

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Estudios Superiores Zaragoza Carrera de Biología

CONTENIDOS DE CARBONO Y NITRÓGENO Y SUS RELACIONES EN SUELOS DE BOSQUES TEMPLADOS DEL PARQUE NACIONAL IZTACCÍHUATL POPOCATÉPETL Y SU ZONA DE INFLUENCIA

TESIS

PARA OBTENER EL TÍTULO DE BIÓLOGO

PRESENTA Montes de Oca Hernández Ángel Ramses

DIRECTOR DE TESIS: Dr. Gerardo Cruz Flores

Comité tutoral:

Dra. Eloísa Adriana Guerra Hernández Dr. Arcadio Monroy Ata M. en C. Ernesto Mendoza Vallejo M. en C. Alma Bella López López

Ciudad de México, Marzo 18 2022

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Agradecimientos institucionales

A la Universidad Nacional Autónoma de México por todo su apoyo, mostrándome lo mejor de las personas e instalaciones que la conforman y lo que podemos aspirar a ser y hacer como seres humanos.

A la Facultad de Estudios Superiores Zaragoza y la carrera de biología, por acogerme y nutrirme profesional y personalmente, a la par que estudiaba la carrera que siempre quise.

Al Programa de Apoyo a Proyectos para innovar y Mejorar la Educación (PAPIME).

A La Dirección General de Orientación y Atención Educativa (DGOAE) y su programa Becas para Titulación-Egresados Extemporáneos 2021-2022.

Al Laboratorio de Edafología y Nutrición Vegetal.

Al Laboratorio de Calidad del Agua y Ecohidrología.

Agradecimientos personales

Al Dr. Gerardo Cruz Flores por ayudar, apoyar y darle la oportunidad de seguir a un joven perdido entre laboratorios, no solo como profesor si no como amigo y persona de verdad le estoy agradecido.

A la Dra. Rosalva García Sánchez por su apoyo en el programa PAPIME.

Al Dr. Arcadio por mostrarme el significado y potencial de la restauración ecológica.

A la Dra. Eloísa Adriana Guerra Hernández por su paciencia y apoyo en el desarrollo de mi primera tesis y de lo que ahora es mi servicio social.

Al M. en C. Ernesto Mendoza Vallejo y al M en C. Armando Cervantes Sandoval, por apasionarme en la bioestadística y lo que puede crear y llegar a ser.

A la M. en C. Alma Bella López López por su apoyo y tutoría en el área de la química inorgánica.

Dedicatorias

A mi mamá, Alberta Sorelia Hernández Hernández y mi hermana Isis Alcestes Montes de Oca Hernández, por darme un techo, alimento y el impulsarme a forjar mi propio camino.

A mi novia, Cinthya Torres Ibarra, por apoyarme en tantos sentidos, todas las locuras que hicimos y los "milagros" que juntos realizamos en tan poco tiempo.

A los amigos y compañeros que me apoyaron y me hicieron superarme a lo largo de la carrera y a las y los profesores que creyeron en mí.

ÍNDICE

ÍNDICE DE FIGURAS	6
ÍNDICE DE CUADROS	7
RESUMEN	9
INTRODUCCIÓN	9
MARCO TEÓRICO	11
Importancia de los bosques templados	11
Concepto de suelo	12
Funciones edáficas vitales	12
Suelo forestal	12
El ciclo biogeoquímico	12
Ganancias y salidas de nutrimentos	13
Fraccionamiento de las sustancias húmicas	13
Ácidos húmicos	14
Ácidos fúlvicos	14
Composición de las sustancias húmicas	15
Grupos funcionales de las sustancias húmicas	15
Componentes del nitrógeno del suelo	15
Nitrógeno orgánico	15
Nitrógeno inorgánico	16
Contenido de nitrógeno en el suelo	16
Importancia del nitrógeno para las plantas	16
Ciclo del nitrógeno	18
El ciclo del nitrógeno en suelos agrícolas	18
Mineralización del nitrógeno	20
Aminación	20
Actividad enzimática de la ureasa	21
Amonificación	22
Nitrificación	22
Nitrógeno potencialmente mineralizable	26
Transformaciones del N-NO2	28

Pérdidas de N del suelo	29
Desnitrificación	29
Inmovilización	29
Lixiviación	29
Saturación	30
Significación ambiental de las pérdidas del nitrógeno	30
Disponibilidad del nitrógeno con relación al pH	30
Ciclo del carbono	31
Carbono en suelo	33
Carbono en vegetación	34
Flujo de carbono en los ecosistemas terrestres	35
Estequiometría	35
Análisis estadísticos	36
Pruebas de normalidad	36
Análisis de varianza (ANOVA)	37
Valor de efecto	38
Prueba de Tukey	38
Correlación Simple de Pearson (CCP)	38
Análisis de Componentes Principales (ACP)	39
HIPOTESIS	40
Hipótesis complementaria	40
JUSTIFICACIÓN	40
OBJETIVOS	41
General	41
Particulares	41
AREA DE ESTUDIO	41
Parque Nacional Iztaccíhuatl Popocatépetl	41
Clima	42
Hidrología	42
Edafología	42
Vegetación	43
Bosques	43
Zacatonal y pastizales montanos	44

MATERIAL Y MÉTODOS	44
Toma de muestras	45
Muestras de suelo	45
Pretratamiento de las muestras de suelo	45
Determinaciones en laboratorio	45
Análisis físicos, químicos y bioquímicos en el suelo	45
Aplicaciones de análisis estadísticos	46
RESULTADOS	46
Descripción de los sitios de estudio	46
Propiedades físicas del suelo	48
Propiedades físicas del suelo: influencia en la variación con la vegetación	50
Propiedades químicas	50
Propiedades químicas del suelo: influencia en la variación con la vegetación	51
Propiedades bioquímicas	52
Propiedades bioquímicas del suelo: influencia en la variación con la vegetación	53
Contenidos de carbono y nitrógeno	53
DISCUSIÓN	54
Propiedades físicas y químicas	54
Distribución de los contenidos de carbono y nitrógeno	56
Relación C:N	59
Relaciones del pH	60
Sustancias húmicas	63
Carbono de biomasa microbiana	65
Índice metabólico (qCO ₂)	66
Actividad enzimática de la ureasa (AU)	67
Estimación de masas de N y C lábiles	68
Interacciones encontradas entre variables experimentales y bibliográficas	69
CONCLUSIONES	78
REFERENCIAS	79
ANEXOS	90
Anexo 1 Análisis de varianza y prueba de Tukey	90
Anexo 1.5 Análisis de varianza y prueba de Tukey: Vegetación	98
Anexo 2 Matrices de correlación	

Anexo 2.5 Matrices de correlación: Vegetación	101
Anexo 3 Matriz de correlación con variables experimentales y nuevas integradas	102
Anexo 4 N.º de correlaciones significativas	106
Anexo 5 Relaciones positivas y negativas con los contenidos de M.O, COS y NT	107
Anexo 6 Valores máximos y mínimos por sitio	108
Anexo 7 Correlaciones observadas con el piso altitudinal	109
Anexo 8 Fragmento de la base de datos	110

ÍNDICE DE FIGURAS

*	Figura 1. Reacción de la hidrólisis de la urea
*	Figura 2. Cálculo del número de desviaciones. 39
*	Figura 3. Mapa geográfico del Parque Nacional Iztaccíhuatl Popocatépetl (CONANP, 2013)
*	Figura 4. Sitios de estudio a lo largo del Parque Nacional Iztaccíhuatl Popocatépetl 45
*	Figura 5. Comportamiento del promedio de las variables físicas a lo largo del gradiente altitudinal, con HUM $\% = CGA/10.$
*	Figura 6. Contenido de materia orgánica, carbono y nitrógeno total en suelos de 0-5 cm de profundidad
*	Figura 7. Contenido de materia orgánica, carbono y nitrógeno total en suelos de 0-20 cm de profundidad
*	Figura 8. Contenidos de Materia Orgánica y Carbón Orgánico del Suelo en gramos por kilogramo, con letras diferentes presentando diferencias significativas ($P \le 0.05$) 58
*	Figura 9. Comportamiento del Nitrógeno Total en las Unidades Ambientales estudiadas, con letras diferentes presentando diferencias significativas ($P \le 0.05$)
*	Figura 10. Distribución del contenido en g kg $^{-1}$ de COS (dividido entre 10), NT Y su relación con el coeficiente C:N, con letras diferentes presentando diferencias significativas (P \leq 0.05).
*	Figura 11. Comportamiento de la Relación C:N comparada al pH Activo y Delta pH a lo largo de las UA

*	Figura 12. Niveles del pH registrados en las UA, $(P \le 0.05)$
*	Figura 13. Relación registrada entre el pH Activo y Potencial con los Ac. Fúlvicos en las UA estudiadas (unidades)
*	Figura 14. Comportamiento de los Ácidos Fúlvicos en comparación a diferentes variables físicas y químicas, nótese la multiplicación de los valores de NT por 10, para permitir una comparación de sus valores en la misma escala mas no en otros análisis
*	Figura 15. Comportamiento de los Ácidos húmicos en comparación a diferentes variables físicas y químicas, nótese la multiplicación de los valores de NT por 10, para permitir una comparación de sus valores en la misma escala mas no en otros análisis
*	Figura 16. Comportamiento a lo largo del gradiente de Ácidos Fúlvicos, Densidad Aparente y Humedad (CGA) medida en mg g ⁻¹
*	Figura 17. Comportamiento del Carbono de Biomasa de microbiana a diferentes profundidades y en relación con el % de carbono, nitrógeno y materia orgánica, nótese la multiplicación de los valores de NT por 10 para su comparación
*	Figura 18. Comportamiento del índice metabólico qCO ₂ con los contenidos de MO, COS y NT
*	Figura 19. Relación de la actividad ureasa (AU) con diferentes contenidos de M.O., COS y NT
*	Figura 20. Comportamiento del Nitrógeno lábil en las UA
*	Figura 21. Principales componentes del con el porcentaje de varianza que explica, 2º ACP.
*	Figura 22. Diagrama de pantalla donde se muestra los Valores Eigen de cada componente, 2º ACP
*	Figura 23: Circulo de correlaciones, ejes C1 y C2: (63.46 %)
*	Figura 24. Gráfico Biplot variables y sitios, ejes C1 y C2: (63.46 %)
ÍNDI	CE DE CUADROS
*	Cuadro 1. Ubicación geográfica y descripción de las Unidades Ambientales estudiadas en el Parque Nacional Iztaccíhuatl Popocatépetl
*	Cuadro 2. Propiedades físicas estudiadas en las UA

*	Cuadro 3. Propiedades físicas y químicas estudiadas considerando la influencia de la vegetación.	50
*	Cuadro 4. Propiedades químicas del suelo.	50
*	Cuadro 5. Propiedades químicas estudiadas considerando el efecto de la vegetación 5	51
*	Cuadro 6.Propiedades bioquímicas del suelo	53
*	Cuadro 7. Propiedades bioquímicas registradas considerando el efecto de la vegetación 5	53
*	Cuadro 8. variación de los contenidos de Carbono Orgánico del Suelo, Nitrógeno Total y Materia Orgánica en las UA estudiadas	54
*	Cuadro 9. Correlaciones sobresalientes del pH con otras propiedades del suelo en las UA estudiadas	51
*	Cuadro 10. Pruebas de normalidad aplicadas en las 69 variables (1º ACP). En letras cursivas y en negritas, se muestran aquellas variables que no superaron 1 o más pruebas. 7	71
*	Cuadro 11. Pruebas de normalidad aplicadas a las 30 variables (2° ACP). En letras cursivas y en negritas, se muestran aquellas variables que no superaron 1 o más pruebas	
*	Cuadro 12. Variables con mayor coeficiente en el segundo ACP	74
*	Cuadro 13. Lugar de las variables y UAs en la Figura 24.	76
*	Cuadro 14. Variables de mayor coeficiente observadas, 3° ACP	17

RESUMEN

Se realizó el estudio en seis localidades del Área Natural Protegida de México "Parque Nacional Iztaccíhuatl Popocatépetl" seleccionadas en un gradiente de 2600 a 3900 m s.n.m con vegetación predominantemente de *Abies y Pinus*, donde *Abies religiosa* se encontró en cuatro de las seis localidades dominando o formando parte del ensamble presente. En general los suelos bajo la especie de *P. hartweggi* mostraron mayor contenido de Materia Orgánica (M.O.) y en consecuencia, de Carbono Orgánico del Suelo (COS), mientras que, para Ácidos Fúlvicos (SF) y Húmicos (SH), Nitrógeno Total (NT), Carbono de Biomasa Microbiana (CBM), Actividad Enzimática Ureasa (AU), índices metabólicos (qCO₂), Relación Carbono:Nitrógeno (C:N) y pH de los suelos de sitios con bosques de pino en ensambles con *A. religiosa*, mostraron los valores promedio más altos. Se evaluaron indicadores de calidad edáfica, actividad enzimática y sustancias húmicas buscando explicar sus relaciones con la estequiometria del C y N por medio de análisis estadísticos (ANOVA, Pruebas de Tukey, Coeficientes de Correlación de Pearson, Análisis de Componentes Principales, entre otros).

Los análisis estadísticos permitieron una descripción del comportamiento de las variables edáficas a lo largo del gradiente altitudinal, las similitudes entre éstas y la generación de nuevas variables a partir de las relaciones entre las variables originales y su integración a partir de consultas bibliográficas. Las variables como COS, M.O., NT, CBM, índices metabólicos, SF y SH, C:N, AU, estimaciones de masa lábil del C y N, bibliográficas y generadas, entre otras, son examinadas y discutidas con razón de sus efectos en la distribución del C y N en diferentes profundidades del sustrato.

Entre las variables generadas se encontraron correlaciones importantes con propiedades físicas, químicas y bioquímicas (destacando la variación que presentan con la estequiometria del C y N con base a su distribución y diferentes indicadores de calidad edáfica) por lo que se sugiere profundizar su revisión para su utilización en trabajos posteriores, especialmente variables como el factor de humificación (SF/SH), el coeficiente metabólico qN (se propusieron tres posibilidades: qN.1, qN.2 y qN.3) y el cociente de qCO₂:AU en el espesor de suelos delimitado entre 0-5 cm.

INTRODUCCIÓN

Los ecosistemas de alta montaña como el bosque templado han demostrado ser vitales ambiental y socialmente, tomando un rol fundamental en los ciclos biogeoquímicos, la generación de servicios ecosistémicos y la conservación de la biodiversidad, en México su distribución Potencial original está alrededor del 22.28% de la superficie total del país, sin embargo, debido a la sobreexplotación y uso no sustentable, actualmente solo ocupan un 16%, y de esta cerca del 34.44% está deteriorado (CONABIO, 2020). En condiciones ambientales constantes se ha encontrado la distribución de estos bosques sobre 23 tipos de suelo, principalmente Leptosols, Regosols, Luvisols, Phaeozems, Cambisols, Umbrisols y Andosols formados a partir de materiales volcánicos en el centro del país, sedimentarios en la Sierra Madre Oriental y una variedad amplia de sustratos en la Sierra Madre Occidental. La salud y características de estos ecosistemas podrá determinar la eficiencia en que los ciclos biogeoquímicos se llevan a cabo, por ejemplo, el tipo de suelo, la composición de especies y el relieve resultan factores de gran importancia.

De hecho, en el desarrollo de especies boscosas la altitud es un factor crítico junto con la humedad del suelo, estas son las variables ambientales más importantes que explican la distribución de comunidades vegetales (Velásquez, 1994). Sin limitarse a las interacciones abióticas, las interacciones bióticas en el suelo también resultan claves para la integración de la vegetación en diferentes ecosistemas (Rodríguez-Loinaz et al., 2008). Una de las relaciones bióticas fundamentales se da a entre el suelo y los microorganismos, estos representan el componente esencial del sistema biótico en los bosques naturales, determinantes en los ciclos biogeoquímicos de los nutrientes. La biota del suelo está influenciada por la calidad y cantidad de material vegetal aportado al suelo y por las características climáticas que también afectan la abundancia microbiana, las especies involucradas y su composición trófica (Wright y Coleman, 2000). El estudio de la biomasa microbiana permite dar un valor cuantitativo a la población microbiana edáfica, este valor puede ser usado en el cálculo de índices bioquímicos especializados como el qCO₂ que permite relacionar la fracción orgánica del carbono con la biomasa microbiana para dar una lectura de las perturbaciones a las cuales el medio ha sido sometido.

En si la fracción orgánica de carbono en el suelo se entiende generalmente como el carbono derivado de la materia orgánica del suelo, esta consiste en una mezcla de residuos de animales y vegetales en distintos estados de descomposición y de productos sintetizados biológicamente a partir de aquéllos por microorganismos y pequeños animales (Schnitzer y Kahn, 1972, citado por Lobartini y Orioli, 1996). Generalmente a los productos sintetizados biológicamente son conocidos como Sustancias no húmicas y Sustancias húmicas. La primera engloba todos los compuestos orgánicos que proviniendo de plantas, animales y microorganismos todavía conservan una composición química clara como serían las proteínas, aminoácidos, grasas, celulosa, almidón o hidratos de carbono más simples, etc. Estos tienen una permanencia relativamente corta en los suelos ya que son fácilmente atacados y usados por microorganismos como fuente de energía. Las sustancias húmicas, que por el contrario presentan una composición química compleja y variada resistencia a la degradación microbiana, no sólo se encuentran en suelos, sino que están ampliamente distribuidas, encontrándose también en ríos, mares y depósitos geológicos (Lobartini y Orioli, 1996).

La importancia de las sustancias húmicas en los suelos se ha reconocido desde tiempos remotos ya que, con sólo un pequeño porcentaje presente en los suelos, les imparten a éstos propiedades únicas, por lo que evaluar su tipo y proporción en el sustrato puede servir como un excelente indicador bioquímico. Los parámetros bioquímicos son excelentes bioindicadores de la calidad y sanidad del suelo (Alvear *et al.*, 2007) relacionados con los ciclos biogeoquímicos de los elementos como el carbono y el nitrógeno, así como con la nutrición vegetal local. De igual forma las actividades enzimáticas son cruciales en la disponibilidad de nutrientes para las plantas y microorganismos del suelo, un ejemplo de esto es la actividad de la enzima Ureasa que participa activamente en la hidrolisis de urea y otros compuestos ureidos (principalmente con enlaces aminos), permitiendo aporte de N-amoniacal en el suelo.

Dichos algunos de los efectos y formas que adoptan los diferentes compuestos derivados del carbono y nitrógeno en el ambiente, es común relacionarlos por medio de su proporción y distribución espacial mutua, a través de la llamada Relación C:N, la cual establece el radio de partes de carbono entre partes de nitrógeno, resultando en un numero adimensional cuyo valor puede dar

una lectura de los procesos microbianos y de descomposición de la M.O en el sustrato (entre otras aplicaciones), lo que vincula sus contenidos directamente con el estado de salud ecosistémico. Por lo tanto, el monitorear la estequiometria de elementos tales como el carbono, nitrógeno y sus relaciones con índices edáficos de calidad, propiedades físicas, químicas y bioquímicas permite una comprensión de los factores clave del medio, lo que ayuda a la creación de estrategias de protección ambiental, en este caso, a partir del Área Natural Protegida "Parque Nacional Iztaccíhuatl Popocatépetl" (PNIP).

MARCO TEÓRICO

Importancia de los bosques templados

México, con un territorio de 1 millón 972 mil 544 km², ocupa el cuarto lugar en diversidad biológica, que se distribuye en grandes y extensos sistemas montañosos de bosques holárticos, llanuras, áreas desérticas, selvas tropicales altas, medianas y bajas, lagunas y planicies costeras y manglares. La abundancia de especies, tanto de su flora como de su fauna, es consecuencia de su historia biogeográfica, que ha dado como resultado una degradación de climas que abarcan al Reino Neártico en el Norte y al Neotropical en el Sur (CUPREDER, 2001).

La región de los volcanes Popocatépetl e Iztaccíhuatl es de enorme importancia desde el punto de vista de la prestación de servicios ambientales para millones de mexicanos. Su cercanía a las ciudades de México (75 km), Puebla (40 km) y la de Cuautla, Morelos (36 km) entre las más importantes, índica lo estratégico para todo el centro del país. Tan solo en agua; aproximadamente 17 millones de personas viven de la extracción de los acuíferos formados en las laderas de los volcanes. Los aportes en bienes vegetales, faunísticos y minerales han sido y son fundamentales para el desarrollo de las urbes próximas. Este territorio padece dos grandes amenazas: la natural, que es el Potencial destructivo del volcán Popocatépetl, y la antropogénica, consistente en el deterioro de los ecosistemas ocasionado por la acción del ser humano (CUPREDER, 2001). Los bosques desempeñan un papel fundamental en el equilibrio de la naturaleza y cumplen tres funciones importantes: ecológica, social y económica (Gutiérrez de Loma, 2001, citado en Salazar, 2008).

Función ecológica: Se entiende como la regulación del ciclo del agua, mejorando su calidad así como la conservación o restauración de la fertilidad del suelo, previniendo o paralizando los procesos de erosión o desertificación, conservación y uso sostenible de la biodiversidad de las propias especies forestales y de la fauna, su contribución a la variedad y belleza del paisaje, al efecto sumidero del carbono y de otros gases que generan el efecto invernadero y el cambio climático y, en general, al equilibrio del intercambio de los gases atmosféricos.

Función social: contempla a los bosques como zonas de esparcimiento y turismo de la población, práctica de deportes (caza, pesca, de aventura, etc.), zona paisajística, y de asentamiento y trabajo de la población.

Función económica: es decir el aprovechamiento de los recursos naturales renovables de carácter forestal implicados en la producción, transformación, comercialización de los recursos forestales y

todos los productos derivados del monte (madera, leña, resinas, corcho, pastos para el ganado, frutos, etc.), la producción de madera es, sin duda, la de mayor importancia.

Los ecosistemas forestales se ven sometidos a diferentes perturbaciones naturales como pueden ser el viento, el fuego, las inundaciones o el consumo por parte de herbívoros, que provocan que su evolución difiera de la que podría esperarse de un bosque "perfecto" (Frelich, 2002). Pero además de estas alteraciones la más importante puede ser la del uso de los bosques por parte del ser humano. Asumiendo que la explotación de los bosques es necesaria para la economía, es necesario asegurar que está explotación sea sostenible.

Concepto de suelo

El suelo es definido como el material mineral u orgánico no consolidado, que yace sobre la superficie de la tierra que ha sido sometido e influenciado, con acción sostenida durante el tiempo, por el material parental, clima, topografía, macro y microorganismos y que difiere en sus propiedades físicas, químicas, biológicas y morfológicas del material del cual se derivó (Cruz, 2006). Un nuevo concepto funcional, lo considera como un sistema vivo y dinámico cuyas funciones principales están las de mantener la productividad de las especies vegetales, contribuir en el mantenimiento de la biodiversidad, calidad del aire y agua, así como la salud humana y el hábitat (Sojka y Upchurch, 1999; Etchevers *et al.*, 2000).

Funciones edáficas vitales

- Sostener la actividad, diversidad y productividad biológica.
- Regular el agua y flujo de solutos.
- Filtrar, drenar e inmovilizar materiales orgánicos e inorgánicos con potencial de toxicidad.
- Almacenar y posibilitar el ciclo de nutrientes y otros elementos dentro de la biosfera.

Suelo forestal

Se ha definido al suelo forestal como "una parte de la superficie terrestre, que sirve como medio para el sostenimiento de la vegetación forestal; consta de material mineral y orgánico impregnado por diversas cantidades de agua, aire y está habitada por organismos. Manifiesta características peculiares adquiridas bajo la influencia de tres factores que son poco comunes en otros suelos: hojarasca o humus forestal, raíces de árboles y organismos específicos, cuya existencia depende de la presencia de vegetación forestal" (Pritchett, 1991). Los suelos son importantes para los árboles debido a que: ofrecen soporte mecánico, retienen y transmiten el agua, gases y sirven como hábitat para los macro y microorganismos y retienen, intercambian y fijan las sustancias nutritivas (Pritchett, 1991).

El ciclo biogeoquímico

Se define el ciclo biogeoquímico "como la transformación cíclica de los diferentes elementos químicos de importancia biológica (energéticos, estructurales, residuales o derivados de) en complejos nuevos a lo largo de la Ecósfera y sus diferentes componentes (Litosfera, Hidrosfera, Biosfera y Atmosfera). El ciclo biogeoquímico de la materia orgánica y los elementos minerales son ejemplos de las relaciones existentes entre suelo, vegetación y ambiente. Los ecosistemas forestales aseguran, principalmente, mediante este ciclo sus necesidades de elementos nutritivos (Berg, 2000), el cual se caracteriza por la diferente distribución de los nutrientes en cada compartimiento del ecosistema y en la velocidad del flujo entre éstos.

La interacción entre los organismos y su ambiente, así como la disponibilidad y uso de cada nutriente, determina los procesos de dicho ciclo (Schlesinger, 2000). La transferencia de elementos biógenos en los ecosistemas forestales sigue dos caminos. El ciclo biológico o cerrado se refiere a la circulación de los elementos biógenos en el seno del ecosistema, entre el suelo forestal y las comunidades vegetales y animales; afectando por tanto a la biocenosis. Este ciclo anual, se compone de la absorción de nutrientes a través del sistema radical del árbol; de la retención de nutrientes que se incorporan a la biomasa de troncos y ramas que se producen anualmente, por lo que entrarán en un ciclo mucho más lento; y del retorno o regreso anual al suelo mediante la hojarasca que los almacena hasta que son absorbidos de nuevo, con lo que se cierra este ciclo. El ciclo bioquímico es un ciclo abierto, comprende ganancias y pérdidas de elementos minerales (Lebret *et al.*, 2001).

Ganancias y salidas de nutrimentos

Las ganancias son los aportes de nutrimentos que entran al ecosistema por diferentes vías como pueden ser por:

- Partículas suspendidas en la atmósfera y otras previamente sedimentadas sobre las hojas, que son arrastradas hacia el suelo a través de las precipitaciones de lluvia, nieve o por aerosoles, polvos.
- Adiciones por alteraciones de la roca madre. De esta manera, parte de los elementos químicos son transferidos, por diversos medios, a los horizontes superiores del suelo y así pueden ser absorbidos por las raíces y si son solubles, pueden ser incorporados por las raíces más profundas.
- Por fijación microbiana. En el caso del nitrógeno, el intercambio con la atmósfera es debido a la actividad de los microorganismos fijadores de nitrógeno tanto de vida libre como endosimbióticos. El nitrógeno es muchas veces factor limitante, por lo que aportes atmosféricos a través de la fijación biológica, junto con el agua de lluvia, constituye una ayuda para el ecosistema forestal, una fertilización crónica a bajo nivel (Pritchett, 1991).

La salida de nutrimentos se entiende como las pérdidas de nutrimentos del ecosistema las cuales pueden ser por:

- Evacuación, en gran medida por las aguas de drenaje que exporta a zonas fuera del dominio del ecosistema los nutrientes disueltos en ellas.
- ➤ Podas y talas parciales o totales del bosque, que si se realizan de manera incontrolada conducen irremediablemente a una pérdida de productividad.
- Una pequeña parte del nitrógeno de las sales minerales puede ser reincorporado a la atmósfera por desnitrificación y algún otro elemento, como el fósforo, puede reincorporarse a la roca madre.

Fraccionamiento de las sustancias húmicas

El término sustancias húmicas, se refiere a una categoría de materiales originados naturalmente encontrados en suelos, sedimentos y aguas naturales, conformándose como el producto de la descomposición de residuos de plantas y animales; constituyen la fracción de la materia orgánica del suelo (MOS) más importante por su efecto en la ecología, estructura y fertilidad del suelo, así como el crecimiento de las plantas; son de primordial importancia en el control del destino de los

contaminantes del ambiente y la biogeoquímica del carbono orgánico (CO) en el ecosistema global. Sin embargo, su naturaleza química base, y su reactividad, así como su papel en la sustentabilidad de la vida son aún poco entendidas (Hatcher *et al.*, 2001).

Las sustancias húmicas son un conjunto de polímeros de alto peso molecular relacionadas entre sí, y sus diferentes propiedades pueden explicarse por las variaciones en el peso molecular, el tipo y número de grupos funcionales (carboxilo, fenol, etc.) y el grado de condensación (David Gara y Pedro, 2008).

Las definiciones de las fracciones de las SH están basadas en las características de solubilidad en sistemas acuosos; representan la suma total de Ácidos húmicos (insolubles en medio ácido y son solubles en medio alcalino) + Ácidos Fúlvicos (solubles en medio ácido y alcalino) + huminas (insoluble en disoluciones ácidas y alcalinas) (Hayes y Clapp, 2001). Las sustancias húmicas pueden tener efectos perjudiciales en ecosistemas acuáticos. La baja productividad en un medio rico en sustancias húmicas puede ser por la inmovilización de micronutrientes, absorción de luz, acidez excesiva, y posiblemente la presencia de sustancias antibióticas tales como fenoles. Sin embargo, los efectos benéficos de las sustancias húmicas son mayores. Una de las funciones beneficiosas es la captación de metales y las propiedades de intercambio catiónico, así las sustancias húmicas producen la detoxificación de metales pesados y otras sustancias tóxicas disueltas. La MOS extraída es fraccionada sobre la base de características de solubilidad. Las fracciones obtenidas comprenden: ácidos húmicos, fúlvicos y huminas (Ramos, 2000, citado en Macias, 2013).

Ácidos húmicos

Los ácidos húmicos son la fracción de substancias húmicas solubles en medios alcalinos e insolubles en ácidos minerales y son de color café oscuro a negro, químicamente son anillos aromáticos, compuestos cíclicos de nitrógeno, cadenas peptídicas, carboxílicos y fenoles de alto peso molecular y alta capacidad de intercambio catiónico, son macromoléculas compuestas de 62% de carbono y 30% de oxígeno. Mayor porción de oxígeno puede presentarse en componentes estructurales del núcleo y/o ciclos aromáticos. Contienen una fracción de proteínas unidas a un núcleo condensado, se identifica por grupos alcohol, carboxilo, carbonilo y quinonas. Los grupos funcionales oxigenados están involucrados en reacciones con metales y minerales que proveen elementos nutrimentales para las raíces de los vegetales. Los ácidos húmicos tienen alta estabilidad relativa y distinta reactividad y una de sus formas muy interesantes es la presencia de vacíos de variadas dimensiones, los cuales pueden atrapar o unir otros componentes orgánicos como carbohidratos, proteínas y lípidos o también arcillas minerales y oxihidróxidos (Hernández, 2011).

Los ácidos húmicos de distintos suelos y materia orgánica en descomposición presentan estructuras muy semejantes. La forma de las moléculas juega un papel importante en la formación de la estructura del suelo; estas moléculas poseen una estructura flexible y ramificada con multitud de cavidades internas misma que determina su capacidad de absorción frente al agua (Hernández, 2011).

Ácidos fúlvicos

Es la fracción de sustancias solubles en medios alcalinos y ácidos. Son polímeros con un anillo aromático, grupos fenólicos y alto contenido de grupos carboxílicos con bajo peso molecular (relativamente), con un 45% de carbono y 48% de oxígeno, y tienen alta capacidad de intercambio

catiónico. Una de sus características es su coloración más clara, mayor contenido de oxígeno y bajo contenido de carbono (Hernández, 2011).

Estos ácidos presentan una unidad nuclear (estructuras aromáticas de carbono) poco pronunciada con un predominio de cadenas laterales. Este predominio está representado por una relación de estructuras aromáticas/cadenas laterales (Hernández, 2011).

Composición de las sustancias húmicas

Un procedimiento invaluable para caracterizar los ácidos húmicos y fúlvicos es a través de la degradación de sus monómeros individuales. El objetivo principal es producir compuestos simples representativos de las unidades estructurales en la macromolécula húmica. Idealmente, los productos obtenidos pueden proveer información que puede trazar el tipo de estructura y su fórmula. Los ácidos húmicos del suelo muestran propiedades muy variables, sus características dependen del suelo y condiciones climáticas, uso de la tierra, manejo del suelo y fertilización, propiedades del material orgánico, etc. (Dziadowiec, 1994).

El análisis elemental de las sustancias húmicas provee información sobre la distribución de los elementos constitutivos principales. De acuerdo con Schnitzer (1977) los principales elementos en las sustancias húmicas son el C y el O; el C se encuentra en el rango de 50 a 60% y el contenido de O en el rango de 30 a 35%, mientras que los porcentajes de H y N varían de 4 a 6% y de 2 a 6%, respectivamente.

Grupos funcionales de las sustancias húmicas

Se sabe que la composición química de la materia húmica incluye muchos anillos aromáticos que interactúan entre sí y con cadenas alifáticas, dando lugar a macromoléculas con diferentes pesos moleculares. Teniendo en cuenta que el origen de las sustancias húmicas, como ya se explicó anteriormente, implica una combinación de varios caminos de reacción y una gran variedad de sistemas químicos vinculantes, es muy difícil definir un concepto claro de su composición (Hayes y Clapp, 2001).

La absorción de los ácidos húmicos está determinada por los grupos funcionales que contenga, por el número de grupos funcionales que varía dependiendo de la fuente de SH y SF, aunque se ha estimado que contienen grupos funcionales como los hidroxilos, carboxilos y carbonilos. La existencia de estos grupos funcionales con grandes cantidades de oxígeno como carbonilos, fenoles, enoles y alcoholes, les asignan a las sustancias húmicas una buena capacidad de quelatación de micronutrientes (Hernández, 2011).

Componentes del nitrógeno del suelo

Nitrógeno orgánico

Estiércol y plantas, microorganismos y animales muertos en descomposición, son importantes fuentes de nitrógeno para el suelo. Si bien, la mayor parte de este nitrógeno es insoluble y no está disponible de inmediato para que lo utilicen las plantas. Esta fracción orgánica se abastece también de nitrógeno a partir de la acción de microorganismos fijadores de N-atmosférico en forma asimbiótica y de la inmovilización de la fracción soluble que realizan los microorganismos

(Salisbury y Ross, 1994; Bertsch, 1995), y representa comúnmente, entre el 85 y el 95 % del N-total (Fassbender, 1984).

Nitrógeno inorgánico

El primer producto resultante de la descomposición de la materia orgánica (mineralización) es el NH₄⁺, proveniente de la descomposición de proteínas, aminoácidos y otros compuestos. Las tres formas inorgánicas más importantes, NH₄⁺, NO₂⁻ y NO₃⁻ representan generalmente del 2 al 5% del N-total del suelo. La fuente de NH₄⁺ proviene de la mineralización del N-orgánico y de los fertilizantes (Fassbender y Bornemisza, 1987) por lo que alrededor de 2% puede ser considerado lábil (Perdomo *et al.*, 2003).

Los porcentajes de N-mineral tienden a ser más altos en suelos de regiones áridas y semiáridas y, los valores menores corresponden a suelos volcánicos. El N-inorgánico se presenta como óxido nitroso (N₂O), óxido nítrico (NO), dióxido de nitrógeno (NO₂) y amoníaco (NH₃) en cantidades mínimas y como iones amonio (NH₄⁺), nitrito (NO₂) y nitratos (NO₃⁻) (Fassbender y Bornemisza, 1987). El N-atmosférico existe en forma elemental libre (N₂) y en cualquiera de sus otras formas gaseosas (N₂O, NO, NO₂ y NH₃).

Existen otras formas cristalinas inorgánicas, como las taranakitas (fosfatos amónico-ferro-alumínicos) que representan productos de transformación de fertilizantes fosfóricos (Bertsch, 1995). Se reconoce dentro del N-inorgánico: una fracción soluble, donde, se presentan los iones NH_4^+ y NO_3^- en la solución del suelo proveniente de la mineralización del nitrógeno orgánico y los fertilizantes.

Contenido de nitrógeno en el suelo

El contenido de N-total en los suelos presenta un amplio ámbito, pero es común el comprendido entre 0.2 y 0.7% para la denominada capa arable (Fassbender, 1984). El porcentaje tiende a disminuir al aumentar la profundidad del perfil. Dentro de los factores de formación del suelo, el clima es el que influye más directamente en el contenido de nitrógeno total, cuyo porcentaje tiende a incrementarse al disminuir la temperatura y al aumentar la precipitación, dentro de ciertos límites.

El contenido de materia orgánica y N está relacionado con el origen de los suelos. Los suelos de las regiones bajas, en su mayoría, tienen un contenido de N de mediano a bajo. Los suelos derivados de cenizas volcánicas se caracterizan por tener valores altos de N. Por ejemplo, en suelos de origen volcánico en América Central, en el horizonte A, se tienen valores de 0.4 a 0.5% de N. Además, está asociado en forma directa al C, en función de la relación C:N. Está relación, en condiciones de suelo normal tiene un valor alrededor de 10; en casos extremos puede llegar hasta 30. Suelos con alto contenido de materia orgánica, naturalmente, tienen un alto contenido de N. Un suelo con un contenido de materia orgánica mayor de 4% puede ser clasificado como un suelo altamente húmico (Fassbender, 1993).

Importancia del nitrógeno para las plantas

Entre los tres elementos (N, P, K) que se aplican en forma de fertilizantes comerciales, el nitrógeno parece ser el que produce los efectos más rápidos y pronunciados, no solamente cuando se encuentra presente en exceso en el suelo, sino también cuando se aplica la proporción moderada. Tiende principalmente a fomentar el crecimiento de las partes aéreas de las plantas y, a dar a las

hojas un color verde pronunciado. En todas las plantas el nitrógeno produce un efecto que se podría llamar regulador, pues hasta cierto grado rige las asimilaciones del potasio, del ácido fosfórico y de otros constituyentes (Fuentes y González, 2007).

Giller y Wilson (1991) y Carvajal (1984), manifiestan que el nitrógeno es uno de los factores limitativos más comunes en la producción de café, situación que el caficultor tiene que corregir mediante el suministro oportuno de este nutrimento a las plantas en forma asimilable. Pese a que el nitrógeno constituye aproximadamente 80 % de la composición de la atmósfera, en su forma molecular (N₂) es casi inerte por lo que sólo es aprovechado por las plantas en forma mineral asociado a otros compuestos que dan origen a los iones amonio (NH₄⁺) y nitrato (NO₃⁻) o cuando es fijado biológicamente por microorganismos de vida libre o los que tienen la capacidad de establecer simbiosis con otras especies de vegetales.

Las plantas que no reciben un aporte suficiente de N son de reducido desarrollo, incluso el sistema radical. Las hojas se vuelven amarillas o verde amarillentas, y en ciertas plantas tienden a caer. La adición de una pequeña cantidad de nitrógeno asimilable provocará un cambio notable, lo cual indica la actividad de ese elemento dentro de la planta. Se ha hecho notar su movilidad en el suelo al considerar el ciclo del N.

La importancia del nitrógeno desde el punto de vista bioedafológico se comprende inmediatamente, ya que no sólo constituye un factor vital para el desarrollo de las plantas, sino que interviene decisivamente en las transformaciones orgánicas que se producen en el suelo, cuya regulación permitirá aprovechar debidamente dicho elemento. El nitrógeno contenido en el suelo está dotado de gran movilidad y pluralidad de formas químicas en que se presenta, lo cual dificulta su control. Por ello se pierden considerables porcentajes de nitrógeno libre, que pasa a la atmósfera, y también en la de sales solubles que se eliminan en las aguas de drenaje.

Los abonos que contienen este elemento, especialmente los de efecto rápido son muy estimados por los agricultores, lo cual es debido a su acción espectacular sobre la planta y en especial sobre diferentes etapas de su ciclo vegetativo. Debido a ese efecto aparentemente inmediato de la aplicación de compuestos asimilables de nitrógeno, la gente está predispuesta a atribuir demasiada importancia a ese elemento para conseguir un buen desarrollo de las plantas cultivadas; circunstancia infortunada, pues el Nitrógeno es caro y se pierde fácilmente en el suelo. Además, entre los tres elementos fertilizantes es el único que, si se agrega en proporciones ligeramente excesivas, produce efectos posteriores perjudiciales en el cultivo. Hojas de un color verde muy oscuro, blandas y jugosas, son una indicación de un exceso de nitrógeno. Lyttleton y Buckman (1952), enumeran los principales efectos perjudiciales posibles debido a la presencia de cantidades relativamente grandes de este elemento, clasificándolos de la siguiente forma:

- ➤ Puede retardar la madurez al fomentar un crecimiento vegetativo exagerado, que continúa por más tiempo que el normal para la madurez. Esto aumenta generalmente el peligro de los daños por las heladas a los cultivos.
- Puede disminuir la calidad. Esto se nota especialmente en ciertos granos y frutos.
- Puede disminuir la resistencia a las enfermedades. Se debe probablemente a una variación de las condiciones fisiológicas dentro de la planta y también a un adelgazamiento de las paredes celulares, que permiten una infección más fácil. Una proporción de nitrógeno

mayor que la correspondiente a la capacidad fotosintética, parece molestar la nutrición celular, y una vez que ha comenzado la infección ya casi no hay resistencia a la enfermedad.

Ciclo del nitrógeno

El ciclo del N en el suelo representa una parte muy pequeña del ciclo total del nitrógeno en la naturaleza. Del 98% del nitrógeno que se encuentra en la litosfera, solamente un 0.00014% se ubica en los suelos y una cantidad semejante participa en la biosfera. Sin embargo, como en esta fracción participan todas sus formas (moleculares, orgánicas e inorgánicas) resulta un ciclo muy complejo y peculiar (Bertsch, 1995, citado en Fuentes y González, 2007).

De acuerdo con Vitousek *et al.* (1997), la atmósfera terrestre posee un 78% de nitrógeno en forma de gas di-nitrógeno, pero la mayoría de las plantas y animales no pueden usar directamente este elemento del aire tal como lo hacen con el dióxido de carbono y el oxígeno. Las plantas deben esperar a que el nitrógeno sea transformado a formas de compuestos inorgánicos como amonio (NH₄⁺) y nitratos (NO₃⁻) que ellas puedan usar. La mayoría del nitrógeno orgánico, y especialmente el que cicla en los ecosistemas terrestres, no se encuentra disponible sino inmovilizado en la materia orgánica, parcialmente descompuesto en los restos de animales y plantas que deben ser mineralizados por los microorganismos. El ciclo biogeoquímico del nitrógeno es el que comprende en su totalidad la circulación de este elemento químico en todas sus formas entre la biomasa, el mantillo, el suelo y las fuentes externas del ecosistema; es decir, comprende los procesos de absorción, acumulación, translocación y redistribución interna del elemento en las plantas, así también comprenden los procesos de intercambio con la atmósfera (ganancias y pérdidas) y el suelo a partir de residuos vegetales y su descomposición, escorrentía y lixiviación (Fassbender, 1993, citado en Fuentes y González, 2007).

El N sufre transformaciones en el suelo que dependen de varios factores, entre los que se incluyen humedad, temperatura, pH y aireación. Como resultado general, no existe una ganancia o pérdida neta de N en la naturaleza. El proceso total se conoce como Ciclo del Nitrógeno. En el ciclo del nitrógeno algunos productos provenientes de las transformaciones del N del suelo pueden conducir a que este elemento se pierda del agroecosistema por diferentes vías. Entre ellas están: la lixiviación, especialmente del N-NO₃-, la volatilización del NH₄+ y la desnitrificación con producción de gases (N₂O y N₂) hacia la atmósfera (Bertsch, 1995 citado en Fuentes y González, 2007).

El ciclo del nitrógeno en suelos agrícolas

El NH₄⁺ en el suelo está sujeto a un proceso de transformación llamado nitrificación, pasando de NH₄⁺ a NO₂⁻ y, posteriormente, a NO₃⁻. Este ciclo está a cargo de géneros de bacterias llamadas *Nitrosomas* y *Nitrobacter*. El proceso de NO₂⁻ a NO₃⁻ es rápido, donde las bacterias *Nitrobacter* presentan una notable avidez por el NO₂⁻ para luego transformarlo a NO₃⁻. Este proceso es muy favorable, debido a que los NO₂⁻ son tóxicos para las plantas (Fassbender, 1985, citado en Fuentes y González, 2007).

Existen en el suelo microorganismos que presentan un ciclo interno de N, inmovilizan el NO₃ para formar nuevamente sustancias orgánicas nitrogenadas. Las reservas de N-orgánico alcanzan del 95 al 98% de N en el suelo (Fassbender, 1993, citado en Fuentes y González, 2007), de ellos se forma

paulatinamente NH₄⁺ y NO₃⁻, que son absorbidos por las plantas. Existen plantas que presentan características genéticas de selectividad para la absorción de NH₄⁺ y NO₃⁻, aunque la mayoría de las especies son capaces de absorber ambas formas. Después de la absorción en la planta, se forman nuevamente sustancias orgánicas nitrogenadas, cerrándose prácticamente el ciclo suelo-planta. La absorción de NO₃⁻ implica que en la planta, éste ion se tiene que reducir a NH₄⁺ para poder ser utilizado en la formación de aminoácidos (Fassbender, 1993, citado en Fuentes y González, 2007).

En el suelo se presenta una interacción entre un catión (NH_4^+) y los cambiadores del suelo (arcillas), las sustancias húmicas y los óxidos de hierro y aluminio, formándose una capa intercambiable, hasta cierto punto disponible para las plantas. Además, existe un equilibrio químico entre el NH_4^+ y el complejo de intercambio. En el momento en que la planta absorbe NH_4^+ , se libera del complejo coloidal NH_4^+ para compensar la pérdida debida a la absorción, existiendo de esta manera una disponibilidad continua de NH_4^+ .

El NO₃ puede ser también adsorbido en la superficie coloidal, siempre y cuando ésta tenga cargas positivas que atraigan a las negativas del NO₃. El aumento de las reservas de NO₃ y el NH₄ es altamente dependiente del pH. Con valores bajos de pH se generan cargas electropositivas donde se adsorben los NO₃. Existe un punto en el cual las cargas positivas y negativas de los complejos de intercambio desaparecen, presentándose entonces coagulación con un rápido lavado de los NO₃ a través del perfil del suelo, perdiéndose así el N. Existen en la naturaleza procesos de fijación de N que se producen en función de diferentes fenómenos. Así, se tiene una acumulación del N-atmosférico en el suelo en función de las descargas eléctricas, que es el proceso que a largo plazo ha contribuido más a la acumulación del N en los suelos y en los ecosistemas. Durante las tormentas, los rayos que tienen temperaturas y valores de energía muy altos llevan a la oxidación del N₂ de la atmósfera formándose los primeros óxidos que aparecen en el aire.

Fassbender (1984) cataloga los diferentes procesos en que el agua de lluvia adiciona el N-atmosférico al suelo de la siguiente manera:

- > fijación eléctrica del nitrógeno atmosférico.
- > fijación fotoquímica del nitrógeno atmosférico y fotoxidación del amonio.
- adsorción del nitrógeno orgánico en partículas de polvo.
- contaminación industrial mediante gases y humo.

El N contenido en el agua de lluvia generalmente se encuentra en las formas de nitrato o amoniacal, de modo que es fácilmente asimilable por las plantas. Las cantidades que se incorporan al suelo en esa forma son variables, fluctuando de acuerdo con la estación y el lugar. Esta incorporación de N es mayor en las regiones tropicales que en las templadas húmedas, y mayor en estas últimas que en los climas semiáridos.

Aparentemente, la proporción de N-amoniacal incorporado al suelo por el agua de lluvia es siempre mayor, por lo menos en las regiones templadas que el adicionado en forma de nitrato. También puede verse que, si bien la cantidad de nitrógeno de nitratos es aproximadamente igual para casi todos esos lugares, la forma amoniacal muestra grandes variaciones (Lyttletton y Buckman, 1952).

Considerando los datos en conjunto, Lyttleton y Buckman (1952) suponen que en un clima templado húmedo anualmente se incorporan por hectárea de terreno traídos en el agua de lluvia 5 kg

de N-NH₄⁺ y 1.7 kg de N-NO₃⁻, teniendo en cuenta que hay una cierta pérdida por escurrimiento, probablemente se incorporan al suelo unos 5.7 kg N ha⁻¹ año⁻¹. Una incorporación anual de 5.7 kg de N en forma fácilmente asimilable, por hectárea de terreno, ya constituye una ayuda para la conservación de la fertilidad del suelo, pues equivale a unos 35 kg de nitrato de sodio comercial. Esta adición por parte de la lluvia casi compensa la eliminación anual de N en el agua de drenaje de un suelo sometido a una rotación común, y la cubre casi con exceso cuando el suelo se encuentra continuamente con cubierta.

Mineralización del nitrógeno

La mayor proporción del nitrógeno del suelo se encuentra asociado a la materia orgánica en forma de aminoácidos o proteínas. Este N-orgánico sufre una serie de transformaciones en el suelo que lo llevan a N-mineral, en la cual se dan básicamente tres procesos de la mineralización: aminación, amonificación; estos primeros procesos por lo general se conocen como amonificación, es decir, que el proceso de mineralización (conlleva a la formación de NH₄⁺ que luego puede ser transformado en nitratos (NO₃⁻) a través de la nitrificación. Estas dos formas de N-mineral, NH₄⁺ y NO₃⁻, son las que las plantas absorben de la solución del suelo para su nutrición (Solórzano 1997; Bertsch, 1995).

Aminación

En primer lugar, las enzimas proteolíticas actúan sobre las macromoléculas de las proteínas, los ácidos nucleicos y otros compuestos nitrogenados hasta descomponerlas en aminoácidos en la primera etapa llamada de aminización (Arana, 2003). Las proteínas y compuestos relacionados, que son los que forman la mayor parte de la materia orgánica nitrogenada que se incorpora comúnmente al suelo, no pueden ser absorbidas por las plantas superiores, pero pueden ser utilizadas por la fauna y la flora del suelo, siendo atacados estos compuestos orgánicos nitrogenados, cuando las condiciones son netamente favorables, por una gran variedad de organismos. En los suelos cultivados, la vida animal no es tan activa, salvo las lombrices, entonces, se debe a las bacterias el trabajo fundamental de disolución y dislocación molecular interviniendo, entre las aeróbicas el *Bacillus pyocyaneus, B. fluorescens, Proteus vulgaris* y del género *Pseudomonas*, así como muchas especies anaerobias, en especial el *B. putrificus, B. proteobacter y Clostridium.* De menor importancia es la intervención de algunos hongos cuyas especies pertenecen a los *Mucor, Fusarium*, los cuales juntamente con el género *Actinomices*, predominan en las fases avanzadas de la descomposición.

Los fenómenos que se producen son muy complejos, como resultado de estas acciones enzimáticas dan lugar a muchas sustancias, ya que son muy diferentes los seres que intervienen. Lyttleton y Buckman (1952) y Mela (1963), determinan el posible destino que el N puede tener:

- ➤ Ser asimilados por los organismos (inmovilización) en funciones generales formando tejidos y contenidos celulares complejos, los cuales parecen encontrar en estos componentes más favorables condiciones para su metabolismo, por lo que los prefieren a otros proteicos, pues requieren escasa energía para su integración. Al morir los microorganismos, sus tejidos pasan a incrementar la masa de materias orgánicas nitrogenadas.
- Formar complejos organominerales.
- Ser incorporado en la fracción del humus.

- > Ser utilizado por las plantas.
- > Dar lugar a N-libre, que pasa a la atmósfera del suelo posteriormente al aire libre.

La absorción de energía por los organismos del suelo y la incorporación de materiales en sus tejidos explica el fenómeno, y el N que no es inmediatamente utilizado constituye en el suelo un residuo o excedente, temporalmente por lo menos (Portilla, 2012). Las condiciones que favorecen la aminación parecen ser las mismas que las que contribuyen al buen desarrollo vegetativo de la planta en lo que concierne a la temperatura, humedad y aireación, siendo muy conveniente el drenaje y la presencia de calcio activo, pues en los suelos ácidos no existen animales ni bacterias, de las cuales interesan especialmente las aeróbicas, cuyo desarrollo se necesita mantener la estructura adecuada para el fácil acceso del oxígeno, ya que es el que existe libre en el suelo y que basta generalmente para sostener tan considerable masa microbiana. Una humedad óptima para las plantas superiores parece favorecer también a la fauna y la flora que intervienen en la disolución. En realidad, el carácter de esos procesos parece ser determinado más por las condiciones del suelo que por los organismos particulares presentes, de funciones generales. Una de las enzimas con mayor importancia en el proceso de absorción y asimilación del nitrógeno en el suelo por las plantas es la ureasa y el grado de actividad que se presenta en el sustrato (Fuentes y González, 2007).

Actividad enzimática de la ureasa

La ureasa es una de las diferentes enzimas que existen en el suelo y pertenece al grupo de las amidohidrolasas. La actividad de está enzima es resultado de la reserva o de su acumulación, de la excreción de las raíces y de la proliferación de microorganismos con la capacidad para sintetizarla (Tabatabai, 1994; Bachmeier *et al.*, 2002).

Su función principal es actuar sobre enlaces C-N en enlaces no peptídico y en amidas lineales, rompiendo en secuencias de dos, dichos enlaces, donde el carbamato es el compuesto intermedio en la reacción de manera que éste es el sustrato obligado para el segundo paso de la reacción hidrolítica total (Tabatabai, 1994; Pascual *et al.*, 2002). Ver Figura 1.

$$O=C$$
 $+$
 HOH
 $O=C$
 ONH_4
 $O=C$
 $+$
 HOH
 $O=C$
 ONH_4
 ONH_4

Figura 1. Reacción de la hidrólisis de la urea.

La ureasa interviene en la hidrólisis de sustratos de tipo urea debido a su origen microbiano su actividad es extracelular, está enzima puede formar complejos muy estables (ureasa-humus) con los coloides del suelo (Pascual *et al.*, 2002).

