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Resumen

En la presente tesis aplicamos métodos de topoloǵıa algebraica a un problema de geometŕıa
discreta. Para ser más precisos, el problema en cuestión es un problema de particiones de
medidas, mientras que los métodos utilizados incluyen sucesiones espectrales y teoŕıa de
ı́ndice cohomológica ideal-valuada.

En el caṕıtulo 1 introducimos la terminoloǵıa necesaria y el problema clásico de parti-
ciones de medidas conocido como el problema de Grünbaum–Hadwiger–Ramos para masas.
Presentamos también algo de historia referente a dicho problema, aśı como los resultados
más relevantes obtenidos en los ultimos años. Finalmente, motivados por el reciente tra-
bajo de Patrick Schnider [1], presentamos una extensión del problema clásico a las llamadas
asignaciones de masa.

En los siguientes tres caṕıtulos hablamos de las herramientas que vamos a utilizar para
probar la extensión propuesta del problema de Grünbaum–Hadwiger–Ramos. En el caṕıtulo
2 describimos el método de la función de prueba, el cual provee un puente entre la geometŕıa
y la topoloǵıa. La idea principal de este método es reescribir nuestro problema geométrico en
términos topológicos, para luego resolverlo usando técnicas de topoloǵıa algebraica. Lo que
sigue es introducir dichas técnicas. En el caṕıtulo 3 presentamos una breve introducción de
la sucesión espectral de Leray–Serre asociada a una fibración. Esta sucesión espectral, entre
otras cosas, nos permite obtener información del anillo de cohomoloǵıa del espacio total de
la fibración, aśı como del correspondiente homomorfismo inducido en cohomoloǵıa. Luego,
en el caṕıtulo 4, introducimos la teoŕıa de ı́ndice de Fadell–Husseini y presentamos algunas
de sus propiedades más importantes. Es en esta parte donde el uso de la sucesión espectral
del Leray–Serre se vuelve esencial para los cálculos. La teoŕıa de ı́ndice que presentamos va
a ser el ingrediente clave para resolver nuestro problema topológico.

Finalmente, usando los métodos y técnicas introducidas en los caṕıtulos anteriores, en
el caṕıtulo 5 probamos nuestro resultado principal, el problema de Grünbaum–Hadwiger–
Ramos para asignaciones de masa. Este es un trabajo en conjunto con Pavle V. M. Blago-
jević, Michael C. Crabb and Aleksandra S. Dimitrijević Blagojević.

Palabras clave: Particiones de medidas, funciones equivariantes, construcción de Borel,
sucesiones espectrales, ı́ndice de Fadell-Husseini.
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Abstract

In this thesis we apply methods from algebraic topology to a problem in discrete geometry.
To be more precise, the question involves a mass partition problem, whereas the methods
include spectral sequences and a cohomological ideal-valued index theory.

In Chapter 1 we introduce some necessary terminology and the classical mass partition
problem known as the Grünbaum–Hadwiger–Ramos problem for masses. We provide some
history around said problem, as well as the most relevant results obteined in the last few
years. Finally, motivated by the recent work of Patrick Schnider [1], we present an extension
of this classical mass partition problem to the so-called mass assignments.

In the following three chapters we talk about the tools we use to prove the proposed
extension of the Grünbaum–Hadwiger–Ramos mass partition problem. In Chapter 2 we
describe the configuration space/test map scheme, which provides a bridge between geom-
etry and topology. The idea is to rephrase the geometric problem in topological terms to
solve it using techniques from algebraic topology. What follows then is to introduce such
techniques. In Chapter 3 we present a brief introduction of the cohomological Leray–Serre
spectral sequence associated to a fibration. Particularly, this spectral sequence allows to
obtain information about and in some cases fully calculate the cohomology ring of the to-
tal space of the fibration, as well as the induced homomorphism in cohomology. Next, in
Chapter 4 we introduce the Fadell–Husseini index theory and some of its most important
properties. Here the Leray–Serre spectral sequence is essential for all the computations.
This ideal-valued index theory is the key ingredient to solve our topological problem.

Finally, using the methods and techniques introduced in the previous chapters, in Chap-
ter 5 we prove our main result, the Grünbaum–Hadwiger–Ramos problem for mass assign-
ments. This is a joint work with Pavle V. M. Blagojević, Michael C. Crabb and Aleksandra
S. Dimitrijević Blagojević.
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Chapter 1

Introduction

In this chapter, besides providing some important terminology, we introduce the classical
Grünbaum–Hadwiger–Ramos hyperplane mass partition problem, pointing out the progress
that has been made on it. Also, at the end of the chapter, we present the main problem
of this thesis, a new version of the Grünbaum–Hadwiger–Ramos problem using some new
objects called mass assignments.

1.1 Terminology

A mass is a finite Borel measure on a Euclidean space that vanishes on each affine hyperplane.
Examples of masses in Rd are: measures given by the d-dimensional volume of a proper
convex body, measures induced by lengths of interval on a moment curve in Rd, and measures
given by a finite collection of pairwise disjoint balls.

Let X be a locally compact Hausdorff space, and let M+(X) denote the set of all finite
Borel measures on X. For a definition of the Borel measure on a topological space consult
for example [2, Def. 2.15]. The weak topology on M+(X) is defined to be the minimal
topology such that for every bounded and upper semi-continuous function f : X −→ R, the
induced function M+(X) −→ R, ν 7−→

∫
fdν, is upper semi-continuous. Here minimality

is considered with respect to the inclusion of families of (open) subsets of X. In the case
when X = R` we denote by M ′+(R`) ⊆M+(R`) the subspace of all masses on R`. For more
details about spaces of measures and related notions consult [3].

Let G`(Rd), 0 ≤ ` ≤ d, denotes the Grassmann manifold of all `-dimensional linear
subspaces of Rd. Consider the following fiber bundle

M ′+(R`) //M′+(`, d)
π // G`(Rd), (1.1)

where the total space is given by

M′+(`, d) := {(L, ν) | L ∈ G`(Rd) and ν ∈M ′+(L)}

and the map π by (L, ν) 7−→ L.

Definition 1.1.1. A mass assignment µ on G`(Rd) is a cross-section of the fiber bundle
(1.1), which assigns to each subspace L ∈ G`(Rd) a mass µL on L.

5
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Examples of mass assignments onG`(Rd) are: projections of masses in Rd to `-dimensional
linear subspaces and volumes of intersections of proper convex body in Rd with `-dimensional
linear subspaces. Mass assignments have been recently studied by Schnider [1], and by
Soberón and Axelrod-Freed [4].

Let v ∈ Sd−1 be a unit vector in Rd, and let a ∈ R. The oriented affine hyperplane
H(v; a) in Rd, oriented by v at distance a from the origin (in direction v), determines the
associated affine hyperplane

Hv;a := {x ∈ Rd : 〈x, v〉 = a},

and, in addition, two closed half-spaces which are denoted by

H0
v;a := {x ∈ Rd : 〈x, v〉 ≥ a} and H1

v;a := {x ∈ Rd : 〈x, v〉 ≤ a}.

In particular, the following equalities hold: Hv;a = H−v;−a, H0
v;a = H1

−v;−a and H1
v;a =

H0
−v;−a.

A k-arrangement H in Rd is an ordered collection of k oriented affine hyperplanes H =(
Hv1;a1 , . . . ,Hvk;ak

)
. The orthant determined by the k-arrangement H and the element

α = (α1, . . . , αk) ∈ Zk2 = {0, 1}k of the abelian group Zk2 is the following intersection of
closed half-spaces

OHα = Hα1
v1;a1 ∩ · · · ∩H

αk
vk;ak

.

A k-arrangementH equiparts a collection of massesM = (µ1, . . . , µj) if for every element
α ∈ Zk2 and every r ∈ {1, . . . , j} holds:

µr(OHα ) = 1
2kµr(Rd). (1.2)

This can be achieved only in the case when k ≤ d for the following reason: Let us denote
by O(d, k) the maximum number of non-empty orthants determined by a k-arrangement in
Rd. First, we will prove that

O(d, k) =

d∑
j=0

(
k

j

)
. (1.3)

We proceed by induction on the dimension d and the number of hyperplanes k. Considering
d = 1 and k point in it, we get a division of a line into k + 1 pieces, so (1.3) holds. Notice
that the formula is also correct for k = 0 and all d ≥ 1, which represent the whole space
with no hyperplanes

Suppose now that we are in dimension d, we have k − 1 hyperplanes, and we insert
another one. Since we are considering the maximum number of non-empty orthants, the
k − 1 previous hyperplanes divide the newly inserted hyperplane H into O(d − 1, k − 1)
pieces. Each such (d − 1)-dimensional orthant within H divides one of dimension d into
exactly two part. This means that the total increase in the number of orthants caused by
inserting H is thus O(d− 1, k − 1). We obtain then the following recurrence,

O(d, k) = O(d, k − 1) +O(d− 1, k − 1). (1.4)

In this way, considering the initial conditions (d = 1 and k = 0), the recurrence (1.4)
determines all the values of O(·, ·). Let us now assume, as an induction hypothesis, that
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O(d, k − 1) and O(d − 1, k − 1) satisfies the formula (1.3). It remains just to verify if the
recurrence (1.4) also satisfies (1.3). We have that

O(d, k) = O(d, k − 1) +O(d− 1, k − 1)

=

d∑
j=0

(
k − 1

j

)
+

d−1∑
j=0

(
k − 1

j

)

=

(
k − 1

0

)
+

[(
k − 1

0

)
+

(
k − 1

1

)]
+ · · ·+

[(
k − 1

d− 1

)
+

(
k − 1

d

)]

=

d∑
j=0

(
k

j

)

Finally, for d < k,

O(d, k) =

d∑
j=0

(
k

j

)
<

k∑
j=0

(
k

j

)
= 2k.

This means that, assuming d < k, in an d-dimensional real vector space no k hyperplanes
can define 2k non-empty orthants. For that reason it is always silently assumed that the
number of hyperplanes we consider does not exceed the dimension of the ambient space.
For more details about the last argument see [5, Prop. 6.1.1].

1.2 The Grünbaum–Hadwiger–Ramos problem for masses

The study of mass partition problems by affine hyperplanes started with a classical result,
the so called ham sandwich theorem, conjectured by Hugo Steinhaus [6, Problem 123], and
proved by Karol Borsuk in 1938; for details about the history see [7]. The ham sandwich
theorem states that for any collection of d masses living in a d-dimensional Euclidean space
there exists an affine hyperplane which equiparts the collection, that is, cuts each of the
masses into two equal parts.

A few decades later Branko Grünbaum in his paper [8] asked the following question: Is
it possible to equipart a single mass in Rd by a d-arrangment? He noted that, while the
answer in the case of a line is obviously positive, the positive answer for the case of the plane
follows directly from the ham sandwich theorem. The positive answer to the Grünbaum’s
question in the case d = 3 was given by Hugo Hadwiger [9] in 1966 as a consequence of his
result: For any collection of two masses in R3 there exists a 2-arrangement which equiparts
the collection. In 1984 David Avis [10] showed that in every dimension d ≥ 5 there is a mass
which cannot be equiparted by a d-arrangement. The case of dimension 4, to this very day,
is still open, meaning that we would like to know if it is possible to equipart one mass in
R4 with a 4-arrangement.

In 1996 Edgar Ramos [11] proposed the following extension of the Grünbaum hyperplane
mass partition problem.

The Grünbaum–Hadwiger–Ramos mass partition problem. Determine the minimal
dimension d = ∆(j, k) of a Euclidean space Rd such that for every collection of j masses in
Rd there exists a k-arrangement equiparting the collection of masses.
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In particular, the ham sandwich theorem is equivalent to the equality ∆(d, 1) = d, while
the results of Grünbaum and Hadwiger imply that ∆(1, 2) = 2, ∆(2, 2) = 3 and ∆(1, 3) = 3.
Based on the ideas of Avis, Ramos derived the following lower bound for the function ∆(j, k):

2k−1
k j ≤ ∆(j, k).

The lower bound transformed into the following conjecture.

The Ramos conjecture. ∆(j, k) = d 2k−1
k je for every j ≥ 1 and k ≥ 1.

An upper bound for the function ∆(j, k) was obtained in 2006 by Peter Mani-Levitska,
Sinǐsa Vrećica & Rade Živaljević in [12, Thm. 39]:

∆(j, k) ≤ j + (2k−1 − 1)2blog2 jc.

The only instance in which lower and upper bounds coincide is in the case when k = 2 and
j = 2t+1 − 1 ≥ 1.

Over the years, using variety of methods from equivariant algebraic topology, different
groups of authors studied the conjecture of Ramos. Despite considerable effort the conjecture
has been confirmed rigorously only in a few special cases; for more details on the history
and discussion of solution methods consult a critical review [13], and for the currently best
known results see [14].

1.3 An extension of the classical partition problem

The problem we consider in this thesis is the following extension of the Grünbaum–Hadwiger–
Ramos problem to the mass assignments.

A 4-tuple of natural numbers (d, `, j, k), where 1 ≤ ` ≤ d, is called mass assignment
admissible if for every collection of j mass assignments M = (µ1, . . . , µj) on the Grass-
mann manifold G`(Rd) there exists a vector subspace L ∈ G`(Rd) and a k-arrangement HL
in L which equiparts the collection of j masses (µL1 , . . . , µ

L
j ). Observe, that (d, `, j, k) is

mass assignment admissible only when k ≤ `. The case ` = d coincides with the classical
Grünbaum–Hadwiger–Ramos problem.

Main Problem. Determine all mass assignment admissible 4-tuples.

Patrick Schnider, in his recent publication [1, Thm. 2], showed that any 4-tuple of the
form (d, `, d, 1) , with 1 ≤ ` ≤ d, is mass assignment admissible.

In this work we prove the following general algebraic criterion from the assignment
admissibility which further on yields multiple corollaries. For the statement of the theorem
we introduce the following truncated polynomial ring

Rd,`,k := F2[x1, . . . , xk, w1, . . . , w`, w1, . . . , wd−`]/Id,` (1.5)

where deg(x1) = · · · = deg(xk) = 1, deg(ws) = s, deg(wr) = r for 1 ≤ s ≤ `, 1 ≤ r ≤ d− `,
and Id,` is the ideal generated by the following d polynomials

min{r,`}∑
s=max{0,r+`−d}

ws · wr−s, 1 ≤ r ≤ d,
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in variables w1, . . . , w`, w1, . . . , wd−`. Actually, the polynomials that generate the ideal Id,`
are exactly the d relations which are derived from the equality

(1 + w1 + · · ·+ w`)(1 + w1 + · · ·+ wd−`) = 1.

Note that the ring Rd,`,k is isomorphic with the cohomology ring H∗(B(Zk2)×G`(Rd);F2),
and can also be seen as the polynomial ring over the ring H∗(G`(Rd);F2), that is

Rd,`,k ∼= (F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`)[x1, . . . , xk].

The main result of this work is the following theorem which we prove in Section 5.3.1
based on the configuration space/test map scheme developed in Chapter 2, and the compu-
tations done in Section 5.2.

Theorem 1.3.1. Let d ≥ 1, k ≥ 1, j ≥ 1 and ` ≥ 1 be integers. A 4-tuple of natural
numbers (d, `, j, k) where 1 ≤ ` ≤ d− 1 is mass assignment admissible if the element

ek,j :=

k∏
i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\{(0,...,0),(1,...,0),...,(0,...,1)}

(α1x1 + · · ·+ αkxk)j

of the ring Rd,`,k is not contained in the ideal

Id,`,k,j :=
〈∑̀
s=0

xsr w`−s : 1 ≤ r ≤ k
〉
,

where w0 is assumed to be 1.

