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A Julio Colladò por conƩar en mí Ƙ darme la oportunidad de realiơar una gran
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sus innombrables obligaciones̆
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Resumen

Escherichia coli K̖ːˑ es un organismo modelo muƘ importante para investigar los

mecanismos de regulación transcripcional microbiană Su genoma fue de los primeros

secuenciados por completò Ƙ sus genes̀ operones Ƙ factores de transcripción han sido

ampliamente estudiados Ƙ organiơados en bases de datos especialiơadas̆ Aunque aún

falta información por descubrir sobre las redes de regulación transcripcional de Ĕ colì

las tecnologías de secuenciación masiva desarrolladas durante los últimos años

permiten contemplar su posible caracteriơación eƗhaustiva en un futuro cercanŏ Para

lograr este objetivò se tienen que revisar los conceptos biológicos fundamentales

detrás de los mecanismos de regulacióǹ así como las infraestructuras que permiten el

manejo Ƙ almacenamiento adecuado de los datos̆

En el proƘecto de doctorado presentado en este manuscritò se trabajaron estos

aspectos recolectando múltiples fuentes de datos Ƙ literaturà estableciendo una

nomenclatura para el manejo de los genes̀ formaliơando formatos de almacenamiento

para los objetos genómicos Ƙ reguladores̆ Además̀ se desarrollaron herramientas

computacionales para realiơar el análisis automatiơado de datos generados por

tecnologías de secuenciación de alto rendimientŏ Finalmentè este trabajo culminó con

la integración de dichos datos con los datos de referencia generados mediante

eƗperimentos clásicos̀ ofreciendo un nuevo fundamento para entender los

mecanismos de regulación genética a escala global en un organismo modelo como

Escherichia coli K̖ːˑ̆

˓



Comprehensive characterization of
 Eŭcheũichia cŋli  K̖12 regulatory networks
by bioinformatics integration
of high̖throughput data
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Abstract

Escherichia coli K̖ːˑ is the best studied free̖living organism on Earth̀ ƒhich makes it a
fundamental model organism in microbiologƘ̆ It is a reference for the studƘ of
transcriptional regulation̆ EƗtensive information about its genes̀ transcription
factors̀ and transcription units has been manuallƘ curated and indeƗed for decades in
dedicated databases̀ and its genome ƒas one of the Ʃrst to be entirelƘ sequenced and
published̆

CurrentlƘ̀ the ƒide varietƘ of high̖throughput technologies available alloƒs for the
acquisition of larger collections of genomic features̀ regulatorƘ elements or gene
eƗpression proƩles̀ and does so ƒith a higher̖than̖ever accuracƘ̀ opening the
possibilitƘ of comprehensivelƘ characteriơing the transcriptional regulatorƘ netƒork of
a species such as Ĕ colĭ

Hoƒever̀ such a tremendous amount of data triggers neƒ concerns regarding the
proper analƘsis and integration of this neƒ information ƒithin the eƗisting
frameƒorks̀ together ƒith the knoƒledge established through decades of
loƒ̖throughput eƗperimentation and manual literature curation̆

In this ƒork̀ I tackled those challenges bƘ ƒorking through these issues̆ I searched
public databases and recent literature for relevant datasets̋ I revised keƘ biological
concepts ƒith the aim of Ʃtting a common frameƒork̋ and I conceived bioinformatics
tools for the automatic and reproducible analƘsis of high̖throughput datasets̆ FinallƘ̀
I built on those foundations to perform the analƘsis of doơens of high̖throughput
datasets̀ the standardiơation of thousands of genomic features and regulatorƘ
elements̀ and their integration ƒith reference knoƒledge from classic eƗperiments̆
This provides a foundation for further research to understand gene regulation at a
global scale in this model organism̆
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Abbreviations

ChIP̖exo chromatin immunoprecipitation ƒith eƗonuclease digestion

ChIP̖seq chromatin immunoprecipitation folloƒed bƘ high̖throughput sequencing

CTG co̖transcribed genes

DAP̖seq DNA aƧnitƘ puriƩcation sequencing

DNA deoƗƘribonucleic acid

ENA European nucleotide archive

GEO gene eƗpression omnibus

gSELEX genomic sƘstematic evolution of ligands bƘ eƗponential enrichment

HT high̖throughput

LT loƒ̖throughput

mRNA messenger RNA

ORF open reading frame

RBS ribosome binding site

RNA ribonucleic acid

PSSM position̖speciƩc scoring matriƗ

RNAP RNA polƘmerase

RNA̖seq RNA sequencing

SRA sequence read archive

sRNA small RNA

TF transcription factor

TFBS transcription factor binding site

TFRS transcription factor regulatorƘ site

TRN transcriptional regulatorƘ netƒork

TSS transcription start site

TTS transcription termination site

TU transcription unit

˗



Introduction

Eŭcheũichia cŋli K̖12̀ a fundamental microbial model organism

Escherichia coli is a Gram̖negativè facultative anaerobic gammaproteobacteria from the
Enterobacteriaceae familƘ̆ Though it is mainlƘ knoƒn for living in the digestive sƘstem
of healthƘ mammals as a commensal species̀ it also has the capacitƘ of being a
free̖living organism or being pathogenic̆

Escherichia coli ƒas Ʃrst discovered in ː˗˗˔ bƘ Theodor Escherich̀ ƒho ƒould later on
give this neƒ species its current namĕ Over timè it became a model organism for
studƘing and understanding keƘ biological processes̀ due to its ease of culturing in a
laboratorƘ setting̀ its rapid reproduction and its relative ineƗpensiveness̆

In particular̀ a strain labeled as ̝K̖ːˑ̞ ƒas isolated in ː˘ˑˑ̀ and ƒas the basis for
scientiƩc breakthroughs such as the Ʃrst description of the mechanism of bacterial
conjugation ̒Lederberg and Tatum̀ ː˘˓˕̓̀ and the discoverƘ of the transcriptional
regulation of the Lac operon ̒Jacob and Monod̀ ː˘˕ː̓̆ FinallƘ̀ the genome of
Escherichia coli K̖ːˑ ƒas one of the Ʃrst genomes to be completelƘ sequenced ̒Blattner
et al̆̀ ː˘˘˖̓̆

Its anatomƘ includes a singlè circular chromosome encapsulated in the cell envelope
along ƒith ribosomes and other proteins and cellular components̆ The envelope is
made of an inner cƘtoplasmic membranè a peptidoglƘcan̖rich periplasmic space and
an outer membranĕ The cell also possesses peritrichous ƪagella and pili that enable
motilitƘ and intercellular communication ̒Figure ː̓̆
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Figure 1̆ Escherichia coli cell structure ̒simpliƩed̓̆

Bacterial genome and gene expression

ProkarƘotes tƘpicallƘ possess a singlè circular and double̖stranded molecule of DNÀ
and in some cases̀ one or several smaller plasmids̆ The main chromosome contains
the majoritƘ of the genes̀ ƩnelƘ organiơed spatiallƘ into operons̀ and eƗpressed either
constitutivelƘ or under speciƩc groƒth conditions̆

Operons are deƩned as clusters of genes that share the same orientation and are
usuallƘ separated bƘ short intergenic segments ̒Salgado et al̆̀ ˑˏˏˏ̋
Moreno̖Hagelsieb and Collado̖Vides̀ ˑˏˏˑ̓̀ and are under the control of a single
promoter and co̖transcribed together into polƘcistronic RNA molecules̆ The
transcription mechanism is triggered bƘ the binding of a protein compleƗ called RNA
polƘmerase ̒RNAP̓ on a promoter sequence speciƩcallƘ recogniơed via its sigma
subunit ̒Figure ˑa̓̆ The RNAP can then open the double̖stranded DNA around the
transcription start site ̒TSS̓̀ initiate transcriptioǹ and slide along the DNA sequencè
resulting in the elongation of the transcript until reaching a terminator sequence
̒Figure ˑb̓̆ The resulting messenger RNAs can contain one or several ribosome
binding sites ̒RBS̓ alloƒing their translation into proteins̀ ƒhile small RNAs can
complete other metabolic anďor regulatorƘ functions ̒Figure ˑc̓̆
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Escherichia coli K̖ːˑ has a circular chromosome of ˓̀˕˓ː̀˕˔ˑ million base pairs of
length ƒith a high densitƘ of genes̀ accounting for about ˘ˏ͝ of the total DNA
sequencĕ It contains a total of ˓̀˖˒˕ inventoried genes̀ of ƒhich ˓̀˒ˑ˕ are currentlƘ
reported as protein̖coding and another ˑː˘ as coding for small RNAs̆ Those genes are
organiơed into ˑ̀˔˘ˑ operons ̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̋ Keseler et al̆̀ ˑˏˑː̓̆

Figure 2̆ ă Operon structurĕ An operon is composed of one or several genes that are associated ƒith a
promoter̆ The RNA polƘmerase compleƗ binds the promoter in order to initiate transcription of the
doƒnstream genes̆ b̆ Transcription̆ After binding the promoter̀ the polƘmerase opens the
double̖stranded DNA to initiate the transcriptioǹ and slides along the DNA sequence to elongate the
transcript̀ until reaching a terminator̆ c̆ Translation̆ Ribosomes can bind mRNAs via ribosome binding
sites̀ and translate their doƒnstream sequences into amino acids and proteins̆

Gene regulatory networks

Regulation of gene eƗpression is crucial for living organisms in order to be able to adapt
to environmental conditions and maintain homeostasis̀ even more so for a
micro̖organism such as Ĕ colì ƒhich holds the capacitƘ of surviving and even striving
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in a ƒide varietƘ of environments and lifestƘles̆ The mechanisms of adaptation involve
several coordinated laƘers˿ the signaling netƒork comprises intra̖ and eƗtra̖cellular
receptors that detect environmental changes ̒temperaturè osmolaritƘ̀ etc̓ and signal
transduction mechanisms̋ the transcriptional regulatorƘ netƒork consists of
protein̖DNA interactions that can activate or repress the eƗpression of speciƩc genes
̒genetic sƒitches̓ and trigger appropriate metabolic responses̋ and ƩnallƘ the
metabolic netƒork is made of interconnected pathƒaƘs of biochemical reactions that
are triggered bƘ speciƩc signals ̒Ledeơma̖Tejeida et al̆̀ ˑˏː˖̓̆

The modulation of gene eƗpression can occur at anƘ stage of the process˿ diƦerent
groƒth conditions ƒill aƦect signal transductioǹ structural modiƩcations of the DNA
can impact the level of transcription of speciƩc regions ̒eğ DNA supercoiling̓̀
transcription initiation can be triggered diƦerentiallƘ through alternative sigma
subunits of the RNA polƘmerase holoenơƘmè small RNAs can act at the
post̖transcriptional level to silence mRNA molecules and prevent their translation
into proteins̀ and some mRNAs are able to self̖regulate ̒ribosƒitches̓̆

But one of the most important mechanisms involved in the regulation of gene
eƗpression at the transcriptional level involves DNA̖binding proteins called
transcription factors ̒TFs̓̆ TFs have the abilitƘ to bind to speciƩc sites of the DNA that
are tƘpicallƘ located upstream of genes and operons̀ therebƘ alloƒing or prohibiting
access of the RNA polƘmerase to promoter regions̀ in order to positivelƘ or negativelƘ
regulate the eƗpression of the doƒnstream genes̆ These mechanisms ƒere Ʃrst
described bƘ Jacob and Monod ̒Jacob and Monod̀ ː˘˕ː̓ ƒith their ƒork on the lactose
operon ̒Figure ˒̓̀ and have been shoƒn to be responsible for the direct regulation of
more than half of Escherichia coli K̖ːˑ̡s genes ̒Péreơ̖Rueda et al̆̀ ˑˏː˔̓̆ The complete
set of transcription factors and their respective target genes form the so̖called
transcriptional regulatorƘ netƒork ̒TRN̓̆
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Figure 3̆ Transcriptional regulation of the lactose operon ̒Jacob and Monod̀ ː˘˕ː̓̆ ă Repression of
expression̆ In the absence of lactosè the LacI transcription factor is usuallƘ bound to a speciƩc site
located immediatelƘ doƒnstream of the operon promoter̀ impeding the recruitment of the DNA
polƘmerase and the initiation of the transcription of this operoǹ coding for lactose metabolism̖related
genes̆ b̆ Induction of expression̆ When lactose is present̀ allolactose is formed and binds to the
repressor̀ ƒhich consequentlƘ unbinds from the DNĂ Combined ƒith a loƒ level of glucosè this alloƒs
CRP to bind its cAMP co̖factor and its operator upstream of the LacI operon promoter̀ contributing to the
induction̆ This phenomenon alloƒs for the recruitment of the RNA polƘmerasè and thus the transcription
of lactose metabolism genes̀ in order to use lactose as a nutrient̆ Irrespective of lactosè in the presence of
glucosè cAMP levels go doƒǹ provoking the unbinding of CRP transcription factor from its activator sites
in manƘ operons for carbon utiliơation such as the lactose operon̆

Transcription factors

Transcription factors are deƩned as DNA̖binding proteins that alloƒ or block the
transcription genes̀ and are not part of the RNAP core or holo enơƘme ̒Zhou and Yang̀
ˑˏˏ˕̓̆ Meta̖analƘses have shoƒn that TF̖coding genes can make up for up to ːˏ͝ of
all coding genes in bacterià though this proportion can varƘ greatlƘ depending on
bacterial genome siơe and lifestƘle ̒Péreơ̖Rueda et al̆̀ ˑˏˏ˓̓̆ Though a complete and
deƩnitive identiƩcation of all TFs in Ĕ coli K̖ːˑ is still lacking̀ a consensus has been
reached over the Ƙears around a total estimate of ˒ˏˏ to ˒˔ˏ TFs ̒Péreơ̖Rueda and
Collado̖Vides̀ ˑˏˏˏ̋ Péreơ̖Rueda et al̆̀ ˑˏː˔̋ Gao et al̆̀ ˑˏː˗̋ Flores̖Bautista et al̆̀
ˑˏˑˏ̋ Kim et al̆̀ ˑˏˑː̓̀ most of ƒhich have been shoƒn to perform negative
auto̖regulation ̒Péreơ̖Rueda et al̆̀ ˑˏː˔̓̆

Transcription factors usuallƘ comprise a DNA̖binding domain ̒DBD̓ and a companion
domain ̒CD̓̆ The DNA̖binding domain is necessarƘ for a TF to bind onto speciƩc sites
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of the genomè thus called transcription factor binding sites ̒TFBS̓̀ ƒhile the
companion domain can have a varietƘ of functions such as ligand binding̀
protein̖protein interactions̀ or enơƘmatic activities ̒Péreơ̖Rueda et al̆̀ ˑˏː˗̓̆ Each
TF binds speciƩcallƘ to its oƒn target sites and regulates speciƩc target genes̀ some of
ƒhich maƘ be TF̖coding themselves̀ generating a compleƗ netƒork of interactions̆
Together̀ a group of genes that are regulated bƘ a common transcription factor form a
regulon̆ A varietƘ of DBDs has been described̀ hoƒever in bacteria about ˗ˏ͝ of them
contain a ̝heliƗ̖turn̖heliƗ̞ or HTH segment that binds to the DNA ̒Péreơ̖Rueda and
Collado̖Vides̀ ˑˏˏˏ̋ Flores̖Bautista et al̆̀ ˑˏˑˏ̓̆ Protein binding domains have been
used to classifƘ bacterial TFs into evolutionarƘ families ̒Péreơ̖Rueda et al̆̀ ˑˏˏ˓̓̀ and
DNA binding sites have been used to identifƘ TF̖speciƩc binding genomic patterns̆

CurrentlƘ̀ ˑˑˑ TFs have been characteriơed and conƩrmed ƒith eƗperimental evidence
̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓̀ mostlƘ through binding of puriƩed proteins and site
mutatioǹ sometimes combined ƒith additional data of loƒer conƩdence such as gene
eƗpression analƘsis and binding of cellular eƗtracts̆ AdditionallƘ̀ computational
methodologies have been developed in order to predict TFs that have not Ƙet been
characteriơed eƗperimentallƘ̆ Predictions ƒere based on several criteria and methods̀
such as sequence homologƘ ƒith eƗperimentallƘ characteriơed TFs̀ identiƩcation of a
DBD ̖ preferentiallƘ including an HTH structure ̒Péreơ̖Rueda and Collado̖Vides̀
ˑˏˏˏ̋ Péreơ̖Rueda et al̆̀ ˑˏː˔̓̀ identiƩcation of orthologous proteins ̒Flores̖Bautista
et al̆̀ ˑˏˑˏ̓̀ as ƒell as deep̖learning methods ̒Gao et al̆̀ ˑˏː˗̋ Kim et al̆̀ ˑˏˑː̓̆

Regulatory interactions

Most of the regulatorƘ interactions knoƒn to date ƒere identiƩed from in vitro
eƗperiments through the binding of puriƩed proteins̆ DNAse footprint uses
DNAse̖protected fragment isolation to detect the ̝footprint̞ of a protein on the DNA
sequence ƒith a good accuracƘ ̒Galas and Schmitờ ː˘˖˗̓̆ On the other hand̀
electrophoretic mobilitƘ shift assaƘs ̒EMSÀ also called gel shift̓ consist in the
electrophoretic separation of DNA fragments of interest ƒith or ƒithout bound
proteins ̒Garner and Revơiǹ ː˘˗ː̓̀ alloƒing the identiƩcation of transcription factor
binding sites̆ More recentlƘ̀ biotin̖DNA aƧnitƘ puriƩcation sequencing ̒DAP̖seq̓
̒O̡MalleƘ et al̆̀ ˑˏː˕̓ and genomic sƘstematic evolution of ligands bƘ eƗponential
enrichment ̒gSELEX̓ ̒Shimada et al̆̀ ˑˏː˗̓  have also been used̆
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The identiƩcation of TF binding sites took a neƒ turn ƒith recent in vivo chromatin
immunoprecipitation ̒IP̓ techniques combined ƒith high̖throughput sequencing
technologies̆ TheƘ share the same principle˿ after a TF of interest is bound to
ƒhole̖genome DNA via its speciƩc sites̀ cross̖linking of the protein is performed̆ The
ƒhole DNA is then fragmented using a process such as sonicatioǹ and an antibodƘ that
is speciƩc to the TF is added̆ DNA fragments that are bound bƘ the TF are isolated
through IP̀ and ƩnallƘ the cross̖linking is reversed̀ leaving free DNA fragments
originallƘ bound bƘ the TF̆ These fragments are then ampliƩed and sequenced̀ before
theƘ are ƩnallƘ mapped to the genome of referencĕ In the case of ChIP̖on̖chip ̒Buck
and Lieb̀ ˑˏˏ˓̓̀ the sequencing step is performed bƘ using DNA microarraƘs̆ As HT
sequencing technologies improved̀ binding sites identiƩcation gained resolution ƒhile
dramaticallƘ loƒering in cost̆ The ChIP̖seq technologƘ ̒Johnson et al̆̀ ˑˏˏ˖̓ shares
the same strategƘ̀ but the Ʃnal sequencing is performed using neƗt̖generation
sequencing devices̀ resulting in a better resolution of the binding locations̆ FinallƘ̀
ChIP̖eƗo ̒Rhee and Pugh̀ ˑˏːː̓ is similar to ChIP̖seq̀ but includes an additional step
that consists in trimming DNA from the protein̖DNA compleƗes before the IP is
carried out̀ increasing the precision of protein binding sites identiƩcation̆ In all cases̀
the resulting reads can be aligned to a genome sequence of referencè and the regions
enriched in reads at certain positions of the genome form so̖called ̝peaks̞̀ that
indicate possible binding positions for the TF of interest ̒Figure ˓̓̆

When a TFBS can be linked to evidence of a change in gene eƗpression of immediate
doƒnstream genes under a given groƒth conditioǹ it can formallƘ be identiƩed as a
regulatorƘ sequencè and is then labeled as transcription factor regulatorƘ site ̒TFRS̓
̒Mejía̖Almonte et al̆̀ ˑˏˑˏ̓̀ ƒhile the regulated genes are considered as targets of the
transcription factor̆
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Figure 4̆ Overview of chromatin immunoprecipitation̖based techniques for protein binding sites
identification̆ ă The protein of interest is cross̖linked to the ƒhole DNA moleculĕ b̆ The genome is
fragmented̆ c̆ Immunoprecipitation is performed using an antibodƘ speciƩc to the protein of interest̆ d̆
After reversing the cross̖linking̀ DNA fragments can be ampliƩed and sequenced̆ ĕ Upon mapping the
resulting reads to the ƒhole genomic sequence of the reference organism̀ regions ƒith a high densitƘ of
mapped reads̀ or peaks̀ indicate protein binding sites̆
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The relative levels of eƗpression of genes can be measured using transcriptomic
technologies̆ TheƘ essentiallƘ consist in eƗtracting total mRNAs from a cell and
perform their fragmentatioǹ puriƩcatioǹ reverse̖transcriptioǹ and sequencinğ The
latter step used to be realiơed using microarraƘs̀ and is noƒ routinelƘ done using
massive parallel sequencing technologies˿ this is the RNA̖seq technologƘ̆
Transcriptome analƘses can also uncover genomic elements such as transcription
units̀ and transcription start and termination sites̆ Various protocols based on
RNA̖seq strategies have been proposed̀ that alloƒ for the identiƩcation of TSSs at
single̖nucleotide resolution ̒ConƒaƘ et al̆̀ ˑˏː˓̓̀ and more recentlƘ̀ for the
determination of entire transcripts̀ along ƒith their TSSs and TTSs ̒Yan et al̆̀ ˑˏː˗̋ Ju
et al̆̀ ˑˏː˘̓̆

Databases on transcriptional regulation in Eŭcheũichia cŋli K̖12

Most of the current knoƒledge of Ĕ coli̡s genomè its features and its regulatorƘ
processes̀ comes from the accumulation of loƒ̖throughput eƗperiments realiơed and
published over decades of scientiƩc investigations̆ EƗtensive information about Ĕ coli
K̖ːˑ TFs̀ their binding sites̀ target genes and operons has been manuallƘ curated and
indeƗed for decades bƘ the team at the Program of Computational Genomics at the
CCG̀ and simultaneouslƘ described in dedicated databases such as RegulonDB
̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓ and EcoCƘc ̒Keseler et al̆ ˑˏˑː̓̆

Since the creation of RegulonDB in ː˘˘˗̀ biocurators have gathered information from
thousands of original scientiƩc publications̀ reporting data from classical molecular
genetics ƒet̖laboratorƘ eƗperiments̆ Hoƒever̀ genome̖scale technologies based on
high̖throughput sequencing noƒ alloƒ for the accurate identiƩcation of genomic
features and regulatorƘ elements genome̖ƒidĕ Additional interactions based on gene
eƗpression analƘses and computational predictions ƒere also integrated̆ In order to
account for their diƦerent level of reliabilitƘ̀ a sƘstem of classiƩcation ƒas
implemented in the databasè that categoriơes the conƩdence associated ƒith
regulatorƘ features as ̝strong̞ or ̝ƒeak̞̀ depending on the pieces of evidence theƘ
relƘ on ̒Weiss et al̆̀ ˑˏː˒̓̆ Features that are associated ƒith solid phƘsical and genetic
evidence are classiƩed as strong̀ ƒhile those associated ƒith less reliable evidence ̒ĭĕ
change in eƗpression of a target genè that could be indirect̓ are classiƩed as ƒeak̆
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To datè the total transcriptional regulatorƘ netƒork currentlƘ characteriơed of Ĕ coli
comprises ˑˑˑ TFs regulating ː̀˗˔˕ genes̀ for a total of ˓̀˕˕˔ regulatorƘ interactions
̒ˑ̀˗˒˕ strong̖ and ː̀˗ˑ˘ ƒeak̖conƩdence RIs̓ ̒Tierrafríà Rioualen et al̀ ˑˏˑˑ̓̆
Hoƒever it is ƒell knoƒn that this is just a fraction of the complete transcriptional
regulatorƘ netƒork̀ since nearlƘ a third of the estimated total of TFs lack
characteriơatioǹ and a similar proportion of Ĕ coli̡s ˓̀˖ˏˏ genes are not Ƙet
functionallƘ characteriơed ̒Flores̖Bautista et al̆̀ ˑˏː˗̋ Gao et al̆̀ ˑˏː˗̓̆

Databases of high̖throughput datasets

High̖throughput datasets are usuallƘ made publiclƘ available upon their publicatioǹ
and uploaded to dedicated databases̆ The main ones are the European Nucleotide
Archive ̒ENA̓ and ArraƘEƗpress from the EMBL̖EBÌ that store nucleotide sequencing
information and high̖throughput functional genomics eƗperiments respectivelƘ
̒https˿̌̌ƒƒƒ̆ebĭac̆uǩ̓̋ and the Sequence Read Archive ̒SRA̓ and Gene EƗpression
Omnibus ̒GEO̓̀ their counterparts from the NCBI ̒https˿̌̌ƒƒƒ̆ncbĭnlm̆nih̆gov̌̓̆
AdditionallƘ̀ several databases store more specialiơed datasets̀ that are ƒorth
mentioning˿ COLOMBOS oƦers transcriptomic data from prokarƘotic organisms
̒Moretto et al̆̀ ˑˏː˕̓ ̒https˿̌̌colombos̆net̓̀ and Transcription ProƩle of Escherichia
coli ̒TEC̓ oƦers genomic SELEX data for Ĕ coli TFs ̒Ishihama et al̆̀ ˑˏː˕̓
̒ƒƒƒ̆shigen̆niğac̆jp̌ecolǐteč̓̆
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Objectives

Problematic

Despite decades of investigation and eƗperimentation dedicated to Escherichia coli
K̖ːˑ̀ its transcriptional regulatorƘ netƒork remains far from being eƗhaustivelƘ
characteriơed˿ nearlƘ ˒ˏ͝ of its TFs and genes are not Ƙet characteriơed̀ and most of
the characteriơed TFs lack ƒhole̖genome proƩles that ƒould alloƒ to retrieve
eƗhaustive binding sites and target genes̆

Main goal

The main objective of this ƒork is to take advantage of recent̀ high̖throughput̖based
̒HT̓ published data available for Ĕ coli K̖ːˑ and combine it ƒith the
loƒ̖throughput̖based ̒LT̓ knoƒledge of reference curated in RegulonDB̀ in order to
complete its knoƒn transcriptional regulatorƘ netƒork̆

Specific goals

In order to pursue this Ʃnal aim̀ a large amount of data from verƘ diverse sources had
to be manipulated̀ ƒhich highlighted a recurrent issue˿ the identiƩcation and the
mapping of genomic objects and coordinates betƒeen sources̆ In order to circumvent
this bottleneck̀ I developed an R librarƘ that performs a number of conversions and
operations on genes and other genomic features ̒Chapter ː˿ Getting a hang of Ĕ coli
genes and transcription factors̓̆

The goal of characteriơing the regulatorƘ netƒorks of Escherichia coli also triggered
considerations about genomic features such as promoters̀ TUs and terminators̀ and
the need to laƘ out deƩnitions and integrate novel knoƒledge alongside established
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concepts̀ in order to integrate recent HT̖based data ƒith previous knoƒledge
̒Chapter ˑ˿ Building a comprehensive set of genomic features̓̆

On another hand̀ I developed a librarƘ of bioinformatic ƒorkƪoƒs that alloƒs for the
analƘsis of high̖throughput data in a reproducible manner̀ ƒith a focus on ChIP̖seq
and RNA̖seq data ̒Chapter ˒˿ Building tools to analƘơe high̖throughput datasets̓̆
This ƒork ƒas published in the form of a protocol ̒Rioualen et al̆̀ ˑˏː˘̓̆

Building on these founding elements̀ I ƒorked toƒards the central goal of mƘ PhD˿ the
completion of the Ĕ coli K̖ːˑ transcriptional regulatorƘ netƒork bƘ integrating
high̖throughput data ̒Chapter ˓˿ Integration of high̖throughput data ƒithin a
reference frameƒork̓̆ This ƒork constituted a major upgrade of RegulonDB and ƒas
recentlƘ published ̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓ as version ːː̆ˏ̆

FinallƘ̀ I investigated an alternative approach to building transcription factor binding
matrices based on de novo pattern discoverƘ using the curated binding sites available in
RegulonDB̀ ƒhich subsequentlƘ enabled me to produce an alternative collection of TF
binding motifs for Escherichia coli ̒Chapter ˔˿ An alternative collection of binding
motifs̓̆
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Chapter 1̆

Getting a hang of Ĕ cŋķi genes and
transcription factors

Problematic

Despite a ƒide knoƒledge of the Ĕ coli K̖ːˑ genome and regulatorƘ netƒorks̀ the
computational manipulation of numerous datasets from a varietƘ of sources can prove
to be rather fastidious̀ due to a lack of congruence in the deƩnition of biological
objects̀ as ƒell as their names or identiƩers̆ Genes and their products can be referred
to using a varietƘ of names and sƘnonƘms̀ obsolete or not̀ diƦerent bnumbers ̒an
indeƗ speciƩc of Ĕ coli genes̓̀ coordinates can change over time due to the addition of
neƒ knoƒledgè and frequent updates in genome annotations can lead to discrepancies
betƒeen sources̆ AdditionallƘ̀ a signiƩcant amount of published datasets are based on
obsolete genome assemblies̀ leading to erroneous genomic coordinates̆

In order to overcome these limitations and process datasets containing information on
Ĕ coli genes̀ TUs̀ promoters̀ or anƘ other genomic features associated ƒith
coordinates̀ I took on the challenge of building a dictionarƘ of genes̀ TFs and genomic
coordinates̆ After eƗtracting information from several public databases and articles̀ I
built reference tables for genes and transcription factors that alloƒ for an easƘ
translation of inconsistent names or coordinates and created ̝EcoliGenes̞̀ a librarƘ of
functions that perform veriƩcations and homogeniơation of Ĕ coli genomic datasets
̒https˿̌̌github̆com̌rioualeňEcoliGenes̓̆

Comprehensive table of genes and their attributes

There are numerous names̀ identiƩers and sƘnonƘms for most genes and proteins of Ĕ
colì as ƒell as outdated annotations̀ products or coordinates̆ This complicates the
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programmatic manipulation of datasets containing genomic information̆ In order to
be able to process datasets containing anƘ information on Ĕ coli genes̀ TUs̀
promoters̀ or anƘ other genomic objects associated ƒith coordinates̀ I started
gathering comprehensive information into one single placĕ I Ʃrst retrieved all genes
and their products from RegulonDB ̒Figure ˔a̓̀ and completed this information ƒith
additional data eƗtracted from EcocƘc and Genbank̆ I merged them Ʃrst on the basis of
their bnumbers̀ and then using their sƘmbols and coordinates̆ FinallƘ̀ I added
̝reference̞ columns to this master table˿ reference bnumber̀ reference sƘmbol̀
reference start̀ reference stop̀ reference strand̋ and ̝sƘnonƘm̞ columns to store
additional names from anƘ source˿ gene sƘnonƘms and product sƘnonƘms ̒Figure ˔b̓̆

Figure 5̆ ă EntitƘ̖relationship diagram of the gene information retrieved from RegulonDB̆ b̆
Construction of the gene master table˿ eƗtractioǹ classiƩcation and organiơation of gene names̀
sƘnonƘms̀ attributes and products̆
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Comprehensive list of transcription factors

To datè there is no single consensual list of conƩrmed TFs for Ĕ colĭ RegulonDB ːː̆ˏ
contains ˑˑˑ eƗperimentallƘ conƩrmed TFs ̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓̀
associated ƒith at least one regulatorƘ interactioǹ hoƒever the total number of TFs in
Ĕ coli is estimated to be slightlƘ above ˒ˏˏ̀ and several groups have predicted TF
candidates based on in silico predictions using criteria such as the presence of a DNA
binding domain or a signiƩcant homologƘ ƒith knoƒn TFs ̒Péreơ̖Rueda and
Collado̖Vides̀ ˑˏˏˏ̋ Péreơ̖Rueda et al̆̀ ˑˏː˔̋ Gao et al̆̀ ˑˏː˗̋ Flores̖Bautista et al̆̀
ˑˏˑˏ̋ Kim et al̆̀ ˑˏˑː̓̆

