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Introduction

The Nash blowup of an algebraic variety is a modification that replaces
singular points by limits of tangent spaces at non-singular points. It was
proposed to resolve the singularities by iterating this process [19 23]. This
question has been treated in [19, 211 [13], 14}, 17, 24, [1], 26] [7]. The particular
case of toric varieties is treated in [13] (15} [16, 8, [11] using their combinatorial
structure.

There is a generalization of Nash blowups, called higher Nash blowups or
Nash blowups of order n, that was proposed by Takehiko Yasuda. This mod-
ification replaces singular points by limits of infinitesimal neighborhoods of
certain order at non-singular points. In particular, the higher Nash blowup
looks for resolution of singularities in one step [27].

There are several papers that deal with higher Nash blowups in the
special case of toric varieties. The usual strategy for this special case is
to translate the original geometric problem into a combinatorial one and
then try to solve the latter. So far, the combinatorial description of higher
Nash blowups of toric varieties has been obtained using Groebner fans or
higher-order Jacobian matrices.

The usage of Groebner fans for higher Nash blowups of toric varieties
was initiated in [9], which in turn was inspired by [29]. Later, this tool
was further developed in [26] to show that the Nash blowup of order n of
the toric surface singularity As is singular for any n > 0, over the complex
numbers. This result was later revisited to show that it is also holds in
prime characteristic [12].

In recent years several authors have introduced higher-order versions of
the Jacobian matrix. In [10], a higher-order Jacobian matrix is studied in
relation with the higher Nash blowup of a hypersurface. More recently, in [2,
3], a similar matrix is introduced for any finitely generated algebra. In these
articles the matrices are used to study singularities in arbitrary characteristic
or to study algebraic properties of the module of Kahler differentials of
high order. In another but related direction, article [7] describes a matrix
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associated to a relative compactification of the induced map on the main
components of jet schemes of a projective birational morphism.

In chapter 1 we introduce a matrix that represents a higher-order tan-
gent map of a morphism. This matrix involves higher-order derivatives,
making it more suitable for some computations related to jet-spaces. Our
main application of this matrix is the solution of two conjectures of T. Ya-
suda. The first is related to the combinatorial shape of the higher Nash
blowup of formal curves and the second is related to the factorization of the
normalization of the Nash blow-up of order n of the toric surface A, by the
minimal resolution.

We also develop a combinatorial description for the higher Nash blowup
of toric varieties. This result is based and inspired in the analogous de-
scription of the usual Nash blowup of toric varieties given in [I5], [I6]. Our
results depend strongly on the general framework developed in [I5] for not
necessarily normal toric varieties.

In a subsequent paper [28], T. Yasuda gave a conjectural explicit de-
scription of the semigroup of the higher Nash blowup of formal curves. In
chapter 2 we prove this conjecture for toric curves using the higher order
matrix defined in chapter 1 and other combinatorial tools.

We also present a family of non-monomial curves showing that Yasuda’s
conjecture fails in general. By combining the results we obtained for mono-
mial morphisms and the general construction of the matrix representing the
higher-order tangent map, we are able to describe a particular element of
the semigroup of the higher Nash blowup of this family of curves which does
not belong to the semigroup suggested by Yasuda. The results of chapters
1 and 2 are published in [5].

The techniques from [26] can be used to compute the Groebner fan of
the normalization of higher Nash blowup of A,, for some n’s. Those com-
putations suggest that the essential divisors of the minimal resolution of A,
appear in the normalization of the Nash blow-up of order n of A,, for some
n’s. T. Yasuda conjectures that this happens for all n. In particular, this
implies that the normalization of the Nash blowup of order n of A,, factors
through its minimal resolution.

Chapter 3 is devoted to proving the second conjecture of T. Yasuda
previously mentioned. The results of chapter 1 and the results of [15] told
us that the normalization of the higher Nash blowup of A,, is a toric variety
associated to a fan that subdivides the cone determining A4,. An explicit
description of this fan could be obtained by effectively computing all minors
of the corresponding higher order Jacobian matrix. This is a difficult task
given the complexity of the matrix for large n. However, for the problem we



are interested in, we do not require an explicit description of the entire fan.

The rays that subdivide the cone of A,, to obtain its minimal resolution
can be explicitly specified. Thus, in order to show that these rays appear
in the fan associated to the normalization of the higher Nash blowup we
need to be able to control only certain minors of the matrix. A great deal
of this chapter is devoted to construct combinatorial tools that allow us to
accomplish that goal. The results of chapter 3 are contained in the preprint
[4].
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Chapter 1

Higher order matrices and
higher Nash blowup in toric
varieties

1.1 A higher-order Jacobian matrix of a morphism

1.1.1 A higher-order Jacobian matrix of a morphism of affine
spaces

In this section we study a higher-order derivative of a morphism between
affine varieties and find a matrix representation of this linear map.

Notation 1.1.1. The following notation will be constantly used in this
paper.

e The entries of vectors a € N are denoted as a = (a(1),...,a(t)).

e a <& i) <pB(i)Vie{l,...,t}. In particular, o < 8 if and only
if ai) < p(i) Vi e {1,...,t} and (i) < B(i) for some i € {1,...,t}.

o] = (1) + -+ - + aft).

°
ol
|
Q
=
/.%_\
N

caft)!

e 9% = 9 ga(2) ... galt).

For t,n € N, Ay, := {7y € NY|1 < |y| < n}. In addition, we denote
)\t,n = ‘At,n‘ = (n;i-t) — 1
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Let K an algebraic closed field. Consider a morphism

¢ K4 - K,
x=(x1,...,2q9) = (1(x),..., gs(x)).

Assume that ¢ is regular at some z € K¢ and let y = o(z) € K*. Let
m C C[Xy,...,Xy] and n C C[Y7,...,Y;] be the maximal ideals correspond-
ing to  and y, and m,, n, the maximal ideals in (C[Xy,...,X4])m and
(C[Y1, ..., Ys])n, respectively.

Let ¢* : (C[Y1,...,Ys]))n — (C[X1,..., X4])m be the induced homomor-
phism on local rings, where ¢*(n,) C m,. In particular, there is a homo-
morphism of K—vector spaces for each n € N:

(90_ )n ny/nn—I—l BN mx/mn—‘rl

the elements A, = {(X—x)® := (X1—21)*W - (Xg—24)*D|a € Ay} form
a basis of m, /m?*! as a K—vector space. Similarly, B, = {(Y—y)?|8 € Asn}
forms a basis of n,/ nZH. The dual bases of A, and B, are, respectively,

L1 e
= {Jaxa 0 € Aan},
By = {@aw’ 5€ Asn .
Since (¢*)n((Y = 4)7) = (g1 = g1())P1) - (g5 — g5(2))) = (¢ — p())?, it

follows that the dual morphlsm (%), (mw /m"“) — (ny/n2th)Y satisfies

vl 0° 1o . n
(so*)X(aaXa x) = —oxal, 0 (@ S K, (1.1)
L 0%(p — ()’
_ )P L @)
(Y y) ~ a! oxX« x'

It follows that the matrix representation of (¢*)Y in these bases is:

- v 0% (v — ()P
[(‘P*)r\i]i% _ (% (‘POX‘/;( )

. 1.2
x>B€As,naaeAd,n ( )

Definition 1.1.2. Let ¢ : K¢ — K*® be as before, where ¢(z) = y. We call
the linear map (p*),, the derivative of order n of ¢ at x. In addition, let

nioy . (L0 —p(@)?
D ( ) <Oé' 3X°‘ ’I)ﬁeAs,n,aeAd,n.
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We call D?(p) the Jacobian matriz of order n of ¢ at x or the higher-order
Jacobian matriz of ¢ at x. Notice that DI (¢) is a (Asn X A, )-matrix.
We order the rows and columns of this matrix increasingly using graded
lexicographical order on Ay, and Ag,. This order is denoted <.

Remark 1.1.3. Notice that, for each § € Ag,, the 5 row of DZ(p) cor-
responds precisely to the coefficients of the truncated Taylor expansion of

order n of (¢ — (z))? centered at .

Remark 1.1.4. A similar higher-order Jacobian matrix of a single poly-
nomial F' was defined in [10] and is denoted Jac,(F). See also [2, B] for a
further development of this matrix.

Example 1.1.5. Let ¢ : K — K2, ¢t ~ (¢,t?). The usual matrix represen-
tation of the derivative of ¢ at 0 € K is given by the Jacobian matrix:

Do(¢p) <£|0> (1>\
= 2 = .
’ Lo 2t )10

Following the construction of the higher-order Jacobian matrix given previ-
ously, in the case n = 2, we obtain:

@‘0 Ldityo
& fﬁtg 1 0
dt2|0 o1 glt22|0 2t 1
d(t d2(t
DQ( ) (dt) |O % dSt2) 0 - 0 1
d(t-t2)| ldz(t-2t3) |0 0 2%
d !
a(th? 1 el 0 4
dt lo 21 42 lo ‘o

The higher-order Jacobian matrix satisfies the following basic properties.

Lemma 1.1.6. Let ¢ : K — K° be as before.

0% (p—p(x)P _ 9% for every

(i) If B € Asp is such that |B] = 1 then aXe = Fxa
A Ad,n~
(1t) Let o« € Ay, B € Ay be such that (o] < |B|. Then %7@9”% =0.

(iii) DL(p) is the usual Jacobian of ¢ evaluated at x.
(iv) If p : K¢ — K? is the identity then D(y) is the identity matriz.

(v) Let : K* — K" be another morphism. Then Dy (o) = Dy (1) Dy ().
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Proof. (i) If B € Asy, is such that |3] = 1 then (¢ — p(2))? = g; — gi(z)
for some i € {1,...,s}. Since g;(z) is a constant, the result follows.

(ii) The hypothesis on a and 8 means that in %7%@)/3 the order of
the derivative is less than the number of factors in (¢ — o(z))?. This

o 2
implies that in every summand of P (p—p(@))” (% )fa(x)) there is a factor g;—g;(x).
(e 8
Thus Z2&ele)”)

(iii) This follows from the definition of DZ(y) and (7).

iv is the identi en (¢*), : my/m — mg/m is also the

(iv) If ¢ is the identity then (¢*) /mntt Jmntt Iso th
identity. With respect to the common basis chose for both vector
spaces, we conclude that D () is the identity matrix.

(v) We know that (¢ o p)* = p* o w_* Thus, ((¢¥ 0 ¢)*)n = ( *)_n o (Y*)n.
Taking duals ((¢ 0 ©)*); = ((¢*)n © (V*)n)" = (%), o (p*). The
result follows.

]

Now suppose that X C K% and Y C K* are affine varieties and let
¢ : X — Y be a morphism which is regular at x € X and let y = ¢(z).
Denote by m, and n, the maximal ideals of the corresponding local rings.
Since ¢ is the restriction of a morphism ¢ : K¢ — K*, the diagram

X—2sY
i i
KdLKs

induces the diagram

(Mg /g )Y —— (ny /Ay 1)

(Mg /mp )Y —— (ny /gt

Taking bases as before we identify (m,/m}+!)Y = K*» and (n,/npt!)Y =
KAsn . The commutativity of the diagram

(Mg /g )Y —— (/g )Y

|

D2 () KAs,n

K)\d,n z
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allows us to define a higher-order tangent map of p : X — Y at x € X as
the restriction
Dy () + (g /mp )Y — (n, /ay )Y
1.1.2 Higher-order Jacobian matrices and birational mor-
phisms

Let Y C K*® be an irreducible algebraic variety and y € Y. In this subsection,
we use the higher-order Jacobian matrix to explicitly compute the space
(f,/ap )Y in some cases.

Lemma 1.1.7. Let X and Y be irreducible varieties and let ¢ : X --+Y be
a birational morphism. LetU C X andV C Y be open subsets isomorphic to
each other. Let x € U and y = p(x) € V.. Then ¢ induces an isomorphism
/g = m fmi

Proof. Since |y : U — V is an isomorphism, there is an induced isomor-
phism on local rings Oy, = Ox . In particular, ¢*(n,) = m,. The result
follows. o

Proposition 1.1.8. Let ¢ : K -——» Y C K*® be a birational morphism,
UcCK?andV CY open subsets isomorphic to each other, and y = ¢(x) for
some x € U. Then the vector space (ﬁy/ﬁg+1)v is isomorphic to the image
of the linear map defined by D} (). In particular, rank(D}(¢)) = Adn-

Proof. We have the following commutative diagram

Kd 710790) K

This diagram induces in turn the following commutative diagram

1y (02) N
(mg/mp )Y —— (n, /myt1)V

N (’L_*)\/

(%)
(ﬁy/ﬁgﬂ)v’
where the isomorphism in the diagonal arrow comes from lemma [I.T.7 Fix-

ing bases for m,/m?*1 and n,/ nzﬂ as in the previous section, we identify
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(mg /m 1)V = KAan and (ny/ngﬂ)\/ = KM s, In addition, from 1' it fol-

Vv
*

lows that (i 0 ¢)*  is the linear map defined by the matrix D (iop) = DI ().
We thus obtain the diagram

n
K)‘d,n L(%ﬂ) K)\s,n

.

= ot
(ny/ n;H_ )V
The commutativity of this diagram proves the proposition. O

Remark 1.1.9. Notice that the proofs in this section consider local rings
of points of a variety. Therefore, these results are also valid in the analytic
case. In particular, we can define a higher-order Jacobian matrix for germs
of analytic maps ¢ : (X,z) — (Y, ).

Example 1.1.10. Let ¢ : K — C = V(y —2%) C K2, t ~ (t,t%). We
computed D%((p) : K2 — K° in the previous section. Let 1y be the maximal
ideal of (0,0) € C. Using proposition we obtain

1 0
2t 1

(ng/0d)Y = Im(D3(¢)) =Im | 0 1 c K5.
0 2t
0 42

1.2 Higher order Jacobian matrices for monomial

morphisms
Let ai,...,as € Z% We assume that d < s. In this section we study the
higher-order Jacobian matrix of the monomial morphism
¢ (K\{0hH? - K® (1.3)
x=(r1,...,2q) — (%, ... %),

where % := a:'lli(l) o -wgi(d).

Notation 1.2.1. The following notation will be used constantly.

e A denotes the (d x s)-matrix whose columns are the vectors ay, ..., as.
By abuse of notation, the set {ai,...,as} is also denoted as A.
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o A; = (a1(7),...,as(7)), i = 1,...,d, denote the rows of A. In parti-
cular, for v € N¥,
XAV — Xi“l")/ . 'Xcl?d'77

where A7 is a product of matrices and A; -y is the usual inner product
in R?.

e For 5 € N°) we denote

(XA . xA)ﬁ — (Xa1 - xal)ﬁ(l) . (Xas o ];as)ﬁ(s)'

e For \,7 € N!, denote (i‘) = (igg) ... (/\(t)).

With this notation, the higher-order Jacobian of ¢ at a point x € (K'\
{0})¢ is given by:

. 19°(X4 — 2t)?
D¢) = (e )

We are interested in computing the maximal minors of this matrix. This
will be done in several steps.

