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y largas pláticas, lograron que los estudios se volvieran algo que disfrute
mucho.

A toda la gente de la Unidad Académica de Matemáticas de la UAZ,
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Tecnoloǵıa ya que sin el apoyo económico proporcionado a lo largo de estos
cuatro años el mero hecho de estudiar un programa de posgrado hubiera
sido simplemente impensable.

Y por ultimo a la DGAPA-UNAM por ofrecerme apoyo económico du-
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Introduction

The Nash blowup of an algebraic variety is a modification that replaces
singular points by limits of tangent spaces at non-singular points. It was
proposed to resolve the singularities by iterating this process [19, 23]. This
question has been treated in [19, 21, 13, 14, 17, 24, 1, 26, 7]. The particular
case of toric varieties is treated in [13, 15, 16, 8, 11] using their combinatorial
structure.

There is a generalization of Nash blowups, called higher Nash blowups or
Nash blowups of order n, that was proposed by Takehiko Yasuda. This mod-
ification replaces singular points by limits of infinitesimal neighborhoods of
certain order at non-singular points. In particular, the higher Nash blowup
looks for resolution of singularities in one step [27].

There are several papers that deal with higher Nash blowups in the
special case of toric varieties. The usual strategy for this special case is
to translate the original geometric problem into a combinatorial one and
then try to solve the latter. So far, the combinatorial description of higher
Nash blowups of toric varieties has been obtained using Gröebner fans or
higher-order Jacobian matrices.

The usage of Gröebner fans for higher Nash blowups of toric varieties
was initiated in [9], which in turn was inspired by [29]. Later, this tool
was further developed in [26] to show that the Nash blowup of order n of
the toric surface singularity A3 is singular for any n > 0, over the complex
numbers. This result was later revisited to show that it is also holds in
prime characteristic [12].

In recent years several authors have introduced higher-order versions of
the Jacobian matrix. In [10], a higher-order Jacobian matrix is studied in
relation with the higher Nash blowup of a hypersurface. More recently, in [2,
3], a similar matrix is introduced for any finitely generated algebra. In these
articles the matrices are used to study singularities in arbitrary characteristic
or to study algebraic properties of the module of Kähler differentials of
high order. In another but related direction, article [7] describes a matrix
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associated to a relative compactification of the induced map on the main
components of jet schemes of a projective birational morphism.

In chapter 1 we introduce a matrix that represents a higher-order tan-
gent map of a morphism. This matrix involves higher-order derivatives,
making it more suitable for some computations related to jet-spaces. Our
main application of this matrix is the solution of two conjectures of T. Ya-
suda. The first is related to the combinatorial shape of the higher Nash
blowup of formal curves and the second is related to the factorization of the
normalization of the Nash blow-up of order n of the toric surface An by the
minimal resolution.

We also develop a combinatorial description for the higher Nash blowup
of toric varieties. This result is based and inspired in the analogous de-
scription of the usual Nash blowup of toric varieties given in [15, 16]. Our
results depend strongly on the general framework developed in [15] for not
necessarily normal toric varieties.

In a subsequent paper [28], T. Yasuda gave a conjectural explicit de-
scription of the semigroup of the higher Nash blowup of formal curves. In
chapter 2 we prove this conjecture for toric curves using the higher order
matrix defined in chapter 1 and other combinatorial tools.

We also present a family of non-monomial curves showing that Yasuda’s
conjecture fails in general. By combining the results we obtained for mono-
mial morphisms and the general construction of the matrix representing the
higher-order tangent map, we are able to describe a particular element of
the semigroup of the higher Nash blowup of this family of curves which does
not belong to the semigroup suggested by Yasuda. The results of chapters
1 and 2 are published in [5].

The techniques from [26] can be used to compute the Gröebner fan of
the normalization of higher Nash blowup of An for some n’s. Those com-
putations suggest that the essential divisors of the minimal resolution of An
appear in the normalization of the Nash blow-up of order n of An for some
n’s. T. Yasuda conjectures that this happens for all n. In particular, this
implies that the normalization of the Nash blowup of order n of An factors
through its minimal resolution.

Chapter 3 is devoted to proving the second conjecture of T. Yasuda
previously mentioned. The results of chapter 1 and the results of [15] told
us that the normalization of the higher Nash blowup of An is a toric variety
associated to a fan that subdivides the cone determining An. An explicit
description of this fan could be obtained by effectively computing all minors
of the corresponding higher order Jacobian matrix. This is a difficult task
given the complexity of the matrix for large n. However, for the problem we
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are interested in, we do not require an explicit description of the entire fan.
The rays that subdivide the cone of An to obtain its minimal resolution

can be explicitly specified. Thus, in order to show that these rays appear
in the fan associated to the normalization of the higher Nash blowup we
need to be able to control only certain minors of the matrix. A great deal
of this chapter is devoted to construct combinatorial tools that allow us to
accomplish that goal. The results of chapter 3 are contained in the preprint
[4].
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Chapter 1

Higher order matrices and
higher Nash blowup in toric
varieties

1.1 A higher-order Jacobian matrix of a morphism

1.1.1 A higher-order Jacobian matrix of a morphism of affine
spaces

In this section we study a higher-order derivative of a morphism between
affine varieties and find a matrix representation of this linear map.

Notation 1.1.1. The following notation will be constantly used in this
paper.

• The entries of vectors α ∈ Nt are denoted as α = (α(1), . . . , α(t)).

• α ≤ β ⇔ α(i) ≤ β(i) ∀i ∈ {1, . . . , t}. In particular, α < β if and only
if α(i) ≤ β(i) ∀i ∈ {1, . . . , t} and α(i) < β(i) for some i ∈ {1, . . . , t}.

• |α| = α(1) + · · ·+ α(t).

• α! = α(1)!α(2)! · · ·α(t)!

• ∂α = ∂α(1)∂α(2) · · · ∂α(t).

• For t, n ∈ N, Λt,n := {γ ∈ Nt|1 ≤ |γ| ≤ n}. In addition, we denote
λt,n := |Λt,n| =

(
n+t
t

)
− 1.

9



10 CHAPTER 1. HIGHER NASH BLOWUP OF TORIC VARIETIES

Let K an algebraic closed field. Consider a morphism

ϕ : Kd → Ks,
x = (x1, . . . , xd) 7→ (g1(x), . . . , gs(x)).

Assume that ϕ is regular at some x ∈ Kd and let y = ϕ(x) ∈ Ks. Let
m ⊂ C[X1, . . . , Xd] and n ⊂ C[Y1, . . . , Ys] be the maximal ideals correspond-
ing to x and y, and mx, ny the maximal ideals in (C[X1, . . . , Xd])m and
(C[Y1, . . . , Ys])n, respectively.

Let ϕ∗ : (C[Y1, . . . , Ys])n → (C[X1, . . . , Xd])m be the induced homomor-
phism on local rings, where ϕ∗(ny) ⊂ mx. In particular, there is a homo-
morphism of K−vector spaces for each n ∈ N:

(ϕ̄∗)n : ny/n
n+1
y → mx/m

n+1
x .

the elements Ax = {(X−x)α := (X1−x1)α(1) · · · (Xd−xd)α(d)|α ∈ Λd,n} form
a basis of mx/m

n+1
x as aK−vector space. Similarly, By = {(Y−y)β|β ∈ Λs,n}

forms a basis of ny/n
n+1
y . The dual bases of Ax and By are, respectively,

A∨x =
{ 1

α!

∂α

∂Xα

∣∣∣
x
|α ∈ Λd,n

}
,

B∨y =
{ 1

β!

∂β

∂Y β

∣∣∣
y
|β ∈ Λs,n

}
.

Since (ϕ̄∗)n((Y − y)β) = (g1− g1(x))β(1) · · · (gs− gs(x))β(s) = (ϕ−ϕ(x))β, it
follows that the dual morphism (ϕ̄∗)∨n : (mx/m

n+1
x )∨ → (ny/n

n+1
y )∨ satisfies

(ϕ̄∗)∨n

( 1

α!

∂α

∂Xα

∣∣∣
x

)
=

1

α!

∂α

∂Xα

∣∣∣
x
◦ (ϕ̄∗)n : ny/n

n+1
y → K, (1.1)

(Y − y)β 7→ 1

α!

∂α(ϕ− ϕ(x))β

∂Xα

∣∣∣
x
.

It follows that the matrix representation of (ϕ̄∗)∨n in these bases is:

[
(ϕ̄∗)∨n

]B∨y
A∨x

=
( 1

α!

∂α(ϕ− ϕ(x))β

∂Xα

∣∣∣
x

)
β∈Λs,n,α∈Λd,n

. (1.2)

Definition 1.1.2. Let ϕ : Kd → Ks be as before, where ϕ(x) = y. We call
the linear map (ϕ̄∗)∨n the derivative of order n of ϕ at x. In addition, let

Dn
x(ϕ) :=

( 1

α!

∂α(ϕ− ϕ(x))β

∂Xα
|x
)
β∈Λs,n,α∈Λd,n

.
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We call Dn
x(ϕ) the Jacobian matrix of order n of ϕ at x or the higher-order

Jacobian matrix of ϕ at x. Notice that Dn
x(ϕ) is a (λs,n × λd,n)-matrix.

We order the rows and columns of this matrix increasingly using graded
lexicographical order on Λs,n and Λd,n. This order is denoted �.

Remark 1.1.3. Notice that, for each β ∈ Λs,n, the β row of Dn
x(ϕ) cor-

responds precisely to the coefficients of the truncated Taylor expansion of
order n of (ϕ− ϕ(x))β centered at x.

Remark 1.1.4. A similar higher-order Jacobian matrix of a single poly-
nomial F was defined in [10] and is denoted Jacn(F ). See also [2, 3] for a
further development of this matrix.

Example 1.1.5. Let ϕ : K → K2, t 7→ (t, t2). The usual matrix represen-
tation of the derivative of ϕ at 0 ∈ K is given by the Jacobian matrix:

D0(ϕ) =

( dt
dt |0
dt2

dt |0

)
=

(
1
2t

) ∣∣
0
.

Following the construction of the higher-order Jacobian matrix given previ-
ously, in the case n = 2, we obtain:

D2
0(ϕ) =



dt
dt |0

1
2!
d2t
dt2
|0

dt2

dt |0
1
2!
d2t2

dt2
|0

d(t)2

dt |0
1
2!
d2(t)2

dt2
|0

d(t·t2)
dt |0

1
2!
d2(t·t3)
dt2
|0

d(t2)2

dt |0
1
2!
d2(t2)2

dt2
|0

 =


1 0
2t 1
0 1
0 2t
0 4t2

∣∣
0

.

The higher-order Jacobian matrix satisfies the following basic properties.

Lemma 1.1.6. Let ϕ : Kd → Ks be as before.

(i) If β ∈ Λs,n is such that |β| = 1 then ∂α(ϕ−ϕ(x))β

∂Xα = ∂αϕβ

∂Xα for every
α ∈ Λd,n.

(ii) Let α ∈ Λd,n, β ∈ Λs,n be such that |α| < |β|. Then ∂α(ϕ−ϕ(x))β

∂Xα |x = 0.

(iii) D1
x(ϕ) is the usual Jacobian of ϕ evaluated at x.

(iv) If ϕ : Kd → Kd is the identity then Dn
x(ϕ) is the identity matrix.

(v) Let ψ : Ks → Kr be another morphism. Then Dn
x(ψ◦ϕ) = Dn

y (ψ)Dn
x(ϕ).
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Proof. (i) If β ∈ Λs,n is such that |β| = 1 then (ϕ − ϕ(x))β = gi − gi(x)
for some i ∈ {1, . . . , s}. Since gi(x) is a constant, the result follows.

(ii) The hypothesis on α and β means that in ∂α(ϕ−ϕ(x))β

∂Xα the order of
the derivative is less than the number of factors in (ϕ− ϕ(x))β. This

implies that in every summand of ∂
α(ϕ−ϕ(x))β

∂Xα there is a factor gi−gi(x).

Thus ∂α(ϕ−ϕ(x))β

∂Xα |x = 0.

(iii) This follows from the definition of Dn
x(ϕ) and (i).

(iv) If ϕ is the identity then (ϕ̄∗)n : mx/m
n+1
x → mx/m

n+1
x is also the

identity. With respect to the common basis chose for both vector
spaces, we conclude that Dn

x(ϕ) is the identity matrix.

(v) We know that (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗. Thus, ((ψ ◦ ϕ)∗)n = (ϕ̄∗)n ◦ (ψ̄∗)n.
Taking duals ((ψ ◦ ϕ)∗)∨n = ((ϕ̄∗)n ◦ (ψ̄∗)n)∨ = (ψ̄∗)∨n ◦ (ϕ̄∗)∨n . The
result follows.

Now suppose that X ⊂ Kd and Y ⊂ Ks are affine varieties and let
ϕ : X → Y be a morphism which is regular at x ∈ X and let y = ϕ(x).
Denote by m̄x and n̄y the maximal ideals of the corresponding local rings.
Since ϕ is the restriction of a morphism ϕ : Kd → Ks, the diagram

X
ϕ //� _

i
��

Y � _

i
��

Kd ϕ // Ks

induces the diagram

(m̄x/m̄
n+1
x )∨ //
� _

��

(n̄y/n̄
n+1
y )∨
� _

��
(mx/m

n+1
x )∨ // (ny/n

n+1
y )∨

Taking bases as before we identify (mx/m
n+1
x )∨ ∼= Kλd,n and (ny/n

n+1
y )∨ ∼=

Kλs,n . The commutativity of the diagram

(m̄x/m̄
n+1
x )∨ //
� _

��

(n̄y/n̄
n+1
y )∨
� _

��
Kλd,n

Dnx (ϕ) // Kλs,n
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allows us to define a higher-order tangent map of ϕ : X → Y at x ∈ X as
the restriction

Dn
x(ϕ) : (m̄x/m̄

n+1
x )∨ → (n̄y/n̄

n+1
y )∨.

1.1.2 Higher-order Jacobian matrices and birational mor-
phisms

Let Y ⊂ Ks be an irreducible algebraic variety and y ∈ Y . In this subsection,
we use the higher-order Jacobian matrix to explicitly compute the space
(n̄y/n̄

n+1
y )∨ in some cases.

Lemma 1.1.7. Let X and Y be irreducible varieties and let ϕ : X 99K Y be
a birational morphism. Let U ⊂ X and V ⊂ Y be open subsets isomorphic to
each other. Let x ∈ U and y = ϕ(x) ∈ V . Then ϕ induces an isomorphism
n̄y/n̄

n+1
y
∼= m̄x/m̄

n+1
x .

Proof. Since ϕ|U : U → V is an isomorphism, there is an induced isomor-
phism on local rings OY,y ∼= OX,x. In particular, ϕ∗(n̄y) = m̄x. The result
follows.

Proposition 1.1.8. Let ϕ : Kd 99K Y ⊂ Ks be a birational morphism,
U ⊂ Kd and V ⊂ Y open subsets isomorphic to each other, and y = ϕ(x) for
some x ∈ U . Then the vector space (n̄y/n̄

n+1
y )∨ is isomorphic to the image

of the linear map defined by Dn
x(ϕ). In particular, rank(Dn

x(ϕ)) = λd,n.

Proof. We have the following commutative diagram

Kd i◦ϕ //

ϕ
!!

Ks

Y
?�
i

OO

This diagram induces in turn the following commutative diagram

(mx/m
n+1
x )∨

(i◦ϕ)∗
∨

//

(ϕ̄∗)∨

∼=

''

(ny/n
n+1
y )∨

(n̄y/n̄
n+1
y )∨,
?�

(ī∗)∨

OO

where the isomorphism in the diagonal arrow comes from lemma 1.1.7. Fix-
ing bases for mx/m

n+1
x and ny/n

n+1
y as in the previous section, we identify
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(mx/m
n+1
x )∨ ∼= Kλd,n and (ny/n

n+1
y )∨ ∼= Kλs,n . In addition, from (1.2), it fol-

lows that (i ◦ ϕ)∗
∨

is the linear map defined by the matrixDn
x(i◦ϕ) = Dn

x(ϕ).
We thus obtain the diagram

Kλd,n
Dnx (ϕ) //

&&

Kλs,n

(n̄y/n̄
n+1
y )∨.
?�

OO

The commutativity of this diagram proves the proposition.

Remark 1.1.9. Notice that the proofs in this section consider local rings
of points of a variety. Therefore, these results are also valid in the analytic
case. In particular, we can define a higher-order Jacobian matrix for germs
of analytic maps ϕ : (X,x)→ (Y, y).

Example 1.1.10. Let ϕ : K → C = V(y − x2) ⊂ K2, t 7→ (t, t2). We
computed D2

0(ϕ) : K2 → K5 in the previous section. Let n̄0 be the maximal
ideal of (0, 0) ∈ C. Using proposition 1.1.8 we obtain

(n̄0/n̄
3
0)∨ = Im(D2

0(ϕ)) = Im


1 0
2t 1
0 1
0 2t
0 4t2

∣∣
0

⊂ K5.

1.2 Higher order Jacobian matrices for monomial
morphisms

Let a1, . . . , as ∈ Zd. We assume that d ≤ s. In this section we study the
higher-order Jacobian matrix of the monomial morphism

ϕ : (K \ {0})d → Ks (1.3)

x = (x1, . . . , xd) 7→ (xa1 , . . . , xas),

where xai := x
ai(1)
1 · · ·xai(d)

d .

Notation 1.2.1. The following notation will be used constantly.

• A denotes the (d×s)-matrix whose columns are the vectors a1, . . . , as.
By abuse of notation, the set {a1, . . . , as} is also denoted as A.
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• Ai := (a1(i), . . . , as(i)), i = 1, . . . , d, denote the rows of A. In parti-
cular, for γ ∈ Ns,

XAγ = XA1·γ
1 · · ·XAd·γ

d ,

where Aγ is a product of matrices and Ai ·γ is the usual inner product
in Rs.

• For β ∈ Ns, we denote

(XA − xA)β := (Xa1 − xa1)β(1) · · · (Xas − xas)β(s).

• For λ, τ ∈ Nt, denote
(
λ
τ

)
:=
(λ(1)
τ(1)

)
· · ·
(λ(t)
τ(t)

)
.

With this notation, the higher-order Jacobian of ϕ at a point x ∈ (K \
{0})d is given by:

Dn
x(ϕ) =

( 1

α!

∂α(XA − xA)β

∂Xα
|x
)
β∈Λs,n,α∈Λd,n

.

We are interested in computing the maximal minors of this matrix. This
will be done in several steps.

Lemma 1.2.2. Let γ ∈ Ns and α ∈ Nd. Then

1

α!

∂α(XAγ)

∂Xα
=

(
Aγ

α

)
XAγ−α.

Proof. This is a direct computation.

Lemma 1.2.3. Let β ∈ Λs,n, α ∈ Λd,n and x ∈ (K \ {0})d. Then

1

α!
∂α(XA − xA)β|x = cβ,αx

Aβ−α,

where cβ,α :=
∑

γ≤β,γ 6=0(−1)|β−γ|
(
β
γ

)(
Aγ
α

)
.

