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Introduction

The general theory of coalescent processes aims to provide a rigorous mathematical frame-
work that can be used to model natural phenomena where a collection of particles may fuse
together and form new particles as the system evolves over time. It has a variety of applica-
tions in distinct disciplines such as Physics and Biology. In the biological realm, particularly
in the field of Population Genetics, it is used to model the parental relationships of a given
population as we track the ancestry of individuals backwards in time, thus leading to the
construction of a genealogical tree. In this interpretation the fusion of particles occurs at the
time when a set of individuals meets a common ancestor in the past. Once we have a suitable
coalescent model describing the genealogy of a population, we can use it to study questions
of biological relevance such as determining the time needed to reach the last common an-
cestor of the population, the expected genetic diversity for neutral positions of the genome,
or whether natural selection has played an important role in the evolution of the popula-
tion. From a mathematical perspective, coalescent processes are Markov processes that take
values in the space of partitions of N. In Chapter 1 we follow Bertoin 2006 to layout the
foundational concepts of the general theory of exchangeable coalescent processes, and also
present some of the main results thereof, including Kingman’s representation for random
exchangeable partitions, the Poissonian construction of exchangeable coalescent processes,
and the characterization of their coagulation rates. At the end of the chapter we leave the
general setting to focus on the particular case of simple coalescents (Pitman 1999; Sagitov
1999; Schweinsberg 2000b), and formally define the well known family of Beta coalescents
of which the Bolthausen-Sznitman coalescent (BSC) (Bolthausen and Sznitman 1998) is a
member. The Bolthausen-Sznitman coalescent is a well known example of a simple coales-
cent process where multiple particles may fuse in a single event; it was first introduced in the
study of spin glasses in physics (Bolthausen and Sznitman 1998) but was rapidly adopted for
the study of genealogical trees. It has been described as the limit process for the genealogies
of different population evolution models, including models where the reproductive success of
the individuals is determined by a fitness function (i.e. the population is under the pressure
of natural selection), both in discrete and continuous time (J. Berestycki, N. Berestycki, and
Schweinsberg 2013; Birkner, Blath, et al. 2005; Cortines and Mallein 2017; Freund 2020;
Huillet and Möhle 2021; Schweinsberg 2003).

In Chapter 2 we layout a general scenery of population evolution models with discrete
generations, and characterize their genealogies in terms of coalescent processes. We begin
with Cannings’ models (Cannings 1974, 1975) which presently are the most widely studied
constant-size neutral models due to their manageability and consequent applicability. The
defining characteristics of Cannings’ models are 1) that the collection of offspring sizes is
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symmetric, and in particular that all the parents have the same number of children in distri-
bution; and 2) that the reproduction events are i.i.d over time. We then pass to multinomial
models (Cortines and Mallein 2017; Huillet and Möhle 2021) which share some of the basic
intuitions of Cannings’ models, along with their manageability, while at the same time allow
for “non-symmetrical” offspring distributions. We provide a new criterion for the weak con-
vergence of their genealogies to general Ξ-coalescents, as the total population size N tends to
infinity; a criterion that reminisces the homologous criterion provided by Möhle and Sagitov
2001 for the neutral Cannings’ models, and whose applicability we show with examples in
Sections 2.2.3 and 2.3 where Beta coalescents and the Bolthausen-Sznitman coalescent ap-
pear in the limit. In Section 2.3 we introduce the family of exponential models (Brunet and
Derrida 1997, 2012) which explicitly incorporate the effect of natural selection by assigning
fitness levels to its individuals, determining their reproductive success in the next generation.
Following Cortines and Mallein 2017, we prove that the genealogies of the exponential models
can be written in terms of Multinomial models, allowing us to describe their weak limit as
N →∞. We find that, under strong selection regimes, the genealogy of these models is once
again described by the Bolthausen-Sznitman coalescent, although we also find a novel weak
selection regime in which the limit genealogy is a discrete-time Poisson-Dirichlet coalescent.
Finally, by the end of the chapter, we briefly present a model in continuous time (Schweins-
berg 2017b) in which the population is once again under the effect of mutation and natural
selection, and whose limit genealogy is given by the Bolthausen-Sznitman coalescent.

We note that the Bolthausen-Sznitman coalescent appears as the limit genealogy of the
three models described in this Chapter 2. Of particular importance is the case of the expo-
nential models and the continuous-time model of Schweinsberg 2017b, which give rigorous
examples of a population undergoing natural selection whose limiting genealogy is given by
this particular coalescent. This gives further evidence for the intuition that this coalescent
can serve as a new null model for the genealogy of rapidly adapting populations, an intuition
that has become somewhat widespread in later times (Brunet and Derrida 2012; Cortines
and Mallein 2017; Neher and Hallatschek 2013; Schweinsberg 2017b).

Finally, in Chapter 3, we introduce the Site Frequency Spectrum (SFS) of a coalescent
process, and its biological interpretation as a measure of the genetic diversity present in a
population. The latter, being closely related to the structure of the underlying genealogical
tree, motivates the study of the SFS for different coalescent processes, as well as its ubiquitous
use as a model selection tool to infer the genealogy of a population from present-day genetic
data (Eldon et al. 2015; Freund and Siri-Jégousse 2021; Koskela 2018). We then describe
the Random Recursive Tree (RRT) construction of the BSC (Goldschmidt and Martin 2005).
This construction allows us to derive explicit (easy-to-compute) formulas for the first and
second moments of the SFS for the BSC, leading to corresponding asymptotics as the initial
number of particles n tends to infinity, and also allows us to characterize the joint distribution
of the lengths of branches associated to families of size b for n/2 < b < n (Kersting, Siri-
Jégousse, and H. Wences 2021).
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Chapter 1

Main Concepts in Coalescent Theory

In this chapter we mostly follow Bertoin 2006, filling in the proofs whenever necessary, to
layout the general theory of coalescent processes.

1.1 Random Exchangeable Partitions

1.1.1 Basic Definitions

In this section we will define the basic mathematical structures that will help us represent
and study coalescent processes.

Definition 1.1.1. Let A be a subset of N and π be a countable collection of nonempty subsets
of A. We call π a partition of A if

• Bi ∩Bj = ∅ for all Bi and Bj in π

• ∪i≥1Bi = A.

We call {B ⊂ N : B ∈ π} the blocks of π, and denote by π(k) the block that contains the
element k.

Given a partition π of N we can define an equivalence relation in N by setting

i
π∼ j ⇐⇒ π(i) = π(j).

Conversely, given an equivalence relation in N we can define a partition π whose blocks are
the corresponding equivalence classes. Given a set A′ ⊂ A we define the restriction of π to
A′ as

π
∣∣
A′

:= {B ∩ A′ : B ∈ π}.
Also, given a set A ⊂ N we will denote the collection of all partitions of A by PA. We will
typically work with the sets {1, . . . , n} so we will denote them by [n], and write Pn instead
of P[n], P∞ instead of PN, and π

∣∣
n

instead of π
∣∣
[n]

. Finally for any pair n ≤ m and π ∈Pn

we will denote by Pm(π) the set of all partitions π′ ∈Pm such that π′
∣∣
n

= π, i.e.

(1.1) Pm(π) :=
{
π′ ∈Pm : π′

∣∣
n

= π
}
, n ≤ m,∀π ∈Pn.

5



6 CHAPTER 1. MAIN CONCEPTS IN COALESCENT THEORY

The following is a well known characterization of the space P∞ in terms of sequences of
partitions of the form {πn ∈Pn, n ∈ N}.

Definition 1.1.2. A sequence of partitions (πn)n∈N with πn ∈Pn is compatible if πn
∣∣
k

= πk
for all k ≤ n, n ∈ N.

Lemma 1.1.1. A sequence of partitions (πn)n∈N is compatible if and only if there exists a
partition π∞ ∈P∞ such that π∞

∣∣
n

= πn for all n ∈ N.

Let us now formalize the measurable space in which we will define random partitions. We
will consider the set P∞ and endow it with a distance function which will allow us to define
a Borel σ-algebra.

Definition 1.1.3. We define a distance δ in P∞ by

δ(π1, π2) = 1/max
{
n ∈ N : π1

∣∣
n

= π2

∣∣
n

}
.

Theorem 1.1.2. (P∞, δ) is a compact metric space.

Proof. Let (πn)n∈N be a sequence of partitions in P∞ and let π1 := {1}. There exists a
partition π2 ∈P2 such that πn

∣∣
2

= π2 for an infinite number of n ∈ N; let `1 be one of such

indexes. Then, recursively, for every k ∈ N we can choose a partition πk ∈ Pk such that
πk
∣∣
j

= πj for all j ≤ k and an index `k−1 such that π`k−1

∣∣
k

= πk. The sequence of partitions(
πk
)
k∈N is compatible so there exists a partition π∞ ∈ P∞ such that π∞

∣∣
k

= πk for every

k ∈ N and, by construction, π`k
δ→ π∞ as k →∞.

Definition 1.1.4. Let B(P∞) be the Borel σ-algebra in P∞ induced by δ. A random
partition Π is a random element of (P∞,B(P∞)).

We will only be concerned with a particular type of random partitions, exchangeable
random partitions. This type of partitions has a nice representation reminiscent of de
Finetti’s theorem for exchangeable random sequences. Similar to the context of de Finetti’s
theorem in which permutations of random sequences are defined, let us first define permuta-
tions of partitions.

Definition 1.1.5. A finite permutation of N is a bijective function σ : N → N with the
property that there exists an integer N such that σ(j) = j for all j ≥ N .

In the following when we refer to a “permutation” we mean a “finite permutation” unless
otherwise stated.

Definition 1.1.6. Let σ be a permutation of N and π be a partition in P∞. We define σ(π)
the permutation of π given by σ to be the partition

σ(π) :=
{
σ−1(B) : B ∈ π

}
.

Note that the blocks of σ(π) are given by the inverse images of the blocks of π under σ

and not by {σ(B) : B ∈ π}; actually, one should not expect that if i
π∼ j then σ(i)

σ(π)∼ σ(j),

but rather that σ−1(i)
σ(π)∼ σ−1(j).
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Proposition 1.1.3. Let σ be a permutation of N, then the map π 7→ σ(π) is continuous and,
thus, measurable.

Proof. By definition there is an N ∈ N such that for all j ≥ N we have σ(j) = j. If
δ(π, π′) ≤ 1/M with M ≥ N we have that π

∣∣
M

= π′
∣∣
M

and σ(π
∣∣
M

) = σ(π′
∣∣
M

). Since

σ(π
∣∣
M

) = σ(π)
∣∣
M

and σ(π′
∣∣
M

) = σ(π′)
∣∣
M

we see that δ(σ(π), σ(π′)) ≤ 1/M .

Definition 1.1.7. Let Π be a random partition. We say that Π is an exchangeable random
partition if for every permutation σ we have

Π
d
= σ(Π).

Note that in particular for all A ∈ B(P∞) we have

P(Π ∈ A) = P(σ(Π) ∈ A) = P(Π ∈ σ−1(A)).

When working with exchangeable random partitions it will be often the case that their
distribution will be specified in terms of their asymptotic frequencies (see Kingman’s repre-
sentation Theorem 1.1.6 below), here we define what we mean by an asymptotic frequency.

Definition 1.1.8. Let B be any subset of N, and π be any partition of N.

• We say that a set B has an asymptotic frequency if the following limit exists

|B| := lim
n→∞

1

n

n∑
i=1

1B(i)

where 1B is the usual indicator function for B.

• We say that π has asymptotic frequencies if π is such that |B| exists for all B ∈ π.
In this case we define |π|↓ as the sequence of asymptotic frequencies of π written in
decreasing order, and write

|π|↓ = (|π|↓1, · · · ).

Note that by definition we have
∑
|π|↓i ≤ 1.

Notice that if π has asymptotic frequencies then for every finite permutation σ of N we
have |π|↓ = |σ(π)|↓ since for every block B of π the block σ−1(B) of σ(π) has the same
asymptotic frequency as B. Hence, Definition 1.1.7 of random exchangeable partitions can
intuitively be interpreted as saying that the distribution of Π is determined by the distribution
of its block sizes |Π|↓, and not by their particular composition. In the following Section
1.1.2 we describe how an exchangeable random partition may be constructed from a set of
asymptotic frequencies.
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1.1.2 Paint-Box Construction

We begin by formalizing the space on which the asymptotic frequencies of a partition π ∈P∞
live.

Definition 1.1.9. Let ρ = (ρ1, ρ2, · · · ) be a sequence of real numbers in [0, 1] such that

• ρi ≥ ρj for all i ≤ j

•
∑∞

i=0 ρi ≤ 1.

Such a sequence is called a mass partition. Let P[0,1] be the space of all mass partitions and
endow it with the supremum norm in `1 and its corresponding Borel σ-algebra M .

If ρ is a mass-partition we define ρ0 as

ρ0 := 1−
∞∑
i=1

ρi.

We call ρ0 the dust of ρ. We say that ρ is proper if ρ0 = 0 and improper otherwise. We
will interpret a mass partition as the sequence of strictly positive asymptotic frequencies of
a partition π, and ρ0 as the asymptotic frequency of the set formed by the union of all the
blocks of π whose asymptotic frequency is equal to zero (thus justifying the term “dust”).

We now describe the paint-box construction for random exchangeable partitions.
Given a mass partition ρ = (ρ1, ρ2, · · · ) we can construct a countable sequence of open
intervals (Ii)i∈N such that

• Ii
⋂
Ij = ∅ for all i 6= j

• Leb(Ii) = ρi for all i ∈ N

• ρ0 = Leb
(
[0, 1] \

⋃
Ii
)

with Leb being the Lebesgue measure on [0, 1]. We call such a collection of intervals an
interval representation of ρ. Conversely, given an open set U in [0, 1] we can find a countable
sequence of open intervals (Ii)i∈N such that

•
⋃

N Ii = U

•
∑

N Leb(Ii) = Leb(U) ≤ 1

• Leb(Ii) ≥ Leb(Ij) for all i ≥ j

so we can construct a mass partition ρ given by (Leb(I1), Leb(I2), · · · ). We will now use an
interval representation (Ii)i∈N of a mass partition ρ in order to construct an exchangeable
random partition Π. Let A0 be

A0 = [0, 1] \
⋃

Ii.

Also, consider a sequence of numbers (ui)i∈N ∈ [0, 1]N and construct π by defining the blocks

Bk = {j ∈ N : uj ∈ Ik}, k ∈ N
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and setting

π = {Bk : k ∈ N}
⋃
{{j} : uj ∈ A0}.

In other words, all the indices j ∈ N such that uj falls in A0 become singletons whereas all
the indices such that uj falls in Ik constitute the block Bk. Clearly this procedure generates
a partition π ∈P∞ for each sequence (u1, u2, · · · ), that is, we have a map h : [0, 1]N →P∞
which is easily seen to be measurable; thus, if (Ui)i∈N is a sequence of independent uniformly
distributed random variables then Π := h(U1, U2, · · · ) is a random partition. In order to see
that Π is exchangeable we just need to note that for every permutation σ we have

(U1, U2, · · · )
d
= (Uσ(1), Uσ(2), · · · )

since (Ui)i∈N are independent and identically distributed. Also, note that if

h(u1, u2, · · · ) = π

then
h(uσ(1), uσ(2), · · · ) = σ(π)

and thus Π
d
= σ(Π), which is the condition for being a random exchangeable partition.

In the next section we formally state Kingman’s representation theorem Kingman 1978
which says that any random exchangeable partition can be constructed from paint-box pro-
cedures if we randomize, and give an appropriate distribution to the mass-partition ρ.

1.1.3 Kingman’s Representation

Lemma 1.1.4. Let Π be an exchangeable random partition, then Π has asymptotic frequencies
almost surely.

Proof. Recall the notation π(k) which gives the block of π that contains the element k
(Definition 1.1.1). Fix an index j ∈ N and for all i 6= j define the random variable

δΠ
j (i) =

{
1 if Π(i) = Π(j)

0 otherwise,

then
(
δΠ
j (i)

)
i 6=j is an exchangeable random sequence. Indeed, notice that the exchangeability

of Π ensures that for every permutation σ of N with σ(j) = j, and any collection of zero-one
digits d1, · · · , dk we have

P(δΠ
j (i1) = d1, · · · , δΠ

j (ik) = dk) = P(δ
σ(Π)
j (i1) = d1, · · · , δσ(Π)

j (ik) = dk)

= P(δΠ
j (σ(i1)) = d1, · · · , δΠ

j (σ(ik)) = dk)

where the second equality holds since σ(j) = j and, therefore, σ(Π)(j) = σ−1(Π(j)), and
σ(Π)(i) = σ(Π)(j) if and only if Π(σ(i)) = Π(j). By de Finetti’s theorem, the limit

|Π(j)| = lim
n→∞

1

n

n∑
i=1

δΠ
j (i)

= lim
n→∞

1

n

∑
i∈[n],i 6=j

δΠ
j (i)
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exists almost surely. Since the choice of j was arbitrary we conclude that Π has asymptotic
frequencies almost surely.

Lemma 1.1.5. If Π is an exchangeable random partition then all the blocks of Π are either
singletons, or have an infinite number of elements almost surely.

Proof. We will prove this by contradiction. Denote by #Π(j) the cardinality of the block
Π(j). Let j ∈ N and assume that P(#Π(j) = m) > 0 for some m ≥ 2. We will construct
a probability measure P′ on Nm−1 which will turn out to be “uniform”, thus leading to a
contradiction. For every (m− 1)-tuple of integers (n1, · · · , nm−1) define

P
′(n1, · · · , nm−1) =

P(Π(j) = {j, n1, · · · , nm−1})
P(#Π(j) = m)

.

P
′ is easily checked to be a probability measure. Now, if (`1, · · · , `m−1) is another collection of

integers and σ is a permutation such that σ (ni) = `i and σ(k) = k for all k 6∈ {n1, · · · , nm−1},
then, by the exchangeability of Π, it follows that

P
′(n1, · · · , nm−1) =

P(Π(j) = {j, n1, · · · , nm−1})
P(#Π(j) = m)

=
P(σ(Π)(j) = {j, n1, · · · , nm−1})

P(#Π(j) = m)

=
P(Π(j) = {j, σ(n1), · · · , σ(nm−1)})

P(#Π(j) = m)

=
P(Π(j) = {j, `1, · · · , `m−1})

P(#Π(j) = m)

= P
′(`1, · · · , `m−1).

Since this is true for any collection of integers (`1, · · · , `m−1) it follows that all the elements
of Nm−1 have the same probability under P′, which is impossible since P′ is a probability
measure and Nm−1 is an infinite set. Since the choice of j and m was arbitrary, for all j and
m > 1 we have

P(#Π(j) = m) = 0.

The preceding lemmas tell us a lot about the structure of exchangeable random partitions.
Almost surely, they take values in a set that is much smaller than all of P∞, particularly we
may assume that they take values on the measurable set

{π ∈P∞ : ∀B ∈ π, |B| exists and (|B| = 0 ⇐⇒ B is a singleton )}.

Moreover, using the same techniques as in the lemmas above, it is easy to show that, with
probability one, the set {i ∈ N : |π(i)| = 0} has an asymptotic frequency and is either empty
or has an infinite number of elements. We now state without proof Kingman’s represen-
tation theorem which combines the above two lemmas in order to describe all the possible
distributions for random exchangeable partitions.
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Theorem 1.1.6 (Kingman’s Representation). Let Π be an exchangeable random partition.
Then, there exists a probability measure Q on P[0,1] such that

P(Π ∈ A) =

∫
P[0,1]

%ρ(A) Q(dρ) , ∀A ∈ B(P∞),

where we use the notation %ρ for the probability measure on P∞ induced by the paint-box
construction directed by ρ introduced in Section 1.1.2.

Finally we give a simple condition for the weak convergence of exchangeable partitions in
terms of the weak convergence of their underlying mass-partitions.

Proposition 1.1.7. For each k ∈ N let Π(k) be a random exchangeable partition with random
asymptotic frequencies ρ(k) := |Πk|↓. Then the following are equivalent

I. As k →∞, ρ(k) converges weakly on P[0,1] to ρ(∞).

II. As k →∞, Π(k) converges weakly on P∞ to Π(∞).

Proof. I⇒II. Since the space P[0,1] is metric and compact we may rather assume, by Skoro-
hod’s representation theorem, that

(1.2) ρ(k) a.s.→ ρ(∞).

For any k ∈ N ∪ {∞} let

I
(k)
j :=

[
j−1∑
i=0

ρ
(k)
i ,

j∑
i=0

ρ
(k)
i

)
be the natural interval representation of ρ(k), and let (Uj)j∈N be the shared i.i.d. uniform

random variables in the paint-box construction of all the partitions Π(k). Then (1.2) implies

1{
Ui∈I

(k)
j

} a.s.→ 1{
Ui∈I

(∞)
j

}, ∀i, j ∈ N,

which in turn implies
δ
(
Π(k),Π(∞)

) a.s.→ 0.

II⇒ I. The space P[0,1] being compact ensures that any subsequence of
(
ρ(k)
)
k∈N contains

a further subsequence
(
ρ(kj)

)
j∈N that converges weakly to some random element ρ̃ in P[0,1];

the implication I⇒II then gives ρ̃
d
= |Π(∞)|↓ = ρ(∞). Since the existence of the weakly con-

vergent sub-subsequence and the identification of the limit hold for any starting subsequence(
ρ(k)
)
k∈N we conclude I by an application of Theorem 2.6 in Billingsley 1999.

1.2 Exchangeable Coalescent Processes

1.2.1 Basic Definitions

Exchangeable coalescents are going to be defined as a family of stochastic processes in con-
tinuous time and taking values in P∞. The evolution of these processes will be determined
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by a binary operator defined in P∞, the coagulation operator, whose increments will be sta-
tionary over time. In order to define the coagulation operator Coag we first need to introduce
the ordering of the blocks of a partition π by increasing order of their smallest element. That
is, for a partition π we construct an ordered sequence of blocks (π1, π2, · · · ) such that

• πj ∈ π for all j ∈ N

• π =
⋃∞
i=1{πi}

• min{k : k ∈ πj} ≥ min{k : k ∈ πi} for all j ≥ i.

From now on, when we refer to the kth block of π we mean the kth block under the order
just described. Also, we will sometimes use the notation [π]k instead of πk to emphasize that
we are referring to the kth block of π, specially when the notation for the partition within
the brackets is large. Finally, we recall the notation #A for the cardinality of a set A; in
particular, if π is a partition, #π gives the number of blocks of π.

Definition 1.2.1 (Coagulation). Let π′ ∈ Pm with m ∈ N ∪ {∞}. If π ∈ Pn is such that
|π| ≤ m, then the pair (π, π′) is called an admissible pair, and we define the coagulation of π
and π′ as

Coag(π, π′) = (π̂1, π̂2, · · · ),

where π̂k is given by

π̂k :=
⋃
j∈π′k

πj,

where πj is set to ∅ if j > |π|.

The following properties of the operator Coag are easily proved.

Lemma 1.2.1. Let (π, π′) and (π′, π′′) be admissible pairs.

I. The operator Coag is associative

Coag(π,Coag(π′, π′′)) = Coag(Coag(π, π′), π′′).

II. The operator Coag commutes with the restriction operation

(1.3) Coag(π, π′)
∣∣
n

= Coag(π
∣∣
n
, π′) = Coag(π

∣∣
n
, π′
∣∣
n
)

for any n ∈ N.

III. The operator Coag is Lipschitz-continuous.

The following theorem states that the operator Coag preserves the exchangeability prop-
erty of random partitions.

Theorem 1.2.2. Let Π and Π′ be two independent exchangeable random partitions. Then
Π̂ = Coag(Π,Π′) is an exchangeable partition.
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Proof. Let σ be any permutation, then the blocks of σ
(

Π̂
)

are given by
(
σ−1(Π̂k)

)
k∈N

where

σ−1(Π̂k) = σ−1

( ⋃
j∈Π′k

Πj

)
=
⋃
j∈Π′k

σ−1
(
Πj

)
.

Note that in general we should not expect that σ−1(Πj) = [σ(Π)]j so it is not true that

σ(Π̂) = Coag(σ(Π),Π′). However, we can define a map from P∞ to the set of all finite
permutations of N, π → σ̂π, where σ̂π is given by

σ−1(πj) = [σ(π)]σ̂π(j), ∀j ∈ N.

Since there exists an integer M such that σ(k) = k for all k ≥M it follows that σ−1(πk) = πk
for all k ≥M , therefore σ̂π(k) = k for all k ≥M which proves that σ̂π is indeed a permutation.
Furthermore, since the latter is true for every partition π, the map just described takes values
on the set of permutations of the first m − 1 integers, which is finite. Now let σ̂Π be its
composition with Π. Then σ̂Π is independent of Π′ since Π is, and σ̂Π induces a discrete
probability measure on the set of all possible permutations. Moreover, for every k ∈ N we
have

σ−1
(
Π̂k

)
=
⋃
j∈Π′k

σ−1(Πj)

=
⋃
j∈Π′k

[σ(Π)]σ̂Π(j)

=
⋃

j∈σ̂Π
−1
(

Π′k

)[σ(Π)]j.

For every k ∈ N there is a unique ` ∈ N such that [σ̂Π(Π′)]` = σ−1
Π

(
Π′k
)

and vice versa, thus

σ(Π̂) = Coag(σ(Π), σ̂Π(Π′)).

Let A be the finite range of σ̂Π, then, by the independence of (Π, σ̂Π) and Π′, and the
exchangeability of Π and Π′, for any measurable sets A,B ∈P∞ we have

P

(
σ(Π) ∈ A, σ̂Π(Π′) ∈ B

)
=
∑
σ′∈A

P

(
σ(Π) ∈ A, σ̂Π = σ′, σ′(Π′) ∈ B

)
=
∑
σ′∈A

P

(
σ(Π) ∈ A, σ̂Π = σ′

)
P

(
σ′(Π′) ∈ B

)
=
∑
σ′∈A

P

(
σ(Π) ∈ A, σ̂Π = σ′

)
P

(
Π′ ∈ B

)
= P

(
σ(Π) ∈ A

)
P

(
Π′ ∈ B

)
= P

(
Π ∈ A

)
P

(
Π′ ∈ B

)
= P

(
Π ∈ A,Π′ ∈ B

)
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thus proving that (σ(Π), σ̂Π(Π′))
d
= (Π,Π′). Finally, it follows that

σ
(

Coag(Π,Π′)
)

= Coag(σ(Π), σ̂Π(Π′))
d
= Coag(Π,Π′).

Remark. If we replace Π in the Theorem 1.2.2 by a partition π, then Coag(π,Π′) is also an
exchangeable random partition.

Of course if (Π1, . . . ,Πm) is a collection of independent exchangeable partitions then,
using the preceding theorem in an induction argument, we see that the sequential coagulation
COm

i=1 Πi (defined by CO2
i=1 Πi = Coag (Π1,Π2) and COk

i=1 Πi = Coag
(
COk−1

i=1 Πi,Πk
)
) is also

an exchangeable partition. This gives our primary tool to construct exchangeable coalescent
processes.

Definition 1.2.2. Let Π = (Πt)t≥0 be a Markov process in continuous time with values in
Pm for some m ∈ N ∪ {∞}. Π is an exchangeable coalescent if Π0 is an exchangeable
partition, and the transition kernels of Π satisfy

P(Πt+h ∈ A|Πt = π) = P(Coag(π, Π̃h) ∈ A)

where A is any measurable set in Pm and Π̃h is an exchangeable random partition whose law
depends only on h. We call the collection (Π̃h)h≥0 the stationary increments of Π. Also, if
Π0 = 0m := {{1}, . . . , {m}} we call Π a standard exchangeable coalescent.

Because the values of (Πt)t>0 are determined by the stationary increments (Π̃h)h∈R+ in
a way that resembles the definition of Lévy processes, coalescent processes may be loosely
interpreted as Lévy processes where the binary operation is Coag in the set Pn, instead of
the usual sum operation in R.

Lemma 1.2.3. If Π is a standard exchangeable coalescent then

Π̃h
d
= Πh, ∀h > 0.

Proof. Since Π0 = ({1}, {2}, · · · ), for any measurable set A we have

P(Πh ∈ A) = P(Coag(Π0, Π̃h) ∈ A) = P (Π̃h ∈ A).

If Π is an exchangeable coalescent with values in Pm then
(Coag(Π, Πt))t≥0 is also an exchangeable coalescent whenever Π is an exchangeable partition.
In particular, if Π is standard then Coag(Π, Π0) = Π, so (Coag(Π, Πt)t≥0 is an exchangeable
coalescent that starts at Π, and whose probability kernels are determined by the stationary
increments (Πh)h∈R+ . For this reason we will only consider standard coalescents from now
on.

Theorem 1.2.4. If Π takes values on P∞ and is such that Π
∣∣
n

is an exchangeable coalescent
for every n ∈ N, then Π is an exchangeable coalescent.
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Proof. To prove this theorem we just note that for every t > 0 the collection of exchangeable
partitions {Πt

∣∣
n

: n ∈ N} is consistent and, therefore, Πt is an exchangeable partition.
Indeed, let σ be a permutation such that σ(j) = j for all j > n, then the exchangeability of
Πt

∣∣
m

for m > n yields, for any π ∈Pm,

P (σ(Πt) ∈P∞(π)) = P
(
σ(Πt

∣∣
m

) = π
)

= P
(
Πt

∣∣
m

= π
)

= P (Πt ∈P∞(π)) .

Also, for any A ∈ B(P∞), if A
∣∣
n

:= {π
∣∣
n

: π ∈ A}, we have{
Πt+h ∈ A

} ⋂ {
Πt = π

}
=
⋂
n∈N

{
Π
∣∣
n
(t+ h) ∈ A

∣∣
n

⋂
Π
∣∣
n
(t) = π

∣∣
n

}
and, similarly, {

Coag(π,Πh) ∈ A
}

=
⋂
n∈N

{
Coag(π,Πh)

∣∣
n
∈ A

∣∣
n

}
.

Therefore

P(Πt+h ∈ A|Πt = π) = lim
n→∞

P

(
Π
∣∣
n
(t+ h) ∈ A

∣∣
n

∣∣∣Π∣∣
n
(t) = π

∣∣
n

)
= lim

n→∞
P

(
Coag(π

∣∣
n
, Π
∣∣
n
(h)) ∈ A

∣∣
n
)

= lim
n→∞

P

(
Coag(π,Πh)

∣∣
n
∈ A

∣∣
n
)

= P(Coag(π,Πh) ∈ A).

So Π is an exchangeable coalescent with increments (Π)t.

Theorem 1.2.5. The semigroup of an exchangeable coalescent is Feller.

Proof. It is sufficient to prove that, for every continuous function φ ∈ C (P∞), the map

π → E

[
φ(Coag(π, Π̃t))

]
is continuous for every t, and that

lim
t→0

E

[
φ(Coag(π, Π̃t))

]
= φ(π).

Both follow easily from the Lipschitz-continuity of the operator Coag (see Lemma 1.2.1).

1.2.2 Coagulation Rates and Poissonian Construction

Let Π be an exchangeable coalescent taking values in P∞. Since Π
∣∣
n

takes values on the
finite set Pn, its trajectories are entirely determined by its jumping rates

Q
(n)
π′,π = lim

t→0

1

t
P

(
Π
∣∣
n
(t) = π

∣∣∣Π∣∣
n
(0) = π′

)
.
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If (π′, π) is a pair of admissible partitions in Pn and π is distinct from 0n, we have

Q
(n)
π′,Coag(π′,π) = lim

t→0

1

t
P

(
Π
∣∣
n
(t) = Coag(π′, π)

∣∣∣Π∣∣
n
(0) = π′

)
= lim

t→0

1

t
P
(

Coag(π′, Πt) = Coag(π′, π)
)

= lim
t→0

1

t
P
(
Π
∣∣
n
(t) = π

)
= Q

(n)
0n,π.

In other words, Q
(n)
0n,π is the jumping rate of Π

∣∣
n

from π′ to Coag(π′, π). On the other hand,
if π cannot be written in the form π = Coag(π′, π′′) for any π′′ ∈Pn, then

P

(
Π
∣∣
n
(t) = π

∣∣∣Π∣∣
n
(0) = π′

)
= 0

so Q
(n)
π′,π = 0. The last two results combined tell us that the set

{Q(n)
0n,π : π ∈Pn \ 0n, n ∈ N}

completely determines the trajectories of Π
∣∣
m

for every m ∈ N, and, thus, the trajectories

of Π. To ease notation from now on we will write qπ instead of Q
(n)
0n,π.

Theorem 1.2.6. Recall the notation for P∞(π) in (1.1). The set {qπ : π ∈Pn \0n, n ∈ N}
determines a unique measure µ on P∞ such that µ({0∞}) = 0, and

µ(P∞(π)) = qπ

for every π ∈Pn \ 0n, n ∈ N. We call µ the coagulation rate of Π.

Proof. The idea of the proof is to use Caratheodory’s extension theorem in order to construct
a measure on P∞ \ 0∞ and then define µ(0∞) := 0. Towards this, note that the set

S := {P∞(π) : π ∈Pn \ 0n, n ∈ N}

is a semiring. Define a measure µ̂ in S by

µ̂(P∞(π)) = qπ.

Note that if π ∈Pm and n ≥ m, then

P∞(π) =
⋃

π′∈Pn(π)

P∞(π′).

