Study of Life 
 
 
 
The study of Biology from the molecular perspective began during the 19th century, when 

advances in the construction of microscopes permitted to visualize for the first-time 

macromolecular structures inside cells, like the centrosome, which sudden apparition during 

mitosis was seen with great interest (Farmer 1898). 

 

In 1926 Sumner working on the enzyme urease established that proteins are the 

actual molecules responsible for the chemical transformations performed by cells (Sumner 

1926). Eighteen years later, in a classical experiment performed by Avery-MacLeod-McCarty, 

DNA was recognized as the molecule storing genetic information (Avery 1944). And from 

that epoch and onwards, the molecular description of the cell has advanced at a frenetic 

pace. 

 
New discoveries that followed helped unraveling an intricated biomolecular world, 

full of complexity, orchestrated by specific interactions between molecules that seem to be 

taking place in a very-crowded environment1. Inside this milieu, proteins move and find their 

relevant targets, with enough frequency to produce significant effects on the cell. Once these 

effects are produced, the cell’s internal environment change and is conductive to the 

                                                           
1 Estimates of the total number of protein molecules that coexist in a mammalian cell have a lower bound of around one 

billion molecules (Lodish, et. al. 2000). We can link this to properties like the viscosity of molecules in liquid mediums. 

For example, for a small molecule, the viscosity of the cytoplasm of a cell type like fibroblasts, is around 2 centipoises (cP) 

(1 cP is the viscosity of liquid water at 20°C), but for a protein-size dextran (a carbohydrate that has minimal interaction 

with molecules inside a cell) the viscosity goes up to 4-5 cP. And for proteins like bovine albumin, which do have 

interactions with other cytoplasm proteins, the viscosity of the cytoplasm of a fibroblast increases to around 70 centipoises. 

For reference: mercury has 1.5 cP, whereas milk has 3 cP and olive oil has 81 cP. So just considering size, a molecule as 

big as a protein can diffuse through the cytoplasm with a little less freedom than an inert nanoparticle in milk, but when the 

interactions of a protein are considered, we can compare their movement to that of an inert nanoparticle in olive oil. (Brazma, 

et. al. 2001) (Mastro 1984) 
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subsequent molecular interactions. These chains of events occur accordingly to a blueprint 

codified in the DNA that is executed through the lifetime of every organism. A blueprint that 

has been constructed through selection, recombination and randomness. 

Scientists have been collecting an immense amount of information about 

biomolecules. They have deposited this information in public databases expecting that they 

will provide a powerful toolbox to tackle some of the problems that arise when trying to 

understand the complexity of the cellular machinery2. Still, the functional annotation for the 

hundreds of complete genomes from diverse phyla remains relatively low, even for model 

organisms. 

This thesis belongs to the field of Structural Bioinformatics. This field could be 

defined as the study of the data of positions and movements of the atoms that constitute 

the biomolecules by computational means. Nowadays, large teams of structural biologists 

solve hundreds of structures with considerable speed (including some of those considered 

as very difficult such as the ribosome, ion channels or the F0/F1 ATPase gained special 

notoriety), providing the raw data to which computational methods can be applied. In 

Structural Bioinformatics, much effort goes to the study of Protein structure data. During the 

following pages, I will describe different aspects of Protein Structural Bioinformatics. First, I 

will argue why analyzing three-dimensional structures by computational means provides 

insights about protein function and evolution. Then I will write about Protein Structure 

Prediction and Structural Genomics and I will discuss the relationship between Protein 

Structural Dynamics and protein function. 

 

II. Structure as a tool to elucidate  

Protein Function 

 
 

Protein function is a concept that encompasses different levels and aspects of the actions of 

a protein. For example, in physiology one can say that the function of a given protein is to 

                                                           
2 This complexity can be overwhelming. The protein p53, for example, was first discovered in 1979, and despite initially 

being misjudged as a cancer promoter, it soon gained notoriety as a tumor suppressor — a 'guardian of the genome' that 

stifles cancer growth by condemning genetically damaged cells to death. Few proteins have been studied more than p53, it 

even commands its own meetings. Yet the p53 story has turned out to be immensely more complex than it seemed at first. 

In 1990, several labs found that p53 binds directly to DNA to control transcription, supporting the traditional Jacob–Monod 

model of gene regulation. But as researchers broadened their understanding of gene regulation, they found more facets to 

p53. In 2009, Japanese researchers reported (Susuki, et. al. 2009) that p53 helps to process several varieties of small RNA 

that keep cell growth in check, revealing a mechanism by which the protein exerts its tumor-suppressing power. Even before 

that, it was clear that p53 sat at the center of a dynamic network of protein, chemical and genetic interactions. Researchers 

now know that p53 binds to thousands of sites in DNA, and some of these sites are thousands of base pairs away from any 

genes. It influences cell growth and death, and DNA structure and repair. It also binds to numerous other proteins, which 

can modify its activity, and these protein–protein interactions can be tuned by the addition of chemical modifiers, such as 

phosphates and methyl groups. Through a process known as alternative splicing, p53 can take nine different known forms, 

each of which has its own activities and chemical modifiers. Biologists are now realizing that p53 is also involved in 

processes beyond cancer, such as fertility and very early embryonic development. 
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induce cell proliferation, but in biochemistry one can say that the function of that same 

protein is to phosphorylate proteins at their tyrosine residues. It seems however, that it's not 

necessary to come up with a precise definition of the term function, but most likely with a 

framework that allows us to organize the related knowledge. The Gene Ontology (GO) 

consortium has adopted such framework. With it we can categorize the different aspects 

and levels of the activity of proteins in a broadly accepted manner and that is useful for 

understanding the cells and their evolution. In GO, three different aspects are considered 

and defined separately: the cellular localization (e.g. nucleus or ribosome); the biological 

process or pathway in which the protein is involved (e.g. metabolism, cell cycle); and the 

molecular function, defined as the ensemble of specific activities it can undertake (e.g. 

binding, transport). A hierarchy in GO that allows for further description represents these 

aspects.  

The catalogues of sequenced protein-coding genes are filled with uncertainties in 

the annotation of the GO molecular function aspect. Having the three-dimensional structure 

of a protein can help to describe its function at different levels and it has proven to be a key 

element in the elucidation of important details of their molecular functions3. One example 

of this is the protein that forms the potassium channels in cell membranes. This class of 

proteins shows a seemingly counterintuitive activity: they permit the passage of potassium 

ions, whereas they block the passage of the equally charged but much smaller sodium ions. 

Before obtaining the three-dimensional structure, the detailed molecular architecture of 

such channels and the exact means by which they convey ions remained speculative. In 1998 

however, and despite a barrier to the structural study of integral membrane proteins that 

had thwarted most attempts for decades, MacKinnon and colleagues determined the 

detailed structure of a potassium channel from a bacterium (Doyle 1998). With this structure 

in hand and other biochemical experiments, they could propose a mechanism by which 

potassium channel selectivity occurs: it appears that the filter -which is held in a very precise 

conformation- is more tuned for the larger potassium ion: when these ions enters the 

channel, water flows away, but for this to be energetically feasible, the pore must offer a 

surrogate for water. In this case, the surrogate role is carried out by oxygen atoms from the 

protein filter, which surround in a more coupled way this particular size of ion, making it 

transiently more stable.  

Structural comparative studies are an important source of function assignment; it is 

assumed that when two proteins have significant structural resemblance their respective 

                                                           
3 The structure of the DNA is perhaps the most famous example but that was also the case for haemoglobin - the second 

protein structure to be solved -. After the initial structure of the haemoglobin was solved by Max Perutz and his colleagues 

in 1959, the high-resolution 2.8 Å structures of horse oxyhaemoglobin in 1968 and deoxy haemoglobin in 1970 finally 

provided atomic models which Perutz could use to explain the mechanism of the cooperative binding of oxygen. However, 

Perutz's theory depended on small changes in the displacement of the iron atoms from the haem plane when oxygen was 

bound, which was then conveyed through the proximal histidine to the subunit surface where salt bridges between the 

subunits were broken or weakened. In the absence of oxygen, stronger salt bridges stabilized the deoxy state where the iron 

atoms were pulled out of the haem plane by the proximal histidine bond. The key concepts were tension at the haem, salt 

bridges at the subunit interface, and their coupling through internal Van der Waals interactions inside each subunit. The 

overall change in energy has remained too small to calculate theoretically, but, by the mid 1980s, with improved higher-

resolution structures using synchrotron radiation data, the movements of the iron atoms were measured beyond doubt. 

Perutz’s proposed mechanism was essentially correct (Perutz 1990). 
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functions may be also similar. This hypothesis has an impact in current drug discovery and 

the understanding of cellular processes but should be applied carefully since there are 

several examples where this is not the case4. Nevertheless, it is common practice to assign 

the known molecular function of a protein to all the other proteins to which its structure is 

similar. Even if the global structure similarity is not high, it is possible to find common 3D 

motifs that can point to a putative function; this is especially true for the active sites of 

certain enzymes (Lee 2011). In other cases, the functional assignment based on structure can 

be extended to the fold level. For example, if a given fold contains just families grouped into 

one functional superfamily in the SCOP database, or if all functionally annotated PFam 

families from one-fold were grouped into one PFam clan (a group of proteins families with 

evidence of common ancestry) linked to a single functional category, then it can be assumed 

that any protein in question that adopts this fold is likely to have a similar function to that 

associated with that fold. A greater challenge is presented in the functional annotation of 

multi-domain proteins since even if their individual domains have been functionally 

characterized, the actual molecular function of the complete protein may be difficult to infer. 

In this case knowing the 3D arrangement between domains can help to understand how is 

that they interplay in a global multi-domain molecular function (Shuman 2004). 

Structure studies have also helped to discover that proteins are not the only 

biomolecules that carry on interesting functions. In another very famous example of 

structure-assisted function elucidation, the structure of the ribosome was solved in the year 

2000. One of the oldest and biggest macromolecular complexes, the ribosome was 

intensively studied for its central role in the cell, but the determination of its structure 

presented big challenges because of its size. However, the groups of Ramakrishnan 

(Wimberly B. 2000), Steintz (Ban N. 2000), Yonath (Schluenzen F. 2000) succeeded in solving 

the complete structure of its two subunits. This helped them to conclude that the main 

catalytic task of the ribosome is to provide a template for the precise positioning of tRNA 

molecules, rather than to participate in the actual chemical reaction, and that this activity is 

performed exclusively by rRNAs since only their atoms are in contact with the substrates 

during the different positions that they take in the ribosome sites (in fact, the ribosome 

crystals used for determining the structure were able to catalyze the reaction and allowed 

to visualize some of the involved steps), thus providing affirmative support for the existence 

of a pre-protein RNA world. Also, the surprising identification (Agmon I. 2005) of a two-fold 

rotation axis in the peptidyl transferase center of all known ribosomal structures led to a 

proposal of how this machinery might work for peptide bond formation, translocation and 

nascent protein progression. This symmetry is totally absent at the sequence level, and thus, 

is a good example of the kind of insight that can be gained by analyzing three-dimensional 

structures. 

 

                                                           
4 Counterexamples are the pairs of homologous enzyme/non-enzyme proteins that have maintained highly similar structures. 

Commonly, the non-enzyme protein descends from an enzyme by loss or blockade of catalytic residues, but interestingly, 

there are cases where the enzymes are descendants of non-enzyme proteins (Todd 2002). 
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III. Protein Structures as Guides for Discovering 

Evolutionary Relationships 
 

 

 

The genetic code is constructed in such a way that has allowed the cells to produce an 

enormous number of different proteins with a low diversity in the chemical groups of the 

molecule that stores that information, the DNA. The potential number of proteins that can 

be produced with this code is truly astronomical. In contrast, the actual number of protein 

folds that exist today is several orders of magnitude below this number5. Some estimates 

put it in the order of a few thousands (Grant A. 2004). That means that the genetic code has 

been used in a very redundant way in terms of the number of different folds implicitly coded 

by it6.  

Since structure similarity is an indicative of common ancestry, the magnitude of the 

expected number of different folds has fueled the hope of obtaining soon a structural 

classification that describes the evolutionary relationships of almost all known proteins. In 

general, protein pairs with a sequence identity higher than 30% are close homologous and 

very likely to be structurally similar. When the sequence similarity falls in the range 20-30% 

(referred as the “twilight zone”) the structural similarity is considerably less common. And it 

has been estimated that around 5% of proteins pairs with sequence identity below 20% have 

similar structures7. These are general numbers, so it can be expected that the relationship 

between sequence and structure vary depending on the particular fold or super-family in 

                                                           
5 Various authors have investigated the original source of the current fold diversity. Some reports point out that before the 

branching of eukarya, bacteria and archaea, fold diversity was achieved not by gene duplication but primarily by shuffling 

small exon units whose sequences were originated randomly (Dorit 1990). A team has reported that the structures in the α/β 

class were the first to appear but that have been steadily superseded (in terms of abundance) by structures in the α+β class, 

which they conclude was the following to appear. The all- and all-β classes originated later maybe as the result of less 

aggressive conditions that allowed the stability of not so rigid structures (Caetano-Anollés 2003). Other authors propose 

that the ancestral proteins of the α+β class were formed at different times from previous pieces of proteins from the all- and 

all-β classes (Alva 2010). 
6 In nature, there are variations of the genetic code, but they are similar enough for this argument to remain valid (Santos M 

2004). It is very difficult to estimate how big the number of different functional folds would it be if all the possible single 

domain medium-sized proteins were produced, especially since it is not known to what extent the fold universe is 

constrained by folding/stability requirements and functional adequacies. 
7 Molecular evolution may eliminate easily recognizable sequence similarity among protein genes that diverged a long time 

ago, but still it may leave behind traces of statistically significant patterns of conserved residues that are apparent only when 

multiple, related sequences are aligned. To reflect the concept of different degrees of divergence between proteins genes, 

proteins are often subjected to a multilevel classification, with the term family reserved for groups of proteins related by 

short evolutionary distances so that any two proteins inside the family retain identifiable traces of similarity in their primary 

sequences. After this, it is possible to bring together two or more families into one superfamily (clan is the term used in 

PFam) if there are some members of the different families that retain identifiable traces of similarity between them, e.g. 

there is a transitivity property in the common ancestry relationship, the key difference with respect to the family definition 

is that inside a superfamily no any two members retain identifiable traces of sequence similarity between them. Sometimes 

the sequence based superfamilies are overlapped/complemented by structural based superfamilies that bring together 

families with enough common structural features that it is inferred they come from a common ancestor. In structural 

classifications, there exists a further level up: the fold, which groups structurally similar superfamilies but with different 

characteristic features so there is no certainty that two superfamilies inside a fold come from a common ancestor. The fold 

level is more an organizational need than a proved evolutionary reality. We can expect that further development of even 

more sensitive algorithms for recognition of distant homologues would expand the list of superfamilies groupings. 
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question or in the algorithm for sequence similarity and the measure of structure similarity 

chosen. 

When the sequence similarity between two proteins is inside or below the twilight 

zone, there is no straightforward sequence-based procedure for detecting evolutionary 

relationships. Protein structure represents a powerful means of discovering distant common 

ancestry since structure similarity is conserved to a greater extent through evolutionary time 

as sequences diverge from each another. There are celebrated cases of homology inferred 

from structure, including the unexpected similarity between actin and the 70-kDa heat-

shock cognate protein (Flaherty 1991), or the Top Rim domain shared between some topo-

isomerases, primases and nucleases (Aravind 1998). Current evolutionary driven 

classifications (CATH, SCOP, Superfamily, Gene3D, PFam) establish that two proteins are 

homologous only if there’s enough sequence, structural or functional evidence.  

 

As for the detection of very-far evolutionary relationships, the development of novel 

comparative approaches (Alva 2010) has permitted to find signals of common ancestry for 

certain superfamilies/folds. Also, in recent studies (Cuff 2009), it has been recognized that 

the clustering of proteins into distinct superfamilies related by common structural features 

may be somewhat artificial, since for some parts of the structural space the divisions are not 

clear-cut and resemble more of a continuum. Around 14% of the structures in CATH 

contribute to this overlapping between superfamilies. In addition, some of the more 

populated superfamilies (accounting for 4% of the total number of superfamilies in CATH) 

have significant structural divergence and together comprise one quarter of the structural 

diversity if an RMSD threshold of 5Å groups all the structures. These findings reflect some 

of the difficulty in identifying and defining protein homology.  

 

There exist, however, a typical range where structure and sequence similarities can 

be equaled, and this have permitted the transference of structural knowledge between 

proteins with enough sequence similarity. Even when a protein with a given sequence can 

adopt different conformations, the odds that two close sequences will fold into significantly 

different structures are so small8 that are often neglected in practice.   

                                                           
8 There are some examples where a few point mutations change the overall fold of a protein (Alexander 2009), normally 

these mutations are substitutions of cysteine residues that form disulfide bonds. Several proteins - most notably lysozymes 

from humans, hen egg-white and phage T4 (over 900 structures in all) - have been systematically mutated, crystallized and 

structurally determined to explore the effects of single amino-acid changes on protein structure and stability. The net 

conclusion from these examples is that most changes have little effect on the fold, although they may modify the protein’s 

stability, function or rate of folding to varying degrees (Matthews 1993) (Sinha 2001). In most cases the modified residue 

is accommodated by slight shifts in nearby side chains and adjustments to the protein backbone. Proteins also tolerate certain 

insertions that are engineered artificially, as demonstrated by a study using linker insertion mutagenesis. Here many 5-

residue insertion mutants of the α-complementing domain of Escherichia coli β-galactosidase were generated. The insertions 

were made, essentially at random, along the length of the sequence using bacteriophage µ in vitro DNA transposition 

(Poussu 2004). Most insertions were tolerated - that is, they did not prevent the protein folding - even those that disrupted 

secondary structure elements and those that ended up within the protein’s interior. As many as half of the mutants showed 

β-galactosidase activity at least equivalent to that of the wild type, and with activities up to two-fold higher in some mutants. 

A small but growing number of “metamorphic” proteins adopt different folded conformations for the same amino acid 

sequence under native conditions. Unlike prions, they undergo reversible conformational changes. And unlike allosteric 

modulation or changes upon binding, metamorphic proteins are capable of independent interconversion that may result in 
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So far, I have described the relevance of having the three-dimensional structure of a 

protein for establishing its function and evolutionary relationships. I will end this section by 

briefly mentioning that, in cases where the protein in question has a recognized therapeutic 

or technological use, obtaining its three-dimensional structure is an important step in the 

process of finding effective drugs that alter its function or in its redesign for further 

applications. 

 

FIGURE 1. Metamorphic proteins. The chemokine lymphotactin (Ltn) adopts two distinct 
folds at equilibrium in physiological conditions, and interconversion between the 
conformers involves almost complete restructuring of its hydrogen bond network and other 
stabilizing interactions. One conformer, Ltn10, adopts the canonical chemokine fold and 
binds natural Ltn receptors. The other, Ltn40, forms a dimeric β-sheet sandwich and binds 
to heparin, a polysaccharide component of the extracellular matrix. These mutually exclusive 
activities of the two conformers are both essential for full Ltn function in vivo. Structurally 
equivalent residues are few and contribute either to the Ltn10 core (red) or to the dimeric 
interface of Ltn40 (cyan). Other non-polar residues (orange) change sides, such that the 
formation of the dimeric interface on one side of the β sheet destabilizes the hydrophobic 
core on the other side and vice versa (Tuinstra 2008). 