Proof. From the binomial theorem we obtain, for each i ∈ {1, . . . , s}:

(Xai − xai)β(i) =

β(i)∑
γ(i)=0

(−1)β(i)−γ(i)

(
β(i)

γ(i)

)
(Xai)γ(i)(xai)β(i)−γ(i).
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Thus, letting γ := (γ(1), . . . , γ(s)),

(XA − xA)β =

β(1)∑
γ(1)=0

· · ·
β(s)∑
γ(s)=0

(−1)|β−γ|
(
β

γ

) s∏
i=1

(Xai)γ(i)(xai)β(i)−γ(i)

=
∑
γ≤β

(−1)|β−γ|
(
β

γ

)
(X

∑
γ(i)ai)(x

∑
β(i)ai−

∑
γ(i)ai)

=
∑
γ≤β

(−1)|β−γ|
(
β

γ

)
(XAγ)(xAβ−Aγ).

With this formula and the previous lemma now it is easy to compute the
derivative evaluated at x:

1

α!
∂α(XA − xA)β|x =

∑
γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)
(xAβ−Aγ)

1

α!
∂α(XAγ)|x

=
∑

γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)
(xAβ−Aγ)

(
Aγ

α

)
XAγ−α|x

=
∑

γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)(
Aγ

α

)
xAβ−α

=
[ ∑
γ≤β,γ 6=0

(−1)|β−γ|
(
β

γ

)(
Aγ

α

)]
xAβ−α.

Using this lemma it follows that the higher-order Jacobian of ϕ at each
x ∈ (K \ {0})d has the following shape:

Dn
x(ϕ) =

(
cβ,αx

Aβ−α
)
β∈Λs,n,α∈Λd,n

. (1.4)

Proposition 1.2.4. Let J = {β1, . . . , βλd,n} ⊂ Λs,n, where β1 ≺ . . . ≺ βλd,n
(see definition 1.1.2 for the notation ≺). Let LJ denote the submatrix of
Dn
x(ϕ) formed by the rows β1, . . . , βλd,n and all of its columns α1, . . . , αλd,n.

Then, if x ∈ (K \ {0})d,

det(LJ) =
x
Aβ1+···+Aβλd,n

x
α1+···+αλd,n

det(LcJ),

where LcJ := (cβi,αj )i,j.
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Proof. The matrix whose determinant we want to compute is the following:

LJ =


cβ1,α1x

Aβ1−α1 · · · cβ1,αλd,n
x
Aβ1−αλd,n

cβ2,α1x
Aβ2−α1 · · · cβ2,αλd,n

x
Aβ2−αλd,n

... · · ·
...

cβλd,n ,α1x
Aβλd,n−α1 · · · cβλd,n ,αλd,nx

Aβλd,n−αλd,n

 .

Multiply the αjth column by xαj . Then multiply the βith row by x−Aβi .
Let LcJ = (cβi,αj )i,j . Then

det(LJ) =
x
Aβ1+···+Aβλd,n

x
α1+···+αλd,n

det(LcJ). (1.5)

Remark 1.2.5. If n = 1 then λd,n = d. Letting βik = eik ∈ Ns for k =
1, . . . , d and J = {βi1 , . . . , βid} ⊂ Λs,1, it follows that LcJ is the (d×d)-matrix
whose rows are ai1 , . . . , aid . In particular, in view of (1.5), det(LJ) 6= 0 if and
only if ai1 , . . . , aid are linearly independent. This remark allows a comparison
between the so-called logarithmic Jacobian ideal of a toric variety and an
ideal whose blowup defines the Nash blowup of the variety [13, 19]. This, in
turn, gives place to the fact that the Nash blowup of a toric variety can be
obtained as the blowup of its logarithmic Jacobian ideal (see [13, 18, 15]).
As a result, there is an explicit combinatorial description of the Nash blowup
in this context [13, 15, 16].

1.3 Higher Nash blowup of toric varieties

In this section we exhibit an open cover for the higher Nash blowup of a
toric variety. We start by recalling the definition of the higher Nash blowup
of an algebraic variety. Subsection 1.3.2 is based on the general theory of
(not necessarily normal) toric varieties developed in [15] and also uses some
ideas appearing in [16].

1.3.1 Higher Nash blowup

Notation 1.3.1. Given an irreducible algebraic variety X ⊂ Ks of dimen-
sion d and a point x ∈ X, we denote TnxX := (m̄x/m̄

n+1
x )∨. This is a vector

space of dimension λd,n, whenever x is a non-singular point.
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Notice that X ⊂ Ks implies TnxX ⊂ TnxKs ∼= Kλs,n . Thus, if x is
a non-singular point, we can see TnxX as an element of the Grassmanian
Gr(λd,n,Kλs,n).

Definition 1.3.2. [19, 20, 27] Let X ⊂ Ks be an irreducible algebraic
variety of dimension d. Consider the Gauss map of order n:

Gn : X \ Sing(X)→ Gr(λd,n,Kλs,n)

x 7→ TnxX,

where Sing(X) denotes the set of singular points ofX. Denote byNashn(X)
the Zariski closure of the graph of Gn. Call πn the restriction to Nashn(X)
of the projection of X ×Gr(λd,n,Kλs,n) to X. The pair (Nashn(X), πn) is
called the higher Nash blowup of X or the Nash blowup of X of order n.

It was proposed by T. Yasuda ([27]) to resolve the singularities of X
by applying once the higher Nash blowup for n sufficiently large. Yasuda
himself proved that his method works for curves ([27, Corollary 3.7]). More-
over, Yasuda suggested in [29, Remark 1.5] that the A3-singularity might be
a counterexample to his conjecture on the one-step resolution. R. Toh-Yama
recently proved in [26] that Nashn(A3) is singular for every n ≥ 1.

1.3.2 An explicit open cover of the higher Nash blowup of a
toric variety by affine toric varieties

Let us recall the definition of an affine toric variety (see, for instance, [6,
Section 1.1] or [25, Chapter 4]).

Definition 1.3.3. Let A = {a1, . . . , as} ⊂ Zd. Let Γ := NA denote the
semigroup generated by A, i.e., Γ = {

∑
i λiai|λi ∈ N}. In addition, as-

sume that ZA = {
∑

i λiai|λi ∈ Z} = Zd. Consider the following monomial
morphism:

ϕΓ : (K∗)d → Ks (1.6)

x = (x1, . . . , xd) 7→ (xa1 , . . . , xas),

where K∗ = K \ {0}. Let XΓ denote the Zariski closure of the image of ϕΓ.
We call XΓ the affine toric variety defined by Γ.

It is well known that XΓ is an irreducible variety of dimension d, contains
a dense open set isomorphic to (K∗)d and such that the natural action of
(K∗)d on itself extends to an action on the variety. In addition, XΓ does
not depend on the generating set A (see [6, Theorem 1.1.17] for various
equivalent characterizations of affine toric varieties).
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Proposition 1.3.4. [6, Prop. 1.2.12],[15, Prop. 15] Let XΓ ⊂ Ks be an
affine toric variety, σ∨ := R≥0Γ ⊂ Rd the cone generated by Γ, and σ its
dual cone. The following statements are equivalent:

(a) 0 ∈ XΓ.

(b) XΓ has a 0-dimensional orbit.

(c) The cone σ is of dimension d.

(d) The cone σ∨ is strongly convex.

We want to show that the higher Nash blowup of a toric variety having
a 0-dimensional orbit, has a finite open cover given by affine toric varieties
with the same property. The proof of this fact is based on the following
combinatorial construction of blowing ups of monomials ideals in toric vari-
eties (see [15, Section 2.6]).

Combinatorial description of the blowup of a monomial ideal.
Let XΓ ⊂ Ks be an affine toric variety having a 0-dimensional orbit and
σ∨ = R≥0Γ ⊂ Rd (which is strongly convex, by the previous proposition).

(i) Let I = 〈xm|m ∈ B〉 ⊂ K[XΓ] be a monomial ideal.

(ii) Let N (I) be the Newton polyhedron of I, i.e., the convex hull in Rd
of the set {m+ σ∨|m ∈ B}.

(iii) Let m′ ∈ B. Denote Γm′ := Γ + N({m−m′|m ∈ B}).

(iv) Given m′,m′′ ∈ B, the affine toric varieties XΓm′ and XΓm′′ can be

glued together along the principal open subsets XΓm′ \ V(xm
′′−m′)

and XΓm′′ \V(xm
′−m′′). There is an isomorphism between these open

subsets which is induced by localizations of coordinate rings:

K[XΓm′ ]xm′′
xm
′

∼= K[XΓm′′ ] xm′
xm
′′
.

(v) The variety resulting from the previous glueing is the blowup of XΓ

along I (see [15, Proposition 32]). We denote it as BlIXΓ.

(vi) Finally, let B′ = {m′ ∈ B|m′ is a vertex of N (I)}. Then

BlIXΓ =
⊔
m′∈B′ XΓm′

/
∼
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(see the proof of Proposition 32, [15]). By proposition 1.3.4, for m′ ∈
B′, XΓm′ has a 0-dimensional orbit. In particular, BlIXΓ has an open
cover by affine toric varieties having a 0-dimensional orbit.

Remark 1.3.5. The variety resulting from the previous construction is an
example of an abstract toric variety having a good action (see [15, Section
2.8]). These varieties are characterized by the fact that they can be described
in combinatorial terms by families of semigroups labeled by fans (see [15,
Theorem 44]).

In order to use the previous construction and compare it to the higher
Nash blowup of a toric variety, we need to introduce some monomial ideal. In
addition, we use the Plücker embedding of Gr(λd,n,Kλs,n) into the projective

space P
(λ2,n
λd,n

)−1
. First, some notation.

Notation 1.3.6. Let A = {a1, . . . , as} ⊂ Zd and Γ = NA a semigroup
defining a toric variety XΓ ⊂ Ks.

• Given J = {β1, . . . , βλd,n} ⊂ Λs,n such that β1 ≺ · · · ≺ βλd,n , we denote

by UJ the affine chart of P(MD)−1 where the J-coordinate is non-zero
(see definition 1.1.2 for the notation ≺).

• Let SA := {J = {β1, . . . , βλd,n} ⊂ Λs,n|β1 ≺ · · · ≺ βλd,n , det(LcJ) 6= 0}.
Notice that SA 6= ∅ by propositions 1.1.8 and 1.2.4.

• For each J = {β1, . . . , βλd,n} ⊂ Λs,n, denote mJ := Aβ1 + · · ·+Aβλd,n .

Definition 1.3.7. Let In := 〈XmJ |J ∈ SA〉 ⊂ K[XΓ]. Following the usual
terminology, we call In the logarithmic Jacobian ideal of order n of XΓ.

Remark 1.3.8. In the following subsection we show that In does not de-
pend on the set of generators of Γ.

We want to apply the combinatorial description of the blowup of a mono-
mial ideal to In. To that end, we simplify a little the notation coming from
that description. For XmJ ∈ In, instead of using ΓmJ as in (iii), we simply
write ΓJ .

Now we are ready to prove the main theorem of this chapter.

Theorem 1.3.9. Let XΓ ⊂ Ks be an affine toric variety having a 0-dimensional
orbit. Then Nashn(XΓ) is isomorphic to the blowup of the logarithmic Ja-
cobian ideal of order n of XΓ. In particular, Nashn(XΓ) has a finite open
covering given by affine toric varieties having a 0-dimensional orbit.
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Proof. We divide this proof into two steps: the first one describes locally
Nashn(XΓ) and the second one is a glueing argument.

Step I: According to proposition 1.1.8 and (1.4), for a point p := ϕΓ(x) ∈
XΓ, for some x ∈ (K∗)d, we have

Tnp XΓ = Im(Dn
x(ϕΓ)) = Im

(
cβ,αx

Aβ−α
)
β∈Λs,n,α∈Λd,n

.

Thus, the Plücker coordinates of Tnp XΓ ∈ Gr(λd,n,Kλs,n) ↪→ P(MD)−1 are

given by the maximal minors of
(
cβ,αx

Aβ−α)
β,α

. According to (1.5), for a

choice J = {β1, . . . , βλd,n} ⊂ Λs,n, where β1 ≺ . . . ≺ βλd,n , the corresponding
minor is:

det(LcJ)
x
Aβ1+···+Aβλd,n

x
α1+···+αλd,n

.

Fix J0 ∈ SA. It follows that:

1. If J ∈ SA we can make a change of coordinates in UJ0
∼= K

s+(λs,nλd,n
)−1

to

turn the non-zero constant
det(LcJ )

det(LcJ0
) into 1. Thus, we can assume that

the J-coordinate of Nashn(XΓ) ∩ UJ0 is equal to 1 for every J ∈ SA.

2. If J /∈ SA the J-coordinate of Nashn(XΓ) is zero. This implies that
we can embed Nashn(XΓ) ∩ UJ0 in Ks+|SA|−1.

These two remarks imply that

Nashn(XΓ) ∩ UJ0
∼= {
(
ϕΓ(x),

x
∑
βi∈J

Aβi

x
∑
β0
i
∈J0

Aβ0
i

)
|J ∈ SA \ {J0}, x ∈ (K∗)d}

= {(ϕΓ(x), xmJ−mJ0 )|J ∈ SA \ {J0}, x ∈ (K∗)d} (1.7)

= Im(ϕΓJ0
) ⊂ Ks+|SA|−1.

In particular, this affine chart of Nashn(XΓ) is an affine toric variety.

Step II: By Step I, for each J ∈ SA, XΓJ
∼= Nashn(XΓ) ∩ UJ . Since both

BlInXΓ and Nashn(XΓ) are obtained by glueing XΓJ and Nashn(XΓ)∩UJ ,
respectively, we only need to check that the glueing is the same. The glueing

in Nashn(XΓ) ⊂ XΓ × P(MD)−1 is given by the usual glueing in P(MD)−1, i.e.,
the one induced by the following isomorphisms of localizations of coordinate
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rings for each couple J1, J2 ∈ SA:

K[xa1 , . . . , xas , xmJ−mJ1 |J ∈ SA /∈ {J1}]xmJ2

x
mJ1

∼= K[xa1 , . . . , xas , xmJ−mJ2 |J ∈ SA /∈ {J2}]xmJ1

x
mJ2

.

This is exactly the glueing described in the combinatorial description of the
blowup of a monomial ideal.

Remark 1.3.10. For n = 1, the previous theorem was proved in [13, 18, 15].

Remark 1.3.11. The previous theorem and its proof show that Nashn(XΓ)
can be covered by open affine varieties which are invariant under the action
of a torus. This statement could be obtained directly using results of [15, 27].
Indeed, by [27, Section 2.2], the higher Nash blowup of a toric variety is an
equivariant morphism; in particular, it is the blowup of some monomial
ideal. Then [15, Corollary 34] implies the statement. We want to emphasize
that the contribution of this section is that one can take the logarithmic
Jacobian ideal of order n as such monomial ideal. In addition, we describe
an explicit method to construct this ideal.

1.3.3 The logarithmic Jacobian ideal of order n is indepen-
dent of the generators of Γ

In this subsection we show that the ideal In does not depend on the set of
generators A of Γ. To that end, we need to modify temporarily the notation
In. We denote as IC the logarithmic Jacobian ideal of order n, where C is
an arbitrary set of generators of Γ.

Theorem 1.3.12. Let A = {a1, . . . , as} ⊂ Zd and B = {b1, . . . , bt} ⊂
Zd be such that Γ = NA = NB. Then IA = IA∪B = IB. In particular,
the logarithmic Jacobian ideal of order n of XΓ does not depend on the
generators of Γ.

Proof. It is enough to show IA = IA∪B. Lemma 1.3.13 states that IA ⊂
IA∪B. Applying repeatedly lemma 1.3.14 we obtain the other inclusion.

Lemma 1.3.13. With the notation of theorem 1.3.12, IA ⊂ IA∪B.

Proof. For J ∈ SA, define J̄ := {(β, 0, . . . , 0) ∈ Ns+t|β ∈ J}. The submatrix
of Dn

x(ϕA∪B) defined by J̄ is the same as the submatrix of Dn
x(ϕΓ) defined

by J . Therefore J̄ ∈ SA∪B. Thus, XmJ = XmJ̄ ∈ IA∪B.
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Lemma 1.3.14. Let A be as in theorem 1.3.12 and b ∈ NA. Let A′ =
A ∪ {b}. Then IA′ ⊂ IA.

Proof. Consider the following partition of SA′ :

S1 := {J̄ ∈ SA′ |β(s+ 1) = 0 for all β ∈ J̄},
S2 := {J̄ ∈ SA′ |β(s+ 1) > 0 for some β ∈ J̄}.

By definition, IA′ = 〈{XmJ̄ |J̄ ∈ S1} ∪ {XmJ̄ |J̄ ∈ S2}〉. As in the proof
of lemma 1.3.13, {XmJ̄ |J̄ ∈ S1} ⊂ IA. We claim that {XmJ̄ |J̄ ∈ S2} ⊂
〈{XmJ̄ |J̄ ∈ S1}〉, implying the lemma. Now, to prove the claim we show
that for J̄ ∈ S2 there exists J ∈ S1 and γ̄ ∈ Γ such that mJ̄ = mJ + γ̄.
First, we need some notation.

• For γ ≤ βi, let εγ := (−1)|βi−γ|
(
βi
γ

)
. Then, by definition, cβi,αj =∑

γ≤βi,γ 6=0 εγ
(
A′γ
αj

)
(see lemma 1.2.3).

• cβi :=
(∑

γ≤βi,γ 6=0 εγ
(
A′γ
αj

))
1≤j≤λd,n

(cβi is the βith row of Lc
J̄
).

• vγ :=
((

A′γ
αj

))
1≤j≤λd,n

. Notice that by remark 2.1.3, cβi =
∑

γ≤βi,γ 6=0 εγvγ

(that remark is stated for toric curves but it also holds for toric vari-
eties of any dimension).

Let J̄ = {β1, . . . , βλd,n} ∈ S2. Then det(Lc
J̄
) 6= 0 and we can assume

that β1(s+ 1) > 0. Then the following holds:

1. There exists γ′ ≤ β1 such that the matrix obtained by replacing the
β1th row of Lc

J̄
by vγ′ has non-zero determinant.

2. There exists δ0 ∈ Ns+1 such that δ0(s+ 1) = 0 and A′δ0 = A′γ′.

3. There exists δ ∈ Ns+1 such that δ ≤ δ0, δ(s + 1) = 0, and the matrix
having as rows cδ, cβ2 , . . . , cβλd,n has non-zero determinant.

4. Let J1 := J̄ \{β1}∪{δ}. Then J1 ∈ SA′ and mJ̄ equals mJ1 plus some
element in Γ.

Notice that by applying 1 - 4 to any element of J̄ whose (s+ 1)-entry is
greater than zero, we obtain J ∈ S1 and γ̄ ∈ Γ with the desired properties.
Now we prove the previous statements.
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1. It follows immediately from:

0 6= det(LcJ̄) = det


cβ1

cβ2

...
cβλd,n

 = det


∑

γ≤β1,γ 6=0 εγvγ
cβ2

...
cβλd,n



=
∑

γ≤β1,γ 6=0

εγ det


vγ
cβ2

...
cβλd,n

 .

