Universidad Nacional Autonoma de México
Programa de Doctorado en Ciencias Biomédicas
Centro de Ciencia Gendmicas

Caracterizacion de las redes
reguladoras de Escherichia coli K-12
por integracion bioinformatica de
datos de alto rendimiento

Tésis que para optar por el grado de Doctor en Ciencias

Presenta:

Claire Marciane Christine Rioualen
Director de tesis:

Dr. Julio Collado-Vides, Centro de Ciencias Gendmicas
Comiteé tutor:

Dra. Alejandra Medina-Rivera, Instituto de Neurobiologia
Dr. José Utrilla-Carreri, Centro de Ciencias Gendmicas

Cuernavaca, Morelos, junio del 2022.



e e

Universidad Nacional - J ~  Biblioteca Central
Auténoma de México -

Direccion General de Bibliotecas de la UNAM
Swmie 1 Bpg L IR

UNAM - Direccion General de Bibliotecas
Tesis Digitales
Restricciones de uso

DERECHOS RESERVADQOS ©
PROHIBIDA SU REPRODUCCION TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imagenes, fragmentos de videos, y demas material que sea
objeto de proteccion de los derechos de autor, serd exclusivamente para
fines educativos e informativos y debera citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproduccion, edicion o modificacion, sera perseguido y sancionado por el
respectivo titular de los Derechos de Autor.



Agradecimientos

A Julio Collado, por confiar en mi y darme la oportunidad de realizar una gran
aventura laboral y humana, desde una colaboracién iniciada en el 2016 hasta culminar
con la presente tesis, y por haber fomentado un espacio de trabajo tan amigable y
colaborativo como el programa de genémica computacional. A Alejandra Medina y José
Utrilla, por apoyarme a lo largo de estos 4 afios, y por su retroalimentacion tan valiosa
en las etapas mas cruciales del doctorado. To the Galagan and Wade groups from

Boston University and SUNY Albany for the fruitful collaboration.

A Jacques van Helden, por ser no solamente un gran investigador cientifico, sino
también un gran ser humano y una inspiracion, y por siempre dedicarme tiempo pese a

sus innombrables obligaciones.

A Concepcion Hernandez, por sus pequefias atenciones y su gran carifio. A César
Bonavides, Romualdo Zayas y Victor del Moral, por su ayuda en los lazos de la
administracién, por su amistad, por las vueltas salseras y las palabras nahuatl. A
Shirley Alquicira y Heladia Salgado, por su dedicacién y simpatia. A Socorro Gama,
Carlos Méndez, Alberto Santos, Irma Martinez, y todxs 1xs integrantes del programa de
gendmica computacional, presentes o pasados, por su amistad y su buen humor, y por

hacerme sentir parte de una familia.

A'la UNAM y el CONACyT, por permitirme realizar mi doctorado durante 4 afios
en México. A la coordinacion del posgrado por su apoyo con los tramites. Al Dr.
Christian Sohlenkamp, al Centro de Ciencias Gendmicas y sus integrantes, por
fomentar un entorno laboral dindamico y calido. A Lua Castafieda por su invaluable
ayuda, y por haber tanto hecho para permitir que todxs pudiéramos crecer en un

ambiente incluyente y empatico.

Al centro de lenguas de la UAEM y a Patty e/, &35S vwE7 | Al grupo de

senderismo de la facultad de biologia, a los salseros del instituto de biotecnologia, a



Donia Vicky y Dofia amor, y a toda la comunidad que hace del campus Chamilpa un lugar

lleno de vida, mucho mas alla del doctorado.

A mis amigxs y roomies en Cuernavaca, por su amistad y su convivencia, por los
dias en el cerro y las noches en la Palapa, por su apoyo y su confianza. A Vargas, Tonalli,
Andrei, Gustavo, Diana, Hector, Ale, Karen, Frida, y muchxs mas que han cruzado mi
camino en la uni y afuera. Al barbas y a las mazorcas por las carnes asadas y las
posadas. A mis amigxs y compafierxs del club de tocho y de la academia de salsa, por
ensefiarme lo valioso que es ser parte de un equipo, y que mientras le eche ganas,

nunca dejaré de crecer como persona.

A Luisa et Jean-Hugues pour leur amitié fidéle malgré la distance. To Arato,
Douglas, Quentin, Maxime, Guillaume, and all the friends I met at the CRCM. A
Wilfried, je garde pour toujours ton amitié en moi. A Lucie et Laurence, rayons de soleil
du TAGC, et a Myriam pour sa patience sans limite. A Santiago y Jaime por ensefiarme
el arte del albur, y a echarle Tajin a la vida. A Alberto, Elena, Alejandro, Claudio y todxs
Ixs integrantes del Café des Langues, por transmitirme el amor al reggaet6on. A Tannia y

David, por su amistad y por ser parte de mi querido mundo marsello-mexicano.

A mis gatijos, Michi y Casimiro, por ensefiarme la paciencia y el amor

incondicional... y por la serotonina.

A mes parents, pour leur soutien indéfectible. Pour respecter mon désir
d'autonomie et me permettre de suivre le chemin que j’ai choisi. A ma sceur pour les
conversations honnétes et I’humour pourri. Qui 1'eut cru, pas moi en tout cas. A mes

grands-parents, qui auraient été si fiers de me voir accomplir tout cela.



Resumen

Escherichia coli K-12 es un organismo modelo muy importante para investigar los
mecanismos de regulacién transcripcional microbiana. Su genoma fue de los primeros
secuenciados por completo, y sus genes, operones y factores de transcripcién han sido
ampliamente estudiados y organizados en bases de datos especializadas. Aunque atin
falta informacién por descubrir sobre las redes de regulacion transcripcional de E. coli,
las tecnologias de secuenciacién masiva desarrolladas durante los ultimos afios
permiten contemplar su posible caracterizacién exhaustiva en un futuro cercano. Para
lograr este objetivo, se tienen que revisar los conceptos biolégicos fundamentales
detras de los mecanismos de regulacién, asi como las infraestructuras que permiten el

manejo y almacenamiento adecuado de los datos.

En el proyecto de doctorado presentado en este manuscrito, se trabajaron estos
aspectos recolectando multiples fuentes de datos y literatura, estableciendo una
nomenclatura para el manejo de los genes, formalizando formatos de almacenamiento
para los objetos gendémicos y reguladores. Ademas, se desarrollaron herramientas
computacionales para realizar el analisis automatizado de datos generados por
tecnologias de secuenciacion de alto rendimiento. Finalmente, este trabajo culminé con
la integracién de dichos datos con los datos de referencia generados mediante
experimentos clasicos, ofreciendo un nuevo fundamento para entender los
mecanismos de regulaciéon genética a escala global en un organismo modelo como

Escherichia coli K-12.



Comprehensive characterization of
Escherichia coli K-12 regulatory networks
by bioinformatics integration

of high-throughput data
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Abstract

Escherichia coli K-12 is the best studied free-living organism on Earth, which makes it a
fundamental model organism in microbiology. It is a reference for the study of
transcriptional regulation. Extensive information about its genes, transcription
factors, and transcription units has been manually curated and indexed for decades in
dedicated databases, and its genome was one of the first to be entirely sequenced and
published.

Currently, the wide variety of high-throughput technologies available allows for the
acquisition of larger collections of genomic features, regulatory elements or gene
expression profiles, and does so with a higher-than-ever accuracy, opening the
possibility of comprehensively characterizing the transcriptional regulatory network of
a species such as E. coli.

However, such a tremendous amount of data triggers new concerns regarding the
proper analysis and integration of this new information within the existing
frameworks, together with the knowledge established through decades of
low-throughput experimentation and manual literature curation.

In this work, I tackled those challenges by working through these issues. I searched
public databases and recent literature for relevant datasets; I revised key biological
concepts with the aim of fitting a common framework; and I conceived bioinformatics
tools for the automatic and reproducible analysis of high-throughput datasets. Finally,
I built on those foundations to perform the analysis of dozens of high-throughput
datasets, the standardization of thousands of genomic features and regulatory
elements, and their integration with reference knowledge from classic experiments.
This provides a foundation for further research to understand gene regulation at a
global scale in this model organism.



Abbreviations

ChIP-exo chromatin immunoprecipitation with exonuclease digestion

ChIP-seq chromatin immunoprecipitation followed by high-throughput sequencing
CTG co-transcribed genes

DAP-seq DNA affinity purification sequencing

DNA deoxyribonucleic acid
ENA European nucleotide archive
GEO gene expression omnibus

gSELEX  genomic systematic evolution of ligands by exponential enrichment

HT high-throughput

LT low-throughput

mRNA messenger RNA

ORF open reading frame

RBS ribosome binding site

RNA ribonucleic acid

PSSM position-specific scoring matrix

RNAP RNA polymerase
RNA-seq RNA sequencing

SRA sequence read archive

SRNA small RNA

TF transcription factor

TFBS transcription factor binding site
TFRS transcription factor regulatory site
TRN transcriptional regulatory network
TSS transcription start site

TTS transcription termination site

TU transcription unit



Introduction

Escherichia coli K-12, a fundamental microbial model organism

Escherichia coli is a Gram-negative, facultative anaerobic gagmmaproteobacteria from the
Enterobacteriaceae family. Though it is mainly known for living in the digestive system
of healthy mammals as a commensal species, it also has the capacity of being a
free-living organism or being pathogenic.

Escherichia coli was first discovered in 1885 by Theodor Escherich, who would later on
give this new species its current name. Over time, it became a model organism for
studying and understanding key biological processes, due to its ease of culturing in a
laboratory setting, its rapid reproduction and its relative inexpensiveness.

In particular, a strain labeled as “K-12” was isolated in 1922, and was the basis for
scientific breakthroughs such as the first description of the mechanism of bacterial
conjugation (Lederberg and Tatum, 1946), and the discovery of the transcriptional
regulation of the Lac operon (Jacob and Monod, 1961). Finally, the genome of
Escherichia coli K-12 was one of the first genomes to be completely sequenced (Blattner

etal., 1997).

Its anatomy includes a single, circular chromosome encapsulated in the cell envelope
along with ribosomes and other proteins and cellular components. The envelope is
made of an inner cytoplasmic membrane, a peptidoglycan-rich periplasmic space and
an outer membrane. The cell also possesses peritrichous flagella and pili that enable
motility and intercellular communication (Figure 1).



Figure 1. Escherichia coli cell structure (simplified).

Bacterial genome and gene expression

Prokaryotes typically possess a single, circular and double-stranded molecule of DNA,
and in some cases, one or several smaller plasmids. The main chromosome contains
the majority of the genes, finely organized spatially into operons, and expressed either
constitutively or under specific growth conditions.

Operons are defined as clusters of genes that share the same orientation and are
usually separated by short intergenic segments (Salgado et al, 2000;
Moreno-Hagelsieb and Collado-Vides, 2002), and are under the control of a single
promoter and co-transcribed together into polycistronic RNA molecules. The
transcription mechanism is triggered by the binding of a protein complex called RNA
polymerase (RNAP) on a promoter sequence specifically recognized via its sigma
subunit (Figure 2a). The RNAP can then open the double-stranded DNA around the
transcription start site (TSS), initiate transcription, and slide along the DNA sequence,
resulting in the elongation of the transcript until reaching a terminator sequence
(Figure 2b). The resulting messenger RNAs can contain one or several ribosome
binding sites (RBS) allowing their translation into proteins, while small RNAs can
complete other metabolic and/or regulatory functions (Figure 2c).
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Escherichia coli K-12 has a circular chromosome of 4,641,652 million base pairs of
length with a high density of genes, accounting for about 90% of the total DNA
sequence. It contains a total of 4,736 inventoried genes, of which 4,326 are currently
reported as protein-coding and another 219 as coding for small RNAs. Those genes are
organized into 2,592 operons (Tierrafria, Rioualen et al., 2022; Keseler et al., 2021).

Figure 2. a. Operon structure. An operon is composed of one or several genes that are associated with a
promoter. The RNA polymerase complex binds the promoter in order to initiate transcription of the
downstream genes. b. Transcription. After binding the promoter, the polymerase opens the
double-stranded DNA to initiate the transcription, and slides along the DNA sequence to elongate the
transcript, until reaching a terminator. c. Translation. Ribosomes can bind mRNAs via ribosome binding
sites, and translate their downstream sequences into amino acids and proteins.

Gene regulatory networks

Regulation of gene expression is crucial for living organisms in order to be able to adapt
to environmental conditions and maintain homeostasis, even more so for a
micro-organism such as E. coli, which holds the capacity of surviving and even striving
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in a wide variety of environments and lifestyles. The mechanisms of adaptation involve
several coordinated layers: the signaling network comprises intra- and extra-cellular
receptors that detect environmental changes (temperature, osmolarity, etc) and signal
transduction mechanisms; the transcriptional regulatory network consists of
protein-DNA interactions that can activate or repress the expression of specific genes
(genetic switches) and trigger appropriate metabolic responses; and finally the
metabolic network is made of interconnected pathways of biochemical reactions that
are triggered by specific signals (Ledezma-Tejeida et al., 2017).

The modulation of gene expression can occur at any stage of the process: different
growth conditions will affect signal transduction, structural modifications of the DNA
can impact the level of transcription of specific regions (eg. DNA supercoiling),
transcription initiation can be triggered differentially through alternative sigma
subunits of the RNA polymerase holoenzyme, small RNAs can act at the
post-transcriptional level to silence mRNA molecules and prevent their translation
into proteins, and some mRNAs are able to self-regulate (riboswitches).

But one of the most important mechanisms involved in the regulation of gene
expression at the transcriptional level involves DNA-binding proteins called
transcription factors (TFs). TFs have the ability to bind to specific sites of the DNA that
are typically located upstream of genes and operons, thereby allowing or prohibiting
access of the RNA polymerase to promoter regions, in order to positively or negatively
regulate the expression of the downstream genes. These mechanisms were first
described by Jacob and Monod (Jacob and Monod, 1961) with their work on the lactose
operon (Figure 3), and have been shown to be responsible for the direct regulation of
more than half of Escherichia coli K-12’s genes (Pérez-Rueda et al., 2015). The complete
set of transcription factors and their respective target genes form the so-called
transcriptional regulatory network (TRN).
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Figure 3. Transcriptional regulation of the lactose operon (Jacob and Monod, 1961). a. Repression of
expression. In the absence of lactose, the Lacl transcription factor is usually bound to a specific site
located immediately downstream of the operon promoter, impeding the recruitment of the DNA
polymerase and the initiation of the transcription of this operon, coding for lactose metabolism-related
genes. b. Induction of expression. When lactose is present, allolactose is formed and binds to the
repressor, which consequently unbinds from the DNA. Combined with a low level of glucose, this allows
CRP to bind its cAMP co-factor and its operator upstream of the Lacl operon promoter, contributing to the
induction. This phenomenon allows for the recruitment of the RNA polymerase, and thus the transcription
of lactose metabolism genes, in order to use lactose as a nutrient. Irrespective of lactose, in the presence of
glucose, cCAMP levels go down, provoking the unbinding of CRP transcription factor from its activator sites
in many operons for carbon utilization such as the lactose operon.

Transcription factors

Transcription factors are defined as DNA-binding proteins that allow or block the
transcription genes, and are not part of the RNAP core or holo enzyme (Zhou and Yang,
2006). Meta-analyses have shown that TF-coding genes can make up for up to 10% of
all coding genes in bacteria, though this proportion can vary greatly depending on
bacterial genome size and lifestyle (Pérez-Rueda et al., 2004). Though a complete and
definitive identification of all TFs in E. coli K-12 is still lacking, a consensus has been
reached over the years around a total estimate of 300 to 350 TFs (Pérez-Rueda and
Collado-Vides, 2000; Pérez-Rueda et al., 2015; Gao et al., 2018; Flores-Bautista et al.,
2020; Kim et al, 2021), most of which have been shown to perform negative
auto-regulation (Pérez-Rueda et al., 2015).

Transcription factors usually comprise a DNA-binding domain (DBD) and a companion
domain (CD). The DNA-binding domain is necessary for a TF to bind onto specific sites
13



of the genome, thus called transcription factor binding sites (TFBS), while the
companion domain can have a variety of functions such as ligand binding,
protein-protein interactions, or enzymatic activities (Pérez-Rueda et al., 2018). Each
TF binds specifically to its own target sites and regulates specific target genes, some of
which may be TF-coding themselves, generating a complex network of interactions.
Together, a group of genes that are regulated by a common transcription factor form a
regulon. A variety of DBDs has been described, however in bacteria about 80% of them
contain a “helix-turn-helix” or HTH segment that binds to the DNA (Pérez-Rueda and
Collado-Vides, 2000; Flores-Bautista et al., 2020). Protein binding domains have been
used to classify bacterial TFs into evolutionary families (Pérez-Rueda et al., 2004), and
DNA binding sites have been used to identify TF-specific binding genomic patterns.

Currently, 222 TFs have been characterized and confirmed with experimental evidence
(Tierrafria, Rioualen et al., 2022), mostly through binding of purified proteins and site
mutation, sometimes combined with additional data of lower confidence such as gene
expression analysis and binding of cellular extracts. Additionally, computational
methodologies have been developed in order to predict TFs that have not yet been
characterized experimentally. Predictions were based on several criteria and methods,
such as sequence homology with experimentally characterized TFs, identification of a
DBD - preferentially including an HTH structure (Pérez-Rueda and Collado-Vides,
2000; Pérez-Rueda et al., 2015), identification of orthologous proteins (Flores-Bautista
etal., 2020), as well as deep-learning methods (Gao et al., 2018; Kim et al., 2021).

Regulatory interactions

Most of the regulatory interactions known to date were identified from in vitro
experiments through the binding of purified proteins. DNAse footprint uses
DNAse-protected fragment isolation to detect the “footprint” of a protein on the DNA
sequence with a good accuracy (Galas and Schmitz, 1978). On the other hand,
electrophoretic mobility shift assays (EMSA, also called gel shift) consist in the
electrophoretic separation of DNA fragments of interest with or without bound
proteins (Garner and Revzin, 1981), allowing the identification of transcription factor
binding sites. More recently, biotin-DNA affinity purification sequencing (DAP-seq)
(O’Malley et al., 2016) and genomic systematic evolution of ligands by exponential
enrichment (gSELEX) (Shimada et al., 2018) have also been used.
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The identification of TF binding sites took a new turn with recent in vivo chromatin
immunoprecipitation (IP) techniques combined with high-throughput sequencing
technologies. They share the same principle: after a TF of interest is bound to
whole-genome DNA via its specific sites, cross-linking of the protein is performed. The
whole DNA is then fragmented using a process such as sonication, and an antibody that
is specific to the TF is added. DNA fragments that are bound by the TF are isolated
through IP, and finally the cross-linking is reversed, leaving free DNA fragments
originally bound by the TF. These fragments are then amplified and sequenced, before
they are finally mapped to the genome of reference. In the case of ChIP-on-chip (Buck
and Lieb, 2004), the sequencing step is performed by using DNA microarrays. As HT
sequencing technologies improved, binding sites identification gained resolution while
dramatically lowering in cost. The ChIP-seq technology (Johnson et al., 2007) shares
the same strategy, but the final sequencing is performed using next-generation
sequencing devices, resulting in a better resolution of the binding locations. Finally,
ChIP-exo (Rhee and Pugh, 2011) is similar to ChIP-seq, but includes an additional step
that consists in trimming DNA from the protein-DNA complexes before the IP is
carried out, increasing the precision of protein binding sites identification. In all cases,
the resulting reads can be aligned to a genome sequence of reference, and the regions
enriched in reads at certain positions of the genome form so-called “peaks”, that
indicate possible binding positions for the TF of interest (Figure 4).

When a TFBS can be linked to evidence of a change in gene expression of immediate
downstream genes under a given growth condition, it can formally be identified as a
regulatory sequence, and is then labeled as transcription factor regulatory site (TFRS)
(Mejia-Almonte et al., 2020), while the regulated genes are considered as targets of the
transcription factor.

15



Figure 4. Overview of chromatin immunoprecipitation-based techniques for protein binding sites
identification. a. The protein of interest is cross-linked to the whole DNA molecule. b. The genome is
fragmented. ¢. Immunoprecipitation is performed using an antibody specific to the protein of interest. d.
After reversing the cross-linking, DNA fragments can be amplified and sequenced. e. Upon mapping the
resulting reads to the whole genomic sequence of the reference organism, regions with a high density of
mapped reads, or peaks, indicate protein binding sites.
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The relative levels of expression of genes can be measured using transcriptomic
technologies. They essentially consist in extracting total mRNAs from a cell and
perform their fragmentation, purification, reverse-transcription, and sequencing. The
latter step used to be realized using microarrays, and is now routinely done using
massive parallel sequencing technologies: this is the RNA-seq technology.
Transcriptome analyses can also uncover genomic elements such as transcription
units, and transcription start and termination sites. Various protocols based on
RNA-seq strategies have been proposed, that allow for the identification of TSSs at
single-nucleotide resolution (Conway et al., 2014), and more recently, for the
determination of entire transcripts, along with their TSSs and TTSs (Yan et al., 2018; Ju
etal., 2019).

Databases on transcriptional regulation in Escherichia coli K-12

Most of the current knowledge of E. coli’s genome, its features and its regulatory
processes, comes from the accumulation of low-throughput experiments realized and
published over decades of scientific investigations. Extensive information about E. coli
K-12 TFs, their binding sites, target genes and operons has been manually curated and
indexed for decades by the team at the Program of Computational Genomics at the
CCG, and simultaneously described in dedicated databases such as RegulonDB
(Tierrafria, Rioualen et al., 2022) and EcoCyc (Keseler et al. 2021).

Since the creation of RegulonDB in 1998, biocurators have gathered information from
thousands of original scientific publications, reporting data from classical molecular
genetics wet-laboratory experiments. However, genome-scale technologies based on
high-throughput sequencing now allow for the accurate identification of genomic
features and regulatory elements genome-wide. Additional interactions based on gene
expression analyses and computational predictions were also integrated. In order to
account for their different level of reliability, a system of classification was
implemented in the database, that categorizes the confidence associated with
regulatory features as “strong” or “weak”, depending on the pieces of evidence they
rely on (Weiss et al., 2013). Features that are associated with solid physical and genetic
evidence are classified as strong, while those associated with less reliable evidence (i.e.
change in expression of a target gene, that could be indirect) are classified as weak.
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To date, the total transcriptional regulatory network currently characterized of E. coli
comprises 222 TFs regulating 1,856 genes, for a total of 4,665 regulatory interactions
(2,836 strong- and 1,829 weak-confidence RIs) (Tierrafria, Rioualen et al, 2022).
However it is well known that this is just a fraction of the complete transcriptional
regulatory network, since nearly a third of the estimated total of TFs lack
characterization, and a similar proportion of E. coli’s 4,700 genes are not yet
functionally characterized (Flores-Bautista et al., 2018; Gao et al., 2018).

Databases of high-throughput datasets

High-throughput datasets are usually made publicly available upon their publication,
and uploaded to dedicated databases. The main ones are the European Nucleotide
Archive (ENA) and ArrayExpress from the EMBL-EBI, that store nucleotide sequencing
information and high-throughput functional genomics experiments respectively
(https://www.ebi.ac.uk/); and the Sequence Read Archive (SRA) and Gene Expression
Omnibus (GEO), their counterparts from the NCBI (https://www.ncbinlm.nih.gov/).
Additionally, several databases store more specialized datasets, that are worth

mentioning: COLOMBOS offers transcriptomic data from prokaryotic organisms

(Moretto et al., 2016) (https://colombos.net), and Transcription Profile of Escherichia
coli (TEC) offers genomic SELEX data for E. coli TFs (Ishihama et al., 2016)
(www.shigen.nig.ac.jp/ecoli/tec/).
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Objectives

Problematic

Despite decades of investigation and experimentation dedicated to Escherichia coli
K-12, its transcriptional regulatory network remains far from being exhaustively
characterized: nearly 30% of its TFs and genes are not yet characterized, and most of
the characterized TFs lack whole-genome profiles that would allow to retrieve
exhaustive binding sites and target genes.

Main goal

The main objective of this work is to take advantage of recent, high-throughput-based
(HT) published data available for E. coli K-12 and combine it with the
low-throughput-based (LT) knowledge of reference curated in RegulonDB, in order to
complete its known transcriptional regulatory network.

Specific goals

In order to pursue this final aim, a large amount of data from very diverse sources had
to be manipulated, which highlighted a recurrent issue: the identification and the
mapping of genomic objects and coordinates between sources. In order to circumvent
this bottleneck, I developed an R library that performs a number of conversions and
operations on genes and other genomic features (Chapter 1: Getting a hang of E. coli
genes and transcription factors).

The goal of characterizing the regulatory networks of Escherichia coli also triggered
considerations about genomic features such as promoters, TUs and terminators, and
the need to lay out definitions and integrate novel knowledge alongside established
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concepts, in order to integrate recent HT-based data with previous knowledge
(Chapter 2: Building a comprehensive set of genomic features).

On another hand, I developed a library of bioinformatic workflows that allows for the
analysis of high-throughput data in a reproducible manner, with a focus on ChIP-seq
and RNA-seq data (Chapter 3: Building tools to analyze high-throughput datasets).
This work was published in the form of a protocol (Rioualen et al., 2019).

Building on these founding elements, I worked towards the central goal of my PhD: the
completion of the E. coli K-12 transcriptional regulatory network by integrating
high-throughput data (Chapter 4: Integration of high-throughput data within a
reference framework). This work constituted a major upgrade of RegulonDB and was
recently published (Tierrafria, Rioualen et al., 2022) as version 11.0.

Finally, I investigated an alternative approach to building transcription factor binding
matrices based on de novo pattern discovery using the curated binding sites available in
RegulonDB, which subsequently enabled me to produce an alternative collection of TF
binding motifs for Escherichia coli (Chapter 5: An alternative collection of binding
motifs).
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Chapter 1.

Getting a hang of E. coli genes and
transcription factors

Problematic

Despite a wide knowledge of the E. coli K-12 genome and regulatory networks, the
computational manipulation of numerous datasets from a variety of sources can prove
to be rather fastidious, due to a lack of congruence in the definition of biological
objects, as well as their names or identifiers. Genes and their products can be referred
to using a variety of names and synonyms, obsolete or not, different bnumbers (an
index specific of E. coli genes), coordinates can change over time due to the addition of
new knowledge, and frequent updates in genome annotations can lead to discrepancies
between sources. Additionally, a significant amount of published datasets are based on
obsolete genome assemblies, leading to erroneous genomic coordinates.

In order to overcome these limitations and process datasets containing information on
E. coli genes, TUs, promoters, or any other genomic features associated with
coordinates, I took on the challenge of building a dictionary of genes, TFs and genomic
coordinates. After extracting information from several public databases and articles, I
built reference tables for genes and transcription factors that allow for an easy
translation of inconsistent names or coordinates and created “EcoliGenes”, a library of
functions that perform verifications and homogenization of E. coli genomic datasets

(https://github.com/rioualen/EcoliGenes).