,BEAs,n,OCEAd,n

Lemma 1.2.2. Let v € N* and o € N?. Then

iaa(XA'y): A7 XA'y—a.
al  0X« «

Proof. This is a direct computation. O

Lemma 1.2.3. Let 8 € Asp, o € Ay, and z € (K\ {0})4. Then
1 « A A\B AB—«
a@ (X —a2™)’s = cgax ,

— A
where cgq = szﬁﬁﬂ)(—l)w 7 (5) ( 07).
Proof. From the binomial theorem we obtain, for each i € {1,...,s}:

6 .
X0 _ ganyB) _ 1)) =(0) <5@> (i) (e B -1(0)
( ) 7(%0( ) () (X )7 ()
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Thus, letting v := (y(1),...,7(s)),

A LAV8 oyl (BY T i 170 (s B
(x4~ 2 (1) 7<7>iH1<X P10 (g4) B

5) (X as) (5 BDai-E(as
7))

With this formula and the previous lemma now it is easy to compute the
derivative evaluated at x:

é&“(XA —aMi, = Y~ <5> (xAB—Av)éaa(XAﬂ/”x

+<B73#0 7
_ ﬁ%ﬂ(_l)lb’—vl (5) (z45-47) <f;7> XAl
_ WS%ﬂ(_l)ww (5) <f(1l’7> Ao
LE O

O
Using this lemma it follows that the higher-order Jacobian of ¢ at each
z € (K\ {0})¢ has the following shape:

Di(p) = (cp.ar™™) (1.4)

/BEAs,n:aeAd,n‘
Proposition 1.2.4. Let J = {B1,..., B, } C Asn, where B1 < ... < By,
(see definition for the notation <). Let Ly denote the submatriz of

Dy (p) formed by the rows B, ..., B, and all of its columns ay,...,ay,,, -
Then, if z € (K'\ {0})(1’

AP ABy,

det(Ly) = det(L9),

Lo

where LG = (cg; 0, )ij-
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Proof. The matrix whose determinant we want to compute is the following:

AB1—on AB1—ax,
Chr,an T Chrang,, ¥ "
AB2—an AB2—ay,
Cha,n T CBa,an, T "
LJ = ’
Cﬁ :L'Aﬁkd,n -1 e Cﬁ xAB/\d,nioO‘d,n
’\d,n A1 ’\d,n ’a>‘d,n

Multiply the oj;th column by z®/. Then multiply the 3;th row by x4,
Let LCJ = (C,Bi,aj)i,]" Then

ABrt+AB,

det(Ly) = det(L9). (1.5)

ma1+"'+a)\dm
O

Remark 1.2.5. If n = 1 then \g,, = d. Letting 3;, = ¢;, € N° for k =
1,...,dand J = {f;,,..., Bi,} C Asp, it follows that L is the (d x d)-matrix
whose rows are a;,, ..., a;,. In particular, in view of , det(Ly) # 0 if and
onlyifa;,,...,a;, are linearly independent. This remark allows a comparison
between the so-called logarithmic Jacobian ideal of a toric variety and an
ideal whose blowup defines the Nash blowup of the variety [13, [19]. This, in
turn, gives place to the fact that the Nash blowup of a toric variety can be
obtained as the blowup of its logarithmic Jacobian ideal (see [13}, [I8] [15]).
As a result, there is an explicit combinatorial description of the Nash blowup
in this context [I3] 15} [16].

1.3 Higher Nash blowup of toric varieties

In this section we exhibit an open cover for the higher Nash blowup of a
toric variety. We start by recalling the definition of the higher Nash blowup
of an algebraic variety. Subsection is based on the general theory of
(not necessarily normal) toric varieties developed in [I5] and also uses some
ideas appearing in [16].

1.3.1 Higher Nash blowup

Notation 1.3.1. Given an irreducible algebraic variety X C K?® of dimen-
sion d and a point x € X, we denote T"X := (m,/m2T!)V. This is a vector
space of dimension Ag,, whenever x is a non-singular point.
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Notice that X C K* implies T"X C TPK® = K*s». Thus, if z is
a non-singular point, we can see 7,'X as an element of the Grassmanian

GT(/\d,na K)‘S*").

Definition 1.3.2. [19, 20, 27] Let X C K*® be an irreducible algebraic
variety of dimension d. Consider the Gauss map of order n:

Gn: X\ Sing(X) — Gr()\dm,K)‘s’")
x—TrX,

where Sing(X) denotes the set of singular points of X. Denote by Nash,(X)
the Zariski closure of the graph of G,,. Call 7, the restriction to Nash,(X)
of the projection of X x Gr(Agn, K*) to X. The pair (Nash,(X),m,) is
called the higher Nash blowup of X or the Nash blowup of X of order n.

It was proposed by T. Yasuda ([27]) to resolve the singularities of X
by applying once the higher Nash blowup for n sufficiently large. Yasuda
himself proved that his method works for curves (|27, Corollary 3.7]). More-
over, Yasuda suggested in [29, Remark 1.5] that the As-singularity might be
a counterexample to his conjecture on the one-step resolution. R. Toh-Yama
recently proved in [26] that Nash,(As) is singular for every n > 1.

1.3.2 An explicit open cover of the higher Nash blowup of a
toric variety by affine toric varieties

Let us recall the definition of an affine toric variety (see, for instance, [0,
Section 1.1] or [25, Chapter 4]).

Definition 1.3.3. Let A = {a1,...,as} C Z% Let I' := NA denote the
semigroup generated by A, ie., I' = {d . \a;|\; € N}. In addition, as-
sume that ZA = {3, Mia;|\; € Z} = Z¢. Consider the following monomial
morphism:

or : (K*)? - K (1.6)
x=(r1,...,2q9) = (x%, ... %),

where K* = K\ {0}. Let X1 denote the Zariski closure of the image of ¢p.
We call Xt the affine toric variety defined by T'.

It is well known that Xt is an irreducible variety of dimension d, contains
a dense open set isomorphic to (K*)¢ and such that the natural action of
(K*)? on itself extends to an action on the variety. In addition, X1 does
not depend on the generating set A (see [0, Theorem 1.1.17] for various
equivalent characterizations of affine toric varieties).



1.3. HIGHER NASH BLOWUP OF TORIC VARIETIES 19

Proposition 1.3.4. [6, Prop. 1.2.12],[15, Prop. 15] Let Xr C K* be an
affine toric variety, ¥ := Rsol' C R? the cone generated by T, and o its
dual cone. The following statements are equivalent:

(a) 0 € Xr.

(b) Xt has a 0-dimensional orbit.
(¢) The cone o is of dimension d.
(d) The cone o is strongly convex.

We want to show that the higher Nash blowup of a toric variety having
a 0-dimensional orbit, has a finite open cover given by affine toric varieties
with the same property. The proof of this fact is based on the following
combinatorial construction of blowing ups of monomials ideals in toric vari-
eties (see [15, Section 2.6]).

Combinatorial description of the blowup of a monomial ideal.
Let Xt C K?® be an affine toric variety having a 0-dimensional orbit and
oV = RsoI' C R? (which is strongly convex, by the previous proposition).

(i) Let I = (z™|m € B) C K[Xr] be a monomial ideal.

(ii) Let A'(I) be the Newton polyhedron of I, i.e., the convex hull in R?
of the set {m + o"|m € B}.

(iii) Let m’ € B. Denote Iy, :=T + N({m — m/|m € B}).

(iv) Given m/,m” € B, the affine toric varieties Xr , and Xt _, can be
glued together along the principal open subsets Xr , \ V(™' —m)
and Xr_, \ V(2™ ~™"). There is an isomorphism between these open
subsets which is induced by localizations of coordinate rings:

KXt ] mr £ K[Xr, ] o -

z "
7

7
M M

(v) The variety resulting from the previous glueing is the blowup of Xp
along I (see [I5, Proposition 32]). We denote it as Bl; Xr.

(vi) Finally, let B’ = {m' € B|m' is a vertex of N'(I)}. Then

Bl Xp = Uwes Xr, )
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(see the proof of Proposition 32, [I5]). By proposition for m’ €
B, Xr, , has a O-dimensional orbit. In particular, Bl; X1 has an open
cover by affine toric varieties having a O-dimensional orbit.

Remark 1.3.5. The variety resulting from the previous construction is an
example of an abstract toric variety having a good action (see [15, Section
2.8]). These varieties are characterized by the fact that they can be described
in combinatorial terms by families of semigroups labeled by fans (see [15]
Theorem 44]).

In order to use the previous construction and compare it to the higher
Nash blowup of a toric variety, we need to introduce some monomial ideal. In
addition, we use the Pliicker embedding of Gr (g, K*s") into the projective
G-t

d,n

space P . First, some notation.

Notation 1.3.6. Let A = {ai,...,as} C Z% and I' = NA a semigroup
defining a toric variety Xpr C K?®.

e GivenJ = {f1,...,Bx,, } C Aspsuchthat By <--- < By, ,, we denote
by Uj; the affine chart of p(b)-1 where the J-coordinate is non-zero
(see definition for the notation <).

o Let Sy = {J = {61, c. 75}\01,”} C As,n’ﬁl < =< 6,\dyn,det(LCJ) 7& 0}.
Notice that Sy # () by propositions and

e Foreach J = {B1,...,8x,,} C Asn, denote my := Ap1+---+ABy,,,-

Definition 1.3.7. Let Z,, := (X"™/|J € S4) C K[Xy]. Following the usual
terminology, we call Z,, the logarithmic Jacobian ideal of order n of Xr.

Remark 1.3.8. In the following subsection we show that Z,, does not de-
pend on the set of generators of I'.

We want to apply the combinatorial description of the blowup of a mono-
mial ideal to Z,. To that end, we simplify a little the notation coming from
that description. For X™7 € Z,, instead of using I';,, as in (iii), we simply
write I' 5.

Now we are ready to prove the main theorem of this chapter.

Theorem 1.3.9. Let X1 C K® be an affine toric variety having a 0-dimensional
orbit. Then Nashy,(Xr) is isomorphic to the blowup of the logarithmic Ja-
cobian ideal of order n of Xv. In particular, Nash,(Xr) has a finite open
covering given by affine toric varieties having a 0-dimensional orbit.
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Proof. We divide this proof into two steps: the first one describes locally
Nashy,(Xr) and the second one is a glueing argument.

Step I: According to proposition and (|1.4)), for a point p := ¢p(z) €
Xr, for some 2 € (K*)¢, we have

— — Ap—
T;;XF o Im(DZ(SDF)) o Im <Cﬁ7aa’: Q)BEAs,naaeAd,n'

Thus, the Plicker coordinates of T)) X € Gr()\d,n,K’\Sv“) — IP’(%I)_1 are
given by the maximal minors of (CBVQ:L‘AfB_O‘)ﬂ’a. According to 1} for a

choice J = {44, ..., ﬁ/\d,n} C Asn, where 81 < ... < By, the corresponding

minor is:
ABit+ABN,

det(L9)

Fix Jy € S4. It follows that:
+(m) -1

into 1. Thus, we can assume that

1. If J € S4 we can make a change of coordinates in U 5, = K’ to
det(LS)

det(L?O)
the J-coordinate of Nash,(Xrt) N Uy, is equal to 1 for every J € Sa.

turn the non-zero constant

2. If J ¢ S4 the J-coordinate of Nash,(Xr) is zero. This implies that
we can embed Nashy,(Xt)NUy, in Kst1Sal-1

These two remarks imply that

AB;
*\d
xZBgEJoAﬁ?)U € S\ {Jo},z € (K*)d}

= {(pr(@),a™ )T € Sa\ {o}w € (KT} (17)
— Tm(pr,) C KSHSaI-L

Nash,(Xr) N Uy ={ (@F(l‘)»

In particular, this affine chart of Nash,(Xr) is an affine toric variety.

Step I1I: By Step I, for each J € S4, Xr, = Nash,(Xr)NU;. Since both
Blz, Xr and Nash,(Xr) are obtained by glueing X, and Nash,(Xr)NU,,
respectively, we only need to check that the glueing is the same. The glueing
in Nash,(Xr) C Xp X p(b)-1 s given by the usual glueing in P(%)_l, ie.,
the one induced by the following isomorphisms of localizations of coordinate
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rings for each couple Ji, Jo € Sa:

K[xm’. "’xas’$mJ_mJ1|J [ SA ¢ {Jl}]lmJ2

:cm‘]l

> K[z, ... %, ™ M| ] € Sa ¢ {J)]m

zm‘l2

This is exactly the glueing described in the combinatorial description of the
blowup of a monomial ideal. O

Remark 1.3.10. For n = 1, the previous theorem was proved in [13}, 18] [15].

Remark 1.3.11. The previous theorem and its proof show that Nash,,(Xr)
can be covered by open affine varieties which are invariant under the action
of a torus. This statement could be obtained directly using results of [15, 27].
Indeed, by [27), Section 2.2], the higher Nash blowup of a toric variety is an
equivariant morphism; in particular, it is the blowup of some monomial
ideal. Then [I5, Corollary 34| implies the statement. We want to emphasize
that the contribution of this section is that one can take the logarithmic
Jacobian ideal of order n as such monomial ideal. In addition, we describe
an explicit method to construct this ideal.

1.3.3 The logarithmic Jacobian ideal of order n is indepen-
dent of the generators of I

In this subsection we show that the ideal Z,, does not depend on the set of
generators A of I'. To that end, we need to modify temporarily the notation
Z,. We denote as Z¢ the logarithmic Jacobian ideal of order n, where C is
an arbitrary set of generators of T'.

Theorem 1.3.12. Let A = {a1,...,as} C Z% and B = {by,...,b} C
Z% be such that T' = NA = NB. Then Z4 = Zaup = Zp. In particular,
the logarithmic Jacobian ideal of order n of Xr does mot depend on the
generators of I'.

Proof. 1t is enough to show Zp = Zaup. Lemma [1.3.13| states that Z4 C
Zaup- Applying repeatedly lemma [I.3.14] we obtain the other inclusion. [

Lemma 1.3.13. With the notation of theorem Za CZauB-

Proof. For J € Sy, define J := {(B,0,...,0) € N**|3 € J}. The submatrix
of D?(paup) defined by J is the same as the submatrix of D?(¢r) defined
by J. Therefore J € Saup. Thus, X™ = X™7 € TauB. O
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Lemma 1.3.14. Let A be as in theorem and b € NA. Let A" =
AU{b}. Then Za C Lx.

Proof. Consider the following partition of S

Sy :={J € Sqy|B(s+1)=0forall 8 € J},
S :={J € Sy|B(s+1) > 0 for some 3 € J}.