2. If γ′(s + 1) = 0, let δ0 := γ′. Now suppose that γ′(s + 1) = k > 0.
Since b ∈ NA, b =

∑s
l=1 λlal. Let δ0(l) := γ′(l) + kλl for l < s+ 1 and

δ0(s+ 1) = 0. Then

A′δ0 =
s∑
l=1

δ0(l)al =
s∑
l=1

(γ′(l) + kλl)al =
s∑
l=1

γ′(l)al + kb = A′γ′.

3. Let M denote the matrix whose rows are cδ0 , cβ2 , . . . , cβλd,n , in this

order. If det(M) 6= 0 let δ := δ0. Suppose that det(M) = 0. Then

0 = det(M) =
∑

γ<δ0,γ 6=0

εγ det


vγ
cβ2

...
cβλd,n

+ det


vδ0
cβ2

...
cβλd,n

 .

On the other hand, A′δ0 = A′γ′ implies vγ′ = vδ0 and so

0 6= det


vγ′

cβ2

...
cβλd,n

 = det


vδ0
cβ2

...
cβλd,n

 .

Therefore

0 6=
∑

γ<δ0,γ 6=0

εγ det


vγ
cβ2

...
cβλd,n

 .
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Thus there exists δ1 < δ0 such that det(vδ1 cβ2 · · · cβλd,n ) 6= 0. If

det(cδ1 cβ2 · · · cβλd,n ) 6= 0, let δ := δ1. Otherwise repeat the previous

process. This leads to a sequence δ0 > δ1 > · · · . Since this sequence
cannot decrease infinitely many times, we conclude that there exists
k ≥ 0 such that δ0 > δ1 > · · · > δk =: δ and det(cδ cβ2 · · · cβλd,n ) 6= 0.

In addition, since δ ≤ δ0 and δ0(s+ 1) = 0, we have δ(s+ 1) = 0.

4. To show that J1 ∈ SA′ we only need to show that |δ| ≤ n because we
already know that det(LcJ1

) 6= 0. If |δ| > n then, by lemma 1.1.6 (ii),
cδ = 0, which contradicts that det(LcJ1

) 6= 0. On the other hand, we
know that δ ≤ δ0 and γ′ ≤ β1. Let δ0 = δ+ δ′ and β1 = γ′+ γ′′. Then

A′β1 = A′γ′ +A′γ′′ = A′δ0 +A′γ′′ = A′δ +A′δ′ +A′γ′′.

This implies that mJ̄ equals mJ1 plus an element from Γ.
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Chapter 2

Combinatorial structure of
higher Nash blowup of toric
curves

2.1 Higher Nash blowup of toric curves

In this chapter we study in detail the higher Nash blowup of toric curves.
In this chapter we use the following notation: A = {a1, . . . , as} ⊂ N, where
0 < a1 < . . . < as and gcd(a1, . . . , as) = 1. Let Γ = NA ⊂ N. We assume
that A is the minimal generating set of Γ. Let XΓ ⊂ Ks be the corresponding
toric curve.

According to theorem 1.3.9, Nashn(XΓ) is isomorphic to the blowup of
the ideal In. Since Γ ⊂ R≥0, it follows that the Newton polyhedron of In
has only one vertex mJ0 = min{mJ |J ∈ SA}. In particular, Nashn(XΓ) is
determined by a single semigroup. We denote it as:

Nashn(Γ) := Γ + N({mJ −mJ0 |J ∈ SA \ {J0}}).

Let us show how this semigroup looks like for n = 1. In this case,
S = {e1, . . . , es}, where the e′is denote the canonical basis of Ns, mei = ai,
and so mini{mei} = a1. Therefore

Nash1(Γ) = Γ + N({ak − a1|k > 1}).

Remark 2.1.1. The previous description is a particular case of the com-
binatorial description of the Nash blowup of toric varieties given in [15, 16]
(see also [11], where the Nash blowup of toric curves is studied in detail).

27
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We may ask the question: is there an explicit description for Nashn(Γ)
as in n = 1? T. Yasuda made the following conjecture in a more general
context.

Conjecture 2.1.2. [28, Conjecture 5.6] Let X be a formal curve with asso-
ciated semigroup Γ = {0 = s0 < s1 < · · · }. Let Nashn(Γ) be the associated
semigroup of Nashn(X). Let Γ(n) be the semigroup generated by sm − sl,
where l ≤ n < m. Then Nashn(Γ) = Γ(n).

In what follows we prove that this conjecture is true for toric curves.
However, in the final section we show that it fails in general.

In order to prove the conjecture in the toric case, first we need to study
carefully some maximal minors of the higher-order Jacobian matrix. In sec-
tion 1.2 we defined, for J = {β1, . . . , βn} ⊂ Λs,n, the matrix LcJ = (cβi,j)i,j ,
where

cβi,j =
∑

γ≤βi,γ 6=0

(−1)|βi−γ|
(
βi
γ

)(
A · γ
j

)
.

Notice that in this case A is a vector in Ns and A ·γ is the usual dot product.

Remark 2.1.3. (a) For a fixed i, every entry of the i-th row of LcJ has the

same amount of summands and the same coefficients (−1)|βi−γ|
(
βi
γ

)
.

In other words, for a fixed row of LcJ , the amount of summands and
coefficients of its entries do not depend on j.

(b) Fix i ∈ {1, . . . , n}. We rewrite the sums cβi,j as follows:

cβi,j =

(
si,1
j

)
+ ti,2

(
si,2
j

)
+ · · ·+ ti,ki

(
si,ki
j

)
,

where si,1 := A · βi, si,l ∈ {A · γ|γ ≤ βi, 0 6= γ 6= βi} for 1 < l ≤ ki,
and ti,l ∈ Z. Assume that si,1 > si,2 > . . . > si,ki > 0. By (a), {si,l}l,
{ti,l}l and ki do not depend on j. Therefore, the i-th row of LcJ can
be written as:( (

si,1
1

)
+ ti,2

(
si,2
1

)
+ · · ·+ ti,ki

(si,ki
1

)
, . . . ,

(
si,1
n

)
+ ti,2

(
si,2
n

)
+ · · ·+ ti,ki

(
si,ki
n

) )
.

Now we define some elementary operations on a matrix having the same
shape as LcJ . Given ki ∈ N for i ∈ {1, . . . , n}, and si,l ∈ N\{0}, ti,l ∈ Q\{0}
for l ∈ {1, . . . , ki}, consider a matrix

D =
(
ti,1
(si,1
j

)
+ ti,2

(si,2
j

)
+ · · ·+ ti,ki

(si,ki
j

) )
1≤i≤n
1≤j≤n

.
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Notice that if we fix i, the terms ki, si,l, ti,l do not depend on j. Assume
that si,1 > si,2 > · · · > si,ki for all i ∈ {1, . . . , n}. Finally, let Ri denote the
i-th row of D.

Definition 2.1.4. We say that D satisfies (?) if there exist i, i′ ∈ {1, . . . , n}
such that si,1 = si′,1.

Using the following algorithm we show that, under some assumptions,
we can perform elementary operations on the rows of D to obtain a matrix
that does not satisfy the property (?).

Algorithm 2.1.5. Assume detD 6= 0 and that D satisfies (?).

1. Replace the row Ri by ti′,1Ri − ti,1Ri′ .

2. Since detD 6= 0 the new row cannot be the vector 0̄. Write this new
vector as:

R′i :=
(
t′i,1
(s′i,1
j

)
+ ti,2

(s′i,2
j

)
+ · · ·+ t′i,k′i

(s′
i,k′
i

j

) )
1≤j≤n

,

where t′i,l 6= 0 for all l ∈ {1, . . . , k′i} and s′i,1 > · · · > s′i,k′i
. Notice that

si,1 > s′i,1 > 0.

3. Let

D′ :=


R1
...
R′i
...
Rn

 .

(i) If there exists i′′ ∈ {1, . . . , n} \ {i} such that s′i,1 = si′′,1, then
apply step 1 to R′i. As before, we obtain a new element s′′i,1 ∈ N
such that si,1 > s′i,1 > s′′i,1 > 0.

(ii) If there is no i′′ ∈ {1, . . . , n} \ {i} such that s′i,1 = si′′,1 then stop.

Because of the decreasing sequence si,1 > s′i,1 > s′′i,1 > · · · , this algorithm
must stop and it produces a new row that looks like(

ui,1
(ri,1
j

)
+ ui,2

(ri,2
j

)
+ · · ·+ ui,mi

(ri,mi
j

) )
1≤j≤n

,

where ui,l 6= 0 for all l ∈ {1, . . . ,mi}, ri,1 > · · · > ri,mi > 0 and ri,1 6= sl,1
for all l ∈ {1, . . . , n} \ {i}.
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Applying this process every time that the new matrix satisfies (?), we
finally get a matrix D

D =
(
ui,1
(ri,1
j

)
+ ui,2

(ri,2
j

)
+ · · ·+ ui,mi

(ri,mi
j

) )
1≤i≤n
1≤j≤n

,

such that ri,1 > · · · > ri,mi for each i and ri,1 6= ri′,1 for all i 6= i′.

Example 2.1.6. Consider the following matrix:

D =


(

2
1

) (
2
2

) (
2
3

)(
6
1

)
− 2
(

3
1

) (
6
2

)
− 2
(

3
2

) (
6
3

)
− 2
(

3
3

)(
6
1

)
− 3
(

4
1

)
+ 3
(

2
1

) (
6
2

)
− 3
(

4
2

)
+ 3
(

2
2

) (
6
3

)
− 3
(

4
3

)
+ 3
(

2
3

)
 .

Notice that D satisfies (?). Applying algorithm 2.1.5 to the third row we
obtain the matrix:

D =


(

2
1

) (
2
2

) (
2
3

)(
6
1

)
− 2
(

3
1

) (
6
2

)
− 2
(

3
2

) (
6
3

)
− 2
(

3
3

)
−3
(

4
1

)
+ 2
(

3
1

)
+ 3
(

2
1

)
−3
(

4
2

)
+ 2
(

3
2

)
+ 3
(

2
2

)
−3
(

4
3

)
+ 2
(

3
3

)
+ 3
(

2
3

)
 .

2.1.1 A partial description of Nashn(XΓ)

The first step towards proving conjecture 2.1.2 for toric curves is to deter-
mine minJ∈SA{mJ}. Recall that for J = {β1, . . . , βn} ⊂ Λs,n, we defined
mJ = A · β1 + · · · + A · βn. On the other hand, A · βi ∈ Γ since A is the
vector formed by the generators of Γ. Therefore, it is natural to expect that
minJ∈SA{mJ} =

∑n
i=1 si. The goal of this subsection is to prove that this

is indeed the case.

Proposition 2.1.7. Let J ⊂ Λs,n, |J | = n, then minJ∈SA{mJ} =
∑n

i=1 si.

Proof. This is proved in lemmas 2.1.9 and 2.1.13.

This proposition gives the following preliminary description ofNashn(Γ).

Corollary 2.1.8. Nashn(Γ) = Γ + N({mJ −
∑n

i=1 si|J ∈ SA}).

Lemma 2.1.9. Let J ∈ SA. Then mJ ≥ s1 + · · · + sn. In particular,
minJ∈SA{mJ} ≥

∑n
i=1 si.

Proof. Let J = {β1, β2, . . . , βn}. Using (b) of remark 2.1.3 we have

LcJ =
( (si,1

j

)
+ ti,2

(si,2
j

)
+ · · ·+ ti,ki

(si,ki
j

) )
1≤i≤n
1≤j≤n

,
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where si,l ∈ Γ for each l, si,1 = A · βi, and si,1 > si,2 > · · · > si,ki . If
si,1 6= si′,1 for all 1 ≤ i 6= i′ ≤ n then the statement follows.

Now suppose that there exist βi, βi′ ∈ J , i 6= i′, such that si,1 = si′,1, i.e.,
LcJ satisfies (?). Since J ∈ SA, i.e., det(LcJ) 6= 0, we can apply algorithm
2.1.5 to obtain some elements r1,1, . . . , rn,1 ∈ Γ satisfying ri,1 6= ri′,1 for all
i 6= i′ and si,1 > ri,1 for some i ∈ {1, . . . , n}. Under these conditions we
have

mJ =
n∑
i=1

A · βi =
n∑
i=1

si,1 >
n∑
i=1

ri,1 ≥
n∑
i=1

si.

To show that minJ∈SA{mJ} =
∑n

i=1 si we need to show that, if J =
{β1, . . . , βn} ⊂ Λs,n is such that A ·βi = si, then J ∈ SA. In other words, we
need to study J ’s such that det(LcJ) 6= 0. We do not have a characterization
of such J ’s. However, in the following definition and lemma we give sufficient
conditions for J to be in SA.

Definition 2.1.10. Let J ⊂ Ns be a finite subset. We say that J satisfies
(∗) if the following conditions hold:

1) For all β, β′ ∈ J such that β 6= β′, it holds that A · β 6= A · β′.

2) For all β ∈ J and 0 6= γ < β, there exists β′ ∈ J such that A·γ = A·β′.

Example 2.1.11. (i) Let J = {ej , 2ej , . . . , nej}, where ej is a basic vec-
tor. Then J satisfies (∗). Indeed, 1) follows by definition and 2) by
the definition of <.

(ii) Let J = {β1, β2, . . . , βn} be such that A · βi = si. Then J satisfies (∗).
Indeed, 1) follows by definition and 2) follows from the fact that γ < β
implies A · γ < A · β.

Remark 2.1.12. Let β ∈ Ns be such that |β| ≥ n+ 1. Then A · β > na1 ≥
sn. This implies that for J = {β1, . . . , βn} ⊂ Ns such that A · βi = si for
each i, we have J ⊂ Λs,n.

Lemma 2.1.13. Let J ⊂ Λs,n, |J | = n. If J satisfies (∗) then J ∈ SA. In
particular, minJ∈SA{mJ} ≤

∑n
i=1 si.

Proof. The last statement follows from (ii) of example 2.1.11 and remark
2.1.12. Take a set J = {β1, . . . , βn} satisfies (∗). In particular, A ·βi 6= A ·βi′
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for all i 6= i′. Assume A · β1 < · · · < A · βn. By (b) of remark 2.1.3, we can
rewrite the matrix LcJ as(

cβi,j
)

1≤i≤n
1≤j≤n

=
( (si,1

j

)
+ ti,2

(si,2
j

)
+ · · ·+ ti,ki

(si,ki
j

) )
1≤i≤n
1≤j≤n

,

where si,1 = A · βi, si,1 > si,2 > · · · , and si,l = A · γ for some γ ≤ βi.
Now we do some elementary operations on the n-th row of LcJ :( (sn,1

j

)
+ tn,2

(sn,2
j

)
+ · · ·+ tn,kn

(sn,kn
j

) )
1≤j≤n

.

We know that sn,2 = A ·γ for some γ < βn. Since J satisfies (∗), there exists
βj0 ∈ J such that A · βj0 = A · γ = sn,2. Then we subtract tn,2-times the
row j0 from the row n, thus obtaining( (s′n,1

j

)
+ t′n,2

(s′n,2
j

)
+ · · ·+ t′n,k′n

(s′
n,k′n
j

) )
1≤j≤n

,

where s′n,1 = sn,1, s′n,2 > s′n,3 > · · · , and sn,2 > s′n,2. Now we have s′n,2 =
A·γ′ for some γ′ < βn or some γ′ < βj0 . Once again, by (∗) we can repeat the
previous process to obtain a new element s′′n,2 such that sn,2 > s′n,2 > s′′n,2.
Because of this decreasing sequence of natural numbers, the iteration of this
process must stop turning the n-th row into( (sn,1

j

) )
1≤j≤n

.

Applying this process to the other rows of LcJ in an ascending way we
obtain the matrix ( (si,1

j

) )
1≤i≤n
1≤j≤n

.

Notice that si,1 = A · βi 6= A · βi′ = si′,1 for all i 6= i′. The following
lemma shows that this matrix has non-zero determinant, thus concluding
that J ∈ S.

Lemma 2.1.14. Let 0 < c1 < c2 < · · · < cn be natural numbers. Consider

the matrix L =
( (

ci
j

) )
1≤i≤n
1≤j≤n

. Then detL 6= 0.

Proof. For j ∈ {1, . . . , n}, consider the polynomial bj(x) = x(x−1)···(x−j+1)
j! .

Notice that if x ∈ N, bj(x) =
(
x
j

)
and deg bj(x) = j. Thus

L =
( (

ci
j

) )
1≤i≤n
1≤j≤n

=
(
bj(ci)

)
1≤i≤n
1≤j≤n

.



2.1. HIGHER NASH BLOWUP OF TORIC CURVES 33

Now we show that the columns of this matrix are linearly independent. Let
α1, . . . , αn ∈ R be such that

∑n
j=1 αjbj(ci) = 0, for each i ∈ {1, . . . , n}. Let

f(x) =
∑n

j=1 αjbj(x). Then {c1, . . . , cn} are roots of f(x). But we also have
f(0) = 0. Since deg f(x) ≤ n it follows that f(x) = 0. As deg bj(x) = j for
each j, we conclude that αj = 0 for all j. In particular, detL 6= 0.

2.1.2 Proof of conjecture 2.1.2 for toric curves and some con-
sequences

Now we are ready to prove the main theorem of this chapter. Recall that
by definition and corollary 2.1.8:

Γ(n) = N({sm − sl|m > n, l ≤ n}),

Nashn(Γ) = Γ + N({mJ −
n∑
l=1

sl|J ∈ SA}).

Theorem 2.1.15. Γ(n) = Nashn(Γ).

Proof. This is proved in propositions 2.1.16 and 2.1.18.

Proposition 2.1.16. Nashn(Γ) ⊂ Γ(n).

Proof. By corollary 2.1.8, it is enough to show that ai ∈ Γ(n) for each i ∈
{1, . . . , s} and mJ −

∑n
l=1 sl ∈ Γ(n) for each J ∈ SA.

We first prove ai ∈ Γ(n). For ai ≤ sn there exists m ∈ N such that
mai ≤ sn < (m + 1)ai. Then ai = (m + 1)ai −mai ∈ Γ(n). If ai ≥ sn then
ai + a1 > sn, and ai = (ai + a1)− a1 ∈ Γ(n).

Now we prove that mJ −
∑n

l=1 sl ∈ Γ(n) for each J ∈ SA. Consider
J = {β1, β2, . . . , βn} ∈ SA, let si,1 := A · βi and assume s1,1 ≤ · · · ≤ sn,1.
Let k := max{l ∈ {1, . . . , n}|sl,1 ≤ sn}.
Case I: Suppose that s1,1 < s2,1 < · · · < sk,1 ≤ sn. Let ψ = {s1, . . . , sn} \
{s1,1, · · · , sk,1}. Write ψ = {rk+1, . . . , rn}. By definition of k and ψ we
obtain:

mJ −
n∑
l=1

sl =

n∑
l=1

sl,1 −
n∑
l=1

sl =

n∑
l=k+1

sl,1 −
n∑

l=k+1

rl ∈ Γ(n).