BƘ combining those diƦerent sources̀ I built a list of ˓ˏ˗ conƩrmed or proposed
transcription factors̀ and gathered their most relevant attributes̆ First I retrieved the
information available in RegulonDB ̒Figure ˕a̓̀ then added gene products annotated
in Genbank as transcriptional regulators ̒putative or not̓̀ as ƒell TF predictions
published in recent Ƙears ̒Péreơ̖Rueda et al̆̀ ˑˏː˔̋ Flores̖Bautista et al̆̀ ˑˏˑˏ̋ Kim et
al̆̀ ˑˏˑː̓̆ I added their respective identiƩers from eƗternal databases such as Uniprot̀
RefSeq̀ and Pfam̀ other eƗisting sƘnonƘms̀ and the folloƒing ̝reference̞ columns˿
reference TF namè reference gene sƘmbol̀ reference gene bnumber̆ It is ƒorth noting
that there are heterodimeric TFs̀ ƒhich are therefore associated ƒith tƒo genes̆
Proteins that are considered as TFs both individuallƘ and as part of a dimer have
duplicate entries̀ ƒhile proteins that are knoƒn to be regulatorƘ onlƘ as part of a dimer
ƒill be considered as sƘnonƘm names for said dimer̆ FinallƘ̀ I performed a comparison
of the lists of TFs from all the diƦerent sources̀ ƒhich shoƒs the eƗistence of several
discrepancies betƒeen one another ̒Figure ˕b̓̀ mainlƘ due to the absence of
eƗperimental evidence to back up computational predictions̆ The most striking
diƦerence is observed in the list of TFs predicted bƘ Kim and colleagues̀ ƒhich
includes ˔˗ proposed TFs absent from all other datasets ̒Kim et al̆̀ ˑˏˑː̓̆ This can be
eƗplained bƘ the fact that theƘ used a deep learning approach that does not relƘ on
homologƘ ƒith knoƒn TFs̀ thus revealing potential neƒ classes of TFs̀ though theƘ
could also be false positives̆
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Figure 6̆ ă EntitƘ̖relationship diagram of the TF information retrieved from RegulonDB̆ b̆ Comparison
of the lists of TFs from diƦerent sources̆

The EcoliGenes library

I built a tidƘ R package designed to process Ĕ coli datasets using the master tables
described abovĕ It is conceived to manipulate anƘ number of genes̀ TFs or genomic
coordinates using vectoriơed functions that alloƒ manipulating data frames using
basic functions from the tidƘverse packages ̒https˿̌̌ƒƒƒ̆tidƘversĕorǧ̓ ̒Figure ˖̓̆
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These tools can be divided into three categories˿

̖ Coordinate̖based tools ̒graƘ̖headed boƗes̓̆ The conZert_coords function

alloƒs to convert genomics coordinates based on Ĕ coli genome version
NC̍ˏˏˏ˘ː˒̆ˑ to the currentlƘ used genome version NC̍ˏˏˏ˘ː˒̆˒̆ The functions

test_position and test_interZal perform the eƗtraction of information related to

speciƩc genomic positions or regions̆
̖ Gene̖based tools ̒blue̖headed boƗes̓̆ Genes reported as sƘmbols or identiƩers

from anƘ source can be readilƘ converted to sƘmbols or bnumbers of reference

ƒith the conZert_gene function̆ The get_genes functions alloƒ retrieving a list of

genes̡ bnumbers given a speciƩc criteriă Theǹ bnumbers can be used to

perform boolean tests using test_gene, or retrieve speciƩc attributes of the genes

ƒith get_gene_infŏ

̖ TF̖based tools ̒green̖headed boƗes̓̆ Transcription factors reported as protein
names̀ gene sƘmbols or anƘ other identiƩers are converted to their names of

reference using conZert_tf̆ The get_tfs functions alloƒ retrieving a list of TF

reference names given speciƩc criteriă Theǹ theƘ can be used to perform

boolean tests using test_tf̀ or retrieve speciƩc attributes of the TF ƒith

get_tf_infŏ

With such a simple tool̀ anƘ number of datasets from a varietƘ of sources and times
can be readilƘ uniformiơed and reliablƘ compared and visualiơed̆ This ƒork ƒas
heavilƘ used for the processing of numerous datasets presented in Chapter ˑ and
Chapter ˓̆
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Figure ˖̆ Framework of the EcoliGenes library̆ ă Reference data is gathered from several databases and
publications in order to build gene and TF master tables ̒beige frame̓̆ Operations can be performed on
coordinates̀ genes and TFs ̒graƘ̀ blue and green frames respectivelƘ̓̆ b̆ Use case˿ a random list of gene
names is generated̀ that are translated to their reference names and Ʃltered to get tf̖coding genes̆
FinallƘ̀ genes and TFs attributes are retrieved̆
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Reference ͬ availability

Github

The EcoliGenes librarƘ is available at Github˿
https˿̌̌github̆com̌rioualeňEcoliGenes

Poster

This ƒork ƒas presented under the form of a poster at the Bioconductor conference
ˑˏˑˑ in Seattlè Washington˿

The EcoliGenes librarƘ˿ Solving the never̖ending struggle with Escherichia coli K̖ːˑ genes
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Chapter 2̆

Building a comprehensive set of
genomic features

Problematic

Despite eƗtensive information in RegulonDB̀ ƒe don̡t have an eƗhaustive panorama of
Ĕ coli K̖ːˑ operons̀ transcription units̀ promoters and terminators̆ Nonetheless̀
clarifƘing the genomic structure of Ĕ coli is a necessarƘ preliminarƘ step in order to
properlƘ connect the pieces together and unravel its transcriptional regulatorƘ
netƒork̆ RecentlƘ published high̖throughput datasets can help us draƒ a
comprehensive picture of Ĕ coli genome compositioǹ but challenges remain as the
deƩnitions for these genomic features are someƒhat blurrƘ̀ and handled diƦerentlƘ
depending on the sourcĕ

In this chapter̀ I shoƒ hoƒ I gathered high̖throughput datasets from recent
publications and databases̀ updated and standardiơed them together ƒith the classic
data from RegulonDB̀ in order to create a neƒ integrated set of genomic features for Ĕ
colĭ

Revising core concepts

Bacterial genomes possess a characteristic organiơation of their genes into so̖called
operons̆ TheƘ are deƩned as clusters of genes under the control of a single promoter
and co̖transcribed together into polƘcistronic RNA molecules̆ The concept of
transcription unit ƒas introduced to account for the eƗistence of distinct transcripts
and promoters present in one operon̆ TheƘ ƒere deƩned as sets of one or several genes
co̖transcribed as polƘcistronic units̀ hoƒever their proper description and distinction
ƒith operons have remained someƒhat unclear ̒Mejía̖Almonte et al̆̀ ˑˏˑˏ̓̆
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As knoƒledge greƒ̀ the necessitƘ arose to revise original concepts and deƩne neƒ
ones̀ in order to Ʃt ƒith the biological compleƗitƘ of the bacterial genomĕ Herè I
deƩne a transcription unit as a phƘsical entitƘ made of a portion of the genome
betƒeen given start and end coordinates̀ that contains a set of contiguous genes that
share the same orientation and are co̖transcribed into one single transcript̆ An operon
is a conceptual object composed of one or several transcription units that share at least
one genè and consequentlƘ̀ all of the genes contained in said transcription units
̒Mejía̖Almonte et al̆̀ ˑˏˑˏ̓̆ This means that a given gene can be part of several
distinct transcription units̀ but onlƘ one operon̆

Besides̀ the concepts of promoter and terminator had to be clariƩed as ƒell̆ Herè I
consider that a promoter can contain one or several transcription start sites ̒ƒithin a
maƗimum distance of ˔ bp̓̀ and an operon can contain one or several promoters̆ A
given transcription unit is associated to a speciƩc TSS̀ ƒhich marks its start
coordinatĕ Likeƒisè terminator regions can contain one or several distinct
transcription termination sites̀ and operons can contain one or several terminator
regions̆

Transcription unit  and co̖transcribed genes unit sets

In order to build an eƗhaustive transcription unit set̀ the question arose of hoƒ to
deƩne them in terms of objects and their attributes̆ TUs are theoreticallƘ deƩned bƘ a
promoter and a terminator̀ hoƒever in databases theƘ can be associated ƒith onè
several or none of them̆ TU coordinates can also be deƩned bƘ the genes theƘ contain
and the transcripts theƘ form̀ and those can be characteriơed bƘ diƦerent
eƗperimental methods that do not necessarilƘ have a single̖nucleotide resolution̆
Thereforè multiple coordinates can be considered that potentiallƘ refer to the same
biological object̀ and numerous redundant TUs can be generated̆ For these reasons̀ I
deƩned tƒo kinds of objects˿

̖ transcription units are deƩned bƘ their unique start and end coordinates and
their direction or strand̋

̖ co̖transcribed genes ̒CTG̓ units are made of genes that are co̖transcribed
together as a polƘcistronic unit̀ at least oncè regardless of coordinates ̒Figure
˗̓̆
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Figure ˗̆ Definitions̆ A transcription unit is uniquelƘ deƩned bƘ its genomic coordinates and strand̆
Coordinates can be those of the associated TSS and TTS̀ or those of the leading and closing genes̆ A
co̖transcribed genes unit can be composed of one or several TUs̀ and is deƩned bƘ its gene content̆ A
given gene can be in several CTG sets̀ but no tƒo CTG sets can contain eƗactlƘ the same genes̆

First̀ I retrieved ˒̀˕˔ˑ transcription units from RegulonDB̀ together ƒith their
associated promoters and terminators ƒhen availablĕ TheoreticallƘ a transcription
unit should be associated ƒith a speciƩc TSS and TTS̀ hoƒever in manƘ cases the
information is unknoƒn or ambiguous̆ I deƩned transcription unit start and end
coordinates using their TSS and TTS positions ƒhen availablè and in their absencè the
coordinates of their Ʃrst and last genes̆ Second̀ I added ˓̀˕˗˕ transcription units
generated through SMRT̖Cappable̖seq technologƘ ̒Yan et al̆̀ ˑˏː˗̓ using tƒo
distinct groƒth conditions and tƒo methods for determining the ending position˿
formal identiƩcation of a TTS ̒ːˏ͝ of reported TUs̓ or longest read coordinate ̒˘ˏ͝
of reported TUs̓̆ Considering their coordinates̀ onlƘ one TU from RegulonDB ƒas also
present in the HT datasets̀ and ˑ˔˘ TUs from the HT dataset ƒere present in more than
one condition ̒Figure ˘a̓̆ All of these TUs ƒere given a ̝gene content̞ attributè
listing the genes entirelƘ contained in each TU per their respective coordinates̆ Gene
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names ƒere homogeniơed using the EcoliGenes librarƘ ̒Chapter ː̓̆ When the start or
end position of a TU fell inside a genic sequencè the corresponding gene ƒas eƗcluded
from the TU gene content ƒithout impacting its coordinates̀ and onlƘ the entire genes
ƒere included̆ FinallƘ̀ in order to get a full coverage of all genes of Ĕ colì the genes
that ƒere not included in anƘ TU ƒere made into ː˖˒ orphan TUs̀ ƒith their start and
end coordinates being those of the genĕ All of the TUs ƒere merged bƘ coordinates and
strand̀ amounting to a total of ˗̀ˑˑː unique transcription units̆

Theǹ I derived the co̖transcribed genes set from the TU set̆ EverƘ group of CTG is
made of genes that are present together in at least one TÙ implƘing theƘ can be
co̖transcribed together as a polƘcistronic unit̆ In practicè TUs that contain eƗactlƘ
the same gene content are grouped into CTG units̀ and their ƒidest coordinates are
kept for referencĕ This alloƒed to reduce the redundancƘ inside each dataset˿ the
collection of TUs from RegulonDB loƒered to ˒̀ˏ˔˒ unique CTGs̀ and the HT collection
loƒered from ˓̀˕˗˕ TUs to ˑ̀˒ˑ˕ CTGs̀ mostlƘ due to the numerous TUs that don̡t
have a precise terminator site associated̆ Overall̀ a total of ˓̀ˑ˗˒ CTG units compose
the ƒhole set̀ ƒhich dramaticallƘ loƒers the redundancƘ observed in the initial TU set
̒Figure ˘b̓̀ of ƒhich ˑ˘͝ ƒere not initiallƘ present in RegulonDB̆

Figure ˘̆ Overlap betƒeen classic and high̖throughput dată ă Overlap betƒeen transcription units
deƩned bƘ their unique coordinates̆ b̆ Overlap betƒeen co̖transcribed gene units deƩned bƘ their unique
gene content̆
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BrieƪƘ̀ out of ˗̀ˑːː unique TUs̀ I reduced the total number to almost half of this
amount bƘ taking into account their gene content̀ reaching a total of ˓̀ˑ˗˒ CTGs̆ This
drastic change can be eƗplained bƘ technical and biological factors˿ some eƗperiments
don̡t alloƒ a precise identiƩcation of the TSS anďor TTS̀ leading to ambiguous
coordinates̀ and numerous sets of co̖transcribed genes are associated ƒith several
distinct TSS anďor TTS̆ This shoƒs that in Ĕcoli gene eƗpression diversitƘ is mostlƘ
achieved bƘ alternate regulation more than alternate transcription unit membership̀ a
strategƘ that is frequentlƘ observed  in bacterial genomes̆

Promoter and TSS sets

As detailed abovè transcription start sites are deƩned bƘ a unique positioǹ ƒhile
promoters are small regions containing one or several TSSs̀ usuallƘ separated bƘ less
than ˔ bp from one another̆ Hoƒever̀ those concepts have been interchangeablƘ used
in the literaturĕ

The TSS set ƒas built from the data available in RegulonDB̀ and completed ƒith
several HT̖based datasets from independent sources ̒Mendoơa̖Vargas et al̆̀ ˑˏˏ˘̋
Salgado et al̆̀ ˑˏː˒̋ Cho et al̆̀ ˑˏː˓̋ Thomason et al̆̀ ˑˏː˔̋ Yan et al̆̀ ˑˏː˗̋ Wade
laboratorƘ̀ not published̓̆ Datasets prior to ˑˏː˔̀ based on an older genome assemblƘ
̒NC̍ˏˏˏ˘ː˒̆ˑ̓ ƒere updated to the latest genomic coordinates ̒NC̍ˏˏˏ˘ː˒̆˒̓ using
the EcoliGenes librarƘ ̒Chapter ː̓̆ TSSs from all of the datasets ƒere merged ƒhen theƘ
shared the same position and strand̀ reducing their total number from ˕˔̀˓ˏ˘ to
ˑ˗̀˘˗˖̋ and ƒere homogeniơed into a common format ƒith the most relevant
attributes̆

The promoter set ƒas derived from the unmerged TSS set̆ Associating diƦerent TSSs to
a single promoter is not a trivial process̆ Depending on the eƗperimental method used̀
the precision of a TSS position can varƘ greatlƘ̀ and biologicallƘ distinct TSSs can be
present in the same promoter ̒Mejía̖Almonte et al̆̀ ˑˏˑˏ̓̆ Furthermorè several
promoters associated ƒith distinct sigma factors can overlap spatiallƘ̀ and even share
TSSs̀ resulting in promoter regions̆ Herè I built the promoter objects bƘ grouping all
of the TSSs that ƒere at most ˔ bp aƒaƘ from one another regardless of the associated
sigma factor̀ ƒhich is not alƒaƘs reported̀ using a sliding ƒindoƒ̆ In total̀ ˑ˒̀˒ː˕
promoters ƒere built̀ ƒith an average length of ː̆˓ bp and a maƗimum length of ˑˑ bp̆
Though it is considered that a promoter should be at most ˔ bp long̀ about ː͝ of the
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collection of promoters obtained is larger̀ and distinguishing potential overlapping
promoters ƒould require further analƘsis ̒Figure ːˏ̓̆ On averagè promoters included
ː̆ˑ˓ TSSs̀ consistent ƒith a previous studƘ that reported an average of ː̆˕ TSSs per
promoter ̒Cho et al̆̀ ˑˏˏ˘̓̀ and a maƗimum of ˑ˘ TSSs̆

Figure 10̆ Composition of tƒo of the largest promoters̀ and source of their respective TSSs ̒top panel̓̆
TSSs can be further distinguished bƘ their associated groƒth conditions and eƗperimental methods
̒bottom ˒ panels̓̆

BrieƪƘ̀ current knoƒledge amounts to ˑ˗̀˘˗˖ diƦerent TSSs in the Ĕcoli genomè
ƒhich might be reduced to around ˑ˒̀ˏˏˏ functionallƘ distinct promoter regions̀
making on average around ˔ promoter regions per genĕ Note that these numbers come
from diƦerent groƒth conditions and eƗperimental setups̀ and therefore the global
picture could change as neƒ datasets become availablĕ
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Binding sites set

I retrieved all of the transcription factor binding sites curated from RegulonDB version
ːˏ̆˗ ƒith strong evidencè and merged them using their coordinates̀ TF̖coding gene
bnumber̀ and eƦect ̒positive or negative̓̆ When the TF ƒas a heterodimer I created
tƒo entries̀ one per coding̖gene bnumber̆ This resulted in ˑ̀˔˘˘ TFBSs associated
ƒith ː˗˔ transcription factors̆ Those numbers hide signiƩcant disparities˿ most TFs
have less than ˔ associated binding sites̀ ƒhile ːˏ TFs have more than ˔ˏ binding sites
each̀ and account for a total of ː̀ˑ˔ˑ binding sites̀ or ˓˗͝ of the ƒhole set ̒Figure ːːa̓̆
RoughlƘ half are reported to be repressors̀ and half activators ̒Figure ːːb̓̆ As it is ƒell
knoƒǹ most binding sites are found in the intergenic regions of the genomè and in
particular betƒeen ̖˓ˏˏ and ͅ˔ˏ bp relative to gene start codons ̒Figure ːːc̖d̓̆

Figure 11̆ Statistics associated with the binding sites set̆ ă Number of binding sites associated ƒith TFs̆
b̆ EƦect associated ƒith binding sites ̒activation in pink̀ repression in broƒn̓̆ c̆ Genomic location of
binding sites̆ d̆ Binding sites distribution relative to gene start position̆

Unified set of genomic features

I generated unique custom identiƩers for each object of each set̀ and created additional
tables to connect them ƒith one another̀ in the form of a small database of its oƒn
̒Table ː̋ Figure ːˑ̓̆ This database of features can be readilƘ connected to RegulonDB
through the gene master table described in Chapter ː̆

Type of object Size of the set

TSS ˑ˗̀˘˗˖

promoter ˑ˒̀˒ː˕

TU ˗̀ˑˑː

CTG ˓̀ˑ˗˒

TFBS ˑ̀˔˘˘

Table 1̆ CŋnŶenŶ ŋf Ŷhe ŽťdaŶed Ĕ cŋķi feaŶŽũe ŭeŶ̆
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Figure 12̆ The updated Ĕ cŋli feature set̆ Five sets of objects are connected together via custom
identiƩers˿ transcription units̀ CTG units̀ transcription start sites̀ promoters and TF binding sites ̒pink
frame̓̆ This small independent database can be connected to RegulonDB ̒beige frame̓ through gene
identiƩers and EcoliGenes ̒blue frame̓̆

Availability

Github

The updated Ĕ coli feature set is available at Github˿
https˿̌̌github̆com̌rioualeňEcoli̍feature̍set
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Chapter 3̆

Building tools for high-throughput
data analysis

Problematic

NeƗt̖generation sequencing technologies enable the characteriơation of gene
regulation mechanisms at an unprecedented scalĕ Transcription factor binding sites
can be identiƩed genome̖ƒide ƒith ChIP̖seq̀ and RNA̖seq makes it possible to
quantifƘ all transcripts from a given cell̀ thus revealing gene eƗpression and TUs̆
Hoƒever̀ the analƘsis of their respective outputs̀ under the form of sequenced reads̀
requires multiple processing steps that can be realiơed using a varietƘ of tools and
parameters̀ and can represent a challenge ƒhen dealing ƒith diverse eƗperimental
setups and strategies̆

I developed a collection of ƒorkƪoƒs that enable the chaining of the successive steps to
be performed̆ With a proper setup̀ these ƒorkƪoƒs can be customiơed ƒith ƪeƗibilitƘ
to cater to the objective of the analƘsis to be performed̀ but also ensure the full
traceabilitƘ and reproducibilitƘ of the results̆ This ƒork ƒas published as a protocol
̒Rioualen et al̆̀ ˑˏː˘̓̆

Workflows for the analysis of ChIP̖seq and RNA̖seq data

The frameƒork snakemake ̒Mölder et al̆̀ ˑˏˑː̓ ƒas conceived to build pipelines
ensuring the full portabilitƘ and reproducibilitƘ of the analƘses performed and their
subsequent results̆ Based on the pƘthon programming language and GNU make
concepts̀ it deƩnes ƒorkƪoƒs as sets of rules characteriơed bƘ their input and output
Ʃles̀ or dependencies̀ and optional parameters̆ The Ʃrst rule of a ƒorkƪoƒ̀ bƘ
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conventioǹ deƩnes the Ʃnal targets to be produced̀ and bƘ deductioǹ the list of rules
to be eƗecuted according to inner dependencies ̒Figure ː˒̓̆

Figure 13̆ Schematic structure of a snakemake workflow̆ ă Workƪoƒ eƗamplĕ b̆ DependencƘ graph
̒also called rulegraph̓̆ c̆ Directed acƘclic graph of the ƒorkƪoƒ ƒith paralleliơation̆

I developed ƒorkƪoƒs and rules organiơed into a librarƘ called ̝SnakeChunks̞ and
published in the form of a protocol ̒Rioualen et al̆̀ ˑˏː˘̓̆ It comprises more than ˕ˏ
rules to perform numerous tasks using a varietƘ of tools ̒Figure ː˓a̓̆ Those rules can
be linked to one another via their respective input̀ output̀ intermediarƘ Ʃles in order
to compose ƒorkƪoƒs ̒Figure ː˓b̓̆ Workƪoƒs can be customiơed bƘ selecting
diƦerent tools and optional parameters for each inner step̀ using eƗternal
conƩguration Ʃles ̒Figure ː˓c̓̆ AdditionallƘ̀ the librarƘ contains readƘ̖to̖use
ƒorkƪoƒs dedicated to perform qualitƘ control analƘses̀ read mapping̀ ChIP̖seq
analƘsis̀ RNA̖seq analƘsis and integration of binding and eƗpression data from
RNA̖seq and ChIP̖seq analƘses ̒Table ˑ̓̆

˒˗



Figure 14̆ SnakeChunks framework̆ ă Selected list of rules available bƘ categorƘ̆ b̆ All rules can be
assembled to create custom ƒorkƪoƒ structures̆ c̆ Metadata and parameters can be speciƩed in separate
Ʃles for further customiơation and traceabilitƘ̆ Adapted from Rioualen et al̆̀ ˑˏː˘̆

workflow category rule input output

qualitƘ control formatting sra̍to̍fastq sra fastq

qualitƘ control trimming sickle fastq fastq

qualitƘ control trimming bbduk fastq fastq

qualitƘ control trimming cutadapt fastq fastq

qualitƘ control qualitƘ control fastqc fastq̀ bam html

qualitƘ control qualitƘ control bam̍stats bam tƗt

qualitƘ control qualitƘ control multiqc ˻ html
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workflow category rule input output

mapping mapping boƒtie̍indeƗ fasta fai

mapping mapping boƒtieˑ̍indeƗ fasta fai

mapping mapping bƒa̍indeƗ fasta fai

mapping mapping hisatˑ̍indeƗ fasta fai

mapping mapping indeƗ̍fasta fasta fai

mapping mapping subread̍indeƗ fasta fai

mapping mapping boƒtie fastqͅfai bam

mapping mapping boƒtieˑ fastqͅfai bam

mapping mapping bƒa fastqͅfai bam

mapping mapping hisatˑ fastqͅfai bam

mapping mapping tophat fastqͅfai bam

mapping mapping subread̍align fastqͅfai bam

mapping mapping bam̍bƘ̍name bam bam

mapping mapping bam̍bƘ̍pos bam bam

mapping mapping split̍bam̍bƘ̍strands bam bam

mapping mapping indeƗ̍bam bam bai

mapping coverage coverage̍bedgraph bam bedgraph

mapping coverage coverage̍bedgraph̍stranded bam bedgraph

mapping coverage coverage̍bigƒig bam bigƒig

mapping coverage coverage̍ƒig bam ƒig

mapping coverage bedgraph̍to̍bigƒig bedgraph bigƒig

mapping coverage bedgraph̍to̍tdf bedgraph tdf

mapping mapping bam̍to̍bed bam bed

mapping mapping sam̍to̍bam sam bam

ChIP̖seq peak calling bPeaks bam bed

ChIP̖seq peak calling homer bam bed

ChIP̖seq peak calling macsː˓ bam bed

ChIP̖seq peak calling macsˑ bam bed

ChIP̖seq peak calling mosaics bam bed

ChIP̖seq peak calling spp bam bed

ChIP̖seq peak calling sƒembl bam bed

ChIP̖seq peak annotation annotate̍peaks bedͅfastaͅgtf tab

ChIP̖seq peak annotation bedops̍intersect bed bed

ChIP̖seq peak annotation bedops̍peaks̍vs̍sites bed bed

ChIP̖seq peak annotation bedtools̍closest bedͅgƦ˒ bed

ChIP̖seq peak annotation bedtools̍intersect bedͅgƦ˒ bed

ChIP̖seq peak annotation bedtools̍ƒindoƒ bedͅgƦ˒ bed

ChIP̖seq peak annotation peaks̍vs̍tfbs bed bed

ChIP̖seq formatting bed̍to̍fasta bed fasta

ChIP̖seq formatting getfasta bed fasta

ChIP̖seq motif analƘsis dƘad̍analƘsis fasta htmlͅtransfac
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workflow category rule input output

ChIP̖seq motif analƘsis peak̍motifs fasta htmlͅtransfac

ChIP̖seq motif analƘsis matriƗ̍clustering transfac html

ChIP̖seq motif analƘsis matriƗ̍qualitƘ transfacͅfasta html

ChIP̖seq RegulonDB regulondb̍doƒnload url tab

ChIP̖seq RegulonDB regulondb̍get̍matriƗ ͌TF name͋ transfac

ChIP̖seq RegulonDB regulondb̍get̍tfbs ͌TF name͋ bed

RNA̖seq transcript detection cuƨinks bamͅgtf gtf

RNA̖seq diƦerential eƗpression subread̍featureCounts bamͅgtf tab

RNA̖seq diƦerential eƗpression DESeqˑ tab tab

RNA̖seq diƦerential eƗpression sartools̍targetƩle tab tab

RNA̖seq diƦerential eƗpression sartools̍DESeqˑ tab htmlͅtab

RNA̖seq diƦerential eƗpression sartools̍edgeR tab htmlͅtab

misc̆ formatting get̍chrom̍siơes fasta tab

misc̆ formatting gunơip ơip ˻

misc̆ formatting gơip ˻ ơip

misc̆ formatting md˔sum ˻ ˻

Table 2̆ List of rules and ƒorkƪoƒs available in the SnakeChunks librarƘ̀ and their respective input and
output Ʃle formats̀ deƩning their mutual dependencies̆

This librarƘ and its published protocol present a methodological development
undertaken before the PhD and Ʃnaliơed during the Ʃrst Ƙear̀ ƒhich I used for
subsequent analƘses of high̖throughput data toƒards the aim of Ĕ coli̡s
transcriptional regulatorƘ netƒork completion ̒Chapter ˓̓̆

Reference ͬ availability

Github

The SnakeChunks librarƘ is available for doƒnload and use through github˿
https˿̌̌github̆com̌SnakeChunkšSnakeChunks

Publication

This ƒork ƒas used as part of eƗternal collaborations before it ƒas published under the
form of a protocol̆
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Next-generation sequencing (NGS) is becoming a routine approach in most
domains of the life sciences. To ensure reproducibility of results, there is a
crucial need to improve the automation of NGS data processing and enable
forthcoming studies relying on big datasets. Although user-friendly interfaces
now exist, there remains a strong need for accessible solutions that allow
experimental biologists to analyze and explore their results in an autonomous
and flexible way. The protocols here describe a modular system that enable a
user to compose and fine-tune workflows based on SnakeChunks, a library of
rules for the Snakemake workflow engine (Köster and Rahmann, 2012). They
are illustrated using a study combining ChIP-seq and RNA-seq to identify target
genes of the global transcription factor FNR in Escherichia coli (Myers et al.,
2013), which has the advantage that results can be compared with the most
up-to-date collection of existing knowledge about transcriptional regulation in
this model organism, extracted from the RegulonDB database (Gama-Castro
et al., 2016). C© 2019 by John Wiley & Sons, Inc.
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INTRODUCTION

Next-generation sequencing (NGS) technologies enable the characterization of biological
gene regulation at an unprecedented scale. Transcription-factor binding can be character-
ized at the genome scale by chromatin immunoprecipitation with DNA sequencing (ChIP-
seq), whereas RNA sequencing (RNA-seq) makes it possible to quantify all transcripts.

The analysis of sequenced reads requires a number of successive bioinformatics process-
ing steps, organized into workflows. A workflow, or pipeline, is defined as a chaining of
commands and tools applied to a set of data files, such that the output of a given step
is used as input for the subsequent one (Fig. 1). Ideally, the experimental design should
from the outset take into account a perspective on the bioinformatics analyses that will
enable relevant information to be extracted from the raw data. Biological samples are
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Figure 1 Schematic wiring of a basic workflow for ChIP-seq analysis.

subject to variation, and replication is thus essential to make it possible to estimate the
statistical significance of the final results and to ensure an appropriate tradeoff between
sensitivity and specificity. It is also necessary, as in any other biological experiment,
to carefully define the control conditions that will distinguish signal from noise (see
Commentary for more details).

Exploitation of the data by properly implemented bioinformatics workflows (with com-
prehensive specification of the tools and their versions and selection of parameters)
is crucial to ensuring the traceability and reproducibility of the results from the raw
data. Following a defined workflow also makes it possible to perform identical op-
erations on dozens of samples, using powerful computing infrastructures when nec-
essary. Snakemake (Köster & Rahmann, 2012) is a software conceived for building
such workflows. Based on the Python language, it inherits concepts from GNU make
(https://www.gnu.org/software/make): a workflow is defined by a set of rules, each defin-
ing an operation characterized by its inputs, outputs, and parameters, and a list of target
files to be generated through these operations.

SnakeChunks is a library of workflows using the Snakemake framework and designed
for the analysis of ChIP-seq and RNA-seq data. It includes rules for the quality control of
sequencing reads, removal of adapters and trimming of low-quality bases, read mapping
on a reference genome, peak calling to detect local enrichment of reads resulting from
the binding of a transcription factor, gene-wise quantification of RNAs, and differential
gene expression analysis (Fig. 2A).

The SnakeChunks library has been used to analyze RNA-seq data from Mus musculus,
Drosophila melanogaster, Saccharomyces cerevisiae, and Glossina palpalis (Tsagmo
Ngoune et al., 2017) and from Desulfovibri desulfuricans (Cadby et al., 2017), as well
as ChIP-seq data from Arabidopsis thaliana (Castro-Mondragon, Rioualen, Contreras-
Moreira, & van Helden, 2016). We illustrate here its use on combined RNA-seq and
ChIP-seq data from Escherichia coli (Myers et al., 2013).