By definition, Zy = ({X™7|J € S1} U{X™7|J € Sy}). As in the proof
of lemma {X™7|J € S1} C Za. We claim that {X™7|J € S} C
({X™7|J € S1}), implying the lemma. Now, to prove the claim we show
that for J € Sy there exists J € S; and 4 € T such that my = mj+7.
First, we need some notation.

o Fory < fi let ¢ = (-1)# (%) Then, by definition, cg, o, =
A/
ngﬁi,#o Ev(aj”) (see lemma [1.2.3)).

® cg = (szﬁm#) €y (‘2;7 (cg, is the B;th row of LCJ—)

)) 1§j§/\d,n

— (A ; —
° Uy = (( o )) < Notice that by remark(2.1.3) cg, = > <5 0 €40y

(that remark is stated for toric curves but it also holds for toric vari-
eties of any dimension).

Let J = {B1,-- By} € S2. Then det(L5) # 0 and we can assume
that B1(s + 1) > 0. Then the following holds:

1. There exists 4/ < 1 such that the matrix obtained by replacing the
Bith row of LG by v, has non-zero determinant.

2. There exists dg € N**! such that dp(s + 1) = 0 and A'6y = A’y'.

3. There exists 6 € N**! such that § < &y, d(s + 1) = 0, and the matrix
having as rows cs, cg,, . . - TN has non-zero determinant.

4. Let Jy := J\ {B1}U{0}. Then J; € Sa and mj equals m, plus some
element in I'.

Notice that by applying 1 - 4 to any element of J whose (s + 1)-entry is
greater than zero, we obtain J € 57 and 4 € I with the desired properties.
Now we prove the previous statements.
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1. Tt follows immediately from:

B D v<pr 0 €1V
Cg Cﬁ
0#det(LS) =det | .| =det ;
Cﬁxd’n Cﬁxdm
Uy
cs
= Z € det :2
v<B1,7#0 ’
Cﬁxdm

2. If y/(s+ 1) = 0, let dp := «'. Now suppose that 7'(s + 1) = k > 0.
Since b € NA, b= 3"7_; ;. Let do(1) := /(1) + kX for I < s+ 1 and
do(s+1) =0. Then

A’(SO—Z(SO a = Z 1)+ kX)a; = Zw (Day + kb= A+
=1

3. Let M denote the matrix whose rows are cs,,cs,,. .. 1 CBy, in this
order. If det(M) # 0 let § := §p. Suppose that det(M) = 0. Then

Uy Vs,
%] %]
O=det(M)= > edet| . |+det| .
v<60,7#0 )
Cﬁxdm Cﬁxdm

On the other hand, A'6y = A’y implies v,/ = vs, and so

Uy! Vso
cs cs
0 # det :2 = det ’
Brg.n Bry
Therefore
Uy
cp
0+# Z € det ’
7<80,77#0
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Thus there exists 61 < dp such that det(vs, cg, --- c@dm) # 0. If
det(cs, cg, -+ cﬁkd,n) # 0, let 6 := d1. Otherwise repeat the previous
process. This leads to a sequence dy > d; > ---. Since this sequence
cannot decrease infinitely many times, we conclude that there exists
k > 0 such that 69 > 01 > --- > d;, =: 6 and det(c5 cg, - - Cﬁ)‘d,n) £ 0.
In addition, since 0 < &g and dp(s + 1) = 0, we have d(s + 1) = 0.

4. To show that J; € Sa we only need to show that |§| < n because we
already know that det(LS,) # 0. If |§] > n then, by lemma @ (i),
cs = 0, which contradicts that det(L5,) # 0. On the other hand, we
know that § < g and v/ < 81. Let 69 = 6 + ¢’ and 31 = +' ++"”. Then

A//BI:AI"}/‘FA/ //:A/60+A/ ,/:A/5+A/6/+A,7H.

This implies that m 7 equals mj, plus an element from I'.
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Chapter 2

Combinatorial structure of
higher Nash blowup of toric
curves

2.1 Higher Nash blowup of toric curves

In this chapter we study in detail the higher Nash blowup of toric curves.
In this chapter we use the following notation: A = {a1,...,as} C N, where
0<a; <...<asand ged(ag,...,as) = 1. Let ' = NA C N. We assume
that A is the minimal generating set of I'. Let Xt C K? be the corresponding
toric curve.

According to theorem Nashy,(Xr) is isomorphic to the blowup of
the ideal Z,,. Since I' C Rx, it follows that the Newton polyhedron of Z,
has only one vertex mj, = min{m;|J € S4}. In particular, Nash,(Xr) is
determined by a single semigroup. We denote it as:

Nash,(I') :=T + N({myj —my,|J € Sa\ {Jo}}).

Let us show how this semigroup looks like for n» = 1. In this case,
S ={ei1,...,es}, where the e}s denote the canonical basis of N*, m,, = a;,
and so min;{me, } = a;. Therefore

Nashi(T') =T + N({ax, — a1 |k > 1}).

Remark 2.1.1. The previous description is a particular case of the com-
binatorial description of the Nash blowup of toric varieties given in [15] [16]
(see also [II], where the Nash blowup of toric curves is studied in detail).

27
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We may ask the question: is there an explicit description for Nash,,(I")
as in n = 17 T. Yasuda made the following conjecture in a more general
context.

Conjecture 2.1.2. [28, Conjecture 5.6] Let X be a formal curve with asso-
ciated semigroup I' = {0 = so < 81 < ---}. Let Nash, (') be the associated

semigroup of Nashn,(X). Let L™ be the semigroup generated by s, — s,
where | <n < m. Then Nash,(I') = T™.

In what follows we prove that this conjecture is true for toric curves.
However, in the final section we show that it fails in general.

In order to prove the conjecture in the toric case, first we need to study
carefully some maximal minors of the higher-order Jacobian matrix. In sec-

tionwe defined, for J = {f1,...,Bn} C Aspn, the matrix LG = (cg, j)ij,

T e ()

Y<Bi,v#0

Notice that in this case A is a vector in N® and A -+ is the usual dot product.

Remark 2.1.3. (a) For a fixed 4, every entry of the i-th row of L9 has the
same amount of summands and the same coefficients (—1)/%~7! (%)
In other words, for a fixed row of LG, the amount of summands and
coefficients of its entries do not depend on j.

(b) Fix i€ {1,...,n}. We rewrite the sums cg, ; as follows:

S; Py .
CB;j = < Zj1> +ti,2< l:2> T +ti,ki< z,.k:1>7
J 7 j

where s;1 := A- B, sip € {A- |y < Bi,0# v # B} for 1 <1 < ky,
and t;; € Z. Assume that s;1 > s;2 > ... > s;, > 0. By (a), {si;i}1,
{ti1}; and k; do not depend on j. Therefore, the i-th row of LG can
be written as:

(5 + o) o b () () (50 4 (5) ).

Now we define some elementary operations on a matrix having the same
shape as LG. Given k; € Nfori € {1,...,n}, and s;; € N\ {0}, t;; € Q\ {0}
for 1 € {1,...,k;}, consider a matrix

D = ( ti,1 (831) + tz‘,Q (832) +---+ ti,ki (8131%) >1§i§n '
1<j<n
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Notice that if we fix ¢, the terms k;, s;;,t;; do not depend on j. Assume
that s;1 > si2 > -+ > s;1, for all i € {1,...,n}. Finally, let R; denote the
i-th row of D.

Definition 2.1.4. We say that D satisfies (x) if there exist i,i’ € {1,...,n}
such that s;1 = sy 1.

Using the following algorithm we show that, under some assumptions,
we can perform elementary operations on the rows of D to obtain a matrix
that does not satisfy the property (x).

Algorithm 2.1.5. Assume det D # 0 and that D satisfies (x).
1. Replace the row R; by t; 1 R; —t;1R;.

2. Since det D # 0 the new row cannot be the vector 0. Write this new
vector as:

R} = ( a5+ taa (7)o 4 8 () >1§j§n’

where t;; # 0 for alll € {1,...,k;} and s} ; > -+ > Sg,k;' Notice that
Si1 > 8;71 > 0.

3. Let

R,
(i) If there exists i € {1,...,n} \ {i} such that s;; = sy 1, then

apply step 1 to R}. As before, we obtain a new element s, € N

such that s;1 > s}, > s} > 0.
(ii) If there is no " € {1,...,n}\ {i} such that i, = s;; then stop.
Because of the decreasing sequence s; 1 > 3271 > s;’ ;> ---, this algorithm
must stop and it produces a new row that looks like

( uijl(”j’l) + g2 (T32) + ot Uim, (szml) )1§j§n ’

where u;; # 0 for all [ € {1,...,m;}, r51 > -+ > 1rim, > 0 and r;1 # 511
forall l € {1,...,n}\ {i}.
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Applying this process every time that the new matrix satisfies (%), we
finally get a matrix D

D= ( Ui (r’jl) + U2 (”32) T+t Ui, (rljmz) >1§i§n ,
1Zj<n

such that r;1 > -+ > 7, for each i and r;; # 7y 1 for all ¢ # ¢

Example 2.1.6. Consider the following matrix:

2 2 2

p=| (2 () =20) () —2()

1 1

(1) =30 +30) () -3G)+36) () —3()+30)

Notice that D satisfies (x). Applying algorithm to the third row we
obtain the matrix:

2.1.1 A partial description of Nash,(Xr)

The first step towards proving conjecture 2.1.2] for toric curves is to deter-
mine minjeg,{ms}. Recall that for J = {p1,...,0n} C Agn, we defined
my=A-1+---+A-B,. On the other hand, A-3; € I since A is the
vector formed by the generators of I'. Therefore, it is natural to expect that
minjes,{ms} = > i, si. The goal of this subsection is to prove that this
is indeed the case.

Proposition 2.1.7. Let J C Ag,, |J| =n, then minjeg,{ms} = > " si.

Proof. This is proved in lemmas [2.1.9] and 2.1.13] O

This proposition gives the following preliminary description of Nash, (I").
Corollary 2.1.8. Nash,(I') =T +N({m; — Y"1, s;|J € Sa}).

Lemma 2.1.9. Let J € S4. Then myjy > s1+ -+ + s,. In particular,
minjeg, {ms} > > .1 si.

Proof. Let J ={p1,pP2,...,0n}. Using (b) of remark we have

CJ _ ( (531) +tio (532) + ik, (Szkz) )1§i§n ,
1<j<n
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where s;; € I' for each [, 5,1 = A-B;, and s;1 > 850 > -+ > s;p,. 1If
si1 7 sipq forall 1 <7 # i/ < n then the statement follows.

Now suppose that there exist 5;, B € J, i # ¢/, such that s; 1 = sy 1, i.e.,
LG satisfies (x). Since J € Sy, i.e., det(L5) # 0, we can apply algorithm
to obtain some elements 71 1,...,7,1 € I satisfying r; 1 # ry 1 for all
i # i and s;; > 11 for some ¢ € {1,...,n}. Under these conditions we

have
n n n n
mj = ZA'@' = Zsi,l > ZT“ > Zsi-
i=1 i=1 i=1 i=1
O

To show that minjeg,{ms} = >, s; we need to show that, if J =
{B1,...,Bn} C Asp is such that A-f; = s;, then J € S4. In other words, we
need to study J’s such that det(L9) # 0. We do not have a characterization
of such J’s. However, in the following definition and lemma we give sufficient
conditions for J to be in Sy4.

Definition 2.1.10. Let J C N* be a finite subset. We say that J satisfies
(*) if the following conditions hold:

1) For all 8,3" € J such that 8 # (', it holds that A- 5 # A- j'.
2) For all 8 € J and 0 # v < (3, there exists 5’ € J such that A-y = A-3'.

Example 2.1.11. (i) Let J = {e;,2ej,...,ne;}, where ¢; is a basic vec-
tor. Then J satisfies (x). Indeed, 1) follows by definition and 2) by
the definition of <.

(ii) Let J = {p1, B2,...,0n} be such that A-; = s;. Then J satisfies (x).
Indeed, 1) follows by definition and 2) follows from the fact that v <
implies A-v < A - .

Remark 2.1.12. Let 8 € N* be such that || >n+ 1. Then A- 5 > na; >
Sp. This implies that for J = {f1,...,5,} C N° such that A - 3; = s; for
each 4, we have J C A, .

Lemma 2.1.13. Let J C Ay, |J| =n. If J satisfies () then J € Sa. In
particular, minyeg, {ms} <37 si.

Proof. The last statement follows from (ii) of example [2.1.11| and remark
2.1.12| Take a set J = {f1,..., [} satisfies (x). In particular, A-5; # A- By
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for all i # i'. Assume A- ) < --- < A- B,. By (b) of remark we can

rewrite the matrix LG as
( CB;.j )1§i'§n = ( (szjl) + 152 (532) + ik, (Sljkz) )1§z‘§n ’
1<j<n 1<5j2n

where s;1 = A - f3;, 81 > s;2 > -+, and s;; = A -y for some v < f3;.
Now we do some elementary operations on the n-th row of Lg:

(€5) 4 tn2(C2) 4o b (7))

We know that s, 2 = A-~ for some v < f3,,. Since J satisfies (x), there exists
Bj, € J such that A-3;) = A-~v = s, 2. Then we subtract ¢, o-times the
row jo from the row n, thus obtaining

1<j<n’

< (751 2 (752) oo+ g (i) >1§j§n’

where ), | = sp.1, 8,9 > 8,3 > -+, and s,2 > 5, 5. Now we have s;, 5 =
A-~" for some v' < f3,, or some 7/ < Bj,. Once again, by (x) we can repeat the
previous process to obtain a new element s;; , such that s, 2 > s, 5 > s} 5.
Because of this decreasing sequence of natural numbers, the iteration of this
process must stop turning the n-th row into

( (5) )1§an'

Applying this process to the other rows of L in an ascending way we
obtain the matrix
()
7 1<i<n *

155<n

Notice that s;1 = A-f8; # A- By = sy for all i # /. The following
lemma shows that this matrix has non-zero determinant, thus concluding

that J € S. O
Lemma 2.1.14. Let 0 < 1 < ¢y < -+ < ¢, be natural numbers. Consider
the matriz L = ( (Cj) >1§i§n . Then det L # 0.

15j<n

Proof. For j € {1,...,n}, consider the polynomial b;(z) = w

Notice that if z € N, b;(z) = (j) and degb;(x) = j. Thus

L= () )izizn = (3306 )1sica

1<j<n 1<j<n
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Now we show that the columns of this matrix are linearly independent. Let
ai,...,0, € R besuch that 377 a;bj(c;) =0, for each i € {1,...,n}. Let
f(x) =377_1 ajbj(x). Then {c1,...,c,} are roots of f(x). But we also have
f(0) = 0. Since deg f(x) < n it follows that f(z) = 0. As degb;(x) = j for
each j, we conclude that a;; = 0 for all j. In particular, det L # 0. O

2.1.2 Proof of conjecture for toric curves and some con-
sequences

Now we are ready to prove the main theorem of this chapter. Recall that
by definition and corollary 2.1.8}

™ = N({s,, — si|m > n,1 < n}),

Nashy(T) =T + N({m; = > _ si|J € Sa}).
=1

Theorem 2.1.15. '™ = Nash,(T).