La AU (actividad de ureasa) del suelo es sensible a cambios de uso de suelo, condiciones topográficas y vegetación presente y puede utilizarse como un indicador de fertilidad y calidad del suelo. La determinación de la actividad ureasa es una herramienta útil para ser utilizada como indicador de calidad del suelo por su correlación significativa con el pH, contenido de arcilla y

humedad. La AU está íntimamente relacionado con el pH potencial y activo, aunque también se ha observado que la AU es sensible a cambios en la composición y comportamiento de cada una de las fracciones contenidas en el suelo y de la dinámica nutrimental que se requiere para cada una de las comunidades vegetales (Suástegui-Méndez *et al.*, 2009).

Amonificación

La conversión de substancias más complejas a NH₄⁺ se denomina Amonificación. La amonificación de los aminoácidos se produce bioquímicamente a través de procesos de desaminación y descarboxilación y conduce a la formación de amonio que, ya dentro de la solución del suelo pasa a comportarse como un catión corriente.

A partir de la urea, que es una de las formas de fertilizantes nitrogenados más utilizadas, se da una hidrólisis por medio de las urobacterias:

$$CO(NH_2)_2 + 2H_2O \leftrightarrow (NH_4)_2CO_3$$

La cual se da en presencia o ausencia de oxígeno, el carbamato de amonio formado se hidroliza fácilmente por provenir de una sal de ácido y base débil (Agrawal *et al.*, 1995):

$$(NH_4)_2CO_3 + H_2O \leftrightarrow NH_4(OH) + NH_4HCO_3$$

La volatilización del amonio puede ser un proceso estrictamente inorgánico. El hidróxido de amonio formado se disocia en amoníaco y agua (Fassbender y Bornemisza, 1987):

$$NH_4OH \leftrightarrow NH_3 + H_2O$$

La Amonificación comprende los primeros procesos de transformación, hasta que las sustancias orgánicas llegan a presentarse como ion amonio. El amonio resultante de esta etapa puede ser absorbido por las plantas; adsorbido por el complejo coloidal inorgánico y orgánico; fijado por los minerales; inmovilizado por microorganismos; lixiviados a través del suelo; oxidados hasta el nivel de nitratos (Fassbender y Bornemisza, 1987; Lyttleton y Buckman, 1952; Mela, 1963).

Nitrificación

La nitrificación comprende la transformación del amonio en nitratos, pasando previamente por la forma de nitritos. El amonio resultante de la mineralización del N-orgánico y/o aplicado en forma de fertilizante por acción de bacterias de los géneros *Nitrosomonas* y *Nitrobacter* es oxidado en dos distintas fases, respectivamente:

$$NH_4^+ + 2 O_2 \leftrightarrow NO_2^- + 2 H_2O$$

$$NO_2^- + 0.5 O_2 \leftrightarrow NO_3^-$$

Los organismos nitrificantes obtienen su energía de la oxidación del amonio y los iones de nitrito (Russell, 1976):

- ➤ La oxidación del amonio a iones de nitrito se da a través de la etapa hidroxilamina (NH₂•OH); ésta es la única sustancia, casi completamente demostrado, que toma parte en el proceso como intermediaria.
- Oxidación de la hidroxilamina a nitrito, a través de la nitrohidroxilamina.

> Oxidación del nitrito a nitrato, que es, probablemente, una reacción de deshidrogenación.

Estas dos reacciones son muy lentas y se dan a temperaturas no muy altas. La velocidad de la reacción aumenta de los 26 °C y disminuye a 9 °C (Agrawal *et al.*, 1995). El nitrato representa la fase más altamente oxidada en el ciclo del nitrógeno y alcanza normalmente, concentraciones importantes en las etapas finales de la oxidación biológica.

La producción de nitratos es el final del proceso del que se vale la naturaleza para facilitar a las plantas su alimentación nitrogenada, por lo cual la cantidad que de aquello se produzca puede servir de orientación para un primer avance indicador de la fertilidad del suelo, y actuando las bacterias muy rápidamente sobre las sales amoniacales, es evidente que de la velocidad con que éstas se producen dependerá la acumulación de nitratos (Mela, 1963).

Condiciones de suelo que afectan la nitrificación

Aireación

Como la nitrificación es un proceso de oxidación aeróbica, cualquier acción que aumente la aireación del suelo tiende a fomentarla. Como medios para fomentar la nitrificación se reconocen las labores de preparación del suelo, siempre que éstas no perjudiquen su porosidad. Casi podría decirse que los aporques, sobre las bacterias nitrificantes son tan importantes como la destrucción de malezas y la conservación de un estado físico deseable en el suelo por esas operaciones de cultivo (Fuentes y González, 2007).

> Temperatura

La temperatura más favorable para el proceso de la nitrificación es de 27 a 32 °C. La nitrificación no tiene lugar a la temperatura de congelación del agua, pero comienza alrededor de los 4.5 °C y se intensifica gradualmente hasta llegar a la temperatura óptima (Fuentes y González, 2007).

Humedad

La velocidad con que se realiza la nitrificación en un suelo depende en grado considerable del contenido de agua, y el proceso es retardado por contenidos demasiados bajos y también demasiados elevados de humedad. Prácticamente puede decirse que el contenido óptimo de humedad de un suelo para las plantas superiores lo es también para la nitrificación. Esto quiere decir, para los suelos comunes, que el agua superflua o de drenaje debe desaparecer de los horizontes superficiales y de la parte superior del subsuelo. En esa condición, el espacio de poros del suelo estaría ocupado por agua probablemente en un 50%, y, de acuerdo con resultados del estudio realizado por Reynolds-Vargas *et al.* (1994), la nitrificación, sin embargo, puede continuar aún con contenidos de agua menores que el del punto de marchitamiento (Fuentes y González, 2007).

Cal activa

Es necesaria la presencia de una base para crear un pH adecuado, la que se combina con el ácido nítrico evitando que la nitrificación se interrumpa al elevarse demasiado el pH. Es muy común observar que la cal aplicada estimula la nitrificación en los suelos, aún en aquéllos que ya contenían

una proporción adecuada de calcio activo. Aparentemente, el proceso de oxidación exige la presencia de bases activas. El potasio, el magnesio y el amonio facilitan la reacción, pero el calcio es el que da los mejores resultados. Esto explica la nitrificación pequeña que se observa en los suelos minerales ácidos y la aparente sensibilidad de los organismos a un pH bajo. Pero en realidad, la acidez, dentro de límites razonables, parece tener otra influencia sobre la nitrificación, siempre que haya presente una proporción adecuada de calcio, especialmente en los suelos turbosos. Estos últimos muestran a veces una notable acumulación de nitratos a un pH menor que 5. Esto se debe a su elevada capacidad total de intercambio y a la consiguiente presencia de cantidades muy elevadas de calcio activo a pesar del bajo porcentaje de saturación de bases (Fuentes y González, 2007).

Fertilizantes

Pequeñas cantidades de muchas sales estimulan la nitrificación. Los fosfatos son muy eficientes para la estimulación de la actividad de todos los tipos de organismos del suelo, incluso los nitrificadores, y es tan grande la cantidad de fósforo empleada en está forma que puede resultar una deficiencia para las plantas superiores. Sin duda sucede lo mismo con las sales de potasio. En general, la estimulación de las bacterias del suelo por la aplicación de fertilizantes está asociada con la que se observa en las plantas superiores, de modo que una fertilización racional fomenta la nitrificación y otras actividades microbianas, lo mismo que el crecimiento de las plantas cultivadas. Todos los elementos que sirvan de alimento a los microorganismos intensifican considerablemente su actividad, y como esto ocurre con casi todos los abonos, puede decirse con carácter general que su aplicación intensifica el proceso nitrificador, con el consiguiente incremento en el desarrollo de los vegetales, si bien existen casos en que puede ser notablemente perjudicado por la excesiva actividad de los microorganismos que inmovilizan grandes cantidades de nitrógeno, fósforo y potasio, que de momento no pueden ser utilizadas por las plantas. Cuanto se ha dicho, se refiere a porcentajes adecuados, ya que si pasan determinados límites pueden producir efectos contraproducentes, como ocurre cuando se añaden cantidades excesivas de nitrato sódico. En esta propiedad se basan las adiciones de dicho abono para reducir la nitrificación (Fuentes y González, 2007).

Relación carbono:nitrógeno (C:N)

El tejido vegetal original que se incorpora al suelo tiene una composición variable, como ya se ha hecho notar, siendo la relación C:N 1-20 o 30 en las leguminosas y el estiércol hasta 1-70 o más en algunas pajas. Se encuentran todos los valores entre esos dos extremos. La relación C:N de los cuerpos de los microorganismos, por lo general, es más constante y también mayor, generalmente 1-4 o 1-9 (Fuentes y González, 2007).

La adición al suelo de azúcares, celulosas u otras substancias de fácil descomposición y de baja relación C:N, provoca, si las condiciones son favorables para la descomposición, una desaparición total o parcial de los nitratos originalmente presentes. La desaparición de los nitratos del suelo en estos casos no quiere decir necesariamente que no se formen nitratos, y si se forman, son asimilados a medida que se producen. Los hidratos de carbono constituyen una buena fuente de energía para los organismos de funciones generales del suelo y, en condiciones favorables, se inicia una enorme multiplicación. Para la síntesis del nuevo protoplasma se necesita nitrógeno, de modo que se utiliza todo el que se forma en el suelo, y aunque se formen nitratos no hay oportunidad de que se

acumulen. Probablemente hay una pausa en la nitrificación, por falta de nitrógeno amoniacal, pues este también ha sido utilizado por los organismos que se multiplican. De modo que las plantas superiores no podrían obtener nitrógeno mientras es utilizado por los microorganismos (Fuentes y González, 2007).

Si la relación C:N de la materia orgánica del suelo es baja, la actividad de los organismos de descomposición es intensa y eleva la demanda de nitrógeno. Habrá poco N-amoniacal disponible para la nitrificación y los nitratos aparecerán en muy pequeña proporción, si es que aparecen. De modo que las plantas superiores que crecen en ese suelo pueden sufrir una falta de N-asimilable. Una relación C:N baja equivale entonces a una activa competencia del N entre los diferentes organismos del suelo y también entre éstos y las plantas superiores.

Un segundo aspecto de la relación C:N, se refiere a la conservación del humus en el suelo. Puesto que, durante la mineralización rápida de la materia orgánica, el N es fuertemente retenido en el suelo por los microorganismos, la lignina y arcilla, y el carbono disminuye hasta encontrarse en una relación aproximadamente constante con él, el contenido de N del suelo es el que determina realmente la cantidad de carbono orgánico presente. Así, cuanto mayor es la proporción de N en el tejido original mayor será la acumulación de carbono orgánico y, como existe una relación bastante definida (1:1.724) entre carbono y materia orgánica del suelo, la proporción de esta última que puede conservarse en un suelo depende entonces de la cantidad de N presente. Esta relación microbiana entre el N del suelo y la conservación de la materia orgánica es consistente (Fuentes y González, 2007).

Debe mencionarse otro aspecto de la influencia de la relación C:N. Hay una cierta evidencia de que las raíces de las plantas exudan o desprenden materia orgánica con un contenido elevado de nitrógeno. De modo que en la proximidad de las raíces la relación C:N suele ser menor y aumenta la actividad microbiana, con lo cual pueden desaparecer los nitratos de ciertas zonas críticas. Esa conclusión sería apoyada por la presencia de una mayor cantidad de organismos cerca de las raíces de las plantas y el mayor desprendimiento de CO₂ de suelos cultivados respecto a los no cultivados. Aparentemente, las raíces de las plantas estimulan localmente la flora heterótrofa del suelo, con lo cual retardan la acumulación de nitratos. En esa forma indirecta las plantas superiores pueden fomentar apreciablemente la actividad microbiana. A medida que se pierde bióxido de carbono y la relación C:N se hace mayor, disminuye la cantidad de carbono utilizable y se reduce mucho la actividad de los organismos heterótrofos de funciones generales. Entonces disminuye apreciablemente la demanda microbiana de N y como consecuencia de ello comienza a aparecer el amonio como producto secundario. Sin las demás condiciones favorables puede haber entonces una nitrificación y aparecer N en forma de nitratos (Fuentes y González, 2007).

Se ha establecido que la relación C:N tiende a ser menor en los suelos áridos que en los de las regiones húmedas cuando las temperaturas son comparables y, es menor en las regiones cálidas que en las más frías, siempre que la precipitación sea aproximadamente igual en ambas. Además, la relación C:N es en general mayor en los subsuelos que en las capas superficiales correspondientes (Fuentes y González, 2007).

Nitratos y cloruro de sodio

La adición de nitratos al suelo en plena nitrificación induce disminución en intensidad de ésta a medida que aumenta la cantidad añadida, lo cual facilita el medio para regular dicho proceso. Ocurre, sin embargo, que el fenómeno nítrico se habitúa a la acción del nitrato, terminando por desarrollarse normalmente lo que impide que, de momento, se reduzca tanto más su actividad cuanto mayor sea la cantidad añadida de aquél. Los efectos del cloruro de sodio no son apreciables cuando su porcentaje es pequeño o moderado, pero reduce notablemente la nitrificación si la sal abunda en el suelo. De aquí la escasa actividad con que dicho proceso actúa en los saladares ((Fuentes y González, 2007).

Reductores de la nitrificación

La tasa de nitrificación puede ser reducida por varias sustancias tóxicas. El amoníaco por sí mismo es tóxico para ambos grupos de microorganismos nitrificantes, sin embargo, lo es aún más para las *Nitrobacter* que para el género *Nitrosomonas*. Por tanto, altas concentraciones de urea impiden la acumulación de nitritos, particularmente en suelos neutros o alcalinos de baja capacidad de intercambio catiónico en climas templados (Russell, 1976 citado en Fuentes y González, 2007).

La adición de carbonato de calcio (CaCO₃) para amortiguar un poco el suelo y reducir el aumento del pH, reducirá la concentración de nitritos en el mismo; y suelos de textura media o fina y con una adecuada capacidad de intercambio catiónico adsorben los iones de amoníaco y amonio disminuyendo el riesgo de la acumulación excesiva de nitritos cuando la urea es usada como fertilizante (Russell, 1976 citado en Fuentes y González, 2007).

Por otra parte, existe un número de productos químicos comerciales que, según Russell (1976) parece inhibir la oxidación del amonio en la etapa de oxidación de la hidroxilamina:

- N-serve 2,2,2,6-Tetrachloro-2-picoline (Estabilizador de nitrógeno).
- ➤ 2-Chloro-6-(trichloromethyl) pyridine. (Nombre IUPAC).

Nitrógeno potencialmente mineralizable

Dada la importancia que posee el N en la nutrición de las plantas, es necesario desarrollar procedimientos que permitan determinar el nitrógeno potencialmente mineralizable, es decir, el nitrógeno orgánico que se mineralizará durante el período de cultivo, que con toda probabilidad interviene en la nutrición de la planta.

La cantidad total del N-mineral en el suelo resulta de la diferencia entre la tasa en que es producido de las reservas de materia orgánica del suelo y la tasa en que es removido por lixiviación, por el crecimiento de los cultivos y por otras vías de pérdida en que intervienen los microorganismos del suelo; y la proporción de nitrato y amonio depende, asimismo, de la tasa de oxidación del amonio a nitrato, la extracción de nitratos por la planta y las pérdidas de nitrato por lixiviación (Russell, 1976).

En la reposición de nitrógeno para los cultivos, el nitrógeno orgánico que se mineraliza durante el período de la misma mineralización es todavía más importante que el N-mineral. En el suelo, tienen lugar procesos de mineralización de nitrógeno orgánico que están directamente relacionados con la relación C:N. Cuando dicha relación es elevada, como es el caso de las pajas, los microorganismos necesitan nitrógeno adicional para que, al similar aquellas, puedan formar sus propias proteínas.

Este proceso, origina un descenso temporal en la concentración de NO₃ (inmovilización), lo que demuestra que la relación C:N juega un papel crucial en relación con el nitrógeno orgánico potencialmente asimilable (Hütsch, 1990).

Las proteínas y péptidos adsorbidos a los coloides del suelo constituyen una importante fuente de N-orgánico fácilmente mineralizable y de acuerdo con diversos autores (Loll *et al.*, 1983; Hütsch, 1990), la fuerza de adsorción de estos compuestos es de naturaleza electrostática.

Por otra parte, la textura del suelo puede tener alguna influencia sobre los mecanismos que intervienen en la disponibilidad del nitrógeno. Los suelos arenosos, se caracterizan porque en ellos tiene lugar una rápida mineralización del nitrógeno proteico transformándose en nitratos, preferentemente durante los meses de verano, pudiendo ser lixiviado posteriormente con las lluvias de invierno, mientras que, en los suelos arcillosos, este proceso es mucho más lento.

En consecuencia, la medida del nitrógeno potencialmente asimilable previa al cultivo tiene dos componentes: la fracción de nitrógeno mineral y la de nitrógeno orgánico fácilmente mineralizable. A su vez en este último, se consideran dos aspectos: primero, estaría basado en la determinación de los compuestos nitrogenados de bajo peso molecular que son fácilmente mineralizables (aminoácidos, aminas, etc.), como un índice del que se mineralizará durante el desarrollo del cultivo; mientras que el segundo, se refiere a la necesidad de tomar en consideración las condiciones en las que tendrá lugar la mineralización. Algunas de estas condiciones, pueden ser establecidas antes del comienzo del cultivo, tales como: el pH del suelo y la relación C:N, mientras que otras, como las condiciones climáticas, presentan mayor dificultad para poderse establecer con anterioridad. Sin embargo, pueden definirse en gran medida, por el periodo del año en el que tendrá lugar el cultivo (verano o invierno) o bien por las condiciones de explotación (aplicación de riegos).

Entre las técnicas capaces de facilitar información sobre el nitrógeno potencialmente mineralizable, se cita el método de incubación propuesto por Stanford y Smith (1973), que proporciona información acerca de la velocidad de mineralización del nitrógeno en el suelo, y el modelo de Anderson e Ingram (1993), que indica que bajo condiciones *in vitro* el proceso de mineralización del nitrógeno se puede realizar bajo incubación en el laboratorio, siendo un método que puede utilizarse para cuantificar la mineralización neta.

Para el proceso de la mineralización del nitrógeno en incubación, la humedad de una muestra compuesta de suelo proveniente del campo deberá estar a capacidad de campo, la cual provee una estimación de la mineralización bajo condiciones óptimas y refleja el efecto de la calidad del sustrato sobre la mineralización (Vitousek y Matson, 1984).

Las tasas de mineralización, nitrificación e inmovilización del nitrógeno en el suelo constituyen parámetros de importancia en la caracterización de la disponibilidad del nutriente para los cultivos. Así, pues, el conocimiento de las tasas de mineralización es necesario, en este sentido, para elaborar estrategias adecuadas de reposición del nutriente.

Anderson e Ingram (1993), señalan que la mineralización y nitrificación neta es calculada como la diferencia en N-mineral entre dos períodos de tiempo (t_1-t_0) , y los resultados son expresados, preferentemente, como μg N/g peso suelo seco /14 días. Babbar y Zak (1994), encontraron variaciones respecto a la mineralización de N y a la nitrificación neta. Ambos procesos mostraron

variaciones temporales marcadas; el promedio de la tasa de mineralización fue de 14.8 g N/ m^2 /año en sistemas con sombra, mientras que en las plantaciones sin sombra contabilizó 11.1 g N/ m^2 / año.

Tasas de mineralización reportadas por Reynolds-Vargas *et al.* (1994), de muestras provenientes de suelos de tres lugares (Valle Central, Costa Rica) mostraron promedios entre 39.9 y 54.3 μg N g⁻¹ a los 30 días. Asimismo, Montagnini y Buschbacher (1989), reportaron tasas de mineralización y nitrificación en los horizontes superficiales de Oxisoles y Ultisoles (0-10 cm), de muestras colectadas durante la época lluviosa en la cuenca del Río Negro en Venezuela, cuyos promedios estaban entre 3.5 y 23.2 μg g⁻¹ a los 30 días; sin embargo, Vitousek y Denslow (1986), en un estudio en tierras bajas del Atlántico de Costa Rica, estimaron mayores tasas de mineralización y nitrificación, en un rango de 15 a 65 μg g⁻¹ a los 30 días.

Transformaciones del N-NO3-

El N-NO₃ del suelo puede sufrir cuatro transformaciones distintas (Fuentes y González, 2007):

- > ser asimilado por los microorganismos,
- > ser asimilado por las plantas superiores,
- > perderse en el agua de drenaje,
- > salir del ciclo en ciertas condiciones, por volatilización.

Se ha considerado la asimilación de N-NO₃ por los microorganismos del suelo y por las plantas superiores; sin embargo, hay aspectos que cabe destacar (Fuentes y González, 2007):

> Alimentación de los microorganismos

En ciertos momentos la microflora del suelo es tan voraz que necesita grandes cantidades de nitrógeno y es probable que consuma una proporción elevada de los nitratos elaborados durante el año. De este modo las plantas superiores se alimentan con un nitrógeno residual o secundario, pero además disponen solamente del que han dejado la flora y la fauna del suelo, de funciones generales. Sin duda, este nitrógeno es pequeño comparado con el total que en la época de crecimiento pasa por las formas amino, amoniacal y de nitratos.

> Alimentación de las plantas

Es sabido que los nitratos constituyen la aportación más importante para la alimentación de las plantas, pues a su gran solubilidad se unen la preferencia que hacia ellos sienten los vegetales superiores, los cuales, si bien absorben en ciertos casos las sales amoniacales, prefieren casi siempre los nitratos, hasta el punto de que la mayoría de aquéllas han de sufrir la nitrificación antes de pasar a la planta, siendo excepciones el laurel y otras especies propias de suelos ácidos, algunos árboles y gran parte de los vegetales en la primera fase de su desarrollo. Sin embargo, la flora microbiana y la vegetación espontánea pueden consumir tales cantidades de nitrógeno que el restante sea insuficiente para cubrir las necesidades de las plantas.

- Drenaje o lixiviación
- Volatilización

Corresponde a las pérdidas de nitrógeno inorgánico, principalmente del amonio, en forma de gas amoníaco hacia la atmósfera por medios estrictamente químicos. El hidróxido de amonio formado se disocia en amoníaco y agua (Fassbender y Bornemisza, 1987).

Pérdidas de N del suelo

Desnitrificación

La fuente más importante de pérdida del N del suelo en forma gaseosa es la desnitrificación, realizada por bacterias desnitrificantes y que consiste en la reducción de los nitratos a óxido nitroso (N₂O⁻) con la consecuente liberación del N en su forma elemental gasesosa (N₂). Esto ocurre frecuentemente en suelos que no presentan un alto grado de acidez, con valores pH arriba de 5, bajo condiciones de poca aireación y en presencia de una población activa de microorganismos que, por tanto, este proceso resulta importante durante períodos con altas precipitaciones en suelos con temperaturas elevadas y con un alto contenido de materia orgánica (Russell, 1976).

Inmovilización

El N puede también pasar de una forma inorgánica a una forma orgánica. Este proceso se llama inmovilización y es el reverso de la mineralización. Los microorganismos descomponen vigorosamente la nueva fuente de energía presente en los residuos orgánicos, pero al mismo tiempo necesitan N para formar las proteínas de sus cuerpos. Cuando el contenido de N en los residuos es bajo, los microorganismos utilizan el N-inorgánico del suelo para satisfacer sus necesidades. De esta forma el N-inorgánico del suelo es transformado en N-orgánico presente en las proteínas de los microorganismos del suelo. Esta forma de N no es inmediatamente disponible para el crecimiento de las plantas, pero mucho de este N regresa gradualmente a forma disponible a medida que los microorganismos mueren y sus cuerpos se descomponen. En este proceso el N-inorgánico es incorporado e inmovilizado temporalmente en los microorganismos (Fassbender y Bornemisza, 1987).

La mineralización y la inmovilización ocurren simultáneamente en el suelo. El cambio de un suelo a dominancia de formas orgánicas o inorgánicas de N está gobernado principalmente por la relación C:N de la materia orgánica que se está descomponiendo. Los materiales con una relación C:N amplia (mayor que 30:1) favorecen la inmovilización (Bertsch, 1995).

Lixiviación

La pérdida de nitrato por lixiviación en el perfil del suelo fuera de la zona radical es un proceso complejo. En algunos suelos puede tardar unos pocos años para que el nitrato se lixivie hacia aguas subterráneas. La cantidad de nitrato presente en el suelo está siempre cambiando y, para que se produzca la lixiviación, más agua debe infiltrar el suelo que la que se pierde por evapotranspiración. Entre los factores que afectan el proceso de lixiviación de N-NO₃- están: las propiedades del suelo, topografía, clima, tipo de crecimiento del cultivo y las prácticas usadas en el manejo del sistema.

El manejo del N enfocado en minimizar las pérdidas de N-NO₃ en un cultivo en hileras está basado en un simple concepto: el exceso de NO₃ en la zona radical debe ser evitado en momentos en que el suelo es vulnerable a la lixiviación por exceso de agua o riego; teóricamente, todas las fuentes de N

disponible a la planta son tomadas en cuenta y que son suficientes para maximizar el rendimiento del cultivo.

La formación de las reservas de NO₃ es altamente dependiente del pH. Con valores bajos de pH se generan cargas electropositivas donde se adsorben los NO₃ Existe un punto en el cual las cargas positivas y negativas de los complejos de intercambio desaparecen, presentándose entonces una coagulación con un rápido lavado de los NO₃ a través del perfil del suelo, perdiéndose así el N (Smith y Cassel, 1991).

Saturación

Existen límites en la forma cómo el crecimiento de las plantas puede ser aumentado por la fertilización nitrogenada. En un determinado momento, cuando las deficiencias naturales de nitrógeno en un ecosistema son abastecidas, el crecimiento de la planta comienza a verse limitado por otras fuentes tales como el fósforo, el calcio y el agua. Cuando la vegetación ya no puede soportar más adiciones de nitrógeno, el ecosistema alcanza un estado descrito como "saturación de nitrógeno". En teoría, cuando un ecosistema es totalmente saturado con nitrógeno y sus suelos, plantas y microorganismos no pueden usar o retener más nitrógeno, todos los nuevos depósitos serán dispersados hacia las corrientes, aguas subterráneas y a la atmósfera. La saturación de nitrógeno tiene consecuencias dañinas para la salud y funcionamiento de los ecosistemas. Estos impactos fueron observados en Europa casi dos décadas atrás cuando los científicos identificaron incrementos significativos de la concentración de nitratos en lagos y corrientes, y también, amarillamiento y pérdida de algunos bosques de coníferas sujetos a altas deposiciones de nitrógeno (Renderos, 2001).

Significación ambiental de las pérdidas del nitrógeno

En resumen, el nitrógeno se pierde hacia el medio ambiente en forma de nitrato en las aguas de avenamiento y de escorrentía superficial, y hacia la atmósfera como nitrógeno elemental y óxidos nitrogenados, después de la nitrificación del amonio y como amoníaco volatilizado. La lixiviación del nitrato y las pérdidas por escorrentía tienen importancia porque aumentan el contenido de nitrato de las aguas superficiales y subterráneas y, por consiguiente, el abastecimiento de agua. Los altos niveles de nitrato en el agua potable pueden causar problemas médicos. La metahemoglobinemia (enfermedad azul de los bebés) en los lactantes está asociada con una absorción de nitrato, y existe la sugerencia no comprobada de la relación entre el nivel de absorción de nitrato y la formación en el cuerpo humano de nitrosaminas, posiblemente carcinógenas (FAO, 1986).

La pérdida de nitrógeno y de óxido nitrogenado hacia la atmósfera no tiene una significación ambiental determinada, aunque ha habido sugerencias sin confirmar que la emisión de grandes cantidades de óxidos nitrogenados podría afectar la capa de ozono estratosférica. En la actualidad no se considera que este efecto tenga alguna significación. La volatilización del amoníaco no es un problema ambiental, puesto que el amoníaco se disipa en la atmósfera a una concentración sumamente baja.

Disponibilidad del nitrógeno con relación al pH

Uno de los caracteres fisiológicos notables de la solución del suelo es su reacción y de cómo los microorganismos y las plantas superiores están muy supeditadas a su ambiente químico; desde hace mucho tiempo se presta gran atención a la reacción del suelo; es decir, si es ácida, neutra o alcalina

(Lyttletton y Buckman, 1952; Mela, 1963). Algunas soluciones del suelo tienen un promedio mayor de iones hidrógenos sobre los hidroxilos y por tanto son ácidas. Otras, por el contrario, son alcalinas, y también hay soluciones que tienen una misma concentración de iones hidrógenos e hidroxilos y por tanto son neutras.

En cualquiera de esos casos la relación se mide en términos de concentración de iones hidrógenos, y se expresa logarítmicamente en valores de pH. De modo que la acidez del suelo (pH) es menor que 7. Contrariamente, la alcalinidad del suelo indica una concentración de iones hidroxilos en la solución, y tiene un pH mayor que 7. La reacción del suelo tiene una gran influencia sobre la disponibilidad de los nutrientes vegetales, que suele ser más elevada entre pH 6.5 y 7.5.

Los iones H⁺parecen tener influencia considerable no solamente por la solubilidad, sino también sobre la facilidad con que los elementos nutritivos son absorbidos y utilizados por las plantas, aun cuando sean fácilmente solubles. Un buen ejemplo de esto es la influencia sobre la utilización del N-amoniacal y de nitratos por las plantas. Con un pH mayor que 6, las sales de amonio son utilizadas con mayor facilidad, pero en suelos que son moderada o fuertemente ácidos, aparentemente se absorben con mayor facilidad los nitratos. La actividad biológica es también mayor en niveles intermedios de pH (alrededor de pH 7), de manera que se incrementa la descomposición de la materia orgánica del suelo y la liberación de nutrientes como el nitrógeno (FAO, 1986).

Ciclo del carbono

El carbono es un elemento fundamental de los compuestos orgánicos, éste se combina con nitrógeno, fósforo, azufre, oxígeno e hidrógeno para construir las moléculas más importantes que originan la vida. Como sucede con todos los elementos, la disponibilidad de carbono no es infinita en el planeta y, por tanto, el carbono circula entre la materia orgánica y el ambiente físico y químico de manera constante. El movimiento del carbono ocurre a diferentes escalas espacio-temporales, que van desde el nivel molecular, pasando por el organísmico hasta el global. El carbono, en su unión molecular con el oxígeno, constituye el bióxido de carbono (CO₂), gas resultante de procesos tanto geoquímicos como biológicos, y cuya presencia en la atmósfera es fundamental en la regulación de la temperatura del planeta debido a sus propiedades como gas de invernadero (Martínez y Fernández, 2004).

El bióxido de carbono ha sido un componente de importancia atmosférica desde hace miles de millones de años, cuando la gran actividad volcánica del planeta lo lanzaba a la atmósfera. La atmósfera primitiva era más rica en bióxido de carbono (aproximadamente una concentración de 3% contra 0.036% en la actualidad) y evitaba la salida de la radiación, provocando junto con el vapor de agua, un calentamiento global en el planeta (Lovelock, 1988). La importancia del CO_2 y el vapor de agua para la regulación de la temperatura del planeta es tal que sin su presencia la temperatura promedio actual del planeta seria aproximadamente 33 °C más fría y, por lo tanto, el planeta estaría congelado (Schlesinger, 1997).

Las plantas superiores adquieren el dióxido de carbono atmosférico por difusión a través de pequeñísimos poros de las hojas conocidos como estomas, y es transportado a los sitios donde se lleva a cabo la fotosíntesis. Cierta cantidad de este CO₂ regresará a la atmósfera, pero la cantidad que se fija y se convierte en carbohidratos durante la fotosíntesis se conoce como producción primaria bruta (PPB). Esta se ha estimado globalmente en 120 Pg C/año (1Pg [Petagramo] = mil billones de gramos).

La mitad de la PPB (60 Pg C/año) se incorpora en los tejidos vegetales, como hojas, raíces y tejido leñoso, y la otra mitad regresa a la atmósfera como CO₂ debido a la respiración autotrófica (respiración de los tejidos vegetales) (Martínez y Fernández, 2004).

El crecimiento anual de las plantas es el resultado de la diferencia entre el carbono fijado y el respirado, a esto se le conoce como producción primaria neta (PPN) y en el nivel global se ha estimado en 60 Pg C/año. Eventualmente, en el transcurso de pocos o muchos años, casi todo el carbono fijado por vía de la PPN regresa a la atmósfera por medio de dos procesos: la respiración heterótrofa (Rh), que incluye a los descomponedores de la materia orgánica (bacterias y hongos que se alimentan de tejidos muertos y de exudado) y a los herbívoros; y por la combustión en los fuegos naturales o antropogénicos (Martínez y Fernández, 2004).

Gran parte de la biomasa muerta se incorpora al detritus y a la materia orgánica del suelo, donde es "respirada" a diferentes velocidades dependiendo de sus características químicas. Se producen así almacenes de carbono en el suelo que regresan el carbono a la atmósfera en diferentes periodos. La diferencia entre la fijación de carbono por la PPN y las pérdidas por la Rh, en ausencia de otras perturbaciones que producen pérdidas de carbono (p ej. el fuego o la cosecha), se conoce como la producción neta del ecosistema (PNE). Y cuando todas las pérdidas de carbono se contabilizan, tales como el fuego, la cosecha o la remoción, el transporte por los ríos a los océanos y la erosión, lo que queda es el carbono que acumula efectivamente la biosfera a nivel global, y que se conoce como la producción neta del bioma (PNB) (Martínez y Fernández, 2004).

Se consideran que existen dos mecanismos generales que operan de manera conjunta, pero en escalas diferentes de tiempo. 1) En el largo plazo (cientos de millones de años), el ciclo geoquímico del Carbonato-Silicato opera como regulador de dicha concentración. En este ciclo, el CO₂ atmosférico se disuelve en el agua de lluvia y forma ácido carbónico que reacciona con los minerales expuestos sobre la superficie terrestre, generando lo que se conoce como intemperismo de la roca. Los ríos acarrean los productos disueltos al océano. 2) En el océano se forma el carbonato de calcio; éste se deposita en los sedimentos marinos que por el proceso de subducción entran a la corteza baja de la Tierra. En este proceso se reincorporan elementos a los minerales primarios de las rocas y el carbono regresa a la atmósfera como CO₂ para las emisiones volcánicas e hidrotermales. Este ciclo geoquímico ha ayudado a mantener la concentración del CO₂ atmosférico por debajo de 1% durante los últimos 100 millones de años; sin embargo, los flujos de carbono anuales son relativamente pequeños (Martínez y Fernández, 2004).

La aparición de la vida sobrepuso al ciclo geoquímico un ciclo biogeoquímico de corto plazo. En éste dominan dos grandes transferencias anuales de carbono: el flujo de CO₂ de la atmósfera a las plantas como resultado de la fotosíntesis, y el regreso de este gas a la atmósfera como resultado de la descomposición de la materia orgánica. En los periodos de la historia de la Tierra en los que la producción de materia orgánica ha excedido su descomposición, el carbono orgánico se ha acumulado en los sedimentos geológicos. La magnitud de estos flujos es tal que ha sido posible detectarlos mediante las variaciones estacionales de las concentraciones atmosféricas de CO₂, particularmente en el hemisferio norte debido a su mayor masa continental en comparación con el hemisferio sur (Martínez y Fernández, 2004).

Otro componente natural del ciclo del carbono lo constituye el metano (CH₄). Este gas, después del bióxido de carbono, es el compuesto de carbono más abundante en la atmósfera (Schlesinger, 1997). Se produce por la fermentación de la materia orgánica en condiciones anaeróbicas, tal como ocurre, por ejemplo, en los humedales, los sedimentos lacustres y en el aparato digestivo de los rumiantes y las termitas. La concentración de metano muestra variaciones latitudinales, es mayor en el hemisferio norte que en el Sur y fuertes oscilaciones estacionales. Tiene una capacidad de absorción de radiación infrarroja 20 veces mayor por molécula que el bióxido de carbono (Silver y DeFries, 1990), por lo que la concentración de este gas en la troposfera tiene también el potencial para contribuir de manera significativa a un cambio climático global.

Carbono en suelo

El carbono orgánico del suelo (COS) es un componente importante del ciclo global del carbono ya que representa casi 70% del carbono orgánico de la biósfera (FAO, 2001). Lo suelos contienen más carbono que la suma existente en la vegetación y en la atmósfera (Swift, 2001), el carbono en los suelos puede encontrarse en forma orgánica e inorgánica (Jackson, 1964).

El carbono orgánico del suelo se encuentra en forma de residuos orgánicos poco alterados de vegetales, animales y microorganismos, en forma de humus y en formas muy condensadas de composición próxima al carbono elemental (Jackson, 1964). En condiciones naturales, el carbono orgánico del suelo resulta del balance entre la incorporación al suelo del material orgánico fresco y la salida de carbono del suelo en forma de CO_2 a la atmósfera (Swift, 2001; Aguilera, 2000), erosión y lixiviación. Cuando los suelos tienen condiciones aeróbicas, una parte importante del carbono que ingresa al suelo (55 Pg C año⁻¹ a nivel global) es lábil y se mineraliza rápidamente y una pequeña fracción se acumula como humus estable (0.4 Pg C año⁻¹) (FAO, 2001).

El COS es el principal elemento que forma parte de la materia orgánica del suelo (MOS), Rosell (1999) define a la materia orgánica del suelo como un conjunto de residuos orgánicos de origen animal y/o vegetal, que están en diferentes etapas de descomposición y que se acumulan tanto en la superficie como dentro del perfil del suelo. Además, incluye una fracción viva o biota, que participa en la descomposición y transformación de los residuos orgánicos (Aguilera, 2000).

La materia orgánica de los suelos corresponde a compuestos orgánicos carbonados de diferentes características químicas que se presentan estrechamente interrelacionados con la fracción inorgánica del suelo, principalmente arcilla. El contenido de carbono orgánico de los diferentes suelos está determinado principalmente por el clima y el tipo y calidad de arcilla (Sierra y Rojas, 1999).

El clima determina el grado de acumulación de carbono orgánico en el suelo (materia orgánica) a través de dos factores principales: cantidad de precipitación y temperatura. Por otra parte, el tipo y cantidad de arcilla también afecta al grado de acumulación de carbono en el suelo y este afecto interactúa con el suelo, modificando su grado de evolución (Sierra y Rojas, 1999).

La combinación adecuada de humedad y temperatura promueve la formación de abundante fitomasa. Esta vegetación reciclada se íntegra al suelo e incrementa a través del tiempo el contendido de materia orgánica. Sin embargo, está acumulación alcanza un equilibrio que está determinado por el balance de los factores señalados de humedad y temperatura, y de la propia interacción producida por la vegetación con el suelo (Sierra y Rojas, 1999).

En cuanto a la acumulación de carbono inorgánico, han sido menos los estudios realizados, a pesar de ser capturado en formas más estables tales como el carbonato de calcio. De hecho, la formación de carbonatos secundarios o carbonatos pedogénicos y el lavado de carbonatos hacia las aguas subterráneas constituye también dos mecanismos importantes de secuestro de carbono (FAO, 2002).

Carbono en vegetación

El almacenamiento de carbono en ecosistemas naturales, así como en las plantaciones forestales, se da mediante el proceso de la fotosíntesis. Durante este proceso el dióxido de carbono se transfiere de la atmósfera al tejido vegetal. Si el tiempo medio de residencia del carbono en tejido vegetal es largo (60 años o más), se habla de un proceso biológico de captura de carbono, el cual contribuye a mitigar los efectos de calentamiento global (Schlesinger, 1997).

Se han implementado diferentes estrategias para capturar el carbono y así reducir la concentración de dióxido de carbono en la atmósfera, ya sea a través de procesos bióticos o abióticos. Dentro del primer grupo comprende la fijación de dióxido de carbono como biomasa sobre la superficie terrestre, principalmente por las plantas que son las que lo utilizan en el proceso de la fotosíntesis. Respecto a la captura de carbono por procesos abióticos, consiste en la canalización de dióxido de carbono producido en las industrias o fábricas hacia las profundidades del océano o dentro del manto freático (Kimble *et al.*, 2002).

La biomasa es un parámetro que caracteriza la capacidad de los ecosistemas para acumular materia orgánica a lo largo del tiempo (Brown 1997; Eamus *et al.*, 2000) y está compuesta por el peso de la materia orgánica aérea y subterránea que existe en un ecosistema forestal (Schlegel *et al.*, 2000).

Según el IPCC (2006), es la masa total de organismos vivos presentes en un área o volumen dados; se suele considerar biomasa muerta el material vegetal muerto recientemente. La biomasa es importante para cuantificar la cantidad de nutrientes en diferentes partes de las plantas y estratos de la vegetación, permiten comparar distintos tipos de especies o vegetación similar en diferentes sitios. Además, la cuantificación de la biomasa y el crecimiento de la vegetación en los ecosistemas son críticos para las estimaciones de fijación de carbono, un tema actualmente relevante por sus implicaciones en relación al cambio climático (Dixon *et al.*, 1991; Ciesla, 1996).

Existen dos métodos comúnmente usados para estimar la biomasa: el método directo y el indirecto. Dentro del primero está el destructivo, que consiste en cortar el árbol y determinar la biomasa pesando directamente cada componente (Klinge y Herrera, 1983; Araujo *et al.*, 1999). Dentro de los indirectos se utilizan los métodos de cubicación del árbol donde se suman los volúmenes de madera, se toman muestras y se pesan en el laboratorio para calcular los factores de conversión de volumen a peso seco, es decir, la gravedad o densidad especifica (Segura, 1997). Otra forma de estimar la biomasa es mediante ecuaciones o modelos basados en análisis de regresión, que utilizan variables colectadas en el campo tales como el diámetro a la altura del pecho (DAP), la altura comercial y total, el crecimiento diamétrico, el área basal y la densidad especifica de la madera (Jordan y Uhl 1978; Saldarriaga *et al.*, 1988). Este método no es destructivo y es extrapolable a situaciones de crecimiento similares (Parresol, 1999). Los modelos de biomasa han aumentado en los últimos años, y posiblemente sean más los desarrollados para árboles individuales que para bosques (Segura, 1997; Loguercio y Defossé, 2001). Estas ecuaciones facilitan la toma de decisiones y permiten la estimación de biomasa y carbono a gran escala.

Flujo de carbono en los ecosistemas terrestres

El carbono en los sistemas terrestres usualmente se fracciona en cuatro principales componentes: Biomasa aérea, sistemas radicales, mantillo y carbono orgánico del suelo (Aceñolaza *et al.*, 2007) Insam (1990) menciona que los microrganismos son los principales medidores de la tasa de intercambio del carbono en el suelo.

Por definición ellos también son parte del carbono orgánico. El carbono fijado en estas cinco fracciones puede liberarse de forma natural a la atmósfera a través de los procesos de respiración de los distintos órganos de las plantas y de la actividad microbiana del suelo, responsable de la mineralización de la materia orgánica (FEMP, 2012).

Si el balance neto de los flujos de carbono, absorciones y emisiones resulta positivo se puede hablar de ecosistemas terrestres que actúan activamente como sumideros de carbono. En caso contrario, tendrá la consideración de fuentes emisoras de carbono. Este balance neto depende de muchos factores, entre los que se encuentran las características propias de la vegetación, del clima y del tipo de suelo y de las particularidades de la gestión aplicada (FEMP, 2012).

Estequiometría

El termino estequiometría proviene del griego stoicheion, 'elemento' y métrón, 'medida' y se define como el cálculo de las relaciones cuantitativas entre reactivos y productos en el transcurso de una reacción química. El primero en enunciar los principios de la estequiometría fue Jeremias Benjamin Richter (1762-1807), en 1792, quien describió la estequiometría de la siguiente manera (Zeron, 2020):

"La estequiometría es la ciencia que mide las proporciones cuantitativas o relaciones de masa en la que los elementos químicos que están implicados."

En una reacción química se observa una modificación de las sustancias presentes: los reactivos se consumen para dar lugar a los productos. A escala microscópica, la reacción química es una modificación de los enlaces entre átomos, por desplazamientos de electrones: unos enlaces se rompen y otros se forman, pero los átomos implicados se conservan. Esto se refiere a la ley de conservación de la masa, que implica la conservación del número de átomos de cada elemento químico y la conservación de la carga total. Las principales leyes estequiométricas son (Zeron, 2020):

- ➤ Ley de la conservación de la materia: postulada por Antonie Lavoisier después de realizar varios experimentos en los cuales la cantidad de más de las sustancias constituyentes era igual al de las sustancias obtenidas de la masa de las sustancias obtenidas después del cambio químico sufrido. Por lo que su ley dice: "la materia no se crea ni se destruye, solo se transforma"
- Ley de las proporciones constantes: también conocida como ley de las proporciones definidas o fijas. En sus experimentos el químico francés Joseph Proust realizo innumerables análisis cuantitativos, en los cuales se percató de que los elementos, al unirse para formar un compuesto, siempre lo hacen de la misma cantidad, la cual permanece fija e invariable. por lo que esta ley dice: "Los elementos que forman un compuesto se combinan siempre en la misma proporción"

Ley de las proporciones múltiples: al realizar Daltonsus experimentos, se dio cuenta de que hay elementos que al combinarse en diferente proporción forman compuestos distintos. Esta ley nos menciona lo siguiente: "Dos elementos se pueden combinar en proporciones diferentes formando compuestos distintos."

Las relaciones estequiométricas entre las cantidades de reactivos consumidos y productos formados dependen directamente de estas leyes, y están determinadas por la ecuación (ajustada) de la reacción, se dice que está ajustada o equilibrada cuando respeta la ley de conservación de la materia, según la cual la suma de los átomos de cada elemento debe ser igual en los reactivos y en los productos de la reacción (Zeron, 2020).

Acorde a sus definiciones y en el contexto del trabajo actual, al hablar en apartados futuros de la estequiometría del carbono y nitrógeno se hace referencia a la distribución espacial de estos elementos en base a sus contenidos (diferentes formas y compuestos) presentes a lo largo del gradiente altitudinal estudiado en el PNIP.

Análisis estadísticos

Pruebas de normalidad

El supuesto de la distribución normal en estadística es clave para una gran cantidad de procedimientos, modelos y pruebas, por lo tanto, es necesario contar con herramientas para la comprobación de la normalidad en las variables, para poder afirmar que una muestra aleatoria tiene una distribución normal por lo general se tienen 3 formas principales:

- ➤ Histograma y/o Densidad.
- > Gráficos cuantil cuantil (Q-Q plot).
- > Pruebas de hipótesis.

Al construir un histograma y/o densidad para la variable de interés se puede evaluar visualmente la simetría de la distribución de los datos. Si se observa una violación clara de la simetría (sesgo a uno de los lados) o si se observa una distribución con más de una moda, eso sería indicio de que la muestra no proviene de una población normal. Sin embargo, si se observa simetría en los datos, esto **no** garantiza que la muestra aleatoria proviene de una población normal y se hace necesario recurrir a otras formas para su comprobación.

Por otra parte un gráfico Q-Q (con "Q" como cuantil) sirve para representar gráficamente y diagnosticar las diferencias de la distribución de probabilidad (es una función que asigna a cada suceso definido sobre la variable la probabilidad de que dicho suceso ocurra según Díaz, 2013) de una muestra aleatoria contra una distribución usada para la comparación (Cleveland,1985). Una forma básica de gráfico surge cuando la distribución para la comparación es una distribución teórica (como el de la distribución normal) aunque también es posible usarlo para comparar las distribuciones de 2 muestras distintas, con numero de observaciones diferentes.

Mientras que en las pruebas de hipótesis se compara la Hipótesis Nula (H₀) contra la Alterna (H_A) siendo estas: H₀: la muestra proviene de una población normal y H_A: la muestra no proviene de una población normal.

Algunas de las pruebas más comunes son:

Prueba Shapiro-Wilk

Cuando la muestra es como máximo de tamaño 50 resulta es muy útil para comprobar la normalidad. Para efectuarla se calcula la media, la varianza muestral y se ordenan las observaciones de menor a mayor. después se calculan las diferencias entre: el primero y el último; el segundo y el penúltimo; el tercero y el antepenúltimo, etc. y se corrigen con unos coeficientes tabulados por Shapiro y Wilk (Shapiro y Wilk, 1965). Si el "valor p" (que es básicamente la probabilidad de que un valor estadístico calculado sea posible dada una Hipótesis Nula cierta, separando resultados provenientes del azar de aquellos estadísticamente significativos) es mayor a alfa (por lo general 0.05 o 0.10), se concluye que no se puede rechazar Hipótesis Nula.

> Prueba de Anderson-Darling

Esta prueba compara la función de distribución acumulada empírica (ECDF) de los datos de la muestra con la distribución esperada si los datos fueran normales, utilizando el valor p correspondiente para probar si los datos provienen de la distribución pensada. Si el valor p es menor que alfa entonces se rechaza la hipótesis nula de que los datos provienen de esa distribución.

Prueba Jarque-Bera

La prueba de Jarque-Bera es una prueba de bondad de ajuste para comprobar si una muestra de datos tiene la asimetría y la curtosis de una distribución normal (Bera y Jarque, 1981). El estadístico de Jarque-Bera se distribuye asintóticamente como una distribución chi cuadrado con dos grados de libertad y puede usarse para probar la hipótesis nula de que los datos pertenecen a una distribución normal. La hipótesis nula es una hipótesis conjunta de que la asimetría y el exceso de curtosis son nulos (asimetría = 0 y curtosis = 3, valores esperados de la distribución normal). Si el valor p es mayor a alfa, se concluye que no se puede rechazar la hipótesis nula.

Prueba Lilliefors

Está basada en la prueba de Kolmogorov-Smirnov, esta se utiliza para probar la hipótesis nula de que los datos provienen de una población con distribución normal, especialmente cuando la hipótesis nula no especifica el valor esperado y la varianza de la distribución. Si el valor p es mayor a alfa, se concluye que no se puede rechazar Hipótesis Nula.

Análisis de varianza (ANOVA)

El análisis de la varianza (o ANOVA: Analysis of variance) Es una técnica estadística diseñada para medir si existen diferencias entre los valores medios de una variable dependiente calculados para los distintos grupos que se pueden obtener con otra variable independiente y nominal (Abraira *et al.*, 1996 y Allen 2005).

En el caso de que la variable independiente tuviera solo dos alternativas, sería suficiente aplicar una prueba de diferencia de medias. La variable o variables independientes reciben el nombre de Factor y debe ser variables de tipo nominal, y sus distintos valores el de tratamientos, mientras que la

variable dependiente debe ser métrica, puesto que sobre ella se debe calcular los valores medios objetos del análisis de la varianza.

La hipótesis nula para contrastar es que se consideran iguales las medias en todos los grupos, o lo que es lo mismo, no existen diferencias entre las medias obtenidas para cada uno de los grupos formados por la variable independiente o factor. Un coeficiente útil para medir el efecto que las variables tienen sobre el modelo es la eta cuadrada (η^2) o el coeficiente de valor de efecto.

Valor de efecto

La eta cuadrada o valor de efecto es una medida del tamaño del efecto en ANOVA (proporción de varianza explicada por las variables predictoras). Suele considerarse que una eta cuadrada parcial en torno a 0,01 es poco efecto, que una eta cuadrada en torno a 0,06 indica un efecto medio y que una eta cuadrada superior a 0,014 es ya un efecto grande (Anexo 1).

La principal ventaja de este índice es su fácil interpretación ya que se puede multiplicar por 100 y hablar en términos de porcentaje de varianza explicada por el efecto de la variable independiente. Por ejemplo, si el valor de η^2 es .15 entonces el 15% de las diferencias encontradas entre los dos grupos se atribuye al efecto de la intervención o tratamiento. En términos de Cohen se trataría de un tamaño del efecto grande. Además, 1 - η^2 es la proporción de varianza no explicada por el efecto del tratamiento y que se atribuye por lo tanto a la fuente de varianza del error (Frías-Navarro, 2015). Su cálculo es por medio de la siguiente formula:

 $\eta 2 = Suma \ de \ cuadrados \ (tratamiento \ \ \ \ \ e fecto) / Suma \ de \ cuadrados \ (Total)$

Prueba de Tukey

La prueba de Tukey, nombrado después Juan Tukey, es una prueba estadística utilizada en general y en conjunto con ANOVA. La prueba Tukey se usa en experimentos que implican un número elevado de comparaciones. Es de fácil cálculo puesto que se define un solo comparador, resultante del producto del error estándar de la media por el valor tabular en la tabla de Tukey usando como numerador el número de tratamientos y como denominador los grados de libertad del error.

Dado que el análisis de varianza acuse un efecto significativo, la prueba de Tukey provee un nivel de significancia global de α cuando los tamaños de las muestras son iguales y de α a lo sumo a cuando no son iguales. Se basa en la construcción de intervalos de confianza de las diferencias por pares. Si estos intervalos incluyen al 0, entonces no se rechaza la Hipótesis Nula (Harnet, y Murphy, 1997).

Correlación Simple de Pearson (CCP)

Se dice que la correlación entre dos variables *X* e *Y* es positiva cuando en la medida que aumenta una de ellas lo hace la otra. Esto sucede cuando la relación entre ambas variables es funcionalmente exacta. Por el contrario, se dice que la relación es negativa cuando en la medida que aumenta una variable disminuye la otra. El coeficiente de correlación de Pearson es un índice cuyos valores absolutos oscilan entre 0 y 1. Cuanto más cerca de 1 mayor será la correlación, y menor cuanto más cerca de cero.

Una correlación es efectiva si es distinta de cero. Pero una correlación significativa no necesariamente ha de ser una correlación fuerte; simplemente es una correlación diferente de cero. O, en otros términos, es una correlación que es poco probable que proceda de una población cuya correlación es cero. Una vez calculado el valor del coeficiente de correlación interesa determinar si

tal valor obtenido muestra que las variables *X* e *Y* están relacionadas en realidad o tan solo presentan dicha relación como consecuencia del azar (Márquez de Cantú, 1988; Reyes, 1990).