Hence, in order to prove that µ̂ is finitely additive we need to verify that

µ̂(P∞(π)) =
∑

π′∈Pn(π)

µ̂(P∞(π′)).
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Observe that
{Π
∣∣
m

= π} =
⋃

π′∈Pn(π)

{Π
∣∣
n

= π′},

thus, the rate at which 0m jumps to π, equals the rate at which 0n jumps to
⋃
π′∈Pn(π){Π

∣∣
n

=

π′}. Since the sets on the last union are pairwise disjoint, the rate at which the latter occurs
is ∑

π′∈Pn(π)

qπ′ =
∑

π′∈Pn(π)

µ̂(P∞(π′));

so µ̂ is finitely additive. To see that µ̂ is infinitely additive note that for any partition π ∈Pn,
P∞(π) is closed and, by Theorem 1.1.2, compact. Therefore, if there exists a collection of
partitions (πi)i∈N such that (P∞(πi))i∈N are pairwise disjoint and P∞(π) = ∪∞i=1P∞(πi),
then, since (P∞(πi))i∈N is an open cover of P∞(π), it must be the case that P∞(πi) = ∅
for all but finitely many i ∈ N. By the finite additivity of µ̂ we then have the equality
µ̂(P∞(π)) =

∑∞
i=1 µ̂(P∞(πi)). By Caratheodory’s theorem, µ̂ can be uniquely extended to

a measure µ on P∞ \ 0∞, and setting µ(0∞) := 0 finishes the proof of the theorem.

Remark. Note that
∑

π∈Pn\0n µ(P∞(π)) <∞ for every n ∈ N and, therefore, µ is a σ-finite
measure.

Proposition 1.2.7. The coagulation rate µ of an exchangeable coalescent is invariant under
permutations.

Proof. Note that if π 6= 0n then for every permutation σ we have

Q
(n)
0n,π = lim

t→0

1

t
P(Π

∣∣
n
(t) = π)

= lim
t→0

1

t
P(σ(Π

∣∣
n
(t)) = π)

= lim
t→0

1

t
P(Π

∣∣
n
(t) = σ−1(π))

= Q
(n)

0n,σ−1(π).

Starting with σ(π) instead of π above, we see that Q
(n)
0n,σ(π) = Q

(n)
0n,π. Thus, for any permuta-

tion σ and any measurable set A, we have

µ(A) = µ(σ(A)).

Theorem 1.2.8. A measure µ on P∞ is the coagulation rate of an exchangeable coalescent
if and only if it satisfies

•
∑

π∈Pn\0n µ(P∞(π)) <∞ for all n ∈ N,

• µ(σ(A)) = µ(A) for any measurable set A and permutation σ, and

• µ(0∞) = 0.
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The proof of the forward implication is given by Theorem 1.2.6 and Proposition 1.2.7
above. The proof of the backward implication proceeds by giving a Poissonian construction
of an exchangeable coalescent Π from such a measure µ, which we provide next.

Let M be a Poisson random measure on R+×P∞ with intensity Leb⊗µ. For each n ∈ N,
define a random measure Mn on R+ ×Pn by

Mn([0, t]× π) := M([0, t]×P∞(π))

and note that Mn is a Poisson random measure on R+ ×Pn with intensity Leb⊗ µn, where
µn is the measure on Pn given by

µn(π) = µ(P∞(π)).

Since µn(Pn \0n) <∞, Mn has a finite number of atoms in [0, t]×Pn \0n with probability
one. Also, if (t1, π

1) and (t2, π
2) are two atoms of Mn in [0, t] ×Pn \ 0n, then t1 6= t2 with

probability one; that is, the atoms of Mn in [0, t] ×Pn \ 0n occur at different times with
probability one. Therefore, for every n ∈ N the atoms of Mn in [0, t]×Pn\0n can be ordered
according to their first (time) coordinate and we may define the sequence of random vectors
((Ti,Πi))i∈N given by this ordering. Using the latter, we consider the process Πn with values
in Pn such that for every t ≥ 0, Πn(t) is given by the ordered coagulation

Πn(t) = CO
{i:0<Ti≤t}

Πi.

From now on we will write CO0<Ti≤t Πi instead of CO{i:0<Ti≤t}Πi.
By standard Poisson random measure arguments, it is easily seen that the Poisson random

measure Mn can be constructed in the following way: let µ̂n := µn(Pn \ 0n) and consider a
sequence of i.i.d. random partitions (Πi)i∈N with values in Pn \0n and law µn(π)/µ̂n. Let P
be an independent Poisson process in R+ with parameter µ̂n, and denote its jumping times
by (Ti)i∈N. Finally, define the atoms of Mn in R+ ×Pn \ 0n to be the points ((Πi, Ti))i∈N.

Lemma 1.2.9. The process Πn with values in Pn given by:

Πn(0) = 0n

Πn(t) = CO
0<Ti≤t

Πi

is a standard exchangeable coalescent.

Proof. It is clear that if A is any measurable set and t1, · · · , tn ∈ [0, t] then

P
(
Πn(t+ h) ∈ A|Πn(t)

)
= P

(
Πn(t+ h) ∈ A|Πn(t), Πn(t1), · · · , Πn(tn)

)
so Πn is a Markov process. Now, consider the sequence of atoms ((Ti,Πi))i∈N of Mn in
R+ ×Pn \ 0n. Since µ is invariant under permutations, then µn is also invariant under per-
mutations. Thus, for every i ∈ N and any permutation σ we have P(Πi = π) = P(Πi = σ(π)),
that is, Πi is an exchangeable partition. Also, by the construction of the Poisson random
measure Mn described above, we see that the random partitions (Πi)i∈N are independent and
identically distributed. We also have that

Mn((0, h]×Pn \ 0n)
d
= Mn((t, t+ h]×Pn \ 0n)
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since Mn is a Poisson random measure. Therefore

CO
t<Ti≤t+h

Πi
d
= CO

0<Ti≤h
Πi.

Now, since Πn(t+ h) is given by

Πn(t+ h) = Coag
(
Πn(t), CO

t<Ti≤t+h
Πi

)
,

we only need to show that CO0<Ti≤h Πi is an exchangeable partition. The latter follows from
noting that for any finite collection of indices J ⊂ N, the partition

CO
i∈J

Πi

is exchangeable since the partitions (Πi)i∈J are independent and exchangeable (Theorem
1.2.2).

Lemma 1.2.10. For any fixed t > 0, the sequence of partitions (Πn(t))n∈N is consistent.

Proof. For any pair of integers n > m, let ((Ti,Πi))i∈N be the atoms of Mn and ((Tki ,Πki))i∈N
be the subsequence of ((Ti,Πi))i∈N such that Πi

∣∣
m
6= 0n. Then we note that the atoms of

Mm are given by
(
(Tki ,Πki

∣∣
m

)
)
i∈N and:

Πn
∣∣
m

(t) =
(

CO
0<Ti≤t

Πi

)∣∣∣∣
m

= CO
0<Ti≤t

Πi

∣∣
m

= CO
0<Tki≤t

Πki

∣∣
m

= Πm(t).

Proof of Theorem 1.2.8. Lemmas 1.2.9 and 1.2.10 combined with Lemma 1.1.1 and Theorem
1.2.4, show that the sequence (Πn)n∈N determines a unique (in law) exchangeable coalescent
Π in P∞. Since Πn is a Markov chain for every n, and since for every π ∈Pn \ 0n we have
P(Πn(T1) = π) = µ(P∞(π))/µ(Pn \ 0n), it follows that

απ = lim
t→0

1

t
P
(
Πn(t) = π

)
= µ

({
π′ ∈P∞ : π′

∣∣
n

= π
})
,

so Π has coagulation rate µ.

We now provide a construction of coagulation rates reminiscent of Kingman’s representa-
tion for exchangeable partitions. Let us first describe the two types of coagulation rates that
will be the basis of our construction. For each pair of integers i, j consider the partition πi∼j
given by the block {i, j} and the singletons {{k} : k 6= i, k 6= j}. Kingman’s coagulation rate
µK is the measure on P∞ given by atoms of size one at the points {πi∼j : 1 ≤ i < j <∞}.
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Note that the coalescent process determined by this coagulation rate evolves through coag-
ulations of exactly two blocks at a time.

For the second type of coagulation rate consider any measure ν on P[0,1] such that ν(0) =
0 and

(1.4)

∫
P[0,1]

∞∑
i=1

ρ2
i ν(dρ) <∞.

Then, using the measures (%ρ, ρ ∈ P[0,1]) given by the paintbox construction introduced in
Section 1.1.2, define the measure µν on P∞ by:

µν(·) :=

∫
P[0,1]

%ρ(·) ν(dρ).

It follows that µν is a coagulation rate. To see this, notice that %ρ is invariant under permu-
tations and, hence, µν is also invariant under permutations. Also, µν(0∞) = 0 since ν(0) = 0.
Finally, note that µν(P∞(Pn \ 0n)) <∞ for every n ∈ N, since for every π ∈Pn \ 0n there
exists i, j such that i

π∼ j and

µν(P∞(π)) ≤ µν
(
P∞

(
{π : i

π∼ j}
))

=

∫
P[0,1]

∞∑
k=1

ρ2
k ν(dρ) <∞.

Since µK and µν are coagulation rates it is easily seen that for every c > 0, the measure
µ := cµk + µν is again a coagulation rate. The following theorem states that all coagulation
rates can be constructed in this way.

Theorem 1.2.11. Let µ be any coagulation rate. There exists a constant c > 0 and a measure
ν in P[0,1] that satisfies ν(0) = 0 and (1.4) such that

µ = cµK + µν .

The proof of this theorem follows by a clever application of Kingman’s representation
theorem for exchangeable partitions, we refer the reader to Theorem 4.2 in Bertoin 2006.

The class of coalescents with multiple groups of coagulating blocks are also called coa-
lescents with simultaneous multiple collisions, or Ξ-coalescents (in this context the general
measure ν is replaced by the finite measure Ξ that satisfies ν(dρ) = 1∑

ρ2
i

Ξ(dρ), see Sag-

itov 1999; Schweinsberg 2000b); examples of this class include the Poisson-Dirichlet(α, θ)
coalescent (Bertoin 2008; Möhle 2010), in which Ξ is set to be the Poisson-Dirichlet(α, θ)
probability measure on P[0,1], and whose genealogies are typically star-shaped (Möhle 2010);
the symmetric coalescent, in which the measure Ξ is supported on the set{

(ρ1, ρ2, . . . ) ∈P[0,1] : ρ1 = · · · = ρk = 1/k, k ≥ 1
}
,

and describe the limiting genealogies of populations undergoing recurrent bottlenecks (González
Casanova, Miró Pina, and Siri-Jégousse 2020); and the class of Ξ coalescents with Ξ = Ξ′ ◦φ
where φ is the map φ : P[0,1] → P[0,1] given by φ(ρ1, ρ2, . . . ) = (ρ1/2, ρ1/2, ρ2/2, ρ2/2, . . . ),
which describe the genealogies of a wide class of diploid populations (Birkner, Liu, and Sturm
2018). In the following section we introduce the class of simple coalescents which, by reason
of their manageability and wide applicability, have been the most widely studied class of
coalescent processes.
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1.2.3 Simple Coalescents

The Poissonian construction given in Section 1.2.2 tells us that we can intuitively think of
an exchangeable coalescent as a process where one selects a number of time points (Th)h∈N
according to a Poisson process on R+ and then for each time point Th one picks an “incre-
ment” Πh according to some distribution µ in P∞. The coalescent process at time t is then
constructed through the sequential coagulation prescribed by all the increments that occur
before time t. Until now we have considered the general case in which the increments (Πh)h∈N
may prescribe the simultaneous coalescence of multiple groups of blocks. We now focus on
processes whose infinitesimal increments prescribe the coalescence of at most one group of
blocks at a time; we call these coalescent processes simple coalescents or Λ-coalescents (Pit-
man 1999; Sagitov 1999, also, see below for the appearance of the measure Λ). Due to their
simpler nature and wide applicability, these processes are the most widely studied coalescent
processes (see Section 1.3). The following definitions make this intuition precise.

Definition 1.2.3. Let π ∈P∞ be a partition, and Π be an exchangeable coalescent.

• We say that π is a simple partition if all its blocks, except possibly one, are singletons.

• We say that Π is simple if its coagulation rate is supported by simple partitions.

We note that if µ is the coagulation rate of a simple coalescent then the image measure of µ
on P[0,1] under the map π → |π|↓ is supported on mass partitions of the form ρ = (p, 0, 0, · · · ),
p ∈ [0, 1]. Therefore, if ν is the measure on P[0,1] such that µ = cµK + µν , then ν is also
supported on mass partitions of this form. Furthermore, making a slight abuse of notation,
by equation (1.4) the measure ν satisfies∫ 1

0

p2ν(dp) <∞;

therefore, we can write ν in terms of a finite measure Λ on [0, 1] through the equation

(1.5) ν(A) =

∫
A

Λ(dp)

p2
, ∀A ∈ B([0, 1]).

The above discussion can also be read in reverse, that is, for any finite measure Λ in [0, 1]
such that Λ(0) = 0 and

∫
[0,1]

p−2 Λ(dp) <∞, we can construct a measure ν on P[0,1] which

corresponds to a simple coalescent via equation (1.5). For this reason, from now on we will
work with the measures Λ instead of ν and, by a slight abuse of notation, we will say that the
coagulation rate µ of a simple coalescent is given by µ = cµK + µΛ. Given the coagulation
rate of a simple coalescent µ = cµK + µΛ we interpret c as the intensity with which pairs of
blocks coalesce (Kingman’s part), and µΛ as the intensity with which a proportion p of all
the blocks is coalesced instead. Also, if we consider the restriction of Π to Pn, then, for any
simple partition π ∈Pn \0n such that its non-singleton block has k elements ((2 ≤ k ≤ n)),
we have

απ = c1k=2 +

∫
[0,1]

pk−2(1− p)n−k Λ(dp);



22 CHAPTER 1. MAIN CONCEPTS IN COALESCENT THEORY

so if we define λn,k := c1k=2 +
∫

[0,1]
pk−2(1 − p)n−k Λ(dp), then λn,k gives the intensity with

which any particular collection of k blocks coalesce whenever there are n ≥ k blocks. More-
over, the intensities λn,k satisfy the recursion

(1.6) λn,k = λn+1,k + λn+1,k+1

since the rate at which a collection of k blocks coalesce when there are n blocks equals the
rate, when there are n + 1 blocks, at which they coalesce along with the (n + 1)th block
plus the rate at which they coalesce excluding the (n + 1)th block; more precisely, if B is
the non-singleton block of a simple partition π ∈Pn, and π′, π′′ are the simple partitions in
Pn+1 with non-singleton blocks B and B ∪ {n + 1} respectively, then, by the additivity of
the coagulation rate, we have

απ = qπ′ + qπ′′ ,

so (1.6) follows.
Furthermore, if Ak is the set of all simple partitions in Pn such that their non-singleton

element has k elements (2 ≤ k ≤ n), then
∑

π∈Ak απ = (#Ak)λn,k =
(
n
k

)
λn,k gives the rate

at which a coalescence of exactly k blocks occurs whenever there are n ≥ k blocks; and

λn :=
n∑
k=1

(
n

k

)
λn,k

gives the total coagulation rate.
In the following examples we introduce some of the most widely studied simple coalescents,

see Section 1.3 for a brief summary of the literature on these and related coalescents.

Example 1 (Kingman’s coalescent). This is the primordial example first introduced by King-
man 1982 where Λ is the zero measure and c > 0. This is the most widely studied coalescent
due to its simplicity and its ubiquitous appearance in applications, in particular as the ge-
nealogy of neutral populations.

Example 2 (Beta(a, b)-coalescent). In this two-parameter class of simple coalescents the
measure Λ is set to

Λ(dp) =
pa−1(1− p)b−1

B(a, b)
,

and c is set to zero. For instance, the coagulation rates λn,k are given by

λn,k =

∫ 1

0

pa+k−2−1(1− p)n−k+b−1

B(a, b)
dp =

B(a+ k − 2, b+ n− k)

B(a, b)
.

In the next example we define the subclass of Beta(2−α, α) coalescents which has gained
notable attention due to their ubiquitous appearance as the limit genealogies of various pop-
ulation evolution models; and to their adequacy in modelling applications, stemming from
their one-parameter definition and the wide variety of dynamics that they can model, rag-
ing from neutral evolution (Kingman’s coalescent) to strong selection (Bolthausen-Sznitman
coalescent), see Figure 1.2.3.



1.3. OVERVIEW OF APPLICATIONS 23

Example 3 (Beta(2−α,α)-coalescents). This is the particular case of the general Beta(a, b)-
coalescent in which a = 2− α and b = α, i.e.

Λ(dp) =
p1−α(1− p)α−1

Γ(2− α)Γ(α)
dp.

They were first introduced in Schweinsberg 2003 as the limiting genealogy of supercritical
Galton-Watson processes. In the following example we introduce an important example, the
Bolthausen-Sznitman coalescent.

Example 4 (Bolthausen-Sznitman coalescent (BSC)). The Bolthausen-Sznitman coalescent
(Bolthausen and Sznitman 1998) is the Beta(2 − α, α) coalescent of parameter α = 1. This
process has gained significant attention due to its apparent universality as the underlying
genealogy of populations undergoing natural selection (J. Berestycki, N. Berestycki, and
Schweinsberg 2013; Brunet and Derrida 2012; Cortines and Mallein 2017; Neher and Hal-
latschek 2013; Schweinsberg 2017b).

One can check that as the parameter α tends to 2 the coagulation rate of the Beta(2−α, α)-
coalescent converges weakly to δ0 so that the extreme case α = 2 corresponds to Kingman’s
coalescent. In Figure 1.2.3 below we observe how the topology of the corresponding trees in-
terpolates between that of the Bolthausen-Sznitman coalescent, with large external branches
(i.e. branches associated to blocks of size 1) and multiple collisions, and that of Kingman’s
coalescent, with small external branches and pair-wise collisions. As mentioned above, the
Bolthausen-Sznitman coalescent stands as the main model that describes the genealogies of
populations undergoing natural selection, while Kingman’s coalescent is of course the null
model for populations under neutral evolution. This, together with their manageability, are
some of the reasons that motivate the vast studies made on this subclass of simple coalescents.

Figure 1.1: Simulations of Beta coalescents where the parameter α has been interpolated
between 1 and 2; from left to right: α = 1 (BSC), α = 1.25, α = 1.75, and α = 2 (Kingman).

1.3 Overview of Applications

The study of coalescent processes focuses on two main questions motivated by biology. On the
one hand, coalescent processes are the natural mathematical model to study the genealogy
of population models. In fact, a lot of effort is made to establish a parity between coalescent
processes and population models with varying biological assumptions, such as constant or
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varying population size, the presence of mutation and/or natural selection, genetic drift, spa-
tial constraints, dormancy/latency, etc. On the other hand, the theoretical characterization
of different functionals on coalescent processes, such as the tree height, tree length, the size
of external and internal branches or, more conveniently, the size of branches with exactly
b ∈ N descendants, and the coming down from infinity, among others, typically inform the
design of new inference algorithms in population genetics. In the next subsections we pro-
vide an (incomplete) summary of the results obtained so far in these two directions. Further
ahead, in Chapter 2, we develop the general theory, and some applications, that connect
discrete-time and constant-size population models with coalescent processes via asymptotic
weak limits of their genealogies as the total population size N → ∞. Later, in Chapter
3, we introduce the Site Frequency Spectrum (SFS), a functional that models the expected
(neutral) genetic diversity present in a genealogy, and that is the standard model selection
tool to infer the genealogical past of a present-day population from genetic data. We then
provide complete first and second moment characterizations of the SFS for the Bolthausen-
Sznitman coalescent (Kersting, Siri-Jégousse, and H. Wences 2021), along with other related
results. Such a characterization had only been accomplished for Kingman’s coalescent until
now (Fu 1995), evincing the difficulty, often stemming from their deep combinatoric nature,
of studying coalescent processes and their functionals. As mentioned earlier in Example 4,
the Bolthausen-Sznitman coalescent is an important coalescent in the literature due to its
apparent universality as the underlying genealogy of populations undergoing natural selec-
tion.

1.3.1 Genealogies of Population Models (and foreword to Chapter
2)

Coalescent processes appear as the natural limiting processes describing the genealogy of
population evolution models forward in time; in fact, much of the research made on these
models focuses on establishing this connection, often as weak limits under appropriate time
scales and/or time changes. A primordial example of forwards-in-time models are Cannings’
models (Cannings 1974, 1975), which are able to accommodate most biological premises
that fall under the assumption of neutral evolution, and are in fact the most general class
of models for discrete neutral populations of constant size. The key assumption of these
models is that the distribution of the number of descendants of the parents in any generation
should be invariant under permutations, i.e. under any labelling scheme of the parents; thus
formalizing the idea that parents are “indistinguishable” in distribution and, consequently,
all have the same fitness.

Due to their wide applicability and manageability, Cannings’ models are among the most
widely studied population evolution models. The genealogy of Cannings’ models was first
described in whole generality, and in terms of coalescent processes, in the foundational work
of Möhle and Sagitov 2001 which we describe in Section 2.1, where we also use the theory de-
veloped in the present chapter in order to simplify the proofs whenever possible, allowing us
to recycle them in Section 2.2 where we develop, for the first time, a general theory for the ge-
nealogy of multinomial models. The coalescents that appear as the genealogies of the general
Cannings’ model include Kingman’s coalescent, the general Λ-coalescent, and both discrete-
time and continuous-time Ξ-coalescents (see Theorem 2.1.1). Moreover, a natural example
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of Cannings’ models constructed from supercritical branching processes was introduced and
studied by Schweinsberg 2003 where Kingman’s coalescent, the class of Beta(2 − α, α) co-
alescents, and discrete-time Poisson-Dirichlet Ξ-coalescents appear (see Section 2.1.1). The
genealogies of diploid Cannings’ models has also been described in Birkner, Liu, and Sturm
2018 where continuous-time Ξ-coalescents appear. Cannings’ models with varying population
size have also been addressed in Kaj and Krone 2003 where time-changed Kingman’s coales-
cents appear in the limit, also in Freund 2020 leading to general Λ-coalescents in the limit,
and in González Casanova, Miró Pina, and Siri-Jégousse 2020 where Ξ-coalescents appear.

The class of discrete-time multinomial models (Cortines and Mallein 2017; Huillet and
Möhle 2021), on the other hand, can be regarded as a simpler parametrization of Cannings’
models (and/or Wright-Fisher models), “inheriting” their manageability but, nonetheless,
allowing for the incorporation of more complex population dynamics, such as the occurrence
of asymmetric offspring distributions, expected to occur in the important case of popula-
tions undergoing natural selection. The techniques used to study the genealogy of Cannings’
models, in particular the work of Möhle and Sagitov 2001, can be easily adapted for the
multinomial model in its whole generality; we provide such a general adaptation for the first
time in Section 2.2. The latter, in turn, can be simplified, and specialized, to the case where
rare (but recurrent) large reproductive events occur in the population; the first results in
this direction can be found in Cortines and Mallein 2017 which we describe and expand in
Section 2.2.2. Models where large reproductive events occur include, on the one hand, the
neutral model of Huillet and Möhle 2021 which can be regarded as the multinomial analog
of Schweinsberg 2003 (finding also Kingman’s coalescent, the family of Beta(2 − α, α) coa-
lescents, and the Poisson-Dirichlet coalescents in the limit). On the other, the exponential
models of Brunet and Derrida 1997 that incorporate the effect of mutation and natural selec-
tion, and that were first generalized by Cortines and Mallein 2017, and then further expanded
on in our joint (yet unpublished) work with Emmanuel Schertzer presented in Section 2.3.
In the exponential models it is particularly the Bolthausen-Sznitman coalescent that appears
as the limit genealogy, specially for populations under strong natural selection, but recently
we have proved that discrete-time Poisson-Dirichlet Ξ-coalescents may also appear under
somewhat weaker selection (see Theorem 2.3.2). Finally, an example of a multinomial model
where the vector of family frequencies are constructed from Poisson-Dirichlet(α, θ) random
mass partitions is studied in Cortines and Mallein 2017 where Beta

(
1− θ

α
, 1 + θ

α

)
and King-

man’s coalescents appear; in Section 2.2.3 we provide a generalization of these results, and
note that the martingale techniques that we use can be adapted for more general examples
in future work.

On the other hand, coalescent processes of course also appear as the limit genealogy of
continuous-time population evolution models, including the primordial Moran models (e.g.
Bertoin and Le Gall 2003; Huillet and Möhle 2013), various types of branching processes
(Bertoin and Le Gall 2000, 2006; Birkner, Blath, et al. 2005; Foucart, Ma, and Mallein 2019;
Kersting, Schweinsberg, and Wakolbinger 2014), and also models that incorporate the effect
of mutation and natural selection such as J. Berestycki, N. Berestycki, and Schweinsberg 2013;
Schweinsberg 2017b, where it is again the Bolthausen-Sznitman coalescent that appears in
the context of selection (see Section 2.4 for a brief description of the model and the main
results in Schweinsberg 2017b).
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1.3.2 Functionals of Coalescent Processes (and foreword to Chap-
ter 3)

The study of functionals on coalescent processes is motivated by applications in biology, in
particular: 1) founding rigorous mathematical basis for the development of inference algo-
rithms for the genealogy of present-day populations, and 2) the inference of distinct aspects
of the evolutionary past of a population, such as the Time to the Most Recent Common
Ancestor (TMRCA), i.e. the absorption time of the coalescent, the coalescence time of two
randomly chosen individuals, the occurrence of important variations in the population size
in past generations, the strength of selection, the rate of mutation, the presence of sub-
clones/variants in cancer, virus, and/or bacterial populations, etc.

A key biological heuristic for the inference of the genealogy of a population is the presence
of neutral mutations that occur to distinct individuals as the population evolves over time.
These mutations, by reason of their assumed innocuity and inheritability, record information
on the shape of the underlying genealogy without shaping its structure; this information can
then be read in the genome of present-day individuals and used to infer their evolutionary
past. This heuristic is modelled in mathematical population genetics through Poisson point
processes (PPP) constructed on top of coalescent processes, the marks of the PPP signify
neutral mutations that occur in particular individuals/branches, independently from one-
another and from future and past generations. There are two main variations in the next
step of modelling, in the first, the infinite alleles model, mutations are assumed to fall on
the same genomic site but create a new allele every time, in this case, the external branches
only keep the information of the first mutation that they encounter as they traverse the tree
towards the root, masking all the other mutations that occurred above. In the second model,
the infinite sites model, mutations are assumed to fall in a new genomic site every time;
thus, being all inherited according to the shape of the coalescent tree, all their information is
kept in the external branches. In any case, information on the number of shared mutations
between external branches can be used to infer distinct characteristics of the topology of
the tree. This motivates the study of the lengths of internal and external branches for a
wide variety of coalescent process, and, more thoroughly, but also with increasing difficulty,
the study of the Site Frequency Spectrum (SFS), and the Allele Frequency Spectrum (AFS),
defined as the random vector (SFSn,b)1≤b≤n , n ∈ N, (resp. (AFSn,b)1≤b≤n) giving the number
of mutations shared by exactly b external branches in a coalescent processes started with n
particles.

Results have been obtained for particular coalescents and subclasses of coalescents, while
others are given in full generality. Goldschmidt and Martin 2005 give a new representation
of the Bolthausen-Sznitman coalescent in terms of pruning-merge procedures preformed on
random recursive trees; they use this construction to give asymptotics on the block sizes,
and the number of blocks, in the final coagulation event of this particular coalescent. Their
work motivates the results in Iksanov and Möhle 2007 and Drmota et al. 2009 where the
number of cuts needed to isolate the root of a random recursive tree is studied, and also
is the basis for our joint work together with Götz Kersting and Arno Siri-Jégousse on the
SFS of the Bolthausen-Sznitman coalescent discussed further below. Kersting, Pardo, and
Siri-Jégousse 2014 provide asymptotics on the total internal and external branch lengths
of the Bothausen-Sznitman coalescent, extending some results in Dhersin and Möhle 2013



1.3. OVERVIEW OF APPLICATIONS 27

for this particular coalescent, where, however, a recursion for the joint moments of external
branch lengths for general Λ-coalescents is provided. Moreover, Drmota et al. 2007 give
asymptotic results for the total branch length of the Bolthausen-Sznitman coalescent, whereas
Gnedin and Yakubovich 2007, Iksanov and Möhle 2008, Iksanov, Marynych, and Möhle 2009,
and Gnedin, Iksanov, Marynych, and Möhle 2014, provide asymptotics for the number of
collisions, and the total and external branch lengths for Beta(a, b)-coalescents of parameters
(a ∈ (0, 1), b > 0), (a ∈ (0, 2), b = 1), (a = 2, b > 0), and (a = 1, b > 0), respectively. Also
J. Berestycki, N. Berestycki, and Schweinsberg 2008 establish an a.s. limit theorem for the
number of blocks at small times, and related results for the block sizes, in Beta(2 − α, α)-
coalescents; whereas Delmas, Dhersin, and Siri-Jégousse 2008 give asymptotic distributions
for their lengths. Beta(2− α, α) coalescents are also studied in Dhersin, Freund, et al. 2013
who characterize the limit of the length of a randomly chosen external branch, and also in
Kersting 2012 where the asymptotic distribution of their total branch length is given. J.
Berestycki, N. Berestycki, and Limic 2014 give weak laws of large numbers for the total
number of segregating sites, for both the infinite sites model and the infinite alleles model, in
the general Λ-coalescent; they strengthen this result to strong laws whenever Λ is regularly
varying at zero of order α ∈ (1, 2) (i.e. Λ(dx) = f(x)dx where f(x) ∼ Ax1−α as x → 0 for
some 1 < α < 2 and A > 0). Recently, in Diehl and Kersting 2019, L1-laws of large numbers
for the total tree length and the total length of external branches for general Λ-coalescents,
including Λ-regularly varying at zero of order α = 1, were provided.

Asymptotic results have also been obtained in the more thorough direction of the SFS
and the AFS, but only for small families, i.e. for fixed family sizes b as the total initial
number of particles n tends to ∞. J. Berestycki, N. Berestycki, and Schweinsberg 2007
give in-probability asymptotic sampling formulae for the SFS and AFS in Beta(2 − α, α)-
coalescents, whereas Basdevant and Goldschmidt 2008 provide weak laws of large numbers
for the AFS of the Bolthausen-Sznitman coalescent. J. Berestycki, N. Berestycki, and Limic
2014 give asymptotic a.s. sampling formulae for the SFS and the AFS of Λ-coalescents when
Λ is regularly varying at zero of order α ∈ (1, 2); while Diehl and Kersting 2019 give similar
in-probability asymptotics for Λ-coalescents that are regularly varying at zero of order α = 1,
covering the Bolthausen-Sznitman coalescent.

Exact results for the SFS and AFS in the finite n case have also been derived, most of the
time in terms of computationally intensive algorithms, hindering their applicability for large
populations. Ewens 1972 gives the celebrated sampling formula for the AFS of Kingman’s
coalescent. Later, Fu 1995 provides the expected SFS in Kingman’s coalescent. Twenty
years later, Kukla and Pitters 2015 study the spectral decomposition of the jump matrix
of the Kingman and Bolthausen-Sznitman coalescents; shortly afterwards, Spence, Kamm,
and Song 2016 also derive such decompositions for general Λ- and Ξ-coalescents and, from
this, manage to obtain an expression for the expected SFS in this general setting. These
expressions are given in terms of matrix operations which in the case of the Bolthausen-
Sznitman coalescent result in an algorithm requiring on the order of n2 computations. In
Hobolth, Siri-Jégousse, and Bladt 2019 another expression in terms of matrix operations is
given for the SFS and other functionals for general Λ-coalescents, both in expected value
(and higher moments) and in distribution. These expressions, however, are deduced from
the theory of phase-type distributions, in particular distributions of rewards constructed on
top of coalescent processes, and also require vast computations for large population sizes.
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In Section 3 we present our joint work together with Götz Kersting and Arno Siri-Jégousse
(Kersting, Siri-Jégousse, and H. Wences 2021) in which we provide a complete, easy-to-
compute, first and second moment characterization of the SFS, both for finite and infinite
population sizes, in the Bolthausen-Sznitman coalescent. We remark that analog results, in
terms of exact easy-to-compute formulas, had only been obtained for Kingman’s coalescent
(Fu 1995) so far. Our formulas give corresponding L2-laws of large numbers for the SFS which
generalize and strengthen those in Diehl and Kersting 2019 for this particular coalescent.
Notably, our results describe the complete SFS, including small, but also large family sizes,
i.e. families that take up a positive fraction of the population as n → ∞; thus providing
new insights into the top of the genealogical tree. We believe that our results could serve as
a rigorous mathematical basis for the development of new inference algorithms for this type
of genealogy, which would suggest the presence of natural selection in biological populations
(Desai, Walczak, and Fisher 2013; Melissa et al. 2021; Neher and Hallatschek 2013).

Finally, other functionals and important theoretical questions on coalescent processes
have also been addressed. For example, in Schweinsberg 2000a a general criterion for the Λ-
coalescent to come down from infinity is proved, whereas in J. Berestycki, N. Berestycki, and
Limic 2010 the speed of this coming down from infinity is described. Limic 2010 provides an
analog criterion for general Ξ-coalescents. Moreover, Gnedin, Iksanov, and Marynych 2011
study Λ-coalescents with a positive dust component, for example covering the Beta(a, b), a >
1, b > 0, coalescents, and obtain limit distributions of the absorption time and the number
of collisions.



Chapter 2

Population Evolution Models With
Selection

In Chapter 1 we provided a general theory for coalescent processes, and motivated its study as
the processes describing the limit genealogy population models (Section 1.3). In the present
chapter we provide a general theory, with examples, on the limit genealogy for discrete-time
and constant-size population evolution models. In Section 2.1 we introduce Cannings’ mod-
els and, following the primary work of Möhle and Sagitov 2001, provide sufficient conditions
for their genealogy to converge weakly to general Λ- and Ξ-coalescents, both in continuous
and discrete time. In our exposition we use the theory developed in Chapter 1 in order to
simplify the proofs in Möhle and Sagitov 2001, specially for Theorem 2.1.2 below. This allows
us to recycle them in Section 2.2 where we introduce and study the multinomial models and,
in Theorems 2.2.1 and 2.2.5, provide a new general criteria for the weak convergence their
genealogies. Multinomial models resemble Cannings’ models and in fact share their simplic-
ity and manageability; however, they are capable of describing a wider range of offspring
distributions, in particular non-symmetrical ones (see e.g. Section 2.3).