Case II: Suppose that there exist i, i′ ≤ k such that si,1 = si′,1. We
claim that for all j ≤ k there exist rj,1 ∈ Γ such that sj,1 − rj,1 ∈ Γ(n)

and rj,1 6= rj′,1 for all j 6= j′. Assume this claim for the moment. For the
elements sm,1 with m > k, we have that sm,1 > sn and so sm,1−sl ∈ Γ(n) for
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any l ≤ n. Let ψ = {s1, . . . , sn} \ {r1,1, . . . , rk,1}. Write ψ = {rk+1, . . . , rn}.
As in the previous case, we conclude that

mJ −
n∑
l=1

sl =
( k∑
l=1

sl,1 −
k∑
l=1

rl,1

)
+
( n∑
l=k+1

sl,1 −
n∑

l=k+1

rl

)
∈ Γ(n).

Now we prove the claim. Since J ∈ SA, we can apply algorithm 2.1.5 to
any pair of rows of LcJ , i, i′ ≤ k such that si,1 = si′,1, to get a matrix

D =
(
ui,1
(ri,1
j

)
+ ui,2

(ri,2
j

)
+ · · ·+ ui,mi

(ri,mi
j

) )
1≤i≤n
1≤j≤n

,

where ri,1 6= ri′,1 for all i, i′ ≤ k. Let us show that si,1 − ri,1 ∈ Γ(n) for all
i ∈ {1, . . . , k}. We can assume that si,1 6= ri,1.

In the first run of the algorithm we obtain an element s′i,1 ∈ Γ such that
si,1 > s′i,1 ≥ ri,1 and s′i,1 = A · γ for some γ < βi or some γ < βi′ . This
implies that si,1 − s′i,1 ∈ Γ.

On the other hand, we know that s′i,1 ≥ ri,1 and ri,1 ∈ Γ. Therefore
si,1 − s′i,1 + ri,1 ∈ Γ and si,1 − s′i,1 + ri,1 ≤ sn. Consider the following set
φi := {sl ∈ Γ\{0}|sl+ri,1 ≤ sn}. This set is not empty since si,1−s′i,1 ∈ φi.
Let st := maxφi. If si,1 + st ≤ sn, we have that (si,1 − s′i,1 + st) + ri,1 =
si,1+st−(s′i,1−ri,1) ≤ si,1+st ≤ sn and si,1−s′i,1+st > st, which contradicts
the maximality of st. Thus si,1 + st > sn and

si,1 − ri,1 = (si,1 + st)− (st + ri,1) ∈ Γ(n).

We need the following lemma to prove the remaining inclusion in theorem
2.1.15.

Lemma 2.1.17. Let sm, si ∈ Γ be such that m > n ≥ i and sm − si /∈ Γ.
Let βm ∈ Ns be such that A · βm = sm. Then there exists β0 ≤ βm such that
A · β0 > sn and |β0| ≤ n.

Proof. If |βm| ≤ n then βm satisfies the conditions of β0. Assume that
|βm| > n.

Suppose first that a2 ≤ sn. The set {a1, 2a1, . . . , (n − 1)a1, a2} has n
different elements of Γ implying na1 > sn. Let β be such that |β| = n.
Then A · β ≥ ns1 = na1 > sn. In particular, any β ≤ βm such that |β| = n
satisfies the conditions of the Lemma.
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Now suppose sn < a2. Then sk = ks1 for all k ≤ n. Notice that if
βm(j) = 0 for all j > 1, then sm − si = |βm|a1 − ia1 ∈ Γ which contradicts
the hypothesis. Thus there exists j > 1 such that βm(j) 6= 0. Consider
β0 = ej , then A · β0 = A · ej = aj ≥ a2 > sn and |β0| = 1 ≤ n.

Proposition 2.1.18. Γ(n) ⊂ Nashn(Γ).

Proof. Throughtout this proof we fix m, i ∈ N such that m > n ≥ i. Let
sm − si ∈ Γ(n).

Case I: Suppose that sm− si ∈ Γ. Then sm− si ∈ Nashn(Γ) by definition.

Case II: Suppose that sm − si /∈ Γ. Fix βm ∈ Ns such that A · βm = sm.

We claim that there exist β0 ∈ Ns, J0 = {β1, . . . , βn} ⊂ Ns, and i ≤ l ≤ n
such that:

(1) β0 ≤ βm.

(2) A · βj = sj for each j ∈ {1, . . . , n}.

(3) sl − si ∈ Γ.

(4) J := (J0 \ {βl}) ∪ {β0} satisfies (∗). In particular,

A · β0 − sl = mJ −
n∑
i=1

si ∈ Nashn(Γ).

Assume this claim for the moment. Let δ ∈ Ns be such that βm = β0 +δ. In
particular, sm = A · βm = A · β0 +A · δ. Then, since A · δ ∈ Γ, we conclude

sm − si = (A · β0 − sl) +A · δ + (sl − si) ∈ Nashn(Γ).

Now we prove the claim. We first show that there is a β0 ∈ Ns satisfying
(1) and some extra conditions needed for the proof of (4). Let T := {γ ∈
Ns|γ ≤ βm}. We write this set as T = T≤ t T>, where

T≤ := {γ ∈ T |A · γ ≤ sn},
T> := {γ ∈ T |A · γ > sn}.

Notice that βm ∈ T>. Let β0 ≤ βm be a minimal element in T> such that
β0 ∈ Λs,n (such an element exists by lemma 2.1.17). By construction, β0

has the following properties:

a) For all γ < β0, γ ∈ T≤.
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b) For all β̄i such that A · β̄i = si it holds β0 ≯ β̄i (this is true because
βm ≥ β0 and sm − si /∈ Γ implies that βm ≯ β̄i).

Now we prove the existence of J0 = {β1, . . . , βn} ⊂ Ns, and i ≤ l ≤ n
satisfying (2) and (3) and some extra conditions needed for the proof of (4).
Define the set (recall that i is fixed):

Ω := {sj ∈ {s1, . . . , sn}|∀β′ such that A·β′ = sj , ∃γ ≤ β′ such that A·γ = si}.

If sj ∈ {s1, . . . , sn} \ Ω, consider βj ∈ Ns such that A · βj = sj and for all
γ ≤ βj , A · γ 6= si. If sj ∈ Ω, consider a βj ∈ Ns such that A · βj = sj . Let
J0 := {β1, . . . , βn} ⊂ Ns. By remark 2.1.12, we have that J0 ⊂ Λs,n. Notice
that Ω 6= ∅, since si ∈ Ω. Let sl := max{Ω}. In particular, sl ∈ Ω and so
sl − si ∈ Γ.

It remains to prove that J := (J0\{βl})∪{β0} satisfies (∗) (see definition
2.1.10). By construction and since A · β0 > sn, we have 1) in the definition
of (∗).

Now let βk ∈ J0 \ {βl}. We want to show that if γ < βk then there
exists β′ ∈ J such that A · β′ = A · γ. If k < l this condition is satisfied
(see example 2.1.11). Suppose k > l (in particular, sk /∈ Ω). If γ < βk is
such that A · γ = sj 6= sl then by making β′ = βj the condition is satisfied.
Suppose that A·γ = sl. Since sl ∈ Ω there exists γ′ ≤ γ such that A·γ′ = si.
Since γ < βk, it follows that γ′ < βk. This is a contradiction since βk was
chosen so that for all δ < βk we have A · δ 6= si. Therefore, for all γ ≤ βk,
A · γ 6= sl. This shows that every element of J0 \ {βl} satisfies 2) in the
definition of (∗).

Now consider γ < β0. By property a) above, we have that A · γ ≤ sn. If
γ < β0 is such that A · γ = sj 6= sl then, as before, by making β′ = βj the
condition is satisfied. Suppose that A ·γ = sl. As before, there exists γ′ ≤ γ
such that A · γ′ = si. Since γ < β0, it follows that γ′ < β0. This contradicts
property b) above. We conclude that J satisfies (∗).

Theorem 2.1.15 has two immediate consequences. The first one is about
resolving toric curves by applying once the higher Nash blowup for n suf-
ficiently large. This gives a combinatorial proof of Yasuda’s theorem on
one-step resolution of curves by higher Nash blowups in the case of toric
curves. The second result is the analogue of Nobile’s theorem for the higher
Nash blowup of toric curves.

Corollary 2.1.19. Nashn(XΓ) is non-singular if and only if sn + 1 ∈ Γ.
In particular, Nashn(XΓ) is non-singular for n� 0.
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Proof. Notice that for all m > n and i ≤ n, we have that sn+1 + si ≤
sm + sn, then sn+1 − sn ≤ sm − si. Thus, sn+1 − sn = min{Γ(n) \ {0}} =
min{Nashn(Γ) \ {0}}. Then Nashn(XΓ) is non-singular if and only if
Nashn(Γ) = N({1}) if and only if 1 = sn+1 − sn if and only if sn + 1 =
sn+1 ∈ Γ.

Corollary 2.1.20. Nashn(XΓ) ∼= XΓ if and only if XΓ is non-singular.

Proof. Suppose that XΓ is singular, i.e., 1 < a1. We are going to show that
Γ ( Nashn(Γ), which implies Nashn(XΓ) 6∼= XΓ.

Let a2 = qa1 + r, where 0 < r < a1 and q ≥ 1. With this notation we
have s1 = a1, . . . , sq = qa1, sq+1 = a2. If n ≤ q then sn ≤ sq = qa1 < a2 and
so a2−a1 ∈ Γ(n) = Nashn(Γ). But we also have a2−a1 = (q−1)a1 +r /∈ Γ.

Suppose that n > q. Consider the following subset of Γ:

{sq+1 = qa1 + r, (q + 1)a1, (q + 1)a1 + r, (q + 2)a1, (q + 2)a1 + r, . . .}.

The elements on this subset are not necessarily consecutive elements in Γ.
Therefore, for p > q it follows sp+1−sp ≤ max{a1−r, r} < a1. In particular,
sn+1 − sn < a1. Thus, sn+1 − sn ∈ Nashn(Γ) but sn+1 − sn /∈ Γ.

2.2 Counterexample to the conjecture

In section 2.1 we stated and proved a conjecture by T. Yasuda for toric
curves. In this section we exhibit a family of non-monomial curves showing
that the conjecture is false in general.

Example 2.2.1. Consider the plane curve C ⊂ C2 parametrized by

t 7→ (t4, t6 + t7).

The associated semigroup of C is Γ = {0, 4, 6, 8, 10, 12, 13, 14,m|m ≥ 16}.
Yasuda’s conjecture states that the semigroup of Nash1(C) is Γ(1) = N(2, 9).
However, the Nash blowup of order 1 of C is parametrized by

t 7→
(
t4, t6 + t7,

6

4
t2 +

7

4
t3
)
.

Using the first and third terms of the parametrization we obtain Nash1(Γ) =
N(2, 5). We conclude that Nash1(Γ) 6= Γ(1).
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We may still ask whether the conjecture holds for n� 0. In what follows
we construct a family of plane curves {Cn}n≥1, with numerical semigroup
Γn, such that Nashn(Γn) 6= (Γn)(n).

Fix n ≥ 1. Consider the plane curve Cn with parametrization

ϕ(t) = (t4, t4n+2 + t4n+3).

Let Γn be the corresponding semigroup. Notice that the first n non-zero
terms of Γn is the set {4, 8, . . . , 4n}. In addition, the first odd number that
appears in Γn is 8n+5 (it appears as the order of (t4n+2+t4n+3)2−(t4)2n+1).
In particular, the first odd number that appears in (Γn)(n) is 8n+ 5− 4n =
4n+ 5. We claim that 5 ∈ Nashn(Γn) implying that Nashn(Γn) 6= (Γn)(n).

To prove the claim we need to compute some maximal minors of the
matrix ( 1

α!

∂α(ϕ− ϕ(t))β

∂Tα
|t
)
β∈Λ2,n,α∈Λ1,n

Let J1 = {e1, 2e1, . . . , ne1} and J2 = {e1, 2e1 . . . , (n − 1)e1, e2}. We first
show that the minors of the submatrices defined by J1 and J2 are not zero.

Let LJ1 be the submatrix defined by J1. Notice that the rows of LJ1 only
involve the first term of ϕ(t), which is a monomial. Therefore, by example
2.1.11 and lemma 2.1.13, detLJ1 6= 0. In addition, by proposition 1.2.4,

detLJ1 = c · t
∑n
k=1 4k−k = c · t

3n(n+1)
2 , with c a non-zero constant.

Now, for J2, notice that the first n − 1 rows of LJ2 only involve the
monomial term of ϕ(t). Using lemma 1.2.3 we obtain that the (i, j)-entry
of LJ2 is cie1,jt

4i−j , for 1 ≤ i < n and 1 ≤ j ≤ n. On the other hand, the
nth row of LJ2 can be described as follows. Since |e2| = 1, by lemma 1.1.6
we obtain

1

j!

∂j(ϕ− ϕ(t))e2

∂T j
|t =

(
4n+ 2

j

)
t4n+2−j +

(
4n+ 3

j

)
t4n+3−j .

Summarizing, the matrix LJ2 is:
ce1,1t

4−1 · · · ce1,nt
4−n

...
...

c(n−1)e1,1t
4(n−1)−1 · · · c(n−1)e1,nt

4(n−1)−n(
4n+2

1

)
t4n+2−1 +

(
4n+3

1

)
t4n+3−1 · · ·

(
4n+2
n

)
t4n+2−n +

(
4n+3
n

)
t4n+3−n

 .

Multiply the jth column by tj . Then, for 1 ≤ i < n multiply the ith row by
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t−4i. Finally, multiply the nth row by t−4n−2 to obtain

detLJ2 =
(
t

3n(n+1)
2

+2
)

det


ce1,1 · · · ce1,n

...
...

c(n−1)e1,1 · · · c(n−1)e1,n(
4n+2

1

)
+
(

4n+3
1

)
t · · ·

(
4n+2
n

)
+
(

4n+3
n

)
t

 .

Applying the method of proof of Proposition 2.1.13 to the first n − 1 rows
and using basic properties of determinants, we get that

detLJ2 = t
3n(n+1)

2
+2 det


(

4
1

)
· · ·

(
4
n

)
...

...(
4(n−1)

1

)
· · ·

(
4(n−1)
n

)(
4n+2

1

)
· · ·

(
4n+2
n

)


+ t
3n(n+1)

2
+3 det


(

4
1

)
· · ·

(
4
n

)
...

...(
4(n−1)

1

)
· · ·

(
4(n−1)
n

)(
4n+3

1

)
· · ·

(
4n+3
n

)
 .

The determinants appearing in the sum are non-zero by lemma 2.1.14.
Therefore detLJ2 6= 0.

Now we need to prove that detLJ1 has the minimum order over all non-
zero minors of the higher-order Jacobian matrix of ϕ.

Consider β = (a1, a2) ∈ N2 and suppose that a2 > 0. Notice that if the
polynomial

1

m!

∂m(T 4 − t4)a1(T 4n+2 + T 4n+3 − t4n+2 − t4n+3)a2

∂Tm
∣∣
t

is non-zero, then its order is greater or equal than 4n + 2 − m. Let J =
{β1, . . . , βn} ⊂ Λ2,n be such that J 6= {e1, . . . , ne1}. In particular, the
second entry of βi is non-zero, for some i. Reorder J in such a way that
βi(2) 6= 0 for 1 ≤ i ≤ k and βj(2) = 0 for k < j ≤ n. Then, if j > k,
βj = mje1 with 1 ≤ mj ≤ n and if j > i > k, mj 6= mi.

Let us show that if detLJ 6= 0 then ord(det(LJ)) > 3n(n+1)
2 . To begin

with,

detLJ =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i) =
∑
σ∈Sn

sgn(σ)
n∏
i=1

1

σ(i)!

∂σ(i)(ϕ− ϕ(t))βi

∂T σ(i)
|t,
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where Sn is the symmetric group. Let Aσ =
∏n
i=1

1
σ(i)!

∂σ(i)(ϕ−ϕ(t))βi

∂Tσ(i) |t. The

claim follows if we can prove that, for all σ such that Aσ 6= 0, ord(Aσ) >
3n(n+1)

2 . But this is true since:

ord(Aσ) =
n∑
i=1

ord
(∂σ(i)(ϕ− ϕ(t))βi

∂T σ(i)
|t
)

≥
k∑
i=1

(4n+ 2− σ(i)) +
n∑

j=k+1

(4mj − σ(j))

= 2k + 4(nk +
n∑

j=k+1

mj)−
n(n+ 1)

2
≥ 2k + 4

n∑
j=1

j − n(n+ 1)

2

= 2k +
3n(n+ 1)

2
>

3n(n+ 1)

2
.

Using all previous claims we see that the Plücker coordinates of Tnϕ(t)Cn,
for t 6= 0, look like:

(· · · : ct
3n(n+1)

2 : c1t
3n(n+1)

2
+2 + c2t

3n(n+1)
2

+3 : · · · ),

with c, c1, c2 non-zero constants. Since the coordinate defined by J1 has
the minimum order, Nashn(Cn) ⊂ UJ1 , i.e., the affine chart obtained from

dividing over ct
3n(n+1)

2 . In particular, the parametrization of Nashn(Cn) has
the term

c1

c
t2 +

c2

c
t3.

Now proceed as in example 2.2.1 to show that 5 ∈ Nashn(Γn).



Chapter 3

Factorization of the
normalization of the Nash
blow-up of order n of An by
the minimal resolution

3.1 The main result

In this section we state the main result of this chapter. First, we introduce
some notation that will be constantly used throughout this chapter and
recall the notation of the previous chapters.

Notation 3.1.1. Let γ, β ∈ Nt and v ∈ N2.

1) We denote by πi(β) the projection to the i-th coordinate of β.

2) γ ≤ β if and only if πi(γ) ≤ πi(β) for all i ∈ {1, . . . , t}. In particular,
γ < β if and only if γ ≤ β and πi(γ) < πi(β) for some i ∈ {1, . . . , t}.

3)
(
β
γ

)
:=
∏t
i=1

(πi(β)
πi(γ)

)
.

4) |β| =
∑t

i=1 πi(β).

5) Λt,n := {β ∈ Nt | 1 ≤ |β| ≤ n}. In addition, λt,n := |Λt,n| =
(
n+t
n

)
− 1.

6) v̄ :=
((

v
α

))
α∈Λ2,n

∈ Nλ2,n .

41
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7) Let An :=

(
1 1 n
0 1 n+ 1

)
.

8) Given J ⊂ Λ3,n, let mJ :=
∑

β∈J Anβ ∈ N2.

This entire chapter is devoted to studying some aspects of the higher
Nash blowup of the An singularity (recall definition 1.3.2). Let us recall its
definition and the notation we will use.

Definition 3.1.2. Consider the cone σn = R≥0{(0, 1), (n+1,−n)} ⊂ (R2)∨.
We denote by An the normal toric surface corresponding to σn, i.e., An =
V (xz − yn+1).

The following definition is the particular case of the minor of the higher
order matrix describe in chapter 1 applied in the case of the surface An.