 

                                                           
an abrupt fold change (FIGURE 1). The existence of multiple folded conformations is not prohibited by the principles of 

physics and chemistry. However, in vivo, a protein must quickly form its biologically active conformation, and stable 

alternative folds would act as kinetic traps that slow the rate of protein folding. To avoid this complication, different folded 

states should be able to interconvert without going through a fully unfolded state. Also, there have been recent discoveries 

of protein families containing members with distinct folds. For example, the protein RfaH of E. coli is composed of two 

domains. The N-terminal domain displays high similarity to that of its paralog NusG, a general transcription factor. In 

contrast, the α-helical coiled-coil C domain, while retaining sequence similarity, is strikingly different from the β barrel of 

NusG. Such an all-β to all-α transition of the entire domain is an extreme example of protein family divergence (Belogurov 

2007). 
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IV. Protein Structure Prediction 
 

The experiments of Anfinsen (Haber 1961) in the sixties showed that for some 

globular proteins, the protein structure is determined by their sequence and the surrounding 

aqueous environment alone. Since then, scientists have been developing an enormous array 

of approaches to predict protein structures. Nowadays, Computational Protein Structure 

Prediction can help to assign a three-dimensional structure to a vast number of proteins, 

and, as progress is being made, it may aid to the modeling of domain families that don’t 

have a representative structure. There are two broad categories in which most structure 

prediction approaches fall: comparative structure modeling (CM) and Ab Initio structure 

prediction (or Free Modeling FM). Comparative structure modeling methods are based on 

the availability of known structures of conserved homologues for the target protein. Once 

the templates are identified by sequence or profiles comparisons, using the framework of 

the template structure and refining the details, like side chain conformation and spatial 

restraints, can generate a high-resolution model. Ab Initio methods by contrast, are focused 

on predicting structures for proteins that don’t have conserved homologues with proteins 

with known three-dimensional structures.  

In the last years, the boundaries between both categories have become increasingly 

blurred. Much of the state-of-the-art Ab Initio modeling algorithms use evolutionary or 

knowledge-based information for collecting spatial restraints or for identifying local 

structural building blocks or fragments. Recent community-wide critical assessments of 

protein structure prediction (CASP) experiments have shown the advantages of this class of 

composite approaches.  

Solving a new protein structure by experimental means remains a difficult task. 

However, at the turn of this century, improvements in cloning, protein expression in 

heterologous systems and protein purification by affinity chromatography has significantly 

increased the ability to obtain microgram to milligram quantities of protein needed for 

structure determination. Recently, technological advances in cryo-electron microscopy have 

significantly increased the resolution, speed and quality of the data collection, expanding 

the class of proteins available to such kind of structure determination. Likewise, 

developments in improved crystallization screening methods that enhance the ability to 

obtain and optimize protein crystals, the invention of cryo-cooling techniques to obtain 

better quality data from single crystals, the increased brightness, stability, availability and 

“user-friendliness” of synchrotrons and the genetic engineering methods that facilitate 

heavy-atom integration into the target of interest, have contributed at continuing the 

expansion of the range of proteins that can be subjected to X-ray crystallography, extending 

it to smaller and smaller crystals. In parallel, advances in the “dry lab”, such as continued 

development and improvement of the corresponding software, have increased the speed, 

reliability and quality of structure determination.  
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Structural Genomics (SG) is the given name to a recent series of high-throughput 

structure-solving efforts carried on by specialized centers around the globe and coordinated 

by consortiums that have been succeeding in providing thousands9 of new structures in the 

past ten years. One of the goals of the SG centers is to obtain the 3D structures of at least 

one representative of as much single-domain protein families as possible, and then generate 

models for similar proteins by CM building10. This goal has received a boost from the 

observation that, even when the addition of new sequences maintains its pace, the rate of 

newly discovered single-domain families appears to be diminishing (contrary to the case of 

newly discovered multiple-domain architectures, whose rate seems to be increasing). Many 

of the advances at synchrotron beam-lines have occurred in partnership with Structural 

Genomic centers and likewise many of the available crystallization robots and protein 

expression and purification devices and platforms, as well as software packages and tools, 

have their origin in the Protein Structure Initiative (PSI) and other SG centers.  

In SG, target selection is a key aspect when the intention is to solve as much 

structures as possible using a CM criterion11. One natural set of targets is the Domains of 

unknown function, or DUF. Interestingly, a number of these families are present in all 

kingdoms of life. In Pfam release 24.0 there are 3,067 DUFs and the fraction of DUF families 

had increased with every release to about 25% of all families. As expected, the number of 

DUFs is increasing mainly because of the large number of new genomic and metagenomic 

sequences that have many new clade-specific families. SG centers have solved the structures 

of around 250 of these DUF families. And in some cases, this has helped to narrow down the 

possible function of some of them12. For example, some of the structures were co-

                                                           
9 However, the most of the almost 5,000 protein structures determined by these centers have yet to be described in the peer-

reviewed literature. In a high-throughput structural genomics environment, the process of structure determination occurs 

independently of any associated experimental characterization of function, which creates a challenge for the annotation and 

analysis of structures and the publication of these results. Developments like TOPSAN (The Open Protein Structure 

Annotation Network), enables the generation of knowledge via collaborations among globally distributed contributors 

supported by automated amalgamation of available information. 
10 For example, based on 53 newly solved proteins from SG projects, Sali and coworkers (Pieper 2006) built reliable models 

for domains in 24,113 sequences from the UniProtKB database with their CM tool MODELLER. These models have been 

deposited in a CM model database, MODBase (http://salilab.org/modbase). MODBase contains around 18 million models 

or fold assignments for domains from 3.3 million sequences. In this study, the structure assignments were based on an all-

against-all search of the amino acid sequences in UniProtKB using the solved structures of PDB. Structural genomics can 

also benefit from improvements in high-resolution structure prediction algorithms. A study estimated that a 10% decrease 

in the threshold needed for accurate modeling, from 30 to 20% sequence identity, would reduce the number of experimental 

structures required by more than a factor of two (Vitkup 2001). 
11 In 2001 Vitkup and collaborators estimated that at least 16,000 new structures needed to be determined by experiments 

to ensure that CM could generate good structures for 90% of single-domain protein families. For their calculation, they 

supposed that CM technology generates a good model when there is a sequence identity of at least 30% with 80% alignment 

coverage (Vitkup 2001). 
12 Jaroszewski and collaborators analyzed the structures of 248 of these families and found that 67 had new folds. One 

question related to those DUF structures that adopt a previously known fold, is whether they diverged from already known 

families and, therefore, can be classified into already known clans or super-families, or whether they are examples of 

convergent evolution. While rigorous proof of homology is often difficult, usually the combination of several arguments 

enables to arrive at a satisfactory answer. After closer structural and sequence-based comparisons, they classified the DUFs 

in (i) ‘‘recognizable homologues’’, when both sequence and structure similarities are significant, (ii) ‘‘putative 

homologues’’, when there is structural similarity but only marginal sequence similarity, (iii) ‘‘putative analogs’’, when there 

is structural similarity but cannot be connected to previously known proteins of the same fold with current day, state-of-the-

art, sequence-based remote homology recognition methods, and (iv) “new folds”, when there is no structural nor sequence 

similarity to previously known folds. Since the profiles of structural similarities in the first three groups are very similar, 
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crystallized with a putative natural ligand, others had a distant evolutionary relationship with 

members of a characterized family thus forming part of the same superfamily, and others 

were multiple-domain architecture families that contained already characterized domains.  

Before the first X-ray protein structures appeared, protein structure was visualized in 

terms of analogies based on organic chemistry and symmetry. In light of these reasonable 

expectations, the low-resolution X-ray structure of myoglobin came as a considerable 

surprise. Kendrew in describing his model said: “Perhaps the most remarkable features of 

the molecule are its complexity and its lack of symmetry, the arrangement seems to be 

almost totally lacking in the kind of regularities which one instinctively anticipates”. Perutz 

was even clearer about his initial disappointment “Could the search for ultimate truth really 

have revealed so hideous and visceral-looking an object”. In the last fifty years, we have 

learned to appreciate the aesthetic merits of protein structure. Helical models are indeed 

kind of visceral and electron-density maps are like intricate branched corals, but still there 

are elegant patterns and arrangements between secondary structure elements that were 

selected based on their own idiosyncratic function: “propellers”, “barrels”, “knots”, “zippers”, 

“sandwiches”, all of them coexist with more irregular features to provide an enormous 

spectrum of diversity. 

The notion of protein structure classification emerged from several studies 

conducted during the late 1970s and early 1980s that aimed to elucidate the basic principles 

of protein folding and protein structure evolution. The early work of Chothia and coworkers 

pioneered the division of protein structures into four major classes based on their 

secondary-structure composition and showed that simple geometrical features of 

secondary-structural elements give rise to their mutual arrangement in distinct architectures 

(Chothia 1977). Later, a more detailed classification deduced from the topological details of 

less than 200 structures was proposed (Richardson 1977). By the end of the 1980s, the term 

“fold” was already established and it was intended to outline three major aspects of protein 

three-dimensional structure: the secondary structures of which the protein is composed of, 

their relative arrangement and the path taken through the structure by the polypeptide 

                                                           
they suggest that most proteins from the group of putative analogs may be, in fact, distant, but not readily recognizable, 

homologues of previously characterized protein families. At the same time, some of the putative analogs, especially those 

that consist of a small number of secondary structure elements, such as a-helical hairpins, probably arose from convergent 

evolution. Over a third of the new folds contained fragments with significant structural similarity to fragments of known 

proteins that adopt different overall folds. The presence of some structural similarity among sections of different folds has 

been recognized for some time, and some authors suggest that, in most cases, it has its origin in the general evolution of 

protein structure (Friedberg 2005). Upon closer examination, they found that this is not only the case for new folds from 

DUF families but also holds for many recently solved proteins that were identified to have new folds. The percentage of 

new folds with some structural similarity to another fold has grown to almost 30% in the last 2 years. These sub-fold 

similarities have a discrete distribution, so the finding does not necessarily argue for (or necessarily disprove) a continuum 

in protein fold space. Their explanation of this phenomenon is that, with an increasing number of known protein structures, 

there is a saturation of the available fold space at the level of micro-domains that represent shorter, usually compact, 

structures that become component pieces of different folds. This concept of structural pieces or fragments that are treated 

as sorts of structural alphabets have been incorporated to the most successful free modeling protein structure prediction 

methods. But, as words in human speech, no common ancestry is assumed between proteins sharing some number of letters 

in this structural alphabet. (Jaroszewski 2009). 
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chain. Thus, the fold of a protein was defined through its composition, architecture and 

topology (Chothia 1990).  

It was thought at that time that the number of architectural types was limited. 

Moreover, although some structural variations were observed among evolutionarily related 

proteins, none of these affected the common structural core. Therefore, it was assumed that 

the protein fold is evolutionarily stable in that it retains its features, although some structural 

variations could be anticipated. Similarly, it was thought that in general every protein folds 

into a single three-dimensional structure and that its structural core is insensitive to large 

conformational changes related to function or formation of quaternary structure. These 

themes have been increasingly challenged as more and more structural variations are 

observed in protein families and in certain individual metamorphic proteins.  

Before the advent of structural genomics and the Protein Structure Initiative, analysis 

on the trends of newly discovered folds seemed to indicate that much of the protein fold 

space had been explored. More than one structural representative was solved for most of 

the characterized families (Andreeva 2008) and the growth in the number of new folds in 

SCOP had almost stalled. But after the SG and PSI launch, the number of new folds, super-

families and families rose again, mainly because the PSI SG targeted proteins with no 

significant sequence similarity to known structures. Recent analysis of the distribution of 

protein families characterized by structural genomics has confirmed the dominant role of 

the largest known super-families, which have grown further in their number of constituent 

families (Andreeva 2008). In addition, other super-families have grown large rather 

unexpectedly. The evolutionary success of these “new rich” super-families is probably a 

consequence of the presence of unusual conserved and presumably functionally important 

features in their folds. One of these “new rich” super-families, is the dimeric α+β barrel super-

family in SCOP, several new members of which have come from the first structures of meta-

genomic sequences. 

Initially, it was anticipated that a large number of new folds would be discovered 

owing to the breath of coverage of fold space targeted by the PSI. Interestingly, this has not 

turned out to be the case as a substantial portion of the structures expected to have novel 

folds revealed significant structural similarities to already known folds and in fact represent 

variations of known protein architectures and topologies. However, there were several 

unexpected findings of previously unseen topologies and architectures13. PSI also greatly 

increased the number of protein topologies with high contact order (3D contacts between 

amino acids that sit far away from each other in the sequence), which is known to limit the 

success of current Ab Initio structure-prediction methods, thus providing invaluable high-

                                                           
13 The structural data delivered over the past decade by SG and independent groups has revealed examples of atypical 

structural features and structural variations that have challenged many longstanding tenets in protein structure. Amongst 

these, for instance, is the discovery of the deep trefoil knot (Nureki 2002). SG has determined the structures of several 

knotted proteins, which in turn helped to dispel one of the oldest dogmas in molecular biology, since it was believed that 

the process of protein folding could not efficiently produce deep knots in protein backbones. 
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resolution templates for modeling. Without previous preconceptions, comparisons of some 

SG structures revealed dramatic structural variations in related proteins that go beyond the 

expectations based on their sequence similarity. These provided examples of how protein 

folds can evolve without compromising the integrity of the structure of the functional site. 

The biological usefulness of a predicted protein model relies on the accuracy of the 

structure prediction. For example, high-resolution models with root mean square deviation 

(RMSD) values in the range of 1–2 Å, typically generated by CM using close homologous 

templates, can be suitable for computational ligand-binding studies and virtual compound 

screening. Medium-resolution models, roughly in the RMSD range of 2–5 Å and typically 

generated by threading and CM from distantly homologous templates, can be used for 

identifying the spatial locations of functionally important residues such as active or binding 

sites. However, many of the functionally important sites are located on the loop regions that 

show more structural variability than helices and sheets. Thus, accurate modeling of loop 

regions is still an important, yet unsolved problem in template-based modeling. Finally, even 

models with the lowest resolution, from an otherwise meaningful prediction, i.e., models 

with an approximately correct topology, predicted using either Ab Initio approaches or 

based on weak hits from threading, have several uses including protein domain boundary 

identification, topology recognition and family/super-family assignment.  

There are two critical problems in the field of protein structure prediction. The first 

problem is related to the template-based modeling: How to identify the most suitable 

templates from known protein structures in the PDB library? Furthermore, following 

template structure identification, how can the template structures be refined to better 

approximate the native structure? The second major problem is related to free modeling for 

the target sequences without appropriate templates: How can a correct topology for the 

target proteins be constructed from scratch? Progress made in these areas has been 

assessed in the CASP experiments under the categories of template based modeling (TBM) 

and free modeling (FM), respectively. 

In the following sections, current protein structure prediction methods will be 

reviewed for both template-based modeling and free modeling. The basic ideas and 

advances of these directions will be discussed. 

 

IV.1  Template-Based Predictions 

 

For a given target sequence, template-based prediction methods build 3D structures based 

on a set of solved 3D protein structures, termed the template library. The canonical 

procedure of template-based modeling consists of four steps: (1) finding known structures 

(templates) related to the sequence to be modeled (target); (2) aligning the target sequence 

on the template structures; (3) building the structural framework by copying the aligned 

regions, or by satisfying spatial restraints from templates; (4) constructing the unaligned 
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loop regions and adding side-chain atoms. The first two steps are usually performed as a 

single procedure because the correct selection of templates relies on their accurate 

alignment with the target. Similarly, the last two steps are also performed simultaneously 

since the atoms of the core and loop regions interact closely. 

Historically, template-based methods can be categorized in two types: (1) 

comparative modeling (CM) and (2) threading. CM builds models based on evolutionary 

information between target and template sequences, while threading is designed to match 

target sequences directly onto 3D structures of templates with the goal to detect target-

template pairs even without evolutionary relationships. The schematic overview of CM and 

threading is depicted in the upper part of FIGURE 5. In recent years, as a general trend in the 

field, the borders between CM and threading are becoming increasingly blurred since both 

comparative modeling and threading methods rely on evolutionary relationships, e.g. both 

use sequence profile-based alignments. In CASP experiments they are placed in the same 

category of template-based modeling without explicitly distinguishing them. 

 

IV.1.1  Template Structure Identification 

 

Since its first application in the early 1990s (Bowie 1991) (D. T. Jones 1992), threading has 

become one of the most active areas in proteins structure prediction. Numerous algorithms 

have been developed during the previous twenty years for identifying structure templates 

from the PDB. Threading techniques include sequence profile–profile alignments (Ginalski 

2003) (Zhou 2005), structural profile alignments (Shi 2001), hidden Markov models (HMM) 

(Karplus 1998) (Soding 2005), and machine learning (D. Jones 1999) (Cheng 2006) among 

others.  

The sequence profile–profile alignment (PPA) is probably the most often-used and 

robust threading approach. Instead of matching the single sequences of target and 

template, PPA aligns a target multiple sequence alignment (MSA) with a template MSA. The 

alignment score in the PPA is usually calculated as a product of the amino acid frequency at 

each position of the target MSA with the log-odds of the matching amino acid in the 

template MSA, though there are also alternative methods for calculating the profile–profile 

alignment scores (Sadreyev 2003). Profile–profile alignment-based methods demonstrated 

advantages in several recent blind tests where several sequence profile-based methods were 

ranked at the top of single threading servers (Battey 2007).  

HHsearch (Soding 2005), a HMM–HMM alignment method, is distinguished as one of 

the bests threading servers. The principles of the HMM–HMM alignments and the profile–

profile alignments are similar in that both attempt pair-wise alignments of the target MSA 

with the template MSA. Instead of representing the MSAs by sequence profiles, HHsearch 

uses profile HMMs that can generate the sequences with certain probabilities (determined 
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by the product of the amino acid emission and insertion/deletion probabilities). HHsearch 

aligns the target and template HMMs by maximizing the probability that two models co-

emit the same amino acid sequence. In this way, amino acid frequencies and 

insertions/deletions of both HMMs are matched in a better way. HHsearch also deals with 

non-homologous sequence stretches at the ends of correctly aligned homologous regions. 

These stretches can recruit many more unrelated segments in further search iterations, thus 

HHsearch simply prunes away the ends of sequences to be included in the alignment if their 

score per column is below a specified threshold. 

 

 

FIGURE 5. Schematic overview of the methodologies employed in template-based modeling. 

 

In addition to sequence profiles, top-performing structure prediction methods 

compare the predicted secondary structure of the query protein with the actual secondary 

structure of the candidate template proteins. Such 1D properties defined for each position 

have a big advantage: their similarity scores can be combined with the similarity score 

between profile columns in the dynamic programming algorithms that calculate the optimal 

alignment. Hence 1D similarity scores may improve both the sensitivity of fold recognition 

and the alignment quality. Although secondary structure has had the largest impact, many 

other 1D scores have been proposed. Other scores that have become widely used recently 

are predicted solvent accessibility, predicted number of tertiary residue-residue contacts 

(“coordination number”) and 1D environmental fitness scores, which evaluate how well the 

amino acid distribution at each query position would fit into the structural environment at 
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each template position. Profile column scores ignore correlations between columns. In 

contrast, 1D predictions are done on context windows. Comparing 1D predictions therefore 

amounts to scoring the similarity of local amino acid patterns, which may contain strong 

inter-column correlations. 

