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Introduction

Differentiable manifolds are the object of study of differential geometry. We can think of
these objects as subsets of R™ smoothly glued together by homeomorphisms. Differentiable
manifolds are generalizations to higher dimensions of curves and surfaces.

To classify differentiable manifolds (and mathematical objects in general) we use equiva-
lence relations. In the case of differentiable manifolds, the equivalence relations can be given
by homeomorphism or diffeomorphisms. Note that diffeomorphic differentiable manifolds
imply that they are homeomorphic. However, having homeomorphic differentiable manifolds
does not imply that they are diffeomorphic. For example, there exist differentiable manifolds
that are homeomorphic to the 7—sphere but not diffeomorphic, these manifolds are called
exotic spheres and they where discovered by Milnor in 1956.

To distinguish two differentiable manifolds we can use topological invariants. A topological
invariant associates to a differentiable manifold M an algebraic object I(M), say a number,
group, vector space, etc. If we have a continuous map f: M — N between two differentiable
manifolds M and N, to such f we associate a morphism I(f): [(M) — I(NN) that preserves
the algebraic structure, say bijection, homomorphism, linear isomorphism, etc; so if two
differentiable manifolds are homeomorphic, then (M) and I(NN) are isomorphic, that is,
I(M) and I(N) are equivalent as algebraic objects. If the reciprocal implication also holds,
that is, if (M) = I(N) then M and N are homeomorphic, the topological invariant is called
complete. Topological invariants are used in the following way: if (M) # I(N), then M
and N cannot be homeomorphic, and of course they are not diffeomorphic.

Some examples of topological invariants are:

1. The number of connected components. This is a basic topological invariant.

2. Cohomology associates to a topological space X a family of modules H*(X) for k >
0. There are different cohomology theories which all are isomorphic on “reasonable
spaces”. “Furthermore, in the realm of differentiable manifolds, all these theories co-
incide with the De Rham theory which makes its appearance there and constitutes in
some sense the most perfect example of a cohomology theory. The De Rham theory
is also unique in that it stands at the crossroads of topology, analysis, and physics,
enriching all three disciplines.” !

De Rham cohomology is defined as follows:

'R. Bott and L. W. Tu. Differential Forms in Algebraic Topology, p. 3 [3].



2 Introduction

Let M be a differentiable manifold, k£ be an integer 0 < k < dim M and QF (M) be the
real vector space of differentiable k—forms on M. We consider the ezterior derivative
d: QF(M) — QF(M) and since d o d = 0 we obtain a complex called the De Rham
complex of M given by

(Q(M),d): 0 — C(M) -2 Q'(M) 45 ... &L on(r) —s 0.
We denote by HEL (M) := % the k—th group of De Rham cohomology with real
coefficients of M.

Note that to define the De Rham cohomology we need the differentiable structure of the
differentiable manifold, however, De Rham showed that if the manifold is differentiable
this cohomology is isomorphic to the singular cohomology, see [3, Cor. 8.9.2] and [39,
Thm. 5.36]. Then De Rham cohomology is only a topological invariant, and not an
invariant of the differentiable structure.

3. The k—th Betti number of M is the dimension of the k—th group of De Rham cohomol-
ogy and it is denoted by Si(M).

4. The Euler characteristic: Let M be a differentiable n—manifold, the Euler characteristic
of M is the alternating sum of its Betti numbers, that is,

n

X(M) =D (=1)"B(M).
k=0
In the case of connected, closed surfaces, the Euler characteristic is a complete topo-
logical invariant.

There is a relationship between the k—th group of the De Rham cohomology and the
kernel of the Laplace-Beltrami differentiable operator on QF(M). Let d* be the adjoint
operator of d. The Laplace-Beltrami operator is the operator Oy: Q¥ (M) — QF(M), defined
by Ogw = (d+ d*)*w. This operator is an extension of the classical Laplace on differentiable
functions on R”.

Hodge theorem says that for all oriented compact Riemannian manifold of dimension
n, a De Rham cohomology class of M can be represented by a unique element of Ker [y,
moreover,

Hp R (M) = Ker 0.

Hodge theorem is important in geometric analysis and harmonic analysis, we will use it
constantly.

By Hodge theorem we have (5 (M) = dim (Ker ().

To calculate the k—th Betti number of an orientable, closed differentiable n—manifold we
can use results as the Poincaré duality for De Rham cohomology or De Rham theorem, but
in general it can be difficult. It is possible to give upper bounds to the Betti numbers of M
in terms of critical points of some special differentiable functions: Morse functions.

A differentiable function f: M — R is called a Morse function on M if all its critical
points are non-degenerate, that is, the symmetric matrix of second order partial derivatives



called the Hessian matrix is invertible. Morse functions can be expressed locally as quadratic
polynomials near a critical point (Morse Lemma).

Let f be a Morse function and p be a critical point of f. The index of p respect to f,
denoted by n(p), is the number of negative eigenvalues of the Hessian matrix at p. We will
denote by m; the number of critical points of f with index k.

Morse inequalities give upper bounds for the Betti numbers:

Theorem (Morse inequalities). Let M be an oriented, closed Riemannian n-manifold. For
any Morse function on M one has

1. (Weak Morse inequalities) For any 0 < k < n, we have
Br(M) < my,. (1)
2. (Strong Morse inequalities) For any 0 < k < n, we have
Be(M) = Bpy(M) + ... 4+ (=D Bo(M) <my —mypq + ...+ (=1)*mg.  (2)
Moreover, for k =n:

5n(M) — 5n_1(M) + ...+ (—1)nﬁQ(M) =My — Mp_1+ ...+ (—1)"m0. (3)

Note that by (7) the Euler characteristic x(M) of M can be calculated (up to sign) using
the number of critical points of Morse functions.

There are several proofs of this theorem, there is a proof by Marston Morse making use
of the notion of subadditive function, for more details see [25] and [30]. Another proof is
using Morse Homology, see [5]. These proofs of the Morse inequalities are more general than
the one presented here because we need the extra hypothesis of M to be orientable.

The aim of this thesis is to develop the analytic proof of Morse inequalities using the
Witten Deformation given on the paper “Supersymmetry and Morse theory” [10] in 1982.

Witten’s ideas created relationships between analysis, geometry, topology and mathemat-
ical physics. The reader may consult developments or consequences of his ideas in [11], [7],
and [0].

Witten’s proof consists of studying the deformed De Rham complex of M with the de-
formed exterior derivative, we deform d by taking a positive real parameter 7" and a Morse
function f on M,

drjw := exp(=T f)dexp(T flw, w € Q*(M).

The important fact is that the cohomology spaces of De Rham complex and the deformed
De Rham complex are isomorphic seen as vector spaces, therefore the k—th Betti numbers
are the same.

There is an analogue of Hodge Theorem for Hf g (M) the k-th cohomology space of
the deformed the De Rham complex and Uypy ; the deformed Laplace-Beltrami operator,
that is, Hj.; pg (M) = Ker Ory, . Hence

5k(M) = dlm Ker DTka.
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Thus, it is enough to give bounds for dim Ker Oy .
To do this, let ¢ € R, ¢ > 0 and A, be the eigenspace of Uy, 1, associated to the eigenvalue

v. We define F[ﬁf]k C Q*(M) the direct sum of the the eigenspaces of Ory ; associated with
eigenvalues in [0, c] with 0 < k < mn,

0,c
v€e(0,c]

The following theorem is the key to the proof of the Morse inequalities:

Theorem. Let M be an oriented, closed Riemannian n—-manifold, 0 <T € R and f: M —
R be a Morse function. For any 0 < ¢ € R there exist a 0 < Ty € R such that for every
T>1T,

dim (F7}%,) = my. (4)

Proof of the Morse inequalities:

1. To prove weak Morse inequality (5), we note that Ay C F[jgfc]k the eigenspace of Oy,
associated to the eigenvalue 0 and Ker (Ory ) = Ao. By Hodge Theorem and T large

enough such that (8) holds we conclude that Si(M) < dim (F[Tofc]k) = M.
2. By Rank-Nullity Theorem we have

d1mFTf , = dim Ker (de|Foc ) + dim Im (de\Foc] ).

By the dimension of the quotient vector space we have

Ker de

Oc]

ik d'I(dC)d'I<d )
+ dim Im Tf|F[29}’]kil + dim Im Tf|F[29}’]k

—1

= [r(M)+ dimIm (de|F[0,c] ) + dim Im (drg|g0.0 ).
Tf k=1 Tt k

m, = dim

Im de F[0 c]

For 0 <1 < n, we take alternating the sum of the my to get

l l

S (=rm = (=1 (5z—k:(M) + dim Im (de|F[19}C]l—k71) + dim Im (de|F[79}c]lk))

k=0 k=0
l !
= (D B(M) + Y (1) dimIm (Ao )
P o Tf l—k—1

—1—2 Yedim Im (de]F[oc k)



We have the last equality by cancelling the dimensions of the images of the respective
operators and by noticing that dim Im (drg|gp« ) = dim0 = 0.
Tf, —1

In particular, for all 0 <[ < n, we have

l l

ST B (M) <D (1) my_y,.

k=0 k=0

This proves the inequality (6).
3. For [ = n, since Im (dry|g0.q ) = 0 we get
Tf,n

n n

S (= mpg = Y (=1) Bui(M).

k=0 k=0

Then the equality (7) is proved.

Outline:

In Chapter 1 we define the De Rham complex and the k—th group of De Rham cohomology.
We will present some relevant results of this cohomology, for example: De Rham Theorem,
Poincaré duality for De Rham cohomology and Mayer-Vietoris Theorem. We do the explicit
calculations to obtain the k—th groups of De Rham cohomology of some surfaces.

Chapter 2 presents preliminaries of Morse theory. It shows that Morse functions are
characterized by locally being quadratic polynomials and we will describe their critical points.
This include figures to illustrate examples of Morse functions. We enunciate the Morse
inequalities.

In Chapter 3 we proceed with the study of differentiable operators d*, ;. Also, it contains
the proof of Hodge theorem which tells us that HY g (M) = Ker ;..

In Chapter 4 we study connections on vector bundles and Clifford algebras which in
Chapter 6 we will use to do an explicit description of the deformed operator Uz .

In Chapter 5 we present the Witten deformation of the exterior derivative and we define
the corresponding deformed operator Uyzy . The main result in this Chapter is that the
cohomology spaces Hfyg (M) of De Rham complex and Hf; pg (M) the deformed De Rham
complex are isomorphic, that is,

Hpg (M) 2= Hiy p (M)

In Chapter 6 we compute a local description of the deformed Laplace-Beltrami operator
on differentiable k—forms.

In chapter 7 we describe the eigenspaces of the deformed Laplace-Beltrami operator on
differentiable k—forms.

In Chapter 8 we prove the Morse inequalities.

Also four appendices are included, we recall notions and results for the following topics:
Multilinear Algebra, Differential Geometry, Vector bundles and Functional Analysis.
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Introduccion

Las variedades diferenciables son el objeto de estudio de la geometria diferencial. Podemos
pensar estos objetos como subconjuntos de R™ suavemente pegados por homeomorfismos. Las
variedades diferenciables son las generalizaciones a altas dimensiones de curvas y superficies.

Para clasificar variedades diferenciables (y objetos matematicos en general) usamos rela-
ciones de equivalencia. En el caso de variedades diferenciables, las relaciones de equivalencia
pueden estar dadas por homeomorfismos o difeomorfismos. Notar que variedades diferencia-
bles difeomorfas implica que son homeomorfas. Sin embargo, tener variedades diferenciables
homeomorfas no implica que sean difeomorfas. Por ejemplo, existen variedades diferencia-
bles que son homeomorfas a la 7-esfera pero no son difeomorfas, estas variedades se llaman
esferas exoticas y fueron descubiertas por Milnor en 1956.

Para distinguir dos variedades diferenciables podemos usar invariantes topoldgicos. Un
invariante topoldgico asocia a una variedad diferenciable M un objeto algebraico I(M),
digamos un numero, grupo, espacio vectorial, etc. Si tenemos una aplicacion continua
f:M — N entre dos variedades diferenciables M y N, a tal f le asociamos un morfismo
I(f): I(M) — I(N) que preserva la estructura algebraica, digamos biyeccién, homomor-
fismo, isomorfismo lineal, etc; asi si dos variedades diferenciables son homeomorfas entonces
I(M)y I(N) son isomorfas, es decir, I(M) y I(N) son equivalentes como objetos algebraicos.
Si la implicacién reciproca también se cumple, es decir, si (M) = I(N) entonces M y N
son homeomorfas, el invariante topolédgico es llamado completo.

Los invariantes topolégicos son usados de la siguiente manera: si I(M) # I(N), entonces
M y N no pueden ser homeomorfos, y por supuesto las variedades no son difeomorfas.

Algunos ejemplos de invariantes topologicos son:

1. El nimero de componentes conexas. Este es un invariante topoldgico basico.

2. La cohomologfa asocia a un espacio topolégico X una familia de médulos H*(X) para
k > 0. Existen diferentes teorias de cohomologia las cuales son todas isomorfas sobre
“espacios razonables”. “Mas atin, en el reino de las variedades diferenciables, todas estas
teorias coinciden con la teoria de De Rham que hace su aparicién alli y constituye en
algun sentido el ejemplo més perfecto de una teoria cohomolédgica. La teoria de De
Rham es también tinica porque se encuentra en la interseccion de la topologia, el analisis
y la fisica, enriqueciendo a las tres disciplinas..” 2

La cohomologia de De Rham es definida como sigue:

2R. Bott and L. W. Tu. Differential Forms in Algebraic Topology, pag. 3 [3].
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Sea M una variedad diferenciable, k& un entero 0 < k < dim M y Qk(M ) es el espacio
vectorial real de k—formas diferenciables sobre M. Consideramos la derivada exterior
d: Q8 (M) — QF(M) y dado que dod = 0 obtenemos un complejo llamado el complejo
De Rham de M dado por

(Q(M),d): 0 — C°(M) -2 Q'(M) 45 ... &L on(m) —s 0.
Denotamos por HY, (M) := % el k—ésimo grupo de cohomologia de De Rham con

coeficientes reales sobre M.

Notar que para definir la cohomologia De Rham cohomology necesitamos la estructura
diferenciable de la variedad diferenciable, sin embargo, De Rham mostré que si la
variedad es diferenciable esta cohomologia es isomorfa a la cohomologia singular, ver [,
Cor. 8.9.2] y [39, Teo. 5.36]. Entonces la cohomologia De Rham es sélo un invariante
topoldgico, y no un invariante de la estructura diferenciable.

3. El k—ésimo niimero de Betti de M es la dimensién de el k—ésimo grupo de la cohomologia
De Rham y es denotado por [Si(M).

4. La caracteristica de Euler: Sea M una n—variedad diferenciable, la caracteristica de
Euler de M es la suma alternada de sus nimeros de Betti, es decir,

n

X(M) =Y (=1)"Bu(M).

k=0

En el caso de superficies conexas cerradas, la caracteristica de Euler es un invariante
topoldgico completo.

Existe una relacion entre el k—ésimo grupo de cohomologia de De Rham y el kernel del
operador diferenciable Laplace-Beltrami sobre Q*(M). Sea d* el operador adjunto de d. El
operador Laplace-Beltrami es el operador Oy: QF(M) — QF(M), definido por Oyw = (d +
d*)?w. Este operador es una extension del Laplaciano clésico sobre funciones diferenciables
sobre R™.

El teorema de Hodge dice que para toda variedad Riemanniana compacta, orientada de
dimensién n, una clase de cohomologia De Rham de M puede ser representada por un tinico
elemento de Ker L], més atn,

Hp R (M) = Ker 0.

El teorema de Hodge es importante en el andlisis geométrico y el andlisis armonico, lo
usaremos constantemente.

Por el teorema de Hodge tenemos [ (M) = dim (Ker ().

Para calcular el k—ésimo nimero de Betti de una n—variedad diferenciable cerrada y
orientada podemos usar resultados como la dualidad de Poincaré para la cohomologia de
De Rham o el teorema de De Rham, pero en general esto puede ser dificil. Es posible dar
cotas superiores de los nimeros de Betti de M en términos de los puntos criticos de algunas
funciones diferenciables especiales: funciones de Morse.



Una funcién diferenciable f: M — R es llamada funcion de Morse sobre M si todos
sus puntos criticos son no degenerados, es decir, la matriz simétrica de derivadas parciales
de segundo orden llamada la matriz Hessiana es invertible. Las funciones de Morse pueden
ser expresadas localmente como polinomios cuadraticos cerca de un punto critico (Lema de
Morse).

Sea f una funcién de Morse y p un punto critico de f. El indice de p respecto a f,
denotado por ng(p), es el nimero de eigenvalores negativos de la matriz Hessiana en p.
Denotaremos por m;, el niimero de puntos criticos de f con indice k.

Las desigualdades de Morse dan cotas superiores para los nimeros de Betti:

Theorem (Desigualdades de Morse). Sea M una n-variedad Riemanniana cerrada y orien-
tada. Para cualquier funcion de Morse sobre M uno tiene:

1. (Desigualdad de Morse débil) Para cualquier 0 < k < n, tenemos
Br(M) < my,. (5)
2. (Desigualdades de Morse fuertes) Para cualquier 0 < k < n, tenemos
Bi(M) = Br_1 (M) + ...+ (=1)*Bo(M) < mp — my—_y + ... + (=1)Fmy. (6)
Mids ain, para k =n:

Bn(M) = Buoa (M) + ...+ (=1)"Bo(M) = my — M1 + ... + (—=1)"my. (7)

Notar que por la igualdad (7) la caracteristica de Euler x(M) de M puede ser calculada
(salvo un signo) usando el niimero de puntos criticos de funciones de Morse.

Hay varias pruebas de este teorema, hay una prueba por Marston Morse que hace uso
de la nocién de funcién subaditiva, para més detalles ver [25] y [30]. Otra prueba es usando
homologia de Morse, ver [5]. Estas pruebas de las desigualdades son mas generales a la que
presentaremos aqui ya que necesitamos la hipotesis extra sobre M de ser orientable.

El objetivo de esta tesis es desarrollar la prueba analitica de las desigualdades de Morse
usando la Deformacién de Witten dada en el articulo “Supersymmetry and Morse theory” [10)]
en 1982.

Las ideas de Witten crearon relaciones entre analisis, geometria, topologia y fisica matematica.
El lector puede consultar desarrollos o consecuencias de sus ideas en [11], [5], y [0].

La demostracion de Witten consiste en estudiar el complejo de De Rham deformado de
M con la derivada exterior deformada, deformamos d tomando un parametro real positivo
T y una funciéon de Morse f sobre M,

drjw = exp(=Tf)dexp(Tf)w, w € QF(M).

El hecho importante es que los espacios de cohomologia del complejo de De Rham y
el complejo de De Rham deformado son isomorfos vistos como espacios vectoriales, por lo
tanto, los k—ésimos ntimeros Betti son los mismos.
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Hay un andlogo del Teorema de Hodge para H?L pr(M) el k—ésimo espacio de coho-
mologia del complejo de De Rham deformado y U7y i el operador Laplace-Beltrami defor-
mado, es decir, H} pg (M) = Ker Oypy . Entonces

Bk(M) = dim Ker DTf,k‘

Por lo tanto, es suficiente dar cotas para dim Ker Czy j.
Para ello seac € R, c> 0y A, el eigenespacio de Uy ;, asociado al eigenvalor v. Defin-

imos F[ 71 C Q°(M) la suma directa de los eigenspacios de Uy, asociado con eigenvalues
en [0,c] con 0 < k < n,

0,

Fri= @ A

ve(0,c]

El siguiente teorema es la clave para la demostracion de las desigualdades de Morse:

Theorem. Sea M una n—variedad Riemanniana cerrada y orientada, 0 <T € Ry f: M —
R una funcion de Morse. Para cualquier 0 < ¢ € R existe un 0 < Ty € R tal que para
cualquier T' > T
. 0,c
dim (Fg,,f]k) = M. (8)

Prueba de las desigualdades de Morse:

1. Para probar la desigualdad de Morse débil (5), notemos que Ay C Fy 0, }k el eigenspacio

de Oypy, 1, asociado al eigenvalor 0y Ker (Ozy, ;) = Ag. Por el teorema de Hodge, para T’
lo suficientemente grande tal que (8) se cumpla, concluimos que fi(M) < dim (F[YQ fc]k)
mi..

2. Por el teorema de Rango—Nulidad tenemos

my = dimF[TOfc]k = dim Ker (de|Foc ) + dim Im (de\Foc] ).

Por la dimensién del espacio vectorial cociente tenemos

Ker dr flp

[0,¢]
ik | 4 dimIm (doel oo ) dimI (d . )
+ dim Im ( Tf|F[19},]k_1 + dim Im Tf|F[£},]k

[0 C]

= Bk(M> + dim Im (de|F[79}C]

m, = dim

Im de

k—1

Para 0 <[ < n, tomamos la suma alternada de los m; para obtener

l l
Z<_1)kmlfk = Z(—l)k (ﬁlk(M) + dim Im (de‘F[o,c] ) + dim Im (de’F[o,c] ))
k=0 k=0 Tfl1—-k—1 TF 1—k
l !

= (1AM + (-1 dimIm (Al )

k=0 k=0 Tf,l—k—1
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+> (- )d1mIm(de|F[oc )

=0 Tf -k
l
= Y (=1)*Bir(M) + dim Im (dr| o).
k=0 T

Tenemos la ultima igualdad cancelando las dimensiones de las imagenes de los respec-
tivos operadores y notando que dim Im (dzy|z0.q ) = dim0 = 0.
Tf —1

En particular, para toda 0 <1 < n, tenemos

l l

ST(=DFBi(M) <> (=1) my_y,.

k=0 k=0
Esto demuestra la desigualdad (6).

3. Para | = n, dado que Im (dry|p0. ) = 0 obtenemos
Tf,n

n n

S (=1 m, g = S (=1)* Bk (M).

k=0 k=0

Entonces la igualdad (7) es probada.

Esquema:

En el Capitulo 1 definimos el complejo de De Rham y el k—ésimo grupo de cohomologia de
De Rham. Presentaremos algunos resultados relevantes de esta cohomologia, por ejemplo:
el Teorema de De Rham, la dualidad de Poincaré para la cohomologia de De Rham y el
Teorema de Mayer-Vietoris. Hacemos los calculos explicitos para obtener los k—ésimos grupos
de cohomologia de De Rham de algunas superficies.

El capitulo 2 presenta los preliminares de la teoria de Morse. Muestra que las funciones
de Morse estan caracterizadas por ser localmente polinomios cuadraticos y describiremos sus
puntos criticos. Este incluye figuras para ilustrar ejemplos de funciones Morse. Enunciamos
las desigualdades de Morse.

En el Capitulo 3 procedemos con el estudio de los operadores diferenciables d*,[],.
Ademdés, contiene la prueba del teorema de Hodge que nos dice que Hi, (M) = Ker [Jy,.

En el Capitulo 4 estudiamos conexiones sobre haces vectoriales y dlgebras de Clifford que
en el Capitulo 6 usaremos para hacer una descripcion explicita del operador deformado Ury, .
En el Capitulo 5 presentamos la deformacion de Witten de la derivada exterior y definimos
el operador deformado correspondiente [y ;. El principal resultado de este capitulo es que
los espacios de cohomologia Hpy (M) del complejo De Rham y Hf; pr(M) el complejo de
De Rham deformado son isomorfos, es decir,

Hpr (M) = Hif p (M)



En el Capitulo 6 calculamos una descripcion local del operador deformado de Laplace-
Beltrami en k—formas diferenciables.

En el capitulo 7 describimos los eigenespacios del operador deformado de Laplace-Beltrami
en k—formas diferenciables.

En el Capitulo 8 demostramos las desigualdades de Morse.

También se incluyen cuatro apéndices, recordamos nociones y resultados para los sigu-
ientes temas: Algebra multilineal, Geometria diferencial, Haces vectoriales y Anélisis fun-
cional.



Chapter 1

De Rham cohomology

The objective of this chapter is to describe the De Rham cohomology. One can consult
books [15], [37], [31] and [21].

1.1 Tangent space and tangent bundle

Let M be a differentiable manifold and p € M be a point, we will denote by C;°(M) the set
of all differentiable germs of ¢: M — R, (see Definitions B.2.1 and B.2.4).

The tangent space at the point p is the real vector space of derivations of the algebra
Ce(M), that is, X:C*°(M) — R which satisfies the Leibniz rule, (see B.2.5),

X(¢o1h) =X(4) o v(p) + ¢(p) o X(1)). (1.1)

This space is denoted by T,M.

The readers interested in these notions, see section B.2 in particular definition B.2.6.

Let T'M be the tangent bundle of M whose fibers are the tangent spaces at each point,
(see example C.1.3). A differentiable section of the tangent bundle TM of M is called a
vector field, see Definition C.0.9.

Analogously, we have T*M the cotangent bundle of M whose fibers are the cotangent
spaces of M, (see example C.1.5), the vector spaces dual to the tangent space T,M. The
sections of T*M are called 1-forms.

For more details on vector bundles see the Appendix C.

1.2 Differentiable forms on M

In this section we will define differentiable k—forms, that is, differentiable sections of the k—th
exterior power of the cotangent bundle, (see example C.1.6).
First, we give a characterization of differentiable 1-forms.

13
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Let M be a differentiable manifold and (U, ) = (U, x1,...,x,) be a chart on M, the
value of the 1-form w at p € U is a linear combination

n

w(p) = >_ai(p)(dr:),.

i=1

As p varies in U, the coefficients a; become functions on U.
We will extend the definition of the support of a function to k—forms as follows.

Definition 1.2.1. Let M be a differentiable manifold, we define the support of a k—form w
to be

suppw = {p € M|w(p) # 0}.

Definition 1.2.2. If f is a differentiable function on a differentiable manifold M, its differ-
ential is defined to be the 1-form df on M such that for any p € M and X, € T, M,

(df)’p(Xp) = pr'

‘Where X, is a derivation (see Definition B.2.5), making abuse of notation X,f denote
Xpf, with f € Cx*(M).

Proposition 1.2.3 (Linearity of a 1-form over functions). Let w be a 1-form on a differ-
entiable manifold M. If f is a differentiable function and X is a vector field on M, then

w(fX) = fw(X).

Proof. At each point p € M, since w(X) is defined pointwise, and at each w(p) is R-linear
in its argument:

w(fX)(p) = wp)(f(p)Xp) = f(P)w(p)(Xp) = (fw(X))(p).

O

The objective now is to generalize the construction of 1-forms on a differentiable manifold
to k—forms.

We apply the construction of exterior algebra to the tangent space T, M of a differentiable
manifold M at a point p.

The k-th exterior power bundle of T M is the vector bundle over M with fibers AkT;M
over p € M, denoted by AFT*M. The fiber A¥T*M at a point p € M is isomorphic to the
vector space of all alternating k—forms on the tangent space T),M, see Remark A.3.33.

A k—form on a differentiable manifold M is a section w of the vector bundle A*T*M. The
space of sections of A¥T*M is denoted by QF(M) = T'(AFT*M).

Suppose (U, x1, ..., x,) is a chart on a differentiable manifold M, we know that dz4, ..., dz,
are 1-forms on U. Since at each point p € U, (dx1)y, ..., (dy,), is a basis for Ty M, then a
basis for A¥T*M is the set
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Let
Tim =L = (ir,..., )|l <iy <...<ip <n} (1.2)

be the set of all strictly ascending multiindices between 1 and n of length k and let dx;
denote dx;, A ... A dx;,. Thus, locally a k—form on U can be written as

w= Z ardx;
IeJk,n

where the a; are functions on U.

Proposition 1.2.4 ([37, Prop. 18.7]). Let M be a differentiable manifold, let w be a k—form
on M. The following affirmations are equivalent:

1. The k—form w is differentiable on M.

2. For every chart (U, xq,...,x,) on M, the coefficients ar of w =Y ardx; relative to the
local frame {dx1}reg,, are all differentiable.

3. For any k vector fields Xy, ..., Xy on M, the function w(Xy, ..., X) is differentiable
on M.

Remark 1.2.5. Let M be a differentiable manifold, the set of differentiable forms is en-
dowed with a wedge product induced by the wedge product of alternating multilinear maps,
(see A.3.41). The pointwise wedge product of differentiable forms on M is given as follows:
let w be a k—form and n be an [-form on M, their wedge product w An € A*T*M is the
(k + {)~form on M such that

(wAn)(p) =wp) Anp)
at all p e M.

Proposition 1.2.6. If w and n are differentiable forms on a differentiable manifold M, then
w An is also differentiable.

Proof. Let (U, x,...,x,) be a chart on a differentiable M. On U we have:
w= Z arder; and n= Z bydxy,

I1€Jk,n JeETIn

where ar, by € C*(U), then

wAn = (Z afdxf)/\(z de:vJ)

Iejk,n J€n7l,n
= Z Z a[bjdl‘[/\dl'J.
Jetjl,n [EJk,n

In the sum, dz; Adxy; = 0 if I and J have an index in common. If I and J are disjoint then
dr; N dxj = £dxg where K = I U J but reordered as an increasing multiindex. Thus,

wAn= Z tarbydry.
KeJTk+i,n
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Since the coefficients of drk are differentiable functions on U, by the Proposition 1.2.4, wAn
is differentiable.
O
Let M be a differentiable manifold, the set of all the differentiable forms on M is denoted
by Q*(M), this is an anticommutative algebra over C*°(M) with the wedge product.

1.2.1 Pullback of k—forms

Let us see how to pull differentiable forms from one manifold to another. Let f: M — N be
a differentiable function and ¢ € C*(N), the pullback f*¢ is the composition f*¢ = ¢po f €
C>*(M).

First, let any k& > 1, we consider T:V — W a linear map of vector spaces. It induces a
pullback map

T AW — APV
(T*n)(v1,...,vx) = n(T(v1),...,T(vyn)),

for n € A*W* and vy,...,v, € V. Let f: M — N be a differentiable function, at each

point p € M, the differential D, f:T,M — Ty, N is a linear map of tangent spaces, see
definition B.2.7. There is a pullback map

[ AT N — AT M.
Thus, let w(f(p)) € A*T},, N, then its pullback f*(w(f(p))) € A*T; M given by

Fro(f@NX, - Xe) = w(f(0)(Dpf Xy, -, Dpf Xi)

for all X; € T,M. Now, if w € QF(N), then its pullback f*w € Q¥(M) defined pointwise by
(ffw)p = f*(w(f(p))) for all p € M. Equivalently,

(frw)P) (X, Xi) = w(f () (Dpf(X1), - -, Dpf (Xi)). (1.3)

1.3 Exterior derivative

Now, we want to extend the differential of differentiable functions to differentiable k—forms.

Definition 1.3.1. Let M be a differentiable manifold and £ = 0,1, ...,dim M. We define a
linear map d: Q¥(M) — QFF1(M) called the exterior derivative by

d(fdry A ... Ndry) = gj

=1 4

d$i/\dl‘i1 A---Ad$ik fGCOO(M), (14)

and extended by linearity to all of QF(M).

We have the following fundamental result.
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Theorem 1.3.2. Let M be a differentiable manifold and the exterior derivative d: Q*(M) —
Q*TY(M) of (1.4), then d satisfies:

1. Ifwe QM) and n € QY(M), then
dw An) =dw An+ (=1)8%w A dn.
Then d is of degree 1, that is deg dw = degw + 1.
2. (dod)w =0, for allw € Q*(M).
3. If f is a differentiable function and X a vector field on M, then (df)(X) = X f.

Proof. Let (U,xy,...,x,) be a chart on a differentiable manifold M.

1. By linearity of d, we consider w = fdx;, A ... Adx; and n = gdz;, A ... A dxj, , with
fyg € C®(U). We set for simplicity

de;p =dx, N...Ndz;,, and dxy=dx; N...Ndxj,.

Since w An = fgdx; Adxy, by product rule of differentiable functions and anticommu-
tativity of the wedge product of forms we have

dlwAn) = nggdeAdx]Ade

r=1 9r
[ 9f dg
N Z (‘q@xr + f@xr

r=1

>dazr/\d:v1/\dxj

8%« axr

= (Z ﬁdxr A de> A gdxy + (—1)F fda; (Z % dz, A da;J>
r=1 8$T r—1 @xr

= dwAn+ (=1)%8“w Adn.

= Zgaf dxr/\dxl/\de‘i‘Zf@dﬂfr/\d.%[/\de
r=1

r=1

2. By linearity of d, it suffices to check the asserted identity on forms of the type:
w= fdz;, N...Ndx;,, feCU).
By definition of d, 1.3.1, then

dw = ngdxj/\dxh Ao N dx, .

j=19%;j
d(dw) = zn: -~ O°f dxy Ndx; Ndxg, N ... N\dx;
=1 j=1 Oz, 0 ! ' *
= Z » dry Ndx; Ndzx;, N\ ... N\dx; —Z ’f dr; Ndxy Ndzx;, N\ ... N\dx;
1<j 8xl(9xj J " tk I>j 81:;(%]- J " k
n a2f

—I—;%dm Ndxy Ndz;, N ... N\ dz;,
=j

= 0.
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3. Let X € I'(TM) be a vector field, then X = i gi£ with g; € C*(U). By defini-
=1 o

tion 1.2.2, we obtain
" Of " af
4f(X) 6:67;‘% = Ji ox;

=1 g

O

Theorem 1.3.3 ([24, Thm. 3.7]). Let M be a differentiable manifold, there is precisely one
linear map d: QQF(M) — QFL(M), such that it satisfies the properties of the Theorem 1.3.2.

Corollary 1.3.4 ([18, Cor. 2.1.2]). d is independent of the choice of charts.

In section 4.2 we will see that we can express d in other ways.

1.4 De Rham cohomology

Now, the objective is to define the De Rham cohomology and describe some results and
examples.

Definition 1.4.1. Let us consider the vector space {QF(M)}7_, of differentiable forms on
a differentiable manifold M of dimension n together with the exterior derivative d, the De
Rham complex of M is the complex defined by

d1 dn— 1

(Q (M), d): 0 — C(M) 2 Q' (M) 25 =3 M) — 0. (1.5)
Where by Theorem 1.3.2-2. d,, 11 od, = 0.

Definition 1.4.2. Let M be a differentiable manifold, a differentiable k—form w € QF(M) is
said to be a closed k—form if dw = 0. A differentiable k—form 3 € Q¥(M) is an exact k—form
if 8 = dr for some form 7 € QF1(M).