Since the initial description of the operon structure (Jacob & Monod, 1961), E. coli
K-12 has been a model organism of reference for the study of gene regulation, resulting
in thousands of publications reporting information about around 200 of the total !300
transcription factors (TFs) identified in its genome (Blattner et al., 1997; Pérez-Rueda &
Collado-Vides, 2000). Detailed information about TFs and their binding sites, binding
motifs, target genes, and operons has been collected for three decades in RegulonDB,
the database on the transcriptional regulation in E. coli (Gama-Castro et al., 2016), by
manual curation of publications based on low-throughput experiments. Nonetheless, aRioualen et al.
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Figure 2 Organization of the SnakeChunks library. (A) Principle of the SnakeChunks library.
The library is built around a set of Snakemake rules that can be used as building blocks to build
workflows in a modular way. Each rule makes it possible to perform a given type of operation
with a given tool. A given operation can also be done with alternative tools, as denoted by the
color code in list of rules (left side) and on the building bricks. The rules marked with an asterisk
(*) are currently supported by Conda. (B) Schematic flowchart of the workflows described in this
unit.

Rioualen et al.
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good deal of information remains to be discovered to provide a global, comprehen-
sive picture of the regulatory network of even this best-characterized model organism.
NGS technologies enable the characterization of biological regulation at an unprece-
dented scale, and have been widely adopted by research communities. ChIP-seq gives
insight into regulatory mechanisms by providing genome-wide binding locations for
transcription factors, whereas RNA-seq provides information about the functional impli-
cations of regulation by measuring the level of transcription of all genes under different
conditions.

ChIP-seq publications initially focused on human and metazoan models (PubMed cur-
rently returns !1,600 ChIP-seq studies for Homo sapiens and more than 2,000 for
M. musculus), and a surprisingly small number of factors were characterized by ChIP-
seq in E. coli (44 entries in PubMed). However, systematic studies have led to the
characterization of 50 transcription factors of Mycobacterium tuberculosis (Galagan
et al., 2013), and similar projects are on the way for other bacteria, including E. coli. The
protocols described here address the foreseeable needs of microbiologists undertaking
projects based on ChIP-seq, RNA-seq, or both together to analyze bacterial regulation.
Those are illustrated by a case study based on a genome-scale analysis of the FNR tran-
scription factor (Myers et al., 2013), a DNA-binding protein that regulates a large family
of genes involved in cellular respiration and carbon metabolism during anaerobic cell
growth.

This unit is organized as follows.! Strategic Planning: installation and configuration of the software environment
(Conda environment, software tools, SnakeChunks library, and reference genome).! Basic Protocol 1: preprocessing, which includes quality control, trimming, and
mapping of the raw reads on the reference genome. This protocol is illustrated for
the case of a ChIP-seq study but can be applied to RNA-seq data as well.! Basic Protocol 2: analysis of ChIP-seq data: peak calling, assignation of peaks
to genes, motif discovery, and comparison between ChIP-seq peaks and sites
annotated in RegulonDB.! Basic Protocol 3: analysis of RNA-seq data: preprocessing (as in Basic Protocol 1),
transcript quantification (counts per gene), and detection of differentially expressed
genes.! Basic Protocol 4: integration of ChIP-seq and RNA-seq results: comparison be-
tween genes associated with the ChIP-seq peaks, differentially expressed genes
reported by transcriptome analysis, and experimentally proven TF target genes
annotated in RegulonDB, as well as visualization of the results using a genome
browser.! Alternate Protocol: running of the RNA-seq workflow with the user-friendly graph-
ical interface Sequanix.! Support Protocol: customization of the ChIP-seq workflow parameters.

The basic protocols are conceived in a modular way (Fig. 2B). In particular, ChIP-seq
and RNA-seq analyses can be done separately.

NECESSARY RESOURCES

Computer Resources

This protocol runs on any Unix system (Linux, Mac OS X). Memory and CPU require-
ments depend on the volumes of data being handled. The study cases have been tested
on Ubuntu 14.04, 16.04, and 18.04 (4 CPUs, 16 Gb RAM), on Centos 6.6, and on Mac
OSX High Sierra (4 CPUs, 16 Gb RAM).

Rioualen et al.
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The full procedure uses !60 Gb of disk space, including !5 Gb for the installation of
the software environment (Conda, libraries, and tools), !15 Gb of downloaded raw reads
(compressed fastq files, genome annotations), and !40 Gb for the intermediate and final
result files.

The total processing time for all tasks is !12 h, of which 45% is spent on read mapping and
33% on trimming RNA-seq samples. This time might be further reduced by parallelizing
some tasks on a multi-CPU server or cluster (on our four-core configurations, the analyses
were completed in !3 h).

Conda

Conda is an open-source package and environment management system used to automate
the installation of all the software components required by the workflows. It greatly
facilitates the installation of software tools from multiple sources on different Unix
operating systems (Linux and Mac OS X). In addition, the installation and use of all
software tools inside a custom environment ensures their isolation from the hosting
system and prevents potential clashes with existing tools and libraries.

Conda should be installed prior to the execution of the protocols. It comes in two different
versions, Anaconda and Miniconda. We recommend using Miniconda, which takes less
disk space and makes it possible to install only the required software. Instructions can
be found here: https://conda.io/docs/user-guide/install/index.html.

Make sure that the folder containing the Conda executable is added to your $PATH
variable. This can be done automatically during the execution of the Miniconda in-
stallation script, or later by adding the following command to the bash profile (file
!/.bash_profile).

export PATH=$PATH:!/miniconda3/bin/

You now need to log out and open a new terminal session in order for the path to be
updated.

Other Software

In the protocols, we use the “tree” software to display the structure of folders and included
files in the Unix terminal. This software is not technically required for the analysis, but
offers a convenient way to check the proper organization of the files in the shell. Its
installation can vary depending on the operating system or Linux distribution. Here are
examples of tree installation with some popular package management systems.

Linux Ubuntu: sudo apt-get install tree
Linux CentO: sudo yum install tree
Mac OS X: brew install tree

IMPORTANT NOTE: Throughout the following protocols, the instructions (text in
Courier font) should be typed or copy-pasted in a terminal.

STRATEGIC PLANNING

Configuration of the Conda Environment

This section provides a succession of Unix commands that enable a user to configure
Conda, create a specific environment, install the required software (Snakemake and NGS
tools), and download the reference genome and annotations (in our case, E. coli K-12
MG1655, release 37). Much of this procedure needs to be done only once, when first Rioualen et al.
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setting up the environment; steps 3, 5, and 7 then need to be repeated for each session
(see annotation to step 10 for details).

1. Configure Conda.
conda config --add channels r;
conda config --add channels defaults;
conda config --add channels conda-forge;
conda config --add channels bioconda

IMPORTANT NOTE: These commands must be typed in the precise order indicated
above, which defines the priorities for packages that exist in several channels. Conda
may issue warnings, which can be ignored, when some of the channels are already
present — we intentionally re-add these channels in order to place them in the right order
of precedence.

2. Create an empty SnakeChunks environment using Python version 3.6.
conda create --name snakechunks_env python=3.6

3. Activate the environment.

This must be done for each new analysis session.
source activate snakechunks_env

Check that the environment is active: i.e., that the Unix prompt is prepended by
“(snakechunks_env)”.

4. Install Snakemake and some required software tools in the Conda environment: GNU
make software, Python panda library, and the Integrative Genomics Viewer (IGV).
conda install make snakemake=5.1.4 igv=2.4.9 pandas=
0.23.4

5. Define an environment variable with the directory for this analysis.

This must be done for each new analysis session (alternatively, you can declare it in
your bash profile).
export ANALYSIS_DIR=$HOME/FNR_analysis

6. Create the analysis directory.
mkdir -p $ANALYSIS_DIR

7. Set the current working directory to the analysis directory.

This must be done for each new analysis session.
cd $ANALYSIS_DIR

8. Download the SnakeChunks library from GitHub. We recommend keeping a copy
of the library in the analysis directory to ensure consistency and reproducibility.
The latest version of the SnakeChunks library can be downloaded easily with the
following Git command.
git clone https://github.com/SnakeChunks/SnakeChunks.
git

IMPORTANT NOTE: The SnakeChunks code will continue evolving with time. For the
sake of backward compatibility, we froze the precise version of the library used at the
time of publication of this article. This version can be downloaded with the following
command.

Rioualen et al.
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Figure 3 File organization after the Strategic Planning section is completed.

wget --no-clobber "
https://github.com/SnakeChunks/SnakeChunks/archive/
4.1.4.tar.gz

tar xvzf 4.1.4.tar.gz
mv SnakeChunks-4.1.4 SnakeChunks

9. Download the reference genome of E. coli K-12 and its annotations.
make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk \

download_genome_data

10. Check the organization of the files in the genome directory (Fig. 3).
tree -L 2

IMPORTANT NOTE: The above steps are used to set up the environment and need to be
executed only once, except for steps 3, 5, and 7, which are required for each working
session for this project. If you log out of the terminal and want to start a new session later,
you will need to reactivate the Conda environment (step 3), redefine the environment
variable for the analysis directory (step 5), and set it as the current directory (step 7).

BASIC
PROTOCOL 1

DATA PREPROCESSING AND READ MAPPING

Data preprocessing covers the first steps of the analysis, which are common to most NGS
workflows. The goal is to make sure that the raw sequencing data are suitable for a proper
bioinformatics analysis. This process includes quality control of the sequenced reads,
removal of the sequencing adapters, and trimming of the read extremities when needed.
These operations are described more thoroughly in the Guidelines for Understanding
Results below. We illustrate these steps with a ChIP-seq dataset, but they can be applied
similarly to RNA-seq data.

Once the reads are processed and filtered appropriately, a common operation to perform
before ChIP-seq and RNA-seq analyses is to map the reads on a reference genome in
order to identify their genomic location.

This protocol covers the following steps:! Quality control of the reads using the program FastQC (Andrews, 2010);! Removal of the adapters and trimming of the read extremities using the utility
cutadapt (Martin, 2011);! Read mapping using the algorithm bowtie2 (Langmead & Salzberg, 2012).

Rioualen et al.
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Figure 4 File organization of the ChIP-seq samples before the analyses are run.

1. Download the ChIP-seq dataset from the GEO series GSE41195 (Myers et al.,
2013).

make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk\

download_chipseq_data
This creates a subdirectory called “ChIP-seq” in the analysis directory defined in the
Strategic Planning section above (Fig. 4), with two fastq files corresponding to the
FNR-chipped and control samples, respectively.

tree ChIP-seq

2. Create a local copy of the metadata folder.
make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk copy_metadata;

tree metadata
This creates a local copy of the metadata folder, which contains files describing the
samples, the analysis design, and the workflow configuration.

3. Run the workflow for quality control.
snakemake -s SnakeChunks/scripts/snakefiles/
workflows/quality_control.wf \

--configfile metadata/config_ChIP-seq.yml
--config trimming=′′′′ -p --use-conda
The command above runs a workflow using the “snakemake” command with the
following specifications.

The wiring of the workflow is defined in the file quality_control.wf, spec-
ified with the option -s. Modifying this wiring requires some knowledge of the
Snakemake language, which is outside the scope of this protocol (Snakemake tuto-
rials can be found in the Snakemake documentation at http://snakemake.readthedocs.
io/en/stable/tutorial/tutorial.html). quality_control.wf produces quality re-
ports using the FastQC tool (Andrews, 2010), and running this is an essential step
to assess the quality of the samples and plan the next steps of the analysis.

The workflow invokes a series of tools, each of which can be tuned with different
parameters. All of the parameters of the workflow are specified in a YAML-formatted
configuration file, specified with the option --configfile. The YAML format is
human readable and can be easily edited with a standard text editor (see Support
Protocol).! The option --config is used in order to specify that trimming will not be

performed during this run. It overrules the configuration defined in the con-
figuration file mentioned above, which is to perform trimming automatic-
ally, as will be done in step 5.! The option -p tells Snakemake to print out all the Unix commands that will
be executed. This listing is very convenient as a means to check that eachRioualen et al.
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command is called with the appropriate parameters and to keep a trace of
the full process between raw data and final results.! When the option --use-conda is used, Snakemake creates a separate
virtual environment for each rule executed in the workflow, and installs the
required tools and their dependencies in a rule-specific subfolder. This ensu-
res compatibility between the different tools invoked. The process can take
some time at the first invocation of a given environment, but is faster for
subsequent uses of the same environment.

4. The presence of the two FastQC reports can be checked with the ls commands
below.

ls -l $ANALYSIS_DIR/ChIP-seq/fastq/FNR1/FNR1_fastq.
gz_qc/FNR1_fastqc.html;

ls -l $ANALYSIS_DIR/ChIP-seq/fastq/input1/input1_
fastq.gz_qc/input1_fastqc.html

These files can be opened with a Web browser. Insights about these reports can be
found in the Guidelines for Understanding Results below.

5. Run the quality control workflow again using the software cutadapt, which performs
both read trimming and adapter removal.

snakemake -s SnakeChunks/scripts/snakefiles/
workflows/quality_control.wf "

--configfile metadata/config_ChIP-seq.yml -p
--use-conda

This time, the workflow will run cutadapt, as defined in the configuration file, before
doing a new FastQC check. Note that SnakeChunks can be used to specify several
tools for the same step, in order to compare the results. An overview of the options is
proposed in Support Protocol.

6. The presence of FastQC reports can be checked with the ls commands below.
ls -l "
$ANALYSIS_DIR/ChIP-seq/fastq/FNR1/FNR1_cutadapt_
fastq.gz_qc/FNR1_cutadapt_fastqc.html;

ls -l "
$ANALYSIS_DIR/ChIP-seq/fastq/input1/input1_
cutadapt_fastq.gz_qc/input1_cutadapt_fastqc.html

Open the new FastQC reports with a Web browser. The reports show the improvement
in the quality of the reads, as well as the absence of over-represented sequences cor-
responding to adapters. This is further discussed in the Guidelines for Understanding
Results.

7. Run the read-mapping workflow.
snakemake -s SnakeChunks/scripts/snakefiles/
workflows/mapping.wf "

--configfile metadata/config_ChIP-seq.yml -p --use-
conda -j 2

This workflow essentially performs two operations: read mapping and genome cover-
age.

We added the option -j 2, which permits Snakemake to parallelize the processing
with a maximum of two simultaneous jobs. Because the mapping step can be time
consuming, we recommend running it in parallel for the different samples. This option
should be adapted to the number of cores of your system. For example, if you analyze
a large number of files on a cluster, you could increase the number of simultaneous
jobs to 40 or even more (this has to be negotiated with your system administrator).

Rioualen et al.
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Figure 5 Read mapping statistics. Statistics were computed using the flagstats software from
SAMtools for the FNR ChIP-seq sample (A) and genomic input (B), respectively.

More information about the mapping results can be found in the Guidelines for Un-
derstanding Results.

8. Check the contents of the files containing the statistics of the mapping from the shell
(Fig. 5).

cat \
$ANALYSIS_DIR/ChIP-seq/results/samples/FNR1/FNR1_
cutadapt_bowtie2_bam_stats.txt;

cat \
$ANALYSIS_DIR/ChIP-seq/results/samples/input1/
input1_cutadapt_bowtie2_bam_stats.txt

These files, generated by the SAMtools program flagstat, display basics statistics for
the mapping. As can be seen in Figure 5A and B, here both samples have a very high
mapping rate, which confirms that the sequencing data are of good quality and that
we are going to dispose of a large quantity of data to perform the ChIP-seq analysis.

BASIC
PROTOCOL 2

ChIP-seq

ChIP-seq (Johnson, Mortazavi, Myers, & Wold, 2007; Robertson et al., 2007) is a technol-
ogy that allows the characterization of DNA binding at a genome scale. The experiment
includes the following steps: cross-linking DNA and the bound proteins with a fixative
agent, breaking DNA into random fragments by ultrasonication, immunoprecipitating
a transcription factor of interest together with its cross-linked DNA, unlinking these
DNA fragments, amplifying them by PCR, and sequencing them using massively par-
allel sequencing technologies. The raw sequences (“reads”) are then mapped onto a
reference genome, and putative binding regions—regions that contain a large number
of reads, usually extending over a few hundred base pairs—are denoted as “peaks.”
These peaks can then be used to search for precise transcription-factor (TF) binding
sites, which can then be associated with nearby genes to infer the potential TF target
genes.Rioualen et al.
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Table 1 Descriptions of the ChIP-seq Samples

ID Condition GSM identifier SRR identifier

FNR1 FNR GSM1010220 SRR576934

input1 Input GSM1010224 SRR576938

Column headers indicate their contents. the columns ID and Condition are mandatory for the proper use of the workflow.
Additional columns can be added at will to document samples.

Table 2 Experimental Design of the ChIP-seq Dataset

Control Treatment

input1 FNR1

A critical step of a ChIP-seq data analysis is peak calling, which is the detection of
these genomic regions with a higher density of mapped reads than would be expected
by chance. The choice of a peak-calling algorithm and the tuning of its parameters can
drastically affect the number of returned peaks and their sizes. To identify reliable peaks
and avoid false positives, it is important to use control samples (see Commentary for
more details). Peak callers also have parameters that can be used to tune the rate of
false positives by imposing more or less stringent thresholds on peak scores, in order
to optimize the tradeoff between sensitivity (the proportion of actual binding regions
detected) and specificity (the ability to reject non-binding regions).

Table 1 describes each sample used in the analysis: a test sample resulting from the
immunoprecipitation of the FNR transcription factor, and a genomic input. Table 2
specifies the design of the analysis, by indicating the respective status of the samples
(control versus treatment).

Although many publications rely on the Macs2 peak caller (Feng, Liu, & Zhang, 2011),
generally used with its default parameters, there are actually a variety of tools that can be
used and customized in different ways (Pepke, Wold, & Mortazavi, 2009). SnakeChunks
currently supports seven of these in a completely interchangeable way (Fig. 2A). We
will demonstrate two, Homer (Heinz et al., 2010) and Macs2, which are among the most
widely used, maintained, and up-to-date programs for this purpose and which are also
supported by Conda.

The main operations performed by the workflow described are the following:! Peak calling using Homer and Macs2 (Feng et al., 2011; Heinz et al., 2010);! Motif discovery by remote invocation of the tool peak-motifs (Thomas-Chollier
et al., 2012) from the RSAT software suite (Nguyen et al., 2018) via its Web
services interface; RSAT peak-motifs also compares discovered motifs with the
TF-binding motifs annotated in RegulonDB;! Comparison between ChIP-seq peaks and known TF binding sites listed in the
RegulonDB database (Gama-Castro et al., 2016);! Assignment of genes to peaks with the tool “annotate peaks” from the Homer
suite;! Gene comparison: comparison between genes associated with peaks and TF target
genes (as annotated in RegulonDB).

1. Run the ChIP-seq workflow.
snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/
ChIP-seq_RegulonDB.wf \ Rioualen et al.
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--configfile metadata/config_ChIP-seq.yml -p --use-
conda -j 2

2. The output files can be found here.

a. Peaks: Because these files are quite large, we use the Unix command less
to display them page by page (press enter to move one page forward). After
inspecting a few pages, type “q” to quit the less program.

less \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_
input1/homer/FNR1_vs_input1_cutadapt_bowtie2_
homer.bed;

less \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_
input1/macs2/FNR1_vs_input1_cutadapt_bowtie2_
macs2.bed

b. Motifs discovered with RSAT in the peaks: Check that the html files produced
by peak-motifs are at the expected place.

ls -l \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_input1/
homer/peak-motifs/FNR1_vs_input1_cutadapt_bowtie2_
homer_peak-motifs/peak-motifs_synthesis.html;

ls -l \
$ANALYSIS_DIR/ChIP-seq/results/peaks/FNR1_vs_input1/
macs2/peak-motifs/FNR1_vs_input1_cutadapt_bowtie2_
macs2_peak-motifs/peak-motifs_synthesis.html

Open the peak-motifs reports with a Web browser. The results of this workflow are
further described in the Guidelines for Understanding Results below.

BASIC
PROTOCOL 3

RNA-seq

RNA-seq technology, or whole-transcriptome shotgun sequencing, reveals the presence
or absence of RNAs from a given sample, at a given moment in time, and also quantifies
them if needed. It consists of extracting the total RNA from a cell and filtering out
genomic DNA using a deoxyribonuclease (DNase). The RNA is then reverse transcribed
to cDNA, which can either be mapped onto a genome of reference or assembled de novo.
Subsequent analysis options include quantification of gene expression, identification of
alternative transcripts, and discovery of single-nucleotide variation.

In this protocol, we will use as a case study an RNA-seq experiment published by Myers
et al. (2013), in which the transcriptome of E. coli K-12 was measured in two samples
from the wild type (WT) and from a mutant strain whose FNR transcription factor activity
is inhibited (Lazazzera, Bates, & Kiley, 1993). To perform reliable RNA-seq analyses, it
is crucial to dispose of biological replicates (see Commentary). This dataset includes two
replicates per genotype (Table 3). Our goal will be to identify genes that are differentially
expressed between the FNR mutant (defined as the test condition in Table 4) and the WT
(reference condition).

This workflow accomplishes the following steps:! Quality control and trimming of the reads (for further detail, see Basic
Protocol 1);! Mapping onto a genome of reference using the algorithm BWA (Li & Durbin,
2009) (for further detail, see Basic Protocol 1);

Rioualen et al.
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Table 3 Descriptions of the RNA-seq Samples

ID Condition GSM identifier SRR identifier

WT1 WT GSM1010244 SRR5344681

WT2 WT GSM1010245 SRR5344682

dFNR1 FNR GSM1010246 SRR5344683

dFNR2 FNR GSM1010247 SRR5344684

Column headers indicate their contents. The columns ID and Condition are mandatory for the proper use of the workflow.
Additional columns can be added at will to document samples

Table 4 Experimental Design of the RNA-seq Analysis

Test Reference

FNR WT

The design file can contain one or several rows, each describing a pair of conditions to be compared. The test and reference
conditions must correspond to the values in the Condition column of the sample description table.! Quantification of transcripts per gene with featureCounts from the Subread package

(Liao et al., 2014);! Detection of differentially expressed genes with DESeq2 (Love, Huber, & Anders,
2014) and edgeR (Robinson, McCarthy, & Smyth, 2010);! Automatic generation of a report summarizing the results.

1. Copy the example metadata from the SnakeChunks library (can be skipped if al-
ready done in Basic Protocol 1, step 2), and check the content of the metadata
folder.

make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk copy_metadata; tree metadata

2. Download RNA-seq data.
make -f SnakeChunks/examples/GSE41195/tutorial_
material.mk download_rnaseq_data

This creates a subdirectory “RNA-seq” in the analysis directory defined in Strate-
gic Planning (Fig. 6), and downloads the raw data. Beware: during our tests, the
download takes approximately 8 min per sample. Since the analysis requires eight
files, this download can take up to a few hours depending on your connection speed.
After the command has been completed, check the organization of the downloaded
files.

tree -C RNA-seq
You should now see four directories (one per sample), each containing two files with
the extension .fastq.gz (there is one file per sequencing end).

3. Run the RNA-seq analysis workflow.
snakemake -s SnakeChunks/scripts/snakefiles/
workflows/RNA-seq_complete.wf \

--configfile metadata/config_RNA-seq.yml -p
--use-conda -j 4

Here we use the option -j 4 in order to parallelize the treatment of the four samples,
which is time consuming.

4. Check the organization of the result files in the RNA-seq folder, with a folder depth
limit of 3.

tree -C -L 3 RNA-seq Rioualen et al.
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Figure 6 File organization of the RNA-seq samples before the analyses are run.

5. The results of the differential expression analysis performed by this workflow are
summarized in an automatically generated HTML report, which can be opened using
a web navigator.

RNA-seq/results/diffexpr/cutadapt_bwa_featureCounts_
rna-seq_deg_report.html

The elements of this report are further described in the Guidelines for Understanding
Results below.

6. Optionally, it is now possible to check the content of the main result files, which can
be found here.

ls -l RNA-seq/results/diffexpr

This folder contains a table with the counts of reads per gene:
less RNA-seq/results/diffexpr/cutadapt_bwa_
featureCounts_all.tsv

and a subfolder with the differential analysis results produced by edgeR, DESeq2,
and the two together.

ls -l RNA-seq/results/diffexpr/FNR_vs_WT

It also contains two tables with the differential analysis statistics returned by DESeq2
and edgeR, respectively.

less \
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_DESeq2.tsv;

less \
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_edgeR_TMM.tsv

The subset of differentially expressed genes (those declared positive because they
pass the significance threshold) are exported in an additional file.

less \
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_DEG_table.tsv

In the tutorial, we retain the union of genes called positive by either DESeq2 or edgeR,
but alternatively, the combination rule can be tuned in the YAML configuration file.

7. We can count the rows of this file to get an idea of the number of differentially
expressed genes (after subtracting one for the header line).

Rioualen et al.
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wc -l
RNA-seq/results/diffexpr/FNR_vs_WT/cutadapt_bwa_
featureCounts_FNR_vs_WT_DEG_table.tsv\

| awk ‘{print $1 -1}’

BASIC
PROTOCOL 4

INTEGRATION

We have seen in Basic Protocol 2 that a ChIP-seq experiment followed by peak calling
can be used to identify genomic binding locations for a given transcription factor. In Basic
Protocol 3, we analyzed results of an RNA-seq experiment to identify genes differentially
expressed between two conditions (wild-type versus FNR mutant).

Here, we show how to combine the results of those two types of experiments in order to
unravel the links between genome binding data (ChIP-seq) and differential expression
data (RNA-seq). This allows to detect not only direct target genes of a factor, i.e., genes
whose transcription level is affected in the mutant, and whose upstream region contains
a binding peak, but also indirect regulation (absence of a binding peak but presence of an
observed effect on the expression of a gene) or binding of the FNR transcription factor
without detected effect on the level of transcription of the associated genes. We also
compare the NGS results with the list of FNR target genes annotated in the RegulonDB
database (Gama-Castro et al., 2016).

1. Run integration workflow.
snakemake -p \
-s SnakeChunks/scripts/snakefiles/workflows/
integration_ChIP_RNA.wf \

--configfile metadata/config_integration.yml
--use-conda

2. Check the first lines of the table summarizing the results for each gene.
less $ANALYSIS_DIR/integration/ChIP-RNA-regulons_
homer_gene_table.tsv

For a better readability, we recommend opening this table with spreadsheet software
(e.g., Office Calc or Excel). The table contains annotations for all genes known in
E. coli K-12, as well as an indication of whether they are associated with FNR
binding (ChIP-seq column), whether their transcription is affected by FNR (RNA-seq
column), and whether they have been previously demonstrated to be regulated by FNR
(FNR_regulon column).

3. Launch the IGV browser (Robinson et al., 2011; Thorvaldsdóttir, Robinson, &
Mesirov, 2013):

On Linux operating systems: igv

In Mac OS X: open the IGV in the Applications folder.

4. Click on menu File, select Open session . . . , and select the session file meta-
data/igv_session.xml in the FNR analysis directory.

This will load an IGV session with our selection of relevant tracks for the interpretation
of ChIP-seq and RNA-seq results, which are discussed further in the Guidelines for
Understanding Results below.

ALTERNATE
PROTOCOL

RUNNING THE WORKFLOW WITH THE USER-FRIENDLY INTERFACE
SEQUANIX

Sequanix (Desvillechabrol et al., 2018) is a graphical user interface (GUI) based on PyQt,
developed to facilitate the execution of NGS Snakemake pipelines. It was originally de-
signed to run workflows included in the Sequana project (http://sequana.readthedocs.io), Rioualen et al.
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Figure 7 Sequanix graphical user interface. (A) Configuration of the workflow parameters. (B)
Display of workflow wiring. The diagram shows the directed acyclic graph (DAG) of rules automat-
ically generated by Snakemake.

Rioualen et al.
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but can also handle any Snakemake pipeline. Thanks to the graphical interface, the pa-
rameters can be customized easily and the workflows can be run without using any
command line.

Here we demonstrate the execution of the RNA-seq workflow (see Basic Protocol 3)
using this interface.

Necessary Resources

Conda: If not already done, create and activate a Conda environment (Strategic
Planning, steps 1 to 10)

Sequana: Install Sequana: type conda install -c bioconda
sequana=0.7.1

RNA-seq dataset: If not already done, download the RNA-seq dataset (Basic
Protocol 3, step 1 and 2) to install the metadata and download RNA-seq raw
reads

1. Launch Sequanix.
sequanix

2. At the top of the Sequanix window, select the tab “Generic pipelines.”

3. Under the Snakefile tab, fetch the workflow file RNA-seq_complete.wf in the
directory SnakeChunks/scripts/snakefiles/workflows.

4. Under the Config file tab, fetch the configuration file config_RNA-seq.yml in
the directory metadata.

5. Under the Working directory tab, select the directory you defined above as $ANAL-
YSIS_DIR (Strategic Planning, step 5) (Fig. 7A).

6. In the menu of the application, select Options > Snakemake options . . . > General,
and type “--use-conda” in the bottom box “other options,” then press OK.

7. In the Sequanix main window, press Save.

8. Press Show pipeline to check that everything looks reasonable (Fig. 7B).

9. Press Run.

If you have followed Basic Protocol 3, the Run button should not start any new analysis,
because Snakemake will detect that the result files are already present. If not, Sequanix
will run the workflow just as in the terminal.

SUPPORT
PROTOCOL

CUSTOMIZATION OF PARAMETERS

Each workflow available in SnakeChunks requires three basic files in order to specify the
input data files and all the parameters of an analysis. These files have been placed in a
directory named “metadata.” We explain here how to adapt the ChIP-seq metadata files,
but the same principle applies to the RNA-seq and integration workflows. The ChIP-seq
workflow runs using three metadata files:! Sample file: samples_ChIP-seq.tab;! Design file: design_ChIP-seq.tab;! Workflow and tool parameters: config_ChIP-seq.yml (Fig. 8A).

The sample file (Table 1) describes each sample to be analyzed (one row per sample), with
two mandatory columns (ID and Condition) and optional columns for complementary
information such as GSM identifiers. Here, we have two samples: one ChIP-ped with
FNR, and a control sample labeled “input” following the ChIP-seq convention.

Rioualen et al.
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Figure 8 YAML-formatted configuration file for the ChIP-seq workflow. The YAML format enables
the user to specify all the parameters of a workflow in a structured way while being human readable
and easily editable. (A) Default configuration. (B) Customized configuration.

The design file (Table 2) defines the samples to be compared in order to perform peak
calling. Here, we are going to perform peak calling of the ChIP sample, using the input
sample as a background control. For RNA-seq, the design defines the conditions to be
compared.

The configuration file (Fig. 8A) is specific to the workflow to be run. It contains three
main parts: (1) general information about the reference genome, metadata file, and file
organization; (2) general design of the workflow, such as the steps to be performed
(trimming, mapping, peak calling, annotation) and the tools to be used at each step; and
(3) an optional section enabling to customize the parameters used for each tool (if not
specified, their default parameters are used).

Below, we explain how to edit the configuration file in order to generate alternative
results, using different tools and parameters.

IMPORTANT NOTE: Be aware that performing alternative trimming and/or mapping can
require additional disk space, since FASTQ files (raw reads, trimmed reads) and BAM
files (aligned reads) are very space consuming. In the following protocol, that requires
about 2 Gb of disk space, but this can go as high as tens of gigabases in the case of larger
raw files, such as the RNA-seq files analyzed in Basic Protocol 3.Rioualen et al.
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1. Create a copy of the ChIP-seq config file.
cd $ANALYSIS_DIR; \
cp metadata/config_ChIP-seq.yml metadata/config_
ChIP-seq_custom.yml

2. With a text editor, make the following changes to your custom configuration file
(metadata/config_ChIP-seq_custom.yml).

a. Change the trimming software from cutadapt to sickle.
b. Change the mapping software from bowtie2 to subread-align.
c. Add the SPP peak caller to Homer and Macs2.
d. Customize the SPP, Homer, and Macs2 parameters in the third section according

to the values shown in Figure 8B.