 

 

IV.1.2 Meta-Servers 

 

Although average performance differs among threading algorithms, there is no single 

threading program which outperforms all others on every target. This motivated the use of 

the meta-server (Fischer, Rychlewski L, Fischer D 2003), which collects and combines results 

from a set of existing threading programs. There are two ways to generate predictions in 

meta-servers. One is to build a hybrid model by cutting and pasting the selected structure 

fragments from the templates identified by threading programs. The combined model has 

on average larger coverage and better topology than any single template. One defect is that 

the hybrid models often have non-physical local clashes. The second approach is to select 

the best models based on a variety of scoring functions or machine-learning techniques. 

This approach has emerged as a new research area called Model Quality Assessment 

Programs (MQAP) (Fischer 2006). Despite considerable efforts in developing various MQAP 

scores, the most robust score turns out to be the one based on the structure consensus, i.e. 

the best models are those simultaneously hit by different threading algorithms. The idea 

behind the consensus approach is simple: there are more ways for a threading program to 

select a wrong template than a right one. Therefore, the chance for multiple threading 

programs working collectively to make a commonly wrong selection is higher than the 

chance to make a commonly correct selection. 

In later experiments, the Zhang-Server - an automated server based on profile/profile 

threading and I-TASSER structure refinement (Y. Zhang 2008) - outperformed the meta-

servers, which included it as an input. This highlighted the challenge of the MQAP methods 

in correctly ranking and selecting the best models since the performance of a consensus 

method depends on the performance of individual servers and also their correlation. In 

principle if the individual servers are highly correlated or the best individual server is 

significantly better than the others, it is possible that a simple clustering/consensus method 

may not perform better than the best individual server. However, when there are a few very 

good and independent individual servers, a simple clustering/consensus method may 

perform better than the best individual server. 
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IV.1.3 Template Structure Assembly/Refinement 

 

The goal of protein structure assembly/refinement is to draw the templates closer to the 

native structure. This has proven to be a non-trivial task. Until only a few years ago, most of 

the TBM procedures either kept the templates unchanged or drove the templates away from 

the native structures. Early efforts on template structure refinement have relied on molecular 

dynamics (MD) based atomic-level simulations; these attempts to refine low-resolution 

models using classic MD programs such as AMBER and CHARMM. However, except for some 

isolated instances, this approach has not achieved systematic improvements.  

Good template refinements have been achieved by combining the knowledge and 

physics-based potentials with spatial restraints from templates (Misura 2006) (Y. Zhang 

2008). The group of Baker first built low-resolution models with ROSETTA (Simons 1997) 

using a fragment library enriched by the query-template alignment. The Cβ-contact 

restraints are used to guide the assembly procedure, and the low-resolution models are then 

refined by a physics-based atomic potential.  

The Zhang server for example, incorporates composite knowledge-based energy 

terms that have been optimized using large-scale structure decoys (Zhang. 2007). This 

approach helps to coordinate the complicated correlations of different interaction terms. 

Another feature of this server is that the force field includes multiple sources of knowledge-

based potentials and consensus tertiary restraints from multiple templates. The consensus 

spatial information usually has higher accuracy/confidence than that of individual templates. 

In the CASP7 experiment for example, this server managed to achieve a higher GDT-TS14 

score than the best possible structural template (or “virtual predictor group”) in more than 

half the assessment units and a higher GDT-HA15 score in approximately one-third of cases 

(Kopp 2007). This comparison may not entirely reflect the template refinement ability of the 

algorithms because the predictors start from threading templates rather than the best 

structural alignments; the latter requests the information of the native structures, which were 

not available when the predictions were made. However, a global GDT score comparison 

may favor the full-length model because the template alignment has a shorter length than 

the model. If the best possible template is provided (from a template library with a maximum 

of 35% pairwise sequence identity), this server can generate models of excellent quality for 

                                                           
14 The GDT-TS  (global distance test - total score) score is intended as a more accurate measurement than the more 

common RMSD metric, which is sensitive to outlier regions created by poor modeling of individual loop regions in a 

structure that is otherwise reasonably accurate. For example, the RMSD of two protein structures can be high if the tails or 

some loops have a different orientation even though the global topology of the core part is the same; this cannot be 

distinguishable, based on the RMSD value alone, from the case where two structures have completely different topologies. 

The GDT score is calculated as the largest set of amino acid alpha carbon atoms in the model structure that fall within a 

defined distance cutoff of their position in the experimental structure. It is typical to calculate the GDT score under several 

cutoff distances, and scores generally increase with increasing cutoff. A plateau in this increase may indicate an extreme 

divergence between the experimental and predicted structures, such that no additional atoms are included in any cutoff of a 

reasonable distance. 
15 The high accuracy version of the GDT measure is called GDT-HA. It uses smaller cut off distances (half the size of 

GDT_TS) and thus is more rigorous. 

http://en.wikipedia.org/wiki/Root_mean_square_deviation_(bioinformatics)
http://en.wikipedia.org/wiki/Outlier
http://en.wikipedia.org/wiki/Loop_(biochemistry)
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Alpha_carbon
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most proteins and models of good quality for the most divergent sequences, thus reassuring 

the notion that the crucial step in protein structure prediction is finding the best possible 

templates. 

Sometimes homology models are not sufficiently reliable to accurately predict small 

but important features. For example, when no 3D structure of a splice variant is known, it is 

common to build a homology model to see what the structural difference might be. An 

example of this is the neuronal protein aczonin (FIGURE 6). A homology model of a splice 

variant of its C2A domain - containing a nine-residue insertion relative to the normal isoform 

- had suggested that the structure should be mostly unaffected by the insertion. The 

additional nine residues were predicted to add a surface loop some distance from the crucial 

Ca2+ binding site of the protein. Solving the structure of this longer isoform by NMR (PDB 

code 1rh8) showed that the structural change is in fact dramatic. The inserted sequence 

became part of a β-sheet in the core of the protein, displacing the segment that had 

previously been there and causing the displaced sequence to adopt a helical conformation 

on the protein’s surface that severely disrupted the Ca2+ binding site. So, rather than the 

minor effect that was predicted from the homology model, the splice variant had a marked 

effect on the structure and consequently reduced its Ca2+ binding affinity. This shows the 

possible pitfalls of just relying on CM to infer the effects of even fairly small structural 

changes. Nevertheless, because of the scarcity of structures of variants, it is necessary to 

improve to predictive methods to try to understand the role of alternative splicing in 

eukaryotes.  

 

IV.2  Free Modeling 

 

When structural analogs do not exist in the PDB library or could not be detected by 

threading (which is more often the case), the structure prediction must be generated from 

scratch. This type of prediction has been termed Ab Initio or de novo modeling, a term that 

may be easily understood as modeling “from first principles”. Since CASP7, it is termed free 

modeling, which more appropriately reflects the status of the field, since the most efficient 

methods in this category still consider hybrid approaches including both knowledge-based 

and physics-based potentials. Evolutionary information is often used in generating sparse 

spatial restraints or identifying local structural building blocks. 
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FIGURE 6. Pitfalls associated to homology-built models. In this example, the C2A domain 
of aczonin has an alternative splice variant, which has a nine-residue insertion relative to 
the normal form. Homology modeling suggested this would have little or no effect on 
function. However, the experimentally determined structure showed this to be far from 
the truth. (a) The structure of the synaptotagmin-1 C2A domain served as template for 
the CM of the insertion-less isoform. (b) Homology model of the insertion variant of 
aczonin. The model suggested that the insertion should merely insert a loop (shown here 
in red) on the protein’s surface, far from the Ca2+ binding site (defined by the loops 1-3 
at the top of the structure, calcium ions are shown in green). Hence it should have little 
effect on the protein’s function. (c) Actual structure solved by nuclear magnetic 
resonance. The inserted sequence, again shown in red, becomes a β-strand, displacing 
the sequence that makes this strand in the short form. The displaced sequence becomes 
a helical region that seriously interferes with the binding site (Garcia 2004).  

 

IV.2.1 Physics-Based Free Modeling 

 

From a physics point of view, interactions between atoms should be based on quantum 

mechanics, the coulomb potential and only a few fundamental parameters such as the 

electron charge and the Planck constant; their atom types should describe all atoms where 

only the number of electrons is relevant. However, few attempts have been made to start 

from quantum mechanics to predict structures of even small proteins, simply because the 

computational resources required for such calculations are far beyond the computer 

capabilities available now. Without quantum mechanical treatments, a practical starting 

point for Ab Initio protein modeling is to use a compromised force field with a large number 

of selected atom types; in each atom type, the chemical and physical properties of the atoms 

are alike with the parameters calculated from crystal packing or computational quantum 

mechanics. Well-known examples of such all-atom physics-based force fields include AMBER 

(Weiner 1984) and CHARMM (Brooks 1983). These potentials contain parameters associated 

with bond lengths, angles, torsion angles, Van der Waals, and electrostatics interactions. The 
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major difference between them lies in the selection of atom types and the interaction 

parameters. 

Compared to template-based approaches, the purely physics-based Ab Initio 

methods – all-atom potential functions, like AMBER or CHARMM, combined with molecular 

dynamics (MD) conformational sampling – have been less successful in protein structure 

prediction. Significant efforts have been made on the purely physics-based protein folding. 

The first widely recognized milestone of successful Ab Initio protein folding is the 1997 work 

of Duan and Kollman, who folded the villin headpiece (a 36-mer). This work used MD 

simulations in explicit solvent for 2 months on parallel supercomputers with models up to 

4.5 Å (Duan 1998). This small protein was recently folded by Pande and coworkers (Zagrovic 

2002) to 1.7 Å, with a total simulation time of 300 ms or approximately 1,000 CPU.  

In a more recent article, Shaw and collaborators correctly folded two proteins: BPTI, 

a serine-protease inhibitor, and the villin headpiece using the AMBER force field with explicit 

solvent and running in a special-purpose machine16. They observed not just the folding but 

the subsequent protein dynamics near the native state that agree to a good extent with the 

experimental data, showing that the current force fields can be accurate enough. The 

simulations of 1 ms are the longest to date and took about three months for each protein 

(Shaw 2010). Despite this remarkable effort, physics-based folding is far from routine for 

general protein structure prediction of normal size proteins, mainly because of the 

prohibitive computing demand and the general problem of finding a global minimum in the 

potential energy landscape.  

Another niche for physics-based simulation is protein-structure refinement. This 

approach starts from low-resolution structures with the goal to draw the initial models closer 

to the native structure. Because the starting models are usually not far away from the native 

state, the conformational change is relatively small and the simulation time is much less than 

in Ab Initio folding. One of the earliest MD-based protein structure refinements was for the 

GCN4 leucine zipper (a 33-residue dimer) (Vieth 1994). In that work, a low-resolution coiled-

coil dimmer structure (2 ~ 3 Å) was first assembled using Monte Carlo simulation. Recently, 

another team used CHARMM22 to refine five CASP6 CM targets with lengths in the 70–144 

residue range. In four cases, considerable refinements with up to 1 Å RMSD reduction were 

achieved (Chen 2007). One of the major differences of this work is that an implicit solvent 

force field based on the generalized Born approximation was exploited, which significantly 

speeds up the MD simulations, while the spatial restraints extracted from the initial models 

are used to guide the refinement procedure.  

Yet another use of the physics-based potential is in the discrimination of the 

native/near-native structures from structure decoys. For example, (Karplus 1998) exploited 

CHARMM19 and an implicit solvation potential to discriminate the native structure from the 

                                                           
16  This special-purpose machine consists of a substantial number of regular cpu. They are interconnected by a specialized 

high-speed three-dimensional torus network that allows to massive parallelization. This approach to simulate folding 

competes with the Blue Gene/L machine which is a general purpose parallel supercomputer and the Folding@home 

distributed computing project which uses the cpu of regular computers connected to the internet. 
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decoys generated by threading the native sequences on other protein structures. They found 

the energy of the native states is lower than that of the decoys in most cases. Various authors 

obtained similar results, i.e. the native structure can be distinguished from non-native 

decoys by the physics-based potentials. Recently, however, (Wroblewska 2007) showed that 

the AMBER plus generalized Born approximation potential can only discriminate the native 

structure from roughly minimized TASSER decoys. But after a 2-ns MD simulation to further 

minimize the decoys, none of the native structures had lower energy than the refined decoys. 

This result partially explains the reported discrepancy between the decoy-discrimination 

ability of the physics-based potentials and less-successful folding/refinement results. 

 

IV.2.2 Knowledge-Based Free Modeling 

 

Bowie and Eisenberg pioneered the following approach for free modeling: assembling of 

new tertiary structures using small fragments (mainly 9-mers) cut from other PDB proteins 

(FIGURE 6B) (Bowie 1991). Based on this idea, Baker and coworkers later developed ROSETTA 

(Simons 1997), which worked very well for free modeling of small/medium proteins in the 

CASP experiments, and popularized the fragment assembly approach in the field. In new 

developments with ROSETTA (Das 2007), the method first assembles structures from the 

fragments in a reduced knowledge-based model with conformations specified by the heavy 

backbone atoms and Cβ. In the second stage, Monte Carlo simulations with an all-atom 

physics-based potential are performed to refine the details of the low-resolution models. A 

notable achievement was demonstrated in CASP6 by generating a model for a small hard 

target T0281 (70 residues) that is 1.6 Å away from the crystal structure. In CASP7, a very 

extensive sampling was carried out using the distributed computing network of 

Rosetta@home that used about 500,000 CPU hours for each target domain. With this 

computer power the protocol of ROSETTA built a model for T0283 (a template modeling 

target) with RMSD = 1.8 Å over 92 residues out of the 112 (FIGURE 8). And in CASP9 (CASP9 

2010), a ROSETTA model was significantly better than the best template available for a target 

of the α/β class (FIGURE 7). However, despite significant success, the computer cost of the 

procedure (~150 CPU days for a small protein <100 residues) was still too expensive for 

routine use17.  

                                                           
17 In a subsequent approach to circumvent the large conformational sampling needed, the ROSETTA team developed FoldIt 

(Cooper 2010), an online multiplayer game where players fold proteins starting from their extended-chain state and 

accumulate points by moving the structure to a lower energy state. This approach is based in the hypothesis that human 

search strategies using 3D and visual cues are better than Monte Carlo methods for sampling highly-rugged energy 

landscapes. In a ten-structure blind test, the players performed better than the ROSETTA protocol at five of them (two 

models had a RMSD < 2 Å to the native structure) and had the same score at other three. 
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FIGURE 6B. Schematic overview of a Free Modeling pipeline 

 

 

FIGURE 7. In CASP9 a ROSSETA model for Target 581 was the largest improvement over the 
closest template (fatty acyl-adenylate ligase C-terminal domain; PDB 3lnv). It wasn´t the best 
scoring model of the whole FM category but for the correct assignments of the secondary 
structure elements achieved a GDT score 44% higher than the template, even when the 
secondary structure prediction was markedly incorrect (CASP9 2010). 

 

Another knowledge-based free modeling approach is called TASSER (Threading 

Assembly Refinement) and was first developed by Skolnick and Zhang (Skolnick 2004). In its 

I-TASSER version (iterative-TASSER, Y. Zhang 2008) the protocol has three stages: i) 

Threading. A meta-threading server combining seven top threading programs (including 

HHSearch and Prospect) finds templates that are sorted by its alignment quality. ii) Structural 

Assembly. Continuous fragments with various sizes are excised from threading alignments 

and used to reassemble protein structures in a reduced model of just Cα and side-chain 

center of mass. The regions not aligned by threading are modeled on a lattice system and 

those that were aligned are kept off this lattice. The reassembly process of the fragments is 

conducted by parallel Monte Carlo simulation and cluster centroids are obtained by 
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averaging the 3D coordinates of all the clustered structural decoys. The energy terms of the 

potential include information about predicted secondary structure propensities, backbone 

hydrogen bonds, a variety of short- and long-range correlations and hydrophobic energy 

based on the structural statistics from the PDB library. Weights of knowledge-based energy 

terms are optimized using a large-scale structure decoy set, which coordinates the 

complicated correlations between various interaction terms. iii) Model Selection and 

Refinement. The fragment assembly simulation is performed again starting from the 

selected cluster centroids. Although the inherent I-TASSER potential remains unchanged in 

the second run, external constraints are pooled from the original threading alignments and 

the PDB structures that are structurally closest to the cluster centroids according to their 

structural alignment tool (Zhang 2005). The purpose of the second iteration is to remove 

steric clashes and to refine the global topology of the cluster centroids. The decoys 

generated during the second round of simulations are clustered again, and the lowest 

energy structures are selected as input for the generation of the final structural models by 

building all-atom models from Cα traces through the optimization of hydrogen bonding 

networks. Although the whole procedure uses structural fragments and spatial restraints 

from threading templates, it often constructs models of correct topology even when the 

topologies of individual templates are incorrect. In CASP7 (Zhang. 2007), among 19 FM and 

FM/TBM targets, I-TASSER built the correct topology (~3–5 Å) for 7 cases with sequences up 

to 155 residues long (FIGURE 8). 

In the CASP9 experiment (CASP9 2010), I-TASSER was tied with ROSSETA and the 

then newly developed QUARK as the best predictors in the Free Modeling category. QUARK 

(an Ab Initio server also from the Zhang group) was the best performing method when no 

templates were available.   

Although a purely physics-based Ab Initio simulation has the advantage in revealing 

the pathway of protein folding, most free modeling methods combine both knowledge-

based and physics-based approaches. There were consistent successes in building correct 

topology (3–6 A˚) for small proteins, but the more exciting high-resolution free modeling (< 

˚2 A) was not frequent and computationally expensive. Prediction of structures with high 

contact order18 and/or novel folds continued to be poor in general. There was evidence that 

the atomic potentials do give the lowest energy near the native state and that the bottleneck 

of high-resolution folding seems to be the insufficient conformational sampling (Cooper 

2010). The artificial golf-hole-like energy landscapes without middle-range funnels could be 

a contributor to the shortcomings of conformational search, especially for proteins of larger 

sizes. 

 

                                                           
18  A high average contact order is the result of a complex topology. It has been observed that the higher the contact order, 

the slowest a protein folds, and that the folding rate doesn´t depend too much on the sequence (Alm 1999), this impacts the 

capabilities of MD-assisted folding simulations for proteins with a complex topology, since they would require much more 

computational power to simulate longer time scales. 
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FIGURE 8. Examples of free modeling in CASP7 generated by the two top methodologies 
(Zhang. 2007). T0283 (left) is a TBM target of 112 residues; but the model is generated by 
all-atom ROSETTA (a hybrid knowledge-based and physics-based approach), which gives a 
TM-score19 0.74 and an rmsd 1.8 A˚ over the first 92 residues. T0382 (right) is a FM/TBM 
target of 123 residues and all initial templates had incorrect topologies (>9 Å); the model is 
generated by I-TASSER (a purely knowledge-based approach) with a TM-score 0.66 and an 
rmsd 3.6 A˚. Blue and red represent the model and the crystal structures, respectively. It is 
common that these two methods excel when modeling all-α proteins. 

 

IV.2.3 Coarse-grained and Deep Learning Free-Modeling 

By the time ROSETTA achieved mainstream use in the molecular biology community, 

the ideas that lead to rapid progress in free-modeling had exhausted their potential and for 

a time the focus turned to refining them. A lack of collaboration between teams and the 

scarcity of significant progress in the understanding of the folding process20 may have 

accentuated this. Beta-proteins, large size and high contact order continued to pose the 

biggest challenges for structure prediction, overestimation of helix sizes and 

underestimation of strand sizes were common.  