The vector space of all closed k—forms is denoted by Z*(M); and the vector space of all
exact k—forms on M is denoted by B¥(M). Since d o d = 0, (see Theorem 1.3.2-2.), every
exact form is closed but not every closed form is exact, then B*(M) is a subspace of Z*(M),

Definition 1.4.3. Let M be a differentiable manifold, for all £ € Z, with 0 < k£ < dim M
the k—th group of De Rham cohomology with real coefficients of M is defined by the quotient

vector space

ZF(M)  Kerd,,
k R —
HE L (M, R) := "D = Tmdr (1.6)

We shall simply write Hg (M).

We have an equivalence relation given by the quotient gig%; on Z%(M), as follows:

W' ~win ZF(M) if and only if W' — w € B*(M).
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The equivalence class of a closed form w is called its cohomology class and denoted by
[w]. Also, two closed forms w and w’ determine the same cohomology class if and only if they
differ by an exact form w’ = w + df. In this case, we say that two closed forms w and W’ are
cohomologous.

Proposition 1.4.4. If the differentiable manifold M has r connected components, then the
0-th group of De Rham cohomology is HYx (M) = R".

Proof. Let M be a differentiable manifold.

By complex (1.5) and definition 1.4.2; there are no nonzero exact 0—forms, then by
definition (1.6) HY (M) = Z°(M).

Let (U,x,...,7,) be any chart on M and f € Z°(M), that is, f € C*(M) such that
df = 0. We have

_N 9
df = ; E)x,»dxl'

Since f € Z°(M), df = 0 on U if and only if all the partial derivatives g j - vanish identically
on U. This is equivalent to f be locally constant on U.

Let C; be a connected component of M, then M = 0 C;.

=1
Let U,V C C; such that UNV # (), since f is locally constant f|yny = flo = f|v, we set
f:C; — R defined by f(p) = ¢; for some ¢; € R, the same for each connected component
C;, withe=1,...,r.
If M has r connected components, then a closed 0—form is a constant differentiable
function on the connected components, which can be specified by (cy, ..., ¢.) € R". Therefore
HYL (M) = Z°%(M) = R". _

Proposition 1.4.5. Let M be a differentiable manifold of dimension n, then the k—th group
of De Rham cohomology HER (M) = 0 for k > n.

Proof. At any point p € M, the tangent space T,M is a vector space of dimension n.
Let w € QF(M), then w(p): T,M x ... x T,M — R is a k-multilinear map on T,M by
Proposition A.3.31 if k > n, then A*T,M = 0. Hence, M = M x {0}, that is, M is the trivial
bundle of rank 0. Then for k£ > n, the only k—form on M is the zero form. U

Let M be a differentiable manifold of dimension n, the total De Rham cohomology of M
is given by

Hip (M) = 9"9 HE (M),

We consider the wedge product of differentiable forms, (see Remark 1.2.5), it induces a
product on Hp, (M) in the following way: let z € Hiz (M) and y € HLz (M) be represented
by closed forms w € Z*(M), 3 € Z!(M) respectively, then we set

vy = [W] A [B] = [w A B] € HER (M).
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Lemma 1.4.6. The product
zy = [w A B] € HER (M)

is well defined.

Proof. Let x € HEz (M) and y € H5g (M) be represented by closed forms w € Z¥(M), 8 €
Z'(M) respectively. Since w and 3 are closed forms, then

dwAB) = (dw) A B+ (1) f'wAdB =0

The w A [ is a closed k + [—form.
Let us see that xy does not depend of w and 8. Assume that ' = w + da, ' = 8 + dn,
by Theorem 1.3.2-1. and by linearity of d then

WAL = (w+da)A(B+dn)
= wAB+daNB+wANdn+dnAdn
= WAB+danpB)+ (=1)kdwAn)+dandn)
= WAB+A(-1)'wAn+anB+and.

Then W’ A 5" and w A B are cohomologous.
Hence the product xy is determined independently of the choice of closed forms repre-
senting x, y. U
Also, by Proposition A.3.44 we have: yx = (—1)*zy.
An element w € Hpz (M) is a finite sum of cohomology classes in HEp (M) for several
ke{0,...,n}:
w=wy+ ... +wr € Hyr(M).

This is similar to operating with polynomials, except that the multiplication operation is
the wedge product. Then under addition and multiplication, Hyz (M) is a ring, called the co-
homology ring of M. Also, since the wedge product of differentiable forms is anticommutative
then the ring is anticommutative.

Note that the ring H})i (M) has a natural grading by the degree of a closed form.

Then, H}y (M) is an anticommutative graded algebra.

A priori, the spaces HEz (M) may be infinite dimensional. The number dim (HEy (M)),
denoted by Si(M), is called the k—th Betti number of M.

For each integer £ > 0, we denote by H’gmg(M ) the k—th group of singular cohomology
with real coefficients, see the section The Classical Cohomology Theories in [39], [12] and

[16].

Theorem 1.4.7 (De Rham, [8, Cor. 8.9.2] and [39, Thm. 5.36]). Let M be a compact
differentiable manifold, then for any integer k with 0 < k < dim M,

2. Hhg (M) is canonically isomorphic to Hg,,(M).
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Remark 1.4.8. Since the De Rham cohomology of a differentiable manifold is defined using
differentiable forms, it would seem to depend significantly on the differentiable structure of
M. However, in reality, it is determined only by properties of M as a topological space. The
De Rham theorem expresses this fact concretely.

Theorem 1.4.9 (Homotopic invariance, [33, Thm. 1.44]). If M and N are smoothly homo-
topy equivalent manifolds, then HEg (M) = HER (N).

Theorem 1.4.10 (Poincaré duality for De Rham cohomology, [33, Thm. 1.48]). Let M be
a compact, connected, oriented differentiable n-manifold, then HEg (M) = HERF(M).

If £ = 0, by Proposition 1.4.4 and Theorem 1.4.10 we have:

Corollary 1.4.11. Let M be a compact, connected, oriented differentiable n—manifold, then
dim (Hpr (M)) = 1.

1.4.1 Computation of the De Rham cohomology

To understand the De Rham complex and the information obtained in De Rham cohomology
groups we will compute some examples.

Example 1.4.12 (De Rham cohomology of the real line.). Since the real line R! is connected,
by Proposition 1.4.4

H%R(Rl) =R.
For dimensional reasons, on R! there are no nonzero differentiable 2-forms. This implies
that every differentiable 1-form on R! is closed. A differentiable 1-form f(z)dz on R! is
exact if and only if there is a differentiable function g(z) on R! such that

f(2)dz = dg = ¢ (x)da,

where ¢'(x) is the derivative of g with respect to x. Such a function g(z) is simply an
antiderivative of f(x), for example

o) = [ eyt

This proves that every differentiable 1-form on R! is exact. Therefore, Hy; (R!) = 0 and by

Proposition 1.4.5 we have
R for k=0

Hpe(RY) = {0 for k > 1. (1.7)
Example 1.4.13 (The cohomology of the Circle). Cover the circle S* with two open arcs U
and V| the intersection U NV is the disjoint union of two open arcs, which we call A and B.
Since S! is connected, by Proposition 1.4.4 H (S') = R.
We know that S! is a compact, connected, oriented differentiable manifold of dimension
1, by Corollary 1.4.11, HLz(S) = R, and by Proposition 1.4.5, HE(S?) = 0 for k > 1.
Therefore, we have

H]I%R(Sl) =
Then $5(S') =1 and 8;(S?) = 1.

0 otherwise.
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The Mayer-Vietoris Sequence

In the example of the cohomology of the real line R! we can see that calculating the co-
homology of a differentiable manifold by solving a given system of differential equations on
the manifold and, in case it is not solvable, perhaps we find obstructions to its solvability.
This is usually quite difficult to do directly. We introduce one of the most useful tools in the
calculation of de Rham cohomology, the Mayer—Vietoris sequence.

Let M be a differentiable manifold and {U,, ¢4 }aca be an open cover of M, let 1: U — M
be the inclusion map give by ¢y (p) = p where p € U. Then the pullback

v QR (M) — QF(U)

is the restriction map that restricts the domain of a differentiable k—form on M to U:
1w = w|y. In fact, there are four inclusion maps that form a commutative diagram:

v\

unv M
jV\\ ly
\%

By restricting a k—form from M to U and to V', we get a homomorphism of vector spaces

v QM) — QFU) @ QF(V),

o (o, 0) = (oly,olv).
Define the map

jir QMU e QF(V) — QR UNV)
(w,m) = Jvn — jiw = nlvav — Wluav.

If UNV is empty, we define Q*(U NV) = 0. In this case, j is simply the zero map. We call
L the restriction map and j is the difference map.

Theorem 1.4.14 (Mayer-Vietoris, [31, Thm. 7.1.29]). Let M be a differentiable manifold
and M =U UV be an open cover of M. Then there exists a long exact sequence

L HEL(M) S HEL (e HEL(V) LS HEL(UAV) S HEE(M)

called the Mayer-Vietoris sequence.

Lemma 1.4.15. Let 0 — Ay o, Ay T A, oy Iy A, — 0 be an exact

sequence of finite dimensional vector spaces. Then Y. (—1)kdim A* = 0.
k=0

The proof is by Rank-Nullity Theorem and the fact that dim Ker dy = dim Im dj.
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Proposition 1.4.16 (Mayer-Vietoris, [37, Prop. 26.4]). In the Mayer—Vietoris sequence, if
U,V and UNV are connected and nonempty, then

1. M 1is connected and
0 — H)R(M) — HRR(U) @ HRR(V) — HJR(UNV) — 0
18 exact.

2. We may start the Mayer—Vietoris sequence with
0 — Hhp(M) -5 Hhz(U) @ Hha(V) 5 Hh,(UNV) — ...

Example 1.4.17 (The cohomology of the 2-sphere). Consider the 2—sphere
S? = {(x1, 72, 73) € R*|27 + 25 + 23 = 1}.

We will use the Mayer—Vietoris sequence to deduce the cohomology groups of the 2—sphere.

Let N = (0,0,1) and S = (0,0, —1) be points on 5%, we note that S* = U UV where
U=8*>—{N}and V =85%—{S}.

Since S? is connected, by Proposition 1.4.4 HY(S5?) =

On the other hand, U is homeomorphic to R?, which is connected, by Theorem 1.4.9 and
Proposition 1.4.4, we have H) (U) = R, analogously for V, we get HY (V) = R. Also, R?
is contractible to a point and by Theorem 1.4.9

R ifk=0
Hon (U) = Hon (V) = {0 itk 1

Now, U NV is homotopically equivalent to S*, by Theorem 1.4.9 and by equality (1.8)
we have

R ifk=0,1

0 ifk>1.

Since U, V and U NV are connected we can apply Proposition 1.4.16, we have the Mayer—
Vietoris sequence:

HE L (UNV) = {

0 — H)z(S*)=R — ROR — R — 0,

and 0 HL, (S2) 060 - R .

HZ (5?) 060 0
Then Hpg (S?) = 0 and for the exactness of the sequence H3 (S?) = R. Therefore

if k=0,2

HE L (S?) = {
Dk ( otherwise.

Then y(S?) =1, 51(5%) = 0 and [5(S?) =
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Example 1.4.18 (The cohomology of the 2-Torus). We consider the 2-Torus.

Cover the torus T2 with two open subsets U and V, both U and V' are homeomorphic to
St x I, where I = [0,1].

Note that T? is connected, by Proposition 1.4.4 HY, (7?) = R.

Also, U and V are homotopically equivalent to S', by Theorem 1.4.9

R itk=0,1
b (U) = Hbg (V) = { ¢ 1 =0

0 otherwise.
Now, U NV is the disjoint union of two S!, then

ReR ifk=0,1
H = { 7
or(U V) =1 if k> 1.
By Theorem 1.4.14 we have the long Mayer—Vietoris sequence of T2
t

0 R R &R R &R
g 1?) YRR 5 - ROR
d*
v Hp(T?) 060 0

By Proposition 1.4.4 HY (M) is the vector space of constant functions on the manifold, if
a € H%: (U) is the constant function with value a on U, jj;: Hz (U) — HY5 (U NV) then
Jjira = alyny is the constant function with the value a on each component of U NV, that is,

joa = (a,a).
Then, for (a,b) € HYR (U)®HLR (V), t(a,b) = blunv —alvny = (b,b)—(a,a) = (b—a,b—a).
Analogously, we describe the map s: Hig (U) @ Hhg (V) — HEyz (U N V).
Let UNV = AU B, A and B the connected components. We have the inclusions
Jjua:A— U, jup: B— U, if wy generates Hi, (U), we define

Jia: Hpgr(U) — Hpr(A)

Wy — W4y.
Then jj qwu = wa is a generator of Hpg (A), the same for Hyg (B).

Jo- Hpr(U) — Hpg(UNV)

cwy — (cwa, cwp).

The pair of real numbers (a,b) € Hhg (U) & Hpg (V) stands for (awy, bwy ).
Then

s(a,b) = gy (bwy) — ji(awy) = (b,b) — (a,a) = (b —a,b— a).

By Rank-Nullity Theorem, s and the exactness of the sequence we have H3, (T?) = R. And
by Lemma 1.4.15 we obtain dim Hjj, (7?) = 2, therefore H{,z (T?) = R & R.
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1.5 Other expression of d

A generalization of the definition of contraction, A.3.34, is as follows:

Definition 1.5.1. Let M be a differentiable manifold and X € T'(T'M) be a vector field on
M. The contraction or interior product by X is a linear map

X QF (M) — QF Y (M)

defined by
XJW(Xl, e ;Xk—l) = CL)(X, Xl, e >Xk—1)
for w e Q¥(M), X1, ..., Xp_1 € D(TM).

Note that if &k = 0, we define X = 0.
Let f € C*(M), by definition X i(fw) = f - [Xw], then X is linear with respect to
differentiable functions.

Lemma 1.5.2 ([37, Proposition 20.8]). Let M be a differentiable manifold, for all X €
[(TM) a vector field on M, then X 1: Q¥(M) — QF-1(M) the contraction by X satisfies:

1. XooX1=0.
2. X is of degree -1, such that, for each w € Q¥(M),n € QY (M),

Xo(wAn) = (Xw)An+ (=1)kw A (X m).

In the tangent space we have an anticonmutative bilinear map [ , ].

Definition 1.5.3. Let M be a differentiable manifold and p € M. Let (U, zy,...,z,) be a
chart around p € U, the Lie bracket between two vector fields [ , |:T'(TM) x I'(TM) —
['(TM) is a bilinear map defined by

(X, Y] :Z (a ob; 9 b Oa; 9 ), WhereX:Zaii Y:Zb a;, b € C°(M).
— A

0
i A Y%A A ; Ayt
par Oz; Ox; Oz Ox; = Ox; o Oz

We say that the vector fields X and Y commute if [X,Y] = 0.

Lemma 1.5.4. The Lie bracket [ , | is R-bilinear. Also, for any differentiable function
M — R, we have [ X,Y]f = X(Y(f)) —Y(X(f)). Furthermore, we have that the Jacobi
identity holds

(X, Y], Z1+[IY, 2], X] + [[Z, X],Y] =0
for any three vector fields X,Y, Z.
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b; -2 vector

Proof. Let p € M, (U, xq,...,x,) be a chart at p and X = 3 ai%, Y = B
i=1 i

fields. We have

.
it

[X,Y]f=,n i( 00 OF 00 O]

i=1j=1

And this is R-bilinear in X,Y. This implies the first two claims. By computation follows
the Jacobi identity. 0

Theorem 1.5.5 ([28, Thm. 42.9]). Let M be a differentiable manifold, w € QF(M) an
arbitrary differentiable k—form on M. Then for any vector fields X; € I'(T'M), with 0 < j <
k, we have

—

(1) Xy (w(Xos- o Xy, X))

-

s
Il
o

dCL)(Xo, c. ,Xk) =

S (D)X XG], Xoy ooy Xiy ooy Xy ooy X)

0<i<j<k

_|_



Chapter 2

Morse theory

The idea of Morse Theory is that global invariants of a compact differentiable manifold can
be recovered from the local analysis at the critical points of a differentiable function on that
manifold, for example the Morse inequalities.

In this chapter we will give the terminology, results and examples of Morse theory.

For more references consult [25], [30] and [26].

Definition 2.0.1. Let M be a differentiable manifold of dimension n, let f: M — R
be a differentiable function on M. For each point p € M, we choose a chart around p,
©:U — V C R" Consider F' = fop 1:R" — R and its differential

Do) F: Ty R" — TR

1. p is a critical point of f if D, F' is not surjective, that is, the partial derivatives
vanishes

S = 0. o) = 0.

2. The Hessian matriz of f with respect to ¢ is defined as the symmetric matrix of second

order partial derivatives:
0*F
Hessy = ( > .
02,025 ) 1 <; i<

3. pis a non-degenerate critical point of f if the Hessian is invertible, that is,
det(Hessp(¢(p))) # 0.

Definition 2.0.2. A differentiable function is called a Morse function if all its critical points
are non-degenerate.

Lemma 2.0.3. The critical points and non-degenerate critical points do not depend on the
choice of chart.

27
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Proof. Let M be a differentiable manifold of dimension n and f: M — R be a differentiable
function.

Let (U, ) with ¢ = (x1,...,2,) and (V,9) with ¢ = (y1,...,y,) be charts around a
critical point p of f. We note that

foo owrry = (Fov™) oo Hlewny). (2.1)
fo ™ ywary = (foe™)o(pod ™ lywar).

Let us see that

Of o™ O(f o
S22 o)) =0 it and only i (Jca;f)w(m)zo for alli =1,
Suppose that for alli =1,...,n,
(foy™)
W) =0

We get (fow )(¢(p)) and let (¢ o p~1); be the j—th coordinate function of ¢ o p™*
By equahty (2 1) and the chain rule we have

8(f090’1)(¢(p)) _ 3((f0¢’1)0(@/}090’1))(@(p))

ox; Ox;
= 3 (i wee ewn ) M)
We note that 1) o o~ (¢(p)) = ¥(p) and we evaluate
Ao - 3 (M o) (Maidewn). e
By hipothesis, we obtain 5 X
L2 ) (o) =0

The same in the other direction.
Therefore, a critical point of f does not depend on the choice of chart.
Now, suppose that p is a non-degenerate critical point of f.
Let (U, ) with ¢ = (x1,...,2,) and (V,4) with ¢ = (y1,...,y,) be charts around of p.
By equation (2.3) and Leibniz rule we obtain that for all 1 < j <n

Py 2 (A ) (L2 o)
= 33 (P 2 N o ) (L5 )
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+z": <8<f°¢_1)(¢(p))> (W(s&(zﬂ)))

= 3 (P ) (M) (g )

ia(fgyib‘ ) o0 (8122:; ) (o(p)).

¥(p)

Since p is a critical point, the second term vanishes. Then

P(fop™) L P(foh) W) O(Wopt),
W(s@(p)) = Z::l ; S, U(p) o, ©(p) . (e(p))
We consider the Jacobian of 1) o =1 at ¢(p) = 0
J - on(pfl (0)
A(pop~1)1  A(op~ ') A(pop1),
Ox1 Oxo e Oxn
Do)y Awop~)n Ao~y
o0x1 0z o OTn

We denoted by J* its transpose, we have

Hoss o, (p(p) = J'Hess oy (4(p)) .

Since 1) o ! is a differentiable function with differentiable inverse function, the matrix .J
and J' have non-zero determinant.

Therefore, det(Hessfo,-1(p(p))) # 0 if and only if det(Hess toy-1(¢(p))) # 0.

O
The existence of Morse functions is guaranteed by [30, Thm. 1.21]. In fact, by Sard
Theorem the majority of differentiable functions are actually Morse functions, see [15, Sec-

tion 1.7].
Morse functions have a very simple local structure: up to a change of coordinates all
Morse functions are quadratic polynomials. This is the content of the Morse Lemma.

Theorem 2.0.4 (Morse Lemma). Let M be an n—dimensional differentiable manifold. Sup-
pose f: M — R is a differentiable function and p is a non-degenerate critical point of f.
Then there exists an open neighbourhood U of p and a chart p:U — V C R"™ such that
©(p) =0 and in this chart we have the equality

(foe™y)=Ffp) —vi— =i +vin+- e, y=W,....un) €V, (24)

Proof. Without loss of generality, assume that f(p) = 0, otherwise we can take the function
g:=f—f(p).

Since the problem is local and invariant under local diffeomorphisms we can also assume
that f:W — R where W is an open connected neighborhood around 0 in R™ and 0 is a
non-degenerate critical point of f.
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By Lemma B.2.8, there exist differentiable functions ¢;: W — R, 1 < ¢ < n such that
:Z.ngl(X), xeW.
i=1

Since 0 is a critical point, g;(0) = ﬂ(0) = 0.
Again, for g; by Lemma B.2.8 there exist differentiable functions gij: W — R with
1 < j < n such that

X) = ijgij<x)7 xeW.
j=1

Then

fx) = Z zn: T i5(X

n

i=17=1
= Z 7 ;i (X) + Z 2525 (gij + gji) (X).
=1 i<j

We define h;(x) = 5(gij + g;i)(X), then we rewrite
=Y wtha(x) + Y wiwshi(x) = Z i jhi; (2.5)
i=1 i<j i=1j=1

Hence (h;j(x)) is a symmetric n x n matrix of differentiable functions.
Let us calculate the second derivatives of f:

af 5 Ohy; " Ohi;
Lo = 2 + 225200 + 3 (o) + 10, 52 ).
7 j=
O*f 5 OPhy Ohy; Ohi; 0% hij
Oz ;0x; ) = o aIL‘]al’Z () + hij (x) + Oz, () + Oz; () + @iz Ox;0x; ().
82f _ hu a hll ahl] a2hij

We get

o f hij(0) it i g

Since 0 is a non-degenerate critical point of f, then Hessy(0) = (h;;(0)) is an invertible
matrix.

We will do the proof by induction, let us see that the chart ¢ of the Theorem can be
chosen in such a way that it is given by equality (2.5) with

(i) = (g 3)
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with D an (I — 1) x (I — 1) matrix with diagonal (£1,...,4+1) and S some symmetric
(n—1—1) x (n—1—1) matrix of differentiable functions. Then we assume the induction
hypothesis

i=1

i=l j=I

Remark 2.0.5. We can always find hg(0) # 0 with [ < s < n, the arguments are the
following;:

1. If some h,..(0) # 0 for some [ < r < n, we only make a change of rows and columns.

2. If hy(0) = hysq1(0) =0 = ... = hy,,(0) = 0, as among the coefficients of the double
summation of the equality (2.5) it must be coefficients different from 0, otherwise the
Hess;(0) = 0.

For example, suppose that h,s(0) # 0, with [ < r,s < n. Then it is sufficient to
consider the differentiable function 7: R" — R" defined as
Ty = Zp — Zg,
T(z1,...,2p) = {xs = 2r + 2s,
T, = Zi, 1£ 71,1 F# S

Then the Jacobian matrix of T at 0 is

- —~ —~ —~
1 ... 0 o ... 0 ... 0 ... 0
0 1 0 0 0 0
0 0 1 0 0 0

JT(O): : :

0 0 0 1 —1 0
0 0 0 1 1 0
0 ... 0 o ... 0 ... 0 ... 1

Jr(0) is a non-degenerate matrix with determinant 2.
So the term z,xsh,s(X), we rewrite it as
T Tshes(2) = (20 — 2) (20 + 2) hys(2) = 22hps(2) — 22h,4(2).
Replacing it in the equality (2.6)
-1 n n
f(T(x)) = Z@zf + Z Z xix;hii(z) + (zf — zf)(hrs + hg)(z), 6= =1.
i=1

=l j=l
i#s,r J#£r,s
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Ifl=1, we get
f(X) = 611’% + Z inxjhij(x)a 5 = +41.
i=2 j=2
By Remark 2.0.5, we can assume hy;(0) # 0, by continuity of hj; we can also assume that

h11(x) has a constant sign 6; = £1 on some smaller neighborhood Wy C W. Then /|h1(X)|
is a non zero differentiable function at x over W;.
We have the new variables through the differentiable function R: R™ — R" defined by

n = V6ol [+ a1 )

y; = xj, forall j=2,...,n

Note that detJg(0) = 1/|h11(0)| # 0, then R is an invertible function. Also, dim (7T,R") =
dim (Tr)R™), we have DoR is a linear isomorphism. By Theorem B.2.11, R is a local
diffeomorphism. Then

foRy) = f(x)
= (51%% + Z Z l’il'jhij<X)

i=2 j=2

Now, we assume the induction hypothesis (2.6), let us see that it is true for [.

By Remark 2.0.5, we suppose that h;(0) # 0 and by continuity of h;(x) we can assume
that hi1(x) has a constant sign ¢, = +1 on some smaller neighborhood Wy C W.

We define

q(x) == \/|hu(x)].
Since hy(0) # 0, ¢(x) is a differentiable function no zero at x over Wj.

Introducing the new variables through the differentiable function S:R"™ — R"™ defined
by

n hil (X)
u = q(x) |z + i (2.7)
( 2 ”hu<x>)
y; = xj, forall j=1,....n,j#L (2.8)
We calculate
-1 ! I+1 n
A~ A~ = —~~
1 0 0 0 .. 0
0o ... 1 0 0 - 0
Js(0) = his1(0) hi (0)
( 0 ... 0 g(0) MuO o
0 0 0 1 . 0
0 0 0 0 1
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We note that detJg(0) =

q(0

) # 0, then S is an invertible function. Also, dim (T,R") =

dim (Ts(o)R™) and by Theorem B.2.11, S is a local diffeomorphism.

By equality (2.6), then
foSTH(y) f (X)

=1

-1

i=1

_hll (X) ( xX;
Jj=l+1

Zém + @i hy( )+2:EZZZL‘] g(x —I—Z Zxx] i

j=1+1 i=l+1 j=I+1

il X)) + Zni Zn: ziw;hij(x)

hu(x) i=1+1 j=1+1
) 2]

hu(x) | 27 + 2 Z T

J=l+1

hj(%) (%)
J hll (X)

x} + 2 Z T

+ Z T
G=1+1 j=l+1

hll (X)

hll (X)

hji(x)
J hll<X)

n

>

Z Zx:z:] is

i=l+1 j=l+1

By squaring equality (2.7), we obtain:

2 2
=1 (x) (x)
foS 'y = §ix? + hy(x) | 27 + T — hy( T,
; ll l J;l J hll(x) ll ];rl J hll(x)
+ D > washii(x)
i=l+1 j=l+1
-1 n 2 n n
hu(y) o hji(y)
= > i+ yi — hu(y) Y= + yiy;hii (y)
i:Z1 |hll(Y)| l ‘Zl Jhll(Y) i;HjEl_:H 7
l
(y)
- Zézyz Z Z ( + Z Z yzy] Z]
i 1=l+1 j=I+1 i=l+1 j=I+1
hji (Y)hil (Y)
= 5Zyz + YiY; ( i - .
Saaf+ 30 35 (i) - S
We define -
P (x) = o () — Tat@ha(y).
1) = hy) — =T
Therefore

Z5yz+ >3 wghy 0 57,

i1=l+1 j=l+1

O

Definition 2.0.6. Let M be an n—dimensional differentiable manifold, let f: M — R be a

differentiable function and p be
to f is the number of negative

a non-degenerate critical point to f. The indez of p respect
eigenvalues of the Hessian Hessz(p(p)), where F = fo ™!

for any chart ¢:U C M — V C R™ around p. We denoted the index of f at p by ns(p).
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Note that in the Morse Lemma (equality (2.4)), the index k coincides with ng(p). This
index, by Sylvester’s law of inertia is invariant under diagonalization, see [I 1, Thm. 6.38].

Considering the linear change of variables T'(y1,...,y,) = (%, ..., 2%) and adding the
notion of index, we reformulate the Morse Lemma as follows:

Corollary 2.0.7. Let M be an n—dimensional differentiable manifold. Suppose f: M — R
is a differentiable function and p is a non-degenerate critical point of f. Then there exists
an open neighbourhood U of p and a chart o:U — V' C R™ such that ¢(p) = 0 and in this
chart we have the equality

1 1 )

_ 1 1
(for H(x) = f(p)—ixf—...—§xr21f(p)+§xnf(p)+l—|—...—i—fa:i, X = (21,...,2,) € V. (2.9)

Now, we will describe the non-degenerate critical points of differentiable functions.

Corollary 2.0.8. Let M be a differentiable manifold and f: M — R be a differentiable
function. Every non-degenerate critical point of f is isolated. In particular, if f is a Morse
function and M is compact, then f has a finite number of critical points.

Proof. By Corollary 2.0.7, there exist a chart (U, ) around p and by equality (2.9)

D(fop ) (x) = (=21, .-, —Zu,(p)s Tn; () - - - Tn)-

Note that D(f o ¢~ 1)(x) = 0 if and only if x = 0.

Then the chart does not contain another critical point, that is, ¢~(0) = p is the only
critical point of f in U, therefore, p is isolated.

Now suppose that M is compact and f is a Morse function.

By contradiction.

We assume that the set of critical points is infinite, since M is a compact space, by
Theorem (see [29, Thm. 28.1]) the set has an accumulation point, we say g.

Let (U, = (21,...,x,)) be a chart about p, since f is a differentiable function then

4 p? = Dggo_l(é%) depends smoothly on p € M, where f is the germ of f and ry,...,7,

ox;

the standard coordinates on R™. For each critical point p of f we get %‘ f =0. Then at
vip

the accumulation point %‘ f =0, therefore ¢ is also a critical point of f and by definition
vlq

of Morse function 2.0.2, ¢ is a non-degenerate critical point.

Without loss of generality, let V' C M be an open neighborhood around ¢q. By definition
of accumulation point V' contains at least one other critical point close to ¢. Then ¢ is a
non-degenerate critical point not isolated, which is a contradiction to the first statement. [

2.1 Height function

By Corollary 2.0.7 we have that Morse functions have a simple local structure. Also, the
existence of Morse functions is guaranteed by Whitney embedding Theorem, for more details
see [30, Sec. 1.2].
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The objective of this section is to describe examples of Morse functions and to see the
information obtained. We will consider compact manifolds, so by Corollary 2.0.8, their Morse
functions have a finite number of critical points.

The following Morse functions can be thought as “height functions”.

Definition 2.1.1. Let M be a differentiable manifold and f: M — R be a differentiable
function. Assume M C R*, for some integer k > 0, f is a height function if f is a projection
on to the last coordinate axis of R¥.

Example 2.1.2. Now, consider the 2-sphere in R3
S? = {(x1, 79, 73) € R*|2? + 25 + 23 = 1}.

Let f:S? — R the height function, define by f(xy, 22, 23) = z3.

Let us see that f is a Morse function and the indices of f at its critical points.

Let N = (0,0,1) and S = (0,0, —1) be the north pole and the south pole of S?, respec-
tively.

Through stereographic projection we have two charts of S?, p: 5%\ {N} — R? and
©9: 5%\ {S} — R? give by

) To 1 X2

The inverses of ¢; and @y are

o 2y, ) = 27, 279 i +ai—1
’ 24 ri 4+l 2+ i+ 1 2+ 23+ 1
and ) )
o5 (@0, 72) = 2z, 2w 1—af— 5
2 i+ a3+ 1 e +ad+ 1 ot + a3+ 1
respectively.

To determine the critical points of f, considerer the map F; = fop; ':R? — R for each
1=1,2.
We consider the map F}, = fo ;" R?> — R by

2 2

F ===
(w1, 2) 22423+ 1
Since
4.1}1 4562
DI, = , )
1 <<x%+x5+1>2 <x%+x%+1>2>

We have that D, F; = 0 if and only if 2; = 0 = . Then ¢;'(0,0) = (0,0,—1) = S is the
only critical point of f in S?\ {N}. Now, let us see the Hessian of f at .S,

Hessp(p2(S5)) = (g 2) .
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So, S is a non-degenerate critical point of f in 5%\ {N} with index 0.

Similar calculation shows that N is the only non-degenerate critical point of f in S\ {S}
with index 2.

Therefore, f is a Morse function.

The critical points of a height function are characterized by the tangent spaces at the
points, that is, let f be a height function and p a critical point of f, then T),M is orthogonal
to the axis onto which f is projected, that is, D, f = 0.

Remark 2.1.3. Let S be a surface, f:.S — R be a Morse function and p € S be a critical
point of f. Let (U, = (x1,22,23)) be a chart around p and F = f o ¢. We have the
following cases:

33‘?;;;], (p(q)) > 0 for all ¢ € U and for all

1. We will say that p is a minimum point of f if
ij=1,23.

2. We will say that p is a maximum point of f if 831-2;::: - (p(q)) <0 for all ¢ € U and for all
iji=1,2,3.

3. Otherwise, we will say that p is a saddle point of f.

Figure 2.1: Height function on 72

Example 2.1.4. Analogously to the 2-sphere, one can see that if » and R are real numbers
satisfying 0 < r < R, consider the 2-torus T? = {(z1, z9, v3) € R3|22+ (/23 + 23— R)* = r?}.

The function f:7? — R defined by f(z1, 2o, 73) = x3 is a Morse function which has 4
non-degenerate critical points, (see Figure 2.1),

a=(0,00R+r), b=(0,0,R—7r), c=(0,0,—(R—7r)), d=(0,0,—(R+r)).

Since a is a maximum of f, ny(a) = 2, d is a minimum of f then ny(d) = 0, while b and
c are saddle points of f, then n¢(b) = 1,ns(c) = 1.
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Figure 2.2: Height function on S? with a saddle at the top

Example 2.1.5. Let M be S? with a saddle at the top, this has four critical points: two
maxima points, one saddle point and one minimum point, see Figure 2.2.

Example 2.1.6. On the other hand, if we take the 2—torus with a saddle at the top, then
the height function is a Morse function. The function has two maxima points, three saddle
points and one minimum point.

f
N

Figure 2.3: Height function on 72 with a saddle at the top

2.2 Morse inequalities

Let M be an n—dimensional differentiable manifold, remember that for any integer k£ such
that 0 < k < n, B(M) = dim HE (M) is the k—th Betti number.

Let my, denote the number of critical points p € M of f such that ns(p) = k.

The Morse inequalities establish a relationship between the number of critical points of
index k of a real valued Morse function on M and the k—th Betti number on M.

Theorem 2.2.1 (Morse inequalities, Thm. 5.2,[11]). Let M be an oriented, closed Rieman-
nian n—manifold. For any Morse function on M one has

1. (Weak Morse inequalities) For any 0 < k < n, we have
Br(M) < my. (2.10)
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2. (Strong Morse inequalities) For any 0 < k < n, we have
Br(M) = By (M) + ... 4+ (=1)FBo(M) < mye — my—y + ... + (—1)"my. (2.11)
Moreover, for k =n:

Bn(M) = Boa(M)+ ...+ (=1)"Bo(M) = my — mp_q + ...+ (—1)"my. (2.12)

Let us see that Morse inequalities hold for the examples S? and T2

Example 2.2.2. Consider the 2-sphere S2.
By example 1.4.17 we obtain [3y(S?) = 1, 51(5?) = 0 and 3»(S?) = 1.
By example 2.1.2 we have mg =1, m; = 0 and my = 1.
One can see that the inequalities and equality of Theorem 2.2.1 are satisfied.