In Section ?? we briefly describe the Cannings’ model constructed from supercritical
Galton-Watson processes studied by Schweinsberg 2000b, and in Section 2.2.1 we describe its
multinomial homologue introduced by Huillet and Möhle 2021. These two examples contain
regimes that conceptually fall into the class of models studied in Section 2.2.2, where we
specialize to the case of multinomial models whose genealogies are described by Λ-coalescents
by assuming the occurrence of rare but recurrent large reproductive events stemming from
single individuals along the generations; these large reproductive events may occur by mere
chance, or, as seen in Section 2.3, may be a consequence of the strength of selection. We
formalize this heuristic in our conditions (2.12) for Theorem 2.2.8 which generalize and ease
the applicability of those given in Cortines and Mallein 2017. Under such conditions we prove
the weak convergence of the genealogy to Kingman’s and general Λ-coalescents.

In Theorem 2.2.11 of Section 2.2.3 we generalize Theorem 3.3 in Cortines and Mallein
2017, where the family frequencies in the multinomial model are given as renormalized
Poisson-Dirichlet(α, θ) N -size biased picks; we apply the results of Section 2.2.2 and prove
that the genealogy converges either to the Beta(1 − θ

α
, 1 + θ

α
) or to Kingman’s coalescent,

depending on whether θ ∈ (−α, α) or θ ≥ α.

In Section 2.3 we introduce the exponential models of Brunet and Derrida 1997 in terms of

29



30 CHAPTER 2. POPULATION EVOLUTION MODELS WITH SELECTION

discrete-time and constant-size populations undergoing mutation and natural section. In our
joint work together with Emmanuel Schertzer, and building on Cortines and Mallein 2017,
we use the theory developed in Section 2.2, including some examples of Section 2.2.3, to
show that under strong selection regimes the limit genealogy of these models is given by the
Bolthausen-Sznitman coalescent, whereas under mild selection regimes the limit genealogy
is a discrete-time Poisson-Dirichlet coalescent (Theorem 2.3.2). We also provide asymptotics
on the speed of selection for these two regimes in Theorem 2.3.12.

Finally, we end this chapter with a brief introduction to the continuous-time and constant-
size model studied by Schweinsberg 2017a,b where again the Botlhausen-Sznitman coalescent
appears in the context of natural selection.

2.1 Cannings’ (Neutral) Models

Consider a population of constant size N evolving in discrete time. For every t ∈ N and

N ∈ N, let ξ
(t)
N :=

(
ξ

(t)
1,N , · · · , ξ

(t)
N,N

)
be the offspring sizes of generation t, i.e. ξ

(t)
i,N gives the

number of children of the ith individual in the next generation t + 1. In particular, the
population size being fixed at N , the random vector ξ

(t)
N must satisfy ξ

(t)
1,N + · · ·+ ξ

(t)
N,N

a.s.
= N .

To construct the parental relations between generations t and t+ 1 we assume that parents
choose children in the following way: the first individual of generation t chooses ξ

(t)
1,N children

among {1, . . . , N} uniformly at random without replacement and, continuing in the same

way, the ith parent chooses ξ
(t)
i,N children among the remaining (unpicked) children uniformly

at random without replacement. Let Π̃
(N)
t+1 be the random partition of N given by

i
Π̃

(N)
t+1∼ j ⇐⇒ i and j share the same parent in generation t

so that, for any T ∈ N, the genealogy of the population from generation T backwards in time
is identical in distribution to the inhomogeneous coalescent process

Π
(N)
t :=

{
0, t = 0

COt
h=1 Π̃

(N)
T−h, t ∈ {1, · · · , T}.

At this point we impose Cannings’ (Cannings 1974, 1975) conditions on the law of
(
ξ

(t)
N

)
t≥0

,

which will allow for the characterisation of the weak limit of the underlying genalogy as
N →∞ in terms of exchangeable coalescent processes; these conditions are

1. Static environment: the sequence of offspring sizes
(
ξ

(t)
N

)
t≥0

is i.i.d.,

2. Neutrality: ξ
(1)
N is an exchangeable random vector.

Remark. As we will see in Section 2.2, the neutrality assumption is not necessary for the
study of their (exchangeable) genealogies, as long as the parental relationships are constructed
in an exchangeable way, i.e. if the partition that groups children according to their parents is
a random exchangeable partition.
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Note that under these assumptions the coagulation increments
(

Π̃
(N)
t

)
t≥0

are i.i.d. so that

we may write
(
Π

(N)
t

)
t≥0

as

Π
(N)
t =

{
0, t = 0

COt
h=1 Π̃

(N)
h , t ∈ {1, · · · , T}.

where the
(

Π̃
(N)
h

)
h≥0

are i.i.d. exchangeable random partitions. This in turn allows us

to construct the genealogy of the processes indefinitely backwards in time (very large T )
which simplifies the time-scaling needed in order to obtain a non trivial weak limit for the
genealogy as N → ∞. This model, and variations of this model, including models with
varying population size, have been extensively studied in the literature (Freund 2020; Huillet
and Möhle 2013; Möhle and Sagitov 2001; Schweinsberg 2003).

As demonstrated in Möhle and Sagitov 2001, the time scale needed to obtain a non-trivial

limit for the genealogy process
(
Π

(N)
t

)
t≥0

is the quantity c−1
N where

cN := P (two randomly chosen individuals have the same parent)

= P

(
1

Π̃
(N)
1∼ 2

)
.

Note that cN can be computed as

cN =
E [(ξ1,N)2]

N − 1

where we have used the notation (a)b = a(a− 1) · · · (a− b+ 1) for a > 0 and b ∈ Z+∪ 0. The

quantity c−1
N is also equal to E

[
T

(N)
2

]
where T

(N)
2 is the time needed (in generations) for two

randomly chosen individuals to meet their most recent common ancestor (MRCA), i.e.

T
(N)
2

d
= T

(N)
i,j := inf

t≥1

{
i
Π

(N)
t∼ j

}
, ∀i, j ∈ {1, . . . , N}.

Indeed, the parental relations among any two consecutive generations being i.i.d. entails that
T

(N)
2 is geometrically distributed with parameter cN .

In their Theorem 2.1 Möhle and Sagitov 2001 give the most general result for the weak
convergence of the genealogy of n ∈ N randomly chosen individuals(

Π
(N,n)
[t/cN ]

)
t≥0

:=
(
Π

(N)
[t/cN ]

∣∣∣
n

)
t≥0

to coalescents with multiple collisions; mainly

Theorem 2.1.1 (Theorem 2.1 in Möhle and Sagitov 2001). Let Q be the coagulation rate
matrix of the Ξ-coalescent with values in Pn given by

Qπ,π′ :=


µΞ (P∞(π̃)) if π′ = Coag(π, π̃),

−
∑

π̃∈Pn
µΞ (P∞(π̃)) if π′ = π,

0 otherwise,
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where µΞ(·) =
∫

P[0,1]
%ρ(·)Ξ(dρ). Also let P(N) be the transition matrix for the genealogy of n

randomly chosen individuals given by

P
(N)
π,π′ :=

{
P

(
Π̃

(N)
1 = π̃

)
if π′ = Coag (π, π̃)

0 otherwise,

where we have made a slight abuse of notation by writing Π̃(N) = π̃ instead of Π̃(N)
∣∣∣
n

= π̃.

Assume that

(2.1) P(N) = I + cNQ + o (cN) .

I. If cN → c > 0 then
(
Π

(N,n)
t

)
t≥0

converges weakly in the product topology for PN
n to a

Markov chain with initial state 0 and transition matrix I + cQ.

II. If cN → 0 then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly in the Skorohod space C([0,∞),Pn) to the

Ξ-coalescent with initial state 0n.

Proof. I. Equation (2.1) plus the condition cN → c > 0 imply limN→∞P(N) = I + cQ which
in turn gives convergence of the finite dimensional distributions; the latter is equivalent
to weak convergence on PN

n (see Example 2.6 in Billingsley 1999).

II. Given that both
(
Π

(N,n)
[t/cN ]

)
t≥0

and the Ξ-coalescent are Feller processes we need only prove

convergence of their semigroups (Theorem 2.5 in Ethier and Kurtz 1986). By means of
the equality

(
P(N)

)k − (I + cNQ)k =
k∑
i=1

(
P(N)

)i−1
(P(N) − (I + cnQ)) (I + cNQ)k−i

(which follows by telescoping the sum on the right hand side), we compute, for every
t > 0∥∥∥∥(P(N)

)[ t
cN

]
− (I + cNQ)

[
t
cN

]∥∥∥∥ ≤ [ t

cN

] ∥∥P(N) − (I + cNQ)
∥∥ (1 +

∥∥P(N) − (I + cNQ)
∥∥)

[
t
cN

]

≤
[
t

cN

] ∥∥P(N) − (I + cNQ)
∥∥ exp

{[
t

cN

] (
o (cN) + o

(
c2
N

))}
N→∞−→ 0;

where ‖·‖ refers to the usual operator norm, and we have used (2.1). Therefore

lim
N→∞

(
P(N)

)[ t
cN

]
= lim

N→∞
(I + cNQ)

[
t
cN

]
= etQ.

Möhle and Sagitov 2001 also give conditions under which (2.1) holds.
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Theorem 2.1.2 (Theorem 2.1 in Möhle and Sagitov 2001). Let P(N) and Q be as in the
previous Theorem 2.1.1. Then the equality (2.1) holds for some µΞ (corresponding to a Ξ-
coalescent) if and only if the limits

(2.2) φj(b1, . . . , bj) := lim
N→∞

E

[
(ξ1,N)b1 · · · (ξj,N)bj

]
N b1+···+bj−jcN

exist for j ∈ N and b1 ≥ . . . bj ≥ 2.

Proof. Let π̃ be a coagulation increment different from 0#π̃, and denote by b = (b1, . . . , b#π̃)
its block sizes ordered decreasingly; in particular b1 + · · ·+ b#π̃ = |π|. We first compute

1

cN
P

(N)
π,Coag(π,π̃) =

1

cN

1

(N)|π|

N∑
i1,...,i#π̃

all distinct

E

[
(ξi1,N)b1 · · ·

(
ξi#π̃ ,N

)
b#π̃

]

=
1

cN

(N)#π̃

(N)|π|
E

[
(ξ1,N)b1 · · · (ξ#π̃,N)b#π̃

]

=
E

[
(ξ1,N)b1 · · · (ξ#π̃,N)b#π̃

]
N b1+···+b#π̃−#π̃cN

(
1 +O

(
N−1

))
where we have used Stirling’s approximation Γ(m + c)/Γ(m + d) = mc−d (1 +O (1/m)) as
m → ∞. Note that the last line above does not depend on π and that it is invariant under
permutations of the partition π̃, i.e. for any finite permutation σ we have

1

cN
P

(N)
π,Coag(π,π̃) =

1

cN
P

(N)
π,Coag(π,σ(π̃)).

Thus (2.1) holds if and only if the limits in (2.2) exist for any j ∈ N, b1 ≥ 2, and b2, . . . , bj ∈
{1, 2, . . . }; in this case, by Theorem 1.2.8, the quantities φj(b1, . . . , bj) define a coagulation
measure through the equality

φj(b1, . . . , bj) = µΞ (P∞ (πb)) ,

where

πb := {{1, . . . , b1}, {b1 + 1, . . . , b1 + b2}, . . . , {b1 + · · ·+ bj−1 + 1, . . . , n}}.

Thus, it only remains to note that in fact it is enough to verify (2.2) for b1 ≥ b2 ≥ · · · ≥ bj ≥ 2.
Indeed, the result follows easily from the additivity of µΞ which gives the recursion

µΞ (P∞ (πb)) = µΞ (P∞ (πb ∪ {{n+ 1}})) +

j∑
k=1

µΞ (P∞ (πb,k))

where πb,k is constructed from πb by adding the element n+ 1 to the kth block of πb (i.e. to
the set {b1 + · · ·+ bk−1 + 1, . . . , b1 + · · ·+ bk−1 + bk}). This entails that if (2.2) is verified for
b1 ≥ b2 ≥ · · · ≥ bj ≥ 2, j ∈ N, then it is also verified for b1 ≥ b2 ≥ · · · ≥ bj > 1 = bj+1; and,
recursively, that it is also verified for b1 ≥ b2 ≥ · · · ≥ bj > 1 = bj+1 = · · · = bj+k.
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2.1.1 Genealogies of Supercritical Galton-Watson Processes

In this section we briefly describe (without proof) an application of Theorem 2.1.1 for the
genealogy of supercritical Galton-Watson processes, a result obtained in Schweinsberg 2003.

In Schweinsberg’s model, each individual has an independent and identically distributed
number of children, say Xi, 1 ≤ i ≤ N , so that the random variable X1 + · · · + XN gives
the total size of the produced offspring. In order to fix the population size at N , first the
condition E [X1] > 1 is imposed which ensures that X1 + · · ·+XN ≥ N with sufficiently high
probability, and, second, the surplus of X1+· · ·+XN−N children are uniformly chosen among
all the offspring produced and are killed so that the definitive offspring sizes (ξ1,N , . . . , ξN,N)
of each parent are set. On the event that X1 + · · · + XN < N , the condition E [X1] > 1
allows us to set (ξ1,N , . . . , ξN,N) to an arbitrary value without affecting the limit behaviour
of the genealogy as N → ∞. Schweinsberg 2003 demonstrates the following description of
the genealogy depending on the tail of the distribution of X1 expressed in the condition

(2.3) lim
k→∞

kαP (X1 ≥ k) > 0.

Theorem 2.1.3 (Schweinsberg 2003). As N →∞:

I. If E [X2
1 ] <∞ or (2.3) holds with α = 2, then

(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to Kingman’s

coalescent in the Skorohod space D([0,∞),Pn).

II. If (2.3) holds with 1 ≤ α < 2, then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to the Beta coalescent

of parameter α in the Skorohod space D([0,∞),Pn).

III. If (2.3) holds with 0 ≤ α < 1, then
(
Π

(N,n)
t

)
t≥0

converges weakly to a discrete-time

coalescent process. The coagulation increments
(

Π̃h

)
h≥0

of the limit process are i.i.d.

and their asymptotic frequencies in Kingman’s representation (as in Section 1.1.6) are
Poisson-Dirichlet(α,0) distributed.

2.2 Multinomial Populations

In this section we come back to the general scenario of a population with constant size N

evolving in discrete time, and let ξ
(t)
N :=

(
ξ

(t)
1,N , · · · , ξ

(t)
N,N

)
be the offspring sizes of generation

t. This time, however, instead of Cannings’ conditions on
(
ξ

(t)
N

)
t≥0

(Section 2.1), we impose

the conditions

1. Static environment: the sequence of vectors of offspring sizes
(
ξ

(t)
N

)
t≥0

is i.i.d.,

2. multinomial Offspring Law: The distribution of the vector ξ
(1)
N is given by

ξ
(1)
N

∣∣∣η(N) d
= Multinomial(η(N)) and

P
(
η(N) ∈ ·

)
= ν(N)(·),
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where of course ν(N) is a probability measure supported on the set{
η ∈ [0, 1]N :

N∑
i=1

ηi = 1

}
.

That is, we have replaced Cannings’ neutrality condition by the multinomial offspring
law condition (see Cortines and Mallein 2017; Huillet and Möhle 2021).

Multinomial models are surely reminiscent of Cannings’ models; however, an important
distinction is that the random vector of probabilities η(N) needs not be exchangeable, and
thus neither does ξ

(1)
N ; in particular the offspring sizes (ξ1,N , . . . , ξN,N) need not be identically

distributed. In general, every Cannings’ model has a multinomial approximation given by
setting η(N) = 1∑N

i=1 ξi,N
(ξ1,N , . . . , ξN,N), in the same spirit as Huillet and Möhle 2021 can be

regarded as the multinomial homologue of Schweinsberg 2003. Nonetheless, as explained in
Section 2.2.1, Cannings’ and multinomial models do have different modelling assumptions,
such as the distinction between sampling with replacement and sampling without replace-
ment. On the other hand, multinomial models do not have in general a Cannings analogue,
unless η(N) is itself exchangeable, or is made exchangeable by permuting its entries uniformly
at random, thus losing any information on the possible asymmetries of the offspring size
distribution. In fact, as seen further below in Sections 2.3 and 2.2.3, multinomial models
naturally arise in the context of asymmetric offspring distributions, such as those expected
in populations undergoing natural selection (although note that, since children choose par-
ents in an i.i.d manner, multinomial models cannot incorporate the inheritance of fitness
traits). Thus, multinomial models are more versatile for modelling applications than Can-
nings’ models which only cover symmetric offspring distributions.

At the same time, however, the exchangeability of Kingman’s paint-box procedure makes
the genealogy Π(N,n) of n randomly chosen individuals in the multinomial model with random
probabilities η(N), identical in distribution to the genealogy of the corresponding Cannings’
model where η(N) is made exchangeable by permuting its entries uniformly at random. Thus,
even when multinomial models may deal with asymmetric populations not covered by Can-
nings’ models, at the level of their genealogies, however, multinomial models can in fact be
regarded as special cases of Cannings’ models, inheriting their ease of management. Indeed,
in the same way as in Section 2.1, the static environment condition allows us to study the
genealogy of the multinomial population arbitrarily backwards in time through the coalescent
process

(2.4) Π
(N)
t :=

{
0N , t = 0,

COt
h=1 Π̃

(N)
h , t > 0,

where the coagulation increments Π̃
(N)
h are constructed through Kingman’s representation

(Theorem 1.1.6) from a sequence of i.i.d. random mass-partitions
(
ρ̃

(N)
t

)
t≥0

with common

distribution coinciding with that of
(
η(N)

)↓
the vector η(N) arranged in decreasing order. It

is easily seen that the parental relations between two consecutive generations, say t and t+1,
can be constructed by allowing children in generation t+ 1 to independently choose parents
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according to an independent realization of ρ̃
(N)
t . Grouping children with the same parent

gives in fact the paint-box construction of Π̃
(N)
t from ρ̃

(N)
t .

We are again interested in the weak limit as N → ∞ of
(
Π

(N,n)
t

)
t≥0

under a suitable

time scale. Again the correct time scale is given by the probability cN which, in this case,
can be computed as

(2.5) cN = E

[
∞∑
k=1

(
η

(N)
k

)2
]
.

The same proof as for Theorem 2.1.1 allows us to restate it in the terminology of this section
without proof, giving, however, a new general criterion for the weak convergence of the
genealogy of multinomial models. The transition matrix P(N) is now given by

P
(N)
π,Coag(π,π̃) =

∫
P[0,1]

%ρ(P∞ (π̃))ν(N)(dρ).

Condition (2.1) of Theorem 2.1.1, on the other hand, translates into

(2.6) µν(N)(P∞(π̃)) =

{
cNµΞ(P∞(π̃)) + o (cN) if π̃ ∈Pn \ {0n}
1− cN

∑
π̃∈Pn

µΞ(P∞(π̃)) + o (cN) if π̃ = 0n.

Theorem 2.2.1. Let P(N) and Q be as in Theorem 2.1.1. Assume that (2.6) holds.

I. If cN → c > 0 then, as N →∞,
(
Π

(N,n)
t

)
t≥0

converges weakly in the product topology for

PN
n to a Markov chain with initial state 0n and transition matrix I + cQ.

II. If cN → 0 then, as N → ∞,
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly in the Skorohod space

C([0,∞),Pn) to the Ξ-coalescent with initial state 0n.

Corollary 2.2.2. If ρ̃(N) converges weakly on P[0,1] to ρ̃(∞) as N → ∞, then
(
Π

(N,n)
t

)
t≥0

converges weakly in the product topology for (Pn)N to a Markov chain with initial state 0n
and transition matrix given by

P
(∞)
π,Coag(π,π̃) = E

[
%ρ̃(∞)(P∞(π̃))

]
.

Proof. Proposition 1.1.7 readily gives E
[
%ρ̃(N)(P∞(π̃))

]
= E

[
%ρ̃(∞) (P∞(π̃))

]
+ o (1), which

is the condition of Theorem 2.2.1 for the case limN→∞ cN > 0 if we replace cN and c by 1.

Corollary 2.2.3. Assume that

(2.7) E

[(
η

(N)
1

)3

+ · · ·+
(
η

(N)
N

)3
]

= o (cN) .

Then, as N → ∞,
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly in the Skorohod space C([0,∞),Pn) to

Kingman’s coalescent with initial state 0n.
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Proof. Observe that for any N ≥ j and b1 ≥ · · · ≥ bj ≥ 1 we have

N∑
i1,i2,...,ij
all distinct

(
η

(N)
i1

)b1
· · ·
(
η

(N)
ij

)bj
≤

N∑
i1,i2,...,ij−1

all distinct

(η(N)
i1

)b1
· · ·
(
η

(N)
ij−1

)bj−1 ∑
ij 6∈{i1,...,ij−1}

(
η

(N)
ij

)bj
≤

N∑
i1,i2...,ij−1

all distinct

(
η

(N)
i1

)b1
· · ·
(
η

(N)
ij−1

)bj−1

× 1

...

≤
N∑
k=1

(
η

(N)
k

)b1
.(2.8)

This upper bound together with

P
(N)
π,Coag(π,π̃) =

N∑
i1,...,i#π̃

all distinct

E

[(
η

(N)
i1

)b1
· · ·
(
η

(N)
i|π̃|

)b|π̃|]

and (2.7) give, for any π ∈Pn and coagulation increment π̃ ∈P|π| with ordered block sizes
b1 ≥ · · · ≥ bj, j = |π̃|,

P
(N)
π,Coag(π,π̃) =

{
o (cN) if b1 ≥ 3 or b2 > 1,

cN otherwise,

so that the proof is finished by an application of Theorem 2.2.1.

Corollary 2.2.4. Assume that the conditions

E

[(
η

(N)
2

)3

+ · · ·+
(
η

(N)
N

)3
]

= o (cN) ,

and

∃β > 0: E

[(
η

(N)
1

)β]
= o (cN)

both hold, then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly in the Skorohod topology for D([0,∞),Pn) to

Kingman’s coalescent.

Proof. By Corollary 2.2.3 and the first hypothesis it is enough to prove E

[(
η

(N)
1

)3
]

= o (cN).

The result is trivial if β ≤ 3, we thus assume β > 3. Observe that for λ ∈ (0, 2) we have,
using Hölder’s inequality,

E

[(
η

(N)
1

)3
]

= E

[(
η

(N)
1

)λ (
η

(N)
1

)3−λ
]

≤ E
[(
η

(N)
1

)2
]λ/2

E

[(
η

(N)
1

) 2(3−λ)
2−λ

]1−λ/2
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so that, choosing λ ∈ (0, 2) to ensure 2(3−λ)
2−λ > β and using the second hypothesis, we obtain

E

[(
η

(N)
1

)3
]

cN
≤
E

[(
η

(N)
1

) 2(3−λ)
2−λ

]1−λ/2

c
1−λ/2
N

≤
(
c−1
N E

[(
η

(N)
1

)β])1−λ/2

N→∞→ 0.

By essentially the same proof as in Theorem 2.1.2 we obtain the following general neces-
sary and sufficient condition for equation (2.6) to hold.

Theorem 2.2.5. Let P(N) and Q be as in the previous Theorem 2.2.1. Then the equality
(2.6) holds for some Ξ-coalescent if and only if the limits

(2.9) φj(b1, . . . , bj) := lim
N→∞

E

[(∏j
i=1

(
s

(N)
i

)bj−1
)∏j

i=1

(
1−

(
s

(N)
1 + · · ·+ s

(N)
i

))]
cN

exist for j ∈ N and b1 ≥ . . . bj ≥ 2, where
(
s

(N)
1 , s

(N)
2 , . . .

)
is a size-biased reordering of η(N).

Proof. We compute, recalling the notation b = (b1, . . . , b#π̃) for the block sizes of the coag-

ulation increment π̃ 6= 0#π in
(
Π

(N,n)
t

)
t≥0

,

P
(N)
π,Coag(π,π̃) =

N∑
i1,...,i#π̃

all distinct

E

[(
η

(N)
i1

)b1
· · ·
(
η

(N)
i#π̃

)b#π̃]

Now observe that if η
(N)
i = 0 then the corresponding terms in the right hand side above are

zero, and also P
(
η

(N)
i ∈

(
s

(N)
1 , . . . , s

(N)
N

))
= 0. Thus we may assume η

(N)
i > 0 for all i ∈ [N ].

Observe that for distinct indexes i1, . . . , ib we have

P

(
s

(N)
k = η

(N)
ik
, 1 ≤ k ≤ b|η(N)

)
= P

(
s

(N)
1 = η

(N)
i1
|η(N)

)
· · ·P

(
s

(N)
b = η

(N)
ib
|η(N), s

(N)
1 , · · · , s(N)

b−1

)
=

b∏
k=1

η
(N)
ik

1−
∑k−1

j=1 η
(N)
ij
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so that

N∑
i1,...,i#π̃

all distinct

E

[(
η

(N)
i1

)b1
· · ·
(
η

(N)
i#π̃

)b#π̃]

=
N∑

i1,...,i#π̃
all distinct

E

[
#π̃∏
k=1

η
(N)
ik

1−
∑k−1

j=1 η
(N)
ij

(1−
k−1∑
j=1

η
(N)
ij

)
(
η

(N)
ik

)bk−1
]

= E

 N∑
i1,...,i#π̃−1

all distinct

P

(
s

(N)
k = η

(N)
ik
, 1 ≤ k ≤ #π̃|η(N)

)
E

[
#π̃∏
j=1

(1−
k−1∑
j=1

s
(N)
ij

)
(
s

(N)
ik

)bk−1

|η(N), s
(N)
1 , . . . , s

(N)
k

]
= E

[
#π̃∏
j=1

(1−
k−1∑
j=1

s
(N)
ij

)
(
s

(N)
ik

)bk−1
]

The proof is finished by following the same argument as in Theorem 2.1.2.

2.2.1 A Class of Generalized Wright-Fisher Models

In this section we briefly present the model introduced in Huillet and Möhle 2021. This model
can be seen as an adaptation of condition (2.3) and Theorem 2.1.3 to the multinomial model
described in this section. In this adaptation, the random probabilities η(N) of the multinomial
model are constructed by normalizing a sequence (Xi)1≤i≤N of i.i.d positive random variables
which are assumed to satisfy

(2.10) P (X > x) ∼ x−α`(x), x→∞,

for some constant α ≥ 0, and a function ` : (0,∞) → (0,∞) slowly varying at infinity
(c.f. condition (2.3)). This models differs from that in Schweinsberg 2003 in that X need
not be integer-valued; and also in that it does not require the “supercriticality” condition
E [X] > 1, although this condition can be imposed by considering aX which would yield the
same random vector of probabilities

η(N) =

(
X1∑N
i=1Xi

, · · · , XN∑N
i=1 Xi

)
. Also, the new generation is constructed through a sample with replacement, as opposed to
the sample without replacement done in Schweinsberg 2003. In Huillet and Möhle 2021 the
asymptotic genealogy of this process is derived.

Theorem 2.2.6 (Theorem 1 in Huillet and Möhle 2021). As N →∞,

I. If E[X2] < ∞ (in particular if (2.10) holds with α > 2), then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges

weakly to Kingman’s coalescent in the Skorohod space D([0,∞),Pn), and cN satisfies

cN ∼ E[X2]
E[X]2

N−1.
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II. If (2.10) holds with α = 2, then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to Kingman’s coalescent

in the Skorohod space D([0,∞),Pn), and cN satisfies cN ∼ 2
E[X]2

`∗(N)N−1, where

`∗(x) :=
∫ x

1
`(s)
s
ds.

III. If (2.10) holds with α ∈ (1, 2), then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to the Beta(2 −
α, α) coalescent in the Skorohod space D([0,∞),Pn), and cN satisfies cN ∼ αB(2 −
α, α)E [X]−α `(N)N1−α.

IV. If (2.10) holds with α = 1 then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to the Bolthausen-Sznitman

coalescent in the Skorohod space D([0,∞),Pn), and if (aN)N∈N satisfies `∗(aN) ∼
aN/N , then cN satisfies cN ∼ `(aN)/`∗(aN) = N`(aN)/aN .

V. If (2.10) holds with α ∈ (0, 1), then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to the discrete-time

Poisson-Dirichlet(α, 0) coalescent, and cN → 1− α.

VI. If (2.10) holds with α = 0, then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to the star-shaped coales-

cent and cN → 1.

2.2.2 Single-Parent Offspring Bursts

In this section we provide a simpler sufficient condition for (2.6) to hold which gives a Λ-
coalescent as the limit genealogy. There are two simple heuristics from distinct population
dynamics which motivate this section: 1) all the individuals in the population have the
same fitness but occasionally, by mere chance, there occur large reproductive events where a
single individual takes up a large fraction of the offspring in the next generation, and 2) the
population is under the effect of strong selection so that the family frequencies given by the
mass-partition ρ̃(N) are dominated by the family frequency ρ̃

(N)
1 of the fittest individual. In

both of these scenarios we expect that all the coagulations that remain observable in the limit
correspond to very large reproduction events of single individuals along the generations (see
Cortines and Mallein 2017; Huillet and Möhle 2021; Schweinsberg 2003); these coagulations

must then be driven by ρ̃
(N)
1 , the largest value of ρ̃(N). In practice we would rather allow

more flexibility and consider any random (possibly unordered) vector of probabilities η(N)
a.s.
∈{

η ∈ [0, 1]N :
∑N

i=1 ηi = 1
}

and prove that all the coagulations that “survive” in the limit

are driven by the frequency η
(N)
1 . This entails that η

(N)
1 should approximate ρ̃

(N)
1 as N →∞,

but working with η
(N)
1 instead of ρ̃

(N)
1 may ease the study of the underlying genealogy of

the population (also note that our setup does include the case where η
(N)
i = ρ̃

(N)
i for all

1 ≤ i ≤ N). Of particular interest is the case where
(
η

(N)
1 , . . . , η

(N)
N

)
is a size-biased pick

from ρ̃(N) for which the distribution is explicitly known depending on the distribution of ρ̃(N).

The first result, an easy consequence of Theorem 2.2.1, reads as follows.
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Proposition 2.2.7. Let λb,b =
∫ 1

0
pb−2Λ(dp) for a coagulation measure Λ, and assume that

E

[(
η

(N)
1

)b]
∼ cNλb,b

λ2,2

, ∀b ≥ 2.

Then
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly in the Skorohod space C([0,∞),Pn) to the Λ-coalescent.

Remark. Given that η(N) need not have any particular order, the main hypothesis of the
above proposition can be replaced by the seemingly weaker condition

∃k ∈ N : E

[(
η

(N)
k

)b]
∼ cNλb,b

λ2,2

, ∀b ≥ 2.

To simplify the writting we stick to the index 1.

Proof of Proposition 2.2.7. The equality (2.5) plus the hypothesis give

E

[(
η

(N)
2

)2

+ · · ·+
(
η

(N)
N

)2
]

= o (cN) .

Also, by the same type of estimate as in (2.8) we have, for b1 ≥ 2,

N∑
i1≥2,i2,...,ij
all distinct

(
η

(N)
i1

)b1
· · ·
(
η

(N)
ij

)bj
≤

N∑
k=2

(
η

(N)
k

)2

.(2.11)

Combining this we have, for any π ∈ Pn and coagulation increment π̃ ∈ P#π \ 0#π with
ordered block sizes b1 ≥ · · · ≥ bj, j = #π̃,

P
(N)
π,Coag(π,π̃) = E

 N∑
i1=1,i2,...,ij
all distinct

(
η

(N)
i1

)b1
· · ·
(
η

(N)
ij

)bj+ o (cN)

= E

(η(N)
1

)b1 N∑
i2≥2,i2,...,ij
all distinct

(
η

(N)
i2

)b2
· · ·
(
η

(N)
ij

)bj+ o (cN) .

Again using (2.11) we have

E

 N∑
i1=1,i2,...,ij
all distinct

(
η

(N)
i1

)b1
· · ·
(
η

(N)
ij

)bj =

o
(
c−1
N

)
if b2 ≥ 2,

E

[(
η

(N)
1

)b1
(1− η(N)

1 )#π−b1

]
otherwise.

It thus remains to prove that E

[(
η

(N)
1

)b
(1− η(N)

1 )n−b
]
∼ c−1

N

λ2,2
λb,n for all n ≥ b ≥ 2. Given

the recursion formula λb,n = λb,n+1 + λb+1,n+1 and the equation

E

[(
η

(N)
1

)b1
(1− η(N)

1 )#π−b1
]

= E

[(
η

(N)
1

)b1
(1− η(N)

1 )#π+1−b1
]
+E

[(
η

(N)
1

)b1+1

(1− η(N)
1 )#π+1−b1−1

]
we may assume n = b. The required asymptotic for this case is given by the hypothesis.
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The remainder of this section is inspired and extends some of the results in Cortines and
Mallein 2017, with the purpose of easing their applicability. Formally, assume that there
exists a sequence LN and a function f : (0, 1)→ R+ such that

i) lim
N→∞

LN =∞, ii) lim
N→∞

LNP
(
η

(N)
1 > x

)
= f(x), and(2.12)

iii) lim
N→∞

LNE

[(
η

(N)
2

)2

+ · · ·+
(
η

(N)
N

)2
]

= 0.