Definition 3.1.3. Let J ⊂ Λ3,n be such that |J | = λ2,n. We define the
matrix

LcJ :=
(
cβ

)
β∈J

,

where cβ =
∑

γ≤β(−1)|β−γ|
(
β
γ

)
Anγ ∈ Nλ2,n . In addition, we denote

SAn := {J ⊂ Λ3,n | |J | = λ2,n and detLcJ 6= 0}.

Let In = {mJ ∈ R2 | J ∈ SAn}. The set In defines an order function:

ordIn : σn →R
v 7→ min

mJ∈In
〈v,mJ〉.

This function induces the following cones:

σmJ := {v ∈ σn | ordIn(v) = 〈v,mJ〉}.

These cones form a fan Σ(In) :=
⋃
mJ∈In σmJ . This fan is a refinement of σ.

This construction is a particular case of the construction given in section 5
of [15] applied to our context.

Proposition 3.1.4. With the previous notation, we have:

Nashn(An) ∼= XΣ(In),

where Nashn(An) is the normalization of the Nash blow-up of An of order
n and XΣ(In) is the normal variety corresponding to Σ(In).
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Proof. By proposition 1.3.9 we have that Nashn(An) is a monomial blowing
up of the ideal In = 〈xmJ | J ∈ SAn〉. The result follows from proposition
5.1 and remark 4.6 of [15].

The goal of this chpater is to prove the following result about the shape
of the fan Σ(In).

Theorem 3.1.5. For each k ∈ {1, . . . , n}, there exist J, J ′ ∈ SAn such that
(k, 1−k) ∈ σmJ ∩σmJ′ . In particular, the rays generated by (k, 1−k) appear
in the fan Σ(In).

Corollary 3.1.6. Let A′n be the minimal resolution of An and let Nashn(An)
be the normalization of the higher Nash blow-up of An of order n. Then
there exists a proper birational morphism φ : Nashn(An) → A′n such that
the following diagram commutes

Nashn(An)
φ //

%%

A′n

��
An.

Proof. It is well-known that A′n is obtained by subdividing σn with the rays
generated by the vectors (k, 1− k), for k ∈ {1, . . . , n}. The result follows by
Theorem 3.1.5.

3.2 A particular basis for the vector space Cλ2,n

As stated in Theorem 3.1.5, we need to find some subsets J ⊂ Λ3,n such
that the determinant of LcJ is non-zero. This will be achieved by reducing
the matrix LcJ to another matrix given by vectors formed by certain bino-
mial coefficients. In this section, we prove that those vectors are linearly
independent. We will see that this is equivalent to finding some basis of the
vector space Cλ2,n .

Definition 3.2.1. Consider a sequence η = (z, d0, d1, d2, . . . , dr), where
z ∈ Z2, d0 = 0, {di}ri=1 ⊂ N \ {0} and

∑r
i=0 di = n. We denote by Ω the set

of all such sequences.

With this set let us define a subset of vectors of N2.
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Definition 3.2.2. Let η = (z, d0, d1, . . . , dr) ∈ Ω. We construct a set of
vectors {vj,η}nj=1 ⊂ N2 as follows. For each j ∈ {1, . . . , n}, there exists a

unique t ∈ {1, . . . , r} such that
∑t−1

i=0 di < j ≤
∑t

i=0 di. This implies that
j =

∑t−1
i=0 di + c, where 0 < c ≤ dt. Then we define

vj,η =



(
∑

i odd
i<t

di + c, 0) if z = 1 and t odd,

(0,
∑

i even
i<t

di + c) if z = 1 and t even,

(0,
∑

i odd
i<t

di + c) if z = 0 and t odd,

(
∑

i even
i<t

di + c, 0) if z = 0 and t even.

In addition, for each j ∈ {1, . . . , n}, we denote

Tj,η := {vj,η, vj,η + (1, 1), . . . , vj,η + (n− j)(1, 1)}.

Furthermore, we denote v0,η := (1, 1) and T0,η := {(1, 1), . . . , (n, n)}. We
define

Tη :=
n⋃
j=0

Tj,η.

Finally, recalling notation 3.1.1, we define

Tη = {v̄ ∈ Cλ2,n | v ∈ Tη}.

Remark 3.2.3. Notice that this construction depends only on η. Moreover,
geometrically, this construction is equivalent to taking vectors in an ordered
way on the axes of N2.

Example 3.2.4. Let n = 6, r = 5 and η = (1, 0, 1, 1, 1, 1, 2). For j = 3 we
have that d0 + d1 + d2 < 3 = d0 + d1 + d2 + d3, then t = 3, v3,η = (2, 0) and
T3,η = {(2, 0), (3, 1), (4, 2), (5, 3)}. Tη is computed similarly and can be seen
in the following figure.

Now we give some basic properties of definition 3.2.2.

Lemma 3.2.5. Let η ∈ Ω and u, v ∈ N2. Then we have the following
properties:

1) If u 6= v, then ū 6= v̄.
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Figure 3.1: Example of Tη for η = (1, 0, 1, 1, 1, 1, 2)

2) |Tη| = λ2,n.

3) If vj,η = (l, 0) or vj,η = (0, l), then l ≤ j.

4) πi(v) ≤ n for all v ∈ Tη and i ∈ {1, 2}.

5) If vj,η = (0, p), then for all q < p there exists l < j such that vl,η =
(0, q). If vj,η = (p, 0), then for all q < p there exists l < j such that
vl,η = (q, 0).

6) If vj,η = (0, l), then {vi,η}ji=1 = {(0, t)}lt=1∪{(s, 0)}j−ls=1. If vj,η = (l, 0),

then {vi,η}ji=1 = {(0, t)}j−lt=1 ∪ {(s, 0)}ls=1.

Proof. 1) Since u 6= v, π1(u) 6= π1(v) or π2(u) 6= π2(v). Assume we
are in the first case; the second case is analogous. By definition ū =((

u
α

))
α∈Λ2,n

. Notice that (1, 0) ∈ Λ2,n. Then

ū =
((u

α

))
=
(
π1(u), . . .

)
6=
(
π1(v), . . .

)
=
((v

α

))
= v̄.

2) Notice that for each j ∈ {1, . . . , n}, |Tj,η| = n − j + 1 and |T0,η| = n,
this implies |Tη| = (n+ 1)(n+ 2)/2− 1 = λ2,n. By the previous item
we have that |Tη| = λ2,n.

3) Let t ≤ r be such that j =
∑t−1

i=0 di+ c. By definition l =
∑

i odd
i<t

di+ c

or l =
∑

i even
i<t

di + c. In any case l ≤ j.

4) Let v ∈ Tη. If v ∈ T0,η, then v = (p, p), with p ≤ n. If v /∈ T0,η, by
definition 3.2.2, we have that v = vj,η + p(1, 1), with p ≤ n− j. Then

πi(v) = πi(vj,η) + πi(p(1, 1)) = πi(vj,η) + p ≤ j + p ≤ n.
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5) Let t ≤ r be such that j =
∑t−1

i=0 di+c. Consider the case vj,η = (0, p).
Suppose that t is odd. By definition 3.2.2, p =

∑
i odd
i<t

di+c and z = 0.

Let q < p. Then q =
∑

i odd
i<t′

di + c′, where t′ is odd, t′ < t and c′ ≤ dt′

or t′ = t and c′ < c. In any case, consider l =
∑t′−1

i=0 di + c′. Since t′ is
odd and z = 0, vl,η = (0,

∑
i odd
i<t′

di + c′) = (0, q). If t is even, we have

that p =
∑

i even
i<t

di + c and z = 1. In this case the proof is identical.

If vj,η = (p, 0), the argument is analogous.

6) If vj,η = (0, l), by the previous point, we have that {(0, t)}lt=1 ⊂
{vi,η}ji=1. On the other hand, we have that there exists {i1, . . . , ij−l}
such that ip ≤ j and vip,η /∈ {(0, t)}jt=1 for all p ∈ {1, . . . , j − l}.
Since ip < j for all p and using the previous point, we obtain that

vip,η = (sp, 0) for some sp ∈ N and by the previous point {vip,η}
j−l
p=1 =

{(s, 0)}j−ls=1. This implies that {vi,η}ni=1 = {(0, t)}lt=1 ∪ {(s, 0)}n−ls=1.

3.2.1 Linear independence of Tη

By 2) of lemma 3.2.5 we know that the cardinality of Tη is λ2,n. In order
to prove that it is a basis of Cλ2,n we only have to see that it is linearly
independent. For that we need some preliminary lemmas.

Lemma 3.2.6. Let 0 < c0 < c1 < · · · < cl be natural numbers. Then

det
((

ci
j

))
0≤i≤l
0≤j≤l

6= 0. In particular, the set of vectors {
((

ci
j

))
0≤j≤l

∈ Cl+1 |

0 ≤ i ≤ l} is linearly independent.

Proof. For each j ≤ l, consider the polynomial bj(x) = x(x−1)···(x−j+1)
j! and

b0 = 1. Notice that for x ∈ N, we have bj(x) =
(
x
j

)
and deg bj(x) = j for all

j ∈ {0, . . . , l}. Thus, ((ci
j

))
0≤i≤l
0≤j≤l

=
(
bj(ci)

)
0≤i≤l
0≤j≤l

.

We show that the columns of this matrix are linearly independent. Let
α0, . . . , αl ∈ C be such that

∑l
j=0 αjbj(ci) = 0 for each i ∈ {0, . . . , l}.

Consider f(x) =
∑l

j=0 αjbj(x). Then {c0, . . . , cl} are roots of f(x). Since
deg f(x) ≤ l, we obtain that f(x) = 0. Since deg bj(x) = j, we conclude
αj = 0 for all j.
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As we mentioned before, the goal is to prove that given η ∈ Ω, the set
of vectors Tη is linearly independent on Cλ2,n . Consider∑

v̄∈Tη

av̄v̄ = 0̄ ∈ Cλ2,n . (3.1)

Fix this notation for the next results.

Lemma 3.2.7. Let l,m, n ∈ N be such that 1 ≤ l ≤ n and m ≤ n−l+1. Let
η ∈ Ω. Suppose that E = {(c1, l), . . . , (cm, l)} (resp. {(l, c1), . . . , (l, cm)}) is
contained in Tη, for some 0 < c1 < · · · < cm. Moreover, suppose that for
each u ∈ Tη \ E such that π2(u) ≥ l (resp. π1(u) ≥ l), we have that aū = 0.
Then for all v ∈ E we obtain that av̄ = 0.

Proof. Consider the set of vectors D = {(0, l), (1, l), . . . , (n − l, l)} ⊂ Λ2,n

(resp. {(l, 0), (l, 1), . . . , (l, n − l)}). Let u ∈ Tη \ E. If π2(u) < l (resp.
π1(u) < l), then

(
u
α

)
= 0 for all α ∈ D. If π2(u) ≥ l (resp. π1(u) ≥ l),

by hypothesis aū = 0. Consider πα : Cλ2,n → C the projection on the α-th
coordinate. Therefore, πα(aūū) = 0 for all u ∈ Tη \ E and α ∈ D. This
implies ∑

v∈E
πα(av̄v̄) =

∑
v̄∈Tη

πα(av̄v̄) = 0,

for all α ∈ D.

Since α = (j, l) (resp. (l, j)) with 0 ≤ j ≤ n − l and v = (ci, l) (resp.
(l, ci)), with 1 ≤ i ≤ m, we obtain that πα(v̄) =

(
ci
j

)
. Thus

m∑
i=1

av̄

(
ci
j

)
=
∑
v∈E

πα(av̄v̄) = 0,

for all 0 ≤ j ≤ n− l. By lemma 3.2.6, we obtain that av̄ = 0 for all v ∈ E.

Lemma 3.2.8. Let η = (z, d0, d1, . . . , dr) ∈ Ω and 1 ≤ l < j ≤ n.

• If vl,η = (pl, 0) and vj,η = (pj , 0), then

π1(vj,η + (n− j)(1, 1)) ≤ π1(vl,η + (n− l)(1, 1)).

The equality holds if and only if there exists 1 ≤ t ≤ r such that∑t−1
i=0 di < l < j ≤

∑t
i=0 di.
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• If vl,η = (0, pl) and vj,η = (0, pj), then

π2(vj,η + (n− j)(1, 1)) ≤ π2(vl,η + (n− l)(1, 1)).

The equality holds if and only if there exists 1 ≤ t ≤ r such that∑t−1
i=0 di < l < j ≤

∑t
i=0 di.

Proof. Suppose that z = 1. By definition 3.2.2 and the fact that l < j,
pl =

∑
i odd
i<t

di+ct and pj =
∑

i odd
i<t′

di+ct′ , for some odd numbers t ≤ t′ ≤ r,

where ct ≤ dt and ct′ ≤ dt′ . Moreover, by definition l =
∑t−1

i=0 di + ct and

j =
∑t′−1

i=0 di + ct′ . Then

π1(vj,η + (n− j)(1, 1)) = pj + (n− j)

= n−
∑
i even
i<t′

di

≤ n−
∑
i even
i<t

di

= pl + (n− l)
= π1(vl,η + (n− l)(1, 1)).

Notice that the equality holds if and only if t′ = t. For the other three cases
(z = 1, vl,η = (0, pl), vj,η = (0, pj); z = 0, vl,η = (pl, 0), vj,η = (pj , 0); z = 0,
vl,η = (0, pl), vj,η = (0, pj)) the proof is analogous.

Now we are ready to prove the first important result of the section.

Proposition 3.2.9. Let η ∈ Ω. Then Tη is linearly independent.

Proof. Let η = (z, d0, d1, . . . , dr) and suppose that z = 1. Define the num-
bers

d+,r =
∑
i≤r
i odd

di, d−,r =
∑
i≤r
i even

di.

Notice that by definition 3.2.1, we have that n = d+,r +d−,r. We claim that
for all v ∈ Tη such that π2(v) > n−d+,r or π1(v) > n−d−,r, we obtain that
av̄=0 in (3.1). Assume this claim for the moment. For each 0 ≤ s ≤ d+,r,
define the set Es = {v ∈ Tη | π1(v) = s and π2(v) ≤ d−,r}. Notice that

|Es| ≤ d−,r + 1 = n− d+,r + 1 ≤ n− s+ 1.
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Using the claim and taking s = d+,r we obtain the conditions of lemma
3.2.7. Thus av̄ = 0 for all v ∈ Ed+,r . Now we can repeat the same argument
for s = d+,r − 1. Applying this process in a decreasing way for each s ∈
{0, . . . , dr,+} we obtain that av̄ = 0 for all v ∈ ∪d+,r

s=0Es. Then for v ∈ Tη, we

have three possibilities: v ∈ ∪d+,r

s=0Es, π1(v) > d+,r, or π2(v) > d−,r. In any
case, we obtain that av̄ = 0 by the previous argument or the claim. This
implies that Tη is linearly independent.

Now we proceed to prove the claim. For each 1 ≤ l ≤ r, define

d+,l =
∑
i≤l
i odd

di, d−,l =
∑
i≤l

i even

di.

We prove the claim by induction on l. By definition, we have that d+,1 = d1

and d−,1 = 0. Therefore we only have to prove that if π2(v) > n − d1,
then av̄ = 0. We claim that for all v ∈ Tη such that π2(v) > n − d1, we
have that π1(v) ≥ π2(v). We proceed to prove this claim by contrapositive.
Let v ∈ Tη be such that π2(v) > π1(v). This implies that v = (0, π2(v) −
π1(v)) + π1(v)(1, 1) = vj,η + π1(v)(1, 1) for some j ≤ n, where π1(v) ≤ n− j
by definition 3.2.2. By 5) of lemma 3.2.5, there exists i < j such that
vi,η = (0, 1). Moreover, by definition 3.2.2, i = d1 + 1. By lemma 3.2.8, we
obtain

π2(v) = π2(vj,η + π1(v)(1, 1))

≤ π2(vj,η + (n− j)(1, 1))

≤ π2(vd1+1,η + (n− d1 − 1)(1, 1))

= n− d1,

as we claim. For each s ∈ {n − d1 + 1, . . . , n}, we define the set E(s) =
{v ∈ Tη|π2(v) = s}. By 4) of lemma 3.2.5 and the previous claim, we have
that for each s ∈ {n − d1 + 1, . . . , n} we have |E(s)| ≤ n − s + 1. Now we
are in the conditions of lemma 3.2.7. Applying the lemma for each s in a
descendant way, we obtain the result.

Now suppose that the claim is true for l, i.e., for all v ∈ Tη such that
π2(v) > n−d+,l or π1(v) > n−d−,l for some l ≥ 1, we have that av̄ = 0 and
we prove the claim for l + 1. We have two cases: l odd or l even. We prove
the case l odd, the other case is analogous. Since l is odd, we obtain that
d+,l = d+,l+1 and d−,l+dl+1 = d−,l+1. Then, by the induction hypothesis, we
only need to check that for all v ∈ Tη such that n−d−,l+1 < π1(v) ≤ n−d−,l
and π2(v) ≤ n − d+,l, we have av̄ = 0. For this, we are going to apply
lemma 3.2.8 in an iterative way. By definition, v∑l

i=0 di,η
= (d+,l, 0). We
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claim that for all v ∈ Tη such that π1(v) ≥ n − d−,l+1 + 1, we have that
π2(v) > π1(v)− d+,l − 1. We proceed to prove this claim by contrapositive.
Let v ∈ Tη be such that π2(v) ≤ π1(v) − d+,l − 1. This implies that v =
(π1(v) − π2(v), 0) + π2(v)(1, 1) = vj,η + π2(v)(1, 1), where π2(v) ≤ n − j
by definition 3.2.2. Since π1(v) − π2(v) ≥ d+,l + 1, by 5) of lemma 3.2.5,
there exist i < j such that vi,η = (d+,l + 1, 0). Moreover, by definition 3.2.2,

i =
∑l+1

i=0 di + 1. By lemma 3.2.8, we obtain

π1(v) = π1(vj,η + π2(v)(1, 1))

≤ π1(vj,η + (n− j)(1, 1))

≤ π1(v∑l+1
i=0 di+1,η − (n−

l+1∑
i=0

di − 1)(1, 1))

= d+,l + 1 + n−
l+1∑
i=0

di − 1

< n− d−,l+1 + 1

as we claim. For each s ∈ {n − d−,l+1 + 1, . . . , n − d−,l}, we define the set
E(s) = {v ∈ Tη|π1(v) = s and π2(v) ≤ n − d+,l}. Notice that, by the
previous claim, we have that for each s ∈ {n − d−,l+1 + 1, . . . , n − d−,l},
|E(s)| ≤ (n− d+,l)− (s− d+,l− 1) = n− s+ 1. By the induction hypothesis
we are in the conditions of lemma 3.2.7 for s = n−d−,l. Applying the lemma
for each s in a descendant way, we obtain the result.

In the case z = 0 the claim becomes: for each v ∈ Tη such that π2(v) >
n−d−,r or π1(v) > n−d+,r then av̄ = 0. The proof of this case is analogous.