As the first consequence of Theorem 1.3.1 we recover the ham sandwich type result of
Schnider [1, Thm. 2].

Corollary 1.3.2. Let d ≥ 2 be an integer. Every 4-tuple of the form (d, `, d, 1), where
1 ≤ ` ≤ d, is mass assignment admissible.

Proof. In the case when ` = d the admissibility of (d, d, 1, d) is just the classical ham
sandwich theorem. Thus, the proof which we present is novel when for 1 ≤ ` ≤ d− 1.

Since we are in the situation where k = 1 and j = d, then e1,d = xd−1
1 and the ideal

Id,`,1,d is the principal ideal generated by the polynomial p :=
∑`
s=0 x

s
1 w`−s. According to

the Theorem 1.3.1 the 4-tuple (d, `, d, 1) is mass assignment admissible if e1,d /∈ Id,`,1,d, or
equivalently p - e1,d. This means that

∑̀
s=0

xs1 w`−s - x
d−1
1 (1.6)

in the ring Rd,`,1 := F2[x1, w1, . . . , w`, w1, . . . , wd−`]/Id,`. Therefore, by verifying the claim
of the relation (1.6) we complete the proof of the corollary.

The ambient ring Rd,`,1 can also be seen as a polynomial ring in one variable x1 over
the ring F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`, that is

Rd,`,1 ∼= (F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`)[x1].
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Here we are slightly abusing a notation: the ideal Id,` is always considered in the appropriate
ring. For this reason multiplication by x1 is a monomorphism.

Let us assume that the relation (1.6) does not hold, that is

xd−1
1 =

(∑̀
s=0

xs1 w`−s

)
·
( d−`−1∑

s=0

xs1 ud−`−1−s

)
for some coefficients u0, . . . , ud−`−1 ∈ F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`, where u0 = 1. Thus,
assuming that wi = ui = 0 for all i < 0, we have that

xd−1
1 =(u0w0)xd−1

1 + (u0w1 + u1w0)xd−2
1 + · · ·+

(u0wd−`−1 + u1wd−`−2 + · · ·+ ud−`−1w0)x`1+

(u0wd−` + u1wd−`−1 + · · ·+ ud−`−1w1)x`−1
1 + · · ·

Consequently, we get the following equalities:

u0w0 = 1,

u0w1 + u1w0 = 0,

...

u0wd−`−1 + u1wd−`−2 + · · ·+ ud−`−1w0 = 0,

u0wd−` + u1wd−`−1 + · · ·+ ud−`−1w1 = 0,

in the ring of coefficients F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`. From the first d − ` equations
we deduce that u0 = w0, . . . , ud−`−1 = wd−`−1, because

min{r,`}∑
s=max{0,r+`−d}

ws · wr−s, 1 ≤ r ≤ d,

are the generators of the ideal Id,`. Then the last equality yields a contradiction:

0 = u0wd−` + u1wd−`−1 + · · ·+ ud−`−1w1 = wd−` 6= 0.

Indeed, the relation (1.6) holds.

In order to state a consequence of Corollary 1.3.2 we introduce a special type of a mass
assignment. Let s : G`(Rd) −→ E(γd` ) be a section of the tautological vector bundle γd` over
G`(Rd). For a positive real number ε > 0 the section s defines a mass assignment µs given
by L 7−→ BL(s(L), ε). Here BL(s(L), ε) denotes the Euclidean closed ball in L with center
at s(L) and radius ε, or in other words the mass induced by this ball. Since any closed
Euclidean ball is cut into halves of equal volume by an affine hyperplane if and only if this
hyperplane passes through the center of the ball, we get the following statement as a direct
consequence of Corollary 1.3.2.

Corollary 1.3.3. Let d ≥ 2 and 1 ≤ ` ≤ d−1 be integers. For every collection of d sections
s1, . . . , sd : G`(Rd) −→ E(γd` ) of the tautological vector bundle γd` over G`(Rd), there exists a
subspace L ∈ G`(Rd) and an affine hyperplane H in L such that s1(L) ∈ H, . . . , sd(L) ∈ H.
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While Corollary 1.3.3 is an easy consequence of Corollary 1.3.2 and does not use much
information about the Grassmann manifold G`(Rd), one can deduce more by using some
additional information about the Stiefel–Whitney classes of γd` . More precisely, the so called
intersection lemma [15, Lem. 4.3] in combination with the fact that w`(γ

d
` )d−` 6= 0 does not

vanish, see [16, Lem. 1.2], yields the following fact: For every collection of d − ` section
s1, . . . , sd−` of γd` there exists a subspace L ∈ G`(Rd) with the property that s1(L) = · · · =
sd−`(L). In particular, the points s1(L), . . . , sd−`(L), sd−`+1(L), . . . sd(L) lie on a hyperplane
in L.

Like in the case of the classical Grünbaum–Hadwiger–Ramos problem, it is clear that
no 4-tuple (d, `, j, k), where k ≥ ` + 1, can be mass assignment admissible. Simply, as we
mentioned before, in an `-dimensional real vector space no k hyperplanes can define 2k

non-empty orthants. In particular, Theorem 1.3.1 implies the following algebraic fact.

Corollary 1.3.4. Let d ≥ 1, k ≥ 1, j ≥ 1 and ` ≥ 1 be integers with 1 ≤ ` ≤ d − 1 and
k ≥ `+ 1. Then the element

ek,j :=

k∏
i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\{(0,...,0),(1,...,0),...,(0,...,1)}

(α1x1 + · · ·+ αkxk)j

of the ring Rd,`,k is contained in the ideal

Id,`,k,j :=
〈∑̀
s=0

xsr w`−s : 1 ≤ r ≤ k
〉
.

Even though this fact is a direct consequence of the assumption k ≥ `+ 1 and the proof of
Theorem 1.3.1, in Section 5.3.2 we give an independent and direct argument.

The major consequence of Theorem 1.3.1 is the following numerical criterion for a 4-tuple
(d, `, j, k) to be mass assignment admissible. The proof of this result is given in Section 5.3.3.

Theorem 1.3.5. Let d ≥ 2, k ≥ 1, j ≥ 1, ` ≥ 1 and t ≥ 0, r ≥ 0 be integers with
1 ≤ k ≤ ` ≤ d. If j = 2t + r with 0 ≤ r ≤ 2t − 1, and d ≥ 2t+k−1 + r, then the 4-tuple
(d, `, j, k) is mass assignment admissible.

An interesting observation is that the condition for the 4-tuple (d, `, j, k), 1 ≤ k ≤ ` ≤
d− 1, to be admissible given by Theorem 1.3.5 does not depend on ` whatsoever. Is this an
artefact of the proof method or maybe an intrinsic property of the problem?

Finally, in Table 1.1 we compare the result of Theorem 1.3.5 with the corresponding
know results for the classical Grünbaum–Hadwiger–Ramos mass partition problem for some
concrete choices of parameters (d, `, j, k). For that we recall the known equalities

∆(2t + 1, 2) = 3 · 2t−1 + 1 and ∆(2t+1 − 1, 2) = 3 · 2t − 1,

where t ≥ 2. For more details of these two results see for example [13].
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Admissible 4-tuples
(∆(j, k),∆(j, k), j, k) (d, `, j = 2t + r, k)

∆(2, 2) = 3 ⇒ (3, 3, 2, 2) (8, 3, 4, 2) ( considering t = 2 and r = 0)

∆(1, 3) = 3 ⇒ (3, 3, 1, 3) (9, 3, 3, 3) ( considering t = 1 and r = 1)

∆(5, 2) = 8 ⇒ (8, 8, 5, 2) (11, 8, 7, 2) ( considering t = 2 and r = 3)

∆(9, 2) = 14 ⇒ (14, 14, 9, 2) (17, 14, 15, 2) ( considering t = 3 and r = 7)

∆(7, 2) = 11 ⇒ (11, 11, 7, 2) (23, 11, 15, 2) ( considering t = 3 and r = 7)

∆(15, 2) = 23 ⇒ (23, 23, 15, 2) (47, 23, 31, 2) ( considering t = 4 and r = 15)

Table 1.1: Comparison between the classical Grünbaum–Hadwiger–Ramos mass partition
problem and Theorem 1.3.5.

As can be appreciated in Table 1.1, the solutions of the Grünbaum–Hadwiger–Ramos
problem for mass assignments may consider more masses than one can hope for in the
classical case. This means that, in the extension of the classical problem, we can equipart
more masses with the same number of hyperplanes in the appropriate Grassmann manifold.

What follows now is to introduce the methods and techniques we use to prove Theorem
1.3.1.



Chapter 2

The configuration space/test
map scheme.

The configuration cpace/test map scheme (CS/TM-scheme) is a very useful and general
method for proving combinatorial or geometric facts. It was developed in numerous research
papers over the years and formalized by R. Živaljević in [17, 18]. Such method provides a
bridge between the problem itself and a topological question. The main idea is to reduce
the problem to the question about the non-existence of a particular equivariant map. Let
us describe briefly how it works in 3 easy steps.

Step 1: Given a geometric or combinatorial problem P, an associated configuration space
XP is the set of all possible candidates to be a solution of P. The space XP , which
is actually a topological space, parametrizes configurations of geometric objects
(like arrangements of points, lines, flags, etc.) or combinatorial structures (like
trees, graphs, partitions, etc.) which represent each of the possible solutions. The
selection of an appropriate configuration space is very often the crucial point of the
application of the CS/TM-scheme. Its construction is often based on a variety of
combinatorial and geometrical ideas.

Step 2: Having defined the space of all possible candidates to be a solution of P, we need
to determine when an element p ∈ XP is a solution to our problem. Let

f : XP −→ VP

be a continuous map, called test map, from the configuration space XP into the
test space VP , which tests if the candidate p ∈ XP is a solution of P or not. This
can be done considering a subspace ZP ⊂ VP , where p ∈ XP is a solution of P if
and only if f(p) ∈ ZP . Usually VP ∼= Rn, while ZP is the origin {0} ⊂ VP .

Step 3: The last ingredient in the CS/TM-scheme is a group G of symmetries of P which
acts on XP and VP , keeping the subspace ZP G-invariant. Moreover, the test map
f is G-equivariant, i.e, f(g · p) = g · f(p) for every g ∈ G and p ∈ XP .

Since the condition for an element p ∈ XP to be a solution of P is that f(p) ∈ ZP ,
proving that the induced map f : XP → VP \ZP does not exist guarantee that our problem
P has a solution. This last part is where we usually use tools of algebraic topology. For a
more detailed introduction of CS/TM-scheme see [19].

13
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Examples 2.0.1. Let us present some well known examples in which we apply CS/TM-
scheme:

1. (Equilateral triangles in a compact subspace [19, Example 21.1.1]) Let d be a metric
on R2 that induces the same topology as the usual Euclidean metric, and Γ ⊂ R2 be
a compact subspace. Consider the problem of finding equilateral triangles in Γ, i.e.,
triples (x, y, z) of distinct point in Γ such that d(x, y) = d(y, z) = d(z, x).

Γ

x

y

z

Figure 2.1: Equilateral triangles in a compact subspace.

Let us apply the CS/TM-scheme to this problem. Since we are looking for equilateral
triangles, there are some cases which we can exclude from the space of all possible solu-
tions, for example degenerated triangles (x, y, z) such that at least one of the numbers
d(x, y), d(y, z) or d(z, x) is zero (this illustrate the fact that there are several possibil-
ities for a configuration space associated to a problem). Our choice of configuration
space is X = Γ3 \∆, where ∆ = {(x, x, x) ∈ Γ3 | x ∈ Γ}, and our test map f : X → R3

is given by
f(x, y, z) =

(
d(x, y), d(y, z), d(z, x)

)
.

The group of symmetries which acts on the configuration space X, the test space R3,
and make the test map equivariant, is the group of all permutations of 3 elements S3.

Notice that a triangle (x, y, z) is equilateral if and only if
(
d(x, y), d(y, z), d(z, x)

)
∈ Z,

where Z = {(u, u, u) ∈ R3 | u ∈ R}. Then our problem will have a solution if and only
if im(f) ∩ Z 6= ∅.

2. (Ham sandwich theorem for measures [20, Theorem 3.1.1]) The informal statement
that gave the ham sandwich its name is the following: For every sandwich made of
ham, cheese and bread, there is a planar cut that simultaneously bisects the ham, the
cheese, and the bread.

There is a formal version of the ham sandwich theorem, in terms of measures, which
we will work with. Let µ1, µ2, . . . , µd be finite Borel measures on Rd such that every
hyperplane has measure 0 for each µi. Then there exists a hyperplane H such that

µi(H
+) =

1

2
µi(Rd) for i = 1, 2, . . . , d,

where H+ denotes one of the half-spaces defined by H. Here the value of each measure
represents the amount of one of the ingredients.
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The CS/TM-scheme here works as follows: For every point v = (v0, v1, . . . , vd) in Sd

we assign the half-space

H+
v := {(x1, . . . , xd) ∈ Rd | v1x1 + . . .+ vdxd ≤ v0}.

In the cases that v is of the form (±1, 0, . . . , 0) note that

H+
(1,0,...,0) := Rd and H+

(−1,0,...,0) := ∅.

Let us define now a continuous map f : Sd → Rd given by

f(v) =

(
µ1(H+

v )− µ1(Rd)
2

, . . . , µd(H
+
v )− µd(Rd)

2

)
,

which since antipodal points correspond to opposite half-spaces, f is Z2-equivariant.
Notice that the hyperplane that we are looking for is contained in f−1(0). Then,
using the CS/TM-scheme, we have to prove that the induced Z2-equivariant map
f : Sd → Sd−1 does not exist. To finish the proof, the non-existence of the map f
comes from the famous Borsuk–Ulam theorem.

In Chapter 5 we will rephrase our main problem as a topological one using the CS/TM-
scheme just described.
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Chapter 3

The Leray–Serre spectral
sequence.

In this chapter we give some background of (cohomological) spectral sequences necessary
for understanding the computations of Fadell–Husseini index theory developed in Chapter
4. For more details about spectral sequences see [21], [22] and [23].

3.1 What is a spectral sequence?

Spectral sequences are a useful technique in algebraic topology traditionally applied to
compute (co)homology and homotopy groups of spaces. Intuitively, we can think of a
spectral sequence as a book consisting of a sequence of pages, each of which is a two-
dimensional array of Abelian groups. On each page there are maps between the groups, and
these maps form chain complexes. The (co)homology groups of these chain complexes are
precisely the groups that appear on the next page. The desired computation is codified on
the “last page”.

Generally speaking we define a spectral sequence as follows:

Definition 3.1.1. A (cohomological) spectral sequence is a collection of Abelian groups
and homomorphisms,

{Ep,qr , dp,qr : Ep,qr → Ep+r,q−r+1
r },

indexed by integers p, q, r, satisfying the following conditions:

dp+r,q−r+1
r ◦ dp,qr = 0 and Ep,qr+1 = ker dp,qr / im dp+r,q−r+1

r .

The conditions mentioned before mean that the (r + 1)-th sheet Ep,qr+1, usually called
the Er+1-term, is the cohomology of (Ep,qr , dp,qr ). For an illustration of the Er-term see
Figure 3.1. We are interested in first quadrant spectra sequences, that is, spectral sequences
for which Ep,qr = 0 when p < 0 or q < 0.

With this general definition, consider the Abelian group Ep,qr for r > max{p, q+1}. Here,
since q + 1 − r < 0 and p − r < 0, the differential dp,qr becomes trivial. Thus Ep,qr+1 = Ep,qr
and, continuing in the same way, Ep,qr+k = Ep,qr for k ≥ 1. We denote this common group by

17
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Figure 3.1: Illustration of the Er-term.