En consecuencia, dado un cierto coeficiente de correlación (r_{xy}) obtenido en una determinada muestra se trata de comprobar si dicho coeficiente es posible que se encuentre dentro de la distribución muestral especificada por la Hipótesis Nula. A efectos prácticos, se calcula el número de desviaciones tipo que se encuentra el coeficiente obtenido del centro de la distribución, según la fórmula:

$$t = \frac{r_{xy} - 0}{\sqrt{\frac{1 - r_{xy}^2}{N - 2}}}$$

Figura 2. Cálculo del número de desviaciones.

y se compara el valor obtenido con el existente en las tablas para un cierto nivel de significación α y N-2 grados de libertad, --t $_{(\alpha,N-2)}$ --que como se sabe, marca el límite (baja probabilidad de ocurrencia, según la hipótesis nula) de pertenencia de un cierto coeficiente r_{xy} a la distribución muestra de correlaciones procedentes de una población con $\rho=0$. De esta forma si:

t > t $_{(\alpha,N-2)} \Rightarrow$ Se rechaza la hipótesis nula. La correlación obtenida no procede de una población cuyo valor $\rho_{xy} = 0$ Por tanto las variables están relacionadas.

 $t \le t$ $_{(\alpha,N-2)} \Rightarrow$ Se acepta la hipótesis nula. La correlación obtenida procede de una población cuyo valor $\rho_{xy} = 0$. Por tanto, ambas variables no están relacionadas. (Dagnino, 2014).

De forma similar a la Prueba de Tukey al evaluar los valores obtenidos de "t", se debe de considerar el valor obtenido en valor absoluto, permitiendo la evaluación de r_{xy} independientemente del signo, pues lo que se busca es la confirmación de la relación entre las variables mediante el espacio muestral de distribución t. En la diferencia de valores de "t" se observa cierta proporcionalidad basada en el valor de la correlación de Pearson (r) y el coeficiente de determinación (r^2), entre más cerca este el número (sea negativo o positivo) de la unidad, mayor probabilidad será de que las variables estén relacionadas entre sí.

Análisis de Componentes Principales (ACP)

El análisis de componentes principales o ACP es una de las técnicas de aprendizaje no supervisado, las cuales suelen aplicarse como parte del análisis exploratorio de los datos. A diferencia de los métodos de aprendizaje supervisado, donde contamos con un grupo de variables o características ($\mathbf{X} = \mathbf{X1}, \mathbf{X2}, \dots \mathbf{X}_p$) medidas sobre un conjunto de observaciones n, con la intención de obtener predicciones sobre una variable respuesta y asociada, en los no supervisados se limitan a un número de variables de las cuales se desea extraer la mayor información posible, por ejemplo, sobre la existencia de subgrupos entre las variables u observaciones.

Una de las aplicaciones de ACP es la **reducción de dimensionalidad** (variables), perdiendo la menor cantidad de información (varianza): cuando existen un gran número de variables cuantitativas posiblemente correlacionadas (indicativo de existencia de información redundante), el ACP permite reducirlas a un número menor de variables transformadas (componentes principales)

que explican gran parte de la variabilidad en los datos. Cada dimensión o componente principal generada por ACP es considerada una combinación lineal de las variables originales, y serán además independientes o no correlacionadas entre sí. Las componentes principales generadas pueden utilizarse a su vez en métodos de aprendizaje supervisado, como en la regresión de componentes principales

El ACP también sirve como herramienta para la **visualización de datos**: Para representar n observaciones con medidas sobre p variables ($\mathbf{X} = \mathbf{X1}, \mathbf{X2}, ..., \mathbf{Xp}$) **como** parte de un análisis exploratorio de los datos. En este caso se examinan representaciones bidimensionales, sin embargo, existen un total de $\binom{p}{2} = \mathbf{p}(\mathbf{p}-1)/2$ posibles representaciones entre pares de variables, y si el número de variables es muy alto, estas representaciones se harían inviables, además de que posiblemente la información contenida en cada una sería solo una pequeña fracción de la información total contenida en los datos. El ACP puede considerarse como una rotación de los ejes del sistema de coordenadas de las variables originales a nuevos ejes ortogonales, de manera que estos ejes coincidan con la dirección de máxima varianza de los datos, como nota, el ACP no requiere la suposición de normalidad multivariante de los datos (Martínez, 2018).

HIPOTESIS

La estequiometría del Carbono y Nitrógeno con base a su distribución espacial en los suelos se ve modificada debido a la actividad de la ureasa, de los contenidos de sustancias húmicas (ácidos húmicos y fúlvicos) y de propiedades físicas, químicas y bioquímicas como Delta pH, carbono orgánico del suelo (COS), CBM y qCO₂, a lo largo de un gradiente altitudinal en el PNIP.

Hipótesis complementaria

La generación de variables a partir de variables registradas y sus relaciones puede describir el comportamiento de los contenidos de C y N a lo largo del gradiente altitudinal del PNIP.

JUSTIFICACIÓN

La función de los ecosistemas de alta montaña, en especial de los bosques templados ha demostrado ser vital proveyendo servicios ecosistémicos de forma continua y soportando biotas de una gran diversidad y cadenas tróficas necesarias tanto ecológica como socialmente. El entendimiento de los contenidos de Carbono y Nitrógeno ofrece información clave:

- ➤ A corto y mediano plazo: Cuidado y protección de ecosistemas, conocer el estado de sus ciclos biogeoquímicos con base a la distribución espacial (estequiometría) del carbono y nitrógeno para permitir una logística organizada y precisa en pro del PNIP
- A largo plazo: Conservación de ecosistemas similares en diferentes zonas del país cuyo estado actual muestra que cerca del 80 a 90% se encuentra concesionado para su explotación (Domínguez, 2011). Tarea extremadamente necesaria que debe de ir encaminada al uso sustentable y conservación de los recursos naturales

OBJETIVOS

General

➤ Evaluar y describir la estequiometría con base a la distribución de los contenidos del carbono y nitrógeno en suelos de bosques templados y sus relaciones con propiedades físicas, químicas y bioquímicas a lo largo de un gradiente altitudinal del PNIP.

Particulares

- Determinar las relaciones de ácidos húmicos y fúlvicos con los contenidos del carbono y nitrógeno a lo largo del gradiente altitudinal.
- ➤ Determinar índices metabólicos y sus relaciones con los contenidos de C y N a lo largo del gradiente altitudinal
- Determinar las relaciones entre la biomasa microbiana y la actividad enzimática y sus relaciones con los contenidos de C y N a lo largo del gradiente altitudinal
- ➤ Determinar la relación de las tasas C:N y los contenidos de M.O. a lo largo del gradiente altitudinal.
- ➤ Determinar las relaciones del N-NH₄⁺ generado por la actividad de la enzima ureasa respecto a los contenidos del C y N.
- > Describir las relaciones multifactoriales de las variables físicas, químicas y bioquímicas que se desarrollan en cada sitio de estudio.
- Explorar relaciones experimentales entre las variables físicas, químicas y bioquímicas, así como su relación con los contenidos de C y N nitrógeno a lo largo del gradiente altitudinal.

AREA DE ESTUDIO

Parque Nacional Iztaccíhuatl Popocatépetl

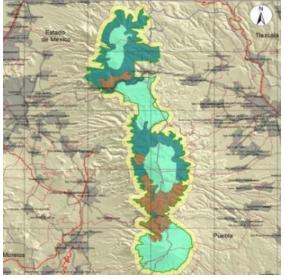


Figura 3. Mapa geográfico del Parque Nacional Iztaccíhuatl Popocatépetl (CONANP, 2013).

Se ubica en la parte centro-oriental del Eje Volcánico Transversal. Ocupa parte de la Sierra Nevada en su porción sur y de la Sierra de Río Frío en su porción norte se encuentra en las coordenadas

18°54.6′,19° 42′ N y 98° 31.2′, 98° 48′ W, con una extensión de 1320.16 km². Su topografía comprende los volcanes Popocatépetl 5,452 m y la Iztaccíhuatl 5,280 m que dan nombre al Parque Nacional. Sus geoformas son de origen volcánico, predominando rocas basálticas y andesíticas. Abarca una superficie de 40,008 hectáreas dividida entre los estados de México, Puebla y Morelos, en los municipios de Texcoco, Ixtapaluca, Chalco, Tlalmanalco, Amecameca, Atlautla y Ecatzingo, en el Estado de México; Tlahuapan, San Salvador el Verde, Chauitzingo, Huejotzingo, San Nicolás de los Ranchos y Tochimilco, en Puebla; y Tetela del Volcán, en Morelos (CONANP 2008).

Por otro lado, el sitio que ocupa el parque en el centro del Eje Volcánico Transversal, le confiere una serie de características propias de la confluencia de las regiones neártica y neotropical, como son la alta biodiversidad y la presencia de endemismos. Aunado a esto, su marcado gradiente altitudinal, que va de los 3,000 m s.n.m. a los 5,500 m s.n.m, con la segunda y tercera cumbres más altas de México, desarrolló en poco espacio una gran diversidad de ecosistemas: bosques mixtos de pino, oyamel y encino, pradera de alta montaña (muy rara en un país intertropical) y glaciares.

Clima

Debido a su topografía y ubicación el Parque tiene una variedad de climas que van del templado húmedo a los climas frío y muy frío; la temperatura disminuye con la altura a razón de 0.68 °C por cada 100 m. Por la latitud de esta región se ve afectada en la época fría del año por sistemas de tiempo propios de las latitudes medias, como los frentes fríos y la invasión de masa de aire polar continental; en el verano influyen los sistemas meteorológicos propios de la zona tropical como los huracanes y las ondas tropicales (CONANP, 2008).

Hidrología

Los recursos hídricos que se originan en el Parque Nacional se forman principalmente por el deshielo de los glaciares y la precipitación pluvial abundante en la región, que en algunas zonas sobrepasa los 1000 mm anuales. Las corrientes superficiales pueden ser permanentes o intermitentes, estas últimas son innumerables durante la época lluviosa y también se produce gran infiltración de agua que va a alimentar las corrientes subterráneas. Los ecosistemas de la Sierra Nevada efectúan procesos que permiten la recarga de acuíferos y mantos freáticos que abastecen buen parte de la Zona Metropolitana de la Ciudad de México y del Valle de Puebla y Tlaxcala (CONANP, 2013).

Edafología

Las unidades de suelo presentes en el área del parque según CONANP, (2013) son:

- ➤ LEPTOSOLS: Suelos someros, con menos de 0.1 m de espesor, formados sobre tepetates y que conservan las características del material parental. Aunque esos suelos pueden estar asociados con regosoles y andosoles en ciertas áreas muy restringidas, generalmente son poco desarrollados debido a la velocidad de percolación del agua que impide el establecimiento de algún tipo de vegetación, lo que aunado al clima presente a altitudes mayores de 4,000 msnm dificulta el desarrollo del suelo.
- ➤ REGOSOLS: Son suelos formados a partir de material suelto como arena, grava o piedra; en el parque se localizan a altitudes por debajo de los 3,900 msnm y normalmente son pobres en contenido de materia orgánica y nutrientes.

- ➤ ANDOSOLS: Se derivan de cenizas volcánicas recientes, por lo que son suelos ligeros con alta retención de humedad y buen contenido de nutrientes, así como con un alto contenido de materia orgánica; por su contenido de materia orgánica y la proporción de vidrios volcánicos presentes, pueden formar andosoles húmicos que se presentan en áreas forestales poco alteradas; también pueden formar andosoles vítricos en zonas con vegetación de coníferas cuando presentan más del 60% de vidrios, ceniza volcánica y texturas gruesas, se distribuyen latitudinalmente de los 3000 a 3500 m.
- ➤ CAMBISOLS: Son suelos mejor desarrollados, con horizontes A y B bien definidos, pero pobres en contenido de nutrientes; presentan Potencial para el desarrollo forestal con adecuadas prácticas de manejo para la conservación de suelo y captación de humedad. El intervalo altitudinal en el que se distribuyen a los 3000 y 3500m.
- ➤ FLUVISOLS: Son suelos formados en cañadas, escurrimientos y zonas de depósitos de material reciente; de textura gruesa, su fertilidad es baja debido al escaso contenido de nutrientes. Por lo anterior, se comprende que los suelos presentes en todo el parque estarán siempre asociados con su origen volcánico, sin importar la zona donde uno se encuentre, solo variando el grado de desarrollo.

Vegetación

El Parque Nacional Iztaccíhuatl Popocatépetl es el remanente más importante de bosques de coníferas y praderas de alta montaña en el centro del país. La distribución de la vegetación en esta zona atiende a la altitud. Se distinguen tres pisos fundamentales de vegetación. Los bosques de coníferas son la vegetación dominante, seguidas por la pradera de alta montaña o pastizal alpino, vegetación herbácea de no más de 50 cm de altura que colinda con las nieves perpetuas. Entre estas dos zonas existe un ecotono de aproximadamente 100 metros (50 hacia el bosque y 50 hacia el zacatonal) cuya principal característica es ser zona de transición entre las dos zonas de vegetación descritas. Las principales especies de este ecotono son la *jarilla*, *digitalis*, *cardo santo*, *lupinus y gordolobo* (CONANP, 2013).

Bosques

Hasta los 3,100 m se encuentran asociaciones dominadas por P. montezumae. Forman un dosel de 20 a 30 m sobre el nivel del suelo frecuentemente asociado con especies de los géneros Quercus, Abies, Arbutus, Alnus, Salix y Buddleia. Se establecen asociaciones vegetales de transición entre Pinus y Abies, lo que implica que son zonas de amplia diversidad florística y ecológica conformando rodales mixtos de Pinus ayacahuite con Abies religiosa. En està zona de ecotono también es frecuente la asociación de Pinus montezumae con Pinus hartwegii. En estos bosques el dosel no es muy cerrado, lo que permite el establecimiento y desarrollo de diversas especies arbóreas, arbustivas y herbáceas. Entre los géneros mejor representados pueden citarse: Pinus, Senecio, Ribes, Muhlenbergia, Agrostis, Lupinus y Festuca (CONANP, 2013).

En las partes más elevadas y abruptas hacia los 3,600 msnm se establece el bosque de *P. hartwegii* tolerante a las temperaturas bajas, frecuentes nevadas y probablemente uno de los pinos más adaptados a los incendios superficiales. En las partes bajas de su área de distribución forma rodales abiertos con árboles de entre 15 y 20 m de altura, asociados con zacatonal denso y leguminosas como *Lupinus sp.*, pero hacia las partes más elevadas (4,000 m s.n.m.), con frecuencia constituye un

bosque achaparrado (de 5 a 8 m de alto) y más bien abierto, aunque algunos individuos aislados pueden encontrase en los 4,200 m s.n.m., que es el límite altitudinal arbóreo en México.

La especie dominante de los bosques de oyamel es la conífera *Abies religiosa*. Tiene un rango altitudinal entre 2,400 a 3,500 msnm. El dosel suele estar entre los 20 y 40 m sobre el nivel del suelo. Los suelos son típicamente profundos, bien drenados pero húmedos todo el año. En muchos sitios se hallan limitados a cañadas o barrancas más o menos profundas que ofrecen un microclima especial. No se desarrollan sobre terrenos planos o poco inclinados, pero tal hecho quizá está en función de la escasez de estos terrenos en la zona montañosa y en parte a la influencia humana. Las asociaciones de bosques de encino son todavía más complejas que las del pino y se entremezclan con otros tipos de vegetación. De 2,400 a 3,100 msnm se encuentra la asociación de *Q. laurina con Q. crassifolia, Q. rugosa, Abies, Arbutus, Juniperus y Pinus* (CONANP, 2013).

Zacatonal y pastizales montanos

Los zacates del parque se consideran en buen estado; hay una combinación de zacatonales primigenios y zacatonales secundarios como consecuencia de la introducción de zacatales destinados a la ganadería, los cuales han resultado buenos para la engorda del ganando a los 4,000 m s.n.m. Bajo este rubro se consideran las asociaciones de vegetación en que dominan las gramíneas amacolladas.

Se distinguen al menos dos grandes comunidades vegetales: el zacatonal, que se desarrolla en los llanos sobre sitios bajos y mal drenados, dedicados históricamente al pastoreo de ganado, donde predominan gramíneas que rara vez exceden los 30 cm de alto o estoloníferas de los géneros: *Agrostis, Bromas, Calamagrostis, Festuca, Muhlenbergia, Poa y ciperáceas* como *Carex peucophila y* el pastizal montano, que se distribuye por arriba del límite arbóreo y constituye vegetación clímax. Los pastizales montanos se caracterizan por la presencia de gramíneas amacolladas que oscilan entre 60 y 120 cm de altura y se localizan en altitudes de 2,700 a 4,300 metros (CONANP, 2013).

MATERIAL Y MÉTODOS

La investigación se realizó con información generada del estudio de toposecuencias dirigidas desde las poblaciones de Amecameca y San Pedro Nexapa hacia la zona del Parque Nacional Iztaccíhuatl Popocatépetl entre 2,600 y 3,800 m, en los meses de febrero a junio del año 2008.

Se seleccionaron seis Unidades Ambientales (UA) con apoyo cartográfico y con base en un gradiente altitudinal, bajo la condición de que cada UA tuviera como vegetación dominante a los géneros *Pinus y Abies* (la base de datos obtenida gracias al esfuerzo conjunto de los laboratorios de *Edafología y Nutrición vegetal y Calidad del agua y Ecohidrología* (UMIEZ, FES Zaragoza), fue examinada y analizada en este trabajo por medio del uso de suites ofimáticas y complementos estadísticos, ver Anexo 8).

Figura 4. Sitios de estudio a lo largo del Parque Nacional Iztaccíhuatl Popocatépetl.

En cada sitio se trazaron cuadrantes de 50×20 m que corresponden a 0.1 ha, tomando en cuenta que en cada cuadrante los árboles estuvieran vigorosos y sanos y que en él existieran individuos juveniles y adultos. Se registró el grado de conservación indicada con presencia o ausencia de regeneración. Se determinó la ubicación geográfica mediante el registro de coordenadas y altitud con un GPS marca Garmin. En cada UA se registró la densidad del arbolado adulto y joven

Toma de muestras

Muestras de suelo

Para el análisis físico y químico del suelo, en cada UA se tomaron con una pala, cuatro submuestras de suelo entre 0-20 cm de profundidad, de aproximadamente 1 kg de peso, las cuales fueron mezcladas homogéneamente obteniendo así, una muestra compuesta la cual se colocó en bolsas plásticas. El suelo se etiquetó y se trasladó al laboratorio para posteriormente realizar el análisis, las muestras se secaron a temperatura ambiente. Después se tamizó con malla del Nº 20 y se guardaron hasta el momento de su utilización en botes de plástico etiquetados con los siguientes datos: Fecha, número de muestra, altitud, pendiente, lugar, exposición y especie.

Pretratamiento de las muestras de suelo

Para los parámetros bioquímicos las muestras de suelo se mantuvieron en refrigeración a 4 °C, con el fin de mantener en condiciones óptimas a las enzimas y reducir al máximo el metabolismo microbiano en la muestra. Para la determinación de actividad enzimática, se tamizaron con una malla N° 20 las muestras compuestas a las dos profundidades, a fin de eliminar restos de materia orgánica o raíces y fragmentos minerales gruesos.

Determinaciones en laboratorio

Análisis físicos, químicos y bioquímicos en el suelo

La determinación de los parámetros del suelo se hizo con los siguientes métodos:

- > pH Activo relación suelo: agua 1:2 por el método potenciométrico (Jackson, 1964).
- ➤ pH Potencial en solución salina de KCl 1N en relación 1:2, por el mismo método que el Activo.
- Conductividad eléctrica relación 1:5, con un conductímetro (Richards, 1990).
- Figure 2 Textura por el método de Boyoucos, (1963), (citado por Palmer y Truoch, 1989).
- > Densidad aparente por la técnica del cilindro y de la probeta (Domínguez y Aguilera, 1982).
- Materia orgánica por el método de Walkley y Black (Walkley y Black, 1934, citados en Jackson,1982).
- ➤ Carbono de biomasa microbiana: Método de fumigación incubación y medición estequiométrica de CO₂ (Powlson *et al.*, 1987; Shna-Min *et al.*, 1987)
- ➤ Carbono Orgánico: se calcula mediante el supuesto de que el 54% de la Materia Orgánica equivale al carbono orgánico (estimado en base a Pérez-Ramírez *et al.*, 2013 y Santiago-Aguilar, 2018).
- Nitrógeno total por el método de micro kjeldahl (Conti y et al., 1976).
- Ensayo de la actividad ureasa se realizó mediante el método propuesto por Tabatabai, 1994.
- Extracción de sustancias húmicas por el método expuesto por Rodríguez Torres et al., 2010.

Aplicaciones de análisis estadísticos

- Aplicación de pruebas de normalidad para verificar la uniformidad en la distribución de las variables.
- ➤ Aplicación de análisis de varianza (ANOVA) para comprobar la influencia de la altitud y la vegetación en el comportamiento de las variables junto al cálculo del valor de efecto, para medir el porcentaje de la varianza que ocasionan la altitud y vegetación.
- ➤ Uso de la prueba de Tukey (HSD) en la comprobación de la diferencia de medias consecutivo a los análisis ANOVA.
- Cálculo de coeficientes de correlación de Pearson (CCP) y determinación entre las variables para conocer su relación entre estas y con la estequiometría de los diferentes contenidos de C y N. Cálculo de los valores t de los CCP para comprobar la valides de la correlación encontrada.
- ➤ Aplicación de Análisis de componentes principales (ACP) en variables originales, experimentales, generadas y/o anexadas de trabajos anteriores para reducir la dimensionalidad y encontrar aquellas que explicaran la mayor varianza posible.
- ➤ Aplicación de los análisis anteriores a las variables generadas a través de cocientes obtenidos de propiedades físicas, químicas y bioquímicas determinadas en el laboratorio, así como bibliográficas.

RESULTADOS

Descripción de los sitios de estudio

En el estudio realizado se encontraron seis Unidades Ambientales (UA) en toposecuencias dirigidas desde las poblaciones de Amecameca y San Pedro Nexapa hacia la zona del Parque Nacional Iztaccíhuatl Popocatépetl entre 2,600 y 3,800 m, con vegetación arbórea representada por diferentes especies del género *Pinus y Abies religiosa*.

Después de la selección de los sitios dentro de la UA se evaluó la pendiente del terreno, encontrando valores entre 10 y 40% que, según la clasificación de Valencia y Hernández (2002), se denominan pendientes de inclinada a extremadamente inclinada.

La distribución de la vegetación en ésta como en otras zonas, es función de la altitud pues como fue descrito por Little *et al.* (1967), citado por Niembro (1986), las especies del género *Pinus* se presentan en una distribución altitudinal muy amplia lo que se confirmó en este trabajo donde se encontró a lo largo de todo el gradiente altitudinal estudiado.

En cuanto a la especie *Abies religiosa* se localizó predominantemente entre 3000 y 3500 m (CONANP, 2008) lo que corresponde con lo citado por García (2003), quien reporta que a los 3200 m se tiene la altitud óptima para el desarrollo de *Abies religiosa*, el Cuadro 1 ofrece un resumen de dichas características junto a los tipos de suelo encontrados, con los números en cada localidad asignados según el orden de muestreo (por ejemplo, en los sitios con diferente numeración y mismo nombre).

Cuadro 1. Ubicación geográfica y descripción de las Unidades Ambientales estudiadas en el Parque Nacional Iztaccíhuatl Popocatépetl.

Localidad/ Sitio		enadas: NAD 27	Altitud	Pendiente	Suelo	Vegetación
	Y	X	M S.N.M	%		
Coapexco 8	528892	2116544	2679	40	Andosol Húmico	P. Pseudostrobus, A. Religiosa
Coapexco 9	528892	2116544	2679	30	Andosol Húmico	P. Pseudostrobus, A. Religiosa
Palomas 10	532338	2108091	2983	10	Andosol Ócrico	A. Religiosa, Cupressus Sp.
Palomas 11	532338	2108091	2983	10	Andosol Ócrico	A. Religiosa, Cupressus Sp.
Oyf 1	533634	2110361	3125	20	Regosol- Eútrico+Leptosol+Andosol Vítrico	P. Teocote, A. Religiosa
Potrero 2	533992	2111957	3399	35	Regosol- Eútrico+Leptosol+Andosol Vítrico	A. Religiosa
C. Amalacaxco 5	535271	2112631	3659	15	Regosol Eútrico + Leptosol	P. Hartweggi
C. Amalacaxco 6	535271	2112631	3659	10	Regosol Eútrico + Leptosol	P. Hartweggi
C. Amalacaxco 7	535271	2112631	3659	10	Regosol Eútrico + Leptosol	P. Hartweggi
Joya 3	536608	2116380	3858	15	Andosol Acuico	P. Hartweggi
Joya 4	536608	2116380	3858	25	Andosol Acuico	P. Hartweggi

Estudios anteriores realizados en el Parque Nacional Iztaccíhuatl Popocatépetl (García, 2004; Baltazar, 2009; Ayala, 2011; Mascot, 2013: Colli, 2015: Sandoval, 2016: Santiago-Aguilar, 2018) indican que los suelos sobre los que se desarrollan las especies de *Pinus pseudostrobus, P. teocote* y *P. hartweggi*, están formados sobre material ígneo dominando suelos Regosol, Leptosol y Andosol principalmente, los cuales presentan pH de acidez moderada a fuerte. Granados (2003) reportó que hay afinidad de los pinares por suelos derivados de rocas ígneas antiguas o recientes.

Propiedades físicas del suelo

Entre las propiedades físicas estudiadas dentro de las UA, las principales consideradas para explicar los contenidos de carbono y nitrógeno se muestran en el Cuadro 2, debido a su importancia como indicadores de la estructura, almacenamiento y transporte de estos elementos a través del suelo.

LOCALIDAD/ ALTITUD	C.E.	D.R	D.A	EP	CGA	CLASE TEXTURAL
	dS m ⁻¹	g/	/cm ⁻³	%	g mg ⁻¹	USDA
Coapexco/2679	0.16	2.6	0.73	32.74	146.4	FRANCO-ARENOSA
Palomas/2983	0.02	2.6	0.81	41.92	144.2	FRANCO-ARENOSA
OyF/3125	0.21	2.6	0.88	18.58	101.6	FRANCO-ARENOSA
Potrero/3399	0.48	2.6	1.08	14.32	64.5	FRANCO-ARENOSA
C.Amalacaxco/3659	0.07	2.6	0.69	38.41	163.4	FRANCO-ARENOSA
La Joya/3858	0.10	2.6	0.58	38.93	197.7	FRANCO-ARENOSA
Min	0.02	2.6	0.58	14.32	64.5	
Max	0.48	2.6	1.08	41.92	197.7	
Promedio	0.17	2.6	0.80	30.82	136.3	

Cuadro 2. Propiedades físicas estudiadas en las UA.

C.E. = Conductividad Eléctrica, D.R. = Densidad Real, D.A.= Densidad Aparente, E.P. = Espacio Poroso, CGA = Contenido Gravimétrico de Agua.

La textura se relaciona con el arreglo de las partículas, poros y estabilidad de agregados, refleja la manera en que el suelo acepta, retiene y transporta agua a las plantas. Se encontró mediante análisis que el porcentaje promedio de las partículas fue de Arcilla 8.65%, Limo 24% y Arena 67.35%, lo que los caracteriza dentro de la clase textural "Franco-Arenosa", considerada de texturas gruesas. León, (2007) y Colli (2015), reportaron para suelos forestales con vegetación de Pino y Oyamel, texturas con alto porcentaje de arena, y por lo tanto una gran porosidad que favorece la aireación y facilita la circulación del agua y aire, tan importantes para la vida de las plantas (Gavande, 1982).

Una de las propiedades más relacionadas a la textura es la porosidad o el espacio poroso (EP), la porosidad es favorable para la vegetación ya que facilita el enraizamiento, asegura la conservación del agua y favorece los cambios entre vegetación y suelo, permitiendo la difusión del agua y del aire. El mayor valor encontrado en EP se registró en Palomas a (2983 m s.n.m) con un porcentaje de 41.92 y con un valor de CGA de 144.2 mg g⁻¹ de suelo, mientras que el más bajo fue encontrado en Potrero (3399 m s.n.m) con 14.3 % de espacio poroso y CGA de 64.5 mg g⁻¹ suelo.

La humedad del suelo puede ser definida como la cantidad de agua por volumen de suelo que hay en un terreno, mientras que su equivalente en CGA se expresa como miligramos de agua por gramo de suelo e influye tanto en la flora que podrá desarrollarse en el sitio como en varias propiedades físicas y químicas, así como en la absorción, disponibilidad nutrimental y diversos procesos bioquímicos. A lo largo de la toposecuencia, los valores promedio de CGA fueron de 136.3 mg g⁻¹ suelo, con un máximo en la Joya (3858 m s.n.m) de 197.7 mg g⁻¹ suelo y mínimo en Potrero con 64.5 mg g⁻¹ suelo.

La conductividad eléctrica (CE) es definida como la capacidad de una solución o material para permitir el paso de una corriente eléctrica, puede ser evaluada por el movimiento de los iones y sales presentes en la solución del suelo que dependen del EP y del CGA. Los valores de la CE en el sustrato (dependiendo de su magnitud) podrán determinar los efectos en la vegetación, como en la germinación de las semillas, el crecimiento de las plantas o a la absorción de agua de estas (Simón

et al., 2013). Los valores promedio de CE de los suelos en el gradiente altitudinal es de 0.17 dS m⁻¹, con un máximo de 0.48 dS m⁻¹ en suelos de Potrero y un mínimo de 0.07 dS m⁻¹ en C. Amalacaxco (3659 m s.n.m). Estos valores según los intervalos de salinidad reportados en la NOM-021-SEMARNAT-2000 indican que existen efectos despreciables de salinidad en estos suelos forestales.

La humedad, porosidad, temperatura y otros factores edáficos afectan la forma en que de la M.O. se incorporan los nutrimentos que contiene a los suelos siendo fuente primaria de nutrientes para seres vivos y clave en los ciclos biogeoquímicos. Sus valores promedio son de 6.6%, con un máximo de 9.4% en los suelos de La Joya y un valor mínimo en el sitio Palomas con 3.7%. Estos valores en la NOM-021-SEMARNAT-2000, se ubican entre muy bajo y medio según la clasificación para suelos volcánicos. Granados (2003) y Santiago-Aguilar (2018), reportó que en los suelos del Parque Nacional Iztaccíhuatl Popocatépetl el porcentaje de M.O. se incrementa conforme aumenta la altitud, lo cual es confirmado en el trabajo actual.

La densidad aparente (DA) del suelo depende de su composición mineral, contenido de M.O. y de su grado de compactación mientras que la densidad real (DR) varía con la proporción de elementos constituyentes del suelo. En general la densidad aparente permite tomar en cuenta propiedades como la humedad y la porosidad a diferencia de la densidad real que en este trabajo como en otros anteriores consideró el valor de 2.6 g/cm⁻³ (Heredia, 2015). Las determinaciones de la densidad aparente de los suelos en el gradiente altitudinal fueron de 0.80 g/cm⁻³ en promedio, con un valor máximo en suelos del sitio Potrero con 1.1 g/cm⁻³ y un mínimo en La Joya de 0.58 g/cm⁻³ valores que se relacionan con los de humedad siendo inversos a los encontrados en % de humedad (siendo este CGA/10), teniendo estas dos variables un carácter antagónico, la Figura 5 muestra el comportamiento de estas variables.

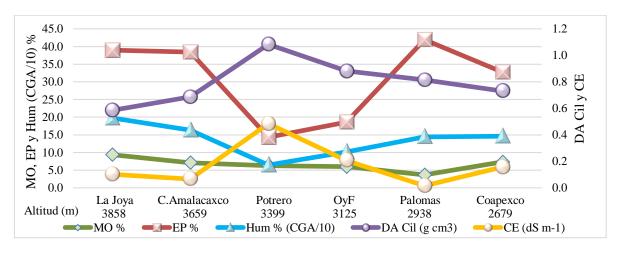


Figura 5. Comportamiento del promedio de las variables físicas a lo largo del gradiente altitudinal, con HUM % = CGA/10.

Se exploró la relación que estas propiedades podrían tener con la vegetación dominante en cada sitio del gradiente, observando que varias unidades ambientales de esos sitios muestran un tipo de vegetación arbórea dominante a excepción de C. Amalacaxco y la Joya que comparten zona de ecotono Zacatonal-*Pinus hartweggi*, por lo que se decidió que en los análisis de varianza y correlación correspondientes a la vegetación se consideraran como uno sola UA para permitir

observar la variación de los porcentajes de Carbono Orgánico, Nitrógeno Total y Materia Orgánica del Suelo a lo largo del gradiente Cuadro 3.

Propiedades físicas del suelo: influencia en la variación con la vegetación

Al considerar la vegetación dominante de cada sitio, se observa que la variación en la mayoría de los valores es mínima o inexistente en comparación al análisis realizado en los pisos altitudinales, sin embargo, el Cuadro 3 revela que los valores en suelos bajo *P. hartweggi* (correspondientes en altitud a C. Amalacaxco y La Joya) son ahora los valores más altos g mg⁻¹ por CGA y porcentaje de Carbono Orgánico del Suelo (177.1 y 4.32% respectivamente). Contrario a los valores mínimos de Conductividad eléctrica, Materia Orgánica, Carbono Orgánico del Suelo y Nitrógeno Total (0.02 dSm⁻¹, 3.65%, 1.97% y 0.11% correspondientemente) que se encuentran asociados a los suelos bajo el bosque mixto de *A. religiosa, Cupressus sp* (desarrollado en Palomas).

- · · · · · · · · · · · · · · · · · · ·	•				_	
VEGETACION/ ALTITUD	CE	CGA	EP	MO	COS	NT
	dSm ⁻¹			%)	
P. pseudostrobus, A. religiosa/2679	0.16	146.4	32.74	7.31	3.95	0.32
A. religiosa, Cupressus sp./2982	0.02	144.2	41.92	3.65	1.97	0.11
P. teocote, A. religiosa/3125	0.21	101.6	18.58	5.98	3.23	0.23
A. religiosa/3399	0.48	64.5	14.32	6.29	3.40	0.15
P. hartweggi/3858 y 3659	0.08	177.1	38.62	7.99	4.32	0.27
Min	0.02	64.5	14.32	3.65	1.97	0.11
Max	0.48	177.1	41.92	7.99	4.32	0.32
Promedio	0.19	126.7	29.24	6.24	3.37	0.10

Cuadro 3. Propiedades físicas y químicas estudiadas considerando la influencia de la vegetación.

Propiedades químicas

La composición y dinámica de elementos presentes en el suelo determinaran las propiedades químicas que expresa el sustrato, indicadores como el Potencial de hidrogeno (pH), materia orgánica (M.O.) y la estequiometría del carbono orgánico del suelo (COS) y nitrógeno total (NT) brindan información sobre la fertilidad y viabilidad de las diferentes especies vegetales que le habitan, la cantidad de iones y nutrientes disponibles, la actividad microbiana, etc. El Cuadro 4 muestra las propiedades estudiadas en las toposecuencias.

LOCALIDAD/ ALTITUD	pH KCl	DELTA pH	pH ACTIVO	C:N	M.O.	NT
					g]	kg ⁻¹
Coapexco/2679	5.30	0.52	5.82	12.03	73.09	3.16
Palomas/2983	5.62	0.69	6.31	18.43	36.51	1.06
OyF/3125	5.08	1.24	6.32	14.03	59.78	2.32
Potrero/3399	5.30	1.62	6.92	22.99	62.91	1.49
C.Amalacaxco/3659	4.30	0.97	5.26	15.97	70.80	2.42
La Joya/3858	4.44	0.95	5.38	16.01	93.59	3.22
Min.	4.30	0.52	5.26	12.03	36.51	1.06
Max.	5.62	1.62	6.92	22.99	93.59	3.22
Promedio	6.00	1.00	6.00	16.58	66.25	2.28

Cuadro 4. Propiedades químicas del suelo.

C: N = relación Carbono/Nitrógeno, M.O. = Materia Orgánica y NT = nitrógeno total.

Las variaciones entre los valores del pH, conocida como una "propiedad maestra", permiten comprender la variabilidad en solubilidad de nutrientes, saturación de bases, adaptaciones de la

flora local y más relaciones (Brady y Weil, 2010). Entre las mediciones del pH Activo y pH Potencial la mayor diferencia de estas (Delta pH) se encontró en Potrero con valores de 1.62 y la menor en Coapexco con 0.52 lo cual describe una mayor concentración de sales en Potrero en comparación al resto de UA estudiadas. Se puede entender a la Relación C:N como un índice de la calidad del sustrato orgánico del suelo, ya que el cociente de estos dos elementos refleja la tasa de mineralización de la materia orgánica por parte de los microorganismos. Así se pueden tener valores altos (C:N >15) que reflejan una lenta actividad mineralizadora y por lo tanto los nutrientes en la masa lábil del suelo serán menores que por ejemplo en una relación C:N cercana a 10 (Gamarra Lezcano *et al.*, 2018). El Cuadro 4 muestra las diferencias más claras de C:N entre Potrero con valor máximo de casi 23 y Coapexco con valor mínimo de 12.

La M.O. se vincula con la cantidad y disponibilidad de nutrientes del suelo, al aportar elementos como el N cuyo suministro mineral es normalmente deficiente. Además, al modificar la acidez y la alcalinidad hacia valores cercanos a la neutralidad, la M.O. aumenta la solubilidad de varios nutrientes (Martínez *et al.*, 2008). En este caso valores extremos (máximos y mínimos) son encontrados en Coapexco con 79.90 g kg⁻¹ y Palomas con 36.50 g kg⁻¹.Por otra parte, el NT ocupa una posición excepcional como elemento esencial para el crecimiento por las altas tasas que requieren de él las plantas cultivadas. Una deficiencia de nitrógeno en las plantas provoca amarillamiento de las hojas y reducido crecimiento (Cruz-Flores *et al.*, 2006). El Cuadro 4 muestra un máximo en La Joya de 3.22 g kg⁻¹ y mínimo en Palomas con 1.06 g kg⁻¹, lo que se relaciona con los valores menores de pH y la relación C:N en comparación de los mayores valores observados en Palomas.

Propiedades químicas del suelo: influencia en la variación con la vegetación

En cuanto a las variaciones vistas con la vegetación, el Cuadro 5 muestra a *P. hartweggi* con valores mínimos en cuanto pH Potencial y pH Activo (4.35 y 5.31), contrariamente el ensamble de *A. religiosa*, *Cupressus sp* (Palomas) posiciona el valor máximo en el pH Potencial, a su vez que *A. religiosa* (Potrero) muestra valores máximos en Delta pH y pH Activo (1.62 y 6.92), en el caso de la relación C:N *A. religiosa* cuenta con el máximo de 22.99, *P. hartweggi* muestra un máximo de Materia Orgánica (M.O.) de 79.90 g kg⁻¹ a la vez que el ensamble *P. pseudostrobus*, *A. religiosa* correspondiente a Coapexco tuvo un valor máximo de 3.16 g kg⁻¹ en el Nitrógeno Total. Es importante destacar que ambos mínimos en M.O y NT fueron registrados en el arreglo de *A. religiosa*, *Cupressus* sp con 36.50 g kg⁻¹ para M.O y 1.06 para NT.

VEGETACION/ ALTITUD	pH KCl	DELTA 1	OH ACTIVO	C:N	M.O.	NT
						g kg ¹
P. pseudostrobus, A. religiosa/2679	5.30	0.52	5.82	12.03	73.10	3.16
A. religiosa, Cupressus sp./2982	5.62	0.69	6.31	18.43	36.50	1.06
P. teocote, A. religiosa/3125	5.08	1.24	6.32	14.03	59.80	2.32
A.religiosa/3399	5.30	1.62	6.92	22.99	62.90	1.49
P. hartweggi/3858 y 3659	4.35	0.96	5.31	15.98	79.90	2.74
Min	4.35	0.52	5.31	12.03	36.50	1.06
Max	5.62	1.62	6.92	22.99	79.90	3.16
Promedio	5.13	1.00	6.14	16.69	62.44	2.15

Cuadro 5. Propiedades químicas estudiadas considerando el efecto de la vegetación.

Propiedades bioquímicas

El efecto de la actividad microbiana y vegetal en el suelo es fundamental para entender el arreglo de las especies químicas. En el Cuadro 6 se muestra las diferentes variables consideradas para comprender el aporte de los microorganismos (qCO₂, CBM) y la actividad de las raíces de las plantas (AU) junto con las sustancias húmicas (Ac. Hum y Ac. Ful) derivadas por síntesis de la actividad biológica local.

Las sustancias húmicas representan la fracción de la materia orgánica originada por su descomposición y estabilización en complejos con diferentes arreglos estructurales comúnmente divididos en ácidos húmicos y fúlvicos y según su proporción en el suelo darán diferentes propiedades al sustrato (coloración, saturación de oxígeno, nutrientes disponibles, etc.). El Cuadro 6, muestra la concentración de estos ácidos teniendo como máximo y mínimo de ácidos húmicos los suelos de la localidad designada como OyF (3125 m s.n.m.) con 19.9 Mg ha⁻¹ y los de Palomas con 2.7 Mg ha⁻¹ y respecto a su contenido de ácidos fúlvicos, Potrero con 82.5 Mg ha⁻¹ y La Joya con 42.1 Mg ha⁻¹ son considerados como valores máximos y mínimos de estos últimos.

El CBM constituye el componente vivo de la materia orgánica del suelo y representa la fracción lábil, y por lo tanto responde rápidamente al efecto de perturbación o recuperación del suelo (RICE y *et al.*, 1996), lo cual puede dar una visión de la masa lábil de los suelos. Tomando del Cuadro 6 los máximos y mínimos de esta variable, se encuentra a Palomas y OyF con los valores de 1.64 Mg ha⁻¹

La evaluación de la ureasa y su actividad en el sustrato puede servir como un biomarcador debido a su relación con procesos de gran importancia ligados a condiciones de calidad de suelo (Trasar *et al.* 2003; Ferreras *et al.* 2009; Gil-Sotres *et al.* 2005; Baležentienė 2012). En este trabajo se analizó su actividad en diferentes profundidades (de 0-5 y de 5-10 cm) para estimar el porcentaje del ion amonio liberado del nitrógeno orgánico por hidrólisis enzimática.

En ambas profundidades, el valor mínimo correspondió a suelos de Palomas con $0.00074 \ y \ 0.00053$ meq $NH_4^+\ g^{-1}\ h^{-1}$ (en 0-5 y 5-10 cm respectivamente) y con máximos en La Joya con 0.00254 meq $NH_4^+\ g^{-1}\ h^{-1}$ en 0-5 cm y en Potrero con 0.00555 meq $NH_4^+\ g^{-1}\ h^{-1}$ en la profundidad de 5-10 cm.

El cociente metabólico microbiano (relación respiración-biomasa microbiana) o qCO₂, basado conceptualmente sobre la teoría de la sucesión del ecosistema de Odum quien describe este comportamiento de la siguiente manera "La respiración comunitaria por unidad de biomasa tiende a incrementar a la vez que la acumulación de biomasa a disminuir a medida que los organismos se enfrentan al desorden creado por una perturbación externa" (Odum, 1985), sintetizándolo después en: "reparar el daño causado por la perturbación requiere redirigir energía destinada al crecimiento y la reproducción hacia el mantenimiento" (Odum, 1985).

Se usa cada vez más como un índice del ecosistema en desarrollo (durante el cual se espera una disminución) y perturbado (en el cual se supone su aumento) (Wardle y Ghani, 1995). Los valores máximos y mínimos a lo largo del gradiente altitudinal fueron los suelos de los sitios Potrero y OyF con 0.21 y 0.05 en ese orden.

LOCALIDAD/ ALTITUD	Ac. Hum	Ac. Ful	CBM (0-5 cm)	AU _(0-5cm)	AU _(5-10cm)	qCO ₂
		Mg ha ⁻¹ _		meq NF	I ₄ + g ⁻¹ h ⁻¹	
Coapexco/2679	4.89	57.00	0.80	0.00235	0.00163	0.11
Palomas/2983	2.69	76.51	1.64	0.00074	0.00053	0.21
OyF/3125	19.89	75.14	0.70	0.00242	0.00119	0.05
Potrero/3399	13.05	82.49	1.18	0.00228	0.00555	0.07
C.Amalacaxco/3659	17.80	46.23	0.91	0.00152	0.00323	0.08
La Joya/3858	16.72	42.11	1.19	0.00254	0.00255	0.08
Min	2.69	42.11	0.70	0.00074	0.00053	0.05
Max	19.89	82.49	1.64	0.00254	0.00555	0.21
Promedio	12.51	63.25	1.07	0.00197	0.00245	0.1

Ac. Hum = Ácidos Húmicos, Ac. Ful = Ácidos Fúlvicos, CBM = Carbono De Biomasa Microbiana de 0 a 5 Cm de profundidad, AU $_{0.5\,\mathrm{cm}}$ = Actividad Enzimática de la Ureasa de 0 a 5 Cm de profundidad, AU $_{5\cdot10\,\mathrm{cm}}$ = Actividad Enzimática de la Ureasa de 5 a 10 cm de profundidad y qCO₂ = Índice Metabólico.

Propiedades bioquímicas del suelo: influencia en la variación con la vegetación

El Cuadro 7 muestra los máximos de CBM y qCO₂ (1.64 Mg ha⁻¹ y 0.21 respectivamente) en el ensamble de suelos bajo *A. religiosa* y *Cupressus* sp, en el sitio de Palomas. Otro par de máximos valores aparece en suelos bajo vegetación de *A. religiosa* en Potrero en los contenidos de Ac. Ful y de AU en la capa de suelo de 5-10 cm (82.49 Mg ha⁻¹ y 0.00555338 meq NH₄⁺ g⁻¹ h⁻¹). En otro ensamble dominante con *P. teocote* y *A. religiosa* en el sitio (OyF) se observó un máximo de 19.9 Mg ha⁻¹ en Ac. Hum y 0.002419 meq NH₄⁺ g⁻¹ h⁻¹ y mínimos en CBM (0.70 Mg ha⁻¹) y en qCO₂ (0.05).

Cuadro 7. Propiedades bioquímicas registradas considerando el efecto de la vegetación.

VEGETACION/ ALTITUD	Ac. Hum	Ac. Ful	CBM (0-5 cm)	AU _(0-5cm)	AU _(5-10cm)	qCO ₂
		Mg ha ⁻¹ _		meq NH	4 ⁺ g ⁻¹ h ⁻¹	
P. pseudostrobus, A. religiosa/2679	4.89	57.00	0.80	0.002347125	0.00162525	0.11
A. religiosa, Cupressus sp./2983	2.69	76.51	1.64	0.00073734	0.00052697	0.21
P. teocote, A.religiosa/3125	19.89	75.14	0.70	0.002419	0.00119106	0.05
A. religiosa/3399	13.05	82.49	1.18	0.00227888	0.00555338	0.07
P. hartweggi/3858 y 3659	17.37	44.58	1.05	0.00192731	0.00295995	0.08
Min	2.69	44.58	0.70	0.00073734	0.00052697	0.05
Max	19.89	82.49	1.64	0.002419	0.00555338	0.21
Promedio	11.58	67.15	1.07	0.00194	0.00237	0.10

Contenidos de carbono y nitrógeno

El Cuadro 8 muestra una marcada diferencia en el contenido de COS y MO que es poco más del doble en la UA Potrero (18 a 72 Mg C ha⁻¹) respecto a la UA Palomas (de 8.02 a 32.08 Mg C ha⁻¹), mientras que, en el caso de NT, los suelos de Coapexco presentaron los máximos valores entre 1.08 y 4.30 Mg ha⁻¹ y, como en el caso de COS, el mínimo valor de NT se encontró en los suelos de la UA Palomas (0.44 y 1.77 Mg ha⁻¹).

Cuadro 8. variación de los contenidos de Carbono Orgánico del Suelo, Nitrógeno Total y Materia Orgánica en las UA estudiadas.

LOCALIDAD/ ALTITUD	MO (0-5 _{cm})	MO (0-20 _{cm})	COS(0-5 _{cm})	COS(0-20 _c	NT(0-5 _c	NT(0-20 _{cm})
-			Mg ha ⁻¹			
Coapexco/2679	25.37	101.50	13.70	54.81	1.08	4.30
Palomas /2983	14.85	59.41	8.02	32.08	0.44	1.77
OyF/3125	25.93	103.72	14.00	56.01	1.06	4.25
Potrero/3399	33.31	133.24	17.99	71.95	0.80	3.18
C.Amalacaxco/3659	24.83	99.31	13.41	53.63	0.84	3.36
La Joya/3858	27.78	111.11	15.00	60.00	0.91	3.64
Min	14.85	59.41	8.02	32.08	0.44	1.77
Max	33.31	133.24	17.99	71.95	1.08	4.30
Promedio	25.35	101.38	13.69	54.75	0.85	3.42

DISCUSIÓN

Propiedades físicas y químicas

La comprensión del ambiente físico del suelo es importante para definir e interpretar sus procesos químicos, microbiológicos y el crecimiento de los cultivos en el campo (Reynolds *et al.*, 2002). Existen diversos análisis que hacen referencia a la morfología, al contenido hídrico o bien a la dinámica del agua en el suelo (Ferreras *et al.*, 2007). Todos ellos son indicativos del estado actual del suelo y cómo puede impactar en la disponibilidad de nutrientes y agua para la planta. A su vez esta disponibilidad estará estrechamente relacionada con la capacidad de crecimiento y desarrollo que tendrán los vegetales, los cuales deberán estar adaptados a condiciones específicas del suelo como por ejemplo su textura, pues permite definir la viabilidad de especies según la dinámica hídrica que permitan las partículas del suelo y la facilidad que las raíces tengan para desarrollarse.

Los suelos de textura Franco-Arenosa encontrados en las UA por lo general son considerados favorables para el desarrollo de las plantas, aunque con una ligera inestabilidad entre las fracciones minerales (Dorronsoro, 2015). Presentan baja cohesión y son frágiles frente a la acción de fuerzas mecánicas, características que pueden condicionar los mecanismos de desagregación (Taboada *et al.*, 2010), esto debido a su alto porcentaje de arena, retomando lo mencionado por León, (2007) y Colli (2015). En condiciones ambientales normales y con un flujo constante de materia orgánica estos suelos son ideales para el crecimiento de especies forestales. Sin embargo, en sitios perturbados donde este flujo es interrumpido, sus problemas se agudizan debido a la falta de materia orgánica y la mala aireación provocando una mínima adhesividad (consistencia) y baja retención de humedad, por la rápida infiltración del agua que penetra por la superficie (Núñez, 2000), limitando el desarrollo vegetal local.

Esto reafirma el rol que la M.O tiene en la conformación de las propiedades físicas de los suelos, por lo cual al comprobar los contenidos de M.O en los suelos de las U.A con un promedio de 6.6%, resalta el valor mínimo encontrado en los suelos de Palomas con un 3.7 %, a pesar de que en sus suelos se desarrolla un bosque mixto predominante de *A. religiosa* y *Cupressus sp.*, en comparación a los suelos de OyF y Coapexco donde también se encuentran bosques mixtos de *A. religiosa* y con contenidos promedio de M.O de 7.3 % y 6 % respectivamente. Retomando la clasificación de la NOM-021-SEMARNAT-2000 para suelos volcánicos los suelos de Palomas tienen un bajo contenido de M.O en comparación al valor medio de las demás UA, lo que puede

interpretarse como un déficit en la retención de M.O en los suelos de Palomas y por lo tanto posibles problemas nutrimentales para las plantas.

Otra propiedad física del suelo que se ve especialmente afectada es la Densidad aparente (DA) definida como la masa de suelo por unidad de volumen, esta varía con la textura del suelo y el contenido de materia orgánica generalmente de forma inversa; también puede variar estacionalmente por efecto de labranzas y con la humedad del suelo sobre todo en los suelos con arcillas expandibles (Taboada y Alvarez, 2008). Es importante remarcar su relación con el espacio poroso y el contenido gravimétricos de agua (CGA) o humedad, teniendo estas propiedades una relación negativa casi perfecta con la DA en las diferentes UA, como se muestra en la Figura 5.

El promedio de los suelos de las UA fue de 0.80 g/cm⁻³, lo que según la NOM-021-SEMARNAT-2000 los clasifica como suelos orgánicos y volcánicos encontrando un valor máximo en suelos del sitio Potrero con 1.1 g/cm⁻³ (en este caso, recibiendo la clasificación de suelo mineral arcilloso por superar ligeramente 1 g/cm⁻³) y un mínimo en La Joya de 0.58 g/cm⁻³, correspondiendo con el valor mínimo y máximo de CGA respectivamente (los suelos de La Joya con 197.7g mg⁻¹ y Potrero con 64.5 g mg⁻¹). Una vez abordadas 2 de las relaciones negativas más importantes con la DA, una relación positiva de gran impacto sobre la fertilidad de las plantas y las propiedades del sustrato es la conductividad eléctrica (CE).

Los valores de CE permiten inferir la concentración de sales solubles del suelo y del movimiento de sus iones por medio de su Potencial para conducir una corriente eléctrica a través de la solución edáfica, por lo que al aumentar la concentración de sales en esta (llevándola a un estado más saturado) la CE aumentara, entonces su relación positiva con la DA y negativa con el CGA y con el EP, corresponde con lo visto en la Figura 5.

Los suelos a lo largo del gradiente altitudinal tienen un valor promedio de 0.17 dS m⁻¹, un valor relativamente bajo a lo que establece la NOM-021-SEMARNAT-2000, incluso su máximo de 0.48 dS m⁻¹ en suelos de Potrero los siguen clasificando como suelos donde el efecto de la salinidad es despreciable, sin embargo, al comprobar el comportamiento de la CE según la cantidad de correlaciones de Pearson (Anexo 4), ésta es una de las variables con mayor número de relaciones altamente significativas (21), lo que podría indicar un efecto considerable en las demás propiedades del suelo, entonces una propiedad cuya magnitud pueda ser considerada "despreciable" bajo el contexto agrícola que propone la NOM-021-SEMARNAT-2000, en realidad está manifestando un estrecho vínculo con una gran cantidad de variables, por ejemplo una de las propiedades con el mayor coeficiente de correlación con la CE es el Delta pH calculado como la diferencia entre el pH Activo y Potencial.