Comprehensive table of genes and their attributes

There are numerous names, identifiers and synonyms for most genes and proteins of E.
coli, as well as outdated annotations, products or coordinates. This complicates the
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programmatic manipulation of datasets containing genomic information. In order to
be able to process datasets containing any information on E. coli genes, TUs,
promoters, or any other genomic objects associated with coordinates, I started
gathering comprehensive information into one single place. I first retrieved all genes
and their products from RegulonDB (Figure 5a), and completed this information with
additional data extracted from Ecocyc and Genbank. I merged them first on the basis of
their bnumbers, and then using their symbols and coordinates. Finally, I added
“reference” columns to this master table: reference bnumber, reference symbol,
reference start, reference stop, reference strand; and “synonym” columns to store
additional names from any source: gene synonyms and product synonyms (Figure 5b).

Figure 5. a. Entity-relationship diagram of the gene information retrieved from RegulonDB. b.
Construction of the gene master table: extraction, classification and organization of gene names,
synonyms, attributes and products.
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Comprehensive list of transcription factors

To date, there is no single consensual list of confirmed TFs for E. coli. RegulonDB 11.0
contains 222 experimentally confirmed TFs (Tierrafria, Rioualen et al., 2022),
associated with at least one regulatory interaction, however the total number of TFs in
E. coli is estimated to be slightly above 300, and several groups have predicted TF
candidates based on in silico predictions using criteria such as the presence of a DNA
binding domain or a significant homology with known TFs (Pérez-Rueda and
Collado-Vides, 2000; Pérez-Rueda et al., 2015; Gao et al., 2018; Flores-Bautista et al.,
2020; Kim et al., 2021).

By combining those different sources, I built a list of 408 confirmed or proposed
transcription factors, and gathered their most relevant attributes. First I retrieved the
information available in RegulonDB (Figure 6a), then added gene products annotated
in Genbank as transcriptional regulators (putative or not), as well TF predictions
published in recent years (Pérez-Rueda et al., 2015; Flores-Bautista et al., 2020; Kim et
al., 2021). I added their respective identifiers from external databases such as Uniprot,
RefSeq, and Pfam, other existing synonyms, and the following “reference” columns:
reference TF name, reference gene symbol, reference gene bnumber. It is worth noting
that there are heterodimeric TFs, which are therefore associated with two genes.
Proteins that are considered as TFs both individually and as part of a dimer have
duplicate entries, while proteins that are known to be regulatory only as part of a dimer
will be considered as synonym names for said dimer. Finally, I performed a comparison
of the lists of TFs from all the different sources, which shows the existence of several
discrepancies between one another (Figure 6b), mainly due to the absence of
experimental evidence to back up computational predictions. The most striking
difference is observed in the list of TFs predicted by Kim and colleagues, which
includes 58 proposed TFs absent from all other datasets (Kim et al., 2021). This can be
explained by the fact that they used a deep learning approach that does not rely on
homology with known TFs, thus revealing potential new classes of TFs, though they
could also be false positives.
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Figure 6. a. Entity-relationship diagram of the TF information retrieved from RegulonDB. b. Comparison
of the lists of TFs from different sources.

The EcoliGenes library

I built a tidy R package designed to process E. coli datasets using the master tables
described above. It is conceived to manipulate any number of genes, TFs or genomic
coordinates using vectorized functions that allow manipulating data frames using

basic functions from the tidyverse packages (https://www.tidyverse.org/) (Figure 7).
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These tools can be divided into three categories:

Coordinate-based tools (gray-headed boxes). The convert_coords function
allows to convert genomics coordinates based on E. coli genome version
NC__000913.2 to the currently used genome version NC_ 000913.3. The functions
test_position and test_interval perform the extraction of information related to
specific genomic positions or regions.

Gene-based tools (blue-headed boxes). Genes reported as symbols or identifiers
from any source can be readily converted to symbols or bnumbers of reference
with the convert_gene function. The get_genes functions allow retrieving a list of
genes’ bnumbers given a specific criteria. Then, bnumbers can be used to
perform boolean tests using test_gene, or retrieve specific attributes of the genes
with get_gene_info.

TF-based tools (green-headed boxes). Transcription factors reported as protein
names, gene symbols or any other identifiers are converted to their names of
reference using convert_tf. The get_tfs functions allow retrieving a list of TF
reference names given specific criteria. Then, they can be used to perform
boolean tests using test_tf, or retrieve specific attributes of the TF with
get_tf_info.

With such a simple tool, any number of datasets from a variety of sources and times

can be readily uniformized and reliably compared and visualized. This work was

heavily used for the processing of numerous datasets presented in Chapter 2 and
Chapter 4.
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Figure 7. Framework of the EcoliGenes library. a. Reference data is gathered from several databases and
publications in order to build gene and TF master tables (beige frame). Operations can be performed on
coordinates, genes and TFs (gray, blue and green frames respectively). b. Use case: a random list of gene
names is generated, that are translated to their reference names and filtered to get tf-coding genes.
Finally, genes and TFs attributes are retrieved.
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Chapter 2.

Building a comprehensive set of
genomic features

Problematic

Despite extensive information in RegulonDB, we don’t have an exhaustive panorama of
E. coli K-12 operons, transcription units, promoters and terminators. Nonetheless,
clarifying the genomic structure of E. coli is a necessary preliminary step in order to
properly connect the pieces together and unravel its transcriptional regulatory
network. Recently published high-throughput datasets can help us draw a
comprehensive picture of E. coli genome composition, but challenges remain as the
definitions for these genomic features are somewhat blurry, and handled differently
depending on the source.

In this chapter, I show how I gathered high-throughput datasets from recent
publications and databases, updated and standardized them together with the classic
data from RegulonDB, in order to create a new integrated set of genomic features for E.
coli.

Revising core concepts

Bacterial genomes possess a characteristic organization of their genes into so-called
operons. They are defined as clusters of genes under the control of a single promoter
and co-transcribed together into polycistronic RNA molecules. The concept of
transcription unit was introduced to account for the existence of distinct transcripts
and promoters present in one operon. They were defined as sets of one or several genes
co-transcribed as polycistronic units, however their proper description and distinction
with operons have remained somewhat unclear (Mejia-Almonte et al., 2020).
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As knowledge grew, the necessity arose to revise original concepts and define new
ones, in order to fit with the biological complexity of the bacterial genome. Here, I
define a transcription unit as a physical entity made of a portion of the genome
between given start and end coordinates, that contains a set of contiguous genes that
share the same orientation and are co-transcribed into one single transcript. An operon
is a conceptual object composed of one or several transcription units that share at least
one gene, and consequently, all of the genes contained in said transcription units
(Mejia-Almonte et al., 2020). This means that a given gene can be part of several
distinct transcription units, but only one operon.

Besides, the concepts of promoter and terminator had to be clarified as well. Here, I
consider that a promoter can contain one or several transcription start sites (within a
maximum distance of 5 bp), and an operon can contain one or several promoters. A
given transcription unit is associated to a specific TSS, which marks its start
coordinate. Likewise, terminator regions can contain one or several distinct
transcription termination sites, and operons can contain one or several terminator
regions.

Transcription unit and co-transcribed genes unit sets

In order to build an exhaustive transcription unit set, the question arose of how to
define them in terms of objects and their attributes. TUs are theoretically defined by a
promoter and a terminator, however in databases they can be associated with one,
several or none of them. TU coordinates can also be defined by the genes they contain
and the transcripts they form, and those can be characterized by different
experimental methods that do not necessarily have a single-nucleotide resolution.
Therefore, multiple coordinates can be considered that potentially refer to the same
biological object, and numerous redundant TUs can be generated. For these reasons, I
defined two kinds of objects:

- transcription units are defined by their unique start and end coordinates and
their direction or strand;

- co-transcribed genes (CTG) units are made of genes that are co-transcribed
together as a polycistronic unit, at least once, regardless of coordinates (Figure
8).
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Figure 8. Definitions. A transcription unit is uniquely defined by its genomic coordinates and strand.
Coordinates can be those of the associated TSS and TTS, or those of the leading and closing genes. A
co-transcribed genes unit can be composed of one or several TUs, and is defined by its gene content. A
given gene can be in several CTG sets, but no two CTG sets can contain exactly the same genes.

First, I retrieved 3,652 transcription units from RegulonDB, together with their
associated promoters and terminators when available. Theoretically a transcription
unit should be associated with a specific TSS and TTS, however in many cases the
information is unknown or ambiguous. I defined transcription unit start and end
coordinates using their TSS and TTS positions when available, and in their absence, the
coordinates of their first and last genes. Second, I added 4,686 transcription units
generated through SMRT-Cappable-seq technology (Yan et al.,, 2018) using two
distinct growth conditions and two methods for determining the ending position:
formal identification of a TTS (10% of reported TUs) or longest read coordinate (90%
of reported TUs). Considering their coordinates, only one TU from RegulonDB was also
present in the HT datasets, and 259 TUs from the HT dataset were present in more than
one condition (Figure 9a). All of these TUs were given a “gene content” attribute,
listing the genes entirely contained in each TU per their respective coordinates. Gene
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names were homogenized using the EcoliGenes library (Chapter 1). When the start or
end position of a TU fell inside a genic sequence, the corresponding gene was excluded
from the TU gene content without impacting its coordinates, and only the entire genes
were included. Finally, in order to get a full coverage of all genes of E. coli, the genes
that were not included in any TU were made into 173 orphan TUs, with their start and
end coordinates being those of the gene. All of the TUs were merged by coordinates and
strand, amounting to a total of 8,221 unique transcription units.

Then, I derived the co-transcribed genes set from the TU set. Every group of CTG is
made of genes that are present together in at least one TU, implying they can be
co-transcribed together as a polycistronic unit. In practice, TUs that contain exactly
the same gene content are grouped into CTG units, and their widest coordinates are
kept for reference. This allowed to reduce the redundancy inside each dataset: the
collection of TUs from RegulonDB lowered to 3,053 unique CTGs, and the HT collection
lowered from 4,686 TUs to 2,326 CTGs, mostly due to the numerous TUs that don’t
have a precise terminator site associated. Overall, a total of 4,283 CTG units compose
the whole set, which dramatically lowers the redundancy observed in the initial TU set
(Figure 9b), of which 29% were not initially present in RegulonDB.

Figure 9. Overlap between classic and high-throughput data. a. Overlap between transcription units
defined by their unique coordinates. b. Overlap between co-transcribed gene units defined by their unique
gene content.
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Briefly, out of 8,211 unique TUs, I reduced the total number to almost half of this
amount by taking into account their gene content, reaching a total of 4,283 CTGs. This
drastic change can be explained by technical and biological factors: some experiments
don’t allow a precise identification of the TSS and/or TTS, leading to ambiguous
coordinates, and numerous sets of co-transcribed genes are associated with several
distinct TSS and/or TTS. This shows that in E.coli gene expression diversity is mostly
achieved by alternate regulation more than alternate transcription unit membership, a
strategy that is frequently observed in bacterial genomes.

Promoter and TSS sets

As detailed above, transcription start sites are defined by a unique position, while
promoters are small regions containing one or several TSSs, usually separated by less
than 5 bp from one another. However, those concepts have been interchangeably used
in the literature.

The TSS set was built from the data available in RegulonDB, and completed with
several HT-based datasets from independent sources (Mendoza-Vargas et al., 2009;
Salgado et al., 2013; Cho et al., 2014; Thomason et al., 2015; Yan et al., 2018; Wade
laboratory, not published). Datasets prior to 2015, based on an older genome assembly
(NC_000913.2) were updated to the latest genomic coordinates (NC__000913.3) using
the EcoliGenes library (Chapter 1). TSSs from all of the datasets were merged when they
shared the same position and strand, reducing their total number from 65,409 to
28,987; and were homogenized into a common format with the most relevant
attributes.

The promoter set was derived from the unmerged TSS set. Associating different TSSs to
a single promoter is not a trivial process. Depending on the experimental method used,
the precision of a TSS position can vary greatly, and biologically distinct TSSs can be
present in the same promoter (Mejia-Almonte et al., 2020). Furthermore, several
promoters associated with distinct sigma factors can overlap spatially, and even share
TSSs, resulting in promoter regions. Here, I built the promoter objects by grouping all
of the TSSs that were at most 5 bp away from one another regardless of the associated
sigma factor, which is not always reported, using a sliding window. In total, 23,316
promoters were built, with an average length of 1.4 bp and a maximum length of 22 bp.
Though it is considered that a promoter should be at most 5 bp long, about 1% of the
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collection of promoters obtained is larger, and distinguishing potential overlapping
promoters would require further analysis (Figure 10). On average, promoters included
1.24 TSSs, consistent with a previous study that reported an average of 1.6 TSSs per
promoter (Cho et al., 2009), and a maximum of 29 TSSs.

Figure 10. Composition of two of the largest promoters, and source of their respective TSSs (top panel).
TSSs can be further distinguished by their associated growth conditions and experimental methods
(bottom 3 panels).

Briefly, current knowledge amounts to 28,987 different TSSs in the E.coli genome,
which might be reduced to around 23,000 functionally distinct promoter regions,
making on average around 5 promoter regions per gene. Note that these numbers come
from different growth conditions and experimental setups, and therefore the global
picture could change as new datasets become available.
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Binding sites set

I retrieved all of the transcription factor binding sites curated from RegulonDB version
10.8 with strong evidence, and merged them using their coordinates, TF-coding gene
bnumber, and effect (positive or negative). When the TF was a heterodimer I created
two entries, one per coding-gene bnumber. This resulted in 2,599 TFBSs associated
with 185 transcription factors. Those numbers hide significant disparities: most TFs
have less than 5 associated binding sites, while 10 TFs have more than 50 binding sites
each, and account for a total of 1,252 binding sites, or 48% of the whole set (Figure 11a).
Roughly half are reported to be repressors, and half activators (Figure 11b). As it is well
known, most binding sites are found in the intergenic regions of the genome, and in
particular between -400 and +50 bp relative to gene start codons (Figure 11c-d).

Figure 11. Statistics associated with the binding sites set. a. Number of binding sites associated with TFs.
b. Effect associated with binding sites (activation in pink, repression in brown). c. Genomic location of
binding sites. d. Binding sites distribution relative to gene start position.

Unified set of genomic features

I generated unique custom identifiers for each object of each set, and created additional
tables to connect them with one another, in the form of a small database of its own
(Table 1; Figure 12). This database of features can be readily connected to RegulonDB
through the gene master table described in Chapter 1.

Type of object Size of the set
TSS 28,987
promoter 23,316

TU 8,221

CTG 4,283

TFBS 2,599

Table 1. Content of the updated E. coli feature set.
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Figure 12. The updated E. coli feature set. Five sets of objects are connected together via custom
identifiers: transcription units, CTG units, transcription start sites, promoters and TF binding sites (pink
frame). This small independent database can be connected to RegulonDB (beige frame) through gene
identifiers and EcoliGenes (blue frame).

Availability

Github

The updated E. coli feature set is available at Github:
https://github.com/rioualen/Ecoli_feature_ set
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Chapter 3.

Building tools for high-throughput
data analysis

Problematic

Next-generation sequencing technologies enable the characterization of gene
regulation mechanisms at an unprecedented scale. Transcription factor binding sites
can be identified genome-wide with ChIP-seq, and RNA-seq makes it possible to
quantify all transcripts from a given cell, thus revealing gene expression and TUs.
However, the analysis of their respective outputs, under the form of sequenced reads,
requires multiple processing steps that can be realized using a variety of tools and
parameters, and can represent a challenge when dealing with diverse experimental
setups and strategies.

I developed a collection of workflows that enable the chaining of the successive steps to
be performed. With a proper setup, these workflows can be customized with flexibility
to cater to the objective of the analysis to be performed, but also ensure the full
traceability and reproducibility of the results. This work was published as a protocol
(Rioualen et al., 2019).

Workflows for the analysis of ChIP-seq and RNA-seq data

The framework snakemake (Molder et al.,, 2021) was conceived to build pipelines
ensuring the full portability and reproducibility of the analyses performed and their
subsequent results. Based on the python programming language and GNU make
concepts, it defines workflows as sets of rules characterized by their input and output
files, or dependencies, and optional parameters. The first rule of a workflow, by
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convention, defines the final targets to be produced, and by deduction, the list of rules
to be executed according to inner dependencies (Figure 13).

Figure 13. Schematic structure of a snakemake workflow. a. Workflow example. b. Dependency graph
(also called rulegraph). c. Directed acyclic graph of the workflow with parallelization.

I developed workflows and rules organized into a library called “SnakeChunks” and
published in the form of a protocol (Rioualen et al., 2019). It comprises more than 60
rules to perform numerous tasks using a variety of tools (Figure 14a). Those rules can
be linked to one another via their respective input, output, intermediary files in order
to compose workflows (Figure 14b). Workflows can be customized by selecting
different tools and optional parameters for each inner step, using external
configuration files (Figure 14c). Additionally, the library contains ready-to-use
workflows dedicated to perform quality control analyses, read mapping, ChIP-seq
analysis, RNA-seq analysis and integration of binding and expression data from
RNA-seq and ChIP-seq analyses (Table 2).
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Figure 14. SnakeChunks framework. a. Selected list of rules available by category. b. All rules can be
assembled to create custom workflow structures. c. Metadata and parameters can be specified in separate
files for further customization and traceability. Adapted from Rioualen et al., 2019.

workflow category rule input output
quality control [formatting sra_to_ fastq sra fastq
quality control [trimming sickle fastq fastq
quality control [trimming bbduk fastq fastq
quality control |trimming cutadapt fastq fastq
quality control [quality control fastqc fastq, bam html
quality control |quality control bam_ stats bam txt
quality control |quality control multiqc * html
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workflow category rule input output
mapping mapping bowtie__index fasta fai
mapping mapping bowtie2__index fasta fai
mapping mapping bwa__index fasta fai
mapping mapping hisat2_ index fasta fai
mapping mapping index_ fasta fasta fai
mapping mapping subread__index fasta fai
mapping mapping bowtie fastg+fai bam
mapping mapping bowtie2 fastg+fai bam
mapping mapping bwa fastqg+fai bam
mapping mapping hisat2 fastg+fai bam
mapping mapping tophat fastg+fai bam
mapping mapping subread_ align fastg+fai bam
mapping mapping bam_by_ name bam bam
mapping mapping bam_by_ pos bam bam
mapping mapping split_bam_ by_ strands bam bam
mapping mapping index_bam bam bai
mapping coverage coverage_ bedgraph bam bedgraph
mapping coverage coverage_ bedgraph_ stranded |bam bedgraph
mapping coverage coverage_ bigwig bam bigwig
mapping coverage coverage_ wig bam wig
mapping coverage bedgraph_ to_ bigwig bedgraph bigwig
mapping coverage bedgraph_ to_ tdf bedgraph tdf
mapping mapping bam_ to_ bed bam bed
mapping mapping sam__to_bam sam bam
ChIP-seq peak calling bPeaks bam bed
ChIP-seq peak calling homer bam bed
ChIP-seq peak calling macsis bam bed
ChIP-seq peak calling macs2 bam bed
ChIP-seq peak calling mosaics bam bed
ChIP-seq peak calling Spp bam bed
ChIP-seq peak calling swembl bam bed
ChIP-seq peak annotation annotate_ peaks bed+fasta+gtf tab
ChIP-seq peak annotation bedops__intersect bed bed
ChIP-seq peak annotation bedops_ peaks_ vs_ sites bed bed
ChIP-seq peak annotation bedtools_ closest bed+gff3 bed
ChIP-seq peak annotation bedtools__intersect bed+gff3 bed
ChIP-seq peak annotation bedtools_ window bed+gff3 bed
ChIP-seq peak annotation peaks_vs_ tfbs bed bed
ChIP-seq formatting bed_to_fasta bed fasta
ChIP-seq formatting getfasta bed fasta
ChIP-seq motif analysis dyad__analysis fasta html+transfac
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workflow category rule input output
ChIP-seq motif analysis peak_motifs fasta html+transfac
ChIP-seq motif analysis matrix_ clustering transfac html
ChIP-seq motif analysis matrix_ quality transfac+fasta  |html
ChIP-seq RegulonDB regulondb_ download url tab
ChIP-seq RegulonDB regulondb_ get_ matrix <TF name> transfac
ChIP-seq RegulonDB regulondb_ get_ tfbs <TF name> bed
RNA-seq transcript detection  [cufflinks bam+gtf gtf
RNA-seq differential expression [subread_ featureCounts bam+gtf tab
RNA-seq differential expression |DESeq2 tab tab
RNA-seq differential expression |sartools_ targetfile tab tab
RNA-seq differential expression [sartools_ DESeq2 tab html+tab
RNA-seq differential expression |sartools_ edgeR tab html+tab
misc. formatting get_ chrom_ sizes fasta tab

misc. formatting gunzip zip *

misc. formatting gzip * Zip

misc. formatting md5sum * *

Table 2. List of rules and workflows available in the SnakeChunks library, and their respective input and
output file formats, defining their mutual dependencies.

This library and its published protocol present a methodological development
undertaken before the PhD and finalized during the first year, which I used for
subsequent analyses of high-throughput data towards the aim of E. coli’s

transcriptional regulatory network completion (Chapter 4).

Reference & availability

Github

The SnakeChunks library is available for download and use through github:
https://github.com/SnakeChunks/SnakeChunks

Publication

This work was used as part of external collaborations before it was published under the

form of a protocol.
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Next-generation sequencing (NGS) is becoming a routine approach in most
domains of the life sciences. To ensure reproducibility of results, there is a
crucial need to improve the automation of NGS data processing and enable
forthcoming studies relying on big datasets. Although user-friendly interfaces
now exist, there remains a strong need for accessible solutions that allow
experimental biologists to analyze and explore their results in an autonomous
and flexible way. The protocols here describe a modular system that enable a
user to compose and fine-tune workflows based on SnakeChunks, alibrary of
rules for the Snakemake workflow engine (Koster and Rahmann, 2012). They
areillustrated using astudy combining Chl P-seq and RNA-seq to identify target
genes of the global transcription factor FNR in Escherichia coli (Myerset al.,
2013), which has the advantage that results can be compared with the most
up-to-date collection of existing knowledge about transcriptional regulation in
this model organism, extracted from the RegulonDB database (Gama-Castro
et a., 2016). © 2019 by John Wiley & Sons, Inc.
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INTRODUCTION

Next-generation sequencing (NGS) technol ogies enabl e the characterization of biological
generegulation at an unprecedented scal e. Transcription-factor binding can be character-
ized at the genome scal e by chromatinimmunopreci pitation with DNA sequencing (ChlP-
seq), whereas RNA sequencing (RNA-seq) makes it possible to quantify all transcripts.

The analysis of sequenced reads requires anumber of successive bioinformatics process-
ing steps, organized into workflows. A workflow, or pipeline, is defined as a chaining of
commands and tools applied to a set of data files, such that the output of a given step
is used as input for the subsequent one (Fig. 1). Ideally, the experimental design should
from the outset take into account a perspective on the bioinformatics analyses that will
enable relevant information to be extracted from the raw data. Biological samples are
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Figure 1 Schematic wiring of a basic workflow for ChlP-seq analysis.

subject to variation, and replication is thus essential to make it possible to estimate the
statistical significance of the final results and to ensure an appropriate tradeoff between
sensitivity and specificity. It is aso necessary, as in any other biological experiment,
to carefully define the control conditions that will distinguish signal from noise (see
Commentary for more details).

Exploitation of the data by properly implemented bioinformatics workflows (with com-
prehensive specification of the tools and their versions and selection of parameters)
is crucial to ensuring the traceability and reproducibility of the results from the raw
data. Following a defined workflow also makes it possible to perform identical op-
erations on dozens of samples, using powerful computing infrastructures when nec-
essary. Snakemake (Koster & Rahmann, 2012) is a software conceived for building
such workflows. Based on the Python language, it inherits concepts from GNU make
(https.//www.gnu.org/software/make): aworkflow is defined by aset of rules, each defin-
ing an operation characterized by itsinputs, outputs, and parameters, and a list of target
files to be generated through these operations.

SnakeChunks is a library of workflows using the Snakemake framework and designed
for the analysis of ChlP-seq and RNA-seq data. It includesrulesfor the quality control of
sequencing reads, removal of adapters and trimming of low-quality bases, read mapping
on areference genome, peak calling to detect local enrichment of reads resulting from
the binding of a transcription factor, gene-wise quantification of RNASs, and differential
gene expression analysis (Fig. 2A).

The SnakeChunks library has been used to analyze RNA-seq data from Mus musculus,
Drosophila melanogaster, Saccharomyces cerevisiae, and Glossina palpalis (Tsagmo
Ngoune et a., 2017) and from Desulfovibri desulfuricans (Cadby et al., 2017), as well
as ChlP-seq data from Arabidopsis thaliana (Castro-Mondragon, Rioualen, Contreras-
Moreira, & van Helden, 2016). We illustrate here its use on combined RNA-seq and
ChlP-seq data from Escherichia coli (Myers et al., 2013).

Since the initial description of the operon structure (Jacob & Monod, 1961), E. coli
K-12 has been amodel organism of reference for the study of gene regulation, resulting
in thousands of publications reporting information about around 200 of the total ~300
transcription factors (TFs) identified in its genome (Blattner et al., 1997; Pérez-Rueda &
Collado-Vides, 2000). Detailed information about TFs and their binding sites, binding
motifs, target genes, and operons has been collected for three decades in RegulonDB,
the database on the transcriptional regulation in E. coli (Gama-Castro et al., 2016), by
manual curation of publications based on low-throughput experiments. Nonetheless, a
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Figure 2 Organization of the SnakeChunks library. (A) Principle of the SnakeChunks library.
The library is built around a set of Snakemake rules that can be used as building blocks to build
workflows in a modular way. Each rule makes it possible to perform a given type of operation
with a given tool. A given operation can also be done with alternative tools, as denoted by the
color code in list of rules (left side) and on the building bricks. The rules marked with an asterisk

(*) are currently supported by Conda. (B) Schematic flowchart of the workflows described in this
unit.
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good dea of information remains to be discovered to provide a global, comprehen-
sive picture of the regulatory network of even this best-characterized model organism.
NGS technologies enable the characterization of biological regulation at an unprece-
dented scale, and have been widely adopted by research communities. ChlP-seq gives
insight into regulatory mechanisms by providing genome-wide binding locations for
transcription factors, whereas RNA-seq provides information about the functional impli-
cations of regulation by measuring the level of transcription of all genes under different
conditions.

ChlP-seq publications initially focused on human and metazoan models (PubMed cur-
rently returns ~1,600 ChlP-seq studies for Homo sapiens and more than 2,000 for
M. musculus), and a surprisingly small number of factors were characterized by ChiP-
seq in E. coli (44 entries in PubMed). However, systematic studies have led to the
characterization of 50 transcription factors of Mycobacterium tuberculosis (Galagan
et a., 2013), and similar projects are on the way for other bacteria, including E. coli. The
protocols described here address the foreseeable needs of microbiol ogists undertaking
projects based on ChiP-seq, RNA-seq, or both together to analyze bacterial regulation.
Those areillustrated by a case study based on a genome-scale anaysis of the FNR tran-
scription factor (Myerset a., 2013), a DNA-binding protein that regulates alarge family
of genesinvolved in cellular respiration and carbon metabolism during anaerobic cell
growth.

