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Abstract

While the cosmological content of the Universe have been measured to an amazing
accuracy, one of the main question is: Which is the nature of the dark sector? That
is, What is the Dark Matter and Dark Energy particle? In this thesis are presented
several analyses to incorporate complex scalar fields motivated by potentials coming
from particle physics in the context of the dark sector of the Universe. It is presented
a general description of the scalar field and the differences between the real and
complex fields. Then, it is described the dark matter component of the Universe as a
model with two scalar fields, one classical and the other coming from physics beyond
the Standard Model of particle physics, exploring via constrains from the effective
number of neutrino species the proportions of each field openning the possibility of
consider direct and indirect searches for more than one candidate of dark matter.
Being an important question the behavior of this dark component, it is presented a
scenario with a Subhalo Abundance Matching approach which relates observables from
the galaxy with parameters of the halo, letting us to compare the Standard Model
of Cosmology, ΛCDM, and several Scalar Field Dark Matter models, allowing us to
establish a workable method to study the degeneracy between the suppression of
substructures in both types of models. Finally, the exotic matter is explored with a
scalar field description. First, in that context, it is presented a Dark Energy model
composed by one complex scalar field with a parametric equation of state derived from
first principles which allowed us to perform a fitting of some characteristic parameters
of the scalar field —for instance, the mass and the autointeraction associated with it—
through current observational surveys. Then, we described a solution of the Einstein’s
equations made of ghost scalar fields which is described by the addition of an angular
momentum parameter, named `, providing new analyses of the behavior of the ghost
scalar field and a possible description of the dark energy of the Universe.

Along this work, there was described the dark sector of the Universe with several
models made of complex scalar fields that were tested with observational survey which
allowed us to fit some parameters of the model in question and visualize some of the
consequences of any approximation, as the fast oscillation approximation regime.

iii



Keywords — Dark Matter, Dark Energy, Scalar Field, Wormhole, Subhalo Abundace
Matching.

iv



Resumen

Si bien el contenido cosmológico del Universo se ha medido con una precisión asom-
brosa, una de las preguntas principales es: ¿Cuál es la naturaleza del sector oscuro? Es
decir, ¿qué es Materia Oscura y Energía Oscura? En esta tesis se presentan varios análi-
sis para incorporar campos escalares complejos motivados por potenciales provenientes
de la física de partículas en el contexto del sector oscuro del Universo. Se presenta
una descripción general del campo escalar y las diferencias entre el campo real y el
complejo. A continuación, se describe la componente de materia oscura del Universo
como un modelo con dos campos escalares, uno clásico y el otro proveniente de la
Física más allá del Modelo Estándar de partículas explorando, a través de constricciones
procedentes del número efectivo de especies de neutrinos, las proporciones de cada
campo abriendo así la posibilidad de considerar búsquedas directas e indirectas de más
de un candidato a materia oscura. Siendo una cuestión importante el comportamiento
de la materia oscura, se presenta un escenario con un enfoque de Coincidencia de
Abundancia de Subhalo que relaciona observables de la galaxia con parámetros del
halo, permitiéndonos comparar el Modelo Estándar de Cosmología, ΛCDM, y varios
modelos de materia oscura de campo escalar, lo cual permitió establecer un método
factible para el estudio de la degeneración entre la supresión de subestructura en
ambos tipos de modelos. Finalmente, se explora la materia exótica con una descripción
llevada a cabo a través de campos escalares. En primer lugar y en este contexto, se
presenta un modelo de energía oscura compuesto por un campo escalar complejo
con una ecuación de estado paramétrica derivada de primeros principios la cual nos
permitió realizar un ajuste de algunos de los parámetros característicos del campo
escalar —por ejemplo, la masa y el parámetro de autointeracción asociado con éste—
a través de los catálogos observacionales actuales. Luego, describimos una solución
de las ecuaciones de Einstein para campos escalares fantasmas descritos a través de
la adición de un parámetro de momento angular, llamado `, propocionando nuevos
análisis al comportamiento del campo escalar fantasma y una posible descripción de la
energía oscura del Universo.

A lo largo de este trabajo se describió el sector oscuro del Universo con varios modelos
hechos de campos escalares complejos que fueron probados con sondeos observa-
cionales que nos permitieron ajustar algunos parámetros del modelo en cuestión y

v



visualizar las consecuencias de considerar aproximaciones, como el régimen de oscila-
ciones rápidas.

Palabras clave — Materia Oscura, Energía Oscura, Campo Escalar, Agujero de gu-
sano.
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Introduction 1
1.1 Motivation

While the cosmological content of the Universe have been measured to an amazing
accuracy [1], one of the main question is: Which is the nature of the dark sector?
That is, what is Dark Matter and Dark Energy? Even more, should we be looking for a
single particle or a whole set of “dark” particles. At the present time we have several
observations indicating that Dark Matter exists [2, 3, 4, 5] and it is the component of
the universe responsible for structure formation and, although there is a main model
to describe all that we know as dark matter, there are some differences at small scales
between the observations and numerical simulations based on the CDM model. It is
well known that most particle dark matter candidates are expected to deviate from the
perfectly cold, collisionless fluid and such deviations can be caused by the primordial
velocity dispersion, its self–interaction or its quantum nature [6]. Being the dark matter
the main responsible for the process of structure and substructure, it is imperative to
analyze other candidates that may offer a better description of small-scale structures.
The appearance of scalar fields in cosmology has an origin in inflationary models of the
early Universe [7, 8, 9, 10], we can implement also the scalar field to explain the other
dark component, that responsible for the expansion of the Universe at late times as
Dark Energy.

Scalar fields are very important in modern physics, even if they do not exists as the
dark sector in fact, the mathematical description used to form models to relieve strong
tensions between the observable and the theoretical frames make these scalar fields a
possibility worth looking at. Being invariant under coordinate transformations, they
are the simplest tensor fields, with order 0. At the moment, and after 40 years of
search, the Higgs field is the only scalar field to be detected; discovered in 2012 by the
ATLAS and CMS experiments at the Large Hadron Collider, provides the mechanism to
endow mass to the particles of the Standard Model of Particle Physics [11].
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1.2 Organization of the thesis

Chapter 2

In this section there is a general description of the scalar field, what are the differences
between the real and the complex scalar fields and the advantages of each one in terms
of the dynamics description.

Chapter 3

This chapter explores the application of the scalar field on the description of the dark
matter component. There are two subsections dedicated to different scenarios: first
of all, it is presented a model with two classical scalar fields inspired by the Standard
Model of Particles mainly differentiated by the mass of the associated particle where
it is explored the proportion of each field with constrains from the effective number
of neutrino species in order to open the possibility of the search for more than one
candidate of dark matter. This work is published at [12]; the second scenario is
presented with a Subhalo Abundance Matching model that is based on a statistical
approach and the assumption that every galaxy populates a halo of dark matter and, as
a consequence, certain observable is related to a parameter of the halo.

Chapter 4

In addition to the Dark Matter, there is another dark component of the Universe that
is explored in this chapter: the Dark Energy and other types of exotic matter with a
scalar field approach. Then, it is presented a model composed by one complex scalar
field which is subjected to observational constrains in order to fit some characteristic
parameters of the scalar field through current observational surveys and an equation
of state derived from first principles, this model is published in [13]. Additionally, the
exotic matter as a scalar field has another possibilities such as a wormhole that, in this
case, is described with the addition of an angular momentum parameter, named `. This
work is published in [14] and allowed us to analyze the behavior of a ghost scalar field
in order to reach new descriptions of this type of fields and a better understanding of
the dark energy of the Universe.

Chapter 5

In this section a conclusion of the thesis work is presented.

2 Chapter 1 Introduction



Scalar Field 2
„Baryons, the Standard Model, the everyday stuff?

Us? We are weird, completely abnormal.

— Chanda Prescod-Weinstein
American theoretical cosmologist lead axion

wrangler for the NASA STROBE-X Probe Concept
Study

The last two decades in cosmology and astrophysics research have been an important
source of data about the gravitational and evolutionary structure of the Universe [15],
which stimulates a demand for approaches beyond the ΛCDM (Labmda Cold Dark
Matter), the standard model of cosmological structure formation in the Universe. The
physics of the dark sector, roughly 95% of the Universe, has been one of the most
intriguing problems of physics. The magnitude of the problem is huge, is there an
underlying new physics that describes such dark sector? One cannot discard the
existence of new particles with properties that may be exotic in comparison with the
current canonical approach to describe this sector.

This is the case for the scalar field, that can be a viable approach to describe the
behavior of both components, because it has played an important role in cosmology
since its introduction for the first time to explain the inflation phase in the primordial
Universe. In the case of dark matter (DM), for instance, some characteristics of the
scalar field, such as a nule cross-section and the cut from the power spectrum at low
masses, are particularly interesting features that could solve some of the problems
inherent in the cosmological standard model [16, 17]. It is reasonable to presume
that dark sector might be describes by a scalar field. In the context of the dark energy,
the first suggestions to replace the idea of the cosmological constant were made by
Wetterich [18] and Ratra and Peebles [7]; on the other hand, the existence of a scalar
field with a very light mass that can have observable consequences in the formation of
cosmological structure have been suggested as a viable candidate for dark matter that
can potentially solve the well-known problems of the CDM approach (see [19, 20, 21,
22] and references therein).
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For a scalar field to behave as a dark component is required to find a scalar potential
V (ϕ) with a minimum at some critical value ϕc in which we can define a non-vanishing
mass scale m for the associated boson particle via the relation [16]:

m2 ≡ ∂2V (ϕc)
∂ϕ2 . (2.1)

The simplest possibility of the potential is the quadratic potential

V (ϕ) = 1
2m

2ϕ2, (2.2)

with the minimum of the potential at the origin. However we cannot discard the
presence of higher order , ϕ4, ϕ6, .... The evolution of the scalar field is described, in
the relativistic regime, by the Klein–Gordon equation:(

� − dV
d|ϕ|2

)
ϕ = 0, (2.3)

while the non–relativistic regime is described by a Schrödinger-like equation for a wave
function ψ. The Eq. 2.1 was one of the first attempts to unify the ideas of quantum
mechanics and the theory of special relativity [23] and describes the evolution of a
scalar field whose excitations are bosonic particles with zero spin; we have as examples
of these particles the π meson, Higgs boson and axions.

The Klein–Gordon equation can be coupled with gravity through the Einstein equations
via the Klein–Gordon–equations (KGE), first considered in the context of boson stars
which are self-gravitating systems described by complex scalar fields [24, 25]. Even
though there exist self-gravitating systems, called oscillatons, described by real scalar
fields, they oscillates periodically and, since it is not clear how can be measured these
oscillations due to lack of access to the field variable ϕ, a hydrodynamic approach has
been used in several cases for the real scalar field (see, e.g. [26, 16]). Nevertheless, we
want to highlight the fact that a scalar field behaves very differently from the behavior
of a fluid, so considering these hydrodynamic treatments can result in erroneous
interpretations of the variables of a scalar field.

There are a great deal of different approaches to determine the appropriate scalar
potential that could adjust to the current cosmological observations, although so far
there is no agreement for the correct form. One example is the exponential potential
V (ϕ) = M4(eαϕ + eβϕ) [27] that mimics the dominant density background of Dark
Matter but some observational constraints forces the scalar field to never dominate the
content of the Universe. Other group of scalar potential has been proposed in order to

4 Chapter 2 Scalar Field



have ρϕ ∼ ρM at z = 0, the present, the so-called tracker solutions with potential such
as V (ϕ) ∼ ϕ−α that reduces the fine tuning and the cosmic coincidence problems but
the predicted equation of state does not fit well with the supernovae results. The first
attempt to describe the classical evolution of a real scalar with the system of equations
KGE and the scalar potential V (ϕ) ∼ ϕα in an isotropic and homogeneous cosmology
was developed by Turner in [19] where n = 2 behaves as pressureless matter and n = 4
as a radiation. Other scalar potential extensively used to describe the dark sector of
the Universe is the quadratic V (ϕ) = µ2|ϕ|2, that, in the real scalar case, mimics the
cosmological evolution of the Universe predicted by the ΛCDM model [28] but the
scalar field undergoes only a matter–like era [29] while the case of a scalar potential
with self-interaction, i. e. with the addition of a quartic term to the quadratic scalar
field potential V (ϕ) = µ2|ϕ|2 + λ|ϕ|4, displays fast oscillations and the field undergoes
a radiation–like era followed by a matter-like era [17].

The exact relativistic cosmological evolution of the homogeneous background of a
complex self-interacting scalar field described by the KGE system of equations has been
considered by [22], in the case of a repulsive interaction, that is a λ > 0. They showed
that the scalar field in this complex case undergoes a stiff–matter era, then the field
enters to a radiation–like one, and finally displays a matter-like era. The case of a
complex scalar field with a self-interacting potential with λ < 0 was studied for the
first time in [26] and there they found that the scalar field can evolve both the dark
components of the Universe: the so–called normal branch where it behaves as a dark
matter and a peculiar branch where it mimics the dark energy. The present work is
based on the knowledge of the two branches of the quartic potential and it has been
applied to the study of a model of two complex scalar fields as dark matter, a single
scalar field approach to dark energy and a family of complex and self–interacting ghost
scalar fields with an angular momentum–like parameter, the `-wormhole.

The next chapters represent an effort to build a bridge that links some of the results on
theoretical Physics with those from the Astronomy, as well as contextualize them in
the field of Astrophysics through the scalar field and (astronomical and cosmological)
observations. Nowaday, the scalar field is a more often talked about topic in the context
of the dark sector of the universe and several recent works in gravitational waves [30]
and boson stars [31] suggests that we are close to discerning whether or not these
fields exist through observations. So, if the scalar field turns out to be an adequate
description of the dark sector of the Universe, we hope that this work will contribute to
making this a more noticeable and analyzable possibility in order to answer the key
question about the nature of the dark sector.
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Scalar Field Dark Matter 3
„So important is this dark matter to our

understanding of the size, shape, and ultimate fate
of the universe that the search for it will very likely
dominate astronomy for the next few decades.

— Vera Rubin
American astronomer provider of the first robust

evidence of dark matter

3.1 Dark Matter

The existence of dark matter in the universe seems to be one of the most intriguing
mysteries of modern cosmology [32] because, in spite of the good agreement between
cosmologycal and astrophysical observations and the theoretical framework constituted
by the ΛCDM model, the experimental search of the particle predicted by this hypothesis
(the WIMP, weakly interacting massive particle) has been so long and with no results.
This pressure exerted on the prevailing hypothesis opens the door to alternative
models with predictive ability to explain the behavior of the DM. Scalar field dark
matter (SFDM) refers, in general, to the hypothesis that the properties of DM can be
represented by a relativistic scalar field ϕ endowed with an appropriate scalar potential
V (ϕ) [16] and, in this chapter are presented two works developing models that take
into account scalar fields to describe dark matter that are contrasted against current
cosmological observations.

In Section 3.2 it is explored the possibility of incorporating particle physics motivated
scalar fields to the dark matter cosmological model [12]. In this landscape, we consider
the classical complex scalar field in a certain region in the parameter space of the
model which increases the number of neutrino species Neff , in order to be consistent
with the observed abundance of light elements produced at Big Bang Nucleosynthesis
(BBN). The analyses are performed using one and two scalar fields and the difference
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between these models and the priors considered at the edges of the cosmic ladder has
been analyzed with the purpose of studying the impact of such models on the Hubble
cosmic flow.

In Section 3.3 we use the so called (sub)Halo abundance matching [33, 34], approach
to investigate the correlation between galaxies and dark matter halos and its impact of
exploring different type of dark matter particles. In particular, we study the potential
degeneracy between baryons and dark matter by including the cut at lower masses
due to the expected UV background of astrophysical origin and the cut from the
power spectrum due the particles different from the standard ΛCDM. Based on [6], we
perform an analysis on the star formation histories an abundances of galaxies resulting
from the statistical connection of halo and galaxy properties and from different dark
matter particles.

3.2 Scalar field dark matter with two components

Introduction

Over the years there has been a remarkable development regarding the studies on the
dark matter (DM) component of the Universe. The cosmological observations have
been more precise and left no doubt that, within our present understanding of the
fundamental interactions, there is in the Universe a component 6.5 times larger than
the amount of observed baryonic matter [35] which, except for the gravitational one,
has very small interaction with the observable matter and very low electromagnetic
emission [36]. Actually, projects as DAMA, CRESST, IceCube and PandaX [37, 38, 39,
40, 41, 42, 43], aimed to the detection of a dark matter particle, have not been able to
obtain any detection. We must face the possibility that the interaction of the baryonic
or leptonic matter and dark matter, besides the gravitational, be zero. The proposal
of modeling the dark matter as a scalar field endowed with a scalar potential of the
form

V (|φ|) = µ2 |φ|2 + σ2 |φ|4, (3.1)

has grown since the early work discussed in [44] (see also references therein), where it
was shown that a real scalar field with a very small parameter, µ, and no quartic term,
σ = 0, could describe a galactic halo and avoid some problems of the standard WIMP
model, like the super abundance of satellites predicted by cosmological simulations.

8 Chapter 3 Scalar Field Dark Matter



Now a days the proposal has received serious consideration by the community, see for
example [45, 16, 46], as several of the benchmarks for a cosmological model have been
successfully performed by such model, called ultralight scalar field, as the parameter
µ can be related to the mass of the boson particle, mφ, with the expression µ = mφ c

~ ,
where c stands for the speed of light in vacuum and ~ for the reduced Planck’s constant,
such model has also been called fuzzy dark matter [47, 48]. Using this model, it has
been possible to reproduce the large scale fiber structure observed in the Universe
[49, 50], as well as the observed harmonic structure of the perturbations [51, 52]; the
galactic halos and the observed rotational velocity profiles in the galaxies has important
developments within this model [53]; the quartic parameter, σ, is interpreted as
describing the self-interaction of the field. It is interesting that, if the units of the scalar
field, are absorbed in a constant in the Lagrangian, one can consider a scalar field
described by a unit-less function and both parameters µ and σ have units of inverse
of distance; and as long as the scalar field satisfies the Klein Gordon equation, which
is a wave-like description, one can then interpret the parameters as the De Broglie
wavelength of the scalar field, λφ, and the gravitational equilibrium scale [22], allowing
us to call such models as ultra-long wavelength scalar field. In the manuscript, however,
regarding the scalar field we will use the usual unit conventions both to make smoother
the passage from the quantum field theory (QFT) to the classical one and to make the
cosmological analysis in the usual way, but the idea deserves further studies.

Models considering a complex scalar field for describing the dark matter (and even
the dark energy, see [13]) have also been considered and have proved to be excellent
models, giving a consistent description of the Friedman homogeneous Universe [22]
(we are using the direct transliteration from the Russian name), with a scalar potential
as in Eq. (3.1), showing that the µ parameter needs not to be very small, it is enough
to demand that mφ > 10−21 eV /c2, due to the presence of the quartic term σ [22, 26]
which is strongly constrained in terms of the combination σ2/µ4, proportional to the
gravitational length scale that σ defines, which turns out to be ultra-long, of the order
of kiloparsecs [22, 26]. These scalar fields are considered completely non-interacting
with other types of matter, we will call them classical scalar fields. There is a growing
conviction not only that scalar fields are very plausible candidates to describe the
dark matter present in the Universe, but that objects described by such scalar fields
are very plausible to exist in Nature. Models considering a real scalar field have also
been considered in large scale Cosmology, see [54] for instance, but they induce the
wave oscillation to the spacetime structure, as in the case of the compact objects they
form, called oscillatons [55], and such oscillation in the scale factor could impose
strong constraints on the value of the real scalar field parameters. In this work, we will
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consider complex scalar fields which do not present such oscillations in the geometry
of the spacetime.

The cosmological model with ultra-long wavelength, classical complex scalar field, is a
serious alternative to the standard Cold Dark Matter model, where the dark matter is
treated as a pressure-less fluid of WIMPS [36].

Such classical scalar fields, as long as they are considered completely non-interacting
with any other field or particle, save via the gravitational interaction, of course, can be
incorporated to the Standard Model of particle physics (SM), along with the other dark
matter scalar field models such as the axion or the Higgs-like, which, in the classical
limit, can be also described as a complex scalar field with a scalar potential as given
above but with different values of the parameters µ and σ. One can naturally ask, how
much of them, axions or Higgs, can be present along with the classical one without
spoiling the successes already obtained by the model which considers only the classical
component.

The main goal of this paper is to shed light on this question and, therefore its conse-
quences at cosmological scales. As mentioned above, matter classically described by
a complex scalar field with very large values of the mass parameter, of the order of
eV , keV , or even hundreds of GeV [56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
68] (corresponds to a wavelength of 10−7, 10−10, 10−16 m respectively) could exist
in Nature as constituents of dark matter and be part of the general content of the
Universe, but how much of an Higgs-like or an axion field could be a component of
the observed dark matter? Indeed, there is no reason to consider that the dark matter
sector should be described by a single type of matter; we could have the classical as
well as other scalar fields included in the computation of the dark matter density. Such
considerations could reduce some pressure to the groups in direct search of dark matter,
mentioned above, as long as heavier scalar fields, which are the ones usually searched
for, might not be the total of the dark matter density and thus, the detection probability
reduces in a significant amount. In the present work we will consider that the dark
matter sector of the Universe is described by two complex scalar fields.

The passage from a particle physics model with foundations in a quantum field theory
to a semiclassical description is often assumed obvious in the literature. For the sake
of clarity of the expositions in the following sections we give a brief argument on this
matter. In order to study the cosmological implications of such quantum models, a
clean path to follow is to first take the classical limit in order to be able to embed the
corresponding models classical fields into a gravitational action, by coupling them in a
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minimal way to the gravitational field. Next we simply assume that these fields obey
semiclassical equations of motion, for the case of the scalar fields considered in this
work these would be the Klein-Gordon equation. Finally, we study the cosmological
implications of the resulting setups. Of course, in practice it is sufficient to identify the
field content of the quantum model and pass directly to the semiclassical equations,
but we feel it is important to give a slightly more formal argumentation for this step
(we also expand briefly on the classical limit of a QFT in section 3.2.1).

In section 3.2.1 we part from the particle physics and discuss how the axion-like or the
Higgs-like particles can be described by a complex scalar field with a scalar potential of
the type described above in the semi-classical limit, discussing also the range of values
of the parameters of the potential. In section 3.2.2 we describe the homogeneous
Friedman model with two such scalar fields and the integration procedure of the field
equations. This approach based on [22] will be generalized to solve for the negative
self-interaction fully relativistic scalar field, that is, for the one that behaves like dark
matter. Then, in section 3.2.3 we present the evolution of certain reference cases for
the classical, axion and Higgs-like scalar field models.

After representative single scalar field cases are presented, we will show some of
the solutions for the combinations classical+axion and axion+Higgs, where a new
parameter k will enter since we need to fix the relative fraction of energy density of
each of the fields at late times with respect to the total dark matter.

In section 3.2.4 we present the results of this work, namely, the cosmological effects
of considering as part of the matter content the scalar fields described in the previous
sections as well as specific cosmological constrains for the two scalar field parameters.
In subsection 3.2.4 we examine the variability between the two scalar field models and
the priors considered at the edges of the cosmic ladder, namely the H0 value at early
and late times [69], obtaining that they have a clearly different behavior depending
on the combination of the two scalar fields taken into account. Although this is not
an attempt to solve the tension of H0, it will provide us a hint of the behavior of this
two scalar field combination in order to know which of that combinations can be fitted
through astrophysical observations. Next, in subsection 3.2.4 we present a discussion
on how the number of neutrino species Neff together with the requirement of the
scalar field to behave as matter at the matter-radiation equality sets a very restrictive
condition on the parameters of the model.
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In the concluding section 4.2.5 we summarize the more relevant results and a discus-
sion on the implications on direct dark matter detection programs as well as in the
cosmological and astrophysical dark matter research.

3.2.1 Scalar field dark matter in particle physics

The Standard Model of particle physics describes the phenomena observed so far in
elementary particle physics with very good precision. However, this successful model
can only help us to understand about 5% of the total matter in the Universe. It is
assumed to be the low energy limit of a more fundamental theory, and must be extended
to explain other phenomena like neutrino masses, matter-antimatter asymmetry and
even dark matter.

The remaining components in the Universe, called dark matter and dark energy, which
make up about 27% and 67% of the total matter in the Universe, respectively [35],
do not find an explanation in the framework of the SM but their existence is inferred
from its gravitational effects in the astrophysical observations [70, 71]. Beyond the
facts relating to the temperature and longevity of the dark matter, we have very little
information about its nature and properties. In addition, the lack of experimental
evidence in the search for the most popular candidates such as WIMP, sterile neutrinos
or dark photons, makes evident the need for new models and search techniques for
possible DM candidates. The dark matter may well consist of one or more types of
fundamental particles. The simplest fundamental particle is a scalar field (particles
with zero spin).

Among the most common candidates to scalar field dark matter (SFDM) in particle
physics are axions, axion-like and Higgs-like particles. In particular, we are interested in
a model that includes two scalar fields. We will consider here one of the candidates to
come from an inert scalar SU(2) doublet, i.e. Higgs-like, motivated by some extensions
of the SM, where this proposal has been successful [72, 73, 74]. A second candidate
may be an axion or axion-like particle coming from particle physics or cosmology [68,
75], and both will be worked along with the classical complex scalar field mentioned
in the introduction.