Ep,q∞ . A spectral sequence {Ep,qr , dp,qr } is said to converge to a graded Abelian group H∗ if
there is a filtration1 by subgroups

0 = Fn+1Hn ⊆ FnHn ⊆ Fn−1Hn ⊆ · · · ⊆ F 1Hn ⊆ F 0Hn = Hn

for each Hn ⊂ H∗ such that

Ep,q∞
∼= F pHp+q/F p+1Hp+q. (3.1)

This means that Hn, or at least plenty of information about it, is codified in the diagonal
Ep,q∞ , where p + q = n. Moreover, by (3.1), Hn can be achieved via a finite number of
extensions. In case there is only one pair (p, q) such that Ep,q∞ 6= 0, then Hn = Ep,q∞ .

Even though “finding” H∗ inside E∗,∗∞ is a not a piece of cake, in some cases the computa-
tion is an achievable task. The simplest case occurs when a finite number of steps complete
the computation. A spectral sequence is said to collapse at the n-th term if dp,qr = 0 for
all p, q ≥ 0 and r ≥ n. Of course the immediate consequence of collapse at the n-th term is
that

E∗,∗n
∼= E∗,∗n+1

∼= · · · ∼= E∗,∗∞ ,

so H∗ is now codified in E∗,∗n .

3.2 Leray–Serre spectral sequence of a fibration.

Before introducing the spectral sequence of a fibration, let us start by presenting the spectral
sequence of a filtered topological space. For that, let R be a commutative ring with unit,
and consider an increasing filtration of a topological space X,

0 ⊂ X0 ⊂ · · · ⊂ Xn−2 ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X,

1A (decreasing) filtration F ∗ of an Abelian group A is a family of subgroups {F iA}i∈Z such that

· · · ⊆ F i+1A ⊆ F iA ⊆ F i−1A ⊆ · · · ⊆ A.

In case we change the Abelian group A by a topological space, then the filtration will consist of topological
subspaces.
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for which we have information about the singular cohomology of the pairs (Xp, Xp−1).
Defining FnH∗(X) as the kernel of the map H∗(X;R) → H∗(Xn−1;R) induced by the
inclusión, there is a first quadrant spectral sequence {Ep,qr , dp,qr } with

Ep,q1 = Hp+q(Xp, Xq;R),

dp,q1 = δ∗ : Hp+q(Xp, Xp−1;R)→ Hp+q+1(Xp+1, Xp;R),

and converging to H∗(X;R). Here the homomorphism δ∗ belongs to the cohomology se-
quence of the triple (Xp+1, Xp, Xp−1). Notice that the explicit formulas for E1 and d1 allow
us to completely ignore the zeroth terms. A similar situation is going to happen when we
consider fibrations instead of filtered topological spaces.

The spectral sequence for a filtration can be used to derive an spectral sequence of a
fibration. We recall that a fibration is a continuous map p : E → B satisfying the homotopy
lifting property with respect to all space Y (see [24, Chapter 4]). It follows that if B is
path-connected, then all the fibers p−1(b), for b ∈ B, are homotopy equivalent. Hence we
can speak of the fiber and denote it by F .

Let us consider a locally trivial fibration

ξ =
(
E, B, E

p−→ B, F
)
,

where B is a path-connected CW -complex with skeletons B(p). This implies that B is
equipped with a filtration by skeleta. We can induce then a filtration on E by letting
Js = p−1(B(s)), that is, the subspace of E that lies over the s-squeleton of B.

∅

��

⊂ J0

��

⊂ · · · ⊂ Js−1

��

⊂ Js

��

⊂ · · · ⊂ E

��
∅ ⊂ B(0) ⊂ · · · ⊂ B(s−1) ⊂ B(s) ⊂ · · · ⊂ B

We can use now this filtration to obtain a spectral sequence. The spectral sequence associ-
ated to the filtration {Js} is called the Leray–Serre spectral sequence of the fibration
ξ.

Let us begin with the calculation of the terms E1 and E2. Consider first the simplest
case of a trivial fibration B × F → B. Here, since (Js, Js−1) = (B(s), B(s−1)) × F , by the
Künneth theorem (see [25, Chapter 3]) we get that

Ep,q1 = Hp+q(Jp, Jp−1;R)

= Hp+q((B(p), B(p−1))× F ;R)

∼= Hp
(
(B(p), B(p−1));Hq(F ;R)

)
= Cp

(
B;Hq(F ;R)

)
.

In the case of an arbitrary fibration we need to consider a possibly non-trivial twisting of
the fiber and the base space inside the total space. This means that, for b0, b1 ∈ B, the
isomorphism between Hn(p−1(b0);R) and Hn(p−1(b1);R) may depend on a path γ : I → B
joining the points b0 and b1. For that we use coefficients in a bundle of groups given by a
collection of groups

H∗(F ;R) =
{
H∗(p−1(b);R) | b ∈ B

}
,
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together with a collection of isomorphisms{
Jγ : H∗(p−1(b1);R)→ H∗(p−1(b0);R) | γ ∈ π1(B, b0, b1)

}
,

where π1(B, b0, b1) is the set of homotopy classes of paths in B joining b0 and b1. We call
H∗(F ;R) a system of local coefficients on B induced by F . In the case that the
isomorphism between Hn(p−1(b0);R) and Hn(p−1(b1);R) does not depend on any path γ,
like the example of the trivial bundle, we call the system of local coefficients simple, or
simply that there are no local coefficients. The following result describes the initial terms
E1 and E2 of the spectral sequence associated to an arbitrary fibration.

Proposition 3.2.1. In the spectral sequences of a fibration F ↪→ E
p−→ B,

1. Ep,q1 = Cp
(
B;Hq(F ;R)

)
.

2. dp,q1 = δ : Cp
(
B;Hq(F ;R)

)
→ Cp+1

(
B;Hq(F ;R)

)
.

3. Ep,q2 = Hp(B;Hq(F ;R)).

Here Hp(B;Hq(F ;R)) represent the cohomology of B with local coefficients in the co-
homology of F . In case that the system of local coefficients is simple,

Hp(B;Hq(F ;R)) ∼= Hp(B;Hq(F ;R))

and therefore we recover the usual cohomology in the E2-term. For an algebraic definition
of cohomology with local coefficients see [25, Chapter 3.H]. The E2-term can be pictured as
in Figure 3.2.

H∗(B;R)

H
∗
(
F

;
R

)

0 · · · p − 2 p − 1 p p + 1 p + 2

0

1

.

.

.

q

q + 1

q + 2

q + 3

E
p−2,q+1
2

E
p,q
2

E
p+2,q−1
2

d2d2

d2d2

Hp(B;Hq(F ;R))

Figure 3.2: E2-term of a spectral sequence.

The following result summarizes the previous discussion about the spectral sequence
associated to a fibration:

Theorem 3.2.2 (The cohomology Leray–Serre spectral sequence). Let R be a commutative

ring with unit. Given a fibration F ↪→ E
p−→ B, where B is path connected CW -complex,

there is a first quadrant spectral sequence {Ep,qr , dp,qr } with

Ep,q2
∼= Hp(B;Hq(F ;R)),

and converging to H∗(E;R).
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Remark 3.2.3. Introducing some convenient hypothesis, the Leray–Serre spectral sequence

can be seen to take a manageable form. Suppose that F ↪→ E
p−→ B is a fibration with B

path-connected and the system of local coefficients on B induced by F simple. Assuming
coefficient on a field F, by the Universal Coefficient Theorem we get that the E2-term of the
associated spectral sequence looks as follows:

Ep,q2
∼= Hp(B;F)⊗Hq(F ;F).

Also, since the spectral sequence converges to H∗(E;F), and F is a field,

Hn(E;F) ∼=
⊕
p+q=n

Ep,q∞ .

3.3 Additional properties of the Leray–Serre spectral
sequence.

In order to compute differentials of a spectral sequence, as many as possible, we briefly
introduce two important properties that will help us with the challenge.

3.3.1 Multiplicative structure.

The Leray–Serre spectral sequence for cohomology becomes much more powerful when cup
products are brought into the picture. The way in which the cup products come into play
is by providing a multiplication for the spectral sequence. In other words, {Ep,qr , } can be
furnished with bilinear products

Ep,qr × Ep
′,q′

r → Ep+p
′,q+q′

r ,

for 1 ≤ r ≤ ∞ satisfying the following properties:

1. Each differential dr is a derivation, satisfying the Leibniz rule

dp+p
′,q+q′

r (αβ) = dp,qr (α)β + (−1)p+qαdp
′,q′

r (β),

for α ∈ Ep,qr and β ∈ Ep
′,q′

r . This implies that the multiplication Ep,qr × Ep,qr →
Ep+p

′,q+q′

r induces a product Ep,qr+1×E
p,q
r+1 → Ep+p

′,q+q′

r+1 , and this is the multiplication
for Er+1.

2. The multiplication in E2 coincides with the multiplication in the cohomology of B
with coefficients in the system of local coefficients induced by the cohomology of F .

3. The multiplication in E∞ is adjoint to the multiplication in H∗(E;R) in the following
sense: If a ∈ F pHm(E;R) and b ∈ F qHn(E;R), then ab ∈ F p+qHm+n(E;R), and if
α ∈ Ep,m−p∞ , β ∈ Eq,n−q∞ and γ ∈ Ep+q,m+n−p−q

∞ are represented by a, b and ab, then
γ = αβ.

As we saw in Remark 3.2.3, under some convenient conditions the computations on the
spectral sequence becomes more manageable. That is also the case with the multiplicative
structure. Suppose that the system of local coefficients is simple, and that B and F are
path-connected. Then the multiplicative structure on

Ep,02
∼= Hp(B;H0(F ;R)) ∼= Hp(B;R)
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and

E0,q
2
∼= H0(B;Hq(F ;R)) ∼= Hq(F ;R)

correspond to the cup product on Hp(B;R) and Hq(F ;R) respectively. We will see later
that the structure in the zeroth row and zeroth column plays an important role in our
computations.

This multiplicative structure in favorable cases allows many more differentials to be
computed purely formally.

3.3.2 Homomorphism of spectral sequences.

Following with the idea of computing as many differentials as possible, constructing ho-
momorphisms between spectral sequences represent an important tool to make the work
easier.

Let (E,B, F, p) and (E′, B′, F ′, p′) be two locally trivial fibrations with connected CW
bases B and B′. Given a fiber-preserving continuous map f : E → E′, there is a map
g : B → B′ such that

E
f //

p

��

E′

p′

��
B

g // B′

is commutative. For every point x ∈ B, the map f induces a map h of the fiber p−1(x) into
the fiber (p′)−1(g(x)), which induces homomorphisms h∗ : Hq(F ;R) → Hq(F ′;R) possibly
depending on the choice of x. Also, by the cellular approximation theorem and the homotopy
lifting property, we can assume that f and g are compatible with the filtrations.

Now, let {Ep,qr , dp,qr } and {′Ep,qr , ′d
p,q
r } be the associated spectral sequences of (E,B, F, p)

and (E′, B′, F ′, p′) respectively. Then there is a collection of homomorphisms

f∗ = {(f∗)p,qr : Ep,qr → ′E
p,q
r }

that commute with the differentials,

′d
p,q
r ◦ (f∗)p,qr = (f∗)p+r,q−r+1

r ◦ dp,qr ,

and satisfy the following conditions:

1. The homomorphism (f∗)p,q2 coincides with the cohomology homomorphism induced
by the maps g and h (considering possibly local coefficients).

2. The homomorphism (f∗)p,qr+1 is the cohomology homomorphism induced by (f∗)p,qr .

3. The map (f∗)m∞ :
⊕

p+q=mE
p,q
∞ →

⊕
p+q=m

′E
p,q
∞ is induced by the map f∗ : Hm(E;R)→

Hm(E′;R).

The collection f∗ = {(f∗)p,qr } is called a homomorphism of spectral sequences.
Some times we use the notation

{Er(E,B, F )} f∗−→ {Er(E′, B′, F ′)}
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Figure 3.3: Homomorphism between spectral sequences.

to refer to a homomorphism of spectral sequences. In a few words, the previous discussion
means that the spectral sequence described in Theorem 3.2.2 is natural with respect to fiber-
preserving maps of fibrations. For an illustration of a homomorphism of spectral sequences
see Figure 3.3.

There is an obvious but important property of homomorphism of spectral sequences
that we cannot overlook. If for some r the homomorphism Er → ′Er belonging to a
homomorphism of spectral sequences is an isomorphism, then so are all the homomorphisms
Es → ′Es with s > r (including s = ∞). Moreover, if two homomorphisms of spectral
sequences coincide on Er for some r, then they coincide on Es for all s > r.

Finally, we present the result that justify why we use spectral sequences in this thesis.

Proposition 3.3.1. Consider a locally trivial fibration F ↪→ E
π−→ B with B path-connected

and such that the system of local coefficients on B induced by F is simple. Then the com-
positions

Hp(B;R) = Ep,02 � Ep,03 � · · ·� Ep,0p � Ep,0p+1 = Ep,0∞ ⊂ Hp(E;R)

and

Hq(E;R)� E0,q
∞ = E0,q

q+1 ⊂ · · · ⊂ E
0,q
2 = Hq(F ;R)

are the homomorphisms

π∗ : Hp(B;R) −→ Hp(E;R) and i∗ : Hq(E;R) −→ Hq(F ;R)

respectively.

Proof. Consider the diagram of fibrations

F
id //

id

��

F //

i

��

pt

��
F

i //

��

E
π //

π

��

B

id

��
pt // B

id // B
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By the naturality of the Leray–Serre spectral sequence, we get induced homomorphisms of
spectral sequences

{Er(B,B,pt)} π∗−→ {Er(E,B, F )} i∗−→ {Er(F,pt, F )}. (3.2)

Notice that E2(F,pt, F ) consists of the column E0,∗
2 = H∗(F ;R) and so collapse at the

E2-term. Also E2(B,B,pt) is a single row, E∗,02 = H∗(B;R), and collapse at the same
term. Then the homomorphisms of spectral sequences in (3.2) project H0(B;H∗(F ;R))
onto H∗(F ;R), and inject H∗(B;R) into H∗(B;H0(F ;R)) at E2. Composing such maps
with the corresponding inclusions and projections given by the convergence of the spectral
sequence {Er(E,B, F )} we get the following maps:

H∗(B;R)� _

��
H∗(B;H0(F ;R)) = E∗,02

// // Ep,03
// // · · · // // Ep,0∞ ⊂ Hp(E;R)

and

Hq(E;R) // // E0,q
∞ ⊂ · · · ⊂E

0,q
2 = H0(B;Hq(F ;R))

����
H∗(F ;R).

Finally, since the homomorphisms of spectral sequences in (3.2) converge to π∗ : H∗(B;R)→

H∗(E;R) and i∗ : H∗(E;R) → H∗(F ;R) respectively at E∞, the proof is completed con-
sidering the following commutative diagrams

H∗(B;R)� _

��

π∗

))
E∗,02

// // · · · // // Ep,0∞ ⊂ Hp(E;R)

H∗(E;R) // //

i∗ ))

E0,q
∞ ⊂ · · · ⊂ E

0,q
2

����
H∗(F ;R).

Examples of how to use these two properties, as well as Proposition 3.3.1, are presented
in Chapters 4 and 5.

3.4 A convenient trick to deduce differentials.

In [26] Albrecht Dold presented a very useful result to deduce some differentials of the
Leray–Serre spectral sequence associated to a particular kind of fiber bundles. We conclude
this chapter by introducing such result.