This unit is organized as follows.

¢ Strategic Planning: installation and configuration of the software environment
(Condaenvironment, softwaretools, SnakeChunkslibrary, and reference genome).

o Basic Protocol 1: preprocessing, which includes quality control, trimming, and
mapping of the raw reads on the reference genome. This protocol isillustrated for
the case of a ChlP-seq study but can be applied to RNA-seq data as well.

e Basic Protocol 2: analysis of ChlP-seq data: peak calling, assignation of peaks
to genes, motif discovery, and comparison between ChiP-seq peaks and sites
annotated in RegulonDB.

¢ Basic Protocol 3: analysisof RNA-seq data: preprocessing (asin Basic Protocol 1),
transcript quantification (counts per gene), and detection of differentially expressed
genes.

¢ Basic Protocol 4. integration of ChlP-seq and RNA-seq results. comparison be-
tween genes associated with the ChlP-seq peaks, differentially expressed genes
reported by transcriptome analysis, and experimentally proven TF target genes
annotated in RegulonDB, as well as visualization of the results using a genome
browser.

o Alternate Protocol: running of the RNA-seqworkflow with the user-friendly graph-
ical interface Sequanix.

o Support Protocal: customization of the ChlP-seq workflow parameters.

The basic protocols are conceived in a modular way (Fig. 2B). In particular, ChlP-seq
and RNA-seq analyses can be done separately.

NECESSARY RESOURCES

Computer Resources

This protocol runs on any Unix system (Linux, Mac OS X). Memory and CPU require-
ments depend on the volumes of data being handled. The study cases have been tested
on Ubuntu 14.04, 16.04, and 18.04 (4 CPUs, 16 Gb RAM), on Centos 6.6, and on Mac
OSX High Sierra (4 CPUs, 16 Gb RAM).
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The full procedure uses ~60 Gb of disk space, including ~5 Gb for the installation of
the software environment (Conda, libraries, and tools), ~15 Gb of downloaded raw reads
(compressed fastq files, genome annotations), and ~40 Gb for the intermediate and final
result files.

Thetotal processingtimefor al tasksis ~12 h, of which 45%isspent on read mapping and
33% on trimming RNA-seq samples. Thistime might be further reduced by parallelizing
sometaskson amulti-CPU server or cluster (on our four-core configurations, the analyses
were completed in ~3 h).

Conda

Condaisan open-source package and environment management system used to automate
the installation of all the software components required by the workflows. It greatly
facilitates the installation of software tools from multiple sources on different Unix
operating systems (Linux and Mac OS X). In addition, the installation and use of al
software tools inside a custom environment ensures their isolation from the hosting
system and prevents potential clashes with existing tools and libraries.

Condashould beinstalled prior to the execution of the protocols. It comesin two different
versions, Anaconda and Miniconda. We recommend using Miniconda, which takes less
disk space and makes it possible to install only the required software. Instructions can
be found here: https.//conda.io/docs/user-guide/install/index.html.

Make sure that the folder containing the Conda executable is added to your $PATH
variable. This can be done automatically during the execution of the Miniconda in-
stallation script, or later by adding the following command to the bash profile (file
~/.bash profile).

export PATH=S$PATH:~/miniconda3/bin/

You now need to log out and open a new terminal session in order for the path to be
updated.

Other Software

Inthe protocols, weusethe“tree” softwareto display the structure of foldersandincluded
filesin the Unix terminal. This software is not technically required for the analysis, but
offers a convenient way to check the proper organization of the files in the shell. Its
installation can vary depending on the operating system or Linux distribution. Here are
examples of tree installation with some popular package management systems.

Linux Ubuntu: sudo apt-get install tree
Linux CentO: sudo yum install tree
Mac OS X: brew install tree

IMPORTANT NOTE: Throughout the following protocols, the instructions (text in
Courier font) should be typed or copy-pasted in aterminal.

STRATEGIC PLANNING

Configuration of the Conda Environment

This section provides a succession of Unix commands that enable a user to configure
Conda, create a specific environment, install the required software (Snakemake and NGS
tools), and download the reference genome and annotations (in our case, E. coli K-12
MG1655, release 37). Much of this procedure needs to be done only once, when first
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setting up the environment; steps 3, 5, and 7 then need to be repeated for each session
(see annotation to step 10 for details).

1. Configure Conda.

conda config --add channels r;

conda config --add channels defaults;
conda config --add channels conda-forge;
conda config --add channels bioconda

IMPORTANT NOTE: These commands must be typed in the precise order indicated
above, which defines the priorities for packages that exist in several channels. Conda
may issue warnings, which can be ignored, when some of the channels are already
present — weintentionally re-add these channelsin order to place them in theright order
of precedence.

2. Create an empty SnakeChunks environment using Python version 3.6.
conda create --name snakechunks env python=3.6

3. Activate the environment.

This must be done for each new analysis session.
source activate snakechunks env

Check that the environment is active: i.e., that the Unix prompt is prepended by
“ (snakechunks_env)”.

4. Install Snakemake and some required softwaretoolsin the Condaenvironment;: GNU
make software, Python panda library, and the Integrative Genomics Viewer (IGV).

conda install make snakemake=5.1.4 igv=2.4.9 pandas=
0.23.4

5. Define an environment variable with the directory for this analysis.

This must be done for each new analysis session (alternatively, you can declareitin
your bash profile).
export ANALYSIS DIR=$HOME/FNR analysis

6. Create the analysis directory.
mkdir -p S$ANALYSIS DIR

7. Set the current working directory to the analysis directory.

This must be done for each new analysis session.
cd SANALYSIS DIR

8. Download the SnakeChunks library from GitHub. We recommend keeping a copy
of the library in the analysis directory to ensure consistency and reproducibility.
The latest version of the SnakeChunks library can be downloaded easily with the
following Git command.
git clone https://github.com/SnakeChunks/SnakeChunks.

git
IMPORTANT NOTE: The SnakeChunks code will continue evolving with time. For the
sake of backward compatibility, we froze the precise version of the library used at the
time of publication of this article. This version can be downloaded with the following
command.
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(snakechunks_env) snakechunks@snakechunks-tuto:~/FNR_analysis$ tree -L 2

Escherichia coli_str_k 12 substr mgl655.ASM584v2.37.gtf

Escherichia coli_str_k 12 substr mgl655.ASM584v2.dna.chromosome.Chromosome. fa
SnakeChunks

doc

Dockerfile

examples

img

README . md

scripts

genome
I: E Escherichia coli_str_k 12 substr_mg1655.ASM584v2.37.chromosome.Chromosome.gff3

6 directories, 5 files
(snakechunks_env) snakechunks@snakechunks-tuto:~/FNR_analysis$ [

Figure 3 File organization after the Strategic Planning section is completed.

wget --no-clobber \
https://github.com/SnakeChunks/SnakeChunks/archive/
4.1.4.tar.gz

tar xvzf 4.1.4.tar.gz

mv SnakeChunks-4.1.4 SnakeChunks

9. Download the reference genome of E. coli K-12 and its annotations.
make -f SnakeChunks/examples/GSE41195/tutorial
material.mk \
download genome data

10. Check the organization of the files in the genome directory (Fig. 3).
tree -L 2

IMPORTANT NOTE: The above steps are used to set up the environment and need to be
executed only once, except for steps 3, 5, and 7, which are required for each working
session for thisproject. If you log out of the terminal and want to start anew session later,
you will need to reactivate the Conda environment (step 3), redefine the environment
variable for the analysis directory (step 5), and set it as the current directory (step 7).

DATA PREPROCESSING AND READ MAPPING

Data preprocessing coversthefirst steps of the analysis, which are common to most NGS
workflows. The goal isto make surethat the raw sequencing dataare suitablefor aproper
bioinformatics analysis. This process includes quality control of the sequenced reads,
removal of the sequencing adapters, and trimming of the read extremities when needed.
These operations are described more thoroughly in the Guidelines for Understanding
Results below. We illustrate these steps with a ChlP-seq dataset, but they can be applied
similarly to RNA-seq data.

Once the reads are processed and filtered appropriately, a common operation to perform
before ChlP-seq and RNA-seq analyses is to map the reads on a reference genome in
order to identify their genomic location.

This protocol coversthe following steps:

o Quality control of the reads using the program FastQC (Andrews, 2010);

o Removal of the adapters and trimming of the read extremities using the utility
cutadapt (Martin, 2011);

« Read mapping using the algorithm bowtie2 (Langmead & Salzberg, 2012).
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(snakechunks_env) snakechunks@snakechunks-tuto:~/FNR_analysis$ tree ChIP-seq
ChIP-seq
L— fastq

FNR
—
input
=

3 directories, 2 files
(snakechunks_env) snakechunks@snakechunks-tuto:~/FNR_analysis$ []

Figure 4 File organization of the ChlP-seq samples before the analyses are run.

1. Download the ChiP-seq dataset from the GEO series GSE41195 (Myers et d.,
2013).

make -f SnakeChunks/examples/GSE41195/tutorial
material.mk\
download chipseq data

This creates a subdirectory called “ ChIP-seq” in the analysis directory defined in the
Strategic Planning section above (Fig. 4), with two fastq files corresponding to the
FNR-chipped and control samples, respectively.

tree ChIP-seq

2. Create alocal copy of the metadata folder.

make -f SnakeChunks/examples/GSE41195/tutorial
material.mk copy metadata;
tree metadata

This creates a local copy of the metadata folder, which contains files describing the
samples, the analysis design, and the wor kflow configuration.

3. Run the workflow for quality control.

snakemake -s SnakeChunks/scripts/snakefiles/

workflows/quality control.wf \
--configfile metadata/config ChIP-seq.yml
--config trimming="" -p --use-conda

The command above runs a workflow using the “ snakemake” command with the
following specifications.

The wiring of the workflow is defined in the file quality control.wf, Spec-
ified with the option -s. Modifying this wiring requires some knowledge of the
Shakemake language, which is outside the scope of this protocol (Shakemake tuto-
rials can be found in the Shakemake documentation at http://snakemake.readthedocs.
io/en/stableftutorial/tutorial.html). quality control.wf produces quality re-
ports using the FastQC tool (Andrews, 2010), and running this is an essential step
to assess the quality of the samples and plan the next steps of the analysis.

The workflow invokes a series of tools, each of which can be tuned with different
parameters. All of the parameters of the workflow are specified in a YAML-formatted
configuration file, specified with the option --configfile. The YAML format is
human readable and can be easily edited with a standard text editor (see Support
Protocaol).

e Theoption - -configisusedin order to specify that trimming will not be
performed during this run. It overrules the configuration defined in the con-
figuration file mentioned above, which is to perform trimming automatic-
ally, aswill be donein step 5.

¢ The option -p tells Snakemake to print out all the Unix commands that will
be executed. Thislisting is very convenient as a means to check that each
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command is called with the appropriate parameters and to keep a trace of
the full process between raw data and final results.

o When the option - -use-conda is used, Shakemake creates a separate
virtual environment for each rule executed in the workflow, and installs the
required tools and their dependenciesin a rule-specific subfolder. This ensu-
res compatibility between the different tools invoked. The process can take
some time at the first invocation of a given environment, but is faster for
subsequent uses of the same environment.

4. The presence of the two FastQC reports can be checked with the 1s commands
bel ow.

ls -1 SANALYSIS DIR/ChIP-seq/fastq/FNR1/FNR1 fastqg.
gz _gc/FNR1 fastgc.html;

1s -1 SANALYSIS DIR/ChIP-seq/fastqg/inputl/inputl
fastg.gz gc/inputl fastgc.html

These files can be opened with a Web browser. Insights about these reports can be

found in the Guidelines for Understanding Results below.

5. Runthequality control workflow again using the software cutadapt, which performs
both read trimming and adapter removal.

snakemake -s SnakeChunks/scripts/snakefiles/
workflows/quality control.wf \

--configfile metadata/config ChIP-seqg.yml -p
--use-conda

This time, the workflow will run cutadapt, as defined in the configuration file, before
doing a new FastQC check. Note that ShakeChunks can be used to specify several
tools for the same step, in order to compare the results. An overview of the optionsis
proposed in Support Protocol.

6. The presence of FastQC reports can be checked with the 1 s commands below.
s -1 \
SANALYSIS DIR/ChIP-seq/fastqg/FNR1/FNR1 cutadapt
fastqg.gz gc/FNR1 cutadapt fastgc.html;
ls -1 \
SANALYSIS DIR/ChIP-seq/fastqg/inputl/inputl
cutadapt fastqg.gz gc/inputl cutadapt fastgc.html
Open the new FastQC reports with a Web browser. The reports show the improvement
in the quality of the reads, as well as the absence of over-represented sequences cor-

responding to adapters. Thisis further discussed in the Guidelines for Understanding
Resullts.

7. Run the read-mapping workflow.

snakemake -s SnakeChunks/scripts/snakefiles/
workflows/mapping.wf \

--configfile metadata/config ChIP-seq.yml -p --use-
conda -j 2

This workflow essentially performs two operations: read mapping and genome cover-
age.

We added the option -5 2, which permits Shakemake to parallelize the processing
with a maximum of two simultaneous jobs. Because the mapping step can be time
consuming, we recommend running it in parallel for the different samples. This option
should be adapted to the number of cores of your system. For example, if you analyze
a large number of files on a cluster, you could increase the number of simultaneous
jobs to 40 or even more (this has to be negotiated with your system administrator).
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9607394 + @ in total (QC-passed reads + QC-failed reads)
@ + @ secondary

@ + @ supplementary

@ + 0 duplicates

9390402 + @ mapped (97.74% : N/A)

@ + 0 paired in sequencing

0 + 0 readl

0 + 0 read2

@ + 0 properly paired (N/A : N/A)

@ + 0 with itself and mate mapped

@ + 0 singletons (N/A : N/A)

@ + @ with mate mapped to a different chr

@ + @ with mate mapped to a different chr (mapQ>=5)

6599356 + @ in total (QC-passed reads + QC-failed reads)
@ + @ secondary

@ + O supplementary

@ + O duplicates

6548400 + @ mapped (99.23% : N/A)

Q + @ paired in sequencing

0 + 0 readl

0 + @ read2

@ + @ properly paired (N/A : N/A)

@ + 0 with itself and mate mapped

@ + @ singletons (N/A : N/A)

@ + 0 with mate mapped to a different chr

Q + @ with mate mapped to a different chr (mapQ>=5)

Figure 5 Read mapping statistics. Statistics were computed using the flagstats software from
SAMtools for the FNR ChiP-seq sample (A) and genomic input (B), respectively.

More information about the mapping results can be found in the Guidelines for Un-
derstanding Results.

8. Check the contents of the files containing the statistics of the mapping from the shell
(Fig. 5).

cat \

SANALYSIS DIR/ChIP-seqg/results/samples/FNR1/FNR1
cutadap’E_bowtie2_bam_stats .txt; B

cat \

SANALYSIS DIR/ChIP-seqg/results/samples/inputl/
input l_c_:utadapt_bowtie2_bam_stats .txt

These files, generated by the SAMtools program flagstat, display basics statistics for

the mapping. As can be seen in Figure 5A and B, here both samples have a very high

mapping rate, which confirms that the sequencing data are of good quality and that
we are going to dispose of a large quantity of data to performthe ChlP-seq analysis.

ChlP-seq

ChlP-seq (Johnson, Mortazavi, Myers, & Wold, 2007; Robertson et al., 2007) isatechnol -
ogy that allows the characterization of DNA binding at a genome scale. The experiment
includes the following steps: cross-linking DNA and the bound proteins with a fixative
agent, breaking DNA into random fragments by ultrasonication, immunoprecipitating
a transcription factor of interest together with its cross-linked DNA, unlinking these
DNA fragments, amplifying them by PCR, and sequencing them using massively par-
allel sequencing technologies. The raw sequences (“reads’) are then mapped onto a
reference genome, and putative binding regions—regions that contain a large number
of reads, usually extending over a few hundred base pairs—are denoted as “peaks.”
These peaks can then be used to search for precise transcription-factor (TF) binding
sites, which can then be associated with nearby genes to infer the potential TF target
genes.
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Table 1 Descriptions of the ChIP-seq Samples

ID Condition GSM identifier SRR identifier
FNR1 FNR GSM 1010220 SRR576934
inputl Input GSM 1010224 SRR576938

Column headersindicate their contents. the columns ID and Condition are mandatory for the proper use of the workflow.
Additional columns can be added at will to document samples.

Table 2 Experimental Design of the ChlP-seq Dataset

Control Treatment
inputl FNR1

A critical step of a ChlP-seq data analysis is peak calling, which is the detection of
these genomic regions with a higher density of mapped reads than would be expected
by chance. The choice of a peak-calling algorithm and the tuning of its parameters can
drastically affect the number of returned peaks and their sizes. To identify reliable peaks
and avoid false positives, it is important to use control samples (see Commentary for
more details). Peak callers also have parameters that can be used to tune the rate of
false positives by imposing more or less stringent thresholds on peak scores, in order
to optimize the tradeoff between sensitivity (the proportion of actual binding regions
detected) and specificity (the ability to reject non-binding regions).

Table 1 describes each sample used in the analysis: a test sample resulting from the
immunoprecipitation of the FNR transcription factor, and a genomic input. Table 2
specifies the design of the analysis, by indicating the respective status of the samples
(control versus treatment).

Although many publications rely on the Macs2 peak caler (Feng, Liu, & Zhang, 2011),
generally used with its default parameters, there are actually avariety of toolsthat can be
used and customized in different ways (Pepke, Wold, & Mortazavi, 2009). SnakeChunks
currently supports seven of these in a completely interchangeable way (Fig. 2A). We
will demonstrate two, Homer (Heinz et al., 2010) and Macs2, which are among the most
widely used, maintained, and up-to-date programs for this purpose and which are also
supported by Conda.

The main operations performed by the workflow described are the following:

o Peak calling using Homer and Macs2 (Feng et al., 2011; Heinz et al., 2010);

o Moatif discovery by remote invocation of the tool peak-motifs (Thomas-Chollier
et a., 2012) from the RSAT software suite (Nguyen et a., 2018) via its Web
services interface; RSAT peak-motifs also compares discovered motifs with the
TF-binding motifs annotated in RegulonDB;

o Comparison between ChlP-seq peaks and known TF binding sites listed in the
RegulonDB database (Gama-Castro et a., 2016);

o Assignment of genes to peaks with the tool “annotate peaks’ from the Homer
suite;

o Gene comparison: comparison between genes associated with peaks and TF target
genes (as annotated in RegulonDB).

1. Run the ChlP-seq workflow.

snakemake \
-8 SnakeChunks/scripts/snakefiles/workflows/
ChIP-seq RegulonDB.wf \

Current Protocols in Bioinformatics

Rioualen et al.

110of 31



BASIC
PROTOCOL 3

Rioualen et al.

12 of 31

--configfile metadata/config ChIP-seq.yml -p --use-
conda -j 2

2. The output files can be found here.

a. Peaks. Because these files are quite large, we use the Unix command less
to display them page by page (press enter to move one page forward). After
inspecting afew pages, type“q” to quit the less program.

less \

SANALYSIS DIR/ChIP-seq/results/peaks/FNR1 vs
inputl/homer/FNR1 vs inputl cutadapt bowtie2
homer.bed;

less \

SANALYSIS DIR/ChIP-seq/results/peaks/FNR1 vs
inputl/macs2/FNR1_vs_ inputl cutadapt bowtie2
macs2.bed

b. Motifs discovered with RSAT in the peaks: Check that the html files produced
by peak-motifs are at the expected place.

ls -1\

SANALYSIS DIR/ChIP-seqg/results/peaks/FNR1 vs_ inputl/
homer/peak-motifs/FNR1 vs_ inputl cutadapt bowtie2
homer peak-motifs/peak-motifs synthesis.html;

1s -1 \

SANALYSIS DIR/ChIP-seqg/results/peaks/FNR1 vs inputl/
macs2/peak-motifs/FNR1 vs inputl cutadapt bowtie2
macs2 peak-motifs/peak-motifs synthesis.html

Open the peak-motifs reports with a Web browser. The results of this workflow are

further described in the Guidelines for Understanding Results bel ow.

RNA-seq

RNA-seq technology, or whole-transcriptome shotgun sequencing, reveals the presence
or absence of RNAs from a given sample, at a given moment in time, and also quantifies
them if needed. It consists of extracting the total RNA from a cell and filtering out
genomic DNA using a deoxyribonuclease (DNase). The RNA isthen reverse transcribed
to cDNA, which can either be mapped onto a genome of reference or assembled de novo.
Subsequent analysis options include quantification of gene expression, identification of
aternative transcripts, and discovery of single-nucleotide variation.

In this protocol, we will use as a case study an RNA-seq experiment published by Myers
et al. (2013), in which the transcriptome of E. coli K-12 was measured in two samples
from thewild type (WT) and from amutant strain whose FNR transcription factor activity
isinhibited (Lazazzera, Bates, & Kiley, 1993). To perform reliable RNA-seq analyses, it
iscrucial to dispose of biological replicates (see Commentary). Thisdataset includestwo
replicates per genotype (Table 3). Our goal will beto identify genesthat are differentially
expressed between the FNR mutant (defined asthe test condition in Table 4) and the WT
(reference condition).

This workflow accomplishes the following steps:

e Quality control and trimming of the reads (for further detail, see Basic
Protocoal 1);

o Mapping onto a genome of reference using the algorithm BWA (Li & Durbin,
2009) (for further detail, see Basic Protocol 1);
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Table 3 Descriptions of the RNA-seq Samples

ID Condition GSM identifier SRR identifier
WT1 WT GSM1010244 SRR5344681
WT2 WT GSM 1010245 SRR5344682
dFNR1 FNR GSM 1010246 SRR5344683
dFNR2 FNR GSM1010247 SRR5344684

Column headersindicate their contents. The columns ID and Condition are mandatory for the proper use of the workflow.
Additional columns can be added at will to document samples

Table 4 Experimental Design of the RNA-seq Analysis
Test Reference
FNR WT

The design file can contain oneor several rows, each describing apair of conditionsto be compared. Thetest and reference

conditions must correspond to the values in the Condition column of the sample description table.

« Quantification of transcripts per genewith featureCountsfrom the Subread package
(Liao et al., 2014);
o Detection of differentially expressed geneswith DESeg2 (Love, Huber, & Anders,

2014) and edgeR (Robinson, McCarthy, & Smyth, 2010);
o Automatic generation of a report summarizing the results.

1. Copy the example metadata from the SnakeChunks library (can be skipped if al-
ready done in Basic Protocol 1, step 2), and check the content of the metadata
folder.

make -f SnakeChunks/examples/GSE41195/tutorial

material.mk copy metadata; tree metadata

2. Download RNA-seq data.
make -f SnakeChunks/examples/GSE41195/tutorial

material.mk download rnaseq data

This creates a subdirectory “ RNA-seq” in the analysis directory defined in Strate-
gic Planning (Fig. 6), and downloads the raw data. Beware: during our tests, the
download takes approximately 8 min per sample. Snce the analysis requires eight
files, this download can take up to a few hours depending on your connection speed.
After the command has been completed, check the organization of the downloaded

files.
tree -C RNA-seq

You should now see four directories (one per sample), each containing two files with

the extension .fastq.gz (there is one file per sequencing end).

3. Run the RNA-seq analysis workflow.

snakemake -s SnakeChunks/scripts/snakefiles/

workflows/RNA-seq complete.wf \

--configfile metadata/config RNA-seqg.yml -p

--use-conda -j 4

Herewe usetheoption -5 4 inorder to parallelize the treatment of the four samples,

which istime consuming.

4. Check the organization of the result filesin the RNA-seq folder, with afolder depth
limit of 3.

tree -C -L 3 RNA-seq
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(snakechunks_env) snakechunks@snakechunks:~/FNR_analysis$ tree RNA-seq
RNA-seq
L— fastq

dFNR1

dFNR2

WTl

WT2

5 directories, 8 files
(snakechunks_env) snakechunks@snakechunks:~/FNR_analysis$ l

Figure 6 File organization of the RNA-seq samples before the analyses are run.

5. The results of the differential expression analysis performed by this workflow are
summarized in an automatically generated HTML report, which can be opened using
aweb navigator.

RNA-seqg/results/diffexpr/cutadapt bwa featureCounts
rna-seq_deg report.html

The elements of thisreport are further described in the Guidelines for Understanding
Results below.

6. Optionaly, itisnow possibleto check the content of the main result files, which can
be found here.

ls -1 RNA-seqg/results/diffexpr

Thisfolder contains atable with the counts of reads per gene:

less RNA-seqg/results/diffexpr/cutadapt bwa
featureCounts all.tsv

and a subfolder with the differential analysis results produced by edgeR, DESeq2,
and the two together.

ls -1 RNA-seqg/results/diffexpr/FNR vs WT

It also containstwo tableswith the differential analysis statisticsreturned by DESeq2
and edgeR, respectively.
less \
RNA-seq/results/diffexpr/FNR vs WT/cutadapt bwa
featureCounts FNR vs WT DESeqg2.tsv;
less \
RNA-seq/results/diffexpr/FNR vs WT/cutadapt bwa
featureCounts FNR vs WT edgeR TMM.tsv

The subset of differentially expressed genes (those declared positive because they
pass the significance threshold) are exported in an additional file.

less \
RNA-seq/results/diffexpr/FNR vs WT/cutadapt bwa
featureCounts FNR vs WT DEG table.tsv

Inthetutorial, we retain the union of genes called positive by either DESeq2 or edgeR,
but alternatively, the combination rule can be tuned in the YAML configuration file.

7. We can count the rows of this file to get an idea of the number of differentially
expressed genes (after subtracting one for the header line).
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we -1

RNA-seqg/results/diffexpr/FNR _vs WT/cutadapt bwa
featureCounts FNR vs WT DEG table.tsv)\

| awk ‘{print $1 -1}’

INTEGRATION

We have seen in Basic Protocol 2 that a ChlP-seq experiment followed by peak calling
can be used toidentify genomic binding locationsfor agiven transcription factor. In Basic
Protocol 3, we analyzed results of an RNA-seq experiment to identify genesdifferentially
expressed between two conditions (wild-type versus FNR mutant).

Here, we show how to combine the results of those two types of experimentsin order to
unravel the links between genome binding data (ChlP-seq) and differential expression
data (RNA-seq). This allows to detect not only direct target genes of afactor, i.e., genes
whose transcription level is affected in the mutant, and whose upstream region contains
abinding peak, but also indirect regulation (absence of abinding peak but presence of an
observed effect on the expression of a gene) or binding of the FNR transcription factor
without detected effect on the level of transcription of the associated genes. We also
compare the NGS results with the list of FNR target genes annotated in the RegulonDB
database (Gama-Castro et a ., 2016).