The set of shapes that a protein might take can be likened to a landscape: different 

locations in the landscape correspond to different shapes, with nearby locations having 

similar shapes. The height of a location corresponds to how energetically favorable the 

associated shape is, with the lowest point being the most favored. Natural proteins evolved 

                                                           
19 The TM-score (Zhang.. 2004) was developed as an alternative to some of the drawbacks of the GDT score like its 

dependence to protein size and its subjective distance cutoffs. This score uses weights developed by (Levitt 1998), where 

shorts distances are weighted stronger than shorter distances, thus making the score more sensible to global topology than 

to local similarity. By associating a statistical significance test to this score, the authors found that a TM-score above 0.5 is 

an indicative of the same SCOP or CATH fold (Xu 2010). 
20 The successful idea of fragment assembly (Bowie 1991) emerged from folding theory, which hasn´t had any 

breakthroughs since the folding funnel hypothesis. 
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to have funnel-shaped landscapes that enable newly synthesized proteins, powered by the 

thermal fluctuations of the cell, to cross the landscape and find their way to a favored 

conformation in physiologically relevant timescales (milliseconds to minutes). Algorithms 

can search the landscape to find favored conformations by following the landscape’s 

inclination, but the ruggedness of the terrain causes them to get stuck in local valleys far 

from the lowest basin. At some point, coarse-grained representations of protein structures 

started to be relevant due to their ability to significantly extending the conformational 

sampling (Kolinski 2005). In particular, the use of graph representations/networks of proteins 

(Amitai 2004) (Thibert 2005), where vertices represent residues (or atoms) and edges 

represent 3D contacts between them is an interesting approach because combines 

computational speed in their handling with the vast theoretical edifice of graph theory 

results and their applications (Jacobs 2001). An important fact is that if a graph represents 

all the native contacts, it is possible to reconstruct the 3D structure from it (Havel 1979). One 

of the purposes of this thesis is to try to understand the potential benefits of this approach 

towards a free modeling protein structure prediction method. Graph representations of 3D 

contacts can also provide helpful information for model selection (Latek 2008). 

The course of the structure-prediction field started to change with the 

implementation of an old idea: that the evolutionary record contains clues about how 

proteins fold (Altschuh 1987). If two amino-acid residues in a protein are close together in 

3D space, then a mutation that replaces one of them with a different residue will probably 

induce a mutation that alters the other residue in a compensatory direction to maintain 

energetically favorable interactions, thus residues in spatial proximity may co-evolve across 

a protein family and the set of co-evolving residues can encode valuable spatial information, 

especially if they are far apart in the sequence. With the advent of the big sequence 

databases that permitted to construct useful multiple sequence alignments and by 

transforming this co-evolutionary information into 3D contacts in a graph/matrix 

representation of the contact map, the set of conformations that merit consideration by 

algorithmic searches can be greatly restricted (Göbel 1994). At the beginning of last decade, 

several groups started to identify a number of biases that had stymied prior attempts to 

augment the coevolutionary-3D contacts signal, and developed powerful statistical 

machinery to correct them. There was some consistent progress for several years, with direct 

coupled analysis (DCA) methods based on the Ising model being the more successful (Weigt 

2009). And then, in CASP13 (CASP 2018), several groups demonstrated that there was 

actually no need for robust statistics, it was sufficient to train deep residual neural networks. 

The initial injection of deep learning (a type of machine learning) into co-

evolutionary analyses improved matters by incorporating richer inputs. By 2018, the 

modelers were often scoring in the mid-70s of the performance scale (scores above 90 were 

considered on par with experimentally solved structures). AlphaFold, developed by Google’s 

DeepMind, had a median score close to 80 in CASP13. Instead of binary contact data, 

AlphaFold predicts the probabilities of residues being separated by different distances. 

Because probabilities and energies are interconvertible, AlphaFold predicts an energy 

landscape -one that overlaps in its lowest basin with the true landscape, but is much 
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smoother. In fact, AlphaFold’s landscape smoothness nearly eliminates the need for 

searching. This makes it possible to use a simple procedure to find the most favorable 

conformation, rather than the complex search algorithms employed by other methods. The 

resulting algorithm outperformed all entrants at CASP13, generating the best structure for 

25 out of 43 proteins, compared with 3 out of 43 for the next-best method. AlphaFold’s 

predictions had a median accuracy of 6.6 ångströms on this set of proteins – that is, for the 

middle-ranked protein in this set, the atoms in the proposed structures were on average 6.6 

Å away from their actual positions. 

At CASP 14 in 2020, its successor, AlphaFold 2 (Jumper 2021), had a median score of 

92.4—on par with experimental technique and as such, it can be considered one of the major 

science’s achievements of this century. The first section of the gigantic AlphaFold 2 neural 

network, the Evoformer, has the task of maximizing the extraction of coevolutionary/3D 

contacts information out of the multiple sequence alignment and a structure model made 

of templates. The central idea behind the Evoformer is that the information flows back and 

forth the network. Before AlphaFold 2, most deep learning models would take a multiple 

sequence alignment and output some inference about geometric proximity. Geometric 

information was therefore a product of the network. In the Evoformer, instead, the structure 

contacts representation is both a product and an intermediate layer. At every cycle, the 

model leverages the current structural hypothesis to improve the assessment of the multiple 

sequence alignment, which in turns leads to a new structural hypothesis. Both 

representations, sequence and structure, exchange information until the network reaches a 

solid inference. Evoformer is a transformer neural network, the transformer architecture was 

introduced in 2017 by a team at Google Brain, the key ingredient is a mechanism 

called attention. The objective of attention is to identify which parts of the input are more 

important for the objective of the neural network. In other words, to identify which parts of 

the input it should pay attention to. The main reason why transformers have not been widely 

implemented is that the construction of the attention matrix leads to a quadratic memory 

cost. The Evoformer architecture uses two transformers, with one communication channel 

between the two. Each head is specialized for the particular type of data it is looking at, 

either a multiple sequence alignment, or a representation of pairwise interactions between 

amino acids. They also incorporate the information of the contiguous representation, 

allowing for regular exchange of information and iterative refinement. The unparalleled 

performance of the AlphaFold 2 network seems down to DeepMind’s engineering. It seems 

that the ideas in the model don’t provide new insights on protein folding or about protein 

structure, it is their access to compute resources, and their engineering capabilities that 

turned them into the successful neural network it became. Many of the performance-

increasing details are probably due to intensive experimentation. 

In July 2022 researchers announced they have used AlphaFold 2 to predict the 

structures of more than 200 million proteins from some 1 million species, covering almost 

every protein sequence of Uniprot. The data is freely available on a database set up by 

DeepMind and the EMBL–EBI. According to EMBL–EBI, around 35% of the more than 214 

million predictions are deemed to be highly accurate, which means they are as good as 
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experimentally determined structures. Another 45% are considered to be accurate enough 

for many applications. Many AlphaFold 2 structures are good enough to replace 

experimental structures for some applications. In other cases, researchers use AlphaFold 

predictions to validate and make sense of experimental data. Poor predictions are often 

caused by intrinsic disorder in the protein itself that means it has no defined shape — at 

least, not without other molecules present. 

 

 

 

 

V. Protein Functional Conformers 
 

 

Proteins present conformational fluctuations (dynamics) (Hvidt 1954), and they are assumed 

to be important in several biological processes such as molecular recognition (Frederick 

2007), catalysis (Henzler-Wildman 2007), and allosteric regulation (Popovych 2006). The 

consequence of dynamics as a prerequisite to function suggests that in addition to structural 

requirements, such as shape and chemical affinity, function imposes requirements for 

flexibility as well. The biological functions of proteins can be viewed as arising from interplay 

between protein structure and dynamics, and new experimental and computational 

strategies are needed to understand better these two contributions. 

In the case of enzymes, catalytic requirements seem to arise case-by-case, but precise 

spatial arrangement of catalytic residues is clearly of central importance. As for the how 

sequences and structures are designed to facilitate conformational change, a clearer picture 

is emerging: to enable conformational changes, proteins need to make relatively large-

amplitude fluctuations toward specific directions. In native-basin dynamics, it has been 

established that the quasi-harmonic fast fluctuations are encoded largely in the three-

dimensional architecture, as illustrated by the accurate reproducibility of the RMSD 

fluctuations around the native state by the Gaussian network model (Haliloglu 1997), a type 

of structure-based elastic network model (ENM) in which vertices represents atoms (or 

amino acids) that are joined by strings according to interacting or distance criteria. In the 

case of allosteric changes, the direction of conformational change from the open state to 

the closed state can usually be well represented by a few low-frequency modes of the 

anisotropic network model (Atilgan 2001), another type of ENM.  

Protein motions modeled by simple elastic network models are harmonic or quasi-

harmonic, but the large-amplitude fluctuations required for functional relevant 

conformational changes are inharmonic (Miyashita 2003) and subject to a nonlinear 
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potential derived from the chemical identities of the residues. Evidence suggests that protein 

architecture alone is not sufficient, and that sequence specificities also play crucial roles in 

encoding motions. Some mutations that do not modify catalysis per se or the native 

structure can alter functional behavior substantially. In a recent study with Adenylate kinase 

(Schrank 2009), the authors found that certain mutations on residues localized away from 

the active site, increased the probability of a locally unfolded state that correlated with a 

change in the binding affinity. In addition, the interactions within a protein can be locally 

frustrated due to the restraints imposed by functions, a survey of allosteric proteins shows 

that hinge regions are located near regions of high frustration according to a residue-based 

simplified energy function (Ferreiro 2011), suggesting that functional requirements on the 

sequence may conflict with the optimal conditions for folding or packing.  

Another observation pointing to the role played by dynamics in enzyme function is 

that time constants for enzyme catalysis and product release, protein folding, and allosteric 

transition are all between microseconds and milliseconds. Since enzymatic reaction is 

essentially a change in the electronic state of the active site, one expects that the time scale 

must be quite short, between femto-seconds and pico-seconds. In addition, the diffusion-

controlled reaction detected by fluorescence quenching also occurs quite rapidly, around a 

time scale of pico-seconds. However, the enzymatic reactions are slower and its time scales 

are comparable to that of protein folding (Henzler-Wildman 2007). This suggest that, in 

order to prepare the special nuclear coordinate for the transition state of the bound active 

site, a protein must rearrange its nuclear coordinates substantially, and this process may 

generally take a period of time almost as long as that of protein folding.  

However, the discussions over the exact nature of this phenomenon will likely occupy 

the field for more years to come. Once a structural rearrangement linked to transition state 

formation is identified, the question is whether the detected movement contributes to 

catalysis by lowering the transition state barrier. In a dramatic substrate-to-product 

rearrangement such as proline cis-trans isomerization carried out by cyclophilin A (P. 

Agarwal 2006), the rearranging substrate may simply push certain side chains out of the way 

to reach the transition state. If these side chains are flexible and it costs negligible energy to 

brush them aside, then the accompanying movement will have little effect on catalysis. At 

the other extreme, rearrangements of the enzyme structure could be required to properly 

align the catalytic residues around the developing transition state, such that the protein 

dynamics that occur during transition state formation are essential to transition state 

stabilization and thus catalysis.  

Recent results suggest that conformational fluctuations resulting from the concerted 

motions of many atoms can push the unbound states of enzymes into conformations closely 

resembling the bound states, thereby priming them to form complexes with specific ligands 

(Boehr 2006). Thus, although the unbound state of a protein is inherently flexible, 

fluctuations are not random. Rather, they take place preferentially in a way that prepares the 

protein to bind to its cofactors and substrates. The free-energy landscapes of the free and 

the bound states may differ just enough to cause changes in the relative populations of their 
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principal states. After binding, the free-energy landscape is plastically deformed just enough 

to make a slightly different state of the protein become the most populated.  An example of 

this is the five successive transitions that carry out the enzyme dihydrofolate reductase (DHF) 

(FIGURE 9), where it has been shown that a binding event can cause a protein molecule to 

occupy a new free-energy minimum, stabilized by a ligand and geared to fluctuate toward 

another state that binds the next ligand in the catalytic cycle (Boehr 2006). This view may 

point out that the energy landscape is more than a mere funnel, and resembling rather a 

battered sombrero. Such picture reflects how evolution could have coordinated the thermal 

motions of hundreds of atoms to perform biological functions. 

 

FIGURE 9. The dynamic energy landscape of DHF catalysis (Boehr 2006). The ground state 
(larger) and higher energy (smaller) structures for each intermediate in the cycle are shown. 
For each intermediate in the catalytic cycle, the higher energy conformations detected 
resemble the ground-state conformations of adjacent intermediates. 

In a series of recent millisecond MD simulations carried out for two small proteins 

(Shaw 2010), the authors could observe the particularities of the short and large amplitude 

fluctuations. An identified region of reduced dynamical activity in the interval between those 

time regimes could be a common feature of proteins. One section of one of the proteins 

changed its conformation during hops between basins and the side chains of the protein 

moved slowly compared to their movement in the short amplitude fluctuations, where 

backbone movement is minimal. The transition time between conformational transitions was 

at least several hundred nanoseconds, a time that might tend to increase with protein size. 

Also, binding and escape events of a water molecule showed to be considerably faster than 
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the lifetime of the bounded state. A 1-millisecond simulation of the folded protein BPTI 

revealed a small number of structurally distinct conformational states whose reversible inter-

conversion is slower than local fluctuations within those states by a factor of 1000 or more. 

Interestingly, it has been proposed that the conformational diversity of proteins allows them 

to be functionally evolvable (Tokuriki 2009). Minor conformers may mediate alternate 

functions, and mutations could shift the conformational equilibrium to favor these 

conformers and thus increase the level of the alternate function. 

There are several approaches for predicting functional residues, most of them based 

on conserved positions or solvent-accessibility surface (SAS) (Ashkenazy 2010). These 

predictors normally point to the active or binding site residues. But as allosteric regulation 

shows, important residues for function may not necessarily reside there. A report on the 

enzyme dihydrofolate reductase showed that a network of coupled systematic motions in 

distant residues of the protein is associated to the reaction trajectory from the reactant to 

the transition state (P. B.-S. Agarwal 2002). Thus, if as discussed above, certain functionally 

relevant fluctuations appear to depend not only in the position but also in the chemical 

identity of residues positioned away from the active site, it is desirable to predict this class 

of residues too.  

 

VI. Graph Representation of Protein Structures 
 

Depending on the problem studied, protein structures can be chosen to be 

represented in a number of different ways: as atomic coordinates, as secondary structure 

elements, etc.  The employ of graph/network approaches to model protein structures, where 

amino acids residues are represented as the vertices of a graph (in the graph theory sense), 

and the contact or proximity in space between them as the edges21 (FIGURE 10), has been 

chosen for problems like fold recognition (Mirny 1996) and the study of transition states of 

folding (Vendruscolo 2001). In this work we will call this approach Protein Graphs. 

 

                                                           
21 From this definition we can see that a graph or network derived from a 3D protein structure is equivalent 
to the notion of a contact map of amino acid residues, which is the term preferred in the context of protein 
structure solving and prediction. In this work we treat graph, network or contact map as indistinguishable 
terms. Therefore, the terms vertex and edge of a graph are equivalent, respectively, to the terms node and 
connection of a network. 
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FIGURE 10. Matrix representation for the graph corresponding to the structure of the HSP-
60 protein (PDB: 1KID). Each x or y-value corresponds to one vertex (from residue 180 to 
380). On the upper left triangle each dot indicates an edge that is present between the 
corresponding pair (x,y) of vertices in the graph. In this example an edge is present 
whenever the CB atoms of two residues are at most 8.0 Å apart. The secondary structure 
elements are indicated along the x and y axis and on the lower right triangle some structural 
features are highlighted in dark: (a) β2_ β3 β6_ β7 anti-parallel sheet, (b) β4 β5 parallel 
sheet and (c) α5 α6 contacting helical regions. 

 

Protein Graphs have been fruitful in identifying functional residues beyond those 

identified by evolutionary or SAS methods. Measures like closeness centrality (CC) and 

transitivity, that captures the load of flux that could pass through a given vertex have proved 

especially suited for this task (Amitai 2004) (Thibert 2005) (Cusack 2007).  

Thermal motions act as a molecular lubricant during conformational changes, 

directing the protein through the energy landscape. Yet, in a given macromolecule only a 

subset of possible motions is important for biological function. It is a challenge to identify 

these functionally relevant conformations. If, as previously noted, Protein Graphs permit that 

certain functionally important residues can be identified by structure alone, it is reasonable 

to propose that those conformers that are directly involved in function are those that harbor 

the functional residues as central residues in the corresponding graphs. One of the 

objectives of this thesis is to test this hypothesis. 
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OBJECTIVES  

AND HYPOTHESIS 
 

 

There were two objectives in the development of the present work: 

I. To find patterns in the graph representations of protein structures that could be 

used in the conformational space search step of a free modeling protein structure 

prediction protocol. Our hypothesis in this case is that the graph representations 

of native protein structures have a particular class of topological properties that 

distinguishes them and that we look to characterize. We think that these features 

can be exploited to accelerate the search of near-native structures in the 

conformational space landscape. 

II. To predict functional conformers by mapping critical residues with graph-derived 

central residues. In this case our hypothesis is that graph-derived central 

residues are a good predictor of the critical residues for the function of a protein 

and that this becomes evident only when the structure of the protein adopts the 

particular conformers that carry on the function. Thus, we hypothesize that the 

functional conformers are those whose critical residues coincide the most with 

their central residues. 

 

 

METHODS 
 

 

Graph Representations of Protein Structures (PGs). Coarse-grained models are seen as 

a reasonable approximation to full-atom models of protein structures in order to speed 

computational methods of structure prediction. We used the graph representation (a set of 

vertices connected by edges) of protein structures to achieve fast calculations but more 

importantly due to previous work (Thibert 2005) that found that certain measures derived 

from this type of representation are useful for identifying critical residues (residues essential 

for protein function). Graph representations (FIGURE 10B) where constructed as follows: i) 

We used the 3D atom coordinates of PDB format files. ii) Each amino acid residue is 

represented as a vertex. iii) Whenever any two atomic centers belonging to different amino 

acid residues lie inside a sphere of 5 Å of diameter, we connect those two amino acids by 

an undirected edge22. This particular way to build the PGs was chosen due a previous study 

                                                           
22 We calculated the distance d(a1,a2) between two residues a1, a2 as: 
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that found its effectiveness to map graph-central vertices with critical residues for function 

(Thibert 2005).   

 

 

FIGURE 10B. Schematic view of graph representations of protein structures (PGs). (a) Since 
certain atoms of the residues in red are within a distance of 5 Å of each other, the vertices 
corresponding to those residues become connected in the PG. (b) Matrix representation of 
a PG. Called adjacency matrices, they have as much columns (and rows) as the number of 
residues in the protein. Every pair of entries ai,j / aj,i are colored in grey if the i residue is 
connected to the j residue. (c) Cartoon of a backbone showing the edges of its PG. (d) 
Depiction of the corresponding PGs for two proteins. 

Non-redundant Structural Representatives (NRR). To find general patterns of graph 

representations of proteins, we selected 1,899 significantly different protein structures from 

                                                           
, 

where ak,i denotes the positions of all the atomic centers of the i atoms of the residue ak. Then we assigned an edge to all 

pairs whose d(a1,a2) < 5 Å.  
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the FSSP database23. Each of these proteins comes from a different first-level structural class 

in the FSSP classification and the 1,899 structures covered the entire first level of the FSSP 

database at the time of the study. By being from different first-level classes we make sure 

that for every pair of these structures their DALI structural similarity has a z-score < 2 (a DALI 

similarity between two structures with z-score ≥ 2 means that the DALI similarity is two 

standard deviations away from the average DALI similarity obtained from an all-against-all 

PDB-wide structural comparison, or in other words, a z-score ≥ 2 means that the similarity 

of these two structures is statistically significant). 