12 Chapter 3 Scalar Field Dark Matter



Axion and axion-like particles

The word axion can take on a variety of meanings. The first time was used to name the
particle associated to the Peccei-Quinn (PQ) mechanism for preserving Charge-Parity
(CP) symmetry in the strong interactions [76, 77, 78]. Legend says that F. Wilczek,
who was looking for a name to describe a new pseudo Goldtone boson, while washing
clothes, looked at the name of the detergent he was using, axion and decided to use
that name for the new particle, since he expected it would clean up the problem of
QCD with CP symmetry.

Parity (P) is the space reflection operator, i.e. inverts the spatial coordinates, P :
~x → −~x and the charge conjugation operator (C), changes particles into antiparticles
without affecting their momenta or spin [79]. In a decay, the combined transformation
CP changes particles to antiparticles and the sense of longitudinal polarization is
reversed. If, the rate for one decay and its conjugate are the same, we have that the CP
symetry is conserved.

In quantum field theory, the term axion applies to any pseudoscalar Goldstone boson
of the spontaneous breaking of one global chiral symmetry that is broken at some
scale fa. Such particles need not solve the strong CP problem or couple to gluons [75].
This means their mass could take any value and be very weakly coupled which makes
them difficult to detect experimentally. These Goldstone bosons that do not acquire a
mass from radiative corrections of Quantum Chromodynamics (QCD) are also called
axion-like-particles (ALPs).

In string theory the term axion can refer either to matter fields, or to pseudoscalar
fields associated to the geometry of compact spatial dimensions [68]. From now on, we
will use the word axion to refer to a pseudoscalar field in any of the theories mentioned
above.

The axion acquires mass from QCD chiral symmetry breaking, and can be calculated in
chiral perturbation theory [77, 68],

ma ≈ 6 × µeV

(
1012GeV

fa

)
. (3.2)

This expression is a model-independent statement. The axion decay constant fa

is related to vacuum expectation value va, that breaks the Peccei-Quinn symmetry
fa = va/NDW . NDW is an integer that characterize the vacuum of axion models called
color anomaly, also known as the domain wall number [80, 81]. We can infer from the
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Eq. (3.2), that if fa is large enough, the axion can be highly light and stable which,
added to the very weak interaction with the rest of matter, makes an excellent DM
candidate [68, 81, 75].

We will focus on the QCD axion models where there are in general three types:

• The Peccei-Quinn-Weinberg-Wilczek (PQWW) axion, which introduces one addi-
tional complex scalar field only.

• The Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion, which introduces heavy
quarks as well as the Peccei-Quinn scalar.

• The Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) axion, which introduces an addi-
tional Higgs field as well as Peccei-Quinn scalar.

In these three types, the Lagrangian of each model is taken to be invariant under a
global U(1) symmetry, that is spontaneously broken at one scale fa by the potential,
V (ϕ) = λQCD

(
|ϕ|2 − f2

a/2
)2 where ϕ is the Peccei-Quinn field and takes a vacuum

expectation value (vev) 〈ϕ〉 = fa/
√

2. In the PQWW model, fa ≈ 250 GeV, this scale
is accessible to experimental search and given the absence of signals, this axion is
exclude by collider experiments. In KSVZ and DFSZ models the decay constant is a free
parameter and can be made large enough such that they are not excluded.

After the global U(1) symmetry breaking at some scale fa, one angular degree of
freedom appears as 〈ϕ〉eiΦa/fa . The field Φa, is the axion and it is a pseudo Nambu-
Goldstone boson of this broken symmetry.

At the classical level the Lagrangian is invariant under chiral rotation, which leads
to the shift symmetry of the axion field, Φa → Φa + const. But at quantum level
non-perturbative physics becomes relevant, e.g. instantons switch on at some particular
energy scale Λa and break the shift symmetry Φa → Φa + const, inducing a potential
for the axion. However, the potential must respect the residual discrete shift symmetry,
Φa → Φa + 2nπfa/NDW, for some integer n, which remains because the axion is still
the angular degree of freedom of a complex field.

The axion potential generated by QCD instantons is,

Va(Φa) = Λ4
a

[
1 − cos

(
NDWΦa

fa

)]
, (3.3)

where Λa is the non-perturbative physics scale, NDW is the domain wall number and
fa the PQ symmetry breaking scale. If NDW > 1, there appear domain walls that can
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quickly dominate the energy density of the early Universe, which is incompatible with
standard cosmology and can be avoided if NDW is taken equal to unity [80, 68].

On the other hand, if we consider only small displacements from the potential minimum
Φa < fa, we can expand it as a Taylor series, whose approach to second order is
V (Φa) ≈ 1

2Λ4
aΦ2

a/f
2
a . We identified the mass term 1

2m
2
aΦ2

a, with m2
a = Λ4

a/f
2
a .

We will adopt as potential for axion, in subsequent analyses on axion as a dark matter
candidate, only the first and second term of the Taylor series around the minimum
potential, this is,

Va(Φa) = 1
2

(
m2

aΦ2
a − 1

12
m2

a

f2
a

Φ4
a

)
. (3.4)

The axion mass is protected from quantum corrections, since these all break the
underlying shift symmetry and must come suppressed by powers of fa. For the same
reason, self-interactions and interactions with SM fields are also suppressed by powers
of fa. Regarding the self-interactions, we can easily obtain an expression for them
by means of an expansion of the cosine potential to higher orders. This renders an
axion model with a light (less than meV), weakly interacting, long-lived particle. These
properties are protected by a underlying symmetry, so the axion provides a natural
candidate to DM model [75].

Some values for the decay constant could be lie around the fundamental scales of
particle physics such as Grand Unified Theory (GUT) scale fa ∼ 1016 GeV. Given the
lack of knowledge at high-energies1 structure of particle physics and the difficulties in
obtaining well-defined measurements of the initial conditions in inflationary cosmology,
there are no strong reasons to prefer any particular value for fa. But usually fa .

Mpl ∼ 1019 GeV, since it is not obvious how to make a model of such an axion without
a full understanding of quantum gravity [68, 62, 75].

A cosmological populations of axions can be produced by various mechanisms, but the
main ones are: decay of parent particle, decay product of topological defect, thermal
population from the radiation bath and vacuum realignment [68].

In the case of decay of parent particle, a massive particle with mX , is coupled to axion
and decays. In all cases mX > ma and their decay produces a population of relativistic
axions. If the decay occurs after the axions decoupled from the SM then they remain
relativistic throughout the history of the Universe and become dark radiation [75].

1By high-energies we mean any symmetry breaking scale & 1 TeV.
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In the case of decay product of topological defect, two scenarios need to be considered:
whether the Peccei-Quinn phase transition occurs during or after inflation.

The breaking of global symmetries leads to the formation of topological defects. A
broken U(1) creates axion strings and if NDW > 1, domain walls appears too [80]. If
PQ symmetry is broken during inflation, topological defects and their decay products
are diluted by the expansion of the Universe and can be ignored.

In the second stage, after inflation, the PQ symmetry is broken when the radiation
temperature drops below fa. The breaking of the global symmetry gives rise to
topological defects and the string decay produced axions. The axion field begins
oscillating when ma ∼ H, this axions are dominated by the low-frequency modes,
making them non-relativistic and contributing as CDM to the cosmic energy budget
[68].

If axions are in thermal contact with the standard model radiation, these are created
and annihilated during interactions among particles in the primordial soup. The axions
established in this way are called thermal axions. Initially, axions are in equilibrium
with the thermal bath of particles, but later become decouple at temperature TD.
Thermal axions are relativistic if TD > ma. Once decoupled the axion population is
merely diluted and redshifted by the expansion of the Universe [81], then the axions
become non-relativistic when its temperature is less than ma. For fa > 109 GeV, the
thermal axion lifetime exceeds by many orders of magnitude the age of the Universe
[81], but behave cosmological in a manner similar to massive neutrinos, and contribute
as hot DM [68] suppressing cosmological structure formation.

In the case of misalignment production, we need to consider the equation of motion for
the axion after non-perturbative effects, Φ̈a + 3H(t)Φ̇a +m2

aΦa = 0. It is the equation
of a simple harmonic oscillator with 3H(t) time dependent friction. H(t) is the Hubble
parameter. When H > ma, the axion field is overdamped and it is frozen by Hubble
friction, this means that the expansion of the Universe slows the axion field down
(Φ̇a = 0) and we get a coherent state of axions at rest [68].

The misalignment production of axions is non-thermal and through this mechanism,
even very light WIMPs can be Cold Dark Matter [81].

Axion and ALPs could be located through axion-photon conversion in external electric
( ~E) or magnetic ( ~B) fields [82], described by the Lagrangian

LAγγ = gAγγΦa
~E · ~B, (3.5)
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where gAγγ is the diphoton coupling constant. Pseudoscalar-ALPs and scalar-ALPs could
be created when a beam of linearly polarized photons propagates in a transverse mag-
netic field ~B. If an optical barrier is placed downstream to the beam, all unconverted
photons will be absorbed while ALPs would traverse the optical barrier. By applying a
second magnetic field in the regeneration domain beyond the wall, the inverse process
can convert the ALPs back into photons, which can be subsequently detected [58]. This
type of arrangement is called Light-Shining-through-Walls (LSW) experiment and the
best current limit has been achieved by the OSQAR (Optical Search for QED Vacuum
Birefringence, axions and Photon Regeneration) experiment, with the exclusion limits
|gAγγ | < 3.5 × 10−8 GeV−1 at 95% confidence limits, obtained in vacuum for ma . 0.3
meV [58]. Other exclusion limits for pseudoscalar and scalar axion-like-particles can
be found in [63, 83, 64, 65, 66, 84, 67, 59, 56].

In addition to the possible connection to DM, two hints from astro-particle physics
strengthen the axion-like particles existence: the anomalous excessive cooling of stars
and the anomalous transparency of the Universe to very high energy gamma rays. The
cooling excess can be attributed to ALPs, produced in the hot cores that abandoning the
star unimpeded, contributing directly to the energy loss [85, 86, 87]. The anomalous
transparency can be explained if a part of the photons are converted into light spin
zero bosons in astrophysical magnetic fields. The ALPs can travel through cosmological
distances unhindered, due to their weak coupling to normal matter. A part of such light
bosons are in turn reconverted into high-energy photons and could be detected [88,
89].

Higgs-like model

The Lagrangian density of the Standard Model can be explicitly divided into gauge,
fermion, Higgs and Yukawa sectors. The Higgs part is Lϕ = (Dµϕ)†Dµϕ−V (ϕ), where

ϕ =
(
ϕ+

ϕ0

)
is a Higgs scalar, transforming as a doublet of SU(2), ϕ† is its adjoint.

ϕ+ and ϕ0 are charge and neutral complex fields and Dµ is the gauge covariant
derivative. V (ϕ) is the Higgs potential, the combination of SU(2) × U(1) invariance
and renormalizability restricts V to the form

V (ϕ) = µ2ϕ†ϕ+ λ(ϕ†ϕ)2. (3.6)
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For µ2 < 0 there will be spontaneous symmetry breaking and the nonzero vev of neutral
component ϕ0 will generate the W and Z masses. The λ term describes a quartic
self-interaction λ(ϕ†ϕ)2 of the Higgs field. Vacuum stability requires λ > 0 [79].

A very useful proposal to explain some particle physics open questions, such as the
small mass of the neutrinos [90], the fermionic mixing [91, 92] and dark matter [72,
73, 74] is the extension of the Higgs sector of the SM, which consists of the introduction
of new symmetries, plus the addition of scalar singlets and/or doublets in Lϕ. After
the break of the electroweak symmetry, the extra scalar fields acquire mass and are
known as Higgs-like particles.

Particularly, dark matter can be explained with inert Higgs scalars, i.e. that do not
acquire a vev, are stable and cannot decay to SM particles. The stability is usually
achieved by introducing an extra Z2 discrete symmetry [57].

We will adopt for our study a model with an inert Higgs doublet (an equivalent analysis
can be done considering a singlet complex scalar field), besides the usual SM one,

Φh =
(

Φ+

Φ0

)
= 1√

2

(
Φ1 + iΦ2

Φ3 + iΦ4

)
, (3.7)

where Φ+ and Φ0 are the charged and neutral complex components of the field Φh,
respectively, which can also be expressed in terms of their real parts, Φi, i = 1, 2, 3, 4;
whose potential is of the form,

Vh(Φh) = m2
h(Φ†

hΦh) + λh

2 (Φ†
hΦh)2, (3.8)

where we will choose m2
h > 0 [72, 92] and none of the components acquire a vacuum

expectation value. We are assuming that the coupling between the inert doublet and
the SM Higgs is very small. The DM candidate must come from the neutral complex
component, Φ0. It is known from DM experimental searches that this type of matter
must be electromagnetically neutral, since the mediator of electromagnetic interaction
is the photon and the dark matter is considered to be transparent to light.

In general, the mass of the Higgs-like DM candidates depend largely on the model,
for example if they have couplings to the SM fields. But the mass constraints in the
experimental search for extra Higgs fields usually lies around the order of GeV. The
most recent mass limits for a variety of models with extra neutral Higgs bosons can be
found in [56, 60, 61].
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The DM candidate, among the massive states coming from the doublet Φh, will be the
neutral lightest and stable particle (whose decay is protected by some symmetry).

The consistency of a Higgs-like dark matter model can be checked with the dark matter
relic abundance [61]. According to the WIMP paradigm, the dark matter candidate has
weak interactions with the SM particles and was in thermal equilibrium in the early
stages of the history of the Universe. Subsequently, the interaction rate of the DM fell
below the Hubble expansion rate causing the freeze-out of the DM [93].

To avoid any confusion, we want to make it clear that in the following, when referring
to Higgs particles, we refer to Higgs-like particles (Φh), they are different from the SM
Higgs doublet (ϕ).

Axions, axion-like and Higgs-like particles are excitations of quantum fields, however,
the interest in this work is to analyze the behavior of these particles on a cosmological
scale, where the DM candidates are treated in a classical way. Thus, we need to make
a transition from quantum to classical theory. This transition can be studies within the
framework of an effective action. This topic is described in the next sub-section.

Transition from quantum field theory to classical theory.

Consider a QFT with lagrangian density L = L0 + Lint. For the purpose of this section
it is sufficient to consider the example of one scalar field φ(x). In the context of a
microscopic theory, it is very important to determine the Scattering matrix or S-matrix,
since its knowledge allows one to compute observable quantities like annihilation/scat-
tering amplitudes for particles including e.g. DM candidates, that can be compared to
observations of indirect/direct DM detection experiments.

We can compute the S-matrix in terms of the n-point Green’s functions of the theory:

G(x1, x2, . . . xn) = 〈Ω|T (φ(x1) · · ·φ(xn)) |Ω〉 , (3.9)

with |Ω〉 the vaccum of the interacting theory and T denotes the time-ordering operator.
In the path integral formalism these functions are encoded in the generating functional
Z[J ] through the expression:
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G(x1, x2, . . . xn) =

(−i)n δ

δJ(x1)
δ

δJ(x2) . . .
δ

δJ(xn) Z[J ]
∣∣∣
J=0

,
(3.10)

where J(x) is an external source2 and the derivation is functional. The path integral
representation of Z[J ] is given by:

Z[J ] = N−1 ×
∫
Dφ exp

{
i

∫
d4x(L(φ(x)) − φ(x)J(x))

}
, (3.11)

with N =
∫
Dφ exp{iI[φ]} and I[φ] =

∫
d4xL(φ(x)). In cases where there are no

interactions, the path integral can be evaluated in closed form taking the free generating
functional as:

Z0[J ] = exp
{

− i

2

∫
J(x)∆F(x− y)J(y)d4xd4y

}
, (3.12)

where ∆F(x− y) is the free Feynman propagator.

If interactions are present, no closed form of the generating functional is known.
However, in this case Z[J ] satisfies the differential Schwinger-Dyson equation:

− i(2 +m2)δZ[J ]
δJ(x) − L′

int

(
−i δ

δJ(x)

)
Z[J ] = J(x)Z[J ], (3.13)

where m is the scalar field mass. The term L′ denotes the differentiation of Lint with
respect to φ and evaluated on φ → −i δ

δJ(x) ; the functional differentiation with respect
to J(x) acts on Z[J ]. The solution to the above equation (up to a normalization factor)
can be expressed formally in terms of the free generating functional as:

Z[J ] = exp
{[
i

∫
d4xLint

(
−i δ

δJ(x)

)]}
Z0[J ]. (3.14)

The exponential in this equation is expressed as a power series in the coupling constant.
This procedure is equivalent to the Feynman diagram perturbation theory, thus Z[J ]
generates all diagrams including disconnected ones.

There is a generating functional W [J ], which generates only connected Feynman
diagrams (or connected Green’s functions). The connected generating functional W [J ]

2J(x) is a number of functions of spacetime which transform in such way that
∑

J(x)φ(x) is an invariant
[94].
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relation to Z is through exponentiation (switching to normal units to make explicit
Planck’s constant):

Z[J ] = e
i
~W [J ]. (3.15)

The effective action Γ[φ̄] from W using the Legendre transformation is

Γ[φ̄] = W [J ] −
∫
d4x

δW [J ]
δJ(x) J(x), (3.16)

here the following notation has been introduced:

δW [J ]
δJ(x) ≡ φ̄, (3.17)

where φ̄ is called the average (or classical) field. Γ[φ̄] generates single particle irre-
ducible connected diagrams. This is a simple example of a working analogy where
the effective action is the analogue of the Gibbs potential in equilibrium statistical
mechanics in the presence of coupling to an external source or J -reservoir.

The usefulness of the effective action has been shown extensively in the literature [94],
we will concentrate on its loop expansion for this work. As shown in Ref. [95], the
effective action can be expressed as a series expansion in loops where the n-loop term
is proportional to ~n:

Γ[φ̄] = I[φ̄] + 1
2 i~ ln det(iD−1) + O(~2), (3.18)

where D is the propagator for a “modified” action, i.e. the action for the original theory
expanded around the average field but keeping only terms of second and higher order.
For our present purposes, it suffices to notice that in the limit ~ → 0 the effective
action reduces to the tree level action I[φ̄], as expected. Thus, the classical limit of a
given theory corresponds to the 0-loop term in the quantum effective expansion. It is
thus natural to take, for example, the expression for the tree level potential of a given
particle physics quantum model and couple the corresponding classical fields to gravity
as a starting point for an analysis in the context of a cosmological model.

Regarding the quartic parameters, the ones in the classical action will match the zeroth-
order quantum parameters in the effective expansion. Furthermore, if we assume that
quantum corrections are small, the quartic couplings have to lie within the interval
−4π < λ < 4π, to ensure perturbative unitarity at the quantum level. Then, the
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following question arises: Can the physical values of the quartic couplings in the scalar
potential, constrained from particle physics, have consequences on the cosmological
parameters? We will show that in the Higgs-like case, the interval for λ implies that
this field belongs to the cosmological non self-interacting regime.

The dark matter candidates we have reviewed here, axion, axion-like and Higgs-like,
are considered as real scalar fields in the classical limit. However, a more general
and appropriate approach in the cosmological framework is to take them as complex
scalar fields. Since the halos formed by complex scalar field are stationary gravitational
solitons known as boson stars, which are stable [96] compact objets. On the other hand,
the halos in the case of a real scalar field, known as oscillatons [97], are metastable
oscillating solutions.

In the case of a Higgs-like particle, it is not entirely correct to say that the classical
limit is a real scalar field; as it happens, in this particular case this limit is a complex
scalar field. The transition from a real quantum field to a complex classical field can be
understood as follows.

Consider a generic doublet of SU(2), denoted by

H =
(
H+

H0

)
= 1√

2

(
H1 + iH2

H3 + iH4

)
, (3.19)

where H+ and H0 are charged and neutral complex components of the Higgs field,
respectively. The DM candidate must come from H0, as described in the subsection
3.2.1. In the quantum scenario, in a first stage, some mechanism at a high energy
scale (for instance, the breaking of a symmetry) will give mass to the components
Hi, i = 1, 2, 3, 4 and in principle, the masses of the components of H0 will be equal
m3 = m4, because all these fields form part of the same SU(2) doublet (see Eq.
(3.8)).

In a second stage, the electroweak symmetry is spontaneously broken and the SM
particles acquire mass. In addition m3 and m4 can acquire radiative corrections,
generating an inequality in masses leading to a decay of the heavy particle to the light
particle, obtaining only one particle (a real scalar field) as DM candidate.

However, in the classical limit, radiative corrections cannot be detected due to their
quantum nature, so the equality m3 = m4 is preserved, giving us two DM candidates,
which can be included as components of a complex scalar field.

22 Chapter 3 Scalar Field Dark Matter



3.2.2 A two scalar field model

We consider two cosmological scalar fields that contribute to the energy and matter
density of the Universe. From this point forward we will assume that both are complex
and obey the classical field equations, according to the discussion in the previous
section. These fields gravitate via minimal coupling given by the action,

S =
∫
d4x

√
−g

(
c4

16πGR+ LΦ1,Φ2

)
, (3.20)

where
2LΦ1,Φ2 = −∇µΦ∗

1∇µΦ1 − ∇µΦ∗
2∇µΦ2 − V (Φ1,Φ2). (3.21)

Varying Eq. (3.20) with respect to the metric gµν gives

Rµ
ν − 1

2Rδ
µ
ν = 8πG

c4 Tµ
ν , (3.22)

with

Tµ
ν =gµη∂(ηΦ∗

1∂ν)Φ1 + gµη∂(ηΦ∗
2∂ν)Φ2

− δµ
ν

2
[
gαβ∂αΦ∗

1∂βΦ1 + gαβ∂αΦ∗
2∂βΦ2 + V (Φ1,Φ2)

]
.

(3.23)

The variation with respect to the fields Φ1 and Φ2 gives the following equations of
motion:

�Φ1 − dV

d|Φ1|2
Φ1 = 0. (3.24)

�Φ2 − dV

d|Φ2|2
Φ2 = 0. (3.25)

We assume that in addition to the scalar field, we have radiation r, baryons b and
dark energy Λ, but these components do not interact with the scalar field. In the
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homogeneous case, the solution to the Einstein equations (3.22), is the Friedman-
Lemaître-Robertson-Walker metric:

ds2 = −c2dt2 + a(t)2(dr2 + r2dΩ2), (3.26)

where we have taken the t = constant hyper-surfaces (k = 0) case, where we consider
a flat Universe. The tt component of Eq. (3.22) becomes

H2 = 8πG
3c2 [ρr(t) + ρb(t) + ρΛ(t) + ρΦ1,Φ2 ], (3.27)

here, H := ȧ/a is the Hubble parameter, and ρx corresponds to the energy density
associated to the energy momentum tensor of x = r, b,Λ components and

ρΦ1,Φ2 = 1
2c2 |∂tΦ1|2 + 1

2c2 |∂tΦ2|2 + 1
2V (Φ1,Φ2). (3.28)

In addition to the density of the scalar field, a “pressure” term can be defined as

pΦ1,Φ2 = 1
2c2 |∂tΦ1|2 + 1

2c2 |∂tΦ2|2 − 1
2V (Φ1,Φ2), (3.29)

and a corresponding equation of state w can be defined as the ratio of density to
pressure.

Now, if we concentrate on the case where the potentials are separated for each field
V (Φ1,Φ2) = V1(Φ1) + V2(Φ2), the equations of motion also separate. In this case we
have ρΦ1,Φ2 = ρ1 + ρ2 and pΦ1,Φ2 = p1 + p2, with ρ1 = 1

2c2 |∂tΦ1|2 + 1
2c2V1(Φ1) and

similarly for the other density and pressures. In terms of these quantities, the equations
of motion for the scalar fields imply the following relations,

∂tρ1 + 3H(ρ1 + p1) = 0. (3.30)

∂tρ2 + 3H(ρ2 + p2) = 0. (3.31)

Before starting with the technical details on the integration of the coupled complex
system of differential equations (3.24), (3.25) and (3.27), we need to specify the
particular form of the scalar potentials. From now on we will return to natural units.

As discussed in the previous sections, we will consider three scalar potentials, two of
them taken from dark matter scalar fields models hypothetically fundamental and the
third, associate to a scalar field model purely motivated by cosmology.
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As described in the subsection 3.2.1, QCD non-perturbative effects after the Peccei-
Quinn symmetry breaking, at some scale fa, provide a potential for the axion Φa. A
simple choice for this, is the instanton potential in Eq. (3.3), which turns out to be
a very commonly used potential, if a specific form of self-interaction for the axion is
required [98, 99, 68].

We will assume that this potential is valid during all the evolution of the Universe.
Although axions are described by a real scalar field in the quantum relativistic field
theory, at low-energy, axions can be described more simply by a classical non-relativistic
effective field theory with a complex scalar field [98]. So that we exchange Φa → |Φa|
in (3.3).

In this analysis we are interested in studying slight deviations from the non-interacting
scalar field dark matter model. So, let us consider small displacements of the complex
field around the minimum of the potential, |Φa| � fa. Then, we can make the
expansion of (3.3) as in (3.4), Va(Φa) = 2(mafa)2(|Φa|2/(2!f2

a ) − |Φa|4/(4!f4
a ) + · · · ).