In light of the inequality
(
η

(N)
2

)2

+ · · · +
(
η

(N)
N

)2

≤
(

max2≤i≤N η
(N)
i

)(
η

(N)
2 + · · ·+ η

(N)
N

)
≤(

max2≤i≤N η
(N)
i

)
, the third condition above may be replaced by the stronger condition

iii′) lim
N→∞

LNE

[
max

2≤i≤N
η

(N)
i

]
= 0.

Theorem 2.2.8. Assume that all the conditions in (2.12) hold and that

iv)

∫ 1

0

x

(
sup
N∈N

LNP
(
η

(N)
1 > x

))
dx <∞

also holds. Then, as N →∞, cN ∼ L−1
N

∫ 1

0
2xf(x)dx and the time-scaled coalescent processes(

Π
(N,n)
[t/LN ]

)
t≥0

converges weakly in the Skorohod space C([0,∞),Pn) to the Λ-coalescent with

Λ given by
∫ 1

y
Λ(dx)
x2 = f(y).

Proof. For any b ≥ 2, we have

E

[(
η

(N)
1

)b]
= L−1

N

∫ 1

0

bxb−1LNP
(
η

(N)
1 > x

)
dx.

Next, the integrability hypothesis on x supN∈N LNP
(
η

(N)
1 > x

)
allows us to apply dominated

convergence in the integral of the right hand side, obtaining

(2.13) E

[(
η

(N)
1

)b]
∼ L−1

N

∫ 1

0

bxb−1f(x)dx = L−1
N

∫ 1

0

xb−2Λ(dx).

Substituting b = 2 and using iii) gives the stated asymptotic for cN . The latter, together
with (2.13) give the necessary hypothesis of Proposition 2.2.7 for the convergence to the
Λ-coalescent

It is easy to see from the proof of Theorem 2.2.8 that the conditions ii) and iv) can be
replaced by the weaker condition

ii′) lim
N→∞

LNE

[(
η

(N)
1

)b]
=

∫ 1

0

xb−2Λ(dx),∀b ≥ 2.

In fact we have the following.
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Lemma 2.2.9. Under condition iv), conditions ii) and ii′) are equivalent.

Proof. Proof of ii)⇒ ii′): The proof of this implication is contained in the proof of Theorem
2.2.8.
Proof of ii′)⇒ ii): Let h+(x) = lim supN→∞ LNP(η

(N)
1 > x) which is decreasing on (0, 1],

and note that by iv) the functions xh+(x) and xf(x) are both integrable. Again using iv)
and the Dominated Convergence Theorem we write, for any b ≥ 2,

lim sup
N→∞

LNE

[(
η

(N)
1

)b]
= lim sup

N→∞
LN

∫ 1

0

bxb−1
P(η

(N)
1 > x)dx =

∫ 1

0

bxb−1h+(x)dx.

This, together with ii′), imply that for any polynomial P we have∫ 1

0

P (x)xf(x)dx =

∫ 1

0

P (x)xh+(x)dx.

Let t > 0. By the Stone-Weierstrass theorem we can approximate uniformly the function
x→ e−tx by polynomials, obtaining∫ 1

0

e−txxf(x)dx =

∫ 1

0

e−txxh+(x)dx.

Since this holds for every t > 0, this implies

f(x)
a.e.
= h+(x).

Repeating the same argument but now with h−(x) = lim infN→∞ LNP(η
(N)
1 > x) we obtain

h+(x)
a.e.
= f(x)

a.e.
= h−(x).

We now state and prove the conditions for the convergence of the genealogy to Kingman’s
coalescent.

Theorem 2.2.10. Assume that all the conditions in (2.12) hold and that the conditions

v)

∫ 1

0

xf(x)dx =∞ and vi)∃M ≥ 2:

∫ 1

0

xM
(

sup
N∈N

LNP
(
η

(N)
1 > x

))
dx <∞

hold. Then,

(2.14) lim
N→∞

cNLN =∞

and
(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly in the Skorohod topology for D([0,∞),Pn) to Kingman’s

coalescent.
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Proof. On the one hand observe that

LNcN ≥ LNE

[(
η

(N)
1

)2
]

=

∫ 1

0

2xLNP
(
η

(N)
1 > x

)
dx

so that by Fatou’s lemma we obtain lim infN→∞ LNcN = ∞, thus proving (2.14). For the

stated convergence to Kingman’s coalescent, observe that (2.14) implies limN→∞
o(L−1

N )
cN

=

limN→∞
1

cNLN
LNo

(
L−1
N

)
= 0. This, together with iii), give the first condition of Corollary

2.2.4. The second condition of Corollary 2.2.4 corresponds to iv).

Again, it is easy to see from the above proof that the convergence to Kingman’s coalescent
still holds if we replace v) and vi) by the weaker conditions

v′) lim
N→∞

LNcN > 0

and
vi′)∃β > 0: E

[
(η

(N)
1 )β

]
= o (cN) as N →∞.

2.2.3 Example: Poisson-Dirichlet Size-Biased Pick

In this section we study the case in which the random mass partition ρ̃(N) can be constructed
from a size-biased pick (Ṽ1, Ṽ2, . . . ) of a Poisson-Dirichlet (PD) random mass partition of
parameters (α, θ), 0 < α < 1, θ > −α (Pitman and Yor 1997), by setting

(2.15) η
(N)
i =

Ṽ κ
i∑N

j=1 Ṽ
κ
j

, 1 ≤ i ≤ N,

where κ ∈ R is a parameter of the model.
The case κ = α of the following theorem was proved in Cortines and Mallein 2017.

Here we extend their results by following their main heuristics but using different technical
arguments such as applying Theorems 2.2.8 and Corollary 2.2.3 instead of their Lemmas 3.1
and 3.2, and also by working directly with the expectations appearing in conditions ii′) and
iii).

Theorem 2.2.11. Assume α/2 < κ ≤ α. Then there exists a constant B ≡ Bα,θ,κ such that

B

(
N∑
i=1

i−
κ
α

)−2

≤ cN = E

[(
η

(N)
1

)2
]

+O

( N∑
i=1

i−
κ
α

)−2
 .(2.16)

Furthermore, setting LN = `α,θ,κ

(∑N
i=1 i

− κ
α

)1+ θ
α

where

`−1
α,θ,κ =

α

κ

Γ(1− α)
θ
α

Γ(1 + κ− α)1+ θ
α

Γ
(
α+θ
α

(1− κ
α

) + 1
)

Γ
(
(α + θ)

(
1− κ

α

)
+ 1
) Γ(1 + θ)Γ

(
1− θ

α

)
B
(
1− θ

α
, 1 + θ

α

)
we have, as N →∞,
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I. if θ ∈ (−α, α) then cN ∼
(
1− θ

α

)
/LN and

(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly in the Skorohod

topology for D([0,∞),Pn) to the Beta
(
1− θ

α
, 1 + θ

α

)
-coalescent;

II. otherwise, limN→∞ cN log(N)1+ θ
α > 0 and

(
Π

(N,n)
[t/cN ]

)
t≥0

converges weakly to Kingman’s

coalescent.

Remark. Observe that the choice of κ does not affect the shape of the limit genealogy, but
only the correct time scale cn.

Before proving this theorem we first develop some general results on the PD(α, θ) dis-
tribution. We first provide an understanding of the asymptotic behavior of the normalizing
sum appearing in (2.15), namely

ζN,κ :=
N∑
i=1

Ṽ κ
i .

For this we first recall the well-known stick-breaking construction of Poisson-Dirichlet(α, θ)
size-biased picks. Let (Ṽ1, Ṽ2, . . . ) be a size-biased pick from a random partition with Poisson-
Dirichlet(α, θ) distribution. The sequence (Ṽ1, Ṽ2, . . . ) may be constructed from a collection
(Y1, Y2, . . . ) of independent random variables where Yi is Beta(1− α, θ + iα) distributed, by
setting

Ṽ1 = Y1, and Ṽi = (1− Y1) . . . (1− Yi−1)Yi

(see Proposition 2 in Pitman and Yor 1997).
We now write ζN,κ in terms of the sequence (Y1, Y2, . . . ). For this observe that

(2.17)
N∏
i=1

(1− Yi)κ = e−κµN eκSN

where

SN := µN +
N∑
i=1

log(1− Yi), µN :=
N∑
i=1

−E [log(1− Yi)](2.18)

define a martingale. We also define the martingale

MN,κ :=
N∑
i=1

(
iκ−1Y κ

i −E
[
iκ−1Y κ

i

])
.

With this, we have

ζN,κ =
N∑
i=1

Y κ
i e
−κµi−1eκSi−1

=
N∑
i=1

(
Mi,κ −Mi−1,κ +E

[
iκ−1Y κ

i

])
i1−κe−κµi−1eκSi−1

= MN,κ + ΣN,κ(2.19)
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where MN,κ is the martingale

MN,κ :=
N∑
i=1

(Mi,κ −Mi−1,κ)i
1−κe−κµi−1eκSi−1

and ΣN,κ is the sum

ΣN,κ :=
N∑
i=1

E [Y κ
i ] e−κµi−1eκSi−1 =

N∑
i=1

B(1 + κ− α, θ + iα)

B(1− α, θ + iα)
e−κµi−1eκSi−1 .

We now study the product
∏N

i=1(1−Yi)κ with the help of the martingale SN and equation
(2.17). First we provide a technical lemma concerning beta random variables. In the following
we let ψ = d

dz
log Γ(z) be the digamma function, and ψ1 the trigamma function d2

dt2
log Γ(t).

Lemma 2.2.12. Let X be Beta(a, b) distributed. Then

(2.20) E [log(X)] = ψ(a)− ψ(a+ b)

and

(2.21) Var (log(X)) = ψ1(b)− ψ1(a+ b).

Proof. We only compute (2.20), and refer the reader to Aryal and Nadarajah 2004 for the
computation of E [log(X)2], from which (2.21) easily follows. We have

E [log(X)] =

∫ 1

0

log(x)xa−1(1− x)b−1dx =
1

B(a, b)

∫ 1

0

lim
h→0

xh − 1

h
xa−1(1− x)b−1dx,

where
∣∣xh − 1

∣∣ ≤ h log(x) for all x ∈ (0, 1). Let 0 < ε < a, then
∫ 1

0
log(x)xa−1(1− x)b−1dx ≤

‖xε log(x)‖L∞([0,1])

∫ 1

0
xa−ε−1(1 − x)b−1dx = B(a−ε,b)

B(a,b)
< ∞. Thus, Dominated Convergence

yields

E [log(X)] =
1

B(a, b)

∫ 1

0

∂

∂a
xa−1(1− x)b−1dx =

1

B(a, b)

∂

∂a
B(a, b) =

∂

∂a
logB(a, b)

= ψ(a)− ψ(a+ b).

Lemma 2.2.13. For a > −1 let Υa be the constant such that − log(N) +
∑N

i=1(a + i)−1 =
Υa+o (1), e.g. Υ ≡ Υ0 is the Euler-Mascheroni constant. Assume κ > −(θ+α). Then there
exists a random variable S∞ ∈ L2 such that

lim
N→∞

(
N

1−α
α

N∏
i=1

(1− Yi)

)κ

= α−κKκ
α,θe

κS∞

a.s. and in L1, where Kα,θ = exp{ψ(θ + 1)− 1
α
Υθ/α}. Furthermore,

E
[
eκS∞

]
= Kκ

α,θ

Γ(θ + 1)

Γ(θ + κ+ 1)

Γ
(
θ+κ
α

+ 1
)

Γ
(
θ
α

+ 1
) .
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Moreover, if 0 < κ < θ + α, then for some constant K ′

(2.22) P

(
inf
N≥0

N
1−α
α

N∏
i=1

(1− Yi) ≤ y

)
≤ K ′yκ

for all N ≥ 1 and y ≥ 0.

Proof. Observe that the product eκµN
∏N

i=1(1 − Yi)
κ converges a.s. to a strictly positive

random variable if and only if the martingale SN converges a.s. Recall that ψ1 satisfies
ψ1(t + 1) = ψ1(t) − t−2 and limt→∞ ψ1(t) = 0, then, since 1 − Yi is Beta(θ + iα, 1 − α)
distributed, we have, using Lemma 2.2.12 in the first line,

E
[
S2
N

]
=

N∑
i=1

Var (log (1− Yi)) =
N∑
i=1

ψ1(θ + iα)− ψ1(θ + (i− 1)α + 1)

=
N∑
i=1

ψ1(θ + iα)− ψ1(θ + (i− 1)α) +
1

(θ + (i− 1)α)2

= ψ1(θ +Nα)− ψ1(θ) +
N−1∑
i=1

1

(θ + (i− 1)α)2

N→∞→ −ψ1(θ) +
∞∑
i=1

1

(θ + (i− 1)α)2 <∞.

It follows that the martingale SN is bounded in L2 and converges a.s. and in L2 to a random
variable S∞, so that eκSN

a.s.→ eκS∞ for all κ ∈ R. We now prove that eκS∞ ∈ L1 whenever
κ > − (θ + α); then, the function eκx being convex and the martingale (SN)N∈N being closable
at infinity, would imply that the submartingale

(
eκSN

)
N∈N converges a.s. and in L1 to eκS∞ .

Observe that for all κ > −(θ + α),

E

[
N∏
i=1

(1− Yi)κ
]

=
N∏
i=1

B (θ + iα + κ, 1− α)

B (θ + iα, 1− α)

=
Γ(θ + α + κ)

Γ(θ + κ+ 1)

Γ(θ + 1)

Γ(θ + α)
×

N−1∏
i=1

(
θ + iα

θ + iα + κ

)(
Γ(θ + (i+ 1)α + κ)

Γ(θ + iα + κ)

)(
Γ(θ + iα)

Γ(θ + (i+ 1)α)

)
=

Γ(θ + 1)

Γ(θ + κ+ 1)

Γ(θ +Nα + κ)

Γ(θ +Nα)

Γ
(
θ
α

+N
)

Γ
(
θ
α

+ 1
) Γ

(
θ+κ
α

+ 1
)

Γ
(
θ+κ
α

+N
)

and, by Stirling’s approximation to the Gamma ratios above,

E

[
N∏
i=1

(1− Yi)κ
]
∼ ακ

Γ(θ + 1)

Γ(θ + κ+ 1)

Γ
(
θ+κ
α

+ 1
)

Γ
(
θ
α

+ 1
) Nκ(α−1)/α, κ > −(θ + α).

On the other hand, we have −E [log(1− Yi)] = ψ(θ + (i − 1)α + 1) − ψ(θ + iα). Using the
well-known identity ψ(t+ 1) = ψ(t) + t−1, the bounds log(t)− t−1 ≤ ψ(t) ≤ log(t+ 1)− t−1
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for t > 0 (see Corollary 2.3 in Muqattash and Yahdi 2006), and the definition of Υθ/α , we
obtain, as N →∞,

µN = ψ(θ + 1)− ψ(θ +Nα) +
N−1∑
i=1

1

θ + iα
(2.23)

= ψ(θ + 1)− log(N)− log(α) +
1

α
log(N)− 1

α
Υθ/α + o (1) .

Thus, we arrive at

(2.24) eκµN ∼ α−κKκ
α,θN

κ(1−α)/α, κ ∈ R.

Fatou’s lemma then yields

E
[
eκS∞

]
≤ lim inf

N→∞
eκµNE

[
N∏
i=1

(1− Yi)κ
]
<∞,

and the ensuing L1 convergence gives

E
[
eκS∞

]
= Kκ

α,θ

Γ(θ + 1)

Γ(θ + κ+ 1)

Γ
(
θ+κ
α

+ 1
)

Γ
(
θ
α

+ 1
) .

Finally, to prove (2.22), observe that from Doob’s maximal inequality applied to the closable
submartingale

(
e−κSN

)
N∈N plus (2.24), we have

∃K ′ > 0: P

(
inf
N≥0

N
1−α
α

N∏
i=1

(1− Yi)κ ≤ y

)
= P

(
sup
N≥0

N
1−α
α e−κSN+µN > y−κ

)
≤
(

sup
N≥0

N
1−α
α eµN

)
E
[
e−κS∞

]
yκ

≤ K ′yκ.

We now study the asymptotic behaviour of the two terms, MN,κ and ΣN,κ, that compose
ζN,κ in (2.19).

Lemma 2.2.14. Assume κ > α/2, then there exists a r.v. M∞,κ such that

lim
N→∞

MN,κ = M∞,κ, a.s. and in L2;

in particular, if κ ≤ α, then

lim
N→∞

1∑N
i=1 i

− κ
α

MN,κ = 0, a.s. and in L2.
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Proof. We compute, for every κ > 0,

E
[
(Mi,κ −Mi−1,κ)

2
]

= Var
(
iκ−1Y κ

i

)
=
i−2

α2κ

(
Γ(1 + 2κ− α)

Γ(1− α)
− Γ(1 + κ− α)2

Γ(1− α)2
+O

(
i−1
))

as i→∞ so that, using (2.24), Lemma 2.2.13, and the condition κ > α
2

∞∑
i=1

Var
(
M i+1,κ −Mi,κ

)
=
∞∑
i=1

i−2 κ
αE
[
e2κSi

]
α−2κ

(
Γ(1 + 2κ− α)

Γ(1− α)
− Γ(1 + κ− α)2

Γ(1− α)2

)
(1 +O

(
i−1
)
)

≤ CE
[
e2κS∞

] ∞∑
i=1

i−2κ/α <∞

for some C > 0. This implies the a.s. and L2 convergence of MN,κ to some r.v. M∞,κ.

Lemma 2.2.15. We have, for κ ≤ α,

(2.25) lim
N→∞

1∑N
i=1 i

− κ
α

ΣN,κ =
Γ(1 + κ− α)

Γ(1− α)
K−κα,θe

κS∞

almost surely and in L1. On the other hand, if κ > α, then

lim
N→∞

ΣN,κ = Σ∞,κ

almost surely and in Lp, p ≥ 1, for some r.v. Σ∞,κ.

Proof. Observe that, as N →∞

(2.26)
B(1 + κ− α, θ +Nα)

B(1− α, θ +Nα)
=
α−κΓ(1 + κ− α)

Γ(1− α)
N−κ

(
1 +O

(
N−1

))
.

Then equation (2.24) together with Lemma 2.2.13 and the Stolz-Césaro theorem yield

lim
N→∞

ΣN,κ∑N
i=1 i

− κ
α

a.s.
=

α−κΓ(1 + κ− α)

Γ(1− α)
lim
N→∞

N−κe−κµN−1eκSN−1

N−
κ
α

a.s.
=

α−κΓ(1 + κ− α)

Γ(1− α)
ακK−κα,θe

κS∞ .

Hence the desired a.s. convergence follows. Similarly, by the same equation (2.24) and
Lemma 2.2.13,

lim
N→∞

E [ΣN,κ]∑N
i=1 i

− κ
α

=
Γ(1 + κ− α)

Γ(1− α)
K−κα,θE

[
eκS∞

]
so that Scheffe’s lemma gives the corresponding L1 convergence.
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On the other hand, when κ > α we have, using equation (2.24) plus the estimate for the
Beta ratio above, and Lemma 2.2.13,

∃C > 0 s.t. ∀p ≥ 1 : ‖ΣN,κ‖pLp ≤

(
∞∑
i=1

Ci−κ/α
∥∥eκS∞∥∥

Lp
(1 + o (1))

)p

<∞.

In particular the increasing sequence
(
Σp
N,κ

)
N≥1

is a.s. bounded and thus convergent. The

convergence also holds in Lp by dominated convergence which yields ‖ΣN,κ‖Lp → ‖Σ∞,κ‖Lp .

Proposition 2.2.16. If α/2 < κ ≤ α, then

lim
N→∞

ζN,κ∑N
i=1 i

−κ/α
=

Γ(1 + κ− α)

Γ(1− α)
K−κα,θe

κS∞

almost surely and in L1. If, furthermore ηκ < θ + α, then

lim
N→∞

(
ζN,κ∑N
i=1 i

−κ/α

)−η
=

(
Γ(1 + κ− α)

Γ(1− α)
K−κα,θe

κS∞

)−η
almost surely and in L1. On the other hand, if κ > α, then there exists a r.v. ζ∞,κ such that

lim
N→∞

ζN,κ = ζ∞,κ

almost surely and in L2.

Proof. The first a.s. and L1 convergences follow directly from (2.19) and Lemmas 2.2.14 and
2.2.15. The second convergences will follow once we prove

(2.27) lim sup
N≥0

E

[(∑N
i=1 i

− κ
α∑N

i=1 Ṽ
κ
i

)η]
<∞

together with an application of dominated convergence and Scheffe’s lemma. To upper-bound
the expectations in (2.27) observe that, if EΩ is the expectation operator on the probability

space
(

Ω = {f(1), . . . , f(N)}, (
∑N

i=1 i
− κ
α )−1

∑N
i=1 δf(i)i

− κ
α

)
, f(i) := Y κ

i e
−κµi−1eκSi−1i

κ
α , then,

by Jensen’s inequality we have,

1(∑N
i=1 Ṽ

κ
i

)η = exp

{
−η log

(
(
N∑
i=1

i−
κ
α )(

N∑
i=1

i−
κ
α )−1

N∑
i=1

Y κ
i e
−κµi−1eκSi−1i

κ
α i−

κ
α

)}

= e−η log(
∑N
i=1 i

− κα ) exp {−η log (EΩ [x])}

≤ e−η log(
∑N
i=1 i

− κα ) exp {−ηEΩ [log(x)]}

=

(
N∑
i=1

i−
κ
α

)−η
exp

{
−ηκ 1∑N

i=1 i
− κ
α

N∑
i=1

log(Yi)− µi−1 + Si−1 + 1
α

log(i)

i
κ
α

}
.
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Furthermore, by Lemma 2.2.13 and the condition ηκ < α+θ we have, for ε > 0 small enough
and using that

(
e−ηκ(1+ε)SN

)
N

is a submartingale,

exp

{
−ηκ(1 + ε)

1∑N
i=1 i

− κ
α

N∑
i=1

Si−1i
− κ
α

}
≤ sup

N∈N
e−ηκ(1+ε)SN ∈ L1.

Thus, plugging these estimates and using Hölders inequality (p = 1 + ε),

E

[(∑N
i=1 i

− κ
α∑N

i=1 Ṽ
κ
i

)η]
≤
∥∥∥∥sup
N∈N

e−ηκ(1+ε)SN

∥∥∥∥
L1

×

E

[
exp

{
−ηκ1 + ε

ε

1∑N
i=1 i

− κ
α

N∑
i=1

log(Yi)− µi−1 + 1
α

log(i)

i
κ
α

}] ε
1+ε

.(2.28)

We now compute, for N large enough to ensure ηκ1+ε
ε

1∑N
i=1 i

− κα
< 1 − α, and using an easy

consequence of the Mean Value Theorem on the function z → log Γ(z),

E

[
exp

{
−ηκ1 + ε

ε

1∑N
i=1 i

− κ
α

log(Yi)i
− κ
α

}]
= E

Y −ηκ 1+ε
ε

i
− κα∑N

i=1
i
− κα

i


= exp

{
log Γ

(
1− α− ηκ1 + ε

ε

i−
κ
α∑N

i=1 i
− κ
α

)
− log Γ (1− α)

}

exp

{
log Γ(1 + θ + (i− 1)α)− log Γ

(
1 + θ + (i− 1)α− ηκ1 + ε

ε

i−
κ
α∑N

i=1 i
− κ
α

)}

≤ exp

{
ηκ

1 + ε

ε

i−
κ
α∑N

i=1 i
− κ
α

ψ (1 + θ + (i− 1)α)

}
.(2.29)

Equation (2.23) and the identity ψ(1 + θ + (i − 1)α) = ψ(θ + (i − 1)α) + 1
θ+(i−1)α

yield, as
i→∞,

ψ (1 + θ + (i− 1)α)− µi−1 +
1

α
log(i) =

1

θ + (i− 1)α
− ψ(θ + 1) +

1

α
Υθ/α + o (1) .

Thus we obtain, for all i ≤ N ,

∃C ′ > 0: E

[
exp

{
−ηκ1 + ε

ε

i−
κ
α (log(Yi)− µi−1 + 1

α
log(i))∑N

i=1 i
− κ
α

}] ε
1+ε

≤ exp

{
ηκ

i−
κ
α∑N

i=1 i
− κ
α

C ′

}
.

Taking the product over i, and plugging in (2.28), we conclude, for all N ∈ N,

E

[(∑N
i=1 i

− κ
α∑N

i=1 Ṽ
κ
i

)η]
< exp{ηκC ′};

this entails (2.27). Finally, the stated convergence in the case κ > α follows directly from
(2.19) and Lemmas 2.2.14 and 2.2.15.
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We will now gather the results so far in order to prove Theorem 2.2.11. First, however,
we recall yet another well-known fact on the Poisson-Dirichlet(α, θ) distribution, mainly that
if we remove the element Ṽ1 from (Ṽ1, Ṽ2, . . . ) and renormalize the resulting sequence then,
in distribution, we had simply changed the value of the parameter θ by adding the value of
α; formally

Lemma 2.2.17 (Poisson-Dirichlet change of parameter). Let (Ṽ1, Ṽ2, . . . ) be a sized-biased

pick from a Poisson-Dirichlet(α, θ) mass partition. Then the sequence
(

Ṽ2

1−Ṽ1
, Ṽ3

1−Ṽ1
, . . .

)
is dis-

tributed as a size-biased pick from a PD(α, θ+α) random mass partition, and is independent
from Ṽ1.

Proof of Theorem 2.2.11. We first prove (2.16). On the one hand, by the reverse Hölder’s
inequality we have, for any p > 1,

cN = Eα,θ

[
ζN,2κ
ζ2
N,κ

]
≥ Eα,θ

[
ζN,2α
ζ2
N,κ

]
≥ ‖ζN,2α‖L1/p Eα,θ

[
ζ

2
p−1

N,κ

]p−1

,

where Eα,θ refers to expectation with respect to the PD(α, θ) distribution. Proposition 2.2.16
yields, on the one hand,

ζ
1/p
N,2α

a.s.,L1

→ ζ
1/p
∞,2α

a.s.
> 0

so that 0 < lim infN≥1 ‖ζN,2α‖L1/p < ∞. On the other hand, since 2
1−pκ < 0 < α + θ, the

same proposition yields

0 < lim inf
N≥1

Eα,θ

( ζN,κ∑N
i=1 i

− κ
α

)− 2
1−p
p−1

<∞.

Thus, putting all together,

cN ≥ B

(
N∑
i=1

i−
κ
α

)−2

for some B > 0. On the other hand, by Lemma 2.2.17 we have

Eα,θ

[
N∑
i=2

(
η

(N)
i

)2
]

= Eα,θ


∑N

i=2

(
Ṽi

1−Ṽ1

)2κ

(1− Ṽ1)2κ(
Ṽ κ

1 + (1− Ṽ1)κ
∑N

j=2

(
Ṽj

1−Ṽ1

)κ)2


= Eα,θ+α

[∫ 1

0

(1− y)2κζN−1,2κ

(yκ + (1− y)κζN−1,κ)
2

y−α(1− y)θ+α−1

B(1− y, θ + α)
dy

]

= Eα,θ+α

[
ζN−1,2κ

ζ2
N−1,κ

∫ 1

0

(1− y)2κ

(yκ/ζN−1,κ + (1− y)κ)2

y−α(1− y)θ+α−1

B(1− y, θ + α)
dy

]

≤ Eα,θ+α

[
ζN−1,2κ

ζ2
N−1,κ

]
.



2.2. MULTINOMIAL POPULATIONS 53

The condition κ > α/2 and Proposition 2.2.16 give ζN−1,2κ ∈ Lp, p ≥ 1, so that we may

use Hölders inequality with p = (1 + ε1)(1 + ε2), q = 1+ε1
ε1

(1 + ε2), and r = (1+ε1)(1+ε2)
ε2(1+ε1)

, for
α−θ

2(α+θ)
< ε1 <

α
α+θ

and ε2 > 0 small enough, to obtain

Eα,θ+α

[
ζN−1,2κ

ζ2
N−1,κ

]
≤

∥∥∥∥∥∥∥
(∑N

i=1 i
− κ
α

)1+ θ
α

ζ
1+ θ

α
N−1,κ

∥∥∥∥∥∥∥
Lp

∥∥∥∥∥∥∥
(∑N

i=1 i
− κ
α

)1− θ
α

ζ
1− θ

α
N−1,κ

∥∥∥∥∥∥∥
Lq

‖ζN−1,2κ‖Lr

(
N∑
i=1

i−
κ
α

)−2

(2.30)

= O

( N∑
i=1

i−
κ
α

)−2
 .

We now prove the stated convergence of the genealogy.
Proof of I: Given equation (2.16), the condition θ ∈ (−α, α), and Theorem 2.2.8, it remains
to prove condition ii′) of the same theorem, i.e. that

(2.31) LNEα,θ

[(
η

(N)
1

)b]
∼ cα,θ,κ

∫ 1

0

pb−2Λ(dp)

where Λ(dp) is the coagulation measure of the Beta(1 + θ
α
, 1 − θ

α
)-coalescent. By Lemma

2.2.17 we have

Eα,θ

[(
η

(N)
1

)b]
= Eα,θ+α

[∫ 1

0

yκb

(yκ + (1− y)κζN−1,κ)
b
y−α(1− y)θ+α−1 dy

B(1− α, θ + α)

]
,

where, making the change of variable u = (1− y)κζN−1,κ, we obtain

Eα,θ

[(
η

(N)
1

)b]
=

κ−1

B(1− α, θ + α)
×

Eα,θ+α

 1

ζ
1+θ/α
N−1,κ

∫ ζN−1,κ

0

(1− u1/κ

ζ
1/κ
N−1,κ

)κb((
1− u1/κ

ζ
1/κ
N−1,κ

)κ
+ u

)b
(

1− u1/κ

ζ
1/κ
N−1,κ

)−α
uθ/αdu

 .(2.32)

The integral inside the expectation above can be bounded on the set

{
u1/κ

ζ
1/κ
N−1,κ

≤ ε

}
by

∫ ∞
0

1

(1− εκ + u)b
uθ/αdu <∞,

yielding, by Proposition 2.2.16 and the conditions θ ∈ (−α, α) and α
2
< κ ≤ α,(

N∑
i=1

i−
κ
α

)1+ θ
α

Eα,θ

[(
η

(N)
1

)b
;
u1/κ

ζ
1/κ
N−1,κ

≤ ε

]
= O (1)
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as N →∞. On the other hand, on the set

{
u1/κ

ζ
1/κ
N−1,κ

> ε

}
and using the condition θ < α, the

integral can be bounded by

1ε<1(1− ε)2κ−α
∫ ζN−1,κ

εκζN−1,κ

uθ/α−2du ≤ Cζ
θ
α
−1

N−1,κ

for some C > 0. This yields, together with Hölder’s inequality with p = 1 + ε for α−θ
2(α+θ)

<
ε < α

α+θ
,

(
N∑
i=1

i−
κ
α

)1+ θ
α

Eα,θ

[(
η

(N)
1

)b
;
u1/κ

ζ
1/κ
N−1,κ

> ε

]
≤ Eα,θ+α


(∑N

i=1 i
− κ
α

)1+ θ
α

ζ
1+ θ

α
+1− θ

α
N−1,κ


≤

∥∥∥∥∥∥∥
(∑N

i=1 i
− κ
α

)1+ θ
α

ζ
1+ θ

α
N−1,κ

∥∥∥∥∥∥∥
Lp

∥∥∥∥∥∥∥
(∑N

i=1 i
− κ
α

)1− θ
α

ζ
1− θ

α
N−1,κ

∥∥∥∥∥∥∥
Lq

(
N∑
i=1

i−
κ
α

) θ
α
−1

.

By a second application of Proposition 2.2.16 and the conditions θ ∈ (−α, α) and κ ≤ α, the
last line above converges to 0 as N → ∞. Thus, we may apply dominated convergence in
(2.32) which, together with Proposition 2.2.16, yields

lim
N→∞

(
N∑
i=1

i−
κ
α

)1+ θ
α

Eα,θ

[(
η

(N)
1

)b]
(2.33)

= Eα,α+θ

[(
Γ(1 + κ− α)

Γ(1− α)
K−κα,θe

κS∞

)−1− θ
α

]
κ−1

B(1− α, α + θ)
×

∫ ∞
0

(
1

1 + u

)b
uθ/αdu.

By means of the change of variable p = (1 + u)−1 we may rewrite the integral above as∫ ∞
0

(
1

1 + u

)b
uθ/αdu =

∫ 1

0

pb−2p1−θ/α−1(1− p)1+θ/α−1dp,

whereas by Lemma 2.2.13

Eα,α+θ

[(
Γ(1 + κ− α)

Γ(1− α)
K−κα,θe

κS∞

)−1− θ
α

]
κ−1

B(1− α, α + θ)

= κ−1

(
Γ(1− α)

Γ(1 + κ− α)

)1+ θ
α Γ(α + θ + 1)

Γ
(
α + θ − κ

α
(α + θ) + 1

) Γ
(

1
α

(α + θ − κ
α

(α + θ)) + 1
)

Γ
(
α+θ
α

+ 1
) Γ(1 + θ)

Γ(1− α)Γ(α + θ)

=
α

κ

Γ(1− α)
θ
α

Γ(1 + κ− α)1+ θ
α

Γ
(
α+θ
α

(1− κ
α

) + 1
)

Γ
(
(α + θ)

(
1− κ

α

)
+ 1
) Γ(1 + θ)Γ

(
1− θ

α

)
B
(
1− θ

α
, 1 + θ

α

) .
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Substituting in (2.33) we obtain (2.31).