Measures derived from PGs. We derived several measures and looked at their distribution 

across the 1,899 structures to find characteristic features of this kind of graphs. i) Degree (k): 

In an undirected graph, the degree of a vertex corresponds to its edges. ii) Clustering 

coefficient (CC). The clustering coefficient estimates how close the neighbors of a vertex 

(those vertices directly connected to the vertex in question) are to form a clique (a subgraph 

where all vertices are connected), thus CC = [Observed No. edges between the N-neighbors 

of a vertex]/[Expected No. edges in a clique of size N]. The CC gives an idea of how strongly 

connected are the neighbors of a given vertex. iii) Contact order (CO). This is a common 

measure in the structure prediction methods. It is defined as the number of residues in the 

primary sequence that lie between two residues that are in contact in the 3D structure. In 

the graph representation, the CO is just the number of edges that has the primary sequence-

derived path (a path is any set of consecutive edges) between two vertices connected by a 

non-primary sequence-derived edge. iv) Matrices of Normalized amino acid type contact 

preferences (MNCP). We wanted to know if there are preferential connections between 

different amino acid types. A simple way to look at this is to count the number of edges 

between any two different amino acid types in a structure or set of structures and then divide 

this number by the total number of edges, we end up with symmetrical matrices of 20x20 

NCPs. 

Identifying Central Residues from PGs. Central residues were defined as those residues 

that correspond to the vertices with the largest and less frequent transitivity values. The 

transitivity value of a vertex was obtained by counting the number of times this vertex was 

in the shortest paths connecting every pair of vertices in the graph. The frequency of a 

transitivity value is the number of vertices presenting that transitivity value in a graph. Thus, 

each vertex will have a transitivity value and a value-frequency in the graph; only those 

having transitivity values immediately close to the largest transitivity value in the graph and 

with the same transitivity value frequency as those with the largest transitivity values are 

considered central. Using this strategy, we observe that about 20% or less of the vertices 

were central in the PGs. For these calculations, we used our software available 

                                                           
23 The FSSP database is a continuously updated structural classification of three-dimensional protein folds. It is derived 

using a structure comparison program (DALI) for the all-against-all comparison of three-dimensional coordinate sets in the 

PDB. Hierarchical clustering based on structural similarities yields a fold tree that defines 1,899 fold classes. For each 

representative protein chain, there is a database entry containing structure-structure alignments with its structural neighbors 

in the PDB. DALI stands for Distance matrix ALIgnment and is a server that does a 3D comparison of protein structures 

that assigns a similarity score by finding an alignment that minimize the distance matrix between the Cα of two proteins. 
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at http://bis.ifc.unam.mx/jamming/ (Cusack 2007).  Transitivity, T, is related to betweeness B 

(Brandes 2008), as follows: Bi = Ti/SPi; where Bi is the betweeness value calculated for the i-

vertex, Ti is the Transitivity value of the i-vertex, and SPi is the number of shortest paths 

connecting the i-vertex to the rest of the vertices in the graph. 

Overrepresented Subgraphs (Motifs). For discovering the frequency of different types of 

subgraphs inside the PGs that are overrepresented with respect to a random expected 

frequency (so-called motifs) we used mfinder, a free tool from the lab of Uri Alon (Milo 2002) 

that count the frequency of any type of subgraph of less than 9-vertices. We were interested 

in which subgraphs were overrepresented in the PGs with respect to a null random model. 

For this we generated, for each PG to analyze, different sets of random graphs that conserved 

the exact sequence of degrees of each vertex in the PG. For evaluating the significance of 

the frequency of 3- and 4-vertices subgraphs we compared the relative frequencies of these 

subgraphs in 10,000 random graphs (RGs), for the 5-vertices subgraphs we used a random 

sample taken from 50,000 RGs and for the 6-vertices subgraphs we used a random sample 

taken from 100,000 RGs. The need for random sampling is due to the computational load 

that is expected from the exponential growth in the number of different subgraphs as a 

function of the number of vertices that form them (Harary 1973).  

Connectivity measures for PGs of Backbone-less Proteins. The particular distance 

criterion used for building the PGs24 implies that every two consecutive residues in the 

polypeptide chain are always connected by an edge. To evaluate the connectedness of the 

PGs irrespective of the connectivity directly provided by the polypeptide chain we removed 

all the edges that linked every vertex with its first, or both its first and second neighbors 

along the polypeptide chain, we called them 1-simplified and 1/2-simplified PGs, 

respectively. We then proceeded to calculate some connectivity measures on these 

“backbone-less” PGs. i) The Eccentricity (εv) of a vertex v is the greatest geodesic distance 

(number of edges in a shortest path connecting two vertices) between v and any other 

vertex. It measures how far a vertex is from its most distant vertex in the graph. ii) The Radius 

of a graph is the minimum of all the εv of the graph. iii) The Diameter of a graph is the 

maximum εv of the graph. That is, it is the greatest distance between any pair of vertices. To 

find the diameter of a graph, first we find the shortest path between each pair of vertices. 

The greatest length of any of these paths is the diameter of the graph. iv) Connectedness. 

We can verify if the graph was left disconnected (tested for the presence of vertices for which 

there is no path connecting them) by the removal of the backbone-derived edges. For this 

we simply check if the eccentricity of any vertex is zero. 

Structural Data used for Analyzing Central Residues and Functional Conformers. To 

study the relationship between functional residues and central residues in multiple protein 

structures, two proteins were used: HIV protease and the T4 lysozyme. For the HIV protease, 

73 experimentally determined crystal structures were used: 1a30, 1a8g, 1a9m, 1aaq, 1ajv, 

1ajx, 1axa, 1bdr, 1bv7, 1bv9, 1bwa, 1bwb, 1cpi, 1dif, 1dmp, 1gnm, 1gnn, 1gno, 1hbv, 1hih, 

                                                           
24 If any two atomic centers belonging to different amino acid residues lie inside a sphere of 5 Å of diameter 
then we link with an edge the vertices corresponding to those amino acids residues.  

http://bis.ifc.unam.mx/jamming/
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1hiv, 1hos, 1hps, 1hpv, 1hpx, 1hsg, 1hte, 1htf, 1htg, 1hvc, 1hvi, 1hvj, 1hvk, 1hvl, 1hvr, 1hvs, 

1hwr, 1hxb, 1hxw, 1mer, 1mes, 1met, 1meu, 1mtr, 1odw, 1odx, 1ody, 1ohr, 1pro, 1qbr, 1qbs, 

1qbt, 1qbu, 1sbg, 1tcx, 1vij, 1vik, 1ytg, 1yth, 2aid, 2bpv, 2bpw, 2bpx, 2bpy, 2bpz, 2upj, 3aid, 

4hvp, 4phv, 5hvp, 7hvp, 8hvp, 9hvp. For the T4 lysozyme 23 experimentally determined 

crystal structures were used: 1ctw, 1cu0, 1cu2, 1cu3, 1cu5, 1cu6, 1cup, 1cuq, 1cv0, 1cv1, 1cv3, 

1cv4, 1cv5, 1cv6, 1cvk, 1cx7, 1d2w, 1d2y, 1d3f, 1d3j, 1d3m, 1d3n, 1qsq.  

To identify functional conformers, three sets of protein structures were used: HIV protease, 

the yeast TATA-Binding Protein (TBP) and the MolMov set of proteins. For the HIV protease, 

the same protein structures described above were used. The PDB code of those structures 

in complex with a substrate analogue are: 1aaq, 1cpi, 1dmp, 1hbv, 1hih, 1hiv, 1hos, 1hps, 

1hpv, 1hte, 1htf, 1htg, 1hvi, 1hvj, 1hvk, 1hvl, 1hvr, 1hvs, 1ohr, 1sbg, 2bpv, 2bpw, 2bpx, 2bpy, 

2bpz, 4hvp, 4phv, 5hvp, 7hvp, 8hvp, 9hvp. For TBP, the crystal structures used had the PDB 

codes: 1tbp for TBP without DNA, and 1ytb for the TBP complex with a TATA box 

(TATATAAA).  

In the case of the MolMov set, we used the proteins reported at the database of 

macromolecular movements (Flores 2006). This database includes structures of proteins 

motions and we have analyzed only those including an interaction with a ligand. Thus, this 

set includes proteins solved in the absence of a ligand (MolMov subset U) and the same 

proteins solved in the presence of a ligand (MolMov subset I). The PDB codes in the MolMov 

subset U includes: 1bjz, 1beb, 1dqz, 1tre, 1pin, 1dv7, 4crx, 1ex6, 1fto, 1omp, 1rkm, 1oib, 1nyl, 

1urp, 1akz, 1d6m, 1gp2, 2pfk and 1pjr. The PDB codes in the MolMov subset I include: 1bjy, 

1b0o, 1dqy, 6tim, 1f8a, 1dvj, 1crx, 1ex7, 1ftm, 3mbp, 1qai, 2rkm, 1quk, 1gtr, 2dri, 1ssp, 1i7d, 

1cip, 1pfk and 3pjr. The MolMov set includes very diverse types of ligands and protein 

architectures (TABLE 4) and the number of amino acids per protein ranked from 156 to 647. 

Finally, for each structure in these subsets, 26 normal modes of vibration were calculated 

using ElNèmo (Suhre 2004) and 11 protein conformations derived for each. Thus, the 

MolMov set includes a total of 5,720 protein structures, with 2,860 protein structures in each 

subset. TE HACE FALTA HABLAR DE LOS DATOS DE LA TIM EN DONDE COMPARAS LOS 

CONSERVADOS CON LOS CENTRALES 

Molecular Dynamics Simulations (MD). The group of Nina Pastor carried out the MD 

simulations used for the study of functional conformers. The initial structure for the 

simulation of free TBP was derived from 1TBP (Kim 1993). For the bound TBP the initial 

structure was 1YTB (Chasman 1993) (chains B and D), which is the carboxyl terminal domain 

of TBP from Saccharomyces cerevisiae bound to a TATA box hairpin (5′ TATATAAA 3′, CYC1); 

the bases in the hairpin were removed, and only 10 base pairs were kept (the TATA box and 

one-base pair at the 5′ and 3′ end). The complex of TBP bound to sequence 5′ 

GCGCGCGCGC 3′ (CG) was constructed introducing the necessary modifications to the 1YTB 

structure using the Biopolymer module of Insight II program. The structures were solvated 

placing the solute molecules on a cubic TIP3 water box and removing all the waters within 

2.5 Å of the solute. The cubic water box was trimmed to a hexagonal box employing the 

Simulaid program (Mezei 1997). Initially, the water molecules and sodium atoms were 
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submitted to an energy minimization using 4 stages of 500 Steepest Descent (SD) steps and 

2 stages of 1000 Adopted Basis Newton-Raphson (ABNR) steps. After solvent minimization, 

periodic boundary conditions (PBC) were turned on employing the CRYSTAL module of the 

CHARMM (Brooks 1983) program version 28 using CHARMM27 parameters (Foloppe 2000) 

(MacKerell 1998). The solvent was again minimized with 500 ABNR steps keeping the solute 

molecule fixed. Two final minimization stages were applied to the whole system with 250 

SD steps and 250 ABNR steps. The solvent was equilibrated with 150 ps of molecular 

dynamics using a 1.5 fs step in the NPT ensemble at 300 K with the Leap-Frog integrator. 

Later, the whole system was equilibrated using the same protocol for the solvent. The 

Berendsen algorithm was used. A value of 600.0 atomic mass units (amu) was used for the 

mass of the pressure piston. The reference pressure was set to 1 atm. The Langevin piston 

collision frequency was set to 10.0 ps−1. The Langevin piston bath temperature was set to 

300 K. The Hoover constant temperature was used. The Hoover reference temperature was 

set to 300.0 K. The mass of the thermal piston was set at 1000 kcal*ps−2. The target 

temperature was 300 K. The image and neighbor list update were done when necessary 

(heuristic test), with a distance cut-off set to 14 Å; electrostatic interactions were shifted, and 

van der Waals interactions were switched, to ensure smooth forces at the cutoff distance. All 

calculations were performed using SHAKE algorithm and an integration time step of 1.5 fs 

was used. All the systems were simulated for 10.65 ns using PBC with the CRYSTAL module 

of CHARMM in the NPT ensemble at 300 K with the Leap-Frog integrator saving coordinates 

every 100 steps. The last 9 ns were used for analysis. 

Solvent Accessible Surface Area of Residues (SASA). To measure the movements of 

individual residues during the MD simulations, we calculated the SASA of each residue in 

each conformer (AQUI DEBES DECIR AL MENOS CON QUE SOFTWARE LO CALCULASTE).  

Estimating the Reliability of the Predictions. Two measurements were used to account 

for this: sensitivity and specificity. Sensitivity, Se, is defined as Se = (TP+FN)/AP, where TP: 

true positives, FN: false negatives and AP: all positives. In our case, AP are all the critical 

residues determined experimentally, TP are the critical residues correctly predicted and FN 

the critical residues not predicted as critical. Specificity, Sp, is defined as Sp = (AN−FP)/AN; 

where AN: all negatives and FP: false positives. In our case, AN are the non-critical residues 

determined experimentally and FP are the residues predicted as critical, which are not 

critical. Additionally, to compare the sensitivity of the predictions in paired comparisons, we 

defined the Combined Sensitivity parameter as: 

// 

Where C1 refers to the observed central residues in protein 1 and, C2 refers to the observed 

central residues in protein 2. M is the number of central residues that are truly critical 

residues for either protein 1 or protein 2. Thus, 2< = CS> = 0 to distinguish it from Sensitivity. 

Prediction of Critical Residues as Conserved Residues. The ConSurf server (Berezin 2004) 

was used for this. The parameters used to run the ConSurf server were: Maximum likelihood 

method used to calculate the conservation scores, PSI-BLAST E-value = 0.001, maximum 
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number of homologous sequences = 50 and the number of PSI-BLAST iterations = 1. 

Conserved residues were those with the most negative score (color code of 9). 

Identification of Structural Domains. We wanted to know if a natural division of the 

vertices of a PG into non-overlapping groups leads to the identification of structural 

domains in the corresponding protein structure. A good division of a graph into groups is 

not merely one in which there are few edges between the proposed groups; it is one in 

which there are fewer than expected edges between groups. If the number of edges between 

groups is significantly less than we expect by chance, or equivalent if the number within 

groups is significantly more, then it is reasonable to conclude that the division is meaningful. 

This idea can be quantified by using the measure known as modularity. The modularity is, 

up to a multiplicative constant, the number of edges falling within groups minus the 

expected number in an equivalent network with edges placed at random. Thus, one can 

search for grouping structure by looking for the divisions of a graph that have positive and 

large values of modularity. For calculating which partition maximizes the modularity we 

made a program implementing the spectral method of Newman (Newman 2006) involving 

adjacency matrices (FIGURE 10b) and applied it to the PG derived from the structure of the 

ε-subunit of the ATP synthase (PDB code: 1AQT).  

 

RESULTS  
 

 

The Graphs derived from Protein Structures (PGs) show Distinctive Features. Our first 

hypothesis is that the graph representations of native protein structures have properties that 

distinguishes them and can be used to speed the discrimination of near-native protein 

structures in a conformational space search. We started searching for these properties in a 

set of graphs built for 1,899 non-redundant protein structural representatives (see Methods). 

We plotted the most frequently used graph-derived measures (see Methods) since in this 

way we could compare our results with the literature in order to find a model that could 

reproduce our findings. The first plot (FIGURE 11) shows the probability P(k) of finding a 

vertex with degree k in a PG. The most probable vertex degree is 12 (P=0.113). We could fit 

a Poisson distribution to the data (with a confidence level of 98%). It is important to note 

that all but the two residues at each end of the protein sequence always have four edges 

derived from the primary structure just because of the way we built the graphs. We see from 

the data that it is possible to find vertices that have > 20 edges, which tell us about the 

compactness that certain regions of a protein could achieve. Next we plotted the average 

clustering coefficient as a function of the degree CC(k) of a vertex (FIGURE 12), we found 

that this data could be fitted (with a confidence level of 98%) by a power law distribution 

with exponent α=0.53. We also plotted the average clustering coefficient as a function of 

the number of vertices CC(n) of a PG (FIGURE 13) and we could fit the data to exponential 

decay distribution with rate β=0.64 (confidence level α = 0.907). 
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The resulting distributions were compared with those corresponding to well-studied 

graph models: random graphs, scale-free graphs and hierarchical graphs (Barabasi 2004) 

(Ravasz 2003). The principal result is that none of these models could be adjusted to our 

observed distributions. The observed distribution of P(k) can be replicated with a random 

model but that models fails in the rest of the distributions. Likewise, the observed CC(k) 

distribution can be modeled with a hierarchical network, but this kind of network can’t 

generate the distributions of the other measures. Finally, for the CC(n) distribution we found 

that can be modeled in a better fashion by a scale-free model (fit with 85% confidence). 

Recently, a new model of graphs that seems to be more appropriate has been developed. 

These models, called geometric graphs (GG)25 (Dall 2002), are constructed on the basis of 

distance and spatial relationships between objects. We observed that the GG model with a 

random spatial arrangement of vertices can replicate the observed P(k) distribution. 

 

 

FIGURE 11. The probability P(k) of finding a vertex with degree k in a PG. The most probable 
vertex degree is 12 (P=0.113). We could fit a Poisson distribution (red line) to the data with 
a confidence level of 98%. 

 

                                                           
25 The model of a GG is as follows: In a d-dimensional space, with a defined distance function and a distance-threshold 

value d, all vertices that reside within a distance d of each other are connected. The spatial localization of every vertex can 

be derived from any distribution (random, power-law, exponential). 
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FIGURE 12. Average clustering coefficient as a function of the degree CC(k) of a vertex. The 
data could be fitted with a confidence level of 98% by a power law distribution (red line) 
with exponent α=0.53. 

 

 

FIGURE 13. Average clustering coefficient as a function of the number of vertices CC(n) of 
each PG. We could fit the data to exponential decay distribution with rate β=0.64 at a 
confidence level α = 0.907 (yellow line). Alternative models like random (blue line) and scale-
free (red lines) graphs achieved lower fittings. 
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Number of Edges Distribution. A very basic feature that we could look at is the number of 

edges as a function of the number of vertices that a PG has. FIGURE 14 shows the plot for 

this. We observe a strong linear relationship that could be the consequence of a 

homogeneous atomic density across most proteins. There are some PGs that appear to be 

more compact as observed for the slightly more pronounced slope of the line they seem to 

conform. We then evaluate if this particular linear relationship is a good predictor of when 

the PG is derived from a native structure versus when it is derived from an incorrectly folded 

decoy. For this we downloaded a set of incorrect decoys from http://dd.stanford.edu and 

compared their number of edges with the number of edges of the corresponding native 

structures. We found that there is not a significant difference between them (TABLE 1), but 

we believe that this criterion is necessary even if clearly not sufficient when searching for 

near-native derived PGs 

 

 

 

FIGURE 14. Number of edges (order) as a function of the number of vertices (size) for each 
NRR PG. We could fit the data to a linear correlation (red line) with coefficient r=0.996. 
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TABLE 1. Number of edges of PGs from 23 native structures and their incorrect decoys from 
http://dd.stanford.edu. 