Notice that, in this expression we have included an extra 2 factor to be consistent with
the Lagrangian of a complex scalar field (3.21) and for simplicity, we will take just the
first and second terms of the expansion,

Va(Φa) = m2
a|Φa|2 − m2

a

12f2
a

|Φa|4. (3.32)

We identify the positive self-interaction parameter λa/2 = m2
a/(12f2

a ), which we will
use later. The Eq. (3.32), corresponds to the first potential considered in the subsequent
analyses. Recall that in the low density regime, |Φa| is small compared to fa and thus,
the dynamical behavior is captured by the first terms in the potential [100].

The second scalar potential we will be considering, corresponds to a very massive scalar
field that appears in the Higgs-like model. As stated in 3.2.1, classically the relevant
part of the model could manifest itself as a single complex scalar field.

We assume that this component will be one of the components of dark matter and that
it could be modeled in the classical regime by a complex scalar field with the potential3

(3.8).

3The Lagrangian of a complex scalar field in QFT usually does not have the overall 2 factor as in
the gravitation references cited here, which coincides with the convention used in this sections
(see Eq. (3.21)). The 1/2 term in the λh term is considered in order to compare directly with the
quantum theory, since under the change Φh →

√
2Φh the Lagrangian of the Higgs-like field becomes

L = −∇µΦ∗
h∇µΦh − m2

h|Φh|2 − λh|Φh|4.
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Typically the mass term mh is in the GeV region and due to perturbative analysis the
self-interaction, lies within −4π < λ < 4π as mentioned in section 3.2.1.

The third single scalar field model introduced to the analysis is one with unrestricted a
priori values on mass and self-interaction, in this sense we refer to it as classical. We
consider this as a (mainly) classical model in which the connection to fundamental
physics is somewhat “free". The parameters of mass and self-interaction are allowed to
vary throughout the spectrum of values as long as they are consistent with cosmological
and astrophysical observations. We are interested in the (positive) self-interacting case,
that has been shown to be necessary according to [22]. The potential for this field is
(3.1), where φ = Φc, µ = mc and σ2 = 1

2λc.

All three scalar potentials of the single scalar field models have the same structure,
however, we distinguish them by cases given the allowed values of their parameters.
The properties of each case are listed in Table 3.1.
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Tab. 3.1: Single and double scalar field models described in section 3.2.2. Top: Three single scalar field models with their free parameters
and the validity intervals of m and λ parameters. The representative cases are the specific values of the parameters explored in this
work. Bottom: Three possible double scalar field models with the corresponding combinations at the description. The k constrain is
referred to the minimum fraction of the energy density of the lightest field at the present (a = 1) with respect to the total dark
matter density. The viability of the models is reported in the last column with two different meanings in the viability term for the
single models: the (i) column refers to the BBN+zeq analysis described on section 3.2.4, while the column (ii) denotes the viability
from a relic density point of view for the scalar field models reported at the cited works.

SINGLE MODEL Free m λ Representative Viability

parameters cases (m, λ) (i) (ii)

Axion (Φa) fa 5.69
(

109 GeV
fa

)
meV −m2

a/(6f2
a ) (5.7 × 10−13 eV,−5.4 × 10−82) × X[68]

Higgs (Φh) mh, λh ∼ 100 GeV (−4π, 4π) (100 GeV, 1) × X[61]

Classical (Φc) mc, λc . 1 eV > 0 (3 × 10−21 eV, 4.2 × 10−86) X NA

DOUBLE MODEL Description k constrain Viability

I Classical + Higgs & 0.423 X

II Axion + Higgs × ×

III Classical + Axion NA4 X

3.2
Scalarfield

dark
m

atterw
ith

two
com

ponents
27



Starting from these cases, the analysis is carried out on combinations of these. How-
ever, for simplicity we will explore only two of the three possible combinations, the
classical+Higgs and the axion+Higgs. It will be shown that both models have the
capability to modify the expansion of the Universe throughout BBN, however it will
turn out that the presence of the classical λ > 0 scalar field is required. Therefore the
third possible case (classical+axion), together with the first, contain a set of values
in their parameters consistent with this analysis, however this model has four free
parameters and we will leave the full analysis for a future work.

The first model considers a Higgs-like scalar field in combination with an classical field.
The equations of motion for this case have only three free parameters: the mass and
self-interaction of the classical and the fraction of it with respect to the Higgs at a = 1,
namely k (defined below). The Higgs field is in the weakly self-interacting regime
[26], which implies that the field at a homogeneous level behaves similar to the cold
dark matter fluid because it always oscillates rapidly. The second model will be the
axion+Higgs combination which has one scalar field related free parameter, fa. In the
Table 3.1 we summarize this models. And as mentioned, the combination axion+clas-
sical will not be explored in this work. We will show that the axion field, at most,
passes through a matter-like and stiff matter eras and not through the radiation-like era
as the λ > 0 case, even so its stiff era may affect expansion sufficiently to influence BBN.

3.2.3 Cosmological evolution

Now, with the specific form of the scalar potentials, we are able to continue with the
integration of the evolution equations. We consider the procedure done by Li et al.
in [22] for one complex scalar field. In order to do this, we are going to force both
fields to be matter-like at the present time, this means that both of them must be in the
fast-oscillation regime, i.e. their complex phase time derivative (ω), must be greater
than the Hubble rate: ω/H � 1. The integration will be made backwards in terms of
the variable a (and not t), starting at a = 1, therefore going back in time the fields will
come out of the fast oscillating regime but at different times.

In the standard one-field case, the solution is obtained in two parts given that in
the fast oscillation an approximation is needed due to the difficulties of numerical
integration. In the two-field case, we must split the domain of a in three, introducing
an intermediate section in which one of the fields still oscillates rapidly but the other
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one is already in transition to the slow oscillation regime. Three sets of differential
equations must be taken into account, with adequate initial (or matching) conditions.

Introducing the variables A1 = ρ1 − p1, A2 = ρ2 − p2 and B1 = m2
1∂t|Φ1|2, B2 =

m2
2∂t|Φ2|2 the full system composed of the two (complex) Klein-Gordon equations and

the Friedman equation become:

ȧ = aH0

√
Ωr

a4 + Ωb

a3 + ΩΛ + ρ1
ρcrit

+ ρ2
ρcrit

. (3.33)

dρ1
da

= −32ρ1 −A1
a

, (3.34)

dA1
da

= ±B1
ȧ

√
1 + 2λ1

m4
1
A1,

(If λ1 > 0, take the upper signs. If λ1 < 0 both signs are possible.) (3.35)

dB1
da

= −3B1
a

+ 2m2
1
1
ȧ

2(ρ1 −A1) − m4
1

2λ1

(√
1 + 2λ1

m4
1
A1 ∓ 1

)2 . (3.36)

And similarly for the second field. This was showed in the one-field, positive self-
interaction case by [22]. The negative self-interaction ± possibility is explained
below.

Since the equations (3.33–3.36) are solved in terms of a, the Friedman equation is
purely algebraic.

Clearly, the initial condition (at a = 1 since we are integrating backwards) for the
density of this components are the values Ωi which are well known numbers constrained
by observations. In the same way, the density parameter for dark matter, Ωdm fix the
total energy density ρ1 + ρ2 at a = 1, therefore we write

ρ1(a = 1) = k Ωdmρcrit, (3.37)

ρ2(a = 1) = (1 − k) Ωdmρcrit, (3.38)

for 0 ≤ k ≤ 1, where ρcrit = 3H2/(8πG) being H the Hubble parameter and G the
gravitational constant. This is the only initial condition needed for the fields, since
the full system (3.34–3.36) reduces to a set of equations in the fast oscillation regime,
given below, which as said before, are feasible to solve and ensure that the scalar fields
behave like cold dark matter at late times:
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p1 = m4
1

9λa

(
1 ∓

√
1 + 3λ1

m4
1
ρ1

)2

, (3.39)

dρ1
da

= −3ρ1 + p1
a

. (3.40)

The same equations (3.39) and (3.40) will be applied to the field Φ2 exchanging 1 → 2.
The same rule showed near Eq. (3.35) for the ± signs applies.

This regime was also derived in [26] where the solutions where studied in more depth
for both the positive and negative self-interaction cases. However, in the case of
negative self-interaction, special care must be taken, since there exist two solutions,
both with negative pressure. We have chosen the one with increasing pressure, and
therefore a candidate for dark matter. This correspond to the so-called normal branch
in [26], where in equations (3.35), (3.36) and (3.40) the upper sign is taken in the ±
expressions.

This division into two branches for the case of negative self-interaction can be extended
to the limit of slow oscillations also by means of a simple ±, as indicated in the previous
equations. This extension will allow us to obtain the full solution for the negative λ
case, at least in the normal branch.

Going back in cosmic time, there must be a value for the scale factor at which the fast
oscillation regime stops to be valid in one of the fields. At this point, defined by ae,
we have to solve the complete system of equations (3.34–3.36) given the following
matching initial conditions (see [22]): The density and pressure variables are evaluated
at ae, thus determining initial values for the density and the variables A in the complete
set of equations, while the new variable B, must take the value

B1(ae) = −H(ae) ρ1(ae) + p1(ae)√
1 − 2 λ1

m4
1
(ρ1(ae) − p1(ae))

2 + 1√
1 − 3 λ1

m4
1
ρ1(ae)

 , (3.41)

and similarly for B2.

We solve the equations using a fourth-order Runge-Kutta method5. The problem is
solved in three parts, as we discussed earlier. We monitor the end of fast oscillation of

5RK4 is the most commonly used Runge Kutta method to find the solution of an ODE initial problem of
first order. See [101] and references therein.
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the fields using the equation for the pulsation in terms of the energy density in the fast
oscillation regime,

ωa = ma

√√√√1
3 − 2

3

√
1 − 3λa

m4
a

ρa, (3.42)

making the switch to the full system when ω/H ∼ 103 because according to numerical
experimentation, at this point the fast oscillation limit is still valid and at the same
time the full system can be solved with computationally reasonable resolutions on a. A
similar value is used in [22] as the threshold which states the marginal case where the
scalar field has fully morphed into CDM at matter–radiation equality.

Before proceeding with the cosmological constraints, we show typical solutions for the
negative and positive self-interaction single scalar field models in Table 3.1. Then we
report representative solutions of the two scalar field models of Table 3.1.

In Figure 3.1 we present the plots for the equation of state and the fraction of energy
for the following single scalar fields. We have chosen to show some representative
cases en each model. For example, for the axion field we take two values of the
fa, first the Planck scale fa = 1019GeV whose mass and self-interaction, according
to the formulas in Table 3.1, are (m1, λ1) = (5.7 × 10−13eV,−5.40 × 10−82), second
the grand unified theory scale (GUT), with fa = 1016 corresponding to (m1, λ1) =
(5.7 × 10−10eV,−5.40 × 10−70).

Then for the Higgs model, we choose a representative case with parameters (m1, λ1) =
(100GeV, 1). Actually for the allowed range of λh the field will always be in the fast
oscillation regime. In the extensive study made in [26] it was shown that below certain
threshold in the parameters, the scalar field will be in the so-called non self-interacting
regime. Which can be shown is always the case for the Higgs model, given the big value
for the mass and the restriction on λh. In other words, taking different (allowed) values
for λh and even lowering 9 orders (or raising any order) mh give indistinguishable
solutions between them and also indistinguishable from ΛCDM. In Figure 3.1 we use
the same red line in the top panel, to describe the equation of state of the Higgs as well
as the one of the fluid standard CDM.

We note that for the axion fields, the transition from stiff w = 1 to matter-like w = 0,
occurs later as the scale fa increases. However, for the Planck scale axion this is still not
enough to noticeably change the density fractions of the components of the Universe
in this particular range for a between 10−14 and 1, this is the reason that in the plot
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for Ωx, bottom panel in Figure 3.1, we use the same dashed black line to describe
standard CDM as well as the axion and the Higgs models. Important differences in
the density parameters (including at BBN), are obtained for fa above the Planck scale;
e.g. for a mass term of the order ma ∼ 10−20eV whose scale of symmetry breaking is
fa ∼ 1026.

Other reference case of interest is the fiducial model in [22], obtained as a classical
positive self-interaction scalar field that satisfy some cosmological constrains involving
BBN value of the effective number of neutrinos and the behavior of the field at zeq.
This is a model with parameters (m1, λ1) = (3 × 10−21eV, 4.2 × 10−86).

In the top panel of Figure 3.2 we present the fraction of energy for the two scalar field
model constituted by the classical and the Higgs fields, that we name Model I, with
two different contributions of each scalar field. The scalar field parameters for the
representative case potted at the top panel of Figure 3.2 are given in Table 3.1. We
can see the evolution of the dark matter density of the Model case I with a solid line
and the contribution of the individual scalar fields with translucent lines. All the other
contributions are plotted in dashed lines. Finally, at the bottom panel of Figure 3.2
is plotted the fraction of energy of the Model II, assembled with an axion field and a
Higgs field with the values of m and λ provided on Table 3.1 for the representative
cases.

3.2.4 Observational Constrains

Variability on the cosmic ladder

The tension between H0 values between early Universe predictions and local cosmology
model-independent measurements has revealed the great importance of building solid
techniques that combine data sets which can determine late time cosmological parame-
ter values [102]. For instance, Baryonic Acoustic Oscillations (BAO) measurements
alone do not determine cosmological parameters; but they can be combined with the
CMB anisotropies power spectrum and luminosity distances measured from SNeIa to
provide cosmological parameters in the context of different cosmological scenarios.
The cosmic distance ladder refers to the sequence of different methods that are used in
Astronomy to measure distances to space objects. At the bottom of the ladder we can
find the objects whose distance can be directly measured, like parallax. On the other
hand, the extragalactic distance scale is a set of techniques to determine the distance
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Fig. 3.1: Single scalar field representative cases of Table 3.1. Top panel: All solid lines
correspond to the classical positive self-interaction fiducial cosmology [22]. The
dashed lines are the reference CDM Universe, which happens to coincide in this
plot to the Higgs and axion (GUT, Planck) cases. Bottom panel: Equations of state.
While the positive self-interaction classical field undergoes three phases, the negative
self-interaction case undergoes two and the Higgs field remains indistinguishable
from standard cold dark matter.
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Fig. 3.2: Evolution of the density parameters of the Universe. All solid lines correspond to the
scalar field dark matter model with two components and the dashed lines represent
the rest of the density contributions. Top panel: Two scalar field model I. Bottom
panel: Two scalar field model II.
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of cosmological bodies beyond Milky Way, for instance, that for which SNeIa can be
used.

In this section we compute the variation of our model and the priors considered at the
edges of the cosmic ladder. Although this is not an attempt to solve the tension of H0,
it will provide us a hint of the behavior of this two scalar field combination:

• I: Classical+Higgs,

• II: Axion+Higgs,

see Table 3.1, in the direction of know which of that combinations can be fitted
through astrophysical observations. In order to perform such analysis we considered
the following:

1. An early H0 prior: using the cosmological model ΛCDM and the Planck Collab-
oration [35] data with the corresponding H0 = 67.04 ± 0.5 km s−1 Mpc−1. We
denote this prior as PL18.

2. A late H0 prior: from the measurement of the Cepheid amplitudes at late times
with the corresponding H0 = 74.03 ± 1.42 km s−1 Mpc−1 [103]. We denote this
prior as R19.

Following this recipe would give us a percentage rate of the differences between the
models described above and the scale factor at which these deviations take place.

We solved the system of equations (3.33-3.36) as explained before and compute the
corresponding cosmological evolution for the Classical, axion–like and Higgs–like
scalar fields at different contributions of each one, characterized by the η parameter,
for each case analyzed and with the two different H0 priors mentioned above. Then
we compare this evolution of the dark matter fractional densities ΩDM with that of our
model, noticing that the main difference, characterized by the slope on the upper plots
in Figure 3.3, has a dependence on the η parameter. That is, the larger the parameter,
the slope shifts to the right. This movement can be quantified if we compute

∆ = ΩDM(η = 0.25) − ΩDM(η = 0.75)
Ω2SFDM

, (3.43)

where Ω2SFDM is the density fraction of the two scalar fields and ΩDM is the density
fraction computed with PL18 and R19, i.e, ∆I is referred to the case I and ∆II corre-
sponds to the case II. As we can see in Figure 3.4, the quantification on the shift due
to the difference of the η parameter is bigger in the model I compared with model II,
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(b) Variability of the Model I with η = 0.75
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(c) Variability of the Model II with η = 0.25
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Fig. 3.3: Variability of our model, labeled as 2SFDM, with respect to Planck 2018 (PL18) and
Riess et al (R19) H0 priors in (a) the case I (Classical+Higgs) for η = 0.25 and (b)
for η = 0.75. (c) The variability in the case II (axion+Higgs) for η = 0.25 and (d) for
η = 0.75. The values for the free model parameters are in Table 3.1
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Fig. 3.4: Quantification (Eq. 3.43) of the shift on the slope of the variability (see Figure 3.3) of
the models I and II. The maximum relative difference in the density fraction between
η = 0.25 and η = 0.75 for the Classical + Higgs model computed with R19 relative to
the density fraction of the two scalar field model, occurs at a ∼ 10−6 (red solid line);
while for the axion + Higgs model this occurs earlier, at a ∼ 10−12 (blue dashed line).
This behavior is the same for the density fraction when PL18 is used and shows that
the model I is more sensitive to the current energy density fraction than the model II.

showing that the model constituted by classical and Higgs fields is more sensitive to
the current energy density fraction of a lighter scalar field than the model made of
axion and Higgs scalar fields. Furthermore, we can notice that, without taking into
account the variation on the η parameter, the differences between the values of the
dark matter density fraction with PL18 and R19 priors and the density fraction Ω2SFDM

of our model occur in an earlier Universe on the model II than in the model I. See, e.g.
Figure 3.3 (a) and (c).

Constraints from Neff and zeq

Among the parameters that determine the production of light elements at BBN we have
the expansion rate H. This is a period where every component other than radiation is
subdominant, therefore the presence of extra relativistic degrees of freedom, beyond
the Standard Model implies a modification to H with respect to its ΛCDM profile. This
can be quantified inside the effective number of neutrino species Neff as a contribution
to the ΛCDM value N0

eff through a parameter known as number of equivalent neutrinos
∆Nν , although its source does not necessarily come from a neutrino. It is defined by

∆Nν = ρξ

ρν
, (3.44)
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where ρν is the energy density of the standard model neutrino (per neutrino specie)
and ρξ is the energy density of the additional relativistic fields in consideration, this
contribution could correspond to the positive self-interaction (classical) scalar field or
to the negative self-interaction axion field for those cases when the energy contribution
is important in order to modify H, that is, when they behave as radiation and/or stiff
matter during BBN. With the previous definition, the total radiation energy density
divided by the photon energy density, ργ , is

ρr

ργ
= 1 + ρν

ργ
(3 + ∆Nν) . (3.45)

If it is assumed that neutrinos are completely decoupled from the electromagnetic
plasma at the electron-positron annihilation, the temperature of the photons increases
with respect to that of the neutrinos by (Tν/Tγ)3 = 4/11. Now, the density ratio
ρν/ργ = 7/8(Tν/Tγ)4, implies that

ρr

ργ
= 1 + 7

8

( 4
11

)4/3
Neff , (3.46)

with

Neff = N0
eff

(
1 + ∆Nν

3

)
; N0

eff = 3

11
4

(
Tν

Tγ

)3
4/3

. (3.47)

Where in this case N0
eff = 3. However if it is not assumed that the neutrinos are

completely decoupled when the electron-positron pairs annihilate, then N0
eff = 3.046

[104].

The total Neff enters through H to the equations that determine the primordial light
element abundances (solved by BBN codes) and if for example the lepton asymmetry
is neglected, the BBN primordial abundances can be confronted with astronomical
observations of the abundances of (mainly) deuterium D [105] and the isotope 4He
[106]. This constraints on the observed elements can be traduced in constraints over
Neff as well as Ωb [107, 108].

The 2015 reference [108], obtained Neff = 3.56 ± 0.23 or

∆Nν = 0.5 ± 0.23. (3.48)

This value certainly excludes the possibility of a new neutrino as well as the standard
N0

eff case. Nevertheless the parameters of a complex scalar field with positive λ can be
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constrained to be consistent with this measurement as showed by Li et al. [22, 109]
if a time dependent ∆Nν(a) is assumed rather than a relatively late time fixed value.
The constrain (3.48) is applied through BBN, between the neutron to proton freeze-out
and the first nuclei production, at an/p and anuc respectively.

In our numerical analysis, if Φ1 is not subdominant at BBN, the constrain (3.48) is
implemented with the formula,

Neff = N0
eff
2

(
1 + Ω1

Ωr

+

√√√√(1 + Ω1
Ωr

)2
+ Ω1

Ωr

32
7

(11
4

)4/3 1
N0

eff

 , (3.49)

which is a result of inserting ργ from (3.46) into (3.47) along with the definition (3.44)
and ρν = Ωr − Ωγ , notice that in this expression, Ωr contains the γ and ν contributions
only, which are evolved separately from Φ in the code.

Additional to the BBN constraints discussed so far, there is a need to make the relativistic
and stiff matter scalar field solutions reach a matterlike behavior in w at the latest in
the matter-radiation equality zeq ≈ 3365. This condition is imposed in the code by
setting w(zeq) < 0.001.

The results of this BBN+zeq analysis for the single λ1 > 0 scalar field, was reported
first by Li et al. in [22] and later an update was made within their work [109]. We
recover their result:

m & 5 × 10−21 eV, (single λ > 0) (3.50)

8 × 10−4 eV−4 .
λ1
m4

1
. 10−2 eV−4. (3.51)

If we repeat this analysis now including the single scalar axion case, we should be
able to obtain a constrain on the single parameter fa particularly for the cases with
big values of this parameter, which as showed in the previous section, are the models
that affect expansion the most. It should be mentioned that the general λ < 0 case
cannot be solved in all the cases, particularly in those where the slow oscillation regime
appears closer to a = 1 and the square root arguments in (3.35) and (3.36) become
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negative at certain point ai which corresponds to a place where the scalar field “turns
on” [26]. Luckily, numerical experimentation on solutions for the axion field (where
the mass and self-interaction have a specific dependence on fa) shows that this is never
the case and no discontinuities in the Einstein equations appear.

However, the situation occurs when the stiff matter stage of the axion affects Neff(a)
very drastically, and not in the “stepped" way in which it happens for the λ > 0 case. If
the limits are kept to 1σ in Eq. (3.48) there is no value of fa for which Neff(a) is kept
inside this limits, not even at 2σ. It happens that if the Neff(a) enters into the limits
(3.48) in an/p at the beginning of nucleosynthesis, it no longer enters at the end of it,
at anuc, and vice versa.

Therefore, the single axion model is discarded in relation to this cosmological con-
strain.

It is possible to repeat this analysis for the two scalar field cases. We are interested in
exploring Model I and Model II (Table 3.1). Both of them include the Higgs-like field,
which as has been said is similar to CDM fluid regardless of the specific values that mh

and λh assume. Therefore, in Model I we have a three parameter model and in Model
II we have just two parameters.

• Model I. We fix the value of η, (i.e. the fraction of the energy density of Φc at
a = 1 with respect to total dark matter density, (3.37)), and explore the existence
of possible values of m1 and λ1 consistent with the 1σ BBN+zeq analysis. The
case η = 1 coincides with the single case constraints in (3.50,3.51). If we begin to
decrease the value of η, the range of the parameters consistent with the constrain
decrease in size, as shown in Figure 3.5, until a critical value is reached, after
which no value is allowed. This constrain on η, gives

η & 0.423 . (3.52)

That is, an upper bound of ∼ 58% for the Higgs (or w = 0 fluid) component can
be considered in order to be consistent with this constrains. In the critical case,
where η takes values near 0.423, we have that the (m,λ/m4) parameter space
narrows to the values m & 2 × 10−21eV and λ/m4 ∼ 3 × 10−2eV−1.

• Model II. In this simpler case, a joint analysis over η and fa can be made. We find
that no 1 − η ratio of the Higgs field is capable of smoothing the Neff(a) evolution
dictated by the axion, during BBN. And since the Higgs field has a contribution
to Neff of 0 with respect to N0

eff , this two fields case (like the single axion case),
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Fig. 3.5: Constraints from zeq and Neff within 1σ for the two scalar field Model I. η is the
fraction of the classical field with respect to the total dark matter components. The
crosshatched region that appears on the right side of all figures, represents the values
of the scalar field parameters not allowed by the zeq constrain. The green and yellow
bands are the allowed regions from the Neff constrain, (3.48), at an/p and anuc
respectively. The red band is the region of the parameter space that is consistent with
both the zeq and Neff , throughout BBN, constraints.
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is discarded in the sense that there is no set of parameters such that (3.48) is
satisfied. Relaxing the constrain to 2σ in (3.48) no allowed values are found
either.