3.2.2 Moving Tj,η along a diagonal preserves linear indepen-
dence

Proposition 3.2.9 shows that Tη is a basis of Cλ2,n for all η ∈ Ω. Our following
goal is to show that we can move the set Tj,η along a diagonal without losing
the linear independence for all j ∈ {1, . . . , n}. First we need the following
combinatorial identities.

Lemma 3.2.10. [22, Chapter 1] Given n,m, p ∈ N, we have the following
identities:

1)
(
n
m

)(
m
p

)
=
(
n
p

)(
n−p
m−p

)
.

2)
∑

j(−1)j
(
n−j
m

)(
p
j

)
=
(
n−p
m−p

)
=
(
n−p
n−m

)
.
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3)
∑

j

(
n

m−j
)(
p
j

)
=
(
n+p
m

)
.

4)
∑

j

(
n−p
m−j

)(
p
j

)
=
(
n
m

)
.

Lemma 3.2.11. For all m ∈ N, we have that (m,m) ∈ spanC{(1, 1), . . . , (n, n)}.

Proof. Recalling notation 3.1.1, consider the vector

vj =

j∑
i=1

(−1)j−i
(
j

i

)
(i, i),

for each j ∈ {1, . . . , n}. Notice that for all j ∈ {1, . . . , n}, we have vj ∈
spanC{(1, 1), . . . , (n, n)}. We claim that (m,m) =

∑n
j=1

(
m
j

)
vj . We have to

prove the identity:(
m

p− q

)(
m

q

)
=

n∑
j=1

j∑
i=1

(−1)j−i
(
m

j

)(
j

i

)(
i

q

)(
i

p− q

)
,

for all 1 ≤ p ≤ n and 0 ≤ q ≤ p. By 1) of lemma 3.2.10, we obtain the
identities:

n∑
j=1

j∑
i=1

(−1)j−i
(
m

j

)(
j

i

)(
i

q

)(
i

p− q

)
=

n∑
j=1

j∑
i=1

(−1)j−i
(
m

j

)(
j

q

)(
j − q
i− q

)(
i

p− q

)
=

n∑
j=1

j∑
i=1

(−1)j−i
(
m

q

)(
m− q
j − q

)(
j − q
i− q

)(
i

p− q

)
=

(
m

q

) n∑
j=1

j∑
i=1

(−1)j−i
(
m− q
j − q

)(
j − q
i− q

)(
i

p− q

)
.

With this, the claim is reduced to proving that(
m

p− q

)
=

n∑
j=1

j∑
i=1

(−1)j−i
(
m− q
j − q

)(
j − q
i− q

)(
i

p− q

)
.

Now we have the following identities, where the second identity comes from
the rearrangement of the coefficients and the fourth identity by 2) of lemma
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3.2.10.

n∑
j=1

j∑
i=1

(−1)j−i
(
m− q
j − q

)(
j − q
i− q

)(
i

p− q

)
=

n∑
j=1

(−1)j
(
m− q
j − q

)( j∑
i=1

(−1)i
(
j − q
i− q

)(
i

p− q

))
=

n∑
j=1

(−1)j
(
m− q
j − q

)(∑
i

(−1)j−i
(
j − i
p− q

)(
j − q
i

))
=

n∑
j=1

(−1)j
(
m− q
j − q

)
(−1)j

(∑
i

(−1)i
(
j − i
p− q

)(
j − q
i

))
=

n∑
j=1

(
m− q
j − q

)(
q

p− j

)
. (3.2)

Finally, we have the following identities, where the first identity comes from
replace j by j + q and the second by 3) of lemma 3.2.10,

n∑
j=1

(
m− q
j − q

)(
q

p− j

)
=

n∑
j=1

(
m− q
j

)(
q

(p− q)− j

)
=

(
m

p− q

)
,

proving the claim.

Lemma 3.2.12. For all a, r ∈ N and l ≤ n, we have that

l∑
i=0

(−1)i
(
l

i

) n−l+1∑
j=0

(−1)n−l+1+j

(
n− l + 1

j

)
(a+ r + j, r + i+ j) = 0̄.

Proof. The proof is by induction on r. First, consider r = 0, we need to
show that for all (p− q, q) ∈ Λ2,n,

l∑
i=0

(−1)i
(
l

i

) n−l+1∑
j=0

(−1)n−l+1+j

(
n− l + 1

j

)(
a+ j

p− q

)(
i+ j

q

)
= 0.
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First, notice

l∑
i=0

(−1)i
(
l

i

) n−l+1∑
j=0

(−1)n−l+1+j

(
n− l + 1

j

)(
a+ j

p− q

)(
i+ j

q

)
=

l∑
i=0

n−l+1∑
j=0

(−1)n−l+1+j+i

(
n− l + 1

j

)(
a+ j

p− q

)(
i+ j

q

)(
l

i

)
=

n−l+1∑
j=1

(−1)n−l+1+j

(
n− l + 1

j

)(
a+ j

p− q

)( l∑
i=0

(−1)i
(
i+ j

q

)(
l

i

))
. (3.3)

Now we have the following identity, where the first identity comes from the
rearrangement of the sum and the second comes from 2) of lemma 3.2.10,

l∑
i=0

(−1)i
(
i+ j

q

)(
l

i

)
= (−1)l

l∑
i=0

(−1)i
(
l

i

)(
l + j − i

q

)
= (−1)l

(
j

q − l

)
,

Replacing this identity in the sum (3.3) and using 1) of lemma 3.2.10, we
obtain

n−l+1∑
j=0

(−1)n+1+j

(
n− l + 1

j

)(
a+ j

p− q

)(
j

q − l

)
=

n−l+1∑
j=0

(−1)n+1+j

(
n− l + 1

q − l

)(
n− q + 1

j − q + l

)(
a+ j

p− q

)
=

(−1)n+1

(
n− l + 1

q − l

) n+1+j∑
j=0

(−1)j
(

n− q + 1

(n− l + 1)− j

)(
a+ j

p− q

)
. (3.4)

Replacing i by n − l + 1 − j on the sum 3.4 and using 2) of lemma 3.2.10,
we obtain that

n+1+j∑
j=0

(−1)j
(

n− q + 1

(n− l + 1)− j

)(
a+ j

p− q

)
=

n+1+j∑
j=0

(−1)n−l+1−j
(
n− q + 1

j

)(
a+ (n− l + 1)− j

p− q

)
=(

a+ q − l
p− n− 1

)
.
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Since p ≤ n, the claim is true for r = 0.
Now suppose that is true for r − 1, i.e.,

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
a+ (r − 1) + j

p− q

)(
(r − 1) + i+ j

q

)
= 0,

and we have to show that

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
a+ r + j

p− q

)(
r + i+ j

q

)
= 0,

for all (p− q, q) ∈ Λ2,n.
Using basic properties of binomial coefficients, we have(
a+ r + j

p− q

)(
r + i+ j

q

)
=(

a+ (r − 1) + j

p− q

)(
(r − 1) + i+ j

q

)
+

(
a+ (r − 1) + j

p− q

)(
(r − 1) + i+ j

q − 1

)
+(

a+ (r − 1) + j

p− q − 1

)(
(r − 1) + i+ j

q

)
+

(
a+ (r − 1) + j

p− q − 1

)(
(r − 1) + i+ j

q − 1

)
.

Then

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
a+ r + j

p− q

)(
r + i+ j

q

)

=

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
a+ (r − 1) + j

p− q

)(
(r − 1) + i+ j

q

)

+

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
a+ (r − 1) + j

p− q

)(
(r − 1) + i+ j

q − 1

)

+

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
a+ (r − 1) + j

p− q − 1

)(
(r − 1) + i+ j

q

)

+

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
a+ (r − 1) + j

p− q − 1

)(
(r − 1) + i+ j

q − 1

)
= 0.

Notice that each element of {(p−l, l), (p−l, l−1), (p−l−1, l), (p−l−1, l−1)}
belongs to Λ2,n or has a negative entry. In any case, by induction hypothesis,
each of the four sums are zero, obtaining the result.



3.2. A PARTICULAR BASIS FOR THE VECTOR SPACE Cλ2,N 55

Corollary 3.2.13. For all a, r ∈ N and l ≤ n, we have that

l∑
i=0

(−1)i
(
l

i

) n−l+1∑
j=0

(−1)n−l+1+j

(
n− l + 1

j

)
(r + i+ j, a+ r + j) = 0̄.

Proof. We need to prove that

l∑
i=0

(−1)i
(
l

i

) n−l+1+j∑
j=0

(
n− l + 1

j

)(
r + i+ j

p− q

)(
a+ r + j

q

)
= 0,

for all (p− q, q) ∈ Λ2,n. Notice that by definition of Λ2,n, if (p− q, q) ∈ Λ2,n

then (q, p − q) ∈ Λ2,n. With this and the previous lemma we obtain the
result.

Now we are ready to show the other important result of this section. As
we mentioned before, the goal is to show that we can move the sets Tj,η
along a diagonal without losing the linear independence. We are going to
prove this with some additional properties.

Proposition 3.2.14. Let η ∈ Ω and l ∈ {1, . . . , n}. Let (r1, . . . , rl) ∈ Nl
and Ti,η + ri := {v + (ri, ri) | v ∈ Ti,η}. Then, we have

spanC{v̄ ∈ Cλ2,n | v ∈ T0,η
⋃

(∪li=1Ti,η + ri)} = spanC{v̄ ∈ Cλ2,n | v ∈ ∪li=0Ti,η}.

In particular, vl,η + (r, r) ∈ spanC{v̄ ∈ Cλ2,n | v ∈ ∪li=0Ti,η}, for all
r ∈ N.

Proof. Let η ∈ Ω. The proof is by induction on l. Consider l = 1. There are
two cases, v1,η = (1, 0) or v1,η = (0, 1). Suppose that v1,η = (1, 0). Consider
the sums

f0,r =
n∑
j=0

(−1)n+j

(
n

j

)
(1 + r + j, r + j),

f1,r =
n∑
j=0

(−1)n+j

(
n

j

)
(1 + r + j, 1 + r + j).

Applying lemma 3.2.12 for a = 1 and l = 1, we obtain that

f1,r − f0,r = 0̄, (3.5)

for all r ∈ N.
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By lemma 3.2.11, we have that

{(1 + r + j, 1 + r + j)}nj=0 ⊂ spanC{v̄ ∈ Cλ2,n | v ∈ T0,η},

for all r, j ∈ N. In particular f1,r ∈ spanC{v̄ ∈ Cλ2,n | v ∈ T0,η}. Moreover,

since v1,η = (1, 0), for r = 0, we have that f0,0 − (1 + n, n) ∈ spanC{v̄ ∈
Cλ2,n | v ∈ T1,η}. Then

(1 + n, n) = f1,0 − f0,0 + (1 + n, n) ∈ spanC{v̄ ∈ Cλ2,n | v ∈ T0η ∪ T1,η}.

Notice that the coefficient of (1, 0) is not zero. By elementary results
from linear algebra, we have that

spanC{v̄ ∈ Cλ2,n | v ∈ T0η ∪ T1,η} =(
spanC{v̄ ∈ Cλ2,n | v ∈ T0η ∪ T1,η} \ {(1, 0)}

)
∪ {(1 + n, n)} =

spanC{v̄ ∈ Cλ2,n | v ∈ T0η ∪
(
T1,η + 1

)
}.

Applying the same argument for r = 1 in (3.5), we obtain that

spanC{v̄ ∈ Cλ2,n | v ∈ T0η ∪ T1,η + 1} =(
spanC{v̄ ∈ Cλ2,n | v ∈ T0η

)
∪ T1,η + 1} \ {(2, 1)} ∪ {(2 + n, 1 + n)} =

spanC{v̄ ∈ Cλ2,n | v ∈ T0η ∪
(
T1,η + 2

)
}.

Repeating the argument r1 times for each r and putting together all the
identities, we obtain that

spanC{v̄ ∈ Cλ2,n | v ∈ T0η∪T1,η} = spanC{v̄ ∈ Cλ2,n | v ∈ T0η∪
(
T1,η+r1

)
}.

This finish the proof for l = 1 and v1,η = (1, 0). For v1,η = (0, 1) the proof
is analogous using the corollary 3.2.13.

Now suppose that the statement is true for l−1 and let (r1, . . . , rl) ∈ Nl.
We claim that

spanC{v̄ ∈ Cλ2,n | v ∈ ∪l−1
i=0Ti,η ∪

(
Tl,η + rl

)
} =

spanC{v̄ ∈ Cλ2,n | v ∈ ∪li=0Ti,η}.

Assume this claim for the moment. By induction hypothesis, we have that

spanC{v̄ ∈ Cλ2,n | v ∈ T0,η

⋃
(∪l−1

i=1Ti,η + ri)} =

spanC{v̄ ∈ Cλ2,n | v ∈ ∪l−1
i=0Ti,η}.
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This implies that

spanC{v̄ ∈ Cλ2,n | v ∈ T0,η

⋃
(∪li=1Ti,η + ri)} =

spanC{v̄ ∈ Cλ2,n | v ∈ ∪li=0Ti,η}.

Now we proceed to prove the claim. There are two cases, vl,η = (a, 0)
or vl,η = (0, a), where 0 < a ≤ l by 3) of lemma 3.2.5. Suppose that
vl,η = (a, 0). For each i ∈ {0, . . . , l} and r ∈ N, consider the sum

fi,r =

n−l+1∑
j=0

(−1)n−l+1+j

(
n− l + 1

j

)
(a+ r + j, i+ r + j).

Applying lemma 3.2.12 for l and a, we have that

l∑
i=0

(−1)i
(
l

i

)
fi,r = 0̄. (3.6)

By 6) of lemma 3.2.5 we have that

{(a− 1, 0), . . . , (1, 0), (0, 1), . . . , (0, l − a)} = {vi,η}l−1
i=1.

Notice that if i = a, then (a+ r + j)(1, 1) ∈ spanC{v̄ ⊂ Cλ2,n | v ∈ T0,η} by
lemma 3.2.11. If 1 ≤ i < a, then

(a− i, 0) + (i+ r + j, i+ r + j) = (a+ r + j, i+ r + j),

and if a < i ≤ l, then

(0, i− a) + (a− i, a− i) + (i+ r + j, i+ r + j) = (a+ r + j, i+ r + j).

By the induction hypothesis, we obtain that

{(a+ r + j, i+ r + j)}n−l+1
j=0 ⊂ spanC{v̄ ∈ Cλ2,n | v ∈ ∪l−1

i=0Ti,η},

for all i ∈ {1, . . . , l}, r ∈ N. In particular fi,r ∈ spanC{v̄ ∈ Cλ2,n | v ∈
∪l−1
i=0Ti,η} for all i ∈ {1, . . . , l}. Moreover, since vl,η = (a, 0), for r = 0, we

have that f0,0 − (a+ n− l + 1, n− l + 1) ∈ spanC{v̄ ∈ Cλ2,n | v ∈ Tl,η}.
Then

(a+ n− l + 1, n− l + 1) = −
( l∑
i=0

(−1)i
(
l

i

)
fi,0

)
+(a+ n− l + 1, n− l + 1)

∈ spanC{v̄ ∈ Cλ2,n | v ∈ ∪li=0Ti,η}.
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Applying the same argument that the case l = 1, we obtain

spanC{v̄ ∈ Cλ2,n | v ∈ ∪li=0Ti,η} =

spanC{v̄ ∈ Cλ2,n | v ∈ ∪l−1
i=0Ti,η ∪ Tl,η + 1} =

spanC{v̄ ∈ Cλ2,n | v ∈ ∪l−1
i=0Ti,η ∪ Tl,η + 2} =

...

spanC{v̄ ∈ Cλ2,n | v ∈ ∪l−1
i=0Ti,η ∪ Tl,η + rl}.

Now suppose that vl,η = (0, a). In this case we have that

{(0, a− 1), . . . , (0, 1), (1, 1), (1, 0), . . . , (l − a, 0)} = {vi,η}l−1
i=0.

Obtaining

{(i+ r + j, a+ r + j)}n−l+1
j=0 ∈ spanC{v̄ ∈ Cλ2,n | v ∈ ∪l−1

i=0Ti,η}.

The proof is analogous using corollary 3.2.13.

3.3 Proof of Theorem 3.1.5

In this section we give a proof of the main theorem of this chapter. We
first associate to each η ∈ Ω a unique Jη ∈ SAn with certain properties.
Secondly, we construct a distinguished element Jηk for each k ∈ {1, . . . , n}
and prove that there exists another element Jη ∈ SAn with the same value
with respect to an order function. Finally, we prove that Jηk is minimal in
SAn with respect to the previous function.

Definition 3.3.1. Let η ∈ Ω, {vi,η}ni=1 and {Ti,η}ni=1 ⊂ N2 as in definition
3.2.2. Consider ri,η := n · π2(vi,η) for all i ∈ {1, . . . , n}. We define

T ′η := T0,η ∪ (∪ni=1Ti,η + ri,η),

where Ti,η + ri,η := {v + (ri,η, ri,η) | v ∈ Ti,η}.
Example 3.3.2. Let n = 6, r = 5 and η = (1, 0, 1, 1, 1, 1, 2). By definition
3.2.2, we have that v1,η = (1, 0), v2,η = (0, 1), v3,η = (2, 0), v4,η = (0, 2),
v5,η = (3, 0) and v6,η = (4, 0). By definition, we obtain that r1,η = 0, r2,η =
6, r3,η = 0, r4,η = 12, r5,η = 0 and r6,η = 0. Thus

T ′η = T0,η ∪ T1,η ∪ (T2η + 6) ∪ T3,η ∪ (T4,η + 12) ∪ T5,η ∪ T6,η,

where
T2,η + 6 = {(6, 7), (7, 8), (8, 9), (9, 10), (10, 11)},

T4,η + 12 = {(12, 14), (13, 15), (14, 16)}.
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Figure 3.2: Example of T ′η, with η = (1, 0, 1, 1, 1, 1, 2)

Remark 3.3.3. Recall notation 3.1.1. Let β, β′ ∈ Λ3,n be such that β 6= β′.
Then Anβ 6= Anβ

′.

Proposition 3.3.4. For each η ∈ Ω, there exists a unique Jη ⊂ Λ3,n such
that

An · Jη := {An · β ∈ N2 | β ∈ Jη} = T ′η.

Moreover, Jη ∈ SAn.

Proof. We need to show that for each v ∈ T ′η, there exists a unique element
β ∈ Λ3,n such that Anβ = v. The uniqueness comes from remark 3.3.3.

Now, let v ∈ T ′η. Then v ∈ Tη,0 or v ∈ ∪ni=1Tη,i + rη,i. For the first case
we have that v0 = (t, t) with t ≤ n. In this case we take β = (0, t, 0). For
the second case we have

v = vi,η + (s, s) + ri,η(1, 1) = vη,i + (s, s) + nπ2(vi,η)(1, 1),

where s ≤ n − i. By definition 3.2.2, vi,η = (q, 0) or vi,η = (0, q), where
q ≤ i. Then

v = (q + s, s) or v = (nq + s, (n+ 1)q + s).

For these we take β = (q, s, 0) and β = (0, s, q) respectively. Using the
previous inequalities, we obtain that β ∈ Λ3,n.