1. Run integration workflow.

snakemake -p \

-8 SnakeChunks/scripts/snakefiles/workflows/
integration ChIP_RNA.wf \

--configfile metadata/config integration.yml
--use-conda

2. Check thefirst lines of the table summarizing the results for each gene.
less SANALYSIS DIR/integration/ChIP-RNA-regulons
homer gene_ table.tsv

For a better readability, we recommend opening this table with spreadsheet software
(e.g., Office Calc or Excel). The table contains annotations for all genes known in
E. cali K-12, as well as an indication of whether they are associated with FNR
binding (ChlP-seq column), whether their transcription is affected by FNR (RNA-seq
column), and whether they have been previously demonstrated to be regulated by FNR
(FNR_regulon column).

3. Launch the IGV browser (Robinson et al., 2011; Thorvaldsdéttir, Robinson, &
Mesirov, 2013):

On Linux operating systems. igv
In Mac OS X: open the IGV in the Applications folder.

4. Click on menu File, select Open session..., and select the session file meta-
data/igv_session.xml inthe FNR analysis directory.

Thiswill load an IGV session with our selection of relevant tracks for the interpretation
of ChiP-seq and RNA-seq results, which are discussed further in the Guidelines for
Under standing Results below.

RUNNING THE WORKFLOW WITH THE USER-FRIENDLY INTERFACE
SEQUANI X

Sequanix (Desvillechabrol et al., 2018) isagraphical user interface (GUI) based on PyQt,
developed to facilitate the execution of NGS Snakemake pipelines. It was originally de-
signed to run workflowsincluded in the Sequana project (http://sequana.readthedocs.io),
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A Sequanix (Sequana GUI)

File Option Help

| A-Sequana pipelines | B - Generic pipelines |
1-Snakefile = 2-Config file = 3 -Working directory

/home/snakechunks/FNR_analysis

Pipeline control

Is it a local or cluster run ? local -

show advanced control

Snakemake output  IPython shell  Logger | Config parameters

genome i
fasta_file ...42.dna.chromosomeChromosome.ia j
offsfile EICUECEE ... 37.chromosome.Chromosome.gff3
gtf file ...._substr_mg1655.ASM584v2.37.gtf

organism  Escherichia coli K12 MG1655
size 4639221

version Ecoli_K12

metadata
[_conﬁgfile metadata/config_RNA-seq.yml

$od|
Run Unlock Open Report Save ] Show Pipeline
0 1% )

FJ 000 sequanixequanacun ______________________|

File Option Help

bwa_index cutadapt

kbedqviph_lo_ld') | genome_coverage_bedgraph_strands

& J

organism |Escherichia coli K12 MG1655

size 4639221

version Ecoli_K12

metadata
[—c_onﬁgﬁle metadata/config_RNA-seq.yml l -
Run Unlock Open Report Save Show Pipeline

| 1% J

Figure 7 Sequanix graphical user interface. (A) Configuration of the workflow parameters. (B)
Display of workflow wiring. The diagram shows the directed acyclic graph (DAG) of rules automat-
ically generated by Snakemake.
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but can also handle any Snakemake pipeline. Thanks to the graphical interface, the pa-
rameters can be customized easily and the workflows can be run without using any
command line.

Here we demonstrate the execution of the RNA-seq workflow (see Basic Protocol 3)
using thisinterface.

Necessary Resources

Conda: If not already done, create and activate a Conda environment (Strategic
Planning, steps 1 to 10)

Sequana: Install Sequana: type conda install -c¢ bioconda
sequana=0.7.1

RNA-seq dataset: If not already done, download the RNA-seq dataset (Basic
Protocol 3, step 1 and 2) to install the metadata and download RNA-seq raw
reads

1. Launch Sequanix.
sequanix

2. Atthetop of the Sequanix window, select the tab “ Generic pipelines.”

3. Under the Snakefile tab, fetch the workflow file RNA-seq complete.wf inthe
directory SnakeChunks/scripts/snakefiles/workflows.

4. Under the Config file tab, fetch the configuration file config RNA-seq.yml in
the directory metadata.

5. Under the Working directory tab, select the directory you defined above as SANAL -
YSIS DIR (Strategic Planning, step 5) (Fig. 7A).

6. Inthemenu of the application, select Options > Snakemake options ... > General,
andtype“ - -use-conda” in the bottom box “ other options,” then press OK.

7. Inthe Sequanix main window, press Save.
8. Press Show pipeline to check that everything looks reasonable (Fig. 7B).
9. PressRun.

If you have followed Basic Protocol 3, the Run button should not start any new analysis,
because Snakemake will detect that the result files are already present. If not, Sequanix
will run the workflow just asin the terminal.

CUSTOMIZATION OF PARAMETERS

Each workflow available in SnakeChunks requiresthree basic filesin order to specify the
input data files and al the parameters of an analysis. These files have been placed in a
directory named “ metadata.” We explain here how to adapt the ChlP-seq metadata files,
but the same principle applies to the RNA-seq and integration workflows. The ChlP-seq
workflow runs using three metadatafiles:

e Samplefile: samples ChIP-seq.tab;
e Designfile: design ChIP-seq.tab;
o Workflow and tool parameters: config ChIP-seq.yml (Fig. 8A).

Thesamplefile (Table 1) describes each sampleto be analyzed (onerow per sample), with
two mandatory columns (ID and Condition) and optional columns for complementary
information such as GSM identifiers. Here, we have two samples. one ChiP-ped with
FNR, and a control sample labeled “input” following the ChlP-seq convention.

Current Protocols in Bioinformatics

SUPPORT
PROTOCOL

Rioualen et al.

17 of 31



Rioualen et al.

18 of 31

A

## WORKFLOW. DESIGN

##
trimming: . "cutadapt"
mapping: - "bowtie2"
peakcalling: "homer macs2"

##. OPTIONAL PARAMETERS
##
## Parameters used. by rules & programs.
## If nothing is mentionned. below, all programs will use.their default. parameters.
cutadapt:
qual_threshold: "20°
length_threshold: 20

# Optional. (def. 20)
# Optional. (def.. 20)

macs2:
qval:."0.05" #. Optional. (def..0.05)
# Optional. (def. 1)
# Optional. (def..5)
# Optional. (def. 50)

keep_dup: "all
mfold_min:. "2"
mfold_max:. "50"

other_options:. "--nomodel" # Optional can include. --call-summits, . --broad..
homer:
style: . "factor"” # Optional. (def.. factor), can. be. factor, histone,
E:e®2" #. Optional. (def. 4)
b2 %2 #. Optional. (def.. 4)
P:."0.01" # Optional. (def.. ©0.0001)
fdr:."0.01" # Optional. (def. 0.001)
## WORKFLOW. DESIGN
##
trimming: . "sickle" # Available options.>.sickle,  cutadapt
mapping: - “subread-align" # Available options.>.bwa, bowtie2, subread-align...
peakcalling: "homer.macs2.spp" # Available options. > homer, macs2, - spp

## OPTIONAL PARAMETERS
##
## Parameters. used by rules. & programs.
## If nothing is mentionned. below, all programs will. use. their default parameters.
sickle:
qual_threshold: "25"
length_threshold: "25

#. Optional. (def..20)
# Optional. (def.. 20)

macs2:
qval:."0.001"
keep_dup: "all
mfold_min: "2"
mfold_max:. "50'

# Optional. (def..0.05)
#. Optional. (def. 1)
# Optional. (def..5)
#. Optional. (def..50)

other_options: . "--nomodel"” # Optional. can-include. --call-summits, --broad...
homer:

style:. "factor #. Optional. (def.. factor), can be. factor, histone...

R 4" # Optional. (def. 4)

L:."4" # Optional. (def. 4)

P:."0.0001 # Optional. (def..0.0001)

fdr:."0.001 # Optional. (def. ©.001)
spp: 2

fdr:."0.01" # Optional. (def. 0.05)

Figure 8 YAML-formatted configuration file for the ChiP-seq workflow. The YAML format enables
the user to specify all the parameters of a workflow in a structured way while being human readable
and easily editable. (A) Default configuration. (B) Customized configuration.

The design file (Table 2) defines the samples to be compared in order to perform peak
calling. Here, we are going to perform peak calling of the ChlP sample, using the input
sample as a background control. For RNA-seq, the design defines the conditions to be
compared.

The configuration file (Fig. 8A) is specific to the workflow to be run. It contains three
main parts: (1) general information about the reference genome, metadata file, and file
organization; (2) general design of the workflow, such as the steps to be performed
(trimming, mapping, peak calling, annotation) and the tools to be used at each step; and
(3) an optional section enabling to customize the parameters used for each tool (if not
specified, their default parameters are used).

Below, we explain how to edit the configuration file in order to generate aternative
results, using different tools and parameters.

IMPORTANT NOTE: Be awarethat performing alternative trimming and/or mapping can
require additional disk space, since FASTQ files (raw reads, trimmed reads) and BAM
files (aligned reads) are very space consuming. In the following protocol, that requires
about 2 Gb of disk space, but this can go as high astens of gigabasesin the case of larger
raw files, such as the RNA-seq files analyzed in Basic Protocol 3.
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1. Create acopy of the ChlP-seq config file.

cd $ANALYSIS_DIR; \
cp metadata/config ChIP-seq.yml metadata/config
ChIP-seqg custom.yml

2. With atext editor, make the following changes to your custom configuration file
(metadata/config ChIP-seq custom.yml).

a Change the trimming software from cutadapt to sickle.

b. Change the mapping software from bowtie2 to subread-align.

c. Add the SPP peak caller to Homer and Macs2.

d. Customize the SPP, Homer, and Macs2 parametersin the third section according
to the values shown in Figure 8B.
Alternatively, you can avoid manual editing of parameters by copying the ready-to-use
customized configuration file provided in the distribution. To do this, skip step 2 and
instead run the following command:

cp metadata/config ChIP-seq advanced.yml metadata/
config ChIP-seq custom.yml

3. Runthe commands bel ow, which correspond to steps’5 and 7 of Basic Protocol 1, and
step 1 of Basic Protocol 2, 1.5, 1.7, and 2.1 adapted to use the custom configuration
file.

snakemake \

-8 SnakeChunks/scripts/snakefiles/workflows/quality
control.wf \ B

--configfile metadata/config ChIP-seq custom.yml -p
--use-conda -j 2; N B

snakemake \

-s SnakeChunks/scripts/snakefiles/workflows/mapping.
wf \

--configfile metadata/config ChIP-seq custom.yml -p
--use-conda -j 2;

snakemake \

-8 SnakeChunks/scripts/snakefiles/workflows/
ChIP-seq RegulonDB.wf \

--configfile metadata/config ChIP-seq custom.yml -p
--use-conda -j 2 B -

4. Visualize the differencesin the IGV: load a session as in Basic Protocol 4, steps 3
and 4.

5. Click on the menu File, select “Load from File. . .,” and select the following peak
files:

SANALYSIS DIR/ChIP-seq/results advanced/peaks/FNR1
vs_inputl/spp/FNR1 vs_inputl sickle subread-align
spp .bed

SANALYSIS DIR/ChIP-seq/results_advanced/peaks/FNR1
vs_inputl/homer/FNR1 vs inputl sickle subread-
align homer.bed

SANALYSIS DIR/ChIP-seq/results advanced/peaks/FNR1
vs_inputl/macs2/FNR1_vs inputl sickle subread-
align macs2.bed

By running thecommand we -1 on thesefiles, you can note theinfluence of the choice

of peak caller, aswell asits parameters.
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GUIDELINES FOR UNDERSTANDING RESULTS
Data Preprocessing and Read M apping (Basic Protocol 1)

Quality control

For each sample, FastQC produces a box plot representing per-base sequence quality. A
common phenomenon in high-throughput sequencing is a decrease in sequence quality
at the 3 end of the reads. This can indeed be observed for the input sample in our
case study (Fig. 9). Low read quality can reduce the percentage of reads mapped on
the reference genome. To avoid this, we recommend performing sequence trimming to
remove low-quality read extremities.

Another interesting category of informationin FastQC reportsisthe sequence-duplication
levels. The graph outlines read sequences found in an excessive number of copies, which
may diagnose an effect of PCR amplification due to poor complexity of the DNA library.
Note that duplication is often interpreted in contexts in which the sequence library is
much smaller than the genome size (typicaly ~50 M reads for a ~3-Gb mammalian
genome), so that reads resulting from a random sampling are not expected to fall on
exactly the same genomic position. When studying bacterial regulation, however, library
size can exceed genomessize (typically 4 Mb) so that multiple matches are expected along

Figure 9 Quality report of the FNR1 ChlP-seq raw reads before trimming. The abscissa
(columns) corresponds to nucleotide positions along the mapped reads; the ordinate indicates
read quality scores. For each position, statistics are summarized for all the reads of a library:
median (red line), interquartile range (yellow box), and quality range (vertical line). Background
colors indicate an arbitrary subdivision of quality scores, from red (insufficient) to green (good).
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the whole genome. Another section of the FastQC report provides statistics about over-
represented sequences. Before removal of the adapters by cutadapt (Basic Protocol 1,
step 5), Illumina adapters represent respectively 0.5% and 2.6% of the total num-
ber of reads of the FNR1 and inputl samples. After cutadapt is run, these se-
guences are gone (Basic Protocol 1, step 6). Detailed information on the in-
terpretation of read quality is provided on the FastQC Web site (http://mww.
bi oi nfor matics.babraham.ac.uk/projects/fastqc/).

Read mapping

Using the bowtie2 algorithm, the trimmed reads in FASTQ format are aligned onto a
genome of reference, downloaded as described in Strategic Planning. In our case, the
referenceisE. coli K-12. Theresult of the alignment comesin aBAM format that retains
al the information from the fastq files about read sequences and quality, but adds the
putative positions of the reads in the reference genome.

Genome coverage

Genome coverage files makes it possible to visualize the mapped reads in a condensed
way, by showing the number of reads overlapping each position on each strand of the
reference genome (Fig. 10A, pink, gray, and jade tracks in the middle panel) or their sum
on both strands (purple track). Coverage profiles can be stored in different file formats
(e.g., tdf, bedgraph, bigwig) depending on the size of the dataset and the way to display
it. Inthisprotocol, we use the TDF format, which isthe recommended format for optimal
IGV visualization.

ChlP-seq (Basic Protocol 2)

Peak calling

The peaks detected by Homer and Macs2 can be visuadlized in IGV as BED files. This
file format contains essentially the coordinates of the regions with a high density of
mapped reads, which are called “peaks.” Although in bacteria it is expected that ChlP-
seq peaks will fall into intergenic regions upstream of the regulated genes, it has been
shown that a surprisingly high amount of binding may occur into coding or downstream
regions (Galagan, Lyubetskaya, & Gomes, 2012). This observation should be interpreted
by taking into account the fact that bacteria have a very small proportion of intergenic
regions (10% to 15% of the genome).

Figure 10A shows a very clear peak around position 2,344,000, detected by both peak
callers, in the noncoding region upstream of the gene nrdA. On comparing the ChiP-
seq read coverage on the forward and reverse strands (pink tracks in the middie panel),
we see a shift between forward and reverse peaks. This typical pattern is consistent
with the expectation for ChlP-seq experiments, because immunoprecipitated fragments
are sequenced at their extremities, so that the reads are expected to be found either
on the forward strand to the left of the binding site, or on the reverse strand to its
right.

Different peak-calling tools can produce very different results for the same dataset. In
the same region (Fig. 10A), Macs2 detects another peak around position 2,347,000,
associated with the gene nrdB, which belongs to the same operon as nrdA. It is not
identified as a peak by Homer, and it is not associated with any known FNR TF binding
sites from RegulonDB. However, RegulonDB indicates that nrdB is regulated by H-
NS and Fis, nucleoid-associated proteins (NAPs) that are known to mask FNR binding
sites under anaerobic conditions (Myers et al., 2013). Although barely detected by peak
calers, this site is thus supported by some experimental evidence.
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Figure 10 Snapshots of ChiP-seq results for selected genomic regions. The figures were gener-
ated with the Integrative Genomics Viewer (IGV). (A) High-confidence peak in the promoter region
of the nrdAB operon. Note the characteristic shift between reads mapped on the plus and minus
strands. (B) Example of a peak that is likely to be a false positive. For both IGV maps (A and B),
the top panels show the coordinates of the displayed genomic region. The middle panels show
read density profiles in the input (gray) and ChlP-seq samples (purple for strand-insensitive, pink
for strand-sensitive profiles), and RNA-seq data (WT in gray, FNR mutants in turquoise). The lower
panels show annotation tracks for genes (yellow), annotated FNR binding sites (none found in the
displayed regions), and binding peaks.
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Figure 11 Most significant motif discovered by RSAT peak motifs in the FNR peaks, aligned with
matching motifs in RegulonDB.

In contrast, Figure 10B shows a typical example of a peak that is likely to be a false
positive. Notethat itsread enrichment isrestricted to thereverse strand and fallswithinthe
coding region of agene. Strand-specific display of read coverage thus makesit possibleto
assess thereliability of peaks by inspecting their distribution around the putative binding
sites.

The number of peaks and their width can vary considerably, hence the need to adapt
the tools to a given study and assess the relevance of the downstream results. Under
our working conditions, Homer returns 161 peaks of equal width (exactly 177 bp each),
whereas Macs2 returns 411 peaks ranging from 200 to 5893 bp (with an average of
475 bp), an obviously excessive size for TF binding sites. The broadest peaks reported
by Macs2 correspond to wide regions covering several genes, which are entirely covered
by reads in the Chl P-seq sample, and indeed enriched with respect to the genomic input,
but which likely do not correspond to TF binding sites. For Macs2, the number of peaks
can be strongly modified by tuning the g-value threshold and the minimal fold change.
For example, the number of peaks drops from 547 with a g-value threshold of 0.05 and
aminimal fold-change of 2, to 159 with g-value threshold of 0.001 and a minimal fold
change of 5. The most permissive conditions give fewer rel evant peaks, denoted by adrop
in the significance of the FNR matif. In summary, the choice of a peak-calling algorithm
and the fine-tuning of its parameters crucially affect ChlP-seq results, and should be
evaluated case by case.

Motif discovery in peak sequences

The top panel of Figure 11 shows the most significant motif returned by RSAT peak-
motifs (Thomas-Chollier et al., 2012) in the sequences of Homer peaks. This motif
was discovered by the tool dyad-analysis (van Helden, Rios, & Collado-Vides, 2000),
which detects over-represented pairs of spaced oligonucleotides. This motif discovery
approach is particularly relevant for bacteria, where most transcription factors form ho-
modimers that bind spaced matifs. The comparison of this discovered motif with all
the TF binding motifs annotated in RegulonDB returns two matches, corresponding
to FNR and CRP, respectively. The alignment highlights the strong similarity between
the motifs recognized by FNR and CRP (they differ only by one nucleotide at posi-
tion 7 of the motif alignment), which is consistent with the fact that these two fac-
tors are known to co-regulate a number of genes (Gama-Castro et a., 2016; Myers
et al., 2013).
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Figure 12 Global views of the results for the detection of differentially expressed genes between
FNR mutant versus wild-type. These plots are generated as part of the differential analysis step,
using an R script. Left and right panels respectively show the results of DESeq2 and edgeR. (A) MA
plots. The abscissa indicates the mean level of expression (average of the log-transformed counts),
and the ordinate shows the log fold change between FNR mutant and wild-type strain, which
indicates the level of over- (positive values) or underexpression (negative values). Differentially
expressed genes (DEGS), i.e., those passing both the effect size and significance thresholds,
are highlighted in blue. Triangles indicate genes whose log, fold change exceed the plot limits.
(B) Volcano plots. The abscissa represents the log fold change, which indicates the size of the
effect and its sign (—, downregulation; +, upregulation). The ordinate shows the significance of the
differential expression (negative log of the adjusted P value).

RNA-seq (Basic Protocol 3)
Differentially expressed genes

The results of the RNA-seq analysis are summarized in an HTML report (RNA-
seqg/results/diffexpr/cutadapt bwa featureCounts rna-seq_

deg report.html), which can be visualized using a web browser. It features
information and statistics about the RNA-seq samples, read counts, and differentially
expressed genes, detected by using two different tools: DESeg2 (Love et al., 2014) and
edgeR (Robinson et al., 2010). Figure 12 shows MA plots and volcano plots that are
automatically produced by the workflow to provide a synthetic representation of the
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global results of the RNA-seq differential analysis. The MA plots (Fig. 12A) indicate
the relationship between the mean level of expression of each gene (abscissa) and
its differential expression, measured as the log fold difference between FNR mutant
and wild type (ordinate). The genes declared differentially expressed between the two
conditions (WT versus FNR) are highlighted as blue crosses. Genes overexpressed and
underexpressed in the FNR mutants appear above or below the x axis, respectively.
The volcano plots (Fig. 12B) provide a combined view of the expression changes
(log fold change, on the abscissa) and the statistical significance of these changes (on
the ordinate). The significance is computed as the negative logarithm of the adjusted
P values reported by DESeg2 (left) and by edgeR (right), respectively. High values
are indicative of significant differences of expression between FNR mutant and WT
strains. To select differentially expressed genes, SnakeChunks combines user-modifiable
thresholds on the adjusted P value (default: o = 0.05) and on the fold change (defaullt:
at least twofold over- or underexpression).

In total, these thresholds lead to the retention of 278 differentially expressed genes that
were declared positive by either DESeg2 (255 genes) or edgeR (272 genes). This number
is consistent with the fact that FNR acts as global regulator in E. coli. Note that we chose
to keep the union of both listsin order to favor sensitivity, but this can be parameterized
in the configuration file by specifying that the detection of differentially expressed genes
relies on edgeR, DESeq2, their intersection, or their union.

Integration (Basic Protocol 4)

The Venn diagram generated by the workflow (Fig. 13, file integration/ChIP-
RNA-regulons_ venn.png) showsthe number of E. coli genesassociated with FNR
peaks in the ChlP-seq experiment (pink), reported as differentialy expressed in the
RNA-seq analysis (green), or annotated as FNR targets in RegulonDB (violet), as well
as the intersections between these gene sets. Supporting Information Tables S1 and S2
provide the complete data table used to generate these Venn diagrams. Depending on
the peak-calling algorithm, the number of genes found at the intersection between the
three gene lists (Chl P-seq, RNA-seq, and RegulonDB) will be quite small (38 for Macs2
peaks and 28 for Homer peaks) relative to the respective size of the compared gene sets.
It is interesting to consider an interpretive guideline for the pairwise intersections or
set memberships. The genes reported by both ChiP-seq (FNR binding) and RNA-seq
(FNR transcriptional response) but not annotated in RegulonDB are likely to be direct
FNR target genes, and might be considered to be added to RegulonDB, in an annotation
track based on combined evidence from complementary high-throughput experiments.
This would give 29 genes with Macs2 peaks and 25 with Homer peaks. It would be
interesting to furthermore scan their promoter sequences in order to search instances of
the FNR binding motif in order to predict binding-site locations, and consolidate the
results. The genes detected as differentially expressed (RNA-seq) without any annotated
FNR site (RegulonDB) or associated peak (Figure 13, pale green, on the Venn diagrams
of Figure 13, covering, respectively, 160 and 167 genes for Macs2 and Homer) include
genes located inside the target operons of FNR. Indeed, in bacteria, polycistronic tran-
scripts are regulated by cis-acting elements located in the promoter of the operon leader
gene. Consistently with this, 38 of these 167 genes (~23% when the analysisisled with
Homer) have a very short upstream noncoding region (<55 bp) typical of intra-operon
genes, whereas aimost al the genes of the triple intersection (28 of 29) have larger up-
stream sequences typical of operon-leader genes. The remaining 77% of differentially
expressed genes without associated ChlP-seq peak are likely to be indirect FNR tar-
gets, whose transcription might be affected viaintermediate transcription factors that are
themselves regulated by FNR. The genes associated with ChlP-seq peaks without tran-
scriptional response (334 for Macs2, 119 for Homer) likely result from different effects:
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RegulonDB

B

RegulonDB

Figure 13 Integration of ChIP-seq, RNA-seq results, and RegulonDB annotations. Venn dia-
grams show the intersections of the genes linked to ChIP-seq peaks (pink), those declared differ-
entially expressed by the RNA-seq experiment (green), and those annotated as FNR target genes
in RegulonDB (violet). These diagrams are automatically generated by the integration workflow,
using the R library VennDiagram. (A) Results with the 411 ChiP-seq peaks reported by Macs2 with
g < 0.01 and fold change between 2 and 50. (B) Results with the 166 ChlIP-seq peaks reported
by Homer.
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Figure 14 IGV snapshots of RNA-seq results for three illustrative operons. Middle panel, genome coverage
profiles for the two replicas of the wild-type (gray) and FNR mutant (jade). Lower panel, genome annotations for
the genes (yellow), FNR binding sites from RegulonDB (gray), differentially expressed genes (jade), and FNR
target genes annotated in RegulonDB (dark olive). Shown are views of selected regions encompassing (A) the

cydABX operon, (B) the dmsABC operon, and (C) the leuLABCD operon.

nonfunctional binding of the FNR factor under the experimental conditions of the study
(missing co-activator, co-binding of arepressor); binding between two divergently tran-
scribed transcription units, but regulating only one of them; or false positives from peak
calling (e.g., regionswith ahigh density of reads on one strand only, as discussed above).

Figure 14 highlightssomeillustrative examples of differentially expressed genes detected
by DESeg?2 or edgeR. For the cydABX operon (Fig. 14A), the FNR mutant (jade tracks
on the genome coverage profiles) has an increased level of expression compared to the
wild-type (gray tracks). Consistently with that result, this operon is repressed by FNR
(Samon et a., 2003), and it has two annotated FNR binding sites in RegulonDB, which
overlap a strong peak detected by both Homer and Macs2 in the ChlP-seq results.

The dmsABC operon also exemplifies the genes found at the triple intersection: it is
regulated by FNR (Melville & Gunsalus, 1996), and, consistently, it has one TF binding
sitelisted in RegulonDB, and isreported by both the Chl P-seq and RNA-seq experiments
(Fig. 14B).
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A more subtle example is the leuLABCD operon (Fig. 14C): RNA-seq coverage pro-
files also reveal reduced expression, although the differential expression analysis did
not report the presence of any significant gene, due to the stringent thresholds applied
to both adjusted P value (<0.05) and fold change (>2). This operon encodes the en-
zymes responsible for the biosynthesis of leucine from valine. It has no binding sites
annotated in RegulonDB for the FNR transcription factor, and based on the RNA-seq
results only, several possibilities could be invoked to explain this inconsistency: the leu
operon might (i) be indirectly regulated by FNR via another transcription factor, (ii) be
adirect target of FNR whose binding sites have not yet been characterized, or (iii) be a
false-positive. This situation can be clarified by analyzing the ChlP-seq profiles, since
we observe a clear peak upstream of the operon, detected by both Macs2 and Homer
(Fig. 14C), supporting the evidence for a direct regulation of the leu operon by FNR.