Alternatively, you can avoid manual editing of parameters by copying the ready-to-use
customized configuration file provided in the distribution. To do this, skip step 2 and
instead run the following command:

cp metadata/config_ChIP-seq_advanced.yml metadata/
config_ChIP-seq_custom.yml

3. Run the commands below, which correspond to steps 5 and 7 of Basic Protocol 1, and
step 1 of Basic Protocol 2, 1.5, 1.7, and 2.1 adapted to use the custom configuration
file.

snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/quality_
control.wf \

--configfile metadata/config_ChIP-seq_custom.yml -p
--use-conda -j 2;

snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/mapping.
wf \

--configfile metadata/config_ChIP-seq_custom.yml -p
--use-conda -j 2;

snakemake \
-s SnakeChunks/scripts/snakefiles/workflows/
ChIP-seq_RegulonDB.wf \

--configfile metadata/config_ChIP-seq_custom.yml -p
--use-conda -j 2

4. Visualize the differences in the IGV: load a session as in Basic Protocol 4, steps 3
and 4.

5. Click on the menu File, select “Load from File . . . ,” and select the following peak
files:

$ANALYSIS_DIR/ChIP-seq/results_advanced/peaks/FNR1_
vs_input1/spp/FNR1_vs_input1_sickle_subread-align_
spp.bed

$ANALYSIS_DIR/ChIP-seq/results_advanced/peaks/FNR1_
vs_input1/homer/FNR1_vs_input1_sickle_subread-
align_homer.bed

$ANALYSIS_DIR/ChIP-seq/results_advanced/peaks/FNR1_
vs_input1/macs2/FNR1_vs_input1_sickle_subread-
align_macs2.bed

By running the command wc -l on these files, you can note the influence of the choice
of peak caller, as well as its parameters.

Rioualen et al.
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GUIDELINES FOR UNDERSTANDING RESULTS

Data Preprocessing and Read Mapping (Basic Protocol 1)

Quality control

For each sample, FastQC produces a box plot representing per-base sequence quality. A
common phenomenon in high-throughput sequencing is a decrease in sequence quality
at the 3′ end of the reads. This can indeed be observed for the input sample in our
case study (Fig. 9). Low read quality can reduce the percentage of reads mapped on
the reference genome. To avoid this, we recommend performing sequence trimming to
remove low-quality read extremities.

Another interesting category of information in FastQC reports is the sequence-duplication
levels. The graph outlines read sequences found in an excessive number of copies, which
may diagnose an effect of PCR amplification due to poor complexity of the DNA library.
Note that duplication is often interpreted in contexts in which the sequence library is
much smaller than the genome size (typically !50 M reads for a !3-Gb mammalian
genome), so that reads resulting from a random sampling are not expected to fall on
exactly the same genomic position. When studying bacterial regulation, however, library
size can exceed genome size (typically 4 Mb) so that multiple matches are expected along

Figure 9 Quality report of the FNR1 ChIP-seq raw reads before trimming. The abscissa
(columns) corresponds to nucleotide positions along the mapped reads; the ordinate indicates
read quality scores. For each position, statistics are summarized for all the reads of a library:
median (red line), interquartile range (yellow box), and quality range (vertical line). Background
colors indicate an arbitrary subdivision of quality scores, from red (insufficient) to green (good).Rioualen et al.
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the whole genome. Another section of the FastQC report provides statistics about over-
represented sequences. Before removal of the adapters by cutadapt (Basic Protocol 1,
step 5), Illumina adapters represent respectively 0.5% and 2.6% of the total num-
ber of reads of the FNR1 and input1 samples. After cutadapt is run, these se-
quences are gone (Basic Protocol 1, step 6). Detailed information on the in-
terpretation of read quality is provided on the FastQC Web site (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/).

Read mapping

Using the bowtie2 algorithm, the trimmed reads in FASTQ format are aligned onto a
genome of reference, downloaded as described in Strategic Planning. In our case, the
reference is E. coli K-12. The result of the alignment comes in a BAM format that retains
all the information from the fastq files about read sequences and quality, but adds the
putative positions of the reads in the reference genome.

Genome coverage

Genome coverage files makes it possible to visualize the mapped reads in a condensed
way, by showing the number of reads overlapping each position on each strand of the
reference genome (Fig. 10A, pink, gray, and jade tracks in the middle panel) or their sum
on both strands (purple track). Coverage profiles can be stored in different file formats
(e.g., tdf, bedgraph, bigwig) depending on the size of the dataset and the way to display
it. In this protocol, we use the TDF format, which is the recommended format for optimal
IGV visualization.

ChIP-seq (Basic Protocol 2)

Peak calling

The peaks detected by Homer and Macs2 can be visualized in IGV as BED files. This
file format contains essentially the coordinates of the regions with a high density of
mapped reads, which are called “peaks.” Although in bacteria it is expected that ChIP-
seq peaks will fall into intergenic regions upstream of the regulated genes, it has been
shown that a surprisingly high amount of binding may occur into coding or downstream
regions (Galagan, Lyubetskaya, & Gomes, 2012). This observation should be interpreted
by taking into account the fact that bacteria have a very small proportion of intergenic
regions (10% to 15% of the genome).

Figure 10A shows a very clear peak around position 2,344,000, detected by both peak
callers, in the noncoding region upstream of the gene nrdA. On comparing the ChIP-
seq read coverage on the forward and reverse strands (pink tracks in the middle panel),
we see a shift between forward and reverse peaks. This typical pattern is consistent
with the expectation for ChIP-seq experiments, because immunoprecipitated fragments
are sequenced at their extremities, so that the reads are expected to be found either
on the forward strand to the left of the binding site, or on the reverse strand to its
right.

Different peak-calling tools can produce very different results for the same dataset. In
the same region (Fig. 10A), Macs2 detects another peak around position 2,347,000,
associated with the gene nrdB, which belongs to the same operon as nrdA. It is not
identified as a peak by Homer, and it is not associated with any known FNR TF binding
sites from RegulonDB. However, RegulonDB indicates that nrdB is regulated by H-
NS and Fis, nucleoid-associated proteins (NAPs) that are known to mask FNR binding
sites under anaerobic conditions (Myers et al., 2013). Although barely detected by peak
callers, this site is thus supported by some experimental evidence.

Rioualen et al.
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Figure 10 Snapshots of ChIP-seq results for selected genomic regions. The figures were gener-
ated with the Integrative Genomics Viewer (IGV). (A) High-confidence peak in the promoter region
of the nrdAB operon. Note the characteristic shift between reads mapped on the plus and minus
strands. (B) Example of a peak that is likely to be a false positive. For both IGV maps (A and B),
the top panels show the coordinates of the displayed genomic region. The middle panels show
read density profiles in the input (gray) and ChIP-seq samples (purple for strand-insensitive, pink
for strand-sensitive profiles), and RNA-seq data (WT in gray, FNR mutants in turquoise). The lower
panels show annotation tracks for genes (yellow), annotated FNR binding sites (none found in the
displayed regions), and binding peaks.
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Figure 11 Most significant motif discovered by RSAT peak motifs in the FNR peaks, aligned with
matching motifs in RegulonDB.

In contrast, Figure 10B shows a typical example of a peak that is likely to be a false
positive. Note that its read enrichment is restricted to the reverse strand and falls within the
coding region of a gene. Strand-specific display of read coverage thus makes it possible to
assess the reliability of peaks by inspecting their distribution around the putative binding
sites.

The number of peaks and their width can vary considerably, hence the need to adapt
the tools to a given study and assess the relevance of the downstream results. Under
our working conditions, Homer returns 161 peaks of equal width (exactly 177 bp each),
whereas Macs2 returns 411 peaks ranging from 200 to 5893 bp (with an average of
475 bp), an obviously excessive size for TF binding sites. The broadest peaks reported
by Macs2 correspond to wide regions covering several genes, which are entirely covered
by reads in the ChIP-seq sample, and indeed enriched with respect to the genomic input,
but which likely do not correspond to TF binding sites. For Macs2, the number of peaks
can be strongly modified by tuning the q-value threshold and the minimal fold change.
For example, the number of peaks drops from 547 with a q-value threshold of 0.05 and
a minimal fold-change of 2, to 159 with q-value threshold of 0.001 and a minimal fold
change of 5. The most permissive conditions give fewer relevant peaks, denoted by a drop
in the significance of the FNR motif. In summary, the choice of a peak-calling algorithm
and the fine-tuning of its parameters crucially affect ChIP-seq results, and should be
evaluated case by case.

Motif discovery in peak sequences

The top panel of Figure 11 shows the most significant motif returned by RSAT peak-
motifs (Thomas-Chollier et al., 2012) in the sequences of Homer peaks. This motif
was discovered by the tool dyad-analysis (van Helden, Rı́os, & Collado-Vides, 2000),
which detects over-represented pairs of spaced oligonucleotides. This motif discovery
approach is particularly relevant for bacteria, where most transcription factors form ho-
modimers that bind spaced motifs. The comparison of this discovered motif with all
the TF binding motifs annotated in RegulonDB returns two matches, corresponding
to FNR and CRP, respectively. The alignment highlights the strong similarity between
the motifs recognized by FNR and CRP (they differ only by one nucleotide at posi-
tion 7 of the motif alignment), which is consistent with the fact that these two fac-
tors are known to co-regulate a number of genes (Gama-Castro et al., 2016; Myers
et al., 2013).

Rioualen et al.
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Figure 12 Global views of the results for the detection of differentially expressed genes between
FNR mutant versus wild-type. These plots are generated as part of the differential analysis step,
using an R script. Left and right panels respectively show the results of DESeq2 and edgeR. (A) MA
plots. The abscissa indicates the mean level of expression (average of the log-transformed counts),
and the ordinate shows the log fold change between FNR mutant and wild-type strain, which
indicates the level of over- (positive values) or underexpression (negative values). Differentially
expressed genes (DEGs), i.e., those passing both the effect size and significance thresholds,
are highlighted in blue. Triangles indicate genes whose log2 fold change exceed the plot limits.
(B) Volcano plots. The abscissa represents the log fold change, which indicates the size of the
effect and its sign (–, downregulation; +, upregulation). The ordinate shows the significance of the
differential expression (negative log of the adjusted P value).

RNA-seq (Basic Protocol 3)

Differentially expressed genes

The results of the RNA-seq analysis are summarized in an HTML report (RNA-
seq/results/diffexpr/cutadapt_bwa_featureCounts_rna-seq_
deg_report.html), which can be visualized using a web browser. It features
information and statistics about the RNA-seq samples, read counts, and differentially
expressed genes, detected by using two different tools: DESeq2 (Love et al., 2014) and
edgeR (Robinson et al., 2010). Figure 12 shows MA plots and volcano plots that are
automatically produced by the workflow to provide a synthetic representation of theRioualen et al.
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global results of the RNA-seq differential analysis. The MA plots (Fig. 12A) indicate
the relationship between the mean level of expression of each gene (abscissa) and
its differential expression, measured as the log fold difference between FNR mutant
and wild type (ordinate). The genes declared differentially expressed between the two
conditions (WT versus FNR) are highlighted as blue crosses. Genes overexpressed and
underexpressed in the FNR mutants appear above or below the x axis, respectively.
The volcano plots (Fig. 12B) provide a combined view of the expression changes
(log fold change, on the abscissa) and the statistical significance of these changes (on
the ordinate). The significance is computed as the negative logarithm of the adjusted
P values reported by DESeq2 (left) and by edgeR (right), respectively. High values
are indicative of significant differences of expression between FNR mutant and WT
strains. To select differentially expressed genes, SnakeChunks combines user-modifiable
thresholds on the adjusted P value (default: α = 0.05) and on the fold change (default:
at least twofold over- or underexpression).

In total, these thresholds lead to the retention of 278 differentially expressed genes that
were declared positive by either DESeq2 (255 genes) or edgeR (272 genes). This number
is consistent with the fact that FNR acts as global regulator in E. coli. Note that we chose
to keep the union of both lists in order to favor sensitivity, but this can be parameterized
in the configuration file by specifying that the detection of differentially expressed genes
relies on edgeR, DESeq2, their intersection, or their union.

Integration (Basic Protocol 4)

The Venn diagram generated by the workflow (Fig. 13, file integration/ChIP-
RNA-regulons_venn.png) shows the number of E. coli genes associated with FNR
peaks in the ChIP-seq experiment (pink), reported as differentially expressed in the
RNA-seq analysis (green), or annotated as FNR targets in RegulonDB (violet), as well
as the intersections between these gene sets. Supporting Information Tables S1 and S2
provide the complete data table used to generate these Venn diagrams. Depending on
the peak-calling algorithm, the number of genes found at the intersection between the
three gene lists (ChIP-seq, RNA-seq, and RegulonDB) will be quite small (38 for Macs2
peaks and 28 for Homer peaks) relative to the respective size of the compared gene sets.
It is interesting to consider an interpretive guideline for the pairwise intersections or
set memberships. The genes reported by both ChIP-seq (FNR binding) and RNA-seq
(FNR transcriptional response) but not annotated in RegulonDB are likely to be direct
FNR target genes, and might be considered to be added to RegulonDB, in an annotation
track based on combined evidence from complementary high-throughput experiments.
This would give 29 genes with Macs2 peaks and 25 with Homer peaks. It would be
interesting to furthermore scan their promoter sequences in order to search instances of
the FNR binding motif in order to predict binding-site locations, and consolidate the
results. The genes detected as differentially expressed (RNA-seq) without any annotated
FNR site (RegulonDB) or associated peak (Figure 13, pale green, on the Venn diagrams
of Figure 13, covering, respectively, 160 and 167 genes for Macs2 and Homer) include
genes located inside the target operons of FNR. Indeed, in bacteria, polycistronic tran-
scripts are regulated by cis-acting elements located in the promoter of the operon leader
gene. Consistently with this, 38 of these 167 genes (!23% when the analysis is led with
Homer) have a very short upstream noncoding region (<55 bp) typical of intra-operon
genes, whereas almost all the genes of the triple intersection (28 of 29) have larger up-
stream sequences typical of operon-leader genes. The remaining 77% of differentially
expressed genes without associated ChIP-seq peak are likely to be indirect FNR tar-
gets, whose transcription might be affected via intermediate transcription factors that are
themselves regulated by FNR. The genes associated with ChIP-seq peaks without tran-
scriptional response (334 for Macs2, 119 for Homer) likely result from different effects: Rioualen et al.
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Figure 13 Integration of ChIP-seq, RNA-seq results, and RegulonDB annotations. Venn dia-
grams show the intersections of the genes linked to ChIP-seq peaks (pink), those declared differ-
entially expressed by the RNA-seq experiment (green), and those annotated as FNR target genes
in RegulonDB (violet). These diagrams are automatically generated by the integration workflow,
using the R library VennDiagram. (A) Results with the 411 ChIP-seq peaks reported by Macs2 with
q < 0.01 and fold change between 2 and 50. (B) Results with the 166 ChIP-seq peaks reported
by Homer.
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Figure 14 IGV snapshots of RNA-seq results for three illustrative operons. Middle panel, genome coverage
profiles for the two replicas of the wild-type (gray) and FNR mutant (jade). Lower panel, genome annotations for
the genes (yellow), FNR binding sites from RegulonDB (gray), differentially expressed genes (jade), and FNR
target genes annotated in RegulonDB (dark olive). Shown are views of selected regions encompassing (A) the
cydABX operon, (B) the dmsABC operon, and (C) the leuLABCD operon.

nonfunctional binding of the FNR factor under the experimental conditions of the study
(missing co-activator, co-binding of a repressor); binding between two divergently tran-
scribed transcription units, but regulating only one of them; or false positives from peak
calling (e.g., regions with a high density of reads on one strand only, as discussed above).

Figure 14 highlights some illustrative examples of differentially expressed genes detected
by DESeq2 or edgeR. For the cydABX operon (Fig. 14A), the FNR mutant (jade tracks
on the genome coverage profiles) has an increased level of expression compared to the
wild-type (gray tracks). Consistently with that result, this operon is repressed by FNR
(Salmon et al., 2003), and it has two annotated FNR binding sites in RegulonDB, which
overlap a strong peak detected by both Homer and Macs2 in the ChIP-seq results.

The dmsABC operon also exemplifies the genes found at the triple intersection: it is
regulated by FNR (Melville & Gunsalus, 1996), and, consistently, it has one TF binding
site listed in RegulonDB, and is reported by both the ChIP-seq and RNA-seq experiments
(Fig. 14B). Rioualen et al.
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A more subtle example is the leuLABCD operon (Fig. 14C): RNA-seq coverage pro-
files also reveal reduced expression, although the differential expression analysis did
not report the presence of any significant gene, due to the stringent thresholds applied
to both adjusted P value (<0.05) and fold change (>2). This operon encodes the en-
zymes responsible for the biosynthesis of leucine from valine. It has no binding sites
annotated in RegulonDB for the FNR transcription factor, and based on the RNA-seq
results only, several possibilities could be invoked to explain this inconsistency: the leu
operon might (i) be indirectly regulated by FNR via another transcription factor, (ii) be
a direct target of FNR whose binding sites have not yet been characterized, or (iii) be a
false-positive. This situation can be clarified by analyzing the ChIP-seq profiles, since
we observe a clear peak upstream of the operon, detected by both Macs2 and Homer
(Fig. 14C), supporting the evidence for a direct regulation of the leu operon by FNR.

In summary, a detailed analysis and human-based interpretation of combined RNA-seq
and ChIP-seq data is worthwhile as a means to go beyond the gene lists returned by the
automatic comparison of target genes predicted by ChIP-seq and RNA-seq experiments.

COMMENTARY

Background Information
Next-generation sequencing (NGS) tech-

nologies (Schuster, 2007) emerged in 2007
with the development of several approaches
for massively parallel sequencing of short
DNA sequences (a few tens of base pairs
per sequence). This unprecedented gain in
sequencing speed was mobilized for a wide
variety of applications: genome sequenc-
ing, transcriptome (RNA-seq), genome-wide
binding location analysis (ChIP-seq), chro-
matin conformation (Hi-C), metagenomics,
and many others. Research projects based on
NGS typically lead to the situation where
the biologist performs experiments, sends
the samples to a sequencing center, and
receives a link to download several giga-
bases of raw sequences known as “short
reads.” Since 2007, a wide variety of soft-
ware tools has been developed to handle NGS
data and extract relevant information (Pepke
et al., 2009).

Proper use of such software requires a good
understanding of their parameters, strengths,
and weaknesses. Beyond the choice and pa-
rameterization of each particular tool, it has
become crucial to formalize their wiring by
implementing workflows that ensure traceabil-
ity and reproducibility of all the steps used to
produce the results from the raw data. Many
alternative software systems can be used to
manage the development and execution of
analysis workflows. Among them, Galaxy
(Goecks, Nekrutenko, & Taylor, 2010) be-
came highly popular because it offers an
immediate access through a graphical inter-
face to biologists with no experience in the
Unix terminal. Snakemake (Köster & Rah-

mann, 2012) offers a complementary solution
to achieve the same goals—developing, man-
aging, and running NGS workflows—in the
Unix command-line environment. Snakemake
is currently being adopted by a growing num-
ber of bioinformaticians as well as experimen-
tal biologists willing to get one step further
in the analysis of their own data. The goal
of SnakeChunks is to facilitate the concep-
tion and use of NGS workflows by encapsu-
lating Snakemake commands in a library of
modular rules (one per tool) that can be com-
bined in various ways to build and customize
workflows (Fig. 2).

Critical Parameters

Control samples
When analyzing binding signals (ChIP-seq)

or transcription signals (RNA-seq), it is crucial
to generate appropriate control experiments, in
order to measure differences in signal against
a proper background signal, and thus avoid
the detection of false positives. This is es-
pecially important when analyzing ChIP-seq
data, since false peaks can arise from biases in
the experiments: nonhomogeneous sonication
of DNA due nonhomogeneous aperture of the
chromatin, GC biases arising during PCR am-
plification of the fragments, low-complexity
regions of the genome, and so on. Differ-
ent types of controls can be used to estimate
the background probabilities of read mapping
in the different regions of the genome, in-
cluding (1) sequencing genomic DNA with-
out immunoprecipitation; (2) using “mock
IP,” i.e., performing the immunoprecipitation
with a nonspecific antibody; or (3) artificially
knocking out the expression of the TF ofRioualen et al.
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interest. Irrespective of the method used, the
control sequences are generally denoted as
“input” for the peak-calling programs. In the
study by Myers et al. (2013), genomic DNA
was used as input. In the case of RNA-seq,
knocked-out TFs or overexpressed TFs can be
compared against WT samples. In this study,
samples with an inactivated FNR protein were
compared against WT strains.

Number of replicates
When performing biological experiments,

it is crucial to account for the unavoidable
variability intrinsic to living organisms. RNA-
seq experiments are no exception, and it has
been demonstrated that the greater the num-
ber of replicates, the more sensitive the detec-
tion of differentially expressed genes (Schurch
et al., 2016). Designing experiments with a
high number of replicates enables the analysis
to distinguish subtle but relevant changes in
expression from spurious fluctuations due to
biological variability.

Choice of a read mapper
Read mapping is generally the most time-

and resource-consuming task of RNA-seq and
ChIP-seq data analysis. For the FNR study
case developed in this article, the complete
ChIP-seq workflow runs in a few minutes,
whereas the RNA-seq workflows takes several
hours. The modularity of the SnakeChunks
library enabled us to run the same work-
flow with three alternative read-mapping tools:
BWA (Li & Durbin, 2009), bowtie2 (Lang-
mead & Salzberg, 2012), and subread-align
(Liao, Smyth, & Shi, 2013). For this partic-
ular dataset, BWA runs approximately three
times as fast as the two other algorithms, while
giving very similar mapping rates. However,
we experienced opposite rankings of tool per-
formance with other datasets and reference
genomes. The choice and parameterization of
a read mapper should thus be considered as
critical step, which has to be tuned in a case-
specific way to optimize a workflow.

Troubleshooting
The Snakemake workflow management

system is equipped with its own mechanisms
for detecting, reporting, and fixing problems.
Trouble is reported by red messages displayed
on the terminal indicating the kind of prob-
lems and—when possible—suggested ways to
fix them.

Advanced Parameters
Proper parameterization of the workflow is

the key to optimize both computing efficiency
and the biological relevance of the results.

Parameters can be changed either by mod-
ifying the YAML-formatted configuration file
in the metadata (see Support Protocol) or
with the option --config in the Snake-
make command line (see example in Basic
Protocol 1, step 3).

With the popularization of RNA-seq for
transcriptome studies, the number of sam-
ples per research project has been expand-
ing in recent publications. A crucial parameter
will be the ability to keep up with increas-
ing storage needs and to parallelize compu-
tation for large studies. The FNR case study
discussed in this unit was intentionally se-
lected for its small number of replicates per
condition, but for wider-scale studies the num-
ber of simultaneous jobs handled by Snake-
make should be adapted to the number of
CPUs of the computing system (option -j
option).

We also make a frequent use of the
Snakemake option -n, which prints out all the
commands required to complete a workflow,
without actually executing them (as a dry
run). This gives the user the ability to check
that a command is properly parameterized
before running it, which can be valuable
when applying hours-long tasks to multiple
samples.

Suggestions for Further Analysis
The main goal of the SnakeChunks library

is to ensure the reproducibility of the analyses.
This is why we recommend keeping a copy
of the library with each dataset analyzed in
order to ensure consistency between the results
and the precise version of the library used to
generate them. This is particularly crucial in
the case of publication, so that readers can
actually reproduce the analyses performed.

The use of Conda also enables the user to
keep control over the software environment,
and is in accordance with the FAIR Principles
(Wilkinson et al., 2016).

A natural extension of this work will be to
take advantage of SnakeChunks’ flexibility in
order to assess the impact of tool and parame-
ter choice on the biological relevance of the re-
sults, and to optimize workflows by evaluating
the correspondence between the lists of genes
returned by combining ChIP-seq and RNA-seq
results and those already annotated in Reg-
ulonDB for well-characterized transcription
factors.
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de Bioinformatique (IFB) and Christophe
Blanchet for the use of virtual machines
on the IFB cloud, which enabled us to as-
sess the portability and reproducibility of
the workflows, as well as the Sequanix de-
velopment team (Thomas Cokelaer, Dimitri
Desvillechabrol, and Rachel Legendre), who
helped us to port SnakeChunks to Conda and
Sequanix.

Literature Cited
Andrews, S. (2010). FastQC: A quality control tool

for high throughput sequence data. Retrieved
from http://www.bioinformatics.babraham.ac.
uk/projects/fastqc.

Blattner, F. R., Plunkett, G., Bloch, C. A., Perna, N.
T., Burland, V., Riley, M., . . . Shao, Y. (1997).
The complete genome sequence of Escherichia
coli K-12. Science, 277(5331), 1453–1462. doi:
10.1126/science.277.5331.1453.

Cadby, I. T., Faulkner, M., Cheneby, J., Long, J., van
Helden, J., Dolla, A., & Cole, J. A. (2017). Co-
ordinated response of the Desulfovibrio desul-
furicans 27774 transcriptome to nitrate, nitrite
and nitric oxide. Scientific Reports, 7(1), 16228.
doi: 10.1038/s41598-017-16403-4.

Castro-Mondragon, J. A., Rioualen, C., Contreras-
Moreira, B., & van Helden, J. (2016).
RSAT::Plants: Motif discovery in ChIP-seq
peaks of plant genomes. Methods in Molecu-
lar Biology 1482, 297–322. doi: 10.1007/978-1-
4939-6396-6_19.

Desvillechabrol, D., Legendre, R., Rioualen, C.,
Bouchier, C., van Helden, J., Kennedy, S.,
& Cokelaer, T. (2018). Sequanix: A dy-
namic graphical interface for Snakemake work-
flows. Bioinformatics, 34(11), 1934–1936. doi:
10.1093/bioinformatics/bty034.

Feng, J., Liu, T., & Zhang, Y. (2011). Using MACS
to identify peaks from ChiP-seq data. Current
Protocols in Bioinformatics, 34, 2.14.1–2.14.14.
doi: 10.1002/0471250953.bi0214s34.

Galagan, J., Lyubetskaya, A., & Gomes, A.
(2012). ChIP-Seq and the complexity of
bacterial transcriptional regulation. In M. G.
Katze (Ed.), Systems biology (pp. 43–68).
Berlin, Heidelberg: Springer. Retrieved from
https://link.springer.com/chapter/10.1007/82_
2012_257.

Galagan, J. E., Minch, K., Peterson, M., Lyubet-
skaya, A., Azizi, E., Sweet, L., . . . Schoolnik,
G. K. (2013). The Mycobacterium tuberculosis
regulatory network and hypoxia. Nature, 499,
178–183. doi: 10.1038/nature12337.

Gama-Castro, S., Salgado, H., Santos-Zavaleta,
A., Ledezma-Tejeida, D., Muñiz-Rascado, L.,
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W., Guttman, M., Lander, E. S., Getz, G.,
& Mesirov, J. P. (2011). Integrative genomics
viewer. Nature Biotechnology, 29(1), 24–26.
doi: 10.1038/nbt.1754.

Robinson, M. D., McCarthy, D. J., & Smyth, G. K.
(2010). edgeR: A Bioconductor package for dif-
ferential expression analysis of digital gene ex-
pression data. Bioinformatics, 26(1), 139–140.
doi: 10.1093/bioinformatics/btp616.

Salmon, K., Hung, S., Mekjian, K., Baldi, P., Hat-
field, G. W., & Gunsalus, R. P. (2003). Global
gene expression profiling in Escherichia coli
K12: The effect of oxygen availability and
FNR. Journal of Biological Chemistry, 278(32),
29837–29855. doi: 10.1074/jbc.M213060200.

Schuster, S. C. (2007). Next-generation sequenc-
ing transforms today’s biology. Nature Methods,
5(1), 16–18. doi: 10.1038/nmeth1156.