• Model III. The classical (λ > 0) + axion case has 4 relevant free parameters and
a higher complexity. It is found that for all axions with fa < 1019GeV, for which
the equation of state is 0 before the start of BBN, as showed in section 3.2.3, the
axion scalar field behaves effectively as a w = 0 fluid for the purposes of this
restriction, and therefore the same restriction as for case I would apply here. A
complete analysis of this case will be reported elsewhere.

3.2.5 Conclusions

In this work we presented a straightforward analysis to incorporate scalar fields derived
from models coming from physics beyond the Standard Model of particle physics (BSM)
in the Cosmological evolution. The usual Cosmological models which incorporate scalar
fields to describe the dark matter component of the Universe, have been successful in
building a serious alternative to the well known CDM model. These type of proposals
consider a scalar field that does not interact in any way, except via the gravitational
interaction, with the rest of the matter in the Universe; we have denoted these fields as
classical.

The combination of some scalar fields coming from BSM with the classical scalar
field proposal, demands a clear description and discussion of the interpretation of the
transition from a quantum field theory to a wave function satisfying the Einstein-Klein-
Gordon system of equations. In order to do this transition we used the effective action
perturbative expansion, where we identified the zeroth order term with the classical
field, which we then reparametrized as a complex scalar field.

The BSM fields that we analyzed were the Higgs-like and axion-like fields (clearly the
SM Higgs boson itself, being the mass mediator, can not be used to describe the dark
matter), and included them along with the classical one considering that the dark
matter is composed of two such fields. Then, both of these fields would contribute to the
dark matter relic density observed today, i.e. 0.26, and we explore which proportions
of each field today are consistent with BBN at the early Universe.

To start, we considered the case of only one BSM field, taken as a complex classical
field as explained in sub-section 3.2.1. We found that in the case of a single Higgs-like
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DM, it is not possible to increase Neff in a significant way during BBN, notice that this is
the same case as in ΛCDM. On the other hand, the axion and axion-like fields increase
Neff abruptly without the possibility of satisfying the constraint during all the period of
BBN.

Neither it is possible to find allowed values consistent with this constraint for the BSM
parameters in the case where both fields are combined in any proportion. On the
other hand, to produce a cosmological model that remains consistent with constraints
satisfied by the single classical scalar field, we can consider up to 58% of ΩDM to be a
Higgs-like field if the remaining 42% is the classical one. The combination of a classical
with an axion-like field turns out to have four free parameters which prevent us to
perform a brief survey of the parameters and make a full analysis in the lines of the
present work. However, we can say in advance that a combination of a classical field
together with an axion or axion-like field, will have a set of parameters for the scalar
field where this restriction is satisfied, specifically for fa < 1019 GeV.

We want to stress out the results regarding the Higgs-like scalar field. The searches on
direct [37, 38, 39, 40] and indirect [41, 42, 43] detection of dark matter usually take
into account one DM candidate, which comprises 100% of the relic density. Our result
opens the possibility to take into account in the direct and indirect searches more than
one candidate to DM, which contribute to the relic density in different proportions,
and thus modifiy the expected fluxes in the experimental analysis. This fact has to be
taken into account in the design of the experiments and in the interpretation of their
results.

Furthermore, according to BBN and zeq analysis, a large part of ΩDM in our two field
models, is required to be the classical complex scalar field, which has zero interaction
with the rest of the matter, beyond the gravitational one. In order to understand more
of its properties, different types of experiments have to be developed. For instance, the
distribution of the complex scalar field in the vicinity of a black hole, so called black
hole wigs [110], has a very particular density distribution which, in turn, affects the
dynamics of light and observable matter in such vicinity in a characteristic way. It is
important to look, as discussed and done in [111] for instance, for possible observable
(gravitational) consequences of one type or another of dark matter model, in order to
be able to discard or make more robust a given proposition for describing that quarter
of the total density of the Universe which we call dark matter.
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3.3 Galaxy–Halo Connection

At the present time, the paradigm of galaxy formation is based on the assumption that
dark matter plays a fundamental role in the galaxy formation process, since galaxies
form out of the condensation of cold gas within a dark matter halo. Although the
nature of dark matter is still a mystery, the current standard model in cosmology
and the halo structure formation, the so-called ΛCDM, has been very successful for
describing the distribution of the matter from the galactic to the large-scale Universe.
However, this model presents different problems at small-scales related to the N-body
simulations such as the “missing satellites” [112], the “cusp-core” [113], the “too big
to fail” [114] and the “plane of satellites” [115, 116] problems. Nevertheless, the
current hydrodynamical simulations, with a more sophisticated knowledge of baryonic
physics, exhibit the importance of the effect of stellar and radiative feedback in galaxies
suppress star formation, that is, given the UV background at the reionization epoch of
the Universe, not all dark matter haloes eventually host a galaxy [117, 118, 119, 120].
In addition, recent results have shown that non-circular motions in disk galaxies are
able to mimic the presence of kiloparsec-scale density ‘cores’, when none are actually
present [121]. That is, understanding the baryon physics for galaxy formation at all
scales and non-circular motions when considering the evidence of a potential satellite
problem or for dark matter cores is mandatory in order to understand whether the
current cosmological model is in tension with current observations. In this section we
focus on including the effects of a UV background in order to test the impact on the
galaxy-halo connection and on the nature of the dark matter particle.

In this section it is performed an analysis of the parameters of a scalar field dark
model within a semi–empirical approach of the Galaxy–Halo connections. The idea
behind this connections is to use simple rules to populate dark matter haloes and
subhaloes with galaxies that would be consistent with the observed distribution of
galaxy surveys. There are several ways to doing this. In this work we will focus on the
Subhalo Abundance Matching (SHAM) which matches the cumulative Galaxy Stellar
Mass Function (GSMF) to the cumulative Halo Mass Function (HMF) to obtain, at the
same time, a correlation between galaxy stellar mass and halo (and subhalo) mass [see
e.g., 122, 123, 124, 125, 126]. However, the importance of the galaxy–halo connection
not only relies on determining accurate models that match observations, but also relies
on using it as a phenomenological tool to understand the average growth of galaxies
[125]. In this sense, the work presented here shows that the connection between halo
and galaxy parameters is important and can explain the galaxy formation history at
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both high and low masses, if the process of the stellar and radiative feedback is taken
into account [127].

3.3.1 Theoretical framework

The (sub)halo abundance matching (SHAM) is a simple and yet powerful statistical
approach for connecting observable properties of galaxies to haloes [see e.g. for a
review, 126] by assuming that every halo host a galaxy. In its simplest form, given
some halo property (usually halo mass or maximum circular velocity), the halo number
density and the galaxy number density are matched in order to obtain the connection
between haloes and the galaxies that they host.

If we assume that halo mass Mhalo is the halo property that correlates best with stellar
mass, we can model the GSMF of galaxies by defining H(M∗|Mhalo) as the probability
distribution function that a halo of mass Mhalo hosts a galaxy of stellar mass M∗. Then,
the intrinsic GSMF, φgI (M∗), as a function of stellar mass is given by [125]:

φgI (M∗) =
∫

H(M∗|Mhalo)φhalod logMhalo, (3.53)

where φhalo denotes the total number density of haloes and subhaloes within the mass
range logMhalo ± d logMhalo/2. Here Mhalo is interpreted as the virial mass, Mvir , for
distinct haloes and Mpeak, the peak value of virial mass at or before accretion, for
subhaloes. So

φhalo(Mhalo) = φvir(Mvir) + φsub(Mpeak). (3.54)

However, the GSMF inferred from observations, φobs, through the estimation of stellar
masses of galaxies can be represented as the convolution of φgI [125]:

φobs(M∗) =
∫

G(M∗/x)φgI (x)d log x . (3.55)

Then, employing Eqs. 3.64-3.55, the stellar–to–halo mass relation is given by:

φobs(M∗) =
∫
P (M∗|Mhalo)φhalo(Mhalo)d logMhalo . (3.56)

When it has been established the galaxy-halo connection via the Eq. 3.55, we can
use the growth of dark matter haloes in order to determine the rate at which the
cosmological baryonic arrival material reaches the interstellar medium (ISM) of a
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galaxy. Then, when needed conditions are satisfied, some of the baryonic material will
be transformed into stars, so we can use the growth of dark matter haloes (that can
be measured from the extended Press–Schechter formalism [128] when one uses the
Markovian random walks to infer the halo mass functions, or more accurately by using
high-resolution N-body cosmological simulations of dark matter) to predict the M∗ of
the galaxy that they host as a function of different redshifts z, and thus the galaxy star
formation histories (SFHs) [125]:

SFR(z|Mvir,0, z0) = fin situ
1 −R

[∆M∗(z|Mvir,0, z0)
t(z) − t(z + ∆z)

]
, (3.57)

where Mvir,0 is the final mass of the halo at the redshift of observation z0, fin situ is the
fraction of mass acquired through star formation (in contrast with the ex-situ build of
galaxies via galaxy mergers, R is the fraction of mass that returns as gaseous material
into the interstellar medium and ∆M∗(z|Mvir,0, z0) is the amount of stellar mass the
galaxy will grow between t(z) and t(z + ∆z). In addition, we can calculate the cosmic
star formation (CSFR), ρ̇obs [125]:

ρ̇obs(z) =
∫

〈SFR(Mhalo)〉 Θ(Mhalo)φhalo(Mhalo) d logMhalo. (3.58)

Although abundance matching is a conceptually simple and yet powerful method to
connect galaxies and haloes at the sense described above [129], and the quantities
derived from this approach often agree for galaxies in haloes more massive than ∼ 1010

M� [126], at lower mass haloes it is not clear whether the assumptions of SHAM
are still valid [130]. It has been shown that simulations that model the evolution of
matter (baryons and dark matter) only subject to gravity do not produce the same
abundance of haloes as hydrodynamic simulations that include the ejection of baryons
from low–mass haloes via supernova feedback at the reionization epoch [131, 117].
Moreover, both effects will tend to suppress the formation of galaxies at the very small
scales. On the other hand, different type of dark matter particle will produce an impact
at the small-scale galaxy formation physics. A non-cold dark matter cosmology, such
as fuzzy or axion–like dark matter, that typically presents a suppression of the power
spectrum below ∼ 1010 M�, will inhibit the formation of galaxies in low-mass dark
matter halos [131]. The above, shows that there exists a degeneracy related to the lack
of small-scale galactic structures: Does galaxy formation is suppress due the presence
of a UV background in a ΛCDM model or is it the result of a cut in the power spectrum
from a non–cold dark matter particle?
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3.3.2 Suppression relative to CDM from the UV Background

As we discussed in Section 3.3.1, at dwarf galaxy scales with haloes up to ∼ 1010

M�, CDM simulations appear to overpredict the structure formed in comparison to
observations [131], e.g.,:

• The abundance of haloes with maximum circular velocity vmax ∼ 35 km s−1 is a
factor of ∼ 10 with respect to the one measured by ALFALFA6,

• The dynamics of satellites do not match with the simulations in the so–called
cusp–core problem, and

• The stellar-to-total mass ratios calculated from the abundances fail to match
those of individual dwarf galaxies.

As we will see below, some of these tensions can be alleviated by assuming that a
UV background. Here, the term alleviate is refered to dilute the overprediction of
substructure since these tensions are extremely complex and extensively studied with
a number of vast answers (see [132] and references therein). During the epoch of
reionization, the gas temperature is raised to the order of ∼ 104K [133]. As Tassis et al.
found [134], the global star formation rate, at reionization epoch, was significantly
reduced and the stellar feedback boosts this effect. Ergo, the stellar population has an
imprint of the epoch of reionization (EoR).

The problems referring to the overabundance of (sub)haloes mentioned above, can
be alleviated, then, if we included the impact of the UV background on the baryons,
which is expected to impact the formation of galaxies at small scales in three ways
[131, 117]:

1. In simulations, the interstellar gas is expelled from haloes, while intergalactic gas
does not accrete in the presence of ionizing radiaton.

2. The satellite galaxies are more sensitive to ram pressure stripping because it
removes gas from low-mass satellite galaxies.

3. The haloes with a lower mass and shallower potential well caused by the loss of
baryons, leads to diminished accretion of baryons and of dark matter.

6The Arecibo Legacy Fast ALFA survey is an extragalactic HI survey to conduct a census of the local HI
universe over a cosmologically significant volume.

3.3 Galaxy–Halo Connection 47



In order to include the above into models of galaxy formation and evolution, or as in
our case, in semi-empirical models of galaxy formation we use the result based on the
hydrosimulations of [117].

Initially, we assume that before the EoR the baryon fraction in the Universe, fb ≡ Mb/M ,
is: < fb >≡ Ωb/Ω0. But, after reionization, fb drops down as a function of halo mass
[117]. The function that describes such behavior is reported in [135]:

fb(M, z) =< fb >

{
1 + (2α/3 − 1)

[
M

Mc(z)

]−α
}−3/α

, (3.59)

where Mc(z) is a characteristic mass at which the formation of galaxies is heavily
suppress, [117] This is a biparametric function with a fitted α = 2 stablished in [117]
and the characteristic mass Mc [133]:

Mc(z)
1010h−1M�

=
[
τ(z)
1 + z

]3/2 [∆c(0)
∆c(z)

]1/2
, (3.60)

where τ(z) represents the evolution of the minimum virial temperature required by the
halos to continue cooling in the presence of the ultraviolet background:

τ(z) = 0.73 (1 + z)0.18 exp
[
−(0.25z)2.1

]
. (3.61)

Additionally, the redshift-dependent characteristic virial overdensity ∆c(z) [136] is
given by:

∆c(z) = 178 + 82x(z) − 39x2(z)
1 + x(z) , (3.62)

x(z) = − (1 − Ωm)a3

Ωm + (1 − Ωm)a3 , (3.63)

where a is the cosmic expansion factor. Inspired in [131], we propose to modify the
Eq. (3.64) multiplying the GSMF by the baryon fraction (3.59) and contrast the results
with observations from the GAMA project [137] as we can observe in Fig. 3.10:

φ(M∗) =
∫
fb H(M∗|Mhalo)φhalo d logMhalo. (3.64)

In order to describe the mean SHMR, we adopt the parametrization [124, 125]:

< log M∗ >= log(ε M0) + g(x) − g(0), (3.65)
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Fig. 3.6: The Galaxy Stellar Mass Function (GSMF) at z = 0. The black solid line represents
the GSMF as in the Eq. (3.64) [125]; the black dotted line, in contrast, shows the
GSMF with the baryon suppression at EoR; the violet points are the observations of
the GAMA project for z < 0.06 [137].

where
g(x) = δ

(log(1 + ex))γ

1 + exp(10−x) − log
(
10−αx + 1

)
(3.66)

and x = log(Mvir/M0). Every parameter is redshit-depend z and the only parameter
free to be adjusted is α:

α(z) = α0 + P(α1, α2, z) Q(z), (3.67)

where

P(x, y, z) = y z − x z

1 + z
, (3.68)

Q(z) = exp
(
−4/(1 + z)2

)
. (3.69)

Then the SHMR was modified as:

< log M∗ >EoR= fb(Mvir, β1, β2) < log M∗ > +1 − f(Mvir, β1, β2)
logMvir

, (3.70)

where the sigmoid function fb is given by:

fb(Mvir, β1, β2) = 1
1 + exp(−β1(logMvir − β2)) . (3.71)
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Fig. 3.7: Stellar–to–halo mass relation modified according to equation 3.70 with the baryonic
suppression (dashed lines) in comparison with the SHMR without the baryonic
suppression [125]

This modification is compared with the expression without the baryonic suppression in
the Figure 3.7.

Nevertheless, over the last two decades, a breakthrough has been set our observational
understanding on the evolution of GSMF, as well as the evolution of the SFR and
the cosmic star formation cSFR [120], in particular in some types of Star–Formation
galaxies (SFGs) that obey a tight SFR–M∗ relation. In this sense, we explore the
suppression relative to CDM from the UV background by using the redshift evolution
of the far–ultraviolet (FUV) luminosity functions combined with the evolution of the
GSMF of SFGs inspired by [138].

3.3.3 Suppression relative to CDM for generic non-CDM models

Another possible solution that we want to explore to the small-scale problem of the
ΛCDM cosmology is is to relax the nature of the dark matter, i.e., going beyond the
standard CDM paradigm and explore the so-called “non-cold” dark matter (nCDM)
candidates, that are well motivated by particle physics theories. Some of these can-
didates were explored in this work in the previous section 3.2, for instance: sterile
neutrinos [139, 140, 141] or axion-like particles [47, 45, 142]. Different scenarios
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lead to different shapes in the suppression of the power spectrum [48] and most of
the constraints from structure formation data refer to a very specific shape of the
small-scale power suppression, namely, that of the thermal warm dark matter. However,
a lot of viable nCDM candidates do not have thermally distributed momenta, which
may lead to non-trivial suppressions in their power spectra. The suppression of the
gravitational clustering in this models can be parametrised via the transfer function
T (k) [6]:

T (k) ≡
√

PX(k)
PCDM(k) '

(
1 + (αk)β)

)−γ
, (3.72)

where k is the comoving wave number, PX(k) and PCDM(k) are the nCDM and CDM
power spectrums, respectively. Stücker et al. [6] found that several nCDM models can
be reduced to only two free parameters by fixing γ = 5, namely:

a) Resonant Sterile Neutrinos. A suitable lepton number asymmetry in the early
universe can resonantly enhance the active-sterile transitions (Shi-Fuller mecha-
nism) and yield spectra that are more likely to be in agreement with data [143,
144]

b) Decay Sterile Neutrinos. This mechanism relies on the decay of a hypothetical
particle in the early universe, whose properties translate into those of the resulting
keV sterile neutrino; one example of this production mechanism is that of a singlet
scalar particle which may either thermalise (freeze-out) or not (freeze-in) [139,
145].

c) Fuzzy Dark Mater. Also called ultra–light dark matter, consists of condensed
scalar field with associated masses of m ∼ 10−22eV such that their wave behavior
becomes relevant at astrophysical scales. This model is considered, to first
approximation, without self–interaction, and only one–free parameter, the Dm
mass [146, 22].

d) Effective Theory of structure formation (ETHOS). Consists of an attempt to
formulate an effective theory of cosmic structure formation, to map virtually any
particle physics model to the constraints from astrophysics and cosmology, in
particular we are interested in the transfer functions studied in [147].

Additionally, if we re-express the parameter α in terms of the the half-mode comoving
wave number that indicates the scale where T (k) is suppressed by a factor of 2, khm:

α =

(
21/5 − 1

)1/β

khm
, (3.73)
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the models stated above can be described by the parameters khm which controls the
cutoff scale and β, that regulates the steepness of that cutoff.

The suppression of the halo and subhalo mass functions relative to CDM can be reliably
and inferred in the intermediate suppression regime, nX(M)/nCDM(M) > 5%. In this
section, we will introduce a generic expression for this relative suppression that it is
suitable for use in future studies to predict the mass function for generic non-cold dark
matter models. Stücker et al. in [6] showed mass function suppression ratios:

f(M) ≡ nX(M)/nCDM(M), (3.74)

and in [148] was suggested a fitting of the mass-dependent abundance suppression
ratio, nX(M)/nCDM(M) with a function of the form:

nX(M)
nCDM(M) '

(
1 +

(
a
Mhm

M

)b
)c

, (3.75)

where the half–mode mass is defined by [149]:

Mhm ≡ 4π
3 ρ0

(
π

khm

)3
, (3.76)

where, in turn, ρ0 is the critical density of the universe and the three free parameters
a, b and c will be fitted via MCMC (Markov chain Monte Carlo) with a model that in-
cludes the baryonic suppression relative to the UV background detailed on section 3.3.2
applied to a nCDM model. Moreover, the relation between a, b, c and the parameter β
can be approximated through the power law [6]:

a
(
f1/c − 1

)−1/b
= µf · βνf , (3.77)

where µf and νf depend on the value of the suppression ratio f given by equa-
tion (3.75). So, if the three parameters a, b, c are fitted, we can adjust also the
parameter β that is related directly with the nature of the particle of a nCDM model.

3.3.4 Results

In order to study the possible degeneracy between the baryon suppression coming from
the EoR because UV background and that for nCDM models as a result of the cutoff on
the power spectrum, we compare 4 models:
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Model β Mhm [M�/h]

Resonant Sterile Neutrinos

2.26 9.38 × 108

2.01 1.23 × 109

2.14 4.80 × 109

2.19 7.62 × 109

Decay Sterile Neutrinos

2.72 2.53 × 108

2.72 2.94 × 108

2.62 7.54 × 108

2.51 1.24 × 109

Fuzzy DM

5.41 1.93 × 108

5.34 5.28 × 108

5.27 1.34 × 109

5.29 3.51 × 109

ETHOS

3.43 4.76 × 108

2.93 5.05 × 108

2.12 1.03 × 109

1.11 5.70 × 109

Tab. 3.2: Values of β and Mhm of Eq. (3.72) given by [6] for several non–cold dark matter
models taken from [48]. The γ parameter was fixed as γ = 5.

1. CDM Model.

2. CDM + photoionization Model.

3. nCDM Model.

4. nCDM + photoionization Model.

As a starting point, we use the best fit model from Rodriguez-Puebla (work in progress)
to the CDM Model. Briefly, they developed a highly consistent model in which galaxies
growth within the merger trees of dark matter halos as well as their central super-
massive black holes. In order to constrain the model, the authors used a Bayesian
scheme [150] to fit to a large battery of observations, including: the galaxy stellar mass
function from z ∼ 0 − z ∼ 10; the evolution of the star formation rate-stellar mass
relation from z ∼ 0 − z ∼ 8; the cosmic star formation history; the size-mass radius
from z ∼ 0 − z ∼ 6, and the quasar luminosity function z ∼ 0 − z ∼ 6. In addition, this
models has been show to reproduce correctly the clustering properties of the galaxies
(Rodriguez-Puebla et al. in prep. and Kakos et al. in prep.) as well as the observed
counts on the far Infrared (Nava et al. in prep.). Thus, once we have established our
fiducial CDM model, we now repit our fit by fixing our best fit parameters to the CDM
Model and this time by fitting the far-ultraviolet luminosity function only and for the
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cases 2-4. Notice that the Rodriguez-Puebla model is for galaxies where they can be
accurately described by the ΛCDM model. Below we present our results.

In Fig. 3.8 we show the best fit model for the FUV luminosity function to a compilation
of 21 observational studies (see Table 1 in [138] for details). Notice that for higher
redshift galaxies z & 4 determinations of the faint slope of the UV LFs may be over-
estimated due to magnification bias [151]. The vertical lines corresponds to James
Webb Space Telescope (JWST) prediction limits [152] estimated assuming the use of
the F200W filter estimated for an investment comparable to CANDELS-W (labeled as
deep) and a Hubble Ultra Deep Field HUDF-like survey on a cluster field with 10×
magnification (designated as deep 10-x) from gravitational lensing from a massive
galaxy cluster, for more details, see [151].

In Fig. 3.10 we show the best fit model for the Galaxy Stellar Mass Function. We
compare our model for the GSMF, with different authors based on local and high
redshift measurements [137, 138, 153, 154, 155, 156, 157].

Additionally, for the nCDM + photoionization Model, we fitted the parameters a, b, c, Mhm

to

a = 2.50 (3.78)

b = 0.96 (3.79)

c = −0.50 (3.80)

Mhm = 9.40 × 109, (3.81)

that, according to the section 3.3.3, is used to fit the value of the parameter β = 1.88.
If we compare this results with the Table 3.2, there is no precise match with any
of the models proposed and studied by [6] due, possibly, to the existent degeneracy
between the suppression coming from the UV background and that expected from the
cutoff to the power spectrum of the nCDM model. However, we can note that the fit
of β and Mhm is consistent with the resonant sterile neutrino model, see Table 3.2
Nevertheless, we observe that in Figures 3.8-3.10 there is a clear difference between
the four models explored here at low masses, which represents an advance in the
possible differentiation between models when the observations can reach deeper into
the masses. In addition, more simulations and characterizations as the ones performed
by [6] are needed in order to increase the spectrum of models to be tested.
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Fig. 3.8: Luminous Function (FUV) at different redshifts z ∈ (0.15, 10)
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Fig. 3.9: Ratio of the different Luminous Function described on section ?? and the Luminous function of the LCDM model at different redshifts
z ∈ (0.15, 10)
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Fig. 3.10: Galaxy Stellar Mass Function (GSMF) at different redshifts z ∈ (0.1, 10)
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Fig. 3.11: Ratio of the different Galaxy Stellar Mass Function described on section ?? and the GSMF of the LCDM model at different redshifts
z ∈ (0.1, 10)
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3.3.5 Conclusions

In this work we explored two mechanisms of small–scale structure suppression in order
to alleviate the so–called overabundance of satellite galaxies in the standard cosmolog-
ical paradigm ΛCDM using the SHAM approach that connects galaxy’s properties into
halo properties. The main goal here was to alleviate the above tension, in addition to
study the degeneracy between the suppression coming from the UV background and
that expected from the cutoff to the power spectrum of a nCDM model. As we discussed
above, this degeneracy is not completely resolved in our analysis, nevertheless we
established a workable method that may be able to discern between a CDM model
and a nCDM when we compare with the available astrophysical observations. The
already launched James Webb Space Telescope will posses an unprecedented infrared
sensitivity and spatial resolution required for detecting faint, distant galaxies that are
extremely difficult or impossible to detect with any current facilities [158]. These
observations will provide significant insights into the statistical properties of the galaxy
population near low masses as can be noticed in Figures 3.8 and 3.9. If we can reach
lower at the masses, we will be able to distinguish between the different models here
proposed and possibly have knowledge of what is the most appropriate mechanism to
suppress the overabundance of small–scale galactic structures.
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The dark sector of the
Universe.
Scalar Field Dark Energy

4

„Contributing to know more about this two
mysterious components of our Universe [Dark
Energy and Dark Matter] is just astonishing

— Alma Xochitl Gonzalez Morales
Co-chair of the Lyman-alpha working group at

DESI

4.1 Dark Energy

The standard cosmological model, ΛCDM, also has problems in the sector of the dark
energy, such as the so–called cosmological constant problem [159] and the coincidence
problem [160]. The observations suggest that a large fraction of the energy density of
the universe, the dark energy, has negative pressure. One description of this component
is to associate it with vacuum energy density; nevertheless, we have known for several
decades that Λ, the cosmological constant, is certainly much smaller than typical
contributions to the vacuum energy that can be estimated from the Standard Model of
particle physics [161]. That is, the discrepancy of 123 orders of magnitude between the
interpretation of the cosmological constant from a particle physics point of view as the
vacuum energy density ρp = 5.16 × 1099 g m−3 and the present value observed of the
Hubble parameter squared that corresponds to a density of ρΛ ∼ 10−24 g m−3. Then,
the behavior of the dark energy can be described by other approaches, for example
a scalar field and variety of scalar models have been studied in this direction. The
simplest case is the so–called quintessence described by a classic scalar field minimally
coupled to gravity that has a density and equation of state (EoS) that vary with time,
w = w(t), in contrast with the static cosmological constant. The ghost fields are the
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optimal scalar fields for this component of the dark sector due to the property of having
a negative kinetic term which leads to an Eos parameter w ≤ −1. In this chapter we
explore a quintessence–complex scalar field with attractive self interaction to describe
the cosmic acceleration of the Universe [13] and a wormhole solution of the Einstein
equations considering a family of massive, complex and self–interacting ghost scalar
fields [14].