Proof. This is proved in propositions 2.1.16] and [2.1.18] O

Proposition 2.1.16. Nash,(I') c I'("),

Proof. By corollary it is enough to show that a; € '™ for each i €
{1,...,s} and my — >0, s € '™ for each J € S.

We first prove a; € '™, For a; < s, there exists m € N such that
ma; < s, < (m+ 1)a;. Then a; = (m+ 1)a; — ma; € ™. If a; > s, then
a; +ay > sy, and a; = (a; +a1) — a1 € rm,

Now we prove that m; — Y ;" s € '™ for each J € S4. Consider
J ={B1,B2,...,Bn} € Sa, let s;1 := A- f; and assume s11 < -+ < 5p1.
Let k:=max{l € {1,...,n}[s;1 < sn}.

Case I: Suppose that s;1 < s21 < -+ < sg1 < Sp. Let ¢ = {s1,...,85,} \
{s1,1,---,sp1}. Write ¥ = {rp41,...,7}. By definition of k£ and ¢ we
obtain:

n n n n n
myj — E S = E 81,1 — E S| = E 81,1 — E r € F(n)
=1 =1 =1

l=k+1 I=k+1

Case II: Suppose that there exist 7,7’ < k such that s;; = sy ;. We
claim that for all j < k there exist r;; € I' such that s;; —r;1 € INSD)
and 7;1 # rj 1 for all j # j'. Assume this claim for the moment. For the
elements s, 1 with m > k, we have that s,,1 > s, and so s,;,1 —5; € '™ for
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any [ <n. Let ¢ = {s1,...,s.} \ {r11,...,r%1}. Write ¢ = {rg41,..., 7}
As in the previous case, we conclude that

n

mJ—zn:Sl = (zk:sm —zk:Tu) + ( Z s11 — z": rl> cr™),
1=1 1=1

=1 I=k+1 I=k+1

Now we prove the claim. Since J € Sy, we can apply algorithm to
any pair of rows of L9, i,7" < k such that s;1 = s;1, to get a matrix
oY i, (T4, . Ti,m;
D = ( ui,l( jl) +UZ72( ]2) —+ .. +Uz,mi( j ) >1§1§n y
15530

where ;1 # 1y 1 for all i,i" < k. Let us show that s;; —ri1 € '™ for all
ie{l,...,k}. We can assume that s; 1 # 75 1.

In the first run of the algorithm we obtain an element 8;71 € I' such that
si1 > s;; > i1 and s, = A -y for some v < f; or some v < fB. This
implies that s; 1 — 5271 erl.

On the other hand, we know that s;; > ;1 and r;3 € I'. Therefore
8i1 — 3;,1 +r;1 € I'and s;1 — 8;71 +7;1 < sp. Consider the following set
¢i = {s; € T\ {0}|s;+ri1 < s, }. This set is not empty since s; —5271 € ¢;.
Let s; := max¢;. If s;1 + s, < sy, we have that (s;1 — 3271 +5) i1 =
Si,1+5t—(8271 —7i1) < 8i1+s¢ < sp and 3i,1—5;71+3t > s;, which contradicts
the maximality of s;. Thus s;1 + s > s, and

81— Ti1 = (Si1 +8¢) — (8¢ +1i1) € .
O

We need the following lemma to prove the remaining inclusion in theorem
2. 1. 19

Lemma 2.1.17. Let s, 8; € ' be such that m > n > i and s, — s; ¢ T.
Let By, € N® be such that A - By, = Sm. Then there exists By < B such that
A - By > sp and |Po| < n.

Proof. If |Bm| < n then f,, satisfies the conditions of fy. Assume that
|Bm| > n.

Suppose first that as < s,. The set {a1,2a1,...,(n — 1)a1, a2} has n
different elements of I' implying na; > s,. Let § be such that |8] = n.
Then A - 3 > ns; = nay > s,. In particular, any 8 < (,, such that |5| =n
satisfies the conditions of the Lemma.
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Now suppose s, < as. Then s, = ksy for all & < n. Notice that if
Bm(j) = 0 for all j > 1, then s,, — s; = |Bm|a1 — ia; € T’ which contradicts
the hypothesis. Thus there exists j > 1 such that £,,(j) # 0. Consider
Bo=ej, then A- g =A-e; =a; > ax > s, and |fo| =1 < n. O

Proposition 2.1.18. T™ c Nash,(T).

Proof. Throughtout this proof we fix m,i € N such that m > n > i. Let

Sm — S; € ),

Case I: Suppose that s, —s; € I'. Then s, — s; € Nash,(I") by definition.

Case II: Suppose that s, —s; ¢ T'. Fix 3, € N® such that A - ,, = sy
We claim that there exist 5y € N°, Jo = {f1,...,06,} C N andi <[l <n

such that:

(1) Bo < Bim.

(2) A-B; =s; for each j € {1,...,n}.

(3) si—s; €l

(4) J:= (Jo\ {B}) U {Bo) satisfies (). In particular,

n

A By — s :mJ—ZSi € Nash,(T).
i=1

Assume this claim for the moment. Let § € N® be such that 3, = Sg+9. In
particular, s,, = A- 5y, = A- Lo+ A-0. Then, since A-§ € I', we conclude

Sm—8 =(A-Bo—s)+A-6+ (s — s;) € Nash,(T).

Now we prove the claim. We first show that there is a 5y € N* satisfying
(1) and some extra conditions needed for the proof of (4). Let T := {v €
N*|y < B }. We write this set as T' = T< U 1%, where

T< :={y€T|A v < sn},
TS :={yeT|A-v> sn}.
Notice that B, € T~. Let By < B, be a minimal element in TS such that

Bo € Asyn (such an element exists by lemma [2.1.17). By construction, Sy
has the following properties:

a) For all v < By, v € T<.
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b) For all §; such that A - j3; = s; it holds By }_Bi (this is true because
Bm > Bo and s, — s; ¢ T implies that 5, # 5;).

Now we prove the existence of Jy = {f1,...,6,} C N*, and i <[ <n
satisfying (2) and (3) and some extra conditions needed for the proof of (4).
Define the set (recall that i is fixed):

Q:={s; € {s1,...,5,}|VB such that A8 = s;, 3y < ' such that Ay = s;}.

If s; € {s1,...,5n} \ Q, consider 3; € N® such that A-3; = s; and for all
v < Bj, A-vy # s If s € Q, consider a §; € N® such that A - 3; = s;. Let
Jo :={p1,...,0n} CN°. By remark we have that Jy C Ag,. Notice
that Q # 0, since s; € Q. Let s; := max{Q}. In particular, s; € Q and so
s1—s; €T

It remains to prove that J := (Jo\ {5 })U{So} satisfies (x) (see definition
2.1.10). By construction and since A - 5y > s, we have 1) in the definition
of (x).

Now let B € Jo \ {fi}. We want to show that if v < [ then there
exists 3’ € J such that A- 3 = A-~. If k < [ this condition is satisfied
(see example . Suppose k > [ (in particular, s; ¢ Q). If v < B is
such that A -~ = s; # s; then by making 8’ = 3 the condition is satisfied.
Suppose that Ay = s;. Since s; € Q) there exists 7/ < 7 such that A-9' = s;.
Since v < fy, it follows that v/ < 8. This is a contradiction since 3; was
chosen so that for all § < B we have A -§ # s;. Therefore, for all v < Sy,
A -~ # s;. This shows that every element of Jy \ {5} satisfies 2) in the
definition of (x).

Now consider v < fy. By property a) above, we have that A -~ < s,,. If
v < Bo is such that A -~ = s; # s; then, as before, by making 3" = j3; the
condition is satisfied. Suppose that A-v = s;. As before, there exists ' <~
such that A-+" = s;. Since v < Sy, it follows that v < y. This contradicts
property b) above. We conclude that J satisfies (x). O

Theorem [2.1.15 has two immediate consequences. The first one is about
resolving toric curves by applying once the higher Nash blowup for n suf-
ficiently large. This gives a combinatorial proof of Yasuda’s theorem on
one-step resolution of curves by higher Nash blowups in the case of toric
curves. The second result is the analogue of Nobile’s theorem for the higher
Nash blowup of toric curves.

Corollary 2.1.19. Nash,(Xr) is non-singular if and only if s, +1 € T.
In particular, Nashy,(Xt) is non-singular for n > 0.
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J

Proof. Notice that for all m > n and i < n, we have that sp11 + s;
Sm + Sn, then s,11 — s < 8y — 8. Thus, sp1 — s, = min{F(") \ {0}}
min{Nash,(T') \ {0}}. Then Nash,(Xr) is non-singular if and only i
Nash,(I') = N({1}) if and only if 1 = s,,4+1 — s, if and only if s, + 1
Sp+1 € T.

=IO | RV

Ol

Corollary 2.1.20. Nash,(Xr) = Xt if and only if Xv is non-singular.

Proof. Suppose that Xr is singular, i.e., 1 < a;. We are going to show that
I' € Nash,(T'), which implies Nash,(Xr) % Xr.

Let as = ga; + r, where 0 < r < a; and ¢ > 1. With this notation we
have s1 = ai,...,8 = qa1, S¢+1 = az. If n < g then s, < s, = ga; < az and
s0 ag —a; € '™ = Nash,(I'). But we also have ag —a; = (¢q—1)a; +r ¢ I.

Suppose that n > ¢q. Consider the following subset of I':

{sq+1 =qar + 7, (¢+ L)a1, (¢ + L)ay +r, (¢ +2)a1, (¢ + 2)a1 +r,...}.

The elements on this subset are not necessarily consecutive elements in T'.
Therefore, for p > ¢ it follows sp;1 —s, < max{a; —r,r} < a;. In particular,
Sp+1 — Sp < a1. Thus, sp41 — sy € Nash,(I') but s,11 — s, ¢ T O

2.2 Counterexample to the conjecture

In section [2.1] we stated and proved a conjecture by T. Yasuda for toric
curves. In this section we exhibit a family of non-monomial curves showing
that the conjecture is false in general.

Example 2.2.1. Consider the plane curve C' C C? parametrized by
ts (410 7).
The associated semigroup of C' is I' = {0,4,6,8,10,12,13,14, m|m > 16}.

Yasuda’s conjecture states that the semigroup of Nashi(C) is T = N(2,9).
However, the Nash blowup of order 1 of C is parametrized by

6, 7
¢ <t4, 6 147 22 4 Ly )
~ Tt

Using the first and third terms of the parametrization we obtain Nashi(I') =
N(2,5). We conclude that Nash(T) # T4,



38 CHAPTER 2. HIGHER NASH BLOWUP OF TORIC CURVES

We may still ask whether the conjecture holds for n > 0. In what follows
we construct a family of plane curves {C),},>1, with numerical semigroup
T, such that Nash, () # (I'))™.

Fix n > 1. Consider the plane curve C,, with parametrization

Let I';, be the corresponding semigroup. Notice that the first n non-zero
terms of I',, is the set {4,8,...,4n}. In addition, the first odd number that
appears in T, is 8n+5 (it appears as the order of (+47F24-¢4n+3)2 _ (44)2n+1),
In particular, the first odd number that appears in (I';,)("™ is 8n +5 — 4n =
4n +5. We claim that 5 € Nash,(T',) implying that Nash,(I',) # (I'n)™.

To prove the claim we need to compute some maximal minors of the
matrix

<i 0%(¢ — w(t))ﬁ‘ )
al or« ! BEA2 n, €A1

Let J; = {e1,2e1,...,ne1} and Jo = {e1,2e1...,(n — 1)ej,ea}. We first
show that the minors of the submatrices defined by J; and Jo are not zero.

Let L;, be the submatrix defined by J;. Notice that the rows of L, only
involve the first term of ¢(t), which is a monomial. Therefore, by example

2.1.11] and lemma P.1.13] det L;, # 0. In addition, by proposition

3n(n+1) .
det Ly =c- tXk=1%—k — .42 with ¢ a non-zero constant.

Now, for Jo, notice that the first n — 1 rows of Lj, only involve the
monomial term of (). Using lemma we obtain that the (i, j)-entry
of Ly, is ciehjt‘”_j, for 1 <i<mnand1l<j<mn. On the other hand, the
nth row of Ly, can be described as follows. Since |ez| = 1, by lemma [1.1.6]
we obtain

Lo (p—o(t)?  (4n+2\ 410 4n+ 3\ unys—;j
et = C )t - o)t .
4! o197 J

Summarizing, the matrix L, is:

Cey 141 Cey T
C(n—l)el,ltét(nil)i1 e C(n—l)el,ntll(nil)in
(4n1+2)t4n+2—1 I (4n1+3)t4n+3—1 (4n;r2)t4n+2—n T (4n;r3)t4n+3—n

Multiply the jth column by #/. Then, for 1 <4 < n multiply the ith row by
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t~% . Finally, multiply the nth row by t=#"~2 to obtain

Ceq,1 tee Cein
det L;, = (tWH) det :
4 fQ(n_l)ei’lJrg o fén_l)ei’ﬂs
")+ e () ()

Applying the method of proof of Proposition [2.1.13] to the first n — 1 rows
and using basic properties of determinants, we get that

() ()

det Ly, = U e | e
() ()

(9 (4

* GRSy e
() ()

The determinants appearing in the sum are non-zero by lemma [2.1.14]
Therefore det L, # 0.

Now we need to prove that det L;, has the minimum order over all non-
zero minors of the higher-order Jacobian matrix of .

Consider 8 = (a1, az) € N? and suppose that as > 0. Notice that if the
polynomial

1 o™ (T4 o t4)a1 (T4n+2 + T4n+3 _ t4n+2 _ t4n+3)a2

m)! orm t

is non-zero, then its order is greater or equal than 4n + 2 —m. Let J =
{B1,....8n} C Asy be such that J # {e1,...,ne;}. In particular, the
second entry of ; is non-zero, for some ¢. Reorder J in such a way that
Bi(2) # 0 for 1 < i < kand Bj(2) =0 for k < j < n. Then, if j > E,
Bj =mje; with 1 <m; <n andif j > i >k, m; # m;.

Let us show that if det L; # 0 then ord(det(Ly)) > w To begin
with,

a "1 97 (g — (1))
det Ly = 3 sgn(o) [ [ aioe = D sono) [1 75, (aTau)( 7,
Ll o(i)!

gESy, i=1 oES, =
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. . o (4) (o— Bs
where S,, is the symmetric group. Let A, = [}, U(lz.)!aé“;ig(%(t))h. The

claim follows if we can prove that, for all o such that A, # 0, ord(A4,) >
w. But this is true since:

pt oTe(®)
k n

> (n+2-0(i) + Y (4mj—oa(j))

i=1 j=k+1

- n(n + 1) " onn+1)
=2k + 4(nk + Z mj)—T 22k+4Z]—T
Jj=k+1 j=1

okt 3n(n2+ 1) - 3n(n2+ 1)'

Using all previous claims we see that the Pliicker coordinates of T’ (Z( n Ch,
for t # 0, look like:

3n(n+1) 3n(727,+1) +2

3n(n+1)
(coretT 2 gt PR

..)7

with ¢, c1, co non-zero constants. Since the coordinate defined by J; has

the minimum order, Nash,(C,,) C Uy,, i.e., the affine chart obtained from
3n(n+1) . . .
dividing over ct > . In particular, the parametrization of Nash,(C),) has

the term

+ cot

C C
22 23,
C C

Now proceed as in example to show that 5 € Nash,(I'y,).