Schurch, N. J., Schofield, P., Gierliński, M., Cole,
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Chapter 4̆

Integration of high-throughput data
within a reference framework

Problematic

Ĕ coli K̖ːˑ is to date the best characteriơed prokarƘotic organism̀ and a signiƩcant
portion of its transcriptional regulatorƘ netƒork is knoƒn and available for displaƘ and
for use through the RegulonDB portal̆ Still̀ it remains incomplete˿ about a third of its
predicted transcription factors are not eƗperimentallƘ proven to perform actual
regulatioǹ and most of those that do have evidence for regulation ƒere not studied
genome̖ƒidĕ High̖throughput technologies noƒ alloƒ for genome̖ƒide detection of
binding sites̀ for instance via ChIP̖seq̀ ChIP̖eƗò gSELEX or DAP̖seq̋ and
transcriptional proƩling is noƒ routinelƘ performed using RNA̖seq̆ Hoƒever̀ until
recentlƘ̀ there ƒas no online resource that ƒould alloƒ one to consult or make use of
those datà together ƒith the classic dată

In this chapter̀ I present mƘ contributions to an article that undertakes the task of
gathering̀ standardiơing more than ˑ̀ˏˏˏ datasets of high̖throughput data that are
relevant to Ĕ coli genomic organiơation and regulatioǹ and integrating them ƒith the
data resulting from classic loƒ̖throughput eƗperiments and literature curation on a
single portal˿ RegulonDB HT ̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓̆

Definition of the framework

The diversitƘ of data to be integrated and objects to be manipulated proved to be a
challengè despite the ƒell̖established standards that have been developed in
RegulonDB over the Ƙears̀ and have been evolving ƒith the constant addition of neƒ
biological knoƒledgĕ A lot of thought ƒas put into a neƒ frameƒork that ƒould alloƒ
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us to gather and process data from a varietƘ of technologies̀ and produce uniform
datasets̆

We deƩned collections as sets of data deƩning objects of distinct tƘpes̀ namelƘ
transcription start sites̀ transcription termination sites̀ transcription units̀ gene
eƗpression and transcription factor bindinğ AdditionallƘ̀ ƒe distinguished
subcollections of TF binding datasets that ƒere produced using diƦerent technologies
̒ChIP̖seq̀ ChIP̖eƗò gSELEX and DAP̖seq̓̆ Each collection and subcollection is
composed of a certain number of datasets ̒Figure ː˔̓̆

We deƩned a dataset as a piece of data generated using a given technologƘ̀ producing a
certain tƘpe of object ̒and thus pertaining to a given collection̓̀ and associated to
speciƩc groƒth conditions as deƩned bƘ the Microbiological Condition OntologƘ
̒Tierrafría et al̆̀ ˑˏː˘̓̀ and bƘ  additional metadată

We designed metadata tables of datasets based on a common format for each collection
and subcollection of objects̆ Each table contains one dataset per roƒ̀ and one column
per attribute of the dataset˿ technologƘ used̀ groƒth conditions̀ author and
publication informatioǹ database identiƩers̀ and manƘ morĕ

Figure 15̆ Data model in RegulonDB HT̆ Adapted from Ʃgure ː ̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓̆
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Uniform datasets of genomic features

Building on the ƒork described in Chapter ˑ̀ I took on the task of gathering datasets
from a number of distinct sources and publications̀ and processing them in order to
generate uniform datasets of TSSs̀ TUs and TTSs̆ This presented challenges̀ given the
varietƘ of formats used in the original sources̀ and the presence of obsolete
information̆

I updated the TSS and TU collections previouslƘ generated ̒Chapter ˑ̓ ƒith neƒ
sources ̒ConƒaƘ et al̆̀ ˑˏː˓̋ Ju et al̆̀ ˑˏː˘̓̀ and generated ː˕ datasets containing
˕˗̀ˏ˓˘ TSSs and ˔ datasets containing ˔̀˒ˑ˕ transcription units̆ I created a TTS
collection using the information available in the TU collectioǹ and generated ˔
datasets containing ːˑ̀˒˓˖ TTSs ̒Table ˒̓̆ All of these datasets ƒere formatted to
standard bed Ʃles̆ Given the casè genes and coordinates ƒere updated to the latest
genome version using the EcoliGenes librarƘ ̒Chapter ː̓̆

FinallƘ̀ I mapped the TSS collection against the original collection from RegulonDB̆
The set of reference used for the comparison ƒas generated bƘ eƗtracting all of
RegulonDB̡s promoters associated ƒith classic strong evidence ̒Figure ˖ from the
article̓̆

Dataset ID Growth Condition Features Reference

Transcription Units

TUˏˏˏː
ORGANISM˿Escherichia coli ͵MEDIUM˿LB medium
͵GROWTH̍PHASE˿EƗponential phase ˒̀ː˖˘ Ju et al̆̀ ˑˏː˘

TUˏˏˏˑ
ORGANISM˿Escherichia coli ͵MEDIUM˿LB medium
͵GROWTH̍PHASE˿StationarƘ phase ː̀˘ː˕ Ju et al̆̀ ˑˏː˘

TUˏˏˏ˒
ORGANISM˿Escherichia coli BW˒˗ˏˑ˗ ͵MEDIUM˿MOPS
͵OPTICAL̍DENSITY˿OD˕ˏˏ of ˏ̆˓ ͵GROWTH̍PHASE˿EƗponential phase ˑ̀˔˕˕ ConƒaƘ et al̆̀ ˑˏː˓

TUˏˏˏ˓

ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿ƒild tƘpe ͵MEDIUM˿M˘ minimal medium
͵GROWTH̍PHASE˿EƗponential phase ˑ̀˓˔˗ Yan et al̆̀ ˑˏː˗

TUˏˏˏ˔

ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿ƒild tƘpe ͵MEDIUM˿rich medium
͵GROWTH̍PHASE˿EƗponential phase ˑ̀ˑːˏ Yan et al̆̀ ˑˏː˗

Transcription Start Sites

DSˏˏˏː

ORGANISM˿̊Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊
͵GENETIC̍BACKGROUND˿̊ƒild tƘpe̊ ͵MEDIUM˿LB
͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵OPTICAL̍DENSITY˿̊OD˕ˏˏ of ˑ̊
͵GROWTH̍PHASE˿̊stationarƘ phase̊ ːˑ̀ˏː˕

Thomason et al̆̀
ˑˏː˓

˖˕



Dataset ID Growth Condition Features Reference

DSˏˏˏˑ

ORGANISM˿̊Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊
͵GENETIC̍BACKGROUND˿̊ƒild tƘpe̊ ͵MEDIUM˿M˕˒
͵MEDIUM̍SUPPLEMENTS˿glucose ˏ̆ˑ̊͝ ̊thiamine̒ː̓̊ͅ
͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵OPTICAL̍DENSITY˿̊OD˕ˏˏ of ˏ̆˓̊
͵GROWTH̍PHASE˿̊eƗponential phase̊ ːː̀˘˓˔

Thomason et al̆̀
ˑˏː˓

DSˏˏˏ˒

ORGANISM˿̊Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊
͵GENETIC̍BACKGROUND˿̊ƒild tƘpe̊ ͵MEDIUM˿LB
͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵OPTICAL̍DENSITY˿̊OD˕ˏˏ of ˏ̆˓̊
͵GROWTH̍PHASE˿̊eƗponential phase̊ ˗̀˔ˏ˓

Thomason et al̆̀
ˑˏː˓

DSˏˏˏ˓

ORGANISM˿̊Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊ ͵MEDIUM˿LB
͵AERATION˿aerobic ͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵pH˿̊pH ˖̆˓̊
͵OPTICAL̍DENSITY˿̊OD˕ˏˏ from ˏ̆˓ to ˏ̆˕̊
͵GROWTH̍PHASE˿̊eƗponential phase̊ ˓̀˒˔˒ Ju et al̆̀ ˑˏː˘

DSˏˏˏ˔

ORGANISM˿̊Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊ ͵MEDIUM˿LB
͵AERATION˿aerobic ͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵pH˿̊pH ˖̆˓̊
͵OPTICAL̍DENSITY˿OD˕ˏˏ above ˑ̆ˏ ͵GROWTH̍PHASE˿̊stationarƘ
phase̊ ˓̀ˏ˒˒ Ju et al̆̀ ˑˏː˘

DSˏˏˏ˕

ORGANISM˿̊Escherichia coli BW˒˗ˏˑ˗̊ ͵GENETIC̍BACKGROUND˿̊ƒild
tƘpe̊ ͵MEDIUM˿̊MOPS minimal medium̊
͵MEDIUM̍SUPPLEMENTS˿̊glucose ˏ̆ˑ̊͝ ͵AERATION˿dissolved oƗƘgen
above ˓ˏ͝ of saturation ͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵pH˿̊pH ˖̆˓̊
͵VESSEL̍TYPE˿fermenter ˑ̀ːˑˑ ConƒaƘ et al̆̀ ˑˏː˓

DSˏˏˏ˖

ORGANISM˿̊Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊ ͵MEDIUM˿̊DSMZ
Medium ˒˗ˑ̊ ͵MEDIUM̍SUPPLEMENTS˿̊glucose ˏ̆ˑ̊͝
͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆˔˔ to ˏ̆˕
͵GROWTH̍PHASE˿̊late eƗponential phase̊ ˑ̀ː˗˕ Yan et al̆̀ ˑˏː˗

DSˏˏˏ˗

ORGANISM˿̊Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊ ͵MEDIUM˿̊LB
medium̀ LennoƗ̊ ͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵pH˿pH ˖̆ˑ
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆˔˔ to ˏ̆˕ ͵GROWTH̍PHASE˿̊late
eƗponential phase̊ ː̀˘ˏˑ Yan et al̆̀ ˑˏː˗

DSˏˏˏ˘
ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊
͵TEMPERATURE˿̊˒ˏ̆ˏ C̊ ː̀˓˕˗

Mendoơa̖Vargas et
al̆̀ ˑˏˏ˘

DSˏˏːˏ
ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊
͵TEMPERATURE˿̊˒ˏ̆ˏ C̊ ˑ˘˕

Mendoơa̖Vargas et
al̆̀ ˑˏˏ˘

DSˏˏːː
ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔̊
͵TEMPERATURE˿̊˒˖̆ˏ C̊ ͵AGITATION̍SPEED˿˒ˏˏ rpm ˔̀ː˘˖ Salgado et al̆̀ ˑˏː˒

DSˏˏːˑ ̐M˘ ͅ ˏ̆ˑ͝ glƘcerol̀ cells groƒn ƒith shaking at ˒ˏʹC̑ ˔̀˕˓˖ Wade lab

DSˏˏː˒ GROWTH̍PHASE˿ EƗponential phase ː̀˘ˑ˕ Cho et al̆̀ ˑˏː˓

DSˏˏː˓ ̐Glutamine as source of nitrogen̑ ˑ̀ˑ˒ˏ Cho et al̆̀ ˑˏː˓

DSˏˏː˔ ̐Heat shock̑ ː̀˘ˏˏ Cho et al̆̀ ˑˏː˓

DSˏˏː˕ GROWTH̍PHASE˿StationarƘ phase ˑ̀˔˒˒ Cho et al̆̀ ˑˏː˓

Transcription Termination Sites

TRˏˏˏː
ORGANISM˿Escherichia coli ͵MEDIUM˿LB medium
͵GROWTH̍PHASE˿EƗponential phase ː̀˓˖˒ Ju et al̆̀ ˑˏː˘

TRˏˏˏˑ
ORGANISM˿Escherichia coli ͵MEDIUM˿LB medium
͵GROWTH̍PHASE˿StationarƘ phase ː̀˒˔ˑ Ju et al̆̀ ˑˏː˘
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Dataset ID Growth Condition Features Reference

TRˏˏˏ˒
ORGANISM˿Escherichia coli BW˒˗ˏˑ˗ ͵MEDIUM˿MOPS
͵OPTICAL̍DENSITY˿OD˕ˏˏ of ˏ̆˓ ͵GROWTH̍PHASE˿EƗponential phase ː̀˖˖˓ ConƒaƘ et al̆̀ ˑˏː˓

TRˏˏˏ˓

ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿ƒild tƘpe ͵MEDIUM˿M˘ minimal medium
͵GROWTH̍PHASE˿EƗponential phase ˒˔ˑ Yan et al̆̀ ˑˏː˗

TRˏˏˏ˔

ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿ƒild tƘpe ͵MEDIUM˿rich medium
͵GROWTH̍PHASE˿EƗponential phase ˒˖˔ Yan et al̆̀ ˑˏː˗

Table 3̆ SummarƘ of the HT datasets generated and their associated groƒth conditions and references̆

Transcription factor comparison

I performed a comparison of the transcription factors present in each subcollection of
TF binding datasets and those present in RegulonDB̆ I used the EcoliGenes librarƘ
̒Chapter ː̓ in order to translate TF names and sƘnonƘms into their reference namè
and properlƘ manage hetero̖dimeric TFs and their subunits ̒Figure ˔a in the articlè
see beloƒ̓̆

I integrated those TFs ƒith the putative TFs obtained through computational
predictions and presented in Chapter ː̀ and summariơed the result bƘ grouping all TFs
into ˒ categories˿ conƩrmed TFs from RegulonDB̀ predicted TFs from various sources
̒Péreơ̖Rueda et al̆̀ ˑˏː˔̋ Flores̖Bautista et al̆̀ ˑˏˑˏ̋ Kim et al̆̀ ˑˏˑː̓̀ and potential
TFs associated ƒith HT eƗperiments ̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓ ̒Figure ː˕ab̓̆ ˓˕
of the previouslƘ predicted TFs are associated ƒith at least one peak in one HT dataset̀
bringing neƒ pieces of evidence to conƩrm their regulatorƘ rolĕ AdditionallƘ̀ ˓
potential TFs that ƒere neither conƩrmed RegulonDB TFs nor predicted TFs ƒere
associated ƒith HT eƗperiments̀ ƒhere all of them ƒere assigned several binding
peaks̆ FinallƘ̀ ː˓˓ predicted TFs remain ƒithout HT datasets that ƒould back up their
potential regulatorƘ rolĕ TheƘ include all of the ˔˗ predicted TFs from the deep
learning approach ̒Kim et al̆̀ ˑˏˑː̓̀ ƒhich remain ƒithout evidence to back up the
predictions̆
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Figure 16̆ Comparison of TFs from RegulonDB̀ proteins predicted or annotated as putative TFs and
putative TFs ƒith associated high̖throughput dată

Considering this neƒlƘ available datà neƒ pieces of evidence should alloƒ to greatlƘ
increase the collection of conƩrmed TFs in the near futurè getting closer to a total of
˒ˏˏ TFs̀ a common estimate of the total number of TFs in Ĕ coli K̖ːˑ̆

Uniformly̖processed ChIP̖seq datasets

I processed ˑ˗ datasets from the ChIP̖seq subcollection using the Snakechunks librarƘ
of ƒorkƪoƒs ̒Chapter ˒̓̆ I built a ƒorkƪoƒ that takes no more than the ChIP̖seq
metadata table as an input̀ using the folloƒing attributes˿ source database namè series
ID̀ samples replicates eƗperiment ID̀ samples replicates control ID̀ librarƘ laƘout and
TF name ̒Figure ː˖a̓̆

For each dataset̀ I eƗtracted the full original metadata from their source databasè and
given the casè merged or completed them using the tools Ʀq and pƘrasdb ̒ChoudharƘ̀
ˑˏː˘̋ Gálveơ̖Merchán et al̆̀ ˑˏˑˑ̓̆ Using this informatioǹ I built a common directorƘ
structure for all datasets̀ custom ƒorkƪoƒ conƩguration Ʃles for each̀ and I
doƒnloaded all of the raƒ sequencing Ʃles in fastq format̆ For each dataset̀ I then ran
the ̝qualitƘ control̞ and ̝mapping̞ ƒorkƪoƒs available in SnakeChunks ̒Rioualen et
al̆̀ ˑˏː˘̋ Chapter ˒̓ using cutadapt for read̖trimming ̒Martiǹ ˑˏːː̓̀ boƒtie ˑ for the
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alignment ̒Langmead and Salơberg̀ ˑˏːˑ̓̀ and multiQC to generate complete qualitƘ
reports before and after the preprocessing ̒Eƒels et al̆̀ ˑˏː˕̓̆ FinallƘ̀ I designed a neƒ
ƒorkƪoƒ to perform peak̖calling using macs˒ ̒Feng et al̆̀ ˑˏːː̓̀ identifƘ sites in
peaks ƒith RSAT matriƗ̖scan ̒Turatsinơe et al̆̀ ˑˏˏ˗̓̀ and build a dataset̖speciƩc TF
motif using the sites identiƩed and the RSAT convert̖matriƗ tool ̒Santana̖Garcia et
al̆̀ ˑˏˑˑ̓̆ Each dataset resulted in one peak Ʃlè one site Ʃle ̒both bed̖formatted̓ and
one PSSM Ʃlè as ƒell as several graphical reports ̒Figure ː˖b̓̆ AdditionallƘ̀ I mapped
peaks and sites ƒith the reference binding site set from RegulonDB ̒Figure ˕ from the
article̓̆

The metadata table for the ChIP̖seq subcollection alloƒed to customiơe each dataset
processing depending on the TF and the librarƘ laƘout used in each eƗperiment̀ ƒhile
using common tools and cutoƦs for the diƦerent steps of the analƘsis performed using
the SnakeChunks ƒorkƪoƒs̀ ensuring ƪeƗibilitƘ as ƒell as congruencĕ The output
Ʃles ƒere integrated into the RegulonDB HT portal̀ and displaƘed as tables as ƒell as in
a genome broƒser̀ together ƒith classic data for easƘ comparison ̒Figure ː˖c̓̆

Overall̀ the ChIP̖seq collection includes ˑ˘ datasets corresponding to ːˑ diƦerent TFs
̒Table ˓̓̀ of ƒhich ˑ˗ ƒere processed using mƘ pipeline ̒one dataset does not come
ƒith raƒ data̓̀ and ˑ˖ are associated ƒith curated author Ʃles ̒tƒo datasets are not
associated ƒith a publication̓̆ All of this data is available on the RegulonDB̖HT portal̆
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Figure 1˖̆ Integration of the ChIP̖seq collection processing ƒithin the RegulonDB HT frameƒork̆ ă
Datasets are manuallƘ curated from literature and databases̀ and their attributes are gathered into the
metadata tablĕ b̆ All of the samples are automaticallƘ doƒnloaded̀ and datasets analƘses are designed
and run using their speciƩc properties ̒librarƘ laƘout̀ TF chipped̓ as ƒell as common tools ̒trimming̀
mapping̀ peak̖calling̓̆ c̆ The result Ʃles are integrated in the RegulonDB HT portal for broƒsing and
doƒnloadinğ
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Dataset ID Growth Conditions TF Reference

BSCSˏˏː ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿plasmid pT˖̖FLAG̖˓ ̒IPTG̖induced CsiR̓ mutant
͵MEDIUM˿LB medium ͵MEDIUM̍SUPPLEMENTS˿isopropƘl
beta̖D̖thiogalactopƘranoside ː mM ͵TEMPERATURE˿˒˖ ʹC

GlaR Aquino et al̆̀ ˑˏː˖

BSCSˏˏˑ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glucose ˏ̆ˑ͝ ͵AERATION˿Nˑ ˘˔͝ and COˑ ˔͝
͵TEMPERATURE˿˒˖ ʹC ͵OPTICAL̍DENSITY˿OD˕ˏˏ of ˏ̆˒
͵GROWTH̍PHASE˿mid eƗponential phase

FNR MƘers et al̆̀ ˑˏː˒

BSCSˏˏ˒ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glucose ˏ̆ˑ̋͝ iron̒ˑ̓ͅ sulfate ̒anhƘdrous̓ ːˏ ͛M
͵AERATION˿˖ˏ͝ Nˑ̀ ˔͝ COˑ̀ and Oˑ ˑ˔͝ ͵TEMPERATURE˿˒˖ ʹC
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆˒ to ˏ̆˒˔ ͵GROWTH̍PHASE˿mid
eƗponential phase

Fur Beauchene et al̆̀
ˑˏː˔

BSCSˏˏ˓ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glucose ˏ̆ˑ̋͝ iron̒ˑ̓ͅ sulfate ̒anhƘdrous̓ ːˏ ͛M
͵AERATION˿Nˑ ˘˔͝ and COˑ ˔͝ ͵TEMPERATURE˿˒˖ ʹC
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆˒ to ˏ̆˒˔ ͵GROWTH̍PHASE˿mid
eƗponential phase

Fur Beauchene et al̆̀
ˑˏː˔

BSCSˏˏ˔ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿lacZ knockout mutant̋ tonB knockout mutant̋ feoA
knockout mutant̋ ơupT knockout mutant ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glucose ˏ̆ˑ̋͝ iron̒ˑ̓ͅ sulfate ̒anhƘdrous̓ ː̆ˏ ͛M
͵AERATION˿Nˑ ˘˔͝ and COˑ ˔͝ ͵TEMPERATURE˿˒˖ ʹC
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆˒ to ˏ̆˒˔ ͵GROWTH̍PHASE˿mid
eƗponential phase

Fur Beauchene et al̆̀
ˑˏː˔

BSCSˏˏ˕ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿hns̖˒Ɨƪag ͵MEDIUM˿LB medium̀ Luria̖NaCl ˏ̆˔͝
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵GROWTH̍PHASE˿earlƘ eƗponential
phase

H̖NS Kahramanoglou
et al̆̀ ˑˏːː

BSCSˏˏ˖ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿hns̖˒Ɨƪag ͵MEDIUM˿LB medium̀ Luria̖NaCl ˏ̆˔͝
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵GROWTH̍PHASE˿mid eƗponential
phase

H̖NS Kahramanoglou
et al̆̀ ˑˏːː

BSCSˏˏ˗ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿hns̖˒Ɨƪag ͵MEDIUM˿LB medium̀ Luria̖NaCl ˏ̆˔͝
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵GROWTH̍PHASE˿stationarƘ phase

H̖NS Kahramanoglou
et al̆̀ ˑˏːː

BSCSˏˏ˘ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿hns̖˒Ɨƪag ͵MEDIUM˿LB medium̀ Luria̖NaCl ˏ̆˔͝
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵GROWTH̍PHASE˿transition to
stationarƘ phase

H̖NS Kahramanoglou
et al̆̀ ˑˏːː

BSCSˏːˏ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿Ʃs̖˒Ɨƪag ͵MEDIUM˿LB medium̀ Luria̖NaCl ˏ̆˔͝
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵GROWTH̍PHASE˿earlƘ eƗponential
phase

Fis Kahramanoglou
et al̆̀ ˑˏːː

BSCSˏːː ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿Ʃs̖˒Ɨƪag ͵MEDIUM˿LB medium̀ Luria̖NaCl ˏ̆˔͝
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵GROWTH̍PHASE˿mid eƗponential
phase

Fis Kahramanoglou
et al̆̀ ˑˏːː

BSCSˏːˑ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿plasmid pT˖̖FLAG̖˓ ̒IPTG̖induced nac̓
mutant͵MEDIUM˿LB medium ͵MEDIUM̍SUPPLEMENTS˿isopropƘl
beta̖D̖thiogalactopƘranoside ː mM ͵TEMPERATURE˿˒˖ ʹC

Nac Aquino et al̆̀ ˑˏː˖

BSCSˏː˒ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿plasmid pT˖̖FLAG̖˓ ̒IPTG̖induced ntrC̓ mutant

NtrC Aquino et al̆̀ ˑˏː˖
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Dataset ID Growth Conditions TF Reference

͵MEDIUM˿LB medium ͵MEDIUM̍SUPPLEMENTS˿isopropƘl
beta̖D̖thiogalactopƘranoside ː mM ͵TEMPERATURE˿˒˖ ʹC

BSCSˏː˓ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿glnG knockout mutant̋ glnG̖ƪag ͵MEDIUM˿Gutnick
minimal medium ͵MEDIUM̍SUPPLEMENTS˿Ho̖LE trace elements̋ glucose
ˏ̆˓̋͝ ammonium chloride ˒ mM ͵TEMPERATURE˿˒˖ ʹC
͵AGITATION̍SPEED˿ˑˏˏ rpms

NtrC Broƒn et al̆̀ ˑˏː˓

BSCSˏː˔ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿plasmid pT˖̖FLAG̖˓ ̒IPTG̖induced ompR̓ mutant
͵MEDIUM˿LB medium ͵MEDIUM̍SUPPLEMENTS˿isopropƘl
beta̖D̖thiogalactopƘranoside ː mM ͵TEMPERATURE˿˒˖ ʹC

OmpR Aquino et al̆̀ ˑˏː˖

BSCSˏː˕ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆ˑ̋͝ leucine ˏ̆ˑ̋͝ isoleucine ˏ̆ˑ̋͝ valine
ˏ̆ˑ͝  ͵TEMPERATURE˿˒˖ ʹC ͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆ː˔ to ˏ̆ˑ˔
͵GROWTH̍PHASE˿eƗponential phase ͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏː˖ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆ˑ̋͝ leucine ˏ̆ˑ̋͝ isoleucine ˏ̆ˑ̋͝ valine
ˏ̆ˑ͝  ͵TEMPERATURE˿˒˖ ʹC ͵OPTICAL̍DENSITY˿OD˕ˏˏ from ː̆˗ to ˑ̆ˑ
͵GROWTH̍PHASE˿transition point ͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏː˗ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆ˑ̋͝ leucine ˏ̆ˑ̋͝ isoleucine ˏ̆ˑ̋͝ valine
ˏ̆ˑ͝  ͵TEMPERATURE˿˒˖ ʹC ͵GROWTH̍PHASE˿stationarƘ phase
͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏː˘ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆˓̋͝ ACGŰ EZ ͵TEMPERATURE˿˒˖ ʹC
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆ː˔ to ˏ̆ˑ˔ ͵GROWTH̍PHASE˿eƗponential
phase ͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏˑˏ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆˓̋͝ ACGŰ EZ ͵TEMPERATURE˿˒˖ ʹC
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˑ̆˒ to ˑ̆˖ ͵GROWTH̍PHASE˿transition point
͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏˑː ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆˓̋͝ ACGŰ EZ ͵TEMPERATURE˿˒˖ ʹC
͵GROWTH̍PHASE˿stationarƘ phase ͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏˑˑ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆ˑ͝ ͵TEMPERATURE˿˒˖ ʹC
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆ː˔ to ˏ̆ˑ˔ ͵GROWTH̍PHASE˿eƗponential
phase ͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏˑ˒ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆ˑ͝ ͵TEMPERATURE˿˒˖ ʹC
͵OPTICAL̍DENSITY˿OD˕ˏˏ from ː̆˗ to ˑ̆ˑ ͵GROWTH̍PHASE˿transition point
͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏˑ˓ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿glƘcerol ˏ̆ˑ͝ ͵TEMPERATURE˿˒˖ ʹC
͵GROWTH̍PHASE˿stationarƘ phase ͵AGITATION̍SPEED˿ˑˏˏ rpms

Lrp Kroner et al̆̀ ˑˏː˘

BSCSˏˑ˔ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ W˒ːːˏ
͵GENETIC̍BACKGROUND˿WT ͵MEDIUM˿LB medium
͵MEDIUM̍SUPPLEMENTS˿ZnSO˓ ˔ˏˏ ͛M ͵TEMPERATURE˿˒˖

ZraR Rome et al̆̀ ˑˏː˗

˗˒



Dataset ID Growth Conditions TF Reference

͵OPTICAL̍DENSITY˿OD˕ˏˏ of ˏ̆˕

BSCSˏˑ˕ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿ƪhC̖˒Ɨƪag  ͵MEDIUM˿LB medium
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆˔
to ˏ̆˖

FlhDC Fitơgerald et al̆̀
ˑˏː˓

BSCSˏˑ˖ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿ƪhD̖˒Ɨƪag  ͵MEDIUM˿LB medium
͵AERATION˿aerobic ͵TEMPERATURE˿˒˖ ʹC ͵OPTICAL̍DENSITY˿OD˕ˏˏ from ˏ̆˔
to ˏ̆˖

FlhDC Fitơgerald et al̆̀
ˑˏː˓

BSCSˏˑ˗ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿phoB̖˒Ɨƪag ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿phosphate̒˒̖̓ ˏ̆ˑ mM

PhoB Fitơgerald et al̆̀
not published

BSCSˏˑ˘ ORGANISM˿Escherichia coli str̆ K̖ːˑ substr̆ MGː˕˔˔
͵GENETIC̍BACKGROUND˿phoB̖˒Ɨƪag ͵MEDIUM˿MOPS minimal medium
͵MEDIUM̍SUPPLEMENTS˿phosphate̒˒̖̓ ː̆˒ˑ mM

PhoB Fitơgerald et al̆̀
not published

Table 4̆ SummarƘ of the ChIP̖seq datasets̀ and their associated groƒth conditions and references̆

Reference ͬ availability

Data

The full collection of HT datasets can be consulted from the RegulonDB portal˿
http˿̌̌regulondb̆ccğunam̆mƗ

The RegulonDB̖HT documentation is available at github˿
https˿̌̌github̆com̌PGC̖CCǦRegulonDB̖HT

Publication

This ƒork ƒas published in the folloƒing article˿

RegulonDB ːː̆ˏ˿ Comprehensive high̖throughput datasets on transcriptional
regulation in Escherichia coli K̖ːˑ ̒ˑˏˑˑ̓

MƘ main personal contributions to this article include methodologƘ and softƒare
development for the conception of the frameƒork̀ the generation of standardiơed TSS̀
TU and TTS datasets̀ and the complete processing of the ChIP̖seq collection̆
Additional contributions include the ƒriting̀ editing and revieƒing of the article
manuscript̀ the production of three complete Ʃgures̀ the conception anďor
formatting of three others̀ and the Ʃnal submission̆

˗˓
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https://github.com/PGC-CCG/RegulonDB-HT
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https˿̌̌doĭorǧːˏ̆ːˏ˘˘̌mgen̆ˏ̆ˏˏˏ˗˒˒
̅these authors contributed equally

˗˔

https://doi.org/10.1099/mgen.0.000833


1

OPEN

DATA

RegulonDB 11.0: Comprehensive high- throughput datasets on 
transcriptional regulation in Escherichia coli K- 12

Víctor H. Tierrafría1,2†, Claire Rioualen1†, Heladia Salgado1, Paloma Lara1, Socorro Gama- Castro1, Patrick Lally2, 

Laura Gómez- Romero3, Pablo Peña- Loredo1, Andrés G. López- Almazo1, Gabriel Alarcón- Carranza1, Felipe Betancourt- 

Figueroa1, Shirley Alquicira- Hernández1, J. Enrique Polanco- Morelos1, Jair García- Sotelo4, Estefani Gaytan- Nuñez1, 

Carlos- Francisco Méndez- Cruz1, Luis J. Muñiz1, César Bonavides- Martínez1, Gabriel Moreno- Hagelsieb5, James 

E. Galagan2, Joseph T. Wade6,7 and Julio Collado- Vides1,2,8,*

RESEARCH ARTICLE
Tierrafría et al., Microbial Genomics 2022;8:000833

DOI 10.1099/mgen.0.000833

Received 18 December 2021; Accepted 24 April 2022; Published 18 May 2022
Author a"liations: 1Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, 
Mexico; 2Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA; 3Instituto Nacional de Medicina 
Genómica, INMEGEN, Periférico Sur 4809, Arenal Tepepan, Tlalpan 14610, CDMX, Mexico; 4Laboratorio Internacional de Investigación sobre el Genoma 
Humano, Universidad Nacional Autónoma de México, Querétaro 76230, Querétaro, Mexico; 5Department of Biology, Wilfrid Laurier University, 75 
University Ave W, Waterloo, ON N2L 3C5, Canada; 6Wadsworth Center, New York State Department of Health, Albany, NY, USA; 7Department of Biomedical 
Sciences, University at Albany, SUNY, Albany, NY, USA; 8Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. 
Aiguader 88, Barcelona 08003, Universitat Pompeu Fabra(UPF), Barcelona, Spain.
*Correspondence: Julio Collado- Vides,  colladojulio@ gmail. com
Keywords: ChIP- seq; ChIP- exo; RNA- seq; gSELEX; DAP- seq; Transcriptional Regulatory Network; High- Throughput Nucleotide Sequencing; 
Escherichia coli K- 12.
Abbreviations: CRF, conditional random field; GC, growth condition; HT, high- throughput; LT, low- throughput; MCO, microbial conditions ontology; NLP, 
natural language processing; PWM, position weight matrix; TF, transcription factor; TFBS, transcription factor binding site; TFRS, transciption factor 
regulatory site; TSS, transcription start site; TTS, transcription termination site; TU, transcription unit.
†These authors contributed equally to this work
Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Nine supplementary 
tables are available with the online version of this article.
000833 © 2022 The Authors

This is an open- access article distributed under the terms of the Creative Commons Attribution License.

Abstract

Genomics has set the basis for a variety of methodologies that produce high- throughput datasets identifying the di"erent 
players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets 
are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating 
such a wealth of data is not straightforward. No resource currently exists that o"ers all available high and low- throughput data 
on transcriptional regulation in Escherichia coli K- 12 to easily use both as whole datasets, or as individual interactions and regu-
latory elements. RegulonDB (https://regulondb.ccg.unam.mx) began gathering high- throughput dataset collections in 2009, 
starting with transcription start sites, then adding ChIP- seq and gSELEX in 2012, with up to 99 di"erent experimental high- 
throughput datasets available in 2019. In this paper we present a radical upgrade to more than 2000 high- throughput datasets, 
processed to facilitate their comparison, introducing up- to- date collections of transcription termination sites, transcription 
units, as well as transcription factor binding interactions derived from ChIP- seq, ChIP- exo, gSELEX and DAP- seq experiments, 
besides expression profiles derived from RNA- seq experiments. For ChIP- seq experiments we o"er both the data as presented 
by the authors, as well as data uniformly processed in- house, enhancing their comparability, as well as the traceability of the 
methods and reproducibility of the results. Furthermore, we have expanded the tools available for browsing and visualiza-
tion across and within datasets. We include comparisons against previously existing knowledge in RegulonDB from classic 
experiments, a nucleotide- resolution genome viewer, and an interface that enables users to browse datasets by querying their 
metadata. A particular e"ort was made to automatically extract detailed experimental growth conditions by implementing an 
assisted curation strategy applying Natural language processing and machine learning. We provide summaries with the total 
number of interactions found in each experiment, as well as tools to identify common results among di"erent experiments. 
This is a long- awaited resource to make use of such wealth of knowledge and advance our understanding of the biology of the 
model bacterium E. coli K- 12.
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DATA SUMMARY
All the data are available on the RegulonDB portal (https://regulondb.ccg.unam.mx/). We also provide all the code and docu-
mentation associated with these new collections:
RegulonDB so!ware project (https://github.com/regulondbunam/). Database, web services, and web interface.
RegulonDB- HT documentation (https://github.com/PGC-CCG/RegulonDB-HT). Programs used to generate uniform collections 
of HT objects, mapping them to low- throughput (LT) data, and a manual describing the associated processes and formats.
RegulonDB- HT dataset docker (https://doi.org/10.5281/zenodo.6376425). From Zenodo, the users can !nd a link to this docker 
container with the dataset collections in MongoDB, the web services in GraphQL, and the web interface in React.
ChIP- seq pipeline (https://github.com/PGC-CCG/SnakeChunks). A library based on the snakemake work"ow management 
system, which was used to design a generalizable work"ow to perform reproducible ChIP- seq analyses [1].
EcoliGenes library (https://github.com/PGC-CCG/EcoliGenes). #is R- based library was developed to e$ciently deal with 
frequent and all too- o%en fastidious tasks related to the programmatic manipulation and comparison of genes and TFs. #is 
library was used in multiple scripts and pipelines mentioned in this article to identify the wide variety of names and IDs used to 
report genes and TFs in databases and literature, the existence of multiple synonyms, spellings, and outdated bnumbers, and to 
convert them all into the most up- to- date symbols and bnumbers. It also includes a variety of functions that allow to e$ciently get 
additional information on genes (coordinates, length, product, etc.) or speci!c genome coordinates (type of region, closest gene) 
directly into R  data. frames, and to convert genomic coordinates from E. coli K- 12 genome version NC_000913.2 to NC_000913.3.
#e authors con!rm all supporting data, code, and protocols have been provided within the article or through supplementary 
data !les.