4.2 Complex Scalar Field Dark Energy

Introduction

The inclusion of the dark components of the Universe in Einstein equations gives a
consistent description of the current observed dynamics at a large scale [162, 163, 36].
This components are known as dark energy and, at a galactic level [164, 165, 166,
167, 32], dark matter. The nature of such dark components remains unknown. Dark
energy, although at first order is modelled as a repulsive gravitational term such as
the Cosmological Constant Λ, certain observations have shown some tensions in the
Hubble flow in the standard ΛCDM model [168], so it seems like it is not sufficient
to describe the dark energy with a constant term; it is thus proposed to be modelled
by different types of matter, such that the relation between the spatial components
of the corresponding stress energy tensor to the temporal one, is consistent with the
observed dynamics; that is, using an analogy with fluid dynamics, it can be defined
an Equation-of- State (EoS) T i

i = −w c2 T 0
0 (i. e. p = w ρ for the pressure and density

of a fluid like description). The behaviour of the function w can be related to the
observations, as described bellow, and its value at the present is close to minus one.

Regarding the modelling of the dark matter, several models have proposed that it
should be considered as a weakly interactive particle. However, not strong evidence
of such a particle has been detected in the current projects that have been created ex
professo to obtain a detection either directly [37, 38, 39, 40] or indirectly [41, 42, 43].
It must be faced the possibility that dark matter had zero interaction with the baryonic
matter.

Indeed, as mentioned above, the Theory of General Relativity allows to describe several
kinds of matter/energy, in comparison to the Newtonian case. In this way, once there
are models of one type of matter or another, consistent with the observations, the next
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step is the determination of characteristic features generated on the baryonic matter
by each kind of matter which could, in principle, be detected. Even supposing that
there is no interaction of the baryonic matter with the dark components, other than
gravitational, it can still be seen that the density distribution of the different types of
matter/energy has a very distinctive feature which affects the distribution of baryonic
matter, and that could tell at least what kind of matter better describes the observed
density distribution, see e.g [111] for a discussion on the subject. As an example of
the latter, in [169] was studied how the density perturbations evolve inside a dark
matter halo considering that the matter was a collection of non-interactive particles,
whose dynamics are described by the Vlasov equation. The main result in that work
was that the final state has a very distinct distribution in the coordinate space, a double
peaked Gaussian in the density and, in the phase space, a volcano-like form in the
distribution function, features that could affect the baryonic density distribution, which
is an observable quantity.

To define analogous strategies regarding the dark energy, there are several considera-
tions that must be taken into account. It is a component associated mainly with the
cosmic acceleration [170, 171, 172] which, as mentioned above, can be modelled
with the simple inclusion of a properly tuned Λ in the Einstein’s equations, although
this constant rules out the usual Minkowski’s solution, and the asymptotic limits of
all the well established solutions to the Einstein’s equations need to be modified. It is
an exciting fact that there is a new constant of Nature, see [173] for an interesting
discussion on the subject, but the implications in the equations themselves enhance the
need to prove the veracity of such model, a fact which is done proposing more general
models to describe the cosmic acceleration. In addition to its modeling with different
kinds of matter, another way to proceed, is to propose alternative gravity models of
matter that can describe the current observed dynamics [174, 175, 176].

Within the models proposed to describe the dark energy other than a constant term, in
Einstein gravity, those considering a scalar field can be the simplest, well motivated
choice from a particle physics point of view. Nevertheless, the great challenge is to
determine the appropriate scalar potential V (Φ) that could explain current cosmological
observations. An example of a description by a scalar field minimally coupled to gravity
is the quintessence model. The main motivation for considering it is to reduce the
so-called fine–tuning problem, issue that has been explored by the tracker quintessence
solutions. However, the predicted values on these models for the EoS at the present
epoch is not in good agreement with supernovae results [160, 177]. Another example is
the exponential quintessence potential that focus on models and parameters which lead
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to inflation, nevertheless nucleosynthesis constraints require that the energy density of
the scalar field be Ωφ ≤ 0.2, i.e., it would never dominate the Universe [178]. Another
dynamical potentials proposed in [179] and [180] avoid successfully the fine–tuning
and cosmic coincidence problem, but the values of the potential parameters can not be
unambiguously determined in order to match the observations constraints.

The above models are made up of real scalar fields. However, also complex scalar
fields should be considered since such fields (unlike the real case) have been invoked
in many different sectors of particle physics [181] (such as the Higgs mechanism) and
interestingly in the scene of ultra cold gases [182]; they can be used to construct static
distributions as Boson stars [183], and also configurations surrounding a black hole, the
so–called wigs [184], and they can even define static configurations with an associated
angular momentum number [185, 14]. Furthermore, a real quantized scalar field
yields the same field equations as those obtained by using a classical complex scalar
field [100]. These reasons motivated us to consider a dark energy model described by
a massive quintessence–complex scalar field with attractive self interaction. Such field
was formerly studied in [26] and, in the present work, we revisited the idea focusing in
the so-called peculiar branch solution of the Einstein-Klein-Gordon equations in order
to obtain parameter restrictions of the potential consistent with the current precision
observations. Although we are aware of the latest results regarding the possible
dynamical behavior of the EoS [168] and the impossibility for a single canonical field
to evolve crossing over w = −1 because of the no-go theorem [186], it is interesting to
explore in detail the properties of the previously mentioned branch and in computing
best fit values of their parameters, in order to have a quantitative description of the
model and a clearer picture of what the model needs in order to be consistent with
such a dynamical behavior of the dark energy.

This section is organised as follows: in Sec. 4.2.1 we briefly describe the Friedman
background considering a complex scalar field instead of the standard cosmological
constant. In Sec. 4.2.2 we study the Einstein-Klein-Gordon equations to describe dark
energy based in the fact that the scalar potential can be proposed as an effective fluid,
with the caution of not solving the EoS, but solving Klein–Gordon first, and with the
field and its derivative, compute the density and the scalar pressure, and subsequently
compute the corresponding w. We consider the fast oscillation regime, where the
pulsation ω of the scalar field is assumed to be faster than the Hubble expansion. An
EoS is obtained for a peculiar branch in such fast oscillation regime. We denote the
model presented in this manuscript as Complex Scalar Field Dark Energy (CSFDE). In
Sec. 4.2.2 a generic EoS with a complex scalar field mimicking the dark energy term is
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presented. A description of the current late-time observations are given in Sec. 4.2.3.
These samplers will be employed to constrain the only free cosmological parameter that
goes into the expression for the EoS of our CSFDE model. In Sec. 4.2.4 we describe
the methodology to proceed with the precision analysis and discuss the cosmological
constraints obtained. Finally, our conclusions are given in Sec. 4.2.5.

4.2.1 Complex Scalar Field in an homogeneous background

In this section we derive first the evolution equations for a homogeneous and flat
universe filled with radiation, baryonic and dark matter components and an effective
density which will mimic the dark energy component. In the second part, we introduce
the complex scalar field to describe such effective density and obtain the corresponding
Klein-Gordon equation.

Friedman equations

First, let us consider a homogeneous isotropic Universe, described by the Friedman-
Lemaître-Robertson-Walker metric 3.26. From this point forward we consider spatial
flatness. As it is standard, we can derive the Friedman equation and the energy
conservation equation by introducing the above metric in the Einstein’s equations.
Before continue with this straightforward calculation, let us establish our pivot model:
the paradigmatic cosmological model, ΛCDM, which considers a total density of the
Universe ρT = ρr + ρb + ρcdm + ρDE, normalised by the critical density given by
ρcrit = 3H2

0/8πG, where H0 is the Hubble parameter at present time and G is the
gravitational constant. According to this, we can derive the constraint equation from
the Friedman evolution as (

H

H0

)2
= Ωm + ΩΛ, (4.1)

with
Ωm = Ωr,0

a4 + Ωb,0
a3 +

Ωcdm,0
a3 , (4.2)

where Ωi = ρi/ρcrit (i = cdm, b, r), represents the density parameter and the sym-
bols cdm, b, r correspond to cold dark matter (CDM), baryonic matter and radiation,
respectively.

According to [1], the cosmological values for the densities described above are:
Ωcdmh

2 = 0.120 ± 0.001, Ωbh
2 = 0.0224 ± 0.0001, ΩΛ = 0.674 ± 0.013 and Ωm =
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0.315 ± 0.007. Currently, this model has proved to be consistent with several obser-
vations, however, it has problems in regards to the tension on the value of some
parameters like those of σ8 and H0 [187].

As indicated in the Introduction, it is interesting to explore dynamic EoS since they
alleviate tensions between certain cosmological parameters. Classical scalar fields
are simple models for introducing time-dependent equations of state. The case of a
scalar field minimally coupled to gravity, with a positive canonical kinetic term, called
quintessence [188, 160]. Extensions to this model have been widely considered, for
example some by including non-canonical scalar fields or negative signed kinetic terms.
However in this work, we consider a simpler case, which considers a rapidly oscillating
minimally coupled complex scalar field [181, 10, 26].

The Klein-Gordon equation

We use the evolution described as a starting point, and introduce a complex scalar
field in order to model dark energy. Our proposal is based in the fact that the scalar
potential V (|Φ|2), has a quartic-form with a negative scattering length as

V (|Φ|2) = m2c2

2~2 |Φ|2 − 2πAsm

~2 |Φ|4, (4.3)

where m is the complex scalar field mass, As the absolute value of the scattering length
and ~ the reduced Planck constant. This scalar potential describes, for instance, a
relativistic Bose-Einstein condensate at zero temperature with attractive self-interaction
[189, 190], and it is also similar to the Higgs potential of particle physics but with an
overall opposite sign.

The evolution of this complex scalar field in the cosmological scenario described above
is given by the Klein-Gordon equation

1
c2
d2Φ
dt2

+ 3H
c2

dΦ
dt

+ 2 dV

d|Φ|2
Φ = 0, (4.4)

from where we can express the complex scalar field as

Φ = |Φ|eiθ. (4.5)

Solutions to the Einstein-Klein-Gordon equations would require in total six parameters
related to initial conditions for the real and imaginary parts of Φ and their first time
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derivative together with the scalar field values for m and As. A further simplification
can be made within this model when, consistently with dark energy-like behavior, we
assume that the field is oscillating rapidly, this leads to a three-parameter model.

In our proposal, we are going to follow the procedure given in [26], of which we
summarize some key points. Using (4.5) in (4.60), the Klein-Gordon equation can
be divided into a real and an imaginary part, from which the second leads to the
equation:

Q = − 1
~c2a

3|Φ|2dθ
dt
, (4.6)

where Q a is constant1 and a the scale factor.

From the real part, and using the conserved charge Q explicitly in this equation, we
obtain

1
c2

[
d2|Φ|
dt2

− Q2~2c4

a6|Φ|3

]
+ 3H

c2
d|Φ|
dt

+ 2 dV

d|Φ|2
|Φ| = 0. (4.7)

The term containing Q2 is usually related to a centrifugal force when making the
analogy of this equation with that of fictitious particle with radial coordinate |Φ|, hence
the name spintessence for that model [26, 10].

In the real case, with a quartic potential analogous to (4.3), we have θ = 0, therefore
the conserved quantity Q in (4.6) is equal to zero, implying among other things, that
the solution must have a rapidly oscillating behavior with an equation of state also
oscillating around w = 0 [28] and the solutions to the equation of motion must be
obtained by numerical integration in an appropriate set of variables. The quartic
potential is not the only possibility, for instance taking a massless scalar field (µ = 0,
λ = 0) the equation of state stays trivially at the value w = 1. Other (real) scalar fields,
describing quintessence potentials, as the ones listed in the introduction, may have
dynamical EoS some of which also oscillate in time. In this work we take the opposite
approach, namely Q � 0, leading to an exact solution of the problem which is useful
in the implementation of tests for the model with cosmological analyzes. To compute
the energy density and pressure of the complex scalar field, we consider the following
expressions:

1After integration, the imaginary part of the Klein-Gordon equation leads to a conserved quan-
tity, which corresponds to the conserved charge of a complex scalar field, given by Q =

1
c2~

∫
dx3√

−g Im(Φ∂tΦ∗).
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ε = 1
2c2

∣∣∣∣dΦ
dt

∣∣∣∣2 + V (|Φ|2), (4.8)

P = 1
2c2

∣∣∣∣dΦ
dt

∣∣∣∣2 − V (|Φ|2). (4.9)

Notice how we can connect these equations to the ones presented in Sec.4.2.1 where
the quantity ε will replace the ΛCDM quantity ρcritΩΛ in the Friedman equation.

From the equations (4.60), (4.8) and (4.9) we can obtain a useful equation for the
energy density that resembles the continuity equation for a perfect fluid

dε

da
+ 3
a

(ε+ P ) = 0. (4.10)

With these equations, now we are ready to study particular solutions of the Einstein-
Klein-Gordon system evolving with a complex scalar field mimicking the dark energy
component. As metioned, this particular model in the fast oscillation regime and its
homogeneous solution have already been presented previously by [26], and we extend
the study in order to obtain analytical expressions for most of the quantities of the
solution, including w(z).

4.2.2 Dark Energy Solution in the fast oscillation regime

In [26] was found that in the fast-oscillation regime, i.e., when the oscillation frequency
of the scalar field is much larger than the value of the Hubble function, the solution
of the Einstein-Klein-Gordon equations for the case of a complex scalar field with an
attractive self interaction potential (4.3) has two different solutions. One solution
(called normal branch) resembles to a dark matter scalar field, while the other solution
(called peculiar branch) corresponds to a quintessence model. This solution only exists
in the fast oscillation regime, in which the scalar field suddenly emerges and behaves
as dark energy at late times.

Following the same logic, in this paper we propose a deduction of an exact solution for
the equation of state of the quintessence field. Once with this equation, we explore
their possible constraints by using current observational data.
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Peculiar branch solution in the fast oscillation approximation

To establish the fast oscillation regime mentioned above, we consider the following
condition which needs to be satisfied during the evolution of the scalar field

ω = dθ

dt
� H. (4.11)

In addition to the latter condition, we will impose that the magnitude of the scalar field
change slowly on time respect to the angular frequency of oscillation ω as:

1
|Φ|

d|Φ|
dt

� ω. (4.12)

Conditions (4.11)-(4.12) set the so-called fast oscillation regime of the Klein-Gordon
equation (4.60). Following this prescription, (4.7) can be reduce to

ω2 = 2c2 dV

d|Φ|2
. (4.13)

This allows us to write the fast oscillation condition in terms of the charge Q defined in
(4.6), which becomes

Q2~2c4

a6|Φ|4
= 2c2 dV

d|Φ|2
. (4.14)

Using the expression for the scalar field potential (4.3), we can approximate (4.8)
using the condition (4.13) as

ε = 1
2c2

[(
d|Φ|
dt

)2
+ ω2|Φ|2

]
+ m2c2

2~2 |Φ|2 − 2πAsm

~2 |Φ|4

≈ m2c2

~2 |Φ|2 − 6πAsm

~2 |Φ|4, (4.15)

By a similar approach, the scalar pressure from (4.10) can take the approximate form

P ≈ −2πAsm

~2 |Φ|4. (4.16)
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Solving (4.15) for |Φ|2, we obtain two possible branches that correspond to solutions
of the Einstein-Klein-Gordon system in the fast oscillation approximation

|Φ|2 = c2m

12πAs

1 ±

√
1 − 24πAs~2

m3c4 ε

 . (4.17)

Notice that this is a different result in comparison to the repulsive self-interaction case
[22], where there is an unique branch in the solution since only the (+) sign of the
square root is possible. Furthermore, in [26] was shown that for the attractive self-
interaction case (4.17) and when we take the negative sign, the scalar field undergoes
a matter-like phase (and even an inflation epoch). While for the positive branch, the
solution behaves as dark energy. From this point forward we will take the positive sign,
to focus on that particular branch.

Therefore, by using (4.17) in (4.16) we obtain

P (ε) = − m3c4

72πAs~2

1 +

√
1 − 24πAs~2

m3c4 ε

2

. (4.18)

Physical solutions of this latter equation correspond to those values of ε smaller than a
certain εi:

εi = m3c4

24πAs~2 . (4.19)

From the two latter expressions, notice that P (εi) = − m3c4

72πAs~2 , implies that wi =
P (εi)

εi
= −1/3.

The scale factor for which the energy density takes the value εi can be calculated by
inserting the value of |Φ|2 evaluated in εi, and taking the result on the fast oscillation
condition (4.14):

ai = 3

√
12

√
3πAs~2|Q|
m2c2 . (4.20)

For convenience, we re-define a dimensionless quantity in terms of the differential
equation for the energy density as

ε̄ = ε

εi
, (4.21)
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therefore (4.10) can be written as

dε̄

da
= −3

a

[
ε̄− 1

3
(
1 +

√
1 − ε̄

)2
]
. (4.22)

Evaluating in ε = εi, we can see that dε̄/da, takes a negative value of − 2
ai

, therefore for
a < ai the solution is not valid. The value ai indicates the scale factor at the time when
the scalar field turns on. Furthermore, at a → ∞, ε approaches to a constant value.

Now, taking the fast oscillation equation (4.14) and inserting |Φ|2 from (4.17) we
obtain

(
ai

a

)6
= 3

(
1 +

√
1 − ε̄

)2
− 2

(
1 +

√
1 − ε̄

)3
. (4.23)

In order to find the asymptotic value of ε, when a → ∞, we should consider the fast
oscillation equation (4.14), which for potential (4.3) takes the form

Q~c2

a3 =
√

2c|Φ|2
√
m2c2

2~2 − 4πAsm

~2 |Φ|2. (4.24)

Since ε decreases with a, then |Φ|2 increases as a → ∞ as we can notice from (4.17),
therefore the term inside the square root in (4.24) should vanish as a → ∞, leading to
an asymptotic value of

|ΦΛ|2 = mc2

8πAs
. (4.25)

Using (4.15) and (4.18) we can obtain

εΛ = m3c4

32πAs~2 = 3
4εi, (4.26)

P (εΛ) = −εΛ. (4.27)

Notice how in the limit a → ∞, the scalar field has an EoS with a value wΛ = −1.
Therefore the EoS interpolates between the values −1/3 and −1. This is a result of both
the rapidly oscillating behavior of the field and the chosen peculiar branch, although
not a general property of a homogeneous complex cosmological scalar field nor a direct
consequence of having a non-zero conserved quantity Q. This result is very different
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from the one that would have been obtained for the other branch of the solution or
even for the real case. In those cases we would not have a scalar field solution with
w < 0 that turns on at a certain scale factor ai and not before.

Exact solution for the dark energy term-like

To obtain an expression for ε in terms of the scale factor, we have to solve the Eq. 4.23.
This can be obtained making the change of variable

ζ =
√

1 − ε̄+ 1
2 . (4.28)

The latter leads to an expression in terms of a cubic equation

ζ3 − 3
4ζ + 1

2

(
a6

i

a6 − 1
2

)
= 0, (4.29)

which has three real solutions. However, it must satisfy the conditions ζ(ai) = 1
2 and

ζ(a → ∞) = 1. The only solution that satisfy these conditions is

ζ(a) = cos
[

1
3 arccos

(
1 − 2a

6
i

a6

)]
, (4.30)

in terms of this function ζ(a), the energy density and the EoS parameter are given by
the following expressions

ε(a) =
[
1 −

(
ζ(a) − 1

2

)2
]
εi, (4.31)

w(a) = −

(
ζ(a) + 1

2

)2

3 − 3
(
ζ(a) − 1

2

)2 . (4.32)

This is the so-called Complex Scalar Field Dark Energy (CSFDE) model. These solutions
should be considered only in certain region ai < a < ae of the evolution of the Universe,
the upper limit ae is defined as the scale factor when the fast oscillation regime ceases
to be valid, which we will calculate below. This is evident from (4.14), since ω get
suppressed by the term a6, while |Φ| goes to a constant value. From now on, a will
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only be referred to this range. First, we must make sure that the solution at ai satisfy
the fast oscillation approximation described in the latter section.

Under these ideas, the fast oscillation condition ω � H is given by

Q2~2c4

a6|Φ|4
� 8πG

3c2 (ρm + ε), (4.33)

where ρm = Ωm/ρcrit, see (4.2). By performing the substitution of |Φ|2 using (4.17),
re-writing it in terms of ε̄ and, finally, taking ε � ρm, we can obtain

(
ai

a

)2
� mG

3c2As
ε̄(1 +

√
1 − ε̄)2. (4.34)

This condition will be satisfied initially if

3c2As

mG
� 1. (4.35)

In order to compute the value ae > ai, where the solution is no longer valid, we will
consider the end of the fast oscillation regime when ω = NH (with N = 200 analogous
to [22]). If ae � 1 and also ae � ai, in order to be able to make the approximations
ε � ρm and ai/ae � 1 in (4.34), then the end value of the scale factor will be

ae ≈
6

√
768
N2 π2A3

s~4Q2

Gm5c2 . (4.36)

In Fig. 4.1 we show an example for the evolution of the equation of state parameter w
between the values for the scale factor ai and ae, determined by specific values of m,
As and Q. In this example we take2 ai to be the value amin = 0.1 < 1/(1 + zmax) where
zmax = 2.26 corresponds to the maximum redshift used in the multiple data sets within
the analysis described in the next section. In this way, we ensure that the scalar field is
present throughout the a range of the analysis. We have restricted this example to the
case where ae = 1, thus ensuring that the limit of rapid oscillations and therefore the
cosmological constant type behaviour continues to be valid today.

To give a qualitative description about what is happening in the complete cosmological
model where dark energy is described by the scalar field solution described at Sec. 4.2.2,

2This particular choice of ai and ae in our example reduces the dimension of the free parameter space

from 3 to 2, thus we can put Q and As in terms of m: Q = 4a9
minmc4

27
√

3πNG~4 , As = 9N2G~2m
16a6

min
c2 .
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Fig. 4.1: Evolution of the w Eq. (4.32) as a function of the scale factor, a, in the quintessence
model. The dashed vertical lines represent the valid interval of the solution; the left
line is taken as the value ai = 0.1 and the right limit ae is defined as the scale factor
when the fast oscillation regime ceases, Eq. (4.36).

we present in Fig. 4.2 the energy density fractions of the quintessence model with the
same values ai and ae as in Fig. 4.1, additionally, for our example we have chosen the
initial scalar field energy density to be εi ≡ 4

3εΛ = 3
4ρcritΩΛ. In other words, we have

chosen that the asymptotic value for the energy density of the scalar field coincides
with the current energy density for Λ in the pivot model. Interestingly, it turns out that
this condition on the example fixes the three free parameters of our model, leading to
a mass m ∼ 10−22eV/c2, frequently used in the ultralight models of dark matter [28,
49, 45]. The Fig. 4.2 is almost indistinguishable from the corresponding figure for the
ΛCDM model, this is because the discontinuity for ε appears in an epoch where the
contribution to the total energy density of the scalar field is relatively small and also
because ε quickly tends to the εΛ value, as can be inferred from Fig. 4.1 and Eq. 4.31.