In summary, a detailed analysis and human-based interpretation of combined RNA-seq
and ChlP-seq data is worthwhile as a means to go beyond the gene lists returned by the
automatic comparison of target genes predicted by ChlP-seq and RNA-seq experiments.

COMMENTARY

Background I nfor mation

Next-generation sequencing (NGS) tech-
nologies (Schuster, 2007) emerged in 2007
with the development of several approaches
for massively parallel sequencing of short
DNA sequences (a few tens of base pairs
per sequence). This unprecedented gain in
sequencing speed was mobilized for a wide
variety of applications: genome sequenc-
ing, transcriptome (RNA-seq), genome-wide
binding location analysis (ChlP-seq), chro-
matin conformation (Hi-C), metagenomics,
and many others. Research projects based on
NGS typicaly lead to the situation where
the biologist performs experiments, sends
the samples to a sequencing center, and
receives a link to download several giga
bases of raw sequences known as “short
reads.” Since 2007, a wide variety of soft-
ware tools has been devel oped to handle NGS
data and extract relevant information (Pepke
et a., 2009).

Proper use of such software requiresagood
understanding of their parameters, strengths,
and weaknesses. Beyond the choice and pa
rameterization of each particular tool, it has
become crucia to formalize their wiring by
implementing workflowsthat ensuretraceabil -
ity and reproducibility of al the steps used to
produce the results from the raw data. Many
aternative software systems can be used to
manage the development and execution of
analysis workflows. Among them, Galaxy
(Goecks, Nekrutenko, & Taylor, 2010) be-
came highly popular because it offers an
immediate access through a graphical inter-
face to biologists with no experience in the
Unix terminal. Snakemake (Koster & Rah-

mann, 2012) offers a complementary solution
to achieve the same goals—developing, man-
aging, and running NGS workflows—in the
Unix command-line environment. Snakemake
is currently being adopted by a growing num-
ber of bioinformaticians aswell as experimen-
tal biologists willing to get one step further
in the analysis of their own data. The goal
of SnakeChunks is to facilitate the concep-
tion and use of NGS workflows by encapsu-
lating Snakemake commands in a library of
modular rules (one per tool) that can be com-
bined in various ways to build and customize
workflows (Fig. 2).

Critical Parameters

Control samples

When analyzing binding signals (ChlP-seq)
or transcription signals (RNA-seq), itiscrucial
to generate appropriate control experiments, in
order to measure differences in signal against
a proper background signal, and thus avoid
the detection of false positives. This is es-
pecially important when analyzing ChlP-seq
data, since false peaks can arise from biasesin
the experiments. nonhomogeneous sonication
of DNA due nonhomogeneous aperture of the
chromatin, GC biases arising during PCR am-
plification of the fragments, low-complexity
regions of the genome, and so on. Differ-
ent types of controls can be used to estimate
the background probabilities of read mapping
in the different regions of the genome, in-
cluding (1) sequencing genomic DNA with-
out immunoprecipitation; (2) using “mock
IR” i.e., performing the immunoprecipitation
with a nonspecific antibody; or (3) artificially
knocking out the expression of the TF of
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interest. Irrespective of the method used, the
control sequences are generally denoted as
“input” for the peak-calling programs. In the
study by Myers et al. (2013), genomic DNA
was used as input. In the case of RNA-seq,
knocked-out TFs or overexpressed TFs can be
compared against WT samples. In this study,
sampleswith an inactivated FNR protein were
compared against WT strains.

Number of replicates

When performing biological experiments,
it is crucia to account for the unavoidable
variability intrinsic to living organisms. RNA-
seq experiments are no exception, and it has
been demonstrated that the greater the num-
ber of replicates, the more sensitive the detec-
tion of differentially expressed genes (Schurch
et a., 2016). Designing experiments with a
high number of replicates enablesthe analysis
to distinguish subtle but relevant changes in
expression from spurious fluctuations due to
biological variability.

Choice of a read mapper

Read mapping is generally the most time-
and resource-consuming task of RNA-seq and
ChiP-seq data analysis. For the FNR study
case developed in this article, the complete
ChiP-seq workflow runs in a few minutes,
whereas the RNA-seq workflows takes several
hours. The modularity of the SnakeChunks
library enabled us to run the same work-
flow with three aternative read-mapping tools:
BWA (Li & Durbin, 2009), bowtie2 (Lang-
mead & Salzberg, 2012), and subread-align
(Liao, Smyth, & Shi, 2013). For this partic-
ular dataset, BWA runs approximately three
times asfast asthetwo other algorithms, while
giving very similar mapping rates. However,
we experienced opposite rankings of tool per-
formance with other datasets and reference
genomes. The choice and parameterization of
a read mapper should thus be considered as
critical step, which has to be tuned in a case-
specific way to optimize a workflow.

Troubleshooting

The Snakemake workflow management
system is equipped with its own mechanisms
for detecting, reporting, and fixing problems.
Troubleis reported by red messages displayed
on the terminal indicating the kind of prob-
|lems and—when possible—suggested waysto
fix them.

Advanced Parameters

Proper parameterization of the workflow is
the key to optimize both computing efficiency
and the biological relevance of the results.

Current Protocols in Bioinformatics

Parameters can be changed either by mod-
ifying the YAML-formatted configuration file
in the metadata (see Support Protocol) or
with the option --config in the Snake-
make command line (see example in Basic
Protocol 1, step 3).

With the popularization of RNA-seq for
transcriptome studies, the number of sam-
ples per research project has been expand-
ing in recent publications. A crucial parameter
will be the ability to keep up with increas-
ing storage needs and to paralelize compu-
tation for large studies. The FNR case study
discussed in this unit was intentionally se-
lected for its small number of replicates per
condition, but for wider-scale studiesthe num-
ber of simultaneous jobs handled by Snake-
make should be adapted to the number of
CPUs of the computing system (option -3
option).

We aso make a frequent use of the
Snakemake option -n, which printsout all the
commands required to complete a workflow,
without actually executing them (as a dry
run). This gives the user the ability to check
that a command is properly parameterized
before running it, which can be valuable
when applying hours-long tasks to multiple
samples.

Suggestionsfor Further Analysis

The main goal of the SnakeChunks library
isto ensurethe reproducibility of the analyses.
This is why we recommend keeping a copy
of the library with each dataset analyzed in
order to ensure consi stency between theresults
and the precise version of the library used to
generate them. This is particularly crucial in
the case of publication, so that readers can
actually reproduce the analyses performed.

The use of Conda also enables the user to
keep control over the software environment,
and isin accordance with the FAIR Principles
(Wilkinson et al., 2016).

A natural extension of this work will be to
take advantage of SnakeChunks' flexibility in
order to assess the impact of tool and parame-
ter choice on the biological relevance of there-
sults, and to optimize workflows by evaluating
the correspondence between the lists of genes
returned by combining ChlP-seq and RNA-seq
results and those already annotated in Reg-
ulonDB for well-characterized transcription
factors.
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Chapter 4.

Integration of high-throughput data
within a reference framework

Problematic

E. coli K-12 is to date the best characterized prokaryotic organism, and a significant
portion of its transcriptional regulatory network is known and available for display and
for use through the RegulonDB portal. Still, it remains incomplete: about a third of its
predicted transcription factors are not experimentally proven to perform actual
regulation, and most of those that do have evidence for regulation were not studied
genome-wide. High-throughput technologies now allow for genome-wide detection of
binding sites, for instance via ChIP-seq, ChIP-exo, gSELEX or DAP-seq; and
transcriptional profiling is now routinely performed using RNA-seq. However, until
recently, there was no online resource that would allow one to consult or make use of
those data, together with the classic data.

In this chapter, I present my contributions to an article that undertakes the task of
gathering, standardizing more than 2,000 datasets of high-throughput data that are
relevant to E. coli genomic organization and regulation, and integrating them with the
data resulting from classic low-throughput experiments and literature curation on a
single portal: RegulonDB HT (Tierrafria, Rioualen et al., 2022).

Definition of the framework

The diversity of data to be integrated and objects to be manipulated proved to be a
challenge, despite the well-established standards that have been developed in
RegulonDB over the years, and have been evolving with the constant addition of new
biological knowledge. A lot of thought was put into a new framework that would allow
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us to gather and process data from a variety of technologies, and produce uniform
datasets.

We defined collections as sets of data defining objects of distinct types, namely
transcription start sites, transcription termination sites, transcription units, gene
expression and transcription factor binding. Additionally, we distinguished
subcollections of TF binding datasets that were produced using different technologies
(ChIP-seq, ChIP-exo, gSELEX and DAP-seq). Each collection and subcollection is
composed of a certain number of datasets (Figure 15).

We defined a dataset as a piece of data generated using a given technology, producing a
certain type of object (and thus pertaining to a given collection), and associated to
specific growth conditions as defined by the Microbiological Condition Ontology
(Tierrafria et al., 2019), and by additional metadata.

We designed metadata tables of datasets based on a common format for each collection
and subcollection of objects. Each table contains one dataset per row, and one column
per attribute of the dataset: technology used, growth conditions, author and
publication information, database identifiers, and many more.

Figure 15. Data model in RegulonDB HT. Adapted from figure 1 (Tierrafria, Rioualen et al., 2022).

75



Uniform datasets of genomic features

Building on the work described in Chapter 2, I took on the task of gathering datasets
from a number of distinct sources and publications, and processing them in order to
generate uniform datasets of TSSs, TUs and TTSs. This presented challenges, given the
variety of formats used in the original sources, and the presence of obsolete
information.

I updated the TSS and TU collections previously generated (Chapter 2) with new
sources (Conway et al., 2014; Ju et al,, 2019), and generated 16 datasets containing
68,049 TSSs and 5 datasets containing 5,326 transcription units. I created a TTS
collection using the information available in the TU collection, and generated 5
datasets containing 12,347 TTSs (Table 3). All of these datasets were formatted to
standard bed files. Given the case, genes and coordinates were updated to the latest
genome version using the EcoliGenes library (Chapter 1).

Finally, T mapped the TSS collection against the original collection from RegulonDB.
The set of reference used for the comparison was generated by extracting all of
RegulonDB’s promoters associated with classic strong evidence (Figure 7 from the
article).

Dataset ID | Growth Condition Features |Reference

Transcription Units

ORGANISM:Escherichia coli IMEDIUM:LB medium
TU0001 ||GROWTH_ PHASE:Exponential phase 3,179 Juetal., 2019

ORGANISM:Escherichia coli IMEDIUM:LB medium
TU0002 ||GROWTH_ PHASE:Stationary phase 1,916 Juetal., 2019

ORGANISM:Escherichia coli BW38028 |MEDIUM:MOPS
TU0003  ||OPTICAL_DENSITY:0D600 of 0.4 |GROWTH_ PHASE:Exponential phase [2,566 ~ |Conway etal., 2014
ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:wild type IMEDIUM:M9 minimal medium
TU0004 ||IGROWTH_ PHASE:Exponential phase 2,458 Yanetal., 2018

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_ BACKGROUND:wild type IMEDIUM:rich medium
TU0005 |GROWTH__PHASE:Exponential phase 2,210 Yan et al., 2018

Transcription Start Sites

ORGANISM:'Escherichia coli str. K-12 substr. MG1655'
|GENETIC_ BACKGROUND: 'wild type' IMEDIUM:LB
ITEMPERATURE:'37.0 C' |OPTICAL_DENSITY:'OD600 of 2' Thomason et al.,
DS0001  ||GROWTH_ PHASE: 'stationary phase' 12,016  |2014
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Dataset ID

Growth Condition

Features

Reference

ORGANISM: 'Escherichia coli str. K-12 substr. MG1655'
|GENETIC_ BACKGROUND: 'wild type' IMEDIUM:M63
IMEDIUM__ SUPPLEMENTS:glucose 0.2%' 'thiamine(1+)'

I TEMPERATURE:'37.0 C' |OPTICAL_DENSITY:'OD600 of 0.4'

Thomason et al.,

DS0002 |GROWTH__PHASE:'exponential phase' 11,945 |2014
ORGANISM: 'Escherichia coli str. K-12 substr. MG1655'
|GENETIC_ BACKGROUND: 'wild type' IMEDIUM:LB
I TEMPERATURE:'37.0 C' |OPTICAL_DENSITY:'OD600 of 0.4' Thomason et al.,
DS0003 |GROWTH__PHASE:'exponential phase' 8,504 2014
ORGANISM: 'Escherichia coli str. K-12 substr. MG1655' |[MEDIUM:LB
|AERATION:aerobic ITEMPERATURE:'37.0 C' |pH:'pH 7.4’
|OPTICAL_ DENSITY:'0OD600 from 0.4 to 0.6'
DS0004 | IGROWTH_ PHASE:'exponential phase' 4,353 Juetal., 2019
ORGANISM: 'Escherichia coli str. K-12 substr. MG1655' I[MEDIUM:LB
| AERATION:aerobic [TEMPERATURE:'37.0 C' [pH:'pH 7.4’
|OPTICAL_ DENSITY:0D600 above 2.0 |GROWTH_ PHASE.: 'stationary
DS0005 phase' 4,033 Juetal., 2019
ORGANISM: 'Escherichia coli BW38028' IGENETIC_ BACKGROUND: 'wild
type' IMEDIUM:'MOPS minimal medium'
IMEDIUM__ SUPPLEMENTS:'glucose 0.2%' |AERATION:dissolved oxygen
above 40% of saturation | TEMPERATURE:'37.0 C' |[pH:'pH 7.4’
DS0006 |[VESSEL_ TYPE:fermenter 2,122 Conway et al., 2014
ORGANISM: 'Escherichia coli str. K-12 substr. MG1655' | MEDIUM:'DSMZ
Medium 382' IMEDIUM__SUPPLEMENTS:'glucose 0.2%!'
| TEMPERATURE:'37.0 C' |OPTICAL_DENSITY:0D600 from 0.55 to 0.6
DS0007 |GROWTH__PHASE: 'late exponential phase' 2,186 Yan et al., 2018
ORGANISM: 'Escherichia coli str. K-12 substr. MG1655' |[MEDIUM:'LB
medium, Lennox' ITEMPERATURE:'37.0 C' |pH:pH 7.2
|OPTICAL_DENSITY:0OD600 from 0.55 to 0.6 |GROWTH__ PHASE:'late
DS0008 |exponential phase' 1,902 Yan et al., 2018
ORGANISM:Escherichia coli str. K-12 substr. MG1655' Mendoza-Vargas et
DS0009 I TEMPERATURE:'30.0 C' 1,468 al., 2009
ORGANISM:Escherichia coli str. K-12 substr. MG1655' Mendoza-Vargas et
DS0010 ITEMPERATURE:'30.0 C' 296 al., 2009
ORGANISM:Escherichia coli str. K-12 substr. MG1655'
DSo011 ITEMPERATURE:'37.0 C' |AGITATION_ SPEED:300 rpm 5,197 Salgado et al., 2013
DS0012 [M9 + 0.2% glycerol, cells grown with shaking at 30°C] 5,647 Wade lab
DS0013 GROWTH__PHASE: Exponential phase 1,926 Choetal, 2014
DS0014 [Glutamine as source of nitrogen] 2,230 Choetal,, 2014
DS0015 [Heat shock] 1,900 Choetal,, 2014
DS0016 GROWTH__PHASE:Stationary phase 2,533 Choetal,, 2014
Transcription Termination Sites
ORGANISM:Escherichia coli IMEDIUM:LB medium
TR0001 |GROWTH__PHASE:Exponential phase 1,473 Juetal., 2019
ORGANISM:Escherichia coli IMEDIUM:LB medium
TR0002 |GROWTH__PHASE:Stationary phase 1,352 Juetal, 2019
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Dataset ID | Growth Condition Features |Reference

ORGANISM:Escherichia coli BW38028 |MEDIUM:MOPS
TR0003 |OPTICAL_ DENSITY:0D600 of 0.4 |GROWTH_ PHASE:Exponential phase |1,774 Conway et al., 2014

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_ BACKGROUND:wild type IMEDIUM:M9 minimal medium
TR0o004 ||GROWTH_ PHASE:Exponential phase 352 Yan et al., 2018

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_ BACKGROUND:wild type [MEDIUM:rich medium
TRO005 |GROWTH__PHASE:Exponential phase 375 Yan et al., 2018

Table 3. Summary of the HT datasets generated and their associated growth conditions and references.

Transcription factor comparison

I performed a comparison of the transcription factors present in each subcollection of
TF binding datasets and those present in RegulonDB. I used the EcoliGenes library
(Chapter 1) in order to translate TF names and synonyms into their reference name,
and properly manage hetero-dimeric TFs and their subunits (Figure 5a in the article,
see below).

I integrated those TFs with the putative TFs obtained through computational
predictions and presented in Chapter 1, and summarized the result by grouping all TFs
into 3 categories: confirmed TFs from RegulonDB, predicted TFs from various sources
(Pérez-Rueda et al., 2015; Flores-Bautista et al., 2020; Kim et al., 2021), and potential
TFs associated with HT experiments (Tierrafria, Rioualen et al., 2022) (Figure 16ab). 46
of the previously predicted TFs are associated with at least one peak in one HT dataset,
bringing new pieces of evidence to confirm their regulatory role. Additionally, 4
potential TFs that were neither confirmed RegulonDB TFs nor predicted TFs were
associated with HT experiments, where all of them were assigned several binding
peaks. Finally, 144 predicted TFs remain without HT datasets that would back up their
potential regulatory role. They include all of the 58 predicted TFs from the deep
learning approach (Kim et al., 2021), which remain without evidence to back up the
predictions.
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Figure 16. Comparison of TFs from RegulonDB, proteins predicted or annotated as putative TFs and
putative TFs with associated high-throughput data.

Considering this newly available data, new pieces of evidence should allow to greatly
increase the collection of confirmed TFs in the near future, getting closer to a total of
300 TFs, a common estimate of the total number of TFs in E. coli K-12.

Uniformly-processed ChIP-seq datasets

I processed 28 datasets from the ChIP-seq subcollection using the Snakechunks library
of workflows (Chapter 3). I built a workflow that takes no more than the ChIP-seq
metadata table as an input, using the following attributes: source database name, series
ID, samples replicates experiment ID, samples replicates control ID, library layout and
TF name (Figure 17a).

For each dataset, I extracted the full original metadata from their source database, and
given the case, merged or completed them using the tools ffq and pyrasdb (Choudhary,
2019; Galvez-Merchan et al., 2022). Using this information, I built a common directory
structure for all datasets, custom workflow configuration files for each, and I
downloaded all of the raw sequencing files in fastq format. For each dataset, I then ran
the “quality control” and “mapping” workflows available in SnakeChunks (Rioualen et
al., 2019; Chapter 3) using cutadapt for read-trimming (Martin, 2011), bowtie 2 for the
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alignment (Langmead and Salzberg, 2012), and multiQC to generate complete quality
reports before and after the preprocessing (Ewels et al., 2016). Finally, I designed a new
workflow to perform peak-calling using macs3 (Feng et al., 2011), identify sites in
peaks with RSAT matrix-scan (Turatsinze et al., 2008), and build a dataset-specific TF
motif using the sites identified and the RSAT convert-matrix tool (Santana-Garcia et
al., 2022). Each dataset resulted in one peak file, one site file (both bed-formatted) and
one PSSM file, as well as several graphical reports (Figure 17b). Additionally, I mapped
peaks and sites with the reference binding site set from RegulonDB (Figure 6 from the
article).

The metadata table for the ChIP-seq subcollection allowed to customize each dataset
processing depending on the TF and the library layout used in each experiment, while
using common tools and cutoffs for the different steps of the analysis performed using
the SnakeChunks workflows, ensuring flexibility as well as congruence. The output
files were integrated into the RegulonDB HT portal, and displayed as tables as well as in
a genome browser, together with classic data for easy comparison (Figure 17¢).

Overall, the ChIP-seq collection includes 29 datasets corresponding to 12 different TFs
(Table 4), of which 28 were processed using my pipeline (one dataset does not come
with raw data), and 27 are associated with curated author files (two datasets are not
associated with a publication). All of this data is available on the RegulonDB-HT portal.
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Figure 17. Integration of the ChIP-seq collection processing within the RegulonDB HT framework. a.
Datasets are manually curated from literature and databases, and their attributes are gathered into the
metadata table. b. All of the samples are automatically downloaded, and datasets analyses are designed
and run using their specific properties (library layout, TF chipped) as well as common tools (trimming,

mapping, peak-calling). c. The result files are integrated in the RegulonDB HT portal for browsing and
downloading.
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Dataset ID

Growth Conditions

TF

Reference

BSCSoo01

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:plasmid pT7-FLAG-/ (IPTG-induced CsiR) mutant
|MEDIUM:LB medium |[MEDIUM_ SUPPLEMENTS:isopropyl
beta-D-thiogalactopyranoside 1 mM |TEMPERATURE:37 °C

GlaR

Aquino et al., 2017

BSCS002

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium
[MEDIUM_ SUPPLEMENTS:glucose 0.2% |AERATION:N2 95% and CO2 5%
| TEMPERATURE:37 °C |OPTICAL_ DENSITY:0D600 of 0.3

| GROWTH__PHASE:mid exponential phase

FNR

Myers et al., 2013

BSCSo03

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium
[MEDIUM__ SUPPLEMENTS:glucose 0.2%; iron(2+) sulfate (anhydrous) 10 uM
|AERATION:70% N2, 5% C02, and 02 25% |TEMPERATURE:37 °C

|OPTICAL_ DENSITY:0D600 from 0.3 to 0.35 |IGROWTH_ PHASE:mid
exponential phase

Fur

Beauchene et al.,
2015

BSCSoo04

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC__ BACKGROUND:WT |MEDIUM:MOPS minimal medium
[MEDIUM__ SUPPLEMENTS:glucose 0.2%; iron(2+) sulfate (anhydrous) 10 uM
|AERATION:N2 95% and CO2 5% |TEMPERATURE:37 °C

|OPTICAL_ DENSITY:0D600 from 0.3 to 0.35 |GROWTH_ PHASE:mid
exponential phase

Fur

Beauchene et al.,
2015

BSCSo05

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:lacZ knockout mutant; tonB knockout mutant; feoA
knockout mutant; zupT knockout mutant |[MEDIUM:MOPS minimal medium
[MEDIUM__ SUPPLEMENTS:glucose 0.2%; iron(2+) sulfate (anhydrous) 1.0 uM
|AERATION:N2 95% and CO2 5% |TEMPERATURE:37 °C

|OPTICAL_ DENSITY:0D600 from 0.3 to 0.35 |IGROWTH_ PHASE:mid
exponential phase

Fur

Beauchene et al.,
2015

BSCS006

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC__BACKGROUND:hns-3xflag |MEDIUM:LB medium, Luria-NaCl 0.5%

| AERATION:aerobic ITEMPERATURE:37 °C |GROWTH__PHASE.early exponential
phase

Kahramanoglou
etal, 2011

BSCSoo07

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_BACKGROUND:hns-3xflag IMEDIUM:LB medium, Luria-NaCl 0.5%
| AERATION:aerobic ITEMPERATURE:37 °C |GROWTH_ PHASE:mid exponential
phase

Kahramanoglou
etal., 2011

BSCS008

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_ BACKGROUND:hns-3xflag IMEDIUM:LB medium, Luria-NaCl 0.5%
|AERATION:aerobic |TEMPERATURE:37 °C |GROWTH__PHASE:stationary phase

Kahramanoglou
etal., 2011

BSCS009

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:hns-3xflag IMEDIUM:LB medium, Luria-NaCl 0.5%
| AERATION:aerobic ITEMPERATURE:37 °C |GROWTH_ PHASE:transition to
stationary phase

Kahramanoglou
etal., 2011

BSCSo10

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_BACKGROUND:fis-3xflag IMEDIUM:LB medium, Luria-NaCl 0.5%

| AERATION:aerobic ITEMPERATURE:37 °C |GROWTH__PHASE.early exponential
phase

Fis

Kahramanoglou
etal., 2011

BSCSo11

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:fis-3xflag IMEDIUM:LB medium, Luria-NaCl 0.5%

| AERATION:aerobic ITEMPERATURE:37 °C |GROWTH_ PHASE:mid exponential
phase

Fis

Kahramanoglou
etal., 2011

BSCSo012

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC__BACKGROUND:plasmid pT7-FLAG-/4 (IPTG-induced nac)
mutant| MEDIUM:LB medium |MEDIUM_ SUPPLEMENTS:isopropyl
beta-D-thiogalactopyranoside 1 mM |TEMPERATURE:37 °C

Nac

Aquino et al., 2017

BSCSo013

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_ BACKGROUND:plasmid pT7-FLAG-/ (IPTG-induced ntrC) mutant

NtrC

Aquino et al., 2017
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Dataset ID

Growth Conditions

TF

Reference

|MEDIUM:LB medium |MEDIUM_ SUPPLEMENTS:isopropyl
beta-D-thiogalactopyranoside 1 mM |TEMPERATURE:37 °C

BSCSo14

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC__BACKGROUND:gInG knockout mutant; ginG-flag IMEDIUM:Gutnick
minimal medium |[MEDIUM_ SUPPLEMENTS:Ho-LE trace elements; glucose
0.4%; ammonium chloride 3 mM |TEMPERATURE:37 °C
|AGITATION__SPEED:200 rpms

NtrC

Brown et al., 2014

BSCSo15

ORGANISM:Escherichia coli str. K-12 substr. MG1655
|GENETIC_BACKGROUND:plasmid pT7-FLAG-4 (IPTG-induced ompR) mutant
[MEDIUM:LB medium |[MEDIUM__SUPPLEMENTS:isopropyl
beta-D-thiogalactopyranoside 1 mM |TEMPERATURE:37 °C

OmpR

Aquino et al., 2017

BSCSo16

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC__ BACKGROUND:WT |MEDIUM:MOPS minimal medium
IMEDIUM__SUPPLEMENTS:glycerol 0.2%; leucine 0.2%; isoleucine 0.2%; valine
0.2% |TEMPERATURE:37 °C |OPTICAL_DENSITY:0D600 from 0.15 to 0.25
|GROWTH__PHASE:exponential phase | AGITATION_ SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCSo017

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium

[MEDIUM__ SUPPLEMENTS:glycerol 0.2%; leucine 0.2%; isoleucine 0.2%; valine
0.2% |TEMPERATURE:37 °C |OPTICAL_ DENSITY:0D600 from 1.8 to 2.2
|GROWTH__PHASE:transition point |AGITATION_ SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCS018

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium

[MEDIUM__ SUPPLEMENTS:glycerol 0.2%; leucine 0.2%; isoleucine 0.2%; valine
0.2% |TEMPERATURE:37 °C |GROWTH_ PHASE:stationary phase
|AGITATION__SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCS019

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium
|[MEDIUM__ SUPPLEMENTS: glycerol 0.4%; ACGU; EZ | TEMPERATURE:37 °C
|OPTICAL_ DENSITY:0D600 from 0.15 to 0.25 |GROWTH_ PHASE:exponential
phase |AGITATION__SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCSo020

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium
|MEDIUM_SUPPLEMENTS:glycerol 0.4%; ACGU; EZ I TEMPERATURE:37 °C
|OPTICAL_ DENSITY:0D600 from 2.3 to 2.7 IGROWTH_ PHASE:transition point
|AGITATION _SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCSo021

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium
[MEDIUM__ SUPPLEMENTS:glycerol 0.4%; ACGU; EZ |TEMPERATURE:37 °C
| GROWTH__PHASE:stationary phase |AGITATION_ SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCSo022

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium

IMEDIUM_ SUPPLEMENTS:glycerol 0.2% |TEMPERATURE:37 °C

|OPTICAL_ DENSITY:0D600 from 0.15 to 0.25 |GROWTH_ PHASE:exponential
phase |AGITATION__SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCS023

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC__ BACKGROUND:WT |MEDIUM:MOPS minimal medium

|[MEDIUM__ SUPPLEMENTS: glycerol 0.2% I TEMPERATURE:37 °C

[OPTICAL_ DENSITY:0D600 from 1.8 to 2.2 |GROWTH__PHASE:transition point
|AGITATION _SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCS024

ORGANISM:Escherichia coli str. K-12 substr. MG1655

|GENETIC_ BACKGROUND:WT |MEDIUM:MOPS minimal medium
|[MEDIUM__ SUPPLEMENTS: glycerol 0.2% I TEMPERATURE:37 °C
|GROWTH__PHASE:stationary phase |AGITATION_SPEED:200 rpms

Lrp

Kroner et al., 2019

BSCS025

ORGANISM:Escherichia coli str. K-12 substr. W3110
|GENETIC_ BACKGROUND:WT |MEDIUM:LB medium
|[MEDIUM__ SUPPLEMENTS:ZnS04 500 pM |TEMPERATURE:37

ZraR

Rome et al., 2018
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Dataset ID |Growth Conditions TF Reference
|OPTICAL_ DENSITY:0D600 of 0.6

BSCS026 ORGANISM:Escherichia coli str. K-12 substr. MG1655 FIhDC |Fitzgerald et al.,
|GENETIC_BACKGROUND:fIhC-3xflag |IMEDIUM:LB medium 2014
|AERATION:aerobic ITEMPERATURE:37 °C |OPTICAL_DENSITY:0D600 from 0.5
to 0.7

BSCS027 ORGANISM:Escherichia coli str. K-12 substr. MG1655 FIhDC |Fitzgerald et al.,
|GENETIC_ BACKGROUND:flhD-3xflag |[MEDIUM:LB medium 2014
|AERATION:aerobic ITEMPERATURE:37 °C |OPTICAL_DENSITY:0D600 from 0.5
to 0.7

BSCS028 ORGANISM:Escherichia coli str. K-12 substr. MG1655 PhoB |[Fitzgerald et al.,
|GENETIC_ BACKGROUND:phoB-3xflag IMEDIUM:MOPS minimal medium not published
|MEDIUM_ SUPPLEMENTS:phosphate(3-) 0.2 mM

BSCS029 ORGANISM:Escherichia coli str. K-12 substr. MG1655 PhoB |Fitzgerald et al.,
|GENETIC_BACKGROUND:phoB-3xflag |MEDIUM:MOPS minimal medium not published
|IMEDIUM_ SUPPLEMENTS:phosphate(3-) 1.32 mM

Table 4. Summary of the ChIP-seq datasets, and their associated growth conditions and references.