Proof of II: By a similar computation as in (2.30) we have, using this time α/2 < κ ≤ α

and θ ≥ α, and setting p = (1 + ε1)(1 + ε2), q = 1+ε1
ε1

(1 + ε2), and r = (1+ε1)(1+ε2)
ε2(1+ε1)

, for

θ − 2α < η < θ, α−θ+η
2(α+θ)

< ε1 <
α
α+θ

, and ε2 > 0 small enough; by Proposition 2.2.16,

Eα,θ

[
N∑
i=1

(
η

(N)
i

)3
]

= Eα,θ

[
ζN,3κ
ζ3
N,κ

]

≤

∥∥∥∥∥∥∥∥
(∑N

i=1 i
− κ
α

)1+ θ−η
α

ζ
1+ θ−η

α
N−1,κ

∥∥∥∥∥∥∥∥
Lp

∥∥∥∥∥∥∥∥
(∑N

i=1 i
− κ
α

)2− θ−η
α

ζ
2− θ−η

α
N−1,κ

∥∥∥∥∥∥∥∥
Lq

‖ζN−1,3κ‖Lr

(
N∑
i=1

i−
κ
α

)−3

= O

( N∑
i=1

i−
κ
α

)−3
 .

This, together with (2.16) yield E

[∑N
i=1

(
η

(N)
i

)3
]

= o (cN) and the proof is finished by an

application of Corollary 2.2.3.

2.3 Exponential models

We study a population evolution model of N particles positioned on the real line that evolve
through discrete generations t ∈ N. Every generation is of size N and is constructed from the
previous generation through branching and selection steps. The positions of the particles,
say (XN

1 (t), . . . , XN
N (t)), give the fitness levels of the individuals; individuals with a higher

position have a greater probability of having more descendants in the next generation. During
the branching step an individual at position x will be replaced, independently from the
other particles and from the previous generations, by a countable number of children whose
positions are given by a Poisson point process of intensity e−(s−x) ds. For the selection step
we let 1 ≤ γ ≤ ∞ and β > 0 be two parameters of the model and work conditionally on the
positions of all the newly produced particles. Selection occurs in two substeps, first the fittest
dNγe children are selected and the rest are discarded; second, N of the surviving children
are sampled without replacement, with the probability of picking a child at position x being
proportional to eβx. Observe that if γ = ∞ then the first selection step is innocuous. Also,
the second selection step is well defined only when β > 1; indeed, since for any x ∈ R the
integral ∫ ∞

−∞

(
eβs ∧ 1

)
e−(s−x)ds

is finite only when β > 1. This entails that the sampling weight of all the descendants of a
particle at position x will be finite only in this case, so that the sampling probabilities are also
well defined only in this case. Hence the model is well defined whenever (0 < β ≤ 1, γ <∞)
or (β > 1, γ ≤ ∞).
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We are primarily interested in the limit as N → ∞ of the genealogy
(
Π

(N,n)
t

)
t≥0

of

n randomly chosen individuals; as well as in computing the speed of selection (defined in
Section 2.3.2 below), for different regimes of the parameters γ and β. The case γ = 1, in
which the strength of the first selection step is maximum and the N fittest children are always
chosen for the next generation, corresponds to the original exponential model of Brunet and
Derrida 1997, 2012. The case (γ = ∞, β > 1), in which the first selection step is weakest,
but the second selection step is strongest, corresponds to the model studied by Cortines and
Mallein 2017. These two cases fall in the strong-selection regime of the exponential models
whose dynamics are mainly governed by the fittest individuals, in this regime the genealogy(
Π

(N,n)
t

)
t≥0

converges to the Bolthausen-Sznitman coalescent (see Theorem 2.3.2), and the

speed of selection is of order log log(N) (see Theorem 2.3.12). In Theorems 2.3.2 and 2.3.12
we also present our joint (yet unpublised) work together with Emmanuel Schertzer where we
study the case (1 ≤ γ <∞, 0 < β < 1) and find that, for large γ and small β, both selection
steps become too weak in comparison to the force of mutation. In this setting the overall
population falls into a weak-selection regime in which the limit genealogy is a discrete-time
coalescent process, and the cloud of particles primarily explores the low-fitness landscape.
On the other hand, for small γ and large β, the population once again falls into the strong-
selection regime as before. Additionally, in this manuscript we provide a mild extensions on
the latter results by including the case (β = 1, 1 ≤ γ <∞), and also provide a complimentary
proof of the results first described in the physics literature (Brunet and Derrida 1997, 2012)
for regime γ = 1.

Figure 2.1: Schematic representation of the passage from generation t to generation t + 1
with N = 5. The selection step has been divided into two selections steps, the first one
corresponds to the filter keeping the dNγe rightmost particles, and the second corresponds
to the sampling without replacement procedure described in the main text. The figure is a
realization of the branching + selection steps of a single generation in the α > 0 regime of
Theorems 2.3.2 and 2.3.12 below.

Finally, before stating and proving our main results, it is also worth mentioning another
interesting modification of the original exponential model in which γ = 1 (the N fittest
individuals are always chosen) but, in the branching step, the offspring produced by a parent
at position x are centerted around ax, 0 < a < 1 (instead of x), leading to Beta(2−a−1, a−1)-
coalescents in the limit Cortines and Mallein 2018.
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2.3.1 Limit Genealogy

We first rewrite the exponential model in terms of the multinomial model of Section 2.2. For
this let (Ej)j≥0 be i.i.d. standard exponential random variables so that

(2.34) xk = (E1 + · · ·+ Ek)−1 , k ≥ 1,

are the points, in decreasing order, of a Poisson point process Ξ on (0,∞) with intensity
measure z−2dz (see the Mapping Theorem in Kingman 1992); also let IN :=

(
IN1 , . . . , I

N
N

)
be

a random sample without replacement from the set of indexes [Nγ] where index k is chosen
with initial probabilities

(2.35) P
(
IN1 = k

)
=

xβk∑dNγe
j=1 xβj

, 1 ≤ k ≤ dNγe.

Theorem 2.3.1. The genealogy of the exponential model of parameters (N, γ, β) is identical
in distribution to the genealogy of the multinomial model whose family frequencies are given
by

(2.36) η(N) d
=

(
xINk∑N
j=1 xINj

)
1≤k≤N

.

Proof. By superimposing independent Poisson point processes (Section 2.2 in Kingman 1992)
we see that an equivalent branching step to the one described above is to instead produce all
the offspring of all the individuals in generation t through a single Poisson point process of

intensity e−(s−XN
eq(t)) ds where XN

eq(t) := log
(∑N

j=1 e
XN
j (t)
)

(see Proposition 1.3 in Cortines

and Mallein 2017). One can also see that, under this setting, a child at position x is a
descendant of the kth individual in generation t with probability

(2.37) η
(N)
k :=

eX
N
k (t)∑N

j=1 e
XN
j (t)

;

i.e. children choose parents independently of their own positions with probabilities given by
(2.37). Now, going one further generation backwards in time, and using the same superposi-
tion of Poisson point processes as before, we see that the offspring produced in the branching
step of generation t − 1 is equal in distribution to the set of points (Xeq(t− 1) + xk)k∈N,
where the xk’s are as in (2.34). Indeed, by the Mapping Theorem (Kingman 1992) the points
of a Poisson point processes with intensity e−(s−XN

eq(t−1)) ds are identical in distribution to
(Xeq(t− 1) + xk)k∈N. Performing the selection step on the latter we see that the positions(
XN

1 (t), . . . , XN
N (t)

)
are identical in distribution to (Xeq(t − 1) + log(xIN1 ), . . . , Xeq(t − 1) +

log(xINN )) and thus, plugging in (2.37) and considering the dependence on t,

η(N)(t)
d
=

(
xINk∑N
j=1 xINj

)
1≤k≤N

.

It remains to observe that the distribution of the right hand side does not depend on t and
that, the branching steps being independent, the sequence

(
η(N)(t)

)
t≥0

is i.i.d.
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To ease notation we will omit the N superscript and write I instead of IN from now
on. In order to characterize the limit genealogy we start by studying the multinomial weight

e−X1
d
= xI1 of the first chosen individual when 0 < β < 1. In particular we are interested

in its asymptotic behaviour as N → ∞; letting aN be a sequence of (normalizing) positive
numbers converging to infinity we compute, for any z > 0,

P(aNe
−X1 > z) = E [P (aNxI1 > z|x1, x2, . . .)]

= E

( 1∑dNγe
k=1 xβk

) ∑
k≤dNγe : x−1

k <aN/z

xβk


≈ a1−β

N

Nγ(1−β)
zβ−1;(2.38)

where we have used the law of large numbers in the form xk ≈ k−1 and the Riemann-integral
approximation

R∑
k=r

k−β ∼ 1

1− β
R1−β

as R→∞. This suggests that the correct normalizing sequence is aN = Nα where

(2.39) α := γ − 1

1− β
.

We obtain the following theorem.

Theorem 2.3.2. Let
(
Π

(N,n)
t

)
t≥0

be the genealogy of n randomly chosen individuals in the

exponential model with population size N . Then as N →∞:

I) Weak Selection Regime: If (β < 1, α > 0), the process
(
Π

(N,n)
t

)
t≥0

converges in the

product topology for (Pn)N, to the discrete-time Poisson-Dirichlet (1−β, 0) coalescent process
started with n individuals.
II) Strong Selection Regime: If (β < 1, α < 0), (β = 1, γ < ∞), or (β > 1, γ = ∞),
letting

(2.40) χ :=
1− γ(1− β ∧ 1)

β ∧ 1
,

then, as N → ∞, cN ∼ (χ logN)−1, and the time-scaled process
(
Π

(N,n)
bt/cN c

)
t≥0

converges

weakly in the Skorohod space D([0,∞),Pn) to the Bolthausen-Sznitman coalescent.

Regime γ = 1 (equivalently (γ = ∞, β = ∞) or, trivially, (γ = 1, β = 1)) of the above
theorem corresponds to the original exponential model studied in Brunet and Derrida 1997,
2012; Brunet, Derrida, et al. 2007; while regime (β > 1, γ =∞) was proved in Cortines and
Mallein 2017. Here we describe our article together with Emmanuel Schertzer in which we
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Figure 2.2: Phase diagram for the expnential models.

deal with regimes (β < 1, α 6= 0), and additionally complement the results by proving regime
(β = 1, 1 ≤ γ <∞) using the same techniques.

There are two missing regimes in the above theorem. First, in regime (β > 1, γ <∞), the
force of selection is stronger than in the regime (β > 1, γ =∞) but weaker than in the regime
(γ = 1); for this reason we conjecture that the asymptotics in this case should equal those
described in Cortines and Mallein 2017 and Brunet and Derrida 1997, 2012; Brunet, Derrida,
et al. 2007, and may even follow using similar techniques. The second missing regime, in
which the parameters 1 < γ <∞ and β ∈ (0, 1) satisfy γ = 1

1−β (i.e α = 0), still remains to
be studied.

The techniques used in the proofs of the different regimes in Theorem 2.3.2 are different
enough to be put in different subsections. We first proof I), and then split the proof of II)
into the case (0 < β ≤ 1, 1 ≤ γ <∞, α < 0), and the case (β > 1, γ =∞).

Proof of Theorem 2.3.2.I)

For the case α > 0 it will be easier to work with the general setting of a deterministic positive
and decreasing sequence (ak)1≤k≤∞ satisfying kak → 1 as k →∞ which, by the law of large
numbers, the r.vs. (xk)1≤k<∞ satisfy almost surely. We wish to prove that if I is a sample
without replacement of size N from {1, . . . , dNγe} with initial probabilities

(2.41) P (I1 = k) =

(
aβk∑dNγe
j=1 aβj

)
,

then (
aÎk∑N
j=1 aÎj

)
1≤k≤N

⇒
WZ
∞,∞∥∥WZ
∞,∞

∥∥
l1

,
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in the l1 topology where (Îk)1≤k≤N is the set I ordered increasingly (so that
(
aÎk
)

1≤k≤N is

ordered decreasingly), and
WZ
N,` := (z1, . . . , zN∧`, 0, . . . )

are the ranked atoms of an independent Poisson random measure Z on (0,∞) with intensity
measure (1 − β)xβ−2dx (the reason for using a double subindex in the notation WZ

N,` will
be made clear shortly). Recall from Pitman and Yor 1997 that the normalized sequence

WZ
∞,∞

‖WZ
∞,∞‖l1

has Poisson-Dirichlet (1− β, 0) distribution.

Independent Sampling in the Selection Step: Let (I, J) be the random coupling
where J is an i.i.d sample of size N from [Nγ] with probabilities given by (2.41), and I is
constructed from J by replacing all its repeated coordinates R = {j : Ji = Jj for some 1 ≤
i < j} (so that only the first copy remains) with a new sample without replacement from
[Nγ] \ J with initial probabilities

aβk∑
i∈[Nγ ]\J a

β
i

, i ∈ [Nγ] \ J ;

thus ensuring that the resulting set I is a sample without replacement with the original
probabilities (2.41). Recall Î (resp. Ĵ) for the arrangement of I in non-decreasing order.
Our first objective is to prove the following results which ensure that the sampling without
replacement of the selection step can be replaced, in the limit as N →∞, by sampling with
replacement. We first introduce some notation. Let W I

N,` (resp. W J
N,`) be defined as

W I
N,` :=

(
aÎ1 , . . . , aÎN∧` , 0, . . .

)
.

Lemma 2.3.3. As N →∞,

(2.42)
∥∥W I

N,∞ −W J
N,∞
∥∥
l1

P→ 0.

Before proving Lemma 2.3.3 we will first motivate ourselves by characterizing the weak
limit of W J

N,∞ in P[0,1] as N →∞.

Proposition 2.3.4. As N →∞,
W J
N,∞ ⇒ WZ

∞,∞

in the l1 topology.

Proof. We follow the steps in the proofs of Lemmas 20 and 21 in Schweinsberg 2003. We
first prove the convergence of the finite dimensional distributions, i.e. for fixed ` ∈ N,

(2.43) W J
N,` ⇒ WZ

∞,`

in the l1 topology. Indeed, following Schweinsberg 2003, for any collection of positive real
numbers ∞ = y0 > y1 ≥ y2 ≥ · · · ≥ y` we define the random variables L̄i := #{k ∈ J : yi ≤
Nαak} where 1 ≤ i ≤ `, and note that

P
(
NαaĴ1

≥ y1, . . . , N
αaĴ` ≥ y`

)
= P

(
L̄i ≥ i for 1 ≤ i ≤ `

)
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so that it is enough to prove

(L1, . . . , L`)⇒ (Z ([y1, y0)) , . . . , Z ([y`, y`−1)))

where Li := #{k ∈ J : yi ≤ Nαak < yi−1}. We compute, for any collection of non-negative
integers n1, . . . , n`,

P (L1 = n1, . . . , L` = n`)

=
(N)n1+···+n`
n1! . . . n`!

∏`
i=1

(∑dNγe
k : Nα/yi−1≤ak≤Nα/yi

aβk

)ni
(∑dNγe

k=1 aβk

)n1+···+n`

(
1−

∑dNγe
k : ak≤Nα/y`

aβk∑dNγe
k=1 aβk

)N−n1−···−n`

which, by means of the following asymptotics:

(N)n1+···+n` ∼ Nn1+···+n` , dNγe∑
k : Nα/yi−1≤ak≤Nα/yi

aβk

ni

∼

(
(Nα/yi)

(1−β)

1− β
− (Nα/yi−1)(1−β)

1− β

)ni

,

dNγe∑
k=1

aβk

n1+···+n`

∼ Nγ(1−β)(n1+···+n`)

(1− β)n1+···+n`
,

and

lim
N→∞

(
1−

∑dNγe
k : ak≤Nα/y`

aβk∑dNγe
k=1 aβk

)N−n1−···−n`

= exp

{
− lim

N→∞
(N − n1 − · · · − n`)

∑Nα/y`
k=1 aβk∑dNγe
k=1 aβk

}

= exp

{
− lim

N→∞
N
Nα(1−β)yβ−1

`

Nγ(1−β)

}
= e−y

β−1
` ,

becomes

P (L1 = n1, . . . , L` = n`)

∼ Nn1+···+n`

n1! . . . n`!

∏`
i=1

(
(Nα/yi)

1−β − (Nα/yi−1)1−β
)ni

Nγ(1−β)(n1+···+n`)
e−y

β−1
`

=
Nn1+···+n`

n1! . . . n`!

∏`
i=1

(
yβ−1
i − (yi−1)β−1

)ni
Nn1+···+n`

e−y
β−1
`

=
∏̀
i=1

e−(yβ−1
i −yβ−1

i−1 )
(
yβ−1
i − (yi−1)β−1

)ni
ni!

= P (Z([yi, yi−1)) = ni for 1 ≤ i ≤ `) .
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This proves (2.43). Given (2.43) and by Theorem 3.2 in Billingsley 1999, it only remains to
prove

lim
`→∞

lim sup
N→∞

E

[∥∥W J
N,` −W J

N,∞
∥∥
l1
∧ 1
]

= 0.

Let 0 < ε < 1 and choose ` large enough to ensure E [
∑∞

k=` zk] < ε/2. Also (2.43) allows us
to choose N1 large enough to ensure P

(
NαaĴ` > ε

)
< ε for every N ≥ N1; thus, using the

fact that aĴk is decreasing in k,

E

[(
N∑
k=`

NαaĴk

)
∧ 1

]
= P

(
NαaĴ` > ε

)
+E

[(
N∑
k=`

NαaĴk

)
∧ 1;NαaĴ` ≤ ε

]

≤ ε+E

[
N∑

k=N1

NαaĴk1NαaĴk
≤ε

]
.

Finally observe that P (Ji = k|J1, . . . , Ji−1) =
aβk∑dNγe

k=1 aβk−aJ1
−···−aJk−1

≤ aβk∑dNγe
k=N aβk

, 1 ≤ i ≤ N ,

so that

E

[
N∑

k=M

NαaĴk1NαaĴk
≤ε

]
= Nα

∑
k∈[Nγ ] : ak<εN−α

akE

[
N∑
i=1

1Ji=k

]
(2.44)

≤ N1+α

∑dNγe
k : a−1

k >ε−1Nα a
1+β
k∑dNγe

k=N aβk


∼ N1+α

(
(ε−1Nα)−β

β

)
1− β
Nγ(1−β)

= εβ
(

1− β
β

)
.

Proof of Lemma 2.3.3. Let δ > 0 and observe that, by a similar computation as in equation
(2.44) (replacing ε by N−δ and using that ak ∼ k−1), both∑

N−α−δ<k≤dNγe

Nα
E [ak1k∈I ] and

∑
N−α−δ<k≤dNγe

Nα
E [ak1k∈J ]

are of order O
(
N−βδ

)
, and thus

(2.45) E

[∥∥W I
N,∞ −W J

N,∞
∥∥
l1
∧ 1
]
≤ E

[(
a1#[AIδ∆A

J
δ ]
)
∧ 1
]

+O
(
N−βδ

)
where #[AIδ∆A

J
δ ] is the number of indices k, counting repetitions, such that k < N−α−δ and

k ∈ I∆J . Formally, if AJδ (resp. AIδ) is the multiset

AJδ :=
[
Jk : Jk ≤ N−α−δ

]
,
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then #[AIδ∆A
J
δ ] is the size of the multiset symmetrical difference [AIδ∆A

J
δ ]. We now prove

that #[AIδ∆A
J
δ ]

P→ 0 as N → ∞ for δ small enough, which, when plugged in (2.45), gives

(2.42). By construction of (I, J) and using that P (Ii = k|J) ≤ aβk∑dNγe
j=N aβj

, we obtain, on the

one hand, for the indices k < N−α−δ such that k ∈
[
AI \ AJ

]
,

E
[
#
[
AIδ \ AJδ

]]
≤ E

[
#
{
k ∈ I \ J : k ≤ Nα+δ

}]
≤
bNα+δc∑
k=1

P (k ∈ I \ J)

=

bNα+δc∑
k=1

N∑
i=1

N∑
j=i+1

E
[
1Ji=JjP (1Ii=k|J)

]

≤ N2

 ∑dNγe
k=1 a−2β

k(∑dNγe
k=1 aβk

)2

 bNα+δc∑
k=1

(
aβk∑dNγe
j=N aβj

)

=


O
(
N1−2γ(1−β)+δ(1−β)

)
if β > 1/2,

O
(
N1−2γ(1−β)+δ(1−β) logN

)
if β = 1/2,

O
(
N1−γ(1−β)+δ(1−β)

)
if β < 1/2.

The latter converge to zero as N → ∞ whenever δ < γ−1
1−β . On the other hand, by a similar

computation,

E
[
#
[
AJδ \ AIδ

]]
≤ N2

∑bNα+δc
k=1 a−2β

k(∑dNγe
k=1 aβk

)2

= O

(
N2

∑bNα+δc
k=1 a−2β

k

N2γ(1−β)

)

which converges to zero whenever either β > 1/2 or δ < γ(1−β)−1+βα
1−2β

.

We are now in position to gather results and prove I) of Theorem 2.3.2.

Proof of Theorem 2.3.2 I. By Theorem 2.3.1 and Corollary 2.2.2 it is sufficient to prove that(
xIk∑N
j=1 xINj

)
1≤k≤N

⇒
WZ
∞,∞∥∥WZ
∞,∞

∥∥
l1

in l1. Proposition 2.3.4 and Lemma 2.3.3, plus Theorem 3.1 in Billingsley 1999, give

(2.46) W I
N,∞ ⇒ WZ

∞,∞.

The convergence of the normalized sequences follows from the Continuous Mapping Theorem

(Billingsley 1999) and the fact that P
(∥∥WZ

∞,∞
∥∥
l1

= 0
)

= 0.
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Proof of Theorem 2.3.2.II), cases (0 < β ≤ 1,1 ≤ γ <∞, α < 0)

In this section we assume that 0 < β ≤ 1 and 1 ≤ γ < ∞ satisfy α < 0. We begin by
proving that the high fitness children positioned above level ≈ N−χ are all chosen during the
selection step with probability converging to 1 as N →∞ (Lemma 2.3.8); whereas the total
fitness weight of the individuals in the new generation that are below level ≈ N−χ becomes
negligible as N →∞ (Lemma 2.3.9). We then use these two heuristics in order to “reduce”
the reproduction+selection steps of our model to those of the original exponential model of
Brunet and Derrida 1997, 2012 with population size equal to Nχ, for which conditions ii)
and iii) of Theorem 2.2.8 with LN = χ log(N) can be proved by direct computations.

First we provide two large deviation estimates which will simplify the computations fur-
ther ahead. Recall the Poisson point process Ξ with non-increasing atoms (2.34); the following
two lemmas roughly say that if we wish to sum the terms xβk over k then we may approximate
xk by k−1. The first lemma gives high-probability lower bounds for the sum, while the second
gives high-probability upper bounds.

Lemma 2.3.5. If β < 1: Let c > 1− β and δ ∈ [0, 1). Define

EN =

{
N∑

i=Nδ

xβi ≤ c−1N1−β

}
.

Then for every η > 0, we have limN→∞N
η
P (EN) = 0.

If β = 1: Let c > 1 and δ ∈ [0, 1). Define

EN =

{
N∑

i=Nδ

xi ≤ c−1(1− δ) log(N)

}
.

Then for η < 1− δ, we have limN→∞N
η
P(EN) = 0.

Proof. Case β < 1 : By equation (2.34) and the Cramer large deviation estimate for the

sum of standard exponential random variables we have P
(
xN ≥ N−1

1−ε

)
≤ e−N(−ε−log(ε)) and

P

(
xNδ ≤ N−δ

1+ε

)
≤ e−N(ε−log(ε)); thus,

P (EN) = P

(
EN ;xN <

N−1

1− ε
, xNδ >

N−δ

1 + ε

)
+ e−N(−ε−log(ε))

≤ P

∫ N−δ
1+ε

N−1

1−ε

xβΞ(dx) ≤ N1−β

c

+ e−N(−ε−log(ε))

so that it only remains to prove that for some appropriate choice of ε > 0 we have
(2.47)

P

∫ N−δ
1+ε

N−1

1−ε

xβΞ(dx) ≤ 1

c(1− ε)1−β (N(1− ε))1−β

 = O
(
e−ηN

1−β
)
, for some η > 0.
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Using Markov’s inequality and Campbell’s formula, for any a1 < a2 and b > 0 we have

P

(∫ a2

a1

xβΞ(dx) ≤ b−1aβ−1
1

)
≤ eb

−1aβ−1
1 E

[
exp

{∫ a2

a1

xβΞ(dx)

}]
= exp

{
b−1aβ−1

1 −
∫ a2

a1

1− e−xβ

x2
dx

}
.

Next, 1− e−xβ = xβeθ for x > 0 and some θ ∈ [−xβ, 0] and thus

1− e−xβ ≥ e−a
β
1xβ

for all x > a1; thus

log

(
P

(∫ a2

a1

xβΞ(dx) < baβ−1
1

))
≤b−1aβ−1

1 − e−a
β
1

∫ a2

a1

xβ−2dx(2.48)

=aβ−1
1 b−1

(
1−

b
(
1− (a2/a1)β−1

)
1− β

e−a
β

)
.

Letting 0 < ε < 1 be small enough to ensure that c(1− ε)1−β > 1 and setting a1 ≡ aN1 = N−1

1−ε ,

a2 ≡ aN2 = N−δ

1+ε
and b ≡ bN = c(1−ε)1−β, we obtain bN

1−β > 1 and

(
1− bN(1−(aN2 /a

N
1 )β−1)

1−β e−a
β
N

)
<

0 for large enough N , so that substituting in (2.48) we get (2.47).
Case β = 1 : We may assume δ > 0 since{

N∑
i=1

xi ≤ c−1(1− δ) log(N)

}
⊂

{
N∑

i=Nδ

xi ≤ c−1(1− δ) log(N)

}
.

By the same reasoning as in the previous case, we need to prove

(2.49) P

∫ N−δ
1+ε

N−1

1−ε

xβΞ(dx) ≤ c−1(1− δ) log(N)

 = o
(
N−η

)
for η < 1− δ. Consider any a1 < a2 < 1 and b > 0 then, again by the same computations as
in the previous case, we have

log

(
P

(∫ a2

a1

xβΞ(dx) < b log(a2/a1)

))
≤ b log(a2/a1)− e−a1

∫ a2

a1

1

x
dx(2.50)

= log(a2/a1)(b− e−a1).

Setting bN = 1/c, a1 ≡ aN1 = N−1

1−ε , and a2 ≡ aN2 = N−δ

1+ε
, we obtain bN − e−aN1 < 0 for large

enough N thus proving (2.49).

Lemma 2.3.6. If β < 1: Let 2c ∈ (0, 1− β) and

EN =

{
N∑
i=1

xβi ≥ c−1N (1−β)

}
.
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Then for some η > 0, we have limN→∞N
η
P(EN) = 0.

If β = 1: Let ε > 0 and

EN =

{
N∑
i=1

xi ≥ N ε

}
,

then P(EN) = O (N−ε logN).

Proof. Case β < 1: As in the previous Lemma, we haveP
(
xN < N−1

1+ε

)
≤ exp {−N(ε− log(1− ε))}

which for any choice of ε > 0 is of order o (N−η) for every η > 0; thus for every η > 0

P (EN) ≤ P

(∫ ∞
N−1

1+ε

x−βΞ(dx) ≥ N (1−β)

c

)
+ o

(
N−η

)
.

It remains to prove that with an appropriate choice of ε > 0 the first term in the right hand
side is of order o (N−η) for some η > 0. We compute, for any a < b <∞ and c > 0,

P

(∫ b

a

xβΞ(dx) ≥ aβ−1

c

)
≤ E

[
exp

{∫ b

a

xβΞ(dx)

}]
e−

aβ−1

c

= exp

{
−
∫ b

a

1− exβ

x2
dx− aβ−1

c

}
.

We have 1− exβ ≥ −xβebβ for all x < b, then we have

log

(
P

(∫ b

a

x−βΞ(dx) ≥ aβ−1

c

))
≤ eb

β

∫ b

a

xβ−2dx− aβ−1

c

≤ aβ−1

1− β

(
eb
β − 1− β

c

)
.

Now let 0 < δ < 1 and write aN = N−1

1+ε
and bN = a1−δ

N , then using the above estimate and
Markov’s inequality

P

(∫ ∞
N−1

1+ε

x−βΞ(dx) ≥ N (1−β)

c

)
≤ P

(∫ ∞
bN

xβΞ(dx) ≥ N (1−β)

2c

)
+

P

(∫ bN

aN

xβΞ(dx) ≥ aβ−1
N

2c(1 + ε)1−β

)

≤ 2ca1−β
N E

[∫ ∞
bN

xβΞ(dx)

]
+

exp

{
aβ−1
N

1− β

(
ea

β(1−δ)
N − 1− β

2c(1 + ε)1−β

)}
.

SinceE
[∫∞

bN
xβΞ(dx)

]
=
∫∞
bN
xβ−2dx = a

(β−1)(1−δ)
N , the first term above is of orderO

(
a

(1−β)δ
N

)
,

whereas the second term vanishes exponentially fast whenever ε > 0 is chosen to ensure
1−β

2c(1+ε)1−β > 1.
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Case β = 1: Following the proof of the previous case we have

P (EN) ≤ P

(∫ ∞
N−1

1+ε

x−βΞ(dx) ≥ N ε

)
+ o

(
N−η

)
.

where now

P

(∫ ∞
N−1

1+ε

xΞ(dx) ≥ N ε

)
≤ P (x1 ≥ N ε) +P

(∫ x1

N−1

1+ε

xΞ(dx) ≥ N ε

)

≤ N−ε +N−εE

[∫ x1

N−1

1+ε

1

x
dx;x1 >

N−1

1 + ε

]
= N−ε +N−εO (log(N)) .

In the following, PΞ will denote the law of the N -sampled points conditional on a real-
ization of the process Ξ.

Lemma 2.3.7. For every i ∈ [Nγ]

P
Ξ(i /∈ I) ≤ exp

{
− Nxβi∑dNγe

j=1 xβj

}
.(2.51)

Proof. Using that

P
Ξ [Ij+1 6= i|I1, . . . , Ij] =

(
1− xβi∑

[Nγ ] x
β
i −

∑j
k=1 x

β
Ij

)
1i 6∈{I1,...,Ij} + 1i∈{I1,...,Ij}

≤

(
1− xβi∑

[Nγ ] x
β
i

)
1i 6∈{I1,...,Ij} + 1i∈{I1,...,Ij},

and

P
Ξ
[
Ij+1 6= i,∩jk=1Ik 6= i

∣∣I1, . . . , Ij
]
≤

(
1− xβi∑

[Nγ ] x
β
i

)
1i 6∈{I1,...,Ij},

plus an inductive argument, we obtain

P
Ξ(i /∈ I) ≤ exp

{
N ln

(
1− xβi∑dNγe

j=1 xβj

)}
.

The bound in (2.51) follows from plugging the inequality log(1− x) ≤ −x for x ∈ (0, 1).

As promised, we now prove that the dNχ−εe fittest individuals are always chosen in the
limit, formally,
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Lemma 2.3.8. Let 0 < ε < χ, 0 < β ≤ 1, and define the event

AN,ε =
{{

1, . . . , dNχ−εe
}
⊆ I
}
,

then there exists ηε > 0 such that P (AcN) = O (N−ηε) ; in particular

lim
N→∞

log(N)P (AcN) = 0.

Proof. By (2.34) plus Cramer’s estimate, and Lemma 2.3.6, we may work on the set

EN = {x1 ≤ N} ∩
{
xdNχ−εe > N−χ+ ε

2

}
∩


dNγe∑
j=1

xβj ≤ Nγ(1−β)+βε/4

 ,

so that, summing over i in (2.51) we obtain, for some ηε > 0,

P
(
AcN,ε

)
≤ P (Ec

N) +P (AN,ε;En)

≤ N−ηε +E

dNχ−εe∑
i=1

exp
{
−N1−γ(1−β)−βε/4xβi

}
;EN


≤ N−ηε +E

[∫ N

N−χ+ε/2

exp
{
−N1−γ(1−β)−βε/4xβ

}
Ξ(dx)

]
where

E

[∫ N

N−χ+ε/2

exp
{
−N1−γ(1−β)−βε/4xβ

}
Ξ(dx)

]
=

∫ N

N−χ+ε/2

exp
{
−N1−γ(1−β)−βε/4xβ

} dx
x2

≤ exp
{
−N1−γ(1−β)−βε/4−β(χ−ε/2)

}∫ N

N−χ+ε/2

x−2dx

= exp
{
−N εβ/2

}
O
(
Nχ−ε/2) .

Now we prove that the total fitness weight of the chosen individuals below level N−χ−ε is
negligible in the limit.

Lemma 2.3.9. For every ε > 0,

E

[
N∑
k=1

xIk1xIk≤N−(χ+ε)

]
≤ O

(
N−εβ

)
.

In particular, letting

BN,ε =

{
N∑
k=1

xIk1xIk<N−(χ+ε) < N−εβ/2

}
,

there exists ηε > 0 such that

(2.52) lim
N→∞

NηεP
(
Bc
N,ε

)
= 0.
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Proof. When β = 1 we trivially have

N∑
k=1

xIk1xIk≤N−(χ+ε) ≤ N1−1−ε

with probability one. For the case 0 < β < 1 let c > 1− β and let EN be the set

EN =


dNγe∑
k=N

xβ ≥ c−1Nγ(1−β)

 ;

then, using Lemma 2.3.5 and the fact that PΞ (k ∈ I) ≤ N

(
xβk∑dNγe

k=N xβk

)
for every k,

E

[
N∑
k=1

xIk1xIk≤N−(χ+ε)

]
= E

 dNγe∑
k : xk≤N−(χ+ε)

xkP
Ξ (k ∈ I)


≤ E

 dNγe∑
k : xk≤N−(χ+ε)

xk;E
c
N

+NE

[∑dNγe
k : xk<N−χ−ε

x1+β
k∑dNγe

k=N xβ
;EN

]

≤ N1−χ−ε
P (Ec

N) +O
(
N1−γ(1−β)

) ∫ N−χ−ε

0

xβ−1dx

= o
(
N−βε

)
+O

(
N1−γ(1−β)−β(χ+ε)

)
= O

(
N−βε

)
.