Let E
π−→ B and E′

π′−→ B be vector bundles of rank n and m over the same paracompact
space B, and let f : S(E) → E′ an odd map, where S(E) is the total space of the sphere
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bundle associated to π, such a that

S(E)
f //

sπ
!!

E′

π′��
B

commutes. Let us define Zf = {z ∈ S(E) | f(z) = 0}, where 0 stands for the zero section
of π′, and the projection maps

S(E) −→ S̄(E) = S(E)/Z2 and Zf −→ Z̄f = Zf/Z2,

where we are considering the fibrewise antipodal action.

Cohomology H∗ is understood in the Čech sense [25, Sec. 3.3]2 and H∗(B;F2)[x] is the
polynomial ring over H∗(B;F2) in one indeterminate x of degree 1. Since the antipodal
action is fixed point free in S(E) and Zf , the projection maps S(E)→ S̄(E) and Zf → Z̄f
are 2-sheeted covering maps. Their characteristic classes, denoted by u and u0 respectively,
can be replaced by the indeterminate x and obtain an homomorphism of H∗(B;F2)-algebras

σ : H∗(B;F2)[x] −→ H∗(S̄(E);F2) −→ H∗(Z̄f ;F2)

given by x 7−→ u 7−→ u0. Dold proved the following result:

Theorem 3.4.1 (Dold’s argument). If q(x) ∈ H∗(B;F2)[x] is such that σ(q(x)) = 0, then

q(x)W (π′;x) = W (π;x)q′(x)

for some q′(x) ∈ H∗(B;F2)[x], where W (π;x) =
∑n
j=0 wj(π)⊗ xn−j is the Stiefel-Whitney

polynomial associated to π (similarly W (π′;x)).

The last theorem means that, under the last conditions, W (π;x) divides q(x)W (π′;x).
We show the effectiveness of this theorem in the following remark.

Remark 3.4.2. Under the same hypothesis, consider the Z2-equivariant fiber bundles

Sn−1 �
� // S(E)

sπ

��
B

{0} �
� // B × {0}

proj1

��
B

where Z2 acts antipodally on S(E) and trivially on B. Let f : S(E) −→ B × {0} be a
Z2-equivariant map given by f(e) = (π(e), 0), such that the following diagram commutes:

S(E)
f //

sπ
!!

B × {0}

proj1{{
B

Notice that Zf = S(E) and W (proj1, x) = 1. If we consider q(x) as the image of the
transgression map d0,n−1

n of the Leray–Serre spectral sequence associated to the sphere
bundle

Sn−1 ↪→ EZ2 ×Z2
S(E)

idEZ2×Z2sπ−−−−−−−−→ EZ2 ×Z2
B = BZ2 ×B,

2In case that the topological space is homotopy equivalent to a CW -complex, then the Čech cohomology
is naturally isomorphic to the singular cohomology.
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then

σ ◦ q(x) = σ ◦ d0,n−1
n (z)

=
(
idEZ2 ×Z2 sπ

)
◦ d0,n−1

n (z)

= 0,

where H∗(Sn−1;F2) = F2[z]/〈z2〉. Finally, by Theorem 3.4.1,

q(x) = d0,n−1
n (z) =

n∑
j=0

wj(π)⊗ xn−j .



Chapter 4

The Fadell–Husseini index

In this chapter we introduce the main tool of equivariant topology for this work, known as
the Fadell–Husseini index. To define and study this particular ideal-valued index theory
we first recall some facts about the Borel construction of an arbitrary G-space. In addition
to important properties of the index, we present some preliminary calculations that are
essential for the upcoming results in the next chapters.

4.1 Definition and basic properties.

In 1988 Edward Fadell and Sufian Husseini, in their seminal paper [27], introduced a no-
tion of the ideal-value index theory, a covariant functor IndexG(·;R) from the category of
topological G-spaces into the partially ordered set, seen as a category, of all ideal in the
cohomology of ring H∗(BG;R) ordered by inclusion. Here BG denotes the classifying space
of the group G, and R denotes a commutative ring with unit. This means in particular
that if X and Y are G-spaces, and there is a continuous G-equivariant map X −→ Y , then
IndexG(X;A) ⊇ IndexG(Y ;A).

In this chapter we use a slight extension of the original notion of the ideal-valued index
theory to the category of all continuous G-equivariant maps from G-spaces to the fixed
space B equipped with the trivial G-action. More precisely, let G be a finite group and let
EG→ BG be the universal G−bundle over the classifying space BG. For a G−space X we
define the Borel construction of X with respect to the action of G as the quotient space
EG×X/ v, where (e, x) v (eg−1, gx). Since the Borel construction is functorial, every G-
equivariant map ρ : X −→ Y induces a G−equivariant morphism between the corresponding
Borel constructions

ρG := id×Gρ : EG×G X → EG×G Y,

given by ρG(e, x) = (e, ρ(x)). This gives rise to the following definition:

Definition 4.1.1. Let G be a finite group, and let R be a commutative ring with unit. For
a fixed topological space B with trivial G-action, and a G-equivariant map ρ : X −→ B,
the Fadell–Husseini index of ρ with coefficients in R is defined to be the kernel ideal of the
induced map ρG

∗,

IndexBG
(
ρ;R

)
:= ker

(
ρG
∗ : H∗(EG×G B;R) −→ H∗(EG×G X;R)

)
= ker

(
ρG
∗ : H∗G(B;R) −→ H∗G(X;R)

)
.

27
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Here H∗G(·) stands for the equivariant cohomology defined as the cohomology of the
Borel construction EG×G X associated to the G−space X. In the case when B is a point,
ρ : X −→ B is just the constant map and we recover the original definition of the ideal-valued
index of the G−space X. For that reason we simplify the notation and write

IndexBG
(
ρ;R

)
= IndexptG

(
X;R

)
= IndexG

(
X;R

)
.

Let us present some of the essential properties of the index introduced and proved in [28, 27].

Lemma 4.1.2 (Monotonicity). If ρ : X −→ B and ν : Y −→ B are G−equivariant maps,
and f : X −→ Y is a G−equivariant map such that ρ = ν ◦ f , then

IndexBG
(
ρ;R

)
⊇ IndexBG

(
ν;R

)
.

Proof. Consider the following commutative diagrams

X

ρ
##

f // Y

ν
{{

B

EG×G X

ρG ##

fG // EG×G Y

νG{{
EG×G B

and the diagram resulting from applying the cohomology functor

H∗(EG×G X;R) H∗(EG×G Y ;R)
f∗Goo

H∗(EG×G B;R).

ρ∗G

hh

ν∗G

66

Since ρ∗G = f∗G ◦ ν∗G, then ker(ρ∗G) ⊇ ker(ν∗G).

Lemma 4.1.3 (Additivity). If (X1 ∪ X2, X1, X2) is an excisive triple of G-spaces and
ρ : X1

⋃
X2 −→ B is a G−equivariant map, then

IndexBG(ρ|X1
;R) · IndexBG(ρ|X2

;R) ⊆ IndexBG(ρ;R).

Proof. Let us consider an element x1 ∈ IndexBG
(
ρ|X1

;R
)
, and let us define x′1 := ρ∗G(x1) ∈

H∗G(X;R) and the inclusion map i1 : X1 ↪→ X. By the uniqueness of ρG up to homotopy,
we get the following commutative diagram:

H∗G(B;R)
ρ∗G //

(ρ|X1
)∗G ))

H∗G(X;R)

i∗1
��

H∗G(X1;R),

where since (ρ|X1)∗G(x1) = 0, then i∗1(x′1) = 0. Now using the long exact sequence of the
pair (X,X1),

H∗G(X1;R)
i∗1←− H∗G(X;R)

j∗1←− H∗G(X,X1;R),
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there is an element y1 in H∗G(X;X1;R) such that j∗1 (y1) = x′1. In the same way, for an

element x2 ∈ IndexBG
(
ρ|X2 ;R

)
, there is a y2 in H∗G(X;X2;R) such that j∗2 (y2) = x′2. Then,

by the cup product

∪ : H∗G(X,X1;R)⊗H∗G(X,X2;R) −→ H∗G(X,X1 ∪X2;R) = H∗G(X,X;R) = 0,

y1 ∪ y2 = 0 and therefore x′1 ∪ x′2 = j∗1 (y1) ∪ j∗2 (y2) = (j̄ ◦ j)∗(y1 ∪ y2) = 0, where

(X, ∅)

j ##

ji // (X,Xi)

(X,X1 ∩X2).

j̄

;;

Finally, since ρ∗G(x1 ∪ x2) = ρ∗G(x1) ∪ ρ∗G(x2) = x′1 ∪ x′2 = 0, x1 ∪ x2 ∈ IndexBG(ρ;R).

Let ρ1 : X1 → B1 and ρ2 : X2 → B2 be equivariant maps over G1 and G2 respectively,
and consider the G-equivariant map ρ := ρ1 × ρ2 : X1 ×X2 → B1 ×B2 with G = G1 ×G2.
The map ρ induces a homomorphism

ρG : (EG1 × EG2)×G (X1 ×X2)→ (EG1 × EG2)×G (B1 ×B2)

which can be identified with

ρ1G1
× ρ2G2

: (EG1 ×G1
X1)× (EG2 ×G2

X2)→ (EG1 ×G1
B1)× (EG2 ×G2

B2).

In the case that H∗Gi
(Bi;F) and H∗Gi

(Xi;F) are F-modules over some field F, ρ∗G can be
identified with

ρ1
∗
G1
⊗ ρ2

∗
G2

: H∗G1
(B1;F)⊗H∗G2

(B2;F)→ H∗G1
(X1;F)⊗H∗G2

(X2;F)

via the Künneth formula for field coefficients [29]. We obtain then the following result:

Proposition 4.1.4. The Fadell–Husseini index of the G-equivariant map

ρ = ρ1 × ρ2 : X1 ×X2 → B1 ×B2,

with G = G1 ×G2, is given by

IndexB1×B2

G1×G2

(
ρ;F
)

= IndexB1

G1

(
ρ1;F

)
⊗H∗G2

(B2;F) +H∗G1
(B1;F)⊗ IndexB2

G2

(
ρ2;F

)
.

Proof. To simplify the notation we omit the coefficients of the cohomology rings. First, by
the right exactness of — ⊗H∗G2

(B2) we get that the sequence induced by ρ1
∗
G1

,

ker ρ1
∗
G1
⊗H∗G2

(B2) ↪→ H∗G1
(B1)⊗H∗G2

(B2)
ρ1
∗
G1
⊗id

−−−−−→ im ρ1
∗
G1
⊗H∗G2

(B2), (4.1)

is exact. Meanwhile, by the same logic, using the right exactness of im ρ1
∗
G1
⊗ — we get that

the sequence induced by ρ2
∗
G2

,

im ρ1
∗
G1
⊗ ker ρ2

∗
G2

↪→ im ρ1
∗
G1
⊗H∗G2

(B2)
id⊗ρ2∗G2−−−−−−→ im ρ1

∗
G1
⊗ im ρ2

∗
G2
, (4.2)



30

is also exact. Using now the maps in (4.1) and (4.2), we obtain the following commutative
diagram

im ρ1
∗
G1
⊗H∗G2

(B2)
id⊗ρ2∗G2

**
H∗G1

(B1)⊗H∗G2
(B2)

ρ1
∗
G1
⊗id 44

ρ1
∗
G1
⊗ρ2∗G2

// im ρ1
∗
G1
⊗ im ρ2

∗
G2

from which we get that ρ1
∗
G1
⊗ ρ2

∗
G2

= [id⊗ρ2
∗
G2

] ◦ [ρ1
∗
G1
⊗ id]. Thus, the kernel of the map

ρ1
∗
G1
⊗ ρ2

∗
G2

restricted to its image is given by

ker(ρ1
∗
G1
⊗ ρ2

∗
G2

) =
[

ker(ρ1
∗
G1
⊗ id)

]
⊕
[
(ρ1
∗
G1
⊗ id)−1

(
ker(id⊗ρ2

∗
G2

)
)]

=
[

ker ρ1
∗
G1
⊗H∗G2

(B2)
]
⊕
[
(ρ1
∗
G1
⊗ id)−1

(
im ρ1

∗
G1
⊗ ker ρ2

∗
G2

)]
=
[

ker ρ1
∗
G1
⊗H∗G2

(B2)
]
⊕
[
H∗G1

(B1)⊗ ker ρ2
∗
G2

]
.

Finally, since im ρ1
∗
G1

and H∗G2
(X2) are free F-modules, in particular flat, there is an em-

bedding

im ρ1
∗
G1
⊗ im ρ2

∗
G2

↪→ im ρ1
∗
G1
⊗H∗G2

(X2) ↪→ H∗G1
(X1)⊗H∗G2

(X2)

and therefore we have that the sequence

0→
(

ker ρ1
∗
G1
⊗H∗G2

(B2)
)
⊕
(
H∗G1

(B1)⊗ ker ρ2
∗
G2

)
↪→

H∗G1
(B1)⊗H∗G2

(B2)
ρ1
∗
G1
⊗ρ2∗G2−−−−−−−→ H∗G1

(X1)⊗H∗G2
(X2)

is exact.

From Proposition 4.1.4 we get 2 important corollaries.

Corollary 4.1.5. Under the same hypothesis,

1. If we set X2 = B2 = pt in Proposition 4.1.4, then

IndexB1

G1×G2

(
ρ1;F

)
= IndexB1

G1

(
ρ1;F

)
⊗H∗(BG2;F),

where G1 ×G2 acts on X1 and B1 by (g1, g2) · x = g1 · x.

2. Consider B1 = B2 = pt in Proposition 4.1.4. If H∗(BG1;F) = F[x1, . . . , xk] and
H∗(BG2;F) = F[y1, . . . , yl] are polynomial rings over F, and let IndexptG1

(
X1;F

)
=

〈f1, . . . , fm〉 and IndexptG2

(
X2;F

)
= 〈g1, . . . , gn〉, then

IndexptG1×G2

(
X1 ×X2;F

)
= 〈f1, . . . , fm, g1, . . . , gn〉.

is the ideal generated by the polynomials fi and gi.

Corollary 4.1.5(2) provides a relation among the three indices IndexptG1×G2

(
X1×X2;F

)
,

IndexptG1

(
X1;F

)
and IndexptG2

(
X2;F

)
, under suitable conditions.

Examples 4.1.6. We present now some useful examples that we use in Chapter 5:
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1. Consider the antipodal Z2-action on the sphere Sn. We are interested in the Fadell–
Husseini index of Sn with coefficients in the field of two elements F2. That is:

Indexpt
Z2

(
Sn;F2

)
= ker

(
H∗(BZ2;F2)

p∗−→ H∗(EZ2 ×Z2 S
n;F2)

)
,

where H∗(BZ2;F2) = F2[x] is the polynomial ring with one generator in dimension 1.
In order to calculate the index Indexpt

Z2

(
Sn;F2

)
we consider the fiber bundle

Sn ↪→ EZ2 ×Z2 S
n −→ BZ2

induced, via the Borel construction, by the constant Z2-equivariant map Sn → pt.
The associated Leray–Serre spectral sequence has E2-term given by

Ep,q2 = Hp(Z2;Hq(Sn;F2)). (4.3)

Since Sn is simply connected there are no local coefficients and the E2-term of the
spectral sequence simplifies and becomes

Ep,q2 = Hp(Z2;Hq(Sn;F2)) ∼= Hp(Z2;F2)⊗Hq(Sn;F2).