Parametric Equation of State in the late cosmic acceleration
approximation

Let us write explicitly (4.32) as an effective dark energy EoS described by a complex
scalar field with a Bose-Einstein condensate-like potential. By using the standard
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Fig. 4.2: Evolution of the fractions Ωi of the energy density of each component of the Universe
i as a function of the scale factor, a, in the quintessence model. Different components
are represented with different line styles as labeled in the legend.

definition a = 1/(1 + z) and expand the function ζ in (4.30) with the assumption
a � ai we obtain:

w(z) = w0 + wa(1 + z)6, (4.37)

where w0 = −1 and wa = 16
27ai

6. Notice that this generic expression for the EoS
impose directly on w0 the cosmological constant value. We will refer to this particular
parametrization of the scalar field model as parametric form for the CSFDE model.

The quantity ai which completely determines wa, is restricted to have values consistent
with a scalar field present at any time in the past. Therefore we should take the range
0 < ai < 1 which, translated to wa, corresponds to the range

wa ∈
(

0, 16
27

)
. (4.38)

Actually the validity of the parametric equation of state (4.37) requires pushing the
value ai further back in time. We could take, for instance ai = 0.3, which satisfies the
above conditions. In this case, the parametric equation of state (4.37) has a maximum
absolute error with respect to the exact case (4.32) of 8 × 10−2.

We should remark that (4.37) is not obtained as in the traditional derivation of the
solution of the conservation equation, where an effective dark energy fluid needs to be
consider and certain fixed values of w denote the different matter in the universe.
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Fig. 4.3: The 68% confidence level (C.L.), 95% CL. and 99.7% regions inferring from the
parametric CSFDE (4.37) using CC (yellow C.L), Pantheon supernovae + BAO (red
C.L) and the full sample (CC+SN+BAO) (green C.L).

4.2.3 Observational constraints

To perform the statistical analyses for the parametric CSFDE (4.37) and to find current
constraints of the model, we are going to consider in this paper late-time data sets as
SNeIa (Pantheon), Observational Hubble data (OHD) and Baryon Acoustic Oscillations
(BAO).

Each observational data has the following features:

• Pantheon SNeIa compilation: This sample is one of the latest Type Ia Supernovae
(SN) compilations [191] and it contains 1048 SNeIa at redshift 0.01 < z < 2.26.
The constraining power of this kind of supernovae is due that this observation
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can be used as standarizable candles. This can be implemented through the use
of the distance modulus

F(z,Θ)theo = 5 log10 [DL(z,Θ)] + µ0, (4.39)

where DL is the luminosity distance given by

DL(Θ) = (1 + z)
∫ z

0

c dz′

H0E(z′,Θ) , (4.40)

and Θ = {w0, wa} is the vector with the free cosmological parameters to be fitted.
We notice that the factor c/H0 can be absorbed in µ0. Furthermore, we can
write ∆F(Θ) = Ftheo − Fobs, using for this purpose the distance modulus Fobs

associated with the observed magnitude. At this point it may be thought that a
possible χ2

SN is given by

χ2
SN (Θ) = (∆F(Θ))T ·C−1

SN · ∆F(Θ), (4.41)

where CSN is the total covariance matrix. This equation can be used to contain
the nuisance parameter µ0, which in turn is a function of the Hubble constant,
the speed of light c and the SNeIa absolute magnitude. To circumvent this issue,
χ2

SN is marginalized analytically with respect to µ0 and we can obtain a new χSN

estimator

χ2
SN (Θ) = (∆F(Θ))T ·C−1

SN · ∆F(Θ) + ln S

2π − k2(Θ)
S

,

(4.42)

where S is the sum of all entries of C−1
SN . This equation gives an estimation of

the precision of these data independently of Θ, and k is ∆F(Ωm,Ωr,ΩΛ) but
weighed by a covariance matrix as follows:

k(Θ) = (∆F(Θ))T ·C−1
SN . (4.43)

Also, for this sampler we are taking the nuisance parameter M inside the sample,
for this we choose the respective values of M from a statistical analysis of the
ΛCDM model with a fixing H0 from the Late Universe measurements (SH0ES +
H0LiCOW) as H0 = 73.8 ± 1.1km/s/Mpc with M = −32.79.

4.2 Complex Scalar Field Dark Energy 77



• BAO measurements: we consider the sampler of 15 transversal measurements
obtained in a quasi model-independent approach. This can be done by computing
the 2-point angular correlation function tracers via DA(z; rdrag) [192]. The
sampler is given in a redshift range [0.11, 2.225]. These kind of observations
contribute with important features by comparing the data of the sound horizon
today to the sound horizon at the time of recombination (extracted from the
CMB anisotropy data). The BAO distances are given by dz ≡ rs(zd)

DV (z) , with rs(zd) =
c

H0

∫∞
zd

cs(z)
E(z) dz being the comoving sound horizon at the baryon dragging epoch, c

the light velocity, zd is the drag epoch redshift and c2
s = c2/3[1 + (3Ωb0/4Ωγ0)(1 +

z)−1] the sound speed with Ωb0 and Ωγ0 the present values of baryon and photon
density parameters, respectively. The dilation scale is given by

DV (z,Ωm; Θ) =
[
c z(1 + z)2D2

A

H(z,Ωm; Θ)

]1/3

, (4.44)

where DA is the angular diameter distance

DA(z,Ωm; Θ) = 1
1 + z

∫ z

0

cdz̃
H(z̃,Ωm; Θ) , (4.45)

where Θ = {w0, wa}. Through the comoving sound horizon, the distance ratio dz

is related to the expansion parameter h (defined such that H .= 100h) and the
physical densities Ωm and Ωb. To connect the BAO data with SNeIa (Pantheon)
to CMB data (PL18), we consider the Alcock-Paczynski distortion parameter:

F (z,Θ) = (1 + z)DA(z,Θ)H(z,Θ)
c

. (4.46)

Notice that this possible by calibrating the DA from BAO with the dLfrom super-
novae in a cosmology-independent way and we define:

χ2
BAO = (∆FBAO)T ·C−1

BAO· ∆FBAO, (4.47)

where ∆FBAO is the difference between the observational data and the resulting
value for Θ, and C−1

BAO is the inverse of the covariance matrix reported in the
reference mentioned above.

• Observational Hubble data (CC): we consider a sample of 51 measurements in the
redshift range 0.07 < z < 2.0 [193]. A calibration of this sample was presented
in [194]. Moreover, we should be careful since this sample contains data from
BAO that can overlapping the sampler. This sample gives a measurement of
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Parameters CC Pantheon+BAO CC+Pantheon+BAO
h 0.714 ± 0.071 0.734 ± 0.0040 0.733 ± 0.0038
w0 −1.30 ± 0.72 −1.24 ± 0.15 −1.14 ± 0.12
wa −0.8 ± 2.4 0.13 ± 1.3 0.33 ± 0.93
Ωm 0.325 ± 0.094 0.337 ± 0.072 0.296 ± 0.047

Tab. 4.1: Background best fits values for Eq. (4.37). For CC, Pantheon+BAO and CC+Pan-
theon+BAO.

the expansion rate without relying on the nature of the metric between the
chronometer and us as observers. The normalised parameter h(z) can be compute
by considering the values of SH0ES and H0LiCOW given above. In this sample
are content 31 data points from passive galaxies and 20 data points are estimated
from BAO data under a ΛCDM prior. However, BAO OHD data points can be
computed by using the rs at the drag epoch from PL18.

To perform the fit of the free parameters of our theoretical setting through the
construction of a χ2

H as

χ2
H =

51∑
i=1

[H (zi,x) −Hobs(zi)]2

σ2
H(zi)

, (4.48)

where Hobs(zi) is the observed value at zi, σH(zi) are the observational errors,
and H (zi,x) is the value of a theoretical H for the same zi with the specific
parameter vector x.

4.2.4 Methodology

To proceed with the cosmological precision test of the parametric CSFDE model
(4.37), we compute the χ2-statistic using each of the observational samplers described.
Then we find the values of the parameters which minimize each of those individ-
ual contributions up to 2-σ. We repeat the procedure using the total sample, i.e.,
χ2

Total = χ2
SN + χ2

BAO + χ2
OHD. In Table 4.1 we report the mean and best fits for the

cosmological parameters and the model parameters, w0 and wa, for the join samplers
CC+BAO+Pantheon SN.

In Fig. 4.3 we provide the confidence regions, which inform us from a Bayesian point
of view on the degree of correlations among the cosmological parameters and the
statistical tension between the observables. For the full data set combination we draw
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the contours by choosing two shades of a single colour, and we let the dark and light
hues represent the 1σ and 2σ regions, respectively.

In the analyzes performed, the posterior distribution of the parameter wa in the EoS
remains unconstrained in the range allowed by the model (see Eq. 4.38). Results in
Fig. 4.3 and Table 4.1 indicate that the value of wa spans the entire validity domain
in a 1σ contour. Nevertheless, the more general parametric model (4.37), can be in
fact constrained. We emphasize that the analysis has been done using the parametric
equation 4.37 without necessarily being associated with the model for which we have
an exact solution. For this parametric model, the result of the statistical analysis
indicates that, the parameters w0 and wa are constrained. However, it is in relation to
the proposed theoretical model that the parameters are not constrained.

4.2.5 Conclusions

Complex scalar field theory has been used from a Bose-Einstein condensate point of
view to describe the cosmic acceleration observed. This makes possible to construct
quintessence–complex scalar field scenarios, which can mimic dark energy effects. In
this particular backstage, we proposed a study of the peculiar branch solution of the
Einstein-Klein-Gordon equations in the fast oscillation regime, where the complex
scalar field is modelled as an effective dark fluid. As it is standard, from these field
equations it is possible to derive an effective equation of state (4.37), which is a more
general model, here called parametric CSFDE. In this panorama, the cosmological
parameters related with the model can be constrained using current observational
surveys in order to study epochs where the dark energy (at z = 0) and dark matter
(z ≈ 9) domination occurs.

Using the join samplers as CC+BAO+Pantheon, the parametric CSFDE model (4.37)
was constrained, taking the values, within 1-σ, of wa = 0.33 ± 0.93 and w0 = −1.14 ±
0.12. Moreover, within the considered wa range, it is not possible to constrain the
model, which best fit parameters are not consistent with the theoretical scalar field
model (Eq. 4.38). The quantity w0, which is a free parameter in the parametric model,
is well constrained in all our analyzes within values consistent with the late cosmic
acceleration as well as with the theoretical model, given that it is consistent with the
constant value w0 = −1 within 2-σ.

We remark that the CSFDE model has a theoretical restriction for the wa parameter that
is not suitable for a statistical analysis with early-time data, e.g., CMB. However, this
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limitation could be addressed if, for instance, one considers two scalars fields instead
of one. Furthermore, some of the conditions applied, as for example the narrow fast
oscillation regime, could be relaxed giving enough freedom, so that both using or not
using the CMB data, the best fit parameters could be determined.

Finally, we can see that the CSFDE model cannot reproduce an oscillating behaviour of
the EoS associated with a dynamical dark energy.

This result points out the necessity of more than one canonical scalar field to reproduce
viable cosmological scenarios. Further investigation could require combinations of
scalar fields like quintom scenarios or changes in the kinetic term. Also exact solutions
for other scalar potentials in the fast oscillation regime could lead to models favored
by Bayesian analyzes. This will be reported elsewhere.

4.3 Wormholes

A wormhole is a solution to the Einstein’s equations that connects two distant points in
spacetime and there are plenty approaches in this topic available in the literature; just
to mention a few, there is a wormhole approach in the context of f(R, T ) gravity (e.g.
[195, 196]), in teleparallel gravity (e.g. [197, 198]), also in the Finslerian framework
(see e.g. [199]) and in the axion approach of particle physics ans cosmology (e. g.
[200, 201]). Here we are interested in such that are made of ghost scalar fields that
constitute exotic matter described by the addition of an angular momentum parameter
that can be used to describe the observed accelerated expansion of the Universe.

Introduction

The essential property of General Relativity, namely, that matter determines the ge-
ometry of the spacetime, acquires a new light when the matter is such that it violates
the energy conditions [202, 203, 204, 205, 206]. In particular, the violation of the
null energy condition opens the possibility for the existence of globally hyperbolic,
asymptotically flat spacetimes with non-trivial topological structures [207]. Such mat-
ter, usually referred to as exotic in the literature, generates peculiar responses in the
properties of the spacetime curvature with important consequences on the effective
gravitational potential, producing potential “bumps" instead of the usual potential
wells. To provide an explicit example, in Fig. 4.4, we present the gravitational effective
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potentials for a massive, radially infalling test particle for two cases: the first one is due
to the presence of a point mass which generates the usual gravitational well, whereas
the second one is generated by a distribution of exotic matter (as the one discussed
later in this work) in which case the potential exhibits a different type of convexity
corresponding to a gravitational potential bump.

Fig. 4.4: Gravitational potential produced by a point mass ∼ −1/r (left panel) and by the
exotic distribution presented in this work (right panel), see section 4.3.4. In both
cases a test particle with vanishing angular momentum is considered.

Moreover, under specific circumstances, the bump could be such that it connects two
separated regions of spacetime. The resulting configuration is dubbed wormhole, and
it offers challenges and opportunities to better understand the relation between matter
and geometry, aside from the fact that, being bona fide solutions to Einstein’s equations,
it could potentially describe an astrophysical scenario if exotic matter turns out to
actually being present in our Universe.

In cosmology, matter with negative pressure can be used to describe the observed
accelerated expansion of the Universe [208, 209, 210, 188] and seems to be favored
by several observational constraints [211, 212, 213]. Additionally, modeling the
dark energy with an equation of state of the form p = ωρ, the observations suggest a
value of ω close to −1 or even smaller, in which case the existence of astrophysical or
cosmological wormholes becomes plausible.

The studies of traversable wormholes have their origin with Ellis’ work [214], where
the author presented a black hole like solution to Einstein’s equations, and in order
to remove the singularity, used a scalar field and drain the hole. Actually, the same
solution, based on a different approach was obtained almost at the same time by
Bronnikov [215]. It turned out that the solution represented a bridge between two
regions of the spacetime [216]. Over the years, the idea was further developed, and
the best known example of a traversable wormhole appeared in 1988, in the work
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of Morris and Thorne [217]. Since then, a plethora of literature has arisen and the
complexity of the models has increased, see for example [218, 219] and references
therein.

In order to obtain a wormhole solution to the Einstein equations, some works use
generation procedures, such as the Newman-Janis algorithm, which allows to obtain
a Kerr black hole solution starting from a Schwarzschild one; in this way, a rotating
(although not asymptotically flat) solution was obtained starting from one of the
original Ellis models [220]. There is also a technique which uses the thin shell approach,
which assumes that the matter is concentrated in a three-dimensional submanifold.
However, a common practice is to analyze the geometry describing a putative wormhole
without mentioning the possible matter that could generate it, artificially producing
general forms of such wormholes which might even include rotation [221]; in the
words of Morris and Thorne: fixed the geometry... ‘‘and let the builders of a wormhole
synthesize, or search throughout the universe for, materials or fields with whatever
stress-energy tensor might be required” [217].

In the present work, we prefer to avoid this “reversed engineering approach” and
assume the specification of a suitable matter model which allows for a large class
of static, spherically symmetric and traversable wormhole solutions. In particular,
following the recent approach in [185] to construct a generalized class of static and
spherically symmetric boson stars, we consider a family of massive, complex and
self-interacting ghost scalar fields similar to the one considered in Dzhunushaliev et
al. [222, 223], but which includes an extra parameter ` mimicking the effects of the
angular momentum. In this way, new spherical and traversable wormhole solutions can
be constructed which generalize those of Refs. [222, 223] to ` > 0. Accordingly, and
following the terminology of the `-boson stars, we dub these solutions `-wormholes.

While Ellis’ original solutions use a massless, time-independent real scalar field without
self-interaction, in this work we consider massive, complex and self-interacting scalar
fields with a harmonic time-dependency à la Dzhunushaliev et al. [222, 223], but
instead of considering just a single field we consider a family of fields with angular
momentum number `m with ` fixed and m = −`, . . . , `. Assuming like in [185]
that each of these fields has exactly the same radial dependency, we obtain static,
spherically symmetric wormhole solutions. When ` = 0, the mass of the scalar field, its
self-interaction and the time-frequency vanish one recovers Ellis’ wormhole solutions.

The new wormholes have several interesting characteristics, such as curvature scalars
and effective potentials which smooth out the features of the corresponding 0-wormholes.
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The geodesic motion helps us to understand the role played by the `–parameter in the
spacetime configuration. Finally, the presence of a new parameter gives rise to the
possibility that this wormhole might be stable, a feature that will be discussed in a
followup work.

The paper is organized as follows. In Section 4.3.1, we specify our metric ansatz
describing static, spherical symmetric and traversable wormhole spacetimes and in-
troduce the matter model. In Section 4.3.2, we derive the static field equations in
spherically symmetry, discuss some qualitative properties of the wormhole solutions
and then construct numerical solutions to the field equations whose main properties are
discussed next in Section 4.3.3. In Section 4.3.4, we discuss the embedding diagrams
visualizing the spatial geometry of the solutions, derive the geodesic equations for
massive or massless test particles propagating in the wormhole metric and analyze the
motion under several conditions determined by the wormhole parameters. Finally, we
discuss and summarize our results in Section 4.3.5.

4.3.1 Foundations

The determination of the stress-energy-momentum tensor that supports a wormhole ge-
ometry is of the utmost importance to understand its physical properties and structure.
As already mentioned in the introduction, an asymptotically flat wormhole geometry
in general relativity requires the matter to be exotic, that is, matter that does not fulfill
the regular properties of the usual matter we deal with everyday.3 More specifically,
the matter must violate the null energy condition, Tµνk

µkν ≥ 0, where Tµν is the stress-
energy-momentum tensor and kµ any null vector [217, 219, 226]. Incidentally, this is
also the fundamental ingredient of the so-called ghost energy, a model not excluded
by observations to be a candidate for dark energy. For instance, constraints from the
Supernovae Ia Hubble diagram [227] favor the existence of an equation of state for
such dark fluid, p = ωρ with ω < −1, a model consistent with ghost energy [205].

In practice, violation of the null energy condition is accomplished by changing the
global sign in the stress-energy-momentum tensor in Einstein’s equations. Ellis called
this the other polarity of the equations [214]. This change in sign in the equations is
attributed to the type of matter, and has multiple implications which might lead to
misunderstandings. A global change in sign to the stress-energy-momentum tensor

3However, it should be mentioned that there are examples of traversable wormholes without exotic
matter in modified theories of gravity [224] or in general relativity when the asymptotic flatness
condition is replaced by adS-asymptotics [225].
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implies that the usual definition of density also has the opposite sign and is thus
negative.

In this work we interpret the physical properties of the wormhole directly in terms
of the theory of General Relativity and Einstein’s field equations, so that the exotic
matter produces a different reaction in the curvature of the spacetime, particularly
in the effective potential in which the test particles move, generating bumps instead
of wells, so that a particle has to spend potential energy in order to get closer to the
source, while it gains kinetic energy and accelerates when getting away from it; like
when climbing a mountain to reach the summit and then going down.

In particular, we stress that when talking about test particles we assume the validity
of the weak equivalence principle, which assumes that the inertial and gravitational
masses are equal to each other. Therefore, free-falling test particles or photons always
follow causal geodesics of the underlying spacetime, regardless of the sign of their
mass.4 The “bump interpretation" mentioned so far will become evident when analyzing
the geodesic motion of test particles in Section 4.3.4.

Metric ansatz

We will consider a static spherically symmetric spacetime with a line element of the
form:

ds2 = −a(r) c2 dt2 + a(r)−1 dr2 +R2(r) dΩ2, (4.49)

where R and a are positive functions only of the radial coordinate r, and dΩ2 =
dθ2 + sin2 θ dϕ2. Notice that for R2 = r2 + b2, with b a positive constant, and a = 1,
the reflection-symmetric Ellis wormhole metric is recovered [214] and, from it, with
a suitable redefinition of the radial coordinate, one obtains the usual form of the
Morris–Thorne like wormhole [217]. Also note that the coordinate r our work is based
on extends from −∞ to +∞, and we will demand that R be regular at the throat r = 0,
which corresponds to a minimum of the area 4πR2 of the invariant two-spheres.

Matter content of the wormhole

In the present chapter, we consider a set of several massive scalar fields with a self-
interaction term. Our configurations are constructed in such a way that the sum of

4However, see [228] for bizarre implications in systems involving hypothetical point particles with
positive and negative masses.
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the fields preserves the spherical symmetry of the stress-energy-momentum tensor and
includes an extra parameter associated with the angular momentum number `. This
approach was introduced in [229] in the context of critical collapse, and recently used
in [185] to construct `-boson stars.

We start with the Lagrangian density for N complex massive scalar fields

LΦ = − 1
2κ

[
N∑

i=1
η∇µΦi∇µΦ∗

i + V ( |Φ|2)
]
, (4.50)

with a quartic potential

V (|Φ|2) =
N∑

i=1
V (i) =

N∑
i=1

ηµ
m2

Φc
2

~2 |Φi|2 + ηλ
λ

2~2 |Φi|2
N∑

j=1
|Φj |2

 , (4.51)

where κ = 8πG/c4, ~ is the reduced Planck constant, mΦ is the mass of the scalar field
particle and λ is the parameter measuring the strength of the quartic interaction term.
The values η = ηµ = ηλ = 1 represent the canonical scalar fields while η = ηµ = −ηλ =
−1 describe the type of ghost fields in which we will be interested in, and from now
on we fix the latter choice. In the following, for convenience, we will work with the
rescaled quantities µ = mΦc/~ and Λ = λ/2~2 instead of mΦ and λ.

The stress-energy-momentum tensor associated with the scalar field Φi is thus given
by

T (i)
µν = c4

16πG
[
− (∇νΦi ∇µΦ∗

i + ∇νΦi ∇µΦ∗
i ) − gµν

(
−∇αΦi∇αΦ∗

i + V (i)
)]
, (4.52)

while the total stress-energy-momentum tensor that we plug into Einstein’s field
equations is

Tµν =
N∑

i=1
T (i)

µν . (4.53)

In [229], for the case of real scalar fields, and in the appendix of [185], for complex
ones, it was shown that for an appropriate superposition, a stress-energy-momentum
tensor of the form (4.53) with Λ = 0 may be spherically symmetric, even though the
individual fields Φi have non-vanishing angular momentum. Here, we generalize this
result further to include the self-interaction of the field. The procedure is as follows.

Each scalar field Φi has the form

Φi(t, r, θ, ϕ) = φ`(t, r)Y `m(θ, ϕ), i = `+ 1 +m, (4.54)
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where m varies over −`,−` + 1, . . . , ` (such that i varies from 1 to N = 2` + 1)
and Y `m(θ, ϕ) denote the standard spherical harmonics. Here, the parameter ` is
kept fixed and the amplitudes φ`(t, r) are equal to each other for all m. Using the
addition theorem for the spherical harmonics [230], one can show that the resulting
stress-energy-momentum tensor in Eq. (4.53) for the N = 2`+ 1 fields is spherically
symmetric.

Next, one considers a stationary state with harmonic time dependence for the scalar
field

φ`(t, r) = eiωt χ`(r), (4.55)

where χ` is function of r and ω is a real constant. Once such procedure is carried
out, the following non-trivial components of the stress-energy-momentum tensor are
obtained:

T t
t = c4

8πG
2`+1

8π

{
a
(

dχ`
dr

)2
+
[

`(`+1)
R2 + µ2 − 2`+1

4π Λχ2
` + ω2

a

]
χ`

2
}
, (4.56)

T r
r = c4

8πG
2`+1

8π

{
−a

(
dχ`
dr

)2
+
[

`(`+1)
R2 + µ2 − 2`+1

4π Λχ2
` − ω2

a

]
χ`

2
}
, (4.57)

T θ
θ = Tϕ

ϕ = c4

8πG
2`+1

8π

{
a
(

dχ`
dr

)2
+
[
µ2 − 2`+1

4π Λχ2
` − ω2

a

]
χ`

2
}
. (4.58)

Notice how the procedure of adding individual stress-energy-momentum tensors main-
tains the spherical symmetry and yields a result that depends on the angular momentum
number ` through the centrifugal-like terms `(`+ 1)/R2. As expected and shown be-
low, this dependency plays a nontrivial role in the solutions of Einstein’s equations.
The mixed components T t

r, T t
θ and T t

ϕ vanish; indicating that there are no fluxes of
matter in this case, which is compatible with the assumption of staticity of the metric.