Example 2.2.3. We consider the 2-torus, 72.
By example 1.4.18 we obtain 8y(T?) = 1, 81(T?) = 2 and B»(T?) = 1.
By example 2.1.4 we have my = 1,m; = 2 and my = 1.
We obtain the equality and inequalities of Theorem 2.2.1.

A proof of Theorem 2.2.1 using topological tools and further development of Morse theory
can be found in [25].

In the present text we will follow the ideas of Witten, to obtain an analytic proof for the
Morse inequalities (2.10) and (2.11).



Chapter 3

Hodge theory

In this chapter we will describe the adjoint operator of the exterior derivative and extend
the Laplace operator to differentiable forms.
For more details see [258], [18] and [1].

3.1 x—Operator

In this section we define an isomorphism of vector spaces that we will extend to the space
of forms.

Let V be a real vector space of dimension n with an inner product (, ). Also, for A*V
with 1 < k < n, we can define an inner product

(Y ary: APV x APV — R.
Let vy A ... Avg,wi A ... Awg € ARV with v;,w; € V., we define their inner product as
(V1 Ao AU A LA W) any = det((v, w;)). (3.1)

The value is independent of the way the two elements are represented, this follows from the
properties of wedge product and determinant.
If ey ..., e, is an orthonormal basis of V', then all the elements of the form

€i1/\.../\€ik, 1< <. v, <0,

form an orthonormal basis of AFV.

Given an orientation in V' which is the choice of an equivalence class of an ordered basis,
see section A.4, we have an orientation in A"V, taking the equivalence class of the ordered
basis of A"V induced by the ordered basis of V.

Let ey, ... ek, €111,...,6, €V be an arbitrary positively oriented orthonormal basis. We
define Voly :=e; A ... A e, the volume form of V.

We define a linear map

*x APV — AnTRY

39
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such that for each w,u € AV
w A xu = (w, u) yky Voly. (3.2)

This operator is called the x—operator.
In elements of the oriented orthonormal basis of A¥V the map * is given by:

*(60(1) VANPIIAN eg(k)) = 88N0€Cs(k+1) N\ -+ N Ex(n), (3.3)

where 0 € S(k,n — k), the set of (k,n — k)—shuffles, see definition A.2.4. Where (3.3) follows
from (3.2),

€o(1) N\ - N\ €g(k) N *(60(1) VANPIRWAN eg(k)) = e N Negr) N Sgna(ea(kﬂ) AN A eg(n))
Sgnoes (1) A ... N\ €x(n)
= (sgno)?Voly
= VOlv.

And
<60'(1) /\ ... /\ 60’(/{:)7 60’(1) /\ e /\ eo.(k,)>AkV = 1

By condition (3.3), we consider 1 € R = A%V, we have x1 = e;A. .. Ae, and x(e1A. .. Ae,) = 1.
Also, by equality (3.3) in basic elements, we get that * is surjective and since the vector
spaces A*V and A"*V are of the same dimension hence * is a linear isomorphism.

Proposition 3.1.1. Let V' be a real vector space of dimension n. The x—operator has the
following properties. For any r,t € R and for any w and u in A*V we have

1. x(rw+tu) =rxw+txu.
2. xxw = (—1)kn=klyy,
3w A XU =u N *w.
4. x(w Axu) =*(uA*w) = (w, u) pry -
5. (kw, *u) xky = (W, U gk -
Proof. 1. By linearity of *, it satisfies x(rw + tu) = r xw + t x u, for all ;¢ € R.

2. Let ey, ...e, be an oriented orthonormal basis of V. Assume that w = e,y A. .. Aesw),
then »w = sgnoey 1) A ... A eg(n). By condition (3.2), we have

AWAX*W = (SGNOCshp1) A ... A €g(n)) AK(SNTEG (k1) A .. A Eon))
= (sgna)Qea(kH) Ao N egmy Ax(Coory N - A o))
= €ok+1) N\ - N €on) NSgNTEG(1) A ... A Es(n)
(sgno)’ey A... Aey
Voly, .
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On the other hand, since the basis of V' is orthonormal

(xw,xw)Voly = (8gN0€s(kt1) A - .. A €o(n), SENTEG(k11) A - . . A €a(n)) Ak

= (Sgn0)2<ea(k+1) NN egny; €o(k+1) Nt A €U(n)>Ava01V

= VOIV .

If we consider (—1)*"*w, we obtain:

*wA*kw = *w A (—1)FrRy

= (=D 0w A w

= (—1)k(”_k)sgnaek+1 Ao NE"Negay A

= ((—1)k(n7k))28gn0'60(1) N N es(n)
= (sgno)®e; A...Aey

= VOlv.
Finally:
*w A (=1)F Ry = ((=1)FO=R)20 A ww
= <w7 w>AkVV01V
= VOlv.
Therefore
*xw = (—1)Fn=Fy,

N €q(k)

3. By condition (3.2) and the symmetry of inner product of A*V| we have

(w, u) pry Voly = w A xu = u A *w.

4. Applying * to 3.1.1-3. in w A xu = u A *w, we have *x(w A xu) = x(u A *w).

Also, by (3.2) we have u A xw = (w, u) \ry Voly, since Vol = %1 and 3.1.1-3., we get

*(u A *w) = *({(w, uyVoly ) = *Voly(w, u) yxy = (W, u) pry -

5. Ttem 5 holds by Proposition 3.1.1-2. and -4.

<*U}, *U>Akv

*(*w A * * u)

*(kw A (—1)F=F)y)

(=1)F R o (ew A u)
(—=1)EC=R) 5 (—1)RC=R) (4 A %)
*(u A *w)

<wa U>AkV'



42 Hodge theory

3.2 Hodge ~—operator

Using the properties of the x—operator we will define the Hodge x—operator on differentiable
forms. For this reason, we will first study the inner product we need, the Riemannian metric.

3.2.1 Riemannian metric

A Riemannian metric on a differentiable manifold M is a section g of S*T™*M which is
pointwise positive definite, (see definition C.2.5). Now we will describe the Riemannian
metric locally.

Let (U, 1, ..., z,) be a chart on M. If we set g;;: U — R
o 0
ii(p) = — |, U. 3.4
9i5(p) = gp (6% afj) pE (3.4)
Then g,; is a function of zi, ..., x,. We say that g is differentiable if the functions g;; are

differentiable in all charts.

Example 3.2.1. One example of a Riemannian manifold is R™ with its Euclidean metric
g, which is just the usual inner product on each tangent space 7,R"™ under the natural
identification 7,R™ = R". In standard coordinates, let be a chart (R", zy,...,x,), g can be

written in several ways:
n

g= dei ® dx; = Z(dxi)Q.

i=1 i=1

g viewed as a 2 degree polynomial in the variables {dx1,...,dz,}.

By Proposition C.2.4 we have that for every differentiable manifold M there always exists
a Riemannian metric.

Proposition 3.2.2. Let (M, g) be a Riemannian manifold. For each point p € M, consider
the inner product g,:T,M X T,M — R. The linear map g,:T,M — T7M, given by
ap(X)(Y) =9,(X.Y), XY € T,M, is an isomorphism.

Proof. Assume that g,(X) = 0, then §,(X)(X) = 0, that is, g,(X, X) = 0, since g, is positive
definite then X = 0. So g, is injective. Also, we have dim (T,M) = dim (T,; M), hence g, is
an isomorphism. O

Then the metric g, identifies the tangent space T, M and the cotangent space Ty M.
Moreover, we may extend this identification to the space I'(T'M) of all vector fields on M
and the space Q'(M) of all differentiable forms of degree 1 on M. For example, for each
differentiable function f on M, df:TM — TR = R is a differentiable form of degree 1
on M and by the isomorphism ['(TM) = QY(M), there is a unique vector field called the
gradient of f, denoted by gradf, such that

g(gradf, X) = df(X) = X f,
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for every vector field X on M. For a differentiable function f = f(z1,...,2,) on the
FEuclidean space R", we have

0
8.751 ox;

gradf = Z

3.2.2 Hodge x—operator

Let (M, g) be an oriented Riemannian n—manifold.
For any integer k, with 0 < k < n, we have an inner product on AkT;M for each p € M.
There is a natural linear isomorphism

* ASTEM — AR M

for each point p € M. That induces the vector bundle isomorphism x: A¥T*M —s A" FT* ).
By varying p € M, we have the linear isomorphism

* QP (M) — Q" (M), (xw)(p) = *(w(p)),

called the Hodge x—operator.
Moreover, if (U, z1,...,x,) is an oriented chart assume that {6%1, N . 91 form a pos-
itive local frame. Take the Gram-Schmidt orthogonalization process and get an oriented

; and inductively define

orthonormal local frame eq,...,e, of TM. That is, we let e; = TRCa
oz

with g the Riemannian metric

Y,
i - j i = ) .:2737"'a'
o 20 (o) = "

7j=1

Let {e!,...,e"} be the dual oriented orthonormal basis of T*M. Now, if

w= Z Jo(1)..ok)€ JA LA e”(k),
oeS(k,n—k)
then we have
*W = Z sgnafg(l)__.g(k)e"(k“) A Ne”™,
ceS(k,n—k)

Let 1 € C*°(M) be the constant function with value 1, we have x1 € Q"(M), which
is called the volume form and will be denoted by Vol,,, a concrete expression is given by
Volpr = e' A ... A e In terms of the metric (3.4) we have

Voly = y/det(gij)dzy A ... A dxy,.
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3.3 The Laplace—Beltrami operator and harmonic forms

Using the Hodge x—operator, we can define the adjoint operator of the exterior derivative
and with these two operators we will extend the Laplace operator to forms.

Let (M, g) be an oriented Riemannian n-manifold without boundary, in addition, we also
need it to be compact. Using the inner product on A’“T;M for each p € M we can define an
inner product in Q*(M). Let w,n € QF(M) by integrating the function (w(p),n(p)) over M,
we define

(W, Maran) = /M (w(p), n(p))arTsar Volur. (3.5)

where Vol is the volume form of M.
The inner product on Q%(M) will be denoted simply by (, ).
According to Proposition 3.1.1-3., the inner product (3.5) can also be written in the form

(w,n) = /Mw A *n = /M A *w. (3.6)

Furthermore, by Proposition 3.1.1-5., (xw,*n) = {(w,n), which means that the Hodge x—
operator x: Q% (M) — Q" %(M) is an isometry relative to the inner product (3.5).
By convention, we define the inner product between differentiable forms of two different
degrees to be zero, so that the entire vector space Q°*(M) is provided with an inner product.
Now we study how the exterior derivative d: Q*(M) — Q°*(M) is transformed by the
Hodge *—operator.

Definition 3.3.1. Let d*: QF(M) — Q*~1(M) be the differentiable linear operator defined
as follows: let w € QF(M),

d*w = (=1)"*E+DH L d s w e QFY(M). (3.7)

Lemma 3.3.2. d and d* satisfy the following equalities: let w € QF(M)

*d'w = (=1)d*w, (3.8)
Frw = (=1 xdw, (3.9)
dod'w = 0. (3.10)

Proof. Let w € QF(M).
By equality (3.7) and Proposition 3.1.1, we see that

1.

*d'w = x(—=1)"FFH gk

_ ( 1>n (k+1)+1 woxd % W

_ ( 1>n k+1)+1< )(nkarl)(kfl)d* W
)

= (-Dfdxw.
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2.
d*xw = (=1)"O D+ L d sk (xw)
— (_1)nk+l*d(_ )k(n k)w
(=) % duw.
3.
(d* o d*)w _ [( )n(k+l )+1 *d*w]
1)nEHDFL )Rt o (kd * w)

= (=
_ ( 1) ( 1)(n k+1)(k— 1d*w
= 0.

O

Stokes theorem is a fundamental formula concerning the integral of differentiable forms

and we will use it to describe the adjoint operator of d. First we describe the case of manifolds
with boundary.

Theorem 3.3.3 (Stokes Theorem, [28, Thm. 3.6]). Let M be an oriented differentiable n—
manifold with boundary and w a differentiable (n — 1)—form on M with compact support.

Then
/dw:/ w.
M oM

Here the right-hand side is the integral of w on the boundary OM of M, and we assume that
OM is equipped with an orientation induced from that of M.

The next corollary follows immediately from Theorem 3.3.3.

Corollary 3.3.4 ([28, Cor. 3.7]). Let M be an oriented differentiable n—manifold without
boundary. Then for an arbitrary differentiable (n — 1)—form w on M with compact support,

we have
/ dw = 0.
M

Proposition 3.3.5. Let M be an oriented Riemannian n-manifold without boundary. Rel-
ative to the inner product (, ) in Q*(M), d* is an adjoint operator of the exterior derivative
d, that is, we have

(dw,n) = (w,d"n).

Proof. Tt suffices to take w € Q¥(M) and n € Q**(M). By Theorem 1.3.2-1. and equal-
ity (3.8) we have

doAxn = dwA*n) —(=DFwuAdxn
= dwA*n) + (=D wAndxn
= d(w A*n) +w A *d™n.
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Integrating each side over M, we have

/dcu/\*n:/ d(w/\*n)—i—/ w A *d*n.
M M M

Since w A xn is an (n — 1)~form by Corollary 3.3.4, we have

/ d(w A*n) = 0.
M
Now, by definition of the inner product in Q¥(M) and Proposition 3.1.1-4.,

(dw,n) = (w,d"n).
0

Definition 3.3.6. Let (M, g) be an oriented Riemannnian n—manifold, the De Rham-Hodge
operator
D:Q*(M) — Q*(M)
associated to g is defined by
Dw := dw + d*w. (3.11)

Lemma 3.3.7. D is a self-adjoint operator over Q*(M).
Proof. Let w,n € Q*(M), by Proposition 3.3.5 we have

<wv D77> =

O

Definition 3.3.8. Let f:R"™ — R be a differentiable function, we define the Laplacian of
[ by o g2

Of = .

I= 2o

With the Hodge x—operator and the exterior derivative and its adjoint we can extend the
Laplacian operator to differentiable forms.

Definition 3.3.9. Let M be an oriented Riemannian n-manifold, the Laplace—Beltrami
operator or Laplacian Oy: QF(M) — QF(M) is defined by

Oyw = D*w = dd*w + d*dw, (3.12)

for all w € QF(M) and is a linear operator for each k with 0 < k < n.
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It is also called the Hodge-De Rham Laplacian.
Note that (J;, preserves each QF(M) with 0 < k < n.

Definition 3.3.10. A form w € Q¥(M) such that Oyw = 0 is called a harmonic k—form.
In particular, a differentiable function such that Uy f = 0 is called a harmonic function.

Proposition 3.3.11. Let V C R™ be an open subset of R", w = frdxy A ... Adxy € QF(V),
then the Laplace—Beltrami operator on R™ is as follows:
n 82f[
Dka—Zanﬂfl/\ A dxy,.

Proof. We consider the Euclidean metric, x and d* with respect to the Euclidean metric.
Let { 8%1, . 91 be a positive orthonormal basis of R™.
It is sufficient to compute [yw for a differentiable k—form written as

w:f1d$1/\.../\dxk.
By definition (3.3) *w = frdaxg1 A ... Adz,. We apply the exterior derivative, see 1.3.1,

dxw = Z af]dxi ANdxgir A ... ANdxy,.
i—1 8332

By equality (3.2), we have:

Volgn = dz; ANdxgy A ... Adey, Ax(de; Adxgy Ao A dxy)
= dzi Adxpsy A Adeg Aday A Adz A A da
= (=D Vg A A da Adagay AL A day,

(_1)(nfk+1)(i71)(_1>(n7k)(k7i)voan.

Where (n—k+1)(i—1)+(n—k)(k—1i) = ni—ik+i—n+k—1+nk—k*—ni+ki = nk+i—n—1.
We obtain:

k
*d * W = Z afl(—l)"k’"ﬂ’ldxl A oANdx; NN dag.

=1 8%
We have (—1)F—n+i=1(_1)rk+D+1 — (1), By definition 3.3.1
k
9 _
d'w = Z( 1) fldxl/\.../\dxi/\...dxk.
= or;
. k 82f1 -
dd*w = 28332( Didr; Ndoy A ... Adzg A ... A day,
i=1 0T
+§k: z": 0% f, (—1)'da; Adey A ANda A A da,
i=1 j=k+1 d;0x; !
k 62
= -3 f;dxl/\ Adzi AL A day
= Ox;

*f

Oz, 8%

dx]/\dq:l/\ /\cjsc\i/\.../\da:k.

IIMw
M:
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On the other hand, by definition 1.3.1 we get

dw = dr; Ndxy...Nd
W ;axz X T1 T
= Z 8f1d:17i/\dx1/\.../\dxk.
i:k+1axi

Later, by equality (3.2)

Volgn = dx; Adxy A ..o ANdag Ax(dz; Adxy A ..o A day)
(=) Yy A Aday,.

We apply x and d, hence

*w = > (—1)1‘*1affczgz;k+1 Ao Ndag A A dag,
i=k+1 O
n n 2 .
dxdw = Z Z (—1)! i de; Ndzggr Ao ANdag AL N dx,

j=1i=k+1 OO

n 2 o
— Z (—1)1"18 J;Idxl- ANdxgi N ANdx; Ao ANdxy,
i=k+1 8%

k n ] 62 o
+> > (=t /i doy Ndz Ao AN dzg AN da,

j=1i=k+1 Ox;0x;

i i( 1)t OJ1 o N s Ndgos Ao ATEA . A d
= — j k+1 E+1 A\ . iN.. n
: . 8%83;] I

n 82
+ > (—1)kéh‘];ldxk+1 A ANdT A A da,.

Again, by equality (3.2) we have

Volgn = da; Adzgpr A Adaz A Adzg Ax(dey Adzggy A Ade A A dy,)
= (=" Mdr g A A dz AL Nda, Aday AL Ndxg A A dag A da
= (=) )RR g A AT AL N d, Ada A A dag,

_ (_1>n—k+j—1(_1)k+n—k—i<_1)(n—k)kvoan.

Where (—1)"F+Hi=1(—1)ktn=k=i(_1)(n=k)k — (_1)"k+i  Also, we apply the equality (3.2) to
drgiq N ... N\dx,, then

< nk+j anI 7
S (=)™ ———day A... Adx; A .. Aday A d

*dxdw = ) | T

n 82
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Now, we note that dw € Q*1(V), then we take d*: QF+1(V) — QFF2(V), that is,

d*(dw) = (—=1)"*F2H o d % dw.
Then (_1)n(k+2)+1(_1)nk+j — (_1)j+1 and (_1)n(k+2)+1(_1)k+k(n7k) - 1.

2 —_—
d*dw = Z Z J“ fI dml/\ Adxp AN dxg A de

j=li=k+1
n an
I
- Z 2 - N dxy.
i= k+1 T

Therefore, adding the two calculations, we obtain:

Oyw = dd*w + d*dw
k 82

- >
+zi

1=1 j=k+1

1A o ANdx; N AN day,

5 81‘1 Viday Adey A Adx A A day

k n O? —
+>0 > (—1yH Ji S dri A A deg AL A dag A d

j=11i=k-+1 Ox;0x;
n 2
— Z OJr —5dry AL ANdy,
i=k+1 xl
n 82
= Z dx A dxg.

7,

From the penultimate equality, the double summations are canceled.
O

Proposition 3.3.12 ([28, Prop. 4.13]). The Laplace—Beltrami operator has the following
properties: let w € QF(M)

1. *Opw = Og *w. If w is a harmonic k—form, so is xw.
2. Oy is self-adjoint, that is, (Oyw,n) = (w,Tyn) for all w,n € QF(M).
3. Upw =0 if and only if dw =0 and d*w = 0.

Proof. 1. Let w € QF(M), we have

cQF—1(M)

*d*w = *(_1)n(k+1)+1 *d*w
(_1)n(k+1)+1(_1)(k—1)(n—(k—1))d* W
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But n(k+1)+1+(k—1)(n—(k—1)) = nk+n+1+kn—k*+2k—n—1 = 2nk—k*+ 2k,
then by the axioms of the exponents and since (2i)? is even and (2i + 1) is odd:

wdw = (=12 (1) (—1)*d xw

= (=) "d*w
= (-1)fd*w.
On the other hand,
& xo = (=)D g exw
—~

eQn—k (M)

— (_1)n2—kn+n+1<_1)k(n—k)*dw’

But n? —kn+n+1+k(n—k)=n>—kn+n+1+kn—k*=n(n+1)—k*+ 1, note
that if n is even then n + 1 is odd and reciprocally. Then,

P xw = (=1)77(=1) % dw

= (—D)" xdw.
Then, by the second calculation,
€Qk=1(M)
~~
*xd d'w = (=) d'w
= d'd*w.

Analogously, by the first calculation,

*d*dw = (=1)dxdw
= dd" *w.

Therefore,

*ew = x(dd*w + d*dw)
= *dd*w + *xd*dw
= ddrxw+dd" *w
= (dd* +d*d) xw

= Dk*w.

2. It is a consequence of Definition A.3.12 and Proposition 3.3.5. Let w,n € Q¥(M), then

(Hew,n) = ((dd"w + d"dw),n)
dd*w,n) + (d*dw, n)
d*w, d*n) + (dw, dn)
w, dd*n) + (w, d*dn)
Dew, m).

{
{
{
{
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3. Let w € QF(M).
Note that if dw = 0 and d*w = 0 then Lw = 0.
Now, assume that [(Jyw = 0. By Definition A.3.12, we have
(Ow,w) = ((dd* + d*d)w,w)
(dw, dw) + (d*w, d*w)

The last equality follows by Lemma 3.3.5, since

(dw,dw) = (w,d"dw)

= (d*dw,w)

and

(d*w, d*w) = {(dd*w,w).

Since (-, -) is definite positive, so dw = 0 and d*w = 0.

3.4 Sobolev spaces on k—forms

In section D.3 we define k-Sobolev spaces of the L?-space of functions with compact support
on R", we will now extend the definition of k—Sobolev space to differentiable forms with
compact support.

Definition 3.4.1. Let M be a differentiable manifold, an open cover {U, }aen is a locally
finite cover if every point p € M has a neighborhood that meets only finitely many of the
sets U,,.

Definition 3.4.2. Let M be a differentiable manifold and {U,}aep a locally finite open
cover of M. A partition of unity subordinate to {U,}aen is a collection of non negative
differentiable functions {p, }aca satisfying

1. Y pa =1
2. supp po C U,.

Given an open cover of M, one can construct a locally finite subcover of M, see [9,
Thm. 7.1].
Let p € M, consider the inner product on A’“T;‘M

(, ) A"TXM x A*TYM — R,

defined by (3.1).
In a natural way, this inner product induces the norm

1AM — R, (0@l = (@) «().

Note that this inner product and norm depends smoothly on p € M. We denote this function
by fo: M — R, given by f.(p) = [|lw(p)]l.
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Definition 3.4.3. Let (M, g) be a Riemannian n-manifold with an atlas {(Ua, ©a)}aca

where {Up, }aen is a locally finite open cover of M and ¢,:U, — V, with V, compact in
R™. Take a partition of unity {p,: U, — [0,1]}aea. We define the [-norm of a compactly
supported k—form w to be the [-norm,

[lwlls = (Z (P fe) © S0a_1||12,Hl(Rn)) (3.13)

a€N

And || [|;, gt (gny is the I-norm of functions defined by the equality (D.7).
We denote the set of all differentiable k—forms with compact support contained in M by
QF(M). Note that QF(M) C QF(M).

Definition 3.4.4. The completation of QF(M) with respect to the [-norm (3.13) is the
[-Sobolev space of differentiable k—forms, denoted by HL(M).

The inner product on Q¥(M) defined in equality (3.6) induce the L*-norm
lw]|o == (w,w)'/2. (3.14)
With respect to the || |[o-norm we have the 0-Sobolev space H°(M), by Remark D.3.4

HY(M) = L*(QF(M)), see section D.2.
On QF(M), we define inner product

(w,w)1 = (dw, dw) + (d*w, d*w) + (w,w). (3.15)

And
[l = (w, ). (3.16)

By straightforward calculations we can see that if [ = 1 the 1-norm (3.13) coincides with
the norm (3.16).

We complete the space QF(M) of differentiable k—forms with respect to the norm || |1,
the resulting vector space is the 1-Sobolev space of QF(M), denoted by H}(M).

Also, one can extend the inner products (3.6) and (3.15) to Q*(M), we will denote by
HI(M) the i-Sobolev space of Q*(M), where i = 0, 1.

3.5 Hodge theorem

The objective of the section is to see that each De Rham cohomology class contains a har-
monic representative, this result relates differential geometry and geometric analysis.

Lemma 3.5.1 ([13, Lemma. 3.4.2]). Let {wy, }nen C HL(M) be bounded. Then a subsequence
of {wn} converges with respect to (3.14) to some w € H}(M).

Lemma 3.5.2. There exists a constant ¢ > 0, depending only on the Riemannian metric of
M, with the property that for all closed k—form w that is orthogonal to the kernel of d*,

(w,w) < c{d*w, d*w). (3.17)
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Proof. 1f (3.17) is not true, suppose there exists a sequence of closed k—forms {3, } orthogonal
to Ker d* with

(Bny Bn) = n{d* B, d” By). (3.18)
We define A, := (B,, B,)""/? € R. Then

A2 By Bn)

= ((Ba, Bu)) ™ (B Bn)
= 1

By equality (3.18)
By hypothesis 3, is a closed k—form, since d is R-linear, then d(\,5,) = 0. One has that

2 {d"(Anfn), d"(Anfn)) + (d(Anfn), d(Anfn))

S|

We add the term (A, \nfn),

711 + 12 {d (M), d* (M) + {d(MafBn), d(AnB)) + (MnBs AnBn) = (M) = || AnfBall3-

Since {\,(3,} is a bounded sequence, by Lemma 3.5.1, there exist a subsequence of {\,3,}
that converges with respect to the O-norm || || to some ¢ € H}(M).

By inequality (3.19), £ > (d*(A\uf,), d*(Mnf3,)), then d*(X,3,) converges to 0 with respect
to O-norm.

Since a subsequence \, 3, converges to 1, we get that for all w € Q¥1(M)

0 = nli_g)lo(d*()\nﬁn),w)

= (¢, dw)
= (d*Y,w).
Then d*i = 0.
Since d*y» = 0 and f3,, is orthogonal to Ker d*, then
(1, AnBn) = 0. (3.20)

On the other hand, since (\,,3,, \n3n) = 1 and A, 3, converges to ¢ with respect to || ||o,
then

Which is a contradiction to (3.20). O
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Theorem 3.5.3 (Hodge Theorem). Let M be an oriented, compact Riemannian n—-manifold.

An arbitrary De Rham cohomology class of M can be represented by a unique harmonic form,
that is

Ker O, = HE R (M).

Proof. Uniqueness:
Let [w1], [wa] € HER (M) such that w;,w, are cohomologous and harmonic k—forms.
Since wy,wy € QF(M) are cohomologous, then

wy = wy + dn (3.21)

for some n € Q*1(M).
We have the following cases:

1. If k = 0, by hipothesis wy,wy, € QY(M) = C>(M) and the equality (3.21) is satisfied
for some n € Q~Y(M) = 0, then n = 0. Therefore, w; = ws.

2. If k # 0. By equality (3.21) for some n € Q*~1(M) and Proposition 3.3.5, we have
(W —way w1 —wa) = (w1 — wa, dn) = (d* (w1 — wa),n).

Since d* is a linear map, w; and wy are harmonic k—forms and by Proposition 3.3.12-3
we obtain

w1 — wallo = (W1 — wa, w1 — wa) = (d*wy,n) — (d*wa,m) =0
Therefore w; = ws.

Existence:
Let wy be a closed differentiable form representing of [wg] € HER (M).
Note that all forms cohomologous to wy are of the form

w=wy + da (3.22)

for some a € Q¥ where w is also a closed form.

We denote by ZfO(M ) the vector space of all closed k—forms cohomologous to wy. We
consider the functional

N: zE (M) —R
w = (w,w).

We want to minimize N, that is we want to see the infimum is achieved by a differentiable
form n € Z} (M), such that n must satisfy the following equation: for all 5 € QF1(M),

d
SN+ tdB) =0 (3.23)
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d
0 = %Vl +tdB,n + tdB)|i=o

= Lt tdB) + {18, + 1dB) o

d

= (1) + (n,tdB) + (1B, m) + (£, tdB)) o

_ i((n,m +2(n, tdB) + £2(dB, dB)) o

(2(n,dB) + 2t(dB, dB))li=0
= 2(n,dp)
= 2(d"n,B)
0 = (dn,B).

0= (,dB). (3.24)

Since this holds for all 3 € Q*1(M), d*n = 0. Since 7 is a closed form, then dn = 0. By
Proposition 3.3.12-3, n is a harmonic k—form.

If we prove that there exists the infimum of N by the equation (3.23), it will already be
a harmonic k—form.

Let {wy }nen C ZE (M) be a sequence such that

Wy = wo + day,, (3.25)

for some a,, € QF"1(M), N(w,) converges to inf N(w)= k.

w=wo+da
So (wn,wn) = N(w,) <k + 1.
Since {wy, }nen is bounded, by Theorem D.1.13 then there exist converges weakly subse-
quence {wy }nen to some w € HY(M), see Definition D.1.12.
Since (w, — wo, p) = (da,, ) = {a,, d*p) for all ¢ € Q¥(M). Then

(w0 — o) = 0 (3.26)
if and only if d*p = 0, p € Q¥(M).
Set 7 :=w — wy.
We define the functional
A: Imd* — R (3.27)
d*p — (7, ).

Let us see that A is well defined. If d*p; = d*¢p, since d* is a linear map, then 0 =
d*p1 = d*pa = d* (1 — 2).
By equality (3.26) and by definition (3.27) then

A(d* (1 — 2)) = (T, (p1 — ¢2)) = 0.
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Since ( , ) is bilinear

0 = <Tv (‘101 - @2)) = <T7 901> - <T> 902>7 then <7—a 901> = <Tv 902>7
Ald 1) = A(d"p).

Therefore, A is well defined.
Consider pr: Q¥(M) — Ker d* be the orthogonal projection onto Ker d*
Let ¢ € QF(M), we define ¢ := ¢ — pr(p) € (Kerd*)L. Note that

d*p = d*(p — pr(p)) = d*¢ — d*(pr(y)) = d*e. (3.28)

Then
A(d~p) = A(d™p) = (7, 9). (3.29)
In equality (3.29) apply Cauchy-Schwarz inequality

[A(d*@)| = (T )] < I7llol ¥ lo- (3.30)

Since v is a closed k—form and 1 is orthogonal to the kernel of d*, by Lemma 3.5.2 there is a
constant ¢ > 0 such that (¢, 1) < c(d*y, d*¢). By definition (3.14) and equality (3.28), then

Y10 < Velld¥llo = velld" ¢ o- (3.31)

By equalities (3.30) and (3.31) then |A(d* )| < v/c||T||o||d*¢]||o, therefore A is a bounded
functional, see definition D.1.17.

Since A is a bounded functional, it is a continuous functional, then A can be extended
to the L?-closure of Im d*. By Riesz Theorem D.1.19, there exist o € L?(Im d*) such that

(o, d"p) = (T, )

for all ¢ € QF(M). Since d is the adjoint operator of d*, see Proposition 3.3.5, rewrite

(da, ) = (T, ),

then da = 7. Therefore w = wy + 7 € Z5 (M).
By Theorem D.3.9 we have the regularity of the solutions of equality (3.24). U
Some consequences of Hodge Theorem are Theorems 1.4.10 and 1.4.7-1.



Chapter 4

More expressions for d, d* and D

In this chapter, we shall omit the word “differentiable” for a vector bundle, form and section,
since we will only deal with differentiable objects.

Through the notions and properties of connections and Clifford algebras we will give
expressions for d, d* and OJ;, that we need, the equalities (4.20), (4.21) and (4.46).

4.1 Connections

To review topics related to this section see [18], [28], [L4] and [24].
First, let us mention a result of isomorphisms of C*°(M )-modules.

Theorem 4.1.1 ([21, Prop. 16.13]). Let (E,m, M) and (F,x’, M) be two vector bundles,
there are the following isomorphisms:

1. T(Homs (F, F))  Homeun) (T(E), T(F)).
2. INE®F)Z2T(E) @ceun I'(F).
3. D(E*) = Homem (uy)(D(E), C=(M)).
J. D(NE) = Al iy (D(E)).
Definition 4.1.2. Let E and M be differentiable manifolds and 7: £ — M be a real vector
bundle over M. The set of all k—forms with values in E is

QF(B) :=T(AYT*M) @ E).

That is, by Proposition 1.2.4-2 an arbitrary element of Q¥(E) can be written as a linear
combination of elements of the form w ® s, where w € Q*(M),s € ['(E). Let w € Q¥(M),
w(p): TyM x ... x T,M — R, generalizing this, for a vector bundle m: E — M we obtain
a k—form with values in E, taking w(p) ® 7~ *(p).

The space of sections of A*(T*M) ® E the tensor product vector bundle is denoted by

O*(E) = D(A*(T*M) ® E). (4.1)

o7
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A connection on E may be thought of, in some sense, as an extension of the exterior
derivative d to include coefficients in F.

Definition 4.1.3. A connection in a vector bundle (E,m, M) over a differentiable manifold
M, is a linear map

VET(E) — QYE)
satisfying the following condition: (Leibniz rule) for each f € C*(M), s € T'(EF),

VE(fs) =df -s+ fV¥s. (4.2)
If X € I(T'M), then a connection V¥ induces a canonical map
VET(E) — T(E)

via the contraction between T'M and T*M, that is, let s € T'(E) VE&s = X1VFs, (see
definition of contraction 1.5.1).
V£ is called the covariant derivative of V¥ along X.