Reference & availability

Data

The full collection of HT datasets can be consulted from the RegulonDB portal:
http://regulondb.ccg.unam.mx

The RegulonDB-HT documentation is available at github:
https://github.com/PGC-CCG/RegulonDB-HT

Publication

This work was published in the following article:

RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional
regulation in Escherichia coli K-12 (2022)

My main personal contributions to this article include methodology and software
development for the conception of the framework, the generation of standardized TSS,
TU and TTS datasets, and the complete processing of the ChIP-seq collection.
Additional contributions include the writing, editing and reviewing of the article
manuscript, the production of three complete figures, the conception and/or
formatting of three others, and the final submission.
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Abstract

Genomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different
players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets
are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating
such a wealth of data is not straightforward. No resource currently exists that offers all available high and low-throughput data
on transcriptional regulation in Escherichia coli K-12 to easily use both as whole datasets, or as individual interactions and regu-
latory elements. RegulonDB (https://regulondb.ccg.unam.mx) began gathering high-throughput dataset collections in 2009,
starting with transcription start sites, then adding ChIP-seq and gSELEX in 2012, with up to 99 different experimental high-
throughput datasets available in 2019. In this paper we present a radical upgrade to more than 2000 high-throughput datasets,
processed to facilitate their comparison, introducing up-to-date collections of transcription termination sites, transcription
units, as well as transcription factor binding interactions derived from ChlP-seq, ChIP-exo, gSELEX and DAP-seq experiments,
besides expression profiles derived from RNA-seq experiments. For ChIP-seq experiments we offer both the data as presented
by the authors, as well as data uniformly processed in-house, enhancing their comparability, as well as the traceability of the
methods and reproducibility of the results. Furthermore, we have expanded the tools available for browsing and visualiza-
tion across and within datasets. We include comparisons against previously existing knowledge in RegulonDB from classic
experiments, a nucleotide-resolution genome viewer, and an interface that enables users to browse datasets by querying their
metadata. A particular effort was made to automatically extract detailed experimental growth conditions by implementing an
assisted curation strategy applying Natural language processing and machine learning. We provide summaries with the total
number of interactions found in each experiment, as well as tools to identify common results among different experiments.
This is a long-awaited resource to make use of such wealth of knowledge and advance our understanding of the biology of the
model bacterium E. coli K-12.
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DATA SUMMARY

All the data are available on the RegulonDB portal (https://regulondb.ccg.unam.mx/). We also provide all the code and docu-
mentation associated with these new collections:

RegulonDB software project (https://github.com/regulondbunam/). Database, web services, and web interface.

RegulonDB-HT documentation (https://github.com/PGC-CCG/RegulonDB-HT). Programs used to generate uniform collections
of HT objects, mapping them to low-throughput (LT) data, and a manual describing the associated processes and formats.

RegulonDB-HT dataset docker (https://doi.org/10.5281/zenodo.6376425). From Zenodo, the users can find a link to this docker
container with the dataset collections in MongoDB, the web services in GraphQL, and the web interface in React.

ChIP-seq pipeline (https://github.com/PGC-CCG/SnakeChunks). A library based on the snakemake workflow management
system, which was used to design a generalizable workflow to perform reproducible ChIP-seq analyses [1].

EcoliGenes library (https://github.com/PGC-CCG/EcoliGenes). This R-based library was developed to efliciently deal with
frequent and all too-often fastidious tasks related to the programmatic manipulation and comparison of genes and TFs. This
library was used in multiple scripts and pipelines mentioned in this article to identify the wide variety of names and IDs used to
report genes and TFs in databases and literature, the existence of multiple synonyms, spellings, and outdated bnumbers, and to
convert them all into the most up-to-date symbols and bnumbers. It also includes a variety of functions that allow to efficiently get
additional information on genes (coordinates, length, product, etc.) or specific genome coordinates (type of region, closest gene)
directly into R data.frames, and to convert genomic coordinates from E. coli K-12 genome version NC_000913.2 to NC_000913.3.

The authors confirm all supporting data, code, and protocols have been provided within the article or through supplementary
data files.

INTRODUCTION

Genomics has enabled a variety of technologies for the genome-wide identification of different elements defining transcription
initiation, gene regulation, and transcription unit organization in any organism, provided its genome has been sequenced. In
bacteria, these elements include TFs, TF binding sites (TFBS) that show specific binding of TFs, out of which we distinguish TF
regulatory sites (TFRS; defined as TFBSs that are involved in transcription regulation) [2]. Moreover, genes can be transcribed
either individually, or in polycistronic units, defining transcription units (T'Us), which are delimited by transcription start sites
(TSSs) and transcription termination sites (T'TSs). As reported recently, with the development of technologies and the extension
of our knowledge of transcriptional regulation, several classic definitions had to be extended. For instance, both promoters and
terminators can have multiple TSSs and TTSs, respectively [2]. These updated definitions have been timely incorporated in
RegulonDB [3] and in EcoCyc [4], another major resource containing information on transcriptional regulation of E. coli K-12.

Genome-scale technologies allow for the identification of several types of elements, such as TFBSs, gene expression profiles, and
genomic elements including TUs, promoters and terminators. Approaches for TFBS identification include in vivo chromatin
immunoprecipitation sequencing (ChIP-seq) [5, 6], its higher-resolution variant ChIP-exo [7], in addition to in vitro approaches,
such as biotin-DNA affinity purification sequencing (DAP-seq) [8] and genomic systematic evolution of ligands by exponential
enrichment (gSELEX) [9]. Note that given the binding evidence, it is not certain that proteins considered as TFs in these HT
binding experiments are bona fide TFs, since many of them lack evidence of change in gene expression. Gene expression profiles
are obtained using RNA-seq. Higher-resolution variants of RNA-seq, protecting the 5’-end of transcripts, allow for TSS identifica-
tion at single-nucleotide resolution [10-12], and more recently, for the determination of full-length transcripts, along with their
TSSs and TTSs [13, 14].

Publications reporting these experiments frequently describe a subset of regulatory objects, either spread along the main text [15]
or compiled in tables [16-19]. Authors also provide processed datasets as supplementary material [20, 21], whereas the raw data
are deposited in public repositories, such as NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/gds), the Sequence
Read Archive (https://www.ncbinlm.nih.gov/sra), and the EMBL-EBI's ArrayExpress (https://www.ebi.ac.uk/arrayexpress/).
Extracting and processing such datasets can be challenging. Gathering these types of data in a single resource, such as RegulonDB,
saves a lot of work and accelerates research facilitating data comparison with the accumulated existing knowledge based on classic
molecular biology experiments, as well as comparisons with future novel knowledge.

E. coli K-12 is the prokaryote with the largest number of regulatory systems studied by classic experimental methods of molecular
biology. Our laboratory at UNAM has gathered this rich, classic low-throughput (LT) knowledge for more than two decades,
feeding both RegulonDB and EcoCyc [3, 4]. With the publication of large collections resulting from HT sequencing methods,
we were concerned by the potential dilution of the LT classic corpus, historically considered as the gold standard, with larger
collections identified by novel approaches that involve a large number of processing steps in the final identification of regulatory
objects. We therefore considered offering users HT results as separate collections, the way we were offering a few genome-wide
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Impact Statement

RegulonDB has been the main resource for knowledge about transcriptional regulation and organization in E. coli K-12, and has
been accessed intensively since its first publication in 1998 [52]. For instance, in the last 4years, RegulonDB was accessed an
average of ~16300 times per year, and citations to RegulonDB articles quickly count in the hundreds. This curated database
started more than 20years ago, before the advent of high-throughput (HT) experimentation, gathering data obtained by tradi-
tional methods, with some HT data added later on. Here we present a major undertaking in ensuring high coverage of the latest
HT experimental data in RegulonDB, by incorporating more than 500 HT datasets for transcription factor (TF) DNA-binding, in
addition to 1864 RNA-seq datasets generated under different growth conditions and/or genetic backgrounds. Another novelty
in this BioResource is the curation effort to associate each dataset with its corresponding detailed metadata that is key for
its utilization. The value of having the derived genomic features, or objects, from different kinds of experiments, available in a
single repository, will add to the already acknowledged value of RegulonDB to the scientific community.

datasets of TSSs generated by our collaborators back in 2009 [22]. We thus gathered datasets of TFBSs obtained by ChIP-seq
and gSELEX in versions 8.0 [10] and 9.0 of RegulonDB [23]. Detailed manual curation has been devoted to extract TFRSs
from those publications, for which additional evidence showing a change in expression of a nearby target gene [24] supports a
regulatory interaction. Those have been uploaded into EcoCyc and RegulonDB with a clear HT evidence type along with those
identified by classic LT methods. In addition to COLOMBOS with expression data [25], the Transcription Profile of Escherichia
coli (TEC) database [26], released in 2016, offers gSELEX data in E. coli and the PROkaryotic Chromatin ImmunoPrecipitation
database (proChIPdb, [27]), recently released, offers ChIP-seq and ChIP-exo datasets. However, to our knowledge, there is no
comprehensive resource facilitating access in a single place to the diverse wealth of data of different types of objects relevant to
the regulation of gene expression in E. coli K-12.

In this article we present a radical upgrade of RegulonDB, offering up-to-date collections of TFBSs identified from ChIP-seq,
ChIP-exo, gSELEX, and biotin-modified DAP-seq approaches, as well as TSSs, TTSs, TUs and a large collection of RNA-seq expres-
sion profiles. For most of them we offer the data published by the authors, extracted either from publications or from dedicated
databases. We also processed some collections from available raw data using uniform pipelines reducing their methodological
differences or batch effects.

Knowing the biological conditions and genetic background supporting a binding site, an expression profile, the mapping of
transcription initiation, or a transcription unit, is crucial to compare them and locate them in the wider context of additional
knowledge. We used the Microbial Conditions Ontology (MCO) [28] as our theoretical framework to organize this knowledge,
and, as explained below, we also implemented an assisted curation strategy applying Natural language processing (NLP) and
machine learning (jointly named: NLP method) to automatically extract this knowledge. This assisted curation strategy consists
in curating the automatically extracted growth conditions instead of curating conditions from the sources of this knowledge,
saving human effort. Additionally, we added search capabilities, besides reorganizing displays in a way that should considerably
improve the browsing and visualization of the different datasets and collections.

METHODS
RegulonDB-HT data model and definitions

In this work, we offer facilitated access to HT collections. Each collection comprises the curated datasets resulting in a specific type
of object (Fig. 1); and a metadata table containing the complete list of datasets and their curated properties. The specific collection
of TF binding objects has several subcollections based on the type of technology. We conceive a dataset as a set of data from a given
experiment and its growth conditions as detailed in the MCO (culture medium, medium supplements, aeration, temperature,
pH, agitation, growth phase, optical density, genetic background). Metadata tables also include additional information such
as the genome version, features associated with the publications (author list, year of publication, PMID), as well as reported
database identifiers, and any additional pertinent information. Datasets contain data files provided in the original publications
(referred to as ‘author files’), data files with results from our in-house processing pipelines (referred to as ‘uniformized files’), or
both types of files.

A new repository was designed to store the different types of datasets. The classes representing the organization of informa-
tion within RegulonDB-HT, and the types of datasets processed, include TFbindingPeak, TFbindingSite, TranscriptionUnit,
TranscriptionStartSite, TranscriptionTerminationSite and GeneExpression. Each of these are accompanied by their metadata
and growth conditions, and at least one author data file or uniformized data file (Fig. 1). Growth conditions in the GeneEx-
pression collection were obtained using the NLP method explained below.
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Fig. 1. Data model for HT dataset collections represented as a Unified Modelling Language (UML) class diagram. The links represent bidirectional
associations between two classes, and the numbers 1, 0.*, 1.* represent the multiplicity value. For example, the class Dataset can have 0 or 1 Author
DataFile. The components of datasets are the Metadata, defined as properties in the Dataset class, the Growth Conditions, curated manually or using the
NLP method, and related data files, either gathered from authors or processed for uniformity.

The data repository was implemented in MongoDB v4.4.5 (https://www.mongodb.com/), a document-oriented database
manager that provides the flexibility to deal with the variety of information of each type of dataset and collection. The
package for processing the authors' and uniformized data files, and to extract, transform, and load data, was developed
under python 3.9. The ChIP-seq workflows were implemented in snakemake 6.10.0 [29]. Access to data was implemented
through web services that use Node v16.13.0 (https://nodejs.org/es/), the query language GraphQL v15.5.0 (https://graphql.
org/), and Apollo Server Express v2.21.0. A component-based web interface was developed using React v17.0.2 (https://
es.reactjs.org/). The tracks display uses igv.js, an embeddable JavaScript implementation of the Integrative Genomics
Viewer (IGV) [30]. The software and applications related to the database are available at GitHub (https://github.com/
regulondbunam/).

Gathering and processing of the HT data collections

To implement this new framework, we carefully coordinated the different steps involved: manual curation and annotation of
literature, data uniformization, computational mapping and display of the HT collections (Fig. 2).

Data gathering

Original scientific papers about transcriptional regulation in E. coli K-12 are monthly searched in PubMed (https://pubmed.
ncbi.nlm.nih.gov/). Then, articles are selected and curated as described previously [3]. For this work, databases associated
with the publications were also explored, these include: Gene Expression Omnibus (GEO https://www.ncbi.nlm.nih.gov/gds)
and the Sequence Read Archive (SRA https://www.ncbi.nlm.nih.gov/sra) from the NCBI, ArrayExpress (https://www.ebi.
ac.uk/arrayexpress/) from EMBL-EBI, Digital Expression Explorer 2 (DEE2 http://dee2.io/), proChIPdb (https://prochipdb.
org/), and TEC (https://shigen.nig.ac.jp/ecoli/tec/top/).

Curation and annotation

The information provided within the original publications was carefully collected and organized into custom metadata tables
(one per collection, or one per subcollection in the case of TF-binding), with metadata and growth conditions for each
dataset. The datasets constructed from authors sources were annotated and organized into the RegulonDB-HT repository.

Normalization and uniformization
To facilitate processing, display and analysis of these datasets, several strategies were used to uniformize and/or normalize certain
datasets.
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Fig. 2. Overview of the RegulonDB HT framework. This diagram summarizes the three types of dataset collections built in RegulonDB HT: i) genomic
features (TUs, TSSs, and TTSs), ii) TF binding and iii) gene expression, displayed as grayscale background columns; and the steps implemented to
generate them: i) data gathering, ii) curation, iii) normalization and iv) integration, displayed as horizontal lanes. Further details are described in
Methods sections regarding datasets.

Mapping and integration

The resulting uniform HT objects were mapped to reference datasets from LT experiments as curated in RegulonDB. As already
mentioned, growth conditions were mapped to the MCO terms and annotated, when available, according to the annotation
framework reported in [28].

TF binding datasets

Data gathering

We are including binding data from four HT technologies: ChIP-seq, ChIP-exo, gSELEX and DAP-seq. The ChIP-seq datasets
encompass two types of data contained in two different tables: data as reported by the authors, and data generated from our
in-house processing of the raw data reported by the same authors. The TFBSs and/or peaks reported by authors were obtained
mostly from supplementary material and the associated information described in the main text of their publications. ChIP-seq
raw samples and metadata were downloaded systematically from the SRA. The ChIP-exo subcollection was retrieved from the
recently published proChIPdb [27]. This subcollection includes datasets tagged in proChIPdb as ‘curated, as well as TF binding
information for OxyR, SoxR, SoxS, and UvrY, from [31, 32].

The gSELEX datasets were extracted from the TEC database [26]. Each TF was searched in the Tab ‘Gene/TF search’ with a selected
cut-off (indicated in the metadata). The data were obtained by copy and paste since it was not possible to download it otherwise.
The datasets contain the TF name, peak center coordinates, target gene, peak location relative to the target, and binding intensity
(%) relative to the highest peak intensity in the experiment. We built 63 datasets for 41 TFs using a defined threshold either
indicated in the corresponding references, or, in their absence, inferred by us to include all targets indicated in the publications.
Ninety-four gSELEX datasets (corresponding to 74 different TFs) were not analysed by the authors, they were only listed in
one publication [26]; for these we took the forty targets with the top binding intensities, and the lowest binding intensity was
registered in the metadata as the cut-off for each dataset. To allow comparisons with data derived from other methodologies, we
offer complete datasets from gSELEX, i.e. with no cut-off, for the nucleoid-associated proteins H-NS, Fis, IHF and HU, as well as
Dps and Dan which have also been proposed as nucleoid-associated proteins [26, 33-36]. Overall, a total of 164 TFBS datasets
(corresponding to 121 different TFs) derived from gSELEX were generated.
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Fig. 3. Steps for growth conditions extraction using our NLP method.

Finally, we obtained the collection of experiments and metadata for 215 TFs in E. coli using biotin DAP-seq from the supple-
mentary material available in [37].

Curation and annotation

To build the dataset component with data as reported by authors (Fig. 2, Curation and Annotation lane), we retrieved the
following features when available: TF name, peak and TFBS features, such as start- and end genomic coordinates, genomic
sequence, statistical values from peak calling or motif prediction, experimental or computational evidence, and the closest gene,
considered as the target gene. The associated metadata, including growth conditions, were also extracted from the publications
and databases mentioned above. Finally, when ChIP-seq experiments were linked to gene expression in the same publication,
we flagged target genes which showed changes in expression and a significant p-value for differential expression, annotating the
resulting TF function as either activator or repressor. These TFRSs support regulatory interactions which are in the process of
being uploaded into EcoCyc and RegulonDB.

Uniformization

We gathered a total of 185 raw data files from 28 ChIP-seq datasets associated with 11 TFs. We processed them in a uniform and
reproducible way using the SnakeChunks library of workflows for HT analysis [1, 29]. This framework ensures the consistency of
analyses, keeps track of the tools and versions used, while also allowing parameter customization. Adapter and quality trimming
were performed using cutadapt with a quality and length threshold of 20 [38]. Read alignment was performed using Bowtie 2 [39]
in local alignment mode against the E. coli K-12 MG1655 genome (version NC_000913.3). Overall sample quality was checked
using FastQC [40] (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and multiQC [41]. Peak calling was performed
using the latest version of Macs 3 [42], with a g-val threshold of 1.10-3 and the following options: --nomodel --shift 0 --extsize 200.
Then, TFBSs were identified from the peak sequences via pattern-matching using RSAT matrix-scan [43] and the reference TF
motifs built from RegulonDB 10.5 [3], and motif-specific thresholds defined by RSAT matrix-quality [44]. Two exceptions were
made with GlaR and Nac, where a putative binding motif was obtained through de novo motif search using RSAT peak-motifs
with a significance threshold of 0 [45], in order to detect binding sites. A new motif was generated for each individual dataset,
using TFBS sequences and the RSAT tool convert-matrix [46]. For the other types of binding datasets, we retrieved the data as
reported by the authors, in particular: start- and end positions, intensity, and the closest gene to each peak.
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Fig. 4. RegulonDB-HT search tool. This tool gives access to all types of HT datasets retrieved so far, but an example of access to a TF binding HT dataset
is shown. (a) RegulonDB portal. (b) RegulonDB HT collections. (c) Content of a TF binding dataset, from the ChIP-seq subcollection.

Mapping and integration

With the aim of comparing the TF binding data derived from HT technologies with the knowledge derived from LT studies, we
performed the mapping of TFBS datasets to the RegulonDB subset of TFRSs with classical evidence. We mapped our in-house
processed ChIP-seq datasets at the level of peaks and sites: a peak is considered a match when a known binding site falls within
its coordinates, and a site matches when its centre position is at most 30 bp away from a known site (in average, motifs are 20 bp
long, and a 10-bp distance may be close enough for protein interaction). Mapping datasets from authors proved to be more
difficult since not all of them were generated using the same version of the genome, and the precise location of peaks or motifs is
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Table 1. Number and content of RegulonDB HT datasets

Object Strategy No. of datasets No. of objects Additional information
Curated from papers Identified from raw data

EXPRESSION PROFILES

Gene expression RNA-seq 1864 ND 4618°

TF BINDING

TF Binding ChIP-seq 29¢ 6585 peaks 13167 peaks Table S2

5108 sites

ChIP-exo 94 23170 peaks ND Table S3
gSELEX 164 35022 peaks ND Table S4
DAP-seq 215 19540 peaks ND Table S5

TUs, TSSs and TTSs

TUs RNA-seq 5 123474 ND Table S6

TSSs RNA-seq 16 680491 ND Table S7

TTSs RNA-seq 5 53267 ND Table S8

a, The total of SRRs retrieved, which include 575 only in DEE2, 914 (820 GSMs) only in GEO, and 375 (337 GSMs) in both DEE2 and GEO

b, Average number of genes per dataset.

¢, Including 27 processed by authors and 28 processed in house.

d, The number of these objects may be higher from the original publications as they were calculated per dataset, after our uniformization
process. ND. Object identification not determined by the RegulonDB Team.

not always available in publications. Thus, the datasets processed by authors were mapped at the level of the TF-gene interactions.
For each TF binding dataset, target genes were compared against the known regulatory interactions from RegulonDB, taking into
account the evidence they are associated with (Table S1). Positive mapping results display the type of evidence (classical strong
or weak, or computational prediction) of the corresponding interaction in RegulonDB.

TU, TSS, and TTS datasets

Data gathering

Datasets of TUs, TSSs and TTSs came from different sources, though their growth conditions were not always consistently docu-
mented. TSS datasets generated by the group of Enrique Morett [10, 22], as well as those from the laboratory of Gisela Storz [47],
were already available in RegulonDB [23]. Four collections are from Cho, B. K., et al. [48], with additional collections obtained
from publications that implemented the identification of TUs using different approaches, which concomitantly identified TSSs and
TTSsas TU boundaries [11, 13, 14]. A dataset not-yet-published of more than 5000 TSSs was kindly provided by Joseph T. Wade.

Curation and annotation

Given that transcriptional regulation involves a machinery that deals with different growth conditions, we gathered the precise
growing conditions under which these different elements were identified, directly requesting authors for the information when it
was not detailed in the publications. Key growth conditions obtained through personal communication include culture medium,
either minimal or rich, and growth phase, either exponential or stationary phase.

Uniformization

When necessary, we updated object coordinates to the current genome version NC_000913.3. While the original datasets came in
a variety of formats, we extracted the most relevant features for each type of collection, and generated uniform bed files for each
dataset to allow their visualization in our genome browser. Objects that shared the same start, stop and strand information were
considered duplicates and merged as single objects. Finally, when objects provided in a single file by the author were associated
with distinct growth conditions, they were separated in distinct datasets (see dataset definition in the Methods section).

Mapping and integration
The uniform TSS datasets were mapped against RegulonDB promoters, and were considered a match when they fell within a
5-bp distance of a known TSS. TUs and TTSs will also be mapped in the near future. Those three uniformized collections were
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the black dots in the bottom rows. (b) Average percentage of TF-gene interactions with classical evidence in RegulonDB, identified in data processed
by authors.

integrated into our genome viewer. The original author datasets were not mapped nor integrated into the genome viewer, since
they come in a variety of formats and genome versions.

Gene expression datasets

Data gathering

We collected RNA-seq experiments from two different sources, GEO and DEE2. A total of 1429 experiments were retrieved from
GEO using ‘RNA-seq and E. coli’s taxon id (txid562) as a query. We also obtained 1255 experiments from DEE2 that were not
found in our initial GEO query.

Curation and annotation

We filtered these datasets based on the type of experiment and sequencing format used, retaining only RNA-seq experiments, and
removing those performed with SOLiD sequencing, as our pipeline is tailored towards Illumina. We also filtered out the datasets
that were associated with strains other than K-12. Of the 2684 total samples, we uploaded into RegulonDB the 1864 that could be
processed by our pipeline (see Normalization subsection below). This collection is up-to-date as of the end of October 2021. The
metadata were also retrieved from the corresponding database. We used the NLP method to extract growth conditions from the
metadata files provided by the authors to complement the datasets obtained from GEO. For experiments only found in the SRA
(retrieved from DEE2), we used NCBI’s Entrez tool, along with custom software, to gather the metadata. In particular, when the
metadata were missing or scarce, we used the python package Beautiful Soup four to perform web-scraping.