INTRODUCTION
Genomics has enabled a variety of technologies for the genome- wide identi!cation of di&erent elements de!ning transcription 
initiation, gene regulation, and transcription unit organization in any organism, provided its genome has been sequenced. In 
bacteria, these elements include TFs, TF binding sites (TFBS) that show speci!c binding of TFs, out of which we distinguish TF 
regulatory sites (TFRS; de!ned as TFBSs that are involved in transcription regulation) [2]. Moreover, genes can be transcribed 
either individually, or in polycistronic units, de!ning transcription units (TUs), which are delimited by transcription start sites 
(TSSs) and transcription termination sites (TTSs). As reported recently, with the development of technologies and the extension 
of our knowledge of transcriptional regulation, several classic de!nitions had to be extended. For instance, both promoters and 
terminators can have multiple TSSs and TTSs, respectively [2]. #ese updated de!nitions have been timely incorporated in 
RegulonDB [3] and in EcoCyc [4], another major resource containing information on transcriptional regulation of E. coli K- 12.
Genome- scale technologies allow for the identi!cation of several types of elements, such as TFBSs, gene expression pro!les, and 
genomic elements including TUs, promoters and terminators. Approaches for TFBS identi!cation include in vivo chromatin 
immunoprecipitation sequencing (ChIP- seq) [5, 6], its higher- resolution variant ChIP- exo [7], in addition to in vitro approaches, 
such as biotin- DNA a$nity puri!cation sequencing (DAP- seq) [8] and genomic systematic evolution of ligands by exponential 
enrichment (gSELEX) [9]. Note that given the binding evidence, it is not certain that proteins considered as TFs in these HT 
binding experiments are bona "de TFs, since many of them lack evidence of change in gene expression. Gene expression pro!les 
are obtained using RNA- seq. Higher- resolution variants of RNA- seq, protecting the 5ƍ-end of transcripts, allow for TSS identi!ca-
tion at single- nucleotide resolution [10–12], and more recently, for the determination of full- length transcripts, along with their 
TSSs and TTSs [13, 14].
Publications reporting these experiments frequently describe a subset of regulatory objects, either spread along the main text [15] 
or compiled in tables [16–19]. Authors also provide processed datasets as supplementary material [20, 21], whereas the raw data 
are deposited in public repositories, such as NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/gds), the Sequence 
Read Archive (https://www.ncbi.nlm.nih.gov/sra), and the EMBL- EBI’s ArrayExpress (https://www.ebi.ac.uk/arrayexpress/). 
Extracting and processing such datasets can be challenging. Gathering these types of data in a single resource, such as RegulonDB, 
saves a lot of work and accelerates research facilitating data comparison with the accumulated existing knowledge based on classic 
molecular biology experiments, as well as comparisons with future novel knowledge.
E. coli K- 12 is the prokaryote with the largest number of regulatory systems studied by classic experimental methods of molecular 
biology. Our laboratory at UNAM has gathered this rich, classic low- throughput (LT) knowledge for more than two decades, 
feeding both RegulonDB and EcoCyc [3, 4]. With the publication of large collections resulting from HT sequencing methods, 
we were concerned by the potential dilution of the LT classic corpus, historically considered as the gold standard, with larger 
collections identi!ed by novel approaches that involve a large number of processing steps in the !nal identi!cation of regulatory 
objects. We therefore considered o&ering users HT results as separate collections, the way we were o&ering a few genome- wide 

https://regulondb.ccg.unam.mx/
https://github.com/regulondbunam/
https://github.com/PGC-CCG/RegulonDB-HT
https://doi.org/10.5281/zenodo.6376425
https://github.com/PGC-CCG/SnakeChunks
https://github.com/PGC-CCG/EcoliGenes
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
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datasets of TSSs generated by our collaborators back in 2009 [22]. We thus gathered datasets of TFBSs obtained by ChIP- seq 
and gSELEX in versions 8.0 [10] and 9.0 of RegulonDB [23]. Detailed manual curation has been devoted to extract TFRSs 
from those publications, for which additional evidence showing a change in expression of a nearby target gene [24] supports a 
regulatory interaction. #ose have been uploaded into EcoCyc and RegulonDB with a clear HT evidence type along with those 
identi!ed by classic LT methods. In addition to COLOMBOS with expression data [25], the Transcription Pro!le of Escherichia 
coli (TEC) database [26], released in 2016, o&ers gSELEX data in E. coli and the PROkaryotic Chromatin ImmunoPrecipitation 
database (proChIPdb, [27]), recently released, o&ers ChIP- seq and ChIP- exo datasets. However, to our knowledge, there is no 
comprehensive resource facilitating access in a single place to the diverse wealth of data of di&erent types of objects relevant to 
the regulation of gene expression in E. coli K- 12.
In this article we present a radical upgrade of RegulonDB, o&ering up- to- date collections of TFBSs identi!ed from ChIP- seq, 
ChIP- exo, gSELEX, and biotin- modi!ed DAP- seq approaches, as well as TSSs, TTSs, TUs and a large collection of RNA- seq expres-
sion pro!les. For most of them we o&er the data published by the authors, extracted either from publications or from dedicated 
databases. We also processed some collections from available raw data using uniform pipelines reducing their methodological 
di&erences or batch e&ects.
Knowing the biological conditions and genetic background supporting a binding site, an expression pro!le, the mapping of 
transcription initiation, or a transcription unit, is crucial to compare them and locate them in the wider context of additional 
knowledge. We used the Microbial Conditions Ontology (MCO) [28] as our theoretical framework to organize this knowledge, 
and, as explained below, we also implemented an assisted curation strategy applying Natural language processing (NLP) and 
machine learning (jointly named: NLP method) to automatically extract this knowledge. #is assisted curation strategy consists 
in curating the automatically extracted growth conditions instead of curating conditions from the sources of this knowledge, 
saving human e&ort. Additionally, we added search capabilities, besides reorganizing displays in a way that should considerably 
improve the browsing and visualization of the di&erent datasets and collections.

METHODS
RegulonDB-HT data model and definitions
In this work, we o&er facilitated access to HT collections. Each collection comprises the curated datasets resulting in a speci!c type 
of object (Fig. 1); and a metadata table containing the complete list of datasets and their curated properties. #e speci!c collection 
of TF binding objects has several subcollections based on the type of technology. We conceive a dataset as a set of data from a given 
experiment and its growth conditions as detailed in the MCO (culture medium, medium supplements, aeration, temperature, 
pH, agitation, growth phase, optical density, genetic background). Metadata tables also include additional information such 
as the genome version, features associated with the publications (author list, year of publication, PMID), as well as reported 
database identi!ers, and any additional pertinent information. Datasets contain data !les provided in the original publications 
(referred to as ‘author !les’), data !les with results from our in- house processing pipelines (referred to as ‘uniformized !les’), or 
both types of !les.
A new repository was designed to store the di&erent types of datasets. #e classes representing the organization of informa-
tion within RegulonDB- HT, and the types of datasets processed, include TFbindingPeak, TFbindingSite, TranscriptionUnit, 
TranscriptionStartSite, TranscriptionTerminationSite and GeneExpression. Each of these are accompanied by their metadata 
and growth conditions, and at least one author data !le or uniformized data !le (Fig. 1). Growth conditions in the GeneEx-
pression collection were obtained using the NLP method explained below.

Impact Statement

RegulonDB has been the main resource for knowledge about transcriptional regulation and organization in E. coli K- 12, and has 
been accessed intensively since its first publication in 1998 [52]. For instance, in the last 4 years, RegulonDB was accessed an 
average of ~16300 times per year, and citations to RegulonDB articles quickly count in the hundreds. This curated database 
started more than 20 years ago, before the advent of high- throughput (HT) experimentation, gathering data obtained by tradi-
tional methods, with some HT data added later on. Here we present a major undertaking in ensuring high coverage of the latest 
HT experimental data in RegulonDB, by incorporating more than 500 HT datasets for transcription factor (TF) DNA- binding, in 
addition to 1864 RNA- seq datasets generated under di"erent growth conditions and/or genetic backgrounds. Another novelty 
in this BioResource is the curation e"ort to associate each dataset with its corresponding detailed metadata that is key for 
its utilization. The value of having the derived genomic features, or objects, from di"erent kinds of experiments, available in a 
single repository, will add to the already acknowledged value of RegulonDB to the scientific community.
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The data repository was implemented in MongoDB v4.4.5 (https://www.mongodb.com/), a document- oriented database 
manager that provides the flexibility to deal with the variety of information of each type of dataset and collection. The 
package for processing the authors' and uniformized data files, and to extract, transform, and load data, was developed 
under python 3.9. The ChIP- seq workflows were implemented in snakemake 6.10.0 [29]. Access to data was implemented 
through web services that use Node v16.13.0 (https://nodejs.org/es/), the query language GraphQL v15.5.0 (https://graphql. 
org/), and Apollo Server Express v2.21.0. A component- based web interface was developed using React v17.0.2 (https:// 
es.reactjs.org/). The tracks display uses  igv. js, an embeddable JavaScript implementation of the Integrative Genomics 
Viewer (IGV) [30]. The software and applications related to the database are available at GitHub (https://github.com/ 
regulondbunam/).

Gathering and processing of the HT data collections
To implement this new framework, we carefully coordinated the di&erent steps involved: manual curation and annotation of 
literature, data uniformization, computational mapping and display of the HT collections (Fig. 2).

Data gathering
Original scienti!c papers about transcriptional regulation in E. coli K- 12 are monthly searched in PubMed (https://pubmed. 
ncbi.nlm.nih.gov/). #en, articles are selected and curated as described previously [3]. For this work, databases associated 
with the publications were also explored, these include: Gene Expression Omnibus (GEO https://www.ncbi.nlm.nih.gov/gds) 
and the Sequence Read Archive (SRA https://www.ncbi.nlm.nih.gov/sra) from the NCBI, ArrayExpress (https://www.ebi. 
ac.uk/arrayexpress/) from EMBL- EBI, Digital Expression Explorer 2 (DEE2 http://dee2.io/), proChIPdb (https://prochipdb. 
org/), and TEC (https://shigen.nig.ac.jp/ecoli/tec/top/).

Curation and annotation
#e information provided within the original publications was carefully collected and organized into custom metadata tables 
(one per collection, or one per subcollection in the case of TF- binding), with metadata and growth conditions for each 
dataset. #e datasets constructed from authors sources were annotated and organized into the RegulonDB- HT repository.

Normalization and uniformization
To facilitate processing, display and analysis of these datasets, several strategies were used to uniformize and/or normalize certain 
datasets.

Fig. 1. Data model for HT dataset collections represented as a Unified Modelling Language (UML) class diagram. The links represent bidirectional 
associations between two classes, and the numbers 1, 0.*, 1.* represent the multiplicity value. For example, the class Dataset can have 0 or 1 Author 
DataFile. The components of datasets are the Metadata, defined as properties in the Dataset class, the Growth Conditions, curated manually or using the 
NLP method, and related data files, either gathered from authors or processed for uniformity.

https://www.mongodb.com/
https://nodejs.org/es/
https://graphql.org/
https://graphql.org/
https://es.reactjs.org/
https://es.reactjs.org/
https://github.com/regulondbunam/
https://github.com/regulondbunam/
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/sra
https://www.ebi.ac.uk/arrayexpress/
https://www.ebi.ac.uk/arrayexpress/
http://dee2.io/
https://prochipdb.org/
https://prochipdb.org/
https://shigen.nig.ac.jp/ecoli/tec/top/
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Mapping and integration
#e resulting uniform HT objects were mapped to reference datasets from LT experiments as curated in RegulonDB. As already 
mentioned, growth conditions were mapped to the MCO terms and annotated, when available, according to the annotation 
framework reported in [28].

TF binding datasets
Data gathering
We are including binding data from four HT technologies: ChIP- seq, ChIP- exo, gSELEX and DAP- seq. #e ChIP- seq datasets 
encompass two types of data contained in two di&erent tables: data as reported by the authors, and data generated from our 
in- house processing of the raw data reported by the same authors. #e TFBSs and/or peaks reported by authors were obtained 
mostly from supplementary material and the associated information described in the main text of their publications. ChIP- seq 
raw samples and metadata were downloaded systematically from the SRA. #e ChIP- exo subcollection was retrieved from the 
recently published proChIPdb [27]. #is subcollection includes datasets tagged in proChIPdb as ‘curated’, as well as TF binding 
information for OxyR, SoxR, SoxS, and UvrY, from [31, 32].

#e gSELEX datasets were extracted from the TEC database [26]. Each TF was searched in the Tab ‘Gene/TF search’ with a selected 
cut- o& (indicated in the metadata). #e data were obtained by copy and paste since it was not possible to download it otherwise. 
#e datasets contain the TF name, peak center coordinates, target gene, peak location relative to the target, and binding intensity 
(%) relative to the highest peak intensity in the experiment. We built 63 datasets for 41 TFs using a de!ned threshold either 
indicated in the corresponding references, or, in their absence, inferred by us to include all targets indicated in the publications. 
Ninety- four gSELEX datasets (corresponding to 74 di&erent TFs) were not analysed by the authors, they were only listed in 
one publication [26]; for these we took the forty targets with the top binding intensities, and the lowest binding intensity was 
registered in the metadata as the cut- o& for each dataset. To allow comparisons with data derived from other methodologies, we 
o&er complete datasets from gSELEX, i.e. with no cut- o&, for the nucleoid- associated proteins H- NS, Fis, IHF and HU, as well as 
Dps and Dan which have also been proposed as nucleoid- associated proteins [26, 33–36]. Overall, a total of 164 TFBS datasets 
(corresponding to 121 di&erent TFs) derived from gSELEX were generated.

Fig. 2. Overview of the RegulonDB HT framework. This diagram summarizes the three types of dataset collections built in RegulonDB HT: i) genomic 
features (TUs, TSSs, and TTSs), ii) TF binding and iii) gene expression, displayed as grayscale background columns; and the steps implemented to 
generate them: i) data gathering, ii) curation, iii) normalization and iv) integration, displayed as horizontal lanes. Further details are described in 
Methods sections regarding datasets.
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Finally, we obtained the collection of experiments and metadata for 215 TFs in E. coli using biotin DAP- seq from the supple-
mentary material available in [37].

Curation and annotation
To build the dataset component with data as reported by authors (Fig. 2, Curation and Annotation lane), we retrieved the 
following features when available: TF name, peak and TFBS features, such as start- and end genomic coordinates, genomic 
sequence, statistical values from peak calling or motif prediction, experimental or computational evidence, and the closest gene, 
considered as the target gene. #e associated metadata, including growth conditions, were also extracted from the publications 
and databases mentioned above. Finally, when ChIP- seq experiments were linked to gene expression in the same publication, 
we "agged target genes which showed changes in expression and a signi!cant p- value for di&erential expression, annotating the 
resulting TF function as either activator or repressor. #ese TFRSs support regulatory interactions which are in the process of 
being uploaded into EcoCyc and RegulonDB.

Uniformization
We gathered a total of 185 raw data !les from 28 ChIP- seq datasets associated with 11 TFs. We processed them in a uniform and 
reproducible way using the SnakeChunks library of work"ows for HT analysis [1, 29]. #is framework ensures the consistency of 
analyses, keeps track of the tools and versions used, while also allowing parameter customization. Adapter and quality trimming 
were performed using cutadapt with a quality and length threshold of 20 [38]. Read alignment was performed using Bowtie 2 [39] 
in local alignment mode against the E. coli K- 12 MG1655 genome (version NC_000913.3). Overall sample quality was checked 
using FastQC [40] (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and multiQC [41]. Peak calling was performed 
using the latest version of Macs 3 [42], with a q- val threshold of 1.10–3 and the following options: --nomodel --shi! 0 --extsize 200. 
#en, TFBSs were identi!ed from the peak sequences via pattern- matching using RSAT matrix- scan [43] and the reference TF 
motifs built from RegulonDB 10.5 [3], and motif- speci!c thresholds de!ned by RSAT matrix- quality [44]. Two exceptions were 
made with GlaR and Nac, where a putative binding motif was obtained through de novo motif search using RSAT peak- motifs 
with a signi!cance threshold of 0 [45], in order to detect binding sites. A new motif was generated for each individual dataset, 
using TFBS sequences and the RSAT tool convert- matrix [46]. For the other types of binding datasets, we retrieved the data as 
reported by the authors, in particular: start- and end positions, intensity, and the closest gene to each peak.

Fig. 3. Steps for growth conditions extraction using our NLP method.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Mapping and integration
With the aim of comparing the TF binding data derived from HT technologies with the knowledge derived from LT studies, we 
performed the mapping of TFBS datasets to the RegulonDB subset of TFRSs with classical evidence. We mapped our in- house 
processed ChIP- seq datasets at the level of peaks and sites: a peak is considered a match when a known binding site falls within 
its coordinates, and a site matches when its centre position is at most 30 bp away from a known site (in average, motifs are 20 bp 
long, and a 10- bp distance may be close enough for protein interaction). Mapping datasets from authors proved to be more 
di$cult since not all of them were generated using the same version of the genome, and the precise location of peaks or motifs is 

Fig. 4. RegulonDB- HT search tool. This tool gives access to all types of HT datasets retrieved so far, but an example of access to a TF binding HT dataset 
is shown. (a) RegulonDB portal. (b) RegulonDB HT collections. (c) Content of a TF binding dataset, from the ChIP- seq subcollection.
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not always available in publications. #us, the datasets processed by authors were mapped at the level of the TF- gene interactions. 
For each TF binding dataset, target genes were compared against the known regulatory interactions from RegulonDB, taking into 
account the evidence they are associated with (Table S1). Positive mapping results display the type of evidence (classical strong 
or weak, or computational prediction) of the corresponding interaction in RegulonDB.

TU, TSS, and TTS datasets
Data gathering
Datasets of TUs, TSSs and TTSs came from di&erent sources, though their growth conditions were not always consistently docu-
mented. TSS datasets generated by the group of Enrique Morett [10, 22], as well as those from the laboratory of Gisela Storz [47], 
were already available in RegulonDB [23]. Four collections are from Cho, B. K., et al. [48], with additional collections obtained 
from publications that implemented the identi!cation of TUs using di&erent approaches, which concomitantly identi!ed TSSs and 
TTSs as TU boundaries [11, 13, 14]. A dataset not- yet- published of more than 5000 TSSs was kindly provided by Joseph T. Wade.

Curation and annotation
Given that transcriptional regulation involves a machinery that deals with di&erent growth conditions, we gathered the precise 
growing conditions under which these di&erent elements were identi!ed, directly requesting authors for the information when it 
was not detailed in the publications. Key growth conditions obtained through personal communication include culture medium, 
either minimal or rich, and growth phase, either exponential or stationary phase.

Uniformization
When necessary, we updated object coordinates to the current genome version NC_000913.3. While the original datasets came in 
a variety of formats, we extracted the most relevant features for each type of collection, and generated uniform bed !les for each 
dataset to allow their visualization in our genome browser. Objects that shared the same start, stop and strand information were 
considered duplicates and merged as single objects. Finally, when objects provided in a single !le by the author were associated 
with distinct growth conditions, they were separated in distinct datasets (see dataset de!nition in the Methods section).

Mapping and integration
#e uniform TSS datasets were mapped against RegulonDB promoters, and were considered a match when they fell within a 
5- bp distance of a known TSS. TUs and TTSs will also be mapped in the near future. #ose three uniformized collections were 

Table 1. Number and content of RegulonDB HT datasets

Object Strategy No. of datasets No. of objects Additional information

Curated from papers Identi!ed from raw data

EXPRESSION PROFILES

Gene expression RNA- seq 1864a nd 4618b   

TF BINDING

TF Binding ChIP- seq 29c 6585 peaks 13167 peaks
5108 sites

Table S2

ChIP- exo 94 23170 peaks nd Table S3

gSELEX 164 35022 peaks nd Table S4

DAP- seq 215 19540 peaks nd Table S5

TUs, TSSs and TTSs

TUs RNA- seq 5 12347d nd Table S6

TSSs RNA- seq 16 68049d nd Table S7

TTSs RNA- seq 5 5326d nd Table S8

a, The total of SRRs retrieved, which include 575 only in DEE2, 914 (820 GSMs) only in GEO, and 375 (337 GSMs) in both DEE2 and GEO
b, Average number of genes per dataset.
c, Including 27 processed by authors and 28 processed in house.
d, The number of these objects may be higher from the original publications as they were calculated per dataset, after our uniformization 
process. nd. Object identification not determined by the RegulonDB Team.
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integrated into our genome viewer. #e original author datasets were not mapped nor integrated into the genome viewer, since 
they come in a variety of formats and genome versions.

Gene expression datasets
Data gathering
We collected RNA- seq experiments from two di&erent sources, GEO and DEE2. A total of 1429 experiments were retrieved from 
GEO using ‘RNA- seq’ and E. coli’s taxon id (txid562) as a query. We also obtained 1255 experiments from DEE2 that were not 
found in our initial GEO query.

Curation and annotation
We !ltered these datasets based on the type of experiment and sequencing format used, retaining only RNA- seq experiments, and 
removing those performed with SOLiD sequencing, as our pipeline is tailored towards Illumina. We also !ltered out the datasets 
that were associated with strains other than K- 12. Of the 2684 total samples, we uploaded into RegulonDB the 1864 that could be 
processed by our pipeline (see Normalization subsection below). #is collection is up- to- date as of the end of October 2021. #e 
metadata were also retrieved from the corresponding database. We used the NLP method to extract growth conditions from the 
metadata !les provided by the authors to complement the datasets obtained from GEO. For experiments only found in the SRA 
(retrieved from DEE2), we used NCBI’s Entrez tool, along with custom so%ware, to gather the metadata. In particular, when the 
metadata were missing or scarce, we used the python package Beautiful Soup four to perform web- scraping.
To gather training data for our NLP method, we selected GEO SOFT !les containing metadata of studies performed with di&erent 
technologies such as RNA- seq, ChIP- seq, and ChIP- exo, available in previous versions of RegulonDB. In total, the SOFT !les of 228 
GEO samples from 27 GEO series were gathered (Fig. 3). We automatized SOFT !les download using the R package GEOquery. 
We manually curated and tagged the following features describing growth conditions: organism, genetic background, culture 
medium, medium supplements, growth phase, OD, temperature, pH, aeration, agitation, and genome version.
Manually tagged contexts from 228 SOFT !les were used to train and test a linear chain Conditional Random Field (CRF): 
70 % for training and cross- validation, and 30 % for testing. In addition, we manually obtained lists of keywords related to 
some types of growth conditions. A CRF is a probabilistic framework for tagging and segmenting sequence data based on the 
conditional probability  1

(
Z]Y

)
  of a sequence of tags  Z � Z����ZO  given a sequence of observations  Y � Y���� YO  [49]. In this case, 

 Y  is the sequence of words of contexts from the SOFT !les, and  Z  is the sequence either of tagged growth conditions (‘Air’, 
‘Phase’, etc.), or the label ‘Other’ in other cases. #e CRF probabilities are based on feature functions which may consider any 
feature of  YJ  (e.g. the part- of- speech tag, the lemma, if it contains the symbol ‘°’, if it appears in a list of keywords) and the 
transition  ZJ−� → ZJ  (e.g. ‘Phase’ before ‘Air’). For the !nal output, the consecutive words with the same label were collapsed 

Fig. 5. TFs with binding identified by ChIP- exo, ChIP- seq, DAP- seq and/or gSELEX. (a) Comparison of TFs studied with LT approaches available in 
RegulonDB, with TFs examined with HT technologies. In RegulonDB, 222 TFs have been confirmed by classical LT evidence with at least one regulatory 
interaction (displayed as a horizontal blue bar). Each vertical bar represents a group of TFs associated with LT and/or HT experiments, as displayed by 
the black dots in the bottom rows. (b) Average percentage of TF- gene interactions with classical evidence in RegulonDB, identified in data processed 
by authors.
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into a fragment of text, while the probabilities were summarized as the mean. #is approach has been successfully applied 
previously for information extraction and it does not require a lot of training data [50].

Normalization
We downloaded the fastq !les from the SRA for all datasets to be homogeneously processed by our sequence analysis 
pipeline. We aligned all samples to the E. coli reference genome NC_000913.3 using HISAT2. Our alignments are always 
run as unpaired; and when the metadata allow determination of the library preparation kit used, we provide the appropriate 
strandedness parameters, which indicate whether reads are to be expected on the same, or opposite strand of the mRNA 
transcript. We performed DEseq- normalization to facilitate comparisons across di&erent datasets. Shortly, we created a 
‘pseudo- reference’ sample, where we obtained the geometric mean of each gene’s expression, measured in counts, FPKM/
RPKM (depending if the experiment is paired- end or single- end, respectively), and TPM. Each gene in a given sample was 
divided by its pseudo- reference value, and a scaling factor for each sample was obtained by taking the median of these values. 
#e !nal DEseq- normalized values were obtained by dividing each sample’s expression by the sample scaling factor. In total, 
1864 samples were processed without errors by our pipeline.

Mapping and integration
We took two approaches for mapping the automatically extracted growth conditions to MCO identi!ers comparing the extracted 
term with the MCO term: (i) exact term matching and (ii) string similarity. String similarity was implemented using the python 
library fuzzywuzzy v0.18.0 (https://pypi.org/project/fuzzywuzzy/) taking into account string length di&erences calculated as 
Levenshtein distances, i.e. the minimum number of edits of one character (insertions, deletions or substitutions) required to 
change one word into the other. String similarity allowed us to match, for example, the extracted term ‘W2 minimal medium’ 
with the MCO term ‘W2 minimal media’ (ID: MCO000003317).

RESULTS
General overview of HT datasets and objects
As mentioned above, we report several collections of HT datasets that hold distinct types of objects (genomic features, TF binding 
sites, gene expression pro!les) from distinct types of HT experiments (RNA- seq, ChIP- seq, gSELEX, DAP- seq, ChIP- exo). Some 

Fig. 6. Number of TFRSs from classic RegulonDB (blue bars), those found in in- house processed ChIP- seq peaks (yellow bars), and those identified in 
peaks through pattern- matching, using RegulonDB TF motifs (grey bars).

https://pypi.org/project/fuzzywuzzy/
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collections contain two dataset tables: data as reported by the authors, and data uniformized and/or normalized in- house. Data as 
reported by authors were obtained from publications curated by us, or from the authors’ databases, such as TEC and proChIPdb, 
generated by the Ishihama and Palsson groups respectively (Fig. 2, lane 1). Data processed by other authors frequently vary in 
reference genome used and/or format, so we processed the author datasets to map TUs, TSSs, and TTSs with the latest reference 
genome and to display them in the same format (Fig. 2, lane 3). Finally, we integrated (i) data !les, (ii) metadata, and (iii) growth 
conditions to build the RegulonDB HT datasets (Fig. 2, lane 4 and Fig. 4).
We generated three classes of RegulonDB HT datasets, roughly grouped by type of objects (described in more detail in the 
following sections). For example, gene expression datasets comprise the largest collection of datasets and objects, as expected, 
but are associated with only one object type and strategy, i.e. RNA- seq. In contrast, TF binding datasets were produced using 
several strategies, i.e., ChIP- seq, ChIP- exo, gSELEX, and DAP- seq. Lastly, TU, TSS, and TTS datasets include di&erent objects 
identi!ed using variations of one strategy, i.e. RNA- seq (Table 1).

Browsing the data
All the curated and annotated information, as well as the standardized data, can be found in the RegulonDB portal  
(https://regulondb.ccg.unam.mx/). From the menu ‘Integrated Views and Tools’, in the ‘Browse RegulonDB’ section, the 
option ‘RegulonDB- HT datasets’ is available (Fig. 4a).

Fig. 7. High- throughput TSS datasets collected and mapped to RegulonDB classic TSSs. (a) Number of TSSs per HT dataset. (b) Number of HT TSSs 
that match with at least one classic TSS. (c) Number of classic TSSs that match with at least one HT TSS, for each HT dataset.

https://regulondb.ccg.unam.mx/
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An initial page allows the user to select from all types of RegulonDB collections (Fig. 4b). #e search builder, which is the 
subsequently displayed page, allows users to choose search !lters associated with the RegulonDB collections’ metadata. Any 
dataset that meets the search criteria will be displayed in a list ordered according to the number of terms found in it. #e user 
will be able to select the desired RegulonDB dataset by clicking its link in the results list. #e content of the selected dataset looks 
as shown in Fig. 4c), and is composed of three main components: (i) metadata, (ii) growth conditions, and iii) related data !les. 
In the Data Files section, users can navigate through two tabs, one to access data as reported by authors, and the other one to 
access the standardized data produced by the RegulonDB Team.
When uniformized data are available, it is possible to visualize them in the IGV Tool, where the genes, peaks, TFBSs found in 
peaks, and TFRSs of the TF already stored in RegulonDB (RegulonDB TFRSs) are displayed as tracks. In the RegulonDB TFRSs 
track, the colour of sites is associated with the function of the TF in line with the current EcoCyc and RegulonDB TFRSs colour 
code, i.e. green for activators and red for repressors (Fig. 4c).

Table 2. F1- score in testing for types of growth condition

Growth condition Precision Recall F1- score Support*

Optical density 1.00 1.00 1.00 21

pH 1.00 1.00 1.00 10

Technique 1.00 1.00 1.00 33

Culture medium 1.00 0.80 0.89 56

Temperature 0.86 0.80 0.83 15

Agitation 1.00 0.29 0.44 7

Growth phase 0.94 0.76 0.84 21

Aeration 0.63 0.59 0.61 88

Genetic background 0.89 0.86 0.88 78

Medium supplements 0.88 0.84 0.86 136

Genome version 1 0.5 0.667 6

*Support stands for the number of growth conditions available in testing data for evaluation.

Fig. 8. Foreground bar plot: fraction of SRRs for each type of growth condition. GC term types retrieved for RNA- seq datasets from GEO (1289 SRRs, 
1157 GSMs, 95 GSEs), 3224 extracted GC terms: 2680 were mapped and 544 non- mapped with MCO entities. Background bar plot: fraction of GSMs for 
each type of growth condition in the training data (228 GSMs from 27 GSEs).
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HT data content details
In every uniformized RegulonDB HT dataset (Table 1 and Fig. 2, bottom lane), we provide the precise genomic coordinates of 
objects together with additionally processed information, such as the closest downstream gene(s) in the case of TFBSs and TSSs, 
and the gene content, in the case of TUs. Another column indicates the list of objects that match previously known objects identi-
!ed by LT methods as indicated in the evidence type in RegulonDB. #is pre- processed column should be highly valuable for users 
performing comparative analyses. In a future version we will pre- process the comparisons across the multiple HT collections.
In datasets with information provided by the authors, the con!dence may vary. For instance, of the TUs identi!ed by Yan, B. et al. 
using SMRT- Cappable- seq, some have a well- identi!ed terminator either by sequence structure or because a signi!cant fraction 
of transcripts that start at a given TSS terminate at a well de!ned TTS position. #ese TUs have a higher con!dence level than 
the other TUs, de!ned by the end of one or very few long transcripts [13]. In the case of TFBSs, users can identify sites matching 
previously known sites stored in RegulonDB LT and/or additional evidence supporting change in expression of downstream genes.