In addition, all the differentials of the spectral sequence satisfy the Leibniz rule. Notice
first that, because the first differential appears in the En+1-term, E∗,∗n+1 = E∗,∗2 . Also,
since Sn is a free Z2-space, EZ2 ×Z2

Sn ' Sn/Z2 and then

H∗(EZ2 ×Z2
Sn;F2) ∼= H∗(Sn/Z2;F2).

In particular Hi(EZ2 ×Z2
Sn;F2) = 0 for all i > n. All these properties, together

with the information exposed in Chapter 3, give us a very good idea of how the
corresponding spectral sequence looks like. For an illustration of the associated Serre
spectral sequence see Figure 4.1. Finally, by Proposition 3.3.1,

Indexpt
Z2

(
Sn;F2

)
= 〈xn+1〉 ⊂ F2[x].

H∗(BZ2; F2)

H
∗
(
S
n
;
F 2

)

0 1 2 · · · n + 1 n + 2

0

1

.

.

.

n

n + 1

x

tn+1

dn+1dn+1

⇒

H≤n+1(BZ2; F2)

0 1 2 · · · n + 1 n + 2

0

1

.

.

.

n

n + 1

Figure 4.1: Transition between the En+1-term and the En+2-term of the spectral sequence
4.3.
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2. The previous example can be extended via Corollary 4.1.5 to the product action of
Zk2 on Sn1 × · · · × Snk . As a result of this we get that the Fadell–Husseini index of
Sn1 × · · · × Snk with coefficients in F2 is given by

Indexpt

Zk
2

(
Sn1 × · · · × Snk ;F2

)
= 〈xn1+1

1 , . . . , xnk+1
k 〉 ⊂ H∗(BZk2 ;F2),

where H∗(BZk2 ;F2) ∼= F2[x1, . . . , xk] and deg(x1) = · · · = deg(xk) = 1.

3. Let X and B be G−spaces, with the action of G on B trivial, and let

π2 : X ×B −→ B

be the projection onto the second factor. We are interested in the Fadell–Husseini
index of π2 with coefficients in the field with two elements F2. That is:

IndexBG
(
π2;F2

)
:= ker

(
(id×Gπ2)∗ : H∗

(
EG×G B;F2

)
−→

H∗
(
EGk ×G (X ×B);F2

))
.

Since π2 is a trivial fiber bundle and the G-action on B is trivial we see that induced
map

id×Gπ2 : EG×G
(
X ×B

)
−→ EG×G B

can be transformed into the following product map

id×Gπ2 = u× id :
(
EG×G X ×B −→ BG×B

)
.

Here, the map u : EG ×G X −→ BX is induced, via the Borel construction, by the
constant G-equivariant map X −→ pt. In particular,

Indexpt
G

(
X;F2

)
= ker

(
u∗ : H∗(BG;F2) −→ H∗(EG×G X;F2)

)
.

Consequently, the induced map in cohomology (id×Gπ2)∗ = (u × id)∗, after appli-
cation of the Künneth formula for field coefficients [29], becomes the tensor product
homomorphism

u∗ ⊗ id : H∗(BG;F2)⊗H∗(B;F2) −→ H∗(EG×G X;F2)⊗H∗(B;F2).

Thus,

IndexBG
(
π2;F2

)
= ker((id×Gπ2)∗)

= ker(u∗ ⊗ id)

= Indexpt
G

(
X;F2

)
⊗H∗(B;F2).

4.2 The index of sphere representations

We would like to know how to compute the index of a sphere that is not equipped with the
antipodal Z2-action. For that we have the following two propositions:

Proposition 4.2.1. Let U, V be two G-representations and let S(U), S(V ) be the associated
G-spheres. Let R be a ring with unit and assume that H∗(S(U);R) and H∗(S(V );R) are
trivial G-modules. If

IndexptG
(
S(U);R

)
= 〈f〉 and IndexptG

(
S(V );R

)
= 〈g〉,

then
IndexptG

(
S(U ⊕ V );R

)
= 〈f · g〉 ⊂ H∗(BG;R).



33

In the case of the group Zk2 , all the irreducible representations are 1-dimensional. Every
such representation is identified with a group homomorphism (character) χ : Zk2 → Z2,
where Z2 = {0, 1} is an additive group. This homomorphism is completely determined by
the values on generators {ε1, . . . , εk} of Zk2 , that is, by the 0-1 vector

(
χ(ε1), . . . , χ(εk)

)
.

For the 0-1 vector α = (α1, . . . , αk) ∈ Zk2 let Vα = 〈vα〉 ⊂ R2k

denote the 1-dimensional real
Zk2-representation defined by:

ω · vα := (−1)ω1α1 · · · (−1)ωkαkvω = (−1)ω1α1+···+ωkαkvα,

for ω = (ω1, . . . , ωk) ∈ Zk2 . Then there is an isomorphism of Zk2-representations:

RZk
2 ∼=

⊕
α∈Zk

2

Vα.

Proposition 4.2.2. 1. Let V be the 1-dimensional Zk2-representation with the associated
0-1 vector (α1, . . . αk) ∈ Zk2 . Then

Indexpt
(Z2)k

(
S(V );F2

)
= 〈α1x1 + . . .+ αkxk〉 ⊂ F2[x1, . . . , xk].

2. Let U be an n-dimensional Zk2-representation with a decomposition U ∼= V1⊕. . .⊕Vn in
1-dimensional Zk2-representations V1, . . . , Vn. If (α1,i, . . . , αk,i) ∈ Zk2 is the associated
0-1 vector of Vi, then by Proposition 4.2.1

Indexpt
(Z2)k

(
S(U);F2

)
=

〈
n∏
i=1

(α1,ix1 + . . .+ αk,ixk)

〉
.

Example 4.2.3. For k = 2, the coordinate index set for R4 is (00, 01, 10, 11). Then

v00 = (0, 0, 0, 0) v01 = (0, 1, 0, 1)
v10 = (0, 0, 1, 1) v11 = (0, 1, 1, 0).

Now, if V10 = 〈v10〉, V01 = 〈v01〉 and V11 = 〈v11〉 are the 1-dimensional real Z2
2-representations

introduced before, then by Proposition 4.2.2

Indexpt
Z2
2

(
S(V10);F2

)
= 〈x1〉, Indexpt

Z2
2

(
S(V01);F2

)
= 〈x2〉 and Indexpt

Z2
2

(
S(V11);F2

)
= 〈x1+x2〉,

where H∗(BZ2
2;F2) = F2[x1, x2] with deg(x1) = deg(x2) = 1.

4.3 The index of a sphere bundle.

Consider the tautological bundle over the Grassmann manifold G`(Rd),

ξ := γd` =
(
E(γd` ), G`(Rd), E(γd` )

π−−→ G`(Rd), R`
)
,

and the associated sphere bundle of ξ:

Sξ := Sγd` =
(
E(Sξ), E(Sξ)

Sπ−−−→ G`(Rd), S`−1
)
.

The antipodal action on S`−1 induces a Z2-action on E(Sξ) which makes Sπ Z2-equivariant.
Having said that, we prove the Fadell–Husseini index of Sπ.
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Proposition 4.3.1. The Fadell–Husseini index of Sπ with respect to the introduced Z2

action is given by

Index
G`(Rd)
Z2

(
Sπ;F2

)
=

〈∑̀
j=0

xj ⊗ w`−j(γd` )

〉
,

where H∗(BZ2;F2) = F2[x] with deg(x) = 1.

Proof. Recall that the Fadell–Husseini index of Sπ is described as follows:

Index
G`(Rd)
Z2

(
Sπ;F2

)
:= ker

(
(id×Z2Sπ)∗ : H∗

(
BZ2 ×G`(Rd);F2

)
−→

H∗
(
EZk2 ×Z2 E(Sξ);F2

))
.

In order to calculate the index Index
G`(Rd)
Z2

(
Sπ;F2

)
consider the Borel construction bundle

induce by Sπ,
id×Z2

Sπ : EZ2 ×Z2
E(Sξ)→ EZ2 ×Z2

G`(Rd),
where since Z2 acts trivially on G`(Rd), EZ2 ×Z2

G`(Rd) ' BZ2 ×G`(Rd). The associated
Leray–Serre spectral sequence has E2-term given by

Ep,q2 = Hp
(
BZ2 ×G`(Rd);Hq(S`−1;F2)

)
,

where the local coefficient system is determined by the fundamental group of S`−1. Since
π1(S`−1) = 0, there are no local coefficients and the E2-term simplifies to

Ep,q2 = Hp
(
BZ2 ×G`(Rd);Hq(S`−1;F2)

)
= Hp(BZ2 ×G`(Rd);F2)⊗Hq(S`−1;F2).

Also, because
H∗(S`−1;F2) ∼= F2[ȳ]/〈ȳ2〉, with deg(ȳ) = `− 1,

then E∗,∗2
∼= E∗,∗` . This means that the first non-trivial differential appears on the E`-term

and by Theorem 3.4.1 applied to the fiber bundle id×Z2
Sπ we have that

d0,`−1
` (ȳ) =

∑̀
j=0

xj ⊗ w`−j(γd` ),

where w0(ξ), . . . , w`(ξ) are the Stiefel–Whitney classes of the tautological vector bundle γd` .

Finally, since all the differentials satisfy the Leibniz rule, d0,`−1
` determine all the differentials

of the associated spectral sequence and therefore the kernel of (id×Z2
Sπ)∗.

We can extend the idea of Proposition 4.3.1 in the following way: Let us start by
considering the inclusion ir : Z2 → Zk2 into the r-th summand. Then there is an action of
Zk2 on S`−1 described as follows: all Zk2 acts trivial except the r-th summand which acts
antipodally on the sphere. Using the introduced Zk2-action we get our last result of the
chapter.

Proposition 4.3.2. The Fadell–Husseini index of Sγd` with respect to the Zk2 action de-
scribed in the previous paragraph is given by

Index
G`(Rd)

Zk
2

(
Sπ;F2

)
=

〈∑̀
j=0

xjr ⊗ w`−j(γd` )

〉
,

where H∗(BZk2 ;F2) = F2[x1, . . . , xk], with deg(x1) = · · · = deg(xk) = 1.
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Proof. Given the inclusion map ir, there is an induced map between the corresponding
classifying spaces

BZ2
B(ir)−−−→ BZk2 ,

which induces a map between the Borel construction bundles

EZk2 ×Zk
2
E
(
Sγd`

)
id×Z2kSπ

��

EZ2 ×Z2
E
(
Sγd`

)
oo

id×Z2Sπ

��
BZk2 ×G`(Rd) BZ2 ×G`(Rd).

B(ir)×idoo

This morphism of bundles induces a morphism of the corresponding Serre spectral sequences
which on the zero column of the E2-term is an isomorphism. If we focus on the spectral
sequence associated to the bundle id ×Z2

Sπ, by Proposition 4.3.1 we get that the only
transgression map that appears is given by

d0,`−1
` (ȳ) =

∑̀
j=0

xj ⊗ w`−j(γd` ),

where
– 〈ȳ〉 = H`−1(S`−1;F2) ∼= E0,`−1

2
∼= E0,`−1

`
∼= F2,

– H∗(BZ2;F2) = F2[x], with deg(x) = 1, and
– w0(ξ), . . . , w`(ξ) are Stiefel–Whitney classes of the tautological vector bundle γd` .

Then, by the commutativity of the differentials, we conclude that the differential d0,`−1
` of

spectral sequences associated to id×Z2
k Sπ is given by

d0,`−1
` (y) =

∑̀
j=0

xjr ⊗ w`−j(γd` ).

The proof is complete since all the differentials of the spectral sequence satisfy the Leibniz
rule.
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Chapter 5

The
Grünbaum–Hadwiger–Ramos
problem for mass assignments

In this chapter we consider an extension of the classical Grünbaum–Hadwiger–Ramos mass
partition problem to the so-called mass assignments.

Let d, `, k and j be natural numbers with 1 ≤ ` ≤ d− 1. Consider a collection of j mass
assignments M = (µ1, . . . , µj) on the Grassmann manifold G`(Rd). Our aim is to find a
linear subspace L ∈ G`(Rd), and a k-arrangement HL = (HL

1 , . . . ,H
L
k ) in L, such that HL

equiparts the collection of masses ML = (µL1 , . . . , µ
L
j ). That is, we are looking for a mass

assignment admissible 4-tuple.

The proof of this new problem has two stages: First we rewrite the problem as a
parametrized Borsuk–Ulam type question to derive an appropriate configuration space/test
map scheme. As we mentioned in Chapter 2, this translate our partition problem to an
equivariant one. Second, we use the ideal-valued index theory and the computations of
Chapter 4 to solve the equivariant problem.

5.1 Our problem as a parametrized Borsuk–Ulam type
question.

In order to derive an appropriate CS/TM scheme and make our topological methods work
correctly, we consider an additional assumption on the first mass assignment µ1. We as-
sume that for every linear subspace L ∈ G`(Rd) the associated mass µL1 has compact and
connected support. This implies that for every direction in L there exists a unique oriented
affine hyperplane, orthogonal to the direction, equiparting the mass µL1 . Or in other words,
the space of all oriented affine hyperplanes in L which equiparts µL1 is homeomorphic to
Sdim(L)−1.

In the remainder of this section we describe all the ingredients to apply the CS/TM
scheme to our problem.
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5.1.1 The configuration space.

For the configuration space associated to our problem, or in other words the space of all
solution candidates, we take collections of k-arrangements in each of the linear space L ∈
G`(Rd) such that each of the k affine hyperplanes in L equiparts the mass µL1 (given by the
first mass assignment µ1).

More precisely, let us first consider the tautological bundle on the Grassmann manifold
G`(Rd):

ξ := γd` =
(
E(γd` ), B(γd` ) = G`(Rd), E(γd` )

π−−→ B(γd` ), F (γd` ) = R`
)
.

The assumption on the mass assignment µ1 allows us to see the associated sphere bundle of
ξ:

Sξ := Sγd` =
(
E(Sξ), B(Sξ) = G`(Rd), E(Sξ)

Sπ−−−→ B(Sξ), F (Sξ) = S`−1
)
,

as the space of all oriented affine hyperplanes of linear subspaces L ∈ G`(Rd) which equipart
corresponding masses µL1 . In this way we already obtained a configuration space for the case
k = 1.

For k ≥ 2, that is for arrangements with more than one hyperplane, we proceed as
follows. Consider the k-fold product bundle (Sξ)k:

(Sξ)k = (E(Sξ)k, G`(Rd)k, E(Sξ)k
qk:=(Sπ)k−−−−−−−→ G`(Rd)k, (S`−1)k),

and take the pullback along the diagonal embedding ∆k : G`(Rd) −→ G`(Rd)k:

E
(
∆∗k((Sξ)k)

)
//

pk

��

E(Sξ)k

qk

��
G`(Rd)

∆k // G`(Rd)k.

The space of all solution candidates, associated to the parameters (d, `, j, k), is the total
space of the pullback bundle:

C(d, `, k) := E
(
∆∗k((Sξ)k)

)
= {(L; v1, . . . , vk) | L ∈ G`(Rd), vi ∈ L, ‖v1‖ = · · · = ‖vk‖ = 1}.

This means that C(d, `, k) is the total space of the fiber bundle ∆∗k((Sξ)k):

(S`−1)k // C(d, `, k)
pk // G`(Rd), (5.1)

where the map pk is given by (L; v1, . . . , vk) 7−→ L. Recall that by our assumption for every
(L; v1, . . . , vk) ∈ C(d, `, k) each of the vectors vi parametrizes the oriented affine hyperplane
in L orthogonal to vi, oriented by vi, which equiparts the mass µL1 .