Now we have to see that Jη ∈ SAn . Since λ2,n = |Tη| = |T ′η| = |Jη|, we
only have to see that detLcJη 6= 0. Let {β1, β2, . . . , βλ2,n} = Jη be such that
β1 ≺ β2 ≺ · · · ≺ βλ2,n , where ≺ denotes the lexicographic order. Notice that
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if β′ < β (see notation 3.1.1), then β′ ≺ β. By definition of LcJη , we need to
check that

det
( ∑
γ≤βi

(−1)|βi−γ|
(
βi
γ

)
Anγ

)
1≤i≤λ2,n

6= 0.

For this, first we turn the previous matrix into
(
Aβi

)
1≤i≤λ2,n

using el-

ementary row operations. This implies the result since AnJη = T ′η and

{v ∈ Zλ2,n |v ∈ T ′η} is linearly independent by proposition 3.2.14 and propo-
sition 3.2.9.

Fix the λ2,n-row. Consider βλ2,n � γ1,λ2,n � · · · � γrλ2,n
,λ2,n , where

{γi,λ2,n}
λ2,n

i=1 = {γ ∈ Λ3,n|γ < βλ2,n}. We can write this row as the sum

Anβλ2,n + (−1)
|βλ2,n

−γ1,λ2,n
|
(
βλ2,n

γ1,λ2,n

)
Anγ1,λ2,n+

· · ·+ (−1)
|βλ2,n

−γrλ2,n
,λ2,n

|
(

βλ2,n

γrλ2,n
,λ2,n

)
Anγrλ2,n

,λ2,n ,

Since Anβλ2,n ∈ T ′η we have that βλ2,n have the shape (q, s, 0) or (0, s, q)
with s+ q ≤ n and Anβλ2,n equals one of (q+ s, s) or (nq+ s, (n+ 1)q+ s).
Since γ1,λ2,n < βλ2,n , we obtain that γ1,λ2,n have the shape (q′, s′, 0) or
(0, s′, q′) with s′ < s or q′ < q. Thus, Anγ1,λ2,n have the shape (q′ + s′, s′)
or (nq′ + s′, (n+ 1)q′ + s′). In any case, we have that Anγ1,λ2,n ∈ T ′η.

By the first part of the proposition, we have that γ1,λ2,n = βi, for some

i < λ2,n. Then we subtract (−1)
|βλ2,n

−γ1,λ2,n
|( βλ2,n
γ1,λ2,n

)
-times the row i to the

row λ2,n in the matrix LcJη . Notice that if γ < βi, we have γ < βλ2,n . Thus
we obtain that

Anβλ2,n + c2Anγ2,λ2,n + · · ·+ crλ2,n
Anγrλ2,n

,λ2,n

is the new λ2,n-row, for some constants {c2, . . . , crλ2,n
} ⊂ Z. Applying the

same argument for each γi,λ2,n in a increasing way, we turn the λ2,n-th row

into Anβλ2,n .

Applying this process to the other rows of LcJ in an ascending way we
obtain the matrix (

Aβi
)

1≤i≤λ2,n
.
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3.3.1 A distinguished element of SAn

Let k ∈ {1, . . . , n}. Consider the function

fk :N2 → Z
v 7→ 〈(k, 1− k), v〉.

Definition 3.3.5. Let n ∈ N \ {0}, 1 ≤ k ≤ n and dk,0 = 0. If fk((1, 0)) ≤
fk((n, n+ 1)), we take zk = 1. If fk((n, n+ 1)) < fk((1, 0)), we take zk = 0.

Now, we define dk,l for l > 0 in an iterative way. Let

dk,l = min{n−
l−1∑
j=0

dk,j , tl − sl},

where

tl =



max{m ∈ N | m · fk((1, 0)) ≤ fk((
∑l−1
j even dk,j + 1)(n, n+ 1))}

if zk = 1 and l odd.

max{m ∈ N | m · fk((n, n+ 1)) ≤ fk((
∑l−1
j odd dk,j + 1)(1, 0))}

if zk = 1 and l even,

max{m ∈ N | m · fk((n, n+ 1)) ≤ fk((
∑l−1
j even dk,j + 1)(1, 0))}

if zk = 0 and l odd,

max{m ∈ N | m · fk((1, 0)) ≤ fk((
∑l−1
j odd dk,j + 1)(n, n+ 1))}

if zk = 0 and l even,

and

sl =


0 if l = 1,∑l−1

j odd dk,j if l odd and l > 1,

∑l−1
j even dk,j if l even.

If
∑l

j=1 dk,j < n, we define dk,l+1. Otherwise, we finish the process and
we define ηk = (zk, dk,0, . . . , dk,r).

Example 3.3.6. Let n = 6 and k = 3. We have that d3,0 = 0. On the
other hand, we have

f3((1, 0)) = 3 < 4 = f3((6, 7)).

Then z3 = 1. For l = 1, we have that

t1 = max{m ∈ N | m · 3 = m · f3((1, 0)) ≤ f3((6, 7)) = 4} = 1,
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and s1 = 0. Then
d3,1 = min{6, 1− 0} = 1.

Now we computed d3,2. By definition

t2 = max{m ∈ N | m · 4 = m · f3((6, 7)) ≤ f5(2(1, 0)) = 6} = 1,

and s2 = 0. This implies that

d3,2 = min{6− 2 = 4, 1− 0} = 1.

In an analogous way we obtain that d3,3 = 1 and d3,4 = 1. Now we computed
d3,5. We have that

t5 = max{m ∈ N | m · 3 = m · f3((1, 0)) ≤ f5(3(6, 7)) = 12} = 4,

and s3 = d3,1 + d3,3 = 2. Then

d3,5 = min{6− 1− 1− 1− 1 = 2, 4− 2 = 2} = 2.

Since n −
∑3

j=0 dk,j = 6 − 2 − 1 − 3 = 0 we finish the process. Thus
η5 = (1, 0, 1, 1, 1, 1, 2).

Lemma 3.3.7. Let 1 ≤ k ≤ n and ηk be as in definition 3.3.5. Then we
have the following properties:

1) dk,l > 0 for all l ∈ {1, . . . , r}. In particular, ηk ∈ Ω.

2) For each i ∈ {1, . . . , n}, let l ∈ {1, . . . , r} be the unique element such

that
∑l−1

j=0 dk,j < i ≤
∑l

j=1 dk,j. Then, we have the following inequali-
ties:

fk(vi,ηk) + ri,ηk ≤ fk((
∑l
j even dk,j + 1)(n, n+ 1)) if zk = 1 and l odd,

fk(vi,ηk) + ri,ηk ≤ fk((
∑l
j odd dk,j + 1)(1, 0)) if zk = 1 and l even,

fk(vi,ηk) + ri,ηk ≤ fk((
∑l
j even dk,j + 1)(1, 0)) if zk = 0 and l odd,

fk(vi,ηk) + ri,ηk ≤ fk((
∑l
j odd dk,j + 1)(n, n+ 1)) if zk = 0 and l even.

3) Let i′, i ∈ N \ {0} be such that
∑l−1

j=0 dk,j < i < i′ ≤
∑l

j=0 dk,j , for
some l ∈ {1, . . . , r}. Then

fk(vi,ηk) + ri,ηk ≤ fk(vi′,ηk) + ri′,ηk .
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4) For all 1 ≤ i < i′ ≤ n, we have that

fk(vi,ηk + ri,ηk(1, 1)) ≤ fk(vi′,ηk + ri′,ηk(1, 1)).

5) If l > 2 and fk(vl,ηk + rl,ηk(1, 1)) = fk(vl−1,ηk + rl−1,ηk(1, 1)), then
fk(vl,ηk + rl,ηk(1, 1)) ≥ fk(vl−2,ηk + rl−2,ηk(1, 1)) + 2

Proof. 1) By construction n −
∑l−1

j=0 dk,j > 0. Then, by definition 3.3.5,
we only have to check that tl−sl > 0. Notice that by definition, t1 > 0
and s1 = 0. This implies that is true for l = 1. Now suppose that
l > 1.

We have four cases: zk = 1 and l odd; zk = 1 and l even; zk = 0 and
l odd; zk = 1 and l even. Consider zk = 1 and l odd. By definition of
tl−1

fk((tl−1 + 1)(n, n+ 1)) > fk((

l−2∑
j odd

dk,j + 1)(1, 0)).

Since l is odd,
∑l−2

j odd dk,j =
∑l−1

j odd dk,j . It follows that

fk((
l−2∑
j odd

dk,j + 1)(1, 0)) = fk((
l−1∑
j odd

dk,j + 1)(1, 0)) = fk((sl + 1)(1, 0)).

On the other hand, notice that if dk,l−1 = n −
∑l−2

j=0 dk.j , then n =∑l−1
j=0 dk,j and so there is no dk,l, which is a contradiction. This implies

that dk,l−1 = tl−1 − sl−1. Thus

fk((tl−1 + 1)(n, n+ 1)) = fk((dk,l−1 + sl−1 + 1)(n, n+ 1)).

Since l−1 is even and sl−1 =
∑l−2

j even dk,j , we have that dk,l−1 +sl−1 =∑l−1
j even dk,j . Then

fk((
l−1∑
j even

dk,j + 1)(n, n+ 1)) > fk((sl + 1)(1, 0)).

By definition of tl, we obtain that tl ≥ sl + 1 and so tl − sl > 0. The
other three cases are analogous.
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2) Let i ∈ {1, . . . , n} and l ∈ {1, . . . , r}. We have four cases: zk = 1
and l odd; zk = 1 and l even; zk = 0 and l odd; zk = 1 and l even.
Suppose that zk = 1 and l odd. In this case, by definition, vi,ηk =

(
∑l−1

j odd dk,j + c)(1, 0) with c ≤ dk,l, ri,ηk = 0 and sl =
∑l−1

j odd dk,j .
Then

l−1∑
j odd

dk,j + c ≤
l−1∑
j odd

dk,j + dk,l = sl + dk,l ≤ tl.

By definition of tl, we have that

fk(vi,ηk)+ri,ηk = fk((
l−1∑
j odd

dk,j+c)(1, 0)) ≤ fk((
l−1∑
j even

dk,j+1)(n, n+1)).

Since l is odd, we have that
∑l−1

j even dk,j =
∑l

j even dk,j . This implies
the inequality that we need.

Now suppose that zk = 1 and l even. In this case, by definition,
vi,ηk = (

∑l−1
j even dk,j + c)(0, 1) with c ≤ dk,l, ri,η = n(

∑l−1
j even dk,j + c)

and sl =
∑l−1

j even dk,j . Using the above and the linearity of fk we
obtain

fk(vi,ηk) + ri,ηk = fk(vi,ηk) + fk(ri,ηk(1, 1))

= fk(vi,ηk + ri,ηk(1, 1))

= fk((
l−1∑
j even

dk,j + c)(n, n+ 1)).

Since
l−1∑
j even

dk,j + c ≤
l−1∑
j even

dk,j + dk,l ≤ tl,

by definition of tl, we obtain the inequality

fk(vi,ηk)+ri,ηk = fk((

l−1∑
j even

dk,j+c)(n, n+1)) ≤ fk((
l−1∑
j odd

dk,j+1)(1, 0)).

Since l is even, we have that
∑l−1

j odd dk,j =
∑l

j odd dk,j , obtaining the
result.

The other two cases are analogous.
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3) The hypothesis implies that i =
∑l−1

j=0 dk,j+ci and i′ =
∑l−1

j=0 dk,j+ci′ ,
where 0 < ci < ci′ ≤ dk,l. We have four cases: zk = 1 and l odd;
zk = 1 and l even; zk = 0 and l odd; zk = 1 and l even. Consider
zk = 1 and l even. By definition 3.2.2, vi,ηk = (0,

∑l−1
j even dk,j + ci) and

vi′,ηk = (0,
∑l−1

j even dk,j + ci′). Then

fk(vi,ηk) + ri,ηk = (1− k)(
l−1∑
j even

dk,j + ci) + n(
l−1∑
j even

dk,j + ci)

= (n− k + 1)(

l−1∑
j even

dk,j) + (n− k + 1)ci

≤ (n− k + 1)(
l−1∑
j even

dk,j) + (n− k + 1)ci′

= (1− k)(
l−1∑
j even

dk,j + ci′) + n(
l−1∑
j even

dk,j + ci′)

= fk(vi′,ηk) + ri′,ηk .

The other three cases are analogous.

4) Let 1 ≤ i < i′ ≤ n. Let 1 ≤ l ≤ l′ ≤ r be such that i =
∑l−1

j=0 dk,j + ci

and i′ =
∑l′−1

j=0 dk,j + ci′ . By hypothesis, we have that l ≤ l′. If
l = l′, the result follows from 3). Suppose that l < l′, this implies that
l′ = l + c with c > 0.

We have four cases (zk = 1 and l odd; zk = 1 and l even; zk = 0 and
l odd; zk = 1 and l even). Consider zk = 0 and l even. By definition
3.2.2, we have that vi,ηk = (

∑l−1
j even dk,j + ci, 0). By 2), we have that

fk(vi,ηk) + ri,ηk ≤ fk((
l∑

j odd

dk,j + 1)(n, n+ 1)).

On the other hand, by definition 3.2.2, we obtain that v∑l
j=0 dk,j+1,ηk

=

(0,
∑l

j odd dk,j + 1). Then
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fk(v∑l
j=0 dk,j+1,ηk

) + r∑l
j=0 dk,j+1,ηk

=

fk((0,
l∑

j odd

dk,j + 1) + n · (
l∑

j odd

dk,j + 1)(1, 1)) =

fk((
l∑

j odd

dk,j + 1)(n, n+ 1)) ≥

fk(vi,ηk) + ri,ηk .

Now, if c > 1, by 2) and knowing that l + 1 is odd, we obtain that

fk(v∑l
j=0 dk,j+1,ηk

) + r∑l
j=0 dk,j+1,ηk

≤ fk((
l+1∑
j even

dk,j + 1)(1, 0)).

In addition, using definition 3.2.2, we have the vector v∑l+1
j=0 dk,j+1,ηk

=

(
∑l+1

j even dk,j + 1, 0). Then

fk(v∑l
j=0 dk,j+1,ηk

) + r∑l
j=0 dk,j+1,ηk

≤

fk((
l+1∑
j even

dk,j + 1)(1, 0)) =

fk(v∑l+1
j=0 dk,j+1,ηk

) =

fk(v∑l+1
j=0 dk,j+1,ηk

) + r∑l+1
j=0 dk,j+1,ηk

.

Repeating this argument c times, we obtain

fk(vi,ηk) + ri,ηk ≤ fk(v∑l
j=0 dk,j+1,ηk

) + r∑l
j=0 dk,j+1,ηk

≤ fk(v∑l+1
j=0 dk,j+1,ηk

) + r∑l+1
j=0 dk,j+1,ηk

...

≤ fk(v∑l′−1
j=0 dk,j+1ηk

) + r∑l′−1
j=0 dk,j+1ηk

≤ fk(vi′,ηk) + ri′,ηk ,

where the last inequality comes from 2). The other cases are analogous.
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5) Notice that if k = n, fn(t(n, n + 1)) = t for all t ∈ {1, . . . , n} and
fn((1, 0)) = n. Then by definition 3.3.5, ηn = (0, 0, n), i.e., vj,ηn =
(0, j) for all j ∈ {1, . . . , n}. In particular, fn(vi,ηn + ri,ηn) < fn(vj,ηn +
rj,ηn) if 1 ≤ i < j ≤ n,. Then we cannot have the conditions of
lemma. Analogous, if k = 1, η1 = (1, 0, n), and f1(vi,η1 + ri,η1) <
f1(vj,η1 + rj,η1), for all 1 ≤ i < j ≤ n. This implies that if there exists
l ∈ {1, . . . , n} such that fk(vl,ηk +rl,ηk) = fk(vl−1,ηk +rl−1,ηk), we have
that k ∈ {2, . . . , n− 1}.
Now, suppose that there exist l ∈ {1, . . . , n} such that fk(vl,ηk+rl,ηk) =
fk(vl−1,ηk + rl−1,ηk). If vl,ηk = (0, s) and vl−1,ηk = (0, s− 1), then

fk(vl,ηk + rl,ηk) = s(n− k + 1) > (s− 1)(n− k + 1) = fk(vl−1,ηk + rl−1,ηk).

In an analogous way, obtain a contradiction if vl,ηk = (t, 0) and vl−1,ηk =
(t − 1, 0). This implies that vl,ηk = (t, 0) and vl−1,ηk = (0, s) or
vl,ηk = (0, s) and vl−1,ηk = (t, 0). Consider the first case, the other
case is analogous. By definition

fk(vl,ηk + rl,ηk) = fk((t, 0)) = fk((0, s) + (ns, ns)), (3.7)

By 5) of lemma 3.2.5, we deduce that vl−2,ηk = (0, s− 1) or vl−2,ηk =
(t− 1, 0). Suppose that vl−2,ηk = (0, s− 1). Then we have

fk(vl,ηk + rl,ηk) =fk((0, s) + (ns, ns))

=fk(s(n, n+ 1))

=s(n− k + 1)

=(s− 1)(n− k + 1) + n− k + 1

=fk((s− 1)(n, n+ 1)) + n− k + 1

≥fk(vl−2,ηk + rl−2,ηk) + 2,

where the first equality comes from equation (3.7) and the last in-
equality comes from k ≤ n− 1.

Now suppose that vl−2,ηk = (t− 1, 0). In an analogous way, we obtain
that

fk(vl,ηk + rl,ηk) =fk((t, 0))

=k(t− 1) + k

≥fk(vl−2,ηk + rl−2,ηk) + 2,

where the first equality comes from equation (3.7) and the last in-
equality comes from k ≤ 2. Obtaining the result.
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The previous lemma will be constantly used in the rest of the section.

Proposition 3.3.8. Let k ∈ {1, . . . , n}. Let ηk ∈ Ω be as in Definition
3.3.5. Then vn,ηk = (0, k) or vn,ηk = (n− k + 1, 0).

Proof. Assume the statement is false, aiming for contradiction. By defini-
tion, we have that

∑r
j=0 dk,j = n. Using lemma 3.2.5 and since vn,ηk is not

(n − k + 1, 0) or (0, k), we have that there exist m < n such that vm,ηk =

(n − k + 1, 0) or vm,ηk = (0, k). Let l ≤ r be such that m =
∑l−1

j=0 dk,j + c
and 0 < c ≤ dk,l.

We have four cases: zk = 1 and l odd; zk = 1 and l even; zk = 0
and l odd; zk = 1 and l even. Consider z = 1 and l odd. In this case,
by definition 3.2.2, vm,ηk = (

∑l−1
j odd dk,j + c, 0) = (n − k + 1, 0). Hence∑l−1

j odd dk,j + c = n− k + 1. Then

n− k + 1 = m−
l−1∑
j even

dk,j < n−
l−1∑
j even

dk,j .

This implies that
∑l−1

j even dk,j + 1 < k. Thus

fk((
l−1∑
j even

dk,j + 1)(n, n+ 1)) < fk(k(n, n+ 1))

= k(n− k + 1)

= fk((n− k + 1, 0))

= fk(vm,ηk) + rm,ηk .