TF binding datasets
#e ChIP- seq subcollection is conformed by 29 datasets corresponding to 12 di&erent TFs, of which 28 were processed using 
our dedicated pipeline (one dataset does not come with raw data), and 27 are associated with author !les (two datasets are not 
associated with a publication). Overall, besides those exceptions, 26 datasets associated with ten TFs are provided with two tables: 
one with data processed by authors and built from the publications, and one with data uniformly processed in- house from raw 
data (Table S2).
#e ChIP- exo subcollection consists of 94 datasets built with data processed by authors, which include 87 datasets corresponding 
to 73 di&erent TFs assayed independently, and seven datasets derived from assays of a mixture of various TFs (Table S3).
#e gSELEX subcollection consists of 164 datasets built with data processed by authors and extracted from the TEC database, 
corresponding to the binding of 121 di&erent TFs assayed in vitro in presence or absence of e&ector molecules (Table S4). However, 
as mentioned in methods, this is a heterogeneous collection given the limitations in their extraction: 63 datasets for 41 TFs had 
thresholds de!ned by the authors, for 94 datasets of 74 TFs we arbitrarily included the top 40 sites, and for seven datasets we 
included all interactions with no threshold (see Methods section).
Finally, the DAP- seq subcollection comprises 215 datasets of data processed by authors and built from the supplementary material 
of a single publication [37], which corresponds to the binding of 211 di&erent TFs assayed in vitro. Some datasets correspond 
to the same TF because their di&erent subunits were assayed independently (Table S5). Some TFs have been studied by more 
than one of these methodologies. For example, H- NS, Fur, Fis, OmpR, ZraR and PhoB are represented in all four subcollections. 
Moreover, some TFs without classical evidence of regulatory interactions have been studied exclusively by one of these four 
HT strategies, this is the case for 26 and 15 TFs from ChIP- exo and gSELEX, respectively. Six TFs with at least one regulatory 
interaction with classical evidence have no data in any HT binding dataset. Fig. 5a shows the total number of TFs present in the 
di&erent subcollections and their comparison with classic data from RegulonDB.
We estimated the proportion of TF- gene classic interactions present in RegulonDB that were recovered in the datasets that we 
constructed from author data. #is percentage for every dataset is shown in Tables S2–S5 (available in the online version of this 
article), Fig. 5b displays the average of such percentages for all datasets within each methodology. However, these numbers have 
to be taken with a grain of salt, !rst because the TFs shared by the di&erent methodologies are quite variable, as shown in Fig. 5a, 
second the recovery is quite variable for di&erent datasets provoking a large standard deviation. Furthermore, this was done 
only for 63 datasets from 41 TFs of the gSELEX collection since only those have a cut- o& de!ned by the authors. #e recovery of 
known sites is an index frequently reported in HT publications. Note that in spite of the fact that classic evidence is mostly in vitro 
binding, there is not a clear cut tendency of HT in vitro methods to recover more classic interactions than the in vivo methods.
As mentioned already, for 28 ChIP- seq experiments we also used a uniform bioinformatics pipeline to identify TF binding sites 
from raw data. In such cases we provide in the same dataset two tables, one with the data as extracted from authors, and one with 
the results of our in- house pipeline. We generated position weight matrices (PWMs) based on the in- house obtained sites for 
each dataset in addition to those existing in RegulonDB, and provide the distribution of sites in relation to the start of genes or 
promoters. Fig. 6 shows the number of classic TFRSs in RegulonDB that are found in the peak sequences as well as those found 
in peaks by motif matching. #e results are quite variable depending on the TF studied. In particular, the Lrp and H- NS datasets 
show a low rate of recovery, which can be explained by the poor speci!city of their PWMs in RegulonDB.

TSS, TU and TTS datasets
We gathered a collection of 16 TSS datasets from seven articles and one unpublished dataset (see Methods section), for a total 
of 68049 objects (Fig. 7). #e TU and TTS collections each comprise !ve datasets from three articles, for a total of 12347 and 
5326 objects respectively (see Tables S6–S8). #e original data processed by the authors as well as our uniform datasets were 
compared with the RegulonDB classic collection. HT TSSs were mapped to classic TSSs when located within !ve bases on the 
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same strand. It is interesting to note that even though the total number of TSSs varies from 12000 to slightly less than 300 in the 
di&erent datasets (Fig. 7a), the number of HT TSSs that match with LT TSSs is much less variable (Fig. 7b), just like the numbers 
of classic TSSs that match with HT datasets (Fig. 7c). It should be noted that those matches, although similar in number, are not 
symmetrical, as a result of the window- based mapping.

Gene expression datasets
To ensure high- quality comparisons of expression data, we assessed RNA- seq samples based on sequence read alignment metrics. 
We tagged as ‘PASS’ those samples with more than !ve million raw reads, more than 90 % of their reads aligned to the E. coli 
reference genome, and more than 90 % of genes with non- zero coverage. Out of 1864 total experiments, 648 were tagged as PASS. 
#is collection o&ers processed expression values at the gene level. #e expression values (counts, RPKM/FPKM, and TPM) from 
all 1864 experiments were normalized using the DEseq method described above, allowing users to make comparisons among 
any desired combination of experiments, whether or not they are tagged as ‘PASS’.
#e growth conditions for the GEO collection were extracted by our NLP method as mentioned in the Methods section. #e 
trained predictive model (CRF) was used to automatically extract the growth conditions from the SOFT !les associated with 
RNA- seq data (Fig. 3). #e F1- score (the harmonic mean of precision and recall) of our predictive model was 0.81 in a !ve- fold 
cross- validation, and 0.83 in testing. Precision, also known as positive predictive value, was the proportion of true positive growth 
conditions among all conditions classi!ed as positive by the model. Recall, also known as sensitivity, was the proportion of known 
positive growth conditions classi!ed as positive by the model. Most growth conditions attained F1- scores above 0.80 (Table 2).
Following our assisted curation strategy, the most accurately predicted NLP- extracted growth conditions terms (probability >0.7) 
were manually reviewed. Only the correctly predicted terms were uploaded to the searching tool for RNA- seq datasets. #ese 
correct terms of growth conditions were mapped to MCO IDs before uploading to RegulonDB.
Our NLP method was applied to 1289 SOFT RNA- seq !les, associated with 95 GSEs, 1289 SRRs (SRA accession IDs) for a total 
of 1157 GSMs or samples. We mapped to MCO IDs ~83 % of terms (15 % by exact matching, and ~68 % by string similarity). #e 
unmapped terms were also included in the RNA- seq searching tool of RegulonDB.
In summary, our NLP method provided 3224 terms supporting queries for 84 GSEs, 1131 SRRs for a total of 1001 GSMs. #e 
percentage of SRRs (coverage) with any type of growth condition was di&erent for each type (foreground bar plot in Fig. 8). For 
instance, temperature, medium and genetic background are reported in more than 35 % of the 1001 (100 %) SRRs. In spite of our 
good F- scores, we know from the training set that a large fraction of data is simply missing (background bar plot in Fig. 8). A 
lack of data for pH, agitation speed and optical density in the training set is shown, as in the NLP- extracted data. #is is a pity 
since it limits the comparability and usability of the data, a well- known problem in database e&orts in genomics [51].
On the other hand, we gathered metadata for 575 SRRs that were not found in GEO and had no available SOFT RNA- seq !les. 
Using NCBI’s Entrez tool we were able to retrieve at least one attribute for 520 SRRs. Genetic background and medium supple-
ments were o%en recovered (520 and 506 SRRs, respectively). Culture medium and growth phase were recovered for only 91 and 
80 SRRs, respectively (Table S9). #us, we have metadata that allow datasets to be searched for 928 out of 1157 RNA- seq datasets 
from GEO, and for 520 out of 575, SRA experiments that could not be found in GEO.
All expression data is linked to a speci!c SRR ID. One GEO sample (GSM ID) could include more than one SRR ID and some 
SRRs are not found in GEO. We processed 1289 SRRs (1157 GEO samples) by the NLP method described earlier and the remaining 
575 by the NCBI’s Entrez tool strategy. We were able to retrieve at least one metadata attribute for 1131 (out of 1289) and 520 
SRRs (out of 575), respectively. #is implies that we do not have any metadata associated with 416 SRRs. All these experiments 
can only be searched based on their SRR ID in RegulonDB HT.

DISCUSSION
As mentioned before, gathering all publicly available HT data from E. coli K- 12 in a single place would be of great bene!t to 
advance research. In this work we present RegulonDB version 11.0, a major upgrade that o&ers the largest variety of publicly 
available HT data relevant to transcriptional regulation of E. coli K- 12. We did not however update our ChIP- chip nor microarray 
datasets, and we did not include any Hi- C data.
Most HT data are deposited in repositories like GEO and ArrayExpress. Although GEO requires users to complete major !elds to 
upload genomic datasets in a uniform way, there is a lack of guidelines, or !nal supervision, to guarantee standardized annotations. 
#e lack of essential information allowing the reproducibility of experiments in the literature about transcriptional regulation 
became evident when we curated 600 papers in high detail to build the MCO, and found none that described the growth rate, and 
less than 100 provided the pH, among other properties [28] #is represents a major known bottleneck for proper identi!cation 
and use of HT datasets in downstream analyses [51], requiring manual curation of metadata prior to choosing a !nal collection 
to work with. Our application of a method combining Natural language processing and machine learning for the automatic 
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extraction of growth conditions from GEO !les may greatly facilitate re- analysis of these datasets. We are working on improving 
the predictive model for growth condition extraction.
Another recurrent issue with HT datasets is that there is no standard way of processing the raw data, and a wide variety of 
tools and approaches can be used, depending on the original publications. Curation has been historically limited to re"ect, 
as precisely as possible, what authors publish and report. A major novelty in RegulonDB 11.0 is the addition of in- house 
processed collections. #e normalized RNA- seq collection standardizes analyses across individual datasets, in principle 
setting the basis for future tools that would allow users to select their ‘control’ and ‘experimental’ RNA- seq datasets and 
obtain the relative expression of novel comparisons. #e uniformized ChIP- seq subcollection was generated using our 
publicly- available pipeline (see Methods and Data summary sections for details). #is ensures its reproducibility, which is a 
frequent concern when analysing published datasets from numerous sources [1, 29]. Finally, we also o&er uniformized TSS, 
TTS and TU collections. #ese data were all updated to the current annotated version of the E. coli K- 12 genome. As updates 
occur, traceability will be supported by the corresponding versions in GitHub, keeping all details of the tools, parameters 
and thresholds at hand. #e diversity of information and formats provided by authors makes it di$cult to compare in a 
comprehensive way the results of our in- house processing with those provided originally, so we leave users with the liberty 
of choosing which dataset to use. In a future version we will add comparisons between them.
In the current version we are o&ering comparisons of some HT datasets with classic LT data from RegulonDB, considered as 
a gold standard. #is way, users can easily evaluate how each HT dataset reproduces known data from classical experiments, 
which is the !rst question to arise when applying HT strategies. In the future we will compare as many HT datasets as possible 
with their corresponding classic corpus, and we plan also to provide comparisons across HT datasets. #is information should 
be highly valuable for users to compare results from di&erent sources and technologies.
Finally, we designed a new integrated web interface, including a genome viewer and increased search capabilities. Previous 
RegulonDB searching capabilities were limited to TF and object type. We now allow searching for many other !elds like, 
author, PMID, TF, growth conditions, and many more. #ese metadata are valuable for search and re- analysis of more than 
two thousand HT datasets gathered in this version.
Besides the technical aspects of the management of HT datasets we described above, we have been revisiting fundamental 
biological concepts. An important conceptual distinction that HT methods require for their precise description is the one 
between the ability to bind to speci!c DNA operator sites, and the capacity to alter the activity of a given promoter. Current 
HT publications frequently combine a binding experiment like ChIP- seq for instance, with a global expression experiment 
(i.e. RNA- seq) performed in the same experimental conditions. In this way it is possible to identify those sites that bind, 
de!ning TFBSs, and those that bind and modify the expression of a downstream gene, de!ning TFRSs. #e distinction 
between TFBSs and TFRSs was proposed in the recent update of concepts of gene regulation [2], motivated in fact by the 
type of data generated with novel post- genomic technologies. By the same token, there are many potential TFs that have 
been assayed for instance with DAP- seq and gSELEX but have no evidence yet of any concomitant change of expression for a 
target gene, and therefore, as mentioned before, they do not satisfy the requirements to be fully identi!ed yet as TFs. Lastly, 
we formally distinguished promoters from TSSs and terminators from TTSs, terms that are frequently used interchangeably 
in publications.
#e version 11.0 of RegulonDB, presented here, represents an important quantitative and qualitative upgrade, o&ering novel 
features that make our repository the most comprehensive resource to utilize the wealth of HT data available, together with 
knowledge accumulated through decades of research with classic molecular biology approaches. We expect this unique 
resource will help advance research in E. coli K- 12.
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Chapter 5̆

An alternative collection of binding
motifs

Problematic

As mentioned beforè transcription factors can bind DNA via speciƩc sequences̀ called
transcription factor binding sites̆ Each TF has its oƒn speciƩc binding motif based on
the DNA patterns its binding domain has aƧnitƘ ƒith̆ Hoƒever̀ most of these motifs
are still unknoƒn˿ about ˖ˏ͝ of Ĕ coli TFs still have unknoƒn binding patterns̀ and
some ˒ˏ͝ have no binding sites identiƩed at all̆ Moreover̀ some of the available
motifs are someƒhat fuơơƘ̀ for theƘ̡re built on feƒ DNA sequences̆

In this chapter̀ I eƗplain hoƒ I used RegulonDB̡s carefullƘ curated binding sites
̒Tierrafríà Rioualen et al̆̀ ˑˏˑˑ̓̀ together ƒith a pattern̖discoverƘ strategƘ̀ in order
to propose an alternative collection of TF binding matrices for Ĕ coli K̖ːˑ̆ AdditionallƘ̀
I produced matrices using public ChIP̖seq datasets processed using mƘ oƒn
frameƒork ̒Chapter ˒̀ Chapter ˓̓̆

Motifs and matrices of Ĕ cŋli K̖12

All transcription factors comprise a DNA̖binding domaiǹ and therefore the abilitƘ to
bind to speciƩc locations of the DNĂ BƘ aligning the set of DNA binding sequences of a
given TF and computing nucleotide frequencies̀ one can represent its binding motif in
the form of a degenerated consensus sequencè position̖speciƩc scoring matriƗ
̒Stormo et al̆̀ ː˘˗ˑ̓̀ or a logo image ̒Figure ː˗̓̆ A motif should alloƒ to distinguish a
binding site from the background genomic sequencè and illustrate the speciƩcitƘ of
the binding TF̆ Its discriminative poƒer can be measured using the information

ːˏ˒



content ̒IC̓̀ ƒhich denotes hoƒ much a given matriƗ diƦers from the background
nucleotidic composition̆

Figure 1˗̆ Example˿ LexA binding sites and motif̆ ă A subset of the ˓˓ LeƗA TFBSs available in
RegulonDB are aligned b̆ The corresponding consensus sequence based on the IUPAC codĕ c̆ The
complete position̖speciƩc scoring matriƗ built from ˓˓ TFBSs̆ d̆ The logo representation̆ Adapted from
Medina̖Rivera et al̆̀ ˑˏːː̆

As of todaƘ̀ it is considered that Escherichia coli K̖ːˑ has about ˒ˏˏ transcription
factors̀ although not all of them are formallƘ identiƩed as such ̒Chapter ː̓̆ In
RegulonDB̀ a TF is considered ̝conƩrmed̞ ƒhen it has at least one strong regulatorƘ
interaction characteriơed based on eƗperimental evidencĕ As of RegulonDB version
ːˏ̆ːˏ ̒released in Feb̆ ˑˏˑˑ̓̀ a total of ˑ̀˔˓˘ binding sites are associated ƒith ː˗˘ TFs̀
and ˘ˑ TFs have a matriƗ built from a minimum of ˓ distinct binding sites sequences̀

ːˏ˓



using the program MEME ̒BaileƘ et al̆̀ ˑˏː˔̓ to build matrices from sequences̀ and
RSAT matriƗ̖qualitƘ to select the best matriƗ for each TF ̒Medina̖Rivera et al̆̀ ˑˏːː̓̆
Most of this knoƒledge comes from loƒ̖throughput in vitro eƗperiments̀ and has been
manuallƘ curated from the literature into the RegulonDB databasĕ While it is
frequentlƘ actualiơed ƒith neƒ binding sites̀ the collection of matrices has not been
updated on a regular basis̀ mostlƘ due to the diƧcultƘ of automatiơing its construction
and validation̆ Overall̀ a comparison of the last three versions of the collection shoƒs
little evolution ̒Figure ː˘̓̆ While the number of binding sites has increased̀ as ƒell as
the total information content of the matrices̀ the length of the matrices has also
increased and the binding information ƒas ƒatered̖doƒǹ ƒhich ultimatelƘ results in
a decreased information content per columǹ or average information content per
position ̒Figure ː˘c̓̆

ːˏ˔



Figure 1˘̆ Statistics from the RegulonDB motif collection and its past versions̆ ă SummarƘ of the last
three versions of the collection̆ b̆ Comparison of the TFs included in each versioǹ and the TFs that
currentlƘ have at least ː or ˓ binding sites in the databasĕ c̆ Evolution of the distribution of several matriƗ
parameters over time˿ number of sites used to build each matriƗ̀ total information content̀ matriƗ length
and information content per column̆ Note˿ from version ˓̆ˏ the TF RelB̖RelE is annotated as RelB̆ Both
are considered as the same TF in subsequent analƘses̆

A visual inspection of RegulonDB̡s updated matrices shoƒs that a handful of TFs
indeed seem to have ƒeak motifs̆ On one hand̀ matrices made of too feƒ site
sequences might not reach a high resolution ̒Figure ˑˏa̓̀ hoƒever̀ on the other hand
a high number of sequences might actuallƘ dilute the core motif ̒Figure ˑˏb̓̆ Some
motifs have a poor nucleotidic compleƗitƘ ̒Figure ˑˏc̓̀ and subsequentlƘ have a loƒ
discriminative poƒer̆ Due to the fact that manƘ TFs form multimers in their active
form̀ and some of them have various binding sites in the same vicinitƘ̀ there might
also be larger̀ spurious motifs as a result ̒Figure ˑˏd̓̆ LastlƘ̀ most TFs don̡t have a
matriƗ at all̀ for their binding sites are mostlƘ or completelƘ unknoƒn̆

ːˏ˕



Figure 20̆ EƗamples of motifs from the RegulonDB collection version ˓̆ˏ̆ ă TrpR has a rather
ƒell̖deƩned motif̀ but shoƒs loƒ conƩdence due to a limited number of sequences availablĕ b̆ OƗƘR has
˓ˑ site sequences availablè but verƘ little information shoƒs in the logŏ c̆ IclR has an AT̖rich motif that
shoƒs poor speciƩcitƘ̆ d̆ MarA has a verƘ large motif̀ but most of its positions hold little to no
information̆

Extraction of motifs through pattern discovery

Obtaining robust motifs is not a straightforƒard process̆ A matriƗ is basicallƘ a
representation of the binding information contained in a collection of TFBS̀ hoƒever̀
it can fulƩll several purposes̆ It should accuratelƘ represent the speciƩcitƘ of a given
TF̀ alloƒing it to identifƘ and distinguish said TF binding sites from the genomic
background̀ as ƒell as from other TFs̡ binding sites̆ A collection of motifs alloƒs one
to classifƘ TFs according to their binding proƩles similaritƘ̆ A good motif can also be
used to quantifƘ the aƧnitƘ of a given sitè to observe variations betƒeen several
binding sequences̀ or even predict novel binding sites from larger genomic sequences̆
Furthermorè at a multi̖species level̀ the analƘsis of motifs and binding sites̡

ːˏ˖



conservation can give further insights into distinct TF conformations and regulatorƘ
mechanisms ̒Oliver et al̆̀ ˑˏː˕̓̆

In bacterià most transcription factors are knoƒn to possess HTH motifs in their DBD̀
and to be active in a dimeric form ̒and at times̀ in tetrameric or heƗameric
conformations̓̆ ConsequentlƘ̀ theƘ tend to have dƘadic motifs˿ a pair of short
sequences ̒˒̖˔bp̓ separated bƘ a less conserved sequencè ƒhich length is variable
and depends on each TF̆ These sequences are generallƘ reverse palindromes̀ and in
feƒer cases̀ direct repeats or distinct ƒords ̒in the case of heterodimeric TFs̓̀
separated bƘ non̖speciƩc̀ AT̖rich segments that provide DNA ƪeƗibilitƘ̆ In order to
build an alternative collection of motifs̀ I used pattern discoverƘ algorithms that take
advantage of those properties̆

The algorithm dƘad̖analƘsis ̒van Helden et al̆̀ ˑˏˏˏ̓ from the RegulatorƘ Sequence
AnalƘsis Tools suite ̒Santana̖Garcia et al̆̀ ˑˏˑˑ̓ ƒas speciƩcallƘ developed to identifƘ
dƘadic motifs̆ It assumes that such motifs can be modeled as folloƒs˿

𝐷 ࡦ 𝑤
1

ࡣ 𝑛
𝑠

ࡣ 𝑤
2

Where˿
● ͉ sequence of a dƘad𝐷
● and ͉ Ʃrst and second ƒords of the dƘad𝑤

1
𝑤

2

● ͉ anƘ sequence of unspeciƩed nucleotides𝑛
𝑠

𝑠

Although most TFs bind to some kind of dƘadic patterǹ these are not alƒaƘs fullƘ
conserved̀ and in some cases one of tƒo ƒords is hardlƘ detectablè ƒhich is ƒhƘ I also
used the algorithm oligo̖analƘsis ̒van Helden et al̆̀ ː˘˘˗̓̀ that identiƩes signiƩcantlƘ
over̖represented oligonucleotides given a background model̆ Indeed̀ it has been
shoƒn that less̖conserved motifs can be just as biologicallƘ relevant as conserved
motifs ̒Oliver et al̆̀ ˑˏː˕̓̆ Furthermorè some ˑˏ͝ of bacterial transcription factors
are believed to present non̖canonical binding domains ̒Flores̖Bautista et al̆̀ ˑˏˑˏ̓̀
thus their binding sites could present distinct patterns̆

I ran both algorithms for ːˏː transcription factors that had at least ˓ distinct binding
sites currentlƘ indeƗed in RegulonDB ̒Table ˔̓̆ A manual selection of motifs ƒas made
based on those results̆ Some motifs ƒere found bƘ both algorithms̀ in ƒhich case the
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version found ƒith dƘad̖analƘsis ƒas kept̀ some ƒere found onlƘ bƘ one algorithm̀
and in a feƒ cases̀ no algorithm could Ʃnd a signiƩcant pattern̆

Overall̀ a collection of ːˏː motifs ƒas built˿ ˘ motifs ƒere produced for TFs that didn̡t
have one Ƙet̀ ˗˔ motifs ƒere updated̀ and ˖ TF motifs ƒere kept in their original
versioǹ since neither algorithm detected signiƩcant patterns among their binding
sequences ̒Figure ˑː̓̆

Figure 21̆ Overview of the alternative collection of motifs̆ ă Number of motifs neƒlƘ created̀ updated̀
or unchanged̆ b̆ TƘpe of algorithm used to produce the neƒ and updated motifs̆

The alternative motif collection

The pattern discoverƘ strategƘ I designed has tƒo signiƩcant diƦerences compared to
the original strategƘ used to build the RegulonDB collection˿ it doesn̡t necessarilƘ use
all of the input site sequences to build the matriƗ̀ and it can use a given sequence
several times̀ should there be a duplicated pattern̆ It is also ƒorth noting that the
RegulonDB v˓̆ˏ collection ƒas built on RegulonDB ːˏ̆˕ ̒JulƘ ˑˏː˘̋ total TFBS ͉ ˑ̀ːː˒̓̀
ƒhile I built the alternative collection on RegulonDB ːˏ̆ːˏ ̒FebruarƘ ˑˏˑˑ̋ TFBS ͉
ˑ̀˔˓˘̓̆ Still̀ overall the total number of sequences used to build the neƒ matrices is
loƒer̀ despite the total information content being signiƩcantlƘ higher̆ Since the
pattern̖discoverƘ strategƘ alloƒs to leave out poorlƘ̖conserved sequences and trim
out the loƒ̖information positions from both ends of the patterns identiƩed̀ the
alternative matrices have a smaller length̀ and the information content per column is
much higher ̒Figure ˑˑ̓̆

ːˏ˘



Figure 22̆ Comparison of the RegulonDB collection and the alternative collection̆ Beige boƗes represent
the current RegulonDB collection ̒version ˓̆ˏ̓̀ ƒhile purple boƗes represent the alternative collection̆
The statistical signiƩcance of the comparisons ƒas computed for ˘ˑ TFs using paired WilcoƗon tests̀
leaving out the ˘ TFs that have a neƒlƘ̖generated motif̆

I produced eƗhaustive graphical reports alloƒing to visualiơe and quantifƘ the changes
betƒeen the current motif collection from RegulonDB̀ and the neƒ alternative
collection̆ Although the neƒ matrices are built ƒith feƒer sites̀ the pattern discoverƘ
strategƘ produced motifs that shoƒ a better resolutioǹ as ƒell as a clear sƘmmetrƘ̆
While these motifs maƘ not represent the complete set of binding sites underneath̀ in
particular those that are less conserved̀ theƘ oƦer a clear visualiơation of the core
dƘadic motifs ̒Figure ˑ˒̓̆

As for the neƒlƘ̖built matrices̀ although some are rather ƒeak given the feƒ
sequences used as an input̀ most do give an idea of the possible pattern behind ̒Figure
ˑ˓̓̆ The full list of matrices and their parameters are summariơed in Table ˔̆
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Figure 23̆ Updated motifs and their basic statistics̆ ă The TrpR motif gained in resolutioǹ ƒhile
shortening in length̆ b̆ The OƗƘR alternative motif ƒas built using just a subset of its knoƒn sites̀ but its
pattern is much clearer̆ c̆ A sƘmmetric pattern ƒas identiƩed in most of Iclr binding sites̀ ƒhich is a lot
more speciƩc̆ d̆ The MarA motif ƒas trimmed to ˴ of its siơè but shoƒs a ƒell̖deƩned dƘadic pattern̆

Figure 24̆ Some of the neƒlƘ̖generated matrices̆
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RegulonDB matrices ̒v4̆0̓ Alternative matrices

TF name IC total IC average Num TFBS IC total IC average Num seq

new Ada ˕ ˏ̆˕ ˔
AscG ˕̆ˑ ˏ̆˓˓ ˕
BtsR ˔̆˕ ˏ̆˓˖ ˗
FeaR ːˏ̆˘ ˏ̆˕ː ˓
FliZ ˔ ˏ̆˔˕ ˔
H̖NS ˗̆˘ ˏ̆˔˘ ˘
HipB ː˓̆ˑ ˏ̆˔˖ ˗
RcsB̖BglJ ˘̆ː ˏ̆˕˔ ː˔
SdiA ˘̆˒ ˏ̆˔˔ ˒

unchanged ArgP ˔̆˓ ˏ̆ˑ˗ ː˘
CsgD ˓̆˕ ˏ̆˒˒ ˑ˓
CƘsB ːˑ̆˖ ˏ̆˒ ː˓
QseB ˖̆˒ ˏ̆˓˕ ˓
RcsB ˖̆˔ ˏ̆˓˓ ˑ˕
RhaS ˖̆˕ ˏ̆˒˗ ˗
Rob ˗ ˏ̆˒˔ ː˓

updated AcrR ˖ ˏ̆˔ ˔ ˖ ˏ̆˔ ˖
AgaR ːː̆˕ ˏ̆˔ː ːː ːˏ̆˕ ˏ̆˔˕ ː˒
AraC ˖ ˏ̆˒˔ ː˔ ˖̆˘ ˏ̆˓˘ ˖
ArcA ˔̆˒ ˏ̆˒ː ˖˘ ːː̆˒ ˏ̆˔˘ ː˘
ArgR ˗̆˘ ˏ̆˓˒ ˒ː ːˏ̆˒ ˏ̆˕ ː˘
AsnC ˗ ˏ̆˓˖ ˓ ˕ ˏ̆˔˓ ˗
BaeR ːˑ̆˔ ˏ̆˔˓ ˓ ˕̆˔ ˏ̆˕˔ ˓
BasR ːˏ̆˗ ˏ̆˓˖ ˗ ːˑ̆˒ ˏ̆˔˕ ˖
CaiF ːˏ̆˘ ˏ̆˔˖ ˓ ːˏ̆˔ ˏ̆˔˗ ˓
CpƗR ˔̆˓ ˏ̆ˑ˖ ˕ˏ ːˏ̆˕ ˏ̆˔˕ ː˓
Cra ˘̆˔ ˏ̆˓˔ ˓ˑ ːˑ̆ː ˏ̆˕ː ˑ˖
CRP ˖ ˏ̆˒˔ ˑ˖ː ˘̆˔ ˏ̆˔ ˑˏ˗
CƘtR ˔̆˖ ˏ̆ˑ˔ ː˖ ːː̆˒ ˏ̆˖ ːˏ
Dan ˔ ˏ̆˓˔ ˔ ˓̆˘ ˏ̆˕ː ˓
DcuR ˘̆ˑ ˏ̆˓˓ ˕ ˖̆˘ ˏ̆˔˒ ˗
DeoR ˘̆ː ˏ̆˓˗ ˖ ːː̆˗ ˏ̆˔˘ ˖
DnaA ˕̆˖ ˏ̆˕˖ ˑ˒ ːˏ̆˓ ˏ̆˕˔ ˗
EvgA ː˒ ˏ̆˔˘ ˗ ː˒̆˘ ˏ̆˕˒ ːˏ
EƗuR ːˏ̆˓ ˏ̆˔ˑ ːː ˗̆˘ ˏ̆˕˓ ːˑ
FadR ˘̆˖ ˏ̆˓˗ ˑˏ ˖̆˕ ˏ̆˔˓ ːˑ
FhlA ˖̆˔ ˏ̆˓˓ ˖ ˘̆˒ ˏ̆˔˗ ˕
Fis ˓̆˔ ˏ̆ˑ˕ ˑː˘ ˔̆˘ ˏ̆˕˔ ˔˔
FlhDC ˗̆˗ ˏ̆˓˕ ː˕ ˖̆˔ ˏ̆˕ˑ ˗
FNR ˕̆˖ ˏ̆˓˗ ˗˗ ːː̆˒ ˏ̆˔˓ ˓˘
Fur ˘̆˗ ˏ̆˓˓ ˓˗ ːˏ̆˗ ˏ̆˔˖ ːː˕
GadE ˗̆ː ˏ̆˒˖ ːˏ ˓̆˕ ˏ̆˔˗ ːˏ
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RegulonDB matrices ̒v4̆0̓ Alternative matrices