Proposition 4.1.4 ([20, Prop. 1.2, Prop. 2.7]). Let (E,m, M) be a vector bundle, let X
and Y be vector fields on a differentiable manifold M, then the covariant derivative has the
following properties: for all s € I'(E),

1. V&.ys=VEis+ Vis.
2. Vixs = fV%s and Vixs = AVis for each f € C°(M) and X € R.

3. VEf = Xf for every function f € C*(M).

k
Elements of Q'(E|y) are written uniquely as - n; ® s; for some n; € QY(U).
=1

)

Definition 4.1.5. Let (E, 7w, M) be a vector bundle of rank k, U C M an open subset and

s51,...,8: € T'(E |y) be a local frame. For a connection VE on E we have
k
VESZ‘ = Z Aij & Sj (43)
j=1

where A;; € QY(U) is a k x k matrix of 1-forms, which is called the connection matriz with
respect to the local frame {si,...,s;} and it is denoted by A.

Conversely, given an arbitrary matrix A of 1-forms on U and a local frame {sy,..., si}
for E |y, then equality (4.3) defines a connection on I'(E' |i/). Let s € I'(E |¢7) we can write

k
it as s = Y a;84, with a; € C*°(U). By equalities (4.2) and (4.3), we get
i=1

k
VPs =VF (Z aisi> => (dai s + aiVEsl) .

i=1 =1
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Then
k ko k
VES = Z d(ll' - 8; + Z Z aiAi]’ X Sj. (44)
i=1 i=1j=1
With respect to s = (ay, ..., ax), equation (4.4) can be written in matrix for as

VE(ay, ... ap) = (day,. .. dag) + (ay, ..., ap)A.

We consider a trivial bundle nm: E — M, that is, it has a trivialization £ = M x R™.
One can see that I'(E) = C*°(M,R"), we have

VE = VMR 0o (M R™) — T(T* M) x C=(M,R").

Let fi,...,fn € C®(M,R") be a local frame, for any f € C*°(M,R") f = i a; f; with
i=1
a; € C®(M), by equality (4.4), we have

VEPf =3 "(dai) fi+ > aidi; © f;. (4.5)
=1

i=1j=1

Suppose A;; is the zero matrix, then for every vector field X, VL f is just the directional
derivative of f in the direction of X. In this case, V¥ is called the trivial connection in the
product bundle.

Lemma 4.1.6. Any vector bundle over a differentiable manifold admits a connection.

Proof. Let (E, 7, M) be a vector bundle over a differentiable manifold M, let {U,}aca be a
locally finite open cover. By the local trivializations we have 7~(U,) = U, x R", we denoted
by V@ a trivial connection for each 7=1(U,) — U,.

Let {ga}aca be a partition of unity for the cover {U,}aen, (see definition 3.4.2). By
equality (4.5) we define

VP =3 V% = > > gadaifi + 3.3 Y gaaidi; @ fj.

aEA acl i=1 a€l i=1 j=1

O

Remark 4.1.7. In this way, we construct a connection on E. Since we have an infinite
number of connection matrices, there are infinitely many connections on E.

4.1.1 Connections on the tangent bundle

Connections on the tangent bundle T'M are particularly important. Also on the tangent
bundle there is the Levi-Civita connection.
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The Levi-Civita Connection

Definition 4.1.8. The torsion of a connection V™ on T'M is defined as
T(X,Y):=VMY - VvIMX - [X,Y], X,Y € T(TM).
VIM s called torsion free if T(X,Y) =0 for all X,Y € I'(TM).

Definition 4.1.9. Let TM be the tangent bundle on a Riemannian manifold (M,g). A
connection VI™ on TM is called metric if

Xg(V,2) = g(VMY, Z) + (v, VEM Z),  X,Y,Z € T(TM). (4.6)

Theorem 4.1.10 ([18, Thm. 4.3.1]). On each Riemannian manifold (M, g), there is precisely
one metric and torsion free connection V™ on TM. It is determined by the formula:

1
9(VXY, Z) = 5(Xg(Y, 2) = Z9(X,Y)+Y (2, X) =g(X, [V, Z]) +9(Z, [X, Y]) +9(Y; 2, X]),
(4.7)
for all XY, Z € T(TM). The formula (4.7) is called the Koszul formula.

Definition 4.1.11. The connection V¢ determined by (4.7) is called the Levi-Civita con-
nection of M.

Definition 4.1.12. Let V™ be a connection on T'M, the Christoffel symbols F are given
by
0 - 0
VI =3 T 4.8
2 ;= 2 (1)

It is possible to characterize a torsion free connection V™ in terms of its Christoffel
symbols. In local coordinates, by equality (4.8) the components of the torsion T" are given
by

(991:z (‘31:] 50; Oz, am (93[;Z

n 0
ko k
}Zj (T = T35, (4.9)

Theorem 4.1.13 ([18, Cor. 4.3.1]). The connection V'™ on T M is torsion free if and only
if
k o k . .
Uy =175 foralli,j, k. (4.10)

Let M be a differentiable manifold, ¢: I — M be a differentiable curve and (U, 1, .. ., x,)
be a chart on M. We consider x(t) := z(c(t)) where z = (z1,...,x,). Then,

. . 0
CcC = Ci—
245

%
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By equalities (4.2), (4.8) and Proposition 4.1.4-2. we get

Vi = Vg;llm&téié“”aik
= gév% 2 Gilf )a?ck
_ zzkzl (é(t)gzk(c(t)) &tV o ai,)
B ;; a:cf;;uzlcl e <)>£” 

Definition 4.1.14. Let M be a differentiable manifold and V™ be a connection on the
tangent bundle TM. A geodesic is a differentiable curve c: I — M with respect to VI if

VIiMe=0.

That is,
0

(iiw+iiiwmwmwﬂ%=a (4.11)

i=1j=1 i=1 k=1

Theorem 4.1.15 ([18, Thm. 1.4.2]). Let M be a Riemannian manifold, for each p € M,
v € T,M there exist a mazimal interval € > 0 and precisely one geodesic c: [0, €] — M with
c(0) = p, ¢(0) = v. In addition, ¢ depends smoothly on p and v.

The geodesic of Theorem 4.1.15 will be denoted by c¢,, also, we have that for A > 0,t €

[0, €]
co(t) = e (;) )

By Heine-Borel Theorem, see [1, Thm. 3.3.1], the set {v € T,M|||v|| = 1} is compact and
since ¢, depends smoothly on v, there exists ¢y > 0 with the property that for ||[v|]| =1, ¢,
is defined at least on [0, 1].

Definition 4.1.16. Let M be a Riemannian manifold, p € M.
Let V, = {v € T,M]|c, is defined on [0, 1]}, we define

exp,:Vp, — M
v ().

Called the ezponential map of M at p. If v € V,,, 0 <t < 1, then exp,(tv) = c,(1).

Theorem 4.1.17 ([18, Thm. 1.4.3]). The exponential map exp, maps a neighborhood of
0 € T,M diffeomorphically onto a neighborhood of p € M.
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Let Xi,..., X, be an orthonormal basis of T,,M with respect to the Riemannian metric.

For each v € T, M, we can write v = ) a;X; with a; € R. We have a linear map:
i=1
v T,M — R"
v (ag, .., Gp).

By the linear map v we identify T, M with R".

By Theorem 4.1.17 there exists a neighborhood V' of p such that is mapped by exp, !
diffeomorphically onto a neighborhood W C C of 0 € T, M and by ¢ o exp, I we have a
neighborhood V' of p diffeomorphic onto a neighborhood U of 0 € R™. In particular, p is
mapped to 0.

Definition 4.1.18. Let M be a Riemannian n-manifold, the local coordinates defined by
the charts (U, ¢ o exp, 1) are called normal coordinates with center p.

Theorem 4.1.19. Let M be a Riemannian n—-manifold, in normal coordinates we have:
I (Opn) = O, forall i,j, k. (4.12)

Proof. Let M be a Riemannian n—manifold, p € M and (U, z), where x = (x1,...,x,),
normal coordinates with center p. In this coordinates, the straight lines throught the origin
of R™, (or, more precisely, their portions contained in the chart image) are geodesic. Namely,
the line tx, t € R,x € R" is mapped (for sufficiently small ¢) onto c;x(1) = cx(t), where cx(t)
is the geodesic, parametrized by arc length, with ¢4 (0) = x.

We consider z(c(t)) = tv, with v € T, M, since is a normal coordinate z(p) = 0.

We have

c(t) = ;ltx@(t)) = (&1(1), ..., én(t)), Where é(t) = ixi(c(t)).

Then ¢;(t) = & (tv;) = v; and ¢ (t) = 0, we substitute this in equality (4.11) and have

>3 3 T ety =0

i=1 j=1 k=1

Then Ffj(tv)vivj =0 for all k = 1,...,n. In particular at t = 0, F%(ORn)vivj = 0 for all
veRand k=1,...,n.

Let Xi,..., X, be an orthonormal basis of T,,M with respect to the Riemannian metric.
We put v = %(Xl + X,,,) with m,l = 1,...,n and since x is a normal coordinate we obtain

I (Opn) = O

forall k=1,...,n.
Also, since M is a Riemannian manifold, for V', by Theorem 4.1.13 T}, = T'%;.. Therefore
I (Opn) = 0 for all 4, j, k. O
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4.1.2 Induced connections

In this section VE will be a connection on a vector bundle (E,r, M) over a differentiable
manifold M and VI will be a connection on the vector bundle (F, 7', M), these connections
induce connections on the vector bundles that we build in the section C.1, for example the
connection in the cotangent bundle and in the k—th exterior bundle of T™M.

Let (E,7m, M) and (F,7’', M) be two vector bundles over M. The usual wedge product
induces a natural map

A:QU(M) x Y(E) — Q(E),
defined by
ANnw®s)=MNnAw)®s.

That induces a C*(M )—pairing

ANYE)YRV(F) — QHERF), Ws)AQet)=wAn® (s®t). (4.13)

Where w € Q/(M),n € Q(M),s € T'(F) and ¢t € T'(F) and w A 7 is the wedge product.
Let (E*, 7', M) be the dual vector bundle of (E, 7, M), we define the evaluation map as

Ev: Q™ (F ® E*) — Q(M),
wR(s®s*) = w(s*(s)).
With respect to (E*, 7', M) and (E, 7, M) we have the pairing (, ) = Evo A of Q(F) and
QVJ(E*) defined by
(,): (E) @ Y(E") — Q™+ (M)
(@ ®s,7® %) = w An(s*(s)).
Since A is a non-singular pairing, then (, ) is also a non-singular pairing.

Let VZ be a connection on (E,w, M), using the pairing (, ) we define the connection,
V¥ on E* such that

d(s,s*) = (VPs,8%) + (5,VF's*), s cI(E*),sc(E). (4.14)

On the right side of the equality (4.14) the first pairing is (, ): Q' (E)@T(E*) — QY(M),
and the second is (, ):T(E) ® QY (E*) — QY(M). Since the pairing (, ) is non-singular, the
connection V" is unique and will be called the dual connection of VF.

We can rewrite the equality (4.14) as

d(s*(s)) = s*(VFs) + (VF 5)(s). (4.15)

If we return to the matrix of the connection we have the following.

Lemma 4.1.20. Let (E, 7, M) be a vector bundle, U C M be an open subset, si,...,sy be
a local frame over U. Let A = (A;j) be the connection matriz of V¥ with respect to the local
frame, then for E* the dual vector bundle has the connection matric A = — A" = (—Aj;).
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Proof. Let sy,..., s, be alocal frame over U C M and let s7, ..., s} be the dual local frame
on E*.
By equality (4.14) for the connection VE* we get

d(si, 57) = (VZs3,87) + (50, VE 7).
Let 1,0 € C*°(M) be the constant functions with values 1 and 0 respectively, from first term,
if i = j, then (s;,s j) = 1, while if i # j then (s;, s j) = 0, in both cases d(s;, s ]) = 0. By

equality (4.3) and since the pairing is bilinear we have

(57"7 VE* S:) - _(VEST> S:)
koo k
(50,2 Ajj®s5) = =D Au®sy,87)
j=1 =1
koo k
ZAij(S'I‘us;) - ZATl Sl; 7,
j=1 =1

On both sides of the expressions are nonzero if the indices coincide, that is, 7 = j and ¢ = [.
Therefore A;, = —A,;. O

Remark 4.1.21. We consider {8%1, ce %} the local frame over TM |y, with U C M an
open subset.
In relation with equality (4.3) and the Christoffel symbols we obtain

0 i 0 0
IM ) I

Bzz 8$] =1

that is, Ay (22 ) = Il € C>(U), we obtain a k x k matrix A = (Fi’j)x‘ <k
i S0

Remark 4.1.22. By lemma 4.1.20 and Remark 4.1.21, we can obtain a matrix of V7, ™.

Ox;

Let A= (T ZJ)1<] 1< be the matrix of VI37 then —A! is the matrix of VI,M. We get

En oz

i

k .
vilMda;J == Tdx. (4.17)

7

Lemma 4.1.23. Let (M,g) be a Riemannian manifold, if V™™ is metric then: for all
X,Y € (T M), where « is the dual of Y with respect to g,

(VMY = Vi Ma.

Proof. Let X,Y,s € I'(T'M), where a € I'(T*M) is the dual section of Y with respect to g.
Using the pairings and equality (4.15) we have:

(ViMa)(s) = X(s,a) = (Vi"s,a)
Xg(s,Y) - g(ViMs, Y).
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On the other hand, since V™™ is metric, see equality (4.6), we have

(VX'Y)"(s) = g(s, VXY)
= Xg(s,Y) - g(ViMs,Y).

l

Definition 4.1.24. The Hessian of a differentiable function f: M — R on a Riemannian
manifold M is VT Mdf.

In local coordinates (U, x1, ..., x,) we have:

By Leibniz rule and equality (4.17), we have:

viLMaf = viM (n of )

- geles
)

i=1
In particular, by Lemma 4.1.23, we have:

Corollary 4.1.25. Let (M, g) be a Riemannian manifold and f: M — R be a differentiable
function. If VIM is a metric connection and any X € T(TM) then (ViMgradf)* = VL Mdf.

Definition 4.1.26. Let V¥ be a connection in (E, 7, M). Then there a unique connection
VA'E guch that

k
VB A As) =S 1A AVES AL A sy, (4.18)
Where s1,...,s, € T'(E).

By Theorem 4.1.1-4. s; A ... A s, € T(AFE).
And by equality (4.18) we have: let w € Q*(M) and n € QY(M),

VAE (o A ) = VY Pw A+ w A VAP,

Lemma 4.1.27. Let V™ be a connection on the tangent bundle TM. Then it induces
canonically a unique connection VAT M op ART* D\
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Proof. Let si,...,8, € I'(TM) be a local frame and the dual local frame s',...,s* €
['(T*M), by equalities (4.18), (4.15) and Lemma A.3.42 we obtain:

VAT MU A9 (s1,. .., 8) = > (st AVEMSEA NS (51,0 s)
1=1

= > s'(s A (VM () AL A sF(sy)

=1

s'(V™s:)

— Xk: vT*M i
N
2. (s

k

= =) s(V™Vs)).

i=1
In fact, VAT M (LA AR (sy,. .., s0) = — 38 sH(VIMg)). O
Remark 4.1.28. VA"T™M ¢oincides with the induced connection of 7% M from definition 4.1.26.
By linearity of the connections, Leibniz rule, Lemmas 4.1.27 and A.3.42, we have:
Corollary 4.1.29. If w € QF(M) and X, ..., Xy € T(T'M), then
k
VAT MG(X, o, Xe) = Xo@(Xny o, Xp)) = S w(Xas o, Xo, VIMXG, Xy, X

=1

(4.19)

4.2 Other expressions for d and d*

In sections 1.3 and 3.3 we described the exterior derivative and its adjoint operator, in this
section we obtain other expressions for d and d* using connections, properties of the wedge
product and the contraction.

Proposition 4.2.1. Let (M, g) be a Riemannian manifold of dimension n. Let w € QF(M),
Xo,..., Xx € (T'M). Then

dw(Xo, ., Xp) = S (-1 VAT Mu(Xo, .., Xoy o, Xa).

1=0

Proof. By Theorem 4.1.10 there is V¥ the Levi-Civita connection of T'M, that is metric
and torsion free.
We use the exterior derivative of Theorem 1.5.5 and since VC is torsion free, we obtain
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k
dW(X(],...,Xk) = (—1)ZXZ(W(X0,7XZ,,X]€))
i=0
+ Y (CD)M(X, X Xoy e Xy Xy, XR)
0<i<j<k
k . —
= Z(-l)zXZ(W(X0,7XZ,,Xk))
i=0
+ Y (C)MO(VEEX, Xoy o Xy, Xy, Xa)
0<i<j<k
— Y (—)(VEEX, X, X X X

0<i<j<k

We permute VI)‘SX ; and VI)‘SXi to the entries 7 — 2 and 7 respectively. After we develop and

reorder the sums.

k
dw(Xo, ..., Xp) = Z(—l)ZXZ-(w(XO,...,Xl-,...,Xk))
=0
+ 3 | Y(Xoy ooy Xy ooy X5y VEC X, X o, X5)
0<i<j<k

- Y (1) w(Xe,.. .,

Xi VX X, X, X))

0<i<j<k
k
= Z(—l)Z Xiw(Xo,...,Xi,...,Xk))
=0
k —~
— Y w(Xoy o Xy, X, VEX, X, X)
j*i—l—l
—Z Z w(Xo, ..., X, VEIXi, Xty X5, Xp)
=0 j=1+1
+(_1)ka‘w(X07 oo 7Xk;—17 E)
= (—1)kaw(X0,.. Xk—1)
+Z XWXo,...,Xk_l))
k — —~
— > w(Xoy o, Xiy o, X5 VEXG, X1, Xp)
j=i+1
k i—1 . -
S S (Dw(Xo, .., X, VX, Xias oo Xy, X)),
=0 7=0

By equality (4.19), then

dW(X(]?...,Xk) = X()w(Xl,...

7Xk) -

k

ZW(Xl, ‘e

=1

X, VEXG, . X
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+ ij(—1)i [Xiw(Xo, X X))

=1
k
- Z W(Xo,. .. ,XZ‘,. .. ,Xj,V%SXj,Xj.H ce ,Xk)

j=i+l1
Zw Xoyeo s Xiy VIEXG, Xty X5y ,Xk)]
7=0

k—1
+(=1)* [ka(Xo, i) = Lo VX, ,XH)]

VETMy(Xy,. ., X +Z VAT MG( X, ooy Koy, Xi)

( ) VAkT* W(Xo,...,Xk_l)

k
= Z(—l)iVQIET*MW(Xo, N ,XZ‘, . ,Xk)
i=0
O
Theorem 4.2.2. Let (M, g) be a Riemannian manifold of dimension n, e, ..., e, be a local

frame of TM and e, ..., e" be the dual local frame of T*M . The exterior derivative satisfies
dwo=> €A Vé\ikT*Mw, w e QF(M) (4.20)
i=1
Proof. Let XO,XI7 Xy e (TM).
Each X, = Z ajei, in particular, ¢'(X;) = a;,, where aj, € C>(M). By definition of
wedge product, see the definition A.3.41 we obtain

Zei/\ngT*Mw(Xo,...,Xk) = Z Z sgno e’ ( ))-ngT*Mw(XU(O),...,XU(k))

i=1 i= 10651k)
— ZZ(—W% UMM (X, Xy, X,
i=1j=0

By Proposition 4.1.4-2., the linearity of VA*7"M and Proposition 4.2.1 we get

n n k
ST AVET MG (X LX) = S (TG (X, LK X)
15=0

(—1) VA

i=1

=1 7

I
M:

w(Xo,. . X5, Xp)

aj, e;

0

<.
Il

—1)IVAT M (X, . XS, Xa)

I

= dw(Xg, PN ,Xk)
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O
Theorem 4.2.3. Let M be an oriented Riemannian n—manifold without boundary, e, ..., e,
be an oriented orthonormal local frame of TM and el, ..., e™ be the dual oriented orthonormal

local frame of T*M. We have
dw=—> e, VAT My e QFM). (4.21)

i=1
Proof. Let w € QF(M) we put
d*w = — Z eiJVé\ikT*Mw.
i=1
First let us see that d* does not depend on the choice of the local frame eq, ..., e,.

Let f1,..., f. be another oriented orthonormal local frame with dual orthonormal local

frame f!,..., f*. Then
fi=> djer, f=3 et
k=1 k=1

for some coefficients a?, b{c € C*°(M). Since the bases are orthonormal, the transition matrix
is orthogonal, then bj, = a¥ and
2”: a;?aé- = (4.22)
j=1
Now, let w € Q¥(M), by Proposition 4.1.4-2., equality (4.22) and since J is a linear map
we have

n n
= SV T MG = =Y Y alen VAT M
=1 j

Therefore, d* does not depend on the choice of the local frame.
Since d is independent of the choice of charts, see the Corollary 1.3.4, then also d*.

We choose normal coordinates (z1,...,z,) with center at p € M and we will consider
the local frames {8%1, ce % of TM and {dxy,...,dx,} of T*M.

We will show (4.21) at the point p for those bases, since p € M is arbitrary, it is sufficient.
At p, by Theorem 4.1.19 we have for all 7, j

vie (2] =0
% 3xj
p
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By equality (4.17) we get for all 4, j

VM (dz;)| =0 (4.23)
ox; p
Since d* is a linear map, it suffices to verify the equality (4.21) on forms of type fdx;, A
. ANdzy, € QF(M) with f € C*(M), renumbering indices, it suffices to consider the form
fdxy Ao AN dzy.
By equalities (4.2), (4.18), (4.23) and Lemma A.3.42 we obtain

AT M(Fday AL A dxk)]

89:

(j*(fdxl/\.../\dxk)‘p = —Z [

i

p

= —Zaxl [(%id:rl/\.../\d.rk—l-fV’;af*M(dxl/\.../\d:ck)]

p

= — (Z o 9 —dzy A . /\dl’k>

ox; 0x;
+ (

(52

= (Z dai A .. /\Ex\i/\.../\dxk>
— 8%

p

> f del/\ VI Mdx; A ./\dmk)

7

p

s .
IIM: HM:
— —_

.

deﬁ AN dxk>

p

p

On the other hand, by Definition 3.3.1, equalities (4.20) and (4.2) we have
d*(fdey A ANdy)|, = (—1)"EDH s dx (fdy AL A dxk)\p

= ()" s d(fdwng AN da)|

= (—1)nkHD+t (dez/\VA M (fdmk+1/\.../\dxn)>

=1

p

= (=1)ntFbL (Z gfda:i Adxpq A ... Ndz,
X

i=1

+ Zfdxz A VA TM(dggy A A dxn)>

=1

P

By equality (4.23) the second term is zero. Now, we consider
w=dx; Ndxgy N ... Ndx,
with i = 1,..., k. By equality (3.2) we have

ww = (=1)UDOkEDF=RE=D g A A dzp AL A dag (4.24)
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d*(fd.fl}l VAN dﬂ?k)‘p = (—1>n(k+1)+1 * <Z gfd&?z A dl‘k+1 VAN dl’n>

i=1 9Li

p

_ (_1)n(k+1)+1+(j—1)(n—k—i—l)-i—(n—k:)(k—j) Zn: ﬁdﬂfl AL A gx\l A A dflj’k

i=1 O
n .0 —
= > (-1 fdxl/\.../\dxi/\.../\dxk
i—1 ax, »
Therefore
"0 .
d*w = — ; mﬁvg’ My, we QFM).

4.3 Clifford algebra and Clifford operators

We want to obtain an explicit expression of the Laplace-Beltrami operator (3.12), so we need
to introduce the Clifford algebra and the Clifford operators.
The book where you can consult related topics is [22].

Definition 4.3.1. Let V be a finite dimensional real vector space with a non-degenerate
symmetric bilinear form ¢: V' x V' — R. The Clifford algebra C1(V,q) is the algebra over R,
with unit, generated by the elements of V', subject to the relation

ef + fe=—2q(e, f) withe, feV. (4.25)

Example 4.3.2. If V = R" and ¢ = (, ) the standard inner product on R", we denote the
Clifford algebra CI(R", (,)) by Cl,. Also, if we consider {ey,...,e,} the canonical basis for
R"™ then Cl,, is subject to the relations

() = -1 (4.26)
eie; = —eje; with i j (4.27)
But if we consider the inner product as ¢ = —(, ), we have the Clifford algebra

Cl,_ = CI(R",—(,))
that is subject to the relations

() =1 (4.28)
eie; = —eje; with 1 # 7, (4.29)

p
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Examples 4.3.3.

Cly = R with basis 1
Cl; = C with basis 1, e;
Clg = H with basis 1, €1, €9,€1€9.
Let V be a real vector space of dimension n endowed with an inner product, note that since

the vector spaces A*V and Cl(V') have dimension 2", then there is a natural isomorphism of
vector spaces

v CI(V) — A*V.

Note that C1(V') contains V', let us denote by ¢: V' < CI(V') the inclusion defined by ¢(v) = v.
We consider the bilinear map - of the Clifford algebra as -: ¢(V') x CI(V)) — CL(V).

Analogously for R™*, we consider Cl; = CI(R"", (,).). For the following proposition see
the definition A.3.34.

Proposition 4.3.4. With respect to the canonical isomorphism Cl;, = A*R™, Clifford mul-
tiplication between x € R™ and any v € Cl, can be written as

X v:i=X"Av—X10.

V x ClI(V)— ClV)
idy X v Y
V x AV* AV
Proof. Let ey, ..., e, the canonical basis for R" and e!,...,e" the dual basis for R™*, let

v=2¢€".. ... e* fori; <...<i.
Set i, let x = te; for some t € R. By equalities (4.26), (4.27) and the contraction (A.8),
then we have the following cases:

1. If i = 1, we obtain

_tet2 . .otk — % _ O
x-v:{ te? ... et x/*\v X_v ¥le1 1 (4.30)
teg et ... =x* ANv—xv ifi > 1.

2. If i =4, for some 1 < j < k, then

—

x-v=(=1)Yte" - . -eli-.. . % =x"ANv—xXuw.
3. If i #4, with r =1,...,k, then 7; < ¢ < ¢;4,. Hence
x-v=(=1)yte" ... . .eb.e et e =x" Av—xv.

Analogously, we have the following result
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Proposition 4.3.5. With respect to the canonical isomorphism Cl, = A*R"™, Clifford
multiplication between x € R™ and any v € Cl; can be written as

X v =x"ANv+xX0.

The proof is the same as the Proposition 4.3.4, but now we use the equalities (4.28)
and (4.29).

4.3.1 The Clifford algebra of T'M

Now, let (M, g) be a Riemannian n—manifold, we take the Clifford algebra of T'M.

We consider 7": CI(T'M) — M the vector bundle whose fibers are the Clifford algebras
Cl(T, M) with respect to g, also we take m: TM — M, making abuse of notation, we have
the inclusion vector bundle map ¢: TM < CI(T'M). Fiber to fiber we have an isomorphism
of vector bundles h: A*T*M — CI(TM).

Let X € I'(T'M), we have that ¢(X) € ['(CI(T'M)).

On the other hand, for any X € I'(T'M), let X* € I'(T*M) corresponds to X via g, that
is, for any Y € I'(T'M),

XH(Y) =g(X,Y).

Given the linear isomorphism A": Q*(M) — CI(T'M), by Propositions 4.3.4 and 4.3.5 we

have the diagram of vector spaces
[(TM) x Q*(M)

Q*(M)

idI‘(TM) x h I

T(TM) x C{(TMy——— CITM)

Then ¢(X) acting on Q°(M), we define the Clifford multiplication between X € T'M and
any w € Cl(V) as follows:

Definition 4.3.6. Let X € I'(T'M), we define the Clifford operators (multiplications)
c(X),e(X): QM) — Q°(M)
wie(X)w=X"Nw— X _w, (4.31)
w d(X)w=X"ANw+ X _w. (4.32)
Where A and J are the wedge product and the contraction, respectively.
Since -, idpy; X h' are bilinear maps and A’ linear isomorphism, then ¢(X) is a linear

map. Furthermore, since A is C*°(M )-bilinear and R-bilinear and _ is C°°(M )-linear and
R-linear, then ¢(X) and é(X) are C*°(M )-linear and R-linear for all X € I'(T'M).

Lemma 4.3.7. The Clifford operators satisfy the following equalities: let X € I'(T'M) and
w e QF(M),

1. (¢(X))w = | X Pw.
2. (c(X))Pw=—|X|*w.
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Proof. Let w € Q*(M), X € T'(TM). By equality (4.32) and Lemma 1.5.2-1 and -2 we have

(X)) X)w = X)X ANw+ Xw)
= X'ANX"ANw+Xw)+ X( X" Aw+ X w)
= X'ANXow+ XX Aw)

= X, X"ANw
= X" (X)w
= g(X, X)w
= |X|w.

Analogously for the second equality, by equality (4.31) and Lemma 1.5.2-1 and -2 we have

((X)e(X)w = (X)X Aw—Xw

(X)e(
= X'NX"'ANw—Xw) = XJ( X" ANw— X w)
= —X"New— XX A\w)

X X*ANw

; —X*(X)w

- _g(XaX)w

= —|X|w.

Lemma 4.3.8. The Clifford operators ¢(X) and

XY € T(TM) and w € Q%(M) we have

(X)e(Y)w + e(X)e(Y)w
eX)e(Y)w +e(Y)e(X)w
c(X)e(Y)w +é(Y)e(X)w

[
¢(X) satisfy the following relations: let

= —29(X,Y)w (4.33)

= 29(X,Y)w (4.34)

= 0. (4.35)
(

Proof. Note that, ¢(X),é(X) € CI(T'M), then the first two relations follows by equality (4.25)

with g and —g.

While the third relation follows from the following: let w € QF(M)

(X)X ANw+ X w)

X*/\(X*/\w—i—X_nw) —XJ(X* /\w—l—XJUJ)
XN (Xow) — Xu( X" Aw).

EX)e(X)w = (X)) (X ANw—Xw)
= X'NX"'ANw—=Xw)+ XX " ANw— X _w)
= —X"N(Xww)+ Xi(X" Aw).
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Then
c(X)e(X)w + é(X)e(X)w = 0.

For the next proof we will use the following remark.

Remark 4.3.9. Let (M, g) be a Riemannian n—manifold.
We consider the local frames {6%1, ce %} of TM and {dx,...,dz,} of T*M .

-----

choose an arbitrary element of the basis dzq A ... A dxy, (if is necessary, we reindex the
multiindex).

1. If j=1,...,k, by Lemma A.3.42 we have

iJ(dgclA...Aol:zsk):alaz:lA.../\cfgc\j/\...Aalgz:k.
al'j

2. If j=k+1,...,n, by Lemma A.3.42 and since dxi(%) =0fori=1,...,k, we have

0

Proposition 4.3.10. Let (M,g) be a Riemannian manifold. Every connection V*"T™M
on A*T*M and V™™ on TM satisfy the following formulas: for all X,Y € T'(TM) and
w € QF(M).

VAT M(a(Y)w) = (VMY )w + (V) VA T My (4.36)

VAT M (Y )w) = (VMY Jw + (V) VT Mo, (4.37)

Proof. Since c(Y), VA T™M VIM are linear maps it is sufficient do the proof in basic elements.

Let ;2,22 € I(TM) and dzy A ... Adxy € QF(M).

For the proof of the expression (4.36), we have the cases j = 1,...,kand j = k+1,...,n.
1. If j =1,... k, by equality (4.32) and Remark 4.3.9 we have:

é<a>dx1/\.../\da:k:adel/\.../\dxk:dxl/\...ACTJJ\jA.../\dxk.
81’]‘ (%j

By equalities (4.18) and (4.17) we obtain:

i d . —
vy 1TM<é<a>dx1/\.../\dxk> = VAT M(dgy A N da A A day)
ox; IL‘] Oz
k —_—
= Y duy A Adg A AVMdr, AN da,
1 dx;
r#j
n k o
= =Y Y Tidey A ANdzy Ao ANdeg AN da,
o—1 ~~

r=1
r#£j r
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Since 7 =1,...,k, hence s = 73,7,k +1,...,n. We have

VAgflT*M (é (88 > dri N ... N\ dxk> =
Ox; :L']

—ZF”d:clA Adzg A A dxg A A d, (4.38)
—~~
7‘#] T
—ZF’“dxlA Az A AN da A A da, (4.39)
—
T#J "
- Z Zlvdxl/\ Az A AN dzg A A da, (4.40)
sk—i—lr#l \r’/
T7)

On the other hand, since that é(Y) is a linear map, by equality (4.8) and defini-
tion (4.32) we get

2z; 0T

= ZFfj<dxs/\dx1/\... ai .../\dmk>

= Z Fsdxs/\d:vl/\ N dxy,

s= k+1

—i—ZFSdazl/\ Adrg A Aday,

By equalities (4.18) and (4.17) we have:

Ox; oz,

Tq

n

k
_ZZFﬁsdxlA.../\%/\.../\dxk

s=11=1

( 4 )vA’“T*Mda; A Adry, = ¢
¢

o F|o
<

Q

r k
< ) Stdry A AV A AL A day,
j =1

x .
J !

Zrﬁsé< 0 )dxl/\ N drg AN day

s=11=1 Ox; ;

k 0
= - Féﬁ()dxl/\.../\dxl/\.../\d:vk
=1 al'j ~

l
n k

- > T, A<£; >d:r;1/\ Ndrg Ao A day
J

s=k+1[=1 !
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k
= =Y Thdri A...Adxj Ao Adag Ao Aday,
~—

=1 1

18

n k
— >3 T | dey Aday AL A dag AL A da
s=k+11=1 el

0

+—adxy AN ... A Ndxs AL N dxy,
0, g
k —_—

= =Y Thdri A...Adxy Ao Adag Ao Aday,
~

n k

— > > Thda; Aday Ao Adrg AL AN day,
s=k+11=1 el
n k o
— > N Tldey Ao Adzg Ao Adaj A A day,
s=k+11=1 e

k

= =Y Thdri A...Adxy A Adag Ao Aday,
<

n

— Z T{Sd:pj/\dxl/\.../\da:s/\.../\dmk when j =1
~

=k+1
sS=k+ j

n k
— > > Thdei Ao Adzg Ao Adxj A A day,
S:k—‘rl%;l \l//
J

Adding the two terms we have

é<vma> d:cl/\.../\d:ckJré(a) VAT Mge A A day =

2z; Ox; Oz, oz,
> Tjdeg Aday A A day, (4.41)
s=k+1
k —_—
+> Thdey Ao Adg A A dy, (4.42)
s=1
k —_—
—>"Thdxy Ao Ndap A A dag A A dag (4.43)
-
-y Tde; Ndey A... AdegA... Adxy, when j =1 (4.44)
—~~

=k+1 s
S=k+ j
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n k
— > > Tldei Ao Adzg Ao Adaj A A day, (4.45)
~—~
5:k+1%7:£} 1

We have that expressions (4.39) and (4.43) are equal, the same with (4.40) and (4.45).
We permute dx, and dx;, later by Remark (4.1.22) the Christoffel symbols I'; = —I};,
hence the expressions (4.38) and (4.42) are also equal. From term (4.44) we get:

— 3 DldrjAday A ANdog A Adag =
~

=k+1
s=k+ j

n
— > DL(=1Y"Hdzg Aday A A dxg AL A day,
s=k+1 \j”
n .
=—(=1) Y DldrsANdzyA...NdxjA... Adxy,
s=k+1 \]//
n .
= Y Dldr,Ndei Ao . ANdzj Ao Nday,
s=k+1 \J/
n
=— > Dide,Ndey Ao ANdxg AN day,
s=k+1 =~
j
The last expression is canceled with the expression (4.41).