Chapter 3

Factorization of the
normalization of the Nash
blow-up of order n of A,, by
the minimal resolution

3.1 The main result

In this section we state the main result of this chapter. First, we introduce
some notation that will be constantly used throughout this chapter and
recall the notation of the previous chapters.

Notation 3.1.1. Let v, 3 € N and v € N2,
1) We denote by 7;(8) the projection to the i-th coordinate of 3.

2) v < g if and only if m;(y) < mi(B) for all i € {1,...,t}. In particular,
v < B if and only if v < 5 and m;(y) < m;(5) for some i € {1,...,t}.

9 () =T (20

4) 1B = iy mi(B)-

5) Ary = {B €N'|1<|B] <n}. In addition, Ay, == [Agn] = (") — 1.
TI— v )\Q,n

6) ((a))aem € Nhan,

41
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11 n
7) Let A, := (0 1 n+1>'
8) Given J C Az, let mj := ZﬂeJ A,B € N2

This entire chapter is devoted to studying some aspects of the higher
Nash blowup of the A,, singularity (recall definition [1.3.2)). Let us recall its
definition and the notation we will use.

Definition 3.1.2. Consider the cone o, = R>0{(0,1), (n+1,—n)} C (R?)".
We denote by A,, the normal toric surface corresponding to o,, i.e., A, =
V(zz —y™h.

The following definition is the particular case of the minor of the higher
order matrix describe in chapter 1 applied in the case of the surface A,.

Definition 3.1.3. Let J C A3z, be such that |J| = X2,,. We define the

matrix
LS = (c ) ,
J B seJ

where cg = ngﬂ(—l)w_7| (5) A,y € N*2n, In addition, we denote
Sa, ={J CAzn||J| =N and det LG # 0}.

Let I, = {m; € R? | J € Sa,}. The set I,, defines an order function:

ordy, : o, =R

> mi .
v

This function induces the following cones:

Om, =1{v € oy | ordy, (v) = (v,m)}.

These cones form a fan X(I,) := U, ¢, om,- This fan is a refinement of o.
This construction is a particular case of the construction given in section 5
of [I5] applied to our context.

Proposition 3.1.4. With the previous notation, we have:
Nashn(An) = Xsy1,.),

where Nashy(Ay) is the normalization of the Nash blow-up of A, of order
n and Xy r,) s the normal variety corresponding to X(I,).



3.2. A PARTICULAR BASIS FOR THE VECTOR SPACE C*2.N 43

Proof. By proposition we have that Nashy,(Ay) is a monomial blowing
up of the ideal I, = (™ | J € S4,). The result follows from proposition
5.1 and remark 4.6 of [I5]. O

The goal of this chpater is to prove the following result about the shape
of the fan 3(1,,).

Theorem 3.1.5. For each k € {1,...,n}, there exist J,J' € S4, such that
(k,1—Fk) € o, NOm,, . In particular, the rays generated by (k,1—k) appear
in the fan 3(I,).

Corollary 3.1.6. Let A/, be the minimal resolution of A,, and let Nashy,(Ay,)
be the normalization of the higher Nash blow-up of A, of order n. Then
there exists a proper birational morphism ¢ : Nash,(A,) — A, such that
the following diagram commutes

Nashn(A) &= AL,

N

Ap.

Proof. Tt is well-known that A/, is obtained by subdividing o,, with the rays
generated by the vectors (k,1—k), for k € {1,...,n}. The result follows by
Theorem B.1.5

O

3.2 A particular basis for the vector space C'»

As stated in Theorem we need to find some subsets J C Az, such
that the determinant of L9 is non-zero. This will be achieved by reducing
the matrix L9 to another matrix given by vectors formed by certain bino-
mial coefficients. In this section, we prove that those vectors are linearly
independent. We will see that this is equivalent to finding some basis of the
vector space CA2m,

Definition 3.2.1. Consider a sequence n = (z,do,dy,ds,...,d,), where
z € Lo, dy =0, {d;}/_; C N\ {0} and >, ,d; = n. We denote by € the set
of all such sequences.

With this set let us define a subset of vectors of N2.
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Definition 3.2.2. Let n = (2,do,dy,...,d,) € Q. We construct a set of
vectors {vm};”:l C N? as follows. For each j € {1,...,n}, there exists a

unique tle {1,...,7} such that Zﬁ;é di < j< 22:0 d;. This implies that
j= ZE;O d; + ¢, where 0 < ¢ < d;. Then we define

( (Zz‘icﬁd di +¢0) if z=1 and t odd,
(Oa Z’L even dz + C) Zf z=1and t even,
1<t

(0,25 odadi+¢) if z=0 and t odd,
i<t

(>Ji evendi +¢,0) if z=0 and t even.
i<t
In addition, for each j € {1,...,n}, we denote
Tjn = {vjmvjp + (L 1), ... v + (R —5)(1, 1)}

Furthermore, we denote v, := (1,1) and Ty, = {(1,1),...,(n,n)}. We
define

n
Tn = U 1‘3777'
§=0
Finally, recalling notation [3.1.1} we define
T,={0€Ch" |veT,}.

Remark 3.2.3. Notice that this construction depends only on 7. Moreover,
geometrically, this construction is equivalent to taking vectors in an ordered
way on the axes of N2

Example 3.2.4. Let n =6, r =5 and n = (1,0,1,1,1,1,2). For j = 3 we
have that do + dy + da < 3 =do + di +do +d3, then t = 3, v3, = (2,0) and
T3, ={(2,0),(3,1),(4,2),(5,3)}. T;, is computed similarly and can be seen
in the following figure.

Now we give some basic properties of definition [3.2.2

Lemma 3.2.5. Let n € Q and u,v € N2, Then we have the following
properties:

1) If u # v, then u # 0.
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Figure 3.1: Example of T}, for n = (1,0,1,1,1,1,2)

2) [T = o
3) If vjy = (1,0) or v, = (0,1), then I < j.
4) mi(v) <n forallv e T, and i € {1,2}.

5) If vj, = (0,p), then for all ¢ < p there exists | < j such that v, =
0,9). If vjy, = (p,0), then for all ¢ < p there exists | < j such that
Vg = (Qa 0)

6) vajﬂ? = (Ojl)7 then {vim}g:l = {(O,t)}ile{(S, 0) i;ll vaj,n = (Z,O),
then {vin}_y = {0,012 U{(5,0)}iey.

Proof. 1) Since u # v, mi(u) # m(v) or ma(u) # me(v). Assume we
are in the first case; the second case is analogous. By definition u =

<(u))aeA2,n, Notice that (1,0) S A27n‘ Then

1= (1)) = () # (me) = (1)) =

2) Notice that for each j € {1,...,n}, |Tj,| =n—j+ 1 and |To,| =n,
this implies |T;)| = (n + 1)(n +2)/2 — 1 = A2 ,. By the previous item
we have that |T))| = Ao .

3) Let t < r be such that j = Zf;é d; + c. By definition I = > ; oqa di +¢

i<t

or I =% evendi + c. In any case | < j.
it

4) Let v € T,. If v € Ty, then v = (p,p), with p < n. If v ¢ Tp,, by
definition we have that v = v, + p(1,1), with p <n — j. Then

mi(v) = mi(vjy) +mi(p(1,1)) = mi(vjy) +p < j+p < n.
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5) Let t <7 be such that j = >"1_; 5 d;+c. Consider the case v;, n=(0,p).
Suppose that t is odd. By deﬁnltlon 322 p=> Odd d;+cand z = 0.
Let ¢ < p. Then g = > ; oqa di + ¢, where t' is odd t’ <tand d <dy

i<t/
or ' =t and ¢ < c. In any case, consider | = Zt “Ld; + . Since ¢’ is
odd and z =0, v, = (0, oaa di + ) = (0, q). If t is even, we have
.od

1<
that p = ) evend; + ¢ and z = 1. In this case the proof is identical.
i<t
If v, = (p,0), the argument is analogous.

6) If v;, = (0,1), by the previous point, we have that {(0,¢)}}_, C
{Uz',n}le- On the other hand, we have that there exists {i1,...,%;—}
such that i, < j and v;,, ¢ {(0,%) {:1 for all p € {1,...,5 — [}
Since i, < j for all p and using the previous point, we obtain that
Vi, = (8p,0) for some s, € N and by the previous point {Uip,n}i;ll =
{(s,0) i;ll This implies that {v;,}* ; = {(0,t)}_; U{(s,0) Z_{

O

3.2.1 Linear independence of T,

By 2) of lemma we know that the cardinality of Tn is A2 ,. In order
to prove that it is a basis of C*2» we only have to see that it is linearly
independent. For that we need some preliminary lemmas.

Lemma 3.2.6. Let 0 < ¢y < ¢1 < --- < ¢ be natural numbers. Then
det (( ))0<z<l # 0. In particular, the set of vectors {(( )) € CH! |
0<5<l 0<y<l

0 < i <1} is linearly independent.

Proof. For each j < I, consider the polynomial b;(z) = w and

bo = 1. Notice that for z € N, we have b;(z) = (f) and degb;(x) = j for all

j €4{0,...,1}. Thus,
< <§Z> ) 0<ist = (bj (Ci)> 0<i<l®

0<5< 0<5<l

We show that the columns of this matrix are linearly independent. Let
ap,...,oq € C be such that Z] o@jbj(c;) = 0 for each i € {0,...,1}.
Consider f(x) = Zé:o a;bj(x). Then {co,...,c;} are roots of f(z). Since
deg f(x) < I, we obtain that f(x) = 0. Since degb;(x) = j, we conclude
a; = 0 for all j. O
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As we mentioned before, the goal is to prove that given n € €, the set
of vectors T}, is linearly independent on C*2n. Consider

Y agp=0eCh. (3.1)

Fix this notation for the next results.

Lemma 3.2.7. Letl,m,n € N be such that1 <l <n andm <n—I[+1. Let
n € Q. Suppose that E = {(c1,1), ..., (cm,1)} (resp. {(l,c1),...,(L,em)}) is

contained in Ty, for some 0 < c¢1 < -+ < ¢p,. Moreover, suppose that for
each w € T, \ E such that ma(u) > 1 (resp. mi(u) > 1), we have that ag = 0.
Then for all v € E we obtain that ay = 0.

Proof. Consider the set of vectors D = {(0,1),(1,1),...,(n —1,1)} C Ao
(resp. {(1,0),(1,1),...,(l,n —01)}). Let w € T;, \ E. If mo(u) < I (resp.
mi(u) < 1), then (¥) =0 for all & € D. If 772( ) > 1 (resp. mi(u) > 1),
by hypothesis az = 0. Consider 7, : C*?» — C the projection on the a-th
coordinate. Therefore, 7, (ag) = 0 for all w € T;, \ £ and o € D. This

implies
D walasd) = Y malasd) =0,
veE 56T7n

for all @ € D.
Since a = (4,1) (resp. (I,j)) with 0 < j < mn —1[ and v = (¢;,1) (resp.
(I,¢i)), with 1 < i < 'm, we obtain that m,(v) = ) Thus

i ags (Cl> = Z Tao(azv) = 0,
=1 J velE

for all 0 < j <n —1I. By lemma we obtain that az = 0 for all v € E.
O

Lemma 3.2.8. Letn = (z,dp,d1,...,d,) €Qand 1 <1< j<n.
o Ifu, = (pm,0) and v;, = (pj,0), then
T (i + (0= 5)(1,1)) < mi(vy + (n—1)(1,1)).

The equality holds if and only if there exists 1 < t < r such that
Yicodi <U1<j<Yigdi
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o Ifv, = (0,p1) and v;, = (0,p;), then
ma(vjy + (n = 7)(1,1)) < vy + (n = 1)(1,1)).
The equality holds if and only if there exists 1 < t < r such that
Yitodi <1<j<Yigdi

Proof. Suppose that z = 1. By definition and the fact that [ < j,

Pl =i odd di+ciand pj = > odd di+cy, for some odd numbers t < ¢’ <,
i<t i<t’

where ¢; < d; and ¢y < dy. Moreover, by definition [ = Zf;é d; + ¢; and

j=3"""di+cy. Then

1<t
<n-— Z d;
i even
1<t
=p+(n-1)

= m (v + (0~ (L, 1)).

Notice that the equality holds if and only if ¢ = ¢. For the other three cases

(z=1, v, =(0,p), vjy = (0,p); 2= 0, vy, = (1,0), v, = (ps,0); 2 =0,
vy = (0,m), vj, = (0,p;)) the proof is analogous. [

Now we are ready to prove the first important result of the section.
Proposition 3.2.9. Let n € Q). Then Tn is linearly independent.

Proof. Let n = (z,doy,dy,...,d,) and suppose that z = 1. Define the num-

bers
dig= Y di, d,= > d

i<r i<r
i odd i even

Notice that by definition [8.2.1} we have that n = dy , +d_ .. We claim that
for all v € T}, such that ma(v) > n —d , or m(v) > n—d_,, we obtain that
az=0 in . Assume this claim for the moment. For each 0 < s < d,,,
define the set E; = {v € T,, | m1(v) = s and ma(v) < d_,}. Notice that

|E|<d_,+1=n—dy,+1<n—s+1.
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Using the claim and taking s = dy, we obtain the conditions of lemma
Thus ay = 0 for all v € Eq, . Now we can repeat the same argument
for s = d4, — 1. Applying this process in a decreasing way for each s &
{0,...,d, 1} we obtain that a; = 0 for all v € U;li’é"Es. Then for v € T}, we
have three possibilities: v € Ufi’orEs, m(v) > di, or ma(v) > d_,. In any
case, we obtain that azy = 0 by the previous argument or the claim. This
implies that f] is linearly independent.
Now we proceed to prove the claim. For each 1 <[ < r, define

dyi= Z d;, d_;= Z d;.

i<l i<l

1 odd i even
We prove the claim by induction on /. By definition, we have that d 1 = d
and d_; = 0. Therefore we only have to prove that if ma(v) > n — dj,
then az = 0. We claim that for all v € T}, such that m(v) > n — di, we
have that 71 (v) > ma(v). We proceed to prove this claim by contrapositive.
Let v € T}, be such that ma(v) > m(v). This implies that v = (0, m2(v) —
m(v)) +mi(v)(1,1) = vj,y +m1(v)(1,1) for some j < n, where mi(v) <n—j
by definition By 5) of lemma there exists ¢ < j such that

viy = (0,1). Moreover, by definition i =dy + 1. By lemma we
obtain

ma(vjm + m(v)(1,1))

m2(vjm + (n = j)(1,1))

T2 (vay 41, + (0 —di — 1)(1,1))
n—di,

71'2(’1))

VARPVAY

as we claim. For each s € {n —d; +1,...,n}, we define the set E(s) =
{v € T,)|ma(v) = s}. By 4) of lemma and the previous claim, we have
that for each s € {n —d; +1,...,n} we have |E(s)| <n —s+ 1. Now we
are in the conditions of lemma Applying the lemma for each s in a
descendant way, we obtain the result.