El Delta pH puede dar una lectura de la saturación de bases en los suelos dependiendo de que el valor de éste supere la unidad, la relación entre el Delta pH y la CE es entendible debido a que ambas pueden mostrar la concentración de iones, generalmente cationes en los suelos, lo que permite indirectamente una estimación de la salinidad. De esta forma el potencial de hidrogeno puede ofrecer una imagen del comportamiento de los iones del suelo, siendo un ejemplo de su condición como una de las llamadas "propiedades maestras" cuyas relaciones con otras propiedades químicas son revisadas más adelante.

Distribución de los contenidos de carbono y nitrógeno

La locación, vegetación y tipo de suelos de las seis UA descritas en la Figura 4 y Cuadro 1, representan una recopilación de la información de los trabajos de García (2004), Baltazar (2009), Ayala (2011), Mascot (2013), Colli (2015) y Sandoval (2016); confirmándose que los suelos dominantes son Andosols y Regosols, aunque éste último autor reportó Andosoles úmbricos y vítricos para la zona más alta (-3900 m), esto puede ser debido a la diferencia en la ubicación del perfil del suelo descrito puesto que el Andosol de tipo ácuico fue colectado en las cercanías del rio de La Joya, mientras que los Andosoles vítricos y úmbricos corresponden a los sitios Cascada Volkswagen (3961 m) y Buenavista (3300 m). En este caso la UA homóloga a Buenavista, (Potrero, 3399 m) presenta Andosols vítricos.

Cortés y Vega (2013) reportaron para los sitios Potrero (3368 m) y C. Amalacaxco (3651 m), Cambisols eútricos y Andosols mólicos. Los resultados de esta investigación mostraron para estos sitios Regosols eútricos y Leptosols. Las diferencias de estos suelos que presenten características diferentes con apenas unos metros de altura reafirman el papel que la topografía y las condiciones micro-climáticas juegan en el ecosistema. En general los sitios de estudio muestran suelos jóvenes, con gran acumulación de materia orgánica y bases, de tipo mólicos y eútricos respectivamente, (WRB, 2008) conformados de materiales no consolidados (Regosols), de mínima profundidad (Leptosols) y en su mayoría una predominancia de material de origen volcánico (Andosoles), encontrados en zonas con vegetación de pastizales, bosques y selvas como las más comunes. La vegetación arbórea con mayor presencia en las UA estudiadas pertenece a bosques de los géneros *Pinus (P. hartweggi, P. pseudostrobus y P. teocote)* y *Abies (Abies religiosa)* y con una presencia limitada del género *Cupressus* en la UA Palomas.

Estos géneros y especies forestales, representan arreglos de bosque mixto y en sus zonas de transición, pastizales tipo "zacatonal" con especies como *Festuca tolucensis y Muhlembergia quadridentata*, mientras que cuando se presenta el género *Abies religiosa*, éste aporta cerca de 70% de M.O. a los horizontes superficiales del suelo forestal (Manzanilla, 1974, citado en CONAFOR, 2015), por otra parte los contenidos de M.O presentes en La Joya y C. Amalacaxco, donde dominan los ensambles de *Pinus sp*, por lo general están asociados a pastizales abundantes, lo que permite un aporte continuo y retención de M.O más efectivo que en otros ensambles carentes de vegetación herbácea.

Revisando los contenidos promedios de M. O., 6.6%; COS, 3.6 %; y de NT, 0.23 %, se observó que son similares a los encontrados por Cruz-Flores y Etchevers-Barra en 2011 quienes reportaron un contenido promedio de 4.18% de COS y 0.22% en NT para el PNIP. Las diferencias pueden atribuirse a los márgenes temporales y la estructura de distintos diseños experimentales propios de cada investigación. La variación de los contenidos totales de M.O, COS y NT en los diferentes sitios de la toposecuencia en ambas profundidades de estudio, muestran a Potrero como una zona de gran acumulación en el suelo por presentar los valores más altos de las UA evaluadas, mientras que en Palomas se encontró la menor cantidad de M.O, COS y NT. Con valores intermedios, se encontraron a los suelos de las UA de Coapexco y OyF con una estequiometría similar entre ellas, pero ambas son menores a los suelos de la Joya y superan ligeramente a los de la C. Amalacaxco (Figuras 6 y 7).



Figura 6. Contenido de materia orgánica, carbono y nitrógeno total en suelos de 0-5 cm de profundidad.

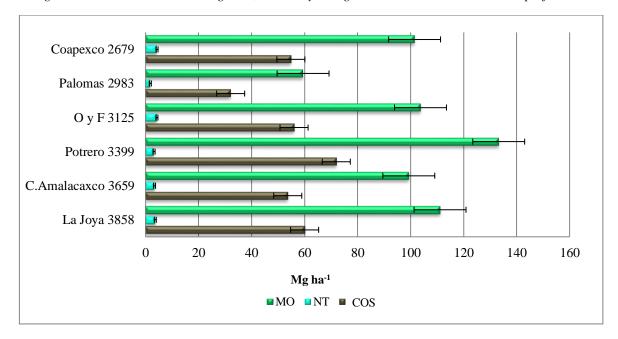


Figura 7. Contenido de materia orgánica, carbono y nitrógeno total en suelos de 0-20 cm de profundidad.

El análisis de varianza de los contenidos de COS y M.O., expresados en Mg ha⁻¹ en razón a la altitud en ambas profundidades, no mostró diferencias significativas, sin embargo, al comparar sus contenidos considerados en g kg⁻¹ (Anexo 1, prueba 2 y 3), si mostraron diferencias significativas que se comprobaron con la Prueba de Tukey, encontrando dichas diferencias entre los suelos de la Joya con los de Palomas. Esta diferencia puede ser percibida con claridad en la Figura 8.

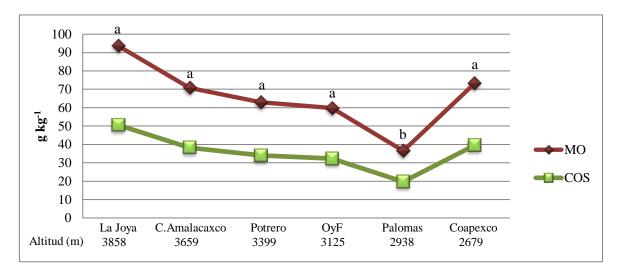


Figura 8. Contenidos de Materia Orgánica y Carbón Orgánico del Suelo en gramos por kilogramo, con letras diferentes presentando diferencias significativas ($P \le 0.05$).

El análisis de varianza en los contenidos de NT (Mg ha⁻¹) en razón a la altitud, muestra a ambas profundidades con diferencias significativas, por lo que la comprobación con la prueba de Tukey señalo a los suelos de Palomas con diferencias importantes con los suelos de OyF y Coapexco, mientras que estas no muestran diferencias con el resto de los suelos en las UA (Figura 9).

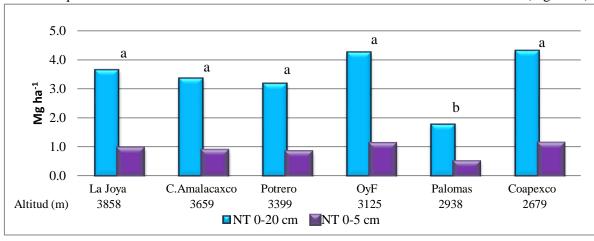


Figura 9. Comportamiento del Nitrógeno Total en las Unidades Ambientales estudiadas, con letras diferentes presentando diferencias significativas ($P \le 0.05$).

Por otro lado, al evaluar sus relaciones por medio del coeficiente de correlación de Pearson (CCP) ($P \le 0.05$) para los espesores de 0-5 cm y 0-20 cm, la M.O. expresada en Mg ha⁻¹ muestra relaciones positivas perfectas con COS debido a su colinealidad y con NT muestra r=0.59 y $r^2=0.35$ (0.3481). La relación positiva del NT, sin embargo, no mostró diferencia estadística significativa con la M.O. porque su valor de "t" calculada (1.47) es menor que la $t_{(0.05,6-2)}=2.1318$, sin embargo, una comprobación de los contenidos de NT, COS y M.O. expresados en g kg⁻¹, demostró para NT una r de 0.87, un $r^2=0.76$ y un valor "t" de 3.55, superior al valor $t_{(\alpha, N-2)}$ de 2.1318, lo que sugiere una relación estadística significativa.

Relación C:N

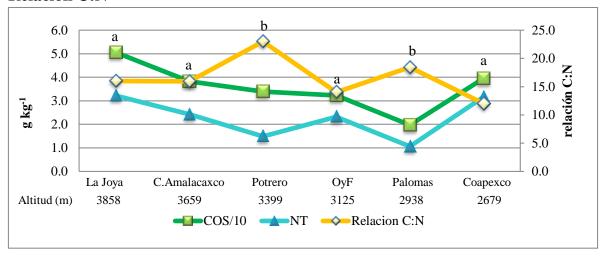


Figura 10. Distribución del contenido en g kg^{-1} de COS (dividido entre 10), NT Y su relación con el coeficiente C:N, con letras diferentes presentando diferencias significativas ($P \le 0.05$).

En la Figura 10, se grafica un décimo del Carbono Orgánico del suelo (esta división fue realizada con el propósito de mostrar su comportamiento en la misma escala que el NT sin afectar la relación C:N). Los valores más altos de C:N en los suelos de Potrero y de Palomas se explican con los menores valores para NT en esas UA. Debido a la proporción con el nitrógeno, es apreciable la mayor influencia del N en la relación C:N, incluso más evidente que el efecto del COS al coeficiente C:N que la del efecto del C por lo que una variación en los contenidos de NT afectara en gran medida el valor de la relación C:N.

El análisis de varianza muestra a la relación C:N con diferencias significativas ($P \le 0.05$) por lo cual, la Prueba de Tukey apunta a los suelos de Potrero como la principal UA que origina esas diferencias al contar con valores mayores a su HSD (6.55) con excepción de la resta entre Potrero y Palomas (4.56). Los valores máximos de C:N mostrados en la Figura 10, son más parecidos entre sí que el resto de los valores registrados en la UA que cuentan con condiciones similares que permiten dicha relación (bajo nivel de NT disponible, tipo de vegetación predominante siendo *A. religiosa* y/o un ensamble con *A. religiosa* con otros géneros, cuyos aportes de M.O de hojas aciculares y perennifolias son menos propensas a una degradación rápida).

Respecto al análisis de correlación estadística entre las variables señaladas, se encontró correlación significativa débil ($r=-0.31,\ P\leq 0.05$) y un $r^2=0.09$, donde los valores de "t" no muestran diferencias significativas. La correlación en la Relación C:N y el NT expresado en g kg⁻¹ mostró una r=-0.73 con ($P\leq 0.05$) y un $r^2=0.53$, lo que muestra una proporcionalidad inversa entre C:N y NT, sin embargo, la diferencia de los valores "t" tampoco mostró diferencias significativas, probablemente por las variaciones espacio-temporales o el número de UA estudiadas. Por otra parte, las variables físicas que mostraron un coeficiente de correlación relativamente alto fueron el Delta pH y pH Activo (r=0.67 y r=0.60 respectivamente), por lo que su comportamiento es ilustrado en la Figura 11.

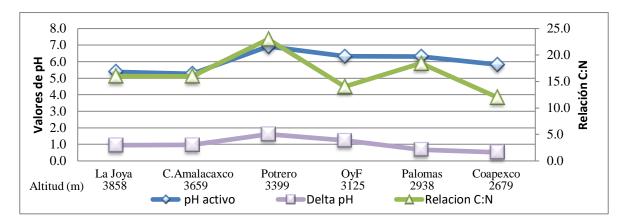


Figura 11. Comportamiento de la Relación C:N comparada al pH Activo y Delta pH a lo largo de las UA.

En general, el valor del pH para cinco de las seis UA estudiadas se clasifica como suelos moderadamente ácidos según la NOM- 021-SEMARNAT-2000, siendo potrero la excepción considerándosele neutro. Los suelos de las UA más parecidos entre sí fueron los de la zona alta, la Joya y la C. Amalacaxco (apenas tienen una diferencia de 0.12 unidades de pH Activo, 0.02 unidades de Delta pH y 0.04 unidades de la relación C:N).

En Potrero se encontraron los valores más altos de estas variables, pero sin afectar el desarrollo de los bosques. De esta UA (3399 m) y hacia las zonas más bajas (OyF, Palomas y Coapexco), los valores de los parámetros indicados disminuyen, pero el pH se mantiene como moderadamente ácido y la relación C:N no es desfavorable, lo que puede sugerir una tasa adecuada de liberación del N disponible y el Delta pH indica una marcada disminución de la salinidad de los suelos en Coapexco.

Relaciones del pH

Al examinar los resultados que se presentan en la Figura 12 respecto a las mediciones de pH Activo, pH Potencial y Delta pH, en cada una de las UA se observa a los suelos de Potrero con el máximo de pH Activo y Delta pH, a la vez que Palomas presentó el máximo valor de pH Potencial y en el caso del pH Activo y Delta pH, se observa una tendencia a la baja en las tres variables a partir de Potrero. Cabe destacar la relación entre el gradiente altitudinal y el pH Potencial donde una tendencia hacia una menor acidez es evidente desde los valores de la Joya hasta Coapexco.

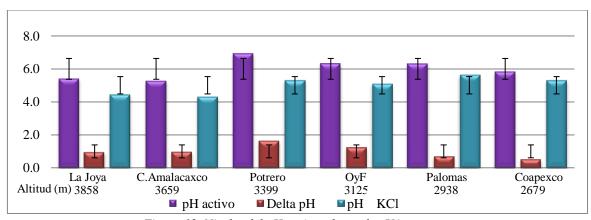


Figura 12. Niveles del pH registrados en las UA, $(P \le 0.05)$.

El análisis de varianza en el pH Activo, Delta pH y pH Potencial muestran diferencias significativas importantes ($P \le 0.05$), con valores de "F" calculados mayores a 20 en todos los casos (Anexo 1). La Prueba de Tukey en el pH Activo presentó diferencias significativas en la mayoría de las restas de medias, con excepciones como la de la Joya con C. Amalacaxco y la diferencia entre OyF y Palomas. Los valores del Delta pH de los suelos de Potrero presentan diferencias significativas con el resto de los suelos de las UA, mientras que en Coapexco los valores de Delta pH con la única UA o sitio que no mostró diferencias significativas es con Palomas y finalmente esta UA (Palomas) presentó diferencias significativas solo con OyF. Para el pH Potencial, las UA la Joya y C. Amalacaxco no presentaron diferencia significativa entre ellas, pero si con las demás UA, también se encontraron diferencias significativas entre OyF y Palomas.

Respecto a los valores de pH del suelo, se observó que la mayoría de las correlaciones negativas o positivas presentaron una r > 0.40 (Anexo 2). La influencia que tiene el pH como una propiedad maestra influye en una gran cantidad de variables donde la mayoría presentó coeficientes mayores a 0.60. A su vez que Delta pH y pH Potencial mostraron varios coeficientes entre 0.40 y 0.60. Por medio de la diferencia entre los valores de "t" calculados y "t" de tablas, el grupo pH (pH Activo, pH Potencial y Delta pH) muestra 21 relaciones con diferencias significativas con la mayoría de las propiedades físicas, químicas y bioquímicas del suelo (Cuadro 9).

Cuadro 9. Correlaciones sobresalientes del pH con otras propiedades del suelo en las UA estudiadas.

Propiedad	Tipo de pH	Variable	C. de	C. de determinación
			correlación	
	Delta	DA Cil (g/cm ⁻³)	0.70	0.49
	Activo	DA Cil (g/cm ⁻³)	0.95	0.90
	Potencial	DA Cil (g/cm ⁻³)	0.62	0.38
	Delta	Hum (%)	-0.69	0.48
	Activo	Hum (%)	-0.90	0.81
	Potencial	Hum (%)	-0.57	0.32
	Delta	CE (dS m ⁻¹)	0.81	0.66
Física	Activo	CE (dS m ⁻¹)	0.71	0.50
Tisica	Delta	EP (%)	-0.80	0.64
	Activo	EP (%)	-0.73	0.53
	Delta	T (°C)	0.60	0.36
	Activo	M.O. (%)	-0.61	0.37
	Potencial	M.O. (%)	-0.74	0.55
	Potencial	Altitud (m s.n.m)	-0.81	0.66
	Delta	Arena (%)	0.60	0.36
	Delta	Acilla (%)	-0.82	0.67
	Activo	NT (%)	-0.70	0.49
	Potencial	NT (%)	-0.60	0.36
0	Activo	COS (%)	-0.61	0.37
Química	Potencial	COS (%)	-0.74	0.55
	Activo	Delta pH	0.56	0.31
	Potencial	pH Activo	0.79	0.62
	Delta	CBM _{5-10cm} (Mg ha ⁻¹)	-0.74	0.55
Bioquímicas	Delta	AU _{5-10cm} (meq NH ₄ + g ⁻¹ h ⁻¹)	0.73	0.53
•	Delta	Ac. Húmicos (Mg ha ⁻¹)	0.60	0.36

Potencial	Ac. Húmicos (Mg ha ⁻¹)	-0.73	0.53	
Activo	Ac. Fúlvicos (Mg ha ⁻¹)	0.97	0.94	
Potencial	Ac. Fúlvicos (Mg ha ⁻¹)	0.82	0.67	
Delta	qCO_2	-0.60	0.36	
Potencial	qCO_2	0.53	0.28	
Delta	Relación C:N	0.67	0.45	
Activo	Relación C:N	0.60	0.36	

Se observan alrededor de 19 variables significativas de un total de 34.

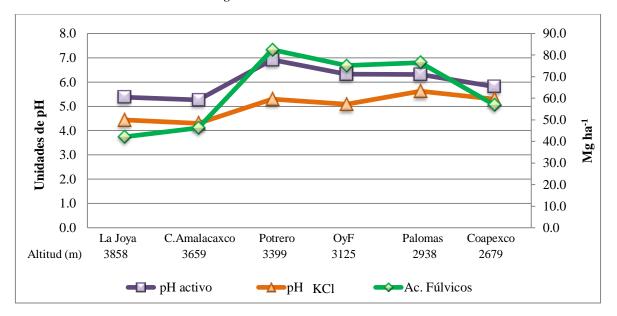


Figura 13. Relación registrada entre el pH Activo y Potencial con los Ac. Fúlvicos en las UA estudiadas (unidades).

Entre las variables bioquímicas que mostraron los mayores coeficientes de correlación con el pH, se encuentran las sustancias húmicas divididas en Ácidos húmicos y ácidos fúlvicos. Los Ácidos fúlvicos, tienen correlación de r=0.97 con pH Activo y r=0.82 con pH Potencial (Figura 13), éste gráfico describe una tendencia al alza, con aumentos de pH activo y potencial hacia las partes más bajas. Los Ácidos Fúlvicos están relacionados negativamente con variables como COS, M.O. y NT expresados en g kg $^{-1}$ y el aumento en sus contenidos en las zonas más bajas, no baja notoriamente la acidez de los suelos (Figura 14).

Por otro parte, los Ácidos húmicos que mostraron una r = 0.60 para Delta pH y r = -0.73 para pH Potencial, tuvieron una disminución en sus contenidos de unas 15 a solo 4 Mg ha⁻¹ desde las zonas conservadas hacia las de mayor impacto antrópico (Figura 15), esta tendencia también fue observada en los contenidos de MO, COS, NT y en la Relación C:N. La posible causa de la disminución de los contenidos de AH puede atribuirse a los cambios de uso de suelo y la erosión edáfica que se promueve con esto.

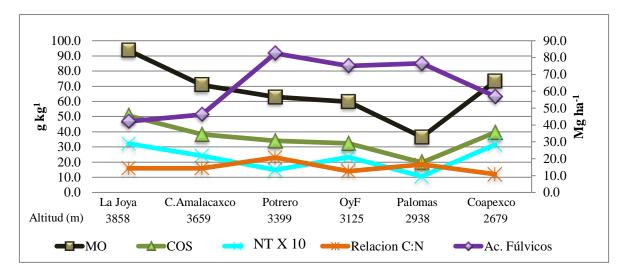


Figura 14. Comportamiento de los Ácidos Fúlvicos en comparación a diferentes variables físicas y químicas, nótese la multiplicación de los valores de NT por 10, para permitir una comparación de sus valores en la misma escala mas no en otros análisis.

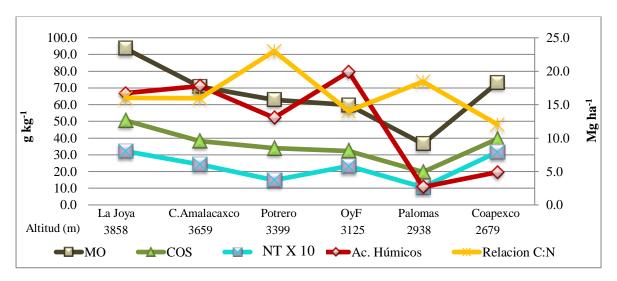


Figura 15. Comportamiento de los Ácidos húmicos en comparación a diferentes variables físicas y químicas, nótese la multiplicación de los valores de NT por 10, para permitir una comparación de sus valores en la misma escala mas no en otros análisis.

Sustancias húmicas

Los contenidos de ácidos fúlvicos y húmicos muestran a las UA Potrero y OyF con valores máximos de cada uno de estos grupos de ácidos mientras que los mínimos corresponden a las UA La Joya y Palomas (Figuras 13, 14 y 15). La relación C:N con los Ácidos Fúlvicos mostró un comportamiento positivo mientras que con los Ácidos húmicos tuvo un comportamiento inverso. Según Mesa *et al.*, 1992, el agregar sustancias húmicas al sustrato estas juegan un papel muy importante en el ciclo del nitrógeno evitando la pérdida de una parte de él por lixiviación mientras la planta aprovecha de un 50 a 70% del nitrógeno lábil mejora la relación C:N del suelo (Figura 14).

Posiblemente la presencia de AH en suelos moderadamente ácidos no disponen de las condiciones de pH necesarias para solubilizarse, al menos en lugares como La Joya y C. Amalacaxco, donde la

CE cuenta con valores bajos y un Delta pH menor a la unidad, lo que apoya la falta de saturación de sales.

El análisis de la variación altitudinal de los contenidos de Ac. húmicos mostró diferencias significativas ($P \le 0.05$) entre las diferentes UA y la prueba de Tukey indica que los suelos de Palomas y Coapexco, estadísticamente iguales entre sí, son diferentes a los contenidos de Ac. Húmicos de los suelos de las otras UA. Por otra parte, el análisis de varianza y prueba de Tukey para los contenidos de Ac. Fúlvicos, indicaron diferencias significativas entre los suelos de La Joya y C. Amalacaxco con Potrero, OyF y Palomas.

Los CCP entre Ácidos Fúlvicos fueron significativos con COS y NT (r = -0.77 y r = -0.79 en ese orden, $P \le 0.05$) y el COS tuvo un $r^2 = 0.59$ y el NT una $r^2 = 0.62$ en relación con estos mismos ácidos. Por otro lado, los CCP entre los Ácidos húmicos con COS y NT tuvieron valores de 0.49 y 0.32, con coeficientes de determinación de 0.24 y 0.10 y la diferencia entre valores de "t" calculados y de tablas mostró diferencias significativas ($P \le 0.05$) que al incrementar los contenidos de carbono y nitrógeno los de Ácidos Fúlvicos disminuyen, mientras que los contenidos de los Ácidos húmicos muestran una relación opuesta.

Otros factores con los que los contenidos de Ácidos Fúlvicos mostraron alta correlación significativa ($P \le 0.05$), fueron M.O., DA y CGA. La M.O. presentó valores de r y r^2 idénticos a los encontrados en COS (Figura 14), la DA con r = 0.91 y $r^2 = 0.83$ mostraron una relación positiva y para CGA, se observó una relación negativa (r = -0.87) y $r^2 = 0.76$. Las variables aquí mencionadas, presentan diferencias significativas ($P \le 0.05$).

Los resultados descritos se pueden explicar porque el aumento de CGA del suelo disminuye los contenidos de Ácidos Fúlvicos que presentan mayor grado de solubilidad que los Ácidos húmicos (Hayes y Clapp, 2001), mientras que para los valores de Ácidos Fúlvicos en zonas de menor altitud donde se incrementa su contenido, la DA de los suelos aumenta (Figura 16).

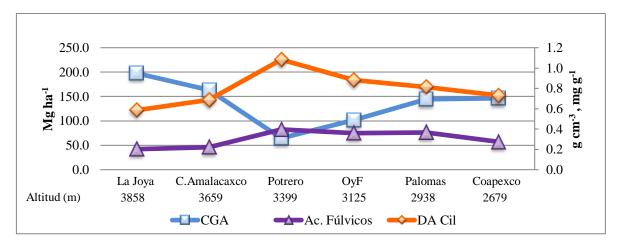


Figura 16. Comportamiento a lo largo del gradiente de Ácidos Fúlvicos, Densidad Aparente y Humedad (CGA) medida en mg g⁻¹.

Para las propiedades Bioquímicas, los Ácidos húmicos mostraron correlaciones significativas con CBM $_{5-10\text{cm}}$, r = -0.82 y $r^2 = 0.67$, con el coeficiente metabólico (qCO₂) r = -0.83 y con la actividad

de la enzima ureasa (AU) r = 0.50. Respecto a los Ácidos Fúlvicos, las correlaciones de CBM $_{5-10 cm}$, de qCO₂ y de la actividad ureasa no fueron significativas (Anexo, 2). Con estos resultados se deduce que existe un mayor efecto de los Ácidos Fúlvicos en las propiedades físicas y químicas, mientras que los Ácidos húmicos presentan un mayor efecto sobre las propiedades bioquímicas.

Carbono de biomasa microbiana

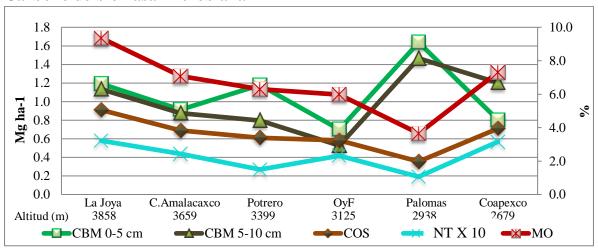


Figura 17. Comportamiento del Carbono de Biomasa de microbiana a diferentes profundidades y en relación con el % de carbono, nitrógeno y materia orgánica, nótese la multiplicación de los valores de NT por 10 para su comparación.

Los valores máximos y mínimos para CBM _{0-5 cm} y CBM _{5-10 cm} coinciden en los suelos de las UA Palomas y OyF respectivamente (Figura 17), en ambos casos con una ligera tendencia al alza conforme aumenta la altitud. En los suelos de Palomas se observa un importante incremento de la actividad microbiana, posiblemente por los valores de humedad relativamente altos (cercanía a un riachuelo) y una temperatura media cercana a 25°C. Estas condiciones climáticas permiten una mejor degradación de la materia orgánica depositada junto con el arrastre de las corrientes tributarias hacia el riachuelo, que disminuyen el porcentaje de materia orgánica en el ecotono ribereño. Otros factores que considerar son la cercanía a tierras de uso agropecuario, y a zonas de atractivos turísticos lo que conlleva un impacto antrópico considerable para la UA Palomas.

El análisis de varianza para el factor altitudinal tanto de CBM $_{0.5~cm}$ como de CBM $_{5-10~cm}$ no mostraron diferencias significativas (P \leq 0.05). Al analizar los CCP de CBM $_{0.5~cm}$ con los contenidos de NT (Mg ha⁻¹) de 0-5 cm y de 0-20 cm, se encontró una r = -0.93 y r² = 0.86 cm con diferencias significativas según los valores de "t", mientras que para M.O. y COS (Mg ha⁻¹) tuvieron una r = -0.48 en ambas profundidades sin mostrar diferencias significativas.

Para CBM $_{5-10~cm}$, se mostró una correlación muy cercana entre las variables COS, M.O. y NT (Mg ha⁻¹), con r = -0.64 para COS y M.O. y una r = -0.58 para NT. Posteriormente las pruebas con los valores de "t" no mostraron diferencias significativas para las tres variables, por lo que son necesarias más observaciones para un resultado conclusivo, sin embargo, parece indicar que el CBM $_{5-10~cm}$, tiene mayor relación con propiedades físicas como él % de EP (r = 0.77 y r² = 0.59) donde la diferencia de valores de "t" si mostró diferencias significativas.

Entre las propiedades bioquímicas más relacionadas con CBM $_{0.5~cm}$ y CBM $_{5-10~cm}$ se encuentra el qCO $_2$ con r = 0.79 para CBM $_{0.5}$ y r = 0.87 para CBM $_{5-10~cm}$, ambas con resultado positivo para la diferencia de valores "t". Cabe mencionar que este indicador (qCO $_2$) mostró gran relación con la actividad enzimática de ureasa, con los contenidos y estequiometría del nitrógeno y carbono, junto con otras propiedades físicas evaluadas.

Índice metabólico (qCO₂)

La Figura 18 muestra una tendencia general del qCO₂ a disminuir con la altitud, como se presentó para CBM, por lo que se observa que en los suelos de OyF se tiene el menor valor, sin embargo, en los suelos de Palomas adquiere su valor más alto y rompe con la tendencia debido a la especial sensibilidad que el qCO₂ presenta y por un mayor grado de perturbación ambiental en ese sitio dada la cercanía a zonas urbanas (San Pedro Nexapa y en particular sus tierras de cultivo) y al deterioro de su cobertura vegetal y abundancia de caminos visibles satelitalmente.

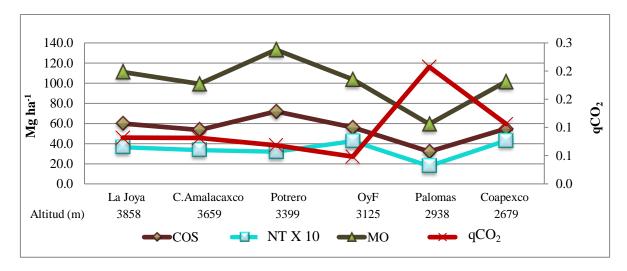
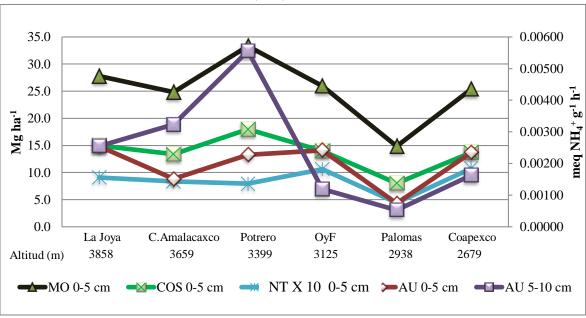



Figura 18. Comportamiento del índice metabólico qCO2 con los contenidos de MO, COS y NT.

El análisis de varianza del qCO2 muestra la existencia de diferencias significativas ($P \le 0.05$), sin embargo, no concuerda con lo visto en la prueba de Tukey por lo que se recomienda aumentar el número de observaciones para procesar más datos. Los CCP entre qCO2 con COS y MO expresados en Mg ha⁻¹, presentaron relaciones negativas fuertes con diferencias significativas ($P \le 0.05$) de r = -0.85 con $r^2 = 0.72$ para ambas variables y para NT (Mg ha⁻¹) una r = -0.80 y $r^2 = 0.64$, sin embargo, al ser expresados en g kg⁻¹ la correlación entre qCO2 con COS, M.O. y NT fue de -0.62 ($r^2 = 0.38$) para COS y M.O. y para NT fue r = -0.50 ($r^2 = 0.25$) sin diferencias significativas. Estos resultados sugieren que, a mayor contenido de COS, M.O. y NT se tienen menores valores de qCO2.

Entre las propiedades bioquímicas con mayor correlación entre qCO $_2$ se encontraron a los Ácidos Hùmicos (r = -0.83 y r 2 = 0.69), CBM $_{0.5~cm}$ y CBM $_{5-10~cm}$ (r = 0.79, r = 0.87 con r 2 = 0.62 y r 2 = 0.76) y AU $_{0.5~cm}$ y AU $_{5-10~cm}$ (r = -0.83 y r = -0.51 con r 2 = 0.69 y r 2 = 0.26), donde la diferencia de valores mostro diferencias significativas con la mayoría de las relaciones con excepción de AU $_{5-10}$ cm, como se muestra a continuación (Figura 19).

Actividad enzimática de la ureasa (AU)

Figura 19. Relación de la actividad ureasa (AU) con diferentes contenidos de M.O., COS y NT.

La Figura 19 muestra que los suelos de La Joya presentaron los máximos valores de AU _{0-5 cm}, con valores muy cercanos a los de los suelos de OyF y Coapexco. En los suelos de Potrero, se encontraron valores máximos de la AU _{5-10 cm} y, para ambas profundidades (0-5 y 5-10 cm) la AU tuvo el valor mínimo en los suelos de Palomas. Estos valores se correlacionan con los contenidos de NT que mostraron en los suelos de Palomas los valores más bajos de todos los sitios, por lo cual es entendible que tenga una alta Relación C:N (Figura 11).

El análisis de varianza de los valores de $AU_{0-5~cm}$ de los suelos, mostró diferencias significativas (P ≤ 0.05) entre los suelos de Palomas con los suelos de La Joya, OyF y Coapexco. Respecto al análisis de varianza de la $AU_{5-10~cm}$, las diferencias significativas (P ≤ 0.05) se encontraron entre los suelos de Potrero con las demás UA y finalmente también hay diferencia significativa entre los suelos de C. Amalacaxco con los de Palomas.

Los CCP entre los valores de la AU $_{0.5~cm}$ y AU $_{5-10~cm}$ con los valores de contenidos de M.O. y COS (expresados Mg ha $^{-1}$) fueron r = 0.82 y r = 0.81 respectivamente, para NT con AU $_{0.5~cm}$, el CCP fue de r = 0.86 y para AU $_{5-10~cm}$ de r = 0.08, valores extremadamente contrastantes que incluso al comparar a AU $_{5-10~cm}$ con NT (g kg $^{-1}$ ó %), los valores de correlación fueron muy bajos (r = -0.09). Por otra parte, al comprobar la diferencia de valores de "t" se encontraron diferencias significativas (P \leq 0.05) entre los valores de AU $_{0-5~cm}$ y AU $_{5-10~cm}$ con COS y M.O. sin diferencia significativa con los valores de NT con AU $_{5-10~cm}$.

La falta de correlación significativa entre AU _{5-10 cm} con los valores de NT y su correlación significativa con contenidos de M.O. y COS, podrían estar relacionadas con las masas de C y N lábiles, por ser éstas más sensibles a cambios en el corto plazo en capas superficiales, por lo que la estimación de las fracciones lábiles fue considerado pertinente y se muestra en la siguiente sección.

Estimación de masas de N y C lábiles

Para poder conocer la relación de los contenidos de Carbono y Nitrógeno lábiles en los suelos distribuidos a lo largo del gradiente altitudinal, se hizo uso de las relaciones y proporciones de estos elementos (C y N) reportadas en (Fassbender, 1993 y Perdomo *et al.*, 2003) con las fórmulas siguientes:

1- Masa de N lábil = $(NT \times 0.95) \times 0.02$.

Con NT = Nitrógeno Total

2- Masa de C lábil =
$$\frac{(CBM \times 100)}{COS}$$
 \rightarrow % C lábil \rightarrow (% C lábil \times COS).

Con CBM = Carbono de Biomasa Microbiana y COS = Carbono Orgánico del Suelo

La fórmula número 1 considera la mayoría del nitrógeno en el suelo como orgánico (95 %), a la vez que se asume un valor del 2% para la fracción del nitrógeno mineralizable, lo que permite una estimación de la masa lábil del nitrógeno disponible en el corto plazo, mientras que la fórmula 2 considera al Carbono Orgánico del Suelo y la relación que comparte con el carbono de biomasa microbiana, calculando el porcentaje que representa el de biomasa microbiana y usándolo para obtener la fracción lábil del COS. Cabe aclarar que existen condiciones restrictivas para el uso de estas fórmulas, una es el asumir los valores expuestos en la literatura citada si no se cuenta con valores experimentales, otra es el uso de las mismas unidades y profundidades según la estimación previa, y finalmente la comprobación por medio de análisis estadísticos de la relación en el comportamiento de ambas variables (Anexo 2).

Contando con los valores de masas de N y C lábiles calculadas en la profundidad de 0-5 cm, se realizó un análisis de varianza que mostró diferencias significativas ($P \le 0.05$) en la masa lábil de nitrógeno, pero no en la del carbono. Posteriormente la prueba de Tukey determinó el origen de dichas diferencias en los suelos Palomas respecto a los de Coapexco y OyF (Figura 20).

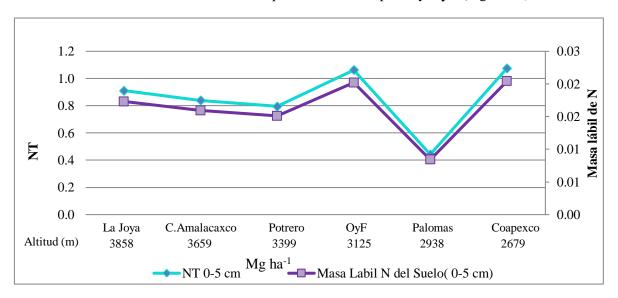


Figura 20. Comportamiento del Nitrógeno lábil en las UA.

Los CCP para N y C lábiles tuvieron significancia estadística ($P \le 0.05$), para N lábil con COS y NT (%), r = 0.65 y r = 0.80 con $r^2 = 0.42$ y $r^2 = 0.64$, mientras que el C lábil con COS y NT (Mg ha¹) tuvo r = -0.43 y r = -0.87 con $r^2 = 0.19$ y $r^2 = 0.76$. También se encontró significancia ($P \le 0.05$) entre las correlaciones de las masas lábiles de C y N, con r = -0.87 ($r^2 = 0.76$), reafirmando la fundamental relación que comparten los contenidos de nitrógeno y carbono.

Entre las propiedades bioquímicas con mayor correlación con las masas lábiles de N y C, se encontró al qCO₂ (con r = -0.80 y r = 0.73), a la Relación C:N (r = -0.61 y r = 0.57). También se tienen CCP significativos de N y C lábiles con CBM $_{0.5~cm}$ (r = -0.93 y r = 0.99) y la de CBM $_{5-10~cm}$ (r = 0.70 y r = -0.58) y finalmente de la AU $_{0.5~cm}$ con r = 0.86 para N lábil y r = -0.57 para C lábil.

Interacciones encontradas entre variables experimentales y bibliográficas

Los suelos como cuerpos naturales, complejos, trifásicos, dinámicos, etc., funcionan gracias a interacciones multifactoriales y procesos que engloban intercambios energéticos y de materiales entre las diferentes entidades (bióticas y abióticas) y en los diferentes horizontes o capas que los forman. Esto permite que ciertas capas desarrollen capacidades de almacenamiento, tránsito y transformación en base a la actividad de dichas entidades y al impacto de factores edafogénicos (Tiempo, Topografía, Biota, Clima, Material parental, etc.).

Estas interacciones permiten al suelo considerarlo como uno de los ecosistemas con mayor diversidad y productividad biológica (incluso al fraccionarlo es posible observar la gran cantidad de especies de microbiota y sustancias químicas que albergan unos gramos de él), a la vez que funge como parte fundamental en la gran mayoría de ecosistemas conocidos, esto es gracias a las interacciones multifactoriales ya mencionadas, por lo que el analizar las relaciones existentes entre las variables químicas, físicas y bioquímicas puede ser la clave para conseguir un mejor entendimiento del rol de cada una en el ecosistema suelo.

Un ejemplo de esto puede ser el efecto que la naturaleza ácida de las sustancias fúlvicas y húmicas tiene en los valores de pH activo y potencial, así como el impacto del pH sobre la solubilidad, precipitación y disponibilidad de nutrientes en la solución del suelo, lo que influirá en los equilibrios iónicos y nutrición vegetal, recordando que dichos nutrientes son derivados (en su mayoría) de la mineralización y degradación de la M.O, que permite la disponibilidad de compuestos orgánicos aprovechables gracias a la actividad enzimática y metabólica de microrganismos. Por otro lado, compuestos más complejos derivados de la humificación, que forman parte de la fracción no lábil (almacenados según la distribución que la textura permita), confieren al suelo características idóneas, que aumentan la aireación, humedad, capacidad de intercambio catiónico, formación de agregados y mejora de la estructura del suelo entre otras.

Respecto a las relaciones entre variables se encontró en muchos casos una relación con una alta significancia ($P \le 0.05$). A continuación, se enlistan las relaciones que mostraron significancia estadística y varios CCP con valores altos:

Relación Ac fúlvico: pH Activo	r = 0.97
Relación Ac fúlvico: pH KCl	r = 0.82
Relación Ac. húmicos: qCO ₂	r = -0.83
Relación AU _{0-5 cm} : M.O.	r = 0.74

	Relación AU _{5-10 cm} : M.O.	r = 0.33
\triangleright	Relación qCO ₂ :AU _{0-5 cm}	r = -0.83
	Relación Ac fúlvicos: NT	r = -0.33
	Relación pH Activo/ DA CIL	r = 0.95
	Factor de humificación-(Relación SF:SH)	r = -0.27
\triangleright	Arena: Limo	r = -0.86
\triangleright	Arena: Arcilla	r = -0.93
\triangleright	Arcilla: Limo	r = 0.61
	Índice metabólico- "qN" (CBM/NT 0-5 cm)	r = -0.93
\triangleright	Índice metabólico- "qN.1" (CBM/Masa lábil N 2%)	r = -0.93
\triangleright	Índice metabólico- "qN.2" (CBM/Masa lábil N 1.5%)	r = -0.93
\triangleright	Índice metabólico- "qN.3" (CBM/Masa lábil N 1%)	r = -0.93

Cada una de las interacciones enlistadas en el párrafo anterior, muestra fuertes correlaciones con los valores numéricos de variables y propiedades de los suelos estudiados por Baltazar (2009), Ayala (2011), Mascot (2013) y Colli (2015), valores que fueron utilizados y procesados en esta investigación para generar las interacciones y estudiar sus relaciones, destacando que para integrar variables como el azufre y fosforo disponible, así como la actividad enzimática de la arilsulfatasa y las fosfatasas, se decidió la implementación de CCP y Análisis de Componentes Principales (ACP) sucesivos, mediante el complemento estadístico "Real Statistics" para Excel 365 (Windows 10).

Para asegurar una congruencia en el procesamiento de datos, las variables fueron sometidas a 4 diferentes pruebas de normalidad en todos los casos con un $\alpha \le 0.05$ (Cuadros 10 y 11), estas pruebas (aunque con fundamentos y procedimientos diferentes) presentan una comparación de hipótesis donde la H_0 plantea que la variable x sigue una distribución normal, mientras que la H_A plantea lo contrario, por lo que sí el valor "p" resulta mayor que el nivel de significancia alfa, no es posible rechazar a H_0 y se asume la distribución normal de los datos. Las pruebas fueron realizadas a través del software libre de complemento para Excel 2016 (Windows 10) llamado "XLSTAT" (versión de prueba).

Aunque la mayoría de las variables originales de los suelos estudiados por Baltazar (2009), Ayala (2011), Mascot (2013) y Colli (2015), demostraron seguir una distribución normal, algunas de las variables generadas con las relaciones experimentales, no presentaron esa distribución, sin embargo, el incluirlas en este trabajo, se sustentó en el potencial que tienen como posibles indicadoras de calidad edáficas (siendo altamente recomendable que se pueda incrementar el número de observaciones en trabajos posteriores).

Como un complemento de los análisis de correlación y de varianza aplicados a las variables originales con las variables generadas (con un total de 69 variables), se presenta en los Anexo 4 y 5 una tabla y una matriz de correlación, donde se destacan las correlaciones de las variables principales (M.O, COS y NT), así como un ejemplo en el Anexo 7 de las relaciones que el piso altitudinal (una variable de interés) muestra en relación con los CCP de las 69 variables, para ser considerada en trabajos de investigación subsecuentes junto con las que se consideren prioritarias en dichos trabajos.

Cuadro 10. Pruebas de normalidad aplicadas en las 69 variables (1º ACP). En letras cursivas y en negritas, se muestran aquellas variables que no superaron 1 o más pruebas.

Piso altitudinal 0.945 0.923 0.968 0.831 pH-Delta pH 0.858 0.787 0.652 0.837 pH-pH Activo 0.658 0.660 0.733 0.813 pH-pH Activo 0.049 0.285 0.449 0.731 Indice metabólico-qN (CBM/NT φ.5 cm) 0.061 0.053 0.130 0.390 Indice metabólico-qN (CBM/Masa lábil N φ.5 cm) 0.034 0.034 0.014 0.341 Relación C:N 0.724 0.579 0.437 0.792 Relaciones Experimentales-Relación Ac Fulvico:pH Activo 0.193 0.196 0.122 0.700 Relaciones Experimentales-Relación Ac Fulvico:pH KCI 0.479 0.449 0.375 0.722 Relaciones Experimentales-Relación Ab U.M.O. φ.5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación Ab U.M.O. φ.5 cm 0.409 0.004 0.003 0.222 Relaciones Experimentales-Relación PH Activo/ DA CIL 0.503 0.503 0.661 0.804 Relaciones Experimentales-Relación AU:N Lábil φ.5 cm <t< th=""><th>Variable\Prueba</th><th>Shapiro- Wilk</th><th>Anderson- Darling</th><th>Lilliefors</th><th>Jarque- Bera</th></t<>	Variable\Prueba	Shapiro- Wilk	Anderson- Darling	Lilliefors	Jarque- Bera
pH-pH Activo pH-pH KCl	Piso altitudinal	0.945	0.923	0.968	0.821
pH-pH KCl	pH-Delta pH	0.858	0.787	0.652	0.837
Índice metabólico-qCO2 0.061 0.053 0.130 0.391 Índice metabólico-qN (CBM/NT ₀.5 cm) 0.034 0.034 0.014 0.341 Índice metabólico -qN (CBM/Masa lábil N ₀.5 cm) 0.034 0.034 0.014 0.341 Relaciones Experimentales-Relación Ac Fulvico:pH Activo 0.193 0.196 0.122 0.700 Relaciones Experimentales-Relación Ac Fulvico:pH KCI 0.479 0.449 0.375 0.723 Relaciones Experimentales-Relación Ac humicos:qCO₂ 0.423 0.289 0.207 0.838 Relaciones Experimentales-Relación AU:M.O. ₀.5 cm 0.047 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. ₅.5 cm 0.002 0.004 0.003 0.222 Relaciones Experimentales-Relación AC Fulvico:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AU:N. Lábil ₀.5 cm 0.503 0.503 0.661 0.804 Factor de humificación-Relación AU:N. Lábil ₀.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N. Lábil ₀.5 cm 0.580 <	pH-pH Activo	0.658	0.606	0.733	0.813
Indice metabólico-qN (CBM/NT ₀.s cm) 0.034 0.034 0.034 0.014 0.341 Indice metabólico -qN (CBM/Masa lábil N ₀.s cm) 0.034 0.034 0.014 0.341 Relación C:N 0.724 0.579 0.437 0.792 Relaciones Experimentales-Relación Ac Fulvico:pH Activo 0.193 0.196 0.122 0.700 Relaciones Experimentales-Relación Ac Fulvico:pH KCI 0.479 0.449 0.375 0.723 Relaciones Experimentales-Relación Ac humicos:qCO₂ 0.423 0.289 0.207 0.838 Relaciones Experimentales-Relación AU:M.O. ₅ cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. ₅ cm 0.002 0.004 0.003 0.222 Relaciones Experimentales-Relación AF Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AU:N.Lábil ₀ ₅ cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N. Lábil ₀ ₅ cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N. Lábil ₀ ₅ cm 0.0001 <td>pH-pH KCl</td> <td>0.349</td> <td>0.285</td> <td>0.449</td> <td>0.731</td>	pH-pH KCl	0.349	0.285	0.449	0.731
Indice metabólico -qN (CBM/Masa lábil N 0.5 cm) 0.034 0.034 0.014 0.379 Relación C:N 0.724 0.579 0.437 0.792 Relaciónes Experimentales-Relación Ac Fulvico:pH Activo 0.193 0.196 0.122 0.700 Relaciones Experimentales-Relación Ac Fulvico:pH KCl 0.479 0.449 0.375 0.723 Relaciones Experimentales-Relación Ac humicos:qCO₂ 0.423 0.289 0.207 0.838 Relaciones Experimentales-Relación AU:M.O. 5.5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. 5.10 cm 0.002 0.004 0.003 0.222 Relaciones Experimentales-Relación AC Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.503 0.503 0.661 0.804 Factor de humificación Felación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.0031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.0091	Índice metabólico-qCO ₂	0.061	0.053	0.130	0.390
Relación C:N 0.724 0.579 0.437 0.792 Relaciones Experimentales-Relación Ac Fulvico:pH Activo 0.193 0.196 0.122 0.700 Relaciones Experimentales-Relación Ac Fulvico:pH KCI 0.479 0.449 0.375 0.723 Relaciones Experimentales-Relación Ac humicos:qCO2 0.423 0.289 0.207 0.838 Relaciones Experimentales-Relación AU:M.O. 0-5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. 0-5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AC Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AF Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AF:SH 0.031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.090 0.013 0.075 0.288 Variables físicas-Telación AU:N Lábil 0.5 cm 0.090 0.013	Índice metabólico-qN (CBM/NT _{0-5 cm})	0.034	0.034	0.014	0.341
Relaciones Experimentales-Relación Ac Fulvico:pH Activo 0.193 0.196 0.122 0.702 Relaciones Experimentales-Relación Ac Fulvico:pH KCI 0.479 0.449 0.375 0.723 Relaciones Experimentales-Relación Ac humicos:qCO2 0.423 0.289 0.207 0.838 Relaciones Experimentales-Relación AU:M.O. 0-5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. 5-10 cm 0.002 0.004 0.003 0.222 Relaciones Experimentales-Relación AC Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AC Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AU:N Lábil 5-10 cm 0.503 0.503 0.661 0.804 Relaciones Experimentales-Relación AU:N Lábil 5-10 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 5-10 cm 0.009 0.013 0.075 0.288 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825<	Índice metabólico -q N (CBM/Masa lábil N $_{0 ext{-}5\ cm}$)	0.034	0.034	0.014	0.341
Relaciones Experimentales-Relación Ac Fulvico:pH KCI 0.479 0.449 0.375 0.723 Relaciones Experimentales-Relación Ac humicos:qCO2 0.423 0.289 0.207 0.838 Relaciones Experimentales-Relación AU:M.O. 0.5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. 3.10 cm 0.002 0.004 0.003 0.222 Relaciones Experimentales-Relación AC Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación AC Fulvicos:NT 0.190 0.503 0.561 0.804 Factor de humificación-Relación SF:SH 0.031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.009 0.013 0.075 0.288 Variables fisicas-C 0.174	Relación C:N	0.724	0.579	0.437	0.792
Relaciones Experimentales-Relación Ac humicos:qCO2 0.423 0.289 0.207 0.838 Relaciones Experimentales-Relación AU:M.O. 0.5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. 5.10 cm 0.002 0.004 0.003 0.222 Relaciones Experimentales-Relación AC Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación PM Activo/ DA CIL 0.503 0.503 0.661 0.804 Factor de humificación-Relación SF:SH 0.031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.009 0.013 0.075 0.288 Variables físicas-Te?°C) <0.0001	Relaciones Experimentales-Relación Ac Fulvico:pH Activo	0.193	0.196	0.122	0.700
Relaciones Experimentales-Relación AU:M.O. 0.5 cm 0.497 0.576 0.676 0.760 Relaciones Experimentales-Relación AU:M.O. 5-10 cm 0.002 0.004 0.003 0.222 Relaciones Experimentales-Relación AC Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación FIR 0.031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0-5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 5-10 cm 0.009 0.013 0.075 0.288 Variables físicas-T(°C) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001	Relaciones Experimentales-Relación Ac Fulvico:pH KCl	0.479	0.449	0.375	0.723
Relaciones Experimentales-Relación AU:M.O. 5-10 cm 0.002 0.004 0.003 0.228 Relaciones Experimentales-Relación Ac Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación PH Activo/ DA CIL 0.503 0.503 0.661 0.804 Factor de humificación-Relación SF:SH 0.031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 5.10 cm 0.009 0.013 0.075 0.288 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-BP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-Pendiente 0.182	Relaciones Experimentales-Relación Ac humicos:qCO ₂	0.423	0.289	0.207	0.838
Relaciones Experimentales-Relación Ac Fulvicos:NT 0.129 0.131 0.288 0.477 Relaciones Experimentales-Relación pH Activo/ DA CIL 0.503 0.503 0.661 0.804 Factor de humificación-Relación SF:SH 0.031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 5.10 cm 0.009 0.013 0.075 0.288 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-BP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-Pendiente 0.182 0.206 0.741 0.773 Variables físicas-Pendiente 0.182 0.06	Relaciones Experimentales-Relación AU:M.O. 0-5 cm	0.497	0.576	0.676	0.760
Relaciones Experimentales-Relación pH Activo/ DA CIL 0.503 0.503 0.661 0.804 Factor de humificación-Relación SF:SH 0.031 0.040 0.100 0.465 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 5.10 cm 0.000 0.013 0.075 0.288 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-BP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas-Hum 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Arena 0.0607 0.522 0.534 0.753	Relaciones Experimentales-Relación AU:M.O. 5-10 cm	0.002	0.004	0.003	0.222
Factor de humificación-Relación SF:SH 0.031 0.040 0.100 0.466 Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 5.10 cm 0.009 0.013 0.075 0.288 Variables físicas-T(°C) <0.0001	Relaciones Experimentales-Relación Ac Fulvicos:NT	0.129	0.131	0.288	0.477
Relaciones Experimentales-Relación AU:N Lábil 0.5 cm 0.580 0.582 0.745 0.769 Relaciones Experimentales-Relación AU:N Lábil 5.10 cm 0.009 0.013 0.075 0.288 Variables físicas-T(°C) <0.0001 <0.0001 <0.0001 0.169 0.169 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-EP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas-MO 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.872 0.804 0.835 0.809	Relaciones Experimentales-Relación pH Activo/ DA CIL	0.503	0.503	0.661	0.804
Relaciones Experimentales-Relación AU:N Lábil 5-10 cm 0.009 0.013 0.075 0.288 Variables físicas-T(°C) <0.0001 <0.0001 <0.0001 0.169 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-EP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Arena 0.067 0.522 0.534 0.753 Textura-Arena: Limo 0.87	Factor de humificación-Relación SF:SH	0.031	0.040	0.100	0.465
Variables físicas-T(°C) <0.0001 <0.0001 <0.0001 0.169 Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-EP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas-Hum 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Arena: Limo 0.607 0.522 0.534 0.753 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.044	Relaciones Experimentales-Relación AU:N Lábil 0-5 cm	0.580	0.582	0.745	0.769
Variables físicas-CE 0.174 0.164 0.270 0.493 Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-EP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas-MO 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arena: Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483	Relaciones Experimentales-Relación AU:N Lábil 5-10 cm	0.009	0.013	0.075	0.288
Variables físicas-DA Cil 0.887 0.825 0.949 0.820 Variables físicas-EP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas Hum 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-NT 0.494 0.520 0.741 0.773 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Arena 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arcilla: Arena 0.437 0.348 0.411 0.657 Textura-Arcilla: Arena 0.023 0.023 0.	Variables físicas-T(°C)	< 0.0001	< 0.0001	<0.0001	0.169
Variables físicas-EP 0.169 0.158 0.320 0.666 Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas Hum 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-NT 0.494 0.520 0.741 0.773 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arcilla: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201	Variables físicas-CE	0.174	0.164	0.270	0.493
Variables físicas-MO 0.862 0.619 0.629 0.969 Variables físicas Hum 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-NT 0.494 0.520 0.741 0.773 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arcilla: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.09	Variables físicas-DA Cil	0.887	0.825	0.949	0.820
Variables físicas Hum 0.860 0.708 0.385 0.856 Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-NT 0.494 0.520 0.741 0.773 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Variables físicas-EP	0.169	0.158	0.320	0.666
Variables físicas-COS 0.862 0.619 0.629 0.969 Variables físicas-NT 0.494 0.520 0.741 0.773 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Variables físicas-MO	0.862	0.619	0.629	0.969
Variables físicas-NT 0.494 0.520 0.741 0.773 Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Variables físicas Hum	0.860	0.708	0.385	0.856
Variables físicas-Pendiente 0.182 0.206 0.360 0.729 Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arcilla: Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Variables físicas-COS	0.862	0.619	0.629	0.969
Textura-Arena 0.066 0.037 0.009 0.478 Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arcilla: Limo 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Variables físicas-NT	0.494	0.520	0.741	0.773
Textura-Limo 0.607 0.522 0.534 0.753 Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Variables físicas-Pendiente	0.182	0.206	0.360	0.729
Textura-Arcilla 0.039 0.038 0.015 0.479 Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Arena	0.066	0.037	0.009	0.478
Textura-Arena: Limo 0.872 0.804 0.835 0.809 Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Limo	0.607	0.522	0.534	0.753
Textura-Arcilla: Limo 0.821 0.678 0.575 0.878 Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Arcilla	0.039	0.038	0.015	0.479
Textura-Arena: Arcilla 0.444 0.354 0.305 0.775 Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Arena:Limo	0.872	0.804	0.835	0.809
Textura-Limo: Arena 0.437 0.348 0.411 0.657 Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Arcilla: Limo	0.821	0.678	0.575	0.878
Textura-Limo: Arcilla 0.811 0.539 0.483 0.971 Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Arena: Arcilla	0.444	0.354	0.305	0.775
Textura-Arcilla: Arena 0.023 0.023 0.007 0.361 Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Limo: Arena	0.437	0.348	0.411	0.657
Contenido de M.O. 0-5 cm 0.386 0.201 0.095 0.813 Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Limo: Arcilla	0.811	0.539	0.483	0.971
Contenido de M.O. 0-20 cm 0.386 0.201 0.095 0.813	Textura-Arcilla: Arena	0.023	0.023	0.007	0.361
	Contenido de M.O. 0-5 cm	0.386	0.201	0.095	0.813
Contenido de COS 0-5 cm 0.386 0.201 0.095 0.813	Contenido de M.O. 0-20 cm	0.386	0.201	0.095	0.813
	Contenido de COS 0-5 cm	0.386	0.201	0.095	0.813

Contenido de COS 0-20 cm	0.386	0.201	0.095	0.813
Contenido de Masa Lábil COS (0-5 cm)	0.742	0.743	0.683	0.781
Contenido de NT 0-5 cm	0.304	0.315	0.390	0.674
Contenido de NT 0-20 cm	0.304	0.315	0.390	0.674
Contenido de Masa Lábil N del Suelo (2%)(0-5 cm)	0.304	0.315	0.390	0.674
C. de Azufre- SO ₄ -2 BRAY 1	0.098	0.109	0.261	0.654
C. de Azufre- SO ₄ -2 BRAY 1 (0-5 cm)	0.514	0.550	0.731	0.734
C. de Azufre- SO ₄ -2 OLSEN (%)	0.506	0.403	0.478	0.678
C. de Azufre- SO4 ⁻² OLSEN	0.091	0.066	0.038	0.525
C. de Fosforo-P-Disponible suelo según Olsen	0.212	0.187	0.263	0.587
C. de Fosforo-Masa de P en suelo según Olsen (0-20 cm)	0.598	0.637	0.889	0.762
C. de Fosforo-Masa de P en suelo según Olsen (0-5 cm)	0.598	0.637	0.889	0.762
C. de Fosforo-P-Disponible suelo según Bray	0.161	0.161	0.275	0.537
C. de Fosforo-Masa de P en el suelo según Bray (0-20)	0.021	0.025	0.023	0.313
C. de Fosforo-Masa de P en el suelo según Bray (0-5)	0.021	0.025	0.023	0.313
Propiedades Bioquímicas-Ac. Húmicos	0.285	0.281	0.463	0.691
Propiedades Bioquímicas-Ac. Fúlvicos	0.312	0.311	0.247	0.696
Propiedades Bioquímicas-CBM _{0-5 cm}	0.584	0.525	0.684	0.776
Propiedades Bioquímicas-CBM 5-10 cm	0.974	0.904	0.920	0.873
A. Enzimática-AU _{0-5 cm}	0.072	0.065	0.035	0.577
A. Enzimática-AU _{5-10 cm}	0.592	0.548	0.812	0.715
A. Enzimática-AF ac 5-10 cm	0.218	0.250	0.327	0.681
A. Enzimática-AF al _{0-5 cm}	0.391	0.400	0.311	0.712
A. Enzimática-AF al 5-10 cm	0.466	0.367	0.161	0.713
A. Enzimática-AF ac _{0-5 cm}	0.081	0.090	0.223	0.649
A. Enzimática-AAS _{0-5 cm}	0.765	0.636	0.749	0.815
A. Enzimática-AAS _{5-10 cm}	0.195	0.181	0.287	0.543
Relación qCO ₂ :AU _{0-5 cm}	0.001	0.002	0.002	0.199

Cuadro 11. Pruebas de normalidad aplicadas a las 30 variables (2° ACP). En letras cursivas y en negritas, se muestran aquellas variables que no superaron 1 o más pruebas.