Finally, Markov’s inequality easily yields (2.52).

Proof of Theorem 2.3.2.II), case (0 < β ≤ 1, 1 ≤ γ <∞). The proof consists of checking the
conditions of Theorem 2.2.8 with LN = χ logN .
Proof of condition iii): Let ε > 0 and recall the set AN,ε of Lemma 2.3.8; observe that

under this set we have
∑N

k=1 xÎk ≥
∑dNχ−εe

k=1 xk and ρ̃
(N)
1 = x1∑N

k=1 xÎk

so that ρ̃
(N)
i ≤ xi∑dNχ−εe

k=1 xk

for all 2 ≤ i ≤ N . Let c > 1 and let EN be the set

EN =


dNχ−εe∑
k=1

xk ≥ c−1 log(N)

 ,

then, using Lemmas 2.3.5 and 2.3.8,

E

[(
ρ̃

(N)
2

)2

+ · · ·+
(
ρ̃

(N)
N

)2
]
≤ E

 x2
2 + · · ·+ x2

N(∑dNχ−εe
k=1 xk

)2 ;EN

+P
(
AcN,ε

)
+P (Ec

N)

≤ c5/4
E

[(
x2

logN

)5/4
]

+E

[
x2

3 + · · ·+ x2
N

log2(N)

]
+ o

(
log(N)−1

)
= o

(
log(N)−1

)
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where for the second inequality we have also used that x2 < x5/4 whenever 0 < x < 1

and, for the latter equality, we have used that E
[
x

5/4
2

]
=
∫∞

0
x−1−1/4xe−xdx < ∞ and∑∞

k=3E [x2
k] =

∑∞
k=3

Γ(k−2)
Γ(k)

=
∑∞

k=3
1

(k−1)(k−2)
<∞.

Proof of conditions iv) and ii): Working on the sets AN,ε and BN,ε of Lemmas 2.3.8
and 2.3.9 respectively, we have

(2.53)
x1∑dNχ+εe

k=1 xk +N−εβ
≤ ρ̃

(N)
1 ≤ x1∑dNχ+εe

k=1 xk
.

Then, letting EN be as above,

P

(
ρ̃

(N)
1 > x

)
≤ P

x1 > x

dNχ+εe∑
k=1

xk


≤ P

(
x1 > xc−1 log(N)

)
+P (Ec

N)

= 1− exp

{
c

x log(N)

}
+ o

(
log(N)−1

)
= o

(
log(N)−1

)
which proves iv). In view of iv) we may prove ii′) instead of ii) by Lemma 2.2.9. In turn,
by iii) and (2.53), ii′) follows directly from Lemma 2.3.10 below.

Lemma 2.3.10 (Equation (29) in Brunet and Derrida 2012 ). Let aN be any sequence of
positive numbers such that aN → 0. Then

lim
N→∞

log(N)E

( x1∑N
k=1 xk + aN

)b
 =

1

b− 1
≡
∫ 1

0

bxb−1 1− x
x

dx.

Proof. We first provide an outline of the proof for the case aN ≡ 0, i.e. that

(2.54) log(N) E

 N∑
j=1

(
xj∑N
k=1 xk

)b
 =

1

b− 1
+O

(
1

logN

)
,

as N →∞, by repeating the steps in Section III of Brunet, Derrida, et al. 2007. We give yet
another construction of the random (this time unordered) set of points {x1, . . . , xN}. By the
Mapping Theorem (Kingman 1992) the random vector (x1, . . . , xN) is equal in distribution to(
eξ1 , . . . , eξN

)
where (ξk)k≥1 are the points of a Poisson point process with intensity measure

e−sds arranged in decreasing order. In turn, it can be seen using the properties of Poisson
point processes that, conditional on the value of ξN+1, the unordered collection of points{
eξ1 , . . . , eξN

}
is equal in distribution to a set {ξ1, . . . , ξN} of i.i.d. r.vs. with density

1s>ξN+1

e−sds∫∞
ξN+1

e−sds
= 1s>ξN+1

e−(s−ξN+1)ds.
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The latter are in turn equal in distribution to {ξN+1 + E1, · · · , ξN+1 + EN} where the Ek’s are

i.i.d. standard exponential random variables independent of ξN+1. Since eξN+1
d
= xN+1 we

obtain, for every N ,

(2.55) {xk}Nk=1

d
=
{
eξσ(k)

}N
k=1

d
=
{
xN+1e

Ek
}N
k=1

.

where xN+1, E1, . . . , EN are all independent. Thus the expectation in (2.54) can be expressed
as

E

 N∑
j=1

(
xj∑N
k=1 xk

)b
 = E

 N∑
j=1

(
eEj∑N
k=1 e

Ek

)b


= NE

( eE1∑N
k=1 e

Ek

)b


= N

∫ ∞
0

dy1 · · ·
∫ ∞

0

dyNe
−y1−···−yN eby1(∑N

k=1 e
yk

)b .(2.56)

Using the identity

(K)−b =
1

Γ(b)

∫ ∞
0

ds sb−1e−sK , K > 0, b > 0,

with K =
∑N

k=1 e
yk , and Tonelli’s theorem, the integrals in (2.56) become

N

Γ(b)

∫ ∞
0

ds

∫ ∞
0

dy1 · · ·
∫ ∞

0

dyNe
−y1−···−yN eby1sb−1 exp

{
−
∑
k=1

seyk

}

=
N

Γ(b)

∫ ∞
0

ds sb−1Ib(s) (I0(s))N−1 ,(2.57)

where, for p ≥ 0, the function Ip(s) is defined as

Ip(s) :=

∫ ∞
0

dy e(p−1)y−e−sy = s1−p
∫ ∞
s

du up−2e−u.

Observe that, for any p, the function Ip(s) is decreasing on s and, furthermore, lims→∞ s
βIp(s) =

0,∀β ∈ R. Now, for large N , the integral in (2.57) is dominated by values of s near 0, ex-
panding Ip correspondingly (see eq. (21) in Brunet and Derrida 2012) we have, as s→ 0,

I0(s) = 1 + s(log(s) + Υ− 1) +O
(
s2
)
, and Ip≥2(s) =

(p− 2)!

sp−1
+O

(
s2−p) ,

where we recall that Υ is the Euler-Mascheroni constant. It follows that for values of s that
are of order 1/N log(N), and as N →∞, making the change of variable s = µ/N log(N), we
obtain

I0(s)N = e−µ

(
1 + µ

log(µ)− log logN + Υ− 1

logN
+O

(
µ log µ

logN

)2
)
.
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Thus making s = µ/N log(N) in 2.57 and plugging the above estimates in (2.56), we obtain

E

 N∑
j=1

(
xj∑N
k=1 xk

)b
 =

N

Γ(b)

∫ ∞
0

ds sb−1Ib(s) (I0(s))N−1

=
N

N log(N)

(b− 2)!

Γ(b)
+O

(
N

N log2(N)

)
=

1

log(N)(b− 1)
+O

(
1

log2(N)

)
,

thus proving (2.54).
Finally, for the extended case aN > 0, observe that the condition aN > 0 and (2.54) easily

give

lim
N→∞

log(N)E

 N∑
j=1

(
xj

aN +
∑N

k=1 xk

)b
 ≤ 1

b− 1
.

Now, for the reverse inequality, we first write

E

 N∑
j=1

(
xj

aN +
∑N

k=1 xk

)b
 = E

( 1
aN∑N
k=1 xk

+ 1

)b N∑
j=1

(
xj∑N
k=1 xk

)b
 .

Second, by Markov’s inequality followed by Jensen’s inequality,

P

(
aN∑N
k=1 xk

> ε

)
≤ 1

ε
aNE

[
1∑N

k=1 xk

]
=

1

ε

aN∑N
k=1 k

−1
E

[ ∑N
k=1 k

−1∑N
k=1 xkkk

−1

]

≤ o
(
log(N)−1

)
E

[∑N
k=1 x

−1
k k−2∑N

k=1 k
−1

]
= o

(
log(N)−1

) ∑N
k=1 kk

−2∑N
k=1 k

−1
,

where we have used (2.34) to compute E
[
x−1
k

]
= k. Combining the two expressions together

with 2.54 we obtain, for every ε > 0,

lim
N→∞

log(N)E

( 1
aN∑N
k=1 xk

+ 1

)b N∑
j=1

(
xj∑N
k=1 xk

)b


≥ lim
N→∞

log(N)E

 1

ε+ 1

N∑
j=1

(
xj∑N
k=1 xk

)b
+ lim

N→∞
log(N)P

(
aN∑N
k=1 xk

> ε

)

≥ 1

ε+ 1

1

b− 1
.

The proof is finished by taking ε→ 0.

Proof of Theorem 2.3.2 II, case (β > 1, γ =∞)

By equation (2.34) and Proposition 10 in Pitman and Yor 1997 the random mass partition(
xβ1∑∞
k=1 x

β
k

)
has Poisson-Dirichlet ( 1

β
, 0) distribution. Thus,(

xβI1∑∞
k=1 x

β
k

, . . . ,
xβIN∑∞
k=1 x

β
k

)
d
= (s1, . . . , sN)
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where (s1, . . . , sN) is a Poisson-Dirichlet( 1
β
, 0) size-biased pick of size N . The result then

follows by an application of Theorem 2.2.11.

2.3.2 Speed of Selection

Recall from the proof of Theorem 2.3.1 that

(2.58)
(
XN

1 (t), . . . , XN
N (t)

) d
= (Xeq(t− 1) + log(xI1), . . . , Xeq(t− 1) + log(xIN ))

where XN
eq(t) = log

(∑N
i=1 e

XN
j (t)
)

. This observation allows for an easy definition, and com-

putation, of the speed of selection νN ≡ νN,β,γ as

(2.59) νN := lim
t→∞

max
1≤j≤N

XN
j (t)

t
= lim

t→∞
min

1≤j≤N

XN
j (t)

t
.

Indeed, we have the following.

Lemma 2.3.11 (Lemma 1.5 in Cortines and Mallein 2017). With probability one,

lim
t→∞

max
1≤j≤N

XN
j (t)

t
= E

[
log

(
N∑
i=1

xIi

)]
= lim

t→∞
min

1≤j≤N

XN
j (t)

t
.

Thus νN is well defined and, furthermore, νN = E

[
log
(∑N

i=1 xIi

)]
.

Proof. First, from (2.58) and the definition of XN
eq(t) we obtain XN

eq(t) − XN
eq(t − 1)

d
=

log
(∑N

i=1 xIi

)
. Thus, the branching steps being i.i.d., and by the law of large numbers,

we have

(2.60) lim
t→∞

XN
eq(t)

t
a.s.
= E

[
log

(
N∑
i=1

xIi

)]
.

Second, note that
∣∣max1≤j≤N X

N
j (t)−XN

eq(t− 1)
∣∣ is upperbounded by |log(x1)|+

∣∣log(xdNγe)
∣∣

which has finite expectation. Thus, by dominated convergence,

E

[
lim sup
t→∞

∣∣max1≤j≤N X
N
j (t)−XN

eq(t− 1)
∣∣

t

]
= lim sup

t→∞

E
[∣∣max1≤j≤N X

N
j (t)−XN

eq(t− 1)
∣∣]

t
= 0.

This, together with (2.60), imply

lim
t→∞

max1≤j≤N X
N
j (t)

t
= lim

t→∞

XN
eq(t− 1)

t
+

max1≤j≤N X
N
j (t)−XN

eq(t− 1)

t

= E

[
log

(
N∑
i=1

xIi

)]
.

Repeating the argument but this time replacing max1≤j≤N X
N
j (t) with min1≤j≤N X

N
j (t), we

conclude the proof of the lemma.
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Computing νN = E

[
log
(∑N

i=1 xIi

)]
in the above Lemma 2.3.11 we obtain the following

theorem.

Theorem 2.3.12. For νN as above, and as N →∞,
I) Weak Selection Regime: If (β < 1, α > 0), then

(2.61) νN = −α log(N) +E [log(Yβ)] + o (1)

where Yβ is the positive (1−β)-stable law with Laplace transform E
[
e−θYβ

]
= exp{−Γ(β)θ1−β}.

II) Strong Selection Regime: If (β < 1, α < 0), (β = 1, γ <∞), or (β > 1, γ ≤ ∞), then

(2.62) νN = log (χ logN) + o (1) .

Proof of Theorem 2.3.12.I)

In this section we prove

(2.63) νN = −α log(N) +E [log (Yβ)] + o (1)

as N → ∞ where, recalling the Poisson random measure Z with intensity measure (1 −
β)zβ−2dz of Section 2.3.1, the r.v.

Yβ :=

∫ ∞
0

zZ(dz)

is the positive (1− β)-stable r.v. with Laplace transform E
[
e−θYβ

]
= exp

{
−Γ(β)θ1−β} (see

(12) in Pitman and Yor 1997).
In the upcoming proof of Theorem 2.3.12.I) we will simplify the computations with the

help of the following lemma, whose proof we postpone until the end of the section.

Lemma 2.3.13. Let (EN)N≥1 be a sequence of events such that, for some δ > 0,

lim
N→∞

N δ
P(EN) = 0.

Then, for every η > 0,

lim
N→∞

E

[ ∣∣∣∣∣log

(
N∑
k=1

xIk

)∣∣∣∣∣
η

;EN

]
= 0.

Assuming the above Lemma 2.3.13, we first give the main proof of this section.

Proof of Theorem 2.3.12.I). We first write

E

[
log

(
N∑
k=1

xIk

)]
= −α log(N) +E

[
log

(
N∑
k=1

NαxINk

)]
,

then from equation (2.46) and the Continuous Mapping Theorem we have

log

(
N∑
k=1

NαxINk

)
⇒ log (Yβ) ,
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so it only remains to prove that the collection of r.vs. (log
(∑N

k=1N
αxINk

)
)N≥1 is uniformly

integrable, which would imply the corresponding convergence in expectation (Theorem 3.5
in Billingsley 1999). The latter boils down to proving that, for some η > 1, we have

lim sup
N→∞

E

[∣∣∣∣∣log

(
Nα

N∑
k=1

xINk

)∣∣∣∣∣
η

;Nα

N∑
k=1

xINk < 1

]
<∞(2.64)

and

lim sup
N→∞

E

[∣∣∣∣∣log

(
Nα

N∑
k=1

xINk

)∣∣∣∣∣
η

;Nα

N∑
k=1

xINk > 1

]
<∞.(2.65)

See e.g. (3.18) in Billingsley 1999.
Proof of (2.64): We begin by computing, for an arbitrary subset EN to be specified

further ahead,

E

(∣∣∣∣∣log

(
Nα

N∑
k=1

xIk

)∣∣∣∣∣
η

1∑N
k=1 NαxIk≤1;Ec

N

)

≤ E
((
− log

(
max

1≤k≤N
NαxIk

))η
, max

1≤k≤N
NαxIk ≤ 1, Ec

N

)
=

∫ ∞
0

P

(
− log

(
max

1≤k≤N
NαxIk

)
≥ u

1
η , max

1≤k≤N
NαxIk ≤ 1, Ec

N

)
du

≤
∫ ∞

0

P

(
max

1≤k≤N
NαxIk ≤ exp(−u

1
η ), Ec

N

)
du

≤
∫ ∞

0

P

(
max

1≤k≤N
NαxJk ≤ exp(−u

1
η ), Ec

N

)
du

=

∫ ∞
0

E


1−

∑
i:xi≥ 1

Nα
exp(−u

1
η )
xβi∑Nγ

i=1 x
β
i

N

, Ec
N

 du
≤
∫ ∞

0

E

exp

−N
∑

i:xi≥ 1
Nα

exp(−u
1
η )
xβi∑Nγ

i=1 x
β
i

 , Ec
N

 du(2.66)

where for the second inequality we have used the coupling (I, J) for the selection step (con-
ditional on the xk’s) which satisfies

max
1≤k≤N

NαxJk ≤ max
1≤k≤N

NαxIk .

Now to deal with the expectation appearing in (2.66) let 2c ∈ (0, 1− β) and set

EN =


dNγe∑
i=1

xβi ≤ c−1Nγ(1−β)

 .
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By Lemma 2.3.6 together with Lemma 2.3.13 we have

lim sup
N→∞

E

[∣∣∣∣∣log

(
Nα

N∑
k=1

xINk

)∣∣∣∣∣
η

;Nα

N∑
k=1

xINk < 1

]

= lim sup
N→∞

E

[∣∣∣∣∣log

(
Nα

N∑
k=1

xINk

)∣∣∣∣∣
η

;Nα

N∑
k=1

xINk < 1;EN

]
.

Further, using (2.66), we have

E

[∣∣∣∣∣log

(
Nα

N∑
k=1

xIk

)∣∣∣∣∣
η

;
N∑
k=1

NαxIk ≤ 1;En

]

≤
∫ ∞

0

E

exp(−cN

∑
i:xi≥ 1

Nα
exp(−u

1
η )
xβi

Nγ(1−β)
)

 du
=

∫ ∞
0

E

exp

−cNχβ
∑

i:xi≥ 1
Nα

exp(−u
1
η )

xβi


 du.

Define c̄ = minR+
1
xβ

(1− exp(−cxβ)). By Campbell’s formula, we have

E

exp

−cNχβ
∑

i:xi≥ 1
Nα

exp(−u
1
η )

xβi


 = exp

(∫ ∞
exp

(
−u

1
η

)
Nα

e−c(N
χx)β − 1

dx

x2

)

= exp

(
Nχ

∫ ∞
Nχ

Nα
exp(−u

1
η )

e−cx
β − 1

dx

x2

)
≤ exp

(
− c̄Nχ

∫ ∞
Nχ

Nα
exp(−u

1
η )

dx

x2−β

)
= exp

(
− c̄

1− β
exp

(
(1− β)u

1
η

))
.

Finally, since ∫ ∞
0

exp

{
− c̄

1− β
exp

(
(1− β)u

1
η

)}
du <∞,

it follows that

lim sup
N→∞

E

(∣∣∣∣∣log

(
Nα

N∑
k=1

xIk

)∣∣∣∣∣
η

,

N∑
k=1

NαxIk ≤ 1;En

)
< ∞.

Proof of (2.65): Let δ ∈ (0, 1− β) and pick c > 0 to ensure that log(b)η < cbδ for
every b > 1. A direct application of the Mean Value Theorem and our choice of c shows the
existence of c̃ > 0 such that

∀x > 0, b ≥ 1, logη(b+ x) ≤ cbδ + c̃x.
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Let K > 1− β and let EN be the set

EN :=


dNγe∑
k=N

xβk ≥ K−1Nγ(1−β)

 .

By the large deviation Lemma 2.3.5 we may apply Lemma 2.3.13, so that it is enough to
prove (2.65) restricted on the set EN . On the set {Nα

∑N
k=1 xIk > 1}, we have

log

(
Nα

N∑
k=1

xIk

)η

= 1

{
max

1≤k≤N
NαxIk > 1

}
logη

(
Nα

N∑
k=1

xIk1xIk>N−α +Nα

N∑
k=1

xIk1xIk≤N−α

)
+

1

{
max

1≤k≤N
NαxIk ≤ 1

}
logη

(
Nα

N∑
k=1

xIk1xIk≤N−α

)

≤ c

(
Nα

N∑
k=1

xIk1xIk>N−α

)δ

+ (c+ c̃)Nα

N∑
k=1

xIk1xIk≤N−α .

It remains to control the expected value of the RHS of the latter inequality on the set EN .
On the one hand,

E

[
Nα

N∑
k=1

xIk1xIk≤N−α ;EN

]
=Nα

N∑
k=1

E
[
xIk ;xIk ≤ N−α;EN

]
≤NαNE

[∑
k≤[Nγ ] : xk≤N−α x

β+1
k∑dNγe

k=N xβk
;EN

]

≤KNα+1
E

[∑
k : xk≤N−α x

β+1
k

Nγ(1−β)

]

≤KNα+1−γ(1−β)

∫ 1
Nα

0

dx

x1−β

=O (1) .

On the other hand, by the lδ−1 triangle inequality (recall δ < 1− β < 1) we have(
N∑
k=1

xIk1xIk>aN−α

)δ

≤
N∑
k=1

xδIk1xIk>aN−α

so that

E

(Nα

N∑
k=1

xIk1xIk>N−α

)δ

;EN

 ≤ Nαδ

N∑
k=1

E

[
xδIk1xIk>aN−α ;EN

]

≤ Nαδ

N∑
k=1

E

[∫∞
aN−α

xδ+βΞ(dx)∑dNγe
k=N xβk

;EN

]

≤ (1− β)KNαδN1−γ(1−β)

∫ ∞
aN−α

xδ+β
dx

x2

= O (1) .
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Proof of Lemma 2.3.13. Let η > 0 be fixed. Since NxdNγe ≤
∑N

k=1 xIk ≤ Nx1 we have

E

[∣∣∣∣∣log

(
N∑
k=1

xIk

)∣∣∣∣∣
η

;EN

]
≤ E

[(
max{log(Nx1),− log(NxdNγe), 0}

)η
;EN

]
≤ E [logη(Nx1);Nx1 > 1, EN ] +E

[
logη(x−1

dNγe/N);x−1
dNγe/N > 1, EN

]
.

On the one hand, for the first term above, by Hölder’s inequality and using that ∀ε > 0,∃cε >
0 such that logη(x) ≤ cεx

ε, x > 1, we obtain

E [logη(Nx1);Nx1 > 1, EN ] ≤ P(EN)1/2 ‖logη(Nx1);Nx1 > 1‖L2

≤ P(EN)1/2cεN
ε ‖xε1‖L2 .

By the hypothesis, the latter converges to zero whenever 0 < ε < (1/2) ∧ (2δ) which ensures
‖xε1‖L2 <∞ and ε < 2δ. Similarly, for the second term,

E

[
logη(x−1

dNγe/N);x−1
dNγe/N > 1, EN

]
≤ P (EN)1/2

∥∥∥logη(x−1
dNγe/N);x−1

dNγe/N > 1
∥∥∥
L2

≤ P (EN)1/2 cεN
−ε
∥∥∥x−εdNγe

∥∥∥
L2

where, by equation (2.34) plus Stirling’s approximation,
∥∥∥x−εdNγe

∥∥∥2

L2
= Γ(dNγe+2ε)

Γ(dNγe) ∼ Nγε. Thus,

if 0 < ε(γ − 1) < 2δ, a second application of the hypothesis yields

limN→∞E
[
logη(x−1

dNγe/N);x−1
dNγe/N > 1, EN

]
= 0, which finishes the proof of the lemma.

Proof of Theorem 2.3.12.II)

Proof of Theorem 2.3.12.II). Recall the sets AN,ε and BN,ε of Propositions 2.3.8 and 2.3.9, so

that by these propositions together with Lemma 2.3.13 we have, for every ε > 0, E
[
log
(∑N

k=1 xIk

)]
=

E

[
log
(∑N

k=1 xIk

)
;AN,ε, BN,ε

]
+ o (1) as N →∞ and, hence,

(2.67)

lim
N→∞

∣∣∣∣∣log log(N)−E

[
log

(
N∑
k=1

xIk

)]∣∣∣∣∣ = lim
N→∞

∣∣∣∣∣log log(N)−E

[
log

(
N∑
k=1

xIk

)
;AN,ε, BN,ε

]∣∣∣∣∣
for all ε > 0. Observe that on the event AN,ε, BN,ε we have

(2.68) log

dNχ−εe∑
k=1

xk

 ≤ log

(
N∑
k=1

xIk

)
≤ log

dNχ+εe∑
k=1

xk +N−εβ/2

 .

Also note that

E

[
log

(
N∑
k=1

xk

)]
= log

(
N∑
k=1

k−1

)
+E

[
log

( ∑N
k=1 xk∑N
k=1 k

−1

)]
= log logN + o (1) ;(2.69)
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indeed, on the one hand, by Jensen’s inequality

E

[
log

( ∑N
k=1 xk∑N
k=1 k

−1

)]
≤ log

(∑N
k=2E [xk]∑N
k=1 k

−1

)
N→∞→ 0,

where, for the last limit, we have used that

E [xk] =
Γ(k − 1)

Γ(k)
=

1

k − 1
.

On the other hand, by a second and third applications of Jensen’s inequality,

−E

[
log

( ∑N
k=1 xk∑N
k=1 k

−1

)]
= E

[
log

(∑N
k=1 k

−1∑N
k=1 xk

)]
≤ log

(
E

[∑N
k=1 k

−1∑N
k=1 xk

])

= log

(
E

[ ∑N
k=1 k

−1∑N
k=1 xkkk

−1

])
≤ log

(
E

[∑N
k=1 x

−1
k k−2∑N

k=1 k
−1

])
= log(1),

where we have used E
[
x−1
k

]
= k for the last equality. Thus, taking expectations in (2.68)

and plugging in (2.69) we obtain, for every ε > 0,

log(χ− ε) + log log (N) + o (1) ≤ E

[
log

(
N∑
k=1

xIk

)
;AN,ε, BN,ε

]
≤ log(χ+ ε) + log log (N) + o (1) ;

which, together with (2.67), imply

log(χ− ε) ≤ lim
N→∞

∣∣∣∣∣log log(N)−E

[
log

(
N∑
k=1

xIk

)]∣∣∣∣∣ ≤ log(χ+ ε).

The proof is finished by taking ε→ 0.

2.4 A Model in Continuous Time

In this section we describe a type of Moran model with mutation and selection which, in
contrast to the exponential models of Section 2.3, evolves in continuous time, and the fitness
of its individuals is not given by positions in the R continuum but are instead a function of
the (discrete) number of mutations acquired by each individual. The model was rigorously
studied by Schweinsberg 2017a,b for the first time, although the main heuristic arguments can
be traced back to at least Desai and Fisher 2007; Desai, Walczak, and Fisher 2013. Assuming
that the strength of selection is much larger than that of mutation, Schweinsberg 2017a,b
shows that the genealogy of this model is once again described by the Bolthausen-Sznitman
coalescent, as is the case for the strong-selection regime (Theorem 2.3.2) of the exponential
models. For the speed of selection, however, the authors show that it is (approximately) of
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order o (1) as N →∞, which contrasts with the order O (log logN) for the speed of selection
in the strong-selection regime of Theorem 2.3.12 for the exponential models.

Formally, the model consists of a population of fixed size N evolving in continuous time
under the effect of mutation and natural selection. All mutations are beneficial and their
effect in fitness is measured by a parameter sN > 0. Every individual acquires mutations
according to an independent Poisson point process of intensity µN , and the fitness of an
individual with j mutations is given by

max{0, 1 + sN (j −M(t))},

where M(t) is the empirical mean number of mutations at time t. Letting Xj(t), j ∈ N, be
the number of individuals at time t that have exactly j mutations, we may write M(t) as

M(t) =
1

N

∞∑
j=1

jXj(t).

Individuals die at rate one and are replaced by a copy of one individual in the population
chosen with probability proportional to its fitness.

Two important quantities for the study of this model are

kN :=
logN

log(sN/µN)
, and aN :=

log(sN/µN)

sN
.

The quantity kN gives the natural scale for the number of mutations; it turns out that if

M∗(t) := max{j ∈ N : Xj(t) > 0}

is the maximum number of mutations present in any individual at time t, then the difference

Q(t) := M∗(t)−M(t)

is typically a constant multiple of kN (Theorem 2.4.1). On the other hand, the quantity aN
is the right time scale to study the genealogy of the process, since the time to the most recent
common ancestor of two randomly chosen individuals is also typically a constant multiple of
aN . The value of aN is also the amount of time between the first appearance of an individual
with j mutations and the time when M(t) equals j.

The main assumptions needed for the results of this section are

A1. limN→∞
kN

log(1/sN )
=∞,

A2. limN→∞
kN log(kN )
log(sN/kN )

= 0,

A3. limN→∞ sNkN = 0.

These assumptions have the following main implications concerning the asymptotic behaviour
of sN and µN :

lim
N→∞

sN = 0,(2.70)

lim
N→∞

kN =∞ = lim
N→∞

aN , lim
N→∞

kN
aN

= 0, and(2.71)

∀a > 0, lim
N→∞

µN
saN

= 0 and lim
N→∞

µN
N−a

=∞.(2.72)
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2.4.1 The Speed of Selection and the Genealogy

In this section we describe the main results for the speed of selection and the genealogy of
the process proven in Schweinsberg 2017a,b, and then give a brief summary of the heuristic
arguments which guide the corresponding proofs.

This first theorem says that, if we time-scale the population by aN , then the difference in
number of mutations between the fittest individual and the average individual is typically of
the order of kN .

Theorem 2.4.1. Assume that A1 - A3 hold. There is a unique bounded function q : [0,∞)→
[0,∞) such that

q(t) =

{
et if 0 ≤ t < 1,∫ t
t−1

q(s)ds if t ≥ 1.

This function satisfies
lim
t→∞

q(t) = 2,

and, for every compact subset S ⊂ (0,∞) \ {1},

(2.73) sup
t∈S

∣∣∣∣Q(aN t)

kN
− q(t)

∣∣∣∣ P→ 0, as N →∞.

The following theorem gives the asymptotic behaviour of the mean number of mutations
under the same time-scale aN of the population.

Theorem 2.4.2. Let m : [0,∞)→ R be the function

m(t) :=

{
0 if 0 ≤ t < 1,

1 +
∫ t−1

0
q(s)ds if t ≥ 1,

and also define

m∗(t) := m(t) + q(t) = 1 +

∫ t

0

q(s)ds.

Assume that A1-A3 hold. Then, for any compact subset S ⊂ [0,∞) \ {1},

(2.74) sup
t∈S

∣∣∣∣M(aN t)

kN
−m(t)

∣∣∣∣ P→ 0, as N →∞;

whereas for any compact S ⊂ (0,∞),

(2.75) sup
t∈S

∣∣∣∣M∗(aN t)

kN
−m∗(t)

∣∣∣∣ P→ 0, as N →∞.

In Schweinsberg 2017a the authors go further and give a characterization of the fitness
distribution at time t; we refer the reader to this article for further details on the subject.

Note that by Theorem 2.4.1 we have

lim
t→∞

m(t)

t
= 2,
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so that, combining with Theorem 2.4.2 we obtain the approximation for the speed of selection
given by, for large t,

M(aN t)

aN t
≈ kNm(t)

aN t
≈ 2

kN
aN

=
sN log(N)

log2(sN/µN)

N→∞→ 0,

where we have used (2.71) for the convergence to zero.
On the other hand, for the description of the genealogy of the process we have the following

theorem.

Theorem 2.4.3. Assume A1-A3 hold. Fix positive real numbers t0 and T such that t0 > 0
and T + t0 > 2. Consider a sample of n individuals of the population at time aNT and, for
0 ≤ u ≤ t0 + 1, let Π

(N,n)
u be the partition that describes their ancestry at time aN(T − u).

Then
P

(
Π

(N,n)
1 = {{1} , . . . , {n}}

)
= 1

and the finite dimensional distributions of
(
Π

(N,n)
1+u

)
0≤u≤t0

converge as N → ∞ to those of

the Bolthausen-Sznitman coalescent.

Heuristics for the Genealogy

We first describe the dynamics of the population at the initial stage when M(t) ≈ 0, and,
thus, X0(t) ≈ N . This means that the process can be approximated by a multitype branching

process where a type i individual dies at rate
(

1− 1+sN (i−M(t))∑∞
j=1Xj(t)(1+sN (j−M(t)))

)
≈
(
1− 1+sN i

N

)
≈ 1,

gives birth to another type i individual at rate 1 + sN(i−M(t)) ≈ 1 + sN i, and mutates to
type i + 1 at rate Xi+1(t) (1 + sN(i+ 1−M(t))) + µN ≈ µN . In particular, new type i + 1
individuals are created by mutation at rate Xi(t)µN , and, if one such mutation occurs at
time u, then its type i descendency at time t > u will be, on average, e(1+sN (i+1)−1−µN )(t−u) =

e(sN (i+1)−µN )(t−u)
µN<<sN≈ esN j(t−u). Integrating over u we obtain the approximation

(2.76) E [X1(t)]
M(t)≈0
≈

∫ t

0

µNE [X0(u)] esN (t−u)du ≈
∫ 1

0

µNNe
sN (t−u) =

NµN(esN t − 1)

sN
,

and, recursively,

(2.77) E [Xi+1(t)]
M(t)≈0
≈

∫ t

0

µNE [Xi(u)] esN (t−u)du ≈
∫ 1

0

µNNe
sN (t−u) =

NµiN
siN i!

(esN t − 1)i.

Since these approximations are valid only when the total number of mutations is close to
zero, they will be valid for t such that Xt(t) << N . From (2.76) we see that this will
(approximately) hold whenever esN t ≤ sN

µN
or

t <
1

sN
log(sN/µN) = aN .

It turns out that Xi(t) ≈ E [Xi(t)] for i ≤ kN , but for i > kN the expectation E [Xi(t)] is
dominated by the rare events where a particle acquires i mutations in an unusually short
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amount of time, leading Xi to be unusually large. In this scenario, the evolution of Xi has two
main stages, the first stochastic, and the second deterministic. Before before time τi, where τi
is the first time when there are at least sN/µN type i− 1 individuals, Xi is approximately 0.
The stochastic stage occurs between times [τi, τi+1] , during this stage the type i population
becomes established; during the second stage, after time τi+1, the number of type i individuals
evolves roughly deterministically. It can be shown that shortly after time τi+1 the increase
in Xi that is driven by mutations from type i− 1 individuals becomes negligible so that Xi

grows deterministically at rate sN(i−M(t)), which is the selective advantage of type i over
the average individual. That is, for times t > τi+1 such that Xi(t) is not yet near zero,

(2.78) Xi(t) ≈
sN
µN

e
∫ t
τi+1

sN (i−M(u))du
, if t > τi+1, Xi(t) > 0.