Now suppose that the claim is true for [, i.e., for all v € T;, such that
ma(v) > n—dy or m(v) >n—d_; for some [ > 1, we have that az = 0 and
we prove the claim for [ + 1. We have two cases: [ odd or [ even. We prove
the case [ odd, the other case is analogous. Since [ is odd, we obtain that
dy;=dyy1andd_+dj11 = d_ ;1. Then, by the induction hypothesis, we
only need to check that for all v € T}, such that n—d_ ;11 < mi(v) <n—d_
and m(v) < n —d4, we have ay = 0. For this, we are going to apply
lemma in an iterative way. By definition, U i = (d4;,0). We
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claim that for all v € T}, such that 7 (v) > n — d_ ;41 + 1, we have that
mo(v) > mi(v) —dy; — 1. We proceed to prove this claim by contrapositive.
Let v € T;, be such that m(v) < mi(v) —dy; — 1. This implies that v =
(m1(v) — m2(v),0) + m2(v)(1,1) = vj, + m2(v)(1,1), where m(v) < n —j
by definition Since m(v) — m2(v) > di; + 1, by 5) of lemma [3.2.5
there exist ¢ < j such that v;, = (dy; +1,0). Moreover, by definition 3.2.2
i= ZZH d; +1. By lemma we obtain
m1(v) = T (v + m2(v)(1,1))
< 1 (03 + (0 — )(1,1)

I+1
< ﬂ-l(vzi+é di+lmn Zd
+1
=dig+1+n—>) di—1
i=0
<n-— d,’[+1 +1
as we claim. For each s € {n —d_ ;41 +1,...,n —d_;}, we define the set
E(s) = {v € Ty|mi(v) = s and m(v) < n —dy;}. Notice that, by the
previous claim, we have that for each s € {n —d_ ;11 +1,...,n —d_;},

|E(s)] < (n—d4;)—(s—dy;—1) =n—s+1. By the induction hypothesis
we are in the conditions of lemma[3.2.7for s = n—d_;. Applying the lemma
for each s in a descendant way, we obtain the result.

In the case z = 0 the claim becomes: for each v € T;, such that mp(v) >
n—d_, or m(v) > n—dy, then az = 0. The proof of this case is analogous.

O]

3.2.2 Moving T}, along a diagonal preserves linear indepen-
dence

Propositionshows that T, is a basis of C*2n for all ) € Q. Our following
goal is to show that we can move the set T}, along a diagonal without losing
the linear independence for all j € {1,...,n}. First we need the following
combinatorial identities.

Lemma 3.2.10. [22, Chapter 1] Given n,m,p € N, we have the following
identities:

1) () =G mn).
2) (=) E) = (h) = (27R).
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3) 35 (mey) (&) = ("0
4) 3 ) 6) = ()

Lemma 3.2.11. For allm € N, we have that (m,m) € spanc{(1,1),...,(n,n)}.

Proof. Recalling notation [3.1.1] consider the vector

for each j € {1,...,n}. Notice that for all j € {1,...,n}, we have v; €
spanc{(1,1),...,(n,n)}. We claim that (m,m) = Z?Zl (J) . We have to
prove the identity:

()-S5 GO0

,]:

forall 1 < p <mand 0 < g < p. By 1) of lemma |[3.2.10, we obtain the
identities:

S50 0)-
S5 ()0 (-
S5 ()0

With this, the claim is reduced to proving that
n J . .
P R 3> S Vi) [ [ PR
p-a) ‘Ho j—q)\i—q)\p—q

Now we have the following identities, where the second identity comes from
the rearrangement of the coefficients and the fourth identity by 2) of lemma
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>(7G) e

Finally, we have the following identities, where the first identity comes from
replace j by j + ¢ and the second by 3) of lemma [3.2.10

Z(T—_qq) (,ﬁj) _Z<my_q> ((p—;])—j> - (qu>’

j=1 j=1

proving the claim.

Lemma 3.2.12. For all a,r € N and l < n, we have that

zl:(—l)i <i> nfl(—l)”"“ﬂ <n —; + 1) (a+r+jr+i+j)=0.

i=0 §=0

Proof. The proof is by induction on r. First, consider » = 0, we need to
show that for all (p — ¢,q) € Agp,

S B () o
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First, notice

() 3 e (G-

7=0

33 s (I () () ()
(S o

1=0

Now we have the following identity, where the first identity comes from the
rearrangement of the sum and the second comes from 2) of lemma [3.2.10}

Sen(')() =B ()] e, )

Replacing this identity in the sum (3.3) and using 1) of lemma [3.2.10] we

obtain
S (G -
S () -
() S ()G e

J=0

Replacing ¢ by n — [ + 1 — j on the sum and using 2) of lemma [3.2.10

we obtain that
”Hﬂ < n—q+1 ><a+j>
(n—Il+1)—j/\p—q

Jj=

=0
n+1 .
nl+1 ]<n q+1>< (n—l—l—l)—j)
- p—q

a+q—1
p—n—1)
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Since p < n, the claim is true for r = 0.
Now suppose that is true for r — 1, i.e.,

() S (YT ()
pard i) = j pP—q q ’
and we have to show that

El:(_w’(l) "‘li“ (n—l—i—l) <a+r+j> <r+i+j> o

por i) = j p—q q ’

for all (p — q,q) € Agp.
Using basic properties of binomial coefficients, we have

<a+r+j> (r+i+j) B
P—q q

<a+(r—1)+j>((r—l)+i+j>+(a+(r—1)+j)<(r—1)+i+j)+

b= . 1 . . b= . q_l .
R R e ()

s () ()
ser() ()G n)
e () ()
() ()
e () S (T ()

Notice that each element of {(p—1,1), (p—1,1-1), (p—1—1,1),(p—1—1,1-1)}
belongs to As ,, or has a negative entry. In any case, by induction hypothesis,

each of the four sums are zero, obtaining the result.
O
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Corollary 3.2.13. For all a,7 € N and | < n, we have that

i(—l)i (i) nfl(—l)”‘””j (n _j. N 1> (r+i+jatr+j)=0.

Jj=0

Proof. We need to prove that

B 8 )

i=0 =0 p—q

for all (p —q,q) € Aa,,. Notice that by definition of Ay, if (p —q,q) € A2y,
then (¢,p — q) € Ag,. With this and the previous lemma we obtain the
result. O

Now we are ready to show the other important result of this section. As
we mentioned before, the goal is to show that we can move the sets T},
along a diagonal without losing the linear independence. We are going to
prove this with some additional properties.

Proposition 3.2.14. Letn € Q and | € {1,...,n}. Let (r1,...,r) € N!
and T; y + 1 = {v+ (r5,7;) | v € Ty, }. Then, we have

spanc{v € C** | v € Ty | J(Uimi Tiy + 7)) = spanc{v € C27 | v € Uiy Ty}

In particular, v, + (r,r) € spanc{v € C*» | v € U_T;,}, for all
r € N.

Proof. Let nn € Q). The proof is by induction on [. Consider [ = 1. There are
two cases, v1,, = (1,0) or v, = (0,1). Suppose that vi, = (1,0). Consider

the sums
n

for=> (-1)"H <";> (1+r+4,7+7),

=0

n

fre = (=) (?) (I+7r+4,14+7r+7).

J=0

Applying lemma [3.2.12| for ¢ = 1 and [ = 1, we obtain that

fl,r - fO,r — (_), (3.5)

for all » € N.
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By lemma [3.2.11] we have that

{(T+r+4,1+7r+j)}—o Cspanc{v € Ch2n |y e Ton},

for all r,j € N. In particular f;, € spanc{v € C*?>» | v € Ty, }. Moreover,
since v1, = (1,0), for r = 0, we have that fyo — (1 4+ n,n) € spanc{v €
C*2n |v € Ty,}. Then

(14+n,n) = fi.0— foo+ (1 +n,n) € spanc{v € C*2" | v € Ty, UT1,}.

Notice that the coefficient of (1,0) is not zero. By elementary results
from linear algebra, we have that

spanc{v € C2n |v € Ty, UT1,} =
(spanc{o € ¥ v e Ty, UTL I \{(LO)}) UL +nm)} =
spanc{o € C2n | v € Tp, U (Tl,n + 1)}
Applying the same argument for r = 1 in , we obtain that
spanc{o € C2n | v € To, UT1, + 1} =
(Spanc{ﬁ eChn |y Ton) UTiy+ 1\ {@DIU{@+n1+n)} =

spanc{o € C*2» | v € Ty, U (Tl,n + 2)}

Repeating the argument r; times for each r and putting together all the
identities, we obtain that

spanc{v € C2n | v € Ty, UT1,} = spang{o € C*» | v € Tp, U (T17n+r1)}.

This finish the proof for I = 1 and v, = (1,0). For vy, = (0,1) the proof
is analogous using the corollary [3.2.13

Now suppose that the statement is true for [ —1 and let (r,...,77) € NE.
We claim that

spanc{v € C** | v € UZ{T; , U (Tlm + ”>} B
spanc{v € Ch2n |y e Uéoni,n}-
Assume this claim for the moment. By induction hypothesis, we have that

spanc{o € C*2n | v € Tp,, U(Ui:Ti,n +7r)} =

spang{o € C**" | v € UZ{T; )
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This implies that

spanc{v € C**" | v € Ty, U(Uélei,n +ri)} =
spanc{v € C**" | v € Ul_¢Ti,}-

Now we proceed to prove the claim. There are two cases, v, = (a,0)

or vy, = (0,a), where 0 < a < [ by 3) of lemma Suppose that
vy = (a,0). For each i € {0,...,l} and r € N, consider the sum

n—I+1

m—1+1
fir = Z (_1)nl+1+J<” j* )(a+r+j,i+r+j).
j=0

Applying lemma [3.2.12| for | and a, we have that

if! A
Z(_l) <Z> fi,r =0. (3.6)
By 6) of lemma we have that

{(a—1,0),...,(1,0),(0,1),...,(0,l —a)} = {vi,}Zt.

Notice that if i = a, then (a + 7 + j)(1,1) € spanc{t C C*2n | v € Tp,} by
lemma [3.2.11} If 1 <14 < a, then

(@a—4,0)+(i+r+ji+r+j)=(a+r+ji+r+j),

and if @ < 7 <, then
(0,i—a)+(a—i,a—i)+ (+r+j,i+r+j)=(a+r+ji+r+7).

By the induction hypothesis, we obtain that

{la+r+ji+r —I—j)}?;é“ C spang{o € C*2" | v € UZT; .},

for all i € {1,...,1}, »r € N. In particular f;, € spanc{v € C*2n | v €
Ué;(l)Tiyn} for all i € {1,...,1}. Moreover, since v;, = (a,0), for r = 0, we
have that foo — (a+n—1+1,n—1+1) € spanc{v € C*2n | v € Tj,}.
Then

l
(a+n—l+1,n—l+1)=—( (—1)i(§>fiyo)+(a+n—l+1,n—l—|—1)
=0

(2

€ spang{v € C*2" | v € U_T; ,}.
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Applying the same argument that the case [ = 1, we obtain
spanc{o € C2n | v e UL_(Ti,} =

spang {v € C** | v € UgTiy UTiy + 1} =

spang{v € C*» |v € UZIT;, U Ty, + 2} =

spanc{o € C*n | v € UZITi, U Ty, + 1}
Now suppose that v, = (0,a). In this case we have that
{(0,a —1),...,(0,1),(1,1),(1,0),..., (I —a,0)} = {vi, }'=o.
Obtaining

{Grr+jatr+ )N espanc{o e 2 |ve UZIT,}.

The proof is analogous using corollary [3.2.13 O

3.3 Proof of Theorem [3.1.5

In this section we give a proof of the main theorem of this chapter. We
first associate to each n € {1 a unique J, € S, with certain properties.
Secondly, we construct a distinguished element J,, for each k € {1,...,n}
and prove that there exists another element J,, € S4, with the same value
with respect to an order function. Finally, we prove that .J,, is minimal in
S4,, with respect to the previous function.

Definition 3.3.1. Let n € Q, {v;,}, and {T;,}" ; C N? as in definition
Consider r; , :=n - ma(v; ) for all i € {1,...,n}. We define

Ty = Ton U (Ui Tiy + i),
where T; 4+ 15 = {v 4+ (132, 7im) | v € Tin}-

Example 3.3.2. Let n =6, 7 =5 and n = (1,0,1,1,1,1,2). By definition
we have that vi, = (1,0), ve, = (0,1), v3, = (2,0), va,, = (0,2),
vsn = (3,0) and ve, = (4,0). By definition, we obtain that ry, = 0,72, =
6,73, =0, r4, =12, r5, = 0 and rg, = 0. Thus

Té = T0,77 U Tl,’r] U (Tgn + 6) @] T3777 U (T4777 + 12) U T57”7 U T6777,

where

Ty, +6=1{(6,7),(7,8),(8,9),(9,10), (10,11)},
Tyn + 12 = {(12,14), (13,15), (14, 16)}.
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Figure 3.2: Example of T}, with n = (1,0,1,1,1,1,2)

Tig+rin

Remark 3.3.3. Recall notation Let 8,8" € A3, be such that 8 # 3.
Then A, # A5

Proposition 3.3.4. For each n € 2, there exists a unique J,, C A3, such
that
Ap - Jy={A,-BEN*|BeE J} =T,

Moreover, J, € Sa, .

Proof. We need to show that for each v € T7’7, there exists a unique element
B € Ag,, such that A, = v. The uniqueness comes from remark

Now, let v € Tr’z' Then v € T}) ¢ or v € Ui T}, ; + 1y;. For the first case
we have that vg = (¢,t) with ¢ < n. In this case we take 5 = (0,¢,0). For
the second case we have

V="0n+(5,8) +rin(l,1) = vy + (s,5) + nma(viy) (1, 1),

where s < n — 4. By definition vin = (¢,0) or v;, = (0,q), where
q <. Then

v=1_(q+s,s) or v=(ng+s,(n+1)g+s).

For these we take 8 = (¢,s,0) and 5 = (0, s,q) respectively. Using the
previous inequalities, we obtain that 5 € Ag,,.

Now we have to see that J, € Sa,. Since A, = |[T;)| = |T}| = |Jy|, we
only have to see that det LCJ?7 # 0. Let {B1,82,---,Bx,,,} = Jy be such that
B1 < B2 <+ < B, where < denotes the lexicographic order. Notice that
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if 8 < (B (see notation , then 3’ < 3. By definition of Lcn, we need to

check that
det sl (P A, 0.
(L0 (7)) . ?