The Weyl group S±k = Zk2 o Sk, also called the group of signed permutations, acts
naturally, and fiberwise, on C(d, `, k) by

((β1, . . . , βk) o τ) · (L; v1, . . . , vk) = (L; (−1)β1vτ−1(1), . . . , (−1)βkvτ−1(k)),

for ((β1, . . . , βk) o τ) ∈ S±k and (L; v1, . . . , vk) ∈ C(d, `, k).
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5.1.2 The test space.

Consider the real vector space RZk
2 and its codimension 1 subspace:

Uk :=
{

(yα)α∈Zk
2
∈ RZk

2 :
∑
α∈Zk

2

yα = 0
}
.

The structure of a real S±k -representation on the vectors space RZk
2 is induced by: the ele-

ment ((β1, . . . , βk)oτ) ∈ S±k acts on the vector (y(α1,...,αk))(α1,...,αk)∈Zk
2
∈ RZk

2 by permuting
the indices as follows:

((β1, . . . , βk) o τ) · (α1, . . . , αk) = (β1 + ατ−1(1), . . . , βk + ατ−1(k)).

Here the addition is assumed to be in Z2. With respect to this action, the subspaces Uk is

a S±k -subrepresentation of RZk
2 .

Let us first consider RZk
2 as an Zk2-representation where Zk2 ⊆ Zk2 o Sk = S±k . For

ω := (ω1, . . . , ωk) ∈ Zk2 we denote by Vω the 1-dimensional real Zk2-representation defined
by:

α · v := (−1)ω1α1 · · · (−1)ωkαkv = (−1)ω1α1+···+ωkαkv

for α = (α1, . . . , αk) ∈ Zk2 and v ∈ Vω. Then there are isomorphisms of Zk2-representations:

RZk
2 ∼=

⊕
ω∈Zk

2

Vω and Uk ∼=
⊕

ω∈Zk
2\{0}

Vω. (5.2)

Notice that, under the previous isomorphism, Vω corresponds to the subspace of RZk
2

generated by the vector with αth coordinate (−1)ω1α1+···+ωkαk .

In order to obtain a decomposition of RZk
2 , now as an S±k -representation, let us first

partition Zk2 , as a set, into the disjoint union Zk2 = A0 tA1 t · · · tAk where, for 0 ≤ i ≤ k,
we define

Ai := {(ω1, . . . , ωk) ∈ Zk2 : ω1 + · · ·+ ωk = i}.

Addition is assumed to be in Z. It is not hard to see that for every 0 ≤ i ≤ k the direct
sum Wi :=

⊕
ω∈Ai

Vω is a S±k -representation, and in addition there are isomorphisms of

S±k -representations:

RZk
2 ∼= W0 ⊕W1 ⊕ · · · ⊕Wk and Uk ∼= W1 ⊕ · · · ⊕Wk.

We set U ′k := W2 ⊕ · · · ⊕Wk, and consequently Uk ∼= W1 ⊕ U ′k.

The test space, associated to the parameters (d, `, j, k), is the total space of the following
trivial vector bundle π2:

U ′k ⊕ (Uk)⊕j // (U ′k ⊕ (Uk)⊕j−1)×G`(Rd) // G`(Rd). (5.3)

The reason for such a choice of the test space becomes clear in the next section and in
Theorem 5.1.1. The group S±k acts on the product (U ′k ⊕ (Uk)⊕j−1) × G`(Rd) diagonally
where the action on the Grassmann manifold G`(Rd) is assumed to be trivial.
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5.1.3 The test map.

We recall that the parameters (d, `, j, k) are fixed and in addition we have fixed a collection
of j mass assignmentsM = (µ1, . . . , µj) on the Grassmann manifold G`(Rd). The test map
associated to the collection M is the bundle map

φM : C(d, `, k) −→ (U ′k ⊕ (Uk)⊕j−1)×G`(Rd)

defined by

(L; v1, . . . , vk) 7−→
((
µL1 (Hα1

v1 ∩ · · · ∩H
αk
vk

)− 1
2kµ

L
1 (L)

)
(α1,...,αk)∈Zk

2
,((

µLi (Hα1
v1 ∩ · · · ∩H

αk
vk

)− 1
2kµ

L
i (L)

)
(α1,...,αk)∈Zk

2

)
2≤i≤j ;L

)
.

The fact that (
µL1 (Hα1

v1 ∩ · · · ∩H
αk
vk

)− 1
2k

)
(α1,...,αk)∈Zk

2
∈ U ′k

is a consequence of our assumption that for every (L; v1, . . . , vk) ∈ C(d, `, k) each of the
vectors vi parametrizes the oriented affine hyperplane in L orthogonal to vi, oriented by vi,
which equiparts the mass µL1 . More precisely, let us consider ωi = (ωi1, . . . , ω

i
k) ∈ Zk2 such

that ωii = 1 and ωij = 0 for every i 6= j. By the isomorphism of Zk2-representations (5.2), Vωi

corresponds to the subspace of RZk
2 generated by the vector with αth coordinate (−1)ωiαi ,

which means that the αth coordinate is positive only when αi = 0. To simplify the notation,
let us denote by OHα1,...,αk

the intersection Hα1
v1 ∩ · · · ∩ H

αk
vk

. Since each affine hyperplane

Hvi in L equiparts the mass µL1 , the inner product between
(
µL1 (Hα1

v1 ∩· · ·∩H
αk
vk

)− 1
2k

)
α∈Zk

2

and the generator of Vωi is given by〈(
µL1
(
OHα1,...,αk

)
− 1

2k

)
α∈Zk

2
,
(
(−1)(α,ωi)

)
α∈Zk

2

〉
=
[∑

µL1
(
OHα1,...,0,...,αk

)
+ 1

2µ
L
1 (L)

]
−
[∑

µL1
(
OHα1,...,1,...,αk

)
+ 1

2µ
L
1 (L)

]
= 0,

for every 1 ≤ i ≤ k. Finally, we conclude that(
µL1 (Hα1

v1 ∩ · · · ∩H
αk
vk

)− 1
2kµ

L
1 (L)

)
(α1,...,αk)∈Zk

2
∈W⊥1 .

The test map φM is (fiberwise) S±k -equivariant map with respect to the already in-
troduced actions of S±k on the configuration space C(d, `, k) and on the test space (U ′k ⊕
(Uk)⊕j−1) × G`(Rd). The key property of the construction we have made is that for the
given collection of mass assignments M there exists a k arrangement in the linear sub-
space L ∈ G`(Rd) which equiparts the collection of masses ML if and only if (L; 0, 0) ∈
im(φM) ∩

(
U ′k ⊕ U

⊕j−1
k ×G`(Rd)

)
. Consequently we have proved the following theorem.

Theorem 5.1.1. Let d, `, k and j be natural numbers with 1 ≤ ` ≤ d − 1. Assume that
∆∗k((Sξ)k) and π2 are already introduced bundles in (5.1) and (5.3), and denote by Sπ2 the
associated sphere bundle.

(a) If (d, `, j, k) is not a mass assignment admissible, then there exists a S±k -equivariant
bundle map ∆∗k((Sξ)k) −→ Sπ2.

(b) If there in no S±k -equivariant bundle map ∆∗k((Sξ)k) −→ Sπ2, then (d, `, j, k) is a
mass assignment admissible.
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5.2 Fadell–Husseini index calculations.

From section 5.1 we obtain the following commutative diagram:

C(d, `, k)

ρk %%

φM // S(U ′k ⊕ (Uk)⊕j−1)×G`(Rd)

Sπ2uu
Gt(Rd)

(5.4)

associated to the parameters (d, `, j, k). Here ρk and Sπ2 are the introduced fiber bun-
dles which define the configuration space and the test space respectively. Notice that, by
Theorem 5.1.1, we are looking for the non-existence of the S±k -equivariant map φM in 5.4.
However, it is enough to prove that the restriction of φM to the subgroup Zk2 of the group
of signed permutations S±k does not exist. The non-existence of the Zk2-equivariant map
φM can be established by using the properties of the Fadell–Husseini index introduced in
Chapter 4. For that purpose, in this section we compute the Fadell–Husseini indices of the
fiber bundles ρk and Sπ2 with respect to the action of the subgroup Zk2 ⊂ S±k .

5.2.1 The Fadell–Husseini index of the test space.

Let us start computing the Fadell–Husseini index of the projection map

Sπ2 : S(U ′k ⊕ (Uk)⊕j−1)×G`(Rd) −→ G`(Rd)

with respect to the action of the subgroup Zk2 ⊆ S±k , and with coefficients in F2. This means
we are looking for:

Index
G`(Rd)

Zk
2

(
Sπ2;F2

)
:=

ker
(

(id×EZk
2
π2)∗ : H∗

(
EZk2 ×Zk

2
G`(Rd);F2

)
−→

H∗
(
EZk2 ×Zk

2
(S(U ′k ⊕ (Uk)⊕j−1 ×G`(Rd));F2

))
.

Since π2 is a trivial fiber bundle, and the Zk2-action on G`(Rd) is trivial, by the example
3 in 4.1.6 and Proposition 4.2.2 we obtain the following result:

Theorem 5.2.1. The Fadell–Husseini index of the projection map

Sπ2 : S(U ′k ⊕ (Uk)⊕j−1)×G`(Rd) −→ G`(Rd)

with respect to the Zk2 action described in 5.1.2 is given by

Index
G`(Rd)

Zk
2

(
Sπ2;F2

)
=〈 k∏

i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\Γ

(α1x1 + · · ·+ αkxk)j
〉
⊗H∗(G`(Rd);F2), (5.5)

where Γ = {(0, . . . , 0), (1, . . . , 0), . . . , (0, . . . , 1)} and H∗(BZk2 ;F2) = F2[x1, . . . , xk], with
| x1 |= · · · =| xk |= 1.
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For the cohomology of the real Grassmann manifold we recall the classical result of Borel
[30, p. 190], which gives a presentation of the cohomology with F2 coefficients in the form
of the truncated polynomial ring as follows:

H∗(G`(Rd);F2) ∼= F2[w1, . . . , w`, w1, . . . , wd−`]/I`,d,

where deg(wi) = i, deg(wj) = j for 1 ≤ i ≤ `, 1 ≤ j ≤ d− `, and I`,d is the ideal generated
by the d graded components of the equality

(1 + w1 + · · ·+ w`)(1 + w1 + · · ·+ wd−`) = 1.

In other words, the ideal I`,d is generated by the polynomials:

min{s,`}∑
j=max{0,s+`−d}

wj · ws−j , 1 ≤ s ≤ d.

Here the generator wi, for 1 ≤ i ≤ `, can be identify with the Stiefel–Whitney classes of the
canonical bundle γd` while the remaining generators wi, for 1 ≤ i ≤ d − `, can be identify
with the dual Stiefel–Whitney classes of γd` .

5.2.2 The Fadell–Husseini index of the configuration space.

In Section 5.1.1 we have defined the configuration space as the total space of the pull-back
bundle

C(d, `, k) = E
(
∆∗k((Sξ)k)

)
//

��

E(Sξ)k

qk

��
G`(Rd)

∆k // G`(Rd)k.

where ∆k is the diagonal embedding. More precisely,

C(d, `, k) = E
(
∆∗k((Sξ)k)

)
= {(L; v1, . . . , vk) | L ∈ G`(Rd), vi ∈ L, ‖v1‖ = · · · = ‖vk‖ = 1}.

In this section we determine the Fadell–Husseini index of the map

pk : C(d, `, k) −→ G`(Rd)

with respect to the action of the subgroup Zk2 ⊆ S±k and with coefficients in the field with
two elements F2. In other words, we describe:

Index
G`(Rd)

Zk
2

(
pk;F2

)
:=

ker
(

(id×Zk
2
pk)∗ : H∗

(
EZk2 ×Zk

2
G`(Rd);F2

)
−→

H∗
(
EZk2 ×Zk

2
C(d, `, k);F2

))
.

The computation of the index Index
G`(Rd)

Zk
2

(
pk;F2

)
⊆ H∗

(
EZk2 ×Zk

2
G`(Rd);F2

)
is done in

two steps. First, we describe the index

Index
G`(Rd)k

Zk
2

(
qk;F2

)
⊆ H∗

(
EZk2 ×Zk

2
G`(Rd)k;F2

)
,

and then show that

Index
G`(Rd)

Zk
2

(
pk;F2

)
= (∆k)∗

(
Index

G`(Rd)k

Zk
2

(
qk;F2

))
.
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H∗(BZk2 × G`(R
d)k; F2)

H
∗
(
(
S
`
−

1
)
k
;
F 2

)

0 1 2 · · · `− 1 ` `+ 1

0

1

2

...

`− 1

`

y1,...,yk

z1,...,zk

d`d`

Figure 5.1: The E`-term of the spectral sequence (5.6).

Index of qk

The Fadell–Husseini index of the map qk : E(Sξ)k −→ G`(Rd)k is, by definition, the kernel:

Index
G`(Rd)

Zk
2

(
qk;F2

)
:=

ker
(

(id×Zk
2
qk)∗ : H∗

(
EZk2 ×Zk

2
G`(Rd)k;F2

)
−→

H∗
(
EZk2 ×Zk

2
E(Sξ)k;F2

))
.

In oder to identify the index Index
G`(Rd)

Zk
2

(
qk;F2

)
we consider the fiber bundle

(S`−1)k // EZk2 ×Zk
2
E(Sξ)k // EZk2 ×Zk

2
G`(Rd)k = BZk2 ×G`(Rd)k.

The associated Serre spectral sequence has E2-term given by

Ei,j2 = Hi(BZk2 ×G`(Rd)k;Hj((S`−1)k;F2)),

where the local coefficient system is determined by the action of the fundamental group of
the base space. Since we are considering coefficients in the field F2, the fundamental group

π1(BZk2 ×G`(Rd)k) ∼= π1(BZk2)× π1(G`(Rd))k ∼= Zk2 × Z⊕k2

acts trivially on the cohomology of the fiber Hj((S`−1)k;F2), and consequently the E2-term
of the spectral sequence simplifies and becomes

Ei,j2
∼= Hi(Zk2 ×G`(Rd)k;F2)⊗Hj((S`−1)k;F2). (5.6)

In addition, all the differentials of the spectral sequence satisfy the Leibniz rule.

Let us denote the cohomology of the fiber (S`−1)k as follows

H∗((S`−1)k;F2) ∼= H∗(S`−1;F2)⊗k ∼= F2[y1]/(y2
1)⊗ · · · ⊗ F2[yk]/(y2

k) ∼=
F2[y1, · · · , yk]/(y2

1 , · · · , y2
k)
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where deg(y1) = · · · = deg(yk) = `− 1.

Now we determine the first possible non-trivial differentials d` by finding its values on
the generators of the cohomology ring of the fiber, these are z1 = d`(y1), . . . , zk = d`(yk).
For that, consider the morphism of bundles

E(Sξ)k //

qk

��

E(Sξ)

��
G`(Rd)k

gr // G`(Rd)

induced by the projection gr : G`(Rd)k −→ G`(Rd) of the r-th factor, for 1 ≤ r ≤ k. This
morphism induces yet another morphism of the bundles

EZk2 ×Zk
2
E(Sξ)k //

��

EZk2 ×Zk
2
E(Sξ)

��
BZk2 ×G`(Rd)k

id×gr // BZk2 ×G`(Rd),

because it respects the action of Zk2 . The new morphism of now Borel Constructions, in
turn, induces a morphism of the corresponding Serre spectral sequences which on the level
of fibers, the zero column, is a monomorphism. Furthermore, it is also a monomorphism on
the zero row of the E2 and consequently E`-term. Thus,

zr = (id×gr)∗(z),

and so we turn our attention to the Serre spectral sequence associated to the fiber bundle

S`−1 // EZk2 ×Zk
2
E(Sξ) // BZk2 ×G`(Rd).