Therefore, if j =1,... )k

VA, T <c (‘9) dry A... A dxk> =¢ (vTaMa> dry A ... A dry

0 ;
+é <8x> V?ST Mdri A ... A dag.
J T

2. The case j = k+1,...,n is analogous.

O

A connection on A*T*M that satisfies conditions (4.37) and (4.36) is called a Clifford
connection on A*T*M.

Let M be an oriented Riemannian n—manifold without boundary, eq, ..., e, be an oriented

orthonormal local frame of T'M, let €', ..., " be the corresponding dual local frame of T™* M

with respect to g.
Let w € QF(M). Since Dw := dw + d*w, by equalities (4.20), (4.21), (4.31) we obtain

n n
_ i ART* M ART* M
Dw = Y e AV, w—> e;aVy, w
i=1 i=1

c(ei)ngT*Mw. (4.46)

NE

Dw =
1

<.
Il



Chapter 5

Witten Deformation

In this chapter we will deform the De Rham complex of a differentiable manifold (see the
definitions 1.4.1 and 1.4.3) and we will define the deformed Laplace-Beltrami operator.

We will also see that the deformed De Rham complex has the same Betti numbers as the
usual one.

Let M be an n—dimensional differentiable manifold and f: M — R be a differentiable
function on M.

We define the deformed exterior derivative operator by conjugation, as follows: for any
T € R, set

drjw = exp(=T f)dexp(Tf)w, w € QF(M). (5.1)

Since the algebra of differentiable forms is a module over C*°(M) and multiplication by a
function does not affect the grading, the deformation defined above can still be seen as an
operator drs: QF(M) — QFFL(M), for any 0 < k < n.

Let w € QF(M), by Theorem 1.3.2-2. we see that
dpjw = (exp(=Tf)dexp(Tf))(exp(=Tf)dexp(T f))w
— oxp(~Tf)d exp(T )
= 0.
Therefore, we get a deformation of the De Rham complex (Q°*(M),d), given by the cochain
complex (Q°*(M), dry) defined by

(Q(M), drp): 0 — C(M) T8 QYMr) T2t Qr) — 0.

Associated to this complex, for each £k =0, ..., n we have the k—the cohomology space
Ker de k
H* M)=—""—.
Tf,DR( ) Tmdrs 5t

The total cohomology is given by
H.Tf,DR(M) = @H,;“f,DR(M)'
k=0
The k-th cohomology spaces Hyg (M) and Hj; g (M) are the same viewed as vector spaces.
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Proposition 5.0.1. Let M be a differentiable manifold of dimension n, f: M — R dif-
ferentiable function and T € R. For any integer k such that 0 < k < n, the cohomologies
Hig (M) and Hy; pg(M) are isomorphic. Therefore,

dim H];“f,DR(M) = Bp(M).
Proof. We define the linear map
w — exp(—T' fw.

We will see that ¢ induces a linear map Hpyg (M) — Hjp pgr(M).
Take w € QF(M) be a closed form, that is, dw = 0, we have

dri(exp(=Tflw) = exp(=Tf)dexp(Tf)(exp(~Tf)w)
= exp(—Tf)dw
= 0.

Then, under ¢ Kerd |gx(ys) is mapped into Ker dzy [or(ary -
On the other hand, let n € Q*1(M), we get

p(dn) = exp(=Tf)dn
= exp(=T'f)d(exp(T f) exp(=Tf))n
= (exp(=Tf)dexp(T'f))exp(=Tf)n
= dryexp(=Tf)n.
That is, ¢ maps Im d |or-1(as) into Im dry |or-1(ar) . Therefore, ¢ induces a linear map in the
quotient
(I):H]IBR(M) — H?f, pr(M).
Now, define the linear map ¢: Q*(M) — QF(M) by (w) = exp(T f)w.
By doing a completely analogous reasoning we can see that the map v induces a linear

map in the quotient
v H?f, pr(M) — Hpg (M).

Note that ® and W are the inverse of each other, then Hjyg (M) and Hj; pg (M) are isomor-
phic, in particular, have the same dimension. O

We can develop the Hodge Theory associated to the complex (Q°*(A),drs) in the same
way as in the De Rham complex.

Let (M,g) be an oriented Riemannian n-manifold with boundary and (,) the inner
product on QF(M), (see (3.6)).

Let T € R, for any w € Q¥ 1(M),n € Q*(M). By Proposition 3.3.5 we get

(drjw,n) = (exp(=Tf)dexp(Tf)w,n)
(dexp(T f)w, exp(=T'f)n)

= (exp(Tf)w,d" exp(=T f)n)
(w,exp(T'f)d* exp(=Tf)n).
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Thus, let w € QF(M), we define
dysw = exp(T f)d" exp(=T f)w. (5.2)

In other words, the adjoint of dry is d7;.
For any T € R, let w € Q%(M), set

Drjw = drjw + drpw. (5.3)

Similarly to the Lemma 3.3.7, we have:
Lemma 5.0.2. Dy is a self-adjoint differentiable operator over Q®(M).
The proof is analogous to that of the Lemma 3.3.7.
So the corresponding Laplace-Beltrami operator for (Q°*(M), dry) is
Dwa = D2wa = ded}fw + d}defw, w e Q'(M) (54)

By Definitions (5.1) and (5.2) one sees that Oy preserves each QF(M), for 0 < k < n, that
is, Ory 1 QF(M) — QF(M), note that by restricting ourselves to the space of differentiable
k—forms, we add a subscript in the notation.

Remark 5.0.3. Let w € Q%(M) be an eigenform of Dz, with eigenvalue A, by Definition (5.4)
then
Oz xw = Dipw = A(Dryw) = Nw,

therefore, the deformed Laplace-Beltrami operator Uz j on QF(M) is a nonnegative operator
forall 0 < k <n.

Lemma 5.0.4. Let (M,g) be an oriented Riemannian n-manifold without boundary, the
operators dry and dy; satisfy the following equalities: let w € QF(M),

drfUrsrw = Uryppdrpw, (5.5)
d}fDvakw = Dvak_ld}fw. (56)

Proof. Let w € QF(M), by equalities (5.4), (5.1) (5.2) one can see that

deDTf,kw = deD%fw
= dry(drydppw + dppdrsw)
ded}defw.

DTf’kHdew = D2dewa
= (dpydyy + dpydry)drsw
ded}defw.

So
del:lTﬁkw = |ij7 k+1dew, w € Qk(M)
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Similarly, we have
d}fDTf,kw = DTf,kfld}fwy w € Qk(M)

]
Moreover, we can also establish Hodge Theorem, see 3.5.3, for the complex (Q°*(M), dry),

we have
Ker Ory,, = HY.; pp (M). (5.7)

This implies that for any integer k such that 0 < k < n,
dim (Ker Oyy, ) = dim (H}.; pg (M)).

By Proposition 5.0.1

Thus we reduced the problem of estimating the Betti numbers to analyzing the behavior of
the kernel of Ugpy .



Chapter 6

Local behavior of U, f.np(p)

In this chapter we will focus on the local behavior of the deformed Laplace-Beltrami operator.

Proposition 6.0.1. Let (M, g) be an oriented Riemannian n—manifold without boundary,
T eR, f: M — R be a differentiable function. Let {es,...,e,} be a local frame of TM and
{e',...,e"} be the dual local frame of T*M. We have the following expressions on QF(M):
let w € QF(M)

drjw = dw+Tdf Nw. (6.1)
drjw = d'w+Tgradf w. (6.2)
Drjw = Dw+ Té(gradf) (6.3)
Orpew = Opw+T Z cle;)é VTMgradf)w + T?|grad f|*w. (6.4)

=1
Where ¢(X),¢(X) are the operators (4.31) and (4.32).
Proof. Let w € QF(M), by definition (5.1), equality (4.20) and Leibniz rule (4.2) we see that

drjw = (exp(=Tf)dexp(T [))w
= > (exp(—Tf) (ei A VﬁikT*M) exp(Tf)) w

=1

- ZGXP —Tf)e' A (VTN exp(T f)w)
= Zexp ~Tf) e A (TeXp(Tf)df(el)w+eXp<Tf)vA T*M )

= ZTeXp ~Tf)exp(Tf)e' A (df (e;) w+2exp Tf)exp(Tf)eiAVé\ikT*M
i=1 =1

= T (df(e)))e' Ahw+ Z e'N VAkT*

=1 i=1
= Tdf Nw+ dw.
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Local behavior of [y ns(p)

Then

drjw = dw + Tdf N\ w. (6.5)

Similarly, let w € Q%(M), we have that exp(=T'f) € C>(M), by Leibniz rule (4.2) notice

that

VAT M exp(—Tf)w = dexp(=Tf)(es)w + exp(~Tf) VAT

= —Texp(~Tf)(df(e;))w + exp(~Tf) VAT M

By equality (4.21), we have

dy yw

So,

<exp(T ) <— i eing’“T*M> exp(=T f)) w

i=1

— 2“/: exp(Tf)eiJVf,}ikT*M(exp(—Tf)w)

i=1
_ zn: exp(T'f)e;u (—T exp(=Tf)df (e;)w + exp(=T f)V* AkT* w)

TZexp Tf)exp(—=Tf)e;a(df (e;))w —Zexp Tf)exp(— Tf)eZJVAkT My

i=1 i=1

TZ@Z (df (e;) w—ZeZ VAkTM

=1 =1

Tgradf_w + d*w.

dyw = d'w + Tgrad f w. (6.6)

Let w € QF(M), substituting in the equality (5.3) the expressions (6.5) and (6.6), by defini-
tions (4.32) and (3.11), then

Drjw = dw+Tdf Nw+ d*w + Tgradf w
dw + d*w + T(df AN w + gradf aw)
= Dw + Té(gradf)w.

We want to write Ory x, see the definition (5.4). One gets

Ory ww = D?w + T(Dé(grad f)w + é(grad f)Dw) + T?(é(grad f))*w

By expression (4.46) and since ¢(grad f)w € Q¥ (M) @ QF (M), we take VA*T™M we obtain

T(Dé(gradf) + é(gradf)D)w = (anc e:) vA-T M) &(grad f)w + Te(grad f) (anc vAkT M) w
i=1 i=1

TS () VAT M (grad f ) + TS elgrad fefe) VAT
i=1 =1
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By Clifford connection (4.36) and property (4.35) we get:

n

T(Dé(gradf) + é(grad f)D)w = T3 e(e))(@(VI M grad f)w + Té(grad f) VA" T M)
=1

+Teé(gradf) > c(ei)Vé\ikT*Mw
i=1

= TY cle )6(VTMgradfw—|—TZ )é(grad f) VAT M,
=1 =1

+T)° é(gradf)c(ei)vg_kT*Mw
i=1

= T cle;)e(VEMgrad fw
i=1

+T' " (c(en)é(grad f) + é(grad f)e(e;)) VA T Mew
=1

= T ce;)e(VEMgrad f)w.
i=1
By Lemma 4.3.7-1 we get (¢(gradf))? = |gradf|* and Definition (3.12), therefore we
rewrite
Orf w = Ogw + TZ c(e)e(VIMgrad fw + T?|grad f|*w.
=1

0

Remark 6.0.2. Note that to prove the equality (6.1) we only need that (M, g) is a Rieman-
nian n—manifold.

Theorem 6.0.3. Let (M, g) be an oriented Riemannian n—manifold without boundary, T €
R, f:M — R be a Morse function and p be a critical point of f. Then there is a chart
o:U — V. C R" around p such that the deformed Laplace-Beltrami operator Urg n;p) on
Q) (R™) s given by

n a2 n¢(p)
O fns 0 Z 922 Ix|*w + 2T eia(dr; ANw) + Z dx; A (e;ow) |,
=1 1=1 i=ny(p)+1
(6.7)
where X = (T1,...,x,) € V.

Proof. Let f be a Morse function and p € M a critical point of f, by Corollary 2.0.7, there
is an open neighbourhood U of p and a chart ¢: U — V' C R™ around p such that ¢(p) =0
and for all x € V' the equality (2.9) is satisfied, that is,

1

_ 1 1
(fop H(x) = flp) — 537% - 5%21,(13) + §$121f(p)+1 +.o.ot

2
x,.

N —
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Let {8%1, ey B 9.1 be the orlented local frame of TU.

We will simply denote e; = % foralli=1,...,n
We will study the equality (6.4) in parts.
Let V C R™ and w € Q*®(V), by Proposition 3.3.11 the first part we already have it,

n 82
-2

2 502 (6.8)
While the last term, by equality (2.9), we have
gradf = (=21, ..., =Tn;(p), Tns(p)+1s - - -+ Tn)- (6.9)
Then
lgrad f|> = (—21)* + ... + (—2u, () + xnf(p) +.. 422 = |x)% (6.10)

Now, we develop the middle term of the expression (6.4).

We know that the gradient of f is the dual of df under g, (see subsection 3.2.1).

Let V'™ be a metric connection on TM, by Corollary 4.1.25 VIMgradf = (VI Mdf)*.
By equality (6.9) we have

aggj Z; lfj > l’lf(p).

Fix 7, then
of (e) = —1 ifi <ng(p),
8x] o 1 ifi>ns(p).

We take the Hessian of f, see definition 4.1.24, since VI is a linear map and by Leibniz
rule, then

viMap = vI'M (Z dx])
_ of
B ZV < dz; ]>

— g(d (8%> (e;) dxj + gf ViMdy )

Since p is a critical point of f

, M =0 for all j =1,...,n, also since (dz;)* = ¢; and

by equality (6.9), we obtain at the pomt p:

—e; it i <ny(p),

™ _
Ve, gradf = { e; ifi>ng(p).
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Since ¢é(e;) is a R-linear operator, then

n

T cle )(VTMgradf

=1

3
We can write as nT' =T )" 1, then
i=1

n nf(P)

T c(ei)é(VZ;Mgradf)w

=1

_TZ

TZw—TZ

nf(P) n

>

i=ny(p)+1

ez w+T c(ei)é

(e;)w.

ny(p)
clew+T Z w

i=ny(p)+1

n

+T
i:nf

ny(p)

=1

b

T (1—cles)éle))w +

cle;)é(e))w — nTw

(p)+1

(14 c(e;)é(e;))w| — nTw.
i=ny(p)+1

Let w € QU ®) (M), by Definitions (4.31), (4.32) and by Lemma 1.5.2-1. and -2., we have

cle;)é(e)w cle;)(dz; Nw + e;w)
= dx; N (dz; Nw + e;aw) — e;a(dr; Aw + e;uw)
= dx; N (e;ow) — e;u(dr; A w)
= dx; N (e;ow) + dx; A (e;0w) — (e;0dx;) Aw
= 2dx; N (6;0w) — w.
Thus
w — c(e;)é(e;)w w— 2dx; A (e;0w) +w = —2dz; A (e;0w) + 2w
w+cle)éle)w = w+2de; A(e;ow) —w = 2dz; A (e;w).
It follows that
n ny(p)

Ty c(e)e(VIMgrad flw =

i=1

o7 |

i=1

(w — dz; (e;ow)| —nTw.

Aesw) 4+ > dai A

i=n¢(p)+1

Note that by Lemma 1.5.2-2., for w € Q"/?)(M) we obtain

61'_|<d.77i VAN CL))

Rewrite

ny(p)

=2T| >

i=1

n

Ty c(e)e(VIMgrad fw

=1

(€ivdx;) Nw + (=1)dx; A
dx;(e;)w — dx; A

w—dzx; A

(ei_l(ﬂ)
(e;w)

(e;w).

eia(do; Aw)+ > dz A
i=nj(p)+1

(6.11)

(eiw)| —nTw.
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By equalities (6.4), (6.8), (6.11), (6.10) the deformed Laplace-Beltrami operator on Q2% () (R")
we have

DTf ny(p Z

=1

92 ny(p
—nTw + T?|x|*w + 2T Z eiu(dx; Nw) + Z dx; A (e;w)

.I’ i=ny(p)+1

O
The differentiable operator

2

"0
o —  _nT T2 2
; 922 nT + T|x|

acts only on differentiable functions and 7" > 0 is a harmonic oscillator operator, see [21,
Example 11.3-1]. Let x(x) be a function such that

n 82
(— > e nT + T2|X|2> k(x) = 0.

=1

Since it is a harmonic oscillator operator, the solution is given by

o) = ().

Proposition 6.0.4 ([11, Prop. 5.4|). Under the conditions of Theorem 6.0.3, T > 0,
Ker (Ory,np)) is generated by

—T|x|?
exp < Q‘X‘ ) dry A AN dTn,p) € Qur P (RM).

That is, dim (Ker Ory, n, ) = 1.

Let us see that this differentiable ny(p)-form is in the kernel of Ory ().
By Remark 4.3.9 we can see that

nf(p) n
dry A ... Nday,p) € Ker (Z eio(dz; N\ ) + Z dx; A (e )) )
i=1 i=ng(p)+1
L Ifi=1,...,n4(p), then e;o(dw; Ndwy A ... Adry, ) = €;10.

2. Ifi=ng(p) +1,...,n, then dv; A (ejudry A ... ANdxy, ) = do; A0 = 0.

nf(P) n
Therefore dzy A ... A dy, ) € Ker < >oeiu(deN )+ Y dxp A (e ))
i=1 i=n(p)+1

nf(p) n
Note that dz,, )11 A ... Adv, ¢ Ker ( ‘21 eia(dx; N\ ) + ' E(D)H dz; N\ (e; )>, one can
1= t=ng(p
check it also using Remark 4.3.9.



Now, the case of exp (%"42) € Ker <— Zn: & —nT + T2|X|2), we have:

0 ~T|x*\ o ~T|x|?

oz, exp 5 = XT; exXp 5 ,
o (0 (=TxP)\ _ TP\ . (=TI
oz, (8% exp ( 5 )) = —Texp < 5 + Tz exp 5 .

2
T|x|? T|x|?
nT exp x| + T?|x* exp x|
2 2
—T|x/? —T|x/?
= —T?|x[*exp <‘X‘> —i—nTexp( x| )
2 2
2 T 2
—nTexp( 2|X| ) + T?|x|? exp< 2|X| )

= 0.

Therefore, exp (%""ﬁ dzy N AN dxy,p) € KerUry n,p)-

Remark 6.0.5. Theorem 6.0.3 and Proposition 6.0.4 tell us that:

1. For each critical point p of a Morse function f one can write a local description of the
deformed Laplace-Beltrami operator Ury p,(y)-

2. There may be no critical point of some index ns(p) =0,...,n = dim (M).

To illustrate this observations, consider the following examples.

Example 6.0.6. Consider the 2-torus and f:7? — R the height function, we will use the
information obtained from the examples 1.4.18 and 2.1.4.

The 2-torus is an oriented, closed Riemannian manifold of dimension 2, then we have
QOF(T?) with k = 0,1, 2. We will denote the critical points by a, b, ¢, d, as in the Figure 2.1.

1. Let k =0, we take Oy o: C°(T?) — C>=(T7?).
By Hodge Theorem (5.7) and Proposition 5.0.1 we have

We have a critical point of index 0, the critical point d, by Theorem 6.0.3 there is
a chart ¢:U; — V; C R? around d such that we get the equation of Ury o for all
x = (x1,22) € Vg and by Proposition 6.0.4 we know Ker Oy, o, that is, its generator is

Jq = exp (%"“2) Which agrees with Hodge Theorem.
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2. Let k =1, consider Oy 1: QY(T?) — QN(T?).

By Hodge Theorem (5.7) and Proposition 5.0.1 we get

dim (Ker Oy 1) = dim (H%FﬁDR(TQ)) =2.

There are two critical points of index 1, the critical points b and ¢, by Theorem 6.0.3
for each point there are charts ¢: U, — V;, C R? and ¢': U, — V., C R? around b and
c respectively such that we have the equations of Oy ) for all y = (y1,32) € V4 and
7m0 for all z = (21, 22) € V. and by Proposition 6.0. 4 we know:

—Tlv/|?
Ker DTf,nf(b) = <9b> = <6XP < 2|Y| ) d1/1>,

—T|z|?
KerOrfnpe) = (9e) = < XP( 2| | >d21>.

Then 2 = dim (Ker Ury, ) = dim (Ker Ory, 4 ,1y) + dim (Ker Oz, (c)), which coincides
with Hodge Theorem.

. If k= 2, it is similar to the situation k& = 0, for Ory o: Q*(T?) — Q*(T?) by Hodge

Theorem (5.7) and Proposition 5.0.1 then

dim (Ker Oz 2) = dim (H%FﬁDR(T?)) =1.

The critical point a is the critical point of index 2, by Theorem 6.0.3 there is a chart
: U, — V, C R? around a such that we get the equation of Oy o forall v = (vy,v9) €
V. and by Proposition 6.0.4 the generator of KerUpy o is g, = exp ( —TivP ) duvy A dus,
that coincides with Hodge Theorem.

Example 6.0.7. Consider the 2-sphere and f: S? — R the height function, we will use the
information obtained from examples 1.4.17 and 2.1.2.

Proceeding analogously to the example 6.0.6, we get:

1. Let k = 0, Ogpo: C=(S?) — C°°(S5?), then by Hodge Theorem (5.7) and Proposi-

tion 5.0.1 one can obtain that dim (Ker Oy ) = 1.
There is a critical point of index 0, the south pole S, by Theorem 6.0.3 there is a
chart ¢: Us — Vs C R? around S such that we get the equation of Oy o for all x =

(x1,x2) € Vs and by Proposition 6.0.4 the generator of Ker Oy ¢ is gs = exp < T"“Q),
then the dimensions of the vector spaces coincide with the given by Hodge Theorem.

. Let k = 2, the critical point of index 2 is N the north pole, by Theorem 6.0.3

there is a chart ¢:Uy — Vi C R™ around N such that we obtain the equation
of Ory o for all y = (y1,y2) € Vv and by Proposition 6.0.4 then KerOrf o = (gn) =

<exp ( Tyl ) dyy N dy2>. Hodge Theorem also holds.
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3. This case is an example of Remark 6.0.5-2.

Let k = 1, by Hodge Theorem (5.7) and Proposition 5.0.1 dim (Ker Ozy,1) = 0. Also,
we have no critical points of index 1.

In the next chapter we will see that the set of generators of all kernels of the local
operators Ury o, (p) from each of the critical points p generate the kernel of Ury .
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Chapter 7

Global description of Llpy 1

We will generate the eigenspaces of Uy o and Upy , using functional analysis.
Fore more details see [41].

7.1 Bump functions

In differential geometry and analysis we use bump functions as tools. For example, they are
used to define partitions of unity and for extending locally defined differentiable functions
to globally defined differentiable functions.

Definition 7.1.1. Let f be a differentiable function on a differentiable manifold M. The
support of [ is defined to be the closure of the set on which f(p) # 0 for p € M, that is:

supp f = {p € M|f(p) # 0}.

Definition 7.1.2. Let M be a differentiable manifold, p € M and U a neighbourhood of p.
A bump function at p supported in U is any differentiable function f: M — R that is 1 in
a neighbourhood of p with supp f C U.

Example 7.1.3. Figure 7.1 is the graph of a bump function at 0 with support in (—1, 1),
the function is nonzero on the open interval ( —1, 1) and is zero otherwise. Its support is the
closed interval [—1, 1].

Figure 7.1: A bump function
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7.2 Global description of Ury ;.

Now, let us consider differentiable k—forms with compact support, see definition 1.2.1.

Let M be an oriented, closed Riemannian n—manifold, 7' € R, T > 0.

We want to describe globally the operator Uzy ; and relate it to the number of critical
points p € M of f € C*°(M) such that ny(p) = k, that is, with my, this for every 0 < k < n.

Let f: M — R be a Morse function and p € M a critical point of f. Let W C R be a
neighborhood of 0.

We assume that f(p) =0, if f(p) # 0, then we consider g = f — f(p).

We consider v: R — [0, 1] a bump function such that

(1<
7<t>{0 if |¢| > 2r

for some radius 7 such that the ball of radius 2r, Bs,(0), is still contained in .
By Corollary 2.0.7 there is a chart ¢: U — V around p such that (2.9) holds, that is,
—1 o 1 2 1 2 1 2 1 2 _ V.
(fOSO )(X)_f(p)_§x1__imnf(p)+§$nf(p)+l++§xnv X_(xlw"vxn)e :
By equalities (2.9) and (6.9) |grad(foe )| = |x|* € C°(V),grad(fop 1) (0r) = gradf(p) =
Og.
By Proposition 6.0.4 we define the real number A\, 7 by

Ap = /Vv(|x|)2 exp(=T|x[*)dxy A ... Adx,. (7.1)
Let —_—
Wy, T = 7 (x]) exp <_ 2‘X| > dry A ... ANdayp) € Q) (V). (7.2)
\/ ApT

wy, 7 is a differentiable ny(p)-form with compact support contained in By, (0).
We want to extend this differentiable ns(p)-form to a differentiable n(p)—form on M, so
we take the pullback of the ng(p)-form, see 1.2.1 in particular (1.3), and we define

5 _ ¢ (wpr)e) if g €97 (Bx(0)),
»(®) { 0 if ¢ ¢ ' (Bar(0)).

Note that B,.(0) C B.(0) C V.
Therefore, &, 7 € QP (M) with compact support contained in ¢~ (Ba,(Ogn)).

Lemma 7.2.1. For all p € Crit(f), we have ||@, r|lo = 1.
Proof. Let @, p € QP (M), by equalities (3.14) and (3.6)

H@p,TH?) = <(:’p,T7a)p7T>

= (:LVJ’T/\*(:J’T.
/M P P
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Since ¢ is a local diffeomorphism

~ 2 * *
w = w N *x@" (Wp, T)-
Bolls = [, @ ) A (1)

By equalities (7.1) and (7.2) and by product property of the exponential

~ 2
w = w AR )
H p,THO /w(O) p,T p,T

s (22 (o (752 (oo (25

1
= /7(7(|X|))2eXp(—T|x\2)dx1 A...Ndz,
p, T 7 Bar(0)

A
= 1
1

l0p,7llo =

O

Since A\, is the appropriate term such that @, 7 is a differentiable n¢(p)-form of norm
1, then A, 1 is called the normalization factor of W, r.

We will denote by Crit(f) the set of critical points of f.

Let Er be the subspace of Q2 (M) generated by the @, 1 for all p € Crit(f).

Since M is a compact manifold, by Corollary 2.0.8 the set Crit(f) is finite and the critical
points are isolated, then if we take the domain of the charts that exists from Corollary 2.0.7,
the domains of the charts are disjoint.

Lemma 7.2.2. {&p 1}pecrit(y) @ an orthonormal set.

Proof. By Lemma 7.2.1, it suffices to prove that (@, r, &, r) = 0 for all p, g € Crit(f),p # q,
ny(p) = ns(q).

Let &, 1, Wg T € Qs ®)(M), by Corollary 2.0.7 there exists ¢;: U, — V, and py: U, —
V, charts around p and ¢, respectively, then

@t Tar) = [ @1 n) Axgswyr)

* *
| @) Aoy )
supp @7 (wp, T)Usupp @3 (wq, T)

= 0.

U
We complete the space Q2(M) of differentiable e—forms with respect to the norm || ||;,
i = 0, 1, the resulting vector space is the i—Sobolev space of Q2 (M), denoted by H:(M). Anal-
ogously, if we take QF(M) and the norm || ||; », we have the i—Sobolev space of differentiable
k—forms Hi(M).
By Remark D.3.4 H)(M) = L*(Q2(U)) and by Corollary D.2.9 H?(M) is a Hilbert space.
In particular, Ex C H)(M).
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Remark 7.2.3. By Lemma 7.2.2, Er is an orthonormal set and by Lemma A.5.4 E7p is
linearly independent, therefore Er is a finite dimensional vector space. Also, since Er is a
normed space with || ||o by Theorem D.1.6 we have Er is complete, then E7 is a Hilbert
space.

Let EZ be the orthogonal complement to Ep in HO(M).
Since Er is complete, by Theorem D.1.10 Er is a closed space in H(M), by Theo-
rem D.1.11 H)(M) admits an orthogonal decomposition

H)(M) = Er ® Ex. (7.3)
We consider pr: H (M) — Ep, pr-: HY(M) — Ej the projections, see the Defini-

tion D.1.23.
We decompose the deformed Witten operator

Drp: H)(M) —  HJ(M),
Er® E+ — Er@ E7.

Let w € HY(M), set

Driw = prDysprw, (7.4)
Drow = prDysprw, (7.5)
Drsw = pr-Drsprw, (7.6)
Draw = prLDTfper. (7.7)

Lemma 7.2.4. Dr , is the adjoint operator of Dr 3.

Proof. Let w,n € H)(M).
By Theorem D.1.24 pr, prt are self-adjoint operators and by Lemma 5.0.2 Dr; is a
self-adjoint operator, all with respect to (, ), (3.6), then

prDrsprw, 1)
Dy yprw, pr

(Drsw, n) =
(
(prw, Dgpypr
(
(

o

n)
)
w, prDrspr—mn)
w, Dran).

We describe some estimates for these operators

Proposition 7.2.5.

1. For any T > 0 and for allw € HY(M), we have Dy, jw = 0.
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2. There exists a constant Ty > 0, such that for any w € Ef N HX(M), W' € Er and
T > 1T, one has

w

IDr,2wllo < HTHO. (7.8)
w/

[Drs0'flo < ||T”O (7.9)

Proof. 1. By the definition of E7 and since pr is a projection, for all w € H2(M)

prw = Z (Wp, T, W)W, T
p€eCrit(f)

Since (@, 7, W)@, 7 € QP)(M) has compact support in U and its derivatives have
compact support in U, then

Doy ((@p, 7 w)@p, 7) € QHPH(M) @ QP (M)
has compact support in U. But inside U, pr maps into Q% ®) (M), so
prD7s ((@p, 7, w)wp, 1) = 0
for each p € Crit(f). Therefore, Dy 1w = 0.

2. By Remark 7.2.3 Er is a Hilbert space. By Definition D.1.21, Theorem D.1.22 and
Lemma 7.2.4, it is enough to prove the estimate for Dy o or Dy 3. We will prove the
estimate for Dr 5.

Let w € EF N HY(M), since w € E7 and by Lemma 5.0.2 we have
Drow = prDTfper
= prDpyw

= Y (@1, Dryw)dp 1
peCrit(f)

= Z <DTf(Dp,Taw>&}p,T- (710)
p€eCrit(f)

By Cauchy-Schwarz inequality one see that
(D s@p.r, w)| < [[Drsprllo]|w]lo- (7.11)
By Lemma 5.0.2, then

IDrs@p 7lle = (Drsiy,r, Drsip 1)

= <D%fap, T ‘;p,T>
= /M D%f&v)nT N *&V}p,T
= [ Dhs"(wpr) Axp* ()

2
— /‘/ DwaP’T /\ *wpyT.
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Remember the equality (7.2):

oy = 1D (
Ap.T
1
where e € R, then
g 2D <
Ap,T

Also, since D (wy, 1) =

Dy, rlls =

v
= /BQT " O7f,n,0) (@Wp, 1) A

[l eXp<
BQT‘(O) A / )\p,T

—Tx[”

DTﬁ ny(p) (wp,T):

—Tx/*

) dxnf(p)+1 A...Ndx,.

/B2T(0) DTf’ ny(p) (wp,T) A *(wp,T).

(|x ~T|x|?

| Dexp 2’ | dxnf(p)+1A.../\dxn
\/ ApT

) Dvanf(p) (wva) A d$nf(p)+1 Ao A dx,.

By equality (6.7) and Proposition 6.0.4 it is enough to see how

n

[x/*

acts on (|x|) exp (<L) € C(V) on B,(0) and By, (0) \ B,(0). Since

o (10he (T3)) -

Then

Where (|x[) 2

(i (e (7))
o (o) <exp (‘TQ’X’Q» .

(1) 5z (0 (1))

+2: (1) (exp (‘Tz'x'z))

(eXp (F22E)) # 0 on By, (0), 2,2 (4(Ix[) 2 (exp (L)) # Bar(0)\

B,(0) and —( (1x]) (exp (FL)) # Bar(0) \ B, (0).
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Note that on B,(0)

0 212 —T|x/?
=2 — T+ TP ) ((x])exp | —= ) day Ao Adaa gy | =0 (7.12)
i=1 %

While that on Bs,.(0) \ B,.(0) we have that

n 82 _T 2
(— ; 92 nT + TQ‘X\Q) <’y(!x])exp ( 2|X| ) dry A ... A da:nf(p)>
_ % —T|x[? B ) —T|x?
- —; Ox? [v(\x\)ax% <exp< 5 )) + 25, () 5 <exp< . ))
d” —T|x|?
+ w(’Y(’XD) <exp <2||>>] d%’l VANAAN d:lj‘nf(p)

_ 2
—nTy(]x]) exp ( x| > dry A ..o Nday(p)

—TIx|?
+T2x*v(|x]) exp ( x| ) dzy A N dznp)

— ~(x) [_f: 88; <exp <—T2|X|2>> — nTexp <_T2’X’2>

=1

"0 0 —T|x|?
—QZ v(|x|) 4exp< 2H>da:1/\.../\dxnf(p)

= Ox; ox;
n 82 x 2
_;ax2fy(|x])exp< x| >d331/\.../\dxnf(p)

By Proposition 6.0.4, exp ( ) dry A ... Nday,p) € Ker (Ory o)) then

n 82 —TX2
( Zm_nT+T2|X|2> <y(|x|)exp< 2' | )dml/\.../\dxnf(p)>

=1

" 0 —T|x|? 0? —T|x|?
Zl ( 2| |>+8x27(|x|)exp< 2| |>] dry A ..o N dag(p).

i

0 —T[x[*\) —T|x/|?
oz <exp< 5 )) = —Tux; exp( 5 . (7.13)

Substituting

n 82 —TX2
Za . —nT—i—TZIX]Q) (fy(\x\)exp< 2| | )d:vl/\.../\dxnf(p)>

—1 9%

n 82 -T 2
=¥ lZT% Y(x]) - 27(|x|)] exp( 2"" )dxl/\.../\da:nf(p). (7.14)

= ox;
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Then

_ ~(|x —T|x|?
el = [, I (T Oy ) A g - A
Bar ) \[Apr 2

~T|x/?
- \/7/ ~v(]x|) exp ( 5 ) Oz f 0, p) (Wp, 1) AdTn, 41 Ao Aday,
pT (

T|X|2
\/7 /32 OB ~v(]x|) exp Orf 0 0) (Wp, 1) A dTn;py41 A - A diy,.
By equality (7.12) and since v(|x|) <1
~ 2 —7_Y|)(|2
Dy, rlle = \/7 /32 OB v(]x|) exp — Oz f 0, 0) (Wp, 1) AdTn;y41 A - Aday,

—T|x?
: 7/ exp | —5— | Brsn Ady, et A - Aday,
a \/E Bar (0)\Br(0) Xp( 2 > Tf,07(p) (Wp, ) A A (p) 41 x

Also, using equalities (7.13) and (7.14) we have

2T n 0
D@, 7|2 < — T — dzi A ... Ndz,
el < oo [T (S (i) ) o A de
1 n 2
— —T|x|? — dzy A ... A dxy,.
oy AR 'X')@ ax?v<|x|>) o :
2T n 19)
< |== —T|x|? ; dry A ... Ndz,
< [ 'X”(Z}ﬂfaxﬂ('x')) . .
_ / exp(—=Tx|?) zn: o ~(x]) ) day A A day,
Ap. 7 ) Bar (0)\B(0) = Ox?
2T n 0
< exp(—T|x/|? x,—y(|x dri N ... Ndxy,
= | Apr| IBar0)\B(0) p(=T H(; axiV(‘ D) !