For this, first we turn the previous matrix into ( ApB; ) using el-

1<i<Aan
ementary row operations. This implies the result since ;1,;]; = TT’] and
{veZrn|ve Ty} is linearly independent by proposition |3.2.14: and propo-
sition 3.2.9

Fix the Agp-row. Consider 8y,, = Y1y, = = = Vrag Ao where

{'71,\27,}521" = {7y € A3uly < B, }- We can write this row as the sum

/8)\2,71

AP + (_1)5A2,n71,xg7n|(
,y]-y)\Q,n

>An’71,)\2,n+

1Brg = Vrre  Agml Brom A~
<o+ (_1) > Ao B A”’ymz,n’)‘z"’

TragpAzm

Since Anfy,, € T, we have that 8y, have the shape (g, s,0) or (0,s,q)
with s +¢ < n and A,f),, equals one of (¢ +s,s) or (ng+s,(n+1)q+s).
Since V1,5, < Bxr,,, We obtain that v;y,, have the shape (¢’,s’,0) or
(0,5",¢') with s’ < s or ¢ < ¢q. Thus, Ay71,),, have the shape (¢ + s, 5')
or (ng' +s',(n+1)¢' +s). In any case, we have that A,y x,, € Ty

By the first part of the proposition, we have that v1 x,, = 8;, for some

i < A2,n. Then we subtract (—1)"8*2»" Tl (g*f»n )-times the row ¢ to the
A2

row Az, in the matrix LCJn. Notice that if v < §;, we have v < f3,,,,. Thus
we obtain that

An/B)\2,n + CQAH,YQ,)\QJL + -+ CT’)\2 71*’471’}/7'/\2 n’)\Qv"

is the new Ay ,,-row, for some constants {co,... 7CT)‘2,n} C Z. Applying the
same argument for each v; »,,, in a increasing way, we turn the Ag ,-th row
into m

Applying this process to the other rows of L in an ascending way we
obtain the matrix

( ABi )19‘9\2,”'
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3.3.1 A distinguished element of 54,
Let k € {1,...,n}. Consider the function

fk 2N2 —7Z
v ((k,1—k),v).
Definition 3.3.5. Let n € N\ {0}, 1 <k <n and dio = 0. If fx((1,0)) <

fe((n,n+1)), we take z, = 1. If fr.((n,n+1)) < fx((1,0)), we take z; = 0.
Now, we define dj; for [ > 0 in an iterative way. Let

-1
ko = min{n — Z ko, tl — Sl},

j=0

where
max{m € N|m - fi((1,0) < fi((X5 e dij + 1) (n,n+ 1))}
if zx=1 and [ odd.
max{m € N[ m - fi((n,n+1)) < ful(X} adiy +1)(1,0))}
if zx =1 and [ even,

t; =

max{m € N |m - fy((n,n+1)) < fi((C 1 iy +1)(1,0))}
if zi =0 and [ odd,
max{m € N|m - f((1,0)) < fi((X} adij +1)(n,n+1))}
if 2z =0 and [l even,

and

0 if 1=1,
Sk if 1odd and 1> 1,

S| =

-1 .
Zj even dk,j if [ even.

If 22:1 dy,j < n, we define dj, ;1. Otherwise, we finish the process and
we define n, = (2x, dko, .., dkr)-

Example 3.3.6. Let n = 6 and k£ = 3. We have that d3o = 0. On the
other hand, we have

Then z3 = 1. For [ = 1, we have that

] = max{m eN ’ m-3=m: f3((1,0)) < f3((6, 7)) = 4} = 1,
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and s1 = 0. Then
d3; =min{6,1 — 0} = 1.

Now we computed d32. By definition
to =max{m e N|m-4=m- f3((6,7)) < f5(2(1,0)) =6} =1,
and so = 0. This implies that
dz3o =min{6 —2=4,1-0} = 1.

In an analogous way we obtain that d3 3 = 1 and d3 4 = 1. Now we computed
d3 5. We have that

ts =max{m € N|m-3=m- f3((1,0)) < f5(3(6,7)) = 12} =4,
and s3 = d3,1 —I—d3,3 = 2. Then
dss=min{6-1-1-1-1=24-2=2} =2,

Since n — Z?:o dpj = 6 —2—1—-3 = 0 we finish the process. Thus
75 = (1)0)]—71515172)'

Lemma 3.3.7. Let 1 < k < n and ny be as in definition [3.3.5. Then we
have the following properties:

1) diy >0 foralll € {1,...,7r}. In particular, n; € 2.

2) For eachi € {1,...,n}, letl € {1,...,r} be the unique element such
ihat Z;;B dp; <1< Zézl dy ;. Then, we have the following inequali-
ies:

Fe(im) + iy < (X} epen dij + D(,n+1)) if 2, =1 and | odd,
Feinm) + Time < Je((2 ogq g + 1)(1,0)) if 2k =1 and [ even,
FeVinm) + Time < Je(( coen @i + 1)(1,0)) if 2 =0 and | odd,

Fre(im) + Timy < (X5 paa @y + D+ 1)) if 2 =0 and I even.

3) Leti',i € N\ {0} be such that Zé;lo dpj <i<1i < Zé‘:o dy j, for
somel € {l,...,r}. Then

fk(viﬂlk) + Tig < fk(vi’ﬂ?k) + Tt oy, -
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4) For all 1 <i < i <n, we have that
fk(vimk + Tiﬂk(l? 1)) < fk(vi’mk + Ti/:’?k<17 1))

5) If 1 > 2 and fi(viy, + 710,(1,1) = fe(vimip, + 711-12,(1,1)), then
Te(org, + 710, (1,1) = fe(vi-g, + 112, (1,1)) + 2

Proof. 1) By construction n — Zé;}) di; > 0. Then, by definition [3.3.5
we only have to check that ¢t; —s; > 0. Notice that by definition, ¢; >
and s; = 0. This implies that is true for [ = 1. Now suppose that
I>1.

We have four cases: zp =1 and [ odd; 2z = 1 and [ even; z; = 0 and
[ odd; z; =1 and [ even. Consider z; = 1 and [ odd. By definition of
li—1
-2
fe((tia + 1)(nn+ 1)) > fr((Y diy +1)(1,0)).

j odd

Since [ is odd, Zé-_ozdd dij = Zé_oldd dy,j. It follows that

-2 -1
£l diy +1)(1,0)) = fi(D diy +1)(1,0)) = ful(s + 1)(1,0)).

j odd j odd

On the other hand, notice that if dy;—1 = n — Zé;% dy.j, then n =

Zé;}) dy,; and so there is no dy ;, which is a contradiction. This implies
that di ;1 = t;—1 — s;—1. Thus

Se(ti-r +1)(n,n+ 1)) = fi((dkg—1 + si-1 + 1)(n,n + 1)).

-2

Since [ —11is even and s;_1 = Zj cven

Sl dy.j. Then

J even

dyj, we have that dy ;1 +s-1 =

-1

Fel(D 7 dig+ 1) (nn+1)) > frl(s+1)(1,0)).

J even

By definition of ¢;, we obtain that ¢; > s; + 1 and so t; — s; > 0. The
other three cases are analogous.
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2) Let ¢ € {1,...,n} and [ € {1,...,r}. We have four cases: z, = 1

and [ odd; zx = 1 and [ even; 2z = 0 and [ odd; zx = 1 and [ even.
Suppose that 2z = 1 and [ odd. In this case, by definition, v;,, =

(Z] oddd/w +¢)(1,0) with ¢ < diy, rip, = 0 and s = ZJ odddkj
Then

Z dpj+c< Z di,j + dgg = sp +dy < tg.
J odd j odd

By definition of ¢;, we have that

-1 -1
Feim)+rim = F((Y deg+0)(1,0) < ol ( 3 diy+1)(min+1)).
j odd J even

Since [ is odd, we have that S0}
the inequality that we need.

di; = Z] even @k.j- This implies

J even

Now suppose that zz = 1 and [ even. In this case, by definition,
Vi = (Z] even dk,] + C)(O 1) with ¢ < dkl? Tim = (Z] even dk’v] + C)
and s; = Z] oven Ak.j-  Using the above and the linearity of f; we
obtain

fk:(vi,nk) t Ty = fk’(viﬂhc) + fk(ri,ﬁk(lv 1)
= fk(vimk + riﬂ?k(la 1)

-1
(D dij+e)(nn+1)),
J even
Since
-1 -1
> drjtce< Y dig+deg <t
J even 7 even

by definition of ¢;, we obtain the inequality

-1 -1
Fe(im) +rime = (D dij+e)(nn+1)) < fi((D diy+1)(1,0)).
j even 7 odd

Since [ is even, we have that Z] odd O = Z; odd @k, obtaining the
result.

The other two cases are analogous.
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3)

The hypothesis implies that i = Zé-;%) dij+c;and i’ = Zé;lo dy j+cir,
where 0 < ¢; < ¢y < di;. We have four cases: 2z, = 1 and [ odd;
zr = 1 and [ even; 2z = 0 and [ odd; z; = 1 and [ even. Consider
z, = 1 and [ even. By definition Vi, = (0, Zé_;]en dj,; +¢;) and
Vit . = (0, Zl_l dj; + ¢ir). Then

J even

-1 -1
Fe(im) +rige = (L=k)( D dij+ei) +n( Y dij+ci)

J even J even
-1
=(m—k+1)( > dij)+(n—Fk+1yc
j even
-1
<S(n—k+1)() dij)+(n—k+1)cy
j even
-1 -1
= (1=k)( > dij+er)+n( ) drj+ci)
j even j even

= fk(vllmk) + Ti',ﬂk'

The other three cases are analogous.

Let 1 <i<i <n. Let1Sl§l’§rbesuchthatizZé;%)dk,j—i-ci

and i = Eé:& dr; + cy. By hypothesis, we have that [ < I'. If
[ =1, the result follows from 3). Suppose that [ < I’, this implies that
! =1+ c with ¢ > 0.

We have four cases (zx = 1 and [ odd; 2z = 1 and [ even; z; = 0 and
[ odd; zx = 1 and [ even). Consider z; = 0 and [ even. By definition

m we have that v;,, = (St di; + ¢i,0). By 2), we have that

j even

l

FelWim) + Time < fe((D dij +1)(n,n + 1)).
j odd

On the other hand, by deﬁmtlon@ we obtain that v Lo d i =
(0, Zé odd @k,j +1). Then
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fulv Lo dk,j+1a7ik) T TZé-:o d g+ lme
l l

f((0,>  dig+ 1) +n- (D diy+1)(1,1) =
j odd j odd
l

(Y dy+1)(n,n+1)) >

j odd

Te(im) + iy

Now, if ¢ > 1, by 2) and knowing that [ 4+ 1 is odd, we obtain that

I+1
fk(vzé,:o dk,j‘f‘l»ﬁk) + rz;:o di j+1,mk < fk(( Z dk,j + 1)(170))

j even

In addition, using definition we have the vector UZ?LB i+l =
(St di; +1,0). Then

Jj even

<
f’“(vzé-:o dk,jJrlmk) + TZ;zo dj+1me —
+1

F(() diy +1)(1,0)) =

j even
f’f(”Zﬁt dk,j-&-lﬂik) -
Fr (UZ§~+:% dk,j+1:77k) T 7“2?;10 di,j+1me”

Repeating this argument ¢ times, we obtain

fe <vi’77’“) + Tige < i (v2§~:o dk,j+1,77k) + Tzzzo dpg,j+1,mk

< v T
< fi( i dk,j+1a77k) + St kit 1k

<
< Jr (UZ?:_()I dk,j+177k) + TZ?:_ol dpe,j+175
é fk (/UZ/77]I€) + Til?”k)’

where the last inequality comes from 2). The other cases are analogous.
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5) Notice that if & = n, fo(t(n,n+ 1)) = ¢ for all t € {1,...,n} and
fn((1,0)) = n. Then by definition [3.3.5) 1, = (0,0,n), i.e., vj,, =
(0,7) for all j € {1,...,n}. In particular, fp(vip, +7in.) < fo(Vjin, +
Tjm,) if 1 <4 < j < n,. Then we cannot have the conditions of
lemma. Analogous, if £k = 1, g1 = (1,0,n), and fi(viy, + rigp) <
f1(vjm +1jm), for all 1 <4 < j <n. This implies that if there exists
1€ {1,...,n} such that fy(viy, +71n.) = fe(vi—1,n, +71=1,), We have
that k € {2,...,n —1}.

Now, suppose that there exist I € {1,...,n} such that fi(vy,, +7iy,) =
ez, +1i—1,,)- oy, = (0,s) and vj_1,, = (0,5 — 1), then
feCip, +11m) =sn—k+1)>(s—1)(n—k+1)= fr(vi—1,n +T1—1,n:)-
In an analogous way, obtain a contradiction if vy, = (¢,0) and v;_1,, =
(t —1,0). This implies that v;,, = (¢,0) and v;_1,, = (0,s) or
vy, = (0,8) and vj_1,, = (¢,0). Consider the first case, the other
case is analogous. By definition

fk(vl,ﬂk + Tlﬂ]k) = fk((t70)) = fk((ov 5) + (TLS,TZS)), (37)

By 5) of lemma we deduce that vj_9,, = (0,5 — 1) or v_o,, =
(t —1,0). Suppose that v;_,, = (0,5 —1). Then we have
Jr(ig, +711m,) =fk((0,8) + (ns,ns))
=fr(s(n,n+1))
=s(n—k+1)
=(s—1)(n—k+1)+n—-k+1
=fr((s—Dn,n+1)+n—Fk+1
> fr(Vi—2m, + Ti—2m) + 2,
where the first equality comes from equation and the last in-
equality comes from k < n — 1.

Now suppose that v;_s,, = (t —1,0). In an analogous way, we obtain
that

Tr(im, + 71m,) =f1((2,0))
—k(t—1) +k
> fr(vi—2m, +1i—24,) +2,

where the first equality comes from equation (3.7) and the last in-
equality comes from k& < 2. Obtaining the result.
O
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The previous lemma will be constantly used in the rest of the section.

Proposition 3.3.8. Let k € {1,...,n}. Let n € Q be as in Definition
[3.3.8 Then vny, = (0,k) or vny, = (n—k+1,0).

Proof. Assume the statement is false, aiming for contradiction. By defini-
tion, we have that Z;:o di; = n. Using lemma and since vy, is not
(n —k+1,0) or (0,k), we have that there exist m < n such that vy, ,, =
(n—k+1,0) or vy, = (0,k). Let I <7 be such that m = Zé;}) dyj +c
and 0 < ¢ < djy.