Variable\Prueba	Shapiro- Wilk	Anderson- Darling	Lilliefors	Jarque- Bera
C. de Fosforo-P-Disponible suelo según Olsen	0.212	0.187	0.263	0.587
A. Enzimática-AF al 5-10 cm	0.466	0.367	0.161	0.713
Índice metabòlico-qCO ₂	0.061	0.053	0.130	0.390
Factor de humificación-Relación SF/SH	0.031	0.040	0.100	0.465
C. de Azufre-SO ₄ -2 H ₂ O	0.065	0.051	0.027	0.646
Variables físicas-DA Cil	0.887	0.825	0.949	0.820
pH-pH Activo	0.658	0.606	0.733	0.813
Relaciones Experimentales-Relación Ac Fulvico:pH KCl	0.479	0.449	0.375	0.723
Propiedades Bioquímicas-Ac. Fúlvicos	0.312	0.311	0.247	0.696
Variables físicas Hum	0.860	0.708	0.385	0.856

Textura-Limo/Arena	0.437	0.348	0.411	0.657
Variables físicas-T(°C)	<0.0001	<0.0001	<0.0001	0.169
Variables físicas-Pendiente	0.182	0.206	0.360	0.729
Textura-Arena:Limo	0.872	0.804	0.835	0.809
Textura-Limo	0.607	0.522	0.534	0.753
C. de Azufre-SO ₄ -2 BRAY 1	0.098	0.109	0.261	0.654
C. de Azufre-SO ₄ -2 OLSEN	0.091	0.066	0.038	0.525
A. Enzimática-AU 5-10 cm	0.592	0.548	0.812	0.715
C. de Azufre- SO ₄ -2 BRAY 1 _{0-5 cm}	0.514	0.550	0.731	0.734
Piso altitudinal	0.945	0.923	0.968	0.821
A. Enzimática-AF ac _{0-5 cm}	0.081	0.090	0.223	0.649
A. Enzimática-AF ac 5-10 cm	0.218	0.250	0.327	0.681
Contenido de Masa Lábil COS 0-5 cm	0.742	0.743	0.683	0.781
A. Enzimática-AU _{0-5 cm}	0.072	0.065	0.035	0.577
Propiedades Bioquímicas-CBM _{0-5 cm}	0.584	0.525	0.684	0.776
Índice metabólico-qN 0-5 (CBM/NT _{0-5 cm})	0.034	0.034	0.014	0.341
Índice metabólico -qN.1 (CBM/Masa lábil 2%)	0.034	0.034	0.014	0.341
Índice metabólico -qN.2 (CBM/Masa lábil 1.5%)	0.034	0.034	0.014	0.341
Índice metabólico -qN.3 (CBM/Masa lábil 1%)	0.034	0.034	0.014	0.341
Relación qCO ₂ :AU _{0-5 cm}	0.001	0.002	0.002	0.199

En el primer ACP, las 69 variables fueron procesadas y se encontró que la varianza es explicada por los primeros 5 componentes principales (teniendo al resto con una aportación mínima) en base a esto y a los que exhibieron el valor absoluto más alto en los primeros 5 componentes, se sustrajeron dichas variables (reduciéndolas a 30) y se evaluaron en un 2º ACP. Las Figura 21 y 22 muestran sus resultados:

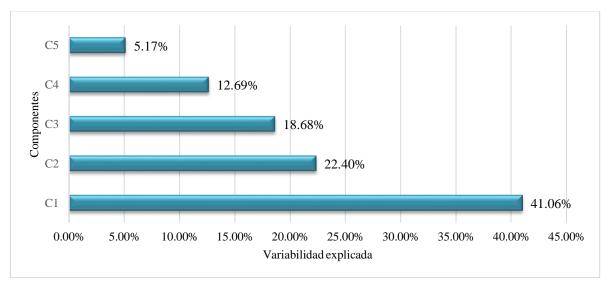


Figura 21. Principales componentes del con el porcentaje de varianza que explica, 2º ACP.

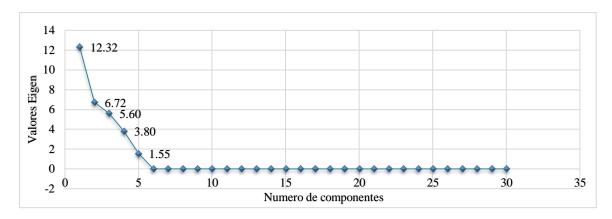


Figura 22. Diagrama de pantalla donde se muestra los Valores Eigen de cada componente, 2º ACP.

La Figura 21 supone la explicación de la variabilidad total atribuida a los primeros 5 componentes, estos cuentan con valores Eigen relativamente altos (Figura 22) superiores a la unidad. Las variables que presentaron los mayores coeficientes de valor absoluto en la matriz de factores se enlistan en el Cuadro 12:

Cuadro 12. Variables con mayor coeficiente en el segundo ACP.

Numero/Nombre de Variable	Cociente en la matriz	СР
	de factores	
Var1/C. de Fosforo-P-Disponible suelo según Olsen	0.97	
Var 2/A. Enzimática-AF al _{5-10 cm}	0.91	
Var 3 /Índice metabólico -qCO ₂	0.99	
Var4/Factor de humificación-Relación SF/SH	0.98	
Var5 /C. de Azufre-SO ₄ -2 H ₂ O	0.82	
Var24/A. Enzimática-AU _{0-5 cm}	-0.82	CP4
Var25/Propiedades Bioquímicas-(CBM _{0-5 cm})	0.78	CP1
Var26 /Índice metabólico-qN (CBM/NT _{0-5 cm})	0.92	
Var27/Índice metabólico -qN.1 (CBM/Masa lábil N 2%)	0.92	
Var28/Índice metabólico -qN.2 (CBM/Masa lábil N 1.5%)	0.92	
Var29/Índice metabólico -qN.3 (CBM/Masa lábil N 1%)	0.92	
Var30/Relación qCO ₂ :AU _{0-5 cm}	0.95	
Var11/Textura-Limo/Arena	-0.81	
Var12/Variables físicas-T(°C)	0.75	
Var13/Variables físicas-Pendiente	-0.82	
Var14/Textura-Arena/ Limo	0.80	CP2
Var 15/Textura-Limo	-0.82	
Var 16 /C. de Azufre-SO ₄ -2 BRAY 1 (5-10 cm)	0.69	
Var 20/Piso altitudinal	0.75	
Var 6/Variables físicas-DA Cil	0.84	
Var 7/pH-pH Activo	0.85	
Var 8/Relaciones Experimentales-Relación Ac Fulvico:pH KCl	0.90	C3
Var 9/Propiedades Bioquímicas-Ac. Fúlvicos	0.84	
Var 10/Variables físicas-Hum	-0.79	
Var 17/C. de Azufre-SO ₄ -2 OLSEN	0.94	
Var 18/A. Enzimática-AU 5-10 cm	-0.78	
Var 19 /C. de Azufre-SO ₄ -2 BRAY 1 (0-5 cm)	-0.66	C4
Var 21/A. Enzimática-AF ac 0-5 cm	0.42	
Var 23/Contenido de Masa Lábil COS (0-5 cm)	-0.42	
Var 22/A. Enzimática-AF ac 5-10 cm	-0.67	C5

Como observación preliminar, en el CP1 se observan los coeficientes de mayor valor absoluto con la mayoría de las variables superiores a 0.90. En este componente se evidencia una relación importante de los índices metabólicos qCO₂ y qN (junto con qN.₁ qN.₂ qN.₃) la estequiometría del fosforo y el azufre (Var 5 y Var 1), la actividad enzimática (Var 2 y Var 24) y relaciones experimentales muy ligadas a la bioquímica (Var 4 y Var 30).

El CP2 está representado por las variables físicas relacionadas a la altitud del lugar de muestreo, a su textura y los contenidos de azufre extractable con la solución de Bray I (Var 16). Para el CP3 es notorio el efecto de la humedad del suelo y su densidad aparente, que afectan directamente la concentración de sustancias húmicas y por lo tanto el pH medido.

En el CP4 los contenidos de azufre disponible derivados de las soluciones de Bray I y Olsen, la actividad enzimática de la ureasa y fosfatasa y el contenido de masa lábil del carbono orgánico se encuentra interrelacionadas, con el contenido de azufre teniendo el mayor coeficiente con el componente y, para el CP5 la actividad enzimática de la fosfatasa de suelo de 5-10 cm de profundidad (Var 22) fue el único que lo integra. Para permitir la visualización de las variables y sus relaciones, a través del software XLSTAT (versión de prueba), se generan las Figuras 23, 24 y 25 que se muestran a continuación:

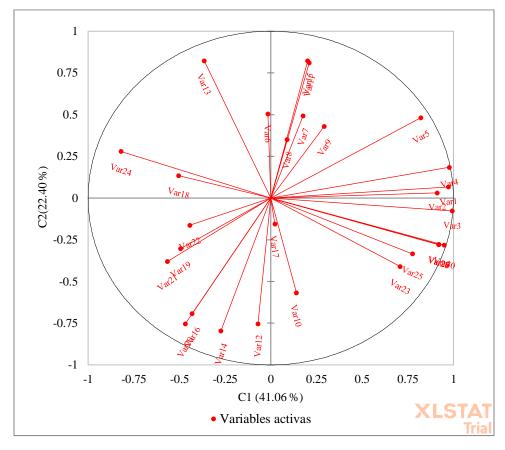


Figura 23: Circulo de correlaciones, ejes C1 y C2: (63.46 %).

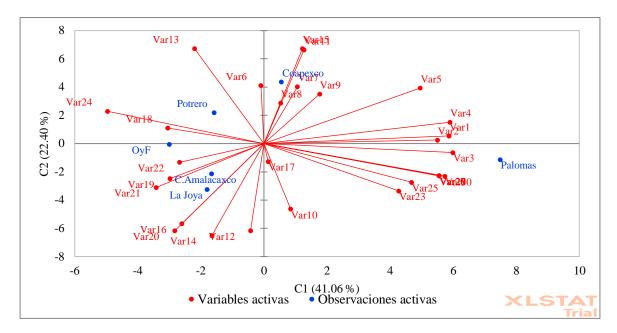


Figura 24. Gráfico Biplot variables y sitios, ejes C1 y C2: (63.46 %)..

Cuadro 13. Lugar de las variables y UAs en la Figura 24.

N. °	Nombre de variable	Cuadrante, signo (x, y)	UA
Var 15	Textura-Limo		
Var 7	pH-pH activo		
Var 8	Relaciones Experimentales-Relación Ac Fulvico:pH KCl		
Var 9	Propiedades Bioquímicas-Ac. Fúlvicos		
Var 4	Factor de humificación: Relación SF/SH		
Var 5	C. de Azufre-SO ₄ -2 H2O	10	Cooperas
Var 11	Textura-Limo/Arena	1°, ++	Coapexco
Var 1	C. de Fosforo-P-Disponible según Olsen		
Var 2	A. Enzimática-AF al 5-10 cm		
Var 15	Textura-Limo		
Var 7	pH-pH activo		
Var 8	Relaciones Experimentales-relación Ac Fulvico:pH KCl		
Var 13	Variables físicas-Pendiente		
Var 6	Variables físicas-DA Cil	2° +	Dotuono
Var 24	A. Enzimática-AU _{0-5 cm}	2+	Potrero
Var 18	A. Enzimática-AU _{5-10 cm}		
Var 22	A. Enzimática-AF ac _{5-10 cm}		
Var 21	A. Enzimática-AF ac 0-5 cm		
Var 19	C. de Azufre-SO4-2 BRAY 1 _{0-5 cm}		OyF
Var 16	C. de Azufre-SO4-2 BRAY 1 5-10 cm	3°,	C.Amalacaxco
Var 20	Piso altitudinal		La joya
Var 14	Textura-Arena/ Limo		
Var 12	Variables físicas-T(°C)		
Var 25	Propiedades Bioquímicas-CBM _{0-5 cm}		
Var 26	Indice metabolico-qN 0-5 CBM/NT _{0-5 cm}		
Var 27	Indice metabolico-qN.1 (CBM/Masa lábil 2%)	10 .	Dolome ~
Var 28	Indice metabolico-qN.2 (CBM/Masa lábil 1.5%)	4°, +-	Palomas
Var 29	Indice metabolico-qN.3 (CBM/Masa lábil 1%)		
Var 30	relación qCO ₂ :AU _{0-5 cm}		

Var 3	Indice metabolico-qCO ₂	
Var 10	Variables físicas Hum	
Var 17	C. de Azufre-SO ₄ -2 OLSEN	
Var 23	Contenido de Masa Lábil COS 0-5 cm	

La figura 23 permite la visualización de las correlaciones presentes a través de lo conocido circulo de correlaciones. El circulo muestra a las variables más cercanas (por lo general en el mismo cuadrante) con una correlación positiva entre ellas (ejemplo: Var 15 con Var 11), si las variables se encuentran en ángulos rectos u ortogonales (ejemplo: Var 10 con Var 25) se considera casi nula o nula su correlación y si están en áreas opuestas se considera negativa su correlación (ejemplo: Var 24 con 25). La disposición de las variables en el plano permite caracterizar cualitativamente a las relaciones de las variables, si se desea conocer exactamente el valor de la correlación que comparten dichas variables se recomienda consultar el Anexo 3. La figura 24 (descrita en el Cuadro 13) es conocido como un gráfico Biplot. Estos permiten representan en dos o tres dimensiones datos multivariantes, en este caso las son variables graficadas junto a los sitios de estudio en diferentes cuadrantes, cuyas variables más cercanas a estos muestran la influencia de estas de manera local, por lo que resulta normal encontrar valores máximos y mínimos de las variables en los sitios adyacentes (Anexo 6). Posteriormente se emplea el tercer ACP reduciéndolo a 20 variables, se separan las 3 variables con el mayor coeficiente de cada componente del 2º ACP, estas se enlistan en el Cuadro 14:

Cuadro 14. Variables de mayor coeficiente observadas, 3º ACP.

N.º	Nombre de variable	Coeficiente	СР	%
Var 3	Índice metabolico-qCO ₂	0.90		
Var 4	Factor de humificación -Relación SF/SH	0.96	CP1	35.46%
Var 1	C. de Fosforo-P-Disponible suelo según Olsen	0.93		
Var 15	Textura-Limo	0.84		
Var 13	Variables físicas-Pendiente	0.87	CP2	25.09%
Var 14	Textura-Arena/ Limo	-0.74		
Var 7	pH-pH Activo	-0.76		
Var 8	Relaciones Experimentales-Relación Ac Fúlvico: pH KCl	-0.87	CP3	20.56%
Var 9	Propiedades Bioquímicas-Ac. Fúlvicos	-0.83		
Var 19	C. de Azufre-SO ₄ -2 BRAY 1 (0-5 cm)	-0.66		
Var 24	A. Enzimática-AU _{0-5 cm}	0.63	CP4	13.61%
Var 20	Piso altitudinal	-0.47		
Var 21	A. Enzimática-AF ac _{0-5 cm}	0.32		
Var 22	A. Enzimática-AF ac 5-10 cm	0.66	CP5	5.27%
Var 1	C. de Fosforo-P-Disponible suelo según Olsen	0.30		

La información recabada de los 3 ACP sucesivos muestra un papel clave de los índices metabólicos, la proporción de las sustancias húmicas y de la actividad enzimática de la ureasa, fosfatasas y arilsulfatasa para los contenidos de carbono y nitrógeno, así como su estrecha relación con los contenidos de azufre y fósforo. En cuanto a las relaciones experimentales, el factor de humificación que abarca la proporción de Ácidos Fúlvicos y húmicos mostró siempre valores altos en los componentes de mayor % de varianza explicada. Los índices metabólicos qCO₂, qN y sus relaciones (qCO₂:AU, qCO₂:M.O. y qN.1,.2 y .3) mostraron fuertes correlaciones con la estequiometría de C y N, así como con la estequiometría del fósforo y azufre, a su vez teniendo coeficientes de valor sobresaliente en los 3 ACP, por lo que de igual forma se recomienda su revisión.

CONCLUSIONES

➤ Con base en los resultados obtenidos, se acepta la hipótesis de que, en los suelos de las UA estudiadas en el gradiente altitudinal del Parque Nacional Iztaccíhuatl Popocatépetl, la estequiometría del Carbono y Nitrógeno, sí se ve modificada debido a la actividad ureasa, de los contenidos de sustancias húmicas (SH, SF), Delta pH, COS, CBM y qCO₂ y por algunas relaciones de las variables generadas como por ejemplo las de AU/N Lábil 0-5 y 5-10 cm, AU:MO 5-10 cm y SF/SH, entre otros (Anexo 5).

Respecto al objetivo general, objetivos particulares e hipótesis complementaria se concluye que:

- > Se comprobó la existencia de correlaciones importantes entre las variables generadas y los contenidos de C y N, sin embargo, no es conclusiva esta evidencia por lo que la hipótesis complementaria es aceptada parcialmente y se sugiere un análisis mayor de estas.
- ➤ Los contenidos de C, N y la AU en ambas profundidades del suelo aumentan conforme se observa una disminución de CBM y de los índices metabólicos qCO₂ y qN (qN.1,qN.2,qN.3) y también con el aumento de los contenidos ácidos de húmicos y la disminución de los ácidos fúlvicos.
- Las variables generadas a partir de las originales del estudio, como el factor de humificación (SF/SH), qN (qN.1,qN.2,qN.3) y qCO₂:AU _{0-5 cm}, mostraron valores altos en sitios donde se presentan los menores contenidos de N y C.
- ➤ En las relaciones de algunas variables originales respecto a la altitud, se observó una fuerte correlación negativa con el pH Potencial y positiva media con la temperatura, con Ácidos húmicos y con el factor de humificación (SF/SH). También se encontraron relaciones entre la altitud y contenidos de azufre disponible (solución extractable de Bray I y en agua) y con la actividad arilsulfatasa de 5-10 cm.
- ➤ El CBM tiene relaciones positivas con los coeficientes qCO₂ y qN, con SF/SH, la relación C:N y con las actividades de la fosfatasa alcalina y la actividad arilsulfatasa y relaciones negativas con la actividad de AU _{0-5 cm} y de la fosfatasa ácida.
- La relación C:N presenta una relación positiva con la AU _{5-10 cm}, Delta pH y pH Activo, Fósforo y Azufre (solución extractable de Bray I) disponibles y relaciones negativas con la AU _{0-5 cm}
- La AU _{0-5cm} cuenta con relaciones negativas con el factor de humificación (SF/SH), CBM _{0-5cm}, Azufre extractable en agua y Fósforo disponible, además con el qCO₂, qN (qN.1, qN.2, qN.3) y por ello, el N-NH₄⁺ liberado por la AU puede representar entre 1 y 15 % del nitrógeno lábil. Por otro lado, la AU _{5-10cm} muestra relaciones positivas con CE, Delta pH, Fosforo y Azufre (solución extractable de Bray I) disponibles.

Por lo que en vista de lo concluido y tomando de referencia el Anexo 6 (valores máximos y mínimos por sitio) se sugiere:

Revisión de las variables generadas a partir de su uso en trabajos de condiciones similares (sitios, ecosistemas, variables, etc.), para comprobar su comportamiento y relaciones que puedan indicar su potencial como indicadores de calidad edáfica.

- Aumentar los sitios y observaciones de las variables (generadas y originales) así como la búsqueda de herramientas que puedan expandir el análisis e información disponible sobre el estado edáfico local y/o del Parque Nacional Iztaccíhuatl Popocatépetl.
- ➤ Debido al estado en general de los contenidos de C, N, valor de índices metabólicos y en general al estado de varias variables físicas, químicas y bioquímicas (Anexo 6) se recomienda revisar el manejo del sitio "Palomas" y llevar las acciones necesarias para la recuperación ecológica de sus suelos y/ò aprovechamiento sostenible.

REFERENCIAS

Abraira, V., Santos, V. A., & de Vargas, A. P. (1996). Métodos multivariantes en bioestadística. Editorial Ramón Areces, España. 20 p.

Aceñolaza, P., Zamboni, L. P. y Gallardo, J. F. (2007). Estimación de carbono en tres bosques de la llanura aluvial del bajo Paraná (R. Argentina). En: Gallardo, J. F. (Ed.). *La captura de carbono en ecosistemas terrestres iberoamericanos* (pp. 39-53). España: Sociedad Iberoamericana de Física y Ouímica Ambiental.

Agrawal, G. D.; Lunkad, S. K.; Malkhed, T. (1995). Diffuse Agriculture Nitrate Pollution of Ground Waters in India. Institute of Environmental Science. Kurukshreta, India. 14 p.

Aguilera, S. M. (2000), Importancia de la protección de la materia orgánica en suelos. Chile: Simposio Proyecto Ley Protección de Suelo, boletín No. 14, 77-85 p.

Allen I., Webster, (2005), "Estadística Aplicada A Los Negocios Y La Economía", editorial Mcgraw-hill, 3ª edición.

Alvear M, F Reyes, A Morales, C Arriagada, M Reyes. (2007), Actividad biológica y agregados estables al agua en dos tipos de formaciones vegetales de un bosque templado del Centro-Sur de Chile con perturbación antrópica. Ecología Austral 17: 113-122.

Anderson, M.; Ingram, J.M. (1993). Tropical soil biology and fertility. A handbook of methods. 2nd. Edition. C.A.B. International. 215 p.

Arana, V. H. (2003). Dinámica del nitrógeno en un sistema de manejo orgánico de café (Coffea arabica L.) asociado con Poró Erythrina poeppigiana (Walpers) O.F. Cook]. CATIE, Turrialba, Costa Rica. 118 p.

Araujo, T. M., Higuchi, N. and de Carvalho, J. A. (1999). Comparison of formula for biomass content determination in tropical rain forest site in the state of Par, Brazil. Forest Ecology and Management, 117, 43-52.

Ayala C. M. Y, (2011). Interacción ecológica del sistema agua-suelo en ambientes ribereños del Parque Nacional Izta-Popo y zonas de influencia, (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

Babbar, L. I. y Zak, D. (1994). Nitrogen cycling in coffee agroecosystems: net N mineralization and nitrification in the presence and absence of shade trees. Agriculture, Ecosystems and Environment 48: 107-113.

Bachmeier, K. L., Williams A. E, Warmington J R y Bang S. S. (2002). Urease activity in microbiologically induced calcite precipitation. Journal of Biotechnology 93 171–181.

Baležentienė L. (2012). Hydrolases Related to C and N Cycles and Soil Fertility Amendment: Responses to Different Management Styles of Agro-Ecosystems. Pol. J. Environ. Stud. 21(5):1153-1159.

Baltazar. A. M., (2009) Actividad arilsulfatasa y azufre en suelo y tejido foliar en cuatro especies de coníferas en bosque templado (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

Bera, A. K., y Jarque, C. M. (1981). Efficient tests for normality, homoscedasticity and serial independence of regression residuals: Monte Carlo evidence. *Economics letters*, 7(4), 313-318.

Berg B. G. (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133: 13-22

Bertsch, F. (1995). La Fertilidad de los Suelos y su Manejo. Asociación Costarricense de la Ciencia del Suelo. San José.157 p.

Bornemisza, E. (1987). Química de suelos con énfasis en suelos de América Latina. Colección de libros y materiales educativos N° 81. IICA, San José, Costa Rica. 420 p.

Brady NC, Weil RR (2010) Elements of the nature and properties of soils. Pearson Education International, New Jersey

Brown, S., Sathaye, J., Cannell, M. and Kauppi, P. E. (1996). Mitigation of carbon emission to the atmosphere by forest management. Commonwealth Forestry Review, 75(1), 80-91.

Carvajal, J. F. (1984). Cafeto: cultivo y fertilización. Berna, Suiza, Instituto de la Potasa.

Ciesla, W. M. (1996). Cambio climático, bosques y ordenación forestal: una visión de conjunto. Italia: Food and Agricultural Organization, 147 p.

Cleveland, W. S. (1985). *Elements of graphing data*. Wadsworth advanced books and software.

Colli C.M., (2015) Actividades arilsulfatasa y ureasa en la fertilidad de suelos ribereños del Parque Nacional Izta-Popo y su zona de influencia, (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

CONABIO (2020). *Bosques templados*, Recuperado 30 de septiembre de 2020, de Biodiversidad Mexicana website: https://www.biodiversidad.gob.mx/ecosistemas/bosqueTemplado.

CONAFOR (2015). Abies religiosa (Kunth Schltdl. et Cham.). Recuperado 29 de enero de 2020, de SIRE-Paquetes Tecnologicos website:

http://www.conafor.gob.mx:8080/documentos/docs/13/873Abies%20religiosa.pdf

CONANP, (2008), en http://iztapopo.conanp.gob.mx/clima.php. Consultado el 25 de mayo del 2020.

CONANP, (2013). Programa de manejo del Parque Nacional Iztaccíhuatl Popocatépetl. México: secretaria del Medio Ambiente y Recursos Naturales, 19, 23, 25 y 36 p.

Conti, M.E., Richter, M. y Giuffre, L. (1976). Método de determinación rápida de Nitrógeno en suelo. IDIA N ° 343 - 348 pág. 119-122.

Cortés y Vega (2013) Variaciones de carbono, nitrógeno y fósforo en sitios con distinto uso de suelo en dos sistemas ribereños del Río Amecameca, (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

Cruz-Flores, G. (2006). Ecología del suelo, un enfoque hacia la nutrición mineral de plantas superiores. México, Balzeri SA de CV, 28.

Cruz-Flores, G., y Etchevers-Barra, J. D. (2011). Contenidos de carbono orgánico de suelos someros en pinares y abetales de áreas protegidas de México. *Agrociencia*, 45(8), 849-862.

CUPREDER (2001). Ordenamiento ecologico regional en la zona de influencia de los volcanes Popocateptl e iztaccihuatl, México.

Dagnino, J. (2014). Coeficiente de correlacion lineal de pearson. Chil Anest, 43, 150-153.

David Gara Pedro M. (2008) Extracción, caracterización de sustancias húmicas y su empleo en procesos fotoquímicos de interés ambiental [tesis doctoral]. Universidad Nacional de la Plata.

Díaz M., A. (2013). Estadística aplicada a la administración y economía. México: MC Graw Gill.

Dixon, K., Schroeder, P. and Winnjum, J. K. (1991). Assessment of promising forest management practices and technologies for enhancing the conservation and sequestration of atmospheric carbon and their costs at the site level. USA: United States Environmental Protection Agency, 100 p.

Domínguez, R. I. y N. Aguilera H. 1982. Metodología de análisis físicos y químicos de suelos.

Domínguez, V. A., (1989). Tratado de fertilización. Ed. Mundi-Prensa, Madrid, España 130p.

Dorronsoro, C. (2015). Evaluación de Suelos. Edafología. Recuperado el 13 de febrero de 2021 de: http://edafologia.ugr.es/evaluacion/tema1/4caractgene.htm.

Dziadowiec, H. (1994). Properties of humic acids from forest litters of different humification degree. Elsevier Science B.V. pp. 573-578

Eamus, D., Burrows, W. and McGuinness, K. (2000). Review of allometric relationships for estimating Woody biomass for Queensland, the northern territory and Western Australia. Australia: National Carbon Accounting System, 56 p.

Etchevers, B. J., M. A. Bautista y M. A. Vergara. (2000). Calidad del suelo, indicadores de calidad y captura de carbono. La Edafología y sus perspectivas al siglo XXI. Tomo II Colegio de Postgraduados, Universidad Autónoma de Chapingo. México.

FAO. (1986). Fertilizantes y nutrición vegetal. Boletín 9: Fertilizantes y nutrición vegetal. Roma.198 p.

FAO. (2001). Soil Carbon sequestration for improved land management. World soil report 96. Italy: Food and Agriculture Organization, 58 p.

FAO. (2002). Carbon capture in soils for land management. World soil report 96. Italy: Food and Agriculture Organization, 59 p.

Fassbender, H. W. (1993). Modelos edafológicos de sistemas agroforestales. 2da edición. Serie de materiales de enseñanza (no. 29). Turrialba, Costa Rica. 491 p.

Fassbender, H. W., y Bornemisza, E. (1987). Química de suelos con énfasis en suelos de América Latina. Iica.

Fassbender, H.W. (1984). Bases edafológicas de los sistemas de producción agroforestales. (Serie materiales de ensenanza No 21.) Turrialba: CATIE.

Fassbender, H.W., L. Alpizar, J. Heuveldop, G. Enriquez and H. Folster. (1985). Sistemas agrofoestales de caf. (Coffea arabicd) y con por6 (Erythrina poeppigiana) en Turrialba, Costa Rica. III. Modelos de la materia organica y los elementos nutritivos Turrialba 35 (4): 403-413.

Federación Española de Municipios y Provincias (FEMP). (2012). Los sumideros de carbono a nivel local. España: Red española de ciudades y provincias, 19 p.

Ferreras L., Toresani S., Bonel B., Fernández E., Bacigaluppo S., Faggioli V. y Beltrán C. (2009). Parámetros químicos y biológicos como indicadores de calidad del suelo en diferentes manejos. CI. SUELO (ARGENTINA) 27(1):103-114.

Ferreras, L., Magra, G., Besson, P., Kovalevski, E., García, F., (2007). Indicadores de calidad física en suelos de la Región Pampeana Norte de Argentina bajo siembra directa. Ciencias del Suelo 25.

Frelich, L.E. (2002). Forest dynamics and disturbance regimes. Cambridge University Press, Cambridge, UK. 201-211p.

Frías-Navarro, D. (2015). La proporción de varianza explicada. Universidad de Valencia.

Fuentes, W., y González, O. (2007). Estimación de la mineralización neta de nitrógeno del suelo en sistemas agroforestales ya pleno sol en el cultivo del café (Coffea arabica L.), en el Pacifico de Nicaragua, departamento de Carazo. Universidad Nacional Agraria, Managua, Nicaragua.

Gamarra Lezcano, C. C., Díaz Lezcano, M. I., Vera de Ortíz, M., Galeano, M. D. P., y Cabrera Cardús, A. J. N. (2018). Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista mexicana de ciencias forestales, 9(46), 4-26.

Garcia M. S. H. (2004) *Indicadores de calidad del suelo y estado nutrimental de Abies religiosa* (H.B.K.) Schlt. et Cham. en la exposición occidente de los volcanes Iztaccíhuatl y Popocatepetl, (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

García, H. M. (2003). Indicadores de calidad del suelo y estado nutrimental de Abies religiosa (H.B.K.) Schlt. et Cham., en la exposición occidental de los volcanes Iztaccíhuatl y Popocatepetl. Tesis de licenciatura. UNAM.

Gavande, S. A. (1982). Física de suelos, principios y aplicaciones. Limusa. México D. F.

Giller, K. E.; Wilson, K. J. (1991). Nitrogen fixation in tropical cropping systems. CAB International. Oxon, UK.

Gil-Sotres F., Trasar-Cepeda C., Leirós M.C., Seoane S. (2005). Different approaches to evaluating soil quality using biochemical properties. Soil Biology and Biochemistry 37(5):877-887.

Granados, D. M. (2003). Calidad del suelo y estado nutrimental del género *Pinus* en la vertiente occidental del Iztaccíhuatl y Popocatepetl. Tesis de licenciatura. UNAM.

Green VS, DE Stott, M Diack. 2006. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biology and Biochemistry 38(4): 693-701.

Gutiérrez de loma, J.L. (2001).Funciones del bosque, En: *La riqueza forestal de España* (pp. 175-184). España: Ediciones Universidad de Navarra, S.A. (EUNSA)

Harnet, D., y Murphy, J. (1997). Introducción al análisis estadístico. Temas Sociales, (19), 191-192.

Hatcher, G.P., K.J. Dr, K. Sungwan y V.S. Frazier. (2001). Modern Analytical studies of humic substances. Soil Science. 166: 770-794.

Hayes H.B.M. y C.E. Clapp, (2001). Humic substances: considerations of compositions, aspects of structure, and environmental influences. Soil Science. 166: 723-737.

Heredia, E. R. I. C. (2015). Densidad real y aparente y porosidad del suelo. Lima: Pontificia Universidad Católica del Perú. Facultad de Ciencias e Ingeniería.

Hernández H. A. (2011). ácidos húmicos y fúlvicos en la producción hidropónica de Chile Manzano (*Capsicum pubescens* R y P) en invernadero.

Hüstch, B. (1990). Effect of tillage practice on nitrogen dynamics in soils. "Nitrogen metabolism in Plants". Giessen.

Insam, H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? *Soil Boilogy and Biochemistry*, 22(4), 525-532.

Intergovernmental Panel on Climate Change. (2006). IPCC Glosary for Climate Change. Recuperado el 20 de junio de 2020, de https://www.greenfacts.org/es/glosario/abc/biomasa.htm.

Jackson, M. L. (1964). Análisis químico de suelos. Traducción al español de J. Beltrán. Omega. Barcelona, España.

Jordan, C. F. and Uhl, C. (1978). Biomass of a "tierra firme" forest of the Amazon Basin. Ecologia Plantarum, 13(4), 387-400.

Kimble, J. M., Lal, R. and Follett, R. F. (2002). Agricultural practices and pólices for carbon sequestration in soil. EUA: Lewis Publisher, 512 p.

Klinge, H. and Herrera, R. (1983). Phytomass structure of natural plant communities on spodosols in southern Venezuela: The tall Amazon Caatinga forest. Vegetation, 53, 65-64.

Lebret M. N., Forgeard F. D. (2001). Litter production in an Atlantic beech (Fagus sylvatica L.) time sequence. Annals of Forest Science, 58: 755-768.

León. (2007). Atlas Forestal De Castilla y León (1 y 2). Valladolid

Little, E. L., Little, S., y Doolittle, W. T. (1967). Natural hybrids among pond, loblolly, and pitch pines (Vol. 67). Northeastern Forest Experiment Station, Forest Service, US Department of Agriculture.

Lobartini, J. C., y Orioli, G. A. (1996). Las sustancias húmicas y la nutrición vegetal. *Revista de la Facultad de Agronomia*, 101.

Loguercio, G.A. y Defossé, G. (2001). Ecuaciones de biomasa aérea, factores de expansión y de reducción de la Lenga Nothofagus pumilio (Poepp. Et Enndl.) Krasser, en el sol del chubut, Argentina. Chile: Simposio internacional medición y monitoreo de la captura de carbono en ecosistemas forestales, 11 y 16 p.

Loll, M. J.; Bollag, J. M. (1983). Protein transformation in soil. Adv. Agron. 36, 351-382.

Lovelock, J. E. (1988). The ages of Gaia. New York: W.W. Norton and Co, 132 p.

Lyttleton, L; Buckman, H. 1952. Edafología: Naturaleza y Propiedades del suelo. Argentina. 479 p.

Macias, (2013) Ultrafiltración: una técnica en la determinación de contaminantes ambientales, (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

Manzanilla, H. (1974). Investigaciones Epidométricas y Silvícolas en Bosques Mexicanos de Abies religiosa. Dirección General de Información y Relaciones Públicas de la SAG. México, D.F.

Márquez C, M. J. (1988). PROBABILIDAD Y ESTADÍSTICA PARA CIENCIAS QUÍMICAS-BIOLÓGICAS. mcgraw-hill. méxico. 657 pp.

Martínez G.C, (2018) Análisis De Componentes Principales (ACP), RPubs by Rstudio https://rpubs.com/Cristina Gil/PCA.

Martínez, E., Fuentes, J. P., y Acevedo, E. (2008). Carbono orgánico y propiedades del suelo. Revista de la ciencia del suelo y nutrición vegetal, 8(1), 68-96.

Martínez, J. y Fernández, A. (2004). *Cambio climático: una visión desde México*. México: secretaria del Medio Ambiente y Recursos Naturales e Instituto Nacional de Ecología, 77-80 p.

Mascot E. G., (2013) Azufre en el sistema agua-sedimento-suelo para ambientes ribereños asociados a diferentes condiciones de uso de suelo, (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

Mela, P. 1963. Tratado de Edafología y sus distintas aplicaciones. 2ª Edición. Ed. Agrociencia. Zaragoza. 614 p.

Mesa, L. J., Castro, J., y Méndez, P. (1992). Efecto de la aplicación de Ácidos húmicos en Hapludult típico de los llanos orientales y su interacción con elementos micronutrientes. Agronomía Colombiana, 9(1), 160-178.

Montagnini, F., y Buschbacher, R. (1989). Nitrification rates in two undisturbed tropical rain forests and three slash-and-burn sites of the Venezuelan Amazon. Biotropica, 9-14.

Niembro R. A., (1986). Mecanismos de reproducción sexual en Pinus. Limusa, México, D.F. 131p. Norma Oficial Mexicana NOM-021-SEMARNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis.

Núñez J. (2000). Fundamentos de Edafología. San José, Costa Rica. Pág. 63.

Odum, E. P. (1985). Trends Expected in Stressed Ecosystems. BioScience, 35(7), 419–422.

Palmer, G. R. y Truoch F. R. (1989). Introducción a la ciencia del suelo. Manual de laboratorio AGT Eds. México.

Parresol, B. R. (1999). Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science, 45(4), 573-593.

Pascual, J. A., Moreno J. L., Hernández T, y García C. (2002). Persistence of immobilized and total urease and phosphatase activities in a soil amended with organic wastes. Bioresource and Technology. 82: 73-78.

Perdomo, C., Barbazán, M., y Durán, J. (2003). Área de suelos y aguas cátedra de fertilidad nitrógeno. Montevideo, Uruguay.

Pérez-Ramírez, S., Ramírez, M. I., Jaramillo-López, P. F., y Bautista, F. (2013). Contenido de carbono orgánico en el suelo bajo diferentes condiciones forestales: reserva de la biosfera mariposa monarca, México. *Revista Chapingo serie ciencias forestales y del ambiente*, 19(1), 157-173.

Portilla N., A. R. (2012). Evaluación de la biodisponibilidad del nitrógeno en cultivo de fréjol arbustivo (phaseolus vulgaris l.) con cobertura y bajo sistemas de labranza de Conservación, En La Microcuenca Del Microcuenca Del Rio Alumbre-Bolivar, (Tesis De Licenciatura), Universidad Central Del Ecuador, Facultad De Ciencias Químicas, (pp. 15), Ecuador.

Powlson, D. S., Brookes, P. C. and Christensen, B. T. (1987). Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biology and Biochemistry, 19(2), 159-164.

Pritchett W. L. (1991) Suelos forestales, conservación y mejoramiento, Noriega (eds.) Limusa. México 255-260p

Ramos R., R. (2000). Aplicación de sustancias húmicas comerciales como productos de acción bioestimulante: efectos frente al estrés salino.

Renderos, R. (2001). Efecto de sistemas agroforestales Café-Eucalyptus deglupta sobre la contaminación del agua con nitratos en microcuencas de la zona sur de Costa Rica. CATIE, Turrialba, Costa Rica, 80 p.

Reyes, p. (1990). BIOESTADÍSTICA APLICADA: AGRONOMÍA, BIOLOGÍA, QUÍMICA. 2ª edición. Trillas. méxico. 216 pp.

Reynolds -Vargas, J. S.; Richter, D. D.; Bornemisza, E. (1994). Environmental impacts of nitrification and nitrate adsorption in fertilized andisols in the Valle Central of Costa Rica. Soil Science Society. 157 (52): 289-299.

Reynolds, W.D., Bowman, B.T., Drury, C.F., Tan, C.S., Lu, X., (2002). Indicators of good soil physical quality: density and storage parameters. Geoderma 110, 131–146.

Rice, C.W., Moorman, T.B. y Beare, M. (1996) Role of Microbial biomass C and N in soil quality In: Doran, J.W. y Jones, A.J. (Eds). Methods for assessing soil quality SSSA, Madison, Wisconsin. Special Publication 49: 203-216.

Richards, L. A. (1990). Diagnóstico y rehabilitación de suelos salinos y sódicos. 6a. ed., Departamento de Agricultura de los Estados Unidos de América. Limusa, México.}.

Rodríguez Torres, M. D., Venegas González, J., Angoa, P., y Montañez Soto, J. L. (2010). Extracción secuencial y caracterización fisicoquímica de Ácidos húmicos en diferentes compost y el efecto sobre trigo. Revista mexicana de ciencias agrícolas, 1(2), 133-147.

Rodríguez-Loinaz G, M Onaindia, I Amezaga, I Mijangos, C Garbisu. (2008), Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology and Biochemistry 40(1): 49-60.

Rosell, R. A. (1999). Materia orgánica, fertilidad de suelos y productividad de cultivos. In Proceed. XIV Congreso Latinoamericano de la Ciencia del Suelo. (Texto completo en CD Rom.) Pucón, Chile.

Russell, W. (1976). Soil Condition and Plant Growth. 10th ed. Hong Kong. 849 p.

Rzedowski, J. (1978). Vegetación de México. Limusa, Noriega Editores. México D.F.

Salazar, S. (2008). Estudio de procesos ecológicos para el desarrollo sostenible del castaño (Castanea sativa Mill.) de la Sierra de Francia (Tesis Doctoral), Universidad de Salamanca, España.

Saldarriaga, J. G., West, D. C., Tharp, M. L. and Uhl, C. (1988). Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology, 76, 938-958.

Salisbury, F. B.; Ross, C. W. (1994). Fisiología Vegetal. 4ª ed. Editorial Iberoamérica. México D.C. 759 p.

Sandoval J. C. A., (2016). Caracterización y clasificación de suelos de sistemas ribereños del Parque Nacional Izta-Popo (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

Santiago-Aguilar I., (2018). Contenidos de carbono orgánico y su compartimentación en sistemas ribereños adyacentes a cuatro biotopos del Parque Nacional Izta-Popo y zonas de influencia, , (Tesis de licenciatura), Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza, México.

Schlegel, B., Gayoso, J. y Guerra, J. (2000). Medición de la capacidad de captura de carbono en bosques de Chile y promoción en el mercado mundial: Manual de procedimientos: Muestreos de biomasa forestal. Chile: Universidad Austral de Chile, 24 p.

Schlesinger W. H. (2000). Bioquímica. Un análisis del cambio global. Ciencia. Barcelona, España.

Schlesinger, W. H. (1997). Biogeochemistry: An Analysis of Global Change. USA: Academic Press, 98 y 588 p.

Schnitzer M and SU Kahn (1972) Humic substances in the environment. Marcel Dekker, New York. 327 pp.

Schnitzer, M. 1978. Humic substances: Chemistry and reactions. En Soil Organic Matter. Elsevier 8: 1-64.

Segura, M. (1997). Almacenamiento y fijación de carbono en Quercus costarricenses, en un bosque de altura en la cordillera de Talamanca. Tesis de licenciatura. Universidad Nacional de Costa Rica, 126 p.

Shan-Min, S., Brookes, P. C. and Jenkinson, D. C. (1987). Soil respiration and the measurement of microbial biomass C by the fumigation technique in fresh and in air-dried soil. Soil Biology and Biochemistry, 19, 153-158.

Shapiro, S. S., y Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). *Biometrika*, 52(3/4), 591-611.

Sierra, C. y Rojas, C. (1999). La materia orgánica y su efecto en las características físico- químicas y biológicas del suelo. Serie Remehue, 71, 5-22.

Silver, C. S. and DeFries, R. S. (1990). One earth, one future. Washington, D. C.: National Academy Press, 42 p.

Simón, M., Peralta, N. R., y Costa, J. L. (2013). Relación entre la conductividad eléctrica aparente con propiedades del suelo y nutrientes.

Smith, S. J., y Cassel, D. K. (1991). Estimating nitrate leaching in soil materials. Managing nitrogen for groundwater quality and farm profitability, 165-188.

Sojka, R. E. y D. R. Upchurch, (1999). Reservations regarding the soil quality concept. Soil Sci.Soc. Am. J. 63: 1039-1054

Solórzano, P. P. S. (1997). Fertilidad de suelo, su manejo en la producción agrícola. Alcance (51) Universidad Central de Venezuela. Facultad de Agronomía. Maracay-Venezuela. 201p.

Stanford, G., Legg, J. O., y Smith, S. J. (1973). Soil nitrogen availability evaluations based on nitrogen mineralization potentials of soils and uptake of labeled and unlabeled nitrogen by plants. Plant and Soil, 39(1), 113-124.

Suástegui-Méndez,, Enrique, Cruz-Flores Gerardo y Ángeles Cervantes Efraín. (2009). Hidrólisis de N-orgánico y liberación de NH 4⁺ mediante actividad ureasa en suelos forestales de áreas naturales protegidas. 29/09/2009.camafu.org.mx/.../hidrólisis-de-n-orgánico.

Swift, R. S. (2001). Sequestration of carbon by soil. Soil Science, 166, 858-871.

Tabatabai, M. (1994). Soil Enzymes. In :R.W. Weavwe, J.S. Angle and P.S. Bottomley. 1994. Methods of Soil Analysis. Part 2 Microbiological and Biochemical Properties. Soil Science of America. U.S.A.

Taboada, M., Rodríguez, M., Taboada, M. y Oropeza, J. (2010). Vulnerabilidad Estructural en Suelos de Textura Gruesa Bajo Cultivo y Huerta. Recuperado el 13 de febrero de 2021 de: http://www.redalyc.org/articulo.oa?id=57319955002.

Taboada, M.A.; Alvarez, C.R. (2008). Fertilidad física de los suelos.2da Ed. Editorial Facultad de Agronomía. Universidad de Buenos Aires.

Trasar C., Leiros M. y Gil F. (2003). Consideraciones generales sobre la determinación de las actividades enzimáticas del suelo. In: Técnicas de análisis de parámetros bioquímicos en suelos. Ed. C. García, F. Gil, T. Hernándes y C. Trasar. España. Mundiprensa. 371 p.

Valencia. I. C., Hernámdez. B. A. (2002) Muestreo de suelos, preparación de muestras y guía de campo. Facultad de Estudios Superiores Cuautitlán, 131p.

Velásquez, J. (1994). Plantas acuáticas vasculares de Venezuela. 1: 5-10.

Vitousek, P. M., y Denslow, J. S. (1986). Nitrogen and phosphorus availability in treefall gaps of a lowland tropical rainforest. The Journal of Ecology, 1167-1178.