In particular, we want to determine z = d`(y), where y ∈ H∗(S`−1;F2) is the generator.
For an illustration of this morphism of spectral sequences see Figure 5.2.

H∗(BZk2 × G`(R
d)k; F2)

0 1 2 · · · `− 1 ` `+ 1

0

1

2

...

`− 1

`

y1,...,yk

z1,...,zk

d`d`

(id×gr)∗

H∗(BZk2 × G`(R
d); F2)

0 1 2 · · · `− 1 ` `+ 1

0

1

2

...

`− 1

`

y

z

d`d`

Figure 5.2: Morphism of spectral sequences induced by the projection gr.

Now consider the inclusion Z2
ir−→ Zk2 into the r-th summand. Then there is an induced

map between corresponding classifying spaces

BZ2
B(ir)−−−→ BZk2 ,
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which further on induces a map between corresponding Borel construction bundles

EZk2 ×Zk
2
E(Sξ)

��

EZ2 ×Z2
E(Sξ)oo

��
BZk2 ×G`(Rd) BZ2 ×G`(Rd).

B(ir)×idoo

This morphism of bundles induces a morphism of the corresponding Serre spectral sequences
which on the zero column of the E2-term is an isomorphism; for an illustration see Figure
5.3.

H∗(BZk2 × G`(R
d); F2)

0 1 2 · · · `− 1 ` `+ 1

0

1

2

...

`− 1

`

y

z

d`d`

∼=

(B(ir) × id)
∗

H∗(BZ2 × G`(R
d); F2)

0 1 2 · · · `− 1 ` `+ 1

0

1

2

...

`− 1

`

y

z

d`d`

Figure 5.3: Morphism between spectral sequences induced by B(ir).

From the classical work of Albrecht Dold presented in Section 3.4, applied to the Serre
spectral sequence associated with fiber bundle

S`−1 // EZ2 ×Z2
E(Sξ) // BZ2 ×G`(Rd) ,

we have that

z := d`(y) =
∑̀
j=0

xj ⊗ w`−j(ξ)

∈ H∗(BZ2 ×G`(Rd);F2) ∼= H∗(BZ2;F2)⊗H∗(G`(Rd);F2),

where

– y ∈ H`−1(S`−1;F2) ∼= E0,`−1
2

∼= E0,`−1
`

∼= F2 is the generator,

– z ∈ H`(BZ2 ×G`(Rd);F2) ∼=
⊕`

a=0H
a(BZ2;F2)⊗H`−a(G`(Rd);F2),

– H∗(BZ2;F2) = F2[x], with deg(x) = 1, and
– w0(ξ), . . . , w`(ξ) are Stiefel–Whitney classes of the tautological vector bundle γd` .

Consequently,

z =
∑̀
j=0

xjr ⊗ w`−j(ξ) ∈ H∗(BZk2 ;F2)⊗H∗(G`(Rd);F2).
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Recall that we have already fixed the notationH∗(BZk2 ;F2) = F2[x1, · · · , xk] where deg(x1) =
· · · = deg(xk) = 1. Furthermore, for 1 ≤ r ≤ k we get that

zr =
∑̀
j=0

xjr ⊗ (1 ⊗ · · · ⊗ w`−j(ξ) ⊗ · · · ⊗ 1) ∈ H∗(BZk2 ;F2) ⊗ H∗(G`(Rd);F2)⊗k.

If we set for 0 ≤ i ≤ ` and 1 ≤ r ≤ k that

wi,r := 1⊗ · · · ⊗ wi(ξ)⊗ · · · ⊗ 1,

we can rewrite

zr =
∑̀
j=0

xjr ⊗ w`−j,r.

This, means that

Index
G`(Rd)k

Zk
2

(
qk;F2

)
= 〈z1, . . . , zk〉 =

〈∑̀
j=0

xjr ⊗ w`−j,r : 1 ≤ r ≤ k
〉
. (5.7)

Index of pk

In this part we finally retrieve the Fadell–Husseini index of the map pk : C(d, `, k) −→ G`(Rd)
with respect to the action of Zk2 and with coefficients in F2. In other words, we compute:

Index
G`(Rd)

Zk
2

(
pk;F2

)
:=

ker
(

(id×Zk
2
pk)∗ : H∗

(
EZk2 ×Zk

2
G`(Rd);F2

)
−→

H∗
(
EZk2 ×Zk

2
C(d, `, k);F2

))
.

The pullback diagram

C(d, `, k) = E
(
∆∗k((Sξ)k)

)
//

pk

��

E(Sξ)k

qk

��
G`(Rd)

∆k // G`(Rd)k,

after applying the Borel construction, yields the following the pullback diagram

EZk2 ×Zk
2
C(d, `, k) = EZk2 ×Zk

2
E
(
∆∗k((Sξ)k)

)
//

id×Zk2
pk

��

EZk2 ×Zk
2
E(Sξ)k

id×Zk2
qk

��
BZk2 ×G`(Rd)

∆k // BZk2 ×G`(Rd)k.

Furthermore, this morphism between the fiber bundles

(S`−1)k // EZk2 ×Zk
2
C(d, `, k) // BZk2 ×G`(Rd)
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and

(S`−1)k // EZk2 ×Zk
2
E(Sξ)k // BZk2 ×G`(Rd)

induces a morphism between their Serre spectral sequences. Since the fibers of the bundles
are homeomorphic, and the (non-trivial) fundamental groups of both base spaces act trivially
on the cohomology of the fibers, the E2-terms of the spectral sequences are as follows:

Ei,j2 (id×Zk
2
pk) ∼= Hi(BZk2 ×G`(Rd);F2)⊗Hj((S`−1)k;F2)

and

Ei,j2 (id×Zk
2
qk) ∼= Hi(BZk2 ×G`(Rd)k;F2)⊗Hj((S`−1)k;F2).

Having in mind that the induced morphism of spectral sequences is an isomorphism on the
0-column of the E2-term, and the differentials of both sequences satisfy Leibniz rule, we get

Index
G`(Rd)

Zk
2

(
pk;F2

)
= (id×∆k)∗

(
Index

G`(Rd)k

Zk
2

(
qk;F2

))
=

〈∑̀
s=0

(id×∆k)∗(xsr ⊗ w`−s,r) : 1 ≤ r ≤ k

〉

=

〈∑̀
s=0

xsr ⊗∆∗k(w`−s,r) : 1 ≤ r ≤ k

〉

=

〈∑̀
s=0

xsr ⊗ w`−s : 1 ≤ r ≤ k

〉
.

In summary, we have obtained that

Index
G`(Rd)

Zk
2

(
pk;F2

)
=
〈∑̀
s=0

xsr ⊗ w`−s : 1 ≤ r ≤ k
〉
. (5.8)

5.3 Proofs of the main results.

Finally, in this section we present the proofs of all the remaining results introduced in
Chapter 1. At the beginning of each subsection we briefly recall the result that we prove.

5.3.1 Proof of Theorem 1.3.1

Let (d, `, j, k) be a 4-tuple of natural numbers where 1 ≤ ` ≤ d− 1. As introduced in (1.5),
we denote by Rd,`,k the truncated polynomial ring

F2[x1, . . . , xk, w1, . . . , w`, w1, . . . , wd−`]/Id,`

where deg(x1) = · · · = deg(xk) = 1, deg(wi) = i, deg(wj) = j for 1 ≤ i ≤ `, 1 ≤ j ≤ d− `,
and Id,` is the ideal generated by the polynomials

min{s,`}∑
j=max{0,s+`−d}

wj · ws−j , 1 ≤ s ≤ d.
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In addition, assume that

k∏
i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\Γ

(α1x1 + · · ·+ αkxk)j /∈
〈∑̀
s=0

xsr ⊗ w`−s : 1 ≤ r ≤ k
〉
, (5.9)

where Γ = {(0, . . . , 0), (1, . . . , 0), . . . , (0, . . . , 1)}. Now, we will prove that the 4-tuple (d, `, j, k)
is mass assignment admissible.

Let us assume the opposite, that (d, `, k, j) is not mass assignment admissible. From the
configuration space/test map scheme, Theorem 5.1.1(a), we get an S±k -equivariant bundle
map ∆∗k((Sξ)k) −→ Sπ2. Here the bundles ∆∗k((Sξ)k) and π2 are defined in (5.1) and (5.3)
respectively. Thus, according the the monotonicity property of the Fadell–Husseini index,
the following inclusion must hold:

Index
G`(Rd)

Zk
2

(
π2;F2

)
⊆ Index

G`(Rd)

Zk
2

(
pk;F2

)
.

On the other hand, from (5.5) and (5.8), we have that

Index
G`(Rd)

Zk
2

(
π2;F2

)
=〈 k∏
i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\Γ

(α1x1 + · · ·+ αkxk)j
〉
⊗H∗(G`(Rd);F2),

and

Index
G`(Rd)

Zk
2

(
pk;F2

)
=
〈∑̀
s=0

xsr ⊗ w`−s : 1 ≤ r ≤ k
〉
.

Consequently,

〈 k∏
i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\Γ

(α1x1 + · · ·+ αkxk)j
〉
⊗H∗(G`(Rd);F2) ⊆

〈∑̀
s=0

xsr ⊗ w`−s : 1 ≤ r ≤ k
〉
.

In particular,

k∏
i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\Γ

(α1x1 + · · ·+ αkxk)j ∈
〈∑̀
s=0

xsr ⊗ w`−s : 1 ≤ r ≤ k
〉
.

This is a contradiction with the assumption (5.9), and we can conclude that the 4-tuple
(d, `, j, k) is mass assignment admissible.

5.3.2 Proof of Corollary 1.3.4

Let d ≥ 1, k ≥ 1, j ≥ 1 and ` ≥ 1 be integers with 1 ≤ ` ≤ d. Assume that k ≥ ` + 1. We
will prove that

ek,j ∈ Id,`,k. (5.10)
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We prove (5.10) in two different ways, where the first proof is direct but more complicated,
while the second argument is elegant, but relies on an additional fact.

The first proof of (5.10): For simplicity we denote the generators of the ideal Id,`,k by

βr :=
∑`
s=0 x

s
r w`−s, where 1 ≤ r ≤ k. Therefore, Id,`,k = 〈β1, . . . , βk〉. In order to show

(5.10) we will prove that

`+1∑
i=1

βi
∏

1≤a<b≤`+1,a6=i,b 6=i

(xa + xb) | ek,j . (5.11)

For that we use the following technical claim.

Claim 5.3.1. let k ≥ 2 be an integer. Then in the polynomial ring F2[x1, . . . , xk] the
following equality holds

∏
1≤a<b≤k

(xa + xb) =
∑
π∈Sk

xk−1
π(1)x

k−2
π(2) · · ·x

0
π(k). (5.12)

Proof. The proof is by induction on k ≥ 2. While the case k = 2 obvious, the case k = 3
follows by the following direct computation:

∏
1≤a<b≤3

(xa + xb) = (x1 + x2)(x1 + x3)(x2 + x3)

= x2
1x2 + x2

1x3 + x2
2x1 + x2

2x3 + x2
3x1 + x2

3x2

=
∑
π∈S3

x2
π(1)x

1
π(2)x

0
π(3).

Assume now that the equality (5.12) is true for k = r − 1, that is

∏
1≤a<b≤r−1

(xa + xb) =
∑

π∈Sr−1

xr−2
π(1)x

r−3
π(2) · · ·x

0
π(r−1) =: A.

Then

∏
1≤a<b≤r

(xa + xb) =
∏

1≤a<b≤r−1

(xa + xb) ·
r−1∏
i=1

(xi + xr)

= A ·
r−1∏
i=1

(xi + xr)

= A ·

(
xr−1
r +

r−1∑
s=1

∑
c1,...,cs∈[r−1],
cp 6=cq for p 6=q

xr−1−s
r xc1 · · ·xcs

)
,

where [r − 1] := {1, . . . , r − 1}. Now, by the induction hypothesis, each summand of the



50

previous expression can be written in the following way

A · xr−1
r =

∑
c1,...,cr−1∈[r−1]

xr−1
r xr−2

c1 xr−3
c2 · · ·x

1
cr−2

x0
cr−1

,

A ·
r−1∑
i=1

xr−2
r xi =

∑
c1,...,cr−1∈[r−1]

xr−1
c1 xr−2

r xr−3
c2 · · ·x

1
cr−2

x0
cr−1

,

A ·
∑

c1,c2∈[r−1]

xr−3
r xc1xc2 =

∑
c1,...,cr−1∈[r−1]

xr−1
c1 xr−2

c2 xr−3
r · · ·x1

cr−2
x0
cr−1

,

...
...

A ·
∑

c1,...,cr−1∈[r−1]

xc1 · · ·xcr−1
=

∑
c1,...,cr−1∈[r−1]

xr−1
c1 xr−2

c2 xr−3
c3 · · ·x

1
cr−1

x0
r,

because we are working in F2[x1, . . . , xk] and therefore all the remaining summands,
appearing in pairs, vanish. Here all the indices in all the sums are assumed to be pairwise
distinct, that is cp 6= cq for 1 ≤ p < q < r − 1. Summing up these equalities together, we
conclude that

∏
1≤a<b≤r

(xa + xb) = A ·

(
xr−1
r +

r−1∑
s=1

∑
c1,...,cs∈[r−1],
cp 6=cq for p 6=q

xr−1−s
r xc1 · · ·xcs

)

=
∑
π∈Sr

xr−1
π(1)x

r−2
π(2) · · ·x

0
π(r),

as claimed. This completes the induction.

Using the claim we just proved, the equality (5.12), we get that

k∑
i=1

( ∏
1≤a<b≤k,a 6=i,b6=i

(xa + xb)
)

=

k∑
i=1

( ∑
c1,...,ck−1∈[k]\{i},

cp 6=cq for p6=q

xk−2
c1 xk−3

c2 · · ·x0
ck−1

)
. (5.13)

Now looking at the right hand since of (5.13) we observe that for each monomial

xk−2
c1 xk−3

c2 · · ·x0
ck−1

, c1, . . . , ck−1 ∈ [k]\{i},

in the i-th summand of the right hand side there is another identical monomial

xk−2
c1 xk−3

c2 · · ·x0
i , c1, . . . , ck−2, i ∈ [k]\{ck−1},

in the ck−1-st summand of the right hand side. Consequently, the right hand side of (5.13)
vanishes and we get that

k∑
i=1

( ∏
1≤a<b≤k,a 6=i,b 6=i

(xa + xb)
)

= 0. (5.14)
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Consider now an integer f such that 1 ≤ f ≤ `− 1 ≤ k− 2 and the following polynomial

k∑
i=1

xfi

( ∏
1≤a<b≤k,a 6=i,b 6=i

(xa + xb)
)

=

k∑
i=1

xfi

( ∑
c1,...,ck−1∈[k]\{i},

cp 6=cq for p6=q

xk−2
c1 xk−3

c2 · · ·x0
ck−1

)
. (5.15)

Again we see that for each monomial

xfi (xk−2
c1 xk−3

c2 · · ·xfcs · · ·x
0
ck−1

), c1, . . . , ck−1 ∈ [k]\{i},

in the i-th summand of the right hand side of (5.15) there exists identical monomial

xfcs(xk−2
c1 xk−3

c2 · · ·xfi · · ·x
0
ck−1

), c1, . . . , ck−1 ∈ [k]\{i},

in the cs-th summand. Hence,

k∑
i=1

xfi

( ∏
1≤a<b≤k,a 6=i,b6=i

(xa + xb)
)

= 0. (5.16)

In the final step of the proof we transform the polynomial from the left hand side of the
relation (5.11) as follows:

`+1∑
i=1

βi
∏

1≤a<b≤`+1,a6=i,b 6=i

(xa + xb) =

`+1∑
i=1

∏
1≤a<b≤`+1,a 6=i,b6=i

(xa + xb)
(∑̀
s=0

xsiw`−s

)

=
∑̀
s=0

w`−s

`+1∑
i=1

xsi
∏

1≤a<b≤`+1,a 6=i,b6=i

(xa + xb)

(5.14) (5.16)
= w0

`+1∑
i=1

x`i
∏

1≤a<b≤`+1,a 6=i,b6=i

(xa + xb)

(5.12)
=

∏
1≤a<b≤`+1

(xa + xb).