1
+ exp(—T|x/|*) ( > dry A ... Ndx,
A1l Bar0)\B.(0)

Since |z;| < 2r. Then

4rT "l o
Drr@ T dri N ... Ndx,
IDrspallf < Go eI >(§; axiv(lxD) " .
! (i) (3| (x| ) o A 1
exp(—T|x —(|x 1 A ... Ndz,.
|Ap, 7| /Bar(0)\B,(0) P = 5’33?7 !

For all r < |x| < 2r we have ]8%1,7(|x|)] < s for some s € R. The same for aa—;ﬁy(]x]),

for some u € R |§—;27(|x|)| < w for all » < |x| < 2r. The derivatives of v(|x|) vanish
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everywhere except on Bs,.(0) \ B,(0).
4T'rsn + nu
|)‘p,T |

By definition A > 0, see (7.1). Set C' = HIT/\S%\W'

Driw / exp(=T|x[)dzy A ... A dx,
|ID gy, 7[5 < T p(—T[x[")dx:

Dysa,rlls < C ~T|x)dzy A ... Aday,
IDrs@yrl < Cf  exp(-Tixdn A A de
We can bound the function exp(—T|x|?) for exp(—T(2r)?) = exp(—4Tr?*) on By,(0) \
B,.(0).

DI, 2 < (Cex —4T7’2/ dxy N ... Ndz,
Dy, rlls < p( ) a0 0) 1

= Cexp(—4Tr?)C"((2r)" — ™)

Let Cy = CC'((2r)™ — r™), since exp(—4T7r?) = , we take the largest element

Z (4Tr2)
of the sum, say & , there exist 7" > 0 such that
1 1
~ 2
[Dryp,rlls < COMTJG?)N < T
- 1
[IDrpip, llo < s (7.15)

Note that is too small. This for all p € Crit(f).

2

By equahty (7.10) and Lemma 7.2.1 then

IDrswllo = |l D>_ (Drs@y,r,w)dpllo
peCrit(f)

< Z ||<DTf@p,T, W>@p,T| |0
peCrit(f)

< > [(Drs@p, 1w @, 7o
peCrit(f)

= > |(Dps@p,r,w)l.
peCrit(f)

And by inequalities (7.11), (7.15)

IIDrowllo < > ||Drs@y, rllol|w]o-
p€eCrit(f)

There is a constant 7” > 0 such that for all 7" > T”

HDT,QWHO < ||OJ||0
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Proposition 7.2.6 ([11, Prop. 4.12]). There ezist Ty > 0 and C > 0 such that for any
weEBrNHYM) and T > Ty

IDzswllo = CVT||wlfo.

For the following proof it will be necessary to change the field of the vector space Q°*(M)
of real numbers to that of complex numbers and extend the inner product to C.
We define
QL(M) .= C g Q*(M).

Where ®g means that we see C as a real vector space (of real dimension 2) and we consider
the tensor product with 2°(M).

Forall A € C, A (z ®@w) = (A\z) ®w, with Az the multiplication of complex numbers. By
doing this we have the complexification Q% (M).

Also, we define the inner product over Q% (M), using the inner product (3.6) over Q% (M),

<CL),7; ®77>C = —i<w,77>R, (716)
<i®wan>c = i<w7n>R- (717)
Considering this inner product over Q% (M) and the associated norm || ||o,c, we have the

0-Sobolev space of differentiable forms Q& (M), H)(M)c = C ®@r H(M)g.

We will specify if the norm and the Sobolev space are over the field R or C by writing it
as a subscript.

With respect to C, recall the arc length of a curve z: [a,b] — C given by equation

2(t) = a(t) +iy(t), € lab]. (7.18)
is define by ,
L:/ﬁﬂmﬁ, (7.19)

where |2/(t)| = \/(x’(t))2 + (v/(t))? is the modulus of 2/(t).

Let C be the contour represented by the equation (7.
valued function f(z) = u(x,y) +iv(x,y) such that u[z(t),y
piecewise continuous functions of ¢t. Then

L]

If there exist a constant ¢ such that |f(z)| < ¢ whenever z is on the contour C, by equali-
ties (7.20) and (7.19) then
d
[ £

18) and f:C — C be a complex-
(t)] and v[x(t), y(t)] of f[z(t)] are

/ | Fl2()]2 (8] d. (7.20)

gc/ﬂ/@wﬁ_cb (7.21)

For more details see [10].
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Let ¢ € R,c > 0 be a constant, Er(c) C H?(M)g be the direct sum of eigenspaces of
Dy corresponding to the eigenvalues in the interval [—c, ¢]. Note that by Lemma 5.0.2 Dy
is self-adjoint and by Theorem D.1.26 the eigenvalues of Dy are real.

Let ¢ € R, ¢ > 0, we consider Pr(c): H)(M)r — Er(c) be the spectral projection onto
Er(c), see Definition D.1.30.

Proposition 7.2.7. There exist C; > 0,T5 > 0 such that for any T > T3 and any w € Erp
holds that

C
[|Pr(c)w — wllor < %HWH&R'

Proof. Let S = {\ € C||\| = ¢} be the counterclockwise oriented circle of radius c.

Let A€ S, T > T + 15 as in Propositions 7.2.5-2 and 7.2.6.

Let w € HY(M)g, by Remark D.3.8 H}(M)r C H2(M)g and by decomposition (7.3) one
can see that w = prw + prtw.

Using the projections, definitions (7.4), (7.5) (7.6), (7.7) and Proposition 7.2.5-1, we have
two cases:

1. Since prw € Er, we get

Dy prw =0, Dgoprw =0, Dpsprw#0 and Dy yprw =0. (7.22)

2. Since prtw € E7, then

DT71per =0, DT,gprlw #0, DT73per =0 and DT74per £ 0. (7.23)

We need to take the complexification HY(M)c.
Consider Drp: H)(M)c — HJ(M)c given by Drs(z @ w) = 2 @ Dry(w).
Since w € H(M)g, we can write w = 1 ® w with 1 € R, so that w € HJ(M)c.
prw, pTLW, Dr, QPTLW, Dr sprw, DT,4P1"LW7 Drw, DTfPTLW € H?(M)R7

so if take the complex norm || ||o, ¢ of each of these elements it coincides with the real norm
|| |Jo,r- Then we can use the estimation results 7.2.5 and 7.2.6 without problem.
By equalities (7.22) and (7.23), we get

|(A=Drpwllo.c = [[N@prw+A® priw — DT,Qper — Dr sprw — DT,4perH07C
= ||(A® prw — DT72per) +(A\® priw — Dr sprw — DT74per)||0,(c.

Since A ® prw — Dy opriw € Ep, A ® priw — Dy sprw — Dy ypriw € Ef and Er, Ef are
orthogonal, by Lemma A.5.3, then

1 1
[|{(A = Drg)wllo,c > §H)\ ® prw — DTygprLcuHo,(c + iH)\ ® priw — (D sprw + DT,4per)H07(C.

First, of the term § (H)\ ® prw — DT,QperHO,(C)
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By triangle inequality, see inequality (D.1),
1 . 1
3 (H)\ ® prw — D, opr WHO,C) §(H)\ ® prwlfo,c — ||Dr,2pr*wllo,c)-
Since |\ = ¢,
1 L 1 1
SUA@prwllo.c — [[Drzprwllo,c) = S(ellprwllo.c = |IDr,2pr"wllo,c) (7.24)

For the term 3(||]A ® prtw — Dy sprw — Dy, 4prtw||o,c). Note that by inequality (D.1):

IA ® priw — Dy 3prw — Dy apriw|lo.c = || = A® prow + Dy 3prw + D, 4priw|fo ¢
= ||Dr4prtw — A ® priw + Dy sprw||o.c
IDz, 4prtw — A @ priwl|o,c — ||Dr, sprwlo,c
IDz, 4pr*w|lo,c — ||A ® priw|lo,c — ||Dr,sprw|lo,c

Since |A| = ¢ and prw € Er, by Proposition 7.2.5-2 there exist a constant 7 > 0 such that
for any T' > T we obtain

rw
|\ ® priw — Dz 3prw — Dy yprrwl|o.c > ||Drapr*wlfo.c — cl|prtw|fo.c — HpTHO’C (7.25)
By equalities (7.24) and (7.25) then:
1 prwijo,c
I~ Driloc > 5 (dlprolloe = 1Dnaprellnc + [Draprwlo = ciprune - 22l

By definitions (7.4), (7.5), (7.6), (7.7) and triangle inequality we have
|IDrsprwlo,c = |[Dr,2pr'w + Dy 4prwlo,c < |[Dr,2prwlo,c + [[Dr,aprw|fo,c.

On the other hand, since prtw € E7 N H(M)g and by Proposition 7.2.6, there exist Ty > 0
and C' > 0 such that for all T' > Ty, OV/T||prtw||o.c < ||Drspriw||o.c. Then

O\/THPYJ_WHO,C — |ID7,2pr*wllo,c < [|Dr,apr-w||o.c-

Substituting this inequality and since prtw € E£NHL(M)g, by Proposition 7.2.5-2 there
exist 77 > 0, for any T' > T

1
I\ =Drpelle > 2(wmwmc—mmnmﬁmmc+0¢ﬂmﬁwhc—dmﬁﬂh@—
1 1
2<C_T>llprwlloc+ (CVT = o)llpr*ello.c = |IDr2prelloc
(c )||prw||o<c+ <C’\/_—c—>||p1“ wlfo,c

(c )||prw||0@+ <C’\/_—c—

v

v

1
2
1 ) llprt|
5 T pr wllo,c-

[[preffo.c

)



7.2 Global description of Uz j 105

There exist Ay, B> > 0 constants such that (c—2) > Ay > 0 and (CVT —c—2) > By > 0
for all T > T} + Ty, we take Cy = min{ Ay, By} such that

C
[|(A = Dry)wllo,c > 72(||Prw||o,c + |Iprtwllo,c)-

There exist Cq > 0 constant Cy < % such that
[[(A = Dryp)wllo,c = Csllwllo,c- (7.26)

Therefore, A\ — Dz is bounded below.
Therefore A — Dyy: H(M) — H2(M) is a bounded operator.
By Lemma D.1.20 and inequality (7.26), the operator

(A= Dry) " HJ(M) — H (M),

exists and is bounded. Let A € p(A — Dry), then we can define the resolvent operator, see
definition D.1.27, by
R,\(DTf)w = ()\ — DTf)ilw.

and by Theorem D.1.28 Ry(Dry): HY(M)c — H(M)c.
We take A\ = rexp(if),r > 0,—m < 6 < 7, then

2w
/ A :/ exp(—16)i exp(if)dt = 2mi.
s 0

Therefore 5= [¢ A~*d\ = 1. By Definition D.1.30 we get

Pr(c) !
ricw—w = —
2w Js

(A=Drp) ' =AY wd), we HY(M)z (7.27)
Since (A — Dry)~' (A — Dzy) = id and multiplying by A™!, we get
(A=Dgp)' = A7lid = A (X = Dpy) "' Drpy.
Applying to w € Er, and by Proposition 7.2.5-1, we have
(A=Dzp)™ = A" )w= A"\~ Dry) "D s0.
Taking 7 = (A — D) 'Dr sw and by inequality (7.26),
|(A = Drp)(A = Dry) ™D swllo,c > Csl[(A = Dry) ™' Dy swl o, c,

and [|(A=Drs)(A=Drs) "D 3wllo,c = |[Dr,3w|[o,c, then |[Dr sw|[o > Cs]|[(A=Dzy) ™' Dr,30|lo,c-
By Proposition 7.2.5-2 there exist Ty > 0, such that for all "> T, > 0 and w € Erp

)\—D le < ||w||0,(c
|\ = Dry) ' Draslloc < o
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Then:
1((A=Dzp)™ = A Nwlloc = [IA"(A=Dry) "Dy swllo ¢
= PO = Drg) "' Drgelfo,c-
1 -1 c
| (()‘ —Dry)™ = A )w||0,<c < @HWHO,C- (7.28)
By equality (7.27)
1 1 1 1
IPr(ew —wlloe = ol [ ((A=Dry) ™ = A7) wddlloc

1
(

1 _ _
or i [ (A =Drp™ =X wdAlloc
Therefore, by inequalities (7.20) and (7.28) we get
1
IPr(cje —wlloe < 5 [I/{(A=Dr)™ =X7) Z(B)lo.caA

c

2m
'(t)|dt.
srerlelloe [ 12(0)

Taking the length of the curve z:[0,27] — R? given by z2(t) = (cost,sint), then |2/(t)| =1
and

<

27 27
/ @)dt = [ dt =2
0

0
By inequality (7.21), therefore

c
p - < — : 7.29

[Pr(c)w = wllo.c < G Fllwlloc (7.29)

Since w, Pr(c)w € HY(M)g the norm || |[|o.c coincides with || ||o,g, Therefore Proposi-
tion 7.2.7 is satisfied. 0

Let F[Tofc;l C QF(M) be the vector space generated by the eigenspaces of Oy ;. associated
with eigenvalues in [0, ¢/] with 0 < k& < n. We will to describe this vector space of Oy j.

Theorem 7.2.8. Let M be an oriented, closed Riemannian n—manifold, T'e€ R, T > 0 and
f:M — R be a Morse function. For any 0 < ¢ € R there exist a 0 < Ty € R such that for
every T' > T

dim (F[ﬁfc',j) = my.

Proof. First let us see that there exists 7" sufficiently large such that {Pr(c)@,, r}pecrit(s) is
a linearly independent set.

Since M is a compact manifold, by Corollary 2.0.8 the set of critical points of f is finite,
we can assume that |Crit(f)| = r.

Let us suppose that

> a;Pr(c)ap,r =0, a; €R.
i=1
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Since Pr(c) is a linear map, then
> a;Pr(c)@y,, r = Pr(c) (Z ai@pi,T> .
i=1 =1

We denote by n = ZT: a;Wp, T, note that n € Er. Since Pr(c)n = 0 then n € (Ezx(c))*.
i=1

By contradiction, assume that 7|0 > 0.
By Proposition 7.2.7 there exists C; > 0,73 > 0 such that for all T > T3

&
(e = nllo < ZHlInllo.

But [|Pr(c)n — nllo = ||nllo, then [[n]lo < S||nl|o this is true if and only if C; > T, this
contradicts the hypothesis that for all 7' > T3. Then ||n||o = 0, so n = 0.

Since {@y, 1 }pecrit(s) s a linearly independent set, then a; = 0 for all 4 = 1,...,7.
Therefore {Pr(c)@p, 1} pecrit(s) is a linearly independent set if 7' < Cj.

Then, there must be a T5 > 0 such that for 7" > Ty implies

dim Er(c) > dim Pr(c)(Er) = dim Er. (7.30)

Let us see that the equality holds.
By contradiction, assume we have dim Er(c) > dim Er, there is a nonzero element w €
Er(c) such that w € (Prp(c)(Er))*, that is, for every i = 1,...,r

(w, Pr(c)wp, r) = 0.
Also for all i =1,...,r, we get
(w, Pr(c)@p, r)Pr(c),, r = 0.

In particular,
.,

> {w, Pr(c)@y, 7)Pr(c)ay, r = 0. (7.31)

i=1

By equality (7.31), adding and subtracting the term XT: (w, @y, 7)Pr(c)@y, T, implies
i=1

T T

prw = Z(Wﬂ wpi,T>a}Pi,T - Z<w7 PI"(C)(:Jp“Tﬁ:in’T
=1 =1
= Z<w7 wpi:T>((:]pin - Pr(c)(:)PhT) + Z(CU?(ZJPZ',T - Pr<c)&pi,T>Pr<C)@pi,T-
i=1 i=1

Since the inner product is bilinear and by the Cauchy-Schwarz inequality we have

Iprw]ls = (prw, prw)
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IA

+> (W, @y, 7 — Pr(c)@y,, 7)*[[Pr(c)@p, 7llo

+

IA

r

S

1=

r

Z<w7(bpi7T>2Ha}pi,T - Pr(c)@pi,THg

i=1

T

i=1

1
T

=1

ww>\ 1y — Pr(O)@y, 22
S syt — Pr<c>wpi,T>2\ 1Pr(0)@y, 1ll2

> lwlloll@p, zll5l1@,. 7 — Pr(e)@y, 1o

.
+ > [lwllgll@p,, 7 = Pr(e)@p, [l Pr(c)@p, 71lo-
i=1

By Lemma 7.2.1 and Proposition 7.2.7, for each p; € Crit(f) there exists C;,T; > 0 such

that for all 7' > f: T,
i=1

[IPr(e),, 1la

By Lemma 7.2.1, then

o

IN

IA

H@pi,T - (1 - Pr(c))a)PuTH(Q)
(11&p:, 7llo + [1(1 = Pr(e))@p, 7llo)”

Ci - 2
(1+ F @71l

O ?
<1+T).

Ci\? Ci\?
b} < Zuwuo( 3 \wmuwzuwuo(T) 18213 (14 7F)

7"

<

. . C
Since i = 1,...,7, then T

T > XT: T; implies
i=1

7) (el
) (1

[Iprwllo <

=1

) et

1+ % ) = :% for some C’ > 0 such that for all

(7.32)

Let w € HY(M), w = prw + prtw, then

Ipr-wllo = [lw = prwllo > [lw[lo — [[prw|lo-

By inequality (7.32), let Cy = (1 —

that

Iprtwllo >

Ve’

=) > 0 be a constant and when T is large enough such

VT
T

= Cyl|wl|o
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Now, by Proposition 7.2.6 there exists C' > 0 and 7" > 0 such that for any 7' > T" we have
CVTCy|lwllo < CVT||prtwllo < ||Drsprtwllo (7.33)

Since w € Er(c), by definitions (7.4) - (7.7) and Proposition 7.2.5-1 we obtain Dy fprw =
Dr sw. By Proposition 7.2.5-2, there exist 7] > 0 such that for all 7" > T} we have

[lwllo

[[Drspriwllo = [[Drsw — Drgpreolly < [[Drswllo + [[Dr sproflo < |[Drswllo + =

By equality (7.33) rewriting and taking Cs = CCyv/T — % and for all T' > T] +T" we get

w
Collello = CONTwllo A0 < 1Dy ga

Since w € Er(c),w = Y a)wy, where X is the eigenvalue of the eigenform w,, whose
AE[—c, ]
eigenspace we will denote by E\. Since Dry is a linear map, then

Csllwllo = Csl| > aAwAH%SHDTf( > aAwA)H%:H > aDr)llb=11 X awllg

Ae[—c, ] AE[—c, (] A€[—c, ] Xe[—c, ]

For eigenforms corresponding to different eigenvalues of Dry by Theorem D.1.26-2, we have

Csllwlls < D2 IPllaxwallo < ¢ X2 llaawallg = llwllo.
AE[—c, ] AE[—c,q]

This is true if and only if Cs = CCyV/T — % < ¢ this contradicts the hypothesis that for all
T>1T+1T.

Therefore,

dim Er(c) > dim Pr(c)(Er) = dim Ep = ) m,. (7.34)
i=1

Then {Pr(c)@y, 7} pecrit() generates Ep(c), therefore, {Pr(c)@y, 7 }pecrit(r) form a basis for
ET(C).

We will give a decomposition of Er(c).

For each integer 0 < k < n, we define Pry: H)(M) — Hp (M) the projection onto Hp (M)
the 0-Sobolev space of Q¥(M) with respect to the || ||o, ,—norm.

First, since

||Prnf(p)Pr(C)(:}p,T - ‘Dp,THO, ng(p) = ||Prnf(p)Pr(C)a’p7T - Prnf(p)@p,THO, ny(p)
= ||Prnf(p)(Pr(C)a’p,T - ‘:}p,T)”O, ny(p)
< [IPr(c)ap, — @p,7llo,e

By Proposition 7.2.7 there exist C), s > 0, Ty, ) > 0 such that for every T > T}, +(p and
Lemma 7.2.1 we have that for every p € Crit(f)

N . Chsp) py~ Ch; (p)
[Py, (5 Pr(c)@p, 7 — Gp, 7ll0,0,) < %H%,THO = j’lp : (7.35)
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Also, we see that the set {Pry,(,)Pr(c)w,, r}i_, is linearly independent.
Let us suppose that

Z a;iPry () Pr(c)@y,r =0, a; €R.
i=1
By Lemmas 7.2.2 and 7.2.1, then

T ' T T
1> (aiprnf(pi)Pr(C)@pi,T - az‘@pin) 15,0 = 11D aip, 7ll6,e = D lail* 18, 7115 0y ) = Dl
=1 i=1 =1

=1

On the other hand, by triangle inequality and inequality (7.35) for all T > ZT: T;
i=1

13" @i (Pro, o Pr(©)@p,m — @) llow < D Mlas (Pra, uyPr()@p, 7 — @yt oo
=1

i=1

= Z ||a’2 (Prnf(pi)Pr(c>(DPi,T - wpi,T) HO, ny(p;)
= Z il | (Pra (o) Pr()@p 7 — @) [0,y (oo
< Z | nf(pl

. 2
Let Cpax = max{Cy,(y,) }i=;, then Z la;? < Cmax ( !%\) if and only if T < rCpax.
-1

We have that for T" large enough, the {Pry; Pr( C)Wp, T }pecrit(f) 18 a linearly independent
set. We denote by p;; a critical point of ny(p;;) =4, where j = 1,...,m;. Then

Crlt(f) = {p117"'7p1m17“‘7p7’17"'7p7’mr}

Then

Er(c) = {Pr(c)@pllyT, . ,Pr(c)@plmlj, . ,Pr(c)@prl,;p, . ,Pr(c)@prmw;p}

Now,
Pri(Er(c)) = {Pre(Pr(c)ip,, 1), - - -, Prr(Pr(c)wy,,, 1)}
Thus for each 0 < k < n we obtain

dim Prg(Er(c)) > my.

Then
> my <> dim Pry(Er(c)).

k=0 k=0
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On the other hand, we define the operator
Pr = Pry;: H)(M) — H)(M).
k=0
Since for all 0 < k < n, the Pry(E7(c)) are orthogonal to each other, by Theorem D.1.25-1.
and -2. Pr is a projection onto @ Pry(Er(c)).
k=0
And since Pr is a linear map, we get
> dim Pry,(Er(c)) = dim (EB Prk(ET(c))> = dim (Pr(Er(c))) < dim (Er(c)) = > my.
k=0 k=0 k=0

Therefore, for any 0 < k < n we get

Since Opy preserves the grading of w € Q°*(M), the following diagram commutes

D7,

HJ(M) HJ(M)
PI‘k { { Prk

Hy(M)

Urf i
Let w € Erp(c) an eigenform of Dyy with eigenvalue A € [—c, ¢|, by the commutative
diagram then

Ors kPryw = D%fPrkw = PrkD%fw = PryA(Drjw) = APriw.

Then PryEr(c) = FY7).
Taking ¢ = /¢, by equality (7.36), the Theorem follows.
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Chapter 8

Proof of Morse Inequalities

Finally we will prove Morse inequalities mentioned in section 2.2.
As in the chapter 7, let c € R, ¢ > 0 and A, be the eigenspace of Uz  associated to the

eigenvalue v € [0, ¢|]. We define F[zg}f]k C Q°*(M) the vector space generated by the eigenspaces
of Ory x associated with eigenvalues in [0, ¢] with 0 < k < n.

0,c

ve(0,c]
Consider Ugpy : Fgg}f}k — Fgg}c’]k, equalities drOry pw = Oryf pr1drsw and d}fDTﬁ W =
Oryp k1dppw, see (5.5) and (5.6), imply that dry and df; restrict to

0,c 0,c
dry: F[T f,}k — F[T f}k-&-l

and

. [0 [0,c]
}f'FTffk — FTffk—l'

So we obtain a finite dimensional subcomplex of (2*(M), dry) defined by

c c d o d d d d ¢
(Frfdy drs) s 0 — Eds 5 pRd 4 plid T4 T8 pd 0.
We define the k—th cohomology space by

Ker de

[0,c]
Frie

Hy (M) =
Idef

[0,c]
FTf, k—1

Remark 8.0.1. Remember that A is the eigenspace of Uy, associated to the eigenvalue 0,

then Ker (Ozy ;) = Ag and by definition Ay C F%C]k thus Ay = Ker (Ozy,x [po.a ). Therefore
’ Tf k

Ker (Ory, ) = Ker (Ory, « |F,[1E)}c]k).

Lemma 8.0.2. Let M be a differentiable manifold of dimension n, T" € R and f: M — R

be a Morse function. Then Hp(M) = Hj g (M). Therefore,

dim (Hy(M)) = (M) (8.2)

113
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Proof. We denote the vector space of all closed k—forms under dz; by Z¥ (M), and we denote
the vector space of all closed k—forms under dry | 0.0 by ZE(M).
TF, k

On the other hand, we denote by B%(M ) the vector space of all exact k—forms under
dry, and by B (M) the vector space of all exact k-forms under dry [0, -
Tf k

Since F[YQ}f]k C QF(M) we have Zf (M) C Z§(M).
Consider the projections to the quotient spaces m: Zf:(M) — Hi (M) and n': Zf (M) —

Hiy, pr (M)
Note that BE(M) = Ker (7’ o ¢), by First Isomorphism Theorem Im (7' o 1) & HE(M)
and we have the following diagram

Zi(M) Zi (M)
H:(M) Hif o (M)

T
Let us see that 7’ o ¢ is surjective.

Let o € Hj pg(M) by Hodge Theorem (5.7) « has an harmonic representative, that
is, a = |[w] with w € Ag. By Remark 8.0.1 w € Z&(M). So 7’ o is surjective, therefore
HE o (M) = HE(M).

By Proposition 5.0.1, dim (HE(M)) = Bp(M). O

Corollary 8.0.3. Let M be a differentiable manifold of dimensionn, T € R and f: M — R
be a Morse function. Then
Ker (DTf,k]F[To}dk) =~ HE(M).

Theorem 8.0.4 (Morse inequalities). Let M be an oriented, closed Riemannian n-manifold.
For any Morse function on M one has

1. (Weak Morse inequalities) For any 0 < k < n, we have

Br(M) < my,. (8.3)

2. (Strong Morse inequalities) For any 0 < k < n, we have
Be(M) = Brp_1 (M) + ...+ (=D)FBy (M) < my, — my_y + ... + (—1)"my. (8.4)
Moreover, for k = n:
Bu(M) — Bpa(M) 4+ ...+ (=1)"5o(M) =my —my_q + ...+ (=1)"myp. (8.5)
Now, we are ready to prove the Morse inequalities.
Proof. We will assume T large enough, so that Theorem 7.2.8 is true, that is,

dim F%(’:]k = my,.
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Since Ker (Ory |F[o,c] ) C F[IQ}C]k, implies
Tf k ?

dim (Ker (DTf,k |F[79}C]k)> < mi. (86)

Therefore, by inequality (8.6), Remark 8.0.1 and the analogue of Hodge Theorem (5.7), we
get
Br(M) = dim HlfpﬁDR(M) = dim Ker (Oyy ;) = dim Ker (Dva’f|F£ﬁf]k) < my.

This proves the weak Morse inequality.
Now, to show the inequalities (8.4) and (8.5), let us note that from the complex (Fl‘ﬁ)}f}., dry),

by Rank-Nullity Theorem we have:
my = dimFPf,
= dim Ker (de|F[79fL]k) + dim Im (de|F[79}‘c,]k)

By the dimension of the quotient vector space and Lemma 8.0.2

Ker de

- 1 m [ c (1““ m [ c
f F[YQ},]k 1 f F[Y(’)},]k

[0,c]
Frir_1

Im de
= Bk(M) -+ dim Im (de’F[o,c] ) + dim Im (de‘F[O,c] )
Tf k-1 Tf k

For 0 <1 < n, we take alternating the sum of the my to get

1 l
Z(—l)kmlfk _ Z(_l)k (ﬁzk(M) + dim Im (de\F[jg}c]l_k_l) + dim Im (de]F[To,fc]l_k)>

k=0 k=0
l l

= (=D Br(M) + Yo(=1dim I (drglo )

k=0 k=0 k-1

k

l
=+ Z(—l)kdim Im (de|F[0,c] )
k=0 =

l
= Z<_1)k5lfk<M) + dim Im (de|F[To}c]l).

k=0
We have the last equality by cancelling the dimensions of the images of the respective oper-
ators and by noticing that dim Im (dr [y ) = dim0 = 0.
TF, —1

In particular, for all 0 <[ < n, we have

l l

ST B (M) <D (1) my_y.

k=0 k=0
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For | = n, since Im (de|F[o,c] )=0
Tf,n

S (— 1t = 3(=1) Bui(M).
k=0 k=0
Therefore, the strong Morse inequalities hold. 0

Let M be a differentiable n—manifold, we define the Euler characteristic of M to be the
alternating sum of its Betti numbers

n

X(M) = (=1 Br(M).

k=0

Remark 8.0.5. We can rewrite equality (8.5) by (—=1)"x(M) = m,, —mp_1+...+(=1)"my.



Appendix A

Multilinear algebra

This appendix contains the definitions and results of multilinear algebra that we will use in
the rest of the thesis.
For more details and proofs see [36], [24], [37], [11] and [13].

A.1 Categories

Sometimes it is helpful to use the language of category theory, in this section we give the
basic definitions. For more references consult [23] and [2].

Definition A.1.1. A category € consists of the following:
1. A class &, whose elements are called objects.

2. A set Hom¢ (A, B) for any pair of objects A, B, whose elements are called morphism
from A to B.

3. For any 3 objects A, B, C, a binary operation called composition
Homg (A, B) x Homy(B,C) — Homg (A, C)
whose value in (f, g) is denoted by g o f. It satisties the following conditions:

(a) For every object A, there exists a distinguished element id% € Hom (A, A), called
the identity of A, such that: for any objects A, B and any f € Homg(A, B), we
have that

foidf =id4o f=f.

(b) For any objects A, B,C,D and f € Homg(A,B), g € Homg(B,C) and h €
Hom(C, D) we have
ho(go f)=(hog)of.

Example A.1.2. We denote by Vecty the category of finite dimensional vector spaces over
R and linear maps.

117
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Example A.1.3. The category Set whose objects are all sets and morphisms are functions
between sets.

Example A.1.4. The category Grp of all groups and group homomorphisms.
In the following appendices we will describe other categories.

Definition A.1.5. Let % be a category, a morphism f: A — B in % is called an isomor-
phism if there exists a morphism g: B — A such that go f = id4 and f o g = idg. Such a
morphism g is called an inverse of f.

Proposition A.1.6. Let € be a category, if A — B,g:B — A and h: B — A are
morphism such that go f =idy and f o h =idg then g = h.

Proof. We have h =idgpoh = (go f)oh=go(foh)=goidg =g. O

Definition A.1.7. Let ¥ and D be two categories. A covariant functor F: 4 — D is a
map which assigns

1. to each object A of € an object F'(A) of D,
2. to each morphism f € Homg(A, B) a morphism F(f) € Homp(F(A), F(B)) so that
(a) For any objects A, B,C in € and any f € Hom¢ (A, B) and g € Home (B, C)
F(go f)=F(g)o F(f).
(b) For every object A in € we have F(ids) = idp(a).

Definition A.1.8. Let ¥ and D be two categories. A contravariant functor F: € — D is
a map which assigns

1. to each object A of € an object F(A) of D,
2. to each morphism f € Homy (A, B) a morphism F(f) € Homp(F(B), F(A)) such that
(a) For any objects A, B,C in € and any f € Hom¢ (A, B) and g € Home (B, C)
F(go f)=F(f)oF(g).
(b) For every object A in € we have F(ids) = idp(a).

Also, in section A.3 and in the following appendices we will describe several functors.

Proposition A.1.9. A functor preserves isomorphisms.

Proof. Let € and D be two categories and F: 4 — D be a covariant functor. Let f: A — A’
be an isomorphism in 4 and f~! the inverse of f then

F(f)oF(f)=F(fof')=F(ida) = idpa.

Similarly, F(f') o F(f) = idp(a).
Analogously if F' is a contravariant functor. 0J



A.2 Symmetric group 119

A.2 Symmetric group

For details of the symmetric group and shuffles see [31], [24].

Definition A.2.1. Fix a positive integer k. A permutation of the set A = {1,... k} is a
bijection 0: A — A.

Let Sk, be the set of all permutations of the set {1,. .., k}, Sk is a group with the operation
of composition.

Definition A.2.2. Let iq,...,%, be distinct integers between 1 and n. If o € 5, fixes the
remaining n — r integers and if

0'(@1) :i27 O'(ig) :ig,...70<ir_1) :Z'WO'(Z'T) :il,

then o is an r—cycle of length r.

Every 1—cycle fixes every element of A, and so all 1-cycles are equal is the identity. A
2—cycle, which merely interchanges a pair of elements, is called a transposition.
Every permutation o € Sy, is a product of transpositions, see [34, Thm. 1.3].

Definition A.2.3. A permutation o € S}, is even if it is a product of an even number of
transpositions; otherwise, o is odd.