 

A small exercise for predicting native contacts. We wanted to implement a small routine 

for predicting native contacts of a selected protein. We choose the structure of the gene V 

protein from F1 phage (PDB code: 1GVP) since there exists a considerable amount of 

mutagenesis data regarding their critical residues. Our routine makes use of the structural 

data so is not an Ab Initio protocol. Still we thought the exercise would be helpful to start 

benchmarking futures developments. We worked with the matrix representation of the 

graph, this is called the Adjacency Matrix of the graph A(G), and is constructed by filling with 

1’s the Ai,j entries of the matrix corresponding to 3D contacts between pairs of vertices i and 

j and with 0’s the rest of the entries. We also calculated three MNCPs (See Methods) 1) One 

from the complete set of NRR PGs (MNCP1). 2) One from the 1GVP PG (MNCP2). 3) A 

uniform MNCP that we used as null model (MNCP3). 

The protocol is the following: i) Choose randomly a vertex i of the new graph G.  ii) Verify 

that the number of edges of this vertex don’t be greater that the degree (di(1GVP)) of the 

corresponding vertex in the 1GVP PG, if not, go back to the first step. iii) If its number of 

http://dd.stanford.edu/
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edges is < than di(1GVP) proceed to assign a new edge with that vertex j whose corresponding 

value in the MNCP is the highest and only if its corresponding dj(G) is less than dj(1GVP), 

otherwise repeat this step and try to connect it with the vertex with the next highest value 

in the MNCP. If there is more than one vertex satisfying these conditions proceed to choose 

one randomly. iv) Go back to the second step and apply the procedure to the newly 

connected vertex j. v) Stop when all vertices converge to its maximum allowed number of 

edges or when it had passed 1000 cycles without converging. 

We obtained 1,000 graphs when using MNCP2 and MNCP3 in step iii). Interestingly, when 

using MNCP1 the routine could not converge to a single graph. We then calculated the 

percentages of native contacts that were formed in the graphs built using the MNCP2 and 

compared them with the percentages produced by using MNCP3. FIGURE 15 shows the 

results of this comparison. A few of the graphs built using the uniform-valued MNCP3 can 

achieve ~8% of the native contacts on top of the 29% derived by the proximity in the primary 

sequence, ~8% is a maximum achieved by random contacts between different amino acid 

types and the restraint that we keep the same sequence of degrees that the 1GVP PG. When 

using the 1GVP-derived MNCP2 we see that the minimum percentage of native contacts is 

very near the maximum obtained when using MNCP3 and that the use of the 1GVP-derived 

MNCP2 can contribute with a further ~ 5%. 

 

FIGURE 15. Percentages of native contacts that were formed in each of the 1,000 graphs 
built using the MNCP2 (red line) and each of the 1,000 graphs produced by using MNCP3 
(black line).  
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The Distributions of Contact Orders. Another property that can be particularly helpful is 
the contact order (CO) since this is a natural feature of the PGs; we say that the CO between 
two vertices that are connected by an edge is equal to the distance at which they sit apart 
in the protein sequence. We looked at different distributions of the COs calculated from the 
NRR set. FIGURE 16 is the distribution of frequencies for each value of CO that we found, 
behind the distribution there is a protein-size effect since the larger values of CO are only 
possible in sufficiently large proteins. FIGURE 17 is the distribution of frequencies for each 
value of normalized CO (CO/protein length), thus we are removing the protein-size effect of 
the previous plot. We observe a fast decay with a long tail that reflects the degree of complex 
folding that can achieve certain proteins. Then we calculated the average CO and the 
normalized average CO of each PG (FIGURE 18). Again the non-normalized values bear a 
protein-size effect that favors the small values, but in the normalized average CO (FIGURE 
19) we can see a distribution that reflects the heterogeneity of the fold universe, with the β-
sheet proteins likely contributing to the larger CO values. Both curves can be fitted by a log-
normal distribution. The FIGURE 20 shows the frequency of each normalized CO value found 
in each of the PGs of the set of NRR (in this case for each PG the sum of their normalized 
COs adds one). The diagonal that goes from x-axis = 1 to y-axis = 1 defines the 
corresponding theoretical maximum frequency that any normalized CO value can have. For 
example, a maximum of 20% of the total number of residues can have a normalized CO of 
0.8 (i.e. 3D contacts between residues separated in the sequence by 80% of the length of 
the protein). We observe a large region below this diagonal that is scarcely populated, a 
feature that can be exploited when searching for near-native PGs. Again, we see that most 
of the contacts are local and that there is a slow decreasing in the frequency of increasingly 
larger contact orders. Thus, the distribution shows that large contact orders are just a little 
less probable than medium contact orders.  

 

 

FIGURE 16. Distribution of frequencies for each value of Contact Order (distance in the 
sequence) found in the NRR PGs set. The major part of the distribution can be fitted by a 
exponential model (red line) (correlation coefficient r=0-978). 
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FIGURE 17. Distribution of frequencies for each value of normalized Contact Order 
(CO/protein length). 

 

 

FIGURE 18. Frequency of PGs according to its Average CO. The distribution can be fitted by 
a log-normal model (red line). 
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FIGURE 19. Frequency of PGs per Normalized CO Average. The distribution can be fitted by 
a log-normal model (red line). 

 

 

FIGURE 20. Frequency of each normalized CO value found in each of the PGs of the set of 
NRR (in this case for each PG the sum of their normalized COs adds one). The diagonal that 
goes from x-axis = 1 to y-axis = 1 defines the corresponding theoretical maximum frequency 
that any normalized CO value can have. 
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Motifs. When a protein starts folding it forms well-defined local substructures that 

eventually give rise to secondary structure elements. We wanted to know if these 

substructures can be identified as graph motifs, that is, particular types of overrepresented 

subgraphs with respect to a random expectancy. For any given number of vertices n, there 

exists a finite number of possible connected graphs, and this number grows exponentially 

with n (Harary 1973). We searched for subgraphs of up to six vertices (those were the largest 

subgraphs we could look for due to computational restraints since the search time grows 

approximately as a power of 2 on the size of the subgraphs), that are overrepresented in 

each of the NRR PGs with respect to a null model of random graphs that shared the same 

sequence of degrees of the PG in question (see Methods). FIGURE 21 shows the 3-, 4- and 

5-motifs found. We observe that in general, the subgraphs that are motifs don’t contain the 

square nor the pentagon subgraphs, by contrast, the triangle subgraph is contained in 

almost all motifs which could be an indication of steric constrains inside proteins. We then 

filtered and pooled the NRR PGs in those belonging to the α-class proteins and those 

belonging to the β-class. We wanted to know if any of the five and six vertices-subgraphs 

are indicators of α-helices or β-structures. FIGURES 22 and 23 shows that this is not the case, 

the frequency of each 5- and 6-subgraph is practically the same in an α-class protein that in 

a β-class protein.  

 
FIGURE 21. Diagrams of all possible connected simple graphs up to five vertices. Yellow 
squares indicate the Motifs found in the NRR PGs set. 
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FIGURE 22. Frequency of each 5-subgraph in α-class and β-class proteins. The x-axis runs for 
the 21 possible 5-subgraphs in increasing number of edges 

 

 

FIGURE 23. Frequency of each 6-subgraph in α-class and β-class proteins. The x-axis runs for 
the 112 possible 6-subgraphs in increasing number of edges 

We also looked for motifs in geometric graphs GG due to their capacity to replicate 

the PGs degree distribution. One hundred 3D-GGs of 100 vertices each were generated. For 

this we used an arbitrary Euclidian distance and random spatial distribution. Then we looked 

for 6-motifs and compared their frequencies with those corresponding of the 6-motifs of 

the PGs. FIGURE 24 shows the results of the comparison. As observed in the leftmost bar, 

almost half of the PG’s 6-motifs can be also found in 3D-GGs at similar frequencies.  
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FIGURE 24. Percentages of four ranges of differences in the frequencies of 6-vertex motifs 
between PGs and geometric random graphs. 

PGs without the contacts derived from the backbone proximity. We were also interested 

in studying how much of the extent of the connectedness26 of the PGs relied on the contacts 

derived from the proximity that the backbone brings, since our way of constructing the PGs 

implies that every two consecutive residues in the polypeptide chain are always connected 

by an edge. We derived two sets of modified PGs from the 1,899 NRR PGs by removing 

those contacts derived directly from the backbone (1-simplified PGs) and also those contacts 

between amino acids two residues apart in the backbone (1/2-simplified PGs) (see Methods). 

To evaluate the connectedness of these two sets of graphs we measured their eccentricity 

and diameter (see Methods for these definitions). TABLE 2 shows the results. The effect of 

the 1-removal is minimal in terms of the connectedness. We expected this since the 

maximum theoretical separation between two amino acids separated by one residue in the 

backbone is around 4.88 Å, below our cut when defining the edges, thus the reason of 

studying 1/2-simplified PGs. We see that 7.7% of the 1/2-simplified PGs got disconnected 

and that there is a significant change in the diameter of the 1/2-simplified PGs versus the 

PGs, a result that suggest that the backbone-derived edges are in charge of some of the 

short-circuiting. The change in the average eccentricity is more gradual. 

Graph Type 
% of Disconnected 

Graphs 
Avg 

Eccentricity 
e 

PGs 0 6.41 9.44 

1-Simplified 0.21% 6.55 9.64 

1/2-Simplified 7.70% 6.74 10.41 

TABLE 2. Measures of connectedness in three sets of graphs: PGs, 1-Simplified PGs and 1/2-
Simplified PGs. 

We explored further the change in the diameter from the PGs to the 1/2-Simplified 

PGs (FIGURE 25). As expected the diameter increases in a broad range of values for different 

PGs. In some cases, the diameter diminishes, most probable as a result of the disconnection 

                                                           
26 The connectedness measures if the graph is formed by one or more unconnected/separate pieces. A graph is simply 

connected if there exist a path between any two vertices, thus because of the backbone, all our PGs were simply connected. 
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of certain PGs, those with hinge regions are more susceptible to this. Similar results were 

obtained for the eccentricity (FIGURE 26). It is not clear what structural correlate is 

responsible of the pronounced increase in the diameter of some PGs. It could be that those 

proteins are less compact or have large loops that got cut out.   

 

 

FIGURE 25. Changes in the diameter after removing edges from the original protein graphs 
(PGs). The removed edges correspond to those contacts between amino acids one and two 
residues apart in the backbone (1/2-Simplified PGs). 
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FIGURE 26. Changes in the average eccentricity after removing edges from the original 
protein graphs (PGs). The removed edges correspond to contacts between amino acids one 
and two residues apart in the backbone (1/2-Simplified PGs). 

Identification of Structural Domains. Traditionally, a structural domain is defined as that 

region of the protein that can acquire its 3D native conformation in an independent manner. 

This view can sometimes conflict with the evolutionary definition of a domain. Nevertheless, 

this structural definition is of practical importance in the protein structure prediction field. 

It is customary to divide every protein in structural domains and then try to predict the 

structure of each domain separately. As mentioned at the end of the protein structure 

prediction section in the introductory review, one of the advantages of using a graph 

representation of protein structures is that we can make use of a vast ensemble of 

techniques already developed in graph theory for different problems. In this case, we are 

interested in testing the effectiveness of a graph theory algorithm that improves the graph 

partition in order to identify the structural domains.  

This algorithm (Newman 2006) resolves effectively the problem of dividing a graph 

in natural groupings. This concept involves the notion of modularity: inside a graph there is 

a set of vertices that are more connected between them that with the rest of the graph. The 

algorithm uses spectral theory to divide randomly the graph in two groups of vertices and 

then evaluate if the number of intra-group connections are significantly more (with respect 

to a random model) than the number of intergroup connections. This process is carried out 

for all possible partitions for selecting the one with a maximum score of significance. We 

applied this method to the structure of the epsilon subunit of the proton-translocating ATP 

synthase (PDB code: 1AQT), the results are showed in FIGURE 27. We found a strikingly good 

distinction of the two manually recognized structural domains of this protein. Just a few of 
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the residues in the N-terminal domain (red region in the figure) where not correctly 

assigned. 

 

FIGURE 27. Structural domain discrimination of 1AQT by modularity maximization (MM). 
Each residue is colored in green or red according to the domain assignation given by the MM 
method. (lower right) A ribbon picture of 1AQT is depicted. 

Mapping Critical Residues for Protein Function onto Protein Conformers. As pointed 

out in the introductory review, transitivity is a good predictor of functional residues (Thibert 

2005) (Cusack 2007). However, in those previous studies the analysis was limited to a few 

structures per protein. We think that if function is carried out by conformational changes we 

can improve the identification of functional residues by considering the PGs of an ensemble 

of conformers. First, we tested this by constructing PGs for a large number of experimentally 

determined conformers of the HIV protease and the T4 lysozyme. We identified their central 

vertices (see Methods) and measured their effectiveness as predictors of functional residues 

by two parameters: sensitivity and specificity. A high sensitivity means that the method 

identified a large fraction of true positives and high specificity means that the method 

identified a large fraction of true negatives (see Methods). We observed that enlarging the 

number of conformers improves the prediction of functional residues (FIGURE 28) 
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FIGURE 28. Residue centrality as a marker for protein conformational diversity. The 
sensitivity and specificity for predicting critical residues are plotted for 2 well-characterized 
proteins: HIV-protease (squares) and the T4 lysozyme (circles). The empty symbols 
correspond to the values obtained with a single protein conformer and the shadowed 
symbols correspond to those obtained with multiple conformers. For comparison, the filled 
symbols correspond to the values obtained with conserved residues predicted as critical 
residues (see Methods). 

 

In addition, we looked at the triose-phosphate isomerases (TIMs) family. We included 

16 protein orthologs of this family with known three-dimensional structures. We observed 

that central residues shared by most TIM structures, correspond to the most conserved 

residues (FIGURE 29). These results suggest that central vertices are indeed a good predictor 

of functional residues as long as the functional residues reside in their functional 3D 

positioning, so that by screening more conformers the chances of identifying them are 

increased. 
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FIGURE 29. Reconstructing functional and phylogenetic relationships from central residues. 
For 16 structures of the SCOP structural family 51351 (Triose Phosphate Isomerase family, 
including: 1TIM, 1AMK, 1CI1, 1HG3, 1M6J, 1B9B, 1TCD, 1TRE, 1YYA, 1HTI, 1R2R, 1MO0, 
1YDV, 1YPI, 1WYI, 8TIM), we calculated their central residues. Using a multiple sequence 
alignment, we mapped each central residue into the 1TIM structure. Then, we counted the 
frequency that each position of 1TIM was found as a central residue in all the family 
(centrality score). Here, we show the relationship of this frequency with a conservation score 
for each position of 1TIM derived using the Bayesian ConSeq procedure [50]. In this Bayesian 
approach, the highly-conserved positions are those with negative scores. 

Different Sets of Protein Conformers Have Different Sets of Central and Critical 

Residues. The previous results suggest that different sets of protein conformers harbor 

different sets of central and critical residues. If this were correct, then it would be possible 

to find the set of protein conformers harboring in their functional residues in their functional 

positions: the functional conformers. In FIGURE 30, the fraction of identical central residues 

shared by every pair of protein conformers (y-axis) was calculated and normalized to 1; thus 

FIGURE 30 shows that even when two conformers are similar (e.g., some HIV-1 protease 

conformers share less than 1 Å RMSD values; see FIGURE 31 for the RMSD values), their 

central residues are not the same (no value of 1 was found between any protein conformer 

compared). To determine if there is a relationship between centrality and the structural 

differences between the conformers, we plotted the RMSD against the fraction of central 

residues shared by every conformer; we found that there is no such relationship (FIGURE 31).  
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FIGURE 30. Paired comparison of central residues in protein conformers. The fraction of 
identical central residues shared by every pair of conformers (y-axis) is plotted against every 
pair of conformer analyzed (x-axis). The results are shown for every pair between the 23 T4 
Lysozyme structures analyzed (filled circles) and the 31 complexed HIV-1 protease structures 
compared against all the 42 non-complexed HIV-1 protease structures (empty triangles). See 
the Methods section for the PDB codes of the structures used in this comparison. 

 

 

FIGURE 31. Mapping the relationship between RMSD and centrality in crystallographic 
conformers. Combined Sensitivity (CS) is plotted against the Root Mean Square Deviation 
(RMSD) values observed for every pair of structures compared. 31 HIV-1 protease structures 
in complex with a substrate were compared against 42 HIV-1 protease structures without a 
substrate. See the Methods section for the PDB codes of the structures used in this 
comparison. 
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Screening for Protein Functional Conformers. We propose that if a protein conformer 

participates in a given protein function, it must harbor as central residues those that are 

critical for that function. For instance, protein conformers of an enzyme solved in the 

presence of its substrate may show as central residues the critical residues involved in 

binding the substrate. To evaluate this, the sensitivity values reported in the following 

sections will use as functional residues those critical for ligand binding only, thus differing 

from the previous results shown so far. We looked at the HIV protease for which there are 

multiple protein complexes solved with a substrate or an inhibitor. From crystallographic 

(Zoete 2002) and mutagenesis studies (Loeb 1989) it has been shown that the residues 

Asp25, Gly27, Asp29, Asp30, Lys46 and Ile50 are critical for substrate binding and/or 

catalysis. For comparison, we analyzed 42 and 31 HIV protease structures solved in the 

absence or presence of a substrate analogue, respectively (see Methods). By looking at the 

fraction of critical residues harbored by these sets of conformers as central residues 

(expressed as the sensitivity value), we observed that the HIV protease conformers bound to 

a substrate analogue predominantly show as central residues those that are known to be 

involved in catalysis (FIGURE 32). 

 

 

FIGURE 32. Mapping functional conformers in the HIV-protease by centrality measurements. 
The overall and average sensitivity for predicting critical residues of the HIV-protease was 
significantly higher when we used crystallographic structures of the HIV-protease associated 
with a substrate (black dots) than when the crystallographic structures did not include the 
substrate (white dots). To facilitate visual analysis, the points of each group were sorted in 
ascending order according to their sensitivity value. 
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We also analyzed multiple computationally generated protein conformers. In these 

studies, we used the yeast TATA binding protein (TBP), which has been solved both in the 

presence (Kim 1993) and in absence (Chasman 1993) of its ligand: the DNA TATA box. It has 

been previously shown by mutagenesis that at least 53 residues in yeast TBP are involved in 

DNA binding. We ran four molecular dynamics simulations, and for each of them 63,000 

structures were generated. The four simulations included: (a) TBP+WtDNA, TBP in the 

presence of a high affinity substrate (the TATA sequence), using PDB file 1YTB  (Kim 1993) 

as the starting structure, (b) TBP-WtDNA, TBP that was solved in the presence of the TATA 

sequence (that is 1YTB), but the DNA was not included in the simulation, (c) TBP-GCDNA, 

TBP in the presence of a low affinity substrate (GC sequence) generated by in silico 

substitution of the TATA sequence present in 1YTB by the GCGCGCGCGC DNA duplex and 

(d) TBP solved without substrate, using PDB file 1TBP (Chasman 1993) as a starting structure. 

The abundance of critical residues for DNA binding found as central residues in these 

conformers follows the order: (a)>(b)>(c)>(d) (TABLE 3 and FIGURE 33). Also, there is no 

correlation between the RMSD differences of the conformers and the critical residues for 

DNA binding harbored by these conformers (FIGURE 34).  