On the other hand, between times [τi, τi+1], type i−1 individuals will acquire a new mutation

at rate µN , so that the total growth rate of Xi driven by mutations will be µNXi−1(u)
(2.78)
≈

µN
sN
µN
e
∫ u
τi
sN (i−1−M(η))dη

; and if u − τi > 0 is small enough so that the term i − 1 −M(η) ≈
i− 1−M(τi) = Q(τi) inside the integral remains approximately constant in η ∈ [τi, u], then

(2.79) µNXi−1(u) ≈ sNe
sN (i−1−M(u))(u−τi) = sNe

sNQ(τi)(u−τi).

Since a new type i individual produced by a mutation at time τi < u < t will have on average
esN (Q(τi)+1)(t−u) descendants at time t, then, putting both estimates together, for t ∈ [τi, τi+1),

Xi(t) ≈
∫ t

τi

esNQ(τi)(u−τi)esN (Q(τi)+1)(t−u)du

= sNe
sN (Q(τi)+1)(t−τi)

∫ t

τi

e−sN (u−τi)du

= esN (Q(τi)+1))(t−τi)(1− e−t)
≈ esN (Q(τi)+1)(t−τi), t >> 1/sN .(2.80)

Equating the above approximation to s
µ

we obtain an approximation for τi+1 − τi, mainly

τi+1 − τi ≈
1

sN(Q(τi) + 1)
log

(
sN
µN

)
≈ aN
Q(τi)

.

This gives the overall high probability behaviour of Xi. Now, to study the unusual appearance
of large families, we approximate the evolving descendancy of a single mutation that occurs
at time u > τi (producing a type i individual) by a supercritical branching process with birth
rate 1 + sNQ(τi) and death rate 1. Such a branching process will survive with probability
approximately sNQ(τi) and, conditional on survival, its population size at time t > u will
approximate

E

sNQ(τi)
esNQ(τi)(t−u),

where E is standard exponentially distributed. Writing u = τi − log(sNQ(τi))
sNQ(τi)

+ η, we see that
the offspring size of such a mutation can be approximated by

Ee−sNQ(τi)ηesNQ(τi)(t−τi) (2.80)
≈ Ee−sNQ(τi)ηXi(t).
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Thus, the probability that a mutation that occurs at time τi < u has an offspring of size at
least xXi(t), x ∈ (0, 1), at time t > u, is approximately

sNQ(τi)P
(
Ee−sNQ(τi)ηXi(t) > xXi(t)

)
= sNQ(τi)e

−xesNQ(τi)η .

Integrating over the possible mutation times which occur at rate (2.79), the rate at which a
family of size at least xXi(t) appears is approximately∫ ∞

−∞

(
sNe

sNQ(τi)

(
− log(sNQ(τi))

sNQ(τi)
+η

))
sNQ(τi)e

−xesNQ(τi)ηdη =

∫ ∞
−∞

sNe
−sNQ(τi)ηe−xe

sNQ(τi)ηdη

=
1

Q(τi)x
.

Here we recognize the term x−1 =
∫ 1

x
y−2dy as the rate at which a y-merger with y > x

occurs in the Bolthausen-Sznitman coalescent. Finally, the heuristic argument, and the
accompanying formal proof given by Schweinsberg 2017b, end by proving that these are the
only type of large reproductive events that occur in the population, i.e., if a large fraction of
siblings with i mutations coalesce, then their parent will have i−1 mutations with probability
tending to 1 as N →∞.



Chapter 3

The Site Frequency Spectrum of the
Bolthausen-Sznitman Coalescent

Here we present our joint article together with Götz Kersting and Arno Siri-Jégousse (Ker-
sting, Siri-Jégousse, and H. Wences 2021).

A measure of the genetic diversity in a present day sample of a population is often used
in population genetics in order to infer its evolutionary past and the forces at play in its
dynamics. The Site Frequency Spectrum (SFS) is a well known theoretical model of the
genetic diversity present in a population, it assumes that neutral mutations arrive to the
population as a Poisson Process and that each arriving mutation falls in a different site of
the genome (infinite sites model), in contrast to the Allele Frequency Spectrum in which
mutations are assumed to fall on the same site but create a new allele every time (infinite
alleles model). Heuristically, the SFS is a random vector constructed from a coalescent process
(Πt)t≥0 with values in Pn in the following way: first a genealogical tree is constructed in
the natural way according to the evolution of the blocks and the jump times of (Πt)t≥0 (i.e.
individuals find a common ancestor whenever blocks coalesce), and then a random set of
points is thrown upon the tree according to a Poisson point process with rate θ (see Figure
3). These points are interpreted as neutral mutations that occur to the individuals in the
population and that are inherited to the individuals in generation 0 according to the topology
of the tree given by (Πt)t≥0. Each mutation is assumed to occur at a different place in the
genome so that each creates a new segregating site. Finally, for each integer 1 ≤ b ≤ n − 1
the random variable SFSn,b is set to be the number of mutations (segregating sites) that
are shared by a exactly b individuals in generation 0 (see Figure 3), the SFS is the random
vector SFS = (SFSn,1, . . . , SFSn,n−1). Given the close relation between the SFS and the
whole structure of the underlying genealogical tree (topology + branch lengths), the SFS
can be used as a model selection tool for the evolutionary dynamics of a population from a
dataset of present-day genetic diversity (Eldon et al. 2015; Freund and Siri-Jégousse 2021;
Koskela 2018).

In this chapter we give explicit expressions of the first and second moments for the whole
Site Frequency Spectrum (SFSn,b)1≤b<n of the Bolthausen-Sznitman coalescent, which to
our knowledge were only known for Kingman’s coalescent until now (Fu 1995). For the

85
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Neutral
Mutations

Figure 3.1: Schematic representation of a Poisson point process over a genealogical tree. In
this example we have SFS5,1 = 5, SFS5,2 = 4, SFS5,3 = 2, and SFS5,4 = 0.

expectation we obtain the formula

E [SFSn,b] = θn

∫ 1

0

Γ(b− p)
Γ(b+ 1)

Γ(n− b+ p)

Γ(n− b+ 1)

dp

Γ(1− p)Γ(1 + p)
,

where θ denotes the mutation rate. This expression is easily evaluated using existing numeri-
cal routines that compute log Γ(a), a > 0, and writing the gamma ratios Γ(a)

Γ(b)
as elog Γ(a)−log Γ(b).

This formula allows no insight into the shape of the expected site frequency spectrum.
For this purpose, and in order to characterize the asymptotic behaviour of the SFS, ap-
proximations are helpful. A simple approximation resting on Stirling’s formula reads for
2 ≤ b ≤ n− 1

(3.1) E[SFSn,b] ≈
θ

n− 1

b− 1

b
f1

(
b− 1

n− 1

)
where f1 is a convex, non-monotone function on (0, 1) defined by

(3.2) f1(u) :=

∫ 1

0

u−p−1(1− u)p−1 sin(πp)

πp
dp .

We remark that this integral may be reduced to the (complex) exponential integral Ei(·).
These formulas show that the shape of the Site Frequency Spectrum, restricted to the range
2 ≤ b < n, is explained essentially by one function not depending on the population size
n. Also our approximations update those given in Neher and Hallatschek 2013 for the case
of families with frequencies close to 0 and 1, since we have f1(u)∼(u log u)−2 close to 0 and
f1(u)∼((u− 1) log(1− u))−1 close to 1, see equations (3.28) and (3.29) below. The case
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Figure 3.2: Comparison of exact and approximated values of E[SFSn,b], red circles present
the exact values for b = 2 to n− 1, and the black lines their refined approximations (3.4).

b = 1 is not covered by (3.1), it has to be treated separately, which reflects the dominance of
external branches in the Bolthausen-Sznitman coalescent. In this case we have

(3.3)
log n

n
E[SFSn,1] ≈ θ.

See Theorem 3.2.4 for a rigorous and complete summary of the asymptotic behaviour of
E[SFSn,b].

The above approximation is accurate also from a numerical point of view. Only for b = 2
we encounter an enlarged relative error which anyhow remains less than 10 percent for n ≥ 8.
If a more precise result is desired then the following refined approximation may be applied
for 2 ≤ b ≤ n:

(3.4) E [SFSn,b] ≈ θn
b− 1

b

(
1

(n− 1)2
f1

(
b− 1

n− 1

)
− 1

(n− 1)3
g1

(
b− 1

n− 1

))
,

with a positive function g1 on (0, 1) given by

(3.5) g1(u) :=
1

2u2(1− u)2

π2 + log2 1−u
u

+ 2
u

log 1−u
u(

π2 + log2 1−u
u

)2 .

With this formula we have a relative error remaining below 1 percent for b = 2 and n ≥ 10,
below 0.5 percent for b = 2 and n ≥ 150, and below 0.3 percent for b ≥ 3 and n ≥ 10.
Thus this approximation appears well-suited for practical purpose. Figure 3.2 illustrates its
precision in the cases n = 5, 20, 35 and θ = 1.
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For b = 1 the approximation formula corresponding to (3.1) reads

E [SFSn,1] = θn

∫ 1

0

Γ(n− 1 + p)

Γ(n)

dp

Γ(1 + p)

≈ θn

∫ 1

0

(n− 1)p−1 dp

Γ(1 + p)
,

which is an immediate consequence of Stirling’s approximation. It is precise for small n and
requires no further correction as in the case b ≥ 2.

We also study the asymptotic behavior of the second moments which, together with the
above asymptotics for the first moment, leads to the following L2 convergences:

log n

n
SFSn,1 → θ,

and, whenever b ≥ 2 and b = o (
√
n/ log n),

b(b− 1) log2 (n/b)

n
SFSn,b → θ.

These generalize and strengthen the results in Diehl and Kersting 2019 for the Bolthausen-
Sznitman coalescent.

Finally we provide the joint distribution function of the branch lengths of large families,
i.e families of size at least half the total population size, and their marginal distribution
function. These results are useful to obtain the marginal distribution function of the Site
Frequency Spectrum and a sampling formula for the half of the vector corresponding to large
family sizes, although we do not present such tedious computations here.

Asymptotic results for related functionals on the Bolthausen-Sznitman coalescent have
been derived by studying the block count chain of the coalescent through a coupling with a
random walk as in Iksanov and Möhle 2007 and Kersting, Pardo, and Siri-Jégousse 2014,
where asymptotics for the total number of jumps, and the total, internal, and external
branch lengths of the Bolthausen-Sznitman coalescent are described; these results give the
asymptotic behaviour of the total number of mutations present in the population, the number
of mutations present in a single individual, and the number of mutations present in at least
2 individuals. Also, a Markov chain approximation of the initial steps of the process was
developed in Diehl and Kersting 2019 where asymptotics for the total tree length and the
Site Frequency Spectrum of small families were derived for a class of Λ-coalescents containing
the Bolthausen-Sznitman coalescent.

Progress has also been made for the finite coalescent even for the general Λ− and Ξ-
coalescents. The finite Bolthausen-Sznitman coalescent has been studied through the spectral
decomposition of its jump rate matrix described in Kukla and Pitters 2015. This lead the
authors to derive explicit expressions for the transition probabilities and the Green’s matrix
of this coalescent, and also of Kingman’s coalescent. The spectral decomposition of the jump
rate matrix of a general coalescent, including coalescents with multiple mergers, is also used in
Spence, Kamm, and Song 2016 where an expression for the expected Site Frequency Spectrum
is given in terms of matrix operations which in the case of the Bolthausen-Sznitman coalescent
result in an algorithm requiring on the order of n2 computations. In Hobolth, Siri-Jégousse,
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and Bladt 2019 another expression in terms of matrix operations is given for this and other
functionals of general coalescent processes, both in expected value (and higher moments)
and in distribution; these expressions however are deduced from the theory of phase-type
distributions, in particular distributions of rewards constructed on top of coalescent processes,
and also require vast computations for large population sizes.

Our method, mainly based on the Random Recursive Tree construction of the Bolthausen-
Sznitman coalescent given in Goldschmidt and Martin 2005, gives easy-to-compute expres-
sions for the first and second moments of the Site Frequency Spectrum of this particular
coalescent. This combinatorial construction not only allows us to study the bottom, but also
the top of the tree; thus providing an additional insight into the past of the population and
large families, both asymptotically and for any fixed population size.

In Section 3.1 we layout the basic intuitions that compose the bulk of our method, in-
cluding the Random Recursive Tree construction of the Bolthausen-Sznitman coalescent and
the derivation of the first moment of the Site Frequency Spectrum for the infinite coalescent
as a first application (Corollary 3.1.2). In Section 3.2 we present our results on the first
and second moments of the branch lengths (Theorem 3.2.1) and of the Site Frequency Spec-
trum (Corollary 3.2.2) for any fixed family size and initial population. We then use these
expressions to obtain asymptotic approximations of these moments as the initial population
goes to infinity (Theorems 3.2.4 and 3.2.5) which lead to L2 convergence results on the SFS
(Corollary 3.2.6). In Section 3.3 we restrict ourselves to the case of large family sizes and
present the joint and marginal distribution functions of their branch lengths (Theorems 3.3.1
and 3.3.3), along with a limit in law result (Corollary 3.3.2). Finally, in Sections 3.2.1 and
3.3.1 we provide detailed proofs of our results.

3.1 Random Recursive Tree Construction of the BSC

Consider the Bolthausen-Sznitman coalescent (Πt)t≥0 with values in P∞, the space of parti-

tions of N, and the ranked coalescent (|Πt|↓)t≥0, with values in the space of mass partitions
P[0,1], made of the asymptotic frequencies of Πt reordered in a non-increasing way. In
what follows we present the Random Recursive Tree (RRT) construction of the Bolthausen-
Sznitman coalescent given in Goldschmidt and Martin 2005; then we follow the argument
given in the same paper to establish that

(3.6) |Πt|↓
d
= PD(e−t, 0),

where PD(α, θ) is the (α, θ)−Poisson-Dirichlet distribution.
Briefly, the construction of the Bolthausen-Sznitman coalescent in terms of Random Re-

cursive Trees proceeds as follows. We work on the set of recursive trees whose labeled nodes
form a partition π of [n] := {1, . . . , n}, where the ordering of the nodes that confers the
term “recursive” is given by ordering the blocks of π according to their smallest elements. A
cutting-merge procedure is defined on the set of recursive trees of this form with a marked
edge, this procedure consists of cutting the marked edge and merging all the labels in the sub-
tree below with the node above, thus creating a new recursive tree whose labels form a new
(coarser) partition of [n] (see Figure 3.3). With this operation in mind we consider a RRT
with labels {1}, · · · , {n}, say T , to which we also attach independent standard exponential
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{1,3}

{4} {2}

{5,7} {6} {9}

{8,10}

{1,3}

{4,6,8,10} {2}

{5,7} {9}

Figure 3.3: On the left, an example of a recursive tree whose labels constitute a partition
of {1, · · · , 10}. On the right, the resulting recursive tree after a cutting-merge procedure
performed on the marked edge (dashed line) of the first tree.

variables to each edge. Then, for each time t > 0 we retrieve the partition of [n] obtained by
performing a cutting-merge procedure on all the edges of T whose exponential variable is less
than t. This gives a stochastic process (Π

(n)
t )t≥0 with values on the set of partitions of [n]

that can be proven to be the n-Bolthausen-Sznitman coalescent (Goldschmidt and Martin
2005).

The fact that |Πt|↓
d
= PD(e−t, 0) now follows readily. To see this, consider the con-

struction of T where nodes arrive sequentially and each arriving node attaches to any of the
previous nodes with equal probability. Considering also their exponential edges and having
in mind the cutting-merge procedure we see that for any fixed time t, and assuming that
b− 1 nodes have arrived and formed k blocks of sizes s1, . . . , sk in Π

(b−1)
t , the next arriving

node, node {b}, will form a new block in Π
(b)
t if and only if it attaches to any of the roots

of the sub-trees of T that form the said k blocks and if, furthermore, its exponential edge is
greater than t; this occurs with probability ke−t

b−1
. On the other hand, in order for {b} to join

the jth block of size sj it must either attach to the root of the sub-tree of T that builds this

block and its exponential edge must be less than t, which happens with probability 1−e−t
b−1

, or

it must attach to any other node of the said sub-tree, which happens with probability
sj−1

b−1
;

thus, the probability of attaching to the jth block is
sj−e−t
b−1

. We recognize in these expressions
the probabilities that define the Chinese Restaurant Process with parameters α = e−t and
θ = 0.



3.1. RANDOM RECURSIVE TREE CONSTRUCTION OF THE BSC 91

R1 ≡ {1}

R2 R4

R3

Figure 3.4: Schematic representation of passing from Π
(n)
t to Π

(n+1)
t for fixed t, by adding

a new node (blue) to a RRT. Solid lines and dotted lines represent edges whose exponential
variables are greater than t and less than or equal to t, respectively. In this case at time t there
are four subtrees rooted at R1, R2, R3, and R4, which form the blocks that constitute Π

(n)
t ;

these blocks are also the tables of a Chinese Restaurant Process. In case (i) the new node
will be included in the block formed by R2 at time t, irrespective of whether its exponential
edge is greater than t or not. In case (ii) the new node forms part of the block rooted at R4

because its exponential edge is less than t. Finally, in case (iii) the new node is a new root of

a subtree that will form an additional block of Π
(n+1)
t (i.e. the new node opens a new table

in the Chinese Restaurant Process).
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We now provide two straightforward applications of the RRT construction described above
which nonetheless contain the essential intuitions underlying the forthcoming proofs.

3.1.1 Site Frequency Spectrum in the infinite coalescent

For the first application consider a subset I ⊂ (0, 1) and define (CI(t))t≥0 to be the process
of the number of blocks in Πt with asymptotic frequencies in I. Then

(3.7) `I :=

∫ ∞
0

CI(t) dt

gives the total branch length of families with size frequencies in I in the infinite coalescent.
Our first theorem is a simple corollary of the equality in law (3.6).

Theorem 3.1.1. For I ⊂ (0, 1), we have

E[`I ] =

∫
I

∫ 1

0

u−p−1(1− u)p−1 sin(πp)

πp
dp du.

In particular, note that if in the infinite sites model with mutation rate θ we define SFSI
to be the number of mutations shared by a proportion u of individuals with u ranging in I,
then by conditioning on `I we get

Corollary 3.1.2. For I ⊂ (0, 1), we have

(3.8) E [SFSI ] = θ

∫
I

∫ 1

0

u−p−1(1− u)p−1 sin(πp)

πp
dp du.

Proof of Theorem 3.1.1. Since

E [`I ] =

∫ ∞
0

E [CI(t)] dt

it only remains to computeE [CI(t)] and simplify the expressions, but this is a straightforward
consequence of Equation (6) in Pitman and Yor 1997 which states that if % = (a1, · · · ) is
PD(α, θ) distributed, and f : R→ R is a function, then

(3.9) E

[ ∞∑
i=1

f(ai)

]
=

Γ(θ + 1)

Γ(θ + α)Γ(1− α)

∫ 1

0

f(u)
(1− u)α+θ−1

uα+1
du.

Taking f(u) = 1I(u)we get

E[CI(t)] =
1

Γ(e−t)Γ(1− e−t)

∫ 1

0

1I(u)
(1− u)e

−t−1

ue−t+1
du.

The proof is finished by using Euler’s reflection formula, making p = e−t on the above
expression, and integrating on [0,∞).
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3.1.2 Time to the absorption

In this section we prove a useful lemma for the upcoming proofs, but a first consequence of
this lemma gives the distribution function of the time to absorption, An, in the n-coalescent,
a result already proved in Möhle and Pitters 2014.

We recall B which stands for the Beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

and Ψ for the digamma function

Ψ(x) =
Γ′(x)

Γ(x)
= −Υ−

∞∑
n=1

(
1

z + n− 1
− 1

n

)
where Υ stands for the Euler-Mascheroni constant.

Lemma 3.1.3. Let T be a RRT on a set of n labels and with independent exponential edges.
Define the two functionals m(T ) and M(T ) that give the minimum and the maximum of the
exponential edges attached to the root of T . Then

(3.10) P(m(T ) > s) =
1

(n− 1)B(n− 1, e−s)
,

and

(3.11) P(M(T ) ≤ s) =
1

(n− 1)B(n− 1, 1− e−s)
.

Also, for independent trees T1 and T2 of respective size n1 and n2, we have

P(m(T2)−M(T1) > s)

=
1

(n1 − 1)(n2 − 1)

∫ 1

0

Ψ(n1 − p)−Ψ(1− p)
B(n2 − 1, e−sp)B(n1 − 1, 1− p)

dp.(3.12)

The proof of (3.11) follows the same lines as in Möhle and Pitters 2014 where the law of
the time to absorption of the Bolthausen-Sznitman coalescent is derived, since this time is
the maximum of the exponential edges attached to the root of a RRT. That is,

(3.13) P(An ≤ s) =
1

(n− 1)B(n− 1, 1− e−s)
,

and, as n→∞,

(3.14) An − log log n
d→ − logE

where E is a standard exponential random variable. The latter convergence in distribution
was elegantly proved in Goldschmidt and Martin 2005 using a construction of random recur-
sive trees in continuous time, whereas in this case it follows from Stirling’s approximation to
the Gamma functions appearing in (3.13).

On the other hand, the equality (3.12) will be used in the computation of the distribution
function of branch lengths with large family sizes presented in Section 3.3.
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Proof of Lemma 3.1.3. Let E2, · · · , En be the exponential edges associated to the nodes of
T . For the proof of (3.10) we consider the event {m(T ) > s}. This event occurs when, in
the recursive construction of T along with the exponential edges, the ith node (2 ≤ i ≤ n)
does not attach to {1} whenever Ei < s; this happens with probability 1 − 1−e−s

i−1
. Thus,

considering the n nodes, we obtain

P(m(T ) > s) = e−s
(

1 + e−s

2

)
. . .

(
n− 2 + e−s

n− 1

)
=

1

(n− 1)B(n− 1, e−s)
.

For (3.11) we instead build the tree such that the ith node does not attach to {1} whenever
Ei > s; this happens with probability 1− e−s

i−1
. Thus we obtain

P(M(T ) ≤ s) = (1− e−s)
(

2− e−s

2

)
. . .

(
n− 1− e−s

n− 1

)
=

1

(n− 1)B(n− 1, 1− e−s)
.

Finally we compute

P(m(T2)−M(T1) > s)

=
1

(n1 − 1)(n2 − 1)

∫ ∞
0

1

B(n2 − 1, e−(s+t))

d

dt

(
1

B(n1 − 1, 1− e−t)

)
dt

and by changing the variable p = e−x we obtain (3.12).

3.2 Moments of the Site Frequency Spectrum

By a simple adaptation of our previous notation for branch lengths in the infinite coalescent
(CI and `I), in the finite case we also define for 1 ≤ b ≤ n − 1 the process (Cn,b(t))t≥0 and

the random variables (`n,b), where Cn,b(t) is the number of blocks of size b in Π
(n)
t , and

(3.15) `n,b :=

∫ ∞
0

Cn,b(t) dt.

We now provide explicit expressions for E [`n,b] and E [`n,b1`n,b2 ]; for this we define the func-
tions

F1(n, b) =

∫ 1

0

Γ(b− p)
Γ(b+ 1)

Γ(n− b+ p)

Γ(n− b+ 1)

dp

Γ(1− p)Γ(1 + p)
,

F2(n, b1, b2) =

∫ 1

0

∫ p1

0

Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − b1 + p1 − p2)

Γ(b2 − b1 + 1)

× Γ(n− b2 + p2)

Γ(n− b2 + 1)

dp2 dp1

p1Γ(1− p1)Γ(p1 − p2)Γ(p2 + 1)
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and

F3(n, b1, b2) =

∫ 1

0

∫ 1

0

Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − p2)

Γ(b2 + 1)

× Γ(n− b1 − b2 + p1 + p2)

Γ(n− b1 − b2 + 1)

dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)
.

Theorem 3.2.1. For any pair of integers n, b such that 1 ≤ b ≤ n− 1, we have

(3.16) E[`n,b] = nF1(n, b)

Also, for any triple of integers n, b1, b2, with 1 ≤ b1 ≤ b2 ≤ n− 1, we have

(3.17) E [`n,b1`n,b2 ] = nF2(n, b1, b2) + nF3(n, b1, b2)1{b1+b2≤n}

As before, we may define SFSn,b as the number of mutations shared by b individuals in
the n-coalescent. By conditioning on the value of the associated branch lengths we get

Corollary 3.2.2. For 1 ≤ b ≤ n− 1,

E[SFSn,b] = θnF1(n, b)

and, for 1 ≤ b1 ≤ b2 ≤ n− 1, we have,

Cov (SFSn,b1 , SFSn,b2) =θ2nF2(n, b1, b2) + θ2nF3(n, b1, b2)1b1+b2≤n

− θ2n2F1(n, b1)F1(n, b2) + θnF1(n, b)1b1=b=b2 .

We also characterize the asymptotic behavior of the functions F1, F2 and F3 as n → ∞,
which in turn give asymptotic approximations for the first and second moments of the branch
lengths and of SFS. For this we recall the function f1 defined in (3.2) and also define for
0 < u1 < u2 < 1,

(3.18) f2(u1, u2) :=

∫ 1

0

∫ p1

0

u−p1−1
1 (u2 − u1)p1−p2−1 (1− u2)p2−1

p1Γ(1− p1)Γ(p1 − p2)Γ(p2 + 1)
dp2 dp1,

and, for u1, u2 > 0, u1 + u2 < 1,

(3.19) f3(u1, u2) :=

∫ 1

0

∫ 1

0

u−p1−1
1 u−p2−1

2 (1− u1 − u2)p1+p2−1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)
dp2 dp1 .

Lemma 3.2.3. We have as n→∞,

(3.20) max
2≤b≤n−1

∣∣∣∣∣n2F1(n, b)

f1

(
b−1
n−1

) − b− 1

b

∣∣∣∣∣→ 0,

whereas for b = 1,

(3.21)
n2

(log n)f1

(
1

n−1

)F1(n, 1)→ 1.
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Similarly

(3.22) max
2≤b1<b2≤n−1

∣∣∣∣∣n3F2(n, b1, b2)

f2

(
b1−1
n−1

, b2−1
n−1

) − b1 − 1

b1

∣∣∣∣∣→ 0,

and if also b1 ∨ (n− b2)→∞ then

(3.23) max
2≤b1≤b2≤n−1
b1+b2<n

∣∣∣∣∣n3F3(n, b1, b2)

f3

(
b1−1
n−2

, b2−1
n−2

) − (b1 − 1

b1

)(
b2 − 1

b2

)∣∣∣∣∣→ 0.

Remark. The above lemma does not cover the cases b1 = 1 or b1 = b2 for F2, nor the cases
b1 = 1, b2 = 1, n = b1 + b2 or b1 ∨ (n− b2) 6→ ∞ for F3. However, using the same techniques
we also obtain asymptotics in these cases which are used in Theorem 3.2.5 below.

The proof of the above lemma also gives asymptotic expressions for the functions f1, f2

and f3, leading to straightforward asymptotics for the expectation and covariance of SFS.
The complete picture for the first moment is given in the next result.

Theorem 3.2.4. As n goes to infinity,
(i) The expected number of external mutations (b = 1) has the following asymptotics

log n

n
E[SFSn,1]→ θ.

(ii) If b ≥ 2 and b
n
→ 0, then

b(b− 1)

n
log2

(n
b

)
E[SFSn,b]→ θ.

(iii) If b
n
→ u ∈ (0, 1), then

nE[SFSn,b]→ θf1(u) = θ

∫ 1

0

u−1−p(1− u)p−1 sin(πp)

πp
dp.

(iv) If n−b
n
→ 0, then

(n− b) log

(
n

n− b

)
E[SFSn,b]→ θ.

(v) Let I = (x, y) with 0 < x < y < 1 and define

SFSn,I :=

bnyc∑
b=dnxe

SFSn,b.

Then
E [SFSn,I ]→ E[SFSI ]

as it is defined in (3.8).
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Figure 3.5: Exact and asymptotic approximations for E[SFS] in a population of size 1000:
The blue circles give the exact value as given in Corollary 3.2.2. The gray line is the asymp-
totic approximation as given in Theorem 3.2.4 (iii). Red (resp. yellow) line is given by
Theorem 3.2.4 (ii) (resp. (iv)).
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Case (i) and case (ii) for fixed b also follow from Theorem 4 in Diehl and Kersting 2019.
Cases (ii) and (iv) give an update to the approximation of the SFS for small and large families
made in Neher and Hallatschek 2013.

In the same spirit and using the same techniques we now provide the complete picture
for the second moments. In what follows we recall the notation f(n) ∼ g(n) to denote that

f(n)

g(n)
→ 1

as n→∞.

Theorem 3.2.5. The covariance function has the following asymptotics as n goes to infinity,
in each of the following cases:

b1 b2 − b1 n− b2 Cov(SFSn,b1 , SFSn,b2)

> 1 > 0 ∼ n θ2

b1(b1−1)b2(b2−1)
O
(

n2

log5 n

)
∼ n > 0 > 0 θ2

(b2−b1)(n−b1)
1

log2 n

∼ n 0 > 0 θ2+θ
n−b2

1
logn

> 1 ∼ n = b1 θ2O
(

n
log4 n

)
> 1 ∼ n = b1 + const+ θ2F1(n− b2, b1) n

logn

1 0 ∼ n θ2O
(

n2

log3 n

)
1 > 0 ∼ n θ2O

(
n2

log4 n

)
1 ∼ nu ∼ n(1− u) θ2O

(
1

log2 n

)
1 ∼ n > 1 θ2O

(
n

log3 n

)
1 ∼ n 1 θ2O

(
n

log3 n

)
> 1 0 ∼ n θ2O

(
n2

log5 n

)
∼ nu > 0 ∼ n(1− u) θ2

(1−u)(b2−b1)
1

n log2 n

∼ nu 0 ∼ n(1− u) θf1(u)
n

> 1 ∼ nu ∼ n(1− u) θ2O
(

1
log3 n

)
∼ nu ∼ n(1− u) > 0 − θ2f1(u)

n−b2
1

logn

∼ nu1 ∼ nu2 ∼ n(1− u1 − u2)
θ2(f2(u1,u1+u2)+f3(u1,u1+u2)12u1+u2≤1−f1(u1)f1(u1+u2))

n2

∼ nu ∼ n(1− 2u) = b1

θ2
∫∞
0

∫∞
0

e−y1e−y2
y1∨y2

dy1 dy2

u(1−u)
1

n logn

∼ nu ∼ n(1− 2u) = b1 + const+
θ2
∫∞
0

∫∞
0

e−y1e−y2 (y1+y2)
y1∨y2

dy1 dy2

u(1−u)(n−b2−b1)
1

n log2 n
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Also for I, Î ⊂ (0, 1), and SFSn,I , SFSn,Î as defined in Theorem 3.2.4 (V), we have

Cov

(
SFSn,I , SFSn,Î

)
→(3.24)

θ2

∫
I

∫
Î

f2(u1, u2) + f3(u1, u2)1u1+u2<1 − f1(u1)f1(u2) du2 du1 + θ

∫
I∩Î

f1(u) du.

These approximations follow from the asymptotics for F1, F2, and F3 substituted in the
covariance formula given in Corollary 3.2.2. For the sake of simplicity we do not provide
the explicit computations. We only treat the case where the expected value E[SFSn,b] di-
verges, then an application of Chebyshev’s inequality allows us to prove the following weak
law of large numbers with L2-convergence, which generalizes and strengthens results on the
Bolthausen-Sznitman coalescent derived in Diehl and Kersting 2019.

Corollary 3.2.6. Suppose that b/n→ 0 in such a way that E[SFSn,b]→∞, or equivalently
that b = o (

√
n/ log n). Then we have the following L2-convergence

SFSn,b
E[SFSn,b]

L2

→ θ.

In view of Theorem 3.2.4 this means that for b = 1

log n

n
SFSn,1

L2

→ θ,

and for b ≥ 2, b = o (
√
n/ log n)

b(b− 1) log2 (n/b)

n
SFSn,b

L2

→ θ.

3.2.1 Proofs of Section 3.2

As in the infinite coalescent case, the proof of Theorem 3.2.1 begins with the definition (3.15)
and by noting that

E [`n,b] = E

[∫ ∞
0

Cn.b(t) dt

]
=

∫ ∞
0

E [Cn,b(t)] dt,

and similarly

E [`n,b1`n,b2 ] =

∫ ∞
0

∫ ∞
0

E [Cn,b1(t1)Cn,b2(t2)] dt1 dt2,

so it only remains to compute E [Cn,b(t)] and E [Cn,b1(t)Cn,b2(t)] in each case and simplify
the expressions.

Proof of Theorem 3.2.1 (first moment). Let B be the collection of all possible blocks of size
b in a partition of [n]. Then

E [Cn,b(t)] = E

[∑
B∈B

1
B∈Π(n)

t

]
=
∑
B∈B

P

(
B ∈ Π(n)

t

)
,
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and by exchangeability of Π
(n)
t ,

E [Cn,b(t)] =

(
n

b

)
P

(
{1, · · · , b} ∈ Π(n)

t

)
.

Thus, using (3.9), the fact that |Πt|↓ =: (A1, A2, . . . )
d
= PD(e−t, 0), and writing Π(n) as Π|n,

we obtain

E[Cn,b(t)] =

(
n

b

)
E(e−t,0)

[
∞∑
i=1

Abi(1− Ai)n−b
]

=

(
n

b

)∫ 1

0

ub−1(1− u)n−b
u−e

−t
(1− u)e

−t−1

Γ(1− e−t)Γ(e−t)
du

=
nΓ(n)

Γ(n− b+ 1)Γ(b+ 1)

B(b− e−t, n− b+ e−t)

Γ(1− e−t)Γ(1 + e−t)
.