The sign of a permutation sgn : Sy — {£1} is a homomorphism between Sy and the
group {£1} defined by

sen(o) — {1 if o is even
& —1 if o is odd.

Definition A.2.4. A (k,l)-shuffle o is a permutation of {1,... k -+ [} satisfying
oc(l)<...<o(k) and o(k+1)<...<o(k+1).

The set of all such permutations is denoted by S(k,1).
Since a (k,[)—shuffle is uniquely determined by the set {o(1),...,0(k)}, the cardinality

of S(k,1) is (k;_l>

A.3 Multilinear algebra

This section deals with various aspects of linear and multilinear maps.

Remark A.3.1. Let V be a real vector space of dimension n. Let T:V — R" be a linear
isomorphism, using 7" we can endow V with a topology. Let U C R™ be an open subset,
we set that T71(U) C V is an open subset. One can see that this topology of V' does not
depend on the linear isomorphism.

Let V and W be vector spaces over R of dimension n and m respectively, the set
Homg(V, W) of all linear maps 7:V — W is itself a vector space over R with the op-
erations:
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1. Sum of linear maps, that is, let T, R:V — W be two linear maps, we define
T+ RV — Wby (T'+ R)(v) =T(v)+ R(v) for allv € V.

2. The scalar product of linear maps with a real number, that is, let » € R and
T:V — W, we define rT:V — W by (rT)(v) = rT(v), for all v € V.

Let {e1,...,e,} be a basis of V and {wy,...,w,} be a basis of W.
Define T;;: V. — W as
: _ fw; fori=k
Tijlex) = {o i # k.
The set {T}; |t =1...,m,j=1,...n} is a basis of Homg(V, W), thus it has dimension mn
over R.
If V=W we write End(V') := Homg(V, V).

Definition A.3.2. A functor F: Vectr — Vecty is called a continuous functor if for each
pair (V, W) € Vectg x Vectg, the natural map

Fvy[/i HOIIIR(V, W) — HOIHR(F(V>, F(W))
T — FV,W(T)

is continuous with respect to the usual topology on finite dimensional vector spaces described
in Remark A.3.1.

The concept of a functor and a continuous functor F: Vectr X ... X Vectg — Vectg
in k variables is defined similarly.

In the rest of this section we will define several continuous functors which will allow us
to define different vector bundles, (see Appendix C).

A.3.1 Dual space V*

Definition A.3.3. The dual space of a vector space V over R is the vector space of all
real-valued linear functions on V/,

V= HOIIIR(V, R)

Let {ey, ...,e,} be a basis for V, then every v € V' can be written uniquely as a linear
n

combination v = Y. a;e; with a; € R. Let ¢': V — R be the linear function that picks out
i=1

the i—th coordinate, e’(v) = a;. Note that e’ is characterized by

¢'(eg) =05 = {0 if § £ §.
Proposition A.3.4 ([37, Prop. 3.1]). The functions e', ..., e" form a basis for V*.
This basis {e!, ..., "} for V* is called the dual basis of the basis {e1, ...,e,} for V.

Corollary A.3.5 ([37, Cor. 3.2]). A vector space V' and its dual V* have the same dimension.
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Let V and W be vector spaces and T:V — W be a linear map, T induces a linear map
T*:W* — V* called the adjoint of T as follows: let f € W* then T*(f) = foT € V*.

The linear map 7' is determined by a matrix A with respect to bases of V and W, where
T* is associated with the transposed matrix A* with respect to the dual basis. Since the
map

Vs Hom(V, W) Hom(W*,V*)

Ar— A

is continuous we have a (contravariant) continuous functor.

A.3.2 Homg(V,W)

We have the continuous functor of two variables

Homp: Vectr x Vecty Vecty
Vv V' Homg (V, V")
Z”I R l — Homg (T, R)
%% w’ Homg (W, W)

Let us considerer
Homg (W, V) x Homg(V', W) — Homg (Homg (V, V'), Homg (W, W’)) (A1)
(T, R) — Homg (7, R)
Where:
Homg (T, R): Homg(V, V') — Homz (W, W'), (Homa(T, R))(f) = Ro foT.

One can see that (A.1) is a continuous map, therefore the functor Homg is a continuous
functor.

Remark A.3.6. V* is a particular case of the functor Homg (V, W) taking W = R.

A.3.3 Direct sum VoW

Definition A.3.7. Let V and W be vector spaces over R, the direct sum of V and W is
defined by
VoW =VxW={(v,w)|veV,we W}

Let (v1,wn), (v, we) € VB W, X € R, we define
(v, wy1) + (v, we) = (v1 + Vo, w1 + ws), A(vy,wr) = (Avg, Awy).

By definition of this vector space we have dim (V' & W) = dim (V') + dim (W).
Let V, V', W and W’ be vector spaces over R, let T:V — W and R: V' — W' be linear
maps, we define the linear map

TOERVeV ——WaeW
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by (T'® R)(v,v") = (T'(v), R(v")). This defines the map.

V@ W:Homg(V, V') x Homg(W, W)
(T, R)

Homg (V& W, V' & W)
THR

The linear maps 1" and R are determined by matrices A and B respectively, with respect to
bases of V, V', W, W’. With respect to the bases of V@& V' and W & W' T & R is associated

0 g) which continually depends on A and B. Therefore, V@ W is a

covariant continuous functor of two variables.

with a matrix (

A.3.4 Multilinear maps

The Cartesian product of k copies of a vector space V is denoted by VF =V x ... x V.

Definition A.3.8. Let Vi,..., Vi, W be vector spaces. A map T:V} x ... x V,, — W is
k—multilinear if it is linear on each of its k arguments: for each ¢ € {1,...,k}, if all of the
variables but v; are held constant, then T'(vy, ..., vx) is a linear map of v;.

Example A.3.9. The dot product f:V? — R" denoted by f(v,w) = v - w is bilinear: let
v = ZazeZ and w = Zbez, a;,b; € R then

=

n

= Z a;b;

i=1
Example A.3.10. The determinant f(vy,...,v,) = det(v;...v,), viewed as a function of

the n column vectors vy, ...,v, € R" is n-linear.

Definition A.3.11. Let VV and W be real finite dimensional vector spaces. A pairing of V
and W is a bilinear map (, ):V x W — R. A pairing is called non-singular if whenever
w # 0 in W, there exists an element v € V such that (v, w) # 0, and whenever v # 0 in V/,
there exists an element w € W such that (v, w) # 0.

Let A € C, the bar X denotes the conjugate of \. If A € R, X = \.

Definition A.3.12. Let V be a vector space over the scalar field K = R, or C. An inner
product on V' is a function (, ): V' x V' — K that assigns to each pair of vectors v,w € V" a
scalar (v, w) in K with the following properties: For all v,u,w € V and a € K

1.

= <U,U)> + <uvw>>

)

) = a,w),
(v,u+w) = (v,u)+ (v,w),

) = a(v,w).
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2. (v,w) = (w,v).

3. Positive Definiteness: (v,v) > 0. If (v,v) = 0 if and only if v = 0.

4. If (v,u) = (v,w) for all v € V, then u = w.

A vector space V endowed with a inner product is called an inner product space.

Example A.3.13. Let V be a real inner product space, by the positive definite condition
we have that the real inner product of V' is an example of a non-singular pairing.

Definition A.3.14. Let V be a vector space. We define
Mult®(V) = {n: V¥ — R |7 is a k-multilinear function}.

Also, let V., W be two finite dimensional vector spaces and T:V — W be a lineal map,
we have the linear map
Mult®(T): Mult*(W) — Mult* (V)
n—no(Tx...xT).

The functor Mult® is a continuous functor, because the following map is continuous

Mult®: Homg (V, W) Hompg (Mult® (W), Mult*(V))
T+ Multh(7).

A.3.5 Tensor product V @ W

Let V, W be two vector spaces over R of dimension n and m respectively. Let {eq,...,e,}
be a basis of V and {fi,..., fin} be a basis of W. Let us consider the symbols of the form
;@ fjwithl<¢<mnand1l <j <m. Let V®W be the vector space generated by the
symbols e; ® f;. The vector space V ® W is called the tensor product of V- and W.

Note that dim (V @ W) = dim Vdim W = mn, see [30, Thm. 8.3.1].

Let v € V and w € W, then we have

n m
v:Zaiei, w = ijfja Cli,bj € R.
i=1 j=1

We define the bilinear map T:V x W — V @ W, by

n m

T(v,w) => ) abje; @ fj. (A.2)

i=1j=1

We will denote Y (v, w) by v ® w.
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Theorem A.3.15 (Universal property of tensor product, [31, Prop. 2.2.1}).

Let V.W, Z be finite dimensional vector spaces over R and let T:V x W — V@ W be the
bilinear map (A.2). It has the property that given any bilinear map R:V x W — Z, there
exists an unique linear map S:V @ W — Z such that the diagram below is commutative.

V xW

Vew

»

A

R

Remark A.3.16. If Z =R and W =V, since the bilinear map R induces a linear map S,
then Mult*(V) = (V @ V)*.

Example A.3.17. Let {ey,...,e,} be the standard basis for R” and let {e!,...,e"} be its
dual basis. The dot product on R™ is the bilinear function f:R"™ x R* — R defined in
example A.3.9 by

flo,w) =v-w.
We can express f in terms of the tensor product:
flo,w) =Y aib; = e'(v)e'(w) = (' ®e)(v,w).
i=1 i=1 i=1

Theorem A.3.18 ([36, Thm. 8.3.3)). Let U,V and W be finite dimensional vector spaces.
Then there are natural isomorphisms:

Ug(VeW) = UaV)e UaW). (A.3)
UeV = Vel (A.4)
UeV) = UV~ (A.5)

Let T:V — V' and R:U — U’ be linear maps, they induce a linear map:
TORVU —V' U, (TO®R)(vdu)=Tw) ® R(u)
which continually depends on 7" and R. Then, we have a continuous functor

®: Hom(V, V') x Homg(W, W') — Homg(V @ V!, W @ W)
(T,8)—T®S.

By induction we can define the tensor product of n (possibly distinct) vector spaces which
is a continuous functor of n variables.
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A.3.6 k—th tensor power T%(V)

Let V' be a vector space over R, we define

If k = 0, TH(V) = R.

Let V be a vector space and {ej,...,e,} be a basis for V. It defines a basis for T*(V)
consisting of the n* elements of the form e;, ® ¢;, ® ... ® ¢;, where 1 < dy,....4, < n. In
particular T*(V) has dimension n*.

Theorem A.3.15 can be extended to several vector spaces.

Theorem A.3.19 ([13, Sec. 1.20]). Let Vi,..., Vi, Z be any k + 1 vector spaces and let
T:Vix...xVi — Vi®...®V} be the k—-multilinear map which generalizes (A.2). For any k-
multilinear map R:Vix...xV, —» Z, there exists an unique linear map S:Vi®...9V, — Z
such that the diagram is commutative.

~

T
Vix...xV, Vi®...0V
. O
R S
Z
Let V and W be vector spaces of dimension n and m respectively. Let {ej,...,e,} be a

basis of V.
Let T:V — W be a linear map, we have T*(T): T*(V) — T*(WW) in basic elements is
given by TH*(T)(e;, @ ... ®e;) =T(e;,) @ ... 0 T(e;,).
T*(T) is a continuous functor because the following map is continuous
T,y : Homg (V, W) Homg (T*(V), TH(W))
T —~  TKT).

Remark A.3.20. By Theorem A.3.19,if V; =V forallt=1,...,k and Z = R we have the
composition of continuous functors Mult”(V') = (T*(V))* = T*(V*) and a correspondence
between k—multilinear maps and linear maps.

A.3.7 k-th symmetric power S*V
Definition A.3.21. Let V and W be vector spaces. A k—multilinear map of the form

n: VF — W, (v1,v9, ..., vg) —> n(v1,v2,...,0k) ,

is symmetric if
77(1)0'(1)7 Vs (2)y - - - 7,00'(]6)) - 77(,017 V2, ... 71)16‘);

for every ¢ € Sj and any argument vectors vy, ..., v € V.
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Example A.3.22. The dot product f(v,w)=v-w on R" is symmetric.
Definition A.3.23. Let V be a vector space over R of dimension n. We define

Sym"V := {n: V¥ = R | nis a symmetric k-multilinear function}

for each k € N with Sym°V := R.

The set Sym*V is a vector space over R in the usual manner:

(wWH+n)(v1,...,v) = wvr,...,v8) +n(vy, ..., v8),
Aw)(v1, .. ) = dw(vy,..., ), A €ER.

Let V be a vector space of dimension n with basis {e, ..., e,}. The k—th symmetric power
of V is S¥V the set of homogeneous polynomials of degree k in the variables {e;, ..., e,}. It
is a vector space of dimension ("H;H).

Let v1,...,v, € V, then

V1 = ape;+...+ae,
Vg = a91€1 + ...+ aopnéy
VUp = QApi€1+ ...+ Gppep

One can see v; = aq;1€1+. . . +a;ne, as an homogeneous polynomial of degree 1 in the variables
K] 7 m-n

{61, ey en}.

We define the linear map

S:Vk — Sk (A.6)
(U1, .., 0k) o v = (anner + oo F apen) oo (@pier oo F apnen).
We denote S(v',...,v*) by vl .. -0k

We have the following universal property.

Theorem A.3.24 ([30, Thm. 10.1.3 and Thm. 10.5.1}). Let V' be a vector space of dimension
n and an integer k > 0, let S:V* — S*V be the map (A.6), then S is a symmetric k-
multilinear map such that if W is a vector space of finite dimension and R:V* — W is a
symmetric k-multilinear map, then there exists an unique linear map T: S*V — W such
that the diagram below is commutative

v 2 gy
R\\O T
W

If W = R, one can see that Sym*V = (S*V)*.
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Example A.3.25. Let V and W be vector spaces and T:V — W be a linear map, it
induces the linear map
SET: SFV — S*W
v v T(vy) o Twg).
The functor S* is a continuous functor, because the following map is continuous
Sty Homg (V, W) Homg (S*V, S¥W)
T SET.

A.3.8 k-th exterior power A*V
Definition A.3.26. Let V and W be vector spaces. A k-multilinear map n: V¥ — W is

called alternating if

N(Vo(1) Vo(2): -+ Vo(k)) = 5g0(0)1(01, V2, - -, vk)

for every o € S; and any argument vectors vy,...,vp € V.

Proposition A.3.27 ([24, Lemma 2.7]). Let w:V*¥ — R be a k-multilinear map, if
w(v1,...,vx) = 0 for all k—tuples with v; = v;1q for all 1 < i < k — 1, then w is alter-
nating.

Examples A.3.28.

1. The determinant w:R" —s R, w(Xy,...,X,) = det(x;y...%,), where (x;...x,) de-
notes the n x n matrix whose columns are x1,...,X,, then w is alternating.

2. The cross product v x w on R? is alternating.
The set
AltF(V) = {n: V¥ — R | n is an alternating k-multilinear map},

is a vector space over R in the usual manner:

(wW+n)(v1,...,v) = wvg,...,v8) +n(vy, ..., v8),
(Aw)(v1, .. ) = dw(vy, ..., ), A E€R.

Definition A.3.29. Let V be a vector space over R of dimension n and {e;,...,e,} be a
basis of V. We consider the symbols of the form e;; A... Ae;, with1 <7 <... <1 < n.

We have (Z) elements.

The k-th exterior power of V is the vector space generated by elements e;; A ... A e;,,
this set is denoted by A¥V, for each k € N with A’V := R.
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Theorem A.3.30 ([24, Thm. 16.7]). Let V be a vector space of dimension n, if {ei1,..., e}
is a basis for V', then {e;;, N ... Nej |l <y < ... <, <n} is a basis for the vector space
ARV, this basis has dimension (Z) Also, there is a natural isomorphism A*V* = (AFV)*.

Proposition A.3.31 ([36, Thm. 9.3.2]). Let V' be a vector space of dimension n, if n < k,
then A*V = 0. Also, dim (A"V) = 1.

Let vy,...,v, € V, then

v1 = ape+...+ A1n€n
Vo = (9161 + ...+ Aop€y
VUp = GQp1€1+ ...+ appén

We define the alternating k-multilinear map

0:VF — ARV (A7)
(Ul,...,Uk) — Z det(A“ ..... ik)(eil /\/\elk)
eil/\.../\eik
where A;, ; is a k X k submatrix of A = (a;;) which is obtained by taking the columns
Given the elements vy, ..., v, € V we denoted ©(vy,...,vx) by vy A... Avg. The map ©
and the vector space A*V satisfy the following property.

Theorem A.3.32 ([30, Thm. 9.1.3]). Let V be a vector space of dimension n, let k € N,0 <
k <n and ©:VE — A*V the map (A.7). Then © is an alternating k-multilinear map,
such that for every vector space Z of finite dimension and R:V* — Z an alternating k-
multilinear map, then there exists an unique linear map R: A*V — Z such that the following
diagram is commutative o

Vk

AV
O p

‘.

Z
Remark A.3.33. If Z = R, we have Alt"(V) = (A*V)*.

R

Let V and W be vector spaces of dimension n and m respectively. Let T:V — W be a
linear map. It induces a linear map A*T: A¥V — A¥IV which in basic elements is given by
We get a continuous functor of one variable.
AV Homg (V, W) Hompg (A*V, AFW)

T — + AT

In relation to the k—th exterior power of a vector space we have the following bilinear
map.
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Definition A.3.34. Let V be a real vector space of dimension n. The contraction on AFV*
is a bilinear map

3V ox ARV — ALY
it veVandov!,...,vF € V* it is given by

A.3.9 Graded algebras

In the thesis we will consider some examples of algebras.

Definition A.3.35. An R-algebra A consist of a vector space over R and a bilinear map
w: A x A — A which is associative, that is, for every a,b,c € A

/L(CL, N(bv C)) = :u(:u(a’ b)? C)'

Definition A.3.36. An R-algebra A is graded if it can be written as a direct sum
A =P AF
k=0

of vector spaces over R so that the multiplication map sends A* x A! to A+,

The notation A* = @ A* means that each element of A is uniquely a finite sum
k=0

a=a;y,+...+a,,

where a;; € Al The elements in A* are said to have degree k.

Definition A.3.37. A graded R-algebra A°* is called graded anticommutative if

(a,b) = (1) (b, a)

for all a € A% and b € A’

Tensor algebra @, T*(V)
Definition A.3.38. We define -
(V) =D THV).
k=0

On T*(V) we have a product map.
Definition A.3.39. Let V' be a vector space, we define the bilinear map

p: TE(V) x THV) — THY(V), (A.9)
(v,w) = v w.
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For every v € T*(V) and w € TY(V).
If we consider V*, identifying T#*(V*) with the k—multilinear functions (see Remark A.3.20),
the product map (A.9) can be seen as

p THV*) x THV) — TV, (w,n) = w @,

where w is a k—multilinear map and 7 an [-multilinear map on V and w ®  is a (k + )—
multilinear function w ® 1 defined by

(WM (V1y- -y Vgst) = W(V1, ooy V)N(Vkt1y -+ -y Vkt)-
Where (v1, ..., vp4) € VEFL
Theorem A.3.40 ([38, Cor. 18.19]). The product (A.9) is associative: if v,w,u € V', then
(RW)Qu=v& (v u).
By Theorem A.3.40 T*(V) is associative. The graded algebra T*(V') is called the tensor
algebra over V.
Exterior algebra &5° AV

We define .
AV = @ AFV.

k=0
We want to give a structure of graded algebra to A®*V, for that, we need to define a product.

Definition A.3.41. We define the wedge product as the bilinear map
ANARV X AV — ATV (0,w0) = v A w. (A.10)

If we take V*, identifying A*(V*) with the alternating k—multilinear functions the wedge
product (A.10) can be seen as

A ARV VY s AFHY
for each w € A¥V* and n € A'V* is defined by

(WA (v1, .. ) = Z SgN ()W (Vo(1ys - - - 5 Vo (k)N (Vo (kt1)s - - - » Vor(ketl))-
oeS(k,l)

Where (vy,...,vy) € VEFHL
When k =1 =1 it is given by
(WA D) (01, 02) = w(vr)n(v2) = nv)w(vs).

Where vy,vy € V.
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Lemma A.3.42 ([21, Lemma 2.7)). For any fi,..., fr € V* and any vy, ..., v € V we have

fitvr)  filv2) o fulor)

(LA A )0, 0g) = det f2(:U1) f2(:02) f2(:7]k)

fw)) folws) - fulon)

In particular, we can express it as:

(fiNo oA fe) (v, oe) = D sgno fi(veq)) < - -+ fe(Vor))- (A.11)

oSy,

We have that w A 7 is an alternating (k + [)-multilinear map, that is:
Proposition A.3.43 ([21, Lemma 2.6]). If v € A*V and w € A'V then v Aw € AV,

Proposition A.3.44 (|21, Lemma 2.8]). The wedge product is anticommutative, that is, if
v € APV and w € A'V, then
vAw = (—1)Fw Av.

Proposition A.3.45 ([24, Lemma 2.9]). Let V be a real vector space and v € AV, w €
AWV,u € A™V. Then
(vAw)ANu=vA(wAu).

The basic formal properties of A®*V can now be summarized in
Theorem A.3.46 ([21, Thm. 2.12)). A*V is an anticommutative graded algebra.

A*V is called the exterior or alternating algebra of V.

A.4 Orientation

Let V be a real vector space of finite dimension n, we considerer the set of all ordered bases
of V.

Definition A.4.1. Let V be a vector space of dimension n with ordered basis a and § given
by a = {ay,...,a,} and 8 = {by,...,b,}. Let A be a matrix n x n such that Ab; = a;. The
matrix A is called the transition matriz of 5 to «.

Note that every transition matrix is invertible, then any transition matrix has det(A) > 0
or det(A) < 0.

We define an equivalence relation of the set of all ordered bases of V' as follows: two
ordered bases of V' being equivalent if and only if their transition matrix has positive deter-
minant.

Definition A.4.2. An orientation of V' is a choice of one of these equivalence classes. To
indicate an orientation in a vector space we will generally give a basis representative of that
equivalence class.
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A.5 Inner product space

In this section we will focus on vector spaces endowed with an inner product and describe
the linear applications over these spaces. In chapter D we will return to some of the following
notions.

Definition A.5.1. Let V be an inner product space. For v € V, we define the norm of v
1
by [|v]| = (v, v)=.

Definition A.5.2. Let V be an inner product space.
1. Two elements v,u € V are orthogonal if (v, u) = 0.

2. Let S be a nonempty subset of V', we define the orthogonal complement of S

St ={v e V|(v,u) =0 for all u € S}.

3. A vector v € V is an unit vector if ||v|| = 1.
4. A subset S of V' is orthonormal if S is orthogonal and consists entirely of unit vectors.

Let V' be an inner product space if v, w are orthogonal elements we have the Pythagorean
relation

[lv +wlf* = [Jo][* + [Jw]]*. (A.12)
More generally, if {vy,...,v,} is an set whose elements are orthogonal to each other, then
g + .o Fva|)? = (o] P44 o] 2 (A.13)

Lemma A.5.3. Let V' be an inner product space if v,w are orthogonal elements then
1
o+ wll = S (vl + [fwl])- (A.14)

Proof. By relation (A.12) we have ||v + w|| > ||v|| and ||v + w|| > ||w]|| then 2||v + w]|| >
[0l + [Jwl], that is, |[v +wl| > 3(|[v]] + [[w]])- m

Lemma A.5.4 (Linear independence). Let V' be an inner product space and S C V. If S is
an orthonormal set, then S is linearly independent.

Proof. Let {vy,...,v,} be an orthonormal set and consider the equality
av1 + ...+ a,v, = 0.
Set v; a fixed element, we take the inner product for this element, then
<Z az‘via%‘> =>_ai{vi,vj) = a;{v;,v;) = a; = 0.
i=1 i=1

Therefore any finite orthonormal set is linearly independent. 0



Appendix B

Differential geometry

The objective of this appendix is to introduce the necessary definitions and results of differ-
entiable manifolds, in particular, we are interested in describing the tangent space.
For topics related to this section consult [9] and [31].

B.1 Topological manifolds

We will first see the topological structure of a differentiable manifold.
Definition B.1.1. A topological space is second countable if it has a countable basis.

Definition B.1.2. A topological space M is locally homeomorphic to R™ if for each point
p € M there exists an open neighbourhood U of p and a homeomorphism h: U — U’ onto
an open set U’ C R".

Definition B.1.3. An n-dimensional topological manifold M is a Hausdorff and second
countable topological space, which is locally homeomorphic to R™.

For the dimension to be well defined, it is important to know that for n # m an open
subset of R™ is not homeomorphic to an open subset of R™, this result is called Invariance
of dimension, see [37, Cor. 8.7]. However, if a topological manifold has several connected
components, it is possible for each component to have a different dimension.

Examples B.1.4. Consider S™ = {z € R""!|||z|| = 1} and the 2-Torus as a closed surface
defined as the product of two circles. Every open subset of Euclidean space, the n—sphere
S™ and the 2-torus are examples of topological manifolds.

The requirement that the space must be Hausdorff does not follow from the local condition
as the following example shows.

Example B.1.5. An example of a topological space locally homeomorphic to R™ that is not
Hausdorff is to take the real line R, together with an additional point p. Define the topology
on M = RU {p} by saying that R is open and that the neighbourhoods of p are the sets
(U —{0}) U {p}, where U is a neighbourhood of 0 € R.

133
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Recall that the Hausdorff condition and second contability are hereditary properties,
that is, a subspace of a Hausdorft space is Hausdorff, analogously, a subspace of a second
countable space is second countable. So any subspace of R" is automatically Hausdorff and
second countable.

Definition B.1.6. Let M be a topological manifold and ¢: U — U’ a homeomorphism of
an open subset U C M onto an open subset U’ C R", then ¢ is called a chart of M and
U is the associated chart domain, the chart is traditionally indicated by the pair (U, ). A
collection of charts {(Us, ¢a)}aca With domains U, is called an atlas for M if

U Ua =M.

acl

Example B.1.7. The Euclidean space R" is covered by a single chart (R", idg»), where
idgn: R™ — R™ is the identity map. This space is a topological manifold. Also, every open
subset of R™ is a topological manifold, with chart (U, idy).

B.1.1 Differentiable manifolds
We want to introduce the notion of differentiable manifold.

Definition B.1.8. Let M be a topological manifold. Let (U,,¢,) and (U, pg) be two
charts of M such that Uy = U, N Uz # 0. We define the chart transformation p.p =
0500t 00(Uns) — p5(Uap) as a homeomorphism between open subsets on R™ by means
of the commutative diagram:

Ul D 0a(Uag) ps(Uag) C Ug

O
Pa ¥s
Uap

For the chart transformations ¢,3, wherever the respective maps are defined, it is clear
that Yaa =1id, gy © Yas = Yay Where U, NUg N U, # 0, it follows that gp&é = PBa-

Definition B.1.9. An atlas of a manifold is called differentiable, if all its chart transforma-
tions are differentiable.

Recall that a function between open subsets of R" is differentiable if its partial derivatives
exist and are continuous.

Definition B.1.10. Let U C R™ and V' C R" be open subsets. A differentiable func-
tion f:U — V is called a diffeomorphism if it is bijective and has a differentiable inverse
v —U.

Since gpgﬁl = ©ga, the inverses of the chart transformations are also differentiable and the
chart transformations are diffeomorphism.

Let U be a differentiable atlas on the manifold M. Let D = D(U) be the atlas that
contains precisely those charts for which every chart transformation with a chart from U is
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differentiable. The atlas D is then differentiable as well, since one can locally write a chart
transformation ¢g, in D as a composition pg, = @ay © Ygs of chart transformations for a
chart ¢, in D, and differentiable atlases is a local property. As an element in the family of
differentiable atlases, the atlas D can obviously not be enlarged by the addition of further
charts, and it is the largest differentiable atlas which contains U, thus each differentiable
atlas unequivocally determines a mazimal differentiable atlas D(U), so that U C D(U); and
D(U) = D(B) if and only if the atlas & U B is differentiable.

Definition B.1.11. A differentiable structure on a topological manifold is a maximal differ-
entiable atlas. A differentiable manifold is a topological manifold, together with a differen-
tiable structure.

Example B.1.12. As example B.1.7, the Euclidean space R" is a differentiable manifold
with a single chart (R",idg~), this atlas determines a differentiable structure.

Example B.1.13. Any open subset V' of a differentiable manifold M is also a differentiable
manifold. If {(Uy, ¥a) taea is an atlas for M, then {(U, NV, @al|v.av) taeca is an atlas for V|
where

90a|UQﬂV3 uv,.NV — R"
denotes the restriction of ¢, to the subset U, N V.

Definition B.1.14. Let M be an n + k—dimensional differentiable manifold. A subset
N C M is called an n—dimensional differentiable submanifold of M if for every point p € N,
there exists a chart around p p: U — U’ C R*"™* = R" x R* with ¢(p) = 0 € R"™* 5o that

e(NNU)=U"N(R" x {0}).

The number k£ = dim M — dim N is called the codimension of the submanifold. That is,
locally the submanifold N lies in M as R" lies R"*.

Definition B.1.15. Let M and N be differentiable manifolds of dimension m and n respec-
tively. A continuous map f: M — N between differentiable manifolds is said to be differen-
tiable at the point p € M if for some (and therefore for every) chart p:U — U’ C R™,
p € Uand ¢:V — V' C R", f(p) € V of M and N respectively, the composition
pofop U C R™ — V' C R is differentiable at the point p(p) € U’. The map f
is called differentiable if it is differentiable at every point p € M.

Note that this map is defined in the neighbourhood ¢(f~*(V) NU) of ¢(p). This def-
inition is independent of the choice the chart (U, ¢), since the chart transformations are
differentiable.

The identity map of a differentiable manifold is differentiable, the composition of differ-
entiable maps is differentiable, see [31, Thm. 6.9].

In definition B.1.10 we define diffeomorphisms between open subsets of R", but in general
we have the notion of diffeomorphism between manifolds.
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Definition B.1.16. The map f: M — N is a diffeomorphism if there is a differentiable
map g: N — M, so that fo g =1idy and g o f = idy,, in other words, f is bijective, and
f~1is also differentiable.

We can consider the category whose objects are manifolds and morphisms are differen-
tiable maps, which we will denote by Diff.

B.1.2 Manifolds with boundary
Let R} = {z € R" | z,, > 0} be the closed Euclidean half-space.

Definition B.1.17. Let M be a second countable Hausdorff space, M is an n—dimensional
manifold with boundary if is locally homeomorphic to R”,. An n-dimensional differentiable
manifold with boundary is a pair consisting of a n—dimensional manifold with boundary M
and a maximal differentiable atlas U for M.

Definition B.1.18. Let M be an n—dimensional manifold with boundary. At each point
p € M, which is mapped by some (and hence by every) chart about p to a point with
r, = 0, is called a boundary point of M. The set of boundary points of M is canonically an
(n — 1)-dimensional manifold, denoted by M and called the boundary of M.

Definition B.1.19. A closed manifold is a compact manifold without boundary.

B.2 Tangent space

Problems in differential topology often divide into local and a global parts, we will study the
local part, then the key notion is the tangent space at a point.

For local descriptions in addition to considering maps f: M — N defined on all M, also
consider maps which are defined only in a neighbourhood of p € M. Two such maps can be
considered as equal if they agree in a neighbourhood. On the set of differentiable maps

{f:U — N|U is a neighbourhood of p € M}

we define the following relation: let f: U — N and g: U" — N be differentiable maps, then
f ~ g if and only if there is a neighbourhood V of p, V.C UNU’, so that f|y = g|v.
The relation ~ is an equivalence relation.

Definition B.2.1. An equivalence class for this relation is called the germ of a map f: M —
N at p. We denote such a germ by f: (M, p) — (N, f(p)).

Given germs f:(M,p) — (N, f(p)) and g: (N, f(p)) — (L, g(f(p))), one obtains a
composition go f: (M,p) — (L, g(f(p))) as the germ of the composition of suitable repre-
sentatives.

We consider the category of all pointed differentiable manifolds and differentiable germs,

which will be denoted by Diff,.
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Definition B.2.2. Let f:(M,p) — (N, f(p)) be a differentiable germ, we say that f is
an invertible germ if there is a germ g: (N, f(p)) — (M,p) such that fog = idy and

Remark B.2.3. If f: (M,p) — (N, f(p)) is an invertible germ then there is a representative
map f:U C M — N which is a local diffeomorphism.

Definition B.2.4. A function germ is a differentiable germ ¢: (M, p) — (R, ¢(p)).

The set of all function germs at p € M will be denoted by C;°(M), while the set of all
differentiable germs f: (M,p) — (N, f(p)) will be denoted by C°(M, N).

The addition and multiplication in the set C3°(M) are defined by the corresponding
operations on representatives, thus C;O(M ) has the structure of a real algebra.

A differentiable germ f:(M,p) — (N, f(p)) induces by composition a homomorphism
of algebras

i CR(N) — C(M) (B.1)
drrdof=gof

Let us considerer ids: (M, p) — (M, p) this induces the homomorphism id*: Cp°(M) —
Ce(M) then
id* = idose (ar)- (B.2)

Let g: (N, f(p)) — (L,g(f(p))) be a germ, we have

(gof) =fog" (B.3)

Consider the category whose objects are real algebras of type C;)’O(M ) and morphisms are
homomorphism of real algebras. We will denote this category by Alg.

Properties (B.2) and (B.3) imply that we have a functor from the category of pointed
differentiable manifolds and differentiable germs to the category of algebras and homomor-
phisms defined by

Diff, Alg
(M.p) e Co(M)
7 b
(N.q) CE(N)

By Proposition A.1.9 the functor applied to an invertible germ is an isomorphism of algebras:
Fof ' =idy then (f~1)*o f* = idy. For example, if we take a chart ¢ about p, which defines
an invertible germ @: (M, p) — (R",0), therefore we have an isomorphism ¢*: Cg°(R") —
Cr(M).
Let ¢ be a chart about p, taking the composition with translations, we have ¢(p) = 0.
We simply denoted C;° = C5°(R"), then to study Cp°(M) is equivalent to study C7°.
Now, we will define the tangent space.
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Definition B.2.5. A derivation of C3°(M) is a linear map X: C;°(M) — R which satisfies
the product rule (Leibniz rule)

X(¢o1p) =X(4) o v(p) + ¢(p) o X (). (B4)

Definition B.2.6. The tangent space T,M of the differentiable manifold M at a point p is
the set of derivations of C°(M).