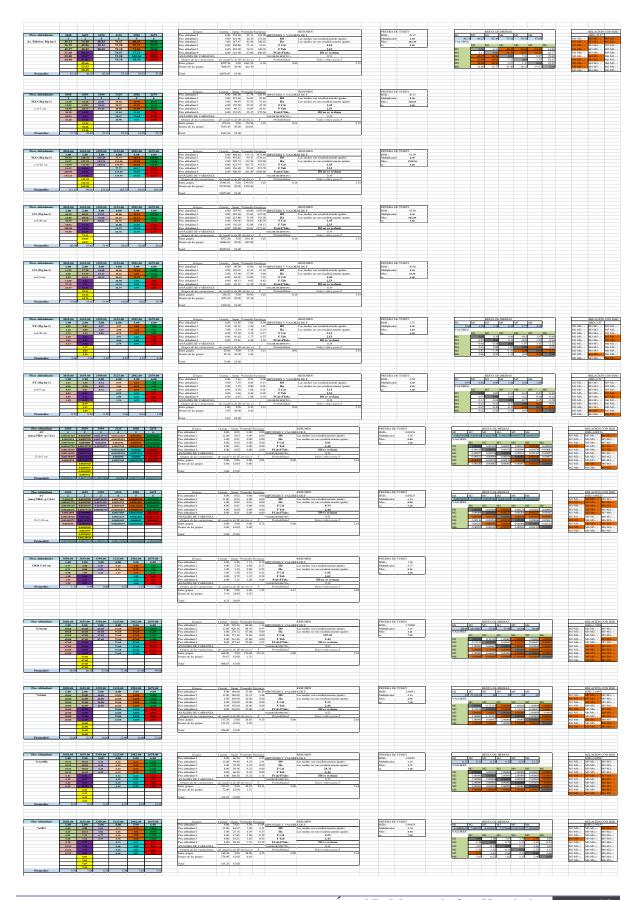
Vitousek, P. M., y Matson, P. A. (1984). Mechanisms of nitrogen retention in forest ecosystems: a field experiment. *Science*, 225(4657), 51-52.

Walkley, A. e I.A. Black. (1934). An examination of degareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37: 497-505.

Wardle, D. A., y Ghani, A. A. (1995). A critique of the microbial metabolic quotient (qCO₂) as a bioindicator of disturbance and ecosystem development. Soil Biology and Biochemistry, 27(12), 1601-1610.

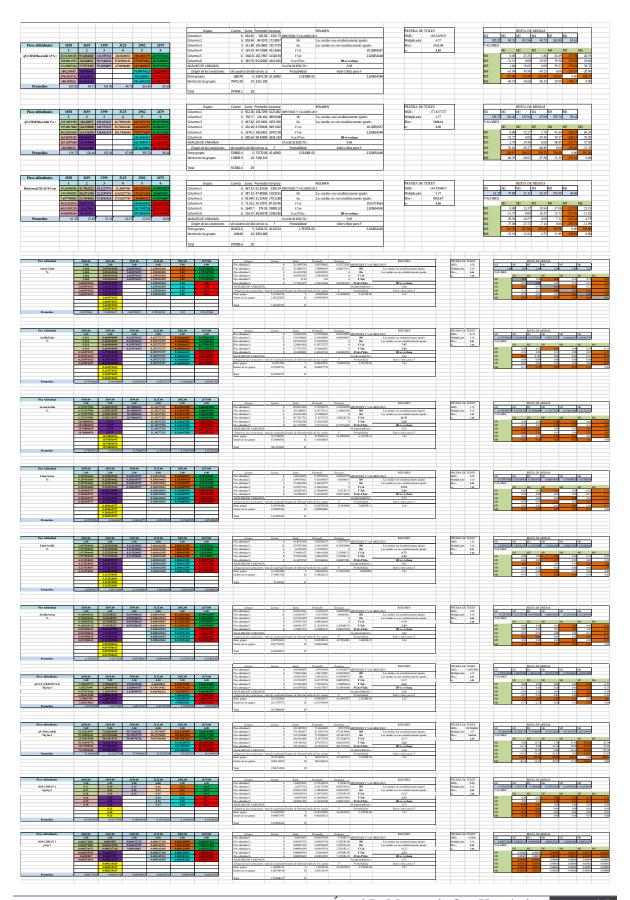
WRB W. G., (2008). Base referencial Mundial del recurso suelo. Informe sobre recursos mundiales de suelos. International Union of Soil Science (IUSS), 102, 105.

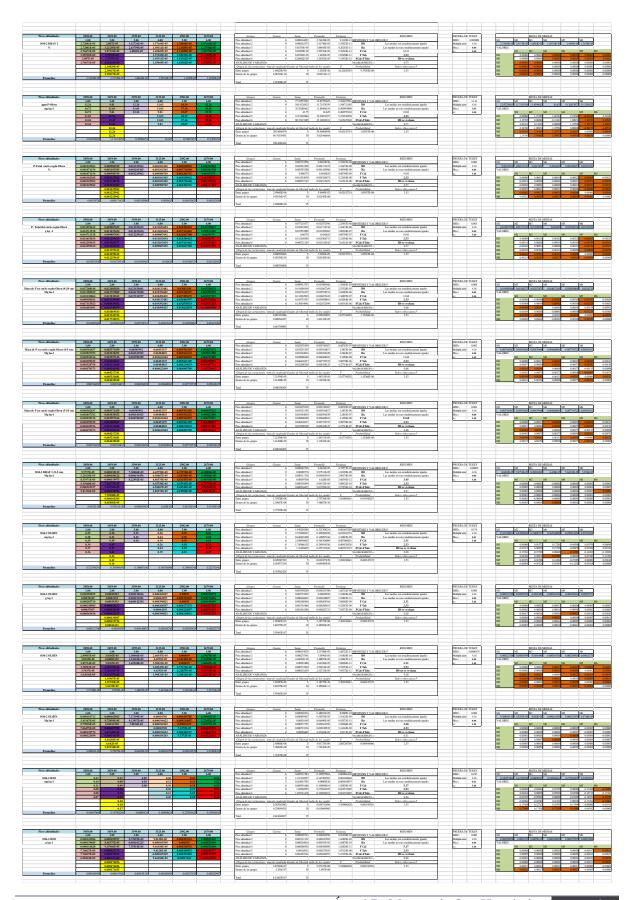
Wright CJ, DC Coleman. (2000). Cross-site comparison of soil microbial biomass, soil nutrient status, and nematode trophic groups. Pedobiologia 44: 2-23.

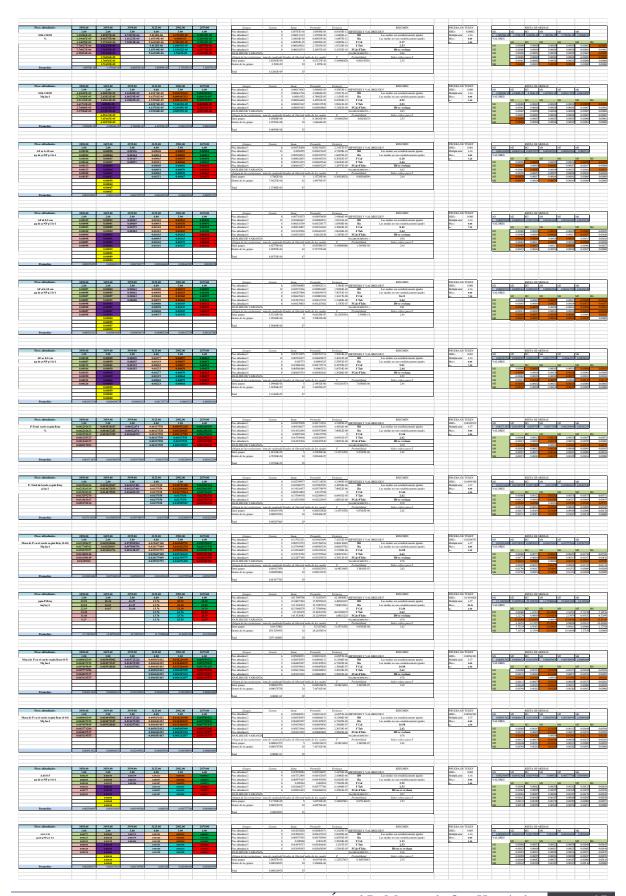

Zeron, G. J. (2020) *Asignatura de Química Inorgánica*, Universidad Autónoma del Estado de Hidalgo (SUV), México, Extraído de: https://hopelchen.tecnm.mx/principal/sylabus/fpdb/recursos/r126819.PDF.

ANEXOS

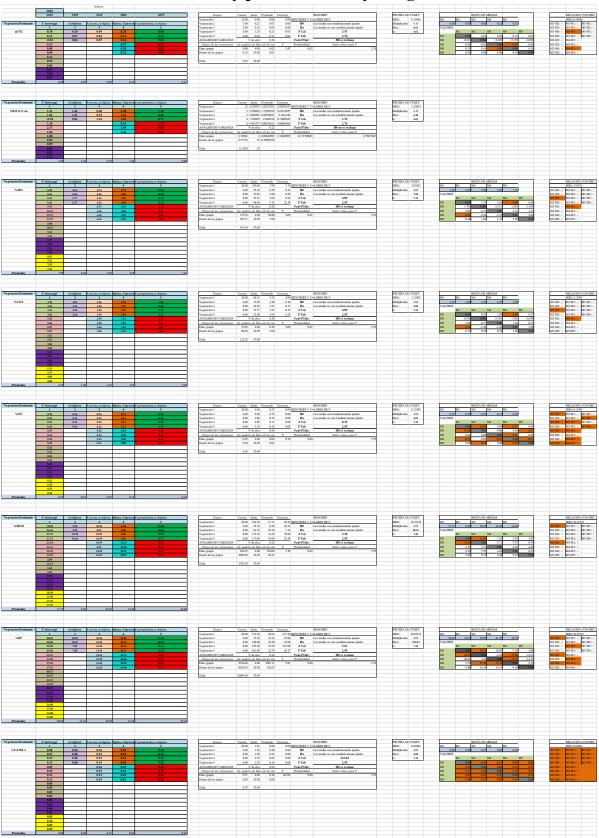
Anexo 1 Análisis de varianza y prueba de Tukey

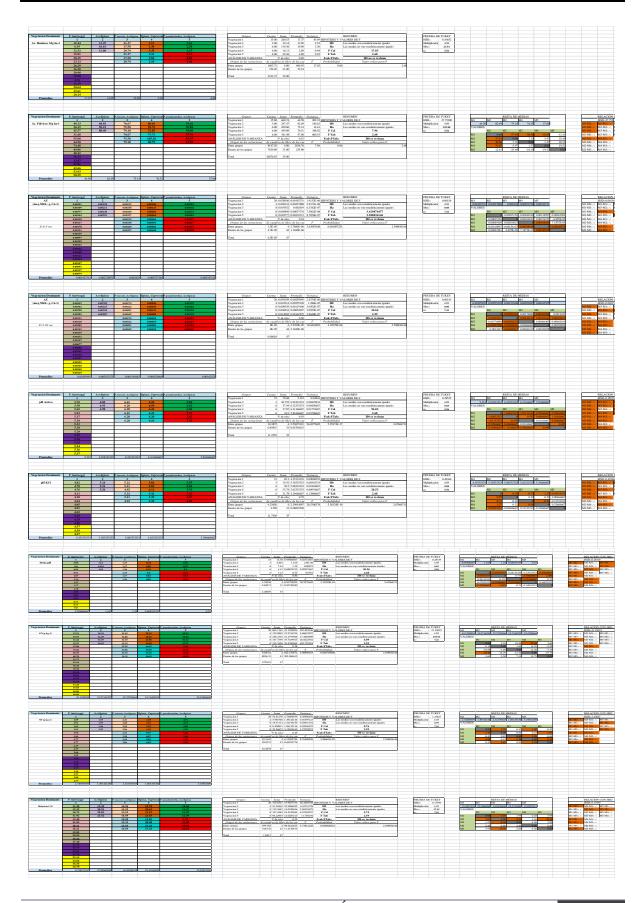

W 404 C . 2	MATE - 1		1946.77		Mar	NAME:	RESUMEN COUNTY COUNTY TO THE PROPERTY WAYNESS	DOLLED' DE MINER	RESTA DE MEDIAS	MIN	RELACION CON HSI HSD=0.3217568	
Fisos altitudinales	3858.00 36 1.00		3399.00 3.00	3125.00 4.00				PRUEBA DE TUKEY HSD= 0.32	MI M2 M3 M4 M5 M6 0.58 0.69 1.08 0.88 0.81 0.73	MI-M2= < MI-M3= >	M3-M1=> M3-M2=>	M5-M1= M5-M2=
DA de cilindro (g /cm² 3	0.70	1.10	0.56	0.82	1.06	0.79	Piso alitufinal 2 9.00 6.18 0.69 0.06 BD Las medias son estadisticamente ignales	Multiplicador= 4.30	VALORES	MI-M4= <	M3-W4= <	M5-M3=
		0.62 0.81	1.19	0.88 0.94	0.65	0.59	Piso ahindinal 3 3.00 3.25 1.08 0.01 Ha Las medias no son estadisticamente iguales Piso ahindinal 4 6.00 5.29 0.88 0.00 FCal 4.34	Mse= 0.03 n= 5.40	MI M2 M3 M4 M5 M6 MI 000 -0.10 -0.50 -0.30 -0.23 -0.15	M1-M5= < M1-M6= <	M3-M5=<	M5-M4 M5-M6
		0.50		0.82	0.83	0.81	Piso ahitufinal 5 6.00 4.88 0.81 0.04 FTab 2.53		M2 0.10 0.00 4.40 -0.19 -0.13 -0.04	M2-M1= <	M4-M1= <	M6-M1
		0.18		0.88	0.56	0.88	Piso alitufinal 6 6.00 4.38 0.73 0.01 PGab#Tab: BB se rechara		M3 0.50 0.40 0.00 0.20 0.27 0.35	M2-M3=>	M4-M2= <	M6-M2
		0.69		0.94	0.54	0.71	ANÁLISIS DE VARIANZA VALOR DEEPRITO = 0.42 Origen de les suriaciones de cuadrijos de libejo de los cus. F Probabilidad Valor crítico para F		M4 0.30 0.19 0.20 0.00 0.07 0.15 M5 0.23 0.13 0.27 0.07 0.00 0.08	M2-M4= < M2-M5= <	M4M3=< M4M5=<	M6-M3
		0.87					Entre grupos 0.66 5.00 0.13 4.34 0.00	253	M6 0.15 0.04 -0.25 -0.15 -0.08 0.00	M2-M6= <	M4-M6= <	M6-M5
	0.50	0.69	1.00	0.88	0.81	622	Dentro de los grupos 0.91 30.00 0.03					
Promedius	0.58	0.69	1.08	0.88	0.81	0.15	Total 1.56 35.00					
Piso Altitudinal	3858.00 36										RELACION CON HSI	D
MO(gkg·l)			3.00 56.09	4,00	5,00	6.00	RESUMEN Grapos Cierta Sanu Promedio Varianza		RESTA DE MEDIAS MI M2 M3 M4 M5 M6	MI-M2=<	HSD=39.943538 M3-M1=<	MS MI.
200 (E4E1)			60.17	64.56	38.25	109.34	Piso ahindinal 1 8.00 748.71 93.59 1184.94 HPOTESIS YVALORES DEF	PRUEBA DE TUKEY	93.59 70.80 62.91 59.78 36.51 73.09	MI-M3=<	M3-M2×	M5-M2-
	66,61 T		67.69 67.69	63.62 63.62	49.78	115.23	Piso ahindrad 2 12.00 849.66 70.80 220.65 BB Las medias son estadisticamente ignales Piso ahindrad 3 4.00 251.64 62.91 33.22 Ba Las medias no son estadisticamente ignales	HSD= 39.94 Multiplicador= 4.16	VALORES MI M2 M3 M4 M5 M6	MI-M4=<	M3-M4≪ M3-M5≪	M5-M3 M5-M4
		7.67	6/30	47.32	26.72	13.63	Piso abitufinal 3 4.00 251.64 62.91 33.22 Ha Las medias no son estadosicamente iguales Piso abitufinal 4 8.00 478.21 59.78 59.28 FCal 4.23	Multiplicador= 4.16 Mse= 663.80	MI 000 22.78 30.68 33.81 57.08 20.49	MI-M6=>	M3-M6<	M5-M6
		4.83		64.56	36.84	43.93	Piso abitudinal 5 8.00 292.10 36.51 91.98 FTab 2.44	a= 7.20	M2 -22.78 0.00 7.89 11.08 34.29 -2.29	M2-M1=<	M4MI=<	M6-M1
		7,00		63.62 63.62	26.72	31.63	Piso ahindinal 6 8.00 584.75 73.00 2238.53 PCal-PTale BH se rechara ANÁLNSK DE VARIANZA VALOR DEEPELTO = 0.33		M3 -30.68 -7.89 0.00 3.13 26.40 -00.18 M4 -33.81 -11.08 -3.13 0.00 23.26 -13.32	M2-M3=< M2-M4=<	M4M2≈ M4M3≈	M6-M2: M6-M3:
		8.66		63,02	20.72	3480	Origen de las variaciones) de cuadrilos de libejo de los cui. F Probabilidad Valor crítico para F		M5 -57.08 -34.29 -26.40 -23.26 0.00 -36.58	M2-M5=<	M4M5×	M6-M4
		9.39					Entre grupos 14043.88 5.00 2808.78 4.23 0.00	2.44	M6 -20.49 2.29 10.18 13.32 36.58 0.00	M2-M6=<	M4-M6<<	M6-M5:
		5.55 5.55				_	Dentro de los grupos 27879.71 42.00 663.80					
dio		70.80	6291	59.78	3651	73.09	Total 41923.59 47.00					
Pso Attitudenal	3858.00 36 1.00						RESUMEN		RESTA DE MEDIAS		RELACION CON HSI HSD=21.56/511	D
CO (gkg-l)	3291 3			25.55	20.15	68.11	RESUMEN Grupos Caenta Samu Promedio Varianza	PRUEBA DE TUKEY	MI M2 M3 M4 M5 M6	M1-M2=<	HSD=21.566511 M3-M1=<	MS-M1
	35.97 5	6.16	32.49	34.86	20.65	59.04	Piso altitudinal 1 8.00 404.30 50.54 345.53 HIPOTESIS YVALORES DEF	HSD= 21.57	50.54 38.23 33.97 32.28 19.72 39.47	MI-M3=<	M3-M2=<	M5-M2
	32,44 3 35,97 3		36.55	34.35 34.35	26.88 26.88	6222	Piso abitudinal 2 12:00 488.81 38.23 73.08 10 Las medias son estadisticamente iguales Piso abitudinal 3 4:00 135.89 33.97 9.89 16 Las medias no son estadisticamente iguales	Multiplicador= 4.16 Mse= 193.56	VALORES MI M2 M3 M4 M5 M6	MI-M4<	M3-M4< M3-M5<	M5-M3 M5-M4
		1.14		25.55	14.43	7.36	Piso shitufinal 4 8.00 258.24 32.28 17.29 FCal 4.23	ssc= 19336 t= 720	M1 0.00 12:30 16:57 18:26 30.82 11:07	MI-M6=<	M3-M6<	M5-M6
	76.82	9.61		34.86	19.89	23.72	Pso shitufinal 5 8.00 157.74 15.72 26.82 FTab 2.44		M2 -12.30 0.00 4.25 5.56 18.52 -1.24	M2-M1=<	M4MI=<	M6-M1
		0.79		34.35 34.35	14.6 14.6	1654	Piso abitudinal 6 8.00 315.77 39.47 652.76 FGab-FTab: B0 se rechaza ANÁLINIS DE VARIANZA VALOR DEEPHATO = 0.33	+	MS -1657 -4.26 0.00 1.69 14.25 -5.50 M4 -18.26 -5.96 -1.69 0.00 12.56 -7.19	M2-M3=< M2-M4=<	M4M2≈ M4M3≈<	M6-M2 M6-M3
		3.28		34.30	100	1124	Origen de las variaciones) de cuadrifos de libejo de los cas F Probabilidad Valor crítico para F	-	M5 -30.82 -18.52 -14.25 -12.56 0.00 -19.75	M2-M5=<	M4M5×	M6-M4
		7.85					Entre grupos 4095.20 5.00 819.04 4.23 0.00	2.44	M6 -11.07 1.24 5.50 7.19 19.25 0.00	M2-M6<	M4M6<	M6-M5
		0.50				_	Dentro de los grupos 8129.72 42.00 193.56					
lio .	50.54	38.23	33.97	32.28	19.72	39.47	Total 12224.92 47.00					
Piso Altitudinal					2982.00						RELACION CON HSI	D
			3.00	4.00	5.00	6.00	RESUMEN	PRUEBA DE TUKEY	RESTA DE MEDIAS MI M2 M3 M4 M5 M6		HSD=1.2440627	10000
NT (g kg·l)			1.55 1.55	2.41	1.11	4.72	Grapes Caceta Sanu Promedio Variance Piso shindinal 1 8.00 25.74 3.22 0.30 HEFOTESIS VVOLORES DEF	HSD= 124 Multiplicador= 4.16	322 242 1.49 2.32 1.06 3.16	MI-M2= < MI-M3= >	M3-M2= <	M5-M2:
	3.02	2.90	130	254	125	5.02	Piso altitudinal 2 12.00 29.08 2.42 0.00 BB Las medias son estadisticamente iguales	Mse: 0.64	VALORES	MI-M4= <	M3-M4= <	M5-M3-
	3.02	125	1.55	2.06	125	5.02	Piso ahindraal 3 4.00 5.97 1.49 0.02 Ha Las medias no son estadisticamente iguales Piso ahindraal 4 8.00 18.57 2.32 0.04 FCal 8.55	a= 7.20	M1 M2 M3 M4 M5 M6 M1 000 0.79 1.73 0.90 2.16 0.06	MI-M5=> MI-M6=<	M3-M5= <	M5-M4:
	2.41	125		2.28	0.97	1.36	Piso ahindrad 5 8.00 8.09 1.06 0.05 FTab 2.44		M2 -0.79 0.00 0.99 0.10 1.36 -0.74	M2-M1=<	M4-M1= <	M6-M1
		2.44		254	0.83	1.53	Piso ahitufinal 6 8.00 25.27 3.16 3.38 PCaloFTab: H0 se recham		M3 -1.75 -0.95 0.00 -0.83 0.43 -1.67	M2-M3= <	M4-M2= <	M6-M2:
		125 230		2.86	0.83	1.53	ANÁLSIS DE VARIANZA VALOR DEEPRITO = 0.50 Origen de les variaciones) de cuadrilos de lheio de los cua F Probabilidad Valor crítico para F	+	M4 -0.90 -0.10 0.83 0.00 1.25 -0.84	M2-M4= <	M4M3=<	M6-M3: M6-M4:
		237					Entre grupos 27.54 5.00 5.51 8.55 0.00	244	M6 -0.06 0.74 1.67 0.84 2.00 0.00	M2-M6= <	M4-M6= <	M6-M5
		2.88 2.77					Dentro de los grupos 27.04 42.00 0.64					
dio	3.22	2.42	1.49	2.32	1.06	3.16	Total 54.59 47.00					+
					-							
Piso Altitudinal	3858.00 36	ē9.00	3399.00	111/44	2882.00	1679.00				_	RELACION CON HSI HSD= 107.7734	U
·Ovanselli		2.00	3,00	4.00	5.00	6.00			RESTA DE MEDIAS	MI-M2= <	MS-MI=>	M5-M1
Hungkg	_	9.51	26.98	109.87	66.83	204.00	Grupos Caenta Samu Promedio Varianza RESUMEN		MI M2 M3 M4 M5 M6	MI-MG=>	MS-M2= <	MS-M2
	261.65 1	11.44	26.98	84.70	84.01	204.00	Piso alinofinal 1 8.00 1581.28 197.66 2899.75 HIPOTESIS Y VALORES DE F	PRUEBA DE TUKEY	197.66 163.38 64.47 101.58 144.19 146.37	M1-M4= <	M3-M4= <	M5-NG
			101.96	105.88	88.58	187.93	Pso abitudinal 2 12.00 1960.54 163.38 9154.31 B0 Las medias son estadisticamente ignales	HSD= 107.77	VALORES	M1-M5= <	M3-M5= <	M5-M4
		6.93	101.96	105.88	88.58 143.29	187.93	Piso abinofinal 3 4.00 257.88 64.47 1873.77 Ha Las medias no son estudiscicamente iguales	Multiplicador= 4.16	MI M2 M3 M4 M5 M6 MI 000 34.28 133.19 96.08 53.47 51.29	MI-M6= <	M3-M6= <	M5-M6 M6-M1
	236.41 2 111.11 3	1121 1126	-	109.87 84.70	143.29	111.36	Piso abinofinal 4 8.00 812.68 101.58 111.50 F Cal 2.78	Mse= 4832.47 a= 7.20	MI 0.00 34.28 133.19 96.08 53.47 51.29 M2 34.28 0.00 96.91 61.79 19.19 17.01	M2-M1= < M2-M3= <	M4M1= < M4M2= <	M6-MI
		11.11		105.88	283.14	8421	Piso abinofinal 6 8.00 1170.94 146.37 2939.05 FGab-FTab: BB se rechara	- 1.3	M3 -133.15 -98.91 0.00 -37.11 -79.72 -88.90	M2-M4= <	M4M3=<	M6-M3
		1111	_	105.88		8421	ANALISIS DE VARIANZA VALORDEEHETO: 0.25	1	M4 -96.08 -61.79 37.11 0.00 42.61 -44.78	M2-M5= <	M4M5=<	M6-M4
	1	83.83					Origen de las suriaciones) de cuadrilos de libejo de los cus F Probabilidad Valor crítico para F		M5 -53.47 -19.19 79.72 42.61 0.00 -2.17	M2-M6= <	M4:M6= <	M6-M5
		19.83					Entre grupos 67265.75 5.00 13453.15 2.78 0.03	2.44	M6 -51.29 -17.01 81.90 44.78 2.17 0.00			
		77.46				_	Dentro de las grupos 2029-63.67 42.00 4832.47					
t.	197.66	163.38	64.47	100.58	144 144	146.37	Total 270229.43 47.00					
lio	197.00	223.38	01.4/	et in	(44.15	14031	1988 2/02/3/40 41/80	-				
											RELACION CON HSI	D
				_							HSD=21.772731	L
Piso Altitudinal	3858.00 36							PRUEBA DE TUKEY	RESTA DE MEDIAS	M1-M2= <	MG-MI=>	M5-M1
	1.00				5.00		RESIDIEN	HSD= 21.77	MI M2 M3 M4 M5 M6	MI-MG=>	MG-M2=>	M5-M2
% PP			20.67	24.26			Grapos Caenta Samu Promedio Verianza	Multiplicador: 4.16	38.93 38.41 14.32 18.58 41.92 32.74	MI-M4= <	M3-M4= < M3-M5= >	MS-MB
	68.68 4 49.60 3		20.67 7.58	21.47 14.30		38.15 36.36	Piso abinofinal	Mse: 197.23 a: 7.20	VALORES MI M2 M3 M4 M5 M6	M1-M5= < M1-M6= <	M3-M5=> M3-M6=<	M5-M4 M5-M6
	869 3		158	1430		36.36	Pso alinofinal 3 400 57.29 14.32 53.66 Ha Las medias son estadisticamente iguales	1.0	MI M2 M3 M4 M3 M0 MI 0.00 0.52 24.61 20.34 -2.99 6.19	M2-M1= <	M4MI=<	M5-M6
		8.17	and		38.76	30.13	Pso abitofinal 4 8.00 148.68 18.58 22.06 F Cal 4.39		M2 -0.52 0.00 24.05 19.63 -3.51 5.67	M2-M3=>	M4M2=<	M6-M2
	1228 8	1.10		21.47	26.66	24.00	Piso alinofinal 5 8.00 335.36 41.92 212.00 FTab 2.44		M3 -24.61 -24.09 0.00 -4.26 -27.60 -18.41	M2-M4= <	M4M3=<	M6-M3
		1.08			59.98	39.52	Piso altitudinal 6 8.00 261.99 32.74 65.37 FCab/Fale: Blue reclausa	1	M4 -20.34 -19.83 4.25 0.00 -23.34 -14.15	M2-M5= <	M4M5=>	M6-M4
		1.08		1430	59.98	39.52	ANÁLISIS DE VARIANZA VALOR DE EFECTO: 0.34	_	M5 299 351 27.60 2334 000 9.19	M2-M6= <	M4M6= <	M6-M5
		7.40				\dashv	Origen de las variaciones y de cuadrifor de libre o de los cas. F Probabilidad Valor crítico para F Entre grapos 4325.74 5.00 865.15 4.39 0.00	0.44	M6 -6.19 -5.67 18.41 14.15 -9.18 0.00			+
		2.08				\dashv	Dentro de las grapos 8283.63 42.00 197.23	- 1				
		2.08				_						


Pisos altitufindes Temperatura (C') Promedos	3888 1 25.90 25.90 25.90 25.90 25.90 25.90 25.90 25.90	3659 2 25,90 25,90 25,90 25,90 25,90 25,90 25,90 25,90 25,90 25,90 25,90 25,90	3399 3 25.90 25.90 25.90 25.90	3125 4 25.90 25.90 25.90 25.90 25.90 25.90 25.90 25.90	2582 5 25.50 25.50 25.50 25.50 25.50 25.50 25.50 25.50	2679 6 2530 2530 2530 2530 2530 2530 2530 2530	Grapes Pros hindred 1 Pros hindred 2 Pros hindred 3 Pros hindred 3 Pros hindred 3 Pros hindred 3 Pros hindred 5 Pros hindred 5 Pros hindred 5 ANALISS DEVARIANZA Origon de fas suriociones Esser propos Demo de los grapes Essel	Cliental Suma Protest 6:00 155:40 25 9:00 233:10 25 3:00 77.70 25 6:00 155:40 25 6:00 155:40 25 6:00 154:80 25 6:00 154:80 25 6:00 154:80 25 6:00 154:80 25 6:00 154:80 25	80 000 V	IPOTESIS Y VALORI	BESSAMN SCORE La redate our considerizamente ignales Las redate our considerizamente ignales Las redate our considerizamente ignales 792211627120000000000000000000000000000000	PRUEBA DE TU ISSD: Milifigicado Meri	KEY 0.00000000000000000000000000000000000	M1 VAL06 M1 M2 M3 M4 M5	RESTA DE M2 M3 N M5 M5 N S50 25.00 25.00 S5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	EDIAS 3.5	### ACTON COST HID ### AC
Pino Altitudinal CE (dS m-1) Frame dia	3858 1 0.08 0.07 0.13 0.13 0.19 0.10 0.11	3459 2 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06	0.48 0.48 0.48	3125 4 0.26 0.19 0.19 0.19 0.26 0.19 0.19 0.19	2582 5 0.03 0.02 0.02 0.02 0.01 0.01 0.01	2679 6 0.19 0.22 0.22 0.22 0.10 0.10 0.10 0.10	Grayes Fine shinding I Fine S	8.00 1.65 0 8.00 0.12 0	10 0.00 H 107 0.00 148 0.00 121 0.00 102 0.00 116 0.00	IPOTESIS Y VALORI	RESIMEN SS DE F Las mellos une estudiolecturente (gades Las mellos une control description (gades Las mellos une une control description (gades Las mellos une control description (gades Las mellos une control description (gades) 0.95 Valor criticios passo F Lober criticios passo F 2	PRUEBA DE TU ISSD - Maleksade Mer	KEY 0.048 4.16 0.00 7.28	M1 VAL06 M1 M2 M3 M4 M5 M6	RESTA DE 3 M2 M3 M M3 M 0.08 0.00 0.48 ES M1 M2 N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		SELATION CONTRIBUTE SELVE SELVE SELVE
Pisos altitudendes pH Activo Promecios	3888 1 5.70 5.58 5.65 5.02 5.17 5.18	3659 2 5.22 5.18 5.20 5.32 5.34 5.36 5.37 5.25	6.85	3125 4 6.41 6.28 6.28 6.41 6.28 6.28	2582 5 6.26 6.39 6.43 6.32 6.29 6.16	2679 6 5.94 6.02 6.00 5.71 5.65 5.53	Grapos Pros Shredeni 1 Pros Shredeni 2 Pros Shredeni 2 Pros Shredeni 2 Pros Shredeni 3 Pros Shredeni 4 Pros Sh	Clarenta Samu Pronu 6:00 32:30 5 9:00 47:38 5 9:00 37:94 6 6:00 37:94 6 6:00 37:94 6 6:00 34:90 5 de canadros de 18% de la 9:044 5:00 2 0:79 30:00 6	die Verianza 38 0.09 H 226 0.01 592 0.00 332 0.00 331 0.02 382 0.04 8 cs F .00 79.54	POTESIS Y VALORI H0	RISSAMN IS DE F Las medica rea criticaleixamente iguales Las medica no ou contadiric amente iguales Las medica no ou contadiric amente iguales 275.44 275.44 285.00 Historic critica periodica del contadirica	PRUBBA DE TU HSD: Ablighade Aber et	0.30 4.39 4.39 6.03 5.48	M1 VALOR M1 M2 M3 M4 M5 M6	M2 M3 M S M S M S M S M S M S M S M S M S	EDIAS 4 155 156 15 15 15 15 15 15 15 15 15 15 15 15 15	BELATION CON HISTORY (INC.) (I
Pisos ahitudeules pH KCI Promedios	3858 1 4.82 4.78 4.78 4.11 4.10 4.04	3659 2 4.05 4.01 4.02 4.29 4.30 4.57 4.57 4.57	3399 3 5.24 5.31 5.36	3125 4 5.22 3.11 4.92 5.11 4.92	2582 5 5.82 5.65 6.11 5.42 5.39 5.35	2679 6 5.55 5.65 5.70 5.00 4.93 4.93	Grapes Proc himstand 1 Proc himstand 2 Proc himstand 3 Proc himstand 3 Proc himstand 3 Proc himstand 5 Droc himstand 6 Droc hi	9.00 38.69 4 3.00 15.91 5 6.00 30.50 5 6.00 33.74 5	.44 0.15 H .30 0.06 .30 0.00 .68 0.02 .62 0.09 .30 0.14 V	POTESIS Y VALORI	PESIAMEN IS ME 2 Les modes unes condedicionente liquido. Les modes unes condedicionente liquido. Les modes un con extendéric amente iguales 2.85 He se revision 6.79 Valor entirco pose F 2.00 2.70 2.00 2.00 2.00 2.00 2.00 2.0	PRACEDA DE TU ISSO : Maligiscador Mue: u:	0.53 4.39 0.06 5.40	M1 VAL06 M1 M2 M3 M4 M5 M6	RESTA DE 1 M2 M3 M3 S M 4.44 4.3 S S S S S S S S S S S S S S S S S S S		BET ACTON CON HED RED 4 5 777 240 760 88 BER 48 1 MASH 2 BER 48 2 BER 48 2 BER 48 3 BER 48
Pisos altitudinales Delta pH Promedios	3858 1 0.88 0.8 0.89 0.91 1.07 1.14	3659 2 1.17 1.17 1.18 1.83 0.57 0.33 0.77 0.77 0.8	3399 3 1.61 1.615 1.62	3125 4 1.19 1.17 1.36 1.19 1.17 1.36	2582 5 0.44 0.85 0.32 0.9 0.81	2679 6 639 037 037 031 031 042 063	Grapos Piso altradinal 1 Piso altradinal 2 Piso altradinal 2 Piso altradinal 3 Piso altradinal 4 Piso altradinal 4 Piso altradinal 4 Piso altradinal 4 Origanal particular altradinal 6 ANALISIS DEVARRANZA Origanal has variaciones Ente grapos Deutro de las grapos Total	9.00 8.69 0 3.00 4.85 1 6.00 7.44 1 6.00 4.13 0 6.00 3.12 0	195 0.02 H 197 0.03 62 0.00 24 0.01 169 0.06 152 0.04 V ddo F P	POTESIS Y VALORI H0 Ha F Cal F Tab FCabFTab= ALORDEHHCTO:	Las medias son estadisticamente iguales Las medias no son estadisticamente iguales 23.70 2.53 H# ser reclazza 0.80 Valor certico para F	PRI ERA DE TU BSD= Melpfunde Mer= d=	KEY 0.31 4.30 0.63 5.40	MI VALOR MI M2 M3 M4 M5 M6	RESTA DE 3 M2 M3 M M M95 0.97 1.62 ES MI M2 M MM -0.02 -0.02 0.04 -0.03 0.05 -0.04 0.07 -0.04 0.05 -0.04 0.05 -0.04 0.05 -0.04 0.05		BELACION CON IRSD 431 MASSAC - GESSELS - MASSAC
Piso Altitudinal Relacion C:N	3858 1 11.40 12.35 10.75 11.92 13.40 31.82 18.21	3659 2 12.85 24.54 19.24 17.10 12.75 13.17 12.61 13.70 23.13 13.64 14.16	3399 3 19.49 20.91 28.03 23.52	3125 4 10.58 15.32 13.53 16.69 10.58 15.32 13.53 16.69	2982 5 15.78 18.61 21.53 21.53 14.85 20.48 17.33	2679 6 14.44 12.47 12.39 12.39 5.41 17.45 10.84	Grapes Five shinded 1 Five shinded 2 Five shinded 3 Five shinded 3 Five shinded 3 Five shinded 4 Five shinded 5	1200 191.69 15 4.00 91.95 22 8.00 112.26 14 8.00 147.45 18 8.00 96.23 12 de caudros de 101 de 10 399.77 5.00 79 748.93 42.00 17	101 49.38 H 1.97 17.40 1.99 14.07 1.03 5.96 1.43 6.52 1.03 11.75 V 8 ct F	POTESIS Y VALORI H0	Las medias son estadisticamente iguales Las medias no son estadisticamente iguales 4.48 2.44 BB se rechaza 0.35 Vialor criticio parte F	PREERA DE TU HSD:- Malginuske Me:- e:-	KEY 6.55 4.16 17.28	MI VALOR MI M2 M3 M4 M5 M6	RESTA DE N M2 M8 M M5 M8 M M660 B 597 2299 ES M1 M2 N 000 000 -004 000 -197 1-193 244 246 -339 3394	4 M5 M6 14.03 18.43 12.09	RELACION CON ISSD ISSD-45 9999779984597 MAINES M
PromediaS Pisos abitudinales qC02 0-5 cm Promedias	3858 1 0.10 0.15 -0.04 0.12 0.08 0.08	3659 2 0.11 0.05	22.99 3399 3 0.10 0.07 0.04	3125 4 0.04 0.04 0.07		2679 6 0.04 0.04 0.04 0.04 0.05 0.09	Total Grapes Pso altradiad 1 Fso altradiad 2 Fso altradiad 3 Fso altradiad 3 Fso altradiad 4 Vso altradiad 4 Vso altradiad 5 ANALISIS DE VARANZA Original da las unificiones Entre parties las grapes Demode las grapes Total	3.00 0.21 0 3.00 0.21 0 3.00 0.15 0 6.00 1.24 0 6.00 0.64 0	108 0.00 H 108 0.00 107 0.00 105 0.00 121 0.01 111 0.02 V 5 cc F	HO Ha F Cal F Tab FCabFTab= ALORDEHHCTO=	Las medias son estadisticamente iguales Las medias no son estadisticamente iguales 2.67 2.62 HB se rechaza 0.36 Valor critico para F	PRITERA DE TU HSD:- Malqinade Me:- a:-	KEY 0.1655599 4.37 0.00 4.59	M1 VALOR M1 M2 M3 M4 M5 M6	MI M2 M 0,0000 0,0006 -0,0006 0,0000 -0,0134 -0,0128 -0,0335 -0,0330	4 MS M6 0.05 0.21 0.11 3 M4 MS M6 0.0134 0.0838 -0.1256 -0.0244 0.0128 0.0830 -0.1262 -0.0250	BEALODY CON RED
Pisos abitudinales CBM 6-5 cm Promedos	1 1.21 1.04 -0.38 1.28 2.17	2 1.88 0.84 0.89 0.86 0.25	3399 3 1.41 1.31 0.81	1.16	2582 5 2.98 1.43 1.86 0.41 1.88 1.26	6 1.16 0.66 0.73 1.10 0.65 0.52	Grapes Fee altrained 1 Fee altrained 2 Fee altrained 2 Fee altrained 3 Fee altrained 4 Fee altrained 4 Fee altrained 4 Fee altrained 4 Fee altrained 6 Fee altrained 6 Congress de las surfacemen Earne grapes Domn-de las grapes Unided	600 5.48 0 3.00 3.53 1 3.00 2.10 0 6.00 9.82 1 6.00 4.82 0	.19 0.77 H 191 0.28 .18 0.10 170 0.16 .64 0.72 180 0.07 V 5 cc F	POTESIS Y VALORI H0 Ha F Cal F Tab Feak-FTab= ALORDEHHETO:	Las medias son estadisticamente ignales Las medias no son estadisticamente ignales 1.49 2.62 HB no se mediaza 0.24 Vialor criticio parar F	PRITERA DE TU HSD:- Maliginade Mes:- is-	KEY 1.31 4.37 6.41 4.59				
Pisos abitudinales Ac. Humicos Mg ho-l Promedios	1 15.44 6.19	2 26.29 16.20 20.98 12.08 4.76 16.39 20.64 22.61 20.24	3 11.47 16.61 11.06	3125 4 21.37 17.58 20.74 21.37 17.58 20.74	5 2.11 1.30 3.39 3.31 3.83 2.18	6 3.16 2.38 1.19 8.13 8.82 5.68	Fiso alteritude 1 Fiso alteritude 2 Fiso alteritude 3 Fiso alteritude 3 Fiso alteritude 4 Fiso alteritude 4 Fiso alteritude 5 Fiso alteritude 6 ANÁLINIS DE VARIANZA Origen de las surieciones Entre grapos Deumo de los grapos Istal	3.00 39.14 13 6.00 119.36 15 6.00 16.11 2 6.00 29.36 4	72 61.75 H 80 40.85 105 9.55 189 3.30 169 0.94 189 9.95 V 8 G F 58 13.30	POTESIS Y VALORI H0 Ha F Cal F Tab F Cab-FTab= ALOR DE EPELTO- Probabilidad 000	Las medias son estadisticamente iguales Las medias no son estadisticamente iguales 13.30 2.53 Bil se rechaza 0.60 Vialos criticio para F	PRICERA DE TU BISD- Malgiduske Me- e-	XEY 9.10 4.30 24.18 5.40	MI VALOR MO MI MS MS MS MS MS MS	MI M2 N 000 -1.08 1.08 -0.00 -3.68 -4.75 3.17 -2.09 -4.00 -5.11	4 M5 M6 19.88 2.69 4.89	RELACION CON HED



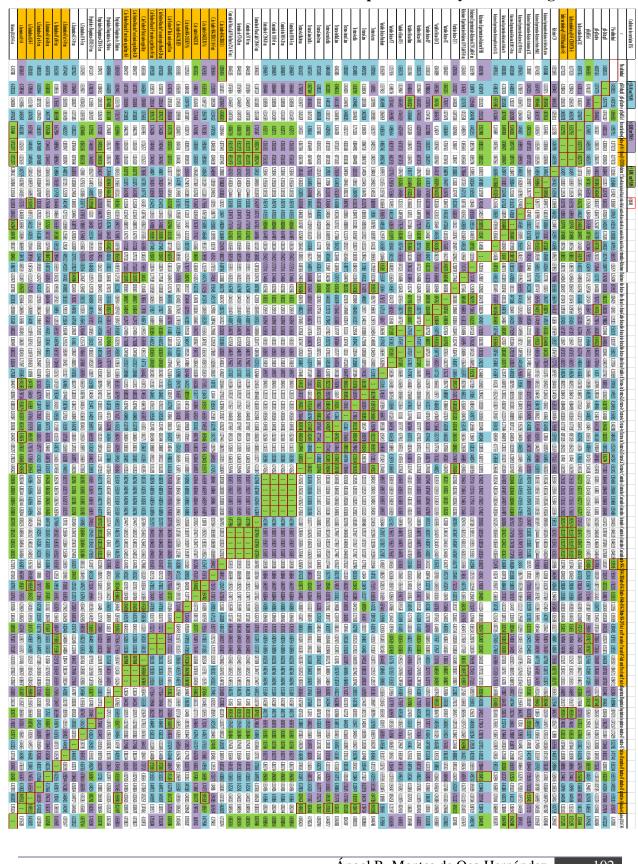
Piso Altiradinal	3858.00 3659.00 1.60 2.40 3.29 3.17 3.60 52.5 3.24 3.84 3.84 3.84 3.87 3.88 6.87 3.88 6.87 3.88 6.87 3.88 6.87 4.88 6.88	3.00 4.0 3.03 2.0 3.25 3.0 3.66 3.0 3.66 3.0 3.66 3.0 3.66 3.0 3.66 3.0	5,00 56 201 19 207 14 269 14 269 16 1.44 19 1.99 14 1.44	6.00 6.81 5.90 6.22 6.22 0.74 2.37	Grapes Pro abradual 1 Pro abradual 2 Pro abradual 2 Pro abradual 3 Pro abradual 3 Pro abradual 4 Pro abradual 4 Pro abradual 4 Pro abradual 6 ANALISINE VARIANZA Object de las restrictioner Euro grapes Destro de los grapes	12:00 45:88 3.82 0.73 4:00 13:59 3.40 0.10 8:00 25:82 3.23 0.17 8:00 15:77 1:97 0.27 8:00 31:58 3:55 6:53	POTESS YVALORES I BB F Cd F Tab F Cd- F Tab F Cd- F Tab F Cd- F Tab G Cd F Tab G Cd F Tab G Cd	ESSMEN EF Lannels on coloric ment (pale) Lannels on coloric ment (pale) Lannels on coloric ment (pale) Bernelson Silver (pale) Valor (thou page 5) 1 Valor (thou page 5)	PRESEADE TURSY NSD- 2 1566-0010 Malyikader 4.8 Me- 23554-6832 E- 225	M3 -166 -0.43 0.00 (M4 -1.83 -0.60 -0.17 (M6 M6 M6 M8 M6 M8 M1 111 111 111 111 111 111 111 111 1	883.4.000 (VIN 180) 800-1 199000758001 801-10-1 18430-1 803-1 1
Promediss Piso Abitedinal 54NT	3558.00 3659.0	3399,00 312 3,00 44 0,16 0, 0,15 0, 0,13 0, 0,16 0, 0,16 0, 0,16 0,	5,00 5,00 14 0.13 0.11 155 0.12 11 0.12 14 0.10 13 0.10 15 0.03	2679.00	Grapes Pico abadeal 1 Pico abadeal 2 Pico abadeal 2 Pico abadeal 2 Pico abadeal 3 Pico abadeal 3 Pico abadeal 4 ANALISIS DE VARIANZA Origan del les tradeciments Emer grapes Tempe grapes Tempe grapes Tempe grapes Tempe grapes	Careata Sama Proseedor Varianza. 8.00 2.57 0.32 0.000 12.	POTESS YVALORES I BB F CGI F Tub FOUNTIAN- ALOR DEFRETO - Probabilished 6.0	Las medias son estadisciamente iguales Las medias no son estadisciamente iguales 8.55 2.44 180 se rechana 0.50 Vulne critico para F	PRINCES OF TUREY 1073- 1074- 1075- 1074- 1075- 1074-	M3	M6 032 131 032 M5 M6 000 101 001 001 101 004 007 101 007 101 007 101 007 101 007 101 007 101 007 101 007 101 007 101 007 101 007 101 007 1	#83.42.00 (10.16.00) #80.00 (10.00.00) #80.00 (10
Promediss Pro Abitudinal %HUM	828 0 3659,00 1,60 2,60 1,60 2,60 1,60 2,60 1,60 2,74 5,90 2,74 5,	3399,00 312 3,00 41 2,70 10 2,70 5. 10,20 10 10,20 10 10,20 10	5,00 5,00 5,00 6,63 17 8,40 59 8,86 59 8,86 17 11,60 59 28,31	6.00 20.40 20.40 18.79 18.79	Grapes Pico shadada I		POTESS YVALORIS I BB F CG F Tub F Chi-Tiab- ALOR DEFRITO = Probabilished Of	BENIMEN Les melles un seculale comme guide Les melles un seculale comme guide Les melles un seculale comme guide 2.34 Bit servicione 2.44 Uniter colles partir 2.44 Linke colles partir 2.44	PRESENT OF TRACY PRESENT OF TRACY Magnitude 44.5 Me 43.56 43.56 T 2	VALORES M1 M2 M5 M4 M1 000 3.43 132 5 6 M2 3.43 000 98 6 M3 1332 9.89 000 5 M4 901 4.11 3.71 M5 5.33 1.92 7.97	M5 M6	\$81.A/DOC TON RED. \$60.DOC TO
Promedias Pisos altitudinales Pisos altitudinales Relacion Ac PublicoTh Activ	19.77 16. 39.77 16. 3858.60 3659.00 1.60 2.00 6.52 14.72 4.22 9.63 8.67 9.31 1.65 22.44 1.65 22.4 1.75 38.8 1.75 38.8 1.75 38.8 1.75 38.8 1.75 38.8 1.75 38.8	3399,60 312 3,60 4, 10,65 11 13,02 12 12,68 12 11 11 12	00 5.00 02 14.16 03 8.57 61 11.33 02 12.30 03 16.99	6.00 6.64 5.13 6.33 13.86 15.93	Grapes Face abtained 1 Face abtained 2 Face abtained 2 Face abtained 3 Face abtained 3 Face abtained 4 Face abtained 5 Face abtained 5 Face abtained 5 Grape ab East are surfacement. East grapes Deceme & los grapes Total	Cerenta Same Phared DiVision Co. 100 (216) 324 427 37 45 40 40 50	POTESS Y VALORES E B F Cd F Tab Red of Tabe ALOR DE EPTETO Probabilished 0.0	ESSMEN HT Landin or enhaltenent puls Landin or enhaltenent puls 136 133 Blue reduce 133 Blue reduce 133 133 Blue reduce 134 135 135 137 138 139 139 139 139 139 130 130 130 130 130 130 130 130 130 130	PRIEBA DE TUREY ROS 5-C Malginater C-S Mer 1-8 1-8			
Pisos altitudinales Relacion Ar Fielden-Ph IXT Promedias	3858.40 3659.00 3659	3.00 41 13.14 13 16.58 14 16.51 16 13 14	00 5.00 54 15.23 79 9.86 09 11.92 54 14.34 79 19.55	7.11 5.46 6.67	Grapes Pico abindinal 1 Pico abindinal 2 Pico abindinal 2 Pico abindinal 3 Pico abindinal 4 Pico abindinal 4 Pico abindinal 4 Pico abindinal 4 Pico abindinal 5	Caresta Samu Promodol/Varianza 600 57.53 9.59 7.54 H 9.00 97.40 03.82 16.83 3.00 46.62 15.54 4.39 6.00 88.84 14.81 1.31 6.00 88.84 14.84 1.31 6.00 6.05 11.06 29.00	POTESS YVALORES I BB F Cal F Tab F CalsFTab: ALOR DEEPHCTO:	PESSMEN EF Las needes not estadisticamente ignales Las needes not estadisticamente ignales Las needes not estadisticamente ignale 13 13 18 man restanta 1,2 1,2 1,2 1,2 1,3 1,4 1,5 1,5 1,5 1,5 1,5 1,5 1,5	PHILEAS DE TUREY SED- A 71 Milyleider 4.98 Me- 1315 t- 5.60			
Pisos altitudinales Betacisa Ar hunico-sqCC2 Prouncios	3858.60 3459.00 1.80 2.00 1.80 2.00 1.81735 341.73 127.73 345.21 127.73 345.31 127.73 345.31 127.73 227.43 127.73 227.73 127.73 227.73 127.73 227.73 127.73 227.73 127.73 227.73 127.73 227.73 127.73 227.73 127.73	3.00 4.1 118.03 550 244.37 499 274.66 290	0 5.00 32 7.54 .48 6.06	2679.00 6.09 73.83 63.51 93.81 12.28 12.28 12.28 13.55 13.55 13.55 14.2.28 15.55 15.	Grapes Pao abashad 1 Pao abashad 2 Pao abashad 2 Pao abashad 3 Pao abashad 3 Pao abashad 4 Pao abashad 4 Pao abashad 4 Pao abashad 4 Pao abashad 2 Ray abashad 4 Ray abash	Central Same Promoduli-Variance 660 (24407) 201.55 (213.51 (213.51 or 600 (24407) 201.55 (213.51 or 600 (24507) 201.55 (213.51 or 600 (24507) 201.55 (24507)	POTESS YVALORES I B F Cal F Tab F Cals F Tab ALOR DEEPETO - Probabilished 0.6	Las medias son estadisticamente ignales Las medias no son estadisticamente ignales 10.79 2.62 Bis srechara 0.69 Valor critico para F	PRIZAL DE TYXEY 180- 180- 180- 180- 180- 180- 180- 180-	NESTA IN MEDIUS NESTA IN MEDIUS NESTA IN	186 6532 387 6532 388 89.6 841.5 381 89.6 141.5 39. 230.6 141.5 30. 230.6 141.5 31. 2	831 AUNO CON IRSO 800 PEZ 90 AUNO 100
Pisos altitudinales Relacion AUMD 0-5 cm 2:0-5 cm Promedias	NSS.00 3659.00 1.60 2.00 2.00 6.71 6.72 6.71 6.73 17.66 17.73 14.24 1.53 3.85 23.28 8.85 13.09 8.55 13.09 8.55 18.14 18.76 9.23 10.15 18.76 9.23 10.15 18.76 9.23 10.15 18.76 9.23 10.15 10.76 1	3.00 43 659 8. 9.24 52 8.29 6. 8.29 6. 8.55 6.	13 5.37 14 16.43 18 9.83 13 18.62 14 5.95	6.09 9.28 12.89 7.57 835 4.42 1.62	Grapes Piso historial 1 Piso historial 2 Piso historial 2 Piso historial 3 Piso historial 4 Piso historial 4 Piso historial 4 Piso historial 5 Piso historial 5 Piso historial 6 Piso historial 5 Piso historial 6 Piso historial 6 Piso historial 7 Piso historial 7 Piso historial 7 Piso historial 6 Piso historial 6 Piso historial 7	Cernal Same Provedin/Variancy 400 St.19 \$2.30 6.50 1838 4016 300 \$75.91 838 4016 300 \$3.51 \$1.71 159 400 \$4.51 \$1.71 159 400 \$4.51 \$1.71 159 400 \$4.81 19.91 2546 600 \$4.85 19.91 2546 600 \$4.85 \$0.91 252 600 \$4.85 10.91 252 600	POTESS YVALORIS I BB F Cal F Tab RoleTab ALOR DEFFECTO - Probabilidad 0.5	Las medias son estadoix unente iguales Las medias no son estadoix mente iguales 0.88 2.53 100 nos erentaria 0.13 Valor critico parto F	WILLAL OF TAXEY SO- Malejiedar 4.98 Me- Me- Me- Male Me- Me- Male Me- Me- Me- Male Me- Me- Male Me- Me- Me- Me- Me- Me- Me- Me- Me- Me	JESTA ES MEDIAS		SELACON CON IND
Pios africanaes Relation ACMO 5-10 cm 2-5-10 cm Promedias Procedias	.355.80 3659.00 1.60 2.05 5.30 12.62 5.30 12.62 7.27 18.23 16.55 221 11.24 5.66 11.30 9.1 11.50 9.1 13.50 9.1	3.60 43 3.73 11 16.57 17 112.69 32 11 32 4 10.81 3399.60 312	100 5.00 17 21.89 48 27.82 79 15.88 17 46.16 48 118.80 79 220.32 20.48 75.1	6.00 33.87 33.50 24.40 3.35 90.35 4.46 14 19.51	Piso ahitudinal 1 Piso ahitudinal 2 Piso ahitudinal 3 Piso ahitudinal 3 Piso ahitudinal 4 Piso ahitudinal 5 Piso ahitudinal 6 ANÁLISIS DE VARIANZA	600 83.77 13.96 173.72.8 9:00 86.72 9.64 27.06 3:00 32.44 10.81 42.12 6:00 122.88 20.48 98.84 6:00 490.86 75.14 6482.29 6:00 117.05 19.51 233.84	BB Bb FCd FTub FCd:FTub FCd:FTub ALOR DEEPHETO - Probabilidad 0.6	27 Las nodes no craditic ametr iquales Las nodes no not endeficiente iquale Las nodes no not endeficiente iquale 3,23 2,23 3,35 4,35 Valence effico para F C S SSSSMN	MODE OF TAXAS (ACC) MARIE AND ACC ACC ACC ACC ACC ACC ACC ACC ACC AC	M1 N2 N5 N4 N4 N5		BLACK ON OUR BLACK OUR BLACK ON OUR BLACK OUR BLACK ON OUR BLACK OUR BLACK ON OUR BLACK OUR BLACK ON OUR BLACK OUR BLACK ON OUR BLACK O
Britacion Ae Fubicos:Nt Promedios	48.51 55.07	92.67 71 97.82 75 122.69 66 71 75 66		21.20 21.97 25.49 14421 150.84 11735	Pio ahitudnal 2 Pio ahitudnal 3 Pio ahitudnal 4 Pio ahitudnal 5 Pio ahitudnal 6 ANÁLISIS DE VARIANZA	9.00 508.48 56.50 56.43 3.00 313.18 104.39 257.61 6.00 426.06 71.01 17.73 6.00 1108.93 183.99 2664.72 6.00 480.80 80.13 4051.58	BOTESS YVALORSS I BB Bb F Cal F Tab F Cal F Tab F Cal- F Tab F Cal- F Tab ALOR DEEPHETO - Probabilidad 0.0	Las medias son estadoix amente iguales Las medias no son estadoix amente iguales 13.15 2.53 Bits rechara #_DIVOF Valor critico parto F	EGD 61 61 50 Mathyddel 430 Mee 11728 a 5.80	\(\text{M1}\) \(\text{M2}\) \(\text{M2}\) \(\text{M2}\) \(\text{M3}\) \(M5 M6 494 - 13692 - 3306 151 - 127.49 - 2364 338 - 79.60 - 2426 100 - 112.91 - 8.12 159 - 0.00 - 103.88	HISDO-61-36 MI-AD-C MS-MIN C M