Finally, by changing the variable p = e−t, we obtain (3.16).

Now we use the random tree construction of the n-Bolthausen-Sznitman coalescent in
order to compute the second moments of `n,b.

Proof of Theorem 3.2.1 (second moments). Let 1 ≤ b1 ≤ b2 ≤ n − 1, and B1,B2 be the
collection of all possible blocks of sizes b1 and b2 respectively in a partition of [n]. Then

E [`n,b1`n,b2 ] =

∫ ∞
0

∫ ∞
0

E [Cn,b1(t1)Cn,b2(t2)] dt2 dt1

=

∫ ∞
0

∫ ∞
0

∑
B1∈B1

∑
B2∈B2

P

(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
dt2 dt1.(3.25)

We now compute P
(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
by cases.

i) Suppose that B1 ∩B2 = ∅. By exchangeability we have

P

(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
= P({1, · · · , b1} ∈ Π(n)

t1 , {b1 + 1, · · · , b1 + b2} ∈ Π(n)
t2 )

where this probability is of course 0 if b1 + b2 > n. Now suppose that t1 ≤ t2. In terms of
the RRT construction of the Bolthausen-Sznitman coalescent, the event

{{1, · · · , b1} ∈ Π(n)
t1 , {b1 + 1, · · · , b1 + b2} ∈ Π(n)

t2 }

is characterized by a RRT with exponential edges, say E2, · · · , En, constructed as follows: for
i ∈ {1, · · · , b1 − 1} the node {i+ 1} along with Ei+1 arrive to the tree but with the imposed
restriction that it may not attach to {1} and have Ei+1 > t1 at the same time, which occurs
with probability e−t1/i; this ensures that {i + 1} coalesces with {1} before time t1 for all
i < b1, thus creating the block {1, · · · , b1} up to time t1. After {1}, · · · , {b1} have arrived,
the node {b1 + 1} must attach to {1} and Eb1+1 must be greater than t2, which occurs with
probability e−t2/b1; the node {b1 + 1} will be the root of a sub-tree formed with the nodes
{b1+2}, · · · , {b1+b2} which will build the block {b1+1, · · · , b1+b2} at time t2. Thus, for each
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i ∈ {1, · · · , b2−1} the node {b1 +i+1} must arrive and attach to any of {b1 +1}, · · · , {b1 +i},
which occurs with probability i

b1+i
, and, furthermore, conditional on this event, it may not

attach to {b1 +1} and have Eb1+i+1 > t2 at the same time, which occurs with probability e−t2
i

.
Finally, if n−b1−b2 > 0, for i ∈ {0, · · · , n−b1−b2−1} the node {b1 +b2 + i+1} must either
attach to any of {b1 + b2 + j}, 1 ≤ j ≤ i, or attach to {1} or {b1 +1} and have Eb1+b2+i+1 > t1
or Eb1+b2+i+1 > t2 respectively; this occurs with probability e−t1+e−t2+i

b1+b2+i
. Putting all together

we obtain

P

(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
=

[
b1−1∏
i=1

(
1− e−t1

i

)][
e−t2

b1

b2−1∏
i=1

(
1− e−t2

i

)
i

b1 + i

][
n−b1−b2−1∏

i=0

e−t1 + e−t2 + i

b1 + b2 + i

]

=
1

(n− 1)!

Γ(b1 − e−t1)

Γ(1− e−t1)
e−t2

Γ(b2 − e−t2)

Γ(1− e−t2)

Γ(n− b1 − b2 + e−t1 + e−t2)

Γ(e−t1 + e−t2)
,

where the last product is set to 1 if n − b2 − b1 = 0. On the other hand, if t2 < t1, by
exchangeability we may instead compute

P({1, · · · , b2} ∈ Π(n)
t2 , {b2 + 1, · · · , b2 + b1} ∈ Π(n)

t1 )

obtaining

P

(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
=

1

(n− 1)!

Γ(b2 − e−t2)

Γ(1− e−t2)
e−t1

Γ(b1 − e−t1)

Γ(1− e−t1)

Γ(n− b2 − b1 + e−t2 + e−t1)

Γ(e−t2 + e−t1)
.

ii) Suppose that B1 ⊂ B2. Of course if t1 > t2 we have P
(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
= 0

whenever B1 is strictly contained in B2. Assuming that t1 ≤ t2 and using the same rationale
as before we obtain

P

(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
=

[
b1−1∏
i=1

i− e−t1
i

][
b2−b1−1∏
i=0

i+ e−t1 − e−t2
b1 + i

][
n−b2−1∏
i=0

e−t2 + i

b2 + i

]

=
1

(n− 1)!

Γ(b1 − e−t1)

Γ(1− e−t1)

Γ(b2 − b1 + e−t1 − e−t2)

Γ(e−t1 − e−t2)

Γ(n− b2 + e−t2)

Γ(e−t2)
,

where the product in the middle is set to 1 if B1 = B2.

iii) If B1 ∩B2 6= ∅ and B1 6⊂ B2, we clearly have P
(
B1 ∈ Π(n)

t1 , B2 ∈ Π(n)
t2

)
= 0.

From the previous computations, and summing over the corresponding cases, we see that
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if b1 + b2 ≤ n then, changing the variable p = e−t, the integral in (3.25) is given by

E [`n,b1`n,b2 ] =
n

b1!b2!(n− b1 − b2)!∫ 1

0

∫ 1

0

Γ(b1 − p1)

Γ(1− p1)

Γ(b2 − p2)

Γ(1− p2)

Γ(n− b1 − b2 + p1 + p2)

Γ(p1 + p2)

dp1 dp2

p1 ∨ p2

+
n

b1!(b2 − b1)!(n− b2)!∫ 1

0

∫ p1

0

Γ(b1 − p1)

Γ(1− p1)

Γ(b2 − b1 + p1 − p2)

Γ(p1 − p2)

Γ(n− b2 + p2)

Γ(p2 + 1)

dp2 dp1

p1

whereas if b1 + b2 > n the first summand in the above expression is set to zero. Rearranging
terms we obtain (3.17).

Proof of Lemma 3.2.3 (asymptotics for F1). Again, we have from Stirling’s formula that Γ(m+
c)/Γ(m + d) = mc−d(1 + O (1/m)) for any real numbers c and d, where the O (1/m) term
holds uniformly for 0 ≤ c, d ≤ 1. Letting m = b− 1 and n− b leads to the following equality:

n

b(n− b)
Γ(n− b+ p)

Γ(n− b)
Γ(b− p)

Γ(b)

=
n

b(n− b)
(n− b)p(b− 1)−p

(
1 +O

(
1

b

)
+O

(
1

n− b

))
.

Thus, using Euler’s reflection formula to write Γ(1−p)Γ(1+p) as πp/ sin (πp) in the definition
of F1, we get

F1(n, b) =

(
1 +O

(
1

b

)
+O

(
1

n− b

))
1

b(n− b)

∫ 1

0

sin (πp)

πp

(
n− b
b− 1

)p
dp

=

(
1 +O

(
1

b

)
+O

(
1

n− b

))
b− 1

b(n− 1)2
f1

(
b− 1

n− 1

)
Thus, for every ε > 0 there is a b0 ∈ N such that for large enough n ∈ N we have

(3.26) max
b0≤b≤n−b0

∣∣∣∣∣n2F1(n, b)

f1

(
b−1
n−1

) − b− 1

b

∣∣∣∣∣ < ε.

It remains to study the approximation as n → ∞ in the cases where n − b or b remain
constant. In the first case, when n − b = c, we have b → ∞ as n → ∞ and, by Stirling’s
approximation and dominated convergence and substituting p = y/ log b on the one hand

F1(n, b) ∼
∫ 1

0

sin (πp)

πp
b−p−1 Γ(c+ p)

Γ(c+ 1)
dp

=
1

bc

∫ log b

0

sin (πy/ log b)

πy/ log b
e−y

Γ(c+ y/ log b)

Γ(c)

dy

log b

∼ 1

bc log b

∫ ∞
0

e−y dy.
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and on the other hand because of b→∞
1

n2
f1

(
b− 1

n− 1

)
∼ 1

bc

∫ 1

0

sin(πp)

πp
b−pcp dp

=
1

bc

∫ log b

0

sin (πy/ log b)

πy/ log b
e−ycy/ log b dy

log b

∼ 1

bc log b

∫ ∞
0

e−y dy.

Thus F1(n, b) ∼ n−2f1((b− 1)/(n− 1)) which extends (3.26) for b > n− b0.
Similarly for the second case, if b ≥ 2 is fixed, we have n− b→∞ as n→∞. Thus, with

1− p = y/ log n

F1(n, b) ∼
∫ 1

0

sin (πp)

πp

Γ(b− p)
Γ(b+ 1)

np−1 dp

=
1

log2(n)

∫ logn

0

sin (π − πy/ log n)

(1− y/ log n)πy/ log n

Γ
(
b− 1 + y

logn

)
Γ(b+ 1)

ye−y dy

∼ 1

b(b− 1) log2 n

∫ ∞
0

ye−y dy

and

1

n2
f1

(
b− 1

n− 1

)
∼ 1

(b− 1)2

∫ 1

0

sin πp

πp
(b− 1)1−pnp−1 dp

=
1

(b− 1)2 log2 n

∫ logn

0

sin (π − πy/ log n)

(1− y/ log n)πy/ log n
(b− 1)y/ lognye−y dy

∼ 1

(b− 1)2 log2 n

∫ ∞
0

ye−y dy.(3.27)

Thus F1(n, b) ∼ (b−1)n−2f1((b−1)/(n−1))/b, which extends (3.26) for b < b0. This extends
(3.26) for b < b0. Thus we proved (3.20).

For the proof of (3.21), we substitute b by 1 and perform similar computations:

F1(n, 1) =

∫ 1

0

Γ(1− p)
Γ(2)

Γ(n− 1 + p)

Γ(n)

dp

Γ(1− p)Γ(1 + p)

∼
∫ 1

0

np−1 dp

Γ(1 + p)

=

∫ logn

0

e−y
dy

(log n)Γ(2− y/ log n)

∼ 1

log n

∫ ∞
0

e−y dy,

and from (3.27) with choosing b = 2

1

n2
f1

(
1

n− 1

)
∼ 1

log2 n

∫ ∞
0

ye−y dy.

This proves (3.21).
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Proof of Lemma 3.2.3 (asymptotics for F2 and F3) . The arguments here are similar to the
arguments in the proof of the asymptotics for F1, but we avoid repeating similar and tedious
computations. We only layout the first steps of the proof. By Stirling’s approximation
applied to the integrands appearing in F2 and F3, we obtain, for b2 − b1 > 0,

Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − b1 + p1 − p2)

Γ(b2 − b1 + 1)

Γ(n− b2 + p2)

Γ(n− b2 + 1)
=

1

(n− 1)3

(
b1 − 1

n− 1

)−p1−1(
b2 − b1

n− 1

)p1−p2−1(
n− b2

n− 1

)p2−1

×(
1 +O

(
1

b1

)
+O

(
1

b2 − b1

)
+O

(
1

n− b2

))
,

and, for n− b2 − b1 > 0,

Γ(b1 − p1)

Γ(b1 + 1)

Γ(b2 − p2)

Γ(b2 + 1)

Γ(n− b1 − b2 + p1 + p2)

Γ(n− b1 − b2 + 1)
=

1

(n− 2)3

(
b1 − 1

n− 2

)−p1−1(
b2 − 1

n− 2

)−p2−1(
1− b1 + b2

n− 2

)p1+p2−1

×(
1 +O

(
1

b1

)
+O

(
1

b2

)
+O

(
1

n− b1 − b2

))
;

thus

F2(n, b1, b2) =
1

(n− 1)3
f2

(
b1 − 1

n− 1
,
b2 − 1

n− 1

)(
1 +O

(
1

b1

)
+O

(
1

b2 − b1

)
+O

(
1

n− b2

))
,

and

F3(n, b1, b2) =
1

(n− 2)3
f3

(
b1 − 1

n− 2
,
b2 − 1

n− 2

)(
1 +O

(
1

b1

)
+O

(
1

b2

)
+O

(
1

n− b1 − b2

))
.

Similar to the analysis in the proof of (3.20), to obtain (3.22) it remains to study the cases
where at least one of b1, b2 − b1, or n − b2 remains constant, whereas for (3.23) the cases of
interest are where one of b1, b2, or n− b2 − b1 remain constant.

Proof of Theorem 3.2.4. We first derive the asymptotic behavior of the function f1. We have

f1(u) ∼ 1

u2 log2 u
as u ↓ 0.(3.28)

For the proof note that for u < 1/2 we have (1−u)p−1 ≤ 2. Therefore dominated convergence
implies for u ↓ 0

f1(u) =
1

u2

∫ 1

0

u1−p(1− u)p−1 dp

Γ(1− p)Γ(1 + p)

=
1

u2

∫ 1

0

e−(p−1) log u(1− u)p−1(1− p) dp

Γ(2− p)Γ(1 + p)

=
1

u2

∫ − log u

0

e−y(1− u)y/ log 1
u

y

log 1
u

· dy

log 1
u
Γ(1− y

log u
)Γ(2 + y

log u
)

∼ 1

u2 log2 u

∫ ∞
0

ye−y dy
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implying (3.28). Also

f1(u) ∼ − 1

(1− u) log(1− u)
as u ↑ 1,(3.29)

which we obtain again by means of dominated convergence in the limit u ↑ 1 as follows:

f1(u) =
1

u(1− u)

∫ 1

0

ep log(1−u)u−p
dp

Γ(1− p)Γ(1 + p)

=
1

u(1− u)

∫ − log(1−u)

0

e−yuy/ log(1−u) dy

(− log(1− u))Γ(1 + y
log(1−u)

)Γ(1− y
log(1−u)

)

∼ − 1

(1− u) log(1− u)

∫ ∞
0

e−y dy.

These asymptotics together with Lemma 3.2.3 imply our claims. Without loss of gener-
ality let θ = 1. From (3.21) we obtain

E [SFSn,1] = nF1(n, 1) ∼ 1

n
f1

(
1

n− 1

)
∼ log n

n

(n− 1)2

log2(n− 1)

which yields claim (i).
Similary from (3.20) we get for b ≥ 2 and b/n→ 0

E [SFSn,b] = nF1(n, b) ∼ b− 1

nb
f1

(
b− 1

n− 1

)
∼ b− 1

nb

(n− 1)2

(b− 1)2 log2 b−1
n−1

which in view of b/n→ 0 yields assertion (ii).
Claim (iii) is an immediate consequence of formula (3.20), since here we have (b−1)/b→ 1.
Next under the condition (n− b)/n→ 0 we get from (3.20) and (3.29)

E [SFSn,b] ∼
b− 1

nb
f1

(
b− 1

n− 1

)
∼ −b− 1

nb

n− 1

(n− b) log n−b
n−1

∼ 1

(n− b) log n
n−b

which confirms assertion (iv).
Finally, we have from (3.20)

E [SFSn,I ] ∼
1

n

∑
b
n
∈I

f1

(
b

n

)
∼
∫
I

f1(u) du,

which is claim (v). This finishes the proof.

Proof of Theorem 3.2.5. The approximations follow from the asymptotics for F1, F2, and F3

substituted in the covariance formula given in Corollary 3.2.2.

Proof of Corollary 3.2.6. We have to prove that

Var(SFSn,b) = o
(
E[SFSn,b]

2
)
.
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From the monotonicity properties of the gamma function we have for 1 ≤ b ≤ n− 1

F2(n, b, b) =

∫ 1

0

∫ p1

0

Γ(b− p1)

Γ(b+ 1)

Γ(n− b+ p2)

Γ(n− b+ 1)

dp2 dp1

p1Γ(1− p1)Γ(p2 + 1)

≤
∫ 1

0

Γ(b− p1)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

1

Γ(1− p1)p1

∫ p1

0

Γ(1 + p1)

Γ(1 + p1)Γ(1 + p2)
dp2 dp1

≤ sup
1≤x≤y≤2

Γ(y)

Γ(x)

∫ 1

0

Γ(b− p1)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

dp1

Γ(1− p1)Γ(p1 + 1)

= sup
1≤x≤y≤2

Γ(y)

Γ(x)
F1(n, b).(3.30)

Concerning F3(n, b, b) we have for b = o(n) by Stirling’s approximation uniformly in 0 ≤
p1, p2 ≤ 1

Γ(n− 2b+ p1 + p2)

Γ(n− 2b+ 1)
∼ n

Γ(n− b+ p1)

Γ(n− b+ 1)

Γ(n− b+ p2)

Γ(n− b+ 1)
,

hence, with 1 < η < 2

∫∫
0≤p1,p2≤1
η<p1+p2≤2

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− 2b+ p1 + p2)

Γ(n− 2b+ 1)

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

∼ n

|∫∫
0≤p1,p2≤1
η<p1+p2≤2

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

Γ(n− b+ p2)

Γ(n− b+ 1)

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

≤ n

η − 1
sup
η≤x≤2

1

Γ(x)

∫ 1

0

∫ 1

∣∣
0

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− b+ p1)

Γ(n− b+ 1)

× Γ(n− b+ p2)

Γ(n− b+ 1)

dp2 dp1

Γ(1− p1)Γ(1− p2)Γ(1 + p1)Γ(1 + p2)

=
n

η − 1
sup
η≤x≤2

1

Γ(x)
F1(n, b)2.(3.31)
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Also, by another application of Stirling’s approximation and for b = o(n)∫∫
0≤p1,p2≤1
0<p1+p2≤η

Γ(b− p1)

Γ(b+ 1)

Γ(b− p2)

Γ(b+ 1)

Γ(n− 2b+ p1 + p2)

Γ(n− 2b+ 1)

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

= O
( ∫∫

0≤p1,p2≤1
0<p1+p2≤η

b−p1−p2−2(n− 2b)p1+p2−1

× dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

)
= O

(
b−η−2(n− 2b)η−1

|∫∫
0≤p1p2≤1

dp2 dp1

Γ(1− p1)Γ(1− p2)(p1 ∨ p2)Γ(p1 + p2)

)
= o
( n

b4 log4 n

)
(3.32)

Combining (3.31) and (3.32) with Theorem 3.2.4 (i) and (ii) and letting η → 2 we obtain

F3(n, b, b) = nF1(n, b)2(1 + o(1)) + o(n−1E[SFSn,b]
2).

Using this estimate together with (3.30) and with Theorem 3.2.1, Corollary 3.2.2 yields

Var(SFSn,b) = O(E[SFSn,b]) + o(E[SFSn,b]
2)

Because of our assumption E[SFSn,b]→∞ our claim is proved.

3.3 Distribution of the Family-Sized Branch Lengths

In this section we discuss the particular case of `n,b when b > n/2. In this case we are able
to provide an explicit formula for the distribution function of the length of the coalescent of
order b. This leads to convergence in law results, but also to the law of SFSn,b. Observe that
in this case, for all t ≥ 0, Cn,b(t) ∈ {0, 1} and `n,b is just the time during which the block
of size b survives before coalescing with other blocks (if it ever exists, otherwise obviously
`n,b = 0). We first find an expression for the distribution function of `n,b.

Theorem 3.3.1. Suppose that n
2
< b < n. For any s ≥ 0,

(3.33) P(`n,b > s) =
n

(n− b)b(b− 1)

∫ 1

0

Ψ(b− p)−Ψ(1− p)
B(n− b, e−sp)B(b− 1, 1− p)

dp.

From the derived distribution of `n,b in Theorem 3.3.1 we obtain that, conditioned on
`n,b > 0, the variable (log n) `n,b has a limiting distribution.
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Corollary 3.3.2. Suppose that b/n→ u ∈ [1/2, 1) as n→∞, then letting α = log(1− u)−
log u, we have

n

log n
P(`n,b > 0)→ G(α)

u(1− u)

where

G(x) =

∫ 1

0

epx
sinπp

π
dp =

1 + ex

π2 + x2
.

Furthermore,

P((log n) `n,b > s|`n,b > 0)→ G(α− s)
G(α)

.

We now give the joint distribution of the branch lengths for large families, i.e. the joint
distribution of the vector (`n,b)b>n/2. For this we introduce the following events: for any
collection of integers b = (b1, · · · , bm) such that n/2 < b1 < b2 < · · · < bm < n, and any
collection of nonnegative numbers s = (s1, · · · , sm), define the event

Λb,s :=

(
m⋂
i=1

{`bi > si}

)⋂⋂
b>b1
b 6∈b

{`b = 0}

 ,

that is, the event that a block of size b1 exists for a time larger than s1, that this block then
merges with some other blocks of total size exactly b2 − b1, that this new block exists for
a time larger than s2, and so on, until the last merge of the growing block occurs with the
remaining blocks of total size exactly n− bm.

Theorem 3.3.3. For b = (b1, · · · , bm) and s = (s1, · · · , sm) as above, we have
(3.34)

P (Λb,s) =
n

b1(b2 − b1) · · · (n− bm)

exp{−〈(m : 1), s〉}
m!

∫ 1

0

pm
Ψ(b1 − p)−Ψ(1− p)

B(b1 − 1, 1− p)
dp

and

P

Λb,s,
⋂

n/2<b<b1

{`n,b = 0}


(3.35)

=
n

(b2 − b1) · · · (n− bm)

exp{−〈(m : 1), s〉}
m!

×∫ 1

0

pm

b1

Ψ(b1 − p)−Ψ(1− p)
B(b1 − 1, 1− p)

− pm+1

m+ 1

∑
n/2<b<b1

1

b(b1 − b)
Ψ(b− p)−Ψ(1− p)

B(b− 1, 1− p)
dp

 ,

where
(m : 1) := (m,m− 1, . . . , 1).

and 〈·, ·〉 is the usual inner product in Euclidean space.

By conditioning on (`n,b)b>n/2 and using equation (3.35) one can obtain a sampling formula
for the vector (SFSn,b)b>n/2, although the computations are rather convoluted and we do not
present them here.
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3.3.1 Proofs of Section 3.3

Proof of Theorem 3.3.1. Note that since b > n/2, and by the exchangeability of Π(n), we
have:

P(`n,b > s) =

(
n

b

)
P

(
Leb({t : {1, · · · , b} ∈ Π(n)

t }) > s
)
,

where Leb is the Lebesgue measure, and Leb({t : {1, · · · , b} ∈ Π(n)
t }) gives the time that the

block {1, · · · , b} exists in the Bolthausen-Sznitman coalescent starting with n individuals.

We now describe the event {Leb({t : {1, · · · , b}} ∈ Π
(n)
t ) > s} in terms of the RRT

construction of the Bolthausen-Sznitman coalescent. Let G be the event that the nodes
{1}, {2}, · · · , {b} and {1}, {b+ 1}, · · · , {n} form two sub-trees, say T1 and T2 rooted at {1};
i.e.

G :={T : {j} does not attach to {i}, for all 2 ≤ i ≤ b and b < j ≤ n}.

Then

Leb({t : {1, · · · , b}} ∈ Π(n)
t ) =

{
0 if T 6∈ G
(m (T2)−M (T1)) ∨ 0 if T ∈ G.

Indeed, observe that by the cutting-merge procedure T 6∈ G if and only if any block of Π(n)

that contains all of {1, · · · , b} also contains some j ∈ {b+ 1, · · · , n}. On the other hand, on
the event {T ∈ G}, the random variable M(T1) is just the time at which the block {1, · · · , b}
appears in Π(n), while m(T2) is the time at which it coalesces with some other block in T2.
Furthermore, observe that conditioned on {T ∈ G}, T1 and T2 are two independent RRTs of
sizes b and n− b+ 1 respectively. Thus, by Lemma 3.1.3 we have

P(`n,b > s)

=

(
n

b

)
P(T ∈ G)P(m(T2)−M(T1) > s)

=

(
n

b

) n−b−1∏
i=0

(
1 + i

b+ i

)
1

(b− 1)(n− b)

∫ 1

0

Ψ(b− p)−Ψ(1− p)
B(n− b, e−sp)B(b− 1, 1− p)

dp

=
n

(n− b)b(b− 1)

∫ 1

0

Ψ(b− p)−Ψ(1− p)
B(n− b, e−sp)B(b− 1, 1− p)

dp.

Proof of Corollary 3.3.2. Observe that, uniformly for p ∈ (0, 1), we have

Ψ(b− p)−Ψ(1− p) =
b−1∑
k=1

1

k − p
=

1

1− p
+ log b+O (1) ,

thus, substituting in (3.33) and also using Stirling’s approximation and Euler’s reflection
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formula, we obtain

P(`n,b > 0) ∼ 1

u(1− u)n

∫ 1

0

(
1− u
u

)p
sin πp

π

(
1

1− p
+ log n+O (1)

)
dp

∼ log n

u(1− u)n

∫ 1

0

epα
sin πp

π
dp

=
log n

u(1− u)n
G(α).

On the other hand, for any s > 0 we have

P ((log n) `n,b > s) ∼ 1

u(1− u)n

∫ 1

0

b−p (n− b)pe
−s/ logn

Γ(1− p)Γ(pe−s/ logn)

(
1

1− p
+ log b+O (1)

)
dp

∼ log n

u(1− u)n

∫ 1

0

epα(n− b)p(e−s/ logn−1) 1

Γ(1− p)Γ(p)
dp

∼ log n

u(1− u)n

∫ 1

0

epα(n− b)−ps/ logn 1

Γ(1− p)Γ(p)
dp

∼ log n

u(1− u)n

∫ 1

0

ep(α−s)
sin πp

π
dp

=
log n

u(1− u)n
G(α− s).

Proof of Theorem 3.3.3. Letting `π := Leb
(
t : π ∈ Π(n)

t

)
for any subset π ⊂ [n], by ex-

changeability of Π
(n)
t we have

P (Λb,s) =
n!

b1!(b2 − b1)! · · · (n− bm)!
P

 ⋂
1≤i≤m

Abi,si ,
⋂
b>b1
b 6∈b

Āb,0


where

Ab,s = {`{1,...,b} > s}
and

Āb,0 = {`{1,...,b} = 0}.

Recall that M
(
T
∣∣
b1

)
is defined as the maximum of the exponential edges associated to the

root of T
∣∣
b1

. Letting bm+1 := n, and also letting Eb, 1 ≤ b ≤ n, be the exponential variable
associated to b, we have

P

 ⋂
1≤i≤m

Abi,si ,
⋂
b>b1
b6∈b

Āb,0


=

(
m+1∏
i=1

1 · 2 · · · (bi+1 − bi)
bi(bi + 1) · · · (bi+1 − 1)

)
P

(
Eb1+1 −M

(
T
∣∣
b1

)
> s1,

m⋂
i=2

Ebi+1 − Ebi−1+1 > si

)
,
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where the product above is the probability that T is structured in such a way that {b1 + 1}
attaches to {1} and is the root of a subtree formed with {b1 + 1, . . . , b2}, that {b2 + 1}
attaches to {1} and is the root of a subtree formed with {b2 + 1, . . . , b3}, and so forth. Using
the independence of the exponential variables we obtain

P

(
Eb1+1 −M

(
T
∣∣
b1

)
> s1,

m⋂
i=2

{Ebi+1 − Ebi−1+1 > si}

)

=

∫ ∞
0

dt1

∫ ∞
t1+s1

dt2· · ·
∫ ∞
tm+sm

dtm+1

(
d

dt1
P

(
M(T

∣∣
b1

) ≤ t1

))
e−t2 . . . e−tm+1

=

∫ ∞
0

dt1

∫ ∞
t1+s1

dt2· · ·
∫ ∞
tm−1+sm−1

dtm

(
d

dt1
P

(
M(T

∣∣
b1

) ≤ t1

))
e−t2 . . . e−2tme−sm

...

=
exp{−〈(m : 1), s〉}

m!

∫ ∞
0

e−mt1
d

dt1
P

(
M(T

∣∣
b1

) ≤ t
)
dt1.

From (3.11) and making p = e−t in the above integral, and putting all together we obtain
(3.34). Finally (3.35) follows from

P (Λb,s, `n,b1−1 = 0) = P (Λb,s)−P (Λb,s, `n,b1−1 > 0)

and, recursively,

P

Λb,s,
⋂

n/2<b<b1

{`n,b = 0}

 = P (Λb,s)−
∑

n/2<b<b1

P

(
Λb,s, `n,b > 0,

b1−b−1⋂
i=1

{`n,b+i = 0}

)
.

Substituting (3.34) in the above expression, we obtain (3.35).

3.4 Proof of the approximations

Here we derive the approximations given in the beginning of the chapter. From Stirling’s
approximation we have the well-known formula Γ(m+c)/Γ(m) ≈ mc. Its application requires
some care, since we shall apply this approximation also for small values of m down to m = 1.
It is known and easily confirmed by computer that the approximation is particularly accurate
within the range 0 ≤ c ≤ 1. Thus we use for p ∈ (0, 1) and b ≥ 2 the approximations

Γ(b− p)
Γ(b+ 1)

=
1

b(b− 1)

Γ(b− 1 + (1− p))
Γ(b− 1)

≈ 1

b(b− 1)
(b− 1)1−p =

(b− 1)−p

b

and
Γ(n− b+ p)

Γ(n− b+ 1)
=

1

n− b
Γ(n− b+ p)

Γ(n− b)
≈ (n− b)p−1.
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Also by Euler’s reflection formula Γ(1 − p)Γ(1 + p) = πp/ sin(πp). Inserting these formulas
into the expression (3.16) for the expected SFS we obtain

E[SFSn,b] ≈ θn
b− 1

b

∫ 1

0

(b− 1)−p−1(n− b)p−1 sin(πp)

πp
dp

= θ
n

(n− 1)2

b− 1

b
f1

( b− 1

n− 1

)
.

It turns out that this approximation overestimates the expected SFS, which can be somewhat
counterbalanced by replacing the scaling factor n/(n− 1)2 by 1/(n− 1). This yields our first
approximation (3.1).

For the second approximation (3.4) we apply the expansion

Γ(m+ c)

Γ(m)
= mc

(
1− c(1− c)

2m
+O(m−2)

)
,

see Erdélyi and Tricomi 1951. Again this approximation is particularly accurate for 0 ≤ c ≤ 1
leading for p ∈ (0, 1) and b ≥ 2 to

Γ(b− p)
Γ(b+ 1)

Γ(n− b+ p)

Γ(n− b+ 1)
≈ (b− 1)−p

b
(n− b)p−1

(
1− (1− p)p

2(b− 1)

)(
1− p(1− p)

2(n− b)

)
≈ (b− 1)−p

b
(n− b)p−1

(
1− (n− 1)

p(1− p)
2(b− 1)(n− b)

)
.

Using this approximation in the expression for the expected SFS we get for b ≥ 2

E[SFSn,b] ≈ θn
b− 1

b

(
1

(n− 1)2
f1

( b− 1

n− 1

)
− n− 1

2

∫ 1

0

(b− 1)−p−2(n− b)p−2 sin(πp)

π
(1− p) dp

)
= θn

b− 1

b

( 1

(n− 1)2
f1

( b− 1

n− 1

)
− 1

(n− 1)3
g1

( b− 1

n− 1

))
with the function g1 as defined in (3.5). This integral can be evaluated by elementary means
yielding formula (3.4).
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collisions in beta (2, b)-coalescents”. In: Bernoulli 15.3, pp. 829–845. doi: 10.3150/09-
BEJ192. url: https://doi.org/10.3150/09-BEJ192.
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Möhle, Martin and Helmut Pitters (2014). “A spectral decomposition for the block counting
process of the Bolthausen-Sznitman coalescent”. In: Electronic Communications in Prob-

https://doi.org/10.1214/11-AAP827
https://doi.org/10.1214/11-AAP827
http://www.jstor.org/stable/43284110
https://doi.org/10.1214/EJP.v19-3332
https://doi.org/10.1214/EJP.v19-3332
https://doi.org/10.1214/EJP.v19-3332
https://doi.org/10.30757/alea.v18-53
https://doi.org/10.30757/alea.v18-53
https://doi.org/10.30757/alea.v18-53
https://doi.org/https://doi.org/10.1112/jlms/s2-18.2.374
https://doi.org/https://doi.org/10.1112/jlms/s2-18.2.374
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s2-18.2.374
https://londmathsoc.onlinelibrary.wiley.com/doi/pdf/10.1112/jlms/s2-18.2.374
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-18.2.374
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/s2-18.2.374
https://doi.org/https://doi.org/10.1016/0304-4149(82)90011-4
https://www.sciencedirect.com/science/article/pii/0304414982900114
https://books.google.com.mx/books?id=VEiM-OtwDHkC
https://doi.org/doi:10.1515/sagmb-2017-0011
https://doi.org/10.1515/sagmb-2017-0011
https://doi.org/10.1515/sagmb-2017-0011
https://doi.org/10.1214/ECP.v20-4612
https://doi.org/10.1214/ECP.v20-4612
https://doi.org/10.1214/ECP.v20-4612
https://doi.org/10.1214/EJP.v15-742
https://doi.org/10.1214/EJP.v15-742
https://doi.org/10.1214/EJP.v15-742
https://doi.org/10.1101/2021.06.28.450258
https://www.biorxiv.org/content/early/2021/06/30/2021.06.28.450258.full.pdf
https://www.biorxiv.org/content/early/2021/06/30/2021.06.28.450258.full.pdf
https://www.biorxiv.org/content/early/2021/06/30/2021.06.28.450258
https://www.biorxiv.org/content/early/2021/06/30/2021.06.28.450258
https://doi.org/10.1016/j.spa.2010.07.004
https://doi.org/10.1016/j.spa.2010.07.004


118 BIBLIOGRAPHY

ability 19.none, pp. 1–11. doi: 10.1214/ECP.v19-3464. url: https://doi.org/10.
1214/ECP.v19-3464.
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