Notice also that the stress-energy-momentum tensor (4.56–4.58) violates the null
energy condition everywhere; for instance, the null vector field k = a−1/2c−1∂t +a1/2∂r

gives

Tµνk
µkν = −T t

t + T r
r = − c4

8πG
2`+ 1

4π

[
a

(
dχ`

dr

)2
+ ω2

a
χ2

`

]
, (4.59)

which is negative unless the scalar field vanishes.
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Now, one can compute the equation of motion for each individual field, i. e. the
Klein-Gordon equation, using the fact that the divergence of the total stress-energy-
momentum tensor is zero. Each amplitude obeys the identical equation:

d

d r

[
aR2dχ`

dr

]
+R2

(
ω2

a
− ` (`+ 1)

R2 − µ2 + 2`+ 1
2π Λχ2

`

)
χ` = 0, (4.60)

where we have used the fact that spherical harmonics are eigenfunctions of the Laplace-
Beltrami operator

∆S2 Y `m =
(
∂2

∂θ2 + cot θ ∂
∂θ

+ 1
sin2 θ

∂2

∂ϕ2

)
Y `m = −` (`+ 1)Y `m . (4.61)

As an example of the construction of the `−wormhole by the contribution of individual
non-spherical scalar fields, in Fig. 4.5 we show the distribution of the density at the
throat for the fields (φ1Y

1−1, φ1Y
10, φ1Y

11). The values are given by Eq. (4.53) for the
T t

t ∝ ρ component. This is the case for ` = 1 wormhole, so that there are three values
for m. The first sphere represents the sum of the m = −1 and m = 1 contributions, the
second one represents the m = 0 field, and the combination is given in such a way that
the total density (the third sphere) is spherically symmetric.

Fig. 4.5: Normalized density at the throat for a ` = 1 wormhole. The first sphere represents the
m = ±1 contribution while the center sphere corresponds to the m = 0 contribution.

4.3.2 Stationary Wormhole equations

In order to obtain the remaining field equations, it is helpful to notice that with the
stress-energy-momentum tensor components given by Eqs. (4.56, 4.57, 4.58) the
following equation is satisfied

T t
t − T r

r

2 − T θ
θ = − c4

8πG
2`+ 1

8π

(
µ2 − 2`+ 1

4π Λχ2
` − 2

a
ω2
)
χ2

` . (4.62)
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On the other hand, from the line element Eq. (4.49), we obtain the Bianchi-Einstein
tensor, Gµ

ν , and the same linear combination of the components gives:

Gt
t −Gr

r

2 −Gθ
θ = − 1

2R2
d

dr

[
R2 da

dr

]
. (4.63)

Thus, with the aid of Einstein’s equations:

Gµ
ν = 8πG

c4 Tµ
ν , (4.64)

we obtain our next field equation:

1
2R2

d

dr

[
R2 da

dr

]
= 2`+ 1

8π

(
µ2 − 2`+ 1

4π Λχ2
` − 2

a
ω2
)
χ2

` . (4.65)

Notice that when a static, massless scalar field (regular or exotic) without interaction
is considered, then a particular solution is obtained in which the metric function a is
constant.

A further field equation comes from the combination of the Gt
t component plus the

Gr
r one, and the corresponding Tµ

ν components:

dR2

dr

d a

dr
+ a

d2R2

dr2 − 2 = 2`+ 1
4π

[
R2

(
µ2 − 2`+ 1

4π Λχ2
`

)
+ `(`+ 1)

]
χ2

` . (4.66)

As mentioned above, for the first independent field equation, we consider the Klein-
Gordon equation, Eq. (4.60). In this way we obtain a system of equations in which
each function χ`(r), a(r) and R2(r) appears as the only second derivative:

χ′′
` = −

(
R2′

R2 + a′

a

)
χ′

` + 1
a

[
µ2 − ω2

a
+ `(`+ 1)

R2 − 2`+ 1
2π Λχ2

`

]
χ`, (4.67)

a′′ = −R2′

R2 a
′ + 2`+ 1

4π

(
µ2 − 2

a
ω2 − 2`+ 1

4π Λχ2
`

)
χ2

` , (4.68)

aR2′′ = −a′R2′ + 2 + 2`+ 1
4π

[(
µ2 − 2`+ 1

4π Λχ2
`

)
R2 + ` (`+ 1)

]
χ2

` , (4.69)

where a prime denotes derivative with respect to r. The remaining field equation is the
rr-component of Eq. (4.64) which yields

R2′

2R2

(
a′ + aR2′

2R2

)
− 1
R2 =2 `+ 1

8π
[
−aχ`

2′+(
µ2 − 2 `+ 1

4π Λχ`
2 − ω2

a
+ ` (`+ 1)

R2

)
χ`

2
]
,

(4.70)
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which can be interpreted as a constraint since it only involves zeroth and first-order
derivatives of the fields. Provided the second-order field equations (4.67, 4.68, 4.69)
are satisfied, the twice contracted Bianchi identity ∇µG

µ
r = 0 and ∇µT

µ
r = 0 imply

that
d

dr

[
aR4

(
Gr

r − 8πG
c4 T r

r

)]
= 0, (4.71)

such that it is sufficient to solve Eq. (4.70) at one point (the throat, say).

A particular simple solution arises when a static, spherical, massless scalar field (regular
or exotic) without interaction is considered. In this case, the parameters ω, µ, and
Λ vanish and considering ` = 0, the field equations (4.67–4.70) can be integrated
explicitly [214, 215], see also [231]. The simplest (but not unique) solution is obtained
assuming that the metric function a is constant. This yields the solution

a = 1, R2 = b2 + r2, χEllis (r) =
√

8π arctan
(
r

b

)
, (4.72)

which has the property that the metric functions a, R2 and the gradient of χEllis are
reflection symmetric about the throat r = 0. In Fig. 4.6, we present the plot of Ellis’
ghost field and the corresponding energy density. Although the scalar field itself
does not decay to zero simultaneously at both asymptotic ends r → ±∞, its gradient
does. Since in the massless case the stress-energy-momentum tensor and equations of
motion only depend on the gradient of the scalar field, the configuration is localized
from a physical point of view. Furthermore, we observe that the density is negative
everywhere. The curvature and Kretschmann scalars are given by Rs,Ellis = − 2 b2

(r2+b2)2

and KEllis = R2
s,Ellis (see Fig. 4.7), respectively, and like the density, they have a fixed

sign.

Fig. 4.6: Ghost field and the corresponding density for the original Ellis wormhole.
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Fig. 4.7: Kretschmann scalar and effective potential, Veff = L2/R2 + κ for a massive particle
propagating on the reflection-symmetric Ellis wormhole.

In the following, we consider much more general wormhole solutions in which the
parameters ω, `, µ and Λ do not necessarily vanish. These solutions are obtained
by numerically integrating the field equations (4.67, 4.68, 4.69) and taking into
account the constraint (4.70). For simplicity, in this article, we restrict ourselves to
the reflection-symmetric case (although more general wormhole solutions which are
asymmetric about the throat could also be considered). These solutions satisfy the
following boundary conditions at the throat, r = 0:

χ′
`(0) = 0, (4.73)

a′(0) = 0, (4.74)

R2′(0) = 0. (4.75)

Denoting by b := R(0) the areal radius of the throat, the constraint (4.70) yields the
following condition at r = 0:

[
1 + (2`+ 1)`(`+ 1)

8π χ`(0)2
]
b−2 = 2`+ 1

8π

(
ω2

a(0) − µ2 + 2`+ 1
4π Λχ`(0)2

)
χ`(0)2,

(4.76)
which fixes the radius b of the throat and requires a(0) and χ`(0) 6= 0 to be chosen such
that

ω2

a(0) + 2`+ 1
4π Λχ`(0)2 > µ2. (4.77)

Note that this inequality and Eq. (4.68) also imply that a has a local maximum at the
throat. Next, Einstein’s equation (4.69) together with the conditions (4.73, 4.74, 4.75),
implies the relation

1
2a(0)(R2)′′(0) = 2`+ 1

8π

[
b2
(
µ2 − 2`+ 1

4π Λχ`(0)2
)

+ `(`+ 1)
]
χ2

` (0) + 1. (4.78)
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Using Eq. (4.76) this can be simplified considerably,

1
2a(0)(R2)′′(0) = 2`+ 1

8π
b2ω2

a(0)χ`(0)2, (4.79)

which shows that the throat is indeed a local minimum5 of R2. For ` = 0 the
Eqs. (4.76, 4.79) reduce to the corresponding equations in Ref. [222] (see their
equation (18) and the unnumbered equation below it.) Due to Eq. (4.76), one has
two free parameters at the throat, given by χ`(0) 6= 0 and a(0), say. As can be checked,
the field equations (4.67,4.68, 4.69, 4.70) as well as the conditions (4.76, 4.79) are
invariant with respect to the transformations

(ω, t, r, a,R2, χ`) 7→
(
ω√
B
,
√
Bt,

r√
B
,
a

B
,R2,±χ`

)
, (4.80)

with B > 0 a real parameter. Therefore, one can fix the value of a(0) to one, say, and
adjust the value of B such that a(r) → 1 for r → ∞. In this way, one is left with just
one shooting parameter (χ`(0) > 0, say) at the throat r = 0.

At r → ±∞, we require asymptotic flatness,

χ`(r) → 0, (4.81)

a(r) → 1, (4.82)
R(r)
r

→ 1. (4.83)

Under these assumptions, the field equation (4.67) for the scalar field reduces to

χ′′
` (r) ≈ (µ2 − ω2)χ`(r), (4.84)

which shows that6

ω2 < µ2, (4.85)

is required to have the exponentially decaying solution χ`(r) ≈ e−
√

µ2−ω2r. Approxi-
mating the (exponentially decaying) right-hand sides of Eqs. (4.65, 4.66) to zero, one
obtains the following behavior of the metric coefficients in the asymptotic region:

a ≈ e
− c0

r+c1 , R2 ≈ (r + c1)2e
c0

r+c1 , r → ∞, (4.86)

5For ω 6= 0 the right-hand side of Eq. (4.79) is positive since χ` and χ′
` cannot both vanish at r = 0;

otherwise it would follow from Eq. (4.67) that χ` vanishes identically. For the special case ω = 0 see
the proof of Theorem 2 below.

6The limiting value ω2 = µ2 is discussed in Ref. [222].
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for some constants c0 and c1.

Qualitative analysis of the solutions

Before numerically constructing the wormhole solutions, we make a few general re-
marks regarding the restrictions on the parameters ω, µ and Λ and the initial condition
χ`(0) and regarding the qualitative properties of the solutions. We assume in the
following that (χ`(r), a(r), R2(r)) is a smooth solution of Eqs. (4.60, 4.65, 4.66) (or,
equivalently, of Eqs. (4.67, 4.68, 4.69)) on the interval [0,∞) which satisfies a > 0,
R2 > 0, the boundary conditions (4.73, 4.74, 4.75) at r = 0 and (4.81, 4.82, 4.83)
at r → ∞, and is subject to the conditions (4.76, 4.79) at the throat. We had already
observed that an exponentially decaying solution at infinity requires ω2 ≤ µ2. Fur-
thermore, at the throat, the inequality (4.77) needs to be satisfied. A first immediate
consequence of this last inequality is that the parameters ω and Λ cannot be both zero.
In fact, one has the following stronger result which shows that the self-interaction term
is needed.

Theorem 1 There are no reflection-symmetric solutions with the above properties if
Λ = 07.

Proof. We prove the theorem by contradiction. If Λ = 0, the inequality (4.77) implies
that

µ2 <
ω2

a(0) ≤ µ2

a(0) , (4.87)

which requires a(0) < 1 and ω2 > 0. However, Eq. (4.68) with Λ = 0 implies that at
any point r = rc where the derivative of a vanishes, the equality

a′′(rc) = 2`+ 1
4π

(
µ2 − 2ω2

a(rc)

)
χ`(rc)2 (4.88)

holds. Since µ2 − 2ω2/a(0) < 0, a has a local maximum at the throat, as already
remarked above, such that a(r) decreases for r > 0 small enough. Since a(r) → 1 as
r → ∞ there must be a point r = rc for which a ceases to decrease, corresponding

7The theorems stated here were established by Dr. Olivier Sarbach in the original work [185].
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to a (local) minimum of a. At this point, we must have a(rc) < a(0), a′(rc) = 0 and
a′′(rc) ≥ 0. On the other hand, since

µ2 − 2ω2

a(rc)
< µ2 − 2ω2

a(0) < 0, (4.89)

Eq. (4.88) implies a′′(rc) < 0, provided that χ`(rc) 6= 0, which leads to a contradiction.
If χ`(rc) = 0, we do not obtain an immediate contradiction since in this case it follows
that a′′(rc) = 0. However, in this case, we must have χ′

`(rc) 6= 0 since otherwise χ`

(as a solution of the second-order equation (4.67)) would be identically zero. By
differentiating Eq. (4.68) twice with respect to r and evaluating at r = rc one obtains
a′′′(rc) = 0 and

a′′′′(rc) = 2`+ 1
2π

(
µ2 − 2ω2

a(rc)

)
χ′(rc)2 < 0, (4.90)

which shows that r = rc is a local maximum of a and yields again a contradiction. This
concludes the proof of the theorem.

The next result implies that there cannot be more than one throat.

Theorem 2 Under the assumptions stated at the beginning of this subsection, the function
R2(r) is strictly monotonously increasing and strictly convex on the interval [0,∞).

Proof. By combining Eqs. (4.69,4.70) one obtains the simple equation

(R2)′′

R2 = 1
2

[
(R2)′

R2

]2

+ 2`+ 1
4π

(
χ′2

` + ω2

a2 χ
2
`

)
(4.91)

for R2, which shows that (R2)′′ ≥ 0 and hence that R2 is convex. We show further that
the right-hand side of Eq. (4.91) cannot vanish at any point. This is clearly the case
if ω 6= 0 since χ′

` and χ` cannot vanish at the same point (otherwise it would follow
from Eq. (4.67) that χ` is identically zero). Next, we rule out the exceptional case in
which ω = 0 and there existed a point r0 ≥ 0 where (R2)′(r0) = χ′

`(r0) = 0. If this case
occurred, successive differentiation of Eq. (4.91) would yield

(R2)′′′(r0) = 0, (R2)′′′′(r0)
R2(r0) = 2`+ 1

2π [χ′′
` (r0)]2. (4.92)

Further, evaluating Eq. (4.70) at r = r0 one would obtain

− 1
R2(r0) = 2`+ 1

8π

(
µ2 − 2`+ 1

4π Λχ`(r0)2 + `(`+ 1)
R2(r0)

)
χ`(r0)2, (4.93)
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implying that χ`(r0) 6= 0 and that the expression inside the parenthesis on the right-
hand side must be negative. Eq. (4.67) would then imply that

a(r0)χ
′′
` (r0)
χ`(r0) < −2`+ 1

4π Λχ`(r0)2 < 0, (4.94)

and hence χ′′
` (r0) 6= 0 and (R2)′′′′(r0) > 0. It follows that any critical point of R2 must

be a strict minimum of R2. However, since R2 is convex there can be only one such
critical point which is the one at the throat. Therefore, it follows from Eq. (4.91) that
(R2)′′(r) > 0 for all r > 0 and the theorem is proven.

Numerical shooting algorithm

Next, we describe a shooting algorithm which allows us to find asymptotically flat
wormhole solutions from a given set of initial conditions at the throat by numerically
integrating the equations outwards. As discussed above, there is only one free parame-
ter to start the shooting procedure. Such parameter is the value of the scalar field at
the throat, χ`(0).

Since the shooting method is such that solves a boundary value problem by reducing to
an initial value problem and we are looking for the desired solutions in the same spirit
as the boson stars (see for instance [96]), in which the solutions are parametrized
by the value of the scalar field at the center of the configuration so that for each
solution a set of discrete values for the frequency is found to satisfy the asymptotic
flatness conditions, each with different number of nodes for the scalar field profile,
this algorithm is ideal. Qualitatively, the same happens with the `-wormhole solutions
discussed here. All the solutions reported in this article are those corresponding to the
ground state, in which the scalar field χ` has no nodes.

So for given values of a(0), Λ, `, ω, only one particular value of χ`(0) picks the χ` → 0
solution at infinity. We can see this in the approximation of the Klein-Gordon equation
for large r. If we assume that a(r) tends to unity and R(r) to the coordinate r fast
enough, then Eq. (4.84) is satisfied, which is consistent with exponential decay of χ`

for large r as long as µ2 − ω2 > 0. In a similar way we see that if χ` is exponentially
decaying at both infinities then, from (4.68) we obtain d2a

dr2 + 2
r

da
dr ≈ 0, which has

solutions:
a ≈ B + A

r
, (4.95)
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ω = 0 ` = 0 ` = 1 ` = 2

χ`(0) R(0) a(0) χ`(0) R(0) a(0) χ`(0) R(0) a(0)

Λ = 0.5 6.26 1.07 1.40 3.94 1.72 7.43 3.08 2.71 20.21
Λ = 0.7 4.91 1.75 0.80 3.21 1.97 2.59 2.58 2.81 7.04
Λ = 1.0 3.90 2.79 0.58 2.48 2.70 1.03 2.08 3.14 2.51
Λ = 4.0 1.81 13.21 0.41 1.05 13.14 0.42 0.82 13.00 0.44

Tab. 4.2: Central values of the field χ` and metric functions R and a for several values of
Λ = 0.5, 0.7, 1.0, 4.0 and ` = 0, 1, 2 with ω = 0.

where A and B are constants. This is a particular simplification over Eq. (4.86) that is
useful in the numerical procedure. In particular B will enter as a normalization factor,
since we will ask for B = 1, as required by the asymptotic condition (4.82).

As mentioned previously, χ`(0) is used as the shooting parameter so the requirements
needed to find a solution are those described in the previous paragraphs. Using the
LSODA FORTRAN solver for initial value problems of ordinary differential equations,
we perform the integration of the system (4.67–4.69) starting at the value r = 0 using
steps of ∆r = 1 × 10−6 until a final value is reached. This finite value of the asymptotic
boundary needs to be sufficiently large for the functions to reach their asymptotic
behavior. Once the desired behavior of χ` is obtained up to a precision of order ∆r,
the asymptotic values of R and a are adjusted by means of the transformation (4.80)
which leaves the system of equations invariant, where the parameter B is chosen equal
to the corresponding coefficient in Eq. (4.95).

Examples are shown in Tables 4.2 and 4.3. Their physical implications are shown in
section 4.3.3. The 0-wormhole recovers the wormhole studied by Dzhunushaliev et
al. in [222] for complex, massive and self-interacting ghost scalar fields. Our results
match those of them as can be seen in the Λ = 4.0 row in Table 4.2 when the following
change of variables is performed:

r 7→
∫ r

0

dr√
a(r)

, Λ 7→ Λ
4 , χ` 7→

√
8π

2`+ 1χ`, (4.96)

which takes into account the differences in the definitions, nondimensionalization and
the coordinate election. These authors also studied the case for a real scalar field in a
previous work [223], which in fact corresponds to the ω = 0 results in this paper.
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Λ = 0.7 ` = 0 ` = 1 ` = 2

χ`(0) R(0) a(0) χ`(0) R(0) a(0) χ`(0) R(0) a(0)

ω = 0.1 4.88 1.77 0.83 ω = 0.3 3.18 2.01 2.60 ω = 0.8 2.56 2.85 7.03
ω = 0.2 4.64 2.01 1.07 ω = 0.5 2.95 2.34 2.82 ω = 1.0 2.36 3.28 7.13
ω = 0.3 4.06 3.01 2.25 ω = 0.8 2.45 3.67 4.49 ω = 1.6 1.94 5.01 9.77

Tab. 4.3: Central values of the field χ` and metric functions R and a for several values of ω
and ` = 0, 1, 2 with Λ = 0.7.

Energy density, mass and curvature scalars

In order to help interpreting the solutions presented in the next section, we discuss
several scalar quantities, like the energy density ρ of the ghost field measured by static
observers, the Misner-Sharp mass function and the scalars related with the curvature
of the spacetime, such as the Ricci scalar Rs and the Kretschmann scalar K. These
quantities will turn out to be helpful for understanding the features of the ghost field
and its action on the geometry.

Explicitly, the function ρ, associated with the density of the ghost field, is given by

ρ = −T t
t

c2 =
(

c2

8πG

)
ρ̂, (4.97)

where ρ̂ is defined by

ρ̂ = −(2`+ 1)
[
aχ′2

` +
(
`(`+ 1)
R2 + µ2 − 2`+ 1

4π Λχ2
` + ω2

a

)
χ2

`

]
. (4.98)

A striking feature of the wormhole solutions is that despite the presence of the exotic
matter which violates the null energy condition everywhere, the density may still be
positive at the throat,8 as will be shown in the numerical examples discussed in the
next section. In fact, using Eq. (4.70) one can obtain the following simple expression
for ρ̂ at the throat:

ρ̂(0) = 8π
b2 − 2(2`+ 1) ω

2

a(0)χ`(0)2, (4.99)

which shows explicitly that for those solutions with ω = 0 the energy density is indeed
positive near the throat. The plots in the next section show that this behavior also
holds for other solutions with small enough values of ω2.

8Note that the violation of the null energy condition implies the violation of the weak energy condition,
which means that there exists at least one observer which measures negative energy density. Our
example shows that this observer does not necessarily need to be a static one.
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ω = 0, Λ = 1 M∞ (m2
pl/mΦ)

` = 0 0.677
` = 1 0.224
` = 2 −1.25
` = 3 −4.69

Tab. 4.4: Total mass values for `-wormholes with Λ = 1, ω = 0 and ` = 0, 1, 2, 3.

The total (ADM) mass of the wormhole configurations can be computed from the
asymptotic limit M∞ = lim

r→∞
M(r) of the Misner-Sharp mass function [232] M(r),

defined by
2GM
c2 = R [1 − gµν(∇µR)(∇νR)] = R

(
1 − aR′2

)
. (4.100)

From Eqs. (4.86, 4.95) one obtains GM∞/c
2 = c0/2 = −A/2. Alternatively, using

Eqs. (4.69, 4.70) one also obtains M ′ = 4πρR2R′ which can be integrated to

M(r) = c2

2G

b+
r∫

0

ρ̂(r̄)R2(r̄)R′(r̄)dr̄

 , (4.101)

with b = R(0) the throat’s areal radius (see Fig. 4.16 to visualize a particular value
of b = 5). As long as ρ̂ is positive near the throat, the mass function increases as one
moves away from the throat. However, M decreases as soon as ρ̂ becomes negative, so
that solutions which have either sign of the total mass are possible. This is shown in
Table 4.4, where values of the total mass M∞ for our wormhole were computed taking
several values of ` and fixing the values of all other parameters.

The Ricci scalar, Rs = Rµ
µ, associated with the geometry given by Eq. (4.49) has the

form

Rs = −a′′ − 2 a R
2′′

R2 + a

(
R2′

R2

)2

+ 2
R2

(
1 − a′R2′)

. (4.102)

A further commonly used curvature measure is the Kretschmann scalar, defined by
K = Rµνστ Rµνστ . For the metric under consideration, Eq. (4.49), the Kretschmann
scalar has the following explicit form:

K = a′′ + 2
(
aR2′′

R2

)2

+ 2 a R
2′′
R2′

R4

(
a′ − aR2′

R2

)
+ 4
R4

+

3
4

(
aR2′

R2

)2

− a2′
R2′

2R2 + a′2 − 2 a

R2

 (R2′

R2

)2

.

(4.103)
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All these quantities will turn out to be helpful when understanding the role played
by the several parameters of the solution in the geometry and in the dynamics of the
bodies moving on it.

From Einstein’s equations, Eq. (4.64), we have that Rs = −8 π G
c4 T with T the trace of

the stress-energy-momentum tensor. Numerical experiments show that the behavior
of the stress-energy-momentum tensor components in the throat region are similar to
each other, and thus Rs ≈ 8 π G

c2 ρ, as seen in the actual solutions. That is, the Ricci
scalar goes as the density, irrespective of its character, exotic or usual matter. We will
discuss this fact in more detail in the explicit cases that we present below.

4.3.3 Numerical wormhole solutions

Following the procedure described above, we are able to obtain several solutions to the
Einstein-Klein-Gordon system, given the four parameters, namely µ, ω,Λ, and `. We will
present the solutions first for trivial values of the angular momentum parameter, ` = 0,
and vary the self-interaction parameter Λ, while keeping the oscillation frequency
ω fixed and then we explore the properties of the solution for some values of ω
maintaining Λ fixed, as was done in [222, 223]. Next, we repeat the study for different
values of `. In all our solutions presented in this work, we keep the mass of the scalar
field µ fixed. These experiment allow us to have a better understanding on the role
that each parameter plays in determining the geometry of the solutions.

All the solutions presented are asymptotically flat, and are generated by looking for a
solution of the ghost scalar field, once the parameters `,Λ and ω are chosen. We fix the
value of mass parameter µ to one, and the distance scale of the solution is given by
the dimensionless parameter r̂ = µr. Also, from Eq. (4.76) we see that the size of the
wormhole throat R(0) is given by

R(0) =

 `(`+ 1) + 8π
(2`+1)χ2

`
(0)

2`+1
4π Λχ2

` (0) + ω2

a(0) − µ2

1/2

. (4.104)

In Fig. 4.8, we present this localized solution, for the case ` = 0, ω = 0, for several
values of Λ. All the other solutions with ` > 0 are localized as well. Notice how
the amplitude of the pulse decreases as the value of the self-interaction parameter Λ
increases.
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Fig. 4.8: Solitonic profile for the 0-wormhole, for Λ ∈ [0.5, 4.0], and ω = 0.