 

 

TABLE 3. (Upper part) Each row shows the statistical parameters for each group of TBP 
conformers derived from molecular dynamics simulations. TBP+WtDNA: TBP with the TATA 
sequence. TBP-GCDNA: TBP with a GCGC sequence. TBP: TBP originally resolved without 
DNA and simulated without DNA. (N:Number of conformers, SD:Standard deviation). (Lower 
part) Each row summarizes the results for a one-way ANOVA (Null hypothesis: mean (1st 
group) = mean (2nd group)) for the pairs of groups indicated in the first column. In each case 
the null hypothesis is rejected at the 0.05 significance level (DF:Degrees of freedom, 
MS:Mean square, F:Calculated F-value, α:Significance level). 
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FIGURE 33. Mapping functional conformers in the TBP by centrality measurements. The 
overall and average sensitivity for predicting critical residues for the binding of the TBP to 
the TATA sequence was significantly higher when we used structures derived from a 
molecular dynamics simulation of the TBP associated with the TATA sequence, (labeled 
TBP+WtDNA, black dots) than when the simulated structures were without DNA, (labeled 
TBP, red dots). To facilitate visual analysis, the points of each group (63,000 structures each) 
were sorted in ascending order according to their sensitivity value. See TABLE 3 for a 
statistical analysis of these data. 

 

FIGURE 34. Mapping the relationship between RMSD and centrality in molecular dynamics. 
TBP conformers with the highest and lowest values of both sensitivity and specificity in the 
four molecular dynamic simulations of TBP were used to show the relationship between the 
sensitivity value and the RMSD of the conformer with respect to the 1YTB structure. 
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To analyze the reliability of our results in a larger data set of proteins, we employed 

the MolMov set that includes a total of 20 different proteins (see Methods and TABLE 4). This 

set includes a subset of protein structures solved in the absence of a ligand (subset U) and 

a subset of protein structures interacting with a ligand (subset I). A total of 286 alternative 

conformations were generated for every protein structure in each subset, providing a total 

of 2,860 protein structures in each subset, as derived from the normal modes of vibration 

(see Methods). The critical residues for ligand binding for each protein were assumed to be 

those conserved residues on the protein surface (see Methods). This assumption includes 

some degree of uncertainty (conserved residues not necessarily are functionally critical) and 

provides an additional way to evaluate our procedure. We observed that on average, the 

proportion of truly predicted critical residues (expressed as sensitivity) in the MolMov subset 

U is smaller than for the subset I (FIGURE 35a) but not in all cases (FIGURE 35b). We noticed 

that the MolMov set included 10 proteins for which the predicted critical residues were closer 

to the ligand (3 Å on average per protein, data not shown) in the crystal structure (FIGURE 

35c for an example) than for the other 10 proteins in the MolMov set (FIGURE 35d for an 

example). Thus, only when the critical residues are truly related to the function of interest, 

our approach can identify the associated conformations to that function. These results are 

independent of the nature of either the ligand or the protein analyzed (see TABLE 4).  

 

TABLE 4. The MolMov set. The proteins solved in complex with a ligand in the MolMov set 
are listed with their ligands. The first ten rows correspond to the protein whose predicted 
critical residues where close to the ligand; the last ten rows are the proteins whose predicted 
critical residues were not close to the ligand. The last column indicates the structural 
classification as indicated in the SCOP database. 
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FIGURE 35. Mapping functional conformers in the MolMov set by centrality measurements. 
The sensitivity value for predicting critical residues in the MolMov set (see Methods) is 
plotted against each conformer evaluated. (A) The sensitivity values for 10 proteins with 
predicted critical residues close to the ligand showed significantly higher values when the 
protein was associated to a ligand (red squares) than the corresponding protein structures 
without the ligand (black squares). (B) As in (A), but here 10 proteins are shown for which 
the predicted critical residues were not close to the ligand. To facilitate visual analysis in (A) 
and (B), the points of each group were sorted in ascending order according to their sensitivity 
value. (C) 1CIP, Guanine nucleotide-binding protein in complex with a GTP analogue, is an 
example of a protein where the predicted critical residues were close to the ligand. (D) 
2RKM, Oligopeptide-binding protein in complex with Lys-Lys peptide, is an example of a 
protein where the predicted critical residues were not close to the ligand. In (C) and (D) the 
ligand is in yellow, the protein in green, and the critical residues in purple. 

 

Linking Mutagenesis Data to Protein Structure and Dynamics. TBP mutants that were 

identified with TBP-DNA binding gel-shift assays does not distinguish between folding-

defective mutants and mutants directly involved in DNA binding. In contrast to the HIV 

protease, there are not numerous structures of the yeast TBP bound to the TATA DNA, thus 

limiting our ability to establish the structure-dynamics-function relationship of these 

mutants. For instance, the assumption that only residues less than 5 Å from DNA are directly 

involved in binding eliminates residues that are at a longer distance from DNA; yet, these 

distant residues may be at 5 Å or closer to the DNA in some alternative conformations of 

TBP bound to DNA. If multiple protein structures are computationally generated to 

determine which residues always fall within a cut-off distance from DNA, there is no a priori 
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knowledge to determine if all possible conformations were explored. Thus, simply 

measuring the distance between the ligand and the protein does not provide a 

comprehensive method to link structure to biological function. Similar reasoning may be 

applied to energy calculations, since there is no a priori energy value that may be used to 

specify the relevant residues for binding. In this context, our method does not measure the 

distance between the ligand and protein, thus is complementary to the criteria based on the 

distance between the ligand and a protein and could be used to improve our ability to 

identify critical residues for protein-ligand interactions. 

 All 53 critical residues in TBP involved in DNA binding qualified as central residues 

in the structures generated during the simulations (TABLE 5). This indicates that the 

simulations sampled relevant conformations of TBP associated to the function of the 53 

DNA-binding null mutants. However, the centrality criteria used to map critical residues onto 

protein structures does not distinguish between critical residues for structure and binding. 

Thus, we examined if there are differences in the presence of these critical residues in the 

simulations. We would expect that critical residues found exclusively in simulations of TBP 

in the presence of DNA are more likely to be involved in binding, while those residues 

prevalently found in all the simulations (frequency> = 0.50) are more likely to be involved 

in maintaining TBP structure. From TABLE 5, we identified Lys97, Ser118, Pro191, Lys211, 

Val213 and Thr215 (yeast TBP numbering) as residues critical for binding, whereas critical 

residues for TBP structure would be Leu67, Leu76, Leu80, Val122, Leu172 and Leu175. In 

agreement with the yeast TBP-DNA structure, all residues that were predicted to be involved 

in DNA binding are oriented towards it, while those predicted to be involved in TBP structure 

are in the protein's core, except for Val122, which faces DNA. Moreover, Leu67, Leu76, Leu80, 

Leu172 and Leu175 were shown to produce misfolded proteins upon mutation to Lysine 

(Kim 1993).  
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TABLE 5. The observed Frequencies of DNA-binding null mutant positions (WT residue) for 
each of the 4 molecular simulations: (a) TBP+WtDNA, (b) TBP-WtDNA,  (c) TBP and (d) TBP-
GCDNA. The frequencies were obtained by normalizing the number of times any of the 
residues in this table was detected as central in all the 63,0000 conformers analyzed. 
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DISCUSSION AND 

CONCLUSIONS 

 
Two drivers of research in structural protein science are the ability to predict the 3D structure 
of proteins when no homology-based template can be found and the identification of the 
structure of functional conformers. Here we used a graph theoretical approach to attack 
both problems. Graphs that represent the three-dimensional contacts between residues in 
proteins (Protein Graphs) have proved to be a valuable tool for uncovering biological-
relevant features like functional residues (Amitai 2004) (Thibert 2005) or aiding in model 
selection for structure prediction (Kolinski 2005). 

 
All-atom free modeling methods are unable to sample extensive regions of the 

energy landscape. By simplifying protein molecules as graphs we keep enough information 
to reconstruct the structures, namely, the three-dimensional residue contacts. At the same 
time, the graphs are simple enough to carry on extensive conformational sampling. A large 
sampling is of no use if we can’t score fast all the models to find the predicted structure. 
Building on the ability to identify functional residues as central vertices in the graph 
representations (Amitai 2004) (Thibert 2005), we propose that the protein graphs in the 
conformational sampling can be rapidly scored by the overlap between their functional 
residues and central vertices, with the protein graph with most overlapping corresponding 
to the native structure of the protein.  

 
To make this kind of sampling more efficient and increase the chances of finding true 

native conformations, we searched for characteristic features that separate the graphs that 
are derived of protein structures from other types of graphs. In this way, the sampling can 
be restricted to only the subset of graphs that possess those features. We started by 
investigating basic graph measures like degree and clustering coefficient distributions. We 
found out that none of the most studied graph types derived from complex systems 
(random, hierarchical, scale-free) display the degree and clustering coefficient distributions 
of Protein Graphs, for this reason, we conclude that any efficient sampling must discard 
these big subsets of the space of graphs. The geometrical model (Dall 2002) that is based 
on a distance criterion seems more appropriate and, as expected, we found that the 
observed degree distribution can be generated with this model. We looked then at motifs 
in Protein Graphs and noted that most of them don’t contain the square nor the pentagon 
subgraphs, by contrast, the triangle subgraph is contained in almost all motifs which could 
be an indication of steric constrains inside proteins. We also showed that α-helices and β-
sheets cannot be distinguished at the 6-subgraph level. Interestingly, almost half of the 6-
motifs of Protein Graphs are shared with the geometrical model.  

 
PGs exhibit a well-preserved linear relationship between number of vertices and 

number of edges, probably this relationship just reflects a general structural feature related 
to the compactness of proteins. Another result showed us that a non-negligible portion of 
3D native contacts can be recreated pseudo-randomly by just keeping the sequence of 
degrees of each vertex and that other fraction can be effectively obtained by using 
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knowledge-based preferential contact usage between different amino acid types. By 
studying contact orders, we found a clear pattern in their distribution that showed that large 
contact orders are just a little less probable than medium contact orders. Thus, we got a 
series of results that showed that PGs do have prominent characteristic features, which is in 
agreement with one of our hypothesis. This information can be of great value in a carefully 
developed algorithm for constructing protein-like graphs to improve conformational 
sampling. Another question that we had was to know to what extent the connectedness of 
the PGs depends on the backbone derived contacts. We found that less than ten percent of 
the PGs relied entirely on these contacts to remain simply connected. We also found that a 
significant portion of the most central residues relied in the backbone contacts for their 
centrality and that the same could be said of the shortest paths.  

 
A pleasant application of graph theory techniques applied to protein structure 

problems was our implementation of an algorithm that finds the graph partition with larger 
modularity, we found that the partition has a good agreement with the natural division of a 
protein in its structural domains. We expect that this method could add to structural domain 
identification algorithms. 

 
Under the current view that proteins accomplish their function through dynamics, we 

hypothesize that the critical residues for function play their roles in those conformations 
directly involved in function. In such a case, having a method that identifies critical residues 
in particular protein structures may be capable to select the protein conformations 
associated to function. In previous reports, it has been shown that central residues to protein 
structure are related to residues critical for protein function (e.g., folding, catalysis) (Amitai 
2004) (Thibert 2005). In these previous studies, central residues have been detected in a 
single protein structure. However, protein function comprises an ensemble of protein 
structures and presumably, each protein conformer may harbor a different subset of central 
and critical residues according to their role in function. Supporting this notion, a report 
(Vendruscolo 2002) showed that central residues in the folding transition state of 6 proteins 
map only to critical residues for folding. Here, we show evidence that including multiple 
conformers of a given protein improves the relationship observed between central residues 
and critical residues for protein function in three well-studied proteins. 

 
In line with our hypothesis, we found that different protein conformers harbor 

different sets of central residues, despite their structural similarities (<1 Å) as measured by 
RMSD, indicating that centrality may depend on subtle geometrical differences between 
protein structures. This data indicates that central residues seem to be fingerprints of protein 
conformations. Understanding this correspondence between centrality and protein structure 
may lead to generate protein structures hosting specific sets of critical and central residues. 
This will require a more in-depth characterization of the topological features of protein 
structures represented as graphs. Despite current limitation to generate protein structures 
as PGs harboring a specific set of central residues, we were able to test the applicability of 
our hypothesis in identifying functional conformers of proteins through the screening of 
collections of protein structures. We determined the central residues for 73 experimentally 
determined conformers of the HIV protease and for 252,000 computationally generated 
conformers of TBP. For these two proteins, the critical residues for binding the substrate or 
other ligand have been identified. It is important to note, that it may be possible to have 
more than a single protein conformer binding a substrate/ligand, provided also that the 
substrate/ligand exists in several conformations. Given this condition, it is not surprising to 
find several conformers of these two proteins harboring as central residues those matching 
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the critical residues for binding the substrate/ligand. As expected, the protein conformers 
harboring most of the central residues corresponding to the critical residues for binding the 
substrate/ligand, are the experimentally determined conformers bound to the substrate/. 
We observed a similar trend for a larger data set of 20 different proteins. However, the 
protein structures in complex with a ligand cannot be identified if the critical residues 
provided are not related to the binding of such ligand (in our case, derived from a 
conservation index of exposed residues). These results are independent of the nature of 
either the ligand or the protein analyzed. This is evidence that if critical residues for ligand 
binding are preferentially in their functional position in the protein conformers bound to the 
ligand they can be identified as central, which is in line with our hypothesis.  

 
We noticed that some conformers derived from the protein structure in the absence 

of a ligand present large sensitivity values. Understanding these results will require further 
studies, but a possible explanation could be the recent observations that suggest that 
conformational exploration by fluctuations of the unbound state may prime the protein to 
receive the ligand in a more appropriate manner (Boehr 2006) (Schrank 2009). Thus, even 
when a given conformation in the absence of a ligand is less-likely to harbor central residues 
matching critical residues, if there is enough conformational sampling we may find this 
primed structures. That could be the case with the yeast TBP dynamics that we studied. Our 
results show a large number of conformers in the absence of a ligand with a high proportion 
of central residues matching critical residues for binding. By contrast, if a protein uses the 
proposed induced-fit mechanism for ligand binding it may be less likely to found critical 
residues as central in unbound conformations. That could be the case for the HIV-1 protease, 
where we found a solid correspondence between critical and central residues just in the 
bound states.  

 
We examined previously reported mutants of the yeast TBP that have been identified 

as critical for DNA binding. Since binding to DNA is a dynamic process, a single structure of 
TBP in complex with DNA may not be sufficient to determine which of the residues have a 
role in binding or in keeping the structure. We explored the use of our method for 
distinguishing these residues. Our results show that residues Lys97, Ser118, Pro191, Lys211, 
Val213 and Thr215 are more likely involved in binding, while residues Leu67, Leu76, Leu80, 
Val122, Leu172 and Leu175 appeared to be involved in the preservation of the structure of 
yeast TBP. Even when our method does not use a criterion based on the distance of the 
protein to the ligand, our results are in consonance with the distance and orientation of the 
critical residues observed in the structure of yeast TBP in complex with the TATA-box DNA. 

 
Our results support the notion that protein function is achieved through fluctuations 

between specific of protein conformations. The method shown here may be applied to any 
other protein of interest to identify its potential functional conformers. We have made 
available the software to identify central residues. The identification of functional 
conformers of a target protein is indeed useful in many different areas of research, such as 
drug design, protein function design and protein-protein interaction predictions, among 
others. Likewise, the ability to differentially map critical residues onto a spectrum of 
conformations may increase our capacity to understand the role of specific residues. For 
instance, in many mutagenesis studies of proteins, especially those that test the in vivo 
function of the mutants, it is not obvious if the defects in function are related to a folding, 
processing, binding or catalytic effect. Our method may aid in the interpretation of such 
data.   

 



70 
 

 
 
 
 
 
 

REFERENCES 

 

 

Agarwal, P. "Enzymes: An integrated view of structure, dynamics and function." Microbial Cell 

Factories 5 (2006). 

Agarwal, P., Billeter, S., Rajagopalan, R., Benkovic, S., Hammes-Schiffer, S. "Network of coupled 

promoting motions in enzyme catalysis." PNAS 99 (2002): 2794–2799. 

Agmon I., Bashan A., Zavirach R., Yonath A. "Symmetry at the active site of the ribosome: structural 

and functional implications." Biol. Chem., 2005: 833–844. 

Alexander, PA, He Y, Chen Y, Orban J, Bryan PN. "A minimal sequence code for switching protein 

structure and function." PNAS 106 (2009): 21149-21154. 

Alm, E., Baker, D. "Matching theory and experiment in protein folding." Current Opinion in Structural 

Biology 9 (1999): 189-196. 

Altschuh D, Lesk AM, Bloomer AC, Klug A. Correlation of co-ordinated amino acid substitutions with 

function in viruses related to tobacco mosaic virus. J Mol Biol. 1987 Feb 20;193(4):693-707. doi: 

10.1016/0022-2836(87)90352-4. PMID: 3612789. 

Alva, V., Michael Remmert, Andreas Biegert, Andrei N. Lupas, Johannes Söding. "A galaxy of folds." 

Protein Science 19 (2010): 124-130. 

Amitai, G., Shemash, A., Sitbon, E., Shklar, M., Metanely, D., et al. "Network analysis of protein 

structures identifies functional residues." J Mol Biol 344 (2004): 1135–1146. 

Andreeva, A., Howorth, D., Chandonia, J. M., Brenner, S. E., Hubbard, T. J., Chothia, C. & Murzin, A. 

G. "Data growth and its impact on the SCOP database: new developments." Nucleic Acids Res. 36 

(2008): D419–D425. 

Aravind, L., Leipe, D. D. & Koonin, E. V. "Toprim — a conserved catalytic domain in type IA and II 

topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. ." Nucleic Acids Res. 

26,, 1998: 4205–4213. 



71 
 

Ashkenazy, H., Erez, E., Martz, E., Pupko, T., Ben-Tal, N. "ConSurf 2010: calculating evolutionary 

conservation in sequence and structure of proteins and nucleic acids." Nucleic Acids Research 38 

(2010): W529–W533. 

Atilgan, A., et al. "Anisotropy of fluctuation dynamics of proteins with an elastic." Biophys J 80 

(2001): 505-515. 

Avery, O., MacLeod, C., McCarty, M. "Studies on the Chemical Nature of the Substance Inducing 

Transformation of Pneumococcal Types." J Exp Med, 1944: 137-158. 

Ban N., Nissen P., Hansen J., Moore P, Steitz T. "The Complete Atomic Structure of the Large 

Ribosomal Subunit at 2.4 Å Resolution." Science 289, no. 5481 (2000): 905-920. 

Barabasi, A., Oltvai, Z. "Network Biology: Understanding the Cells's Functional Organization." Nature 

Reviews Genetics 5 (2004): 101-113. 

Battey, JN, Kopp J, Bordoli L, Read RJ, Clarke ND, Schwede T. "Automated server prediction in 

CASP7." Proteins 69 (S8) (2007): 68–82. 

Belogurov, Vassylyeva, Svetlov. "Structural Basis for Converting a General Transcription Factor into 

an Operon-Specific Virulence Regulator." Molecular Cell 26 (2007): 117-129. 

Berezin, C., Glaser F., Rosenberg J., Paz I., Pupko T., Fariselli P., Casadio R. and Ben-Tal N. "ConSeq: 

The Identification of Functionally and Structurally Important Residues in Protein Sequences." 

Bioinformatics 20 (2004): 1322-1324. 

Boehr, D., McElheny, D., Dyson, J., Wright, P. "The Dynamic Energy Landscape of Dihydrofolate 

Reductase Catalysis." Science 313 (2006): 1638-1342. 

Bowie, JU., Luthy R, Eisenberg D. "A method to identify protein sequences that fold into a known 

three-dimensional structure." Science 253 (1991): 164–170. 

Brandes, U. "On Variants of Shortest-Path Betweenness Centrality and their Generic Computation." 

Social Networks 2 (2008): 136-145. 