TF name IC total IC average Num TFBS IC total IC average Num seq
GadW ˖̆ː ˏ̆˒˓ ː˖ ˖̆˔ ˏ̆˔˗ ˓
GadX ˓̆˗ ˏ̆ˑˑ ˒˓ ˔̆˗ ˏ̆˓˗ ːˑ
GalR ˘̆ː ˏ̆˔ː ːˑ ːˏ̆˒ ˏ̆˖˒ ːˏ
GalS ːˏ ˏ̆˔˒ ːˑ ːˏ̆˒ ˏ̆˖˒ ːˏ
GcvA ˗ ˏ̆˓˓ ˕ ˔̆˓ ˏ̆˓˔ ˒
GlpR ˘̆ː ˏ̆˓ː ː˖ ːˏ̆ˑ ˏ̆˓˘ ˘
GlrR ˗̆˕ ˏ̆˒˗ ˕ ːˑ̆˗ ˏ̆˔˒ ˕
GntR ːˏ̆ˑ ˏ̆˓˕ ˘ ːˑ̆˔ ˏ̆˖ ːˑ
HipAB ː˒̆ː ˏ̆˓˔ ˔ ː˓̆ː ˏ̆˔˘ ˗
IclR ˔ ˏ̆˒ˑ ˗ ˕̆˕ ˏ̆˓˖ ˖
IHF ˓̆˘ ˏ̆˒˔ ːˏː ˗̆ˑ ˏ̆˔ˑ ˓ː
IscR ˘ ˏ̆˒˒ ːː ˔̆˕ ˏ̆˔˕ ˘
LeuO ˗̆˒ ˏ̆˒˕ ːˏ ˔̆˕ ˏ̆˓˒ ːː
LeƗA ːˏ̆ˑ ˏ̆˓˕ ˓˓ ː˓̆˓ ˏ̆˕˒ ˒˓
Lrp ˓̆ː ˏ̆˒ː ˗ˏ ˗̆˗ ˏ̆˔ˑ ˗
MalT ˖̆˒ ˏ̆˗ː ː˔ ːː̆˒ ˏ̆˖ ːˏ
MarA ˕̆˘ ˏ̆˒ ˑ˕ ˕̆˔ ˏ̆˓˒ ˒ˏ
MelR ːˏ̆˕ ˏ̆˔ ˔ ˘ ˏ̆˓˔ ˓
MetJ ˖̆˘ ˏ̆˓ˑ ː˔ ː˕̆˘ ˏ̆˘˘ ː˒
MetR ˗̆˔ ˏ̆˓˖ ˔ ˖̆ː ˏ̆˓ˑ ˗
Mlc ː˒̆˘ ˏ̆˔˒ ˖ ˗̆˔ ˏ̆˓˒ ˗
MlrA ː˔̆˘ ˏ̆˓ˑ ˓ ˓̆˔ ˏ̆˓˔ ˑ
MntR ː˓̆˒ ˏ̆˔˖ ˕ ː˓̆˒ ˏ̆˕˔ ːˏ
ModE ːː ˏ̆˓ː ˖ ˕̆ː ˏ̆˕ː ˗
MqsA ˘̆ˑ ˏ̆˓˓ ˕ ˗̆˔ ˏ̆˔˖ ˕
MraZ ˔ ˏ̆˕˒ ˕ ˕̆˖ ˏ̆˓˗ ˒
Nac ˔̆˒ ˏ̆˒ː ː˓ ˕̆ː ˏ̆˒ˑ ˑ˕
NagC ːː ˏ̆˓˓ ˑˏ ˕̆ː ˏ̆˓˖ ˑː
NanR ˕ ˏ̆˗˔ ˘ ːˑ̆˕ ˏ̆˖˗ ˕
NarL ˓̆˕ ˏ̆ˑ˖ ˕˗ ˘̆˕ ˏ̆˔˒ ː˗
NarP ˖ ˏ̆˓˓ ːˑ ː˔̆˖ ˏ̆˖ː ˗
NhaR ˗̆˖ ˏ̆˓ː ˕ ˖̆˔ ˏ̆˓˓ ˕
NrdR ˘̆˓ ˏ̆˔ ˕ ˘̆˘ ˏ̆˔˗ ˔
NsrR ˖ ˏ̆˓˖ ˒˘ ˘̆˓ ˏ̆˕˖ ː˖
NtrC ˘̆˗ ˏ̆˓˘ ˑ˖ ː˓̆ː ˏ̆˕ˑ ˗
OmpR ˕̆˖ ˏ̆˒ ˑː ˗̆˔ ˏ̆˓˔ ː˒
OƗƘR ˔̆˒ ˏ̆ˑ˕ ˓ˑ ˗̆˖ ˏ̆˓˗ ˖
PdhR ːˏ̆ˑ ˏ̆˔˓ ˘ ːˑ̆˔ ˏ̆˕ ˖
PhoB ˕̆˖ ˏ̆˒˒ ˑ˕ ːˑ̆˔ ˏ̆˕˘ ˖
PhoP ˕̆˖ ˏ̆˒˖ ˒˓ ˗ ˏ̆˔˓ ˖
PurR ːˑ̆˘ ˏ̆˖˕ ˑˑ ː˓̆˒ ˏ̆˖ˑ ˑˏ
PutA ˔̆˒ ˏ̆˗˘ ˔ ˕̆˗ ˏ̆˔˖ ˕
PuuR ːː̆ː ˏ̆˔ ˓ ˗̆ː ˏ̆˓˗ ˒
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RegulonDB matrices ̒v4̆0̓ Alternative matrices

TF name IC total IC average Num TFBS IC total IC average Num seq
RcdA ˖̆ː ˏ̆˔ː ˗ ːˏ̆˓ ˏ̆˔˗ ˓
RcsAB ˗̆˗ ˏ̆˓˘ ˕ ˕̆˗ ˏ̆˔˖ ˕
RelB̖RelE ˕̆˓ ˏ̆˓˒ ˓ ˖̆˗ ˏ̆˓˕ ːˏ
RstA ːˏ̆˔ ˏ̆˔ˑ ˓ ˗̆˒ ˏ̆˔˔ ˔
RutR ˘̆˘ ˏ̆˓˘ ˔ ːˏ̆˔ ˏ̆˕˕ ˕
SlƘA ˕̆˖ ˏ̆˓˓ ː˓ ˘̆˒ ˏ̆˓˖ ˖
SoƗR ˕̆˖ ˏ̆˒˓ ˕ ˔ ˏ̆˔˕ ˓
SoƗS ˖̆ˑ ˏ̆˒˒ ˒ˑ ːˏ̆˖ ˏ̆˔˕ ː˓
TorR ˕̆˔ ˏ̆˔ ːˏ ˖̆˔ ˏ̆˔ ˔
TrpR ːˏ̆˓ ˏ̆˓˘ ˕ ːː̆˒ ˏ̆˖ː ː˖
TƘrR ˘ ˏ̆˓˒ ː˘ ːː̆˗ ˏ̆˓˘ ː˓
UlaR ːˏ̆˗ ˏ̆˓˖ ˓ ˗̆˕ ˏ̆˓˗ ˕
UƗuR ːˏ̆˖ ˏ̆˔ː ˗ ːˏ̆ː ˏ̆˕˖ ːː
XƘlR ˗̆˕ ˏ̆˓ː ˗ ˕̆˔ ˏ̆˔ ːˏ
YdeO ːˏ̆˕ ˏ̆˒˓ ˕ ˓̆˒ ˏ̆˔˓ ˕
YjjQ ːˏ̆ˑ ˏ̆˔˖ ˖ ˘̆˓ ˏ̆˔ˑ ːˏ

Table  5̆ The complete list of matrices and associated parameters for ːˏː TFs̆

Evaluation of motifs quality

As mentioned abovè a motif should represent the speciƩcitƘ of a TF binding patterǹ
and alloƒ to distinguish potential binding sites from the genomic background̆
Although there is no single metric that could formallƘ quantifƘ the qualitƘ of a motif̀
several criteria can be eƗplored that shoƒ an overall tendencƘ̆ For onè the visual
inspection of logos gives a quick impression of the precision and speciƩcitƘ of a motif̀
as ƒell as its ̝shape̞ in the particular case of dƘadic motifs̆ The speciƩcitƘ can also be
quantiƩed bƘ calculating the information content ̒IC̓ of the matriƗ̆ Since it is highlƘ
dependent on the length of the matriƗ̀ the average IC per position shall also be taken
into account̆

Hoƒever̀ all of these criteria are someƒhat imperfect̀ thus the RSAT tool
matrix̖qualitƘ ƒas developed in order to assess the qualitƘ of matrices ̒Medina̖Rivera
et al̆̀ ˑˏːː̓̆ It combines theoretical and empirical score distributions for sets of
genomic sequences given a PSSM in order to estimate its predictive capacitƘ̆ It is based
on the RSAT program matrix̖scan ̒Turatsinơe et al̆̀ ˑˏˏ˗̓̆ MatriƗ̖scan ƒas developed
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to scan genome sequences and detect potential transcription factor binding sites and
cis̖regulatorƘ modules̀ bƘ computing ƒeight score distributions at each position of
the input sequences ̒Figure ˑ˔̀ Ƙelloƒ boƗ̓̆ It uses a background model and a𝐵
reference matriƗ ̀ and calculates for each sequence segment if it̡s likelƘ to be an𝑀 𝑆
instance of the motif rather than an instance of the background˿

𝑊
𝑆  

ࡦ  𝑙𝑜𝑔 𝑃ഈ𝑆/𝑀ഉ
𝑃ഈ𝑆/𝐵ഉഈ ഉ

Where˿

● ͉ ƒeight score of sequence segment𝑊
𝑆  

𝑆

● ͉ probabilitƘ of sequence according to motif M𝑃ഈ𝑆/𝑀ഉ 𝑆
● ͉ probabilitƘ of sequence according to background B𝑃ഈ𝑆/𝐵ഉ 𝑆

The ƒeight score is also prone to inaccuracƘ̀ for it depends on the matriƗ length𝑊
𝑆  

and IC̀ ƒhich is ƒhƘ matriƗ̖qualitƘ combines it ƒith theoretical and empirical score
distributions̆ Theoretical distributions of scores generated given a speciƩc PSSM alloƒ
estimating the p̖value associated ƒith a given sequence and its ƒeight score ̒as
computed as shoƒn in the above formula̓̀ taking into account the genomic
background̆ Empirical distributions of scores computed from collections of sequences
such as TFBSs should signiƩcantlƘ diverge from the theoretical distributions if the
PSSM used is speciƩc enough of the TF considered̆ This can be visualiơed using a
decreasing cumulative distribution function ̒dCDF̓̀ ƒhich depicts the probabilitƘ
̒ordinate̓ to obtain randomlƘ a ƒeight score higher thaǹ or equal to a given𝑊

𝑆  
𝑊

𝑆  

value ̒abscissa̓ ̒Figure ˑ˔̓̆
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Figure 25̆ Theoretical and empirical probability distributions using matrix̖quality̆ Distributions ƒere
generated using FNR̀ MarÀ Nac and OƗƘR PSSMs from RegulonDB ˓̆ˏ and the alternative collection̆ ă
FNR̆ Green curves represent the probabilities of observing bƘ chance a sequence of score equal to or
higher that Ws given the RegulonDB PSSM ̒light green̓ and the alternative PSSM ̒dark green̓̀ computed
for all non̖coding upstream regions of Ĕ coli K̖ːˑ̆ For instancè observing bƘ chance a sequence scoring
higher than ːˏ has a loƒ probabilitƘ of ˑ̆˒e̖˕ considering the RegulonDB PSSM̀ hoƒever̀ taking into
account the multiple testing of all possible positions from the upstream regions̀ it is associated ƒith an
e̖value of ˑ false positives ̒and in the case of the alternative PSSM̀ ˕ false positives̓̆ Overall̀ the
distribution from the alternative PSSM includes a larger range of possible scores̀ consistent ƒith the fact
that it has a higher IC ̒Table ˔̓̀ but a loƒer FDR for scores loƒer than ːˏ̆ Blue curves represent the
observed distribution of scores in all non̖coding upstream sequences̆ It shoƒs that ˑˑ sites scoring
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higher than ːˏ can be predicted ƒith RegulonDB PSSM̀ and ˖˓ sites using the alternative PSSM̆ The
diƦerence observed compared to the theoretical distribution as ƒell as a permuted set of upstream
sequences ̒purple curves̓ demonstrate the relevance of the PSSM in predicting potential TFBSs̆ FinallƘ̀
the red curves shoƒ the distribution of scores observed in FNR TFBS sequences from RegulonDB̆ TheƘ are
both ƒell̖above the theoretical distributions and the upstream sequences distributions̀ as ƒell as the
binding sites permuted sequences ̒orange curves̓̀ denoting the speciƩcitƘ of the PSSM for FNR binding
sites̆ b̆ MarĂ The alternative PSSM predicts feƒer sites of score higher than ːˏ compared to the v˓̆ˏ
PSSM̀ consistent ƒith the theoretical distributions and the fact that the neƒ matriƗ is smaller̀ and has a
loƒer total IC̆ c̆ Nac̆ The alternative matriƗ predicts more sites of score higher than ˔ than the RegulonDB
matriƗ̀ ƒhile having a verƘ similar background distribution ̒p̖val ͉ ː̆ːe̖˒̋ e̖val ͉ ˏ̆˔ sites̓̆ Both PSSMs
have a rather loƒ IC and fail at predicting sites of scores higher than ːˏ̆ d̆ OxyR̆ The RegulonDB PSSM
predicts more sites than the alternative one considering a score threshold at ˔̀ but the tendencƘ is reverted
around scores of ːˏ and abovĕ The predictive capacitƘ of the RegulonDB matriƗ ̒pale red̓ drops
signiƩcativelƘ̀ ƒhile that of the alternative matriƗ is maintained̆

Overall̀ the results produced bƘ matriƗ̖qualitƘ for the ˘ˑ TF compared shoƒ
disparities̆ Some of the alternative matrices predict more high̖scoring sites̀
congruent ƒith the fact that theƘ generallƘ have a higher information content̆ TheƘ
maƘ be associated ƒith higher FDR around high scores̀ but generallƘ have a loƒer FDR
than the RegulonDB collection ƒhen considering loƒer scores̆ High̖scoring matrices
are usuallƘ better at predicting high̖scoring sites̀ but maƘ Ʃlter out more false
negative sites of loƒer scores̆ Yet̀ those binding sites of loƒ sequence conservation can
be just as relevant to regulatioǹ and can even be necessarƘ for some regulatorƘ
mechanisms that relƘ on TF cooperation ̒Oliver et al̆̀ ˑˏː˕̓̆ For this reasoǹ it maƘ be
relevant to have TFs associated ƒith several alternative PSSMs alloƒing one to fulƩll
distinct purposes̀ from visualiơation and TFBS prediction to TFs classiƩcation̆

Classification of transcription factor motifs

Matrices can be used to classifƘ TFs based on their motif similaritƘ̆ MatriƗ̖clustering
̒Castro̖Mondragón et al̆̀ ˑˏː˖̓ is a tool that clusters similar transcription factor
binding motifs bƘ computing a matriƗ of similaritƘ betƒeen all pairs of input matrices̀
and performing hierarchical clustering to build a motif treĕ The tree can then be
partitioned into clusters̀ using a varietƘ of similaritƘ metrics̆

I performed the clustering of ːˏː PSSM from the alternative collection using the
normaliơed correlation coeƧcient Ncor in order to compute pairƒise similaritƘ
betƒeen all PSSMs̀ ƒith the average̖linkage method̆ Since some matrices lack
precisioǹ I used a loƒ threshold for the tree̖partitioning step ̒Ncor ͉ ˏ̆˒̓̆ A total of
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ˑ˒ clusters ƒere generated ̒Table ˕̓̆ Their siơes range from ː̀ meaning a given PSSM
did not cluster at all ̒clusters ː˘ to ˑ˒˿ CƘsB̀ MalT̀ NtrC̀ PutÀ RhaS̓ to ˑː matrices
̒cluster ˖̓̆

The complete tree is presented in Figure ˑ˕à alongside TF familƘ informatioǹ their
knoƒn eƦects̀ and their reported class ̒local or global regulator̓̆ InterestinglƘ̀ some
of the largest families seem to be clustered together ƒhile others are more scattered̆ Of
the ːˏː PSSMs in the collectioǹ ːˏ are associated ƒith TFs from the prominent LƘsR
familƘ̀ involved in amino acid sƘnthesis and evolutionarƘ related ̒Péreơ̖Rueda et al̆̀
ˑˏː˔̓̆ Hoƒever̀ those ːˏ motifs are part of ˕ diƦerent clusters̆ Another major familƘ
described in Ĕ coli is AraČXƘlS̀ involved in carbon source assimilatioǹ ƒhich accounts
for ːˑ matrices in this collection̆ These are scattered betƒeen ˖ diƦerent clusters̀ but ˓
of them are grouped in the same cluster ̒cluster ˓̓̆ In particular̀ three TFs share a
close motif similaritƘ˿ MarÀ Rob and SoƗS̆ Those TFs are knoƒn to form part of a
regulon involved in antibiotics and superoƗide resistance ̒Péreơ̖Rueda et al̆̀ ˑˏː˔̓̆ In
the same cluster̀ another ˒ TFs are also closelƘ related together˿ OmpR̀ CpƗR and
RstÀ from the OmpR familƘ̀ involved in particular in bioƩlm formation and response
to acidic stress ̒Ogasaƒara et al̆̀ ˑˏːˏ̋ Aquino et al̆̀ ˑˏː˖̓̆ Among the families that
shoƒ a more consistent clustering̀ ƒe can cite GntR̀ and GalŘLacĬ All ˔ PSSMs from
TFs that are part of the GntR familƘ ƒere grouped together in cluster ˒ ƒith onlƘ one
outsider̀ TrpR̆ As for the GalŘLacI familƘ̀ ˔ PSSMs out of ˖ are clustered together in
cluster ː̀ of ƒhich a detailed vieƒ is shoƒn in Figure ˑ˕b̆ The onlƘ TF in the cluster
that is not part of the GalŘLacI familƘ̀ specialiơed in sugar metabolism̀ is a repressor
of the glƘoƗƘlate bƘpass operoǹ Iclr̆

Overall̀ TFs that are part of the same evolutionarƘ families do not signiƩcantlƘ cluster
together despite a loƒ clustering threshold̆ Still̀ manƘ TFs remain poorlƘ
characteriơed and their motifs lack precisioǹ ƒhich eƗplains ƒhƘ their clustering
remains diƧcult̆ Several global regulators are found in the same cluster ̒ArcÀ H̖NS̀
IHF̀ Lrp̓̆ A similar tendencƘ ƒas reported in a previous studƘ ƒhere TFs ƒere
clustered based on corregulation ̒Péreơ̖Rueda et al̆̀ ˑˏː˔̓̀ but the opposite behavior
ƒas observed ƒhen studƘing topological modules of the Ĕ coli TRN ̒Resendis̖Antonio
et al̆̀ ˑˏˏ˔̓̆ Hoƒever̀ it is diƧcult to draƒ conclusions̀ as global regulators tend to
have rather degenerated motifs despite having numerous knoƒn binding sites̆
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Figure 26̆ Clustering of the 101 PSSM from the alternative collection̆ ă The complete tree of clustered
matrices and associated parameters for ːˏː TFs̆ Proportionate tree branches ƒere manuallƘ tƒitched to
enhance readabilitƘ̆ b̆ Detailed subtree for cluster ː and its closest relativĕ c̆ Color legend and associated
TF numbers̆ TF familƘ and eƦect annotations ƒere retrieved from RegulonDB and in some cases̀
completed ƒith recent annotations from Flores̖Bautista et al̆̀ ˑˏˑˏ ̒annotations separated bƘ a pipe ̝͵̞̓̆
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Cluster TF name Cluster size

ː CràCƘtR̀GalR̀GalS̀IclR̀PurR ˕

ˑ DnaÀHipAB̀HipB ˒

˒ EƗuR̀FadR̀NanR̀PdhR̀TrpR̀UƗuR ˕

˓ AgaR̀AraC̀ArgR̀CpƗR̀MarÀMetR̀OmpR̀RcdÀRob̀RstÀSoƗS̀TorR̀UlaR ː˒

˔ EvgÀNarL̀NarP̀RelB̖RelE ˓

˕ BaeR̀DaǹFis̀GadÈIscR̀MlrÀModÈNagC̀YdeO ˘

˖ AcrR̀ArcÀArgP̀AsnC̀BasR̀BtsR̀CsgD̀DcuR̀GadẀH̖NS̀IHF̀LeuÒLrp̀Nac̀
NsrR̀PhoP̀QseB̀RcsB̀SlƘÀSoƗR̀YjjQ

ˑː

˗ CRP̀DeoR̀FNR̀GntR̀PhoB ˔

˘ AdàAscG̀CaiF̀FhlÀFliZ̀GadX̀XƘlR ˖

ːˏ MqsÀPuuR̀RutR ˒

ːː MraZ̀RcsAB̀RcsB̖BglJ ˒

ːˑ GlpR̀Mlc̀NhaR̀OƗƘR ˓

ː˒ GlrR̀TƘrR ˑ

ː˓ FlhDC̀NrdR ˑ

ː˔ LeƗÀMetJ ˑ

ː˕ Fur̀GcvA ˑ

ː˖ FeaR̀MntR ˑ

ː˗ MelR̀SdiA ˑ

ː˘ PutA ː

ˑˏ NtrC ː

ˑː MalT ː

ˑˑ RhaS ː

ˑ˒ CƘsB ː

Table  6̆ The complete list of ˑ˒ clusters for ːˏː PSSMs̆

ChIP̖seq based motifs

As mentioned̀ the main issue for PSSM construction is a lack of binding dată Binding
datasets from genome̖ƒide eƗperiments are verƘ helpful in that regard̆ Using ˑ˗
ChIP̖seq datasets ̒Chapter ˓̓̀ I built matrices targeting ːː TFs ̒Table ˖̓̆ The motifs
generallƘ shoƒ a better accuracƘ than the alternative collectioǹ but manƘ fail at
detecting dƘads̀ particularlƘ for TFs that have a lot of binding sites ̒Figure ˑ˖̓̆ Indeed̀
manƘ TFBSs are poorlƘ conserved that end up ̝diluting̞ the patterǹ although their
regulatorƘ role is relevant under speciƩc conditions ̒Oliver et al̆̀ ˑˏː˕̓̆ It is also
reasonable to assume that the set of binding sites previouslƘ identiƩed and based on
loƒ̖throughput eƗperiments actuallƘ represent a verƘ small proportion of the actual
binding sites in Ĕ colì and could be biased toƒards better conserved sequences̆
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Figure 2˖̆ ChIP̖seq motifs̆ ă FNR̆ The ChIP̖seq motif is shorter and shoƒs a verƘ conserved dƘadic
pattern̆ b̆ Nac̆ The ChIP̖seq dataset provides a ːˏ̖fold pool of binding sequences to build oǹ hoƒever̀
the Ʃnal motif is verƘ similar to the alternative motif̀ ƒith the addition of ˑ signiƩcant nucleotides giving
it a higher speciƩcitƘ̆ c̆ NtrC̆ Tƒo datasets ƒere combined̀ totaling a number of ˘ˏ˖ sequences̆ The motif
produced has a high resolutioǹ but onlƘ a half dƘad is conserved̆ d̆ OmpR̆ Similar to NtrC̀ the ChIP̖seq
based motif for OmpR is ƒell̖deƩned but onlƘ includes half of its knoƒn motif̆
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RegulonDB v4̆0 ChIP̖seq matrices

TF Sites IC ̒avg̓ Consensus Peaks Sites IC ̒avg̓ Consensus
Fis ˑː˘ ˓̆˔ ̒ˏ̆ˑ˕̓ GbƘƘrƒtttttvasCra ː˒ˏː ˒ˑˑ ˗̆˔ ̒ˏ̆˔˖̓ bstTGCTGGCGatsk

FlhDC ː˕ ˗̆˗ ̒ˏ̆˓˕̓ aAƒsGsskGAƒtƒrGsGsc ˓˖

FNR ˗˗ ˕̆˖ ̒ˏ̆˓˗̓ TTGAtrtƒratCaa ː˔˖ ː˕˔ ˖̆˘ ̒ˏ̆˓˓̓ ƒƒtTGAtstasaTCAaƒƒ

Fur ˓˗ ˘̆˗ ̒ˏ̆˓˓̓ tRAtAAtsaTtmtCAtTƒbcaƒ ː˖˓˕ ːˑ˕˗ ˕̆˓ ̒ˏ̆˔˒̓ grATGATAAtsa

GlaR ˔˘˘ ˒ˑˑ ˖̆˔ ̒ˏ̆˕˒̓ raAATGGCGAƘr

H̖NS ˑ˔˓˘

Lrp ˗ˏ ˓̆ː ̒ˏ̆˒ː̓ kmƒtƒttƒtƘCtK ˔ː˕˖ ː˓˗˘ ˖̆ˑ ̒ˏ̆˖ˑ̓ aƒTATTCTgc

Nac ː˓ ˔̆˒ ̒ˏ̆˒ː̓ krattƘkƘTƘatrkssr ˓˘˘ ˑ˔˓ ˖̆˔ ̒ˏ̆˒˕̓ kmCATAagmaƒtkcttATGkm

NtrC ˑ˖ ˘̆˗ ̒ˏ̆˓˘̓ rƒtGCaCsaTkktgGkGCam ˗˓˔ ˘ˏ˖ ˕̆˖ ̒ˏ̆˕ː̓ gsTGGTGCAss

OmpR ˑː ˕̆˖ ̒ˏ̆˒̓ ƒaƘatGtaaCcaarƒgtƒƒmaƒ ː˒˕ ˗˖ ˕̆˘ ̒ˏ̆˔˒̓ ƘtTTGTTACatrt

PhoB ˑ˕ ˕̆˖ ̒ˏ̆˒˒̓ ƒtrtkaCAkhttTrtgƒcAg ːˑː ːˏ˖ ˖̆˓ ̒ˏ̆˕ˑ̓ mƘtTGTCATatk

Table  ˖̆ SummarƘ of the matrices built from ChIP̖seq datasets and their original version in RegulonDB̆

The analƘsis of ChIP̖seq data shoƒs that̀ as eƗpected̀ manƘ more binding sites are
discovered than ƒhat is currentlƘ described in the literaturĕ Most of this curated
knoƒledge stems from in vitrò loƒ̖throughput eƗperiments̀ ƒhile high̖throughput
eƗperiments like ChIP̖seq̀ alloƒing a genome̖ƒide characteriơatioǹ has barelƘ been
applied to Escherichia coli K̖ːˑ̀ despite being a ƒidelƘ̖studied model organism̆

As observed in the alternative collection of matrices̀ the ChIP̖seq̖based matriƗ
collection demonstrates the variabilitƘ observed among transcription factor binding
sites̆ Although TFBS are generallƘ evolutionarƘ conserved̀ theƘ shoƒ a diversitƘ of
proƩles that can be equallƘ relevant to transcriptional regulation̆ Besides̀ some
binding sites have been observed that displaƘed a spacing distinct from the eƗpected
onè although it is supposed to be a conserved̀ TF̖speciƩc characteristic̆ This further
supports the idea that TFs could be associated ƒith a set of alternative matrices rather
than a single onĕ
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Discussion

Results

During this PhD̀ I ƒorked toƒards the goal of eƗhaustivelƘ characteriơing Escherichia
coli K̖ːˑ̡s regulatorƘ netƒorks̆ I started bƘ tackling several facets of this challenge
separatelƘ̆

Upon manipulating a varietƘ of data from diƦerent sources̀ I quicklƘ noticed hoƒ a
lack of congruence in such basic information as gene names and coordinates ƒas going
to be a recurrent bottleneck̆ This triggered the EcoliGenes project̀ a softƒare librarƘ
ƒhich I then used in most of mƘ subsequent ƒorks̀ and kept developing and updating
to Ʃt the needs of mƘ goals̆

ConcomitantlƘ̀ I built an eƗhaustive set of Ĕ coli genomic features bƘ combining
long̖established data from the literature and numerous datasets generated through
neƗt̖generation sequencing technologies and published in recent Ƙears̆ I processed
the data so as to homogeniơe their respective formats̀ and formallƘ deƩned diƦerent
tƘpes of objects to Ʃt a common frameƒork̆

In order to integrate binding and eƗpression data I developed SnakeChunks̀ a librarƘ of
ƒorkƪoƒs and rules based on snakemakĕ These ƒorkƪoƒs alloƒ automated analƘses
of ChIP̖seq and RNA̖seq datà from raƒ samples to Ʃnal results such as transcription
factor binding sites̀ motifs̀ and diƦerentiallƘ̖eƗpressed genes̆ This ƒork culminated
in the publication of a protocol ̒Rioualen et al̆̀ ˑˏː˘̓̆

I used these founding elements in order to pursue mƘ main goal̀ the characteriơation
of the transcriptional regulatorƘ netƒork of Escherichia coli K̖ːˑ̆ Together ƒith the
team from the Program of Computational Genomics and our collaborators from Boston
UniversitƘ and the Wadsƒorth Center at SUNY AlbanƘ̀ ƒe conceived a neƒ frameƒork
to integrate thousands of high̖throughput datasets in RegulonDB̀ bƘ articulating
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together three facets of the project and the respective Ʃelds of eƗpertise of our team˿ ̒i̓
the gathering and curation of relevant datasets̀ led bƘ biocurators̋ ̒ii̓ the
standardiơation anďor processing of the datà led bƘ bioinformaticians̋ and ̒iii̓ the
integration and visual displaƘ of the results via the RegulonDB HT portal̀ led and
realiơed bƘ the computational team̆

FinallƘ̀ I investigated an alternative strategƘ to generate a collection of transcription
factor binding matrices bƘ using pattern discoverƘ approaches̆ While it produced
high̖resolution motifs̀ it also raised a thought as to the relevance of keeping several
alternative matrices for certain transcription factors that displaƘ a varietƘ of binding
proƩles̆

Conclusion

Escherichia coli K̖ːˑ̀ despite being the single best̖characteriơed organism on Earth̀
still oƦers mƘsteries to solvĕ While its genome is relativelƘ small and its genes count
̝onlƘ̞ in the thousands̀ it has verƘ compleƗ and ramiƩed regulatorƘ netƒorks̀ from
signaling pathƒaƘs to metabolic reactions̆ The transcriptional regulatorƘ netƒork is
keƘ to articulating and coordinating cellular responses to environmental stimulĭ
Numerous promoters and terminators oƦer endless possibilities of transcription
initiation and terminatioǹ ƩnelƘ regulated through eƗternal signals triggered bƘ
groƒth conditions̀ and subsequent activation or repression of gene eƗpression bƘ
transcription factors̆

Biological paradigms are permanentlƘ challenged bƘ the ever increasing amount of
knoƒledge acquired̀ and an exhaustive characteriơation of the regulatorƘ netƒorks of Ĕ
coli K̖ːˑ maƘ never actuallƘ be achieved̆ Hoƒever̀ through this PhD project I ƒas able
to contribute to this ambitious perspective in a signiƩcant ƒaƘ̀ bƘ gathering and
formatting numerous high̖throughput datasets̀ developing tools and ƒorkƪoƒs for
their reproducible analƘsis and integration ƒith classic knoƒledgè and generating TF
binding motifs ƒith a higher resolution̆

Perspectives

The transcriptional regulatorƘ netƒork is a keƘ component of Escherichia coli̡s
regulatorƘ circuits̀ for it coordinates metabolic responses in the cell upon sensing
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intra̖ and eƗtracellular signals̀ oƦering an eƗtremelƘ high adaptabilitƘ to
environmental changes̆ EƗpanding the knoƒn TRN from Ĕ coli opens a gate to better
understanding its biologƘ̀ but also that of other species̆ Being a model organism̀ Ĕ coli
has consistentlƘ been used to investigate and describe fundamental biological
mechanisms that could be applied to other organisms later oǹ as ƒell as identifƘ
genes̀ proteins and other features from related bacteria bƘ homologƘ̆

In particular̀ it can help greatlƘ to uncover the transcriptional regulatorƘ netƒork of
one of its close relatives˿ Salmonella enterică Both species have verƘ similar genomes
and lifestƘles̀ but the latter is pathogenic̀ ƒhile Ĕ coli is mostlƘ a commensal bacteriă
S̆ enterica is commonlƘ studied bƘ scientists̀ but its TRN is much less knoƒn than that
of Ĕ colĭ

During mƘ PhD̀ I had the opportunitƘ of taking part in a project ƒhich aims at
characteriơing the S̆ enterica regulatorƘ netƒork bƘ taking advantage of the knoƒledge
acquired of the Ĕ coli netƒork̀ and combining it ƒith computational approaches̆ This
strategƘ oƦers the perspective of gathering signiƩcant amounts of regulatorƘ data for
Salmonella as ƒell as other bacterià in a much more eƧcient ƒaƘ than beforĕ BƘ
combining once again the eƗpertise of biocurators and computational scientists from
the PGC̀ ƒe are hoping to eƗpand RegulonDB to cover multiple organisms̀ and make
the decades of manual curation of a single organism performed in the past become
Ƙears of combined approaches to characteriơe multiple organisms̆
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Acids Research̀ ˓˒̒Wː̓̀ W˒˘̕W˓˘̆ https˿̌̌doĭorǧːˏ̆ːˏ˘˒̌nařgkv˓ː˕
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Castro̖Mondragoǹ J̆ Ằ Jaeger̀ S̆̀ ThieƦrƘ̀ D̆̀ Thomas̖Chollier̀ M̆̀ ͬ van Heldeǹ J̆
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https˿̌̌doĭorǧːˏ̆ːˏ˘˒̌bioinformaticšbtƘˏ˒˓
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https˿̌̌doĭorǧːˏ̆ːˏ˒˗̌s˓ː˔˕˓̖ˏː˘̖ˏ˔ˏˏ̖ơ
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ː˒ˑ



Péreơ̖Ruedà Ĕ̀ Collado̖Vides̀ J̆̀ ͬ Segovià L̆ ̒ˑˏˏ˓̓̆ PhƘlogenetic distribution of
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Nieselt̀ K̆̀ Sharmà C̆ M̆̀ ͬ Storờ Ğ ̒ˑˏː˔̓̆ Global transcriptional start site mapping
using diƦerential RNA sequencing reveals novel antisense RNAs in Escherichia colĭ
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https˿̌̌doĭorǧ10̆10˘˘̌mgen̆0̆000˗33
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