This is a contradiction to lemma 3.3.7 2).

Now, suppose that zk = 1 and l even. For this case, by definition 3.2.2,
we have that vm,ηk = (0, k) and k =

∑l−1
j even dk,j + c. Then

k =
l−1∑
j even

dk,j + c = m−
l−1∑
j odd

dk,j < n−
l−1∑
j odd

dk,j .
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This implies that
∑l−1

j odd dk,j + 1 < n− k + 1. Thus

fk((

l−1∑
j odd

dk,j + 1)(1, 0)) < fk((n− k + 1)(1, 0))

= k(n− k + 1)

= fk(k(n, n+ 1))

= fk((0, k) + k · n(1, 1))

= fk(vm,ηk) + rm,ηk .

This is a contradiction to lemma 3.3.7 2). The other two cases are analogous.

Recall that for J ∈ SAn , we denote mJ =
∑

β∈J Anβ.

Corollary 3.3.9. Let n ∈ N \ {0} and 1 ≤ k ≤ n. Then, there exists η ∈ Ω
such that η 6= ηk and fk(mJη) = fk(mJηk

).

Proof. By the previous Proposition, we have that vn,ηk = (n − k + 1, 0)
or vn,ηk = (0, k). By lemma 6) of 3.2.5, we obtain that {vi,ηk}

n−1
i=1 =

{(t, 0)}n−kt=1 ∪ {(0, s)}
k−1
s=1 . Moreover, we can deduce that vn−1,ηk is (n− k, 0)

or (0, k − 1).

Suppose that vn−1,ηk = (n−k, 0). Since fk(k(n, n+1)) = fk((n−k+1, 0))
and by construction of ηk, we have that vn,ηk = (n− k + 1, 0). If vn−1,ηk =
(0, k−1), we obtain that vn,ηk = (0, k). In any case, we obtain that dk,r ≥ 2.
Then we define η = (z′, d′0, d

′
1, . . . , d

′
r, d
′
r+1), where z′ = zk, d

′
i = dk,i for all

i < r, d′r = dk,r − 1 and d′r+1 = 1.

By construction
∑n

j=0 d
′
j = n and d′j > 0 for all j ∈ {1, . . . , n}. This

implies that η ∈ Ω. On the other hand, we have that vj,ηk = vj,η for all
j ≤ n − 1 and vn,η = (n − k + 1, 0) if vn,ηk = (0, k) or vn,η = (0, k) if
vn,ηk = (n− k + 1, 0). Since fk(k(n, n+ 1)) = fk((n− k + 1, 0)), we obtain
that fk(mJη) = fk(mJηk

).

3.3.2 Jηk ∈ SAn is minimal with respect to fk

Lemma 3.3.10. Let β′, β ∈ N3 be such that β′ ≤ β (recall notation 3.1.1).
Then

fk(Anβ
′) ≤ fk(Anβ).

Proof. This is a straightforward computation.
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Lemma 3.3.11. Let β ∈ N3 be such that Anβ 6= v + q(1, 1) for all v ∈ T ′ηk
and q ∈ N. Then fk(Anβ) ≥ fk(v) for all v ∈ T ′ηk .

Proof. We claim that fk(v) ≤ k(n − k + 1) ≤ fk(Anβ) for all v ∈ T ′ηk and
for all β ∈ N3 satisfying the hypotheses of the Lemma.

We are going to prove the first inequality of the claim. By definition
3.3.1, we have that T ′ηk = T0,ηk

⋃
∪nj=1Tj,ηk +rj,ηk , where T0,ηk = {(q, q)}nq=1,

rj,ηk = n · π2(vj,ηk) and Tj,ηk + rj,ηk = {vj,ηk + (p + rj,ηk)(1, 1)}n−jp=0 . By
proposition 3.3.8 we have that vn,ηk = (0, k) or vn,ηk = (n − k + 1, 0).
Moreover, by 5) of lemma 3.2.5, we have that {vj,ηk}

n−1
j=1 = {(t, 0)}n−kt=1 ∪

{(0, s)}k−1
s=1 .

By definition, Tn,ηk +rn,ηk = {vn,ηk +rn,ηk(1, 1)}. Since we know the two
possibilities for vn,ηk , we obtain that fk(vn,ηk + rn,ηk(1, 1)) = k(n − k + 1).
On the other hand, if v ∈ T0,ηk , we have that v = (q, q) with q ≤ n. Since
1 ≤ k ≤ n, obtaining that fk(v) = q ≤ n ≤ k(n− k+ 1). With this, we only
have to check the desired inequality for v ∈ ∪n−1

j=1 {vj,ηk +(p+rj,ηk)(1, 1)}n−jp=0 .
This implies that v = vj,ηk + (p+ rj,ηk)(1, 1), for 1 ≤ j ≤ n− 1 and 0 ≤ p ≤
n− j.

Suppose that vj,ηk = (t, 0) for some t ≤ j and recall that, t ≤ n − k.
Then

fk(v) =fk(vj,ηk + (p+ rj,ηk)(1, 1))

=fk((t, 0)) + p+ rj,ηk
≤kt+ n− j
≤kt+ n− t
=(k − 1)t+ n

≤(k − 1)(n− k) + n

=nk − k2 + k.

Now suppose that vj,ηk = (0, s) for some s ≤ j and recall that s < k.
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Then

fk(v) =fk(vj,ηk + (p+ rj,ηk)(1, 1))

=fk((0, s) + p(1, 1) + n · s(1, 1))

=fk(s(n, n+ 1)) + p

≤s(n− k + 1) + (n− j)
≤s(n− k + 1) + (n− s)
≤s(n− k + 1) + (n− k) + (k − s)
≤s(n− k + 1) + (k − s)(n− k) + (k − s)
=nk − k2 + k.

This proves the first inequality of the claim. For the second inequality
notice that

Anβ =π1(β)(1, 0) + π2(β)(1, 1) + π3(β)(n, n+ 1)

=(π1(β), 0) + (π2(β), π2(β)) + (nπ3(β), nπ3(β) + π3(β))

=(π1(β), π3(β)) + (π2(β) + nπ3(β))(1, 1)

=(π1(β)− π3(β), 0) + (π2(β) + (n+ 1)π3(β))(1, 1).

Similarly, we obtain the expression

Anβ = (0, π3(β)− π1(β)) + (π1(β) + π2(β) + nπ3(β))(1, 1)).

Working with the first expression of Anβ and applying fk to this vector, we
obtain that

fk(Anβ) =fk((π1(β)− π3(β), 0) + (π2(β) + (n+ 1)π3(β))(1, 1))

=fk((π1(β)− π3(β), 0)) + π2(β) + (n+ 1)π3(β)

=k(π1(β)− π3(β)) + π2(β) + (n+ 1)π3(β).

By the hypothesis over β and recalling that {vηk,j}
n−1
j=1 = {(t, 0)}n−kt=1 ∪

{(0, s)}k−1
s=1 , we obtain that π1(β) − π3(β) ≥ n − k + 1. Using the second

expression of Anβ, we obtain π3(β) − π1(β) ≥ k. Suppose that π1(β) −
π3(β) ≥ n− k + 1. Then

fk(Anβ) =k(π1(β)− π3(β)) + π2(β) + (n+ 1)π3(β)

≥k(n− k + 1) + π2(β) + (n+ 1)π3(β)

≥k(n− k + 1).



72 CHAPTER 3. FACTORIZATION BY MINIMAL RESOLUTION

Now suppose that π3(β)− π1(β) ≥ k. In particular, π3(β) ≥ k. Then

fk(Anβ) =k(π1(β)− π3(β)) + π2(β) + (n+ 1)π3(β)

=(n+ 1)π3(β)− kπ3(β) + kπ1(β) + π2(β)

=(n− k + 1)π3(β) + kπ1(β) + π2(β)

≥(n− k + 1)k + kπ1(β) + π2(β)

≥nk − k2 + k.

In any case, we obtain that fk(Anβ) ≥ k(n− k+ 1) for all β ∈ N3 satisfying
the hypotheses of the Lemma as we claim.

Lemma 3.3.12. Let v = vl,ηk + q(1, 1) ∈ N2 be with l ≤ n and q ≥ n− l +
1 + rl,ηk . Then fk(v) ≥ fk(u) for all u ∈ T0,ηk

⋃
∪lj=1Tj,ηk + rj,ηk .

Proof. We proceed by induction on l. Consider l = 1. Then v = v1,ηk +
q(1, 1), with q ≥ n + r1,ηk and we need to prove that fk(v) ≥ fk(u) for all
u ∈ T0,ηk ∪T1,ηk + r1,ηk . If u ∈ T1,ηk + r1,ηk , then u = v1,ηk + (p+ r1,ηk)(1, 1),
with p ≤ n− 1. It follows that

fk(v) =fk(v1,ηk + q(1, 1))

=fk(v1,ηk) + q

≥fk(v1,ηk) + n+ r1,ηk

≥fk(v1,ηk) + p+ r1,ηk

=fk(v1,ηk + p+ r1,ηk(1, 1))

=fk(u).

If u ∈ T0,ηk , then u = p(1, 1), with p ≤ n. By definition 3.2.2, v1,ηk = (1, 0)
or v1,ηk = (0, 1). Thus fk(v) = k + q ≥ k + n or fk(v) = (1 − k) + q ≥
n+ (n− k + 1). Since k ∈ {1, . . . , n}, in any case we have that

fk(v) > n ≥ p = fk(u). (3.8)

We conclude that the Lemma is true for l = 1.

Next, assume that the Lemma is true for all l′ < l, i.e., fk(vl′,ηk +
q′(1, 1)) ≥ fk(u) for all u ∈ T0,ηk

⋃
∪l′j=1Tj,ηk +rj,ηk and q′ ≥ n−l′+1+rl′,ηk .

Let v = vl,ηk + q(1, 1) with q ≥ n− l+ 1 + rl,ηk . If u ∈ Tl,ηk + rl,ηk , we have
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that u = vl,ηk + (p+ rl,ηk)(1, 1), with p ≤ n− l. Then

fk(v) =fk(vl,ηk) + q

≥fk(vl,ηk) + n− l + 1 + rl,ηk
≥fk(vl,ηk) + p+ rl,ηk
=fk(vl,ηk + (p+ rl,ηk)(1, 1))

=fk(u).

Thus fk(v) ≥ fk(u) for all u ∈ Tl,ηk + rl,ηk . Consider u ∈ Tl−1,ηk + rηk,l−1.
By definition, u = vl−1,ηk + (p+ rl−1,ηk)(1, 1) with p ≤ n− l+ 1. By lemma
3.3.7 4), fk(vl,ηk + rl,ηk) ≥ fk(vl−1,ηk + rl−1,ηk). Then

fk(v) =fk(vl,ηk) + q

≥fk(vl,ηk) + n− l + 1 + rl,ηk
=fk(vl,ηk + rl,ηk(1, 1)) + n− l + 1

≥fk(vl−1,ηk + rl−1,ηk(1, 1)) + p

=fk(vl−1,ηk + (p+ rl−1,ηk)(1, 1))

=fk(u).

Obtaining that the statement is true for all u ∈ Tl−1,ηk + rl−1,ηk .

Suppose fk(vl,ηk + rl,ηk) ≥ fk(vl−1,ηk + rl−1,ηk) + 1. Obtaining that

fk(v) ≥fk(vl,ηk + rl,ηk(1, 1)) + n− l + 1

≥fk(vl−1,ηk + rl−1,ηk(1, 1)) + n− l + 2.

Then, by the induction hypothesis for l − 1, fk(v) ≥ fk(u) for all u ∈
T0,ηk

⋃
∪l−1
j=1Tj,ηk + rj,ηk , obtaining the result.

Now suppose that fk(vl,ηk + rl,ηk) = fk(vl−1,ηk + rl−1,ηk). For this, we
have two cases; l = 2 or l > 2. If l = 2, by (3.8), we have that

fk(v) =fk(v2,ηk) + q

≥fk(v2,ηk) + n− 1 + r2,ηk

=fk(v2,ηk + r2,ηk(1, 1)) + n− 1

=fk(v1,ηk + r1,ηk(1, 1)) + n− 1

=fk(v1,ηk + (n− 1 + r1,ηk)(1, 1))

≥n
≥fk(u),
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for all u ∈ T0,ηk . If l > 2, then for all u ∈ T0,ηk

⋃
∪l−2
j=1Tj,ηk + rj,ηk , we have

that

fk(v) ≥fk(vl,ηk + rl,ηk(1, 1)) + n− l + 1

≥fk(vl−2,ηk + rl−2,ηk(1, 1)) + n− l + 3

≥fk(u),

where the second inequality comes from 5) of lemma 3.3.7 and the last
inequality comes from the induction hypothesis over l − 2. Obtaining the
result.

Now we are ready to prove the other important result of this section.

Proposition 3.3.13. Let ηk ∈ Ω and let Jηk be the element of SAn as-
sociated to ηk by Proposition 3.3.4. Then for all J ∈ SAn we have that
fk(mJηk

) ≤ fk(mJ).

Proof. Let J = {β1, . . . , βλ2,n} ∈ SAn . By definition of SAn we have that

0 6= det
(
cβi

)
1≤i≤λ2,n

, where cβi :=
∑

γ≤βi(−1)|βi−γ|
(
βi
γ

)
Anγ (recall notation

3.1.1).

Fixing the β1th row of this matrix and using basic properties of deter-
minants, we obtain that

0 6= det
(
cβi

)
1≤i≤λ2,n

=
∑
γ≤β1

(−1)|βi−γ|
(
βi
γ

)
det


Anγ
cβ2

. . .
cβλ2,n

 .

Since the determinant is not zero, there exists β′1 ≤ β1 such that

det


Anβ′1
cβ2

. . .
cβλ2,n

 6= 0.

Applying this process for each row, we obtain the set of vectors B =

{β′i}
λ2,n

i=1 ⊂ Λ3,n such that β′i ≤ βi for all i ∈ {1, . . . , λ2,n} and with the

property det
(
Anβ′i

)
1≤i≤λ2,n

6= 0.
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The goal is to construct a bijective correspondence ϕ : B → T ′ηk , such
that fk(Anβ

′
i) ≥ fk(ϕ(β′i)). Consider the set vj,ηk +L := {vjηk +p(1, 1) | p ∈

N}. Now, consider the following partition of B:

B0 = {β′i ∈ B | Anβ′i ∈ T ′ηk},

B1 = {β′i ∈ B | Anβ′i ∈ (vj,ηk + L) \ Tj,ηk + rj,ηk for some j ∈ {1, . . . , n}},

B2 = {β′i ∈ B | Anβ′i = q(1, 1) for some q > n},

B3 = {β′i ∈ B | Anβ′i /∈ (vj,ηk + L) for all j ∈ {0, . . . , n}},

For all β′i ∈ B0, we define ϕ(β′i) = Anβ
′
i. Since det

(
Anβ′i

)
1≤i≤λ2,n

6= 0,

we have that ϕ(β′i) 6= ϕ(β′j) for all β′i, β
′
j ∈ B0.

Now, if B1 6= ∅, we rearrange B in such a way that {β′1, β′2, . . . , β′m} = B1.
Consider β′1 ∈ B1. By construction of B1, there exist l ≤ n and q ∈ N such
that Anβ

′
1 = vl,ηk + q(1, 1). By proposition 3.2.14 we have that

Anβ′1 ∈ spanC{v ∈ Cλ2,n | v ∈
l⋃

j=0

Tj,ηk}

= spanC{v ∈ Cλ2,n | v ∈ T0,ηk

⋃
∪lj=1Tj,ηk + rj,ηk}.

This implies that Anβ′1 =
∑

v∈T0,ηk

⋃
∪lj=1Tj,ηk+rj,ηk

avv, for some constants

av ∈ C. Using again basic properties of the determinant, we obtain that
there exists uβ′1 ∈ T0,ηk

⋃
∪lj=1Tj,ηk + rj,ηk such that

det


uβ′1
Anβ′2

...

Anβ′λ2,n

 6= 0.

Applying this process for each element of B1, we obtain the vectors {uβ′j}
m
j=1.

We define ϕ(β′j) = uβ′j for all j ∈ {1, . . . ,m}. Now, we need to check that ϕ

is injective on B0 ∪B1 and fk(Anβ
′
i) ≥ fk(ϕ(β′i)).
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Notice that, by construction

det



uβ′1
...

uβ′m
Anβ′m+1

...

Anβ′λ2,n


6= 0.

This implies that uβ′i 6= uβ′j for all 1 ≤ i < j ≤ m. In particular we

have that uβ′i 6= uβ′j . Moreover, using the same argument, we have that

uβ′i 6= Anβ
′
j = ϕ(β′j) for all β′j ∈ B0. Thus, ϕ is injective on B0 ∪B1.

On the other hand, Anβ
′
i = vl,ηk + q(1, 1) /∈ Tl,ηk + rl,ηk for some l ≤ n.

This implies that q ≥ n− l + 1 + rl,ηk . Then

fk(Anβ
′
i) =fk(vl,ηk + q(1, 1))

=fk(vl,ηk) + q

≥fk(vl,ηk) + n− l + 1 + rl,ηk
=fk(vl,ηk + (n− l + 1 + rl,ηk)(1, 1))

≥fk(uβ′i).

where the last inequality comes from lemma 3.3.12, obtaining the inequality
we are looking for.

For all β′i ∈ B2, we have that Anβ
′
i = q(1, 1), for some q > n. By lemma

3.2.11, we have that Anβ′i =
∑

v∈T0,ηk
avv. Applying the same method that

for the elements of B1, we define ϕ with the properties that we need.

Now, since | T ′ηk |=| B |= λ2,n, we have that | B3 |=| Tηk \ {ϕ(β′j) | β′j ∈
B0 ∪ B1 ∪ B2} |. Then we take ϕ(β′i) = v, with v ∈ Tηk \ {ϕ(β′j) | β′j ∈
B0 ∪ B1 ∪ B2} in such a way that ϕ(β′i) 6= ϕ(β′j) for all β′i, β

′
j ∈ B3 and

β′i 6= β′j .

By construction we obtain that ϕ is a bijective correspondence and by
definition of B3 and lemma 3.3.11 we have that fk(Anβ

′
i) ≥ fk(ϕ(β′i)) for all
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β′i ∈ B3. Then

fk(mJ) =
∑
βi∈J

fk(Anβi)

≥
∑
β′i∈B

fk(Anβ
′
i)

≥
∑
β′i∈B

fk(ϕ(β′i))

=
∑
b∈T ′ηk

fk(v)

=fk(mJηk
),

where the first inequality comes from lemma 3.3.10 and the second comes
from the construction of ϕ.

Now we are ready to prove Theorem 3.1.5.

Proof. By proposition 3.3.4, Jηk ∈ SAn . By corollary 3.3.9, there exists
Jη ∈ SAn such that Jη 6= Jηk and fk(mJη) = fk(mJηk

). Using proposition
3.3.13, we obtain that ordIn((k, 1−k)) = fk(mJηk

). This implies that (k, 1−
k) ∈ σmJη ∩ σmJηk .
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