Definition B.2.7. Let f: (M, p) — (N, f(p)) be a differentiable germ. Let f*: C%, (N) —
C°(M) be the induced homomorphism given in (B.1). The differential of f at p (or the
linear tangent map) is defined by

D,f: T,M —s Ty, N, (B.5)
X — X o f*,

Note that a linear combination of derivations is again a derivation, then the set of deriva-
tions forms a vector space. We can see that the differential is linear.
The definition of the differential implies that for a function germ ¢: (N, f(p)) — (R, o(f(p)))

Dy f(X)(¢) = X o f*(¢) = X(do f). (B.6)

Consider the function germ of the constant function with value 1, T: (M, p) — (R, 1),
let X € T,M, by the Leibniz rule it follows that X (1) = X (1) + X (1), therefore X(I) = 0.
Thus, for each function germ of a constant function with constant value ¢ € R, we have by
linearity that

X(e) = 0. (B.7)
~ From the functorial properties (B.2) and (B.3) of *, it follows that for the composition of
[+ (M, p) — (N, f(p)) and g: (N, f(p)) — (L, g(f(p))), one has the property

Dy(go f) = Dypygo Dy f

for the differential of g o f. This property is called the chain rule.
Now, if @: (N,p) — (R™,0) is the germ of a chart, then the induced homomorphism
©*: O3 — C°(N) is an isomorphism, as well as the differential of ¢ at p

Dyp: T,N — TyR".

Now, we will describe a basis of TyR™.

Lemma B.2.8. Let x € U be an open ball around the origin of R™ or R™ itself, and f: U —
R a differentiable function, then there exist differentiable functions ¢1,...,¢,:U — R so
that

f(x) = £(0) + lexiasi(x)

Where x = (21, ...,2,) € R™
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Proof. By Fundamental Theorem of Calculus:

£(x) — £(0) = /O1 Lttt

We can consider g: R — R" define by g(t) = (txy,...,tx,) = tx. By the chain rule we have

Df(ex) Datt) = (3. 5L o )( ) 3 g2,

Tn
Then
1 d
o dt
1
= / Df (tx)Dg(t)dt
= / 8% (tx)x;dt
_ ;x/o 8@( L tzy)dt.
We define
oi(x) = /1 of (tx tz,)dt
[ - 0 axl 1y n .
Therefore,

(%)~ £(0) = i}fi¢i<x)

fx) = f<o>+zixi¢i<x>

O
Among the derivations of the algebra C7° are the partial derivatives, which we denoted
by

0 ad | — 0¢
O R, — = 0).
axi . n 7 K, 81‘2 . (¢) 8371( )
Theorem B.2.9. The % o 1=1,...,n, form a basis of the vector space ToyR" of derivations

of Cr°.

Proof. Let a; € R.
If the derivation Z a; ( Ba, ‘0> = 0, then, in particular, one obtains for 7,: R®™ — R, the

p1—th coordinate functlon

" 0T
au:Z(%;(aj

) =0
Li |g
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for each u =1,.
Therefore the { 8‘9 ‘ } is a linearly independent set.

Now, let X € ToR™ and X (7;) = a;. We see that X = En: a; ai 0
i=1 ¢

Set Y .= X — > a; ai- .
i=1 i

Since %‘0 are derivations for each ¢ = 1,...,n, and X is a derivation of ToR", then Y

is a derivation.
Now, by construction, Y (7;) = 0 for every coordinate function. If ¢ € C° is an arbitrary
function germ, then by Lemma B.2.8 we get

¢ =(0) + Enj T,0,.
v=1

Since Y is a derivation, we apply the Leibniz rule, equation (B.7) and the definition of the
v—th coordinate function we obtain

M:

Y(g) = xugbv

Il
&\

i 0) +T(0)Y (@)

Therefore,

X = Zaz (%UZ )
O
Let M be an n—dimensional differentiable manifold, note that the tangent space at a point
has dimension n as vector space, so that the dimension is indeed unequivocally defined. If U
is an open set containing p in M, then the algebra C3°(U) of germs of differentiable functions
in U at p is the same as C3°(M), then T,U = T, M.
Let (U, ) = (U, x4, ...,x,) be a chart about a point p in a manifold M, where each x; is
a coordinate function of . Let rq,...,7, be the standard coordinates on R". Then

ri=riop:U — R.

If f is a differentiable function in a neighbourhood of p, we define % = Dot ( a?«)v by
7 p 7
definition (see (B.2.4))

a5 0 1
o pf. o7 (fop™).

Theorem B.2.10 ([9, Thm. 2.4]). Let M and N be differentiable manifolds of dimension n

and m respectively. Let (U, xq,...,x,) and (V,y1,...,ym) be two charts around p € M and

q € N respectively, then the derivations 8%,-’ a%j form bases of the vector spaces T,M and
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T,N respectively, and the differential of a germ f:(M,p) — (N, q) with respect to these

bases is given by Jp(0): R" — R™, where J;(0) is the matriz J;(0) = (%)1<,< i
J SISN, LS )sm

The matrix J¢(0) is called the Jacobian matriz of f.

Theorem B.2.11 (The inverse function Theorem, [9, Thm. 5.1)). Let f: M — N be a
differentiable map between differentiable manifolds and suppose that Dy f: T,M — Tjq, N
s a linear isomorphism at a point p € M. Then there exist a neighborhood U of p in M such
that the restriction of f to U is a local diffeomorphism onto a neighborhood V' of f(p) in N.

B.2.1 Orientation

Let us remember Definition A.4.2 of orientation of a vector space, now we will define orien-
tation of a manifold.

Definition B.2.12. Let M be a differentiable manifold with boundary, an orientation of M
is a differentiable choice of orientations for all the tangent spaces T,,M.

Also, we say M is orientable if it may be given an orientation. If so, then M admits at
least two different orientations, for if one is specified we need only reverse the orientations
of each tangent space to obtain the opposite orientation.

Theorem B.2.13 ([16, Prop. 3.25]). A connected, orientable manifold admits exactly two
orientations.
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Appendix C

Vector Bundles

In this appendix we will introduce vector bundles, we will also describe the ways of cons-
tructing these objects.
The books that the reader can consult are [17] and [9].

Definition C.0.1. Let E and B be topological spaces. A real vector bundle of rank n over
B is a continuous surjective map m: ' — B such that it satisfies the following properties:

1. For each b € B, the fiber over b, E, = m1(b), has a vector space structure of dimension
n over R.

2. Local triviality: There is an open cover {U, taen of B such that for each o € A there
exists a homeomorphism h,: 7 (U,) — U, x R" which makes the following diagram

commute
ha
71 (U,) Uy, X R
N O /1
Ua

taking 71(b) to {b} x R™ by a vector space isomorphism for each b € U,. Such an h,
is called a local trivialization of the vector bundle.

The space B is called the base space, E is the total space, 7 is the projection, the vector
spaces FEj are the fibers and m is the projection on the first factor. We denote the vector
bundle by (E, 7, B)

Example C.0.2. The product bundle m: E = B x R" — B with m; projection on the first
factor.

Definition C.0.3. Let (E,m, B) be a vector bundle, a pair (U, h) where U is a open subset
of B and h is a local trivialization such that satisfies the axiom of local triviality is called a
bundle chart.

143
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Definition C.0.4. A wvector bundle map f between two vector bundles m: E — B and
7' B/ — B with the same base space is a continuous map f: £ — E’ such that 7 = 7’ o f,
that is, the following diagram commute

E—I . pg
N

Definition C.0.5. An isomorphism between vector bundles 7: £ — B and 7": £/ — B
is a homeomorphism h: E — FE’ taking each fiber 771(b) to the corresponding fiber 7'~!(b)
by a linear isomorphism.

E h | g
W\O/w
B

If there is an isomorphism between two vector bundles, we say that they are isomorphic.

Definition C.0.6. Let m: E — B be a vector bundle of rank n. (E,m, B) is called a trivial
bundle if is isomorphic to the product bundle 7;: B x R" — B.

If we consider vector bundles over a fixed base space B as objects and vector bundle maps
as morphism, we have a category, denoted by VB(B).

Definition C.0.7. Let (E, m, B) be a vector bundle of rank n. A set {(Uy, ha) }aea of bundle
charts is called a bundle atlas for E if U,cpaU, = B.

Now, let o, 8 € A such that U, NUsz # 0. We have local trivializations
ho:m Y (U,) — Uy x R,
hgiﬂ'il(Ug) — Uﬂ x R"™.
Let b € U, N Ug, consider the restrictions of h, and hg to 7(b)
haybiﬂ‘_l(b) — {b} X Rn,
h57biﬁ_1<b> — {b} x R"™.
Then
Ry © gy {b} x R" — {b} x R"

is a linear isomorphism of R", that is, g,g(b) := hap © hg%, € GL(n,R). Now let us consider
he and hg restricted to U, N Ug, so

hoz|UaﬂU5 o (hﬁ|UaﬁU5)71 . (Ua N Uﬁ) x R" — (Ua N Uﬂ) x R"
(b, v) = (b, gas(b)(v).

Therefore we have maps
Jap: U, N Ug — GL(n,]R)



C.1 Constructing bundles 145

This continuous maps given by overlapping of the bundle charts are called the transition
functions of the atlas and satisfy the following condition:

9ap(0)gpy (D) = gar(b), bE U NUzNU,.

Definition C.0.8. A bundle atlas for a vector bundle (E, 7, M) over a differentiable manifold
M is differentiable if all its transition functions are differentiable. A differentiable vector
bundle is a pair (£, B) consisting of a vector bundle E over M and a maximal differentiable
bundle atlas B for E.

Note that the total space of a differentiable vector bundle of rank & over an n—dimensional
manifold M is an (n + k)-dimensional differentiable manifold.

Definition C.0.9. A (differentiable) section of a (differentiable) vector bundle 7: B — M
is a (differentiable) continuous map s: M — F assigning to each p € M a vector s(p) in the
fiber E,, that is, m o s = idy.

In the thesis we will focus on differentiable sections.

The set of sections of E is denoted by I'(E).

The set of sections of a vector bundle m: E — M is a real vector space, we can add
sections by using the vector space structure of each fiber. The zero in I'(F) is the zero-
section which to every p € M assigns the zero of the fiber 77(p). Also, I'(F) has a structure
of module not only over R but also over C*(M), with

(fis1 + f252)(p) = 1(P)s1(p) + fa(p)s2(p),  fr, fo € CF(M), p e M.

Definition C.0.10. Let (E, 7, M) be a differentiable vector bundle of rank k£ and U an open
set in M. A local frame of E over U is an k—tuple sq,...,s; of differentiable sections of F
over U so that for each p € U, s1(p),. .., sk(p) form a basis of E,,.

If h: 7= Y(U) — U x R™ is a local trivialization and if we set s;(p) = h™!(p, e;), where
e; is a basis element of R”, then sq,...,s; form a local frame of E over U. Conversely, if
51,...,58 is a local frame of I over U, then for any p € U and any v, € £, there exists a
unique k-tuple of scalars ¢y, ..., ¢, so that v, = ¢151(p) + ... + cxsk(p). From this, one can
define a local trivialization of E over U by setting h(v,) = (p,c1, ..., cx). So the existence of
a local frame of E over U is equivalent to the existence of a local trivialization over U.

Definition C.0.11. Let (E, 7, M) be a differentiable vector bundle. A global frame is a

frame defined on the entire manifold M.
Remark C.0.12. The collection of sections aa 09 of TR is a global frame on R3.

1’ Oz’ Oxo

Corollary C.0.13. If (E, 7w, M) has a global frame, then is a trivial bundle.

C.1 Constructing bundles

In this section we will obtain vector bundles through pre-vector bundles and using the con-
tinuous functors of the section A.3.
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C.1.1 Pre-vector bundles

Definition C.1.1. A pre-vector bundle of rank n is a quadruple (F,m, B, B) consisting of
a set E, a topological space B, a surjective map m: £ — B where Ej, = 7~!(b) has a real
vector space structure of dimension n over R for every b € B. A pre-bundle atlas B, that
is, a set {(Ua, fo)}aca, Where {U, }aea is an open cover of B and f,: 7 '(U,) — U, x R"
a bijective map which maps the fibre Ej linearly and isomorphically onto {b} x R" for every
b € U, such that all the transition functions U, N Uz — GL(n,R) of B are continuous.

The important fact is to define a topology over E that makes it the total space of a vector
bundle.

Proposition C.1.2 ([9, Note 3.17)). If (E,m, B,B) is a pre-vector bundle, then there is
exactly one topology on E, relative to which (E,m, B) is a vector bundle and B is a bundle
atlas.

If M is a differentiable manifold and (F, w, M, B) is differentiable pre—vector bundle, that
is, if all the transition functions of B are differentiable, then by the maximal differentiable
atlas D(B) of B we clearly have a differentiable vector bundle (£, D(B)) over M.

Example C.1.3. Let M be an n—dimensional differentiable manifold and U = {(U,, ¥u) }aca
be a differentiable atlas of M. Then we can construct a pre-vector bundle (T'M, w, M, B) as
follows:

TM = |_| T,M.

pEM

The surjective map m: TM — M, given by v € T,M — p. And B = {(U,, fa)}aca Where

form N (Us) — Uy x R™,

Let
" 0
vy =Y a;—| €n '(p) € T,M,
i=1 83:1 »
fa is defined by f,(v,) = (p,as,...,a,) where each q; is a real number on U, with respect
to (Uy, @a)-

Note that the transition functions of T'M correspond to the differential of the chart
transformations of M, since M is a differentiable manifold, its chart transformations are
differentiable, then the transition functions of TM are also differentiable. In addition, let
(Un, 9a) €U, ©o:U, — U" where U C R", by the composition (¢, X idgn) o f, we have
that T'M is a differentiable manifold of dimension 2n.

The differentiable vector bundle m:T'M — M of rank n obtained from this pre-vector
bundle, is called the tangent bundle of M.

Definition C.1.4. If f: M — N is a differentiable map, then the differentials

Dpfi TpM — Tf(p)N
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define a vector bundle map
Df:TM — TN,

which is called the differential of f.

C.1.2 Constructing new bundles using continuous functor

From one or more known vector bundles we can construct new ones applying continuous
functors fiber by fiber. Thus, continuous functor on Vectg induce functors on VB(B).

Consider an arbitrary real vector bundle m: E — B of rank n, suppose that we have a
covariant continuous functor F: Vectg — Vectg, applying the functor to every fiber of the
vector bundle we obtain a pre-vector bundle.

We define the set F(E) as

F(E) := | | F(E,).
beB

Let e € F(E), then e € F(E}) for some b € B, we define F(n): F(E) — B by F(m)(e) = b,
F(7) is a surjective map. Note that given b € B, (F(7))"(b) = F(E), = F(E).

Since Ej is a real vector space of dimension n and F' is a functor of Vectg, F'(E,) is a
real vector space of dimension, let is say k. Let U, be an open set in B, since

(F(m) " (Ua) = | F(E),
beUa
then fo: (F(7)) 1(Uy) — U, x RE, where f,(e) = (b,v), is a bijective map where F(R") =
R* and isomorphically onto F(7~1(b)) — {b} x R¥. Now, let U,, Uz be open subsets of B
such that U, = U, NUs # 0, let b € U,g, we take fo: U, — Uy x R¥ f5:Us — U x R”
be bijective maps, with k > 0. We consider (U,, h,) and (Ug, hg) be local trivialization of
vector bundle m: ¥ — B, the transition function

gagi Uag — GL(/{Z, R)
given by

f650 fap = Gap(b) = F(hgp) o F(hyy) = F(hgyohyy) = F(gap(b)).

Where gop: Uy NUs — GL(n,R) is transition function of the atlas of m: £ — B and since
F is a continuous functor

Fign - Homg (R”, R") — Homg(F(R"™), F(R™))

is continuous, then gns: U, N Uz — GL(k,R) is a continuous map.

Therefore, F(m): F(E) — B is a pre—vector bundle of rank k& and by the Proposi-
tion C.1.2, (F(FE), F(m), B) is a real vector bundle of rank k over B.

For instance, if 7: E — B and 7’: E' — B are (differentiable) vector bundles over B
and we consider the functors defined in sections A.3.1, A.3.8, A.3.7, A.3.5, A.3.3 and A.3.2
then we get new (differentiable) vector bundles over B:
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1. E* is the real vector bundle with fiber (E*), = (F};)* the dual vector space.

2. AFE is the vector bundle with fiber at b € B is the k—th exterior power (A*E);, of the
fiber Ej.

3. S*FE is the vector bundle with fiber at b € B is the k-th symmetric power (S*E), of
the fiber Ej.

4. E® E' is the real vector bundle with fiber (F ® E'), = E, ® Ej}.

5. E® E' = {(v,w) € E x FE'|r(v) = 7'(w)} and the projection mggp (v,w) = m(v) =
m(w), where given b € B the fiber (E @& E'), is equal to E, ® Ej.

6. Hom(E, E') = yegHom(Ey, E}), with m: Hom(E, E') — B the projection map onto
B, which maps the entire vector space Hom(FEy, E}) to b € B.

In particular, we have the following differentiable vector bundles:

Example C.1.5. Let M be an n—dimensional differentiable manifold and ¢/ be a differen-
tiable atlas of M.

We take (T'M,m, M) the tangent bundle of M, apply the dual continuous functor to it
and by the Proposition C.1.2 we have the cotangent bundle, given by (T*M,n*, M). There
is a natural surjective map 7*: T*M — M give by 7*(w) = p if w € Ty M.

Example C.1.6. We repeat the same construction, but now we take (T*M,7* M) the
cotangent bundle of M, we apply the continuous functor A* to it and by the Proposition C.1.2
we obtain the k—th exterior bundle of T* M, give by (A*T*M, 7, M), where T = A*(r*). This
forany k=1,...,n.

There are more examples of vector bundles that we can be build and that are important
to this topic, the reader can find more constructions in [27] and [19].

C.2 Sections

Let M be a differentiable manifold, we will describe sections of differentiable vector bundles
examples, remember the definition of section (Definition C.0.9).

Definition C.2.1. A differentiable section of the tangent bundle T'M of M is called a vector
field on M.

Note that a vector field assigns to a point p € M a vector in its tangent space T,,M.

Let X be a vector field on M. Let us see a local expression for X.

Let (U, x1, ..., x,) be achart of M, for each point p € U, by Theorem B.2.10 {6%1 ey %
p n

is a basis for T, M, therefore {a%, cee %} is a local frame of T'M over U. Since X, € T,M
hence we have

}

p

0

&vi
p

Xp = i ai(p)
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where a; € C*(U). This is called a local expression of X.

The condition of each coefficient a; being a differentiable function does not depend on
the choice of chart.

Let M be a differentiable manifold and X € I'(T'M), for each f € C*°(M), define X f to
be the function

(Xf)p) = Xpf, peM.

Where X, is a derivation, see the definition B.2.5, and X, f is X, f, with f, € C2°(M).
In some books the set of all vector fields on M is denoted by X(M), we will use I'(T'M).

Definition C.2.2. A section of A¥T*M is called a k—form. The space of k—form is denoted
by
QF(M) = T(AFT*M). (C.1)

That is, w € Q¥(M) for all p € M,

w(p):Ty,M x ... xT,M — R.

k—times
is an alternating k—multilinear map.
Definition C.2.3. An inner product on a real differentiable vector bundle (F,m, M) is a
section g € T'(S?E*) such that, for any p € M, s(p) is positive definite on E,,.

Proposition C.2.4 ([28, Prop. 5.8]). Every differentiable vector bundle admits an inner
product.

Definition C.2.5. An inner product in the tangent bundle 7'M of a differentiable manifold
M is called a Riemannian metric on M.

Definition C.2.6. Let M be a differentiable manifold, if g is a Riemannian metric on M,
we also say that (M, g) is a Riemannian manifold.
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Appendix D

Functional analysis

This appendix contains a description of vector spaces endowed with an inner product.
The objective of this appendix is to describe Hilbert spaces, in particular, Sobolev spaces.
For topics developed in this appendix consult in [21] [3], and [33].

D.1 Operators and Hilbert spaces

Definition D.1.1. Let V' be a real vector space, a real-valued function || [|:V — R is
called a norm if for all v € V:

1ol > 0.
2. |[v]| = 0 if and only if v = 0.

3. |[tv]| = |t|||v]| for all v € V and t € R.

4. |Jv+ul| < ||| + ||u]| for all u,v € V, the triangle inequality.

A normed space is a vector space V provided with a norm.

If take ||v + u — ul|, by triangle inequality we get
ol = ful| < lJo+ull. (D.1)

Definition D.1.2. Let V' be a normed space and {v; };en C V be a sequence. We say {v; }ien
converges to v € V' if and only if

lim |Jv; —v|| = 0.
1— 00

v is called a limit point of V.

Definition D.1.3. Let V' be a normed space, V' is closed if for all {v;};,en C V sequence
such that {v; };en converges to v implies v € V.
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Definition D.1.4. Let V be a normed space. A sequence {v;};eny C V is called a Cauchy
sequence if and only if for every e > 0 there exist 0 < N € N such that

llox —u|] <e forall k,I> N.
Definition D.1.5. Let V be a normed space. V is called complete (or a Cauchy space) if

every Cauchy sequence in V' converges.

Theorem D.1.6 (Completeness, [21, Thm. 2.4-2]). Let V' be a normed space, W C V be a
subspace, if W is a finite dimensional subspace then is complete. In particular, every finite
dimensional normed space is complete.

Definition D.1.7. A Banach space V is a complete, normed space.

Definition D.1.8. Let V be a vector space endowed with an inner product (, ), the asso-
ciated norm is )
[0l = {v,v)2

The Cauchy-Schwarz inequality states for all v,u € V
[ (v, w)] < [[v][[]ul] (D.2)
Definition D.1.9. A Hilbert space is a vector space with an inner product such that it is a

Banach space with the associated norm.

Theorem D.1.10 (Subspace, [21, Thm. 3.2-4]). Let V be a subspace of a Hilbert space H.
Then V' is complete if and only if V' is closed in H.

Theorem D.1.11 (Direct sum, [21, Thm. 3.3-4]). Let V be any closed subspace of a Hilbert
space H. Then H =V @ V*, where V* is the orthogonal complement of V.

Definition D.1.12. Let H be a Hilbert space, a sequence {v,}nen is said to be weakly
convergent if and only if there is a v € H such that (v, w) — (v, w) for all w € H.

Theorem D.1.13. Let H be a Hilbert space. Every bounded sequence {v, }nen in H contains
a weakly convergent subsequence.

With respect to real-valued functions and Hilbert spaces we have:

Definition D.1.14. A linear functional f is a real-valued function defined on a vector space
V. The functional f is linear provided

f(tv + sw) =tf(v) +sf(w), v,weV, s telR.

Definition D.1.15. Let V and W be two vector space and 7:V — W be a linear map. T'
is called a linear operator if:

1. The domain Dom(T') of T is a vector space and Im (7) lies in a vector space over the
same field K.

2. T is a linear map for all v,w € Dom(7T') and scalars « € K =R or C.
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Example D.1.16. Let V' be a normed space, the norm || ||:V — R is a functional on V/,
by the triangle inequality we note || || is not a linear operator.

Definition D.1.17. Let V be a normed space, a bounded linear functional
f:Dom(f) € V — R is a real-valued function such that: there exists a real number ¢
such that for all v € Dom(f),

|f ()] < clfoll.

Definition D.1.18. Let V and W be normed spaces and 7: Dom(T") C V' — W be a linear
operator. The linear operator T is bounded if there is ¢ € R such that for all v € Dom(T)

1T @)llw < cllv]]v-

Theorem D.1.19 (Riesz’s Theorem (Functionals on Hilbert spaces), [21, Thm. 3.8.1]).
Every bounded linear functional f on a Hilbert space H can be represented in terms the
inner product, namely,

f(v) = (v, w)
where w depends on f, is uniquely determined by f and has norm
[wll = [If]]-

While operators between Hilbert spaces we have the following results and notion.

Lemma D.1.20 (Inverse operator, [21, Ex. 2.7.7]). Let V and W be two normed spaces and
T:V — W be a bounded linear operator. If there is a positive ¢ € R such that for allv € V

1T (w)]| = cl[oll.

Then T W — V exist and is bounded.

Definition D.1.21. Let H;, Hy be two Hilbert spaces and T: Hy — Hy be a bounded
linear operator. The adjoint operator T™ of T is the operator T*: Hy — H; such that for
all v € H; and w € Hy

(T'(v), w) = (v, T*(w)).
Theorem D.1.22 (Existence, [21, Thm. 3.9-2]). The adjoint operator T* of T in Defini-
tion D.1.21 exists, is unique and is a bounded linear operator with norm ||T*|| = ||T||.
If T* =T, T is said to be self-adjoint.
By Theorem D.1.11, we have the direct sum H = V @ V*, for any € H, there exist

unique v € V and w € V* such that £ = v + w , then this direct sum defines a linear
operator onto V:

P. H—H
T .
Definition D.1.23. Let H be a Hilbert space, a linear operator P: H — H is called a

projection of H if there is a closed subspace V of H such that V is the range of P and V+
is the kernel of P and P|y is the identity operator on V.
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Theorem D.1.24 ([21, Thm. 9.5.1)). Let H be a Hilbert space, a bounded linear operator
P:H — H is a projection if and only if P is self-adjoint and P? = P.

The sum of projections need not be a projection, we have the result:

Theorem D.1.25 ([21, Thm. 9.5.4]). Let Fy,..., P, be projections on a Hilbert space H.
Then

1. The sum P = i P; is a projection on H if and only if Y; = P,(H) and Y; = P;(H)
i=0
are orthogonal for alli,j =0,...,n, 1 # j.

2. If P = 3% P, is a projection, P projects H onto Y = @], V..
i=0

D.1.1 Spectral theory of bounded self-adjoint operator

Let T:V — V on a complex vector space V. A nonzero vector v € V is called an eigenvector
of T if there exists a scalar A such that T'(v) = Av. The scalar A is called the eigenvalue cor-
responding to the eigenvector v. The set E\ = {v € V : T(v) = A} = ker(Aidy — T) is
called the eigenspace of T' corresponding to the eigenvalue .

Theorem D.1.26. Let H be a complex Hilbert space and T:H — H be a bounded self-
adjoint linear operator. Then

1. All the eigenvalues of T' (if they exist) are real.
2. Figenvectors corresponding to (numerically) different eigenvalues of T are orthogonal.

Proof. 1. Let A be any eigenvalue of T" and v a corresponding eigenvector. Then v # 0
and T'(v) = Av. Since T is self-adjoint operator

AMo,v) = (w,0) = (T(0), 0) = (0, T(0)} = {0, M) = Xv,v)
Since v # 0, then (v, v) # 0, we divide by (v,v) on both sides, then A = .

2. Let A and v be eigenvalues of T and let v and w be corresponding eigenvectors, that
is, T'(v) = A and T'(w) = vw, since T is self-adjoint and by item 1. v is real, we get:

Mo, w) = (Av,w) = (T'(v),w) = (v, T(w)) = (v, vw) = v{v,w)

Since A # v, then (v,w) = 0.
U

Definition D.1.27. Let V be a complex Banach space and T:V — V be a bounded linear
operator, the resolvent set of T is

p(T) ={X € C| Aid — T:Dom(T') — V is one-to-one and onto}.
If X € p(T), the resolvent operator Ry(T'):V — V is defined by
Ry\(T)v := (Aid — T) .



D.2 The space L*(V) 155

Its complement o(T") = C — p(T') in the complex plane C is called the spectrum of T.

Theorem D.1.28 (Domain of Ry, [2], Lemma 7.2-3]). Let V' be a complex Banach space,
T:V — V be a linear operator and A € p(T'). Assume that T is closed or T is bounded,
then Rx\(T) is defined on the whole space V' and is bounded.

Definition D.1.29. Let H be a Hilbert space, a bounded self-adjoint operator T: H — H
is said to be nonnegative or positive if and only if its spectrum consists of nonnegative real
values only.

Projections have simple properties, we can to obtain a representation of a self-adjoint
operator on Hilbert spaces in terms of such operators.
For more details see [35, Sec. 6.4], [32, Sec. 148] and [21, Sec. 9.9].

Definition D.1.30. Let 7" be a self-adjoint operator of Hilbert spaces, oy C o(T') part of
the spectrum and there exist a domain D such that oy C D, we define Pr,, the projection
onto the eigensubspace corresponding to oy by

|
Pry, = 5 /d R\(T)dA. (D.3)

We call Pr,, the spectral projection associated with oy.

D.2 The space L*(V)

In this section we describe the L?-space of real-valued functions on R™.

Definition D.2.1. A collection ¥ of subsets of R"™ is called a o—algebra if the following
conditions hold

1. R* e X.

2. If A € X, then its complement A€ € X..

3. IfA; €%, j=1,2,...then U 4, € %.
j=1

It follows from 1. — 3. that

e The empty set ) € X.

e IfA; €%,5=1,2,..., then N 4; € 3.

7=1

« IfA,BeX, then A—B=ANB €Y.
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Definition D.2.2. A measure p on a o-algebra ¥ is a function on ¥ taking values in
R U {400} (a positive measure) which is countably additive in the sense that

p (E_j Aj) = iM(Aj)

whenever A; € ¥,j =1,2,... and the sets A; are pairwise disjoint, that is, A; N Ay = 0 for
J# k.

Definition D.2.3. If B C A C R" and p(B) = 0, then any condition that holds on the set
A — B is said to hold almost everywhere in A.

Theorem D.2.4 (Existence of Lebesgue Measure, [3, Thm. 1.39]). There exists a o—algebra
Y of subsets of R™ and a positive measure p on Y having the following properties:

1. Every open set in R™ belongs to X..

2. IfAC B,Be ¥ and (B) =0, then A € ¥ and u(A) = 0.

3. IfA={xeR"a; <z; <bj,j=1,2,...,n} then A€ ¥ and u(A) = (by—aq) ... (b, —
ap).

4. w is translation invariant. That is, if x € R™ and A € X, thenx+ A = {x+yly €
A} € ¥ and p(x + A) = u(A).

The elements of X are called (Lebesgue) measurable subsets of R™ and p is called the

(Lebesgue) measure in R™.

Definition D.2.5. A function f defined on a measurable set and values in R U {—o00, 400}
is itself called measurable if the set {x | f(x) > t} is measurable for every real ¢.

Definition D.2.6. Let V' C R", we denote by L?*(V) the class of all measurable functions
f:V CR* — R defined on V for which

/V | f(x)[2dx < . (D.4)

We identify in L*(V) functions that are equal almost everywhere in V, the elements of
L*(V) are thus equivalence classes of measurable functions satisfying D.4. Two functions
being equivalent if they are equal almost everywhere on V.

For convenience, we ignore this distinction and write f € L?(V) if f satisfies D.4, and
f=0in L*(V) if f(x) = 0 almost everywhere in V.

L3(V) is a real vector space.

Definition D.2.7. Let V C R", the L?>norm on L*(V) of f:V — R is defined by

e = ([ 1reorax) (05)

Theorem D.2.8 ([3, Thm. 2.16]). L*(V') with the L*-norm is a Banach space.
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Corollary D.2.9 ([3, Cor. 2.18]). L*(V) is a real Hilbert space with respect to the inner
product

(£.9) = [ FIg(x)dx. (D.6)

D.3 Sobolev space

We will continue studying real-valued function spaces endowed with a norm where we define
a new norm so that it is a complete space. They are a important tool in the theory of partial
differential equations and modern analysis.

In this section we introduce Sobolev spaces of integer order and establish some results.

n

Definition D.3.1. Let o = (ay, ..., a;,) € N” be a multiindex and |o| = - «;. We consider
j=1
olal
D= ——m—.
0x{" ... 0xon

Let V C R™ be an open, for any nonnegative integer k let C*(V') the space consisting of all
functions f: V' — R which, together with all their partial derivatives D® f of orders |a| < k,
are continuous on V. Let

C(V) = fj CH(U).

The subspaces C*(V) and C>°(V) consist of all those functions in C*(V) and C*(V), re-
spectively, that have compact support in V.

Let V' C R™ be an open neighbourhood of x € R", for each f € C*(V), we define a
function || || where k is a positive integer as follows:

11l = (Z \|Daf||iz> (D.7)

laf<k

This function defines a norm, the k—Sobolev norm, on any vector space of functions on which
the right side takes finite values provided functions are identified in the space if they are
equal almost everywhere in V.

Example D.3.2. Let V C R” be an open subset and f: V' — R be a differentiable function.
If k£ =1, the 1-Sobolev norm of real-valued differentiable functions (see equalities (D.7)
and (D.5)) is given by

gf )

Definition D.3.3. Let V C R" be an open subset and k € N, we consider two vector spaces
on which || || is a norm:
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1. H*(V) the completion of {f € C*(V) : ||f||x < oo} with respect to the norm || ||,
see (D.7).

2. Wk(V) the set of all f € L*(V) such that D*f € L?(V) for 0 < |a| < k.

This are k—Sobolev spaces over V.
Remark D.3.4. Note that the 0-Sobolev space, H°(V) = L*(V).

Theorem D.3.5 ([3, Thm. 3.17]). Let V" C R™ be an open subset, if 1 < k < oo, then
HE(V) = Wk(V).

Characterizations of H*(R")

Let V C R"™ be an open neighbourhood of x € R” with compact closure V, the set of
infinitely differentiable functions f: V' — R on V' with compact support will be denoted by
Cx(V).

Let uw € C°(V), the Fourier transform of u is the function @ defined on R™ by:

1 )
1) = (g oo O
Definition D.3.6. Let V be a vector space with two norms || ||, ]| |/2). The norms are

equivalent if there are constants C, Cy > 0 such that for all f € V

Cillflly < | flle) < Callfll -

If || ||y and || ||2) are equivalent we denoted it by || |[1) = || ||(2)-
Proposition D.3.7 ([33, Lem. 1.18]). Let k € N, for f € C*(V), we have

1l ~ ([ 1FOIRQ + yfay)

Remark D.3.8 ([7, Ex. 2]). Using the fact that (1 + |y|?)* > (1 + |y|?)" for k > [, then if
k > 1> 0> r, we have continuous inclusions of Sobolev spaces H*(V) c H{(V) Cc H'(V) =
L*(V)c H"(V).

Theorem D.3.9 (Sobolev Embedding Theorem, [33, Thm. 1.20]). If f € H*(V) then f €
CL(V), for each t < k — 3.

Corollary D.3.10 ([33, Cor. 1.21)). f € N H*V) if and only if f € C>(V).

keR

Theorem D.3.11 (Rellich-Kondarachov Compacteness Theorem, [33, Thm. 1.22]). Let
k,t €N, if t > k, then the inclusion H (V) —s H*(V') is compact.
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