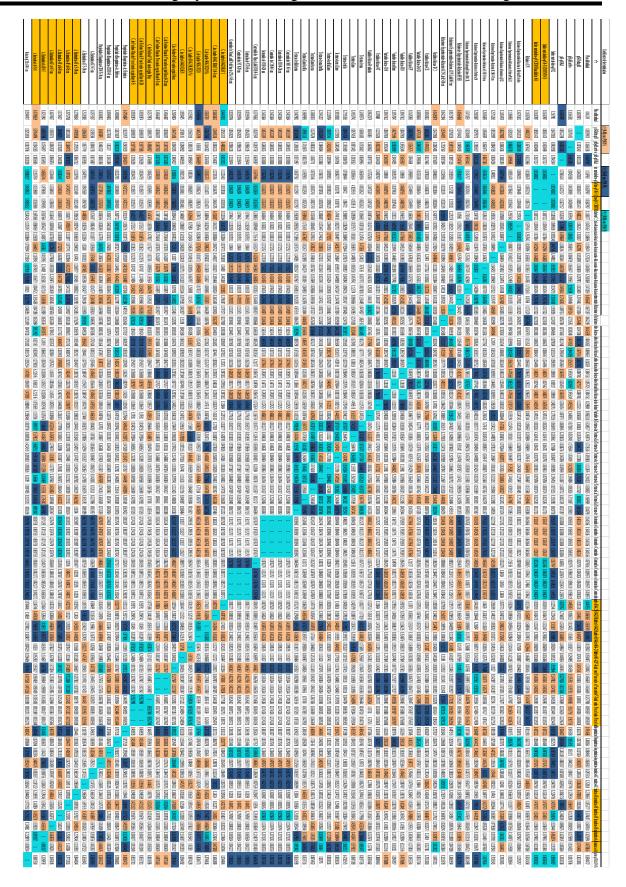

Pisos altitudinales	3858.00	3650 00	3399.00	3125.00	2982.00	2679 00	Granes	Caenta Sama Promedio Varianza	RESUME		PRUEBA DE	TUKEV						
	1.00	2.00	3.00	4.00		6.00	Piso altitudinal l	6.00 58.69 9.78 8.09 HIPO	TESIS YVALORES DEF		HSD=	7.42						
Relacion pH Activo/ DA CIL	8.12 14.42	427 831	7.17 5.84	7.80 7.15	5.93 30.03	7.53 10.14	Piso altitudinal 2 Piso altitudinal 3	9.00 87.31 9.70 50.70 3.00 19.31 6.44 0.45	Ho Las medias son estadisticamen Ha Las medias no son estadistican		Multiplicador Mse=	430 1609						
	9.17 12.04	6.44	6.31	6.66 7.80	7.59	10.10	Piso ahitudinal 4 Piso ahitudinal 5	6.00 43.22 7.20 0.26 6.00 48.99 8.16 4.37	FCal 0.58 FTab 2.44		0=	5,40						
	7.32	28.20		7.15	6.47	6.40	Piso altitudinal 6	6.00 49.05 8.17 2.51	Feal-(FTab: H0 no se red	272								
	7.61	7.66		6.56	11.32	7.85	ANÁLISIS DE VARIANZA Origen de las variaciones		R DEEFECTO = 0.09 Probabilidad Valor critico p	ura F								
		6.16 7.43					Entre grupos Dentro de los grupos	46.98 5.00 9.40 0.58 482.75 30.00 16.09	0.71	2.53								
Promedios	9.7		0 6.4	7.2	0 8.1	8.17												
							Total	529.73 35.00										
Piso Altitudinal	3858.00	3659.00	3399.00	3125.00	2982.00	2679.00	Grapos	Cuenta Suma Promedio Varianza	RESUMEN		PRUEBA DE	TUKEY		RESTA	DE MEDIAS			ELACION CON HSD
Relacion AUN Labil	1.00 9.87	2.00 5.52	3.00 7.44	4.00 2.67	5.00	6.00	Piso altitudinal 1 Piso altitudinal 2	8 34.586 4.323298 12.31853 http://	TESIS YVALORES DEF H0 Las medias son estadisticamen	te imples	HSD: Multiplicador	4.332684482 4.16	MI 4 272707	M2 M3	M4 M5 96 5.5993059 3.6433	M6 1342 6,1086037		ISD= 4.3327 A3-M1= < M5-M1= <
%	1.97	2.28	7.14	5.97	5.91	162	Piso altitudinal 3	4 32.368 8.09193 0.968354	Ha Las medias no son estadísticas		Mse=	7.810160567	VALORE	S			MI-MG= <	43-M2=> M5-M2=<
z=0-5 cm	10.06 2.85	2.87 3.34			2.92 2.68	2.43 1.88	Piso ahitufinal 4 Piso ahitufinal 5	8 44.794 5.599306 4.706023 8 29.147 3.643334 1.271676	FCal 2.56 FTab 2.44		0=	7.2	MI	MI M2	M3 M4 97 -3.77 -	M5 M6 L28 0.68 -1.79	MI-M5= <	G-M4= < M5-M3= > M5-M5= > M5-M4= <
	1.71 2.54	436 721		2.67 5.97	3.58 2.77	13.41 8.40	Piso altitudnal 6 ANÁLISIS DE VARIANZA	8 48.869 6.108604 23.82086 VALO	PCab=FTab= B0 se rechi R DEEFECTO = 0.23	12			M2 M3	-0.97 C	.00 -4.74 - .74 0.00			43-M6=< M5-M6=< 44-M1=< M6-M1=<
	2.49	2.65		538	4.17	12.52	Origen de las variaciones	de cuadros de lib de los cs F	Probabilidad Valor critico p				M4	1.28 2		100 1.96 -0.51	M2-M3=>	M-M2= < M6-M2= <
	3.09	3.84 2.45		8.37	2.76	6.15	Entre grupos Dentro de los grupos	99.77605 5 19.95521 2.555032 328.0267 42 7.810161	0.041696608	2.43769264			M5 M6	-0.68 0 1.79 2		1.96 0.00 -2.47 1.51 2.47 0.00		64-M3=< M6-M3=< 64-M5=< M6-M4=<
		172					Total	427.8028 47									M2-M6= < 1	M6-M5= <
		150					Ion	427,0000 47										
Promedios	4.3232976	66 3.3537289	9 8.0919296	5.59930593	3.6433342	6.10860365												
Piso Altitudinal	3858.00 1.00		3399.00 3.00		2982.00 5.00	2679.00 6.00	Grupos Piso altitudinal I	Caenta Sama Pronedio Varianza 8 34.326 4.290742 4.142811 mpo	RESUMEN TESIS YVALORES DEF		PRUEBA DE HSD=	TUKEY 6.467812615	MI	M2 M3	DE MEDIAS M4 M5	M6		ELACION CON HSD ESD= 6.468
Relacion AUN Labil 5-10 cm	7.64	5.52 5.91	24.03	3.79	3.71 2.11	1.40	Piso ahitudinal 2 Piso ahitudinal 3	12 84.789 7.065721 16.16844 4 77.249 19.31221 137.4058	H0 Las medias son estadisficamen		Multiplicador	4.16 17.40446562	4.290742 VALORE	21 7.065721 19.312	007 2.6722172 2.3703		MI-M2=<	M5-M1=> M5-M1=< M5-M2=> M5-M2=<
%	450	413	1250	150	5.60	126	Piso altitudinal 4	8 21.378 2.672217 1.447917	FCal 10.98	car gues	Mse= n=	27.499480962 7.2	VALURE	MI M2			MI-M4= <	Ø-M4=> M5-M3=>
z=5-10 cm	436 1.62	15.86 14.83	33.42	124 379	3.72 1.30	136 588	Piso ahitufinal 5 Piso ahitufinal 6	8 18.963 2.370552 3.30205 8 34.858 4.357276 11.23826	F Tab 2.44 FCab-FTab: B0 se rech	2			M1 M2	2.77	.77 -15.02 .00 -12.25	1.62 1.92 -0.07 4.39 4.70 2.71	MI-M5= < MI-M6= <	M3-M5=> M5-M4=< M3-M6=> M5-M6=<
	2.80	3.48		3.75	0.80	125	ANÁLISIS DE VARIANZA	VALO	R DEEFECTO = 0.57				M3	15.02 12	.25 0.00 b	664 16.94 14.95	M2-M1=<	44-M1=< M6-M1=<
	5.37 1.98	7.42 6.83		150 124	0.21 1.51	\$.42 \$.11	Origen de las variaciones Entre grupos	955.8081 5 191.1616 10.98348	Probabilidad Valor critico p 8.38452E-07	ara F 2.43769264			M4 M5	-1.62 -4 -1.92 -4	70 -16.94 -	100 0.30 -1.69 130 0.00 -1.99	M2-M4= <	M6-M2= < M6-M2= < M6-M3= >
		5.92 6.45					Dentro de los grupos	730.9876 42 17.40447					M6	0.07 -2	71 -14.95	1.69 1.99 0.00		M-M5=< M6-M4=< M-M6=< M6-M5=<
		491					Total	1686.796 47									M2-Mb= < 1	04-M0=< M0-MD=<
Promedios	4.29074220	433	8 19 317207	2.67221715	7 2 37035162	4 357775903												
Pisos altitudinales	3858.00	3659.00	3399.00	3125.60	2982.00	2679.00	Grupos	Caenta Sama Promedio Varianza	RESUMEN		PRUEBA DE	TUKEY		RESTA	DE MEDIAS	+		ELACION CON HSD
	1.00	2.00	3.00	4.00	5.00	6.00	Piso altitudinal l	6.00 0.10 0.02 0.00 HIPO	TESIS YVALORES DE F		HSD=	0.0113	MI	M2 M3	M4 M5	M6		RSD= 0.0113
Masa Labil N Mg ba-1	6.02 6.01	6.63	0.01		0.01 0.01	0.04 0.03	Piso altitudinal 2 Piso altitudinal 3	9.00 0.14 0.02 0.00 3.00 0.05 0.02 0.00	Ho Las medias son estadisticament Ha Las medias no son estadistican		Multiplicador Mse=	430 630	VALORE		02 0.02	0.02	MI-MG=<	I3-M1= < M5-M1= < I3-M2= < M5-M2= <
	6.02 6.02	6.02	9.81	0.02 0.02	0.01	0.03	Piso altitudinal 4 Piso altitudinal 5	6.00 0.12 0.02 0.00 6.00 0.05 0.01 0.00	FCal 3.13 FTab 2.53		1=	5.40	NO.		M3 M4	M5 M6 891 0.0088917 -0.00313		Æ-M4=< M5-M3=< Æ-M5=< <mark>M5-M4=></mark>
z=0-5 cm	0.02	6.80		0.02	0.00	9.01 9.01	Piso altitudinal 6	6.00 0.12 0.02 0.00	FCal>FTal= B0 se rech	12			M2	-0.000354	0.0008367 -0.004	245 0.0075375 -0.00449	MI-M6= < 1	43-M6= < M5-M6= >
	6.02	6.02		0.02	0.00	0.01	ANÁLISIS DE VARIANZA Orioen de los poriaciones	de cuada)s de lib de los ci F	R DEFFECTO = 0.34 Probabilidad Valor critico s	ura F			M3 M4	0.002191 -0.000		082 0.0067008 -0.00532		64-M1=< M6-M1=< 64-M2=< M6-M2=<
		6.02					Entre grupos	0.00 5.00 0.00 3.13 0.00 30.00 0.00	0.02	2.53			M5	-0.008992 -0.007	38 -0.0067008 <mark>-0.011</mark>	782 0 -0.01203	M2-M4= < 1 M2-M5= <	44-M3=< M6-M3=< 44-M5=> M6-M4=<
Promedios	0.0	0.02	2 0.0	2 0.0	0.0	0.02	Dentro de los grupos	0.00 30.00 0.00					Mb	0.005134 0.0044	81 0.0053248 0.0002	0.0120256 0		04-M5=> M6-M5=>
							Total	0.00 35.00										
Pisos altitudinales	3858.00	3659.00	3399.00	3125.00	2982.00	2679.00	Grupos	Cuenta Suma Promedio Varianza	RESUMEN		PRUEBA DE	TUKEY						
Massa Labil COS	1.00	2.00	3.00 1.41	4.00	5.00	6.00	Piso altitudinal 1 Piso altitudinal 2	6.00 7.97 1.33 0.37 HPO 6.00 5.48 0.91 0.28	TESIS YVALORES DE F H0 Las medias son estadisticamen	ta imple:	HSD: Multiplicador	L17 437						
Mg ha-l	1.04	6.84	1.31	054	1.43	0.66	Piso altitudinal 3	3.00 3.53 1.18 0.10	Ha Las medias no son estadística		Mse=	032						
	0.44 1.28	0.59	0.81	1.16	1.86 0.41	0.73 1.10	Piso altitudinal 4 Piso altitudinal 5	3.00 2.10 0.70 0.16 6.00 9.82 1.64 0.72	FCal 2.03 FTab 2.62		1=	450						
ξ=0-5 см	2.17 1.84	0.25 0.75	F		1.88	0.65 0.52	Piso altitudinal 6 ANÁLISIS DE VARIANZA	6.00 4.82 0.80 0.07	FrakFTab: Bit mose red	222								
								de cuadros de lib de los co F	Probabilidad Valor critico p	ara F								
	E						Entre grupos Dentro de los grupos	3.27 5.00 0.65 2.03 7.73 24.00 0.32	0.11	2.62								
Promedios	1.3	33 0.9	1 1.1	0.7	1.6	0.80	Total	10.99 29.00										
Pisos altitudinales	3858.00		3399.00		2982.00	2679.00 6.00	Grupes Piso altitudinal I	Caenta Sama Promedio Varianza 6 17.134 2.855684 0.994865 mpo	RESUMEN TESTS YVALORES DE E		PRUEBA DE HSD=	TUKEY 9.63	MI		DE MEDIAS M4 M5	M6		RELACION CON HSD RSD= 9.63
Relation SF/SH	3.18	2.83	6.00	331	42.00	12.50	Piso abitudinal 2	9 23.624 2.624929 0.120831	H) Las medias son estadisticamen		Multiplicador	430	2.855684	2634929 6.4760	05 3.8086247 3		M1-M2=<	/3-M1=< M5-M1=>
	4.25 3.70	3.88 2.31	5.43 8.00		43.00 21.50	13.00 32.00	Piso ahitufinal 3 Piso ahitufinal 4	3 19.429 6.47619 1.823129 6 22.852 3.808625 0.19699	Ha Las medias no son estadística FCal 27.92	nente iguales	Mse= n=	27.10 5.40	VALORE	MI M2	M3 M4	M5 M6		43-M2=< M5-M2=> 43-M4=< M5-M3=>
	2.11	3.00	Г	331	23.50 27.50	9.50	Piso altitudinal 5	6 184.5 30.75 87.875	FTab 2.53	_			M1 M2		65 -3.6205062 -0.95 0 -3.8512617 -1.183		MI-M5=> 1	43-M5=> M5-M4=>
	195	254 292		430 3.82	27.50 27.00	11.25	Piso alituánal 6 ANÁLISIS DE VARIANZA	VALO	FraidFTab: BB se recha R DEEFECTO: 0.82				MS	3.620506 3.8512	17 0 2.6675		M2-M1= < 1	44-M1=< M6-M1=>
		2.07					Origen de las variaciones Entre grupos	de cuadros de lib de los ci F 3783.776 5 756.7552 27.92182	Probabilidad Valor critico p 1.94764E-10	ara F 2.533554548			M4 M5	0.95294 1.1839 27.89432 28.125	159 -2.6675658 171 24.27381 26.941	0 -26.94138 -10.983 375 0 15.95833		M6-M2=> M6-M3=< M6-M3=<
		250					Dentro de los grupos	813.0793 30 27.10264					M6	11.93598 12.166	8.3154762 10.98	042 -15.95833 0	M2-M5=> 1	44-M5=> M6-M4=>
Promedios	2.8	86 2.6	2 6.4	3.8	30.7:	14.79	Total	4596.855 35									M2-ME>	####> MSAS=>
Pisos altitudinales	3858.00 1.00		3399.00 3.00		2982.00 5.00	2679.00 6.00	Grupos	Cuenta Sama Promedio Varianza	RESUMEN		PRUEBA DE	TUKEY		RESTA	DE MEDIAS			ELACION CON HSD
Pendiente %	15	15	35	20	10	40	Piso altitudinal l	8 160 20 28.57143 HIPO	TESIS YVALORES DEF	ta insular	HSD=	5.167801548	MI	M2 M3	M4 M5	M6		ISD=5.1678
	15 15	15 15	35 35	20 20	10	40	Piso altitudinal 2 Piso altitudinal 3	12 140 11.66667 6.060606 4 140 35 0	Hi Las medias son estadisticament Ha Las medias no son estadistican		Multiplicador Mse=	416 11.11111111	VALORE		JJ 30	20 30	MI-M2⇒ I	G-M1⇒ M5-M1=> G-M2⇒ M5-M2≪
	15 25	15 10	35	20 20	10 10	40 30	Piso altitudnal 4 Piso altitudnal 5	8 160 20 0 8 80 10 0	FGI 78.00 FTab 2.44		B=	7.2	M	MI M2	M3 M4	M5 M6	MI-M4=< 1 MI-M5=>	G-M4⇒ M5-M3⇒ G-M5⇒ M5-M4⇒
	25	- 10		20	10	30	Piso altitudinal 6	8 280 35 28.57143	Feak-FTab: B0 se recha	12			M2	-8.33	00 -23.33	1.67 -23.33	Ml-M6⇒	Ø-M6< M5-M 6⇒
	25 25	10		20	10 10	30 30	ANÁLISIS DE VARIANZA Origen de las variaciones		R DEEFECTO = 0.90 Probabilidad Valor critico p	ara F			M3 M4	15.00 23 0.00 8	33 0.00 1: 33 -15.00	5.00 25.00 0.00 100 10.00 -15.00	M2-M1⇒ 1 M2-M3⇒ 1	64-M1⇒ M6-M1⇒ 84-M2⇒ M6-M2⇒
		10					Entre grupos	4333.333 5 866.6667 78	3.77505E-20	2.43769264			M5	-10.00 -1		25.00	M2-M4⇒ 1 M2-M5=<	MAMES MAMES
	E	10 10					Dentro de los grupos						Mb	15.00 23	.33 0.00 1	23.0 000	M2-M6=>	#####> ###### #####> ######
Promedios		10	7 .	5 7	0 "	35	Total	4800 47										
aucusts		.1.000000	1 3	-	-	33												



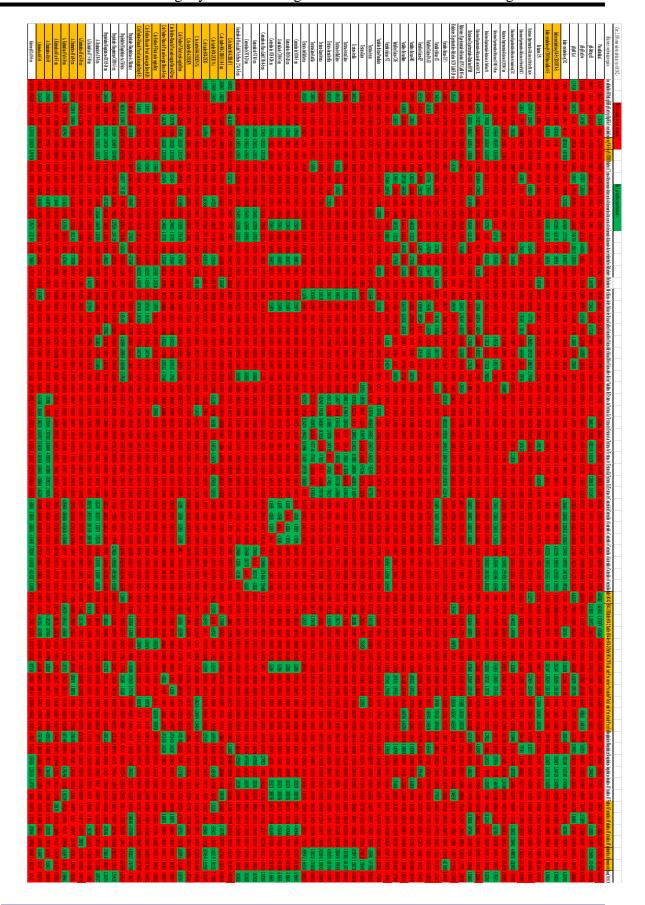


Anexo 1.5 Análisis de varianza y prueba de Tukey: Vegetación


Anexo 2 Matrices de correlación



Anexo 2.5 Matrices de correlación: Vegetación

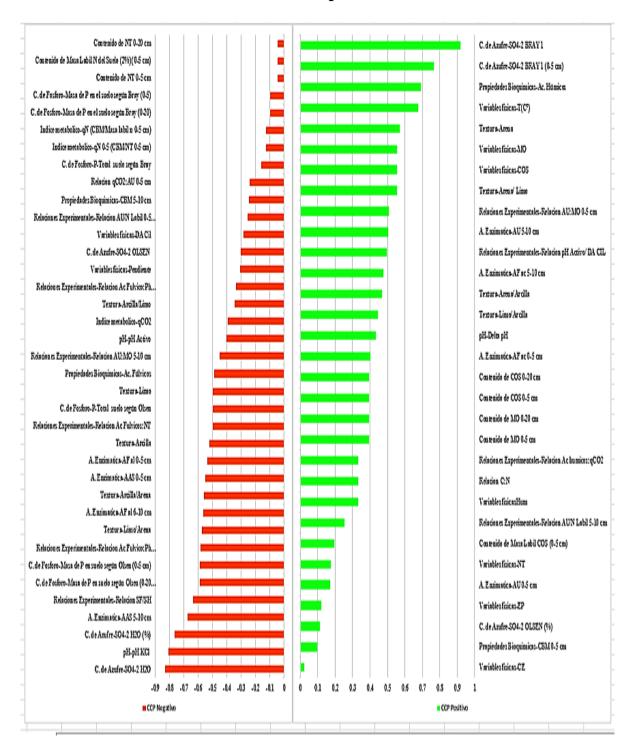

Coeficientes de correlacion (P	.G)	г	mayor o igu	iai a 0.40) (p ∨=0.	05)		I mayor o a	ual a 0.60 (p	o =0.0.</th <th>5)</th> <th></th> <th>r mayor o</th> <th>iguai a i</th> <th>0.00 (p ~</th> <th>-0.05)</th> <th></th> <th>-</th> <th></th> <th></th>	5)		r mayor o	iguai a i	0.00 (p ~	-0.05)		-		
	itud promep	h Activo p	h KCl De	elta ph la	acion C	CE	HUM%	EP%	мо % сс	S % N	NT % (OS g kg	Tgkg-	um Mg	Ful Mg)-5 cn	ı) Məcm	ı) M1	0cm) M	qC0
Altitud promedio ph Activo	1.00 -0.19	1.00																		
ph KCl	-0.75	0.70	1.00																	
Delta ph Relacion C:N	0.56 0.45	0.62 0.66	-0.13 0.23	1.00	1.00															
CE CE	0.43	0.70	0.23	0.82	0.56	1.00														
HUM%	0.05	-0.92	-0.44	-0.80	-0.57	-0.88	1.00													
EP%	-0.08	-0.69	-0.11	-0.83	-0.32	-0.90	0.91	1.00												
MO %	0.37	-0.56	-0.77	0.07	-0.35	0.19	0.23	-0.13	1.00											
COS %	0.37	-0.56	-0.77	0.07	-0.34	0.19	0.23		1.00	1.00										
NT %	-0.11	-0.70	-0.54	-0.37	-0.80	-0.16	0.44	0.09	0.83	0.83	1.00									
COS g kg -1	0.37	-0.56	-0.77	0.07	-0.35	0.19	0.23	-0.13	1.00	1.00	0.83	1.00								
NT g kg -1	-0.07	-0.71	-0.57	-0.35	-0.79	-0.16	0.44		0.84	0.84	1.00	0.84	1.00							
Ac. Hum Mg ha-1	0.67	-0.08	-0.70	0.65	-0.01	0.31	-0.22		0.48	0.48	0.22	0.48	0.26	1.00						
Ac. Ful Mg ha-1 CBM(0-5 cm) Mg ha-1	-0.27 0.09	0.97	0.76	0.52 -0.11	0.58	-0.52 -0.24	-0.84 0.09	-0.57 0.46	-0.72 -0.69	-0.72 -0.69	-0.77 -0.80	-0.72 -0.69	-0.77 -0.81	-0.12 -0.56	1.00 0.31		.00			
AU(0-5cm) Mg ha-1	0.06	0.01	-0.36	0.41	-0.26	0.61	-0.38		0.74	0.74	0.64	0.74	0.65	0.59	-0.14			1.00		
AU(5-10cm) Mg ha-1	0.56	0.35	-0.23	0.74	0.68	0.83	-0.53		0.42	0.42	-0.11	0.42	-0.10	0.33	0.13			0.43	1.00	
qCO2	-0.41	0.00	0.57	-0.62	0.10	-0.59	0.38		-0.71	-0.71	-0.48	-0.71	-0.50	-0.85	0.13			0.92	-0.52	
peficiente de determinacion		:	L TO D	_		o igual a (mayor o	o igual a	0.60 (p <	(=0.05)		r*r mayo				=0.05)	-
	itud promep	h Activo p	h KCl De	elta ph la	acion C	CE	HUM%	EP%	мо % сс	OS % N	NT % (OS g kg	Tgkg-	um Mg	Ful Mg	1)-5 cn	ı) M5cm	ı) M1	0cm) M	qC
Altitud promedio ph Activo	1.00 0.04	1.00																		
ph KCl	0.04	0.48	1.00																	
Delta ph	0.31	0.39	0.02	1.00																
Relacion C:N	0.20	0.44	0.05	0.45	1.00															
CE	0.03	0.49	0.02	0.67	0.32	1.00														
HUM%	0.00	0.85	0.19	0.63	0.32	0.78	1.00	_												
EP%	0.01	0.47	0.01	0.69	0.10	0.81	0.83		1 65											
MO %	0.14	0.32	0.60	0.00	0.12	0.04	0.05		1.00	1.00										
COS % NT %	0.14	0.32	0.60	0.00	0.12	0.04	0.05		1.00	0.69	1.00									
OS g kg -1	0.01	0.49	0.30	0.14	0.63	0.03	0.19		0.69 1.00	1.00	0.69	1.00								
NT g kg -1	0.14	0.50	0.33	0.00	0.12	0.04	0.03		0.71	0.71	1.00	0.71	1.00							
Ac. Hum Mg ha-1	0.45	0.01	0.50	0.43	0.00	0.10	0.05	0.27	0.23	0.23	0.05	0.23	0.07	1.00						
Ac. Ful Mg ha-1	0.07	0.94	0.57	0.27	0.33	0.27	0.70	0.33	0.52	0.52	0.59	0.53	0.60	0.01	1.00					
CBM(0-5 cm) Mg ha-1	0.01	0.06	0.17	0.01	0.39	0.06	0.01	0.22	0.48	0.48	0.64	0.48	0.66	0.32	0.10	1	.00			
AU(0-5cm) Mg ha-1	0.00	0.00	0.13	0.17	0.07	0.37	0.14	0.50	0.54	0.54	0.41	0.54	0.42	0.34	0.02	C	.82	1.00		
AU(5-10cm) Mg ha-1																				
	0.32	0.12	0.05	0.55	0.47	0.68	0.28		0.17	0.17	0.01	0.17	0.01	0.11	0.02			0.19	1.00	
qCO2	0.17	0.00	0.33	0.55	0.47	0.68	0.28 0.15		0.17 0.51	0.17	0.01	0.17	0.01 0.25	0.11	0.02			0.19	0.27	
	0.17	0.00	0.33											_						
qCO2 Con N=5, Por cada par de Valor Calculado d	0.17 datos en lo	0.00 s coeficie	0.33 entes nh Activ	0.39	0.01	0.35	0.15		0.51	0.51		0.51		0.72	0.02	(.65	0.84	0.27	H
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedi	0.17 datos en lo	0.00 s coeficie tud proi	0.33 entes mh Activ	0.39	0.01	0.35	0.15	0.52	0.51	0.51	0.23	0.51	0.25	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo	0.17 datos en lo	0.00 s coeficie tud proi	0.33 entes nh Activ 4 ######	0.39 ph KC	0.01	0.35	0.15	0.52	0.51	0.51	0.23	0.51	0.25	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCl Detta pn	0.17 datos en lo	0.00 s coeficie tud proi ##### -0.3 -1.9	0.33 entes mh Activ # 4 ##### 9 1.68 6 1.38	0.39 Pph KC	0.01 Delta p	0.35	0.15	0.52	0.51	0.51	0.23	0.51	0.25	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCl Detta ph Relacion C:N	0.17 datos en lo	0.00 s coeficie tud proi ###### -0.3 -1.9 1.1	0.33 entes mh Activ 4 ###### 9 1.68 6 1.38 6 1.54	0.39 ph KC ##### -0.22 0.41	0.01 Delta p	0.35	0.15	0.52	0.51	0.51	0.23	0.51	0.25	0.72	0.02	(.65	0.84	0.27	H
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCl Detta pn Relacion C:N	0.17 datos en lo	0.00 s coeficie tud proi ###### -0.3 -1.9 1.1 0.8	0.33 entes mh Activ 4 4 ##### 9 1.68 6 1.38 6 1.54 9 1.70	0.39 *##### -0.22 0.41 0.24	0.01 Delta p	0.35	0.15	0.52 UM% EP%	0.51	0.51	0.23	0.51	0.25	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Con N=5, Por cada par de Valor Calculado di Altitud promedi ph Activo ph KCI Detta pn Refacion C:N CE HUM%	0.17 datos en lo	0.00 s coeficie tud proi ###### -0.3 -1.9 1.1 0.8 0.2	0.33 entes mh Activ 4 4 ##### 9 1.68 6 1.54 6 1.54 9 1.70 9 -4.17	0.39 ##### -0.22 0.41 0.24 -0.85	0.01 Delta p	0.35	0.15 CE #### -3.28	0.52 UM9 EP9	0.51 MO %	0.51	0.23	0.51	0.25	0.72	0.02	(.65	0.84	0.27	NgC
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedii ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP%	0.17 datos en lo	0.00 s coeficie tud proi ###### -0.3 -1.9 1.1 0.8 0.2 0.00 -0.1	0.33 entes mh Activ 4 4 ##### 9 1.68 6 1.38 6 1.54 9 1.70 9 -4.17 3 -1.64	0.39 ph KC ##### -0.22 0.41 0.24 -0.85 -0.19	0.01 Delta p	0.35 Placion (7##### 3 1.18 3 -1.19 3 -0.59	0.15 CE #### -3.28	0.52 UM° EP° #### 3.84 #####	0.51 6 MO %	0.51 CO	0.23	0.51	0.25	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedii ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP% MO %	0.17 datos en lo	0.00 s coeficie ud proi ###### -0.3 -1.9 1.1 0.8 0.2 0.0 -0.1	0.33 ntes mh Activ 4 4 4 1.68 6 1.54 6 1.70 9 1.70 9 -1.16 9 -1.18	0.39 ph KC ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11	0.01 Delta p 1.56 2.48 -2.28 -2.58	0.35 Hacion (0.15 CE #### -3.28 -3.61 0.34	0.52 UM° EP° 3.84 #### 0.41 -0.41	0.51 % MO %	0.51 CO	0.23 OS %	0.51	0.25	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP% MO % COS %	0.17 datos en lo	0.00 s coeficie ud proi ##### -0.3 -1.9 0.8 0.2 0.0 -0.1	0.33 entes mh Activ 4 4##### 9 1.68 6 1.54 9 1.70 9 -4.17 3 -1.64 9 -1.18 0 -1.18	0.39 ph KC ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -2.11	0.01 Delta p 1.56 2.48 -2.28 -2.58 0.11	0.35 Hacion (0.15 CE #### -3.28 -3.61 0.34 0.34	0.52 UM9 EP9 #### 3.84 *#### 0.41 -0.41 0.41 -0.41	0.51 6 MO % ###### 1506.33	0.51 CO	0.23 0S %	0.51 NT %	0.25	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Con N=5, Por cada par de Valor Calculade Altitud promedi ph Activo ph KCI Dena pn Refacion C:N CE HUM% EP% MO % COS % NT %	0.17 datos en lo	0.00 s coeficie ud proi ##### -0.3 -1.9 0.8 0.2 0.0 -0.1 0.6 0.7 -0.1	0.33 entes mh Activ 4 4##### 9 1.68 6 1.54 9 1.70 9 -4.17 3 -1.64 9 -1.18 0 -1.18 9 -1.70	0.39 ph KC ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12	0.01 Delta p 1.56 2.48 -2.28 -2.58 0.11 -0.70	0.35 Hacion C 7##### 3 1.18 3 -1.19 3 -0.59 1 -0.64 1 -0.64 0 -2.28	#### -3.28 -3.61 0.34 -0.28	0.52 ##### 3.84 7#### 0.41 -0.41 -0.41 -0.85 0.85	## #23 ###### 23 1506.3 15 2.5	0.51 CO	0.23 0S % 0IV/0! 2.58	0.51 NT %	0.25)S g kg	0.72	0.02	(.65	0.84	0.27	NqC
qCO2 Valor Calculado d Altitud promedii ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1	0.17 datos en lo	0.00 s coeficie ud proi ##### -0.3 -1.9 0.8 0.2 0.0 -0.1	0.33 entes mh Activ 4 4 ##### 9 1.68 6 1.54 6 1.54 9 1.70 9 -4.17 3 -1.64 9 -1.18 0 -1.18 9 -1.70 0 -1.18	0.39 ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12 -2.11	0.01 Delta p 1.56 2.48 -2.28 -2.58 0.11 -0.70 0.11	0.35 Hacion C 7##### 3 1.18 3 -1.19 3 -0.59 1 -0.64 1 -0.64 0 -2.28 1 -0.64	#### -3.28 -3.61 0.34 0.34 -0.28 0.34	0.52 UM3 EP3 #### 3.84 #### 0.41 -0.: 0.41 -0.: 0.85 0. 0.41 -0.:	######################################	0.51 CO	0.23 0S %	0.51 NT %	0.25 DS g kg	0.72	0.02	(.65	0.84	0.27	N qC
qCO2 Valor Calculado d Altitud promedi ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1	0.17 datos en lo e t	0.00 s coeficie ud pror ##### -0.3 -1.9 1.1 0.8 0.2 0.0 -0.1 0.6 0.7 -0.1 0.7 -0.1	0.33 entes mh Activ 4 4 ##### 9 1.68 6 1.54 6 1.54 9 1.70 9 -4.17 3 -1.64 9 -1.18 0 -1.18 9 -1.70 0 -1.18 2 -1.73	0.39 ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12 -2.11 -1.22	0.01 Delta p 1.56 2.48 -2.28 -2.58 0.11 -0.70 0.11 -0.65	0.35 Placion C 7##### 3 1.18 3 -1.19 3 -0.59 1 -0.64 1 -0.64 0 -2.28 1 -0.64 5 -2.22	0.15 CE #### -3.28 -3.61 0.34 0.34 -0.28 0.34 -0.28	0.52 UM3 EP3 #### 3.84 7#### 0.41 -0 0.41 -0 0.85 0. 0.41 -0 0.85 0.	######################################	0.51 CO #11 #iD 99 44 30	0.23 0S % 0IV/0! 2.58 083.48 2.72	0.51 NT % ##### 2.59 42.52	0.25 OS g kg	0.72 Γg kg	0.02	(.65	0.84	0.27	MqC
qCO2 Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha-	0.17 datos en lo de t	0.00 s coeficie ud proi s coeficie ud coe	0.33 mh Activ 4 4 4 4 4 4 4 4 4 4 4 4 4	0.39 ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12 -2.11 -1.22 -1.72	0.01 Parameter 1.56 2.48 -2.28 -2.58 0.11 -0.70 0.11 -0.65 1.50	0.35 Placion C 7##### 3 1.18 3 -1.19 3 -0.59 1 -0.64 1 -0.64 0 -2.28 1 -0.64 5 -2.22 0 -0.02	0.15 CE #### -3.28 -3.61 0.34 0.34 -0.28 0.34 -0.28	0.52 UM9 EP9 #### 3.84 7### 0.41 -0.041 -0.085 0.041 -0.85 0.041 -0.39 -1.4	######################################	6 CO ##iD 9 44 30 24	0.23 0S % 0IV/0! 2.58 083.48 2.72 0.94	0.51 NT % ##### 2.59 42.52 0.40	0.25 DS g kg ##### 2.72 0.94	0.72 Γg kg	0.02	ul M	25 cm)	0.84	0.27	MqC
qCO2 Con N=5, Por cada par de Valor Calculado d Altitud promedii ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1	0.17 0.17 0.17 0.17	0.00 s coeficie ud pror ##### -0.3 -1.9 1.1 0.8 0.2 0.0 -0.1 0.6 0.7 -0.1 0.7 -0.1	0.33 mates mh Activ 4 4 ##### 9 1.68 6 1.38 6 1.54 9 -1.17 3 -1.64 9 -1.18 0 -1.18 0 -1.18 2 -1.73 6 -0.14 8 6.75	0.39 ph KC ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12 -2.11 -1.22 -1.72 2.00	0.01 Pallan pi 1.56 2.48 -2.28 -2.58 0.11 -0.70 0.11 -0.65 1.50	0.35 Placion C P##### 3 1.18 3 -1.19 5 -0.64 1 -0.64 0 -2.28 1 -0.64 5 -2.22 0 -0.02 4 1.23	0.15 CE #### -3.28 -3.61 0.34 -0.28 0.34 -0.28 0.57	0.52 UM* EP* 3.84 7### 0.41 -0 0.41 -0 0.85 0. 0.41 -0 0.85 00.39 -1.4 -2.66 -1	######################################	0.51 CO	0.23 0S % 0IV/0! 2.58 083.48 2.72	0.51 NT % ************************************	0.25 OS g kg	0.72 Γg kg	0.02	ul M	25 cm)	0.84 + cm)	0.27	N qC
qCO2 Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg la AU(0-5 cm) Mg la	0.17 datos en lo et lo	0.00 s coeficie ud prov ###### -0.3 -1.9 1.1 0.8 0.2 0.0 -0.1 0.7 -0.1 1.5 -0.4	0.33 mates mh Activ 4 "##### 9 1.68 6 1.38 6 1.54 9 -1.18 0 -1.18 9 -1.70 0 -1.18 2 -1.73 6 -0.14 8 6.75 6 0.44	0.39 ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12 -2.11 -1.12 -1.72 2.00 0.78 -0.67	0.01 Delta p 1.56 2.48 -2.28 -2.58 0.11 -0.70 0.15 -0.61 -0.18 0.78	0.35 Placion (C) 1.18 3	0.15 CE #### -3.28 -3.61 0.34 -0.28 0.34 -0.28 0.57 1.04 -0.42 1.32	0.52 UM 9 EP9 ##### 3.84 9#### 0.41 -0.041 -0.041 -0.041 -0.085 0.041 -0.041 -0.041 -0.041 -0.041 -0.071 -0.16 0.071 -0.17	## #23 ###### #23 1506.3 1506.3 13 2.7 166 0.9 1 -1.8 1672 1.18	0.51	0.23 0S % 0IV/0! 2.58 083.48 2.72 0.94 -1.82	0.51 NT % P#### 2.59 42.52 0.40 -2.07 -2.33 1.44	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66	0.72 \textit{	0.02 ium Mg ##### -0.21 -1.18 1.25	##### 0.57	25 cm)	0.84 cm)	0.27 N0cm)	
qCO2 fron N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion U:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l AU(0-5 cm) Mg h AU(0-5 cm) Mg ha-	0.17 datos en lo et lo	0.00 s coeficie ud proc ###### -0.3 -1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	0.33 mites mh Activ 4 4 ###### 9 1.68 6 1.38 6 1.54 9 1.70 3 -1.64 9 -1.18 0 -1.18 2 -1.73 6 -0.14 8 6.75 6 0.44 1 0.02 8 0.65	0.39 ph KC ###### 0.24 -0.85 -0.19 -2.11 -1.12 -1.72 2.00 -0.67 -0.42	0.01 Delta p 1.56 2.48 -2.28 -2.58 -2.56 1.04 -0.11 -0.65 1.50 1.04 -0.18 0.78 1.92	0.35 Placion (1.18 3 1.18 3 -0.59 4 -0.64 -0.64 5 -2.22 -0.02 4 1.23 3 1.40 3 -0.47 2 1.62	0.15 CE I #### -3.28 -3.61 0.34 -0.28 0.34 -0.28 0.57 1.04 -0.42 -1.32 2.55	0.52 WH#### 3.84 W#### 3.84 0.41 -0.041 -0.085 0.041 -0.39 -1.4 -2.66 -1.0 0.16 0.7 -1.1 -1.108 -1.108	####### 23 ###### 23 1506.3 15 2.5 23 1686.3 33 2.7 26 0.9 21 -1.8 20 0.7	0.51	0.23 0.23 0.23 0.25	0.51 NT % 1.259 42.52 0.40 -2.07 -2.33 1.44 -0.20	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.79	0.72 Γg kg Γg kg 0.47 -2.12 -2.40 1.47 -0.18	0.022 ium Mg ##### -0.21 -1.18 1.25 0.60	##### 0.57 -0.24	25 cm)	0.84 cm)	0.27 N0cm)	
qCO2 Valor Calculado d Altitud promedio ph Activo ph KCI Dena pn Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l AU(5-10 cm) Mg l AU(5-10 cm) Mg l AU(5-10 cm) Mg l	0.17 datos en los et lo	0.00 s coeficie tud pror tu	0.33 mites mh Activ 4 44 44 44 44 44 44 44 44 4	0.39 ph KC ###### 0.24 -0.85 -0.19 -2.11 -1.12 -1.72 2.00 -0.67 -0.42	0.01 Delta p 1.56 2.48 -2.28 -2.58 -0.11 -0.70 0.11 -0.65 1.50 1.04 -0.18 0.78	0.35 Placion (1.18 3 1.18 3 -0.59 4 -0.64 -0.64 5 -2.22 -0.02 4 1.23 3 1.40 3 -0.47 2 1.62	0.15 CE I	0.52 UM* EP* #### 3.84 4### 0.41 -0.20 0.85 0.41 -0.85 0.041 -0.39 -1.4 -0.65 -1.1 0.16 0.71 -1.1 -1.08 -1.1 0.71	## ###################################	0.51	0.23 98 % 11V/0! 2.58 083.48 2.72 0.94 -1.82 -1.66 1.89	0.51 NT % 1.259 42.52 0.40 -2.07 -2.33 1.44 -0.20	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.79 -1.75	0.72 \(\begin{align*} \Gamma & \text{g kg} \\ \Gamma & \text{g kg} \\ \Omega & \text{o.47} \\ -2.12 & \text{1.47} \\ -0.18 & \text{-1.01} \\ -1.011 & \text{o.18} \\ \Omega & \text{o.18} & \text{o.18} \\ \Omega & o.1	##### -0.21 -1.18 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.044 2.385	0.84 cm) cm) cm)	0.27 N0cm)	
qCO2 Valor Calculado d Altitud promedii ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l AU(5-10 cm) Mg h QCO2 Con: 2.3534 como valor de	0.17 datos en to e t 0 11 ina-1 ina-1 tablas de t	0.00 s coeficie ud pros s coefic	0.33 mites mh Activ 4 4 ##### 9 1.68 6 1.34 6 6 1.54 9 9 -4.17 3 -1.64 9 -1.18 0 -1.18 2 -1.18 0 -1.18 0 -1.18 0 -1.18 0 -0.14 1 0.02 8 0.65 8 0.00 N-2)	0.39 h KC ###### -0.222 0.41 0.24 -0.85 -0.19 -2.11 -2.11 -1.12 -1.12 2.00 0.78 -0.67 -0.42 1.20	0.01 Delta p 1.56 2.44 -2.28 -2.58 0.111 -0.17 -0.15 -0.15 1.50 1.50 1.30 -1.38	0.35 P##### 3 1.18 3 -1.19 3 -0.64 1 -0.64 1 -0.64 5 -2.22 1 -0.02 4 1.23 3 1.40 3 -0.47 1.62 3 0.17	0.15 CE -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 -1.27	0.52 UM*, EP*, #### 3.84 #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.85 0.1 -0.11 -0.1 0.85 0.0 0.71 -1.1 1.108 -1.1 0.71 1.1 variables e	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{4}
qCO2 Valor Calculado d Altitud promedii ph Activo ph KCI Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg la AU(5-10cm) Mg ha QCO2 Con: 2.3534 como valor de Relacion Confirmada/N	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 s coeficie ud pros ###### -0.3 -1.9 -1.9 0.8 0.2 0.0 0.0 -0.1 0.6 0.7 -0.1 1.5 -0.4 0.1 1.1 -0.7 (a=0.05) ud pros	0.33 intes mh Activ 4 4 ##### 9 1.68 6 1.70 9 -1.70 9 -1.18 0	0.39 h KC ###### -0.222 0.41 0.24 -0.85 -0.19 -2.11 -2.11 -1.12 -1.12 2.00 0.78 -0.67 -0.42 1.20	0.01 Delta p 1.56 2.44 -2.28 -2.58 0.111 -0.17 -0.15 -0.15 1.50 1.50 1.30 -1.38	0.35 P##### 3 1.18 3 -1.19 3 -0.64 1 -0.64 1 -0.64 5 -2.22 1 -0.02 4 1.23 3 1.40 3 -0.47 1.62 3 0.17	0.15 CE -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 -1.27	0.52 UM* EP* #### 3.84 4### 0.41 -0.20 0.85 0.41 -0.85 0.041 -0.39 -1.4 -0.65 -1.1 0.16 0.71 -1.1 -1.08 -1.1 0.71	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.79 -1.75	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta pn Refacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l AU(0-5 cm) Mg l AU(5-10 cm) Mg ha QCO2 Con: 2.3534 como valor de Relacion Confirmada/N Altitud promedi	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 s coeficie ud proi "####################################	0.33 mtes mh Activ 4 "##### 9 1.68 6 1.38 6 1.34 6 1.54 9 1.70 0 -1.18 9 -1.70 0 -1.18 2 -1.73 6 0.04 1 0.02 8 0.65 8 0.00 mh Activ ###################################	0.39 h KC ###### -0.222 0.41 0.24 -0.85 -0.19 -2.11 -2.11 -1.12 -1.12 2.00 0.78 -0.67 -0.42 1.20	0.01 Delta p 1.56 2.44 -2.28 -2.58 0.111 -0.17 -0.15 -0.15 1.50 1.50 1.30 -1.38	0.35 P##### 3 1.18 3 -1.19 3 -0.64 1 -0.64 1 -0.64 5 -2.22 1 -0.02 4 1.23 3 1.40 3 -0.47 1.62 3 0.17	0.15 CE -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 -1.27	0.52 UM*, EP*, #### 3.84 #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.85 0.1 -0.11 -0.1 0.85 0.0 0.71 -1.1 1.108 -1.1 0.71 1.1 variables e	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 Valor Calculado d Altitud promedi ph Activo ph KCI Detta pn Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg l AU(5-10 cm) Mg l AU(5-10 cm) Mg h QCO2 Con: 2.3534 como valor de Relacion Confirmada/A Altitud promedi ph Activo	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 ss coeficie ud proi	0.33 entes mh Activ 4 "##### 9 1.68 6 1.54 6 1.54 6 1.54 7 3 -1.64 9 -1.18 9 -1.70 0 -1.18 9 -1.70 0 -1.18 9 0 -1.70 0 0 -1.8 9 0.00 N-2 0.00 N-2 0.00 N-2 0.00 M-2 0.00 M	0.39 ##### -0.22 -0.41 -0.24 -0.85 -0.19 -2.11 -1.12 -2.11 -1.22 -0.078 -0.67 -0.42 1.20	0.01 Delta p 1.56 2.44 -2.28 -2.58 0.111 -0.17 -0.15 -0.15 1.50 1.50 1.30 -1.38	0.35 P##### 3 1.18 3 -1.19 3 -0.64 1 -0.64 1 -0.64 5 -2.22 1 -0.02 4 1.23 3 1.40 3 -0.47 1.62 3 0.17	0.15 CE -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 -1.27	0.52 UM*, EP*, #### 3.84 #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.85 0.1 -0.11 -0.1 0.85 0.0 0.71 -1.1 1.108 -1.1 0.71 1.1 variables e	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 Valor Calculado d Altitud promedii pin Activo ph KCI Detta pn Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l AU(5-10 cm) Mg l AU(5-10 cm) Mg h QCO2 Con: 2.3534 como valor de Relacion Confirmado? Altitud promedii ph Activo ph KCI	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 os coeficie ud pror ###### -0.3 o.00 os coeficie ud pror ###### -0.3 o.00 o.00 o.01 o.01 o.01 o.01 o.02 o.00 o.00 o.01 o.01 o.01 o.01 o.01 o.01	0.33 intes the Activ 4 "##### 9 1.68 6 1.54 9 1.70 9 -4.17 3 -1.64 9 -1.18 9 -1.70 0 -1.18 2 -1.73 6 -0.14 6 0.44 1 0.02 8 0.65 8 0.00 N-2) The Activ ##### 9 1.68	0.39 ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12 2.00 0.78 -0.42 1.20 ph KC	0.01 Delta р	0.35 **Tlacion C** **Transport	0.15 CE -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 -1.27	0.52 UM*, EP*, #### 3.84 #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.85 0.1 -0.11 -0.1 0.85 0.0 0.71 -1.1 1.108 -1.1 0.71 1.1 variables e	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta pn Refacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg AU(0-5 cm) Mg AU(5-10 cm) Mg ha QCO2 on: 2.3534 como valor de Relacion Confirmada/ Altitud promedi ph Activo ph KCI	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 os coeficie ud proude se coeficie ud pr	0.33 intes mh Activ 4 ##### 9 1.68 6 1.54 6 1.54 6 1.73 3 -1.64 9 -4.17 3 -1.64 9 -1.18 0 -1.18 2 -1.73 6 -0.14 8 2 -1.73 6 0.44 1 0.02 8 0.05 8 0.05 N-2) mh Activ 4 ##### 9 1.68 6 1.38	0.39 ###### -0.22 0.41 -0.88 -0.19 -2.11 -1.12 -1.11 -1.22 -1.72 -0.08 -0.67 -0.42 -1.20 ph KC	0.01 PHHHHHH 1.50-1.50-1.50-1.50-1.50-1.50-1.50-1.50-	0.35 Parameter State - 0.64 - 0.6	0.15 CE -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 -1.27	0.52 UM*, EP*, #### 3.84 #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.85 0.1 -0.11 -0.1 0.85 0.0 0.71 -1.1 1.108 -1.1 0.71 1.1 variables e	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 'on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion U:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg h AU(0-5 cm) Mg h	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 s coeficie ud proi wide wide proi wide proi wide proi wide proi wide proi wide proi wide wide proi wide proi wide proi wide proi wide proi wide proi wide wide wide wide wide wide wide wid	0.33 min h Activ h Activ 4 "##### 9 1.68 6 1.54 6 1.54 9 1.70 9 -4.17 3 -1.64 9 -1.18 9 0 -1.18 9 0 -1.18 9 0 -1.18 9 0 -1.18 9 0 -1.18 9 0 1.70 0 1.18 8 0.55 6 0.44 1 0.02 8 0.65 8 0.00 mh Activ ##### 4 ###### 4 ###### 5 1.38 6 1.38	0.39 ###### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.12 -1.72 2.00 0.78 -0.67 -0.42 1.20 ph KC	0.01 Delta p	0.35 **Thacion C**	0.15 CE 1 1	0.52 UM*, EP*, #### 3.84 #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.85 0.1 -0.11 -0.1 0.85 0.0 0.71 -1.1 1.108 -1.1 0.71 1.1 variables e	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta pn Refacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg la AU(0-5 cm) Mg ha qCO2 Con: 2.3534 como valor de Relacion Confirmada/ Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 s coeficie ud proi ####################################	0.33 intes the Activ 4 "##### 9 1.68 6 1.54 6 1.54 6 1.54 9 1.70 9 -4.17 3 -1.64 9 -1.18 9 -1.70 0 -1.18 9 -1.70 0 -1.18 9 0 -1.18 9 0 0.5 1 0.5	0.39 ###### 0.24 0.41 0.24 0.19 -2.11 -1.12 -2.17 -2.17 -2.19 -0.67 -0.67 -0.42 1.20 ##### -0.22	0.01 Delta p ***********************************	0.35 **Hacion C** **Harm## 1.18 **January 1.19 **January 1	0.15 CE 1 1 7 #### -3.28 -3.61 0.34 -0.28 0.34 -0.28 1.32 -0.57 1.04 -0.42 1.32 CE 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	0.52 UM* EP* #### 3.84 7#### 3.84 0.41 -0 0.41 -0 0.85 0. 0.41 -0 0.85 0. 0.16 0.85 0. 1.0 1.0 1.0 1.0 1.0 1.0 1.0	## ###################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 Valor Calculado di Altitud promedii ph Activo ph KCI Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg l AU(0-5 cm) Mg l AU(0-5 cm) Mg l AU(0-5 cm) Mg ha- COS de Relacion Confirmada/N Altitud promedii ph Activo ph KCI Delta ph Relacion C:N CCE HUM%	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 ss coeficie sud proi st coeficie sud proi st coeficie sud proi st coeficie st c	0.33 entes mh Activ 4 "#### 9 1.68 6 1.38 6 1.38 6 1.39 9 -4.17 3 -1.64 9 -1.18 9 -1.18 9 -1.70 0 -1.18 2 -1.73 6 0.44 1 0.02 8 0.65 8 0.65 8 0.65 8 0.65 8 1.38 6 0.65 8 1.38 6 1.54 9 1.68 6 1.38 6 1.38 6 1.38 6 1.38 6 1.38 6 1.38 9 -1.68 9 1.68	0.39 ###### 0.24 0.41 0.24 -0.85 -0.19 -2.11 -1.22 -2.11 -1.22 -1.72 2.0.48 -0.67 -0.42 1.20 ph KC	0.01 Delta p 1.50 2.48 2.28 2.58 0.11 0.11 -0.76 0.11 -0.66 1.50 0.78 0.13 0.78 1.92 -1.38	0.35 Parameter 1.18 1.18 1.18 1.19 1.18 1.19 1.10 1.	0.15 CE I #### -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 CE I	0.52 UM' EP' #### 3.84 4### 0.41 -0.0 0.85 0.0 0.41 -0.39 -1.0 -0.39 -1.1 0.16 0.71 -1.1 1.1 variables c UM' EP'	######################################	0.51	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 Valor Calculado d Altitud promedii ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg halact. Ac. Ful Mg hal- CBM(0-5 cm) Mg l AU(0-5 cm) Mg h QCO2 Con: 2.3534 como valor de Relacion Confirmada/ Altitud promedii ph Activo ph KCl Detta ph Relacion C:N CE HUM% EP%	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 os coeficie ud pror ###### -0.3 o.00 os coeficie ud pror ###### -0.3 o.00 o.00 o.00 o.00 o.00 o.00 o.00 o	0.33 intes intes h Activ 4 "##### 9 1.68 6 1.54 6	0.39 ###### -0.22 0.41 -0.85 -0.19 -2.11 -1.22 -1.72 -2.078 -0.67 -0.42 -1.20 ph KC	0.01 Delta p F##### 1.50 2.48 0.11 0.11 -0.66 1.50 1.04 -0.18 -0.77 -1.38 Delta p	0.35 Parament 1.18 1.18 1.18 1.19 1.05 1.05 1.064 1.064 1.064 1.023 1.033 1.04 1.04 1.05 1.04 1.05 1.04 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	0.15 CE I I I I I I I I I I I I I I I I I I	0.52 UM* EP* #### 3.84 *### 3.84 *### 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.01 -0.1 0.85 0.0 0.10 0.0 0.10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	## ###################################	0.51 CO 1 #iD	0.23 0.23 0.23 0.25 0.25 0.25 0.25 0.27 0.94 -1.82 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 from N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion U:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha Ac. Ful Mg hal- CBM(0-5 cm) Mg h AU(5-10cm) Mg h qCO2 for: 2.53A crome valor de Relacion Confirmada/ Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % EP%	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 ss coeficie ud proud ud proud	0.33 minutes mh Activ 4 "##### 9 1.68 6 1.54 9 1.70 9 -4.17 3 -1.64 1.54 8 6.75 6 0.44 1 0.02 2 -1.73 6 -0.14 8 6.75 6 0.44 1 0.02 8 0.65 8 0.00 N-2) mh Activ ##### 4 ##### 9 1.68 6 1.38 6 1.38 6 1.34 9 1.70 9 -4.17 3 -1.64	0.39 ##### -0.22 -0.19 -2.11 -1.12 -1.12 -1.12 -0.07 -0.42 -1.20 ph KC ##### -0.22 0.41 0.24 -0.85 -0.19 -2.11 -1.20	0.01 Delta p PHHHHHH 1.50 2.44 -2.28 -2.58 -0.11 -0.70 0.11 -0.18 -0.18 1.50 Delta p ##### 1.56 2.48 2.28 2.28 2.28 -2.58	0.35 **Thacion C**	0.15 CE 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.52 UM? EP? #### 3.84 7#### 3.84 7### 0.41 -0.2 0.85 0.41 -0.3 0.85 0.41 -0.39 -1.1 -1.08 -1.1 -1.08 -1.1 -1.08 -1.1 -1.08 -1.2 -1.08 -1.3 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4 -1.08 -1.4	######################################	0.51 CO 1 #iD	0.23 0.23 0.1V/0! 2.58 0.83.48 2.72 -1.66 1.89 0.79 -1.76	0.51 NT % V##### 2.59 42.52 0.40 -2.07 -2.33 1.44 -0.20 -0.95	0.25 DS g kg ##### 2.72 0.94 -1.82 -1.66 1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 Valor Calculado d Altitud promedi ph Activo ph KCI Dena pn Refacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l AU(0-5 cm) Mg l AU(0-5 cm) Mg l AU(0-5 cm) COS m Autis de Relacion Cin Activo ph Activo ph KCI Delta ph Relacion C:N CE HUM% COS G kg -1 NT g kg -1 Activo ph Relacion C:N CE HUM% COS COS %	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 ss coeficie ud proi ud pr	0.33 miles mh Activ 4 "##### 9 1.68 6 1.54 6 1.54 6 1.54 7 1.64 9 1.70 0 -1.18 9 -1.70 0 -1.18 2 -1.73 6 0.04 1 0.02 8 0.65 8 0.00 mb Activ ##### 9 1.68 1 1.68 1 1.68 1 1.68 1 1.68 1 1.68 1 1.68 1 1.68 1 1.54 1 1.69	0.39 ###### 0.24 0.24 0.25 0.19 0.21 1.12 0.21 1.12 0.08 0.78 0.04 1.20 ph KC	0.01 Delta p ***********************************	0.35 **Thacion C**	0.15 CE 1 1	0.52 UM* EP* #### 3.84 #### 0.41 -0.0 0.85 0.41 -0.39 -1.4 -0.65 0.16 0.71 -1.08 -1.1 0.71 1.3 Variables c UM* EP*	######################################	0.51 CO 1 1 1 #iD 9 4 30 2 2 4 4 4 2 2 6 6 9 9 9 6 6 6 6 CO	0.23 0.23 0.25 0.25 0.83 0.94 -1.82 -1.66 1.89 -1.76 0.79 -1.76 0.79 -1.76	0.51 NT % 2.59 42.52 42.52 -0.20 -0.20 -0.20 NT %	0.25 DS g kg ##### 2.72 0.94 -1.89 0.795 H0:Las	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 Valor Calculado d Altitud prome di ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg la AU(0-5 cm) Mg la AU(0-5 cm) Ag ha COS 2,3534 como valor de Relacion Confirmada/A Altitud prome di ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 CBM(0-5 cm) Mg la AU(0-5 cm) Mg la AU(0-5 cm) Mg la AU(0-5 cm) Mg la CBM(0-5 cm) Mg la CSM(0-5 cm) Mg la CSM(0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 ss coeficie st depth ss coeficie ss coeficie st depth ss coeficie	0.33 intes the Activ 4 "#### 9 1.68 6 1.38 6 6 1.38 6 9 -1.18 9 -1.70 0 -1.18 9 -1.70 0 0 -1.18 9 -1.70 0 0 -1.18 9 -1.70 1 0.02 8 0.65 8 0.05 8 0.00 N-2 ###### 9 1.68 6 1.3	0.39 ###### 0.22 0.41 0.24 0.85 -0.19 -2.11 -1.22 -1.72 2.17 -0.42 1.20 0.78 -0.67 -0.42 0.41 0.24 -0.85 -0.19 -2.11 -1.12	0.01 Delta p	0.35 **Hacion C** **Harm## **Harm### **Harm#### **Harm#### **Harm#### **Harm#### **Harm######## **Harm##### **Harm########### **Harm####################################	0.15 CE I I I I I I I I I I I I I I I I I I	0.52 UM*, EP*, #### 3.84 7#### 3.84 7#### 0.41 -0.39 -0.39 -1.0 -0.16 0.16 0.71 1.1 Variables e UM*, EP*, #### 4.41 -0.0 0.85 0.41 -0.1 0.85 0.85 0.41 0.85 0.41 0.85 0.8	######################################	0.51 CO 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.23 NS % 0.25 0.58 % 0.58 % 0.94 -1.82 -1.66 1.89 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.79 -1.76 0.70 -1.70 0.70 -1.70 0.70 -1.70 0.70 -1.70 0	0.51 NT % V###### 2.59 42.52 0.40 0.20 -0.25 NT %	0.25 DS g kg "##### 2.77 2.18 2.1.66 1.89 0.79 -1.75 HOLAS	0.72 F g kg F g kg 0.47 -2.12 -2.40 1-0.18 -1.01 variable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	\ \frac{1}{2}
qCO2 fon N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g g g Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg h AU(0-5 cm) Mg h COS g kg -1 CBM(0-5 cm) Mg h AU(0-5 cm) Mg h AU(0-5 cm) Mg h CCO C CO2 Ton: 2.3534 como valor de Relacion Confirmada/ Altitud promedi ph Activo ph KCl Delta ph Relacion C:N CE HUM% EPP% MO % COS %	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 ss coeficie ud proi ud pr	0.33 intes the Activ 4 "#### 9 1.68 6 1.38 6 1.38 6 1.39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.39 ###### 0.22 0.41 0.24 0.85 -0.19 -2.11 -1.22 -1.72 2.17 -0.42 1.20 0.78 -0.67 -0.42 0.41 0.24 -0.85 -0.19 -2.11 -1.12	0.01 Delta p ***********************************	0.35 **Hacion C** **Harm## **Harm### **Harm#### **Harm#### **Harm#### **Harm#### **Harm######## **Harm##### **Harm########### **Harm####################################	0.15 CE 1 1 7 ##### -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 CE 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.52 UM*, EP*, #### 3.84 7#### 3.84 7#### 0.41 -0.39 -0.39 -1.0 -0.16 0.16 0.71 1.1 Variables e UM*, EP*, #### 4.41 -0.0 0.85 0.41 -0.1 0.85 0.85 0.41 0.85 0.41 0.85 0.8	######################################	0.51 CO 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.23 NS % NIV/0! 2.58 083.48 2.72 0.94 1.82 -1.66 1.89 -1.76 0.99 -1.76	0.51 NT % 2.59 42.52 0.40 0.20 -0.95 NT %	0.25 DS g kg 57 ##### 2.72 0.94 1.82 1.66 1.89 0.79 -1.75 HO1 as DS g kg	0.72 Γg kg 0.47 -2.12 -2.40 1.47 -0.18 -1.01 varable	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	[]#:
qCO2 on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg la AU(0-5 cm) Mg la AU(0-5 cm) Mg ha QCO2 on: 2.3534 como valor de Relacion Confirmada/N Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT %	0.17 datos en to e t 0 1 1 1 1 1 1 1 1 1 1 1 1	0.00 ss coeficie st depth ss coeficie ss coeficie st depth ss coeficie	0.33 intes intes h Activ 4 "#### 9 1.68 6 1.54 6	0.39 ph KC ##### -0.22 0.41 -0.85 -0.19 -2.11 -1.22 -1.72 2.078 -0.67 -0.42 -1.20 ph KC ##### -0.22 0.41 -0.85 -0.19 -2.11 -1.22 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12	0.01 Delta p	1.18 1.18 1.18 1.19 1.18 1.18 1.19 1.18 1.19 1.19	0.15 CE I I ##### -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 CE I I I I I I I I I I I I I I I I I I	0.52 UM* EP* #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.71 -1.1 -1.08 -1.08 -1.1 -1.08 -1.	######################################	0.51 CO ## ## ## ## ## ## ## ## ## ## ## ## #	0.23 0.23 0.23 0.25	0.51 NT % V###### 2.59 42.52 0.40 0.20 -0.25 NT %	0.25 DS g kg "##### 2.77 2.18 2.1.66 1.89 0.79 -1.75 HOLAS	0.72 Γg kg Γg kg	0.02 ###### -0.21 -1.18 1.25 0.60 -2.79 5 100 EST	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	[]#:
qCO2 on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta pn Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg l AU(5-10cm) Mg h qCO2 on: 2.3534 como valor de Relacion C:N CE HUM% COS % COS % NT % COS g kg -1 NT g kg -1 CBM(0-5 cm) Mg l AU(5-10cm) Mg h AU(5-10cm) Mg h qCO2 On: 2.3534 como valor de Relacion Confirmada/N Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1	0.17 datos en lo e t 0 1 ha-1 -1 a-1 tablas de t	0.00 ss coeficie st quarter st quarter	0.33 intes intes h Activ 4 "##### 9 1.68 6 1.54 6 1.54 6 1.54 6 1.68 6 1.54 6 1.68 6	0.39 ph KC ##### -0.22 0.41 -0.85 -0.19 -2.11 -1.22 -1.72 2.078 -0.67 -0.42 -1.20 ph KC ##### -0.22 0.41 -0.85 -0.19 -2.11 -1.22 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.11 -1.12	0.01 Delta p 1.50 2.48 0.11 0.11 0.16 1.50 0.11 0.16 1.50 0.78 0.11 0.18 0.78 0.11 0.18 0.78 0.19 0.138 0.78 0.11 0.10 0.18 0.78 0.19 0.18 0.78 0.19 0.19 0.10 0.18 0.78 0.19 0.	0.35 Parament 1.118 1.118 1.129 1.059 1.064 1.064 1.064 1.233 1.140 1.301 1.3	0.15 CE I I #### -3.28 -3.61 0.34 -0.28 0.57 1.04 -0.42 1.32 2.55 -1.27 Hal.s CE I I 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34	0.52 UM* EP* #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.71 -1.1 -1.08 -1.08 -1.1 -1.08 -1.	######################################	0.51 CO 1 #iD 9 9 4 4 30 CO 1 #iD 4 30 CO 1 #iD 4 30	0.23 NS % NIV/0! 2.58 083.48 2.72 0.94 1.82 -1.66 1.89 -1.76 0.99 -1.76	0.51 NT % 2.59 42.52 0.40 0.20 -0.95 NT %	0.25 DS g kg "##### 2.72 0.94 -1.82 -1.75 HO:Las By kg	0.72 Γg kg Γg kg	###### -0.21 -1.18 1.25 0.60 -2.79	##### 0.57 -0.24 0.23	7#### -3.665 -0.040 2.359	0.84 (cm)	0.27 N0cm)	1 7#
qCO2 on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta pn Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg la AU(5-10 cm) Mg la AU(5-10 cm) Mg ha QCO2 on: 2.3534 como valor de Relacion Confirmada/ Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg la AU(5-10 cm) Mg la CBM(0-5 cm) Mg la AU(5-10 cm) Mg la COO2 On: 2.3534 como valor de Relacion Confirmada/ Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1	0.17 datos en los e t 0	0.00 ss coeficie st coefic	0.33 mtes mt	0.39 ##### -0.22 -0.41 -0.85 -0.19 -2.11 -1.12 -0.00 -0.87 -0.42 1.20 ph KC ##### -0.22 -0.41 -0.24 -0.85 -0.19 -1.72 -1.72 -1.72 -1.72 -1.72 -1.72 -1.72 -1.72 -1.72 -1.72	0.01 Delta p ***********************************	0.35 **Thacion C** **Interior C** **Interio	0.15 CE I I ##### -3.28 -3.61 0.34 -0.28 0.34 -0.25 -1.27 Hatasa -3.61 0.34 0.34 -0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34	0.52 UM* EP* #### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.0 0.85 0.0 0.71 -1.1 -1.08 -1.08 -1.1 -1.08 -1.	######################################	0.51 CO CO CO CO CO CO CO CO CO CO CO CO CO	0.23 NS % NS % 0.58 % 0.58 % 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79	0.51 NT % 2.59 42.52 0.40 -0.207 -2.33 1.44 -0.205 NT %	0.25 DS g kg "##### 2.72 0.94 -1.82 -1.75 HO:Las By kg	0.72 Γg kg Γg kg	###### -0.21 -1.18 1.25 0.60 -2.79 um Mg	##### 0.57 -0.24 0.23	7#### -3.665 -0.04 -2.35 -0.04 -2.35 -0.04	0.84 (cm)	0.27 N0cm)	[]#:
qCO2 on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion U:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- GBM(0-5 cm) Mg h AU(5-10cm) Mg h QCO2 on: 2.3534 como valor de Relacion Confirmadad/ Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- QCO2 on: 2.3534 como valor de Relacion Confirmadad/ Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha-	0.17 datas en la e t 0 1 1 1 1-1 1-1 1-1 1 1 1 1 1	0.00 s coeficie ud proi	0.33 miles	0.39 ###### 0.24 0.24 0.25 0.19 -2.11 -1.12 -2.17 -0.27 -0.42 -0.40 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -0.41 -1.22 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12 -1.12	0.01 Delta p	0.35 **Hacion C** **Harm##	0.15 CE I I ##### -3.28 -3.61 0.34 -0.28 0.34 -0.25 -1.27 Hatasa -3.61 0.34 0.34 -0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34	0.52 UM*, EP*, 3.84 7#### 3.84 7#### 0.41 -0.39 -1.4 -0.67 1.108 -1.108 -1.108 -1.1 0.71 1.2 -0.10 -0.11 -0.10 -0.11 -0.10 -0.11 -0.10 -0.11 -0.10 -0.11 -0.10 -0.11 -0.10 -0.11 -0.10 -0.11 -0.10 -0.11	######################################	0.51 CO 1 1 #iD 1 #iD 2 2 4 4 30 CO 1 1 #iD 9 9 9 9 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.23 0.23 0.25 0.1V/0! 2.58 0.83.48 2.72 1.66 0.94 -1.82 -1.66 0.79 -1.76 0.85 %	0.51 NT % "##### 2.59 42.52 0.40 -2.07 -2.33 NT %	0.25 DS g kg ##### 1.82 1.69 0.79 1.75 HO Las 2.72 0.94	0.72 Γ g kg 0.47 -2.12 -2.40 1.47 -0.18 -1.01 Variable Γ g kg	##### -0.21 -1.18 -1.27 -2.79 -3 no est -3 mo est -4 mo	######################################	7#### -3.665 -0.04 -2.35 -0.04 -2.35 -0.04	5 /### 1 0.8 a cm)	0.27 N0cm)	[]#:
qCO2 on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Detta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Act. Hum Mg ha- Relacion C:N Altitud promedi ph Activo ph KCI Detta ph Au(0-5 cm) Mg h Au(0-5 cm) Mg h Au(0-5 cm) Mg h Au(0-5 cm) Mg h COS my Mg h Au(0-5 cm) Mg h Au(0-5 cm) Mg h COS my Mg h Au(0-5 cm) Mg h Activo ph KCl Delta ph Relacion C:N CE HUM% EP% MO % COS g kg -1 NT g kg -1 Act. Hum Mg ha Act. Ful Mg ha-1	0.17 datas en la e t 0 1 ha-1 -1 a-1 begada 0	0.00 ss coeficie sud prof ###### -0.3 -1.9 1.1 0.8 -0.1 0.6 -0.1 0.7 -0.1 0.7 -0.1 1.5 -0.4 0.1 1.1 1.1 1.1 1.1 1.1 0.2 0.0 0.0 0.7 -0.1 0.1	0.33 intes inte	0.39 ph KC ###### 0.224 0.41 0.24 -0.85 -0.19 -2.11 -1.22 -1.72 2.04 -0.85 -0.19 -2.11 -1.22 0.41 -0.24 -0.85 -0.19 -2.11 -1.12 -2.11 -1.12 -2.11 -1.22 0.41 -0.85 -0.19 -2.11 -1.12 -2.11 -1.12 -2.11 -1.22 -2.11 -1.22 -2.11 -1.22 -2.11 -1.22 -2.11	0.01 Delta p	0.35 **Tacion C** **Tanana** **Tanana**	0.15 CE I I I I I I I I I I I I I I I I I I	0.52 UM' EP' #### 3.84 7#### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.39 -1.0 0.16 0.71 -1.1 -1.08 -1.1 0.71 -1.1 -1.08 -1.0 0.85 0.0 0.41 -0.0 0.71 -1.1 -1.08 -1.1 -0.39 -1.1 -0.39 -1.1 -0.39 -0.39 -1.1 -0.39 -1.1 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -1.1 -0.39 -1.1	######################################	0.51 CO 1	0.23 0.23 0.25 0.25 0.25 0.94 -1.82 -1.66 1.89 -1.76 0.79 -1.76 0.89 -1.76 -1.7	0.51 NT % "##### 2.59 42.52 42.52 0.40 -0.20 -0.95 NT %	0.25 DS g kg "##### 2.72 2.1.66 1.89 0.79 1.75 HOLas DS g kg ###### ###### 2.72 0.94 1.82	0.72 Γ g kg 0.47 -2.12 -2.40 1.47 -0.18 -1.01 Variable Γ g kg	##### -0.21 -1.18 1.25 -0.60 -2.79 -3 no est -4.18 -0.21 -1.18 -1.15 -1	##### 0.57 -0.23 0.23 an rel ul M;	7##### (********************************	5 ### 0.84 0.83 0.83 0.83 0.83	0.27 M0cm) ##44 ##### M0cm) N0cm)	\ \frac{1}{2}
qCO2 on N=5, Por cada par de Valor Calculado d Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- CBM(0-5 cm) Mg l AU(5-10cm) Mg h QCO2 on: 2.3534 como valor de Relacion Confirmada/? Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l AU(5-10cm) Mg h QCO2 On: 2.3534 como valor de Relacion Confirmada/? Altitud promedi ph Activo ph KCI Delta ph Relacion C:N CE HUM% EP% MO % COS % NT % COS g kg -1 NT g kg -1 Ac. Hum Mg ha- Ac. Ful Mg ha- Ac. Ful Mg ha- Ac. Ful Mg ha- CBM(0-5 cm) Mg l	0.17 datas en los e t 0 11 ha-1 -1 a-1 tablas de t vegada 0	0.00	0.33 intes intes h Activ 4 "##### 9 1.68 6 1.54 6 1.54 9 -4.17 3 -1.64 9 -1.18 9 -1.70 0 -1.18 2 -1.73 6 0.44 1 0.02 8 0.65 8 0.65 8 0.65 8 0.60 N-2) mh Activ 4 ##### 9 1.68 6 1.54 9 1.70 0 -4.17 3 -1.64 9 1.18 9 -4.17 3 -1.64 9 1.18 9 -1.18	0.39 ph KC ##### -0.22 -0.19 -2.11 -1.22 -1.72 -0.41 -0.24 -0.85 -0.19 -0.67 -0.42 -0.20 ##### -0.22 -0.41 -0.85 -0.19 -2.11 -1.22 -0.41 -0.85 -0.19 -2.11 -1.22 -0.40 -0.85 -0.19 -0.10 -0.11 -0.12 -0.11 -0.12 -0.10 -0.1	0.01 Delta p 1.50 2.48 2.28 2.258 0.11 0.11 -0.66 1.50 0.78 1.99 -1.38 Delta p	######################################	0.15 CE I I I I I I I I I I I I I I I I I I	0.52 UM' EP' #### 3.84 7#### 3.84 0.41 -0.0 0.85 0.0 0.41 -0.39 -1.0 0.16 0.71 -1.1 -1.08 -1.1 0.71 -1.1 -1.08 -1.0 0.85 0.0 0.41 -0.0 0.71 -1.1 -1.08 -1.1 -0.39 -1.1 -0.39 -1.1 -0.39 -0.39 -1.1 -0.39 -1.1 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -0.39 -1.1 -0.39 -1.1	######################################	0.51 CO CO 1 #iD 9 9 4 30 CO 1 #iD 9 9 4 30	0.23 NS % 0.25	0.51 NT % ###### 2.59 42.52 0.40 0.20 -0.95 NT % ###### 2.59 42.52 0.40 0.20 -0.95 1.44	0.25 DS g kg "##### 2.72 0.94 -1.82 -1.66 1.89 0.79 -1.75 HOLAS DS g kg	0.72 Γ g kg "##### 0.47 -2.12-2.40 1.47 -0.18 -1.01 variable Γ g kg	0.02	##### 0.57 -0.23 an rel ul M	"####" -3.665 cm)	0.84 5 #### 0.84 0 -4.0 das	0.27 M0cm) ##44 ##### M0cm) N0cm)	NqC