To gather training data for our NLP method, we selected GEO SOFT files containing metadata of studies performed with different
technologies such as RNA-seq, ChIP-seq, and ChIP-exo, available in previous versions of RegulonDB. In total, the SOFT files of 228
GEO samples from 27 GEO series were gathered (Fig. 3). We automatized SOFT files download using the R package GEOquery.
We manually curated and tagged the following features describing growth conditions: organism, genetic background, culture
medium, medium supplements, growth phase, OD, temperature, pH, aeration, agitation, and genome version.

Manually tagged contexts from 228 SOFT files were used to train and test a linear chain Conditional Random Field (CRF):
70% for training and cross-validation, and 30% for testing. In addition, we manually obtained lists of keywords related to
some types of growth conditions. A CRF is a probabilistic framework for tagging and segmenting sequence data based on the
conditional probability P (y|x) of a sequence of tags y = y;...y» given a sequence of observations x = x;... x, [49]. In this case,
x is the sequence of words of contexts from the SOFT files, and y is the sequence either of tagged growth conditions (‘Air,
‘Phase) etc.), or the label ‘Other’ in other cases. The CRF probabilities are based on feature functions which may consider any
feature of x; (e.g. the part-of-speech tag, the lemma, if it contains the symbol “*, if it appears in a list of keywords) and the
transition y;_; — y; (e.g. ‘Phase’ before ‘Air’). For the final output, the consecutive words with the same label were collapsed
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Fig. 6. Number of TFRSs from classic RegulonDB (blue bars), those found in in-house processed ChIP-seq peaks (yellow bars), and those identified in
peaks through pattern-matching, using RegulonDB TF muotifs (grey bars).

into a fragment of text, while the probabilities were summarized as the mean. This approach has been successfully applied
previously for information extraction and it does not require a lot of training data [50].

Normalization

We downloaded the fastq files from the SRA for all datasets to be homogeneously processed by our sequence analysis
pipeline. We aligned all samples to the E. coli reference genome NC_000913.3 using HISAT2. Our alignments are always
run as unpaired; and when the metadata allow determination of the library preparation kit used, we provide the appropriate
strandedness parameters, which indicate whether reads are to be expected on the same, or opposite strand of the mRNA
transcript. We performed DEseq-normalization to facilitate comparisons across different datasets. Shortly, we created a
‘pseudo-reference’ sample, where we obtained the geometric mean of each gene’s expression, measured in counts, FPKM/
RPKM (depending if the experiment is paired-end or single-end, respectively), and TPM. Each gene in a given sample was
divided by its pseudo-reference value, and a scaling factor for each sample was obtained by taking the median of these values.
The final DEseq-normalized values were obtained by dividing each sample’s expression by the sample scaling factor. In total,
1864 samples were processed without errors by our pipeline.

Mapping and integration

We took two approaches for mapping the automatically extracted growth conditions to MCO identifiers comparing the extracted
term with the MCO term: (i) exact term matching and (ii) string similarity. String similarity was implemented using the python
library fuzzywuzzy v0.18.0 (https://pypi.org/project/fuzzywuzzy/) taking into account string length differences calculated as
Levenshtein distances, i.e. the minimum number of edits of one character (insertions, deletions or substitutions) required to
change one word into the other. String similarity allowed us to match, for example, the extracted term ‘W2 minimal medium’
with the MCO term ‘W2 minimal media’ (ID: MC0O000003317).

RESULTS
General overview of HT datasets and objects

As mentioned above, we report several collections of HT datasets that hold distinct types of objects (genomic features, TF binding
sites, gene expression profiles) from distinct types of HT experiments (RNA-seq, ChIP-seq, gSELEX, DAP-seq, ChIP-exo0). Some
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collections contain two dataset tables: data as reported by the authors, and data uniformized and/or normalized in-house. Data as
reported by authors were obtained from publications curated by us, or from the authors’ databases, such as TEC and proChIPdb,
generated by the Ishihama and Palsson groups respectively (Fig. 2, lane 1). Data processed by other authors frequently vary in
reference genome used and/or format, so we processed the author datasets to map TUs, TSSs, and TTSs with the latest reference
genome and to display them in the same format (Fig. 2, lane 3). Finally, we integrated (i) data files, (ii) metadata, and (iii) growth
conditions to build the RegulonDB HT datasets (Fig. 2, lane 4 and Fig. 4).

We generated three classes of RegulonDB HT datasets, roughly grouped by type of objects (described in more detail in the
following sections). For example, gene expression datasets comprise the largest collection of datasets and objects, as expected,
but are associated with only one object type and strategy, i.e. RNA-seq. In contrast, TF binding datasets were produced using
several strategies, i.e., ChIP-seq, ChIP-exo, gSELEX, and DAP-seq. Lastly, TU, TSS, and TTS datasets include different objects
identified using variations of one strategy, i.e. RNA-seq (Table 1).

Browsing the data

All the curated and annotated information, as well as the standardized data, can be found in the RegulonDB portal
(https://regulondb.ccg.unam.mx/). From the menu ‘Integrated Views and Tools, in the ‘Browse RegulonDB’ section, the
option ‘RegulonDB-HT datasets’ is available (Fig. 4a).
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Table 2. F1-score in testing for types of growth condition

Growth condition Precision Recall F1-score Support*
Optical density 1.00 1.00 1.00 21
pH 1.00 1.00 1.00 10
Technique 1.00 1.00 1.00 33
Culture medium 1.00 0.80 0.89 56
Temperature 0.86 0.80 0.83 15
Agitation 1.00 0.29 0.44 7
Growth phase 0.94 0.76 0.84 21
Aeration 0.63 0.59 0.61 88
Genetic background 0.89 0.86 0.88 78
Medium supplements 0.88 0.84 0.86 136
Genome version 1 0.5 0.667 6

*Support stands for the number of growth conditions available in testing data for evaluation.

An initial page allows the user to select from all types of RegulonDB collections (Fig. 4b). The search builder, which is the
subsequently displayed page, allows users to choose search filters associated with the RegulonDB collections’ metadata. Any
dataset that meets the search criteria will be displayed in a list ordered according to the number of terms found in it. The user
will be able to select the desired RegulonDB dataset by clicking its link in the results list. The content of the selected dataset looks
as shown in Fig. 4c), and is composed of three main components: (i) metadata, (ii) growth conditions, and iii) related data files.
In the Data Files section, users can navigate through two tabs, one to access data as reported by authors, and the other one to
access the standardized data produced by the RegulonDB Team.

When uniformized data are available, it is possible to visualize them in the IGV Tool, where the genes, peaks, TFBSs found in
peaks, and TFRSs of the TF already stored in RegulonDB (RegulonDB TFRSs) are displayed as tracks. In the RegulonDB TFRSs
track, the colour of sites is associated with the function of the TF in line with the current EcoCyc and RegulonDB TFRSs colour
code, i.e. green for activators and red for repressors (Fig. 4c).
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Optical Density (OD)
Temperature
Aeration

Growth phase
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Medium
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Fig. 8. Foreground bar plot: fraction of SRRs for each type of growth condition. GC term types retrieved for RNA-seq datasets from GEO (1289 SRRs,
1157 GSMs, 95 GSEs), 3224 extracted GC terms: 2680 were mapped and 544 non-mapped with MCO entities. Background bar plot: fraction of GSMs for
each type of growth condition in the training data (228 GSMs from 27 GSEs).
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HT data content details

In every uniformized RegulonDB HT dataset (Table 1 and Fig. 2, bottom lane), we provide the precise genomic coordinates of
objects together with additionally processed information, such as the closest downstream gene(s) in the case of TFBSs and TSSs,
and the gene content, in the case of TUs. Another column indicates the list of objects that match previously known objects identi-
fied by LT methods as indicated in the evidence type in RegulonDB. This pre-processed column should be highly valuable for users
performing comparative analyses. In a future version we will pre-process the comparisons across the multiple HT collections.

In datasets with information provided by the authors, the confidence may vary. For instance, of the TUs identified by Yan, B. et al.
using SMRT-Cappable-seq, some have a well-identified terminator either by sequence structure or because a significant fraction
of transcripts that start at a given TSS terminate at a well defined TTS position. These TUs have a higher confidence level than
the other TUs, defined by the end of one or very few long transcripts [13]. In the case of TFBSs, users can identify sites matching
previously known sites stored in RegulonDB LT and/or additional evidence supporting change in expression of downstream genes.

TF binding datasets

The ChIP-seq subcollection is conformed by 29 datasets corresponding to 12 different TFs, of which 28 were processed using
our dedicated pipeline (one dataset does not come with raw data), and 27 are associated with author files (two datasets are not
associated with a publication). Overall, besides those exceptions, 26 datasets associated with ten TFs are provided with two tables:

one with data processed by authors and built from the publications, and one with data uniformly processed in-house from raw
data (Table S2).

The ChIP-exo subcollection consists of 94 datasets built with data processed by authors, which include 87 datasets corresponding
to 73 different TFs assayed independently, and seven datasets derived from assays of a mixture of various TFs (Table S3).

The gSELEX subcollection consists of 164 datasets built with data processed by authors and extracted from the TEC database,
corresponding to the binding of 121 different TFs assayed in vitro in presence or absence of effector molecules (Table S4). However,
as mentioned in methods, this is a heterogeneous collection given the limitations in their extraction: 63 datasets for 41 TFs had
thresholds defined by the authors, for 94 datasets of 74 TFs we arbitrarily included the top 40 sites, and for seven datasets we
included all interactions with no threshold (see Methods section).

Finally, the DAP-seq subcollection comprises 215 datasets of data processed by authors and built from the supplementary material
of a single publication [37], which corresponds to the binding of 211 different TFs assayed in vitro. Some datasets correspond
to the same TF because their different subunits were assayed independently (Table S5). Some TFs have been studied by more
than one of these methodologies. For example, H-NS, Fur, Fis, OmpR, ZraR and PhoB are represented in all four subcollections.
Moreover, some TFs without classical evidence of regulatory interactions have been studied exclusively by one of these four
HT strategies, this is the case for 26 and 15 TFs from ChIP-exo and gSELEX, respectively. Six TFs with at least one regulatory
interaction with classical evidence have no data in any HT binding dataset. Fig. 5a shows the total number of TFs present in the
different subcollections and their comparison with classic data from RegulonDB.

We estimated the proportion of TF-gene classic interactions present in RegulonDB that were recovered in the datasets that we
constructed from author data. This percentage for every dataset is shown in Tables S2-S5 (available in the online version of this
article), Fig. 5b displays the average of such percentages for all datasets within each methodology. However, these numbers have
to be taken with a grain of salt, first because the TFs shared by the different methodologies are quite variable, as shown in Fig. 5a,
second the recovery is quite variable for different datasets provoking a large standard deviation. Furthermore, this was done
only for 63 datasets from 41 TFs of the gSELEX collection since only those have a cut-off defined by the authors. The recovery of
known sites is an index frequently reported in HT publications. Note that in spite of the fact that classic evidence is mostly in vitro
binding, there is not a clear cut tendency of HT in vitro methods to recover more classic interactions than the in vivo methods.

As mentioned already, for 28 ChIP-seq experiments we also used a uniform bioinformatics pipeline to identify TF binding sites
from raw data. In such cases we provide in the same dataset two tables, one with the data as extracted from authors, and one with
the results of our in-house pipeline. We generated position weight matrices (PWMs) based on the in-house obtained sites for
each dataset in addition to those existing in RegulonDB, and provide the distribution of sites in relation to the start of genes or
promoters. Fig. 6 shows the number of classic TFRSs in RegulonDB that are found in the peak sequences as well as those found
in peaks by motif matching. The results are quite variable depending on the TF studied. In particular, the Lrp and H-NS datasets
show a low rate of recovery, which can be explained by the poor specificity of their PWMs in RegulonDB.

TSS, TU and TTS datasets

We gathered a collection of 16 TSS datasets from seven articles and one unpublished dataset (see Methods section), for a total
of 68049 objects (Fig. 7). The TU and TTS collections each comprise five datasets from three articles, for a total of 12347 and
5326 objects respectively (see Tables S6-58). The original data processed by the authors as well as our uniform datasets were
compared with the RegulonDB classic collection. HT TSSs were mapped to classic TSSs when located within five bases on the
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same strand. It is interesting to note that even though the total number of TSSs varies from 12000 to slightly less than 300 in the
different datasets (Fig. 7a), the number of HT TSSs that match with LT TSSs is much less variable (Fig. 7b), just like the numbers
of classic TSSs that match with HT datasets (Fig. 7c). It should be noted that those matches, although similar in number, are not
symmetrical, as a result of the window-based mapping.

Gene expression datasets

To ensure high-quality comparisons of expression data, we assessed RNA-seq samples based on sequence read alignment metrics.
We tagged as ‘PASS’ those samples with more than five million raw reads, more than 90% of their reads aligned to the E. coli
reference genome, and more than 90% of genes with non-zero coverage. Out of 1864 total experiments, 648 were tagged as PASS.
This collection offers processed expression values at the gene level. The expression values (counts, RPKM/FPKM, and TPM) from
all 1864 experiments were normalized using the DEseq method described above, allowing users to make comparisons among
any desired combination of experiments, whether or not they are tagged as ‘PASS.

The growth conditions for the GEO collection were extracted by our NLP method as mentioned in the Methods section. The
trained predictive model (CRF) was used to automatically extract the growth conditions from the SOFT files associated with
RNA-seq data (Fig. 3). The F1-score (the harmonic mean of precision and recall) of our predictive model was 0.81 in a five-fold
cross-validation, and 0.83 in testing. Precision, also known as positive predictive value, was the proportion of true positive growth
conditions among all conditions classified as positive by the model. Recall, also known as sensitivity, was the proportion of known
positive growth conditions classified as positive by the model. Most growth conditions attained F1-scores above 0.80 (Table 2).

Following our assisted curation strategy, the most accurately predicted NLP-extracted growth conditions terms (probability >0.7)
were manually reviewed. Only the correctly predicted terms were uploaded to the searching tool for RNA-seq datasets. These
correct terms of growth conditions were mapped to MCO IDs before uploading to RegulonDB.

Our NLP method was applied to 1289 SOFT RNA-seq files, associated with 95 GSEs, 1289 SRRs (SRA accession IDs) for a total
of 1157 GSMs or samples. We mapped to MCO IDs ~83% of terms (15% by exact matching, and ~68% by string similarity). The
unmapped terms were also included in the RNA-seq searching tool of RegulonDB.

In summary, our NLP method provided 3224 terms supporting queries for 84 GSEs, 1131 SRRs for a total of 1001 GSMs. The
percentage of SRRs (coverage) with any type of growth condition was different for each type (foreground bar plot in Fig. 8). For
instance, temperature, medium and genetic background are reported in more than 35% of the 1001 (100%) SRRs. In spite of our
good F-scores, we know from the training set that a large fraction of data is simply missing (background bar plot in Fig. 8). A
lack of data for pH, agitation speed and optical density in the training set is shown, as in the NLP-extracted data. This is a pity
since it limits the comparability and usability of the data, a well-known problem in database efforts in genomics [51].

On the other hand, we gathered metadata for 575 SRRs that were not found in GEO and had no available SOFT RNA-seq files.
Using NCBT'’s Entrez tool we were able to retrieve at least one attribute for 520 SRRs. Genetic background and medium supple-
ments were often recovered (520 and 506 SRRs, respectively). Culture medium and growth phase were recovered for only 91 and
80 SRRs, respectively (Table S9). Thus, we have metadata that allow datasets to be searched for 928 out of 1157 RNA-seq datasets
from GEO, and for 520 out of 575, SRA experiments that could not be found in GEO.

All expression data is linked to a specific SRR ID. One GEO sample (GSM ID) could include more than one SRR ID and some
SRRs are not found in GEO. We processed 1289 SRRs (1157 GEO samples) by the NLP method described earlier and the remaining
575 by the NCBI's Entrez tool strategy. We were able to retrieve at least one metadata attribute for 1131 (out of 1289) and 520
SRRs (out of 575), respectively. This implies that we do not have any metadata associated with 416 SRRs. All these experiments
can only be searched based on their SRR ID in RegulonDB HT.

DISCUSSION

As mentioned before, gathering all publicly available HT data from E. coli K-12 in a single place would be of great benefit to
advance research. In this work we present RegulonDB version 11.0, a major upgrade that offers the largest variety of publicly
available HT data relevant to transcriptional regulation of E. coli K-12. We did not however update our ChIP-chip nor microarray
datasets, and we did not include any Hi-C data.

Most HT data are deposited in repositories like GEO and ArrayExpress. Although GEO requires users to complete major fields to
upload genomic datasets in a uniform way, there is a lack of guidelines, or final supervision, to guarantee standardized annotations.
The lack of essential information allowing the reproducibility of experiments in the literature about transcriptional regulation
became evident when we curated 600 papers in high detail to build the MCO, and found none that described the growth rate, and
less than 100 provided the pH, among other properties [28] This represents a major known bottleneck for proper identification
and use of HT datasets in downstream analyses [51], requiring manual curation of metadata prior to choosing a final collection
to work with. Our application of a method combining Natural language processing and machine learning for the automatic
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extraction of growth conditions from GEO files may greatly facilitate re-analysis of these datasets. We are working on improving
the predictive model for growth condition extraction.

Another recurrent issue with HT datasets is that there is no standard way of processing the raw data, and a wide variety of
tools and approaches can be used, depending on the original publications. Curation has been historically limited to reflect,
as precisely as possible, what authors publish and report. A major novelty in RegulonDB 11.0 is the addition of in-house
processed collections. The normalized RNA-seq collection standardizes analyses across individual datasets, in principle
setting the basis for future tools that would allow users to select their ‘control’ and ‘experimental’ RNA-seq datasets and
obtain the relative expression of novel comparisons. The uniformized ChIP-seq subcollection was generated using our
publicly-available pipeline (see Methods and Data summary sections for details). This ensures its reproducibility, which is a
frequent concern when analysing published datasets from numerous sources [1, 29]. Finally, we also offer uniformized TSS,
TTS and TU collections. These data were all updated to the current annotated version of the E. coli K-12 genome. As updates
occur, traceability will be supported by the corresponding versions in GitHub, keeping all details of the tools, parameters
and thresholds at hand. The diversity of information and formats provided by authors makes it difficult to compare in a
comprehensive way the results of our in-house processing with those provided originally, so we leave users with the liberty
of choosing which dataset to use. In a future version we will add comparisons between them.

In the current version we are offering comparisons of some HT datasets with classic LT data from RegulonDB, considered as
a gold standard. This way, users can easily evaluate how each HT dataset reproduces known data from classical experiments,
which is the first question to arise when applying HT strategies. In the future we will compare as many HT datasets as possible
with their corresponding classic corpus, and we plan also to provide comparisons across HT datasets. This information should
be highly valuable for users to compare results from different sources and technologies.

Finally, we designed a new integrated web interface, including a genome viewer and increased search capabilities. Previous
RegulonDB searching capabilities were limited to TF and object type. We now allow searching for many other fields like,
author, PMID, TF, growth conditions, and many more. These metadata are valuable for search and re-analysis of more than
two thousand HT datasets gathered in this version.

Besides the technical aspects of the management of HT datasets we described above, we have been revisiting fundamental
biological concepts. An important conceptual distinction that HT methods require for their precise description is the one
between the ability to bind to specific DNA operator sites, and the capacity to alter the activity of a given promoter. Current
HT publications frequently combine a binding experiment like ChIP-seq for instance, with a global expression experiment
(i.e. RNA-seq) performed in the same experimental conditions. In this way it is possible to identify those sites that bind,
defining TFBSs, and those that bind and modify the expression of a downstream gene, defining TFRSs. The distinction
between TFBSs and TFRSs was proposed in the recent update of concepts of gene regulation [2], motivated in fact by the
type of data generated with novel post-genomic technologies. By the same token, there are many potential TFs that have
been assayed for instance with DAP-seq and gSELEX but have no evidence yet of any concomitant change of expression for a
target gene, and therefore, as mentioned before, they do not satisfy the requirements to be fully identified yet as TFs. Lastly,
we formally distinguished promoters from TSSs and terminators from TTSs, terms that are frequently used interchangeably
in publications.

The version 11.0 of RegulonDB, presented here, represents an important quantitative and qualitative upgrade, offering novel
features that make our repository the most comprehensive resource to utilize the wealth of HT data available, together with
knowledge accumulated through decades of research with classic molecular biology approaches. We expect this unique
resource will help advance research in E. coli K-12.
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Chapter 5.

An alternative collection of binding
motifs

Problematic

As mentioned before, transcription factors can bind DNA via specific sequences, called
transcription factor binding sites. Each TF has its own specific binding motif based on
the DNA patterns its binding domain has affinity with. However, most of these motifs
are still unknown: about 70% of E. coli TFs still have unknown binding patterns, and
some 30% have no binding sites identified at all. Moreover, some of the available
motifs are somewhat fuzzy, for they’re built on few DNA sequences.

In this chapter, I explain how I used RegulonDB’s carefully curated binding sites
(Tierrafria, Rioualen et al., 2022), together with a pattern-discovery strategy, in order
to propose an alternative collection of TF binding matrices for E. coli K-12. Additionally,
I produced matrices using public ChIP-seq datasets processed using my own
framework (Chapter 3, Chapter 4).

Motifs and matrices of E. coli K-12

All transcription factors comprise a DNA-binding domain, and therefore the ability to
bind to specific locations of the DNA. By aligning the set of DNA binding sequences of a
given TF and computing nucleotide frequencies, one can represent its binding motif in
the form of a degenerated consensus sequence, position-specific scoring matrix
(Stormo et al., 1982), or a logo image (Figure 18). A motif should allow to distinguish a
binding site from the background genomic sequence, and illustrate the specificity of
the binding TF. Its discriminative power can be measured using the information
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content (IC), which denotes how much a given matrix differs from the background
nucleotidic composition.

Figure 18. Example: LexA binding sites and motif. a. A subset of the 44 LexA TFBSs available in
RegulonDB are aligned b. The corresponding consensus sequence based on the IUPAC code. c. The
complete position-specific scoring matrix built from 44 TFBSs. d. The logo representation. Adapted from
Medina-Rivera et al., 2011.

As of today, it is considered that Escherichia coli K-12 has about 300 transcription
factors, although not all of them are formally identified as such (Chapter 1). In
RegulonDB, a TF is considered “confirmed” when it has at least one strong regulatory
interaction characterized based on experimental evidence. As of RegulonDB version
10.10 (released in Feb. 2022), a total of 2,549 binding sites are associated with 189 TFs,
and 92 TFs have a matrix built from a minimum of 4 distinct binding sites sequences,

104



using the program MEME (Bailey et al., 2015) to build matrices from sequences, and
RSAT matrix-quality to select the best matrix for each TF (Medina-Rivera et al., 2011).
Most of this knowledge comes from low-throughput in vitro experiments, and has been
manually curated from the literature into the RegulonDB database. While it is
frequently actualized with new binding sites, the collection of matrices has not been
updated on a regular basis, mostly due to the difficulty of automatizing its construction
and validation. Overall, a comparison of the last three versions of the collection shows
little evolution (Figure 19). While the number of binding sites has increased, as well as
the total information content of the matrices, the length of the matrices has also
increased and the binding information was watered-down, which ultimately results in
a decreased information content per column, or average information content per
position (Figure 19c).
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Figure 19. Statistics from the RegulonDB motif collection and its past versions. a. Summary of the last
three versions of the collection. b. Comparison of the TFs included in each version, and the TFs that
currently have at least 1 or 4 binding sites in the database. c. Evolution of the distribution of several matrix
parameters over time: number of sites used to build each matrix, total information content, matrix length
and information content per column. Note: from version 4.0 the TF RelB-RelE is annotated as RelB. Both
are considered as the same TF in subsequent analyses.

A visual inspection of RegulonDB’s updated matrices shows that a handful of TFs
indeed seem to have weak motifs. On one hand, matrices made of too few site
sequences might not reach a high resolution (Figure 20a), however, on the other hand
a high number of sequences might actually dilute the core motif (Figure 20b). Some
motifs have a poor nucleotidic complexity (Figure 20c), and subsequently have a low
discriminative power. Due to the fact that many TFs form multimers in their active
form, and some of them have various binding sites in the same vicinity, there might
also be larger, spurious motifs as a result (Figure 20d). Lastly, most TFs don’t have a
matrix at all, for their binding sites are mostly or completely unknown.
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Figure 20. Examples of motifs from the RegulonDB collection version 4.0. a. TrpR has a rather
well-defined motif, but shows low confidence due to a limited number of sequences available. b. OxyR has
42 site sequences available, but very little information shows in the logo. c. IcIR has an AT-rich motif that
shows poor specificity. d. MarA has a very large motif, but most of its positions hold little to no
information.

Extraction of motifs through pattern discovery

Obtaining robust motifs is not a straightforward process. A matrix is basically a
representation of the binding information contained in a collection of TFBS, however,
it can fulfill several purposes. It should accurately represent the specificity of a given
TF, allowing it to identify and distinguish said TF binding sites from the genomic
background, as well as from other TFs’ binding sites. A collection of motifs allows one
to classify TFs according to their binding profiles similarity. A good motif can also be
used to quantify the affinity of a given site, to observe variations between several
binding sequences, or even predict novel binding sites from larger genomic sequences.
Furthermore, at a multi-species level, the analysis of motifs and binding sites’
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conservation can give further insights into distinct TF conformations and regulatory
mechanisms (Oliver et al., 2016).

In bacteria, most transcription factors are known to possess HTH motifs in their DBD,
and to be active in a dimeric form (and at times, in tetrameric or hexameric
conformations). Consequently, they tend to have dyadic motifs: a pair of short
sequences (3-5bp) separated by a less conserved sequence, which length is variable
and depends on each TF. These sequences are generally reverse palindromes, and in
fewer cases, direct repeats or distinct words (in the case of heterodimeric TFs),
separated by non-specific, AT-rich segments that provide DNA flexibility. In order to
build an alternative collection of motifs, I used pattern discovery algorithms that take
advantage of those properties.

The algorithm dyad-analysis (van Helden et al., 2000) from the Regulatory Sequence
Analysis Tools suite (Santana-Garcia et al., 2022) was specifically developed to identify
dyadic motifs. It assumes that such motifs can be modeled as follows:

D =w n - -w
1 s 2

Where:
e D =sequence of a dyad
e w and w, = first and second words of the dyad

e n_=any sequence of s unspecified nucleotides

Although most TFs bind to some kind of dyadic pattern, these are not always fully
conserved, and in some cases one of two words is hardly detectable, which is why I also
used the algorithm oligo-analysis (van Helden et al., 1998), that identifies significantly
over-represented oligonucleotides given a background model. Indeed, it has been
shown that less-conserved motifs can be just as biologically relevant as conserved
motifs (Oliver et al., 2016). Furthermore, some 20% of bacterial transcription factors
are believed to present non-canonical binding domains (Flores-Bautista et al., 2020),
thus their binding sites could present distinct patterns.