We have four cases: zp = 1 and [ odd; 2z = 1 and [ even; z, = 0
and [ odd; 2z = 1 and [ even. Consider z = 1 and ! odd. In this case,
by definition [3.2.2) vy, = (Zéfoldd dp; +¢,0) = (n —k +1,0). Hence
>k +c=n—k+1 Then

-1 -1
n—k+1=m-— Z dij <n— Z di ;-

j even j even

This implies that 257} di; +1 < k. Thus

J even

-1

f(() dij+ D+ 1)) < fi(k(n,n+1))

J even
=kin—k+1)
= fk((n —k+ 170))

= fe(Om) + 7,

This is a contradiction to lemma 2).
Now, suppose that z; = 1 and [ even. For this case, by definition [3.2.2
we have that vy, ,, = (0,k) and k = Sl dy,; + c. Then

Jj even

-1 -1 -1
k= Z ko—l—c:m— Z dk,j <n-— Z dk,j-

j even j odd j odd
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This implies that ZJ odd @kj +1<n—k+1. Thus

-1
(3 diy +1(1.0) < fil(n — k+1)(1,0)
j odd
=k(n—k+1)
= fr(k(n,n+1))
= fk((()?k) + k- 77,(1, 1))

= fr(Vmm) + Tmmy-

This is a contradiction to lemma 2). The other two cases are analogous.

]
Recall that for J € S4,, we denote m; = ZﬂeJ AnB.

Corollary 3.3.9. Let n € N\ {0} and 1 < k < n. Then, there exists n € §2
such that n # ng and fy(my,) = fe(my, ).

Proof. By the previous Proposition, we have that vy, = (n —k +1,0)
OF Upy, = (O k). By lemma 6) of we obtain that {v;, 7= =
{(t,0)}"=F U {(0,5)}=}. Moreover, we can deduce that v,—1,, is (n —k,0)

or (0,k — 1)

Suppose that v,—1,,, = (n—k,0). Since fi(k(n,n+1)) = fr((n—k+1,0))
and by construction of 7, we have that v, ,, = (n —k+1,0). If v,_1,, =
(0,k—1), we obtain that v, ,, = (0,k). In any case, we obtain that dj , > 2.
Then we define n = (2, dj), d}, ... ,d;,drﬂ), where 2/ = 2, d; = dj,; for all
i<r,d,=dy, —landd, =

By construction % _;d; = n and d; > 0 for all j € {1,...,n}. This
implies that n € Q. On the other hand, we have that v;,, = v, for all
j<n—-1and v,y = (n—k+1,0) if vn,, = (0,k) or v,y = (0,k) if
Unme = (0 —k+1,0). Since fi(k(n,n+1)) = fr((n —k +1,0)), we obtain
that fi(m,,) = fu(m,, ). O

3.3.2 J,, € 54, is minimal with respect to f

Lemma 3.3.10. Let 3,3 € N3 be such that 3/ < B (recall notation .
Then

Proof. This is a straightforward computation.
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Lemma 3.3.11. Let 3 € N3 be such that A, # v+ q(1,1) for all v € T,
and g € N. Then fi(AnB) > fx(v) for allv € Ty .

Proof. We claim that f(v) < k(n —k +1) < fr(A,B3) for all v € T} and
for all 3 € N3 satisfying the hypotheses of the Lemma.

We are going to prove the first inequality of the claim. By definition
m we have that TV/]k = To, U U?:lijk +7jm;, where Tom, = {(‘L Q)}Zzp

Time = T 772(”]3%) and Ty, + T, = {Ujﬂ?k +(+ rjﬂ?k)(l’ 1)}2;(]) - By
proposition we have that v, = (0,k) or v,,, = (n —k+ 1,0).

Moreover, by 5) of lemma we have that {vmk};‘;ll = {(t,0)}=F U
{(0.9)}51-

By definition, T, +7nm. = {Vnne +7nne (1,1)}. Since we know the two
possibilities for vy, ,, , we obtain that fi(vny, + ran,(1,1)) = k(n — k +1).
On the other hand, if v € Tp,, , we have that v = (¢, ¢) with ¢ < n. Since
1 <k < n, obtaining that fy(v) = ¢ <n < k(n — k4 1). With this, we only
have to check the desired inequality for v € U?;ll{'l)jmk + (7)1 1)}
This implies that v = vj,, + (P +7j,,)(1,1),for 1 <j<n—-1land 0<p <
n—j.

Suppose that v;,, = (¢,0) for some ¢t < j and recall that, t < n — k.
Then

Je() =fiu(vjm, + @+ rjn)(1,1))
=fk((t,0)) +p+ 7,
<kt+n-—j
<kt+n-—t
=k-1t+n
<(k—-1)(n—k)+n
=nk — k* + k.

Now suppose that v;,, = (0,s) for some s < j and recall that s < k.
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Then

Jr(W) =fi(jm + (04 75,)(1,1))
=fr((0,s) + p(1,1) +n - s(1,
=fr(s(n,n+1))+p
<s(n—k+1)+ (n—j)
<s(n—k+1)+(n—s)
<s(n—k+1)+(n—k)+ (k—s)
<s(n—k+1)+(k—s)(n—k)+ (k—s)
=nk — k> + k.

1))

This proves the first inequality of the claim. For the second inequality
notice that

AnB =m1(8)(1,0) + m2(B)(1,1) + m3(B)(n,n + 1)
=(m1(8),0) + (m2(8), m2(8)) + (nm3(8), nms3(B) + 73(8))
=(m1(B),m3(8)) + (m2(B) + n73(8))(1,1)

T2
=(m1(B) — m3(B),0) + (m2(B) + (n + 1)73(8))(1,1).

Similarly, we obtain the expression

Anf = (0,73(8) — m1(B)) + (m1(B) + m2(B) + nms3(B))(1,1)).

Working with the first expression of A, and applying fi to this vector, we
obtain that

fu(AnB) =fi((m1(B) — m3(8),0) + (m2(B) + (n + 1)m3(8))(1,1))
=fi((m1(B8) — m3(8),0)) + m2(B) + (n + 1)73(B)
=k(m1(8) — m3(B)) + m2(8) + (n + 1)m3(B).

By the hypothesis over 5 and recalling that {Unk,j}?:_f = {(t,0)}"=F U
{(0,5)}*=! we obtain that 71(8) — m3(8) > n — k 4+ 1. Using the second
expression of A, 3, we obtain m3(5) — m1(8) > k. Suppose that 71(8) —
m3(8) > n — k + 1. Then

fr(Anf) =k(m1(8) — m3(B)) + m2(8) + (n + 1)m3(5)
Zk(n —k+1) +m(8) + (n + 1)ms(5)
>k(n—k+1).
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Now suppose that m3(8) — m1(8) > k. In particular, m3(8) > k. Then

fe(AnB) =k(m1(8) — m3(B)) + m2(B8) + (n + 1)ms(B)
=(n+ 1)m3(8) — kms(B) + km1(B) + m2(8)
=(n —k + 1)m3(8) + km1(B) + m2(8)
>(n —k+ 1)k + km(8) + m2(8)
>nk — k* + k.

In any case, we obtain that f,(A4,3) > k(n—k+1) for all B € N? satisfying
the hypotheses of the Lemma as we claim. O

Lemma 3.3.12. Let v = vy, +q(1,1) € N2 be withl <n and g >n —1+

Proof. We proceed by induction on [. Consider [ = 1. Then v = vy,, +
q(1,1), with ¢ > n 4+ ry,, and we need to prove that f;(v) > fi(u) for all
u € Top, UT1p, + 71,0, Ifue Ty + 71 then u = Vi, + (p+r1777k)(17 1),
with p <n — 1. It follows that

fe(v) =fe(viy, +q(1,1))

If uw € Ty, , then w = p(1,1), with p < n. By definition vy, = (1,0)
or vip, = (0,1). Thus fx(v) =k+q¢>k+nor frlv) =1—-k)+q >
n+ (n—k+1). Since k € {1,...,n}, in any case we have that

fe(v) >n >p= fi(u). (3-8)

We conclude that the Lemma is true for [ = 1.

Next, assume that the Lemma is true for all ! < [, i.e., fi(vp,, +
q'(1,1)) > fr(u) for all u € Ty, J Ué',:lijk +7j, and ¢ > n—=1'+1+rp,, .
Let v =y, +q(1,1) with g >n—14+ 141, . Iif ue T, +r.,,, we have
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that u = vy, + (p + r1,4,)(1,1), with p <n — 1. Then

fr(v) fk(v,??k)

2 fi(vin,) =1+ 1+,
> fe(vim,) + P+ i,
=fk(vim, + (P +715,)(1,1))
=fi(u).

Thus fi(v) > fr(u) for all v € T, + ryy,. Consider u € Tj_y,, + ry, 11
By definition, v = vj_1 , + (p + 71-1,)(1,1) with p <n — [+ 1. By lemma
4), fr(vim, + 1) = fe(uizim, +11-1,,)- Then

Jr(0) =fi(vig,) +
>fr(vip,) +n—14+14r,,
fk(vlnk—i-rlnk(l 1)+n—-101+1
> fe(Vi1 + 711, (1L, 1) +p
=fe(O1m + P+ 71-1,) (1, 1))
= fi(u).

Obtaining that the statement is true for all u € Tj_1,, + 11,4,
Suppose fi(Vine + T1ne) = fr(Vie1, + T1-1,,) + 1. Obtaining that

fr(v) ka(vl,ﬂk + Tl,nk(l, D)+n—1+1
ka(vl—l,nk + Tl—l,nk(la 1)) +n—10+2.

Then, by the induction hypothesis for I — 1, fr(v) > fi(u) for all u €
Tom U Ul 1T] me + Tjm» Obtaining the result.

Now suppose that fr(viy, +71im.) = fe(vi—iy, + 1i—1,). For this, we
have two cases; [ =2 or [ > 2. If [ = 2, by (3.8)), we have that

fr() =fi(vam,) +a

>fk(v277k) — 1472y,
sz(v2nk +T277k(1 1)+n—1
=fe(v1m, + 71, (1,1)) + 1 —1
=fr(v1 Mk + (n _1+7’1777k)(171))
>n

> fire(u),
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for all u € Tyy,,. If I > 2, then for all u € Tp,;, | Ué-_:Qlij + 7, We have
that

fr(v) ka(vlmk + i (1L,1) +n—1+1
ka('l)lfz,nk + 7"[,2’%(1, 1)) +n—101+3
ka(u)7

where the second inequality comes from 5) of lemma and the last
inequality comes from the induction hypothesis over [ — 2. Obtaining the
result.

O
Now we are ready to prove the other important result of this section.

Proposition 3.3.13. Let n;, € Q and let J,, be the element of Sa, as-
sociated to my by Proposition |3.3.4. Then for all J € Sa, we have that

Je(m, ) < fi(myg).

Proof. Let J = {fB1,...,Bx,,} € Sa,. By definition of S4, we have that
0 # det <05i> , where cg, := Zyggi(—l)‘BFﬂ (%)An'y (recall notation
31.1).

Fixing the B1th row of this matrix and using basic properties of deter-
minants, we obtain that

1<i<hon

Apy
0 # det (cﬁ.) =3 (~pls i) qe | €2
"J1<i<hon <7 ~
>pP1
CB)\Qm

Since the determinant is not zero, there exists 8] < 1 such that
AnBy
c
det P2 # 0.
CIB>\2’”

Applying this process for each row, we obtain the set of vectors B =
{81221 C As,, such that 8 < B; for all i € {1,..., Ay} and with the

property det (Anﬁ£)1<i</\ £ 0.
NUX>A2n
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The goal is to construct a bijective correspondence ¢ : B — Ték, such

that fi(AnB!) > fi(e(Bl)). Consider the set v, + L := {vj,, +p(1,1) | p €
N}. Now, consider the following partition of B:

By ={pj € B| AnBi € T}, },

By ={B; € B| A8, € (vjm, + L)\ Tjn, + 7jm, for some j € {1,...,n}},
By ={pB} € B| A3, = q(1,1) for some q > n},
By ={B; € B| A8, ¢ (vjy, + L) forall je€{0,...,n}},

For all 3! € By, we define p(3!) = A,f;. Since det (Anﬂg) # 0,

! 1<i<Xon
we have that (8;) # ¢(B;) for all 5, 8} € DBy.

Now, if By # ), we rearrange B in such a way that {1, 85, ..., 8., } = Bi.
Counsider 3] € B;. By construction of Bj, there exist | < n and ¢ € N such
that A, 0] = vy, + q(1,1). By proposition we have that

l
AnB € spanc{v € Cn |v e | Ty}
§=0

= spanc{v € Chzr |ve To,ms U Ué':lijk + Tjﬂlk}-

This implies that A,3] = ZveTo,nk U Ty 70
a, € C. Using again basic properties of the determinant, we obtain that

there exists ug € To,p, U Ué-:lij + 75, such that

a,U, for some constants
k

Ulgi

AnBy

det # 0.

Anfy,
Applying this process for each element of B;, we obtain the vectors {u 8 };”:1

We define ¢(}) = ug, for all j € {1,...,m}. Now, we need to check that ¢
is injective on By U By and fi(An5)) > fr(e(BL)).
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Notice that, by construction
s

det | —Zn— | %0,
An/Bm—i—l

Anfy,

This implies that Ugr % T,B; for all 1 < i < j < m. In particular we
have that ug! =+ g Moreover, using the same argument, we have that
ug # AnfB; = (B;) for all B; € By. Thus, ¢ is injective on By U By.

On the other hand, A, 8] = v, +q(1,1) & T}, + 71, for some I < n.
This implies that ¢ > n — [+ 1+ 7, . Then

Si(AnBi) =fr(viy, +Q(1 1))

=fi(vim,) +

> fe(vig) +n—14+14+r,,

= fr(viy, + ( —l+14r,)(1,1)
> fi(ug)-

where the last inequality comes from lemma [3.3.12} obtaining the inequality
we are looking for.

For all 5/ € By, we have that A,,3, = ¢(1,1), for some ¢ > n. By lemma
3.2.11} we have that A,5; = > cp, oy T Applying the same method that
for the elements of B, we define ¢ with the properties that we need.

Now, since | Ty, |=| B |= A2, we have that | By |=| T, \ {(8}) | B} €
Bo U By U By} |. Then we take (8) = v, with v € Ty, \ {¢(8) | 5] €
By U By U By} in such a way that ¢(53;) # ¢(8;) for all 8,5, € Bs and
84 8.

By construction we obtain that ¢ is a bijective correspondence and by
definition of B3 and lemma |3.3.11f we have that fi(A,5)) > fr(e(B))) for all
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B; € Bz. Then

felmy) =" fu(AnBi)

BieJ

BieB

> > fule(B)

BieB

= > fxlw)

beTy,

=fr(my,, ),

where the first inequality comes from lemma [3.3.10| and the second comes
from the construction of ¢. O

Now we are ready to prove Theorem |3.1.5

Proof. By proposition Jne € Sa,. By corollary there exists
Jy € Sa, such that J, # Jy, and fi(my,) = fi(my, ). Using proposition
we obtain that ordy, ((k,1—-k)) = fi(m,, ). This implies that (k,1—
k) € om;, N Ty, -

O
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