In our experiments, we see that the ghost density, in order to form a wormhole, is
distributed in such a way that it has a positive value in the region of the throat, and
then it starts to have larger concentrations of negative ghost density on both sides of
the throat, as shown in Fig. 4.9. From the geometric perspective, as suggested above,
the profile of the Ricci scalar follows the density one and has a convex region at the
throat, surrounded by concave zones, see Fig. 4.11.

Also we will show that, in general, as can be seen in Fig. 4.9, the action of the self-
interaction parameter, Λ, smooths out this behavior of the exotic density and spacetime
interaction. Indeed, the scalar field, at least the massive ghost field, possess a radial
pressure that creates the throat and then the spacetime strongly reacts generating
regions of negative density; it is the role of the self-interaction term to smooth down
such reaction and allows to keep the wormhole throat open with smaller amount of
ghost density. Conversely, as the self-interaction parameter Λ becomes smaller, the
metric coefficient a, the curvature scalars and density at the throat become more and
more localized, an observation which is compatible with the result in Theorem 1 where
we have shown that the solutions cease to exist for Λ = 0.

0-wormhole

We start our discussion for the case with vanishing angular momentum, i. e. ` = 0 that
is, an Ellis-type wormhole solution (see Sec. 4.3.2). Setting also ω equal to zero for
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the moment, we start by sweeping a range of values for the self-interaction parameter,
Λ. The corresponding results for the scalar field and the density profile are shown in
Figs. 4.8 and 4.9, respectively. As mentioned above, the ghost density has regions of
positive magnitude near the throat, and regions with negative density which tend to
zero from below in the asymptotic region.

Fig. 4.9: Density profile for the 0-wormhole, for Λ ∈ [0.5, 4.0] and ω = 0.

The corresponding metric coefficients, a(r) and R(r) are shown in Fig. 4.10. Notice
how the metric coefficient a(r) shows concave regions which will determine a similar
behavior in the effective potential of the spacetime, which in turn will imply the
existence of particles moving on bound trajectories. Again, the effect of the self-
interaction parameter is to smooth out the concavity of the metric functions.

Fig. 4.10: Metric coefficients for Λ ∈ [0.5, 4.0] and ω = 0.
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Regarding the curvature scalars, as expected, the Ricci scalar Rs has a behavior which
follows the one of the density, with regions of positive values and then valleys with
negative values of the curvature as we can see in Fig. 4.11. The Kretschmann scalar,
however, is very different and shows two peaks of positive values and they decrease as
the self-interaction parameter grows, and the central one is negative in the region of
the throat, surrounded by bumps.

Fig. 4.11: Ricci and Kretschmann scalars for Λ ∈ [0.5, 4.0] and ω = 0.

The next step is to increase the parameter ω keeping ` = 0 and the self-interaction
parameter Λ = 0.7 fixed. We show in Fig. 4.12 the corresponding density and
Kretschmann scalar for three non-zero values, ω = 0.1, 0.3, 0.5, of the frequency.
Notice the difference between the behavior of the Kretschmann scalar, in which a larger
value of ω gives the effect of increasing the central value, acting in the same way as
the parameter Λ discussed above.
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Fig. 4.12: Density profile, curvature scalar and metric function a for the 0-wormhole, Λ = 0.7
and ω = 0.1, 0.2, 0.3.

`-wormhole

In this section we present the behavior of the ` parameter and the effect on the metric
functions and the curvature scalars. For the latest we can see in Fig. 4.13 that an
increment on the ` parameter increases the central peak for the Ricci scalar and
decreases the central bump for the Kretschmann scalar. The case for a(r) is quite
different: while for ` = 1 the two minima are still present, for larger values of the `
parameter the central peak is increased and the minima disappear. The presence of
a minimum (or two in this case) also corresponds to positive total masses as can be
verified in Table 4.4 and Fig. 4.14, consequently, its absence corresponds to negative
masses. This is a general property of all solutions given the asymptotic behavior of a
(see Eq. 4.95).

On the other hand, as is shown in Fig. 4.15, the increment of the ω parameter plays
a role quite similar to the one made by the ` parameter: an increase on the former
elevates the central peak on the metric function a(r).

Moreover, as can be seen from a comparison of Figs. 4.10 and 4.13, the effect of
the Λ parameter on the metric coefficient a is opposite to the one generated by the
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Fig. 4.13: Metric function a(r), density profile ρ̂ and Rs, K scalars for ` ≥ 0, Λ = 1.0 and
ω = 0.

` parameter on that metric coefficient. Indeed, for small values of Λ, the metric
coefficient a has a global maximum at the throat, while for large values of this Λ,
the metric coefficient a only has a local maximum. Thus, for small values of Λ, the `
parameter is not able to change the qualitative behavior of the metric coefficient, while
for larger values of Λ, the appearance of the local maximum is recovered or enhanced
with the parameter `. This fact will have consequences on the effective potential and
the geodesic motion of particles, as discussed below.

4.3.4 Embedding diagrams and geodesic motion

In order to gain a better understanding of the configurations described by the scalar
field and the geometry in the vicinity of the throat, in this section we discuss the
embedding procedure and geodesic motion. Because the metric (4.49) is static and
spherically symmetric, it is sufficient to analyze the induced geometry on a t = constant
and θ = π/2 slice, described by the two-metric

dΣ2 = a−1dr2 +R2dϕ2 . (4.105)
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Fig. 4.14: Mass function M(r) for the parameters ` ≥ 0, Λ = 1 and ω = 0.

Fig. 4.15: Metric function a for different values of the parameters `, ω and Λ.

In order to visualize this geometry as a two-dimensional surface embedded in three-
dimensional flat space we shall employ cylindrical coordinates (ρ, ϕ, z). The metric for
a flat space in these coordinates is

dS2 = dρ2 + ρ2dϕ2 + dz2 . (4.106)

We seek for the functions ρ(r) and z(r), specifying a surface with the same geometry
as the one described by the metric (4.105).
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The line element for the embedding surface will be

dΣ2 =
[(

dz

dr

)2
+
(
dρ

dr

)2]
dr2 + ρ2dϕ2 , (4.107)

if the following conditions are satisfied:

ρ = R , (4.108)

and (
dz

dr

)2
+
(
dρ

dr

)2
= 1
a
. (4.109)

Using the expression (4.108) to calculate dρ
dr , Eq. (4.109) gives the following differential

equation for z(r):
dz

dr
=
[

1
a

− 1
4

(R2′)2

R2

]1/2

. (4.110)

Integrating this equation gives the function z = z(r); in order to plot it in an Euclidean
space, we need to find r as a function of ρ. However, it is not possible to express this
function r = r(ρ) in closed form because R was found numerically. Nevertheless, one
can obtain r = r(ρ) numerically from (4.108) and finally get z = z(ρ).

In Fig. 4.16 we show the visualization of this embedding. It is seen that as ` increases
from 0 to 2, the profile of of the embedding representing the wormhole’s geometry
becomes more and more curved (which is analogous to the increase of |Rs| and |K|
shown in Fig. 10) , with a slight decrease in the throat’s radius.

Geodesic motion

In order to describe the motion of the particles in the spacetimes described above, we
start from the Lagrangian for the metric (4.49),

L = gµνu
µuν + κ c2 = −ac2(u0)2 + a−1(ur)2 +R2[(uθ)2 + sin2 θ(uϕ)2] + κ c2, (4.111)

where uµ = ẋµ is the four velocity and the parameter κ assumes the values 1 or
0, depending on whether the particle is massive or massless. respectively. The line
element is spherically symmetric and static, so that the energy, E = − ∂L

∂u0 , the azimuthal
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Fig. 4.16: Embedding of the different `-wormholes, for Λ = 1.5, ω = 0. The complete embed-
ding diagram is obtained by rotating this figure about the z axis. In the enlarged
picture we underline the change of the value of the throat radius for the given
values of `.

momentum, Lϕ = ∂L
∂uϕ , and the total angular momentum, L2 =

(
∂L
∂uθ

)2
+ Lϕ

2

sin2 θ
, are

conserved quantities. Explicitly, they have the form:

E = − ∂L
∂u0 = ac2u0, (4.112)

Lϕ = ∂L
∂uϕ

= R2 sin2 θuϕ. (4.113)

Since we are only interested in the motion of a single particle (as opposed to a swarm
of particles) we can choose the angles such that the orbital plane coincides with the
equatorial plane θ = π/2, in which case Lϕ = L. In this way, we can express the
components of the four-velocity in terms of the conserved quantities L and E, and the
normalization condition gµν u

µ uν = −κ c2 yields the radial equation of motion:

(ur)2 + Veff = E2

c2 , (4.114)

with the effective potential

Veff = a L2

R2 + a κ c2. (4.115)
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Fig. 4.17: Effective potential for time-like (left panel) and null geodesics (right panel) for

L =
√

1
10 .

In Fig. 4.17 we plot Veff for the parameter choices L =
√

1
10 , ω = 0 and Λ = 1.5 for

time-like and a null geodesics. As expected, the term involving L generates an angular
momentum barrier, corresponding to a local maximum of the effective potential located
at the throat r = 0. (Recall from Section 4.3.2 that a(r) has a local maximum while
R2(r) has a local minimum at r = 0.) This maximum corresponds to an unstable
equilibrium point giving rise to circular unstable particle orbits. For the ` = 0 case,
and for this value of L and with κ = 1, the effective potential also has a minimum at
r ≈ ±1.34, which means that bound orbits also exist for this value of L.

In Fig. 4.18 we plot different geodesics for massive particle with L =
√

1/10 and
Λ = 1.5 in the ` = 0, 1, 2 wormholes. Here we picked the same initial conditions in
terms of the initial radial velocity ur(0) = 0 and initial position r(0) = 0.65, ϕ(0) = π

ending up with particles with different energies and qualitatively different motion. As
stated above, one can assume without loss of generality that the motion is confined to
the equatorial plane θ = π

2 , so that it can be plotted in the embedding surface. As can
be noticed from the plots, the motion is quite interesting and can be understood based
on the behavior of the effective potential and the energy level of the test particle.
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Fig. 4.18: Different ` = 0 (top), ` = 1 (middle) and ` = 2 (bottom) geodesics for κ = 1,
ω = 0, Λ = 1.5, L =

√
1/10. On the left we plot the motion of the particle in the

embedding surface of the wormhole and on the right the value of E and Veff.

In order to further clarify the behavior of the geodesics, in Fig. 4.19 we plot the
trajectory in the embedding diagram and the radial velocity ur for two different null
geodesics with angular momentumL =

√
1/10 propagating in the ` = 1 wormhole.

In the first case, shown in Fig. 4.19a, the particle does not have sufficient energy to
traverse the throat so it starts approaching the throat with a decrement of the velocity,
reaches a zero radial velocity and resumes its motion going away from the throat. On
the other hand, the second example in Fig. 4.19b shows that, for a particle that has
enough energy to pass through the throat, the absolute value of its velocity decreases
as it moves towards the throat (from right to left) until it traverses the throat, after
which the absolute value of the velocity increases again as the particle moves away
from the throat on the other side of the wormhole.
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(a) A particle having insufficient energy to pass through the wormhole. The motion starts at r = 2.6, the
velocity decreases until the particle arrives near the throat after which it returns, moving away with
increasing speed. In this case the particle stays on the same side of the wormhole and does not cross
the throat.

(b) A particle starts its motion at r = 2.6, traverses the throat, and continues its motion with a growing
absolute value of the velocity.

Fig. 4.19: Two different ` = 1 geodesics for κ = 0, L =
√

1/10, ω = 0, Λ = 1.5. We plot the
motion with their corresponding E (right y-axis) and ur (left y-axis) values.

4.3.5 Discussion and concluding remarks

We have described how to construct new families of traversable wormhole solutions
which are parametrized by a parameter `, related to the angular momentum of the ghost
fields supporting the throat, and discussed its effects on the shape of the geometric
functions characterizing the solution, and on the geodesic motion of the corresponding
spacetime. These families generalize previous wormhole spacetimes discussed in the
literature [222, 223] which are recovered from our models by setting ` = 0.

Indeed, we have obtained bona fide solutions to the Einstein-Klein-Gordon system
and performed a detailed analysis of such solutions, which allowed us to gain a better
understanding on the effects of the new parameter `. We have been able to establish
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that its role on the geometric function a (determining the redshift factor), on the
curvature scalars and on the density is quite similar to the role played by the frequency
ω characterizing the time-dependency of the field, while its effect on these quantities is
opposite to the one generated by the parameter of self-interaction Λ. Moreover, as can
be clearly seen in the plot of the effective potential for time-like geodesics shown in
Fig. 4.17, as the value of ` grows, the positions of the local minima move farther away
from the throat, which is similar to the effect of increasing the angular momentum
L of the test particles. In this sense, from the point of view of the test particle, the
parameter ` plays a similar role than its conserved total angular momentum L.

It is interesting to point out that the energy density of some of our solutions – despite
of the fact that the stress-energy-momentum violates the null energy condition – is
actually positive close to the throat (but changes its sign as one moves away from it and
then converges to zero which is consistent with our asymptotic flatness asymptions).
In fact, the construction of a wormhole does not necessarily require measurements
of a negative energy density made by static observers, as already indicated in [204].
However, the fact that the null energy condition is violated at the throat implies that
such observers also measure a “superluminal" energy flux. In general, the wormhole
solutions discussed in this article possess a much richer structure than the simple,
reflection-symmetric Bronnikov-Ellis wormholes, whose energy density is everywhere
negative. In particular, the spacetimes discussed here exhibit a rich profile of bumps
and wells in their curvature scalars whose precise shape depends on the values of ` as
much as it does on the other parameters.

Indeed, we presented a detailed analysis of the role played by the several parameters in
our wormhole solutions, namely the self-interaction term Λ, the oscillating frequency,
ω, and the angular momentum parameter, ` of the scalar fields. Moreover, we have
proved that there are no solutions for which the metric and scalar fields are reflection-
symmetric about the throat if Λ = 0 (see Theorem 1). In this sense, the self-interaction
term needs to be included in the action in order to extend the solution space. Actually,
we have seen that it plays a smoothing role in the geometric reaction to the ghost
matter. Also, we have seen that the effects on the geometry of the self-interaction
parameter is opposite to the effects due to the frequency ω. As mentioned previously,
the role of the ` parameter on the geometry is similar to the one generated by the
frequency. This fact can be used to obtain real scalar field wormholes, with a new
degree of freedom analogous to the case in which the solution space is extended by
permitting the scalar field to be complex and harmonic in time. As shown in Theorem 2,
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all our wormhole solutions are characterized by a single throat whose areal radius is
fixed by the parameters and the value of the scalar field at the throat, see Eq. (4.104).

We also provided a study of the effects of the parameters on the embedding diagrams
visualizing the spatial geometry of the solutions, including the shape of the throat for
several relevant cases. Finally, we presented a detailed analysis of the effective potential
describing the motion of free-falling test particles as a function of the parameters, and
we showed how the potential may present a local maximum at the throat which is
surrounded by regions with local minima. Accordingly, we obtained several interesting
types of trajectories. Depending on the values of the parameters and on those of the
constants of motion (namely, the energy and angular momentum of the particle), we
displayed trajectories approaching the throat until they reach a turning point and go
back, other trajectories which describe bound motion on either side of the throat, and
then we even obtained orbits that are bound but cross the throat repeatedly and keep
passing from one side of the Universe to the other; a nice property for a space station!

In the plots of Fig. 4.19 we have shown the behavior of the geodesics passing through
the throat, we presented the absolute value of the particle’s radial velocity and showed
that it decreases as the particle approaches the throat until it crosses it after which
it increases again as the particle gets further away from the throat. Such behavior
is consistent with the interpretation that the reaction of the geometry to the ghost
matter is to create bumps in the effective potential, instead of the wells generated by
the usual matter. As mentioned at the beginning of Section 4.3.1, there is no need
to invoke negative masses to explain such behavior; it is simpler to imagine that the
reaction of the geometry to the ghost matter is to create bumps that the particle have
to surmount, consistent with the fact that the absolute value of the velocity decreases
as it approaches the throat, and then, goes down the hill.

The new configurations we have found and discussed in this article considerably
extend the parameter space describing wormhole solutions of the Einstein-scalar field
equations, and they provide a large arena that offers the possibility to further study
the intriguing properties of wormhole spacetimes, including the relation between the
properties of exotic matter and their geometry. While it has been shown that the
solutions with ` = 0 are linearly unstable [231, 233, 222], there is hope that such
a large arena may contain a set of parameter values with ` > 0 describing stable
wormholes or unstable wormholes with a very large timescale associated to their
instability, a question that will be discussed in a future work.
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Conclusions 5
In this work are presented several analysis to incorporate complex scalar fields moti-
vated by models coming from particle physics (as Bose–Einstein condensate and also
as beyond the Standard Model of particle physics) in the cosmological evolution in the
context of the dark sector of the Universe. We denote these fields as classical in the
sense that a single scalar field does not interact in any way, except the gravitational
interaction, with the rest of the matter components of the Universe.

It was developed a quintessence and complex scalar field model to describe the cosmic
acceleration observed in the study of the peculiar branch solution of the KGE system
of equations in the fast oscillation regime (Chapter 4.2). It was possible to derive
an effective equation of state that we called parametric Complex Scalar Field Dark
Energy whose parameters can be constrained using current observational surveys as
CC+BAO+Pantheon. Nevertheless, it was not possible to constraint the parameter
wa within the allowed theoretical values due to the fact that the fitted value wa =
0.33 ± 0.93 is inconsistent with the Eq. 4.38, wa ∈

(
0, 16

27

)
. It is remarkable that we

derived from first principles an equation of state whose parameters were fitted via
a scalar field analysis with topical cosmological observations; this derivation is not
usual in the literature, since the equations of state are proposed generally so that the
component in question behaves in the appropriate way. On the other hand, it was not
applicable a statistical analysis with CMD data but this limitation could be resolved if
two scalar fields are considered instead of a single one in order to reproduce viable
cosmological scenarios that includes, for instance, an oscillating behavior of the EoS.

In this sense, it was presented, in Chapter 3.2, an analysis to combine some scalar
fields coming from physics beyond the Standard Model of particle physics (BSM)
with a classical scalar field where both of the fields would constitute the dark matter
component of the Universe. Then, we explore via constrains from the effective number
of neutrino species, Neff, the proportions of each field in two cases: a classical field and
a Higgs–like field that we call Model I, and the Model II constituted by a Higgs–like
and an axion–like fields. In the Model I analysis, it was found that the Higgs–like field
can compose up to 58% of the dark matter density today and the remaining 42% be
a classical scalar field and produce, even so, a cosmological model consistent with
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the observations. In the Model II, made fully of two BSM fields, it was not possible
to find allowed values consistent with the Neff constraint. This results could open
the possibility to take into account the direct and indirect searches for more than
one candidate to dark matter, which may contribute to the relic density in different
proportions, and thus modify the expected fluxes in the experimental analysis.

We also explore, through a SHAM approach of dark matter, the degeneracy between two
mechanisms of the suppression of small structures coming from the ΛCDM cosmology
and that expected from the cutoff of the power spectrum of several non-CDM models,
within which lies the scalar field dark matter known as fuzzy DM. Although this
degeneracy was not resolved in the work, a method was established that, with the
advent of new and deeper observations with the JWST, can discern between a CDM
and an nCDM model when fitted through astrophysical observations.

The scalar field studies allowed us to also describe how to construct new families of
traversable wormhole solutions supported by ghost scalar fields parametrized by a pa-
rameter related to the angular momentum, `. Despite being purely theoretical objects,it
was presented a detailed analysis of the role played by the parameters of the field: the
self–interaction term, the oscillating frequency and the ` parameter. This analysis, along
with the displayed geodesics of a particle with energy and angular momentum given,
provide the possibility of further studies regarding wormhole spacetimes, including
the relation between the properties of exotic matter and their geometry and the future
exploration of the stability of such `-wormholes. The understanding of these exotic
objects can provide new possibilities on the behavior of the ghost scalar fields and, in
consequence, the possible description of the dark energy of the Universe.

The work presented here in addition, represents a bridge that links some of the results
on theoretical Physics with those of the Astronomy, as well as contextualize them in the
field of Astrophysics. We hope that this effort will contribute to making the scalar field
a more visible, analyzable and considerable possibility for the adequate description of
the dark sector of the Universe.
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Glossary

This section is useful to all the definitions used in this Thesis work.

ALP Axion-like particles. They are generally light, weakly interacting and have a
coupling to electromagnetism.

BAO Baryon Acoustic Oscillations. A pattern of imprints in the density distribution of
the clusters of galaxies.

BBN Big Bang Nucleosynthesis. Predicts the amount of light nuclei during the
early Universe. It depends critically on the density of baryons at the time of
nucleosynthesis.

CANDELS-W Cosmic Assembly Near-infrared Deep Extragalactic Legacy / Wide survey.

CC Cosmic Chronometers sample. Measurements obtained by comparing the stellar
evolution of galaxies with low star formation that provide model independent
measurements for H, the Hubble parameter.

CDM Cold Dark Matter (see DM). Called cold because it moves slowly compared with
the speed of light.

CP CP symmetry. The combination of Charge symmetry and Parity symmetry.

CRESST Cryogenic Rare Event Search with Superconducting Thermometers. Searches
dark matter using detectors which are operated at extremely low temperatures.

CSFDE Complex Scalar Field Dark Energy. A model of complex scalar field that mimics
dark energy.

DAMA An observatory whose main activity field is the investigation on Dark Matter
particles in the galactic halo.

DFSZ Dine-Fischler-Srednicki-Zhitnitsky axion.

143



DM Dark Matter, called dark because it does not interact with any force except the
gravitational. It constitutes the 27% amount of content in the Universe.

EoR Epoch of Reionization. The period in the history of the Universe during which
the predominantly neutral intergalactic medium was ionized.

ETHOS Effective Theory of structure formation. An alternative self-interacting dark
matter model.

FLRW Friedman-Lemaître-Robertson-Walker metric. Used to describe the cosmic
spacetime based on the cosmological principle.

FUV Far UV Luminosity Function. Represents a useful tool to quantify the effects of
the cluster environment on star formation from the “passive” galaxies.

GSMF Galaxy Stellar Mass Function. Describe the number density of galaxies as a
function of their stellar mass.

GUT Grand Unified Theory. An extension of the SM that can address several of its
issues.

HMF Halo Mass Function. Describe the number density of dark matter haloes as a
function of their mass.

HUDF Hubble Ultra Deep Field. The view of nearly 10 000 galaxies.

IceCube IceCube Neutrino Observatory. A detector designed to observe the cosmos
from deep within the South Pole ice.

ISM Interstellar medium. The matter and radiation that exist in the space between
the star systems in a galaxy.

JWST James Webb Space Telescope. Launched on 2021, will find the first galaxies
that formed in the early universe.

KGE Klein Gordon equation. The first relativistic wave equation.

KSVZ Kim-Shifman-Vainshtein-Zakharov axion.

LCDM Lambda Cold Dark Matter. The standard model of cosmology
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LSW Light-Shining-through-Walls experiment. The search experiments for weakly
interacting slim particles (WIMPs) with the smallest model dependence.

Mvir Virial Mass. The mass of a gravitationally bound system such a dark matter
halo.

MCMC Markov Chain Monte Carlo. Methods for sampling from probability distribu-
tions using Markov chains.

Neff Effective number of neutrino species. A parametrisation of the relativistic energy
density of the Universe in units of one neutrino in the instantaneous decoupling
limit.

nCDM non Cold Dark Matter models. A set of models motivated by particle physics
theories.

OHD Observational Hubble-Parameter Data (see CC).

OSQAR Optical Search for QED Vacuum Bifringence, Axions and Photon Regeneration.
An experiment at CERN that searches for axions.

PandaX Particle and Astrophysical Xenon Experiments. A series of experimental
projects that utilizes Xenon detectors to search for elusive dark matter particles.

PL18 Planck Collaboration 2018 prior of H0. Based on the ΛCDM model.

PQ PecceiQuinn mechanism. A proposal for the resolution of the strong CP problem.

PQWW Peccei-Quinn-Weinberg-Wilczek axion.

QCD Quantum Chromodynamics. The theory of the strong interaction between
quarks mediated by gluons.

QFT Quantum Field Theory. A fundamental theory that describes all particles of the
Standard Model of particle physics.

R19 Riess 2019 prior of H0. Based on the measurement of the Cepheid amplitudes.

SFDM Scalar Field Dark Matter. Model that assumes the existence of a scalar field
with a ∼ 10−22eV that can have observable consequences in the formation of
cosmological structure.
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SFG Star-forming Galaxies. Trace the prime formation epoch of todays massive disk
and elliptical galaxies.

SFH Galaxy Star Formation Histories. Describe how stars formed over time and
space.

SFR Star Formation Rate. Describes the total mass of stars formed per year.

SHAM Sub-Halo Abundance Matching. A technique used to connect galaxies to their
host dark matter haloes.

SM Standard Model of particle physics. Our best understanding of how the baryonic
particles and three of the forces are related to each other

SNeIa Supernovae Type Ia. An observational category of Supernovae, a very luminous
stellar explosions that presents silicium lines and no helium that have very
homogeneous spectral and photometric properties.

WIMP Weakly Interacting Massive Particle. The candidate for particle dark matter
from the LCDM cosmology.

zeq Redshift at the epoch of matter-radiation equality.
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