Anexo 3 Matriz de correlación con variables experimentales y nuevas integradas

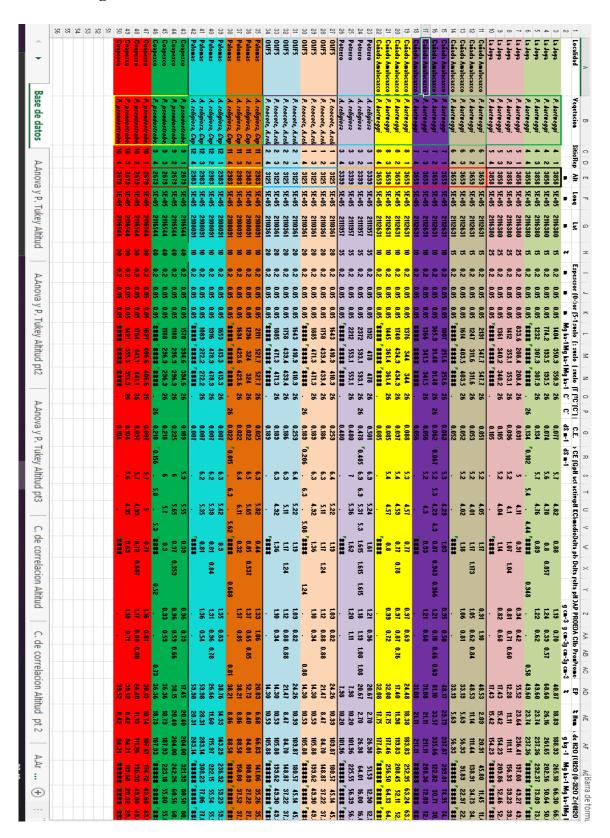
Cell field belief and sub-picific (18) Cell field belief and sub-picific (18) Deplot be laptic 2-5. Bittle belief 2-5. Bittle	Contain National Contai	Marin Epint sale Asia 1891 Marin Epint sale Asia 1891 Marin Epint ale Marin (Mill 1818) Marin Epint Asia 1819 Marin Epint (Mill 1818) Marin (Mill 1818	G A Life skipe i kan et seykan i Wichiaki ki Badahali Jadi dei Jadi dei Jad

Anexo 4 N.º de correlaciones significativas

Variables con r ≥ 0.60 (relacion media) y 0.80 (relacion fuerte)	Nº de relaci	iones medias a fuertes significativas				
C. de Azufre-SO4-2 H2O	34.00	Variables de otros trabajos Variables calculadas/propias				
pH-Delta pH	32.00					
Relaciones Experimentales-Relacion SF/SH	32.00					
Indice metabolico-qCO2	31.00					
C. de Fosforo-P-Total suelo según Olsen	30.00					
Relaciones Experimentales-Relacion AU:MO 5-10 cm	29.00					
Relaciones Experimentales-Relacion Ac Fulvicos:Nt	29.00					
A. Enzimatica-AF al 0-5 cm	29.00					
Relacion qCO2:AU0-5 cm	29.00					
Indice metabolico-qN 0-5 (CBM/NT 0-5)	28.00					
Indice metabolico-qN (CBM/Masa labil 2% 0-5) C. de Azufre-SO4-2 H2O (%)	28.00					
Propiedades Bioquimicas-Ac. Húmicos	28.00					
A. Enzimatica-AF al 6-10 cm	28.00					
Contenido de MO 0-5 cm	27.00					
Contenido de MO 0-20 cm	27.00					
Contenido de COS 0-5 cm	27.00					
Contenido de COS 0-20 cm	27.00					
Variables fisicas-MO	26.00					
Variables fisicas-COS	26.00					
Relaciones Experimentales-Relacion Ac humicos:qCO2	25.00					
Variables fisicas-EP	25.00					
C. de Fosforo-Masa de P en suelo según Olsen (0-20 cm)	25.00					
C. de Fosforo-Masa de P en suelo según Olsen (0-5 cm)	25.00					
pH-pH activo	24.00					
Textura-Limo/Arcilla	24.00					
Propiedades Bioquimicas-CBM 5-10 cm A. Enzimatica-AU 0-5 cm	24.00					
Variables fisicas-NT	24.00					
A. Enzimatica-AAS 0-5	22.00					
Variables fisicas-CE	21.00					
Contenido de NT 0-5 cm	21.00					
Contenido de NT 0-20 cm	21.00					
Contenido de Masa Labil N del Suelo (2%)(0-5 cm)	21.00					
Propiedades Bioquimicas-CBM 0-5 cm	21.00					
A. Enzimatica-AAS 5-10	21.00					
Relaciones Experimentales-Relacion Ac Fulvico:Ph KCl	20.00					
Variables fisicas-DA Cil	20.00					
Textura-Arena/Arcilla	20.00					
Relaciones Experimentales-Relacion AU/N Labil 5-10 cm	19.00					
Propiedades Bioquimicas-Ac. Fúlvicos	19.00 18.00					
pH-pH Kcl Relacion C:N	18.00					
Textura-Arena/ Limo	18.00					
Textura-Arcilla/Limo	18.00					
C. de Fosforo-Masa de P en el suelo según Bray (0-20)	18.00					
C. de Fosforo-Masa de P en el suelo según Bray (0-5)	18.00					
Relaciones Experimentales-Relacion AU/N Labil 0-5 cm	17.00					
Textura-Arena	17.00					
Textura-Limo	17.00					
A. Enzimatica-AU 5-10 cm	17.00					
Variables fisicasHum	16.00					
Textura-Arcilla	16.00					
Textura-Limo/Arena Textura-Areillo/Arena	16.00					
Textura-Arcilla/Arena C. de Azufre-SO4-2 BRAY 1 (0-5 cm)	16.00 16.00	 				
C. de Fosforo-P-Total suelo según Bray	16.00					
Relaciones Experimentales-Relacion Ac Fulvico:Ph Activo	15.00					
C. de Azufre-SO4-2 OLSEN (%)	15.00					
Relaciones Experimentales-Relacion AU:MO 0-5 cm	14.00					
Relaciones Experimentales-Relacion pH Activo/ DA CIL	14.00					
Variables fisicas-T(C°)	14.00					
Variables fisicas-Pendiente	14.00					
C. de Azufre-SO4-2 BRAY 1	14.00					
Contenido de Masa Labil COS (0-5 cm)	13.00					
A. Enzimatica-AF ac 0-5 cm	12.00					
A. Enzimatica-AF ac 5-10 cm	11.00					
Piso altitudinal	9.00					
C. de Azufre-SO4-2 OLSEN	4.00					


Anexo 5 Relaciones positivas y negativas con los contenidos de M.O, COS y NT

on (r) de las variables con los contenidos de M.O, COS y NT		Contenido de MO 0-20 cm						Contenido de Masa Labil N del Suelo (2%)(0-5 cm)	
A. Enzimatica-AF ac 5-10 cm	0.626257194	0.626257194	0.626257194	0.626257194	0.170730097	0.152636838	0.152636838	0.152636838	
C. de Azufre-SO4-2 BRAY 1	0.285920077	0.285920077	0.285920077	0.285920077	0.064790532	0.023931292	0.023931292	0.023931292	
Textura-Limo/Arena	0.111415322	0.111415322	0.111415322	0.111415322	-0.106080509	0.157183951	0.157183951	0.157183951	
pH-Delta pH	0.696644384	0.696644384	0.696644384	0.696644384	-0.113472229	0.073676694	0.073676694	0.073676694	
Contenido de MO 0-5 cm	1	1	1	1	-0.432784926	0.592603746	0.592603746	0.592603746	
Contenido de MO 0-20 cm	1	1	1	1	-0.432784926	0.592603746	0.592603746	0.592603746	
Contenido de COS 0-5 cm	1	1	1	1	-0.432784926	0.592603746	0.592603746	0.592603746	
Contenido de COS 0-20 cm	1	1	1	1	-0.432784926	0.592603746	0.592603746	0.592603746	
	0.502/0251/	0.500/0054/	0.502(0254)	0.500/0054/		0.372003740		0.372003740	
Contenido de NT 0-5 cm	0.592603746	0.592603746	0.592603746	0.592603746	-0.872799343	1	1	1	
Contenido de NT 0-20 cm	0.592603746	0.592603746	0.592603746	0.592603746	-0.872799343	1	1	1	
Contenido de Masa Labil N del Suelo (2%)(0-5 cm)	0.592603746	0.592603746	0.592603746	0.592603746	-0.872799343	1	1	1	
Textura-Limo	0.223252286	0.223252286	0.223252286	0.223252286	-0.009546076	0.037321972	0.037321972	0.037321972	
Variables fisicas-MO	0.615865026	0.615865026	0.615865026	0.615865026	-0.308929841	0.648607807	0.648607807	0.648607807	
A. Enzimatica-AF ac 0-5 cm	0.351493863	0.351493863	0.351493863	0.351493863	-0.187265814	0.425254098	0.425254098	0.425254098	
Variables fisicas-COS	0.615865026	0.615865026	0.615865026	0.615865026	-0.308929841	0.648607807	0.648607807	0.648607807	
Variables fisicas-NT	0.335801386	0.335801386	0.335801386	0.335801386	-0.521763109	0.795653711	0.795653711	0.795653711	
Variables fisicas-Pendiente	0.699057371	0.699057371	0.699057371	0.699057371	-0.36284644	0.527030715	0.527030715	0.527030715	
Relaciones Experimentales-Relacion Ac humicos:qCO2	0.476574775	0.476574775	0.476574775	0.476574775	-0.594249769	0.551818811	0.551818811	0.551818811	
Relaciones Experimentales-Relacion AU/N Labil 0-5 cm	0.717571409	0.717571409	0.717571409	0.717571409	-0.283728263	0.353931507	0.353931507	0.353931507	
Variables fisicas-CE	0.8052023	0.8052023	0.8052023	0.8052023	-0.220301904	0.244411432	0.244411432	0.244411432	
Propiedades Bioquimicas-Ac, Húmicos	0.55510249	0.55510249	0.55510249	0.55510249	-0.469321218	0.486127356	0.486127356	0.486127356	
A. Enzimatica-AU 0-5 cm	0.816198021	0.816198021	0.816198021	0.816198021	-0.569089619	0.861489437	0.861489437	0.861489437	
A. Enzimatica-AU 5-10 cm	0.8137686	0.8137686	0.8137686	0.8137686	-0.052491837	0.075467384	0.075467384	0.075467384	
Piso altitudinal	0.392468679	0.392468679	0.392468679	0.392468679	0.194340325	-0.044651385	-0.044651385	-0.044651385	
pH-pH activo	0.163885096	0.163885096	0.163885096	0.163885096	0.142118832	-0.244665475	-0.244665475	-0.244665475	
Textura-Arena	0.034824306	0.034824306	0.034824306	0.034824306	0.121481363	-0.191239039	-0.191239039	-0.191239039	
Relaciones Experimentales-Relacion AU/N Labil 5-10 cm	0.714466138	0.714466138	0.714466138	0.714466138	0.029473412	-0.062013118	-0.062013118	-0.062013118	
Relacion C:N	0.253350448	0.253350448	0.253350448	0.253350448	0.569111804	-0.612343206	-0.612343206	-0.612343206	
Relaciones Experimentales-Relacion Ac Fulvico:Ph KCl	0.100155822	0.100155822	0.100155822	0.100155822	0.001309754	-0.012545200	-0.224444443	-0.22444443	
<u> </u>									
Textura-Arena/Arcilla	0.326216857	0.326216857	0.326216857	0.326216857	0.016682385	-0.092132453	-0.092132453	-0.092132453	
Textura-Limo/Arcilla	0.503193858	0.503193858	0.503193858	0.503193858	0.110327711	-0.162462584	-0.162462584	-0.162462584	
C. de Azufre-SO4-2 BRAY 1 (0-5 cm)	0.606846604	0.606846604	0.606846604	0.606846604	0.019726844	-0.083639885	-0.083639885	-0.083639885	
C. de Fosforo-P-Total suelo según Bray	0.418225846	0.418225846	0.418225846	0.418225846	0.267330941	-0.255469223	-0.255469223	-0.255469223	
C. de Fosforo-Masa de P en el suelo según Bray (0-20)	0.466274661	0.466274661	0.466274661	0.466274661	0.174447569	-0.246925322	-0.246925322	-0.246925322	
C. de Fosforo-Masa de P en el suelo según Bray (0-5)	0.466274661	0.466274661	0.466274661	0.466274661	0.174447569	-0.246925322	-0.246925322	-0.246925322	
Variables fisicas-DA Cil	0.325195186	0.325195186	0.325195186	0.325195186	-0.03593955	-0.154148743	-0.154148743	-0.154148743	
Textura-Arcilla/Arena	-0.174325617	-0.174325617	-0.174325617	-0.174325617	-0.211280468	0.293549542	0.293549542	0.293549542	
Textura-Arcilla	-0.220520514	-0.220520514	-0.220520514	-0.220520514	-0.183163953	0.271766374	0.271766374	0.271766374	
Textura-Arcilla/Limo	-0.304933816	-0.304933816	-0.304933816	-0.304933816	-0.151060921	0.277969373	0.277969373	0.277969373	
								0.06490546	
A. Enzimatica-AAS 5-10	-0.288224441	-0.288224441	-0.288224441	-0.288224441	0.038502345	0.06490546	0.06490546		
Propiedades Bioquimicas-Ac. Fúlvicos	-0.042336875	-0.042336875	-0.042336875	-0.042336875	0.133175495	-0.324552996	-0.324552996	-0.324552996	
Propiedades Bioquimicas-CBM 0-5 cm	-0.483177392	-0.483177392	-0.483177392	-0.483177392	0.987919215	-0.928311388	-0.928311388	-0.928311388	
Propiedades Bioquimicas-CBM 5-10 cm	-0.638676502	-0.638676502	-0.638676502	-0.638676502	0.704901635	-0.57954355	-0.57954355	-0.57954355	
C. de Azufre-SO4-2 H2O (%)	-0.645039793	-0.645039793	-0.645039793	-0.645039793	0.120870796	-0.198250206	-0.198250206	-0.198250206	
C. de Azufre-SO4-2 H2O	-0.682064408	-0.682064408	-0.682064408	-0.682064408	0.237826519	-0.373407714	-0.373407714	-0.373407714	
C. de Azufre-SO4-2 OLSEN (%)	-0.458096005	-0.458096005	-0.458096005	-0.458096005	-0.192032477	0.195339787	0.195339787	0.195339787	
C. de Azufre-SO4-2 OLSEN	-0.38964561	-0.38964561	-0.38964561	-0.38964561	-0.262674149	0.12372685	0.12372685	0.12372685	
C. de Fosforo-P-Total suelo según Olsen	-0.795193918	-0.795193918	-0.795193918	-0.795193918	0.678719583	-0.684226985	-0.684226985	-0.684226985	
C. de Fosforo-Masa de P en suelo según Olsen (0-20 cm)	-0.755155516	-0.753153716	-0.438876337	-0.793193910	0.553739726	-0.694433331	-0.694433331	-0.694433331	
C. de Fosforo-Masa de P en suelo según Olsen (0-5 cm)	-0.438876337	-0.438876337	-0.438876337	-0.438876337	0.553739726	-0.694433331	-0.694433331	-0.694433331	
Relaciones Experimentales-Relacion AU:MO 0-5 cm	-0.47193335	-0.47193335	-0.47193335	-0.47193335	0.657673154	-0.787497785	-0.787497785	-0.787497785	
Relaciones Experimentales-Relacion AU:MO 5-10 cm	-0.881084679	-0.881084679	-0.881084679	-0.881084679	0.667503123	-0.771475982	-0.771475982	-0.771475982	
Relaciones Experimentales-Relacion Ac Fulvicos:Nt	-0.647489729	-0.647489729	-0.647489729	-0.647489729	0.660908663	-0.822462125	-0.822462125	-0.822462125	
Relaciones Experimentales-Relacion pH Activo/ DA CIL	-0.280125439	-0.280125439	-0.280125439	-0.280125439	0.142132047	-0.018365694	-0.018365694	-0.018365694	
Relaciones Experimentales-Relacion SF/SH	-0.793402566	-0.793402566	-0.793402566	-0.793402566	0.595858016	-0.692051842	-0.692051842	-0.692051842	
pH-pH Kcl	-0.321415678	-0.321415678	-0.321415678	-0.321415678	0.255133489	-0.348707248	-0.348707248	-0.348707248	
Indice metabolico-qCO2	-0.85227171	-0.85227171	-0.85227171	-0.85227171	0.732651667	-0.802467319	-0.802467319	-0.802467319	
Indice metabolico-qN 0-5 (CBM/NT 0-5)	-0.723615023	-0.723615023	-0.723615023	-0.723615023	0.902952744	-0.951119729	-0.951119729	-0.951119729	
Indice metabolico-qN (CBM/Masa labil n 0-5)	-0.723615023	-0.723615023	-0.723615023	-0.723615023	0.902952744	-0.951119729	-0.951119729	-0.951119729	
Variables fisicasHum		-0.723013023	-0.723013023	-0.723015025	0.223147708			-0.951119729	
	-0.383110298					-0.017825088	-0.017825088		
Textura-Arena/ Limo	-0.092165855	-0.092165855	-0.092165855	-0.092165855	0.021970683	-0.044304379	-0.044304379	-0.044304379	
Variables fisicas-T(C°)	-0.002358616	-0.002358616	-0.002358616	-0.002358616	0.400780542	-0.467384967	-0.467384967	-0.467384967	
A. Enzimatica-AF al 0-5 cm	-0.286327638	-0.286327638	-0.286327638	-0.286327638	0.577006063	-0.63911822	-0.63911822	-0.63911822	
A. Enzimatica-AF al 6-10 cm	-0.896428633	-0.896428633	-0.896428633	-0.896428633	0.484973376	-0.526185015	-0.526185015	-0.526185015	
Relacion qCO2:AU 0-5 cm	-0.859869543	-0.859869543	-0.859869543	-0.859869543	0.803769934	-0.885542354	-0.885542354	-0.885542354	
Variables fisicas-EP	-0.687594671	-0.687594671	-0.687594671	-0.687594671	0.459535309	-0.40028972	-0.40028972	-0.40028972	
A. Enzimatica-AAS 0-5	-0.455096604	-0.455096604	-0.455096604	-0.455096604	0.348542378	-0.246021022	-0.246021022	-0.246021022	
Contenido de Masa Labil COS (0-5 cm)	-0.432784926	-0.432784926	-0.432784926	-0.432784926					
		11.432/349/0	-0.434/04940	-0.434/84940	1	-0.872799343	-0.872799343	-0.872799343	


Anexo 6 Valores máximos y mínimos por sitio

	V.MAXIMO	V.MINIMO	-			
Variables/Sitios	La Joya	C.Amalacaxco	Potrero	OyF	Palomas	Coapex
Piso altitudinal	3858	3659	3399	3125	2982	2679
pH-Delta pH	0.95	0.97	1.62	1.24	0.69	0.52
pH-pH activo	5.38	5.26	6.92	6.32	6.31	5.82
pH-pH Kcl	4.44	4.30	5.30	5.08	5.62	5.30
Indice metabolico-qCO ₂	0.08	0.08	0.07 1.48	0.05	0.21 3.76	0.11
Indice metabolico-qN 0-5 (CBM/NT 0-5 cm) Indice metabolico-qN (CBM/Masa labil 2% N 0-5 cm)	79.36	63.23	77.97	0.64 33.55	3.76 197.85	49.22
Relacion C:N	16.01	15.97	22.99	14.03	18.43	12.03
Relaciones Experimentales-Relacion qCO2:AU 0-5 cm	61.25	47.89	31.31	24.17	274.95	36.06
Relaciones Experimentales-Relacion Ac Fulvico:pH Activo	7.84	8.77	11.91	11.89	12.15	9.91
Relaciones Experimentales-Relacion Ac Fulvico:pH KCl	9.59	10.82	15.54	14.81	13.65	11.06
Relaciones Experimentales-Relacion Ac humicos:qCO ₂	207.35	221.61	212.35	448.73	18.18	65.82
Relaciones Experimentales-Relacion AU:MO 0-5 cm	9.20	10.88	8.17	6.92	10.91	6.08
Relaciones Experimentales-Relacion AU:MO 5-10 cm	13.96	9.64	10.81	20.48	75.14	19.51
Relaciones Experimentales-Relacion Ac Fulvicos:Nt	47.07	56.50	104.39	71.01	183.99	80.13
Relaciones Experimentales-Relacion pH Activo/ DA CIL	9.78	9.70	6.44	7.20	8.16	8.17
Relaciones Experimentales-Relacion SF/SH	2.86	2.62	6.48	3.81	30.75	14.79
Relaciones Experimentales-Relacion AU/N Labil 0-5 cm	4.32	3.35	8.09	5.60	3.64	6.11
Relaciones Experimentales-Relacion AU/N Labil 5-10 cm	4.29	7.07	19.31	2.67	2.37	4.36
Variables fisicas-T(C°)	25.90	25.90	25.90	25.90	25.90	25.8
Variables fisicas-CE	0.10	0.07	0.48	0.21	0.02	0.16
Variables fisicas-DA Cil	0.58	0.69	1.08	0.88	0.81	0.73
Variables fisicas-EP %	38.93	38.41	14.32	18.58	41.92	32.7
Variables fisicas-MO %	9.36	7.08	6.29	5.98	3.65	7.31
Variables fisicas Hum %	19.77	16.34	6.45	10.16	14.42	14.6
Variables fisicas-COS %	5.05	3.82	3.40	3.23	1.97	3.95
Variables fisicas-NT %	0.32	0.24	0.15	0.23	0.11	0.32
Variables fisicas-Pendiente %	20.00	11.67	35.00	20.00	10.00	35.00
Textura-Arena	68.68	68.35	67.68	71.68	67.68	59.6
Textura-Limo	23.00	23.33	26.00	22.00	24.00	27.0
Textura-Arcilla	8.32	8.32	6.32	6.32	8.32	13.3
Textura-Arena/ Limo	3.04	2.95	2.60	3.26	2.82	2.22
Textura-Arcilla/Limo	0.38	0.36	0.24	0.29	0.35	0.49
Textura-Arena/Arcilla	8.73	8.55	10.71	11.34	8.13	4.52
Textura-Limo/Arena	0.34	0.34	0.38	0.31	0.35	0.45
Textura-Limo/Arcilla	3.03	2.96	4.11	3.48	2.88	2.03
Textura-Arcilla/Arena	0.12	0.12	0.09	0.09	0.12	0.22
Contenido de MO 0-5 cm	27.78	24.83	33.31	25.93	14.85	25.3
Contenido de MO 0-20 cm Contenido de COS 0-5 cm	111.11 15.00	99.31 13.41	133.24 17.99	103.72 14.00	59.41 8.02	101.5
Contenido de COS 0-3 cm	60.00	53.63	71.95	56.01	32.08	54.8
Contenido de COS 0-20 Cm Contenido de Masa Labil COS (0-5 cm)	1.33	0.91	1.18	0.70	1.64	0.80
Contenido de NT 0-5 cm	0.91	0.84	0.80	1.06	0.44	1.08
Contenido de NT 0-20 cm	3.64	3.36	3.18	4.25	1.77	4.30
Contenido de Masa Labil N del Suelo (2%)(0-5 cm)	0.02	0.02	0.02	0.02	0.01	0.02
C. de Azufre-SO4-2 BRAY 1	2.74418E-05	2.91748E-05		1.50716E-05	1.4495E-05	1.36782
C. de Azufre-SO4-2 BRAY 1 (0-5 cm)	8.0623E-05	9.97511E-05	0.000103919	6.628E-05	5.84332E-05	5.07395
C. de Azufre-SO4-2 H2O (%)	1.00958E-05	1.47902E-05		1.00099E-05		3.20957
C. de Azufre-SO4-2 H2O	2.90069E-05	4.90884E-05			0.000115528	0.000109
C. de Azufre-SO4-2 OLSEN (%)	3.21708E-05	3.0599E-05		3.64766E-05		2.527311
C. de Azufre-SO4-2 OLSEN	9.48891E-05	9.55075E-05		0.000161959		9.47483
C. de Fosforo-P-Total suelo según Olsen	0.00128726	0.001171474	0.001185096	0.0010625	0.001920673	0.00151
C. de Fosforo-Masa de P en suelo según Olsen (0-20 cm)	0.014985466	0.015667269		0.018672165	0.030958891	0.02167
C. de Fosforo-Masa de P en suelo según Olsen (0-5 cm)	0.003746367	0.003916817	0.006394678	0.004668041	0.007739723	0.00541
C. de Fosforo-P-Total suelo según Bray	0.001711833	0.001589559	0.003973898	0.00137558	0.002284991	0.00242
C. de Fosforo-Masa de P en el suelo según Bray (0-20)	0.019653689	0.027384524	0.085983329	0.024239343	0.037555964	0.03547
C. de Fosforo-Masa de P en el suelo según Bray (0-5)	0.004913422	0.006846131	0.021495832	0.006059836	0.009388991	0.00886
Propiedades Bioquimicas-Ac. Húmicos	16.72	17.80	13.05	19.89	2.69	4.89
Propiedades Bioquimicas-Ac. Fúlvicos	42.11	46.23	82.49	75.14	76.51	57.0
Propiedades Bioquimicas-CBM 0-5 cm	1.19	0.91	1.18	0.70	1.64	0.80
Propiedades Bioquimicas-CBM 5-10 cm	1.13	0.88	0.80	0.53	1.47	1.20
A. Enzimatica-AU 0-5 cm	0.00254	0.00152	0.00228	0.00242	0.00074	0.002
A. Enzimatica-AU 5-10 cm	0.00255	0.00323	0.00555	0.00119	0.00053	0.001
A. Enzimatica-AF ac 5-10 cm	0.001342051	0.000471625		0.001045354		0.00055
A. Enzimatica-AF al 0-5 cm	0.000970459	0.000890221	0.001529177		0.001663387	0.00129
A. Enzimatica-AF al 6-10 cm	0.000925111	0.000893605		0.000803204	0.001617239	0.00126
A. Enzimatica-AF ac 0-5 cm	0.001591734	0.000659873	0.00094325	0.001735774	0.00063521	0.00058
					0.002777706	0.004486
A. Enzimatica-AAS 0-5	0.002548497	0.001923655	0.001993056	0.000924	0.003777706	0.004

Anexo 7 Correlaciones observadas con el piso altitudinal

Anexo 8 Fragmento de la base de datos