Brazma, et. al. A quick introduction to elements of biology - cells, molecules, genes, functional 

genomics, microarrays. 2001. http://www.ebi.ac.uk/microarray/biology_intro.html. 

Brooks, B.R, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M. "CHARMM: a program 

for macromolecular energy, minimization, and dynamics calculations." J Comput Chem 3 (1983): 

187–217. 

Caetano-Anollés, G., Caetano-Anollés D. "An Evolutionarily Structured Universe of Protein 

Architecture." Genome Research 13 (2003): 1563-1571. 

CASP9. 9th Community Wide Experiment on the Critical Assessment of Techniques for Protein 

Structure Prediction. 2010. http://predictioncenter.org/casp9/docs.cgi?view=presentations. 



72 
 

Chasman, D., Flaherty KM, Sharp PA, Kornberg RD. "Crystal structure of yeast TATA-binding protein 

and model for interaction with DNA." PNAS 90 (1993): 8174–8178. 

Chen, J., Brooks CL III. "Can molecular dynamics simulations provide high-resolution refinement of 

protein structure?" Proteins 67 (2007): 922–930. 

Cheng, J, Baldi P. "A machine learning information retrieval approach to protein fold recognition." 

Bioinformatics 22 (2006): 456–1463. 

Chothia. "Structure of proteins: packing of alpha-helices and pleated sheets." Proc. Natl Acad. Sci. 

USA 74 (1977): 4130-4134. 

Chothia. "The Classification and Origins of Protein Folding Patterns." Annu. Rev. Biochem. 59 (1990): 

1007–1039. 

Chothia, Levitt, Richardson. "Structure of proteins: packing of alpha-helices and pleated sheets." 

PNAS 74 (1977): 4130-4. 

Cooper, S., Khatib Firas, Treuille Adrien, Barbero Janos, Lee Jeehyung, Beenen Michael, Leaver-Fay 

Andrew, Baker David, Popović Zoran, and Players Foldit. "Predicting protein structures with a 

multiplayer online game." Nature 466 (2010): 756-760. 

Cuff, A., et. al. "The CATH Hierarchy Revisited—Structural Divergence in Domain Superfamilies and 

the Continuity of Fold Space." Structure, 2009: 1051-1062. 

Cusack, M., Thibert B, Bredesen DE, del Rio G. "Efficient identification of critical residues based only 

on protein structure by network analysis." PLoS ONE 2 (2007): e421. 

Dall, J., Christensen, M. "Random Geometric Graphs." Phys Rev E 66 (2002): 016121. 

Das, R., Qian B, Raman S, Vernon R, Thompson J, Bradley P. "Structure prediction for CASP7 targets 

using extensive all-atom refinement with Rosetta@home." Proteins 69 (S8) (2007): 118–128. 

Dorit, R., Schoenbach L, Gilbert W. "How big is the universe of exons?" Science 250, no. 4986 (1990): 

1377-1382. 

Doyle, D. A. Cabral, J. M. Pfuetzner, R. A. Kuo, A. Gulbis, J. M. Cohen, S. L. Chait, B. T. Mackinnon, R. 

"The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity." Science, 

no. 5360 (1998): 69-76. 

Duan, Y., Kollman, P. "Pathways to a Protein Folding Intermediate Observed in a 1-Microsecond 

Simulation in Aqueous Solution." Science 740-744 (1998): 282. 

Farmer. "The Present Position of Some Cell Problems." Nature 58, no. 1490 (1898): 63-67. 

Ferreiro, D., Hegler, J., Komives, E., Wolynes, P. "On the role of frustration in the energy landscapes 

of allosteric proteins." PNAS 108 (2011): 3499–3503. 



73 
 

Fischer, D. "Rychlewski L, Fischer D." Proteins 51 (2003): 434-441. 

Fischer, D. "Servers for protein structure prediction." Curr Opin Struct Biol 16 (2006): 178–182. 

Flaherty, K. M., McKay, D. B., Kabsch, W. & Holmes, K. C. "Similarity of the three-dimensional 

structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein." Proc. Natl 

Acad. Sci. USA, 1991: 5041–5045 . 

Flores, S., Echols N, Milburn D, Hespenheide B, Keating K, et al. "The Database of Macromolecular 

Motions: new features added at the decade mark." Nucleic Acids Res 34 (2006): D296–D301. 

Foloppe, N., MacKerell AD. "All-atom empirical force field for nucleic acids: I. Parameter 

optimization based on small molecule and condensed phase macromolecular target data." J Comp 

Chem 21 (2000): 86–104. 

Forster A., Church G. "Towards synthesis of a minimal cell." Mol Syst Biol, 2006: 45. 

Frederick, K., Marlow, M., Valentine, K., Wand, A. "Conformational entropy in molecular recognition 

by proteins." Nature 448 (2007): 325-329. 

Friedberg, I., Godzik, A. "Connecting the protein structure universe by using sparse recurring 

fragments." Structure 13 (2005): 1213-1224. 

Garcia, J., Gerber, S., Sugita, S., Südhof, T., Rizo, J. "A conformational switch in the Piccolo C2A 

domain regulated by alternative splicing." Nat. Struct. Mol. Biol. 11 (2004): 45-53. 

Ginalski, K, Pas J, Wyrwicz LS, von Grotthuss M, Bujnicki JM, Rychlewski L. "ORFeus: Detection of 

distant homology using sequence profiles and predicted secondary structure." Nucleic Acids Res 3 

31 (2003): 3804–3807. 

Göbel, U., Sander, C., Schneider, R. and Valencia, A. (1994), Correlated mutations and residue 

contacts in proteins. Proteins, 18: 309-317. https://doi.org/10.1002/prot.340180402 

Grant A., Lee D. and Orengo C. "Progress towards mapping tmotifhe universe of protein folds." 

Genome Biology, 2004: 107. 

Haber, E., Anfinsen, C. "Regeneration of Enzyme Activity by Air Oxidation of Reduced Subtilisin-

Modified Ribonuclease." J. Biol. Chem., 1961: 422-424. 

Haliloglu, T., Bahar, I., Erman, B. "Gaussian dynamics of folded proteins." Phys Rev Lett 79 (1997): 

3090–3093. 

Harary, F., Palmer, E.M., Graphical Enumeration, Academic Press, NY, 1973, page 90 

Havel, T., Crippen, G., Kuntz, I. "Effects of distance constraints on macromolecular conformation. II. 

Simulation of experimental results and theoretical predictions." Biopolymers 18 (1979): 73–81. 



74 
 

Henzler-Wildman, K., et al. "A hierarchy of timescales in protein dynamics is linked to enzyme 

catalysis." Nature 450 (2007): 913-916. 

Hume, Douglas. Bechamp Or Pasteur: A Lost Chapter in the History of Biology. Kessinger Publishing, 

1996 . 

Hvidt, A., Linderstrom–Lang, K. "Exchange of hydrogen atoms in insulin with deuterium atoms in 

aqueous solutions." Biochim Biophys Acta 14 (1954): 574–575. 

Jacobs, D., Rader, A., Kuhn, L., Thorpe, M. "Protein Flexibility Predictions Using Graph Theory." 

PROTEINS: Structure, Function, and Genetics 44 (2001): 150–165. 

Jaroszewski, L., Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, Wilson IA, Godzik A. "Exploration 

of uncharted regions of the protein universe." PLoS Biol., no. 7(9) (2009): e1000205. 

Jewett M., Forster A. "Update on designing and building minimal cells." Current Opinion in 

Biotechnology, 2010: 697–703. 

Jones, DT. "GenTHREADER: an efficient and reliable protein fold recognition method for." J Mol Biol 

287 (1999): 797–815. 

Jones, DT., Taylor WR, Thornton JM. "A new approach to protein fold recognition." Nature 358 

(1992): 86–89. 

Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with 

AlphaFold. Nature 596, 583–589 (2021). https://doi.org/10.1038/s41586-021-03819-2 

Karplus, K, Barrett C, Hughey R. "Hidden Markov models for detecting remote protein homologies." 

Bioinformatics 14 (1998): 846–856. 

Kim, Y., Geiger JH, Hahn S, Sigler PB. "Crystal structure of a yeast TBP/TATA-box complex." Nature 

365 (1993): 512–520. 

Kolinski, A., Bujnicki, J. "Generalized protein structure prediction based on combination of fold-

recognition with de novo folding and evaluation of models." Proteins 61 Suppl 7 (2005): 84-90. 

Kopp, J., Bordoli L, Battey JN, Kiefer F, Schwede T. "Assessment of CASP7 predictions for template-

based modeling targets." Proteins 6(S8): (2007): 38–56. 

Kuruma Y., Stano P., Ueda .T, Luisi P. "A synthetic biology approach to the construction of membrane 

proteins in semi-synthetic minimal cells." Biochim Biophys Acta, 2009: 567-574. 

Latek, D., Kolinski, A. "Contact prediction in protein modeling: Scoring, folding and refinement of 

coarse-grained models." BMC Structural Biology 8 (2008): 36. 

Lee, D., de Beer TA, Laskowski RA, Thornton JM, Orengo CA. "1,000 structures and more from the 

MCSG." BMC Struct Biol. 11 (2011): 2. 



75 
 

Levitt, M. and Gerstein,M. "A unified statistical framework for sequence comparison and structure 

comparison." PNAS 95 (1998): 5913–5920. 

Lodish, et. al. Molecular Cell Biology » The Dynamic Cell » 1.2 The Molecules of Life. 2000. 

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mcb&part=A199. 

Loeb, D., Swanstrom, R., Everitt, L., Manchester, M., Stamper, S., et al. "Complete mutagenesis of 

the HIV-1 protease." Nature 340 (1989): 397–400. 

MacKerell, A. Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, et al. "All-atom empirical 

potential for molecular modeling and dynamics studies of proteins." J Phys Chem B 102 (1998): 

3586–3616. 

Mastro, Babich, Taylor, Keith. "Diffusion of a small molecule in the cytoplasm of mammalian cells." 

PNAS 81, no. 11 (1984): 3414-3418. 

Matthews, B. W. "Structural and genetic analysis of protein stability." Annu. Rev. Biochem., 1993: 

139-160. 

Mezei, M. "Optimal Position of the Solute for Simulations." J Comp Chem 18 (1997): 812–815. 

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U. "Network Motifs: Simple 

Building Blocks of Complex Networks." Science 298 (2002): 824-827. 

Mirny, L., Domany, E. Protein fold recognition and dynamics in the space of contact maps. Proteins. 

1996;26(4):391-410. 

Misura, K., Chivian D, Rohl CA, Kim DE, Baker D. "Physically realistic homology models built with 

ROSETTA can be more accurate than their templates." PNAS 103 (2006): 5361–5366. 

Miyashita, O., Onuchic, J., Wolynes, P. "Nonlinear elasticity, proteinquakes, and the energy 

landscapes of functional transitions in proteins." PNAS 100 (2003): 12570–12575. 

Newman, M. "Modularity and community structure in networks." PNAS 103 (2006): 8577-8582. 

Noireaux V., Libchaber A. "A vesicle bioreactor as a step toward an artificial cell assembly." roc. Natl 

Acad. Sci. USA, 2004: 17669–17674. 

Nureki, O., Shirouzu, M., Hashimoto, K., Ishitani, R., Terada, T., Tamakoshi,M., Oshima, T., 

Chijimatsu, M., Takio, K., Vassylyev, D. G., Shibata, T.,Inoue, Y., Kuramitsu, S. & Yokoyama, S. "An 

enzyme with a deep trefoil knot for the active-site architecture." Acta Cryst. D58 (2002): 1129-1137. 

Perutz, Max. "Mechanisms regulating the reactions of human hemoglobin with oxygen and carbon 

monoxide." Annual review of physiology, 1990: 1-25. 



76 
 

Pieper, Eswar N, Davis FP, Braberg H, Madhusudhan MS, Rossi A. "MODBASE: a database of 

annotated comparative protein structure models and associated resources." Nucleic Acids Res, no. 

34 (Database issue) (2006): D291–D295. 

Popovych, N., Sun, S., Ebright, R., Kalodimos, C. "Dynamically driven protein allostery." Nat Struct 

Mol Biol 13 (2006): 831-838. 

Poussu, E., Vihinen, M., Paulin, L. & Savilahti, H. "Probing the α-complementing domain of E. coli β-

galactosidase with use of an insertional pentapeptide mutagenesis strategy based on Mu in vitro 

DNA transposition." Proteins, 2004: 681–692. 

Ravasz, E., Barabási, A. "Hierarchical organization in complex networks." Physical Review E 67 

(2003): 026112. 

Richardson, Jane. "β-Sheet topology and the relatedness of proteins." Nature 268 (1977): 495-500. 

Sadreyev, R, Grishin N. "COMPASS: a tool for comparison of multiple protein alignments with 

assessment of statistical significance." J Mol Biol 326 (2003): 317–336. 

Santos M, Moura G, Massey S, Tuite M. "Driving change: the evolution of alternative genetic codes." 

Trends in Genetics 20, no. 2 (2004): 95.102. 

Schluenzen F., Tocilj A., Zarivach R., Harms J., Gluehmann M., Janell D., Bashan A., Bartels H., Agmon 

I., Franceschi F., Yonath A. "Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å 

Resolution." Cell 102, no. 5 (2000): 615-623. 

Schrank, T., Bolen, W., Hilser, V. "Rational modulation of conformational fluctuations in adenylate 

kinase reveals a local unfolding mechanism for allostery and functional adaptation in proteins." 

PNAS 106 (2009): 16984 –16989. 

Shaw, D., et. al. "Atomic-Level Characterization of the Structural Dynamics of Proteins." Science 330 

(2010): 341-346. 

Shi, J, Blundell TL, Mizuguchi K. "FUGUE: sequence-structure homology recognition using 

environment-specific substitution tables and structure-dependent gap penalties." J Mol Biol 310 

(2001): 243–257. 

Shuman, S., Lima, C. "The polynucleotide ligase and RNA capping enzyme superfamily of covalent 

nucleotidyltransferases." Current Opinion in Structural Biology 14 (2004): 757–764. 

Simons, K., Kooperberg C, Huang E, Baker D. "Assembly of protein tertiary structures from fragments 

with similar local sequences using simulated annealing and Bayesian scoring functions." J Mol Biol 

268 (1997): 209–225. 

Sinha, N. & Nussinov, R. "Point mutations and sequence variability in proteins: redistributions of 

preexisting populations." Proc. Natl Acad. Sci. USA, 2001: 3139–3144. 



77 
 

Skolnick. "Automated structure prediction of weakly homologous proteins on a genomic scale." 

PNAS 101 (2004): 7594-7599. 

Soding, J. "Protein homology detection by HMM-HMM comparison." Bioinformatics 21 (2005): 951–

960. 

Suhre, K., Sanejouand Y-H. "ElNémo: a normal mode web server for protein movement analysis and 

the generation of templates for molecular replacement." Nucleic Acids Res 32 (2004): W610–W614. 

Sumner, James. "The isolation and crystallization of the enzyme urease." Journal of Biological 

Chemistry 69 (1926): 435-441. 

Susuki, et. al. "Modulation of microRNA processing by p53." Nature, 2009: 529-533. 

Thibert, B., Bredesen DE, del Rio G. "Improved prediction of critical residues for protein function 

based on network and phylogenetic analyses." BMC Bioinformatics 6 (2005): 213. 

Todd, A., Orengo C., Thornton J. "Sequence and Structural Differences between Enzyme and 

Nonenzyme Homologs." Structure, 2002: 1435–1451. 

Tokuriki, N., Tawfik, D. "Protein Dynamism and Evolvability." Science 324 (2009): 203-207. 

Tuinstra, R., Francis C. Peterson, Snjezana Kutlesa, Sonay Elgin, Michael A. Kron, Brian F. Volkman. 

"Interconversion between two unrelated protein folds in the lymphotactin native state." PNAS 105 

(2008): 5057–5062. 

Unger, R., Uriel S, Havlin S. "Scaling law in sizes of protein sequence families: From super-families to 

orphan genes." Proteins 51 (2003): 569–576. 

Vendruscolo, M., Paci, E., Dobson, C.M., Karplus, M., Nature 409 (2001) : 641. 

Vendruscolo, M., Dokholyan, N., Paci, E., Karplus, M. "Small-world view of the amino acids that play 

a key role in protein folding." Phys Rev E Stat Nonlin Soft Matter Phys 65 (2002): 061910. 

Vieth, M., Kolinski A, Brooks CL III, Skolnick J. "Prediction of the folding pathways and structure of 

the GCN4 leucine zipper." J Mol Biol 237 (1994): 361–367. 

Vitkup, Melamud, Moult, Sander. "Completeness in structural genomics." Nature Structural Biology 

8 (2001): 559 - 566. 

Weigt M, White RA, Szurmant H, Hoch JA, Hwa T. Identification of direct residue contacts in protein-

protein interaction by message passing. Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):67-72. doi: 

10.1073/pnas.0805923106. Epub 2008 Dec 30. PMID: 19116270; PMCID: PMC2629192. 

Weiner, S., Kollman PA, Case DA, Singh UC, Ghio C, Alagona G. "A new force field for molecular 

mechanical simulation of nucleic acids and proteins." J Am Chem Soc 106 (1984): 765–784. 



78 
 

Wimberly B., Brodersen D., Clemons W., Morgan-Warren R., Carter A., Vonrhein C., Hartsch T., 

Ramakrishnan V. "Structure of the 30S ribosomal subunit." Nature 407 (2000): 327-339. 

Wroblewska, L., Skolnick J. "Can a physics-based, all-atom potential find a protein’s native structure 

among misfolded structures? I. Large scale AMBER benchmarking." J Comput Chem 28 (2007): 2059–

2066. 

Xu, J., Zhang, Y. "How significant is a protein structure similarity with TM-score=0.5?" Bioinformatics 

26 (2010): 89–895. 

Zagrovic, B., Snow CD, Shirts MR, Pande VS. "Simulation of Folding of a Small Alpha-helical Protein 

in Atomistic Detail using Worldwide-distributed Computing." J Mol Biol 323 (2002): 927–937. 

Zhang. "TM-align: a protein structure alignment algorithm based on the TM-score." Nucleic Acids 

Res 33 (2005): 2302–2309. 

Zhang, Y. "I-TASSER server for protein 3D structure prediction." BMC Bioinformatics 9:40 (2008). 

Zhang. "Template-based modeling and free modeling by I-TASSER in CASP7." Proteins 69(Suppl 8) 

(2007): 108–117. 

Zhang. Y.., J, Skolnick. "Automated structure prediction of weakly homologous proteins on a 

genomic scale." PNAS 101 (2004): 7594-7599. 

Zhang.., Y., Skolnick,J. "Scoring function for automated assessment of protein structure template 

quality." Proteins 57 (2004): 702–710. 

Zhang..., Y., Skolnick J. "TM-align: a protein structure alignment algorithm based on the TM-score." 

Nucleic Acids Res 33 (2005): 2302–2309. 

Zhou, H, Zhou Y. "Fold recognition by combining sequence profiles derived from evolution and from 

depth-dependent structural alignment of fragments." Proteins 58 (2005): 321–328. 

Zoete, V., Michielin, O., Karplus, M. "Relation between sequence and structure of HIV-1 protease 

inhibitor complexes: a model system for the analysis of protein flexibility." J Mol Biol 315 (2002): 

21–52. 

 

 

 

 

 

 



 
 
 

 

 


	Portada 
	Contents 
	Introductory Review 
	Objectives and Hypothesis   Methods 
	Results 
	Discussion and Conclusions 
	References 