Since, `+ 1 ≤ k we have that

`+1∑
i=1

βi
∏

1≤a<b≤`+1,a 6=i,b6=i

(xa + xb) |
∏

1≤a<b≤k

(xa + xb).

On the other hand, ∏
1≤a<b≤k

(xa + xb) | ek,j ,

and so
`+1∑
i=1

βi
∏

1≤a<b≤`+1,a6=i,b 6=i

(xa + xb) | ek,j .
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Thus, we have proved that ek,j ∈ Id,`,k, as claimed.

The second proof of (5.10): For the proof we use the following fact:

Let f(T ) ∈ (F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`)[T ] be an arbitrary monic polynomial of
degree ` < k, and set g(T ) = T k−1−`f(T ). Then,∏

1≤a<b≤k

(xa + xb) ∈ 〈f(x1), . . . , f(xk)〉. (5.17)

Indeed, let us consider the determinant modulo 2 of the Vandermonde matrix. Then, us-
ing the invariance of determinant with respect to the row operations and expansion of the
determinant with respect to a row, we have that

∏
1≤a<b≤k

(xa + xb) = det


1 · · · 1
x1 · · · xk
...

...
...
...

...

xk−1
1 · · · xk−1

k

 = det


1 · · · 1
x1 · · · xk
...

...
...
...

...
g(x1) · · · g(xk)


=
∑

1≤r≤k

D(x1, . . . , x̂r, . . . , xk)g(xr)

∈ 〈g(x1), . . . , g(xk)〉 ⊆ 〈f(x1), . . . , f(xk)〉

where D(x1, . . . , x̂r, . . . , xk) denotes an appropriate minor, which is a polynomial in all
variables but xr.

Now (5.10), the claim that ek,j ∈ Id,`,k = 〈β1, . . . , βk〉, follows from the observation∏
1≤a<b≤k(xa + xb) | ek,j and the relation (5.17) with f(T ) =

∑`
s=0 w`−s T

s.

5.3.3 Proof of Theorem 1.3.5

The case (d, d, k, j) is due to Mani-Levitska, Vrećica and Živaljević [12, Thm. 39]. Thus,
let us assume that d ≥ 2, k ≥ 1, j ≥ 1, ` ≥ 1 and t ≥ 0, r ≥ 0 are integers with
1 ≤ k ≤ ` ≤ d − 1. Set j = 2t + r with 0 ≤ r ≤ 2t − 1, and in addition assume that
d ≥ 2t+k−1 + r.

In order to prove that the 4-tuple (d, `, j, k) is mass assignment admissible we show that

ek,j /∈ Id,`,k ⊆ Rd,`,k ∼= (F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`)[x1, . . . , xk],

which, according to Theorem 1.3.1, suffices.

Since the element ek,j is actually a polynomial with coefficients only in F2, that is ek,j ∈
F2[x1, . . . , xk] ⊆ Rd,`,k, we first analyse the intersection F2[x1, . . . , xk]∩Id,`,k of the subring
F2[x1, . . . , xk] of the ring Rd,`,k and the ideal Id,`,k. For simplicity, as in the previous
section, we denote the generators of the ideal Id,`,k by

βr :=
∑̀
s=0

xsr w`−s

where 1 ≤ r ≤ k. Hence, Id,`,k = 〈β1, . . . , βk〉.

Lemma 5.3.2. ek,j /∈ 〈β1, . . . , βk〉 ⊆ Rd,`,k if and only if ek,j /∈ 〈xd1, . . . , xdk〉 ⊆ F2[x1, . . . , xk].
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Proof. First, we observe that 〈xd1, . . . , xdk〉 ⊆ 〈β1, . . . , βk〉. Indeed, for every 1 ≤ i ≤ k we
have that

xdi =
( d−∑̀
r=0

xri wd−`−r

)
·
(∑̀
s=0

xsi w`−s

)
=
( d−∑̀
r=0

xri wd−`−r

)
βi ∈ 〈β1, . . . , βk〉.

Consequently, by contraposition, we get that

ek,j /∈ 〈β1, . . . , βk〉 =⇒ ek,j /∈ 〈xd1, . . . , xdk〉.

To prove the opposite implication, it suffices to show that the inclusion

F2[x1, . . . , xk] −→ (F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`)[x1, . . . , xk]

induces a monomorphism

F2[x1, . . . , xk]/〈xd1, . . . , xdk〉 −→
(F2[w1, . . . , w`, w1, . . . , wd−`]/Id,`)[x1, . . . , xk]/〈β1, . . . , βk〉. (5.18)

Indeed, if ek,j /∈ 〈xd1, . . . , xdk〉, then its class ek,j+〈xd1, . . . , xdk〉 6= 0 is non-zero in the quotient
ring F2[x1, . . . , xk]/〈xd1, . . . , xdk〉. Hence, the injectivity of the map (5.18) would imply that
the corresponding class ek,j + 〈β1, . . . , βk〉 is also non-zero, meaning that ek,j /∈ 〈β1, . . . , βk〉.

First, let us observe that in the ring Rd,`,k the following identity holds

xd−1
i =

(∑̀
s=0

xsi w`−s

)
q +

(
a`−1x

`−1
i + · · ·+ a1xi + a0

)
where q ∈ Rd,`,k is a polynomial of degree d − 1 − `, and 1 ≤ i ≤ k. The coefficients
a`−1, · · · , a0 of the remainder in the previous equation can be explicitly computed, as shown
in [31, Proof of Prop. 4.1 with η = γd` and ξ trivial]. In particular, for 0 ≤ r ≤ `− 1:

ar = wd−r−1 + w1wd−r−2 + · · ·+ w`−r−1wd−`.

Since ws = 0 for every s ≥ d − ` + 1 we have that ar = w`−r−1wd−` and specially a`−1 =
wd−` 6= 0. Thus,

xd−1
i + 〈β1, . . . , βk〉 = βiq + wd−`(x

`−1
i + w1x

`−2
i + · · ·+ w`−2x

1
i + w`−1) + 〈β1, . . . , βk〉

= wd−`(x
`−1
i + w1x

`−2
i + · · ·+ w`−2x

1
i + w`−1) + 〈β1, . . . , βk〉

6= 〈β1, . . . , βk〉.

Now, we show the injectivity of the map (5.18). Denote by I the kernel ideal of the map

F2[x1, . . . , xk] −→ F2[x1, . . . , xk]/〈xd1, . . . , xdk〉 −→
(F2[w10, . . . , w`, w1, . . . , wd−`]/Id,`)[x1, . . . , xk]/〈β1, . . . , βk〉.

In particular, 〈xd1, . . . , xdk〉 ⊆ I. Further on assume that

0 6= p =
∑

(r1,...,rk)∈A⊆{0,...,d−1}k
ar1,...,rk x

r1
1 · · ·x

rk
k ∈ I,
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for some index set A ⊆ {0, . . . , d− 1}k. If

z = min{z : ar1,...,rk−1,z 6= 0}

then the polynomial p · xd−1−z
k has all monomials with the exponent in xk at least d − 1.

Considering the summands in p ·xd−1−z
k with exponent in xk exactly d−1, we obtain a new

polynomial also contained in I. Continuing in this way along the variables xk−1, xk−2, all
the way down to x1, we get that xd−1

1 · · ·xd−1
k ∈ I. In particular, this means that

〈β1, . . . , βk〉 = xd−1
1 · · ·xd−1

k + 〈β1, . . . , βk〉

= wkd−`
∏

1≤i≤k

(
x`−1
i + w1x

`−2
i + · · ·+ w`−1

)
+ 〈β1, . . . , βk〉

6= 〈β1, . . . , βk〉

because 1 ≤ k ≤ ` and w`d−` 6= 0 (see for example [16]). We reached the contradiction with
the assumption of the existence of a polynomial p in the ideal I. Hence, the injectivity of
the map (5.18) is confirmed and the proof of the lemma is completed.

Using Lemma 5.3.2 we complete the proof of Theorem 1.3.5 by proving the following fact.

Lemma 5.3.3. ek,j /∈ Id,`,k.

Proof. According to Lemma 5.3.2 it suffices to show that ek,j /∈ 〈xd1, . . . , xdk〉 ⊆ F2[x1, . . . , xk].

First, we transform the polynomial ek,j in as follows:

ek,j =

k∏
i=1

xj−1
i ·

∏
(α1,...,αk)∈Fk

2\{(0,...,0),(1,...,0),...,(0,...,1)}

(α1x1 + · · ·+ αkxk)j

=
1

x1 · · ·xk

∏
(α1,...,αk)∈Fk

2\{(0,...,0)}

(α1x1 + · · ·+ αkxk)j

=
1

x1 · · ·xk

( ∏
(α1,...,αk)∈Fk

2\{(0,...,0)}

(α1x1 + · · ·+ αkxk)
)j

=
1

x1 · · ·xk
·∆j

k,

where
∆k :=

∏
(α1,...,αk)∈Fk

2\{(0,...,0)}

(α1x1 + · · ·+ αkxk)

is the Dickson polynomial of maximal degree. Further on, the Dickson polynomial ∆k can
be presented as a polynomial in xk by:

∆k =
∏

(α1,...,αk)∈Fk
2\{(0,...,0)}

(α1x1 + · · ·+ αkxk)

= ∆k−1xk
∏

(α1,...,αk)∈Fk−1
2 \{(0,...,0)}

(α1x1 + · · ·+ αk−1xk−1 + xk)

= ∆k−1xk

( k−1∑
i=0

Dk−1,ix
2i−1
k

)
(5.19)
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whereDk−1,0, . . . , Dk−1,k−2 are Dickson polynomials in variables x1, . . . , xk−1. In particular,
Dk−1,0 = ∆k−1 and Dk−1,k−1 = 1. For more details on Dickson polynomials consult for
example [32].

Now, we start the proof of the claim ek,j /∈ 〈xd1, . . . , xdk〉 using induction on k. In the
case k = 1 we have that ∆1 = x1 and d = 2t+ r = j. Then our claim reduces to the obvious
fact that ei,j = xj−1

1 /∈ 〈xj1〉. Let us assume, as an induction hypothesis, that

ek−1,j /∈ 〈x2t+k−2+r
1 , . . . , x2t+k−2+r

k−1 〉. (5.20)

For the induction step we present the integer j in the binary form as:

j = 2t1 + 2t2 + · · ·+ 2ta ,

where a ≥ 1 and t = t1 > t2 > · · · > ta ≥ 0. In particular, r = 2t2 + · · · + 2ta . Now from
(5.19) follows that

∆j
k = ∆j

k−1x
j
k

( k−1∑
i=0

Dk−1,i x
2i−1
k

)j
= ∆j

k−1x
j
k

a∏
b=1

( k−1∑
i=0

D2tb

k−1,i x
(2i−1)2tb

k

)
. (5.21)

A typical monomial in the expansion of the left hand side of the (5.21) is of the form

m = ∆j
k−1x

j
k ·D

2t1

k−1,i1 x
(2i1−1)2t1

k ·D2t2

k−1,i2 x
(2i2−1)2t2

k · · ·D2ta

k−1,ia x
(2ia−1)2ta

k

= ∆j
k−1D

2t1

k−1,i1D
2t2

k−1,i2 · · ·D
2ta

k−1,iax
E
k

where 0 ≤ i1, . . . , ia ≤ k − 1, and

E = j + (2i1+t1 − 2t1) + (2i2+t2 − 2t2) + · · ·+ (2ia+ta − 2ta) = 2i1+t1 + · · ·+ 2ia+ta .

Observe that,

E = 2i1+t1 + 2i2+t2 + · · ·+ 2ia+ta = 2t1+k−1 + 2t2 + · · ·+ 2ta

if and only if
2t2(2i2 − 1) + · · ·+ 2ta(2ia − 1) = 2t1+i1(2k−1−i1 − 1)

if and only if
i1 = k − 1 and i2 = · · · = ia = 0,

because t1 > t2 > · · · > ta ≥ 0. Thus, in the expansion of the polynomial ∆j
k the (one

and only) monomial of degree 2t1+k−1 + r = 2t+k−1 + r in variable xk is of the form

∆j+r
k−1 x

2t1+k−1+r
k . In other words, in the expansion of the polynomial ek,j the (one and

only) monomial of degree 2t1+k−1 + r − 1 = 2t+k−1 + r − 1 in variable xk is of the form
1

x1···xk−1
·∆j+r

k−1 x
2t+k−1+r−1
k .

In the final step of the proof, depending on j + r, we discuss three cases.
(1) If 0 ≤ r ≤ 2t−1 − 1, then j + r = 2t + 2r with 0 ≤ 2r ≤ 2t − 2. Then, from induction

hypothesis (5.20), we have that ∆j+r
k−1 /∈ 〈xδ1, . . . , xδk−1〉 where

δ = 2t+k−2 + 2r ≤ 2t+k−2 + 2t − 2 + r < 2t+k−1 + r.

Consequently, ek,j = 1
x1···xk

·∆j
k has a (non-zero) monomial xα1

1 · · ·x
αk−1

k−1 x
2t+k−1+r−1
k

where αi ≤ δ − 1 < 2t+k−1 + r − 1 for all 1 ≤ i ≤ k − 1.
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(2) If r = 2t−1, then j + r = 2t + 2 · 2t−1 = 2t+1. Now the induction hypothesis (5.20)
implies that ∆j+r

k−1 /∈ 〈xδ1, . . . , xδk−1〉 where

δ = 2t+k−1 < 2t+k−1 + r.

Hence, ek,j = 1
x1···xk

·∆j
k has a (non-zero) monomial xα1

1 · · ·x
αk−1

k−1 x
2t+k−1+r−1
k where

αi ≤ δ − 1 < 2t+k−1 + r − 1 for all 1 ≤ i ≤ k − 1.
(3) If 2t−1+1 ≤ r ≤ 2t−1, then j+r = 2t+2r = 2t+1+(2r−2t) with 2 ≤ 2r−2t ≤ 2t−1.

In this case the induction hypothesis (5.20) implies that ∆j+r
k−1 /∈ 〈xδ1, . . . , xδk−1〉 where

δ = 2t+k−1 + r + (r − 2t) < 2t+k−1 + r.

Thus, ek,j = 1
x1···xk

· ∆j
k has a (non-zero) monomial xα1

1 · · ·x
αk−1

k−1 x
2t+k−1+r−1
k where

αi ≤ δ − 1 < 2t+k−1 + r − 1 for all 1 ≤ i ≤ k − 1.
Therefore, ek,j /∈ 〈xd1, . . . , xdk〉, and induction step is completed.

This proof adds the missing argument in the proof of [12, Thm. 39] and corrects the final
steps of the proof of [13, Thm. 3.2].

The proof of Theorem 1.3.5 is now complete.
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