I ran both algorithms for 101 transcription factors that had at least 4 distinct binding
sites currently indexed in RegulonDB (Table 5). A manual selection of motifs was made
based on those results. Some motifs were found by both algorithms, in which case the
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version found with dyad-analysis was kept, some were found only by one algorithm,
and in a few cases, no algorithm could find a significant pattern.

Overall, a collection of 101 motifs was built: 9 motifs were produced for TFs that didn’t
have one yet, 85 motifs were updated, and 7 TF motifs were kept in their original
version, since neither algorithm detected significant patterns among their binding
sequences (Figure 21).

Figure 21. Overview of the alternative collection of motifs. a. Number of motifs newly created, updated,
or unchanged. b. Type of algorithm used to produce the new and updated motifs.

The alternative motif collection

The pattern discovery strategy I designed has two significant differences compared to
the original strategy used to build the RegulonDB collection: it doesn’t necessarily use
all of the input site sequences to build the matrix, and it can use a given sequence
several times, should there be a duplicated pattern. It is also worth noting that the
RegulonDB v4.0 collection was built on RegulonDB 10.6 (July 2019; total TFBS = 2,113),
while I built the alternative collection on RegulonDB 10.10 (February 2022; TFBS =
2,549). Still, overall the total number of sequences used to build the new matrices is
lower, despite the total information content being significantly higher. Since the
pattern-discovery strategy allows to leave out poorly-conserved sequences and trim
out the low-information positions from both ends of the patterns identified, the
alternative matrices have a smaller length, and the information content per column is
much higher (Figure 22).
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Figure 22. Comparison of the RegulonDB collection and the alternative collection. Beige boxes represent
the current RegulonDB collection (version 4.0), while purple boxes represent the alternative collection.
The statistical significance of the comparisons was computed for 92 TFs using paired Wilcoxon tests,
leaving out the 9 TFs that have a newly-generated motif.

I produced exhaustive graphical reports allowing to visualize and quantify the changes
between the current motif collection from RegulonDB, and the new alternative
collection. Although the new matrices are built with fewer sites, the pattern discovery
strategy produced motifs that show a better resolution, as well as a clear symmetry.
While these motifs may not represent the complete set of binding sites underneath, in
particular those that are less conserved, they offer a clear visualization of the core
dyadic motifs (Figure 23).

As for the newly-built matrices, although some are rather weak given the few
sequences used as an input, most do give an idea of the possible pattern behind (Figure
24). The full list of matrices and their parameters are summarized in Table 5.
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Figure 23. Updated motifs and their basic statistics. a. The TrpR motif gained in resolution, while
shortening in length. b. The OxyR alternative motif was built using just a subset of its known sites, but its
pattern is much clearer. c. A symmetric pattern was identified in most of Iclr binding sites, which is a lot
more specific. d. The MarA motif was trimmed to 2/ of its size, but shows a well-defined dyadic pattern.

Figure 24. Some of the newly-generated matrices.
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RegulonDB matrices (v4.0)

Alternative matrices

TFname [IC total IC average |Num TFBS |[IC total IC average [Num seq

new Ada 6 0.6 5
AscG 6.2 0.44 6
BtsR 5.6 0.47 8
FeaR 10.9 0.61 4
Fliz 5 0.56 5
H-NS 8.9 0.59 9
HipB 14.2 0.57 8
RcsB-BglJ 9.1 0.65 15
SdiA 9.3 0.55 3

unchanged |ArgP 5.4 0.28 19
CsgD 4.6 0.33 24
CysB 12.7 0.3 14
QseB 7.3 0.46 4
RcsB 7.5 0.44 26
Rha$S 7.6 0.38 8
Rob 8 0.35 14

updated AcrR 7 0.5 5 7 0.5 7
AgaR 11.6 0.51 1 10.6 0.56 13
AraC 7 0.35 15 7.9 0.49 7
ArcA 5.3 0.31 79 11.3 0.59 19
ArgR 8.9 0.43 31 10.3 0.6 19
AsnC 8 0.47 4 6 0.54 8
BaeR 12.5 0.54 4 6.5 0.65 4
BasR 10.8 0.47 8 12.3 0.56 7
CaiF 10.9 0.57 4 10.5 0.58 A
CpxR 5.4 0.27 60 10.6 0.56 14
Cra 9.5 0.45 42 12.1 0.61 27
CRP 7 0.35 271 9.5 0.5 208
CytR 5.7 0.25 17 11.3 0.7 10
Dan 5 0.45 5 4.9 0.61 4
DcuR 9.2 0.44 7.9 0.53 8
DeoR 9.1 0.48 11.8 0.59 7
DnaA 6.7 0.67 23 10.4 0.65 8
EvgA 13 0.59 8 13.9 0.63 10
ExuR 10.4 0.52 1 8.9 0.64 12
FadR 9.7 0.48 20 7.6 0.54 12
FhlA 7.5 0.44, 7 9.3 0.58 6
Fis 4.5 0.26 219 5.9 0.65 55
FIhDC 8.8 0.46 16 7.5 0.62 8
FNR 6.7 0.48 88 11.3 0.54 49
Fur 9.8 0.44 48 10.8 0.57 116
GadE 8.1 0.37 10 4.6 0.58 10
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RegulonDB matrices (v4.0)

Alternative matrices

TFname [IC total IC average |Num TFBS |[IC total IC average [Num seq
Gadw 7.1 0.34 17 7.5 0.58 4
GadX 4.8 0.22 34 5.8 0.48 12
GalR 9.1 0.51 12 10.3 0.73 10
Gals 10 0.53 12 10.3 0.73 10
GcvA 8 0.44 6 5.4 0.45 3
GIpR 9.1 0.41 17 10.2 0.49 9
GIrR 8.6 0.38 6 12.8 0.53 6
GntR 10.2 0.46 9 12.5 0.7 12
HipAB 13.1 0.45 5 141 0.59

IcIR 5 0.32 8 6.6 0.47

IHF 4.9 0.35 101 8.2 0.52 41
IscR 9 0.33 1 5.6 0.56 9
LeuO 8.3 0.36 10 5.6 0.43 1
LexA 10.2 0.46 YA 14.4 0.63 34
Lrp 41 0.31 80 8.8 0.52 8
MalT 7.3 0.81 15 11.3 0.7 10
MarA 6.9 0.3 26 6.5 0.43 30
MelR 10.6 0.5 5 9 0.45 4
Met] 7.9 0.42 15 16.9 0.99 13
MetR 8.5 0.47 5 7.1 0.42 8
Mlc 13.9 0.53 7 8.5 0.43 8
MIrA 15.9 0.42 4 4.5 0.45 2
MntR 14.3 0.57 6 14.3 0.65 10
ModE 11 0.41 7 6.1 0.61 8
MgsA 9.2 0.44, 6 8.5 0.57

Mraz 5 0.63 6 6.7 0.48 3
Nac 5.3 0.31 14 6.1 0.32 26
NagC 1 0.44, 20 6.1 0.47 21
NanR 6 0.85 9 12.6 0.78 6
NarL 4.6 0.27 68 9.6 0.53 18
NarP 7 0.44, 12 15.7 0.71 8
NhaR 8.7 0.41 6 7.5 0.44 6
NrdR 9.4 0.5 6 9.9 0.58 5
NsrR 7 0.47 39 9.4 0.67 17
NtrC 9.8 0.49 27 141 0.62 8
OmpR 6.7 0.3 21 8.5 0.45 13
OxyR 5.3 0.26 42 8.7 0.48 7
PdhR 10.2 0.54 9 12.5 0.6 7
PhoB 6.7 0.33 26 12.5 0.69 7
PhoP 6.7 0.37 34 8 0.54 7
PurR 12.9 0.76 22 14.3 0.72 20
PutA 5.3 0.89 5 6.8 0.57

PuuR 11.1 0.5 A 8.1 0.48 3
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RegulonDB matrices (v4.0) Alternative matrices

TFname [IC total IC average |Num TFBS |[IC total IC average [Num seq
RcdA 7.1 0.51 8 10.4 0.58 4
RcsAB 8.8 0.49 6 6.8 0.57 6
RelB-RelE |6.4 0.43 4 7.8 0.46 10
RstA 10.5 0.52 4 8.3 0.55 5
RutR 9.9 0.49 5 10.5 0.66 6
SIyA 6.7 0.44, 14 9.3 0.47 7
SoxR 6.7 0.34 6 5 0.56 A
SoxS 7.2 0.33 32 10.7 0.56 14
TorR 6.5 0.5 10 7.5 0.5 5
TrpR 10.4 0.49 6 11.3 0.71 17
TyrR 9 0.43 19 11.8 0.49 14
UlaR 10.8 0.47 4 8.6 0.48 6
UxuR 10.7 0.51 8 10.1 0.67 1
XyIR 8.6 0.41 8 6.5 0.5 10
YdeO 10.6 0.34 6 4.3 0.54 6
YijjQ 10.2 0.57 7 9.4 0.52 10

Table 5. The complete list of matrices and associated parameters for 101 TFs.

Evaluation of motifs quality

As mentioned above, a motif should represent the specificity of a TF binding pattern,
and allow to distinguish potential binding sites from the genomic background.
Although there is no single metric that could formally quantify the quality of a motif,
several criteria can be explored that show an overall tendency. For one, the visual
inspection of logos gives a quick impression of the precision and specificity of a motif,
as well as its “shape” in the particular case of dyadic motifs. The specificity can also be
quantified by calculating the information content (IC) of the matrix. Since it is highly
dependent on the length of the matrix, the average IC per position shall also be taken
into account.

However, all of these criteria are somewhat imperfect, thus the RSAT tool
matrix-quality was developed in order to assess the quality of matrices (Medina-Rivera
et al.,, 2011). It combines theoretical and empirical score distributions for sets of
genomic sequences given a PSSM in order to estimate its predictive capacity. It is based
on the RSAT program matrix-scan (Turatsinze et al., 2008). Matrix-scan was developed

114



to scan genome sequences and detect potential transcription factor binding sites and
cis-regulatory modules, by computing weight score distributions at each position of
the input sequences (Figure 25, yellow box). It uses a background model B and a
reference matrix M, and calculates for each sequence segment s if it’s likely to be an
instance of the motif rather than an instance of the background:

Ws = log(m)

P(S/B)
Where:

e W  =weight score of sequence segment S

e P(S/M) = probability of sequence S according to motif M
e P(S/B) = probability of sequence S according to background B

The weight score W is also prone to inaccuracy, for it depends on the matrix length

and IC, which is why matrix-quality combines it with theoretical and empirical score
distributions. Theoretical distributions of scores generated given a specific PSSM allow
estimating the p-value associated with a given sequence and its weight score (as
computed as shown in the above formula), taking into account the genomic
background. Empirical distributions of scores computed from collections of sequences
such as TFBSs should significantly diverge from the theoretical distributions if the
PSSM used is specific enough of the TF considered. This can be visualized using a
decreasing cumulative distribution function (dCDF), which depicts the probability
(ordinate) to obtain randomly a weight score W_higher than, or equal to a given W

value (abscissa) (Figure 25).
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Figure 25. Theoretical and empirical probability distributions using matrix-quality. Distributions were
generated using FNR, MarA, Nac and OxyR PSSMs from RegulonDB 4.0 and the alternative collection. a.
FNR. Green curves represent the probabilities of observing by chance a sequence of score equal to or
higher that Ws given the RegulonDB PSSM (light green) and the alternative PSSM (dark green), computed
for all non-coding upstream regions of E. coli K-12. For instance, observing by chance a sequence scoring
higher than 10 has a low probability of 2.3e-6 considering the RegulonDB PSSM, however, taking into
account the multiple testing of all possible positions from the upstream regions, it is associated with an
e-value of 2 false positives (and in the case of the alternative PSSM, 6 false positives). Overall, the
distribution from the alternative PSSM includes a larger range of possible scores, consistent with the fact
that it has a higher IC (Table 5), but a lower FDR for scores lower than 10. Blue curves represent the
observed distribution of scores in all non-coding upstream sequences. It shows that 22 sites scoring
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higher than 10 can be predicted with RegulonDB PSSM, and 74 sites using the alternative PSSM. The
difference observed compared to the theoretical distribution as well as a permuted set of upstream
sequences (purple curves) demonstrate the relevance of the PSSM in predicting potential TFBSs. Finally,
the red curves show the distribution of scores observed in FNR TFBS sequences from RegulonDB. They are
both well-above the theoretical distributions and the upstream sequences distributions, as well as the
binding sites permuted sequences (orange curves), denoting the specificity of the PSSM for FNR binding
sites. b. MarA. The alternative PSSM predicts fewer sites of score higher than 10 compared to the v4.0
PSSM, consistent with the theoretical distributions and the fact that the new matrix is smaller, and has a
lower total IC. c. Nac. The alternative matrix predicts more sites of score higher than 5 than the RegulonDB
matrix, while having a very similar background distribution (p-val = 1.1e-3; e-val = 0.5 sites). Both PSSMs
have a rather low IC and fail at predicting sites of scores higher than 10. d. OxyR. The RegulonDB PSSM
predicts more sites than the alternative one considering a score threshold at 5, but the tendency is reverted
around scores of 10 and above. The predictive capacity of the RegulonDB matrix (pale red) drops
significatively, while that of the alternative matrix is maintained.

Overall, the results produced by matrix-quality for the 92 TF compared show
disparities. Some of the alternative matrices predict more high-scoring sites,
congruent with the fact that they generally have a higher information content. They
may be associated with higher FDR around high scores, but generally have a lower FDR
than the RegulonDB collection when considering lower scores. High-scoring matrices
are usually better at predicting high-scoring sites, but may filter out more false
negative sites of lower scores. Yet, those binding sites of low sequence conservation can
be just as relevant to regulation, and can even be necessary for some regulatory
mechanisms that rely on TF cooperation (Oliver et al., 2016). For this reason, it may be
relevant to have TFs associated with several alternative PSSMs allowing one to fulfill
distinct purposes, from visualization and TFBS prediction to TFs classification.

Classification of transcription factor motifs

Matrices can be used to classify TFs based on their motif similarity. Matrix-clustering
(Castro-Mondragén et al., 2017) is a tool that clusters similar transcription factor
binding motifs by computing a matrix of similarity between all pairs of input matrices,
and performing hierarchical clustering to build a motif tree. The tree can then be
partitioned into clusters, using a variety of similarity metrics.

I performed the clustering of 101 PSSM from the alternative collection using the
normalized correlation coefficient Ncor in order to compute pairwise similarity
between all PSSMs, with the average-linkage method. Since some matrices lack
precision, I used a low threshold for the tree-partitioning step (Ncor = 0.3). A total of
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23 clusters were generated (Table 6). Their sizes range from 1, meaning a given PSSM
did not cluster at all (clusters 19 to 23: CysB, MalT, NtrC, PutA, RhaS) to 21 matrices
(cluster 7).

The complete tree is presented in Figure 26a, alongside TF family information, their
known effects, and their reported class (local or global regulator). Interestingly, some
of the largest families seem to be clustered together while others are more scattered. Of
the 101 PSSMs in the collection, 10 are associated with TFs from the prominent LysR
family, involved in amino acid synthesis and evolutionary related (Pérez-Rueda et al.,
2015). However, those 10 motifs are part of 6 different clusters. Another major family
described in E. coli is AraC/XylS, involved in carbon source assimilation, which accounts
for 12 matrices in this collection. These are scattered between 7 different clusters, but 4
of them are grouped in the same cluster (cluster 4). In particular, three TFs share a
close motif similarity: MarA, Rob and SoxS. Those TFs are known to form part of a
regulon involved in antibiotics and superoxide resistance (Pérez-Rueda et al., 2015). In
the same cluster, another 3 TFs are also closely related together: OmpR, CpxR and
RstA, from the OmpR family, involved in particular in biofilm formation and response
to acidic stress (Ogasawara et al., 2010; Aquino et al., 2017). Among the families that
show a more consistent clustering, we can cite GntR, and GalR/Lacl. All 5 PSSMs from
TFs that are part of the GntR family were grouped together in cluster 3 with only one
outsider, TrpR. As for the GalR/LaclI family, 5 PSSMs out of 7 are clustered together in
cluster 1, of which a detailed view is shown in Figure 26b. The only TF in the cluster
that is not part of the GalR/Lacl family, specialized in sugar metabolism, is a repressor
of the glyoxylate bypass operon, Iclr.

Overall, TFs that are part of the same evolutionary families do not significantly cluster
together despite a low clustering threshold. Still, many TFs remain poorly
characterized and their motifs lack precision, which explains why their clustering
remains difficult. Several global regulators are found in the same cluster (ArcA, H-NS,
[HF, Lrp). A similar tendency was reported in a previous study where TFs were
clustered based on corregulation (Pérez-Rueda et al., 2015), but the opposite behavior
was observed when studying topological modules of the E. coli TRN (Resendis-Antonio
et al., 2005). However, it is difficult to draw conclusions, as global regulators tend to
have rather degenerated motifs despite having numerous known binding sites.
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Figure 26. Clustering of the 101 PSSM from the alternative collection. a. The complete tree of clustered
matrices and associated parameters for 101 TFs. Proportionate tree branches were manually twitched to
enhance readability. b. Detailed subtree for cluster 1 and its closest relative. c. Color legend and associated
TF numbers. TF family and effect annotations were retrieved from RegulonDB and in some cases,
completed with recent annotations from Flores-Bautista et al., 2020 (annotations separated by a pipe “|”).
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Cluster |[TF name Cluster size
1 Cra,CytR,GalR,GalS,IcIR,PurR 6
2 DnaA,HipAB,HipB 3
3 ExuR,FadR,NanR,PdhR,TrpR,UxuR 6
4 AgaR,AraC,ArgR,CpxR,MarA,MetR,0mpR,RcdA,Rob,RstA,SoxS, TorR,UlaR 13
5 EvgA,NarL,NarP,RelB-RelE
6 BaeR,Dan,Fis,GadE,IscR,MIrA ,ModE,NagC,YdeO 9
7 AcrR,ArcA,ArgP,AsnC,BasR,BtsR,CsgD,DcuR,GadW,H-NS,IHF,LeuO,Lrp,Nac, |21
NsrR,PhoP,QseB,RcsB,SlyA,SoxR,YjjQ.
8 CRP,DeoR,FNR,GntR,PhoB 5
9 Ada,AscG,CaiF,FhlA FliZ,GadX,XylR 7
10 MgsA,PuuR,RutR 3
11 MraZ,RcsAB,RcsB-Bgl] 3
12 GlpR,Mlc,NhaR,0xyR 4
13 GIrR,TyrR 2
14 FIhDC,NrdR 2
15 LexA,Met] 2
16 Fur,GcvA 2
17 FeaR,MntR 2
18 MelR,SdiA 2
19 PutA 1
20 NtrC 1
21 MalT 1
22 RhaS 1
23 CysB 1

Table 6. The complete list of 23 clusters for 101 PSSMs.

ChIP-seq based motifs

As mentioned, the main issue for PSSM construction is a lack of binding data. Binding
datasets from genome-wide experiments are very helpful in that regard. Using 28
ChIP-seq datasets (Chapter 4), I built matrices targeting 11 TFs (Table 7). The motifs
generally show a better accuracy than the alternative collection, but many fail at
detecting dyads, particularly for TFs that have a lot of binding sites (Figure 27). Indeed,
many TFBSs are poorly conserved that end up “diluting” the pattern, although their
regulatory role is relevant under specific conditions (Oliver et al., 2016). It is also
reasonable to assume that the set of binding sites previously identified and based on
low-throughput experiments actually represent a very small proportion of the actual
binding sites in E. coli, and could be biased towards better conserved sequences.
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Figure 27. ChIP-seq motifs. a. FNR. The ChIP-seq motif is shorter and shows a very conserved dyadic
pattern. b. Nac. The ChIP-seq dataset provides a 10-fold pool of binding sequences to build on, however,
the final motif is very similar to the alternative motif, with the addition of 2 significant nucleotides giving
it a higher specificity. c. NtrC. Two datasets were combined, totaling a number of 907 sequences. The motif
produced has a high resolution, but only a half dyad is conserved. d. OmpR. Similar to NtrC, the ChIP-seq
based motif for OmpR is well-defined but only includes half of its known motif.
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RegulonDB v4.0 ChIP-seq matrices
TF Sites [IC (avg) [Consensus Peaks [Sites |IC (avg) |Consensus
Fis 219 4.5(0.26) |GbyyrwtttttvasCra 1301 322 8.5(0.57) |bstTGCTGGCGatsk
FIhDC [16 8.8 (0.46) |aAwsGsskGAwtwrGsGsc 47
FNR 88 6.7 (0.48) |TTGAtrtwratCaa 157 165 7.9 (0.44) [wwtTGAtstasaTCAaww
Fur 48 9.8 (0.44) [tRAtAAtsaTtmtCAtTwbcaw 1746 1268 |6.4(0.53) |grATGATAAtsa
GlaR 5909 322 7.5(0.63) [raAATGGCGAyr
H-NS 2549
Lrp 80 4.1(0.31) kmwtwttwtyCtK 5167 [1489 |7.2(0.72) |awTATTCTgc
Nac 14 5.3(0.31) [krattykyTyatrkssr 499 |254 ]7.5(0.36) [kmCATAagmawtkcttATGkm
NtrC |27 0.8 (0.49) [rwtGCaCsaTkktgGkGCam 845 907 16.7(0.61) [gsTGGTGCAss
OmpR |21 6.7 (0.3) wayatGtaaCcaarwgtwwmaw [136 87 6.9 (0.53) |ytTTGTTACatrt
PhoB [26 6.7 (0.33) |wtrtkaCAkhttTrtgwcAg 121 107 7.4(0.62) |mytTGTCATatk

Table 7. Summary of the matrices built from ChIP-seq datasets and their original version in RegulonDB.

The analysis of ChIP-seq data shows that, as expected, many more binding sites are
discovered than what is currently described in the literature. Most of this curated
knowledge stems from in vitro, low-throughput experiments, while high-throughput
experiments like ChIP-seq, allowing a genome-wide characterization, has barely been
applied to Escherichia coli K-12, despite being a widely-studied model organism.

As observed in the alternative collection of matrices, the ChIP-seq-based matrix
collection demonstrates the variability observed among transcription factor binding
sites. Although TFBS are generally evolutionary conserved, they show a diversity of
profiles that can be equally relevant to transcriptional regulation. Besides, some
binding sites have been observed that displayed a spacing distinct from the expected
one, although it is supposed to be a conserved, TF-specific characteristic. This further
supports the idea that TFs could be associated with a set of alternative matrices rather
than a single one.
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Discussion

Results

During this PhD, I worked towards the goal of exhaustively characterizing Escherichia
coli K-12’s regulatory networks. I started by tackling several facets of this challenge
separately.

Upon manipulating a variety of data from different sources, I quickly noticed how a
lack of congruence in such basic information as gene names and coordinates was going
to be a recurrent bottleneck. This triggered the EcoliGenes project, a software library
which I then used in most of my subsequent works, and kept developing and updating
to fit the needs of my goals.

Concomitantly, I built an exhaustive set of E. coli genomic features by combining
long-established data from the literature and numerous datasets generated through
next-generation sequencing technologies and published in recent years. I processed
the data so as to homogenize their respective formats, and formally defined different
types of objects to fit a common framework.

In order to integrate binding and expression data I developed SnakeChunks, a library of
workflows and rules based on snakemake. These workflows allow automated analyses
of ChIP-seq and RNA-seq data, from raw samples to final results such as transcription
factor binding sites, motifs, and differentially-expressed genes. This work culminated
in the publication of a protocol (Rioualen et al., 2019).

I used these founding elements in order to pursue my main goal, the characterization
of the transcriptional regulatory network of Escherichia coli K-12. Together with the
team from the Program of Computational Genomics and our collaborators from Boston
University and the Wadsworth Center at SUNY Albany, we conceived a new framework
to integrate thousands of high-throughput datasets in RegulonDB, by articulating
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together three facets of the project and the respective fields of expertise of our team: (i)
the gathering and curation of relevant datasets, led by biocurators; (ii) the
standardization and/or processing of the data, led by bioinformaticians; and (iii) the
integration and visual display of the results via the RegulonDB HT portal, led and
realized by the computational team.

Finally, I investigated an alternative strategy to generate a collection of transcription
factor binding matrices by using pattern discovery approaches. While it produced
high-resolution motifs, it also raised a thought as to the relevance of keeping several
alternative matrices for certain transcription factors that display a variety of binding
profiles.

Conclusion

Escherichia coli K-12, despite being the single best-characterized organism on Earth,
still offers mysteries to solve. While its genome is relatively small and its genes count
“only” in the thousands, it has very complex and ramified regulatory networks, from
signaling pathways to metabolic reactions. The transcriptional regulatory network is
key to articulating and coordinating cellular responses to environmental stimuli.
Numerous promoters and terminators offer endless possibilities of transcription
initiation and termination, finely regulated through external signals triggered by
growth conditions, and subsequent activation or repression of gene expression by
transcription factors.

Biological paradigms are permanently challenged by the ever increasing amount of
knowledge acquired, and an exhaustive characterization of the regulatory networks of E.
coli K-12 may never actually be achieved. However, through this PhD project I was able
to contribute to this ambitious perspective in a significant way, by gathering and
formatting numerous high-throughput datasets, developing tools and workflows for
their reproducible analysis and integration with classic knowledge, and generating TF
binding motifs with a higher resolution.

Perspectives

The transcriptional regulatory network is a key component of Escherichia coli’s
regulatory circuits, for it coordinates metabolic responses in the cell upon sensing
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intra- and extracellular signals, offering an extremely high adaptability to
environmental changes. Expanding the known TRN from E. coli opens a gate to better
understanding its biology, but also that of other species. Being a model organism, E. coli
has consistently been used to investigate and describe fundamental biological
mechanisms that could be applied to other organisms later on, as well as identify
genes, proteins and other features from related bacteria by homology.

In particular, it can help greatly to uncover the transcriptional regulatory network of
one of its close relatives: Salmonella enterica. Both species have very similar genomes
and lifestyles, but the latter is pathogenic, while E. coli is mostly a commensal bacteria.
S. enterica is commonly studied by scientists, but its TRN is much less known than that
of E. coli.

During my PhD, I had the opportunity of taking part in a project which aims at
characterizing the S. enterica regulatory network by taking advantage of the knowledge
acquired of the E. coli network, and combining it with computational approaches. This
strategy offers the perspective of gathering significant amounts of regulatory data for
Salmonella as well as other bacteria, in a much more efficient way than before. By
combining once again the expertise of biocurators and computational scientists from
the PGC, we are hoping to expand RegulonDB to cover multiple organisms, and make
the decades of manual curation of a single organism performed in the past become
years of combined approaches to characterize multiple organisms.
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